

Simulation with Python
Develop Simulation and Modeling
in Natural Sciences, Engineering,

and Social Sciences

Rongpeng Li
Aiichiro Nakano

Simulation with Python: Develop Simulation and Modeling in Natural Sciences,
Engineering, and Social Sciences

ISBN-13 (pbk): 978-1-4842-8184-0		 ISBN-13 (electronic): 978-1-4842-8185-7
https://doi.org/10.1007/978-1-4842-8185-7

Copyright © 2022 by Rongpeng Li and Aiichiro Nakano

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Laura Berendson
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc
is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback,
or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (Github.com/apress). For more detailed information, please visit http://www.apress.
com/source-code.

Printed on acid-free paper

Rongpeng Li
Los Angeles, CA, USA

Aiichiro Nakano
Los Angeles, CA, USA

https://doi.org/10.1007/978-1-4842-8185-7

To Yan, for everything.

—Ron

v

Table of Contents

Chapter 1: �Calculating Pi with Monte Carlo Simulation�� 1

Background�� 1

The Wise Persons’ Competition��� 1

Estimating Pi by Sprinkling Grains��� 2

Exercise�� 10

Contain the Goat!��� 10

What Randomness?�� 11

Exercise�� 18

Summary��� 18

Chapter 2: �Markov Chain, a Peek into the Future�� 19

Weather Forecasting�� 19

Eigenstates of Markov Chains�� 25

Exercise�� 27

Markov Chain Applications��� 27

A Random Walk That Has an End�� 28

Sonnet Written by Drunk Shakespeare��� 31

Exercise�� 36

Summary��� 37

About the Authors��� ix

About the Technical Reviewer�� xi

Acknowledgments�� xiii

Introduction��xv

https://doi.org/10.1007/978-1-4842-8185-7_1
https://doi.org/10.1007/978-1-4842-8185-7_1#Sec1
https://doi.org/10.1007/978-1-4842-8185-7_1#Sec2
https://doi.org/10.1007/978-1-4842-8185-7_1#Sec3
https://doi.org/10.1007/978-1-4842-8185-7_1#Sec4
https://doi.org/10.1007/978-1-4842-8185-7_1#Sec5
https://doi.org/10.1007/978-1-4842-8185-7_1#Sec6
https://doi.org/10.1007/978-1-4842-8185-7_1#Sec7
https://doi.org/10.1007/978-1-4842-8185-7_1#Sec8
https://doi.org/10.1007/978-1-4842-8185-7_2
https://doi.org/10.1007/978-1-4842-8185-7_2#Sec1
https://doi.org/10.1007/978-1-4842-8185-7_2#Sec2
https://doi.org/10.1007/978-1-4842-8185-7_2#Sec3
https://doi.org/10.1007/978-1-4842-8185-7_2#Sec4
https://doi.org/10.1007/978-1-4842-8185-7_2#Sec5
https://doi.org/10.1007/978-1-4842-8185-7_2#Sec6
https://doi.org/10.1007/978-1-4842-8185-7_2#Sec7
https://doi.org/10.1007/978-1-4842-8185-7_2#Sec8

vi

Chapter 3: Multi-armed Bandits, Probability Simulation, and Bayesian
Statistics��� 39

Random Pick and Naive Greedy Approach��� 40

Greedy-Epsilon: Greedy but Not Always��� 44

An Improved Greedy-Epsilon Algorithm��� 45

Exercise�� 46

The Bayesian Way, a Primer on Bayesian Statistics��� 47

Exercise�� 53

Summary��� 54

Chapter 4: �Balls in a 2-D Box, a Simple Physics Engine�� 55

One Ball in a 2-D Box��� 55

Physics Law of Motion�� 57

Collision Detection�� 60

Exercise�� 65

Multiple Balls in a 2-D Box��� 65

Update of Positions and Velocity upon Collision��� 65

Collision Detection in Multiple-Ball Scenario��� 74

Exercise�� 75

Summary��� 76

Chapter 5: �Percolation, Threshold, and Phase Change�� 77

Problem Introduction��� 78

Percolation and the Critical Probability�� 82

An Analytical Solution for the 1-D Case�� 82

A Simulation for the 2-D Case�� 83

Exercise�� 90

Another Interesting Statistic in 2-D Grid Percolation��� 90

Exercise�� 93

Summary��� 94

Table of Contents

https://doi.org/10.1007/978-1-4842-8185-7_3
https://doi.org/10.1007/978-1-4842-8185-7_3
https://doi.org/10.1007/978-1-4842-8185-7_3#Sec1
https://doi.org/10.1007/978-1-4842-8185-7_3#Sec2
https://doi.org/10.1007/978-1-4842-8185-7_3#Sec3
https://doi.org/10.1007/978-1-4842-8185-7_3#Sec4
https://doi.org/10.1007/978-1-4842-8185-7_3#Sec5
https://doi.org/10.1007/978-1-4842-8185-7_3#Sec6
https://doi.org/10.1007/978-1-4842-8185-7_3#Sec7
https://doi.org/10.1007/978-1-4842-8185-7_4
https://doi.org/10.1007/978-1-4842-8185-7_4#Sec1
https://doi.org/10.1007/978-1-4842-8185-7_4#Sec2
https://doi.org/10.1007/978-1-4842-8185-7_4#Sec3
https://doi.org/10.1007/978-1-4842-8185-7_4#Sec4
https://doi.org/10.1007/978-1-4842-8185-7_4#Sec5
https://doi.org/10.1007/978-1-4842-8185-7_4#Sec6
https://doi.org/10.1007/978-1-4842-8185-7_4#Sec7
https://doi.org/10.1007/978-1-4842-8185-7_4#Sec8
https://doi.org/10.1007/978-1-4842-8185-7_4#Sec9
https://doi.org/10.1007/978-1-4842-8185-7_5
https://doi.org/10.1007/978-1-4842-8185-7_5#Sec1
https://doi.org/10.1007/978-1-4842-8185-7_5#Sec2
https://doi.org/10.1007/978-1-4842-8185-7_5#Sec3
https://doi.org/10.1007/978-1-4842-8185-7_5#Sec4
https://doi.org/10.1007/978-1-4842-8185-7_5#Sec5
https://doi.org/10.1007/978-1-4842-8185-7_5#Sec6
https://doi.org/10.1007/978-1-4842-8185-7_5#Sec7
https://doi.org/10.1007/978-1-4842-8185-7_5#Sec8

vii

Chapter 6: �Queuing System: How Stock Trades Are Made�������������������������������������� 95

Trading Process Fundamentals�� 95

The Order Book��� 96

Create the Interfaces and Determine the Data Schema��� 98

Implement Order Book Logic��� 102

Hook the Bots and Engine Together�� 107

Exercises and Extension Ideas��� 109

Multiple Bots�� 109

An Informed Bot�� 110

Order Book Visualization��� 110

Order Cancellation Support�� 110

Stop Orders Support��� 110

Summary��� 110

Chapter 7: �Rock, Scissors, and Paper: Multi-agent Simulation����������������������������� 111

Community Formation on a Street��� 112

Exercise�� 116

How to Win a Global Rock, Paper, and Scissors Contest�� 116

Exercise�� 125

Summary��� 126

Chapter 8: �Disease Spreading, Simulating COVID-19 Outbreak����������������������������� 127

Simplifying the Real World��� 127

The SI Model�� 129

Exercise�� 133

The SIR Model�� 133

Exercise�� 137

Summary��� 137

Table of Contents

https://doi.org/10.1007/978-1-4842-8185-7_6
https://doi.org/10.1007/978-1-4842-8185-7_6#Sec1
https://doi.org/10.1007/978-1-4842-8185-7_6#Sec2
https://doi.org/10.1007/978-1-4842-8185-7_6#Sec3
https://doi.org/10.1007/978-1-4842-8185-7_6#Sec4
https://doi.org/10.1007/978-1-4842-8185-7_6#Sec5
https://doi.org/10.1007/978-1-4842-8185-7_6#Sec6
https://doi.org/10.1007/978-1-4842-8185-7_6#Sec7
https://doi.org/10.1007/978-1-4842-8185-7_6#Sec8
https://doi.org/10.1007/978-1-4842-8185-7_6#Sec9
https://doi.org/10.1007/978-1-4842-8185-7_6#Sec10
https://doi.org/10.1007/978-1-4842-8185-7_6#Sec11
https://doi.org/10.1007/978-1-4842-8185-7_6#Sec12
https://doi.org/10.1007/978-1-4842-8185-7_7
https://doi.org/10.1007/978-1-4842-8185-7_7#Sec1
https://doi.org/10.1007/978-1-4842-8185-7_7#Sec3
https://doi.org/10.1007/978-1-4842-8185-7_7#Sec6
https://doi.org/10.1007/978-1-4842-8185-7_7#Sec7
https://doi.org/10.1007/978-1-4842-8185-7_7#Sec8
https://doi.org/10.1007/978-1-4842-8185-7_8
https://doi.org/10.1007/978-1-4842-8185-7_8#Sec1
https://doi.org/10.1007/978-1-4842-8185-7_8#Sec2
https://doi.org/10.1007/978-1-4842-8185-7_8#Sec3
https://doi.org/10.1007/978-1-4842-8185-7_8#Sec4
https://doi.org/10.1007/978-1-4842-8185-7_8#Sec5
https://doi.org/10.1007/978-1-4842-8185-7_8#Sec6

viii

Chapter 9: �Misinformation Spreading and Simulations on a Graph���������������������� 139

Model the Social Network�� 139

Simulate Misinformation Spreading�� 143

Simple Cases�� 144

Misinformation Spreading on Different Networks�� 152

Exercise��� 161

Summary��� 161

Index�� 163

Table of Contents

https://doi.org/10.1007/978-1-4842-8185-7_9
https://doi.org/10.1007/978-1-4842-8185-7_9#Sec1
https://doi.org/10.1007/978-1-4842-8185-7_9#Sec2
https://doi.org/10.1007/978-1-4842-8185-7_9#Sec3
https://doi.org/10.1007/978-1-4842-8185-7_9#Sec4
https://doi.org/10.1007/978-1-4842-8185-7_9#Sec5
https://doi.org/10.1007/978-1-4842-8185-7_9#Sec6

ix

About the Authors

Rongpeng Li is the business intelligence team lead at

Unit21. He was a senior data scientist and data science

instructor at Unit21. Rongpeng Li graduated from USC

with two masters, one in physics and another in electrical

engineering. He is a keen educator. He authored one

statistics book derived from his voluntary services in the

data community. 

Aiichiro Nakano (advisory author) is a professor of

computer science and physics and astronomy with joint

appointments in quantitative and computational biology

and collaboratory for advanced computing and simulations

at the University of Southern California. He received a PhD

in physics from the University of Tokyo, Japan. His research

areas are scalable scientific algorithms, high-end parallel

supercomputing, scientific visualization and informatics,

and computational materials science. He is a Fellow of the

American Physical Society.  

xi

About the Technical Reviewer

Kacie Webster is currently a data analyst in the

telecommunications industry. After graduating from

San Diego State University with a degree in statistics and

economics, she completed a data science bootcamp where

she gained the skills to become a data professional. As Kacie

continues her journey, she enjoys the constant growth and

change that comes with the data world.  

xiii

Acknowledgments

Rongpeng Li would like to thank all his previous students for the inspiration of this book,

from readers at local libraries to learners in his Zoom classroom.

xv

Introduction

This book is a small gift to a younger me, probably in high school or even earlier. This

book is by no means written for seasoned researchers or professionals. It should be

treated as the first bite of ice cream which makes you want more.

This book contains several scientific simulation topics, ranging from physics,

biology, and even finance. The approach is very gentle and newcomer friendly. I tried

to remove the majority of the complexity that I would learn with the knowledge and

scientific training I already had. Instead, I did my best to keep the most important

essence in each topic. The persona in my mind is a young and curious student who just

got the first computer and learned some basic programming, probably from the older

brother. This student, pictured as a younger me, would be able to follow the content

of this book without any difficulty and get amazed by the beautiful visualizations and

scientific conclusions.

Each topic in this book is rather independent. According to the level of technical

difficulty and required background knowledge, I categorize the chapters into three

groups. Readers can start with any chapter.

Easy:

Chapter 1: Calculating Pi with Monte Carlo Simulation

Chapter 4: Balls in a 2-D Box, a Simple Physics Engine

Medium:

Chapter 2: Markov Chain, a Peek into the Future

Chapter 3: Multi-armed Bandits, Probability Simulation, and Bayesian Statistics

Chapter 7: Rock, Scissors, and Paper: Multi-agent Simulation

Chapter 8: Disease Spreading, Simulating COVID-19 Outbreak

Chapter 9: Misinformation Spreading and Simulations on a Graph

Hard:

Chapter 5: Percolation, Threshold, and Phase Change

Chapter 6: Queuing System: How Stock Trades Are Made

I hope you enjoy this book as much as I do.

https://doi.org/10.1007/978-1-4842-8185-7_1
https://doi.org/10.1007/978-1-4842-8185-7_4
https://doi.org/10.1007/978-1-4842-8185-7_2
https://doi.org/10.1007/978-1-4842-8185-7_3
https://doi.org/10.1007/978-1-4842-8185-7_7
https://doi.org/10.1007/978-1-4842-8185-7_8
https://doi.org/10.1007/978-1-4842-8185-7_9
https://doi.org/10.1007/978-1-4842-8185-7_5
https://doi.org/10.1007/978-1-4842-8185-7_6

1

CHAPTER 1

Calculating Pi with Monte
Carlo Simulation

�Background
When Stanislaw Ulam, a Polish-American mathematician and nuclear physicist,

invented and formulated the modern Monte Carlo method in the 1940s, he and his

colleagues named the method Monte Carlo because Ulam’s uncle often borrowed his

relatives’ money to gamble in Monaco’s Monte Carlo Casino. Stanislaw Ulam and many

other brilliant scientists were working on the secret nuclear weapon program now

known as the Manhattan Project. The Monte Carlo method was programmed to simulate

nuclear reactions. To some degree, the Monte Carlo method helped shape the world we

see today.

Before theorems or algorithms take their formal names in academics, they often

have been studied by curious pioneers using fun, example-based approaches. Let’s start

with a story.

�The Wise Persons’ Competition
Suppose one day in the 1500s, somewhere in the Middle East, a king gave 24 hours to the

two wisest persons, including you, in his kingdom to calculate the value of π in the most

elegant way. The king generously promised any reasonable resources you want.

π is the ratio of the perimeter and the diameter of a circle. Oftentimes, we also call

the perimeter of a circle circumference denoted with the letter C. The quantities are

illustrated in Figure 1-1.

© Rongpeng Li and Aiichiro Nakano 2022
R. Li and A. Nakano, Simulation with Python, https://doi.org/10.1007/978-1-4842-8185-7_1

https://doi.org/10.1007/978-1-4842-8185-7_1#DOI

2

Figure 1-1.  Notations for a circle

Your opponent asked for the finest papers, strings, and rulers in the kingdom. He

started partitioning the circle immediately after the king announced the contest. His

approach was the same as the method that a Chinese mathematician Chongzhi Zu used

about 1000 years ago.

Well, as in the 16th century, calculus was not invented. What were you going to do,

wise person? You were not sitting there and letting your opponent win! Instead, you

asked the king for 1000 persons to help you with the calculation. You also asked for

enough fine sand grains, regular papers of size 10 inch by 10 inch, rulers, and strings. The

king generously approved your request with curiosity.

�Estimating Pi by Sprinkling Grains
Now, you have 1000 men standing in line at your command. This is what you are going to

do. You asked each of them to draw the biggest circle inside the square paper. After that,

they were required to randomly sprinkle 1000 sand grains on the paper. Each person was

required to count carefully and record the number of grains inside the circle. Of course,

the grains might accidently fall outside of the paper. In that case, the person was required

to resprinkle until all 1000 grains were on the paper.

The king was puzzled. You looked confident because you knew your king was not a

super math person, just like most readers of this book, and easily got bored with plain

equations. Your opponent had a lot of geometrical gibberish to explain to the king.

Chapter 1 Calculating Pi with Monte Carlo Simulation

3

Your opponent was using polygons’ perimeters to approximate the circle. As you

can see from Figure 1-2, the sectioning of the perimeter became visibly tedious as the

number of edges grew.

Figure 1-2.  Use polygons to approximate a circle

You noticed your opponent would always get a value lower than the true perimeter

because the polygons were inscribed, which means they were always inside the circle. In

order to get a so-called upper bound, your opponent must use circumscribed polygons

as well.

On the other hand, all you need to do is to sit there and take your time to explain the

beauty of your approach to the king. What you did was indeed a Monte Carlo simulation.

You can just wait for more and more data from your men until the end of the day.

Enough of role-playing for now, let’s find out why 1000 men sprinkling 1000 grains

repeatedly will give us a pretty good estimation of π.

Remember that π not only describes the relationship between the diameter and the

perimeter but also the relationship of radius R and the area of a circle A. Here, C is the

perimeter and D is the diameter:

	

C D

A R D

=

= =

π

π
π2 2

4 	

Now, suppose one sand grain falls randomly on the square, what is the chance that

this grain will be inside the circle? Well, it is kind of obvious:
A
S

 is the ratio of the circle’s

Chapter 1 Calculating Pi with Monte Carlo Simulation

4

area and the square’s area. It must also be the chance we are looking for as long as a good

level of randomness is present.

Wait, we also have the expressions of A in terms of π, right? What will happen if we

plug it in? Let me use P(grain in circle) to represent the chance that the grain will fall

inside the circle. We have the following expressions:

	

P grainincircle circle sarea
square sarea
A
S

D

D

() =

=

=

=

'

'

π

π

4

4

2

2

	

Surprise! The chance does not depend on the size of the square. The only issue is that

such a beautiful claim is only theoretically true, we have to sample it to estimate such a

probability. This is why you, the role-playing wise person, asked for tons of grains and

1000 careful men with sharp eyes to repeat these experiments. Each experiment will give

you a value of π, and by the end of the day, we can take the average of all the experiment

results.

The following is the Python code that does the simulation. Don’t worry. I will

explain it line by line. As you become more and more familiar with the style of this book,

somewhat trivial stuff will be skipped in the future.

import random

import numpy as np

random.seed(2021)

pi_values = list()

num_persons = 1000

num_rounds = 20

num_grains = 1000

edge = 10

for r in range(num_rounds):

 for p in range(num_persons):

 in_circle = 0

Chapter 1 Calculating Pi with Monte Carlo Simulation

5

 for g in range(num_grains):

 �x, y = (random.random() - 0.5)*edge, (random.random() -

0.5)*edge

 if x**2 + y**2 <= (edge/2)**2:

 in_circle += 1

 pi = in_circle/num_grains * 4

 pi_values.append(pi)

print(np.mean(pi_values))

The code simulates 1000 men’s grain sprinkling behavior, assuming each person

can do 20 experiments a day. For each sprinkled grain, we calculate the coordinate of

the grain using the random.random() function. Here, we assume the circle’s center is at

the origin.

To ensure the result is reproducible on your computer, I set the random seed to be

2021. Almost all randomness we see in computer science is called pseudorandomness.

They are not completely random, just as the wise person’s 1000 men would not truly

uniformly sprinkle grains on the paper. However, for Python programming, in almost

all cases, you can trust the high level of randomness of the built-in random number

generator. Not all simulations in this book have a random seed though.

The random.random() function will return a random variable between 0 and 1. See

the visualization in Figure 1-3 to get a sense of how 1000 results of random.random() are

distributed. It has a name: the standard uniform distribution.

Figure 1-3.  Distribution of 1000 randomly generated numbers between 0 and 1

Chapter 1 Calculating Pi with Monte Carlo Simulation

6

The corresponding code that generates the visualization reads as follows:

random.seed(2021)

fig, ax = plt.subplots()

ax.hist([random.random() for _ in range(1000)], bins=10, rwidth=0.9)

ax.set_title("Histogram of 1000 random.random() results")

Next, let’s visualize the one possible look among infinitely many possibilities of 1000

sprinkled grains in Figure 1-4.

Figure 1-4.  1000 sprinkled grains in a square

The code reads as follows:

random.seed(2021)

edge = 10

num_grains = 1000

with plt.xkcd():

 fig, ax = plt.subplots(figsize=(6, 6))

plt.axis("off")

 plt.axis("equal")

 ax.set_xlim(-edge/2, edge/2)

 ax.set_ylim(-edge/2, edge/2)

 xs_in, ys_in = list(), list()

 xs_out, ys_out = list(), list()

Chapter 1 Calculating Pi with Monte Carlo Simulation

7

 for g in range(num_grains):

 x, y = (random.random() - 0.5)*edge, (random.random() - 0.5)*edge

 if x**2 + y**2 <= (edge/2)**2:

 xs_in.append(x)

 ys_in.append(y)

 else:

 xs_out.append(x)

 ys_out.append(y)

 ax.scatter(xs_in, ys_in, color="r")

 ax.scatter(xs_out, ys_out, color="b")

 circle = plt.Circle((0, 0), edge/2, fill=False, color="g", lw=3)

 ax.add_patch(circle)

 ax.set_title("An experiment with 1000 sprinkled grains", fontsize=20)

I don’t see any worrying concentration or bias in the visualization, do you? This

means that a good level of randomness is present, so our approach of using area ratio

to approach π is valid. Next, let’s do a histogram plot of our 20K π values and see how

spreading our results are. We obtain Figure 1-5.

Figure 1-5.  Distribution of 20,000 calculated π values

Chapter 1 Calculating Pi with Monte Carlo Simulation

8

Note that the mean and median are so close to each other that only the median is

plotted. There are three major points to obtain this visualization:

	 1.	 The mean and median are quite close to the ground truth value of π.

This is a good sign because we know our data is not skewed by large

outliers.

	 2.	 Quartiles are values that partition the data into equal-number

segments. The first quartile being 3.104 indicates that 25% of the

results are smaller than 3.104. By the same idea, 25% of the results

are greater than 3.176.

	 3.	 Standard deviation (STD), which is represented by the horizontal

error bar, indicates the average deviation of a result from the

sample mean. The standard deviation is about 0.052.

The formula of a sample’s standard deviation reads as follows:

	
STD

N
x x

i

N

i=
−

−()
=
∑1

1 1

2

	

Here, x represents the mean of the sample, and N is the total number of samples.

The standard deviation quantifies how confident we are about our result. In general,

the smaller the standard deviation is, the more concentrated our results are around the

mean; therefore, we are more confident about our results.

You may also notice the beautiful curve of the histogram. There is a reason behind

that. Here is a brief teaser. The distribution of simulated π values follows a so-called

normal distribution. It is a consequence of the famous central limit theorem (CLT). The

key idea is that under a bunch of quite loose conditions, quantities we observe in nature

tend to follow a bell-curve distribution. Such quantities include our weights of a rather

large population, length of tree leaves in a forest, etc.

The code snippet that generates the preceding visualizations reads as follows:

with plt.xkcd():

 fig, ax = plt.subplots(figsize=(12, 6))

 ax.hist(pi_values, bins=50, rwidth=0.8)

 pi_mean = np.mean(pi_values)

 pi_median = np.median(pi_values)

 # pi_mean and pi_median are very close. Only median is plotted.

Chapter 1 Calculating Pi with Monte Carlo Simulation

9

 pi_std = np.std(pi_values)

 pi_quartiles = np.quantile(pi_values, [0, 0.25, 0.5, 0.75, 1])

 ax.set_title(

 "Statistics of the Sand Grain Sprinkle Experiments", fontsize=20)

 line_1 = ax.axvline(pi_mean, color='red', lw=1)

 line_2 = ax.axvline(pi_quartiles[1],

 color='purple',

 lw=3,

 linestyle="dotted")

 line_3 = ax.axvline(pi_quartiles[3],

 color='green',

 lw=3,

 linestyle="dashed")

 std_bar = ax.errorbar(pi_mean, 1200,

 xerr=pi_std,

 capsize=5,

 elinewidth=3,

 markeredgewidth=2,

 linestyle=":")

 ax.legend([line_1, line_2, line_3, std_bar],

 ["median = {}".format(pi_median),

 "first quartile = {}".format(pi_quartiles[1]),

 "third quartile = {}".format(pi_quartiles[3]),

 �"standard deviation =\n {}".format(round(pi_std, 3))],

fontsize=18)

Going back to the role-playing, before your opponent could produce a four-

significant-digit number, say 3.1416, he would find that his pen was too thick for him

to further section the circle. You, on the other hand, could show the early results to the

king. As your men keep reporting new results, the confidence you have in the result will

increase.

Before moving on to the next subsection where Monte Carlo simulation precedes

the exact analytical solution for more than 200 years, I prepared some exercises for you

to enhance your understanding of Monte Carlo simulation. You may need to utilize the

numpy library’s vectorized computation to accelerate the computation.

Chapter 1 Calculating Pi with Monte Carlo Simulation

10

�Exercise

	 1.	 Verify that this is true that the simulation doesn’t depend on the

length of the edges.

	 2.	 Suppose the king is obsessed with your simulation. Now you have

one million people at your command for the calculation. Utilize

numpy’s vectorized computation to perform the simulation.

Perform the statistics calculation as well. Did you find the

relationship between the number of results and the standard

deviation? Can you plot the relationship between the two values?

	 3.	 Can you compute the volume of a five-dimensional unit ball using

Monte Carlo simulation? Note that this question is deliberately

vague. Do some research and enjoy the exploration.

�Contain the Goat!
I hope you enjoy the Middle East adventure in the 16th century. Now, let’s time travel to

Great Britain in the 1800s. You had a problem at hand to solve as a shepherd.

You own a land with a bizarre circular shape. Well, it has to be circular; otherwise,

there is no fun! You also had a very naughty goat who had to be on leash. Otherwise, the

goat would eat everything in its reach and had congestion issues.

