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Introduction

This book is a small gift to a younger me, probably in high school or even earlier. This 

book is by no means written for seasoned researchers or professionals. It should be 

treated as the first bite of ice cream which makes you want more.

This book contains several scientific simulation topics, ranging from physics, 

biology, and even finance. The approach is very gentle and newcomer friendly. I tried 

to remove the majority of the complexity that I would learn with the knowledge and 

scientific training I already had. Instead, I did my best to keep the most important 

essence in each topic. The persona in my mind is a young and curious student who just 

got the first computer and learned some basic programming, probably from the older 

brother. This student, pictured as a younger me, would be able to follow the content 

of this book without any difficulty and get amazed by the beautiful visualizations and 

scientific conclusions.

Each topic in this book is rather independent. According to the level of technical 

difficulty and required background knowledge, I categorize the chapters into three 

groups. Readers can start with any chapter.

Easy:

Chapter 1: Calculating Pi with Monte Carlo Simulation

Chapter 4: Balls in a 2-D Box, a Simple Physics Engine

Medium:

Chapter 2: Markov Chain, a Peek into the Future

Chapter 3: Multi-armed Bandits, Probability Simulation, and Bayesian Statistics

Chapter 7: Rock, Scissors, and Paper: Multi-agent Simulation

Chapter 8: Disease Spreading, Simulating COVID-19 Outbreak

Chapter 9: Misinformation Spreading and Simulations on a Graph

Hard:

Chapter 5: Percolation, Threshold, and Phase Change

Chapter 6: Queuing System: How Stock Trades Are Made

I hope you enjoy this book as much as I do.
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CHAPTER 1

Calculating Pi with Monte 
Carlo Simulation

�Background
When Stanislaw Ulam, a Polish-American mathematician and nuclear physicist, 

invented and formulated the modern Monte Carlo method in the 1940s, he and his 

colleagues named the method Monte Carlo because Ulam’s uncle often borrowed his 

relatives’ money to gamble in Monaco’s Monte Carlo Casino. Stanislaw Ulam and many 

other brilliant scientists were working on the secret nuclear weapon program now 

known as the Manhattan Project. The Monte Carlo method was programmed to simulate 

nuclear reactions. To some degree, the Monte Carlo method helped shape the world we 

see today.

Before theorems or algorithms take their formal names in academics, they often 

have been studied by curious pioneers using fun, example-based approaches. Let’s start 

with a story.

�The Wise Persons’ Competition
Suppose one day in the 1500s, somewhere in the Middle East, a king gave 24 hours to the 

two wisest persons, including you, in his kingdom to calculate the value of π in the most 

elegant way. The king generously promised any reasonable resources you want.

π is the ratio of the perimeter and the diameter of a circle. Oftentimes, we also call 

the perimeter of a circle circumference denoted with the letter C. The quantities are 

illustrated in Figure 1-1.

© Rongpeng Li and Aiichiro Nakano 2022 
R. Li and A. Nakano, Simulation with Python, https://doi.org/10.1007/978-1-4842-8185-7_1
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Figure 1-1.  Notations for a circle

Your opponent asked for the finest papers, strings, and rulers in the kingdom. He 

started partitioning the circle immediately after the king announced the contest. His 

approach was the same as the method that a Chinese mathematician Chongzhi Zu used 

about 1000 years ago.

Well, as in the 16th century, calculus was not invented. What were you going to do, 

wise person? You were not sitting there and letting your opponent win! Instead, you 

asked the king for 1000 persons to help you with the calculation. You also asked for 

enough fine sand grains, regular papers of size 10 inch by 10 inch, rulers, and strings. The 

king generously approved your request with curiosity.

�Estimating Pi by Sprinkling Grains
Now, you have 1000 men standing in line at your command. This is what you are going to 

do. You asked each of them to draw the biggest circle inside the square paper. After that, 

they were required to randomly sprinkle 1000 sand grains on the paper. Each person was 

required to count carefully and record the number of grains inside the circle. Of course, 

the grains might accidently fall outside of the paper. In that case, the person was required 

to resprinkle until all 1000 grains were on the paper.

The king was puzzled. You looked confident because you knew your king was not a 

super math person, just like most readers of this book, and easily got bored with plain 

equations. Your opponent had a lot of geometrical gibberish to explain to the king.

Chapter 1  Calculating Pi with Monte Carlo Simulation
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Your opponent was using polygons’ perimeters to approximate the circle. As you 

can see from Figure 1-2, the sectioning of the perimeter became visibly tedious as the 

number of edges grew.

Figure 1-2.  Use polygons to approximate a circle

You noticed your opponent would always get a value lower than the true perimeter 

because the polygons were inscribed, which means they were always inside the circle. In 

order to get a so-called upper bound, your opponent must use circumscribed polygons 

as well.

On the other hand, all you need to do is to sit there and take your time to explain the 

beauty of your approach to the king. What you did was indeed a Monte Carlo simulation. 

You can just wait for more and more data from your men until the end of the day.

Enough of role-playing for now, let’s find out why 1000 men sprinkling 1000 grains 

repeatedly will give us a pretty good estimation of π.

Remember that π not only describes the relationship between the diameter and the 

perimeter but also the relationship of radius R and the area of a circle A. Here, C is the 

perimeter and D is the diameter:

	

C D

A R D

=

= =

π

π
π2 2

4 	

Now, suppose one sand grain falls randomly on the square, what is the chance that 

this grain will be inside the circle? Well, it is kind of obvious: 
A
S

 is the ratio of the circle’s 
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area and the square’s area. It must also be the chance we are looking for as long as a good 

level of randomness is present.

Wait, we also have the expressions of A in terms of π, right? What will happen if we 

plug it in? Let me use P(grain in circle) to represent the chance that the grain will fall 

inside the circle. We have the following expressions:

	

P grainincircle circle sarea
square sarea
A
S

D

D

( ) =

=

=

=

'

'

π

π

4

4

2

2

	

Surprise! The chance does not depend on the size of the square. The only issue is that 

such a beautiful claim is only theoretically true, we have to sample it to estimate such a 

probability. This is why you, the role-playing wise person, asked for tons of grains and 

1000 careful men with sharp eyes to repeat these experiments. Each experiment will give 

you a value of π, and by the end of the day, we can take the average of all the experiment 

results.

The following is the Python code that does the simulation. Don’t worry. I will 

explain it line by line. As you become more and more familiar with the style of this book, 

somewhat trivial stuff will be skipped in the future.

import random

import numpy as np

random.seed(2021)

pi_values = list()

num_persons = 1000

num_rounds = 20

num_grains = 1000

edge = 10

for r in range(num_rounds):

    for p in range(num_persons):

        in_circle = 0
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        for g in range(num_grains):

            �x, y = (random.random() - 0.5)*edge, (random.random() - 

0.5)*edge

            if x**2 + y**2 <= (edge/2)**2:

                in_circle += 1

        pi = in_circle/num_grains * 4

        pi_values.append(pi)

print(np.mean(pi_values))

The code simulates 1000 men’s grain sprinkling behavior, assuming each person 

can do 20 experiments a day. For each sprinkled grain, we calculate the coordinate of 

the grain using the random.random() function. Here, we assume the circle’s center is at 

the origin.

To ensure the result is reproducible on your computer, I set the random seed to be 

2021. Almost all randomness we see in computer science is called pseudorandomness. 

They are not completely random, just as the wise person’s 1000 men would not truly 

uniformly sprinkle grains on the paper. However, for Python programming, in almost 

all cases, you can trust the high level of randomness of the built-in random number 

generator. Not all simulations in this book have a random seed though.

The random.random() function will return a random variable between 0 and 1. See 

the visualization in Figure 1-3 to get a sense of how 1000 results of random.random() are 

distributed. It has a name: the standard uniform distribution.

Figure 1-3.  Distribution of 1000 randomly generated numbers between 0 and 1
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The corresponding code that generates the visualization reads as follows:

random.seed(2021)

fig, ax = plt.subplots()

ax.hist([random.random() for _ in range(1000)], bins=10, rwidth=0.9)

ax.set_title("Histogram of 1000 random.random() results")

Next, let’s visualize the one possible look among infinitely many possibilities of 1000 

sprinkled grains in Figure 1-4.

Figure 1-4.  1000 sprinkled grains in a square

The code reads as follows:

random.seed(2021)

edge = 10

num_grains = 1000

with plt.xkcd():

    fig, ax = plt.subplots(figsize=(6, 6))

#     plt.axis("off")

    plt.axis("equal")

    ax.set_xlim(-edge/2, edge/2)

    ax.set_ylim(-edge/2, edge/2)

    xs_in, ys_in = list(), list()

    xs_out, ys_out = list(), list()
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    for g in range(num_grains):

        x, y = (random.random() - 0.5)*edge, (random.random() - 0.5)*edge

        if x**2 + y**2 <= (edge/2)**2:

            xs_in.append(x)

            ys_in.append(y)

        else:

            xs_out.append(x)

            ys_out.append(y)

    ax.scatter(xs_in, ys_in, color="r")

    ax.scatter(xs_out, ys_out, color="b")

    circle = plt.Circle((0, 0), edge/2, fill=False, color="g", lw=3)

    ax.add_patch(circle)

    ax.set_title("An experiment with 1000 sprinkled grains", fontsize=20)

I don’t see any worrying concentration or bias in the visualization, do you? This 

means that a good level of randomness is present, so our approach of using area ratio 

to approach π is valid. Next, let’s do a histogram plot of our 20K π values and see how 

spreading our results are. We obtain Figure 1-5.

Figure 1-5.  Distribution of 20,000 calculated π values
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Note that the mean and median are so close to each other that only the median is 

plotted. There are three major points to obtain this visualization:

	 1.	 The mean and median are quite close to the ground truth value of π.  

This is a good sign because we know our data is not skewed by large 

outliers.

	 2.	 Quartiles are values that partition the data into equal-number 

segments. The first quartile being 3.104 indicates that 25% of the 

results are smaller than 3.104. By the same idea, 25% of the results 

are greater than 3.176.

	 3.	 Standard deviation (STD), which is represented by the horizontal 

error bar, indicates the average deviation of a result from the 

sample mean. The standard deviation is about 0.052.

The formula of a sample’s standard deviation reads as follows:

	
STD

N
x x

i

N

i=
−

−( )
=
∑1

1 1

2

	

Here, x  represents the mean of the sample, and N is the total number of samples. 

The standard deviation quantifies how confident we are about our result. In general, 

the smaller the standard deviation is, the more concentrated our results are around the 

mean; therefore, we are more confident about our results.

You may also notice the beautiful curve of the histogram. There is a reason behind 

that. Here is a brief teaser. The distribution of simulated π values follows a so-called 

normal distribution. It is a consequence of the famous central limit theorem (CLT). The 

key idea is that under a bunch of quite loose conditions, quantities we observe in nature 

tend to follow a bell-curve distribution. Such quantities include our weights of a rather 

large population, length of tree leaves in a forest, etc.

The code snippet that generates the preceding visualizations reads as follows:

with plt.xkcd():

    fig, ax = plt.subplots(figsize=(12, 6))

    ax.hist(pi_values, bins=50, rwidth=0.8)

    pi_mean = np.mean(pi_values)

    pi_median = np.median(pi_values)

    # pi_mean and pi_median are very close. Only median is plotted.
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    pi_std = np.std(pi_values)

    pi_quartiles = np.quantile(pi_values, [0, 0.25, 0.5, 0.75, 1])

    ax.set_title(

        "Statistics of the Sand Grain Sprinkle Experiments", fontsize=20)

    line_1 = ax.axvline(pi_mean, color='red', lw=1)

    line_2 = ax.axvline(pi_quartiles[1],

                        color='purple',

                        lw=3,

                        linestyle="dotted")

    line_3 = ax.axvline(pi_quartiles[3],

                        color='green',

                        lw=3,

                        linestyle="dashed")

    std_bar = ax.errorbar(pi_mean, 1200,

                          xerr=pi_std,

                          capsize=5,

                          elinewidth=3,

                          markeredgewidth=2,

                          linestyle=":")

    ax.legend([line_1, line_2, line_3, std_bar],

              ["median = {}".format(pi_median),

               "first quartile = {}".format(pi_quartiles[1]),

               "third quartile = {}".format(pi_quartiles[3]),

               �"standard deviation =\n {}".format(round(pi_std, 3))], 

fontsize=18)

Going back to the role-playing, before your opponent could produce a four-

significant-digit number, say 3.1416, he would find that his pen was too thick for him 

to further section the circle. You, on the other hand, could show the early results to the 

king. As your men keep reporting new results, the confidence you have in the result will 

increase.

Before moving on to the next subsection where Monte Carlo simulation precedes 

the exact analytical solution for more than 200 years, I prepared some exercises for you 

to enhance your understanding of Monte Carlo simulation. You may need to utilize the 

numpy library’s vectorized computation to accelerate the computation.

Chapter 1  Calculating Pi with Monte Carlo Simulation



10

�Exercise

	 1.	 Verify that this is true that the simulation doesn’t depend on the 

length of the edges.

	 2.	 Suppose the king is obsessed with your simulation. Now you have 

one million people at your command for the calculation. Utilize 

numpy’s vectorized computation to perform the simulation. 

Perform the statistics calculation as well. Did you find the 

relationship between the number of results and the standard 

deviation? Can you plot the relationship between the two values?

	 3.	 Can you compute the volume of a five-dimensional unit ball using 

Monte Carlo simulation? Note that this question is deliberately 

vague. Do some research and enjoy the exploration.

�Contain the Goat!
I hope you enjoy the Middle East adventure in the 16th century. Now, let’s time travel to 

Great Britain in the 1800s. You had a problem at hand to solve as a shepherd.

You own a land with a bizarre circular shape. Well, it has to be circular; otherwise, 

there is no fun! You also had a very naughty goat who had to be on leash. Otherwise, the 

goat would eat everything in its reach and had congestion issues.

Now, you had to stick one end of the leash to one point of the circular fence; how 

long should the leash be so the goat can exactly reach half of your land? Figure 1-6 is 

a visualization of the problem. Here, for simplicity, we can set the radius of your land 

to be 1.
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Figure 1-6.  A leashed goat is contained inside round fences

This problem is the so-called interior grazing problem. It has been known for 200 

years, but the analytical solution was only found in early 2020.
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However, with the Monte Carlo simulation we just discussed, you can calculate the 

length of the leash by writing several lines of Python code.

The naive idea is the same as the sand grain sprinkling one. First, you generate a 

uniformly distributed random point inside your land, then you check whether the goat 

can reach that point or not given a leash length. After enough sampling, if the goat can 

reach more than half of the area, shorten the leash; otherwise, increase it. We can repeat 

this process until the desired precision is achieved.

You may notice that the preceding method is not computationally optimal. A better 

way is to generate enough points first, then determine the length of the leash later. We 

will approach the computation in this improved way later.

�What Randomness?
Wait a minute, we have an ambiguity here. It is easy to imagine a uniformly distributed 

random point inside a square: you just make it uniform on one side and uniform on 

another side as well. However, what does it mean to have a uniformly distributed 

random point inside a circle? How would you generate tens of thousands of such points?

Chapter 1  Calculating Pi with Monte Carlo Simulation



12

You have two options:

	 1.	 You only care about a circle, but you use a square that exactly 

circumscribes the circle to do the work. You still generate 

uniformly distributed points in the square but discard those 

that fall outside of the circle. You use these that fall inside the 

circle to do the calculation. This does guarantee the same kind 

of uniformity, but the roaring CPU will probably not be happy 

because only about 78.5% of its work is honored.

	 2.	 Another option is to use the polar coordinate as shown in 

Figure 1-7. First, you generate a uniformly distributed radius 

between 0 and the radius of your land, say, R, then you generate 

a uniformly distributed radian value between 0 degree and 360 

degrees. The location of the point is also uniquely determined.

Figure 1-7.  A polar coordinate system can also uniquely define a point on a 
2-D plane

In the example illustrated earlier, a point in 2-D space is uniquely determined by  

a pair (θ, γ) where θ is the angle that the point rotates counter-clockwise against the  

θ = 0 line, which is represented by the dotted line. γ is the distance between the dot and 

the origin. θ takes values between 0° and 360°, while γ can be any positive number.  
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The transformation between normal Cartesian coordinates and polar coordinates can be 

obtained using the following formula:

	

x
y

x y

=
=
= +

γ θ
γ θ

γ

cos

sin

2 2 2 	

The following is the code snippet for the polar coordinate system demonstration. It 

will give you a good sense of how to manipulate objects with polar coordinates:

from matplotlib.patches import Arc

with plt.xkcd():

    fig, ax_polar = plt.subplots(figsize=(6, 6),

                                 subplot_kw={'projection': 'polar'})

    ax_polar.set_rmax(1)

    ax_polar.set_rticks([0.25, 0.5, 0.75, 1],)

    ax_polar.set_rlabel_position(-60)

    ax_polar.grid(True, linewidth=3, alpha=0.4)

    ax_polar.set_axisbelow(True)

    ax_polar.plot([0, 0], [0, 1.2], lw=3, color="red",

                  linestyle="dotted")

    ax_polar.scatter([np.pi/4], [0.75], s=120, color="blue")

    ax_polar.text(np.pi/7, 0.5, r"$\theta$ = $45^\circ$")

    ax_polar.text(np.pi/12, 0.45, r"$r = 0.75$")

    ax_polar.set_title("Representing a Point in Polar Coordinate System",

                       fontsize=20)

Now, which option would you choose? They both sound valid, aren’t they? Let the 

numbers speak for themselves. The following code snippets generate 10,000 random 

points in a circle with both approaches. Let’s find out by visualizing the distribution of 

the generated points.
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Setting the length of the leash to 1.25, option 1 gives us Figure 1-8.

Figure 1-8.  Results from sampling with the Cartesian coordinate

The statistics in Table 1-1 tell us how many points will not be used because they fall 

out of the circle and how many are reachable by the goat, etc.

Table 1-1.  Number of grains in each region for Cartesian  

coordinate system sampling

Outside Points Unreachable Points Reachable Points

2101 3443 4456

If option 1 is correct, this actually means that 1.25 is probably too long. And roughly 

20% of our CPU time is wasted.

Let’s look at the result produced by option 2 as shown in Figure 1-9.
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Figure 1-9.  Results from sampling with the polar coordinate

If option 2 is correct, we have no wasted CPU time, but the statistics look concerning. 

I counted the numbers in Table 1-2.

Table 1-2.  Number of grains in each region  

for polar coordinate system sampling

Outside Points Unreachable Points Reachable Points

0 3230 6770

The source codes for the plotting are too long and therefore omitted. However, they 

should be straightforward to reproduce.

Alrighty, take a look at the scatter plot of these points; which one looks more 

random? It is kind of obvious that option 1 demonstrates a higher level of randomness 

than option 2. This becomes more clear if we zoom in to option 2’s result as shown in 

Figure 1-10.
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Figure 1-10.  Density imbalance becomes clear if we zoom in to the polar 
coordinate system’s result

The two square areas obviously contain different numbers of points. The one 

closer to the origin contains more points, and the one further away from the origin 

contains fewer.

The reason is that a uniform distribution will be distorted if you transform the 

coordinate system. Although the points are uniformly distributed in terms of the polar 

coordinates, the transformation using trigonometry formulas distorts them so they are 

no longer uniformly distributed in the Cartesian coordinates. This definitely rings an 

alarming bell.

The following code snippet will estimate the length of the leash using the bisection 

method. Of course, you can change the position of the other end of the leash, but we will 

stick with the simple one at the lower bottom of the land. Note we are going to use the 

result from option 1 since it is the correct simulation.

The bisection method is a root-finding method. Here, we simply borrow the idea. 

Because the number of reachable points monotonically grows as the length of the leash 

increases. Let’s say we start finding the length in range [0, 2], and we start with the 

middle point 1; if more than half of the points are reachable, we begin searching in [0, 1] 

and start with the new middle point 0.5. By the same token, if there are fewer than half 

of the points reachable, we pick 1.5 as the new middle and search in range [1, 2]. The 

iteration continues until a stop condition satisfies.
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random.seed(2021)

num_points = 10000

num_valid_points = 0

xs, ys = list(), list()

for g in range(num_points):

    x, y = (random.random() - 0.5)*2, (random.random() - 0.5)*2

    if x**2 + y**2 <= 1:

        xs.append(x)

        ys.append(y)

        num_valid_points += 1

# begin bisection

low, high, middle = 0, 2, 1

epsilon = 0.001

while high-low > epsilon:

    reachable = sum((x-0)**2 + (y - (-1))**2 <= (middle)

                    ** 2 for x, y in zip(xs, ys))

    if reachable > num_valid_points//2:  # need to shorten the leash

        low, high, middle = low, middle, (low+middle)/2

    elif reachable < num_valid_points//2:  # need to increase the leash

        low, high, middle = middle, high, (middle+high)/2

    else:

        break

print(middle)  # 1.15869140625

Alright, I bet you feel the essence of Monte Carlo simulation. In both the calculation 

of π and the containment of the goat, we are facing deterministic problems that involve 

no randomness at all. However, by introducing randomness, we turn analytical problems 

into simulation problems. This is the power of Monte Carlo simulation. In the next 

section, we are going to explore another kind of problem which involves randomness 

intrinsically.

Now, finish the following exercise before jumping onto the second stage of 

the rocket.
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�Exercise

	 1.	 Suppose the goat is in a space station, find the solution in three 

dimensions such that the goat can only reach half of the volume of 

a unit ball.

	 2.	 Improve the performance of the bisection algorithm by only 

considering fewer critical points around the boundaries.

	 3.	 Let’s say we are not satisfied with a single fixed point on the fence. 

Can you pick other points on the fence to perform the calculation 

of leash length? Do you get similar results? What does the 

distribution of your results look like?

�Summary
In this chapter, we studied the classic use case of Monte Carlo simulation: the calculation 

of π. We researched the effects of randomness on the validity of the calculation and 

investigated the distribution of our simulation results.
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CHAPTER 2

Markov Chain, a Peek into 
the Future
In this chapter, we continue our exploration in the world of simulation. Different from 

the previous Monte Carlo simulation where the scenario is purely static, which means 

there is no dynamics in the simulation, we are going to study dynamics of a system.

