
M A N N I N G

Sedat Kapanoglu

The rules to break and
how to break them

With examples in C#

˘

Impact of complexity on performance

Search algorithm Complexity Time to find a record among 60 rows

The DIY quantum computer Lisa’s uncle has in his garage O(1) 1 second

Binary search O(log N) 6 seconds

Linear search (because your boss asked you to do it an
hour before the presentation)

O(N) 60 seconds

The intern accidentally nested two for loops. O(N2) 1 hour

Some randomly pasted code from Stack Overflow that also
finds a solution to some chess problem while searching,
but the developer didn’t bother to remove that part.

O(2N) 36.5 billion years

Instead of finding the actual record, the algorithm tries to
find the arrangement of records that spell out the record
you’re looking for when sorted in a certain way. The good
news is that the developer doesn’t work here anymore.

O(N!) The end of the universe, but still
before those monkeys finish their
so-called Shakespeare

Street Coder
THE RULES TO BREAK AND HOW TO BREAK THEM

SEDAT KAPANOĞLU

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2022 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Manning Publications Co. Development editors: Toni Arritola and Becky Whitney
20 Baldwin Road Technical development editor: Frances Buontempo
PO Box 761 Review editor: Aleksandar Dragosavljević
Shelter Island, NY 11964 Production editor: Keri Hales

Copy editor: Suzanne G. Fox
Proofreader: Katie Tennant

Technical proofreader: Orlando Méndez Morales
Typesetter: Gordan Salinovic

Cover designer: Marija Tudor

ISBN 9781617298370
Printed in the United States of America

http://www.manning.com

 To my brother Muzaffer,
who introduced me to the fantastic world of computers

v

brief contents
1 ■ To the streets 1

2 ■ Practical theory 14

3 ■ Useful anti-patterns 53

4 ■ Tasty testing 94

5 ■ Rewarding refactoring 122

6 ■ Security by scrutiny 140

7 ■ Opinionated optimization 171

8 ■ Palatable scalability 198

9 ■ Living with bugs 222

vii

contents
preface xiii
acknowledgments xv
about this book xvii
about the author xx
about the cover illustration xxi

1 To the streets 1
1.1 What matters in the streets 2

1.2 Who’s a street coder? 3

1.3 Great street coders 4
Questioning 5 ■ Results-driven 5 ■ High-throughput 6
Embracing complexity and ambiguity 6

1.4 The problems of modern software development 7
Too many technologies 8 ■ Paragliding on paradigms 9
The black boxes of technology 10 ■ Underestimating
overhead 11 ■ Not my job 11 ■ Menial is genial 11

1.5 What this book isn’t 12

1.6 Themes 12

CONTENTSviii

2 Practical theory 14
2.1 A crash course on algorithms 15

Big-O better be good 17

2.2 Inside data structures 19
String 20 ■ Array 23 ■ List 24 ■ Linked list 25
Queue 26 ■ Dictionary 26 ■ HashSet 29 ■ Stack 29
Call stack 30

2.3 What’s the hype on types? 30
Being strong on the type 31 ■ Proof of validity 32 ■ Don’t
framework hard, framework smart 37 ■ Types over typos 40
To be nullable or non-nullable 41 ■ Better performance for
free 47 ■ Reference types vs. value types 49

3 Useful anti-patterns 53
3.1 If it ain’t broke, break it 54

Facing code rigidity 54 ■ Move fast, break things 55
Respecting boundaries 56 ■ Isolating common functionality 57
Example web page 59 ■ Leave no debt behind 60

3.2 Write it from scratch 61
Erase and rewrite 61

3.3 Fix it, even if it ain’t broke 62
Race toward the future 62 ■ Cleanliness is next
to codeliness 64

3.4 Do repeat yourself 66
Reuse or copy? 70

3.5 Invent it here 71

3.6 Don’t use inheritance 74

3.7 Don’t use classes 76
Enum is yum! 76 ■ Structs rock! 78

3.8 Write bad code 83
Don’t use If/Else 83 ■ Use goto 85

3.9 Don’t write code comments 88
Choose great names 90 ■ Leverage functions 90

CONTENTS ix

4 Tasty testing 94
4.1 Types of tests 95

Manual testing 95 ■ Automated tests 96 ■ Living
dangerously: Testing in production 96 ■ Choosing the
right testing methodology 97

4.2 How to stop worrying and love the tests 99

4.3 Don’t use TDD or other acronyms 105

4.4 Write tests for your own good 106

4.5 Deciding what to test 107
Respect boundaries 107 ■ Code coverage 110

4.6 Don’t write tests 112
Don’t write code 112 ■ Don’t write all the tests 112

4.7 Let the compiler test your code 113
Eliminate null checks 113 ■ Eliminate range checks 116
Eliminate valid value checks 118

4.8 Naming tests 120

5 Rewarding refactoring 122
5.1 Why do we refactor? 123

5.2 Architectural changes 124
Identify the components 126 ■ Estimate the work and
the risk 127 ■ The prestige 128 ■ Refactor to make
refactoring easier 129 ■ The final stretch 135

5.3 Reliable refactoring 136

5.4 When not to refactor 138

6 Security by scrutiny 140
6.1 Beyond hackers 141

6.2 Threat modeling 142
Pocket-sized threat models 144

6.3 Write secure web apps 146
Design with security in mind 146 ■ Usefulness of security by
obscurity 147 ■ Don’t implement your own security 148
SQL injection attacks 149 ■ Cross-site scripting 155
Cross-site request forgery 159

CONTENTSx

6.4 Draw the first flood 161
Don’t use captcha 161 ■ Captcha alternatives 162
Don’t implement a cache 162

6.5 Storing secrets 163
Keeping secrets in source code 163

7 Opinionated optimization 171
7.1 Solve the right problem 172

Simple benchmarking 172 ■ Performance vs. responsiveness 175

7.2 Anatomy of sluggishness 177

7.3 Start from the top 178
Nested loops 179 ■ String-oriented programming 181
Evaluating 2b || !2b 182

7.4 Breaking the bottle at the neck 183
Don’t pack data 183 ■ Shop local 185 ■ Keep dependent
works separated 185 ■ Be predictable 187 ■ SIMD 189

7.5 1s and 0s of I/O 191
Make I/O faster 191 ■ Make I/O non-blocking 193
The archaic ways 194 ■ Modern async/await 195
Gotchas of async I/O 196

7.6 If all else fails, cache 196

8 Palatable scalability 198
8.1 Don’t use locks 199

Double-checked locking 206

8.2 Embrace inconsistency 209
The dreaded NOLOCK 209

8.3 Don’t cache database connections 211
In the form of an ORM 214

8.4 Don’t use threads 215
The gotchas of async code 219 ■ MULTITHREADING
with async 219

8.5 Respect the monolith 220

CONTENTS xi

9 Living with bugs 222
9.1 Don’t fix bugs 223

9.2 The error terror 224
The bare truth of exceptions 225 ■ Don’t catch exceptions 227
Exception resiliency 229 ■ Resiliency without transactions 233
Exceptions vs. errors 234

9.3 Don’t debug 236
printf() debugging 236 ■ Dump diving 237 ■ Advanced
rubber-duck debugging 240

index 243

xiii

preface
I’ve experienced many distinct aspects of becoming proficient in software develop-
ment as a self-taught programmer (other than reading books), ranging from trying to
learn machine language by putting random numbers in memory and observing
whether the results were anything other than a simple halt, to spending nights in
smoke-filled offices, to sneaking off the university campus in the middle of the night
after working clandestinely in the lab as a high schooler, to reading the contents of
binary files and just hoping that getting exposed to some bytes would make me magi-
cally understand how the code works, to memorizing opcodes, and to trying every
combination of the order of arguments to figure out the correct one in a function due
to lack of documentation.

 Back in 2013, my friend Aziz Kedi, who used to own a bookstore in Istanbul, asked
me to write a book about software development based on my experiences. That was
the first time I considered writing a book about my profession. I had to shelve the idea
soon thereafter because Aziz closed his bookstore and moved to London.

 I kept entertaining the idea of having a book I could hand out to new team mem-
bers who were at the start of their career so they could close the experience gap while
widening their perspective. The pre-career understanding of software development is
heavily shaped by curricula, preconceptions, and best practices. A newly minted pro-
grammer naturally thinks of their accumulated knowledge as a core investment and
doesn’t want to wander far from it.

 At some point, I decided to write such a book—very slowly. I called the fictional
book Street Coder and started making notes of random ideas that could make the lives

PREFACExiv

of new developers easier. They didn’t have to be best practices, either—they could
even be bad practices, if you will, as long as they made developers better thinkers
about the problems they faced. The document had grown, and at a certain point, I
forgot about it, until the day I got a call from London.

 It wasn’t Aziz Kedi this time. He was probably busy writing screenplays back then,
and I’m sure he’s working on another one as I’m writing this. This time, it was Andy
Waldron from Manning Publications. He asked me, “What idea do you have for a
book?” I couldn’t think of anything at first, and I was preparing—just to gain some
time—to counter his question with this question: “Well, what did you have in mind?” I
pretty much mumbled a bit, and then it suddenly struck me. I remembered the notes
I’d been taking and the title I had given it: Street Coder.

 The title comes from what I learned in the streets, the professional software devel-
opment world, by many trials and errors, which gave me a pragmatic, down-to-earth
perspective about approaching software development as a craft. This book conveys the
changes in perspective I’ve experienced so you’ll have a head start in your career.

xv

 acknowledgments
This book wouldn’t have been possible without my wife, Günyüz. She’s carried every-
thing on her shoulders while I’ve been busy writing. Thank you, babe. I love you.

 Thanks go to Andrew Waldron, who kick-started my passion for authoring this
book. This has been a phenomenal experience. Andy has always been tolerant and
understanding, even when I accused him of secretly sneaking into my home and
changing the book’s text. I owe you a drink, Andy.

 Thanks go to my development editors, Toni Arritola, who taught me everything I
know about writing programming books, and Becky Whitney, who’s been patient and
good natured about all the badly written parts I originally turned in—which were
Andy’s doing, really.

 Thanks go to the technical reviewer, Frances Buontempo, who’s been extremely
constructive and on-point for the technical feedback. Thanks also go to Orlando Mén-
dez Morales for making sure that the code I share in the book actually makes sense.

 Thanks go to my friends Murat Girgin and Volkan Sevim, who reviewed the earliest
drafts and assured me that my jokes would’ve been funny if the reader knew me.

 I thank Donald Knuth for letting me quote him. I find myself lucky to have gotten
a personal response from him, even if it was only “OK.” I also thank Fred Brooks for
reminding me that there’s a fair use clause in the copyright law, so I don’t need to call
him every day to ask for his permission, and also not to trespass in his home at 3 a.m.
There was really no need to involve the cops, Fred—I was just leaving! Thanks also go
to Leon Bambrick for letting me quote him peacefully.

ACKNOWLEDGMENTSxvi

 Thanks go to MEAP readers, especially Cihat İmamoğlu, whom I don’t know per-
sonally, but who wrote a crazy amount of in-depth feedback. I thank all the Manning
reviewers: Adail Retamal, Alain Couniot, Andreas Schabus, Brent Honadel, Cameron
Presley, Deniz Vehbi, Gavin Baumanis, Geert Van Laethem, Ilya Sakayev, Janek López
Romaniv, Jeremy Chen, Jonny Nisbet, Joseph Perenia, Karthikeyarajan Rajendran,
Kumar Unnikrishnan, Marcin Sęk, Max Sadrieh, Michael Rybintsev, Oliver Korten,
Onofrei George, Orlando Méndez Morales, Robert Wilk, Samuel Bosch, Sebastian
Felling, Tiklu Ganguly, Vincent Delcoigne, and Xu Yang—your suggestions helped
make this a better book.

 And finally, I thank my dad for teaching me that I can make my own toys.

xvii

about this book
Street Coder fills in the gaps of the professional experience of a software developer by
tackling well-known paradigms, showing anti-patterns, and seemingly bad or less-
known practices that can be useful in the streets—the professional world. The goal of
the book is to equip you with a questioning and practical mindset and to help you
understand that the cost of creating software is more than just Googling and typing. It
also shows that some mundane work can help you save more time than it takes. In
general, the book aims to be a perspective changer.

Who should read this book
This book is for beginning- and medium-level programmers who have managed to
learn programming by means other than traditional schooling, but who still need an
expanded perspective on paradigms and best practices of software development. The
examples are in C# and .NET, so familiarity with those languages can help as you read,
but the book strives to be, as much as possible, language and framework agnostic.

How this book is organized: A road map
■ Chapter 1 introduces the concept of a street coder—a developer who has been

molded by professional experience—and describes the qualities that can help
you become that person.

■ Chapter 2 discusses how theory matters in practical software development and
why you should care about data structures and algorithms.

ABOUT THIS BOOKxviii

■ Chapter 3 explains how certain anti-patterns or bad practices can actually be
useful or even be preferable in many situations.

■ Chapter 4 tackles the mysterious world of unit testing and how it can help you
write less code and do less work, even though it may seem to be more work
initially.

■ Chapter 5 discusses techniques for refactoring, how to do it easily and safely,
and when to avoid it.

■ Chapter 6 introduces some basic security concepts and techniques and shows
defenses against most common attacks.

■ Chapter 7 shows some hard-core optimization techniques, shamelessly recom-
mends premature optimization, and describes a methodical approach to fixing
performance problems.

■ Chapter 8 describes techniques to make your code more scalable and tackles par-
allelization mechanics and their impact on performance and responsiveness.

■ Chapter 9 goes over best practices for handling bugs and errors. Specifically, it
encourages not handling errors and describes techniques for writing fault-
resilient code.

About the code
Most of the code is included to support concepts and may be missing implementation
details to focus on the actual topic. Fully functioning code has been provided for several
projects in the online GitHub repository (https://github.com/ssg/streetcoder) and on
the Manning website (https://www.manning.com/books/street-coder), so you can run
them and experiment on them locally. One example specifically focuses on a migration
scenario from .NET Framework, which means that specific project may not build on
non-Windows machines. An alternate solution file for the book is provided in the repos-
itory for those platforms so you can build without any issues.

 This book contains many examples of source code both in numbered listings and
in line with normal text. In both cases, source code is formatted in a fixed-width
font like this to separate it from ordinary text. Sometimes code is also in bold to
highlight code that has changed from previous steps in the chapter, such as when a
new feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

liveBook discussion forum
Purchase of Street Coder includes free access to liveBook, Manning’s online reading plat-
form. Using liveBook’s exclusive discussion features, you can attach comments to the

https://github.com/ssg/streetcoder
https://www.manning.com/books/street-coder

ABOUT THIS BOOK xix

book globally or to specific sections or paragraphs. It’s a snap to make notes for yourself,
ask and answer technical questions, and receive help from the author and other users.
To access the forum, go to https://livebook.manning.com/#!/book/street-coder/
discussion. You can also learn more about Manning’s forums and the rules of conduct at
https://livebook.manning.com/#!/discussion.

 Manning is committed to providing our readers with a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking him some challenging questions, lest his attention stray! The forum
and the archives of previous discussions will be accessible from the publisher’s website
as long as the book is in print.

https://livebook.manning.com/#!/book/street-coder/discussion
https://livebook.manning.com/#!/book/street-coder/discussion
https://livebook.manning.com/#!/book/street-coder/discussion
https://livebook.manning.com/#!/discussion

xx

 about the author
SEDAT KAPANOĞLU is a self-taught software developer from
Eskişehir, Turkey, who later worked as an engineer at Microsoft
Corporation in Seattle, Washington, in the Windows Core
Operating System division. His professional software develop-
ment career spans three decades.

Sedat is the youngest of five children born to Bosnian par-
ents who emigrated from the former Yugoslavia to Turkey. He

founded the most popular Turkish social platform in the world, Ekşi Sözlük (https://
eksisozluk.com), which means “sour dictionary.” In the 1990s, he was active in the
Turkish demoscene, which is an international digital art community for creating code-
generated graphical and musical presentations.

 Find him on Twitter @esesci or on his programming blog at https://ssg.dev.

https://eksisozluk.com
https://eksisozluk.com
https://ssg.dev

xxi

about the cover illustration
The figure on the cover of Street Coder is captioned “Lépero,” meaning “vagabond.”
The illustration is taken from Trajes civiles, militares y religiosos de México by Claudio
Linati (1708–1832), published in 1828. Linati was an Italian painter and lithographer
who established the first lithographic press in Mexico. The book depicts civil, military,
and religious costumes of Mexican society and was one of the first color-plate books
about Mexico to be printed, as well as the first book about Mexican people written by
a foreigner. The volume includes 48 hand-colored lithographs, with brief descriptions
of each one. The rich variety of drawings in the collection reminds us vividly of how
culturally separated the world’s regions, towns, villages, and neighborhoods were just
200 years ago. Isolated from each other, people spoke different dialects and lan-
guages. In the streets or in the countryside, it was easy to identify where they lived and
what their trade or station in life was just by their dress.

 Dress codes have changed since then, and diversity by region, so rich at the time,
has faded. It is now hard to tell the inhabitants of different continents apart, let alone
those of different towns or regions. Perhaps we have traded cultural diversity for a
more varied personal life—certainly for a more varied and fast-paced technological
life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life two centuries ago, brought back to life by
images from collections such as this one.

1

To the streets

I am lucky. I wrote my first program in the 1980s. It only required me to turn on the
computer, which took less than a second, write 2 lines of code, type RUN, and voila!
The screen was suddenly filled with my name. I was immediately awestruck by the
possibilities. If I could do this with 2 lines, imagine what I could do with 6 lines, or
even 20 lines! My nine-year-old brain was flooded with so much dopamine that I
was addicted to programming at that instant.

 Today, software development is immensely more complex. It’s nowhere close to
the simplicity of the 1980s, when user interactions only consisted of “press any key
to continue,” although users occasionally struggled to find an “any” key on their
keyboard. There were no windows, no mice, no web pages, no UI elements, no
libraries, no frameworks, no runtimes, no mobile devices. All you had was a set of
commands and a static hardware configuration.

This chapter covers
 The realities of the streets

 Who is a street coder?

 The problems of modern software development

 How to solve your problems with street lore

2 CHAPTER 1 To the streets

 There is a reason for every level of abstraction we now have, and it’s not that we are
masochists, with the exception of Haskell1 programmers. Those abstractions are in
place because they’re the only way to catch up with current software standards. Pro-
gramming isn’t about filling the screen with your name anymore. Your name must be
in the correct font, and it must be in a window so you can drag it around and resize it.
Your program must look good. It should support copy and paste. It must support dif-
ferent names for configurability as well. Perhaps it should store the names in a data-
base, even in the cloud. Filling the screen with your name isn’t so much fun anymore.

 Fortunately, we have resources to contend with the complexity: universities, hack-
athons, boot camps, online courses, and rubber ducks.

TIP Rubber duck debugging is an esoteric method for finding solutions to
programming problems. It involves talking to a yellow plastic bird. I’ll tell you
more about it in the debugging chapter.

We should be well equipped with all the resources we have, but the foundation we build
for ourselves may not always be sufficient in a high-competition, high-demanding
career of software development, the streets.

1.1 What matters in the streets
The world of professional software development is quite mysterious. Some customers
swear that they will pay you in a couple of days every time you call them for months on
end. Some employers don’t pay you any salary at all, but they insist they will pay you
“once they make money.” The chaotic randomness of the universe decides who gets
the window office. Some bugs disappear when you use a debugger. Some teams don’t
use any source control at all. Yes, it’s frightening. But you must face the realities.

 One thing is clear in the streets: your throughput is what matters most. Nobody
cares about your elegant design, your knowledge of algorithms, or your high-quality
code. All they care about is how much you can deliver in a given time. Counterintui-
tively, good design, good use of algorithms, and good quality code can impact your
throughput significantly, and that’s what many programmers miss. Such matters are
usually thought of as hindrances, frictions between a programmer and the deadline.
That kind of thinking can turn you into a zombie with a ball and chain attached to
your foot.

 In fact, some people do care about the quality of your code: your colleagues. They
don’t want to babysit your code. They want your code to work and be easily under-
standable and maintainable. This is something you owe them because once you
commit your code to the repository, it’s everybody’s code. In a team, the team’s
throughput is more important than that of each member. If you are writing bad code,
you are slowing your colleagues down. Your code’s lack of quality hurts the team, and
a slowed-down team hurts the product, and an unreleased product hurts your career.

1 Haskell is an esoteric language that was created as a challenge to fit as many academic papers as possible into
a single programming language.

3Who’s a street coder?

 The easiest thing you can write from scratch is the idea, and the next easiest thing
is the design. That’s why good design matters. Good design isn’t something that looks
good on paper. You can have a design in your mind that works. You will encounter
people who don’t believe in designing and just improvise the code. Those people
don’t value their time.

 Similarly, a good design pattern or a good algorithm can increase your throughput.
If it doesn’t help your throughput, it’s not useful. Because almost everything can be
given a monetary value, everything you do can be measured in terms of throughput.

 You can have high throughput with bad code too, but only in the first iteration. The
moment the customer requests a change, you are stuck with maintaining terrible code.
Throughout this book, I’ll be talking about cases in which you can realize that you are
digging yourself into a hole and get yourself out of it before you lose your mind.

1.2 Who’s a street coder?
Microsoft considers two distinct categories of candidates when hiring: new graduates
of a computer science department and industry experts who have substantial experi-
ence in software development.

 Be it a self-taught programmer or someone who studied computer science, they are
missing a common piece at the beginning of their career: street lore, which is the exper-
tise to know what matters most. A self-taught programmer has many trials and errors
under their belt but can lack knowledge of formal theory and how it applies to everyday
programming. A university graduate, on the other hand, knows a lot about theory but
lacks practicality and, sometimes, a questioning attitude toward what they learned. See
figure 1.1.

 The corpus you learn at school doesn’t have priority associated with it. You learn in
the order of the learning path, not in the order of importance. You have no idea how
useful certain subjects might be in the streets, where competition is relentless. Time-
lines are unrealistic. Coffee is cold. The best framework in the world has that single

CS degree

Self-teaching

Boot camp

Courses

STREETS

Theory

Practice

Here be dragons.

Figure 1.1 Starting a
career through different
paths

4 CHAPTER 1 To the streets

bug that renders a week of your work worthless. Your perfectly designed abstraction
crumbles under pressure from the customer who constantly changes their require-
ments. You manage to quickly refactor your code with some copy-paste, but now you
must edit 15 separate places just to change one configuration value.

 Over the years, you develop new skills to tackle ambiguity and complexity. Self-
taught programmers learn some algorithms that help them, and university graduates
eventually understand that the best theory isn’t always the most practical.

 A street coder is anyone with software development experience in the industry
who has had their beliefs and theories shaped by the realities of an unreasonable boss
who wanted a week’s worth of work done in the morning. They have learned to back
up everything on multiple media after they lose thousands of lines of code and have to
rewrite it all from scratch. They have seen C-beams glitter in the server room from
burning hard drives and have fought with the systems administrator at the doors of
the server room just to get access to production because someone has just deployed
an untested piece of code. They have tested their software-compression code on its
own source code, only to discover that it’s compressed everything into one byte and
the value of that byte is 255. The decompression algorithm is yet to be invented.

 You’ve just graduated and are looking for a job, or you’ve been fascinated by pro-
gramming but have no idea what awaits you. You’ve gotten out that boot camp and are
looking for job opportunities, but you’re not sure about the knowledge gap you have.
You’ve taught yourself a programming language, but you’re not sure what is missing
from your skills tool belt. Welcome to the streets.

1.3 Great street coders
In addition to street cred, honor, and loyalty, a street coder ideally possesses these
qualities:

 Questioning
 Results-driven (aka, “results-oriented” in HR-speak)
 High-throughput
 Embracing complexity and ambiguity

Great software developers are not just great coders
Being a great work colleague involves many more skills than just putting bits and bytes
into a computer. You need to be good at communication, provide constructive feed-
back, and accept criticism like a champion. Even Linus Torvaldsa admitted that he
needed to work on his communication skills. However, such skills are outside the
scope of this book. You will have to make friends.

a Linus Torvalds created the Linux operating system and Git source control software and endorsed the belief
that swearing at your project’s volunteers is okay if they are technically wrong.

5Great street coders

1.3.1 Questioning
Someone talking to themselves is considered unusual at best, especially if they don’t
have answers to the questions they are asking themselves. However, being a question-
ing person, asking questions of yourself, asking questions about the most accepted
notions, and deconstructing them can clarify your vision.

 Many books, software experts, and Slavoj Žižek2 emphasize the importance of
being critical and inquisitive, but few of them give you something to work with. In this
book, you’ll find examples of very well-known techniques and best practices and how
they can be less efficient than they claim to be.

 A critique of a technique doesn’t mean it’s useless. However, it will expand your
horizon so you can identify some use cases in which an alternative technique might
actually be better.

 The goal of this book isn’t to cover every programming technique from end to
end, but to give you a perspective on how to treat best practices, how to prioritize
them based on merit, and how you can weigh the pros and cons of alternative
approaches.

1.3.2 Results-driven
You can be the best programmer in the world with the best understanding of the intri-
cacies of software development and can come up with the best design for your own
code, but those will mean nothing if you are not shipping, if you are not getting the
product out.

 According to Zeno’s paradox,3 to reach an end goal, you must first reach the half-
way-through point. It’s a paradox because to reach the halfway-through point, you
have to reach the quarter-way-through point, and so on, which makes you unable to
reach anywhere. Zeno had a point: having an end product requires you to meet dead-
lines and the milestones in between, too. Otherwise, it’s impossible to reach your end
goal. Being results-driven also means being milestones-driven, being progress-driven.

“How does a project get to be a year late? … One day at a time.”
—Fred Brooks, The Mythical Man Month

Getting results can mean sacrificing code quality, elegance, and technical excellence.
It’s important to have that perspective and keep yourself in check for what you’re
doing and for whose sake.

 Sacrificing code quality doesn’t mean sacrificing product quality. If you have
good tests in place, if there is a good set of written requirements, you can even go
ahead and write everything in PHP.4 It could mean, however, you will have to bear

2 Slavoj Žižek is a modern philosopher who suffers from a condition that forces him to criticize everything in
the world, without exceptions.

3 Zeno was a Greek guy who lived thousands of years ago and who couldn’t stop asking frustrating questions.
Naturally, none of his written works survived.

4 PHP was once a programming language that exemplified how not to design a programming language. From
what I’ve heard, PHP has come a long way since it was the butt of programming jokes and is a fantastic pro-
gramming language now. However, it still has some brand image issues to address.

6 CHAPTER 1 To the streets

some pain in the future because bad-quality code will eventually bite you. It’s called
code karma.

 Some of the techniques you’ll learn in the book will help you make decisions to get
results.

1.3.3 High-throughput

The greatest factors affecting the speed of your development are experience, good
and clear specifications, and mechanical keyboards. Just kidding—contrary to popu-
lar belief, mechanical keyboards don’t help your speed at all. They just look cool and
are great at annoying your significant other. In fact, I don’t think typing speed helps
development speed at all. Your confidence in your typing speed might even encour-
age you to write more elaborate code than is necessary.

 Some expertise can be gained by learning from others’ mistakes and despair. In
this book, you’ll find examples of such cases. The techniques and knowledge you
gained will make you write less code and make decisions faster and will allow you to
have as little technical debt as possible so you won’t be spending days untangling code
you wrote only six months ago.

1.3.4 Embracing complexity and ambiguity

Complexity is scary, and ambiguity more so, because you don’t even know how much
you should be scared and that scares you even more.

 Dealing with ambiguity is one of the core skills Microsoft recruiters ask questions
about in interviews. That usually entails hypothetical questions like “How many violin
repair shops are there in New York?,” “How many gas stations are there in Los Ange-
les?,” or “How many Secret Service agents does the president have, and what’s their
shift schedule? List their names, and preferably show their walking paths on this blue-
print of the White House.”

 The trick to solving these questions comes down to clarifying everything you know
about the problem and arriving at an approximation based on those facts. For exam-
ple, you can start with New York’s population and how many people might be playing
violin in the population. That would give you an idea about the size of the market and
how much competition the market can support.

 Similarly, when faced with a problem with some unknown parameters, such as esti-
mating the time it would take to develop a feature, you can always narrow the window
of approximation based on what you know. You can use what you know to your advan-
tage and leverage it as much as possible, which can reduce the ambiguous part to
minuscule.

 Interestingly, dealing with complexity is similar. Something that looks extremely
complex can be divided into parts that are much more manageable, less complex,
and, in the end, simpler.

7The problems of modern software development

 The more you clarify, the more you can tackle the unknown. The techniques you’ll
learn in this book will clarify some of these things and will make you more confident
in tackling ambiguity and complexity.

1.4 The problems of modern software development
Besides increased complexity, countless layers of abstractions, and Stack Overflow
moderation, modern software development has other issues:

 There are too many technologies: too many programming languages, too many
frameworks, and certainly too many libraries, considering that npm (the pack-
age manager for Node.js framework) had a library called “left-pad” solely to add
space characters to the end of a string.

 It’s paradigm-driven, and hence, conservative. Many programmers consider
programming languages, best practices, design patterns, algorithms, and data
structures relics of an ancient alien race and have no idea how they work.

 Technology is becoming more opaque, like cars. People used to be able to repair
their own cars. Now as the engines become increasingly advanced, all we see
under the hood is a metal cover, like the one on a pharaoh’s tomb that will
release cursed spirits onto whoever opens it. Software development technologies
are no different. Although almost everything is now open source, I think new
technologies are more obscure than reverse-engineered code from a binary
from the 1990s because of the immensely increased complexity of software.

 People don’t care about the overhead of their code because we have orders of
magnitude of more resources at our disposal. Did you write a new simple chat
application? Why not bundle it with an entire package of a full-blown web
browser because you know it just saves you time and nobody bats an eye when
you use gigabytes of memory anyway?

 Programmers are focused on their stack and disregard how the rest works, and
rightfully so: they need to bring food to the table, and there is no time to learn.
I call this “The Dining Developers Problem.” Many things that influence the
quality of their product go unnoticed because of the constraints they have. A
web developer usually has no idea how the networking protocols underneath
the web work. They accept the delay when loading a page as is and learn to live
with it because they don’t know that a minor technical detail like an unneces-
sarily long certificate chain can slow down a web page’s loading speed.

 Thanks to the paradigms that have been taught, there is a stigma against menial
work, like repeating yourself or copy and paste. You are expected to find a DRY5

solution. That kind of culture makes you doubt yourself and your abilities and
therefore hurts your productivity.

5 DRY. Don’t Repeat Yourself. A superstition that if someone repeats a line of code instead of wrapping it in a
function, they will instantly be transformed into a frog.

8 CHAPTER 1 To the streets

In this book, I propose some solutions to these problems, including going over some
core concepts that you might have found boring, prioritizing practicality, simplicity,
rejecting some long-held unquestionable beliefs, and, most importantly, questioning
everything we do. There is value in asking questions first.

1.4.1 Too many technologies
Our constant search for the best technology usually arises from the fallacy of a silver
bullet. We think that there is a technology out there that can increase our productivity
by orders of magnitude. There isn’t. For example, Python6 is an interpreted language.
You don’t need to compile Python code—it just runs right away. Even better, you don’t
need to specify types for the variables you declare, which makes you even faster, so
Python must be a better technology than C#, right? Not necessarily.

 Because you don’t spend time annotating your code with types and compiling it,
you miss the mistakes you make. That means you can only discover them during test-
ing or in production, which are much more expensive than simply compiling code.
Most technologies are tradeoffs rather than productivity boosters. What boosts your
productivity is how adept you are with that technology and your techniques, rather
than which technologies you’re using. Yes, there are better technologies, but they
rarely make an order of magnitude difference.

 When I wanted to develop my first interactive website back in 1999, I had abso-
lutely no idea how to go about writing a web application. Had I tried to search for the
best technology first, it would have meant teaching myself VBScript or Perl. Instead, I
used what I knew best then: Pascal.7 It was one of the least suitable languages for that

6 Python is a collective effort to promote whitespace, disguised as a practical programming language.
7 Ekşi Sözlük’s early source code is available on GitHub: https://github.com/ssg/sozluk-cgi.

The story of npm and left-pad
npm became the de facto JavaScript library package ecosystem in the last decade.
People could contribute their own packages to the ecosystem, and other packages
could use them, making it easier to develop large projects. Azer Koçulu was one of
those developers. Left-pad was only one of the packages out of the 250 he contrib-
uted to the npm ecosystem. It had only one function: to append spaces to a string to
make sure that it’s always a fixed size, which is quite trivial.

One day, he received an email from npm saying that they had removed one of his
packages called “Kik,” because a company with the same name complained. npm
decided to remove Azer’s package and give the name to the other company. That
made Azer so angry that he removed all the packages that he contributed, including
left-pad. The thing is, you see, there were hundreds of large-scale projects in the
world directly or indirectly using the package. His actions caused all those projects
to stop in their tracks. It was quite a catastrophe and a good lesson about the trust
we have on the platforms.

The moral of the story is that life in the streets is full of unwelcome surprises.

https://github.com/ssg/sozluk-cgi

9The problems of modern software development

purpose, but it worked. Of course, there were problems with it. Whenever it hung up,
the process stayed active in the memory in a random server in Canada, and the user
had to call the service provider every time and ask them to restart the physical server.
Yet, Pascal let me reach a prototype quickly because I was comfortable with it. Instead
of launching the website I imagined after months of development and learning, I
wrote and released the code in three hours.

 I’m looking forward to showing you ways that you can be more efficient in using
the existing tool set you have on your belt.

1.4.2 Paragliding on paradigms

The earliest programming paradigm I encountered was structured programming back in
the 1980s. Structured programming is basically writing your code in structured blocks
like functions and loops instead of line numbers, GOTO statements, blood, sweat, and
tears. It made your code easier to read and to maintain without sacrificing perfor-
mance. Structured programming sparked my interest in programming languages like
Pascal and C.

 The next paradigm I encountered came at least half a decade after I learned about
structured programming: object-oriented programming, or OOP. I remember that at
the time, computer magazines couldn’t get enough of it. It was the next big thing that
would allow us to write even better programs than we did with structured programming.

 After OOP, I thought I would encounter a new paradigm every five years or so.
However, they started to appear more frequently. The 1990s introduced us to JIT-
compiled8 managed programming languages with the advent of Java, web scripting with
JavaScript, and functional programming that slowly crept into the mainstream toward
the end of the 1990s.

 Then came the 2000s. In the next decades, we saw increased use of the term N-tier
applications. Fat clients. Thin clients. Generics. MVC, MVVM, and MVP. Asynchronous
programming started to proliferate with promises, futures, and finally, reactive pro-
gramming. Microservices. More functional programming concepts like LINQ, pattern
matching and immutability have made it into the mainstream languages. It’s a tor-
nado of buzzwords.

 I haven’t even addressed design patterns or best practices. We have countless best
practices, tips, and tricks about almost every subject. There are manifestos written
about whether we should use tabs or space characters for indenting the source code,
despite the fact that the obvious answer is spaces.9

 We assume our problems can be solved by employing a paradigm, a pattern, a
framework, or a library. Considering the complexity of the problems we now face, that

8 JIT, just-in-time compilation. A myth created by Sun Microsystems, creator of Java, that if you compile some
code while it’s running, it will become faster because the optimizer will have collected more data during run-
time. It’s still a myth.

9 I have written about the tabs versus spaces debate from a pragmatic point of view: https://medium.com/
@ssg/tabs-vs-spaces-towards-a-better-bike-shed-686e111a5cce.

https://medium.com/@ssg/tabs-vs-spaces-towards-a-better-bike-shed-686e111a5cce
https://medium.com/@ssg/tabs-vs-spaces-towards-a-better-bike-shed-686e111a5cce
https://medium.com/@ssg/tabs-vs-spaces-towards-a-better-bike-shed-686e111a5cce

10 CHAPTER 1 To the streets

is not unfounded. However, the blind adoption of those tools can cause more prob-
lems in the future: they can slow you down more by introducing new domain knowl-
edge to learn and their own sets of bugs. They can even force you to change your
design. This book will give you more confidence that you’re using patterns correctly,
approaching them more inquisitively, and accumulating good comebacks to use
during code reviews.

1.4.3 The black boxes of technology

A framework or a library is a package. Software developers install it, read its documen-
tation, and use it. But they usually don’t know how it works. They approach algorithms
and data structures the same way. They use a dictionary datatype because it’s handy to
keep keys and values. They don’t know the consequences.

 Unconditional trust in package ecosystems and frameworks is prone to significant
mistakes. It can cost us days of debugging because we just didn’t know that adding
items to a dictionary with the same key would be no different than a list in lookup per-
formance. We use C# generators when a simple array would suffice, and we suffer sig-
nificant degradation in performance without knowing why.

 One day in 1993, a friend handed me a sound card and asked me to install it on my
PC. Yes, we used to need add-on cards to get decent sound from a PC, because other-
wise all we heard was just a beep. Anyway, I had never opened my PC case before, and
I was afraid to damage it. I told him, “Can’t you do this for me?” My friend told me,
“You have to open it to see how it works.”

 That resonated with me, because I understood that my anxiety was caused by my
ignorance rather than my incapability. Opening the case and seeing the insides of my
own PC calmed me down. It held only a couple of boards. The sound card went into
one of the slots. It wasn’t a mystery box to me anymore. I later used the same tech-
nique when teaching art school students the basics of computers. I opened a mouse
and showed them its ball. Mice had balls back then. Welp, this was unfortunately
ambiguous. I opened the PC case. “You see, it’s not scary, it’s a board and some slots.”

 That later became my motto in dealing with anything new and complex. I stopped
being afraid to open the box and usually did it first thing so I could face the whole
extent of the complexity, which was always less than I feared it to be.

 Similarly, the details of how a library, a framework, or a computer works can have a
tremendous effect on your understanding of what’s built on top of it. Opening the
box and looking at the parts can help you use the box correctly. You don’t really have
to read its code from scratch or go through a thousand-page theory book, but you
should at least be able to see which part goes where and how it can affect your use
cases.

 That’s why some of the topics I’ll be talking about are fundamental or low-level
subjects. It’s about opening the box and seeing how things work, so we can make bet-
ter decisions for high-level programming.

11The problems of modern software development

1.4.4 Underestimating overhead

I’m glad that we are seeing more cloud-based apps every day. Not only are they cost
effective, but they are also a reality check for understanding the actual cost of our
code. When you start paying an extra cent for every wrong decision you make in your
code, overhead suddenly becomes a concern.

 Frameworks and libraries usually help us avoid overhead, which makes them useful
abstractions. However, we can’t delegate all our decision-making process to frame-
works. Sometimes, we have to make decisions for ourselves, and we have to take over-
head into account. At-scale applications make overhead even more crucial. Every
millisecond you save can help you recover precious resources.

 A software developer’s priority shouldn’t be eliminating overhead. However, know-
ing how overhead can be avoided in certain situations and having that perspective as a
tool in your tool belt will help you save time, both for yourself and for the user who is
waiting on that spinner10 on your web page.

 Throughout the book, you’ll find scenarios and examples of how overhead can be
avoided easily without making it your utmost priority.

1.4.5 Not my job

One way to deal with complexity is to focus solely on our responsibilities: the compo-
nent we own, the code we write, the bugs we have caused, and occasionally the
exploded lasagna in the office kitchen microwave. It may sound like the most time-
efficient way to do our work, but like all beings, all code is also interconnected.

 Learning how a specific technology ticks, how a library does its job, and how
dependencies work and are connected can allow us to make better decisions when we
write code. The examples in this book will provide you a perspective to focus on not
only your area, but also its dependencies and issues that are outside your comfort
zone because you’ll discover that they predict the fate of your code.

1.4.6 Menial is genial

All the principles taught about software development come down to a single admoni-
tion: spend less time doing your work. Avoid repetitive, brainless tasks like copying
and pasting and writing the same code with minor changes from scratch. First of all,
they take longer, and second, it’s extremely hard to maintain them.

 Not all menial tasks are bad. Not even all copy and paste is bad. There is a strong
stigma against them, but there are ways to make them more efficient than some of the
best practices you’ve been taught.

 Furthermore, not all the code you write works as code for the actual product.
Some of the code you write will be used to develop a prototype, some will be for tests,

10 Spinners are the modern hourglasses of computing. In ancient times, computers used hourglasses to make
you wait for an indefinite time. A spinner is the modern equivalent of that animation. It’s usually a circular
arc that rotates indefinitely. It’s just a distraction to keep the user’s frustration in check.

12 CHAPTER 1 To the streets

and some will be for warming you up for the actual task at hand. I’ll be discussing
some of those scenarios and how you can use those tasks to your advantage.

1.5 What this book isn’t
This book is not a comprehensive guide on programming, algorithms, or any subject
matter whatsoever. I do not consider myself expert on specific topics, but I possess
enough expertise in software development. The book mostly consists of pieces of
information that are not apparent from the well-known, popular, and great books out
there. It’s definitely not a guide to learning programming.

 Experienced programmers might find little benefit from this book because they
have already acquired sufficient knowledge and have already become street coders.
That said, they might still be surprised by some of its insights.

 This book is also an experiment in how programming books can be fun to read.
I’d like to introduce programming primarily as a fun practice. The book doesn’t take
itself seriously, so you shouldn’t either. If you feel like a better developer after reading
the book and have fun reading it, I will consider myself successful.

1.6 Themes
Certain themes will be repeated throughout the book:

 Minimal foundational knowledge that is enough for you to get by in the streets.
Those subjects will not be exhaustive, but they might spark your interest if you
previously thought them boring. They are usually core knowledge that helps
you make decisions.

 Well-known or well-accepted best practices or techniques that I propose as an
anti-patterns that could be more effective in certain cases. The more you read
about these, the more amplified will be your sixth sense for critical thinking
about programming practices.

 Some seemingly irrelevant programming techniques, such as some CPU-level
optimization tricks, which might influence your decision making and code
writing at the higher level. There is immense value in knowing the internals,
“opening the box,” even if you don’t use that piece of information directly.

 Some techniques that I find useful in my day-to-day programming activities that
might help you increase your productivity, including biting your nails and being
invisible to your boss.

These themes will emphasize a new perspective when you are looking at programming
topics, will change your understanding of certain “boring” subjects, and perhaps will
change your attitude toward certain dogmas. They will make you enjoy your work
more.

13Summary

Summary
 The harsh reality of “the streets,” the world of professional software develop-

ment, requires a set of skills that are not taught or prioritized in formal educa-
tion or sometimes are completely missed in self-teaching.

 New software developers tend to either care about theory or to completely
ignore it. You’ll find a middle point eventually, but achieving that can be accel-
erated with a certain perspective.

 Modern software development is vastly more complex than it was a couple of
decades ago. It requires tremendous knowledge on many levels just to develop
a simple running application.

 Programmers face a dilemma between creating software and learning. This can
be overcome by reframing topics in a more pragmatic way.

 Lack of clarity about what you work on makes programming a mundane and
boring task and thus reduces your actual productivity. A better understanding
about what you do will bring you more joy.

14

Practical theory

Contrary to widely held belief, programmers are human. They have the same cog-
nitive biases other humans have about the practice of software development. They
widely overestimate the benefits of not having to use types, not caring about correct
data structures, or assuming that algorithms are only important for library authors.

 You’re no exception. You’re expected to deliver a product on time, with good
quality, and with a smile on your face. As the saying goes, a programmer is effec-
tively an organism that receives coffee as input and creates software as output. You
might as well write everything the worst way possible, use copy and paste, use the
code you found on Stack Overflow, use plain text files for data storage, or make a
deal with a demon if your soul isn’t already under NDA.1 Only your peers really
care about how you do things—everybody else wants a good, working product.

This chapter covers
 Why computer science theory is relevant to your survival

 Making types work for you

 Understanding the characteristics of algorithms

 Data structures and their weird qualities that your
parents didn’t tell you about

1 Non-disclosure agreement, an agreement that prevents employees from talking about their work unless
they start the conversation with “You didn’t hear this from me, but…”

15A crash course on algorithms

 Theory can be overwhelming and unrelatable. Algorithms, data structures, type
theory, Big-O notation, and polynomial complexity can look complicated and irrele-
vant to software development. Existing libraries and frameworks already handle this
stuff in an optimized and a well-tested way. You’re encouraged to never implement an
algorithm from scratch anyway, especially in the context of information security or
tight deadlines.

 Then why should you care about theory? Because not only does knowledge of com-
puter science theory let you develop algorithms and data structures from scratch, but
it also lets you correctly determine when you need to use one. It helps you understand
the costs of tradeoff decisions. It helps you understand the scalability characteristics of
the code you’re writing. It makes you see ahead. You will probably never implement a
data structure or an algorithm from scratch, but knowing how one works will make
you an efficient developer. It will improve your chances of survival in the streets.

 This book will only go over certain critical parts about theory that you might have
missed when you were studying them—some less-known aspects of data types, under-
standing the complexities of algorithms, and how certain data structures work inter-
nally. If you haven’t learned about types, algorithms, or data structures before, this
chapter will give you cues to get you interested in the subject.

2.1 A crash course on algorithms
An algorithm is a set of rules and steps to solve a problem. Thank you for attending
my TED talk. You were expecting a more complicated definition, weren’t you? For
example, going over the elements of an array to find out if it contains a number is an
algorithm, a simple one at that:

public static bool Contains(int[] array, int lookFor) {
 for (int n = 0; n < array.Length; n++) {
 if (array[n] == lookFor) {
 return true;
 }
 }
 return false;
}

We could have called this Sedat’s Algorithm if I were the person who invented it, but it
was probably one of the first algorithms that ever emerged. It’s not clever in any way,
but it works, and it makes sense. That’s one of the important points about algorithms:
they only need to work for your needs. They don’t necessarily have to perform mira-
cles. When you put dishes in the dishwasher and run it, you follow an algorithm. The
existence of an algorithm doesn’t mean it’s clever.

 That said, there can be smarter algorithms, depending on your needs. In the previ-
ous code example, if you know that the list only contains positive integers, you can
add special handling for non-positive numbers:

16 CHAPTER 2 Practical theory

public static bool Contains(int[] array, int lookFor) {
 if (lookFor < 1) {
 return false;
 }
 for (int n = 0; n < array.Length; n++) {
 if (array[n] == lookFor) {
 return true;
 }
 }
 return false;
}

This could make your algorithm much faster depending on how many times you call it
with a negative number. At best, your function would always be called with negative
numbers or zeros, and it would return immediately, even if the array had billions of
integers. In the worst case, your function would always be called with positive num-
bers, and you’d be incurring just an extra unnecessary check. Types can help you here
because there are unsigned versions of integers called uint in C#. Thus, you can
always receive positive numbers, and the compiler will check for it if you violate that
rule, incurring zero performance issues:

public static bool Contains(uint[] array, uint lookFor) {
 for (int n = 0; n < array.Length; n++) {
 if (array[n] == lookFor) {
 return true;
 }
 }
 return false;
}

We fixed the positive number requirement with type restrictions rather than changing
our algorithm, but it can still be faster based on the shape of the data. Do we have
more information about the data? Is the array sorted? If it is, we can make more
assumptions about where our number might be. If we compare our number with any
item in the array, we can eliminate a huge number of items easily (see figure 2.1).

If our number is, say, 3, and if we compare it with 5, we can make sure that our num-
ber won’t be anywhere right of 5. That means we can eliminate all the elements right
of the list immediately.

 Thus, if we pick the element from the middle of the list, it is guaranteed that we can
eliminate at least half of the list after the comparison. We can apply the same logic to
the remaining half, pick a middle point there, and go on. That means we only need to

5

Sort order (ascending)

Every item is ≥ 5 hereEvery item is ≤ here
Figure 2.1 We can eliminate one side of the
element with one comparison on a sorted list.

17A crash course on algorithms

make 3 comparisons at most for a sorted array with 8 items to determine if an item exists
in it. More importantly, it will only take about 10 lookups at most to determine if an item
exists in an array with 1,000 items. That’s the power you get by going over in halves. Your
implementation could look like listing 2.1. We basically continuously find a middle spot
and eliminate the remaining half depending on how the value we’re looking for would
fall into it. We write the formula in a longer, more elaborate form even though it cor-
responds to (start + end)v/ 2. That’s because start + end can overflow for large values
of start and end and would find an incorrect middle spot. If you write the expression
as in the following listing, you will avoid that overflow case.

public static bool Contains(uint[] array, uint lookFor) {
 int start = 0;
 int end = array.Length - 1;
 while (start <= end) {
 int middle = start + ((end - start) / 2);
 uint value = array[middle];
 if (lookFor == value) {
 return true;
 }
 if (lookFor > value) {
 start = middle + 1;
 } else {
 end = middle - 1;
 }
 }
 return false;
}

Here, we implemented a binary search, a much faster algorithm than Sedat’s Algorithm.
Since we can now imagine how a binary search can be faster than a plain iteration, we
can start thinking about the revered Big-O notation.

2.1.1 Big-O better be good

Understanding growth is a great skill for a developer to possess. Be it in size or num-
bers, when you know how fast something grows, you can see the future and therefore
what kind of trouble you’re getting into before you spend too much time on it. It’s
especially useful when the light at the end of the tunnel is growing even though
you’re not moving.

 Big-O notation, as the name suggests, is just a notation to explain growth, and it’s
also subject to misconceptions. When I first saw O(N), I thought it was a regular func-
tion that is supposed to return a number. It isn’t. It’s a way mathematicians explain
growth. It gives us a basic idea about how scalable an algorithm is. Going over every
element sequentially (aka Sedat’s Algorithm) has a number of operations that is linearly
proportional to the number of elements in the array. We denote that by writing O(N),

Listing 2.1 Searching a sorted array with binary search

Find the middle spot
and avoid overflows.

Eliminate the left
half of the range.

Eliminate the right
half of the range.

18 CHAPTER 2 Practical theory

with N denoting the number of elements. We still can’t know how many steps the algo-
rithm will take just by looking at O(N), but we know that it grows linearly. That allows
us to make assumptions about the performance characteristics of an algorithm
depending on the data size. We can foresee at which point it can turn bad by looking
at it.

 The binary search we implemented has a complexity of O(log2n). If you’re not
familiar with logarithms, it’s the opposite of exponential, so a logarithmic complexity
is actually a wonderful thing unless money’s involved. In this example, if our sorting
algorithm magically had logarithmic complexity, it would take only 18 comparisons to
sort an array with 500,000 items. This makes our binary search implementation great.

 Big-O notation isn’t only used for measuring increase in computational steps, aka
time complexity, but it’s also used for measuring the increase in memory usage, which is
called space complexity. An algorithm might be fast, but it could have polynomial
growth in memory, like our sorting example. We should understand the distinction.

TIP Contrary to popular belief, O(Nx) doesn’t mean exponential complex-
ity. It denotes polynomial complexity, which, although quite bad, is not as ter-
rible as exponential complexity, which is denoted by O(xn) instead. With a
mere 100 items, O(N2) would iterate 10,000 times, while O(2n) would iterate
some mind-boggling number of times with 30 digits—I can’t even pronounce
it. There is also factorial complexity, which is even worse than exponential,
but I haven’t seen any algorithms apart from calculating permutations or
combinations using it, probably because nobody has been able to finish
inventing it.

Since Big-O is about growth, the largest growth function in the notation is the most
important part. So, practically speaking, O(N) and O(4N) are equivalent as far as Big-
O cares. O(N.M), on the other hand, the dot being the multiplication operator, may
not be so when both N and M are growing. It can even effectively be O(N2).
O(N.logN) is slightly worse than O(N), but not as bad as O(N2).

 O(1), on the other hand, is amazing. It means that the performance characteris-
tics aren’t related to the number of elements in the given data structure for an algo-
rithm, also known as constant time.

 Imagine that you implemented a search feature that finds a record in the database
by iterating over all of them. That means your algorithm would grow linearly propor-
tional to the number of items in the database. Assume that accessing every record
takes a second because I guess we’re using an abacus for data storage now. This means
searching for an item in a database of 60 items would take up to a minute. That’s
O(N) complexity. Other developers in your team can come up with different algo-
rithms, as table 2.1 shows.

 You need to be familiar with how Big-O notation explains the growth in an algo-
rithm’s execution speed and memory usage so you can make informed decisions
when choosing which data structure and algorithm to use. Be familiar with Big-O,
even though you may not need to implement an algorithm. Beware of complexity.

19Inside data structures

2.2 Inside data structures
In the beginning, there was void. When the first electrical signals hit the first bit in the
memory, there became data. Data was only free-floating bytes. Those bytes got together and
created structure.

 —Init 0:1

Data structures are about how data is laid out. People discovered that when data is laid
out in a certain way, it can become more useful. A shopping list on a piece of paper is
easier to read if every item is on a separate line. A multiplication table is more useful if
it’s arranged in a grid. Understanding how a certain data structure works is essential
for you to become a better programmer. That understanding begins with popping the
hood and looking at how it works.

 Let’s look at arrays, for example. An array in programming is one of the simplest
data structures, and it’s laid out like contiguous elements in memory. Let’s say you
have this array:

var values = new int[] { 1, 2, 3, 4, 5, 6, 7, 8 };

You can imagine what it’d look like in memory, as in figure 2.2.

Table 2.1 Impact of complexity on performance

Search algorithm Complexity Time to find a record among 60 rows

The DIY quantum computer Lisa’s uncle has in his
garage

O(1) 1 second

Binary search O(log N) 6 seconds

Linear search (because your boss asked you to do
it an hour before the presentation)

O(N) 60 seconds

The intern accidentally put 2 for loops nested. O(N2) 1 hour

Some randomly pasted code from Stack Overflow
that also finds a solution to some chess problem
while searching, but the developer didn’t bother to
remove that part

O(2N) 36.5 billion years

Instead of finding the actual record, the algorithm
tries to find the arrangement of records that spell
out the record you’re looking for when sorted in a
certain way. The good news is that the developer
doesn’t work here anymore.

O(N!) The end of the universe, but still
before those monkeys finish their
so-called Shakespeare

1 2 3 4 5 6 7 8 Figure 2.2 A symbolic
representation of an array

20 CHAPTER 2 Practical theory

Actually, it wouldn’t look like that in memory because every object in .NET has a cer-
tain header, a pointer to the virtual method table pointer, and length information
contained within as in figure 2.3.

It becomes even more realistic if you look at it how it’s placed in RAM, because RAM
isn’t built in integers, as figure 2.4 shows. I’m sharing these because I want you to be
unafraid of these low-level concepts. Understanding them will help you at all levels of
programming.

This isn’t how your actual RAM looks because every process has its own slice of mem-
ory dedicated to it, related to how modern operating systems work. But this is the lay-
out that you’ll always be dealing with unless you start developing your own operating
system or your own device drivers.

 All in all, how data is laid out can make things faster or more efficient, or the oppo-
site. It’s crucial to know some basic data structures and how they work internally.

2.2.1 String

Strings could be the most humane data type in the world of programming. They rep-
resent text and can usually be read by humans. You’re not supposed to use strings
when a different type is better suited, but they are inevitable and convenient. When
you use strings, you have to know some basic facts about them that are not apparent
from the get-go.

1
Object
header

Vtable pointer

Array
reference
address

Array
reference
address –8

2 3 4 5 6 7 8Length

Figure 2.3 Actual layout
of an array in memory

1 0 0 0 2 0 0 0 3 0 0 0

Start address of the contents of
your array, probably something
like 5678123.

Your application
code, other data,
your array’s
header, and its
vtable pointer

Address 0: where
null reference
exceptions occur

Address 1: also
causes a null
reference exception,
just in case; this
actually goes on
for a while.

Rest of the
process
memory

An integer
represented
with 4 bytes

8 0 0 0

Length of
the array,
represented
in 4 bytes

Figure 2.4 Memory space of a process and an array

21Inside data structures

 Although they resemble arrays in usage and structure, strings in .NET are
immutable. Immutability means that the contents of a data structure cannot be changed
after it’s initialized. Assume that we’d like to join people’s names to produce a single,
comma-separated string and that we have traveled two decades back in time so there is
no better way of doing this:

public static string JoinNames(string[] names) {
 string result = String.Empty;
 int lastIndex = names.Length - 1;
 for (int i = 0; i < lastIndex; i++) {
 result += names[i] + ", ";
 }
 result += names[lastIndex];
 return result;
}

At first glance, it might seem like we have a string called result and we are modifying
the same string over the course of execution, but that’s not the case. Every time we
assign result a new value, we are creating a new string in memory. .NET needs to
determine the length of the new string, allocate new memory for it, copy the contents
of other strings into the newly built memory, and return it to you. That is quite an
expensive operation, and the cost increases as the string and the trail of garbage to
collect get longer.

 There are tools in the framework to avoid this problem. Even if you don’t care
about performance, these tools are free, so you don’t really need to change your logic
or jump through hoops to get better performance. One of those is StringBuilder,
with which you can work to build your final string and retrieve it with a ToString call
in one shot:

public static string JoinNames(string[] names) {
 var builder = new StringBuilder();
 int lastIndex = names.Length - 1;
 for (int i = 0; i < lastIndex; i++) {
 builder.Append(names[i]);
 builder.Append(", ");
 }
 builder.Append(names[lastIndex]);
 return builder.ToString();
}

StringBuilder uses consecutive memory blocks internally instead of reallocating and
copying every time it needs to grow the string. Therefore, it’s usually more efficient
than building a string from scratch.

 Obviously, an idiomatic and a much shorter solution has been available for a long
time, but your use cases may not always overlap with these:

String.Join(", ", names);

If we didn’t initialize the string, it would
have a default value of null, which
would have been caught by nullability
checks if you had used them.

Index of the last element

This way, we avoid finishing
the string with a comma.

22 CHAPTER 2 Practical theory

Concatenating a string is usually okay when initializing the string because that involves
only a single buffer allocation after calculating the total length required. For example,
if you have a function that joins first name and last name with a space in between
using the addition operator, you’re only creating a single new string in one shot, not
multiple steps:

public string ConcatName(string firstName, string middleName,
 string lastName) {
 return firstName + " " + middleName + " " + lastName;
}

This might seem like a no-no if we assume that firstName + " " would create a new
string first and then create a new string with middleName and so on, but the compiler
actually turns it into a single call to a String.Concat() function, which allocates a
new buffer with the length of the sum of the lengths of all strings and returns it in one
shot. Therefore, it’s still fast. But when you concatenate strings in multiple shots with
if clauses in between, or loops, the compiler can’t optimize that. You need to know
when it’s okay to concatenate strings and when it’s not.

 That said, immutability isn’t a holy seal that cannot be broken. There are ways
around modifying strings in place, or other immutable structures, for that matter,
which mostly involve unsafe code and astral beings, but they’re not usually recom-
mended because strings are deduplicated by the .NET runtime and some of their
properties, such as hash codes, are cached. The internal implementation relies heavily
on the immutability characteristic.

 String functions work with the current culture by default, and that might be painful
to experience when your app stops working in another country.

NOTE A culture, also known as locale in some programming languages, is a
set of rules for performing region-specific operations like sorting strings, dis-
playing date/time in the correct format, placing utensils on the table, and so
forth. Current culture is usually what the operating system thinks it’s using.

Understanding cultures can make your string operations safer and faster. For
instance, consider a code whereby we detect if the given file name has a .gif extension:

public bool isGif(string fileName) {
 return fileName.ToLower().EndsWith(".gif");
}

We are smart, you see: we turn the string to lowercase so we handle the case where the
extension could be .GIF or .Gif or any other combination of cases. The thing is, not all
languages have the same lowercase semantics. In the Turkish language, for instance,
the lowercase of “I” is not “i,” but “ı,” also known as the dotless-I. The code in this
example would fail in Turkey, and maybe in some other countries like Azerbaijan as
well. By lowercasing the string, we are in fact creating a new string, which, as we’ve
learned, is inefficient.

23Inside data structures

 .NET supplies culture-invariant versions of some string methods, like ToLower-
Invariant. It also provides some overloads of the same method that receive a String-
Comparison value that has invariant and ordinal alternatives. Therefore, you can write
the same method in a safer and faster way:

public bool isGif(string fileName) {
 return fileName.EndsWith(".gif",
 StringComparison.OrdinalIgnoreCase);
}

By using this method, we avoid creating a new string, and we’re using a culture-safe
and faster string comparison method that doesn’t involve our current culture and its
intricate rules. We could have used StringComparison.InvariantCultureIgnore-
Case, but unlike ordinal comparison, it adds a couple more translation rules such as
treating German umlauts or graphemes with their Latin counterparts (ß versus ss)
that might cause problems with filenames or other resource identifiers. Ordinal com-
parison compares character values directly without involving any translation.

2.2.2 Array

We have looked at what an array looks like in memory. Arrays are practical for keeping
several items that have numbers that won’t be growing beyond the array’s size. They
are static structures. They cannot grow or change size. If you want a larger array, you
have to create a new one and copy the contents of the old one over. There are a cou-
ple of things you need to know about arrays.

 Arrays, unlike strings, are mutable. That’s what they are about. You can freely play
with their contents. Actually, it’s really hard to make them immutable, which makes
them poor candidates for interfaces. Consider this property:

public string[] Usernames { get; }

Even though the property has no setter, the type is still an array, which makes it
mutable. There is nothing that prevents you from doing

Usernames[0] = "root";

which can complicate things, even when it’s only you who’s using the class. You
shouldn’t allow yourself to make changes to the state unless it’s absolutely needed.
State is the root of all evil, not null. The fewer states your app has, the fewer problems
you’ll have.

 Try to stick to the type that has the smallest functionality for your purpose. If you only
need to go over the items sequentially, stick to IEnumerable<T>. If you also need a repet-
itively accessible count, use ICollection<T>. Note that the LINQ extension method
.Count() has special handling code for types that support IReadOnlyCollection<T>, so
even if you use it on an IEnumerable, there is a chance that it might return a cached
value instead.

24 CHAPTER 2 Practical theory

 Arrays are best suited for use inside the local scope of a function. For any other
purpose, there is a better-suited type or interface to expose in addition to IEnumera-
ble<T>, like IReadOnlyCollection<T>, IReadOnlyList<T>, or ISet<T>.

2.2.3 List
A list behaves like an array that can grow slightly, similarly to how StringBuilder
works. It’s possible to use lists over arrays almost everywhere, but that will incur an
unnecessary performance penalty because indexed accesses are virtual calls in a list,
while an array uses direct access.

 You see, object-oriented programming comes with a nice feature called polymor-
phism, which means an object can behave according to the underlying implementa-
tion without its interface changing. If you have, say, a variable a with a type of
IOpenable interface, a.Open() might open a file or a network connection, depending
on the type of the object assigned to it. This is achieved by keeping a reference to a
table that maps virtual functions to be called to the type at the beginning of the
object, called the virtual method table, or vtable for short. This way, although Open maps
to the same entry in the table in every object with the same type, you wouldn’t know
where it’s going to lead until you look up the actual value in the table.