Now, you had to stick one end of the leash to one point of the circular fence; how

long should the leash be so the goat can exactly reach half of your land? Figure 1-6 is

a visualization of the problem. Here, for simplicity, we can set the radius of your land

to be 1.

Chapter 1 Calculating Pi with Monte Carlo Simulation

11

Figure 1-6.  A leashed goat is contained inside round fences

This problem is the so-called interior grazing problem. It has been known for 200

years, but the analytical solution was only found in early 2020.

	

γ
ππ π

π π

=
− −()
−

− =

− =

∫
2

1

2

2

1

3 8 4

3 8 4

cos

/ sin cos /

/ sin

/ /

/ /

z

z

z z z z dz

z z


ccos /

.

z dz−()










∫ π 2

 	

However, with the Monte Carlo simulation we just discussed, you can calculate the

length of the leash by writing several lines of Python code.

The naive idea is the same as the sand grain sprinkling one. First, you generate a

uniformly distributed random point inside your land, then you check whether the goat

can reach that point or not given a leash length. After enough sampling, if the goat can

reach more than half of the area, shorten the leash; otherwise, increase it. We can repeat

this process until the desired precision is achieved.

You may notice that the preceding method is not computationally optimal. A better

way is to generate enough points first, then determine the length of the leash later. We

will approach the computation in this improved way later.

�What Randomness?
Wait a minute, we have an ambiguity here. It is easy to imagine a uniformly distributed

random point inside a square: you just make it uniform on one side and uniform on

another side as well. However, what does it mean to have a uniformly distributed

random point inside a circle? How would you generate tens of thousands of such points?

Chapter 1 Calculating Pi with Monte Carlo Simulation

12

You have two options:

	 1.	 You only care about a circle, but you use a square that exactly

circumscribes the circle to do the work. You still generate

uniformly distributed points in the square but discard those

that fall outside of the circle. You use these that fall inside the

circle to do the calculation. This does guarantee the same kind

of uniformity, but the roaring CPU will probably not be happy

because only about 78.5% of its work is honored.

	 2.	 Another option is to use the polar coordinate as shown in

Figure 1-7. First, you generate a uniformly distributed radius

between 0 and the radius of your land, say, R, then you generate

a uniformly distributed radian value between 0 degree and 360

degrees. The location of the point is also uniquely determined.

Figure 1-7.  A polar coordinate system can also uniquely define a point on a
2-D plane

In the example illustrated earlier, a point in 2-D space is uniquely determined by

a pair (θ, γ) where θ is the angle that the point rotates counter-clockwise against the

θ = 0 line, which is represented by the dotted line. γ is the distance between the dot and

the origin. θ takes values between 0° and 360°, while γ can be any positive number.

Chapter 1 Calculating Pi with Monte Carlo Simulation

13

The transformation between normal Cartesian coordinates and polar coordinates can be

obtained using the following formula:

	

x
y

x y

=
=
= +

γ θ
γ θ

γ

cos

sin

2 2 2 	

The following is the code snippet for the polar coordinate system demonstration. It

will give you a good sense of how to manipulate objects with polar coordinates:

from matplotlib.patches import Arc

with plt.xkcd():

 fig, ax_polar = plt.subplots(figsize=(6, 6),

 subplot_kw={'projection': 'polar'})

 ax_polar.set_rmax(1)

 ax_polar.set_rticks([0.25, 0.5, 0.75, 1],)

 ax_polar.set_rlabel_position(-60)

 ax_polar.grid(True, linewidth=3, alpha=0.4)

 ax_polar.set_axisbelow(True)

 ax_polar.plot([0, 0], [0, 1.2], lw=3, color="red",

 linestyle="dotted")

 ax_polar.scatter([np.pi/4], [0.75], s=120, color="blue")

 ax_polar.text(np.pi/7, 0.5, r"θ = 45°")

 ax_polar.text(np.pi/12, 0.45, r"$r = 0.75$")

 ax_polar.set_title("Representing a Point in Polar Coordinate System",

 fontsize=20)

Now, which option would you choose? They both sound valid, aren’t they? Let the

numbers speak for themselves. The following code snippets generate 10,000 random

points in a circle with both approaches. Let’s find out by visualizing the distribution of

the generated points.

Chapter 1 Calculating Pi with Monte Carlo Simulation

14

Setting the length of the leash to 1.25, option 1 gives us Figure 1-8.

Figure 1-8.  Results from sampling with the Cartesian coordinate

The statistics in Table 1-1 tell us how many points will not be used because they fall

out of the circle and how many are reachable by the goat, etc.

Table 1-1.  Number of grains in each region for Cartesian

coordinate system sampling

Outside Points Unreachable Points Reachable Points

2101 3443 4456

If option 1 is correct, this actually means that 1.25 is probably too long. And roughly

20% of our CPU time is wasted.

Let’s look at the result produced by option 2 as shown in Figure 1-9.

Chapter 1 Calculating Pi with Monte Carlo Simulation

15

Figure 1-9.  Results from sampling with the polar coordinate

If option 2 is correct, we have no wasted CPU time, but the statistics look concerning.

I counted the numbers in Table 1-2.

Table 1-2.  Number of grains in each region

for polar coordinate system sampling

Outside Points Unreachable Points Reachable Points

0 3230 6770

The source codes for the plotting are too long and therefore omitted. However, they

should be straightforward to reproduce.

Alrighty, take a look at the scatter plot of these points; which one looks more

random? It is kind of obvious that option 1 demonstrates a higher level of randomness

than option 2. This becomes more clear if we zoom in to option 2’s result as shown in

Figure 1-10.

Chapter 1 Calculating Pi with Monte Carlo Simulation

16

Figure 1-10.  Density imbalance becomes clear if we zoom in to the polar
coordinate system’s result

The two square areas obviously contain different numbers of points. The one

closer to the origin contains more points, and the one further away from the origin

contains fewer.

The reason is that a uniform distribution will be distorted if you transform the

coordinate system. Although the points are uniformly distributed in terms of the polar

coordinates, the transformation using trigonometry formulas distorts them so they are

no longer uniformly distributed in the Cartesian coordinates. This definitely rings an

alarming bell.

The following code snippet will estimate the length of the leash using the bisection

method. Of course, you can change the position of the other end of the leash, but we will

stick with the simple one at the lower bottom of the land. Note we are going to use the

result from option 1 since it is the correct simulation.

The bisection method is a root-finding method. Here, we simply borrow the idea.

Because the number of reachable points monotonically grows as the length of the leash

increases. Let’s say we start finding the length in range [0, 2], and we start with the

middle point 1; if more than half of the points are reachable, we begin searching in [0, 1]

and start with the new middle point 0.5. By the same token, if there are fewer than half

of the points reachable, we pick 1.5 as the new middle and search in range [1, 2]. The

iteration continues until a stop condition satisfies.

Chapter 1 Calculating Pi with Monte Carlo Simulation

17

random.seed(2021)

num_points = 10000

num_valid_points = 0

xs, ys = list(), list()

for g in range(num_points):

 x, y = (random.random() - 0.5)*2, (random.random() - 0.5)*2

 if x**2 + y**2 <= 1:

 xs.append(x)

 ys.append(y)

 num_valid_points += 1

begin bisection

low, high, middle = 0, 2, 1

epsilon = 0.001

while high-low > epsilon:

 reachable = sum((x-0)**2 + (y - (-1))**2 <= (middle)

 ** 2 for x, y in zip(xs, ys))

 if reachable > num_valid_points//2: # need to shorten the leash

 low, high, middle = low, middle, (low+middle)/2

 elif reachable < num_valid_points//2: # need to increase the leash

 low, high, middle = middle, high, (middle+high)/2

 else:

 break

print(middle) # 1.15869140625

Alright, I bet you feel the essence of Monte Carlo simulation. In both the calculation

of π and the containment of the goat, we are facing deterministic problems that involve

no randomness at all. However, by introducing randomness, we turn analytical problems

into simulation problems. This is the power of Monte Carlo simulation. In the next

section, we are going to explore another kind of problem which involves randomness

intrinsically.

Now, finish the following exercise before jumping onto the second stage of

the rocket.

Chapter 1 Calculating Pi with Monte Carlo Simulation

18

�Exercise

	 1.	 Suppose the goat is in a space station, find the solution in three

dimensions such that the goat can only reach half of the volume of

a unit ball.

	 2.	 Improve the performance of the bisection algorithm by only

considering fewer critical points around the boundaries.

	 3.	 Let’s say we are not satisfied with a single fixed point on the fence.

Can you pick other points on the fence to perform the calculation

of leash length? Do you get similar results? What does the

distribution of your results look like?

�Summary
In this chapter, we studied the classic use case of Monte Carlo simulation: the calculation

of π. We researched the effects of randomness on the validity of the calculation and

investigated the distribution of our simulation results.

Chapter 1 Calculating Pi with Monte Carlo Simulation

19

CHAPTER 2

Markov Chain, a Peek into
the Future
In this chapter, we continue our exploration in the world of simulation. Different from

the previous Monte Carlo simulation where the scenario is purely static, which means

there is no dynamics in the simulation, we are going to study dynamics of a system.

The Markov chain, specifically the discrete-time Markov chain, is named after

Russian mathematician Andrey Andreyevich Markov. He is a pioneer in the study of

stochastic processes and the first to introduce the concept of Markov chains.

Let’s introduce the Markov chain with a simple example of weather forecasting.

�Weather Forecasting
Suppose we have a weather forecasting system that predicts the weather in the next hour.

The weather can only take three possibilities: sunny, cloudy, or rainy. Here, we call these

possibilities the states. We won’t predict the weather continuously but rather forecast the

weather in the next hour. This makes our system discrete.

The continuous-time Markov chain is beyond the scope of this book. It requires

more rigorous analysis. However, the fundamental ideas of the discrete-time Markov

chain remain unchanged.

Weather will change so there is a probability that a sunny day will turn into a cloudy

day. Similarly, a cloudy day will turn into a rainy day, etc. We can define the transition

probabilities in Table 2-1. The columns represent the current weather states, and the

rows represent the next hour’s.

© Rongpeng Li and Aiichiro Nakano 2022
R. Li and A. Nakano, Simulation with Python, https://doi.org/10.1007/978-1-4842-8185-7_2

https://doi.org/10.1007/978-1-4842-8185-7_2#DOI

20

Table 2-1.  Weather transition probabilities

Sunny Cloudy Rainy

Sunny (next hour)
1
2

1
3

2
3

Cloudy (next hour)
1
3

1
3

1
6

Rainy (next hour)
1
6

1
3

1
6

The way to interpret the table is to read it column-wise. For example, if the current

weather is sunny, then the probability of the next hour’s weather being cloudy is
1

3
. This

is indicated by the second row in the first column (besides the row name column).

We can also denote this probability by the transition probability notation. Let’s use si

to denote the state of the weather at hour i. Then the previous transition probability can

be denoted as follows:

	
P P s cloudy s sunnysunny cloudy�� � � �� � �1 0

1

3 	

We used the notation of conditional probability in the expression

P(s1 = cloudy| s0 = sunny) . It simply means that given the weather at the previous hour

is sunny, which is a condition, the probability of the weather at the next hour being

cloudy is
1

3
.

With the definition of transition probability, we can use a graph to represent the

weather forecast. The graph shown in Figure 2-1 illustrates this.

Chapter 2 Markov Chain, a Peek into the Future

21

Figure 2-1.  A graph representing the weather forecast based upon transition
probability

Well, what does this even mean? How can we use the table or the graph to forecast

weather? The idea is quite simple; we start from a current weather, a.k.a. a state, then

transition to other possible states according to the transition probabilities. For example,

if the current state is sunny, then at the next hour, we have a chance of
1

2
 to remain

sunny, a chance of
1

3
 to become cloudy, etc. This looks easy so far. How about the next

weather? We have to combine all possible trajectories to do the forecast. For example, the

sunny state can be achieved from three different trajectories, from being sunny, being

cloudy, and being rainy, which gives us the following combined probability:

	
P s sunny2

1

2

1

2

1

3

1

3

1

6

2

3

17

36
�� � � � � � 	

It is still possible to continue the calculation manually, but we would like to leave the

labor to computers.

Formally speaking, a system like we just introduced must satisfy two important

properties to be a Markov chain:

	 1.	 The first one is called the Markovian or memoryless property. It

means that the system will only remember the immediate past

state but not further. For example, the weather forecast system will

only remember and use the current weather to forecast the next

hour’s weather but not previous hours’ weathers.

Chapter 2 Markov Chain, a Peek into the Future

22

	 2.	 The second one should be treated as a simplification, which can

be removed if you want to match real-world scenarios. It is that

our Markov transition probabilities are fixed regardless of the time

index i. In real life, as seasons change, our transition probabilities

should change.

The following is the code snippet to automate the calculation. Notice that I already

used the matrix notation to represent the transition probability:

sunny_to = {"sunny":1/2, "cloudy":1/3,"rainy":1/6}

cloudy_to = {"sunny":1/3, "cloudy":1/3,"rainy":1/3}

rainy_to = {"sunny":2/3, "cloudy":1/6,"rainy":1/6}

state = {"sunny":1, "cloudy":0,"rainy":0}

weathers = ["sunny","cloudy","rainy"]

for _ in range(10):

 next_state = {}

 for weather in weathers:

 next_state[weather] = (sunny_to[weather] * state["sunny"] +

 cloudy_to[weather] * state["cloudy"] +

 rainy_to[weather] * state["rainy"])

 state = next_state

 print(state)

The result looks like the following. You can check that the probabilities roughly sum

up to unit 1:

{'sunny': 0.5, 'cloudy': 0.3333333333333333, 'rainy': 0.16666666666666666}

{'sunny': 0.4722222222222222, 'cloudy': 0.3055555555555556, 'rainy':

0.2222222222222222}

{'sunny': 0.4861111111111111, 'cloudy': 0.2962962962962963, 'rainy':

0.2175925925925926}

{'sunny': 0.4868827160493827, 'cloudy': 0.2970679012345679, 'rainy':

0.21604938271604937}

{'sunny': 0.48649691358024694, 'cloudy': 0.2973251028806584, 'rainy':

0.21617798353909465}

{'sunny': 0.48647548010973934, 'cloudy': 0.29730366941015085, 'rainy':

0.21622085048010972}

Chapter 2 Markov Chain, a Peek into the Future

23

{'sunny': 0.4864861968449931, 'cloudy': 0.29729652491998165, 'rainy':

0.21621727823502512}

{'sunny': 0.4864867922191738, 'cloudy': 0.29729712029416244, 'rainy':

0.21621608748666357}

{'sunny': 0.4864864945320834, 'cloudy': 0.29729731875222265, 'rainy':

0.2162161867156937}

{'sunny': 0.48648647799391176, 'cloudy': 0.29729730221405093, 'rainy':

0.21621621979203703}

In the nested for loop, we implemented the logic that one state can be achieved

through multiple paths. For example, the weather after 3 hours can be essentially

achieved through 33 = 27 different paths.

The preceding code can be written in a much more concise way using matrix

notation as follows. If you do the math, you will see that the matrix multiplication

operation matches the system evolution operation exactly. To run the following code,

you need to install the numpy library as np per the Python community convention:

tm = np.array([[1/2,1/3,2/3],

 [1/3,1/3,1/6],

 [1/6,1/3,1/6]])

state = np.array([1,0,0])

for _ in range(10):

 state = tm@state

 print(state)

Now, let’s visualize the probabilities of each weather as illustrated in Figure 2-2.

Chapter 2 Markov Chain, a Peek into the Future

24

Figure 2-2.  Weather state probabilities for ten iterations, starting with
sunny weather

What’s going on here? Why are the probabilities stale after, say, the third iteration?

Before moving on to the explanation, let’s take a look at another initial condition. How

about starting with rainy weather? You can check the simulation result in Figure 2-3.

Figure 2-3.  Weather state probabilities for ten iterations, starting with
rainy weather

Chapter 2 Markov Chain, a Peek into the Future

25

Indeed, it looks like not only we reach a stable distribution, the distribution is also

independent of our initial weather.

�Eigenstates of Markov Chains
Is there anything special about the stable probability distribution



x �� �0 486 0 297 0 216. . ., , ?

It turns out that it is an eigenvector of the transition matrix with an eigenvalue of 1.

In other words, it represents the eigenstate of the Markov chain. One can actually

decompose any square matrix to find out its eigenvalues and eigenvectors. You can use

numpy.linalg.eig(tm)[0] to obtain the eigenvalues of the matrix tm and use numpy.

linalg.eig(tm)[1] to obtain the corresponding eigenvectors.

Note that eigenstate has a special meaning in quantum mechanics. Here, I just

borrow the word as it makes sense in this context. It also has other names like stationary

distribution, equilibrium distribution, limit distribution, etc.

First, let’s take a look at the transition matrix as already being used in the previous

simulation. We use ′x
���

 and


x to denote the new (next hour) and old (current hour)

states, respectively. The transition matrix is denoted by T:

	

� �

� �

�

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

x T x
��� �

1

1

2

1

3

2

3
1

3

1

3

1

6
1

6

1

3

2

6

0 4864864. 99

0 2972973

0 21621622

2

0 48648649

0 2972973

0 21

.

.

.

.

.

�

�

�
�
�

�

�

�
�
�

� �

�
6621622

3

4

�

�

�
�
�

�

�

�
�
�

� �
�

� �

�
x

	

Note that the calculation ignores some negligible precision-caused numerical errors.

Chapter 2 Markov Chain, a Peek into the Future

26

This equation tells us once our system reaches the eigenstate, it will remain there

for the rest of the transition. This means that after several hours, the probability of being

sunny will be about 50% regardless of the current weather. The matrix notation also

enlightens us that the evolution of the system can also be written as the multiplication

of a series of matrices. For simplicity, I reuse the notation of sn. You have already seen si,

right? They are basically the same thing.

	

s T s

T s

T s

n n

n

n

�

� �
�

� �
�

� �

�

�

�

1

2
2

0

1

2

3

0 49 0 49 0 49

0 30 0 30 0 30

0 22

. . .

. . .

. 00 22 0 22

4

0

. .

�

�

�
�
�

�

�

�
�
�

� �

s

	

As you can see, no matter our initial state s0 is, as long as the elements sum up to 1,

the output, sn is the eigenstate. This is a remarkable fact.

You may ask whether all transition matrices give such a nice property. The answer is

no. Here is an example:

tm = np.array([[0, 0, 1],

 [1, 0, 0],

 [0, 1, 0]])

state = np.array([1,0,0])

for _ in range(10):

 state = tm@state

 print(state)

Without running this code, can you guess what the states look like? Our transition

matrix basically says that a sunny day will definitely become a cloudy day and a cloudy

day will become a rainy day, etc. You may expect the following output:

Chapter 2 Markov Chain, a Peek into the Future

27

[0 1 0]

[0 0 1]

[1 0 0]

[0 1 0]

...

Another issue is the rate of convergence. The preceding example shows that

sometimes the probabilities may never converge. Here is another transition matrix that

converges slower than the earlier one we discussed. Feel free to try it on your own.

	

0 00 0 05 0 98

0 99 0 00 0 02

0 01 0 95 0 00

. . .

. . .

. . .

�

�

�
�
�

�

�

�
�
� 	

�Exercise

	 1.	 Find out the eigenstates of the transition matrix with a slower

convergence rate.

	 2.	 All of our previous simulation is based on analytical probability

calculation. Can you do a simulation that just picks a random

weather and evolves it according to the transition probabilities?

Let’s say you do it for 10,000 steps, which is roughly 400 days, and

count how many of these 10,000 data points are sunny, cloudy,

and rainy. What’s your expectation? Does your discovery agree

with your expectation?

�Markov Chain Applications
In this section, let’s look at two interesting applications of the Markov chain. First, let’s

look at how the Markov chain can be used to answer a nontrivial probability question.

Then, we will use the Markov chain as a generative model to generate some natural

languages.

Chapter 2 Markov Chain, a Peek into the Future

28

�A Random Walk That Has an End
Suppose you have a fruit-loving tortoise that moves in a tube. The tube is 7 inches long.

At the left end, there is a banana, and at the right end, there is an apple. Now, the tortoise

starts at a position that is 3 inches away from the left end, which means it is closer to

the banana than the apple by 1 inch. The tortoise can only move 1 inch per minute, and

it moves randomly to the left or to the right with equal probability. The tortoise is so

active that it will move every minute until it reaches one of the fruits. The setting can be

visualized as in Figure 2-4.

Figure 2-4.  A graph that represents the states the tortoise can be in

The question is, what are the probabilities that the tortoise eventually reaches the

banana and apple?

Spend some time to think about the question yourself. Here are some intuitions and

observations:

	 1.	 Given enough time, intuitively the tortoise will reach one of

the fruits. Our tube is just 7 inches long, and the tortoise just

keeps moving.

	 2.	 The tortoise should have a higher, probably not much, probability

of reaching the banana than the apple. The setting is not

symmetric.

Let’s perform a set of simulation runs to directly simulate such a system and evaluate

such probabilities:

def tortoise_run(state = 3, left_prob = 0.5):

 steps = 0

 while state % 7 != 0:

 if np.random.random() < left_prob:

 state -= 1

 else:

 state += 1

 steps += 1

Chapter 2 Markov Chain, a Peek into the Future

29

 if state == 0:

 return steps, 0

 else:

 return steps, 7

We can run the simulation for 10,000 times and count how many times the tortoise

reaches the banana and apple. I can plot the result with the following code:

simulations = [tortoise_run() for _ in range(10000)]

bananas = np.array([x[1] == 0 for x in simulations]).cumsum()

apples = np.array([x[1] == 7 for x in simulations]).cumsum()

with plt.xkcd():

 fig, ax = plt.subplots(figsize=(8,6))

 plt.plot(bananas/(bananas+apples), lw=3,label="bananas")

 plt.plot(apples/(bananas+apples), lw=3,label="apples")

 plt.legend()

 plt.title("Probabilities of Reaching Bananas/Apples")

 plt.xlabel("# of runs")

The result looks like Figure 2-5.

Figure 2-5.  Probabilities that the tortoise reaches bananas or apples for
10,000 runs

Chapter 2 Markov Chain, a Peek into the Future

30

It does agree with our intuition that the tortoise is slightly more likely to reach the

banana. If you check the end of the bananas/(bananas+apples) array, you will find that

the probability of reaching the banana is about 0.575.

As an in-chapter exercise, you can plot a histogram to check the distribution of the

number of steps before the tortoise stops moving. I am going to leave this as an exercise.

Your result should look like the one in Figure 2-6. Note that the x axis is in log scale.

Figure 2-6.  Number of steps before the tortoise stops moving

Now, let’s use our knowledge of the Markov chain to find the exact probabilities in

the original question. If you think about it, the tortoise’s random walk can be treated

as a Markov chain that has the following transition matrix. The dimension matches the

number of possible states.

Chapter 2 Markov Chain, a Peek into the Future

31

This Markov chain is different from the weather one mainly because it has two so-

called absorbing states. The absorbing states are the left and right ends of the tube. Once

the tortoise reaches one of the ends, it stops moving. The first and the last element in the

transition matrix diagonal are 1 which indicate the absorbing states.

Now, let’s find out the eigenstate of the multiple-step transition matrix. The idea

is that we treat multiple continuous transitions, say, 50 steps, as one transition and

consider its transition matrix. You can find the transition matrix for 50 steps using the

one-liner reduce(lambda x,y:x@y,[tortoise_tm for _ in range(50)]). If you

change 50 to a larger number, the matrix remains largely the same up to a precision error.

The symmetry is pretty clear. The closer the tortoise is to the left end, the more

likely it will be to reach the banana. The highest probability is 0.86. This agrees with

our intuition as the tortoise does have a chance to reach for the apple although the

banana is just 1 inch away. We multiply the transition matrix with the initial state numpy.

array([0,0,0,1,0,0,0,0]) to get the probability of reaching the banana eventually.

Note that it does agree with our simulation performed earlier.

Alright. This is the end of our first section. You have seen how to use the Markov

chain to predict the weather and simulate a hungry tortoise movement. Next, let’s try to

use the Markov chain as a generative model to write some poems.

�Sonnet Written by Drunk Shakespeare
A Markov chain can be used to model human language as a simplistic first approach.

Human language has intrinsic patterns such that the probabilities that a certain word

follows another word are very different. A Markov chain fits in this scenario perfectly.

Let’s try to grab some sonnets from Shakespeare and turn his text into a Markov

chain with corresponding probabilities.

Chapter 2 Markov Chain, a Peek into the Future

32

First, we need to process the raw text by removing the punctuation, etc. We are going

to use a third-party library called “nltk” to do the lemmatization. However, we will build

the Markov chain on our own. If you are interested in comparing your result with output

from mature libraries, check this repository. The text file that contains the sonnets is the

sonnet.txt file, which is provided in the associated GitHub repo. You can also find the

sonnets on the Project Gutenberg website.

Lemmatization is a process of converting a word or phrase into its base form. For

example, the word “dogs” is converted to “dog,” and the word “went” is converted to

“go.” This is helpful because our sonnet dataset is not that large that reducing words

with different forms, but similar meaning, to the same one can centralize our transition

probabilities somehow. You are free to explore the nonlemmatized version and compare

the differences.

Here is a sample from the text file:

From fairest creatures we desire increase,
That thereby beauty’s rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou contracted to thine own bright eyes,
Feed’st thy light’s flame with self-substantial fuel,
Making a famine where abundance lies,
Thy self thy foe, to thy sweet self too cruel:
Thou that art now the world’s fresh ornament,
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And, tender churl, mak’st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world’s due, by the grave and thee.

