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welcome 
Hi There! 

Wow, time does fly! It’s hard to believe it’s February 2022. While I’ve tried to improve the rate of MEAP releases, it 
still seems like life continues to throw challenges at me, impacting my delivery. But hang in there as, with this MEAP 
release, we’re just about halfway done! As before, I’m working to improve the timing of MEAP releases. 

So what’s new in this installment? First of all, I’ve decided to change the title to Kafka Streams in Action 2nd Edition. 
After thinking about it for a while, the heart of this book is still Kafka Streams, so I wanted the title to reflect that 
fact. As for the content of this MEAP release, we continue with our coverage of the core Kafka Streams API, this 
time looking at stateful operations. 

Here’s a list of some of the things you’ll learn in chapter 7: 

1. The difference between stateless and stateful applications

2. The various types of stateful operations-- reduce, aggregations, and joins

3. The importance of keys in stateful operations in Kafka Streams

I’m excited to present this chapter to you, as I think this is where you learn how to build powerful applications to 
solve real-world problems. 

One thing to note is that I’ve updated to source code to support Java 17. Given all the significant improvements 
available in that release, I felt it worthwhile to make the switch. So be sure to update your local Java installation 
when working with the source code. 

I’ve made every attempt to make sure the book is clear and accurate. Feel free to join me on the liveBook forum at 
Manning.com to ask questions, offer feedback, and participate in the conversation to shape this book. 

—Bill Bejeck 

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion
https://www.manning.com/
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion
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1
This chapter covers

We live in a world today of unprecedented connectivity. We can watch movies on demand on an
IPad, get instant notification of various accounts' status, pay bills, and deposit checks from our
smartphones. If you chose to, you can receive updates on events happening around the world
24/7 by watching your social media accounts.

While this constant influx of information creates more entertainment and opportunities for the
human consumer, more and more of the users of this information are software systems using
other software systems. Consequently, businesses are forced to find ways to keep up with the
demand and leverage the available flow of information to improve the customer experience and
improve their bottom lines. For today’s developer, we can sum up all this digital activity in one
term: event streaming.

Welcome to the kafka event streaming
platform

Defining event streaming and events
Introducing the Kafka event streaming platform
Applying the platform to a concrete example

1
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1.  
2.  
3.  

In a nutshell, event streaming is capturing events generated from different sources like mobile
devices, customer interaction with websites, online activity, shipment tracking, and business
transactions. Event streaming is analogous to our nervous system, processing millions of events
and sending signals to the appropriate parts of our body. Some signals are generated by our
actions such as reaching for an apple, and other signals are handled unconsciously, as when your
heart rate increases in anticipation of some exciting news. We could also see activities from
machines such as sensors and inventory control as event streaming.

But event streaming doesn’t stop at capturing events; it also means processing and durable
storage.

The ability to process the event stream immediately is essential for making decisions based on
real-time information. For example, does this purchase from customer X seem suspicious? Are
the signals coming from this temperature sensor seem to indicate that something has gone wrong
in a manufacturing process? Has the routing information been sent to the appropriate department
of a business?

The value of the event stream is not limited to immediate information. By providing durable
storage, we can go back and look at event stream data-in its raw form or perform some
manipulation of the data for more insight.

So we’ve defined what an event stream is, but what is an event? We’ll define event very simply
as "something that happens" . While the term event probably brings something to mind1

something  happening like the birth of a child, a wedding, or sporting event, we’re goingnotable
to focus on smaller, more constant events like a customer making a purchase (online or
in-person), or clicking a link on a web-page, or a sensor transmitting data. Either people or
machines can generate events. It’s the sequence of events and the constant flow of them that
make up an event stream.

Events conceptually contain three main components:

Key - an identifier for the event
Value - the event itself
timestamp - when the event occurred

Let’s discuss each of these parts of an event in a little more detail. The key could be an identifier
for the event, and as we’ll learn in later chapters, it plays a role in routing and grouping events.
Think of an online purchase, and using the customer id is an excellent example of the key. The
value is the event payload itself. The event value could be a trigger such as activating a sensor

1.1 What is event streaming ?

1.1.1 What is an event ?
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1.  

2.  

3.  

4.  

5.  

6.  

7.  

when someone opens a door or a result of some action like the item purchased in the online sale.
Finally, the timestamp is the date-time when recording when the event occurred. As we go
through the various chapters in this book, we’ll encounter all three components of this "event
trinity" regularly.

Let’s say you’ve purchased a Flux Capacitor, and you’re excited to receive your new purchase.
Let’s walk through the events leading up to the time you get your brand new Flux Capacitor,
using the following illustration as your guide.

Figure 1.1 A sequence of events comprising an event stream starting with the online purchase of the
flux ch01capacitor

You complete the purchase on the retailer’s website, and the site provides a tracking
number.
The retailer’s warehouse receives the purchase event information and puts the Flux
Capacitor on a shipping truck, recording the date and time your purchase left the
warehouse.
The truck arrives at the airport, the driver loads the Flux Capacitor on a plane, and scans
a barcode recording the date and time.
The plane lands, and the package is loaded on a truck again headed for the regional
distribution center. The delivery service records the date and time when they’ve loaded
your Flux Capacitor.
The truck from the airport arrives at the regional distribution center. A delivery service
employee unloads the Flux Capacitor , scanning the date and time of the arrival at the
distribution center.
Another employee takes your Flux Capacitor, scans the package saving the date and time,
and loads it on a truck bound for delivery to you.
The driver arrives at your house, scans the package one last time, and hands it to you.

1.1.2 An event stream example
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7.  

You can start building your time-traveling car!

From our example here, you can see how everyday actions create events, hence an event stream.
The individual events here are the initial purchase, each time the package changes custody, and
the final delivery. This scenario represents events generated by just one purchase. But if you
think of the event streams generated by purchases from Amazon and the various shippers of the
products, the number of events could easily number in the billions or trillions.

Since everything in life can be considered an event, then pretty much any problem domain will
benefit from using event streams. But there are some areas where it’s more important to do so.
Here are some typical examples

Credit card fraud — A credit card owner may be unaware of unauthorized use. By
reviewing purchases as they happen against established patterns (location, general
spending habits), you may be able to detect a stolen credit card and alert the owner.
Intrusion detection — The ability to monitor aberrant behavior in real-time is critical for
the protection of sensitive data and well being of an organization.
The Internet of Things - With IoT, there are sensors located in all kinds of places, and
they all send back data very frequently. The ability to quickly capture this data and
process it in a meaningful way is essential; anything less diminishes the effect of having
these sensors deployed.
The financial industry — The ability to track market prices and direction in real-time is
essential for brokers and consumers to make effective decisions about when to sell or
buy.
Sharing data in real-time - Large organizations, like corporations or conglomerates, that
have many applications need to share data in a standard, accurate, and real-time way

If the event-stream provides essential and actionable information, businesses and organizations
need event-driven applications to capitalize on the information provided. In the next section,
we’ll break down the different components of the Kafka event streaming platform.

I’ve made a case for building event-streaming applications. But streaming applications aren’t a
fit for every situation.

Event-streaming applications become a necessity when you have data in different places or you
have a large volume of events that you need to use distributed data stores to handle the volume.
So if you can manage with a single database instance, then streaming is not a necessity. For
example, a small e-commerce business or a local government website with mostly static data
aren’t good candidates for building an event-streaming solution.

1.1.3 Who needs event streaming applications

4
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The Kafka event streaming platform provides the core capabilities for you to implement your
event streaming application from end-to-end. We can break down these capabilities into three
main areas: publish/consume, durable storage, and processing. This move, store, and process
trilogy enables Kafka to operate as the central nervous system for your data.

Before we go on, it will be useful to give you an illustration of what it means for Kafka to be the
central nervous system for your data. We’ll do this by showing before and after illustrations.

Let’s first look at an event-streaming solution where each input source requires separate
infrastructure:

Figure 1.2 Initial event-streaming architecture leads to complexity as the different departments and
data streams sources need to be aware of the other sources of events

In the above illustration, you have individual departments creating separate infrastructure to meet
their requirements. But other departments may be interested in consuming the same data, which
leads to a more complicated architecture to connect the various input streams.

Now let’s take a look at how using the Kafka event streaming platform can change things.

1.2 Introducing the Apache Kafka® event streaming platform

5
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Figure 1.3 Using the Kafka event streaming platform the architecture is simplified

As you can see from this updated illustration, the architecture is greatly simplified with the
Kafka event streaming platform’s addition. All components now send their records to Kafka.
Additionally, consumers read data from Kafka with no awareness of the producers.

At a high level, Kafka is a distributed system of servers and clients. The servers are called
brokers, and the clients are record producers sending records to the brokers, and the consumer
clients read records for the processing of events.

Kafka brokers durably  your records in contrast with traditional messaging systemsstore
(RabbitMQ or ActiveMQ) where the messages are ephemeral. The brokers store the data
agnostically as the key-value pairs (and some other metadata fields) in byte format and are
somewhat of a black box to the broker.

Providing storage of events has more profound implications as well concerning the difference
between messages and events. You can think of messages as "tactical" communication between
two machines, while events represent business-critical data that you don’t want to throw away.

1.2.1 Kafka brokers

6
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Figure 1.4 You deploy brokers in a cluster, and brokers replicate data for durable storage

From this illustration, you can see that Kafka brokers are the storage layer within the Kafka
architecture and sit in the "storage" portion of the event-streaming trilogy. But in addition to
acting as the storage layer, the brokers provide other essential functions such as serving requests
from clients to providing coordination for consumers. We’ll go into details of broker
functionality in chapter 2.

Figure 1.5 Schema registry enforces data modeling across the platform

Data governance is vital, to begin with, and its importance only increases as the size and
diversity of an organization grows. Schema Registry stores schemas of the event records.

1.2.2 Schema registry

7
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Schemas enforce a contract for data between producers and consumers. Schema Registry also
provides serializers and deserializers supporting different tools that are Schema Registry aware.
Providing (de)serializers means you don’t have to write your serialization code. We’ll cover
Schema Registry in chapter 3.

Figure 1.6 producers write records into Kafka, and consumers read records

The Producer client is responsible for sending records into Kafka. The consumer is responsible
for reading records from Kafka. These two clients form the basic building blocks for creating an
event-driven application and are agnostic to each other, allowing for greater scalability. The
producer and consumer client also form the foundation for any higher-level abstraction working
with Apache Kafka. We cover clients in chapter 4.

1.2.3 Producer and consumer clients
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Figure 1.7 Kafka Connect bridges the gap between external systems and Apache Kafka

Kafka Connect provides an abstraction over the producer and consumer clients for importing
data to and exporting data from Apache Kafka. Kafka connect is essential in connecting external
data stores with Apache Kafka. It also provides an opportunity to perform light-weight
transformations of data with Simple Messages Transforms when either exporting or importing
data. We’ll go into details of Kafka Connect in a later chapter.

1.2.4 Kafka Connect
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Figure 1.8 Kafka Streams is the stream processing API for Kafka

Kafka Streams is the native stream processing library for Kafka. Kafka Streams is written in the
Java programming language and is used by client applications at the perimeter of a Kafka cluster;
it is  run inside a Kafka broker. It provides support for performing operations on event data,*not*
including transformations, stateful operations like joins, and aggregations. Kafka Streams is
where you’ll do the heart of your work when dealing with events. Chapters 6, 7, and 8 cover
Kafka Streams in detail.

ksqlDB is an event streaming database. It does this by applying a SQL interface for event stream
processing. Under the covers, ksqlDB uses Kafka Streams for performing its event streaming
tasks. A key advantage of ksqlDB is that it allows you to specify your event streaming operation
in SQL; no code is required. We’ll discuss ksqlDB in chapters 8 and 9.

1.2.5 Kafka Streams

1.2.6 ksqlDB

10
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Figure 1.9 ksqlDB provides streaming database capabilities

Now that we’ve gone over how the Kafka event streaming platform works, including the
individual components, let’s apply a concrete example of a retail operation demonstrating how
the Kafka event streaming platform works.

Let’s say there is a consumer named Jane Doe, and she checks her email. There’s one email from
ZMart with a link to a page on the ZMart website containing coupons for 15% off the total
purchase price. Once on the web page, Jane clicks another link to activate the coupons and print
them out. While this whole sequence is just another online purchase for Jane, it represents
clickstream events for ZMart.

Let’s take a moment here to pause our scenario so we discuss the relationship between these
simple events and how they interact with the Kafka event streaming platform.

The data generated by the initial clicks to navigate to and print the coupons create clickstream
information captured and produced directly into Kafka with a producer microservice. The
marketing department started a new campaign and wants to measure its effectiveness, so the
clickstream events available at this point are valuable.

The first sign of a successful project is that users click on the email links to retrieve the coupons.
Additionally, the data science group is interested in the pre-purchase clickstream data as well.
The data science team can track customers' initial actions and later attribute purchases to those
initial clicks and marketing campaigns. The amount of data from this single activity may seem

1.3 A concrete example of applying the Kafka event streaming
platform
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small. When you factor in a large customer base and several different marketing campaigns, you
end up with a significant amount of data.

Now let’s resume our shopping example.

It’s late summer, and Jane has been meaning to get out shopping to get her children some
back-to-school supplies. Since tonight is a rare night with no family activities, Jane decides to
stop off at ZMart on her way home.

Walking through the store after grabbing everything she needs, Jane walks by the footwear
section and notices some new designer shoes that would go great with her new suit. She realizes
that’s not what she came in for, but what the heck life is short (ZMart thrives on impulse
purchases!), so Jane gets the shoes.

As Jane approaches the self-checkout aisle, she first scans her ZMart member card. After
scanning all the items, she scans the coupon, which reduces the purchase by 15%. Then Jane
pays for the transaction with her debit card, takes the receipt, and walks out of the store. A little
later that evening, Jane checks her email, and there’s a message from ZMart thanking her for her
patronage, with coupons for discounts on a new line of designer clothes.

Let’s dissect the purchase transaction and see this one event triggers a sequence of operations
performed by the Kafka event streaming platform.

So now ZMart’s sales data streams into Kafka. In this case, ZMart uses Kafka Connect to create
a source connector to capture the sales as they occur and send them into Kafka. The sale
transaction brings us to the first requirement, the protection of customer data. In this case, ZMart
uses an SMT or Simple Message Transform to mask the credit card data as it goes into Kafka.

12
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Figure 1.10 Sending all of the sales data directly into Kafka with connect masking the credit card
numbers as part of the process

As connect writes records into Kafka, they are immediately consumed by different organizations
within ZMart. The department in charge of promotions created an application for consuming
sales data for assigning purchase rewards if they are a member of the loyalty club. If the
customer reaches a threshold for earning a bonus, an email with a coupon goes out to the
customer.

Figure 1.11 Marketing department application for processing customer points and sending out earned
emails

It’s important to note that ZMart processes sales records immediately after the sale. So customers

13
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get timely emails with their rewards within a few minutes of completing their purchases. By
acting on the purchase events as they happen allows ZMart a quick response time to offer
customer bonuses.

The Data Science group within ZMart uses the sales data topic as well. The DS group uses a
Kafka Streams application to process the sales data building up purchase patterns of what
customers in different locations are purchasing the most. The Kafka Streams application
crunches the data in real-time and sends the results out to a sales-trends topic.

Figure 1.12 Kafka Streams application crunching sales data and connect exporting the data for a
dashboard application

ZMart uses another Kafka connector to export the sales trends to an external application that
publishes the results in a dashboard application. Another group also consumes from the sales
topic to keep track of inventory and order new items if they drop below a given threshold,
signaling the need to order more of that product.

At this point, you can see how ZMart leverages the Kafka platform. It is important to remember
that with an event streaming approach, ZMart responds to data as it arrives, allowing them to
make quick and efficient decisions immediately. Also, note how you write into Kafka , yetonce
multiple groups consume it at different times, independently in a way that one group’s activity
doesn’t impede another’s.

In this book, you’ll learn what event-stream development is, why it’s essential, and how to use
the Kafka event streaming platform to build robust and responsive applications. From extract,
transform, and load (ETL) applications to advanced stateful applications requiring complex
transformations, we’ll cover the Kafka streaming platform’s components so you can solve the
kinds of challenges presented earlier with an event-streaming approach. This book is suitable for
any developer looking to get into building event streaming applications.
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Event streaming is capturing events generated from different sources like mobile devices,
customer interaction with websites, online activity, shipment tracking, and business
transactions. Event streaming is analogous to our nervous system.
An event is "something that happens," and the ability to react immediately and review
later is an essential concept of an event streaming platform
Kafka acts as a central nervous system for your data and simplifies your event stream
processing architecture
The Kafka event streaming platform provides the core capabilities for you to implement
your event streaming application from end-to-end by delivering the three main
components of publish/consume, durable storage, and processing.
Kafka broker are the storage layer and service requests from clients for writing and
reading records. The brokers store records as bytes and do no touch or alter the contents.
Schema Registry provides a way to ensure compatibility of records between producers
and consumers.
Producer clients write (produce) records to the broker. Consumer clients consume records
from the broker. The producer and consumer clients are agnostic of each other.
Additionally, the Kafka broker doesn’t have any knowledge of who the individual clients
are, they just process the requests.
Kafka Connect provides a mechanism for integrating existing systems such as external
storage for getting data into and out of Kafka.
Kafka Streams is the native stream processing library for Kafka. It runs at the perimeter
of a Kafka cluster, not inside the brokers and provides support for transforming data
including joins and stateful transformations.
ksqlDB is an event streaming database for Kafka. It allows you to build powerful
real-time systems with just a few lines of SQL.

1.4 Summary

15
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2
This chapter covers

In chapter one, I provided an overall view of the Kafka event streaming platform and the
different components that make up the platform. In this chapter, we will focus on the heart of the
system, the Kafka broker. The Kafka broker is the server in the Kafka architecture and serves as
the storage layer.

In the course of describing the broker behavior in this chapter, we’ll get into some lower-level
details. I feel it’s essential to cover them to give you an understanding of how the broker
operates. Additionally, some of the things we’ll cover, such as topics and partitions, are essential
concepts you’ll need to understand when we get into the chapter on clients. But in practice, as a
developer, you won’t have to handle these topics daily.

As the storage layer, the broker is responsible for data management, including retention and
replication. Retention is how long the brokers store records. Replication is how brokers make
copies of the data for durable storage, meaning if you lose a machine, you won’t lose data.

But the broker also handles requests from clients. Here’s an illustration showing the client
applications and the brokers:

Kafka brokers

Explaining how the Kafka Broker is the storage layer in the Kafka event streaming
platform
Describing how Kafka brokers handle requests from clients for writing and reading
records
Understanding topics and partitions
Using JMX metrics to check for a healthy broker

16
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Figure 2.1 Clients communicating with brokers

To give you a quick mental model of the broker’s role, we can summarize the illustration above:
Clients send requests to the broker. The broker then processes those requests and sends a
response. While I’m glossing over several details of the interaction, that is the gist of the
operation.

NOTE Kafka is a deep subject, so I won’t cover every aspect. I’ll go over enough
information to get you started working with the Kafka event streaming
platform. For in-depth Kafka coverage, look at  by Dylan ScottKafka in Action
(Manning, 2018).

You can deploy Kafka brokers on commodity hardware, containers, virtual machines, or in cloud
environments. In this book, you’ll use Kafka in a docker container, so you won’t need to install it
directly. I’ll cover the necessary Kafka installation in an appendix.

While you’re learning about the Kafka broker, I’ll need to talk about the producer and consumer
clients. But since this is chapter is about the broker, I’ll focus more on the broker’s
responsibilities. So at times, I’ll leave out some of the client details. But not to worry, we’ll get
to those details in a later chapter.

So, let’s get started with some walkthroughs of how a broker handles client requests, starting
with producing.

When a client wants to send records to the broker, it does so with a produce request. Clients send
records to the broker for storage so that consuming clients can later read those records.

2.1 Produce record requests

17
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1.  

2.  
3.  

4.  

Here’s an illustration of a producer sending records to a broker. It’s important to note these
illustrations aren’t drawn to scale. What I mean is that typically you’ll have many clients
communicating with several brokers in a cluster. A single client will work with more than one
broker. But it’s easier to get a mental picture of what’s going on if I keep the illustrations simple.
Also, note that I’m simplifying the interaction, but we’ll cover more details when discussing
clients in chapter 4.

Figure 2.2 Brokers handling produce records request

Let’s walk through the steps in the "Producing records" illustration.

The producer sends a batch of records to the broker. Whether it’s a producer or
consumer, the client APIs always work with a collection of records to encourage
batching.
The broker takes the produce request out of the request queue.
The broker stores the records in a topic. Inside the topic, there are partitions; you can
consider a partition way of bucketing the different records for now. A single batch of
records always belongs to a specific partition within a topic, and the records are always
appended at the end.
Once the broker completes the storing of the records, it sends a response back to the
producer. We’ll talk more about what makes up a successful write later in this chapter
and again in chapter 4.

Now that we’ve walked through an example produce request, let’s walk through another request
type, fetch, which is the logical opposite of producing records; consuming records.

18
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1.  

2.  
3.  

4.  

Now let’s take a look at the other side of the coin from a produce request to a consume request.
Consumer clients issue requests to a broker to read (or consume) records from a topic. A critical
point to understand is that consuming records does not affect data retention or records
availability to other consuming clients. Kafka brokers can handle hundreds of consume requests
for records from the same topic, and each request has no impact on the other. We’ll get into data
retention a bit later, but the broker handles it utterly separate from consumers.

It’s also important to note that producers and consumers are unaware of each other. The broker
handles produce and consume requests separately; one has nothing to do with the other. The
example here is simplified to emphasize the overall action from the broker’s point of view.

Figure 2.3 Brokers handling requests from a consumer

So let’s go through the steps of the illustrated consume request.

The consumer sends a fetch request specifying the offset it wants to start reading records
from. We’ll discuss offsets in more detail later in the chapter.
The broker takes the fetch request out of the request queue
Based on the offset and the topic partition in the request, the broker fetches a batch of
records
The broker sends the fetched batch of records in the response to the consumer

Now that we’ve completed a walk through two common request types, produce and fetch, I’m
sure you noticed a few terms I haven’t mentioned yet in the text, topics, partitions, and offsets.
Topics, partitions, and offsets are fundamental, essential concepts in Kafka, so let’s take some
time now to explore what they mean.

2.2 Consume record requests
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In chapter one, we discussed that Kafka provides storage for data. Kafka durably stores your data
as an unbounded series of key-value pair messages for as long as you want (there are other fields
included in the messages, such as a timestamp, but we’ll get to those details later on). Kafka
replicates data across multiple brokers, so losing a disk or an entire broker means no data is lost.

Specifically, Kafka brokers use the file system for storage by appending the incoming records to
the end of a file in a topic. A topic represents the name of the directory containing the file Kafka
appends the records to.

NOTE Kafka receives the key-value pair messages as raw bytes, stores them that
way, and serves the read requests in the same format. The Kafka broker is
unaware of the type of record that it handles. By merely working with raw
bytes, the brokers don’t spend any time deserializing or serializing the data,
allowing for higher performance. We’ll see in chapter 3 how you can ensure
that topics contain the expected byte format when we cover Schema Registry
in chapter 3.

Topics are partitioned, which is a way of further organizing the topic data into slots or buckets. A
partition is an integer starting at 0. So if a topic has three partitions, the partitions numbers are 0,
1, and 2. Kafka appends the partition number to the end of the topic name, creating the same
number of directories as partitions with the form  where the  represents the partitiontopic-N N

number.

Kafka brokers have a configuration, , where you place the top-level directory’s name,log.dirs

which will contain all topic-partition directories. Let’s take a look at an example. We’re going to
assume you’ve configured  with the value  and you have alog.dirs /var/kafka/topic-data

topic named  with three partitionspurchases

Listing 2.1 Topic directory structure example

2.3 Topics and partitions

root@broker:/#  tree /var/kafka/topic-data/purchases*

/var/kafka/topic-data/purchases-0
 00000000000000000000.index
 00000000000000000000.log
 00000000000000000000.timeindex
 leader-epoch-checkpoint
/var/kafka/topic-data/purchases-1
 00000000000000000000.index
 00000000000000000000.log
 00000000000000000000.timeindex
 leader-epoch-checkpoint
/var/kafka/topic-data/purchases-2
 00000000000000000000.index
 00000000000000000000.log
 00000000000000000000.timeindex
 leader-epoch-checkpoint
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1.  

2.  

3.  

So you can see here, the topic  with three partitions ends up as three directories purchases

, , and  on the file system. So it’s fair to say that thepurchases-0 purchases-1 purchases-2

topic name is more of a logical grouping while the partition is the storage unit.

TIP The directory structure shown here was generated by using the tree
command which a small command line tool used to display all contents of a
directory.

While we’ll want to spend some time talking about those directories' contents, we still have some
details to fill in about topic partitions.

Topic partitions are the unit of parallelism in Kafka. For the most part, the higher the number of
partitions, the higher your throughput. As the primary storage mechanism, topic partitions allow
messages to be spread across several machines. The given topic’s capacity isn’t limited to the
available disk space on a single broker. Also, as mentioned before, replicating data across several
brokers ensures you won’t lose data should a broker lose disks or die.

We’ll talk about load distribution more when discussing replication, leaders, and followers later
in this chapter. We’ll also cover a new feature, tiered storage, where data is seamlessly moved to
external storage, providing virtually limitless capacity later in the chapter.

So how does Kafka map records to partitions? The producer client determines the topic and
partition for the record before sending it to the broker. Once the broker processes the record, it
appends it to a file in the corresponding topic-partition directory.

There are three possible ways of setting the partition for a record:

Kafka works with records in key-value pairs. Suppose the key is non-null (keys are
optional). In that case, the producer maps the record to a partition using the deterministic
formula of taking the hash of key modulo the number of partitions. Using this approach
means that records with the same keys always land on the same partition.
When building the  in your application, you can explicitly set theProducerRecord

partition for that record, which the producer then uses before sending it.
If the message has no key and no partition specified then, then partitions are alternated
per batch. I’ll cover how Kafka handles records without keys and partition assignment in
detail in chapter four.

Now that we’ve covered how topic partitions work let’s revisit that records are always appended
at the end of the file. I’m sure you noticed the files in the directory example with an extension of 

 (we’ll talk about how Kafka names this file in an upcoming section). But these  files.log log

aren’t the type developers think of, where an application prints its status or execution steps. The
term log here is meant as a transaction log, storing a sequence of events in the order of
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occurrence. So each topic partition directory contains its own transaction log. At this point, it
would be fair to ask a question about log file growth. We’ll talk about log file size and
management when we cover segments a bit later in this chapter.

As the broker appends each record, it assigns it an id called an offset. An offset is a number
(starting at 0) the broker increments by 1 for each record. In addition to being a unique id, it
represents the logical position in the file. The term logical position means it’s the nth record in
the file, but its physical location is determined by the size in bytes of the preceding records.
We’ll talk about how brokers use an offset to find the physical position of a record in a later
section. The following illustration demonstrates the concept of offsets for incoming records:

Figure 2.4 Assigning the offset to incoming records

2.3.1 Offsets
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Since new records always go at the end of the file, they are in order by offset. Kafka guarantees
that records are in order within a partition, but not  partitions. Since records are in order byacross
offset, we could be tempted to think they are in order by time as well, but that’s not necessarily
the case. The records are in order by their  time at the broker, but not necessarily by arrival event

. We’ll get more into time semantics in the chapter on clients when we discuss timestamps.time
We’ll also cover event-time processing in depth when we get to the chapters on Kafka Streams.

Consumers use offsets to track the position of records they’ve already consumed. That way, the
broker fetches records starting with an offset one higher than the last one read by a consumer.
Let’s look at an illustration to explain how offsets work:

Figure 2.5 Offsets indicate where a consumer has left off reading records

In the illustration here, if a consumer reads records with offsets 0-5, in the next consumer
request, the broker only fetches records starting at offset 6. The offsets used are unique for each
consumer and are stored in an internal topic named 

. We’ll go into more details about consumers{underscore}consumer{underscore}offsets

and offsets in chapter four.

Now that we’ve covered topics, partitions and offsets, let’s quickly discuss some trade-offs
regarding the number of partitions to use.

23

©Manning Publications Co. To comment go to liveBook  
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion


Choosing the number of partitions to use when creating a topic is part art and part science. One
of the critical considerations is the amount of data flowing into a given topic. More data implies
more partitions for higher throughput. But as with anything in life, there are trade-offs.

Increasing the number of partitions increases the number of TCP connections and open file
handles. Additionally, how long it takes to process an incoming record in a consumer will also
determine throughput. If you have heavyweight processing in your consumer, adding more
partitions may help, but the slower processing will ultimately hinder performance.2

Here are some considerations to keep in mind for setting the number of partitions. You want to
choose a high enough number to cover high-throughput situations, but not so high so that you hit
limits for the number of partitions a broker can handle as you create more and more topics. A
good starting point could be the number of 30, which is evenly divisible by several numbers,
which results in a more even distribution of keys in the processing layer.  We’ll talk more about3

the importance of key-distribution in later chapters on clients and Kafka Streams.

At this point, you’ve learned that the broker handles requests from clients and is the storage layer
for the Kafka event streaming platform. You’ve also learned about topics and partitions and the
role they play in the storage layer.

Your next step is to get your hands dirty, producing and consuming records to see these concepts
in action.

NOTE We’ll cover the producer and consumer clients in chapter 4. Console clients
are useful for learning, quick prototypes, and debugging. But in practice, you’ll
use the clients in your code.

To run the following examples, you’ll need to run a Kafka broker. In the previous edition of this
book, the instructions were to download a binary version of Kafka tar file and extract it locally.
In this edition, I’ve opted to run Kafka via docker instead. Specifically, we’ll use docker
compose, which makes running a multi-container docker application very easy. If you are
running Mac OS or Windows, you can install docker desktop, which includes docker compose.
For more information on installing docker, see the installation instructions on the docker site 

.docs.docker.com/get-docker/

Now, let’s get started working with a Kafka broker by producing and consuming some records.

2.4 Sending your first messages

2.3.2 Determining the correct number of partitions
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Your first step for producing or consuming records is to create a topic. But to do that, you’ll need
running Kafka broker so let’s take care of that now. I’m going to assume you’ve already installed
docker at this point. To start Kafka, download the  file from the sourcedocker-compose.yml

code repo here TOOD-create GitHub repo. After you’ve downloaded the file, open a new
terminal window and CD to the directory with the  file, and run thisdocker-compose.yml

command `docker-compose up -d'.