 Because we don’t know what exactly we’re calling them, they are named virtual
calls. A virtual call involves an extra lookup from the virtual method table, so it’s
slightly slower than regular function calls. That may not be a problem with a couple of
function calls, but when it’s done inside an algorithm, its overhead can grow polyno-
mially. Consequently, if your list won’t grow in size after initialization, you might want
to use an array instead of a list in a local scope.

 Normally, you should almost never think about these details. But when you know
the difference, there are cases in which an array might be preferable to a list.

 Lists are similar to StringBuilder. Both are dynamically growing data structures,
but lists are less efficient in growth mechanics. Whenever a list decides that it needs to
grow, it allocates a new array with a larger size and copies the existing contents to it.
StringBuilder, on the other hand, keeps chunks of memory chained together instead,
which doesn’t require a copy operation. The buffer area for lists grows whenever the
buffer limit is reached, but the size of the new buffer gets doubled every time, which
means the need for growth gets reduced over time. Still, this is an example in which
using a specific class for the task at hand is more efficient than using a generic one.

 You can also get great performance from lists by specifying a capacity. If you don’t
specify a capacity to a list, it will start with an empty array. It will then increase its
capacity to a few items. It will double its capacity after it’s full. If you set a capacity
while creating the list, you avoid unnecessary growth and copying operations alto-
gether. Keep this in mind when you already know the maximum number of items the
list will have beforehand.

 That said, don’t make a habit of specifying list capacity without knowing the rea-
son. That might cause unnecessary memory overhead that can accumulate. Make a
habit of making conscious decisions.

25Inside data structures

2.2.4 Linked list

Linked lists are lists where elements aren’t consecutive in memory, but each element
points to the address of the following item. They are useful for their O(1) insertion
and removal performance. You can’t access individual items by index because they
can be stored anywhere in memory, and it’s not possible to calculate it, but if you
mostly access the beginning or the end of the list, or if you just need to enumerate the
items, it can be just as fast. Otherwise, checking if an item exists in a linked list is an
O(N) operation, like arrays and lists. Figure 2.5 shows a sample linked list layout.

That doesn’t mean a linked list is always faster than a regular list. Individual memory
allocations for each element instead of allocating a whole block of memory in one
shot and additional reference lookups can also hurt performance.

 You might need a linked list whenever you need a queue or stack structure, but
.NET covers that. So ideally, unless you’re into systems programming, you shouldn’t
need to use a linked list in your daily work except for in job interviews. Unfortunately,
interviewers love their puzzle questions with linked lists, so it’s still important for you
to become familiar with them.

1 Next 2 Next 3 Next 4 Next 5 Next 6 Next 7 Next 8
Next
= null

Figure 2.5 Layout of a linked list

No, you won’t reverse a linked list
Answering coding questions in interviews is a rite of passage for software develop-
ment positions. Most of the coding questions also cover some data structures and
algorithms. Linked lists are part of the corpus, so there is a chance someone might
ask you to reverse a linked list or invert a binary tree.

You will probably never perform those tasks in your actual job, but to give credit to
the interviewer, they are testing your knowledge of data structures and algorithms to
simply determine that you know what you’re doing. They are trying to make sure that
you’re capable of making the right decision when a need arises to use the right data
structure at the right place. They are also testing your analytical thinking and problem-
solving ability, so it’s important for you to think aloud and share your thought process
with the interviewer.

You don’t always need to solve the given question. An interviewer usually looks for
someone who is passionate and knowledgeable about certain basic concepts and
who can find their way around, even though they might get lost.

I, for example, usually followed up my coding questions to candidates at Microsoft
with an extra step for them to find bugs in their code. That actually made them feel
better because it felt like bugs were expected and they were not assessed based on
how bug-free the code was, but on how they can identify bugs.

26 CHAPTER 2 Practical theory

Linked lists were more popular in the ancient times of programming because memory
efficiency took precedence. We couldn’t afford to allocate kilobytes of memory just
because our list needed to grow. We had to keep tight storage. A linked list was the
perfect data structure for that. They are also still used frequently in operating system
kernels because of their irresistible O(1) characteristic for insertion and removal
operations.

2.2.5 Queue

A queue is a data structure that represents the most basic form of civilization. It allows
you to read items from a list in the order of insertion. A queue can simply be an array
as long as you keep separate spots for reading the next item and inserting the new
one. If we added ascending numbers to a queue, it would resemble figure 2.6.

The keyboard buffer on PCs in the MS-DOS era used a simple array of bytes to store
key presses. The buffer prevented keystrokes from getting missed because of the slow
or unresponsive software. When the buffer was full, the BIOS would beep so we would
know that our keystrokes weren’t being recorded anymore. Fortunately, .NET comes
with an existing Queue<T> class that we can use without worrying about implementa-
tion details and performance.

2.2.6 Dictionary

Dictionaries, also known as hashmaps or sometimes key/value things, are among the
most useful and the most used data structures. We tend to take their capabilities for
granted. A dictionary is a container that can store a key and a value. It can later
retrieve a value with a key in constant, aka O(1), time. That means they are extremely
fast for data retrieval. Why are they so fast? What’s the magic?

(continued)
Interviews aren’t only about finding the right person, but also about finding someone
you’d enjoy working with. It’s important for you to be a curious, passionate, per-
sistent, easygoing person who can really help them with their tasks.

1 2 3 4 5 6 7 8

The next item
to be read

The first item
added

The next item would
be added here.

Figure 2.6 A high-level
layout of a queue

27Inside data structures

 The magic lies in the word hash. Hashing is the term for generating a single num-
ber from arbitrary data. The number generated must be deterministic, which means
that it must generate the same number for the same data, but it doesn’t have to gener-
ate a unique value. There are many different ways to calculate a hash value. The hash-
ing logic of an object resides in the GetHashCode implementation.

 Hashes are nice because you get the same value every time, so you can use the hash
values for lookups. If, for instance, you have an array of all possible hash values, you
can look them up with an array index. But such an array would take about 16 giga-
bytes for each dictionary created because every int occupies four bytes and can have
about four billion possible values.

 Dictionaries allocate a much smaller array and rely on the even distribution of
hash values. Instead of looking up the hash value, they look up “hash value mod array
length.” Let’s say that a dictionary with integer keys allocates an array of six items to
keep an index for them and the GetHashCode() method for an integer would just
return its value. That means our formula to find out where an item would map to
would simply be value % 6, since array indices
start at zero. An array of numbers from 1 to 6
would be distributed as shown in figure 2.7.

 What happens when we have more than the
capacity of the dictionary? There will be overlaps,
for sure, so dictionaries keep the overlapping
items in a dynamically growing list. If we store
items with keys from 1 to 7, the array would look
like that in figure 2.8.

 Why am I talking about this stuff? Because key
lookup performance of a dictionary is O(1), nor-
mally, but lookup overhead of a linked list is O(N).
That means that as the number of overlaps
increases, lookup performance will slow down. If
you had a GetHashCode function that always
returned 4, for instance:2

public override int GetHashCode() {
 return 4; // chosen by fair dice roll
}

That means the internal structure of the dictio-
nary would resemble figure 2.9 when you add
items to it.

 A dictionary is no better than a linked list if you
have bad hash values. It can even have worse per-
formance due to the extra plumbing the dictionary

2 Inspired by this excellent xkcd cartoon about random numbers: https://xkcd.com/221.

6 1 2 3 4 5

Figure 2.7 The distribution of items in
a dictionary

1 2 3 4 56

7

Figure 2.8 Storage of overlapping
items in a dictionary

1

3

2

Figure 2.9 A dictionary when you
screw up your GetHashCode()

https://xkcd.com/221

28 CHAPTER 2 Practical theory

uses to juggle these items. That brings us to the most important point: your GetHashCode
function needs to be as unique as possible. If you’re having many overlaps, your dictio-
naries will suffer, a suffering dictionary will make your application suffer, and a suffering
application will make an entire company suffer. In the end, you will suffer. For want of
a nail, a nation was lost.

 Sometimes, you have to combine values of multiple properties in a class to calcu-
late a unique hash value. For instance, repository names are unique per user on
GitHub. That means any user can have a repository with the same name and the
repository name itself isn’t enough to make it unique. Suppose you use the name only:
it would cause more collisions. That means you have to combine hash values. Simi-
larly, if our website has unique values per topic, we would have the same problem.

 To combine hash values efficiently, you have to know their ranges and deal with
their bitwise representation. If you simply use an operator like addition or simple
OR/XOR operations, you might still end up with many more collisions than you antic-
ipated. You’d have to involve bit shifts, too. A proper GetHashCode function would use
bitwise operations to get a good spread over the full 32 bits of an integer.

 The code for such an operation might look like a hacking scene from a cheesy
hacker movie. It’s cryptic and hard to understand even for someone who is familiar
with the concept. We’re basically rotating one of the 32-bit integers by 16 bits so its
lowest bytes are moved toward the middle and XORing (“^”) that value together with
the other 32-bit integer, hence lowering the chances of collisions a lot. It looks like
this—scary:

public override int GetHashCode() {
 return (int)(((TopicId & 0xFFFF)<< 16)
 ^ (TopicId & 0xFFFF0000 >> 16)
 ^ PostId);
}

Luckily, with the advent of .NET Core and .NET 5, combining hash values in a way
that gives the least collisions has been abstracted away behind HashCode class. To com-
bine two values, all you have to do is this:

public override int GetHashCode() {
 return HashCode.Combine(TopicId, PostId);
}

Hash codes are used not only in dictionary keys, but also in other data structures like
sets. Since it’s far easier to write a proper GetHashCode with helper functions, you have
no excuse to skip it. Keep an eye on it.

 When should you not use Dictionary? If you only need to go over key-value pairs
sequentially, a dictionary offers no benefits. It can, in fact, harm performance. Consider
using a List<KeyValuePair<K,V>> instead, so you’ll avoid unnecessary overhead.

29Inside data structures

2.2.7 HashSet

A set is like an array or a list except that it can only contain unique values. Its advan-
tage over arrays or lists is that it has O(1) lookup performance like dictionary keys,
thanks to the hash-based maps we just looked into. That means that if you need to per-
form a lot of checks to see if a given array or list contains an item, using a set might be
faster. It’s called HashSet in .NET, and it’s free.

 Because HashSet is fast for lookups and insertions, it’s also suitable for intersection
and union operations. It even comes with methods that provide the functionality. To get
the benefits, you need to pay attention to your GetHashCode() implementations again.

2.2.8 Stack

Stacks are LIFO (Last In First Out) queues. They are useful when you want to save state
and restore it in the reverse order that it’s been saved. When you visit a Department of
Motor Vehicles (DMV) office in real life, you sometimes need to use a stack. You first
approach counter 5, and the employee at the counter checks your documents and sees
that you’re missing a payment, so they send you to counter 13. The employee at counter
13 sees that you’re missing a photo in your documents and sends you to another
counter, this time counter 47, to get your photo taken. Then you have to retrace your
steps to counter 13, where you take the payment receipt and go back to counter 5 to get
your driver’s license. The list of counters and how you process them in order (LIFO) is
a stack-like operation, and they are usually more efficient than the DMV.

 A stack can be represented with an array. What’s different is where you put the new
items and where you read the next item from. Had we built a stack by adding numbers
in ascending order, it’d look like figure 2.10.

Adding to a stack is usually called pushing, and reading the next value from a stack is
called popping. Stacks are useful for backtracking your steps. You might already be
familiar with the call stack because it shows you not only where an exception occurred,
but also which execution path it followed. Functions know where to return after they
are done executing by using a stack. Before calling a function, the return address is
added to the stack. When the function wants to return to its caller, the last address
pushed onto the stack is read, and the CPU continues execution at that address.

8 7 6 5 4 3 2 1

The next item
to be read

The first item added
The next item would
be added here.

Figure 2.10 A high-level
overview of a stack

30 CHAPTER 2 Practical theory

2.2.9 Call stack

A call stack is the data structure where functions store the return addresses so the
called functions know where to return to when they are done executing. There is one
call stack per thread.

 Every application runs in one or more separate processes. Processes allow memory
and resource isolation. Every process has one or more threads. A thread is the unit of
execution. All threads run parallel to each other on an operating system, hence the
term multithreading. Even though you might only have a four-core CPU, the operating
system can run thousands of threads in parallel. This can happen because most
threads are waiting for something to complete most of the time, so it’s possible to fill
their slot with some other thread and have a sense of all threads running in parallel.
That makes multitasking possible even on a single CPU.

 There was a time when a process was both the container for application resources
and the unit of execution in older UNIX systems. Although the approach was simple
and elegant, it caused problems like zombie processes. Threads are more lightweight and
have no such problem because they are bound to the execution’s lifetime.

 Every thread has its own call stack: a fixed amount of memory. By tradition, a stack
grows from top to bottom in the process memory space, top meaning the end of the
memory space and bottom meaning our famous null pointer: address zero. Pushing an
item onto the call stack means putting the item there and decrementing the stack
pointer.

 Like every good thing, a stack has an end. It has a fixed size, so when it grows
beyond that size, the CPU raises a StackOverflowException, something you’ll
encounter in your career whenever you accidentally call a function from itself. The
stack is quite large, so you don’t usually worry about hitting the limit in a normal case.

 A call stack doesn’t only hold return addresses, but also function parameters and
local variables. Because local variables occupy so little memory, it’s very efficient to use
stacks for them as it doesn’t require extra steps of memory management like alloca-
tion and deallocation. The stack is fast, but it has a fixed size, and it has the same life-
time as the function using it. When you return from a function, the stack space is
given back. That’s why it’s only ideal to store a small amount of local data in it. Conse-
quently, managed runtimes like C# or Java don’t store class data in the stack and just
store their references instead.

 That’s another reason why value types can have better performance over reference
types in certain cases. Value types only exist on the stack when locally declared,
although they are passed around with copying.

2.3 What’s the hype on types?
Programmers take data types for granted. Some even argue that programmers are
faster in dynamically typed languages like JavaScript or Python because they don’t have
to deal with intricate details like deciding the type of each variable.

31What’s the hype on types?

NOTE Dynamically typed means that data types of variables or class members in
a programming language can change during run time. You can assign a string
to a variable and then assign an integer to the same variable in JavaScript
because it’s a dynamically typed language. A statically typed language like C#
or Swift wouldn’t allow that. We’ll go into the details about these later.

Yes, specifying types for every variable, every parameter, and every member in the code
is a chore, but you need to adopt a holistic approach to being faster. Being fast isn’t solely
about writing code, but about maintaining it, too. There could be a few cases when you
may not really need to worry about maintenance because you just got fired and you
couldn’t care less. Apart from that, software development is a marathon, not a sprint.

 Failing early is one of the best practices in development. Data types are one of the
earliest defenses against development friction in coding. Types let you fail early and
fix your mistakes before they become a burden. Aside from the obvious benefit of not
confusing a string with an integer accidentally, you can make types work for you in
other ways.

2.3.1 Being strong on the type

Most programming languages have types. Even the simplest programming languages
like BASIC had types: strings and integers. Some of its dialects even had real numbers.
There are a few languages called typeless like Tcl, REXX, Forth, and so forth. Those
languages only operate on a single type: usually a string or an integer. Not having to
think about types makes programming convenient, but it makes written programs
slower and more prone to bugs.

 Types are basically free checks for correctness, so understanding the underlying
type system can help you tremendously in becoming a productive programmer. How
programming languages implement types is strongly correlated with whether they are
interpreted or compiled:

 Interpreted programming languages like Python or JavaScript let you run code in a
text file immediately without the need for a compilation step. Because of their
immediate nature, variables tend to have flexible types: you can assign a string
to a previously integer variable, and you can even add strings and numbers
together. These are usually called dynamically typed languages because of how
they implement types. You can write code much faster in interpreted languages
because you don’t really need to declare types.

 Compiled programming languages tend to be stricter. How strict they are depends
on how much pain the language designer wants to inflict on you. For example,
the Rust language can be considered the German engineering of programming
languages: extremely strict, perfectionist, and therefore error-free. The C lan-
guage can also be considered German engineering, but more like a Volkswa-
gen: it lets you break the rules and pay the price later. Both languages are
statically typed. Once a variable is declared, its type cannot change, but Rust is
called strongly typed like C#, while C is considered weakly typed.

32 CHAPTER 2 Practical theory

Strongly typed and weakly typed mean how relaxed a language is in terms of assigning dif-
ferent types of variables to each other. In that sense, C is more relaxed: you can assign
a pointer to an integer or vice versa without issues. On the other hand, C# is stricter:
pointers/references and integers are incompatible types. Table 2.2 shows how various
programming languages fall into these categories.

Strict programming languages can be frustrating. Languages like Rust can even make
you question life and why we exist in the universe. Declaring types and converting
them explicitly when needed may look like a lot of bureaucracy. You don’t need to
declare types of every variable, argument, and member in JavaScript, for example.
Why do we burden ourselves with explicit types if many programming languages can
work without them?

 The answer is simple: types can help us write code that is safer, faster, and easier to
maintain. We can reclaim the time we lost while declaring types of variables, annotat-
ing our classes with the time we gained by having to debug fewer bugs, and having to
solve fewer issues with performance.

 Apart from the obvious benefits of types, they have some subtle benefits too. Let’s
go over them.

2.3.2 Proof of validity

Proof of validity is one of the less-known benefits of having predefined types. Suppose
that you’re developing a microblogging platform that only allows a certain number of
characters in every post, and in return, you’re not judged for being too lazy to write
something longer than a sentence. In this hypothetical microblogging platform, you
can mention other users in a post with the @ prefix and mention other posts with the
prefix followed by the post’s identifier. You can even retrieve a post by typing its
identifier in the search box. If you type in a username with the @ prefix in the search
box, that user’s profile will appear.

 User input brings a new set of problems with validation. What happens if a user
provides letters after the # prefix? What if they input a longer number than is allowed?
It might seem like those scenarios work themselves out, but usually, your app crashes

Table 2.2 Flavors of type strictness in programming languages

Statically typed
Variable type cannot change in runtime.

Dynamically typed
Variable type can change in runtime.

Strongly typed
Different types can-
not be substituted
for each other.

C#, Java, Rust, Swift, Kotlin, TypeScript,
C++

Python, Ruby, Lisp

Weakly typed
Different types can
be substituted for
each other.

Visual Basic, C JavaScript, VBScript

33What’s the hype on types?

because somewhere in the code path, something that doesn’t expect an invalid input
will throw an exception. It’s the worst possible experience for the user: they don’t
know what’s gone wrong, and they don’t even know what to do next. It can even
become a security problem if you display that given input without sanitizing it.

 Data validation doesn’t provide a proof of validity throughout the code. You can val-
idate the input in the client, but somebody, a third-party app, for example, can send a
request without validation. You can validate the code that handles web requests, but
another app of yours, such as your API code, can call your service code without neces-
sary validation. Similarly, your database code can receive requests from multiple
sources, like the service layer and a maintenance task, so you need to make sure that
you’re inserting the right records in the database. Figure 2.11 depicts at which points
an application may need to validate input.

That might eventually make you validate the input at multiple places around the code,
and you need to make sure that you’re consistent in validation, too. You don’t want to
end up with a post with an identifier of -1 or a user profile named ’ OR 1=1-- (which
is a basic SQL injection attack that we will examine in the chapter about security).

 Types can carry over proof of validity. Instead of passing integers for blog post
identifiers or strings for usernames, you can have classes or structs that validate their
input on construction, which makes it impossible for them to contain an invalid value.
It is simple, yet powerful. Any function that receives a post identifier as a parameter
asks for a PostId class instead of an integer. This allows you to carry over proof of
validity after the first validation in the constructor. If it’s an integer, it needs to be vali-
dated; if it‘s a PostId, it has already been validated. There’s no need to check its con-
tents, because there is no way to create it without validation, as you can see in the
following snippet. The only way to construct a PostId in the code snippet is to call its
constructor, which validates its value and throws an exception if it fails. That means it’s
impossible to have an invalid PostId instance:

Web app server
(model validation)

Service layer
(parameter validation)

Data access layer
(parameter validation)

API server
(model validation)

Maintenance app

 = Data validation point

Mobile web code
(client validation)Search engine

Security
researcher

Third-party
mobile app

Official mobile app
(client validation)

Web client
(client validation)

Figure 2.11 Unvalidated data sources and places where you need to validate data repetitively

34 CHAPTER 2 Practical theory

public class PostId
{
 public int Value { get; private set; }
 public PostId(int id) {
 if (id <= 0) {
 throw new ArgumentOutOfRangeException(nameof(id));
 }
 Value = id;
 }
}

However, when you decide to go that path, it’s not as easy as the example I’ve shown.
For example, comparing two different PostId objects with the same value wouldn’t
work as you expected because, by default, comparison only compares references, not
the contents of the classes (I’ll be talking about references versus values later in this
chapter). You have to add a whole scaffolding around it to make it work without
issues. Here is a quick checklist:

 You have to at least implement an override for the Equals method because
some framework functions and some libraries can depend on it to compare two
instances of your class.

 If you plan on comparing values yourself using equality operators (== and !=),
you have to implement their operator overloads in the class.

 If you plan to use the class in a Dictionary<K,V> as a key, you have to override
the GetHashCode method. I will explain how hashing and dictionaries are
related later in this chapter.

 String formatting functions such as String.Format use the ToString method
to get a string representation of the class suitable for printing.

Our value can’t be changed
by external code.

Constructor is
the only way
to create this
object.

The style of code examples
Placement of curly braces is the second-most-debated topic in programming that
hasn’t been settled by consensus yet, right after tabs versus spaces. I prefer Allman
style for most C-like languages, especially C# and Swift. In Allman style, every curly
brace character resides on its own line. Swift officially recommends using 1TBS (One
True Brace Style), aka improved K&R style, where an opening brace is on the same
line with the declaration. People, however, still feel the need to leave extra blank lines
after every block declaration because 1TBS is too cramped. When you add blank lines,
it effectively becomes Allman style, but people can’t bring themselves to admit it.

Allman style is the default for C# where every brace is on its own line. I find it much
more readable than 1TBS or K&R. Java uses 1TBS, by the way.

I’ve had to format the code in 1TBS style because of the publisher’s typesetting
restrictions, but I suggest you consider Allman style when using C# not only because
it’s more readable, but because it’s the most common style for C#.

35What’s the hype on types?

Listing 2.2 shows a PostId class with all the necessary plumbing to make sure it works
in all equality scenarios. We overrode ToString() so our class becomes compatible
with string formatting and easier to inspect its value while debugging. We overrode
GetHashCode() so it returns Value directly because the value itself can fit perfectly
into an int. We overrode the Equals() method so equality checks in collections of
this class work correctly in case we need unique values or we’d like to search against
this value. We finally overrode == and != operators so we can directly compare to
PostId values without accessing their values.

NOTE An immutable class solely to represent values is called a value type in
the streets. It’s good to know colloquial names, but don’t focus on them.
Focus on their utility.

public class PostId
{
 public int Value { get; private set; }
 public PostId(int id) {
 if (id <= 0) {
 throw new ArgumentOutOfRangeException(nameof(id));
 }
 Value = id;
 }
 public override string ToString() => Value.ToString();
 public override int GetHashCode() => Value;
 public override bool Equals(object obj) {
 return obj is PostId other && other.Value == Value;
 }
 public static bool operator ==(PostId a, PostId b) {
 return a.Equals(b);

Listing 2.2 Full implementation of a class encompassing a value

Don’t use operator overloading unless necessary
Operator overloading is a way to change how operators like ==, !=, +, and - in a pro-
gramming language behave. Developers who learn about operator overloading might
go overboard and tend to create their own language with weird behavior for irrelevant
classes, like overloading a += operator to insert a record to a table with a syntax such
as db += record. It’s almost impossible to understand the intent of such code. It’s
also impossible to discover unless you read the documentation. There is no IDE func-
tion to discover which operators a type is overloading. Don’t be the person who uses
operator overloading needlessly. Even you will forget what it does and will beat your-
self up over this. Use operator overloading only to provide alternatives to equality and
typecasting operators, and only when needed. Don’t waste time implementing them
if they won’t be needed.

We’ll be using operator overloading in some of the examples because it’s required to
make classes semantically equivalent to the values they represent. You’d expect a
class to work with an == operator the same way the number it represents would.

System.Object
overrides, using
arrow syntax notation

Overloading code for
equality operators

36 CHAPTER 2 Practical theory

 }
 public static bool operator !=(PostId a, PostId b) {
 return !a.Equals(b);
 }
}

It’s not usually needed, but in case your class needs to be in a container that is sorted
or compared, you have to implement these two additional features:

 You need to provide ordering by implementing IComparable<T> because equal-
ity itself isn’t sufficient to determine the order. We didn’t use it in listing 2.1
because identifiers are not ranked.

 If you plan on comparing values using less-than or greater-than operators, you
have to implement related operator overloads (<, >, <=, >=) for them, too.

This can look like a lot of work when you can simply pass an integer around, but it
pays off in large projects, especially when you are working in a team. You’ll see more
of the benefits in the following sections.

 You don’t always need to create new types to leverage a validation context. You can
use inheritance to create base types that contain certain primitive types with common
rules. For example, you can have a generic identifier type that can be adapted to other
classes. You can simply rename the PostId class in listing 2.1 to DbId and derive all
types from it.

 Whenever you need a new type like PostId, UserId, or TopicId, you can inherit it
from DbId and extend it as needed. Here we can have fully functional varieties of the
same type of identifier to distinguish them better from other types. You can also add
more code in the classes to specialize them in their own way:

public class PostId: DbId {
 public PostId(int id): base(id) { }
}
public class TopicId: DbId {

Overloading code for
equality operators

The arrow syntax
The arrow syntax was introduced to C# in 6.0 and is equivalent to normal method
syntax with a single return statement. You can opt for arrow syntax if the code is easier
to read that way. It is not right or wrong to use arrow syntax—readable code is right,
and unreadable code is wrong.

The method

public int Sum(int a, int b) {
 return a + b;
 }

is equivalent to

public int Sum(int a, int b) => a + b;

We use inheritance to create
new flavors of the same type.

37What’s the hype on types?

 public TopicId(int id) : base(id) { }
}
public class UserId: DbId {
 public UserId(int id): base(id) { }
}

Having separate types for your design elements makes it easier to semantically catego-
rize different uses of our DbId type if you’re using them together and frequently. It
also protects you from passing an incorrect type of an identifier to a function.

NOTE Whenever you see a solution to a problem, make sure that you also
know when not to use it. This reusability scenario is no exception. You may not
need such elaborate work for your simple prototype—you may not even need
a custom class. When you see that you’re passing the same kind of value to func-
tions frequently and you seem to be forgetting whether it needed validation, it
might be beneficial to encompass it in a class and pass it around instead.

Custom data types are powerful because they can explain your design better than
primitive types and can help you avoid repetitive validation, and therefore, bugs. They
can be worth the hassle to implement. Moreover, the framework you’re using might
already be providing the types you need.

2.3.3 Don’t framework hard, framework smart

.NET, like many other frameworks, comes with a set of useful abstractions for certain
data types that are usually unknown or ignored. Custom text-based values like URLs,
IP addresses, filenames, or even dates are stored as strings. We’ll look at some of those
ready-made types and how we can leverage them.

 You may already know about .NET-based classes for those data types, but you might
still prefer to use a string because it’s simpler to handle. The issue with strings is that
they lack proof of validation; your functions don’t know if a given string is already vali-
dated or not, causing either inadvertent failures or unnecessary revalidation code and
thus slowing you down. Using a ready-made class for a specific data type is a better
choice in those cases.

 When the only tool you have is a hammer, every problem looks like a nail. The
same applies to strings. Strings are great generalized storage for content, and they are
so easy to parse, split, merge, or play around with. They are so tempting. But this con-
fidence in strings makes you inclined to reinvent the wheel occasionally. When you
start handling things with a string, you tend to do everything with string-processing
functions even though that can be entirely unnecessary.

 Consider this example: you’re tasked to write a lookup service for a URL-shortening
company called Supercalifragilisticexpialidocious, which is in financial trouble for
unknown reasons, and you’re Obi-wan, their only hope. Their service works like this:

1. User provides a long URL, such as
https://llanfair.com/pwllgw/yngyll/gogerych/wyrndrobwll/llan/tysilio/

➥ gogo/goch.html

We use inheritance to create
new flavors of the same type.

38 CHAPTER 2 Practical theory

2. The service creates a short code for the URL and a new short URL, such as
https://su.pa/mK61

3. Whenever a user navigates to the shortened URL from their web browser, they
get redirected to the address in the long URL they provided.

The function you need to implement must extract the short code from a shortened
URL. A string-based approach would look like this:

public string GetShortCode(string url)
{
 const string urlValidationPattern =
 @"^https?://([\w-]+.)+[\w-]+(/[\w- ./?%&=])?$";
 if (!Regex.IsMatch(url, urlValidationPattern)) {
 return null;
 }
 // take the part after the last slash
 string[] parts = url.Split('/');
 string lastPart = parts[^1];
 return lastPart;
}

This code might look okay at first, but it already contains bugs, based on our hypothet-
ical specification. The validation pattern for a URL is incomplete and allows invalid
URLs. It doesn’t take the possibility of multiple slashes in the URL path into account.
It even unnecessarily creates an array of strings just to get the final portion of the
URL.

NOTE A bug can only exist against a specification. If you don’t have any spec-
ification, you cannot claim anything is a bug. This lets companies avoid PR
scandals by dismissing bugs with, “Oh, that’s a feature.” You don’t need a writ-
ten document for a specification either—it can exist only in your mind as
long as you can answer the question, “Is this how this feature is supposed to
work?”

More importantly, the logic isn’t apparent from the code. A better approach might
leverage the Uri class from the .NET Framework and look like this example:

public string GetShortCode(Uri url)
{
 string path = url.AbsolutePath;
 if (path.Contains('/')) {
 return null;
 }
 return path;
}

This time, we don’t deal with string parsing ourselves. It’s been handled already by the
time our function gets called. Our code is more descriptive and is easier to write only
because we just wrote Uri instead of string. Because parsing and validation happen

Regular expression.
It’s used in string
parsing and occult
invocation rituals.

Not a valid URL

This is a new syntax introduced in C# 8.0 that
refers to the second-last item in a range.

It’s clear what we’re expecting.

Look, ma, no regular expressions!

Not a valid URL

39What’s the hype on types?

earlier in the code, it becomes easier to debug, too. This book has a whole chapter
about debugging, but the best debugging is not having to debug in the first place.

 In addition to primitive data types like int, string, float, and so forth, .NET pro-
vides many other useful data types to use in our code. IPAddress is a better alterna-
tive to string for storing IP addresses, not just because it has validation in it, but also
because it supports IPv6 that is in use today. It’s unbelievable, I know. The class also
has shortcut members for defining a local address:

var testAddress = IPAddress.Loopback;

This way, you avoid writing 127.0.0.1 whenever you need a loopback address, which
makes you faster. If you make a mistake with the IP address, you catch it earlier than
you would with a string.

 Another such type is TimeSpan. It represents a duration, as the name implies. Dura-
tions are used almost everywhere in software projects, especially in caching or expira-
tion mechanics. We tend to define durations as compile-time constants. The worst
possible way is this:

const int cacheExpiration = 5; // minutes

It’s not immediately clear that the unit of cache expiration is minutes. It’s impossible
to know the unit without looking at the source code. It’s a better idea to incorporate it
in the name at least, so your colleagues, or even yourself in the future, will know its
type without looking at the source code:

public const int cacheExpirationMinutes = 5;

It’s better this way, but when you need to use the same duration for a different func-
tion that receives a different unit, you’ll have to convert it:

cache.Add(key, value, cacheExpirationMinutes * 60);

This is extra work. You have to remember to do this. It’s prone to errors, too. You can
mistype 60 and have a wrong value in the end and maybe spend days debugging it or
try to optimize performance needlessly because of such a simple miscalculation.

 TimeSpan is amazing in that sense. There is no reason for you to represent any
duration in anything other than in TimeSpan, even when the function you’re calling
for doesn’t accept TimeSpan as a parameter:

public static readonly TimeSpan cacheExpiration = TimeSpan.FromMinutes(5);

Look at that beauty! You already know it’s a duration, and it’s declared. What’s better
is that you don’t have to know its unit anywhere else. For any function that receives a
TimeSpan, you just pass it along. If a function receives a specific unit, say, minutes, as
an integer, you can call it like this instead:

cache.Add(key, value, cacheExpiration.TotalMinutes);

40 CHAPTER 2 Practical theory

And it gets converted to minutes. Brilliant!
 Many more types are similarly useful, like DateTimeOffset, which represents a spe-

cific date and time like DateTime but includes the time zone information, so you don’t
lose data when suddenly your computer’s or server’s time zone information changes.
In fact, you should always try to use DateTimeOffset over DateTime because it’s also
easily convertible to/from DateTime. You can even use arithmetic operators with
TimeSpan and DateTimeOffset, thanks to operator overloading:

var now = DateTimeOffset.Now;
var birthDate =
 new DateTimeOffset(1976, 12, 21, 02, 00, 00,
 TimeSpan.FromHours(2));
TimeSpan timePassed = now - birthDate;
Console.WriteLine($"It’s been {timePassed.TotalSeconds} seconds since I was

➥ born!");

NOTE Date and time handling is such a delicate concept and is easy to break,
especially in global projects. That’s why there are separate third-party libraries
that cover the missing use cases, such as Noda Time by Jon Skeet.

.NET is like that gold pile that Uncle Scrooge jumps into and swims in. It’s full of great
utilities that make our lives easier. Learning about them might seem wasteful or bor-
ing, but it’s much faster than trying to use strings or come up with our own makeshift
implementations.

2.3.4 Types over typos

Writing code comments can be a chore, and I argue against doing it later in the book,
although you should wait until you read that part before throwing your keyboard at
me. Even without the code comments, your code doesn’t have to lack descriptiveness.
Types can help you to explain your code.

 Consider that you encounter this snippet in the vast dungeons of your project’s
code base:

public int Move(int from, int to) {
 // ... quite a code here
 return 0;
}

What is this function doing? What is it moving? What kind of parameters is it taking?
What kind of result is it returning? The answers to these questions are vague without
types. You can try to understand the code or to look up the encompassing class, but that
would take time. Your experience could be much better had it been named better:

public int MoveContents(int fromTopicId, int toTopicId) {
 // ... quite a code here
 return 0;
}

41What’s the hype on types?

It’s much better now, but you still have no way of knowing what kind of result it is
returning. Is it an error code, is it the number of items moved, or is it the new topic
identifier resulting from conflicts in the move operation? How can you convey this
information without relying on code comments? With types, of course. Consider this
code snippet instead:

public MoveResult MoveContents(int fromTopicId, int toTopicId) {
 // ... still quite a code here
 return MoveResult.Success;
}

It’s slightly clearer. It doesn’t add much because we already knew that the int was the
result of the move function, but there is a difference—we now can explore what’s in
the MoveResult type to see what it is actually doing by simply pressing a key, F12 on
Visual Studio and VS Code:

public enum MoveResult
{
 Success,
 Unauthorized,
 AlreadyMoved
}

We’ve got a much better idea now. Not only do the changes improve the understanding
of the method’s API, but they also improve the actual code itself in the function
because instead of some constants or, worse, hardcoded integer values, you see a clear
MoveResult.Success. Unlike constants in a class, enums constrain the possible values
that can be passed around, and they come with their own type name, so you have a bet-
ter chance of describing the intent.

 Because the function receives integers as parameters, it needs to incorporate some
validation since it’s a publicly facing API. You can tell that it might even be needed in
internal or private code because of how validation became pervasive. This would look
better if there was validation logic in the original code:

public MoveResult MoveContents(TopicId from, TopicId to) {
 // ... still quite a code here
 return MoveResult.Success;
}

As you can see, types can work for you by moving code to its relevant place and mak-
ing it easier to understand. Since the compiler checks whether you wrote a type’s
name correctly, they prevent you from including typos, too.

2.3.5 To be nullable or non-nullable

In the long run, all developers will encounter NullReferenceException. Although
Tony Hoare, colloquially known as the inventor of null, calls creating it in the first
place “the billion dollar mistake,” it’s not all hopeless.

42 CHAPTER 2 Practical theory

C# 8.0 introduced a new feature called nullable references. It’s a seemingly simple
change: references can’t be assigned null by default. That’s it. Nullable references are
probably the most significant change in the C# language since the introduction of
generics. Every other feature about nullable references is related to this core change.

 The confusing part about that name is that references were already nullable before
C# 8.0. It should have been called non-nullable references to give programmers a better
idea of what it means. I understand the logic in naming it because of how they intro-
duced nullable value types, but many developers might feel it doesn’t bring anything
new to the table.

 When all references were nullable, all functions that accepted references could
receive two distinct values: a valid reference and null. Any function that didn’t expect
a null value would cause a crash when it tried to reference the value.

 Making references non-nullable by default changed this. Functions can never
receive null anymore as long as calling code also exists in the same project. Consider
the following code:

public MoveResult MoveContents(TopicId from, TopicId to) {
 if (from is null) {
 throw new ArgumentNullException(nameof(from));
 }
 if (to is null) {
 throw new ArgumentNullException(nameof(to));
 }
 // .. actual code here
 return MoveResult.Success;
}

HINT The is null syntax in the preceding code might look alien to you. I
recently started using it over x == null after I read about it in a Twitter dis-
cussion by senior Microsoft engineers. Apparently, the is operator cannot be

The brief story of null
Null, or nil in some languages, is a value that symbolizes the absence of a value or
the apathy of the programmer. It’s usually synonymous with the value zero. Since a
memory address with the value zero means an invalid region in memory, modern CPUs
can catch this invalid access and convert it to a friendly exception message. In the
medieval era of computing when null accesses weren’t checked, computers used to
freeze, get corrupted, or just get rebooted.

The problem isn’t exactly null itself—we need to describe a missing value in our code
anyway. It exists for a purpose. The problem is that all variables can be assigned null
by default and never get checked if they are assigned to a null value unexpectedly,
causing them to be assigned to null at the most unexpected places and to crash in
the end.

JavaScript, as if it doesn’t have enough issues with its type system, has two different
nulls: null and undefined. Null symbolizes missing value, while undefined symbolizes
missing assignment. I know, it hurts. You must accept JavaScript as it is.

43What’s the hype on types?

overloaded, so it’s always guaranteed to return the correct result. You can sim-
ilarly use x is object syntax instead of x != null. Non-nullable checks elim-
inate the need for null checks in your code, but external code can still call
your code with nulls, for instance, if you’re publishing a library. In that case,
you might still need to perform null checks explicitly.

You can enable null checks project-wide or per file. I always recommend enabling it
project-wide for new projects because it encourages you to write correct code from the
beginning, so you spend less time fixing your bugs. To enable it per file, you add a line
saying #nullable enable at the beginning of the file.

PRO-TIP Always end an enable/disable compiler directive with a restore
counterpart rather than the opposite of enable/disable. This way you will not
affect the global setting. This helps when you’re fiddling with global project
settings. You might miss valuable feedback otherwise.

With nullable checks enabled, your code looks like this:

#nullable enable
public MoveResult MoveContents (TopicId from, TopicId to) {
 // .. actual code here
 return MoveResult.Success;
}
#nullable restore

When you try to call MoveResult function with a null value or a nullable value, you will
get a compiler warning right away instead of an error at a random time in production.
You’ll have identified the error even before trying the code out. You can choose to
ignore the warnings and continue, but you never should.

 Nullable references can be annoying at first. You cannot easily declare classes like
you used to. Consider that we are developing a registration web page for a conference

Why do we check for nulls if the code will crash either way?
If you don’t check your arguments for null at the beginning of your function, the func-
tion continues to run until it references that null value. That means it can halt in an
undesired state, like a half-written record, or may not halt but perform an invalid oper-
ation without you noticing. Failing as early as possible and avoiding unhandled states
are always good ideas. Crashing isn’t something you need to be afraid of: it’s an
opportunity for you to find bugs.

If you fail early, your stack trace for the exception will look cleaner. You’ll know exactly
which parameter caused the function to fail.

Not all null values need to be checked. You might be receiving an optional value, and
null is the simplest way to express that intent. The chapter about error handling will
discuss this in more detail.

44 CHAPTER 2 Practical theory

that receives the name and email of the recipient and records the results to the DB.
Our class has a campaign source field that is a free-form string passed from the adver-
tising network. If the string has no value, it means the page is accessed directly, not
referred from an ad. Let’s have a class like this:

#nullable enable
class ConferenceRegistration
{
 public string CampaignSource { get; set; }
 public string FirstName { get; set; }
 public string? MiddleName { get; set; }
 public string LastName { get; set; }
 public string Email { get; set; }
 public DateTimeOffset CreatedOn { get; set; }
}
#nullable restore

When you try to compile the class in the snippet, you’ll receive a compiler warning for
all the strings declared non-nullable, that is, all the properties except MiddleName and
CreatedOn:

Non-nullable property '…' is uninitialized. Consider declaring the property

➥ as nullable.

The middle name is optional, so we declared MiddleName as nullable. That’s why it
didn’t get a compiler error.

NOTE Never use empty strings to signify optionality. Use null for that pur-
pose. It’s impossible for your colleagues to understand your intention with an
empty string. Are empty strings valid values, or do they indicate optionality?
It’s impossible to tell. Null is unambiguous.

CreatedOn, on the other hand, is a struct, so the compiler just fills it with zeros. That’s
why it doesn’t throw a compiler error, but still, it can be something we want to avoid.

 A developer’s first reaction to fix a compiler error is to apply whatever suggestion
the compiler comes up with. In the previous example, that would be to declare the

Middle name is optional.

Having record creation
dates in the database is
good for auditing.

About empty strings
Throughout your career, you will have to declare empty strings for purposes other
than optionality. When you need to do that, avoid using the notation "" to signify
empty strings. Because of the many different environments in which code can be
viewed, like your text editor, test runner output window, or your continuous integration
web page, it’s easy to confuse it with a string with a single space in it (" "). Explicitly
declare empty strings with String.Empty to leverage existing types. You can also
use it with the lowercase class name string.Empty, whichever your code conven-
tions will let you do. Let the code convey your intent.

45What’s the hype on types?

properties as nullable, but that changes our understanding. We suddenly make the
properties for first name and last name optional too, which we shouldn’t be doing.
But we need to think about how we want to apply the optionality semantics.

 If you want a property not to be null, you need to ask yourself several questions.
First, “Does the property have a default value?”

 If it does, you can assign the default value during the construction. That will give
you a better idea about the behavior of the class when you’re examining the code. If
the field for campaign source has a default value, it can be expressed like this:

public string CampaignSource { get; set; } = "organic";
public DateTimeOffset CreatedOn { get; set; } = DateTimeOffset.Now;

That will remove the compiler warning, and it will convey your intent to whoever
reads your code.

 First name and last name cannot be optional, though, and they cannot have
default values. No, don’t try to put “John” and “Doe” for default values. Ask yourself
this: “How do I want this class to be initialized?”

 If you want your class to be initialized with a custom constructor so it won’t allow
invalid values ever, you can assign the property values in the constructor and declare
them as private set, so they are impossible to change. We will discuss this more in
the sections about immutability. You can signify optionality in the constructor with an
optional parameter with a default value of null, too, as shown next.

class ConferenceRegistration
{
 public string CampaignSource { get; private set; }
 public string FirstName { get; private set; }
 public string? MiddleName { get; private set; }
 public string LastName { get; private set; }
 public string Email { get; private set; }
 public DateTimeOffset CreatedOn { get; private set; } = DateTime.Now;

 public ConferenceRegistration(
 string firstName,
 string? middleName,
 string lastName,
 string email,
 string? campaignSource = null) {
 FirstName = firstName;
 MiddleName = middleName;
 LastName = lastName;
 Email = email;
 CampaignSource = campaignSource ?? "organic";
 }
}

Listing 2.3 A sample immutable class

All properties
are private set.

Signify optionality
with null.

46 CHAPTER 2 Practical theory

I can hear you whining, “But that’s too much work.” I agree. Creating an immutable
class shouldn’t be this hard. Luckily, the C# team has introduced a new construct
called record types in C# 9.0 to make this much easier, but if you can’t use C# 9.0, you
have to make a decision: do you want fewer bugs, or do you want to be done with it as
quickly as possible?

That’s a tough decision because we humans are quite terrible at estimating the cost of
future events and usually work with only the near future. That’s the reason I’ve been
able to write this book now—I’m obeying the shelter-in-place order in San Francisco
due to the COVID-19 pandemic, because humankind has failed to foresee the future
costs of a small outbreak in Wuhan, China. We are terrible estimators. Let’s accept this
fact.

 Consider this: You have the chance to eliminate a whole class of bugs caused by
missing null checks and incorrect state by simply having this constructor, or you can
go ahead and leave it as is and deal with the consequences for every bug filed: bug
reports, issue trackers, talking it out with PM, triaging and fixing the relevant bug,
only to encounter another bug of the same class until you decide, “Okay, that’s
enough, I’ll do it like Sedat told me to.” Which path do you want to choose?

 As I said before, this requires some kind of intuition about how many bugs you
anticipate in some part of the code. You shouldn’t blindly apply suggestions. You
should have a sense of the future churn, that is, the amount of change on a piece of
code. The more the code changes in the future, the more prone it is to bugs.

 But let’s say you did all that, and decided, “Nah, that will work okay, it’s not worth
the trouble.” You can still get some level of null safety with keeping nullable checks in
place but initializing your fields beforehand like this:

Record types to the rescue
C# 9.0 brought in record types, which makes creating immutable classes extremely
easy. The class in listing 2.3 can simply be expressed with code like this:

public record ConferenceRegistration(
 string CampaignSource,
 string FirstName,
 string? MiddleName,
 string LastName,
 string Email,
 DateTimeOffset CreatedOn);

It will automatically scaffold properties with the same name as the arguments we
specify in the parameter list, and it will make the properties immutable, so the record
code will behave exactly like the class shown in listing 2.3. You can also add methods
and additional constructors in the body of a record block like a regular class instead
of ending the declaration with a semicolon. It’s phenomenal. Such a timesaver.

47What’s the hype on types?

class ConferenceRegistration
{
 public string CampaignSource { get; set; } = "organic";
 public string FirstName { get; set; } = null!;
 public string? MiddleName { get; set; }
 public string LastName { get; set; } = null!;
 public string Email { get; set; } = null!;
 public DateTimeOffset CreatedOn { get; set; }
}

The bang operator (!) tells the compiler precisely “I know what I’m doing”: in this
case, “I will make sure that I will initialize those properties right after I create this
class. If I don’t, I accept that nullability checks won’t work for me at all.” Basically, you
still retain nullability assurances if you keep your promise of initializing those proper-
ties right away.

 That’s thin ice to cross because it may not be possible to bring everyone in your
team onto the same page about this, and they might still initialize the properties later.
If you think you can manage the risks, you can stick to this. It can even be inevitable
for some libraries such as Entity Framework, which requires a default constructor and
settable properties on objects.

Nullability checks help you think about your intentions for the code you’re writing.
You will have a clearer idea whether that value is truly optional or whether it doesn’t
need to be optional at all. It will reduce bugs and make you a better developer.

2.3.6 Better performance for free

Performance shouldn’t be your first concern when you’re writing a prototype, but
having a general understanding of performance characteristics of types, data struc-
tures, and algorithms can move you toward a faster path. You can write faster code
without knowing it. Using the specific type for the job instead of more generic ones
can help you behind the scenes.

 Existing types can use more efficient storage for free. A valid IPv6 string, for
instance, can be up to 65 characters. An IPv4 address is at least seven characters long.

Notice null! as a
new construct.

Maybe<T> is dead, long live Nullable<T>!
Because nullable types in C# used to have no compiler support to enforce their cor-
rectness and a mistake would crash the entire program, they were historically seen
as an inferior way of signifying optionality. Because of that, people implemented their
own optional types, called either Maybe<T> or Option<T>, without the risk of causing
null reference exceptions. C# 8.0 makes compiler safety checks for null values first-
class, so the era of rolling your own optional type is officially over. The compiler can
both check and optimize nullable types better than ad hoc implementations. You also
get syntactic support from the language with operators and pattern matching. Long
live Nullable<T>!

48 CHAPTER 2 Practical theory

That means a string-based storage would occupy between 14 and 130 bytes, and when
included with object headers, that makes it between 30 and 160 bytes. IPAddress type,
on the other hand, stores an IP address as a series of bytes and uses between 20 and 44
bytes. Figure 2.12 shows the memory layout difference between string-based storage
and a more “native” data structure.

It may not look like much, but remember, this comes for free. The longer the IP
address gets, the more space savings you get. It also provides you proof of validation,
so you can safely trust that the passed-along object holds a valid IP address throughout
the code. Your code becomes easier to read because types also describe the intention
behind the data.

 On the other hand, we all know that there is no free lunch. What’s the catch here?
When should you not use it? Well, there is a small string-parsing overhead for the
string to deconstruct it into bytes. Some code goes over the string to decide if it’s an
IPv4 or IPv6 address and parses it accordingly using some optimized code. On the
other hand, because you’ll have the string validated after parsing, it essentially
removes the requirement of validation in the rest of your code, compensating for the
small parsing overhead. Using the correct type from the get-go lets you avoid the over-
head of trying to make sure the passed arguments are the correct type. Last but not
least, preferring the correct type can also leverage value types in some cases where
they’re beneficial. We’ll see more about the benefits of value types in the next section.

 Performance and scalability aren’t single-dimensional concepts. For example, opti-
mizing data storage can actually lead to worse performance in some cases, as I’ll

String length
(4 bytes)

“1” (2 bytes)

“7” (2 bytes)

“6” (2 bytes)

“.” (2 bytes)

“5” (2 bytes)

“3” (2 bytes)

“.” (2 bytes)

“4” (2 bytes)

“3” (2 bytes)

“.” (2 bytes)

“3” (2 bytes)

IP address
(4 bytes)

String-based
IPAddress-based

(IPv4)

Pointer to IPv6
storage (8 bytes, null)

When you use
the IPAddress
class, it
occupies a
fixed space
and always
less than a
string.

Depending on the length of the
IP address, a string representation
of an IP address can consume
more than twice the memory the
IPAddress class would consume.
These are very small gains at the
micro scale, but they come free
with proof of validity. Figure 2.12 Storage differences

of data types, excluding common
object headers

49What’s the hype on types?

explain in chapter 7. But with all the advantages of using the specific type for the job,
using a specialized type for data is a no-brainer most of the time.

2.3.7 Reference types vs. value types

The distinction between reference types and value types is pretty much about how
types are stored in memory. In simple terms, the contents of value types are stored in
the call stack, whereas reference types are stored in the heap, and only a reference to
their content is stored in the call stack instead. This is a simple example of how they
look in code:

int result = 5;
var builder = new StringBuilder();
var date = new DateTime(1984, 10, 9);
string formula = "2 + 2 = ";
builder.Append(formula);
builder.Append(result);
builder.Append(date.ToString());
Console.WriteLine(builder.ToString());

Java doesn’t have value types except primitive ones like int. C# additionally lets you
define your own value types. Knowing the difference between reference and value
types can make you a more efficient programmer for free by making you use the cor-
rect type for the correct job. It’s not hard to learn, either.

 A reference is analogous to a managed pointer. A pointer is an address of memory. I
usually imagine memory as an exceptionally long array of bytes, as figure 2.13 shows.

This isn’t all of your RAM; this is just the memory layout of a single process. The con-
tents of your physical RAM look much more complicated, but operating systems hide
the fact that RAM is a mess by showing you a tidy, clean, contiguous area of memory
for each process, which may not even exist on your RAM. That’s why it’s called virtual
memory. As of 2020, nobody has close to 8 TB of RAM on their computers, yet you can
access 8 TB of memory on a 64-bit operating system. I’m sure somebody in the future
will be looking at this and laughing like I laugh at my old PC that had 1 MB of mem-
ory in the 1990s.

Primitive value type
Reference type

All structs are value types.

Primitive reference type

Outputs a mathematical
abomination

Address

Contents

0 1 2 3 4

Start of
memory
space

End of
memory
space

8 TB - 5 8 TB - 3 8 TB - 2 8 TB - 1 ~ 8 trillion

Your app is somewhere
around here.

8 TB - 4

Figure 2.13 Memory layout of a 64-bit process that can address up to 8 TB

50 CHAPTER 2 Practical theory

A pointer is basically a number that points to an address in memory. The advantage of
using pointers instead of the actual data is to avoid unnecessary duplication, which
can be quite expensive. We can just pass around gigabytes of data from function to
function by simply passing around an address, aka a pointer. Otherwise, we would
have to copy gigabytes of memory at every function call. We just copy a number
instead.

 Obviously, it doesn’t make sense to use pointers for anything less than the size of
the pointer itself. A 32-bit integer (int on C#) is just half the size of a pointer on a
64-bit system. Therefore, primitive types like int, long, bool, and byte are all consid-
ered value types. That means that instead of a pointer to their address, only their value
is passed to functions.

 A reference is synonymous with a pointer except that your access to its contents is
managed by the .NET runtime. You can’t know the value of a reference, either. This
allows the garbage collector to move the memory pointed out by reference around as
it needs, without you knowing it. You can also use pointers with C#, but that’s only pos-
sible in an unsafe context.

Why 8 TB? I thought 64-bit processors could address 16 exabytes!
They can. The reasons behind limiting user space are mostly practical. Creating vir-
tual memory-mapping tables for a smaller memory range consumes fewer resources,
and it’s faster for the operating system. For example, switching between processes
requires memory to be remapped in its entirety, and having a larger address space
would make it slower. It will be possible to increase user space range in the future
when 8 TB RAM becomes a common commodity, but until then, 8 TB is our horizon.

Garbage collection
A programmer needs to track their allocation of memory and needs to free (deallo-
cate) the allocated memory when they are done with it. Otherwise, your application’s
memory usage constantly increases, which is also known as a memory leak. Manu-
ally allocating and freeing memory is prone to bugs. A programmer might forget to
free memory or, even worse, try to free already freed memory, which is the root of
many security bugs.

One of the first proposed solutions to the problems with manual memory manage-
ment was reference counting. It’s a primitive form of garbage collection. Instead of
leaving the initiative to free up memory to the programmer, the runtime would keep
a secret counter for each allocated object. Every reference to the given object would
increment the counter, and every time a variable referencing the object went out of
scope, the counter would be decremented. Whenever the counter reached zero, that
would mean there were no variables referencing the object, so it would be freed.

51What’s the hype on types?

C# allows complex value types called structs. A struct is remarkably similar to a class in
definition, but unlike a class, it’s passed by value everywhere. That means if you have a
struct and you send it to a function, a copy of the struct gets created, and when that
function passes it to another function, another copy will be created. Structs are always
copied. Consider the following example.

struct Point
{
 public int X;
 public int Y;
 public override string ToString() => $"X:{X},Y:{Y}";
}

static void Main(string[] args) {
 var a = new Point() {
 X = 5,
 Y = 5,
 };
 var b = a;
 b.X = 100;
 b.Y = 200;
 Console.WriteLine(b);
 Console.WriteLine(a);
}

Listing 2.4 Immutability example

Reference counting works fine for many scenarios, but it has a couple of quirks: It’s
slow because every time a reference goes out of scope, it performs deallocation,
which is usually less efficient than, say, freeing relevant blocks of memory together.
It also creates a problem with cyclical references that requires extra work and dili-
gence on the programmer’s part to avoid.

Then, there’s garbage collection, mark and sweep garbage collection, to be precise,
since reference counting is a form of garbage collection, too. Garbage collection is a
tradeoff between reference counting and manual memory management. With garbage
collection, no separate reference counts are kept. Instead, a separate task goes over
the entire object tree to find objects that are not referenced anymore and marks them
as garbage. The garbage is kept for a while, and when it grows beyond a certain
threshold, the garbage collector arrives and frees the unused memory in a single
pass. That reduces the overhead of memory deallocation operations and memory
fragmentation due to microdeallocations. Not keeping counters makes the code
faster, too. The Rust programming language also introduced a novel memory man-
agement called borrow checker where the compiler can track exactly at which point
an allocated memory is no longer needed. That means the memory allocation has
zero extra cost in run time when you write it in Rust, but you pay the price by writing
code in a specific way and getting lots of compiler errors until you figure out how
things should be done.

52 CHAPTER 2 Practical theory

What do you think this program would write to console? When you assign a to b, the
runtime creates a new copy of a. That means that when you modify b, you’re modify-
ing a new struct with a’s values, not a itself. What if Point were a class? Then b would
have the same reference as a, and changing the contents of a would mean changing b
at the same time.

 Value types exist because there are cases where they can be more efficient than ref-
erence types, in terms of both storage and performance. We have already discussed
how a type with a size of a reference or less can be more efficiently passed by value. Ref-
erence types also incur a single level of indirection. Whenever you need to access the
field of a reference type, the .NET runtime has to read the value of the reference first,
then go to the address pointed out by the reference, and then read the actual value
from there. For a value type, the runtime reads the value directly, making access faster.

Summary
 Computer science theory can be boring, but knowing some theory can make

you a better developer.
 Types are normally known as boilerplate in strongly typed languages, but they

can be used to write less code, too.
 .NET comes with better, more efficient data structures for certain data types

that can easily make your code faster and more reliable.
 Using types can make your code more self-explanatory and therefore requires

writing fewer comments.
 The nullable references feature introduced with C# 8.0 can make your code

much more reliable and allow you to spend less time debugging your application.
 The difference between value types and reference types is significant, and

knowing about it will make you a more efficient developer.
 Strings are more useful and more efficient if you know how their internals

work.
 Arrays are fast and convenient, but they may not be the most suitable candidate

for a publicly exposed API.
 Lists are great for growing lists, but arrays are more efficient if you don’t intend

to dynamically grow their contents.
 A linked list is a niche data structure, but knowing its characteristics can help

you understand the tradeoffs of dictionaries.
 Dictionaries are great for fast key lookups, but their performance relies heavily

on the correct implementation of GetHashCode().
 A list of unique values can be represented with a HashSet for awesome lookup

performance.
 Stacks are great data structures for retracing your steps. The call stack is finite.
 Knowing how a call stack works also complements the performance implica-

tions of value and reference types.

53

Useful anti-patterns

Programming literature is full of best practices and design patterns. Some of them
even seem indisputable and provoke people to give you the side-eye if you argue
about them. They eventually turn into dogmas and are rarely questioned. Once in
a while, someone writes a blog post about one, and if their article gets the approval
of the Hacker News1 community, it can be accepted as valid criticism and can open
a door for new ideas. Otherwise, you can’t even discuss them. If I had to send a sin-
gle message to the world of programming, it would be to question all the things
that are taught to you—their usefulness, their reason, their gain, and their cost.

 Dogmas, immutable laws, create blind spots for us, and their size grows the lon-
ger we stick to them. Those blind spots can obscure some useful techniques that
can even be more useful for certain use cases.

This chapter covers
 Known bad practices that can be put to good use

 Anti-patterns that are, in fact, useful

 Identifying when to use a best practice versus its
evil twin

1 Hacker News is a tech news–sharing platform where everyone is an expert about everything: https://
news.ycombinator.com.

https://news.ycombinator.com
https://news.ycombinator.com
https://news.ycombinator.com

54 CHAPTER 3 Useful anti-patterns

 Anti-patterns, or bad practices, if you will, get a bad rap, and deservedly so, but that
doesn’t mean we should avoid them like radioactive material. I’ll be going over some
of those patterns that can help you more than their best practice counterparts. This
way, you’ll also be using the best practices and great design patterns with better under-
standing of how they help and when they aren’t helpful. You’ll see what you’re missing
in your blind spot and what kind of gems are there.

3.1 If it ain’t broke, break it
One of the first things I learned at the companies where I worked—after where the
restrooms were—was to avoid changing the code, aka code churn, at all costs. Every
change you make carries the risk of creating a regression, which is a bug that breaks an
already working scenario. Bugs are already costly, and fixing them takes time when
they are part of a new feature. When it’s a regression, that’s worse than releasing a new
feature with bugs—it’s a step backward. Missing a shot in basketball is a bug. Scoring a
goal on your own hoop, effectively scoring for your opponent, is a regression. Time is
the most critical resource in software development, and losing time has the most
severe penalty. Regressions lose the most time. It makes sense to avoid regressions and
avoid breaking the code.

 Avoiding changes can lead to a conundrum eventually, though, because if a new
feature requires that something be broken and made again, it might cause resistance
to its development. You can become accustomed to tiptoeing around existing code
and trying to add everything in new code without touching existing code. Your effort
to leave the code untouched can force you to create more code, which just increases
the amount of code to maintain.

 If you have to change existing code, that’s a bigger problem. There is no tiptoeing
around this time. It can be awfully hard to modify existing code because it is tightly
coupled to a certain way of doing things, and changing it will oblige you to change
many other places. This resistance of existing code to change is called code rigidity.
That means the more rigid the code gets, the more of the code you have to break to
manipulate it.

3.1.1 Facing code rigidity

Code rigidity is based on multiple factors, and one of them is too many dependencies
in the code. Dependency can relate to multiple things: it can refer to a framework
assembly, to an external library, or to another entity in your own code. All types of
dependency can create problems if your code gets tangled up in them. Dependency
can be both a blessing and a curse. Figure 3.1 depicts a piece of software with a terri-
ble dependency graph. It violates the concern boundaries, and any break in one of
the components would require changes in almost all of the code.

 Why do dependencies cause problems? When you consider adding dependencies,
consider also every component as a different customer or every layer as a different
market segment with different needs. Serving multiple segments of customers is a

55If it ain’t broke, break it

greater responsibility than serving only a single type of customer. Customers have dif-
ferent needs, which might force you to cater to different needs unnecessarily. Think
about these relationships when you are deciding on dependency chains. Ideally, try to
serve as few types of customers as possible. This is the key to keeping your component
or your entire layer as simple as possible.

 We can’t avoid dependencies. They are essential for reusing code. Code reuse is a
two-clause contract. If component A depends on component B, the first clause is, “B
will provide services to A.” There is also a second clause that is often overlooked: “A
will go through maintenance whenever B introduces a breaking change.” Dependen-
cies caused by code reuse are okay as long as you can keep the dependency chain
organized and compartmentalized.

3.1.2 Move fast, break things

Why do you need to break that code, as in making it not even compile or fail the tests?
Because intertwined dependencies cause rigidity in the code that makes it resistant to
change. It’s a steep hill that will make you slower over time, eventually bringing you to
a halt. It’s easier to handle breaks at the beginning, so you need to identify these
issues and break your code, even when it’s working. You can see how dependencies
force your hand in figure 3.2.

 A component with zero dependencies is the easiest to change. It’s impossible to
break anything else. If your component depends on one of your other components,
that creates some rigidity because dependency implies a contract.

 If you change the interface on B, that means you need to change A too. If you
change the implementation of B without changing the interface, you can still break A
because you break B. That becomes a bigger issue when you have multiple compo-
nents that depend on a single component.