The sonnets are separated with empty lines. The following code will preprocess each

sentence, which can be incomplete, to lowercases and punctuation-free:

sonnet preprocessing

import string

import nltk

from nltk.stem.wordnet import WordNetLemmatizer

nltk.download('wordnet')

lemmatizer = WordNetLemmatizer()

Chapter 2 Markov Chain, a Peek into the Future

https://github.com/jsvine/markovify
https://www.gutenberg.org/cache/epub/1041/pg1041.txt

33

sonnet_path = "../../code_examples/chap2/sonnet.txt"

with open(sonnet_path,"r") as fp:

 sonnets = fp.readlines()

sonnets = [sentence.strip().lower().replace("'s","") for sentence in

sonnets if sentence != "\n"]

sonnets = ["".join([char for char in sentence if char not in string.

punctuation]) for sentence in sonnets]

Note that you may need to uncomment the wordnet download line to download

additional data. The sonnets variable is a list of sentences. We are simplifying the

problem by only handling lowercases and ignoring the punctuation like beauty’s, which

becomes beauty.

Now, let’s build a defaultdict to store the counting from each word to its next word

existing in the sonnets. Such word pairs are also called bigrams.

from collections import defaultdict

transition_dict = defaultdict(lambda : defaultdict(int))

for sentence in sonnets:

 words = list(filter(lambda x: len(x.strip()) > 0, sentence.split(" ")))

 �words_pairs = [(lemmatizer.lemmatize(words[i]),lemmatizer.

lemmatize(words[i+1])) for i in range(len(words)-1)]

 for (word_from, word_to) in words_pairs:

 transition_dict[word_from][word_to] += 1

Before using the transition_dict to generate sentences, let’s take a look at the

paths for the bigrams. The following visualization simply uses the width of edges to

represent the frequency of the bigram. As it is not possible to show all edges, we use the

count_threshold variable to control the number of transitional edges a word can have to

connect to the next word:

sonnet

from graphviz import Digraph

count_threshold = 10

dot, fdp, neato, circo, twopi, and osage.

G = Digraph('G',format='png',engine='neato')

font_size = "300"

Chapter 2 Markov Chain, a Peek into the Future

34

G.attr('graph', pad='1', ranksep='1', nodesep='1')

G.attr('node', shape='circle', fixedsize='true')

G.attr(overlap="false")

for word_from in transition_dict.keys():

 for word_to in transition_dict[word_from].keys():

 lw = transition_dict[word_from][word_to]

 if lw > count_threshold:

 G.edge(word_from, word_to, penwidth=str(lw*0.1),label=str(lw))

G.view("sonnet")

The result looks like a big spider web as in Figure 2-7.

Figure 2-7.  The transitional relationship between words

Chapter 2 Markov Chain, a Peek into the Future

35

You can try to manipulate the value of the edge threshold. You will be able to see

more fine structures at the cost of more overlapping edges.

Now, we can use the transition_dict to generate a sentence. Here is an example that

I start with i and keep adding words to the sentence until there is no matching in the

transition_dict:

def sample_according_to_value(to_dict:dict):

 # return a key that corresponds to the value as frequency

 keys, freqs = [],[]

 for key,val in to_dict.items():

 keys.append(key)

 freqs.append(val)

 freqs = np.array(freqs)

 freqs = freqs/sum(freqs)

 return np.random.choice(keys,p=freqs)

def generate_sentence(start_word = "i", transition_dict = transition_dict,

hard_limit = 14):

 word = start_word

 sentence = []

 while word in transition_dict and len(sentence) < hard_limit:

 sentence.append(word)

 word = sample_according_to_value(transition_dict[word])

 sentence.append(word)

 return " ".join(sentence)

generate_sentence()

I got the following:

i praise that keep thee lie onward and lovely argument too much a foe
commend.

I set a hard limit of 14 words in a sentence and generated a sonnet. The modification

is trivial so I leave it to you. Here is what I got:

Chapter 2 Markov Chain, a Peek into the Future

36

doom and the rest forgot upon my mistress over wrack
always write of their rank before the dead wood whose worth in it in them
wear this book of forebemoaned moan the rose have given thee i my
heart right
hindmost hold his memory death eternal slave to register and wrinkle
graven there reign love
authorizing thy part wa false painting set a far remote where your sound-
less deep a
audit canst thou not be it not for my lameness and by that million of
brain inhearse
epitaph to whom thou take them say thy picture sight would have any
be brought
leapt with the gentle thou hast thou dost advance
tonguetied muse brings forth your broad main doth nightly make the bla-
zon of that heaven
added feather to lay upon thy beauty wear this purpose laid by this
shall burn
tempest and no matter then did i may be taken
shower are mine eye corrupt by thy lusty day they themselves a the
world common
wrong than hawk and beauty thou be scorned like her wish i see what merit

Not bad, isn’t it? Just look at this sentence: tempest and no matter then did i may be

taken. It reads like something Shakespeare would write when he was drunk.

Alrighty. This concludes this chapter. Before moving on to our next chapter, here are

some exercises.

�Exercise

	 1.	 Can you adjust the transition probability matrix of the tortoise’s

movement to make it more realistic? For example, the tortoise can

perhaps smell the fruit’s scent when it’s near and move toward it.

How will the change impact the result?

	 2.	 For the tortoise problem, if you try to find the eigenvalues of the

transition matrix, you should see two identical eigenvalues and

some others. What are the repeated eigenvalues? What is the

implication of the repeated eigenvalues?

Chapter 2 Markov Chain, a Peek into the Future

37

	 3.	 Can you try trigram instead of bigram in the text generation?

	 4.	 Try to use a large corpus to improve the accuracy of your text

generation model. For example, nltk has a large corpus of English

texts. You can download the corpus from here.

�Summary
We continue our journey of simulating using randomness. We studied the Markov chain

model and learned the mathematics behind it. We applied the Markovian model to

weather prediction, absorbing state cases, and the sonnet writing.

Chapter 2 Markov Chain, a Peek into the Future

https://www.nltk.org/data.html

39

CHAPTER 3

Multi-armed Bandits,
Probability Simulation,
and Bayesian Statistics
Bob walks into a casino at dusk. He wants to try his luck as much as possible tonight. He

begins playing the slot machine game which is simple and straightforward: you get three

same symbols, you win. There are three different machines in the lobby, and Bob has 100

dollars to spend.

Bob knows that these machines have different probabilities of winning, and each

pull will cost him 1 dollar. The question now is to find the best winning strategy for Bob.

A slot machine is also called a one-armed bandit. This question is also known as the

classical multi-armed bandit problem.

Let’s think of the edge cases first. If we have a lot of money, we can spend a good

amount of money on each machine to obtain a good estimate of the winning probability,

right? No investment, no gain. If we have little money, we can’t afford to spend a lot of

money on each machine, so we can only rely on luck to stick with one that has been

successful and wish it is not too bad.

The depth of a professional gambler’s chips is a huge factor that determines the

gambler’s strategy. A gambler with a deep pocket can bully the opponent by playing bets

with higher risks. However, a shallow-pocketed gambler can’t afford such a risk, which

leads to defensive play or sometimes one-time, aggressive all-in.

© Rongpeng Li and Aiichiro Nakano 2022
R. Li and A. Nakano, Simulation with Python, https://doi.org/10.1007/978-1-4842-8185-7_3

https://doi.org/10.1007/978-1-4842-8185-7_3#DOI

40

�Random Pick and Naive Greedy Approach
Now, let’s think about the more general cases and formulate the problem

mathematically.

Suppose we have K machines and we use i to index them. Each machine’s

probability of winning is denoted by pi. For simplicity, different values of pi can be

assumed, so there are no equivalent machines. What we want to achieve is that after all

N pulls, we have the highest expected times of winning.

What is the ideal case? Of course, we want to play the machine with the highest

probability of winning p∗ = max (pi) if we know which it is. Given this ideal case, we can

define a so-called regret function:

	
r Np p t

t

N

� � � ��

�
�

1 	

Here, p(t) is the probability of winning of the machine that Bob plays at timestep t.

If we can identify the optimal machine and stick to it, we will have no regret at all which

yields r = 0. However, if we play the worst machine all the time, the largest possible value

of the regret function will be r = N(p∗ − min (pi)). In Bob’s case, N = 100 and K = 3.

Let’s establish a baseline for the regret function. Let’s say Bob is a simple man, so he

plays the game with one of the two simple strategies:

	 1.	 Bob picks a machine randomly each time regardless of the

performances.

	 2.	 Bob plays each machine ten times and calculates the winning

probabilities. He then sticks to the one with highest probabilities

of winning and updates the statistics according to the result of

play. In other words, Bob is greedy.

Let’s simulate this bold strategy with winning probability p1 = 0.5, p2 = 0.3, p3 = 0.2:

def cal_simple_random_regret(N = 100, probs = [0.5, 0.3, 0.2]):

 regret = max(probs)*N - sum(np.random.choice(probs) for t in range(N))

 return regret

cal_simple_random_regret()

Chapter 3 Multi-armed Bandits, Probability Simulation, and Bayesian Statistics

41

The value of the regret function is about 14.6 for my first try. Let’s check the

distribution of the results for 1000 trials:

trials = 1000

with plt.xkcd():

 fig, ax = plt.subplots(figsize=(8,6))

 �plt.hist([cal_simple_random_regret() for _ in

range(trials)],label="Regret value",bins=20)

 �ax.set_title("Distribution of Regret Function \n with Random Slot

Machine Choice",fontsize=20)

 plt.legend()

 fig.savefig("random_slot_machine.jpg")

The distribution looks like the graph shown in Figure 3-1.

Figure 3-1.  Regret function distribution for random choice

It looks like the regret value is around 16.5.

Now, let’s examine our second strategy: Bob sticks to the machine with the

highest probability of winning after the initial 30 pulls which estimate the winning

probabilities. This strategy focuses on the exploitation of the known best after an initial

exploration stage.

Chapter 3 Multi-armed Bandits, Probability Simulation, and Bayesian Statistics

42

First, I will define a dataclass called Record that stores the information of each

machine’s record:

from dataclasses import dataclass

@dataclass

class Record:

 total:int

 win:int

 def cal_ratio(self):

 return self.win/self.total

 def update(self, prob):

 self.total += 1

 self.win += np.random.random() < prob

Then we calculate the regret function with the greedy approach:

def cal_greedy_regret(N = 100, probs = [0.5, 0.3, 0.2], evaluation_step = 10):

 K = len(probs)

 Records = [Record(0,0) for _ in range(K)]

 # initial evaluation step

 for i in range(K):

 Records[i].total = evaluation_step

 �Records[i].win = np.sum([np.random.random() < probs[i] for _ in

range(10)])

 # get the index of the most successful slot machine so far

 slots_trajectory = []

 slot_index = np.argmax([record.cal_ratio() for record in Records])

 slots_trajectory.append(slot_index)

 for i in range(N - evaluation_step * K):

 # play the remaining 70 rounds

 Records[slot_index].update(probs[slot_index])

 slot_index = np.argmax([record.cal_ratio() for record in Records])

 slots_trajectory.append(slot_index)

 # print(Records)

 �return max(probs)*N - sum([Records[i].total*probs[i] for i in

range(K)]), slots_trajectory

Chapter 3 Multi-armed Bandits, Probability Simulation, and Bayesian Statistics

43

Here, I return both the regret value and the slot machine trajectory, which is the last

70 choices of the slot machines.

If you run this code, you will see a typical regret value of 5. The reader can pause and

think about the reason.

There is a big chance that during the exploration stage the first slot machine is going

to give you a higher probability of winning than the second and the third, so we start

with the first slot machine and stick with it. This way, we will play on slot machine 1 for

80 times and slot machines 2 and 3 for 10 times each. So the regret value is

	 r � � � � � � � � �0 5 100 0 5 80 0 3 10 0 2 10 5. 	

However, sometimes the regret value can be high because the slot machine with the

highest probability of winning is not the one we stick to. You can find slot_trajectory like

the following one. I just plotted one out for you in Figure 3-2.

Figure 3-2.  Slot machine choices

In this case, slot machine 2 gives Bob a good impression during the exploration stage

so Bob sticks with it. However, during the exploitation stage, the true best slot machine 1

tries to steal Bob’s favor but not successfully. Then Bob stays with slot machine 2 for the

majority of the rest of the game. Such a trajectory gives Bob a regret value of 16.8 which is

even slightly worse than random guess.

The situation can be worse if Bob doesn’t want to spend 30 dollars on exploring/

estimating the probabilities. This way, there is a bigger chance that Bob picks suboptimal

slot machines.

The question now is to find an improved version of the greedy approach to avoid

such issues.

Chapter 3 Multi-armed Bandits, Probability Simulation, and Bayesian Statistics

44

�Greedy-Epsilon: Greedy but Not Always
Let’s try to introduce a new strategy. Suppose Bob largely sticks to the best one according

to history. However, each time Bob has a small chance, denoted by ∈, he will randomly

pick another slot machine to play. This is a mixture of exploration and exploitation: Bob

gives up some opportunity to exploit but to explore, in search of bigger future gain.

The implementation is straightforward and left to readers as an exercise. Please

name the function cal_greedy_epsilon_regret. The key lines are the following three

lines. The value of ∈ is up to you, while I set it to be 0.02 for our demo.

if np.random.random() < epsilon:

 slot_index = np.random.choice([i for i in range(K) if i != slot_index])

slots_trajectory.append(slot_index)

Let’s compare the performances of pure greedy approach and the greedy-epsilon

approach with limited initial exploration steps. I will set the number of initial exploration

to be just 1 for each machine and ∈ to be 0.02. The following code will plot a histogram

for both approaches:

rounds = 1000

greedy_only = [cal_greedy_regret(evaluation_step=1)[0] for _ in range(rounds)]

greedy_epsilon = [cal_greedy_epsilon_regret(epsilon=0.02)[0] for _ in

range(rounds)]

with plt.xkcd():

 fig, ax = plt.subplots(figsize=(10,6))

 �plt.hist(greedy_only,label="Greedy Only",bins=np.

linspace(0,25,30),alpha=0.5)

 �plt.hist(greedy_epsilon,label="Greedy Epsilon",bins=np.

linspace(0,25,30),alpha=0.5)

 plt.legend(loc='upper right')

 fig.savefig("greedy_approach_epsilon_compare.jpg")

The result is presented in Figure 3-3.

Chapter 3 Multi-armed Bandits, Probability Simulation, and Bayesian Statistics

45

Figure 3-3.  Regret function distribution for pure greedy approach and greedy-
epsilon approach

Note that the pure greedy approach does produce more low regret values, but it is

less centralized than the greedy-epsilon approach. This means that the worst cases for

greedy approach are worse than the worst cases for greedy-epsilon approach.

The result can be drastically different if you change the ground truth of the winning

probabilities. Change it and see how it influences the performance of these two

strategies. How about more slot machines like 5 or 10?

If Bob is aggressive, he will go for a pure greedy approach. If Bob is more cautious,

he can try the greedy-epsilon approach to avoid low-probability but catastrophic

regret values.

�An Improved Greedy-Epsilon Algorithm
One issue with the naive greedy approach is that it doesn’t take the slot machine’s

performance into consideration when making a random choice. We can solve this

problem by adopting the so-called softmax strategy. The idea is that we introduce a

parameter, mimicking the quantity temperature in physics, called τ. The higher the

temperature τ is, the more random the choice becomes. At τ ≈ 0, our strategy should

reduce to the naive greedy approach. At τ ≈ ∞, our strategy should reduce to the random

choice strategy.

The formula reads as follows:

	

prob e
ei t

p

i

p

i t

i t,

/

/

,

,

�
�

�

� 	

Chapter 3 Multi-armed Bandits, Probability Simulation, and Bayesian Statistics

46

Here, pi, t represents the observed winning probability of slot machine i at time t.

For example, if at step 100, Bob has played slot machine 1 for 11 times and he won 4

times, then p
1 100

4

100
,

= .

What does the name softmax mean? If we expand the expression in the three slot

machine cases and assume the first slot machine performs the best so far, we can then

manipulate the value of the temperature τ to see its influence on our next round’s pick.

For example, when τ approaches infinity, we have the following:

	
prob e

e e e
e

e e et

p

p p p

t

t t t1

0

0 0 0

1

1 2 3

1

3
,

/

/ / /

,

, , ,

�
� �

�
� �

�
�

� � � 	

This means that at very high temperatures, the algorithm reduces to the baseline

random strategy no matter how far slot machine 1 outperforms others.

Let’s see another extreme case when the temperature τ is set close to 0:

	
prob

e e
t p p p pt t t t

1

1

1

1

1 0 0
1

2 1 3 1
,

, , , ,/ /
��

� �
�

� �
�

�� � �� �� � 	

Because p1, t is the largest value, expression like e p pt t2 1, , /�� � � essentially becomes e−∞

which is zero. This means our algorithm reduces to the naive greedy approach.

Feel free to tweak the value of τ and see how it affects the performance of the

strategy.

The biggest improvement of this strategy is that it will prioritize the best performers

but make room for the catch-ups to give a try.

�Exercise

	 1.	 Try the greedy approach with different numbers of evaluation

steps. Try smaller ones like 5 and larger ones like 20. You may

need to run the simulation multiple times to get a statistically

consistent result.

	 2.	 Study how the true probabilities influence the performance of

different strategies. We have been using probs = [0.5, 0.3, 0.2] all

the time. How about other choices of probabilities?

Chapter 3 Multi-armed Bandits, Probability Simulation, and Bayesian Statistics

47

�The Bayesian Way, a Primer on Bayesian Statistics
Now, let’s go back to the ideal case that Bob has enough money to keep playing until

dawn. How can Bob update his estimation of the winning probabilities of the multiple

slot machines while playing? What are our best estimates of the winning probabilities

of the multiple slot machines? Can Bob get a distribution of their winning probabilities

rather than a single value? The answer is yes, and Bob needs Bayesian statistics to

optimize our estimation.

The core idea in the slot machine context is that Bob will initially hold a

belief of the winning probabilities’ distributions. Let’s say one machine’s winning

probability p has a distribution called prior(p). Then, Bob will update his belief

by observing the actual winning probabilities of the multiple slot machines

to get an updated distribution called posterior(p). p is the winning probability

being modeled, while the number of winning or losing is the observation. For a

given probability, the observation will follow a Binomial distribution. Recall that

Binomial k n p k
n p pk n k

, , � � � � � �� � �
1 is the probability of observing k successes in an n

rounds Binominal experiment with an underlined probability p.

A prior distribution is nothing fancy but a belief. Let’s say you were born in the

United States and believed the United States has the spiciest pepper in the world when

you were young. Therefore, P(U. S. has spiciest pepper) = 1 was your prior belief. Then

you traveled around the world and found that Mexico has pretty spicy pepper. Then your

observation updates your belief to P(U. S. has spiciest pepper) = 0.5. Then you tried some

Indian pepper, and your belief changed to P(U. S. has spiciest pepper) = 0.3. You keep

doing this, and your previous round’s belief gets updated as observations come in.

In Bob’s case, the observations depend on the parameter p that we keep updating.

The update rule is as follows:

	 posterior likelihood priorp p x p� � � �� � �� ; 	

Recall that the Bayesian theorem states that for arbitrary events, we have

	
P AB

P B A P A
P B

|
|� � � � � � �
� � 	

Mapping this formula to Bob’s game, we can see A is essentially the underlying

parameter p and B is the pulling result. Since the observations are fact that we see, P(B)

Chapter 3 Multi-armed Bandits, Probability Simulation, and Bayesian Statistics

48

is independent of our choice of A. Just think of it in Bob’s scenario. Bob doesn’t care

about the winning probability’s distribution if he comes from the future and already

knows his win or loss, right?

Unfortunately, the Bayesian’s updating rule needs to be calculated precisely because

we are interested in the exact distribution of p. The Bayesian updating rule is not a

simple one, and its computation can be very expensive especially in the continuous

case. What we want now is to find a nice-behaving distribution of prior(p) such that

the updated is also nice-behaving so the update rule can be computed quickly and

sequentially.

Does such a nice prior distribution exist? Yes! It is called a conjugate prior of the

likelihood distribution. Here, the likelihood function is the Binomial distribution, and its

conjugate prior is called the Beta distribution parameterized by two parameters, α and β:

B(α, β).

The Beta distribution is a generalization of the Binomial distribution. Let’s take a

look at some examples in Figure 3-4.

Chapter 3 Multi-armed Bandits, Probability Simulation, and Bayesian Statistics

49

Figure 3-4.  Beta distributions with different sets of parameters

It is very similar to the Binomial distribution. If α and β are the same, the distribution

is symmetric. If both parameters are larger, the distribution is more centric. If α is larger

than β, the distribution is left skewed and vice versa.

Chapter 3 Multi-armed Bandits, Probability Simulation, and Bayesian Statistics

50

If we plug in the Beta distribution’s formula into the update rule, we get the

following result:

	 posterior likelihood prior� � 	

	 posterior Binomial k n p B p� � �� � �; ;, ,� � 	

Expand the expression for Binomial and Beta distributions:

	
posterior p p

p p
Bk

n k n k�� � �� � �
�� �

� �
�

� �

1
1

1 1� �

� �, 	

	 posterior p p p pk n k� �� � �� �� � �� �1 11 1 	

	 posterior p pk n k� �� �� � � � �� �1 11 	

	 posterior B p k n k� � � �� �;� �, 	

Here, we have B � �
� �
� �

,� � � � � � �
�� �

� �
�

 where Γ(x) is the gamma function. Don’t be

intimidated because in the case of α and β being integers, gamma function Γ(x) is just a

factorial (x − 1)! which cancels the k
n� � part in the expression.

Alright, enough math for now. What does it mean in the context of Bob’s gambling?

It means that if Bob starts with a belief of B(α, β), each time if there is a success, he can

simply update his belief to B(α + 1, β), and if there is a loss, he can simply update his

belief to B(α, β + 1). There is no calculation involved at all, just parameter updating!

We have a new question: What value of α and β should Bob choose? This is quite

empirical. Bob can compare his historical records with the distributions with different

parameters and pick the best one. However, at the end of the day, the initial choice won’t

matter much. Another practical question is how to decide which machine to play in the

next round? Simple! We just use the Beta distributions of the slot machines to generate

a set of samples and pick the largest one. The idea is the same as the softmax strategy in

the previous section.

Chapter 3 Multi-armed Bandits, Probability Simulation, and Bayesian Statistics

51

Let’s look at the codes that perform the simulation and visualize the results:

probs = [0.5, 0.3, 0.2]

K = len(probs)

N = 100

rounds = [9, 49, 99]

fig, axis = plt.subplots(1, 3, figsize= (30,10))

x_ticks = np.linspace(0,1,500)

plot_index = 0

betas = [stats.beta(1,1) for _ in range(K)]

wins = [0, 0, 0]

totals = [0, 0, 0]

with plt.xkcd():

 for rnd in range(N):

 for i in range(K):

 betas[i] = stats.beta(1+wins[i],1+totals[i]-wins[i])

 p_value_samples = np.array([betas[i].rvs() for i in range(K)])

 slot_next_round_index = p_value_samples.argmax()

 win = np.random.random() < probs[slot_next_round_index]

 wins[slot_next_round_index] += win

 totals[slot_next_round_index] += 1

 if rnd in rounds:

 ax = axis[plot_index]

 for i in range(K):

 # plotting

 beta = betas[i]

 ax.plot(x_ticks, beta.pdf(x_ticks),

 label='Bandit {}'.format(i+1),

 linewidth=3)

 ax.set_title('After {} rounds'.format(rnd + 1),fontsize=20)

 ax.legend(fontsize=20)

 plot_index+=1

Figure 3-5 is the visualization of our winning probability distributions. Your result

may be different because there is randomness involved.

Chapter 3 Multi-armed Bandits, Probability Simulation, and Bayesian Statistics

52

Figure 3-5.  Winning probabilities after 100 rounds of run

What can we learn from this result? Well, we have a much higher confidence in the

winning probability of the machine with the largest winning probability, which is the

first one. The reason is that because it has a higher winning probability, Bob has a higher

chance of picking it, which creates positive feedback. Also, as Bob plays more and more,

we have higher confidence for all machines in general.

Let’s try more rounds and try more machines. Let’s say Bob has 200 dollars, and

there are 4 machines with similar winning probabilities probs = [0.8, 0.7, 0.6, 0.5]. The

probability estimation is presented in Figure 3-6.

Chapter 3 Multi-armed Bandits, Probability Simulation, and Bayesian Statistics

53

Figure 3-6.  Bandit winning probability estimation after 200 rounds

It is clear that after 200 rounds, the superior machine is quite obvious, and we can

say it with a precise level of confidence.

�Exercise

	 1.	 Simplify the posterior updating expression on your own.

	 2.	 Can you think of a way to combine the softmax strategy and the

Bayesian strategy? Let’s say you use the result of the Bayesian

estimation to adjust the temperature of the softmax strategy. Your

result doesn’t need to be mathematically solid, but it needs to

make sense intuitively.

	 3.	 Calculate the regret function using the Bayesian approach. Is it

significantly better than other strategies?

Chapter 3 Multi-armed Bandits, Probability Simulation, and Bayesian Statistics

54

�Summary
In this chapter, we studied an interesting gambling scenario. We demonstrated that

different gambling strategies are based on different levels of preference over exploration

or exploitation. We also ran the simulation based on the Bayesian approach.

Chapter 3 Multi-armed Bandits, Probability Simulation, and Bayesian Statistics

55

CHAPTER 4

Balls in a 2-D Box,
a Simple Physics Engine
If you are a gaming fan or an anime fan, you probably heard about the term physics

engine. When you play Kratos in the God of War, his axes interact with the enemies and

the environment. You feel that such interaction is real, and his axes are indeed heavy

and metal-like. What you are actually controlling is just a playstation controller, but the

impression is on another level. Here, physics engines are responsible for creating such

feelings of being in a physical world.

A physics engine is a computer software that simulates certain physics systems such

as rigid-body interaction, fluid dynamics, lighting systems, etc. In video games, physics

engines are responsible for simulating the interaction of players with the environment.

