Kafke

|
¥
.. iy e P
! R [. .-
| &Y L~
- 4 i - .'.
I e -
e L 3
2y £ .
o B 4 Y -
| = w .
[| = |
o
1 LA 4 I W
5 ' "‘ 1 "
N, 1
¥ & -] I.l-
' B | P
= ' . 5 At h
- i+ Frf 3
: F § : . ' 5
L L
ql] |
g g
I ¥ \
| |\ Mt B '
ey w1 ’ |
i Agir 4
y

SECOND EDITION

Bill Bejeck

MEAP Edition
Manning Early Access Program

Kafka Streams in Action, Second Edition

Version 6

Copyright 2022 Manning Publications

For more information on this and other Manning titles go to

manning.com

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

welcome

Hi There!

Wow, time does fly! It's hard to believe it's February 2022. While I've tried to improve the rate of MEAP releases, it
still seems like life continues to throw challenges at me, impacting my delivery. But hang in there as, with this MEAP
release, we're just about halfway done! As before, I'm working to improve the timing of MEAP releases.

So what's new in this installment? First of all, I've decided to change the title to Kafka Streams in Action 2nd Edition.
After thinking about it for a while, the heart of this book is still Kafka Streams, so I wanted the title to reflect that
fact. As for the content of this MEAP release, we continue with our coverage of the core Kafka Streams API, this
time looking at stateful operations.

Here’s a list of some of the things you'll learn in chapter 7:

1. The difference between stateless and stateful applications
2. The various types of stateful operations-- reduce, aggregations, and joins
3. The importance of keys in stateful operations in Kafka Streams

I'm excited to present this chapter to you, as I think this is where you learn how to build powerful applications to
solve real-world problems.

One thing to note is that I've updated to source code to support Java 17. Given all the significant improvements
available in that release, I felt it worthwhile to make the switch. So be sure to update your local Java installation

when working with the source code.

I've made every attempt to make sure the book is clear and accurate. Feel free to join me on the liveBook forum at
Manning.com to ask questions, offer feedback, and participate in the conversation to shape this book.

—Bill Bejeck

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion
https://www.manning.com/
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

brief contents

PART 1: INTRODUCTION
1 Welcome to the Kafka event streaming platform
2 Kafka brokers
PART 2: GETTING DATA INTO KAFKA
3 Schema registry
4 Kafka clients
5 Kafka connect
PART 3: EVENT STREAM PROCESSING DEVELOPMENT
6 Developing Kafka streams
7 Streams and state
8 Adpanced stateful concepts
9 The Processor API
10 Further up the Platform: ksq/DB
11 Adpanced ksq/DB
12 Testing
APPENDIXES
A Installation
B Schema compatibility workshop
C Kafka S'treams Architectures

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

Welcome to the kafka event streaming
platform

This chapter covers

® Defining event streaming and events
® Introducing the Kafka event streaming platform
® Applying the platform to a concrete example

We live in a world today of unprecedented connectivity. We can watch movies on demand on an
IPad, get instant notification of various accounts' status, pay bills, and deposit checks from our
smartphones. If you chose to, you can receive updates on events happening around the world
24/7 by watching your social media accounts.

While this constant influx of information creates more entertainment and opportunities for the
human consumer, more and more of the users of this information are software systems using
other software systems. Consequently, businesses are forced to find ways to keep up with the
demand and leverage the available flow of information to improve the customer experience and
improve their bottom lines. For today’s developer, we can sum up all this digital activity in one
term: event streaming.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

1.1 What is event streaming ?

In a nutshell, event streaming is capturing events generated from different sources like mobile
devices, customer interaction with websites, online activity, shipment tracking, and business
transactions. Event streaming is analogous to our nervous system, processing millions of events
and sending signals to the appropriate parts of our body. Some signals are generated by our
actions such as reaching for an apple, and other signals are handled unconsciously, as when your
heart rate increases in anticipation of some exciting news. We could also see activities from
machines such as sensors and inventory control as event streaming.

But event streaming doesn’t stop at capturing events; it also means processing and durable
storage.

The ability to process the event stream immediately is essential for making decisions based on
real-time information. For example, does this purchase from customer X seem suspicious? Are
the signals coming from this temperature sensor seem to indicate that something has gone wrong
in a manufacturing process? Has the routing information been sent to the appropriate department
of a business?

The value of the event stream is not limited to immediate information. By providing durable
storage, we can go back and look at event stream data-in its raw form or perform some
manipulation of the data for more insight.

1.1.1 What is an event ?

So we’ve defined what an event stream is, but what is an event? We’ll define event very simply

as "something that happens”l. While the term event probably brings something to mind
something notable happening like the birth of a child, a wedding, or sporting event, we’re going
to focus on smaller, more constant events like a customer making a purchase (online or
in-person), or clicking a link on a web-page, or a sensor transmitting data. Either people or
machines can generate events. It’s the sequence of events and the constant flow of them that
make up an event stream.

Events conceptually contain three main components:

1. Key - anidentifier for the event
2. Value - the event itself
3. timestamp - when the event occurred

Let’s discuss each of these parts of an event in a little more detail. The key could be an identifier
for the event, and as we’ll learn in later chapters, it plays a role in routing and grouping events.
Think of an online purchase, and using the customer id is an excellent example of the key. The
value is the event payload itself. The event value could be a trigger such as activating a sensor

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

when someone opens a door or a result of some action like the item purchased in the online sale.

Finally, the timestamp is the date-time when recording when the event occurred. As we go

through the various chapters in this book, we’ll encounter all three components of this "event

trinity" regularly.

1.1.2 An event stream example

Let’s say you’ve purchased a Flux Capacitor, and you’re excited to receive your new purchase.

Let’s walk through the events leading up to the time you get your brand new Flux Capacitor,

using the following illustration as your guide.

------ - (D) - SRy

. Event ->Customer purchases o Flux Capacitor . Event -> Warghouse Ships Package and it's scanned

as it's |oom!ep! onto the truck bound For the
a?rpof‘t

. /\/?\
- *

L
A .
.Event~> The truck arrives at the ———— [ﬁ‘% __#____>
air‘Port and the Packaﬁ-e ——O

?:'tsl'j:::;ed ";"e" | . Event -> The Plﬁme lands Event -> At the distribution center
s on The plane and The package is seanned the Pa\ckc\-je is scanned on arrival
as t's loaded on o truck
bound for the r‘e_?ionc\l distribution

center
B > %
Event -> The Flux*capa:ﬂ;or‘ . Event -> The driver arrives
951;5 loaw!ep(on o truck bound at your house and hands {you
for local Je_livery the F|ux~capa:?tor as ‘the_l{

scan it marking it delivered

Figure 1.1 A sequence of events comprising an event stream starting with the online purchase of the
flux chOdcapacitor

1.

2.

Y ou complete the purchase on the retailer’ s website, and the site provides a tracking
number.

The retailer’ s warehouse receives the purchase event information and puts the Flux
Capacitor on a shipping truck, recording the date and time your purchase left the
warehouse.

Thetruck arrives at the airport, the driver loads the Flux Capacitor on a plane, and scans
a barcode recording the date and time.

The plane lands, and the package is loaded on atruck again headed for the regional
distribution center. The delivery service records the date and time when they’ ve loaded
your Flux Capacitor.

The truck from the airport arrives at the regional distribution center. A delivery service
employee unloads the Flux Capacitor , scanning the date and time of the arrival at the
distribution center.

Another employee takes your Flux Capacitor, scans the package saving the date and time,
and loads it on atruck bound for delivery to you.

The driver arrives at your house, scans the package one last time, and handsiit to you.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

4
Y ou can start building your time-traveling car!

From our example here, you can see how everyday actions create events, hence an event stream.
The individual events here are the initial purchase, each time the package changes custody, and
the final delivery. This scenario represents events generated by just one purchase. But if you
think of the event streams generated by purchases from Amazon and the various shippers of the
products, the number of events could easily number in the billions or trillions.

1.1.3 Who needs event streaming applications

Since everything in life can be considered an event, then pretty much any problem domain will
benefit from using event streams. But there are some areas where it’s more important to do so.
Here are some typical examples

® Credit card fraud — A credit card owner may be unaware of unauthorized use. By
reviewing purchases as they happen against established patterns (location, general
spending habits), you may be able to detect a stolen credit card and alert the owner.

® |ntrusion detection — The ability to monitor aberrant behavior in real-timeiscritical for
the protection of sensitive data and well being of an organization.

® TheInternet of Things- With |oT, there are sensors located in all kinds of places, and
they all send back data very frequently. The ability to quickly capture this data and
processit in ameaningful way is essential; anything less diminishes the effect of having
these sensors deployed.

® Thefinancial industry — The ability to track market prices and direction in real-timeis
essential for brokers and consumers to make effective decisions about when to sell or
buy.

® Sharing data in real-time - Large organizations, like corporations or conglomerates, that
have many applications need to share data in a standard, accurate, and real-time way

If the event-stream provides essential and actionable information, businesses and organizations
need event-driven applications to capitalize on the information provided. In the next section,
we’ll break down the different components of the Kafka event streaming platform.

I’ve made a case for building event-streaming applications. But streaming applications aren’t a
fit for every situation.

Event-streaming applications become a necessity when you have data in different places or you
have a large volume of events that you need to use distributed data stores to handle the volume.
So if you can manage with a single database instance, then streaming is not a necessity. For
example, a small e-commerce business or a local government website with mostly static data
aren’t good candidates for building an event-streaming solution.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

1.2 Introducing the Apache Kafka® event streaming platform

The Kafka event streaming platform provides the core capabilities for you to implement your
event streaming application from end-to-end. We can break down these capabilities into three
main areas: publish/consume, durable storage, and processing. This move, store, and process
trilogy enables Kafka to operate as the central nervous system for your data.

Before we go on, it will be useful to give you an illustration of what it means for Kafka to be the
central nervous system for your data. We’ll do this by showing before and after illustrations.

Let’s first look at an event-streaming solution where each input source requires separate
infrastructure:

& &
[|

Sales and click
‘ events

ﬂenera’reo\
stored in 0

W 5efar_\ra+e © Data s’roraﬂe
8 systems |J ' [

Y,

€1
(L \ } f

Consumers of
ditferent data
streams

— —

Hessaﬁinﬁ
queues routi

! B S
to different =

CONSUMETrS

Figure 1.2 Initial event-streaming architecture leads to complexity as the different departments and
data streams sources need to be aware of the other sources of events

In the above illustration, you have individual departments creating separate infrastructure to meet
their requirements. But other departments may be interested in consuming the same data, which
leads to a more complicated architecture to connect the various input streams.

Now let’s take a look at how using the Katka event streaming platform can change things.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

LO'*—**

= & & -~
.) -
Sales and click

events

Senera*red

stored in Data stora

separate © 3€

I systems ‘

Now any consun>t \ / Aecoq‘dg stream into
easiy access all data that Kafka acting as a central
i avanabie and individual NeCVoUS S stem dé’ra
producers of data don't simplifying the architecture.

need to be aware of who's
consumina the data.

[

SR

/D

Figure 1.3 Using the Kafka event streaming platform the architecture is simplified

As you can see from this updated illustration, the architecture is greatly simplified with the
Kafka event streaming platform’s addition. All components now send their records to Kafka.
Additionally, consumers read data from Kafka with no awareness of the producers.

At a high level, Kafka is a distributed system of servers and clients. The servers are called
brokers, and the clients are record producers sending records to the brokers, and the consumer
clients read records for the processing of events.

1.2.1 Kafka brokers

Kafka brokers durably store your records in contrast with traditional messaging systems
(RabbitMQ or ActiveMQ) where the messages are ephemeral. The brokers store the data
agnostically as the key-value pairs (and some other metadata fields) in byte format and are
somewhat of a black box to the broker.

Providing storage of events has more profound implications as well concerning the difference
between messages and events. You can think of messages as "tactical" communication between
two machines, while events represent business-critical data that you don’t want to throw away.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

Kofka Brokers are

In o Kafka cluster deployed in o cluster

each broker has re,spons‘.Lihtie,s
as o leader’ and "Follower".
The Pollower brokers fetch
doto from the leaders pnovio(in?
dota o(umb?h‘tl/

i/

/Eve_ry broker in the cluster

cts as a follower and
re,plica‘te,s o portion of the data
from ancther leader’ broker

N

The leader broker handles
reauests for storing records
from producers or retrieving them
for consumers

Figure 1.4 You deploy brokers in a cluster, and brokers replicate data for durable storage

From this illustration, you can see that Kafka brokers are the storage layer within the Kafka
architecture and sit in the "storage" portion of the event-streaming trilogy. But in addition to
acting as the storage layer, the brokers provide other essential functions such as serving requests
from clients to providing coordination for consumers. We’ll go into details of broker
functionality in chapter 2.

1.2.2 Schema registry

Suppor‘te,o! serialization frameworks
are Avro TSON Schema ond Protocol Buffers

| N
Schema Registry server b il QBO% <
'@ stores schemas
e pr‘oo(ucer also Stores % The consumer retrieves a schema

the schema extracted

stored in Schema Registry
from the object in Schema Registry

e ot oy e acroy
ucer ool | o1 [0l Consumer
The producer serializes /]\ \]/
@ records into bytes ——=> < The consumer uses retrieved
& />\ schewa to deserialize @
% I‘/ N bytes into a record
A N
Record o‘:je_c‘t Record obje_c‘t

Figure 1.5 Schema registry enforces data modeling across the platform

Data governance is vital, to begin with, and its importance only increases as the size and
diversity of an organization grows. Schema Registry stores schemas of the event records.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

Schemas enforce a contract for data between producers and consumers. Schema Registry also
provides serializers and deserializers supporting different tools that are Schema Registry aware.
Providing (de)serializers means you don’t have to write your serialization code. We’ll cover
Schema Registry in chapter 3.

1.2.3 Producer and consumer clients

Apache Kokfo Broker

4&{ >

e ool | e ool
A v 0

. N
Producer c.lie,n‘ts /!/§> N /'-i‘\ Consumer clients
serialize records T%ﬁ N consume bytes
and send the Record object Recordl object from the broker
Bt/te_s to the and serialize them
broker back into objects

Figure 1.6 producers write records into Kafka, and consumers read records

The Producer client is responsible for sending records into Kafka. The consumer is responsible
for reading records from Kafka. These two clients form the basic building blocks for creating an
event-driven application and are agnostic to each other, allowing for greater scalability. The
producer and consumer client also form the foundation for any higher-level abstraction working
with Apache Katka. We cover clients in chapter 4.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

1.2.4 Kafka Connect

Kofko. Connect Source Connectors Kofko Conneet Sink Comnecters

MongoDB
MongoDB Apache Kafka / .
. —\% / Relational DB

5 ~@

\ Elastic Search
_E

Sink connectors export data From
o Kofko clus‘te_r into an e)(te_mo.l S'{S'te,m

Re_la‘tional DB

Source connectors import data from
external sys‘tems nto a Kafka cluster

Figure 1.7 Kafka Connect bridges the gap between external systems and Apache Kafka

Kafka Connect provides an abstraction over the producer and consumer clients for importing
data to and exporting data from Apache Kafka. Kafka connect is essential in connecting external
data stores with Apache Kafka. It also provides an opportunity to perform light-weight
transformations of data with Simple Messages Transforms when either exporting or importing

data. We’ll go into details of Kafka Connect in a later chapter.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

10

1.2.5 Kafka Streams

Apache Kafka

Sink Topic
Source Topic

e 18

Kofko Streams

Apphca‘tion
@
@ The last part of the
Kofko Streoms consumes processing stream
records from o source Cé writes records back to a
topic and performs some . i : Kafka topic

processing on each record

Figure 1.8 Kafka Streams is the stream processing API for Kafka

Kafka Streams is the native stream processing library for Kafka. Kafka Streams is written in the
Java programming language and is used by client applications at the perimeter of a Kafka cluster;
it is *not* run inside a Kafka broker. It provides support for performing operations on event data,
including transformations, stateful operations like joins, and aggregations. Kafka Streams is
where you’ll do the heart of your work when dealing with events. Chapters 6, 7, and 8 cover
Kafka Streams in detail.

1.2.6 ksqlDB

ksqlDB is an event streaming database. It does this by applying a SQL interface for event stream
processing. Under the covers, ksqlDB uses Kafka Streams for performing its event streaming
tasks. A key advantage of ksqlDB is that it allows you to specify your event streaming operation
in SQL; no code is required. We’ll discuss ksqlDB in chapters 8 and 9.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

11

CREATE TABLE activePromotions AS
SELECT riderd,
qUQlIPL/PPOmoﬁon(J(m'TB])s-l') As promotion
FROM locotions
&RoUP BY riderd
EMIT CHAMGES,;

SELECT riderd, promotion
FROM oactivePromotions
WHERE RoWkEY = 'é¢FdOfedb’;

Figure 1.9 ksqlDB provides streaming database capabilities

Now that we’ve gone over how the Kafka event streaming platform works, including the
individual components, let’s apply a concrete example of a retail operation demonstrating how
the Kafka event streaming platform works.

1.3 A concrete example of applying the Kafka event streaming
platform

Let’s say there is a consumer named Jane Doe, and she checks her email. There’s one email from
ZMart with a link to a page on the ZMart website containing coupons for 15% off the total
purchase price. Once on the web page, Jane clicks another link to activate the coupons and print
them out. While this whole sequence is just another online purchase for Jane, it represents
clickstream events for ZMart.

Let’s take a moment here to pause our scenario so we discuss the relationship between these
simple events and how they interact with the Kafka event streaming platform.

The data generated by the initial clicks to navigate to and print the coupons create clickstream
information captured and produced directly into Kafka with a producer microservice. The
marketing department started a new campaign and wants to measure its effectiveness, so the
clickstream events available at this point are valuable.

The first sign of a successful project is that users click on the email links to retrieve the coupons.
Additionally, the data science group is interested in the pre-purchase clickstream data as well.
The data science team can track customers' initial actions and later attribute purchases to those
initial clicks and marketing campaigns. The amount of data from this single activity may seem

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

12

small. When you factor in a large customer base and several different marketing campaigns, you
end up with a significant amount of data.

Now let’s resume our shopping example.

It’s late summer, and Jane has been meaning to get out shopping to get her children some
back-to-school supplies. Since tonight is a rare night with no family activities, Jane decides to
stop off at ZMart on her way home.

Walking through the store after grabbing everything she needs, Jane walks by the footwear
section and notices some new designer shoes that would go great with her new suit. She realizes
that’s not what she came in for, but what the heck life is short (ZMart thrives on impulse

purchases!), so Jane gets the shoes.

As Jane approaches the self-checkout aisle, she first scans her ZMart member card. After
scanning all the items, she scans the coupon, which reduces the purchase by 15%. Then Jane
pays for the transaction with her debit card, takes the receipt, and walks out of the store. A little
later that evening, Jane checks her email, and there’s a message from ZMart thanking her for her
patronage, with coupons for discounts on a new line of designer clothes.

Let’s dissect the purchase transaction and see this one event triggers a sequence of operations
performed by the Kafka event streaming platform.

So now ZMart’s sales data streams into Kafka. In this case, ZMart uses Kafka Connect to create
a source connector to capture the sales as they occur and send them into Kafka. The sale
transaction brings us to the first requirement, the protection of customer data. In this case, ZMart
uses an SMT or Simple Message Transform to mask the credit card data as it goes into Kafka.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

13

Jane mokes a purchase
at the stere

334 BEI% a%le IR0 4
source connector

Expires O5/3.5 ”

pulls new records Apache Kafka
Towne. Swith out of the database

To import them into

Kofko

As the commector reads

_SO‘IQS tm‘"“:‘o‘c't;o':‘ dato in the sales data it pet'Poms
:S Au’tOma’tha”t{ mpu‘t =8 Srmple_ 'tromsPom on 'the.
nto a database sale_s dato and masks the

credit card number

KKK KARXK KKK KKK

Figure 1.10 Sending all of the sales data directly into Kafka with connect masking the credit card
numbers as part of the process

As connect writes records into Kafka, they are immediately consumed by different organizations
within ZMart. The department in charge of promotions created an application for consuming
sales data for assigning purchase rewards if they are a member of the loyalty club. If the
customer reaches a threshold for earning a bonus, an email with a coupon goes out to the

customer.
Ewmails to customers
Apache Kafka \——
) Sink ‘I'opic M

Kofkoa Streams
Applica‘hon
@

The last part of the

Source Topic

e sld

Kofko. Streoms consumes / processing stream
records from a source ’ writes records back to a -
topic and performs some | Kafka topia
pro‘:e,s:inﬁ zn each re,::ml L/.i Marketing department micro-service consumes
the results of the Kafka Streams applina‘tton

and sends out emails to customers eaming rewards

Figure 1.11 Marketing department application for processing customer points and sending out earned
emails

It’s important to note that ZMart processes sales records immediately after the sale. So customers

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

14

get timely emails with their rewards within a few minutes of completing their purchases. By
acting on the purchase events as they happen allows ZMart a quick response time to offer

customer bonuses.

The Data Science group within ZMart uses the sales data topic as well. The DS group uses a
Kafka Streams application to process the sales data building up purchase patterns of what
customers in different locations are purchasing the most. The Kafka Streams application
crunches the data in real-time and sends the results out to a sales-trends topic.

An elastic source container
Apache Kafka consumes the records from the Kafka
Streams applica‘tion and exports them

Sink Topic to elastic search

Source Top?c

PRPYS,

Kofko Streams
App lication

[]
v
® T
The last part of the &
Kafka Streams consumes) processing stream
records from o source ’ writes records back to a T
- b

topic and performs some Kafka topic

processing on each record A dashboard application presents

the results for Viewing

Figure 1.12 Kafka Streams application crunching sales data and connect exporting the data for a
dashboard application

ZMart uses another Kafka connector to export the sales trends to an external application that
publishes the results in a dashboard application. Another group also consumes from the sales
topic to keep track of inventory and order new items if they drop below a given threshold,

signaling the need to order more of that product.

At this point, you can see how ZMart leverages the Kafka platform. It is important to remember
that with an event streaming approach, ZMart responds to data as it arrives, allowing them to
make quick and efficient decisions immediately. Also, note how you write into Kafka once, yet
multiple groups consume it at different times, independently in a way that one group’s activity

doesn’t impede another’s.

In this book, you’ll learn what event-stream development is, why it’s essential, and how to use
the Kafka event streaming platform to build robust and responsive applications. From extract,
transform, and load (ETL) applications to advanced stateful applications requiring complex
transformations, we’ll cover the Kafka streaming platform’s components so you can solve the
kinds of challenges presented earlier with an event-streaming approach. This book is suitable for
any developer looking to get into building event streaming applications.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

15

1.4 Summary

Event streaming is capturing events generated from different sources like mobile devices,
customer interaction with websites, online activity, shipment tracking, and business
transactions. Event streaming is analogous to our nervous system.

An event is "something that happens,” and the ability to react immediately and review
later is an essential concept of an event streaming platform

Kafka acts as a central nervous system for your data and simplifies your event stream
processing architecture

The Kafka event streaming platform provides the core capabilities for you to implement
your event streaming application from end-to-end by delivering the three main
components of publish/consume, durable storage, and processing.

Kafka broker are the storage layer and service requests from clients for writing and
reading records. The brokers store records as bytes and do no touch or alter the contents.

Schema Registry provides away to ensure compatibility of records between producers
and consumers.

Producer clients write (produce) records to the broker. Consumer clients consume records
from the broker. The producer and consumer clients are agnostic of each other.
Additionally, the Kafka broker doesn’t have any knowledge of who the individual clients
are, they just process the requests.

Kafka Connect provides a mechanism for integrating existing systems such as external
storage for getting data into and out of Kafka.

Kafka Streams is the native stream processing library for Kafka. It runs at the perimeter
of aKafka cluster, not inside the brokers and provides support for transforming data
including joins and stateful transformations.

ksglDB is an event streaming database for Kafka. It allows you to build powerful
real-time systems with just afew lines of SQL.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

16

Kafka brokers

This chapter covers

® Explaining how the Kafka Broker is the storage layer in the Kafka event streaming
platform

® Describing how Kafka brokers handle requests from clients for writing and reading
records

® Understanding topics and partitions
® Using JMX metrics to check for a healthy broker

In chapter one, I provided an overall view of the Kafka event streaming platform and the
different components that make up the platform. In this chapter, we will focus on the heart of the
system, the Kafka broker. The Kafka broker is the server in the Kafka architecture and serves as
the storage layer.

In the course of describing the broker behavior in this chapter, we’ll get into some lower-level
details. I feel it’s essential to cover them to give you an understanding of how the broker
operates. Additionally, some of the things we’ll cover, such as topics and partitions, are essential
concepts you’ll need to understand when we get into the chapter on clients. But in practice, as a
developer, you won’t have to handle these topics daily.

As the storage layer, the broker is responsible for data management, including retention and
replication. Retention is how long the brokers store records. Replication is how brokers make
copies of the data for durable storage, meaning if you lose a machine, you won’t lose data.

But the broker also handles requests from clients. Here’s an illustration showing the client
applications and the brokers:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

17

T he broker processes
?ncoming requests

Re,spov\ses sent back +o
che_v\-l's

Figure 2.1 Clients communicating with brokers

To give you a quick mental model of the broker’s role, we can summarize the illustration above:
Clients send requests to the broker. The broker then processes those requests and sends a
response. While I'm glossing over several details of the interaction, that is the gist of the
operation.

NOTE Kafka is a deep subject, so | won't cover every aspect. I'll go over enough
information to get you started working with the Kafka event streaming
platform. For in-depth Kafka coverage, look at Kafka in Action by Dylan Scott
(Manning, 2018).

You can deploy Kafka brokers on commodity hardware, containers, virtual machines, or in cloud
environments. In this book, you’ll use Kafka in a docker container, so you won’t need to install it
directly. I’ll cover the necessary Kafka installation in an appendix.

While you’re learning about the Kafka broker, I’ll need to talk about the producer and consumer
clients. But since this is chapter is about the broker, I’ll focus more on the broker’s
responsibilities. So at times, I’ll leave out some of the client details. But not to worry, we’ll get
to those details in a later chapter.

So, let’s get started with some walkthroughs of how a broker handles client requests, starting
with producing.

2.1 Produce record requests

When a client wants to send records to the broker, it does so with a produce request. Clients send
records to the broker for storage so that consuming clients can later read those records.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

18

Here’s an illustration of a producer sending records to a broker. It’s important to note these
illustrations aren’t drawn to scale. What I mean is that typically you’ll have many clients
communicating with several brokers in a cluster. A single client will work with more than one
broker. But it’s easier to get a mental picture of what’s going on if I keep the illustrations simple.
Also, note that I'm simplifying the interaction, but we’ll cover more details when discussing

clients in chapter 4.

Pourtitions
Broker Topic "A
® [
HAREN
O =
ARNEEE:
— &

T he. broker
appe_nols o botch
of records

ot +he e_noi of
+he +opic-f:ar+‘.+ion5

Figure 2.2 Brokers handling produce records request

Let’s walk through the steps in the "Producing records" illustration.

1. The producer sends a batch of records to the broker. Whether it' s a producer or
consumer, the client APIs aways work with a collection of records to encourage
batching.

2. The broker takes the produce request out of the request queue.

3. The broker stores the recordsin atopic. Inside the topic, there are partitions; you can
consider a partition way of bucketing the different records for now. A single batch of
records always belongs to a specific partition within atopic, and the records are always
appended at the end.

4. Once the broker completes the storing of the records, it sends a response back to the
producer. We'll talk more about what makes up a successful write later in this chapter
and again in chapter 4.

Now that we’ve walked through an example produce request, let’s walk through another request
type, fetch, which is the logical opposite of producing records; consuming records.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

19

2.2 Consume record requests

Now let’s take a look at the other side of the coin from a produce request to a consume request.
Consumer clients issue requests to a broker to read (or consume) records from a topic. A critical
point to understand is that consuming records does not affect data retention or records
availability to other consuming clients. Katka brokers can handle hundreds of consume requests
for records from the same topic, and each request has no impact on the other. We’ll get into data
retention a bit later, but the broker handles it utterly separate from consumers.

It’s also important to note that producers and consumers are unaware of each other. The broker
handles produce and consume requests separately; one has nothing to do with the other. The
example here is simplified to emphasize the overall action from the broker’s point of view.

Broker

@ Topic "4
A~ el R

@ T he broker fetches
o boatch of r*e,cords
starting ot offsetr 3

Figure 2.3 Brokers handling requests from a consumer

So let’s go through the steps of the illustrated consume request.

1. The consumer sends a fetch request specifying the offset it wants to start reading records
from. We'll discuss offsetsin more detail later in the chapter.

2. The broker takes the fetch request out of the request queue

3. Based on the offset and the topic partition in the request, the broker fetches a batch of
records

4. The broker sends the fetched batch of recordsin the response to the consumer

Now that we’ve completed a walk through two common request types, produce and fetch, I'm
sure you noticed a few terms I haven’t mentioned yet in the text, topics, partitions, and offsets.
Topics, partitions, and offsets are fundamental, essential concepts in Kafka, so let’s take some
time now to explore what they mean.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

20

2.3 Topics and partitions

In chapter one, we discussed that Kafka provides storage for data. Kafka durably stores your data
as an unbounded series of key-value pair messages for as long as you want (there are other fields
included in the messages, such as a timestamp, but we’ll get to those details later on). Kafka
replicates data across multiple brokers, so losing a disk or an entire broker means no data is lost.

Specifically, Kafka brokers use the file system for storage by appending the incoming records to
the end of a file in a topic. A topic represents the name of the directory containing the file Katka
appends the records to.

NOTE Kafka receives the key-value pair messages as raw bytes, stores them that
way, and serves the read requests in the same format. The Kafka broker is
unaware of the type of record that it handles. By merely working with raw
bytes, the brokers don’t spend any time deserializing or serializing the data,
allowing for higher performance. We’ll see in chapter 3 how you can ensure
that topics contain the expected byte format when we cover Schema Registry
in chapter 3.

Topics are partitioned, which is a way of further organizing the topic data into slots or buckets. A
partition is an integer starting at 0. So if a topic has three partitions, the partitions numbers are 0,
1, and 2. Kafka appends the partition number to the end of the topic name, creating the same
number of directories as partitions with the form t opi c- N where the N represents the partition
number.

Kafka brokers have a configuration, | og. di r s, where you place the top-level directory’s name,
which will contain all topic-partition directories. Let’s take a look at an example. We’re going to
assume you’ve configured | og. di rs with the value / var/ kaf ka/ t opi c- dat a and you have a
topic named pur chases with three partitions

Listing 2.1 Topic directory structure example

root @roker:/# tree /var/kafkal/topic-datalpurchases*

/ var/ kaf ka/ t opi c- dat a/ pur chases-0
00000000000000000000. i ndex
00000000000000000000. | og
00000000000000000000. t i mei ndex
| eader - epoch- checkpoi nt

/ var/ kaf ka/ t opi c- dat a/ pur chases- 1
00000000000000000000. i ndex
00000000000000000000. | og
00000000000000000000. t i nei ndex
| eader - epoch- checkpoi nt

/ var/ kaf ka/ t opi c- dat a/ pur chases- 2
00000000000000000000. i ndex
00000000000000000000. | og
00000000000000000000. ti mei ndex
| eader - epoch- checkpoi nt

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

21

So you can see here, the topic purchases with three partitions ends up as three directories
pur chases- 0, pur chases- 1, and pur chases- 2 on the file system. So it’s fair to say that the

topic name is more of a logical grouping while the partition is the storage unit.

TIP The directory structure shown here was generated by using the tree
command which a small command line tool used to display all contents of a
directory.

While we’ll want to spend some time talking about those directories' contents, we still have some
details to fill in about topic partitions.

Topic partitions are the unit of parallelism in Kafka. For the most part, the higher the number of
partitions, the higher your throughput. As the primary storage mechanism, topic partitions allow
messages to be spread across several machines. The given topic’s capacity isn’t limited to the
available disk space on a single broker. Also, as mentioned before, replicating data across several
brokers ensures you won’t lose data should a broker lose disks or die.

We’ll talk about load distribution more when discussing replication, leaders, and followers later
in this chapter. We’ll also cover a new feature, tiered storage, where data is seamlessly moved to
external storage, providing virtually limitless capacity later in the chapter.

So how does Kafka map records to partitions? The producer client determines the topic and
partition for the record before sending it to the broker. Once the broker processes the record, it
appends it to a file in the corresponding topic-partition directory.

There are three possible ways of setting the partition for a record:

1. Kafkaworkswith recordsin key-value pairs. Suppose the key is non-null (keys are
optional). In that case, the producer maps the record to a partition using the deterministic
formula of taking the hash of key modulo the number of partitions. Using this approach
means that records with the same keys always land on the same partition.

2. When building the Pr oducer Recor d in your application, you can explicitly set the
partition for that record, which the producer then uses before sending it.

3. If the message has no key and no partition specified then, then partitions are alternated
per batch. I' [l cover how Kafka handles records without keys and partition assignment in
detail in chapter four.

Now that we’ve covered how topic partitions work let’s revisit that records are always appended
at the end of the file. I'm sure you noticed the files in the directory example with an extension of
.1 og (we’ll talk about how Kafka names this file in an upcoming section). But these | og files
aren’t the type developers think of, where an application prints its status or execution steps. The
term log here is meant as a transaction log, storing a sequence of events in the order of

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

22

occurrence. So each topic partition directory contains its own transaction log. At this point, it
would be fair to ask a question about log file growth. We’ll talk about log file size and
management when we cover segments a bit later in this chapter.

2.3.1 Offsets

As the broker appends each record, it assigns it an id called an offset. An offset is a number
(starting at 0) the broker increments by 1 for each record. In addition to being a unique id, it
represents the logical position in the file. The term logical position means it’s the nth record in
the file, but its physical location is determined by the size in bytes of the preceding records.
We’ll talk about how brokers use an offset to find the physical position of a record in a later
section. The following illustration demonstrates the concept of offsets for incoming records:

T here. have been ¥ records
axppe_nde_d So ‘Paxf‘

T he broker will assign
+he ne st record appe_nde_d an
offset of ¥

Figure 2.4 Assigning the offset to incoming records

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

23

Since new records always go at the end of the file, they are in order by offset. Kafka guarantees
that records are in order within a partition, but not across partitions. Since records are in order by
offset, we could be tempted to think they are in order by time as well, but that’s not necessarily
the case. The records are in order by their arrival time at the broker, but not necessarily by event
time. We’ll get more into time semantics in the chapter on clients when we discuss timestamps.
We’ll also cover event-time processing in depth when we get to the chapters on Katka Streams.

Consumers use offsets to track the position of records they’ve already consumed. That way, the
broker fetches records starting with an offset one higher than the last one read by a consumer.
Let’s look at an illustration to explain how offsets work:

T he consumer has a posi-ﬁon
of offsetr 5 from the previous
botch

So the ne.xt batch for the
consumer starts from offset €

Figure 2.5 Offsets indicate where a consumer has left off reading records

In the illustration here, if a consumer reads records with offsets 0-5, in the next consumer
request, the broker only fetches records starting at offset 6. The offsets used are unique for each
consumer and are stored in an internal topic named

{under scor e} consuner { under scor e} of f set s. We’ll go into more details about consumers

and offsets in chapter four.

Now that we’ve covered topics, partitions and offsets, let’s quickly discuss some trade-offs
regarding the number of partitions to use.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

24

2.3.2 Determining the correct number of partitions

Choosing the number of partitions to use when creating a topic is part art and part science. One
of the critical considerations is the amount of data flowing into a given topic. More data implies
more partitions for higher throughput. But as with anything in life, there are trade-offs.

Increasing the number of partitions increases the number of TCP connections and open file
handles. Additionally, how long it takes to process an incoming record in a consumer will also

determine throughput. If you have heavyweight processing in your consumer, adding more
2

partitions may help, but the slower processing will ultimately hinder performance.
Here are some considerations to keep in mind for setting the number of partitions. You want to
choose a high enough number to cover high-throughput situations, but not so high so that you hit
limits for the number of partitions a broker can handle as you create more and more topics. A
good starting point could be the number of 30, which is evenly divisible by several numbers,

which results in a more even distribution of keys in the processing layer.3 We’ll talk more about
the importance of key-distribution in later chapters on clients and Katka Streams.

At this point, you’ve learned that the broker handles requests from clients and is the storage layer
for the Kafka event streaming platform. You’ve also learned about topics and partitions and the
role they play in the storage layer.

Your next step is to get your hands dirty, producing and consuming records to see these concepts
in action.

NOTE We’ll cover the producer and consumer clients in chapter 4. Console clients
are useful for learning, quick prototypes, and debugging. But in practice, you'll
use the clients in your code.

2.4 Sending your first messages

To run the following examples, you’ll need to run a Kafka broker. In the previous edition of this
book, the instructions were to download a binary version of Kafka tar file and extract it locally.
In this edition, I’ve opted to run Kafka via docker instead. Specifically, we’ll use docker
compose, which makes running a multi-container docker application very easy. If you are
running Mac OS or Windows, you can install docker desktop, which includes docker compose.
For more information on installing docker, see the installation instructions on the docker site

docs.docker.com/get-docker/.

Now, let’s get started working with a Kafka broker by producing and consuming some records.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://docs.docker.com/get-docker/
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

25

2.4.1 Creating a topic

Your first step for producing or consuming records is to create a topic. But to do that, you’ll need
running Kafka broker so let’s take care of that now. I’'m going to assume you’ve already installed
docker at this point. To start Katka, download the docker - conpose. ym file from the source
code repo here TOOD-create GitHub repo. After you’ve downloaded the file, open a new
terminal window and CD to the directory with the docker - conpose. ym file, and run this

command “docker-compose up -d'.

TIP Starting docker-compose with the -d flag runs the docker services in the
background. While it's OK to start docker-compose without the - d flag, the
containers print their output to the terminal, so you need to open a new
terminal window to do any further operations.

Wait a few seconds, then run this command to open a shell on the docker broker container:
docker - conpose exec broker bash.

Using the docker broker container shell you just opened up run this command to create a topic:

kaf ka-topics --create --topic first-topic\
--boot strap-server | ocal host: 9092\ o
--replication-factor 1\ @
--partitions 1
© The host:port to connect to the broker
® Specifying the replication factor

© The number of partitions

IMPORTANT Although you’re using kafka in a docker container, the commands to create
topics and run the console producer and consumer are the same.

Since you’re running a local broker for testing, you don’t need a replication factor greater than 1.
The same thing goes for the number of partitions; at this point, you only need one partition for
this local development.

Now you have a topic, let’s write some records to it.

2.4.2 Producing records on the command line

Now from the same window you ran the create topic command start a console producer:

kaf ka- consol e- producer --topic first-topic\ (1]
--broker-list |ocal host:9092\ @
--property parse. key=true\ (3]
--property key.separator=":" @

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

26

The topic you created in the previous step
host:port for the producer client to connect to the broker

Specifying that you'll provide akey

© © © ©

Specifying the separator of the key and value

When using the console producer, you need to specify if you are going to provide keys. Although
Kafka works with key-value pairs, the key is optional and can be null. Since the key and value go
on the same line, you also need to specify how Kafka can parse the key and value by providing a
delimiter.

After you enter the above command and hit enter, you should see a prompt waiting for your
input. Enter some text like the following:
key: my first nessage

key:is sonethi ng
key: very sinple

You type in each line, then hit enter to produce the records. Congratulations, you have sent your
first messages to a Kafka topic! Now let’s consume the records you just wrote to the topic. Keep
the console producer running, as you’ll use it again in a few minutes.

2.4.3 Consuming records from the command line

Now it’s time to consume the records you just produced. Open a new terminal window and run
the docker - conpose exec broker bash command to get a shell on the broker container. Then
run the following command to start the console consumer:
kaf ka- consol e-consuner --topic first-topic\ @
--boot strap-server |ocal host: 9092\ (2}
--from begi nni ng\
--property print.key=true\ O
--property key.separator="-" ©
Specifying the topic to consume from
The host:port for the consumer to connect to the broker
Start consuming from the head of the log

Print the keys

®© 6 © © ©

Usethe"-" character to separate keys and values

You should see the following output on your console:

key-my first nessage
key-is sonet hi ng
key-very sinple

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

27

I should briefly talk about why you used the - - f r om begi nni ng flag. You produced values
before starting the consumer. As a result, you wouldn’t have seen those messages as the console
consumer reads from the end of the topic. So the --from begi nni ng parameter sets the
consumer to read from the beginning of the topic. Now go back to the producer window and
enter a new key-value pair. The console window with your consumer will update by adding the
latest record at the end of the current output.

This completes your first example, but let’s go through one more example where you can see
how partitions come into play.

2.4.4 Partitions in action

In the previous exercise, you just produced and consumed some key-value records, but the topic
only has one partition, so you didn’t see the effect of partitioning. Let’s do one more example,
but this time we’ll create a new topic with two partitions, produce records with different keys,
and see the differences.

You should still have a console producer and console consumer running at this point. Go ahead
and shut both of them down by entering a CTRL+C command on the keyboard.

Now let’s create a new topic with partitions. Execute the following command from one of the
terminal windows you used to either produce or consume records:

kaf ka-topics --create --topic second-topic\
--boot strap-server |ocal host: 9092\
--replication-factor 1\
--partitions 2

For your next step, let’s start a console consumer.

kaf ka- consol e- consunmer --topic second-topic\
--boot strap-server broker: 9092 \
--property print.key=true \
--property key.separator="-" \
--partition 0 (1]

© gpecifying the partition we'll consume from

This command is not too different from the one you executed before, but you’re specifying the
partition you’ll consume the records from. After running this command, you won’t see anything
on the console until you start producing records in your next step. Now let’s start up another
console producer.
kaf ka- consol e- producer --topic second-topic\

--broker-1list |ocal host: 9092\

--property parse. key=true\
--property key.separator=":"

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

28

After you’ve started the console producer, enter these key-value pairs:

keyl: The | azy
key2: brown fox
key1l:j unped over
key2:the lazy dog

You should only see the following records from the console consumer you have running:

keyl: The | azy
key1l:j unped over

The reason you don’t see the other records here is the producer assigned them to partition 1. You
can test this for yourself by running executing a CTRL+C in the terminal window of the current
console consumer, then run the following:
kaf ka- consol e- consunmer --topic second-topic\
--boot strap-server broker: 9092\
--property print.key=true\
--property key.separator="-"\

--partition 1\
--from begi nni ng

You should see the following results:

key2: brown f ox
key2:the | azy dog

If you were to re-run the previous consumer without specifying a partition, you would see all the
records produced to the topic. We’ll go into more details about consumers and topic partitions in
chapter 4.

At this point, we’re done with the examples, so you can shut down the producer and the
consumer by entering a CTRL+C command. Then you can stop all the docker containers now by
running docker - conpose down.

To quickly recap this exercise, you’ve just worked with the core Kafka functionality. You
produced some records to a topic; then, in another process, you consumed them. While in
practice, you’ll use topics with higher partition counts, a much higher volume of messages, and
something more sophisticated than the console tools, the concepts are the same.

We’ve also covered the basic unit of storage the broker uses, partitions. We discussed how Katka
assigns each incoming record a unique, per partition id-the offset, and always appends records at
the end of the topic partition log. But as more data flows into Kafka, do these files continue to
grow indefinitely? The answer to this question is no, and we’ll cover how the brokers manage
data in the next section.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

29

2.5 Segments

So far, you’ve learned that brokers append incoming records to a topic partition file. But they
don’t just continue to append to the same one creating huge monolithic files. Instead, brokers
break up the files into discrete parts called segments. Using segments enforcing the data
retention settings and retrieving records by offset for consumers is much easier.

Earlier in the chapter, I stated the broker writes to a partition; it appends the record to a file. But
a more accurate statement is the broker appends the record to the active segment. The broker
creates a new segment when a log file reaches a specific size (1 MB by default). The broker still
uses previous segments for serving read (consume) requests from consumers. Let’s look at an
illustration of this process:

This segment reached s

The. offsets ol I ;\3\‘-{\ 5‘ . configured size
are continvous L
in order across 3 7‘\ ‘8’\\ \ * < s0 the broker
Qr‘e_od—e_d a new active se_gme_wh

+he s ents
& Segm T he broker appends new

records +o the active segment

1
1
1
-Lr_1
\ When the current segment reaches
+he conPigure,d size, the broker

creates a new se_gmey\—l— agoﬁn

Figure 2.6 Creating new segments

Following along in the illustration here, the broker appends incoming records to the currently
active segment. Once it reaches the configured size, the broker creates a segment that is
considered the active segment. This process is repeated indefinitely.

The configuration controlling the size of a segment is | og. segnment . byt es which again has a
default value of IMB. Additionally, the broker will create new segments by time as well. The

l og.roll.ms orlog.roll.hours governs the maximum time before the broker creates a new
segment. The | og. rol | . ns is the primary configuration, but it has no default value, but the

| og. rol | . hours has a default value of 168 hours (7 days). It’s important to note when a broker
creates a new segment based on time, and it means a new record has a timestamp greater than the
earliest timestamp in the currently active segment plus the | og. rol | . ms or |l og. rol | . hours
configuration. It’s not based on wall-clock time or when the file was last modified.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

30

NOTE The number of records in a segment won't necessarily be uniform, as the
illustration might suggest here. In practice, they could vary in the total number
of records. Remember, it's the total size or the age of the segment that
triggers the broker to create a new one.

Now that we covered how the brokers create segments, we can talk about their data retention
role.

2.5.1 Data retention

As records continue to come into the brokers, the brokers will need to remove older records to
free up space on the file system over time. Brokers use a two-tiered approach to deleting data,
time, and size. For time-based deletion, Kaftka deletes records that are older than a configured
retention time based on the timestamp of the record. If the broker placed all records in one big
file, it would have to scan the file to find all those records eligible for deletion. But with the
records stored in segments, the broker can remove segments where the latest timestamp in the
segment exceeds the configured retention time. There are three time-based configurations for
data deletion presented here in order of priority:

® | og.retention. ns — How long to keep alog file in milliseconds
® | og.retention. m nutes — How long to keep alog file in minutes
® | og.retention. hours — How longto keep alog filein hours

By default, only the | og. ret enti on. hour s configuration has a default value, 168 (7 days). For
size-based retention Kafka has the | og. r et enti on. byt es configuration. By default, it’s set to
-1. If you configure both size and time-based retention, then brokers will delete segments
whenever either condition 1s met.

So far, we’ve focused our discussion on data retention based on the elimination of entire
segments. If you remember, Kafka records are in key-value pairs. What if you wanted to retain
the latest record per key? That would mean not removing entire segments but only removing the
oldest records for each key. Kafka provides just such a mechanism called compacted topics.

2.5.2 Compacted topics

Consider the case where you have keyed data, and you’re receiving updates for that data over
time, meaning a new record with the same key will update the previous value. For example, a
stock ticker symbol could be the key, and the price per share would be the regularly updated
value. Imagine you’re using that information to display stock values, and you have a crash or

restart—you need to be able to start back up with the latest data for each key.4

If you use the deletion policy, a broker could remove a segment between the last update and the

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

31

application’s crash or restart. You wouldn’t have all the records on startup. It would be better to
retain the final known value for a given key, treating the next record with the same key as an
update to a database table.

Updating records by key is the behavior that compacted topics (logs) deliver. Instead of taking a
coarse-grained approach and deleting entire segments based on time or size, compaction is more
fine-grained and deletes old records per key in a log. At a high level, the log cleaner (a pool of
threads) runs in the background, recopying log-segment files and removing records if there’s an
occurrence later in the log with the same key. Figure 2.13 illustrates how log compaction retains
the most recent message for each key.

Before compaction After compaction

Offset Key Value

10 foo A

11 bar B

12 baz C

13 foo D Offset Key Value
14 baz E 11 bar B
15 boo F . 15 boo F
16 foo G > 16 foo G
17 baz H - 17 baz H

Figure 2.7 On the left is a log before compaction—you’ll notice duplicate keys with different values.
These duplicates are updates. On the right is after compaction—retaining the latest value for each key,
but it's smaller in size.

This approach guarantees that the last record for a given key is in the log. You can specify log
retention per topic, so it’s entirely possible to use time-based retention and other ones using
compaction.

By default, the log cleaner is enabled. To use compaction for a topic, you’ll need to set the
| 0g. cl eanup. pol i cy=conpact property when creating it.

Compaction is used in Kafka Streams when using state stores, but you won’t be creating those
logs/topics yourself—the framework handles that task. Nevertheless, it’s essential to understand
how compaction works. Log compaction is a broad subject, and we’ve only touched on it here.
documentation:

For more information, see the Kafka

kafka.apache.org/documentation/{hash}compaction.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

http://kafka.apache.org/documentation/{hash}compaction
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

32

NOTE With a cl eanup. pol i cy of conpact, you might wonder how you can remove a
record from the log. You delete with compaction by using a nul | value for the
given key, creating a tombstone marker. Tombstones ensure that compaction
removes prior records with the same key. The tombstone marker itself is
removed later to free up space.

The key takeaway from this section is that if you have independent, standalone events or
messages, use log deletion. If you have updates to events or messages, you’ll want to use log
compaction.

Now that we’ve covered how Kafka brokers manage data using segments, it would be an
excellent time to reconsider and discuss the topic-partition directories' contents.

2.5.3 Topic partition directory contents

Earlier in this chapter, we discussed that a topic is a logical grouping for records, and the
partition is the actual physical unit of storage. Kafka brokers append each incoming record to a
file in a directory corresponding to the topic and partition specified in the record. For review,
here are the contents of a topic-partition

Listing 2.2 Contents of topic-partition directory

/ var/ kaf ka/ t opi c- dat a/ pur chases-0
00000000000000000000. i ndex
00000000000000000000. | og
00000000000000000000. t i nei ndex

NOTE In practice, you’ll most likely not interact with a Kafka broker on this level.
We're going into this level of detail to provide a deeper understanding of how
broker storage works.

We already know the | og file contains the Kafka records, but what are the i ndex and
ti mei ndex files? When a broker appends a record, it stores other fields along with the key and
value. Three of those fields are the offset (which we’ve already covered), the size, and the
record’s physical position in the segment. The i ndex is a memory-mapped file that contains a
mapping of offset to position. The ti mei ndex is also a memory-mapped file containing a
mapping of timestamp to offset.

Let’s look at the i ndex files first.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

OOOOOO00O0,inde x
offset, position
o, O

) 7
3, 15

N

33

OOO0OO0O00. IOf,

.....oFFset positionsize.....

| 7l, O
3, 1B, €5

S

Figure 2.8 Searching for start point based on offset 2

Brokers use the index files to find the starting point for retrieving records based on the given
offset. The brokers do a binary search in the i ndex file, looking for an index-position pair with
the largest offset that is less than or equal to the target offset. The offset stored in the i ndex file
is relative to the base offset. That means if the base offset is 100, offset 101 is stored as 1, offset
102 is stored as 2, etc. Using the relative offset, the i ndex file can use two 4-byte entries, one for
the offset and the other for the position. The base offset is the number used to name the file,

which we’ll cover soon.

The t i nei ndex is a memory-mapped file that maintains a mapping of timestamp to offset.

NOTE A memory-mapped file is a special file in Java that stores a portion of the file
in memory allowing for faster reads from the file. For a more detailed

description read

the excellent entry

www.geeksforgeeks.org/what-is-memory-mapped-file-in-java/ from

GeeksForGeeks site.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://www.geeksforgeeks.org/what-is-memory-mapped-file-in-java/
http://www.geeksforgeeks.org/what-is-memory-mapped-file-in-java/
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

34

OOOO0OOOOAimeinde x
timestamp, offset

I3IH4567%89, O

I3Jag5igq, 10O

Figure 2.9 Timeindex file

The file’s physical layout is an 8-byte timestamp and a 4-byte entry for the "relative" offset. The
brokers search for records by looking at the timestamp of the earliest segment. If the timestamp
is smaller than the target timestamp, the broker does a binary search on the ti mei ndex file
looking for the closest entry.

So what about the names then? The broker names these files based on the first offset contained in
the | og file. A segment in Kafka comprises the | og, i ndex, and ti nei ndex files. So in our
example directory listing above, there is one active segment. Once the broker creates a new
segment, the directory would look something like this:

Listing 2.3 Contents of the directory after creating a new segment

[var/ kaf ka/ t opi c- dat a/ pur chases-0
00000000000000000000. i ndex
00000000000000000000. | og
00000000000000000000. t i nei ndex
00000000000000037348. i ndex
00000000000000037348. | og
00000000000000037348. t i nei ndex

Based on the directory structure above, the first segment contains records with offset 0-37347,
and in the second segment, the offsets start at 37348.

The files stored in the topic partition directory are stored in a binary format and aren’t suitable
for viewing. As I mentioned before, you usually won’t interact with the files on the broker, but
sometimes when looking into an issue, you may need to view the files' contents.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

35

IMPORTANT You should never modify or directly access the files stored in the
topic-partition directory. Only use the tools provided by Kafka to view the
contents.

2.6 Tiered storage

We’ve discussed that brokers are the storage layer in the Kafka architecture. We’ve also covered
how the brokers store data in immutable, append-only files, and how brokers manage data
growth by deleting segments when the data reaches an age exceeding the configured retention
time. But as Kafka can be used for your data’s central nervous system, meaning all data flows
into Kafka, the disk space requirements will continue to grow. Additionally, you might want to
keep the data longer but can’t due to the need to make space for newly arriving records.

This situation means that Kafka users wanting to keep data longer than the required retention
period need to offload data from the cluster to more scalable, long term storage. For moving the
data, one could use Kafka Connect (which we’ll cover in a later chapter), but long term storage
requires building different applications to access that data.

There is current work underway called Tiered Storage. I’ll only give a brief description here, but
for more details, you can read KIP-405 (
cwiki.apache.org/confluence/display/ KAFKA/KIP-405%3 A+Kafka+Tiered+Storage). At a
high-level, the proposal is for the Katka brokers to have a concept of local and remote storage.
Local storage is the same as the brokers use today, but the remote storage would be something
more scalable, say S3, for example, but the Kafka brokers still manage it.

The concept is that over time, the brokers migrate older data to the remote storage. This tiered
storage approach is essential for two reasons. First, the data migration is handled by the Kafka
brokers as part of normal operations. There is no need to set up a separate process to move older
data. Secondly, the older data is still accessible via the Kafka brokers, so no additional
applications are required to process older data. Additionally, the use of tiered storage will be
seamless to client applications. They won’t know or even need to know if the records consumed
are local or from the tiered storage.

Using the tiered storage approach effectively gives Kafka brokers the ability to have infinite
storage capabilities. Another benefit of tiered storage, which might not be evident at first blush,
is the improvement in elasticity. When adding a new broker, full partitions needed to get moved
across the network before tiered storage. Remember from our conversation from before, Katka
distributes topic-partitions among the brokers. So adding a new broker means calculating new
assignments and moving the data accordingly. But with tiered storage, most of the segments
beyond the active ones will be in the storage tier. This means there is much less data that needs
to get moved around, so changing the number of brokers will be much faster.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://cwiki.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

36

As of the writing of this book (November 2020), tiered storage for Apache Kafka is currently
underway. Still, given the project’s scope, the final delivery of the tiered storage feature isn’t
expected until mid-2021. Again for the reader interested in the details involved in the tiered
storage feature, I encourage you to read the details found in KIP-405 KIP-405 (
cwiki.apache.org/confluence/display/KAFKA/KIP-405%3 A+Katka+Tiered+Storage).

2.7 Cluster Metadata

Kafka is a distributed system, and to manage all activity and state in the cluster, it requires
metadata. But the metadata is external to the working brokers, so it uses a metadata server.
Having a metadata server to keep this state is integral to Kafka’s architecture. As of the writing
of this book, Katka uses ZooKeeper for metadata management. It’s through the storage and use
of metadata that enables Kafka to have leader brokers and to do such things as track the
replication of topics.

The use of metadata in a cluster is involved in the following aspects of Kafka operations:

¢ Cluster membership — Joining a cluster and maintaining membership in acluster. If a
broker becomes unavailable, ZooK eeper removes the broker from cluster membership.

® Topic configuration — Keeping track of the topicsin a cluster, which broker is the leader
for atopic, how many partitions there are for atopic, and any specific configuration
overridesfor atopic.

® Access control — Identifying which users (a person or other software) can read from and
write to particular topics.

NOTE The term metadata manager is a bit generic. Up until the writing of this book,
Kafka used ZooKeeper zookeeper.apache.org for metadata management.
There is an effort underway to remove ZooKeeper and use Kafka itself to store
the cluster metadata. KIP - 500 cwiki.apache.org/confluence/display/KAFKA/
KIP-500%3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum
describes the details. This blog post,

) describes the details. This blog post,
www.confluent.io/blog/removing-zookeeper-dependency-in-kafka/, describes
the process of how and when the changes to Kafka occur. Since most users
don’t work at the level of cluster metadata, | feel that some knowledge of
how Kafka uses metadata is sufficient.
This has been a quick overview of how Kafka manages metadata. I don’t want to go into too
much detail about metadata management as my approach to this book is more from the
developer’s point of view and not someone who will manage a Kafka cluster. Now that we’ve
briefly discussed Kafka’s need for metadata and how it’s used let’s resume our discussion on
leaders and followers and their role in replication.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://cwiki.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage
https://cwiki.apache.org/confluence/display/KAFKA/KIP-500%3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum
https://cwiki.apache.org/confluence/display/KAFKA/KIP-500%3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum
https://www.confluent.io/blog/removing-zookeeper-dependency-in-kafka/
https://cwiki.apache.org/confluence/display/KAFKA/KIP-500%3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum
zookeeper.apache.org
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

37

2.8 Leaders and followers

So far, we’ve discussed the role topics play in Katka and how and why topics have partitions.
You’ve seen that partitions aren’t all located on one machine but are spread out on brokers
throughout the cluster. Now it’s time to look at how Kafka provides data availability in the face

of machine failures.