 Changing A becomes harder because it needs a change in the dependent component
and incurs a risk of breaking any of them. Programmers tend to assume that the more
they reuse code, the more time they save. But at what cost? You need to consider this.

ComponentComponent

Component
B

Component
A

Component

Dependency
(A depends on B.)

Figure 3.1 The occult symbol
for dependency hell

56 CHAPTER 3 Useful anti-patterns

3.1.3 Respecting boundaries

The first habit you must adopt is to avoid violating abstraction boundaries for dependen-
cies. An abstraction boundary is the logical borders you draw around layers of your
code, a set of the concerns of a given layer. For example, you can have web, business,
and database layers in your code as abstractions. When you layer code like that, the
database layer shouldn’t know about the web layer or the business layer, and the web
layer shouldn’t know about the database, as figure 3.3 shows.

Why is stepping over boundaries a bad idea? Because it eliminates the benefits of an
abstraction. When you pull the complexity of lower layers into higher layers, you
become responsible for maintaining the impact of the changes everywhere on the
lower layers. Think about a team whose members are responsible for their own layers.
Suddenly, the developer of the web layer needs to learn SQL. Not only that, but the
changes in the DB layer also need to be communicated now with more people than is
necessary. It burdens the developer with unnecessary responsibilities. The time to

A A B

A B

E

Isolated code.
It can be moved
anywhere and
changed freely.

A can still be changed,
but you can’t change B’s
interface without
changing A.

Many modules are using A now, so
you can’t touch A without changing
all the code in C, D, E, and F.

D F

C

Changes to B only
affect A directly and
all others indirectly.

Figure 3.2 Resistance to change is proportional to dependencies.

Web Business DBDB

Web layer only
handles web
requests and
calls relevant
business
functions.

Business layer
only contains
business-related
code.

Database layer
only performs
database
queries.

Figure 3.3 Violation of abstraction
boundaries that you need to avoid

57If it ain’t broke, break it

reach a consensus among the people who need to be convinced increases exponen-
tially. You lose time, and you lose the value of abstractions.

 If you bump into such boundary issues, break the code, as in deconstruct it so it
might stop working, remove the violation, refactor the code, and deal with the fallout.
Fix other parts of the code that depend on it. You have to be vigilant about such issues
and immediately cut them off, even at the risk of breaking the code. If the code makes
you afraid to break it, it’s badly designed code. That doesn’t mean good code doesn’t
break, but when it does, it’s much easier to glue the pieces back together.

3.1.4 Isolating common functionality

Does this all mean the web layer in figure 3.3 can’t ever have common functionality
with the DB? It can, of course. But such cases indicate a need for a separate compo-
nent. For instance, both layers can rely on the common model classes. In that case,
you’d have a relationship diagram like that shown in figure 3.4.

Refactoring code can break your build process or make your tests fail, and theoreti-
cally, it’s something you should never do. But I regard such violations as hidden
breaks. They need immediate attention, and if they cause more breakage and more

The importance of tests
You need to be able to see if a change in code would cause a scenario to fail. You
can rely on your own understanding of code for that, but your effectiveness will dimin-
ish as the code gets more complex over time.

In that sense, tests are simpler. Tests can be a list of instructions on a piece of
paper, or they can be fully automated tests. Automated tests are usually preferable
because you write them only once and don’t waste your time executing them yourself.
Thanks to testing frameworks, writing them is quite straightforward, too. We’ll delve
more into this subject in the chapter about testing.

Web Business DBDB

Models

Models layer contains abstractions
shared by all other layers.

Figure 3.4 Extracting common
functionality without violating
abstractions

58 CHAPTER 3 Useful anti-patterns

bugs in the process, that doesn’t mean you caused the code to stop working: it means
the bug that was already there has now manifested itself in a way that is easier to rea-
son about.

 Let’s look at an example. Consider that you’re writing an API for a chat app in
which you can communicate only in emojis. Yes, it sounds horrible, but there was once
a chat app in which you could send only “Yo” as a message.2 Ours is an improvement
over that, if nothing else.

 We design the app with a web layer that accepts requests from mobile devices and
calls the business layer (aka logic layer) that performs the actual operations. This kind of
separation allows us to test the business layer without a web layer. We can also later use
the same business logic in other platforms, such as a mobile website. Therefore, sepa-
rating business logic makes sense.

NOTE Business in business logic or a business layer doesn’t necessarily mean
something related to a business, but is more like the core logic of the applica-
tion with abstract models. Arguably, reading business-layer code should give
you an idea about how the application works in higher-level terms.

A business layer doesn’t know anything about databases or storage techniques. It calls
on the database layer for that. The database layer encapsulates the database function-
ality in a DB-agnostic fashion. This kind of separation of concerns can make the test-
ability of business logic easier because we can easily plug a mocked implementation of
the storage layer into the business layer. More importantly, that architecture allows us
to change a DB behind the scenes without changing a single line of code in the busi-
ness layer, or in the web layer, for that matter. You can see how that kind of layering
looks in figure 3.5.

The downside is that every time you add a new feature to the API, you need to create a
new business-layer class or method and a relevant database-layer class and methods.
This seems like a lot of work, especially when the deadlines are tight and the feature is
somewhat simple. “Why do I need to go through all this hassle for a simple SQL

2 The chat app called Yo in which you could only send a text containing “Yo” was once valued at $10 million.
The company got shut down in 2016: https://en.wikipedia.org/wiki/Yo_(app).

API Business DBDB

Responsible
for handling
web requests

Responsible for
implementing
the actual API
logic

Responsible for
all database
access

Figure 3.5 The basic architecture
of our mobile app API

https://en.wikipedia.org/wiki/Yo_(app)

59If it ain’t broke, break it

query?” you might think. Let’s go ahead and fulfill the fantasy of many developers and
violate the existing abstractions.

3.1.5 Example web page

Suppose you receive a request from your manager to implement a new feature, a new
statistics tab that shows how many messages the user sent and received in total. It’s just
two simple SQL queries on the backend:

SELECT COUNT(*) as Sent FROM Messages WHERE FromId=@userId
SELECT COUNT(*) as Received FROM Messages WHERE ToId=@userId

You can run these queries in your API layer. Even if you’re not familiar with ASP.NET
Core, web development, or SQL, for that matter, you should have no problem under-
standing the gist of the code in listing 3.1, which defines a model to return to the
mobile app. The model is then automatically serialized into JSON. We retrieve a con-
nection string to our SQL server database. We use that string to open a connection,
run our queries against the database, and return the results.

 The StatsController class in listing 3.1 is an abstraction over web handling
wherein received query parameters are in function arguments, the URL is defined by
the name of the controller, and the result is returned as an object. So, you would reach
the code in listing 3.1 with a URL like https://yourwebdomain/Stats/Get?userId=123,
and the MVC infrastructure maps the query parameters into function parameters and
the returned object to a JSON result automatically. It makes writing web-handling code
simpler because you don’t really have to deal with URLs, query strings, HTTP headers,
and JSON serialization.

public class UserStats {
 public int Received { get; set; }
 public int Sent { get; set; }
}

public class StatsController: ControllerBase {
 public UserStats Get(int userId) {
 var result = new UserStats();
 string connectionString = config.GetConnectionString("DB");
 using (var conn = new SqlConnection(connectionString)) {
 conn.Open();
 var cmd = conn.CreateCommand();
 cmd.CommandText =
 "SELECT COUNT(*) FROM Messages WHERE FromId={0}";
 cmd.Parameters.Add(userId);
 result.Sent = (int)cmd.ExecuteScalar();
 cmd.CommandText =
 "SELECT COUNT(*) FROM Messages WHERE ToId={0}";
 result.Received = (int)cmd.ExecuteScalar();
 }

Listing 3.1 Implementing a feature by violating abstractions

Defines the model

Our controller

Our API
endpoint

60 CHAPTER 3 Useful anti-patterns

 return result;
 }
}

I probably spent five minutes writing this implementation. It looks straightforward.
Why do we bother with abstractions? Just put everything in an API layer, right?

 Such solutions can be okay when you’re working on prototypes, which don’t
require a perfect design. But in a production system, you need to be careful about
making such decisions. Are you allowed to break production? Is it okay if the site goes
down for a couple of minutes? If these are okay, then feel free to use this. How about
your team? Is the maintainer of the API layer okay with having these SQL queries all
around the place? How about testing? How do you test this code and make sure that it
runs correctly? How about new fields being added to this? Try to imagine the office
the next day. How do you see people treating you? Do they hug you? Cheer you? Or
do you find your desk and your chair decorated with tacks?

 You added a dependency to the physical DB structure. If you need to change the
layout of the Messages table or the DB technology you used, you’ll have to go around
all the code and make sure that everything works with the new DB or the new table
layout.

3.1.6 Leave no debt behind

We programmers are not good at predicting future events and their costs. When we
make certain unfavorable decisions just for the sake of meeting a deadline, we make it
even harder to meet the next one because of the mess we’ve created. Programmers
commonly call this technical debt.

 Technical debts are conscious decisions. The unconscious ones are called technical
ineptitude. The reason they are called debts is because either you pay them back later,
or the code will come looking for you in an unforeseen future and break your legs
with a tire iron.

 There are many ways technical debt can accumulate. It might look easier just to
pass an arbitrary value instead of taking the trouble to create a constant for it. “A
string seems to work fine there,” “No harm will come from shortening a name,” “Let
me just copy everything and change some of its parts,” “I know, I’ll just use regular
expressions.” Every small bad decision will add seconds to your and your team’s per-
formance. Your throughput will degrade cumulatively over time. You will get slower
and slower, getting less satisfaction from your work and less positive feedback from
management. By being the wrong kind of lazy, you are dooming yourself to failure. Be
the right kind of lazy: serve your future laziness.

 The best way to deal with technical debt is to procrastinate with it. You have a
larger job ahead of you? Use this as an opportunity to get yourself warmed up. It
might break the code. That’s good—use it as an opportunity to identify rigid parts of
the code, get them granular, flexible. Try to tackle it, change it, and then if you think
it doesn’t work well enough, undo all your changes.

61Write it from scratch

3.2 Write it from scratch
If changing code is risky, writing it from scratch must be orders of magnitude riskier. It
essentially means any untested scenario might be broken. Not only does it mean writ-
ing everything from scratch, but fixing all the bugs from scratch, too. It’s regarded as a
seriously cost-inefficient method for fixing design deficiencies.

 However, that’s only true for code that already works. For code that you already
have been working on, starting anew can be a blessing. How, you might ask? It’s all
related to the spiral of desperation when writing new code. It goes like this:

1. You start with a simple and elegant design.
2. You start writing code.
3. Then some edge cases that you didn’t think of appear.
4. You start revising your design.
5. Then you notice that the current design doesn’t work for the requirements.
6. You start tweaking the design again, but you avoid redoing it because it would

cause too many changes. Every line adds to your shame.
7. Your design is now a Frankenstein’s monster of ideas and code mashed

together. Elegance is lost, simplicity is lost, and all hope is lost.

At that point, you’ve entered a loop of sunk-cost fallacy. The time you spent already
with your existing code makes you averse to redoing it. But because it can’t solve the
main issues, you spend days trying to convince yourself that the design might work.
Maybe you do fix it at some point, but it might lose you weeks, just because you dug
yourself into a hole.

3.2.1 Erase and rewrite

I say, start from scratch: rewrite it. Toss away everything you already did and write every
bit from scratch. You can’t imagine how refreshing and fast that will be. You might
think writing it from scratch would be hugely inefficient and you’d be spending dou-
ble the time, but that’s not the case because you’ve already done it once. You already
know your way around the problem. The gains in redoing a task resembles something
like those shown in figure 3.6.

First try. “The most
elegant design ever.”

Second iteration,
“Okay, let’s try simple.”

Third iteration. “Can I write
a tool to write this?”

Fourth iteration. “Look,
Ma, no hands!"

Time taken

Figure 3.6 The brilliance of
doing something over and over
and expecting the same results

62 CHAPTER 3 Useful anti-patterns

It’s hard to overstate the gains in speed when you’re doing something the second
time. Unlike the hackers depicted in movies, most of your time is spent looking at the
screen: not writing stuff, but thinking about things, considering the right way of doing
things. Programming isn’t about crafting things as much as it’s about navigating the
maze of a complex decision tree. When you restart the maze from the beginning, you
already know possible mishaps, familiar pitfalls, and certain designs you’ve reached in
your previous attempt.

 If you feel stuck developing something new, write it from scratch. I’d say don’t even
save the previous copy of your work, but you might want to in case you’re not really
sure if you can do it again really quickly. Okay, then save a copy somewhere, but I
assure you, most of the time, you won’t even need to look at your previous work. It’s
already in your mind, guiding you much faster, and without going into the same spiral
of desperation this time.

 More importantly, when you start from scratch, you’ll know if you’re following the
wrong path much earlier in your process than you previously did. Your pitfall radar
will come installed this time. You’ll have gained an innate sense of developing that
certain feature the right way. Programming this way is a lot like playing console games
like Marvel’s Spider-Man or The Last of Us. You die constantly and start that sequence
again. You die, you respawn. You become better with this repetition, and the more you
repeat, the better you become at programming. Doing it from scratch improves how
you develop that single feature, yes, but it also improves your development skills in
general for all the future code you will be writing.

 Don’t hesitate to throw your work away and write it from scratch. Don’t fall for the
sunk-cost fallacy.

3.3 Fix it, even if it ain’t broke
There are ways to deal with code rigidity, and one of them is to keep the code churn-
ing so it doesn’t solidify—as far as the analogy goes. Good code should be easy to
change, and it shouldn’t give you a list of a thousand places that you need to change
to make the change you need. Certain changes can be performed on code that aren’t
necessary but can help you in the long term. You can make it a regular habit to keep
your dependencies up to date, keeping your app fluid, and identify the most rigid
parts that are hard to change. You can also improve the code as a gardening activity, tak-
ing care of the small issues in the code regularly.

3.3.1 Race toward the future

You’ll inevitably be using one or more packages from the package ecosystem, and
you’ll leave them as is because they keep working for you. The problem with this is
that when you need to use another package and it requires a later version of your
package, the upgrade process can be much more painful than gradually upgrading
your packages and staying current. You can see such a conflict in figure 3.7.

63Fix it, even if it ain’t broke

Most of the time, package maintainers only think about the upgrade scenarios
between two major versions, rather than multiple in-between versions. For example,
the popular Elasticsearch search library requires major version upgrades to be per-
formed one by one; it doesn’t support upgrading from one version to another directly.

 .NET supports binding redirects to avoid the problem of multiple versions of the
same package, to a certain degree. A binding redirect is a directive in application con-
figuration that causes .NET to forward calls to an older version of an assembly to its
newer version, or vice versa. Of course, this only works when both packages are com-
patible. You don’t normally need to deal with binding redirects yourself because
Visual Studio can do that for you if you have already selected Automatically Generate
Binding Redirects in the project properties screen.

 Keeping your packages up to date periodically will have two important benefits.
First, you’ll have spread the effort of upgrading to the current version out over the
maintenance period. Every step will be less painful. Second, and more importantly,
every minor upgrade might break your code or your design in small or subtle ways that
you will need to fix to move to the future. This may sound undesirable, but it will make
you improve the code and design in small steps as long as you have tests in place.

 You might have a web application that uses Elasticsearch for search operations and
Newtonsoft.Json for parsing and producing JSON. They are among the most common
libraries out there. The problem starts when you need to upgrade the Newtonsoft.Json
package to use a new feature, but Elasticsearch uses the old one. But to upgrade Elas-
ticsearch, you need to change the code that handles Elasticsearch, too. What do you do?

 Most packages only support single-version upgrades. Elasticsearch, for example,
expects you to upgrade from 5 to 6, and it has guidelines on how to do that. It doesn’t
have guidelines for upgrading from 5 to 7. You’ll have to apply each individual

Application

A new library our
app needs

SomeLib v2.0.0SomeLib v1.0.0

Our app
requires v1
of SomeLib.

The new library uses
v2 of SomeLib.

Both libraries have the same filename,
SomeLib.dll, and v2 is incompatible
with v1. It creates a hard-to-resolve
situation, losing you a lot of time. Figure 3.7 Unfixable version conflicts

64 CHAPTER 3 Useful anti-patterns

upgrade step separately. Some upgrades also require you to change code significantly.
Elasticsearch 7 almost makes you write the code from scratch.

 You might as well stay in the older versions under the safety of unchanged code,
but not only does the support for older versions end at some point, but the documen-
tation and code examples don’t stay around forever, either. Stack Overflow gets filled
with the answers about the newer versions because people use the latest version when
they start a new project. Your support network for the older version fades over time.
That makes it even harder to upgrade with every passing year, which pushes you into a
downward spiral of desperation.

 My solution to this problem is to join the race toward the future. Keep the libraries
up to date. Make it a regular habit to upgrade libraries. This will break your code occa-
sionally, and thanks to that, you’ll find out which part of your code is more fragile, and
you can add more test coverage.

 The key idea is that upgrades may cause your code to break, but letting them have
microbreaks will prevent huge roadblocks that become really hard to tackle. You are
not only investing in a fictional future gain, but you are also investing in the flexing of
dependencies of your app, letting it break and mending it so it doesn’t break as easily
with the next change, regardless of package upgrades. The less resistant your app is to
change, the better it is in terms of design and ease of maintenance.

3.3.2 Cleanliness is next to codeliness

What I liked first about computers was their determinism. What you wrote would hap-
pen the same way all the time, guaranteed. Code that’s working would always work. I
found comfort in that. How naive of me. In my career, I’ve seen many instances of
bugs that could only be observed occasionally based on the speed of your CPU or the
time of the day. The first truth of the streets is, “Everything changes.” Your code will
change. Requirements will change. Documentation will change. The environment will
change. It’s impossible for you to keep running code stable just by not touching it.

 Since we’ve gotten that out of the way, we can relax and say that it’s okay to touch
code. We shouldn’t be afraid of change because it will happen anyway. That means
that you shouldn’t hesitate to improve working code. Improvements can be small:
adding some necessary comments, removing some unnecessary ones, naming things
better. Keep the code alive. The more changes you make on some code, the less resis-
tant it becomes to future change. That’s because changes will cause breaks and breaks
will let you identify weak parts and make them more manageable. You should develop
an understanding of how and where your code breaks. Eventually, you’ll have an
innate sense of what kind of change would be the least risky.

 You can call this kind of code-improvement activity gardening. You are not necessar-
ily adding features or fixing bugs, but the code should be slightly improved when
you’re done with it. Such a change can let the next developer who visits the code
understand it better or improve the test coverage on the code, as if Santa left some
gifts overnight or the bonsai at the office was mysteriously alive.

65Fix it, even if it ain’t broke

 Why should you bother doing a chore that will never be recognized by anyone in
your career? Ideally, it should be recognized and rewarded, but that may not be always
the case. You can even get some backlash from your peers because they may not like
the change you made. You can even break their workflow without breaking the code.
You can turn it into a worse design than what the original developer intended while
you’re trying to improve it.

 Yes, and that’s expected. The only way to become mature about how to handle
code is to change lots of it. Make sure that your changes are easily reversible so in case
you upset someone, you can take your changes back. You will also learn how to com-
municate with your peers about changes that might impact them. Good communica-
tion is the greatest skill you can improve in software development.

 The greatest benefit of trivial code improvements is that it puts you into the pro-
gramming state of mind very quickly. Large work items are the heaviest mental dumb-
bells. You usually don’t know where to start and how to handle such a large change.
The pessimism of “Oh, that will be so hard to do that I’ll just suffer through this”
makes you postpone starting the project. The more you postpone it, the more you will
dread coding it.

 Making minor improvements to code is a trick to get your mental wheels turning
so you can warm up enough to tackle a larger problem. Because you’re already cod-
ing, your brain resists switching gears less than if you try to switch from browsing social
media to coding. Relevant cognitive parts will have already been fired and are ready
for a larger project.

 If you can’t find anything to improve, you can get help from code analyzers. They
are great tools for finding minor issues in the code. Make sure you customize the
options of the code analyzer you use to avoid offending people as much as possible.
Talk to your peers about what they think about it. If they think that they can’t be both-
ered to fix the issues, promise them to fix the first batch yourself and use that as an
opportunity to warm up. Otherwise, you can use a command-line alternative or Visual
Studio’s own code analysis features to run code analysis without violating your team’s
coding guidelines.

 You don’t even have to apply the changes you make because they are only for
warming you up to coding. For example, you may not be sure if you can apply a cer-
tain fix, it might look risky, but you have already done so much. But as you have
learned, throw it away. You can always start from scratch and do it again. Don’t worry
much about throwing away your work. If you are keen on it, keep a backup, but I
wouldn’t really worry about it.

 If you know that your team will be okay with the changes you made, then publish
them. The satisfaction of improvement, however small, can motivate you to make
larger changes.

66 CHAPTER 3 Useful anti-patterns

3.4 Do repeat yourself
Repetition and copy-paste programming are concepts that are looked down on in the cir-
cles of software development. Like every sane recommendation, they’ve eventually
turned into a religion, causing people to suffer.

 The theory goes like this: you write a piece of code. You need the same piece of
code somewhere else in the code. A beginner’s inclination would be to just copy and
paste the same code and use it. It’s all good so far. Then you find a bug in the copy-
pasted code. Now, you need to change the code in two separate places. You need to
keep them in sync. That will create more work and cause you to miss deadlines.

 It makes sense, right? The solution to the problem is usually to put the code in a
shared class or module and use it in both parts of the code instead. So, when you
change the shared code, you would be changing it magically everywhere it’s refer-
enced, saving you a great deal of time.

 It’s all good so far, but it doesn’t last forever. The problems begin to appear when
you apply this principle to everything imaginable, and blindly, at that. One minor
detail you miss when you try to refactor code into reusable classes is that you are
inherently creating new dependencies, and dependencies influence your design.
Sometimes they can even force your hand.

 The biggest problem with shared dependencies is that the parts of the software
that use the shared code can diverge in their requirements. When this happens, a
developer’s reflex is to cater to different needs while using the same code. That means
adding optional parameters, conditional logic to make sure that the shared code can
serve two different requirements. This makes the actual code more complicated, even-
tually causing more problems than it solves. At some point, you start thinking about a
more complicated design than copy-pasted code.

 Consider an example in which you are tasked to write an API for an online shop-
ping website. The client needs to change the shipping address for the customer, which
is represented by a class called PostalAddress like this:

public class PostalAddress {
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Address1 { get; set; }
 public string Address2 { get; set; }
 public string City { get; set; }
 public string ZipCode { get; set; }
 public string Notes { get; set; }
}

You need to apply some normalization to the fields, such as capitalization, so they look
decent even when the user doesn’t provide the correct input. An update function might
look like a sequence of normalization operations and the update on the database:

 public void SetShippingAddress(Guid customerId,
 PostalAddress newAddress) {
 normalizeFields(newAddress);

67Do repeat yourself

 db.UpdateShippingAddress(customerId, newAddress);
 }

 private void normalizeFields(PostalAddress address) {
 address.FirstName = TextHelper.Capitalize(address.FirstName);
 address.LastName = TextHelper.Capitalize(address.LastName);
 address.Notes = TextHelper.Capitalize(address.Notes);
 }

Our capitalize method would work by making the first character uppercase and the
rest of the string lowercase:

public static string Capitalize(string text) {
 if (text.Length < 2) {
 return text.ToUpper();
 }
 return Char.ToUpper(text[0]) + text.Substring(1).ToLower();
}

Now, this seems to work for shipping notes and names: “gunyuz” becomes “Gunyuz”
and “PLEASE LEAVE IT AT THE DOOR” becomes “Please leave it at the door,” saving
the delivery person some anxiety. After you run your application for a while, you want
to normalize city names, too. You add it to the normalizeFields function:

address.City = TextHelper.Capitalize(address.City);

It’s all good so far, but when you start to receive orders from San Francisco, you notice
that they are normalized to “San francisco.” Now you have to change the logic of your
capitalization function so that it capitalizes every word, so the city name becomes “San
Francisco.” It will also help with the names of Elon Musk’s kids. But then you notice
the delivery note becomes, “Please Leave It At The Door.” It’s better than all upper-
case, but the boss wants it perfect. What do you do?

 The easiest change that touches the least code might seem to be to change the
Capitalize function so that it receives an additional parameter about behavior. The
code in listing 3.2 receives an additional parameter called everyWord that specifies if
it’s supposed to capitalize every word or only the first word. Please note that you didn’t
name the parameter isCity or something like that because what you’re using it for
isn’t the problem of the Capitalize function. Names should explain things in the
terms of the context they are in, not the caller’s. Anyway, you split the text into words
if everyWord is true and capitalize each word individually by calling yourself for each
word and then join the words back into a new string.

 public static string Capitalize(string text,
 bool everyWord = false) {
 if (text.Length < 2) {

Listing 3.2 Initial implementation of the Capitalize function

Newly introduced parameter

68 CHAPTER 3 Useful anti-patterns

 return text;
 }
 if (!everyWord) {
 return Char.ToUpper(text[0]) + text.Substring(1).ToLower();
 }
 string[] words = text.Split(' ');
 for (int i = 0; i < words.Length; i++) {
 words[i] = Capitalize(words[i]);
 }
 return String.Join(" ", words);
 }

It has already started to look complicated, but bear with me—I really want you to be
convinced about this. Changing the behavior of the function seems like the simplest
solution. You just add a parameter and if statements here and there, and there you
go. This creates a bad habit, almost a reflex, to handle every small change this way and
can create an enormous amount of complexity.

 Let’s say you also need capitalization for filenames to download in your app, and
you already have a function that corrects letter cases, so you just need the filenames
capitalized and separated with an underscore. For example, if the API received invoice
report, it should turn into Invoice_Report. Because you already have a capitalize func-
tion, your first instinct will be to modify its behavior slightly again. You add a new
parameter called filename because the behavior you are adding doesn’t have a more
generic name, and you check the parameter at the places where it matters. When con-
verting to upper- and lowercase, you must use culture invariant versions of ToUpper
and ToLower functions so the filenames on Turkish computers don’t suddenly become
?nvoice_Report instead. Notice the dotted “I” in ?nvoice_Report? Our implementa-
tion would now look like that shown in the following listing.

public static string Capitalize(string text,
 bool everyWord = false, bool filename = false) {
 if (text.Length < 2) {
 return text;
 }
 if (!everyWord) {
 if (filename) {
 return Char.ToUpperInvariant(text[0])
 + text.Substring(1).ToLowerInvariant();
 }
 return Char.ToUpper(text[0]) + text.Substring(1).ToLower();
 }
 string[] words = text.Split(' ');
 for (int i = 0; i < words.Length; i++) {
 words[i] = Capitalize(words[i]);
 }
 string separator = " ";
 if (filename) {

Listing 3.3 A Swiss army knife function that can do anything

The case that handles
only the first letter

Capitalizes every
word by calling the
same function

Your new parameter

Filename-specific code

69Do repeat yourself

 separator = "_";
 }
 return String.Join(separator, words);
 }

Look what a monster you’ve created. You violated your principle of crosscutting concerns
and made your Capitalize function aware of your file-naming conventions. It suddenly
became part of a specific business logic, rather than staying generic. Yes, you are reusing
code as much as possible, but you are making your job in the future really hard.

 Notice that you also created a new case that isn’t even in your design: a new file-
name format where not all words are capitalized. It’s exposed through the condition
where everyWord is false and filename is true. You didn’t intend this, but now you
have it. Another developer might rely on the behavior, and that’s how your code
becomes spaghetti over time.

 I propose a cleaner approach: repeat yourself. Instead of trying to merge every single
bit of logic into the same code, try to have separate functions with perhaps slightly
repetitive code. You can have separate functions for each use case. You can have one
that capitalizes only the first letter, you can have another one that capitalizes every
word, and you can have another one that actually formats a filename. They don’t even
have to reside next to each other—the code about the filename can stay closer to the
business logic it’s required for. You instead have these three functions that convey
their intent much better. The first one is named CapitalizeFirstLetter so its func-
tion is clearer. The second one is CapitalizeEveryWord, which also explains what it
does better. It calls CapitalizeFirstLetter for every word, which is much easier to
understand than trying to reason about recursion. Finally, you have FormatFilename,
which has an entirely different name because capitalization isn’t the only thing it
does. It has all the capitalization logic implemented from scratch. This lets you freely
modify the function when your filename formatting conventions change without
needing to think about how it would impact your capitalization work, as shown in the
next listing.

 public static string CapitalizeFirstLetter(string text) {
 if (text.Length < 2) {
 return text.ToUpper();
 }
 return Char.ToUpper(text[0]) + text.Substring(1).ToLower();
 }

 public static string CapitalizeEveryWord(string text) {
 var words = text.Split(' ');
 for (int n = 0; n < words.Length; n++) {
 words[n] = CapitalizeFirstLetter(words[n]);
 }
 return String.Join(" ", words);
 }

Listing 3.4 Repeated work with much better readability and flexibility

Filename-specific code

70 CHAPTER 3 Useful anti-patterns

 public static string FormatFilename(string filename) {
 var words = filename.Split(' ');
 for (int n = 0; n < words.Length; n++) {
 string word = words[n];
 if (word.Length < 2) {
 words[n] = word.ToUpperInvariant();
 } else {
 words[n] = Char.ToUpperInvariant(word[0]) +
 word.Substring(1).ToLowerInvariant();
 }
 }
 return String.Join("_", words);
 }

This way, you won’t have to cram every possible bit of logic into a single function. This
gets especially important when requirements diverge between callers.

3.4.1 Reuse or copy?

How do you decide between reusing the code and replicating it somewhere else? The
greatest factor would be how you frame the caller’s concerns, that is, describing the
caller’s requirements for what they actually are. When you describe the requirements
of the function where a filename needs to be formatted, you become biased by the
existence of a function that is quite close to what you want to do (capitalization) and
that immediately signals to your brain to use that existing function. If the filename
would be capitalized exactly the same way, it might still make sense, but the difference
in requirements should be a red flag.

 Three things are hard in computer science: cache invalidation, naming things, and
off-by-one errors.3 Naming things correctly is one of the most important factors when
understanding conflicting concerns in code reuse. The name Capitalize frames the
function in a correct way. We could have called it NormalizeName when we first cre-
ated it, but it would have prevented us from reusing it in other fields. What we did was
to name things as closely as possible to their actual functionality. This way, our func-
tion can serve all the different purposes without creating confusion, and more impor-
tantly, it explains its job better wherever it’s used. You can see how different naming
approaches affect describing the actual behavior in figure 3.8.

 We could go deeper with the actual functionality, like, “This function converts first
letters of each word in a string to uppercase and converts all the remaining letters to
lowercase,” but that’s hard to fit into a name. Names should be as short and as unam-
biguous as possible. Capitalize works in that sense.

 Awareness of concerns for a piece of code is an important skill to have. I usually assign
personalities to functions and classes to categorize their concerns. I’d say, “This function
doesn’t care about this,” as if it were a person. You can similarly get an understanding

3 This is Leon Bambrick’s excellent variation (https://twitter.com/secretGeek/status/7269997868) of the
famous quote by Phil Karlton, who said it without the “off-by-one errors” part.

https://twitter.com/secretGeek/status/7269997868

71Invent it here

of the concerns of a piece of code. That’s why we named the parameter to capitalize
every word everyWord instead of isCity because the function just doesn’t care if it’s a
city or not. It isn’t the function’s concern.

 When you name things closer to their circle of concern, their usage patterns
become more apparent. Then why did we end up naming the filename-formatting
function FormatFilename? Shouldn’t we have called it CapitalizeInvariantAndSep-
arateWithUnderscores? No. Functions can do multiple things, but they only perform
a single task, and they should be named after that task. If you feel the need to use the
conjunctions “and” or “or” in your function’s name, either you’re naming it wrong or
you are putting too much responsibility on your function.

 Name is just one aspect of the concerns of code. Where the code resides, its mod-
ule, its class, can also be an indication of how to decide whether to reuse it.

3.5 Invent it here
There is a common Turkish expression that literally translates to “Don’t come up with
an invention now.” It means, “Don’t cause us trouble by trying a novel thing now, we
don’t have time for that.” Reinventing the wheel is problematic. That pathology even
has its own name in computer science circles: Not Invented Here Syndrome. It specifically
addresses a type of person who cannot sleep at night if they don’t invent an already
invented product themselves.

 It’s certainly a lot of work to go to great lengths to create something from scratch
when there is a known and working alternative. It’s prone to errors, too. The problem
arises when reusing existing stuff becomes the norm and creating something becomes

“Convert a string into a properly capitalized form.”

Capitalize()

FormatFilename()

FixString()

DoWork()

(Unnecessarily
narrow scope)

(Unnecessarily
ambiguous, fix how?)

(Wow, seriously?)

Figure 3.8 Pick a name as close as possible to the actual functionality.

72 CHAPTER 3 Useful anti-patterns

unreachable. The calcification of this perspective eventually turns into the motto
“never invent anything.” You shouldn’t let yourself be afraid of inventing things.

 First, an inventor has a questioning mindset. If you keep questioning things, you
will inevitably become an inventor. When you explicitly prevent yourself from asking
questions, you start to become dull and you turn yourself into a menial worker. You
should avoid that attitude because it’s impossible for someone without a questioning
mindset to optimize their work.

 Secondly, not all inventions have alternatives. Your own abstractions are also inven-
tions—your classes, your design, the helper functions you come up with. They are all
productivity enhancements, yet they require invention.

 I always wanted to write a website that provides Twitter statistics reports about my
followers and people I follow. The problem is that I don’t want to learn how the Twit-
ter API works. I know there are libraries out there that handle this, but I also don’t
want to learn how they work, or more importantly, I don’t want their implementation
to influence my design. If I use a certain library, it will bind me to the API of that
library, and if I want to change the library, I will need to rewrite code everywhere.

 The way to deal with these issues involves invention. We come up with our dream
interface and put it as an abstraction in front of the library we use. This way, we avoid
binding ourselves to a certain API design. If we want to change the library we use, we
just change our abstraction, not everything in our code. I currently have no idea how
the Twitter web API works, but I imagine that it is a regular web request with some-
thing to identify the authorization to access the Twitter API. That means getting an
item from Twitter.

 A programmer’s first reflex is to find a package and check out the documentation
on how it works to integrate it into their code. Instead of doing that, invent a new API
yourself and use it, which eventually calls the library that you’re using behind the
scenes. Your API should be the simplest possible for your requirements. Become your
own customer.

 First, go over the requirements of an API. A web-based API provides a user interface
on the web to give permissions to an application. It opens up a page on Twitter that asks
for permissions and redirects back to the app if the user confirms. That means we need
to know which URL to open for authorization and which URL to redirect back to. We
can then use the data in the redirected page to make additional API calls later.

 We shouldn’t need anything else after we authorize. So, I imagine an API for this
purpose like that shown next.

public class Twitter {
 public static Uri GetAuthorizationUrl(Uri callbackUrl) {
 string redirectUrl = "";
 // … do something here to build the redirect url
 return new Uri(redirectUrl);
 }

Listing 3.5 Our imaginary Twitter API

Static functions
that handle the
authorization flow

73Invent it here

 public static TwitterAccessToken GetAccessToken(
 TwitterCallbackInfo callbackData) {
 // we should be getting something like this
 return new TwitterAccessToken();
 }

 public Twitter(TwitterAccessToken accessToken) {
 // we should store this somewhere
 }

 public IEnumerable<TwitterUserId> GetListOfFollowers(
 TwitterUserId userId) {
 // no idea how this will work
 }
}

public class TwitterUserId {
 // who knows how twitter defines user ids
}

public class TwitterAccessToken {
 // no idea what this will be
}

public class TwitterCallbackInfo {
 // this neither
}

We invented something from scratch, a new Twitter API, even though we know little
about how the Twitter API actually works. It might not be the best API for general use,
but our customers are ourselves, so we have the luxury of designing it to fit our needs.
For instance, I don’t think I’ll need to handle how the data is transferred in chunks
from the original API, and I don’t care if it makes me wait and blocks the running
code, which may not be desirable in a more generic API.

NOTE This approach to having your own convenient interfaces that act as
an adapter is, unsurprisingly, called adapter pattern in the streets. I avoid
emphasizing names over actual utility, but in case somebody asks you, now
you know it.

We can later extract an interface from the classes we defined, so we don’t have to
depend on concrete implementations, which makes testing easier. We don’t even
know if the Twitter library we’re going to use supports replacing their implementation
easily. You may occasionally encounter cases where your dream design doesn’t really
fit with the design of the actual product. In that case, you need to tweak your design,
but that’s a good sign—it means your design also represents your understanding of
the underlying technology.

Static functions
that handle the
authorization flow

The actual functionality
we want

Classes to define
Twitter’s concepts

74 CHAPTER 3 Useful anti-patterns

 So, I might have lied a little. Don’t write a Twitter library from scratch. But don’t
stray from the inventor’s mindset, either. Those go hand in hand, and you should stick
with both.

3.6 Don’t use inheritance
Object-oriented programming (OOP) fell on the programming world like an anvil in
the 1990s, causing a paradigm shift from structured programming. It was considered
revolutionary. The decades-old problem of how to reuse code had finally been
resolved.

 The most emphasized feature of OOP was inheritance. You could define code
reuse as a set of inherited dependencies. Not only did this allow simpler code reuse,
but also simpler code modification. To create new code that has a slightly different
behavior, you didn’t need to think about changing the original code. You just derived
from it and overrode the relevant member to have modified behavior.

 Inheritance caused more problems than it
solved in the long run. Multiple inheritance was
one of the first issues. What if you had to reuse
the code from multiple classes and they all had
the method with the same name, and perhaps
with the same signature? How would it work?
What about the diamond dependency problem
shown in figure 3.9? It would be really compli-
cated, so very few programming languages went
ahead and implemented it.

 Aside from multiple inheritance, a greater
problem with inheritance is that of strong
dependency, also known as tight coupling. As I
have already discussed, dependencies are the
root of all evil. Because of its nature, inheritance binds you to a concrete implementa-
tion, which is considered a violation of one of the well-regarded principles of object-
oriented programming, the dependency inversion principle, which states that code should
never depend on the concrete implementation, but on an abstraction.

 Why is there such a principle? Because when you are bound to a concrete imple-
mentation, your code becomes rigid and immovable. As we have seen, rigid code is
very hard to test or modify.

 Then how do you reuse code? How do you inherit your class from an abstraction?
It’s simple—it’s called composition. Instead of inheriting from a class, you receive its
abstraction as a parameter in your constructor. Think of your components as lego
pieces that support each other rather than as a hierarchy of objects.

 With regular inheritance, the relationship between common code and its varia-
tions is expressed with an ancestor/descendant model. In contrast, composition
thinks of the common function as a separate component.

Class A

Class B Class C

Class D

Classes B and C are
both derived from

class A.

Class D is derived
from both class B

and class C.

Figure 3.9 Diamond dependency
problem—how should class D behave?

75Don’t use inheritance

On SOLID principles
There is a famous acronym, SOLID, that stands for five principles of object-oriented
programming. The problem is that SOLID feels like it was invented to make a mean-
ingful word rather than to make us better programmers. I don’t think all its principles
carry the same importance, and some may not matter at all. I strongly oppose
embracing a set of principles without being convinced of their value.

The single-responsibility principle, the S of SOLID, says a class should be responsible
for one thing only as opposed to one class doing multiple things, aka God classes.
That’s a bit vague because it’s we who define what one thing entails. Can we say a
class with two methods is still responsible for one thing anymore? Even a God class
is responsible for one thing at a certain level: being a God class. I’d replace this with
the clear-name principle: the name of a class should explain its function with as little
vagueness as possible. If the name is too long or too vague, the class needs to be
split into multiple classes.

The open-closed principle states that a class should be open for extension but closed
for modification. It means that we should design our classes so that their behavior
can be modified externally. This is, again, very vague and can even be unnecessarily
time consuming. Extensibility is a design decision and may not be desirable, practi-
cal, or even safe at times. It feels like the advice to “use the racing tires” of program-
ming. I would instead say, “Treat extensibility as a feature.”

The Liskov substitution principle, coined by Barbara Liskov, states that a program’s
behavior shouldn’t change if one of the classes used is replaced with a derived class.
Although the advice is sound, I don’t think it matters in daily programming work. It
feels like the advice “Don’t have bugs” to me. If you break an interface’s contract,
the program will have bugs. If you design a bad interface, the program will also have
bugs. That’s the natural order of things. Perhaps this can be turned into simpler and
more actionable advice like “Stick to the contract.”

The interface segregation principle favors smaller and goal-specific interfaces over
generalized, broadly scoped interfaces. This is unnecessarily complicated and vague,
if not just plain wrong, advice. There could be cases where broadly scoped interfaces
are more suitable for the job, and overly granular interfaces can create too much over-
head. Splitting interfaces shouldn’t be based on scope, but on the actual require-
ments of the design. If a single interface isn’t suitable for the job, feel free to split it,
not to satisfy some granularity criteria.

The dependency inversion principle is the final one. Again, it’s not a very good name.
Just call it depend on abstractions. Yes, depending on concrete implementations cre-
ates tight coupling, and we’ve already seen its undesirable effects. But that doesn’t
mean you should start creating interfaces for every dependency you have. I say the
opposite: prefer depending on abstractions when you prefer flexibility and you see
value in it, and depend on the concrete implementation in cases where it just doesn’t
matter. Your code should adapt to your design, not the other way around. Feel free
to experiment with different models.

76 CHAPTER 3 Useful anti-patterns

Composition is more like a client-server relationship than a parent-child one. You call
reused code by its reference instead of inheriting its methods in your scope. You can
construct the class you’re depending on in your constructor, or even better, you can
receive it as a parameter, which would let you use it as an external dependency. That
allows you to make that relationship more configurable and flexible.

 Receiving it as a parameter has the extra advantage of making it easier to unit test
the object by injecting mock versions of the concrete implementations. I’ll discuss
dependency injection more in chapter 5.

 Using composition over inheritance can require writing substantially more code
because you might need to define dependencies with interfaces instead of concrete
references, but it would also free the code from dependencies. You still need to weigh
the pros and cons of composition before you use it.

3.7 Don’t use classes
Make no mistake—classes are great. They do their job and then get out of the way. But
as I discussed in chapter 2, they incur a small reference indirection overhead and
occupy slightly more indirection compared to value types. These issues won’t matter
most of the time, but it’s important for you to know their pros and cons to understand
the code and how you can impact it by making wrong decisions.

 Value types can be, well, valuable. The primitive types that come with C# such as
int, long, and double are already value types. You can also compose your own value
types with constructs like enum and struct.

3.7.1 Enum is yum!

Enums are great for holding discrete ordinal values. Classes can also be used to define
discrete values, but they lack certain affordances that enums have. A class is still, of
course, better than hardcoding values.

 If you’re writing code that handles the response of a web request that you make in
your app, you may need to deal with different numerical response codes. Say that
you’re querying weather information from the National Weather Service for a user’s
given location, and you write a function to retrieve the required information. In list-
ing 3.6, we’re using RestSharp for API requests and Newtonsoft.JSON to parse the
response if the request is successful by checking whether the HTTP status code is suc-
cessful. Notice that we’re using a hardcoded value (200) on the if line to check for
the status code. We then use the Json.NET library to parse the response into a
dynamic object to extract the information we need.

static double? getTemperature(double latitude,
 double longitude) {
 const string apiUrl = "https://api.weather.gov";
 string coordinates = $"{latitude},{longitude}";
 string requestPath = $"/points/{coordinates}/forecast/hourly";

Listing 3.6 Function that returns NWS temperature forecast for a given coordinate

77Don’t use classes

 var client = new RestClient(apiUrl);
 var request = new RestRequest(requestPath);
 var response = client.Get(request);
 if (response.StatusCode == 200) {
 dynamic obj = JObject.Parse(response.Content);
 var period = obj.properties.periods[0];
 return (double)period.temperature;
 }
 return null;
}

The greatest problem with hardcoded values is humans’ inability to memorize num-
bers. We’re not good at it. We don’t understand them at first sight with the exception
of the number of zeros on our paychecks. They are harder to type than simple names
because it’s hard to associate numbers with mnemonics, and yet they are easier to
make a typo in. The second problem with hardcoded values is that values can change.
If you use the same value everywhere else, that means changing everything else just to
change a value.

 The second problem with numbers is that they lack intent. A numeric value like
200 can be anything. We don’t know what it is. So don’t hardcode values.

 Classes are one way to encapsulate values. You can encapsulate HTTP status codes
in a class like this:

class HttpStatusCode {
 public const int OK = 200;
 public const int NotFound = 404;
 public const int ServerError = 500;
 // ... and so on
}

This way, you can change the line that checks for a successful HTTP request with some
code like this:

if (response.StatusCode == HttpStatusCode.OK) {
…
}

That version looks way more descriptive. We immediately understand the context,
what the value means, and what it means in which context. It’s perfectly descriptive.

 Then, what are enums for? Can’t we use classes for this? Consider that we have
another class for holding values:

class ImageWidths {
 public const int Small = 50;
 public const int Medium = 100;
 public const int Large = 200;
}

Now this code would compile, and more importantly, it would return true:

return HttpStatusCode.OK == ImageWidths.Large;

Send the request to NWS.

Check for successful HTTP status code.

We parse JSON here.Yay,
result!

78 CHAPTER 3 Useful anti-patterns

That’s something you probably don’t want. Suppose we wrote it with an enum instead:

enum HttpStatusCode {
 OK = 200,
 NotFound = 404,
 ServerError = 500,
}

That’s way easier to write, right? Its usage would be the same in our example. More
importantly, every enum type you define is distinct, which makes the values type-safe,
unlike our example with classes with consts. An enum is a blessing in our case. If we
tried the same comparison with two different enum types, the compiler would throw an
error:

error CS0019: Operator '==' cannot be applied to operands of type

➥ 'HttpStatusCode' and 'ImageWidths'

Awesome! Enums save us time by not allowing us to compare apples to oranges during
compilation. They convey intent as well as classes that contain values. Enums are also
value types, which means they are as fast as passing around an integer value.

3.7.2 Structs rock!

As chapter 2 points out, classes have a little storage overhead. Every class needs to
keep an object header and virtual method table when instantiated. Additionally,
classes are allocated on the heap, and they are garbage collected.

 That means .NET needs to keep track of every class instantiated and get them out
of memory when not needed. That’s a very efficient process—most of the time, you
don’t even notice it’s there. It’s magical. It requires no manual memory management.
So, no, you don’t have to be scared of using classes.

 But as we’ve seen, it’s good to know when you can take advantage of a free benefit
when it’s available. Structs are like classes. You can define properties, fields, and meth-
ods in them. Structs can also implement interfaces. However, a struct cannot be inher-
ited and also cannot inherit from another struct or class. That’s because structs don’t
have a virtual method table or an object header. They are not garbage collected
because they are allocated on the call stack.

 As I discussed in chapter 2, a call stack is just a contiguous block of memory with
only its top pointer moving around. That makes a stack a very efficient storage mecha-
nism because cleanup is fast and automatic. There is no possibility of fragmentation
because it’s always LIFO (Last In First Out).

 If a stack is that fast, why don’t we use it for everything? Why is there heap or gar-
bage collection? That’s because a stack can only live for the lifetime of the function.
When your function returns, anything on the function’s stack frame is gone, so other
functions can use the same stack space. We need the heap for the objects that outlive
functions.

79Don’t use classes

 Also, a stack is limited in size. That’s why there is a whole website named Stack
Overflow: because your application will crash if you overflow the stack. Respect the
stack—know its limits.

 Structs are lightweight classes. They are allocated on stacks because they are value
types. That means that assigning a struct value to a variable means copying its contents
since no single reference represents it. You need to keep this in mind because copying
is slower than passing around references for any data larger than the size of a pointer.

 Although structs are value types themselves, they can still contain reference types.
If, say, a struct contains a string, it’s still a reference type inside a value type, similar to
how you can have value types inside a reference type. I will illustrate this in the figures
throughout this section.

 If you have a struct that contains only an integer value, it occupies less space in gen-
eral than a reference to a class that contains an integer value, as figure 3.10 shows. Con-
sider that our struct and class variants are about holding identifiers, as I discussed in
chapter 2. Two flavors of the same structure would look like those in the following listing.

public class Id {
 public int Value { get; private set; }

 public Id (int value) {
 this.Value = value;
 }
}

public struct Id {
 public int Value { get; private set; }

 public Id (int value) {
 this.Value = value;
 }
}

The only difference in the code is struct versus class keywords, but observe how
they differ in how they are stored when you create them in a function like this:

var a = new Id(123);

Figure 3.10 shows how they are laid out.
 Because structs are value types, assigning one to another also creates another copy

of the whole content of the struct instead of just creating another copy of the reference:

var a = new Id(123);
var b = a;

In this case, figure 3.11 shows how structs can be efficient for storage of small types.

Listing 3.7 Similarity of class and struct declarations

80 CHAPTER 3 Useful anti-patterns

Although stack storage is temporary during the execution of the function, it’s minus-
cule compared to the heap. A stack is 1 megabyte in size in .NET, while a heap can
contain terabytes of data. A stack is fast, but if you fill it with large structs, it can fill up
easily. Furthermore, copying large structs is also slower than only copying a reference.
Consider that we’d like to keep some user information along with our identifiers. Our
implementation would look like the next listing.

Reference Value

Class object header

Vtable pointer

Value

Stack Heap memory Stack

When you create a reference type (an object)
in a function, only its reference is stored in
the stack. The rest is stored in the heap.

When you instantiate
a struct in a function,
all of its contents are
stored in the stack.

32-bit integer

32-bit integer

Object tracking info

Stuff needed for inheritance

Figure 3.10 The difference between how classes and structs are laid out in memory

Class object header

Vtable pointer

Value

Stack Heap memory Stack

When you assign a reference to another variable, only
the reference is copied, not the contents of the class.

When you assign
a created struct to
another variable, all of
its contents are copied.

Reference (a)

Reference (b)

Value (a)

Value (b)

Figure 3.11 Efficiency of small structs in memory storage

81Don’t use classes

public class Person {
 public int Id { get; private set; }
 public string FirstName { get; private set; }
 public string LastName { get; private set; }
 public string City { get; private set; }

 public Person(int id, string firstName, string lastName,
 string city) {
 Id = id;
 FirstName = firstName;
 LastName = lastName;
 City = city;
 }
}

The only difference between the two definitions is the struct and class keywords. Yet cre-
ating and assigning one from another has a profound impact on how things work behind
the scenes. Consider this simple code where Person can be either a struct or a class:

var a = new Person(42, "Sedat", "Kapanoglu", "San Francisco");
var b = a;

After you assign a to b, the difference in resulting memory layouts is shown in figure 3.12.

Listing 3.8 Defining a larger class or a struct

We can make a class a struct
by changing the “class” word
here to “struct.”

Stack (max 1 MB)
Heap memory

(up to 8 TB) Stack (max 1 MB)

When you assign a reference to another
variable, only the reference is copied,
not the contents of the class.

When you assign a struct to
another variable, all of its
contents are copied.

Reference (a)

Reference (b)

Class object
header

Vtable pointer

Id

FirstName

LastName

City

Id

FirstName

LastName

City

Because
strings are
reference

types, every
string

member
is a reference
to somewhere

in the heap
that contains

the actual
string.

Id

FirstName

LastName

City

This is what
you get with
a large struct:
copying
overhead
each time you
allocate, and
wasting
precious
stack space.

Figure 3.12 Impact difference
between value types and reference
types in larger types

82 CHAPTER 3 Useful anti-patterns

A call stack can be extremely fast and efficient for storing things. They are great for
working with small values with less overhead because they are not subject to garbage
collection. Because they are not reference types, they cannot be null, either, which
makes null reference exceptions impossible with structs.

 You can’t use structs for everything, as is apparent by how they are stored: you can’t
share a common reference to them, which means you can’t change a common
instance from different references. That’s something we do a lot unconsciously and
never think about. Consider if we wanted the struct to be mutable and used get;
set; modifiers instead of get; private set;. That means we could modify the
struct on the fly. Look at the example shown next.

public struct Person {
 public int Id { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string City { get; set; }

 public Person(int id, string firstName, string lastName,
 string city) {
 Id = id;
 FirstName = firstName;
 LastName = lastName;
 City = city;
 }
}

Consider this piece of code with a mutable struct:

var a = new Person(42, "Sedat", "Kapanoglu", "San Francisco");
var b = a;
b.City = "Eskisehir";
Console.WriteLine(a.City);
Console.WriteLine(b.City);

What do you think the output would be? If it were a class, both lines would show
“Eskisehir” as the new city. But since we have two separate copies, it would print “San
Francisco” and “Eskisehir.” Because of this, it’s always a great idea to make structs
almost immutable so they can’t be accidentally changed later and cause bugs.

 Although you should prefer composition over inheritance for code reuse, inheri-
tance can also be useful when the given dependency is contained. Classes can provide
you better flexibility than structs in those cases.

 Classes can provide more efficient storage when they are larger in size because
only their references will be copied in an assignment. In light of all this, feel free to
use structs for small, immutable value types that have no need for inheritance.

Listing 3.9 A mutable struct

83Write bad code

3.8 Write bad code
Best practices come from bad code, and yet bad code can also emerge from the blind
application of best practices. Structured, object-oriented, and even functional pro-
gramming are all developed to make developers write better code. When best prac-
tices are taught, some bad practices are also singled out as “evil” and are completely
banished. Let’s visit some of them.

3.8.1 Don’t use If/Else

If/Else is one of the first constructs you learn about programming. It is the expres-
sion of one of the fundamental parts of computers: logic. We love If/Else. It lets us
express the logic of our program in a flowchart-like way. But that kind of expression
can also make code less readable.

 Like many programming constructs, If/Else blocks make the code in the condi-
tionals indented. Suppose that we want to add some functionality to our Person class
from the last section to process a record in the DB. We want to see if the City prop-
erty of the Person class was changed and to change it in the DB too if the Person class
points to a valid record. This is quite a stretched implementation. There are better
ways to do these things, but I want to show you how the code can turn out, rather than
its actual functionality. I draw a shape for you in the following listing.

public UpdateResult UpdateCityIfChanged() {
 if (Id > 0) {
 bool isActive = db.IsPersonActive(Id);
 if (isActive) {
 if (FirstName != null && LastName != null) {
 string normalizedFirstName = FirstName.ToUpper();
 string normalizedLastName = LastName.ToUpper();
 string currentCity = db.GetCurrentCityByName(
 normalizedFirstName, normalizedLastName);
 if (currentCity != City) {
 bool success = db.UpdateCurrentCity(Id, City);
 if (success) {
 return UpdateResult.Success;
 } else {
 return UpdateResult.UpdateFailed;
 }
 } else {
 return UpdateResult.CityDidNotChange;
 }
 } else {
 return UpdateResult.InvalidName;
 }
 } else {
 return UpdateResult.PersonInactive;
 }
 } else {

Listing 3.10 An example of an If/Else festival in the code

84 CHAPTER 3 Useful anti-patterns

 return UpdateResult.InvalidId;
 }
}

Even if I explained what the function did step by step, it’s impossible to come back to
this function five minutes later and not be confused again. One reason for the confu-
sion is too much indentation. People are not accustomed to reading things in
indented format, with the small exception of Reddit users. It’s hard to determine
which block a line belongs to, what the context is. It’s hard to follow the logic.

 The general principle to avoid unnecessary indentation is exiting the function as
early as possible and avoiding using else when the flow already implies an else. List-
ing 3.11 shows how return statements already imply the end of the code flow, elimi-
nating the need for else.

public UpdateResult UpdateCityIfChanged() {
 if (Id <= 0) {
 return UpdateResult.InvalidId;
 }
 bool isActive = db.IsPersonActive(Id);
 if (!isActive) {
 return UpdateResult.PersonInactive;
 }
 if (FirstName is null || LastName is null) {
 return UpdateResult.InvalidName;
 }
 string normalizedFirstName = FirstName.ToUpper();
 string normalizedLastName = LastName.ToUpper();
 string currentCity = db.GetCurrentCityByName(
 normalizedFirstName, normalizedLastName);
 if (currentCity == City) {
 return UpdateResult.CityDidNotChange;
 }
 bool success = db.UpdateCurrentCity(Id, City);
 if (!success) {
 return UpdateResult.UpdateFailed;
 }
 return UpdateResult.Success;
}

The technique used here is called following the happy path. The happy path in code is
the part of the code that runs if nothing else goes wrong. It’s what ideally happens
during execution. Since the happy path summarizes a function’s main work, it must
be the easiest part to read. By converting the code in else statements into early
return statements, we allow the reader to identify the happy path much more easily
than having matryoshka dolls of if statements.

Listing 3.11 Look, Ma, no elses!

No code runs
after a return.

85Write bad code

 Validate early, and return as early as possible. Put the exceptional cases inside if
statements, and try to put your happy path outside of the blocks. Familiarize yourself
with these two shapes to make your code more readable and maintainable.

3.8.2 Use goto

The entire theory of programming can be summarized with memory, basic arithmetic,
and if and goto statements. A goto statement transfers the execution of the program
directly to an arbitrary destination point. They are hard to follow, and using them has
been discouraged since Edsger Dijkstra wrote a paper titled “Go to statement is con-
sidered harmful” (https://dl.acm.org/doi/10.1145/362929.362947). There are many
misconceptions about Dijkstra’s paper, first and foremost its title. Dijkstra titled his
paper “A case against the GO TO statement,” but his editor, also the inventor of the
Pascal language, Niklaus Wirth, changed the title, which made Dijkstra’s stance more
aggressive and turned the war against goto into a witch hunt.

 This all happened before the 1980s. Programming languages had ample time to
create new constructs to address the functions of the goto statement. The for/while
loops, return/break/continue statements, and even exceptions were created to
address specific scenarios that were previously only possible with goto. Former BASIC
programmers will remember the famous error-handling statement ON ERROR GOTO,
which was a primitive exception-handling mechanism.

 Although many modern languages don’t have a goto equivalent anymore, C# does,
and it works great for a single scenario: eliminating redundant exit points in a func-
tion. It’s possible to use a goto statement in an easy-to-understand fashion and make
your code less prone to bugs while saving you time. It’s like a three-combo hit on Mor-
tal Kombat.

 An exit point is each statement in a function that causes it to return to its caller.
Every return statement is an exit point in C#. Eliminating exit points in the older era
of programming languages was more important than it is now because manual
cleanup was a more prominent part of a programmer’s daily life. You had to remem-
ber what you allocated and what you needed to clean up before you returned.

 C# provides great tools for structured cleanup such as try/finally blocks and
using statements. There may be cases where neither works for your scenario and you
can use goto for cleanup too, but it actually shines more in eliminating redundancy.
Let’s say we’re developing the shipment address entry form for an online shopping
web page. Web forms are great for demonstrating the multilevel validation that hap-
pens with them. Assume that we’d like to use ASP.NET Core for that. That means we
need to have a submit action for our form. Its code might look like that in listing 3.12.
We have model validation that happens in the client, but at the same time, we need
some server validation with our form so we can check whether the address is really
correct using USPS API. After the check, we can try to save the information to the
database, and if that succeeds, we redirect the user to the billing information page.
Otherwise, we need to display the shipping address form again.

https://dl.acm.org/doi/10.1145/362929.362947

86 CHAPTER 3 Useful anti-patterns

[HttpPost]
public IActionResult Submit(ShipmentAddress form) {
 if (!ModelState.IsValid) {
 return RedirectToAction("Index", "ShippingForm", form);
 }
 var validationResult = service.ValidateShippingForm(form);
 if (validationResult != ShippingFormValidationResult.Valid) {
 return RedirectToAction("Index", "ShippingForm", form);
 }
 bool success = service.SaveShippingInfo(form);
 if (!success) {
 ModelState.AddModelError("", "Problem occurred while " +
 "saving your information, please try again");
 return RedirectToAction("Index", "ShipingForm", form);
 }
 return RedirectToAction("Index", "BillingForm");
}

I have already discussed some of the issues with copy-paste, but the multiple exit
points in listing 3.12 pose another problem. Did you notice the typo in the third
return statement? We accidentally deleted a character without noticing, and since it’s
in a string, that bug is impossible to detect unless we encounter a problem when sav-
ing the form in the production or we build elaborate tests for our controllers. Duplica-
tion can cause problems in these cases. The goto statement can help you merge the
return statements under a single goto label, as listing 3.13 shows. We create a new
label for our error case under our happy path and reuse it at multiple places in our
function using goto.

[HttpPost]
public IActionResult Submit2(ShipmentAddress form) {
 if (!ModelState.IsValid) {
 goto Error;
 }
 var validationResult = service.ValidateShippingForm(form);
 if (validationResult != ShippingFormValidationResult.Valid) {
 goto Error;
 }
 bool success = service.SaveShippingInfo(form);
 if (!success) {
 ModelState.AddModelError("", "Problem occurred while " +
 "saving your shipment information, please try again");
 goto Error;
 }
 return RedirectToAction("Index", "BillingForm");
Error:
 return RedirectToAction("Index", "ShippingForm", form);
}

Listing 3.12 A shipping address form handling code with ASP.NET Core

Listing 3.13 Merging common exit points into a single return statement

Redundant
exit points

The happy path

The infamous
goto!

Destination
label

Common
exit code

87Write bad code

The great thing about this kind of consolidation is that if you ever want to add more in
your common exit code, you only need to add it to a single place. Let’s say you want to
save a cookie to the client when there is an error. All you need to do is to add it after
the Error label, as shown next.

[HttpPost]
public IActionResult Submit3(ShipmentAddress form) {
 if (!ModelState.IsValid) {
 goto Error;
 }
 var validationResult = service.ValidateShippingForm(form);
 if (validationResult != ShippingFormValidationResult.Valid) {
 goto Error;
 }
 bool success = service.SaveShippingInfo(form);
 if (!success) {
 ModelState.AddModelError("", "Problem occurred while " +
 "saving your information, please try again");
 goto Error;
 }
 return RedirectToAction("Index", "BillingForm");
Error:
 Response.Cookies.Append("shipping_error", "1");
 return RedirectToAction("Index", "ShippingForm", form);
}

By using goto, we actually kept our code style more readable with fewer indents, saved
ourselves time, and made it easier to make changes in the future because we only have
to change it once.

 A statement like goto can still perplex a colleague who is not used to the syntax.
Luckily, C# 7.0 introduced local functions that can be used to perform the same work,
perhaps in a way that’s easier to understand. We declare a local function called error
that performs the common error return operation and returns its result instead of
using goto. You can see it in action in the next listing.

[HttpPost]
public IActionResult Submit4(ShipmentAddress form) {
 IActionResult error() {
 Response.Cookies.Append("shipping_error", "1");
 return RedirectToAction("Index", "ShippingForm", form);
 }
 if (!ModelState.IsValid) {
 return error();
 }
 var validationResult = service.ValidateShippingForm(form);
 if (validationResult != ShippingFormValidationResult.Valid) {

Listing 3.14 Ease of adding extra code to common exit code

Listing 3.15 Using local functions instead of goto

The code that
saves the cookie

Our local function

Common error
return cases

88 CHAPTER 3 Useful anti-patterns

 return error();
 }
 bool success = service.SaveShippingInfo(form);
 if (!success) {
 ModelState.AddModelError("", "Problem occurred while " +
 "saving your information, please try again");
 return error();
 }
 return RedirectToAction("Index", "BillingForm");
}

Using local functions also allows us to declare error handling at the top of the func-
tion, which is the norm with modern programming languages like Go, with statements
like defer, although in our case, we have to explicitly call the error() function to exe-
cute it.