If players destroy a building, the collapsing of the building has to be like in real life:

bricks are heavy, and wooden structures are light. In animation like Moana, the water

effect is created by physics engines that are dedicated to simulate water movement.

There are physics engines designed for snowflakes, hairs, and other systems as well.

In this chapter, we are going to build our own simplistic physics engine to simulate a

very limited system: balls in a 2-D box.

�One Ball in a 2-D Box
Let’s start with the simplest example. The scenario is very much like pooling or snooker,

but we will start with only one ball. The following code snippet draws a ball in the middle

of a rectangular box:

RADIUS = 0.2

POSITION = [1,1]

VELOCITY = [0.2, 0.2]

© Rongpeng Li and Aiichiro Nakano 2022
R. Li and A. Nakano, Simulation with Python, https://doi.org/10.1007/978-1-4842-8185-7_4

https://doi.org/10.1007/978-1-4842-8185-7_4#DOI

56

WIDTH, HEIGHT = 10, 8

ARROW_HEAD_WIDTH, ARROW_HEAD_LENGTH = 0.05, 0.2

with plt.xkcd():

 fig, ax = plt.subplots(figsize=(WIDTH, HEIGHT))

 plt.xlim(0,WIDTH)

 plt.ylim(0,HEIGHT)

 ball_1 = plt.Circle(POSITION, RADIUS, color='r')

 ax.add_patch(ball_1)

 ax.arrow(*POSITION,

 *VELOCITY,

 head_width=ARROW_HEAD_WIDTH,

 head_length=ARROW_HEAD_LENGTH,

 fc='k', ec='k')

 plt.plot()

The visualization in Figure 4-1 clearly shows the position, size, and velocity of the

ball. Note that the ball is moving up with a velocity indicated by the arrow.

Figure 4-1.  A single ball moving to the right

What exactly do we mean by velocity of (0.2, 0.2)? Let’s define some concrete units

for our simulation. Let’s say the lengths are in meters and time is in seconds. Therefore,

the velocity of the ball is in meters per second. Our ball starts at position (0.2, 0.2) and is

heading top right with an approximate speed of 0.28 meters per second.

Chapter 4 Balls in a 2-D Box, a Simple Physics Engine

57

What I described is the physical setting up which means in the real world such a ball

will move continuously. However, simulations are discrete, and we need to define the

timestep, denoted by Δt, to approximate the continuous motion in reality. A timestep is

the amount of time that passes between two consecutive steps of the simulation.

The smaller the Δt is, the more frames we get per second. For example, if the timestep

is 0.1 seconds, we will have 10 frames per second (fps). For each frame, the ball will

move 0.1*0.28=0.028 meters. If the timestep is 0.01 seconds, we will have 100 frames per

second (fps). For each frame, the ball will move 0.01*0.28=0.0028 meters. In gaming,

if the fps is above 60, players usually won’t detect any glitches in the game. In movie

animation, if the fps is above 24, the animation will look smooth.

However, high fps also demands more computation to calculate the positions,

facings, rotations, and velocities of objects. In our one-ball case, we can pick a timestep

of 0.1 second. For a simulation of 1 second, our computer will need to update the

position of the ball ten times.

The time in the simulated system is different from the time in the real world. In order

to simulate one second in the simulated system, the computer may run up for hours

if the system is complicated. For gaming, this is even not acceptable. There are game

engines that liberate game developers from the burden of working against the physics

engine directly. One such example is the Unreal Engine.

�Physics Law of Motion
Let’s simplify our system a little bit first. We assume the following conditions:

	 1.	 There is no friction in the system. The ball will not slow down due

to friction with air or other objects.

	 2.	 There is no rotation in the system. The ball will not rotate. If

you play table tennis, you will know that rotation makes a huge

difference in the game.

	 3.	 The collisions are elastic. Elastic collision means that the ball will

not lose energy when it collides with the walls of the box. If there

are multiple balls, as we will see in the next section, the colliding

balls as a whole will not lose energy.

	 4.	 Gravity is not present in the system. The ball will not fall down due

to gravity. However, we will remove this restriction very soon.

Chapter 4 Balls in a 2-D Box, a Simple Physics Engine

58

Given such simplifications, we can write the following update rules of our system

according to Newton’s laws of motion:

	 x x tt t t� � � �1 � � 	

	 � �t t ta t� � � �1 � 	

Since we assume there are no external forces, the acceleration at initially is 0. Now,

let’s update our system by simulating the motion for ten iterations with a timestep of 0.2

seconds and velocity of (2,2). The code for performing the simulation is as follows. They

are just two simple functions:

def render(pos = POSITION, vel = VELOCITY):

 with plt.xkcd():

 fig, ax = plt.subplots(figsize=(WIDTH, HEIGHT))

 plt.xlim(0,WIDTH)

 plt.ylim(0,HEIGHT)

 ball_1 = plt.Circle(pos, RADIUS, color='r')

 ax.add_patch(ball_1)

 ax.arrow(*pos,

 *vel,

 head_width=ARROW_HEAD_WIDTH,

 head_length=ARROW_HEAD_LENGTH,

 fc='k', ec='k')

 plt.show()

def update(pos=POSITION, vel = VELOCITY, acc = None, delta_t = DELTA_T):

 # Note that all values are mutable so the update is in place

 for i in range(len(pos)):

 pos[i] += vel[i] * delta_t

 if acc:

 for i in range(len(pos)):

 vel[i] += acc[i] * delta_t

Chapter 4 Balls in a 2-D Box, a Simple Physics Engine

59

Now, we can use our preset parameters to perform the simulation:

RADIUS = 0.2

POSITION = [1,1]

VELOCITY = [2,2]

WIDTH, HEIGHT = 10, 8

ARROW_HEAD_WIDTH, ARROW_HEAD_LENGTH = 0.05, 0.2

DELTA_T = 0.2

render(pos=POSITION, vel = VELOCITY)

for _ in range(10):

 update(pos=POSITION, vel = VELOCITY,delta_t = DELTA_T)

 render(pos=POSITION, vel = VELOCITY)

Let’s see where the ball is after ten iterations in Figure 4-2.

Figure 4-2.  The ball’s position and velocity after ten iterations

As expected, for ten iterations with a timestep of 0.2 seconds, the system evolves for

2 seconds. With a velocity of (2,2), the ball will move 4 meters in both the horizontal and

vertical directions.

Now, let’s add some gravity to the system to get rid of the last assumptions we had

earlier. The modification is quite simple. To keep the ball in the box for the first several

frames, I have set the acceleration to be 1 meter per second squared downward. The

normal gravity acceleration on earth is about 9.8 meters per second squared.

Chapter 4 Balls in a 2-D Box, a Simple Physics Engine

60

ACCELERATION = [0,-1]

for _ in range(10):

 �update(pos=POSITION, vel = VELOCITY, acc = ACCELERATION, delta_t =

DELTA_T)

 render(pos=POSITION, vel = VELOCITY)

Let’s do a back-of-the-envelope calculation of the velocity. After 2 seconds, the ball

will lose all its speed in the vertical direction, so the velocity vector should be purely

horizontal. Let’s check in Figure 4-3.

Figure 4-3.  Ball’s position and velocity after 2 seconds in gravity field

As expected, the ball completely loses its speed in the vertical direction.

�Collision Detection
Now, let’s tackle the elephant in the room, handling the collision detection.

To detect something, we need a clear definition of collision. What does it mean

to have a collision between a wall and a ball? The idea is simple: if the ball’s center

of geometry is at a shorter distance than the radius against the wall, then there is a

collision. This is clearly illustrated in Figure 4-4.

Chapter 4 Balls in a 2-D Box, a Simple Physics Engine

61

Figure 4-4.  Zoom-in of a collision

The logic of detection becomes simple: if at a timestamp, the distance between

the center of the ball and either wall is less than the radius of the ball, then there is a

collision. For the next iteration, the ball will bounce off the wall by flipping the sign of the

corresponding velocity components. The system then evolves from there.

Let’s introduce a function to check possible collisions between the ball and the walls:

if the ball is still moving toward the wall and the distance is already less than the radius,

then a collision is detected. The function will also flip the sign of corresponding velocity

components if a collision is detected.

def detect_collision_wall(pos = POSITION, vel = VELOCITY, radius = RADIUS,

height = HEIGHT, width = WIDTH):

 # left wall

 if abs(pos[0]-0) < radius and vel[0] < 0:

 vel[0] = - vel[0]

 return

 # right wall

 if abs(width-pos[0])< radius and vel[0] > 0:

 vel[0] = -vel[0]

 return

 # upper wall

 if abs(height-pos[1]) < radius and vel[1] > 0:

 vel[1] = -vel[1]

 return

 # lower wall

Chapter 4 Balls in a 2-D Box, a Simple Physics Engine

62

 if abs(pos[1]-0) < radius and vel[1] < 0:

 vel[1] = -vel[1]

 return

You may notice that the collision condition depends on an assumption that the

ball is moving at a moderate speed. If the ball is so fast that between two neighboring

frames, the ball passes through the wall, known as tunneling problem, then the collision

detection will never be triggered.

Another issue is that the collision condition is lagging behind the actual motion of

the ball. This can be mitigated by introducing a small positive parameter called delta to

turn the distance calculation between the ball and wall into something like abs(pos[0]-0)

< radius + delta.

By picking a proper value of delta, depending on the velocity of the ball or

distribution of speeds for multiple-ball simulations, we can reduce the effect of lagging.

Now, let’s take a look at the simulated system to see how the ball bounces.

Figure 4-5 shows the direction our red ball is heading to.

Figure 4-5.  A ball is heading toward a collision

After the collision, the ball changes direction. Our algorithm works fine!

Chapter 4 Balls in a 2-D Box, a Simple Physics Engine

63

Figure 4-6.  Velocity of the ball changes right after the collision

Let’s take a quick look to see how to create a gif animation before moving on.

You can use the imageio Python library to create a gif animation. Let’s say you

have saved the snapshot of the system to files 1.png, 2.png, 3.png, etc. You can use the

following command to create a gif animation:

import imageio

filenames = ["1.png", "2.png","3.png"]

with imageio.get_writer('one_ball_bounce.gif', mode='I') as writer:

 for filename in filenames:

 image = imageio.imread(filename)

 writer.append_data(image)

For the one-ball case, the animation looks like the one in GIF 4-1.

Chapter 4 Balls in a 2-D Box, a Simple Physics Engine

64

GIF 4-1.  Ball’s movement without gravity

If we add gravity to the system, the animation will look like the one in GIF 4-2.

GIF 4-2.  Ball’s movement with gravity

Already very cool, isn’t it?

Chapter 4 Balls in a 2-D Box, a Simple Physics Engine

65

�Exercise

	 1.	 Introduce the delta to the simulation. What is the relationship

between the speed of the ball and the value of delta?

	 2.	 Can you increase the frame rate (fps) of the animation? Does it

look more realistic?

�Multiple Balls in a 2-D Box
Now, let’s talk about the case of multiple balls. Besides the possibility of wall-ball

collision, we can also have collisions between balls. This introduces two new problems:

	 1.	 How to detect the collision between balls?

	 2.	 How do balls behave when they collide?

If you think about the first problem, if there are 100 balls in a box, then theoretically

the between-ball collision is a n2 operation like in the thousands, naively. This becomes

unhandleable, therefore unacceptable, quickly. You don’t want the magnitude of

calculation to grow quadratically. However, since the majority of balls won’t have a

chance to collide with each other, we may want to use a more efficient algorithm to

detect or predict the collision between balls.

Let’s solve the second problem first. It seems easier compared to the first one, isn’t it?

�Update of Positions and Velocity upon Collision
There are two physics laws that govern the movement of purely elastic balls: the law of

conservation of momentum and the law of conservation of energy. In the simulation of

wall-ball collision, we assume the wall has infinite mass so the momentum of the ball

is forcefully reversed by the wall while preserving the energy of the ball. Since the ball’s

energy is the sum of kinetic energy and potential energy, if we introduce gravity, the

speed of the ball is unchanged.

For the ball-ball collision, things become a little bit uncomplicated. We are not going

to deduce the formulas in detail, but we can do some back-of-the-envelope analysis after

checking the formulas.

Chapter 4 Balls in a 2-D Box, a Simple Physics Engine

66

Let’s denote the center of the two balls as c1 and c2, the radius of the two balls as r1

and r2, and the velocity of the two balls as υ1 and υ2. We will use the prime notation ��1

and ��2 to denote the velocities of the balls after the collision. Different from the case of

wall-ball collision, we also need to consider the masses of the two balls. This agrees with

our intuition because even a fast ping-pong ball is not going to move a golf ball much.

Let’s call them m1 and m2.

Now, the two physics laws that govern the motion are listed as follows: the

conservation of momentum and the conservation of energy.

	 m m m m
1 1 2 2 1 1 2 2
� � � �� � � � � 	

	

1

2

1

2

1

2

1

2
1 1

2

2 2

2

1 1

2

2 2

2m m m m� � � � �� � � � 	

Note that all the velocities are vectors rather than scalars. For example, υ1 has two

components υ1[0] and υ1[1] and υ2 has two components υ2[0] and υ2[1], etc. Since the only

two quantities we don’t know are �1
� and �2

� , we can rearrange the equations to obtain

them. This is a great mathematical exercise and is left to the reader as an exercise. For

now, I will offer you the solutions:

	

� � �
�

� � � �
�

�� �� � � �
1 1

2

1 2

1 2 1 2

1 2

2 1 2

2m
m m

c c
c c

c c,

	

	

� � �
�

� � � �
�

�� �� � � �
2 2

1

1 2

2 1 2 1

1 2

2 2 1

2m
m m

c c
c c

c c,

	

Let’s get a visual impression of what’s going on and write a function to compute the

post-collision velocities. Assume that two balls are colliding into each other as illustrated

in Figure 4-7.

Chapter 4 Balls in a 2-D Box, a Simple Physics Engine

67

Figure 4-7.  Two balls colliding into each other

We assume that the balls are so hard that the distance between two centers is always

exactly the sum of their radii. I have picked the parameters for these two balls as shown

in Table 4-1.

Table 4-1.  Parameters for two balls’

position, radius, velocity, and masses

υ1 (0.5, 0.5)

υ2 (-0.5, 1)

r1 0.3

r2 0.2

c1 (2,3)

c2 (2.5, 3)

m1 2

m2 2

Let’s do the calculation then:

� � �
�

� � � �
�

�� �� � � �
1 1

2

1 2

1 2 1 2

1 2

2 1 2

2m
m m

c c
c c

c c,

Chapter 4 Balls in a 2-D Box, a Simple Physics Engine

68

Substitute the numbers:

	

� � � � �
�

� � � � �� � � � � � ��

�
1

0 5 0 5
2 3

2 3

0 5 0 5 0 5 1 2 3 2 5 3
. .

. . . , .
,

, , , , ��

� � �
� � � � �� �

2 3 2 5 3
2 3 2 5 3

2

, ,
, ,

(.)
.

	

We obtain the first ball’s post-collision velocity:

	
� � �� ��
1

0 7 0 5. ., 	

By the same token, we can calculate the post-collision velocity of ball 2. The

velocity is

	
� � � ��
2

0 3 1. , 	

Visually, the velocity vectors are presented in Figure 4-8.

Figure 4-8.  Post-collision velocity of two balls

Does our result agree with the conservation of momentum and energy? This

verification is left to the readers as an exercise.

Now, let’s rewrite our rendering function to handle multiple balls. Also, it is time

to rewrite our code to represent the objects like balls and boxes into objects and

encapsulate the collision logics. I didn’t do this earlier because I want the mathematics

Chapter 4 Balls in a 2-D Box, a Simple Physics Engine

69

to be clear and easy to understand. By doing it now, we can make the next section of our

tutorial clean and concise.

First, let’s create the _box_, _ball_, and _system_ classes. We create them as a

dataclass because we want to make use of the automatically generated methods such as

__init__ and __repr__. The Box class is the simplest one.

from dataclasses import dataclass

@dataclass

class Box:

 height: float

 width: float

Next, we create the Ball class in which we implement the main logic of the collision

handling. Note that this is no more than a direct translation of the mathematical

formulas earlier.

@dataclass

class Ball:

 pos: [float, float]

 vel: [float, float]

 mass: float

 radius: float

 def update(self, acc = None, delta_t = 0.2) -> None:

 for i in range(len(self.pos)):

 self.pos[i] += self.vel[i] * delta_t

 if acc:

 for i in range(len(self.pos)):

 self.vel[i] += acc[i] * delta_t

 def detect_ball_collision(self, other) -> None:

 �distance = np.sqrt((self.pos[0] - other.pos[0])**2 + (self.pos[1] -

other.pos[1])**2)

 if self.radius + other.radius >= distance:

 self.ball_collision_update(other)

 def ball_collision_update(self, other)-> None:

 '''

Chapter 4 Balls in a 2-D Box, a Simple Physics Engine

70

 Implement the ball collision logic, making use of symmetry.

 ball_1: self

 ball_2: other

 '''

 mass_factor_1 = 2*other.mass/(self.mass + other.mass)

 mass_factor_2 = 2*self.mass/(self.mass + other.mass)

 �velocity_diff = [self.vel[0] - other.vel[0], self.vel[1] -

other.vel[1]]

 �center_diff = [self.pos[0] - other.pos[0], self.pos[1] -

other.pos[1]]

 squared_center_diff = sum([diff**2 for diff in center_diff])

 �velocity_factor = np.dot(velocity_diff, center_diff)/squared_

center_diff <1>

 self.vel[0] -= mass_factor_1 * velocity_factor * center_diff[0]

 self.vel[1] -= mass_factor_1 * velocity_factor * center_diff[1]

 other.vel[0] += mass_factor_2 * velocity_factor * center_diff[0]

 other.vel[1] += mass_factor_2 * velocity_factor * center_diff[1]

 def detect_box_collision(self, box: Box) -> None:

 # left wall

 if abs(self.pos[0]-0) < self.radius and self.vel[0] < 0:

 self.vel[0] = -self.vel[0]

 return

 # right wall

 if abs(box.width-self.pos[0])< self.radius and self.vel[0] > 0:

 self.vel[0] = -self.vel[0]

 return

 # upper wall

 if abs(box.height-self.pos[1]) < self.radius and self.vel[1] > 0:

 self.vel[1] = -self.vel[1]

 return

 # lower wall

Chapter 4 Balls in a 2-D Box, a Simple Physics Engine

71

 if abs(self.pos[1]-0) < self.radius and self.vel[1] < 0:

 self.vel[1] = -self.vel[1]

 return

The last part is the System class. It is a container for the Box and Ball classes and

governs the interaction between them. We also bundle some helpful functions into it like

rendering, etc.

from typing import List

@dataclass

class System:

 box: Box

 balls: List[Ball]

 acc: float = None

 delta_t: float = 0.2

 def init_balls(self):

 raise NotImplementedError

 def update(self):

 # ball-ball collision detection

 for idx_1 in range(0, len(self.balls)-1):

 for idx_2 in range(idx_1 + 1, len(self.balls)):

 self.balls[idx_1].detect_ball_collision(self.balls[idx_2])

 # ball-wall collision detection

 for ball in self.balls:

 ball.detect_box_collision(self.box)

 # update velocity

 for ball in self.balls:

 ball.update(self.acc, self.delta_t)

 def render(self, save= False, file_name = None, return_array = False):

 with plt.xkcd():

 fig, ax = plt.subplots(figsize=(self.box.width, self.box.height))

 if return_array:

Chapter 4 Balls in a 2-D Box, a Simple Physics Engine

72

 from matplotlib.backends.backend_agg import FigureCanvasAgg

 canvas = FigureCanvasAgg(fig)

 ax.set_xlim(0,self.box.width)

 ax.set_ylim(0,self.box.height)

 for ball in self.balls:

 pos, vel, radius = ball.pos, ball.vel, ball.radius

 ball_patch = plt.Circle(pos, radius, color='r')

 ax.add_patch(ball_patch)

 ax.arrow(*pos,

 *vel,

 fc='k', ec='k')

 if save:

 plt.savefig("{}.png".format(file_name))

 if return_array:

 # Retrieve a view on the renderer buffer

 canvas.draw()

 buf = canvas.buffer_rgba()

 # convert to a NumPy array

 return np.asarray(buf)

 �def generate_gif(self, file_name = "multiple_ball_collision.gif",

steps = 100):

 with imageio.get_writer(file_name, mode='I') as writer:

 for _ in range(steps):

 system.update()

 image = system.render(return_array = True)

 writer.append_data(image)

Let’s take a look at how our two-ball system evolves in GIF 4-3. If you are reading a

hard copy, make sure to check online for the animation.

Chapter 4 Balls in a 2-D Box, a Simple Physics Engine

73

GIF 4-3.  Two balls moving in a box with collisions

We can also generate a bunch of random balls and see how they evolve as in GIF 4-4.

The implementation of this experiment is left to the readers as an exercise. Here is a

five-ball system. Notice that the sizes of the balls are not proportional to the mass. Can

you guess which ball has the largest mass?

GIF 4-4.  Multiple balls with random radii, masses, and velocities in a box

Chapter 4 Balls in a 2-D Box, a Simple Physics Engine

74

�Collision Detection in Multiple-Ball Scenario
Now, let’s address the elephant in the room: the performance issue of collision detection.

There are many well-established collision detection algorithms; we will discuss and

implement one of the most intuitive algorithms: the sweep and prune algorithm.

The idea of sweep and prune algorithm is quite straightforward. If two balls collide,

then their projection in either the x axis or the y axis must collide as well! Therefore, we

can use the projection of the balls to predict if they collide or not as it is a necessary,

although not sufficient, condition.

The best part of sweep and prune is that we can sort the balls by their projections

in one axis beforehand. Then a single sweep can find all pairs that can potentially

collide. Sorting is a process of time complexity O(n log (n)), which is already a drastic

improvement over the naive approach. An improvement can be made utilizing

Now, let’s implement the algorithm. We only need to implement one new method in

the System class, which is solely responsible for returning a list of pairs of balls that can

potentially collide.

def sweep_prune(self)-> List[Tuple[int, int]]:

 # return a list of indices of balls that may collide

 self.balls.sort(key = lambda ball: ball.pos[0]) <1>

 active_balls = []

 candidates = []

 for idx, ball in enumerate(self.balls):

 if not active_balls:

 active_balls.append(idx)

 else:

 closest_ball = self.balls[active_balls[-1]]

 �if closest_ball.pos[0] + closest_ball.radius >= ball.pos[0] -

ball.radius: <2>

 candidates.append((active_balls[-1],idx))

 active_balls.append(idx)

 else: <3>

 active_balls = [idx]

 return candidates

The algorithm does three things:

Chapter 4 Balls in a 2-D Box, a Simple Physics Engine

75

	 1.	 The balls are sorted in place by their x coordinate.

	 2.	 If two balls are close enough in the x axis, then they are candidates

for collision.

	 3.	 Otherwise, empty the active_balls list and add the current ball to

the active_balls list, as we move away from the previous cluster of

ball projections.

Another small place we need to change is in the update method in the System class:

use sweep_prune to select candidates.

def update(self):

 # ball-ball collision detection

 candidates = self.sweep_prune()

 for pair_idx in candidates:

 �self.balls[pair_idx[0]].detect_ball_collision(self.balls[pair_

idx[1]])

 # everything else is the same

Now, go ahead and try to run the simulation. Notice that if you disable the rendering,

the simulation will run faster. Rendering probably takes much longer than detecting

collisions in our case.

With that, we have reached the end of the chapter. Give it a try to finish the exercises

before moving on to the next chapter.

�Exercise

	 1.	 Deduce the expression post-collision velocities from the

conservation of energy and momentum in 2-D. Use another set of

parameters to verify that the post-collision velocity calculations

are in agreement with the conservation of momentum and energy.

	 2.	 Write a program that confines the total kinetic energy of a 20-ball

system to a given value. Verify that the kinetic energy remains the

same during the whole simulation.

	 3.	 Add gravity to the five-ball system.

Chapter 4 Balls in a 2-D Box, a Simple Physics Engine

76

	 4.	 What if every collision with the wall will result in an energy loss?

Let’s say 10% of the kinetic energy will be lost in each box-wall

collision; run a simulation and check what the system looks like.

�Summary
In this chapter, we discussed the exciting topic of simulating physics rules. We

implemented an algorithm to detect collisions and derived formulas to calculate the

post-collision velocities of balls in a 2-D system. We also implemented a more efficient

collision detection algorithm for multiple-ball cases.

Chapter 4 Balls in a 2-D Box, a Simple Physics Engine

77

CHAPTER 5

Percolation, Threshold,
and Phase Change
A scientist is investigating the spreading of wildfire in a forest. She is looking for a simple

model that can predict how large a wildfire will be given limited knowledge about the

forests, the weather, the climate, etc. For example, if some irresponsible tourist dropped

a cigarette somewhere in the forest, what is the expectation of the worst-case size of the

fire? How about the average size?

Another scientist is studying the robustness of a computer network. He is looking

for solutions for disaster recovery under extreme cases. Suppose the network goes

down and the administrator only has limited resources to start certain key nodes. How

much can the network be restored? Which nodes should be started first given limited

resources?

These two questions seem unrelated, but they are actually strongly similar under

the name of percolation. Percolation or percolation theory is the study of clustering

behaviors of random networks. The theory originated naturally from many physical,

chemical, and biological systems. For example, in the case of the movement of water in

porous material, whether the water can percolate through the porous material depends

on the porosity of the material. For medical delivery in muscle tissues, the movement of

medical products can also be modeled as a percolation process.

Back to the forest fire questions, if we assume that the forest is a network of trees that

between-tree fire spreading is determined by a probability, then the question of forest

fire prevention becomes the determination of a critical probability of fire spreading in a

percolation process. For the network restoration problem, the percentage of nodes that

can be started first is also modelable as a critical probability.