In the Kafka cluster for each topic-partition, one broker is the /eader, and the rest are followers.

N

Followers re_plicod'e,
from +he le_ade_r

Producer client

Follower Broker

Producer client

sends records
+o +he leader Lead Broker

Follower Broker

Figure 2.10 Leader and follower example

In figure 10 above, we have a simplified view of the leader and follower concept. The lead
broker for a topic-partition handles all of the produce and consume requests (although it is
possible to have consumers work with followers, and we’ll cover that in the chapter on clients).
The following brokers replicate records from the leader for a given topic partition. Kafka uses
this leader and follower relationship for data integrity. It’s important to remember the leadership
for the topic- partitions are spread around the cluster. No single broker is the leader for all

partitions of a given topic.

But before we discuss how leaders, followers, and replication work, we need to consider what
Kafka does to achieve this.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

38

2.8.1 Replication

I mentioned in the leaders and followers section that topic-partitions have a leader broker and
one or more followers. Illustration 10 above shows this concept. Once the leader adds records to
its log, the followers read from the leader.

Kafka replicates records among brokers to ensure data availability, should a broker in the cluster
fail. Figure 11 below demonstrates the replication flow between brokers. A user configuration
determines the replication level, but it’s recommended to use a setting of three. With a
replication factor of three, the lead broker is considered a replica one, and two followers are
replica two and three.

foo topic partition 1

The topic foo has 2 partitions and a replication =T
level of 3. Dashed lines between partitions point
to the leader of the given partition. Producers foo topic partition 0
write records to the leader of a partition, and
the followers read from the leader.

1
1
1
1
1
1
1
1
1
1
1
1
i
foo topic partition 0 et Kafka broker 2 i
/” 1
ul Broker 2 is a follower for partition O on broker i
AN 1 and a follower for partition 1 on broker 3. !
N 1
foo topic partition 1 S i
AN 1
\\ 1
\\ Broker 3 is a follower for partition 0 on i
W . broker 1 and the leader for partition 1. i
N N 1
\\ N I
Kafka broker 1 N N\, foo topic partition 0 H
S N I
AN \ 1
Broker 1 is the leader for partition 0 and \\ A i
is a follower for partition 1 on broker 3. . '
Ay]
\ foo topic partition 1 i
N i :
A\ |-
Kafka broker 3

Figure 2.11 The Kafka replication process

The Kafka replication process is straightforward. Brokers following a topic-partition consume
messages from the topic-partition leader. After the leader appends new records to its log,
followers consume from the leader and append the new records to their log. After the followers
have completed adding the records, their logs replicate the leader’s log with the same data and
offsets. When fully caught up to the leader, these following brokers are considered an in-sync
replica or ISR.

When a producer sends a batch of records, the leader must first append those records before the

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

39

followers can replicate them. There is a small window of time where the leader will be ahead of
the followers. This illustration demonstrates this concept:

Leoder

Follower |

A/e,wlt/ appe_nde_d records
'Po“owe_rs have. not made.
o Fetech request yel', so
lod'e_s‘i’ r‘e,cor‘ds
unre,plicod—e_d

Figure 2.12 The leader may have a few unreplicated messages in its topic-partition

In practical terms, this small lag of replication records is no issue. But, we have to ensure that it
must not fall too far behind, as this could indicate an issue with the follower. So how do we
determine what’s not too far behind? Kafka brokers have a configuration
replica.lag.tinme. max. ns.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

40

Leader

0 i

Follower
i

Y . Follower & wmust be 'Pu“y
cavght up +o the leader or
SB35 € 1 issve. a fetch request within
‘ re_plica.lag.+ime_.max.ms or
#'s considered out of syne

Figure 2.13 Followers must issue a fetch request or be caught up withing lag time configuration

The replica lag time configuration sets an upper-bound how long followers have to either issue a
fetch request or be entirely caught-up for the leader’s log. Followers failing to do so within the
configured time are considered too far behind and removed from the in-sync replica (ISR) list.

As I stated above, follower brokers who are caught up with their leader broker are considered an
in-sync replica or ISR. ISR brokers are eligible to be elected leader should the current leader fail

or become unavailable.’

In Kafka, consumers never see records that haven’t been written by all ISRs. The offset of the
latest record stored by all replicas is known as the high-water mark, and it represents the highest
offset accessible to consumers. This property of Kaftka means that consumers don’t worry about
recently read records disappearing. As an example, consider the situation in illustration 11 above.
Since offsets 8-10 haven’t been written to all the replicas, 7 is the highest offset available to
consumers of that topic.

Should the lead broker become unavailable or die before records 8-10 are persisted, that means
an acknowledgment isn’t sent to the producer, and it will retry sending the records. There’s a
little more to this scenario, and we’ll talk about it more in the chapter on clients.

If the leader for a topic-partition fails, a follower has a complete replica of the leader’s log. But
we should explore the relationship between leaders, followers, and replicas.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

41

REPLICATION AND ACKNOWLEDGMENTS

When writing records to Kafka, the producer can wait for acknowledgment of record persistence
of none, some, or all for in-sync replicas. These different settings allow for the producer to
trade-off latency for data durability. But there is a crucial point to consider.

The leader of a topic-partition is considered a replica itself. The configuration
m n.insync. replicas specifies how many replicas must be in-sync to consider a record
committed. The default setting for mi n. i nsync. replicas is one. Assuming a broker cluster
size of three and a replication-factor of three with a setting of acks=al | , only the leader must
acknowledge the record. The following illustration demonstrates this scenario:

acks=all
min.in.sync.re,plica= | (defo\ul-f sej"ﬁng)

New record

VI Z

Follower

Al—rhough both followers are out of syne, oLVl alz
+he record is acce_p*e_d becavse all
in-sync brokers (the leader here) have
added the record +o s l°3

Figure 2.14 Acks set to "all" with default in-sync replicas

How can something like the above happen? Imagine that the two followers temporarily lag
enough for the controller to remove them from the ISR. This means that even with setting
acks=al | on the producer, there is a potential for data loss should the leader fail before the

followers have a chance to recover and become in sync again.

To prevent such a scenario, you need to set the mi n.insync.replicas=2 Setting the min
in-sync replicas configuration to two means that the leader checks the number of in-sync replicas
before appending a new record to its log. If the required number of in-sync replicas isn’t met at
this point, the leader doesn’t process the produce request. Instead, the leader throws a
Not EnoughRepl i casExcept i on, and the producer will retry the request.

Let’s look at another illustration to help get a clear idea of what is going on:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

42

Follower |

acks=all
m?n.tn.sync.re_pl}ca= X

New record

VA

Follower X

Ol 1T&13

Now with wininsync.replicas setr +o
4+wo, new records re;\e,c-l—e,d with o
A/orEnoughRe,plIcas e xee ption

Figure 2.15 Setting Min ISR to a value greater than one increases data durability

As you can see in figure 14, a batch of records arrives. But the leader won’t append them
because there aren’t enough in-sync replicas. By doing so, your data durability increases as the
produce request won’t succeed until there are enough in-sync replicas. This discussion of
message acknowledgments and in-sync replicas is broker-centric. In chapter 4, when we discuss
clients, we’ll revisit this idea from the producer client’s perspective to discuss the performance
trade-offs.

2.9 Checking for a healthy broker

At the beginning of the chapter, we covered how a Kafka broker handles requests from clients
and process them in the order of their arrival. Kafka brokers handle several types of requests, for

example:

® Produce - A request to append records to the log

® Fetch - A request to consume records from a given offset

®* Metadata- A request for the cluster’s current state - broker leaders for topic-partitions,
topic partitions available, etc.

These are a small subset of all possible requests made to the broker. The broker processes
requests in first-in-first-out processing order, passing them off to the appropriate handler based

on the request type.

Simply put, a client makes a request, and the broker responds. If they come in faster than the
broker can reply, the requests queue up. Internally, Kafka has a thread-pool dedicated to
handling the incoming requests. This process leads us to the first line of checking for issues
should your Kafka cluster performance suffer.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

43

With a distributed system, you need to embrace failure as a way of life. However, this doesn’t
mean that the system should shut down at the first sign of an issue. Network partitions are not
uncommon in a distributed system, and frequently they resolve quickly. So it makes sense to
have a notion of retryable errors vs. fatal errors. If you are experiencing issues with your Kaftka
installation, timeouts for producing or consuming records, for example, where’s the first place to
look?

2.9.1 Request handler idle percentage

When you are experiencing issues with a Kafka based application, a good first check is to
examine the Request Handl er Avgl dl ePer cent JMX metric.

The Request Handl er Avgl dl ePer cent metric provides the average fraction of time the threads
handling requests are idle, with a number between 0 and 1. Under normal conditions, you’d
expect to see an idle ratio of .7 - .9, indicating that the broker handles requests quickly. If the
request-idle number hits zero, there are no threads left for processing incoming requests, which
means the request queue continues to increase. A massive request queue is problematic, as that
means longer response times and possible timeouts.

2.9.2 Network handler idle percentage

The Net wor kPr ocessor Avgl dl ePer cent JMX metric is analogous to the request-idle metric.
The network-idle metric measures the average amount of time the network processors are busy.
In the best scenarios, you want to see the number above 0.5 if it’s consistently below 0.5 that
indicates a problem.

2.9.3 Under replicated partitions

The Under Repl i cat edPartitions JMX metric represents the number of partitions belonging
to a broker removed from the ISR (in-sync replicas). We discussed ISR and replication in the
Repl i cati on section. A value higher than zero means a Kafka broker is not keeping up with
replicating for assigned following topic-partitions. Causes of a non-zero
Under Repl i cat edParti ti ons metric could indicate network issues, or the broker is overloaded
and can’t keep up. Note that you always want to see the URP number at zero.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

44

2.10 Summary

The Kafka broker is the storage layer and also handles requests from clients for
producing (writing) and consuming (reading) records

Kafka brokers receive records as bytes, stores them in the same format, and sends them
out for consume requests in byte format as well

Kafka brokers durably store records in topics.

Topics represent a directory on the file system and are partitioned, meaning the records in
atopic are placed in different buckets

Kafka uses partitions for throughput and for distributing the load as topic-partitions are
spread out on different brokers

Kafka brokers replicate data from each other for durable storage

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

45

Schema registry

This chapter covers

Using bytes means serialization rules

What is a schema and why you need to use one

What is Schema Registry?

Ensuring compatibility with changes - schema evolution
Understanding subject names

Reusing schemas with references

In chapter 2, you learned about the heart of the Kafka streaming platform, the Kafka broker. In
particular, you learned how the broker is the storage layer appending incoming messages to a
topic, serving as an immutable, distributed log of events. A topic represents the directory
containing the log file(s).

Since the producers send messages over the network, they need to be serialized first into binary
format, in other words an array of bytes. The Katka broker does not change the messages in any
way, it stores them in the same format. It’s the same when the broker responds to fetch requests
from consumers, it retrieves the already serialized messages and sends them over the network.

By only working with messages as arrays of bytes, the broker is completely agnostic to the data
type the messages represent and completely independent of the applications that are producing
and consuming the messages and the programming languages those applications use. By
decoupling the broker from the data format, any client using the Kafka protocol can produce or
consume messages.

While bytes are great for storage and transport over the network, developers are far more
efficient working at a higher level of abstraction; the object. So where does this transformation

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

46

from object to bytes and bytes to object occur then? At the client level in the producers and
consumers of messages.

The producer vses

a se_rhlize_r +o

convent MQSSO\SQS 'Prom
ob\‘\e_c'l's nto bt,fe,s bePore_
Se_v\dins +hem to a +opic

T he consumer vses a
deserializer +o convert
messages back +o their
o'o:)e_c‘l' format l:ePor“e,
homd?ng the messages
4o an applicaﬁom

| Broker

k'ofko Producer kofka Consumer

Figure 3.1 The conversion of objects to bytes and bytes to objects happens at the client level

Looking at this illustration, the message producer uses an instance of a Seri al i zer to convert
the message object into bytes before sending it to the topic on the broker. The message consumer
does the opposite process, it receives bytes from the topic, and uses an instance of a
Deseri al i zer to convert the bytes back into the same object format.

The producer and consumer are decoupled from the (de)serializers; they simply call either the
serial i ze ordeseri al i ze methods.

kKofko Producers execute -> Serializenserialize(T me,ssage)

——=|o]o] t]o]/]
byteld

kKofka Consumers execute -> :De,se_r‘io\hze_r:dese_rio\hze,(byfel] lo«fl’e_s)

70
l

%

Figure 3.2 The serializer and deserializer are agnostic of the producer and consumer and perform the
expected action when the serialize and deserialize methods are called

As depicted in this illustration, the producer expects to use an instance of the Seri al i zer

interface and just calls the Seri al i zer. seri al i ze method passing in an object of a given type

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

47

and getting back bytes. The consumer works with the Deseri al i zer interface. The consumer
provides an array of bytes to the Deseri al i zer. deseri al i ze method and receives an object of
a given type in return.

The producer and consumer get the (de)serializers via configuration parameters and we’ll see
examples of this later in the chapter.

NOTE I’'m mentioning producers and consumers here and throughout the chapter,
but we’ll only go into enough detail to understand the context required for this
chapter. We'll cover producer and consumer client details in the next chapter.

The point I’'m trying to emphasize here is that for a given topic the object type the producer
serializes is expected to be the exact same object type that a consumer deserializes. Since
producers and consumers are completely agnostic of each other these messages or event domain
objects represent an implicit contract between the producers and consumers.

So now the question is does something exist that developers of producers and consumers can use
that informs them of the proper structure of messages? The answer to that question is yes, the
schema.

3.1 What is a schema and why you need to use one

When you mention the word schema to developers, there’s a good chance their first thought is of
database schemas. A database schema describes the structure of the database, including the
names and startups of the columns in database tables and the relationship between tables. But the
schema I’m referring to here, while similar in purpose, is not quite the same thing.

For our purposes what I’'m referring to is a language agnostic description of an object,
including the name, the fields on the object and the type of each field. Here’s an example of a
potential schema in json format

Listing 3.1 Basic example of a schema in json format

{

"nane": " Person", (1]
“fields": [(2]
{"nane": "name", "type":"string"}, (3]
{"pnane": "age", "type": "int"},
{"pane": "email", "type":"string"}

]
}

9 The name of the object
@ Defining the fields on the object

©® The names of the fields and their types

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

48

Here our fictional schema describes an object named Per son with fields we’d expect to find on
such an object. Now we have a structured description of an object that producers and consumers
can use as an agreement or contract on what the object should look like before and after
serialization. I’'ll cover details on how you use schemas in message construction and
(de)serialization in an upcoming section.

But for now I’d like review some key points we’ve established so far:

® The Kafka broker only works with messages in binary format (byte arrays)

¢ Kafka producers and consumers are responsible for the (de)serialization of messages.
Additionally, since these two are unaware of each other, the records form a contract
between them.

And we also learned that we can make the contract between producers and consumers explicit by
using a schema. So we have our why for using a schema, but what we’ve defined so far is a bit
abstract and we need to answer these questions for the sow :

® How do you put schemas to use in your application development lifecyle?

® Given that serialization and deserialization is decoupled from the Kafka producers and
consumers how can they use serialization that ensures messages are in the correct format?

®* How do you enforce the correct version of a schemato use? After all changes are
inevitable

The answer to these 7ow questions is Schema Registry.

3.1.1 What is Schema Registry?

Schema Registry provides a centralized application for storing schemas, schema validation and
sane schema evolution (message structure changes) procedures. Perhaps more importantly, it
serves as the source of truth of schemas that producer and consumer clients can easily discover.
Schema Registry provides serializers and deserializers that you can configure Kafka Producers
and Kafka Consumers easing the development for applications working with Kafka.

The Schema Registry serializing code supports schemas from the serialization frameworks Avro
(avro.apache.org/docs/current/) and Protocol Buffers (developers.google.com/protocol-buffers).
Note that I’ll refer to Protocol Buffers as "Protobuf"' going forward. Additionally Schema
Registry supports schemas written using the JSON Schema (json-schema.org/), but this is more
of a specification vs a framework. I’ll get into working with Avro, Protobuf JSON Schema as we
progress through the chapter, but for now let’s take a high-level view of how Schema Registry
works:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://avro.apache.org/docs/current/
https://developers.google.com/protocol-buffers
https://json-schema.org/
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

49

®

Pr‘oo(ucer serialize;
records from objgc*s

©

consumer deserializes
records from Ly‘i—as into

into bytes i Ls
Producer @ objeets
(Cache | remoes w0 -
3 I)
ferrieves, schema Por deserialization { _

Por serializotion
and stores i+ in a local
cache

and stores i+ in a local
cache

Figure 3.3 Schema registry ensures consistent data format between producers and consumers

Let’s quickly walk through how Schema Registry works based on this illustration

1. Asaproduce callstheseri al i ze method, a Schema Registry aware serializer retrieves
the schema (viaHTTP) and storesit initslocal cache

The serializer embedded in the producer serializes the record
The producer sends the serialized message (bytes) to Kafka
A consumer reads in the bytes

The Schema Registry aware deserializer in the consumer retrieves the schema and stores
itinitslocal cache

The consumer deserializes the the bytes based on the schema

7. The Schema Registry servers produces a message with the schema so that it’s stored in
the__schemas topic

apr LN

o

TIP While I'm presenting Schema Registry as an important part of the Kafka
event streaming platform, it’s not required. Remember Kafka producers and
consumers are decoupled from the serializers and deserializers they use. As
long as you provide a class that implements the appropriate interface, they’ll
work fine with the producer or consumer. But you will lose the validation
checks that come from using Schema Registry. I'll cover serializing without
Schema Registry at the end of this chapter.

While the previous illustration gave you a good idea of how schema registry works, there’s an
important detail I’d like to point out here. While it’s true that the serializer or deserializer will
reach out to Schema Registry to retrieve a schema for a given record type, it only does so once,
the first time it encounters a record type it doesn’t have the schema for. After that, the schema
needed for (de)serialization operations is retrieved from local cache.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

50

3.1.2 Getting Schema Registry

Our first step is to get Schema Registry up and running. Again you’ll use docker-compose to
speed up your learning and development process. We’ll cover installing Schema Registry from a
binary download and other options in an appendix. But for now just grab the
docker - conpose. yn file from the chapter 3 directory in the source code for the book.

This file is very similar to the docker - conpose. ym file you used in chapter two. But in
addition to the Zookeeper and Kafka images, there is an entry for a Schema Registry image as
well. Go ahead and run docker - conpose up -d. To refresh your memory about the docker
commands the - d is for "detached" mode meaning the docker containers run in the background
freeing up the terminal window you’ve executed the command in.

3.1.3 Architecture

Before we go into the details of how you work with Schema Registry, it would be good to get
high level view of how it’s designed. Schema Registry is a distributed application that lives
outside the Kafka brokers. Clients communicate with Schema Registry via a REST API. A client
could be a serializer (producer), deserializer (consumer), a build tool plugin, or a command line
request using curl. I’ll cover using build tool plugins, gradle in this case, in an upcoming section
soon.

Schema Registry uses Kafka as storage (write-ahead-log) of all its schemas in __schemas which
is a single partitioned, compacted topic. It has a primary architecture meaning there is one leader
node in the deployment and the other nodes are secondary.

NOTE The double underscore characters are a Kafka topic naming convention
denoting internal topics not meant for public consumption. From this point
forward we’ll refer to this topic simply as schenas.

What this means is that only the primary node in the deployment writes to the schemas topic.
Any node in the deployment will accept a request to store or update a schema, but secondary
nodes forward the request to the primary node. Let’s look at an illustration to demonstrate:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

51

®

The primary node.

writes +he id and
schema +o the
—schemas topic and
serds +he response back
+o the se_condary SR
node.

©)

Re33s+ra+30n requests from
the schema o the primacy clierts sent +o +he primary

SR node. - node. are serviced
olire_c-rly

®

A cheyﬂ— sends a new schema
or upo(od—e_ 4o an e_xi&ﬁng one.
+o0 o se_condaml SR wVode

P:mary \

SR wede.

&

The Se_cono(ary node. forwards

Figure 3.4 Schema Registry is a distributed application where only the primary hode communicates with
Kafka

Anytime a client registers or updates a schema, the primary node produces a record to the
{underscore}schemas topic. Schema Registry uses a Kafka producer for writing and all the nodes
use a consumer for reading updates. So you can see that Schema Registry’s local state is backed
up in a Kafka topic making schemas very durable.

NOTE When working with Schema Registry throughout all the examples in the book
you’ll only use a single node deployment suitable for local development.

But all Schema Registry nodes serve read requests from clients. If any secondary nodes receive a
registration or update request, it is forwarded to the primary node. Then the secondary node
returns the response from the primary node. Let’s take a look at an illustration of this architecture
to solidify your mental model of how this works:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

52

SR node consume From

the _schemas topic and
Am/ node can serve store. schemas and their
read requests. The SR ids n & local cache
node. returns request

re;ul-rs from s loqal
cache m

Re,sPonse_

Request

Figure 3.5 All Schema Registry nodes can serve read requests

Now that we’ve given an overview of the architecture, let’s get to work by issuing a few basic
commands using Schema Registry REST API.

3.1.4 Communication - Using Schema Registry’s REST API

So far we’ve covered how Schema Registry works, but now it’s time to see it in action by
uploading a schema then running some additional commands available to get more information
about your uploaded schema. For the initial commands you’ll use curl and j q in a terminal

window.

NOTE curl (curl.se/)is a command line utility for working with data via a URLs. j g (
stedolan.github.io/jq/) is a command-line json processor. For installing jq for
your platform you can \visit the jg download site
stedolan.github.io/jg/download/. For curl it should come installed on
Windows 10+ and Mac Os. On Linux you can install via a package manager. If
you are using Mac OS you can install both using homebrew - br ew. sh/ .

In later sections you’ll use a gr adl e plugin for your interactions with Schema Registry. After
you get an idea of how the different REST API calls work, you’ll move on to using the gradle
plugins and using some basic producer and consumer examples to see the serialization in action.

Typically you’ll use the build tool plugins for performing Schema Registry actions. First they
make he development process much faster rather than having run the API calls from the
command line, and secondly they will automatically generate source code from schemas. We’ll
cover using build tool plugins in an upcoming section.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://curl.se/
https://stedolan.github.io/jq/
https://stedolan.github.io/jq/download/
https://brew.sh/
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

53

NOTE There are Maven and Gradle plugins for working with Schema Registry, but
the source code project for the book uses Gradle, so that’s the plugin you'll
use.

REGISTER A SCHEMA

Before we get started make sure you’ve run docker - conpose up -d so that we’ll have a
Schema Registry instance running. But there’s going to be nothing registered so your first step is
to register a schema. Let’s have a little fun and create a schema for Marvel Comic super heroes,
the Avengers. You’ll use Avro for your first schema and let’s take a second now to discuss the

format:
Listing 3.2 Avro schema for Avengers
{"nanmespace": "bbejeck.chapter_3", o
"type": "record", (2]
"name": "Avenger", (3]
"fields": [(4]
{"nane": "nanme", "type": "string"},
{"nane": "real _nane", "type": "string"}, (5]
{"nane": "novies", "type":
{"type": "array", "itens": "string"},
"default": []

}
]
}

© The namespace uniquely identifies the schema. For generated Java code the
namespace is the package name.

©® Thetypeisrecord whichisacomplex type. Other complex types are enuns,
arrays, maps, uni ons and f i xed. We'll go into more detail about Avro types later
in this chapter.

The name of the record
Declaring the fields of the record

Describing the individual fields. Fields in Avro are either simple or complex.

@ © 6 ©

Providing a default value. If the serialized bytes don’t contain thisfield, Avro uses
the default value when deserializing.

You define Avro schemas in JSON format. You’ll use this same schema file in a upcoming
section when we discuss the gradle plugin for code generation and interactions with Schema
Registry. Since Schema Registry supports Protobuf and JSON Schema formats as well let’s take
a look at the same type in those schema formats here as well:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

54

Listing 3.3 Protobuf schema for Avengers

syntax = "proto3"; (1]

package bbej eck. chapter_3. proto; (2}

option java_outer_classnane = "Avenger Proto"; (3]
message Avenger { (4]
string name = 1; (5]
string real _name = 2;
repeated string novies = 3; (6
}
© Defining the version of Protobuf, we're using version three in this book
@ Declaring the package name
© Specifying the name of the outer class, otherwise the name of the proto file is used
© Defining the message
© Unique field number
(6}

A repeated field; correspondsto alist

The Protobuf schema looks closer to regular code as the format is not JSON. Protobuf uses the
numbers you see assigned to the fields to identify those fields in the message binary format.
While Avro specification allows for setting default values, in Protobuf (version 3), every field is
considered optional, but you don’t provide a default value. Instead, Protobuf uses the type of the
field to determine the default. For example the default for a numerical field is 0, for strings it’s
an empty string and repeated fields are an empty list.

NOTE Protobuf is a deep subject and since this book is about the Kafka event
streaming pattern, I'll only cover enough of the Protobuf specification for you
to get started and feel comfortable using it. For full details you can read the
language guide found here
developers.google.com/protocol-buffers/docs/proto3.

Now let’s take a look at the JSON Schema version:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://developers.google.com/protocol-buffers/docs/proto3
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

55

Listing 3.4 JSON Schema schema for Avengers

{
"$schemn": "http://json-schema. org/draft-07/schema#", o

"title": "Avenger",
"description": "A JSON schema of Avenger object",
"type": "object",
"javaType": "bbejeck.chapter_3.json. Si npl eAvengerJson", (3]
"properties": { (4]
"name": {
"type": "string"
H
"real Nane": {
"type": "string"
e
"movi es": {
"type": "array",
"items": {
"type": "string"
H
"default": [] (5
}

B
"required": [

"nanme",

"real Nane"

1
}
Referencing the specific schema spec
Specifying the type is an object
The javaType used when deserializing

Listing the fields of the object

© 6 © © o

Specifying a default value

The JSON Schema schema resembles the Avro version as both use JSON for the schema file.
The biggest difference between the two is that in the JSON Schema you list the object fields
under a properties element vs. a fi el ds array and in the fields themselves you simply declare

the name vs. having a nane element.

NOTE Please note there is a difference between a schema written in JSON format
and one that follows the JSON Schema format. JSON Schema is "a vocabulary
that allows you to annotate and validate JSON documents.". As with Avro and
Protobuf, I'm going to focus on enough for you to get going using it in your
projects, but for in-depth coverage you should visit json-schema.org/ for more
information.

I’ve shown the different schema formats here for comparison. But in the rest of the chapter, I’'ll
usually only show one version of a schema in an example to save space. But the source code will
contain examples for all three supported types.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://json-schema.org/
http://json-schema.org/draft-07/schema#
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

56

Now that we’ve reviewed the schemas, let’s go ahead and register one. The command to register
a schema with REST API on the command-line looks like this

Listing 3.5 Register a schema on the command line

jg '. | {schenm: tojson}' src/main/avro/avenger.avsc | \ o

curl -s -X POST http://1ocal host: 8081/ subj ect s/ avr o- avenger s- val ue/ ver si ons\ (2]
-H "Content-Type: application/vnd. schemaregistry.vl+json" \
-d @ \
| ia ©

© Usingthethejqt oj son function to format the avenger.avsc file (new lines aren’t
valid json) for uploading, then pipe the result to the curl command

® ThePOST URL for adding the schema, the - s flag suppresses the progress info
output from cur |

The content header

The - d flag specifiesthe dataand @ meansread from STDIN i.e. the data
provided by the jg command preceding the curl command

© Piping the json response through j q to get a nicely formatted response

The result you see from running this command should look like this:

Listing 3.6 Expected response from uploading a schema

{
"idro1
}

The response from the POST request is the id that Schema Registry assigned to the new schema.
Schema Registry assigns a unique id (a monotonically increasing number) to each newly added
schema. Clients use this id for storing schemas in their local cache.

Before we move on to another command I want to call your attention to annotation 2, specifically
this part - subj ect s/ avr o- avenger s-val ue/, it specifies the subject name for the schema.
Schema Registry uses the subject name to manage the scope of any changes made to a schema.
In this case it’s confined to avr o- avenger s- val ue which means that values (in the key-value
pairs) going into the avr o- avengers topic need to be in the format of the registered schema.
We’ll cover subject names and the role they have in making changes in an upcoming section.

Next, let’s take a look at some of the available commands you can use to retrieve information
from Schema Registry.

Imagine you are working on building a new application to work with Katka. You’ve heard about
Schema Registry and you’d like to take a look at particular schema one of your co-workers

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

http://localhost:8081/subjects/avro-avengers-value/versions\
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

57

developed, but you can’t remember the name and it’s the weekend and you don’t want to bother
anyone. What you can do is list all the subjects of registered schemas with the following
command:

Listing 3.7 Listing the subjects of registered schemas

curl -s "http://1ocal host:8081/subjects" | jq

The response from this command is a json array of all the subjects. Since we’ve only registered
once schema so far the results should look like this

[
]

"avr o- avenger s- val ue"

Great, you find here what you are looking for, the schema registered for the avr o- avengers
topic.

Now let’s consider there’s been some changes to the latest schema and you’d like to see what the
previous version was. The problem is you don’t know the version history. The next command
shows you all of versions for a given schema

Listing 3.8 Getting all versions for a given schema

curl -s "http://1ocal host: 8081/ subj ect s/ avro-avengers-val ue/versions" | jq

This command returns a json array of the versions of the given schema. In our case here the
results should look like this:

[1]

Now that you have the version number you need, now you can run another command to retrieve
the schema at a specific version:

Listing 3.9 Retrieving a specific version of a schema

curl -s "http://1ocal host: 8081/ subj ect s/ avro-avengers-val ue/ versi ons/ 1"\
[jg*."

After running this command you should see something resembling this:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

http://localhost:8081/subjects
http://localhost:8081/subjects/avro-avengers-value/versions
http://localhost:8081/subjects/avro-avengers-value/versions/1"\
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

58

"subj ect": "avro-avengers-val ue",

"version": 1,

"idUro1,

"schema": "{\"type\":\"record\",\"name\":\"AvengerAvro\",

\ "nanespace\ ":\ " bbej eck. chapter_3.avro\",\"fiel ds\"
[{\"name\":\"nane\",\"type\":\"string\"}, {\"nane\"
\"real _name\",\"type\":\"string\"}, {\"nanme\"
\"novies\", \"type\": {\"type\":\"array\"
A"items\":\"string\"},\"defaul t\":[]}]}"

The value for the schema field is formatted as a string, so the quotes are escaped and all new-line
characters are removed.

With a couple of quick commands from a console window, you’ve been able to find a schema,
determine the version history and view the schema of a particular version.

As a side note, if you don’t care about previous versions of a schema and you only want the
latest one, you don’t need to know the actual latest version number. You can use the following
REST API call to retrieve the latest schema:

Listing 3.10 Getting the latest version of a schema

curl -s "http://1ocal host: 8081/ subj ect s/ avr o- avenger s-val ue/
versions/latest" | jgq '."'

I won’t show the results of this command here, as it is identical to the previous command.

That has been a quick tour of some of the commands available in the REST API for Schema
Registry. This just a small subset of the available commands. For a full reference go to
docs.confluent.io/platform/current/schema-registry/develop/api.html#sr-api-reference.

Next we’ll move on to using gradle plugins for working with Schema Registry and Avro,
Protobuf and JSON Schema schemas.

3.1.5 Plugins and serialization platform tools

So far you’ve learned that the event objects written by producers and read by consumers
represent the contract between the producer and consumer clients. You’ve also learned that this
"implicit" contract can be a concrete one in the form of a schema. Additionally you’ve seen how
you can use Schema Registry to store the schemas and make them available to the producer and
consumer clients when the need to serialize and deserialize records.

In the upcoming sections you’ll see even more functionality with Schema Registry. I’'m referring
to testing schemas for compatibility, different compatibility modes and how it can make
changing or evolving a schema a relatively painless process for the involved producer and
consumer clients.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://docs.confluent.io/platform/current/schema-registry/develop/api.html#sr-api-reference
http://localhost:8081/subjects/avro-avengers-value/
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

59

But so far, you’ve only worked with a schema file and that’s still a bit abstract. As I said earlier
in the chapter, developers work with objects when building applications. So our next step is to
see how we can convert these schema files into concrete objects you can use in an application.

Schema Registry supports schemas in Avro, Protobuf and JSON Schema format. Avro and
Protobuf are serialization platforms that provide tooling for working with schemas in their
respective formats. One of the most important tools is the ability to generate objects from the
schemas.

Since JSON Schema is a standard and not a library or platform you’ll need to use an open source
tool for code generation. For this book we’re using the github.com/eirnym/js2p-gradle project.
For (de)serialization without Schema Registry I would recommend using Obj ect Mapper from
the github.com/FasterXML/jackson-databind project.

Generating code from the schema makes your life as developer easier, as it automates the
repetitive, boilerplate process of creating domain objects. Additionally since you maintain the
schemas in source control (git in our case), the chance for error, such as making a field string
type when it should be a long, when creating the domain objects is all but eliminated.

Also when making a change to a schema, you just commit the change and other developers pull
the update and re-generate the code and everyone is unsung fairly quickly.

In this book we’ll use the gradle build tool (gradle.org/) to manage the book’s source code.
Fortunately there are gradle plugins we can use for working with Schema Registry, Avro,
Protobuf, and JSON Schema. Specifically, we’ll use the following plugins

¢ github.com/ImFlog/schema-registry-plugin - For interacting with Schema Registry i.e.
testing schema compatibility, registering schemas, and configuring schema compatibility

® github.com/davidmc24/gradle-avro-plugin - Used for Java code generation from Avro
schema (. avsc) files.

® github.com/google/protobuf-gradle-plugin - Used for Java code generation from Protobuf
schema (. pr ot o) files

® github.com/eirnym/js2p-gradle - Used for Java code generation for schemas using the
JSON Schema specification.

NOTE It’s important to note the distinction between schema files written in JSON
such as Avro schemas and those files using the JSON Schema format (
json-schema.org/). In the case of Avro files they are written as json, but follow
the Avro specification. With the JSON Schema files they follow the official
specification for JSON Schemas.

By using the gradle plugins for Avro, Protobuf and JSON Schema, you don’t need to learn how
to use the individual tools for each component, the plugins handle all the work. We’ll also use a
gradle plugin for handling most of the interactions with Schema Registry.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://github.com/eirnym/js2p-gradle
https://github.com/FasterXML/jackson-databind
https://gradle.org/
https://github.com/ImFlog/schema-registry-plugin
https://github.com/davidmc24/gradle-avro-plugin
https://github.com/google/protobuf-gradle-plugin
https://github.com/eirnym/js2p-gradle
https://json-schema.org/
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

60

Let’s get started by uploading a schema using a gradle command instead of a REST API
command in the console.

UPLOADING A SCHEMA FILE

The first thing we’ll do is use gradle to register a schema. We’ll use the same Avro schema from
the REST API commands section. Now to upload the schema, make sure to change your current
directory (CD) into the base directory of project and run this gradle command:

./ gradl ew streans: regi st er SchemasTask

After running this command you should see something like BUI LD SUCCESSFUL in the console.
Notice that all you needed to enter on the command line is the name of the gradle task (from the
schema-registry-plugin) and the task registers all the schema inside the regi ster { } block in
the st reans/ bui | d. gr adl e file.

Now let’s take a look at the configuration of the Schema Registry plugin in the
streans/ bui | d. gr adl e file.

Listing 3.11 Configuration for Schema Registry plugin in streams/build.gradle

schemaRegi stry { (1)
url = "http://local host: 8081 @
register {
subj ect (" avro- avenger s-val ue', (3]
' src/ mai n/ avr o/ avenger . avsc', o
"AVRO) ©

//other entries left out for clarity

}

/1 other configurations left out for clarity

}

Start of the Schema Registry configuration block in the build.gradle file
Specifying the URL to connect to Schema Registry
Registering a schema by subject name

Specifying Avro schemafile to register

© 6 © © ©

The type of the schemayou are registering

In the r egi st er block you provide the same information, just in a format of a method call vs. a
URL in a REST call. Under the covers the plugin code is still using the Schema Registry REST
API via a SchemaRegi stryd i ent. As side note, in the source code you’ll notice there are
several entries in the r egi st er block. You’ll use all of them when go through the examples in
the source code.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

http://localhost:8081
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

61

We’ll cover using more gradle Schema Registry tasks soon, but let’s move on to generating code
from a schema.

GENERATING CODE FROM SCHEMAS

As I said earlier, one of the best advantages of using the Avro and Protobuf platforms is the code
generation tools. Using the gradle plugin for these these tools takes the convenience a bit further
by abstracting away the details of using the individual tools. To generate the objects represented
by the schemas all you need to do is run this gradle task:

Listing 3.12 Generating the model objects

./ gradl ew cl ean build

Running this gradle command generates Java code for all the types Avro, Protobuf, and JSON
Schema for the schemas in the project. Now we should talk about where you place the schemas
in the project. The default locations for the Avro and Protobuf schemas are the src/ mai n/ avro
and src/ mai n/ prot o directories, respectively. The location for the JSON Schema schemas is

the src/ mai n/ j son directory, but you need to explicitly configure this in the buil d. gradl e
file:

Listing 3.13 Configure the location of JSON Schema schema files

j sonSchema2Poj o {

source = files("${project.projectDir}/src/min/json") o
targetDirectory = file("${project.buildbDir}/generated-nain-json-java") (2]
/1 other configurations left out for clarity

}
9 Thesour ce configuration specifies where the generation tools can locate the
schemas

©® ThetargetDirectory isweretool writes the generated Java objects

NOTE All examples here refer to the schemas found in the streans sub-directory
unless otherwise specified.

Here you can see the configuration of the input and output directories for the j s2p-gradl e
plugin. The Avro plugin, by default, places the generated files in a sub-directory under the bui | d
directory named gener at ed- mai n- avr o-j ava.

For Protobuf we configure the output directory to match the pattern of JSON Schema and Avro
in the Pr ot obuf block of the bui | d. gr adl e file like this:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

62

Listing 3.14 Configure Protobuf output

pr ot obuf {
gener at edFi | esBaseDir = "${project.buildDir}
/ gener at ed- mai n- prot o-j ava" (1]

protoc {
artifact = 'com googl e. protobuf: protoc: 3. 15. 3' (2]

}

9 The output directory for the Java files generated from Protobuf schema

@ Specifying the location of the protoc compiler

I’d to take a quick second to discuss annotation two for a moment. To use Protobuf you need to
have the compiler pr ot oc installed. By default the plugin searches for a pr ot oc executable. But
we can use a pre-compiled version of pr ot oc from Maven Central, which means you don’t have
to explicitly install it. But if you prefer to use your local install, you can specify the path inside
the pr ot oc block with pat h = pat h/t o/ prot oc/ conpil er.

So we’ve wrapped up generating code from the schemas, now it’s time to run an end-to-end
example

END TO END EXAMPLE

At this point we’re going to take everything you’ve learned so far and run a simple end-to-end
example. So far, you have registered the schemas and generated the Java files you need from
them. So your next steps are to:

® Create some domain objects from the generated Java files
® Produce your created objects to a Kafkatopic
® Consume the objects you just sent from the same Kafka topic

While parts two and three from the list above seem to have more to do with clients than Schema
Registry, I want to think about it from this perspective. You’re creating instances of Java objects
created from the schema files, so pay attention to fields and notice how the objects conform to
the structure of the schema. Secondly, focus on the Schema Registry related configuration items,
serializer or deserializer and the URL for communicating with Schema Registry.

NOTE In this example you will use a Kafka Producer and Kafka Consumer, but |
won’t cover any of the details of working with them. If you’re unfamiliar with
the producer and consumer clients that’s fine. I'll go into detail about
producers and consumers in the next chapter. But for now just go through the
examples as is.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

63

If you haven’t already registered the schema files and generated the Java code, let’s do so now.
I’ll put the steps here again and make sure you have run docker - conpose up -d to ensure your
Kafka broker and Schema Registry are running.

Listing 3.15 Register schemas and generate Java files

./ gradl ew streans: regi sterSchemasTask @

./gradlew clean build ©

9 Register the schemafiles

© Build the Java objects from schemas

Now let’s focus on the Schema Registry specific configurations. Go to the source code and take
a look at the bbej eck. chapt er _3. producer . BasePr oducer class. For now we only want to
look at the following two configurations, we’ll cover more configurations for the producer in the
next chapter:
producer Props. put (Producer Confi g. VALUE_SERI ALI ZER_CLASS_CONFI G,

keySeri al i zer);

producer Props. put (Abst r act Kaf kaSchenaSer DeConf i g. SCHEMA_REGQ STRY_URL_CONFI G,
"http://1ocal host:8081"); @

© Specifying the serializer to use

® Setting the location of Schema registry

The first configuration sets the Serializer the producer will use. Remember, the
Kaf kaPr oducer is decoupled from the type of the Seri al i zer, it simply calls the seri al i ze
method and gets back an array of bytes to send. So the responsibility for providing the correct
Seriali zer class is up to you.

In this case we’re going to work with objects generated from an Avro schema, so you use the
Kaf kaAvroSerializer. If you look at the

bbej eck. chapt er _3. producer. avro. AvroPr oducer class (which extends the BasePr oducer
) you see it pass the Kaf kaAvr oSeri al i zer. cl ass to the parent object constructor. The second
configuration specifies the HTTP endpoint that the Seri al i zer uses for communicating with
Schema Registry. These configurations enable the interactions described in the illustration
"Schema registry ensures consistent data format between producers and consumers" above.

Next, let’s take a quick look at creating an object:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

http://localhost:8081
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

64

Listing 3.16 Instantiating a an object from the generated code

var bl ackW dow = Avenger Avr 0. newBui | der ()
. set Name(" Bl ack W dow")
. set Real Nane(" Nat asha Romanova")
. set Movi es(List.of ("Avengers", "Infinity Wars",
"End Gane")).build();

OK, you’re thinking now, "this code creates an object, what’s the big deal?". While it could be a
minor point, but it’s more what you can’t do here that I'm trying to drive home. You can only
populate the expected fields with the correct types, enforcing the contract of producing records in
the expected format. Of course you could update the schema and regenerate the code.

But by making changes, you have to register the new schema and the changes have to match the
current compatibility format for the subject-name. So now can see now how Schema Registry
enforces the "contract" between producers and consumers. We’ll cover compatibility modes and
the allowed changes in an upcoming section.

Now let’s run the following gradle command to produce the objects to avr o- avenger s topic.

Listing 3.17 Running the AvroProducer

./ gradl ew streans: runAvr oPr oducer

After running this command you’ll see some output similar to this:

DEBUG [mai n] bbej eck. chapt er _3. producer. BaseProducer - Producing records

[{"nanme": "Black Wdow', "real_nane": "Natasha Ronmanova", "novies":
["Avengers", "Infinity Wars", "End Gane"]},
{"nane": "Hul k", "real _name": "Dr. Bruce Banner", "novies":
["Avengers", "Ragnarok", "Infinity Wars"]},
{"nanme": "Thor", "real nanme": "Thor", "novies":

[

"Dark Universe", "Ragnarok", "Avengers"]}]

After the application produces these few records it shuts itself down.

IMPORTANT It’'s important to make sure to run this command exactly as shown here
including the preceding : character. We have three different gradle modules
for our Schema Registry exercises. We need to make sure the command we
run are for the specific module. In this case the : executes the main module
only, otherwise it will run the producer for all modules and the example will
fail.

Now running this command doesn’t do anything exciting, but it demonstrate the ease of
serializing by using Schema Registry. The producer retrieves the schema stores it locally and
sends the records to Kafka in the correct serialized format. All without you having to write any
serialization or domain model code. Congratulations you have sent serialize records to Kafka!

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

65

TIP It could be instructive to look a the log file generated from running this
command. It can be found in the | ogs/ directory of the provided source code.
The log4j configuration overwrites the log file with each run, so be sure to
inspect it before running the next step.

Now let’s run a consumer which will deserialize the records. But as we did with the producer,
we’re going to focus on the configuration required for deserialization and working with Schema
Registry:

Listing 3.18 Consumer configuration for using Avro

consumer Pr ops. put (Consurer Conf i g. VALUE_DESERI ALI ZER_CLASS_CONFI G
Kaf kaAvr oDeseri al i zer. cl ass);

consumer Props. put (Kaf kaAvr oDeseri al i zer Confi g. SPECI FI C_AVRO_READER_CONFI G
true);

consumer Props. put (Abst ract Kaf kaSchemaSer DeConf i g. SCHEMA_REGQ STRY_URL_CONFI G
"http://|ocal host:8081"); ©

© Using Avro deserialization
@ Configuring to use a SpecificAvroReader
© The host:port for Schema Registry

You’ll notice that in the second annotation you are setting the SPECI FI C_AVRO _READER_CONFI G
to true. What does the SPECI FI C_AVRO READER _CONFI G setting do? Well to answer that
question let’s take a slight detour in our conversation to discuss working with Avro, Protobuf,
and JSON Schema serialized objects.

When deserializing one of the Avro, Protobuf, or JSON Schema objects there is a concept of
deserializing the specific object type or a non-specific "container" object. For example, with the
SPECI FI C_AVRO READER CONFI G set to true, the deserializer inside the consumer, will return an
object of type Avr oAvenger the *specific* object type.

However had you set the SPECI FI C_AVRO _READER_CONFI Gto f al se, the deserializer returns an
object of type Generi cRecor d. The returned Gener i cRecr od still follows the same schema, and
has the same content, but the object itself is devoid of any type awareness, it’s as the name
implies simply a generic container of fields. The following example should make clear what I'm
saying here:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

http://localhost:8081
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

66

Listing 3.19 Specific Avro records vs. GenericRecord

Avr oAvenger avenger = // returned from consumer with
/| SPECI FI C_AVRO_READER_CONFI G=t r ue

avenger . get Nanme() ;

avenger . get Real Nane() ; o

avenger . get Movi es() ;

Generi cRecord genericRecord = // returned from consumer with
/1 SPECI FI C_AVRO_READER_CONFI G=f al se
if (genericRecord. hasFi el d("nane")) {
generi cRecord. get ("name");

}

if (genericRecord. hasField("real _nane")) { (2)
generi cRecord. get ("real _name");

}

if (GenericRecord. hasFi el d("novies")) {
generi cRecord. get (" novi es");

}

© Accessing fields on the specific object

@ Accessing fields on the generic object

From this simple code example, you can see the differences between the specific returned type
vs. the generic. With the AvroAvenger object in annotation one, we can access the available
properties directly, as the object is "aware" of its structure and provides methods for accessing
those fields. But with the Generi cRecor d object you need to query if it contains a specific field
before attempting to access it.

NOTE The specific version of the Avro schema is not just a POJO (Plain Old Java
Object) but extends the Speci fi cRecor dBase class.

Notice that with the Generi cRecor d you need to access the field exactly as its specified in the
schema, while the specific version uses the more familiar camel case notation.

The difference between the two is that with the specific type you know the structure, but with the
generic type, since it could represent any arbitrary type, you need to query for different fields to
determine its structure. You need to work with a Generi cRecor d much like you would with a
HashMap.

However you’re not left to operate completely in the dark. You can get a list of fields from a
Generi cRecord by calling GenericRecord. get Schema() . get Fi el ds(). Then you could
iterate over the list of Fi el d objects and get the names by calling the Fi el ds. name().
Additionally you could get the name of the schema with
Generi cRecord. get Schema() . get Ful | Name(); and presumably at that point you would
know which fields the record contained.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

67

Updating a field you’d follow a similar approach: .Updating or setting fields on specific and
generic records

avnenger . set Real Nanme(" updat ed nane")
generi cRecord. put ("real _nane", "updated nane")

So from this small example you can see that the specific object gives you the familiar setter
functionality but the the generic version you need to explicitly declare the field you are updating.
Again you’ll notice the HashMap like behavior updating or setting a field with the generic

version.

Protobuf provides a similar functionality for working with specific or arbitrary types. To work
with an arbitrary type in Protobuf you’d us a Dynani cMessage. As with the Avro
Generi cRecor d, the Dynani cMessage offers functions to discover the type and the fields. With
JSON Schema the specific types are just the object generated from the gradle plugin, there’s no
framework code associated with it like Avro or Protobuf. The generic version is a type of
JsonNode since the deserializer uses the jackson-databind (
github.com/FasterXML/jackson-databind) API for serialization and deserialization.

NOTE The source code for this chapter contain examples of working with the
specific and generic types of Avro, Protobuf and JSON Schema.

So the question is when do you use the specific type vs. the generic? In the case where you only
have one type of record in a Kafka topic you’ll use the specific version. On the other hand, if you
have multiple event types in a topic, you’ll want to use the generic version, as each consumed
record could be a different type. We’ll talk more about multiple event types in a single topic later
in this chapter, and again in the client and Kafka Streams chapters.

The final thing to remember is that to use the specific record type, you need to set the
kaf kaAvr oDeseri al i zer Confi g. SPECI FI C AVRO READER _CONFI G to true. The default for
the SPECI FI C_AVRO_READER _CONFI Gis false, so the consumer returns the Gener i cRecor d type

if the configuration is not set.

Now with the sidebar about different record types completed, let’s resume walking through your
first end-to-end example using Schema Registry. You’ve already produced some records using
the schema you uploaded previously. Now you just need to start a consumer to demonstrate
deserializing those records with the schema. Again, looking at the log files should be instructive
as you’ll see the embedded deserializer downloading the schema for the first record only as it
gets cached after the initial retrieval.

I should also note that the following example using
bbej eck. chapt er _3. consuner . avr o. Avr oConsuner uses both the specific class type and the
Generi cRecor d type. As the example runs, the code prints out the type of the consumed record.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://github.com/FasterXML/jackson-databind
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

68

NOTE There are similar examples for Protobuf and JSON Schema in the source
code.

So let’s run the consumer example now by executing the following command from the root of
the book source code project:

Listing 3.20 Running the AvroConsumer

./ gradl ew streans: runAvr oConsuner

IMPORTANT Again, the same caveat here about running the command with the preceding
character, otherwise it will run the consumer for all modules and the

example will not work.

The Avr oConsuner prints out the consumed records and shuts down by itself. Congratulations,
you’ve just serialized and deserialized records using Schema Registry!

So far we’ve covered the types of serialization frameworks supported by Schema Registry, how
to write and add a schema file, and walked through a basic example using a schema. During the
portion of the chapter where you uploaded a schema, I mentioned the term subj ect and how it
defines the scope of schema evolution. That’s what you’ll learn in the next section, using the
different subject name strategies.

3.2 Subject name strategies

Schema Registry uses the concept of a subject to control the scope of schema evolution. Another
way to think of the subject is a namespace for a particular schema. In other words, as your
business requirements evolve, you’ll need to make changes to your schema files to make the
appropriate changes to your domain objects. For example, with our AvroAvenger domain object,
you want to remove the real (civilian) name of the hero and add a list of their powers.

Schema Registry uses the subject to lookup the existing schema and compare the changes with
the new schema. It performs this check to make sure the changes are compatible with the current
compatibility mode set. We’ll talk about compatibility modes in an upcoming section. The
subject name strategy determines the scope of where schema registry makes its compatibility
checks.

There are three types of subject name strategies, Topi cNaneSt r at egy, Recor dNanmeSt r at egy,
and Topi cRecor dNaneSt r at egy. You can probably infer the scope of the name-spacing implied
by the strategy names, but it’s worth going over the details. Let’s dive in and discuss these
different strategies now.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

69

NOTE By default all serializers will attempt to register a schema when serializing, if
it doesn’t find the corresponding id in its local cache. Auto registration is a
great feature, but in some cases you may need to turn it off with a producer
configuration setting of aut o. regi st er. schemas=f al se. One example of not
wanting auto registration is when you are using an Avro union schema with
references. We'll cover this in more detail later in the chapter.

3.2.1 TopicNameStrategy

The Topi cNaneSt r at egy is the default subject in Schema Registry. The subject name comes
from the name of the topic. You saw the Topi cNaneSt rat egy in action earlier in the chapter
when you registered a schema with the gradle plugin. To be more precise the subject name is
t opi c- name- key or t opi c- name- val ue as you can have different types for the key and value
requiring different schemas.

The Topi cNaneSt r at egy ensures there is only one data type on a topic, since you can’t register
a schema for a different type with the same topic name. Having a single type per topic makes
sense in a lot of cases. For example, if you name your topics based on the event type they store.
it follows that they will contain only one record type.

Another advantage of the Topi cNaneSt r at egy is with the schema enforcement limited to a
single topic, you can have another topic using the same record type, but using a different schema.
Consider the situation where two different departments use the same record type, but use
different topic names. With the Topi cNaneSt r at egy these departments can register completely
different schemas for the same record type, since the scope of the schema is limited to a
particular topic.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

70

Top?Wame_Sh‘oefe_gy
+oPECA

77

sul:je_c-r

schema

\ +opicA-Va|ue_

com.acme..Foo
]
"nam&": "idu, "-hlpg": "longu,
"nam&": "some___PidJ", "-hlpc;": "s-h‘inﬂ"

3

Here the r‘e.gis-re_red schema s <+opic-name_>—value,. T his restricts
+he +ype contained in the +opic +o thot of the re,gis-l—e_re,d
schema for +he VQlue_ +ype.

Figure 3.6 TopicNameStrategy enforces having the same type of domain object represented by the
registered schema for the value and or the key

Since the Topi cNaneStrategy is the default, you don’t need to specify any additional
configurations. When you register schemas you’ll use the format of <t opi c>-val ue as the
subject for value schemas and <t opi c>- key as the subject for key schemas. In both cases you
substitute the name of the topic for the <t opi c¢> token.

But there could be cases where you have closely related events and you want to produce those
records into in one topic. In that case you’ll want to chose a strategy that allows different types
and schemas in a topic.

3.2.2 RecordNameStrategy

The Recor dNanesSt r at egy uses the fully qualified class name (of the Java object representation
of the schema) as the subject name. By using the record name strategy you can now have
multiple types of records in the same topic. But the key point is that there is a logical relationship
between these records, it’s just the physical layout of them is different.

When would you choose the Recor dNaneSt r at egy? Imagine you have different IoT (Internet of
Things) sensors deployed. Some of sensors measure different events so they’ll have different
records. But you still want to have them co-located on the same topic.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

71

RecordVameS+rot
es es €37 You can'+ produce records for
+op?cA +opicB Foo with a different schema
TG0 even -Hnough w's o different
+opic.
subjest subjeet

schema
\ com.acme..Foo com.acme..Foo schema

com.acme.Foo

"v\ame_": ”io!", "-h/Pe_”: "longu,
"name": "som&_PEeJo(", "-h/f:é': "s-rr‘mﬁu

T he domain olﬂ:‘]e_c-r "Foo" has different schemas

and since t/ou’r‘e_ using the Re_cof‘JA/ame_S-l'ro\-re_gt/,
Schema Registry enforces schema eompa+353|i+y across
all +opics For +the given record subjeet name

Figure 3.7 RecordNameStrategy enforces having the same schema for a domain object across different
topics

Since there can be different types, the compatibility checks occur between schemas with the
same record name. Additionally the compatibility check extends to all topics using a subject with
the same record name.

To use the Recor dNaneSt r at egy you use a fully qualified class name for the subject when
registering a schema for a given record type. For the Avenger Avro object we’ve used in our
examples, you would configure the schema registration like this:

Listing 3.21 Schema Registry gradle plugin configuration for RecordNameStrategy

subj ect (' bbej eck. chapt er _3. avro. Avenger Avro', ' src/ nmai n/ avr o/ avenger . avsc', 'AVRO)

Then you need to configure the producer and consumer with the appropriate subject name
strategy. For example:

Listing 3.22 Producer configuration for RecordNameStrategy

Map<String, Object> producerConfig = new HashMap<>();

producer Confi g. put (Kaf kaAvroSeri al i zer Confi g. VALUE_SUBJECT_NANME_STRATEGY,
Recor dNaneSt r at egy. cl ass) ;

producer Confi g. put (Kaf kaAvroSeri al i zer Confi g. KEY_SUBJECT_NAME_STRATEGY,
Recor dNaneSt r at egy. cl ass) ;

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

72

Listing 3.23 Consumer configuration for RecordNameStrategy

Map<String, Cbject> consunerConfig = new HashMap<>();

confi g. put (Kaf kaAvr oDeseri al i zer Confi g. KEY_SUBJECT_ NAME_STRATEGY,
Recor dNaneSt r at egy. cl ass) ;

confi g. put (Kaf kaAvr oDeseri al i zer Confi g. VALUE_SUBJECT_NAME_STRATEGY,
Recor dNaneSt r at egy. cl ass) ;

NOTE If you are only using Avro for serializing/deserializing the values, you don’t
need to add the configuration for the key. Also the key and value subject
name strategies do not need to match, I've only presented them that way
here.