The Markov chain, specifically the discrete-time Markov chain, is named after 

Russian mathematician Andrey Andreyevich Markov. He is a pioneer in the study of 

stochastic processes and the first to introduce the concept of Markov chains.

Let’s introduce the Markov chain with a simple example of weather forecasting.

�Weather Forecasting
Suppose we have a weather forecasting system that predicts the weather in the next hour. 

The weather can only take three possibilities: sunny, cloudy, or rainy. Here, we call these 

possibilities the states. We won’t predict the weather continuously but rather forecast the 

weather in the next hour. This makes our system discrete.

The continuous-time Markov chain is beyond the scope of this book. It requires 

more rigorous analysis. However, the fundamental ideas of the discrete-time Markov 

chain remain unchanged.

Weather will change so there is a probability that a sunny day will turn into a cloudy 

day. Similarly, a cloudy day will turn into a rainy day, etc. We can define the transition 

probabilities in Table 2-1. The columns represent the current weather states, and the 

rows represent the next hour’s.
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Table 2-1.  Weather transition probabilities

Sunny Cloudy Rainy

Sunny (next hour)
1
2

1
3

2
3

Cloudy (next hour)
1
3

1
3

1
6

Rainy (next hour)
1
6

1
3

1
6

The way to interpret the table is to read it column-wise. For example, if the current 

weather is sunny, then the probability of the next hour’s weather being cloudy is 
1

3
. This 

is indicated by the second row in the first column (besides the row name column).

We can also denote this probability by the transition probability notation. Let’s use si 

to denote the state of the weather at hour i. Then the previous transition probability can 

be denoted as follows:

	
P P s cloudy s sunnysunny cloudy�� � � �� � �1 0

1

3 	

We used the notation of conditional probability in the expression 

P(s1 = cloudy| s0 = sunny) . It simply means that given the weather at the previous hour 

is sunny, which is a condition, the probability of the weather at the next hour being 

cloudy is 
1

3
.

With the definition of transition probability, we can use a graph to represent the 

weather forecast. The graph shown in Figure 2-1 illustrates this.
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Figure 2-1.  A graph representing the weather forecast based upon transition 
probability

Well, what does this even mean? How can we use the table or the graph to forecast 

weather? The idea is quite simple; we start from a current weather, a.k.a. a state, then 

transition to other possible states according to the transition probabilities. For example, 

if the current state is sunny, then at the next hour, we have a chance of 
1

2
 to remain 

sunny, a chance of 
1

3
 to become cloudy, etc. This looks easy so far. How about the next 

weather? We have to combine all possible trajectories to do the forecast. For example, the 

sunny state can be achieved from three different trajectories, from being sunny, being 

cloudy, and being rainy, which gives us the following combined probability:

	
P s sunny2

1

2

1

2

1

3

1

3

1

6

2

3

17

36
�� � � � � � 	

It is still possible to continue the calculation manually, but we would like to leave the 

labor to computers.

Formally speaking, a system like we just introduced must satisfy two important 

properties to be a Markov chain:

	 1.	 The first one is called the Markovian or memoryless property. It 

means that the system will only remember the immediate past 

state but not further. For example, the weather forecast system will 

only remember and use the current weather to forecast the next 

hour’s weather but not previous hours’ weathers.
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	 2.	 The second one should be treated as a simplification, which can 

be removed if you want to match real-world scenarios. It is that 

our Markov transition probabilities are fixed regardless of the time 

index i. In real life, as seasons change, our transition probabilities 

should change.

The following is the code snippet to automate the calculation. Notice that I already 

used the matrix notation to represent the transition probability:

sunny_to = {"sunny":1/2, "cloudy":1/3,"rainy":1/6}

cloudy_to = {"sunny":1/3, "cloudy":1/3,"rainy":1/3}

rainy_to = {"sunny":2/3, "cloudy":1/6,"rainy":1/6}

state = {"sunny":1, "cloudy":0,"rainy":0}

weathers = ["sunny","cloudy","rainy"]

for _ in range(10):

    next_state = {}

    for weather in weathers:

        next_state[weather] = (sunny_to[weather] * state["sunny"] +

                               cloudy_to[weather] * state["cloudy"] +

                               rainy_to[weather] * state["rainy"])

    state = next_state

    print(state)

The result looks like the following. You can check that the probabilities roughly sum 

up to unit 1:

{'sunny': 0.5, 'cloudy': 0.3333333333333333, 'rainy': 0.16666666666666666}

{'sunny': 0.4722222222222222, 'cloudy': 0.3055555555555556, 'rainy': 

0.2222222222222222}

{'sunny': 0.4861111111111111, 'cloudy': 0.2962962962962963, 'rainy': 

0.2175925925925926}

{'sunny': 0.4868827160493827, 'cloudy': 0.2970679012345679, 'rainy': 

0.21604938271604937}

{'sunny': 0.48649691358024694, 'cloudy': 0.2973251028806584, 'rainy': 

0.21617798353909465}

{'sunny': 0.48647548010973934, 'cloudy': 0.29730366941015085, 'rainy': 

0.21622085048010972}
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{'sunny': 0.4864861968449931, 'cloudy': 0.29729652491998165, 'rainy': 

0.21621727823502512}

{'sunny': 0.4864867922191738, 'cloudy': 0.29729712029416244, 'rainy': 

0.21621608748666357}

{'sunny': 0.4864864945320834, 'cloudy': 0.29729731875222265, 'rainy': 

0.2162161867156937}

{'sunny': 0.48648647799391176, 'cloudy': 0.29729730221405093, 'rainy': 

0.21621621979203703}

In the nested for loop, we implemented the logic that one state can be achieved 

through multiple paths. For example, the weather after 3 hours can be essentially 

achieved through 33 = 27 different paths.

The preceding code can be written in a much more concise way using matrix 

notation as follows. If you do the math, you will see that the matrix multiplication 

operation matches the system evolution operation exactly. To run the following code, 

you need to install the numpy library as np per the Python community convention:

tm = np.array([[1/2,1/3,2/3],

               [1/3,1/3,1/6],

               [1/6,1/3,1/6]])

state = np.array([1,0,0])

for _ in range(10):

    state = tm@state

    print(state)

Now, let’s visualize the probabilities of each weather as illustrated in Figure 2-2.
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Figure 2-2.  Weather state probabilities for ten iterations, starting with 
sunny weather

What’s going on here? Why are the probabilities stale after, say, the third iteration? 

Before moving on to the explanation, let’s take a look at another initial condition. How 

about starting with rainy weather? You can check the simulation result in Figure 2-3.

Figure 2-3.  Weather state probabilities for ten iterations, starting with 
rainy weather
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Indeed, it looks like not only we reach a stable distribution, the distribution is also 

independent of our initial weather.

�Eigenstates of Markov Chains
Is there anything special about the stable probability distribution 



x �� �0 486 0 297 0 216. . ., , ?  

It turns out that it is an eigenvector of the transition matrix with an eigenvalue of 1. 

In other words, it represents the eigenstate of the Markov chain. One can actually 

decompose any square matrix to find out its eigenvalues and eigenvectors. You can use 

numpy.linalg.eig(tm)[0] to obtain the eigenvalues of the matrix tm and use numpy.

linalg.eig(tm)[1] to obtain the corresponding eigenvectors.

Note that eigenstate has a special meaning in quantum mechanics. Here, I just 

borrow the word as it makes sense in this context. It also has other names like stationary 

distribution, equilibrium distribution, limit distribution, etc.

First, let’s take a look at the transition matrix as already being used in the previous 

simulation. We use ′x
���

 and 


x  to denote the new (next hour) and old (current hour) 

states, respectively. The transition matrix is denoted by T:

	

� �

� �

�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

x T x
��� �

1

1

2

1

3

2

3
1

3

1

3

1

6
1

6

1

3

2

6
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�
x

	

Note that the calculation ignores some negligible precision-caused numerical errors.
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This equation tells us once our system reaches the eigenstate, it will remain there 

for the rest of the transition. This means that after several hours, the probability of being 

sunny will be about 50% regardless of the current weather. The matrix notation also 

enlightens us that the evolution of the system can also be written as the multiplication 

of a series of matrices. For simplicity, I reuse the notation of sn. You have already seen si, 

right? They are basically the same thing.

	

s T s

T s

T s

n n

n

n

�

� �
�

� �
�

� �

�

�

�

1

2
2

0

1

2

3

0 49 0 49 0 49

0 30 0 30 0 30

0 22

. . .

. . .

. 00 22 0 22

4

0

. .

�

�

�
�
�

�

�

�
�
�

� �

s

	

As you can see, no matter our initial state s0 is, as long as the elements sum up to 1, 

the output, sn is the eigenstate. This is a remarkable fact.

You may ask whether all transition matrices give such a nice property. The answer is 

no. Here is an example:

tm = np.array([[0, 0, 1],

               [1, 0, 0],

               [0, 1, 0]])

state = np.array([1,0,0])

for _ in range(10):

    state = tm@state

    print(state)

Without running this code, can you guess what the states look like? Our transition 

matrix basically says that a sunny day will definitely become a cloudy day and a cloudy 

day will become a rainy day, etc. You may expect the following output:
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[0 1 0]

[0 0 1]

[1 0 0]

[0 1 0]

...

Another issue is the rate of convergence. The preceding example shows that 

sometimes the probabilities may never converge. Here is another transition matrix that 

converges slower than the earlier one we discussed. Feel free to try it on your own.

	

0 00 0 05 0 98

0 99 0 00 0 02

0 01 0 95 0 00

. . .

. . .

. . .

�

�

�
�
�

�

�

�
�
� 	

�Exercise

	 1.	 Find out the eigenstates of the transition matrix with a slower 

convergence rate.

	 2.	 All of our previous simulation is based on analytical probability 

calculation. Can you do a simulation that just picks a random 

weather and evolves it according to the transition probabilities? 

Let’s say you do it for 10,000 steps, which is roughly 400 days, and 

count how many of these 10,000 data points are sunny, cloudy, 

and rainy. What’s your expectation? Does your discovery agree 

with your expectation?

�Markov Chain Applications
In this section, let’s look at two interesting applications of the Markov chain. First, let’s 

look at how the Markov chain can be used to answer a nontrivial probability question. 

Then, we will use the Markov chain as a generative model to generate some natural 

languages.
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�A Random Walk That Has an End
Suppose you have a fruit-loving tortoise that moves in a tube. The tube is 7 inches long. 

At the left end, there is a banana, and at the right end, there is an apple. Now, the tortoise 

starts at a position that is 3 inches away from the left end, which means it is closer to 

the banana than the apple by 1 inch. The tortoise can only move 1 inch per minute, and 

it moves randomly to the left or to the right with equal probability. The tortoise is so 

active that it will move every minute until it reaches one of the fruits. The setting can be 

visualized as in Figure 2-4.

Figure 2-4.  A graph that represents the states the tortoise can be in

The question is, what are the probabilities that the tortoise eventually reaches the 

banana and apple?

Spend some time to think about the question yourself. Here are some intuitions and 

observations:

	 1.	 Given enough time, intuitively the tortoise will reach one of 

the fruits. Our tube is just 7 inches long, and the tortoise just 

keeps moving.

	 2.	 The tortoise should have a higher, probably not much, probability 

of reaching the banana than the apple. The setting is not 

symmetric.

Let’s perform a set of simulation runs to directly simulate such a system and evaluate 

such probabilities:

def tortoise_run(state = 3, left_prob = 0.5):

    steps = 0

    while state % 7 != 0:

        if np.random.random() < left_prob:

            state -= 1

        else:

            state += 1

        steps += 1
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    if state == 0:

        return steps, 0

    else:

        return steps, 7

We can run the simulation for 10,000 times and count how many times the tortoise 

reaches the banana and apple. I can plot the result with the following code:

simulations = [tortoise_run()  for _ in range(10000)]

bananas = np.array([x[1] == 0 for x in simulations]).cumsum()

apples = np.array([x[1] == 7 for x in simulations]).cumsum()

with plt.xkcd():

    fig, ax = plt.subplots(figsize=(8,6))

    plt.plot(bananas/(bananas+apples), lw=3,label="bananas")

    plt.plot(apples/(bananas+apples), lw=3,label="apples")

    plt.legend()

    plt.title("Probabilities of Reaching Bananas/Apples")

    plt.xlabel("# of runs")

The result looks like Figure 2-5.

Figure 2-5.  Probabilities that the tortoise reaches bananas or apples for 
10,000 runs
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It does agree with our intuition that the tortoise is slightly more likely to reach the 

banana. If you check the end of the bananas/(bananas+apples) array, you will find that 

the probability of reaching the banana is about 0.575.

As an in-chapter exercise, you can plot a histogram to check the distribution of the 

number of steps before the tortoise stops moving. I am going to leave this as an exercise. 

Your result should look like the one in Figure 2-6. Note that the x axis is in log scale.

Figure 2-6.  Number of steps before the tortoise stops moving

Now, let’s use our knowledge of the Markov chain to find the exact probabilities in 

the original question. If you think about it, the tortoise’s random walk can be treated 

as a Markov chain that has the following transition matrix. The dimension matches the 

number of possible states.

 

Chapter 2  Markov Chain, a Peek into the Future



31

This Markov chain is different from the weather one mainly because it has two so-

called absorbing states. The absorbing states are the left and right ends of the tube. Once 

the tortoise reaches one of the ends, it stops moving. The first and the last element in the 

transition matrix diagonal are 1 which indicate the absorbing states.

Now, let’s find out the eigenstate of the multiple-step transition matrix. The idea 

is that we treat multiple continuous transitions, say, 50 steps, as one transition and 

consider its transition matrix. You can find the transition matrix for 50 steps using the 

one-liner reduce(lambda x,y:x@y,[tortoise_tm for _ in range(50)]). If you 

change 50 to a larger number, the matrix remains largely the same up to a precision error.

 

The symmetry is pretty clear. The closer the tortoise is to the left end, the more 

likely it will be to reach the banana. The highest probability is 0.86. This agrees with 

our intuition as the tortoise does have a chance to reach for the apple although the 

banana is just 1 inch away. We multiply the transition matrix with the initial state numpy.

array([0,0,0,1,0,0,0,0]) to get the probability of reaching the banana eventually. 

Note that it does agree with our simulation performed earlier.

Alright. This is the end of our first section. You have seen how to use the Markov 

chain to predict the weather and simulate a hungry tortoise movement. Next, let’s try to 

use the Markov chain as a generative model to write some poems.

�Sonnet Written by Drunk Shakespeare
A Markov chain can be used to model human language as a simplistic first approach. 

Human language has intrinsic patterns such that the probabilities that a certain word 

follows another word are very different. A Markov chain fits in this scenario perfectly.

Let’s try to grab some sonnets from Shakespeare and turn his text into a Markov 

chain with corresponding probabilities.
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First, we need to process the raw text by removing the punctuation, etc. We are going 

to use a third-party library called “nltk” to do the lemmatization. However, we will build 

the Markov chain on our own. If you are interested in comparing your result with output 

from mature libraries, check this repository. The text file that contains the sonnets is the 

sonnet.txt file, which is provided in the associated GitHub repo. You can also find the 

sonnets on the Project Gutenberg website.

Lemmatization is a process of converting a word or phrase into its base form. For 

example, the word “dogs” is converted to “dog,” and the word “went” is converted to 

“go.” This is helpful because our sonnet dataset is not that large that reducing words 

with different forms, but similar meaning, to the same one can centralize our transition 

probabilities somehow. You are free to explore the nonlemmatized version and compare 

the differences.

Here is a sample from the text file:

From fairest creatures we desire increase,
That thereby beauty’s rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou contracted to thine own bright eyes,
Feed’st thy light’s flame with self-substantial fuel,
Making a famine where abundance lies,
Thy self thy foe, to thy sweet self too cruel:
Thou that art now the world’s fresh ornament,
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And, tender churl, mak’st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world’s due, by the grave and thee.

The sonnets are separated with empty lines. The following code will preprocess each 

sentence, which can be incomplete, to lowercases and punctuation-free:

# sonnet preprocessing

import string

import nltk

from nltk.stem.wordnet import WordNetLemmatizer

# nltk.download('wordnet')

lemmatizer = WordNetLemmatizer()
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sonnet_path = "../../code_examples/chap2/sonnet.txt"

with open(sonnet_path,"r") as fp:

    sonnets = fp.readlines()

sonnets = [sentence.strip().lower().replace("'s","") for sentence in 

sonnets if sentence != "\n" ]

sonnets = ["".join([char for char in sentence if char not in string.

punctuation]) for sentence in sonnets]

Note that you may need to uncomment the wordnet download line to download 

additional data. The sonnets variable is a list of sentences. We are simplifying the 

problem by only handling lowercases and ignoring the punctuation like beauty’s, which 

becomes beauty.

Now, let’s build a defaultdict to store the counting from each word to its next word 

existing in the sonnets. Such word pairs are also called bigrams.

from collections import defaultdict

transition_dict = defaultdict(lambda : defaultdict(int))

for sentence in sonnets:

    words = list(filter(lambda x: len(x.strip()) > 0, sentence.split(" ")))

    �words_pairs = [(lemmatizer.lemmatize(words[i]),lemmatizer.

lemmatize(words[i+1])) for i in range(len(words)-1)]

    for (word_from, word_to) in words_pairs:

        transition_dict[word_from][word_to] += 1

Before using the transition_dict to generate sentences, let’s take a look at the 

paths for the bigrams. The following visualization simply uses the width of edges to 

represent the frequency of the bigram. As it is not possible to show all edges, we use the 

count_threshold variable to control the number of transitional edges a word can have to 

connect to the next word:

# sonnet

from graphviz import Digraph

count_threshold = 10

# dot, fdp, neato, circo, twopi, and osage.

G = Digraph('G',format='png',engine='neato')

font_size = "300"
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G.attr('graph', pad='1', ranksep='1', nodesep='1')

G.attr('node', shape='circle', fixedsize='true')

G.attr(overlap="false")

for word_from in transition_dict.keys():

    for word_to in transition_dict[word_from].keys():

        lw = transition_dict[word_from][word_to]

        if lw > count_threshold:

            G.edge(word_from, word_to, penwidth=str(lw*0.1),label=str(lw))

G.view("sonnet")

The result looks like a big spider web as in Figure 2-7.

Figure 2-7.  The transitional relationship between words
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You can try to manipulate the value of the edge threshold. You will be able to see 

more fine structures at the cost of more overlapping edges.

Now, we can use the transition_dict to generate a sentence. Here is an example that 

I start with i and keep adding words to the sentence until there is no matching in the 

transition_dict:

def sample_according_to_value(to_dict:dict):

    # return a key that corresponds to the value as frequency

    keys, freqs = [],[]

    for key,val in to_dict.items():

        keys.append(key)

        freqs.append(val)

    freqs = np.array(freqs)

    freqs = freqs/sum(freqs)

    return np.random.choice(keys,p=freqs)

def generate_sentence(start_word = "i", transition_dict = transition_dict, 

hard_limit = 14):

    word = start_word

    sentence = []

    while word in transition_dict and len(sentence) < hard_limit:

        sentence.append(word)

        word = sample_according_to_value(transition_dict[word])

    sentence.append(word)

    return " ".join(sentence)

generate_sentence()

I got the following:

i praise that keep thee lie onward and lovely argument too much a foe 
commend.

I set a hard limit of 14 words in a sentence and generated a sonnet. The modification 

is trivial so I leave it to you. Here is what I got:
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doom and the rest forgot upon my mistress over wrack
always write of their rank before the dead wood whose worth in it in them
wear this book of forebemoaned moan the rose have given thee i my 
heart right
hindmost hold his memory death eternal slave to register and wrinkle 
graven there reign love
authorizing thy part wa false painting set a far remote where your sound-
less deep a
audit canst thou not be it not for my lameness and by that million of
brain inhearse
epitaph to whom thou take them say thy picture sight would have any 
be brought
leapt with the gentle thou hast thou dost advance
tonguetied muse brings forth your broad main doth nightly make the bla-
zon of that heaven
added feather to lay upon thy beauty wear this purpose laid by this 
shall burn
tempest and no matter then did i may be taken
shower are mine eye corrupt by thy lusty day they themselves a the 
world common
wrong than hawk and beauty thou be scorned like her wish i see what merit

Not bad, isn’t it? Just look at this sentence: tempest and no matter then did i may be 

taken. It reads like something Shakespeare would write when he was drunk.

Alrighty. This concludes this chapter. Before moving on to our next chapter, here are 

some exercises.

�Exercise

	 1.	 Can you adjust the transition probability matrix of the tortoise’s 

movement to make it more realistic? For example, the tortoise can 

perhaps smell the fruit’s scent when it’s near and move toward it. 

How will the change impact the result?

	 2.	 For the tortoise problem, if you try to find the eigenvalues of the 

transition matrix, you should see two identical eigenvalues and 

some others. What are the repeated eigenvalues? What is the 

implication of the repeated eigenvalues?
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	 3.	 Can you try trigram instead of bigram in the text generation?

	 4.	 Try to use a large corpus to improve the accuracy of your text 

generation model. For example, nltk has a large corpus of English 

texts. You can download the corpus from here.

�Summary
We continue our journey of simulating using randomness. We studied the Markov chain 

model and learned the mathematics behind it. We applied the Markovian model to 

weather prediction, absorbing state cases, and the sonnet writing.
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CHAPTER 3

Multi-armed Bandits, 
Probability Simulation, 
and Bayesian Statistics
Bob walks into a casino at dusk. He wants to try his luck as much as possible tonight. He 

begins playing the slot machine game which is simple and straightforward: you get three 

same symbols, you win. There are three different machines in the lobby, and Bob has 100 

dollars to spend.

Bob knows that these machines have different probabilities of winning, and each 

pull will cost him 1 dollar. The question now is to find the best winning strategy for Bob.

A slot machine is also called a one-armed bandit. This question is also known as the 

classical multi-armed bandit problem.