Intuitively, different nodes will have different importance in a network, so we are

simplifying the network case strongly now. A better modeling of a network is a graph as

we shall revisit in a later chapter.

© Rongpeng Li and Aiichiro Nakano 2022
R. Li and A. Nakano, Simulation with Python, https://doi.org/10.1007/978-1-4842-8185-7_5

https://doi.org/10.1007/978-1-4842-8185-7_5#DOI

78

Now, let’s get down to the fundamentals of the percolation theory and run some

basic simulations.

�Problem Introduction
Clustering behavior can happen on any kind of network in, theoretically, any dimension.

The most intuitive one to visualize is the 2-D case as in Figure 5-1. For simplicity, let’s

assume that the network is a square grid/lattice.

Figure 5-1.  A square lattice of dimension 10 by 10

What you see in Figure 5-1 is a square grid with size 10 by 10. Let’s call each red

square a site, then this finite grid has 100 sites. Each site can have two states, either

occupied or unoccupied. In our forest fire case, the tree can be either burning or safe.

Now, I am assigning a blue color to the occupied sites and redrawing the grid. I can also

use a bond to connect the adjacent occupied sites. One typical state of the grid looks like

Figure 5-2.

Chapter 5 Percolation, Threshold, and Phase Change

79

Figure 5-2.  Grid with occupied sites connected

Note that I also shrunk the site size so you can see the bonds more clearly. We call

the connected occupied sites a cluster. In the preceding case, there is one large cluster

that spans almost the entire grid except the three on the top right.

As you can imagine for the forest fire case, this indicates a fire that starts somewhere

and spreads to the entire grid. However, there are also some small random fires on the

top-right corner that only burned down one isolated tree each.

The example we just showed is a site percolation problem. There is another type

called bond percolation problem where the connectivity is measured by linking bonds,

rather than sites. For simplicity, we will only focus on the site percolation problem in this

chapter. The bond percolation problem simulation is left to the readers as an exercise.

Before moving on, I would like to show you how the Grid class is defined and how

the grid is rendered:

from enum import Enum

class State(Enum):

 Working = 1

 Broken = 0

Chapter 5 Percolation, Threshold, and Phase Change

80

class Grid:

 state_to_color = {State.Broken: "red",

 State.Working: "blue"}

 �def __init__(self, width = WIDTH, height = HEIGHT, prob = PROB, random_

init = False):

 self.width = width

 self.height = height

 self.prob = prob

 �self.states = [[State.Broken for _ in range(self.height)] for _ in

range(self.width)]

 if random_init:

 self.random_init()

 def random_init(self):

 for w in range(self.width):

 for h in range(self.height):

 if np.random.uniform() < self.prob:

 self.states[w][h] = State.Working

 def render(self, return_array = False, block_size = 1300):

 with plt.xkcd():

 fig, ax = plt.subplots(figsize=(self.width+1, self.height+1))

 if return_array:

 from matplotlib.backends.backend_agg import FigureCanvasAgg

 canvas = FigureCanvasAgg(fig)

 ax.set_xlim(0,self.width+1)

 ax.set_ylim(0,self.height+1)

 ax.axis('off')

 # draw the sites

 x, y, c = [], [], []

 # Note that w,h are for plotting coordinates.

 for w in range(1,self.width+1):

 for h in range(1,self.height+1):

 x.append(w)

 y.append(h)

Chapter 5 Percolation, Threshold, and Phase Change

81

 state = self.states[w-1][h-1]

 c.append(Grid.state_to_color[state])

 plt.scatter(x, y, c = c, marker="s", s = block_size)

 # draw the bonds between working site

 # from bottom left, expand up and right to connect

 for w in range(1,self.width):

 for h in range(1,self.height):

 origin_state = self.states[w-1][h-1]

 if origin_state == State.Working:

 up_state = self.states[w-1][h]

 if up_state == State.Working:

 �plt.plot((w, w), (h, h+1), c = Grid.state_to_

color[State.Working])

 right_state = self.states[w][h-1]

 if right_state == State.Working:

 �plt.plot((w, w+1), (h, h), c = Grid.state_to_

color[State.Working])

 # top line

 for w in range(1,self.width):

 origin_state = self.states[w-1][self.height-1]

 right_state = self.states[w][self.height-1]

 �if origin_state == State.Working and right_state == State.

Working:

 �plt.plot((w,w+1),(self.height,self.height), c = Grid.

state_to_color[State.Working])

 # right line

 for h in range(1,self.height):

 origin_state = self.states[self.width - 1][h-1]

 up_state = self.states[self.width - 1][h]

 �if origin_state == State.Working and up_state == State.

Working:

 �plt.plot((self.width,self.width),(h,h+1), c = Grid.

state_to_color[State.Working])

Chapter 5 Percolation, Threshold, and Phase Change

82

Now, let’s get down to the key question. Given a varying occupation probability p

and independence between sites (or bonds), when will a cluster percolate through our

grid from the top edge to the bottom edge?

�Percolation and the Critical Probability
Well, mathematicians are more interested in another question: When will an infinite

cluster form with certainty for an infinitely large cluster? From the perspective of

simulation, we can’t simulate an infinitely large grid, but we can approach this problem

by answering the easier question we asked earlier. If a cluster, with probability of 100%,

can’t percolate through the grid, then an infinite cluster is not possible.

Let’s call such a threshold probability pc where c stands for critical.

�An Analytical Solution for the 1-D Case
Although this book is about simulation, I want to show you how the 1-D case is solved

analytically.

For either site percolation or bond percolation in 1-D, the critical probability pc is 1. It is

easy to visualize; there is one and only one way to form an infinite cluster in 1-D. Therefore,

any probability smaller than 1 will stop the formation of an infinite cluster.

Let’s say the probability that a cluster with size L exists is denoted by P(p, L), then the

critical probability must satisfy the following equation:

	
[]
lim

L p p
p pP p L

c

c
→∞ >

<() = {, 1

0

	

Luckily, the exact expression of P(p, L) is easy to derive:

	
[]
lim lim

L L
L

p
pP p L p→∞ →∞ =
<() = ={, 1 1

0 1

	

Therefore, our critical probability pc is 1.

From 1-D to 2-D, the difficulty of analytical derivation increases dramatically. In fact,

it takes about 20 years for mathematicians to obtain/prove the analytical form of critical

probability for the 2-D square grid bond percolation case. Harry Kesten proved that the

bond percolation critical probability is exactly
1

2
 in the 2-D square grid case. The site

Chapter 5 Percolation, Threshold, and Phase Change

83

percolation case, on the other hand, is notoriously hard to derive. It turns out that we

can only run a simulation to estimate it. The approach is something you already saw in

Chapter 1.

�A Simulation for the 2-D Case
We will perform the simulation in two steps. For the first part, let’s write a function to

detect whether there is a cluster that percolates the grid and color it in gray. Our goal is

to only find one, so once we find one, we will stop exploring other possible clusters.

For the second part, we will run the simulation multiple times to approximate the

critical probability pc.

To discover the existence of a percolating cluster, we need to write a graph traversal

algorithm to traverse through the neighboring occupied sites. There are two options:

one is breadth-first search, and the other is depth-first search. Here, I implement the

depth-first search algorithm. The idea is to recursively visit neighbors until a longest

possible path is visited, then hop back to another possible path in the previous round of

recursion.

​def dfs(self, site, visited) -> None:

 ​visited.add(site) (1)

 ​(w,h) = site

 � ​neighbors = [site for site in [(w-1,h),(w+1,h),(w,h-1),(w,h+1)] if

self.filter_illegal_site(site)]

 ​for neighbor in neighbors:

 � ​if neighbor not in visited and self.states[neighbor[0]]

[neighbor[1]] == State.Working:

 ​self.dfs(neighbor, visited)

Next, we write another function for the heavy lifting of finding the cluster. We start

from the lowest row of the grid and start searching for clusters whenever we encounter

an occupied site. If during the search, we find a site that is on the top edge of the grid,

our mission is complete. If we find no site on the lower edge that leads to a percolating

cluster, then the search finishes as well.

def percolate_through(self):

 clusters = []

 success = False

Chapter 5 Percolation, Threshold, and Phase Change

https://doi.org/10.1007/978-1-4842-8185-7_1

84

 for w in range(self.width):

 if clusters:

 all_visited = reduce(lambda x,y: x.union(y), clusters) (1)

 else:

 all_visited = set()

 �if self.states[w][0] == State.Working and (w,0) not in all_

visited:

 clusters.append(set())

 self.dfs((w,0), clusters[-1])

 latest_cluster = clusters[-1]

 �if max([site[1] for site in latest_cluster]) == self.

height-1:

 success = True

 return clusters[-1], success

 return None, success

 def filter_illegal_site(self, site): (2)

 (w,h) = site

 if w < 0 or w >= self.width:

 return False

 if h < 0 or h >= self.height:

 return False

 return True

We can also update other parts of our program to enable the highlighting of the

percolating cluster. Here are the key lines. You can find the complete code in the online

site of this book.

class State(Enum):

 Working = 1

 Broken = 0

 Cluster = -1

class Grid:

 state_to_color = {State.Broken: "red",

 State.Working: "blue",

 State.Cluster: "gray"}

Chapter 5 Percolation, Threshold, and Phase Change

85

 �def render(self, return_array = False, block_size = 1300, percolating

= False):

 if percolating:

 cluster, success = self.percolate_through()

 if success:

 for site in cluster:

 w, h = site

 self.states[w][h] = State.Cluster

Note that the method should only run once. The correctness of the depth-first search

algorithm guarantees the discovery of one percolating cluster if it does exist.

Alright, let’s run a rendering of a simulation to see if we can find a percolating cluster

with different grid sizes and occupation probabilities. First, let’s try a grid with size of 10

by 10 and occupation probability of 0.5:

Grid(width=10, height = 10, random_init= True, prob = 0.5).

render(percolating = True)

We are lucky! There is one percolating cluster! The gray sites in Figure 5-3 show the

percolating cluster.

Figure 5-3.  A grid with a percolating cluster

Chapter 5 Percolation, Threshold, and Phase Change

86

Let’s run the code again; we get another not-so-lucky result as shown in Figure 5-4.

Figure 5-4.  A grid without a percolating cluster

Let’s try a much larger 100 by 100 square grid with occupation probability 0.7. The

result is shown in Figure 5-5.

Figure 5-5.  A 100 by 100 grid with a percolating cluster

Chapter 5 Percolation, Threshold, and Phase Change

87

I hope your eyes are still working OK. The percolating cluster is so big that it contains

almost all the occupied sites. You may also run into the recursion depth error; you can

temporarily increase the maximum recursion depth by setting the sys.setrecursionlimit

parameter.

Next, let’s run a simulation to see if we can narrow down the value of the critical

occupation probability pc. First, let’s try a grid with size of 10 by 10 and occupation

probability ranging from 0.2 to 0.8 with a step of 0.05. Totally, we will have about 13

settings. We will run each setting 100 times to obtain the probability of pc where L is the

size of the grid.

L = 10

ROUND = 100

p_clustering = []

for prob in np.linspace(0.2,0.8,num=13):

 res = []

 for _ in range(ROUND):

 �_, success = Grid(L, L, prob = prob, random_init = True).percolate_

through()

 res.append(success)

 p_clustering.append(np.mean(res))

with plt.xkcd():

 fig, ax = plt.subplots(figsize=(10,8))

 ax.plot(x = np.linspace(0.2,0.8,num=13), y = p_clustering, marker="*")

 ax.set_xlabel("Occupation Probability")

 ax.set_ylabel("Probability of Percolation")

 ax.set_title("10 by 10 Grid Percolation Experiment")

Our result should agree with our intuition. When the occupation probability is low,

we should see no percolating cluster at all. When it is large, the probability of percolation

should approach 1. Check Figure 5-6 for the relationship.

Chapter 5 Percolation, Threshold, and Phase Change

88

Figure 5-6.  Percolating probability changes with respect to the occupation
probability for a 10 by 10 grid

It looks like somewhere between 0.5 and 0.6, there is a jump of the percolation

probability.

Let’s enlarge our grid to 50 by 50 and try again. Note that this may take longer time

and deeper recursion depth. The result is in Figure 5-7.

Figure 5-7.  Percolating probability changes with respect to the occupation
probability for a 50 by 50 grid

Chapter 5 Percolation, Threshold, and Phase Change

89

The trend becomes more obvious. The formation of the percolating cluster becomes

almost certain once a threshold around 0.6 is exceeded. Now, let’s focus on the range

between 0.5 and 0.7 and zoom in. We obtain Figure 5-8.

Figure 5-8.  Zoom in for a 50 by 50 grid

Before moving on to the next section, let’s run the simulation for a 100 by 100 grid

and 1000 runs for each occupation probability data point. Figure 5-9 is what I got.

Figure 5-9.  Percolating probability changes with respect to the occupation
probability for a 100 by 100 grid

Chapter 5 Percolation, Threshold, and Phase Change

90

Note that although the shapes of the curves are similar, the range of the x axis is

much smaller: it is also a zoom-in visualization. Our estimation of the critical probability

is more and more accurate. We can see clearly that the critical occupation probability is

around 0.6.

With more powerful simulation and calculation in academic research, the current

estimation of square grid site percolation critical probability is about 0.592746. We will

use this value as our ground truth in the following content.

�Exercise

	 1.	 Implement the breadth-first search algorithm for cluster

discovery.

	 2.	 Implement an algorithm to calculate the size of the largest cluster

of a grid. Plot it against the occupation probability. Notice that you

may need to run several times to get a sensible statistic.

�Another Interesting Statistic in 2-D Grid Percolation
If we go back to our original forest fire question, a question we are more interested in is

the severity of the fire, which is the size of the percolating cluster.

However, as in simulation, we are changing the size of the grid to simulate an

infinitely large grid. It is not possible to calculate the size of the largest cluster as it is grid

size dependent. What we can calculate is another value, fraction f, that is the fraction

of the occupied sites that are in the percolating cluster. As the occupation probability

grows, the fraction shall reach 1, but as the occupation probability approaches the

critical probability from above, the fraction shall approach 0.

Imagine an infinitely large grid, if the occupation probability is just slightly bigger

than the critical probability, then there is one percolating cluster. Although probability

theory tells us that such a cluster definitely exists in an infinitely large grid, even a

slightest smaller occupation probability won’t even allow the percolating cluster to

form! Can you imagine what the cluster looks like? Yes. It is likely to be very zigzagging,

infinitely large but leaves almost all occupied sites out of itself. Sounds contradictory but

it is true.

Chapter 5 Percolation, Threshold, and Phase Change

91

First, let’s implement a new method to calculate the fraction:

def percolating_cluster_fraction(self):

 assert(self.percolated)

 �total_occupied = sum([sum([h in(State.Cluster, State.Working) for h in

row]) for row in self.states])

 �cluster_size = sum([sum([h == State.Cluster for h in row]) for row in

self.states])

 return cluster_size/total_occupied

Next, we run a simulation to evaluate the relationship between the fraction and

the occupation probability. We use a 100 by 100 grid, 200 by 200 grid, and 300 by 300

grid to perform the simulation. From above the ground truth, we slowly decrease the

occupation probability to around 0.59, and for each one, we perform 1000 runs to obtain

the average.

L = 100

ROUND = 1000

TRUTH = 0.592746

fractions = []

probs = []

start = 0.622746

steps = 110

step = (start - TRUTH)/(steps - 10)

for i in tqdm(range(steps)):

 res = []

 prob = start - i * step

 probs.append(prob)

 for _ in range(ROUND):

 while True:

 grid = Grid(L, L, prob = prob, random_init = True)

 grid.percolate_through()

 if grid.percolated:

 frac = grid.percolating_cluster_fraction()

 res.append(frac)

 break

 fractions.append(res)

Chapter 5 Percolation, Threshold, and Phase Change

92

We can then estimate how much the fraction is when the critical occupation

probability is reached. The plotting code is trivial and therefore skipped. We obtain

Figure 5-10.

Figure 5-10.  The fraction of a percolating cluster vs. the occupation probability for
a 100 by 100 grid

Well, this doesn’t look good because ideally the fraction should be 0; instead, we get

a value around 0.57. Let’s try a larger 200 by 200 grid. We obtain Figure 5-11.

Figure 5-11.  The fraction of a percolating cluster vs. the occupation probability for
a 200 by 200 grid

A 200 by 200 grid size gives us a fraction about 0.52 at critical occupation probability.

Note that this simulation runs for hours on my 2019 MacBook Pro, 16GB RAM. If you

have a machine that you can leave on for a whole day, you can try the 300 by 300 grid size

simulation just as I did. I have to set the max recursion depth to a fairly large number to

avoid the recursion error. After hours and hours of calculation, I obtained Figure 5-12.

Chapter 5 Percolation, Threshold, and Phase Change

93

Figure 5-12.  The fraction of a percolating cluster vs. the occupation probability for
a 300 by 300 grid

We successfully reached a fraction value of 0.5 at critical occupation probability, but

we are far from the theoretical value. This is an example to demonstrate how difficult it

can be to get a simulation’s result to converge. The difficulty of simulating around the

critical occupation probability is well known because we are approaching a so-called

phase transition in the simulation. The property of the system changes abruptly around

the critical occupation probability. We are using a naive way to perform the simulation,

and our hardware is not powerful enough as well. This was expected. Don’t feel

frustrated.

�Exercise

	 1.	 Can you derive the analytical equation for the fraction as a

function of the occupation probability in the 1-D case?

	 2.	 The percolate_through method will stop searching for potential

percolating clusters when the first one is found. Estimate how

likely it is for two non-overlapping percolating clusters to coexist.

	 3.	 Perform the bond percolation simulation for a grid of size 100 by

100. Plot the fraction of the percolating cluster as a function of the

occupation probability as well.

Chapter 5 Percolation, Threshold, and Phase Change

94

�Summary
In this chapter, we studied the simulation of percolation on grids. This type of simulation

has a deep root in mathematics and theoretical physics. We derived an analytical

solution for a 1-D case and simulated larger and larger grids in 2-D cases. We also saw

one painful example that sometimes simulation can become extremely hard.

Chapter 5 Percolation, Threshold, and Phase Change

95

CHAPTER 6

Queuing System: How
Stock Trades Are Made
A stock exchange is a fascinating system in which people trade stocks and wish to

profit from the trading. In the old times before electronic trading, brokers would get

together and trade stocks on behalf of their clients by yelling at each other. Nowadays,

everything becomes electronic. The retailer investors can use mobile applications or

web applications to make trades.

In this chapter, we will build a system to simulate a stock exchange and visualize

an order book. The key takeaway for this simulation is the handling of the queuing of

orders. For example, some orders are submitted early, while others are submitted late

with a lower price. We need to properly determine the order priority in such cases. On

the other hand, we also need to manage the message broadcasting. In real life, investors

can see the real-time stock price changes which are broadcasted by the stock exchange.

�Trading Process Fundamentals
First, let’s decompose the trading process to identify what entities and processes should

be simulated.

There are three major parts in a successful trade. First, the investor sends an order to

the exchange. Then, a match engine receives the order and tries to find the counterpart

of the order. For example, if a new sell order comes in, the match engine will try to find an

existing buy order in the queued orders to match the new sell order. In the following third

step, there are two possibilities. If there is a successful find, the trade will be completed,

and messages of successful trade will be broadcasted to the original investors, and a new

price will also be available, as the latest price may change due to the trade, to all investors

in the market. If there is no successful find, the new sell order will also be queued until

future trades come in. Investors can also request removal of their queued orders.

© Rongpeng Li and Aiichiro Nakano 2022
R. Li and A. Nakano, Simulation with Python, https://doi.org/10.1007/978-1-4842-8185-7_6

https://doi.org/10.1007/978-1-4842-8185-7_6#DOI

96

In a short summary, we need to simulate the following entities:

	 1.	 Investor

	 2.	 Match engine

Well, it also makes sense to further split the match engine to more components

like one part is solely responsible for match trades and another part is responsible for

broadcasting information, etc. However, for simplicity, we will pack everything on the

stock market side into the match engine entity.

To fully simulate the trading process, the following four processes need to be

simulated:

	 1.	 The investor sends an order to the match engine.

	 2.	 The match engine processes and tries to match the trade.

	 3.	 The match engine broadcasts messages to the original order

submitters if there is a successful trade.

	 4.	 The match engine broadcasts the latest prices to everyone in

the market.

Due to the limitation of space, our focus for this chapter is on the first two parts.

However, you can tell that steps 3 and 4 are just the opposites of step 1. I will leave these

two parts as exercises to you at the end of the book. You will see that there are many

simplifications and assumptions in this chapter. I will leave all of them as exercises for

you to implement a fully functional system.

�The Order Book
The way the match engine keeps track of orders is to maintain an order book. An order

book is a dynamic list of buy and sell orders that keeps getting updated by the match

engine. You can visualize the order book as two piles of orders; all the buy orders are

on the left, while the sell orders are on the right. The match engine tries to find tradable

pairs from the buying side and the selling side.

The order book needs to be maintained such that all participants in the market feel

fair and equal. There are certain principles that need to be respected. There are two most

important ones.

Chapter 6 Queuing System: How Stock Trades Are Made

97

First, sell orders with a lower price have priority over sell orders with a higher price.

By the same token, buy orders with a higher price have priority over buy orders with a

lower price. However, this is only true for the so-called limit order. The market order is

special because it will accept any prices. For example, a market buy order will match the

sell orders from the lowest price to higher price until the requested amount of shares in

the buy order has been all filled, which may significantly push the market price, the price

every participant sees, higher.

On the other hand, there are stop loss orders and stop profit orders. Such orders

will be triggered when the price hits a certain level. For example, a stop loss order will

be executed once the price drops to a certain level to control the loss. We won’t cover

such types of orders in this chapter, but readers are encouraged to implement them as

extensions of our simulation.

Second, if the prices are the same, orders that were submitted earlier have higher

priority. Note that in principle there won’t be two orders with the exact same submitting

time so there will always be an order to rely on.

As orders come in, the order book will dynamically change; the volume of orders at a

certain price level is called the depth. The deeper the depth is, the more interest there is

for buying or selling the stocks. As we discussed earlier, the orders with a price closer to

the market price will have higher priority than the orders further away from it. Therefore,

the order book will always look like a valley with fast changing depths. GIF 6-1 illustrates

it clearly.

GIF 6-1.  Order book depth dynamics

Chapter 6 Queuing System: How Stock Trades Are Made

98

Note that in real life, if an order hasn’t been executed by the match engine, the

investors can always request to cancel the order. However, we won’t implement this part

either in this chapter. You can give it a try; it is not as hard as you may think.

�Create the Interfaces and Determine
the Data Schema
Alright! We are ready to build a match engine now. First, let’s create an endpoint that can

accept orders. To do that, we are going to use flask to build a simple API (application

programming interface). An API exposes certain functionality to external users and other

programs. In our case, our API does one thing: accept the incoming order.

If you haven’t tried flask earlier, here is an example to get you started.

Let’s install the two libraries we are going to use first:

pip3 install flask, requests

Next, create an engine.py file with your favorite editor; copy and paste the

following code:

from flask import Flask

app = Flask(__name__)

@app.route('/submit', methods = ['GET'])

def process_order():

 return '<h1>order received</h1>'

def main():

 app.run(host='localhost', port=8080, debug=True)

if __name__ == '__main__':

 main()

Now, run this flask app in the command line by typing

python engine.py

Chapter 6 Queuing System: How Stock Trades Are Made

99

You should see the following messages. Note that your exact debugger PIN may be

different from mine.

* Serving Flask app 'app' (lazy loading)

 * Environment: production

 �WARNING: This is a development server. Do not use it in a production

deployment.

 Use a production WSGI server instead.

 * Debug mode: on

 * Running on http://localhost:8080/ (Press CTRL+C to quit)

 * Restarting with stat

 * Debugger is active!

 * Debugger PIN: 374-303-372

We just created the simplest web app! If you open your browser and navigate to

http://localhost:8080/submit, you will see a message as in Figure 6-1.

Figure 6-1.  Order received message from the website

Very cool!

With less than ten lines, we created an endpoint, with the process_order function,

that users can visit and interact with our application. Our application does only one

thing: it returns some bytes that a browser will interpret as a string with level 1 heading.

That’s why you see such a large font.

Notice that the process_order function has a parameter method, the desired method

is GET. This regulates which method this /submit endpoint accepts. The GET method

allows users to get stuff from this endpoint only. If users try to send something to this

endpoint, the request will fail as it is not allowed, for now.

Our simulated investors, which I often refer to as bots, can’t refresh browsers to

interact with our stock exchange. Let’s see whether we can use Python to do it. Now,

in another file called bot.py, copy and paste the following code snippet. Run it while

keeping the engine.py running in the previous terminal.

Chapter 6 Queuing System: How Stock Trades Are Made

100

import requests

from time import sleep

for i in range(10):

 res = requests.get('http://localhost:8080/submit')

 print(res.content.decode('utf-8'))

 sleep(1)

Here, we use the requests library to get information from the engine.py application

for ten times with a break of one second between two consecutive requests.

The URL in the code has three parts. The http is the protocol name which stands for

hypertext transfer protocol. Similarly, there are https or ftp protocols for a secure version

of http and file transfer. The localhost is the hostname (also called domain name), while

8080 is the port number. Together the hostname and the port number define where the

application is. Both the hostname and the port number are specified in the engine.py

file when we start the application. The path /submit is specified in the process_order

function as well; it is often called path to resources. Users can visit this path to retrieve

certain information which is treated as a kind of resource.

Now, let’s transform the elementary example to real useful code for our match

engine simulation. The match engine should be able to accept payload from investors

(bots) that contain order information. However, we need to figure out what information

should go into that payload first from the investor side.