For Protobuf use the Kaf kaPr ot obuf Seri ali zer Config and
Kaf kaPr ot obuf DeserializerConfig and for JSON schema use the
Kaf kaJsonSchemaSeri al i zer Confi g and Kaf kaJsonSchemaDeseri al i zer Confi g

These configurations only effect how the serializer/deserializer interact with Schema Registry for
looking up schemas. Again the serialization is decoupled from producing and consuming
process.

One thing to consider is that by using only the record name, all topics must use the same schema.
If you want to use different records in a topic, but want to only consider the schemas for that
particular topic, then you’ll need to use another strategy.

3.2.3 TopicRecordNameStrategy

As you can probably infer from the name this strategy allows for having multiple record types
within a topic as well. But the registered schemas for a given record are only considered within
the scope of the current topic. Let’s take a look at the following illustration to get a better idea of
what this means.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

73

’FbpicRe_coro(A/ame,S+ra+e,3t/
+opicA +oPiQB

sub\‘\e,c—k
sub:le_c-k

& / 2
schema
schema
\ +op?cA-com.acme_.Foo +oPicB-com.acme.Foo /

com.acme..Foo com.acme..Foo
I’name_“: ub!u, """/Pé'? I’Iong“, ::name_::: ::‘no!", "'h/p.e_": ::lorg“, . o
"name': "some_Pield’, “rypes "string” Jome i "ISOMLP‘E!‘;[! v 'P&:"-s‘-’;!mz\il’ .
} } nome i legacy _Fi 1 -h/Pa. ovble.

T he domain object "Foo" has different schemas

but since L/ou're_ using the pricRe_corcM/oxme_S-h‘od'e_sy

+his is allowed as Schema Registry ov\lt/ checks Por schema
compaﬁlﬁli-ky for +he record +ype within the scope of

the topic.

Figure 3.8 TopicRecordNameStrategy allows for having different schemas for the same domain object
across different topics

As you can see from the image above t opi c- A can have a different schema for the record type
Foo from t opi c- B. This strategy allows you to have multiple logically related types on one
topic, but it’s isolated from other topics where you have the same type but are using different
schemas.

Why would you use the Topi cRecor dNanmeSt r at egy ? For example, consider this situation:

You have one version of the Cust oner Pur chaseEvent event object in the i nt er act i ons topic,
that groups all customer event types (Custoner Sear chEvent, CustonerLogi nEvent etc)
grouped together. But you have an older topic purchases, that also contains
Cust oner Pur chaseEvent objects, but it’s for a legacy system so the schema is older and
contains different fields from the newer one. The Topi cRecor dNaneSt r at egy allows for having
these two topics to contain the same #ype but with different schema versions.

Similar to the Recor dNaneSt rat egy you’ll need to do the following steps to configure the
strategy:

Listing 3.24 Schema Registry gradle plugin configuration for TopicRecordNameStrategy

subj ect (' avr o- avenger s- bbej eck. chapt er _3. avro. Avenger Avro',
''src/ mai n/ avr o/ avenger. avsc', ' AVRO)

Then you need to configure the producer and consumer with the appropriate subject name
strategy. For example:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

74

Listing 3.25 Producer configuration for TopicRecordNameStrategy

Map<String, Object> producerConfig = new HashMap<>();

producer Confi g. put (Kaf kaAvroSeri al i zer Confi g. VALUE_SUBJECT_NAME_STRATEGY,
Topi cRecor dNaneSt r at egy. cl ass) ;

producer Confi g. put (Kaf kaAvr oSeri al i zer Confi g. KEY_SUBJECT_NAME_STRATEGY,
Topi cRecor dNanesSt r at egy. cl ass) ;

Listing 3.26 Consumer configuration for TopicRecordNameStrategy

Map<String, Object> consunerConfig = new HashMap<>();

confi g. put (Kaf kaAvr oDeseri al i zer Confi g. KEY_SUBJECT_NAME_STRATEGY,
Topi cRecor dNaneSt r at egy. cl ass) ;

confi g. put (Kaf kaAvr oDeseri al i zer Confi g. VALUE_SUBJECT_NAME_STRATEGY,
Topi cRecor dNaneSt r at egy. cl ass) ;

NOTE The same caveat about registering the strategy for the key applies here as
well, you would only do so if you are using a schema for the key, it's only
provided here for completeness. Also the key and value subject name
strategies don’t need to match

Why would you use the Topi cRecor dNaneSt r at egy over either the Topi cNaneSt r at egy or the
Recor dNaneSt r at egy? If you wanted the ability to have multiple event types in a topic, but you
need the flexibility to have different schema versions for a given type across your topics.

But when considering multiple types in a topic, both the Topi cRecor dNameSt r at egy and the
Recor dNanmeSt r at egy don’t have the ability to constrain a topic to fixed set of types. Using
either of those subject name strategies opens up the topic to have an unbounded number of
different types. We’ll cover how to improve on this situation when we cover schema references
in an upcoming section.

Here’s a quick summary for you to consider when thinking of the different subject name
strategies. Think of the subject name strategy as a function that accepts the topic-name and
record-schema as arguments and it returns a subject-name. The Topi cNaneSt r at egy only uses
the topic-name and ignores the record-schema. Recor dNaneStrat egy does the opposite; it
ignores the topic-name and only uses the record-schema. But the Topi cRecor dNanmeSt r at egy
uses both of them for the subject-name.

Table 3.1 Schema strategies summary table

Strategy Multiple types in a topic Different versions of objects across topics
TopicNameStrategy Maybe Yes

RecordNameStrategy Yes No

TopicRecordNameStrategy Yes Yes

So far we’ve covered the subject naming strategies and how Schema Registry uses subjects for

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

75

name-spacing schemas. But there’s another dimension to schema management, how to evolve
changes within the schema itself. How do you handle changes like the removal or addition of a
field? Do you want your clients to have forward or backward compatibility? In the next section
we’ll cover exactly how you handle schema compatibility.

3.3 Schema compatibility

When there are schema changes you need to consider the compatibility with the existing schema
and the producer and consumer clients. If you make a change by removing a field how does this
impact the producer serializing the records or the consumer deserializing this new format?

To handle these compatibility concerns, Schema Registry provides four base compatibility
modes BACKWARD, FORWARD, FULL, and NONE. There are also three additional compatibility modes
BACKWARD_TRANSI Tl VE, FORWARD_TRANSI TI VE, and FULL_TRANSI Tl VE which extend on the
base compatibility mode with the same name. The base compatibility modes only guarantee that
a new schema is compatible with immediate previous version. The transitive compatibility
specifies that the new schema is compatible with *all* previous versions of a given schema
applying the compatibility mode.

You can specify a global compatibility level or a compatibility level per subject.

What follows in this chapter is a description of the valid changes for a given compatibility mode
along with an illustration demonstrating the sequence of changes you’d need to make to the
producers the consumers. For a hands on tutorial of making changes to a schema, see
Appendix-B: Schema Compatibility Workshop.

3.3.1 Backward compatibility

Backward compatibility is the default migration setting. With backward compatibility you update
the consumer code first to support the new schema. The updated consumers can read records
serialized with the new schema or the immediate previous schema.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

76

Backivard Qow\pocﬁbili‘h/

Producer vpgraded E‘opic on l:rol(e_r) All Consumers vpgraded
4+o vse the la‘i'e,S‘l' schema

+o vse the
la+e,s+ schema

0 7

With backivard compotibility
Consumers vse +he

/ new schema and

Producer using can handle records produced
+he previous schema with either the current schema
or the pre_vious one.

Figure 3.9 Backward compatibility updates consumers first to use the new schema then they can
handle records from producers using either the new schema or the previous one

As shown in this illustration the consumer, can work with both the previous and the new
schemas. The allowed changes with backwards compatibility are deleting fields or adding
optional fields. An field is considered optional when the schema provides a default value. If the
serialized bytes don’t contain the optional field, then the deserializer uses the specified default
value when deserializing the bytes back into an object.

3.3.2 Forward compatibility

Forward compatibility is a mirror image of backward compatibility regarding field changes. With
forward compatibility you can add fields and delete optional fields.

Forward Qompo:ﬁl:ili-h/

[‘T‘opic on brol(e_%

All Producers upg(‘adeﬂ Consumer upgrade_d +o
+o the |a+e,s+ schema vse the lod—e,s-f schema

’/

With forward compatibility

Consumers us;ng either the

new schema or the Pre_v?ous

one. can handle records

written with the new Consumer using previous
schema schema

Figure 3.10 Forward compatibility updates producers first to use the new schema and consumers can
handle the records either the new schema or the previous one

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

77

By upgrading the producer code first, you’re making sure the new fields are properly populated
and only records in the new format are available. Consumers you haven’t upgraded can still work
with the new schema as it will simply ignore the new fields and the deleted fields have default

values.

At this point you’ve seen two compatibility types, backward and forward. As the compatibility
name implies, you must consider record changes in one direction. In backward compatibility,
you updated the consumers first as records could arrive in either the new or old format. In
forward compatibility, you updated the producers first to ensure the records from that point in
time are only in the new format. The last compatibility strategy to explore is the FULL
compatibility mode.

3.3.3 Full compatibility

In full compatibility mode, you free to add or remove fields, but there is one catch. *4ny
changes* you make must be to *optional* fields only. To recap an optional field is one where
you provide a default value in the schema definition should the original deserialized record not
provide that specific field.

NOTE Both Avro and JSON Schema provide support for explicitly providing default
values, with Protocol Buffers version 3 (the version used in the book) every
field automatically has a default based in its type. For example number types
are O, strings are "", collections are empty etc.

Full Qompoeﬁl-:ih'ry

(:r'opic on l:rol(e_r}

Producer upgrode_d C onsumer upgrade_d +o
+o the |a+e_s+ schema vse the |a+e,s+ schema

, With full compatibil
Consumers can hom:{e_
records written with
erther +he new or
Previous schema Consumer using olde_r
schema

Producer using
oldef schema

Figure 3.11 Full compatibility allows for producers to send with the previous or new schema and
consumers can handle the records either the new schema or the previous one

Since the fields involved in the updated schema are optional, these changes are considered
compatible for existing producer and consumer clients. This means that the upgrade order in this

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

78

case is up to you. Consumers will continue to work with records produced with the new or old
schema.

3.3.4 No compatibility

Specifying a compatibility of NONE instructs Schema Registry to do just that, no compatibility
checks. By not using any compatibility checks means that someone can add new fields, remove
existing fields, or change the type of a field. Any and all changes are accepted.

Not providing any compatibility checks provides a great deal of freedom. But the trade-off is
you’re vulnerable to breaking changes that might go undetected until the worse possible time; in
production.

It could be that every time you update a schema, you upgrade all producers and consumers at the
same time. Another possibility is to create a new topic for clients to use. Applications can use the
new topic without having the concerns of it containing records from the older, incompatible
schema.

Now you’ve learned how you can migrate a schema to use a new version with changes within the
different schema compatibility modes and for review here’s a quick summary table of the
different compatibility types

Table 3.2 Schema Compatibility Mode Summary

Mode Changes Allowed Client Update Order Retro guaranteed compatibility
Backward Delete fields, add optional fields Consumers, Producers |Prior version

Backward Transitive |Delete fields, add optional fields Consumers, Producers |All previous versions

Forward Add fields, delete optional fields Producers, Consumers |Prior version

Forward Transitive |Add fields, delete optional fields Producers, Consumers |All previous versions

Full Delete optional fields, add optional fields |Doesn’t matter Prior version

Full Transitive Delete optional fields, add optional fields |Doesn’t matter All previous versions

But there’s more you can do with schemas. Much like working with objects you can share
common code to reduce duplication and make maintenance easier, you can do the same with
schema references

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

79

3.4 Schema references

A schema reference is just what is sounds like, referring to another schema from inside the
current schema. Reuse is a core principal in software engineering as the ability to leverage
something you’ve already built solves two issues. First, you could potentially save time by not
having to re-write some exiting code. Second, when you need to update the original work (which
always happens) all the downstream components leveraging the original get automatically
updated as well.

When would you want to use a schema reference? Let’s consider you have an application
providing information on commercial business and universities. To model the business you have
a Conpany schema and for the universities you have a Col | ege schema. Now a company has
executives and the college has professors. You want to represent both with a nested schema of a
Per son domain object. The schemas would look something like this:

Listing 3.27 College schema

"namespace": "bbej eck.chapter_3.avro",
"type": "record",

"name": "Col | egeAvro",

"fields": [

{"nanme": "nanme", "type": "string"},

{"nane": "professors", "type":

{"type": "array", "itens": {
"namespace": "bbejeck.chapter_3.avro",
"nanme": " Per sonAvro",

"fields": [
{"nane": "name", "type":"string"},
{"nane": "address", "type": "string"},
{"nanme": "age", "type": "int"}

]

Bl
"default": []

}

9 Array of professors

@ Theitemtypein array is a Person object

So you can see here you have a nested record type in your college schema, which is not
uncommon. Now let’s look at the company schema

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

80

Listing 3.28 Company schema
{

"namespace": "bbejeck. chapter_3.avro",
"type": "record",
"nane": "ConpanyAvro",
"fields": [
{"pnane": "nanme", "type": "string"},
{"nane": "executives", "type":
{"type": "array", "itens": {
"type":"record",
"namespace": "bbejeck.chapter_3.avro",
"name": " PersonAvro",
"fields": [
{"nane": "nanme", "type":"string"},
{"nane": "address", "type": "string"},
{"nane": "age", "type": "int"}
]
BB
"default": []

}
]
}

9 Array of executives

© |temtypeisaPersonAvro

Again you have a nested record for the type contained in the schema array. It’s natural to model
the executive or professor type as a person, as it allows you to encapsulate all the details into an
object. But as you can see here, there’s duplication in your schemas. If you need to change the
person schema you need to update every file containing the nested person definition.
Additionally, as you start to add more definitions, the size and complexity of the schemas can get
unwieldy quickly due to all the nesting of types.

It would be better to put a reference to the type when defining the array. So let’s do that next.
We’ll put the nested Per sonAvr o record in its own schema file, person.avsc.

I won’t show the file here, as nothing changes, we are putting the definition you see here in a
separate file. Now let’s take a look at how you’d update the col | ege. avsc and conpany. avsc
schema files:

Listing 3.29 Updated College schema

{
"nanespace": "bbejeck.chapter_3.avro",
"type": "record",
“name": "Col | egeAvro",
"fields": [
{"nanme": "nanme", "type": "string"},
{"nane": "professors", "type":
{"type": "array", "itens": "bbejeck.chapter_3.avro.PersonAvro"}, 1)
"default": []
}
]
}

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

81

9 Thisisthe new part it's a reference to the person object

IMPORTANT When using schema references, the referring schema you provide must be
the same type. For example you can’t provide a reference to an Avro schema
or JSON Schema inside Protocol Buffers schema, the reference must be
another Protocol Buffers schema.

Here you’ve cleaned things up by using a reference to the object created by the per son. avsc

schema. Now let’s look at the updated company schema as well

Listing 3.30 Updated Company schema

{
"namespace": "bbej eck.chapter_3.avro",
"type": "record",
"name": " ConpanyAvro",
"fields": [
{"nane": "name", "type": "string"},
{"nanme": "executives", "type":
{
"type": "array", "itens": "bbejeck.chapter_3.avro.PersonAvro"}, 1)
"default": []
}
]
}

9 Thisisthe new part also it’s a reference to the person object

Now both schemas refer to the same object created by the person schema file. For completeness
let’s take a look at how you implement a schema reference in both JSON Schema and Protocol
Buffers. First we’ll look at the JSON Schema version:

Listing 3.31 Company schema reference in JSON Schema

{
"$schema": "http://json-schema. org/draft-07/schema#",
"title": "Exchange",
"description": "A JSON schema of a Conpany using Person refs",
"javaType": "bbejeck.chapter_3.json. ConpanyJson",
"type": "object",
"properties": {
"name": {
"type": "string"

}

xecutives": {

"type": "array",

"items": {

“$ref": "person.json” @
}

}

}
}

9 Thereference to the Person object schema

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

http://json-schema.org/draft-07/schema#
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

82

The concept with references in JSON Schema is the same, but you provide an explicit $r ef
element pointing to the referenced schema file. It’s assumed that the referenced file is located in
the same directory as the referring schema.

Now let’s take a look at the equivalent reference with Protocol Bufters:

Listing 3.32 Company Schema reference in Protocol Buffers

syntax = "proto3";
package bbej eck. chapt er _3. prot o;
i mport "person. proto"; o
option java_outer_cl assnane = "ConpanyProto";
message Conpany {
string name = 1,

repeat ed Person executives = 2; (2]

}

9 |mport statement for the referenced schema

® Referring to the Person proto

With Protocol Buffers you have a very minor extra step of providing an import referring the the
proto file containing the referenced object.

But now the question is how will the (de)serializers know how to serialize and deserialize the
object into the correct format? You’ve removed the definition from inside the file, so you need to
get a reference to the schema as well. Fortunately, Schema Registry provides for using schema
references.

What you need to do is register a schema for the person object first, then when you register the
schema for the college and company schemas, you provide a reference to the already registered
person schema.

Using the gradle schema-registry plugin makes this a simple task. Here’s how you would
configure it for using schema references:

Listing 3.33 Gradle plugin reference configuration

regi ster {
subj ect (' person', ' src/ mai n/avro/ person. avsc', 'AVRO) (1]
subj ect (' col | ege-val ue', "' src/ mai n/ avro/ col | ege. avsc', 'AVRO)
. addRef er ence(" bbej eck. chapt er _3. avro. Per sonAvro", "person", 1) (2]
subj ect (' conpany-val ue', "' src/ mai n/ avr o/ conpany. avsc', 'AVRO)
. addRef er ence(" bbej eck. chapt er _3. avro. Per sonAvro", "person", 1) (3]

}

© Register the person schema

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

83

©® Register the college schema and add a reference to the person schema

© Register the company schema and add a reference to the person schema

So you first registered the person. avsc file, but in this case the subject is simply person
because in this case it’s not associated directly with any one topic. Then you registered both the
college and company schemas using the <t opi ¢ name> - val ue pattern as the college and
company schemas are tied to topics with the same names and use the default subject name
strategy (TopicNameStrategy) . The addRef er ence method takes three parameters:

1. A name for the reference. Since you're using Avro it’ s the fully qualified name of the
schema. For Protobuf it’s the name of the proto file and for JSON schemait’sthe URL in
the schema.

2. The subject name for the registered schema.
3. Theversion number to use for the reference.

Now with the references in place, you register the schemas and your producer and consumer
client will be able to properly serialize and deserialize the objects with the references.

There are examples in the source code for running a producer and consumer with the schema
references in action. Since you’ve already run the . / gr adl ew st reans: r egi st er SchemasTask
for the main module, you’ve already set up your references. To see using schema references in
action you can run the following:

Listing 3.34 Tasks for schema references in action

./ gradl ew streans: runConpanyPr oducer
./ gradl ew streans: runConpanyConsuner

./ gradl ew streans: runCol | egePr oducer
./ gradl ew streans: runCol | egeConsuner

3.5 Schema references and multiple events per topic

We’ve covered the different subject strategies RecordNaneStrategy, and
Topi cRecor dNameSt r at egy and how they allow for producing records of different types to a
topic. But with the Recor dNaneSt r at egy any topic you produce to must use the same schema
version for the given type. This means that if you want to make changes or evolve the schema,
all topics must use the new schema. Using the Topi cRecor dNaneSt r at egy allows for multiple
events in a topic and it scopes the schema to a single topic, allowing you to evolve the schema
independent of other topics.

But with both approaches you can’t control the number of different types produced to the topic.
If someone wants to produce a record of a different type that is not wanted, you don’t have any
way to enforce this policy.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

84

However there is a way to achieve producing multiple event types to a topic and restrict the
types of records produced to the topic by using schema references. By using
Topi cNameSt r at egy in conjunction with schema references, it allows all records in the topic to
be constrained by a single subject. In other words, schema references allow you to have multiple
types, but only those types that the schema refers to. This is best understood by walking through
an example scenario

Imagine you are an online retailer and you’ve developed system for precise tracking of packages
you ship to customers. You have a fleet of trucks and planes that take packages anywhere in the
country. Each time a package handled along its route its scanned into your system generating one
of three possible events represented by these domain objects: - Pl aneEvent, Tr uckEvent, or a
Del i veryEvent.

These are distinct events, but they are closely related. Also since the order of these events is
important, you want them produced to the same topic so you have all related events together and
in the proper sequence of their occurrence. I’ll cover more about how combining related events
in a single topic helps with sequencing in chapter 4 when we cover clients. Now assuming
you’ve already created schemas for the PlaneEvent, TruckEvent, and the DeliveryEvent you
could create an schema like this to contain the different event types:

Listing 3.35 Avro schema all_events.avsc with multiple events

[

"bbej eck. chapt er _3. avro. TruckEvent ", (1]
"bbej eck. chapt er _3. avro. Pl aneEvent ",
"bbej eck. chapt er _3. avro. Del i veryEvent "

]
© AnAvro union type for the different events

The al | _events. avsc schema file is an Avro uni on, which is an array of the possible event
types. You use a uni on when a field, or, in this case a schema, could be of more then one type.

Since you’re defining all the expected types in a single schema, your topic can now contain
multiple types, but it’s limited to only those listed in the schema. When using schema references
in this format with Avro, it’s critical to always set auto.regi ster.schemas=fal se and
use. | at est. versi on=true in you Kafka producer configuration. Here’s the reason why you
need to use these configurations with the given settings.

When the Avro serializer goes to serialize the object, it won’t find the schema for it, since it’s in
the union schema. As a result it will register the schema of the individual object, overwriting the
union schema. So setting the auto registration of schemas to f al se avoids the overwriting of the

schema problem. In addition, by specifying use. | at est. versi on=true, the serializer will

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

85

retrieve the latest version of the schema (the union schema) and use that for serialization.
Otherwise it would look for the event type in the subject name, and since it won’t find it, a
failure will result.

TIP When using the one field with references in Protocol Buffers, the referenced
schemas are automatically registered recursively, so can go ahead and use
the aut 0. regi st er. schemas configuration set to true. You can also do the
same with JSON Schema oneOF fields.

Let’s now take a look at how you’d register the schema with references:

Listing 3.36 Register the all_events schema with references

subj ect (' truck_event','src/ main/avro/truck_event.avsc', 'AVRO) (1]

subj ect (' pl ane_event', ' src/ mai n/ avro/ pl ane_event . avsc', 'AVRO)

subj ect (' delivery_event','src/ main/avro/delivery_event.avsc', 'AVRO)

subj ect (' i nvent ory-events-val ue', 'src/main/avro/all_events.avsc',' AVRO) @
. addRef er ence(" bbej eck. chapt er _3. avro. TruckEvent”, "truck_event", 1) ©
. addRef er ence(" bbej eck. chapt er _3. avro. Pl aneEvent", "pl ane_event", 1)
. addRef erence("bbej eck. chapter_3. avro. Del i veryEvent", "delivery_event", 1)

9 Registering theindividual schemas referenced in the all_events.avsc file
©® Registering al_events schema

© Adding the references of the individual schemas

As you saw before in the schema references section, with Avro you need to register the
individual schemas before the schema containing the references. After that you can register the
main schema with the references to the individual schemas.

When working with Protobuf there isn’t a uni on type but there is a oneOf which is essentially
the same thing. However with Protobuf you can’t have a oneCf at the top-level, it must exist in
an Protobuf message. For your Protobuf example, consider that you want to track the following
customer interactions logins, searches, and purchases as separate events. But since they are
closely related and sequencing is important you want them in the same topic. Here’s the Protobuf
file containing the references:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

86

Listing 3.37 Protobuf file with references

syntax = "proto3";
package bbej eck. chapter_3. proto;

import "purchase_event. proto"; (1]
inmport "login_event.proto";
import "search_event. proto";

option java_outer_cl assnane = "EventsProto";
nessage Events {

oneof type { (2]
Pur chaseEvent purchase_event = 1;
Logi nEvent | ogi n_event = 2;
Sear chEvent search_event = 3;

}
string key = 4;
}

9 |mporting the individual Protobuf messages
@ The oneOf field which could be one of the three types listed

You’ve seen a Protobuf schema earlier in the chapter so I won’t go over all the parts here, but the
key thing for this example is the oneOf field type which could be a PurchaseEvent,
Logi nEvent, or a Sear chEvent. When when you register a Protobuf schema it has enough
information present to recursively register all of the referenced schemas, so it’s safe to set the
aut o. r egi st er configuration to t r ue.

You can structure your Avro references in a similar manner:

Listing 3.38 Avro schema with references using an outer class

{
"type": "record",
"namespace": "bbejeck.chapter_3.avro",
"name": "Transportati onEvent",

"fields" : [
{"name": "event", "type"[(2]
"bbej eck. chapt er _3. avro. TruckEvent ", (3]
"bbej eck. chapt er _3. avro. Pl aneEvent ",
"bbej eck. chapter _3. avro. Del i veryEvent "
1}
]
}

© Quter class name
2 Field named "event"

© Avrounion for the field type

So the main difference with this Avro schema vs. the previous Avro schema with references is

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

87

this one has outer class and the references are now a field in the class. Also, when you provide an
outer class with Avro references like you have done here, you can now set the aut o. r egi st er
configuration to t r ue, although you still need to register the schemas for the referenced objects
ahead of time as Avro, unlike Protobuf, does not have enough information to recursively register
the referenced objects.

There are some additional considerations when it comes to using multiple types with producers
and consumers. I’m referring to the generics you use on the Java clients and how you can
determine to take the appropriate action on an object depending on its concrete class name. I
think these topics are better suited to discuss when we cover clients, so we’ll cover that subject in
the next chapter.

At this point, you’ve learned about the different schema compatibility strategies, how to work
with schemas and using references. In all the examples you’ve run you’ve been using the built in
serializers and deserializers provided by Schema Registry. In the next section we’ll cover the
configuration for the (de)serializers for producers and consumers. But we’ll only cover the
configurations related to the (de)serializers and not general producer and consumer
configuration, those we’ll cover in the next chapter.

3.6 Schema Registry (de)serializers

I’ve covered in the beginnings of the chapter,that when producing records to Katka you need to
serialize the records for transport over the network and storage in Kafka. Conversely, when
consuming records you deserialize them so you can work with objects.

You need to configure the producer and consumer with the classes required for the serialization
and deserialization process. Schema Registry provides a serializer, deserializer, and a Serde
(used in Kafka Streams) for all three (Avro, Protobuf, JSON) supported types.

Providing the serialization tools is a strong argument for using Schema Registry that I spoke
about earlier in the chapter. Freeing developers from having to write their own serialization code
speeds up development and increases standardization across an organization. Also using a
standard set of serialization tools reduces errors as reduces the chance that one team implements
their own serialization framework.

NOTE What's a Serde? A Serde is a class containing both a serializer and
deserializer for a given type. You will use Serdes when working with Kafka
Streams because you don’'t have access to the embedded producer and
consumer so it makes sense to provide a class containing both and Kafka
Streams uses the correct serializer and deserializer accordingly. You’ll see
Serdes in action when we start working with Kafka Streams in a later chapter.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

88

In the following sections I’m going to discuss the configuration for using Schema Registry aware
serializers, deserializers. One important thing to remember is you don’t configure the serializers
directly. You set the configuration for serializers when you configure either the Kaf kaPr oducer
or Kaf kaConsuner . If following sections aren’t entirely clear to you, that’s OK because we’ll
cover clients (producers and consumer) in the next chapter.

3.6.1 Avro

For Avro records there is the Kaf kaAvr oSeri al i zer and Kaf kaAvr oDeseri al i zer classes for
serializing and deserializing records. When configuring a consumer, you’ll need to include an
additional property, Kaf kaAvr oDeseri al i zer Confi g. SPECI FI C_AVRO_READER CONFI G=t r ue
indicating that you want the deserializer to create a Speci fi cRecor d instance. Otherwise the
deserializer returns a Generi cRecor d.

Let’s take a look at snippets of how you add these properties to both the producer and consumer.
Note the following example only shows the configurations required for the serialization. I’ve left
out the other configurations for clarity. We’ll cover configuration of producers and consumers in
chapter 4.

Listing 3.39 Required configuration for Avro

/| producer properties

producer Props. put (Producer Conf i g. KEY_SERI ALI ZER_CLASS_CONFI G,
StringSerializer.class);

producer Props. put (Producer Confi g. VALUE_SERI ALI ZER CLASS CONFI G
Kaf kaAvroSeri al i zer. cl ass) ;

producer Props. put (Abst ract Kaf kaSchemaSer DeConf i g. SCHEMA_REGQ STRY_URL_CONFI G
"http://local host:8081"); ©

// consunmer properties these are set separately on the consumer
props. put (Consuner Conf i g. KEY_DESERI ALI ZER_CLASS_CONFI G

StringDeserializer.class); O

props. put (Consuner Conf i g. VALUE_DESERI ALl ZER_CLASS_CONFI G,
Kaf kaAvroDeseri al i zer.class); ©

props. put (Kg kaAvroDeseri al i zer Confi g. SPECI FI C_AVRO READER CONFI G
true);

pr ops. put (Abst r act Kaf kaSchemaSer DeConf i g. SCHEMA REG STRY_URL_CONFI G,
"http://local host:8081"); @

The serializer for the key

The serializer for the value

Setting the URL for the serializer

The deserializer for the key

The deserializer for the value

Indicating to construct a specific record instance

Setting the URL for the deserializer

© 6 © 6 © © ©

Next, let’s take a look at the configuration for working with Protobuf records

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

http://localhost:8081
http://localhost:8081
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

89

3.6.2 Protobuf

For working with Protobuf records there are the Kaf kaProtobuf Serializer and
Kaf kaPr ot obuf Deseri al i zer classes.

When using Protobuf with schema registry, it’s probably a good idea to specify both the
java_out er _cl assnane and setjava_mul tiple_fil es totrue in the protobuf schema. If you
end up using the Recor dNaneSt r at egy with protobuf then you must use these properties so the
deserializer can determine the type when creating an instance from the serialized bytes.

If you remember from earlier in the chapter we discussed that when using Schema Registry
aware serializers, those serializers will attempt to register a new schema. If your protobuf schema
references other schemas via imports, the referenced schemas are registered as well. Only
protobuf provides this capability, when using Avro or JSON referenced schemas are not loaded
automatically.

Again if you don’t want auto registration of schemas, you can disable it with the following
configuration aut o. shema. regi stration = fal se.

Let’s look at a similar example of providing the relevant Schema Registry configurations for
working with protobuf records.

Listing 3.40 Required configuration for Protobuf

/'l producer properties

producer Props. put (Producer Confi g. KEY_SERI ALI ZER_CLASS_CONFI G,
StringSerializer.class);

producer Props. put (Producer Confi g. VALUE_SERI ALI ZER_CLASS_CONFI G,
Kaf kaPr ot obuf Seri al i zer. cl ass) ;

producer Props. put (Abst r act Kaf kaSchenaSer DeConf i g. SCHEMA_REGQ STRY_URL_CONFI G,
"http://|ocal host:8081"); ©

/'l consumer properties again set separately on the consuner

props. put (Consuner Confi g. KEY_DESERI ALI ZER_CLASS_CONFI G,
StringDeserializer.class); O

props. put (Consumer Confi g. VALUE_DESERI ALI ZER _CLASS_CONFI G
Kaf kaPr ot obuf Deseri al i zer.class); ©

props. put (Kaf kaPr ot obuf Deseri al i zer Conf i g. SPECI FI C_PROTOBUF_VALUE_TYPE,
Avenger Si npl ePr ot os. Avenger Si npl e. cl ass) ;

props. put (Abst r act Kaf kaSchenaSer DeConf i g. SCHEMA_REG STRY_URL_CONFI G
"http://|ocal host:8081"); @

The key serializer

The protobuf value serializer

Providing the URL for Schema Registry for the consumer
The key deserializer

The protobuf value deserializer

@ © 6 © © o

The specific class the deserializer should instantiate

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

http://localhost:8081
http://localhost:8081
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

90

9 Thelocation of Schema Registry for the producer

As with the Avro deserializer, you need to instruct it to create a specific instance. But in this case
you configure the actual class name instead of setting a boolean flag indicating you want a
specific class. If you leave out the specific value type configuration the deserializer returns a type
of Dynami cRecord. We covered working with the Dynani cRecord in the protobuf schema
section.

The bbej eck. chapt er _3. Pr ot obuf ProduceConsuneExanpl e class in the book source code
demonstrates the producing and consuming a protobuf record.

Now we’ll move on the final example of configuration of Schema Registry’s supported types,
JSON schemas.

3.6.3 JSON Schema

Schema Registry provides the Kaf kaJsonSchemaSeri al i zer and
Kaf kaJsonSchemaDeseri al i zer for working with JSON schema objects. The configuration
should feel familiar to both Avro and the Protobuf configurations.

NOTE Schema Registry also provides KafkaJsonSerializer and
Kaf kaJsonDeseri al i zer classes. While the names are very similar these
(de)serializers are meant for working with Java objects for conversion to and
from JSON, without a JSON Schema. While the names are close, make sure
you are using the serializer and deserializer with Schema in the nhame. We’'ll
talks about the generic JSON serializers in the next section.

Listing 3.41 Required configuration for JSON Schema

/'l producer configuration

producer Props. put (Abst r act Kaf kaSchemaSer DeConf i g. SCHEMA REG STRY_URL_CONFI G
"http://local host:8081"); @

producer Props. put (Producer Confi g. KEY_SERI ALI ZER_CLASS_CONFI G,
StringSerializer.class); (2]

producer Props. put (Producer Confi g. VALUE_SERI ALI ZER_CLASS_CONFI G,
Kaf kaJsonSchemaSeri al i zer. cl ass) ;

/'l consuner configuration

props. put (Abstract Kaf kaSchemaSer DeConf i g. SCHEMA_REGQ STRY_URL_CONFI G,
"http://|ocal host:8081"); ©

props. put (Consuner Confi g. KEY_DESERI ALI ZER_CLASS_CONFI G,
StringDeserializer.class);

props. put (Consumer Confi g. VALUE_DESERI ALI ZER_CLASS_CONFI G
Kaf kaJsonSchenaDeseri al i zer. cl ass) ; (6]

props. put (Kaf kaJsonDeseri al i zer Confi g. JSON_VALUE_TYPE,
Si mpl eAvenger Json. cl ass) ;

9 Providing the URL for Schema Registry for the producer
® Thekey seridizer

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

http://localhost:8081
http://localhost:8081
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

91

The JSON Schema value serializer

Providing the URL for Schema Registry for the producer
The key deserializer

Specifying the JSON Schema value deserializer

Configuring the specific classes this deserializer will create

© 6 © 6 ©

Here you can see a similarity with the protobuf configuration in that you need to specify the class
the deserializer should construct from the serialized form in annotation number 7 in this example.
If you leave out the specify value type then the deserializer returns a Map, the generic form of a
JSON schema deserialization. Just a quick note the same applies for keys. If your key is a JSON
schema object, then you’ll need to supply a Kaf kaJsonDeseri al i zer Confi g. JSON_KEY_TYPE
configuration for the deserializer to create the exact class.

There is a simple producer and consumer example for working with JSON schema objects in the
bbej eck. chapt er _3. JsonSchemaPr oduceConsunmeExanpl e in the source code for the book.
As with the other basic producer and consumer examples, there are sections demonstrating how
to work with the specific and generic return types. We outlined the structure of the JSON schema
generic type in the JSON schema section of this chapter.

Now we’ve covered the different serializer and deserializer for each type of serialization
supported by Schema Registry. Although using Schema Registry is recommended, it’s not
required. In the next section we’ll outline how you can serialize and deserialize your Java objects
without Schema Registry.

3.7 Serialization without Schema Registry

In the beginning of this chapter, I stated that your event objects, or more specifically their
schema representations, are a contract between the producers and consumers of the Kafka event
streaming platform. Schema Registry provides a central repository for those schemas hence
providing enforcement of this schema contracts across your organization. Additionally, the
Schema Registry provided serializers and deserializers provide a convenient way of working
with data without having to write your own serialization code.

Does this mean using Schema Registry is required? No not at all. In some cases, you may not
have access to Schema Registry or don’t want to use it. Writing your own custom serializers and
deserializers isn’t hard. Remember, producers and consumers are decoupled from the
(de)serializer implementation, you only provide the classname as a configuration setting.
Although it’s good to keep in mind that by using Schema Registry you can use the same schemas
across Kafka Streams, Connect and ksqlDB.

So to create your own serializer and deserializer you create classes that implement the

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

92

or g. apache. kaf ka. common. seri ali zation. Serializer and

or g. apache. kaf ka. cormon. seri al i zati on. Deseri al i zer interfaces. With the Seri al i zer
interface there is only one method you must implement seri al i ze. For the Deseri al i zer it’s
the deseri al i ze method. Both interfaces have additional default methods (confi gure, cl ose)
you can override if you need to.

Here’s a section of a custom serializer using the j ackson- dat abi nd Obj ect Mapper :

Listing 3.42 Serialize method of a custom serializer

/] details left out for clarity
@verride
public byte[] serialize(String topic, T data) {
if (data == null) {
return null;
}

try {
return object Mapper.writeVal ueAsByt es(dat a) ; 1)

} catch (JsonProcessi ngException e) {
throw new Seri al i zati onExcepti on(e);

}

© Converting the given object to a byte array

Here you call obj ect Mapper . wri t eVal ueAsByt es() and it returns a serialized representation
of the passed in object.

Now let’s look at an example for the deserializing counterpart:

Listing 3.43 Deserialize method of a custom deserializer

/] details left out for clarity

@verride
public T deserialize(String topic, byte[] data) {
try {
return obj ect Mapper. readVal ue(data, objectd ass); (1]

} catch (1 OException e) {
throw new Seri al i zati onException(e);

}

© Converting the bytes back to an object specified by the objectClass parameter

The bbej eck. seri al i zers package contains the serializers and deserializers shown here and
additional ones for Protobuf. You can use these serializers/deserializers in any of the examples
presented in this book but remember that they don’t use Schema Registry. Or they can serve as
examples of how to implement your own (de)serializers.

In this chapter, we’ve covered how event objects or more specifically, their schemas, represent
contract between producers and consumers. We discussed how Schema Registry stores these
schemas and enforces this implied contract across the Kafka platform. Finally we covered the

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

93

supported serialization formats of Avro, Protobuf and JSON. In the next chapter, you’ll move up

even further in the event streaming platform to learn about Kafka clients, the Kaf kaPr oducer

and Kaf kaConsuner . If you think of Kafka as your central nervous system for data, then the

clients are the the sensory inputs and outputs for it.

3.8 Summary

Schemas represent a contract between producers and consumers. Even if you don’'t use
explicit schemas, you have an implied one with your domain objects, so developing a
way to enforce this contract between producers and consumersis critical.

Schema Registry stores all your schemas enforcing data governance and it provides
versioning and three different schema compatibility strategies - backward, forward and
full. The compatibility strategies provide assurance that the new schemawill work with
it’simmediate predecessor, but not necessarily older ones. For full compatibility across
all versions you need to use backward-transitive, forward-transitive, and full-transitive.
Schema Registry also provides a convenient REST API for uploading, view and testing
schema compatibility.

Schema Registry supports three type of serialization formats Avro, Protocol Buffers, and
JSON Schema. It also provides integrated serializers and deserializers you can plug into
your KafkaProducer and KafkaConsumer instances for seamless support for all three
supported types. The provided (de)serializers cache schemas locally and only fetch them
from Schema Registry when it can’t locate a schemain the cache.

Using code generation with tools such as Avro and Protobuf or open source plugins
supporting JSON Schema help speed up development and eliminate human error. Plugins
that integrate with Gradle and Maven a so provide the ability to test and upload schemas
in the developers normal build cycle.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

94

Kafka clients

This chapter covers

Producing records with the KafkaProducer

Understanding message delivery semantics

Consuming records with the KafkaConsumer

Learning about Kafka’s exactly-once streaming

Using the Admin API for programmatic topic management
Handling multiple event types in a single topic

This chapter is where the "rubber hits the road" and we take what you’ve learned over the
previous two chapters and apply it here to start building event streaming applications. We’ll start
out by working with the producer and consumer clients individually to gain a deep understanding
how each one works.

In their simplest form, clients operate like this: producers send records (in a produce request) to a
broker and the broker stores them in a topic and consumers send a fetch request and the broker
retrieves records from the topic to fulfill that request. When we talk about the Kafka event
streaming platform, it’s common to mention both producers and consumers. After all, it’s a safe
assumption that you are producing data for someone else to consume. But it’s very important to
understand that the producers and consumers are unaware of each other, there’s no
synchronization between these two clients.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

95

Broker stores
records in a +opic

Producer sends a
batch of records
n o Produce,
request

Produce_r

Figure 4.1 Producers send batches of records to Kafka in a produce request

The Kaf kaPr oducer has just one task, sending records to the broker. The records themselves
contain all the information the broker needs to store them.

T he broker retrieves
records from a +opic

T he broker sends
+he. records +o
+he consumer

Consumer sends a
fetch request 4o the
broker +o retrieve
records

Consumer

Figure 4.2 Consumers send fetch requests to consume records from a topic, the broker retrieves those
records to fulfill the request

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

96

The Kaf kaConsuner on the other hand only reads or consumes records from a topic. Also, as we
mentioned in the chapter covering the Kafka broker, the broker handles the storage of the
records. The act of consuming records has no impact on how long the broker retains them.

In this chapter you’ll take a Kaf kaPr oducer and dive into the essential configurations and walk
through examples of producing records to the Kafka broker. Learning how the Kaf kaPr oducer
works is important because that’s the crucial starting point for building event streaming
applications; getting the records into Kafka.

Next you’ll move on to learning how to use the Kaf kaConsuner. Again we’ll cover the vital
configuration settings and from working with some examples, you’ll see how an event streaming
application works by continually consuming records from the Kafka broker. You’ve started your
event streaming journey by getting your data into Kafka, but it’s when you start consuming the
data that you start building useful applications.

Then we’ll go into working with the Adni n interface. As the name implies, it’s a client that
allows you to perform administrative functions programmatically.

From there you’ll get into more advanced subject matter such as the idempotent producer
configuration which guarantees you per partition, exactly-once message delivery and the Kafka
transnational API for exactly once delivery across multiple partitions.

When you’re done with this chapter you’ll know how to build event streaming applications using
the Kaf kaPr oducer and Kaf kaConsuner clients. Additionally, you’ll have a good understanding
how they work so you can recognize when you have a good use-case for including them in your
application. You should also come away with a good sense of how to configure the clients to
make sure your applications are robust and can handle situations when things don’t go as
expected.

So with this overview in mind, we are going to embark on a guided tour of how the clients do
their jobs. First we’ll discuss the producer, then we’ll cover the consumer. Along the way we’ll
take some time going into deeper details, then we’ll come back up and continue along with the
tour.

4.1 Producing records with the KafkaProducer

You’ve seen the Kaf kaPr oducer some in chapter three when we covered Schema Registry, but |
didn’t go into the details of how the producer works. Let’s do that now.

Say you work on the data ingest team for a medium sized wholesale company. You get
transaction data delivered via a point of sale service and several different departments within the
company want access to the data for things such as reporting, inventory control, detecting trends

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

97

etc.

You’ve been tasked with providing a reliable and fast way of making that information available
to anyone within the company that wants access. The company, Vandelay Industries, uses Kaftka
to handle all of its event streaming needs and you realize this is your opportunity to get involved.

The sales data contains the following fields:

1. Product name

2. Per-unit price

3. Quantity of the order

4. The timestamp of the order
5. Customer name

At this point in your data pipeline, you don’t need to do anything with the sales data other than to
send it into a Kafka topic, which makes it available for anyone in the company to consume

Broker stores
records in a -i'opic

Producer sends a
botech of records
n a Pr‘oduce,
request

Producer

Figure 4.3 Sending the data into a Kafka Topic

To make sure everyone is on the same page with the structure of the data, you’ve modeled the
records with a schema and published it to Schema Registry. All that’s left is for you to do write
the Kaf kaPr oducer code to take the sales records and send them into Kafka. Here’s what your

code looks like

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

98

Listing 4.1 A KafkaProducer the source code can be found at

bbejeck.chapter_4.sales.SalesProducerClient

I/ There are sonme details left out for clarity here in the text
try (
Producer<String, ProductTransacti on> producer = new Kaf kaProducer <>(
producer Configs)) {
whi | e(keepPr oduci ng) {
Col | ecti on<Product Transacti on> purchases = sal esDat aSource. fetch(); 2]
pur chases. f or Each(purchase -> {
Producer Recor d<String, ProductTransacti on> producerRecord =
new Producer Recor d<>(topi cNane, purchase. get Cust oner Nane(),

pur chase);
producer . send(producer Record,
(Recor dMet adat a net adata, Exception exception) -> { o

if (exception != null) { (5]

LOG error ("Error producing records ", exception);
} else {
LOG i nfo("Produced record at offset {} with tinestamp {}", (6]
net adat a. of fset (), metadata.tinestanp());
}

})s
1)

© Creating the KafkaProducer instance using a try-with-resources statement so the
producer closes automatically when the code exits

The data source providing the sales transaction records
Creating the ProducerRecord from the incoming data

Sending the record to the Kafka broker and providing alambda for the Callback
instance

Logging if an exception occured with the produce request

In the success case logging the offset and timestamp of the record stored in the
topic

Notice at annotation one the Kaf kaPr oducer takes a Map of configuration items (In a section
following this example we’ll dicusss some of the more important KafkaProducer
configurations). At annotation number 2, we’re going to use a data generator to simulate the
delivery of sales records. You take the list of Product Tr ansacti on objects and use the Java

stream API to map each object in the list into a Pr oducer Recor d object.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

99

® ®

In +he send call you pass The producer \
a record +o the produce_r place,s records in a buffer @

g T he producer
\ sends +he batchles)
777 _ on the T/O +hread
S] when +he. bubfer
Record Buffer inside is full or when w

Producer the. producer determines s
+ime. to send +hem.

Figure 4.4 The Producer batches records and sends them to the broker when the buffer is full or it's
time to send them

For each Producer Record created you pass it as a parameter to the Kaf kaPr oducer. send()
method. However, the producer does not immediately send the record to the broker, instead it
attempts to batch up records. By using batches the producer makes fewer requests which helps
with performance on both the broker and the producer client. The Kaf kaPr oducer . send() call
is asynchronous to allow for continually adding records to a batch. The producer has a separate a
thread (the I/O thread) that can send records when the batch is full or when it decides it’s time so
transmit the batch.

There are two signatures for the send method. The version you are using in the code here accepts
a Producer Recor d and Cal | back object as parameters. But since the Cal | back interface only
contains one method, also known as functional interface, we can use a lambda expression instead
of a concrete implementation. The producer I/O thread executes the Cal | back when the broker
acknowledges the record as persisted.

The Cal | back. onConpl eti on method, again represented here as a lambda, accepts two
parameters Recor dMet adat a and Except i on. The Recor dMet adat a object contains metadata of
the record the broker has acknowledged. Referring back to our discussion on the acks
configuration, the Recor dMet adat a. of f set field is - 1 if you have acks=0. The offset is - 1
because the producer doesn’t wait for acknowledgment from the broker, so it can’t report the
offset assigned to the record. The exception parameter is non-null if an error occurred.

Since the producer I/O thread executes the callback, it’s best if you don’t do any heavy
processing as that would hold up sending of records. The other overloaded
Kaf kaPr oducer . send() method only accepts a Producer Record parameter and returns a
Fut ur e<Recor dMet adat a>. Calling the Future.get() method blocks until the broker
acknowledges the record (request completion). Note that if an error occurs during the send then
executing the get method throws an exception.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

100

Generally speaking it’s better to use the send method with the Cal | back parameter as it’s a bit
cleaner to have the I/O thread handle the results of the send asynchronously vs. having to keep
track of every Fut ur e resulting from the send calls.

At this point we’ve covered the fundamental behavior for a Kaf kaPr oducer, but before we
move onto consuming records, we should take a moment to discuss other important subjects
involving the producer: configurations, delivery semantics, partition assignment, and timestamps.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

101

4.1.1 Producer configurations

boot st rap. servers - One or more host:port configurations specifying a broker for the
producer to connect to. Here we have a single value because this code runs against a
single broker in development. In a production setting, you could list every broker in your
cluster in acomma separated list.

key. seri al i zer - The serializer for converting the key into bytes. In this example, the
key isastring sowecanusetheStringSerializer classprovided with the Kafka
clients. Theor g. apache. kaf ka. conmon. seri al i zat i on package contains serializers
for String, | nt eger, Doubl e etc. You could also use Avro, Protobuf, or JSON Schema
for the key and use the appropriate serializer.

val ue. serial i zer - The serializer for the value. Here we' re using object generated
from an Avro schema. Since we're using Schema Registry, we'll use the

Kaf kaAvr oSeri al i zer we saw from chapter 3. But the value could also be a String,
Integer etc and you would use one of the serializers from the

or g. apache. kaf ka. cormon. seri al i zat i on package.

acks - The number of acknowledgments required to consider the produce request
successful. Thevalid valuesare"0", "1", "al" the acks configuration is one of the most
important to understand as it has a direct impact on data durability. Let’s go through the
different settings here.

" Zero (acks=0) Using avalue of 0 means the producer will not wait for any
acknowledgment from the broker about persisting the records. The producer considers
the send successfully immediately after transmitting it to the broker. Y ou could think
using acks=0 as "fire and forget". Using this setting has the highest throughput, but has
the lowest guarantee on data durability.

® One(acks=1) A setting of one means the producer waits for notification from the lead
broker for the topic-partition that it successfully persisted the record to itslog. But the
producer doesn’t wait for acknowledgment from the leader that any of the followers
persisted the record. While you have alittle more assurance on the durability of the
record in this case, should the lead broker fail before the followers replicate the record, it
will belost.

" All (acks=al |) This setting gives the highest guarantee of data durability. In this case,
the producer waits for acknowledgment from the lead broker that it successfully persisted
the record to its own log and the following in-sync brokers were able to persist the record
aswell. This setting has the lowest throughput, but the highest durability guarantees.
When using the acks=al | setting it’s advised to set theni n. i nsync. repl i cas
configuration for your topics to avalue higher than the default of 1. For example with a
replication factor of 3, setting ni n. i nsyc. repl i cas=2 means the producer will raise an
exception if there are not enough replicas available for persisting arecord. We'll go into
more detail on this scenario later in this chapter.

® delivery.timeout.ns - Thisisan upper bound on the amount of time you want to wait

for aresponse after calling Kaf kaPr oducer . send() . Since Kafkais a distributed system,
failures delivering records to the broker are going to occur. But in many cases these
errors are temporary and hence re-tryable. For example the producer may encounter
trouble connecting due to a network partition. But network connectivity can be a
temporary issue, so the producer will re-try sending the batch and in alot cases the
re-sending of records succeeds. But after a certain point, you'll want the producer to stop

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

102

trying and throw an error as prolonged connectivity problems mean there’ s an issue that
needs attention. Note that if the producer encounters what’ s considered afatal error, then
the producer will throw an exception before this timeout expires.

® retries - When the producer encounters an non-fatal error, it will retry sending the
record batch. The producer will continue to retry until the del i very. ti meout . ns
timeout expires. The default valuefor ret ri es is| NTEGER. MAX_VALUE. Generally you
should leave the retried configuration at the default value. If you want to limit the amount
of retries a producer makes, you should reduce the amount of time for the
del i very. timeout. ns configuration. With errors and retriesit’s possible that records
could arrive out of order to the same partition. Consider the producer sends a batch of
records but there is an error forcing aretry. But in the intervening time the producer
sends a second batch that did not encounter any errors. The first batch succeeds in the
subsequent retry, but now it’s appended to the topic after the second batch. To avoid this
issue you can set the configuration max. i n. f1i ght. requests. per. connecti on=1.
Another approach to avoid the possibility of out of order batchesisto use the
i denpot ent producer whichwe'll discussin 4.3.1 in this chapter.

Now that you have learned about the concept of retries and record acknowledgments, let’s look
at message delivery semantics now.

4.1.2 Kafka delivery semantics

Kafka provides three different delivery semantic types: at least once, at most once, and exactly
once. Let’s discuss each of them here.

® At least once - With "at least once" arecords are never lost, but may be delivered more
than once. From the producer’ s perspective this can happen when a producer sends a
batch of records to the broker. The broker appends the records to the topic-partition, but
the producer does not receive the acknowledgment in time. In this case the producer
re-sends the batch of records. From the consumer point of view, you have processed
incoming records, but before the consumer can commit, an error occurs. Y our application
reprocesses data from the last committed offset which includes records already
processed, so there are duplicates as aresult. Records are never lost, but may be delivered
more than once. Kafka provides at |east once delivery by default.

® At most once - records are successfully delivered, but may be lost in the event of an error.
From the producer standpoint enabling acks=0 would be an example of at most once
semantics. Since the producer does not wait for any acknowledgment as soon as it sends
the records it has no notion if the broker either received them or appended them to the
topic. From the consumer perspective, it commits the offsets before confirming awrite so
in the event of an error, it will not start processing from the missed records as the
consumer already committed the offsets. To achieve at "at most once" producers set
acks=0 and consumers commit offsets before doing any processing.

® Exactly once - With "exactly once" semantics records are neither delivered more than
once or lost. Kafka uses transactions to achieve exactly once semantics. If atransaction is
aborted, the consumers internal position gets reset to the offset prior to the start of the
transaction and the stored offsets aren’'t visible to any consumer configured with
read_conmmi tted.

Both of these concepts are critical elements of Kafka’s design. Partitions determine the level of
parallelism and allow Kafka to distribute the load of a topic’s records to multiple brokers in a

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

103

cluster. The broker uses timestamps to determine which log segments it will delete. In Kafka
Streams, they drive progress of records through a topology (we’ll come back to timestamps in

the Kafka Streams chapter).

4.1.3 Partition assignment

When it comes to assigning a partition to a record, there are three possibilities:

1. If you provide avalid partition number, then it's used when sending the record

2. If you don't give the partition number, but there is a key, then the producer sets the
partition number by taking the hash of the key modulo the number of partitions.

3. Without providing a partition number or key, the Kaf kaPr oducer Setsthe partition by
alternating the partition numbers for the topic. The approach to assigning partitions
without keys has changed some as of the 2.4 release of Kafka and we'll discuss that

change now.

Prior to Kafka 2.4, the default partitioner assigned partitions on a round-robin basis. That meant
the producer assigned a partition to a record, it would increment the partition number for the next
record. Following this round-robin approach, results in sending multiple, smaller batches to the

broker. The following illustration will help clarify what is going on:

™

<— Boatches oussi::,ne_d +o
Par‘H—Hons

/

Producer

T he producer places records in

o boteh for portitions in +he Po“owing order
O |, and then . Then +he order starts
over agodn ot O,

Figure 4.5 Round robin partition assighment

This approach also led to more load on the broker due to a higher number of requests.

But now when you don’t provide a key or partition for the record, the partitioner assigns a
partition for the record per batch. This means when the producer flushes its buffer and sends
records to the broker, the batch is for single partition resulting in a single request. Let’s take a

look at an illustration to visualize how this works:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

104

The pr‘oduce_r‘ plac.e,s r‘e,c.ora‘s in a
batech for a partition chosen at random

Pr‘orluce,r‘ ___,__—-—-."‘7 E

Once the proo(uc:e_r sends the batch,

all records will go into a new batch for
ancther partition selected ot random.
APter the producer

sends the batch, the cycle, repeats.

Figure 4.6 Sticky partition assighment

After sending the batch, the partitioner selects a partition at random and assigns it to the next
batch. In time, there’s still an even distribution of records across all partitions, but it’s done one
batch at a time.

Sometimes the provided partitioners may not suit your requirements and you’ll need finer
grained control over partition assignment. For those cases you can write your own custom
partitioner.

4.1.4 Writing a custom patrtitioner

Let’s revisit the producer application from the 4.1 section above. The key is the name of the
customer, but you have some orders that don’t follow the typical process and end up with a
customer name of "CUSTOM" and you’d prefer to restrict those orders to a single partition 0,
and have all other orders on partition 1 or higher.

So in this case, you’ll need to write a custom partitioner that can look at the key and return the
appropriate partition number.

The following example custom partitioner does just that. The Cust onOr der Parti ti oner (from
src/main/java/bbejeck/chapter 4/sales/CustomOrderPartitioner.java) examines the key to
determine which partition to use.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

105

Listing 4.2 Cust onOr der Parti ti oner custom partitioner

public class CustonmOrderPartitioner inplements Partitioner {
/1 Sone details omitted for clarity

@verride

public int partition(String topic,
Obj ect key,
byte[] keyBytes,
Obj ect val ue,
byte[] val ueBytes,
Cluster cluster) {

Ooj ects. requi reNonNul | (key, "Key can't be null");
int nunPartitions = cluster.partitionCountFor Topic(topic); (1]
String strKey = (String) key;
int partition;
if (strKey.equal s("CUSTOM')) {
partition = 0; (2
} else {
byte[] bytes = strKey. getBytes(StandardCharsets. UTF_8);
partition = Utils.toPositive(Uils.nurmur2(bytes)) %
(nunPartitions - 1) + 1; ©
}

return partition;

© Retrieve the number of partitions for the topic
@ |f the name of the customer is"CUSTOM" return 0

© Determine the partition to use in the non-custom order case

To create your own partitioner you implement the Parti ti oner interface which has 3 methods,
partition, configure, and cl ose. ’'m only showing the partiti on method here as the other
two are no-ops in this particular case. The logic is straight forward; if the customer name equates
to "CUSTOM", return zero for the partition. Otherwise you determine the partition as usual, but
with a small twist. First we subtract one from the number of candidate partitions since the 0
partition is reserved. Then we shift the partiton number by 1 which ensures we always return 1 or
greater for the non-custom order case.