Let’s think of the edge cases first. If we have a lot of money, we can spend a good 

amount of money on each machine to obtain a good estimate of the winning probability, 

right? No investment, no gain. If we have little money, we can’t afford to spend a lot of 

money on each machine, so we can only rely on luck to stick with one that has been 

successful and wish it is not too bad.

The depth of a professional gambler’s chips is a huge factor that determines the 

gambler’s strategy. A gambler with a deep pocket can bully the opponent by playing bets 

with higher risks. However, a shallow-pocketed gambler can’t afford such a risk, which 

leads to defensive play or sometimes one-time, aggressive all-in.
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�Random Pick and Naive Greedy Approach
Now, let’s think about the more general cases and formulate the problem 

mathematically.

Suppose we have K machines and we use i to index them. Each machine’s 

probability of winning is denoted by pi. For simplicity, different values of pi can be 

assumed, so there are no equivalent machines. What we want to achieve is that after all 

N pulls, we have the highest expected times of winning.

What is the ideal case? Of course, we want to play the machine with the highest 

probability of winning p∗ =  max (pi) if we know which it is. Given this ideal case, we can 

define a so-called regret function:

	
r Np p t

t

N

� � � ��

�
�

1 	

Here, p(t) is the probability of winning of the machine that Bob plays at timestep t. 

If we can identify the optimal machine and stick to it, we will have no regret at all which 

yields r = 0. However, if we play the worst machine all the time, the largest possible value 

of the regret function will be r = N(p∗ −  min (pi)). In Bob’s case, N = 100 and K = 3.

Let’s establish a baseline for the regret function. Let’s say Bob is a simple man, so he 

plays the game with one of the two simple strategies:

	 1.	 Bob picks a machine randomly each time regardless of the 

performances.

	 2.	 Bob plays each machine ten times and calculates the winning 

probabilities. He then sticks to the one with highest probabilities 

of winning and updates the statistics according to the result of 

play. In other words, Bob is greedy.

Let’s simulate this bold strategy with winning probability p1 = 0.5, p2 = 0.3, p3 = 0.2:

def cal_simple_random_regret(N = 100, probs = [0.5, 0.3, 0.2]):

    regret = max(probs)*N - sum(np.random.choice(probs) for t in range(N))

    return regret

cal_simple_random_regret()
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The value of the regret function is about 14.6 for my first try. Let’s check the 

distribution of the results for 1000 trials:

trials = 1000

with plt.xkcd():

    fig, ax = plt.subplots(figsize=(8,6))

    �plt.hist([cal_simple_random_regret() for _ in 

range(trials)],label="Regret value",bins=20)

    �ax.set_title("Distribution of Regret Function \n with Random Slot 

Machine Choice",fontsize=20)

    plt.legend()

    fig.savefig("random_slot_machine.jpg")

The distribution looks like the graph shown in Figure 3-1.

Figure 3-1.  Regret function distribution for random choice

It looks like the regret value is around 16.5.

Now, let’s examine our second strategy: Bob sticks to the machine with the 

highest probability of winning after the initial 30 pulls which estimate the winning 

probabilities. This strategy focuses on the exploitation of the known best after an initial 

exploration stage.
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First, I will define a dataclass called Record that stores the information of each 

machine’s record:

from dataclasses import dataclass

@dataclass

class Record:

    total:int

    win:int

    def cal_ratio(self):

        return self.win/self.total

    def update(self, prob):

        self.total += 1

        self.win += np.random.random() < prob

Then we calculate the regret function with the greedy approach:

def cal_greedy_regret(N = 100, probs = [0.5, 0.3, 0.2], evaluation_step = 10):

    K = len(probs)

    Records = [Record(0,0) for _ in range(K)]

    # initial evaluation step

    for i in range(K):

        Records[i].total = evaluation_step

        �Records[i].win = np.sum([np.random.random() < probs[i] for _ in 

range(10)])

    # get the index of the most successful slot machine so far

    slots_trajectory = []

    slot_index = np.argmax([record.cal_ratio() for record in Records])

    slots_trajectory.append(slot_index)

    for i in range(N - evaluation_step * K):

        # play the remaining 70 rounds

        Records[slot_index].update(probs[slot_index])

        slot_index = np.argmax([record.cal_ratio() for record in Records])

        slots_trajectory.append(slot_index)

    # print(Records)

    �return max(probs)*N - sum([Records[i].total*probs[i] for i in 

range(K)]), slots_trajectory
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Here, I return both the regret value and the slot machine trajectory, which is the last 

70 choices of the slot machines.

If you run this code, you will see a typical regret value of 5. The reader can pause and 

think about the reason.

There is a big chance that during the exploration stage the first slot machine is going 

to give you a higher probability of winning than the second and the third, so we start 

with the first slot machine and stick with it. This way, we will play on slot machine 1 for 

80 times and slot machines 2 and 3 for 10 times each. So the regret value is

	 r � � � � � � � � �0 5 100 0 5 80 0 3 10 0 2 10 5. . . . . 	

However, sometimes the regret value can be high because the slot machine with the 

highest probability of winning is not the one we stick to. You can find slot_trajectory like 

the following one. I just plotted one out for you in Figure 3-2.

Figure 3-2.  Slot machine choices

In this case, slot machine 2 gives Bob a good impression during the exploration stage 

so Bob sticks with it. However, during the exploitation stage, the true best slot machine 1 

tries to steal Bob’s favor but not successfully. Then Bob stays with slot machine 2 for the 

majority of the rest of the game. Such a trajectory gives Bob a regret value of 16.8 which is 

even slightly worse than random guess.

The situation can be worse if Bob doesn’t want to spend 30 dollars on exploring/

estimating the probabilities. This way, there is a bigger chance that Bob picks suboptimal 

slot machines.

The question now is to find an improved version of the greedy approach to avoid 

such issues.
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�Greedy-Epsilon: Greedy but Not Always
Let’s try to introduce a new strategy. Suppose Bob largely sticks to the best one according 

to history. However, each time Bob has a small chance, denoted by ∈, he will randomly 

pick another slot machine to play. This is a mixture of exploration and exploitation: Bob 

gives up some opportunity to exploit but to explore, in search of bigger future gain.

The implementation is straightforward and left to readers as an exercise. Please 

name the function cal_greedy_epsilon_regret. The key lines are the following three 

lines. The value of ∈ is up to you, while I set it to be 0.02 for our demo.

if np.random.random() < epsilon:

    slot_index = np.random.choice([i for i in range(K) if i != slot_index])

slots_trajectory.append(slot_index)

Let’s compare the performances of pure greedy approach and the greedy-epsilon 

approach with limited initial exploration steps. I will set the number of initial exploration 

to be just 1 for each machine and ∈ to be 0.02. The following code will plot a histogram 

for both approaches:

rounds = 1000

greedy_only = [cal_greedy_regret(evaluation_step=1)[0] for _ in range(rounds)]

greedy_epsilon = [cal_greedy_epsilon_regret(epsilon=0.02)[0] for _ in 

range(rounds)]

with plt.xkcd():

    fig, ax = plt.subplots(figsize=(10,6))

    �plt.hist(greedy_only,label="Greedy Only",bins=np.

linspace(0,25,30),alpha=0.5)

    �plt.hist(greedy_epsilon,label="Greedy Epsilon",bins=np.

linspace(0,25,30),alpha=0.5)

    plt.legend(loc='upper right')

    fig.savefig("greedy_approach_epsilon_compare.jpg")

The result is presented in Figure 3-3.
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Figure 3-3.  Regret function distribution for pure greedy approach and greedy-
epsilon approach

Note that the pure greedy approach does produce more low regret values, but it is 

less centralized than the greedy-epsilon approach. This means that the worst cases for 

greedy approach are worse than the worst cases for greedy-epsilon approach.

The result can be drastically different if you change the ground truth of the winning 

probabilities. Change it and see how it influences the performance of these two 

strategies. How about more slot machines like 5 or 10?

If Bob is aggressive, he will go for a pure greedy approach. If Bob is more cautious, 

he can try the greedy-epsilon approach to avoid low-probability but catastrophic 

regret values.

�An Improved Greedy-Epsilon Algorithm
One issue with the naive greedy approach is that it doesn’t take the slot machine’s 

performance into consideration when making a random choice. We can solve this 

problem by adopting the so-called softmax strategy. The idea is that we introduce a 

parameter, mimicking the quantity temperature in physics, called τ. The higher the 

temperature τ is, the more random the choice becomes. At τ ≈ 0, our strategy should 

reduce to the naive greedy approach. At τ ≈ ∞, our strategy should reduce to the random 

choice strategy.

The formula reads as follows:
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Here, pi, t represents the observed winning probability of slot machine i at time t. 

For example, if at step 100, Bob has played slot machine 1 for 11 times and he won 4 

times, then p
1 100

4

100
,

= .

What does the name softmax mean? If we expand the expression in the three slot 

machine cases and assume the first slot machine performs the best so far, we can then 

manipulate the value of the temperature τ to see its influence on our next round’s pick. 

For example, when τ approaches infinity, we have the following:
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This means that at very high temperatures, the algorithm reduces to the baseline 

random strategy no matter how far slot machine 1 outperforms others.

Let’s see another extreme case when the temperature τ is set close to 0:
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e e
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Because p1, t is the largest value, expression like e p pt t2 1, , /�� � �  essentially becomes e−∞ 

which is zero. This means our algorithm reduces to the naive greedy approach.

Feel free to tweak the value of τ and see how it affects the performance of the 

strategy.

The biggest improvement of this strategy is that it will prioritize the best performers 

but make room for the catch-ups to give a try.

�Exercise

	 1.	 Try the greedy approach with different numbers of evaluation 

steps. Try smaller ones like 5 and larger ones like 20. You may 

need to run the simulation multiple times to get a statistically 

consistent result.

	 2.	 Study how the true probabilities influence the performance of 

different strategies. We have been using probs = [0.5, 0.3, 0.2] all 

the time. How about other choices of probabilities?
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�The Bayesian Way, a Primer on Bayesian Statistics
Now, let’s go back to the ideal case that Bob has enough money to keep playing until 

dawn. How can Bob update his estimation of the winning probabilities of the multiple 

slot machines while playing? What are our best estimates of the winning probabilities 

of the multiple slot machines? Can Bob get a distribution of their winning probabilities 

rather than a single value? The answer is yes, and Bob needs Bayesian statistics to 

optimize our estimation.

The core idea in the slot machine context is that Bob will initially hold a 

belief of the winning probabilities’ distributions. Let’s say one machine’s winning 

probability p has a distribution called prior(p). Then, Bob will update his belief 

by observing the actual winning probabilities of the multiple slot machines 

to get an updated distribution called posterior(p). p is the winning probability 

being modeled, while the number of winning or losing is the observation. For a 

given probability, the observation will follow a Binomial distribution. Recall that 

Binomial k n p k
n p pk n k

, , � � � � � �� � �
1  is the probability of observing k successes in an n 

rounds Binominal experiment with an underlined probability p.

A prior distribution is nothing fancy but a belief. Let’s say you were born in the 

United States and believed the United States has the spiciest pepper in the world when 

you were young. Therefore, P(U. S. has spiciest pepper) = 1 was your prior belief. Then 

you traveled around the world and found that Mexico has pretty spicy pepper. Then your 

observation updates your belief to P(U. S. has spiciest pepper) = 0.5. Then you tried some 

Indian pepper, and your belief changed to P(U. S. has spiciest pepper) = 0.3. You keep 

doing this, and your previous round’s belief gets updated as observations come in.

In Bob’s case, the observations depend on the parameter p that we keep updating. 

The update rule is as follows:

	 posterior likelihood priorp p x p� � � �� � �� ; 	

Recall that the Bayesian theorem states that for arbitrary events, we have

	
P AB

P B A P A
P B

|
|� � � � � � �
� � 	

Mapping this formula to Bob’s game, we can see A is essentially the underlying 

parameter p and B is the pulling result. Since the observations are fact that we see, P(B) 
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is independent of our choice of A. Just think of it in Bob’s scenario. Bob doesn’t care 

about the winning probability’s distribution if he comes from the future and already 

knows his win or loss, right?

Unfortunately, the Bayesian’s updating rule needs to be calculated precisely because 

we are interested in the exact distribution of p. The Bayesian updating rule is not a 

simple one, and its computation can be very expensive especially in the continuous 

case. What we want now is to find a nice-behaving distribution of prior(p) such that 

the updated is also nice-behaving so the update rule can be computed quickly and 

sequentially.

Does such a nice prior distribution exist? Yes! It is called a conjugate prior of the 

likelihood distribution. Here, the likelihood function is the Binomial distribution, and its 

conjugate prior is called the Beta distribution parameterized by two parameters, α and β: 

B(α, β).

The Beta distribution is a generalization of the Binomial distribution. Let’s take a 

look at some examples in Figure 3-4.
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Figure 3-4.  Beta distributions with different sets of parameters

It is very similar to the Binomial distribution. If α and β are the same, the distribution 

is symmetric. If both parameters are larger, the distribution is more centric. If α is larger 

than β, the distribution is left skewed and vice versa.
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If we plug in the Beta distribution’s formula into the update rule, we get the 

following result:

	 posterior likelihood prior� � 	

	 posterior Binomial k n p B p� � �� � �; ;, ,� � 	

Expand the expression for Binomial and Beta distributions:

	
posterior p p

p p
Bk
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�� �
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1
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	 posterior p p p pk n k� �� � �� �� � �� �1 11 1 	

	 posterior p pk n k� �� �� � � � �� �1 11 	

	 posterior B p k n k� � � �� �;� �, 	

Here, we have B � �
� �
� �
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�� �

� �
�

 where Γ(x) is the gamma function. Don’t be 

intimidated because in the case of α and β  being integers, gamma function Γ(x) is just a 

factorial (x − 1)! which cancels the k
n� �  part in the expression.

Alright, enough math for now. What does it mean in the context of Bob’s gambling? 

It means that if Bob starts with a belief of B(α, β), each time if there is a success, he can 

simply update his belief to B(α + 1, β), and if there is a loss, he can simply update his 

belief to B(α, β + 1). There is no calculation involved at all, just parameter updating!

We have a new question: What value of α and β should Bob choose? This is quite 

empirical. Bob can compare his historical records with the distributions with different 

parameters and pick the best one. However, at the end of the day, the initial choice won’t 

matter much. Another practical question is how to decide which machine to play in the 

next round? Simple! We just use the Beta distributions of the slot machines to generate 

a set of samples and pick the largest one. The idea is the same as the softmax strategy in 

the previous section.
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Let’s look at the codes that perform the simulation and visualize the results:

probs = [0.5, 0.3, 0.2]

K = len(probs)

N = 100

rounds = [9, 49, 99]

fig, axis = plt.subplots(1, 3, figsize= (30,10))

x_ticks = np.linspace(0,1,500)

plot_index = 0

betas = [stats.beta(1,1) for _ in range(K)]

wins = [0, 0, 0]

totals = [0, 0, 0]

with plt.xkcd():

    for rnd in range(N):

        for i in range(K):

            betas[i] = stats.beta(1+wins[i],1+totals[i]-wins[i])

        p_value_samples = np.array([betas[i].rvs() for i in range(K)])

        slot_next_round_index = p_value_samples.argmax()

        win = np.random.random() < probs[slot_next_round_index]

        wins[slot_next_round_index] += win

        totals[slot_next_round_index] += 1

        if rnd in rounds:

            ax = axis[plot_index]

            for i in range(K):

                # plotting

                beta = betas[i]

                ax.plot(x_ticks, beta.pdf(x_ticks),

                        label='Bandit {}'.format(i+1),

                        linewidth=3)

                ax.set_title('After {} rounds'.format(rnd + 1),fontsize=20)

                ax.legend(fontsize=20)

            plot_index+=1

Figure 3-5 is the visualization of our winning probability distributions. Your result 

may be different because there is randomness involved.
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Figure 3-5.  Winning probabilities after 100 rounds of run

What can we learn from this result? Well, we have a much higher confidence in the 

winning probability of the machine with the largest winning probability, which is the 

first one. The reason is that because it has a higher winning probability, Bob has a higher 

chance of picking it, which creates positive feedback. Also, as Bob plays more and more, 

we have higher confidence for all machines in general.

Let’s try more rounds and try more machines. Let’s say Bob has 200 dollars, and 

there are 4 machines with similar winning probabilities probs = [0.8, 0.7, 0.6, 0.5]. The 

probability estimation is presented in Figure 3-6.
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Figure 3-6.  Bandit winning probability estimation after 200 rounds

It is clear that after 200 rounds, the superior machine is quite obvious, and we can 

say it with a precise level of confidence.

�Exercise

	 1.	 Simplify the posterior updating expression on your own.

	 2.	 Can you think of a way to combine the softmax strategy and the 

Bayesian strategy? Let’s say you use the result of the Bayesian 

estimation to adjust the temperature of the softmax strategy. Your 

result doesn’t need to be mathematically solid, but it needs to 

make sense intuitively.

	 3.	 Calculate the regret function using the Bayesian approach. Is it 

significantly better than other strategies?

Chapter 3  Multi-armed Bandits, Probability Simulation, and Bayesian Statistics



54

�Summary
In this chapter, we studied an interesting gambling scenario. We demonstrated that 

different gambling strategies are based on different levels of preference over exploration 

or exploitation. We also ran the simulation based on the Bayesian approach.
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CHAPTER 4

Balls in a 2-D Box, 
a Simple Physics Engine
If you are a gaming fan or an anime fan, you probably heard about the term physics 

engine. When you play Kratos in the God of War, his axes interact with the enemies and 

the environment. You feel that such interaction is real, and his axes are indeed heavy 

and metal-like. What you are actually controlling is just a playstation controller, but the 

impression is on another level. Here, physics engines are responsible for creating such 

feelings of being in a physical world.

A physics engine is a computer software that simulates certain physics systems such 

as rigid-body interaction, fluid dynamics, lighting systems, etc. In video games, physics 

engines are responsible for simulating the interaction of players with the environment.  

If players destroy a building, the collapsing of the building has to be like in real life: 

bricks are heavy, and wooden structures are light. In animation like Moana, the water 

effect is created by physics engines that are dedicated to simulate water movement. 

There are physics engines designed for snowflakes, hairs, and other systems as well.

In this chapter, we are going to build our own simplistic physics engine to simulate a 

very limited system: balls in a 2-D box.

�One Ball in a 2-D Box
Let’s start with the simplest example. The scenario is very much like pooling or snooker, 

but we will start with only one ball. The following code snippet draws a ball in the middle 

of a rectangular box:

RADIUS = 0.2

POSITION = [1,1]

VELOCITY = [0.2, 0.2]
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WIDTH, HEIGHT = 10, 8

ARROW_HEAD_WIDTH, ARROW_HEAD_LENGTH = 0.05, 0.2

with plt.xkcd():

    fig, ax = plt.subplots(figsize=(WIDTH, HEIGHT))

    plt.xlim(0,WIDTH)

    plt.ylim(0,HEIGHT)

    ball_1 = plt.Circle(POSITION, RADIUS, color='r')

    ax.add_patch(ball_1)

    ax.arrow(*POSITION,

             *VELOCITY,

             head_width=ARROW_HEAD_WIDTH,

             head_length=ARROW_HEAD_LENGTH,

             fc='k', ec='k')

    plt.plot()

The visualization in Figure 4-1 clearly shows the position, size, and velocity of the 

ball. Note that the ball is moving up with a velocity indicated by the arrow.

Figure 4-1.  A single ball moving to the right

What exactly do we mean by velocity of (0.2, 0.2)? Let’s define some concrete units 

for our simulation. Let’s say the lengths are in meters and time is in seconds. Therefore, 

the velocity of the ball is in meters per second. Our ball starts at position (0.2, 0.2) and is 

heading top right with an approximate speed of 0.28 meters per second.
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What I described is the physical setting up which means in the real world such a ball 

will move continuously. However, simulations are discrete, and we need to define the 

timestep, denoted by Δt, to approximate the continuous motion in reality. A timestep is 

the amount of time that passes between two consecutive steps of the simulation.

The smaller the Δt is, the more frames we get per second. For example, if the timestep 

is 0.1 seconds, we will have 10 frames per second (fps). For each frame, the ball will 

move 0.1*0.28=0.028 meters. If the timestep is 0.01 seconds, we will have 100 frames per 

second (fps). For each frame, the ball will move 0.01*0.28=0.0028 meters. In gaming, 

if the fps is above 60, players usually won’t detect any glitches in the game. In movie 

animation, if the fps is above 24, the animation will look smooth.

However, high fps also demands more computation to calculate the positions, 

facings, rotations, and velocities of objects. In our one-ball case, we can pick a timestep 

of 0.1 second. For a simulation of 1 second, our computer will need to update the 

position of the ball ten times.

The time in the simulated system is different from the time in the real world. In order 

to simulate one second in the simulated system, the computer may run up for hours 

if the system is complicated. For gaming, this is even not acceptable. There are game 

engines that liberate game developers from the burden of working against the physics 

engine directly. One such example is the Unreal Engine.

�Physics Law of Motion
Let’s simplify our system a little bit first. We assume the following conditions:

	 1.	 There is no friction in the system. The ball will not slow down due 

to friction with air or other objects.

	 2.	 There is no rotation in the system. The ball will not rotate. If 

you play table tennis, you will know that rotation makes a huge 

difference in the game.

	 3.	 The collisions are elastic. Elastic collision means that the ball will 

not lose energy when it collides with the walls of the box. If there 

are multiple balls, as we will see in the next section, the colliding 

balls as a whole will not lose energy.