From the perspective of the investor, at a minimum, the payload should have the

type of the order (whether it is a market order or a limit order), the size of the order (how

many shares the investor plans to buy/sell), and the direction of the order (whether it is a

buy order or a sell order). If the order is a limit order, a price should also be specified.

From the perspective of the stock exchange, a timestamp and an ID are also

required. The timestamp is needed to determine the priority of equal-price limit orders.

The ID is used to identify the order so corresponding actions can be taken when the

order is canceled or executed.

In general, an ID for an entity is always required. For simplicity, we will allow the

investor/bot to set the ID and send the payload to the match engine. The ID will be

created from the id() method plus randomization, so it is unlikely that there will be any

collision in our simulation. Also note that sometimes an order can be filled partially. We

will implement the partial fulfillment feature.

Chapter 6 Queuing System: How Stock Trades Are Made

101

In summary, the payload from the investor should look like the following:

from flask import Flask

from flask import request, jsonify

import json

import time

app = Flask(__name__)

@app.route('/submit', methods = ['POST'])

def process_order():

 order = request.get_json(force=True)

 order["submit_timestamp"] = time.time()

 print(order) # for testing purpose

 return jsonify({"status": "received"})

def main():

 app.run(host='localhost', port=8080, debug=True)

if __name__ == '__main__':

 main()

Note that we import the request and jsonify modules to process the posted data and

send back an acknowledgment to the bot.

To accommodate such change, our bot.py has one more function to generate fake

orders. It looks like the following now:

import requests

from time import sleep

import random

import json

def generate_order():

 return {

 "order_id": id(random.random()),

 "order_type":random.choice(["market", "limit"]),

 "order_size": random.randint(1, 100),

 �"order_price": random.randint(1, 100), # will be ignored if the order

type is market

Chapter 6 Queuing System: How Stock Trades Are Made

102

 "order_direction": random.choice(["buy", "sell"]),

 }

for i in range(10):

 order = generate_order()

 res = requests.post('http://localhost:8080/submit',

 data = json.dumps(order))

 print(res.json())

 sleep(1)

�Implement Order Book Logic
The next step is to implement a proper data structure to maintain the order book. We will

use a dictionary of lists to maintain each side of the orders. For example, on the buy side,

we will use a dictionary of lists to keep track of all the orders.

The dictionary keys are the order prices. The price of a stock is not infinitely

accurate, which means there is a minimal step. For example, it is either 1.5 dollar per

share or 1.6 dollar per share, but not 1.55 dollar per share. This ensures that there are

always a manageable number of keys in the dictionary, so sorting the keys is fairly

straightforward.

Each value in the dictionary is a list of the submitted orders. The list behaves like a

queue, without allowing order cancellation, so that earlier orders get matched early if

there is a suitable counterpart in the market.

Let’s check the code for the OrderBook class and corresponding order receiving code:

from collections import defaultdict

import numpy

class OrderBook:

 def __init__(self):

 self.buy_orders = defaultdict(list)

 self.sell_orders = defaultdict(list)

 self.latest_ordr = None

 def receive_orders(self, order):

 if order["order_type"] == "market":

Chapter 6 Queuing System: How Stock Trades Are Made

103

 �order["order_price"] = np.inf if order["order_direction"] ==

"buy" else -np.inf

 # willing to buy at extreme high price

 if order["order_direction"] == "buy":

 self.buy_orders[order["order_price"]].append(order)

 else:

 self.sell_orders[order["order_price"]].append(order)

 self.latest_order = order

 self.fulfill_orders()

 def fulfill_orders(self):

 raise NotImplementedError

Can you tell how I implemented market orders? If a buy order is a market order,

then I set the accepted price to positive infinity. It means that the buy order will accept

an arbitrarily high price. The same applies to the market sell orders which will accept

arbitrarily low prices to sell. Once the price is determined, we simply find the list, as the

value of the dictionary, and append our new order to it. This is where defaultdict makes

the code cleaner: if the list doesn’t exist yet, defaultdict will create an empty list for us.

Note that we have an unimplemented function called fulfill_orders. It is responsible

for actually fulfilling the order, and it is the key in this code. Let’s check it out:

 def fulfill_orders(self):

 """

 �# When this method runs, there should be only one of the

following three cases possible.

 1. �There is one and only one market order that can be executed

with the tip of the opposite side

 2. There is no market order

 2.1 There is no matching opposite orders

 2.2 �The latest limited order can be executed by fulfilling

the orders on the opposite side one by one

 �The three cases are mutually exclusive so we will handle that

one by one.

 """

Chapter 6 Queuing System: How Stock Trades Are Made

104

 latest_order = self.latest_order.copy()

 opposite_orderbook = self.buy_orders if latest_order[

 "order_direction"] == "sell" else self.sell_orders

 if latest_order["order_direction"] == "buy":

 opposite_prices = sorted(opposite_orderbook.keys())

 else:

 �opposite_prices = sorted(opposite_orderbook.keys(),

reverse=True)

 for opposite_price in opposite_prices:

 �valid_buy = latest_order["order_direction"] == "buy" and

opposite_price <= latest_order["order_price"]

 �valid_sell = latest_order["order_direction"] == "sell" and

opposite_price >= latest_order["order_price"]

 �valid = (valid_buy or valid_sell) and latest_order["order_

size"] > 0

 if not valid:

 break

 for queued_order in opposite_orderbook[opposite_price]:

 �if queued_order["order_size"] <= latest_

order["order_size"]:

 �latest_order["order_size"] -= queued_

order["order_size"]

 if latest_order["order_direction"] == "buy":

 �self.buy_orders[latest_order["order_

price"]][-1]["order_size"] -= queued_

order["order_size"]

 else:

 �self.sell_orders[latest_order["order_

price"]][-1]["order_size"] -= queued_

order["order_size"]

Chapter 6 Queuing System: How Stock Trades Are Made

105

 fill_size = queued_order["order_size"]

 queued_order["order_size"] = 0

 elif latest_order["order_size"] > 0:

 �# print("the latest order is not big enough to eat

the current queued order")

 �queued_order["order_size"] -= latest_

order["order_size"]

 fill_size = latest_order["order_size"]

 # mark the latest_order completely fulfilled.

 latest_order["order_size"] = 0

 �# the latest order will always be the last one. Set

its size to 0 since it is depleted now.

 if latest_order["order_direction"] == "buy":

 �self.buy_orders[latest_order["order_price"]]

[-1]["order_size"] = 0

 else:

 �self.sell_roders[latest_order["order_price"]]

[-1]["order_size"] = 0

 else:

 break

 self.clean_limit_orderbook()

Note that certain lines of the code are quite long, but the inline comments should be

sufficient for you to understand. Basically, there are three steps:

	 1.	 First, determine the direction of the latest order because our order

book will and only will be changed by the latest order.

	 2.	 Once the direction is determined, check whether there is a

possible trade. If the latest order is a market order, then we don’t

need to check the prices of the opposite side orders; otherwise,

we need to make sure that there is an overlap. For example, if the

latest order is a buy order, then the lowest sell order price should

be no higher than the latest buy order.

Chapter 6 Queuing System: How Stock Trades Are Made

106

	 3.	 Then we iterate eligible opposite orders in the order of submission

time, from earliest to latest to enforce fairness, until the latest

order’s volume is depleted. There is another chance that there

are no more opposite orders, in the condition that there is a huge

market order, but that is very unlikely.

Following the logic, the code should be fairly easy to read.

For cleanness, we can also implement a clean_limit_orderbook function to run

after the order fulfillment. This may not be necessary, but it is helpful for utility helper

functions like print_orderbook which is defined as follows:

 def print_orderbook(self):

 print("-------------------Orderbook-------------------")

 for price in sorted(self.sell_orders.keys(), reverse= True):

 �depth = sum(map(lambda order: order["order_size"], self.sell_

orders[price]))

 print("sell side price: {}, depth: {}".format(price, depth))

 print("---")

 for price in sorted(self.buy_orders.keys(),reverse= True):

 �depth = sum(map(lambda order: order["order_size"], self.buy_

orders[price]))

 print("buy side price: {}, depth: {}".format(price, depth))

 print("\n")

Lastly, here is the implementation of the clean_limit_orderbook function, fairly

straightforward:

 def clean_limit_orderbook(self):

 """

 Remove useless keys in the limit order book

 """

 for orderbook in [self.buy_orders, self.sell_orders]:

 empty_prices = []

 for price in orderbook.keys():

 n�ew_orders = list(filter(lambda order: order["order_size"]

> 0, orderbook[price]))

Chapter 6 Queuing System: How Stock Trades Are Made

107

 if len(new_orders) == 0:

 empty_prices.append(price)

 else:

 orderbook[price] = new_orders

 for price in empty_prices:

 del orderbook[price]

�Hook the Bots and Engine Together
Hooking the bot and the engine together is straightforward now. Let’s modify our engine.

py file to process the order and build the order book:

from orderbook import OrderBook

orderbook = OrderBook()

app = Flask(__name__)

@app.route('/submit', methods = ['POST'])

def process_order():

 order = request.get_json(force=True)

 order["submit_timestamp"] = time.time()

 orderbook.receive_orders(order)

 return jsonify({"status": "received"})

To get a sensible order book structure, we also need to change the order type

frequencies. If there are too many market orders, then the order book will be depleted

very quickly without showing a valley structure. So let’s change one line in the generate_

order function in the bot.py file:

"order_type":random.choice(["market", "limit","limit","limit","limit",

"limit","limit","limit","limit","limit"]),

So, basically, we are stating that nine out of ten times, the order will be a limit order.

With this setting, we can submit 1000 orders and print out the order book at the end

of simulation by calling the print_orderbook method; you will see something like the

following:

Chapter 6 Queuing System: How Stock Trades Are Made

108

-------------------Orderbook-------------------

sell side price: 100, depth: 816

sell side price: 99, depth: 1511

sell side price: 98, depth: 1325

sell side price: 97, depth: 1063

sell side price: 96, depth: 1262

sell side price: 95, depth: 1314

sell side price: 94, depth: 1227

sell side price: 93, depth: 1350

sell side price: 92, depth: 1392

sell side price: 91, depth: 1105

sell side price: 90, depth: 722

sell side price: 89, depth: 1260

sell side price: 88, depth: 716

sell side price: 87, depth: 922

sell side price: 86, depth: 809

sell side price: 85, depth: 1040

sell side price: 84, depth: 1066

sell side price: 83, depth: 1038

sell side price: 82, depth: 943

sell side price: 81, depth: 1312

sell side price: 80, depth: 605

sell side price: 69, depth: 12

sell side price: 64, depth: 23

sell side price: 63, depth: 39

sell side price: 43, depth: 84

sell side price: 31, depth: 80

buy side price: 30, depth: 55

buy side price: 28, depth: 67

buy side price: 22, depth: 72

buy side price: 21, depth: 189

buy side price: 20, depth: 63

buy side price: 19, depth: 71

buy side price: 18, depth: 154

Chapter 6 Queuing System: How Stock Trades Are Made

109

buy side price: 16, depth: 213

buy side price: 15, depth: 390

buy side price: 14, depth: 413

buy side price: 13, depth: 649

buy side price: 12, depth: 841

buy side price: 11, depth: 900

buy side price: 10, depth: 1068

buy side price: 9, depth: 982

buy side price: 8, depth: 1477

buy side price: 7, depth: 748

buy side price: 6, depth: 1271

buy side price: 5, depth: 1704

buy side price: 4, depth: 1514

buy side price: 3, depth: 1511

buy side price: 2, depth: 956

buy side price: 1, depth: 1102

It is quite clear that the depths around the current market price are smaller. The

visualizations are left to you as an exercise. See the following section for details.

�Exercises and Extension Ideas
In this section, I will lay out five ideas that can significantly extend the functionalities of

our stock exchange. They are ordered according to their levels of difficulty.

�Multiple Bots
In our simulation, we only use one bot so basically we are trading with ourselves, which

makes no sense. You can extend the order’s data schema to allow a new field called bot_

id or investor_id such that only different bots can trade with each other.

Note that the bots’ IDs need to be a limited set. You can simulate arbitrage cases,

which means a bot can submit a buy order and a sell order at the same time to profit

from the price volatility.

Chapter 6 Queuing System: How Stock Trades Are Made

110

�An Informed Bot
An intelligent investor will not trade blindly. They need to know what the current market

price is in order to make a wise decision. The match engine can send the latest price to

an external monitor so every bot can check it.

�Order Book Visualization
The print_orderbook method is not good enough. Let’s replace it with a new visualize_

orderbook method. Can you make an animation out of it?

�Order Cancellation Support
Let’s support the order cancellation functionality. If a bot requests to cancel an order,

maybe through a different resource path called /cancel, the match engine should be able

to locate the order quickly and kick it out of the queue for that price. Can you think of a

way to do this efficiently?

�Stop Orders Support
Since order cancellation is supported, why not take one step further to support the stop

orders? If a bot submits a stop loss order, the match engine should only execute the order

when the price hits the stop loss line. Do your own research and implement this feature

efficiently and fairly to all market participants.

�Summary
In this chapter, we studied a queue system. A simulation like this is not only technical

but also social. The match engine should operate based on a set of rules to enforce

fairness.

Chapter 6 Queuing System: How Stock Trades Are Made

111

CHAPTER 7

Rock, Scissors, and
Paper: Multi-agent
Simulation
We have touched so many different kinds of simulations so far. There is another very

important type called agent-based simulation (ABS). Sometimes, it is also referred to

as agent-based modeling (ABM). Agent-based simulation is an umbrella term that you

can categorize a lot of context-specific or domain-specific simulations as agent-based

simulation.

What these simulations have in common is that they all simulate the actions

and most importantly interactions between so-called autonomous agents and the

environment. An agent is just a minimal unit that can take actions. An environment is

the collection of external factors, including other agents. For example, our simulation

of the stock exchange in Chapter 6 can be treated as an agent-based simulation if you

implemented the first extension: adding more than one bot. Different bots interact

with each other according to the rules set by the match engine. We focused on the

implementation of the rules though.

Agent-based simulation is especially important to understand emerging behavior,

which means nontrivial phenomena can emerge from trivial rules that govern the

actions of agents. For example, the formation of large protein molecules from amino

acids is still a mystery although the single amino acid seems pretty simple. In the

financial market, different investors behave to maximize their own interest. The

intention seems straightforward, but collectively the actions may lead to unexpected

crashes.

Now let’s dive into it.

© Rongpeng Li and Aiichiro Nakano 2022
R. Li and A. Nakano, Simulation with Python, https://doi.org/10.1007/978-1-4842-8185-7_7

https://doi.org/10.1007/978-1-4842-8185-7_6
https://doi.org/10.1007/978-1-4842-8185-7_7#DOI

112

�Community Formation on a Street
First, let’s build a simplest agent-based simulation from scratch: the Schelling model of

segregation. This is a model by economist Thomas Schelling. The idea is simple; without

external factors, people in a region will move or stay in their original spots according to

their similarities with their neighborhoods. Ultimately, different communities will form

spontaneously.

You may recognize that the idea has common characteristics as the forest fire

percolation model we discussed in an earlier chapter. That’s right. They are both on a

grid with agents or nodes as elements to change state. However, different from the forest

fire one in which a predefined probability controls the behavior of a node, people make

decisions to move or stay dynamically as the environment changes in Schelling’s model.

For simplicity, we study the Schelling model on a one-dimensional street rather

than a two-dimensional community. The plain English description of the question is the

following: suppose there is a street with N rental properties; some of them are occupied,

and some are open to move in. Let’s make an assumption that there is no cost to change

properties. There are two kinds of people, A and B. Both kinds of people love to stay with

their own kind. If both their neighbors are of different kinds, they will pick an unoccupied

property and move there until the majority of people are happy with their neighbors.

Let’s use a list data structure to model the street and use 0 to indicate that a spot/

rental property is not occupied. We will use -1 and 1 to indicate a property that is

occupied by group A or group B people. Note this choice is for visualization simplicity as

we can easily check the formation of clusters by a scatter plot.

The first version looks straightforward:

N = 300

OCCUPATE_RATE = 0.9 # 90% are occupied originally

AB_RATIO = 1 # RATIO of A to B

ROUNDS = 100

street = np.array([0 for _ in range(N)])

for idx, house in enumerate(street):

 if np.random.rand() < OCCUPATE_RATE:

 street[idx] = -1 if np.random.rand() < AB_RATIO/(1+AB_RATIO) else 1

run simulation until no moves or exceeding maximal round

stable = False

Chapter 7 Rock, Scissors, and Paper: Multi-agent Simulation

113

iteration = 0

while not stable and iteration < ROUNDS:

 print("starting round {}".format(iteration))

 moves = 0

 # obtain the empty properties

 empties = set(i for i, house in enumerate(street) if house == 0)

 for idx, house in enumerate(street):

 if idx > 0 and idx < len(street)-1:

 �if street[idx-1]*street[idx] == -1 and

street[idx+1]*street[idx] == -1:

 # move to a random site

 target = np.random.choice(tuple(empties))

 empties.remove(target)

 empties.add(idx)

 street[target] = street[idx]

 street[idx] = 0

 moves += 1

 if moves == 0:

 break

 iteration += 1

Note that several parameters can be adjusted. Our tenants are living on a pretty

dense street as 90% of the properties are occupied. Let’s take a look at what the street

looks like before the simulation starts in Figure 7-1.

Figure 7-1.  Random occupation pattern before simulation

Chapter 7 Rock, Scissors, and Paper: Multi-agent Simulation

114

The strong zigzagging shows that groups A and B are living in an interleaving pattern.

Run the iteration, and after four rounds, the system reaches a stable status as shown in

Figure 7-2.

Figure 7-2.  Stable occupation pattern after four rounds of iteration

As you can see, there are street segments which contain only groups A and B.

What if we increase the density to even higher like 98% occupation rate? As the street

becomes more crowded, tenants can easily get unhappy, and the clustering can become

more prominent.

Here is a randomly generated street with 98% occupation rate as shown in Figure 7-3.

Figure 7-3.  Random occupation pattern with a 98% occupation rate

Guess what? The enforced 100 times of iterations is not enough. The street remains

changing after even hundreds of thousands of iterations. Tenants dislike each other, but

they have nowhere to move to. Figure 7-4 is the result after about 100K iterations.

Chapter 7 Rock, Scissors, and Paper: Multi-agent Simulation

115

Figure 7-4.  A nonstable occupation pattern with a 98% occupation rate

Let’s try another scenario. Let’s say people are unhappy if one of their neighbors is of

different kinds, rather than two of them. How would the simulation change? Intuitively,

we should see a more segregated street. If we start with a 90% occupied street, a stable

result looks like Figure 7-5.

Figure 7-5.  A stable occupation pattern for the one-neighbor-unhappy case

It is visually clear that larger homogeneous neighborhoods appear. This emergence is

typical in agent-based simulation. Each agent behaves independently following simple

rules that only involve the local environment. However, a global pattern will emerge

nonetheless.

Chapter 7 Rock, Scissors, and Paper: Multi-agent Simulation

116

�Exercise
Original Schelling Model

In this exercise, please extend our one-dimensional street to a two-dimensional

community. This is also closer to Schelling’s original model. Now each property has

eight neighbors, and we have one more parameter to choose: the number of different

numbers that will trigger a relocation. Run your simulation and find such a parameter

that triggers significant segregation on a 10 by 10 square grid with an occupation

rate of 80%.

Three Groups

In both the one-dimensional case and the two-dimensional case, introduce a third

population and run the simulation again. What do you anticipate? Will segregation be

more significant or less?

�How to Win a Global Rock, Paper,
and Scissors Contest
There are many mature libraries for agent-based simulation/modeling. For Python, the

most popular and actively maintained one is called Mesa.

Mesa provides a set of core components and scheduling policies for agent-based

simulation. This makes fast prototyping and developing possible. For example, we can

have an agent class and an environment class we can inherit from. Each agent can also

be activated according to different policies. For example, in our Schelling model, we

activate agents one by one, which is the so-called sequential activation.

Is it possible to allow the tenants on a street to make decisions at the same time? The

answer is yes, but the implementation will be trickier. We need to pre-identify all current

empty properties and going-to-be empty properties and assign the moving tenants to

them simultaneously.

In this example, let’s use Mesa to model a contest. Sixteen rock-paper-scissors

masters get together and compete with each other. They are arranged into a 4 by 4 grid,

and in each round, their choices will be compared with their immediate neighbors (not

including diagonal ones). If they are on the winner’s side, then they get 1 point for that

round; if they lose, –1; if there is a deadlock, then everybody gets a 0.

Chapter 7 Rock, Scissors, and Paper: Multi-agent Simulation

https://github.com/projectmesa/mesa

117

Well, is it fair for those at the boundary or corner? Naively, it isn’t because they have

fewer neighbors. However, we can introduce the periodic boundary condition (PBC) to

make it fair. Figure 7-6 is an example of the periodic boundary condition in molecular

dynamics, in which a molecular has mirrors of itself in fictitious neighboring boxes.

Figure 7-6.  Periodic boundary condition in molecular dynamics

The periodic boundary condition is ubiquitous in molecular dynamics simulation.

The image in Figure 7-6 is taken from Prof. Nakano’s lecture slide. The basic idea is to

create replicas by shifting the system to make the system virtually infinite.

In our contest grid case, if indexed from 0, a contestant at the top-right corner with

position (0, 3) will have two normal neighbors at (0,2) and (1,3). But it will also have two

image neighbors with position (0,0) and (3,3). The idea is illustrated in the visualization

in Figure 7-7.

Chapter 7 Rock, Scissors, and Paper: Multi-agent Simulation

118

Figure 7-7.  The yellow contestant plays with virtual opponents green and blue

The yellow dot indicates a contestant at the corner of the grid, while its imaginary

blue up neighbor is actually the one at the bottom right and its imaginary green right

neighbor is the one at the top left. The corner contestant still has four neighbors, with

two being imaginary. The boundary ones will also have four neighbors, with one being

imaginary. The contest’s fairness is restored.

The contestants are separated into two kinds of strategists: one group is stubborn

who will likely stick to a choice with a high probability and occasionally change with

lower probability, then stick to the new one with high probability. For example, if one

starts with paper, then the contestant sticks to paper with a probability of 80% for the

following round, then occasionally changes to scissors or rock with a probability of 10%,

respectively. Once changed, the contestant sticks to the new one with high probability.

They don’t care about the result of the current round at all. We call this group the

stubborn contestants.

Another group is trying to be smart by playing a psychology game. They always pick

the move that counters the last round’s winning move. For example, if in the last round,

rock wins, then they will pick paper for the current round because paper defeats rock. If

there is no winner in the last round, then they will randomly pick one. Their idea is that

the winner of the round will try to win again with the same move; they can make use of it.

We call this group the sneaky contestants.

Chapter 7 Rock, Scissors, and Paper: Multi-agent Simulation

119

As you can see, both strategies are quite naive. The question now is that if there are

eight stubborn contestants and eight sneaky ones arranged in an interleaving pattern

on the grid, which group will have a higher average score if they play the game for

100 rounds?

First, let’s see how Mesa codes are organized in general:

from mesa import Model, Agent

from mesa.time import SimultaneousActivation

class NewAgent(Agent):

 def __init__(self):

 pass

 def step(self):

 pass

class NewModel(Model):

 def __init__(self):

 self.schedule = SimultaneousActivation(self)

 pass

 def step(self):

 pass

From the Mesa library, we import two classes to inherit: Model and Agent. An agent

has a step method which defines how agents behave in each round of simulation. A

model class also has a step method, which defines how the model as a whole evolves

in a step.

A model also has a schedule instance. In this case, it is called

SimultaneousActivation. There are also random activation, sequential activation, etc.

The SimultaneousActivation policy means all agents will act simultaneously which is

necessary for our contest simulation to be fair.

Chapter 7 Rock, Scissors, and Paper: Multi-agent Simulation

120

Here is our actual code. Let’s look at some helper classes first:

from enum import Enum

class Type(Enum):

 STUBBORN = 1

 SNEAKY = 0

class Move(Enum):

 Scissors = 0

 Rock = 1

 Paper = -1

 def __lt__(self, other):

 if self == Move.Scissors and other == Move.Rock:

 return True

 if self == Move.Rock and other == Move.Paper:

 return True

 if self == Move.Paper and other == Move.Scissors:

 return True

 return False

We define two enumerations for the agent types and the moves they pick. In the

Move class, we defined a __lt__ special method to control how two Move instances

should be compared. __lt__ stands for less than. The method returns True if the instance

on the left side of the comparison is smaller than the right side one.

Move.Scissors < Move.Rock == True

Move.Rock == Move.Paper == False

Now, let’s take a look at our code for Agent:

from mesa import Model, Agent

from mesa.time import SimultaneousActivation

from mesa.space import SingleGrid

from mesa.datacollection import DataCollector

import random

class GameAgent(Agent):

Chapter 7 Rock, Scissors, and Paper: Multi-agent Simulation

121

 def __init__(self, unique_id, pos, model, contestant_type):

 super().__init__(pos, model)

 self.unique_id = unique_id

 self.pos = pos

 self.contestant_type = contestant_type

 self.scores = []

 self.score = 0

 self.move = random.choice(list(Move))

 def step(self):

 self.score = 0

 # find all neighbors

 �neighbors = [neighbor for neighbor in self.model.grid.neighbor_

iter(self.pos)]

 neighbor_moves = [neighbor.move for neighbor in neighbors]

 �self.score, winning_move = GameAgent.calculate_score(self.move,

neighbor_moves)

 # determine next move based on current score

 if self.contestant_type == Type.STUBBORN:

 r = random.random()

 if r < 0.8:

 self.next_move = self.move

 else:

 moves = list(Move)

 moves.remove(self.move)

 self.next_move = random.choice(moves)

 else:

 # sneaky strategy

 if winning_move:

 for move in list(Move):

 if move > winning_move:

 self.next_move = move

 break

 else:

 self.next_move = random.choice(list(Move))

Chapter 7 Rock, Scissors, and Paper: Multi-agent Simulation

122

 def advance(self):

 self.scores.append(self.score)

 self.move = self.next_move

 @staticmethod

 def calculate_score(move, all_moves):

 # also return winning move

 �if len(set(all_moves + [move])) == 3 or len(set(all_moves +

[move])) == 1:

 # no winning move, it's a draw

 return 0, None

 �win = all(move > other_move or move == other_move for other_move in

all_moves)

 �lose = all(move < other_move or move == other_move for other_move

in all_moves)

 if win:

 return 1, move

 elif lose:

 return -1, random.choice(all_moves)

 return 0, None

An agent is initialized with four parameters. The model parameter is the model that

contains this agent. This is important because not only the model needs to access data

about an agent, an agent also needs to access the model data. This allows an agent to see

the environment around it. For example, an agent needs to identify its neighbors.