NOTE This example does not represent a typical use case and is presented only for
the purpose of demonstrating how to you can provide a custom partitioner. In
most cases it’s best to go with one of the provided ones.

You’ve just seen how to construct a custom partitioner and next we’ll wire it up with our
producer.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

106

4.1.5 Specifying a custom partitioner

Now that you’ve written a custom partitioner, you need to tell the producer you want to use it
instead of the default partitioner. You specify a different partitioner when configuring the Katka
producer:

producer Confi gs. put (Producer Confi g. PARTI TI ONER_CLASS_CONFI G,
Cust omOrder Partitioner.class);

The bbejeck.chapter 4.sales.SalesProducerClient is configured to wuse the
Cust onOr der Par ti ti oner, but you can simply comment out the line if you don’t want to use it.
You should note that since the partitioner config is a producer setting, it must be done on each
one you want to use the custom partitioner.

4.1.6 Timestamps

The Producer Recor d object contains a timestamp field of type Long. If you don’t provide a
timestamp, the Kaf kaPr oducer adds one to the record, which is simply the current time of the
system the producer is running on. Timestamps are an important concept in Kafka. The broker
uses them to determine when to delete records, by taking the oldest timestamp in a segment and
comparing it to the current time. If the difference exceeds the configured retention time, the
broker removes the segment. Kafka Streams and ksqlDB also rely heavily on timestamps, but I’1l
defer those discussions until we get to their respective chapters.

There are two possible timestamps that Kafka may use depending on the configuration of the
topic.

In Kafka topics have a configuration, message. ti mestanp.type which can either be
Creat eTi me or LogAppendTi ne. A configuration of Creat Ti me means the broker stores the
record with the timestamp provided by the producer. If you configure your topic with
LogAppendTi ne, then the broker overwrites the timestamp in the record with its current
wall-clock (i.e, system) time when the broker appends the record in the topic. In practice, the
difference between these timestamps should be close.

Another consideration is that you can embed the timestamp of the event in payload of the record
value when you are creating it.

This wraps up our discussion on the producer related issues. Next we’ll move on to the mirror
image of producing records to Kafka, consuming records.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

107

4.2 Consuming records with the KafkaConsumer

So you’re back on the job at Vandelay Industries and you now have a new task. Your producer
application is up an running happily pushing sales records into a topic. But now you’re asked to
develop a Kaf kaConsuner application to serve as a model for consuming records from a Kafka

topic.

T he broker retrieves
records from o +opic

T he broker sends
+he. records +o
+he consumer

Consumer sends a
fetch request o +he
broker +o retrieve
records

Consumer

Figure 4.7 Consumers send fetch requests to consume records from a topic, the broker retrieves those
records to fulfill the request

The Kaf kaConsuner sends a fetch request to the broker to retrieve records from topics it’s
subscribed to. The consumer makes what known as a pol | call to get the records. But each time
the consumer polls, it doesn’t necessarily result in the broker fetching records. Instead it could be
retrieving records cached by a previous call.

NOTE There are producer and consumer clients available in other programming
languages, but in this book we’ll focus on the clients available in the Apache
Kafka distribution, which are written in Java. To see a list of clients available
in other languages checkout take a look at this resource
docs.confluent.io/platform/current/clients/index.htmi#ak-clients

Let’s get started by looking at the code for creating a Kaf kaConsuner instance:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://docs.confluent.io/platform/current/clients/index.html#ak-clients
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

108

Listing 4.3 KafkaConsumer code found in bbejeck.chapter_4.sales.SalesConsumerClient

/] Details left out for clarity
try (
final Consunmer<String, ProductTransaction> consumer = new Kaf kaConsuner <>(
consuner Configs)) { ©
consuner . subscri be(topi cNanes) ; (2]
whi | e (keepConsuni ng) {
Consuner Recor ds<String, Product Transacti on> consuner Records =
consuner . pol | (Durati on. of Seconds(5)); (3]
consuner Records. f or Each(record -> {
Product Transaction pt = record. val ue();
LOG info("Sale for {} with product {} for a total sale of {}",
record. key(),
pt . get Product Nane(),
pt.getQuantity() * pt.getPrice());
1)

Creating the new consumer instance
Subscribing to topic(s)

Polling for records

© © o o

Doing some processing with each of the returned records

In this code example, you’re creating a Kaf kaConsuner, again using the try-with-resources
statement. After subscribing to a topic or topics, you begin processing records returned by the
Kaf kaConsuner . pol | method. When the pol | call returns records, you start doing some
processing with them. In this example case we’re simply logging out the details of the sales

transactions.

TIP Whenever you create either a Kaf kaPr oducer or Kaf kaConsuner you need to
close them when your done to make sure you clean up all of the threads and
socket connections. The try-with-resources (

docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
) in Java ensures that resources created in the try portion are closed at the
end of the statement. It’s a good practice to always use the try-with-resources
statement as it’s easy to overlook adding a cl ose call on either a producer or
a consumer.

You’ll notice that just like with the producer, you create a Map of configurations and pass them

as a parameter to the constructor. Here I’'m going to show you some of the more prominent ones.

® bootstrap. servers - One or more host:port configurations specifying a broker for the
consumer to connect to. Here we have asingle value, but this could be a comma
separated list.

® nax. poll.interval.ns - The maximum amount of time a consumer can take between
callsto Kaf kaConsuner . pol | () otherwise the consumer group coordinator considers

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

109

the individual consumer non-active and triggers arebalance. We'll talk more about the
consumer group coordinator and relabances in this section.

® group.id-Anarbitrary string value used to associate individual consumers as part of
the same consumer group. Kafka uses the concept of a consumer group to logically map
multiple consumers as one consumer.

® enabl e. aut 0. conmi t - A boolean flag that sets whether the consumer will
automatically commit offsets. If you set thisto false, your application code must
manually commit the offsets of records you considered successfully processed.

® auto.commit.interval.ns - Thetimeinterval at which offsets are automatically
committed.

® auto.of fset.reset - When aconsumer startsit will resume consuming from the last
committed offset. If offsets aren’t available for the consumer then this configuration
specifies where to start consuming records, either the earliest available offset or the latest
which means the offset of the next record that arrives after the consumer started.

® key.deserializer.cl ass - The classname of the deserializer the consumer uses to
convert record key bytes into the expected object type for the key.

® val ue. deseri al i zer. cl ass - The classname of the deserializer the consumer uses to
convert record value bytes into the expected object type for the value. Here we're using
the provided Kaf kaAvr oDeseri al i zer for the value which requires the
schema. regi stry. url configuration which we have in our configuration.

The code we use in our first consumer application is fairly simple, but that’s not the main point.
Your business logic, what you do when you consume the records is always going to be different
on a case-by-case basis.

It’s more important to grasp how the Kaf kaConsuner works and the implications of the different
configurations. By having this understanding you’ll be in a better position to know how to best
write the code for performing the desired operations on the consumed records. So just as we did
in the producer example, we’re going to take a detour from our narrative and go a little deeper on
the implications of these different consumer configurations.

4.2.1 The poll interval

Let’s first discuss the roll of max. pol I . i nterval . ms. It will be helpful to look at an illustration
of what the poll interval configuration in action to get a full understanding:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

110

T he. consumer ca“s po“
ond retrieves o botch of records

T he. Process loop —=

T he consumer has 5 minutes

(‘Hne_ o(efowl-k -Hme) +o 'Pu“y process
records and return +o make
another P°“ call.

Figure 4.8 The max.poll.interval.ms configuration specifies how long a consumer may take between
calls to Kaf kaConsuner. pol | () before the consumer is considered inactive and removed from the
consumer group

In the illustration here, the consumer processing loop starts with a call to
Kaf kaConsuner . pol | (Dur ati on. of Seconds(5)), the time passed to the pol | (Durati on)
call is the maximum time the consumer waits for new records, in this case five seconds. When
the pol | (Duration) call returns, if there are any records present, the for loop over the
Consuner Recor ds executes your code over each one. Had there been no records returned, the
outer whi | e loop simply goes back to the top for another pol | (Dur ati on) call.

Going through this illustration, iterating over all the records and execution for each record must
complete before the max. pol | . i nt erval . ms time elapses. By default this value is five minutes,
so if your processing of returned records takes longer, then that individual consumer is
considered dead and the group coordinator removes the consumer from the group and triggers a
rebalance. I know that I’ve mentioned a few new terms in group coordinator and rebalancing,
we’ll cover them in the next section when we cover the gr oup. i d configuration.

If you find that your processing takes longer than the nax. pol | . i nt er val . ns there are a couple
of things you can do. The first approach would be to validate what you’re doing when processing
the records and look for ways to speed up the processing. If you find there’s no changes to make
to your code, the next step could be to to reduce the maximum number of records the consumer

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

111

retrieves from a pol | call. You can do this by setting the max. pol | . r ecor ds configuration to a
setting less than the default of 500. I don’t have any recommendations, you’ll have to experiment

some to come up with a good number.

4.2.2 Group id

The gr oup. i d configuration takes into a deeper conversation about consumer groups in Kafka.
Kafka consumers use a gr oup. i d configuration which Kafka uses to map all consumers with the
same group. i d into the same consumer group. A consumer group is a way to logically treat all
members of the group as one consumer. Here’s an illustration to demonstrating how group
membership works:

Topic "some__data"

Partition O

Portition 1 |
Portition 2 [1]
Poartition 3]
Partition 4 | | |]

Partition 5 , ’ ‘

—

Consumer 1 ' Consumer 2 Consumer 3

0, 1 ' 2, 3 4, 5

COnsumer GroupLd ! olocto\.smup'

Figure 4.9 Consumer groups allow for assigning topic-partitions across multiple consumers

So going off the image above, there is one topic with six partitions. There are three consumers in
the group, so each consumer has an assignment of two partitions. Kafka guarantees that only a
single consumer maintains an assignment for a given topic-partition. To have more than one
consumer assigned to a single topic-partition would lead to undefined behavior.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

112

Life with distributed systems means that failures aren’t to be avoided, but embraced with sound
practices to deal with them as they occur. So what happens with our scenario here if one of the
consumers in the group fails whether from an exception or missing a required timeout like we
described above with the max. pol | . i nt erval . ns timeout? The answer is the Kafka rebalance
protocol, depicted below:

Topic "some__data"

Partition 0 |
7 boctition 1 I
X Poctition 2 |

Portition 3 [] -

Partition & | | | I

Partition 5

S~ _-

Consumer 1 Cons A Consumer 3

0,1, 2 — ~ 345

Consumer 2 fails and drops out of the group. Its
partitions are re;cxssigneal to consumer 1 and consumer 3

Figure 4.10 The Kafka rebalance protocol re-assigns topic-partitions from failed consumers to still alive
ones

What we see here is that consumer-two fails and can longer function. So rebalancing takes the
topic-partitions owned by consumer-two and reassigns one topic-partition each to other active
consumers in the group. Should consumer-two become active again (or another consumer join
the group), then another rebalance occurs and reassigns topic-partitions from the active members
and each group member will be responsible for two topic-partitions each again.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

113

NOTE The number of active consumers that you can have is bounded by the number
of partitions. From our example here, you can start up to six consumers in the
group, but any more beyond six will be idle. Also note that different groups
don’t affect each other, each one is treated independently.

So far, I’ve discussed how not making a pol | () call within the specified timeout will cause a
consumer to drop out of the group triggering a rebalance and assigning its topic-partition
assignments to other consumers in the group. But if you recall the default setting for
max. pol | .interval.nms is five minutes. Does this mean it takes up to five minutes for
potentially dead consumer to get removed from the group and its topic-partitions reassigned? The
answer is no and let’s look at the poll interval illustration again but we’ll update it to reflect
session timeouts:

v "Ll 3ood" every 1O seconds

L Consumer T he consumer sends heartbeat
siﬁno\ls every 10 seconds, so a
a ‘Podle_d consumer 3e:|' detected
sooner than waiting for a missed
eoll call

T he Process loop —_—

Figure 4.11 In addition to needing to call poll within the timeout, a consumer must send a heartbeat
every ten seconds

There is another configuration timeout the sessi on. ti meout . ns which is set at ten seconds for
default value. Each Kaf kaConsuner runs a separate thread for sending heartbeats indicating its
still alive. Should a consumer fail to send a heartbeat within ten seconds, it’s marked as dead and
removed from the group, triggering a rebalance. This two level approach for ensuring consumer
liveliness is essential to make sure all consumers are functioning and allows for reassigning their
topic-partition assignments to other members of the group to ensure continued processing should
one of them fail.

To give you a clear picture of how group membership works, let’s discuss a the new terms group
coordinator, rebalancing, and the group leader I just spoke about. Let’s start with a visual
representation of how these parts are tied together:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

114

A“ t+hree consumers
communicate to +he broker

Grouvp Coordinator
{7 Broker for +his consumer group

A“ +hree consumers
communicate +o the broker

But the 3roup-cooro(inod—or onlt/
communicates back +o the
3roup-lepder

Consumer | Consumer X Consumer 3

Figure 4.12 Group coordinator is a broker assigned to track a subset of consumer groups and the group
leader is a consumer that communicates with the group coordinator

The group coordinator is a broker that handles membership for subset of all available consumer
groups. Not one single broker will act as the group coordinator, the responsibility for that is
spread around the different brokers. The group coordinator monitors the membership of a
consumer group via requests to join a group or when a member is considered dead when it fails
to communicate (either a poll or heartbeat) within the given timeouts.

When the group coordinator detects a membership change it triggers a rebalance for the existing
members.

A rebalance is the process of having all members of the group rejoin so that group resources
(topic-partitions) can be evenly (as possible) distributed to the other members. When a new
member joins, then some topic partitions are removed from some or all members of the existing
group and are assigned to the new member. When an existing member leaves, the opposite
process occurs, its topic-partitions are reassigned to the other active members.

The rebalance process is fairly straight forward, but it comes at a cost of time lost processing
waiting for the rebalance process to complete, known as a "stop-the-world" or a eager rebalance.
But with the release of Katka 2.4, there’s new rebalance protocol you can use called cooperative
rebalancing.

Let’s take a quick look at both of these protocols, first with the eager rebalancing

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

115

EAGER REBALANCING

All Partitions revoked Portitions asstsneo(

Rebalance Period

Consumer 4 :
HE. ']
—_—

N A ‘\ /11
Y N \ ;o
PERY h

Consumer B AN , \ g

| ‘ ’ ‘ ’ :
' \ ! \ h !
: ! ! \ 1 :
S N S v Sy R [N >
f‘\ Y K ﬂ Y \ / {1
Consumer C AN ;o o A
Joins Group ~ N b VNP Y S s S

N g A roa :
A v L N \ R
N v ! ’ N ' \ 1’ 4
N ooy, N S
NN N S \ \ \\ II S
NV NN

Group Coordinator Synchronizad:ion
barrier

Figure 4.13 Rebalancing with the eager or "stop-the-world" approach processing on all partitions stops
until reassigned but most of the partitions end up on with the original consumer

When the group coordinator detects a change in membership it triggers a rebalance. This is true
of both rebalance protocols we’re going to discuss.

Once the rebalance process initiates, each member of the group first gives up ownership of all its
assigned topic-partitions. Then they send a Joi nGr oup request to the controller. Part of the
request includes the topic-partitions that consumer is interested in, the ones they just relinquished
control of. As a consequence of the consumers giving up their topic partitions is that processing
now stops.

The controller collects all of the topic-partition information from the group and sends out the
Joi nG oup response, but the group leader receives all of included topic-partition information.

NOTE Remember from chapter two in our discussion of the broker all actions are
executed in a request/response process.

The group leader takes this information and creates topic-partition assignments for all members
of the group. Then the group leader sends assignment information to the coordinator in a
SyncG oup request. Note that the other members of the group also send SyncG oup requests, but
don’t include any assignment information. After the group controller receives the assignment
information from the leader, all members of the group get their new assignment via the
SyncG oup response.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

116

Now with their topic-partition assignments, all members of the group begin processing again.
Take note again that no processing occurred from the time group members sent the Joi nG oup
request until the SyncG oup response arrived with their assignments. This gap in processing is
known as a synchronization barrier, and is required as it’s important to ensure that each

topic-partition only has one consumer owner. If a topic-partition had multiple owners, undefined
behavior would result.

NOTE

During this entire process, consumer clients don't communicate with each
other. All the consumer group members communicate only with the group

coordinator. Additionally only one member of the group, the leader, sets the
topic-partition assighments and sends it to the coordinator.

While the eager rebalance protocol gets the job done of redistributing resources and ensuring
only one consumer owns a given topic-partition, it comes at a cost of downtime as each
consumer is idle during the period from the initial Joi nGroup request and the SyncG oup
response. For smaller applications this cost might be negligible, but for applications with several

consumers and a large number of topic-partitions, the cost of down time increases. Fortunately
there’s another rebalancing approach that aims to remedy this situation.

INCREMENTAL COOPERATIVE REBALANCING

Processing for partitions
1 and 3 never stops during

either rebalance
Reb.
Consumer A ebalonce one

artition ed
EE Partit QEVok

Consumer B

|
1
1
' ! ‘\
3 \ by
\ '
1
'

Rebalance two

i
|
1
1
| I'
\
\ \ |
\ \ \ ‘I 1
T 1 T
Lo 'A \ \ i o 'A I 4
Consumer C VL Pl Vo vy
\ o\ I \
s \ ! | v ' \ t
Joins Group > PRI A SN '"'\"’J\":'*"n_““'":'+_4g_>
VU ALY e A v ,'Al ‘] N\ Pactition 2 assignep(
- '] VL I \ " [ARA '
VYo v v I v "
Vol vU o,y L R
\\ln,,'\“\u,', ‘l\\‘J'r, VORyy P
V«J\J\‘ll'rt\‘j N Pt \I\J "’VW"'
Group Coordinator Synchronization

barrier

Partitions assigned
Figure 4.14 Rebalancing with cooperative approach processing continues and only stops for partitions
that will be reassigned

Introduced in the 2.4 Kafka release the incremental cooperative rebalance protocol takes the

approach that relabances don’t need to be so expensive. The incremental cooperative rebalancing

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

17

approach takes a different view of rebalancing that we can summarize below:

1. Consumers don’t automatically give up ownership of al their topic-partitions
2. The group leader identifies specific topic-partitions requiring new ownership
3. Processing continues for topic-partitions that are not changing ownership

The third bullet point here is the big win (in my opinion) with the cooperative rebalancing
approach. Instead of the "stop the world" approach, only those topic-partitions which are moving
will experience a pause in processing. In other words, the synchronization barrier is much
smaller.

I’'m skipping over some of some details, so let’s walk through the process of the incremental
cooperative rebalancing protocol.

Just like before when the group controller detects a change in group membership, it triggers a
rebalance. Each member of the group encodes their current topic-partition subscriptions in a
Joi nG oup request, but each member retains ownership for the time being.

The group coordinator assembles all the subscription information and in the Joi nGr oup response
the group leader looks at the assignments and determines which topic-partitions, if any, need to
migrate to new ownership. The leader removes any topic-partitions requiring new ownership
from the assignments and sends the updated subscriptions to the coordinator via a SyncG oup
request. Again, each member of the group sends a SyncG oup request, but only the leaders’
request contains the subscription information.

NOTE All members of the group receive a Joi nGroup response, but only the
response to the group leader contains the assignment information. Likewise,
each member of the group issues a SyncG oup group request, but only the
leader encodes a nhew assignment. In the SyncG oup response, all members
receive their respective, possible updated assighment.

The members of group take the SyncG oup response and potentially calculate a new assignment.
Either revoking topic-partitions that are not included or adding ones in the new assignment but
not the previous one. Topic-partitions that are included in both the old and new assignment
require no action.

Members then trigger a second rebalance, but only topic-partitions changing ownership are
included. This second rebalance acts as the synchronization barrier as in the eager approach, but
since it only includes topic partitions receiving new owners, it is much smaller. Additionally,
topic-partitions that are not moving, continue to process records!

After this discussion of the different rebalance approaches, we should cover some broader
information about partition assignment strategies available and how you apply them.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

118

APPLYING PARTITION ASSIGNMENT STRATEGIES

We’ve already discussed that a broker serves as a group coordinator for some subset of consumer
groups. Since two different consumer groups could have different ideas of how to distribute
resources (topic-partitions), the responsibility for which approach to use is entirely on the client
side.

To choose the partition strategy you want your the Kaf kaConsuner instances in a group to use,
you set the the partition. assignnent.strategy by providing a list of supported partition
assignment strategies. All of the available petitioners implement the

Consumer Partiti onAssi gnor interface. Here’s a list of the available assignors with a brief

description of the functionality each one provides.

NOTE For Kafka Connect and Kafka Streams, which are abstractions built on top of
Kafka producers and consumers, use cooperative rebalance protocols and I'd
generally recommend to stay with the default settings. This discussion about
partitioners is to inform you of what'’s available for applications directly using
a Kaf kaConsuner.

® RangeAssignor - Thisisthe default setting. The RangeAssi gnor uses an algorithm of
sorting the partitions in numerical order and assigning them to consumers by dividing the
number of available partitions by number of available consumers. This strategy assigns
partition to consumers in lexicographical order.

® RoundRobinAssignor - The RoundRobi nAssi gnor takes al available partitions and
assigns a partition to each available member of the group in a round-robin manner.

® StickyAssignor - The Sti ckyAssi gnor attempts to assign partitions in a balanced
manner as possible. Additionally, the St i ckyAssi gnor attempts to aways preserve
existing assignments during a rebalance as much as possible. The St i ckyAssi gnor
follows the eager rebalancing protocol.

® CooperativeStickyAssignor - The Cooper at i veSti ckyAssi gnor follows the same
assignment algorithm asthe St i ckyAssi gnor . The difference liesin fact that the
Cooper ati veSti ckyAssi gnor uses the cooperative rebalance protocol.

While it’s difficult to provide concrete advice as each use case requires careful analysis of its
unique needs, in general for newer applications one should favor using the
Cooper ativeSti ckyAssi gnor for the reasons outlined in the section on incremental
cooperative rebalancing.

TIP If you are upgrading from a version of Kafka 2.3 or earlier you need to follow
a specific upgrade path found in the 2.4 upgrade documentation (
kafka.apache.org/documentation/{hash}upgrade_240_notable) to safely use
the cooperative rebalance protocol.

We’ve concluded our coverage of consumer groups and how the rebalance protocol works. Next

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://kafka.apache.org/documentation/{hash}upgrade_240_notable
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

119

we’ll cover a different configuration - static membership, that when a consumer leaves the group,
there’s no initial rebalance.

4.2.3 Static membership

In the previous section you learned that when a consumer instance shuts down it sends a leave
group request to the group controller. Or if it’s considered unresponsive by the controller, it gets
removed from the consumer group. Either way the end result is the same, the controller triggers a
rebalance to re-assign resources (topic-partitions) to the remaining members of the group.

While this protocol is exactly what you want to keep your applications robust, there are some
situations where you’d prefer slightly different behavior. For example, let’s say you have several
consumer applications deployed. Any time you need to update the applications, you might do
what’s called a rolling upgrade or restart.

Ro“?ng upgr‘ode_ each applicaﬁom 'S shut dow,
upgt‘a«ie_d +hen restarted

/_é’// =>//
@, ® ®

Each shutdown sends a "le_a\\Ie_ 3r‘oupu request
+hen Pe_s+ar+in3 Ssves a ":\oin 3r‘oup" request
So each restonrt re_sul-i's n X r‘e_l:alance_S for
all nstances n the group

Figure 4.15 Rolling upgrades trigger multiple relabances

You’ll stop instance 1, upgrade and restart it, then move on to instance number 2 and so it
continues until you’ve updated every application. By doing a rolling upgrade, you don’t lose
nearly as much processing time if you shut down every application at the same time. But what
happens is this "rolling upgrade", triggers two rebalances for every instance, one when the

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

120

application shuts down and another when it starts back up. Or consider a cloud environment
where an application node can drop off at any moment only to have it back up an running once
its failure is detected.

Even with the improvements brought by cooperative rebalancing, it would be advantageous in
these situations to not have a rebalance triggered automatically for these transient actions. The
concept of "static membership" was introduced in the 2.3 version of Apache Katka. We’ll use the
following illustration to help with our discussion of how static membership works

7 e S e R 1 — — y
Consumer f Qon5umerr Consumer ‘l .r Consumer | \ QonSume:l‘
VA L ryg “ A [/ A 5
W72 24-422) T2 ,’l V22 1 Y7770 7 % e e I 2z
Portitions Pocrtitions Portitions Poartitions Portitions

O & 3 4 5 O O 345

origmod assignment Consumer B drops out Consumer B rejoins before

but doesn't send o leave session timeout and receives

group request - no rebalance_ s original assignmem’ bock

Figure 4.16 Static members don'’t issue leave group requests when dropping out of a group and a static
id allows the controller to remember them

At a high-level with static membership you set a unique id in the consumer configuration,
group. i nstance. i d. The consumer provides this id to the controller when it joins a group and
the controller stores this unique group-id. When a consumer leaves the group, it does not send a
leave group request. When it rejoins it presents this unique membership id to the controller. The
controller looks it up and can then give back the original assignment to this consumer with no
rebalancing involved at all! The trade-off for using static membership is that you’ll need to
increase the session. timeout. ns configuration to a value higher than the default of 10
seconds, as once a session timeout occurs, then the controller kicks the consumer out of the
group and triggers a rebalance.

The value you choose should be long enough to account for transient unavailability and not
triggering a rebalance but not so long that a true failure gets handled correctly with a rebalance.
So if you can sustain ten minutes of partial unavailability then maybe set the session timeout to
eight minutes. While static membership can be a good option for those running KatkaConsumer
applications in a cloud environment, it’s important to take into account the performance

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

121

implications before opting to use it. Note that to take advantage of static membership, you must
have Kafka brokers and clients on version 2.3.0 or higher.

Next, we’ll cover a subject that is very important when using a Kaf kaConsuner, commit the
offsets of messages.

4.2.4 Committing offsets

In chapter two, we talked about how the broker assigns a number to incoming records called an
offset. The broker increments the offset by one for each incoming record. Offsets are important
because they serve to identify the logical position of a record in a topic. A Kaf kaConsuner uses
offsets to know where it last consumed a record. For example if a consumer retrieves a batch of
records with offsets from 10 to 20, the starting offset of the next batch of records the consumer
wants to read starts at offset 21.

To make sure the consumer continues to make progress across restarts for failures, it needs to
periodically commit the offset of the last record it has successfully processed. Kafka consumers
provide a mechanism for automatic offset commits. You enable automatic offset commits by
setting the enabl e. aut 0. conmi t configuration to t r ue. By default this configuration is turned
on, but I’ve listed it here so we can talk about how automatic commits work. Also, we’ll want to
discuss the concept of a consumers' position vs. its latest committed offset. There is also a related
configuration, aut o. conmi t . i nt er val . ms that specifies how much time needs to elapse before
the consumer should commit offsets and is based on the system time of the consumer.

But first, lets show how automatic commits work.

®

Consumer retrieves ancther batch
Starting ot offsetr 5 and the
cycle_ repeats

Consumer commits records
offsetr 5 (highe;—t— offset in boatch + 1)

Consumer
Process loop comple_+es Consumer retrieves o batch
and +he consumer of records (offsetrs O-4)
makes another Po“ call n a po“ call

Figure 4.17 With automatic commits enabled when returning to the top of the poll loop the highest
offset +1 of the previous batch could be committed if the auto commit interval has passed

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

122

Following from the graphic above, the consumer retrieves a batch of records from the
pol | (Duration) call. Next the code takes the Consumer Recor ds and iterates over them and
does some processing of the records. After that the code returns to top of the pol | loop and
attempts to retrieve more records. But before retrieving records, if the consumer has auto-commit
enabled and the amount of time elapsed since the last auto-commit check is greater than the
auto. commit . i nt erval . ns interval, the consumer commits the offsets of the records from the
previous batch. By committing the offsets, we are marking these records as consumed, and under
normal conditions the consumer won’t process these records again. I’ll describe what I mean
about this statement a little bit later.

What does it mean to commit offsets? Kafka maintains an internal topic named _of f set s where
it stores the committed offsets for consumers. When we say a consumer commits it’s not storing
the offsets for each record it consumes, it’s the highest offset, per partition, plus one that the
consumer has consumed so far that’s committed.

For example, in the illustration above, let’s say the records returned in the batch contained
offsets from 0-4. So when the consumer commits, it will be offset 5.

®

Assuming The previous
bateh is SuccessPu“y
The next batch of records covers processed, the next committed
offsets 5-10 offset will be 1

/

O l1|a |3 |4]5 Tilglq |10

The first batch of records

contained offsets 0-4 so
the consumer commits 5

Figure 4.18 A consumers committed position is the largest offset it has consumed so far plus one

So the committed position is offset that has been sucessfully stored, and it indicates the starting
record for the next batch it will retrieve. In this illustration it’s 5. Should the consumer in this
example fail or you restarted the application the consumer would consume records starting at
offset 5 again since it wasn’t able to commit prior to the failure or restart.

Consuming from the last committed offset means that you are guaranteed to not miss processing
a record due to errors or application restarts. But it also means that you may process a record

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

123

more than once.

P +he consumer retrieves a batch with
offgets 5410, the applica—ﬁon has
proce.sseri +he records but before the
neset commit i+ shuts down

/ T

Ol a3 |4B5le | Tig|a O]l
offsetr O-¢ Succe,sspu“y Processed @ When the appl?cwﬁon stanrts
so last committed offset is B bock vp since +he loast+ committed

offset is 5, records with offsets
5-10 get processed again

Figure 4.19 Restarting a consumer after processing without a commit means reprocessing some
records

If you processed some of the records with offsets larger than the latest one committed, but your
consumer failed to commit for whatever reason, this means when you resume processing, you
start with records from the committed offset, so you’ll reprocess some of the records. This
potential for reprocessing is known as at-least-once. We covered at-least-once delivery in the
delivery semantics earlier in the chapter.

To avoid reprocessing records you could manually commit offsets immediately after retrieving a
batch of records, giving you at-most-once delivery. But you run the risk of losing some records if
your consumer should encounter an error after committing and before it’s able to process the
records. Another option (probably the best), to avoid reprocessing is to use the Kafka
transactional API which guarantees exactly-once delivery.

COMMITTING CONSIDERATIONS

When enabling auto-commit with a Kafka consumer, you need to make sure you’ve fully
processed all the retrieved records before the code returns to the top of the poll loop. In practice,
this should present no issue assuming you are working with your records synchronously meaning
your code waits for the completion of processing of each record. However, if you were to hand
off records to another thread for asynchronous processing or set the records aside for later
processing, you also run the risk of potentially not processing all consumed records before you
commit. Let me explain how this could happen.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

124

Since the QOO!& each P°“ call commits and advances
proce,ssing the. records is async +he consumer's position
+he process loop returns +o the
top and +he consumer
executes another Po“ ca“, commi-r-l—iv\g
+he records in +he previous bodch and
advances the consumer's
position The process [oop hands
re_coro(s over +o sowme. asl/nc

code process loop — \ code (code :\:\'\i'\i(;V\
Se_fw\rod'e_ R

Async Process

Figure 4.20 Asynchronous processing with auto committing can lead to potentially lost records

When you hand the records off to an asynchronous process, the code in your poll loop won’t wait
for the successful processing of each record. When your application calls the pol | () method
again, it commits the current position i.e the highest offset + 1 from the for each topic-partition
consumed in the previous batch. But your async process may not completed working with all the
records up to the highest offset at the time of the commit. If your consumer application
experienced a failure or a shutdown for any reason, when it resumes processing, it will start from
the last committed offset, which skips over the un-processed records in the last run of your
application.

To avoid prematurely-maturely committing records before you consider them fully processed,
then you’ll want to disable auto-commits by setting enabl e. aut 0. commi t to f al se.

But why would you need to use asynchronous processing requiring manually committing? Let’s
say when you consume records, you do some processing that takes long time (up to 1 second) to
process each record. The topic you consume from has a high volume of traffic, so you don’t want
to fall behind. So you decide that as soon as you consume a batch of records, you’ll hand them
off to an async process so the consumer can immediately return to the poll call to retrieve the
next batch.

Using an approach like this is called pipeling. But you’ll need make sure you’re only committing
the offsets for records that have been successfully processed, which means turning off
auto-committing and coming up with a way to commit only records that your application
considers fully processed. The following example code shows one example approach you could
take. Note that I’'m only showing the key details here and you should consult the source code to
see the entire example

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

125

Listing 4.4 Consumer code found in bbejeck.chapter_4.pipelining.PipliningConsumerClient

/] Details left out for clarity
Consumner Recor ds<String, ProductTransacti on> consumer Records = consuner. pol | (
Dur at i on. of Seconds(5));

if (!consunerRecords.isEnmpty()) {

recor dProcessor. processRecor ds(consuner Recor ds) ; o

Map<Topi cPartition, O fset AndMet adat a> of f set sAndMet adata =

recordProcessor. get O fsets();
if (offsetsAndMetadata != null) {
consuner . comni t Sync(of f set sAndMet adat a) ; (3]

}

© After you've retrieved a batch of records you hand off the batch of records to the
async pProcessor.

Checking for offsets of completed records
If the Map is not empty, you commit the offsets of the records processed so far.

The key point with this consumer code is that the Recor dPr ocessor . processRecor ds() call
returns immediately, so the next call to Recor dPr ocessor. get Of f set s() returns offsets from a
previous batch of records that are fully processed. What I want to emphasize here is how the
code hands over new records for processing then collects the offsets of records already fully
processed for committing. Let’s take a look at the processor code to see this is done:

Listing 4.5 Asynchronous processor code found in

bbejeck.chapter_4.piplining.ConcurrentRecordProcessor

Map<Topi cPartition, Ofset AndMet adata> of fsets = new HashMap<>(); o
consurner Records. partitions().forEach(topicPartition -> {
Li st <Consuner Recor d<St ri ng, Product Tr ansacti on>> topi cPartiti onRecords =
consuner Recor ds. records(topicPartition);
topicPartitionRecords. forEach(this::doProcessRecord); (4]
long lastOffset = topicPartitionRecords. get(
topi cPartiti onRecords.size() - 1).offset();
of fsets. put (topicPartition, new O f set AndMet adat a(l ast Of fset + 1)); (6]
b

of f set Queue. of fer (of fsets); @

Creating the Map for collecting the offset for committing
Iterating over the Topi cParti ti on objects

Getting records by Topi cParti ti on for processing

Doing the actual work on the consumed records

Getting the last offset for al records of agiven Topi cPartition

Storing the offset to commit for the Topi cPartition

S © ©¢ 6 © o ©

Putting the entire Map of offsetsin a queue.

The the takeaway with the code here is that by iterating over records by Topi cPartition it’s

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

126

easy to create the map entry for the offsets to commit. Once you’ve iterated over all the records
in the list, you only need to get the last offset. You, the observant read might be asking yourself
"Why does the code addl to the last offset?" When committing offsets it’s always the offset of
the next record you’ll retrieve. For example if the last offset is 5, you want to commit 6. Since
you’ve already consumed 0-5 you’re only interested in consuming records from offset 6 forward.

Then you simply use the Topi cPartition from the top of the loop as the key and the
O f set AndMet adat a object as the value. When the consumer retrieves the offsets from the
queue, it’s safe to commit those offsets as the records have been fully processed. The main point
to this example is how you can ensure that you only commit records you consider "complete" if
you need to asynchronously process records outside of the Consuner. pol | loop. It’s important
to note that this approach only uses a *single thread* and consumer for the record processing
which means the code still processes the records in order, so it’s safe to commit the offsets as
they are handed back.

NOTE For a fuller example of threading and the Kaf kaConsumer you should consult
www.confluent.io/blog/introducing-confluent-parallel-message-processing-client/
and github.com/confluentinc/parallel-consumer.

WHEN OFFSETS AREN'T FOUND

I mentioned earlier that Kafka stores offsets in an internal topic named _of f set s. But what
happens when a consumer can’t find its offsets? Take the case of starting a new consumer
against an existing topic. The new gr oup. i d will not have any commits associated with it. So
the question becomes where to start consuming if offsets aren’t found for a given consumer? The
Kaf kaConsuner provides a configuration, of f set . reset . pol i cy which allows you to specify
a relative position to start consuming in the case there’s no offsets available for a consumer.

There are three settings:

1. earliest - reset the offset to the earliest one
2. latest - reset the offset to the latest one
3. none - throw an exception to the consumer

With a setting of ear | i est the implications are that you’ll start processing from the head of the
topic, meaning you’ll see all the records currently available. Using a setting of | at est means
you’ll only start receiving records that arrive at the topic once your consumer is online, skipping
all the previous records currently in the topic. The setting of none means that an exception gets
thrown to the consumer and depending if you are using any try/catch blocks your consumer may
shut down.

The choice of which setting to use depends entirely on your use case. It may be that once a

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://www.confluent.io/blog/introducing-confluent-parallel-message-processing-client/
https://www.confluent.io/blog/introducing-confluent-parallel-message-processing-client/
https://github.com/confluentinc/parallel-consumer
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

127

consumer starts you only care about reading the latest data or it may be too costly to process all
records.

Whew! That was quite a detour, but well worth the effort to learn some of the critical aspects of
working with the Kaf kaConsuner .

So far we’ve covered how to build streaming applications using a Kaf kaProducer and
Kaf kaConsumer . What’s been discussed is good for those situations where your needs are met
with at-least-once processing. But there are situations where you need to guarantee that you
process records exactly once. For this functionality you’ll want to consider using the *exactly
once* semantics offered by Kafka.

4.3 Exactly once delivery in Kafka

The 0.11 release of Apache Kafka saw the Kaf kaPr oducer introduce exactly once message
delivery. There are two modes for the Kaf kaProducer to deliver exactly once message
semantics; the idempotent producer and the transactional producer.

NOTE Idempotence means you can perform an operation multiple times and the
result won’'t change beyond what it was after the first application of the
operation.

The idempotent producer guarantees that the producer will deliver messages in-order and only
once to a topic-partition. The transactional producer allows you to produce messages to multiple
topics atomically, meaning all messages across all topics succeed together or none at all. In the
following sections, we’ll discuss the idempotent and the transactional producer.

4.3.1 Idempotent producer

To wuse the idempotent producer you only need to set the configuration
enabl e. i denpot ence=t r ue. There are some other configuration factors that come into play:

1. max.in.flight.requests. per.connection mustnot exceed avaue of 5 (the default
valueisb)

2. retries must be greater than O (the default value is Integer. MAX_VALUE)
3. acks must besettoal | . If you do not specify avalue for the acks configuration the

producer will update to use the value of al | , otherwise the producer throws a
Conf i gExcepti on.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

128

Listing 4.6 KafkaProducer configured for idempotence

/] Several details omtted for clarity

Map<String, Object> producerProps = new HashMap<>();

/| St andard configs

producer Props. put (Producer Confi g. BOOTSTRAP_SERVERS _CONFI G, "sonehost: 9092");
producer Props. put (Producer Confi g. KEY_SERI ALI ZER CLASS_CONFI G, ...);

producer Props. put (Producer Confi g. VALUE_SERI ALI ZER CLASS_CONFI G, ...);

//Configs related to i denpotence

producer Props. put (Producer Confi g. ACKS_CONFIG "all"); o

producer Props. put (Producer Confi g. ENABLE_| DEMPOTENCE_CONFI G, true); (2]
producer Props. put (Producer Confi g. RETRI ES_CONFI G, | nt eger. MAX_VALUE) ; (3]

pr oducer Pr ops. put (Producer Confi g. MAX_I N_FLI GHT_REQUESTS_PER CONNECTI ON, 5); O

Setting acksto "all"
Enabling idempotence

Setting retries to Integer. MAX_VALUE - thisis the default value shown here for
completeness

© Setting max in flight requests per connection to 5 - this is the default value shown
here for completeness

If you recall from our earlier discussion about the Kaf kaPr oducer we outlined a situation where
due to errors and retries record batches within a partition can end up out of order. To avoid that
situation, it was suggested to set the max. i nfli gh. requests. per. connecti on to one. Using
the idempotent producer removes the need for you to adjust that configuration. We also
discussed in the message delivery semantics to avoid possible record duplication, you would
need to set retries to zero risking possible data loss.

Using the idempotent producer avoids both of the records-out-of-order and
possible-record-duplication-with-retries. If you requirements are for strict ordering within a
partition and no duplicated deliver of records then using the idempotent producer is a must.

NOTE As of the 3.0 release of Apache Kafka the idempotent producer settings are
the default so you'll get the benefits of using it out of the box with no
additional configuration needed.

The idempotent producer uses two concepts to achieve its in-order and only-once semantics-
unique producer ids and sequence numbers for messages. The idempotent producer gets initiated
with a unique producer id (PID). Since each creation of a idempotent producer results in a new
PID, idempotence for a producer is only guaranteed during a single producer session. For a given
PID a monotonically sequence id (starting at 0) gets assigned to each batch of messages. There is
a sequence number for each partition the producer sends records to.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

129

Troacking produce,r id +o next e,xpe_c-re,d
sequence. number

producer id sequence #
Broker

\ producer_Id3 = &

produe_r_.xyz =

Figure 4.21 The broker keeps track of sequence numbers for each PID and topic-partition it receives

The broker maintains a listing (in-memory) of sequence numbers per topic-partition per PID. If
the broker receives a sequence number not exactly one greater than the sequence number of the
last committed record for the given PID and topic-partition, it will reject the produce request.

producer id sequence #

"y = d A3 = &
T he producer with the id 113 proclucer

had a batch fail +o produe.r_-xyz = 3
reach the Brol(e_r; e g
sends the neset
botch with sequence 3

Broker

It's greater than the
*e_xpe_c‘re_d sequence number
so +the Broker rejects it a
an ouvtoforderSeauenceExce ption

re,sul-rs
Prodver 133 /

Figure 4.22 The broker rejects produce requests when the message sequence number doesn’t match
expected one

If the number is less than the expected sequence number, it’s a duplication error which the
producer ignores. If the number is higher than expected the produce request results in a
Qut Of Or der SequenceExcepti on. For the idempotent producer, the

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

130

Qut OF Or der SequenceExcept i on is not fatal error and retries will continue. Essentially when
there is a retryable error, if there are more than 1 in-flight requests, the broker will reject the
subsequent requests and the producer will put them back in order to resend them to the broker.

So if you require strict ordering of records within a partition, then using the idempotent producer
1s a must. But what do you do if you need to write to multiple topic-partitions atomically? In that
case you would opt to use the transactional producer which we’ll cover next.

4.3.2 Transactional producer

Using the transactional producer allows you to write to multiple topic-partitions atomically; all of
the writes succeed or none of them do. When would you want to use the transactional producer?
In any scenario where you can’t afford to have duplicate records, like in the financial industry for
example.

To use the transaction producer, you need to set the producer configuration t r ansacti onal . i d
to a unique value for the producer. Kafka brokers use the transactional.id to enable
transaction recovery across multiple sessions from the same producer instance. Since the id
needs to be unique for each producer and applications can have multiple producers, it’s a good
idea to come up with a strategy where the id for the producers represents the segment of the
application its working on.

NOTE Kafka transaction are a deep subject and could take up an entire chapter on
its own. For that reason I’'m not going to go into details about the design of

transactions. For readers interested in more details here’s a link to the
original KIP (KIP stands for Kafka Improvement Process)

cwiki.apache.org/confluence/display/KAFKA/KIP-98+-+Exactly+Once
+Delivery+and+Transactional
+Messaging#KIP98ExactlyOnceDeliveryandTransactionalMessaging-
Brokerconfigs

When you enable a producer to use transactions, it is automatically upgraded to an idempotent
producer. You can use the idempotent producer without transactions, but you can’t do the
opposite, using transactions without the idempotent producer. Let’s dive into an example. We’ll
take our previous code and make it transactional

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://cwiki.apache.org/confluence/display/KAFKA/KIP-98+-+Exactly+Once+Delivery+and+Transactional+Messaging#KIP98ExactlyOnceDeliveryandTransactionalMessaging-Brokerconfigs
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

131

Listing 4.7 KafkaProducer basics for transactions

HashMap<String, Object> producer Props = new HashMap<>();
producer Props. put ("transactional .id", "set-a-unique-transactional-id"); (1]

Producer<String, String> producer = new Kaf kaProducer <>(producer Props);

producer.initTransactions(); (1]

try {
producer. begi nTransaction(); o
producer. send(topic, "key", "value"); (3]
producer. conmi t Transacti on(); (4]

} catch (Producer FencedException | Qut O Or der SequenceExcepti on
| Aut horizati onException e) {
producer. cl ose();
} catch (KafkaException e) { (6]
producer. abort Transacti on();
/] safe to retry at this point (7]

© Setting aunique id for the producer. Note that it’s up to the user to provide this
uniqueid.

Calling initTransactions

The beginning of the transaction, but does not start the clock for transaction
timeouts

© Sending record(s), in practice probably you d probably send more than one record
but it’ s shortened here for clarity

Committing the transaction after sending all the records

Handling fatal exceptions, your only choice at this point is to close the producer
and re-instantiate the producer instance

© Handling anon-fatal exception, you can begin a new transaction with the same
producer and try again

After creating a transactional producer instance is to first thing you must here is execute the

i nitTransactions() method. The initTransacti on sends a message to the transaction
coordinator (the transaction coordinator is a broker managing transactions for producers) so it
can register the t ransacti onal . i d for the producer to manage its transactions. The transaction

coordinator is a broker managing transactions for producers.

If the previous transaction has started, but not finished, then this method blocks until its
completed. Internally, it also retrieves some metadata including something called an epoch

which this producer uses in future transactional operations.

Before you start sending records you call begi nTransact i on(), which starts the transaction for
the producer. Once the transaction starts, The transaction coordinator will only wait for a period
of time defined by the transaction. ti meout. ns (one minute by default) and it without an
update (a commit or abort) it will proactively abort the transaction. But the transaction

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

132

coordinator does not start the clock for transaction timeouts until the broker starts sending
records. Then after the code completes processing and producing the records, you commit the
transaction.

You should notice a subtle difference in error handling between the transactional example from
the previous non-transactional one. With the transactional produce you don’t have to check of an
error occurred either with a Cal | back or checking the returned Fut ur e. Instead the transactional
producer throws them directly for your code to handle.

It’s important to note than with any of the exceptions in the first cat ch block are fatal and you
must close the producer and to continue working you’ll have to create a new instance. But any
other exception is considered re-tryable and you just need to abort the current transaction and
start over.

Of the fatal exceptions, we’ve already discussed the Qut OF Or der SequenceExcepti on in the
idempotent producer section and the Aut hori zati onException is self explanatory. Be we
should quickly discuss the Pr oducer FencedExcepti on. Kafka has a strict requirement that
there is only one producer instance with a given t r ansact i onal . i d. When a new transactional
producer starts, it "fences" off any previous producer with the same id must close. However,
there is another scenario where you can get a Producer FencedExcept i on with out starting a
new producer with the same id.

@ T he +xn coordinator
doesn't receive o commit
or abort so it proac-ﬁvdy
Kills +he +xn and bumps +he
epoch from 5 +o €

@ Network partition
oceurs and the
producer can'+
commit the +xn

* +ransactional-id epoch
my—txn-producer 5 > €
@-rramsac-ﬁon

started

| Producer /
\
/*’ P POJVer‘Fe_ncep{Exee_Pﬁon

@ T he network conneetion is restored
and the producer attempt to complej'e_
+he +ransaction but it sends s ecurrent
epoch of & with the request, and i doesn'+
moatch the current one so the Pr‘oo(ucer
is Fenced

Transaction) coordinator

Figure 4.23 Transactions proactively aborted by the Transaction Coordinator cause an increase in the
epoch associated with the transaction id

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

133

When you execute the producer.initTransactions() method, the transaction coordinator
increments the producer epoch. The producer epoch is a number the transaction coordinator
associates with the transactional id. When the producer makes any transactional request, it
provides the epoch along with its transaction id. If the epoch in the request doesn’t match the
current epoch the transaction coordinator rejects the request and the producer is fenced.

But if the current producer can’t communicate with the transaction coordinator for any reason
and the timeout expires, as we discussed before, the coordinator proactively aborts the
transaction and increments the epoch for that id. When the producer attempts to work again after
the break in communication, it finds itself fenced and you must close the producer and restart at
that point.

NOTE There is example code for transactional producers in the form of a test
l ocated at
src/test/java/bbejeck/chapter_4/TransactionalProducerConsumerTest.java
in the source code.

So far, I’ve only covered how to produce transactional records, so let’s move on consuming
them.

4.3.3 Consumers in transactions

Kafka consumers can subscribe to multiple topics at one time, with some of them containing
transactional records and others not. But for transactional records, you’ll only want to consume
ones that have been successfully committed. Fortunately, it’s only a matter of a simple
configuration. To configure your consumers for transactional records you set i sol ati on. | evel
configuration to r ead_conmi t t ed.

Listing 4.8 KafkaConsumer configuration for transactions

/'l Several details omtted for clarity

HashMap<String, Object> consuner Props = new HashMap<>();

consumer Props. put (Consuner Conf i g. BOOTSTRAP_SERVERS_CONFI G "I ocal host: 9092") ;
consuner Props. put (Consuner Confi g. GROUP_I D_CONFI G "t he-group-id");

consurer Props. put (Consuner Confi g. | SOLATI ON_LEVEL_CONFI G "read_conm tted"); o

consuner Props. put (Consuner Confi g. KEY_DESERI ALI ZER CLASS CONFI G StringDeseri al i zer.cl ass);
consuner Props. put (Consuner Conf i g. VALUE_DESERI ALI ZER_CLASS _CONFI G | nt eger Deseri al i zer. cl ass);

© Setting the isolation configuration for the consumer

With this configuration set, your consumer is guaranteed to only retrieve successfully committed
transaction records. If you use the r ead_unconmi t t ed setting, then the consumer will retrieve

both successful and aborted transactional records. The consumer is guaranteed to retrieve

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

134
non-transactional records with either configuration set.

There is difference in highest offset a consumer can retrieve in the r ead_commni t t ed mode.

H?gh—h/a-!'e_r-ﬂar‘l(+he. lo:l'e,s-i' offget+
o(uroble_ s-rore_d Bt/ a“
re_pl?cas aJSO +he

Lost S+able offsetr (LSO)
Non-Transactional
A non—-i'romsa\c-ﬁono\l consumer can

retrieve ve to +his poin-r

€

o] o]

I |4 |5
Transactional /

LSo
A ‘H‘OJ\SO\C‘HOV\QI CoONSUMES can
retrieve ve to +his po?vﬂ'

7
First open transaction

Figure 4.24 High water mark vs. last stable offset in a transactional environment

In Kafka there is a concept of the last stable offset (LSO) which is an offset where all offsets
below it have been "decided". There’s another concept known as the high water mark. The high
water mark is the largest offset successfully written to all replicas. In a non-transactional
environment, the LSO is the same as the high water mark as records are considered decided or
durable written immediately. But with transactions, an offset can’t be considered decided until
the transaction is either committed or aborted, so this means the LSO i1s the offset of the first
open transaction minus 1.

This a non-transactional environment, the consumer can retrieve up the the high water mark in a
pol | () call. But with transactions it will only retrieve up to the LSO.

NOTE The test located
src/test/java/bbejeck/chapter_4/TransactionalProducerConsumerTest.java
also contains a couple of tests demonstrating consumer behavior with both
read_conmi tted read read_unconmi tt ed configuration.

So far we’ve covered how to use a producer and a consumer separately. But there’s one more
case to consider and that is using a consumer and producer together within a transaction.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

135

4.3.4 Producers and consumers within a transaction

When building applications to work with Kafka it’s a fairly common practice to consume records
from a topic, perform some type of transformation on the records, then produce those
transformed records back to Kafka in a different topic. Records are considered consumed when

the consumer commits the offsets. If you recall, committing offsets is simply writing to a topic
(_offsets).

So if you are doing a consume - transform - produce cycle, you’d want to make sure that
committing offsets is part of the transaction as well. Otherwise you could end up in a situation
where you’ve committed offsets for consumed records, but transaction fails and restarting the
application skips the recently processed records as the consumer committed the offsets.

Imagine you have a stock reporting application and you need to provide broker compliance
reporting. It’s very important that the compliance reports are sent only once so you decide that
the best approach is to consume the stock transactions and build the compliance reports within a
transaction. This way you are guaranteed that your reports are sent only once.

Listing 4.9 Example of the consume-transform-produce with transactions found in

src/test/java/chapter_4/TransactionalConsumeTransformProduceTest.java

/1 Note that details are left out here for clarity

Map<Topi cPartition, Of fset AndMet adat a> of fsets = new HashMap<>(); (1)
producer . begi nTransacti on(); ()
consuner Records. partitions().forEach(topicPartition -> {
consuner Recor ds. records(topi cPartition).forEach(record -> {
last OFfset. set(record. offset());
St ockTransacti on stockTransaction = record. val ue();
Br oker Summary broker Summary = Broker Summary. newBui | der () (3]

producer. send(new Producer Recor d<>(out put Topi ¢, broker Surmary));
1)
of fsets. put (topicPartition,
new Of f set AndMet adat a(l ast Offset. get () + 1L)); O
B
try {
producer. sendX f set sToTransact i on(of f set s,
consumer . groupMet adat a()) ;
producer. conm t Transacti on(); (6

-

Creating the HashMap to hold the offsets to commit

Starting the transaction

Transforming the StockTransaction object into a BrokerSummary
Storing the Topi cParti ti on and Of f set AndMet adat a in the map

Committing the offsets for the consumed records in the transaction

@ © 6 © © o

Committing the transaction

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

136

From looking at code above, the biggest difference from a non-transactional
consume-transform-produce application is that we keep track of the Topi cPartition objects
and the offset of the records. We do this because we need to provide the offsets of the records we
just processed to the KafkaProducer.setOffsetsToTransaction method. In
consume-transform-produce applications with transactions, it’s the producer that sends offsets to
the consumer group coordinator, ensuring that the offsets are part of the transaction. Should the
transaction fail or get aborted, then the offsets are not committed. By having the producer
commit the offsets, you don’t need any coordination between the producer and consumer in the
cases of rolled-back transactions.

So far we’ve covered using producer and consumer clients for sending and receiving records to
and from a Kafka topic. But there’s another type of client which uses the Adnmi n API and it
allows you to perform topic and consumer group related administrative functions
programmatically.

4.4 Using the Admin API for programmatic topic management

Kafka provides an administrative client for inspecting topics, broker, ACLs (Access Control
Lists) and configuration. While there are several functions you can use the admin client, I'm
going to focus on the administrative functions for working with topics and records. The reason
I’m doing this is I'm presenting what I feel are the use cases most developers will see in

development of their applications. Most of the time, you’ll have a operations team responsible
for the management of your Kafka brokers in production. What I’m presenting here are things
you can do to facilitate testing a prototyping an application using Kafka.

4.4.1 Working with topics programmatically

To create topics with the admin client is simply a matter of creating the admin client instance and
then executing the command to create the topic(s).

Listing 4.10 Creating a topic

Map<String, Object> adm nProps = new HashMap<>();
adm nProps. put ("boot strap. servers", "l ocal host: 9092");

try (Adm n admi nClient = Adm n. create(adm nProps)) { o
final List<NewTopic> topics = new ArraylList<>)(); (2]

t opi cs. add(new NewTopi c("topi c-one", 1, 1)); (3]
t opi cs. add(new NewTopi c("topic-two", 1, 1));

adm nCl i ent. createTopi cs(topics); (4]

© Creating the Admin instance, note the use of atry with resources block

©® Thelist to hold the NewTopi ¢ objects

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

137

© Cresting the NewTopi ¢ objects and adding them to the list

© Executing the command to create the topics

NOTE I'm referring to an admin client but the type is the interface Adni n. There is an
abstract class Adni nCl i ent, but it's use is discouraged over using the Adni n
interface instead. An upcoming release may remove the Adni nCl i ent class.

This code can be especially useful when you are prototyping building new applications by
ensuring the topics exist before running the code. Let’s expand this example some and show how
you can list topics and optionally delete one as well.

Listing 4.11 More topic operations

Map<String, Cbject> adm nProps = new HashMap<>();
adm nProps. put ("boot strap. servers", "l ocal host: 9092");

try (Admi n adm nCient = Adnin.create(adm nProps)) {

Set <String> topi cNames = admi nClient.listTopics().nanes.get(); (1]
System out . printl n(topi cNanmes) ;
adm nd i ent . del et eTopi cs(Col | ecti ons. singl etonLi st("topic-two")); (3]

9 |nthisexampleyou'relisting al the non-internal topics in the cluster. Note that if
you wanted to include the internal topics you would provide aLi st Topi cOpt i ons
object where you would call the Li st Topi cOptions. listlnternal (true)
method.

Printing the current topics found

You delete atopic and list al of the topics again, but you should not see the
recently deleted topicin the list.