	 4.	 Gravity is not present in the system. The ball will not fall down due 

to gravity. However, we will remove this restriction very soon.
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Given such simplifications, we can write the following update rules of our system 

according to Newton’s laws of motion:

	 x x tt t t� � � �1 � � 	

	 � �t t ta t� � � �1 � 	

Since we assume there are no external forces, the acceleration at initially is 0. Now, 

let’s update our system by simulating the motion for ten iterations with a timestep of 0.2 

seconds and velocity of (2,2). The code for performing the simulation is as follows. They 

are just two simple functions:

def render(pos = POSITION, vel = VELOCITY):

    with plt.xkcd():

        fig, ax = plt.subplots(figsize=(WIDTH, HEIGHT))

        plt.xlim(0,WIDTH)

        plt.ylim(0,HEIGHT)

        ball_1 = plt.Circle(pos, RADIUS, color='r')

        ax.add_patch(ball_1)

        ax.arrow(*pos,

                 *vel,

                 head_width=ARROW_HEAD_WIDTH,

                 head_length=ARROW_HEAD_LENGTH,

                 fc='k', ec='k')

        plt.show()

def update(pos=POSITION, vel = VELOCITY, acc = None, delta_t = DELTA_T):

    # Note that all values are mutable so the update is in place

    for i in range(len(pos)):

        pos[i] += vel[i] * delta_t

    if acc:

        for i in range(len(pos)):

            vel[i] += acc[i] * delta_t
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Now, we can use our preset parameters to perform the simulation:

RADIUS = 0.2

POSITION = [1,1]

VELOCITY = [2,2]

WIDTH, HEIGHT = 10, 8

ARROW_HEAD_WIDTH, ARROW_HEAD_LENGTH = 0.05, 0.2

DELTA_T = 0.2

render(pos=POSITION, vel = VELOCITY)

for _ in range(10):

    update(pos=POSITION, vel = VELOCITY,delta_t = DELTA_T)

    render(pos=POSITION, vel = VELOCITY)

Let’s see where the ball is after ten iterations in Figure 4-2.

Figure 4-2.  The ball’s position and velocity after ten iterations

As expected, for ten iterations with a timestep of 0.2 seconds, the system evolves for 

2 seconds. With a velocity of (2,2), the ball will move 4 meters in both the horizontal and 

vertical directions.

Now, let’s add some gravity to the system to get rid of the last assumptions we had 

earlier. The modification is quite simple. To keep the ball in the box for the first several 

frames, I have set the acceleration to be 1 meter per second squared downward. The 

normal gravity acceleration on earth is about 9.8 meters per second squared.
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ACCELERATION = [0,-1]

for _ in range(10):

    �update(pos=POSITION, vel = VELOCITY, acc = ACCELERATION, delta_t = 

DELTA_T)

    render(pos=POSITION, vel = VELOCITY)

Let’s do a back-of-the-envelope calculation of the velocity. After 2 seconds, the ball 

will lose all its speed in the vertical direction, so the velocity vector should be purely 

horizontal. Let’s check in Figure 4-3.

Figure 4-3.  Ball’s position and velocity after 2 seconds in gravity field

As expected, the ball completely loses its speed in the vertical direction.

�Collision Detection
Now, let’s tackle the elephant in the room, handling the collision detection.

To detect something, we need a clear definition of collision. What does it mean 

to have a collision between a wall and a ball? The idea is simple: if the ball’s center 

of geometry is at a shorter distance than the radius against the wall, then there is a 

collision. This is clearly illustrated in Figure 4-4.
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Figure 4-4.  Zoom-in of a collision

The logic of detection becomes simple: if at a timestamp, the distance between 

the center of the ball and either wall is less than the radius of the ball, then there is a 

collision. For the next iteration, the ball will bounce off the wall by flipping the sign of the 

corresponding velocity components. The system then evolves from there.

Let’s introduce a function to check possible collisions between the ball and the walls: 

if the ball is still moving toward the wall and the distance is already less than the radius, 

then a collision is detected. The function will also flip the sign of corresponding velocity 

components if a collision is detected.

def detect_collision_wall(pos = POSITION, vel = VELOCITY, radius = RADIUS, 

height = HEIGHT, width = WIDTH):

    # left wall

    if abs(pos[0]-0) < radius and vel[0] < 0:

        vel[0] = - vel[0]

        return

    # right wall

    if abs(width-pos[0])< radius and vel[0] > 0:

        vel[0] = -vel[0]

        return

    # upper wall

    if abs(height-pos[1]) < radius and vel[1] > 0:

        vel[1] = -vel[1]

        return

    # lower wall
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    if abs(pos[1]-0) < radius and vel[1] < 0:

        vel[1] = -vel[1]

        return

You may notice that the collision condition depends on an assumption that the 

ball is moving at a moderate speed. If the ball is so fast that between two neighboring 

frames, the ball passes through the wall, known as tunneling problem, then the collision 

detection will never be triggered.

Another issue is that the collision condition is lagging behind the actual motion of 

the ball. This can be mitigated by introducing a small positive parameter called delta to 

turn the distance calculation between the ball and wall into something like abs(pos[0]-0) 

< radius + delta.

By picking a proper value of delta, depending on the velocity of the ball or 

distribution of speeds for multiple-ball simulations, we can reduce the effect of lagging.

Now, let’s take a look at the simulated system to see how the ball bounces.

Figure 4-5 shows the direction our red ball is heading to.

Figure 4-5.  A ball is heading toward a collision

After the collision, the ball changes direction. Our algorithm works fine!
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Figure 4-6.  Velocity of the ball changes right after the collision

Let’s take a quick look to see how to create a gif animation before moving on.

You can use the imageio Python library to create a gif animation. Let’s say you 

have saved the snapshot of the system to files 1.png, 2.png, 3.png, etc. You can use the 

following command to create a gif animation:

import imageio

filenames = ["1.png", "2.png","3.png"]

with imageio.get_writer('one_ball_bounce.gif', mode='I') as writer:

    for filename in filenames:

        image = imageio.imread(filename)

        writer.append_data(image)

For the one-ball case, the animation looks like the one in GIF 4-1.
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GIF 4-1.  Ball’s movement without gravity

If we add gravity to the system, the animation will look like the one in GIF 4-2.

GIF 4-2.  Ball’s movement with gravity

Already very cool, isn’t it?
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�Exercise

	 1.	 Introduce the delta to the simulation. What is the relationship 

between the speed of the ball and the value of delta?

	 2.	 Can you increase the frame rate (fps) of the animation? Does it 

look more realistic?

�Multiple Balls in a 2-D Box
Now, let’s talk about the case of multiple balls. Besides the possibility of wall-ball 

collision, we can also have collisions between balls. This introduces two new problems:

	 1.	 How to detect the collision between balls?

	 2.	 How do balls behave when they collide?

If you think about the first problem, if there are 100 balls in a box, then theoretically 

the between-ball collision is a n2 operation like in the thousands, naively. This becomes 

unhandleable, therefore unacceptable, quickly. You don’t want the magnitude of 

calculation to grow quadratically. However, since the majority of balls won’t have a 

chance to collide with each other, we may want to use a more efficient algorithm to 

detect or predict the collision between balls.

Let’s solve the second problem first. It seems easier compared to the first one, isn’t it?

�Update of Positions and Velocity upon Collision
There are two physics laws that govern the movement of purely elastic balls: the law of 

conservation of momentum and the law of conservation of energy. In the simulation of 

wall-ball collision, we assume the wall has infinite mass so the momentum of the ball 

is forcefully reversed by the wall while preserving the energy of the ball. Since the ball’s 

energy is the sum of kinetic energy and potential energy, if we introduce gravity, the 

speed of the ball is unchanged.

For the ball-ball collision, things become a little bit uncomplicated. We are not going 

to deduce the formulas in detail, but we can do some back-of-the-envelope analysis after 

checking the formulas.
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Let’s denote the center of the two balls as c1 and c2, the radius of the two balls as r1 

and r2, and the velocity of the two balls as υ1 and υ2. We will use the prime notation ��1  

and ��2  to denote the velocities of the balls after the collision. Different from the case of 

wall-ball collision, we also need to consider the masses of the two balls. This agrees with 

our intuition because even a fast ping-pong ball is not going to move a golf ball much. 

Let’s call them m1 and m2.

Now, the two physics laws that govern the motion are listed as follows: the 

conservation of momentum and the conservation of energy.

	 m m m m
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Note that all the velocities are vectors rather than scalars. For example, υ1 has two 

components υ1[0] and υ1[1] and υ2 has two components υ2[0] and υ2[1], etc. Since the only 

two quantities we don’t know are �1
�  and �2

� , we can rearrange the equations to obtain 

them. This is a great mathematical exercise and is left to the reader as an exercise. For 

now, I will offer you the solutions:
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Let’s get a visual impression of what’s going on and write a function to compute the 

post-collision velocities. Assume that two balls are colliding into each other as illustrated 

in Figure 4-7.
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Figure 4-7.  Two balls colliding into each other

We assume that the balls are so hard that the distance between two centers is always 

exactly the sum of their radii. I have picked the parameters for these two balls as shown 

in Table 4-1.

Table 4-1.  Parameters for two balls’  

position, radius, velocity, and masses

υ1 (0.5, 0.5)

υ2 (-0.5, 1)

r1 0.3

r2 0.2

c1 (2,3)

c2 (2.5, 3)

m1 2

m2 2

Let’s do the calculation then:

� � �
�

� � � �
�

�� �� � � �
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2

1 2

1 2 1 2

1 2
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Substitute the numbers:

	

� � � � �
�

� � � � �� � � � � � ��

�
1

0 5 0 5
2 3

2 3

0 5 0 5 0 5 1 2 3 2 5 3
. .

. . . , .
, 

, , , , ��

� � �
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2

, , 
, , 

( . )
.

	

We obtain the first ball’s post-collision velocity:

	
� � �� ��
1

0 7 0 5. ., 	

By the same token, we can calculate the post-collision velocity of ball 2. The 

velocity is

	
� � � ��
2

0 3 1. , 	

Visually, the velocity vectors are presented in Figure 4-8.

Figure 4-8.  Post-collision velocity of two balls

Does our result agree with the conservation of momentum and energy? This 

verification is left to the readers as an exercise.

Now, let’s rewrite our rendering function to handle multiple balls. Also, it is time 

to rewrite our code to represent the objects like balls and boxes into objects and 

encapsulate the collision logics. I didn’t do this earlier because I want the mathematics 
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to be clear and easy to understand. By doing it now, we can make the next section of our 

tutorial clean and concise.

First, let’s create the _box_, _ball_, and _system_ classes. We create them as a 

dataclass because we want to make use of the automatically generated methods such as 

__init__ and __repr__. The Box class is the simplest one.

from dataclasses import dataclass

@dataclass

class Box:

    height: float

    width: float

Next, we create the Ball class in which we implement the main logic of the collision 

handling. Note that this is no more than a direct translation of the mathematical 

formulas earlier.

@dataclass

class Ball:

    pos: [float, float]

    vel: [float, float]

    mass: float

    radius: float

    def update(self, acc = None, delta_t = 0.2) -> None:

        for i in range(len(self.pos)):

            self.pos[i] += self.vel[i] * delta_t

        if acc:

            for i in range(len(self.pos)):

                self.vel[i] += acc[i] * delta_t

    def detect_ball_collision(self, other) -> None:

        �distance = np.sqrt((self.pos[0] - other.pos[0])**2 + (self.pos[1] - 

other.pos[1])**2)

        if self.radius + other.radius >= distance:

            self.ball_collision_update(other)

    def ball_collision_update(self, other)-> None:

        '''
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        Implement the ball collision logic, making use of symmetry.

        ball_1: self

        ball_2: other

        '''

        mass_factor_1 = 2*other.mass/(self.mass + other.mass)

        mass_factor_2 = 2*self.mass/(self.mass + other.mass)

        �velocity_diff = [self.vel[0] - other.vel[0], self.vel[1] - 

other.vel[1]]

        �center_diff = [self.pos[0] - other.pos[0], self.pos[1] - 

other.pos[1]]

        squared_center_diff = sum([diff**2 for diff in center_diff])

        �velocity_factor = np.dot(velocity_diff, center_diff)/squared_

center_diff <1>

        self.vel[0] -= mass_factor_1 * velocity_factor * center_diff[0]

        self.vel[1] -= mass_factor_1 * velocity_factor * center_diff[1]

        other.vel[0] += mass_factor_2 * velocity_factor * center_diff[0]

        other.vel[1] += mass_factor_2 * velocity_factor * center_diff[1]

    def detect_box_collision(self, box: Box) -> None:

        # left wall

        if abs(self.pos[0]-0) < self.radius and self.vel[0] < 0:

            self.vel[0] = -self.vel[0]

            return

        # right wall

        if abs(box.width-self.pos[0])< self.radius and self.vel[0] > 0:

            self.vel[0] = -self.vel[0]

            return

        # upper wall

        if abs(box.height-self.pos[1]) < self.radius and self.vel[1] > 0:

            self.vel[1] = -self.vel[1]

            return

        # lower wall
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        if abs(self.pos[1]-0) < self.radius and self.vel[1] < 0:

            self.vel[1] = -self.vel[1]

            return

The last part is the System class. It is a container for the Box and Ball classes and 

governs the interaction between them. We also bundle some helpful functions into it like 

rendering, etc.

from typing import List

@dataclass

class System:

    box: Box

    balls: List[Ball]

    acc: float = None

    delta_t: float = 0.2

    def init_balls(self):

        raise NotImplementedError

    def update(self):

        # ball-ball collision detection

        for idx_1 in range(0, len(self.balls)-1):

            for idx_2 in range(idx_1 + 1, len(self.balls)):

                self.balls[idx_1].detect_ball_collision(self.balls[idx_2])

        # ball-wall collision detection

        for ball in self.balls:

            ball.detect_box_collision(self.box)

        # update velocity

        for ball in self.balls:

            ball.update(self.acc, self.delta_t)

    def render(self, save= False, file_name = None, return_array = False):

        with plt.xkcd():

            fig, ax = plt.subplots(figsize=(self.box.width, self.box.height))

            if return_array:
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                from matplotlib.backends.backend_agg import FigureCanvasAgg

                canvas =  FigureCanvasAgg(fig)

            ax.set_xlim(0,self.box.width)

            ax.set_ylim(0,self.box.height)

            for ball in self.balls:

                pos, vel, radius = ball.pos, ball.vel, ball.radius

                ball_patch = plt.Circle(pos, radius, color='r')

                ax.add_patch(ball_patch)

                ax.arrow(*pos,

                         *vel,

                         fc='k', ec='k')

            if save:

                plt.savefig("{}.png".format(file_name))

            if return_array:

                # Retrieve a view on the renderer buffer

                canvas.draw()

                buf = canvas.buffer_rgba()

                # convert to a NumPy array

                return np.asarray(buf)

    �def generate_gif(self, file_name = "multiple_ball_collision.gif", 

steps = 100):

        with imageio.get_writer(file_name, mode='I') as writer:

            for _ in range(steps):

                system.update()

                image = system.render(return_array = True)

                writer.append_data(image)

Let’s take a look at how our two-ball system evolves in GIF 4-3. If you are reading a 

hard copy, make sure to check online for the animation.
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GIF 4-3.  Two balls moving in a box with collisions

We can also generate a bunch of random balls and see how they evolve as in GIF 4-4. 

The implementation of this experiment is left to the readers as an exercise. Here is a  

five-ball system. Notice that the sizes of the balls are not proportional to the mass. Can 

you guess which ball has the largest mass?

GIF 4-4.  Multiple balls with random radii, masses, and velocities in a box
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�Collision Detection in Multiple-Ball Scenario
Now, let’s address the elephant in the room: the performance issue of collision detection. 

There are many well-established collision detection algorithms; we will discuss and 

implement one of the most intuitive algorithms: the sweep and prune algorithm.

The idea of sweep and prune algorithm is quite straightforward. If two balls collide, 

then their projection in either the x axis or the y axis must collide as well! Therefore, we 

can use the projection of the balls to predict if they collide or not as it is a necessary, 

although not sufficient, condition.

The best part of sweep and prune is that we can sort the balls by their projections 

in one axis beforehand. Then a single sweep can find all pairs that can potentially 

collide. Sorting is a process of time complexity O(n log (n)), which is already a drastic 

improvement over the naive approach. An improvement can be made utilizing

Now, let’s implement the algorithm. We only need to implement one new method in 

the System class, which is solely responsible for returning a list of pairs of balls that can 

potentially collide.

def sweep_prune(self)-> List[Tuple[int, int]]:

    # return a list of indices of balls that may collide

    self.balls.sort(key = lambda ball: ball.pos[0]) <1>

    active_balls = []

    candidates = []

    for idx, ball in enumerate(self.balls):

        if not active_balls:

            active_balls.append(idx)

        else:

            closest_ball = self.balls[active_balls[-1]]

            �if closest_ball.pos[0] + closest_ball.radius >= ball.pos[0] - 

ball.radius: <2>

                candidates.append((active_balls[-1],idx))

                active_balls.append(idx)

            else: <3>

                active_balls = [idx]

    return candidates

The algorithm does three things:
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	 1.	 The balls are sorted in place by their x coordinate.

	 2.	 If two balls are close enough in the x axis, then they are candidates 

for collision.

	 3.	 Otherwise, empty the active_balls list and add the current ball to 

the active_balls list, as we move away from the previous cluster of 

ball projections.

Another small place we need to change is in the update method in the System class: 

use sweep_prune to select candidates.

def update(self):

    # ball-ball collision detection

    candidates = self.sweep_prune()

    for pair_idx in candidates:

            �self.balls[pair_idx[0]].detect_ball_collision(self.balls[pair_

idx[1]])

    # everything else is the same

Now, go ahead and try to run the simulation. Notice that if you disable the rendering, 

the simulation will run faster. Rendering probably takes much longer than detecting 

collisions in our case.

With that, we have reached the end of the chapter. Give it a try to finish the exercises 

before moving on to the next chapter.

�Exercise

	 1.	 Deduce the expression post-collision velocities from the 

conservation of energy and momentum in 2-D. Use another set of 

parameters to verify that the post-collision velocity calculations 

are in agreement with the conservation of momentum and energy.

	 2.	 Write a program that confines the total kinetic energy of a 20-ball 

system to a given value. Verify that the kinetic energy remains the 

same during the whole simulation.

	 3.	 Add gravity to the five-ball system.
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	 4.	 What if every collision with the wall will result in an energy loss? 

Let’s say 10% of the kinetic energy will be lost in each box-wall 

collision; run a simulation and check what the system looks like.

�Summary
In this chapter, we discussed the exciting topic of simulating physics rules. We 

implemented an algorithm to detect collisions and derived formulas to calculate the 

post-collision velocities of balls in a 2-D system. We also implemented a more efficient 

collision detection algorithm for multiple-ball cases.
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CHAPTER 5

Percolation, Threshold, 
and Phase Change
A scientist is investigating the spreading of wildfire in a forest. She is looking for a simple 

model that can predict how large a wildfire will be given limited knowledge about the 

forests, the weather, the climate, etc. For example, if some irresponsible tourist dropped 

a cigarette somewhere in the forest, what is the expectation of the worst-case size of the 

fire? How about the average size?

Another scientist is studying the robustness of a computer network. He is looking 

for solutions for disaster recovery under extreme cases. Suppose the network goes 

down and the administrator only has limited resources to start certain key nodes. How 

much can the network be restored? Which nodes should be started first given limited 

resources?

These two questions seem unrelated, but they are actually strongly similar under 

the name of percolation. Percolation or percolation theory is the study of clustering 

behaviors of random networks. The theory originated naturally from many physical, 

chemical, and biological systems. For example, in the case of the movement of water in 

porous material, whether the water can percolate through the porous material depends 

on the porosity of the material. For medical delivery in muscle tissues, the movement of 

medical products can also be modeled as a percolation process.

Back to the forest fire questions, if we assume that the forest is a network of trees that 

between-tree fire spreading is determined by a probability, then the question of forest 

fire prevention becomes the determination of a critical probability of fire spreading in a 

percolation process. For the network restoration problem, the percentage of nodes that 

can be started first is also modelable as a critical probability.

Intuitively, different nodes will have different importance in a network, so we are 

simplifying the network case strongly now. A better modeling of a network is a graph as 

we shall revisit in a later chapter.
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Now, let’s get down to the fundamentals of the percolation theory and run some 

basic simulations.

�Problem Introduction
Clustering behavior can happen on any kind of network in, theoretically, any dimension. 

The most intuitive one to visualize is the 2-D case as in Figure 5-1. For simplicity, let’s 

assume that the network is a square grid/lattice.

Figure 5-1.  A square lattice of dimension 10 by 10

What you see in Figure 5-1 is a square grid with size 10 by 10. Let’s call each red 

square a site, then this finite grid has 100 sites. Each site can have two states, either 

occupied or unoccupied. In our forest fire case, the tree can be either burning or safe. 

Now, I am assigning a blue color to the occupied sites and redrawing the grid. I can also 

use a bond to connect the adjacent occupied sites. One typical state of the grid looks like 

Figure 5-2.
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Figure 5-2.  Grid with occupied sites connected

Note that I also shrunk the site size so you can see the bonds more clearly. We call 

the connected occupied sites a cluster. In the preceding case, there is one large cluster 

that spans almost the entire grid except the three on the top right.

As you can imagine for the forest fire case, this indicates a fire that starts somewhere 

and spreads to the entire grid. However, there are also some small random fires on the 

top-right corner that only burned down one isolated tree each.

The example we just showed is a site percolation problem. There is another type 

called bond percolation problem where the connectivity is measured by linking bonds, 

rather than sites. For simplicity, we will only focus on the site percolation problem in this 

chapter. The bond percolation problem simulation is left to the readers as an exercise.