3.9 Don’t write code comments
A Turkish architect called Sinan lived in the sixteenth century. He built the famous
Suleymaniye Mosque in Istanbul and countless other buildings. There is a story about
his prowess in architecture. As the story goes, hundreds of years after Sinan passed, a
group of architects started restoration work on one of his buildings. There was a key-
stone in one of the archways that they needed to replace. They carefully removed the
stone block and found a small glass vial wedged between blocks that contained a note.
The note said, “This keystone would last only three hundred years. If you’re reading
this note, it must have broken down or you are trying to repair it. There is only one
right way to put a new keystone back in correctly.” The note continued with the tech-
nical details of how to replace the keystone properly.

 Sinan the architect could be the first person in history who used code comments
correctly. Consider the opposite case where the building had writings everywhere on
it. Doors would have the text, “This is a door.” Windows would have “Window” written
over them. Between every brick there would be a glass vial with a note in it saying,
“These are bricks.”

 You don’t need to write code comments if your code is sufficiently self-explanatory.
Conversely, you can hurt the readability of code with extraneous comments. Don’t
write code comments just for the sake of writing comments. Use them wisely and only
when necessary.

 Consider the example in the next listing. If we had gone overboard with code com-
ments, it could have looked like this.

 /// <summary>
 /// Receive a shipment address model and update it in the
 /// database and then redirect the user to billing page if
 /// it's successful.
 /// </summary>

Listing 3.16 Code comments everywhere!

Common error
return cases

These are already explained by the
function’s context and declaration.

89Don’t write code comments

 /// <param name="form">The model to receive.</param>
 /// <returns>Redirect result to the entry form if
 /// there is an error, or redirect result to the
 /// billing form page if successful.</returns>
 [HttpPost]
 public IActionResult Submit(ShipmentAddress form) {
 // Our common error handling code that saves the cookie
 // and redirects back to the entry form for
 // shipping information.
 IActionResult error() {
 Response.Cookies.Append("shipping_error", "1");
 return RedirectToAction("Index", "ShippingForm", form);
 }
 // check if the model state is valid
 if (!ModelState.IsValid) {
 return error();
 }
 // validate the form with server side validation logic.
 var validationResult = service.ValidateShippingForm(form);
 // is the validation successful?
 if (validationResult != ShippingFormValidationResult.Valid) {
 return error();
 }
 // save shipping information
 bool success = service.SaveShippingInfo(form);
 if (!success) {
 // failed to save. report the error to the user.
 ModelState.AddModelError("", "Problem occurred while " +
 "saving your information, please try again");
 return error();
 }
 // go to the billing form
 return RedirectToAction("Index", "BillingForm");
 }

The code we’re reading tells us a story even without the comments. Let’s go over the
same code without comments and find the hidden hints in it (figure 3.13).

These are already
explained by the
function’s context
and declaration.

Literally a
repetition of the
following code

Again, completely
unnecessary

Another
repetition

Come on!

Really? We’ve come
to this now?

No kidding,
Sherlock.

I would never
have guessed.

[HttpPost]

public IActionResult Submit(ShipmentAddress form)

This attribute already implies a
web action. The POST verb already
hints at a submit operation. It’s already called

“Submit.” Well,
what do you know?

It receives something of type
“ShipmentAddress.” Wonder
what that could be, maybe
a shipping address?

And it’s a form! It’s all
coming together now.

Another hint that
it’s a web action

Figure 3.13 Reading
hints in code

90 CHAPTER 3 Useful anti-patterns

This might look like a lot of work. You’re trying to bring the pieces together just to
understand what the code does. It does get better over time. You will spend less effort
the better you get at it. There are things that you can do to improve the life of the
poor soul who reads your code, and even yourself six months later, because after six
months, it might as well be somebody else’s code.

3.9.1 Choose great names

I touched on the importance of good names at the beginning of this chapter, about
how our names should represent or summarize the functionality as closely as possible.
Functions shouldn’t have ambiguous names like Process, DoWork, Make, and so forth
unless the context is absolutely clear. That might sometimes require you to type lon-
ger names than usual, but it’s usually possible to create good names and still keep
them concise.

 The same applies for variable names. Reserve single-letter variable names only for
loop variables (i, j, and n) and coordinates like x, y, and z where they are obvious. Oth-
erwise, always pick a descriptive name, and avoid abbreviations. It’s still okay to use well-
known initialisms like HTTP and JSON or well-known abbreviations like ID and DB, but
don’t shorten words. You only type the variable name once anyway. Code completion
can take care of the rest later. The benefits of descriptive names are tremendous. Most
importantly, they save you time. When you pick a descriptive name, you don’t have to
write a full-sentence comment to explain it wherever it’s used. Consult the convention
documentation of the programming language you’re using. Microsoft’s guideline for
.NET naming conventions, for example, is a great starting point for C#: https://
docs.microsoft.com/en-us/dotnet/standard/design-guidelines/naming-guidelines.

3.9.2 Leverage functions

Small functions are easier to understand. Try to keep a function small enough to fit in
a developer’s screen. Scrolling back and forth is terrible for understanding what a
code does. You should be able to see everything the function does right in front of
you.

 How do you shorten a function? Beginners might be inclined to put as much as
possible on a single line to make the function more compressed. No! Never put multi-
ple statements on a single line. Always have at least one line per statement. You can
even have blank lines in a function to group relevant statements together. In light of
this, let’s look at our function in the next listing.

[HttpPost]
public IActionResult Submit(ShipmentAddress form) {
 IActionResult error() {
 Response.Cookies.Append("shipping_error", "1");
 return RedirectToAction("Index", "ShippingForm", form);
 }

Listing 3.17 Using blank lines to separate logical parts of a function

Error-handling
code part

https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/naming-guidelines
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/naming-guidelines
https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/naming-guidelines

91Don’t write code comments

 if (!ModelState.IsValid) {
 return error();
 }
 var validationResult = service.ValidateShippingForm(form);
 if (validationResult != ShippingFormValidationResult.Valid) {
 return error();
 }
 bool success = service.SaveShippingInfo(form);
 if (!success) {
 ModelState.AddModelError("", "Problem occurred while " +
 "saving your information, please try again");
 return error();
 }
 return RedirectToAction("Index", "BillingForm");
}

You may ask how this helps make the function smaller. Yes, in fact, it makes the func-
tion bigger. But identifying logical parts of a function lets you refactor those parts into
meaningful functions, which is the key to having small functions and descriptive code
at the same time. You can refactor the same code into even more digestible chunks if
the logic isn’t straightforward enough to understand. In listing 3.18, we extract parts
of the logic in our Submit function by using what we identified as logical parts. We
basically have a validation part, an actual saving part, a save-error-handling part, and a
successful response. We only leave those four parts in the body of the function.

[HttpPost]
public IActionResult Submit(ShipmentAddress form) {
 if (!validate(form)) {
 return shippingFormError();
 }
 bool success = service.SaveShippingInfo(form);
 if (!success) {
 reportSaveError();
 return shippingFormError();
 }
 return RedirectToAction("Index", "BillingForm");
}

private bool validate(ShipmentAddress form) {
 if (!ModelState.IsValid) {
 return false;
 }
 var validationResult = service.ValidateShippingForm(form);
 return validationResult == ShippingFormValidationResult.Valid;
}

private IActionResult shippingFormError() {
 Response.Cookies.Append("shipping_error", "1");
 return RedirectToAction("Index", "ShippingForm", form);
}

Listing 3.18 Keeping only the descriptive functionality in the function

MVC Model
validation part

Server-side model
validation part

Saving part and the
successful case

Validation

Saving

Error handling

Successful response

92 CHAPTER 3 Useful anti-patterns

private void reportSaveError() {
 ModelState.AddModelError("", "Problem occurred while " +
 "saving your information, please try again");
}

The actual function is so simple that it almost reads like an English sentence—well,
maybe a hybrid of English and Turkish, but still very readable. We achieved greatly
descriptive code without writing a single line of comment, and that’s the key you need
to keep in mind if you ever ask if it’s too much work. It’s less work than writing para-
graphs of comments. You’ll also thank yourself by shaking your left hand with your right
hand when you learn that you don’t need to keep comments and the actual code in sync
for the comments to remain useful over the lifetime of the project. This is way better.

 Extracting functions may look like a chore, but it’s in fact a breeze with development
environments like Visual Studio. You just select the part of the code that you want to
extract and press Ctrl-. (the period key) or choose the light bulb icon appearing next
to the code and select Extract Method. All you need to do is to give it a name.

 When you extract those pieces, you also open a door to reusing those pieces of
code in the same file, which can save you time when you’re writing a billing form if the
error-handling semantics aren’t any different.

 This all may sound like I’m against code comments. It’s exactly the opposite. Avoid-
ing unnecessary comments makes useful comments shine like jewels. It’s the only way
to make comments useful. Think like Sinan when you’re writing comments: “Will
someone need an explanation for this?” If it needs an explanation, be as clear as possi-
ble, be elaborate, even draw ASCII diagrams if necessary. Write as many paragraphs as
you need, just so the developers working on the same code don’t have to come to your
desk and ask you what that piece of code does or fix it incorrectly because you forgot to
explain yourself. It comes down to you to fix the code correctly when the production
goes down. You owe this to yourself as much as to everybody else.

 There are cases where you must write comments whether they are useful or not,
such as public APIs, because users may not have access to the code. But that also
doesn’t mean that having written comments makes your code easy to understand. You
still need to write clean code with small, easy-to-digest pieces.

Summary
 Avoid creating rigid code by avoiding violating logical dependency boundaries.
 Don’t be afraid of doing a job from scratch because the next time you do it, it’ll

go much faster.
 Break the code when there are dependencies that might tie your shoelaces

together in the future, and fix it.
 Avoid digging yourself a legacy hole by keeping the code up to date and fixing

the problems it causes regularly.
 Repeat the code instead of reusing it to avoid violating logical responsibilities.

93Summary

 Invent smart abstractions so the future code you write takes less time. Use
abstractions as investments.

 Don’t let the external libraries you use dictate your design.
 Prefer composition over inheritance to avoid binding your code to a specific

hierarchy.
 Try to keep a code style that is easy to read from the top down.
 Exit early from functions and avoid using else.
 Use goto or, even better, a local function to keep common code in one place.
 Avoid frivolous, redundant code comments that make it impossible to distin-

guish the tree from the forest.
 Write self-descriptive code by leveraging good naming for variables and

functions.
 Divide functions into easy-to-digest sub-functions to keep the code as descrip-

tive as possible.
 Write code comments when they are useful.

94

Tasty testing

Many software developers would liken testing to writing a book: it’s tedious, nobody
likes doing it, and it rarely pays off. Compared to coding, testing is considered a
second-class activity, not doing the real work. Testers are subjected to a preconcep-
tion that they have it too easy.

 The reason for the dislike of testing is that we developers see it as disconnected
from building software. From a programmer’s perspective, building software is all
about writing code, whereas from a manager’s vantage point, it’s all about setting
the right course for the team. Similarly, for a tester, it’s all about the quality of the
product. We consider testing an external activity because of our perception that it’s
not part of software development, and we want to be involved as little as possible.

This chapter covers
 Why we hate testing and how we can love it

 How to make testing more enjoyable

 Avoiding TDD, BDD, and other three-letter
acronyms

 Deciding what to test

 Doing less work using tests

 Making tests spark joy

95Types of tests

 Testing can be integral to a developer’s work and can help them along the way. It
can give you assurances that no other understanding of your code can give you. It can
save you time, and you don’t even need to hate yourself for it. Let’s see how.

4.1 Types of tests
Software testing is about increasing confidence in the behavior of software. This is
important: tests never guarantee a behavior, but they increase its likelihood quite a
lot, as in orders of magnitude. There are many ways to categorize types of testing, but
the most important distinction is how we run or implement it because it affects our
time economy the most.

4.1.1 Manual testing

Testing can be a manual activity, and it usually is for developers, who test their code by
running it and inspecting its behavior. Manual tests have their own types too, like end-
to-end testing, which means testing every supported scenario on a software from
beginning to end. End-to-end testing’s value is enormous, but it’s time consuming.

 Code reviews can be considered a way of testing, albeit a weak one. You can under-
stand what the code does and what it will do when it’s run to a certain extent. You can
vaguely see how it fulfills the requirements, but you can’t tell for sure. Tests, based on
their types, can provide different levels of assurance about how the code will work. In
that sense, a code review can be considered a type of test.

What’s a code review?
The main purpose of a code review is to examine code before it gets pushed to the
repository and to find potential bugs in it. You could do it in a physical meeting or use
a website like GitHub. Unfortunately, over the course of years, it has turned into many
different things, ranging from a rite of passage that completely destroys the devel-
oper’s self-esteem to a pile of a software architects’ unwarranted quotes from arti-
cles they read.

The most important part of a code review is that it’s the last moment when you can
criticize the code without having to fix it yourself. After a piece of code passes the
review, it becomes everyone’s code because you all have approved it. You can always
say, “I wish you’d said that in the code review, Mark,” whenever someone brings up
your terrible O(N2) sort code and then put your headphones back on. Just kidding—
you should feel ashamed for writing an O(N2) sort code, especially after reading this
book, but you still blame Mark! You should know better. Get along with your col-
leagues. You’ll need them.

Ideally, code reviews are not about code style or formatting, because automated
tools called either linters or code analysis tools can check for those issues. It should
be mainly about bugs and the technical debt that the code might introduce to other
developers. Code review is async pair programming; it’s a cost-efficient way to keep
everyone on the same page and put their collective minds into identifying potential
problems.

96 CHAPTER 4 Tasty testing

4.1.2 Automated tests
You are a programmer; you have the gift of writing code. That means you can make
the computer do things for you, and that includes testing. You can write code that
tests your code, so you don’t have to. Programmers usually focus on creating tooling
only for the software they’re developing, not on the development process itself, but
that’s equally important.

 Automated tests can differ vastly in terms of their scope and, more importantly, in
how much they increase your confidence in the behavior of the software. The smallest
kinds of automated tests are unit tests. They are also the easiest to write because they
test only a single unit of code: a public function. It needs to be public because testing
is supposed to examine externally visible interfaces rather than the internal details of
a class. The definition of a unit can sometimes change in the literature, be it a class or
a module or another logical arrangement of those, but I find functions are convenient
as the target units.

 The problem with unit tests is that even though they let you see if units work okay,
they can’t guarantee if they work okay together. Consequently, you have to test whether
they get along together too. Those tests are called integration tests. Automated UI tests
are usually also integration tests if they run the production code to build the correct
user interface.

4.1.3 Living dangerously: Testing in production
I had once bought a poster of a famous meme for one of our developers. It said, “I
don’t always test code, but when I do, I do it in production.” I hung it on the wall right
behind his monitor so he would always remember not to do that.

DEFINITION In software lingo, the term production means a live environment
accessed by actual users where any change affects the actual data. Many devel-
opers confuse it with their computer. There is development for that. Development
as a name for a runtime environment means code running locally on your
machine and not affecting any data that harms production. As a precaution
to harming production, there is sometimes a production-like remote environ-
ment that is similar to production. It’s sometimes called staging, and it doesn’t
affect actual data that is visible to your site’s users.

Testing in production, aka live code, is considered a bad practice; no wonder such a
poster exists. The reason is because by the time you find a failure, you might have
already lost users or customers. More importantly, when you break production, there
is a chance that you might break the workflow of the whole development team. You
can easily understand that it has happened by the disappointed looks and raised eye-
brows you get if you’re in an open office setting, along with text messages saying,
“WTF!!!!???,” Slack notification numbers increasing like KITT’s1 speedometer, or the
steam coming out of your boss’s ears.

1 KITT, standing for Knight Industries Two Thousand, is a self-driving car equipped with voice recognition. It
was depicted in the 1980s sci-fi TV series Knight Rider. It’s normal that you don’t understand this reference
since anybody who did is probably dead, with the possible exception of David Hasselhoff. That guy is immortal.

97Types of tests

 Like any bad practice, testing in production isn’t always bad. If the scenario you
introduce isn’t part of a frequently used, critical code path, you might get away with
testing in production. That’s why Facebook had the mantra “Move fast and break
things,” because they let the developers assess the impact of the change to the busi-
ness. They later dropped the slogan after the 2016 US elections, but it still has some
substance. If it’s a small break in an infrequently used feature, it might be okay to live
with the fallout and fix it as soon as possible.

 Even not testing your code can be okay if you think breaking a scenario isn’t some-
thing your users would abandon the app for. I managed to run one of the most popu-
lar websites in Turkey myself with zero automated tests in its first years, with a lot of
errors and a lot of downtime, of course, because, hello: no automated tests!

4.1.4 Choosing the right testing methodology

You need to be aware of certain factors about a given scenario that you are trying to
implement or change to decide how you want to test it. Those are mainly risk and
cost. It’s similar to what we used to calculate in our minds when our parents assigned
us a chore:

 Cost
– How much time do you need to spend to implement/run a certain test?
– How many times will you need to repeat it?
– If the code that is tested changes, who will know to test it?
– How hard is it to keep the test reliable?

 Risk
– How likely is this scenario to break?
– If it breaks, how badly will it impact the business? How much money would

you lose, aka, “Would this get me fired if it breaks?”
– If it breaks, how many other scenarios will break along with it? For example,

if your mailing feature stops working, many features that depend on it will be
broken, too.

– How frequently does the code change? How much do you anticipate it will
change in the future? Every change introduces a new risk.

You need to find a sweet spot that costs you the least and poses the least risk. Every risk
is an implication of more cost. In time, you will have a map of mental tradeoffs for
how much cost a test introduces and how much risk it poses, as figure 4.1 shows.

 Never say “It works on my computer” loudly to someone. That’s for your internal
thinking only. There will never be some code that you can describe by saying, “Well, it
didn’t work on my computer, but I was weirdly optimistic!” Of course, it works on your
computer! Can you imagine deploying something that you cannot even run yourself?
You can use it as a mantra while you’re thinking about whether a feature should be
tested as long as there is no chain of accountability. If nobody makes you answer for

98 CHAPTER 4 Tasty testing

your mistakes, then go for it. That means the (excess) budget of the company you’re
working for makes it possible for your bosses to tolerate those mistakes.

 If you need to fix your own bugs, though, the “It works on my computer” mentality
puts you into a very slow and time-wasting cycle because of the delay between the
deployment and the feedback loops. One basic problem with developer productivity is
that interruptions cause significant delays. The reason is the zone. I have already dis-
cussed how warming up to the code can get your productivity wheels turning. That
mental state is sometimes called the zone. You’re in the zone if you’re in that productive
state of mind. Similarly, getting interrupted can cause those wheels to stop and take you
out of the zone, so you have to warm up again. As figure 4.2 shows, automated tests alle-
viate this problem by keeping you in the zone until you reach a certain degree of con-
fidence about a feature’s completion. It shows you two different cycles of how
expensive “It works on my computer” can be for both the business and the developer.
Every time you get out of the zone, you need extra time to reenter it, which sometimes
can even be longer than the time required to test your feature manually.

 You can achieve a quick iteration cycle similar to automated tests with manual tests,
but they just take more time. That’s why automated tests are great: they keep you in
the zone and cost you the least time. Arguably, writing and running tests can be con-
sidered disconnected activities that might push you out of the zone. Still, running unit
tests is extremely fast and is supposed to end in seconds. Writing tests is a slightly dis-
connected activity, but it still makes you think about the code you’ve written. You
might even consider it a recap exercise. This chapter is mostly about unit testing in
general because it is in the sweet spot of cost versus risk in figure 4.1.

R
is

k

Cost

“It works
on my
computer.”

Test in production once and forget it.
(“Move fast and break things.”)

Manual integration
tests

Automated
integration tests

Automated unit tests for all
involved components

Automated unit
tests only for the
relevant feature

Figure 4.1 An example of a mental model to assess different testing strategies

99How to stop worrying and love the tests

4.2 How to stop worrying and love the tests
Unit testing is about writing test code that tests a single unit of your code, usually a
function. You will encounter people who argue about what constitutes a unit. Basi-
cally, it doesn’t matter much as long as you can test a given unit in isolation. You can’t
test a whole class in a single test anyway. Every test actually tests only a single scenario
for a function. Thus, it’s usual to have multiple tests even for a single function.

 Test frameworks make writing tests as easy as possible, but they are not necessary. A
test suite can simply be a separate program that runs the tests and shows the results. As
a matter of fact, that was the only way to test your program before test frameworks
became a thing. I’d like to show you a simple piece of code and how unit testing has
evolved over time so you can write tests for a given function as easily as possible.

 Let’s imagine that you are tasked with changing how the post dates are displayed
on a microblogging website called Blabber. The post dates were displayed as a full
date, and according to the new social media fashion, it’s more favorable to use acro-
nyms that show a duration since the post was created in seconds, minutes, hours, and
so forth. You need to develop a function that gets a DateTimeOffset and converts it
into a string that shows the time span in text is expressed as “3h” for three hours, “2m”
for two minutes, or “1s” for one second. It should show only the most significant unit.
If the post is three hours, two minutes, and one second old, it should only show “3h.”

 Listing 4.1 shows such a function. In this listing, we define an extension method to
the DateTimeOffset class in .NET, so we can call it wherever we want, like a native
method of DateTimeOffset.

“It works on my
computer.”

Deploy to production.

Wait until a bug is
discovered.

Open up the code
and warm up to it.

Fix the bug.

Test on your
computer.

“Automated tests
found a problem.”

Fix it.

Investigate the bug.

Random amount
of time away
from the code

In the zone

Out of the zone

No-testing approach

Automated tests

Figure 4.2 The expensive development cycle of “It works on my computer” versus
automated tests

100 CHAPTER 4 Tasty testing

We calculate the interval between current time and the post time and check its fields
to determine the most significant unit of the interval and return the result based on it.

Avoid polluting code completion with extension methods
C# provides a nice syntax to define additional methods for a type even if you don’t
have access to its source. If you prefix the first parameter of a function with the this
keyword, it starts to appear in that type’s method list in code completion. It’s so con-
venient that developers like extension methods a lot and tend to make everything an
extension method instead of a static method. Say, you have a simple method like
this:

static class SumHelper {
 static int Sum(int a, int b) => a + b;
}

To call this method, you have to write SumHelper.Sum(amount, rate); and, more
importantly, you must know that there is a class called SumHelper. You can write it
as an extension method instead like this:

static class SumHelper {
 static decimal Sum(this int a, int b) => a + b;
}

Now you can call the method like this:

int result = 5.Sum(10);

It looks good, but there’s a problem. Whenever you write an extension method for a
well-known class like string or int, you introduce it to code completion, which is the
dropdown you see on Visual Studio when you type a dot after an identifier. It can be
extremely annoying to struggle to find the method you’re looking for in the list of com-
pletely irrelevant methods.

Do not introduce a purpose-specific method into a commonly used .NET class. Do
that only for generic methods that will be used commonly. For example, a Reverse
method in a string class can be okay, but MakeCdnFilename wouldn’t be. Reverse
can be applicable in any context, but MakeCdnFilename would only be needed when
you must, well, make a filename suitable for the content delivery network you’re
using. Other than that, it’s a nuisance for you and every developer in your team. Don’t
make people hate you. More importantly, don’t make yourself hate you. In those
cases, you can perfectly use a static class and a syntax like Cdn.MakeFilename().

Don’t create an extension method when you can make the method part of the class.
It only makes sense to do that when you want to introduce a new functionality beyond
a dependency boundary. For example, you might have a web project that uses a class
defined in a library that doesn’t depend on web components. Later, you might want
to add a specific functionality to that class related to web functionality in the web proj-
ect. It’s better to introduce a new dependency only to the extension method in the
web project, rather than making the library depend on your web components. Unnec-
essary dependencies can tie your shoelaces together.

101How to stop worrying and love the tests

public static class DateTimeExtensions {
 public static string ToIntervalString(
 this DateTimeOffset postTime) {
 TimeSpan interval = DateTimeOffset.Now – postTime;
 if (interval.TotalHours >= 1.0) {
 return $”{(int)interval.TotalHours}h”;
 }
 if (interval.TotalMinutes >= 1.0) {
 return $”{(int)interval.TotalMinutes}m”;
 }
 if (interval.TotalSeconds >= 1.0) {
 return $”{(int)interval.TotalSeconds}s”;
 }
 return “now”;
 }
}

We have a vague spec about the function, and we can start writing some tests for it. It’d
be a good idea to write possible inputs and expected outputs in a table to ensure the
function works correctly, as in table 4.1.

If DateTimeOffset is a class, we should also be testing for the case when we pass null,
but because it’s a struct, it cannot be null. That saved us one test. Normally, you
don’t really need to create a table like that, and you can usually manage with a mental
model of it, but whenever you’re in doubt, by all means write it down.

 Our tests should consist of calls with different DateTimeOffsets and comparisons
with different strings. At this point, test reliability becomes a concern because Date-
Time.Now always changes, and our tests are not guaranteed to run in a specific time. If
another test was running or if something slowed the computer down, you can easily fail
the test for the output now. That means our tests will be flaky and can fail occasionally.

 That indicates a problem with our design. A simple solution would be to make our
function deterministic by passing a TimeSpan instead of a DateTimeOffset and calcu-
lating the difference in the caller instead. As you can see, writing tests around your
code helps you identify design problems too, which is one of the selling points of a
test-driven development (TDD) approach. We didn’t use TDD here because we know

Listing 4.1 A function that converts a date to a string representation of the interval

Table 4.1 A sample test specification for our conversion function

Input Output

< 1 second “now”

< 1 minute “<seconds>s”

< 1 hour “<minutes>m”

>= 1 hour “<hours>h”

This defines an extension method
to the DateTimeOffset class.

Calculate the interval.

It’s possible to write this code
more briefly or performant,
but not when it sacrifices
readability.

102 CHAPTER 4 Tasty testing

we can just go ahead and change the function easily, as in the following listing, to
receive a TimeSpan directly.

public static string ToIntervalString(
 this TimeSpan interval) {
 if (interval.TotalHours >= 1.0) {
 return $"{(int)interval.TotalHours}h";
 }
 if (interval.TotalMinutes >= 1.0) {
 return $"{(int)interval.TotalMinutes}m";
 }
 if (interval.TotalSeconds >= 1.0) {
 return $"{(int)interval.TotalSeconds}s";
 }
 return "now";
}

Our test cases didn’t change, but our tests will be much more reliable. More impor-
tantly, we decoupled two different tasks, calculating the difference between two dates
and converting an interval to a string representation. Deconstructing concerns in
code can help you achieve better designs. It can also be a chore to calculate differ-
ences, and you can have a separate wrapper function for that.

 Now how do we make sure our function works? We can simply push it to produc-
tion and wait a couple minutes to hear any screams. If not, we’re good to go. By the
way, is your résumé up to date? No reason, just asking.

 We can write a program that tests the function and see the results. An example
program would be like that in listing 4.3. It’s a plain console application that refer-
ences our project and uses the Debug.Assert method in the System.Diagnostics
namespace to make sure it passes. It ensures that the function returns expected val-
ues. Because asserts run only in Debug configuration, we also ensure that the code
isn’t run in any other configuration at the beginning with a compiler directive.

#if !DEBUG
#error asserts will only run in Debug configuration
#endif
using System;
using System.Diagnostics;
namespace DateUtilsTests {
 public class Program {
 public static void Main(string[] args) {
 var span = TimeSpan.FromSeconds(3);
 Debug.Assert(span.ToIntervalString() == "3s",
"3s case failed");
 span = TimeSpan.FromMinutes(5);
 Debug.Assert(span.ToIntervalString() == "5m",
"5m case failed");

Listing 4.2 Our refined design

Listing 4.3 Primitive unit testing

We receive a TimeSpan instead.

We need the preprocessor
statement to make asserts
work.

Test case for
seconds

Test case for
minutes

103How to stop worrying and love the tests

 span = TimeSpan.FromHours(7);
 Debug.Assert(span.ToIntervalString() == "7h",
"7h case failed");
 span = TimeSpan.FromMilliseconds(1);
 Debug.Assert(span.ToIntervalString() == "now",
"now case failed");
 }
 }
}

So why do we need unit test frameworks? Can’t we write all tests like this? We could,
but it would take more work. In our example, you’ll note the following:

 There is no way to detect if any of the tests failed from an external program,
such as a build tool. We need special handling around that. Test frameworks
and test runners that come with them handle that easily.

 The first failing test would cause the program to terminate. That will cost us
time if we have many more failures. We will have to run tests again and again
and thus wasting more time. Test frameworks can run all tests and report the
failures all together, like compiler errors.

 It’s impossible to run certain tests selectively. You might be working on a spe-
cific feature and want to debug the function you wrote by debugging the test
code. Test frameworks allow you to debug specific tests without having to run
the rest.

 Test frameworks can produce a code-coverage report that helps you identify
missing test coverage on your code. That’s not possible by writing ad hoc test
code. If you happen to write a coverage analysis tool, you might as well work on
creating a test framework.

 Although those tests don’t depend on each other, they run sequentially, so run-
ning the whole test suite takes a long time. Normally, that’s not a problem with
a small number of test cases, but in a medium-scale project, you can have thou-
sands of tests that take different amounts of times. You can create threads and
run the tests in parallel, but that’s too much work. Test frameworks can do all of
that with a simple switch.

 When an error happens, you only know that there is a problem, but you have
no idea about its nature. Strings are mismatched, so, what kind of mismatch is
it? Did the function return null? Was there an extra character? Test frameworks
can report these details too.

 Anything other than using .NET-provided Debug.Assert will require us writing
extra code: a scaffolding, if you will. If you start down that path, using an exist-
ing framework is much better.

 You’ll have the opportunity to join never-ending debates about which test
framework is better and to feel superior for completely wrong reasons.

Test case
for hours

Test case for less
than a second

104 CHAPTER 4 Tasty testing

Now, let’s try writing the same tests with a test framework, as in listing 4.4. Many test
frameworks look alike, with the exception of xUnit, which was supposedly developed
by extraterrestrial life-forms visiting Earth, but in principle, it shouldn’t matter which
framework you’re using, with the exception of slight changes in the terminology.
We’re using NUnit here, but you can use any framework you want. You’ll see how
much clearer the code is with a framework. Most of our test code is actually pretty
much a text version of our input/output table, as in table 4.1. It’s apparent what we’re
testing, and more importantly, although we only have a single test method, we have
the capability to run or debug each test individually in the test runner. The technique
we used in listing 4.4 with TestCase attributes is called a parameterized test. If you have a
specific set of inputs and outputs, you can simply declare them as data and use it in
the same function over and over, avoiding the repetition of writing a separate test for
each test. Similarly, by combining ExpectedResult values and declaring the function
with a return value, you don’t even need to write Asserts explicitly. The framework
does it automatically. It’s less work!

 You can run these tests in a Test Explorer window of Visual Studio: View → Test
Explorer. You can also run a dotnet test from the command prompt, or you can even
use a third-party test runner like NCrunch. The test results in Visual Studio’s Test
Explorer will look like those in figure 4.3.

using System;
using NUnit.Framework;
namespace DateUtilsTests {
 class DateUtilsTest {
 [TestCase("00:00:03.000", ExpectedResult = "3s")]
 [TestCase("00:05:00.000", ExpectedResult = "5m")]
 [TestCase("07:00:00.000", ExpectedResult = "7h")]
 [TestCase("00:00:00.001", ExpectedResult = "now")]
 public string ToIntervalString_ReturnsExpectedValues(
 string timeSpanText) {
 var input = TimeSpan.Parse(timeSpanText);
 return input.ToIntervalString();
 }
 }
}

Listing 4.4 Test framework magic

Figure 4.3 Test results that you can’t take your eyes off

Converting a string
to our input type

No assertions!

105Don’t use TDD or other acronyms

You can see how a single function is actually broken into four different functions
during the test-running phase and how its arguments are displayed along with the test
name in figure 4.3. More importantly, you can select a single test, run it, or debug it.
And if a test fails, you see a brilliant report that exactly tells what’s wrong with your
code. Say you accidentally wrote nov instead of now. The test error would show up like
this:

Message:
 String lengths are both 3. Strings differ at index 2.
 Expected: "now"
 But was: "nov"
 -------------^

Not only do you see that there is an error, but you also see a clear explanation about
where it happened.

 It’s a no-brainer to use test frameworks, and you will get to love writing tests more
when you’re aware of how they save you extra work. They are NASA preflight check
lights, “system status nominal” announcements, and they are your little nanobots
doing their work for you. Love tests, love test frameworks.

4.3 Don’t use TDD or other acronyms
Unit testing, like every successful religion, has split into factions. Test-driven develop-
ment (TDD) and behavior-driven development (BDD) are some examples. I’ve come
to believe that there are people in the software industry who really love to create new
paradigms and standards to be followed without question, and there are people who
just love to follow them without question. We love prescriptions and rituals because all
we need to do is to follow them without thinking too much. That can cost us a lot of
time and make us hate testing.

 The idea behind TDD is that writing tests before actual code can guide you to write
better code. TDD prescribes that you should write tests for a class first before writing a
single line of code of that class, so the code you write constitutes a guideline for how
to implement the actual code. You write your tests. It fails to compile. You start writing
actual code, and it compiles. Then you run tests, and they fail. Then you fix the bugs
in your code to make the tests pass. BDD is also a test-first approach with differences
in the naming and layout of tests.

 The philosophy behind TDD and BDD isn’t complete rubbish. When you think
about how some code should be tested first, it can influence how you think about its
design. The problem with TDD isn’t the mentality but the practice, the ritualistic
approach: write tests, and because the actual code is still missing, get a compiler error
(wow, really, Sherlock?); after writing the code, fix the test failures. I hate errors. They
make me feel unsuccessful. Every red squiggly line in the editor, every STOP sign in
the Errors list window, and every warning icon is a cognitive load, confusing and dis-
tracting me.

106 CHAPTER 4 Tasty testing

 When you focus on the test before you write a single line of code, you start thinking
more about tests than your own problem domain. You start thinking about better ways
to write tests. Your mental space gets allocated to the task of writing tests, the test frame-
work’s syntactic elements, and the organization of tests, rather than the production code
itself. That’s not the goal of testing. Tests shouldn’t make you think. Tests should be the
easiest piece of code you can write. If that’s not the case, you’re doing it wrong.

 Writing tests before writing code triggers the sunk-cost fallacy. Remember how in
chapter 3 dependencies made your code more rigid? Surprise! Tests depend on your
code too. When you have a full-blown test suite at hand, you become disinclined to
change the design of the code because that would mean changing the tests too. It
reduces your flexibility when you’re prototyping code. Arguably, tests can give you
some ideas about whether the design really works, but only in isolated scenarios. You
might later discover that a prototype doesn’t work well with other components and
change your design before you write any tests. That could be okay if you spend a lot of
time on the drawing board when you’re designing, but that’s not usually the case in
the streets. You need the ability to quickly change your design.

 You can consider writing tests when you believe you’re mostly done with your pro-
totype and it seems to be working out okay. Yes, tests will make your code harder to
change then, but at the same time, they will compensate for that by making you confi-
dent in the behavior of your code, letting you make changes more easily. You’ll effec-
tively get faster.

4.4 Write tests for your own good
Yes, writing tests improves the software, but it also improves your living standards. I
already discussed how writing tests first can constrain you from changing your code’s
design. Writing tests last can make your code more flexible because you can easily
make significant changes later, without worrying about breaking the behavior after
you forget about the code completely. It frees you. It works as insurance, almost the
inverse of the sunk-cost fallacy. The difference in writing tests after is that you are not
discouraged in a rapid iteration phase like prototyping. You need to overhaul some
code? The first step you need to take is to write tests for it.

 Writing tests after you have a good prototype works as a recap exercise for your
design. You go over the whole code once again with tests in mind. You can identify cer-
tain problems that you didn’t find when you were prototyping your code.

 Remember how I pointed out that doing small, trivial fixes in the code can get you
warmed up for large coding tasks? Well, writing tests is a great way to do that. Find
missing tests and add them. It never hurts to have more tests unless they’re redun-
dant. They don’t have to be related to your upcoming work. You can simply blindly
add test coverage, and who knows, you might find bugs while doing so.

 Tests can act as a specification or documentation if they’re written in a clear, easy-to-
understand way. Code for each test should describe the input and the expected output
of a function by how it’s written and how it’s named. Code may not be the best way to
describe something, but it’s a thousand times better than having nothing at all.

107Deciding what to test

 Do you hate it when your colleagues break your code? Tests are there to help. Tests
enforce the contract between the code and the specification that developers can’t
break. You won’t have to see comments like this:

// When this code was written,
// only God and I knew what it did.
// Now only God knows.2

Tests assure you that a fixed bug will remain fixed and won’t appear again. Every time
you fix a bug, adding a test for it will ensure you won’t have to deal with that bug
again, ever. Otherwise, who knows when another change will trigger it again? Tests are
critical timesavers when used this way.

 Tests improve both the software and the developer. Write tests to be a more effi-
cient developer.

4.5 Deciding what to test
That is not halted which can eternal run,
And with strange eons, even tests may be down.

 —H. P. Codecraft

Writing one test and seeing it pass is only half of the story. It doesn’t mean your func-
tion works. Will it fail when the code breaks? Have you covered all the possible scenar-
ios? What should you be testing for? If your tests don’t help you find bugs, they are
already failures.

 One of my managers had a manual technique to ensure that his team wrote reli-
able tests: he removed random lines of code from the production code and ran tests
again. If your tests passed, that meant you failed.

 There are better approaches to identify what cases to test. A specification is a great
starting point, but you rarely have those in the streets. It might make sense to create a
specification yourself, but even if the only thing you have is code, there are ways to
identify what to test.

4.5.1 Respect boundaries

You can call a function that receives a simple integer with four billion different values.
Does that mean that you have to test whether your function works for each one of
those? No. Instead, you should try to identify which input values cause the code to
diverge into a branch or cause values to overflow and then test values around those.

 Consider a function that checks whether a birth date is of legal age for the registra-
tion page of your online game. It’s trivial for anyone who was born 18 years before
(assuming 18 is the legal age for your game): you just subtract the years and check
whether it’s at least 18. But what if that person turned 18 last week? Are you going to

2 That infamous comment is a derivative joke originally attributed to the author John Paul Friedrich Richter
who lived in the 19th century. He didn’t write a single line of code—only comments (https://quoteinvestigator
.com/2013/09/24/god-knows/).

https://quoteinvestigator.com/2013/09/24/god-knows/
https://quoteinvestigator.com/2013/09/24/god-knows/
https://quoteinvestigator.com/2013/09/24/god-knows/

108 CHAPTER 4 Tasty testing

deprive that person of enjoying your pay-to-win game with mediocre graphics? Of
course not.

 Let’s define a function IsLegalBirthdate. We use a DateTime class instead of
DateTimeOffset to represent a birth date because birth dates don’t have time zones.
If you were born on December 21 in Samoa, your birthday is December 21 everywhere
in the world, even in American Samoa, which is 24 hours ahead of Samoa despite
being only a hundred miles away. I’m sure there is intense discussion there every year
about when to have relatives over for Christmas dinner. Time zones are weird.

 Anyway, we first calculate the year difference. The only time we need to look at
exact dates is for the year of that person’s 18th birthday. If it’s that year, we check the
month and the day. Otherwise, we only check whether the person is older than 18. We
use a constant to signify legal age instead of writing the number everywhere because
writing the number is susceptible to typos, and when your boss comes asking you,
“Hey, can you raise the legal age to 21?,” you only have one place to edit it out in this
function. You also avoid having to write // legal age next to every 18 in the code to
explain it. It suddenly becomes self-explanatory. Every conditional in the function—
which encompasses if statements, while loops, switch cases, and so forth—causes only
certain input values to exercise the code path inside. That means we can split the
range of input values based on the conditionals, depending on the input parameters.
In the example in listing 4.5, we don’t need to test for all possible DateTime values
between January 1 of the year AD 1 and December 31, 9999, which is about 3.6 mil-
lion. We only need to test for 7 different inputs.

public static bool IsLegalBirthdate(DateTime birthdate) {
 const int legalAge = 18;
 var now = DateTime.Now;
 int age = now.Year - birthdate.Year;
 if (age == legalAge) {
 return now.Month > birthdate.Month
 || (now.Month == birthdate.Month
 && now.Day > birthdate.Day);
 }
 return age > legalAge;
}

The seven input values are listed in table 4.2.

Listing 4.5 The bouncer’s algorithm

Table 4.2 Partitioning input values based on conditionals

Year difference Month of birth date Day of birth date Expected result

1 = 18 = Current month < Current day true

2 = 18 = Current month = Current day false

3 = 18 = Current month > Current day false

Conditionals
in the code

109Deciding what to test

We suddenly brought down our number of cases from 3.6 million to 7, simply by iden-
tifying conditionals. Those conditionals that split the input range are called boundary
conditionals because they define the boundaries for input values for possible code
paths in the function. Then we can go ahead and write tests for those input values, as
shown in listing 4.6. We basically create a clone of our test table in our inputs and con-
vert it to a DateTime and run through our function. We can’t hardcode DateTime val-
ues directly into our input/output table because a birth date’s legality changes based
on the current time.

 We could convert this to a TimeSpan-based function as we did before, but legal age
isn’t based on an exact number of days—it’s based on an absolute date-time instead.
Table 4.2 is also better because it reflects your mental model more accurately. We use
-1 for less than, 1 for greater than, and 0 for equality, and prepare our actual input
values using those values as references.

[TestCase(18, 0, -1, ExpectedResult = true)]
[TestCase(18, 0, 0, ExpectedResult = false)]
[TestCase(18, 0, 1, ExpectedResult = false)]
[TestCase(18, -1, 0, ExpectedResult = true)]
[TestCase(18, 1, 0, ExpectedResult = false)]
[TestCase(19, 0, 0, ExpectedResult = true)]
[TestCase(17, 0, 0, ExpectedResult = false)]
public bool IsLegalBirthdate_ReturnsExpectedValues(
 int yearDifference, int monthDifference, int dayDifference) {
 var now = DateTime.Now;
 var input = now.AddYears(-yearDifference)
 .AddMonths(monthDifference)
 .AddDays(dayDifference);
 return DateTimeExtensions.IsLegalBirthdate(input);
}

We did it! We narrowed down the number of possible inputs and identified exactly
what to test in our function to create a concrete test plan.

 Whenever you need to find out what to test in a function, you’re supposed to start
with a specification. In the streets, however, you’ll likely figure out that a specification
has never existed or was obsolete a long time ago, so the second-best way would be to
start with boundary conditionals. Using parameterized tests also helps us focus on

4 = 18 < Current month Any true

5 = 18 > Current month Any false

6 > 18 Any Any true

7 < 18 Any Any false

Listing 4.6 Creating our test function from table 4.2

Table 4.2 Partitioning input values based on conditionals (continued)

Year difference Month of birth date Day of birth date Expected result

Preparing our
actual input here

110 CHAPTER 4 Tasty testing

what to test rather than on writing repetitive test code. It’s occasionally inevitable that
we have to create a new function for each test, but specifically with data-bound tests
like this one, parameterized tests can save you considerable time.

4.5.2 Code coverage

Code coverage is magic, and like magic, it’s mostly stories. Code coverage is measured
by injecting every line of your code with callbacks to trace how far the code called by a
test executes and which parts it misses. That way, you can find out which part of the
code isn’t exercised and therefore is missing tests.

 Development environments rarely come with code-coverage measurement tools
out of the box. They are either in astronomically priced versions of Visual Studio or
other paid third-party tools like NCrunch, dotCover, and NCover. Codecov (https://
codecov.io) is a service that can work with your online repository, and it offers a free
plan. Free code-coverage measurement locally in .NET was possible only with the Cov-
erlet library and code-coverage reporting extensions in Visual Studio Code when this
book was drafted.

 Code-coverage tools tell you which parts of your code ran when you ran your tests.
It’s quite handy to see what kind of test coverage you’re missing to exercise all code
paths. It’s not the only part of the story, and it’s certainly not the most effective. You
can have 100% code coverage and still have missing test cases. I’ll discuss them later in
the chapter.

 Assume that we comment out the tests that call our IsLegalBirthdate function
with a birth date that is exactly 18 years old, as in the following listing.

//[TestCase(18, 0, -1, ExpectedResult = true)]
//[TestCase(18, 0, 0, ExpectedResult = false)]
//[TestCase(18, 0, 1, ExpectedResult = false)]
//[TestCase(18, -1, 0, ExpectedResult = true)]
//[TestCase(18, 1, 0, ExpectedResult = false)]
[TestCase(19, 0, 0, ExpectedResult = true)]
[TestCase(17, 0, 0, ExpectedResult = false)]
public bool IsLegalBirthdate_ReturnsExpectedValues(
 int yearDifference, int monthDifference, int dayDifference) {
 var now = DateTime.Now;
 var input = now.AddYears(-yearDifference)
 .AddMonths(monthDifference)
 .AddDays(dayDifference);
 return DateTimeExtensions.IsLegalBirthdate(input);
}

In this case, a tool like NCrunch, for example, would show the missing coverage, as in
figure 4.4. The coverage circle next to the return statement inside the if statement is
grayed out because we never call the function with a parameter that matches the con-
dition age == legalAge. That means we’re missing some input values.

Listing 4.7 Missing tests

Commented-out
test cases

https://codecov.io
https://codecov.io
https://codecov.io

111Deciding what to test

When you uncomment those commented-out test cases and run tests again, code cov-
erage shows that you have 100% code coverage, as figure 4.5 shows.

Code-coverage tools are a good starting point, but they are not fully effective in show-
ing actual test coverage. You should still have a good understanding of the range of
input values and boundary conditionals. One-hundred percent code coverage doesn’t
mean 100% test coverage. Consider the following function where you need to return
an item from list by index:

public Tag GetTagDetails(byte numberOfItems, int index) {
 return GetTrendingTags(numberOfItems)[index];
}

Calling that function GetTagDetails(1, 0); would succeed, and we would immedi-
ately achieve 100% code coverage. Would we have tested all the possible cases? No.
Our input coverage would be nowhere close to that. What if numberOfItems is zero
and index is non-zero? What happens if index is negative?

 These concerns mean that we shouldn’t be focusing solely on code coverage and
trying to fill all the gaps. Instead, we should be conscious about our test coverage by
taking all possible inputs into account and being smart about the boundary values. That
said, they are not mutually exclusive: you can use both approaches at the same time.

Missing code
coverage
marker

Covered
code
markers

Covered
code
markers

public static bool IsLegalBirthdate(DateTime birthdate) {
 const int legalAge = 18;
 var now = DateTime.Now;
 int age = now.Year - birthdate.Year;
 if (age == legalAge) {
 return now.Month > birthdate.Month
 || (now.Month == birthdate.Month
 && now.Day > birthdate.Day);
 }
 return age > legalAge;
}

Figure 4.4 Missing code coverage

No
missing
coverage
markers

public static bool IsLegalBirthdate(DateTime birthdate) {
 const int legalAge = 18;
 var now = DateTime.Now;
 int age = now.Year - birthdate.Year;
 if (age == legalAge) {
 return now.Month > birthdate.Month
 || (now.Month == birthdate.Month
 && now.Day > birthdate.Day);
 }
 return age > legalAge;
}

Figure 4.5 Full code coverage

112 CHAPTER 4 Tasty testing

4.6 Don’t write tests
Yes, testing is helpful, but nothing’s better than completely avoiding writing tests. How
do you get away without writing tests and still keep your code reliable?

4.6.1 Don’t write code

If a piece of code doesn’t exist, it doesn’t need to be tested. Deleted code has no bugs.
Think about this when you’re writing code. Is it worth writing tests for? Maybe you
don’t need to write that code at all. For example, can you use an existing package
instead of implementing it from scratch? Can you leverage an existing class that does
the exact same thing you are trying to implement? For example, you might be
tempted to write custom regular expressions for validating URLs when all you need to
do is to leverage the System.Uri class.

 Third-party code isn’t guaranteed to be perfect or always suitable for your pur-
poses, of course. You might later discover that the code doesn’t work for you, but it’s
usually worth taking that risk before trying to write something from scratch. Similarly,
the same code base you’re working on might have the code doing the same job imple-
mented by a colleague. Search your code base to see if something’s there.

 If nothing works, be ready to implement your own. Don’t be scared of reinventing
the wheel. It can be very educational, as I discussed in chapter 3.

4.6.2 Don’t write all the tests

The famous Pareto principle states that 80% of consequences are the results of 20% of
the causes. At least, that’s what 80% of the definitions say. It’s more commonly called
the 80/20 principle. It’s also applicable in testing. You can get 80% reliability from 20%
test coverage if you choose your tests wisely.

 Bugs don’t appear homogeneously. Not every code line has the same probability of
producing a bug. It’s more likely to find bugs in more commonly used code and code
with high churn. You can call those areas of the code where a problem is more likely
to happen hot paths.

 That’s exactly what I did with my website. It had no tests whatsoever even after it
became one of the most popular Turkish websites in the world. Then I had to add
tests because too many bugs started to appear with the text markup parser. The
markup was custom and it barely resembled Markdown, but I developed it before
Markdown was even a vitamin in the oranges Dave Gruber ate. Because parsing logic
was complicated and prone to bugs, it became economically infeasible to fix every
issue after deploying to production. I developed a test suite for it. That was before the
advent of test frameworks, so I had to develop my own. I incrementally added more
tests as more bugs appeared because I hated creating the same bugs, and we devel-
oped a quite extensive test suite later, which saved us thousands of failing production
deployments. Tests just work.

 Even just viewing your website’s home page provides a good amount of code cover-
age because it exercises many shared code paths with other pages. That’s called smoke

113Let the compiler test your code

testing in the streets. It comes from the times when they developed the first prototype
of the computer and just tried to turn it on to see if smoke came out of it. If there was
no smoke, that was pretty much a good sign. Similarly, having good test coverage for
critical, shared components is more important than having 100% code coverage.
Don’t spend hours just to add test coverage for a single line in a rudimentary con-
structor that isn't covered by tests if it won’t make much difference. You already know
that code coverage isn’t the whole story.

4.7 Let the compiler test your code
With a strongly typed language, you can leverage the type system to reduce the num-
ber of test cases you’ll need. I’ve already discussed how nullable references can help
you avoid null checks in the code, which also reduces the need to write tests for null
cases. Let’s look at a simple example. In the previous section, we validated that the
person who wants to register is at least 18 years old. We now need to validate if the
chosen username is valid, so we need a function that validates usernames.

4.7.1 Eliminate null checks

Let our rule for a username be lowercase alphanumeric characters, up to eight characters
long. A regular expression pattern for such a username would be "^[a-z0-9]{1,8}$".
We can write a username class, as in listing 4.8. We define a Username class to represent
all usernames in the code. We avoid having to think about where we should validate our
input by passing this to any code that requires a username.

 To make sure that a username is never invalid, we validate the parameter in the
constructor and throw an exception if it’s not in the correct format. Apart from the
constructor, the rest of the code is boilerplate to make it work in comparison scenar-
ios. Remember, you can always derive such a class by creating a base StringValue class
and writing minimal code for each string-based value class. I wanted to keep imple-
mentations duplicate in the book to clarify what the code entails. Notice the use of the
nameof operator instead of hardcoded strings for references to parameters. It lets you
keep names in sync after renaming. It can also be used for fields and properties and is
especially useful for test cases where data is stored in a separate field and you have to
refer to it by its name.

public class Username {
 public string Value { get; private set; }
 private const string validUsernamePattern = @"^[a-z0-9]{1,8}$";

 public Username(string username) {
 if (username is null) {
 throw new ArgumentNullException(nameof(username));
 }
 if (!Regex.IsMatch(username, validUsernamePattern)) {
 throw new ArgumentException(nameof(username),

Listing 4.8 A username value type implementation

We validate the
username here,
once and for all.

114 CHAPTER 4 Tasty testing

 "Invalid username");
 }
 this.Value = username;
 }

 public override string ToString() => base.ToString();
 public override int GetHashCode() => Value.GetHashCode();
 public override bool Equals(object obj) {
 return obj is Username other && other.Value == Value;
 }
 public static implicit operator string(Username username) {
 return username.Value;
 }
 public static bool operator==(Username a, Username b) {
 return a.Value == b.Value;
 }
 public static bool operator !=(Username a, Username b) {
 return !(a == b);
 }
}

Our usual
boilerplate to
make a class
comparable

Myths around regular expressions
Regular expressions are one of the most brilliant inventions in the history of computer
science. We owe them to the venerable Stephen Cole Kleene. They let you create a
text parser out of a couple of characters. The pattern “light” matches only the string
“light” while “[ln]ight” matches both “light” and “night.” Similarly, “li(gh){1,2}t”
matches only the words “light” and “lighght,” which is not a typo but a single-word
Aram Saroyan poem.

Jamie Zawinski famously said, “Some people, when confronted with a problem, think
‘I know, I’ll use regular expressions.’ Now they have two problems.” The phrase reg-
ular expression implies certain parsing characteristics. Regular expressions are not
context aware, so you can’t use a single regular expression to find the innermost tag
in an HTML document or to detect unmatched closing tags. That means they are not
suitable for complicated parsing tasks. Still, you can use them to parse text with a
non-nested structure.

Regular expressions are surprisingly performant for the cases they suit. If you need
extra performance, you can precompile them in C# by creating a Regex object with
the option RegexOptions.Compiled. That means custom code that parses a string
based on your pattern will be created on demand. Your pattern turns into C# and
eventually into machine code. Consecutive calls to the same Regex object will reuse
the compiled code, gaining you performance for multiple iterations.

Despite how performant they are, you shouldn’t use regular expressions when a sim-
pler alternative exists. If you need to check whether a string is a certain length, a sim-
ple "str.Lengthv== 5" will be way faster and more readable than "Regex.IsMatch
(@"^.{5}$", str)". Similarly, the string class contains many performant methods
for common string-check operations like StartsWith, EndsWith, IndexOf, Last-
IndexOf, IsNullOrEmpty, and IsNullOrWhiteSpace. Always prefer provided meth-
ods over regular expressions for their specific use cases.

115Let the compiler test your code

Testing the constructor of Username would require us to create three different test
methods, as shown in listing 4.9: one for nullability because a different exception type
is raised; one for non-null but invalid inputs; and finally, one for the valid inputs,
because we need to make sure that it also recognizes valid inputs as valid.

class UsernameTest {
 [Test]
 public void ctor_nullUsername_ThrowsArgumentNullException() {
 Assert.Throws<ArgumentNullException>(
 () => new Username(null));
 }

 [TestCase("")]
 [TestCase("Upper")]
 [TestCase("toolongusername")]
 [TestCase("root!!")]
 [TestCase("a b")]
 public void ctor_invalidUsername_ThrowsArgumentException(string username) {
 Assert.Throws<ArgumentException>(
 () => new Username(username));
 }

 [TestCase("a")]
 [TestCase("1")]
 [TestCase("hunter2")]
 [TestCase("12345678")]
 [TestCase("abcdefgh")]
 public void ctor_validUsername_DoesNotThrow(string username) {
 Assert.DoesNotThrow(() => new Username(username));
 }
}

Had we enabled nullable references for the project Username class was in, we wouldn’t
need to write tests for the null case at all. The only exception would be when we’re
writing a public API, which may not run against a nullable-references-aware code. In
that case, we’d still need to check against nulls.

Listing 4.9 Tests for the Username class

That said, it’s also important for you to know at least the basic syntax of regular
expressions because they can be powerful in a development environment. You can
manipulate code in quite complicated ways that can save you hours of work. All pop-
ular text editors support regular expressions for find-and-replace operations. I’m
talking about operations like “I want to move hundreds of bracket characters in the
code to the next line only when they appear next to a line of code.” You can think
about correct regular expression patterns for a couple of minutes as opposed to
doing it manually for an hour.

116 CHAPTER 4 Tasty testing

 Similarly, declaring Username a struct when suitable would make it a value type,
which would also remove the requirement for a null check. Using correct types and
correct structures for types will help us reduce the number of tests. The compiler will
ensure the correctness of our code instead.

 Using specific types for our purposes reduces the need for tests. When your regis-
tration function receives a Username instead of a string, you don’t need to check
whether the registration function validates its arguments. Similarly, when your func-
tion receives a URL argument as a Uri class, you don’t need to check whether your
function processes the URL correctly anymore.

4.7.2 Eliminate range checks

You can use unsigned integer types to reduce the range of possible invalid input values.
You can see unsigned versions of primitive integer types in table 4.3. There you can see
the varieties of data types with their possible ranges that might be more suitable for your
code. It’s also important that you keep in mind whether the type is directly compatible
with int because it’s the go-to type of .NET for integers. You probably have already seen
these types, but you might not have considered that they can save you having to write
extra test cases. For example, if your function needs only positive values, then why
bother with int and checking for negative values and throwing exceptions? Just receive
uint instead.

When you use an unsigned type, trying to pass a negative constant value to your func-
tion will cause a compiler error. Passing a variable with a negative value is possible only
with explicit type casting, which makes you think about whether the value you have is
really suitable for that function at the call site. It’s not the function’s responsibility to
validate for negative arguments anymore. Assume that a function needs to return

Table 4.3 Alternative integer types with different value ranges

Name Integer type Value range
Assignable to int

without loss?

int 32-bit signed -2147483648..2147483647 Duh

uint 32-bit unsigned 0..4294967295 No

long 64-bit signed -9223372036854775808..9223372036854775807 No

ulong 64-bit unsigned 0..18446744073709551615 No

short 16-bit signed -32768..32767 Yes

ushort 16-bit unsigned 0..65535 Yes

sbyte 8-bit signed -128..127 Yes

byte 8-bit unsigned 0..255 Yes

117Let the compiler test your code

trending tags in your microblogging website up to only a specified number of tags. It
receives a number of items to retrieve rows of posts, as in listing 4.10.

 Also in listing 4.10, a GetTrendingTags function returns items by taking the number
of items into account. Notice that the input value is a byte instead of int because we
don’t have any use case more than 255 items in the trending tag list. That actually imme-
diately eliminates the cases where an input value can be negative or too large. We don’t
even need to validate the input anymore. This results in one fewer test case and a much
better range of input values, which reduces the area for bugs immediately.

using System;
using System.Collections.Generic;
using System.Linq;

namespace Posts {
 public class Tag {
 public Guid Id { get; set; }
 public string Title { get; set; }
 }

 public class PostService {
 public const int MaxPageSize = 100;
 private readonly IPostRepository db;

 public PostService(IPostRepository db) {
 this.db = db;
 }

 public IList<Tag> GetTrendingTags(byte numberOfItems) {
 return db.GetTrendingTagTable()
 .Take(numberOfItems)
 .ToList();
 }
 }
}

Two things are happening here. First, we chose a smaller data type for our use case.
We don’t intend to support billions of rows in a trending tag box. We don’t even know
what that would look like. We have narrowed down our input space. Second, we chose
byte, an unsigned type, which cannot be negative. That way, we avoided a possible test
case and a potential problem that might cause an exception. LINQ’s Take function
doesn’t throw an exception with a List, but it can when it gets translated to a query
for a database like Microsoft SQL Server. By changing the type, we avoid those cases,
and we don’t need to write tests for them.

 Note that .NET uses int as the de facto standard type for many operations like
indexing and counting. Opting for a different type might require you to cast and con-
vert values into ints if you happen to interact with standard .NET components. You

Listing 4.10 Receiving posts only belonging to a certain page

We chose byte
instead of int.

A byte or a ushort can be
passed as safely as int too.

118 CHAPTER 4 Tasty testing

need to make sure that you’re not digging yourself into a hole by being pedantic. Your
quality of life and the enjoyment you get from writing code are more important than a
certain one-off case you’re trying to avoid. For example, if you need more than 255
items in the future, you’ll have to replace all references to bytes with shorts or ints,
which can be time consuming. You need to make sure that you are saving yourself
from writing tests for a worthy cause. You might even find writing additional tests
more favorable in many cases than dealing with different types. In the end, it’s only
your comfort and your time that matter, despite how powerful it is to use types for
hinting at valid value ranges.

4.7.3 Eliminate valid value checks

There are times we use values to signify an operation in a function. A common exam-
ple is the fopen function in the C programming language. It takes a second string
parameter that symbolizes the open mode, which can mean open for reading, open for
appending, open for writing, and so forth.

 Decades after C, the .NET team has made a better decision and created separate
functions for each case. You have separate File.Create, File.OpenRead, and
File.OpenWrite methods, avoiding the need for an extra parameter and for parsing
that parameter. It’s impossible to pass along the wrong parameter. It’s impossible for
functions to have bugs in parameter parsing because there is no parameter.

 It’s common to use such values to signify a type of operation. You should consider
separating them into distinct functions instead, which can both convey the intent bet-
ter and reduce your test surface.

 One common technique in C# is to use Boolean parameters to change the logic of
the running function. An example is to have a sorting option in the trending tags
retrieval function, as in listing 4.11. Assume that we need trending tags in our tag
management page, too, and that it’s better to show them sorted by title there. In con-
tradiction with the laws of thermodynamics, developers tend to constantly lose
entropy. They always try to make the change with the least entropy without thinking
about how much of a burden it will be in the future. The first instinct of a developer
can be to add a Boolean parameter and be done with it.

public IList<Tag> GetTrendingTags(byte numberOfItems,
 bool sortByTitle) {
 var query = db.GetTrendingTagTable();
 if (sortByTitle) {
 query = query.OrderBy(p => p.Title);
 }
 return query.Take(numberOfItems).ToList();
}

Listing 4.11 Boolean parameters

Newly added parameter

Newly introduced conditional

119Let the compiler test your code

The problem is that if we keep adding Booleans like this, it can get really complicated
because of the combinations of the function parameters. Let’s say another feature
required trending tags from yesterday. We add that in with other parameters in the next
listing. Now, our function needs to support combinations of sortByTitle and yester-
daysTags too.

public IList<Tag> GetTrendingTags(byte numberOfItems,
 bool sortByTitle, bool yesterdaysTags) {
 var query = yesterdaysTags
 ? db.GetTrendingTagTable()
 : db.GetYesterdaysTrendingTagTable();
 if (sortByTitle) {
 query = query.OrderBy(p => p.Title);
 }
 return query.Take(numberOfItems).ToList();
}

There is an ongoing trend here. Our function’s complexity increases with every Bool-
ean parameter. Although we have three different use cases, we have four flavors of the
function. With every added Boolean parameter, we are creating fictional versions of the
function that no one will use, although someone might someday and then get into a
bind. A better approach is to have a separate function for each client, as shown next.

public IList<Tag> GetTrendingTags(byte numberOfItems) {
 return db.GetTrendingTagTable()
 .Take(numberOfItems)
 .ToList();
}

public IList<Tag> GetTrendingTagsByTitle(
 byte numberOfItems) {
 return db.GetTrendingTagTable()
 .OrderBy(p => p.Title)
 .Take(numberOfItems)
 .ToList();
}

public IList<Tag> GetYesterdaysTrendingTags(byte numberOfItems) {
 return db.GetYesterdaysTrendingTagTable()
 .Take(numberOfItems)
 .ToList();
}

You now have one less test case. You get much better readability and slightly increased
performance as a free bonus. The gains are minuscule, of course, and unnoticeable
for a single function, but at points where the code needs to scale, they can make a dif-
ference without you even knowing it. The savings will increase exponentially when you

Listing 4.12 More Boolean parameters

Listing 4.13 Separate functions

More parameters!