TIP Starting docker-compose with the  flag runs the docker services in the-d

background. While it’s OK to start docker-compose without the  flag, the-d

containers print their output to the terminal, so you need to open a new
terminal window to do any further operations.

Wait a few seconds, then run this command to open a shell on the docker broker container: 
.docker-compose exec broker bash

Using the docker broker container shell you just opened up run this command to create a topic:

The host:port to connect to the broker

Specifying the replication factor

The number of partitions

IMPORTANT Although you’re using kafka in a docker container, the commands to create
topics and run the console producer and consumer are the same.

Since you’re running a local broker for testing, you don’t need a replication factor greater than 1.
The same thing goes for the number of partitions; at this point, you only need one partition for
this local development.

Now you have a topic, let’s write some records to it.

Now from the same window you ran the create topic command start a console producer:

2.4.1 Creating a topic

kafka-topics --create --topic first-topic\
 --bootstrap-server localhost:9092\ 
 --replication-factor 1\ 
 --partitions 1 

2.4.2 Producing records on the command line

kafka-console-producer --topic first-topic\ 
  --broker-list localhost:9092\ 
  --property parse.key=true\ 
  --property key.separator=":" 
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The topic you created in the previous step

host:port for the producer client to connect to the broker

Specifying that you’ll provide a key

Specifying the separator of the key and value

When using the console producer, you need to specify if you are going to provide keys. Although
Kafka works with key-value pairs, the key is optional and can be null. Since the key and value go
on the same line, you also need to specify how Kafka can parse the key and value by providing a
delimiter.

After you enter the above command and hit enter, you should see a prompt waiting for your
input. Enter some text like the following:

You type in each line, then hit enter to produce the records. Congratulations, you have sent your
first messages to a Kafka topic! Now let’s consume the records you just wrote to the topic. Keep
the console producer running, as you’ll use it again in a few minutes.

Now it’s time to consume the records you just produced. Open a new terminal window and run
the  command to get a shell on the broker container. Thendocker-compose exec broker bash

run the following command to start the console consumer:

Specifying the topic to consume from

The host:port for the consumer to connect to the broker

Start consuming from the head of the log

Print the keys

Use the "-" character to separate keys and values

You should see the following output on your console:

key:my first message
key:is something
key:very simple

2.4.3 Consuming records from the command line

kafka-console-consumer --topic first-topic\ 
 --bootstrap-server localhost:9092\ 
 --from-beginning\ 
 --property print.key=true\ 
 --property key.separator="-" 

key-my first message
key-is something
key-very simple
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I should briefly talk about why you used the  flag. You produced values--from-beginning

before starting the consumer. As a result, you wouldn’t have seen those messages as the console
consumer reads from the end of the topic. So the  parameter sets the--from-beginning

consumer to read from the beginning of the topic. Now go back to the producer window and
enter a new key-value pair. The console window with your consumer will update by adding the
latest record at the end of the current output.

This completes your first example, but let’s go through one more example where you can see
how partitions come into play.

In the previous exercise, you just produced and consumed some key-value records, but the topic
only has one partition, so you didn’t see the effect of partitioning. Let’s do one more example,
but this time we’ll create a new topic with two partitions, produce records with different keys,
and see the differences.

You should still have a console producer and console consumer running at this point. Go ahead
and shut both of them down by entering a  command on the keyboard.CTRL+C

Now let’s create a new topic with partitions. Execute the following command from one of the
terminal windows you used to either produce or consume records:

For your next step, let’s start a console consumer.

Specifying the partition we’ll consume from

This command is not too different from the one you executed before, but you’re specifying the
partition you’ll consume the records from. After running this command, you won’t see anything
on the console until you start producing records in your next step. Now let’s start up another
console producer.

2.4.4 Partitions in action

kafka-topics --create --topic second-topic\
 --bootstrap-server localhost:9092\
 --replication-factor 1\
 --partitions 2

kafka-console-consumer --topic second-topic\
 --bootstrap-server broker:9092 \
 --property print.key=true \
 --property key.separator="-" \
 --partition 0  

kafka-console-producer --topic second-topic\
  --broker-list localhost:9092\
  --property parse.key=true\
  --property key.separator=":"
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After you’ve started the console producer, enter these key-value pairs:

You should only see the following records from the console consumer you have running:

The reason you don’t see the other records here is the producer assigned them to partition 1. You
can test this for yourself by running executing a  in the terminal window of the currentCTRL+C

console consumer, then run the following:

You should see the following results:

If you were to re-run the previous consumer without specifying a partition, you would see all the
records produced to the topic. We’ll go into more details about consumers and topic partitions in
chapter 4.

At this point, we’re done with the examples, so you can shut down the producer and the
consumer by entering a  command. Then you can stop all the docker containers now byCTRL+C

running .docker-compose down

To quickly recap this exercise, you’ve just worked with the core Kafka functionality. You
produced some records to a topic; then, in another process, you consumed them. While in
practice, you’ll use topics with higher partition counts, a much higher volume of messages, and
something more sophisticated than the console tools, the concepts are the same.

We’ve also covered the basic unit of storage the broker uses, partitions. We discussed how Kafka
assigns each incoming record a unique, per partition id-the offset, and always appends records at
the end of the topic partition log. But as more data flows into Kafka, do these files continue to
grow indefinitely? The answer to this question is no, and we’ll cover how the brokers manage
data in the next section.

key1:The lazy
key2:brown fox
key1:jumped over
key2:the lazy dog

key1:The lazy
key1:jumped over

kafka-console-consumer --topic second-topic\
 --bootstrap-server broker:9092\
  --property print.key=true\
  --property key.separator="-"\
  --partition 1\
  --from-beginning

key2:brown fox
key2:the lazy dog
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So far, you’ve learned that brokers append incoming records to a topic partition file. But they
don’t just continue to append to the same one creating huge monolithic files. Instead, brokers
break up the files into discrete parts called segments. Using segments enforcing the data
retention settings and retrieving records by offset for consumers is much easier.

Earlier in the chapter, I stated the broker writes to a partition; it appends the record to a file. But
a more accurate statement is the broker appends the record to the . The brokeractive segment
creates a new segment when a log file reaches a specific size (1 MB by default). The broker still
uses previous segments for serving read (consume) requests from consumers. Let’s look at an
illustration of this process:

Figure 2.6 Creating new segments

Following along in the illustration here, the broker appends incoming records to the currently
active segment. Once it reaches the configured size, the broker creates a segment that is
considered the active segment. This process is repeated indefinitely.

The configuration controlling the size of a segment is  which again has alog.segment.bytes

default value of 1MB. Additionally, the broker will create new segments by time as well. The 
 or  governs the maximum time before the broker creates a newlog.roll.ms log.roll.hours

segment. The  is the primary configuration, but it has no default value, but the log.roll.ms

 has a default value of 168 hours (7 days). It’s important to note when a brokerlog.roll.hours

creates a new segment based on time, and it means a new record has a timestamp greater than the
earliest timestamp in the currently active segment plus the  or log.roll.ms log.roll.hours

configuration. It’s not based on wall-clock time or when the file was last modified.

2.5 Segments
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NOTE The number of records in a segment won’t necessarily be uniform, as the
illustration might suggest here. In practice, they could vary in the total number
of records. Remember, it’s the total size or the age of the segment that
triggers the broker to create a new one.

Now that we covered how the brokers create segments, we can talk about their data retention
role.

As records continue to come into the brokers, the brokers will need to remove older records to
free up space on the file system over time. Brokers use a two-tiered approach to deleting data,
time, and size. For time-based deletion, Kafka deletes records that are older than a configured
retention time based on the timestamp of the record. If the broker placed all records in one big
file, it would have to scan the file to find all those records eligible for deletion. But with the
records stored in segments, the broker can remove segments where the latest timestamp in the
segment exceeds the configured retention time. There are three time-based configurations for
data deletion presented here in order of priority:

log.retention.ms — How long to keep a log file in milliseconds
log.retention.minutes — How long to keep a log file in minutes
log.retention.hours — How long to keep a log file in hours

By default, only the  configuration has a default value, 168 (7 days). Forlog.retention.hours

size-based retention Kafka has the  configuration. By default, it’s set to log.retention.bytes

. If you configure both size and time-based retention, then brokers will delete segments-1

whenever either condition is met.

So far, we’ve focused our discussion on data retention based on the elimination of entire
segments. If you remember, Kafka records are in key-value pairs. What if you wanted to retain
the latest record per key? That would mean not removing entire segments but only removing the
oldest records for each key. Kafka provides just such a mechanism called compacted topics.

Consider the case where you have keyed data, and you’re receiving updates for that data over
time, meaning a new record with the same key will update the previous value. For example, a
stock ticker symbol could be the key, and the price per share would be the regularly updated
value. Imagine you’re using that information to display stock values, and you have a crash or
restart—you need to be able to start back up with the latest data for each key.4

If you use the deletion policy, a broker could remove a segment between the last update and the

2.5.1 Data retention

2.5.2 Compacted topics

30

©Manning Publications Co. To comment go to liveBook  
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion


application’s crash or restart. You wouldn’t have all the records on startup. It would be better to
retain the final known value for a given key, treating the next record with the same key as an
update to a database table.

Updating records by key is the behavior that compacted topics (logs) deliver. Instead of taking a
coarse-grained approach and deleting entire segments based on time or size, compaction is more
fine-grained and deletes old records  in a log. At a high level, the log cleaner (a pool ofper key
threads) runs in the background, recopying log-segment files and removing records if there’s an
occurrence later in the log with the same key. Figure 2.13 illustrates how log compaction retains
the most recent message for each key.

Figure 2.7 On the left is a log before compaction—you’ll notice duplicate keys with different values.
These duplicates are updates. On the right is after compaction—retaining the latest value for each key,
but it’s smaller in size.

This approach guarantees that the last record for a given key is in the log. You can specify log
retention per topic, so it’s entirely possible to use time-based retention and other ones using
compaction.

By default, the log cleaner is enabled. To use compaction for a topic, you’ll need to set the 
 property when creating it.log.cleanup.policy=compact

Compaction is used in Kafka Streams when using state stores, but you won’t be creating those
logs/topics yourself—the framework handles that task. Nevertheless, it’s essential to understand
how compaction works. Log compaction is a broad subject, and we’ve only touched on it here.
For more information, see the Kafka documentation: 

.kafka.apache.org/documentation/{hash}compaction
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NOTE With a  of , you might wonder how you can remove acleanup.policy compact

record from the log. You delete with compaction by using a  value for thenull

given key, creating a tombstone marker. Tombstones ensure that compaction
removes prior records with the same key. The tombstone marker itself is
removed later to free up space.

The key takeaway from this section is that if you have independent, standalone events or
messages, use log deletion. If you have updates to events or messages, you’ll want to use log
compaction.

Now that we’ve covered how Kafka brokers manage data using segments, it would be an
excellent time to reconsider and discuss the topic-partition directories' contents.

Earlier in this chapter, we discussed that a topic is a logical grouping for records, and the
partition is the actual physical unit of storage. Kafka brokers append each incoming record to a
file in a directory corresponding to the topic and partition specified in the record. For review,
here are the contents of a topic-partition

Listing 2.2 Contents of topic-partition directory

NOTE In practice, you’ll most likely not interact with a Kafka broker on this level.
We’re going into this level of detail to provide a deeper understanding of how
broker storage works.

We already know the  file contains the Kafka records, but what are the  and log index

 files? When a broker appends a record, it stores other fields along with the key andtimeindex

value. Three of those fields are the offset (which we’ve already covered), the size, and the
record’s physical position in the segment. The  is a memory-mapped file that contains aindex

mapping of offset to position. The  is also a memory-mapped file containing atimeindex

mapping of timestamp to offset.

Let’s look at the  files first.index

2.5.3 Topic partition directory contents

/var/kafka/topic-data/purchases-0
 00000000000000000000.index
 00000000000000000000.log
 00000000000000000000.timeindex
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Figure 2.8 Searching for start point based on offset 2

Brokers use the index files to find the starting point for retrieving records based on the given
offset. The brokers do a binary search in the  file, looking for an index-position pair withindex

the largest offset that is less than or equal to the target offset. The offset stored in the  fileindex

is relative to the base offset. That means if the base offset is 100, offset 101 is stored as 1, offset
102 is stored as 2, etc. Using the relative offset, the  file can use two 4-byte entries, one forindex

the offset and the other for the position. The base offset is the number used to name the file,
which we’ll cover soon.

The  is a memory-mapped file that maintains a mapping of timestamp to offset.timeindex

NOTE A memory-mapped file is a special file in Java that stores a portion of the file
in memory allowing for faster reads from the file. For a more detailed
descr ip t ion  read  the  exce l lent  ent ry  

 fromwww.geeksforgeeks.org/what-is-memory-mapped-file-in-java/
GeeksForGeeks site.
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Figure 2.9 Timeindex file

The file’s physical layout is an 8-byte timestamp and a 4-byte entry for the "relative" offset. The
brokers search for records by looking at the timestamp of the earliest segment. If the timestamp
is smaller than the target timestamp, the broker does a binary search on the  filetimeindex

looking for the closest entry.

So what about the names then? The broker names these files based on the first offset contained in
the  file. A segment in Kafka comprises the , , and  files. So in ourlog log index timeindex

example directory listing above, there is one active segment. Once the broker creates a new
segment, the directory would look something like this:

Listing 2.3 Contents of the directory after creating a new segment

Based on the directory structure above, the first segment contains records with offset 0-37347,
and in the second segment, the offsets start at 37348.

The files stored in the topic partition directory are stored in a binary format and aren’t suitable
for viewing. As I mentioned before, you usually won’t interact with the files on the broker, but
sometimes when looking into an issue, you may need to view the files' contents.

/var/kafka/topic-data/purchases-0
 00000000000000000000.index
 00000000000000000000.log
 00000000000000000000.timeindex
 00000000000000037348.index
 00000000000000037348.log
 00000000000000037348.timeindex
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IMPORTANT You should  the files stored in thenever modify or directly access
topic-partition directory. Only use the tools provided by Kafka to  theview
contents.

We’ve discussed that brokers are the storage layer in the Kafka architecture. We’ve also covered
how the brokers store data in immutable, append-only files, and how brokers manage data
growth by deleting segments when the data reaches an age exceeding the configured retention
time. But as Kafka can be used for your data’s central nervous system, meaning all data flows
into Kafka, the disk space requirements will continue to grow. Additionally, you might want to
keep the data longer but can’t due to the need to make space for newly arriving records.

This situation means that Kafka users wanting to keep data longer than the required retention
period need to offload data from the cluster to more scalable, long term storage. For moving the
data, one could use Kafka Connect (which we’ll cover in a later chapter), but long term storage
requires building different applications to access that data.

There is current work underway called Tiered Storage. I’ll only give a brief description here, but
f o r  m o r e  d e t a i l s ,  y o u  c a n  r e a d  K I P - 4 0 5  (

). At acwiki.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage
high-level, the proposal is for the Kafka brokers to have a concept of local and remote storage.
Local storage is the same as the brokers use today, but the remote storage would be something
more scalable, say S3, for example, but the Kafka brokers still manage it.

The concept is that over time, the brokers migrate older data to the remote storage. This tiered
storage approach is essential for two reasons. First, the data migration is handled by the Kafka
brokers as part of normal operations. There is no need to set up a separate process to move older
data. Secondly, the older data is still accessible via the Kafka brokers, so no additional
applications are required to process older data. Additionally, the use of tiered storage will be
seamless to client applications. They won’t know or even need to know if the records consumed
are local or from the tiered storage.

Using the tiered storage approach effectively gives Kafka brokers the ability to have infinite
storage capabilities. Another benefit of tiered storage, which might not be evident at first blush,
is the improvement in elasticity. When adding a new broker, full partitions needed to get moved
across the network before tiered storage. Remember from our conversation from before, Kafka
distributes topic-partitions among the brokers. So adding a new broker means calculating new
assignments and moving the data accordingly. But with tiered storage, most of the segments
beyond the active ones will be in the storage tier. This means there is much less data that needs
to get moved around, so changing the number of brokers will be much faster.

2.6 Tiered storage
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As of the writing of this book (November 2020), tiered storage for Apache Kafka is currently
underway. Still, given the project’s scope, the final delivery of the tiered storage feature isn’t
expected until mid-2021. Again for the reader interested in the details involved in the tiered
storage feature, I encourage you to read the details found in KIP-405 KIP-405 (

).cwiki.apache.org/confluence/display/KAFKA/KIP-405%3A+Kafka+Tiered+Storage

Kafka is a distributed system, and to manage all activity and state in the cluster, it requires
metadata. But the metadata is external to the working brokers, so it uses a metadata server.
Having a metadata server to keep this state is integral to Kafka’s architecture. As of the writing
of this book, Kafka uses ZooKeeper for metadata management. It’s through the storage and use
of metadata that enables Kafka to have leader brokers and to do such things as track the
replication of topics.

The use of metadata in a cluster is involved in the following aspects of Kafka operations:

Cluster membership — Joining a cluster and maintaining membership in a cluster. If a
broker becomes unavailable, ZooKeeper removes the broker from cluster membership.
Topic configuration — Keeping track of the topics in a cluster, which broker is the leader
for a topic, how many partitions there are for a topic, and any specific configuration
overrides for a topic.
Access control — Identifying which users (a person or other software) can read from and
write to particular topics.

NOTE The term metadata manager is a bit generic.  Up until the writing of this book, 
Kafka used ZooKeeper zookeeper.apache.org for metadata management. 
There is an effort underway to remove ZooKeeper and use Kafka itself to store 
the cluster metadata. KIP - 500 cwiki.apache.org/confluence/display/KAFKA/
KIP-500%3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum 
describes the details.  This blog post, 

) descr ibes the detai ls . This b log post , 
www.confluent.io/blog/removing-zookeeper-dependency-in-kafka/, describes 
the process of how and when the changes to Kafka occur. Since most users 
don’t work at the level of cluster metadata, I feel that some knowledge of 
*how* Kafka uses metadata is sufficient.

This has been a quick overview of how Kafka manages metadata. I don’t want to go into too
much detail about metadata management as my approach to this book is more from the
developer’s point of view and not someone who will manage a Kafka cluster. Now that we’ve
briefly discussed Kafka’s need for metadata and how it’s used let’s resume our discussion on
leaders and followers and their role in replication.

2.7 Cluster Metadata
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So far, we’ve discussed the role topics play in Kafka and how and why topics have partitions.
You’ve seen that partitions aren’t all located on one machine but are spread out on brokers
throughout the cluster. Now it’s time to look at how Kafka provides data availability in the face
of machine failures.

In the Kafka cluster for each topic-partition, one broker is the , and the rest are followers.leader

Figure 2.10 Leader and follower example

In figure 10 above, we have a simplified view of the leader and follower concept. The lead
broker for a topic-partition handles all of the produce and consume requests (although it is
possible to have consumers work with followers, and we’ll cover that in the chapter on clients).
The following brokers replicate records from the leader for a given topic partition. Kafka uses
this leader and follower relationship for data integrity. It’s important to remember the leadership
for the topic- partitions are spread around the cluster. No single broker is the leader for all
partitions of a given topic.

But before we discuss how leaders, followers, and replication work, we need to consider what
Kafka does to achieve this.

2.8 Leaders and followers
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I mentioned in the leaders and followers section that topic-partitions have a leader broker and
one or more followers. Illustration 10 above shows this concept. Once the leader adds records to
its log, the followers read from the leader.

Kafka replicates records among brokers to ensure data availability, should a broker in the cluster
fail. Figure 11 below demonstrates the replication flow between brokers. A user configuration
determines the replication level, but it’s recommended to use a setting of three. With a
replication factor of three, the lead broker is considered a replica one, and two followers are
replica two and three.

Figure 2.11 The Kafka replication process

The Kafka replication process is straightforward. Brokers following a topic-partition consume
messages from the topic-partition leader. After the leader appends new records to its log,
followers consume from the leader and append the new records to their log. After the followers
have completed adding the records, their logs replicate the leader’s log with the same data and
offsets. When fully caught up to the leader, these following brokers are considered an in-sync
replica or ISR.

When a producer sends a batch of records, the leader must first append those records before the

2.8.1 Replication
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followers can replicate them. There is a small window of time where the leader will be ahead of
the followers. This illustration demonstrates this concept:

Figure 2.12 The leader may have a few unreplicated messages in its topic-partition

In practical terms, this small lag of replication records is no issue. But, we have to ensure that it
must not fall too far behind, as this could indicate an issue with the follower. So how do we
determine what’s not too far behind? Kafka brokers have a configuration 

.replica.lag.time.max.ms
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Figure 2.13 Followers must issue a fetch request or be caught up withing lag time configuration

The replica lag time configuration sets an upper-bound how long followers have to either issue a
fetch request or be entirely caught-up for the leader’s log. Followers failing to do so within the
configured time are considered too far behind and removed from the in-sync replica (ISR) list.

As I stated above, follower brokers who are caught up with their leader broker are considered an
in-sync replica or ISR. ISR brokers are eligible to be elected leader should the current leader fail
or become unavailable.5

In Kafka, consumers never see records that haven’t been written by all ISRs. The offset of the
latest record stored by all replicas is known as the high-water mark, and it represents the highest
offset accessible to consumers. This property of Kafka means that consumers don’t worry about
recently read records disappearing. As an example, consider the situation in illustration 11 above.
Since offsets 8-10 haven’t been written to all the replicas, 7 is the highest offset available to
consumers of that topic.

Should the lead broker become unavailable or die before records 8-10 are persisted, that means
an acknowledgment isn’t sent to the producer, and it will retry sending the records. There’s a
little more to this scenario, and we’ll talk about it more in the chapter on clients.

If the leader for a topic-partition fails, a follower has a complete replica of the leader’s log. But
we should explore the relationship between leaders, followers, and replicas.
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When writing records to Kafka, the producer can wait for acknowledgment of record persistence
of none, some, or all for in-sync replicas. These different settings allow for the producer to
trade-off latency for data durability. But there is a crucial point to consider.

The leader of a topic-partition is considered a replica itself. The configuration 
 specifies how many replicas must be in-sync to consider a recordmin.insync.replicas

committed. The default setting for  is one. Assuming a broker clustermin.insync.replicas

size of three and a replication-factor of three with a setting of , only the leader mustacks=all

acknowledge the record. The following illustration demonstrates this scenario:

Figure 2.14 Acks set to "all" with default in-sync replicas

How can something like the above happen? Imagine that the two followers temporarily lag
enough for the controller to remove them from the ISR. This means that even with setting 

 on the producer, there is a potential for data loss should the leader fail before theacks=all

followers have a chance to recover and become in sync again.

To prevent such a scenario, you need to set the  Setting the minmin.insync.replicas=2

in-sync replicas configuration to two means that the leader checks the number of in-sync replicas
before appending a new record to its log. If the required number of in-sync replicas isn’t met at
this point, the leader doesn’t process the produce request. Instead, the leader throws a 

, and the producer will retry the request.NotEnoughReplicasException

Let’s look at another illustration to help get a clear idea of what is going on:

REPLICATION AND ACKNOWLEDGMENTS
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Figure 2.15 Setting Min ISR to a value greater than one increases data durability

As you can see in figure 14, a batch of records arrives. But the leader won’t append them
because there aren’t enough in-sync replicas. By doing so, your data durability increases as the
produce request won’t succeed until there are enough in-sync replicas. This discussion of
message acknowledgments and in-sync replicas is broker-centric. In chapter 4, when we discuss
clients, we’ll revisit this idea from the producer client’s perspective to discuss the performance
trade-offs.

At the beginning of the chapter, we covered how a Kafka broker handles requests from clients
and process them in the order of their arrival. Kafka brokers handle several types of requests, for
example:

Produce - A request to append records to the log
Fetch - A request to consume records from a given offset
Metadata - A request for the cluster’s current state - broker leaders for topic-partitions,
topic partitions available, etc.

These are a small subset of all possible requests made to the broker. The broker processes
requests in first-in-first-out processing order, passing them off to the appropriate handler based
on the request type.

Simply put, a client makes a request, and the broker responds. If they come in faster than the
broker can reply, the requests queue up. Internally, Kafka has a thread-pool dedicated to
handling the incoming requests. This process leads us to the first line of checking for issues
should your Kafka cluster performance suffer.

2.9 Checking for a healthy broker
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With a distributed system, you need to embrace failure as a way of life. However, this doesn’t
mean that the system should shut down at the first sign of an issue. Network partitions are not
uncommon in a distributed system, and frequently they resolve quickly. So it makes sense to
have a notion of retryable errors vs. fatal errors. If you are experiencing issues with your Kafka
installation, timeouts for producing or consuming records, for example, where’s the first place to
look?

When you are experiencing issues with a Kafka based application, a good first check is to
examine the  JMX metric.RequestHandlerAvgIdlePercent

The  metric provides the average fraction of time the threadsRequestHandlerAvgIdlePercent

handling requests are idle, with a number between 0 and 1. Under normal conditions, you’d
expect to see an idle ratio of .7 - .9, indicating that the broker handles requests quickly. If the
request-idle number hits zero, there are no threads left for processing incoming requests, which
means the request queue continues to increase. A massive request queue is problematic, as that
means longer response times and possible timeouts.

The  JMX metric is analogous to the request-idle metric.NetworkProcessorAvgIdlePercent

The network-idle metric measures the average amount of time the network processors are busy.
In the best scenarios, you want to see the number above 0.5 if it’s  below 0.5 thatconsistently
indicates a problem.

The  JMX metric represents the number of partitions belongingUnderReplicatedPartitions

to a broker removed from the ISR (in-sync replicas). We discussed ISR and replication in the 
 section. A value higher than zero means a Kafka broker is not keeping up withReplication

replicating for assigned following topic-partitions. Causes of a non-zero 
 metric could indicate network issues, or the broker is overloadedUnderReplicatedPartitions

and can’t keep up. Note that you always want to see the URP number at zero.

2.9.1 Request handler idle percentage

2.9.2 Network handler idle percentage

2.9.3 Under replicated partitions
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The Kafka broker is the storage layer and also handles requests from clients for
producing (writing) and consuming (reading) records
Kafka brokers receive records as bytes, stores them in the same format, and sends them
out for consume requests in byte format as well
Kafka brokers durably store records in topics.
Topics represent a directory on the file system and are partitioned, meaning the records in
a topic are placed in different buckets
Kafka uses partitions for throughput and for distributing the load as topic-partitions are
spread out on different brokers
Kafka brokers replicate data from each other for durable storage

2.10 Summary
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3
This chapter covers

In chapter 2, you learned about the heart of the Kafka streaming platform, the Kafka broker. In
particular, you learned how the broker is the storage layer appending incoming messages to a
topic, serving as an immutable, distributed log of events. A topic represents the directory
containing the log file(s).

Since the producers send messages over the network, they need to be serialized first into binary
format, in other words an array of bytes. The Kafka broker does not change the messages in any
way, it stores them in the same format. It’s the same when the broker responds to fetch requests
from consumers, it retrieves the already serialized messages and sends them over the network.

By only working with messages as arrays of bytes, the broker is completely agnostic to the data
type the messages represent and completely independent of the applications that are producing
and consuming the messages and the programming languages those applications use. By
decoupling the broker from the data format, any client using the Kafka protocol can produce or
consume messages.

While bytes are great for storage and transport over the network, developers are far more
efficient working at a higher level of abstraction; the object. So where does this transformation

Schema registry

Using bytes means serialization rules
What is a schema and why you need to use one
What is Schema Registry?
Ensuring compatibility with changes - schema evolution
Understanding subject names
Reusing schemas with references
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from object to bytes and bytes to object occur then? At the client level in the producers and
consumers of messages.

Figure 3.1 The conversion of objects to bytes and bytes to objects happens at the client level

Looking at this illustration, the message producer uses an instance of a  to convertSerializer

the message object into bytes before sending it to the topic on the broker. The message consumer
does the opposite process, it receives bytes from the topic, and uses an instance of a 

 to convert the bytes back into the same object format.Deserializer

The producer and consumer are decoupled from the (de)serializers; they simply call either the 
 or  methods.serialize deserialize

Figure 3.2 The serializer and deserializer are agnostic of the producer and consumer and perform the
expected action when the serialize and deserialize methods are called

As depicted in this illustration, the producer expects to use an instance of the Serializer
interface and just calls the  method passing in an object of a given typeSerializer.serialize
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and getting back bytes. The consumer works with the  interface. The consumerDeserializer

provides an array of bytes to the  method and receives an object ofDeserializer.deserialize

a given type in return.

The producer and consumer get the (de)serializers via configuration parameters and we’ll see
examples of this later in the chapter.

NOTE I’m mentioning producers and consumers here and throughout the chapter,
but we’ll only go into enough detail to understand the context required for this
chapter. We’ll cover producer and consumer client details in the next chapter.

The point I’m trying to emphasize here is that for a given topic the object type the producer
serializes is expected to be the exact same object type that a consumer deserializes. Since
producers and consumers are completely agnostic of each other these messages or event domain

.objects represent an implicit contract between the producers and consumers

So now the question is does something exist that developers of producers and consumers can use
that informs them of the proper structure of messages? The answer to that question is yes, the
schema.

When you mention the word schema to developers, there’s a good chance their first thought is of
database schemas. A database schema describes the structure of the database, including the
names and startups of the columns in database tables and the relationship between tables. But the
schema I’m referring to here, while similar in purpose, is not quite the same thing.

For our purposes what I’m referring to is a language agnostic description of an object,
. Here’s an example of aincluding the name, the fields on the object and the type of each field

potential schema in json format

Listing 3.1 Basic example of a schema in json format

The name of the object

Defining the fields on the object

The names of the fields and their types

3.1 What is a schema and why you need to use one

{
"name":"Person",   
  "fields": [      
    {"name": "name", "type":"string"}, 
    {"name": "age", "type": "int"},
    {"name": "email", "type":"string"}
  ]
}
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Here our fictional schema describes an object named  with fields we’d expect to find onPerson

such an object. Now we have a structured description of an object that producers and consumers
can use as an agreement or contract on what the object should look like before and after
serialization. I’ll cover details on how you use schemas in message construction and
(de)serialization in an upcoming section.