Before moving on, I would like to show you how the Grid class is defined and how 

the grid is rendered:

from enum import Enum

class State(Enum):

    Working = 1

    Broken = 0
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class Grid:

    state_to_color = {State.Broken: "red",

                     State.Working: "blue"}

    �def __init__(self, width = WIDTH, height = HEIGHT, prob = PROB, random_

init = False):

        self.width = width

        self.height = height

        self.prob = prob

        �self.states = [[State.Broken for _ in range(self.height)] for _ in 

range(self.width)]

        if random_init:

            self.random_init()

    def random_init(self):

        for w in range(self.width):

            for h in range(self.height):

                if np.random.uniform() < self.prob:

                    self.states[w][h] = State.Working

    def render(self, return_array = False, block_size = 1300):

        with plt.xkcd():

            fig, ax = plt.subplots(figsize=(self.width+1, self.height+1))

            if return_array:

                from matplotlib.backends.backend_agg import FigureCanvasAgg

                canvas = FigureCanvasAgg(fig)

            ax.set_xlim(0,self.width+1)

            ax.set_ylim(0,self.height+1)

            ax.axis('off')

            # draw the sites

            x, y, c = [], [], []

            # Note that w,h are for plotting coordinates.

            for w in range(1,self.width+1):

                for h in range(1,self.height+1):

                    x.append(w)

                    y.append(h)
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                    state = self.states[w-1][h-1]

                    c.append(Grid.state_to_color[state])

            plt.scatter(x, y, c = c, marker="s", s = block_size)

            # draw the bonds between working site

            # from bottom left, expand up and right to connect

            for w in range(1,self.width):

                for h in range(1,self.height):

                    origin_state = self.states[w-1][h-1]

                    if origin_state == State.Working:

                        up_state = self.states[w-1][h]

                        if up_state == State.Working:

                            �plt.plot((w, w), (h, h+1), c = Grid.state_to_

color[State.Working])

                        right_state = self.states[w][h-1]

                        if right_state == State.Working:

                            �plt.plot( (w, w+1), (h, h), c = Grid.state_to_

color[State.Working])

            # top line

            for w in range(1,self.width):

                origin_state = self.states[w-1][self.height-1]

                right_state = self.states[w][self.height-1]

                �if origin_state == State.Working and right_state == State.

Working:

                    �plt.plot((w,w+1),(self.height,self.height), c = Grid.

state_to_color[State.Working])

            # right line

            for h in range(1,self.height):

                origin_state = self.states[self.width - 1][h-1]

                up_state = self.states[self.width - 1][h]

                �if origin_state == State.Working and up_state == State.

Working:

                    �plt.plot((self.width,self.width),(h,h+1), c = Grid.

state_to_color[State.Working])
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Now, let’s get down to the key question. Given a varying occupation probability p 

and independence between sites (or bonds), when will a cluster percolate through our 

grid from the top edge to the bottom edge?

�Percolation and the Critical Probability
Well, mathematicians are more interested in another question: When will an infinite 

cluster form with certainty for an infinitely large cluster? From the perspective of 

simulation, we can’t simulate an infinitely large grid, but we can approach this problem 

by answering the easier question we asked earlier. If a cluster, with probability of 100%, 

can’t percolate through the grid, then an infinite cluster is not possible.

Let’s call such a threshold probability pc where c stands for critical.

�An Analytical Solution for the 1-D Case
Although this book is about simulation, I want to show you how the 1-D case is solved 

analytically.

For either site percolation or bond percolation in 1-D, the critical probability pc is 1. It is 

easy to visualize; there is one and only one way to form an infinite cluster in 1-D. Therefore, 

any probability smaller than 1 will stop the formation of an infinite cluster.

Let’s say the probability that a cluster with size L exists is denoted by P(p, L), then the 

critical probability must satisfy the following equation:
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Luckily, the exact expression of P(p, L) is easy to derive:
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Therefore, our critical probability pc is 1.

From 1-D to 2-D, the difficulty of analytical derivation increases dramatically. In fact, 

it takes about 20 years for mathematicians to obtain/prove the analytical form of critical 

probability for the 2-D square grid bond percolation case. Harry Kesten proved that the 

bond percolation critical probability is exactly 
1

2
 in the 2-D square grid case. The site 
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percolation case, on the other hand, is notoriously hard to derive. It turns out that we 

can only run a simulation to estimate it. The approach is something you already saw in 

Chapter 1.

�A Simulation for the 2-D Case
We will perform the simulation in two steps. For the first part, let’s write a function to 

detect whether there is a cluster that percolates the grid and color it in gray. Our goal is 

to only find one, so once we find one, we will stop exploring other possible clusters.

For the second part, we will run the simulation multiple times to approximate the 

critical probability pc.

To discover the existence of a percolating cluster, we need to write a graph traversal 

algorithm to traverse through the neighboring occupied sites. There are two options: 

one is breadth-first search, and the other is depth-first search. Here, I implement the 

depth-first search algorithm. The idea is to recursively visit neighbors until a longest 

possible path is visited, then hop back to another possible path in the previous round of 

recursion.

​def dfs(self, site, visited) -> None:

       ​visited.add(site) (1)

       ​(w,h) = site

      � ​neighbors = [site for site in [(w-1,h),(w+1,h),(w,h-1),(w,h+1)] if 

self.filter_illegal_site(site)]

       ​for neighbor in neighbors:

          � ​if neighbor not in visited and self.states[neighbor[0]]

[neighbor[1]] == State.Working:

               ​self.dfs(neighbor, visited)

Next, we write another function for the heavy lifting of finding the cluster. We start 

from the lowest row of the grid and start searching for clusters whenever we encounter 

an occupied site. If during the search, we find a site that is on the top edge of the grid, 

our mission is complete. If we find no site on the lower edge that leads to a percolating 

cluster, then the search finishes as well.

def percolate_through(self):

        clusters = []

        success = False
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        for w in range(self.width):

            if clusters:

                all_visited = reduce(lambda x,y: x.union(y), clusters) (1)

            else:

                all_visited = set()

            �if self.states[w][0] == State.Working and (w,0) not in all_

visited:

                clusters.append(set())

                self.dfs((w,0), clusters[-1])

                latest_cluster = clusters[-1]

                �if max([site[1] for site in latest_cluster]) == self.

height-1:

                    success = True

                    return clusters[-1], success

        return None, success

    def filter_illegal_site(self, site): (2)

        (w,h) = site

        if w < 0 or w >= self.width:

            return False

        if h < 0 or h >= self.height:

            return False

        return True

We can also update other parts of our program to enable the highlighting of the 

percolating cluster. Here are the key lines. You can find the complete code in the online 

site of this book.

class State(Enum):

    Working = 1

    Broken = 0

    Cluster = -1

class Grid:

    state_to_color = {State.Broken: "red",

                    State.Working: "blue",

                    State.Cluster: "gray"}
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    �def render(self, return_array = False, block_size = 1300, percolating 

= False):

        if percolating:

            cluster, success = self.percolate_through()

            if success:

                for site in cluster:

                    w, h = site

                    self.states[w][h] = State.Cluster

Note that the method should only run once. The correctness of the depth-first search 

algorithm guarantees the discovery of one percolating cluster if it does exist.

Alright, let’s run a rendering of a simulation to see if we can find a percolating cluster 

with different grid sizes and occupation probabilities. First, let’s try a grid with size of 10 

by 10 and occupation probability of 0.5:

Grid(width=10, height = 10, random_init= True, prob = 0.5).

render(percolating = True)

We are lucky! There is one percolating cluster! The gray sites in Figure 5-3 show the 

percolating cluster.

Figure 5-3.  A grid with a percolating cluster
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Let’s run the code again; we get another not-so-lucky result as shown in Figure 5-4.

Figure 5-4.  A grid without a percolating cluster

Let’s try a much larger 100 by 100 square grid with occupation probability 0.7. The 

result is shown in Figure 5-5.

Figure 5-5.  A 100 by 100 grid with a percolating cluster
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I hope your eyes are still working OK. The percolating cluster is so big that it contains 

almost all the occupied sites. You may also run into the recursion depth error; you can 

temporarily increase the maximum recursion depth by setting the sys.setrecursionlimit 

parameter.

Next, let’s run a simulation to see if we can narrow down the value of the critical 

occupation probability pc. First, let’s try a grid with size of 10 by 10 and occupation 

probability ranging from 0.2 to 0.8 with a step of 0.05. Totally, we will have about 13 

settings. We will run each setting 100 times to obtain the probability of pc where L is the 

size of the grid.

L = 10

ROUND = 100

p_clustering = []

for prob in np.linspace(0.2,0.8,num=13):

    res = []

    for _ in range(ROUND):

        �_, success = Grid(L, L, prob = prob, random_init = True).percolate_

through()

        res.append(success)

    p_clustering.append(np.mean(res))

with plt.xkcd():

    fig, ax = plt.subplots(figsize=(10,8))

    ax.plot(x = np.linspace(0.2,0.8,num=13), y = p_clustering, marker="*")

    ax.set_xlabel("Occupation Probability")

    ax.set_ylabel("Probability of Percolation")

    ax.set_title("10 by 10 Grid Percolation Experiment")

Our result should agree with our intuition. When the occupation probability is low, 

we should see no percolating cluster at all. When it is large, the probability of percolation 

should approach 1. Check Figure 5-6 for the relationship.
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Figure 5-6.  Percolating probability changes with respect to the occupation 
probability for a 10 by 10 grid

It looks like somewhere between 0.5 and 0.6, there is a jump of the percolation 

probability.

Let’s enlarge our grid to 50 by 50 and try again. Note that this may take longer time 

and deeper recursion depth. The result is in Figure 5-7.

Figure 5-7.  Percolating probability changes with respect to the occupation 
probability for a 50 by 50 grid
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The trend becomes more obvious. The formation of the percolating cluster becomes 

almost certain once a threshold around 0.6 is exceeded. Now, let’s focus on the range 

between 0.5 and 0.7 and zoom in. We obtain Figure 5-8.

Figure 5-8.  Zoom in for a 50 by 50 grid

Before moving on to the next section, let’s run the simulation for a 100 by 100 grid 

and 1000 runs for each occupation probability data point. Figure 5-9 is what I got.

Figure 5-9.  Percolating probability changes with respect to the occupation 
probability for a 100 by 100 grid
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Note that although the shapes of the curves are similar, the range of the x axis is 

much smaller: it is also a zoom-in visualization. Our estimation of the critical probability 

is more and more accurate. We can see clearly that the critical occupation probability is 

around 0.6.

With more powerful simulation and calculation in academic research, the current 

estimation of square grid site percolation critical probability is about 0.592746. We will 

use this value as our ground truth in the following content.

�Exercise

	 1.	 Implement the breadth-first search algorithm for cluster 

discovery.

	 2.	 Implement an algorithm to calculate the size of the largest cluster 

of a grid. Plot it against the occupation probability. Notice that you 

may need to run several times to get a sensible statistic.

�Another Interesting Statistic in 2-D Grid Percolation
If we go back to our original forest fire question, a question we are more interested in is 

the severity of the fire, which is the size of the percolating cluster.

However, as in simulation, we are changing the size of the grid to simulate an 

infinitely large grid. It is not possible to calculate the size of the largest cluster as it is grid 

size dependent. What we can calculate is another value, fraction f, that is the fraction 

of the occupied sites that are in the percolating cluster. As the occupation probability 

grows, the fraction shall reach 1, but as the occupation probability approaches the 

critical probability from above, the fraction shall approach 0.

Imagine an infinitely large grid, if the occupation probability is just slightly bigger 

than the critical probability, then there is one percolating cluster. Although probability 

theory tells us that such a cluster definitely exists in an infinitely large grid, even a 

slightest smaller occupation probability won’t even allow the percolating cluster to 

form! Can you imagine what the cluster looks like? Yes. It is likely to be very zigzagging, 

infinitely large but leaves almost all occupied sites out of itself. Sounds contradictory but 

it is true.
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First, let’s implement a new method to calculate the fraction:

def percolating_cluster_fraction(self):

    assert(self.percolated)

    �total_occupied = sum([sum([h in(State.Cluster, State.Working) for h in 

row]) for row in self.states])

    �cluster_size = sum([sum([h  == State.Cluster for h in row]) for row in 

self.states])

    return cluster_size/total_occupied

Next, we run a simulation to evaluate the relationship between the fraction and 

the occupation probability. We use a 100 by 100 grid, 200 by 200 grid, and 300 by 300 

grid to perform the simulation. From above the ground truth, we slowly decrease the 

occupation probability to around 0.59, and for each one, we perform 1000 runs to obtain 

the average.

L = 100

ROUND = 1000

TRUTH = 0.592746

fractions = []

probs = []

start = 0.622746

steps = 110

step = (start - TRUTH)/(steps - 10)

for i in tqdm(range(steps)):

    res = []

    prob = start - i * step

    probs.append(prob)

    for _ in range(ROUND):

        while True:

            grid = Grid(L, L, prob = prob, random_init = True)

            grid.percolate_through()

            if grid.percolated:

                frac = grid.percolating_cluster_fraction()

                res.append(frac)

                break

    fractions.append(res)
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We can then estimate how much the fraction is when the critical occupation 

probability is reached. The plotting code is trivial and therefore skipped. We obtain 

Figure 5-10.

Figure 5-10.  The fraction of a percolating cluster vs. the occupation probability for 
a 100 by 100 grid

Well, this doesn’t look good because ideally the fraction should be 0; instead, we get 

a value around 0.57. Let’s try a larger 200 by 200 grid. We obtain Figure 5-11.

Figure 5-11.  The fraction of a percolating cluster vs. the occupation probability for 
a 200 by 200 grid

A 200 by 200 grid size gives us a fraction about 0.52 at critical occupation probability. 

Note that this simulation runs for hours on my 2019 MacBook Pro, 16GB RAM. If you 

have a machine that you can leave on for a whole day, you can try the 300 by 300 grid size 

simulation just as I did. I have to set the max recursion depth to a fairly large number to 

avoid the recursion error. After hours and hours of calculation, I obtained Figure 5-12.
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Figure 5-12.  The fraction of a percolating cluster vs. the occupation probability for 
a 300 by 300 grid

We successfully reached a fraction value of 0.5 at critical occupation probability, but 

we are far from the theoretical value. This is an example to demonstrate how difficult it 

can be to get a simulation’s result to converge. The difficulty of simulating around the 

critical occupation probability is well known because we are approaching a so-called 

phase transition in the simulation. The property of the system changes abruptly around 

the critical occupation probability. We are using a naive way to perform the simulation, 

and our hardware is not powerful enough as well. This was expected. Don’t feel 

frustrated.

�Exercise

	 1.	 Can you derive the analytical equation for the fraction as a 

function of the occupation probability in the 1-D case?

	 2.	 The percolate_through method will stop searching for potential 

percolating clusters when the first one is found. Estimate how 

likely it is for two non-overlapping percolating clusters to coexist.

	 3.	 Perform the bond percolation simulation for a grid of size 100 by 

100. Plot the fraction of the percolating cluster as a function of the 

occupation probability as well.
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�Summary
In this chapter, we studied the simulation of percolation on grids. This type of simulation 

has a deep root in mathematics and theoretical physics. We derived an analytical 

solution for a 1-D case and simulated larger and larger grids in 2-D cases. We also saw 

one painful example that sometimes simulation can become extremely hard.
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CHAPTER 6

Queuing System: How 
Stock Trades Are Made
A stock exchange is a fascinating system in which people trade stocks and wish to 

profit from the trading. In the old times before electronic trading, brokers would get 

together and trade stocks on behalf of their clients by yelling at each other. Nowadays, 

everything becomes electronic. The retailer investors can use mobile applications or 

web applications to make trades.

In this chapter, we will build a system to simulate a stock exchange and visualize 

an order book. The key takeaway for this simulation is the handling of the queuing of 

orders. For example, some orders are submitted early, while others are submitted late 

with a lower price. We need to properly determine the order priority in such cases. On 

the other hand, we also need to manage the message broadcasting. In real life, investors 

can see the real-time stock price changes which are broadcasted by the stock exchange.

�Trading Process Fundamentals
First, let’s decompose the trading process to identify what entities and processes should 

be simulated.

There are three major parts in a successful trade. First, the investor sends an order to 

the exchange. Then, a match engine receives the order and tries to find the counterpart 

of the order. For example, if a new sell order comes in, the match engine will try to find an 

existing buy order in the queued orders to match the new sell order. In the following third 

step, there are two possibilities. If there is a successful find, the trade will be completed, 

and messages of successful trade will be broadcasted to the original investors, and a new 

price will also be available, as the latest price may change due to the trade, to all investors 

in the market. If there is no successful find, the new sell order will also be queued until 

future trades come in. Investors can also request removal of their queued orders.
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In a short summary, we need to simulate the following entities:

	 1.	 Investor

	 2.	 Match engine

Well, it also makes sense to further split the match engine to more components 

like one part is solely responsible for match trades and another part is responsible for 

broadcasting information, etc. However, for simplicity, we will pack everything on the 

stock market side into the match engine entity.

To fully simulate the trading process, the following four processes need to be 

simulated:

	 1.	 The investor sends an order to the match engine.

	 2.	 The match engine processes and tries to match the trade.

	 3.	 The match engine broadcasts messages to the original order 

submitters if there is a successful trade.

	 4.	 The match engine broadcasts the latest prices to everyone in 

the market.

Due to the limitation of space, our focus for this chapter is on the first two parts. 

However, you can tell that steps 3 and 4 are just the opposites of step 1. I will leave these 

two parts as exercises to you at the end of the book. You will see that there are many 

simplifications and assumptions in this chapter. I will leave all of them as exercises for 

you to implement a fully functional system.

�The Order Book
The way the match engine keeps track of orders is to maintain an order book. An order 

book is a dynamic list of buy and sell orders that keeps getting updated by the match 

engine. You can visualize the order book as two piles of orders; all the buy orders are 

on the left, while the sell orders are on the right. The match engine tries to find tradable 

pairs from the buying side and the selling side.

The order book needs to be maintained such that all participants in the market feel 

fair and equal. There are certain principles that need to be respected. There are two most 

important ones.
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First, sell orders with a lower price have priority over sell orders with a higher price. 

By the same token, buy orders with a higher price have priority over buy orders with a 

lower price. However, this is only true for the so-called limit order. The market order is 

special because it will accept any prices. For example, a market buy order will match the 

sell orders from the lowest price to higher price until the requested amount of shares in 

the buy order has been all filled, which may significantly push the market price, the price 

every participant sees, higher.

On the other hand, there are stop loss orders and stop profit orders. Such orders 

will be triggered when the price hits a certain level. For example, a stop loss order will 

be executed once the price drops to a certain level to control the loss. We won’t cover 

such types of orders in this chapter, but readers are encouraged to implement them as 

extensions of our simulation.

Second, if the prices are the same, orders that were submitted earlier have higher 

priority. Note that in principle there won’t be two orders with the exact same submitting 

time so there will always be an order to rely on.

As orders come in, the order book will dynamically change; the volume of orders at a 

certain price level is called the depth. The deeper the depth is, the more interest there is 

for buying or selling the stocks. As we discussed earlier, the orders with a price closer to 

the market price will have higher priority than the orders further away from it. Therefore, 

the order book will always look like a valley with fast changing depths. GIF 6-1 illustrates 

it clearly.

GIF 6-1.  Order book depth dynamics
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Note that in real life, if an order hasn’t been executed by the match engine, the 

investors can always request to cancel the order. However, we won’t implement this part 

either in this chapter. You can give it a try; it is not as hard as you may think.

�Create the Interfaces and Determine 
the Data Schema
Alright! We are ready to build a match engine now. First, let’s create an endpoint that can 

accept orders. To do that, we are going to use flask to build a simple API (application 

programming interface). An API exposes certain functionality to external users and other 

programs. In our case, our API does one thing: accept the incoming order.

If you haven’t tried flask earlier, here is an example to get you started.

Let’s install the two libraries we are going to use first:

pip3 install flask, requests

Next, create an engine.py file with your favorite editor; copy and paste the 

following code:

from flask import Flask

app = Flask(__name__)

@app.route('/submit',  methods = ['GET'])

def process_order():

    return '<h1>order received</h1>'

def main():

    app.run(host='localhost', port=8080, debug=True)

if __name__ == '__main__':

    main()

Now, run this flask app in the command line by typing

python engine.py

Chapter 6  Queuing System: How Stock Trades Are Made



99

You should see the following messages. Note that your exact debugger PIN may be 

different from mine.

* Serving Flask app 'app' (lazy loading)

 * Environment: production

   �WARNING: This is a development server. Do not use it in a production 

deployment.

   Use a production WSGI server instead.

 * Debug mode: on

 * Running on http://localhost:8080/ (Press CTRL+C to quit)

 * Restarting with stat

 * Debugger is active!

 * Debugger PIN: 374-303-372

We just created the simplest web app! If you open your browser and navigate to 

http://localhost:8080/submit, you will see a message as in Figure 6-1.

Figure 6-1.  Order received message from the website

Very cool!

With less than ten lines, we created an endpoint, with the process_order function, 

that users can visit and interact with our application. Our application does only one 

thing: it returns some bytes that a browser will interpret as a string with level 1 heading. 

That’s why you see such a large font.

Notice that the process_order function has a parameter method, the desired method 

is GET. This regulates which method this /submit endpoint accepts. The GET method 

allows users to get stuff from this endpoint only. If users try to send something to this 

endpoint, the request will fail as it is not allowed, for now.

Our simulated investors, which I often refer to as bots, can’t refresh browsers to 

interact with our stock exchange. Let’s see whether we can use Python to do it. Now, 

in another file called bot.py, copy and paste the following code snippet. Run it while 

keeping the engine.py running in the previous terminal.
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import requests

from time import sleep

for i in range(10):

    res = requests.get('http://localhost:8080/submit')

    print(res.content.decode('utf-8'))

    sleep(1)

Here, we use the requests library to get information from the engine.py application 

for ten times with a break of one second between two consecutive requests.

The URL in the code has three parts. The http is the protocol name which stands for 

hypertext transfer protocol. Similarly, there are https or ftp protocols for a secure version 

of http and file transfer. The localhost is the hostname (also called domain name), while 

8080 is the port number. Together the hostname and the port number define where the 

application is. Both the hostname and the port number are specified in the engine.py 

file when we start the application. The path /submit is specified in the process_order 

function as well; it is often called path to resources. Users can visit this path to retrieve 

certain information which is treated as a kind of resource.

Now, let’s transform the elementary example to real useful code for our match 

engine simulation. The match engine should be able to accept payload from investors 

(bots) that contain order information. However, we need to figure out what information 

should go into that payload first from the investor side.