More
conditionals!

We separate functionality
by function names instead

of parameters.

120 CHAPTER 4 Tasty testing

avoid trying to pass state in parameters and leverage functions as much as possible.
You might still be irked by repetitive code, which can easily be refactored into com-
mon functions, as in the next listing.

private IList<Tag> toListTrimmed(byte numberOfItems,
 IQueryable<Tag> query) {
 return query.Take(numberOfItems).ToList();
}

public IList<Tag> GetTrendingTags(byte numberOfItems) {
 return toListTrimmed(numberOfItems, db.GetTrendingTagTable());
}

public IList<Tag> GetTrendingTagsByTitle(byte numberOfItems) {
 return toListTrimmed(numberOfItems, db.GetTrendingTagTable()
 .OrderBy(p => p.Title));
}

public IList<Tag> GetYesterdaysTrendingTags(byte numberOfItems) {
 return toListTrimmed(numberOfItems,
 db.GetYesterdaysTrendingTagTable());
}

Our savings are not impressive here, but such refactors can make greater differences
in other cases. The important takeaway is to use refactoring to avoid code repetition
and combinatorial hell.

 The same technique can be used with enum parameters that are used to dictate a
certain operation to a function. Use separate functions, and you can even use func-
tion composition, instead of passing along a shopping list of parameters.

4.8 Naming tests
There is a lot in a name. That’s why it’s important to have good coding conventions in
both production and test code, although they shouldn’t necessarily overlap. Tests with
good coverage can serve as specifications if they’re named correctly. From the name
of a test, you should be able to tell

 The name of the function being tested
 Input and initial state
 Expected behavior
 Whom to blame

I’m kidding about the last one, of course. Remember? You already green-lit that code
in the code review. You have no right to blame someone else anymore. At best, you can
share the blame. I commonly use an "A_B_C" format to name tests, which is quite dif-
ferent than what you’re used to naming your regular functions. We used a simpler nam-
ing scheme in previous examples because we were able to use the TestCase attribute to

Listing 4.14 Separate functions with common logic refactored out

Common
functionality

121Summary

describe the initial state of the test. I use an additional ReturnsExpectedValues, but
you can simply suffix the function name with Test. It’s better if you don’t use the func-
tion name alone because that might confuse you when it appears in code completion
lists. Similarly, if the function doesn’t take any input or doesn’t depend on any initial
state, you can skip the part describing that. The purpose here is to allow you to spend
less time dealing with tests, not to put you through a military drill about naming rules.

 Say your boss asked you to write a new validation rule for a registration form to make
sure registration code returns failure if the user hasn’t accepted the policy terms. A
name for such a test would be Register_LicenseNotAccepted_ShouldReturnFailure,
as in figure 4.6.

That’s not the only possible naming convention. Some people prefer creating inner
classes for each function to be tested and name tests with only state and expected
behavior, but I find that unnecessarily cumbersome. It’s important that you pick the
convention that works best for you.

Summary
 It’s possible to overcome the disdain for writing tests by not writing many of

them in the first place.
 Test-driven development and similar paradigms can make you hate writing tests

even more. Seek to write tests that spark joy.
 The effort to write tests can be significantly shortened by test frameworks, espe-

cially with parameterized, data-driven tests.
 The number of test cases can be reduced significantly by properly analyzing the

boundary values of a function input.
 Proper use of types can let you avoid writing many unnecessary tests.
 Tests don’t just ensure the quality of the code. They can also help you improve

your own development skills and throughput.
 Testing in production can be acceptable as long as your résumé is up to date.

Register_LicenseNotAccepted_ShouldReturnFalse

State

Function name Expected behavior
Figure 4.6 Components
of a test name

122

Rewarding refactoring

In chapter 3, I discussed how resistance to change caused the downfall of the
French royal family and software developers. Refactoring is the art of changing the
structure of the code. According to Martin Fowler,1 Leo Brodie coined the term in
his book Thinking Forth back in 1984. That makes the term as old as Back to the
Future and Karate Kid, my favorite movies when I was a kid.

 Writing great code is usually only half of being an efficient developer. The other
half is being agile in transforming code. In an ideal world, we should be writing
and changing code at the speed of thought. Hitting keys, nailing the syntax, memo-
rizing keywords, and changing the coffee filter are all obstacles between your ideas
and the product. Since it’ll probably take a while before we get AI to do program-
ming work for us, it’s a good idea to polish our refactoring skills.

This chapter covers
 Getting comfortable with refactoring

 Incremental refactoring on large changes

 Using tests to make code changes faster

 Dependency injection

1 Etymology of Refactoring, Martin Fowler, https://martinfowler.com/bliki/EtymologyOfRefactoring.html.

https://martinfowler.com/bliki/EtymologyOfRefactoring.html

123Why do we refactor?

 IDEs are instrumental in refactoring. You can rename a class with a single key-
stroke (F2 on Visual Studio for Windows) and rename all the references to it instantly.
You can even access most of the refactoring options with a single keystroke. I strongly
recommend familiarizing yourself with keyboard shortcuts for the features that you
frequently use on your favorite editor. The time savings will accumulate, and you’ll
look cool to your colleagues.

5.1 Why do we refactor?
Change is inevitable, and code change is doubly so. Refactoring serves purposes other
than simply changing the code. It lets you

 Reduce repetition and increase code reuse. You can move a class that can be reused by
other components to a common location so those other components can start
using it. Similarly, you can extract methods from the code and make them avail-
able for reuse.

 Bring your mental model and the code closer. Names are important. Some names may
not be as easily understandable as others. Renaming things is part of the refac-
toring process and can help you achieve a better design that more closely
matches your mental model.

 Make the code easier to understand and maintain. You can reduce code complexity
by splitting long functions into smaller, more maintainable ones. Similarly, a
model can be easier to understand if complex data types are grouped in
smaller, atomic parts.

 Prevent certain classes of bugs from appearing. Certain refactoring operations, like
changing a class to a struct, can prevent bugs related to nullability, as I dis-
cussed in chapter 2. Similarly, enabling nullable references on a project and
changing data types to non-nullable ones can prevent bugs that are basically
refactoring operations.

 Prepare for a significant architectural change. Big changes can be performed faster
if you prepare the code for the change beforehand. You will see how that can
happen in the next section.

 Get rid of the rigid parts of the code. Through dependency injection, you can
remove dependencies and have a loosely coupled design.

Most of the time, we developers see refactoring as a mundane task that is part of our
programming work. Refactoring is also separate external work that you do even if
you’re not writing a single line of code. You can even do it for the purpose of reading
the code because it’s hard to grasp. Richard Feynman once said, “If you want to truly
learn a subject, write a book about it.” In a similar vein, you can truly learn about a
piece of code by refactoring it.

 Simple refactoring operations need no guidance at all. You want to rename a class?
Go ahead. Extract methods or interfaces? These are no-brainers. They are even on the
right-click menu for Visual Studio, which can also be brought up with Ctrl-. on Windows.

124 CHAPTER 5 Rewarding refactoring

Most of the time, refactoring operations don’t affect code reliability at all. However,
when it comes to a significant architectural change in the code base, you might need
some advice.

5.2 Architectural changes
It’s almost never a good idea to perform a large architectural change in one shot.
That’s not because it’s technically hard, but mostly because large changes generate a
large number of bugs and integration problems due to the long and broad nature of
the work. By integration problems, I mean that if you’re working on a large change,
you need to work on it for a long time without being able to integrate changes from
other developers (see figure 5.1). That puts you in a bind. Do you wait until you’re
done with your work and manually apply every change that’s been made on the code
in that timeframe and fix all the conflicts yourself, or do you tell your team members
to stop working until you finish your changes? This is mostly a problem when you’re
refactoring. You don’t have the same problem when you’re developing a new feature
because the possibility of conflicting with other developers is far less: the feature itself
does not exist in the first place. That’s why an incremental approach is better.

To create a road map, you need to have a destination and to know where you are.
What do you want the end result to look like? It may not be possible to imagine every-
thing at once because large software is really hard to wrap your head around. Instead,
you can have a certain list of requirements.

 Let’s work on a migration example. Microsoft has two flavors of .NET in the wild. The
first one is the .NET Framework, which is decades old, and the second one is just called

Codebase

Ada’s changing how
numbers are calculated.

Barbara’s replacing a
class with a new one.

Claude’s adding entropy.

Martin’s considering a
single-shot refactor
that spans across the
code.

Doug’s adding a new
user interface.

Figure 5.1 Why one-shot large
refactors are a bad idea

125Architectural changes

.NET (previously known as .NET Core), which was released in 2016. Both are still sup-
ported by Microsoft as of the writing of this book, but it’s obvious that Microsoft wants
to move forward with .NET and drop the .NET Framework at some point. It’s very likely
that you’ll encounter work that needs migration from .NET Framework to .NET.

In addition to your destination, you need to know where you are. This reminds me of
the story about a CEO who was getting a ride in a helicopter, and they got lost in the
fog. They noticed the silhouette of a building and saw someone on the balcony. The
CEO said, “I’ve got an idea. Get us closer to that person.” They got closer to the per-
son, and the CEO shouted, “Hey! Do you know where we are?” The person replied,
“Yes, you’re in a helicopter!” The CEO said, “Okay, then we must be at the college
campus and that must be the engineering building!” The person on the balcony was
surprised and asked, “How did you figure it out?” The CEO replied, “The answer you
gave us was technically correct, but completely useless!” The person shouted, “Then
you must be a CEO!” Now the CEO was surprised and asked, “How did you know
that?” The person answered, “You got lost, have no idea where you are or where
you’re going, and it’s still my fault!”

.NET Framework is dead; long live .NET!
The name .NET meant many things back in the 1990s, when the internet was getting
big. There was even a magazine called .net, which was about the internet and pretty
much worked as a slower version of Google. Browsing the web was commonly called
“surfing the net,” “traveling the information superhighway,” “connecting to cyber-
space,” or any other combination of a misleading metaphoric verb with a made-up noun.

.NET Framework was the original software ecosystem created to make developers’
lives easier in the late 1990s. It came with the runtime, standard libraries, compilers
for C#, Visual Basic, and later, F# languages. The Java equivalent of .NET Framework
was JDK (Java Development Kit), which had the Java runtime, a Java language com-
piler, the Java Virtual Machine, and probably some other things starting with Java.

Over time, other .NET flavors came that were not directly compatible with the .NET
Framework, such as .NET Compact Framework and Mono. To allow code sharing
between different frameworks, Microsoft created a common API specification that
defined a common subset of the .NET functionality that was called .NET Standard.
Java doesn’t suffer from a similar problem because Oracle successfully killed all the
incompatible alternatives with an army of lawyers.

Microsoft later created a new generation of .NET Framework that was cross-platform.
It was initially called .NET Core and was recently renamed solely .NET, starting with
.NET 5. It’s not directly compatible with .NET Framework, but it can interoperate using
a common .NET Standard subset specification.

.NET Framework is still plugged into life support, but we probably won’t be seeing it
around in five years. I strongly recommend anyone using .NET to start out with .NET
rather than .NET Framework, and that’s why I picked an example based on this migra-
tion scenario.

126 CHAPTER 5 Rewarding refactoring

Static assets
(*.css, *.js)

Views

Controllers

Models

Boilerplate
(startup,

configuration,
bundling, etc.)

Identified list of
components from
the initial assessment

Figure 5.2 Our initial assessment
of components

 I can’t help imagining the CEO jumping to the balcony from the helicopter and a
Matrix-like fight sequence breaking out between the runaway engineer and the CEO,
both wielding katanas, simply because the pilot didn’t know how to read a GPS instead
of practicing a precision approach maneuver to balconies.

 Consider that we have our anonymous microblogging website called Blabber written
in .NET Framework and ASP.NET and we’d like to move it to the new .NET platform
and ASP.NET Core. Unfortunately, ASP.NET Core and ASP.NET are not binary com-
patible and are only slightly source compatible. The code for the platform is included
in the source code of the book. I won’t be listing the full code here because the
ASP.NET template comes with quite a lot of boilerplate, but I’ll sketch out the architec-
tural details that will guide us in creating a refactoring road map. You don’t need to
know about the architecture of ASP.NET or how web apps work in general to under-
stand our refactoring process because that’s not directly relevant to refactoring work.

5.2.1 Identify the components
The best way to work with a large refactor is to
split your code into semantically distinct compo-
nents. Let’s split our code into several parts for
the sole purpose of a refactor. Our project is an
ASP.NET MVC application with some model
classes and controllers we added. We can have an
approximate list of components, as in figure 5.2.
It doesn’t need to be accurate; it can be what you
come up with initially because it will change.

 After you have the list of components down,
start assessing how many of them you can transfer
directly to your destination, as in our example
.NET 5. Note that destination means the destina-
tion state that symbolizes the end result. Can the
components be manipulated into the destination state without breaking anything? Do
you think they will need some work? Assess this per component, and we will use this guess-
work to prioritize. You don’t really need to accurately know this because guesswork is ade-
quate at this moment. You can have a work estimation table like the one in table 5.1.

Table 5.1 Assessing relative cost and risks of manipulating components

Component Changes needed Risk of conflicting with another developer

Controllers Minimal High

Models None Medium

Views Minimal High

Static assets Some Low

Boilerplate Rewrite Low

127Architectural changes

5.2.2 Estimate the work and the risk

How will you know how much work will be needed? You must have a vague idea about
how both frameworks work to determine that. It’s important that you know your desti-
nation before you start walking toward it. You can be wrong about some of these
guesses, and that’s okay, but the primary reason to follow this practice is to prioritize
work to reduce your workload without breaking anything for as long as possible.

 For example, I know controllers and views require minimal effort because I know
their syntax hasn’t changed much between frameworks. I anticipate a little work with
the syntax of some HTML helpers or controller constructs, but there is a great chance
that I should be moving them without any issues. Similarly, I know static assets are
moved under the wwwroot/ folder in ASP.NET Core, which requires only a little work,
but they definitely are not directly transferable. I also know that startup and configura-
tion code has completely been overhauled in ASP.NET Core, which means I’ll have to
write them from scratch.

 I assume all the other developers will be working on features, so I expect their
work will involve work under controllers, views, and models. I don’t expect existing
models to change as frequently as the business logic or how the features look, so I
assign models a medium risk while controllers and views merit a higher risk proba-
bility. Remember, other developers are working on the code while you’re working on
your refactoring, so you must find a way to integrate your work to their workflow as
early as possible without breaking their flow. The most feasible component for that
looks like models in table 5.1. Despite the possibility of high conflict, it requires mini-
mal change, so resolving any conflicts should be straightforward.

What’s MVC?
The entire history of computer science can be summarized as fighting with entropy,
also known as spaghetti by the believers in the Flying Spaghetti Monster, the creator
of all entropy. MVC is the idea of splitting code into three parts to avoid too much
interdependency, aka, spaghetti code: the part that decides how the user interface
will look, the part that models your business logic, and the part that coordinates the
two. They are respectively called view, model, and controller. There are many other
similar attempts at splitting application code into logically separate parts like MVVM
(model, view, viewmodel) or MVP (model, view, presentation), but the idea behind all
of them is pretty much the same: decoupling distinct concerns from each other.

Such compartmentalization can help you in writing code, creating tests, and refactor-
ing because the dependencies between those layers become more manageable. But
as scientists David Wolpert and William Macready stated eloquently in the No Free
Lunch Theorem, there is no free lunch. You usually have to write slightly more code,
work with a greater number of files, have more subdirectories, and experience more
moments when you curse at the screen to get the benefits of MVC. In the big picture,
however, you will become faster and more efficient.

128 CHAPTER 5 Rewarding refactoring

 It needs no change to be refactored. How do you make the existing code and the
new code with the same component at the same time? You move it into a separate
project. I discussed this in chapter 3 when I talked about breaking dependencies to
make a project structure more open to change.

5.2.3 The prestige

Refactoring without disrupting your colleagues is pretty much like changing the tire
of a car while driving on the highway. It resembles an illusion act that makes the old
architecture disappear and replaces it with the new one without anyone noticing. Your
greatest tool when you’re doing that would be extracting code into shareable parts, as
shown in figure 5.3.

Of course, it’s impossible for developers not to notice the new project in the reposi-
tory, but as long as you communicate the changes you’re trying to implement with
them beforehand and it’s straightforward for them to adapt, you should have no prob-
lems implementing your changes as the project goes forward.

 You create a separate project, as in our example, Blabber.Models, move your mod-
els classes to that project, and then add a reference to that project from the web proj-
ect. Your code will keep running as it did before, but the new code will need to be
added in the Blabber.Models project rather than Blabber, and your colleagues need to
be aware of this change. You can then create your new project and reference Blab-
ber.Models from that too. Our road map resembles that in figure 5.4.

Initial phase
(“the pledge”)

Current
project

Everything is
in a single
project.

We reduce
our workload
and the area
of conflict by
extracting
common logic.

Extracting common components
(“the turn”)

Common
code

Common
code

Current
project

Current
project

We create our new project and
start working on the conversion.

New project

Final switch
(“the prestige”)

Common
code

Voila!

New project

Figure 5.3 The illusion of refactoring without any developer noticing

129Architectural changes

The reason we are going through this is to reduce our work while staying as current as
possible with the main branch. This method also lets you perform your refactoring
work over a longer timeline while squeezing other, more urgent work into your sched-
ule. It pretty much resembles checkpoint systems in video games where you can start
at the same Valkyrie fight for the hundredth time in God of War instead of going back
to the beginning of the entire game all over again. Whatever you can integrate into
the main branch without breaking the build becomes a last-known good spot that you
don’t have to repeat. Planning your work with multiple integration steps is the most
feasible way to perform a large refactor.

5.2.4 Refactor to make refactoring easier

When moving code across projects, you’ll encounter strong dependencies that cannot
be easily moved out. In our example, some of the code might depend on web compo-
nents, and moving them to our shared project would be meaningless because our new
project, BlabberCore, wouldn’t work with the old web components.

 In such cases, composition comes to our rescue. We can extract an interface that
our main project can provide and pass it to the implementation instead of the actual
dependency.

 Our current implementation of Blabber uses an in-memory storage for the content
posted on the website. That means that whenever you restart the website, all the plat-
form content is lost. That makes sense for a post-modern art project, but users expect
at least a level of persistence. Let’s assume we’d like to use either Entity Framework or
Entity Framework Core, based on the framework we’re using, but we still would like to

Blabber

Blabber

Blabber.Models

BlabberCore

Initial phase
(“the pledge”)

BlabberCore

Blabber.Models

Final switch
(“the prestige”)

Our initial
project

We keep our new projects side
by side so we can test them
without disrupting the existing
project.

After fixing the
possible conflicts,
we deploy our
new project.

Blabber.Models

We push this to
our repository so
our colleagues can
start working on
this new model.

Blabber

Extracting common components
(“the turn”)

Figure 5.4 Our project’s refactoring road map

130 CHAPTER 5 Rewarding refactoring

share the common DB access code among two projects while our migration is ongo-
ing, so the actual work needed for the final stretch for migration will be far less.

DEPENDENCY INJECTION

You can abstract away a dependency that you don’t want to deal with by creating an
interface for it and receiving its implementation in a constructor. That technique is
called dependency injection. Do not confuse it with dependency inversion, which is an over-
hyped principle that basically states “depend on abstractions,” but sounds less pro-
found when it’s put like that.

 Dependency injection (DI) is also a slightly misleading term. It implies interfer-
ence or disturbance, but nothing like that is going on. Perhaps it should have been
called dependency reception because that’s what it’s about: receiving your dependencies
during initialization such as in your constructor. DI is also called IoC (inversion of con-
trol), which sometimes is even more confusing. A typical dependency injection is a
design change like that shown in figure 5.5. Without dependency injection, you
instantiate your dependent classes in your code. With dependency injection, you
receive the classes you depend on in a constructor.

Let’s go over how it’s performed in some simple and abstract code so you can focus on
the actual changes that are happening. In this example, you can see how C# 9.0 top-
level program code looks, without a main method or a program class per se. You can
actually type the code in the following listing in a .cs file under a project folder and
run it right away, without any extra code. Note how class A initializes an instance of a
class B every time the method X is called.

Class A Class B

Class A
(receives B as
Interface B in

the constructor).

Interface B

Class B

Class A depends
on Class B.

Class A depends
on Interface B.

Class B implements
interface B.

1. Direct dependency to a
 concrete type

2. Dependency is injected on
 the constructor through
 an interface.

Figure 5.5 How dependency
injection changes the design
of a class

131Architectural changes

using System;

var a = new A();
a.X();

public class A {
 public void X() {
 Console.WriteLine("X got called");
 var b = new B();
 b.Y();
 }
}

public class B {
 public void Y() {
 Console.WriteLine("Y got called");
 }
}

When you apply dependency injection, your code gets its instance of class B in its
constructor and through an interface, so you have zero coupling between classes A
and B. You can see how it shapes up in listing 5.2. However, there is a difference in
conventions. Because we moved the initialization code of class B to a constructor, it
always uses the same instance of B instead of creating a new one, which is how it used
to work in listing 5.1. That’s actually good because it reduces the load on the garbage
collector, but it can create unexpected behavior if the state of the class changes over
time. You might be breaking behavior. That’s why having test coverage is a good idea
in the first place.

 What we’ve accomplished with the code in listing 5.2 is that we now can completely
remove the code for B and move it to an entirely different project without breaking
the code in A, as long as we keep the interface we’ve created (IB). More importantly,
we can move everything B needs along with it. It gives us quite a lot of freedom to
move the code around.

using System;

var b = new B();
var a = new A(b);
a.X();

public interface IB {
 void Y();
}

public class A {
 private readonly IB b;
 public A(IB b) {

Listing 5.1 Code that uses direct dependency

Listing 5.2 Code with dependency injection

The main code creates
an instance of A here.

Class A creates the
instance of class B.

The caller
initializes class B

It passes it to class
A as a parameter.

The instance of
B is kept here.

132 CHAPTER 5 Rewarding refactoring

 this.b = b;
 }
 public void X() {
 Console.WriteLine("X got called");
 b.Y();
 }
}

public class B : IB {
 public void Y() {
 Console.WriteLine("Y got called");
 }
}

Now let’s apply this technique to our example in Blabber and change the code to use
database storage instead of memory so our content will survive restarts. In our exam-
ple, instead of depending on a specific implementation of a DB engine, in this case
Entity Framework and EF Core, we can receive an interface we devise that provides
required functionality to our component. This lets two projects with different technol-
ogies use the same code base, even though the common code depends on the specific
DB functionality. To achieve that, we create a common interface, IBlabDb, which
points to the database functionality, and use it in our common code. Our two differ-
ent implementations share the same code; they let the common code use different DB
access technologies. Our implementation will look like that in figure 5.6.

To implement that, we first change our implementation of BlabStorage in the Blabber
.Models that we refactored, so it will defer work to an interface instead. The in-memory
implementation of the BlabStorage class looks like that in listing 5.3. It keeps a static
instance of a list that is shared between all requests, so it uses locking to ensure that

The common instance
of B is called.

IBlabDb

Code that
uses DB

DB access
code

DB access
code

Entity
Framework

EF Core

Blabber BlabberCoreBlabber.Models

DB code on .NET
Framework depends
on Entity Framework.

DB code on .NET Core
depends on EF Core.

DB access
code is
passed as
IBlabDb.

DB access
code is
passed as
IBlabDb.

Figure 5.6 Using different technologies in common code with dependency injection

133Architectural changes

things don’t become inconsistent. We don’t care about the consistency of our Items
property because we only add items to this list, never remove them. Otherwise, it would
have been a problem. Note that we use Insert instead of Add in the Add() method
because it lets us keep posts in descending order by their creation date without resorting
to any sorting.

using System.Collections.Generic;

namespace Blabber.Models {
 public class BlabStorage {
 public IList<Blab> items = new List<Blab>();
 public IEnumerable<Blab> Items => items;
 public object lockObject = new object();
 public static readonly BlabStorage Default =
new BlabStorage();

 public BlabStorage() {
 }

 public void Add(Blab blab) {
 lock (lockObject) {
 items.Insert(0, blab);
 }
 }
 }
}

When we implement dependency injection, we remove everything related to in-memory
lists and use an abstract interface for anything related to the database instead. The new
version looks like listing 5.4. You can see how we remove anything related to the logic
of data storage, and our BlabStorage class actually became an abstraction itself. It looks
like BlabStorage doesn’t do anything extra, but as we add more complicated tasks,
we’re able to share some logic between our two projects. For the sake of the example,
this is okay.

 We keep the dependency in a private and read-only field called db. It’s a good
habit to mark fields with the readonly keyword if they won’t change after the object is
created, so the compiler can catch whether you or one of your colleagues accidentally
tries to modify it outside the constructor.

using System.Collections.Generic;

namespace Blabber.Models {
 public interface IBlabDb {
 IEnumerable<Blab> GetAllBlabs();
 void AddBlab(Blab blab);

Listing 5.3 Initial in-memory version of BlabStorage

Listing 5.4 BlabStorage with dependency injection

Creating an empty
list by default

We’re using lock object
to allow concurrency.

A default singleton instance
that’s used everywhere

The most recent item
goes to the top.

The interface that abstracts
away the dependency

134 CHAPTER 5 Rewarding refactoring

 }

 public class BlabStorage {
 private readonly IBlabDb db;

 public BlabStorage(IBlabDb db) {
 this.db = db;
 }

 public IEnumerable<Blab> GetAllBlabs() {
 return db.GetAllBlabs();
 }

 public void Add(Blab blab) {
 db.AddBlab(blab);
 }
 }
}

Our actual implementation is called BlabDb, which implements the interface IBlabDb
and resides in the project BlabberCore, rather than Blabber.Models. It uses an SQLite
(pronounced sequel-light) database for practical purposes because it requires no setup
of third-party software, so you can start running it right away. SQLite is God’s last gift
to the world before he gave up on humankind. Just kidding—Richard Kipp created it
before he gave up on humankind. Our BlabberCore project implements it in EF Core,
as in listing 5.5.

 You may not be familiar with EF Core, Entity Framework, or ORM (object-
relational mapping) in general, but that’s okay—you don’t have to be. It’s pretty
straightforward, as you can see. The AddBlab method just creates a new database
record in memory, creates a pending insertion to the Blabs table, and calls
SaveChanges to write changes to the database. Similarly, the GetAllBlabs method
simply gets all the records from the database, ordered by date in descending order.
Notice how we need to convert our dates to UTC to make sure time zone information
isn’t lost because SQLite doesn’t support DateTimeOffset types. Regardless of how
many best practices you learn, you’ll always encounter cases in which they just won’t
work. Then you’ll have to improvise, adapt, and overcome.

using Blabber.Models;
using System;
using System.Collections.Generic;
using System.Linq;

namespace Blabber.DB {
 public class BlabDb : IBlabDb {
 private readonly BlabberContext db;

 public BlabDb(BlabberContext db) {
 this.db = db;
 }

Listing 5.5 EF Core version of BlabDb

Receiving the dependency
in the constructor

Deferring work to the
component that does
the actual work

EF
 Core DB

context

Receiving context through
dependency injection

135Architectural changes

 public void AddBlab(Blab blab) {
 db.Blabs.Add(new BlabEntity() {
 Content = blab.Content,
 CreatedOn = blab.CreatedOn.UtcDateTime,
 });
 db.SaveChanges();
 }

 public IEnumerable<Blab> GetAllBlabs() {
 return db.Blabs
 .OrderByDescending(b => b.CreatedOn)
 .Select(b => new Blab(b.Content,
 new DateTimeOffset(b.CreatedOn, TimeSpan.Zero)))
 .ToList();
 }
 }
}

We managed to introduce a database storage backend to our project during our refac-
toring without disrupting the development workflow. We used dependency injection
to avoid direct dependencies. More importantly, our content is now persisted across
sessions and restarts, as figure 5.7 shows.

5.2.5 The final stretch

You can extract as many components as can be shared between the old and the new
project, but eventually, you’ll hit a chunk of code that can’t be shared between two
web projects. For example, our controller code doesn’t need to change between
ASP.NET and ASP.NET Core because the syntax is the same, but it’s impossible to
share that piece of code between the two because they use entirely different types.
ASP.NET MVC controllers are derived from System.Web.Mvc.Controller, while

Converting our DateTimeOffset
to a DB-compatible type

Converting DB-time
to DateTimeOffset

Figure 5.7 Screenshot of Blabber
running on a SQLite database

136 CHAPTER 5 Rewarding refactoring

ASP.NET Core controllers are derived from Microsoft.AspNetCore.Mvc.Controller.
There are theoretical solutions to this, like abstracting away the controller implemen-
tation behind an interface and writing custom classes that use that interface instead of
being direct descendants of the controller class, but that’s just too much work. When
you come up with a supposedly elegant solution to a problem, you should always ask
yourself, “Is it worth it?” Elegance in engineering must always take cost into account.

 That means that at some point, you’ll have to risk conflicting with other developers
and transfer the code to the new code base. I call that the final stretch, which will take a
shorter time thanks to your previous preparatory work on refactoring. Because of your
work, the future refactor operations will take less time because you’ll end up with a
compartmentalized design at the end of the process. It’s a good investment.

 In our example, the models component is an unusually small part of our project,
therefore makes our savings negligible. However, it’s expected that large projects have
a significant amount of shareable code, which might reduce your work factor
considerably.

 In the final stretch, you need to transfer all the code and assets to your new project
and then make everything work. I added a separate project to the code examples
called BlabberCore, which contains the new .NET code so you can see how some con-
structs translate to .NET Core.

5.3 Reliable refactoring
Your IDE tries really hard so you don’t break the code simply by randomly choosing
menu options. If you manually edit a name, any other code that references the name
will break. If you use the rename function of your IDE, all references to the name will
be renamed as well. That still is not always a guarantee. There are many ways you can
refer to a name without the compiler knowing. For example, it’s possible to instantiate
a class using a string. In our example microblogging code, Blabber, we refer to every
piece of content as blabs, and we have a class that defines a content called Blab.

using System;

namespace Blabber
{
 public class Blab
 {
 public string Content { get; private set; }
 public DateTimeOffset CreatedOn { get; private set; }
 public Blab(string content, DateTimeOffset createdOn) {
 if (string.IsNullOrWhiteSpace(content)) {
 throw new ArgumentException(nameof(content));
 }
 Content = content;
 CreatedOn = createdOn;
 }
 }

Listing 5.6 Class representing a content

The constructor
ensures there are
no invalid blabs.

137Reliable refactoring

}We normally instantiate classes using the new operator, but it’s also possible to instan-
tiate the Blab class using reflection for certain purposes, such as when you don’t
know what class you’re creating during compile time:

var blab = Activator.CreateInstance("Blabber.Models",
 "Blabber", "test content", DateTimeOffset.Now);

Whenever we refer to a name in a string, we risk breaking the code after a rename
because the IDE cannot track the contents of strings. Hopefully, that’ll stop being a
problem when we start doing code reviews with our AI overlords. I don’t know why in
that fictional future it’s still us who are doing the work and AI just grades our work.
Weren’t they supposed to take over our jobs? It turns out they are much more intelli-
gent than we give them credit for.

 Until the AI takeover of the world, your IDE can’t guarantee a perfectly reliable
refactoring. Yes, you have some wiggle room, like using constructs like nameof() to
reference types instead of hardcoding them into strings, as I discussed in chapter 4,
but that helps you only marginally.

 The secret to reliable refactoring is testing. If you can make sure your code has good
test coverage, you can have much more freedom in changing it. Therefore, it’s usually
a wise idea to start a long-term refactoring project by creating missing tests for the rel-
evant piece of code first. If we take our architecture change example in chapter 3 as an
example, a more realistic road map would involve adding missing tests to the whole
architecture. We skipped that step in our example because our code base was extremely
small and trivial to test manually (e.g., run the app, post a blab, and see if it appears).
Figure 5.8 shows a modified version of our road map that includes the phase of adding
tests to our project so it can be refactored reliably.

We extract our
common logic
that can be
shared between
architectures.

We keep our projects side by
side so we can test them
without disrupting existing
projects.

After fixing the
possible conflicts,
we deploy our
new project.

We introduce tests
for our project.

Our initial
project

Blabber Blabber

Blabber Blabber

Extracting common components

Blabber.Tests Blabber.TestsBlabber.TestsBlabber.Tests

Initial phase Adding tests

Blabber.Models Blabber.ModelsBlabber.Models

BlabberCore BlabberCore

Final switch

Figure 5.8 Reliable refactoring with tests

138 CHAPTER 5 Rewarding refactoring

5.4 When not to refactor
The good thing about refactoring is that it makes you think about ways to improve code.
The bad thing about refactoring is that at some point, it might become an end rather
than a means, pretty much like Emacs. For the uninformed, Emacs is a text editor, a
development environment, a web browser, an operating system, and a post-apocalyptic
role-playing game because someone just couldn’t hold their horses. The same can
happen with refactoring. You start seeing every piece of code as a place for a potential
improvement. It becomes such an addiction that you create excuses to make a change
for the sake of making the change, but you don’t consider its benefits. Not only does
this waste your time, but it also wastes your team’s because they need to adapt to every
change you introduce.

 You should essentially develop an understanding of good-enough code and worthi-
ness when you’re working in the streets. Yes, code can rust away when it’s left
untouched, but good-enough code can bear that burden easily. The criteria you need
for good-enough code are

 Is your only reason for refactoring “This is more elegant?” That’s a huge red flag
because elegance is not only subjective, but also vague and therefore meaning-
less. Try to come up with solid arguments and solid benefits, like “This will make
this component easier to use by reducing the amount of boilerplate we need to
write every time we use it,” “This will prepare us for migrating to the new library,”
“This will remove our dependency to the component X,” and so forth.

 Does your target component depend on a minimal set of components? That
indicates that it can be moved or refactored easily in the future. Our refactoring
exercises may not benefit us for identifying rigid parts of the code. You can
postpone it until you come up with a more solid improvement plan.

 Does it lack test coverage? That is an immediate red flag to avoid refactoring,
especially if the component also has too many dependencies. Lack of testing for
a component means you don’t know what you’re doing, so stop doing it.

 Is it a common dependency? That means that even with a good amount of test
coverage and good justification, you might be impacting the ergonomics of
your team by disrupting their workflow. You should consider postponing a
refactor operation if the gains you seek aren’t sufficient to compensate the cost.

If any of those criteria is met, you should consider avoiding refactoring, or at least
postponing it. Prioritization work is always relative, and there are always more fish in
the sea.

139Summary

Summary
 Embrace refactoring because it provides more benefits than what’s on the

surface.
 You can perform large architectural changes in incremental steps.
 Use testing to reduce the potential problems ahead in large refactoring work.
 Estimate not only costs, but also risks.
 Always have either a mental or a written road map for incremental work when

you’re working on large architectural changes.
 Use dependency injection to remove roadblocks like tightly coupled dependen-

cies when refactoring. Reduce code rigidity with the same technique.
 Consider not doing a refactor when it costs more than it yields.

140

Security by scrutiny

Security has been a commonly misunderstood problem as early as that unfortunate
incident at Troy, an ancient city in what is now western Turkey. The Trojans thought
their walls were impenetrable, and they felt secure, but like modern social plat-
forms, they underestimated the social-engineering abilities of their adversaries.
The Greeks withdrew from battle and left a tall wooden horse as a gift. The Trojans
loved the gesture and took the horse inside their walls to cherish it. At midnight,
the Greek soldiers hidden in the hollow horse got out and opened the gates, letting
the Greek armies in and causing the downfall of the city. At least, that’s what we
know from the postmortem blog posts of Homeros, possibly the first instance of
irresponsible disclosure in history.

 Security is both a broad and deep term, as in the story of the Trojans, which involves
human psychology. That’s the first perspective you need to embrace: security is never

This chapter covers
 Understanding security as a whole

 Leveraging threat models

 Avoiding common security pitfalls like SQL
injection, CSRF, XSS, and overflows

 Techniques to reduce attackers’ capabilities

 Storing secrets correctly

141Beyond hackers

about only software or information—it’s about people and the environment as well.
Because of the vastness of the subject, this chapter can never make you an expert on
security, but it will make you a better developer with a better understanding of it.

6.1 Beyond hackers
Software security is usually thought of in terms of vulnerabilities, exploits, attacks, and
hackers. But security can be breached because of other, seemingly irrelevant factors.
For example, you could be accidentally logging usernames and passwords in your web
logs, which could be stored on much less secure servers than your database. It has
happened to billion-dollar companies like Twitter, which learned that they were stor-
ing plaintext passwords in their internal logs,1 and an adversary could immediately
start using passwords they accessed as opposed to cracking hashed passwords.

 Facebook provided an API for developers that let them browse through users’
friends lists. A company used that information to generate political profiles of people
to influence US elections with precision-targeted ads back in 2016. It was a feature
that worked exactly as it was designed to. There was no bug, no security hole, no back-
doors, and no hackers involved. Some people created it, and other people used it, but
the acquired data let people be manipulated against their will, thus causing harm.

 You’d be surprised to learn how many companies leave their databases accessible
on the internet with no password. Database technologies like MongoDB and Redis
don’t authenticate users by default—you have to enable authentication manually.
Obviously, many developers don’t do that, which causes massive data leaks.

 There is a famous motto among developers and DevOps people: “Don’t deploy on
Fridays.” The logic is simple. If you screw something up, no one will be around to han-
dle it during the weekend, so you should undertake high-risk activities closer to the
start of the week. Otherwise, it can get really bad both for the staff and the company.
The existence of weekends isn’t a security vulnerability either, but it can still lead to
catastrophic outcomes.

1 See “Twitter says bug exposed user plaintext passwords,” https://www.zdnet.com/article/twitter-says-bug-
exposed-passwords-in-plaintext/.

Postmortems and responsible disclosures
A postmortem blog post is a long article usually written after a terribly embarrassing
security incident to make it appear that the management is transparently providing
as many details as possible while really trying to hide the fact that they have screwed up.

Responsible disclosure is the practice of publishing a security vulnerability after pro-
viding the company, which didn’t invest in identifying the problem in the first place,
ample time to fix the problem. Companies invented the term to load the act with an
emotional burden so the researcher would feel guilty. Security vulnerabilities them-
selves are always called incidents, never irresponsible. I believe that responsible dis-
closure should have been called something like timed disclosure from the get-go.

https://www.zdnet.com/article/twitter-says-bug-exposed-passwords-in-plaintext/
https://www.zdnet.com/article/twitter-says-bug-exposed-passwords-in-plaintext/

142 CHAPTER 6 Security by scrutiny

 That brings us to the relationship between security and reliability. Security, like
testing, is a subset of the reliability of your services, of your data, and of your business.
When you look at security from the perspective of reliability, it becomes easier to
make security-related decisions because you master it along the way when you’re look-
ing at other aspects of reliability such as testing, as I’ve discussed in previous chapters.

 Even if you have zero accountability for the security of the products you develop,
taking the reliability of your code into account helps you make decisions to avoid head-
aches in the future. Street coders optimize their future too, not just their now. The goal
is to do minimal work to achieve great success in your lifetime. Seeing security-related
decisions as technical debt for reliability helps you optimize your lifetime as a whole. I
recommend this for every product, regardless of potential security impacts. For exam-
ple, you could be developing an internal dashboard for your access logs that will be
accessed only by trusted people. I still suggest you apply best practices of secure soft-
ware, like using parameterized queries for running SQL statements, which I will discuss
in detail later. It might seem like slightly more work, but it helps you develop the habit,
which will help you in the long run. A shortcut isn’t really a shortcut if it prevents you
from improving yourself.

 Since we’ve already established that developers are humans, you need to accept
that you carry the weaknesses of humans, primarily, miscalculating the probabilities. I
know this as a person who used password as my password on almost all platforms over
several years in the early 2000s. I thought nobody would think that I was that dumb. I
turned out to be right; nobody noticed that I was that dumb. Luckily, I’ve never been
hacked, at least not by having my password compromised, but I wasn’t a target of
many people around that time, either. That means I correctly, or randomly, hit the
nail on the head with my threat model.

6.2 Threat modeling
A threat model is a clear understanding of what could possibly go wrong in the context
of security. The assessment of a threat model is commonly expressed as, “Nah, it’ll be
fine” or “Hey, wait a second….” The goal of having a threat model is to prioritize the
security measures you need to take, optimize cost, and increase effectiveness. The
term itself sounds very technical because the process can be intricate, but understand-
ing a threat model isn’t.

 A threat model effectively lays out what’s not a security risk or what’s not worth
protecting against. It’s similar to not worrying about a catastrophic drought in Seattle
or the sudden emergence of affordable housing in San Francisco, even though these
are still legitimate possibilities.

 We actually develop threat models unconsciously. For example, one of the most
common threat models could be “I’ve got nothing to hide!” against threats like hack-
ing, government surveillance, or an ex-partner who was supposed to have become an
adult a decade ago. That means we don’t really care if our data is compromised and
used for whatever purpose, mostly because we lack the imagination to think about
how our data can be used. Privacy is like a seatbelt in that sense: you don’t need it 99%

143Threat modeling

of the time, but when you need it, it can save your life. When hackers learn your SSN
and apply for credit applications on your behalf and take all your money, leaving you
with huge debt, you slowly start to realize that you might have one or two things to
hide. When your cell phone data mistakenly matches a murder’s time and coordi-
nates, you become the greatest proponent of privacy.

 Actual threat modeling is slightly more complicated. It involves analyzing actors, data
flow, and trust boundaries. Formal methods have been developed to create threat mod-
els, but unless your primary role is a security researcher and you’re responsible for the
security of the institution you’re working at, you don’t need a formal approach to threat
modeling, but you do need to have the basic understanding of it: prioritizing security.

 First, you need to accept the rule of the land: security problems will hit your app or
platform sooner or later. There is no running away from it. “But this is just an internal
website,” “But we’re behind a VPN,” “But this is just a mobile app on an encrypted
device,” “Nobody knows about my site anyway,” and “But we use PHP” don’t really
help your case—especially the last one.

 The inevitability of security problems also emphasizes the relativity of all things.
There is no perfectly secure system. Banks, hospitals, credit-scoring companies,
nuclear reactors, government institutions, cryptocurrency exchanges, and almost all
other institutions have experienced a security incident with varying degrees of sever-
ity. You’d think your website about rating the best cat picture would be exempt from
that, but the thing is, your website can be used as leverage for sophisticated attacks.
One of the users’ passwords that you store might contain the same login information
as the nuclear research facility that person works at, because we’re not really good at
remembering passwords. You can see how that can be a problem in figure 6.1.

Extremely
secure data
for nuclear

reactor
access codes

Layers of encryption

Firewall, IDS, heat-seeking turrets

LOGIN
DoYouLikeCats.com

passwords accessible in
plain text on internet

James, using the same very long and complicated
password on both websites and assuming he's being

secure this way. I hope you're happy now, James.

Hacker,
putting
two and

two
together

HMM...

Figure 6.1 Security
isn’t always about
software.

144 CHAPTER 6 Security by scrutiny

But mostly, hackers don’t even know when they hack your website, because they don’t
individually walk through all the websites in the world. They use bots to do all the
hard work of scanning for vulnerabilities and then just collect the data afterwards.
Well, robots are taking our jobs, after all.

6.2.1 Pocket-sized threat models

You may not be supposed to do all the threat modeling for your application. You may
not be affected by security incidents, either. But you’re expected to write minimally
secure code, and that’s not too hard if you follow certain principles. You basically
need a mini threat model for your application. It encompasses these elements:

 The assets of your application. Fundamentally, anything that you don’t want to lose
or leak is an asset, including your source code, design documents, database, pri-
vate keys, API tokens, server configurations, and your Netflix watchlist.

 The servers that assets reside on. Every server gets accessed by some parties, and
every server accesses some other servers. It’s important for you to know these
relationships to understand potential problems.

 Information sensitivity. You can assess this by asking yourself several questions:
“How many people and institutions would be harmed if this information
became public?,” “What’s the seriousness of potential harm?,” and “Have I been
in a Turkish prison?”

 Access paths to resources. Your application has access to your database. Is there any
other way to access it? Who has access? How secure are they? What happens if
somebody tricks them into accessing the DB? Can they delete the production
database by executing a simple ████ ████████?2 Do they only have access
to source code? Thus, anyone who has access to source code also has effective
access to the production DB.

You can draw a basic threat model on a piece of paper by using that information. It
might look like figure 6.2 for anyone who uses your application or website. You can
see in the figure that everyone has access to only the mobile app and the web servers.
On the other hand, the web servers have access to most critical resources like the data-
base and are exposed to the internet. That means your web servers are the riskiest
assets that are exposed to the outside world, as shown in figure 6.2.

 Besides regular users, you also have other types of users with different access privi-
leges to your servers and the assets they contain. In figure 6.3, you can see how different
types of roles can access different servers. Because the CEO loves to access and have
control over every little thing, the easiest way to penetrate this server is to send the CEO
an email. You’d expect other roles to have limited access to only the resources that they
need access to, but that’s not usually the case, as shown in figure 6.3.

2 Redacted. Classified information. Therefore, our databases are secure.

145Threat modeling

Web app

DBMobile app

Source code

API
Everyone on the internet,

yes, including hackers

Logs

Not accessible over
the internet (behind VPN)

Publicly accessible

Anyone on the internet
can access web servers,
so they’re untrusted.

Web servers can
access these
servers using the
internal network,
which is trusted.

API is accessible by
curious third parties.

Figure 6.2 Accessibility of servers on a network

Figure 6.3 Server accessibility based on privileged user types

Web app

DBMobile app

Source code

API

Logs

DBA

DB admins only
have access to the DB.

Developers

Ideally, developers don’t
have access to production
servers, but the streets
aren’t ideal.

Control freak
CEO

System
admin

146 CHAPTER 6 Security by scrutiny

When you look at this model from 20,000 feet, it’s obvious that sending an email to
the CEO that asks them to log into the VPN to check something and then redirects
them to your phishing website will give a malicious actor access to everything about a
company. A threat model makes such things obvious and helps you understand the
risk factors.

 If your control freak CEO is the first candidate to harm your business, the code
running on the web servers is the second—and not just your code, either. You could
have a delayed security update on the server, causing it to be taken over. But nothing’s
worse than just typing some text on a form on the website to gain access or destroy all
the data in the database.

 After your CEO, your web application or API is one of the easiest entry points for a
hacker or a bot to attain their goal. That’s because your application is unique. It only
exists on your servers. You’re the only one who’s tested it. All the third-party compo-
nents on your servers have been through millions of iterations of testing, bug fixing,
and security audits. Even if you had the budget to do all that, you wouldn’t have the
time in the short run.

 The goal of a hacker or a bot can vary from simply stopping your service because
it’s a Rent-a-DoS (denial of service) hired by your competitor because they have no
other ways to compete with you, to extracting user data to acquire some valuable
resource somewhere with the same password, to just accessing private data on your
servers.

 When you have a list of possible threats, you can start addressing them by closing
the holes. Because your web app or API is one of the popular candidates, it’s import-
ant that you know how to write secure code while you are writing web applications.

6.3 Write secure web apps
Every application is unique, but you can use some really easy-to-apply practices during
your coding to make your app more resilient to security problems. As street coders,
we’ll also ask when those practices are the best and when they are not the best. Let’s
examine the popular attacks on web applications that we can prevent by changing
how we write and design our programs.

6.3.1 Design with security in mind

Security is hard to retrofit, mostly because of all the design decisions that led you to
write insecure code in the first place. To change the security properties of an applica-
tion, you might need to reassess your design. Therefore, it’s important to take security
into account when you’re designing it. Go over these steps:

1. Review your written or mental threat model. Understand the risks, the costs of
making them secure now, and the costs of making them secure later.

2. Decide where you will store your secrets (DB passwords, API keys) for your app.
Make it a hard policy. Assume your source code is accessible to everyone. I will
go over the best practices for storing secrets later in this chapter.

147Write secure web apps

3. Design for the least privilege. A code ideally shouldn’t require any more privi-
lege than is necessary to accomplish its task. For example, don’t give your app
DB administrator privileges if your app doesn’t need to schedule a periodic DB
recovery operation. If only a few tasks need higher privileges, consider compart-
mentalizing them into a separate, isolated entity, such as a separate app. Run
web apps under the least privileged accounts possible.

4. Apply that principle to your entire organization. Employees shouldn’t have
access to resources that they don’t need to perform their daily tasks. CEOs
shouldn’t have access to the DB or to any servers at all. That’s not because
nobody can be trusted, but because their access can be compromised by exter-
nal parties.

When you have accomplished these steps before writing a single line of code for your
new app, or even your new feature, you’ll be much better off in the long run.

 In the next sections, some of the topics are only applicable for web/API develop-
ment, and the examples are usually specific to a single library. If you’re not doing any-
thing remotely accessible, you can mostly skip to the section about storing user
secrets. Otherwise, keep reading.

6.3.2 Usefulness of security by obscurity

Software security is a race against time. Despite how secure you think your software is,
it comes down to how secure people are and how secure everything that surrounds
your software is. Every security measure can eventually be broken. It used to be esti-
mated that it would take longer than the lifetime of the universe to break a 4096-bit
RSA key, but it turned out that it only took until the production of a quantum com-
puter. That means the sole purpose of every security measure is to gain you time, to
make attackers’ work hard.

 Information security experts loathe security by obscurity. As Benjamin Franklin
said, “Those who try to achieve security by obscurity deserve neither security nor
obscurity.” Okay, he may not have said that exactly, but that’s close enough. The rea-
son for the opposition to security by obscurity is that it doesn’t buy you time, or per-
haps it does, but only marginally. What experts object to is the belief that obscurity is
sufficient. It isn’t, and it’s never effective by itself. You should never prioritize it, and
you should only employ it when you have available resources. But in the end, it may
buy you marginal security.

 That said, let’s get this fact straight: marginal security isn’t security. It’s a temporary
bandage that might keep your project up while it reaches a certain level of growth. In
the first year of Eksi Sozluk, I remember keeping the administration interface behind
an obscure URL with no authentication whatsoever. Let me put that into context: it
was 1999, the website had 1000 users at most, and I didn’t share the URL with anyone.
Instead of investing a lot in an elaborate authentication and authorization mecha-
nism, I focused on the website dynamics that were relevant to users. I definitely knew

148 CHAPTER 6 Security by scrutiny

that it was only a matter of time before someone would find it out, though, so I
upgraded it to an authenticated system as soon as I could.

 Similarly, the web has run over HTTP protocol for a long time and used a Basic
authentication scheme that didn’t encrypt passwords, just encoded them in Base64.3 It
was the living testament to security by obscurity. Yes, no sane security expert recom-
mended it, but many websites used it, whether their developers knew the risks or not.
If you were on the same network with the user, like a public Wi-Fi access point, you
could easily extract passwords and web traffic from the sessions of those who used
them. Eventually, man-in-the-middle (MITM) attacks and password skimming applica-
tions became so prevalent that there was a huge push in the last decade to switch to
HTTPS, HTTP/2, TLS 1.3, and more secure authentication protocols like OAuth2.
Security by obscurity worked for decades right in front of us.

 That brings us to the point: prioritize security based on your threat model, and if your
model permits it, security by obscurity can work for you, just as posting a “Beware of the
dog” sign on your fence can reduce the risk of robberies, even if you don’t have a dog.

 Perfect security isn’t attainable, and you’ll always encounter tradeoffs between user
experience and security, like how the chat app Telegram chose a worse security model
than WhatsApp did, but it provides much better usability, so people are switching to it
even when they’re aware of the consequences. It’s really important that you have the
same level of awareness of the consequences of the tradeoff decisions that you make.
Simply rejecting every measure under the umbrella excuse of “Hey, security by obscu-
rity is bad” doesn’t help you.

 That said, real security is getting cheaper. You had to buy $500 SSL certificates to
get your website up and running with HTTPS, but now you can do it completely for
free by using certificates from the Let’s Encrypt initiative (Let’s Encrypt: https://
letsencrypt.org). Having a secure authentication system is now only about plugging a
library into your project. Make sure that you’re not exaggerating the requirements of
getting good security and are not just making excuses to use security by obscurity to
have really bad security. Always prefer real security over security by obscurity when the
difference in effort is marginal and the risks are considerable. Obscurity can’t buy you
real security, but it can occasionally buy you time until you sort things out.

6.3.3 Don’t implement your own security

Security is complex. You should never write your own implementation of a security
mechanism, be it hashing, encryption, or throttling. It’s perfectly okay to write code as
an experiment, but don’t use your own security code in production. That advice is
also commonly called “Don’t roll your own crypto.” Usually, security-related specifica-
tions expect the reader to understand the requirements of developing secure soft-
ware, and a regular developer can miss critical details while implementing their own,
essentially creating zero security.

3 Base64 is a binary encoding method that converts unprintable characters into unreadable characters.

https://letsencrypt.org
https://letsencrypt.org
https://letsencrypt.org

149Write secure web apps

 Take hashing, for example. Even a team of experts on cryptography has a hard
time creating a cryptographically secure hash algorithm that has no weaknesses.
Almost any hash algorithm before SHA2 has serious security weaknesses.

 I don’t expect you to become so adventurous that you’ll try to write your own hash-
ing algorithm, but would you have guessed that you shouldn’t even implement your
own string comparison function because it’s insecure? I’ll go into the details in section
6.3 about storing secrets.

 You can still create defenses against vulnerability simply by changing how you do
daily work without implementing anything from scratch. I’ll go over these common
attack vectors, but it’s not an extensive list, but rather prioritized samples to show you
that attaining decent security may not require a huge effort on your part. You can be
as effective as you were before and write much more secure software.

6.3.4 SQL injection attacks

An SQL injection attack is a long-solved problem, but it’s still a popular way to com-
promise a website. It should have disappeared from the face of the Earth at about the
same time as George Lucas’ directing career, but somehow it’s persevered, unlike
George Lucas.

 The attack is quite simple. You have an SQL query running on your website. Let’s
say you want to find a user’s ID from the username given to view the profile of that
user, a common scenario. Say it looks like this:

SELECT id FROM users WHERE username='<username here>'

A straightforward approach to building this query with the given username as input is
to embed the username into a query using string manipulation. Listing 6.1 shows a
simple GetUserId function that takes a username as a parameter and builds the
actual query by concatenating strings. This is usually the beginner’s approach to build-
ing SQL queries, but it may look okay at first. The code basically creates a command,
sets its query to our query after substituting the given username, and executes it. It
returns the result as a nullable integer because a record may not exist at all. Also, note
that we concatenate strings, but we don’t do it in a loop, as I discussed in chapter 2.
This technique doesn’t have the redundant memory allocation overhead.

Optional return values
We specifically use a nullable return type in the GetUserId function in listing 6.1
instead of a pseudo identifier that denotes the absence of value, like -1 or 0. That’s
because the compiler can catch unchecked nullable return values in the caller’s code
and find programming errors. Had we used a regular integer value like 0 or -1, the
compiler wouldn’t know whether that’s a valid value. In C# versions before 8.0, the
compiler didn’t have these affordances. The future is now!

150 CHAPTER 6 Security by scrutiny

public int? GetUserId(string username) {
 var cmd = db.CreateCommand();
 cmd.CommandText = @"
 SELECT id
 FROM users
 WHERE name='" + username + "'";
 return cmd.ExecuteScalar() as int?;
}

Let’s run our function in our mind. Imagine running it with the value placid_turn. If
we clean up the extra whitespace, the executed SQL query would look like

SELECT id FROM users WHERE username='placid_turn'

Now, consider if the value of the username contains an apostrophe, something like
hackin'. Our query now would look like this:

SELECT id FROM users WHERE username='hackin''

Notice what happened there? We introduced a syntax error. That query would fail
with a syntax error, the SqlCommand class would raise an SqlException, and the user
would see an error page. That doesn’t sound so scary. Our hacker would only cause an
error. There’d be no impact to our service reliability or the security of our data. Now,
consider a username like ' OR username='one_lame'. This will also throw a syntax
error, but it will look like this:

SELECT id FROM users WHERE username='' OR username='one_lame''

The first apostrophe closed the quote, and we could continue our query with addi-
tional expressions. It’s getting scarier. You see, we can manipulate the query to see the
records we’re not supposed to see by simply eliminating the syntax error by adding
double dashes at the end of the username:

SELECT id FROM users WHERE username='' OR username='one_lame' --'

The double dashes mean an inline comment, which assumes the rest of the line is a
comment in SQL. It’s similar to doubles slashes (//) in all C-style languages, except
C—well, early versions of it, at least. That means the query runs perfectly and returns
the information for one_lame instead of placid_turn.

 We’re not limited to a single SQL statement, either. We can run multiple SQL
statements by separating them with a semicolon in most SQL dialects. With a long
enough username, you can do this:

SELECT id FROM users WHERE username='';DROP TABLE users --'

Listing 6.1 Naive retrieval of a user ID from the database

We build
the actual

query here. Retrieve result or null if
the record doesn’t exist.

151Write secure web apps

That query would delete the table users along with all the records in the table immedi-
ately unless there’s a lock contention or an active transaction causing a timeout.
Think about it—you can do this to a web application remotely by simply typing a spe-
cially crafted username and clicking a button. You can leak or lose your data. You
might be able to recover the lost data from a backup, depending on how good you are
at it, but you can’t put the leaked data back into the bottle.

WRONG SOLUTION TO SQL INJECTION

How would you consider fixing an SQL injection vulnerability in your app? The first
thing that comes to mind is escaping: replacing every single apostrophe character (')
with double apostrophes (''), so a hacker can’t close the quote that your SQL query
opens because double apostrophes are considered regular characters rather than syn-
tactic elements.

 The problem with this approach is that there isn’t a single apostrophe in the Unicode
alphabet. The one you escape has the Unicode point value of U+0027 (APOSTROPHE)
while, for example, U+02BC (MODIFIED LETTER APOSTROPHE) also represents an
apostrophe symbol, albeit for a different purpose, and it’s possible that the DB
technology you’re using might treat it as a regular apostrophe or translate all the other
apostrophe look-alikes to a character DB accepts. Thus, the problem comes down to the

Backups and the 3-2-1 backup rule
Remember that I discussed that regressions are the worst type of bugs that lose us
time, like destroying a perfectly built building only to build it from scratch, in earlier
chapters? Having no backups may be worse than that. A regression makes you fix a
bug again, while lost data makes you create the data from scratch. If it’s not your
data, your users will never bother creating it again. That’s one of the first lessons I’ve
learned in my development career. I was a very risk-taking (aka, dumb) person in my
early career. Back in 1992, I wrote a compression tool and tried it on its own source
code, replacing the original. The tool converted my whole source code into a single
byte, and its contents were 255. I’m still confident that there’ll be an algorithm in the
future to extract those densely packed bits, but I was careless. Version control sys-
tems weren’t a thing in personal development back then, either. I learned about the
importance of having backups right then.

I learned my second lesson about backups in early 2000. A year had passed since I
had created Eksi Sozluk, luckily without having any Y2K issues. I was convinced of
the importance of backups, but I used to get my hourly backups on the same server
and only copied those to a remote server once a week. One day, the disks on the
server burned—quite literally, they spontaneously combusted, and the data on them
was completely unrecoverable. That was when I understood the importance of back-
ups on separate servers. Later in my career, I learned that there was an unspoken
rule called the “3-2-1 backup rule” in the wild that states, “Have three separate back-
ups, two on separate media, and one at a separate location.” Obviously, developing
a sane backup strategy requires more thinking than that, and it might never be your
job, but that’s the minimum you might consider embracing.

152 CHAPTER 6 Security by scrutiny

fact that you can’t know the underlying technology well enough to do the escaping on
behalf of it correctly.

IDEAL SOLUTION TO SQL INJECTION

The safest way to solve an SQL injection problem is to use parameterized queries. Instead
of modifying the query string itself, you pass down an additional list of parameters,
and the underlying DB provider handles it all. The code in listing 6.1 looks like that in
listing 6.2 when applied with a parameterized query. Instead of putting the string as a
parameter in the query, we specify a parameter with @parameterName syntax and spec-
ify the value of this parameter in a separate Parameters object associated with that
command.

public int? GetUserId(string username) {
 var cmd = db.CreateCommand();
 cmd.CommandText = @"
 SELECT id
 FROM users
 WHERE username=@username";
 cmd.Parameters.AddWithValue("username", username);
 return cmd.ExecuteScalar() as int?;
}

Voila! You can send whatever character you want in the username, but there’s no way
you can change the query. There isn’t even any escaping happening anymore because
the query and the value of the parameters are sent in separate data structures.

 Another advantage of using parameterized queries is to reduce query plan cache pol-
lution. Query plans are execution strategies DBs develop when running a query for
the first time. The DB keeps this plan in the cache, and if you run the same query
again, it reuses the existing query. It uses a dictionary-like structure, so lookups are
O(1), really fast. But, like everything in the universe, a query plan cache has limited
capacity. If you send these queries to the DB, they’ll all have different query plan
entries in the cache:

SELECT id FROM users WHERE username='oracle'
SELECT id FROM users WHERE username='neo'
SELECT id FROM users WHERE username='trinity'
SELECT id FROM users WHERE username='morpheus'
SELECT id FROM users WHERE username='apoc'
SELECT id FROM users WHERE username='cypher'
SELECT id FROM users WHERE username='tank'
SELECT id FROM users WHERE username='dozer'
SELECT id FROM users WHERE username='mouse'

Because the size of the query plan cache is limited, if you run this query with enough
different username values, other useful query plan entries will be evicted from the

Listing 6.2 Using parameterized queries

Name of the parameter

We pass the actual
value here.

153Write secure web apps

cache and it will get filled up with these possibly useless entries. That’s query plan
cache pollution.

 When you use parameterized queries instead, your executed queries will all look
the same:

SELECT id FROM users WHERE username=@username
SELECT id FROM users WHERE username=@username
SELECT id FROM users WHERE username=@username
SELECT id FROM users WHERE username=@username
SELECT id FROM users WHERE username=@username
SELECT id FROM users WHERE username=@username
SELECT id FROM users WHERE username=@username
SELECT id FROM users WHERE username=@username
SELECT id FROM users WHERE username=@username
SELECT id FROM users WHERE username=@username

Since all queries have the same text, the DB will be using only a single query plan
cache entry for all the queries you run this way. Your other queries will have a better
chance of finding their spot in this place, and you will get better overall performance
with your queries in addition to being perfectly safe from SQL injections. And this is
all free!