But for now I’d like review some key points we’ve established so far:

The Kafka broker only works with messages in binary format (byte arrays)
Kafka producers and consumers are responsible for the (de)serialization of messages.
Additionally, since these two are unaware of each other, the records form a contract
between them.

And we also learned that we can make the contract between producers and consumers explicit by
using a schema. So we have our  for using a schema, but what we’ve defined so far is a bitwhy
abstract and we need to answer these questions for the  :how

How do you put schemas to use in your application development lifecyle?
Given that serialization and deserialization is decoupled from the Kafka producers and
consumers how can they use serialization that ensures messages are in the correct format?
How do you enforce the correct version of a schema to use? After all changes are
inevitable

The answer to these  questions is Schema Registry.how

Schema Registry provides a centralized application for storing schemas, schema validation and
sane schema evolution (message structure changes) procedures. Perhaps more importantly, it
serves as the source of truth of schemas that producer and consumer clients can easily discover.
Schema Registry provides serializers and deserializers that you can configure Kafka Producers
and Kafka Consumers easing the development for applications working with Kafka.

The Schema Registry serializing code supports schemas from the serialization frameworks Avro
( ) and Protocol Buffers ( ).avro.apache.org/docs/current/ developers.google.com/protocol-buffers
Note that I’ll refer to Protocol Buffers as "Protobuf" going forward. Additionally Schema
Registry supports schemas written using the JSON Schema ( ), but this is morejson-schema.org/
of a specification vs a framework. I’ll get into working with Avro, Protobuf JSON Schema as we
progress through the chapter, but for now let’s take a high-level view of how Schema Registry
works:

3.1.1 What is Schema Registry?
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1.  

2.  
3.  
4.  
5.  

6.  
7.  

Figure 3.3 Schema registry ensures consistent data format between producers and consumers

Let’s quickly walk through how Schema Registry works based on this illustration

As a produce calls the  method, a Schema Registry aware serializer retrievesserialize

the schema (via HTTP) and stores it in its local cache
The serializer embedded in the producer serializes the record
The producer sends the serialized message (bytes) to Kafka
A consumer reads in the bytes
The Schema Registry aware deserializer in the consumer retrieves the schema and stores
it in its local cache
The consumer deserializes the the bytes based on the schema
The Schema Registry servers produces a message with the schema so that it’s stored in
the  topic__schemas

TIP While I’m presenting Schema Registry as an important part of the Kafka
event streaming platform, it’s not required. Remember Kafka producers and
consumers are decoupled from the serializers and deserializers they use. As
long as you provide a class that implements the appropriate interface, they’ll
work fine with the producer or consumer. But you will lose the validation
checks that come from using Schema Registry. I’ll cover serializing without
Schema Registry at the end of this chapter.

While the previous illustration gave you a good idea of how schema registry works, there’s an
important detail I’d like to point out here. While it’s true that the serializer or deserializer will
reach out to Schema Registry to retrieve a schema for a given record type, it only does so ,once
the first time it encounters a record type it doesn’t have the schema for. After that, the schema
needed for (de)serialization operations is retrieved from local cache.
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Our first step is to get Schema Registry up and running. Again you’ll use docker-compose to
speed up your learning and development process. We’ll cover installing Schema Registry from a
binary download and other options in an appendix. But for now just grab the 

 file from the chapter_3 directory in the source code for the book.docker-compose.yml

This file is very similar to the  file you used in chapter two. But indocker-compose.yml

addition to the Zookeeper and Kafka images, there is an entry for a Schema Registry image as
well. Go ahead and run . To refresh your memory about the dockerdocker-compose up -d

commands the  is for "detached" mode meaning the docker containers run in the background-d

freeing up the terminal window you’ve executed the command in.

Before we go into the details of how you work with Schema Registry, it would be good to get
high level view of how it’s designed. Schema Registry is a distributed application that lives
outside the Kafka brokers. Clients communicate with Schema Registry via a REST API. A client
could be a serializer (producer), deserializer (consumer), a build tool plugin, or a command line
request using curl. I’ll cover using build tool plugins, gradle in this case, in an upcoming section
soon.

Schema Registry uses Kafka as storage (write-ahead-log) of all its schemas in  which__schemas

is a single partitioned, compacted topic. It has a primary architecture meaning there is one leader
node in the deployment and the other nodes are secondary.

NOTE The double underscore characters are a Kafka topic naming convention
denoting internal topics not meant for public consumption. From this point
forward we’ll refer to this topic simply as .schemas

What this means is that only the primary node in the deployment writes to the schemas topic.
Any node in the deployment will accept a request to store or update a schema, but secondary
nodes forward the request to the primary node. Let’s look at an illustration to demonstrate:

3.1.2 Getting Schema Registry

3.1.3 Architecture
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Figure 3.4 Schema Registry is a distributed application where only the primary node communicates with
Kafka

Anytime a client registers or updates a schema, the primary node produces a record to the
{underscore}schemas topic. Schema Registry uses a Kafka producer for writing and all the nodes
use a consumer for reading updates. So you can see that Schema Registry’s local state is backed
up in a Kafka topic making schemas very durable.

NOTE When working with Schema Registry throughout all the examples in the book
you’ll only use a single node deployment suitable for local development.

But all Schema Registry nodes serve read requests from clients. If any secondary nodes receive a
registration or update request, it is forwarded to the primary node. Then the secondary node
returns the response from the primary node. Let’s take a look at an illustration of this architecture
to solidify your mental model of how this works:
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Figure 3.5 All Schema Registry nodes can serve read requests

Now that we’ve given an overview of the architecture, let’s get to work by issuing a few basic
commands using Schema Registry REST API.

So far we’ve covered how Schema Registry works, but now it’s time to see it in action by
uploading a schema then running some additional commands available to get more information
about your uploaded schema. For the initial commands you’ll use  and  in a terminalcurl jq

window.

NOTE curl ( ) is a command line utility for working with data via a URLs.  (curl.se/ jq

) is a command-line json processor. For installing jq forstedolan.github.io/jq/
your platform you can visit the jq download site 

. For curl it should come installed onstedolan.github.io/jq/download/
Windows 10+ and Mac Os. On Linux you can install via a package manager. If
you are using Mac OS you can install both using homebrew - .brew.sh/

In later sections you’ll use a  plugin for your interactions with Schema Registry. Aftergradle

you get an idea of how the different REST API calls work, you’ll move on to using the gradle
plugins and using some basic producer and consumer examples to see the serialization in action.

Typically you’ll use the build tool plugins for performing Schema Registry actions. First they
make he development process much faster rather than having run the API calls from the
command line, and secondly they will automatically generate source code from schemas. We’ll
cover using build tool plugins in an upcoming section.

3.1.4 Communication - Using Schema Registry’s REST API
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NOTE There are Maven and Gradle plugins for working with Schema Registry, but
the source code project for the book uses Gradle, so that’s the plugin you’ll
use.

Before we get started make sure you’ve run  so that we’ll have adocker-compose up -d

Schema Registry instance running. But there’s going to be nothing registered so your first step is
to register a schema. Let’s have a little fun and create a schema for Marvel Comic super heroes,
the Avengers. You’ll use Avro for your first schema and let’s take a second now to discuss the
format:

Listing 3.2 Avro schema for Avengers

The namespace uniquely identifies the schema. For generated Java code the
namespace is the package name.

The type is  which is a complex type. Other complex types are , record enums

, ,  and . We’ll go into more detail about Avro types laterarrays maps unions fixed

in this chapter.

The name of the record

Declaring the fields of the record

Describing the individual fields. Fields in Avro are either simple or complex.

Providing a default value. If the serialized bytes don’t contain this field, Avro uses
the default value when deserializing.

You define Avro schemas in JSON format. You’ll use this same schema file in a upcoming
section when we discuss the gradle plugin for code generation and interactions with Schema
Registry. Since Schema Registry supports Protobuf and JSON Schema formats as well let’s take
a look at the same type in those schema formats here as well:

REGISTER A SCHEMA

{"namespace": "bbejeck.chapter_3", 
 "type": "record",          
 "name": "Avenger",         
 "fields": [                
     {"name": "name", "type": "string"},
     {"name": "real_name", "type": "string"},         
     {"name": "movies", "type":
                      {"type": "array", "items": "string"},
      "default": []   
    }
  ]
}
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Listing 3.3 Protobuf schema for Avengers

Defining the version of Protobuf, we’re using version three in this book

Declaring the package name

Specifying the name of the outer class, otherwise the name of the proto file is used

Defining the message

Unique field number

A repeated field; corresponds to a list

The Protobuf schema looks closer to regular code as the format is not JSON. Protobuf uses the
numbers you see assigned to the fields to identify those fields in the message binary format.
While Avro specification allows for setting default values, in Protobuf (version 3), every field is
considered optional, but you don’t provide a default value. Instead, Protobuf uses the type of the
field to determine the default. For example the default for a numerical field is 0, for strings it’s
an empty string and repeated fields are an empty list.

NOTE Protobuf is a deep subject and since this book is about the Kafka event
streaming pattern, I’ll only cover enough of the Protobuf specification for you
to get started and feel comfortable using it. For full details you can read the
l a n g u a g e  g u i d e  f o u n d  h e r e  

.developers.google.com/protocol-buffers/docs/proto3

Now let’s take a look at the JSON Schema version:

syntax = "proto3";  

package bbejeck.chapter_3.proto;  

option java_outer_classname = "AvengerProto"; 

message Avenger {   
    string name = 1;  
    string real_name = 2;
    repeated string movies = 3;  

}
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Listing 3.4 JSON Schema schema for Avengers

Referencing the specific schema spec

Specifying the type is an object

The javaType used when deserializing

Listing the fields of the object

Specifying a default value

The JSON Schema schema resembles the Avro version as both use JSON for the schema file.
The biggest difference between the two is that in the JSON Schema you list the object fields
under a  element vs. a  array and in the fields themselves you simply declareproperties fields

the name vs. having a  element.name

NOTE Please note there is a difference between a schema written in JSON format
and one that follows the JSON Schema format. JSON Schema is "a vocabulary
that allows you to annotate and validate JSON documents.". As with Avro and
Protobuf, I’m going to focus on enough for you to get going using it in your
projects, but for in-depth coverage you should visit  for morejson-schema.org/
information.

I’ve shown the different schema formats here for comparison. But in the rest of the chapter, I’ll
usually only show one version of a schema in an example to save space. But the source code will
contain examples for all three supported types.

{
  "$schema": "http://json-schema.org/draft-07/schema#",  
  "title": "Avenger",
  "description": "A JSON schema of Avenger object",
  "type": "object",             
  "javaType": "bbejeck.chapter_3.json.SimpleAvengerJson", 
  "properties": {     
    "name": {
      "type": "string"
    },
    "realName": {
      "type": "string"
    },
    "movies": {
      "type": "array",
      "items": {
        "type": "string"
      },
      "default": []  
    }
  },
  "required": [
    "name",
    "realName"
  ]
}
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Now that we’ve reviewed the schemas, let’s go ahead and register one. The command to register
a schema with REST API on the command-line looks like this

Listing 3.5 Register a schema on the command line

Using the the jq  function to format the avenger.avsc file (new lines aren’ttojson

valid json) for uploading, then pipe the result to the curl command

The POST URL for adding the schema, the  flag suppresses the progress info-s

output from curl

The content header

The  flag specifies the data and  means read from STDIN i.e. the data-d @-

provided by the jq command preceding the curl command

Piping the json response through  to get a nicely formatted responsejq

The result you see from running this command should look like this:

Listing 3.6 Expected response from uploading a schema

The response from the  request is the id that Schema Registry assigned to the new schema.POST

Schema Registry assigns a unique id (a monotonically increasing number) to each newly added
schema. Clients use this id for storing schemas in their local cache.

Before we move on to another command I want to call your attention to annotation 2, specifically
this part - , it specifies the subject name for the schema.subjects/avro-avengers-value/

Schema Registry uses the subject name to manage the scope of any changes made to a schema.
In this case it’s confined to  which means that values (in the key-valueavro-avengers-value

pairs) going into the  topic need to be in the format of the registered schema.avro-avengers

We’ll cover subject names and the role they have in making changes in an upcoming section.

Next, let’s take a look at some of the available commands you can use to retrieve information
from Schema Registry.

Imagine you are working on building a new application to work with Kafka. You’ve heard about
Schema Registry and you’d like to take a look at particular schema one of your co-workers

jq '. | {schema: tojson}' src/main/avro/avenger.avsc | \   
curl -s -X POST http://localhost:8081/subjects/avro-avengers-value/versions\  
         -H "Content-Type: application/vnd.schemaregistry.v1+json" \  
         -d @-  \ 
         | jq 

{
  "id": 1
}
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developed, but you can’t remember the name and it’s the weekend and you don’t want to bother
anyone. What you can do is list all the subjects of registered schemas with the following
command:

Listing 3.7 Listing the subjects of registered schemas

The response from this command is a json array of all the subjects. Since we’ve only registered
once schema so far the results should look like this

Great, you find here what you are looking for, the schema registered for the avro-avengers
topic.

Now let’s consider there’s been some changes to the latest schema and you’d like to see what the
previous version was. The problem is you don’t know the version history. The next command
shows you all of versions for a given schema

Listing 3.8 Getting all versions for a given schema

This command returns a json array of the versions of the given schema. In our case here the
results should look like this:

[ 1 ]

Now that you have the version number you need, now you can run another command to retrieve
the schema at a specific version:

Listing 3.9 Retrieving a specific version of a schema

After running this command you should see something resembling this:

curl -s "http://localhost:8081/subjects" | jq

[
  "avro-avengers-value"
]

curl -s "http://localhost:8081/subjects/avro-avengers-value/versions" | jq

curl -s "http://localhost:8081/subjects/avro-avengers-value/versions/1"\
 | jq '.'
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The value for the  field is formatted as a string, so the quotes are escaped and all new-lineschema

characters are removed.

With a couple of quick commands from a console window, you’ve been able to find a schema,
determine the version history and view the schema of a particular version.

As a side note, if you don’t care about previous versions of a schema and you only want the
latest one, you don’t need to know the actual latest version number. You can use the following
REST API call to retrieve the latest schema:

Listing 3.10 Getting the latest version of a schema

I won’t show the results of this command here, as it is identical to the previous command.

That has been a quick tour of some of the commands available in the REST API for Schema
Registry. This just a small subset of the available commands. For a full reference go to 

.docs.confluent.io/platform/current/schema-registry/develop/api.html#sr-api-reference

Next we’ll move on to using gradle plugins for working with Schema Registry and Avro,
Protobuf and JSON Schema schemas.

So far you’ve learned that the event objects written by producers and read by consumers
represent the contract between the producer and consumer clients. You’ve also learned that this
"implicit" contract can be a concrete one in the form of a schema. Additionally you’ve seen how
you can use Schema Registry to store the schemas and make them available to the producer and
consumer clients when the need to serialize and deserialize records.

In the upcoming sections you’ll see even more functionality with Schema Registry. I’m referring
to testing schemas for compatibility, different compatibility modes and how it can make
changing or evolving a schema a relatively painless process for the involved producer and
consumer clients.

{
  "subject": "avro-avengers-value",
  "version": 1,
  "id": 1,
  "schema": "{\"type\":\"record\",\"name\":\"AvengerAvro\",
      \"namespace\":\"bbejeck.chapter_3.avro\",\"fields\"
      :[{\"name\":\"name\",\"type\":\"string\"},{\"name\"
        :\"real_name\",\"type\":\"string\"},{\"name\"
          :\"movies\",\"type\":{\"type\":\"array\"
            ,\"items\":\"string\"},\"default\":[]}]}"
}

curl -s "http://localhost:8081/subjects/avro-avengers-value/
  versions/latest" | jq '.'

3.1.5 Plugins and serialization platform tools

58

©Manning Publications Co. To comment go to liveBook  
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://docs.confluent.io/platform/current/schema-registry/develop/api.html#sr-api-reference
http://localhost:8081/subjects/avro-avengers-value/
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion


But so far, you’ve only worked with a schema file and that’s still a bit abstract. As I said earlier
in the chapter, developers work with objects when building applications. So our next step is to
see how we can convert these schema files into concrete objects you can use in an application.

Schema Registry supports schemas in Avro, Protobuf and JSON Schema format. Avro and
Protobuf are serialization platforms that provide tooling for working with schemas in their
respective formats. One of the most important tools is the ability to generate objects from the
schemas.

Since JSON Schema is a standard and not a library or platform you’ll need to use an open source
tool for code generation. For this book we’re using the  project.github.com/eirnym/js2p-gradle
For (de)serialization without Schema Registry I would recommend using  fromObjectMapper

the  project.github.com/FasterXML/jackson-databind

Generating code from the schema makes your life as developer easier, as it automates the
repetitive, boilerplate process of creating domain objects. Additionally since you maintain the
schemas in source control (git in our case), the chance for error, such as making a field string
type when it should be a long, when creating the domain objects is all but eliminated.

Also when making a change to a schema, you just commit the change and other developers pull
the update and re-generate the code and everyone is unsung fairly quickly.

In this book we’ll use the gradle build tool ( ) to manage the book’s source code.gradle.org/
Fortunately there are gradle plugins we can use for working with Schema Registry, Avro,
Protobuf, and JSON Schema. Specifically, we’ll use the following plugins

github.com/ImFlog/schema-registry-plugin - For interacting with Schema Registry i.e.
testing schema compatibility, registering schemas, and configuring schema compatibility
github.com/davidmc24/gradle-avro-plugin - Used for Java code generation from Avro
schema ( ) files..avsc

github.com/google/protobuf-gradle-plugin - Used for Java code generation from Protobuf
schema ( ) files.proto

github.com/eirnym/js2p-gradle - Used for Java code generation for schemas using the
JSON Schema specification.

NOTE It’s important to note the distinction between schema files written in JSON
such as Avro schemas and those files using the JSON Schema format (

). In the case of Avro files they are written as json, but followjson-schema.org/
the Avro specification. With the JSON Schema files they follow the official
specification for JSON Schemas.

By using the gradle plugins for Avro, Protobuf and JSON Schema, you don’t need to learn how
to use the individual tools for each component, the plugins handle all the work. We’ll also use a
gradle plugin for handling most of the interactions with Schema Registry.
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Let’s get started by uploading a schema using a gradle command instead of a REST API
command in the console.

The first thing we’ll do is use gradle to register a schema. We’ll use the same Avro schema from
the REST API commands section. Now to upload the schema, make sure to change your current
directory ( ) into the base directory of project and run this gradle command:CD

After running this command you should see something like  in the console.BUILD SUCCESSFUL

Notice that all you needed to enter on the command line is the name of the gradle task (from the
schema-registry-plugin) and the task registers all the schema inside the  block inregister { }

the  file.streams/build.gradle

Now let’s take a look at the configuration of the Schema Registry plugin in the 
 file.streams/build.gradle

Listing 3.11 Configuration for Schema Registry plugin in streams/build.gradle

Start of the Schema Registry configuration block in the build.gradle file

Specifying the URL to connect to Schema Registry

Registering a schema by subject name

Specifying Avro schema file to register

The type of the schema you are registering

In the  block you provide the same information, just in a format of a method call vs. aregister

URL in a REST call. Under the covers the plugin code is still using the Schema Registry REST
API via a . As side note, in the source code you’ll notice there areSchemaRegistryClient

several entries in the  block. You’ll use all of them when go through the examples inregister

the source code.

UPLOADING A SCHEMA FILE

./gradlew streams:registerSchemasTask

schemaRegistry {   
    url = 'http://localhost:8081' 

register {
        subject('avro-avengers-value', 
                'src/main/avro/avenger.avsc', 
                'AVRO') 

     //other entries left out for clarity
    }

  // other configurations left out for clarity
}
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We’ll cover using more gradle Schema Registry tasks soon, but let’s move on to generating code
from a schema.

As I said earlier, one of the best advantages of using the Avro and Protobuf platforms is the code
generation tools. Using the gradle plugin for these these tools takes the convenience a bit further
by abstracting away the details of using the individual tools. To generate the objects represented
by the schemas all you need to do is run this gradle task:

Listing 3.12 Generating the model objects

Running this gradle command generates Java code for all the types Avro, Protobuf, and JSON
Schema for the schemas in the project. Now we should talk about where you place the schemas
in the project. The default locations for the Avro and Protobuf schemas are the src/main/avro
and  directories, respectively. The location for the JSON Schema schemas issrc/main/proto

the  directory, but you need to explicitly configure this in the src/main/json build.gradle

file:

Listing 3.13 Configure the location of JSON Schema schema files

The  configuration specifies where the generation tools can locate thesource

schemas

The  is were tool writes the generated Java objectstargetDirectory

NOTE All examples here refer to the schemas found in the  sub-directorystreams

unless otherwise specified.

Here you can see the configuration of the input and output directories for the js2p-gradle
plugin. The Avro plugin, by default, places the generated files in a sub-directory under the build
directory named .generated-main-avro-java

For Protobuf we configure the output directory to match the pattern of JSON Schema and Avro
in the  block of the  file like this:Protobuf build.gradle

GENERATING CODE FROM SCHEMAS

./gradlew clean build

jsonSchema2Pojo {

  source = files("${project.projectDir}/src/main/json") 
  targetDirectory = file("${project.buildDir}/generated-main-json-java")
  // other configurations left out for clarity
}
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Listing 3.14 Configure Protobuf output

The output directory for the Java files generated from Protobuf schema

Specifying the location of the protoc compiler

I’d to take a quick second to discuss annotation two for a moment. To use Protobuf you need to
have the compiler  installed. By default the plugin searches for a  executable. Butprotoc protoc

we can use a pre-compiled version of  from Maven Central, which means you don’t haveprotoc

to explicitly install it. But if you prefer to use your local install, you can specify the path inside
the  block with .protoc path = path/to/protoc/compiler

So we’ve wrapped up generating code from the schemas, now it’s time to run an end-to-end
example

At this point we’re going to take everything you’ve learned so far and run a simple end-to-end
example. So far, you have registered the schemas and generated the Java files you need from
them. So your next steps are to:

Create some domain objects from the generated Java files
Produce your created objects to a Kafka topic
Consume the objects you just sent from the same Kafka topic

While parts two and three from the list above seem to have more to do with clients than Schema
Registry, I want to think about it from this perspective. You’re creating instances of Java objects
created from the schema files, so pay attention to fields and notice how the objects conform to
the structure of the schema. Secondly, focus on the Schema Registry related configuration items,
serializer or deserializer and the URL for communicating with Schema Registry.

NOTE In this example you will use a Kafka Producer and Kafka Consumer, but I
won’t cover any of the details of working with them. If you’re unfamiliar with
the producer and consumer clients that’s fine. I’ll go into detail about
producers and consumers in the next chapter. But for now just go through the
examples as is.

protobuf {
    generatedFilesBaseDir = "${project.buildDir}
      /generated-main-proto-java" 

    protoc {
        artifact = 'com.google.protobuf:protoc:3.15.3' 
    }
}

END TO END EXAMPLE
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If you haven’t already registered the schema files and generated the Java code, let’s do so now.
I’ll put the steps here again and make sure you have run  to ensure yourdocker-compose up -d

Kafka broker and Schema Registry are running.

Listing 3.15 Register schemas and generate Java files

Register the schema files

Build the Java objects from schemas

Now let’s focus on the Schema Registry specific configurations. Go to the source code and take
a look at the  class. For now we only want tobbejeck.chapter_3.producer.BaseProducer

look at the following two configurations, we’ll cover more configurations for the producer in the
next chapter:

Specifying the serializer to use

Setting the location of Schema registry

The first configuration sets the  the producer will use. Remember, the Serializer

 is decoupled from the type of the , it simply calls the KafkaProducer Serializer serialize

method and gets back an array of bytes to send. So the responsibility for providing the correct 
 class is up to you.Serializer

In this case we’re going to work with objects generated from an Avro schema, so you use the 
.  I f  y o u  l o o k  a t  t h e  KafkaAvroSerializer

 class (which extends the bbejeck.chapter_3.producer.avro.AvroProducer BaseProducer

) you see it pass the  to the parent object constructor. The secondKafkaAvroSerializer.class

configuration specifies the HTTP endpoint that the  uses for communicating withSerializer

Schema Registry. These configurations enable the interactions described in the illustration
"Schema registry ensures consistent data format between producers and consumers" above.

Next, let’s take a quick look at creating an object:

./gradlew streams:registerSchemasTask 

./gradlew clean build 

producerProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
    keySerializer); 
producerProps.put(AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,
    "http://localhost:8081"); 
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Listing 3.16 Instantiating a an object from the generated code

OK, you’re thinking now, "this code creates an object, what’s the big deal?". While it could be a
minor point, but it’s more what you can’t do here that I’m trying to drive home. You can only
populate the expected fields with the correct types, enforcing the contract of producing records in
the expected format. Of course you could update the schema and regenerate the code.

But by making changes, you have to register the new schema and the changes have to match the
current compatibility format for the subject-name. So now can see now how Schema Registry
enforces the "contract" between producers and consumers. We’ll cover compatibility modes and
the allowed changes in an upcoming section.

Now let’s run the following gradle command to produce the objects to  topic.avro-avengers

Listing 3.17 Running the AvroProducer

After running this command you’ll see some output similar to this:

After the application produces these few records it shuts itself down.

IMPORTANT It’s important to make sure to run this command exactly as shown here
including the preceding  character. We have three different gradle modules:

for our Schema Registry exercises. We need to make sure the command we
run are for the specific module. In this case the  executes the main module:

only, otherwise it will run the producer for all modules and the example will
fail.

Now running this command doesn’t do anything exciting, but it demonstrate the ease of
serializing by using Schema Registry. The producer retrieves the schema stores it locally and
sends the records to Kafka in the correct serialized format. All without you having to write any
serialization or domain model code. Congratulations you have sent serialize records to Kafka!

var blackWidow = AvengerAvro.newBuilder()
                .setName("Black Widow")
                .setRealName("Natasha Romanova")
                .setMovies(List.of("Avengers", "Infinity Wars",
                  "End Game")).build();

./gradlew streams:runAvroProducer

  DEBUG [main] bbejeck.chapter_3.producer.BaseProducer - Producing records
 [{"name": "Black Widow", "real_name": "Natasha Romanova", "movies":
["Avengers", "Infinity Wars", "End Game"]},
{"name": "Hulk", "real_name": "Dr. Bruce Banner", "movies":
["Avengers", "Ragnarok", "Infinity Wars"]},
{"name": "Thor", "real_name": "Thor", "movies":
["Dark Universe", "Ragnarok", "Avengers"]}]
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TIP It could be instructive to look a the log file generated from running this
command. It can be found in the  directory of the provided source code.logs/

The log4j configuration overwrites the log file with each run, so be sure to
inspect it before running the next step.

Now let’s run a consumer which will deserialize the records. But as we did with the producer,
we’re going to focus on the configuration required for deserialization and working with Schema
Registry:

Listing 3.18 Consumer configuration for using Avro

Using Avro deserialization

Configuring to use a SpecificAvroReader

The host:port for Schema Registry

You’ll notice that in the second annotation you are setting the SPECIFIC_AVRO_READER_CONFIG
to . What does the  setting do? Well to answer thattrue SPECIFIC_AVRO_READER_CONFIG

question let’s take a slight detour in our conversation to discuss working with Avro, Protobuf,
and JSON Schema serialized objects.

When deserializing one of the Avro, Protobuf, or JSON Schema objects there is a concept of
deserializing the specific object type or a non-specific "container" object. For example, with the 

 set to true, the deserializer inside the consumer, will return anSPECIFIC_AVRO_READER_CONFIG

object of type  the  object type.AvroAvenger *specific*

However had you set the  to , the deserializer returns anSPECIFIC_AVRO_READER_CONFIG false

object of type . The returned  still follows the same schema, andGenericRecord GenericRecrod

has the same content, but the object itself is devoid of any type awareness, it’s as the name
implies simply a generic container of fields. The following example should make clear what I’m
saying here:

consumerProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
    KafkaAvroDeserializer.class); 
consumerProps.put(KafkaAvroDeserializerConfig.SPECIFIC_AVRO_READER_CONFIG,
    true); 
consumerProps.put(AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,
    "http://localhost:8081"); 
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Listing 3.19 Specific Avro records vs. GenericRecord

Accessing fields on the specific object

Accessing fields on the generic object

From this simple code example, you can see the differences between the specific returned type
vs. the generic. With the  object in annotation one, we can access the availableAvroAvenger

properties directly, as the object is "aware" of its structure and provides methods for accessing
those fields. But with the  object you need to query if it contains a specific fieldGenericRecord

before attempting to access it.

NOTE The specific version of the Avro schema is not just a POJO (Plain Old Java
Object) but extends the  class.SpecificRecordBase

Notice that with the  you need to access the field exactly as its specified in theGenericRecord

schema, while the specific version uses the more familiar camel case notation.

The difference between the two is that with the specific type you know the structure, but with the
generic type, since it could represent any arbitrary type, you need to query for different fields to
determine its structure. You need to work with a  much like you would with a GenericRecord

.HashMap

However you’re not left to operate completely in the dark. You can get a list of fields from a 
 by calling . Then you couldGenericRecord GenericRecord.getSchema().getFields()

iterate over the list of  objects and get the names by calling the .Field Fields.name()

Additionally you could get the name of the schema with 
 and presumably at that point you wouldGenericRecord.getSchema().getFullName();

know which fields the record contained.

AvroAvenger avenger = // returned from consumer with
  //SPECIFIC_AVRO_READER_CONFIG=true
avenger.getName();
avenger.getRealName();   
avenger.getMovies();

GenericRecord genericRecord = // returned from consumer with
  //SPECIFIC_AVRO_READER_CONFIG=false
if (genericRecord.hasField("name")) {
   genericRecord.get("name");
}

if (genericRecord.hasField("real_name")) {  
    genericRecord.get("real_name");
}

if (GenericRecord.hasField("movies")) {
    genericRecord.get("movies");
}
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Updating a field you’d follow a similar approach: .Updating or setting fields on specific and
generic records

So from this small example you can see that the specific object gives you the familiar setter
functionality but the the generic version you need to explicitly declare the field you are updating.
Again you’ll notice the  like behavior updating or setting a field with the genericHashMap

version.