From the perspective of the investor, at a minimum, the payload should have the 

type of the order (whether it is a market order or a limit order), the size of the order (how 

many shares the investor plans to buy/sell), and the direction of the order (whether it is a 

buy order or a sell order). If the order is a limit order, a price should also be specified.

From the perspective of the stock exchange, a timestamp and an ID are also 

required. The timestamp is needed to determine the priority of equal-price limit orders. 

The ID is used to identify the order so corresponding actions can be taken when the 

order is canceled or executed.

In general, an ID for an entity is always required. For simplicity, we will allow the 

investor/bot to set the ID and send the payload to the match engine. The ID will be 

created from the id() method plus randomization, so it is unlikely that there will be any 

collision in our simulation. Also note that sometimes an order can be filled partially. We 

will implement the partial fulfillment feature.
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In summary, the payload from the investor should look like the following:

from flask import Flask

from flask import request, jsonify

import json

import time

app = Flask(__name__)

@app.route('/submit',  methods = ['POST'])

def process_order():

    order = request.get_json(force=True)

    order["submit_timestamp"] = time.time()

    print(order) # for testing purpose

    return jsonify({"status": "received"})

def main():

    app.run(host='localhost', port=8080, debug=True)

if __name__ == '__main__':

    main()

Note that we import the request and jsonify modules to process the posted data and 

send back an acknowledgment to the bot.

To accommodate such change, our bot.py has one more function to generate fake 

orders. It looks like the following now:

import requests

from time import sleep

import random

import json

def generate_order():

    return {

      "order_id": id(random.random()),

      "order_type":random.choice(["market", "limit"]),

      "order_size": random.randint(1, 100),

      �"order_price": random.randint(1, 100), # will be ignored if the order 

type is market
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      "order_direction": random.choice(["buy", "sell"]),

   }

for i in range(10):

    order = generate_order()

    res = requests.post('http://localhost:8080/submit',

                        data = json.dumps(order))

    print(res.json())

    sleep(1)

�Implement Order Book Logic
The next step is to implement a proper data structure to maintain the order book. We will 

use a dictionary of lists to maintain each side of the orders. For example, on the buy side, 

we will use a dictionary of lists to keep track of all the orders.

The dictionary keys are the order prices. The price of a stock is not infinitely 

accurate, which means there is a minimal step. For example, it is either 1.5 dollar per 

share or 1.6 dollar per share, but not 1.55 dollar per share. This ensures that there are 

always a manageable number of keys in the dictionary, so sorting the keys is fairly 

straightforward.

Each value in the dictionary is a list of the submitted orders. The list behaves like a 

queue, without allowing order cancellation, so that earlier orders get matched early if 

there is a suitable counterpart in the market.

Let’s check the code for the OrderBook class and corresponding order receiving code:

from collections import defaultdict

import numpy

class OrderBook:

    def __init__(self):

        self.buy_orders = defaultdict(list)

        self.sell_orders = defaultdict(list)

        self.latest_ordr = None

    def receive_orders(self, order):

        if order["order_type"] == "market":
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            �order["order_price"] = np.inf if order["order_direction"] == 

"buy" else -np.inf

                # willing to buy at extreme high price

        if order["order_direction"] == "buy":

            self.buy_orders[order["order_price"]].append(order)

        else:

            self.sell_orders[order["order_price"]].append(order)

        self.latest_order = order

        self.fulfill_orders()

    def fulfill_orders(self):

        raise NotImplementedError

Can you tell how I implemented market orders? If a buy order is a market order, 

then I set the accepted price to positive infinity. It means that the buy order will accept 

an arbitrarily high price. The same applies to the market sell orders which will accept 

arbitrarily low prices to sell. Once the price is determined, we simply find the list, as the 

value of the dictionary, and append our new order to it. This is where defaultdict makes 

the code cleaner: if the list doesn’t exist yet, defaultdict will create an empty list for us.

Note that we have an unimplemented function called fulfill_orders. It is responsible 

for actually fulfilling the order, and it is the key in this code. Let’s check it out:

   def fulfill_orders(self):

            """

            �# When this method runs, there should be only one of the 

following three cases possible.

            1. �There is one and only one market order that can be executed 

with the tip of the opposite side

            2. There is no market order

                2.1 There is no matching opposite orders

                2.2 �The latest limited order can be executed by fulfilling 

the orders on the opposite side one by one

            �The three cases are mutually exclusive so we will handle that 

one by one.

            """
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            latest_order = self.latest_order.copy()

            opposite_orderbook = self.buy_orders if latest_order[

                "order_direction"] == "sell" else self.sell_orders

            if latest_order["order_direction"] == "buy":

                opposite_prices = sorted(opposite_orderbook.keys())

            else:

                �opposite_prices = sorted(opposite_orderbook.keys(), 

reverse=True)

            for opposite_price in opposite_prices:

                �valid_buy = latest_order["order_direction"] == "buy" and 

opposite_price <= latest_order["order_price"]

                �valid_sell = latest_order["order_direction"] == "sell" and 

opposite_price >= latest_order["order_price"]

                �valid = (valid_buy or valid_sell) and latest_order["order_

size"] > 0

                if not valid:

                    break

                for queued_order in opposite_orderbook[opposite_price]:

                    �if queued_order["order_size"] <= latest_

order["order_size"]:

                        �latest_order["order_size"] -= queued_

order["order_size"]

                        if latest_order["order_direction"] == "buy":

                            �self.buy_orders[latest_order["order_

price"]][-1]["order_size"] -= queued_

order["order_size"]

                        else:

                            �self.sell_orders[latest_order["order_

price"]][-1]["order_size"] -= queued_

order["order_size"]
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                        fill_size = queued_order["order_size"]

                        queued_order["order_size"] = 0

                    elif latest_order["order_size"] > 0:

                        �# print("the latest order is not big enough to eat 

the current queued order")

                        �queued_order["order_size"] -= latest_

order["order_size"]

                        fill_size = latest_order["order_size"]

                        # mark the latest_order completely fulfilled.

                        latest_order["order_size"] = 0

                        �# the latest order will always be the last one. Set 

its size to 0 since it is depleted now.

                        if latest_order["order_direction"] == "buy":

                            �self.buy_orders[latest_order["order_price"]]

[-1]["order_size"] = 0

                        else:

                            �self.sell_roders[latest_order["order_price"]]

[-1]["order_size"] = 0

                    else:

                        break

            self.clean_limit_orderbook()

Note that certain lines of the code are quite long, but the inline comments should be 

sufficient for you to understand. Basically, there are three steps:

	 1.	 First, determine the direction of the latest order because our order 

book will and only will be changed by the latest order.

	 2.	 Once the direction is determined, check whether there is a 

possible trade. If the latest order is a market order, then we don’t 

need to check the prices of the opposite side orders; otherwise, 

we need to make sure that there is an overlap. For example, if the 

latest order is a buy order, then the lowest sell order price should 

be no higher than the latest buy order.
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	 3.	 Then we iterate eligible opposite orders in the order of submission 

time, from earliest to latest to enforce fairness, until the latest 

order’s volume is depleted. There is another chance that there 

are no more opposite orders, in the condition that there is a huge 

market order, but that is very unlikely.

Following the logic, the code should be fairly easy to read.

For cleanness, we can also implement a clean_limit_orderbook function to run 

after the order fulfillment. This may not be necessary, but it is helpful for utility helper 

functions like print_orderbook which is defined as follows:

    def print_orderbook(self):

        print("-------------------Orderbook-------------------")

        for price in sorted(self.sell_orders.keys(), reverse= True):

            �depth = sum(map(lambda order: order["order_size"], self.sell_

orders[price]))

            print("sell side price: {}, depth: {}".format(price, depth))

        print("-----------------------------------------------")

        for price in sorted(self.buy_orders.keys(),reverse= True):

            �depth = sum(map(lambda order: order["order_size"], self.buy_

orders[price]))

            print("buy side price: {}, depth: {}".format(price, depth))

        print("\n")

Lastly, here is the implementation of the clean_limit_orderbook function, fairly 

straightforward:

    def clean_limit_orderbook(self):

        """

        Remove useless keys in the limit order book

        """

        for orderbook in [self.buy_orders, self.sell_orders]:

            empty_prices = []

            for price in orderbook.keys():

                n�ew_orders = list(filter(lambda order: order["order_size"] 

> 0, orderbook[price]))
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                if len(new_orders) == 0:

                    empty_prices.append(price)

                else:

                    orderbook[price] = new_orders

            for price in empty_prices:

                del orderbook[price]

�Hook the Bots and Engine Together
Hooking the bot and the engine together is straightforward now. Let’s modify our engine.

py file to process the order and build the order book:

from orderbook import OrderBook

orderbook = OrderBook()

app = Flask(__name__)

@app.route('/submit',  methods = ['POST'])

def process_order():

    order = request.get_json(force=True)

    order["submit_timestamp"] = time.time()

    orderbook.receive_orders(order)

    return jsonify({"status": "received"})

To get a sensible order book structure, we also need to change the order type 

frequencies. If there are too many market orders, then the order book will be depleted 

very quickly without showing a valley structure. So let’s change one line in the generate_

order function in the bot.py file:

"order_type":random.choice(["market", "limit","limit","limit","limit", 

"limit","limit","limit","limit","limit"]),

So, basically, we are stating that nine out of ten times, the order will be a limit order.

With this setting, we can submit 1000 orders and print out the order book at the end 

of simulation by calling the print_orderbook method; you will see something like the 

following:
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-------------------Orderbook-------------------

sell side price: 100, depth: 816

sell side price: 99, depth: 1511

sell side price: 98, depth: 1325

sell side price: 97, depth: 1063

sell side price: 96, depth: 1262

sell side price: 95, depth: 1314

sell side price: 94, depth: 1227

sell side price: 93, depth: 1350

sell side price: 92, depth: 1392

sell side price: 91, depth: 1105

sell side price: 90, depth: 722

sell side price: 89, depth: 1260

sell side price: 88, depth: 716

sell side price: 87, depth: 922

sell side price: 86, depth: 809

sell side price: 85, depth: 1040

sell side price: 84, depth: 1066

sell side price: 83, depth: 1038

sell side price: 82, depth: 943

sell side price: 81, depth: 1312

sell side price: 80, depth: 605

sell side price: 69, depth: 12

sell side price: 64, depth: 23

sell side price: 63, depth: 39

sell side price: 43, depth: 84

sell side price: 31, depth: 80

-----------------------------------------------

buy side price: 30, depth: 55

buy side price: 28, depth: 67

buy side price: 22, depth: 72

buy side price: 21, depth: 189

buy side price: 20, depth: 63

buy side price: 19, depth: 71

buy side price: 18, depth: 154
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buy side price: 16, depth: 213

buy side price: 15, depth: 390

buy side price: 14, depth: 413

buy side price: 13, depth: 649

buy side price: 12, depth: 841

buy side price: 11, depth: 900

buy side price: 10, depth: 1068

buy side price: 9, depth: 982

buy side price: 8, depth: 1477

buy side price: 7, depth: 748

buy side price: 6, depth: 1271

buy side price: 5, depth: 1704

buy side price: 4, depth: 1514

buy side price: 3, depth: 1511

buy side price: 2, depth: 956

buy side price: 1, depth: 1102

It is quite clear that the depths around the current market price are smaller. The 

visualizations are left to you as an exercise. See the following section for details.

�Exercises and Extension Ideas
In this section, I will lay out five ideas that can significantly extend the functionalities of 

our stock exchange. They are ordered according to their levels of difficulty.

�Multiple Bots
In our simulation, we only use one bot so basically we are trading with ourselves, which 

makes no sense. You can extend the order’s data schema to allow a new field called bot_

id or investor_id such that only different bots can trade with each other.

Note that the bots’ IDs need to be a limited set. You can simulate arbitrage cases, 

which means a bot can submit a buy order and a sell order at the same time to profit 

from the price volatility.
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�An Informed Bot
An intelligent investor will not trade blindly. They need to know what the current market 

price is in order to make a wise decision. The match engine can send the latest price to 

an external monitor so every bot can check it.

�Order Book Visualization
The print_orderbook method is not good enough. Let’s replace it with a new visualize_

orderbook method. Can you make an animation out of it?

�Order Cancellation Support
Let’s support the order cancellation functionality. If a bot requests to cancel an order, 

maybe through a different resource path called /cancel, the match engine should be able 

to locate the order quickly and kick it out of the queue for that price. Can you think of a 

way to do this efficiently?

�Stop Orders Support
Since order cancellation is supported, why not take one step further to support the stop 

orders? If a bot submits a stop loss order, the match engine should only execute the order 

when the price hits the stop loss line. Do your own research and implement this feature 

efficiently and fairly to all market participants.

�Summary
In this chapter, we studied a queue system. A simulation like this is not only technical 

but also social. The match engine should operate based on a set of rules to enforce 

fairness.
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CHAPTER 7

Rock, Scissors, and 
Paper: Multi-agent 
Simulation
We have touched so many different kinds of simulations so far. There is another very 

important type called agent-based simulation (ABS). Sometimes, it is also referred to 

as agent-based modeling (ABM). Agent-based simulation is an umbrella term that you 

can categorize a lot of context-specific or domain-specific simulations as agent-based 

simulation.

What these simulations have in common is that they all simulate the actions 

and most importantly interactions between so-called autonomous agents and the 

environment. An agent is just a minimal unit that can take actions. An environment is 

the collection of external factors, including other agents. For example, our simulation 

of the stock exchange in Chapter 6 can be treated as an agent-based simulation if you 

implemented the first extension: adding more than one bot. Different bots interact 

with each other according to the rules set by the match engine. We focused on the 

implementation of the rules though.

Agent-based simulation is especially important to understand emerging behavior, 

which means nontrivial phenomena can emerge from trivial rules that govern the 

actions of agents. For example, the formation of large protein molecules from amino 

acids is still a mystery although the single amino acid seems pretty simple. In the 

financial market, different investors behave to maximize their own interest. The 

intention seems straightforward, but collectively the actions may lead to unexpected 

crashes.

Now let’s dive into it.
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�Community Formation on a Street
First, let’s build a simplest agent-based simulation from scratch: the Schelling model of 

segregation. This is a model by economist Thomas Schelling. The idea is simple; without 

external factors, people in a region will move or stay in their original spots according to 

their similarities with their neighborhoods. Ultimately, different communities will form 

spontaneously.

You may recognize that the idea has common characteristics as the forest fire 

percolation model we discussed in an earlier chapter. That’s right. They are both on a 

grid with agents or nodes as elements to change state. However, different from the forest 

fire one in which a predefined probability controls the behavior of a node, people make 

decisions to move or stay dynamically as the environment changes in Schelling’s model.

For simplicity, we study the Schelling model on a one-dimensional street rather 

than a two-dimensional community. The plain English description of the question is the 

following: suppose there is a street with N rental properties; some of them are occupied, 

and some are open to move in. Let’s make an assumption that there is no cost to change 

properties. There are two kinds of people, A and B. Both kinds of people love to stay with 

their own kind. If both their neighbors are of different kinds, they will pick an unoccupied 

property and move there until the majority of people are happy with their neighbors.

Let’s use a list data structure to model the street and use 0 to indicate that a spot/

rental property is not occupied. We will use -1 and 1 to indicate a property that is 

occupied by group A or group B people. Note this choice is for visualization simplicity as 

we can easily check the formation of clusters by a scatter plot.

The first version looks straightforward:

N = 300

OCCUPATE_RATE = 0.9 # 90% are occupied originally

AB_RATIO = 1 # RATIO of A to B

ROUNDS = 100

street = np.array([0 for _ in range(N)])

for idx, house in enumerate(street):

    if np.random.rand() < OCCUPATE_RATE:

        street[idx] = -1 if np.random.rand() < AB_RATIO/(1+AB_RATIO) else 1

# run simulation until no moves or exceeding maximal round

stable = False
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iteration = 0

while not stable and iteration < ROUNDS:

    print("starting round {}".format(iteration))

    moves = 0

    # obtain the empty properties

    empties = set(i for i, house in enumerate(street) if house == 0)

    for idx, house in enumerate(street):

        if idx > 0 and idx < len(street)-1:

            �if street[idx-1]*street[idx] == -1 and 

street[idx+1]*street[idx] == -1:

                # move to a random site

                target = np.random.choice(tuple(empties))

                empties.remove(target)

                empties.add(idx)

                street[target] = street[idx]

                street[idx] = 0

                moves += 1

    if moves == 0:

        break

    iteration += 1

Note that several parameters can be adjusted. Our tenants are living on a pretty 

dense street as 90% of the properties are occupied. Let’s take a look at what the street 

looks like before the simulation starts in Figure 7-1.

Figure 7-1.  Random occupation pattern before simulation
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The strong zigzagging shows that groups A and B are living in an interleaving pattern. 

Run the iteration, and after four rounds, the system reaches a stable status as shown in 

Figure 7-2.

Figure 7-2.  Stable occupation pattern after four rounds of iteration

As you can see, there are street segments which contain only groups A and B.

What if we increase the density to even higher like 98% occupation rate? As the street 

becomes more crowded, tenants can easily get unhappy, and the clustering can become 

more prominent.

Here is a randomly generated street with 98% occupation rate as shown in Figure 7-3.

Figure 7-3.  Random occupation pattern with a 98% occupation rate

Guess what? The enforced 100 times of iterations is not enough. The street remains 

changing after even hundreds of thousands of iterations. Tenants dislike each other, but 

they have nowhere to move to. Figure 7-4 is the result after about 100K iterations.
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Figure 7-4.  A nonstable occupation pattern with a 98% occupation rate

Let’s try another scenario. Let’s say people are unhappy if one of their neighbors is of 

different kinds, rather than two of them. How would the simulation change? Intuitively, 

we should see a more segregated street. If we start with a 90% occupied street, a stable 

result looks like Figure 7-5.

Figure 7-5.  A stable occupation pattern for the one-neighbor-unhappy case

It is visually clear that larger homogeneous neighborhoods appear. This emergence is 

typical in agent-based simulation. Each agent behaves independently following simple 

rules that only involve the local environment. However, a global pattern will emerge 

nonetheless.
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�Exercise
Original Schelling Model

In this exercise, please extend our one-dimensional street to a two-dimensional 

community. This is also closer to Schelling’s original model. Now each property has 

eight neighbors, and we have one more parameter to choose: the number of different 

numbers that will trigger a relocation. Run your simulation and find such a parameter 

that triggers significant segregation on a 10 by 10 square grid with an occupation 

rate of 80%.

Three Groups

In both the one-dimensional case and the two-dimensional case, introduce a third 

population and run the simulation again. What do you anticipate? Will segregation be 

more significant or less?

�How to Win a Global Rock, Paper, 
and Scissors Contest
There are many mature libraries for agent-based simulation/modeling. For Python, the 

most popular and actively maintained one is called Mesa.

Mesa provides a set of core components and scheduling policies for agent-based 

simulation. This makes fast prototyping and developing possible. For example, we can 

have an agent class and an environment class we can inherit from. Each agent can also 

be activated according to different policies. For example, in our Schelling model, we 

activate agents one by one, which is the so-called sequential activation.

Is it possible to allow the tenants on a street to make decisions at the same time? The 

answer is yes, but the implementation will be trickier. We need to pre-identify all current 

empty properties and going-to-be empty properties and assign the moving tenants to 

them simultaneously.

In this example, let’s use Mesa to model a contest. Sixteen rock-paper-scissors 

masters get together and compete with each other. They are arranged into a 4 by 4 grid, 

and in each round, their choices will be compared with their immediate neighbors (not 

including diagonal ones). If they are on the winner’s side, then they get 1 point for that 

round; if they lose, –1; if there is a deadlock, then everybody gets a 0.
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Well, is it fair for those at the boundary or corner? Naively, it isn’t because they have 

fewer neighbors. However, we can introduce the periodic boundary condition (PBC) to 

make it fair. Figure 7-6 is an example of the periodic boundary condition in molecular 

dynamics, in which a molecular has mirrors of itself in fictitious neighboring boxes.

Figure 7-6.  Periodic boundary condition in molecular dynamics

The periodic boundary condition is ubiquitous in molecular dynamics simulation. 

The image in Figure 7-6 is taken from Prof. Nakano’s lecture slide. The basic idea is to 

create replicas by shifting the system to make the system virtually infinite.

In our contest grid case, if indexed from 0, a contestant at the top-right corner with 

position (0, 3) will have two normal neighbors at (0,2) and (1,3). But it will also have two 

image neighbors with position (0,0) and (3,3). The idea is illustrated in the visualization 

in Figure 7-7.
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Figure 7-7.  The yellow contestant plays with virtual opponents green and blue

The yellow dot indicates a contestant at the corner of the grid, while its imaginary 

blue up neighbor is actually the one at the bottom right and its imaginary green right 

neighbor is the one at the top left. The corner contestant still has four neighbors, with 

two being imaginary. The boundary ones will also have four neighbors, with one being 

imaginary. The contest’s fairness is restored.

The contestants are separated into two kinds of strategists: one group is stubborn 

who will likely stick to a choice with a high probability and occasionally change with 

lower probability, then stick to the new one with high probability. For example, if one 

starts with paper, then the contestant sticks to paper with a probability of 80% for the 

following round, then occasionally changes to scissors or rock with a probability of 10%, 

respectively. Once changed, the contestant sticks to the new one with high probability. 

They don’t care about the result of the current round at all. We call this group the 

stubborn contestants.

Another group is trying to be smart by playing a psychology game. They always pick 

the move that counters the last round’s winning move. For example, if in the last round, 

rock wins, then they will pick paper for the current round because paper defeats rock. If 

there is no winner in the last round, then they will randomly pick one. Their idea is that 

the winner of the round will try to win again with the same move; they can make use of it. 

We call this group the sneaky contestants.
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As you can see, both strategies are quite naive. The question now is that if there are 

eight stubborn contestants and eight sneaky ones arranged in an interleaving pattern 

on the grid, which group will have a higher average score if they play the game for 

100 rounds?