An agent’s move is randomly initialized. However, depending on the type of

the agent, in each round, the agent will choose the stubborn strategy or the sneaky

strategy. The details are implemented in the step method. However, the next_move

is only calculated in the step method but not assigned. The assignment is done in

the advance method. This method is required if the model’s activation policy is

SimultaneousActivation, as we will see very soon. All agents will update their status

simultaneously which guarantees fairness.

The calculate_score method is a static method. It functions independent of the agent

class, but it is logically associated with it, so we make the method static. It calculates the

score of a round and the winning move for that round. If there is a draw, the winning

move is just None.

Chapter 7 Rock, Scissors, and Paper: Multi-agent Simulation

123

Now, let’s take a look at the model class:

class Contest(Model):

 def __init__(self, height=4, width=4, total_rounds = 100):

 self.height = height

 self.width = width

 self.total_rounds = total_rounds

 self.round = 0

 self.schedule = SimultaneousActivation(self)

 self.grid = SingleGrid(width, height, torus=True)

 self.datacollector = DataCollector(

 �model_reporters={"stubborn_avg_score": lambda self: np.mean([np.

mean(agent.scores) for agent in self.schedule.agents if agent.

contestant_type == Type.STUBBORN]), "sneaky_avg_score": lambda

self: np.mean([np.mean(agent.scores) for agent in self.schedule.

agents if agent.contestant_type == Type.SNEAKY])},)

 for idx, cell in enumerate(self.grid.coord_iter()):

 x = cell[1]

 y = cell[2]

 if (x+y)%2 == 0:

 agent = GameAgent(idx, (x,y), self, Type.STUBBORN)

 else:

 agent = GameAgent(idx, (x, y), self, Type.SNEAKY)

 self.grid.position_agent(agent, (x, y))

 self.schedule.add(agent)

 self.running = True

 def step(self):

 self.schedule.step()

 # collect data

 self.round += 1

 if self.round == self.total_rounds:

 self.running = False

 self.datacollector.collect(self)

Chapter 7 Rock, Scissors, and Paper: Multi-agent Simulation

124

Our model instance will be initialized with a grid. The grid has a parameter torus set

to true, which means the periodic boundary condition is applied. The model class also

has a data collector attribute to collect data about the model as the simulation proceeds.

Here, we collect the average score for the two kinds of agents after each round. These

two data collectors are called model_reporters whose names are stubborn_avg_score and

sneaky_avg_score. You can also define agent_reporters to collect data about agents.

The data collection happens in the step method after each round of the simulation.

The initialization of the model also puts agents to the grid cells in an alternative

fashion. Note that the agents are not added to the model directly but the schedule

attribute we discussed earlier: the simultaneous activation policy.

Now, we can run the simulation for 100 rounds:

model = Contest(4, 4, 100)

while model.running:

 model.step()

The model’s data collector collects the global averages. After the run finishes, the

data collector can output the result as a pandas dataframe:

model.datacollector.get_model_vars_dataframe()

You should see something like the following:

stubborn_avg_score sneaky_avg_score

0 -0.125000 0.000000

1 -0.062500 0.000000

2 -0.083333 0.000000

3 -0.062500 0.031250

4 -0.050000 0.025000

...

95 -0.011719 0.013021

96 -0.011598 0.011598

97 -0.011480 0.010204

98 -0.012626 0.011364

99 -0.016250 0.013750

100 rows × 2 columns

Chapter 7 Rock, Scissors, and Paper: Multi-agent Simulation

125

The longer we run, the more data an agent’s scores list accumulates. It looks like in

this round, a sneaky strategy is slightly better. Is it convincing?

Run it again; I get the following:

stubborn_avg_score sneaky_avg_score

0 0.000000 0.000000

1 0.000000 -0.062500

2 -0.041667 0.000000

3 -0.031250 0.000000

4 -0.025000 0.050000

...

95 0.011719 -0.011719

96 0.011598 -0.011598

97 0.011480 -0.011480

98 0.012626 -0.011364

99 0.012500 -0.011250

100 rows × 2 columns

Well, for this time, the stubborn strategy seems to prevail.

I will leave the searching for the ground truth to you, the readers.

�Exercise

	 1.	 A better strategy

Use the 4 by 4 grid, increase the number of iterations, and find

out which strategy outperforms the other. Note that you may need

to change the frequency the data collector collects data. You are

encouraged to use a distribution visualization like the histogram

plot to compare the results.

	 2.	 A larger grid

Try the simulation on a larger grid and compare the result with

the smaller one. Can you try 5 by 5?

Chapter 7 Rock, Scissors, and Paper: Multi-agent Simulation

126

�Summary
In this chapter, we discussed a new kind of simulation: agent-based simulation

(modeling). Agent-based simulation is fascinating because it is capable of generating

complex patterns from simple rules that govern local agents’ behaviors. It is widely used

in computational social science. We also utilized the Mesa Python library to model a

multi-agent competition.

Chapter 7 Rock, Scissors, and Paper: Multi-agent Simulation

127

CHAPTER 8

Disease Spreading,
Simulating COVID-19
Outbreak
Starting from the end of 2019, a regional respiratory disease first identified in Wuhan,

China, quickly spread to the whole world. Tens of millions of people got infected and

hundreds of thousands of people died. The disease was later named COVID-19 by the

World Health Organization. Starting from early 2021, vaccines began to be available,

which significantly reduced the death rate for infected people.

As of early 2022, the battle between COVID-19 and humans is still ongoing. In this

chapter, we will try to use mathematical models to model and simulate the disease

spreading. We will study the very basics of differential equations and run some Python

codes to simulate the growth of an epidemic.

�Simplifying the Real World
In the real world, disease spreading is a very complex problem. Different diseases have

different pathogens: virus, bacteria, or other microorganisms. They have different

pathways to invade hosts. For example, the COVID-19 virus mainly spreads through air

when infected people cough or speak and susceptible groups breathe in the particles

that carry the virus. The virus can also last for quite a long time on surfaces: if another

person touches the surface and then touches their nose or eyes, the virus can also invade

the new host. Other pathogens can spread through water or food like various kinds of

parasites. Certain viruses can also be transmitted through blood like HIV, the cause

of AIDS.

© Rongpeng Li and Aiichiro Nakano 2022
R. Li and A. Nakano, Simulation with Python, https://doi.org/10.1007/978-1-4842-8185-7_8

https://doi.org/10.1007/978-1-4842-8185-7_8#DOI

128

The infected population also has huge internal diversity. Take COVID-19, for

example; people who are younger with strong immune systems can usually recover

without treatment. However, for older people with preexisting conditions, the symptoms

can be deadly. Some infected people are more active outdoors, so they can be a source of

virus spreading, while other people may choose to stay indoors.

In this chapter, we will try to model disease spreading by focusing on the partition of

the population and the simplified interaction between pathogens and the population.

The exact details of pathways and biological dynamics of pathogen-host interaction will

be omitted.

Here are the main assumptions:

	 1.	 The whole population in the world is categorized into three

groups: the susceptible denoted by S, the infected denoted by I,

and the recovered denoted by R.

	 a.	 The susceptible represents the group who are not currently infected.

	 b.	 The infected represents the group who are currently infected and

contagious.

	 c.	 The recovered represents the group who are immune to the disease at a

certain point. Note that some versions of the models will use Removed

instead of Recovered to include the deceased population.

	 2.	 Group populations are not static, but dynamically changing.

For example, susceptible people can get infected and become

infected. Depending on the nature of the disease, people may

or may not develop immunity. For example, a parasite-caused

disease can be recurring if hosts are exposed to the pathogens

again after recovery.

	 3.	 The model is used to model outbreaks such that many underlined

quantities are fixed. For example, the age structure of the whole

population is fixed, and the total population remains unchanged

as well.

In summary, the most basic structure of the model looks like the following. A

susceptible person got infected, then the person recovered, hopefully, from the disease.

Figure 8-1 illustrates the relationship.

Chapter 8 Disease Spreading, Simulating COVID-19 Outbreak

129

Figure 8-1.  Relationship between susceptible, infected, and recovered populations

In addition to this simple trajectory, there may be other trajectories as well which

increases the complexity of the system. However, before diving into those ones, let’s start

with an even simpler model, the SI model: the susceptible-infected model.

�The SI Model
The SI model doesn’t have a recovered category; people are either susceptible or

infected. A susceptible person can get infected, and an infected person may recover from

it. The disease is usually not deadly with a quite low death rate, but it is just not going

anywhere. Figure 8-2 shows the bidirectional relationship of the susceptible and infected

populations.

Figure 8-2.  The population migration of susceptible and infected populations

The changes from and to one category to another depend on the interaction between

people belonging to each group. Let’s use S(t) and I(t) to denote the population of these

two groups at timestamp t. How will they change after a timestep, say one hour or one day,

whichever unit we prefer to define the modularity in the time domain? I will use day as

our time unit as it makes more real-life sense to collect statistics daily rather than hourly.

Imagine a small community; at the very beginning, there are S(0) people who are

susceptible and I(0) people who are already infected. Each of the susceptible people has

a chance to interact with any of the infected people. It is a combination question. If there

are five susceptible persons and four infected, then theoretically there are 20 ways for

them to interact.

Chapter 8 Disease Spreading, Simulating COVID-19 Outbreak

130

Technically, not every interaction leads to infecting susceptible persons, so there is a

ratio. Let’s use α to denote such a ratio. The newly infected people will be αSI.

On the other hand, the infected persons will also have a chance to get rid of the

infection and become susceptible again. This change is independent of susceptible-

infected interaction. Let’s assign a ratio β to this process.

In summary, this is how the populations of the two categories evolve in time:

	 S t S t S t I t I t+() = () − () () + ()1 α β 	

	 I t I t S t I t I t+() = () − () () + ()1 α β 	

These two equations are called difference equations as we are modeling the

differences of quantities. A continuous version of the equations is called differential

equations; they are defined as follows:

	

dS
dt

S t I t I t= − () () + ()α β 	

	

dI
dt

S t I t I t= − () () + ()α β 	

The differential equations can be solved analytically, but let’s focus on the difference

equations.

Remember that the total population is fixed, so we can further simplify the two

difference equations into one. We use N to denote the total population. The constraint

states that for any time t, we have N = S(t) + I(t).

Therefore, we can rewrite the expression of S(t+1) as

	
S t S t S t N S t N S t+() = () − () − ()() + − ()()1 α β 	

then

	 S t S t N S t N+() = () + − −() () +1 1
2α α β β 	

It looks straightforward enough. Let’s write some code now:

N = 1000

beta = 0.01

alpha = 0.001

Chapter 8 Disease Spreading, Simulating COVID-19 Outbreak

131

Ss = [500]

Is = [500]

Steps = 20

for _ in range(Steps):

 s = Ss[-1]

 s = alpha*s*s + (1-alpha*N-beta)*s + beta*N

 Ss.append(s)

 Is.append(N-s)

Let’s plot the tracking of the susceptible and the infected populations. Note that we

may have float numbers which is inevitable.

with plt.xkcd():

 plt.scatter([i for i in range(Steps+1)],Ss, label = 'susceptible')

 plt.scatter([i for i in range(Steps+1)],Is, label = 'infected')

 plt.title("SI model for high contagious disease")

 plt.xlabel("Days")

 plt.ylabel("Sizes of Groups")

 plt.legend()

The result in Figure 8-3 shows that we end up with an overwhelmingly infected

community.

Figure 8-3.  Population evolution for susceptible and infected groups after 20 days

Chapter 8 Disease Spreading, Simulating COVID-19 Outbreak

132

There are two ways to push the infected population down. We can try two methods.

The first way is to limit the transmission between the infected and the susceptible:

reduce α; another way is to cure the infected population by increasing β. Let’s see how

they affect the population evolution curves.

First, let’s change α to one-tenth of the original one:

alpha = 0.0001

It looks like we successfully delayed the transmission of the disease! Note that I

extended the time range to 100 days to see the full picture in Figure 8-4.

Figure 8-4.  Population evolution

Well, this is the idea behind the stay-at-home or lockdown policy. If people limit face-

to-face interaction to reduce the transmission rate, the virus will spread much slower.

What if we further reduce α? How about setting α to be 0.00002? You will find that

there is no population change at all as in Figure 8-5.

Chapter 8 Disease Spreading, Simulating COVID-19 Outbreak

133

Figure 8-5.  Critical parameters establish equilibrium

Simple calculation shows that when α and β values are critical, the transfer

between two populations will reach a balanced state: the number of susceptible people

converting to infected people is exactly the same as the number of infected people

converting to susceptible people.

�Exercise

	 1.	 What if we further restrict people’s interaction? Can you verify that

the disease will actually go away?

	 2.	 Manipulate the value of β and check its influences on population

evolution.

	 3.	 Change the initial population of the two groups. If there are only

a few infected people at the beginning, will the end state change

compared with the more infected people cases? Can you identify

the importance of the ratio
αS ()0

β
?

�The SIR Model
Now, let’s take one step further to include the recovered group. The definition of

recovered can be further extended later. However, for now, let’s first assume that there

is only one possible way to get people recovered: to get infected, then recover with

immunity.

Chapter 8 Disease Spreading, Simulating COVID-19 Outbreak

134

We introduce another variable R(t) to denote the total number of recovered people.

It follows the following difference equation. We have a recovery rate denoted by γ. People

who recover will have permanent immunity.

	 R t R t I t+() = () + ()1 γ 	

The restriction of our community population therefore becomes

	 N S t I t R t= () + () + () 	

Let’s start with a small γ without any recovered population. What do you expect?

The code is very similar to the one we had earlier, but this time we will explicitly

update the three groups:

N = 1000

beta = 0.01

alpha = 0.0001

gamma = 0.0001

Ss = [500]

Is = [500]

Rs = [0]

Steps = 50

for _ in range(Steps):

 s, i, r = Ss[-1], Is[-1], Rs[-1]

 s_next = s - alpha*s*i + beta*i

 i_next = i + alpha*s*i - beta*i - gamma*i

 r_next = r + gamma*i

 Ss.append(s_next)

 Is.append(i_next)

 Rs.append(r_next)

with plt.xkcd():

 plt.scatter([i for i in range(Steps+1)],Ss, label = 'susceptible')

 plt.scatter([i for i in range(Steps+1)],Is, label = 'infected')

 plt.scatter([i for i in range(Steps+1)],Rs, label = 'recovered')

 plt.title(r"SIR model for small γ")

 plt.xlabel("Days")

 plt.ylabel("Sizes of Groups")

 plt.legend()

Chapter 8 Disease Spreading, Simulating COVID-19 Outbreak

135

It looks like after 50 steps, there isn’t much increase in the recovered group as shown

in Figure 8-6.

Figure 8-6.  Recovered population stays the same

Why? Because we are counting on the natural immunity which is characterized by

the small value of γ.

However, note that people who are immunized will remain so forever; eventually,

everyone in the community will be safe. How long will it take? I will leave it to you, but

my finding is that it will take more than 20 years for about half of the population, 500, to

be immunized. The result is shown in Figure 8-7.

Figure 8-7.  Long march to natural herd immunity

Chapter 8 Disease Spreading, Simulating COVID-19 Outbreak

136

Now, what can we introduce to the game? The answer is vaccination! If we can

convert the susceptible population to the recovered state, then the status of so-called

herd immunity can be reached much faster! Note that the word recovered is no longer

literally defined now.

How do we do that? Let’s say at any point of time, there is about 2% of the susceptible

population who are willing to get vaccinated, we may have a much better chance of

controlling the disease spreading. Let’s call the associated parameter μ.

	 R t R t I t S t+() = () + () + ()1 γ µ 	

Let’s see how this affects our simulation as shown in Figure 8-8.

Figure 8-8.  Vaccination boosts the immunity

Not bad, right? In only 100 days, we have about one-fourth of the whole population

immunized.

How about an even higher willingness to get vaccinated among the population? Let’s

say 5% of the susceptible population want to be vaccinated. The result is very promising

in Figure 8-9.

Chapter 8 Disease Spreading, Simulating COVID-19 Outbreak

137

Figure 8-9.  Stronger vaccination will drive faster herd immunity

The result is even more impressive; we immunized half of the population in 100 days.

�Exercise

	 1.	 There is a chance that vaccinated people may become susceptible

again. Can you model such a phenomenon? How will it affect the

herd immunity progress?

	 2.	 How will death affect our model? Further divide the recovered

group to the real recovered group and the unfortunate deceased

group and explain how the simulation behavior will change.

�Summary
In this chapter, we modeled the interaction between different groups during a pandemic

outbreak. We simplified the assumptions of the pathogen transmission process and

introduced the susceptible-infected (SI) and susceptible-infected-recovered (SIR)

models. From the simulation, we can clearly see how different factors influence the virus

transmission process and how vaccination can help communities reach herd immunity.

Chapter 8 Disease Spreading, Simulating COVID-19 Outbreak

139

CHAPTER 9

Misinformation Spreading
and Simulations
on a Graph
Misinformation has never been so deadly in the age of COVID-19. On social

networks like Twitter and Facebook, conspiracy theories about the origin of the

virus, the treatment of the virus, and vaccination are rampaging. They often spread

in communities and circles and echo with other conspiracy theories about the US

presidential elections. Such misinformation and conspiracy theories reinforce each

other and form a waterproof echo chamber.

Misinformation and disinformation are quite similar. The difference is that

disinformation is false information that is spread deliberately to deceive. In other words,

disinformation is wrong on purpose. Misinformation is a super set of disinformation.

The spreader of misinformation may be unaware of the incorrectness or harmfulness of

the wrong information. In this chapter, we will study how misinformation spreads with a

network/graph setting.

�Model the Social Network
We have studied some network-like systems earlier like the state transition of the Markov

model and the forest fire spreading model. In the Markov model of poem generation,

we treat each word as a node, and each node has a probability to be followed by another

one, thus forming a network of words with directional edges.

© Rongpeng Li and Aiichiro Nakano 2022
R. Li and A. Nakano, Simulation with Python, https://doi.org/10.1007/978-1-4842-8185-7_9

https://doi.org/10.1007/978-1-4842-8185-7_9#DOI

140

In the forest fire spreading model, each tree is neighbored by four nearest trees on a

square grid. Fire can spread from one tree to another with a predefined probability. The

network is somewhat homogeneous because they all have four neighbors, except the

boundary ones, and no tree is special than another in any way.

In this chapter, we will study general networks that can represent arbitrary

connectivity of a community. Let’s first introduce some terminologies.

So far, I have been using network and graph interchangeably in this chapter. Their

definition differences are usually subject to the underlined scientific domains. For

example, sometimes people use links instead of edges in networks, but they essentially

represent the same thing. For consistency with other literature, I will use graphs for the

following content.

A graph is consistent with nodes and edges. For example, Figure 9-1 has five nodes

and six edges.

Figure 9-1.  A simple graph with five nodes and six edges

The graph in Figure 9-1 is also a connected graph because you can reach any node

to any other by traversing the edges. This is not always true. The graph in Figure 9-2 is a

disconnected graph.

Chapter 9 Misinformation Spreading and Simulations on a Graph

141

Figure 9-2.  A disconnected graph example

This graph has five disconnected clusters (also called communities). They are not

connected through edges.

A common misconception is the definition of subgraph. Any subset of nodes and

edges from one graph will form a subgraph. Those nodes and edges may not be visually

forming a cluster. For example, in the five-cluster graph earlier, node 1 forms a single-

node subgraph, while nodes 1, 2, 3, and 6 together with the edge between 2 and 6 also

form a four-node subgraph, although a weird one in three visually disconnected clusters.

A graph’s edge can also be directional, which makes a graph directional. For

example, the Twitter following relationship is a directional relationship. You may follow

a super star, but the super star is not likely to follow you back. If two Twitter accounts

follow each other, then there must be two edges between them to represent such a

relationship: one from one to the other and the other way around. We call such a graph

which allows multiple edges between nodes a multigraph. Oftentimes, multigraphs

represent directional relationships but not always.

Figure 9-3 is a directional multigraph. The edges are directional, and multiple

edges are allowed. For example, there are two edges between nodes 2 and 3. Another

interesting edge is the loop edge that points to the node itself for nodes 0, 1, and 2. With

proper modeling, a loop can represent a tweet’s self-retweet or similar actions. Figure 9-3

is a directed graph example.

Chapter 9 Misinformation Spreading and Simulations on a Graph

142

Figure 9-3.  A directed graph with self-loops

Nodes and edges can also have attributes. For example, nodes can have weights

that indicate how influential they are in the graph, while edges’ weights can represent

how strong the bondings are between two nodes. To model a social network, we need to

assign certain attributes to graph elements, either intrinsic or calculated.

Let’s define our social network, specifically the Twitter ecosystem, using a graph.

Each node represents an account, and each edge represents a following relationship.

Information can therefore flow from the followee to the follower through posting tweets.

Think about the properties of a Twitter account. The most important indicator of

an account’s influence is the number of followers; in our case, it is exactly the number

of outgoing edges. In graph theory, it has a name: out-degree, the number of outgoing

edges. Similarly, the in-degree counts the number of incoming edges. The larger the out-

degree is, the more accounts on the social network can be potentially influenced.

We want to also borrow some concepts from the previous chapter. We will partition

the nodes into three categories, besides the sources of misinformation, like in the

susceptible, infected, and recovered model. The susceptible are accounts who haven’t

been exposed to misinformation; they have a probability to be infected if the people they

follow are the sources of the misinformation or infected. The infected nodes are like the

infected patients in the disease spreading simulation that they actively influence their

followers by retweeting and sharing misinformation. The recovered nodes are accounts

who either intrinsically resist, R for both resistance and recovered, misinformation or

recover from misinformation pollution.

In summary, we use the properties in Table 9-1 to characterize a node on the graph.

Chapter 9 Misinformation Spreading and Simulations on a Graph

143

Table 9-1.  Properties of nodes/accounts in a social network

Name Description Possible Values Changeable

State The state of the node “Source,” “Susceptible,”

“Infected,” or “Recovered”

Yes

Influence How influential the node is, measured

by the out-degree

A nonnegative integer No*

Resistance The resistance of an account against

misinformation

A value between 0 and 1 Yes

The influence power is not changeable because our social network is not dynamic.

If we allow the follower-followee relationship to change during the simulation, which is

much more realistic, then the influence power of a node will change if fewer and fewer

accounts follow it.

Now, we have all the static settings laid out. The next step is to define the mechanism

that governs the simulation.

�Simulate Misinformation Spreading
A simulation starts with a few nodes, likely malicious, beginning spreading

misinformation. Their susceptible followers will respond to the misinformation and

react. The followers may become infected or stay susceptible. If a follower becomes

susceptible, the follower’s followers will also be exposed to misinformation and so on

and so forth.

At any time, a susceptible node has a chance to recover.

The probabilities in the simulation are also dynamic. For example, if a node is

exposed to multiple sources of misinformation, then the chance that they become

infected can become very high, while the chance of recovering can be strongly

suppressed.

Chapter 9 Misinformation Spreading and Simulations on a Graph

144

�Simple Cases
Let’s start with a simple case, in Figure 9-4, with only five nodes to test the accuracy of our

code. The graph looks like Figure 9-4. Note that nodes 0 and 1 are following each other.

Figure 9-4.  A directed graph with five nodes

The following is the code to generate the graph:

import networkx as nx

import matplotlib.pyplot as plt

fig, ax = plt.subplots()

sg = nx.fast_gnp_random_graph(n=5, p=0.2, seed = 3, directed = True)

pos=nx.spring_layout(sg,seed=5)

nx.draw_networkx_nodes(sg, pos, ax=ax)

nx.draw_networkx_labels(sg, pos, ax=ax, font_weight='bold')

nx.draw_networkx_edges(sg, pos, ax=ax, edgelist= sg.edges());

Networkx is a powerful Python library to manipulate graphs. Its syntax is quite

straightforward. The only non-intuitive method in the preceding code is fast_gnp_

random_graph. It is a built-in graph generator that, in this example, generates 5 nodes

and arbitrarily connects every pair with a probability of 20%. You can choose to generate

a directed graph and set the random seed for reproducibility as well. I choose the name

sg because it is indeed a small graph.

We can check the nodes and edges of the graph by running the following:

sg.nodes, sg.edges

Chapter 9 Misinformation Spreading and Simulations on a Graph

145

The results are two nicely ordered iterables:

 (NodeView((0, 1, 2, 3, 4)),

 OutEdgeView([(0, 1), (1, 0), (1, 3), (2, 3), (3, 4), (4, 0), (4, 1)]))

We can also check the neighbors of a specific node:

list(sg.neighbors(1))

For node 1, the code returns nodes 0 and 3. Node 4 is not returned because the

neighbors method only returns the successors. In the social network context, it means we

are only viewing the followers of node 1.

To see all neighbors including the followee, we use

list(nx.all_neighbors(sg,1))

This returns [0, 4, 0, 3]; we have duplicates because the relationship between 0 and 1

is bidirectional. We can easily use a set operation to deduplicate it.