Protobuf provides a similar functionality for working with specific or arbitrary types. To work
with an arbitrary type in Protobuf you’d us a . As with the Avro DynamicMessage

, the  offers functions to discover the type and the fields. WithGenericRecord DynamicMessage

JSON Schema the specific types are just the object generated from the gradle plugin, there’s no
framework code associated with it like Avro or Protobuf. The generic version is a type of 

 since the deserializer uses the jackson-databind (JsonNode

) API for serialization and deserialization.github.com/FasterXML/jackson-databind

NOTE The source code for this chapter contain examples of working with the
specific and generic types of Avro, Protobuf and JSON Schema.

So the question is when do you use the specific type vs. the generic? In the case where you only
have one type of record in a Kafka topic you’ll use the specific version. On the other hand, if you
have multiple event types in a topic, you’ll want to use the generic version, as each consumed
record could be a different type. We’ll talk more about multiple event types in a single topic later
in this chapter, and again in the client and Kafka Streams chapters.

The final thing to remember is that to use the specific record type, you need to set the 
 to . The default forkafkaAvroDeserializerConfig.SPECIFIC_AVRO_READER_CONFIG true

the  is false, so the consumer returns the  typeSPECIFIC_AVRO_READER_CONFIG GenericRecord

if the configuration is not set.

Now with the sidebar about different record types completed, let’s resume walking through your
first end-to-end example using Schema Registry. You’ve already produced some records using
the schema you uploaded previously. Now you just need to start a consumer to demonstrate
deserializing those records with the schema. Again, looking at the log files should be instructive
as you’ll see the embedded deserializer downloading the schema for the first record only as it
gets cached after the initial retrieval.

I  should also note that the following example using 
 uses both the specific class type and the bbejeck.chapter_3.consumer.avro.AvroConsumer

 type. As the example runs, the code prints out the type of the consumed record.GenericRecord

avnenger.setRealName("updated name")
genericRecord.put("real_name", "updated name")
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NOTE There are similar examples for Protobuf and JSON Schema in the source
code.

So let’s run the consumer example now by executing the following command from the root of
the book source code project:

Listing 3.20 Running the AvroConsumer

IMPORTANT Again, the same caveat here about running the command with the preceding 
 character, otherwise it will run the consumer for all modules and the:

example will not work.

The  prints out the consumed records and shuts down by itself. Congratulations,AvroConsumer

you’ve just serialized and deserialized records using Schema Registry!

So far we’ve covered the types of serialization frameworks supported by Schema Registry, how
to write and add a schema file, and walked through a basic example using a schema. During the
portion of the chapter where you uploaded a schema, I mentioned the term  and how itsubject

defines the scope of schema evolution. That’s what you’ll learn in the next section, using the
different subject name strategies.

Schema Registry uses the concept of a subject to control the scope of schema evolution. Another
way to think of the subject is a namespace for a particular schema. In other words, as your
business requirements evolve, you’ll need to make changes to your schema files to make the
appropriate changes to your domain objects. For example, with our AvroAvenger domain object,
you want to remove the real (civilian) name of the hero and add a list of their powers.

Schema Registry uses the subject to lookup the existing schema and compare the changes with
the new schema. It performs this check to make sure the changes are compatible with the current
compatibility mode set. We’ll talk about compatibility modes in an upcoming section. The
subject name strategy determines the scope of where schema registry makes its compatibility
checks.

There are three types of subject name strategies, , ,TopicNameStrategy RecordNameStrategy

and . You can probably infer the scope of the name-spacing impliedTopicRecordNameStrategy

by the strategy names, but it’s worth going over the details. Let’s dive in and discuss these
different strategies now.

3.2 Subject name strategies

./gradlew streams:runAvroConsumer
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NOTE By default all serializers will attempt to register a schema when serializing, if
it doesn’t find the corresponding id in its local cache. Auto registration is a
great feature, but in some cases you may need to turn it off with a producer
configuration setting of . One example of notauto.register.schemas=false

wanting auto registration is when you are using an Avro union schema with
references. We’ll cover this in more detail later in the chapter.

The  is the default subject in Schema Registry. The subject name comesTopicNameStrategy

from the name of the topic. You saw the  in action earlier in the chapterTopicNameStrategy

when you registered a schema with the gradle plugin. To be more precise the subject name is 
 or  as you can have different types for the key and valuetopic-name-key topic-name-value

requiring different schemas.

The  ensures there is only one data type on a topic, since you can’t registerTopicNameStrategy

a schema for a different type with the same topic name. Having a single type per topic makes
sense in a lot of cases. For example, if you name your topics based on the event type they store.
it follows that they will contain only one record type.

Another advantage of the  is with the schema enforcement limited to aTopicNameStrategy

single topic, you can have another topic using the same record type, but using a different schema.
Consider the situation where two different departments use the same record type, but use
different topic names. With the  these departments can register completelyTopicNameStrategy

different schemas for the same record type, since the scope of the schema is limited to a
particular topic.

3.2.1 TopicNameStrategy
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Figure 3.6 TopicNameStrategy enforces having the same type of domain object represented by the
registered schema for the value and or the key

Since the  is the default, you don’t need to specify any additionalTopicNameStrategy

configurations. When you register schemas you’ll use the format of  as the<topic>-value

subject for value schemas and  as the subject for key schemas. In both cases you<topic>-key

substitute the name of the topic for the  token.<topic>

But there could be cases where you have closely related events and you want to produce those
records into in one topic. In that case you’ll want to chose a strategy that allows different types
and schemas in a topic.

The  uses the fully qualified class name (of the Java object representationRecordNameStrategy

of the schema) as the subject name. By using the record name strategy you can now have
multiple types of records in the same topic. But the key point is that there is a  relationshiplogical
between these records, it’s just the physical layout of them is different.

When would you choose the ? Imagine you have different IoT (Internet ofRecordNameStrategy

Things) sensors deployed. Some of sensors measure different events so they’ll have different
records. But you still want to have them co-located on the same topic.

3.2.2 RecordNameStrategy
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Figure 3.7 RecordNameStrategy enforces having the same schema for a domain object across different
topics

Since there can be different types, the compatibility checks occur between schemas with the
same record name. Additionally the compatibility check extends to all topics using a subject with
the same record name.

To use the  you use a fully qualified class name for the subject whenRecordNameStrategy

registering a schema for a given record type. For the  object we’ve used in ourAvengerAvro

examples, you would configure the schema registration like this:

Listing 3.21 Schema Registry gradle plugin configuration for RecordNameStrategy

Then you need to configure the producer and consumer with the appropriate subject name
strategy. For example:

Listing 3.22 Producer configuration for RecordNameStrategy

subject('bbejeck.chapter_3.avro.AvengerAvro','src/main/avro/avenger.avsc', 'AVRO')

Map<String, Object> producerConfig = new HashMap<>();
producerConfig.put(KafkaAvroSerializerConfig.VALUE_SUBJECT_NAME_STRATEGY,
 RecordNameStrategy.class);
producerConfig.put(KafkaAvroSerializerConfig.KEY_SUBJECT_NAME_STRATEGY,
 RecordNameStrategy.class);
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Listing 3.23 Consumer configuration for RecordNameStrategy

NOTE If you are only using Avro for serializing/deserializing the values, you don’t
need to add the configuration for the key. Also the key and value subject
name strategies do not need to match, I’ve only presented them that way
here.

For Protobuf use the  and KafkaProtobufSerializerConfig

 and for JSON schema use the KafkaProtobufDeserializerConfig

 and KafkaJsonSchemaSerializerConfig KafkaJsonSchemaDeserializerConfig

These configurations only effect how the serializer/deserializer interact with Schema Registry for
looking up schemas. Again the serialization is decoupled from producing and consuming
process.

One thing to consider is that by using only the record name, all topics must use the same schema.
If you want to use different records in a topic, but want to only consider the schemas for that
particular topic, then you’ll need to use another strategy.

As you can probably infer from the name this strategy allows for having multiple record types
within a topic as well. But the registered schemas for a given record are only considered within
the scope of the current topic. Let’s take a look at the following illustration to get a better idea of
what this means.

Map<String, Object> consumerConfig = new HashMap<>();
config.put(KafkaAvroDeserializerConfig.KEY_SUBJECT_NAME_STRATEGY,
 RecordNameStrategy.class);
config.put(KafkaAvroDeserializerConfig.VALUE_SUBJECT_NAME_STRATEGY,
 RecordNameStrategy.class);

3.2.3 TopicRecordNameStrategy
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Figure 3.8 TopicRecordNameStrategy allows for having different schemas for the same domain object
across different topics

As you can see from the image above  can have a different schema for the record type topic-A

 from . This strategy allows you to have multiple logically related types on oneFoo topic-B

topic, but it’s isolated from other topics where you have the same type but are using different
schemas.

Why would you use the ? For example, consider this situation:TopicRecordNameStrategy

You have one version of the  event object in the  topic,CustomerPurchaseEvent interactions

that groups all customer event types ( ,  etc)CustomerSearchEvent CustomerLoginEvent

grouped together. But you have an older topic purchases, that also contains 
 objects, but it’s for a legacy system so the schema is older andCustomerPurchaseEvent

contains different fields from the newer one. The  allows for havingTopicRecordNameStrategy

these two topics to contain the same  but with different schema versions.type

Similar to the  you’ll need to do the following steps to configure theRecordNameStrategy

strategy:

Listing 3.24 Schema Registry gradle plugin configuration for TopicRecordNameStrategy

Then you need to configure the producer and consumer with the appropriate subject name
strategy. For example:

subject('avro-avengers-bbejeck.chapter_3.avro.AvengerAvro',
  'src/main/avro/avenger.avsc', 'AVRO')
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Listing 3.25 Producer configuration for TopicRecordNameStrategy

Listing 3.26 Consumer configuration for TopicRecordNameStrategy

NOTE The same caveat about registering the strategy for the key applies here as
well, you would only do so if you are using a schema for the key, it’s only
provided here for completeness. Also the key and value subject name
strategies don’t need to match

Why would you use the  over either the  or theTopicRecordNameStrategy TopicNameStrategy

? If you wanted the ability to have multiple event types in a topic, but youRecordNameStrategy

need the flexibility to have different schema versions for a given type across your topics.

But when considering multiple types in a topic, both the  and the TopicRecordNameStrategy

 don’t have the ability to constrain a topic to fixed set of types. UsingRecordNameStrategy

either of those subject name strategies opens up the topic to have an unbounded number of
different types. We’ll cover how to improve on this situation when we cover schema references
in an upcoming section.

Here’s a quick summary for you to consider when thinking of the different subject name
strategies. Think of the subject name strategy as a function that accepts the topic-name and
record-schema as arguments and it returns a subject-name. The  only usesTopicNameStrategy

the topic-name and ignores the record-schema.  does the opposite; itRecordNameStrategy

ignores the topic-name and only uses the record-schema. But the TopicRecordNameStrategy
uses both of them for the subject-name.

So far we’ve covered the subject naming strategies and how Schema Registry uses subjects for

Map<String, Object> producerConfig = new HashMap<>();
producerConfig.put(KafkaAvroSerializerConfig.VALUE_SUBJECT_NAME_STRATEGY,
 TopicRecordNameStrategy.class);
producerConfig.put(KafkaAvroSerializerConfig.KEY_SUBJECT_NAME_STRATEGY,
 TopicRecordNameStrategy.class);

Map<String, Object> consumerConfig = new HashMap<>();
config.put(KafkaAvroDeserializerConfig.KEY_SUBJECT_NAME_STRATEGY,
 TopicRecordNameStrategy.class);
config.put(KafkaAvroDeserializerConfig.VALUE_SUBJECT_NAME_STRATEGY,
 TopicRecordNameStrategy.class);

Table 3.1 Schema strategies summary tablem
Strategy Multiple types in a topic Different versions of objects across topics

TopicNameStrategy Maybe Yes

RecordNameStrategy Yes No

TopicRecordNameStrategy Yes Yes
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name-spacing schemas. But there’s another dimension to schema management, how to evolve
changes within the schema itself. How do you handle changes like the removal or addition of a
field? Do you want your clients to have forward or backward compatibility? In the next section
we’ll cover exactly how you handle schema compatibility.

When there are schema changes you need to consider the compatibility with the existing schema
and the producer and consumer clients. If you make a change by removing a field how does this
impact the producer serializing the records or the consumer deserializing this new format?

To handle these compatibility concerns, Schema Registry provides four base compatibility
modes , , , and . There are also three additional compatibility modesBACKWARD FORWARD FULL NONE

, , and  which extend on theBACKWARD_TRANSITIVE FORWARD_TRANSITIVE FULL_TRANSITIVE

base compatibility mode with the same name. The base compatibility modes only guarantee that
a new schema is compatible with immediate previous version. The transitive compatibility
specifies that the new schema is compatible with  previous versions of a given schema*all*
applying the compatibility mode.

You can specify a global compatibility level or a compatibility level per subject.

What follows in this chapter is a description of the valid changes for a given compatibility mode
along with an illustration demonstrating the sequence of changes you’d need to make to the
producers the consumers. For a hands on tutorial of making changes to a schema, see
Appendix-B: Schema Compatibility Workshop.

Backward compatibility is the default migration setting. With backward compatibility you update
the consumer code first to support the new schema. The updated consumers can read records
serialized with the new schema or the immediate previous schema.

3.3 Schema compatibility

3.3.1 Backward compatibility
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Figure 3.9 Backward compatibility updates consumers first to use the new schema then they can
handle records from producers using either the new schema or the previous one

As shown in this illustration the consumer, can work with both the previous and the new
schemas. The allowed changes with backwards compatibility are deleting fields or adding
optional fields. An field is considered optional when the schema provides a default value. If the
serialized bytes don’t contain the optional field, then the deserializer uses the specified default
value when deserializing the bytes back into an object.

Forward compatibility is a mirror image of backward compatibility regarding field changes. With
forward compatibility you can add fields and delete  fields.optional

Figure 3.10 Forward compatibility updates producers first to use the new schema and consumers can
handle the records either the new schema or the previous one

3.3.2 Forward compatibility
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By upgrading the producer code first, you’re making sure the new fields are properly populated
and only records in the new format are available. Consumers you haven’t upgraded can still work
with the new schema as it will simply ignore the new fields and the deleted fields have default
values.

At this point you’ve seen two compatibility types, backward and forward. As the compatibility
name implies, you must consider record changes in one direction. In backward compatibility,
you updated the consumers first as records could arrive in either the new or old format. In
forward compatibility, you updated the producers first to ensure the records from that point in
time are only in the new format. The last compatibility strategy to explore is the FULL
compatibility mode.

In full compatibility mode, you free to add or remove fields, but there is one catch. *Any
 you make must be to  fields only. To recap an optional field is one wherechanges* *optional*

you provide a default value in the schema definition should the original deserialized record not
provide that specific field.

NOTE Both Avro and JSON Schema provide support for explicitly providing default
values, with Protocol Buffers version 3 (the version used in the book) every
field automatically has a default based in its type. For example number types
are 0, strings are "", collections are empty etc.

Figure 3.11 Full compatibility allows for producers to send with the previous or new schema and
consumers can handle the records either the new schema or the previous one

Since the fields involved in the updated schema are optional, these changes are considered
compatible for existing producer and consumer clients. This means that the upgrade order in this

3.3.3 Full compatibility
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case is up to you. Consumers will continue to work with records produced with the new or old
schema.

Specifying a compatibility of  instructs Schema Registry to do just that, no compatibilityNONE

checks. By not using any compatibility checks means that someone can add new fields, remove
existing fields, or change the type of a field. Any and all changes are accepted.

Not providing any compatibility checks provides a great deal of freedom. But the trade-off is
you’re vulnerable to breaking changes that might go undetected until the worse possible time; in
production.

It could be that every time you update a schema, you upgrade all producers and consumers at the
same time. Another possibility is to create a new topic for clients to use. Applications can use the
new topic without having the concerns of it containing records from the older, incompatible
schema.

Now you’ve learned how you can migrate a schema to use a new version with changes within the
different schema compatibility modes and for review here’s a quick summary table of the
different compatibility types

But there’s more you can do with schemas. Much like working with objects you can share
common code to reduce duplication and make maintenance easier, you can do the same with
schema references

3.3.4 No compatibility

Table 3.2 Schema Compatibility Mode Summarym
Mode Changes Allowed Client Update Order Retro guaranteed compatibility

Backward Delete fields, add optional fields Consumers, Producers Prior version

Backward Transitive Delete fields, add optional fields Consumers, Producers All previous versions

Forward Add fields, delete optional fields Producers, Consumers Prior version

Forward Transitive Add fields, delete optional fields Producers, Consumers All previous versions

Full Delete optional fields, add optional fields Doesn’t matter Prior version

Full Transitive Delete optional fields, add optional fields Doesn’t matter All previous versions
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A schema reference is just what is sounds like, referring to another schema from inside the
current schema. Reuse is a core principal in software engineering as the ability to leverage
something you’ve already built solves two issues. First, you could potentially save time by not
having to re-write some exiting code. Second, when you need to update the original work (which
always happens) all the downstream components leveraging the original get automatically
updated as well.

When would you want to use a schema reference? Let’s consider you have an application
providing information on commercial business and universities. To model the business you have
a  schema and for the universities you have a  schema. Now a company hasCompany College

executives and the college has professors. You want to represent both with a nested schema of a 
 domain object. The schemas would look something like this:Person

Listing 3.27 College schema

Array of professors

The item type in array is a Person object

So you can see here you have a nested record type in your college schema, which is not
uncommon. Now let’s look at the company schema

3.4 Schema references

  "namespace": "bbejeck.chapter_3.avro",
  "type": "record",
  "name": "CollegeAvro",
  "fields": [
    {"name": "name", "type": "string"},
    {"name": "professors", "type":
    {"type": "array", "items": { 
      "namespace": "bbejeck.chapter_3.avro",
      "name":"PersonAvro",       
      "fields": [
        {"name": "name", "type":"string"},
        {"name": "address", "type": "string"},
        {"name": "age", "type": "int"}
      ]
    }},
      "default": []
    }
  ]
}
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Listing 3.28 Company schema

Array of executives

Item type is a PersonAvro

Again you have a nested record for the type contained in the schema array. It’s natural to model
the executive or professor type as a person, as it allows you to encapsulate all the details into an
object. But as you can see here, there’s duplication in your schemas. If you need to change the
person schema you need to update every file containing the nested person definition.
Additionally, as you start to add more definitions, the size and complexity of the schemas can get
unwieldy quickly due to all the nesting of types.

It would be better to put a reference to the type when defining the array. So let’s do that next.
We’ll put the nested  record in its own schema file, person.avsc.PersonAvro

I won’t show the file here, as nothing changes, we are putting the definition you see here in a
separate file. Now let’s take a look at how you’d update the  and college.avsc company.avsc

schema files:

Listing 3.29 Updated College schema

{
  "namespace": "bbejeck.chapter_3.avro",
  "type": "record",
  "name": "CompanyAvro",
  "fields": [
    {"name": "name", "type": "string"},
    {"name": "executives", "type":
    {"type": "array", "items": {  
      "type":"record",
      "namespace": "bbejeck.chapter_3.avro",
      "name":"PersonAvro",        
      "fields": [
        {"name": "name", "type":"string"},
        {"name": "address", "type": "string"},
        {"name": "age", "type": "int"}
      ]
    }},
      "default": []
    }
  ]
}

{
  "namespace": "bbejeck.chapter_3.avro",
  "type": "record",
  "name": "CollegeAvro",
  "fields": [
    {"name": "name", "type": "string"},
    {"name": "professors", "type":
    {"type": "array", "items": "bbejeck.chapter_3.avro.PersonAvro"}, 
      "default": []
    }
  ]
}
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This is the new part it’s a reference to the person object

IMPORTANT When using schema references, the referring schema you provide must be
the same type. For example you can’t provide a reference to an Avro schema
or JSON Schema inside Protocol Buffers schema, the reference must be
another Protocol Buffers schema.

Here you’ve cleaned things up by using a reference to the object created by the person.avsc
schema. Now let’s look at the updated company schema as well

Listing 3.30 Updated Company schema

This is the new part also it’s a reference to the person object

Now both schemas refer to the same object created by the person schema file. For completeness
let’s take a look at how you implement a schema reference in both JSON Schema and Protocol
Buffers. First we’ll look at the JSON Schema version:

Listing 3.31 Company schema reference in JSON Schema

The reference to the Person object schema

{
  "namespace": "bbejeck.chapter_3.avro",
  "type": "record",
  "name": "CompanyAvro",
  "fields": [
    {"name": "name", "type": "string"},
    {"name": "executives", "type":
      {
        "type": "array", "items": "bbejeck.chapter_3.avro.PersonAvro"}, 
        "default": []
       }
  ]
}

{
  "$schema": "http://json-schema.org/draft-07/schema#",
  "title": "Exchange",
  "description": "A JSON schema of a Company using Person refs",
  "javaType": "bbejeck.chapter_3.json.CompanyJson",
  "type": "object",
  "properties": {
    "name": {
      "type": "string"
    },
    "executives": {
      "type": "array",
      "items": {
        "$ref": "person.json" 
      }
    }
  }
}
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The concept with references in JSON Schema is the same, but you provide an explicit $ref
element pointing to the referenced schema file. It’s assumed that the referenced file is located in
the same directory as the referring schema.

Now let’s take a look at the equivalent reference with Protocol Buffers:

Listing 3.32 Company Schema reference in Protocol Buffers

Import statement for the referenced schema

Referring to the Person proto

With Protocol Buffers you have a very minor extra step of providing an import referring the the
proto file containing the referenced object.

But now the question is how will the (de)serializers know how to serialize and deserialize the
object into the correct format? You’ve removed the definition from inside the file, so you need to
get a reference to the schema as well. Fortunately, Schema Registry provides for using schema
references.

What you need to do is register a schema for the person object first, then when you register the
schema for the college and company schemas, you provide a reference to the already registered
person schema.

Using the gradle schema-registry plugin makes this a simple task. Here’s how you would
configure it for using schema references:

Listing 3.33 Gradle plugin reference configuration

Register the person schema

syntax = "proto3";

package bbejeck.chapter_3.proto;

import "person.proto";  

option java_outer_classname = "CompanyProto";

message Company {
  string name = 1;
  repeated Person executives = 2; 
}

register {

    subject('person','src/main/avro/person.avsc', 'AVRO')       
    subject('college-value','src/main/avro/college.avsc', 'AVRO')
        .addReference("bbejeck.chapter_3.avro.PersonAvro", "person", 1) 
    subject('company-value','src/main/avro/company.avsc', 'AVRO')
        .addReference("bbejeck.chapter_3.avro.PersonAvro", "person", 1) 
    }
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1.  

2.  
3.  

Register the college schema and add a reference to the person schema

Register the company schema and add a reference to the person schema

So you first registered the  file, but in this case the subject is simply person.avsc person

because in this case it’s not associated directly with any one topic. Then you registered both the
college and company schemas using the  pattern as the college and<topic name> - value

company schemas are tied to topics with the same names and use the default subject name
strategy (TopicNameStrategy) . The  method takes three parameters:addReference

A name for the reference. Since you’re using Avro it’s the fully qualified name of the
schema. For Protobuf it’s the name of the proto file and for JSON schema it’s the URL in
the schema.
The subject name for the registered schema.
The version number to use for the reference.

Now with the references in place, you register the schemas and your producer and consumer
client will be able to properly serialize and deserialize the objects with the references.

There are examples in the source code for running a producer and consumer with the schema
references in action. Since you’ve already run the ./gradlew streams:registerSchemasTask
for the main module, you’ve already set up your references. To see using schema references in
action you can run the following:

Listing 3.34 Tasks for schema references in action

We’ve covered the different subject strategies , and RecordNameStrategy

 and how they allow for producing records of different types to aTopicRecordNameStrategy

topic. But with the  any topic you produce to must use the same schemaRecordNameStrategy

version for the given type. This means that if you want to make changes or evolve the schema,
all topics must use the new schema. Using the  allows for multipleTopicRecordNameStrategy

events in a topic and it scopes the schema to a single topic, allowing you to evolve the schema
independent of other topics.

But with both approaches you can’t control the number of different types produced to the topic.
If someone wants to produce a record of a different type that is not wanted, you don’t have any
way to enforce this policy.

3.5 Schema references and multiple events per topic

./gradlew streams:runCompanyProducer

./gradlew streams:runCompanyConsumer

./gradlew streams:runCollegeProducer

./gradlew streams:runCollegeConsumer
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However there is a way to achieve producing multiple event types to a topic  restrict theand
types of records produced to the topic by using schema references. By using 

 in conjunction with schema references, it allows all records in the topic toTopicNameStrategy

be constrained by a single subject. In other words, schema references allow you to have multiple
types, but only those types that the schema refers to. This is best understood by walking through
an example scenario

Imagine you are an online retailer and you’ve developed system for precise tracking of packages
you ship to customers. You have a fleet of trucks and planes that take packages anywhere in the
country. Each time a package handled along its route its scanned into your system generating one
of three possible events represented by these domain objects: - , , or a PlaneEvent TruckEvent

.DeliveryEvent

These are distinct events, but they are closely related. Also since the order of these events is
important, you want them produced to the same topic so you have all related events together and
in the proper sequence of their occurrence. I’ll cover more about how combining related events
in a single topic helps with sequencing in chapter 4 when we cover clients. Now assuming
you’ve already created schemas for the PlaneEvent, TruckEvent, and the DeliveryEvent you
could create an schema like this to contain the different event types:

Listing 3.35 Avro schema all_events.avsc with multiple events

An Avro union type for the different events

The  schema file is an Avro , which is an array of the possible eventall_events.avsc union

types. You use a  when a field, or, in this case a schema, could be of more then one type.union

Since you’re defining all the expected types in a single schema, your topic can now contain
multiple types, but it’s limited to only those listed in the schema. When using schema references
in this format with Avro, it’s critical to always set  and auto.register.schemas=false

 in you Kafka producer configuration. Here’s the reason why youuse.latest.version=true

need to use these configurations with the given settings.

When the Avro serializer goes to serialize the object, it won’t find the schema for it, since it’s in
the union schema. As a result it will register the schema of the individual object, overwriting the
union schema. So setting the auto registration of schemas to  avoids the overwriting of thefalse

schema problem. In addition, by specifying , the serializer willuse.latest.version=true

[
  "bbejeck.chapter_3.avro.TruckEvent",    
  "bbejeck.chapter_3.avro.PlaneEvent",
  "bbejeck.chapter_3.avro.DeliveryEvent"
]
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retrieve the latest version of the schema (the union schema) and use that for serialization.
Otherwise it would look for the event type in the subject name, and since it won’t find it, a
failure will result.

TIP When using the  field with references in Protocol Buffers, the referencedoneOf

schemas are automatically registered recursively, so can go ahead and use
the  configuration set to . You can also do theauto.register.schemas true

same with JSON Schema  fields.oneOf

Let’s now take a look at how you’d register the schema with references:

Listing 3.36 Register the all_events schema with references

Registering the individual schemas referenced in the all_events.avsc file

Registering all_events schema

Adding the references of the individual schemas

As you saw before in the schema references section, with Avro you need to register the
individual schemas before the schema containing the references. After that you can register the
main schema with the references to the individual schemas.

When working with Protobuf there isn’t a  type but there is a  which is essentiallyunion oneOf

the same thing. However with Protobuf you can’t have a  at the top-level, it must exist inoneOf

an Protobuf message. For your Protobuf example, consider that you want to track the following
customer interactions logins, searches, and purchases as separate events. But since they are
closely related and sequencing is important you want them in the same topic. Here’s the Protobuf
file containing the references:

subject('truck_event','src/main/avro/truck_event.avsc', 'AVRO')  
subject('plane_event','src/main/avro/plane_event.avsc', 'AVRO')
subject('delivery_event','src/main/avro/delivery_event.avsc', 'AVRO')

subject('inventory-events-value', 'src/main/avro/all_events.avsc','AVRO') 
    .addReference("bbejeck.chapter_3.avro.TruckEvent", "truck_event", 1) 
    .addReference("bbejeck.chapter_3.avro.PlaneEvent", "plane_event", 1)
    .addReference("bbejeck.chapter_3.avro.DeliveryEvent", "delivery_event", 1)
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Listing 3.37 Protobuf file with references

Importing the individual Protobuf messages

The oneOf field which could be one of the three types listed

You’ve seen a Protobuf schema earlier in the chapter so I won’t go over all the parts here, but the
key thing for this example is the  field  which could be a , oneOf type PurchaseEvent

, or a . When when you register a Protobuf schema it has enoughLoginEvent SearchEvent

information present to recursively register all of the referenced schemas, so it’s safe to set the 
 configuration to .auto.register true

You can structure your Avro references in a similar manner:

Listing 3.38 Avro schema with references using an outer class

Outer class name

Field named "event"

Avro union for the field type

So the main difference with this Avro schema vs. the previous Avro schema with references is

syntax = "proto3";

package bbejeck.chapter_3.proto;

import "purchase_event.proto";  
import "login_event.proto";
import "search_event.proto";

option java_outer_classname = "EventsProto";

message Events {

  oneof type {  
    PurchaseEvent purchase_event = 1;
    LoginEvent login_event = 2;
    SearchEvent search_event = 3;
  }
  string key = 4;
}

{
  "type": "record",
  "namespace": "bbejeck.chapter_3.avro",
  "name": "TransportationEvent",  

  "fields" : [
    {"name": "event", "type"[   
      "bbejeck.chapter_3.avro.TruckEvent",  
      "bbejeck.chapter_3.avro.PlaneEvent",
      "bbejeck.chapter_3.avro.DeliveryEvent"
    ]}
  ]
}
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this one has outer class and the references are now a field in the class. Also, when you provide an
outer class with Avro references like you have done here, you can now set the auto.register
configuration to , although you still need to register the schemas for the referenced objectstrue

ahead of time as Avro, unlike Protobuf, does not have enough information to recursively register
the referenced objects.

There are some additional considerations when it comes to using multiple types with producers
and consumers. I’m referring to the generics you use on the Java clients and how you can
determine to take the appropriate action on an object depending on its concrete class name. I
think these topics are better suited to discuss when we cover clients, so we’ll cover that subject in
the next chapter.