 Like every recommendation in this book, you’ll still have to keep in mind that a
parameterized query isn’t a silver bullet. You might be tempted to say, “Hey, if it’s that
good, I’ll make everything parameterized!” But you shouldn’t unnecessarily parame-
terize, say, constant values because the query plan optimizer can find better query
plans for certain values. For example, you might want to write this query, although you
always use active as the value for status:

SELECT id FROM users WHERE username=@username AND status=@status

The query plan optimizer will think that you can send any value as status and will
pick a plan that works well enough for all possible values of @status. That might
mean using the wrong index for active and getting a worse-performing query. Hmm,
maybe a chapter about databases is in order?

WHEN YOU CAN’T USE PARAMETERIZED QUERIES

Parameterized queries are very versatile. You can even use a variable number of
parameters by naming them @p0, @p1, and @p2 in code and add parameter values in a
loop. Still, there might be cases when you can’t really use parameterized queries, or
you don’t want to, such as to avoid polluting the query plan cache again; or you might
need certain SQL syntax like pattern matching (think of LIKE operators and charac-
ters like % and _) that may not be supported by parameterized queries. What you can
do in this case is aggressively sanitize the text, rather than escaping.

 If the parameter is a number, parse it into a correct numeric type (int, float,
double, decimal, etc.) and use that in the query instead of placing it in the string

154 CHAPTER 6 Security by scrutiny

directly, even if that means unnecessarily converting between an integer and a string
more than once.

 If it’s a string but you don’t need any special characters or you only need a subset
of special characters, remove everything except the valid characters from the string.
This is nowadays called allow-listing, as in having a list of allowed elements instead of a
list of denied elements. This helps you avoid accidentally sneaking a malicious charac-
ter into your SQL queries.

 Some DB abstractions may not seem to support parameterized queries in the com-
mon way. Those can have alternative ways to pass parameterized queries. For example,
Entity Framework Core uses a FormattableString interface to perform the same
operation. A query similar to that in listing 6.2 would look like listing 6.3 in EF Core.
The FromSqlInterpolated function does a clever thing by using FormattableString
and C#’s string interpolation syntax together. This way, the library can use the string
template, replace arguments with parameters, and build a parameterized query
behind the scenes without you knowing it.

public int? GetUserId(string username) {
 return dataContext.Users
 .FromSqlInterpolated(

Listing 6.3 Parameterized query with EF Core

Interpolate me, complicate me, elevate me (courtesy of the band Rush)
In the beginning, there was String.Format(). You could substitute strings with it
without dealing with the messy syntax of string concatenation. For example, instead
of a.ToString() + "+" + b.ToString() + "=" + c.ToString(), you could just write
String.Format("{0}+{1}={2}" a, b, a + b). It’s easier to understand what the
resulting string will look like using String.Format, but which parameter corresponds
to which expression is not really straightforward. Then came string interpolation syn-
tax with C# 6.0, which let you write the same expression as $"{a}+{b}={a+b}". It’s
brilliant: it lets you understand what the resulting string will look like, and yet it’s clear
which variable corresponds where in the template.

The thing is that $.".." is pretty much syntactic sugar for String.Format(...,
...) syntax, which processes the string before calling the function. If we needed the
interpolation arguments in our function itself, we had to write new function signatures
similar to String.Format’s and call formatting ourselves, which complicates our
work.

Luckily, the new string interpolation syntax also allows automatic casting to the
FormattableString class that holds both the string template and its arguments.
Your function can receive the string and arguments separately if you change the type
of the string parameter to FormattableString. This leads to interesting uses like
delaying the text processing in logging libraries, or, like the example in listing 6.3, to
parameterized queries without processing the string. FormattableString is pretty
much the same in JavaScript’s template literals, which serve the same purpose.

Uses string interpolation to
create a parameterized query

155Write secure web apps

 $@"SELECT * FROM users WHERE username={username}")
 .Select(u => (int?)u.Id)
 .FirstOrDefault();
}

SUMMARY

Don’t use parameterized queries too much, mostly for user input. Parameterization is
powerful; it’s perfect for keeping your app secure and the query plan cache a decent
size simultaneously. Still, understand the gotchas of parameterization, like poor query
optimization, and avoid using it for constant values.

6.3.5 Cross-site scripting

I think cross-site scripting (I prefer XSS as a shorthand because the other alternative,
CSS, is also a popular styling language on the web) should have been called JavaScript
injection for dramatic effect. Cross-site scripting actually sounds like a competitive
sports category in programming, like cross-country skiing. If I didn’t know what it was,
I could easily be sold on the concept. “Wow, cross-site scripting. That sounds nice. I’d
love for my scripting to work across sites.”

 XSS is a two-phase attack. The first one is the ability to insert JavaScript code in the
page, and the second is to load a larger JavaScript code over the network and execute
it on your web page. The advantages of this are multiple. You can capture a user’s
actions, information, and even their session by stealing session cookies from another
session, which is called session hijacking.

SORRY, I CAN’T INJECT THAT, DAVE

XSS mainly stems from poorly encoded HTML. It resembles SQL injection in that
sense. Instead of providing an apostrophe in the user input, we can provide angled
brackets to manipulate HTML code. If we can modify the HTML code, we can manip-
ulate it to have <script> tags and provide JavaScript code inside.

 A simple example is the search feature of websites. When you search for something,
the results are listed on the resulting page, but if no results are found, there is usually an
error message that says, “Your search query for ‘flux capacitors for sale’ didn’t return any
results.” So what happens if we search for “<script>alert(‘hello!’);</script>”? If
the output isn’t properly encoded, there’s a chance that you can see something like figure
6.4.

Cast to
FormattableString
when passed to
FromSqlInterpolated

Makes our default value null
instead of zero for integers
by typecasting to nullableReturns the first value from

the query, if there is any

Figure 6.4 Your code runs on
someone else’s website, so what
can go wrong?

156 CHAPTER 6 Security by scrutiny

If you can inject a simple alert command, you can certainly inject more. You can read
the cookies and send them to another web page. You can even load whole JavaScript
code from a remote URL and run it on the page. That’s where the term “cross-site”
comes in. Allowing JavaScript code to send requests to third-party websites is regarded
as a cross-site request.

PREVENTING XSS
The easiest way to defend against XSS is to encode text so that special HTML charac-
ters are escaped. That way, they are represented with an equivalent HTML entity
instead of their own character, as table 6.1 shows. Normally, you shouldn’t need these
tables and can perform any encoding using existing, well-tested functions. This table
is just for your reference to recognize these entities when you see them in your
HTML. When escaped with HTML entities, user input won’t be regarded as HTML
and will be shown as plain text, as figure 6.5 shows.

Many modern frameworks actually encode HTML for regular text by default. Con-
sider the Razor template code in our own search engine, Fooble, in the following list-
ing. As you can see, we’re using @ syntax to directly include a value in our resulting
HTML page without performing any encoding at all.

<p>
 Your search for "@Model.Query"
 didn't return any results.
</p>

Table 6.1 HTML entity equivalents of special characters

Character Escaped HTML entity Alternative

& & &

< < <

> > >

" " "

' ' '

Listing 6.4 An excerpt from our search engine results page

Figure 6.5 When properly escaped, HTML can be quite harmless.

We use no extra
code for encoding.

157Write secure web apps

Even though we directly output the query string, there is no XSS error, as figure 6.6
shows. If you view the source code of the generated web page, you’ll see that it’s
quoted perfectly, as it is in the following listing.

<p>
 Your search for
 ➥ "<script>alert("hello!");</script>"
 didn't return any results.
</p>

Then why do we need to care about XSS at all? That’s because, again, programmers
are human. Despite the emergence of elegant templating technologies, there are
cases when you might still think that using raw HTML output can be good.

COMMON XSS PITFALLS

One popular pitfall is ignorance about the separation of concerns, such as keeping
HTML in your model. You might be tempted to return a string with some HTML
embedded in it because it’s easier to integrate logic into your page code. For example,
you might want to return a plain text or a link in your get method, depending on
whether the text is clickable. With ASP.NET MVC, it might feel easier to type this

return View(isUserActive
 ? $"{username}"
 : username);

and then this in the view

@Html.Raw(Model)

instead of creating a new class to hold active and username together, like this

public class UserViewModel {
 public bool IsActive { get; set; }
 public string Username { get; set; }
}

and then creating that model in the controller

Listing 6.5 Actual HTML source generated

Figure 6.6 We perfectly
avoid an XSS attack here.

Perfectly escaped, as all things should be

158 CHAPTER 6 Security by scrutiny

return View(new UserViewModel()
{
 IsActive = isUserActive,
 Username = username,
});

and creating conditional logic in the template to render the username properly:

@model UserViewModel
. . . other code here
@if (Model.IsActive) {

 @Model.Username

} else {
 @Model.Username
}

It might seem like a lot of work do things the right way when the only objective you
have is about writing less code. There are ways to avoid a lot of overhead, though. You
can even make your job much easier by switching to Razor Pages from ASP.NET MVC,
but if that’s not possible, you can do a lot on existing code as well. For example, you
can eliminate a separate model by using a tuple instead:

return View((Active: isUserActive, Username: username));

This way, you can keep the template code as is. That will save you from creating a new
class, although there are benefits to that, like reuse. You can get the same benefit from
new C# records by declaring a view model with a single line of code as immutable too!

public record UserViewModel(bool IsActive, string Username);

A Razor Pages application already helps you shorten your code because you don’t
need a separate model class anymore. Controller logic is encapsulated in the View-
Model class created in the page.

 If including HTML code in your MVC Controller or Razor Pages ViewModel can’t
be avoided, consider using HtmlString or IHtmlContent types instead, which let you
define well-encoded HTML strings with explicit declarations. If you had to create the
same scenario with HtmlString, it would look like listing 6.6. Since ASP.NET doesn’t
encode HtmlStrings, you wouldn’t even need to wrap it with the Html.Raw statement.

 In listing 6.6, you can see how we implement XSS-safe HTML output. We define
Username as IHtmlContent instead of a string. This way, Razor will directly use the
content of the string without encoding. The encoding is handled by HtmlContent-
Builder only for the parts you explicitly specified.

159Write secure web apps

public class UserModel : PageModel {
 public IHtmlContent? Username { get; set; }

 public void OnGet(string username) {
 bool isActive = isUserActive(username);
 var content = new HtmlContentBuilder();
 if (isActive) {
 content.AppendFormat("", username);
 }
 content.Append(username);
 if (isActive) {
 content.AppendHtml("");
 }
 Username = content;
 }
}

CONTENT SECURITY POLICY (CSP)
CSP is another weapon in the battle against XSS attacks. It’s an HTTP header that limits
the resources that can be requested from third-party servers. I find CSP hard to use
because the modern web involves many external resources on a website, whether it’s
fonts, script files, analytics code, or CDN content, for example. All those resources and
trusted domains are subject to change at any time. It’s hard to maintain a trusted list of
domains and keep it up to date. It’s hard to tackle its slightly cryptic syntax. It’s hard to
verify its correctness, too. Is your CSP correct if your website keeps working without
warnings, or is your policy too flexible? It can be a powerful ally, but I won’t risk con-
fusing you and herding you over a cliff by only skimming the subject. Whether you use
CSP or not, you should always take care of encoding your HTML output properly.

SUMMARY

XSS is easily avoided by not trying to cut corners like injecting HTML and bypassing
encoding completely. If you have to inject HTML, be extra careful about encoding the
values properly. If you think being XSS-conscious increases your code size, there are
ways to reduce the code overhead.

6.3.6 Cross-site request forgery

There is a reason why operations that modify the content on the web are performed
with the POST verb instead of GET in the HTTP protocol. You cannot produce a click-
able link to a POST address. It can only be posted once. If it fails, your browser warns
you if you need to submit it again. Consequently, posting to a forum, logging in, and
making a meaningful change are usually denoted with a POST. There are also DELETE
and PUT with a similar purpose, but they aren’t as commonly used, and they can’t be
triggered from an HTML form.

 This nature of POST makes us trust it more than we ought to. The weakness of POST
arises because the original form doesn’t have to reside on the same domain as the one

Listing 6.6 Using XSS-safe constructs for HTML encoding

This HTML-
encodes the
username only.

This also encodes the username.

No encoding is
applied here at all.

160 CHAPTER 6 Security by scrutiny

the POST request is made from. It can be on any web page on the internet. That lets
attackers make POST submissions by tricking you into clicking a link on their web
page. Let’s just assume that Twitter’s delete operation works like a POST operation at a
URL like https://twitter.com/delete/{tweet_id}.

 What happens if I put a website on my domain, streetcoder.org/about, and put a
form like that in the following listing without even using a single line of JavaScript?

<h1>Welcome to the super secret website!</h1>
<p>Please click on the button to continue</p>
<form method="POST"
 action="https://twitter.com/i/api/1.1/statuses/destroy.json">
 <input type="hidden" name="id" value="123" />
 <button type="submit">Continue</button>
</form>

Luckily, there is no tweet with the ID of 123, but if there was, and Twitter was just a
simple startup that didn’t know how to protect against CSRF, we would be able to
delete someone else’s tweet just by asking them to visit our shady website. If you can
use JavaScript, you can even send POST requests without requiring any click to any web
form element.

 The way to avoid this kind of problem is to use a randomly generated number for
every form generated that is replicated on both the form itself and on the website
response headers. Since the shady website can’t know those numbers and can’t manip-
ulate the web server response headers, it can’t really make its request pretend that it
came from the user. The good thing is that usually the framework you use covers for
you, so you just need to enable generation of tokens and verification of them on the
client side. ASP.NET Core 2.0 automatically includes them into forms, so you don’t
need to perform any action, but you need to make sure that those tokens are verified
in case you’re creating forms in a different way, such as in your own HTML helper. In
that case, you need to explicitly produce request forgery tokens in your template
using a helper like this:

<form method="post">
 @Html.AntiForgeryToken()
 ...
</form>

You need to make sure that it’s validated on the server side too. Again, this is normally
automatic, but in case you have it disabled globally, you can selectively enable it on cer-
tain controller actions or Razor Pages using the ValidateAntiForgeryToken attribute:

[ValidateAntiForgeryToken]
public class LoginModel: PageModel {
 ...
}

Listing 6.7 A completely innocent web form, really

161Draw the first flood

Since CSRF mitigation is already automatic in modern frameworks like ASP.NET
Core, you only need to know the basics to understand the benefits. But in case you
need to implement it yourself, it’s important that you know how and why it works.

6.4 Draw the first flood
Denial of service (DoS) is the common name for making your service not work. It can
simply be something that causes your server to stop, hang, or crash, or something that
can spike the CPU usage or saturate the available bandwidth. Sometimes the latter
type of attacks is called a flood. We’ll specifically look at floods and how we can resist
them.

 There isn’t a complete solution for floods because regular users in greater num-
bers can also bring down a website. It’s hard to distinguish a legitimate user from an
attacker. There are ways to mitigate DoS attacks so the attacker’s capabilities are
reduced. A popular one is captcha.

6.4.1 Don’t use captcha

Captcha is the bane of the web. It’s a popular way to separate the wheat from the
chaff, but it’s a great friction for humans. The idea is basically asking a mathematically
complex problem that a human can solve easily, but that automated software used in
attacks will have a hard time tackling, such as “What shall we have for lunch?”

 The problem with captcha is that it’s hard for humans, too. Consider “Mark all the
squares with traffic lights.” Do I just mark the squares that show the light bulb itself, or
do I also mark the enclosure of the traffic light? Do I trace the light pole too? How
about that graffiti-like art we’re supposed to read easily? Are those letters rn or just m?
Is 5 a letter? Why do you make me suffer? This experience is illustrated in figure 6.7.

Captcha is useful but harmful at the same time as a denial-of-service measure. You
don’t want UX friction during your application’s growth phase. When I first released
Eksi Sozluk in 1999, there wasn’t even a login. Anyone could write anything on the
website immediately using whatever nickname they wanted. That caused problems
shortly because people started to write using each other’s nicknames, but that was

Figure 6.7 Am I human?

162 CHAPTER 6 Security by scrutiny

after people started really loving it. Don’t make your users suffer until you get popular
enough. That’s when bots will discover your website and attack, but your users will tol-
erate slightly more pain because they already love your app.

 That point applies to all kinds of solutions that involve UX friction for a technical
problem. Cloudflare’s “Please wait for five seconds while we determine if you’re an
attacker or not” web page is similar. Fifty-three percent of visitors leave a web page
when they have to wait three seconds for it to load. You’re effectively losing users on
the mere chance that someone might find your website lucrative enough to attack and
saturate. Do you want to lose 53% of your visitors all the time, or lose all your visitors
for an hour once a month?

6.4.2 Captcha alternatives

Write performant code, cache aggressively, and use throttling when necessary. I’ve
already discussed the performance benefits of certain programming techniques, and
we have an entire chapter ahead of us that’s solely about performance optimization.

 There is a gotcha to all this. If you throttled based on an IP address, you’d be throt-
tling everyone from the same IP address, such as a business or a company. When you
grow beyond a certain extent, that might hinder your ability to serve requests quickly
enough to a significant portion of your users.

 There is an alternative to throttling: proof of work. You might have heard about
proof of work from cryptocurrencies. To make a request, your computer or your
device is required to solve a really hard problem that is guaranteed to take a certain
amount of time. One of the methods is integer factorization. Another proven method
is asking the computer the meaning of life, the universe, and everything. It’s known to
take some time.

 Proof of work consumes client resources extensively, which might impact battery
life and performance on slower devices. That might also impact user experience
badly, even worse than captcha.

 You can present more user-friendly challenges, such as a requirement of login after
your website passes the barrier of popularity. Checking authentication is cheap, but
registering to your website and confirming an email address definitely takes time.
Again, that’s a user friction. If you ask your users to do something before they can
access the content on your website, such as registering or installing the mobile app,
there is a high chance that the user will just swear and leave your website. When
you’re deciding about reducing an attacker’s capability, you need to consider those
pros and cons.

6.4.3 Don’t implement a cache

A dictionary is possibly the most popular structure used in web frameworks. HTTP
request and response headers, cookies, and cache entries are all kept in dictionaries.
That’s because, as I discussed in chapter 2, dictionaries are blazingly fast because they
have O(1) complexity. Lookups are instantaneous.

163Storing secrets

 The problem with dictionaries is that they’re so practical that we might decide to
just fire one up to keep a cache of something. There is even a ConcurrentDictionary
in .NET that is thread-safe, making it an attractive candidate for a hand-rolled cache.

 Regular dictionaries included in a framework aren’t usually designed for keys
based on user input. If an attacker knows which runtime you use, they can cause a
hash collision attack. They can send requests with many different keys that corre-
spond to the same hash code, causing collisions, as I’ve discussed in chapter 2, which
causes lookups to get closer to O(N) instead of O(1) and brings the application to its
knees.

 Custom dictionaries developed for web-facing components, such as SipHash, usu-
ally use a different hash code algorithm with better distribution properties and there-
fore less collision probability. Such algorithms can be slightly slower than regular hash
functions on average, but because of their resistance to collision attacks, they perform
better in worst cases.

 Dictionaries also don’t have an eviction mechanism by default. They grow indefi-
nitely. That might look okay when you test it locally, but it can fail spectacularly in pro-
duction. Ideally, a cache data structure should be able to evict older entries to keep
memory usage in check.

 Because of all these factors, consider leveraging an existing cache infrastructure,
preferably one provided by the framework, whenever you think, “Hey, I know, I’ll just
cache these in a dictionary.”

6.5 Storing secrets
Secrets (passwords, private keys, and API tokens) are the keys to your kingdom. They
are small pieces of data, yet they provide a disproportional amount of access. You’ve
got the password to the production DB? Then you’ve got access to everything. You’ve
got an API token? You can do whatever that API permits you to do. That’s why secrets
have to be part of your threat model.

 Compartmentalization is one of the best mitigations against security threats. Stor-
ing secrets safely is one way to achieve it.

6.5.1 Keeping secrets in source code

Programmers are great at finding the shortest path to a solution. That includes taking
shortcuts and cutting corners. That’s why putting a password in the source code is our
default tendency. We love rapid prototyping because we hate anything that causes fric-
tion to our flow.

 You might think that keeping secrets in source code is okay, because nobody other
than you has access to the code or because developers already have access to the pro-
duction DB passwords, and therefore keeping the secret in source code wouldn’t hurt.
The problem is that you don’t take the time dimension into account. In the long run,
all source code gets hosted on GitHub. Source code doesn’t get treated with the same
level of sensitivity as your production DB, but rather, it contains the keys to it. Your

164 CHAPTER 6 Security by scrutiny

customers can request the source code for contractual purposes. Your developers can
keep local copies of source code to review it, and their computers can get compro-
mised. Developers can’t keep production DB the same way because it’s usually too big
to handle and they associate a higher level of sensitivity with it.

RIGHT STORAGE

If you don’t have your secrets in your source code, how would the source code know
the secret? You can keep it in the DB itself, but that creates a paradox. Where do you
store the password to the DB, then? It’s also a bad idea because it unnecessarily puts
all protected resources in the same trust group with the DB. If you have the password
to the database, you have everything. Let’s say you’re running the Pentagon’s IT and
you keep nuclear launch codes in the employee database, because that database is
well protected. That creates an awkward situation when an accountant accidentally
opens the wrong table in the database. Similarly, your app might have API access to
more valuable resources than your database. You need to consider that disparity in
your threat model.

 The ideal way is to store secrets in a separate storage that’s designed for that pur-
pose, such as a password manager as cold storage and a cloud key vault (Azure Key
Vault, AWS KMS). If your web servers and DB are in the same trust boundary in your
threat model, you can simply add those secrets into environment variables on your
server. Cloud services let you set up environment variables through their administra-
tion interface.

 Modern web frameworks support various storage options for secrets, backed by the
operating system’s or the cloud provider’s secure storage facilities in addition to envi-
ronment variables that can directly map into your configuration. Let’s say you have
this configuration for your application:

{
 "Logging": {
 "LogLevel": {
 "Default": "Information"
 }
 },
 "MyAPIKey": "somesecretvalue"
}

You don’t want to keep MyAPIKey in your configuration because anyone with source
access would have access to the API key. So you go ahead and remove the key there
and pass it as an environment variable in the production environment. On a devel-
oper machine, instead of using the environment variable, you can use user secrets
instead. Using .NET, you can initialize and set up user secrets by running the dotnet
command:

dotnet user-secrets init –id myproject

165Storing secrets

That initializes the project to use the myproject id as an access identifier to relevant
user secrets. You can then add user secrets for your developer account by running this
command:

dotnet user-secrets set MyAPIkey somesecretvalue

Now, when you set up user secrets to be loaded in your configuration, the secrets will
be loaded from the user secrets file and will override the configuration. You can access
your secret API key the same way you access the configuration:

string apiKey = Configuration[“MyAPIKey”];

Cloud services like Azure or AWS let you configure the same secrets through their
environment variables or key vault configurations.

DATA SHALL BE LEAKED

The popular website Have I Been Pwned? (https://haveibeenpwned.com) is a notifica-
tion service for leaked passwords associated with email addresses. As of this writing, I
seem to have been pwned4 16 times in different data leaks. Data leaks. Data has leaked,
and data shall leak. You should always assume the risk of data going public and design
against it.

DON’T COLLECT DATA YOU DON’T NEED

Your data can’t be leaked if it doesn’t exist in the first place. Be aggressive about saying
no to collecting data except for data you don’t think your service could function with-
out. There are side benefits like less storage requirements, higher performance, less
data management work, and less friction for the user. For example, many websites
require first name and last name when registering. Do you really need that data?

 You may not be able to do without some data, like passwords. However, the respon-
sibility of having someone’s password is great because people tend to use the same
password across multiple services. That means if your password data leaks, the user’s
bank accounts might get compromised too. You might think that’s on the user for not
using a password manager, but you’re dealing with humans here. There are simple
things that you can do that prevent this from happening.

THE RIGHT WAY OF PASSWORD HASHING

The most common way to prevent passwords from being leaked is to use a hashing
algorithm. Instead of storing passwords, you store a cryptographically secure hash of
the password. We can’t use just any hashing algorithm, like GetHashCode() from chap-
ter 2, because regular hash algorithms are easy to break or cause collisions with. Cryp-
tographically secure hash algorithms are deliberately slow and resistant to several
other forms of attacks.

4 Pwned is a modified form of owned, as in being dominated by a hacker. It’s slang for having your ass handed
to you. Example: “I got pwned because I chose my birth date as my PIN.”

https://haveibeenpwned.com

166 CHAPTER 6 Security by scrutiny

 Cryptographically secure hash algorithms vary in their characteristics. For pass-
word hashing, the preferred method is to use an algorithm that uses multiple itera-
tions of the same algorithm many times to slow down the execution. Similarly,
modern algorithms may also require a lot of memory relative to the work they’re
doing to prevent attacks by custom manufactured chips specifically designed to crack
a certain algorithm.

 Never use single iteration hash functions, even if they are cryptographically secure,
such as SHA2, SHA3, and, God forbid, never MD5 or SHA1 because they have long
been broken. Cryptographic security property only ensures that the algorithm has
exceptionally low collision probability; it doesn’t ensure that they are resistant to
brute-force attacks. To get brute-force resistance, you need to ensure that the algo-
rithm will work really slowly.

 A common hash function that is designed to work slowly is PBKDF2, which sounds
like a Russian secret service subdivision, but stands for Password-Based Key Derivation
Function Two. It can work with any hash function because it only runs them in a loop
and combines the results. It uses a variant of the SHA1 hash algorithm, which is now
considered a weak algorithm and shouldn’t be used in any application anymore
because it’s getting easier to create a collision with SHA1 every day.

 Unfortunately, PBKDF2 can be cracked relatively quickly because it can be pro-
cessed in parallel on GPU, and there are specialized ASIC (custom chip) and FPGA
(programmable chip) designs for cracking it. You don’t want an attacker to try combi-
nations too quickly when they’re trying to crack your data that just leaked. There are
newer hash algorithms like bcrypt, scrypt, and Argon2 that are also resistant to GPU
or ASIC-based attacks.

 All modern brute-force resistant hash algorithms take either a difficulty coefficient
as a parameter or a number of iterations. You should make sure that your difficulty set-
tings aren’t so high that it becomes a DoS attack to attempt to log in on the website. You
probably shouldn’t aim for any difficulty that takes more than 100 ms on your produc-
tion server. I strongly recommend benchmarking your password hashing difficulty to
make sure it doesn’t hurt you because changing hash algorithms on the road is difficult.

 Modern frameworks like ASP.NET Core provide password hashing functionality
out of the box, and you don’t really even need to know how it works, but its current
implementation relies on PBKDF2, which is a bit behind in security, as I’ve discussed.
It’s important to make conscious decisions about proper hashing.

 When picking an algorithm, I recommend favoring one that’s supported by the
framework that you use. If that’s not available, then you should go for the most tested
one. Newer algorithms usually aren’t tested and verified as much as the older ones.

COMPARE STRINGS SECURELY

So you’ve picked an algorithm, and you store hashes of the passwords instead of the
passwords themselves. Now all you need to do is to read the password from the user,
hash it, and compare it with the password on the DB. Sounds simple, right? That could
easily be a simple loop comparison, as in listing 6.8. You can see that we implement a

167Storing secrets

straightforward array comparison. We first check the lengths, and then we iterate in a
loop to see if every element is equal. If we find a mismatch, we return immediately, so
we don’t bother to check the rest of the values.

private static bool compareBytes(byte[] a, byte[] b) {
 if (a.Length != b.Length) {
 return false;
 }
 for (int n = 0; n < a.Length; n++) {
 if (a[n] != b[n]) {
 return false;
 }
 }
 return true;
}

How can that code be not secure? The problem comes from our mini-optimization of
bailing out early when we find mismatched values. That means we can find out how long
the match is by measuring how quickly the function returns, as in figure 6.8, and we can
find the correct hash if we know the hash algorithm by producing passwords that cor-
respond to a certain first value of the hash, then the first two values, and so on. Yes, the
timing differences will be small, milliseconds, maybe nanoseconds, but they can still be
measured against a baseline. If they can’t be measured, measurements can be repeated
to get more accurate results. It’s way faster than trying every possible combination.

Listing 6.8 A naive comparison function for two hash values

Length mismatch check, just in case

Value mismatch

Success!

21
User’s

password hash
00 40 11 00 C0 ED B0

FF 4A BE 7C 9A 82 74 31
Hacker’s input,

no matches

Returns immediately (0ms)

21 4A BE 7C 9A 82 74 31
Hacker’s input,

first byte
matches

Returns after first byte (1ms)

21 00 BE 7C 9A 82 74 31
Hacker’s input,
first two bytes

match

Returns after second byte (2ms)

Figure 6.8 How fast
comparison can help
attackers figure out
your hash

168 CHAPTER 6 Security by scrutiny

To solve this, you need a comparison function that takes a constant time, as in listing
6.9. Instead of returning early, we keep a result value and keep comparisons going
even if the comparison fails. Thus, all our comparisons take a constant value, avoiding
leaking the hash values of users.

private static bool compareBytesSafe(byte[] a, byte[] b) {
 if (a.Length != b.Length) {
 return false;
 }
 bool success = true;
 for (int n = 0; n < a.Length; n++) {
 success = success && (a[n] == b[n]);
 }
 return success;
}

DON’T USE FIXED SALTS

Salts are additional values introduced into password-hashing algorithms to make val-
ues deviate even though they are for the same hash values. The reason is that you
don’t want the attacker to figure out all the same passwords by guessing only the hash
value of one. This way, even if every user’s password is hunter2, all users will have dif-
ferent hash values, making an attacker’s life harder.

 Developers can find using well-known values for hash salts—like a hash of a user’s
name, or a user’s identifier—that are secure enough because they’re usually easier to
generate than an array of random values, but that’s a completely unnecessary shortcut
for way less security. You should always use random values for salts, but not just regular
pseudorandom values, either. You need values generated by a CSPRNG (cryptograph-
ically secure pseudorandom number generator).

OH RANDOM, OH CHANCE!
Regular random values are generated with simple and predictable algorithms. Their
goal isn’t to create real unpredictability, but just an imitation of it. They’re okay if
you’re writing an unpredictable enemy in your game, and they’re okay for picking
today’s featured post on your website. They’re fast, but they aren’t secure. They can
either be predicted, or the search space for valid random values can be narrowed
down because they tend to repeat themselves in relatively shorter intervals. People
managed to figure out the random value generator algorithms of slot machines in
casinos in Las Vegas in the old days when the designers of those machines didn’t know
any better.

 You need cryptographically secure pseudorandom numbers because they’re
extremely hard to predict, as they use multiple strong entropy sources, like a
machine’s hardware components, and more complex algorithms. As a result, they’re
naturally slower, so they should usually only be used in the context of security.

Listing 6.9 Secure hash comparison

This is an exceptional case. It will
never be hit ideally, so we keep it.

We constantly update our result
variable without finishing early.

We return the final result.

169Storing secrets

 Many cryptographically secure hash libraries provide a hash generation function
that only receives the length of the salt, not the salt itself. The library takes care of
generating that random salt for you, and you can retrieve it from the results, as in list-
ing 6.10, which uses PBKDF2 as an example. We create an implementation of the
RFC2898 key derivation function. It’s a PBKDF2 with an HMAC-SHA1 algorithm. We
use the using statement because security primitives can use an operating system’s
unmanaged resources, and it’s good to have them cleaned up when they leave the
scope. We leverage a simple record to return both the hash and the newly generated
salt in a single package.

public record PasswordHash(byte[] Hash, byte[] Salt);

private PasswordHash hashPassword(string password) {
 using var pbkdf2 = new Rfc2898DeriveBytes(password,
 saltSizeInBytes, iterations);
 var hash = pbkdf2.GetBytes(keySizeInBytes);
 return new PasswordHash(hash, pbkdf2.Salt);
}

UUIDS AREN’T RANDOM

Universally unique identifiers (UUIDs), or globally unique identifiers (GUIDs), as they’re
called in the Microsoft universe, are random-looking numbers like 14e87830-bf4c-
4bf3-8dc3-57b97488ed0a. They used to be generated based on obscure data like a net-
work adapter’s MAC address or system date/time. Nowadays, they’re mostly random,
but they’re designed to be unique, not necessarily secure. They can still be predicted
because there is no guarantee that they’d be created using a cryptographically secure
pseudorandom number generator (CSPRNG). You shouldn’t rely on the randomness of
GUIDs, for, let’s say, generating an activation token when you’re sending out a confir-
mation email to your newly registered users. Always use CSPRNGs for generating
security-sensitive tokens. UUIDs may not be perfectly random, but they’re more
secure as identifiers than simple monotonic (incrementing one by one) integers.
There’s a possibility that an attacker can guess previous order numbers or how many
orders a store has received so far by looking at that number. That’s not possible with a
fully random UUID.

 On the other hand, fully random UUIDs have bad index scattering. Even if you
insert two consecutive records, they’d be placed at completely irrelevant spots in the
database index, causing slow sequential reads. To avoid that, new UUID standards,
namely, UUIDv6, UUIDv7, and UUIDv8, have emerged. Those UUIDs still have some
randomness, but they also contain timestamps that create much more uniform index
distribution.

Listing 6.10 Generating cryptographically secure random values

Our record that holds
hash and salt values

Creating an instance
of a hash generator

We generate the hash value here.

170 CHAPTER 6 Security by scrutiny

Summary
 Use either mental or paper threat models to prioritize security measures and

identify weaknesses.
 Design with security in mind first because retrofitting security can be hard.
 Security by obscurity isn’t real security, but it can be a real detriment. Prioritize

it as such.
 Don’t implement your own security primitives, even when it comes to compar-

ing two hash values. Trust well-tested and well-implemented solutions.
 User input is evil.
 Use parameterized queries against SQL injection attacks. If you can’t use param-

eterized queries for any reason, validate and sanitize user input aggressively.
 Make sure user input is properly HTML encoded when it’s included in the page

to avoid XSS vulnerabilities.
 Avoid captcha, especially in your growth phase, to deter DoS attacks. Try other

methods like throttling and aggressive caching first.
 Store secrets in separate secret stores rather than in the source code.
 Store password hashes in your database with strong algorithms that are

designed for the purpose.
 Use cryptographically secure pseudorandom numbers in security-related con-

texts, never GUIDs.

171

Opinionated optimization

Programming literature on optimization always starts with a well-known quote by
the famous computer scientist Donald Knuth: “Premature optimization is the root
of all evil.” Not only is the statement wrong, but it’s also always misquoted. First, it’s
wrong because everybody knows that the root of all evil is object-oriented program-
ming since it leads to bad parenting and class struggles. Second, it’s wrong because
the actual quote is more nuanced. This is almost another case of lorem ipsum,
which is gibberish because it is quoted from the middle of an otherwise meaningful
Latin text. Knuth’s actual statement is, “We should forget about small efficiencies,
say about 97% of the time: premature optimization is the root of all evil. Yet we
should not pass up our opportunities in that critical 3%.”1

This chapter covers
 Embracing premature optimization

 Taking a top-down approach to performance
problems

 Optimizing CPU and I/O bottlenecks

 Making safe code faster and unsafe code safer

1 Donald Knuth let me know that his quote in the original article had been revised and reprinted in his book
Literate Programming. Getting a personal response from him was one of the greatest highlights of my writing
process.

172 CHAPTER 7 Opinionated optimization

 I claim that premature optimization is the root of all learning. Don’t hold yourself
back from something you are so passionate about. Optimization is problem solving,
and premature optimization creates nonexistent, hypothetical problems to solve, just
like how chess players set up pieces to challenge themselves. It’s a good exercise. You
can always throw away your work, as I’ve discussed in chapter 3, and keep the wisdom
you gained. Exploratory programming is a legitimate way to improve your skills as
long as you’re in control of the risks and the time. Don’t deprive yourself of learning
opportunities.

 That said, people try to discourage you from premature optimization for a reason.
Optimization can bring rigidness to the code, making it harder to maintain. Optimiza-
tion is an investment, and its return heavily depends on how long you can keep it. If
specifications change, the optimizations you’ve performed may have you dug into a
hole that is painful to get out of. More importantly, you could be trying to optimize for
a problem that doesn’t exist in the first place, and making your code less reliable.

 For example, you could have a file-copying routine, and you might know that the
larger the buffer sizes you read and write at once, the faster the whole operation
becomes. You might be tempted to just read everything in memory and write it to get
the maximum possible buffer size. That might make your app consume unreasonable
amounts of memory or cause it to crash when it tries to read an exceptionally large
file. You need to understand the tradeoffs you’re making when you’re optimizing,
which means you must correctly identify the problem you need to solve.

7.1 Solve the right problem
Slow performance can be fixed in many ways, and depending on the exact nature of
the problem, the solution’s effectiveness and how much time you spend implement-
ing it can vary drastically. The first step to understanding the true nature of a perfor-
mance problem is to determine if there is a performance problem in the first place.

7.1.1 Simple benchmarking

Benchmarking is the act of comparing performance metrics. It may not help you iden-
tify the root cause of a performance problem, but it can help you identify its existence.
Libraries like BenchmarkDotNet (https://github.com/dotnet/BenchmarkDotNet)
make it extremely easy to implement benchmarks with safety measures to avoid statis-
tical errors. But even if you don’t use any library, you can use a timer just to understand
the execution time of the pieces of your code.

 Something I have always wondered about is how much faster the Math.DivRem()
function can be than a regular division-and-remainder operation. It’s been recom-
mended that you use DivRem if you’re going to need the result of the division and the
remainder at the same time, but I’ve never had the chance to test whether the claim
holds up until now:

int division = a / b;
int remainder = a % b;

https://github.com/dotnet/BenchmarkDotNet

173Solve the right problem

That code looks very primitive, and therefore it’s easy to assume that the compiler can
optimize it just fine, while the Math.DivRem() version looks like an elaborate function
call:

int division = Math.DivRem(a, b, out int remainder);

TIP You might be tempted to call the % operator the modulus operator, but
it’s not. It’s the remainder operator in C or C#. There is no difference
between the two for positive values, but negative values produce different
results. For example, –7 % 3 is –1 in C#, while it’s 2 in Python.

You can create a benchmark suite right away with BenchmarkDotNet, and it’s great
for microbenchmarking, a type of benchmarking in which you measure small and fast
functions because either you’re out of options or your boss is on vacation. Bench-
markDotNet can eliminate the measurement errors related to fluctuations or the
function call overhead. In listing 7.1, you can see the code that uses BenchmarkDot-
Net to test the speed of DivRem versus manual division/remainder operations. We
basically create a new class that describes the benchmark suite with benchmarked
operations marked with [Benchmark] attributes. BenchmarkDotNet itself figures out
how many times it needs to call those functions to get accurate results because a one-
time measurement or running only a few iterations of benchmarks is susceptible to
errors. We use multitasking operating systems, and other tasks running in the back-
ground can impact the performance of the code we’re benchmarking on these sys-
tems. We mark the variables used in calculation with the [Params] attribute to prevent
the compiler from eliminating the operations it deems unnecessary. Compilers are
easily distracted, but they’re smart.

public class SampleBenchmarkSuite {
 [Params(1000)]
 public int A;

 [Params(35)]
 public int B;

 [Benchmark]
 public int Manual() {
 int division = A / B;
 int remainder = A % B;
 return division + remainder;
 }

 [Benchmark]
 public int DivRem() {
 int division = Math.DivRem(A, B, out int remainder);
 return division + remainder;
 }
}

Listing 7.1 Example BenchmarkDotNet code

We’re avoiding compiler
optimizations.

Attributes mark the
operations to be
benchmarked.

We return values,
so the compiler
doesn’t throw away
computation steps.

174 CHAPTER 7 Opinionated optimization

You can run these benchmarks simply by creating a console application and adding a
using line and Run call in your Main method:

using System;
using System.Diagnostics;
using BenchmarkDotNet.Running;

namespace SimpleBenchmarkRunner {
 public class Program {
 public static void Main(string[] args) {
 BenchmarkRunner.Run<SampleBenchmarkSuite>();
 }
 }
}

If you run your application, the Benchmark results will be shown after a minute of
running:

Method	a	b	Mean	Error	StdDev
Manual	1000	35	2.575 ns	0.0353 ns	0.0330 ns
DivRem	1000	35	1.163 ns	0.0105 ns	0.0093 ns

It turns out Math.DivRem() is twice as fast as performing division and remainder oper-
ations separately. Don’t be alarmed by the Error column because it’s only a statistical
property to help the reader assess accuracy when BenchmarkDotNet doesn’t have
enough confidence in the results. It’s not the standard error, but rather, half of the
99.9% confidence interval.

 Although BenchmarkDotNet is dead simple and comes with features to reduce sta-
tistical errors, you may not want to deal with an external library for simple benchmark-
ing. In that case, you can just go ahead and write your own benchmark runner using a
Stopwatch, as in listing 7.2. You can simply iterate in a loop long enough to get a
vague idea about the relative differences in the performance of different functions.
We’re reusing the same suite class we created for BenchmarkDotNet, but we’re using
our own loops and measurements for the results.

private const int iterations = 1_000_000_000;

private static void runBenchmarks() {
 var suite = new SampleBenchmarkSuite {
 A = 1000,
 B = 35
 };

 long manualTime = runBenchmark(() => suite.Manual());
 long divRemTime = runBenchmark(() => suite.DivRem());

Listing 7.2 Homemade benchmarking

175Solve the right problem

 reportResult("Manual", manualTime);
 reportResult("DivRem", divRemTime);
}

private static long runBenchmark(Func<int> action) {
 var watch = Stopwatch.StartNew();
 for (int n = 0; n < iterations; n++) {
 action();
 }
 watch.Stop();
 return watch.ElapsedMilliseconds;
}

private static void reportResult(string name, long milliseconds) {
 double nanoseconds = milliseconds * 1_000_000;
 Console.WriteLine("{0} = {1}ns / operation",
 name,
 nanoseconds / iterations);
}

When we run it, the result is relatively the same:

Manual = 4.611ns / operation
DivRem = 2.896ns / operation

Note that our benchmarks don’t try to eliminate function call overhead or the over-
head of the for loop itself, so they seem to be taking longer, but we successfully
observe that DivRem is still twice as fast as manual division-and-remainder operations.

7.1.2 Performance vs. responsiveness
Benchmarks can only report relative numbers. They can’t tell you if your code is fast
or slow, but they can tell you if it’s slower or faster than some other code. A general
principle about slowness from a user’s point of view is that any action that takes more
than 100 ms feels delayed, and any action that takes more than 300 ms is considered
sluggish. Don’t even think about taking a full second. Most users will leave a web page
or an app if they have to wait for more than three seconds. If a user’s action takes
more than five seconds to respond, it might as well take the lifetime of the universe—
it doesn’t matter at that point. Figure 7.1 illustrates this.

 Obviously, performance isn’t always about responsiveness. In fact, being a respon-
sive app might require performing an operation more slowly. For example, you might
have an app that replaces faces in a video with your face using machine learning.
Because such a task is computationally intensive, the fastest way to calculate it is to do
nothing else until the job’s done. But that would mean a frozen UI, which would make
the user think something’s wrong and persuade them to quit the app. So instead of
doing the computation as fast as you can, you instead spare some of the computa-
tional cycles to show a progress bar, perhaps to calculate estimated time remaining
and to show a nice animation that can entertain users while they’re waiting. In the
end, you have slower code, but a more successful outcome.

We call the benchmarked
code here.

176 CHAPTER 7 Opinionated optimization

That means that even if benchmarks are relative, you can still have some understand-
ing of slowness. Peter Norvig came up with the idea in his blog2 of listing latency num-
bers to have a context of how things can be slower by orders of magnitude in different
contexts. I create a similar table with my own back-of-the-envelope calculations in
table 7.1. You can come up with your own numbers by looking at this.

Latency affects performance too, not just user experience. Your database resides on a
disk, and your database server resides on a network. That means that even if you write
the fastest SQL queries and define the fastest indexes on your database, you’re still
bound by the laws of physics, and you can’t get any result faster than a millisecond.
Every millisecond you spend eats into your total budget, which is ideally less than
300 ms.

2 “Teach Yourself Programming in Ten Years,” Peter Norvig, http://norvig.com/21-days.html#answers.

Table 7.1 Latency numbers in various contexts

Read a byte from Time

A CPU register 1 ns

CPU’s L1 cache 2 ns

RAM 50 ns

NVMe disk 250,000 ns

Local network 1,000,000 ns

Server on the other side of the world 150,000,000 ns

Time to response

Frustration

“Huh?”

“My phone
is slow.”

“This app
is slow.”

“I hate
everything

and everyone.”

300 ms 600 ms 1200 ms
Figure 7.1 Response
delays vs. frustration

http://norvig.com/21-days.html#answers

177Anatomy of sluggishness

7.2 Anatomy of sluggishness
To understand how to improve performance, you must first understand how perfor-
mance fails. As we’ve seen, not all performance problems are about speed—some are
about responsiveness. The speed part, though, is related to how computers work in
general, so it’s a good idea to acquaint yourself with some low-level concepts. This will
help you understand the optimization techniques I’ll discuss later in the chapter.

 CPUs are chips that process instructions they read from RAM and perform them
repetitively in a never-ending loop. You can imagine it like a wheel turning, and every
rotation of the wheel typically performs another instruction, as depicted in figure 7.2.
Some operations can take multiple turns, but the basic unit is a single turn, popularly
known as a clock cycle, or a cycle for short.

The speed of a CPU, typically expressed in hertz, indicates how many clock cycles it
can process in a second. The first electronic computer, ENIAC, could process 100,000
cycles a second, shortened to 100 KHz. The antique 4 MHz Z80 CPU in my 8-bit home
computer back in the 1980s could only process 4 million cycles per second. A modern
3.4 GHz AMD Ryzen 5950X CPU can process 3.4 billion cycles in a second on each of
its cores. That doesn’t mean CPUs can process that many instructions, because first,
some instructions take more than one clock cycle to complete, and second, modern
CPUs can process multiple instructions in parallel on a single core. Thus, sometimes
CPUs can even run more instructions than what their clock speed allows.

 Some CPU instructions can also take an arbitrary amount of time depending on
their arguments, such as block memory copy instructions. Those take O(N) time
based on how large the block is.

Read the next instruction.

Read the input data.

Calculate the result.

Write the result.

Figure 7.2 The 20,000-feet
anatomy of a single CPU cycle

178 CHAPTER 7 Opinionated optimization

 Basically, every performance problem related to code speed comes down to how
many instructions are executed and for how many times. When you optimize code,
what you’re trying to do is either reduce the number of instructions executed or use a
faster version of an instruction. The DivRem function runs faster than division and
remainder because it gets converted into instructions that take fewer cycles.

7.3 Start from the top
The second-best way to reduce the number of instructions executed is to choose a
faster algorithm. The best way obviously is to delete the code entirely. I’m serious:
delete the code you don’t need. Don’t keep unneeded code in the codebase. Even if it
doesn’t degrade the performance of the code, it degrades the performance of devel-
opers, which eventually degrades the performance of the code. Don’t even keep
commented-out code. Use the history features of your favorite source control system
like Git or Mercurial to restore old code. If you need the feature occasionally, put it
behind configuration instead of commenting it out. This way, you won’t be surprised
when you finally blow the dust off the code and it won’t compile at all because every-
thing’s changed. It’ll remain current and working.

 As I pointed out in chapter 2, a faster algorithm can make a tremendous differ-
ence, even if it’s implemented in a poorly optimized way. So first ask yourself, “Is this
the best way to do this?” There are ways to make badly implemented code faster, but
nothing beats solving the problem at the top, as in the broadest scope, the scenario
itself, and delve deeper until you figure out the actual location of the problem. This
way is usually faster, and the result ends up being way more easily maintained.

 Consider an example in which users complain that viewing their profile on the app
is slow, and you can reproduce the problem yourself. The performance problem can
come from either the client or the server. So you start from the top: you first identify
which major layer the problem appears in by eliminating one of the two layers the
problem can possibly be in. If a direct API call doesn’t have the same problem, the
problem must be in the client, or, otherwise, in the server. You continue on this path
until you identify the actual problem. In a sense, you’re doing a binary search, as
shown in figure 7.3.

 When you follow a top-down approach, you’re guaranteed to find the root cause of
the problem in an efficient way, instead of guessing. Since you do a binary search man-
ually here, you’re now using algorithms in real life to make your life easier, so, good
job! When you determine where the problem happens, check any red flags for obvi-
ous code complexity. You can identify patterns that might be causing more complex
code to execute when a simple one could suffice. Let’s go over some of them.

179Start from the top

7.3.1 Nested loops

One of the easiest ways to slow down code is to put it inside another loop. When writ-
ing code in nested loops, we underestimate the effects of multiplication. Nested loops
aren’t always visible, either. To expand on our example about the slow user profile,
suppose you found the problem in the backend code that generates the profile data.
There is a function that returns the badges a user has and shows them on their profile.
Some sample code might look like this:

public IEnumerable<string> GetBadgeNames() {
 var badges = db.GetBadges();
 foreach (var badge in badges) {
 if (badge.IsVisible) {
 yield return badge.Name;
 }
 }
}

There are no apparent nested loops here. As a matter of fact, it’s possible to write the
same function with LINQ without any loops at all, but with the same slowness
problem:

public IEnumerable<string> GetBadgesNames() {
 var badges = db.GetBadges();
 return badges
 .Where(b => b.IsVisible)
 .Select(b => b.Name);
}

Where is the inner loop? That’s something you’ll have to ask yourself over the course
of your programming career. The culprit is the IsVisible property because we just
don’t know what it’s doing underneath.

Application API

Rendering API call Processing DB query

Library Handler Lag JSON Parsing JSON Lookup Throughput

“The profile is slow.”

Start with the general description of the problem over the whole project.

Pinpoint the location of the problem.

Find the component the problem is in.

Identify the topmost layer the problem is in.

Figure 7.3 A top-down approach for identifying the root cause

180 CHAPTER 7 Opinionated optimization

 Properties in C# were invented because the developers of the language were tired
of writing get in front of every function name regardless of how simple it might be. As
a matter of fact, property code is converted to functions when compiled, with get_
and set_ prefixes added to their name. The upside of using properties is that they
allow you to change how a field-looking member in a class functions without breaking
compatibility. The downside of properties is that they conceal potential complexity.
They look like simple fields, basic memory access operations, which might make you
assume that calling a property may not be expensive at all. Ideally, you should never
put computationally intensive code inside properties, but it’s impossible for you to
know whether someone else has done it, at least not without looking.

 When we look at the source of the IsVisible property of the Badge class, we can
see it’s more expensive than it looks:

public bool IsVisible {
 get {
 var visibleBadgeNames = db.GetVisibleBadgeNames();
 foreach (var name in visibleBadgeNames) {
 if (this.Name == name) {
 return true;
 }
 }
 return false;
 }
}

This property, without any shame, dares to call the database to retrieve the list of visible
badge names and compares them in a loop to see if our supposed badge is one of the
visible ones. There are too many sins in that code to explain, but your first lesson is to
beware of properties. They contain logic, and their logic may not always be simple.

 There are many optimization opportunities in the IsVisible property, but the
first and foremost one is to not retrieve the list of visible badge names every time the
property is called. You could keep them in a static list that’s retrieved only once,
assuming the list rarely changes and you can afford a restart when it happens. You can
also do caching, but I’ll get to that later. That way, you could reduce the property code
to this:

private static List<string> visibleBadgeNames = getVisibleBadgeNames();

public bool IsVisible {
 get {
 foreach (var name in visibleBadgeNames) {
 if (this.Name == name) {
 return true;
 }
 }
 return false;
 }
}

181Start from the top

The good thing about keeping a list is that it already has a Contains method so you
can eliminate the loop in IsVisible:

public bool IsVisible {
 get => visibleBadgeNames.Contains(this.Name);
}

The inner loop has finally disappeared, but we still haven’t destroyed its spirit. We
need to salt and burn its bones. Lists in C# are essentially arrays, and they have O(N)
lookup complexity. That means our loop hasn’t gone away, but has only moved inside
another function, in this case, List<T>.Contains(). We can’t reduce complexity by
eliminating the loop—we have to change our lookup algorithm too.

 We can sort the list and do a binary search to reduce lookup performance to
O(logN), but luckily, we’ve read chapter 2, and we know how the HashSet<T> data
structure can provide a much better O(1) lookup performance, thanks to looking up
an item’s location using its hash. Our property code has finally started to look sane:

private static HashSet<string> visibleBadgeNames = getVisibleBadgeNames();

public bool IsVisible {
 get => visibleBadgeNames.Contains(this.Name);
}

We haven’t done any benchmarking on this code, but looking at computational com-
plexity pain points can provide you good insight, as you can see in this example. You
should still always test whether your fix performs better because code will always con-
tain surprises and dark corners that might ambush you.

 The story of the GetBadgeNames() method doesn’t end here. There are other ques-
tions to ask, like why the developer keeps a separate list of visible badge names instead
of a single bit flag in the Badge record on the database or why they don’t simply keep
them in a separate table and join them while querying the database. But as far as nested
loops are concerned, it has probably become orders of magnitude faster now.

7.3.2 String-oriented programming

Strings are extremely practical. They are readable, they can hold any kind of text, and
they can be manipulated easily. I have already discussed how using the right type can
give better performance than using a string, but there are subtle ways that strings can
seep into your code.

 One of the common ways that strings can be used unnecessarily is to assume every col-
lection is a string collection. For example, if you want to keep a flag in an HttpContext
.Items or ViewData container, it’s common to find someone writing something like

HttpContext.Items["Bozo"] = "true";

182 CHAPTER 7 Opinionated optimization

You find them later checking the same flag like this:

if ((string)HttpContext.Items["Bozo"] == "true") {
. . .
}

The typecast to string is usually added after the compiler warns you, “Hey, are you sure
you want to do this? This isn’t a string collection.” But the whole picture that the col-
lection is actually an object collection is usually missed. You could, in fact, fix the code
by simply using a Boolean variable instead:

HttpContext.Items["Bozo"] = true;

Check the value with

if ((bool?)HttpContext.Items["Bozo"] == true) {
…
}

This way, you avoid storage overhead, parsing overhead, and even occasional typos
like typing True instead of true.

 The actual overhead of these simple mistakes is minuscule, but when they become
habits, it can accumulate significantly. It’s impossible to fix the nails on a leaking ship,
but nailing them the right way when you build it can help you stay afloat.

7.3.3 Evaluating 2b || !2b

Boolean expressions in if statements are evaluated in the order they’re written. The
C# compiler generates smart code for evaluation to avoid unnecessarily evaluating
cases altogether. For example, remember our awfully expensive IsVisible property?
Consider this check:

if (badge.IsVisible && credits > 150_000) {

An expensive property gets evaluated before a simple value check. If you’re calling
this function mostly with values of x less than 150,000, IsVisible wouldn’t be called
most of the time. You can simply swap the places of expressions:

if (credits > 150_000 && badge.IsVisible) {

This way, you wouldn’t be running an expensive operation unnecessarily. You can also
apply this with logical OR operations (||). In that case, the first expression that
returns true would prevent the rest of the expression from being evaluated. Obvi-
ously, in real life, having that kind of expensive property is rare, but I recommend
sorting expressions based on operand types:

183Breaking the bottle at the neck

1. Variables
2. Fields
3. Properties
4. Method calls

Not every Boolean expression can be safely moved around the operators. Consider
this:

if (badge.IsVisible && credits > 150_000 || isAdmin) {

You can’t simply move isAdmin to the beginning because it would change the evalua-
tion. Make sure you don’t accidentally break the logic in the if statement while you’re
optimizing Boolean evaluation.

7.4 Breaking the bottle at the neck
There are three types of delays in software: CPU, I/O, and human. You can optimize
each category by finding a faster alternative, parallelizing the tasks, or removing them
from the equation.

 When you’re sure you’re using an algorithm or a method that’s suitable for the
job, it finally comes down to how you can optimize the code itself. To evaluate your
options for optimizations, you need to be aware of the luxuries that CPUs provide you.

7.4.1 Don’t pack data

Reading from a memory address, say, 1023, can take more time than reading from
memory address 1024 because CPUs can incur a penalty when reading from
unaligned memory addresses. Alignment in that sense means a memory location on
the multiples of 4, 8, 16, and so forth, at least the word size of the CPU, as seen in figure
7.4. On some older processors, the penalty for accessing unaligned memory is death
by a thousand small electrical shocks. Seriously, some CPUs don’t let you access
unaligned memory at all, such as the Motorola 68000 that is used in Amiga and some
ARM-based processors.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Memory address

4-byte aligned

8-byte aligned

Memory

16

16-byte aligned

Figure 7.4 Memory address alignment

184 CHAPTER 7 Opinionated optimization

Thankfully, we have compilers, and they usually take care of the alignment stuff. But
it’s possible to override the behavior of the compiler, and it still may not feel that
something’s wrong: you’re storing more stuff in a small space, there is less memory to
read, so it should be faster. Consider the data structure in listing 7.4. Because it’s a
struct, C# will apply alignment only based on some heuristics, and that can mean no
alignment at all. You might be tempted to keep the values in bytes so it becomes a
small packet to pass around.

struct UserPreferences {
 public byte ItemsPerPage;
 public byte NumberOfItemsOnTheHomepage;
 public byte NumberOfAdClicksICanStomach;
 public byte MaxNumberOfTrollsInADay;
 public byte NumberOfCookiesIAmWillingToAccept;
 public byte NumberOfSpamEmailILoveToGetPerDay;
}

But, since memory accesses to unaligned boundaries are slower, your storage savings
are offset by the access penalty to each member in the struct. If you change the data
types in the struct from byte to int and create a benchmark to test the difference, you
can see that byte access is almost twice as slow, even though it occupies a quarter of the
memory, as shown in table 7.2.

The moral of the story is to avoid optimizing memory storage unnecessarily. There are
benefits to doing it in certain cases: for example, when you want to create an array of a
billion numbers, the difference between byte and int can become three gigabytes.
Smaller sizes can also be preferable for I/O, but, otherwise, trust the memory

Listing 7.3 A packed data structure

Table 7.2 Difference between aligned and unaligned member access

Method Mean

ByteMemberAccess 0.2475 ns

IntMemberAccess 0.1359 ns

CPU word size
Word size is typically defined by how many bits of data the CPU can process at a time.
The concept is closely related to how a CPU is called a 32-bit or 64-bit. Word size
mostly reflects the size of a CPU’s accumulator register. Registers are like CPU-level
variables, and the accumulator is the most commonly used register. Take the Z80
CPU, for example. It has 16-bit registers, and it can address 16-bit memory, but it’s
considered an 8-bit processor because it has an 8-bit accumulator register.

185Breaking the bottle at the neck

alignment. The immutable law of benchmarking is, “Measure twice, cut once, then mea-
sure again, and you know what, let’s go easy on the cutting for a while.”

7.4.2 Shop local
Caching is about keeping frequently used data at a location that can be accessed faster
than where it usually resides. CPUs have their own cache memories with different
speeds, but all are faster than RAM itself. I won’t go into the technical details of how
cache is structured, but basically, CPUs can read memory in their cache much faster
than regular memory in RAM. That means, for example, that sequential reads are
faster than random reads around the memory. For example, reading an array sequen-
tially can be faster than reading a linked list sequentially, although both take O(N)
time to read end to end, and arrays can perform better than linked lists. The reason is
that there is a higher chance of the next element being in the cached area of the
memory. The elements of linked lists, on the other hand, are scattered around in the
memory because they are separately allocated.

 Suppose you have a CPU with a 16-byte cache, and you have both an array of three
integers and a linked list of three integers. In figure 7.5, you can see that reading the
first element of the array would also trigger loading the rest of the elements into the
CPU cache, while traversing the linked list would cause a cache miss and force the
new region to be loaded into the cache.

CPUs usually bet that you’re reading data sequentially. That doesn’t mean linked lists
don’t have their uses. They have excellent insert/delete performance and less mem-
ory overhead when they are growing. Array-based lists need to reallocate and copy buf-
fers when they’re growing, which is terribly slow, so they allocate more than they need,
which can cause disproportionate memory use in large lists. In most cases, though, a
list would serve you fine, and it might well be faster for reading.

7.4.3 Keep dependent works separated

A single CPU instruction is processed by discrete units on the processor. For example,
one unit is responsible for decoding the instruction, while another is responsible for
memory access. But since a decoder unit needs to wait for an instruction to complete,
it can do other decoding work for the next instruction while memory access is running.

1st 2nd 3rd

2nd 3rd 1st

Array

Linked list NextNextNext

Elements are sequential.

Elements are scattered around in memory.

Figure 7.5 Array vs. linked list cache locality

186 CHAPTER 7 Opinionated optimization

That technique is called pipelining, and it means the CPU can execute multiple instruc-
tions in parallel on a single core as long as the next instruction doesn’t depend on the
result of the previous one.

 Consider an example: you need to calculate a checksum in which you simply add the
values of a byte array to get a result, as in listing 7.4. Normally, checksums are used for
error detection, and adding numbers can be the worst implementation, but we’ll
assume that it was a government contract. When you look at the code, it constantly
updates the value of the result. Therefore, every calculation depends on i and result.
That means the CPU cannot parallelize any work, because it depends on an operation.

public int CalculateChecksum(byte[] array) {
 int result = 0;
 for (int i = 0; i < array.Length; i++) {
 result = result + array[i];
 }
 return result;
}

There are ways to reduce dependencies or at least reduce the blocking impact of the
instruction flow. One is to reorder instructions to increase the gap between depen-
dent code so an instruction doesn’t block the following one in the pipeline due to the
dependency on the result of the first operation.

 Since addition can be done in any order, we can split the addition into four parts
in the same code and let the CPU parallelize the work. We can implement the task as I
have in the following listing. This code contains more instructions, but four different
result accumulators can now complete the checksum separately and later be summed.
We then sum the remaining bytes in a separate loop.

public static int CalculateChecksumParallel(byte[] array) {
 int r0 = 0, r1 = 0, r2 = 0, r3 = 0;
 int len = array.Length;
 int i = 0;
 for (; i < len - 4; i += 4) {
 r0 += array[i + 0];
 r1 += array[i + 1];
 r2 += array[i + 2];
 r3 += array[i + 3];
 }
 int remainingSum = 0;
 for (; i < len; i++) {
 remainingSum += i;
 }
 return r0 + r1 + r2 + r3 + remainingSum;
}

Listing 7.4 A simple checksum

Listing 7.5 Parallelizing work on a single core

Depends on both i and the
previous value of the result

The four accumulators!

These calculations
are independent of
each other.

Calculate the sum of
the remaining bytes.

Bring everything together.