First, let’s see how Mesa codes are organized in general:

from mesa import Model, Agent

from mesa.time import SimultaneousActivation

class NewAgent(Agent):

    def __init__(self):

        pass

    def step(self):

        pass

class NewModel(Model):

    def __init__(self):

        self.schedule = SimultaneousActivation(self)

        pass

    def step(self):

        pass

From the Mesa library, we import two classes to inherit: Model and Agent. An agent 

has a step method which defines how agents behave in each round of simulation. A 

model class also has a step method, which defines how the model as a whole evolves 

in a step.

A model also has a schedule instance. In this case, it is called 

SimultaneousActivation. There are also random activation, sequential activation, etc. 

The SimultaneousActivation policy means all agents will act simultaneously which is 

necessary for our contest simulation to be fair.
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Here is our actual code. Let’s look at some helper classes first:

from enum import Enum

class Type(Enum):

    STUBBORN = 1

    SNEAKY = 0

class Move(Enum):

    Scissors = 0

    Rock = 1

    Paper = -1

    def __lt__(self, other):

        if self == Move.Scissors and other == Move.Rock:

            return True

        if self == Move.Rock and other == Move.Paper:

            return True

        if self == Move.Paper and other == Move.Scissors:

            return True

        return False

We define two enumerations for the agent types and the moves they pick. In the 

Move class, we defined a __lt__ special method to control how two Move instances 

should be compared. __lt__ stands for less than. The method returns True if the instance 

on the left side of the comparison is smaller than the right side one.

Move.Scissors < Move.Rock == True

Move.Rock == Move.Paper == False

Now, let’s take a look at our code for Agent:

from mesa import Model, Agent

from mesa.time import SimultaneousActivation

from mesa.space import SingleGrid

from mesa.datacollection import DataCollector

import random

class GameAgent(Agent):
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    def __init__(self, unique_id, pos, model, contestant_type):

        super().__init__(pos, model)

        self.unique_id = unique_id

        self.pos = pos

        self.contestant_type = contestant_type

        self.scores = []

        self.score = 0

        self.move = random.choice(list(Move))

    def step(self):

        self.score = 0

        # find all neighbors

        �neighbors = [neighbor for neighbor in self.model.grid.neighbor_

iter(self.pos)]

        neighbor_moves = [neighbor.move for neighbor in neighbors]

        �self.score, winning_move = GameAgent.calculate_score(self.move, 

neighbor_moves)

        # determine next move based on current score

        if self.contestant_type == Type.STUBBORN:

            r = random.random()

            if r < 0.8:

                self.next_move = self.move

            else:

                moves = list(Move)

                moves.remove(self.move)

                self.next_move = random.choice(moves)

        else:

            # sneaky strategy

            if winning_move:

                for move in list(Move):

                    if move > winning_move:

                        self.next_move = move

                        break

            else:

                self.next_move = random.choice(list(Move))
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    def advance(self):

        self.scores.append(self.score)

        self.move = self.next_move

    @staticmethod

    def calculate_score(move, all_moves):

        # also return winning move

        �if len(set(all_moves + [move])) == 3 or len(set(all_moves + 

[move])) == 1:

            # no winning move, it's a draw

            return 0, None

        �win = all(move > other_move or move == other_move for other_move in 

all_moves)

        �lose = all(move < other_move or move == other_move for other_move 

in all_moves)

        if win:

            return 1, move

        elif lose:

            return -1, random.choice(all_moves)

        return 0, None

An agent is initialized with four parameters. The model parameter is the model that 

contains this agent. This is important because not only the model needs to access data 

about an agent, an agent also needs to access the model data. This allows an agent to see 

the environment around it. For example, an agent needs to identify its neighbors.

An agent’s move is randomly initialized. However, depending on the type of 

the agent, in each round, the agent will choose the stubborn strategy or the sneaky 

strategy. The details are implemented in the step method. However, the next_move 

is only calculated in the step method but not assigned. The assignment is done in 

the advance method. This method is required if the model’s activation policy is 

SimultaneousActivation, as we will see very soon. All agents will update their status 

simultaneously which guarantees fairness.

The calculate_score method is a static method. It functions independent of the agent 

class, but it is logically associated with it, so we make the method static. It calculates the 

score of a round and the winning move for that round. If there is a draw, the winning 

move is just None.
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Now, let’s take a look at the model class:

class Contest(Model):

    def __init__(self, height=4, width=4, total_rounds = 100):

        self.height = height

        self.width = width

        self.total_rounds = total_rounds

        self.round = 0

        self.schedule = SimultaneousActivation(self)

        self.grid = SingleGrid(width, height, torus=True)

        self.datacollector = DataCollector(

            �model_reporters={"stubborn_avg_score": lambda self: np.mean([np.

mean(agent.scores) for agent in self.schedule.agents if agent.

contestant_type == Type.STUBBORN]), "sneaky_avg_score": lambda 

self: np.mean([np.mean(agent.scores) for agent in self.schedule.

agents if agent.contestant_type == Type.SNEAKY])},)

        for idx, cell in enumerate(self.grid.coord_iter()):

            x = cell[1]

            y = cell[2]

            if (x+y)%2 == 0:

                agent = GameAgent(idx, (x,y), self, Type.STUBBORN)

            else:

                agent = GameAgent(idx, (x, y), self, Type.SNEAKY)

            self.grid.position_agent(agent, (x, y))

            self.schedule.add(agent)

        self.running = True

    def step(self):

        self.schedule.step()

        # collect data

        self.round += 1

        if self.round == self.total_rounds:

            self.running = False

        self.datacollector.collect(self)
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Our model instance will be initialized with a grid. The grid has a parameter torus set 

to true, which means the periodic boundary condition is applied. The model class also 

has a data collector attribute to collect data about the model as the simulation proceeds. 

Here, we collect the average score for the two kinds of agents after each round. These 

two data collectors are called model_reporters whose names are stubborn_avg_score and 

sneaky_avg_score. You can also define agent_reporters to collect data about agents.

The data collection happens in the step method after each round of the simulation.

The initialization of the model also puts agents to the grid cells in an alternative 

fashion. Note that the agents are not added to the model directly but the schedule 

attribute we discussed earlier: the simultaneous activation policy.

Now, we can run the simulation for 100 rounds:

model = Contest(4, 4, 100)

while model.running:

    model.step()

The model’s data collector collects the global averages. After the run finishes, the 

data collector can output the result as a pandas dataframe:

model.datacollector.get_model_vars_dataframe()

You should see something like the following:

stubborn_avg_score    sneaky_avg_score

0     -0.125000    0.000000

1     -0.062500    0.000000

2     -0.083333    0.000000

3     -0.062500    0.031250

4     -0.050000    0.025000

...    ...         ...

95    -0.011719    0.013021

96    -0.011598    0.011598

97    -0.011480    0.010204

98    -0.012626    0.011364

99    -0.016250    0.013750

100 rows × 2 columns
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The longer we run, the more data an agent’s scores list accumulates. It looks like in 

this round, a sneaky strategy is slightly better. Is it convincing?

Run it again; I get the following:

stubborn_avg_score    sneaky_avg_score

0     0.000000     0.000000

1     0.000000    -0.062500

2    -0.041667     0.000000

3    -0.031250     0.000000

4    -0.025000     0.050000

...   ...    ...

95    0.011719    -0.011719

96    0.011598    -0.011598

97    0.011480    -0.011480

98    0.012626    -0.011364

99    0.012500    -0.011250

100 rows × 2 columns

Well, for this time, the stubborn strategy seems to prevail.

I will leave the searching for the ground truth to you, the readers.

�Exercise

	 1.	 A better strategy

Use the 4 by 4 grid, increase the number of iterations, and find 

out which strategy outperforms the other. Note that you may need 

to change the frequency the data collector collects data. You are 

encouraged to use a distribution visualization like the histogram 

plot to compare the results.

	 2.	 A larger grid

Try the simulation on a larger grid and compare the result with 

the smaller one. Can you try 5 by 5?
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�Summary
In this chapter, we discussed a new kind of simulation: agent-based simulation 

(modeling). Agent-based simulation is fascinating because it is capable of generating 

complex patterns from simple rules that govern local agents’ behaviors. It is widely used 

in computational social science. We also utilized the Mesa Python library to model a 

multi-agent competition.
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CHAPTER 8

Disease Spreading, 
Simulating COVID-19 
Outbreak
Starting from the end of 2019, a regional respiratory disease first identified in Wuhan, 

China, quickly spread to the whole world. Tens of millions of people got infected and 

hundreds of thousands of people died. The disease was later named COVID-19 by the 

World Health Organization. Starting from early 2021, vaccines began to be available, 

which significantly reduced the death rate for infected people.

As of early 2022, the battle between COVID-19 and humans is still ongoing. In this 

chapter, we will try to use mathematical models to model and simulate the disease 

spreading. We will study the very basics of differential equations and run some Python 

codes to simulate the growth of an epidemic.

�Simplifying the Real World
In the real world, disease spreading is a very complex problem. Different diseases have 

different pathogens: virus, bacteria, or other microorganisms. They have different 

pathways to invade hosts. For example, the COVID-19 virus mainly spreads through air 

when infected people cough or speak and susceptible groups breathe in the particles 

that carry the virus. The virus can also last for quite a long time on surfaces: if another 

person touches the surface and then touches their nose or eyes, the virus can also invade 

the new host. Other pathogens can spread through water or food like various kinds of 

parasites. Certain viruses can also be transmitted through blood like HIV, the cause 

of AIDS.
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The infected population also has huge internal diversity. Take COVID-19, for 

example; people who are younger with strong immune systems can usually recover 

without treatment. However, for older people with preexisting conditions, the symptoms 

can be deadly. Some infected people are more active outdoors, so they can be a source of 

virus spreading, while other people may choose to stay indoors.

In this chapter, we will try to model disease spreading by focusing on the partition of 

the population and the simplified interaction between pathogens and the population. 

The exact details of pathways and biological dynamics of pathogen-host interaction will 

be omitted.

Here are the main assumptions:

	 1.	 The whole population in the world is categorized into three 

groups: the susceptible denoted by S, the infected denoted by I, 

and the recovered denoted by R.

	 a.	 The susceptible represents the group who are not currently infected.

	 b.	 The infected represents the group who are currently infected and 

contagious.

	 c.	 The recovered represents the group who are immune to the disease at a 

certain point. Note that some versions of the models will use Removed 

instead of Recovered to include the deceased population.

	 2.	 Group populations are not static, but dynamically changing. 

For example, susceptible people can get infected and become 

infected. Depending on the nature of the disease, people may 

or may not develop immunity. For example, a parasite-caused 

disease can be recurring if hosts are exposed to the pathogens 

again after recovery.

	 3.	 The model is used to model outbreaks such that many underlined 

quantities are fixed. For example, the age structure of the whole 

population is fixed, and the total population remains unchanged 

as well.

In summary, the most basic structure of the model looks like the following. A 

susceptible person got infected, then the person recovered, hopefully, from the disease. 

Figure 8-1 illustrates the relationship.
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Figure 8-1.  Relationship between susceptible, infected, and recovered populations

In addition to this simple trajectory, there may be other trajectories as well which 

increases the complexity of the system. However, before diving into those ones, let’s start 

with an even simpler model, the SI model: the susceptible-infected model.

�The SI Model
The SI model doesn’t have a recovered category; people are either susceptible or 

infected. A susceptible person can get infected, and an infected person may recover from 

it. The disease is usually not deadly with a quite low death rate, but it is just not going 

anywhere. Figure 8-2 shows the bidirectional relationship of the susceptible and infected 

populations.

Figure 8-2.  The population migration of susceptible and infected populations

The changes from and to one category to another depend on the interaction between 

people belonging to each group. Let’s use S(t) and I(t) to denote the population of these 

two groups at timestamp t. How will they change after a timestep, say one hour or one day, 

whichever unit we prefer to define the modularity in the time domain? I will use day as 

our time unit as it makes more real-life sense to collect statistics daily rather than hourly.

Imagine a small community; at the very beginning, there are S(0) people who are 

susceptible and I(0) people who are already infected. Each of the susceptible people has 

a chance to interact with any of the infected people. It is a combination question. If there 

are five susceptible persons and four infected, then theoretically there are 20 ways for 

them to interact.

Chapter 8  Disease Spreading, Simulating COVID-19 Outbreak



130

Technically, not every interaction leads to infecting susceptible persons, so there is a 

ratio. Let’s use α to denote such a ratio. The newly infected people will be αSI.

On the other hand, the infected persons will also have a chance to get rid of the 

infection and become susceptible again. This change is independent of susceptible-

infected interaction. Let’s assign a ratio β to this process.

In summary, this is how the populations of the two categories evolve in time:

	 S t S t S t I t I t+( ) = ( ) − ( ) ( ) + ( )1 α β 	

	 I t I t S t I t I t+( ) = ( ) − ( ) ( ) + ( )1 α β 	

These two equations are called difference equations as we are modeling the 

differences of quantities. A continuous version of the equations is called differential 

equations; they are defined as follows:

	

dS
dt

S t I t I t= − ( ) ( ) + ( )α β 	

	

dI
dt

S t I t I t= − ( ) ( ) + ( )α β 	

The differential equations can be solved analytically, but let’s focus on the difference 

equations.

Remember that the total population is fixed, so we can further simplify the two 

difference equations into one. We use N to denote the total population. The constraint 

states that for any time t, we have N = S(t) + I(t).

Therefore, we can rewrite the expression of S(t+1) as

	
S t S t S t N S t N S t+( ) = ( ) − ( ) − ( )( ) + − ( )( )1 α β 	

then

	 S t S t N S t N+( ) = ( ) + − −( ) ( ) +1 1
2α α β β 	

It looks straightforward enough. Let’s write some code now:

N = 1000

beta = 0.01

alpha = 0.001
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Ss = [500]

Is = [500]

Steps = 20

for _ in range(Steps):

    s = Ss[-1]

    s = alpha*s*s + (1-alpha*N-beta)*s + beta*N

    Ss.append(s)

    Is.append(N-s)

Let’s plot the tracking of the susceptible and the infected populations. Note that we 

may have float numbers which is inevitable.

with plt.xkcd():

    plt.scatter([i for i in range(Steps+1)],Ss, label = 'susceptible')

    plt.scatter([i for i in range(Steps+1)],Is, label = 'infected')

    plt.title("SI model for high contagious disease")

    plt.xlabel("Days")

    plt.ylabel("Sizes of Groups")

    plt.legend()

The result in Figure 8-3 shows that we end up with an overwhelmingly infected 

community.

Figure 8-3.  Population evolution for susceptible and infected groups after 20 days

Chapter 8  Disease Spreading, Simulating COVID-19 Outbreak



132

There are two ways to push the infected population down. We can try two methods. 

The first way is to limit the transmission between the infected and the susceptible: 

reduce α; another way is to cure the infected population by increasing β. Let’s see how 

they affect the population evolution curves.

First, let’s change α to one-tenth of the original one:

alpha = 0.0001

It looks like we successfully delayed the transmission of the disease! Note that I 

extended the time range to 100 days to see the full picture in Figure 8-4.

Figure 8-4.  Population evolution

Well, this is the idea behind the stay-at-home or lockdown policy. If people limit face-

to-face interaction to reduce the transmission rate, the virus will spread much slower.

What if we further reduce α? How about setting α to be 0.00002? You will find that 

there is no population change at all as in Figure 8-5.
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Figure 8-5.  Critical parameters establish equilibrium

Simple calculation shows that when α and β values are critical, the transfer 

between two populations will reach a balanced state: the number of susceptible people 

converting to infected people is exactly the same as the number of infected people 

converting to susceptible people.

�Exercise

	 1.	 What if we further restrict people’s interaction? Can you verify that 

the disease will actually go away?

	 2.	 Manipulate the value of β and check its influences on population 

evolution.

	 3.	 Change the initial population of the two groups. If there are only 

a few infected people at the beginning, will the end state change 

compared with the more infected people cases? Can you identify 

the importance of the ratio 
αS ( )0

β
?

�The SIR Model
Now, let’s take one step further to include the recovered group. The definition of 

recovered can be further extended later. However, for now, let’s first assume that there 

is only one possible way to get people recovered: to get infected, then recover with 

immunity.
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We introduce another variable R(t) to denote the total number of recovered people. 

It follows the following difference equation. We have a recovery rate denoted by γ. People 

who recover will have permanent immunity.

	 R t R t I t+( ) = ( ) + ( )1 γ 	

The restriction of our community population therefore becomes

	 N S t I t R t= ( ) + ( ) + ( ) 	

Let’s start with a small γ without any recovered population. What do you expect?

The code is very similar to the one we had earlier, but this time we will explicitly 

update the three groups:

N = 1000

beta = 0.01

alpha = 0.0001

gamma = 0.0001

Ss = [500]

Is = [500]

Rs = [0]

Steps = 50

for _ in range(Steps):

    s, i, r = Ss[-1], Is[-1], Rs[-1]

    s_next = s - alpha*s*i + beta*i

    i_next = i + alpha*s*i - beta*i - gamma*i

    r_next = r + gamma*i

    Ss.append(s_next)

    Is.append(i_next)

    Rs.append(r_next)

with plt.xkcd():

    plt.scatter([i for i in range(Steps+1)],Ss, label = 'susceptible')

    plt.scatter([i for i in range(Steps+1)],Is, label = 'infected')

    plt.scatter([i for i in range(Steps+1)],Rs, label = 'recovered')

    plt.title(r"SIR model for small $\gamma$")

    plt.xlabel("Days")

    plt.ylabel("Sizes of Groups")

    plt.legend()
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It looks like after 50 steps, there isn’t much increase in the recovered group as shown 

in Figure 8-6.

Figure 8-6.  Recovered population stays the same

Why? Because we are counting on the natural immunity which is characterized by 

the small value of γ.

However, note that people who are immunized will remain so forever; eventually, 

everyone in the community will be safe. How long will it take? I will leave it to you, but 

my finding is that it will take more than 20 years for about half of the population, 500, to 

be immunized. The result is shown in Figure 8-7.

Figure 8-7.  Long march to natural herd immunity

Chapter 8  Disease Spreading, Simulating COVID-19 Outbreak



136

Now, what can we introduce to the game? The answer is vaccination! If we can 

convert the susceptible population to the recovered state, then the status of so-called 

herd immunity can be reached much faster! Note that the word recovered is no longer 

literally defined now.

How do we do that? Let’s say at any point of time, there is about 2% of the susceptible 

population who are willing to get vaccinated, we may have a much better chance of 

controlling the disease spreading. Let’s call the associated parameter μ.

	 R t R t I t S t+( ) = ( ) + ( ) + ( )1 γ µ 	

Let’s see how this affects our simulation as shown in Figure 8-8.

Figure 8-8.  Vaccination boosts the immunity

Not bad, right? In only 100 days, we have about one-fourth of the whole population 

immunized.

How about an even higher willingness to get vaccinated among the population? Let’s 

say 5% of the susceptible population want to be vaccinated. The result is very promising 

in Figure 8-9.
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Figure 8-9.  Stronger vaccination will drive faster herd immunity

The result is even more impressive; we immunized half of the population in 100 days.

�Exercise

	 1.	 There is a chance that vaccinated people may become susceptible 

again. Can you model such a phenomenon? How will it affect the 

herd immunity progress?

	 2.	 How will death affect our model? Further divide the recovered 

group to the real recovered group and the unfortunate deceased 

group and explain how the simulation behavior will change.

�Summary
In this chapter, we modeled the interaction between different groups during a pandemic 

outbreak. We simplified the assumptions of the pathogen transmission process and 

introduced the susceptible-infected (SI) and susceptible-infected-recovered (SIR) 

models. From the simulation, we can clearly see how different factors influence the virus 

transmission process and how vaccination can help communities reach herd immunity.
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CHAPTER 9

Misinformation Spreading 
and Simulations 
on a Graph
Misinformation has never been so deadly in the age of COVID-19. On social 

networks like Twitter and Facebook, conspiracy theories about the origin of the 

virus, the treatment of the virus, and vaccination are rampaging. They often spread 

in communities and circles and echo with other conspiracy theories about the US 

presidential elections. Such misinformation and conspiracy theories reinforce each 

other and form a waterproof echo chamber.

Misinformation and disinformation are quite similar. The difference is that 

disinformation is false information that is spread deliberately to deceive. In other words, 

disinformation is wrong on purpose. Misinformation is a super set of disinformation. 

The spreader of misinformation may be unaware of the incorrectness or harmfulness of 

the wrong information. In this chapter, we will study how misinformation spreads with a 

network/graph setting.

�Model the Social Network
We have studied some network-like systems earlier like the state transition of the Markov 

model and the forest fire spreading model. In the Markov model of poem generation, 

we treat each word as a node, and each node has a probability to be followed by another 

one, thus forming a network of words with directional edges.
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In the forest fire spreading model, each tree is neighbored by four nearest trees on a 

square grid. Fire can spread from one tree to another with a predefined probability. The 

network is somewhat homogeneous because they all have four neighbors, except the 

boundary ones, and no tree is special than another in any way.

In this chapter, we will study general networks that can represent arbitrary 

connectivity of a community. Let’s first introduce some terminologies.

So far, I have been using network and graph interchangeably in this chapter. Their 

definition differences are usually subject to the underlined scientific domains. For 

example, sometimes people use links instead of edges in networks, but they essentially 

represent the same thing. For consistency with other literature, I will use graphs for the 

following content.

A graph is consistent with nodes and edges. For example, Figure 9-1 has five nodes 

and six edges.

Figure 9-1.  A simple graph with five nodes and six edges

The graph in Figure 9-1 is also a connected graph because you can reach any node 

to any other by traversing the edges. This is not always true. The graph in Figure 9-2 is a 

disconnected graph.
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Figure 9-2.  A disconnected graph example

This graph has five disconnected clusters (also called communities). They are not 

connected through edges.

A common misconception is the definition of subgraph. Any subset of nodes and 

edges from one graph will form a subgraph. Those nodes and edges may not be visually 

forming a cluster. For example, in the five-cluster graph earlier, node 1 forms a single-

node subgraph, while nodes 1, 2, 3, and 6 together with the edge between 2 and 6 also 

form a four-node subgraph, although a weird one in three visually disconnected clusters.