At this point, you’ve learned about the different schema compatibility strategies, how to work
with schemas and using references. In all the examples you’ve run you’ve been using the built in
serializers and deserializers provided by Schema Registry. In the next section we’ll cover the
configuration for the (de)serializers for producers and consumers. But we’ll only cover the
configurations related to the (de)serializers and not general producer and consumer
configuration, those we’ll cover in the next chapter.

I’ve covered in the beginnings of the chapter,that when producing records to Kafka you need to
serialize the records for transport over the network and storage in Kafka. Conversely, when
consuming records you deserialize them so you can work with objects.

You need to configure the producer and consumer with the classes required for the serialization
and deserialization process. Schema Registry provides a serializer, deserializer, and a Serde
(used in Kafka Streams) for all three (Avro, Protobuf, JSON) supported types.

Providing the serialization tools is a strong argument for using Schema Registry that I spoke
about earlier in the chapter. Freeing developers from having to write their own serialization code
speeds up development and increases standardization across an organization. Also using a
standard set of serialization tools reduces errors as reduces the chance that one team implements
their own serialization framework.

NOTE What’s a Serde? A Serde is a class containing both a serializer and
deserializer for a given type. You will use Serdes when working with Kafka
Streams because you don’t have access to the embedded producer and
consumer so it makes sense to provide a class containing both and Kafka
Streams uses the correct serializer and deserializer accordingly. You’ll see
Serdes in action when we start working with Kafka Streams in a later chapter.

3.6 Schema Registry (de)serializers
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In the following sections I’m going to discuss the configuration for using Schema Registry aware
serializers, deserializers. One important thing to remember is you don’t configure the serializers
directly. You set the configuration for serializers when you configure either the KafkaProducer
or . If following sections aren’t entirely clear to you, that’s OK because we’llKafkaConsumer

cover clients (producers and consumer) in the next chapter.

For Avro records there is the  and  classes forKafkaAvroSerializer KafkaAvroDeserializer

serializing and deserializing records. When configuring a consumer, you’ll need to include an
additional property, KafkaAvroDeserializerConfig.SPECIFIC_AVRO_READER_CONFIG=true
indicating that you want the deserializer to create a  instance. Otherwise theSpecificRecord

deserializer returns a .GenericRecord

Let’s take a look at snippets of how you add these properties to both the producer and consumer.
Note the following example only shows the configurations required for the serialization. I’ve left
out the other configurations for clarity. We’ll cover configuration of producers and consumers in
chapter 4.

Listing 3.39 Required configuration for Avro

The serializer for the key

The serializer for the value

Setting the URL for the serializer

The deserializer for the key

The deserializer for the value

Indicating to construct a specific record instance

Setting the URL for the deserializer

Next, let’s take a look at the configuration for working with Protobuf records

3.6.1 Avro

// producer properties
producerProps.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
  StringSerializer.class); 
producerProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
  KafkaAvroSerializer.class); 
producerProps.put(AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,
  "http://localhost:8081"); 

//consumer properties these are set separately on the consumer
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
  StringDeserializer.class); 
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
  KafkaAvroDeserializer.class); 
props.put(KafkaAvroDeserializerConfig.SPECIFIC_AVRO_READER_CONFIG,
  true); 
props.put(AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,
  "http://localhost:8081"); 
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For working with Protobuf records there are the  and KafkaProtobufSerializer

 classes.KafkaProtobufDeserializer

When using Protobuf with schema registry, it’s probably a good idea to specify both the 
 and set  to  in the protobuf schema. If youjava_outer_classname java_multiple_files true

end up using the  with protobuf then you  use these properties so theRecordNameStrategy must
deserializer can determine the type when creating an instance from the serialized bytes.

If you remember from earlier in the chapter we discussed that when using Schema Registry
aware serializers, those serializers will attempt to register a new schema. If your protobuf schema
references other schemas via imports, the referenced schemas are registered as well. Only
protobuf provides this capability, when using Avro or JSON referenced schemas are not loaded
automatically.

Again if you don’t want auto registration of schemas, you can disable it with the following
configuration .auto.shema.registration = false

Let’s look at a similar example of providing the relevant Schema Registry configurations for
working with protobuf records.

Listing 3.40 Required configuration for Protobuf

The key serializer

The protobuf value serializer

Providing the URL for Schema Registry for the consumer

The key deserializer

The protobuf value deserializer

The specific class the deserializer should instantiate

3.6.2 Protobuf

// producer properties
producerProps.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
  StringSerializer.class); 
producerProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
  KafkaProtobufSerializer.class); 
producerProps.put(AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,
  "http://localhost:8081"); 

// consumer properties again set separately on the consumer
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
  StringDeserializer.class);
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
  KafkaProtobufDeserializer.class);
props.put(KafkaProtobufDeserializerConfig.SPECIFIC_PROTOBUF_VALUE_TYPE,
  AvengerSimpleProtos.AvengerSimple.class);
props.put(AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,
  "http://localhost:8081"); 
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The location of Schema Registry for the producer

As with the Avro deserializer, you need to instruct it to create a specific instance. But in this case
you configure the actual class name instead of setting a boolean flag indicating you want a
specific class. If you leave out the specific value type configuration the deserializer returns a type
of . We covered working with the  in the protobuf schemaDynamicRecord DynamicRecord

section.

The  class in the book source codebbejeck.chapter_3.ProtobufProduceConsumeExample

demonstrates the producing and consuming a protobuf record.

Now we’ll move on the final example of configuration of Schema Registry’s supported types,
JSON schemas.

Schema Registry provides the  and KafkaJsonSchemaSerializer

 for working with JSON schema objects. The configurationKafkaJsonSchemaDeserializer

should feel familiar to both Avro and the Protobuf configurations.

NOTE Schema Registry also provides  and KafkaJsonSerializer

 classes. While the names are very similar theseKafkaJsonDeserializer

(de)serializers are meant for working with Java objects for conversion to and
from JSON, without a JSON Schema. While the names are close, make sure
you are using the serializer and deserializer with  in the name. We’llSchema

talks about the generic JSON serializers in the next section.

Listing 3.41 Required configuration for JSON Schema

Providing the URL for Schema Registry for the producer

The key serializer

3.6.3 JSON Schema

// producer configuration
producerProps.put(AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,
  "http://localhost:8081"); 
producerProps.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
  StringSerializer.class); 
producerProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
  KafkaJsonSchemaSerializer.class); 

// consumer configuration
props.put(AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,
  "http://localhost:8081"); 
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
  StringDeserializer.class); 
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
  KafkaJsonSchemaDeserializer.class); 
props.put(KafkaJsonDeserializerConfig.JSON_VALUE_TYPE,
  SimpleAvengerJson.class); 
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The JSON Schema value serializer

Providing the URL for Schema Registry for the producer

The key deserializer

Specifying the JSON Schema value deserializer

Configuring the specific classes this deserializer will create

Here you can see a similarity with the protobuf configuration in that you need to specify the class
the deserializer should construct from the serialized form in annotation number 7 in this example.
If you leave out the specify value type then the deserializer returns a , the generic form of aMap

JSON schema deserialization. Just a quick note the same applies for keys. If your key is a JSON
schema object, then you’ll need to supply a KafkaJsonDeserializerConfig.JSON_KEY_TYPE
configuration for the deserializer to create the exact class.

There is a simple producer and consumer example for working with JSON schema objects in the 
 in the source code for the book.bbejeck.chapter_3.JsonSchemaProduceConsumeExample

As with the other basic producer and consumer examples, there are sections demonstrating how
to work with the specific and generic return types. We outlined the structure of the JSON schema
generic type in the JSON schema section of this chapter.

Now we’ve covered the different serializer and deserializer for each type of serialization
supported by Schema Registry. Although using Schema Registry is recommended, it’s not
required. In the next section we’ll outline how you can serialize and deserialize your Java objects
without Schema Registry.

In the beginning of this chapter, I stated that your event objects, or more specifically their
schema representations, are a contract between the producers and consumers of the Kafka event
streaming platform. Schema Registry provides a central repository for those schemas hence
providing enforcement of this schema contracts across your organization. Additionally, the
Schema Registry provided serializers and deserializers provide a convenient way of working
with data without having to write your own serialization code.

Does this mean using Schema Registry is required? No not at all. In some cases, you may not
have access to Schema Registry or don’t want to use it. Writing your own custom serializers and
deserializers isn’t hard. Remember, producers and consumers are decoupled from the
(de)serializer implementation, you only provide the classname as a configuration setting.
Although it’s good to keep in mind that by using Schema Registry you can use the same schemas
across Kafka Streams, Connect and ksqlDB.

So to create your own serializer and deserializer you create classes that implement the 

3.7 Serialization without Schema Registry
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 and org.apache.kafka.common.serialization.Serializer

 interfaces. With the org.apache.kafka.common.serialization.Deserializer Serializer

interface there is only one method you  implement . For the  it’smust serialize Deserializer

the  method. Both interfaces have additional default methods ( , )deserialize configure close

you can override if you need to.

Here’s a section of a custom serializer using the  :jackson-databind ObjectMapper

Listing 3.42 Serialize method of a custom serializer

Converting the given object to a byte array

Here you call  and it returns a serialized representationobjectMapper.writeValueAsBytes()

of the passed in object.

Now let’s look at an example for the deserializing counterpart:

Listing 3.43 Deserialize method of a custom deserializer

Converting the bytes back to an object specified by the objectClass parameter

The  package contains the serializers and deserializers shown here andbbejeck.serializers

additional ones for Protobuf. You can use these serializers/deserializers in any of the examples
presented in this book but remember that they don’t use Schema Registry. Or they can serve as
examples of how to implement your own (de)serializers.

In this chapter, we’ve covered how event objects or more specifically, their schemas, represent
contract between producers and consumers. We discussed how Schema Registry stores these
schemas and enforces this implied contract across the Kafka platform. Finally we covered the

// details left out for clarity
@Override
public byte[] serialize(String topic, T data) {
    if (data == null) {
        return null;
    }
    try {
        return objectMapper.writeValueAsBytes(data); 
    } catch (JsonProcessingException e) {
        throw new SerializationException(e);
    }
}

// details left out for clarity
@Override
public T deserialize(String topic, byte[] data) {
    try {
        return objectMapper.readValue(data, objectClass); 
    } catch (IOException e) {
        throw new SerializationException(e);
    }
}
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supported serialization formats of Avro, Protobuf and JSON. In the next chapter, you’ll move up
even further in the event streaming platform to learn about Kafka clients, the KafkaProducer
and . If you think of Kafka as your central nervous system for data, then theKafkaConsumer

clients are the the sensory inputs and outputs for it.

Schemas represent a contract between producers and consumers. Even if you don’t use
explicit schemas, you have an implied one with your domain objects, so developing a
way to enforce this contract between producers and consumers is critical.
Schema Registry stores all your schemas enforcing data governance and it provides
versioning and three different schema compatibility strategies - backward, forward and
full. The compatibility strategies provide assurance that the new schema will work with
it’s immediate predecessor, but not necessarily older ones. For full compatibility across
all versions you need to use backward-transitive, forward-transitive, and full-transitive.
Schema Registry also provides a convenient REST API for uploading, view and testing
schema compatibility.
Schema Registry supports three type of serialization formats Avro, Protocol Buffers, and
JSON Schema. It also provides integrated serializers and deserializers you can plug into
your KafkaProducer and KafkaConsumer instances for seamless support for all three
supported types. The provided (de)serializers cache schemas locally and only fetch them
from Schema Registry when it can’t locate a schema in the cache.
Using code generation with tools such as Avro and Protobuf or open source plugins
supporting JSON Schema help speed up development and eliminate human error. Plugins
that integrate with Gradle and Maven also provide the ability to test and upload schemas
in the developers normal build cycle.

3.8 Summary
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4
This chapter covers

This chapter is where the "rubber hits the road" and we take what you’ve learned over the
previous two chapters and apply it here to start building event streaming applications. We’ll start
out by working with the producer and consumer clients individually to gain a deep understanding
how each one works.

In their simplest form, clients operate like this: producers send records (in a produce request) to a
broker and the broker stores them in a topic and consumers send a fetch request and the broker
retrieves records from the topic to fulfill that request. When we talk about the Kafka event
streaming platform, it’s common to mention both producers and consumers. After all, it’s a safe
assumption that you are producing data for someone else to consume. But it’s very important to
understand that the producers and consumers are unaware of each other, there’s no
synchronization between these two clients.

Kafka clients

Producing records with the KafkaProducer
Understanding message delivery semantics
Consuming records with the KafkaConsumer
Learning about Kafka’s exactly-once streaming
Using the Admin API for programmatic topic management
Handling multiple event types in a single topic
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Figure 4.1 Producers send batches of records to Kafka in a produce request

The  has just one task, sending records to the broker. The records themselvesKafkaProducer

contain all the information the broker needs to store them.

Figure 4.2 Consumers send fetch requests to consume records from a topic, the broker retrieves those
records to fulfill the request
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The  on the other hand only reads or consumes records from a topic. Also, as weKafkaConsumer

mentioned in the chapter covering the Kafka broker, the broker handles the storage of the
records. The act of consuming records has no impact on how long the broker retains them.

In this chapter you’ll take a  and dive into the essential configurations and walkKafkaProducer

through examples of producing records to the Kafka broker. Learning how the KafkaProducer
works is important because that’s the crucial starting point for building event streaming
applications; getting the records into Kafka.

Next you’ll move on to learning how to use the . Again we’ll cover the vitalKafkaConsumer

configuration settings and from working with some examples, you’ll see how an event streaming
application works by continually consuming records from the Kafka broker. You’ve started your
event streaming journey by getting your data into Kafka, but it’s when you start consuming the
data that you start building useful applications.

Then we’ll go into working with the  interface. As the name implies, it’s a client thatAdmin

allows you to perform administrative functions programmatically.

From there you’ll get into more advanced subject matter such as the idempotent producer
configuration which guarantees you per partition, exactly-once message delivery and the Kafka
transnational API for exactly once delivery across multiple partitions.

When you’re done with this chapter you’ll know how to build event streaming applications using
the  and  clients. Additionally, you’ll have a good understandingKafkaProducer KafkaConsumer

how they work so you can recognize when you have a good use-case for including them in your
application. You should also come away with a good sense of how to configure the clients to
make sure your applications are robust and can handle situations when things don’t go as
expected.

So with this overview in mind, we are going to embark on a guided tour of how the clients do
their jobs. First we’ll discuss the producer, then we’ll cover the consumer. Along the way we’ll
take some time going into deeper details, then we’ll come back up and continue along with the
tour.

You’ve seen the  some in chapter three when we covered Schema Registry, but IKafkaProducer

didn’t go into the details of how the producer works. Let’s do that now.

Say you work on the data ingest team for a medium sized wholesale company. You get
transaction data delivered via a point of sale service and several different departments within the
company want access to the data for things such as reporting, inventory control, detecting trends

4.1 Producing records with the KafkaProducer
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1.  
2.  
3.  
4.  
5.  

etc.

You’ve been tasked with providing a reliable and fast way of making that information available
to anyone within the company that wants access. The company, Vandelay Industries, uses Kafka
to handle all of its event streaming needs and you realize this is your opportunity to get involved.
The sales data contains the following fields:

Product name
Per-unit price
Quantity of the order
The timestamp of the order
Customer name

At this point in your data pipeline, you don’t need to do anything with the sales data other than to
send it into a Kafka topic, which makes it available for anyone in the company to consume

Figure 4.3 Sending the data into a Kafka Topic

To make sure everyone is on the same page with the structure of the data, you’ve modeled the
records with a schema and published it to Schema Registry. All that’s left is for you to do write
the  code to take the sales records and send them into Kafka. Here’s what yourKafkaProducer

code looks like
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Listing 4.1 A KafkaProducer the source code can be found at
bbejeck.chapter_4.sales.SalesProducerClient

Creating the KafkaProducer instance using a try-with-resources statement so the
producer closes automatically when the code exits

The data source providing the sales transaction records

Creating the ProducerRecord from the incoming data

Sending the record to the Kafka broker and providing a lambda for the Callback
instance

Logging if an exception occured with the produce request

In the success case logging the offset and timestamp of the record stored in the
topic

Notice at annotation one the  takes a  of configuration items (In a sectionKafkaProducer Map

following this example we’ll dicusss some of the more important KafkaProducer

configurations). At annotation number 2, we’re going to use a data generator to simulate the
delivery of sales records. You take the list of  objects and use the JavaProductTransaction

stream API to map each object in the list into a  object.ProducerRecord

// There are some details left out for clarity here in the text
try (
Producer<String, ProductTransaction> producer = new KafkaProducer<>(
  producerConfigs)) { 
   while(keepProducing) {
    Collection<ProductTransaction> purchases = salesDataSource.fetch(); 
     purchases.forEach(purchase -> {
        ProducerRecord<String, ProductTransaction> producerRecord =
             new ProducerRecord<>(topicName, purchase.getCustomerName(),
              purchase); 
        producer.send(producerRecord,
          (RecordMetadata metadata, Exception exception) -> {    
              if (exception != null) {   
                  LOG.error("Error producing records ", exception);
            } else {
              LOG.info("Produced record at offset {} with timestamp {}", 
                          metadata.offset(), metadata.timestamp());
              }
          });
      });
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Figure 4.4 The Producer batches records and sends them to the broker when the buffer is full or it’s
time to send them

For each  created you pass it as a parameter to the ProducerRecord KafkaProducer.send()

method. However, the producer does not immediately send the record to the broker, instead it
attempts to batch up records. By using batches the producer makes fewer requests which helps
with performance on both the broker and the producer client. The  callKafkaProducer.send()

is asynchronous to allow for continually adding records to a batch. The producer has a separate a
thread (the I/O thread) that can send records when the batch is full or when it decides it’s time so
transmit the batch.

There are two signatures for the  method. The version you are using in the code here acceptssend

a  and  object as parameters. But since the  interface onlyProducerRecord Callback Callback

contains one method, also known as functional interface, we can use a lambda expression instead
of a concrete implementation. The producer I/O thread executes the  when the brokerCallback

acknowledges the record as persisted.

The  method, again represented here as a lambda, accepts twoCallback.onCompletion

parameters  and . The  object contains metadata ofRecordMetadata Exception RecordMetadata

the record the broker has acknowledged. Referring back to our discussion on the acks
configuration, the  field is  if you have . The offset is RecordMetadata.offset -1 acks=0 -1

because the producer doesn’t wait for acknowledgment from the broker, so it can’t report the
offset assigned to the record. The exception parameter is non-null if an error occurred.

Since the producer I/O thread executes the callback, it’s best if you don’t do any heavy
processing as that would hold up sending of records. The other overloaded 

 method only accepts a  parameter and returns a KafkaProducer.send() ProducerRecord

. Calling the  method blocks until the brokerFuture<RecordMetadata> Future.get()

acknowledges the record (request completion). Note that if an error occurs during the send then
executing the  method throws an exception.get
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Generally speaking it’s better to use the  method with the  parameter as it’s a bitsend Callback

cleaner to have the I/O thread handle the results of the send asynchronously vs. having to keep
track of every  resulting from the send calls.Future

At this point we’ve covered the fundamental behavior for a , but before weKafkaProducer

move onto consuming records, we should take a moment to discuss other important subjects
involving the producer: configurations, delivery semantics, partition assignment, and timestamps.
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bootstrap.servers - One or more host:port configurations specifying a broker for the
producer to connect to. Here we have a single value because this code runs against a
single broker in development. In a production setting, you could list every broker in your
cluster in a comma separated list.
key.serializer - The serializer for converting the key into bytes. In this example, the
key is a  so we can use the  class provided with the KafkaString StringSerializer

clients. The  package contains serializersorg.apache.kafka.common.serialization

for , ,  etc. You could also use Avro, Protobuf, or JSON SchemaString Integer Double

for the key and use the appropriate serializer.
value.serializer - The serializer for the value. Here we’re using object generated
from an Avro schema. Since we’re using Schema Registry, we’ll use the 

 we saw from chapter 3. But the value could also be a String,KafkaAvroSerializer

Integer etc and you would use one of the serializers from the 
 package.org.apache.kafka.common.serialization

acks - The number of acknowledgments required to consider the produce request
successful. The valid values are "0", "1", "all" the  configuration is one of the mostacks

important to understand as it has a direct impact on data durability. Let’s go through the
different settings here.

Zero ( ) Using a value of 0 means the producer will not wait for anyacks=0

acknowledgment from the broker about persisting the records. The producer considers
the send successfully immediately after transmitting it to the broker. You could think
using  as "fire and forget". Using this setting has the highest throughput, but hasacks=0

the lowest guarantee on data durability.
One ( ) A setting of one means the producer waits for notification from the leadacks=1

broker for the topic-partition that it successfully persisted the record to its log. But the
producer doesn’t wait for acknowledgment from the leader that any of the followers
persisted the record. While you have a little more assurance on the durability of the
record in this case, should the lead broker fail before the followers replicate the record, it
will be lost.
All ( ) This setting gives the highest guarantee of data durability. In this case,acks=all

the producer waits for acknowledgment from the lead broker that it successfully persisted
the record to its own log  the following in-sync brokers were able to persist the recordand
as well. This setting has the lowest throughput, but the highest durability guarantees.
When using the  setting it’s advised to set the acks=all min.insync.replicas

configuration for your topics to a value higher than the default of . For example with a1

replication factor of 3, setting  means the producer will raise anmin.insyc.replicas=2

exception if there are not enough replicas available for persisting a record. We’ll go into
more detail on this scenario later in this chapter.

delivery.timeout.ms - This is an upper bound on the amount of time you want to wait
for a response after calling . Since Kafka is a distributed system,KafkaProducer.send()

failures delivering records to the broker are going to occur. But in many cases these
errors are temporary and hence re-tryable. For example the producer may encounter
trouble connecting due to a network partition. But network connectivity can be a
temporary issue, so the producer will re-try sending the batch and in a lot cases the
re-sending of records succeeds. But after a certain point, you’ll want the producer to stop

4.1.1 Producer configurations
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trying and throw an error as prolonged connectivity problems mean there’s an issue that
needs attention. Note that if the producer encounters what’s considered a fatal error, then
the producer will throw an exception before this timeout expires.
retries - When the producer encounters an non-fatal error, it will retry sending the
record batch. The producer will continue to retry until the delivery.timeout.ms
timeout expires. The default value for  is . Generally youretries INTEGER.MAX_VALUE

should leave the retried configuration at the default value. If you want to limit the amount
of retries a producer makes, you should reduce the amount of time for the 

 configuration. With errors and retries it’s possible that recordsdelivery.timeout.ms

could arrive out of order to the same partition. Consider the producer sends a batch of
records but there is an error forcing a retry. But in the intervening time the producer
sends a second batch that did not encounter any errors. The first batch succeeds in the
subsequent retry, but now it’s appended to the topic  the second batch. To avoid thisafter
issue you can set the configuration .max.in.flight.requests.per.connection=1

Another approach to avoid the possibility of out of order batches is to use the 
 which we’ll discuss in  in this chapter.idempotent producer 4.3.1

Now that you have learned about the concept of retries and record acknowledgments, let’s look
at message delivery semantics now.

Kafka provides three different delivery semantic types: at least once, at most once, and exactly
once. Let’s discuss each of them here.

At least once - With "at least once" a records are never lost, but may be delivered more
than once. From the producer’s perspective this can happen when a producer sends a
batch of records to the broker. The broker appends the records to the topic-partition, but
the producer does not receive the acknowledgment in time. In this case the producer
re-sends the batch of records. From the consumer point of view, you have processed
incoming records, but before the consumer can commit, an error occurs. Your application
reprocesses data from the last committed offset which includes records already
processed, so there are duplicates as a result. Records are never lost, but may be delivered
more than once. Kafka provides at least once delivery by default.
At most once - records are successfully delivered, but may be lost in the event of an error.
From the producer standpoint enabling  would be an example of at most onceacks=0

semantics. Since the producer does not wait for any acknowledgment as soon as it sends
the records it has no notion if the broker either received them or appended them to the
topic. From the consumer perspective, it commits the offsets before confirming a write so
in the event of an error, it will not start processing from the missed records as the
consumer already committed the offsets. To achieve at "at most once" producers set 

 and consumers commit offsets before doing any processing.acks=0

Exactly once - With "exactly once" semantics records are neither delivered more than
once or lost. Kafka uses transactions to achieve exactly once semantics. If a transaction is
aborted, the consumers internal position gets reset to the offset prior to the start of the
transaction and the stored offsets aren’t visible to any consumer configured with 

.read_committed

Both of these concepts are critical elements of Kafka’s design. Partitions determine the level of
parallelism and allow Kafka to distribute the load of a topic’s records to multiple brokers in a

4.1.2 Kafka delivery semantics
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1.  
2.  

3.  

cluster. The broker uses timestamps to determine which log segments it will delete. In Kafka
Streams, they drive progress of records through a topology (we’ll come back to timestamps in
the Kafka Streams chapter).

When it comes to assigning a partition to a record, there are three possibilities:

If you provide a valid partition number, then it’s used when sending the record
If you don’t give the partition number, but there is a key, then the producer sets the
partition number by taking the hash of the key modulo the number of partitions.
Without providing a partition number or key, the  sets the partition byKafkaProducer

alternating the partition numbers for the topic. The approach to assigning partitions
without keys has changed some as of the 2.4 release of Kafka and we’ll discuss that
change now.

Prior to Kafka 2.4, the default partitioner assigned partitions on a round-robin basis. That meant
the producer assigned a partition to a record, it would increment the partition number for the next
record. Following this round-robin approach, results in sending multiple, smaller batches to the
broker. The following illustration will help clarify what is going on:

Figure 4.5 Round robin partition assignment

This approach also led to more load on the broker due to a higher number of requests.

But now when you don’t provide a key or partition for the record, the partitioner assigns a
partition for the record per batch. This means when the producer flushes its buffer and sends
records to the broker, the batch is for single partition resulting in a single request. Let’s take a
look at an illustration to visualize how this works:

4.1.3 Partition assignment
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Figure 4.6 Sticky partition assignment

After sending the batch, the partitioner selects a partition at random and assigns it to the next
batch. In time, there’s still an even distribution of records across all partitions, but it’s done one
batch at a time.

Sometimes the provided partitioners may not suit your requirements and you’ll need finer
grained control over partition assignment. For those cases you can write your own custom
partitioner.

Let’s revisit the producer application from the  section above. The key is the name of the4.1
customer, but you have some orders that don’t follow the typical process and end up with a
customer name of "CUSTOM" and you’d prefer to restrict those orders to a single partition 0,
and have all other orders on partition 1 or higher.

So in this case, you’ll need to write a custom partitioner that can look at the key and return the
appropriate partition number.

The following example custom partitioner does just that. The  (fromCustomOrderPartitioner

src/main/java/bbejeck/chapter_4/sales/CustomOrderPartitioner.java) examines the key to
determine which partition to use.

4.1.4 Writing a custom partitioner
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Listing 4.2  custom partitionerCustomOrderPartitioner

Retrieve the number of partitions for the topic

If the name of the customer is "CUSTOM" return 0

Determine the partition to use in the non-custom order case

To create your own partitioner you implement the  interface which has 3 methods, Partitioner

, , and . I’m only showing the  method here as the otherpartition configure close partition

two are no-ops in this particular case. The logic is straight forward; if the customer name equates
to "CUSTOM", return zero for the partition. Otherwise you determine the partition as usual, but
with a small twist. First we subtract one from the number of candidate partitions since the 0
partition is reserved. Then we shift the partiton number by 1 which ensures we always return 1 or
greater for the non-custom order case.

NOTE This example does not represent a typical use case and is presented only for
the purpose of demonstrating how to you can provide a custom partitioner. In
most cases it’s best to go with one of the provided ones.

You’ve just seen how to construct a custom partitioner and next we’ll wire it up with our
producer.

public class CustomOrderPartitioner implements Partitioner {

// Some details omitted for clarity

@Override
public int partition(String topic,
                     Object key,
                     byte[] keyBytes,
                     Object value,
                     byte[] valueBytes,
                     Cluster cluster) {

    Objects.requireNonNull(key, "Key can't be null");
    int numPartitions = cluster.partitionCountForTopic(topic); 
    String strKey = (String) key;
    int partition;

    if (strKey.equals("CUSTOM")) {
        partition = 0;  
    } else {
        byte[] bytes = strKey.getBytes(StandardCharsets.UTF_8);
        partition = Utils.toPositive(Utils.murmur2(bytes)) %
                                       (numPartitions - 1) + 1; 
    }
    return partition;
  }
}
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Now that you’ve written a custom partitioner, you need to tell the producer you want to use it
instead of the default partitioner. You specify a different partitioner when configuring the Kafka
producer:

The bbejeck.chapter_4.sales.SalesProducerClient is configured to use the 
, but you can simply comment out the line if you don’t want to use it.CustomOrderPartitioner

You should note that since the partitioner config is a producer setting, it must be done on each
one you want to use the custom partitioner.

The  object contains a timestamp field of type . If you don’t provide aProducerRecord Long

timestamp, the  adds one to the record, which is simply the current time of theKafkaProducer

system the producer is running on. Timestamps are an important concept in Kafka. The broker
uses them to determine when to delete records, by taking the oldest timestamp in a segment and
comparing it to the current time. If the difference exceeds the configured retention time, the
broker removes the segment. Kafka Streams and ksqlDB also rely heavily on timestamps, but I’ll
defer those discussions until we get to their respective chapters.

There are two possible timestamps that Kafka may use depending on the configuration of the
topic.

In Kafka topics have a configuration,  which can either be message.timestamp.type

 or . A configuration of  means the broker stores theCreateTime LogAppendTime CreatTime

record with the timestamp provided by the producer. If you configure your topic with 
, then the broker overwrites the timestamp in the record with its currentLogAppendTime

wall-clock (i.e, system) time when the broker appends the record in the topic. In practice, the
difference between these timestamps should be close.

Another consideration is that you can embed the timestamp of the event in payload of the record
value when you are creating it.

This wraps up our discussion on the producer related issues. Next we’ll move on to the mirror
image of producing records to Kafka, consuming records.

4.1.5 Specifying a custom partitioner

producerConfigs.put(ProducerConfig.PARTITIONER_CLASS_CONFIG,
 CustomOrderPartitioner.class);

4.1.6 Timestamps
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So you’re back on the job at Vandelay Industries and you now have a new task. Your producer
application is up an running happily pushing sales records into a topic. But now you’re asked to
develop a  application to serve as a model for consuming records from a KafkaKafkaConsumer

topic.