An additional note for annotation one above, is that the Admin.|i st Topics() returns a

Li st Topi cResul t object. To get the topic names you use the Li st Topi cResul t. names()
which returns a Kaf kaFut ur e<Set <St ri ng>> so you use use the get () method which blocks
until the admin client request completes. Since we’re using a broker container running on your
local machine, chances are this command completes immediately.

There are several other methods you can execute with the admin client such as deleting records
and describing topics. But the way you execute them is very similar, so I wont list them here, but
look at the source code (src/test/java/bbejeck/chapter 4/AdminClientTest.java) to see more
examples of using the admin client.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

138

TIP Since we’re working on a Kafka broker running in a docker container on your
local machine, we can execute all the admin client topic and record
operations risk free. But you should exercise caution if you are working in a
shared environment to make sure you don’t create issues for other
developers. Additionally, keep in mind you might not have the opportunity to
use the admin client commands in your work environment. And | should
stress that you should never attempt to modify topics on the fly in production
environments.

That wraps up our coverage of using the admin API. In our next and final section we’ll talk
about the considerations you take into account for those times when you want to produce
multiple event types to a topic.

4.5 Handling multiple event types in a single topic

Let’s say you’ve building an application to track activity on commerce web site. You need to
track the click-stream events such as logins and searches and any purchases. Conventional
wisdom says that the different events (logins, searches) and purchases could go into separate
topics as they are separate events. But there’s information you can gain from examining how
these related events occurred in sequence.

But you’ll need to consume the records from the different topics then try and stitch the records
together in proper order. Remember, Kafka guarantees record order within a partition of a topic,
but not across partitions of the same topic not to mention partitions of other topics.

Is there another approach you can take? The answer is yes, you can produce those different event
types to the same topic. Assuming you providing a consistent key across the event types, you are
going receive the different events in-order, on the same topic-partition.

At the end of chapter three (Schema Registry), I covered how you can use multiple event types in
a topic, but I deferred on showing an example with producers and consumers. Now we’ll go
through an example now on how you can produce multiple event types and consume multiple
event types safely with Schema Registry.

In chapter three, specifically the Schema references and nultiple events per topic
section I discussed how you can use Schema Registry to support multiple event types in a single
topic. I didn’t go through an example using a producer or consumer at that point, as I think it fits
better in this chapter. So that’s what we’re going to cover now.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

139

NOTE Since chapter three covered Schema Registry, I'm not going to do any review
in this section. | may mention some terms introduced in chapter three, so you
may need to refer back to refresh your memory if needed.

Let’s start with the producer side.

4.5.1 Producing multiple event types

We’ll use this Protobuf schema in this example:

{

syntax = "proto3";
package bbej eck. chapt er _4. prot o;

import "purchase_event. proto";
inmport "login_event.proto";
import "search_event. proto";

option java_outer_cl assnane = "Event sProto";

nessage Events {

oneof type {
Pur chaseEvent purchase_event = 1;
Logl nEvent | ogi n_event = 2;
Sear chEvent search_event = 3;

}

string key = 4;

}

What happens when you generate the code from the protobuf definition you get a
Event sProt 0. Event s object that contains a single field t ype that accepts one of the possible
three event objects (a Protobuf oneof field).

Listing 4.12 Example of creating KafkaProducer using Protobuf with a oneof field

/] Details left out for clarity
producer Confi gs. put (Producer Confi g. KEY_SERI ALI ZER_CLASS_CONFI G,

StringSerializer.class);

producer Confi gs. put (Producer Confi g. VALUE_SERI ALI ZER_CLASS_CONFI G,
Kaf kaPr ot obuf Seri al i zer. cl ass); (1)

Producer<String, EventsProto.Events> producer = new Kaf kaProducer <>(producer Confi gs)); (2]

© Configure the producer to use the Protobuf serializer

® Cresting the Kaf kaPr oducer instance

Since Protobuf doesn’t allow the oneof field as a top level element, the events you produce
always have an outer class container. As a result your producer code doesn’t look any different
for the case when you’re sending a single event type. So the generic type for the Kaf kaPr oducer

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

140

and Pr oducer Recor d is the class of the Protobuf outer class, Event sPr ot 0. Event s in this case.

In contrast, if you were to use an Avro union for the schema like this example here:

Listing 4.13 Avro schema of a union type

[
"bbej eck. chapt er _3. avro. TruckEvent ",
"bbej eck. chapt er _3. avro. Pl aneEvent ",
"bbej eck. chapter_3. avro. Del i veryEvent "

]

Your producer code will change to use a common interface type of all generated Avro classes:

Listing 4.14 KafkaProducer instantiation with Avro union type schema

//Sonme details left out for clarity

producer Confi gs. put (Producer Confi g. KEY_SERI ALI ZER CLASS CONFI G
StringSerializer.class);

producer Confi gs. put (Producer Confi g. VALUE_SERI ALI ZER_CLASS_CONFI G,
Kaf kaAvroSeri al i zer. cl ass) ;

producer Confi gs. put (Abst r act Kaf kaSchemaSer DeConf i g. AUTO_REQ STER_SCHENAS,

fal se);
producer Confi gs. put (Abst r act Kaf kaSchemaSer DeConf i g. USE_LATEST_VERSI ON,
true); ©

Producer<String, SpecificRecord> producer = new Kaf kaProducer <>(
producer Configs()) O

Specifying to use the Kafka Avro serializer
Configuring to producer to not auto register schemas

Setting the use latest schema version to true

®© © o o

I nstantiating the producer

Because you don’t have an outer class in this case each event in the schema is a concrete class of
either a TruckEvent, Pl aneEvent, or a DeliveryEvent. To satisfy the generics of the
Kaf kaPr oducer you need to use the Speci fi cRecor d interface as every Avro generated class
implements it. As we covered in chapter three, it’s crucial when using Avro schema references
with a union as the top-level entry is to disable auto-registration of schemas (annotation two
above) and to enable using the latest schema version (annotation three).

Now let’s move to the other side of the equation, consuming multiple event types.

4.5.2 Consuming multiple event types

When consuming from a topic with multiple event types, depending how your approach, you
may need to instantiate the Kaf kaConsuner with a generic type of a common base class or
interface that all of the records implement.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

141

Let’s consider using Protobuf first. Since you will always have an outer wrapper class, that’s the
class you’ll use in the generic type parameter, the value parameter in this example.

Listing 4.15 Configuring the consumer for working with multiple event types in Protobuf

// Gt her configurations details left out for clarity

consurmer Pr ops. put (Consurner Conf i g. VALUE_DESERI ALI ZER_CLASS_CONFI G
Kaf kaPr ot obuf Deseri al i zer. cl ass);
consumer Pr ops. put (

Kaf kaPr ot obuf Deseri al i zer Conf i g. SPECI FI C_PROTOBUF_VALUE_TYPE,
Event sProt 0. Event s. cl ass) ;

Consuner <Event sProt 0. Event s> consuner = new Kaf kaConsumer <>(
consuner Props); ©

© Using Protobuf deserializer
® Setting the Protobuf deserializer to return a specific type
© Creating the Kaf kaConsumer

You are setting up your consumer as you’ve seen before; you’re configuring the deserializer to
return a specific type, which is the Event sPr ot 0. Event s class in this case. With Protobuf, when
you have a oneof field, the generated Java code includes methods to help you determine the type

of the field with hasXXX methods. In our case the Event sProt 0. Event s object contains the
following 3 methods:

hasSear chEvent ()
hasPur chaseEvent ()
hasLogi nEvent ()

The protobuf generated Java code also contains an enum named <oneof field nane>Case. In
this example, we’ve named the oneof field t ype so it’s named TypeCase and you access by

calling Event sProto. Events. get TypeCase(). You can use the enum to determine the
underlying object succinctly:

//Details left out for clarity
switch (event.get TypeCase()) {
case LOG N_EVENT -> {
| ogi ns. add(event . get Logi nEvent()); @
}
case SEARCH EVENT -> {
sear ches. add(event . get Sear chEvent ());

}
case PURCHASE EVENT -> {

pur chases. add(event . get Pur chaseEvent ());

}

© |ndividual case statement base on the enum

@ Retrieving the event object using get XXX methods for each potential type in the
oneof field

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

142
Which approach you use for determining the type is a matter of personal choice.

Next let’s see how you would set up your consumer for multiple types with the Avro union
schema:

Listing 4.16 Configuring the consumer for working with union schema with Avro

/1 Gt her configurations details left out for clarity

consuner Props. put (Consuner Conf i g. VALUE_DESERI ALl ZER _CLASS_CONFI G
Kaf kaAvr oDeseri al i zer. cl ass); (1]

consumer Props. put (Kaf kaAvr oDeseri al i zer Confi g. SPECI FI C_AVRO_READER CONFI G
true);

Consuner <Speci fi cRecord> consumer = new Kaf kaConsuner <>(consuner Pr ops) ; 3]

© Using Avro deseridizer
@ Specifying the deserializer to return a specific Avro type
© Creating the Kaf kaConsuner

As you’ve seen before you specify the KafkaAvroDeserializer for the deserializer
configuration. We also covered before how Avro is slightly different from Protobuf and JSON
Schema in that you tell it to return the specific class type, but you don’t provide the class name.
So when you have multiple event types in a topic and you are using Avro, the consumer needs to
use the Speci fi cRecor d interface again in the generics shown in annotation three.

So by using the SpecificRecord interface when you start retrieving records from the
Consuner . pol | call you’ll need to determine the concrete type to do any work with it.

Listing 4.17 Determining the concrete type of a record returned from a consumer with Avro

union schemas

/] Details left out for clarity

Speci fi cRecord avroRecord = record. val ue();
if (avroRecord instanceof PlaneEvent) {
Pl aneEvent pl aneEvent = (Pl aneEvent) avroRecord;

} else if (avroRecord instanceof TruckEvent) {
TruckEvent truckEvent = (TruckEvent) avroRecord;

} else if (avroRecord instanceof DeliveryEvent) {
Del i veryEvent deliveryEvent = (DeliveryEvent) avroRecord;

The approach here is similar to that of what you did with Protobuf but this is at the class level
instead of the field level. You could also choose to model your Avro approach to something
similar of Protobuf and define record that contains a field representing the union. Here’s an
example:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

143

Listing 4.18 Avro with embedding the union field in a record

{
"type": "record",
"namespace": "bbejeck. chapter_4. avro",
"name": "TransportationEvent", o
"fields" : [

{"nane": "txn_type", "type": [(2}
"bbej eck. chapt er _4. avro. TruckEvent ",
"bbej eck. chapt er _4. avro. Pl aneEvent ",
"bbej eck. chapt er _4. avro. Del i veryEvent "

1}
]
}

© Quter class definition

® Avrounion type at the field level

In this case, the generated Java code provides a single method get TxnType(), but it has return
type of Obj ect. As a result you’ll need to use the same approach of checking for the instance
type as you did above when using a union schema, essentially just pushing the issue of
determining the record type from the class level to the field level.

NOTE Java 16 introduces pattern matching with the i nst anceof keyword that
removes the need for casting the object after the i nst anceof check

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

144

4.6 Summary

Kafka Producers send records in batches to topics |ocated on the Kafka broker and will
continue to retry sending failed batches until the del i very. ti neout . ms configuration
expires. You can configure a Kafka Producer to be an idempotent producer meaning it
guarantees to send records only once and in-order for a given partition. Kafka producers
also have atransactional mode that guarantees exactly once delivery of records across
multiple topics. Y ou enable the Kafka transactional API in producers by using the
configuration t r ansact i onal . i d which must be auniqueid for each producer. When
using consumersin the transactional API, you want to make sure you set the

i sol ation.|evel toread committed so you only consume committed records from
transactional topics.

Kafka Consumers read records from topics. Multiple consumers with the same group id
get topic-partition assignments and work together as one logical consumer. Should one
member of the group fail its topic-partition assignment(s) are redistributed to other
members of the group via process known as rebalancing. Consumers periodically commit
the offsets of consumed records so restarting after a shut-down they pick up where they
left of processing.

Kafka producers and consumers offer three different types of delivery guarantees at least
once, at most once, and exactly once. At least once means no records are lost, but you
may receive duplicates dueto retries. At most once means that you won't receive
duplicate records but there could be records lost due to errors. Exactly once delivery
means you don’t receive duplicates and you won't lose any records due to errors.

Static membership provides you with stability in environments where consumers
frequently drop off, only to come back online within a reasonable amount of time.

The Cooper ati veSti ckyAssi gnor provides the much improved rebalance behavior.
The cooperative rebalance protocol is probably the best choice to use in most cases as it
significantly reduces the amount of downtime during a rebalance.

The Admin API provides away to create and manage topics, partitions and records
programmatically.

When you have different event types but the events are related and processing them
in-order isimportant it’s worth considering placing the multiple event typesin asingle
topic.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

Devel oping Kafka Streams

This chapter covers

Introducing the Kafka Streams API
Building our first Kafka Streams application
Working with customer data; creating more complex applications

[]
[J
[]
® Splitting, merging and branching streams oh my!

Simply stated, a Kafka Streams application is a graph of processing nodes that transforms event
data as it streams through each node. Let’s take a look at an illustration of what this means:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

146

Represents # amount of processors

Source. node Sink™ nodle.
// % \\
l\ /| —9
N >,
’T—opoloslie_s ‘ e = | /
\ / Y
can be simple, Y& Nl
or comple,x with \\\
Se,ve_roJ branches RN N
Il \
\]
\ /

Figure 6.1 Kafka Streams is a graph with a source node, any number of processing nodes and a sink
node

This illustration represents the generic structure of most Kafka Streams applications. There is a
source node that consumes event records from a Kafka broker. Then there are any number of
processing nodes, each performing a distinct task and finally a sink node used to write the
transformed records back out to Kafka. In a previous chapter we discussed how to use the Kafka
clients for producing and consuming records with Kafka. Much of what you learned in that
chapter applies for Kafka Streams, because at it’s heart, Kafka Streams is an abstraction over the
producers and consumers, leaving you free to focus on your stream processing requirements.

IMPORTANT While Kafka Streams is the native stream processing library for Apache Kafka
®, it does not run inside the cluster or brokers, but connects as a client
application.

In this chapter, you’ll learn how to build such a graph that makes up a stream processing
application with Kafka Streams.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

147

6.1 The Streams DSL

The Kafka Streams DSL is the high-level API that enables you to build Kafka Streams
applications quickly. This API is very well thought out, with methods to handle most
stream-processing needs out of the box, so you can create a sophisticated stream-processing
program without much effort. At the heart of the high-level API is the KSt r eam object, which

represents the streaming key/value pair records.

Most of the methods in the Kafka Streams DSL return a reference to a KSt r eamobject, allowing
for a fluent interface style of programming. Additionally, a good percentage of the KStream
methods accept types consisting of single-method interfaces allowing for the use of lambda
expressions. Taking these factors into account, you can imagine the simplicity and ease with
which you can build a Kafka Streams program.

There’s also a lower-level API, the Processor API, which isn’t as succinct as the Kafka Streams
DSL but allows for more control. We’ll cover the Processor API in a later chapter. With that
introduction out of the way, let’s dive into the requisite Hello World program for Kafka Streams.

6.2 Hello World for Kafka Streams

For the first Kafka Streams example, we’ll build something fun that will get off the ground
quickly so you can see how Katka Streams works; a toy application that takes incoming
messages and converts them to uppercase characters, effectively yelling at anyone who reads the
message. We’ll call this the Yelling App.

Before diving into the code, let’s take a look at the processing topology you’ll assemble for this
application:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

148

SRC-TOPIC Source processor
Porwards the consumed

\ records nto the UpperCase

processor

Source
Processor

Upperc ase
Processor,

The UpperCase processor
creates an upper-cased
version of the oricinal
f‘eeot‘o(VO\IUQ -it Powro(s

results to the sink processor

Source and sink topics

are on the Kafka brokers ‘ s\ The Sink processor produces
Processor) records back to a speci‘ﬁeol
Kafka Topic
OUT-TOPIC

Figure 6.2 Topology of the Yelling App

As you can see, it’s a simple processing graph—so simple that it resembles a linked list of nodes
more than the typical tree-like structure of a graph. But there’s enough here to give you strong
clues about what to expect in the code. There will be a source node, a processor node
transforming incoming text to uppercase, and a sink processor writing results out to a topic.

This is a trivial example, but the code shown here is representative of what you’ll see in other
Kafka Streams programs. In most of the examples, you’ll see a similar pattern:

1. Definethe configuration items.

2. Create Ser de instances, either custom or predefined, used in deserialization/serializtion
of records.

3. Build the processor topology.
4, Create and start the Kaf ka St r eamns.

When we get into the more advanced examples, the principal difference will be in the complexity
of the processor topology. With all this in mind, it’s time to build your first application.

6.2.1 Creating the topology for the Yelling App

The first step to creating any Kafka Streams application is to create a source node and that’s
exactly what you’re going to do here. The source node is the root of the topology and fowards
thge consumed records into application. Figure 6.3 highlights the source node in the graph.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

149

KStream<String, String> simpleFirstStream =
builder.stream("src-topic",
SRC-TOPIC Consumed.with(Serdes.String(), Serdes.String()));

<ket/, "eat wore chicke_n"),
(key,"lnurry up there >

/

K el/-Va[ue_ records consumed
from the ‘topic(s) nomed
when creating the source node

Figure 6.3 Creating the source node of the Yelling App

The following line of code creates the source, or parent, node of the graph.

Listing 6.1 Defining the source for the stream

KStreanxkString, String> sinpleFirstStream = buil der.strean("src-topic",
Consuned. wi t h(Serdes. String(), Serdes.String()));

The si npl eFi r st St r eam instance is set to consume messages from the src-topi ¢ topic. In
addition to specifying the topic name, you can add a Consuned object that Kafka Streams uses to
configure optional parameters for a source node. In this example you’ve provided Serde
instances, the first for the key and the second one for the value. A Ser de is a wrapper object that

contains a serializer and deserializer for a given type.

If you remember from our dicussion on consumer clients in a previous chapter, the broker stores
and forwards records in byte array format. For Kafka Streams to perform any work, it needs to
deserialize the bytes into concrete objects. Here both Ser de objects are for strings, since that’s
the type of both the key and the value. Kafka Streams will use the Ser de to deserialize the key
and value, separately, into string objects. We’ll explain Serdes in more detail soon. You can also
use the Consumed class to configure a Ti mest anpExtract or, the offset reset for the source
node, and provide a name. We’ll cover the Ti nest anpExt r act or and providing names in later

sections and since we covered offset resets in a previous chapter, I won’t cover them again here.

And that is how to create a KSt r eamto read from a Kafka topic. But a single topic is not our only
choice. Let’s take a quick look at some other options. Let’s say that there are several topics
you’d like to like to "yell at". In that case you can subscribe to all of them at one time by using a
Col | ecti on<Stri ng> to specify all the topic names as shown here:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

150

Listing 6.2 Creating the Yelling Application with multiple topics as the source

KStreankString, String> sinpleFirstStream =
bui | der. strean(List.of ("topi cA", "topicB", "topicC"),
Consumed. wi t h(Serdes. String(), Serdes.String()))

Typically you’d use this approach when you want to apply the same processing to multiple
topics at the same time. But what if you have long list of similarly named topics, do you have to
write them all out? The answer is no! You can use a regular expresion to subscribe to any topic
that matches the pattern:

Listing 6.3 Using a regular expression to subscribe to topics in the Yelling Application

KStreankString, String> sinpleFirstStream =
bui der. source(Pattern. conmpil e("topi c[A-C]"),
Consuned. wi t h(Serdes. String(), Serdes.String()))

Using a regular expression for subscribing to topics is particulary handy when your organization
uses a common naming pattern for topics related to their business function. You just have to
know the naming pattern and you can subscribe to all of them concisely. Additionally as topics
are created or deleted your subscription will automatically update to reflect the changes in the
topics.

When subscribing to mulitple topics, there are a few caveats to keep in mind. The keys and
values from all subscribed topics must be the same type, for example you can’t combine topics
where one topic contains | nt eger keys and another has Stri ng keys. Also, if they all aren’t
partitioned the same, it’s up to you to repartition the data before performing any key based
operation like aggregations. We’ll cover repartitioning in the next chapter. Finally, there’s no
ordering guarantees of the incoming records.

You now have a source node for your application, but you need to attach a processing node to
make use of the data, as shown in figure 6.4.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

151

Ke_y-Value records Forwarded from the
Source Node

(ke,t/, "eat wore chicken™,
(ke_l/,"hurnl up ‘l:lf\e'_re_"),J

..... C

KStream<String, String> upperCasedStream = fnerc
simpleFirstStream.mapValues(value —> value.toUpperCase()); P’,’:cess:f

N\

dkey, "BAT MORE CHICKEN"
dkey,"HURRY UP THERE",

Figure 6.4 Adding the uppercase processor to the Yelling App

Listing 6.4 Mapping incoming text to uppercase

KStreankString, String> upperCasedStream =
si npl eFi r st St ream mapVal ues(val ue -> val ue. t oUpper Case());

In the introduction to this chapter I mentioned that a Kafka Streams application is a graph of
processing nodes, a directed acyclic graph or DAG to be precise.

You build the graph one processor at a time. With each method call, you establish a parent-child
relationship between the nodes of the graph. The parent-child relationship in Kafka Streams
establishes the direction for the flow of data, parent nodes forward records to their children. A
parent node can have multiple children, but a child node will only have one parent.

So looking at the code example here, by executing si npl eFi r st St r eam mapVal ues , you’re
creating a new processing node whose inputs are the records consumed in the source node. So
the source node is the "parent" and it forwards records to its "child", the processing node

returned from the mapVal ues operation.

NOTE As you tell from the name mapVal ues only affects the value of the key-value
pair, but the key of the original record is still forwared along.

The mapVal ues() method takes an instance of the Val ueMapper<V, V1> interface. The
Val ueMapper interface defines only one method, Val ueMapper . appl y, making it an ideal
candidate for using a lambda expression, which is exactly what you’ve done here with val ue

val ue. t oUpper Case().

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

152

NOTE Many tutorials are available for lambda expressions and method references.
Good starting points can be found in Oracle’s Java documentation: “Lambda
Expressions” (mng.bz/JOXm) and “Method References” (mng.bz/BaDW).

So far, your Kafka Streams application is consuming records and transforming them to
uppercase. The final step is to add a sink processor that writes the results out to a topic. Figure
6.5 shows where you are in the construction of the topology.

Ke_y-Vafue records Porwarded from the
UpperCase Processor

key, 'BAT MORE CHICKEN"
deey,"HURRY UP THERE",

Sink
Processor
upperCasedStream.to("out-topic", .

Produced.with(Serdes.String(),
Serdes.String()));

Out-Topic

Figure 6.5 Adding a processor for writing the Yelling App results

The following code line adds the last processor in the graph.

Listing 6.5 Creating a sink node

upper CasedStream to("out-topic",
Produced. wi t h(Serdes. String(), Serdes.String()));

The KSt r eam t o method creates a processing node that writes the final transformed records to a
Kafka topic. It is a child of the upper CasedSt r eam so it receives all of its inputs directly from

the results of the mapVal ues operation.

Again, you provide Ser de instances, this time for serializing records written to a Kafka topic.
But in this case, you use a Pr oduced instance, which provides optional parameters for creating a

sink node in Kafka Streams.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

http://mng.bz/J0Xm
http://mng.bz/BaDW
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

153

NOTE You don’t always have to provide Serde objects to either the Consuned or
Produced objects. If you don’t, the application will use the
serializer/deserializer listed in the configuration. Additionally, with the
Consuned and Pr oduced classes, you can specify a Ser de for either the key or
value only.

The preceding example uses three lines to build the topology:

KSt reanxString, String> sinpl eFirstStream =
bui |l der. strean("src-topic", Consunmed.w th(Serdes. String(), Serdes.String()));

KStreankString, String> upperCasedStream =
si npl eFi r st St r eam napVal ues(val ue -> val ue. t oUpper Case());
upper CasedStream t o(" out-topi c", Produced.wi th(Serdes.String(), Serdes.String()));

Each step is on an individual line to demonstrate the different stages of the building process. But
all methods in the KSt r eam API that don’t create terminal nodes (methods with a return type of
voi d) return a new KSt r eam instance, which allows you to use the fluent interface style of
programming. A fluent interface (martinfowler.com/bliki/FluentInterface.html) is an approach
where you chain method calls together for more concise and readable code. To demonstrate this
idea, here’s another way you could construct the Yelling App topology:

bui |l der. strean("src-topic", Consumed.w th(Serdes. String(), Serdes.String()))

. mapVal ues(val ue -> val ue. t oUpper Case())
.to("out-topic", Produced.w th(Serdes. String(), Serdes.String()));

This shortens the program from three lines to one without losing any clarity or purpose. From
this point forward, all the examples will be written using the fluent interface style unless doing
so causes the clarity of the program to suffer.

You’ve built your first Katka Streams topology, but we glossed over the important steps of
configuration and Ser de creation. We’ll look at those now.

6.2.2 Kafka Streams configuration

Although Kafka Streams is highly configurable, with several properties you can adjust for your
specific needs, the uses the two required configuration settings, APPLI CATI ON_I D_CONFI G and
BOOTSTRAP_SERVERS_CONFI G:

props. put (StreanmsConfi g. APPLI CATI ON_I D_CONFI G, "yel | i ng_app_i d");
props. put (StreansConfi g. BOOTSTRAP_SERVERS CONFI G, "I ocal host: 9092");

Both are required because there’s no practical way to provide default values for these
configurations. Attempting to start a Kafka Streams program without these two properties
defined will result in a Conf i gExcept i on being thrown.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://martinfowler.com/bliki/FluentInterface.html
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

154

The StreanmsConfig. APPLI CATI ON_I D_CONFI G property uniquely identifies your Kafka
Streams application. Kafka Streams instances with the same application-id are considered one
logical application. We’ll discuss this concept later in Kafka Streams internals section. The
application-id also serves as a prefix for the embedded client (KafkaConsumer and
Kaf kaPr oducer) configurations. You can choose to provide custom configurations for the
embedded clients by using one of the various prefix labels found in the StreansConfi g class.
However, the default client configurations in Kafka Streams have been chosen to provide the
best performance, so one should exercise caution when adjusting them.

The St reansConfi g. BOOTSTRAP_SERVERS CONFI G property can be a single host nane: port
pair or multiple host name: port comma-separated pairs. The BOOTSTRAP_SERVERS_CONFI G is
what Kafka Streams uses to establish a connection to the Kafka cluster. We’ll cover several more
configuration items as we explore more examples in the book.

6.2.3 Serde creation

In Kafka Streams, the Ser des class provides convenience methods for creating Ser de instances,

as shown here:

Serde<String> stringSerde = Serdes. String();

This line is where you create the Ser de instance required for serialization/deserialization using
the Ser des class. Here, you create a variable to reference the Ser de for repeated use in the
topology. The Ser des class provides default implementations for the following types: String,
Byte Array, Bytes, Long, Short, Integer, Double, Float, ByteBuffer, UUID, and Void.

Implementations of the Ser de interface are extremely useful because they contain the serializer
and deserializer, which keeps you from having to specify four parameters (key serializer, value
serializer, key deserializer, and value deserializer) every time you need to provide a Ser de in a
KSt r eam method. In upcoming examples, you’ll use Serdes for working with Avro, Protobuf,
and JSONSchema as well as create a Serde implementation to handle

serialization/deserialization of more-complex types.

Let’s take a look at the whole program you just put together. You can find the source in
src/main/java/bbejeck/chapter 6/KaftkaStreamsYellingApp.java (source code can be found on
the book’s website here: www.manning.com/books/kafka-streams-in-action-second-edition).

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://www.manning.com/books/kafka-streams-in-action-second-edition
http://www.manning.com/books/kafka-streams-in-action-second-edition
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

155

Listing 6.6 Hello World: the Yelling App

//Details left out for clarity
public class Kaf kaStreansYel | i ngApp ext ends BaseStreansApplication {

private static final Logger LOG =
Logger Fact ory. get Logger (Kaf kaSt reansYel | i ngApp. cl ass) ;

@verride
publ i c Topol ogy topol ogy(Properties streanProperties) {

Serde<String> stringSerde = Serdes. String(); o
StreansBui | der builder = new StreansBuilder(); ©

KStreankString, String> sinpleFirstStream = buil der.strean("src-topic",
Consuned. wi t h(stringSerde, stringSerde));

KStreanxString, String> upperCasedStream =

si mpl eFi r st St ream mapVal ues(val ue) - > val ue. t oUpper Case()); (4]

upper CasedStream t o(" out -t opi c",
Produced. wi t h(stringSerde, stringSerde)); (5]

return buil der. build(streanProperties);

}

public static void main(String[] args) throws Exception {
Properties streanProperties = new Properties();
streanProperties. put (StreansConfi g. APPLI CATI ON_| D_CONFI G

"yel ling_app_id");
streanProperties. put (StreansConfi g. BOOTSTRAP_SERVERS CONFI G,
"l ocal host : 9092") ;
Kaf kaSt reansYel | i ngApp yel | i ngApp = new Kaf kaStreansYel | i ngApp() ;
Topol ogy topol ogy = yellingApp.topol ogy(streanProperties);
try(Kaf kaStreans kafkaStreans =
new Kaf kaStreans(topol ogy, streanProperties)) {
LOG info("Hello Wrld Yelling App Started");
kaf kaStreans.start(); O

LOG i nfo("Shutting down the Yelling APP now');

© Createsthe Serdes and store in a variable used to serialize/deserialize keys and
values

Creates the StreamsBuilder instance used to construct the processor topology

Creates the actual stream with a source topic to read from (the parent node in the
graph)

A processor using alambda (the first child node in the graph)

Writes the transformed output to another topic (the sink node in the graph)

Kicks off the Kafka Streams threads

You’ve now constructed your first Kafka Streams application. Let’s quickly review the steps
involved, as it’s a general pattern you’ll see in most of your Kafka Streams applications:

1. Create aProperti es instance for configurations.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

156

2. Create a Ser de object.
3. Construct a processing topology.
4. Start the Kafka Streams program.

We’ll now move on to a more complex example that will allow us to explore more of the
Streams DSL API.

6.3 Masking credit card numbers and tracking purchase rewards in
a retail sales setting

Imagine you work as a infrastructure engineer for the retail giant, ZMart. ZMart has adopted
Kafka as its data processing backbone and is looking to capitalize on the ability to quickly
process customer data, intended to help ZMart do business more efficiently.

At this point you’re tasked to build a Kafka Streams application to work with purchase records as
they come streaming in from transactions in ZMart stores.

Here are the requirements for the streaming program, which will also serve as a good description
of what the program will do:

1. All Purchase objects need to have credit card numbers protected, in this case by masking
thefirst 12 digits.

2. You need to extract the items purchased and the ZIP code to determine regiona purchase
patterns and inventory control. This datawill be written out to atopic.

3. You need to capture the customer’s ZMart member number and the amount spent and
write this information to atopic. Consumers of the topic will use this data to determine
rewards.

With these requirements at hand, let’s get started building a streaming application that will
satisfy ZMart’s business requirements.

6.3.1 Building the source node and the masking processor

The first step in building the new application is to create the source node and first processor of
the topology. You’ll do this by chaining two calls to the KSt ream API together. The child
processor of the source node will mask credit card numbers to protect customer privacy.

Listing 6.7 Building the source node and first processor

KStreanxStri ng, Retail Purchase> retail PurchaseKStream =
streansBui | der. strean("transacti ons",
Consuned. wi t h(stringSerde, retail PurchaseSerde))
. mapVal ues(credi t Car dMapper) ;

You create the source node with a call to the St r eanBui | der . st r eammethod using a default
String serde, a custom serde for Ret ai | Pur chase objects, and the name of the topic that’s the

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

157

source of the messages for the stream. In this case, you only specify one topic, but you could
have provided a comma-separated list of names or a regular expression to match topic names
instead.

In this code example, you provide Ser des with a Consuned instance, but you could have left that
out and only provided the topic name and relied on the default Serdes provided via

configuration parameters.

The next immediate call is to the KSt r eam mapVal ues method, taking a Val ueMapper <V, V1>
instance as a parameter. Value mappers take a single parameter of one type (a Ret ai | Pur chase
object, in this case) and map that object to a to a new value, possibly of another type. In this
example, KSt r eam napVal ues returns an object of the same type (Ret ai | Pur chase), but with a
masked credit card number.

When using the KSt r eam nmapVal ues method, you don’t have access to the key for the value
computation. If you wanted to use the key to compute the new value, you could use the
Val ueMapper Wt hKey<K, V, VR> interface, with the expectation that the key remains the same.
If you need to generate a new key along with the value, you’d use the KSt r eam nap method that
takes a KeyVal ueMapper <K, V, KeyVal ue<Kl, V1>> interface.

IMPORTANT Keep in mind that Kafka Streams functions are expected to operate without
side effects, meaning the functions don’t modify the original key and or value,
but return new objects when making modifications.

6.3.2 Adding the patterns processor

Now you’ll build the second processor, responsible for extracting geographical data from the
purchase, which ZMart can use to determine purchase patterns and inventory control in regions
of the country. There’s also an additional wrinkle with building this part of the topology. The
ZMart business analysts have determined they want to see individual records for each item in a
purchase and they want to consider purchases made regionally together.

The Ret ai | Pur chase data model object contains all the items in a customer purchase so you’ll
need to emit a new record for each one in the transaction. Additionally, you’ll need to add the
zip-code in the transaction as the key. Finally you’ll add a sink node responsible for writing the
pattern data to a Kafka topic.

In pattrens processor example you can see the ret ai | Pur chaseKSt r eam processor using a
f1 at Map operator. The KSt r eam f | at Map method takes a Val ueMapper or a KeyVal ueMapper
that accepts a single record and returns an It er abl e (any Java Col | ecti on) of new records,
possibly of a different type. The f| apMap processor "flattens" the It er abl e into one or more
records forwarded to the topology. Let’s take a look at an illustrating how this works:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

158

FlatMap
t, Vi ———= Q ——= fK, V¥ $K, V¥ £K, V3

Figure 6.6 FlatMap emits zero or more records from a single input records by flattening a collection
returned from a KeyValueMapper or ValueMapper

The process of a flatMap is a common operation from functional programming where one input
results creating a collection of items (the map portion of the function) but instead of returning the
collection, it "flattens" the collection or grouping into a sequence of records.

In our case here with Kafka Streams, a retail purchase of five items results in five individual
KeyVal ue objects with the keys corresponding to the zip-code and the values a Pur chasedl t em
object.

Here’s the code listing for the KeyVal ueMapper :

Listing 6.8 KeyValueMapper returning a collection of Purchasedltem objects

KeyVal ueMapper <Stri ng, Retail Purchase,
It er abl e<KeyVal ue<String, Purchasedlten>>> retail Transacti onToPurchases =
(key, value) -> {
String zi pcode = val ue. get Zi pCode() ; o
return val ue. get Purchasedl t ensLi st (). stream) (2
. map(purchasedltem - >
KeyVal ue. pai r (zi pcode, purchasedlten))
.collect(Collectors.toList());

© Extracting the zipcode on the purchase for the new key
® Using the Java stream API to create alist of KeyVaue pairs

The KeyVal ueMapper here takes an individual transaction object and returns a list of KeyValue
objects. The key is the zipcode where the transaction took place and the value is an item included
in the purchase. Now let’s put our new KeyVal ueMapper into this section of the topology we’re
creating:

Listing 6.9 Patterns processor and a sink node that writes to Kafka

KStreanxkString, Pattern> patternkKStream = retail PurchaseKStream
.flat Map(retail Transacti onToPur chases) (1]
. mapVal ues(patt er nObj ect Mapper) ; (2}

patternKStream print(Printed. <String, Pattern>toSysQut ()
. Wi thLabel ("patterns"));
patternKStreamto("patterns”,
Produced. wi t h(stri ngSerde, purchasePatt ernSerde)); (4]

© Using flatMap to create new object for each time in atransaction

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

159

® Mapping each purchase to a pattern object
© Printing records to the console

© Producing each record from the purchase to a K afka topic called "patterns'

In this code example you declare a variable to hold the reference of the new KSt r eam instance
and you’ll see why in an upcoming section. The purchase-patterns processor forwards the
records it receives to a child node of its own, defined by the method call KSt r eam t o, writing to
the patt er ns topic. Note the use of a Produced object to provide the previously built Ser de.
I’ve also snuck in a KSt reanm#print processor that prints the key-values of the stream to the
console, we’ll talk more about viewing stream records in an upcoming section.

The KSt r eam t o method i1s a mirror image of the KSt r eam sour ce method. Instead of setting a
source for the topology to read from, it defines a sink node that’s used to write the data from a
KSt r eam instance to a Kafka topic. The KStream t o method also provides overloads which
accept an object allowing for dynamic topic selection and we’ll discuss that soon.

6.3.3 Building the rewards processor

The third processor in the topology is the customer rewards accumulator node shown in figure 8§,
which will let ZMart track purchases made by members of their preferred customer club. The
rewards accumulator sends data to a topic consumed by applications at ZMart HQ to determine
rewards when customers complete purchases.

Listing 6.10 Third processor and a terminal node that writes to Kafka

KStreanxStri ng, Rewar dAccurul at or Pr ot 0. Rewar dAccunul at or > r ewar dskSt r eam =
ret ai | Pur chaseKSt r eam mapVal ues(r ewar dCbj ect Mapper) ;
rewar dskStream to("rewards",
Produced. wi t h(stri ngSerde, rewar dAccunul at or Ser de)) ;

You build the rewards accumulator processor using what should be by now a familiar pattern:
creating a new KSt r eaminstance that maps the raw purchase data contained in the retail purchase
object to a new object type. You also attach a sink node to the rewards accumulator so the results
of the rewards KSt r eam can be written to a topic and used for determining customer reward

levels.

Now that you’ve built the application piece by piece, let’s look at the entire application
(src/main/java/bbejeck/chapter 6/ZMartKafkaStreamsApp.java).

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

160

Listing 6.11 ZMart customer purchase KSt r eamprogram

public class ZMartKaf kaStreansApp {

/] Details left out for clarity

@verride
publ i c Topol ogy topol ogy(Properties streanProperties) {

StreansBui | der streansBuil der = new StreansBuil der();

KSt reanxStri ng, Retail PurchaseProto. Retail Purchase> retail PurchaseKSt ream =
streansBui | der. stream("transacti ons"”,
Consuned. wi t h(stringSerde, retail PurchaseSerde))
. mapVal ues(credi t Car dMapper) ;

KStreanxkString, PatternProto.Pattern> patternKStream =
retail PurchaseKStream
.flatMap(retail Transacti onToPur chases)
. mapVal ues(patt er nObj ect Mapper) ; (2}

patternKStreamto("patterns”,
Produced. wi t h(stringSerde, purchasePatternSerde));

KStreanxSt ri ng, Rewar dAccunul at or Pr ot 0. Rewar dAccunul at or > r ewar dsKSt r eam =
retail PurchaseKStream mapVal ues(rewar dCbj ect Mapper) ; (3]

rewar dskStream to("rewards",

Produced. wi t h(stringSerde, rewar dAccunul at or Serde)) ;
retai |l PurchaseKSt ream t o(" pur chases",

Produced. wi t h(stringSerde, retail PurchaseSerde));

return streansBuil der. buil d(streanProperties);

}

© Buildsthe source and first processor
@ Buildsthe PurchasePattern processor

© Builds the RewardAccumulator processor

NOTE I've left out some details in the listing clarity. The code examples in the book
aren’t necessarily meant to stand on their own. The source code that
accompanies this book provides the full examples.

As you can see, this example is a little more involved than the Yelling App, but it has a similar
flow. Specifically, you still performed the following steps:

® CreateaStreansBui | der instance.

® Build one or more Ser de instances.

® Construct the processing topology.

* Assemble all the components and start the Kafka Streams program.

You’ll also notice that I haven’t shown the logic responsible for creating the various mappings
from the original transaction object to new types and that is by design. First of all, the code for a

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

161

KeyVal ueMapper or Val ueMapper is going to be distinct for each use case, so the particular
implementations don’t matter too much.

But more to the point, if you look over the entire Kafka Streams application you can quickly get
a sense of what each part is accomplishing, and for the most part any details of working directly
with Kafka are abstracted away. And to me that is the strength of Kafka Streams; with the DSL
you get specify what operations you need to perform on the event stream and Kafka Streams
handles the details. Now it’s true that no one framework can solve every problem and sometimes
you need a more hands-on lower level approach and you’ll learn about that in a upcoming
chapter when we cover the Processor API.

In this application, I’ve mentioned using a Ser de, but [haven’t explained why or how you create
them. Let’s take some time now to discuss the role of the Ser de in a Kafka Streams application.

6.3.4 Using Serdes to encpsulate serializers and deserializers in Kafka Streams

As you learned in previous chapters, Kafka brokers work with records in byte array format. It’s
the responsibility of the client to serialize when producing records and deserialize when
consuming. It’s no different with Kafka Streams as it uses embedded consumers and producers.
There is one small difference when configuring a Kafka Streams application for serialization vs.
raw producer or consumer clients. Instead of providing a specific deserializer or serializer, you
configure Kafka Streams with a Ser de, which contains both the serializer and deserializer for a
specific type.

Some serdes are provided out of the box by the Kafka client dependency, (Stri ng, Long,
| nt eger, and so on), but you’ll need to create custom serdes for other objects.

In the first example, the Yelling App, you only needed a serializer/deserializer for strings, and an
implementation is provided by the Serdes. String() factory method. In the ZMart example,
however, you need to create custom Ser de instances, because of the arbitrary object types. We’ll
look at what’s involved in building a Ser de for the Ret ai | Pur chase class. We won’t cover the
other Ser de instances, because they follow the same pattern, just with different types.

NOTE I'm including this discussion on Serdes creation for completeness, but in the
source code there is a class SerdeUti| which provides a pr ot obuf Ser de
method which you’ll see in the examples and encapsulates the steps
described in this section.

Building a Serde requires implementations of the Deseri ali zer<T> and Serial i zer<T>
interfaces. We covered creating your own serializer and deserializer instances towards the end of

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

162

chapter 3 on Schema Registry, so I won’t go over those details again here. For reference you can
see the full code for the ProtoSerializer and ProtoDeserializer in the
bbej eck. seri al i zer s package in the source for the book.

Now, to create a Ser de<T> object, you’ll use the Ser des. ser deFr om factory method taking
steps like the following:

Deseri al i zer <Ret ai | Pur chasePr ot 0. Ret ai | Pur chase> pur chaseDeseri al i zer =
new Prot oDeserializer<>();
Seri al i zer <Ret ai | Pur chasePr ot 0. Ret ai | Pur chase> purchaseSerializer =
new ProtoDeserializer<>(); ©
Map<String, C ass<Retail PurchaseProto. Retail Purchase>> configs
= new HashMap<>();
configs. put (fal se, Retail PurchaseProto. Retail Purchase. cl ass);
deseriali zer.configure(configs,isKey);
Ser de<Ret ai | Pur chasePr ot 0. Ret ai | Purchase> pur chaseSerde =
Ser des. serdeFron(purchaseSeri al i zer, purchaseDeseri al i zer); (4]

Creates the Deserializer for the Retail PurchaseProto.Retail Purchase class
Creates the Serializer for the Retail PurchaseProto.Retail Purchase class
Configurations for the deserializer

Creates the Protobuf Serde for Retail PurchaseProto.Retail Purchase objects

© © o o

As you can see, a Ser de object is useful because it serves as a container for the serializer and
deserializer for a given object. Here you need to create a custom Serde for the Protobuf objects
because the streams example does not use Schema Registry, but using it with Kafka Streams is a
perfectly valid use case. Let’s take a quick pause to go over how you configure your Kafka
Streams application when using it with Schema Registry.

6.3.5 Kafka Streams and Schema Registry

In chapter four I discussed the reasons why you’d want to use Schema Registry with a Katka
based application. I’ll briefly describe those reasons here. The domain objects in your application
represent an implicit contract between the different users of your application. For example
imagine one team of developers change a field type from a j ava. uti| . Dat e to a | ong and start
producing those changes to Kafka, the downstream consumers applications will break due to the
unexpected field type change.

So by using a schema and using Schema Resitry to store it, you make it much easier to enforce
this contract by enabling better coordination and compatibility checks. Additionally, there are
Schema Registry project provides Schema Registry "aware" (de)serializers and Serdes,
alleviating the developer from writing the serialization code.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

163

IMPORTANT Schema Registry provides both a JSONSer de and a JSONSchenmaSer de, but
they are not interchangeable! The JSONSer de is for Java objects that use JSON
for describing the object. The JSONSchemaSer de is for objects that use
JSONSchena as the formal definition of the object.

So how would the ZMar t Kaf kaSt r eans App change to work with Schema Registry? All that is
required is to use Schema Registry aware Serde instances. The steps for creating a Schema
Regeistry aware Serde are simple:

1. Create an instance of one the provided Serde instances
2. Configureit with the URL for a Schema Registry server.

Here are the concrete steps you’ll take:

Kaf kaPr ot obuf Ser dePur chase> pr ot obuf Serde =
new Kaf kaPr ot obuf Ser de<>(Pur chase. cl ass); @
String url = "https://..."; (2]
Map<String, Cbject> confighMap = new HashMap<>();
confi ghvap. put (
Abst r act Kaf kaSchemaSer DeConf i g. SCHEMA_REQ STRY_URL_Og\lFI G
url);

pr ot obuf Ser de. confi gure(confi gMap, false); (4]

9 |nstantiating the K afkaProtobuf Serde providing the class type as a constructor
parameter

The URL for the location of a Schema Registry instance
Putting the URL in aHashMap
Calling the K afkaProtobuf Serdetconfigure method

So, with just few lines of code, you’ve created a Schema Registry aware Serde that you can use

in your Kafka Streams application.

IMPORTANT Since Kafka Streams contains consumer and producer clients, the same rules
for schema evolution and compatibility apply

We’ve covered a lot of ground so far in developing a Kafka Streams application. We still have
much more to cover, but let’s pause for a moment and talk about the development process itself
and how you can make life easier for yourself while developing a Kaftka Streams application.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

164

6.4 Interactive development

You’ve built the graph to process purchase records from ZMart in a streaming fashion, and you
have three processors that write out to individual topics. During development it would certainly
be possible to have a console consumer running to view results. But instead of using an external
tool, it would be more convenient to have your Kafka Streams application print or log from
anywhere you want inside the topology. This visual type of feedback directly from the
application is very efficient during the development process. You enable this output by using the
KSt r eam peek() or the KStream pri nt () method.

The KStream peek() allows you to perform a stateless action (via the ForeachActi on
interface) on each record flowing throw the KSt r eam instance. It’s important to note that this
operation is not expected to alter the incoming key and value. Instead the peek operator is an
opportunity to print, log, or collect information at arbitrary points in the topology. Let’s take a
another look at Yelling application, but now add a way to view the records before and after the
application starts "yelling":

Listing 6.12 Printing records flowing through the Yelling application found in

bbejeck/chapter_6/KafkaStreamsYellingAppWithPeek

/] Details left out for clarity

ForeachActi on<String, String> sysout =
(key, value) ->
Systemout.println("key " + key
+ " value " + value);

bui | der. strean("src-topic",
Consuned. wi t h(stringSerde, stringSerde))
. peek(sysout)
. mapVal ues(val ue -> val ue. t oUpper Case())
. peek(sysout)
.to("out-topic",
Produced. wi t h(stringSerde, stringSerde));

9 Printing records to the console as they enter the application

® Printing the yelling events

Here we’ve strategically placed these peek operations that will print records to the console, both
pre and post the mapVal ues call.

The KSt ream pri nt () method is purpose built for printing records. Some of the previous code
snippets contained examples of using it, but we’ll show it again here.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

165

Listing 6.13 Printing records using KStream.print found in

bbejeck/chapter_6/KafkaStreamsYellingApp

/] Details left out for clarity

KSt reanx. .. > upper CasedStream = si npl eFi r st Stream mapVal ues(...);
upper CasedStream print (Printed.toSysQut()); (1]
upper CasedStreamto(...);

9 Printing the upper cased lettters thisis an example of aterminal method in Kafka
Streams

In this case, you’re printing the upper-cased words immediately after transformation. So what’s
the difference between the two approaches? You should notice with the KStream print ()
operation, you didn’t chain the method calls together like you did using KSt r eam peek() and
this is becuase pri nt is a terminal method.

Terminal methods in Kafka Streams have a return signature of voi d, hence you can’t chain
another method call afterward, as it terminates the stream. The terminal methods in KStream
interface are print, foreach, process, and to. Asside from the print method we just
discussed, you’ll use t o when you write results back to Kafka. The f or each method is useful for
performing an operation on each record when you don’t need to write the results back to Kafka,
such as calling a microservice. The process method allows for integrating the DSL with
Processor API which we’ll discuss in an upcoming chapter.

While either printing method is a valid approach, my preference is to use the peek method
because it makes it easy to slip a print statement into an existing stream. But this is a personal
preference so ultimately it’s up to you to decide which approach to use.

So far we’ve covered some of the basic things we can do with a Kafka Streams application, but
we’ve only scratched the surface. Let’s continue exploring what we can do with an event stream.

6.5 Choosing which events to process

So far you’ve seen how to apply operations to events flowing through the Kafka Streams
application. But you are processing every event in the stream and in the same manner. What if
there are events you don’t want to handle? Or what about events with a given attribute that
require you to handle them differently?

Fortunately, there are methods available to provide you the flexibility to meet those needs. The

KSt r ean#f i | t er method drops records from the stream not matching a given predicate. The

KSt ream#spl i t allows you split the original stream into branches for different processing based
on provided predicate(s) to reroute records. To make these new methods more concrete let’s
update the requirements to the original ZMart application:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

166

® The ZMart updated their rewards program and now only provides points for purchases
over $10. With this change it would be ideal to simply drop any non-qualifying purchases
from the rewards stream.

® ZMart has expanded and has bought an electronics chain and a popular coffee house
chain. All purchases from these new stores will flow into the streaming application
you've set up, but you'll need to separate those purchases out for different treatment
while still processing everything else in the application the same.

NOTE From this point forward, all code examples are pared down to the essentials
to maximize clarity. Unless there’s something new to introduce, you can
assume that the configuration and setup code remain the same. These
truncated examples aren’t meant to stand alone—the full code listing for this
example can be found in
src/main/java/bbejeck/chapter_6/
ZMartKafkaStreamskFilteringBranchingApp.java.

6.5.1 Filtering purchases

The first update is to remove non-qualifying purchases from the rewards stream. To accomplish
this, you’ll insert a KStream fil ter () before the KSt ream mapVal ues method. The filter
takes a Pr edi cat e interface as a parameter, and it has one method defined, t est () , which takes
two parameters—the key and the value—although, at this point, you only need to use the value.

NOTE There is also KStream fi |l t er Not, which performs filtering, but in reverse.
Only records that don’t match the given predicate are processed further in the
topology.

By making these changes, the processor topology graph changes as shown in figure 6.12.

Listing 6.14 Adding a filter to drop purchases not meeting rewards criteria

KSt reanxStri ng, Rewar dAccunul at or Pr ot 0. Rewar dAccunul at or > r ewar dskKSt r eam =
retail PurchaseKStream
. mapVal ues(rewar dObj ect Mapper) ©
.filter((key, potential Reward) ->
pot enti al Rewar d. get Pur chaseTotal () > 10.00); (3]

The original rewards stream
Mapping the purchase into a Rewar dAccunul at or object

TheKStream fi |l t er method, which takes a Pr edi cat e<K, V> instance as a
parameter

You have now successfully updated the rewards stream to drop purchases that don’t qualify for

reward points.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

167

6.5.2 Splitting/branching the stream

There are new events flowing into the purchase stream and you need to process them differently.
You’ll still want to mask any credit card information, but after that the purchases from the
acquired coffee and electronics chain need to get pulled out and sent to different topics.
Additionally, you need to continue to process the original events in the same manner.

What you need to do is split the original stream into 3 sub-streams or branches; 2 for handling
the new events and 1 to continue processing the original events in the topology you’ve already
built. This splitting of streams sounds tricky, but Kafka Streams provides an elegant way to do
this as we’ll see now. Here’s an illustration demonstrating the conceptual idea of what splitting a

stream involves:

records motching the first
pre_dicod:e

Records not moctch‘ms the first
predicate, but matching the
se_cond one

> —

Or‘iginml Streom

Records not watching either predicate
will Flow on the default stream

>

Figure 6.7 Creating branches for the two specific purchase types

The general steps you’ll take to split a stream into branches are the following:

1. UsetheKstream split () method which returns aBr anchedKsSt r eamobject

2. Call BranchedKst ream branch() with awith apair of Predi cat e and Br anched
objects as parameters. The Pr edi cat e contains a condition when tested against a record
returns either true or false. The Br anched object contains the logic for processing a
record. Each execution of this method creates a new branch in the stream.

3. You complete the branching with acall to either Br anchedKSt r eam def aul t Branch()
or Br anchedKSt r eam noDef aul t Branch() . If you define a default branch any records
not matching al the predicates are routed there. With the noDef aul t Br anch option,
non-matching records get dropped. When calling either of the branching termination
methods aMap<Stri ng, KStreanxK, V>isreturned. The Map may contain KSt r eam
objects for new branch, depending on how you’ ve built the Br anched objects. We'll
cover more options for branching soon.

The Predi cate acts as a logical gate for it’s companion Branched object. If the condition
returns t r ue, then the "gate" opens and the record flows into the processor logic for that branch.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

168

IMPORTANT When splitting a KSt r eamyou can’t change the types of the keys or values, as
each branch has the same types as the parent or original branch.

In our case here, you’ll want to filter out the two purchase types into their own branch. Then
create a default branch consisting of everything else. This default branch is really the original
purchase stream so it will handle all of the records that don’t match either predicate.

Now that we’ve reviewed the concept let’s take a look at the code you’ll implement:

Listing 6.15 Splitting the stream found in

bbejeck/chapter_6/ZMartKafkaStreamsFilteringBranchingApp

/] Several details left out for clarity

Predi cat e<String, Purchase> isCoffee =
(key, purchase) ->
pur chase. get Depart nent (). equal sl gnoreCase("cof fee"); (1)

Predi cate<String, Purchase> isElectronics =
(key, purchase) ->
pur chase. get Depart nment (). equal sl gnoreCase("el ectroni cs"); (1]

pur chaseKStream split()) (2
. branch(i sCof f ee,
Branched. wi t hConsumer (cof f eeStream -> cof feeStreamto("coffee-topic"))) ©

. branch(i sEl ectronics,

Branched. wi t hConsuner (el ectroni cStream - >

el ectronicStreamto("el ectronics")) (4]
. def aul t Branch(Branched. wi t hConsuner (retai |l Stream - >

retail Streamto("purchases")); (5]

Create the predicates for determining branches
Splitting the stream
Writing the coffee purchases out to atopic

Writing the el ectronic purchases out to atopic

© 6 © © ©

The default branch where non-matching records go

Here in this example you’ve split the purchase stream into two new streams, one each for the
coffee and electronic purchases. Branching provides an elegant way to process records
differently within the same stream. While in this initial example each one is a single processor
writing records to a topic, these branched streams can be as complex as you need to make them.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

169

NOTE This example sends records to several different topics. Although you can
configure Kafka to automatically create topics it’s not a good idea to rely on
this mechanism. If you use auto-creation, the topics are configured with
default values from the server.config properties file, which may or may not be
the settings you need. You should always think about what topics you’ll need,
the number of partitions, the replication factor and create them before
running your Kafka Streams application.

In this branching example, you’ve split out discrete KSt r eam objects, which stand alone and
don’t interact with anything else in the application and that is perfectly an acceptable approach.
But now let’s consider a situation where you have an event stream you want to tease out into
separate components, but you need to combine the new streams with existing ones in the
application.

Consider you have IoT sensors and early on you combined two related sensor readings into one
topic, but as time went on newer sensors started to send results to distinct topics. The older
sensors are fine as is and it would be cost prohibited to go back and make the necessary changes
to fit the new infrastructure. So you’ll need an application that will split the legacy stream into
two streams and combine or merge them with the newer streams consisting of a single reading
type. Another factor is that any proximity readings are reported in feet, but the new ones are in
meters, so in addition to extracting the proximity reading into a separate stream, you need to
convert the reading values into meters.

Now let’s walk through an example of how you’ll do splitting and merging starting with the
splitting

Listing 6.16 Splitting the stream in a way you have access to hew streams

//Details left out for clarity

KSt reanxkStri ng, SensorProto. Sensor> | egacySensor Stream =
bui | der. strean{(" conbi ned-sensors", sensor Consuned);

Map<String, KStreanxString, SensorProto. Sensor>> sensorMap =
| egacySensor St ream spl i t (Naned. as("sensor-")) o
. branch(i sTenper at ureSensor, Branched. as("tenperature")) (2]
. branch(i sProxi m tySensor,
Branched. wi t hFunct i on(
ps -> ps. mapVal ues(feet ToMet er sMapper), “"proximty")) ©
.noDefaul t Branch(); O

Splitting the stream and providing the base name for the map keys
Creating the temperature reading branch and naming the key
Creating the proximity sensor branch with aVValueMapper function

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

170

© Specifying no default branch, because we know all records fall into only two
categories
What’s happening overall is each branch call places an entry into a Map where the key is the
concatenation of name passed into the KSt r eam spl i t () method and the string provided in the
Br anched parameter and the value is a KSt r eaminstance resulting from each br anch call.