187Breaking the bottle at the neck

We’re doing a lot more work than in the simpler code in listing 7.4, and yet, this process
turns out be 15% faster on my machine. Don’t expect magic from such a micro-
optimization, but you’ll love it when it helps you tackle CPU-intensive code. The main
takeaway is that reordering code—and even removing dependencies in code—can
improve your code’s speed because dependent code can clog up the pipeline.

7.4.4 Be predictable

The most upvoted, the most popular question in the history of Stack Overflow is,
“Why is processing a sorted array faster than processing an unsorted array?”3 To opti-
mize execution time, CPUs try to act preemptively ahead of the running code to make
preparations before there is a need. One technique CPUs employ is called branch pre-
diction. Such code is just a sugarcoated version of comparisons and branches:

if (x == 5) {
 Console.WriteLine("X is five!");
} else {
 Console.WriteLine("X is something else");
}

The if statement and curly braces are the elements of structured programming. They
are a sugarcoated version of what the CPU processes. Behind the scenes, the code gets
converted into a low-level code like this during the compilation phase:

 compare x with 5
 branch to ELSE if not equal
 write "X is five"
 branch to SKIP_ELSE
ELSE:
 write "X is something else"
SKIP_ELSE:

I’m just paraphrasing here because the actual machine code is more cryptic, but this
isn’t entirely inaccurate. Regardless of how elegant the design you create with your
code is, it eventually becomes a bunch of comparison, addition, and branch opera-
tions. Listing 7.6 shows the actual assembly output for x86 architecture for the same
code. It might feel more familiar after you’ve seen the pseudocode. There is an excel-
lent online tool at sharplab.io that lets you see the assembly output of your C# pro-
gram. I hope it will outlive this book.

3 The Stack Overflow question can be found at http://mng.bz/Exxd.

http://mng.bz/Exxd
https://sharplab.io/

188 CHAPTER 7 Opinionated optimization

 cmp ecx, 5
 jne ELSE
 mov ecx, [0xf59d8cc]
 call System.Console.WriteLine(System.String)
 ret
ELSE: mov ecx, [0xf59d8d0]
 call System.Console.WriteLine(System.String)
 ret

Listing 7.6 Actual assembly code for our comparison

Compare instruction
Branching instruction
(Jump if Not Equal)

Pointer for the string “X is 5”

Pointer for the string
“X is something else”Return

instruction

Stop worrying, and learn to love assembly
Machine code, the native language of a CPU, is just a series of numbers. Assembly
is a human-readable syntax for machine code. Assembly syntax differs among CPU
architectures, so I recommend you become familiar with at least one. It’s a humbling
experience, and it will reduce your fear about what’s going on under the hood. It may
seem complicated, but it’s simpler than the languages we write programs in, even
primitive, if you will. An assembly listing is a series of labels and instructions like

 let a, 42
some_label:
 decrement a
 compare a, 0
 jump_if_not_equal some_label

That’s a basic decrementing loop counting from 42 to 0 and written in a pseudo-
assembly syntax. In real assembly, instructions are shorter to make them easier to
write and excruciating to read. For example, the same loop would be written like this
on an x86 CPU:

 mov al, 42
some_label:
 dec al
 cmp al, 0
 jne some_label

On an ARM processor architecture, it can look like this instead:

 mov r0, #42
some_label:
 sub r0, r0, #1
 cmp r0, #0
 bne some_label

This can be written more briefly with different instructions, but as long as you’re famil-
iar with the structure of an assembly, you can take a peek at what kind of machine
code a JIT compiler generates and understand its actual behavior. It especially does
wonders when you need to understand CPU-intensive tasks.

189Breaking the bottle at the neck

A CPU can’t know if a comparison will be successful before it’s executed, but thanks to
branch prediction, it can make a strong guess based on what it observes. Based on its
guesses, the CPU makes a bet and starts processing instructions from that branch it
predicted, and if it’s successful in its prediction, everything is already in place, boost-
ing the performance.

 That’s why processing an array with random values can be slower if it involves com-
parisons of values: branch prediction fails spectacularly in that case. A sorted array
performs better because the CPU can predict the ordering properly and predict the
branches correctly.

 Keep that in mind when you’re processing data. The fewer surprises you give the
CPU, the better it will perform.

7.4.5 SIMD

CPUs also support specialized instructions that can perform computations on multiple
data at the same time with a single instruction. That technique is called single instruc-
tion, multiple data (SIMD). If you want to perform the same calculation on multiple vari-
ables, SIMD can boost its performance significantly on supported architectures.

 SIMD works pretty much like multiple pens taped together. You can draw whatever
you want, but the pens will all perform the same operation on different coordinates of
the paper. An SIMD instruction will perform an arithmetic computation on multiple
values, but the operation will remain constant.

 C# provides SIMD functionality via Vector types in the System.Numerics name-
space. Since every CPU’s SIMD support is different, and some CPUs don’t support
SIMD at all, you first must check whether it’s available on the CPU:

if (!Vector.IsHardwareAccelerated) {
 . . . non-vector implementation here . . .
}

Then you need to figure out how many of a given type the CPU can process at the
same time. That changes from processor to processor, so you have to query it first:

int chunkSize = Vector<int>.Count;

In this case, we’re looking to process int values. The number of items the CPU can
process can change based on the data type. When you know the number of elements
you can process at a time, you can go ahead and process the buffer in chunks.

 Consider that we’d like to multiply values in an array. Multiplication of a series of
values is a common problem in data processing, whether it’s changing the volume of a
sound recording or adjusting the brightness of an image. For example, if you multiply
pixel values in an image by 2, it becomes twice as bright. Similarly, if you multiply
voice data by 2, it becomes twice as loud. A naive implementation would look like that
in the following listing. We simply iterate over the items and replace the value in place
with the result of the multiplication.

190 CHAPTER 7 Opinionated optimization

public static void MultiplyEachClassic(int[] buffer, int value) {
 for (int n = 0; n < buffer.Length; n++) {
 buffer[n] *= value;
 }
}

When we use the Vector type to make these calculations instead, our code becomes
more complicated, and it looks slower, to be honest. You can see the code in listing 7.8.
We basically check for SIMD support and query the chunk size for integer values. We
later go over the buffer at the given chunk size and copy the values into vector registers
by creating instances of Vector<T>. That type supports standard arithmetic operators,
so we simply multiply the vector type with the number given. It will automatically mul-
tiply all of the elements in the chunk in a single go. Notice that we declare the variable
n outside the for loop because we’re starting from its last value in the second loop.

public static void MultiplyEachSIMD(int[] buffer, int value) {
 if (!Vector.IsHardwareAccelerated) {
 MultiplyEachClassic(buffer, value);
 }

 int chunkSize = Vector<int>.Count;
 int n = 0;
 for (; n < buffer.Length - chunkSize; n += chunkSize) {
 var vector = new Vector<int>(buffer, n);
 vector *= value;
 vector.CopyTo(buffer, n);
 }

 for (; n < buffer.Length; n++) {
 buffer[n] *= value;
 }
}

It looks like too much work, doesn’t it? Yet, the benchmarks are impressive, as shown
in table 7.3. In this case, our SIMD-based code is twice as fast as the regular code.
Based on the data types you process and operations you perform on the data, it can be
much higher.

Listing 7.7 Classic in-place multiplication

Listing 7.8 “We’re not in Kansas anymore” multiplication

Table 7.3 The SIMD difference

Method Mean

MultiplyEachClassic 5.641 ms

MultiplyEachSIMD 2.648 ms

Call the classic implementation
if SIMDs are not supported.

Query how many values
SIMD can process at once.

Copy the array segment
into SIMD registers.

Multiply
all values

at once.

Replace the
results.

Process the remaining
bytes the classic way.

1911s and 0s of I/O

You can consider SIMD when you have a computationally intensive task and you need
to perform the same operation on multiple elements at the same time.

7.5 1s and 0s of I/O
I/O encompasses everything a CPU communicates with the peripheral hardware, be
it disk, network adapter, or even GPU. I/O is usually the slowest link on the perfor-
mance chain. Think about it: a hard drive is actually a rotating disk with a spindle
seeking over the data. It’s basically a robotic arm constantly moving around. A net-
work packet can travel at the speed of light, and yet, it would still take it more than
100 milliseconds to rotate the earth. Printers are especially designed to be slow, ineffi-
cient, and anger inducing.

 You can’t make I/O itself faster most of the time because its slowness arises from
physics, but the hardware can run independently of the CPU, so it can work while the
CPU is doing other stuff. That means you can overlap the CPU and I/O work and
complete an overall operation in a smaller timeframe.

7.5.1 Make I/O faster

Yes, I/O is slow due to the inherent limitations of hardware, but it can be made faster.
For example, every read from a disk incurs an operating system call overhead. Con-
sider file-copy code like that in the following listing. It’s pretty much straightforward.
It copies every byte read from the source file and writes those bytes to the destination
file.

public static void Copy(string sourceFileName,
 string destinationFileName) {

 using var inputStream = File.OpenRead(sourceFileName);
 using var outputStream = File.Create(destinationFileName);
 while (true) {
 int b = inputStream.ReadByte();
 if (b < 0) {
 break;
 }
 outputStream.WriteByte((byte)b);
 }
}

The problem is that every system call implies an elaborate ceremony. The ReadByte()
function here calls the operating system’s read function. The operating system calls
the switch-to-kernel mode. That means the CPU changes its execution mode. The
operating system routine looks up the file handle and necessary data structures. It
checks whether the I/O result is already in cache. If it’s not, it calls the relevant device
drivers to perform the actual I/O operation on the disk. The read portion of the

Listing 7.9 Simple file copy

Read the byte.

Write the byte.

192 CHAPTER 7 Opinionated optimization

memory gets copied to a buffer in the process’s address space. These operations hap-
pen lightning fast, and it can become significant when you just read one byte.

 Many I/O devices read/write in blocks called block devices. Network and storage
devices are usually block devices. The keyboard is a character device because it sends
one character at a time. Block devices can’t read less than the size of a block, so it
doesn’t make sense to read anything less than a typical block size. For example, a hard
drive can have a sector size of 512 bytes, making it a typical block size for disks. Modern
disks can have larger block sizes, but let’s see how much performance can be improved
simply by reading 512 bytes. The following listing shows the same copy operation that
takes a buffer size as a parameter and reads and writes using that chunk size.

public static void CopyBuffered(string sourceFileName,
 string destinationFileName, int bufferSize) {

 using var inputStream = File.OpenRead(sourceFileName);
 using var outputStream = File.Create(destinationFileName);
 var buffer = new byte[bufferSize];
 while (true) {
 int readBytes = inputStream.Read(buffer, 0, bufferSize);
 if (readBytes == 0) {
 break;
 }
 outputStream.Write(buffer, 0, readBytes);
 }
}

If we write a quick benchmark that tests against the byte-based copy function and the
buffered variant with different buffer sizes, we can see the difference that reading
large chunks at a time makes. You can see the results in table 7.4.

Listing 7.10 File copy using larger buffers

Table 7.4 Effect of buffer size on I/O performance

Method Buffer size Mean

Copy 1 1,351.27 ms

CopyBuffered 512 217.80 ms

CopyBuffered 1024 214.93 ms

CopyBuffered 16384 84.53 ms

CopyBuffered 262144 45.56 ms

CopyBuffered 1048576 43.81 ms

CopyBuffered 2097152 44.10 ms

Read bufferSize
bytes at once.

Write bufferSize
bytes at once.

1931s and 0s of I/O

Even using a 512-byte buffer makes a tremendous difference—the copy operation
becomes six times faster. Yet, increasing it to 256 KB makes the most difference, and
making it anything larger yields only marginal improvement. I ran these benchmarks
on a Windows machine, and Windows I/O uses 256 KB as the default buffer size for its
I/O operations and cache management. That’s why the returns suddenly become
marginal after 256 KB. In the same way as food package labels say “actual contents
may vary,” your actual experience on your operating system may vary. Consider find-
ing the ideal buffer size when you’re working with I/O, and avoid allocating more
memory than you need.

7.5.2 Make I/O non-blocking

One of the most misunderstood concepts in programming is asynchronous I/O. It’s
often confused with multithreading, which is a parallelization model to make any kind
of operation faster by letting a task run on separate cores. Asynchronous I/O (or
async I/O for short) is a parallelization model for I/O-heavy operations only, and it
can work on a single core. Multithreading and async I/O can also be used together
because they address different use cases.

 I/O is naturally asynchronous because the external hardware is almost always slower
than the CPU, and the CPU doesn’t like waiting and doing nothing. Mechanisms like
interrupts and direct memory access (DMA) were invented to allow hardware to signal
the CPU when an I/O operation is complete, so the CPU can transfer the results. That
means that when an I/O operation is issued to the hardware, the CPU can continue exe-
cuting other stuff while the hardware is doing its work, and the CPU can check back
when the I/O operation is complete. This mechanism is the foundation of async I/O.

 Figure 7.6 gives an idea of how both types of parallelization work. In both
illustrations, the second computational code (CPU Op #2) is dependent on the result
of the first I/O code (I/O Op #1). Because computational code can’t be parallelized on
the same thread, they execute in tandem and therefore take longer than multi-
threading on a four-core machine. On the other hand, you still gain significant
parallelization benefits without consuming threads or occupying cores.

I/O
Op #1

CPU
Op #1

I/O
Op #2

CPU
Op #2

Thread 1 Thread 2 Thread 3 Thread 4

Parallelization with multithreading

I/O
Op #1

CPU
Op #1

I/O
Op #2

CPU
Op #2

I/O device Thread 1

Parallelization with asynchronous I/O

Figure 7.6 The
difference between
multithreading and
async I/O

194 CHAPTER 7 Opinionated optimization

The performance benefit of async I/O comes from its providing natural paralleliza-
tion to the code without you doing any extra work. You don’t even need to create an
extra thread. It’s possible to run multiple I/O operations in parallel and collect the
results without suffering through the problems multithreading brings, like race condi-
tions. It’s practical and scalable.

 Asynchronous code can also help with responsiveness in event-driven mechanisms,
especially user interfaces, without consuming threads. It might seem like UI has noth-
ing to do with I/O, but user input also comes from I/O devices like a touchscreen, a
keyboard, or a mouse, and user interfaces are triggered by those events. They consti-
tute perfect candidates for async I/O and asynchronous programming in general.
Even timer-based animations are hardware driven because of how a timer on a device
operates, so they are therefore ideal candidates for async I/O.

7.5.3 The archaic ways

Until the early 2010s, async I/O was managed with callback functions. Async operat-
ing system functions required you to pass them a callback function, and OS would
then execute your callback function when the I/O operation was completed. Mean-
while, you could perform other tasks. If we wrote our file-copy operation in old asyn-
chronous semantics, it would look pretty much like that in listing 7.11. Mind you, this
is a very cryptic and ugly code, and it’s probably why boomers don’t like async I/O
very much. Actually, I had so much trouble writing this code myself that I had to resort
to some modern constructs like Task to finish it. I’m just showing you this so that
you’ll love and appreciate the modern constructs and how much time they save us.

 The most interesting thing about this ancient code is that it returns immediately,
which is magical. That means I/O is working in the background, the operation con-
tinues, and you can do other work while it’s being processed. You’re still on the same
thread, too. No multithreading is involved. In fact, that’s one of the greatest advan-
tages of async I/O, because it conserves OS threads, so it becomes more scalable,
which I will discuss in chapter 8. If you don’t have anything else to do, you can always
wait for it to complete, but that’s just a preference.

 In listing 7.11, we define two handler functions. One is an asynchronous Task
called onComplete(), which we want to run when the whole execution finishes, but
not right away. Another is a local function called onRead() that is called every time a
read operation is complete. We pass this handler to the stream’s BeginRead function,
so it initiates an asynchronous I/O operation and registers onRead as a callback to be
called when the block is read. In the onRead handler, we start the write operation of
the buffer we just read completely and make sure another round of read is called with
the same onRead handler set as a callback. This goes on until the code reaches the end
of the file, and that’s when the onComplete Task gets started. It’s a very convoluted
way to express asynchronous operations.

1951s and 0s of I/O

public static Task CopyAsyncOld(string sourceFilename,
 string destinationFilename, int bufferSize) {

 var inputStream = File.OpenRead(sourceFilename);
 var outputStream = File.Create(destinationFilename);

 var buffer = new byte[bufferSize];
 var onComplete = new Task(() => {
 inputStream.Dispose();
 outputStream.Dispose();
 });

 void onRead(IAsyncResult readResult) {
 int bytesRead = inputStream.EndRead(readResult);
 if (bytesRead == 0) {
 onComplete.Start();
 return;
 }
 outputStream.BeginWrite(buffer, 0, bytesRead,
 writeResult => {
 outputStream.EndWrite(writeResult);
 inputStream.BeginRead(buffer, 0, bufferSize, onRead,
 null);
 }, null);
 }

 var result = inputStream.BeginRead(buffer, 0, bufferSize,
 onRead, null);
 return Task.WhenAll(onComplete);
}

The problem with this approach is that the more async operations you start, the easier
it is to lose track of the operations. Things could easily turn into callback hell, a term
coined by Node.js developers.

7.5.4 Modern async/await
Luckily, the brilliant designers at Microsoft found a great way to write async I/O code
using async/await semantics. The mechanism, first introduced in C#, became so popu-
lar and proved itself so practical that it got adopted by many other popular program-
ming languages such as C++, Rust, JavaScript, and Python.

 You can see the async/await version of the same code in listing 7.12. What a breath
of fresh air! We declare the function with the async keyword so we can use await in the
function. Await statements define an anchor, but they don’t really wait for the expression
following them to be executed. They just signify the points of return when the awaited
I/O operation completes in the future, so we don’t have to define a new callback for
every continuation. We can write code like regular synchronous code. Because of that,
the function still returns immediately, as in listing 7.11. Both ReadAsync and WriteAsync
functions are functions that return a Task object like CopyAsync itself. By the way, the

Listing 7.11 Old-style file-copy code using async I/O

Called when the
function finishes

Called whenever a read
operation is complete

Get the number
of bytes read.Start the final Task.

Start the write
operation.

Acknowledge
completion

of the write.
Start the next
read operation.

Start the first
read operation.

Return a waitable
Task for onComplete.

196 CHAPTER 7 Opinionated optimization

Stream class already has a CopyToAsync function to make copying scenarios easier, but
we’re keeping read and write operations separate here to align the source with the orig-
inal code.

public async static Task CopyAsync(string sourceFilename,
 string destinationFilename, int bufferSize) {

 using var inputStream = File.OpenRead(sourceFilename);
 using var outputStream = File.Create(destinationFilename);
 var buffer = new byte[bufferSize];
 while (true) {
 int readBytes = await inputStream.ReadAsync(
buffer, 0, bufferSize);
 if (readBytes == 0) {
 break;
 }
 await outputStream.WriteAsync(buffer, 0, readBytes);
 }
}

When you write code with async/await keywords, the code behind the scenes gets con-
verted to something similar to that in listing 7.11 during compilation, with callbacks
and everything. Async/await saves you a lot of legwork.

7.5.5 Gotchas of async I/O
Programming languages don’t require you to use async mechanisms just for I/O. You
can declare an async function without calling any I/O-related operations at all and
perform only CPU work on them. In that case, you’d have created an unnecessary
level of complexity without any gains. The compiler usually warns you of that situa-
tion, but I’ve seen many examples of compiler warnings being ignored in a corporate
setting because nobody wants to deal with the fallout from any problems a fix would
cause. The performance issues would pile up, and then you’d get tasked with fixing all
those problems at once, thus dealing with greater fallout. Bring this up in code
reviews, and make your voice heard.

 One rule of thumb you need to keep in mind with async/await is that await
doesn’t wait. Yes, await makes sure that the next line is run after it completes execut-
ing, but it does that without waiting or blocking, thanks to asynchronous callbacks
behind the scenes. If your async code waits for something to complete, you’re doing it
wrong.

7.6 If all else fails, cache
Caching is one of the most robust ways to improve performance immediately. Cache
invalidation might be a hard problem, but it’s not a problem if you only cache things
you don’t worry about invalidating. You don’t need an elaborate caching layer resid-
ing on a separate server like Redis or Memcached, either. You can use an in-memory

Listing 7.12 Modern async I/O file-copy code

The function is
declared with the
async keyword, and
it returns Task.

Any operation
following await is
converted to a callback
behind the scenes.

197Summary

cache like the one Microsoft provides in the MemoryCache class in the System.Runtime
.Caching package. True, it cannot scale beyond a certain point, but scaling may not
be something you’d be looking for at the beginning of a project. Ekşi Sözlük serves 10
million requests per day on a single DB server and on four web servers, but it still uses
in-memory cache.

 Avoid using data structures that are not designed for caching. They usually don’t
have any eviction or expiration mechanism, thus becoming the source of memory
leaks and, eventually, crashes. Use things that are designed for caching. Your database
can also be a great persistent cache.

 Don’t be afraid of infinite expiration in cache, because either a cache eviction or
an application restart will arrive before the end of the universe.

Summary
 Use premature optimizations as exercises, and learn from them.
 Avoid painting yourself into a corner with unnecessary optimizations.
 Always validate your optimizations with benchmarking.
 Keep optimization and responsiveness in balance.
 Make a habit of identifying problematic code like nested loops, string-heavy

code, and inefficient Boolean expressions.
 When building data structures, consider the benefits of memory alignment to

get better performance.
 When you need micro-optimizations, know how a CPU behaves, and have cache

locality, pipelining, and SIMD in your toolbelt.
 Increase I/O performance by using correct buffering mechanisms.
 Use asynchronous programming to run code and I/O operations in parallel

without wasting threads.
 In case of emergency, break the cache.

198

Palatable scalability

“It was the best of times, it was the worst of times, it was the age of wisdom, it was the age
of foolishness.”

 —Charles Dickens on scalability

I’ve had my share of experience with scalability because of the technical decisions I
made for Ekşi Sözlük back in 1999. The whole database for the website was a single
text file at first. The writes held locks on the text file, causing everything to freeze
for all visitors. The reads weren’t very efficient, either—retrieving a single record
would be in O(N) time, which required scanning the whole database. It was the
worst of the worst possible technical designs.

 It wasn’t because the server’s hardware was so slow that the code froze. The data
structures and the parallelization decisions all contributed to the sluggishness.
That’s the gist of scalability itself. Performance alone can’t make a system scalable.
You need all aspects of your design to cater to an increasing number of users.

This chapter covers
 Scalability vs. performance

 Progressive scalability

 Breaking database rules

 Smoother parallelization

 The truth in monolith

199Don’t use locks

 More importantly, that terrible design wasn’t more important than how quickly I
released the website, which took place in mere hours. Initial technical decisions didn’t
matter in the long run because I was able to pay most of the technical debt along the
way. I changed the database technology as soon as it started causing too many prob-
lems. I wrote the code from scratch when the technology I used didn’t work out any-
more. A Turkish proverb states, “A caravan is prepared on the road,” which means,
“Make it up as you go.”

 I have also recommended measuring twice and cutting once at several places in
this book, which seemingly is in conflict with the “Que será, será”1 motto. That’s
because there’s no single prescription for all our problems. We need to keep all these
methods in our tool belts and apply the right one for the problem at hand.

 From a systems perspective, scalability means the ability to make a system faster by
throwing more hardware at it. From a programming perspective, a scalable code can
keep its responsiveness constant in the face of increasing demand. There is obviously
an upper limit of how some code can keep up with the load, and the goal of writing
scalable code is to push that upper limit as far as possible.

 Like refactoring, scalability is best addressed progressively in tangible, smaller steps
toward a bigger goal. It’s possible to design a system to be fully scalable from scratch, but
the amount of effort and time required to achieve that and the returns you get are over-
shadowed by the importance of getting a product released as soon as possible.

 Some things don’t scale at all. As Fred Brooks eloquently said in his marvelous
book The Mythical Man Month, “The bearing of a child takes nine months, no matter
how many women are assigned.” Brooks was talking about how assigning more people
to an already delayed project might only add to the delays, but it’s also applicable to
certain factors of scalability. For example, you can’t make a CPU core run more
instructions in a second than its clock frequency. Yes, I’ve said that we can surpass it
slightly by appealing to SIMD, branch prediction, and so forth, but there is still an
upper limit to the performance you can achieve on a single CPU core.

 The first step to achieving scalable code is to remove the bad code that prevents it
from scaling. Such code can create bottlenecks, causing the code to remain slow even
after you’ve added more hardware resources. Removing some of such code may even
seem counterintuitive to you. Let’s go over these potential bottlenecks and how we
can remove them.

8.1 Don’t use locks
In programming, locking is a feature that lets you write thread-safe code. Thread-safe
means that a piece of code can work consistently even when it’s called by two or more
threads simultaneously. Consider a class that’s responsible for generating unique
identifiers for entities created in your application, and let’s assume that it needs to

1 A popular song from the 1950s by Doris Day, my father’s favorite singer, “Que Será, Será” means “Whatever
will be, will be” in Italian. It’s the official mantra for code deploys on Fridays, usually followed by the 4 Non
Blondes hit “What’s Up?” on Saturday, which ends with Aimee Mann’s “Calling It Quits” on Monday.

200 CHAPTER 8 Palatable scalability

generate sequential numeric identifiers. That’s usually not a good idea, as I discussed
in chapter 6, because incremental identifiers can leak information about your applica-
tion. You may not want to expose how many orders you receive in a day, how many
users you have, and so forth. Let’s assume that there’s a legitimate business reason for
having consecutive identifiers, say, to ensure there are no missing items. A simple
implementation would look like this:

class UniqueIdGenerator {
 private int value;
 public int GetNextValue() => ++value;
}

When you have multiple threads using the same instance of this class, it’s possible for
two threads to receive the same value, or values that are out of order. That’s because
the expression ++value translates to multiple operations on the CPU: one that reads
value, one that increments it, one that stores the incremented value back in the field,
and finally one that returns the result, as can be seen clearly in the x86 assembly out-
put of the JIT compiler:2

UniqueIdGenerator.GetNextValue()
 mov eax, [rcx+8]
 inc eax
 mov [rcx+8], eax
 ret

Every line is an instruction that a CPU runs, one after the other. When you try to visu-
alize multiple CPU cores running the same instructions at the same time, it’s easier to
see how that can cause conflicts in the class, as figure 8.1 shows. There you can see
that three threads return the same value, 1, even though the function was called three
times.

2 A JIT (just in time) compiler converts either source code or the intermediate code (called bytecode, IL, IR,
etc.) to the native instruction set of the CPU architecture it’s running on to make it faster.

Move the field’s value in memory
into the EAX register (read).

Increment the value of the
EAX register (increment).

Move the incremented value
back into the field (store).

Return the result in the EAX register (return).

Field’s value Thread #1 Thread #2 Thread #3

increment

store

return

increment

store

return

0

0

1

1

1

increment

store

return

read read

read

Figure 8.1 Multiple threads running
simultaneously, causing state to break

201Don’t use locks

The previous code that uses the EAX register isn’t thread-safe. The way all threads try
to manipulate the data themselves without respecting other threads is called a race con-
dition. CPUs, programming languages, and operating systems provide a variety of fea-
tures that can help you deal with that problem. They usually all come down to
blocking other CPU cores from reading from or writing to the same memory region at
the same time, and that, folks, is called locking.

 In the next example, the most optimized way is to use an atomic increment opera-
tion that increments the value in the memory location directly and prevents other
CPU cores from accessing the same memory region while doing that, so no thread
reads the same value or incorrectly skips values. It would look like this:

using System.Threading;
class UniqueIdGeneratorAtomic {
 private int value;
 public int GetNextValue() => Interlocked.Increment(ref value);
}

In this case, the locking is implemented by the CPU itself, and it would behave as is
shown in figure 8.2 when it’s executed. The CPU’s lock instruction only holds the exe-
cution on parallel cores at that location during the lifetime of the instruction that
immediately follows it, so the lock automatically gets released when each atomic in-
memory add operation is executed. Notice that the return instructions don’t return
the field’s current value, but the result of a memory add operation instead. The field’s
value stays sequential regardless.

There will be many cases when a simple atomic increment operation isn’t enough to
make your code thread-safe. For example, what if you needed to update two different
counters in sync? In cases when you can’t ensure consistency with atomic operations,
you can use C#’s lock statement, as shown in listing 8.1. For simplicity, we stick to our
original counter example, but locks can be used to serialize any state change on the
same process. We allocate a new dummy object to use as a lock because .NET uses an
object’s header to keep lock information.

Field’s value Thread #1 Thread #2 Thread #3

mem add

return 1

return 2

0

1

2

2

3

lock lock

lock
The lock instruction
waits until the lock
is released.

The lock instruction
waits until the lock
is released.

mem add

return 3

mem add

Figure 8.2 CPU cores
wait for each other when
atomic increment is used.

202 CHAPTER 8 Palatable scalability

class UniqueIdGeneratorLock {
 private int value;
 private object valueLock = new object();
 public int GetNextValue() {
 lock (valueLock) {
 return ++value;
 }
 }
}

Why do we allocate a new object? Couldn’t we just use this so our own instance would
also act like a lock? That would save us some typing. The problem is that your instance
can also be locked by some code outside of your control. That can cause unnecessary
delays or even deadlocks because your code might be waiting on that other code.

Listing 8.1 A thread-safe counter with C#’s lock statement

Our lock object, specific
for our purpose

Other threads wait
until we’re done.

Exiting the scope automatically
releases the lock.

Deadlocks go brrr
A deadlock occurs when two threads wait on the resources acquired by the other. It’s
quite easy to hit: thread 1 acquires resource A and waits for resource B to be
released, while thread 2 acquires resource B and waits for resource A to be released,
as shown in the following figure.

The result is like an infinite loop, waiting for a condition that will never be satisfied.
That’s why it’s important to be explicit about which lock we use for what purpose in
the code. Having a separate object for our locks is always a good idea so you can
trace the code that uses certain locks and make sure they’re not shared by other
code. That’s not possible with lock(this).

Some of the application hangs you encounter are results of a deadlock, and contrary
to popular belief, they can’t be fixed by hitting your table with your mouse, screaming
at the monitor, or rage quitting.

Anatomy of a deadlock

Thread #1 Thread #2

lock
resource A

lock
resource B

lock
 resource B

lock
resource A

release
resource A

release
resource B

do something do something

Both threads will
hang here forever.

release
resource B

release
resource A

203Don’t use locks

Our own implemented locking code would behave like that in figure 8.3. As you can
see, it’s not as efficient as an atomic increment operation, but it’s still perfectly thread-
safe.

As you can see, locks can make other threads stop and wait for a certain condition.
While providing consistency, this can be one of the greatest challenges against scal-
ability. There’s nothing worse than wasting valuable CPU time waiting. You should
strive to wait as little as possible. How do you achieve that?

 First, make sure that you really need locks. I’ve seen code written by smart pro-
grammers that can be fine without acquiring any locks at all, but that unnecessarily
waits for a certain condition to be met. If an object instance won’t be manipulated by
other threads, that means you may not need locks at all. I don’t say you won’t because
it’s hard to assess the side effects of code. Even a locally scoped object can use shared

There is no magical solution to deadlocks other than a clear understanding of the
locking mechanisms in your code, but a good rule of thumb is always to release the
most recently acquired lock first and release locks as soon as possible. Some pro-
gramming constructs may make it easier to avoid using locks, like channels in the
Go programming language, but it’s still possible to have deadlocks with those too,
just less likely.

Field’s value Thread #1 Thread #2 Thread #3

read

increment

store

return read

increment

store

return

0

0

0

1

1

lock

unlock

lock

unlock

read

increment

store

return

lock

unlock

The lock
instruction
waits until
the lock
is released.

1

1

2

2

2

2

3

3

3

The lock
instruction
waits until
the lock
is released.

Figure 8.3 Using C#’s lock
statement to avoid race conditions

204 CHAPTER 8 Palatable scalability

objects and therefore might require locks. You need to be clear about your intent and
the side effects of your code. Don’t use locks because they magically make the code
they surround thread-safe. Understand how locks work, and be explicit about what
you’re doing.

 Second, find out if the shared data structure you use has a lock-free alternative.
Lock-free data structures can be directly accessed by multiple threads without requir-
ing any locks. That said, the implementation of lock-free structures can be compli-
cated. They can even be slower than their locked counterparts, but they can be more
scalable. A common scenario in which a lock-free structure can be beneficial is shared
dictionaries, or, as they’re called in some platforms, maps. You might need a dictio-
nary of something shared by all threads, like certain keys and values, and the usual way
to handle that is to use locks.

 Consider an example in which you need to keep API tokens in memory so you
don’t have to query the database for their validity every time they’re accessed. A cor-
rect data structure for this purpose would be a cache, and cache data structures can
have lock-free implementations too, but developers tend to use the tool that’s closest
when they try to solve a problem, in this case, a dictionary:

public Dictionary<string, Token> Tokens { get; } = new();

Notice the cool new() syntax in C# 9.0? Finally, the dark days of writing the same type twice
when declaring class members are over. The compiler can now assume its type based on
its declaration.

 Anyway, we know that dictionaries aren’t thread-safe, but thread-safety is only a
concern when there will be multiple threads modifying a given data structure. That’s
an important point: if you have a data structure that you initialize at the start of your
application and you never change it, you don’t need it to be locked or thread-safe by
other means because all read-only structures without side effects are thread-safe.

Side effects
What does code having side effects mean, apart from the occasional headache and
nausea you get in a code review session? The term comes from the domain of func-
tional programming. If a function changes anything outside its scope, that’s consid-
ered a side effect—not just variables or fields, but anything. For example, if a function
writes a log message, it causes an irreversible change in the log output, which is con-
sidered a side effect, too. A function without any side effects can be run any number
of times, and nothing in the environment will change. Functions without side effects
are called pure functions. A function that calculates the area of a circle and returns
the result is a pure function:

class Circle {
 public static double Area(double radius) => Math.PI * Math.Pow(radius, 2);
}

205Don’t use locks

Because we need to manipulate the data structure in the example, we need to have a
wrapper interface to provide locking, as shown in listing 8.2. You can see in the get
method that if the token can’t be found in the dictionary, it’s rebuilt by reading
related data from the database. Reading from the database can be time consuming,
and that means all requests would be put on hold until that read operation finished.

class ApiTokens {
 private Dictionary<string, Token> tokens { get; } = new();

 public void Set(string key, Token value) {
 lock (tokens) {
 tokens[key] = value;
 }
 }

 public Token Get(string key) {
 lock (tokens) {
 if (!tokens.TryGetValue(key, out Token value)) {
 value = getTokenFromDb(key);
 tokens[key] = value;
 return tokens[key];
 }
 return value;
 }
 }

 private Token getTokenFromDb(string key) {
 . . . a time-consuming task . . .
 }
}

That’s not scalable at all, and a lock-free alternative would be great here. .NET pro-
vides two different sets of thread-safe data structures. The names of one start with
Concurrent*, in which short-lived locks are used. They’re not all lock-free. They still
use locks, but they’re optimized to hold them for brief periods of time, making them
quite fast and possibly simpler than a true lock-free alternative. The other set of alter-
natives is Immutable*, in which the original data is never changed, but every modify
operation creates a new copy of the data with the modifications. It’s as slow as it
sounds, but there are cases when they might be preferable to Concurrent flavors.

Listing 8.2 Lock-based thread-safe dictionary

That’s a pure function not just because it has no side effects, but because the mem-
bers and functions it accesses are also pure. Otherwise, those could cause side
effects too, and that would also render our function impure. One benefit of pure func-
tions is that they are guaranteed to be thread-safe, so they can be run in parallel with
other pure functions without any problems.

This is the shared
instance of the
dictionary.

A lock is still needed here because
it’s a multistep operation.

This call can take a long time,
thereby blocking all other callers.

206 CHAPTER 8 Palatable scalability

 If we use a ConcurrentDictionary instead, our code suddenly becomes way more
scalable, as shown in the following listing. You can now see that lock statements aren’t
needed anymore, so the time-consuming query can run better in parallel with other
requests and will block as little as possible.

class ApiTokensLockFree {
 private ConcurrentDictionary<string, Token> tokens { get; } = new();

 public void Set(string key, Token value) {
 tokens[key] = value;
 }

 public Token Get(string key) {
 if (!tokens.TryGetValue(key, out Token value)) {
 value = getTokenFromDb(key);
 tokens[key] = value;
 return tokens[key];
 }
 return value;
 }

 private Token getTokenFromDb(string key) {
 . . . a time-consuming task . . .
 }
}

A minor downside of this change is that multiple requests can run an expensive oper-
ation such as getTokenFromDb for the same token in parallel because no locks are pre-
venting that from happening anymore. In the worst case, you’d be running the same
time-consuming operation in parallel for the same token unnecessarily, but even so,
you wouldn’t be blocking any other requests, so it’s likely to beat the alternate sce-
nario. Not using locks might be worth it.

8.1.1 Double-checked locking

Another simple technique lets you avoid using locks for certain scenarios. For exam-
ple, ensuring that only a single instance of an object is created when multiple threads
are requesting it can be hard. What if two threads make the same request at once? For
example, let’s say we have a cache object. If we accidentally provide two different
instances, different parts of the code would have a different cache, causing inconsis-
tencies or waste. To avoid this, you protect your initialization code inside a lock to
make sure, as shown in the following listing. The static Instance property would hold
a lock before creating an object, so it makes sure that no other instances will create
the same instance twice.

Listing 8.3 Lock-free thread-safe dictionary

This will run in
parallel now!

207Don’t use locks

class Cache {
 private static object instanceLock = new object();
 private static Cache instance;
 public static Cache Instance {
 get {
 lock(instanceLock) {
 if (instance is null) {
 instance = new Cache();
 }
 return instance;
 }
 }
 }
}

The code works okay, but every access to the Instance property will cause a lock to be
held. That can create unnecessary waits. Our goal is to reduce locking. You can add a
secondary check for the value of an instance: return its value before acquiring the
lock if it’s already initialized, and acquire the lock only if it hasn’t been, as shown in
listing 8.5. It’s a simple addition, but it eliminates 99.9% of lock contentions in your
code, making it more scalable. We still need the secondary check inside the lock state-
ment because there’s a small possibility that another thread may have already initial-
ized the value and released the lock just before we acquired it.

public static Cache Instance {
 get {
 if (instance is not null) {
 return instance;
 }
 lock (instanceLock) {
 if (instance is null) {
 instance = new Cache();
 }
 return instance;
 }
 }
}

Double-checked locking may not be possible with all data structures. For example, you
can’t do it for members of a dictionary because it’s impossible to read from a dictio-
nary in a thread-safe manner outside of a lock while it’s being manipulated.

 C# has come a long way and made safe singleton initializations much easier with
helper classes like LazyInitializer. You can write the same property code in a sim-
pler way. It already performs double-checked locking behind the scenes, saving you
extra work.

Listing 8.4 Ensuring only one instance is created

Listing 8.5 Double-checked locking

The object used for locking

The cached instance value

All other callers wait here
if there is another thread
running in this block.The object

gets created,
and only

once, too!

Notice the pattern-matching-based
“not null” check in C# 9.0.

Return the instance
without locking anything.

208 CHAPTER 8 Palatable scalability

public static Cache Instance {
 get {
 return LazyInitializer.EnsureInitialized(ref instance);
 }
}

There are other cases in which double-checked locking might be beneficial. For
example, if you want to make sure a list only contains a certain number of items at
most, you can safely check its Count property because you’re not accessing any of the
list items during the check. Count is usually just a simple field access and is mostly
thread-safe unless you use the number you read for iterating through the items. An
example would look like the following listing, and it would be fully thread-safe.

class LimitedList<T> {
 private List<T> items = new();

 public LimitedList(int limit) {
 Limit = limit;
 }

 public bool Add(T item) {
 if (items.Count >= Limit) {
 return false;
 }
 lock (items) {
 if (items.Count >= Limit) {
 return false;
 }
 items.Add(item);
 return true;
 }
 }

 public bool Remove(T item) {
 lock (items) {
 return items.Remove(item);
 }
 }

 public int Count => items.Count;
 public int Limit { get; }
}

You might have noticed that the code in listing 8.7 doesn’t contain an indexer prop-
erty to access list items with their index. That’s because it’s impossible to provide
thread-safe enumeration on direct index access without fully locking the list before
enumerating. Our class is only useful for counting items, not accessing them. But

Listing 8.6 Safe initialization with LazyInitializer

Listing 8.7 Alternative double-checked locking scenarios

First check outside the lock

Second check inside the lock

209Embrace inconsistency

accessing the counter property itself is quite safe, so we can employ it in our double-
checked locking to get better scalability.

8.2 Embrace inconsistency
Databases provide a vast number of features to avoid inconsistencies: locks, transac-
tions, atomic counters, transaction logs, page checksums, snapshots, and so forth.
That’s because they’re designed for systems in which you can’t afford to retrieve the
wrong data, like banks, nuclear reactors, and matchmaking apps.

 Reliability isn’t a black-and-white concept. There are levels of unreliability that you
can survive with significant gains in performance and scalability. NoSQL is a philoso-
phy that foregoes certain consistency affordances of traditional relational database sys-
tems, like foreign keys and transactions, while gaining performance, scalability, and
obscurity in return.

 You don’t need to go full NoSQL to get the benefits of such an approach. You can
achieve similar gains on a traditional database like MySQL or SQL Server.

8.2.1 The dreaded NOLOCK

As a query hint, NOLOCK dictates that the SQL engine that reads it can be inconsistent
and can contain data from not-yet-committed transactions. That might sound scary,
but is it really? Think about it. Let’s consider Blabber, the microblogging platform we
discussed in chapter 4. When you post every time, another table that contains post
counts would be updated, too. If a post isn’t posted, the counter shouldn’t get incre-
mented, either. Sample code would look like that in the following listing. You can see
in the code that we wrap everything in a transaction, so if the operation fails at any
point, we don’t get inconsistent numbers in post counts.

public void AddPost(PostContent content) {
 using (var transaction = db.BeginTransaction()) {
 db.InsertPost(content);
 int postCount = db.GetPostCount(userId);
 postCount++;
 db.UpdatePostCount(userId, postCount);
 }
}

The code might remind you of our unique ID generator example in the previous sec-
tion; remember how threads worked in parallel with steps like read, increment, and
store, and we had to use a lock to ensure that we kept consistent values? The same
thing’s happening here. Because of that, we sacrifice scalability. But do we need this
kind of consistency? Can I entertain you with the idea of eventual consistency?

 Eventual consistency means you ensure certain consistency guarantees, but only after
a delay. In this example, you can update the incorrect post counts at certain time

Listing 8.8 A tale of two tables

Encapsulate everything
in a transaction.

Insert the post into its own table.
Retrieve
the post

count. Update the incremented
post count.

210 CHAPTER 8 Palatable scalability

intervals. The best thing about that is that such an operation doesn’t need to hold any
locks. Users will rarely see their post counts not reflecting the actual post count until it
gets fixed by the system. You gain scalability because the fewer locks you hold, the
more parallel requests can be run on the database.

 A periodic query that updates a table would still hold locks on that table, but they
would be more granular locks, probably on a certain row, or in the worst case, on a sin-
gle page on the disk. You can alleviate that problem with double-checked locking: you
can first run a read-only query that just queries which rows need to be updated, and
you can run just your update query thereafter. That would make sure that the data-
base doesn’t get nervous about locking stuff because you simply executed an update
statement on the database. A similar query would look like that in listing 8.9. First, we
execute a SELECT query to identify mismatched counts, which doesn’t hold locks. We
then update post counts based on our mismatched records. We can also batch these
updates, but running them individually would hold more granular locks, possibly at
the row level, so it would allow more queries to be run on the same table without hold-
ing a lock any longer than necessary. The drawback is that updating every individual
row will take longer, but it will end eventually.

public void UpdateAllPostCounts() {
 var inconsistentCounts = db.GetMismatchedPostCounts();
 foreach (var entry in inconsistentCounts) {
 db.UpdatePostCount(entry.UserId, entry.ActualCount);
 }
}

A SELECT query in SQL doesn’t hold locks on the table, but it can still be delayed by
another transaction. That’s where NOLOCK as a query hint comes into the picture. A
NOLOCK query hint lets a query read dirty data, but in return, it doesn’t need to respect
locks held by other queries or transactions. It’s easy for you, too. For example, in SQL
Server, instead of SELECT * FROM customers, you use SELECT * FROM customers
(NOLOCK), which applies NOLOCK to the customers table.

 What is dirty data? If a transaction starts to write some records to the database but
isn’t finished yet, those records are regarded as dirty at that moment. That means a
query with a NOLOCK hint can return rows that may not exist on the database yet or that
will never exist. In many scenarios, that can be a level of inconsistency your app can
live with. For example, don’t use NOLOCK when authenticating a user because that
might be a security issue, but there shouldn’t be a problem with using it on, say, show-
ing posts. At worst, you’ll see a post that seemingly exists only a brief period, and it will
go away in the next refresh anyway. You might have experienced this already with the
social platforms you’re using. Users delete their content, but those posts keep showing
up in your feed, although you usually get an error if you try to interact with them.

Listing 8.9 Code running periodically to achieve eventual consistency

No locks are held while
running this query.

A lock is held only
for a single row
when running this.

211Don’t cache database connections

That’s because the platform is okay with some level of inconsistency for the sake of
scalability.

 You can apply NOLOCK to everything in an SQL connection by running an SQL
statement first that sounds unnecessarily profound: SET TRANSACTION ISOLATION
LEVEL READ_UNCOMMITTED. I think Pink Floyd released a song with a similar title. Any-
way, the statement makes more sense and conveys your intent better, too.

 Don’t be afraid of inconsistencies if you’re aware of the consequences. If you can
see the impact of the tradeoff clearly, you can prefer intentional inconsistency to allow
space for more scalability.

8.3 Don’t cache database connections
It’s a rather common malpractice to open a single connection to a database and share
it in the code. The idea is sane on paper: it avoids the overhead of connection and
authentication for every query, so they become faster. It’s also a bit cumbersome to
write open and close commands everywhere. But the truth is, when you only have a
single connection to a database, you can’t run parallel queries against the database.
You can effectively only run one query at a time. That’s a huge scalability blocker, as
can be seen in figure 8.4.

Having a single connection isn’t a good idea for other reasons, too. Queries might
require different transaction scopes when they’re running, and they may conflict
when you try to reuse a single connection for multiple queries at once.

 I must agree that part of the problem comes from naming these things connec-
tions when, in fact, they’re not. You see, most client-side database connectivity librar-
ies don’t really open a connection when you create a connection object. They instead
maintain a certain number of already open connections and just retrieve one for you.
When you think you’re opening a connection, you’re in fact retrieving an already
open connection from what’s famously called the connection pool. When you close the
connection, the actual connection isn’t closed, either. It’s put back into the pool, and
its state gets reset, so any leftover work from a previously running query wouldn’t
affect the new queries.

Database
DbConnection

Request

Request

Request

Request

Request

All user requests are serialized into
a single connection stream,
which prevents parallelization.

Figure 8.4 A bottleneck
created by sharing a single
connection in the application

212 CHAPTER 8 Palatable scalability

 I can hear you saying, “I know what to do! I’ll just keep a connection for every
request and close the connection when the request ends!” That would allow parallel
requests to run without blocking each other, as shown in figure 8.5. You can see that
every request gets a separate connection, and thanks to that, they can run in parallel.

The problem with that approach is that when there are more than five requests, the
connection pool must make the client wait until it can serve an available connection
to them. Those requests wait in the queue, killing the ability to scale more requests,
even though the request may not be in use at the time, because the connection pool
has no way of knowing if the connection requested is in use unless it’s closed explic-
itly. This situation is depicted in figure 8.6.

What if I told you that there is an even better approach that’s completely counterintu-
itive but that will make the code as scalable as possible? The secret solution is to main-
tain connections only for the lifetime of the queries. This would return a connection
to the pool as soon as possible, allowing other requests to grab the available connec-
tion and leading to maximum scalability. Figure 8.7 shows how it works. You can see
how the connection pool serves no more than three queries at once, leaving room for
another request or two.

Database

DbConnectionRequest

Request

Request

Request

Request

DbConnection

DbConnection

DbConnection

DbConnection

Connection
pool

of five
connections

Figure 8.5 Keeping a
single connection per
HTTP request

Database

DbConnectionRequest

Request

Request

Request

Request

DbConnection

DbConnection

DbConnection

DbConnection

Connection
pool

of five
connections

Request

Figure 8.6 Per-request
connection objects
blocking additional
requests

213Don’t cache database connections

The reason that works is because a request is never just about running a query. Some
processing is usually going on besides the queries themselves. That means that the
time you hold a connection object while something irrelevant is running is wasted. By
keeping connections open as briefly as possible, you leave a maximum number of con-
nections available for other requests.

 The problem is that it’s more work. Consider an example in which you need to
update the preferences of a customer based on their name. Normally, a query execu-
tion is pretty much like that in the following listing. You run the queries right away,
without considering connection lifetime.

public void UpdateCustomerPreferences(string name, string prefs) {
 int? result = MySqlHelper.ExecuteScalar(customerConnection,
 "SELECT id FROM customers WHERE name=@name",
 new MySqlParameter("name", name)) as int?;
 if (result.HasValue) {
 MySqlHelper.ExecuteNonQuery(customerConnection,
 "UPDATE customer_prefs SET pref=@prefs",
 new MySqlParameter("prefs", prefs));
 }
}

That’s because you have an open connection that you can reuse. Had you added the
connection open-and-close code, it would have become a little bit more involved, like
that in listing 8.11. You might think we should close and open the connection
between two queries so the connection can be returned to the connection pool for
other requests, but that’s completely unnecessary for such a brief period. You’d even
be adding more overhead. Also note that we don’t explicitly close the connection at
the end of the function. The reason is that the using statement at the beginning

Listing 8.10 A typical query execution with a shared connection instance

Database

Request

Request

Request

Request

Request

Connection
pool

of five
connections

Request

Connections only live throughout
the lifetime of queries, leaving them
available for other requests when
they’re not in use.

Figure 8.7 Per-query
connections to the
database

Using a shared
connection

214 CHAPTER 8 Palatable scalability

ensures that all resources regarding the connection object are freed immediately
upon exiting the function, forcing the connection to be closed in turn.

public void UpdateCustomerPreferences(string name, string prefs) {
 using var connection = new MySqlConnection(connectionString);
 connection.Open();
 int? result = MySqlHelper.ExecuteScalar(customerConnection,
 "SELECT id FROM customers WHERE name=@name",
 new MySqlParameter("name", name)) as int?;
 //connection.Close();
 //connection.Open();
 if (result.HasValue) {
 MySqlHelper.ExecuteNonQuery(customerConnection,
 "UPDATE customer_prefs SET pref=@prefs",
 new MySqlParameter("prefs", prefs));
 }
}

You can wrap the connection-open ceremony in a helper function and avoid writing it
everywhere like this:

using var connection = ConnectionHelper.Open();

That saves you some keystrokes, but it’s prone to mistakes. You might forget to put the
using statement before the call, and the compiler might forget to remind you about
it. You can forget closing connections this way.

8.3.1 In the form of an ORM

Luckily, modern object relational mapping (ORM) tools are libraries that hide the
intricacies of a database by providing an entirely different set of intricate abstractions,
like Entity Framework, that do this automatically for you, so you don’t need to care
about when the connection would be opened or closed. It opens the connection when
necessary and closes it when it’s done with it. You can use a single, shared instance of a
DbContext with Entity Framework throughout the lifetime of a request. You may not
want to use a single instance of it for the whole app, though, because DbContext isn’t
thread-safe.

 A query similar to listing 8.11 can be written like that in listing 8.12 with Entity
Framework. You can write the same queries using LINQ’s syntax, but I find this func-
tional syntax easier to read and more composable.

public void UpdateCustomerPreferences(string name, string prefs) {
 int? result = context.Customers
 .Where(c => c.Name == name)
 .Select(c => c.Id)
 .Cast<int?>()

Listing 8.11 Opening connections for each query

Listing 8.12 Multiple queries with Entity Framework

The ceremony
to open a
connection
to database

This is just silly.

215Don’t use threads

 .SingleOrDefault();
 if (result.HasValue) {
 var pref = context.CustomerPrefs
 .Where(p => p.CustomerId == result)
 .Single();
 pref.Prefs = prefs;
 context.SaveChanges();
 }
}

You can have more space to scale your application over when you are aware of the life-
time semantics of the Connection classes, connection pools, and actual network con-
nections established to the database.

8.4 Don’t use threads
Scalability isn’t only about more parallelization—it’s also about conserving resources.
You can’t scale beyond a full memory, nor can you scale beyond 100% of CPU usage.
ASP.NET Core uses a thread pool structure to keep a certain number of threads to
serve web requests in parallel. The idea is quite similar to a connection pool: having a
set of already initialized threads lets you avoid the overhead of creating them every
time. Thread pools usually have more threads than the number of CPU cores on the
system because threads frequently wait for something to complete, mostly I/O. This
way, other threads can be scheduled on the same CPU core while certain threads are
waiting for I/O to complete. You can see how more threads than the number of CPU
cores can help utilize CPU cores better in figure 8.8. The CPU can use the time a
thread is waiting for something to complete to run another thread on the same core
by serving more threads than the number of available CPU cores.

The connection will be opened
before and closed automatically
after each of these lines.

CPU core #1

CPU core #2

CPU core #3

CPU core #4

Thread #1

Thread #2

Thread #3

Thread #4

Thread #5 Thread #1

Thread #6 Thread #2

TIME

Thread #1 starts
to wait on an I/O
operation at this
point, so another
thread gets
rescheduled on
the same core.

Thread #1 resumes
execution at this
point as soon as
thread #5 starts
waiting for another
I/O operation or
finishes executing.

This time
slice would
have been
lost if there
were only
four threads
in the pool.

Figure 8.8 Optimizing CPU
usage by having more threads
than the number of CPU cores

216 CHAPTER 8 Palatable scalability

This is better than having the same number of threads as CPU cores, but it’s not pre-
cise enough to make the best use of your precious CPU time. The operating system
gives threads a short amount of time to execute and then relinquishes the CPU core
to other threads to make sure every thread gets a chance to run in a reasonable time.
That technique is called preemption, and it’s how multitasking used to work with single-
core CPUs. The operating system juggled all the threads on the same core, creating
the illusion of multitasking. Luckily, since most threads wait for I/O, users wouldn’t
notice that threads took turns to run on the single CPU they have unless they ran a
CPU-intensive application. Then they’d feel its effects.

 Because of how operating systems schedule threads, having a greater number of
threads in the thread pool than the number of CPU cores is just a ballpark way of get-
ting more utilization, but as a matter of fact, it can even harm scalability. If you have
too many threads, they all start to get a smaller slice of CPU time, so they take longer
to run, bringing your website or API to a crawl.

 A more precise way to leverage time spent waiting for I/O is to use asynchronous
I/O, as I discussed in chapter 7. Asynchronous I/O is explicit: wherever you have an
await keyword, that means the thread will wait for a result of a callback, so the same
thread can be used by other requests while the hardware is working on the I/O
request itself. You can serve multiple requests on the same thread in parallel this way,
as you can see in figure 8.9.

Asynchronous I/O is very promising. Upgrading an existing code to asynchronous
I/O is straightforward, too, as long as you have a framework that supports async calls
at the root. For example, on ASP.NET Core, controller actions or Razor Page handlers
can be written either as regular methods or as asynchronous methods because the

CPU core #1

CPU core #2

CPU core #3

CPU core #4

Thread #1
Request A

Thread #2
Request C

Thread #3
Request E

Thread #4
Request F

Thread #1
Request B

Thread #1
Request A

Thread #2
Request D

Thread #2
Request C

TIME

A request starts to
wait on an I/O
operation at this
point, so another
request gets
rescheduled on the
same core.

The original request resumes
execution at this point as
soon as the previous request
starts waiting for another
I/O operation or finishes
executing.

The same
time slice
is still
recovered,
thereby
using fewer
threads.

Figure 8.9 Achieving better
concurrency with fewer threads
and async I/O

217Don’t use threads

framework builds the necessary scaffolding around them. All you need to do is to
rewrite the function using asynchronous calls and mark the method as async. Yes, you
still need to make sure that your code works properly and passes your tests, but it’s still
a straightforward process.

 Let’s revise the example in listing 8.6 and convert it to async in listing 8.13. You don’t
need to go back and see the original code because the differences are highlighted in the
listing in bold. Take a look at the differences, and I’ll break them down afterward.

public async Task UpdateCustomerPreferencesAsync(string name,
 string prefs) {
 int? result = await MySqlHelper.ExecuteScalarAsync(
 customerConnection,
 "SELECT id FROM customers WHERE name=@name",
 new MySqlParameter("name", name)) as int?;
 if (result.HasValue) {
 await MySqlHelper.ExecuteNonQueryAsync(customerConnection,
 "UPDATE customer_prefs SET pref=@prefs",
 new MySqlParameter("prefs", prefs));
 }
}

It’s important that you know what all these are for, so you can use them consciously
and correctly.

 Async functions don’t actually need to be named with the suffix Async, but the
convention helps you see that it’s something you need to await. You might
think, “But the async keyword is right there!” but the keyword only affects the
implementation and isn’t part of the function signature. You must navigate the
source code to find out if an async function is really async. If you don’t await an
async function, it returns immediately while you may incorrectly assume it has
finished running. Try to stick to convention unless you can’t afford it when you
need specific names for your functions, such as the names of controller actions
because they can designate the URL routes as well. It also helps if you want to
have two overloads of the same function with the same name because return
types aren’t considered a differentiator for overloads. That’s why almost all
async methods are named with an Async suffix in .NET.

 The async keyword at the beginning of the function declaration just means you
can use await in the function. Behind the scenes, the compiler takes those
async statements, generates the necessary handling code, and converts them
into a series of callbacks.

 All async functions must return a Task or Task<T>. An async function without a
return value could also have a void return type, but that’s known to cause prob-
lems. For example, exception-handling semantics change, and you lose com-
posability. Composability in async functions lets you define an action that will

Listing 8.13 Converting blocking code to async code

218 CHAPTER 8 Palatable scalability

happen when a function finishes in a programmatical way using Task methods
like ContinueWith. Because of all that, async functions that don’t have a return
value should always use Task instead. When you decorate a function with the
async keyword, values after return statements are automatically wrapped with
a Task<T>, so you don’t need to deal with creating a Task<T> yourself.

 The await keyword ensures that the next line will only be executed after the
expression that precedes it has finished running. If you don’t put await in
front of multiple async calls, they will start running in parallel, and that can be
desirable at times, but you need to make sure that you wait for them to finish
because, otherwise, the tasks may be interrupted. On the other hand, parallel
operations are prone to bugs; for example, you can’t run multiple queries
in parallel by using the same DbContext in Entity Framework Core because
DbContext itself isn’t thread-safe. However, you can parallelize other I/O this
way, like reading a file. Think of an example in which you want to make two web
requests at once. You may not want them to wait for each other. You can make
two web requests concurrently and wait for both of them to finish, as is shown in
listing 8.14. We define a function that receives a list of URLs and starts a down-
load task for each URL without waiting for the previous one to complete so that
the downloads run in parallel on a single thread. We can use a single instance of
the HttpClient object because it’s thread-safe. The function waits for all tasks
to complete and builds a final response out of the results of all tasks.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net.Http;
using System.Threading.Tasks;

namespace Connections {
 public static class ParallelWeb {
 public static async Task<Dictionary<Uri, string>>
 DownloadAll(IEnumerable<Uri> uris) {
 var runningTasks = new Dictionary<Uri, Task<string>>();
 var client = new HttpClient();
 foreach (var uri in uris) {
 var task = client.GetStringAsync(uri);
 runningTasks.Add(uri, task);
 }
 await Task.WhenAll(runningTasks.Values);
 return runningTasks.ToDictionary(kp => kp.Key,
 kp => kp.Value.Result);
 }
 }
}

Listing 8.14 Downloading multiple web pages in parallel on a single thread

The
resulting

type

Temporary
storage to keep
track of running
tasks

A single instance is enough.

Start the task, but
don’t await it.Store

 the task
somewhere.

Wait until all tasks
are complete.

Build a new result Dictionary out of
the results of the completed Tasks.

219Don’t use threads

8.4.1 The gotchas of async code

You need to keep certain things in mind when you’re converting your code to async.
It’s easy to think “Make everything async!” and make everything worse in the process.
Let’s go over some of those pitfalls.

NO I/O MEANS NO ASYNC

If a function doesn’t call an async function, it doesn’t need to be async. Asynchronous
programming only helps with scalability when you use it with I/O-bound operations.
Using async on a CPU-bound operation won’t help scalability because those opera-
tions will need separate threads to run on, unlike I/O operations, which can run in
parallel on a single thread. The compiler might also warn you when you try to use an
async keyword on a function that doesn’t run other async operations. If you choose
to ignore those warnings, you’ll just get unnecessarily bloated and perhaps slower
code due to the async-related scaffolding added to the function. Here’s an example of
unnecessary use of an async keyword:

public async Task<int> Sum(int a, int b) {
 return a + b;
}

I know this happens because I’ve seen it in the wild, where people just decorated their
functions as async for no good reason. Always be explicit and clear about why you
want to make a function async.

DON’T MIX SYNC AND ASYNC

It’s extremely hard to call an async function in a synchronous context safely. People will
say, “Hey, just call Task.Wait(), or call Task.Result, and you’ll be fine.” No, you won’t.
That code will haunt your dreams, it will cause problems at the most unexpected times,
and eventually, you’ll wish you could get some sleep instead of having nightmares.

 The greatest problem with waiting for async functions in synchronous code is that
it can cause a deadlock due to other functions in the async function that depend on
the caller code to complete. Exception handling can also be counterintuitive because
it would be wrapped inside a separate AggregateException.

 Try not to mix asynchronous code inside a synchronous context. It’s a complicated
setup, which is why only frameworks do it, usually. C# 7.1 added support for async
Main functions, which means you can start running async code right away, but you
can’t call an async function from your synchronous web action. The opposite is fine,
though. You can, and you will, have synchronous code in your async functions because
not every function is suitable for async.

8.4.2 Multithreading with async

Asynchronous I/O provides better scalability characteristics than multithreading on I/O
heavy code because it consumes less resources. But multithreading and async are not
mutually exclusive. You can have both. You can even use asynchronous programming

220 CHAPTER 8 Palatable scalability

constructs to write multithreaded code. For example, you can handle long-running CPU
work in an async fashion like this:

await Task.Run(() => computeMeaningOfLifeUniverseAndEverything());

It will still run the code in a separate thread, but the await mechanism simplifies the
synchronization of work completion. If you wrote the same code using traditional
threads, it would look a little bit more involved. You need to have a synchronization
primitive such as an event:

ManualResetEvent completionEvent = new(initialState: false);

The event object you declare also needs to be accessible from the point of synchroni-
zation, which creates additional complexity. The actual code becomes more involved
too:

ThreadPool.QueueUserWorkItem(state => {
 computeMeaningOfLifeUniverseAndEverything();
 completionEvent.Set();
});

Thus, async programming can make some multithreaded work easier to write, but it’s
neither a complete replacement for multithreading nor does it help scalability. Multi-
threaded code written in async syntax is still regular multithreaded code; it doesn’t
conserve resources like async code

8.5 Respect the monolith
There should be a note stuck to your monitor that you’ll only remove when you
become rich from your vested startup stocks. It should say, “No microservices.”