One last piece of networkx knowledge is the usage of attributes. Each node and edge

in a graph can have attributes. For example, the following code will assign a value to

node 1 with an attribute name attr1_1. This can be very handy to update attributes of the

social network accounts.

sg.nodes[1]["attr_1"] = "val_1"

First, let’s define some helpful data structures:

class State(Enum):

 SOURCE = 0

 SUSCEPTIBLE = 1

 INFECTED = 2

 RECOVERED = 3

STATE2COLOR = {

 State.SOURCE: "red",

 State.SUSCEPTIBLE: "grey",

 State.INFECTED: "orange",

 State.RECOVERED: "green"

}

Chapter 9 Misinformation Spreading and Simulations on a Graph

146

We can now initialize the attributes of our simple five-node graph as follows:

import numpy as np

np.random.seed(1)

for node in sg.nodes:

 sg.nodes[node]["influence"] = len(list(sg.neighbors(node)))

 if node == 4:

 sg.nodes[node]["state"] = State.SOURCE

 sg.nodes[node]["resistance"] = 0

 else:

 sg.nodes[node]["state"] = State.SUSCEPTIBLE

 sg.nodes[node]["resistance"] = np.random.random()

We can now plot the graph with color indicating the initial state of the accounts. As

the dictionary STATE2COLOR denotes, red means the source of the misinformation.

Figure 9-5 indicates the source of misinformation.

Figure 9-5.  Source of misinformation is in red

To simulate the simultaneous states updating in one step, we need to

	 1.	 Update the states of each node and save the state in a copy of

the graph

	 2.	 Copy the states to the original graph

	 3.	 Repeat steps 1 and 2

Chapter 9 Misinformation Spreading and Simulations on a Graph

147

Here is the code skeleton for each iteration:

for _ in range(5):

 sg_copy = sg.copy()

 for node in sg.nodes:

 update_state(sg, sg_copy, node)

 # copy state

 for node in sg.nodes:

 sg.nodes[node]["state"] = sg_copy.nodes[node]["state"]

All the property updating details are in function update_state. The logics can be

extended further, but here is the first version:

def update_state(sg, sg_copy, node):

 # update states in sg_copy to achieve simultaneous updates

 successors = set(sg.neighbors(node))

 predecessors = set(nx.all_neighbors(sg,node)) - successors

 state = sg.nodes[node]["state"]

 if state == State.SOURCE:

 return

 elif state == State.RECOVERED:

 if sg.nodes[node]["resistance"] > np.random.random():

 �sg.nodes[node]["resistance"] = min(sg.nodes[node]

["resistance"]*2,sg.nodes[node]["resistance"] + np.random.

random(), 1)

 else:

 sg_copy.nodes[node][state] = State.SUSCEPTIBLE

 elif state == State.SUSCEPTIBLE:

 �source_influenced = State.SOURCE in [sg_copy.nodes[pre]["state"]

for pre in predecessors]

 �infected_influenced = State.INFECTED in [sg_copy.nodes[pre]

["state"] for pre in predecessors]

 if source_influenced or infected_influenced:

 if sg.nodes[node]["resistance"] < np.random.random():

 sg_copy.nodes[node]["state"] = State.INFECTED

Chapter 9 Misinformation Spreading and Simulations on a Graph

148

 elif state == State.INFECTED:

 # infected has a chance to become recovered

 if sg.nodes[node]["resistance"] > np.random.random():

 sg_copy.nodes[node]["state"] = State.RECOVERED

 else:

 �sg.nodes[node]["resistance"] = max(sg.nodes[node]

["resistance"]/2, sg.nodes[node]["resistance"] - np.random.

random())

 else:

 print("Unsupported state, exit.")

Our logic is based on the observation of accounts’ behaviors on social media. The

source of the information is always trying to influence the followers. A susceptible

person will be infected if their resistance is smaller than a random number.

For an infected person, there is a chance to become recovered by comparing against

a random number, but if it fails, the resistance will be halved or reduced by a random

number, whichever is larger.

For a recovered person, the resistance will be increased, up to 100% immune, if the

resistance is greater than a random number in each round; otherwise, the person will fall

back to the susceptible domain.

We already see the initial state, but let’s also take note of the resistance numbers:

{node: sg.nodes[node]["resistance"] for node in sg.nodes}

{0: 0.417022004702574,

 1: 0.7203244934421581,

 2: 0.00011437481734488664,

 3: 0.30233257263183977,

 4: None}

Next, let’s explore the system step by step. Depending on the random number seeds,

your results may look different from mine. After four iterations, my network looks like the

one in Figure 9-6. The resistance values remain unchanged, but account 0 bought the

story pushed by account 4. Figure 9-6 shows the updates of states.

Chapter 9 Misinformation Spreading and Simulations on a Graph

149

Figure 9-6.  Account 0 is contaminated with misinformation

Just after another iteration, my graph changes to the following. Account 1, with a

relatively high resistance, bought the story, as shown in Figure 9-7.

Figure 9-7.  Account 0 recovered, while account 1 bought the story

After two more iterations, things change again. Figure 9-8 shows that none of

account 4’s followers believe in it.

Chapter 9 Misinformation Spreading and Simulations on a Graph

150

Figure 9-8.  Both accounts 0 and 1 are immune to account 4’s misinformation

The resistance data shows that account 1 is not only recovered but also highly

unlikely to buy the misinformation spreader’s story anymore.

{0: 0.417022004702574,

 1: 0.9184259825270369,

 2: 0.00011437481734488664,

 3: 0.30233257263183977,

 4: None}

Such states are likely going to last forever as account 4 has no approach to reach

account 3, unless ads are available. We say that our system is stable.

Let’s try a bigger system with ten accounts and a different topology. In this topology,

there are much more bidirectional connections which can represent a small community,

like a family group or a local community. This topology is represented in Figure 9-9.

Figure 9-9.  A graph with more bidirected relationships

Chapter 9 Misinformation Spreading and Simulations on a Graph

151

I randomly pick accounts 4 and 6 as the sources. After one iteration, two other

accounts are infected as shown in Figure 9-10.

Figure 9-10.  Two followers of the misinformation source got infected

After four iterations, account 9 is recovered, while account 3 is infected. Figure 9-11

shows the evolution.

Figure 9-11.  Account 9 recovered, while account 3 got infected

Continuing the simulation, the stable state of my system looks as in Figure 9-12.

Chapter 9 Misinformation Spreading and Simulations on a Graph

152

Figure 9-12.  The stable state of the first simulation

Note that simply changing the random seed initiator can significantly change the

final stable state of the graph. Another stable state is presented in Figure 9-13.

Figure 9-13.  Another stable state with a different random number seed

Alrighty, let’s move on to much bigger graphs.

�Misinformation Spreading on Different Networks
The preceding graphs don’t actually capture the essence of online social networks. First,

they are too small. Second, they don’t exhibit the most significant properties of social

media networks: only a small portion of accounts have the majority of the followers.

To understand it, let’s plot the distribution of the numbers of followers in the

network. We need to create a bigger graph using the fast_gnp_random_graph() function:

Chapter 9 Misinformation Spreading and Simulations on a Graph

153

fig, ax = plt.subplots()

bg = nx.fast_gnp_random_graph(n=1000, p=0.15, seed = 1, directed = True)

degree_sequence = sorted((d for n, d in bg.out_degree()), reverse=True)

ax.bar(*np.unique(degree_sequence, return_counts=True))

ax.set_title("Degree histogram")

ax.set_xlabel("Degree")

ax.set_ylabel("# of Nodes");

The result is presented in Figure 9-14.

Figure 9-14.  The distribution of the out-degrees of a random graph

As you can see, the network doesn’t have a single, or a handful of, strong influencers.

The average number of followers is about 150, and the distribution is almost symmetric.

This is not true in real social networks. People don’t follow each other randomly with a

probability of 15%.

We need to use another random graph generator, the scale_free_graph() method. It

has many parameters, but we will take the default arguments for simplicity.

Let’s take a quick comparison of the ten-node graphs generated by fast_gnp_

random_graph() and scale_free_graph():

fig, axes = plt.subplots(1,2, figsize=(15,6))

G = nx.fast_gnp_random_graph(n=10, p =0.2, seed = 1)

pos=nx.circular_layout(G)

nx.draw(G, with_labels=True, font_weight='bold', pos = pos, ax = axes[0])

Chapter 9 Misinformation Spreading and Simulations on a Graph

154

G = nx.scale_free_graph(10)

pos=nx.circular_layout(G)

nx.draw(G, with_labels=True, font_weight='bold', pos = pos, ax = axes[1])

The result looks like the one in Figure 9-15. The one on the left is much more centric

visually. Well, account 0 follows many other accounts, not the other way around though.

The result is presented in Figure 9-15.

Figure 9-15.  A visual comparison of a random graph and a scale-free graph

Let’s create the same out-degree distribution visualization for a 1000-node scale-free

graph. The result is presented in Figure 9-16.

Figure 9-16.  Out-degree distribution for a scale-free graph

Chapter 9 Misinformation Spreading and Simulations on a Graph

155

As you can see, there are accounts with more than 80 followers, but the majority of

the accounts have only 1 or 2 followers. By controlling the parameters of the scale_free_

graph function, you can control the mechanism of the graph generation. The algorithm

for generating a scale-free graph is to continuously add new nodes to an existing graph

according to a set of preferences. I changed the default parameters to alter the out-

degree distribution. For example:

fig, ax = plt.subplots()

g = nx.scale_free_graph(1000, alpha = 0.6, beta = 0.39, gamma = 0.01,

seed = 0)

degree_sequence = sorted((d for n, d in g.out_degree()), reverse=True)

ax.bar(*np.unique(degree_sequence, return_counts=True))

ax.set_title("Out-degree histogram")

ax.set_xlabel("Out-degree")

ax.set_ylabel("# of Nodes");

The preceding code gives me a more equal world that the biggest influencer in the

community is not that influential. The largest out-degree in Figure 9-17 is around 30, not

80 as in Figure 9-16.

Figure 9-17.  A scale-free graph with a smaller maximum out-degree

The name scale-free comes from the fact that if the network is large enough and

you can zoom in to a local small subgraph, you will identify the similar properties and

metrics.

Chapter 9 Misinformation Spreading and Simulations on a Graph

156

We care about the two different cases because misinformation in the second case

can spread much faster and dangerously. To quantify that, we need a function to

aggregate the numbers of accounts in different state first.

from collections import Counter

def count_states(g):

 states = [g.nodes[node]["state"] for node in g.nodes]

 return Counter(states)

Alrighty, let’s track the spreading of misinformation for both types of graphs. We will

randomly generate graphs with 1000 nodes for each case and check how long it takes

to reach the stable states. We will also examine the ratios of infected accounts when the

stable states are reached.

We will start by setting the top two influential accounts as the sources of

misinformation. Note that we can also control the p parameter in the fast_gnp_random_

graph function to control the edge density. It is a crucial parameter because if p is very

large, then every node is essentially connected with any other node. The misinformation

reaches everyone in step one. We will see how it affects the simulation in detail.

First, let me bundle our earlier code into several functions:

def initialize(g, top_k = 5):

 tops = sorted(((n, d) for n, d in g.out_degree()), reverse=True,

 key = lambda pair: pair[1])[:top_k]

 for node in g.nodes:

 g.nodes[node]["influence"] = len(list(g.neighbors(node)))

 if node in [pair[0] for pair in tops]:

 g.nodes[node]["state"] = State.SOURCE

 g.nodes[node]["resistance"] = None

 else:

 g.nodes[node]["state"] = State.SUSCEPTIBLE

 g.nodes[node]["resistance"] = np.random.random()

def simulate(g, steps = 100, top_k = 5):

 initialize(g, top_k)

 res = []

 for _ in range(steps):

 g_copy = g.copy()

Chapter 9 Misinformation Spreading and Simulations on a Graph

157

 for node in g.nodes:

 update_state(g, g_copy, node)

 # copy state

 for node in g.nodes:

 g.nodes[node]["state"] = g_copy.nodes[node]["state"]

 res.append(count_states(g))

 return res

def visualize(res):

 steps = range(1, len(res) + 1)

 susceptible = [r.get(State.SUSCEPTIBLE,0) for r in res]

 recovered = [r.get(State.RECOVERED,0) for r in res]

 infected = [r.get(State.INFECTED,0) for r in res]

 fig, ax = plt.subplots()

 ax.plot(steps, susceptible, label="susceptible")

 ax.plot(steps, recovered, label="recovered")

 ax.plot(steps, infected, label="infected")

 plt.legend()

The initialize method assigns the SOURCE state to the top k most influential

accounts in the graph. Other codes are quite straightforward.

Now, let’s run the simulation for 20 steps and collect the statistics.

For a normal graph, we use the following code to simulate it.

g_normal = nx.fast_gnp_random_graph(n=1000, p=0.002, directed = True)

res = simulate(g_normal, steps = 20, top_k = 5)

visualize(res)

The result shown in Figure 9-18 indicates that the system does tend to reach a stable

state fairly quickly, although only 0.2% of all possible edges exist. Go ahead and do the

calculation that this is actually a quite large number.

Chapter 9 Misinformation Spreading and Simulations on a Graph

158

Figure 9-18.  The evolution of populations in a 1000-node random graph

How about the scale-free graph? Our expectation is that the misinformation

spreading should be faster. However, Figure 9-19 doesn’t say so.

g_scale_free = nx.scale_free_graph(1000, alpha = 0.5, beta = 0.1, gamma =

0.4, delta_out = 0.9)

res = simulate(g_scale_free, steps = 20, top_k = 5)

visualize(res)

Figure 9-19.  The evolution of populations in a 1000-node scale-free graph

Clearly, something is off. The system seems stuck in less than five steps. Why? Let’s

take a look at the most influential account’s neighbors:

tops = sorted(((n, d) for n, d in g_scale_free.out_degree()), reverse=True,

Chapter 9 Misinformation Spreading and Simulations on a Graph

159

 key = lambda pair: pair[1])[:5]

In my case, account 2 has the most followers:

[(2, 15), (18, 14), (6, 12), (11, 12), (32, 10)]

Let’s examine the neighbors of account 2. We are mostly interested in the number of

their followers:

[g_scale_free.out_degree()[k] for k in list(nx.neighbors(g_scale_free,2))]

It looks like the majority of them don’t have any followers!

[2, 0, 0, 0, 1, 3, 1, 0, 9, 0, 0, 0, 0, 0, 0]

This is why with a naively created directed scale-free graph, the misinformation

spreading is kind of limited to a small neighborhood of the sources.

An easy way to fix it is to use an undirected graph. Or significantly increase the top

players’ influential power in a much larger graph. Unfortunately, the second option

crashes my laptop. Please try the first approach on your own.

Lastly, let’s check how the p parameter in the fast_gnp_random_graph method

influences the speed of misinformation spreading.

To do that, we need to slightly modify the simulate function and make one

approximation. When the counting of different states is not changing in the last two

iterations, we assume that the system reaches a stable state. Of course, there is a

possibility that the situation will change, but that’s not very predictable due to random

number generation.

The code looks like the following:

def simulate(g, steps = 100, top_k = 5):

 initialize(g, top_k)

 res = []

 for _ in range(steps):

 g_copy = g.copy()

 for node in g.nodes:

 update_state(g, g_copy, node)

 # copy state

 for node in g.nodes:

 g.nodes[node]["state"] = g_copy.nodes[node]["state"]

Chapter 9 Misinformation Spreading and Simulations on a Graph

160

 if len(res) > 1 and res[-2] == res[-1] == count_states(g):

 return res

 res.append(count_states(g))

 return res

for p in [0.001,0.002, 0.004, 0.01, 0.02, 0.04, 0.08, 0.1, 0.2, 0.4]:

 for _ in range(1000):

 len_res = []

 infected_rate = []

 recovered_rate = []

 g_normal = nx.fast_gnp_random_graph(n=100, p=p, directed = True)

 res = simulate(g_normal, steps = 1000, top_k = 5)

 len_res.append(len(res))

 infected_rate.append(res[-1][State.INFECTED]/100)

 recovered_rate.append(res[-1][State.RECOVERED]/100)

 �print(p, np.mean(len_res), np.mean(infected_rate),

np.mean(recovered_rate))

The result is quite interesting as follows. I am just going to paste the number here:

0.001 3.0 0.02 0.02

0.002 4.0 0.03 0.05

0.004 5.0 0.04 0.04

0.01 16.0 0.21 0.12

0.02 10.0 0.2 0.29

0.04 19.0 0.31 0.54

0.08 11.0 0.23 0.64

0.1 17.0 0.4 0.51

0.2 11.0 0.38 0.47

0.4 13.0 0.28 0.6

At the beginning, because of the bad connectivity, the simulations stop quite early,

and only a small portion of accounts see the misinformation and recover from it. As

more and more edges are added to the graph, the stable state takes a longer time to reach

with a generally larger size of infected community and recovered community as well.

Chapter 9 Misinformation Spreading and Simulations on a Graph

161

�Exercise

	 1.	 Use undirected scale-free graphs to redo the simulation. Check

the built-in networkx graph generators to choose the right one.

	 2.	 Each account has an influence property, which should influence

how likely its followers are to accept the misinformation.

Introduce a mechanism to address such behavior.

�Summary
In this chapter, we discussed another important type of simulation: the simulation

on a graph data structure. Specifically, we studied the simulation of misinformation

spreading on social media. We introduced basic concepts of graphs and quantified

properties to describe graph elements. On top of that, we ran the simulations on

different types of graphs and interpreted the behaviors.

Chapter 9 Misinformation Spreading and Simulations on a Graph

163

Index

A
Absorbing states, 31
Agent class, 116, 119, 120
Agent-based modeling (ABM), 111
Agent-based simulation (ABS), 111, 112
Autonomous agents, 111

B
Bayesian statistics, 47–53
Bell-curve distribution, 8
Beta distribution, 48, 50
Binomial distribution, 48, 49
Bisection method, 16
Bond percolation problem, 79
Breadth-first search, 83

C
calculate_score method, 122
Calculation of Pi

distribution, 7
sprinkling grains, 2–9

Cartesian coordinates, 13, 14, 16
Cartesian coordinate system sampling, 14
Central limit theorem (CLT), 8
Circle circumference, 1, 2
clean_limit_orderbook function, 106
Collision detection, 60–64, 74, 75
Community formation on street, 112–115

Conservation of energy, 66
Continuous-time Markov chain, 19
count_threshold variable, 33
COVID-19 virus, 127
Critical occupation probability, 93
Critical probability, 77, 82

D
Dataclass, 42
Data collection, 124
Data schema, 98–102
Debugger PIN, 99
Delta, 62
Depth, 97
Depth-first search, 83
Dictionary keys, 102
Difference equations, 130
Directed graph with self-loops, 142
Directional multigraph, 141
Disconnected graph, 141
Disease spreading, 127, 128, 136
Disinformation, 139
Distribution, 47

E
Eigenstates of Markov Chains, 25–27
Emerging behavior, 111
Exploitation, 41, 44
Exploration, 44

© Rongpeng Li and Aiichiro Nakano 2022
R. Li and A. Nakano, Simulation with Python, https://doi.org/10.1007/978-1-4842-8185-7

https://doi.org/10.1007/978-1-4842-8185-7#DOI

164

F
fast_gnp_random_graph()

function, 152, 153, 156, 159
Fire spreading, 77
Flask, 98

G
General networks, 140
Graph

clusters, 141
communities, 141
loop edge, 141
nodes and edges, 140, 142

Gravity, 65
Greedy-Epsilon algorithm, 45, 46
Grid class, 79

H
Herd immunity, 136
Human language, 31

I, J, K
Informed bot, 110
Interior grazing problem, 11
Investors, 95

L
Lemmatization, 32
Limit order, 97
List data structure, 112
Localhost, 100

M
Market order, 97
Market price, 110
Markov chain

applications
model human language, 31–36
nontrivial probability

question, 28–31
eigenstates, 25–27
weather forecasting, 19–25

Match engine, 95, 98
Match engine entity, 96
Matrix multiplication operation, 23
Matrix notation, 23
Mean, 8
Median, 8
Mesa Python library, 126
Misinformation, 139
Misinformation spreading

bidirected relationships, 150
data structures, 145
directed graph, 144
networks, 152–160
probabilities, 143
simulation, 146, 151
source, 146
stable state, 152
update_state, 147, 148

Model, 119, 122
model_reporters, 124
Molecular dynamics simulation, 117
Monte Carlo simulation, 3, 9, 11, 17
Multi-armed bandit problem, 39
Multigraph, 141
Multiple balls in 2-D Box

INDEX

165

collision detection, 74, 75
positions update and velocity upon

collision, 65–74
Multiple bots, 109

N
Naive Greedy approach, 40–43
Networkx, 144
Nonstable occupation pattern, 115

O
Occupation probability, 92
One Ball in 2-D Box

code snippet, 55
collision detection, 60–64
physics law of motion, 57–60
timestep, 57
velocity, 56

Order book
bot and the engine together, 107–109
definition, 96
depth dynamics, 97
logic implementation, 102–107
market price, 97
visualization, 110

Order cancellation functionality, 110
Order received message, 99

P, Q
Percolating cluster, 85–87, 90
Percolating probability, 88, 89
Percolation

definition, 77
1-D case, analytical solution, 82
2-D case simulation, 83–90

Periodic boundary condition (PBC), 117
Phase transition, 93
Physics engine, 55, 57
Polar coordinate system, 12, 13, 15
Polygons’ perimeters, 3
Population evolution, 132
Post-collision velocity of ball, 68
Prior distribution, 47
process_order function, 99, 100
Pure greedy approach, 45

R
Random graph, 153
Randomness, 11–17
Random occupation pattern, 113, 114
random.random() function, 5
Recovered nodes, 142
Recovered population, 135
Recovery rate, 134
Regret function, 40–42

pure greedy approach/greedy-epsilon
approach, 45

random choice, 41
Regret value, 43
Resource path, 110
Rock-paper-scissors, 116

S
Scale-free graph, 154, 155
scale_free_graph function, 153, 155
Schedule attribute, 124
Schelling model, 112, 116
Segregation, 112
SimultaneousActivation, 119, 122
SIR model, 133–137
Slot machine trajectory, 43

INDEX

166

Sneaky strategy, 122
Social network model, 139–143
Softmax strategy, 45, 50
Square, 11
Square lattice of dimension, 78
Stable occupation pattern, 115
Standard deviation (STD), 8
Standard uniform distribution, 5
Stock exchange, 95, 100, 109
Stop loss orders, 97
Stop orders support, 110
Stop profit orders, 97
Stubborn strategy, 122
Subgraph, 141
Susceptible and infected populations, 129
Susceptible-infected model (SI), 129–133
Sweep and prune algorithm, 74
System class, 74

T
Timestep, 57
Trading process fundamentals, 95–98

transition_dict, 35
Transition matrix, 25, 30
Transition probability, 20, 22
Tunneling problem, 62
2-D Grid Percolation, 90–93

U
Uniform distribution, 16
Unreal Engine, 57

V
Vaccination, 136

W, X, Y, Z
Weather forecasting

eigenstates of Markov chains, 25–27
Markov chain, properties, 21
state probabilities, 24
trajectories, 21
transition probabilities, 20–22

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Calculating Pi with Monte Carlo Simulation
	Background
	The Wise Persons’ Competition
	Estimating Pi by Sprinkling Grains
	Exercise

	Contain the Goat!
	What Randomness?
	Exercise

	Summary

	Chapter 2: Markov Chain, a Peek into the Future
	Weather Forecasting
	Eigenstates of Markov Chains
	Exercise

	Markov Chain Applications
	A Random Walk That Has an End
	Sonnet Written by Drunk Shakespeare
	Exercise

	Summary

	Chapter 3: Multi-armed Bandits, Probability Simulation, and Bayesian Statistics
	Random Pick and Naive Greedy Approach
	Greedy-Epsilon: Greedy but Not Always
	An Improved Greedy-Epsilon Algorithm
	Exercise

	The Bayesian Way, a Primer on Bayesian Statistics
	Exercise

	Summary

	Chapter 4: Balls in a 2-D Box, a Simple Physics Engine
	One Ball in a 2-D Box
	Physics Law of Motion
	Collision Detection
	Exercise

	Multiple Balls in a 2-D Box
	Update of Positions and Velocity upon Collision
	Collision Detection in Multiple-Ball Scenario
	Exercise

	Summary

	Chapter 5: Percolation, Threshold, and Phase Change
	Problem Introduction
	Percolation and the Critical Probability
	An Analytical Solution for the 1-D Case
	A Simulation for the 2-D Case
	Exercise

	Another Interesting Statistic in 2-D Grid Percolation
	Exercise

	Summary

	Chapter 6: Queuing System: How Stock Trades Are Made
	Trading Process Fundamentals
	The Order Book

	Create the Interfaces and Determine the Data Schema
	Implement Order Book Logic
	Hook the Bots and Engine Together

	Exercises and Extension Ideas
	Multiple Bots
	An Informed Bot
	Order Book Visualization
	Order Cancellation Support
	Stop Orders Support

	Summary

	Chapter 7: Rock, Scissors, and Paper: Multi-agent Simulation
	Community Formation on a Street
	Exercise
	Original Schelling Model
	Three Groups

	How to Win a Global Rock, Paper, and Scissors Contest
	Exercise

	Summary

	Chapter 8: Disease Spreading, Simulating COVID-19 Outbreak
	Simplifying the Real World
	The SI Model
	Exercise

	The SIR Model
	Exercise

	Summary

	Chapter 9: Misinformation Spreading and Simulations on a Graph
	Model the Social Network
	Simulate Misinformation Spreading
	Simple Cases
	Misinformation Spreading on Different Networks

	Exercise
	Summary

	Index