In the first branching example, the split and subsequent branching calls also returns a Map, but in
that case it would have been empty. The reason is that when you pass in a

Branched. wi t hConsumer (a java. util.Consumer interface) it’s a void method, it returns
nothing, hence no entry is placed in the map. But the Branched. wi thFunction (a

java.util.Function interface) accepts a KSt r eanxK, V> object as a parameter and refurns a
KStream<K, V> instance so it goes into the map as an entry. At annotation three, the function
takes the branched KSt r eam object and executes a MapVal ues to convert the proximity sensor

reading values from feet to meters, since the sensor records in the updated stream are in meters.

I’d like to point out some subtlety here, the branch call at annotation two does not provide a
function, but it still ends up in the resulting Map, how is that so? When you only provide a
Br anched parameter with name, it’s treated the same if you had used a j ava. util. Functi on
that simply returns the provided KSt r eamobject, also known as an identity function. So what’s
the determining factor to use either Br anched. wi t hConsumer or Branched. wi t hFuncti on? I
can answer that question best by going over the next block of code in our example:

Listing 6.17 Splitting the stream and gaining access to the newly created streams

KSt reanxStri ng, SensorProto. Sensor> t enper at ur eSensor St ream = o
bui | der. strean{ "t enperat ure-sensors", sensor Consuned) ;

KSt reanxkStri ng, Sensor Proto. Sensor> proxi m tySensor St ream = (2]
bui | der. strean(" proxi m ty-sensors", sensorConsuned);

t enper at ur eSensor St r eam ner ge(sensor Map. get (“sensor-tenperature"))
.to("tenp-readi ng", Produced.w th(stringSerde, sensorSerde)); (3]

proxi m tySensor St r eam nmer ge(sensor Map. get (" sensor-proxi mty"))
.to("proximty-readi ng", Produced.w th(stringSerde, sensorSerde)); o

The stream with the new temperature 10T sensors
The stream with the updated proximity 10T sensors

Merging the legacy temperature readings with the new ones

© © © o

Merging the updated to meters proximity stream with the new proximity stream

To refresh your memory, the requirements for splitting the stream were to extract the different
IoT sensor results by type and place them in the same stream as the new updated IoT results and

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

171

convert any proximity readings into meters. You accomplish this task by extracting the KSt r eam
from the map with the corresponding keys created in the branching code in the previous code
block.

To accomplish putting the branched legacy stream with the new one, you use a DSL operator
KSt r eam ner ge which is the functional analog of KSt ream spl i t it merges different KSt r eam
objects into one. With KSt r eam ner ge there is no ordering guarantees between records of the
different streams, but the relative order of each stream remains. In other words the order of
processing between the legacy stream and the updated one is not guaranteed to be in any order
but the order inside in each stream is preserved.

So now it should be clear why you use Br anched. wi t hConsumer or Branched. wi t hFuncti on
in the latter case you need to get a handle on the branched KSt r eamso you can integrate into the
outer application in some manner, while with the former you don’t need access to the branched
stream.

That wraps up our discussion on branching and merging, so let’s move on to cover naming
topology nodes in the DSL.

6.5.3 Naming topology nodes

When you build a topology in the DSL, Kafka Streams creates a graph of processor nodes,
giving each one a unique name. Kafka Streams generates these node names by taking the name
the function of the processor and appending globally incremented number. To view this
description of the topology, you’ll need to get the Topol ogyDescri pti on object. Then you can
view it by printing it to the console.

Listing 6.18 Getting a description of the topology and printing it out

Topol ogyDescri pti on topol ogyDescription =
streansBui | der. bui |l d() . descri be();
System out. printl n(topol ogyDescription.toString());

Running the code above yields this output on the console:

Listing 6.19 Full topology description of the KafkaStreamsYellingApplication

Topol ogi es:
Sub- t opol ogy: O

Sour ce: KSTREAM SOURCE- 0000000000 (topics: [src-topic]) (1]
- - > KSTREAM MAPVALUES- 0000000001 (2]

Processor: KSTREAM MAPVALUES- 0000000001 (stores: []) (3]
--> KSTREAM S| NK- 0000000002
<-- KSTREAM SOURCE- 0000000000 (4]

Si nk: KSTREAM S| NK- 0000000002 (topic: out-topic) (5
<-- KSTREAM MAPVALUES- 0000000001

© The source node name

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

172

The processor that the source node sends records to
The name of the map val ues processor

The processor that provided input the the map values processor

© 6 o ©

The name of the sink node

From looking at the names, you can see the first node ends in a zero, with the second node
KSTREAM MAPVALUES ending in a one etc. The Sub-t opol ogy listing indicates a portion of the
topology that is a distinct source node and every processor downstream of the source node is a
member of the given Sub- t opol ogy. If you were to define a second stream with a new source,
then that would show up as Sub-t opol ogy: 1. We’ll see more about sub-topologies a bit later
in the book when we cover repartitioning.

The arrows - pointing to the right show the flow of records in the topology. The arrows pointing
left - indicate the lineage of the record flow, where the current processor received records one.
Note that a processor could forward records to more than one node and a single node could get
input from multiple nodes.

Looking at this topology description, it’s easy to get sense of the structure of the Kafka Streams
application. However, once you start building more complex applications, the generic names
with the numbers become hard to follow. For this reason, Kafka Streams provides a way to name
the processing nodes in the DSL.

Almost all the methods in the Streams DSL have an overload that takes a Naned object where
you can specify the name used for the node in the topology. Being able to provide the name is
important as you can make it relate to the processing nodes role in your application, not just what
the processor does. Configuration objects like Consumed and Produced have a wit hNane
method for giving a name to the operator. Let’s revisit the Kaf kaSt r eansYel | i ngAppl i cati on
but this time we’ll add a name for each processor:

Listing 6.20 Updated KafkaStreamsYellingApplication with names

bui | der. strean("src-topic",

Consuned. wi t h(stringSerde, stringSerde)
.wi t hName(" Appl i cation | nput"))
. mapVal ues((key, value) -> val ue.toUpper Case(),
Nanmed. as(" Convert to Yelling")) O

.to("out-topic",

Produced. wi t h(stringSerde, stringSerde)
.W t hNane(" Application Qutput")) ©

Naming the source node
Giving a name to the mapV alues processor

Naming the sink node

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

173

And the description from the updated topology with names will now look like this:

Listing 6.21 Full topology description with provided names

Topol ogi es:
Sub-t opol ogy: 0

Source: Application-Input (topics: [src-topic])
--> Convert-to-Yelling

Processor: Convert-to-Yelling (stores: [])
--> Application- Qut put
<-- Application-I|nput

Si nk: Application-Qutput (topic: out-topic)
<-- Convert-to-Yelling

Now you can view the topology description and get a sense of the role for each processor in the
overall application, instead of just what the processor itself does. Naming the processor nodes
becomes critical for your application when there is state involved, but we’ll get to that in a later
chapter.

Next we’ll take a look at how you can use dynamic routing for your Kafka Streams application.

6.5.4 Dynamic routing of messages

Say you need to differentiate which department of the store the purchase comes
from—housewares, say, or shoes. You can use dynamic routing to accomplish this task on a
per-record basis. The KSt r eam t o() method has an overload that takes a Topi cNaneExt r act or
which will dynamically determine the correct Kafka topic name to use. Note that the topics need
to exist ahead of time, by default Kafka Streams will not create extracted topic names
automatically.

So, if we go back to the branching example each object has a depart nent field, so instead of
creating a branch we will process these events with everything else and use the
Topi cNanmeExt r act or to determine the topic where we route the events to.

The Topi cNaneExt r act or has one method ext ract which you implement to provide the logic
for determining the topic name. What you’ve going to do here is check if the department of the
purchase matches one of the special conditions for routing the purchase events to a different
topic. If it does match, then return the name of the department for the topic name (knowing
they’ve been created ahead of time). Otherwise return the name of topic where the rest of the
purchase events are sent to.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

174

Listing 6.22 Implementing the extract method to determine the topic name based on

purchase department

@verride
public String extract(String key,
Pur chase val ue,
Recor dCont ext recordContext) {
String departnent = val ue. get Departnent();
if (departnent.equal s("coffee")
|| departnent.equals("electronics")) { ©
return departnent;
} else {
return "purchases"; (2]

}

© Checking if the department matches one of special cases

® The default case for the topic name

NOTE The Topi cNaneExt r act or interface only has one method to implement, I've
chosen to use a concrete class because you can then write a test for it.

Although the code example here is using the value to determine the topic to use, it could very
well use the key or a combination of the key and the value. But the third parameter to the
Topi cNaneExt r act or #ext ract method is a RecordCont ext object. Simply stated the
Recor dCont ext is the context associated with a record in Kafka Streams.

The context contains metadata about the record- the original timestamp of the record, the original
offset from Kafka, the topic and partition it was received, and the Headers. We discussed
headers in the chapter on Kafka clients, so I won’t go into the details again here. One of the
primary use cases for headers is routing information, and Kafka Streams exposes them via the
Processor Cont ext . Here’s one possible example for retrieving the topic name via a Header

In this example you’ll extract the Header s from the record context. You first need to check that
the Header s are not null, then you proceed to drill down to get the specific routing information.
From there you return the name of topic to use based on the value stored in the Header . Since

Header s are optional and may not exist or contain the specific "routing" Header you’ve defined
a default value in the Topi cNanmeExt ract or and return it in the case where the output topic
name isn’t found.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

175

Listing 6.23 Using information in a Header for dynamically determining the topic name to

send a record to

public String extract(String key,
Pur chasePr ot 0. Pur chase val ue,
Recor dCont ext recordContext) {

Headers headers = recordContext. headers(); o
if (headers !'= null) {
|t er at or <Header > routi ngHeaderlterator =
headers. headers("routing").iterator();

if (routingHeaderlterator.hasNext()) {
Header routing = routingHeaderlterator.next(); (2]

return new String(routing.value(),

St andar dCharsets. UTF_8); ©

}
}

return defaul t Topi cName; O

Retrieving the headers from the Recor dCont ext
Extracting the specific routing Header

Returning the name of the topic to use from the Header value

© © ®© o

If no routing information found, return a default topic name

Now you’ve learned about using the Kafka Streams DSL API.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

176

6.6 Summary

Kafka Streams is a graph of processing nodes called atopology. Each nodein the
topology is responsible for performing some operation on the key-value records flowing
through it. A Kafka Streams applciation is minimally composed of a source node that
consumes records from atopic and sink node that produces results back to a Kafkatopic.
Y ou configure a Kafka Streams application minimally with the application-id and the
bootstrap servers configuration. Multiple Kafka Streams applications with the same
application-id are logically considered one application.

Y ou can use the KSt r eam mapVal ues function to map incoming record values to new
values, possibly of adifferent type. Y ou aso learned that these mapping changes
shouldn’t modify the original objects. Another method, KSt r eam map, performs the same
action but can be used to map both the key and the value to something new.

To selectively process records you can use the KSt ream fi | t er operation where records
that don’t match a predicate get dropped. A predicate is a statement that accepts an object
as aparameter and returnst r ue or f al se depending on whether that object matches a
given condition. ThereisalsothekStream fi | t er Not method that does the opposite - it
only forwards key-value pairs that don’t match the predicate.

TheKst r eam br anch method uses predicates to split records into new streams when a
record matches a given predicate. The processor assigns a record to a stream on the first
match and drops unmatched records. Branching is an elegant way of splitting a stream up
into multiple streams where each stream can operate independantly. To perform the
opposite action there is KSt r eam mer ge which you can use to merge 2 KSt r eamobjects
into one stream.

Y ou can modify an existing key or create a new one using the KSt r eam sel ect Key
method.

For viewing records in the topology you can use either KSt r eam pri nt or

KSt r eam peek (by providing aFor eachAct i on that does the acutal printing).

KSt ream pri nt isaterminal operation meaning that you can’'t chain methods after
caling it. KSt r eam peek returns akst r eaminstance and this makesit easier to embed
before and after KSt r eammethods.

Y ou can view the generated graph of a Kafka Streams application by using the

Topol ogy. descri be method. All graph nodes in Kafka Streams have auto-generated
names by default which can make the graph hard to understand when the application
grows in complexity. Y ou can avoid this situation by providing namesto each KSt r eam
method so when you print the graph, you have names describing the role of each node.

Y ou can route records to different topics by passing a Topi cNaneExt r act or asa
parameter to the KSt r eam t o method. The Topi cNameExt r act or can inspect the key,
value, or headers to determine the corect topic name to use for producing records back to
Kafka. The topics must be created ahead of time.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

177

Sreams and state

This chapter covers

Adding stateful operations to Kafka Streams
Using state stores in Kafka Streams

Enriching event streams with joins

Learning how timestamps drive Kafka Streams

In the last chapter, we dove headfirst into the Kafka Streams DSL and built a processing
topology to handle streaming requirements from purchase activity. Although you built a
nontrivial processing topology, it was one dimensional in that all transformations and operations
were stateless. You considered each transaction in isolation, without any regard to other events
occurring at the same time or within certain time boundaries, either before or after the
transaction. Also, you only dealt with individual streams, ignoring any possibility of gaining
additional insight by joining streams together.

In this chapter, you’ll extract the maximum amount of information from the Kafka Streams
application. To get this level of information, you’ll need to use state. State is nothing more than
the ability to recall information you’ve seen before and connect it to current information. You
can utilize state in different ways. We’ll look at one example when we explore the stateful
operations, such as the accumulation of values, provided by the Kafka Streams DSL.

We’ll get to another example of using state when we’ll discuss the joining of streams. Joining
streams is closely related to the joins performed in database operations, such as joining records
from the employee and department tables to generate a report on who staffs which departments
in a company.

We’ll also define what the state needs to look like and what the requirements are for using state

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

178

when we discuss state stores in Kafka Streams. Finally, we’ll weigh the importance of
timestamps and look at how they can help you work with stateful operations, such as ensuring
you only work with events occurring within a given time frame or helping you work with data
arriving out of order.

7.1 Stateful vs stateless

Before we go on with examples, let’s provide a description of the difference between stateless
and stateful. In a stateless operation there is no additional information retrieved, what’s present is
enough to complete the desired action. On the other hand, a stateful operation is more complex
because it involves keeping the state of previous event. A basic example of a stateful operation is
an aggregation.

For example, consider this function:

Listing 7.1 Stateless function example

publ i c bool ean nunber| sOnePredi cate (Wdget wi dget) {

return wi dget. nunber == 1;

Here all the W dget object contains all the information needed to execute the predicate, there’s
no need to lookup or store data. Now let’s take a look at an example of a stateful function

Listing 7.2 Stateful function example

public int count(Wdget widget) {

int wi dget Count = hashMap. conput e(wi dget.id,
(key, value) -> (value == null) ? 1 : value + 1)

return w dget Count;

}

Here in the count function, we are computing the total of widgets with the same id. To perform
the count we first must look up the current number by id, increment it, and then store the new
number. If no number is found, we go ahead and provide an initial value, a 1 in this case.

While this is a trivial example of using state, the principals involved are what matter here. We
are using a common identifier across different objects, called a key, to store and retrieve some
value type to track a given state that we want to observe. Additionally, we use an initializing
function to produce a value when one hasn’t been calculated yet for a given key.

These are the core steps we’re going to explore and use in this chapter, although it will be far
more robust than using the humble HashMap!

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

179

7.2 Adding stateful operations to Kafka Streams

So the next question is why you need to use state when processing an event stream? The answer
1s any time you need to track information or progress across related events. For example consider
a Kafka Streams application tracking the progress of players in an online poker game.
Participants play in rounds and their score from each round is transmitted to a server then reset to
zero for the start of the next round. The game server the produces the players score to a topic.

A stateless event stream will give you the opportunity to work with the current score from the
latest round. But for tracking their total, you’ll need to keep the state of all their previous scores.

This scenario leads us to our first example of a stateful operation in Kafka Streams. For this
example we’re going to use a reduce. A reduce operation takes multiple values and reduces or
merges them into a single result. Let’s look at an illustration to help understand how this process

works:

L1?, 17, 12 —= L46]

A reduce operation that takes a

ist of numbers and sums them together
So it's "re_ducins" the input to a

Single Vca.[ue

Figure 7.1 A reduce takes several inputs and merges them into a single result of the same type

As you can see in the illustration, the reduce operation takes five numbers and "reduces" them
down to a single result by summing the numbers together. So Kafka Streams takes an unbounded
stream of scores and continues to sum them per player. At this point we’ve described the reduce
operation itself, but there’s some additional information we need to cover regarding how Kafka
Streams sets up to perform the reduce.

When describing our online poker game scenario, I mentioned that there are individual players,
so it stands to reason that we want to calculate total scores for each individual. But we aren’t
guaranteed the order of the incoming player scores, so we need the ability to group them.
Remember Kafka works with key-value pairs, so we’ll assume the incoming records take the
form of playerld-score for the key-value pair.

So if the key is the player-id, then all Kafka Streams needs to do is bucket or group the scores by
the id and you’ll end up with the summed scores per player. It will probably be helpful for us to

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

180

view an illustration of the concept:

Incoming score streoam —_—

Anna-200, Neil-225, Matthias-175, Neil-195, Aama-350, Neil-195, Matthias-300

Group records
Bt/ key then sum Anno. -> 550
the scores for ———= Nel -> 615

each Pl"*‘/e-r Matthias -> 475

Figure 7.2 Grouping the scores by player-id ensures we only sum the scores for the individual players

So by grouping the scores by player-id, you are guaranteed to only sum the scores for each
player. This group-by functionality in Kafka Streams is similar to the SQL group-by when
performing aggregation operations on a database table.

NOTE At this point going forward, I'm not going to show the basic setup code
needed i.e. creating the StreanBui | der instance and serdes for the record
types. You've learned in the previous chapter how these components fit into
an application, so you can refer back if you need to refresh your memory.

Now let’s see the reduce in action with Kafka Streams

Listing 7.3 Performing a reduce in Kafka Streams to show running total of scores in an

online poker game

KSt reanxStri ng, Doubl e> poker Scor eStream = bui | der. st rean(" poker - gane",
Consuned. wi t h(Serdes. String(), Serdes.Double()));

poker Scor eSt r eam
.groupByKey() @
. reduce(Doubl e: : sum (2]
Materialized. with(Serdes. String(), Serdes.Double()))
.toStrean() (3]
.to("total -scores",
Produced. wi t h(Serdes. String(), Serdes.Double())); (4]

Grouping by key so that scores are calculated by individual keys
Reducer as a method reference

Converting the KTable to a stream

© © © o

Writing the results out to atopic
This Kafka Streams application results in key-value pairs like "Neil, 650" and it’s a continual

stream of summed scores, continually updated.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

181

Looking over the code you can see you first perform a gr oupByKey call. It’s important to note
that grouping by key is a prerequisite for stateful aggregations in Kafka Streams. So what do you
do when there is no key or you need to derive a different one? For the case of using a different
key, the KStream interface provides a groupBy method that accepts a KeyVal ueMapper
parameter that you use to select a new key. We’ll see an example of selecting a new key in the
next example.

7.2.1 Group By details

We should take a quick detour to briefly discuss the return type of the group-by call, which is a
KG oupedSt ream The KGroupedStreamis an intermediate object and it provides methods
aggr egat e, count, and reduce. In most cases, you won’t need to keep a reference to the
KGr oupedSt r eam you’ll simply execute the method you need and its existence is transparent to

you.

What are the cases when you’d want to keep a reference to the KG oupedSt r ean? Any time you
want to perform multiple aggregation operations from the same key grouping is a good example.
We’ll see one when we cover windowing later on. Now let’s get back to the discussion of our
first stateful operation.

Immediately after the gr oupByKey call we execute r educe, and as I’ve explained before the

KGr oupedSt r eam object is transparent to us in this case. The r educe method has overloads
taking anywhere from one to three parameters, in this case we’re using the two parameter version
which accepts a Reducer interface and a Mat eri al i zed configuration object as parameters. For
the Reducer you’re using a method reference to the static method Doubl e. sumwhich sums the
previous total score with the newest score from the game.

The Mat eri al i zed object provides the serdes used by the state store for (de)serializing keys and
values. Under the covers, Kafka Streams uses local storage to support stateful operations. The
stores store key-value pairs as byte arrays, so you need to provide the serdes to serialize records
on input and deserialize them on retrieval. We’ll get into the details of state stores in an
upcoming section.

After reduce you call t oSt ream because the result of all aggregation operations in Kafka
Streams is a KTabl e object (which we haven’t covered yet, but we will in the next chapter), and
to forward the aggregation results to downstream operators we need to convert it to a KSt r eam

Then we can send the aggregation results to an output topic via a sink node represented by the t o
operator. But stateful processors don’t have the same forwarding behavior as stateless ones, so
we’ll take a minute here to describe that difference.

Kafka Streams provides a caching mechanism for the results of stateful operations. Only when
Kafka Streams flushes the cache are stateful results forwarded to downstream nodes in the

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

182

topology. There are two scenarios when Kafka Streams will flush the cache. The first when the
cache is full, which by default is 10MB, or secondly when Kafka Streams commits, which is
every thirty seconds with default settings. An illustration of this will help to cement your
understanding of how the caching works in Katka Streams.

The processor chamge,los,

forwards the aFare,goction rQSul‘ts { (f (\

to the caching /
: O @ 9 5 Q next processor

m-me,mon/ cache \
’ state store on disk

When Kafka Streams Flushes

the cache onh/ the latest

record per ke_y is written

to the changel% Topie, the state store
and Porwarded to the next processor

ke_l/-VO\lue_S Plow wto
the aggregation
processor

Figure 7.3 Caching intermediate results of an aggregation operation

So from looking at the illustration you can see that the cache sits in front forwarding records and
as a result you won’t observe several of the intermediate results, but you will always see the
latest updates at the time of a cache flush. This also has the effect of limiting writes to the state
store and its associated changelog topic. Changelog topics are internal topics created by Katka
Streams for fault tolerance of the state stores. We’ll cover changelog topics in an upcoming

section.

TIP If you want to observe every result of a stateful operation you can disable the
cache by setting the StreansConfi g. CACHE MAX BYTES BUFFERI NG _CONFI G
setting to 0.

7.2.2 Aggregation vs. reducing

At this point you’ve learned about one stateful operator, but we have another option for stateful
operations. If you noticed with r educe, since you are merging record values, it’s expected that a
r educe returns the same type as a result. But sometimes you’ll want to build a different result
type and for that you’ll want to use the aggr egat e operation. The concept behind an aggregation
is similar, but you have the flexibility to return a type different from the record value. Let’s look

at an example to answer why you would use aggr egat e over r educe.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

183

Imagine you work for ETrade you need to create an application that tracks stock transactions of
individual customers, not large institutional traders. You want to keep a running tally of the total
volume of shares bought and sold, the dollar volume of sales and purchases, and the highest and
lowest price seen at any point.

To provide this type of information, you’ll need to create a custom data object. This where the
aggr egat e comes into play, because it allows for a different return type from the incoming
value. In this case the incoming record type is singular stock transaction object, but the
aggregation result will be a different type containing the required information listed in the
previous paragraph.

Since we’ll need to put this custom object in a state store which requires serialization, we’ll
create a Protobuf schema so we can generate it and leverage utility methods for creating Protobuf
serdes . Since this application has detailed aggregation requirements, we’ll implement the
Aggregator<K, V, VR> interface as a concrete class which will allow us to test it
independently.

Let’s take a look at part of the aggregator implementation. Since this class contains some logic
not directly related to learning Katka Streams, I’m only going to show partial information on the
class, to view full details, consult the source code and Ilook for the
bbej eck. chapt er _7. aggr egat or . St ockAggr egat or class.

Listing 7.4 Aggregator implementation used for creating stock transaction summaries

public class StockAggregator inplenments Aggregator<String,
Transacti on,
Aggr egat e> {

@verride

publ i c Aggregate apply(String key,
Transaction transaction,
Aggr egat e aggregate) { (1]

Aggregat e. Bui | der currAggregate =
aggregate.toBuilder(); @

doubl e transacti onDollars =
transacti on. get Nunber Shar es()
* transaction. get SharePrice(); (3]

if (transaction.getlsPurchase()) { (4]
| ong current PurchaseVol une =
curr Aggr egat e. get Pur chaseShar eVol une() ;
curr Aggr egat e. set Pur chaseShar eVol ume(
current Pur chaseVol ure
+ transaction. get Nunber Shares());

doubl e currentPurchaseDol | ars =
cur r Aggr egat e. get Pur chaseDol | ar Amount () ;

cur r Aggr egat e. set Pur chaseDol | ar Amount (
current PurchaseDol | ars
+ transactionDol | ars);

}

//Further details left out for clarity

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

184

9 |mplementation of the apply method the second parameter is the incoming record,
third parameter is the current aggregate

Need to use a builder to update Protobuf object
Getting the total dollars of the transaction

If the transaction is a purchase update the purchase related details

I’'m not going to go into much detail about the Aggr egat or instance here, since the main point of
this section how to build a Kafka Streams aggregation application, the particulars of how you
implement the aggregation is going to vary from case to case. But from looking at this code, you
can see how we’re building up the transactional data for a given stock. Now let’s look at how
we’ll plug this Aggr egat or implementation into a Kafka Streams application to capture the
information. The source <code for this example can be found in
bbejeck.chapter 7.StreamsStockTransactionAggregations

NOTE There’s some details I'm going to leave out of the source code as presented in
the book, printing records to the console for example. Going forward our
Kafka Streams applications will get more complex and it will be easier to
learn the essential part of the lesson if | only show the key details. Rest
assured the source code is complete and will be thoroughly tested to ensure
that the examples compile and run.

Listing 7.5 Kafka Streams aggregation

KStreanxString, Transaction> transacti onKStream =
bui | der. strean("stock-transactions",
Consuned. wi t h(stringSerde, txnSerde)); o

transacti onKStream gr oupBy((key, val ue) -> val ue. get Synbol (), (2}
Grouped. wi th(Serdes. String(), txnSerde))
.aggregate(() -> initial Aggregate,
new St ockAggregator (),
Materialized. with(stringSerde, aggregateSerde))
.toStrean() O
. peek((key, value) -> LOG info("Aggregation result {}", value))
.to("stock-aggregations", Produced.w th(stringSerde, aggregateSerde)); (5]

Creating the KSt r eaminstance
Grouping by key and providing a function to select the key
Calling the aggregate function

Converting the resulting aggregation KTabl e to aKSt r eam

®© 6 © © ©

Writing the aggregation results out to atopic

In annotation one, this application starts out in familiar territory, that is creating the KStream
instance by subscribing it to a topic and providing the serdes for deserialization. I want to call

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

185
your attention to annotation two, as this is something new.

You’ve seen a group-by call in the reduce example, but in this example the inbound records are
keyed by the client-id and we need to group records by the stock ticker or symbol. So to
accomplish the key change, you use GroupBy which takes a KeyVal ueMapper, which is a
lambda function in our code example. In this case the lambda returns the ticker symbol in the
record to enable to proper grouping.

Since the topology changes the key, Kafka Streams needs to repartition the data. I’ll discuss
repartitioning in more detail in the next section, but for now it’s enough to know that Kafka
Streams takes care of it for you.

Listing 7.6 Kafka Streams aggregation

transacti onKStream groupBy((key, value) -> val ue. get Synbol (),
G ouped. wi t h(Serdes. String(), txnSerde))
.aggregate(() -> initial Aggregate,
new St ockAggregator (),
Material i zed. with(stringSerde, aggregateSerde))
.toStrean() @
. peek((key, value) -> LOG info("Aggregation result {}", value))
.to("stock-aggregations", Produced.w th(stringSerde, aggregateSerde)); (3]

© Calling the aggregate function
@ Converting the resulting aggregation KTabl e to aKSt r eam

© Writing the aggregation results out to a topic

At annotation three is where we get to the crux of our example, applying the aggregation
operation. Aggregations are little different from the reduce operation in that you need to supply
an initial value.

Providing an initial value is required, because you need an existing value to apply for the first
aggregation as the result could possibly be a new type. With the reduce, if there’s no existing
value, it simply uses the first one it encounters.

Since there’s no way for Kafka Streams to know what the aggregation will create, you need to
give it an initial value to seed it. In our case here it’s an instantiated
St ockAggr egat ePr ot 0. Aggr egat e object, with all the fields uninitialized.

The second parameter you provide is the Aggr egat or implementation, which contains your logic
to build up the aggregation as it is applied to each record it encounters. The third parameter,
which is optional, is a Materi al i zed object which you’re using here to supply the serdes
required by the state store.

The final parts of the application are used to covert the KTabl e resulting from the aggregation to

a KSt r eamso that you can forward the aggregation results to a topic. Here you’re also using a

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

186

peek operate before the sink processor to view results without consuming from a topic. Using a
peek operator this way is typically for development or debugging purposes only.

NOTE Remember when running the examples that Kafka Streams uses caching so
you won’t immediately observe results until the cache gets flushed either
because it’s full or Kafka Streams executes a commit.

So at this point you’ve learned about the primary tools for stateful operations in the Kafka
Streams DSL, reduce and aggregation. There’s another stateful operation that deserves mention
here and that is the count operation. The count operation is a convenience method for a
incrementing counter aggregation. You’d use the count when you simply need a running tally of
a total, say the number of times a user has logged into your site or the total number of readings
from an [oT sensor. We won’t show an example here, but you can see one in action in the source
code at bbejeck/chapter 7/StreamsCountingApplication.

In this previous example here where we built stock transaction aggregates, I mentioned that
changing the key for an aggregation requires a repartitioning of the data, let’s discuss this in a
little more detail in the next section.

7.2.3 Repartitioning the data

In the aggregation example we saw how changing the key required a repartition. Let’s have a
more detailed conversation on why Kafka Streams repartition and how it works. Let’s talk about
the why first.

We learned in a previous chapter that the key of a Kafka record determines the partition. When
you modify or change the key, there’s a strong probability it belongs on another partition. So, if
you’ve changed the key and you have a processor that depends on it, an aggregation for example,
Kafka Streams will repartition the data so the records with the new key end up on the correct
partition. Let’s look at an illustration demonstrating this process in action:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

187

The keys are originally null, so distribution is done round-robin,
resulting in records with the same ID across different partitions.

Original topic Repartition topic
Partition O Partition 0
(null, {fid":"5", “info™"123"}) ("4”, {"id":"4”, “info”:"def"})
(null, {"id":"4”, “info™:."abc™}) . (“4”, {"id":"4", “info”:"abc"})
‘q b 7
For repartitioning, set the ID el
field as the key, and then write .
the records to a topic. A
Partition 1 Partition 1
nU", {uidu:n5u, uinfou:n456n}) ,”, \\\\ (5551!, {uidu:n5u, uinfon:n456n})
N
(null, {fid":"4", “info™:."def"}) (“5”, {"id":"5”, “info™:"123"})

Now with the key populated, all
records with the identical ID land
the same partition.

Figure 7.4 Repartitioning: changing the original key to move records to a different partition

As you can see here, repartitioning is nothing more than producing records out to a topic and
then immediately consuming them again. When the Kafka Streams embedded producer writes
the records to the broker, it uses the updated key to select the new partition. Under the covers,
Kafka Streams inserts a new sink node for producing the records and a new source node for
consuming them, here’s an illustration showing the before and after state where Katka Streams
updated the topology:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

Source Node
for ‘toplow O

Stateful
Node

188

Source Node

for ‘toplosﬁ O
l(et/ changing @
Node 7

v
Sink node inserted LV Kofko Streoms —— O

Internal topic created EV Kofka Streams —_—

Source node inserted EV Kofka Streoms % .

Stoteful O
Node \

Figure 7.5 Updated topology where Kafka Streams adds a sink and source node for repartitioning of the

data

The newly added source node creates a new sub-topology in the overall topology for the
application. A sub-topology is a portion of a topology that share a common source node. Here’s
an updated version of the repartitioned topology demonstrating the sub-topology structures:

SuB-Topolofﬂ 0

SuB-Topologl/ 0

Sul:—"{'opolow 1 \

Figure 7.6 Adding a sink and source node for repartitioning creates a new sub-topology

So any processors that come after the new source node are part of the new sub-topology.

What is the determining factor that causes Kafka Streams to repartition? If you have a key

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

189

changing operation and there’s a downstream operation that relies on the key, such as a
gr oupByKey, aggregation, or join (we’ll get to joins soon). Otherwise, if there are no
downstream operations dependent on the key, Kafka Streams will leave the topology as is. Let’s
look a couple of examples to help clarify this point:

Listing 7.7 Examples of when repartitioning is needed

myStream groupBy(...).reduce(...)... ®
nmyStream map(...).groupByKey().reduce(...)... (2]
filteredStream = nmyStream sel ectKey(...).filter(...); (3]

filteredStreaam groupByKey().aggregate(...)... (3]

Using gr oupBy followed by ar educe
Executing amap followed by agr oupByKey

Using asel ect Key to choose a new key and the resulting KSt r eamlater calls
gr oupByKey

What these code examples demonstrate is when you execute an operation where you could
change the key, Kafka Streams sets an internal boolean flag, repartiti onRequired, to true.
Since Kafka Streams can’t possibly know if you changed the key or not, when it finds an
operation dependent on the key and the internal flag evaluates to t rue, it will automatically
repartition the data.

On the other hand, even if you change the key, but don’t do an aggregation or join, the topology
remains the same:

Listing 7.8 Examples of when repartitioning is not needed

nmyStream map(...).peek(...).to(...); ©

nyStream sel ectKey(...).filter(...).to(...); (2]

© Using amap but no downstream operation depends on the key

©® Using aselectKey but also no downstream operations rely on the key

In these examples, even if you updated the key, it doesn’t affect the results of the downstream
operators. For example filtering a record solely depends on if the predicate evaluates to t r ue or
not. Additionally, since these KSt r eam instances write out to a topic, the records with updated
keys will end up on the correct partition.

So the bottom line is to only use key-changing operations (map, f | at Map, t r ansf or m) when you
actually need to change the key. Otherwise it’s best to use processors that only work on values
i.e. napVal ues, f| at MapVal ues etc. this way Kafka Streams won’t needlessly repartition the

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

190

data. There are overloads to XXXValues methods that provide *access* to the key when
updating a value, but changing the key in this case will lead to undefined behavior.

NOTE The same is true when grouping records before an aggregation. Only use
gr oupBy when you need to change the key, otherwise favor gr oupByKey.

It’s not that you should avoid repartitioning, but since it adds processing overhead it is a good
idea to only do it when required.

Before we wrap up coverage of repartitioning we should talk about an important additional
subject; inadvertently creating redundant repartition nodes and ways to prevent it. Let’s say you
have an application with two input streams. You need to perform an aggregation on the first
stream as well as join it with the second stream. Your code would look something like this:

Listing 7.9 Changing the key then aggregate and join

I/ Several details omitted for clarity
KStreanxkString, String> original StreanOne = builder.strean(...);
KStreanxkString, String> inputStreanOne = origi nal StreanOne. sel ectKey(...); (1]
KStreankString, String> inputStreanTwo = builder.strean(...); (2]
i nput St reanne. gr oupByKey().count().toStrean().to(...); (3]
KStreankString, String> joinedStream = (4]

i nput St r eamwo. j oi n(i nput St r eantne,

(vl, v2)-> v1+":"+v2,

Joi nW ndows. of Ti neDi fferenceWt hNoGrace(...),
StreamJoi ned. with(...);

Changing the key of the original stream setting the "needsRepartition” flag
The second stream

Performing a group-by-key triggering a repartition

© © o o

Performing ajoin between inputStreamOne and inputStreamTwo triggering
another repartition

This code example here is simple enough. You take the ori gi nal St reantne and need you to
change the key since you’ll need to do an aggregation and a join with it. So you use a sel ect Key
operation, which sets the repartitionRequired flag for the returned KStream Then you
perform a count () and then a j oi n with i nput St r eanOne. What is not obvious here is that
Kafka Streams will automatically create two repartition topics, one for the gr oupByKey operator
and the other for the j oi n, but in reality you only need one repartition.

It will help to fully understand what’s going on here by looking at the topology for this example.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

191

Notice there are two reparititions, but you only need the first one where the key is changed.
Source Node
for 'toplogy O

W
i

LA
s

K ey changing
Node

State Store

Figure 7.7 Redundant repartition nodes due to a key changing operation occurring previously in the
topology

When you used the key-changing operation on ori gi nal St reanmOne the resulting KSt r eam
i nput St r eanOne, now carries the repartiti onRequired = true setting. So any KStream
resulting from i nput St r eanOne that uses a processor involving the key will trigger a repartition.

What can you do to prevent this from happening? There are two choices here; manually
repartition earlier which sets the repartition flag to f al se, so any subsequent streams won’t
trigger a repartition. The other option is let Kafka Streams handle it for you by enabling
optimizations. Let’s talk about using the manual approach first.

NOTE While repartition topics do take up disk space, Kafka Streams actively purges
records from them, so you don’t need to be concerned with the size on disk,
but avoiding redundant repartitions is still a good idea.

7.2.4 Proactive Repartitioning

For the times when you might need to repartition the data yourself, the KStream API provides
the reparti ti on method. Here’s how you use it to manually repartition after a key change:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

192

Listing 7.10 Changing the key, repartitioning then performing an aggregation and a join

//Details left out of this exanple for clarity

KStreanxkString, String> original StreanOne = builder.strean(...);
KStreanxkString, String> inputStreamOne = origi nal Streantne. sel ectKey(...); (1]

KStreankString, String> inputStreanTwo = builder.strean(...);
KStreankString, String> repartitioned =
i nput StreanDne.repartiti on(Repartitioned (2]
.with(stringSerde, stringSerde)
. W t hName(" proactive-repartition"));

repartitioned. groupByKey().count().toStream().to(...); (3

KStreankString, String> joinedStream = inputStreanTwo.join(...) (4]

Changing the key setting the "needs repartition” flag

Calling the repartition method and providing key-value serdes and a name for the
repartition topic

Performing an aggregation on the repartitioned stream

Performing ajoin with the repartitioned stream.

The code here has only one change, adding repartiti on operation before performing the
gr oupByKey. What happens as a result is Kafka Streams creates a new sink-source node
combination that results in a new subtopology. Let’s take a look at the topology now and you’ll
see the difference compared to the previous one:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

193

Source Node

for toplow O

K ey chow\ging
Node

Since the o(e,Ve,loPe_r‘ Pr‘oa\ctive,lt/
used a KStream.repartition
no redundant repartitions occur

Repar‘ti‘tion

Some other stateful
ti
ot O =

State Store

Figure 7.8 Now only one repartition node due to a proactive repartition also allows for more stateful
operations without repartitioning

This new sub-topology ensures that the new keys end up on the correct partition, and equally as
important, the returned KSt r eam object has the needsRepartition flag set to fal se. As a
result, all downstream stateful operations that are descendants of this KSt r eam object don’t

trigger any further repartitions (unless the one of them changes the key again).

The KStream repartition method accepts one parameter, the Repartiti oned configuration
object. Reparti ti oned allows you to specify:

1. The serdesfor the key and value
2. The base name for the topic
3. The number of partitions to use for the topic

4. A streanPartitioner instance should you need customize the distribution of records to
partitions

Let’s pause on our current discussion and review some of these options. Since I’ve already
covered serdes and the StreanPartitioner in the previous chapter, I'm going to leave them
out here.

Providing a base-name for the repartition topic is always a good idea. I’'m using the term
base-name because Kafka Streams takes the name you provide and adds a prefix of
"<application-id>-" which comes from the value you supplied in the configs and a suffix of

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

194
"-repartition".

So given an application-id of "streams-financial" and a name of "stock-aggregation" results in a
repartition topic named "streams-financial-stock-aggregation-repartition". The reason it’s a good
idea to always provide a name is two fold. First having a meaningful topic name is always
helpful to understand its role when you list the topics on your Kafka cluster.

Secondly, and probably more important, is the name you provide remains fixed even if you
change you topology upstream of the repartition. Remember, when you don’t provide names for
processors, Katka Streams generates names for them, and part of the name includes a zero
padded number generated by a global counter.

So if you add or remove operators upstream of your repartition operation and you haven’t
explicitly named it, its name will change due to changes in global counter. This name shift can
be problematic when re-deploying an existing application. I’ll talk more about importance of
naming stateful components of a Kafka Streams application in an upcoming section.

NOTE Although there are four parameters for the Repartiti oned object, you don’t
have to supply all of them. You can use any combination of the parameters
that suit your needs.

Specifying the number of partitions for the repartition topic is particularly useful in two cases:
co-partitioning for joins and increasing the number of tasks to enable higher throughput. Let’s
discuss the co-partitioning requirement first. When performing joins, both sides must have the
same number of partitions (we’ll discuss why this is so in the upcoming joins section). So by
using the r epar ti ti on operation, you can change the number partitions to enable a join, without
needing to change the original source topic, keeping the changes internal to the application.

7.2.5 Repartitioning to increase the number of tasks

If you recall from the previous chapter, the number of partitions drive the number of tasks which
ultimately determines the amount of active threads a application can have. So one way to
increase the processing power is to increase the number of partitions, since that leads to more
tasks and ultimate more threads that can process records. Keep in mind that tasks are evenly
assigned to all applications with the same id, so this approach to increase throughput is
particularly useful in an environment where you can elastically expand the number of running
instances.

While you could increase the number of partitions for the source topic, this action might not
always be possible. The source topic(s) of a Kafka Streams application are typically "public"
meaning other developers and applications use that topic and in most organizations, changes to
shared infrastructure resources can be difficult to get done.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

195

Let’s look at an example of performing a repartition to increase the number of tasks (example
found in bbejeck.chapter 7.RepartitionForThroughput)

Listing 7.11 Increasing the nhumber of partitions for a higher task count

KStreankString, String> repartitioned =

initial Streamrepartition(Repartitioned
.Wi th(stringSerde, stringSerde)
.wi thName("rul ti pl e-aggregation”)
. Wit hNunber Of Partitions(10)); @

9 Increasing the number of partitions

Now this application will have 10 tasks which means there can up to 10 stream threads
processing records driven by the increase in the number of partitions.

You need to keep in mind however, that adding partitions for increased throughput will work
best when there is a fairly even distribution of keys. For example, if seventy percent of you key
space lands on one partition, increasing the number of partitions will only move those keys to a
new partition. But since the overall *distribution™ of the keys is relatively unchanged, you won’t
see any gains in throughput, since one partition, hence one task, is shouldering most of the
processing burden.

So far we’ve covered how you can proactively repartition when you’ve changed the key. But this
requires you to know when to repartition and always remember to do so, but is there a better
approach, maybe have Kafka Streams take care of this for you automatically? Well there is a
way, by enabling optimizations.

7.2.6 Using Kafka Streams Optimizations

While you’re busy creating a topology with various methods, Kafka Streams builds a graph or
internal representation of it under the covers. You can also consider the graph to be a "logical
representation” of your Kafka Streams application. In your code, when you execute
St reanBui | der #bui | d method, Kafka Streams traverses the graph and builds the final or
physical representation of the application.

At a high level, it works like this: as you apply each method, Kafka Streams adds a "node" to the
graph as depicted in the following illustration:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

196

KStr‘e_aaa(S‘tr‘?n?, S‘tr‘?ng) w\t/S'tt‘e_am = Builo(er.stf‘e_am("'topic")
mcfS‘tream.Pi[‘te,r(...).map(...).‘to(“ou‘tpu‘t")

O O = O %O Each call to the KStream API

source. Slter worp <ink adds a node to the ‘topolow
noole no o!e node_ node,

Figure 7.9 Each call to a KStream method adds a node to the graph

When you make an additional method call, the previous "node" becomes the parent of the current
one. This process continues until you finish building your application.

Along the way, Kafka Streams will record metadata about the graph it’s building, specifically it
records if it has encountered a repartition node. Then when use the StreansBui | der #bui | d
method to create the final topology, Kafka Streams will examine the graph for redundant
repartition nodes, and if found, it will re-write your topology to have only one! This is opt-in
behavior for Kafka Streams, so to get this feature working, you’ll need to enable optimizations
by doing the following:

Listing 7.12 Enabling optimizations in Kafka Streams

streanProperties. put (StreansConfi g. TOPOLOGY_OPTI M ZATI ON_CONFI G,
St reanmsConf i g. OPTI M ZE) ; o
bui | der. bui | d(streanProperties); (2]

9 Enabling optimizations via configuration

© Passing properties to the StreamBuilder

So to enable optimizations you need to first set the proper configuration because by default it is
turned off. The second step is to pass the properties object to the StreanBuil der #bui | d
method. Then Kafka Streams will optimize your repartition nodes when building the topology.

NOTE If you have more than one key-changing operation with a stateful one further
downstream the optimizing will not remove that repartition. It only takes away
redundant repartitions for single key-changing processor.

But when you enable optimizations Kafka Streams automatically updates the topology by
removing the three repartition nodes preceding the aggregation and inserts a new single
repartition node immediately after the key-changing operation which results in a topology that
looks like the illustration in the "Proactive Repartitioning" section.

So with a configuration setting and passing the properties to the StreanBuil der you can

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

197

automatically remove any unnecessary repartitions! The decision on which one to use really
comes down to personal preference, but by enabling optimizations it guards against you
overlooking where you may need it.

Now we’ve covered repartitioning, let’s move on to our next stateful operation, joins

7.3 Stream-Stream Joins

Sometimes you may need to combine records from different event streams to "complete the
picture" of what your application is tasked with completing. Say we have stream of purchases
with the customer ID as the key and a stream of user clicks and we want to join them so we can
make connection between pages visted and purchases. To do this in Kafka Streams you use a
join operation. Many of you readers are already familiar with the concept of a join from SQL and
the relational database world and the concept is the same in Kafka Streams.

Let’s look at an illustration to demonstrate the concept of joins in Kafka Streams

Purchase Stream

P Purchase-clicks stream (result of :loin)

User-id is
the ket/

N

Joins take two streoms with the same keys andl Prooluc:e_ o
new streom with the same ke_t/ and a combined or derived value

User Clicks

Figure 7.10 Two Streams with the same keys but different values

From looking at the graphic above, there are two event streams that use the same values for the
key, a customer id for example, but the values are different. In one stream the values are
purchases and the other stream the values are links to pages the user clicked visiting the site.

IMPORTANT Since joins depend on identical keys from different topics residing on the
same partition, the same rules apply when it comes to using a key-changing
operation. If a KSt r eaminstance is flagged with repartiti onRequi r ed, Kafka
Streams will partition it before the join operation. So all the information in the
repartitioning section of this chapter applies to joins as well.

In this section, you’ll take different events from two streams with the same key, and combine
them to form a new event. The best way to learn about joining streams is to look at a concrete

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

198

example, so we’ll return to the world of retail. Consider a big box retailer that sells just about
anything you can imagine. In an never ending effort to lure more customers in the store, the
retailer partners with a national coffee house and it embeds a cafe in each store.

To encourage customers to come into the store, the retailer has started a special promotion where
if you are a member of the customer-club and you buy a coffee drink from the embedded cafe
and a purchase in the store (in either order), they’ll automatically earn loyalty points at the
completion of your second purchase. The customers can redeem those points for items from
either store. It’s been determined that purchases must made within 30 minutes of each other to
qualify for the promotion.

Since the main store and the cafe run on separate computing infrastructure, the purchase records
are in two event streams, but that’s not an issue as they both use the customer id from the club
membership for the key, so it’s a simply a case of using a stream-stream join to complete the
task.

7.3.1 Implementing a stream-stream join

The next step is to perform the actual join. So let’s show the code for the join, and since there are
a couple of components that make up the join, I’ll explain them in a section following the code
example. The source code for this example <can be found in
src/main/java/bbejeck/chapter 7/KafkaStreamsJoinsApp.java).

Listing 7.13 Using the j oi n() method to combine two streams into one new stream based

on keys of both streams

/] Details left out for clarity

KSt reanxStri ng, CoffeePurchase>
cof f eePur chaseKSt ream = bui | der. strean{...) o

KSt reankStri ng, Retail Purchase>
retail PurchaseKStream = buil der.strean(...) @

Val ueJoi ner <Cof f eePur chase,
Ret ai | Pur chase,
Pronoti on> purchaseJdoi ner =
new PronotionJoiner(); @

Joi nW ndows t hirtyM nut eW ndow =
Joi nW ndows. of Ti neDi f f erenceW t hNoG- ace(Dur ati on. mi nut es(30)); (3]

KStreankString, Pronotion> joinedKStream =
cof f eePur chaseKSt r eam j oi n(ret ai | Pur chaseKSt r eam (4]
pur chaseJoi ner,
thirtyM nut eW ndow,
St reamJoi ned. wi t h(stringSer de, (5]
cof f eeSer de,
st or eSer de)
. Wi t hNanme(" pur chase-j oi n")
. Wi thStoreNanme("joi n-stores"));

9 The streamsyou will join

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

199

VaueJoiner instance which produces the joined result object

JoinWindow specifying the max time difference between records to participate in
join
Constructs the join

StreamJoined configuration object

You supply four parameters to the KSt r eam j oi n method:

® retail PurchaseKSt ream— The stream of purchases from to join with.

® purchaseJoi ner — Animplementation of the val ueJoi ner <v1, V2, R>interface.
Val ueJoi ner accepts two values (not necessarily of the same type). The
Val ueJoi ner . appl y method performs the implementation-specific logic and returns a
(possibly new) object of type R. In this example, pur chaseJoi ner will add some
relevant information from both Pur chase objects, and it will return aPr onot i onPr ot o
object.

® thirtyM nuteW ndow— A Joi nW ndows instance. The
Joi nW ndows. of Ti neDi f f er enceW t hNoGr ace method specifies a maximum time
difference between the two values to be included in the join. Specifically the timestamp
on the secondary stream, r et ai | Pur chaseKSt r eamcan only be a maximum of 30
minutes before or after the timestamp of arecord from the cof f eePur chaseKSt r eam
with the same key.

® A streamloi ned instance — Provides optiona parameters for performing joins. In this
case, it'sthe key and the value Ser de for the calling stream, and the value Ser de for the
secondary stream. Y ou only have one key Ser de because, when joining records, keys
must be of the same type. The wi t hName method provides the name for the node in the
topology and the base name for arepartition topic (if required). Thewi t hSt or eNane is
the base name for the state stores used for the join. I [l cover join state stores usage in an
upcoming section.

NOTE Ser de objects are required for joins because join participants are materialized
in windowed state stores. You provide only one Serde for the key, because
both sides of the join must have a key of the same type.

Joins in Kafka Streams are one of the most powerful operations you can perform and it’s also
one the more complex ones to understand. Let’s take a minute to dive into the internals of how
joins work.

7.3.2 Join internals

Under the covers, the KStream DSL API does a lot of heavy lifting to make joins operational.
But it will be helpful for you to understand how joins are done under the covers. For each side of
the join, Kafka Streams creates a join processor with its own state store. Here’s an illustration
showing how this looks conceptually:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

200

Left side Righ‘t side

V

coffeePurchaseKStream. join(retailPurchaseKStream,

Left-Side join processor Right-Sicdle join processor

String rightSideStoreName="rightStore" String leftSideStoreName="leftStore"

= O

store for left-side records store for righ't-side records

Each join processor has its own state store and the name of the
store on the other side of the Join

Figure 7.11 In a Stream-Stream join both sides of the join have a processor and state store

When building the processor for the join for each side, Kafka Streams includes the name of the
state store for the reciprocal side of the join - the left side gets the name of the right side store
and the right side processor contains the left store name. Why does each side contain the name of

opposite side store? The answer gets at the heart of how joins work in Kafka Streams. Let’s look
at another illustration to demonstrate:

O,

A record comes in on the lePt-side stream
and the left side processor
puts the record in its own store

LePt side O\FD Then it looks for o watehing

processor record Bl/ ket{ and 'times‘to-mp range
n the ﬁsh‘t—hamo(store us‘-mj l:ac/ re_'trie,ving tThe

ﬁgh‘t-hahot store l:lf noame
Right side E
quessof‘

The right side follows the same process, it stores the incoming
record in its store and locks for o matech in the lePt side store

Figure 7.12 Join processors look in the other side’s state store for matches when a new record arrives

When a new record comes in (we’re using the left-side processor for the
cof f eePur chaseKSt r eam) the processor puts the record in its own store, but then looks for a

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

201

match by retrieving the right-side store (for the retail PurchasekSt ream) by name. The
processor retrieves records with the same key and within the time range specifed by the
JoinWindows.

Now, the final part to consider is if a match is found. Let’s look at one more illustration to help
us see what’s going on:

K ey Vo\|ue,-Le_Pt
-——ﬁﬁ

Left side Obf APter Pmohv\g a match on the other-side
processor k\?/[store, the processor will execute the ‘Po“om‘nsz
Right SIACOB / joiner.apply(key,left-value,right-value)
processor

Righ't-Vo.fue_ Then Porward the result to the next processor

Figure 7.13 When matching record(s) is found the processor executes the joiner’s apply method with the
key, its own record value and the value from the other side

So now, after an incoming record finds a match by looking in the store from the other join side,
the join processor (the coffeePurchaseKStream in our illustration) takes the key and the value
from its incoming record, the value for each record it has retrieved from the store and executes
the Val ueJoi ner . appl y method which creates the join record specified by the implementation
you’ve provided. From there the join processor forwards the key and join result to any down
stream processors.

Now that we’ve discussed how joins operate internally let’s discuss in more detail some of the
parameters to the join

7.3.3 Valueloiner

To create the joined result, you need to create an instance of a Val ueJoi ner<Vv1, V2, R>. The
Val ueJoi ner takes two objects, which may or may not be of the same type, and it returns a
single object, possibly of a third type. In this case, Val ueJoi ner takes a Cof f eePur chase and a
Ret ai | Pur chase and returns a Pronoti on object. Let’s take a look at the code (found in
src/main/java/bbejeck/chapter 7/joiner/PromotionJoiner.java).

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

202

Listing 7.14 Vval ueJoi ner implementation

public class PronotionJoi ner
i mpl ement's Val ueJdoi ner <Cof f eePur chase,
Ret ai | Pur chase,
Pronoti on> {

@verride

public Pronotion apply(
Cof f eePur chase cof f eePur chase,
Ret ai | Purchase retail Purchase) {

doubl e coffeeSpend = cof feePurchase. getPrice(); o
doubl e storeSpend = retail Purchase. get PurchasedltemsList() ®
.stream()

. mapToDoubl e(pi -> pi.getPrice() * pi.getQuantity()).sunm();

doubl e pronoti onPoi nts = cof f eeSpend + st oreSpend;

if (storeSpend > 50.00) {

pronoti onPoi nts += 50. 00;

}

return Pronotion. newBuil der () (4]
.set Custonerl d(retail Purchase. get Custoner|d())
.set Dri nk(cof f eePur chase. get Dri nk())
.setltenmsPurchased(retail Purchase. get Purchasedl t ensCount ())
. set Poi nt s(pronotionPoints).build();

Extracting how much was spent on coffee
Summing the total of purchased items

Calculating the promotion points

®© © © ©

Build and return the new Promotion object

To create the Pronot i on object, you extract the amount spent from both sides of the join and
perform a calculation resulting in the total amount of points to reward the customer. I’d like to
point out that the Val ueJoi ner interface only has one method, apply, so you could use a
lambda to represent the joiner. But in this case you create a concrete implementation, because
you can write a separate unit test for the Val ueJoi ner. We’ll come back this approach in the
chapter on testing.

NOTE Kafka Streams also provides a Val ueJoi ner W t hKey interface which provides
access to the key for calculating the value of the join result. However the key
is considered read-only and making changes to it in the joiner implementation
will lead undefined behavior.

7.3.4 Join Windows

The Joi nW ndows configuration object plays a critical role in the join process; it specifies the
difference between the timestamps of records from both streams to produce a join result.

Let’s refer to the following illustration as an aid to understand the Joi nW ndows role.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

203

Timestamp of the ca“ing side of the Join
1633475077619 -> Tue Oct 05 19.04 EDT

The JoinWindow is 10 minutes
19:.04

1954 1919

12

A record from the other side of the Join needs
to have a timestamp within this window to be
eligible for joining

Figure 7.14 The JoinWindows configuration specifies the max difference (before or after) from the
timestamp of the calling side the secondary side can have to create a join result.

More precisely the Joi nW ndows setting is the maximum difference, either before or after, the
secondary (other) side’s timestamp can from the primary side timestamp to create a join result.
Looking at the example in listing XXX, the join window there is set for thirty minutes. So let’s
say a record from the cof f eeSt r eamhas a timestamp of 12:00 PM, for a corresponding record
in the st or eSt r eamto complete the join, it will need a timestamp from 11:30 AM to 12:30 PM.

There are two additional Joi nW ndows() methods are available af t er and bef or e, which you
can use to specify the timing and possibly the order of events for the join.

Let’s say you’re fine with the opening window of the join at thirty minutes but you want the
closing window to be shorter, say five minutes. You’d use the Joi nW ndows. af t er method
(still using the example in listing XXX) like so

Listing 7.15 Using the JoinWindows.after method to alter the closing side of the join

window

cof feeStream join(storeStream. ..,
thirtyM nut eW ndow. af t er (Durati on. of M nutes(5))....