 The idea behind microservices is simple: if we split our code into separate self-
hosted projects, it will be easier in the future to deploy those projects to separate serv-
ers, so, free scaling! The problem here, like many of the issues in software development
I’ve discussed, is added complexity. Do you split all the shared code? Do the projects

Notice the new?
For a long time, programmers had to write SomeLongTypeName something = new
SomeLongTypeName(); to initialize an object. Typing the same type had always been
a chore, even with the help of the IDE. That problem was remediated a bit after the
introduction of the var keyword in the language, but it doesn’t work with class mem-
ber declarations.

C# 9.0 brought a great improvement to quality of life: you don’t have to write the type
of class after new if the type is declared before. You can go ahead and just write
SomeLongTypeName something = new();. This is brought to you by the awesome C#
design team!

221Summary

really not share anything? What about their dependencies? How many projects will you
need to update when you just change the database? How do you share context, like
authentication and authorization? How do you ensure security? There’ll be added
round trip delays caused by the millisecond-level delays between servers. How do you
preserve compatibility? What if you deploy one first, and another one breaks because of
the new change? Do you have the capacity to handle this level of complexity?

 I use the term monolith as the opposite of microservices, where the components of
your software reside in a single project, or at least in tightly coupled multiple projects
deployed together to the same server. Because the components are interdependent,
how do you move some of them to another server to make your app scale?

 In this chapter, we’ve seen how we can achieve better scalability even on a single
CPU core, let alone on a single server. A monolith can scale. It can work fine for a
long time until you find yourself in a situation where you must split your app. At that
point, the startup you’re working for is already rich enough to hire more developers
to do the work. Don’t complicate a new project with microservices when authentica-
tion, coordination, and synchronization can become troublesome at such an early
stage in the lifetime of the product. Ekşi Sözlük, more than 20 years later, is still serving
40 million users every month on a monolithic architecture. A monolith is the natural
next step to switch to from your local prototype, too. Go with the flow and consider
adopting a microservice architecture only when its benefits outweigh its drawbacks.

Summary
 Approach scalability as a multistep diet program. Small improvements can

eventually lead you to a better, scalable system.
 One of the greatest blocks of scalability is locks. You can’t live with them, and

you can’t live without them. Understand that they’re sometimes dispensable.
 Prefer lock-free or concurrent data structures over acquiring locks yourself

manually to make your code more scalable.
 Use double-checked locking whenever it’s safe.
 Learn to live with inconsistencies for better scalability. Choose which types of

inconsistencies your business would be okay with, and use the opportunity to
create more scalable code.

 ORMs, while usually seen as a chore, can also help you create more scalable
apps by employing optimizations that you may not think of.

 Use asynchronous I/O in all the I/O-bound code that needs to be highly scal-
able to conserve available threads and optimize CPU usage.

 Use multithreading for parallelizing CPU-bound work, but don’t expect the
scalability benefits of asynchronous I/O, even when you use multithreading
with async programming constructs.

 A monolith architecture will complete a full tour around the world before the
design discussion over a microservice architecture is finished.

222

Living with bugs

The most profound work of literature on bugs is Metamorphosis by Franz Kafka. It
tells the story of Gregor Samsa, a software developer, who wakes up one day to find
out that he is actually the only bug. Well, he isn’t actually a software developer in
the story because the entire practice of programming in 1915 only consisted of a
couple of pages of code Ada Lovelace wrote 70 years before Kafka wrote his book.
But Gregor Samsa’s profession was the next best thing to a software developer: he
was a traveling salesperson.

 Bugs are basic units of metrics for determining software quality. Because soft-
ware developers consider every bug a stain on the quality of their craftsmanship,
they usually either aim for zero bugs or actively deny their existence by claiming
that it works on their computer or that it’s a feature, not a bug.

This chapter covers
 Error handling best practices

 Living with bugs

 Intentional error handling

 Avoiding debugging

 Advanced rubber-duck debugging

223Don’t fix bugs

Software development is immensely complex because of the inherent unpredictability
of a program. That’s the nature of a Turing machine, a theoretical construct that all
computers and most programming languages are based on, thanks to the works of
Alan Turing. A programming language based on a Turing machine is called Turing com-
plete. Turing machines allow the infinite levels of creativity we have with software, but
it’s just impossible to verify their correctness without executing them. Some languages
depend on a non-Turing complete machine, such as HTML, XML, or regular expres-
sions that are way less capable than Turing complete languages. Because of the nature
of a Turing machine, bugs are inevitable. It’s impossible to have a bug-free program.
Accepting this fact before you set out to develop software will make your job easier.

9.1 Don’t fix bugs
A development team must have a triaging process for deciding which bugs to fix for
any sizable project. The term triaging originated during World War I, when medics
had to decide which patients to treat and which to leave unattended to allocate their
limited resources for those who still had a chance of surviving. It’s the only way to
effectively utilize a scarce resource. Triaging helps you decide what you need to fix
first or whether you should fix it at all.

 How do you prioritize a bug? Unless you’re just a single person driving all the busi-
ness decisions, your team needs to have shared criteria to determine the priority of a
given bug. On the Windows team at Microsoft, we had a complicated set of criteria to
decide which bugs to fix as assessed by multiple engineering authorities. Conse-
quently, we had daily meetings to prioritize bugs and debated, in a place called the
War Room, whether a bug was worth fixing. That’s understandable for a product with
such an immense scale like Windows, but it may be unnecessary for most software
projects. I had to ask for prioritization of a bug because an automated system at an
official marriage center in Istanbul was broken after an update and all marriage cere-
monies had to stop. I had to make my case by breaking down being unable to marry

The traveling salesperson problem
The traveling salesperson problem is a cornerstone subject in computer science
because calculating the optimal route for a traveling salesperson is NP-complete, an
entirely counterintuitive acronym for mondeterministic polynomial-time complete.
Because many words are missing in this acronym, I believed for a long time that it
stood for non-polynomial complete, and I was very confused about it.

Polynomial-time (P) problems can be solved faster than by trying all possible combi-
nations that otherwise have factorial complexity, the second-worst complexity of all
complexities. NP is the superset of P (polynomial) problems that can only be solved
with brute force. Polynomial problems, compared to NP, are always welcome. NP, non-
deterministic polynomial-time problems, don’t have a known polynomial algorithm to
solve them, but their solution can be verified in polynomial time. In that sense, NP-
complete means, “We’re terrible at solving this, but we can verify a suggested solution
quite quickly.”

224 CHAPTER 9 Living with bugs

into tangible metrics like applicability, impact, and severity. “How many couples get mar-
ried in a day in Istanbul?” suddenly sounded like a meaningful interview question.

 A simpler way to assess priority could be by using a tangential second dimension
called severity. Although the goal is essentially to have a single priority, having a sec-
ondary dimension can make assessment easier when two different issues seemingly
have the same priority. I find priority/severity dimensions handy and a good balance
between business-oriented and technology-oriented. Priority is the business impact of a
bug, while severity is the impact on the customer. For example, if a web page on your
platform isn’t working, it’s a high severity issue because the customer can’t use it. But
its priority might be entirely different depending on whether it’s on the home page or
an obscure page only a few customers visit. Similarly, if your business logo on your
home page goes missing, it might have no severity at all, yet it can have the topmost
business priority. The severity dimension takes some load off business prioritization
because it’s impossible to come up with accurate metrics to prioritize bugs.

 Couldn’t we achieve the same level of granularity with a single priority dimension?
For example, instead of having three priority and severity levels, wouldn’t just six pri-
ority levels do the same job? The problem is that the more levels you have, the more
difficult it becomes to differentiate between them. Usually, a secondary dimension
helps you come up with a more accurate assessment of the importance of an issue.

 You should have a threshold for priority and severity so that any bugs that rank
below it are categorized as won’t fix. For example, any bug that has both low priority
and low severity can be considered a won’t fix and can be taken off your radar. Table
9.1 shows the actual meanings of priority and severity levels.

Tracking bugs incurs costs, too. At Microsoft, it took our team at least an hour a day
just to assess the priority of bugs. It’s imperative for your team to avoid revisiting bugs
that aren’t ever likely to be fixed. Try to decide on that earlier in the process. It gains
you time, and it still ensures you maintain decent product quality.

9.2 The error terror
Not every bug is caused by an error in your code, and not every error implies the exis-
tence of a bug in your code. This relationship between bugs and errors is most evident
when you see a pop-up dialogue that says, unknown error. If it’s an unknown error, how
can you be so sure that it’s an error in the first place? Maybe it’s an unknown success!

Table 9.1 Actual meanings of priority and severity

Priority Severity Actual meaning

High High Fix immediately.

High Low The boss wants this fixed.

Low High Let the intern fix it.

Low Low Won’t fix. Never fix these unless there’s nothing else
to do at the office. In that case, let the intern fix it.

225The error terror

 Such situations are rooted in the primitive association between errors and bugs.
Developers instinctively treat all errors as bugs and try to eliminate them consistently
and insistently. That kind of reasoning usually leads to an unknown error situation
because something has gone wrong, and the developer just doesn’t care to under-
stand whether it’s an error. This understanding makes developers treat all kinds of
errors the same way, usually either by reporting every error regardless of whether the
user needs to see them or by hiding them all and burying them inside a log file on a
server that no one will ever bother to read.

 The solution to that kind of obsession with treating all errors the same way is to
consider them part of your state. Perhaps it was a mistake to call them errors. We
should have just called them uncommon and unexpected state changes or exceptions. Oh
wait, we already have those!

9.2.1 The bare truth of exceptions

Exceptions may be the most misunderstood construct in the history of programming.
I can’t even count the times I’ve seen someone simply put their failing code inside a
try block followed with an empty catch block and call it good. It’s like closing the
door to a room that’s on fire and assuming the problem will sort itself out eventually.
It’s not a wrong assumption, but it can be quite costly.

try {
 doSomethingMysterious();
}
catch {
 // this is fine
}

I don’t blame programmers for that, either. As Abraham Maslow said in 1966, “If the
only tool you have is a hammer, you tend to see every problem as a nail.” I’m sure
when the hammer was first invented, it was the next big thing, and everybody tried to
adopt it in their solution process. Neolithic people probably published blog posts
using hand markings on cave walls about how revolutionary the hammer was and how
it could make problems go away, without knowing that better tools would emerge in
the future for spreading butter on bread.

 I’ve seen instances where the developer added a generic exception handler for the
whole application that actually ignores all exceptions, preventing all crashes. Then
why do we keep getting bugs? We would have solved the bug problem a long time ago
if adding an empty handler was the cure.

 Exceptions are a novel solution to the undefined state problem. In the days when
error handling was only done with return values, it was possible to omit handling the
error, assume success, and continue running. That would put the application in a state
the programmer never anticipated. The problem with an unknown state is that it’s

Listing 9.1 The solution to all of life’s problems

226 CHAPTER 9 Living with bugs

impossible to know the effects of that state or how serious they can be. That’s pretty
much the sole reason behind operating system fatal error screens, like the kernel
panic on UNIX systems or the infamous Blue Screen of Death on Windows. They halt
the system to prevent potential further damage. Unknown state means that you can’t
predict what will happen next anymore. Yes, the CPU might just freak out and enter
an infinite loop, or the hard disk drive might decide to write zeros on every sector, or
your Twitter account might decide to publish random political opinions in all caps.

 Error codes are different from exceptions in that it’s possible to detect if excep-
tions aren’t handled during runtime—not so with error codes. The usual recourse for
unhandled exceptions is to terminate the application because the given state isn’t
anticipated. Operating systems do the same thing: they terminate the application if it
fails to handle an exception. They can’t do the same for device drivers or kernel-level
components because they don’t run in isolated memory spaces, unlike user mode pro-
cesses. That’s why they must halt the system completely. That’s less of a problem with
microkernel-based operating systems because the number of kernel-level components
is minimal and even device drivers run in user space, but that has a slight perfor-
mance penalty that we haven’t come to terms with yet.

 The greatest nuance we’re missing about exceptions is the fact that they’re excep-
tional. They’re not for generic flow control; you have result values and flow control
constructs for that. Exceptions are for cases when something happens outside a func-
tion’s contract and it can’t fulfill its contract anymore. A function like (a,b) => a/b
guarantees performing a division operation, but it can’t do that when b’s value is 0. It’s
an unexpected and undefined case.

 Suppose you download software updates for your desktop app, store the down-
loaded copy on disk, and switch your app with the newly downloaded one when the
user starts your app the next time. That’s a common technique for self-updating apps
outside a package management eco-
system. An update operation would
look like figure 9.1. This is a bit
naive because it doesn’t take half-fin-
ished updates into account, but
that’s the whole point.

 If any exception is raised at any
point during the self-update, you’d
get an incomplete app2 folder that
would cause the app files to be
replaced with a broken version,
causing a catastrophic state that’s
impossible to recover from.

 At every step, you can encounter
an exception, and that might cause
everything to fall apart if it’s not han-
dled, or if it’s handled incorrectly.

Download the newer app
files into the app2 folder.

Restart app.

YES

NODoes app2 exist?

Start a new process for
replacement.

Delete the app files.

Move the files in app2 to
the app folder.

Restart the newly updated
app.

Start normally.

Original
app
running

Separate
update
process
running

Figure 9.1 Some primitive logic for a self-updating app

227The error terror

The figure also shows the importance of how your process design should be resilient
against exceptions. Any failure at any step could leave your app in a corrupt state, never
to be recovered. You shouldn’t leave the app in a dirty state even when an exception
occurs.

9.2.2 Don’t catch exceptions

Try/catch blocks are considered quick and easy patches for code that crashes because
of an exception. Ignoring an exception makes the crash disappear, but it doesn’t
make the root cause go away.

 Exceptions are supposed to cause crashes because that’s the easiest way to identify the
problem without causing further problems. Don’t be afraid of crashes. Be afraid of bugs
that don’t cause clean crashes along with a convenient stack trace that helps you pinpoint
the exact place where it happened. Be afraid of problems that are hidden by empty catch
statements, lurking in the code and disguised as a mostly correct-looking state, slightly
accumulating a bad state over a long time, and finally causing either a noticeable
slowdown or a completely irrelevant-looking crash, like an OutOfMemoryException.
Unnecessary catch blocks can prevent some crashes, but they might cost you hours in
reading logs. Exceptions are great because they let you catch a problem before it
becomes a hard-to-catch issue.

 The first rule of exception handling is, you don’t catch an exception. The second
rule of exception handling is IndexOutOfRangeException at Street Coder chapter 9.

 See what happens when you have only one rule? Don’t catch an exception because
it causes a crash. If it’s caused by an incorrect behavior, fix the bug that causes it. If it’s
caused by a known possibility, put explicit handling statements in the code for that
specific case.

 Whenever there is a possibility of getting an exception at some point in the code,
ask yourself, “Do I have a specific recourse planned for this exception, or do I just
want to prevent a crash?” If it’s the latter, handling that exception may not be neces-
sary and may be even harmful because blindly handling an exception can hide a
deeper, more serious problem with your code.

 Consider the self-updating application I mentioned in section 9. 2.1. It could have
a function that downloads a series of application files into a folder, as shown in listing
9.2. We need to download two files from our update server, assuming they are the lat-
est versions. Obviously, there are many problematic issues with that approach, like not
using a central registry to identify the latest version and downloading that specific ver-
sion. What happens if I start downloading an update while the developers are in the
middle of updating remote files? I’d get half of the files from the previous version and
half from the next version, causing a corrupt installation. For the sake of our example,
let’s assume the developers shut down the web server before an update, update the
files, and turn it back on after it’s complete, preventing such a screw-up.

228 CHAPTER 9 Living with bugs

private const string updateServerUriPrefix =
 "https://streetcoder.org/selfupdate/";

private static readonly string[] updateFiles =
 new[] { "Exceptions.exe", "Exceptions.app.config" };

private static bool downloadFiles(string directory,
 IEnumerable<string> files) {
 foreach (var filename in updateFiles) {
 string path = Path.Combine(directory, filename);
 var uri = new Uri(updateServerUriPrefix + filename);
 if (!downloadFile(uri, path)) {
 return false;
 }
 }
 return true;
}

private static bool downloadFile(Uri uri, string path) {
 using var client = new WebClient();
 client.DownloadFile(uri, path);
 return true;
}

We know that DownloadFile can throw exceptions for various reasons. Actually, Micro-
soft has great documentation for the behavior of .NET functions, including which
exceptions they can throw. There are three exceptions that WebClient’s Download-
File method can throw:

 ArgumentNullException when a given argument is null
 WebException when something unexpected happens during a download, like a

loss of internet connection
 NotSupportedException when the same WebClient instance is called from mul-

tiple threads to signify that the class itself isn’t thread-safe

To prevent an unpleasant crash, a developer might choose to wrap the call to Download-
File in a try / catch, so the downloads would continue. Because many developers
wouldn’t care about which types of exceptions to catch, they just do it with an untyped
catch block. We introduce a result code so we can detect whether an error has occurred.

private static bool downloadFile(Uri uri, string path) {
 using var client = new WebClient();
 try {
 client.DownloadFile(uri, path);
 return true;
 }
 catch {
 return false;
 }
}

Listing 9.2 Code for downloading multiple files

Listing 9.3 Preventing crashes by creating more bugs

The list of files to
be downloaded

We detect a problem with
download and signal cleanup.

Download an
individual file.

229The error terror

The problem with that approach is that you catch all three possible exceptions, two of
which actually point to a definite programmer error. ArgumentNullException only
happens when you pass an invalid argument and the caller is responsible for it, mean-
ing there’s either bad data or bad input validation somewhere in the call stack. Simi-
larly, NotSupportedException is only raised when you misuse the client. That means
you’re hiding many potentially easy-to-fix bugs that might lead to even more serious
consequences by catching all exceptions. No, despite what some magic animal slavery
ring might dictate, you don’t gotta catch ’em all. If we didn’t have a return value, a
simple argument error would cause files to be skipped, and we wouldn’t even know if
they were there. You should instead catch a specific exception that’s probably not a
programmer error, as listing 9.4 shows. We only catch WebException, which is, in fact,
expected because you know a download can fail any time for any reason, so you want
to make it part of your state. Catch an exception only when it’s expected. We let other
types of exceptions cause a crash because it means we were stupid and we deserve to
live with its consequences before it causes a more serious problem.

private static bool downloadFile(Uri uri, string path) {
 using var client = new WebClient();
 try {
 client.DownloadFile(uri, path);
 return true;
 }
 catch (WebException) {
 return false;
 }
}

That’s why code analyzers suggest that you avoid using untyped catch blocks, because
they are too broad, causing irrelevant exceptions to be caught. Catchall blocks should
only be used when you really mean catching all the exceptions in the world, probably
for a generic purpose like logging.

9.2.3 Exception resiliency

Your code should work correctly even without handling exceptions, even when it’s
crashed. You should design a flow that works fine even when you constantly get excep-
tions, and you shouldn’t enter a dirty state. Your design should tolerate exceptions.
The main reason is that exceptions are inevitable. You can put a catchall try/catch
in your Main method, and your app would still be terminated unexpectedly when new
updates cause a restart. You shouldn’t let exceptions break your application’s state.

 When Visual Studio crashes, the file you were changing at that moment doesn’t go
missing. You get reminded about the missing file when you start the application again,
and you’re offered an option to recover the missing file. Visual Studio manages that
by constantly keeping a copy of unsaved files at a temporary location and deleting one

Listing 9.4 Precise exception handling

You don’t gotta
catch ’em all.

230 CHAPTER 9 Living with bugs

when the file is actually saved. At startup, it checks for the existence of those tempo-
rary files and asks if you want to recover them. You should design your code to antici-
pate similar problems.

 In our self-updating app example, your process should allow exceptions to hap-
pen, and recover from them when the app’s restarted. An exception-resilient design
for our self-updater would look like figure 9.2, in which instead of downloading indi-
vidual files, we download a single atomic package, which prevents us from getting an
inconsistent set of files. Similarly, we back up original files before replacing them with
new ones so we can recover in case something goes wrong.

How much time it takes to install updates on our devices hints that the software
update is complicated, and I’m sure I’ve missed many cases where this design can fail.
However, you can apply similar techniques to prevent a bad state in your app.

 Achieving exception-resilient design starts with idempotency. A function, or a
URL, is idempotent if it returns the same result regardless of how many times it’s

Download the specific
update package to a
temporary location.

Extract the files to a
temporary location.

YES

NODoes app2 exist?

Copy the app executable
and start it.

Move the app files to
a temporary location.

Move the files in app2 to
the app folder.

Restart the newly updated
app.

Start normally.

Original
app
running

Separate
update
process
running

A single package would prevent a
half-finished download problem.

This way, we can ensure we have
a consistent set of update files.

Move the folder to app2. This can be an atomic operation.

Restart the app.

YESDoes app_old exist?

The update failed.
Restore the old app files

from app_old.

Rename the temp folder to
app_old.

NO

NO

Is the app already running?

Figure 9.2 A more exception-
resilient version of our self-
updating app

231The error terror

called. That might sound trivial for a pure function like Sum(), but it gets more com-
plicated with functions that modify external state. An example is the checkout process
of online shopping platforms. If you accidentally click the Submit Order button twice,
does your credit card get charged twice? It shouldn’t. I know that some websites try to
fix this by putting up a warning like “Don’t click the button twice!” but as you know,
most cats walking on the keyboard are illiterate.

 Idempotency is usually thought of in a simplified manner for web requests like
“HTTP GET requests should be idempotent and anything non-idempotent should be a
POST request.” But GET requests may not be idempotent, say, for content with dynami-
cally changing parts; or a POST request can be idempotent, like an upvote operation:
multiple upvotes for the same content shouldn’t change the number of times the
users have upvoted for the same content.

 How does this help us become exception resilient? When we design our function
to have consistent side effects regardless of how many times it’s called, we also gain
some consistency benefits for when it gets interrupted unexpectedly. Our code
becomes safely callable multiple times without causing any problems.

 How do you achieve idempotency? In our example, you can have a unique order-
processing number, and you can create a record on the DB as soon as you start process-
ing the order and check its existence at the start of your processing function, as figure
9.3 shows. The code needs to be thread-safe, because some cats can walk really fast.

YES

ERROR

SUCCESS

Status = Processing

Show the order result page.

Show the “please wait while
your order is being processed”
page, and check if the status
changes to something other
than processing periodically.

SUCCESS

ERROR

Process order

Status = Complete

NOStatus == New?

Status = Failed

NO

YES

Status == Processing?

NO

YESTimed out?

Start

Figure 9.3
An idempotent
example of order
submission

232 CHAPTER 9 Living with bugs

DB transactions can help you avoid a bad state because they’re rolled back if they some-
how cut off because of an exception, but they may not be necessary for many scenarios.

 In figure 9.3, we define an order status change operation, but how do we ensure
that we do it atomically? What if somebody else changes it before we read the result?
The secret is to use a conditional update operation for the database that makes sure
the status is the same as the expected one. It might look like this:

UPDATE orders SET status=@NewState WHERE id=@OrderID status=@CurrentState

UPDATE returns the number of rows affected, so if the state changed during the UPDATE
operation, the operation itself would fail and it would return 0 as the number of rows
affected. If the state change is successful, it would return 1. You can use this to atomi-
cally update the record state changes, as shown in figure 9.3.

 An implementation example would look like listing 9.5. We define every individual
state the order can be in throughout order processing and enable our processing to
handle the situation at different levels of processing. If it’s already being processed, we
just show the still-processing page and expire the order if it times out.

public enum OrderStatus {
 New,
 Processing,
 Complete,
 Failed,
}

[HttpPost]
public IActionResult Submit(Guid orderId) {
 Order order = db.GetOrder(orderId);

 if (!db.TryChangeOrderStatus(order, from: OrderStatus.New,
 to: OrderStatus.Processing)) {
 if (order.Status != OrderStatus.Processing) {
 return redirectToResultPage(order);
 }
 if (DateTimeOffset.Now - order.LastUpdate > orderTimeout) {
 db.ChangeOrderStatus(order, OrderStatus.Failed);
 return redirectToResultPage(order);
 }
 return orderStatusView(order);
 }
 if (!processOrder(order)) {
 db.ChangeOrderStatus(order, OrderStatus.Failed);
 } else {
 db.TryChangeOrderStatus(order,
 from: OrderStatus.Processing,
 to: OrderStatus.Complete);
 }
 return redirectToResultPage(order);
}

Listing 9.5 Idempotent order processing

Try
changing
status
atomically.

Check the
timeout.

Show the processing page.

If it fails, the result page will
show the correct outcome.

233The error terror

Despite that being an HTTP POST request, the order submission is perfectly okay to be
called multiple times without causing any unwanted side effects, and therefore, it’s
idempotent. If your web app crashes and you restart your application, it can still
recover from many invalid states, such as a processing state. Order processing can be
more complicated than this, and it might require external periodic cleanup work for
certain cases, but you can still have great resiliency against exceptions, even with no
catch statements whatsoever.

9.2.4 Resiliency without transactions

Idempotency may not be enough for exception resiliency, but it provides a great foun-
dation because it encourages us to think about how our function would behave at dif-
ferent states. In our example, the process-order step may cause exceptions and leave a
dirty state around for a given order, preventing the same step from being called again.
Normally, transactions protect against that because they roll back all the changes with-
out leaving any dirty data behind. But not every storage has transaction support—file
systems, for example.

 You still have options even when transactions aren’t available. Suppose you created
an image-sharing app where people can upload albums and share them with their
friends. Your content delivery network (CDN, a nifty name for file servers) could have
a folder for each album with image files underneath, and you’d have album records in
a database. It’s quite impractical to wrap the operation of building these in a transac-
tion because it spans multiple technologies.

 The traditional approach to creating an album is to create the album record first,
create the folder, and finally upload the images to the folder based on this informa-
tion. But if an exception is raised anywhere in the process, you would get an album
record with some of the pictures missing. This problem applies to pretty much all
kinds of interdependent data.

 You have multiple options to avoid this problem. In our album example, you can
create the folder for images first at a temporary location, move the folder to a UUID
created for the album, and finally create the album record as the last operation in the
process. This way, users would never browse albums that are half complete.

 Another option would be to create the album record first with a status value that
specifies that the record is inactive and then add the rest of the data. You can finally
change the status of the album record to active when the insertion operation is com-
plete. This way, you wouldn’t get duplicate album records when exceptions interrupt
the upload process.

 In both cases, you can have periodic cleanup routines that can sweep records that
are abandoned and remove them from the DB. With a traditional approach, it’s hard
to know whether a resource is valid or a remnant from an interrupted operation.

234 CHAPTER 9 Living with bugs

9.2.5 Exceptions vs. errors

It can be argued that exceptions signify errors, and that may be true, but not all errors
are qualified to be exceptions. Don’t use exceptions for cases where you expect the
caller to handle it most of the time. That’s not an exceptional situation. A very familiar
example is Parse versus TryParse in .NET, where the former throws an exception on
invalid input, while the latter just returns false.

 There was only Parse once. Then came TryParse in .NET Framework 2.0 because
invalid input turned out to be common and expected in most scenarios. Exceptions
are an overhead in those cases because they’re slow. That’s because they need to carry
the stack trace with them, which requires walking the stack in the first place to gather
stack trace information. That can be very expensive compared to simply returning a
Boolean value. Exceptions are also harder to handle because you need all the
try/catch ceremony, while a simple result value only needs to be checked with an
if, as shown in the following listing. You can see that an implementation with
try/catch involves more typing, it’s harder to implement correctly because the devel-
oper can easily forget to keep its exception handler specific to FormatException, and
the code is harder to follow.

public static int ParseDefault(string input,
 int defaultValue) {
 try {
 return int.Parse(input);
 }
 catch (FormatException) {
 return defaultValue;
 }
}

public static int ParseDefault(string input,
 int defaultValue) {
 if (!int.TryParse(input, out int result)) {
 return defaultValue;
 }
 return result;
}

Parse still has its place when you expect the input to always be correct. If you’re sure
that the input value is always correctly formatted, and any invalid value is actually a
bug, you do want an exception to be thrown. It’s a dare in a way, because then you’re
sure that an invalid input value is a bug. “Crash if you can!”

 Regular error values are good enough to return responses most of the time. It’s
even okay not to return anything if you have no use for the return value. For example,
if you expect an upvote operation to always be successful, don’t have a return value.
The function’s return already signifies success.

Listing 9.6 A tale of two parses

Implementation
with Parse

It’s tempting to omit the
exception type here.

Implementation
with TryParse

235The error terror

 You can have different types of error results based on how much you expect the
caller needs the information. If the caller only cares about success or failure and not
the details, returning a bool is perfectly fine, with true signifying success; false, on
the other hand, is failure. If you have a third state or you’re using bool already to spec-
ify something else, then you might need a different approach.

 For example, Reddit has voting functionality, but only if the content’s recent
enough. You can’t vote on comments or posts that are older than six months. You also
can’t vote on deleted posts. That means voting can fail in multiple ways, and that dif-
ference might need to be communicated to the user. You can’t just say “voting failed:
unknown error” because the user might think it’s a temporary problem and keep try-
ing. You have to say, “This post is too old” or “This post is deleted,” so the user learns
about that specific platform dynamic and stops trying to vote. A better user experi-
ence would be to hide the voting buttons so the user would immediately know they
can’t vote on that post, but Reddit insists on showing them.

 In Reddit’s case, you can simply use an enum to differentiate between different fail-
ure modes. A possible enum for a Reddit voting result could look like listing 9.7. That
may not be comprehensive, but we don’t need additional values for other possibilities
because we don’t have any plans for them. For example, if voting fails because of a DB
error, that must be an exception, not a result value. It points to either an infrastruc-
ture failure or a bug. You want your call stack; you want it to be logged somewhere.

public enum VotingResult {
 Success,
 ContentTooOld,
 ContentDeleted,
}

The great thing about enums is that the compiler can warn you about unhandled cases
when you use switch expressions. You get a warning for cases you didn’t handle
because they’re not exhaustive enough. The C# compiler can’t do the same for
switch statements, only for switch expressions because they’re newly added to the
language and can be designed for these scenarios. A sample exhaustive enum handling
for an upvote operation might look like the following listing. You might still get a sep-
arate warning for the switch statement not being exhaustive enough because, in the-
ory, you can assign invalid values to enums due to initial design decisions made for the
C# language.

[HttpPost]
public IActionResult Upvote(Guid contentId) {
 var result = db.Upvote(contentId);
 return result switch {

Listing 9.7 Voting result for Reddit

Listing 9.8 Exhaustive enum handling

236 CHAPTER 9 Living with bugs

 VotingResult.Success => success(),
 VotingResult.ContentTooOld
 => warning("Content is too old. It can't be voted"),
 VotingResult.ContentDeleted
 => warning("Content is deleted. It can't be voted"),
 };
}

9.3 Don’t debug
Debugging is an ancient term; it even predates programming, before Grace Hopper
made it popular in the 1940s by finding an actual moth in the relays of a Mark II com-
puter. It was originally used in aeronautics for processes that identified aircraft faults.
It is now being replaced by Silicon Valley’s more advanced practice of firing the CEO
whenever a problem is discovered after the fact.

 The modern understanding of debugging mostly implies running the program
under a debugger, putting breakpoints, tracing the code step by step, and examining
the state of the program. Debuggers are very handy, but they’re not always the best
tools. It can be very time consuming to identify the root cause of a problem. It may
not be even possible to debug a program in all circumstances. You may not even have
access to the environment the code is running.

9.3.1 printf() debugging

Inserting console output lines inside your program to find a problem is an ancient prac-
tice. We developers have since gotten fancy debuggers with step-by-step debugging fea-
tures, but they aren’t always the most efficient tools for identifying the root cause of a
problem. Sometimes, a more primitive approach can work better to identify an issue.
printf() debugging gets its name from the printf() function in the C programming
language. Its name stands for print formatted. It’s quite similar to Console.WriteLine(),
albeit with a different formatting syntax.

 Checking the state of the application continuously is probably the oldest way to
debug programs. It even predates computer monitors. Older computers were
equipped with lights on their front panels that actually showed the bit states of the
registers of the CPU, so programmers could understand why something didn’t work.
Luckily for me, computer monitors were invented before I was born.

 printf() debugging is a similar way to show the state of the running program peri-
odically, so the programmer can understand where the issue happens. It’s usually
frowned on as a newbie technique, but it can be superior to step-by-step debugging for
several reasons. For example, the programmer can pick a better granularity for how
frequently the state should be reported. With step-by-step debugging, you can only set
breakpoints at certain places, but you can’t really skip more than a single line. You
either need a complicated breakpoint setup, or you just need to press the Step Over
key tediously. It can get quite time consuming and boring.

 More importantly, printf() or Console.WriteLine() writes the state to the console
terminal that has history. That’s significant since you can build a chain of reasoning

237Don’t debug

between different states by looking at your terminal output, which is something you
can’t do with a step-by-step debugger.

 Not all programs have visible console output, web applications, or services. .NET
has alternatives for those environments, primarily Debug.WriteLine() and
Trace.WriteLine(). Debug.WriteLine() writes the output to the debugger output
console, which is shown in the debugger output window on Visual Studio instead of
the application’s own console output. The greatest benefit of Debug.WriteLine is
that calls to it get stripped completely from optimized (release) binaries, so they don’t
affect the performance of the released code.

 That, however, is a problem for debugging production code. Even if the debug
output statements had been kept in the code, you’d have no practical way to read
them. Trace.WriteLine() is a better tool in that sense because .NET tracing can have
runtime configurable listeners apart from the usual output. You can have trace output
written to a text file, an event log, an XML file, and anything you can imagine with the
right component installed. You can even reconfigure tracing while the application is
running, thanks to .NET’s magic.

 It’s easy to set up tracing, so you can enable it while your code is running. Let’s
consider an example, a live, running web application where we might need to enable
tracing while it’s running to identify a problem.

9.3.2 Dump diving

Another alternative to step-by-step debugging is to examine crash dumps. While they’re
not necessarily created after a crash, crash dumps are files that contain the contents of
the snapshot of the memory space of a program. They’re also called core dumps on UNIX
systems. You can manually create crash dumps with a right-click on a process name on
Windows Task Manager and then clicking on
Create Dump File, as shown in figure 9.4. That’s a
non-invasive operation that would only pause the
process until the operation is complete, but would
keep the process running after.

 You can perform the same kind of smooth core
dumping on UNIX variants without killing the
app, but it’s slightly more involved. It requires you
to have the dotnet dump tool installed:

dotnet tool install --global dotnet-dump

The tool’s great for analyzing crash dumps, so it’s a
good idea to have it installed even on Windows. The
installation command is the same for Windows.

 There is a project on GitHub, under the
examples for this chapter, called InfiniteLoop
that consumes CPU continuously. That could be

Figure 9.4 Manually generate a crash
dump on a running application.

238 CHAPTER 9 Living with bugs

our web application or our service running on a production server, and it’s a good
exercise to try to identify a problem on such a process. It’s pretty much like honing
your lock-picking skills on a dummy lock. You might not think you need lock-picking
skills, but wait until you hear about a locksmith’s fees. The whole code of the applica-
tion is shown in listing 9.9. We basically run a multiplication operation in a loop con-
tinuously without any benefit to world peace. It probably still wastes way less energy
than Bitcoin. We’re using random values determined in the runtime to prevent the
compiler from accidentally optimizing away our loop.

using System;

namespace InfiniteLoop {
 class Program {
 public static void Main(string[] args) {
 Console.WriteLine("This app runs in an infinite loop");
 Console.WriteLine("It consumes a lot of CPU too!");
 Console.WriteLine("Press Ctrl-C to quit");
 var rnd = new Random();
 infiniteLoopAggressive(rnd.NextDouble());
 }

 private static void infiniteLoopAggressive(double x) {
 while (true) {
 x *= 13;
 }
 }
 }
}

Compile the InfiniteLoop application and leave it running in a separate window.
Let’s assume this is our service in production and we need to find out where it’s stuck
or where it consumes so much CPU. Finding the call stack would help us a lot, and we
can do that with crash dumps without crashing anything.

 Every process has a process identifier (PID), a numeric value that is unique among
other running processes. Find the PID of the process after you run the application.
You can either use Task Manager on Windows or just run this command on a Power-
Shell prompt:

Get-Process InfiniteLoop | Select -ExpandProperty Id

Or, on a UNIX system, you can just type

pgrep InfiniteLoop

The PID of the process would be shown. You can create a dump file using that PID by
writing out the dotnet dump command:

dotnet dump collect -p PID

Listing 9.9 InfiniteLoop application with unreasonable CPU consumption

239Don’t debug

If your PID is, say, 26190, type

dotnet dump collect -p 26190

The command would show where the crash dump is saved:

Writing full to C:\Users\ssg\Downloads\dump_20210613_223334.dmp
Complete

You can later analyze the command of dotnet-dump on that generated dump file:

dotnet dump analyze .\dump_20210613_223334.dmp
Loading core dump: .\dump_20210613_223334.dmp ...
Ready to process analysis commands. Type 'help' to list available commands or

'help [command]' to get detailed help on a command.
Type 'quit' or 'exit' to exit the session.
> _

You’d use forward slashes for UNIX pathnames instead of the backslashes of Win-
dows. This distinction has an interesting story that comes down to Microsoft adding
directories to MS-DOS in its v2.0 instead of v1.0.

 The analyze prompt accepts many commands that can be seen with help, but you
only need to know a few of them to identify what the process is doing. One is the
threads command that shows all the threads running under that process:

> threads
*0 0x2118 (8472)
 1 0x7348 (29512)
 2 0x5FF4 (24564)
 3 0x40F4 (16628)
 4 0x5DC4 (24004)

The current thread is marked with an asterisk, and you can change the current thread
with the setthread command, like this:

> setthread 1
> threads
 0 0x2118 (8472)
*1 0x7348 (29512)
 2 0x5FF4 (24564)
 3 0x40F4 (16628)
 4 0x5DC4 (24004)

As you can see, the active thread changed. But the dotnet dump command can only
analyze managed threads, not native threads. If you try to see the call stack of an
unmanaged thread, you get an error:

> clrstack
OS Thread Id: 0x7348 (1)
Unable to walk the managed stack. The current thread is likely not a

240 CHAPTER 9 Living with bugs

managed thread. You can run !threads to get a list of managed threads in
the process
Failed to start stack walk: 80070057

You need a native debugger like WinDbg, LLDB, or GDB to do that kind of analysis,
and they work similarly in principle to analyzing crash dumps. But we’re not inter-
ested in the unmanaged stack currently, and usually, the thread 0 belongs to our app.
You can switch back to thread 0 and run command clrstack again:

> setthread 0
> clrstack
OS Thread Id: 0x2118 (0)
 Child SP IP Call Site
000000D850D7E678 00007FFB7E05B2EB

InfiniteLoop.Program.infiniteLoopAggressive(Double)
[C:\Users\ssg\src\book\CH09\InfiniteLoop\Program.cs @ 15]

000000D850D7E680 00007FFB7E055F49 InfiniteLoop.Program.Main(System.String[])
[C:\Users\ssg\src\book\CH09\InfiniteLoop\Program.cs @ 10]

Apart from a couple of uncomfortably long memory addresses, the call stack makes
complete sense. It shows what that thread has been doing when we got the dump
down to the line number (the number after @) that it corresponds to, without even
breaking the running process! It gets that information from debugging information
files with the extension .pdb on .NET and matches memory addresses with symbols
and line numbers. That’s why it’s important for you to deploy debugging symbols to
the production server in case you need to pinpoint errors.

 Debugging crash dumps is a deep subject and covers many other scenarios like
identifying memory leaks and race conditions. The logic is pretty much universal
among all operating systems, programming languages, and debugging tools. You have
a memory snapshot in a file where you can examine the file’s contents, the call stack,
and the data. Consider this a starting point and an alternative to traditional step-by-
step debugging.

9.3.3 Advanced rubber-duck debugging

As I discussed briefly at the beginning of the book, rubber duck debugging is a way to
solve problems by telling them to a rubber duck sitting on your desk. The idea is that
when you put your problem into words, you reframe it in a clearer way so you can
magically find a solution to it.

 I use Stack Overflow drafts for that. Instead of asking a question on Stack Overflow
and wasting everybody’s time with my perhaps silly question, I just write my question
on the website without posting it. Why Stack Overflow, then? Because being aware of
the peer pressure on the platform forces you to iterate over one aspect that’s crucial
when constructing your question: “What have you tried?”

 Asking yourself that question has multiple benefits, but the most important one is
that it helps you realize that you haven’t tried all the possible solutions yet. Solely

241Summary

thinking about that question has helped me think of numerous other possibilities that
I haven’t considered.

 Similarly, Stack Overflow mods ask you to be specific. Too-broad questions are con-
sidered off topic. That pushes you to narrow your problem down to a single specific
issue, helping you deconstruct your problem in an analytical way. When you practice
this on the website, you’ll make this a habit, and you’ll be able to do it mentally later.

Summary
 Prioritize bugs to avoid wasting your resources on fixing bugs that don’t matter.
 Catch exceptions only when you have a planned, intentional action in place for

that case. Otherwise, don’t catch them.
 Write exception-resilient code that can withstand crashes first instead of trying

to avoid crashes as an afterthought.
 Use result codes, or enums, instead of exceptions for cases where errors are com-

mon or highly expected.
 Use framework-provided tracing affordances to identify problems faster than

clunky step-by-step debugging.
 Use crash dump analysis to identify problems on running code in production if

other methods are unavailable.
 Use your drafts folder as a rubber duck debugging tool, and ask yourself what

you’ve tried.

243

index

A

abstraction boundaries 56–57
alert command 156
algorithms

Big-O notation 17–18
defined 15–18

analyze prompt 239
anti-patterns 93

abstraction boundaries 56–57
bad code 83
breaking code 55
changing code 54, 62
classes 76
clean code 64–65
code rigidity 54–55
comments 88–90
enums 76–78
erasing and rewriting 61–62
example web page 59–60
gotos 85–88
If/Else constructs 83–85
inheritance 74–76
inventing 71–74
isolating common

functionality 57–59
leveraging functions 90–92
naming 90
repetition 66–70
reusing vs. copying 70–71
structs 78–82
technical debt 60
upgrade scenarios 62–64
writing from scratch 61

applicability 224

architectural changes,
refactoring 124, 126, 136

arrays 23–24
async code 219–220

multithreading 219–220
sync code and 219

async I/O 193–196
async/await semantics

195–196
callback functions 194–195
compiler warnings and 196

async keyword 217–218
Async suffix 217
attributes 173
automated tests 96
await keyword 216–218, 220

B

Badge class 180
BDD (behavior-driven

development) 105–106
BeginRead function 194
173

benchmarking 172–175
Big-O notation 17–18
binding redirects 63
Boolean expressions,

evaluating 182–183
boundary conditionals 109
branch prediction 187
branch prediction, CPUs

187–189
breaking code 55

Brooks, Fred 5, 199
bugs 241

debugging 236–241
dump diving 237–240
printf() debugging

236–237
rubber duck

debugging 240–241
exceptions

crashes and 227–229
errors vs. 234–235
exception resiliency

229–233
overview 225–227

triaging 223–224
unknown errors 224–235

business layer 58
byte data type 184

C

caching
CPUs 185
dictionaries 162–163
performance and 196–197

call stacks 30
callback functions, async

I/O 194–195
callback hell 195
Capitalize function 67, 69–70
CapitalizeEveryWord

function 69
CapitalizeFirstLetter

function 69

INDEX244

captcha 161–162
catch block 225, 227–229, 233
CDNs (content delivery

networks) 233
churn 46
class keyword 81
classes, avoiding 76
clean code 64–65
clock cycle 177
cloud storage 164–165
code coverage 110–111
code reviews 95
code rigidity 54–55
code, extracting into shareable

parts 128–129
comments, avoiding 88–90
compiled programming

languages 31
compiler warnings, async I/O

and 196
components, identifying for

refactoring 126
composition 74
computer science theory 52

algorithms
Big-O notation 17–18
defined 15–18

data structures 19–30
arrays 23–24
call stacks 30
dictionaries 26–28
HashSets 29
linked lists 25–26
lists 24
queues 26
stacks 29
strings 20–23

types 30–52
frameworks 37–40
nullable or non-

nullable 41–47
performance 47–49
proof of validity 32–37
reference types vs. value

types 49–52
strongly typed and weakly

typed 32–52
understandability 40–41

Concurrent* thread-safe data
structure 205

Connection class 215
connection pool 211
Console.WriteLine()

function 236

constant time 18
Contains method 181
content delivery networks

(CDNs) 233
Content Security Policy

(CSP) 159
ContinueWith task method 218
copy-paste programming 66
CopyAsync task object 195
CopyToAsync function 196
Count property 208
CPUs 183–185

branch prediction 187–189
caching 185
pipelining 185–187
SIMD 189–191

crashes, exceptions and
227–229

CreatedOn struct 44
CSP (Content Security

Policy) 159
CSPRNG (cryptographically

secure pseudorandom
generator) 169

CSRF (cross-site request
forgery) 159–163

caches 162–163
captcha 161–162
captcha alternatives 162
floods 161

culture 22
cycle 177

D

data structures 19–30
arrays 23–24
call stacks 30
dictionaries 26–28
HashSets 29
linked lists 25–26
lists 24
queues 26
stacks 29
strings 20–23

databases
avoiding database

connections 211–215
NOLOCK hint 209–211
ORM 214–215

DateTime class 108
DateTimeOffset class

99, 101, 108
DbContext instance 214, 218

deadlocks 202
Debug configuration 102
Debug.Assert method 102–103
Debug.WriteLine()

function 237
debugging 236–241

dump diving 237–240
printf() debugging 236–237
rubber duck debugging

240–241
defer statement 88
dependency 54
dependency inversion

principle 74, 130
dependency reception 130
designing with security in

mind 146–147
destination 126
DI (dependency injection)

130–135
dictionaries 26–28
dirty data 210
DivRem function 172–173,

175, 178
DMA (direct memory

access) 193
DoS (denial of service) 161
dotnet command 164
dotnet dump command

237–239
double data type 76
DownloadFile method 228
dump diving 237–240

E

else statements 84
Entity Framework library 47
enum construct 76
enum parameter 120
enums 76–78
Equals() method 34–35
Error label 87
error() function 87–88
errors

exceptions vs. 234–235
unknown errors 224–235

everyWord parameter 67, 71
exceptions

crashes and 227–229
errors vs. 234–235
exception resiliency 229–233
overview 225–227

INDEX 245

ExpectedResult values 104
extension method 99
Extract method 92

F

File.Create method 118
File.OpenRead method 118
File.OpenWrite method 118
filename parameter 68
fixed salts, avoiding 168
float data type 39
floods 161
for/while loops 85
FormatFilename function 71
FormattableString interface 154
FromSqlInterpolated

function 154
functions

callback functions 194–195
leveraging 90–92

G

Garbage Collector 50
gardening activity 62, 64
get method 205
GET request 231
get_ prefix 180
GetBadgeNames() function 181
GetHashCode method

27–28, 34
GetHashCode() function

29, 165
GetTrendingTags function 117
GetUserId function 149
gotos 85–88
GUIDs (globally unique

identifiers) 169

H

happy path 84
HashCode class 28
hashing 27
hashmaps 26
HashSet<T> data structure 181
HashSets 29
heap 49
hot paths 112
Html.Raw statement 158
HtmlString type 158
HTTP POST request 233
HttpClient object 218

I

I/O 191–196
async I/O 193–196

async/await semantics
195–196

callback functions 194–195
compiler warnings and 196

speeding up 191–193
if statements 68, 108, 110,

187, 234
If/Else constructs, avoiding

83–85
IHtmlContent type 158
immutability 21
Immutable* thread-safe data

structure 205
impact 224
indexer property 208
inheritance, avoiding 74–76
Instance property 206–207
int data type 39, 76, 116–117,

184, 189
integration tests 96
interpreted programming

languages 31
IoC (inversion of control) 130
IsVisible property 179–182

J

JavaScript injection 155
JDK (Java Development Kit) 125

K

Kafka, Franz 222
key-value things 26

L

LazyInitializer class 207
leaked data 165
LIFO (Last In First Out) 29, 78
linked lists 25–26
List<T>.Contains()

function 181
lists

linked lists 25–26
overview 24

lock statement 201, 206–207
lock-free data structures 204

locking feature 199–209
logic layer 58
long data type 76

M

Main method 174, 219, 229
manual testing 95
Math.DivRem() function

172–174
MemoryCache class 197
Messages table 60
Metamorphosis (Kafka) 222
microbenchmarking 173
MITM (man-in-the-middle) 148
Mono 125
monolith 220–221
MoveResult type 41
multiple inheritance 74
multithreading 30, 193–194,

219–220
Mythical Man Month, The

(Brooks) 5, 199

N

nameof operator 113
naming

naming conventions 90
tests 120–121

nested loops 179–181
.NET Compact Framework 125
.NET Framework 125
.NET Standard 125
NOLOCK hint 209–211
NOLOCK query 210–211
Not Invented Here

Syndrome 71
nullable value types 42
nulls 41–47, 113–116

O

object relational mapping
(ORM) 134, 214–215

ON ERROR GOTO
statement 85

onComplete() function 194
onRead handler 194
onRead() function 194
OOP (object-oriented

programming) 74
operator overloads 34

INDEX246

optimization 197
benchmarking 172–175
caching 196–197
CPUs 183–185

branch prediction 187–189
caching 185
pipelining 185–187
SIMD 189–191

evaluating Boolean
expressions 182–183

I/O 191–196
async I/O 193–196
speeding up 191–193

nested loops 179–181
performance vs.

responsiveness 175–176
sluggishness 177–178
string-oriented

programming 181–182
ORM (object relational

mapping) 134, 214–215
overflow 65535

P

parameterization 152–154
parameterized queries 152
parameterized tests 104
Parameters object 152
[Params] attribute 173
Pareto principle 112
password hashing 165–166
PBKDF2 (Password-Based Key

Derivation
Function Two) 166

performance
responsiveness vs. 175–176
sluggishness 177–178

PID (process identifier) 238
pipelining, CPUs 185–187
placid_turn value 150
pointers 49
polymorphism 24
popping 29
POST request 159–160, 231
preemption 216
printf() debugging 236–237
priority 224
production, testing in 96–97
proof of validity 32–37
pushing 29

Q

query plan cache pollution 152
queues 26

R

race condition 201
random values, security

and 168–169
ReadAsync function 195
ReadByte() function 191
record types 46
refactoring 139

architectural changes
124–136

composition and 129
dependency injection

(DI) 130–135
estimating work and

risk 127–128
extracting code into

shareable parts
128–129

final stretch 135–136
identifying

components 126
purpose of 123–124
testing 136–137
when not to refactor 138

reference types 49–52
regression 54
repetition 66–70
return statement 84–86, 218
return/break/continue

statements 85
rubber duck debugging

240–241

S

scalability
databases

avoiding database
connections 211–215

NOLOCK hint 209–211
ORM (object relational

mapping) 214–215
locking and 199–209
monolith 220–221
overview 199
threads 215–220

security 170
cross-site scripting 155–159

common pitfalls 157–158
CSP 159
preventing 156–157
SQL injection and

155–156
CSRF 159–163

caches 162–163
captcha 161–162
captcha alternatives 162
floods 161

dangers of implementing
your own 148–149

designing with security in
mind 146–147

exploiting
vulnerabilities 141–142

security by obscurity 147–148
SQL injection attacks

overview 149–152
parameterization 152–154

storing secrets in source
code 163–169

cloud storage 164–165
comparing strings

166–168
fixed salts 168
leaked data 165
minimizing unnecessary

data collection 165
password hashing 165–166
random values 168–169
UUIDs (universally unique

identifiers) 169
threat modeling

overview 142–146
pocket-sized threat

models 144–146
writing secure web apps

146–159
security by obscurity 147–148
SELECT query 210
setthread command 239
severity 224
SIMD (single instruction,

multiple data)
189–191

sluggishness 177–178
smoke testing 113
software development 13

overview of book
themes 12
what this book isn't 12

INDEX 247

software development, overview
of book (continued)

problems of 7–12
black boxes 10
focus on own stack 11
paradigm-driven 9–10
stigma against menial

work 11–12
too many technologies 8–9
underestimating

overhead 11
street coders

defined 3–4
qualities of 4–7

what matters in 2–3
source code and security

cloud storage 164–165
comparing strings 166–168
fixed salts 168
leaked data 165
minimizing unnecessary data

collection 165
password hashing 165–166
random values 168–169
UUIDs 169

space complexity 18
SQL injection attacks

overview 149–152
parameterization 152–154

SqlCommand class 150
stack pointer 30
stacks 29–30
StatsController class 59
Stream class 196
street coders

defined 3–4
qualities of 4–7

embracing complexity
and ambiguity 6–7

high-throughput 6
questioning 5
results-driven 5–6

string data type 39
string-oriented

programming 181–182
String.Concat() function 22
strings 20–23
StringValue class 113
strongly typed 31–32
structs 51, 78–82
submit action 85
Submit function 91
suite class 174

Sum() function 231
switch expression 235
System.Diagnostics

namespace 102
System.Runtime.Caching

package 197
System.Uri class 112

T

Task.Wait() function 219
TDD (test-driven development)

101, 105–106
technical debt 60
TestCase attributes 104
testing 121

avoiding writing tests
112–113

choosing tests wisely
112–113

nonexistent code 112
deciding what to test

107–111
code coverage 110–111
respecting boundaries

107–110
letting compiler test

code 113–120
eliminating null

checks 113–116
eliminating range

checks 116–118
eliminating valid value

checks 118–120
naming tests 120–121
refactoring 136–137
sample test 99–105
TDD and BDD 105–106
types of 95–98

automated tests 96
choosing methodology

97–98
manual testing 95
production, testing in

96–97
writing tests 106–107

thread-safe 199
threads 215–220

async code 219–220
multithreading 219–220
overview 219
sync code and 219

threads command 239

threat modeling
overview 142–146
pocket-sized threat

models 144–146
tight coupling 74
time complexity 18
TimeSpan function 109
ToLower function 68
ToString() function 35
ToUpper function 68
Trace.WriteLine() function 237
triaging 223
try block 225, 227
try/catch block 228–229, 234
Turing machine 223
types 30–52

frameworks 37–40
nullable or non-nullable

41–47
performance 47–49
proof of validity 32–37
reference types vs. value

types 49–52
strongly typed and weakly

typed 32–52
understandability 40–41

U

uint integers 16
unit tests 96
unknown errors 224–235
unknown state 226
UPDATE operation 232
upgrade scenarios 62–64
Username class 115, 158
UUIDs (universally unique

identifiers) 169

V

ValidateAntiForgeryToken
attribute 160

value types 49–52
Vector type 189–190
Vector<T> instance 190
ViewModel class 158
virtual calls 24
virtual memory 49
void return type 217

INDEX248

W

weakly typed 31–32
WebClient instance 228
WriteAsync function 195
writing secure web apps 146–159

X

XSS (cross-site scripting) 155–159
common pitfalls 157–158
CSP 159
preventing 156–157
SQL injection and 155–156

Z

zombie processes 30
zone 98

CS degree

Self-teaching

Boot camp

Courses

STREETS

Theory

Practice

Here be dragons.

Starting a career through different paths

 Sedat Kapanoglu

ISBN: 978-1-61729-837-0

F
resh-faced CS grads, bootcampers, and other junior devel-
opers lack a vital quality: the “street smarts” of experience.
To succeed in software, you need the skills and discipline

to put theory into action. You also need to know when to
go rogue and break the unbreakable rules. Th is book is your
survival guide.

Street Coder teaches you how to handle the realities of day-
to-day coding as a software developer. Self-taught guru Sedat
Kapanoğlu shares down-and-dirty advice that’s rooted in his
personal hands-on experience, not abstract theory or ivory-
tower ideology. You’ll learn how to adapt what you’ve learned
from books and classes to the challenges you’ll face on the job.
As you go, you’ll get tips on everything from technical imple-
mentations to handling a paranoid manager.

What’s Inside
● Beginner-friendly insights on code optimization,
 parallelization, and refactoring
● Put “bad” practices to good use
● Learn to love testing
● Embrace code breaks and become friends with failure

For new programmers. Examples in C#.

Sedat Kapanoglu is a self-taught programmer with more than
25 years of experience, including a stint at Microsoft.

Register this print book to get free access to all ebook formats.
Visit https://www.manning.com/freebook

$49.99 / Can $65.99 [INCLUDING eBOOK]

Street Coder

SOFTWARE DEVELOPMENT

M A N N I N G

“Th is is the book that
I wish I’d had when I started
in the world of application

 development.”—Janek López, Fosh Tech

“A must-read for every
 developer level!”

—Vincent Delcoigne, Wavenet

“Full of solid real-world
programming advice with a

touch of humor.”
—Samuel Bosch, ILVO

“I started my career as a
street coder, and wish I had

read this book at that time so
I could have avoided

many detours and saved a few
years of my career.”

—Xu Yang, Ansteel Group

See first page˘

˘

	Street Coder
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A road map
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	Chapter 1: To the streets
	1.1 What matters in the streets
	1.2 Who’s a street coder?
	1.3 Great street coders
	1.3.1 Questioning
	1.3.2 Results-driven
	1.3.3 High-throughput
	1.3.4 Embracing complexity and ambiguity

	1.4 The problems of modern software development
	1.4.1 Too many technologies
	1.4.2 Paragliding on paradigms
	1.4.3 The black boxes of technology
	1.4.4 Underestimating overhead
	1.4.5 Not my job
	1.4.6 Menial is genial

	1.5 What this book isn’t
	1.6 Themes

	Chapter 2: Practical theory
	2.1 A crash course on algorithms
	2.1.1 Big-O better be good

	2.2 Inside data structures
	2.2.1 String
	2.2.2 Array
	2.2.3 List
	2.2.4 Linked list
	2.2.5 Queue
	2.2.6 Dictionary
	2.2.7 HashSet
	2.2.8 Stack
	2.2.9 Call stack

	2.3 What’s the hype on types?
	2.3.1 Being strong on the type
	2.3.2 Proof of validity
	2.3.3 Don’t framework hard, framework smart
	2.3.4 Types over typos
	2.3.5 To be nullable or non-nullable
	2.3.6 Better performance for free
	2.3.7 Reference types vs. value types

	Chapter 3: Useful anti-patterns
	3.1 If it ain’t broke, break it
	3.1.1 Facing code rigidity
	3.1.2 Move fast, break things
	3.1.3 Respecting boundaries
	3.1.4 Isolating common functionality
	3.1.5 Example web page
	3.1.6 Leave no debt behind

	3.2 Write it from scratch
	3.2.1 Erase and rewrite

	3.3 Fix it, even if it ain’t broke
	3.3.1 Race toward the future
	3.3.2 Cleanliness is next to codeliness

	3.4 Do repeat yourself
	3.4.1 Reuse or copy?

	3.5 Invent it here
	3.6 Don’t use inheritance
	3.7 Don’t use classes
	3.7.1 Enum is yum!
	3.7.2 Structs rock!

	3.8 Write bad code
	3.8.1 Don’t use If/Else
	3.8.2 Use goto

	3.9 Don’t write code comments
	3.9.1 Choose great names
	3.9.2 Leverage functions

	Chapter 4: Tasty testing
	4.1 Types of tests
	4.1.1 Manual testing
	4.1.2 Automated tests
	4.1.3 Living dangerously: Testing in production
	4.1.4 Choosing the right testing methodology

	4.2 How to stop worrying and love the tests
	4.3 Don’t use TDD or other acronyms
	4.4 Write tests for your own good
	4.5 Deciding what to test
	4.5.1 Respect boundaries
	4.5.2 Code coverage

	4.6 Don’t write tests
	4.6.1 Don’t write code
	4.6.2 Don’t write all the tests

	4.7 Let the compiler test your code
	4.7.1 Eliminate null checks
	4.7.2 Eliminate range checks
	4.7.3 Eliminate valid value checks

	4.8 Naming tests

	Chapter 5: Rewarding refactoring
	5.1 Why do we refactor?
	5.2 Architectural changes
	5.2.1 Identify the components
	5.2.2 Estimate the work and the risk
	5.2.3 The prestige
	5.2.4 Refactor to make refactoring easier
	5.2.5 The final stretch

	5.3 Reliable refactoring
	5.4 When not to refactor

	Chapter 6: Security by scrutiny
	6.1 Beyond hackers
	6.2 Threat modeling
	6.2.1 Pocket-sized threat models

	6.3 Write secure web apps
	6.3.1 Design with security in mind
	6.3.2 Usefulness of security by obscurity
	6.3.3 Don’t implement your own security
	6.3.4 SQL injection attacks
	6.3.5 Cross-site scripting
	6.3.6 Cross-site request forgery

	6.4 Draw the first flood
	6.4.1 Don’t use captcha
	6.4.2 Captcha alternatives
	6.4.3 Don’t implement a cache

	6.5 Storing secrets
	6.5.1 Keeping secrets in source code

	Chapter 7: Opinionated optimization
	7.1 Solve the right problem
	7.1.1 Simple benchmarking
	7.1.2 Performance vs. responsiveness

	7.2 Anatomy of sluggishness
	7.3 Start from the top
	7.3.1 Nested loops
	7.3.2 String-oriented programming
	7.3.3 Evaluating 2b || !2b

	7.4 Breaking the bottle at the neck
	7.4.1 Don’t pack data
	7.4.2 Shop local
	7.4.3 Keep dependent works separated
	7.4.4 Be predictable
	7.4.5 SIMD

	7.5 1s and 0s of I/O
	7.5.1 Make I/O faster
	7.5.2 Make I/O non-blocking
	7.5.3 The archaic ways
	7.5.4 Modern async/await
	7.5.5 Gotchas of async I/O

	7.6 If all else fails, cache

	Chapter 8: Palatable scalability
	8.1 Don’t use locks
	8.1.1 Double-checked locking

	8.2 Embrace inconsistency
	8.2.1 The dreaded NOLOCK

	8.3 Don’t cache database connections
	8.3.1 In the form of an ORM

	8.4 Don’t use threads
	8.4.1 The gotchas of async code
	8.4.2 MULTITHREADING with async

	8.5 Respect the monolith

	Chapter 9: Living with bugs
	9.1 Don’t fix bugs
	9.2 The error terror
	9.2.1 The bare truth of exceptions
	9.2.2 Don’t catch exceptions
	9.2.3 Exception resiliency
	9.2.4 Resiliency without transactions
	9.2.5 Exceptions vs. errors

	9.3 Don’t debug
	9.3.1 printf() debugging
	9.3.2 Dump diving
	9.3.3 Advanced rubber-duck debugging

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