Figure 4.7 Consumers send fetch requests to consume records from a topic, the broker retrieves those
records to fulfill the request

The  sends a fetch request to the broker to retrieve records from topics it’sKafkaConsumer

subscribed to. The consumer makes what known as a  call to get the records. But each timepoll

the consumer polls, it doesn’t necessarily result in the broker fetching records. Instead it could be
retrieving records cached by a previous call.

NOTE There are producer and consumer clients available in other programming
languages, but in this book we’ll focus on the clients available in the Apache
Kafka distribution, which are written in Java. To see a list of clients available
in other languages checkout take a look at this resource 
docs.confluent.io/platform/current/clients/index.html#ak-clients

Let’s get started by looking at the code for creating a  instance:KafkaConsumer

4.2 Consuming records with the KafkaConsumer
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Listing 4.3 KafkaConsumer code found in bbejeck.chapter_4.sales.SalesConsumerClient

Creating the new consumer instance

Subscribing to topic(s)

Polling for records

Doing some processing with each of the returned records

In this code example, you’re creating a , again using the try-with-resourcesKafkaConsumer

statement. After subscribing to a topic or topics, you begin processing records returned by the 
 method. When the  call returns records, you start doing someKafkaConsumer.poll poll

processing with them. In this example case we’re simply logging out the details of the sales
transactions.

TIP Whenever you create either a  or  you need toKafkaProducer KafkaConsumer

close them when your done to make sure you clean up all of the threads and
socket connections. The try-with-resources (
docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
) in Java ensures that resources created in the  portion are closed at thetry

end of the statement. It’s a good practice to always use the try-with-resources
statement as it’s easy to overlook adding a  call on either a producer orclose

a consumer.

You’ll notice that just like with the producer, you create a  of configurations and pass themMap

as a parameter to the constructor. Here I’m going to show you some of the more prominent ones.

bootstrap.servers - One or more host:port configurations specifying a broker for the
consumer to connect to. Here we have a single value, but this could be a comma
separated list.
max.poll.interval.ms - The maximum amount of time a consumer can take between
calls to  otherwise the consumer group coordinator considersKafkaConsumer.poll()

// Details left out for clarity
 try (
  final Consumer<String, ProductTransaction> consumer = new KafkaConsumer<>(
    consumerConfigs)) { 
    consumer.subscribe(topicNames);   
    while (keepConsuming) {
        ConsumerRecords<String, ProductTransaction> consumerRecords =
          consumer.poll(Duration.ofSeconds(5)); 
        consumerRecords.forEach(record -> {     
            ProductTransaction pt = record.value();
            LOG.info("Sale for {} with product {} for a total sale of {}",
                    record.key(),
                    pt.getProductName(),
                    pt.getQuantity() * pt.getPrice());
        });
    }
}
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the individual consumer non-active and triggers a rebalance. We’ll talk more about the
consumer group coordinator and relabances in this section.
group.id - An arbitrary string value used to associate individual consumers as part of
the same consumer group. Kafka uses the concept of a consumer group to logically map
multiple consumers as one consumer.
enable.auto.commit - A boolean flag that sets whether the consumer will
automatically commit offsets. If you set this to false, your application code must
manually commit the offsets of records you considered successfully processed.
auto.commit.interval.ms - The time interval at which offsets are automatically
committed.
auto.offset.reset - When a consumer starts it will resume consuming from the last
committed offset. If offsets aren’t available for the consumer then this configuration
specifies where to start consuming records, either the earliest available offset or the latest
which means the offset of the next record that arrives after the consumer started.
key.deserializer.class - The classname of the deserializer the consumer uses to
convert record key bytes into the expected object type for the key.
value.deserializer.class - The classname of the deserializer the consumer uses to
convert record value bytes into the expected object type for the value. Here we’re using
the provided  for the value which requires the KafkaAvroDeserializer

 configuration which we have in our configuration.schema.registry.url

The code we use in our first consumer application is fairly simple, but that’s not the main point.
Your business logic, what you do when you consume the records is always going to be different
on a case-by-case basis.

It’s more important to grasp how the  works and the implications of the differentKafkaConsumer

configurations. By having this understanding you’ll be in a better position to know how to best
write the code for performing the desired operations on the consumed records. So just as we did
in the producer example, we’re going to take a detour from our narrative and go a little deeper on
the implications of these different consumer configurations.

Let’s first discuss the roll of . It will be helpful to look at an illustrationmax.poll.interval.ms

of what the poll interval configuration in action to get a full understanding:

4.2.1 The poll interval
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Figure 4.8 The max.poll.interval.ms configuration specifies how long a consumer may take between
calls to  before the consumer is considered inactive and removed from theKafkaConsumer.poll()

consumer group

In the illustration here, the consumer processing loop starts with a call to 
, the time passed to the KafkaConsumer.poll(Duration.ofSeconds(5)) poll(Duration)

call is the maximum time the consumer waits for new records, in this case five seconds. When
the  call returns, if there are any records present, the  loop over the poll(Duration) for

 executes your code over each one. Had there been no records returned, theConsumerRecords

outer  loop simply goes back to the top for another  call.while poll(Duration)

Going through this illustration, iterating over all the records and execution for each record must
complete before the  time elapses. By default this value is five minutes,max.poll.interval.ms

so if your processing of returned records takes longer, then that individual consumer is
considered dead and the group coordinator removes the consumer from the group and triggers a
rebalance. I know that I’ve mentioned a few new terms in group coordinator and rebalancing,
we’ll cover them in the next section when we cover the  configuration.group.id

If you find that your processing takes longer than the  there are a couplemax.poll.interval.ms

of things you can do. The first approach would be to validate what you’re doing when processing
the records and look for ways to speed up the processing. If you find there’s no changes to make
to your code, the next step could be to to reduce the maximum number of records the consumer
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retrieves from a  call. You can do this by setting the  configuration to apoll max.poll.records

setting less than the default of 500. I don’t have any recommendations, you’ll have to experiment
some to come up with a good number.

The  configuration takes into a deeper conversation about consumer groups in Kafka.group.id

Kafka consumers use a  configuration which Kafka uses to map all consumers with thegroup.id

same  into the same consumer group. A consumer group is a way to logically treat allgroup.id

members of the group as one consumer. Here’s an illustration to demonstrating how group
membership works:

Figure 4.9 Consumer groups allow for assigning topic-partitions across multiple consumers

So going off the image above, there is one topic with six partitions. There are three consumers in
the group, so each consumer has an assignment of two partitions. Kafka guarantees that only a
single consumer maintains an assignment for a given topic-partition. To have more than one
consumer assigned to a single topic-partition would lead to undefined behavior.

4.2.2 Group id
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Life with distributed systems means that failures aren’t to be avoided, but embraced with sound
practices to deal with them as they occur. So what happens with our scenario here if one of the
consumers in the group fails whether from an exception or missing a required timeout like we
described above with the  timeout? The answer is the Kafka rebalancemax.poll.interval.ms

protocol, depicted below:

Figure 4.10 The Kafka rebalance protocol re-assigns topic-partitions from failed consumers to still alive
ones

What we see here is that consumer-two fails and can longer function. So rebalancing takes the
topic-partitions owned by consumer-two and reassigns one topic-partition each to other active
consumers in the group. Should consumer-two become active again (or another consumer join
the group), then another rebalance occurs and reassigns topic-partitions from the active members
and each group member will be responsible for two topic-partitions each again.
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NOTE The number of active consumers that you can have is bounded by the number
of partitions. From our example here, you can start up to six consumers in the
group, but any more beyond six will be idle. Also note that different groups
don’t affect each other, each one is treated independently.

So far, I’ve discussed how not making a  call within the specified timeout will cause apoll()

consumer to drop out of the group triggering a rebalance and assigning its topic-partition
assignments to other consumers in the group. But if you recall the default setting for 

 is five minutes. Does this mean it takes up to five minutes formax.poll.interval.ms

potentially dead consumer to get removed from the group and its topic-partitions reassigned? The
answer is no and let’s look at the poll interval illustration again but we’ll update it to reflect
session timeouts:

Figure 4.11 In addition to needing to call poll within the timeout, a consumer must send a heartbeat
every ten seconds

There is another configuration timeout the  which is set at ten seconds forsession.timeout.ms

default value. Each  runs a separate thread for sending heartbeats indicating itsKafkaConsumer

still alive. Should a consumer fail to send a heartbeat within ten seconds, it’s marked as dead and
removed from the group, triggering a rebalance. This two level approach for ensuring consumer
liveliness is essential to make sure all consumers are functioning and allows for reassigning their
topic-partition assignments to other members of the group to ensure continued processing should
one of them fail.

To give you a clear picture of how group membership works, let’s discuss a the new terms group
coordinator, rebalancing, and the group leader I just spoke about. Let’s start with a visual
representation of how these parts are tied together:
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Figure 4.12 Group coordinator is a broker assigned to track a subset of consumer groups and the group
leader is a consumer that communicates with the group coordinator

The group coordinator is a broker that handles membership for subset of all available consumer
groups. Not one single broker will act as the group coordinator, the responsibility for that is
spread around the different brokers. The group coordinator monitors the membership of a
consumer group via requests to join a group or when a member is considered dead when it fails
to communicate (either a poll or heartbeat) within the given timeouts.

When the group coordinator detects a membership change it triggers a rebalance for the existing
members.

A rebalance is the process of having all members of the group rejoin so that group resources
(topic-partitions) can be evenly (as possible) distributed to the other members. When a new
member joins, then some topic partitions are removed from some or all members of the existing
group and are assigned to the new member. When an existing member leaves, the opposite
process occurs, its topic-partitions are reassigned to the other active members.

The rebalance process is fairly straight forward, but it comes at a cost of time lost processing
waiting for the rebalance process to complete, known as a "stop-the-world" or a eager rebalance.
But with the release of Kafka 2.4, there’s new rebalance protocol you can use called cooperative
rebalancing.

Let’s take a quick look at both of these protocols, first with the eager rebalancing
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Figure 4.13 Rebalancing with the eager or "stop-the-world" approach processing on all partitions stops
until reassigned but most of the partitions end up on with the original consumer

When the group coordinator detects a change in membership it triggers a rebalance. This is true
of both rebalance protocols we’re going to discuss.

Once the rebalance process initiates, each member of the group first gives up ownership of all its
assigned topic-partitions. Then they send a  request to the controller. Part of theJoinGroup

request includes the topic-partitions that consumer is interested in, the ones they just relinquished
control of. As a consequence of the consumers giving up their topic partitions is that processing
now stops.

The controller collects all of the topic-partition information from the group and sends out the 
 response, but the group leader receives all of included topic-partition information.JoinGroup

NOTE Remember from chapter two in our discussion of the broker all actions are
executed in a request/response process.

The group leader takes this information and creates topic-partition assignments for all members
of the group. Then the group leader sends assignment information to the coordinator in a 

 request. Note that the other members of the group also send  requests, butSyncGroup SyncGroup

don’t include any assignment information. After the group controller receives the assignment
information from the leader, all members of the group get their new assignment via the 

 response.SyncGroup

EAGER REBALANCING
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Now with their topic-partition assignments, all members of the group begin processing again.
Take note again that no processing occurred from the time group members sent the JoinGroup
request until the  response arrived with their assignments. This gap in processing isSyncGroup

known as a synchronization barrier, and is required as it’s important to ensure that each
topic-partition only has one consumer owner. If a topic-partition had multiple owners, undefined
behavior would result.

NOTE During this entire process, consumer clients don’t communicate with each
other. All the consumer group members communicate only with the group
coordinator. Additionally only one member of the group, the leader, sets the
topic-partition assignments and sends it to the coordinator.

While the eager rebalance protocol gets the job done of redistributing resources and ensuring
only one consumer owns a given topic-partition, it comes at a cost of downtime as each
consumer is idle during the period from the initial  request and the JoinGroup SyncGroup

response. For smaller applications this cost might be negligible, but for applications with several
consumers and a large number of topic-partitions, the cost of down time increases. Fortunately
there’s another rebalancing approach that aims to remedy this situation.

Figure 4.14 Rebalancing with cooperative approach processing continues and only stops for partitions
that will be reassigned

Introduced in the 2.4 Kafka release the incremental cooperative rebalance protocol takes the
approach that relabances don’t need to be so expensive. The incremental cooperative rebalancing

INCREMENTAL COOPERATIVE REBALANCING
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1.  
2.  
3.  

approach takes a different view of rebalancing that we can summarize below:

Consumers don’t automatically give up ownership of all their topic-partitions
The group leader identifies specific topic-partitions requiring new ownership
Processing continues for topic-partitions that are not changing ownership

The third bullet point here is the big win (in my opinion) with the cooperative rebalancing
approach. Instead of the "stop the world" approach, only those topic-partitions which are moving
will experience a pause in processing. In other words, the synchronization barrier is much
smaller.

I’m skipping over some of some details, so let’s walk through the process of the incremental
cooperative rebalancing protocol.

Just like before when the group controller detects a change in group membership, it triggers a
rebalance. Each member of the group encodes their current topic-partition subscriptions in a 

 request, but each member retains ownership for the time being.JoinGroup

The group coordinator assembles all the subscription information and in the  responseJoinGroup

the group leader looks at the assignments and determines which topic-partitions, if any, need to
migrate to new ownership. The leader removes any topic-partitions requiring new ownership
from the assignments and sends the updated subscriptions to the coordinator via a SyncGroup
request. Again, each member of the group sends a  request, but only the leaders`SyncGroup

request contains the subscription information.

NOTE All members of the group receive a  response, but only theJoinGroup

response to the group leader contains the assignment information. Likewise,
each member of the group issues a  group request, but only theSyncGroup

leader encodes a new assignment. In the  response, all membersSyncGroup

receive their respective, possible updated assignment.

The members of group take the  response and potentially calculate a new assignment.SyncGroup

Either revoking topic-partitions that are not included or adding ones in the new assignment but
not the previous one. Topic-partitions that are included in both the old and new assignment
require no action.

Members then trigger a second rebalance, but only topic-partitions changing ownership are
included. This second rebalance acts as the synchronization barrier as in the eager approach, but
since it only includes topic partitions receiving new owners, it is much smaller. Additionally,
topic-partitions that are not moving, continue to process records!

After this discussion of the different rebalance approaches, we should cover some broader
information about partition assignment strategies available and how you apply them.
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We’ve already discussed that a broker serves as a group coordinator for some subset of consumer
groups. Since two different consumer groups could have different ideas of how to distribute
resources (topic-partitions), the responsibility for which approach to use is entirely on the client
side.

To choose the partition strategy you want your the  instances in a group to use,KafkaConsumer

you set the the  by providing a list of supported partitionpartition.assignment.strategy

assignment strategies. All of the available petitioners implement the 
 interface. Here’s a list of the available assignors with a briefConsumerPartitionAssignor

description of the functionality each one provides.

NOTE For Kafka Connect and Kafka Streams, which are abstractions built on top of
Kafka producers and consumers, use cooperative rebalance protocols and I’d
generally recommend to stay with the default settings. This discussion about
partitioners is to inform you of what’s available for applications directly using
a .KafkaConsumer

RangeAssignor - This is the default setting. The  uses an algorithm ofRangeAssignor

sorting the partitions in numerical order and assigning them to consumers by dividing the
number of available partitions by number of available consumers. This strategy assigns
partition to consumers in lexicographical order.
RoundRobinAssignor - The  takes all available partitions andRoundRobinAssignor

assigns a partition to each available member of the group in a round-robin manner.
StickyAssignor - The  attempts to assign partitions in a balancedStickyAssignor

manner as possible. Additionally, the  attempts to always preserveStickyAssignor

existing assignments during a rebalance as much as possible. The StickyAssignor
follows the eager rebalancing protocol.
CooperativeStickyAssignor - The  follows the sameCooperativeStickyAssignor

assignment algorithm as the . The difference lies in fact that the StickyAssignor

 uses the cooperative rebalance protocol.CooperativeStickyAssignor

While it’s difficult to provide concrete advice as each use case requires careful analysis of its
unique needs, in general for newer applications one should favor using the 

 for the reasons outlined in the section on incrementalCooperativeStickyAssignor

cooperative rebalancing.

TIP If you are upgrading from a version of Kafka 2.3 or earlier you need to follow
a specific upgrade path found in the 2.4 upgrade documentation (

) to safely usekafka.apache.org/documentation/{hash}upgrade_240_notable
the cooperative rebalance protocol.

We’ve concluded our coverage of consumer groups and how the rebalance protocol works. Next

APPLYING PARTITION ASSIGNMENT STRATEGIES
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we’ll cover a different configuration - static membership, that when a consumer leaves the group,
there’s no initial rebalance.

In the previous section you learned that when a consumer instance shuts down it sends a leave
group request to the group controller. Or if it’s considered unresponsive by the controller, it gets
removed from the consumer group. Either way the end result is the same, the controller triggers a
rebalance to re-assign resources (topic-partitions) to the remaining members of the group.

While this protocol is exactly what you want to keep your applications robust, there are some
situations where you’d prefer slightly different behavior. For example, let’s say you have several
consumer applications deployed. Any time you need to update the applications, you might do
what’s called a rolling upgrade or restart.

Figure 4.15 Rolling upgrades trigger multiple relabances

You’ll stop instance 1, upgrade and restart it, then move on to instance number 2 and so it
continues until you’ve updated every application. By doing a rolling upgrade, you don’t lose
nearly as much processing time if you shut down every application at the same time. But what
happens is this "rolling upgrade", triggers two rebalances for every instance, one when the

4.2.3 Static membership
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application shuts down and another when it starts back up. Or consider a cloud environment
where an application node can drop off at any moment only to have it back up an running once
its failure is detected.

Even with the improvements brought by cooperative rebalancing, it would be advantageous in
these situations to not have a rebalance triggered automatically for these transient actions. The
concept of "static membership" was introduced in the 2.3 version of Apache Kafka. We’ll use the
following illustration to help with our discussion of how static membership works

Figure 4.16 Static members don’t issue leave group requests when dropping out of a group and a static
id allows the controller to remember them

At a high-level with static membership you set a unique id in the consumer configuration, 
. The consumer provides this id to the controller when it joins a group andgroup.instance.id

the controller stores this unique group-id. When a consumer leaves the group, it does not send a
leave group request. When it rejoins it presents this unique membership id to the controller. The
controller looks it up and can then give back the original assignment to this consumer with no
rebalancing involved at all! The trade-off for using static membership is that you’ll need to
increase the  configuration to a value higher than the default of 10session.timeout.ms

seconds, as once a session timeout occurs, then the controller kicks the consumer out of the
group and triggers a rebalance.

The value you choose should be long enough to account for transient unavailability and not
triggering a rebalance but not so long that a true failure gets handled correctly with a rebalance.
So if you can sustain ten minutes of partial unavailability then maybe set the session timeout to
eight minutes. While static membership can be a good option for those running KafkaConsumer
applications in a cloud environment, it’s important to take into account the performance

120

©Manning Publications Co. To comment go to liveBook  
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion


implications before opting to use it. Note that to take advantage of static membership, you must
have Kafka brokers and clients on version 2.3.0 or higher.

Next, we’ll cover a subject that is very important when using a , commit theKafkaConsumer

offsets of messages.

In chapter two, we talked about how the broker assigns a number to incoming records called an
offset. The broker increments the offset by one for each incoming record. Offsets are important
because they serve to identify the logical position of a record in a topic. A  usesKafkaConsumer

offsets to know where it last consumed a record. For example if a consumer retrieves a batch of
records with offsets from 10 to 20, the starting offset of the next batch of records the consumer
wants to read starts at offset 21.

To make sure the consumer continues to make progress across restarts for failures, it needs to
periodically commit the offset of the last record it has successfully processed. Kafka consumers
provide a mechanism for automatic offset commits. You enable automatic offset commits by
setting the  configuration to . By default this configuration is turnedenable.auto.commit true

on, but I’ve listed it here so we can talk about how automatic commits work. Also, we’ll want to
discuss the concept of a consumers' position vs. its latest committed offset. There is also a related
configuration,  that specifies how much time needs to elapse beforeauto.commit.interval.ms

the consumer should commit offsets and is based on the system time of the consumer.

But first, lets show how automatic commits work.

Figure 4.17 With automatic commits enabled when returning to the top of the poll loop the highest
offset +1 of the previous batch could be committed if the auto commit interval has passed

4.2.4 Committing offsets
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Following from the graphic above, the consumer retrieves a batch of records from the 
 call. Next the code takes the  and iterates over them andpoll(Duration) ConsumerRecords

does some processing of the records. After that the code returns to top of the  loop andpoll

attempts to retrieve more records. But before retrieving records, if the consumer has auto-commit
enabled and the amount of time elapsed since the last auto-commit check is greater than the 

 interval, the consumer commits the offsets of the records from theauto.commit.interval.ms

previous batch. By committing the offsets, we are marking these records as consumed, and under
normal conditions the consumer won’t process these records again. I’ll describe what I mean
about this statement a little bit later.

What does it mean to commit offsets? Kafka maintains an internal topic named  where_offsets

it stores the committed offsets for consumers. When we say a consumer commits it’s not storing
the offsets for each record it consumes, it’s the highest offset, per partition, plus one that the
consumer has consumed so far that’s committed.

For example, in the illustration above, let’s say the records returned in the batch contained
offsets from 0-4. So when the consumer commits, it will be offset 5.

Figure 4.18 A consumers committed position is the largest offset it has consumed so far plus one

So the committed position is offset that has been sucessfully stored, and it indicates the starting
record for the next batch it will retrieve. In this illustration it’s 5. Should the consumer in this
example fail or you restarted the application the consumer would consume records starting at
offset 5 again since it wasn’t able to commit prior to the failure or restart.

Consuming from the last committed offset means that you are guaranteed to not miss processing
a record due to errors or application restarts. But it also means that you may process a record
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more than once.

Figure 4.19 Restarting a consumer after processing without a commit means reprocessing some
records

If you processed some of the records with offsets larger than the latest one committed, but your
consumer failed to commit for whatever reason, this means when you resume processing, you
start with records from the committed offset, so you’ll reprocess some of the records. This
potential for reprocessing is known as at-least-once. We covered at-least-once delivery in the
delivery semantics earlier in the chapter.

To avoid reprocessing records you could manually commit offsets immediately after retrieving a
batch of records, giving you at-most-once delivery. But you run the risk of losing some records if
your consumer should encounter an error after committing and before it’s able to process the
records. Another option (probably the best), to avoid reprocessing is to use the Kafka
transactional API which guarantees exactly-once delivery.

When enabling auto-commit with a Kafka consumer, you need to make sure you’ve fully
processed all the retrieved records before the code returns to the top of the poll loop. In practice,
this should present no issue assuming you are working with your records synchronously meaning
your code waits for the completion of processing of each record. However, if you were to hand
off records to another thread for asynchronous processing or set the records aside for later
processing, you also run the risk of potentially not processing all consumed records before you
commit. Let me explain how this could happen.

COMMITTING CONSIDERATIONS
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Figure 4.20 Asynchronous processing with auto committing can lead to potentially lost records

When you hand the records off to an asynchronous process, the code in your poll loop won’t wait
for the successful processing of each record. When your application calls the  methodpoll()

again, it commits the current position i.e the highest offset + 1 from the for each topic-partition
consumed in the previous batch. But your async process may not completed working with all the
records up to the highest offset at the time of the commit. If your consumer application
experienced a failure or a shutdown for any reason, when it resumes processing, it will start from
the last committed offset, which skips over the un-processed records in the last run of your
application.

To avoid prematurely-maturely committing records before you consider them fully processed,
then you’ll want to disable auto-commits by setting  to .enable.auto.commit false

But why would you need to use asynchronous processing requiring manually committing? Let’s
say when you consume records, you do some processing that takes long time (up to 1 second) to
process each record. The topic you consume from has a high volume of traffic, so you don’t want
to fall behind. So you decide that as soon as you consume a batch of records, you’ll hand them
off to an async process so the consumer can immediately return to the poll call to retrieve the
next batch.

Using an approach like this is called pipeling. But you’ll need make sure you’re only committing
the offsets for records that have been successfully processed, which means turning off
auto-committing and coming up with a way to commit only records that your application
considers fully processed. The following example code shows one example approach you could
take. Note that I’m only showing the key details here and you should consult the source code to
see the entire example
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Listing 4.4 Consumer code found in bbejeck.chapter_4.pipelining.PipliningConsumerClient

After you’ve retrieved a batch of records you hand off the batch of records to the
async processor.

Checking for offsets of completed records

If the  is not empty, you commit the offsets of the records processed so far.Map

The key point with this consumer code is that the  callRecordProcessor.processRecords()

returns immediately, so the next call to  returns offsets from aRecordProcessor.getOffsets()

previous batch of records that are fully processed. What I want to emphasize here is how the
code hands over new records for processing then collects the offsets of records already fully
processed for committing. Let’s take a look at the processor code to see this is done:

Listing 4.5 Asynchronous processor code found in
bbejeck.chapter_4.piplining.ConcurrentRecordProcessor

Creating the  for collecting the offset for committingMap

Iterating over the  objectsTopicPartition

Getting records by  for processingTopicPartition

Doing the actual work on the consumed records

Getting the last offset for all records of a given TopicPartition

Storing the offset to commit for the TopicPartition

Putting the entire  of offsets in a queue.Map

The the takeaway with the code here is that by iterating over records by  it’sTopicPartition

// Details left out for clarity
ConsumerRecords<String, ProductTransaction> consumerRecords = consumer.poll(
  Duration.ofSeconds(5));
if (!consumerRecords.isEmpty()) {
    recordProcessor.processRecords(consumerRecords);     
    Map<TopicPartition, OffsetAndMetadata> offsetsAndMetadata =
      recordProcessor.getOffsets(); 
    if (offsetsAndMetadata != null) {
        consumer.commitSync(offsetsAndMetadata); 
    }

Map<TopicPartition, OffsetAndMetadata> offsets = new HashMap<>(); 
consumerRecords.partitions().forEach(topicPartition -> {  
   List<ConsumerRecord<String,ProductTransaction>> topicPartitionRecords =
  consumerRecords.records(topicPartition); 
   topicPartitionRecords.forEach(this::doProcessRecord); 
   long lastOffset = topicPartitionRecords.get(
  topicPartitionRecords.size() - 1).offset(); 
   offsets.put(topicPartition, new OffsetAndMetadata(lastOffset + 1)); 
  });
 ....
 offsetQueue.offer(offsets); 
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1.  
2.  
3.  

easy to create the map entry for the offsets to commit. Once you’ve iterated over all the records
in the list, you only need to get the last offset. You, the observant read might be asking yourself
"Why does the code add1 to the last offset?" When committing offsets it’s always the offset of
the  record you’ll retrieve. For example if the last offset is 5, you want to commit 6. Sincenext
you’ve already consumed 0-5 you’re only interested in consuming records from offset 6 forward.

Then you simply use the  from the top of the loop as the key and the TopicPartition

 object as the value. When the consumer retrieves the offsets from theOffsetAndMetadata

queue, it’s safe to commit those offsets as the records have been fully processed. The main point
to this example is how you can ensure that you only commit records you consider "complete" if
you need to asynchronously process records outside of the  loop. It’s importantConsumer.poll

to note that this approach only uses a  and consumer for the record processing*single thread*
which means the code still processes the records in order, so it’s safe to commit the offsets as
they are handed back.

NOTE For a fuller example of threading and the  you should consult KafkaConsumer

www.confluent.io/blog/introducing-confluent-parallel-message-processing-client/
and .github.com/confluentinc/parallel-consumer

I mentioned earlier that Kafka stores offsets in an internal topic named . But what_offsets

happens when a consumer can’t find its offsets? Take the case of starting a new consumer
against an existing topic. The new  will not have any commits associated with it. Sogroup.id

the question becomes where to start consuming if offsets aren’t found for a given consumer? The
 provides a configuration,  which allows you to specifyKafkaConsumer offset.reset.policy

a relative position to start consuming in the case there’s no offsets available for a consumer.

There are three settings:

earliest - reset the offset to the earliest one
latest - reset the offset to the latest one
none - throw an exception to the consumer

With a setting of  the implications are that you’ll start processing from the head of theearliest

topic, meaning you’ll see all the records currently available. Using a setting of  meanslatest

you’ll only start receiving records that arrive at the topic once your consumer is online, skipping
all the previous records currently in the topic. The setting of  means that an exception getsnone

thrown to the consumer and depending if you are using any try/catch blocks your consumer may
shut down.

The choice of which setting to use depends entirely on your use case. It may be that once a

WHEN OFFSETS AREN’T FOUND
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1.  

2.  
3.  

consumer starts you only care about reading the latest data or it may be too costly to process all
records.

Whew! That was quite a detour, but well worth the effort to learn some of the critical aspects of
working with the .KafkaConsumer

So far we’ve covered how to build streaming applications using a  and KafkaProducer

. What’s been discussed is good for those situations where your needs are metKafkaConsumer

with . But there are situations where you need to guarantee that youat-least-once processing
process records . For this functionality you’ll want to consider using the exactly once *exactly

 semantics offered by Kafka.once*

The 0.11 release of Apache Kafka saw the  introduce exactly once messageKafkaProducer

delivery. There are two modes for the  to deliver exactly once messageKafkaProducer

semantics; the idempotent producer and the transactional producer.

NOTE Idempotence means you can perform an operation multiple times and the
result won’t change beyond what it was after the first application of the
operation.

The idempotent producer guarantees that the producer will deliver messages in-order and only
once to a topic-partition. The transactional producer allows you to produce messages to multiple
topics atomically, meaning all messages across all topics succeed together or none at all. In the
following sections, we’ll discuss the idempotent and the transactional producer.

To use the idempotent producer you only need to set the configuration 
. There are some other configuration factors that come into play:enable.idempotence=true

max.in.flight.requests.per.connection must not exceed a value of 5 (the default
value is 5)
retries must be greater than 0 (the default value is Integer.MAX_VALUE)
acks must be set to . If you do not specify a value for the  configuration theall acks

producer will update to use the value of , otherwise the producer throws a all

.ConfigException

4.3 Exactly once delivery in Kafka

4.3.1 Idempotent producer
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Listing 4.6 KafkaProducer configured for idempotence

Setting acks to "all"

Enabling idempotence

Setting retries to Integer.MAX_VALUE - this is the default value shown here for
completeness

Setting max in flight requests per connection to 5 - this is the default value shown
here for completeness

If you recall from our earlier discussion about the  we outlined a situation whereKafkaProducer

due to errors and retries record batches within a partition can end up out of order. To avoid that
situation, it was suggested to set the  to one. Usingmax.infligh.requests.per.connection

the idempotent producer removes the need for you to adjust that configuration. We also
discussed in the message delivery semantics to avoid possible record duplication, you would
need to set retries to zero risking possible data loss.