Here the opening window stays the same, the st or eSt r eamrecord can have a timestamp of at
least 11:30 AM , but the closing window is shorter, the latest it can be is now 12:05 PM.

The Joi nW ndows. bef or e method works in a similar manner, just in the opposite direction.

Let’s say now you want to shorten the opening window, so you’ll now use this code:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

204

Listing 7.16 The JoinWindows.before method changes the opening side of the join window

cof feeStream join(storeStream. ..,
t hi rt yM nut eW ndow. bef ore(Dur ati on. of M nutes(5))....

Now you’ve changed things so the timestamp of the st oreStreamrecord can be at most 5
minutes before the timestamp of a cof f eeSt r eamrecord. So the acceptable timestamps for a
join (st or eSt r eamrecords) now start at 11:55 AM but end at 12:30 PM. You can also use
Joi nW ndows. bef ore and Joi nW ndows. af t er to specify the order of arrival of records to
perform a join.

For example to set up a join when a store purchase only happens within 30 minutes after a cafe
purchase you would use

Joi nW ndows. of (Dur ati on. of M nut es(0). after (Duration.of M nutes(30) and to only
consider store purchases before you would use

Joi nW ndows. of (Dur ati on. of M nut es(0) . before(Duration. of M nutes(30)).

IMPORTANT In order to perform a join in Kafka Streams, you need to ensure that all join
participants are co-partitioned, meaning that they have the same number of
partitions and are keyed by the same type. Co-partitioning also requires all
Kafka producers to use the same partitioning class when writing to Kafka
Streams source topics. Likewise, you need to use the same
StreanPartitioner for any operations writing Kafka Streams sink topics via
the KSt ream t o() method. If you stick with the default partitioning strategies,
you won’t need to worry about partitioning strategies.

As you can see the Joi nW ndows class gives you plenty of options to control joining two
streams. It’s important to remember that it’s the timestamps on the records driving the join
behavior. The timestamps can be either the ones set by Kafka (broker or producer) or they can be
embedded in the record payload itself. To use a timestamp embedded in the record you’ll need to
provide a custom Ti nest anpExt r act or and I’ll cover that as well as timestamp semantics in the
next chapter.

7.3.5 StreamJoined

The final paramter to discuss is the St reamloi ned configuration object. With St r eamJoi ned
you can provide the serdes for the key and the values involved in the join. Providing the serdes
for the join records is always a good idea, because you may have different types than what has
been configured at the application level. You can also name the join processor and the state
stores used for storing record lookups to complete the join. The importance of naming state
stores is covered in the upcoming 7.4.5 section.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

205

Before we move on from joins let’s talk about some of the other join options available.

7.3.6 Other join options

The join in listing for the current example is an inner join. With an inner join, if either record
isn’t present, the join doesn’t occur, and you don’t emit a Pronoti on object. There are other
options that don’t require both records. These are useful if you need information even when the
desired record for joining isn’t available.

7.3.7 Outer joins

Outer joins always output a record, but the result may not include both sides of the join. You’d
use an outer join when you wanted to see a result regardless of a successful join or not. If you
wanted to use an outer join for the join example, you’d do so like this:

cof f eePur chaseKSt r eam out er Joi n(ret ai | PurchaseKStream . .)
An outer join sends a result that contains records from either side or both. For example the join

result could be | ef t +ri ght, | eft +nul |, or nul | +ri ght, depending on what’s present. The

following illustration demonstrates the three possible outcomes of the outer join.

Join Window Only the calling or left-side
S : record available
:: %% ':: \:' EI ——= (left-side record, null)
I_r__________i__-_________________“_J_I Both sides have records available
Ié e e E —= (lePt-sicdde record, right-side record)

Only the other or ﬁgh‘t-sio(e
———————————————— ! record available

: e N other :
Co) E E— (nu“, r‘igh‘t-s‘uo(e_ record)
I = |

Figure 7.15 Three outcomes are possible with outer joins: only the calling stream’s event, both events,
and only the other stream’s event.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

206

7.3.8 Left-outer join

A left-outer join also always produces a result. But the difference from the outer-join is the left
or calling side of the join is always present in the result, | ef t +ri ght or | ef t +nul | for example.
You’d use a left-outer join when you consider the left or calling side stream records essential for
your business logic. If you wanted to use a left-outer join in listing 7.13, you’d do so like this:

cof f eePur chaseKSt ream | ef t Joi n(r et ai | PurchaseKSt ream .)

Figure 7.17 shows the outcomes of the left-outer join.

Join Window Only the calling or lePt-s‘uole,
e . record available
1' alli I/’-‘\\ |:
! %Z?E ") ——= (left-side re_e.oro(, nul)

Both sides have records available

Cal [‘“5' other

é trens side i —> (left-side record, right-side record)

Figure 7.16 Two outcomes are possible with the left-outer join left and right side or left and null.

At this point you’ve learned the different join types, so what are the cases when you need to use
them? Let’s start with the current join example. Since you are determining a promotional reward
based on the purchase of two items, each in their own stream an inner-join makes sense. If there
is no corresponding purchase on the other side, then you don’t have an actionable result, so to
emit nothing is desired.

For cases where one side of the join is critical and the other is useful, but not essential then a
left-side join is a good choice where you’d use the critical stream on the left or calling side. I'll
cover an example when we get to stream-table joins in an upcoming section.

Finally, for a case where you have two streams where both sides enhance each other, but each
one is important on its own, then an outer join fits the bill. Consider IoT, where you have two
related sensor streams. Combining the sensor information provides you with a more complete
picture but you want information from either side if it’s available.

In the next section, let’s go into the details of the workhorse of stateful operations, the state store.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

207

7.4 State stores in Kafka Streams

So far, we’ve discussed the stateful operations in the Kafka Streams DSL API, but glossed over
the underlying storage mechanism those operations use. In this section, we’ll look at the
essentials of using state stores in Katka Streams and the key factors related to using state in
streaming applications in general. This will enable you to make practical choices when using
state in your Kafka Streams applications.

Before I go into any specifics, let’s cover some general information. At a high-level, the state
stores in Kafka Streams are key-value stores and they fall into two categories, persistent and
in-memory. Both types are durable due to the fact that Katka Streams uses changelog topics to
back the stores. I'll talk more about changelog topics soon.

Persistent stores store their records in local disk, so they maintain their contents over restarts.
The in-memory stores place records well, in memory, so they need to be restored after a restart.
Any store that needs restoring will use the changelog topic to accomplish this task. But to
understand how a state store leverages a changelog topic for restoration, let’s take a look at how
Kafka Streams implements them.

In the DSL, when you apply a stateful operation to the topology, Kafka Streams creates a state
store for the processor (persistent are the default type). Along with the store, Kafka Streams also
creates a changelog topic backing the store at the same time. As records are written the store,
they are also written to the changelog. Here’s an illustration depicting this process:

As Kafko Streams

writes a ke_t/-VOJue_ to

o store it also 3e.‘t$ N "\ Changelo topic
sent to the change,lo::, \;‘(—U =
topic for o(umbil?ty

ke_lf-VO\Iue_ Stote Store

Figure 7.17 As the key-value records get written to the store they also get written to the changelog topic
for data durability

So as Kafka Streams places record into a state store, it also sends it to a Kafka topic that backs
the state store. Now if you remember from earlier in the chapter, I mentioned that with an
aggregation you don’t see every update as Kafka Streams uses a cache to initially hold the

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

208

results. It’s only on when Kafka Streams flushes the cache, either at a commit or when it’s full,
that records from the aggregation go to downstream processors. It’s at this point that Kafka
Streams will produce records to the changelog topic.

NOTE If you've disabled the cache then every record gets sent to the state store so
this also means every record goes to the changelog topic as well.

7.4.1 Changelog topics restoring state stores

So how does the Kafka Stream leverage the changelog topic? Let’s first consider the case of a
in-memory state store. Since an in-memory store doesn’t maintain it’s contents across restarts,
when starting up, any in-memory stores will rebuild their contents from head record of the
changelog topic. So even though the in-memory store loses all its contents on application
shut-down, it picks up where it left off when restarted.

For persistent stores, usually it’s only after all local state is lost, or if data corruption is detected
that it will need to do a full restore. For persistent stores, Kafka Streams maintains a checkpoint
file for persistent stores and it will use the offset in the file as a starting point to restore from
instead of restoring from scratch. If the offset is no longer valid, then Kafka Streams will remove
the checkpoint file and restore from the beginning of the topic.

This difference in restoration patterns brings an interesting twist to the discussion of the
trade-offs of using either persistent or in-memory stores. While an in-memory store should yield
faster look-ups as it doesn’t need to go to disk for retrieval, under "happy path" conditions the
topology with persistent stores will generally resume to processing faster as it will not have as
many records to restore.

IMPORTANT An exception to using a checkpoint file for restoration is when you run Kafka
Streams in EOS mode (either exact|y_once or exact | y_once_v2 is enabled)
as state stores are fully restored on startup to ensure the only records in the
stores are ones that were included in successful transactions.

Another situation to consider is the make up of running Kafka Streams applications. If you recall
from our discussion on task assignments, you can change the number of running applications
dynamically, either by expansion or contraction. Kafka Streams will automatically assign tasks
from existing applications to new members, or add tasks to those still running from an
application that has dropped out of the group. A task that is responsible for a stateful operation
will have a state store as part of its assignment (I’ll talk about state stores and tasks next).

Let’s consider the case of a Kafka Streams application that loses one of its members, remember
you can run Kafka Streams applications on different machines and those with the same
application id are considered all part of one logical application. Kafka Streams will issue a

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

209

rebalance and the tasks from the defunct application get reassigned. For any reassigned stateful
operations, since Kafka Streams creates a new *empty* store for the newly assigned task, they’ll
need to restore from the beginning of the changelog topic before they resume processing.

Here’s an illustration demonstrating this situation:
L L L ; } Chom?e,losj Topic

Mochine 4 Moachine B

Q

Task migr‘a\‘te,d to

ancther machine so

the state store gets
Popu[o{teo(with records from
changelog before it resumes processing

Stote Store
Stoate Store

Figure 7.18 When a stateful task gets moved to a new machine Kafka Streams rebuilds the state store
from the beginning of the changelog topic

So by using changelog topics you can be assured your applications will have a high degree of
data durability even in the face of application loss, but there’s delayed processing until the store
is fully online. Fortunately, Kafka Streams offers a remedy for this situation, the standby task.

7.4.2 Standby Tasks

To enable fast failover from an application instance dropping out of the group Kafka Streams
provides the standby task. A standby task "shadows" an active task by consuming from the
changelog topic into a state store local to the standby. Then should the active task drop out of the
group, the standby becomes the new active task. But since it’s been consuming from the
changelog topic, the new active task will come online with minimum latency.

IMPORTANT To enable standby tasks you need to set the num standby.replicas
configuration to a value greater than O and you need to deploy N+1 nhumber of
Kafka Streams instances (with N being equal to the number of desired
replicas). Ideally you’ll deploy those Kafka Streams instances on separate
machines as well.

While the concept is straight forward, let’s review the standby process by walking through the

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

210

following illustration:

L [? , Changelos! Topic

Machine 4
Active Task

Mochine B
S‘ta\v\dby Task

As the active task
writes records to the N
cl«ange,lo:-1 Topie, the s‘tamollac/ O
task consumes them and

Popula‘te,s o s‘tod:e_ s‘core.

S

State Store State Store

Figure 7.19 A standby task shadows the active task and consumes from the changelog topic keeping a
local state store in-sync with store of the active task

So following along with the illustration a standby task consumes records from the changelog
topic and puts them in its own local state store. To be clear, a standby task does not process any
records, its only job is to keep the state store in sync with the state store of the active task. Just
like any standard producer and consumer application, there’s no coordination between the active
and standby tasks.

With this process since the standby stays fully caught up to the active task or at minimum it will
be only a handful of records behind, so when Kafka Streams reassigns the task, the standby
becomes the active task and processing resumes with minimal latency as its already caught up.
As with anything there is a trade-off to consider with standby tasks. By using standby’s you end
up duplicating data, but with benefit of near immediate fail-over, depending on your use case it’s
definitely worth consideration.

NOTE Significant work went into improving the scaling out performance of Kafka
Streams with Kafka KIP-441 (
cwiki.apache.org/confluence/display/KAFKA/KIP-441%3A+Smooth+Scaling
+Out+for+Kafka+Streams). When you enable standby tasks and the standby
instance becomes the
active one, if at a later time Kafka Streams determines a more favorable
assignment is possible, then that stateful task may get migrated to another
instance.

So far we’ve covered how state stores enable stateful operations and how the stores are robust
due to changelog topic and using standby tasks to enable quick failover. But we still have some

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://cwiki.apache.org/confluence/display/KAFKA/KIP-441%3A+Smooth+Scaling+Out+for+Kafka+Streams
https://cwiki.apache.org/confluence/display/KAFKA/KIP-441%3A+Smooth+Scaling+Out+for+Kafka+Streams
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

211

more ground to cover. First we’ll go over state store assignment, from there you’ll learn how to
configure state stores including how to specify a store type including an in-memory store and
finally how to configure changelog topics if needed.

7.4.3 Assigning state stores in Kafka Streams

In the previous chapter we discussed the role of tasks in Kafka Streams. Here I want to reiterate
that tasks operate in a shared nothing architecture and only operate in a single thread. While a
Kafka Streams application can have multiple threads and each thread can have multiple tasks,
there is nothing shared between them. I emphasize this "shared nothing" architecture again,
because this means that when a task is stateful, only the owning task will access its state store,

there are no locking or concurrency issues.

Going back to the [Stock-Aggregation]| example, let’s say the source topic has two partitions,

meaning it has two tasks. Let’s look at an updated illustration of tasks assignment with state

stores for that example:

Task 0_0 Task O_

Stot e Store State Store

Each task is the sole owner of the
oxssigne,ri store and is the on[y one to read
and write to it

Figure 7.20 Stateful tasks have a state store assigned to it

By looking at this illustration you can see that the task associated with the state store is the only
task that will ever access it. Now let’s talk about how Kafka Streams places state stores in the

file system.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

212

7.4.4 State store location on the file system

When you have a stateful application, when Kafka Streams first starts up, it creates a root
directory for all state stores from the St r eansConfi g. STATE_DI R_CONFI G configuration. If not
set, the STATE_DI R_CONFI G defaults to the temporary directory for the JVM followed by the
system dependent separator and then "kafka-streams".

IMPORTANT The value of the STATE DI R_CONFI G configuration must be unique for each
Kafka Streams instance that shares the same file system

For example on my MacOS the default root directory for state stores is
/var/folders/lk/id 9 qr558zdéghbgqw y0zc80000gn/ T/ kaf ka- st r eans.

TIP To view the system dependent temporary directory on you machine you can
start a Java shell from a terminal window by running the j shel | command.
Then type in System get Property("java.io.tnpdir"), hit the return key
and it will display on the screen.

Next Kafka Streams appends the application-id, which you have to provide in the configurations,
to the path. Again on my laptop the path is
[var/folders/lk/id_9_ qr558zdéghbgwt y0zc80000gn/ T/ kaf ka- st r eans/ t est - appl i cati on/

From here the directory structure branches out to unique directories for each task. Kafka Streams
creates a directory for each stateful task using the subtopology-id and partition (separated by an
underscore) for the directory name. For example a stateful task from the first subtopology and
assigned to partition zero would use 0_0 for the directory name.

The next directory is named for the implementation of the store which is rocksdb. So at this
point the path would look like

/var/folders/lk/id 9 qr558zdéghbgwty0zc80000gn/ T/ kaf ka- streans/t est -
application/0_0/rocksdb

. It is under this directory there is the final directory from the processor (unless provided by a
Mat eri al i zed object and I’ll cover that soon). To understand how the final directory gets its
name, let’s look at snippet of a stateful Katka Streams application and the generated topology
names.

Listing 7.17 Simple Kafka Streams stateful application

buil der. streanm("input")
. groupByKey()
.count ()
.toStream)
.to("output")

This application has topology named accordingly: .Topology names

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

213

Topol ogi es:
Sub- t opol ogy: O

Sour ce: KSTREAM SOURCE- 0000000000 (topics: [input])
- -> KSTREAM AGGREGATE- 0000000002

Processor: KSTREAM AGGREGATE- 0000000002 @

(stores: [KSTREAM AGGREGATE- STATE- STORE- 0000000001]) @

--> KTABLE- TOSTREAM 0000000003
<-- KSTREAM SOURCE- 0000000000

Processor: KTABLE- TOSTREAM 0000000003 (stores: [])
--> KSTREAM S| NK- 0000000004
<-- KSTREAM AGGREGATE- 0000000002

Si nk: KSTREAM S| NK- 0000000004 (topic: output)
<-- KTABLE- TOSTREAM 0000000003

9@ The name of the aggregate processor

® The name of the store assigned to processor

From the topology here Kafka Streams generates the name KSTREAM AGGREGATE- 0000000002

for the count() method and notice it’s associated with the store named
KSTREAM AGGREGATE- STATE- STORE- 0000000001. So Kafka Streams takes the base name of the
stateful processor and appends a STATE- STORE and the number generated from the global
counter. Now lets take a look at the full path you would find this state store:
/var/folders/lk/id 9 qr558zdéghbgwty0zc80000gn/ T/ kaf ka-streans/test-application/0

So it’s the final directory KSTREAM AGGREGATE- STATE- STORE- 0000000001 in the path that
contains the RocksDB files for that store. Now if you were to check the topics on the broker after
starting the Kafka Streams application you’d see this name in the list
test-appl i cati on- KSTREAM AGGREGATE- STATE- STORE- 0000000001- changel og. This topic
is the changelog for the state store and notice how Kafka Streams uses a naming convention of
<application-id>-<state store name>-changelog for the topic.

7.4.5 Naming Stateful operations

This naming raises an interesting question, what happens if we add an operation before the
count () ? Let’s say you want to add a filter to exclude certain records from the counting. You’d
simply update the topology like so:

Listing 7.18 Updated Topology with a filter

bui | der. strean("i nput")
.filter((key, value) -> !key.equal s("bad"))
. groupByKey()
.count ()
.toStream)
.to("output")

Remember, Kafka Streams uses a global counter for naming the processor nodes, so since you’ve
added an operation, every processor downstream of it will have a new name since the number
will be greater by 1. Here’s what the new topology will look like:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

214

Listing 7.19 Updated Topology names

Topol ogi es:
Sub-t opol ogy: 0

Sour ce: KSTREAM SOURCE- 0000000000 (topics: [input])
--> KSTREAM FI LTER- 0000000001

Processor: KSTREAM FI LTER- 0000000001 (stores: [])
- - > KSTREAM AGGREGATE- 0000000003
<-- KSTREAM SOURCE- 0000000000

Processor: KSTREAM AGGREGATE- 0000000003 @

(stores: [KSTREAM AGGREGATE- STATE- STORE- 0000000002]) @

--> KTABLE- TOSTREAM 0000000004
<-- KSTREAM FI LTER- 0000000001

Processor: KTABLE- TOSTREAM 0000000004 (stores: [])
--> KSTREAM S| NK- 0000000005
<-- KSTREAM AGGREGATE- 0000000003

Si nk: KSTREAM SI NK- 0000000005 (topic: output)
<-- KTABLE- TOSTREAM 0000000004

9 The new name for the aggregation operation

® The new name for the state store

Notice how the state store name has changed which means there is a new directory named
KSTREAM AGGREGATE- STATE- STORE- 0000000002 and the corresponding changelog topic is
n o w n a me d

test - appl i cati on- KSTREAM AGGREGATE- STATE- STORE- 0000000002- changel og.

NOTE Any changes before a stateful operation could result in the generated name
shift, i.e. removing operators will have the same shifting effect.

What does this mean to you? When you redeploy this Katka Streams application the directory
will only contain some basic RocksDB file, but not your original contents they are in the
previous state store directory. Normally an empty state store directory does not present an issue,
as Kafka Streams will restore it from the changelog topic. Except in this case the changelog topic
is also new, so it’s empty as well. So while your data is still safe in Kafka, the Kafka Streams
application will start over with empty state store due to the name changes.

While it’s possible to reset the offsets and process data again, a better approach is to avoid name
shifting situation all together by providing a name for the state store instead of relying on the
generated one. In the previous chapter I covered naming processor nodes for providing a better
understanding of what the topology does. But in this case it goes beyond better understanding of
its role in the topology, which is important, but also makes your application robust in the face of
a changing topology.

Going back to the simple count () example in this section, you’ll update the application by
passing Mat eri al i zed object to count () operation:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

215

Listing 7.20 Naming the state store using a Materialized object

bui |l der. strean("i nput")
. groupByKey()
.count (Materialized.as("counting-store")) (1]
.toStream))
.to("output")

© Explicitly naming the state store

By providing the name of the state store, Kafka Streams will name the directory on disk
counting-store and the changelog topic becomes

t est - appl i cati on-counti ng- st or e- changel og, and both of these names are "frozen" and
will not change regardless of any updates you make to the topology. It’s important to note that
the names of state stores within a topology must be unique, otherwise you’ll get a
Topol ogyExcepti on.

NOTE Only stateful operations are affected by name shifting. But since stateless
operations don’t keep any state, changes in processor names from topology
updates will have no impact.

The bottom line is to always name state stores and repartition topics using the appropriate
configuration object. By naming the stateful parts of your applications, you can ensure that
topology updates don’t break the compatibility. Here’s a table summarizing which configuration
object to use and the operation(s) it applies to:

Table 7.1 Kafka Streams configuration objects for naming state stores and repartition
topics

Configuration Object What’s Named Where Used

Materialized State Store, Changelog topic Aggregations

Repartitioned Repartition topic Repartition (manual by user)
Grouped Repartition topic GroupBy (automatic repartitioning)
StreamJoined State Store, Changelog topic, Repartition topic Joins (automatic repartitioning)

Naming state stores provides the added benefit of being able to query them while your Kaftka
Streams application is running, providing live, materialized views of the streams. I’ll cover
interactive queries in the next chapter.

So far you’ve learned how Kafka Streams uses state stores in support of stateful operations. You
also learned that the default is for Kafka Streams to use persistent stores and there are in-memory
store implementations available. In the next section I’'m going to cover how you can specify a
different store type as well as configuration options for the changelog topics.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

216

7.4.6 Specifying a store type

All the examples so far in this chapter use persistent state stores, but I’ve stated that you can use
in-memory stores as well. So the question is how do you go about using an in-memory store? So
far you’ve used the Mat eri al i zed configuration object to specify Ser des and the name for a
store, but you can use it to provide a custom St at eSt or e instance to use. Kafka Streams makes
it easy to provide an in-memory version of the available store types (so far I’ve only covered
"vanilla" key-value stores, but I’'ll get to sessioned, windowed, timestamped stores in the next
chapter).

The best way to learn how to use a different store type is to change one of our existing examples.
Let’s revisit the first stateful example used to keep track of scores in an online poker game:

Listing 7.21 Performing a reduce in Kafka Streams to show running total of scores in an

online poker game updated to use in-memory stores

KSt reanxStri ng, Doubl e> poker Scor eStream = bui | der. st rean(" poker - gane",
Consuned. wi t h(Serdes. String(), Serdes. Double()));

poker Scor eSt r eam
. groupByKey()
. reduce(Doubl e: : sum
Materi al i zed. <String, Doubl e>as(
St or es. i nMenor yKeyVal ueSt or e(" menor y- poker-score-store")) (1]
. Wi t hKeySer de(Serdes. String())
. Wi t hval ueSer de(Serdes. Doubl e())) ©
.toStreamn()
.to("total -scores",
Produced. wi t h(Serdes. String(), Serdes.Double()));

© Passing aSt oreSuppl i er to specify an in-memory store

® Specifying the Ser des for the key
© Specifying the Ser des for the value

So by using the overloaded Mat eri al i zed. as method, you provide a St or eSuppl i er using
one of the factory methods available from the St or es class. Notice that you still pass the serde
instances needed for the store. And that’s all it takes to switch the store type from persistent to
in-memory.

NOTE Switching in a different store type is fairly straight forward so I'll only have the
one example here. But the source code will contain a few additional
examples.

So why would you want to use an in-memory store? Well, an in-memory store will give you
faster access since it doesn’t need to go to disk to retrieve values. So a topology using in-memory
stores should have higher throughput than one using persistent ones. But there are trade-offs you
should consider.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

217

First, an in-memory store has limited storage space, and once it reaches it’s memory limit it will
evict entries to make space. The second consideration is when you stop and restart a Kafka
Streams application, under "happy-path" conditions, the one with persistent stores will start
processing faster due to the fact that it will have all its state already, but the in-memory stores
will always need to restore from the changelog topic.

Kafka Streams provides a factory class Stores that provides methods for creating either
St or eSuppl i ers or St oreBui |l ders. The choice of which one to use depends on the Kafka
Streams API. When using the DSL you’ll use St or eSuppl i er s with a Mat eri al i zed object. In
the Processor API, you’ll use a St or eBui | der and directly add it to the topology. I’ll cover the
Processor API in chapter 9.

TIP To see all the different store types you can create view the JavaDoc for the
Stor es class

javadoc.io/doc/org.apache.kafka/kafka-streams/latest/org/apache/kafka/
streams/state/Stores.html

Now that you’ve learned how to specify a different store type, let’s move on to one more topic to
cover with state stores, how you can configure the changelog topic.

7.4.7 Configuring changelog topics

There’s nothing special about changelog topics, so you can use any configuration parameters
available for topics. But for the most part the default settings should suffice, so you should only
consider changing the configurations when it’s absolutely necessary.

NOTE State store changelogs are compacted topics, which we discussed in chapter
2. As you may recall, the delete semantics require a null value for a key, so if
you want to remove a record from a state store permanently, you'll need to do
a put(key, null) operation.

Let’s revisit the example from above where you provided a custom name for the state store. Let’s
say the data processed by this application also has a large key space. The changelogs in Kafka
Streams are compacted topics. Compacted topics use a different approach to cleaning up older
records.

Instead of deleting log segments by size or time, log segments are compacted by keeping only
the latest record for each key—older records with the same key are deleted. But since the key
space is large compaction may not be enough, as the size of the log segment will keep growing.
In that case, the solution is simple. You can specify a cleanup policy of del et e and conpact .

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://javadoc.io/doc/org.apache.kafka/kafka-streams/latest/org/apache/kafka/streams/state/Stores.html
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

218

Listing 7.22 Setting a cleanup policy and using Materialized to set the new configuration

Map<String, String> changeLogConfigs = new HashMap<>();
changelLogConfi gs. put ("cl eanup. pol i cy", "conpact, delete");

bui | der. strean("i nput™)
. groupByKey()
.count (Materialized. as("counting-store")
. Wi t hLoggi ngEnabl ed(changeLogConfi gs)) o
.toStream)
.to("output")

9 Using the withL oggingEnabled method to set a configuration

So here you can adjust the configurations for this specific changelog topic. Earlier I mentioned
that to disable the caching that Kafka Streams uses for stateful operations, you’d set the
St r eansConf i g. CACHE_MAX_BYTES_BUFFERI NG _CONFI G setting to zero. But since it’s in the
configuration, it is globally applied to all stateful operations. If you only wanted to disable the
cache for a specific one you could disable it by calling
Mat eri al i zed. wi t hCachi ngDi sabl ed() method when passing in the Mat eri al zi ed object.

WARNING The Mat eri al i zed object also provides a method to disable logging. Doing so
will cause the state store to not have a changelog topic, hence it is subject to
getting in a state where it can’t restore its previous contents. It is
recommended to only use this method if absolutely necessary. In my time
working with Kafka Streams, | can’t say I've encountered a good reason for
using this method.

7.5 Summary

® Stream processing needs state. Stateless processing is acceptable in alot of cases, but to
make more complex decisions you' Il need to use stateful operations.

® Kafka Streams provides stateful operations reduce, aggregation, and joins. The state store
is created automatically for you and by default they use persistent stores.

® You can choose to use in-memory stores for any stateful operation by passing a
St or eSuppl i er from the St or es factory classto the Mat eri al i zed configuration
object.

® To perform stateful operations your records need to have valid keys-if your records don’t
have akey or you'd like to group or join records by a different key you can change it and
Kafka Streams will automatically repartition the data for you.

® |t'simportant to always provide a name for state stores and repartition topics-this keeps
your application resilient from breaking when you make topology changes.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

219

Advanced stateful concepts

This chapter covers

Changelog streams, the KTable and the GlobalKTable
Aggregating records with a KTable

Joining a KTable with KStream or another KTable

Windowing to capture aggregations in specific period of time
Using suppression for final windowed results

Understanding the importance of timestamps in Kafka Streams

In this chapter, we’re going to continue working with state in a Kafka Streams application.
You’ll learn about the KTabl e which is considered an update or changelog stream. As a matter of
fact you’ve already used a KTabl e as any aggregation operations in Kafka Streams result in a

KTabl e. The KTabl e is an important abstraction for working with records that have the same
key. Unlike the KSt r eamwhere records with the same key are still considered independent event,
in the KTabl e a record is an update to the previous record that has the same key.

To make a comparison to a relational database, the event stream (a KStream) could be
considered a series of inserts where the primary key is an auto-incriminating number. As a result
each insert of a new record has no relationship to previous ones. But with a KTabl e the key in
the key-value pair is the primary key, so each time a record arrives with the same key, it’s
consider an update to the previous one.

From there you’ll learn about aggregation operations with a KTabl e. Aggregations work a little
differently because you don’t want to group by primary key, you’ll only ever have on record that
way, instead you’ll need to consider how you want to group the records to calculate the
aggregate.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

220

Since you can use the KTabl e as lookup table, a join between a stream and table is a power
combination, where you can enrich the event stream records by performing a lookup in the table
for additional details. You can also join two tables together, even using a foreign key. You’ll also
learn about a unique construct called the G obal KTabl e which, unlike the KTabl e which
sharded by partitions, contains all records from it’s underlying source across all application
instances.

After covering the table abstractions we’ll get into how to "bucket" your aggregations into
specific time periods using windowing. For example, how many purchases have there been over
the past hour, updated every ten minutes? Windowing allows you to place data in discrete blocks
of time, as opposed to having an unbounded collection. You’ll also learn how to produce a single
final result from a windowed operation when the window closes. There’s also the ability to
expose the underlying state stores to queries from outside the application allowing for real-time
updates on the information in the event stream.

Our final topic for the chapter is how timestamps drive the behavior in Kafka Streams and
especially their impact on windowing and stateful operations.

8.1 KTable The Update Stream

To fully understand the concept of an update stream, it will be useful to compare with an event
stream to see the differences between the two. Let’s use a concrete example of tracking stock
price updates.

Time

—

Each circle on the line represents a publicly traded stock’s share price adjusting to
market forces.

Company AAVF
Amount $100.57
TS 12:14:35 1/20/17

Company FRLS
Amount $40.27
TS 12:18:41 1/20/17

Company AMEX
Amount $57.17
TS 12:20:38 1/20/17

Imagine that you are observing a stock ticker displaying updated share prices in real time.

Figure 8.1 A diagram for an unbounded stream of stock quotes

You can see that each stock price quote is a discrete event, and they aren’t related to each other.
Even if the same company accounts for many price quotes, you’re only looking at them one at a
time. This view of events is how the KSt r eamworks—it’s a stream of records.

Now, let’s see how this concept ties into database tables. Each record is an insert into the table,
but the primary key is a number increment for each insert, depicted simple stock quote table in
figure 8.2.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

221

Key Value
Stock ID Timestamp Share Price
ABVF 32225544289 105.36
APPL 32225544254 333.66

The rows from table above can be recast as key/value pairs.
For example, the first row in the table can be converted
to this key/value pair:

{key:{stockid: 1235588}, value:{ts:32225544289, price:105.36} }

Figure 8.2 A simple database table represents stock prices for companies. There’s a key column, and
the other columns contain values. You can consider this a key/value pair if you lump the other columns
into a “value” container.

Next, let’s take another look at the record stream. Because each record stands on its own, the
stream represents inserts into a table. Figure 5.3 combines the two concepts to illustrate this

point.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

222

Stock_ID AMEX
Share $105.36
TS 148907726274

Key Stock_ID Timestamp Share_Price

1 AMEX 148907726274 105.36

This shows the relationship between events and inserts into a database. Even though it's
stock prices for two companies, it counts as four events because you consider
each item on the stream as a singular event.

As a result, each event is an insert, and you increment the key by one for each insert into the table.

With that in mind, each event is a new, independent record or insert into a database table.

Figure 8.3 A stream of individual events compares to inserts into a database table. You could similarly
imagine streaming each row from the table.

What’s important here is that you can view a stream of events in the same light as inserts into a
table, which can help give you a deeper understanding of using streams for working with events.
The next step is to consider the case where events in the stream are related to one another.

8.1.1 Updates to records or the changelog

Let’s say you want to track customer purchase behavior, so you take the same stream of
customer transactions, but now track activity over time. If you add a key of customer ID, the
purchase events can be related to each other, and you’ll have an update stream as opposed to an
event stream.

If you consider the stream of events as a log, you can consider this stream of updates as a
changelog. Figure 8.4 demonstrates this concept.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

223

Stock ID AMEX
Share $105.36
TS 148907726274

Stock_ID Timestamp Share_Price The previous records
for these stocks have

been overwritten with
updates.

Latest records from
event stream

If you use the stock ID as a primary key, subsequent events with the same key are updates
in a changelog. In this case, you only have two records, one per company. Although more
records can arrive for the same companies, the records won’t accumulate.

Figure 8.4 In a changelog, each incoming record overwrites the previous one with the same key. With a
record stream, you’'d have a total of four events, but in the case of updates or a changelog, you have
only two.

Here, you can see the relationship between a stream of updates and a database table. Both a log
and a changelog represent incoming records appended to the end of a file. In a log, you see all
the records; but in a changelog, you only keep the latest record for any given key.

NOTE With both a log and a changelog, records are appended to the end of the file
as they come in. The distinction between the two is that in a log, you want to
see all records, but in a changelog, you only want the latest record for each
key.

To trim a log while maintaining the latest records per key, you can use log compaction, which

we discussed in chapter 2. You can see the impact of compacting a log in figure 8.5. Because

you only care about the latest values, you can remove older key/value pairs.6

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

224

Before compaction After compaction
Offset Key Value

10 foo A

11 bar B

12 baz C

13 foo D Offset Key Value
14 baz E 1 bar B
15 boo F - 15 boo F
16 foo G > 16 foo G
17 baz H - 17 baz H

Figure 8.5 On the left is a log before compaction—you’ll notice duplicate keys with different values,
which are updates. On the right is the log after compaction—you keep the latest value for each key, but
the log is smaller in size.

You’re already familiar with event streams from working with KSt r eans. For a changelog or
stream of updates, we’ll use an abstraction known as the KTabl e. Now that we’ve established the
relationship between streams and tables, the next step is to compare an event stream to an update
stream.

8.1.2 Event streams vs. update streams

We’ll use the KSt r eamand the KTabl e to drive our comparison of event streams versus update
streams. We’ll do this by running a simple stock ticker application that writes the current share
price for three (fictitious!) companies. It will produce three iterations of stock quotes for a total
of nine records. A KSt r eamand a KTabl e will read the records and write them to the console via
the pri nt () method.

NOTE The KTabl e does not have methods like pri nt () or peek() in its API, so to do
any printing of records you’ll need to convert the KTabl e from an update
stream to an event stream by using the t oSt r ean() method first.

Figure 8.6 shows the results of running the application. As you can see, the KSt r eamprinted all
nine records. We’d expect the KStream to behave this way because it views each record
individually. In contrast, the KTabl e printed only three records, because the KTabl e views
records as updates to previous ones.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

225

A simple stock ticker for three fictitious companies with a data generator producing
three updates for the stocks. The KStream printed all records as they were received.
The KTable only printed the last batch of records because they were the latest
updates for the given stock symbol.

Here are all three Producer initialized
KTable vs KStream output started
events/records

Stock updates sent

for the KStream. [Stocks-KStream]: YERB , StockTickerData{price=105.25, symbol='YERB'}
[Stocks-KStream]: AUNA , StockTickerData{price=53.19, symbol="AUNA'}
[Stocks—KStream] : NDLE , StockTickerData{price=91.97, symbol="'NDLE'}
Stock updates sent

[Stocks—KStream]: YERB , StockTickerData{price=105.74, symbol='YERB'}
[Stocks-KStream] : AUNA , StockTickerData{price=53.78, symbol="AUNA'}

[Stocks-KStream]: NDLE , StockTickerData{price=92.53, symbol='NDLE'}
Stock updates sent

[Stocks-KStream]: YERB , StockTickerDatp{price=106.67, symbol='YERB'}
[Stocks-KStream]: AUNA , StockTickerDatp{price=54.4, symbol="AUNA'}
[Stocks—KStream] : NDLE , StockTickerDatp{price=92.77, symbol="'NDLE'}
[Stocks-KTable]: YERB , |StockTickerData{price=106.67, symbol='YERB'}

//—\\\5_,,[S:ocks—KTable]: AUNA , [StockTickerData{price=54.4, symbol='AUNA'}
[Stocks—KTable]: NDLE , |StockTickerData{price=92.77, symbol='NDLE'}
Here is the last update down the Katka Streams Application now

record for the KTable. ELSSUTEGEREGELERGELETEIS L)

As expected, the values for the last KStream
event and KTable update are the same.

Figure 8.6 KTabl e versus KSt r eamprinting messages with the same keys

From the KTabl e’s point of view, it didn’t receive nine individual records. The KTabl e received
three original records and two rounds of updates, and it only printed the last round of updates.
Notice that the KTabl e records are the same as the last three records published by the KSt r eam
We’ll discuss the mechanisms of how the KTabl e emits only the updates in the next section.

Here’s the program for printing stock ticker results to the console (found in
src/main/java/bbejeck/chapter 8/KStreamVsKTableExample.java; source code can be found on
the book’s website here: manning.com/books/kafka-streams-in-action-second-edition).

Listing 8.1 KTabl e and KSt r eamprinting to the console

KTabl e<String, StockTi ckerData> stockTi cker Table =
bui | der .t abl e(STOCK_TI CKER TABLE_TOPIC); ©

KSt reankStri ng, StockTi cker Data> st ockTi cker Stream =
bui | der. st rean(STOCK_TI CKER STREAM TCPIC); ©

st ockTi cker Tabl e. t oSt r eant()
.print(Printed.<String, StockTickerData>toSysQut()
. Wit hLabel (" St ocks- KTabl e"));

st ockTi cker St ream

.print(Printed.<String, StockTickerData>toSysQut ()
.w t hLabel (" St ocks-KStreant'));

© Createsthe KTableinstance

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://manning.com/books/kafka-streams-in-action-second-edition
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

226

@ Createsthe KStream instance
© KTable prints results to the console

O KStream prints results to the console

SIDEBAR Using default serdes

In creating the KTabl e and KSt r eam you didn’t specify any serdes to use. The
same is true with both calls to the pri nt () method. You were able to do this
because you registered a default serdes in the configuration. like so:

props. put (StreansConfi g. DEFAULT_KEY_SERDE _CLASS_ CONFI G,
Serdes. String().getd ass().getNanme());

props. put (StreansConfi g. DEFAULT_VALUE_SERDE_CLASS_CONFI G,
St reansSer des. St ockTi cker Serde() . get G ass() . get Nane());

If you used different types, you’d need to provide serdes in the overloaded
methods for reading or writing records.

The takeaway here is that records in a stream with the same keys are updates, not new records in
themselves. A stream of updates is the main concept behind the KTabl e, which is the backbone
of stateful operations in Kafka Streams.

8.2 KTables are stateful

In the previous example when you created the table with the St r eansBui | der . t abl e statement
Kafka Streams also creates a St at eSt or e for tracking the state and by default it’s a persistent
store. Since state stores only work with byte arrays for the keys and values you’ll need to provide
the Ser de instances so the store can (de)serialize the keys and values. Just as you can provide
specific serdes to an event stream with Consuned configuration object, you can do the same

when creating a KTabl e:

bui | der . t abl e(STOCK_TI CKER_TABLE_TOPI C,
Consurned. wi t h(Serdes. String(),
St ockTradeSerde()));

Now the serdes you’ve provided with the Consuned object get passed along to the state store.
There’s an additional overloaded version of StreansBuil der.tabl e that accepts a
Mat eri al i zed instance as well. This allows you to customize the type of store and provide a
name to make it available for querying. We’ll discuss interactive queries later in this chapter.

It’s also possible to create a KTabl e directly by using the KSt r eam t oTabl e method. Using this
method changes the interpretation of the records from events to updates. You can also use the
KTabl e. t oSt r eammethod to convert the update stream into an event stream. We’ll talk more

about this conversion from update stream to event stream when we discuss the KTabl e API.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

227

The main point here is you are creating a KTabl e directly from a topic, which results in creating
a state store.

So far I’ve talked about how the KTabl e handles inserts and updates, but what about when you
need to delete a record? To remove a record from a KTabl e you send send a key-value pair with
the value set to nul | and this will act as a tombstone marker ultimately getting removed from the
state store and the changelog topic backing the store, in other words it’s deleted from the table.

Just like the KStream the KTabl e is spread out over tasks determined by the number of
partitions in the underlying source topic, meaning that the records for the table are potentially
distributed over separate application instances. We’ll see a little later in this chapter an
abstraction where all the records are available in a single table.

8.3 The KTable API

The KTabl e API offers similar methods to what you’d see with the KStream - filter,
filterNot, mapVal ues, and t r ansf or nval ues (I won’t talk about t r ansf or mval ues here, but
we’ll cover it in Processor API chapter later in the book). Executing these methods also follow
the fluent pattern, they return a new KTabl e instance.

While the functionality of these methods are very similar as the same methods in the KSt r eam
API, there are some differences in how they operate. The differences come into play due to the
fact that key-value pairs where the value is nul | has delete semantics.

So the delete semantics have the following effects on how the KTabl e operates:

1. If theincoming valueis null the processor isnot evaluated at all and the key-value with
thenul I isforwarded to the new table as atombstone marker.

2. Inthecaseof thefilter andfilterNot methodsrecordsthat get dropped atombstone
record is forwarded to the new table as atombstone marker as well.

As an example to follow along with see the KTabl eFi | t er Exanpl e in the bbej eck. chapt er _8
package. It runs a simple KTabl e. fi | t er example where some of the incoming values are nul |

as well as filtering out some of the non-null values. But since we’ve discussed filtering
previously, I won’t review the example here and I’1l leave up to you as an exercise to do on your
own.

Since I've already covered stateless operations in a previous chapter and we’ve discussed the
different semantics of the KTabl e, we’ll move on at this point to discuss aggregations and joins.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

228

8.4 KTable Aggregations

Aggregations in the KTabl e operate a little differently than the ones we’ve seen in the KSt r eam
so let’s dive in with an example to illustrate. Imagine you build an application to track stocks.
You’re only interested in the latest price for any given symbol, so using a KTabl e makes sense as
that is its default behavior. Additionally, you’d like tp keep track of how different market
segments are performing. For example, you’d group the stocks of Google, Apple, and Confluent
into the tech market segment. So you’ll need to perform an aggregation and group different
stocks together by the market segment they belong to. Here’s what your KTabl e aggregation
would look like:

Listing 8.2 Aggregates with A KTable

KTabl e<String, StockAl ertProto. StockAl ert> stockTable =
bui | der. tabl e("stock-alert",
Consurned. wi t h(stringSerde, stockAl ertSerde)); o

st ockTabl e. gr oupBy((key, value) ->
KeyVal ue. pai r (val ue. get Mar ket Segnent (), val ue),
Grouped. wi t h(stringSerde, stockAl ertSerde)) ®
.aggregate(segnmentinitializer,

adder Aggr egat or, (4]

subt r act or Aggr egat or, (5]

Materialized. with(stringSerde, segnent Serde))
.toStream()

.to("stock-al ert-aggregate",
Produced. wi t h(stringSerde, segnent Serde));

Creating the original KTabl e

Grouping by the market segment also providing Serdes for the repartition viaa
G ouped

Creating the aggregate
Providing the adder Aggr egat or
Providing the subtractor Aggr egat or

Annotation one is where you create the KTabl e and is what you’d expect to see but annotation
two you’re performing a gr oupBy and updating the key to be the market segment which will
force a repartition of the data. Now this makes sense, since the original key is the stock symbol
you’re not guaranteed that all stocks from a given market segment reside on the same partition.

But this requirement somewhat hides the fact with a KTabl e aggregation you’ll always need to
perform a group-by operation. Why is this so? Remember that with a KTabl e, the incoming key
is considered a primary key, and just like in a relational database, grouping by the primary-key
always results in a single record - hence not much is provided for an aggregation. So you’ll need
to group records by another field because the combination of the primary-key and the grouped
field(s) will yield results suitable for an aggregation. And similar to the KSt r eamAPI, calling the

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

229

KTabl e. gr oupBy method returns an intermediate table - KG oupedTabl e which you’ll use to
execute the aggr egat e method.

The second difference occurs with annotations four and five. With the KTabl e aggregations, just
like with the KSt r eamthe first parameter you provide is an I ni ti al i zer instance, to provide
the default value for the first aggregation. However you then supply two aggregators one that
adds the new value into the aggregation and the other one subtracts values from the aggregation
for the previous entry with the same key. Let’s look at an illustration to help make this process
clear:

(key, newValue, aggr) —> {

aggr.add(newValue);
return aggr; The adder adds

} the new value for the key
nto the oxggr‘e,ga‘tion

(key, previousValue, aggr) = {
aggr.subtract(previousValue);
return aggr; The subtractor
removes the previous value for the
ke,y from the aggt‘e,goction

}

Figure 8.7 KTable Aggregations use an Adder aggregator and a Subtractor aggregator

Here’s another way to think about it - if you were to perform the same thing on a relational table,
summing the values in the rows created by a grouping, you’d only every get the latest, single
value per row created by the grouping. For example the SQL equivalent of this KTabl e
aggregation could look something like this:

Listing 8.3 SQL of KTable aggregation

SELECT nar ket _segnent,
sun(share_vol une) as total _shares,
sun(share_price * share_vol une) as dollar_vol une
FROM st ock_al erts
GROUP BY mar ket _segnent ;

From the SQL perspective, when a new record arrives, the first step is to update the alerts table,
then run the aggregation query to get the updated information. This is exactly the process taken
by the KTabl e, the new incoming record updates the table for the stock alerts and it’s forwarded
to the aggregation. Since you can only have one entry per stock symbol in the roll-up, you add
the new record into the aggregation, then remove the previous value for the given symbol.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

230

Consider this example, a record comes in for the ticker symbol CFLT so the KTabl e is updated
with new entry. Then the aggregate updates with new entry for CFLT, but since there’s already a
value for it in the aggregation you must remove it then recalculate the aggregation with the new
value.

Now that we’ve covered how the KTabl e aggregation works, let’s take a look at the Aggr egat or
instances. But since we’ve covered them in a previous chapter, let’s just take a look at the logic
of the adder and subtractor. Even though this is just one example the basic principals will be true
for just about any KTabl e aggregation.

Let’s start with the adder:

Listing 8.4 KTable adder Aggregator

//Some details omtted for clarity

final Aggregator<String,
St ockAl ert Proto. St ockAl ert,
Segnent Aggr egat ePr ot 0. Segnent Aggr egat e> adder Aggr egat or =
(key, newStockAlert, currentAgg) -> {

I ong current ShareVol une =
newsSt ockAl ert . get ShareVol une(); @
doubl e current Dol | ar Vol une =
newSt ockAl ert. get ShareVol une() * newSt ockAl ert. get SharePrice(); (2]

aggBui | der . set Shar eVol unme(curr ent Agg. get Shar eVol ue() + current Shar eVol une) ; (3]
aggBui | der. set Dol | ar Vol une(curr ent Agg. get Dol | ar Vol une() + current Dol | ar Vol une) ; (4]

Extracting the share volume from the current St ockAl ert
Calculating the dollar volume for the current St ockAl ert

Setting the total share volume by adding share volume from the latest St ockAl ert
to the current aggregate

© Setting the total dollar volume by adding calculated dollar volume to current
aggregate

Here the logic is very simple: take the share volume from the latest St ockAl ert and add it to the
current aggregate, then do the same with the dollar volume (after calculating it by multiplying
the share volume by the share price).

NOTE Protobuf objects are immutable so when updating values we need to create
new instances using a builder that is generated for each unique object.

Now for the subtractor, you guessed it, you’ll simply do the reverse and *subtract™ the same
values/calculations for the previous record with the same stock ticker symbol in the given market
segment. Since the signature is the same I’ll only show the calculations:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

231

Listing 8.5 KTable subtractor Aggregator

/1 Sone details omtted
| ong prevShareVol ume = prevSt ockAl ert. get ShareVol unme();
doubl e prevDol | ar Vol une =
prevSt ockAl ert. get ShareVol unme() * prevStockAl ert. get SharePrice();

aggBui | der. set Shar eVol une(curr ent Agg. get Shar eVol une() - prevShareVol une); (1)
aggBui | der . set Dol | ar Vol une(cur r ent Agg. get Dol | ar Vol une() - prevDol | arVol ume); @
© Subtracting the share volume from the previous St ockAl er t

® Subtracting the dollar volume from the previous St ockAl er t

The logic is straight forward, you’re subtracting the values from the St ockAl ert that has been
replaced in the aggregate. I’ve added some logging to the example to demonstrate what is going
on and it will be a good idea to look over a portion of that now to nail down what’s going on:

Listing 8.6 Logging statements demonstrating the adding and subtracting process of the

KTable aggregate

Adder and
©® : -> key textiles stock alert symbol: "PXLW share_price: 2.52 share_vol une: 4 aggr egat
Adder (2} e
mar ket _segnent: "textiles" : <- updated aggregate dollar_volune: 10.08 share_vol une: 4
Subtractor: -> key textiles stock alert symbol: "PXLW share_price: 2.52 share_volune: 4
mar ket _segnent: “"textiles"
and aggregate dollar_vol une: 54.57 share_vol une: 18 ©

Subtractor: <- updated aggregate dollar_vol une: 44.49 share_volunme: 14 (4]

Adder : -> key textiles stock alert synbol: "PXLW share_price: 3.39 share_volune: 6
mar ket _segnment: "textiles" (5)
and aggregate doll ar_vol une: 44.49 share_volune: 14
Adder : <- updated aggregate dollar_vol une: 64.83 share_volume: 20 O
9 First entry and the aggregate is empty
@ The aggregate now updates with the values from the PXLW stock statistics
© Asaresult of anew entry for PXLW the aggregation runs the subtractor
© Returning the updated aggregation minus previous values for PXLW
©® Theincoming entry for the new PXLW stock alert
(6}

Returning the updated aggregation with new values added

By looking at this output excerpt you should be able to clearly see how the KTabl e aggregate
works, it keeps only the latest value for each unique combination of the original KTabl e key and
the key used to execute the grouping, which is exactly what you’d expect, since you're
performing an aggregation over a table with only one entry per primary key.

It’s worth noting here that KTabl e API also provides r educe and count methods which you’ll
take similar steps. You first perform a gr oupBy, and for the reduce provide an adder and

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

232

subtractor Reducer implementation. I won’t cover them here, but there will be examples of both
reduce and count in the source code for the book.

This wraps up our coverage of the KTabl e API but before we move on to more advanced stateful
subjects, I’d like to go over another table abstraction offered by Kafka Streams, the
d obal KTabl e.

8.5 GlobalKTable

I alluded to the G obal KTabl e earlier in the chapter when we discussed that the KTabl e is
partitioned, hence its distributed out among Kafka Streams application instances (with the same
application id of course). What makes the G obal KTabl e unique is the fact that it’s not
partitioned, it fully consumes the underlying source topic. This means there is a full copy of all
records in the table for all application instances.

Let’s look at an illustration to help make this clear:

Topie with 3 partitions Topic with 3 partitions

Ul I

4 Bl

|

KTable 1 KTable 2 KTable 3 GlobalkTable 1 GlobalkTable 2. GlobalkTable 3
Eoch K‘Ta\[:le °"\|'j consumes 1 P“f"titb"‘ Eoch &!DBAJK'TALIQ Pu"y CONSUMES all 3 Fal’"t?t'lons
from the topic, so the table is sharded from the topic, so the table is rephca‘te_p(on each
on each instonce instance

Figure 8.8 GlobalKTable contains all records in a topic on each application instance

As you can see the source topic for the KTabl e has three partitions and with three application
instances, each KTabl e is responsible for one partition of data. But the G obal KTabl e has the
full copy of its three-partition source topic on each instance. Kafka Streams materializes the
d obal KTabl e on local disk in a KeyVal ueSt or e, but there is no changelog topic crated for this
store as the source topic serves as the backup for recovery as well.

Here’s how you’d create one in your application:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

233

Listing 8.7 Creating a GlobalKTable

St reansBui | der buil der = new StreansBuil der();
G obal KTabl e<String, String> global Table =
bui | der. gl obal Tabl e("topi c",
Consuned. wi t h(Serdes. String(),
Serdes. String()));

The interesting thing to note about the G obal KTabl e is that it doesn’t offer an API. So I'm sure
you’re asking yourself "why would I ever want to use one?". The answer to that question will
come in our next section when we discuss joins with the KTabl e.

8.6 KTable Joins

In the previous chapter you learned about performing joins with two KSt r eamobjects, but you
can also perform KStreamKTabl e, KSt r eam@ obal KTabl e, and KTabl e-KTabl e joins. Why
would you want to join a stream and a table? Stream-table joins represent an excellent
opportunity to create an emriched event with additional information. For the stream-table and
table-table joins, both sides need to be co-partitioned - meaning the underlying source topics
must have the same number of partitions. If that is not the case then you’ll need to do a
repartition operation to achieve the co-partitioning. Since the G obal KTabl e has a full copy
of the records there isn’t a co-partitioning requirement for stream-global table joins.

For example, let’s say you have an event stream of user activity on a website, a clickstream, but
you also maintain a table of current users logged into the system. The clickstream event object
only contains a user-id and the link to the visited page but you’d like more information. Well you
can join the clickstream against the user table and you have much more useful information about
the usage patterns of your site - in real time. Here’s an example to work through:

Listing 8.8 Stream-Table join to enrich the event stream

KStreanxkString, dickEventProto.CickEvent> clickEvent KStream =
bui | der. strean("cli ck-events",
Consumned. wi t h(stringSerde, clickEventSerde));

KTabl e<String, UserProto.User> userTable =
bui | der. t abl e("users",
Consuned. wi t h(stringSerde, userSerde));

cli ckEvent KStream j oi n(user Tabl e, clickEventJoi ner)
. peek(printKV("streamtable-join"))
.to("streamtabl e-join",
Produced. wi t h(stringSerde, stringSerde));

Looking at the code in this example, you first create the click-event stream then a table of logged
in users. In this case we’ll assume the stream has the user-id for the key and the user tables'
primary key is the user-id as well, so we can easily perform a join between them as is. From
there you call the j oi n method of the stream passing in the table as a parameter.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

234

8.7 Stream-Table join details

At this point I’d like to cover a few of differences with the stream-table joins from the
stream-stream join. First of all stream table joins aren’t reciprocal - the stream is always on the
left or calling side and the table is always on the right side. Secondly, there is no window that the
timestamps of the records need to fit into for a join to occur, which dove tails into the third
difference; only updates on the stream produce a join result.

In other words, it’s only newly arriving records on the stream that trigger a join, new records to
the table update the value for the key in table, but don’t result in a join result. To capture the join
result you provide a Val ueJoi ner object that accepts the value from both sides and produces a
new value which can be the same type of either side or a new type altogether. With stream-table
joins you can perform an inner (equi) join or a left-outer join (demonstrated here).

8.8 Table-Table join details

Next, let’s talk about table-table joins. Joins between the two tables are pretty much the same
that you’ve seen so far with join functionality. Joins between two tables is similar to
stream-stream joins, except there is now windowing, but updates to either side will trigger a join
result. You provide a Val ueJoi ner instance that calculates the join results and can return an
arbitrary type. Also, the constraint that the source topic for both sides have the same number
partitions applies here as well.

But there’s something extra offered for table-table joins. Let’s say you have two KTabl es you’d
like to join; users and purchase transactions, but the primary key for the users is user-id and the
primary key for transactions is a transaction-id, although the transaction object contains the
user-id. Usually a situation like this would require some sort of workaround, but not now, as the
KTabl e API offers a foreign-key join, so you can easily join the two tables. To use the
foreign-key join you use the signature of the KTabl e. j oi n method that looks like this:

Listing 8.9 KTable Foreign Key join

user Tabl e. j oi n(transacti onTabl e, (1)
forei gnKeyExtractor, @
j oi ner);

© Other table or right side of the join
® Theforeign key extractor function
© The Vaueloiner parameter

Setting up the foreign key join is done like any other table-table join except that you provide an
additional parameter a j ava. util . Functi on object, that extracts the key used to complete the
join. Specifically, the function extracts the key from the left-side value to correspond with the

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

235
key of the right side table. If the function returns nul | then no join occurs.

Inner and left-outer joins support joining by a foreign key. As with primary-key table joins, an
update on either side will trigger a potential join result. The inner workings of the foreign-key
join in Kafka Streams is involved and I won’t go into those details, but if you are interested in
more details then I suggest reading KIP-213
cwiki.apache.org/confluence/display/KAFKA/KIP-213+Support+non-key+joining+in+KTable.