A graph’s edge can also be directional, which makes a graph directional. For 

example, the Twitter following relationship is a directional relationship. You may follow 

a super star, but the super star is not likely to follow you back. If two Twitter accounts 

follow each other, then there must be two edges between them to represent such a 

relationship: one from one to the other and the other way around. We call such a graph 

which allows multiple edges between nodes a multigraph. Oftentimes, multigraphs 

represent directional relationships but not always.

Figure 9-3 is a directional multigraph. The edges are directional, and multiple 

edges are allowed. For example, there are two edges between nodes 2 and 3. Another 

interesting edge is the loop edge that points to the node itself for nodes 0, 1, and 2. With 

proper modeling, a loop can represent a tweet’s self-retweet or similar actions. Figure 9-3 

is a directed graph example.
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Figure 9-3.  A directed graph with self-loops

Nodes and edges can also have attributes. For example, nodes can have weights 

that indicate how influential they are in the graph, while edges’ weights can represent 

how strong the bondings are between two nodes. To model a social network, we need to 

assign certain attributes to graph elements, either intrinsic or calculated.

Let’s define our social network, specifically the Twitter ecosystem, using a graph. 

Each node represents an account, and each edge represents a following relationship. 

Information can therefore flow from the followee to the follower through posting tweets.

Think about the properties of a Twitter account. The most important indicator of 

an account’s influence is the number of followers; in our case, it is exactly the number 

of outgoing edges. In graph theory, it has a name: out-degree, the number of outgoing 

edges. Similarly, the in-degree counts the number of incoming edges. The larger the out-

degree is, the more accounts on the social network can be potentially influenced.

We want to also borrow some concepts from the previous chapter. We will partition 

the nodes into three categories, besides the sources of misinformation, like in the 

susceptible, infected, and recovered model. The susceptible are accounts who haven’t 

been exposed to misinformation; they have a probability to be infected if the people they 

follow are the sources of the misinformation or infected. The infected nodes are like the 

infected patients in the disease spreading simulation that they actively influence their 

followers by retweeting and sharing misinformation. The recovered nodes are accounts 

who either intrinsically resist, R for both resistance and recovered, misinformation or 

recover from misinformation pollution.

In summary, we use the properties in Table 9-1 to characterize a node on the graph.
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Table 9-1.  Properties of nodes/accounts in a social network

Name Description Possible Values Changeable

State The state of the node “Source,” “Susceptible,” 

“Infected,” or “Recovered”

Yes

Influence How influential the node is, measured 

by the out-degree

A nonnegative integer No*

Resistance The resistance of an account against 

misinformation

A value between 0 and 1 Yes

The influence power is not changeable because our social network is not dynamic. 

If we allow the follower-followee relationship to change during the simulation, which is 

much more realistic, then the influence power of a node will change if fewer and fewer 

accounts follow it.

Now, we have all the static settings laid out. The next step is to define the mechanism 

that governs the simulation.

�Simulate Misinformation Spreading
A simulation starts with a few nodes, likely malicious, beginning spreading 

misinformation. Their susceptible followers will respond to the misinformation and 

react. The followers may become infected or stay susceptible. If a follower becomes 

susceptible, the follower’s followers will also be exposed to misinformation and so on 

and so forth.

At any time, a susceptible node has a chance to recover.

The probabilities in the simulation are also dynamic. For example, if a node is 

exposed to multiple sources of misinformation, then the chance that they become 

infected can become very high, while the chance of recovering can be strongly 

suppressed.
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�Simple Cases
Let’s start with a simple case, in Figure 9-4, with only five nodes to test the accuracy of our 

code. The graph looks like Figure 9-4. Note that nodes 0 and 1 are following each other.

Figure 9-4.  A directed graph with five nodes

The following is the code to generate the graph:

# import networkx as nx

# import matplotlib.pyplot as plt

fig, ax = plt.subplots()

sg = nx.fast_gnp_random_graph(n=5, p=0.2, seed = 3, directed = True)

pos=nx.spring_layout(sg,seed=5)

nx.draw_networkx_nodes(sg, pos, ax=ax)

nx.draw_networkx_labels(sg, pos, ax=ax, font_weight='bold')

nx.draw_networkx_edges(sg, pos, ax=ax, edgelist= sg.edges());

Networkx is a powerful Python library to manipulate graphs. Its syntax is quite 

straightforward. The only non-intuitive method in the preceding code is fast_gnp_

random_graph. It is a built-in graph generator that, in this example, generates 5 nodes 

and arbitrarily connects every pair with a probability of 20%. You can choose to generate 

a directed graph and set the random seed for reproducibility as well. I choose the name 

sg because it is indeed a small graph.

We can check the nodes and edges of the graph by running the following:

sg.nodes, sg.edges
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The results are two nicely ordered iterables:

 (NodeView((0, 1, 2, 3, 4)),

 OutEdgeView([(0, 1), (1, 0), (1, 3), (2, 3), (3, 4), (4, 0), (4, 1)]))

We can also check the neighbors of a specific node:

list(sg.neighbors(1))

For node 1, the code returns nodes 0 and 3. Node 4 is not returned because the 

neighbors method only returns the successors. In the social network context, it means we 

are only viewing the followers of node 1.

To see all neighbors including the followee, we use

list(nx.all_neighbors(sg,1))

This returns [0, 4, 0, 3]; we have duplicates because the relationship between 0 and 1 

is bidirectional. We can easily use a set operation to deduplicate it.

One last piece of networkx knowledge is the usage of attributes. Each node and edge 

in a graph can have attributes. For example, the following code will assign a value to 

node 1 with an attribute name attr1_1. This can be very handy to update attributes of the 

social network accounts.

sg.nodes[1]["attr_1"] = "val_1"

First, let’s define some helpful data structures:

class State(Enum):

    SOURCE = 0

    SUSCEPTIBLE = 1

    INFECTED = 2

    RECOVERED = 3

STATE2COLOR = {

    State.SOURCE: "red",

    State.SUSCEPTIBLE: "grey",

    State.INFECTED: "orange",

    State.RECOVERED: "green"

}
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We can now initialize the attributes of our simple five-node graph as follows:

import numpy as np

np.random.seed(1)

for node in sg.nodes:

    sg.nodes[node]["influence"] = len(list(sg.neighbors(node)))

    if node == 4:

        sg.nodes[node]["state"] = State.SOURCE

        sg.nodes[node]["resistance"] = 0

    else:

        sg.nodes[node]["state"] = State.SUSCEPTIBLE

        sg.nodes[node]["resistance"] = np.random.random()

We can now plot the graph with color indicating the initial state of the accounts. As 

the dictionary STATE2COLOR denotes, red means the source of the misinformation. 

Figure 9-5 indicates the source of misinformation.

Figure 9-5.  Source of misinformation is in red

To simulate the simultaneous states updating in one step, we need to

	 1.	 Update the states of each node and save the state in a copy of 

the graph

	 2.	 Copy the states to the original graph

	 3.	 Repeat steps 1 and 2
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Here is the code skeleton for each iteration:

for _ in range(5):

    sg_copy = sg.copy()

    for node in sg.nodes:

        update_state(sg, sg_copy, node)

    # copy state

    for node in sg.nodes:

        sg.nodes[node]["state"] = sg_copy.nodes[node]["state"]

All the property updating details are in function update_state. The logics can be 

extended further, but here is the first version:

def update_state(sg, sg_copy, node):

    # update states in sg_copy to achieve simultaneous updates

    successors = set(sg.neighbors(node))

    predecessors = set(nx.all_neighbors(sg,node)) - successors

    state = sg.nodes[node]["state"]

    if state == State.SOURCE:

        return

    elif state == State.RECOVERED:

        if sg.nodes[node]["resistance"] > np.random.random():

            �sg.nodes[node]["resistance"] = min(sg.nodes[node]

["resistance"]*2,sg.nodes[node]["resistance"] + np.random.

random(), 1)

        else:

            sg_copy.nodes[node][state] = State.SUSCEPTIBLE

    elif state == State.SUSCEPTIBLE:

        �source_influenced = State.SOURCE in [sg_copy.nodes[pre]["state"] 

for pre in predecessors]

        �infected_influenced = State.INFECTED in [sg_copy.nodes[pre]

["state"] for pre in predecessors]

        if source_influenced or infected_influenced:

            if sg.nodes[node]["resistance"] < np.random.random():

                sg_copy.nodes[node]["state"] = State.INFECTED
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    elif state == State.INFECTED:

        # infected has a chance to become recovered

        if sg.nodes[node]["resistance"] > np.random.random():

            sg_copy.nodes[node]["state"] = State.RECOVERED

        else:

            �sg.nodes[node]["resistance"] = max(sg.nodes[node]

["resistance"]/2, sg.nodes[node]["resistance"] - np.random.

random())

    else:

        print("Unsupported state, exit.")

Our logic is based on the observation of accounts’ behaviors on social media. The 

source of the information is always trying to influence the followers. A susceptible 

person will be infected if their resistance is smaller than a random number.

For an infected person, there is a chance to become recovered by comparing against 

a random number, but if it fails, the resistance will be halved or reduced by a random 

number, whichever is larger.

For a recovered person, the resistance will be increased, up to 100% immune, if the 

resistance is greater than a random number in each round; otherwise, the person will fall 

back to the susceptible domain.

We already see the initial state, but let’s also take note of the resistance numbers:

{node: sg.nodes[node]["resistance"] for node in sg.nodes}

{0: 0.417022004702574,

 1: 0.7203244934421581,

 2: 0.00011437481734488664,

 3: 0.30233257263183977,

 4: None}

Next, let’s explore the system step by step. Depending on the random number seeds, 

your results may look different from mine. After four iterations, my network looks like the 

one in Figure 9-6. The resistance values remain unchanged, but account 0 bought the 

story pushed by account 4. Figure 9-6 shows the updates of states.
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Figure 9-6.  Account 0 is contaminated with misinformation

Just after another iteration, my graph changes to the following. Account 1, with a 

relatively high resistance, bought the story, as shown in Figure 9-7.

Figure 9-7.  Account 0 recovered, while account 1 bought the story

After two more iterations, things change again. Figure 9-8 shows that none of 

account 4’s followers believe in it.
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Figure 9-8.  Both accounts 0 and 1 are immune to account 4’s misinformation

The resistance data shows that account 1 is not only recovered but also highly 

unlikely to buy the misinformation spreader’s story anymore.

{0: 0.417022004702574,

 1: 0.9184259825270369,

 2: 0.00011437481734488664,

 3: 0.30233257263183977,

 4: None}

Such states are likely going to last forever as account 4 has no approach to reach 

account 3, unless ads are available. We say that our system is stable.

Let’s try a bigger system with ten accounts and a different topology. In this topology, 

there are much more bidirectional connections which can represent a small community, 

like a family group or a local community. This topology is represented in Figure 9-9.

Figure 9-9.  A graph with more bidirected relationships
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I randomly pick accounts 4 and 6 as the sources. After one iteration, two other 

accounts are infected as shown in Figure 9-10.

Figure 9-10.  Two followers of the misinformation source got infected

After four iterations, account 9 is recovered, while account 3 is infected. Figure 9-11 

shows the evolution.

Figure 9-11.  Account 9 recovered, while account 3 got infected

Continuing the simulation, the stable state of my system looks as in Figure 9-12.
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Figure 9-12.  The stable state of the first simulation

Note that simply changing the random seed initiator can significantly change the 

final stable state of the graph. Another stable state is presented in Figure 9-13.

Figure 9-13.  Another stable state with a different random number seed

Alrighty, let’s move on to much bigger graphs.

�Misinformation Spreading on Different Networks
The preceding graphs don’t actually capture the essence of online social networks. First, 

they are too small. Second, they don’t exhibit the most significant properties of social 

media networks: only a small portion of accounts have the majority of the followers.

To understand it, let’s plot the distribution of the numbers of followers in the 

network. We need to create a bigger graph using the fast_gnp_random_graph() function:
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fig, ax = plt.subplots()

bg = nx.fast_gnp_random_graph(n=1000, p=0.15, seed = 1, directed = True)

degree_sequence = sorted((d for n, d in bg.out_degree()), reverse=True)

ax.bar(*np.unique(degree_sequence, return_counts=True))

ax.set_title("Degree histogram")

ax.set_xlabel("Degree")

ax.set_ylabel("# of Nodes");

The result is presented in Figure 9-14.

Figure 9-14.  The distribution of the out-degrees of a random graph

As you can see, the network doesn’t have a single, or a handful of, strong influencers. 

The average number of followers is about 150, and the distribution is almost symmetric. 

This is not true in real social networks. People don’t follow each other randomly with a 

probability of 15%.

We need to use another random graph generator, the scale_free_graph() method. It 

has many parameters, but we will take the default arguments for simplicity.

Let’s take a quick comparison of the ten-node graphs generated by fast_gnp_

random_graph() and scale_free_graph():

fig, axes = plt.subplots(1,2, figsize=(15,6))

G = nx.fast_gnp_random_graph(n=10, p =0.2, seed = 1)

pos=nx.circular_layout(G)

nx.draw(G, with_labels=True, font_weight='bold', pos = pos, ax = axes[0])
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G = nx.scale_free_graph(10)

pos=nx.circular_layout(G)

nx.draw(G, with_labels=True, font_weight='bold', pos = pos, ax = axes[1])

The result looks like the one in Figure 9-15. The one on the left is much more centric 

visually. Well, account 0 follows many other accounts, not the other way around though. 

The result is presented in Figure 9-15.

Figure 9-15.  A visual comparison of a random graph and a scale-free graph

Let’s create the same out-degree distribution visualization for a 1000-node scale-free 

graph. The result is presented in Figure 9-16.

Figure 9-16.  Out-degree distribution for a scale-free graph
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As you can see, there are accounts with more than 80 followers, but the majority of 

the accounts have only 1 or 2 followers. By controlling the parameters of the scale_free_

graph function, you can control the mechanism of the graph generation. The algorithm 

for generating a scale-free graph is to continuously add new nodes to an existing graph 

according to a set of preferences. I changed the default parameters to alter the out-

degree distribution. For example:

fig, ax = plt.subplots()

g = nx.scale_free_graph(1000, alpha = 0.6, beta = 0.39, gamma = 0.01, 

seed = 0)

degree_sequence = sorted((d for n, d in g.out_degree()), reverse=True)

ax.bar(*np.unique(degree_sequence, return_counts=True))

ax.set_title("Out-degree histogram")

ax.set_xlabel("Out-degree")

ax.set_ylabel("# of Nodes");

The preceding code gives me a more equal world that the biggest influencer in the 

community is not that influential. The largest out-degree in Figure 9-17 is around 30, not 

80 as in Figure 9-16.

Figure 9-17.  A scale-free graph with a smaller maximum out-degree

The name scale-free comes from the fact that if the network is large enough and 

you can zoom in to a local small subgraph, you will identify the similar properties and 

metrics.
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We care about the two different cases because misinformation in the second case 

can spread much faster and dangerously. To quantify that, we need a function to 

aggregate the numbers of accounts in different state first.

from collections import Counter

def count_states(g):

    states = [g.nodes[node]["state"] for node in g.nodes]

    return Counter(states)

Alrighty, let’s track the spreading of misinformation for both types of graphs. We will 

randomly generate graphs with 1000 nodes for each case and check how long it takes 

to reach the stable states. We will also examine the ratios of infected accounts when the 

stable states are reached.

We will start by setting the top two influential accounts as the sources of 

misinformation. Note that we can also control the p parameter in the fast_gnp_random_

graph function to control the edge density. It is a crucial parameter because if p is very 

large, then every node is essentially connected with any other node. The misinformation 

reaches everyone in step one. We will see how it affects the simulation in detail.

First, let me bundle our earlier code into several functions:

def initialize(g, top_k = 5):

    tops = sorted(( (n, d) for n, d in g.out_degree()), reverse=True,

                  key = lambda pair: pair[1])[:top_k]

    for node in g.nodes:

        g.nodes[node]["influence"] = len(list(g.neighbors(node)))

        if node in [pair[0] for pair in tops]:

            g.nodes[node]["state"] = State.SOURCE

            g.nodes[node]["resistance"] = None

        else:

            g.nodes[node]["state"] = State.SUSCEPTIBLE

            g.nodes[node]["resistance"] = np.random.random()

def simulate(g, steps = 100, top_k = 5):

    initialize(g, top_k)

    res = []

    for _ in range(steps):

        g_copy = g.copy()
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        for node in g.nodes:

            update_state(g, g_copy, node)

        # copy state

        for node in g.nodes:

            g.nodes[node]["state"] = g_copy.nodes[node]["state"]

        res.append(count_states(g))

    return res

def visualize(res):

    steps = range(1, len(res) + 1)

    susceptible = [r.get(State.SUSCEPTIBLE,0) for r in res]

    recovered = [r.get(State.RECOVERED,0) for r in res]

    infected = [r.get(State.INFECTED,0) for r in res]

    fig, ax = plt.subplots()

    ax.plot(steps, susceptible, label="susceptible")

    ax.plot(steps, recovered, label="recovered")

    ax.plot(steps, infected, label="infected")

    plt.legend()

The initialize method assigns the SOURCE state to the top k most influential 

accounts in the graph. Other codes are quite straightforward.

Now, let’s run the simulation for 20 steps and collect the statistics. 

For a normal graph, we use the following code to simulate it.

g_normal = nx.fast_gnp_random_graph(n=1000, p=0.002, directed = True)

res = simulate(g_normal, steps = 20,  top_k = 5)

visualize(res)

The result shown in Figure 9-18 indicates that the system does tend to reach a stable 

state fairly quickly, although only 0.2% of all possible edges exist. Go ahead and do the 

calculation that this is actually a quite large number.

Chapter 9  Misinformation Spreading and Simulations on a Graph



158

Figure 9-18.  The evolution of populations in a 1000-node random graph

How about the scale-free graph? Our expectation is that the misinformation 

spreading should be faster. However, Figure 9-19 doesn’t say so.

g_scale_free = nx.scale_free_graph(1000, alpha = 0.5, beta = 0.1, gamma = 

0.4, delta_out = 0.9)

res = simulate(g_scale_free, steps = 20,  top_k = 5)

visualize(res)

Figure 9-19.  The evolution of populations in a 1000-node scale-free graph

Clearly, something is off. The system seems stuck in less than five steps. Why? Let’s 

take a look at the most influential account’s neighbors:

tops = sorted(((n, d) for n, d in g_scale_free.out_degree()), reverse=True,
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                  key = lambda pair: pair[1])[:5]

In my case, account 2 has the most followers:

[(2, 15), (18, 14), (6, 12), (11, 12), (32, 10)]

Let’s examine the neighbors of account 2. We are mostly interested in the number of 

their followers:

[g_scale_free.out_degree()[k] for k in list(nx.neighbors(g_scale_free,2))]

It looks like the majority of them don’t have any followers!

[2, 0, 0, 0, 1, 3, 1, 0, 9, 0, 0, 0, 0, 0, 0]

This is why with a naively created directed scale-free graph, the misinformation 

spreading is kind of limited to a small neighborhood of the sources.

An easy way to fix it is to use an undirected graph. Or significantly increase the top 

players’ influential power in a much larger graph. Unfortunately, the second option 

crashes my laptop. Please try the first approach on your own.

Lastly, let’s check how the p parameter in the fast_gnp_random_graph method 

influences the speed of misinformation spreading.

To do that, we need to slightly modify the simulate function and make one 

approximation. When the counting of different states is not changing in the last two 

iterations, we assume that the system reaches a stable state. Of course, there is a 

possibility that the situation will change, but that’s not very predictable due to random 

number generation.

The code looks like the following:

def simulate(g, steps = 100, top_k = 5):

    initialize(g, top_k)

    res = []

    for _ in range(steps):

        g_copy = g.copy()

        for node in g.nodes:

            update_state(g, g_copy, node)

        # copy state

        for node in g.nodes:

            g.nodes[node]["state"] = g_copy.nodes[node]["state"]
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        if len(res) > 1 and res[-2] == res[-1] == count_states(g):

            return res

        res.append(count_states(g))

    return res

for p in [0.001,0.002, 0.004, 0.01, 0.02, 0.04, 0.08, 0.1, 0.2, 0.4]:

    for _ in range(1000):

        len_res = []

        infected_rate = []

        recovered_rate = []

        g_normal = nx.fast_gnp_random_graph(n=100, p=p, directed = True)

        res = simulate(g_normal, steps = 1000,  top_k = 5)

        len_res.append(len(res))

        infected_rate.append(res[-1][State.INFECTED]/100)

        recovered_rate.append(res[-1][State.RECOVERED]/100)

    �print(p, np.mean(len_res), np.mean(infected_rate), 

np.mean(recovered_rate))

The result is quite interesting as follows. I am just going to paste the number here:

0.001 3.0 0.02 0.02

0.002 4.0 0.03 0.05

0.004 5.0 0.04 0.04

0.01 16.0 0.21 0.12

0.02 10.0 0.2 0.29

0.04 19.0 0.31 0.54

0.08 11.0 0.23 0.64

0.1 17.0 0.4 0.51

0.2 11.0 0.38 0.47

0.4 13.0 0.28 0.6

At the beginning, because of the bad connectivity, the simulations stop quite early, 

and only a small portion of accounts see the misinformation and recover from it. As 

more and more edges are added to the graph, the stable state takes a longer time to reach 

with a generally larger size of infected community and recovered community as well.
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�Exercise

	 1.	 Use undirected scale-free graphs to redo the simulation. Check 

the built-in networkx graph generators to choose the right one.

	 2.	 Each account has an influence property, which should influence 

how likely its followers are to accept the misinformation. 

Introduce a mechanism to address such behavior.

�Summary
In this chapter, we discussed another important type of simulation: the simulation 

on a graph data structure. Specifically, we studied the simulation of misinformation 

spreading on social media. We introduced basic concepts of graphs and quantified 

properties to describe graph elements. On top of that, we ran the simulations on 

different types of graphs and interpreted the behaviors.
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