Using the idempotent producer avoids both of the records-out-of-order and
possible-record-duplication-with-retries. If you requirements are for strict ordering within a
partition and no duplicated deliver of records then using the idempotent producer is a must.

NOTE As of the 3.0 release of Apache Kafka the idempotent producer settings are
the default so you’ll get the benefits of using it out of the box with no
additional configuration needed.

The idempotent producer uses two concepts to achieve its in-order and only-once semantics-
unique producer ids and sequence numbers for messages. The idempotent producer gets initiated
with a unique producer id (PID). Since each creation of a idempotent producer results in a new
PID, idempotence for a producer is only guaranteed during a single producer session. For a given
PID a monotonically sequence id (starting at 0) gets assigned to each batch of messages. There is
a sequence number for each partition the producer sends records to.

// Several details omitted for clarity
Map<String, Object> producerProps = new HashMap<>();
//Standard configs
producerProps.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "somehost:9092");
producerProps.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, ...);
producerProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, ...);

//Configs related to idempotence
producerProps.put(ProducerConfig.ACKS_CONFIG, "all"); 
producerProps.put(ProducerConfig.ENABLE_IDEMPOTENCE_CONFIG, true); 
producerProps.put(ProducerConfig.RETRIES_CONFIG, Integer.MAX_VALUE); 
producerProps.put(ProducerConfig.MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION, 5);
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Figure 4.21 The broker keeps track of sequence numbers for each PID and topic-partition it receives

The broker maintains a listing (in-memory) of sequence numbers per topic-partition per PID. If
the broker receives a sequence number not  than the sequence number of theexactly one greater
last committed record for the given PID and topic-partition, it will reject the produce request.

Figure 4.22 The broker rejects produce requests when the message sequence number doesn’t match
expected one

If the number is less than the expected sequence number, it’s a duplication error which the
producer ignores. If the number is higher than expected the produce request results in a 

. For the idempotent producer, the OutOfOrderSequenceException
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 is not fatal error and retries will continue. Essentially whenOutOfOrderSequenceException

there is a retryable error, if there are more than 1 in-flight requests, the broker will reject the
subsequent requests and the producer will put them back in order to resend them to the broker.

So if you require strict ordering of records within a partition, then using the idempotent producer
is a must. But what do you do if you need to write to multiple topic-partitions atomically? In that
case you would opt to use the transactional producer which we’ll cover next.

Using the transactional producer allows you to write to multiple topic-partitions atomically; all of
the writes succeed or none of them do. When would you want to use the transactional producer?
In any scenario where you can’t afford to have duplicate records, like in the financial industry for
example.

To use the transaction producer, you need to set the producer configuration transactional.id
to a unique value for the producer. Kafka brokers use the  to enabletransactional.id

transaction recovery across multiple sessions from the same producer instance. Since the id
needs to be unique for each producer and applications can have multiple producers, it’s a good
idea to come up with a strategy where the id for the producers represents the segment of the
application its working on.

NOTE Kafka transaction are a deep subject and could take up an entire chapter on
its own. For that reason I’m not going to go into details about the design of
transactions. For readers interested in more details here’s a link to the
original KIP (KIP stands for Kafka Improvement Process) 
cwiki.apache.org/confluence/display/KAFKA/KIP-98+-+Exactly+Once
+Delivery+and+Transactional
+Messaging#KIP98ExactlyOnceDeliveryandTransactionalMessaging-
Brokerconfigs

When you enable a producer to use transactions, it is automatically upgraded to an idempotent
producer. You can use the idempotent producer without transactions, but you can’t do the
opposite, using transactions without the idempotent producer. Let’s dive into an example. We’ll
take our previous code and make it transactional

4.3.2 Transactional producer

130

©Manning Publications Co. To comment go to liveBook  
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://cwiki.apache.org/confluence/display/KAFKA/KIP-98+-+Exactly+Once+Delivery+and+Transactional+Messaging#KIP98ExactlyOnceDeliveryandTransactionalMessaging-Brokerconfigs
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion


Listing 4.7 KafkaProducer basics for transactions

Setting a unique id for the producer. Note that it’s up to the user to provide this
unique id.

Calling initTransactions

The beginning of the transaction, but does not start the clock for transaction
timeouts

Sending record(s), in practice probably you’d probably send more than one record
but it’s shortened here for clarity

Committing the transaction after sending all the records

Handling fatal exceptions, your only choice at this point is to close the producer
and re-instantiate the producer instance

Handling a non-fatal exception, you can begin a new transaction with the same
producer and try again

After creating a transactional producer instance is to first thing you must here is execute the 
 method. The  sends a message to the transactioninitTransactions() initTransaction

coordinator (the transaction coordinator is a broker managing transactions for producers) so it
can register the  for the producer to manage its transactions. The transactiontransactional.id

coordinator is a broker managing transactions for producers.

If the previous transaction has started, but not finished, then this method blocks until its
completed. Internally, it also retrieves some metadata including something called an epoch
which this producer uses in future transactional operations.

Before you start sending records you call , which starts the transaction forbeginTransaction()

the producer. Once the transaction starts,The transaction coordinator will only wait for a period
of time defined by the  (one minute by default) and it without antransaction.timeout.ms

update (a commit or abort) it will proactively abort the transaction. But the transaction

HashMap<String, Object> producerProps = new HashMap<>();

producerProps.put("transactional.id", "set-a-unique-transactional-id"); 

Producer<String, String> producer = new KafkaProducer<>(producerProps);
producer.initTransactions(); 

try {
    producer.beginTransaction(); 
    producer.send(topic, "key", "value"); 
    producer.commitTransaction();   
} catch (ProducerFencedException | OutOfOrderSequenceException
  | AuthorizationException e) {  
      producer.close();
} catch (KafkaException e) {     
     producer.abortTransaction();
     // safe to retry at this point 
}
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coordinator does not start the clock for transaction timeouts until the broker starts sending
records. Then after the code completes processing and producing the records, you commit the
transaction.

You should notice a subtle difference in error handling between the transactional example from
the previous non-transactional one. With the transactional produce you don’t have to check of an
error occurred either with a  or checking the returned . Instead the transactionalCallback Future

producer throws them directly for your code to handle.

It’s important to note than with any of the exceptions in the first  block are fatal and youcatch

must close the producer and to continue working you’ll have to create a new instance. But any
other exception is considered re-tryable and you just need to abort the current transaction and
start over.

Of the fatal exceptions, we’ve already discussed the  in theOutOfOrderSequenceException

idempotent producer section and the  is self explanatory. Be weAuthorizationException

should quickly discuss the . Kafka has a strict requirement thatProducerFencedException

there is only one producer instance with a given . When a new transactionaltransactional.id

producer starts, it "fences" off any previous producer with the same id must close. However,
there is another scenario where you can get a  with out starting aProducerFencedException

new producer with the same id.

Figure 4.23 Transactions proactively aborted by the Transaction Coordinator cause an increase in the
epoch associated with the transaction id
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When you execute the  method, the transaction coordinatorproducer.initTransactions()

increments the producer epoch. The producer epoch is a number the transaction coordinator
associates with the transactional id. When the producer makes any transactional request, it
provides the epoch along with its transaction id. If the epoch in the request doesn’t match the
current epoch the transaction coordinator rejects the request and the producer is fenced.

But if the current producer can’t communicate with the transaction coordinator for any reason
and the timeout expires, as we discussed before, the coordinator proactively aborts the
transaction and increments the epoch for that id. When the producer attempts to work again after
the break in communication, it finds itself fenced and you must close the producer and restart at
that point.

NOTE There is example code for transactional producers in the form of a test
l o c a t e d  a t
src/test/java/bbejeck/chapter_4/TransactionalProducerConsumerTest.java
in the source code.

So far, I’ve only covered how to produce transactional records, so let’s move on consuming
them.

Kafka consumers can subscribe to multiple topics at one time, with some of them containing
transactional records and others not. But for transactional records, you’ll only want to consume
ones that have been successfully committed. Fortunately, it’s only a matter of a simple
configuration. To configure your consumers for transactional records you set isolation.level
configuration to .read_committed

Listing 4.8 KafkaConsumer configuration for transactions

Setting the isolation configuration for the consumer

With this configuration set, your consumer is guaranteed to only retrieve successfully committed
transaction records. If you use the  setting, then the consumer will retrieveread_uncommitted

both successful and aborted transactional records. The consumer is guaranteed to retrieve

4.3.3 Consumers in transactions

// Several details omitted for clarity

HashMap<String, Object> consumerProps = new HashMap<>();
consumerProps.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
consumerProps.put(ConsumerConfig.GROUP_ID_CONFIG, "the-group-id");

consumerProps.put(ConsumerConfig.ISOLATION_LEVEL_CONFIG, "read_committed"); 

consumerProps.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
consumerProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, IntegerDeserializer.class);
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non-transactional records with either configuration set.

There is difference in highest offset a consumer can retrieve in the  mode.read_committed

Figure 4.24 High water mark vs. last stable offset in a transactional environment

In Kafka there is a concept of the last stable offset (LSO) which is an offset where all offsets
below it have been "decided". There’s another concept known as the high water mark. The high
water mark is the largest offset successfully written to all replicas. In a non-transactional
environment, the LSO is the same as the high water mark as records are considered decided or
durable written immediately. But with transactions, an offset can’t be considered decided until
the transaction is either committed or aborted, so this means the LSO is the offset of the first
open transaction minus 1.

This a non-transactional environment, the consumer can retrieve up the the high water mark in a 
 call. But with transactions it will only retrieve up to the LSO.poll()

NOTE T h e  t e s t  l o c a t e d
src/test/java/bbejeck/chapter_4/TransactionalProducerConsumerTest.java
also contains a couple of tests demonstrating consumer behavior with both 

 read  configuration.read_committed read_uncommitted

So far we’ve covered how to use a producer and a consumer separately. But there’s one more
case to consider and that is using a consumer and producer together within a transaction.
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When building applications to work with Kafka it’s a fairly common practice to consume records
from a topic, perform some type of transformation on the records, then produce those
transformed records back to Kafka in a different topic. Records are considered consumed when
the consumer commits the offsets. If you recall, committing offsets is simply writing to a topic
(_offsets).

So if you are doing a consume - transform - produce cycle, you’d want to make sure that
committing offsets is part of the transaction as well. Otherwise you could end up in a situation
where you’ve committed offsets for consumed records, but transaction fails and restarting the
application skips the recently processed records as the consumer committed the offsets.

Imagine you have a stock reporting application and you need to provide broker compliance
reporting. It’s very important that the compliance reports are sent only once so you decide that
the best approach is to consume the stock transactions and build the compliance reports within a
transaction. This way you are guaranteed that your reports are sent only once.

Listing 4.9 Example of the consume-transform-produce with transactions found in
src/test/java/chapter_4/TransactionalConsumeTransformProduceTest.java

Creating the HashMap to hold the offsets to commit

Starting the transaction

Transforming the StockTransaction object into a BrokerSummary

Storing the  and  in the mapTopicPartition OffsetAndMetadata

Committing the offsets for the consumed records in the transaction

Committing the transaction

4.3.4 Producers and consumers within a transaction

// Note that details are left out here for clarity

Map<TopicPartition, OffsetAndMetadata> offsets = new HashMap<>(); 
producer.beginTransaction();                
consumerRecords.partitions().forEach(topicPartition -> {
    consumerRecords.records(topicPartition).forEach(record -> {
        lastOffset.set(record.offset());
        StockTransaction stockTransaction = record.value();
        BrokerSummary brokerSummary = BrokerSummary.newBuilder() 

        producer.send(new ProducerRecord<>(outputTopic, brokerSummary));
    });
    offsets.put(topicPartition,
      new OffsetAndMetadata(lastOffset.get() + 1L)); 
});
try {
    producer.sendOffsetsToTransaction(offsets,
      consumer.groupMetadata()); 
    producer.commitTransaction();  
 }
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From looking at code above, the biggest difference from a non-transactional
consume-transform-produce application is that we keep track of the  objectsTopicPartition

and the offset of the records. We do this because we need to provide the offsets of the records we
just processed to the  method. InKafkaProducer.setOffsetsToTransaction

consume-transform-produce applications with transactions, it’s the producer that sends offsets to
the consumer group coordinator, ensuring that the offsets are part of the transaction. Should the
transaction fail or get aborted, then the offsets are not committed. By having the producer
commit the offsets, you don’t need any coordination between the producer and consumer in the
cases of rolled-back transactions.

So far we’ve covered using producer and consumer clients for sending and receiving records to
and from a Kafka topic. But there’s another type of client which uses the  API and itAdmin

allows you to perform topic and consumer group related administrative functions
programmatically.

Kafka provides an administrative client for inspecting topics, broker, ACLs (Access Control
Lists) and configuration. While there are several functions you can use the admin client, I’m
going to focus on the administrative functions for working with topics and records. The reason
I’m doing this is I’m presenting what I feel are the use cases most developers will see in 

 of their applications. Most of the time, you’ll have a operations team responsibledevelopment
for the management of your Kafka brokers in production. What I’m presenting here are things
you can do to facilitate testing a prototyping an application using Kafka.

To create topics with the admin client is simply a matter of creating the admin client instance and
then executing the command to create the topic(s).

Listing 4.10 Creating a topic

Creating the Admin instance, note the use of a try with resources block

The list to hold the  objectsNewTopic

4.4 Using the Admin API for programmatic topic management

4.4.1 Working with topics programmatically

Map<String, Object> adminProps = new HashMap<>();
adminProps.put("bootstrap.servers", "localhost:9092");

try (Admin adminClient = Admin.create(adminProps)) { 

     final List<NewTopic> topics = new ArrayList<>)();  

    topics.add(new NewTopic("topic-one", 1, 1)); 
    topics.add(new NewTopic("topic-two", 1, 1));

    adminClient.createTopics(topics); 
}
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Creating the  objects and adding them to the listNewTopic

Executing the command to create the topics

NOTE I’m referring to an admin client but the type is the interface . There is anAdmin

abstract class , but it’s use is discouraged over using the AdminClient Admin

interface instead. An upcoming release may remove the  class.AdminClient

This code can be especially useful when you are prototyping building new applications by
ensuring the topics exist before running the code. Let’s expand this example some and show how
you can list topics and optionally delete one as well.

Listing 4.11 More topic operations

In this example you’re listing all the non-internal topics in the cluster. Note that if
you wanted to include the internal topics you would provide a ListTopicOptions
object where you would call the ListTopicOptions.listInternal(true)
method.

Printing the current topics found

You delete a topic and list all of the topics again, but you should not see the
recently deleted topic in the list.

An additional note for annotation one above, is that the  returns a Admin.listTopics()

 object. To get the topic names you use the ListTopicResult ListTopicResult.names()

which returns a  so you use use the  method which blocksKafkaFuture<Set<String>> get()

until the admin client request completes. Since we’re using a broker container running on your
local machine, chances are this command completes immediately.

There are several other methods you can execute with the admin client such as deleting records
and describing topics. But the way you execute them is very similar, so I wont list them here, but
look at the source code (src/test/java/bbejeck/chapter_4/AdminClientTest.java) to see more
examples of using the admin client.

Map<String, Object> adminProps = new HashMap<>();
adminProps.put("bootstrap.servers", "localhost:9092");

try (Admin adminClient = Admin.create(adminProps)) {

     Set<String> topicNames = adminClient.listTopics().names.get(); 
     System.out.println(topicNames); 
     adminClient.deleteTopics(Collections.singletonList("topic-two")); 
}

137

©Manning Publications Co. To comment go to liveBook  
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion


TIP Since we’re working on a Kafka broker running in a docker container on your
local machine, we can execute all the admin client topic and record
operations risk free. But you should exercise caution if you are working in a
shared environment to make sure you don’t create issues for other
developers. Additionally, keep in mind you might not have the opportunity to
use the admin client commands in your work environment. And I should
stress that you should never attempt to modify topics on the fly in production
environments.

That wraps up our coverage of using the admin API. In our next and final section we’ll talk
about the considerations you take into account for those times when you want to produce
multiple event types to a topic.

Let’s say you’ve building an application to track activity on commerce web site. You need to
track the click-stream events such as logins and searches and any purchases. Conventional
wisdom says that the different events (logins, searches) and purchases could go into separate
topics as they are separate events. But there’s information you can gain from examining how
these related events occurred in sequence.

But you’ll need to consume the records from the different topics then try and stitch the records
together in proper order. Remember, Kafka guarantees record order within a partition of a topic,
but not across partitions of the same topic not to mention partitions of other topics.

Is there another approach you can take? The answer is yes, you can produce those different event
types to the same topic. Assuming you providing a consistent key across the event types, you are
going receive the different events in-order, on the same topic-partition.

At the end of chapter three (Schema Registry), I covered how you can use multiple event types in
a topic, but I deferred on showing an example with producers and consumers. Now we’ll go
through an example now on how you can produce multiple event types and consume multiple
event types safely with Schema Registry.

In chapter three, specifically the Schema references and multiple events per topic
section I discussed how you can use Schema Registry to support multiple event types in a single
topic. I didn’t go through an example using a producer or consumer at that point, as I think it fits
better in this chapter. So that’s what we’re going to cover now.

4.5 Handling multiple event types in a single topic
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NOTE Since chapter three covered Schema Registry, I’m not going to do any review
in this section. I may mention some terms introduced in chapter three, so you
may need to refer back to refresh your memory if needed.

Let’s start with the producer side.

We’ll use this Protobuf schema in this example:

What happens when you generate the code from the protobuf definition you get a 
 object that contains a single field  that accepts one of the possibleEventsProto.Events type

three event objects (a Protobuf  field).oneof

Listing 4.12 Example of creating KafkaProducer using Protobuf with a oneof field

Configure the producer to use the Protobuf serializer

Creating the  instanceKafkaProducer

Since Protobuf doesn’t allow the  field as a top level element, the events you produceoneof

always have an outer class container. As a result your producer code doesn’t look any different
for the case when you’re sending a single event type. So the generic type for the KafkaProducer

4.5.1 Producing multiple event types

{
syntax = "proto3";

package bbejeck.chapter_4.proto;

import "purchase_event.proto";
import "login_event.proto";
import "search_event.proto";

option java_outer_classname = "EventsProto";

message Events {
      oneof type {
        PurchaseEvent purchase_event = 1;
        LogInEvent login_event = 2;
        SearchEvent search_event = 3;
      }
      string key = 4;
    }
}

// Details left out for clarity
...
producerConfigs.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
  StringSerializer.class);
producerConfigs.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
  KafkaProtobufSerializer.class); 
...

Producer<String, EventsProto.Events> producer = new KafkaProducer<>(producerConfigs)); 
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and  is the class of the Protobuf outer class,  in this case.ProducerRecord EventsProto.Events

In contrast, if you were to use an Avro union for the schema like this example here:

Listing 4.13 Avro schema of a union type

Your producer code will change to use a common interface type of all generated Avro classes:

Listing 4.14 KafkaProducer instantiation with Avro union type schema

Specifying to use the Kafka Avro serializer

Configuring to producer to not auto register schemas

Setting the use latest schema version to true

Instantiating the producer

Because you don’t have an outer class in this case each event in the schema is a concrete class of
either a , , or a . To satisfy the generics of the TruckEvent PlaneEvent DeliveryEvent

 you need to use the  interface as every Avro generated classKafkaProducer SpecificRecord

implements it. As we covered in chapter three, it’s crucial when using Avro schema references
with a union as the top-level entry is to disable auto-registration of schemas (annotation two
above) and to enable using the latest schema version (annotation three).

Now let’s move to the other side of the equation, consuming multiple event types.

When consuming from a topic with multiple event types, depending how your approach, you
may need to instantiate the  with a generic type of a common base class orKafkaConsumer

interface that all of the records implement.

[
  "bbejeck.chapter_3.avro.TruckEvent",
  "bbejeck.chapter_3.avro.PlaneEvent",
  "bbejeck.chapter_3.avro.DeliveryEvent"
]

//Some details left out for clarity

producerConfigs.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
  StringSerializer.class);
producerConfigs.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
  KafkaAvroSerializer.class); 
producerConfigs.put(AbstractKafkaSchemaSerDeConfig.AUTO_REGISTER_SCHEMAS,
  false); 
producerConfigs.put(AbstractKafkaSchemaSerDeConfig.USE_LATEST_VERSION,
  true); 

Producer<String, SpecificRecord> producer = new KafkaProducer<>(
  producerConfigs()) 

4.5.2 Consuming multiple event types
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Let’s consider using Protobuf first. Since you will always have an outer wrapper class, that’s the
class you’ll use in the generic type parameter, the value parameter in this example.

Listing 4.15 Configuring the consumer for working with multiple event types in Protobuf

Using Protobuf deserializer

Setting the Protobuf deserializer to return a specific type

Creating the KafkaConsumer

You are setting up your consumer as you’ve seen before; you’re configuring the deserializer to
return a specific type, which is the  class in this case. With Protobuf, whenEventsProto.Events

you have a  field, the generated Java code includes methods to help you determine the typeoneof

of the field with  methods. In our case the  object contains thehasXXX EventsProto.Events

following 3 methods:

The protobuf generated Java code also contains an enum named . In<oneof field name>Case

this example, we’ve named the  field  so it’s named  and you access byoneof type TypeCase

calling . You can use the enum to determine theEventsProto.Events.getTypeCase()

underlying object succinctly:

Individual case statement base on the enum

Retrieving the event object using  methods for each potential type in the getXXX

 fieldoneof

//Other configurations details left out for clarity

consumerProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
  KafkaProtobufDeserializer.class); 
consumerProps.put(
  KafkaProtobufDeserializerConfig.SPECIFIC_PROTOBUF_VALUE_TYPE,
    EventsProto.Events.class); 

Consumer<EventsProto.Events> consumer = new KafkaConsumer<>(
  consumerProps); 

hasSearchEvent()
hasPurchaseEvent()
hasLoginEvent()

//Details left out for clarity
switch (event.getTypeCase()) {
    case LOGIN_EVENT -> {   
        logins.add(event.getLoginEvent()); 
    }
    case SEARCH_EVENT -> {
        searches.add(event.getSearchEvent());
    }
    case PURCHASE_EVENT ->  {
        purchases.add(event.getPurchaseEvent());
    }
}
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Which approach you use for determining the type is a matter of personal choice.

Next let’s see how you would set up your consumer for multiple types with the Avro union
schema:

Listing 4.16 Configuring the consumer for working with union schema with Avro

Using Avro deserializer

Specifying the deserializer to return a specific Avro type

Creating the KafkaConsumer

As you’ve seen before you specify the  for the deserializerKafkaAvroDeserializer

configuration. We also covered before how Avro is slightly different from Protobuf and JSON
Schema in that you tell it to return the specific class type, but you don’t provide the class name.
So when you have multiple event types in a topic and you are using Avro, the consumer needs to
use the  interface again in the generics shown in annotation three.SpecificRecord

So by using the  interface when you start retrieving records from the SpecificRecord

 call you’ll need to determine the concrete type to do any work with it.Consumer.poll

Listing 4.17 Determining the concrete type of a record returned from a consumer with Avro
union schemas

The approach here is similar to that of what you did with Protobuf but this is at the class level
instead of the field level. You could also choose to model your Avro approach to something
similar of Protobuf and define record that contains a field representing the union. Here’s an
example:

//Other configurations details left out for clarity

consumerProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
  KafkaAvroDeserializer.class); 
consumerProps.put(KafkaAvroDeserializerConfig.SPECIFIC_AVRO_READER_CONFIG,
  true); 

Consumer<SpecificRecord> consumer = new KafkaConsumer<>(consumerProps); 

// Details left out for clarity

SpecificRecord avroRecord = record.value();
if (avroRecord instanceof PlaneEvent) {
    PlaneEvent planeEvent = (PlaneEvent) avroRecord;
    ....
} else if (avroRecord instanceof TruckEvent) {
    TruckEvent truckEvent = (TruckEvent) avroRecord;
    ....
} else if (avroRecord instanceof DeliveryEvent) {
    DeliveryEvent deliveryEvent = (DeliveryEvent) avroRecord;
   ....
}
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Listing 4.18 Avro with embedding the union field in a record

Outer class definition

Avro union type at the field level

In this case, the generated Java code provides a single method , but it has returngetTxnType()

type of . As a result you’ll need to use the same approach of checking for the instanceObject

type as you did above when using a union schema, essentially just pushing the issue of
determining the record type from the class level to the field level.

NOTE Java 16 introduces pattern matching with the  keyword thatinstanceof

removes the need for casting the object after the  checkinstanceof

{
  "type": "record",
  "namespace": "bbejeck.chapter_4.avro",
  "name": "TransportationEvent", 

  "fields" : [
    {"name": "txn_type", "type": [  
      "bbejeck.chapter_4.avro.TruckEvent",
      "bbejeck.chapter_4.avro.PlaneEvent",
      "bbejeck.chapter_4.avro.DeliveryEvent"
    ]}
  ]
}
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Kafka Producers send records in batches to topics located on the Kafka broker and will
continue to retry sending failed batches until the  configurationdelivery.timeout.ms

expires. You can configure a Kafka Producer to be an idempotent producer meaning it
guarantees to send records only once and in-order for a given partition. Kafka producers
also have a transactional mode that guarantees exactly once delivery of records across
multiple topics. You enable the Kafka transactional API in producers by using the
configuration  which must be a unique id for each producer. Whentransactional.id

using consumers in the transactional API, you want to make sure you set the 
 to read committed so you only consume committed records fromisolation.level

transactional topics.
Kafka Consumers read records from topics. Multiple consumers with the same group id
get topic-partition assignments and work together as one logical consumer. Should one
member of the group fail its topic-partition assignment(s) are redistributed to other
members of the group via process known as rebalancing. Consumers periodically commit
the offsets of consumed records so restarting after a shut-down they pick up where they
left of processing.
Kafka producers and consumers offer three different types of delivery guarantees at least
once, at most once, and exactly once. At least once means no records are lost, but you
may receive duplicates due to retries. At most once means that you won’t receive
duplicate records but there could be records lost due to errors. Exactly once delivery
means you don’t receive duplicates and you won’t lose any records due to errors.
Static membership provides you with stability in environments where consumers
frequently drop off, only to come back online within a reasonable amount of time.
The  provides the much improved rebalance behavior.CooperativeStickyAssignor

The cooperative rebalance protocol is probably the best choice to use in most cases as it
significantly reduces the amount of downtime during a rebalance.
The Admin API provides a way to create and manage topics, partitions and records
programmatically.
When you have different event types but the events are related and processing them
in-order is important it’s worth considering placing the multiple event types in a single
topic.

4.6 Summary
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6
This chapter covers

Simply stated, a Kafka Streams application is a graph of processing nodes that transforms event
data as it streams through each node. Let’s take a look at an illustration of what this means:

Developing Kafka Streams

Introducing the Kafka Streams API
Building our first Kafka Streams application
Working with customer data; creating more complex applications
Splitting, merging and branching streams oh my!
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Figure 6.1 Kafka Streams is a graph with a source node, any number of processing nodes and a sink
node

This illustration represents the generic structure of most Kafka Streams applications. There is a
source node that consumes event records from a Kafka broker. Then there are any number of
processing nodes, each performing a distinct task and finally a sink node used to write the
transformed records back out to Kafka. In a previous chapter we discussed how to use the Kafka
clients for producing and consuming records with Kafka. Much of what you learned in that
chapter applies for Kafka Streams, because at it’s heart, Kafka Streams is an abstraction over the
producers and consumers, leaving you free to focus on your stream processing requirements.

IMPORTANT While Kafka Streams is the native stream processing library for Apache Kafka
®, it does  run inside the cluster or brokers, but connects as a clientnot
application.

In this chapter, you’ll learn how to build such a graph that makes up a stream processing
application with Kafka Streams.
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The Kafka Streams DSL is the high-level API that enables you to build Kafka Streams
applications quickly. This API is very well thought out, with methods to handle most
stream-processing needs out of the box, so you can create a sophisticated stream-processing
program without much effort. At the heart of the high-level API is the  object, whichKStream

represents the streaming key/value pair records.

Most of the methods in the Kafka Streams DSL return a reference to a  object, allowingKStream

for a fluent interface style of programming. Additionally, a good percentage of the KStream
methods accept types consisting of single-method interfaces allowing for the use of lambda
expressions. Taking these factors into account, you can imagine the simplicity and ease with
which you can build a Kafka Streams program.

There’s also a lower-level API, the Processor API, which isn’t as succinct as the Kafka Streams
DSL but allows for more control. We’ll cover the Processor API in a later chapter. With that
introduction out of the way, let’s dive into the requisite Hello World program for Kafka Streams.

For the first Kafka Streams example, we’ll build something fun that will get off the ground
quickly so you can see how Kafka Streams works; a toy application that takes incoming
messages and converts them to uppercase characters, effectively yelling at anyone who reads the
message. We’ll call this the Yelling App.

Before diving into the code, let’s take a look at the processing topology you’ll assemble for this
application:

6.1 The Streams DSL

6.2 Hello World for Kafka Streams
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1.  
2.  

3.  
4.  

Figure 6.2 Topology of the Yelling App

As you can see, it’s a simple processing graph—so simple that it resembles a linked list of nodes
more than the typical tree-like structure of a graph. But there’s enough here to give you strong
clues about what to expect in the code. There will be a source node, a processor node
transforming incoming text to uppercase, and a sink processor writing results out to a topic.

This is a trivial example, but the code shown here is representative of what you’ll see in other
Kafka Streams programs. In most of the examples, you’ll see a similar pattern:

Define the configuration items.
Create  instances, either custom or predefined, used in deserialization/serializtionSerde

of records.
Build the processor topology.
Create and start the .Kafka Streams

When we get into the more advanced examples, the principal difference will be in the complexity
of the processor topology. With all this in mind, it’s time to build your first application.