NOTE There isn’t a corresponding explicit foreign-key joins available in the KSt r eam
APl and that is intentional. The KStream APl offers methods map and
sel ect Key where you can easily change the key of a stream to facilitate a
join.

8.9 Stream-GlobaTable join details

The final table join for us to discuss is the stream-global table join. There a few differences with
the stream-global table we should cover. First it’s the only join in Kafka Streams that does not
require co-partitioning. Remember the G obal KTabl e is not sharded like the KTabl e is, a
partition per task, but instead contains all the data of its source topic. So even if the partitions of
the stream and the global-table don’t match, if the key is present in the global table, a join result
will occur.

The semantics of a global table join are different as well. Kafka Streams process incoming
KTabl e records along with every other incoming records by timestamps on the records, so with a
stream-table join the records are aligned by timestamps. But with a G obal KTabl e, updates are
simply applied when records are available, it’s done separately from the other components of the
Kafka Streams application.

Having said that, there are some key advantages of using a G obal KTabl e. In addition to having
all records on each instance, stream-global tables support foreign key joins, the key of the stream
does not have to match the key of the global table. Let’s look at a quick example:

Listing 8.10 KStream GlobalTable Join example

user Stream j oi n(det ai | sA obal Tabl e, o
keySel ector, @
val ueJoiner); ©

9 Thed obal Tabl e tojoin against
©® A key selector to perform thejoin

© TheVval ueJoi ner instance to compute the result

So with the KSt r eamd obal KTabl e join the second parameter is a KeyVal ueMapper that takes

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://cwiki.apache.org/confluence/display/KAFKA/KIP-213+Support+non-key+joining+in+KTable
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

236

the key and value of the stream and creates the key used to join against the global table (in this
way it is similar to the KTabl e foreign-key join). It’s worth noting that the result of the join will
have the key of the stream regardless of the G obal Tabl e key or what the supplied function
returns.

Of course every decision involves some sort of trade-off. Using a G obal KTabl e means using
more local disk space and a greater load on the broker since the data is not sharded, but the entire
topic is consumed. The stream-global table join is not reciprocal, the KSt r eamis always on the
calling or left-side of the join. Additionally, only updates on the stream produce a join result, a
new record for the G obal KTabl e only updates the internal state of the table. Finally, either
inner or left-outer joins are available.

So what’s best to use when joining with a KSt r eama KTabl e or G obal KTabl e? That’s a tough
question to answer as there are no hard guidelines to follow. But a good rule of thumb would be
to use a A obal KTabl e for cases where you have fairly static lookup data you want to join with
a stream. If the data in your table is large strongly consider using a KTabl e since it will end up
being sharded across multiple instances.

At this point, we’ve covered the different joins available on both the KTabl e and G obal KTabl e.
There’s more to cover with tables, specifically viewing the contents of the tables with interactive
queries and suppressing output from a table (KTabl e only) to achieve a single final result. We’ll
cover interactive queries a little later in the chapter. But we’ll get to suppression in our next
section when we discuss windowing.

8.10 Windowing

So far you’ve learned about aggregations on both the KSt r eam and KTabl e. While they both
produce an aggregation, how they are calculated is bit different. Since the KSt r eamis an event
stream where all records are unrelated, the aggregations will continue to grow over time. But
with either case the results produced are cumulative over time. Maybe not as much for KTabl e
aggregations, but that’s definitely the case for KSt r eamaggregations.

There’s good chance that you’ll want to see results within given time intervals. For example,
what’s the average reading of a [oT temperature sensor every 15 minutes? To capture
aggregations in slices of time, you’ll want to use windowing. In Kafka Streams windowing an
aggregation means that you’ll get results in distinct blocks of time as defined by the size of the
window. There are four window types available:

1. Hopping - Windows with a fixed size by time and the advance time is less than the
window size resulting in overlapping windows. As aresult, results may be included in
more than one window. Y ou’ d use a hopping window when aresult from the previous
window is useful for comparison such as fraud detection.

2. Tumbling - A specia case of a hopping window where the advance time is the same as

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

237

the window size, so each window contains unique results. A good use case for tumbling
windows isinventory tracking because you only want the unique amount of items sold
per window.

3. Session - A different type of window where its size is not based on time but on behavior
instead. Session windows define an inactivity-gap and aslong as new events arrive
within the defined gap, the window grows in size. But once reaching the inactivity gap,
new events will go into a new window. Session windows are gresat for tracking behavior
becuase the windows are determined by activity.

4. Sliding - Sliding windows are fixed time windows, but like the session window, they can
continue to grow in size because they are based on behavior as well. Sliding windows
specify the maximum difference between timestamps of incoming records for inclusion
in the window.

What we’ll do next is present some examples and illustrations demonstrating how to add
windowing to aggregations and more detail on how they work.

The first example will show how to implement a hopping window on a simple count application.
Although the examples will be simple to make learning easier to absorb, the simplicity of the
aggregation doesn’t matter. You can apply windowing to any aggregation.

Listing 8.11 Setting up hopping windows for an aggregation

/1 Sone details omtted for clarity
count St ream gr oupByKey()
. Wi ndowedBy(Ti neW ndows. of Si zeW t hNoGr ace(Dur ati on. of M nutes(1)) (1]
. advanceBy(Dur ati on. of Seconds(10)))
.count (Materialized. as("hoppi ng-w ndow counti ng-store"))
.toStream() (3]
. map((wi ndowedKey, val ue) -> KeyVal ue. pai r (wi ndowedKey. key(), value)) O
.to("counting-output”, Produced.w th(stringSerde, |ongSerde));

Setting up the window (hopping) with a size of one minute
Establishing the advance by time
Convert the KTable to a KStream
Mapping the Windowed key back to the original inner key

In this example you’re using a hopping window with a size of one minute and an advance of 10
seconds. Let’s review the code here to understand what your specifying. The wi ndowedBy call at
annotation one sets up the windowing and specifies the size of the window. You no doubt
noticed the method name of Si zeW t hNoG ace, so what does the Wt hNoG ace mean (other
than dribbling your dinner down the front of your shirt!)? Grace is a concept in Kafka Streams
that allows you to define how you want to handle out-of-order records, but I’d like to defer that
conversation until we’ve finished discussing the hopping window.

At annotation two, you use the advanceBy call which determines the interval that the
aggregation will occur. Since the advanceBy is less than the window size, it is a hopping
window. At annotation three we convert the KTabl e to a KSt r eamas we need to convert from

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

238

the update stream to an event stream so we can perform some operations on each result.

At annotation four, you use a map processor to create a new KeyVal ue object, specifically
creating a new key. This new key is actually the original key for the pair when it entered the
aggregation. When you perform a windowed aggregation on a KSt r eamthe key going into the
KTabl e gets "upgraded" to a W ndowed key. The W ndowed class contains the original key from
the record in the aggregation and a reference to the specific W ndow the record belongs to.

Processing the key-values coming from a windowed aggregation presents you with a choice;
keep the key as is, or use the map processor to set the key the original one. Most of the time it
will make sense for you to revert to the original key, but there could be times where you want to
keep the W ndowed one, there really isn’t any hard rules here. In the source code there’s an
example of using both approaches.

Getting back to how a hopping window operates, here’s an illustration depicting the action:

Hopping winclows - overlapping Rixed sized window bounded lay start end +ime with an incremental upo(od'e

| minte advance Ey 30 seconds

¢ 4040

Figure 8.9 Hopping windows hop to the right by the given advance time which

From looking at the illustration, the first record into the aggregation opens the window with the
time of its timestamp. Every ten seconds, again based on record timestamps, the aggregation
performs its calculation, a simple count in this case. So a hopping window has a fixed size where
it collects records, but it doesn’t wait the entire time of the window size to perform the
aggregation; it does so at intervals within the window corresponding to the advance time. Since
the aggregation occurs within the window time it may contain some records from the previous

evaluation.

You now have learned about the hopping window, but so far we’ve assumed that records allways
arrive in order. Suppose some of your records don’t arrive in order and you’d still like to include
them (up to a point) in your count, what whould you do to handle that? Now’s a good time to
circle back to the concept of out-of-order and grace I mentioned previously.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

239

8.11 Out order records and grace

It will be easier to grasp the concept of grace if we first describe what an out-of-order record is.
You’ve learned in a previous chapter the Kaf kaPr oducer will set the timestamp on a record. In
this case timestamps on the records in Kafka Streams should always increase. But in some cases
you may want to use a timestamp embedded in the value, and in that scenario you can’t be
guaranteed that those timestamps always increase. The following illustration demonstrates this

concept:
| /%
1#:22:05
Timestompes

This record is 'out-of-order’
since its timestamp is less than
the previous one

Figure 8.10 Out of order records didn't arrive in the correct sequence

So an out-of-order record is simply one where the timestamp is less than the previous one.

Now moving on to grace, it is the amount of time after a window is considered closed that you’re
willing to allow an out-of-order record into the aggregation. Here’s an illustration demonstrating
the concept:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

240

One-minute tumbling windlow s‘\:a.r"t‘ing at 12:40:00

...

12:40:05 12:40:57

12:41:05 12:40:53 12049113

A grace pe_riod of 15 seconds allows an
out-of-order record into the window

Figure 8.11 Grace is the amount of time you’ll allow out-of-order records into a window after its
configured close time

So from looking at the illustration, grace allows records into an aggregation that would have
been included were they on-time, and allows for a more accurate calculation. Once the grace
period has expired, any out-of-order records are considered late and dropped. In the case of our
example above, since we’re not providing a grace period, when the window closes Kafka
Streams drops any out-of-order records.

We’ll revisit windowing and grace periods when we discuss timestamps later in the chapter, but
for now it’s enough to understand that timestamps on the records drive the windowing behavior
and grace is a way to ensure you’re getting the most accurate calculations by including records
that arrive out of order.

8.12 Tumbling windows

Now let’s get back to our discussion of window types and move on to the tumbling window. A
tumbling window is actually a special case of a hopping window where the advance of the
window is the same as its size. Since it advances the size of the window the calculation of the
window contains no duplicate results. Let’s take a look of an illustration showing the tumbling
window in action:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

241
T‘uml—;ling windows - A/on—ove_rlapping events bounded l—:y start and end +ime

| minute | minute | minute

9 10099 4004

Figure 8.12 Tumbling windows move to the right by an advance equal to the size of the window

So you can see here how a tumbling window gets its name - thinking of the window as square
when it’s time to advance it "tumbles" into an entirely new space, and as a consequence it’s
guaranteed to not have any overlapping results. Specifying to use a tumbling window is easy,
you simple leave off the advanceBy method and the size you set automatically becomes the
advance time. Here’s the code for setting up a tumbling window aggregation:

Listing 8.12 Setting up tumbling windows for an aggregation

/1 Sone details omtted for clarity
count Stream gr oupByKey/()
. Wi ndowedBy(Ti neW ndows. of Si zeAndG ace(Dur ati on. of M nut es(1) o
, Duration. of Seconds(30))) @
.count (Materialized. as(" Tunbl i ng-w ndow counti ng-store"))

9 Setting up the tumbling window of one minute

® Using 30 seconds for the grace period

From looking at annotation one using a tumbling window is simply a matter not setting the
advance time. Also I’d like to point out that in this example you are using a grace period of thirty
seconds, so there’s a second Duration parameter passed into the

Ti meW ndows. of Si zeAndG ace method. Note that I’'m only showing the required code for
tumbling windows with a grace period, but the source code contains a full runnable example.

The choice of using a tumbling or a hopping window depends entirely on your use case. A
hopping window gives you finer grained results with potentially overlapping results, but the
tumbling window result are a little more course-grained but will not contain any overlapping
records. One thing to keep in mind is that a hopping window is re-evaluated more frequently, so
how often you want to observe the windowed results is one potential determinant.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

242

8.13 Session windows

Next up in our tour of window type is the session window. The session window differs from
hopping and tumbling in that it doesn’t have fixed size. Instead you specify an inactivity gap; if
there’s no new records within the gap time, Kafka Streams closes the window. Any subsequent
records coming in after the inactivity gap result in creating a new session. Otherwise it will
continue to grow in size Looking at a visual pictorial of a session window is in order to fully
understand how it works:

Session Windows - Dynamic sized windows based on behavior inactividy defines o session

KX R0 Ty S e e
00 0 000 400 ¢ ’

7

All records arrive within activity gap,
So session l(e,e_fas growing n size

Figure 8.13 Session windows continue to grow unless no new records arrive before the inactivity gap
expires

By looking at the illustration you can see that a session window is driven by behavior, unlike the
hopping or tumbling window which are governed by time. Let’s take a look at an example of
using a session window. As before I’'m only going to show the essential part here, the source
code contains the full, runnable example.

Listing 8.13 Setting up the session window

/1 Sone details omtted

count Stream gr oupByKey/()
. Wi ndowedBy(Sessi onW ndows. of | nacti vi t yGapAndG ace(Durati on. of M nutes(1), (1]
Dur at i on. of Seconds(30))) (2]
.count (Materialized. as("Sessi on-w ndow counti ng-store"))

© Using asession window for the aggregation

@ Specifying agrace period

So to use sessions with your aggregation is to use a Sessi onW ndows factory method. In this
case you specify an inactivity period of one minute and you include a grace period as well. The
grace period for session window works in the similar manner, it provides a time for Kafka
Streams to include out-of-order records arriving after the inactivity period passes. As with the
other window implementations, there’s also a method you can use to specify no grace period.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

243

The choice to use a session window vs. hopping/tumbling is more clear cut, it’s best suited where
you are tracking behavior. For example think of a user on a web application, as long as they are
active on the site you’ll want to get calculate the aggregation and it’s impossible to know how

long that could be.

8.14 Sliding windows

We’re now on to the last window type to cover, Sl i di ngW ndows. The sliding window 1is a
fixed-size window, but instead of specifying the size, it’s the difference between timestamps that
determine if a record is added to the window. So it’s a combination of time-based window, but
To fully understand how a Sl i di ngW ndow operates, take a look at the following illustration:

Figure 8.14 Sliding windows are fixed-size and slide along the time-axis

As you can see from the diagram, two records are in the same window if the difference in the
value of their timestamps falls within the window size. So as the Sl i di ngW ndow slides along
records may end up in several overlapping calculations, but each window will contain a unique
set of records. Another way to look at the Sli di ngW ndow is that as it moves along the

time-axis, records come into the window and others fall out on continual basis.

Here’s how you’d set up a sliding window for an aggregation:

Listing 8.14 Setting up the sliding window

// Some details omtted

count St ream gr oupByKey()
. wi ndowedBy(Sl i di ngW ndows. of Ti neDi f f er enceW t hNoG ace(
Dur at i on. of Seconds(30))) ©
.count (Materialized.as("Sliding-w ndow counti ng-store"))

© Specifying a dliding window with time difference of 30 seconds

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

244

As with the all the windowed options we’ve seen so far, it’s simply a matter of providing a
factory method for the desired windowing functionality. In this case, you’ve set the time
difference to thirty seconds with no grace period. Just like the other windowing options, you
could specify a grace period as well with the Sl i di ngW ndows. of Ti neDi f f erenceW t hGr ace
method.

The determining factor to go with a sliding window over a hopping or tumbling window is a
matter of how fine-grained of a calculation is desired. When you need to generate a continual
running average or sum is a great use-case for the Sl i di ngW ndow.

You could achieve similar behavior with a Hoppi ngW ndow by using a small advance interval.
But this approach will result in poor performance because the hopping windows will create
redundant windows and performing aggregation operations over them is inefficient. Compared to
the Sl i di ngW ndow that only creates windows containing distinct items so the calculations are
more efficient.

This wraps up our coverage of the different windowing types that Kafka Streams provides, but
before we move on to another section we will cover one more feature that is available for all
windows. As records flow into the windowed aggregation processor, Kafka Streams continually
updates the aggregation with the new records. Kafka Streams updates the KTabl e with the new
aggregation, and it forwards the previous aggregation results to downstream operators.

Remember that Kafka Streams uses caching for stateful operations, so every update doesn’t flow
downstream. It’s only on cache flush or a commit that the updates make it downstream. But
depending on the size of your window, this means that you’ll get partial results of your
windowing operations until the window closes. In many cases receiving a constant flow of fresh
calculations is desired.

But in some cases, you may want to have a single, *final* result forwarded downstream from a
windowed aggregation. For example, consider a case where your application is tracking IoT
sensor readings with a count of temperature readings that exceed a given threshold over the past
30 minutes. If you find a temperature breach, you’ll want to send an alert. But with regular
updates, you’ll have to provide extra logic to determine if the result is an intermediate or final
one. Kafka Streams provides an elegant solution to this situation, the ability to suppress
intermediate results.

8.15 Suppression

For stateless operations the behavior of always forwarding a result is expected in the nature of a
stream processing system. But sometimes for a windowed operation it’s desirable for a final
result when the window closes. For example, take the case of the tumbling window example
above, instead of incremental results, you want a single final count.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

245

NOTE Final results are only available for windowed operations. With an event
streaming application like Kafka Streams, the number of incoming records is
infinite, so there’s never a point we can consider a record final. But since a
windowed aggregation represents a discrete point in time, the available
record when the window closes can be considered final.

So far you’ve learned about the different windowing operations available, but they all yield
intermediate results, now let’s suppose you only want the final result from the window. For that
you’d use the KTabl e. suppr ess operation.

The KTabl e. suppr ess method takes a Suppr essed configuration object which allows you to
configure the suppression in two ways:

1. Strict - results are buffered by time and the buffering is strictly enforced by never
emitting aresult early until the time bound is met

2. Eager - results are buffered by size (number of bytes) or by number of records and when
these conditions are met, results are emitted downstream. This will reduce the number of
downstream results, but doesn’t guarantee afinal one.

So you have two choices - the strict approach which guarantees a final result or the eager one
which could produce a final result, but also has the likelihood of emitting a few intermediate
results as well. The trade-off to make can be thought of this way - with strict buffering, the size
of the buffer doesn’t have any bounds, so the possibility of getting an Qut Of Menory (OOM)
exists, but with eager buffering you’ll never hit an OOM exception, but you could end up with
multiple results. While the possibility of incurring an OOM may sound extreme, if you have feel
the buffer won’t get that large or you have a sufficiently large heap available then using the strict
configuration should be OK.

NOTE The possibility of an OOM is not as harsh as it seems at first glance. All Java
applications that use a data-structures in-memory, List, Set or Map have the
potential for causing an OOM if you continually add to them. To use them
effectively requires a balance of knowledge between the incoming data and
the amount of heap you have available.

Let’s take a look now at how at an example of using suppression.

Listing 8.15 Setting up suppression on a KStream aggregation

count Stream gr oupByKey()
. Wi ndowedBy(Ti meW ndows. of Si zeW t hNoG-ace(Durati on. of M nutes(1))) (1]
.count (Materialized. as(" Tunbl i ng-w ndow suppr essed- counti ng-store"))
. suppress(until WndowC oses(unbounded())) (2]

© Cresting a one-minute tumbling window

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

246

® Suppressing results until the window closes with an unbounded configuration

So setting up suppression is as easy as adding one line of code, which you can see at annotation
two. In this case you’re suppressing all output until the window closes along with an unbounded
buffering of records. For testing scenarios this is an acceptable configuration, but if running with
such a configuration in a production setting gives you pause, let’s quick show two alternative
settings.

First you can configure the final result with a maximum number records or bytes, then if the
constraint is violated, you can have a graceful shutdown:

Listing 8.16 Setting up suppression for final result controlling the potential shutdown

. suppress(unti| W ndowd oses(naxRecords(10_000) @
. shut DownWenFul | ()) @

© Setting max records to 10K
® Specifying to shutdown if limit is reached

Here you’re specifying to go with an unbounded window, but you’d rather have a graceful
shutdown should the buffer start to grow beyond what you feel is a reasonable amount. So in this
case you specify the maximum number of records is 10K and should the buffering exceed that
number, the application will shut down gracefully.

Note that we technically could have used a shut DownWhenFul | with our original suppression
example, but the default limit is LONG. MAX_VALUE, so in practice most likely that you’d get an
OOM exception before reaching that size constraint. With this change you’re favoring shutting
down before emitting a possible non-final result.

On the other hand, if you’d rather trade-off a possible non-final result over shutting down you
could use a configuration like this:

Listing 8.17 Using suppression emulating a final result with a possible early result instead

of shutting down

.suppress(until Ti neLi mit(Duration.of M nutes(1), (1]
maxRecor ds(1000)
.em tEarl yWenFull ())) ©
Setting time limit of one hour before sending result downstream
Specifying to buffer a maximum of 1K records

Take the action of emitting arecord if the maximum number of buffered recordsis
reached

With this example, you’ve set the time limit to match the size of the window (plus any grace

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

247

period) so you’re reasonable sure to get a final result, but you’ve set the maximum size of the
buffer, and if the number of records reaches that size, the processor will forward a record
regardless if the time limit is reached or not. One thing to bear in mind is if you want to set the
time limit to correspond to the window closing, you need to include the grace period, if any, as
well in the time limit.

This wraps up our discussion on suppression of aggregations in Kafka Steams. Even though the
examples in the suppression section only demonstrated using the KStream and windowed
aggregations, you could apply the same principal to non-windowed KTabl e aggregations by
using the time-limit API of suppression.

Now let’s move on to the last section of this chapter, timestamps in Kafka Streams.

8.16 Timestamps in Kafka Streams

Earlier in the book, we discussed timestamps in Kafka records. In this section, we’ll discuss the
use of timestamps in Kafka Streams. Timestamps play a role in key areas of Kafka Streams
functionality:

Joining streams

Updating a changelog (KTabl e API)

Deciding when the Pr ocessor . punct uat e() method istriggered (Processor API)
Window behavior

With stream processing in general, you can group timestamps into three categories, as shown in
figure 8.10:

® Event time— A timestamp set when the event occurred, usually embedded in the object
used to represent the event. For our purposes, we'll consider the timestamp set when the
Producer Recor d is created as the event time as well.

® |ngestion time — A timestamp set when the datafirst enters the data processing pipeline.
Y ou can consider the timestamp set by the Kafka broker (assuming a configuration
setting of LogAppendTi me) to be ingestion time.

® Processing time — A timestamp set when the data or event record first startsto flow
through a processing pipeline.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

248

Timestamp embedded in data object at time of event, or Event time
timestamp set in ProducerRecord by a Kafka producer

Some event]
fmestamp S -l Value LTlmestamp

Or

Record
Kafka producer
Timestamp set at time record is appended to log (topic) Ingest time
Value
Kafka broker .. > T|mestamp
Record
Timestamp generated at the moment when record Processing time
is consumed, ignoring timestamp embedded in data
object and ConsumerRecord
Value Timestamp
Kafka Streams R R R R R RLEE
Timestamp Record

T

Timestamp generated
when record is consumed
(wall-clock time)

Figure 8.15 There are three categories of timestamps in Kafka Streams: event time, ingestion time, and
processing time.

You’ll see in this section how the Kafka Streams by using a Ti mest anpExt r act or, gives you

the ability to chose which timestamp semantics you want to support.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

249

NOTE So far, we've had an implicit assumption that clients and brokers are located
in the same time zone, but that might not always be the case. When using
timestamps, it's safest to normalize the times using the UTC time zone,
eliminating any confusion over which brokers and clients are using which time
zones.

In most cases using event-time semantics, the timestamp placed in the metadata by the
Producer Recor d is sufficient. But there may be cases when you have different needs. Consider

these examples:

® You're sending messages to Kafka with events that have timestamps recorded in the
message objects. There' s some lag time in when these event objects are made available to
the Kafka producer, so you want to consider only the embedded timestamp.

® You want to consider the time when your Kafka Streams application processes records as
opposed to using the timestamps of the records.

8.17 The TimestampExtractor

To enable different processing semantics, Kafka Stream provides a Ti mest anpExtract or
interface with one abstract and four concrete implementations. If you need to work with
timestamps embedded in the record values, you’ll need to create a custom Ti nest anpExt r act or
implementation. Let’s briefly look at the included implementations and implement a custom
Ti mest anpExt ract or.

Almost all of the provided Ti mest anpExt r act or implementations work with timestamps set by
the producer or broker in the message metadata, thus providing either event-time processing
semantics (timestamp set by the producer) or log-append-time processing semantics (timestamp
set by the broker). Figure 4.19 demonstrates pulling the timestamp from the Consuner Recor d
object.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

250

Consumer timestamp extractor
retrieves timestamp set by

Kafka producer or broker Entire enclosing rectangle represents
K a ConsumerRecord object

|
A Timestamp E Key Value
|

Dotted rectangle represents

ConsumerRecord metadata

Figure 8.16 Timestamps in the Consumer Record object: either the producer or broker set this
timestamp, depending on your configuration.

Although you’re assuming the default configuration setting of Cr eat eTi me for the timestamp,
bear in mind that if you were to use LogAppendTi me, this would return the timestamp value for
when the Kafka broker appended the record to the log. Ext r act Recor dMet adat aTi nest anp is
an abstract class that provides the core functionality for extracting the metadata timestamp from
the Consuner Recor d. Most of the concrete implementations extend this class. Implementors
override the abstract method, Extract Recor dMet adat aTi nest anp. onl nval i dTi mest anp, to

handle invalid timestamps (when the timestamp is less than 0).
Here’s a list of classes that extend the Ext r act Recor dMet adat aTi nest anp class:

® Fai | Onl nval i dTi mest anp — Throws an exception in the case of an invalid timestamp.

® LogAndSki pOnl nval i dTi nest anp — Returns the invalid timestamp and logs a warning
message that the record will be discarded due to the invalid timestamp.

® UsePrevi ousTi meOnl nval i dTi mest anp — In the case of an invalid timestamp, the last
valid extracted timestamp is returned.

We’ve covered the event-time timestamp extractors, but there’s one more provided timestamp
extractor to cover.

8.18 WallclockTimestampExtractor

Wl | ¢l ockTi mest anpExtract or provides process-time semantics and doesn’t extract any
timestamps. Instead, it returns the time in milliseconds by calling the System
.currentTimeM I i s() method. You’d use the Wal | cl ockTi nest anpExt ract or when you
need processing time semantics.

That’s it for the provided timestamp extractors. Next, we’ll look at how you can create a custom

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

251

version.

8.19 Custom TimestampExtractor

To work with timestamps (or calculate one) in the value object from the Consuner Record,
you’ll need a custom extractor that implements the Ti mestanpExtractor interface. For
example, let’s say you are working with IoT sensors and part of the information is the exact time
of the sensor reading. It’s important for your calculations to have the precise timestamp, so
you’ll want to use the one embedded in the record sent to Katka and not the one set by the
producer.

The figure here depicts using the timestamp embedded in the value object versus one set by
Kafka (either producer or broker).

Entire enclosing
rectangle represents a

ConsumerRecord object \ f ConsumerRecord metadata

1
i Timestamp E Key Value
I 1

Custom TimestampExtractor knows where
to pull the timestamp from the value in a
ConsumerRecord object

Record in JSON format

{ “recordType” = “purchase”,
“amount” = 500.00,
“timestamp” = 1502041889179 }

Figure 8.17 A custom Ti nest anpExt r act or provides a timestamp based on the value contained in the
Consumer Recor d. This timestamp could be an existing value or one calculated from properties
contained in the value object.

Here’s an example of a TinestanpExtractor implementation (found in src/main/
java/bbejeck/chapter 4/timestamp extractor/TransactionTimestampExtractor.java), also used in
the join example from listing 4.12 in the section “Implementing the Join” (although not shown in
the text, because it’s a configuration parameter).

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

252

Listing 8.18 Custom Ti nest anpExt r act or

public class TransactionTi nestanpExtractor inplenments Ti nestanpExtractor {

@verride
public | ong extract(Consuner Recor d<Obj ect, Cbject> record,
| ong previousTi nestanp) {
Pur chase purchaseTransacti on = (Purchase) record. val ue(); (1]
return purchaseTransacti on. get PurchaseDate().getTine(); ©

9 Retrieves the Purchase object from the key/value pair sent to Kafka
@ Returns the timestamp recorded at the point of sale

In the join example, you used a custom Ti mest anpExt r act or because you wanted to use the
timestamps of the actual purchase time. This approach allows you to join the records even if
there are delays in delivery or out-of-order arrivals.

8.20 Specifying a TimestampExtractor

Now that we’ve discussed how timestamp extractors work, let’s tell the application which one to
use. You have two choices for specifying timestamp extractors.

The first option is to set a global timestamp extractor, specified in the properties when setting up
your Kafka Streams application. If no property is set, the default setting is
Fai | Onl nval i dTi mest anp. cl ass. For example, the following code would configure the
Transacti onTi nest anpExt r act or via properties when setting up the application:

props. put (StreansConfi g. DEFAULT_TI MESTAMP_EXTRACTOR_CLASS_CONFI G,
Transacti onTi mest anpExtract or. cl ass) ;

The second option is to provide a Ti mest anpExt r act or instance via a Consuned object:

Consuned. wi t h(Serdes. String(), purchaseSerde)
. W t hTi mest anpExt ract or (new Transacti onTi nest anpExtractor()))

The advantage of doing this is that you have one Ti mest anpExtractor per input source,
whereas the other option provides a Ti mest anpExt r act or instance used application wide.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

253

8.21 Streamtime

Before we end this chapter, we should discuss how Kafka Streams keeps track of time while
processing, that is by using streamtime. Streamtime is not another category of timestamp, it is the
current time in a Kafka Streams processor. As Kafka Streams selects the next record to process
by timestamp and as processing continues the values will increase. Streamtime is the largest
timestamp seen by a processor and represents the current time for it. Since a Kafka Streams
application is broken down into tasks and a task is responsible for records from a given partition,
the value of streamtime is not global in a Kafka Streams application, it’s only unique at the task
level.

Streamtime only moves forward never backwards. Out of order records are always processed,
with the exception of windowed operations depending on the grace period, but its timestamp
does not affect streamtime. Here’s an illustration showing how streamtime works in a Kafka
Streams application.

With eoach incoming record with an inereasing tTime
streamtime is set to That timestamp

/ v

streamtime == 12.:41:05 streomtime == 12:41.05 streamtime == 124113

]

129113

streamtime == 12:40:51

12:40:51 12:41:.05 12:40:53

1

An out-of-order
record does not
advance streamtime

Figure 8.18 Streamtime represents the highest timestamp seen so far and is the current time of the
application

So as the illustration shows, the current time of the application moves forward as records go
through the topology and out of order records still go through the application but do not change

streamtime.

Streamtime is vital for the correctness of windowed operations as a window only advances and
closes as streamtime moves forward. If the source topics for your application are bursty or have a
sporadic sustain volume of records, you might encounter a situation where you don’t observe
windowed results. This apparent lack of processing is due to the fact that there hasn’t been
enough incoming records to move streamtime forward to force window calculations.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

This effect that timestamps have on operations in Kafka Streams is important to keep in mind
when testing applications, as manually adjusting the value of timestamps can help you drive
useful tests to validate behavior. We’ll talk more about using timestamps for testing in the

254

chapter on testing.

Streamtime also comes into play when you have punctuations which we’ll cover in the next

chapter when we discuss the Processor API.

8.22 Summary

The KTabl e is an update stream and models a database table where the primary key isthe
key from the key-value pair in the stream. Records with the same key are considered
updates to previous ones with the same key. Aggregations with the KTabl e are analogous
torunning aSel ect ... Group By SQL query against arelational database table.

Performing joins with aKSt r eamagainst a KTabl e isagreat way to enrich an event
stream. The KSt r eamcontains the event data and the KTabl e contains the facts or
dimension data.

It's possible to perform joins between two KTabl es and you can also do aforeign key
join between two KTabl es

The @ obal KTabl e contains all records of the underlying topic asit’s not sharded so
each application instance contains all the records making it suitable for acting asa
reference table. Joins with the G obal KTabl e don’t require co-partitioning with the
KSt r eam you can supply afunction that calculates the correct key for thejoin.

Windowing is away to calculate aggregations for a given period of time. Like all other
operations in Kafka Streams, new incoming records mean an update is rel eased
downstream, but windowed operations can use suppression to only have asingle final
result when the window closes.

There are four types of windows hopping, tumbling, sliding, and session. Hopping and
tumbling windows are fixed in size by time. Sliding windows are fixed in size by time,
but record behavior drives record inclusion in awindow. Session windows are
completely driven by record behavior, and the window can continue to grow aslong as
incoming records are within the inactivity gap.

Timestamps drive the behavior in a Kafka Streams application and this most obviousin
windowed operations as the timestamps of the records drive the opening and closing of
these operations. Streamtime is the highest timestamp viewed by a Kafka Streams
application during it’s processing.

Kafka Streams provides different Ti nest anpExt r act or instances so you can use
different timestamp semantics event-time, log-append-time, or processing time in your
application.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

255

Schema compatibility workshop

In this appendix, you’ll take a guided walk through of updating schemas in different compatiblity
modes. You’ll change the schemas compatibiltiy mode, make changes, test those changes and
finally run updated producers and consumers to see the different compatibilty modes in action.
I’ve already made all the changes, you just need to read along and run the provided commands.
There are three sub-projects sr-backward, sr-forward, and sr-full. Each sub-project contains
producers, consumers and schemas updated and configured for the representative compatiblity
mode.

NOTE There is a lot of overlap with code and the build.gradle files between the
sub-projects. This is intentional as | wanted each module isolated. The focus
of using these modules is for learning about evolving schemas in Schema
Registry and the related changes you need to make to Kafka Producers and
Consumers, not how to set up the ideal Gradle project!

In this section I’ll only go into how Schema Registry ensures compatibility between clients. For
schema compatibility rules of the serilaiztion frameworks themselves, you’ll want to look at each
one specifially. Avro schema resolution rules are available here
https://avro.apache.org/docs/current/spec.html#Schema+Resolution. Protobuf provides backward
compatibility rules in the langage specification found here
https://developers.google.com/protocol-buffers/docs/proto3.

Let’s go over the different compatibility modes now. For each compatibility mode you’ll see the
changes made to the scheama and you’ll run the a few steps to needed to sucessfuly migrate a
schema.

I’d like to point out that for the sake of clarity each schema migration for the different
compatibility modes has it’s own gradle sub-module in the source code for the book. I did this as
each Avro schema file has changes resulting in different Java class structures when you build the
code. Instead of having you rename files, I opted for a structure where each migration type can

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://avro.apache.org/docs/current/spec.html#Schema+Resolution
https://developers.google.com/protocol-buffers/docs/proto3
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

256

stand on its own. In a typical development evrionment you will not follow this practice. You’ll
modify the schema file, generate the new Java code and update the producers and consumers in
the same project.

All of the schema migration examples will modify the original avenger.avsc schema file.
Here’s the original schema file for reference so it’s easier to see the changes made for each
schema migration.

Listing B.1 The original Avenger Avro schema

"namespace": "bbejeck.chapter 3.avro",
"type": "record",
"name": "AvengerAvro",
"fields": [

{"name": "name", "type": "string"},

{"name": "real name", "type": "string"},

{"name": "movies", "type":

{"type": "array", "items": "string"},
"default": []

}
]

}

NOTE For working through schema evolution and the comaptibility types, I've
created three sub-modules in the source code, sr-backward, sr-forward, and
sr-full. These sub-modules are self contained and intentionally contain
duplicated code and setup. The modules have updated schemas, producers
and consumers for each type of compatibility mode. | did this to make the
learning process easier, as you can look at the changes and run new
examples without stepping on the previous ones.

B.1 Backward compatibility

Backward compatibility is the default migration setting. With backward compatibility you update
the consumer code first to support the new schema. The updated consumers can read records
serialized with the new schema or the immediate previous schema.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

257

Backivard Qompocﬁl:ili‘h/

E_ opic on lorol(e_r) All Consumers upgr‘ade_d
4+o vse the loel'e,S‘l' schema

Producer upgrode,d
+o vuse the
lo:l'e,s-i' schema

’/

With backivard compotibility
Consumers vse +he
new schema and
Producer using can handle records produced
+he previous schema with either the current schema
or the pre_vious one.

Figure B.1 Backward compatitbility updates consumers first to use the new schema then they can
handle records from producers using either the new schema or the previous one

As shown in this illustration the consumer, can work with both the previous and the new
schemas. The allowed changes with backwards compatibility are deleting fields or adding
optional fields. An field is considered optional when the schema provides a default value. If the
serialized bytes don’t contain the optional field, then the deserializer uses the specifed default
value when deserializing the bytes back into an object.

Before we get started, lets run the producer with the original schema. That way after the next
step you’ll have records using both the old schema and the new one and you’ll be able to see
backwards compatibility in action. Make sure you’ve started docker with docker-compose up
-d, then run the following commands:

Listing B.2 Producing records with the original schema

./gradlew streams:registerSchemasTask (1]
./gradlew streams:runAvroProducer (2}

© Making sure you’ve registered the original avengers.avsc schema

@ Run a producer with the original schema

Now you’ll have records with the original schema in the topic. When you complete the next step,
having these records available will make it clear how backwards compatibility works as the
consumer will be able to accept records using the old and the updated schema.

So let’s update the original schema and delete the real name field and add a powers field with
default value.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

258

NOTE The schema file and code can be found in sr-backward sub-module in the
src/main/avro directory in the source code.

Listing B.3 Backwards compatible updated schema

{

"namespace": "bbejeck.chapter 3.avro",
"type": "record",
"name": "AvengerAvro",
"fields": [
{"name": "name", "type": "string"},
{“name": "powers", "type": (1]
{"type": "array", "items": "string"},
"default": []
bo
{"name": "movies", "type":
{"type": "array", "items": "string"},
"default": []

9 The powers field replaced the deleted real name field

@ Provding a default value of an empty powers list for backwards compatibility.

Now that you have updated the schema, you’ll want to test that the schema is compatible before
uploading it to Schema Registry. Fortunately testing a new schema is a simple process. You’ll
use the testSchemasTask in the sr-backward module from the gradle plugin for testing
compatibility. So let’s test the compatibility first by running this command from the root of the
project:

Listing B.4 Testing a new schema is backwards compatible

./gradlew :sr-backward:testSchemasTask

IMPORTANT For you to run the example successfully, you need to run the command exacty
as its displayed here including the leading : character.

The result of running the testSchemasTask should be BUILD SUCESSFUL which means that the
new schema is backwards compatible with the existing one. The testSchemasTask makes a call
to Schema Registry to compare the proposed new schema against the current one to ensure it’s
comaptible. Now that we know the new schema is valid, let’s ahead and register oit with the
following command:

Listing B.5 Registering the new schema

./gradlew :sr-backward:registerSchemasTask

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

259

Again the result of running the register command print a BUILD SUCESSFUL on the console.
Before we move on to the next step let’s run a REST API command to view the latest schema for

the avro-avengers-value:

curl -s "http://localhost:8081/subjects/avro-avengers-value/versions/latest" | jg '.'
Running this command should yield results resembling the following:

{

"name" : "avro-avengers-value",
"version" : 2,
"schema" : "{\"type\": \"record\", \"namespace\": \"bbejeck.chapter 3\", \"name\":

\"AvengerAvro\"..."

}

From the results, you can see the increase in the version from 1 to 2 as you’ve loaded a new
schema. With this changes in place, you’ll need to update your clients, starting with the
consumer. With compatibility of BACWARDS you want to update the consumer first to handle any
records produced using the new schema.

For example you originally expected to work with the real name field, but you deleted it in the
schema, so you want to remove references to it in the new schema. You also added the powers
field, so you’ll want to be able to work with that field. That also implies you’ve generated new
model objects.

Earlier in the chapter when you ran the clean, build command it generated the correct objects
for all of our modules. So you should not have to do that now.

Take note that since we are in BACKWARDS compatiblity mode, if your updated consumer were to
getrecords in the previous format, then it won’t blow-up. The updated ignores the real name
field, and the powers field uses the default value.

After you have updated the consumer, then you’ll want to update your producer applications to
use the new schema. The AvroProducer in the sr-backward submodule has had the updates
applied already. Now run the following command to producer records using the new schema.

Listing B.6 Producing records with the new schema

./gradlew :sr-backward:runAvroProducer

You’ll see some text scroll by followed by the familiar BUILD SUCESSFUL text. If you
remember, just a few minutes ago you ran the produce command from the original sub-module
adding records in the previous schema. So now that you’ve run the producer using the new
schema, you have a mix of old and new schema records in the topic. But our consumer example
should be able to handle both types, since we are in the BACKWARDS compatibility mode.

Now when you run the consumer you should be able to see the records produced with the

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

http://localhost:8081/subjects/avro-avengers-value/versions/latest
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

260

previous schema as well as the records produced with the new schema. Run the following
command to execute the updated consumer:

Listing B.7 Consuming records against new schema

./gradlew :sr-backward:runAvroConsumer

In the console you should see the first results printing with powers []. The empty value
indicates those are the older records using the default value, since the original records did not
have a powers field on the object.

NOTE For this first compatibility example, your consumer read all the records in the
topic. This happened because we used a new group.id for the consumer in
the sr-backwards module and we've configured it to read from the earliest
available offset, if none were found. For the rest of the compatiblity examples
and modules, we’ll use the same group.id and the consumer will only read
newly produced records. I'll go into full details on the group.id configuration
and offset behavior in chapter four.

B.2 Forward compatibility

Forward compatibility is a mirror image of backward compatibility regarding field changes. With
forward compatibility you can add fields and delete optional fields. Let’s go ahead and update
the schema again, creating avenger v3.avsc which you can find in the

sr-forward/src/main/avro directory.

Listing B.8 Foward compatible Avenger schema

{

"namespace": "bbejeck.chapter 3.avro",
"type": "record",
"name": "AvengerAvro",
"fields": [
{ "name": "name", "type": "string" },
{ "name": "powers", "type": {
"type": "array", "items": "string"},
"default": []
bo
{"name": "nemeses","type": { o
"type": "array","items": "string"

}
}

o Added anew field, nemeses

In this new version of the schema, you’ve removed the movies field which defaults to an empty

list and added a new field nemeses. In forward compatibility you would upgrade the producer

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

261
client code first.

Forward Qompo:ﬁl:ili-h/

[‘T‘opic on brol(e_ﬂ

All Producers upg(‘adeﬂ Consumer upgro«ie_d +o
o +he lotest schema vse the lotest schema

g o
’ \ With forward compatibility

Consumers using erther the

new schema or the Pre_v?ous

one. can handle records

written with the new Consumer using previous
schema schema

Figure B.2 Forward compatitbility updates producers first to use the new schema and consumers can
handle the records either the new schema or the previous one

By upgrading the producer code first, you’re making sure the new fields are properly populated
and only records in the new format are available. Consumers you haven’t upgraded can still work
with the new schema as it will simply ignore the new fields and the deleted fields have default

values.

Now you need to change the compatibility mode from BACKWARD to FORWARD. In the sr-forward
sub-module the configuration for the Schema Registry plugin has this section setting the

compatibility:

Listing B.9 Comatibility in build.gradle for sr-forward sub-module

config {
subject ('avro-avengers-value', 'FORWARD')

Now with the configuration set, to change the compatibility mode, run this command:

Listing B.10 Changing the compatbility mode to FORWARD

./gradlew :sr-forward:configSubjectsTask

As we’ve seen before, the result of this command produces a BUILD SUCCESSFUL result on the
console. If you want to confirm the compatibility mode for your subject, you can use this REST

API command:

Listing B.11 REST API to view configured compatibility mode for a subject

curl -s "http://localhost:8081/config/avro-avengers-value" | jgq '.'

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

http://localhost:8081/config/avro-avengers-value
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

262

The jq at the end of the curl command formats the returned JSON and you should see something
like:

Listing B.12 Formatted configuration response

{
}

compatibility: FORWARD

Now that you have configured the avro-avengers-value subject with forward compatibility,
go ahead and test the new schema by running the following command:

Listing B.13 Testing a new schema is foward compatible

./gradlew :sr-forward:testSchemasTask

This command should print a BUILD SUCESSFUL on the console, then you can register the new
schema:

Listing B.14 Register the new forward compatible schema

./gradlew :sr-forward:registerSchemasTask

Then run a producer already updated to send records in the new format with this command:

Listing B.15 Run producer updated for records in the new schema format

./gradlew :sr-forward:runAvroProducer

Now that you’ve run the producer with an updated schema let’s first run the consumer that *s
not* updated:

Listing B.16 Run a consumer not yet updated for the new schema changes

./gradlew :sr-backward:runAvroConsumer

The results of the command show how that with forward compatibility even if the consumer is
not updated it can still handle records written using the new schema. Now we need to produce
some records again for the updated consumer:

Listing B.17 Run producer again

./gradlew :sr-forward:runAvroProducer

Now run the consumer that is updated for the new schema:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

263

Listing B.18 Run consumer updated for new schema

./gradlew :sr-forward:runAvroConsumer

In both cases, the consumer runs sucessfully, but the details in the console are different due to
having upgraded the consumer to handle the new schema.

At this point you’ve seen two compatibility types, backward and forward. As the compatibility
name implies, you must consider record changes in one direction. In backward compatibility,
you updated the consumers first as records could arrive in either the new or old fomrat. In
forward compatiblity, you updated the producers first to ensure the records from that point in
time are only in the new format. The last compatibility strategy to explore is the FULL
compatibility mode.

B.3 Full compatibility

In full compatiblity mode, you free to add or remove fields, but there is one catch. *4ny
changes™* you make must be to *optional* fields only.

Full Compatibility

El"op?c on lorol(e_rj

Producer upgraded Consumer upgraded +o
4o the |a+es+ schema vse the lod—e,s—l— schema

’/ 7

With full compadtibili

Consumers can »\M:(g

records written with

. either the new or

Producer using Pr‘e,VbUS schema Consumer usinf, olde_r
olde_r schema schema

Figure B.3 Full compatitbility allows for producers to send with the previous or new schema and
consumers can handle the records either the new schema or the previous one

Since the fields involved in the updated schema are optional, these changes are considered
compatibable for existing producer and consumer clients. This means that the upgrade order in
this case is up to you. Consumers will continue to work with records produced with the new or
old schema.

Let’s take a look at an schema to work with FULL compatibility:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

264

Listing B.19 Full compatibility schema avengers_v4.avsc

"namespace": "bbejeck.chapter 3.avro",
"type": "record",
"name": "AvengerAvro",
"fields": [
{ "name": "name", "type": "string" },
{ "name": "yearPublished", "type": "int", "default": 1960 }, (1]
{ "name": "realName", "type": "string", "default": "unknown" }, (2}
{ "name": "partners", "type": {
"type": "array","items": "string"}, (3]
"default": []
bo
{"name": "nemeses", "type": {
"type": "array", "items": "string"},
"default": []

© Added new optional field yearPublished
® Added back optional field realName
© Added new field partners

Before you update the schema, let’s produce a set of records one more time so that we can have a
batch of records in the format prior to our next schema change. I’ll explain why we are doing this
in an upcoming section.

Listing B.20 Run producer again to create a batch of records in the format before we

migrate the schema

./gradlew :sr-forward:runAvroProducer

This will give us a batch of records to read with an updated consumer. But first let’s change the
compatibility, this time to FULL:

Listing B.21 Change the compatibility to FULL

./gradlew :sr-full:configSubjectsTask

And to keep consistent with our process, let’s test the compatibility of the schema before we
migrate it:

Listing B.22 Test schema for full compatibility

./gradlew :sr-full:testSchemasTask

With the migrated schema compatibility tested, let’s go ahead and register it

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

265

Listing B.23 Register the FULL compatibility schema

./gradlew :sr-full:registerSchemasTask

With the a new version of the schema registered, let’s have some fun with the order of records
we produce and consume. Since all of the updates to the schema involve optional fields the order
in which we update the producers and consumers doesn’t matter.

A few minutes ago, I had you create a batch of records in the previous schema format. I did that
to demonstrate that we can use an updated consumer in FULL compatiblity mode to read older
records. Remember before with FORWARD compatibility it was essential to ensure the updated
consumers would only see records in the new format.

Now let’s run an updated consumer to read records using the previous schema. But let’s watch
what happens now:

Now run the updated consumer

Listing B.24 Consuming with the updated consumer

./gradlew :sr-full:runAvroConsumer

And it runs just fine! Now let’s flip the order of operations and run the updated producer:

Listing B.25 Producing records with the new schema

./gradlew :sr-full:runAvroProducer

And now you can run the consumer that we haven’t updated yet for the new record format:

Listing B.26 Consuming new records with a consumer not updated

./gradlew :sr-forward:runAvroConsumer

As you can see from playing with the different versions of producers and consumers with FULL
compatibility, when you update the producer and consumer is up to you, the order doesn’t
matter.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

266

Notes

1. https://www.merriam-webster.com/dictionary/event
2. Jun Rao, "How to Choose the Number of Topics/Partitionsin a Kafka Cluster?' http://mng.bz/4C03.

Michael Noll,
3. "https:.//www.confluent.io/blog/kafka-streams-tabl es-part-2-topi cs-partitions-and-storage-fundamental /™

4. Kafka documentation, "Log Compaction," http://kafka.apache.org/documentati on/#compaction.

5. Kafkadocumentation, "Replication," http://kafka.apache.org/documentation/#replication.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

mhttps://www.merriam-webster.com/dictionary/event
http://mng.bz/4C03.3.mMichaelNoll
http://mng.bz/4C03.3.mMichaelNoll
http://mng.bz/4C03.3.mMichaelNoll
https://www.confluent.io/blog/kafka-streams-tables-part-2-topics-partitions-and-storage-fundamentals/
http://kafka.apache.org/documentation/#compaction.5.mKafkadocumentation
http://kafka.apache.org/documentation/#compaction.5.mKafkadocumentation
http://kafka.apache.org/documentation/#replication.�ManningPublicationsCo.TocommentgotoliveBook
http://kafka.apache.org/documentation/#replication.�ManningPublicationsCo.TocommentgotoliveBook
http://kafka.apache.org/documentation/#replication.�ManningPublicationsCo.TocommentgotoliveBook
http://kafka.apache.org/documentation/#replication.�ManningPublicationsCo.TocommentgotoliveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

267

Notes

1. www.merriam-webster.com/dictionary/event
2. Jun Rao, "How to Choose the Number of Topics/Partitionsin a Kafka Cluster?' mng.bz/4C03.

Michael Noll,
3. "https:.//www.confluent.io/blog/kafka-streams-tabl es-part-2-topi cs-partitions-and-storage-fundamental s/

4. Kafka documentation, "Log Compaction," kafka.apache.org/documentati on/#compaction.
5. Kafkadocumentation, "Replication," kafka.apache.org/documentation/#replication.

This section derived information from Jay Kreps's “Introducing Kafka Streams: Stream Processing Made
Simple” (mng.bz/49HO) and “The Log: What Every Software Engineer Should Know About Real-time
6. Data sUnifying Abstraction” (mng.bz/eE3w).

Index Terms

null value
VaueMapper interface

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://www.merriam-webster.com/dictionary/event
http://mng.bz/4C03
http://kafka.apache.org/documentation/#compaction
http://kafka.apache.org/documentation/#replication
http://mng.bz/49HO
http://mng.bz/eE3w
https://www.confluent.io/blog/kafka-streams-tables-part-2-topics-partitions-and-storage-fundamentals/
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

	Kafka Streams in Action, Second Edition MEAP V06
	Copyright
	Welcome
	Brief Contents
	Chapter 1: Welcome to the kafka event streaming platform
	1.1 What is event streaming ?
	1.1.1 What is an event ?
	1.1.2 An event stream example
	1.1.3 Who needs event streaming applications

	1.2 Introducing the Apache Kafka® event streaming platform
	1.2.1 Kafka brokers
	1.2.2 Schema registry
	1.2.3 Producer and consumer clients
	1.2.4 Kafka Connect
	1.2.5 Kafka Streams
	1.2.6 ksqlDB

	1.3 A concrete example of applying the Kafka event streaming platform
	1.4 Summary

	Chapter 2: Kafka brokers
	2.1 Produce record requests
	2.2 Consume record requests
	2.3 Topics and partitions
	2.3.1 Offsets
	2.3.2 Determining the correct number of partitions

	2.4 Sending your first messages
	2.4.1 Creating a topic
	2.4.2 Producing records on the command line
	2.4.3 Consuming records from the command line
	2.4.4 Partitions in action

	2.5 Segments
	2.5.1 Data retention
	2.5.2 Compacted topics
	2.5.3 Topic partition directory contents

	2.6 Tiered storage
	2.7 Cluster Metadata
	2.8 Leaders and followers
	2.8.1 Replication

	2.9 Checking for a healthy broker
	2.9.1 Request handler idle percentage
	2.9.2 Network handler idle percentage
	2.9.3 Under replicated partitions

	2.10 Summary

	Chapter 3: Schema registry
	3.1 What is a schema and why you need to use one
	3.1.1 What is Schema Registry?
	3.1.2 Getting Schema Registry
	3.1.3 Architecture
	3.1.4 Communication - Using Schema Registry’s REST API
	3.1.5 Plugins and serialization platform tools

	3.2 Subject name strategies
	3.2.1 TopicNameStrategy
	3.2.2 RecordNameStrategy
	3.2.3 TopicRecordNameStrategy

	3.3 Schema compatibility
	3.3.1 Backward compatibility
	3.3.2 Forward compatibility
	3.3.3 Full compatibility
	3.3.4 No compatibility

	3.4 Schema references
	3.5 Schema references and multiple events per topic
	3.6 Schema Registry (de)serializers
	3.6.1 Avro
	3.6.2 Protobuf
	3.6.3 JSON Schema

	3.7 Serialization without Schema Registry
	3.8 Summary

	Chapter 4: Kafka clients
	4.1 Producing records with the KafkaProducer
	4.1.1 Producer configurations
	4.1.2 Kafka delivery semantics
	4.1.3 Partition assignment
	4.1.4 Writing a custom partitioner
	4.1.5 Specifying a custom partitioner
	4.1.6 Timestamps

	4.2 Consuming records with the KafkaConsumer
	4.2.1 The poll interval
	4.2.2 Group id
	4.2.3 Static membership
	4.2.4 Committing offsets

	4.3 Exactly once delivery in Kafka
	4.3.1 Idempotent producer
	4.3.2 Transactional producer
	4.3.3 Consumers in transactions
	4.3.4 Producers and consumers within a transaction

	4.4 Using the Admin API for programmatic topic management
	4.4.1 Working with topics programmatically

	4.5 Handling multiple event types in a single topic
	4.5.1 Producing multiple event types
	4.5.2 Consuming multiple event types

	4.6 Summary

	Chapter 6: Developing Kafka Streams
	6.1 The Streams DSL
	6.2 Hello World for Kafka Streams
	6.2.1 Creating the topology for the Yelling App
	6.2.2 Kafka Streams configuration
	6.2.3 Serde creation

	6.3 Masking credit card numbers and tracking purchase rewards in a retail sales setting
	6.3.1 Building the source node and the masking processor
	6.3.2 Adding the patterns processor
	6.3.3 Building the rewards processor
	6.3.4 Using Serdes to encpsulate serializers and deserializers in Kafka Streams
	6.3.5 Kafka Streams and Schema Registry

	6.4 Interactive development
	6.5 Choosing which events to process
	6.5.1 Filtering purchases
	6.5.2 Splitting/branching the stream
	6.5.3 Naming topology nodes
	6.5.4 Dynamic routing of messages

	6.6 Summary

	Chapter 7: Streams and state
	7.1 Stateful vs stateless
	7.2 Adding stateful operations to Kafka Streams
	7.2.1 Group By details
	7.2.2 Aggregation vs. reducing
	7.2.3 Repartitioning the data
	7.2.4 Proactive Repartitioning
	7.2.5 Repartitioning to increase the number of tasks
	7.2.6 Using Kafka Streams Optimizations

	7.3 Stream-Stream Joins
	7.3.1 Implementing a stream-stream join
	7.3.2 Join internals
	7.3.3 ValueJoiner
	7.3.4 Join Windows
	7.3.5 StreamJoined
	7.3.6 Other join options
	7.3.7 Outer joins
	7.3.8 Left-outer join

	7.4 State stores in Kafka Streams
	7.4.1 Changelog topics restoring state stores
	7.4.2 Standby Tasks
	7.4.3 Assigning state stores in Kafka Streams
	7.4.4 State store location on the file system
	7.4.5 Naming Stateful operations
	7.4.6 Specifying a store type
	7.4.7 Configuring changelog topics

	7.5 Summary

	Chapter 8: Advanced stateful concepts
	8.1 KTable The Update Stream
	8.1.1 Updates to records or the changelog
	8.1.2 Event streams vs. update streams

	8.2 KTables are stateful
	8.3 The KTable API
	8.4 KTable Aggregations
	8.5 GlobalKTable
	8.6 KTable Joins
	8.7 Stream-Table join details
	8.8 Table-Table join details
	8.9 Stream-GlobaTable join details
	8.10 Windowing
	8.11 Out order records and grace
	8.12 Tumbling windows
	8.13 Session windows
	8.14 Sliding windows
	8.15 Suppression
	8.16 Timestamps in Kafka Streams
	8.17 The TimestampExtractor
	8.18 WallclockTimestampExtractor
	8.19 Custom TimestampExtractor
	8.20 Specifying a TimestampExtractor
	8.21 Streamtime
	8.22 Summary

	Appendix B: Schema compatibility workshop
	B.1 Backward compatibility
	B.2 Forward compatibility
	B.3 Full compatibility

	Notes