The first step to creating any Kafka Streams application is to create a source node and that’s
exactly what you’re going to do here. The source node is the root of the topology and fowards
thge consumed records into application. Figure 6.3 highlights the source node in the graph.

6.2.1 Creating the topology for the Yelling App
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Figure 6.3 Creating the source node of the Yelling App

The following line of code creates the source, or parent, node of the graph.

Listing 6.1 Defining the source for the stream

The  instance is set to consume messages from the  topic. InsimpleFirstStream src-topic

addition to specifying the topic name, you can add a  object that Kafka Streams uses toConsumed

configure optional parameters for a source node. In this example you’ve provided Serde
instances, the first for the key and the second one for the value. A  is a wrapper object thatSerde

contains a serializer and deserializer for a given type.

If you remember from our dicussion on consumer clients in a previous chapter, the broker stores
and forwards records in byte array format. For Kafka Streams to perform any work, it needs to
deserialize the bytes into concrete objects. Here both  objects are for strings, since that’sSerde

the type of both the key and the value. Kafka Streams will use the  to deserialize the keySerde

and value, separately, into string objects. We’ll explain Serdes in more detail soon. You can also
use the  class to configure a , the offset reset for the sourceConsumed TimestampExtractor

node, and provide a name. We’ll cover the  and providing names in laterTimestampExtractor

sections and since we covered offset resets in a previous chapter, I won’t cover them again here.

And that is how to create a  to read from a Kafka topic. But a single topic is not our onlyKStream

choice. Let’s take a quick look at some other options. Let’s say that there are several topics
you’d like to like to "yell at". In that case you can subscribe to all of them at one time by using a 

 to specify all the topic names as shown here:Collection<String>

KStream<String, String> simpleFirstStream = builder.stream("src-topic",
Consumed.with(Serdes.String(), Serdes.String()));
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Listing 6.2 Creating the Yelling Application with multiple topics as the source

Typically you’d use this approach when you want to apply the same processing to multiple
topics at the same time. But what if you have long list of similarly named topics, do you have to
write them all out? The answer is no! You can use a regular expresion to subscribe to any topic
that matches the pattern:

Listing 6.3 Using a regular expression to subscribe to topics in the Yelling Application

Using a regular expression for subscribing to topics is particulary handy when your organization
uses a common naming pattern for topics related to their business function. You just have to
know the naming pattern and you can subscribe to all of them concisely. Additionally as topics
are created or deleted your subscription will automatically update to reflect the changes in the
topics.

When subscribing to mulitple topics, there are a few caveats to keep in mind. The keys and
values from all subscribed topics must be the same type, for example you can’t combine topics
where one topic contains  keys and another has  keys. Also, if they all aren’tInteger String

partitioned the same, it’s up to you to repartition the data before performing any key based
operation like aggregations. We’ll cover repartitioning in the next chapter. Finally, there’s no
ordering guarantees of the incoming records.

You now have a source node for your application, but you need to attach a processing node to
make use of the data, as shown in figure 6.4.

KStream<String, String> simpleFirstStream =
  builder.stream(List.of("topicA", "topicB", "topicC"),
        Consumed.with(Serdes.String(), Serdes.String()))

KStream<String, String> simpleFirstStream =
   buider.source(Pattern.compile("topic[A-C]"),
      Consumed.with(Serdes.String(), Serdes.String()))
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Figure 6.4 Adding the uppercase processor to the Yelling App

Listing 6.4 Mapping incoming text to uppercase

In the introduction to this chapter I mentioned that a Kafka Streams application is a graph of
processing nodes, a directed acyclic graph or DAG to be precise.

You build the graph one processor at a time. With each method call, you establish a parent-child
relationship between the nodes of the graph. The parent-child relationship in Kafka Streams
establishes the direction for the flow of data, parent nodes forward records to their children. A
parent node can have multiple children, but a child node will only have one parent.

So looking at the code example here, by executing  , you’resimpleFirstStream.mapValues

creating a new processing node whose inputs are the records consumed in the source node. So
the source node is the "parent" and it forwards records to its "child", the processing node
returned from the  operation.mapValues

NOTE As you tell from the name  only affects the value of the key-valuemapValues

pair, but the key of the original record is still forwared along.

The  method takes an instance of the  interface. The mapValues() ValueMapper<V, V1>

 interface defines only one method, , making it an idealValueMapper ValueMapper.apply

candidate for using a lambda expression, which is exactly what you’ve done here with value 
.value.toUpperCase()

KStream<String, String> upperCasedStream =
  simpleFirstStream.mapValues(value -> value.toUpperCase());
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NOTE Many tutorials are available for lambda expressions and method references.
Good starting points can be found in Oracle’s Java documentation: “Lambda
Expressions” ( ) and “Method References” ( ).mng.bz/J0Xm mng.bz/BaDW

So far, your Kafka Streams application is consuming records and transforming them to
uppercase. The final step is to add a sink processor that writes the results out to a topic. Figure
6.5 shows where you are in the construction of the topology.

Figure 6.5 Adding a processor for writing the Yelling App results

The following code line adds the last processor in the graph.

Listing 6.5 Creating a sink node

The  method creates a processing node that writes the final transformed records to aKStream.to

Kafka topic. It is a child of the , so it receives all of its inputs directly fromupperCasedStream

the results of the  operation.mapValues

Again, you provide  instances, this time for serializing records written to a Kafka topic.Serde

But in this case, you use a  instance, which provides optional parameters for creating aProduced

sink node in Kafka Streams.

upperCasedStream.to("out-topic",
               Produced.with(Serdes.String(), Serdes.String()));
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NOTE You don’t always have to provide  objects to either the  or Serde Consumed

 objects. If you don’t, the application will use theProduced

serializer/deserializer listed in the configuration. Additionally, with the 
 and  classes, you can specify a  for either the key orConsumed Produced Serde

value only.

The preceding example uses three lines to build the topology:

Each step is on an individual line to demonstrate the different stages of the building process. But
all methods in the  API that don’t create terminal nodes (methods with a return type of KStream

) return a new  instance, which allows you to use the fluent interface style ofvoid KStream

programming. A fluent interface ( ) is an approachmartinfowler.com/bliki/FluentInterface.html
where you chain method calls together for more concise and readable code. To demonstrate this
idea, here’s another way you could construct the Yelling App topology:

This shortens the program from three lines to one without losing any clarity or purpose. From
this point forward, all the examples will be written using the fluent interface style unless doing
so causes the clarity of the program to suffer.

You’ve built your first Kafka Streams topology, but we glossed over the important steps of
configuration and  creation. We’ll look at those now.Serde

Although Kafka Streams is highly configurable, with several properties you can adjust for your
specific needs, the uses the two required configuration settings,  and APPLICATION_ID_CONFIG

:BOOTSTRAP_SERVERS_CONFIG

Both are required because there’s no practical way to provide default values for these
configurations. Attempting to start a Kafka Streams program without these two properties
defined will result in a  being thrown.ConfigException

KStream<String,String> simpleFirstStream =
builder.stream("src-topic", Consumed.with(Serdes.String(), Serdes.String()));

KStream<String, String> upperCasedStream =
simpleFirstStream.mapValues(value -> value.toUpperCase());
upperCasedStream.to("out-topic", Produced.with(Serdes.String(), Serdes.String()));

builder.stream("src-topic", Consumed.with(Serdes.String(), Serdes.String()))
 .mapValues(value -> value.toUpperCase())
 .to("out-topic", Produced.with(Serdes.String(), Serdes.String()));

6.2.2 Kafka Streams configuration

props.put(StreamsConfig.APPLICATION_ID_CONFIG, "yelling_app_id");
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
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The  property uniquely identifies your KafkaStreamsConfig.APPLICATION_ID_CONFIG

Streams application. Kafka Streams instances with the same application-id are considered one
logical application. We’ll discuss this concept later in Kafka Streams internals section. The
application-id also serves as a prefix for the embedded client (  and KafkaConsumer

) configurations. You can choose to provide custom configurations for theKafkaProducer

embedded clients by using one of the various prefix labels found in the  class.StreamsConfig

However, the default client configurations in Kafka Streams have been chosen to provide the
best performance, so one should exercise caution when adjusting them.

The  property can be a single StreamsConfig.BOOTSTRAP_SERVERS_CONFIG hostname:port

pair or multiple  comma-separated pairs. The  ishostname:port BOOTSTRAP_SERVERS_CONFIG

what Kafka Streams uses to establish a connection to the Kafka cluster. We’ll cover several more
configuration items as we explore more examples in the book.

In Kafka Streams, the  class provides convenience methods for creating  instances,Serdes Serde

as shown here:

This line is where you create the  instance required for serialization/deserialization usingSerde

the  class. Here, you create a variable to reference the  for repeated use in theSerdes Serde

topology. The  class provides default implementations for the following types: String,Serdes

Byte Array, Bytes, Long, Short, Integer, Double, Float, ByteBuffer, UUID, and Void.

Implementations of the  interface are extremely useful because they contain the serializerSerde

and deserializer, which keeps you from having to specify four parameters (key serializer, value
serializer, key deserializer, and value deserializer) every time you need to provide a  in a Serde

 method. In upcoming examples, you’ll use Serdes for working with Avro, Protobuf,KStream

and JSONSchema as well as create a  implementation to handleSerde

serialization/deserialization of more-complex types.

Let’s take a look at the whole program you just put together. You can find the source in
src/main/java/bbejeck/chapter_6/KafkaStreamsYellingApp.java (source code can be found on
the book’s website here: ).www.manning.com/books/kafka-streams-in-action-second-edition

6.2.3 Serde creation

Serde<String> stringSerde = Serdes.String();
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1.  

2.  

Listing 6.6 Hello World: the Yelling App

Creates the Serdes and store in a variable used to serialize/deserialize keys and
values

Creates the StreamsBuilder instance used to construct the processor topology

Creates the actual stream with a source topic to read from (the parent node in the
graph)

A processor using a lambda (the first child node in the graph)

Writes the transformed output to another topic (the sink node in the graph)

Kicks off the Kafka Streams threads

You’ve now constructed your first Kafka Streams application. Let’s quickly review the steps
involved, as it’s a general pattern you’ll see in most of your Kafka Streams applications:

Create a  instance for configurations.Properties

//Details left out for clarity
public class KafkaStreamsYellingApp extends BaseStreamsApplication {

private static final Logger LOG =
  LoggerFactory.getLogger(KafkaStreamsYellingApp.class);

@Override
public Topology topology(Properties streamProperties) {

  Serde<String> stringSerde = Serdes.String(); 
  StreamsBuilder builder = new StreamsBuilder(); 

  KStream<String, String> simpleFirstStream = builder.stream("src-topic",
            Consumed.with(stringSerde, stringSerde)); 
  KStream<String, String> upperCasedStream =
  simpleFirstStream.mapValues(value)-> value.toUpperCase()); 

  upperCasedStream.to("out-topic",
      Produced.with(stringSerde, stringSerde)); 

  return builder.build(streamProperties);
}

public static void main(String[] args) throws Exception {
    Properties streamProperties = new Properties();
    streamProperties.put(StreamsConfig.APPLICATION_ID_CONFIG,
      "yelling_app_id");
    streamProperties.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG,
      "localhost:9092");
    KafkaStreamsYellingApp yellingApp = new KafkaStreamsYellingApp();
    Topology topology = yellingApp.topology(streamProperties);

    try(KafkaStreams kafkaStreams =
                    new KafkaStreams(topology, streamProperties)) {
        LOG.info("Hello World Yelling App Started");
        kafkaStreams.start(); 

        LOG.info("Shutting down the Yelling APP now");
    }
 }
}
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2.  
3.  
4.  

1.  

2.  

3.  

Create a  object.Serde

Construct a processing topology.
Start the Kafka Streams program.

We’ll now move on to a more complex example that will allow us to explore more of the
Streams DSL API.

Imagine you work as a infrastructure engineer for the retail giant, ZMart. ZMart has adopted
Kafka as its data processing backbone and is looking to capitalize on the ability to quickly
process customer data, intended to help ZMart do business more efficiently.

At this point you’re tasked to build a Kafka Streams application to work with purchase records as
they come streaming in from transactions in ZMart stores.

Here are the requirements for the streaming program, which will also serve as a good description
of what the program will do:

All Purchase objects need to have credit card numbers protected, in this case by masking
the first 12 digits.
You need to extract the items purchased and the ZIP code to determine regional purchase
patterns and inventory control. This data will be written out to a topic.
You need to capture the customer’s ZMart member number and the amount spent and
write this information to a topic. Consumers of the topic will use this data to determine
rewards.

With these requirements at hand, let’s get started building a streaming application that will
satisfy ZMart’s business requirements.

The first step in building the new application is to create the source node and first processor of
the topology. You’ll do this by chaining two calls to the  API together. The childKStream

processor of the source node will mask credit card numbers to protect customer privacy.

Listing 6.7 Building the source node and first processor

You create the source node with a call to the  method using a default StreamBuilder.stream

 serde, a custom serde for  objects, and the name of the topic that’s theString RetailPurchase

6.3 Masking credit card numbers and tracking purchase rewards in
a retail sales setting

6.3.1 Building the source node and the masking processor

KStream<String, RetailPurchase> retailPurchaseKStream =
     streamsBuilder.stream("transactions",
     Consumed.with(stringSerde, retailPurchaseSerde))
    .mapValues(creditCardMapper);
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source of the messages for the stream. In this case, you only specify one topic, but you could
have provided a comma-separated list of names or a regular expression to match topic names
instead.

In this code example, you provide  with a  instance, but you could have left thatSerdes Consumed

out and only provided the topic name and relied on the default  provided viaSerdes

configuration parameters.

The next immediate call is to the  method, taking a KStream.mapValues ValueMapper<V, V1>

instance as a parameter. Value mappers take a single parameter of one type (a RetailPurchase
object, in this case) and map that object to a to a new value, possibly of another type. In this
example,  returns an object of the same type ( ), but with aKStream.mapValues RetailPurchase

masked credit card number.

When using the  method, you don’t have access to the key for the valueKStream.mapValues

computation. If you wanted to use the key to compute the new value, you could use the 
 interface, with the expectation that the key remains the same.ValueMapperWithKey<K, V, VR>

If you need to generate a new key along with the value, you’d use the  method thatKStream.map

takes a  interface.KeyValueMapper<K, V, KeyValue<K1, V1>>

IMPORTANT Keep in mind that Kafka Streams functions are expected to operate without
side effects, meaning the functions don’t modify the original key and or value,
but return new objects when making modifications.

Now you’ll build the second processor, responsible for extracting geographical data from the
purchase, which ZMart can use to determine purchase patterns and inventory control in regions
of the country. There’s also an additional wrinkle with building this part of the topology. The
ZMart business analysts have determined they want to see individual records for each item in a
purchase and they want to consider purchases made regionally together.

The  data model object contains all the items in a customer purchase so you’llRetailPurchase

need to emit a new record for each one in the transaction. Additionally, you’ll need to add the
zip-code in the transaction as the key. Finally you’ll add a sink node responsible for writing the
pattern data to a Kafka topic.

In pattrens processor example you can see the  processor using a retailPurchaseKStream

 operator. The  method takes a  or a flatMap KStream.flatMap ValueMapper KeyValueMapper

that accepts a single record and returns an  (any Java ) of new records,Iterable Collection

possibly of a different type. The  processor "flattens" the  into one or moreflapMap Iterable

records forwarded to the topology. Let’s take a look at an illustrating how this works:

6.3.2 Adding the patterns processor
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Figure 6.6 FlatMap emits zero or more records from a single input records by flattening a collection
returned from a KeyValueMapper or ValueMapper

The process of a flatMap is a common operation from functional programming where one input
results creating a collection of items (the map portion of the function) but instead of returning the
collection, it "flattens" the collection or grouping into a sequence of records.

In our case here with Kafka Streams, a retail purchase of five items results in five individual 
 objects with the keys corresponding to the zip-code and the values a KeyValue PurchasedItem

object.

Here’s the code listing for the :KeyValueMapper

Listing 6.8 KeyValueMapper returning a collection of PurchasedItem objects

Extracting the zipcode on the purchase for the new key

Using the Java stream API to create a list of KeyValue pairs

The  here takes an individual transaction object and returns a list of KeyValueKeyValueMapper

objects. The key is the zipcode where the transaction took place and the value is an item included
in the purchase. Now let’s put our new  into this section of the topology we’reKeyValueMapper

creating:

Listing 6.9 Patterns processor and a sink node that writes to Kafka

Using flatMap to create new object for each time in a transaction

KeyValueMapper<String, RetailPurchase,
 Iterable<KeyValue<String, PurchasedItem>>> retailTransactionToPurchases =
    (key, value) -> {
      String zipcode = value.getZipCode(); 
      return value.getPurchasedItemsList().stream() 
                .map(purchasedItem ->
                    KeyValue.pair(zipcode, purchasedItem))
                .collect(Collectors.toList());
}

KStream<String, Pattern> patternKStream = retailPurchaseKStream
                .flatMap(retailTransactionToPurchases) 
                .mapValues(patternObjectMapper);  

patternKStream.print(Printed.<String,Pattern>toSysOut()
              .withLabel("patterns")); 
patternKStream.to("patterns",
        Produced.with(stringSerde,purchasePatternSerde)); 
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Mapping each purchase to a pattern object

Printing records to the console

Producing each record from the purchase to a Kafka topic called "patterns"

In this code example you declare a variable to hold the reference of the new  instanceKStream

and you’ll see why in an upcoming section. The purchase-patterns processor forwards the
records it receives to a child node of its own, defined by the method call , writing toKStream.to

the  topic. Note the use of a  object to provide the previously built .patterns Produced Serde

I’ve also snuck in a  processor that prints the key-values of the stream to theKStream#print

console, we’ll talk more about viewing stream records in an upcoming section.

The  method is a mirror image of the  method. Instead of setting aKStream.to KStream.source

source for the topology to read from, it defines a sink node that’s used to write the data from a 
 instance to a Kafka topic. The  method also provides overloads whichKStream KStream.to

accept an object allowing for dynamic topic selection and we’ll discuss that soon.

The third processor in the topology is the customer rewards accumulator node shown in figure 8,
which will let ZMart track purchases made by members of their preferred customer club. The
rewards accumulator sends data to a topic consumed by applications at ZMart HQ to determine
rewards when customers complete purchases.

Listing 6.10 Third processor and a terminal node that writes to Kafka

You build the rewards accumulator processor using what should be by now a familiar pattern:
creating a new  instance that maps the raw purchase data contained in the retail purchaseKStream

object to a new object type. You also attach a sink node to the rewards accumulator so the results
of the rewards  can be written to a topic and used for determining customer rewardKStream

levels.

Now that you’ve built the application piece by piece, let’s look at the entire application
(src/main/java/bbejeck/chapter_6/ZMartKafkaStreamsApp.java).

6.3.3 Building the rewards processor

 KStream<String, RewardAccumulatorProto.RewardAccumulator> rewardsKStream =
       retailPurchaseKStream.mapValues(rewardObjectMapper);
rewardsKStream.to("rewards",
        Produced.with(stringSerde,rewardAccumulatorSerde));
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Listing 6.11 ZMart customer purchase  programKStream

Builds the source and first processor

Builds the PurchasePattern processor

Builds the RewardAccumulator processor

NOTE I’ve left out some details in the listing clarity. The code examples in the book
aren’t necessarily meant to stand on their own. The source code that
accompanies this book provides the full examples.

As you can see, this example is a little more involved than the Yelling App, but it has a similar
flow. Specifically, you still performed the following steps:

Create a  instance.StreamsBuilder

Build one or more  instances.Serde

Construct the processing topology.
Assemble all the components and start the Kafka Streams program.

You’ll also notice that I haven’t shown the logic responsible for creating the various mappings
from the original transaction object to new types and that is by design. First of all, the code for a 

public class ZMartKafkaStreamsApp {

// Details left out for clarity

@Override
public Topology topology(Properties streamProperties) {

StreamsBuilder streamsBuilder = new StreamsBuilder();

KStream<String, RetailPurchaseProto.RetailPurchase> retailPurchaseKStream =
        streamsBuilder.stream("transactions",
            Consumed.with(stringSerde, retailPurchaseSerde))
        .mapValues(creditCardMapper);  

KStream<String, PatternProto.Pattern> patternKStream =
   retailPurchaseKStream
        .flatMap(retailTransactionToPurchases)
        .mapValues(patternObjectMapper);  

patternKStream.to("patterns",
      Produced.with(stringSerde,purchasePatternSerde));

KStream<String, RewardAccumulatorProto.RewardAccumulator> rewardsKStream =
      retailPurchaseKStream.mapValues(rewardObjectMapper); 

rewardsKStream.to("rewards",
      Produced.with(stringSerde,rewardAccumulatorSerde));
retailPurchaseKStream.to("purchases",
      Produced.with(stringSerde,retailPurchaseSerde));

return streamsBuilder.build(streamProperties);

}
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 or  is going to be distinct for each use case, so the particularKeyValueMapper ValueMapper

implementations don’t matter too much.

But more to the point, if you look over the entire Kafka Streams application you can quickly get
a sense of what each part is accomplishing, and for the most part any details of working directly
with Kafka are abstracted away. And to me that is the strength of Kafka Streams; with the DSL
you get specify  operations you need to perform on the event stream and Kafka Streamswhat
handles the details. Now it’s true that no one framework can solve every problem and sometimes
you need a more hands-on lower level approach and you’ll learn about that in a upcoming
chapter when we cover the Processor API.

In this application, I’ve mentioned using a , but I haven’t explained why or how you createSerde

them. Let’s take some time now to discuss the role of the  in a Kafka Streams application.Serde

As you learned in previous chapters, Kafka brokers work with records in byte array format. It’s
the responsibility of the client to serialize when producing records and deserialize when
consuming. It’s no different with Kafka Streams as it uses embedded consumers and producers.
There is one small difference when configuring a Kafka Streams application for serialization vs.
raw producer or consumer clients. Instead of providing a specific deserializer or serializer, you
configure Kafka Streams with a , which contains both the serializer and deserializer for aSerde

specific type.

Some serdes are provided out of the box by the Kafka client dependency, ( , , String Long

, and so on), but you’ll need to create custom serdes for other objects.Integer

In the first example, the Yelling App, you only needed a serializer/deserializer for strings, and an
implementation is provided by the  factory method. In the ZMart example,Serdes.String()

however, you need to create custom  instances, because of the arbitrary object types. We’llSerde

look at what’s involved in building a  for the  class. We won’t cover theSerde RetailPurchase

other  instances, because they follow the same pattern, just with different types.Serde

NOTE I’m including this discussion on Serdes creation for completeness, but in the
source code there is a class  which provides a SerdeUtil protobufSerde

method which you’ll see in the examples and encapsulates the steps
described in this section.

Building a  requires implementations of the  and Serde Deserializer<T> Serializer<T>

interfaces. We covered creating your own serializer and deserializer instances towards the end of

6.3.4 Using Serdes to encpsulate serializers and deserializers in Kafka Streams
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chapter 3 on Schema Registry, so I won’t go over those details again here. For reference you can
see the full code for the  and  in the ProtoSerializer ProtoDeserializer

 package in the source for the book.bbejeck.serializers

Now, to create a  object, you’ll use the  factory method takingSerde<T> Serdes.serdeFrom

steps like the following:

Creates the Deserializer for the RetailPurchaseProto.RetailPurchase class

Creates the Serializer for the RetailPurchaseProto.RetailPurchase class

Configurations for the deserializer

Creates the Protobuf Serde for RetailPurchaseProto.RetailPurchase objects

As you can see, a  object is useful because it serves as a container for the serializer andSerde

deserializer for a given object. Here you need to create a custom Serde for the Protobuf objects
because the streams example does not use Schema Registry, but using it with Kafka Streams is a
perfectly valid use case. Let’s take a quick pause to go over how you configure your Kafka
Streams application when using it with Schema Registry.

In chapter four I discussed the reasons why you’d want to use Schema Registry with a Kafka
based application. I’ll briefly describe those reasons here. The domain objects in your application
represent an implicit contract between the different users of your application. For example
imagine one team of developers change a field type from a  to a  and startjava.util.Date long

producing those changes to Kafka, the downstream consumers applications will break due to the
unexpected field type change.

So by using a schema and using Schema Resitry to store it, you make it much easier to enforce
this contract by enabling better coordination and compatibility checks. Additionally, there are
Schema Registry project provides Schema Registry "aware" (de)serializers and Serdes,
alleviating the developer from writing the serialization code.

Deserializer<RetailPurchaseProto.RetailPurchase> purchaseDeserializer =
      new ProtoDeserializer<>(); 
Serializer<RetailPurchaseProto.RetailPurchase> purchaseSerializer =
      new ProtoDeserializer<>(); 
Map<String, Class<RetailPurchaseProto.RetailPurchase>> configs
            = new HashMap<>();
   configs.put(false, RetailPurchaseProto.RetailPurchase.class);
          deserializer.configure(configs,isKey);  
Serde<RetailPurchaseProto.RetailPurchase> purchaseSerde =
     Serdes.serdeFrom(purchaseSerializer,purchaseDeserializer); 

6.3.5 Kafka Streams and Schema Registry
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1.  
2.  

IMPORTANT Schema Registry provides both a  and a , butJSONSerde JSONSchemaSerde

they are not interchangeable! The  is for Java objects that use JSONJSONSerde

for describing the object. The  is for objects that use JSONSchemaSerde

 as the formal definition of the object.JSONSchema

So how would the  change to work with Schema Registry? All that isZMartKafkaStreamsApp

required is to use Schema Registry aware Serde instances. The steps for creating a Schema
Regeistry aware Serde are simple:

Create an instance of one the provided Serde instances
Configure it with the URL for a Schema Registry server.

Here are the concrete steps you’ll take:

Instantiating the KafkaProtobufSerde providing the class type as a constructor
parameter

The URL for the location of a Schema Registry instance

Putting the URL in a HashMap

Calling the KafkaProtobufSerde#configure method

So, with just few lines of code, you’ve created a Schema Registry aware Serde that you can use
in your Kafka Streams application.

IMPORTANT Since Kafka Streams contains consumer and producer clients, the same rules
for schema evolution and compatibility apply

We’ve covered a lot of ground so far in developing a Kafka Streams application. We still have
much more to cover, but let’s pause for a moment and talk about the development process itself
and how you can make life easier for yourself while developing a Kafka Streams application.

KafkaProtobufSerdePurchase> protobufSerde =
 new KafkaProtobufSerde<>(Purchase.class); 
String url = "https://...";                                 
Map<String, Object> configMap = new HashMap<>();
configMap.put(
  AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG,
  url);                                             
protobufSerde.configure(configMap, false);   
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You’ve built the graph to process purchase records from ZMart in a streaming fashion, and you
have three processors that write out to individual topics. During development it would certainly
be possible to have a console consumer running to view results. But instead of using an external
tool, it would be more convenient to have your Kafka Streams application print or log from
anywhere you want inside the topology. This visual type of feedback directly from the
application is very efficient during the development process. You enable this output by using the 

 or the  method.KStream.peek() KStream.print()

The  allows you to perform a stateless action (via the KStream.peek() ForeachAction

interface) on each record flowing throw the  instance. It’s important to note that thisKStream

operation is not expected to alter the incoming key and value. Instead the  operator is anpeek

opportunity to print, log, or collect information at arbitrary points in the topology. Let’s take a
another look at Yelling application, but now add a way to view the records before and after the
application starts "yelling":

Listing 6.12 Printing records flowing through the Yelling application found in
bbejeck/chapter_6/KafkaStreamsYellingAppWithPeek

Printing records to the console as they enter the application

Printing the yelling events

Here we’ve strategically placed these  operations that will print records to the console, bothpeek

pre and post the  call.mapValues

The  method is purpose built for printing records. Some of the previous codeKStream.print()

snippets contained examples of using it, but we’ll show it again here.

6.4 Interactive development

// Details left out for clarity

ForeachAction<String, String> sysout =
  (key, value) ->
   System.out.println("key " + key
   + " value " + value);

builder.stream("src-topic",
  Consumed.with(stringSerde, stringSerde))
  .peek(sysout)      
  .mapValues(value -> value.toUpperCase())
  .peek(sysout)      
  .to( "out-topic",
  Produced.with(stringSerde, stringSerde));
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Listing 6.13 Printing records using KStream.print found in
bbejeck/chapter_6/KafkaStreamsYellingApp

Printing the upper cased lettters this is an example of a terminal method in Kafka
Streams

In this case, you’re printing the upper-cased words immediately after transformation. So what’s
the difference between the two approaches? You should notice with the KStream.print()
operation, you didn’t chain the method calls together like you did using  andKStream.peek()

this is becuase  is a terminal method.print

Terminal methods in Kafka Streams have a return signature of , hence you can’t chainvoid

another method call afterward, as it terminates the stream. The terminal methods in KStream
interface are , , , and . Asside from the  method we justprint foreach process to print

discussed, you’ll use  when you write results back to Kafka. The  method is useful forto foreach

performing an operation on each record when you don’t need to write the results back to Kafka,
such as calling a microservice. The  method allows for integrating the DSL withprocess

Processor API which we’ll discuss in an upcoming chapter.

While either printing method is a valid approach, my preference is to use the  methodpeek

because it makes it easy to slip a print statement into an existing stream. But this is a personal
preference so ultimately it’s up to you to decide which approach to use.

So far we’ve covered some of the basic things we can do with a Kafka Streams application, but
we’ve only scratched the surface. Let’s continue exploring what we can do with an event stream.

So far you’ve seen how to apply operations to events flowing through the Kafka Streams
application. But you are processing every event in the stream and in the same manner. What if
there are events you don’t want to handle? Or what about events with a given attribute that
require you to handle them differently?

Fortunately, there are methods available to provide you the flexibility to meet those needs. The 
 method drops records from the stream not matching a given predicate. The KStream#filter

 allows you split the original stream into branches for different processing basedKStream#split

on provided predicate(s) to reroute records. To make these new methods more concrete let’s
update the requirements to the original ZMart application:

6.5 Choosing which events to process

// Details left out for clarity
 ...
 KStream<...> upperCasedStream = simpleFirstStream.mapValues(...);
 upperCasedStream.print(Printed.toSysOut()); 
 upperCasedStream.to(...);

165

©Manning Publications Co. To comment go to liveBook  
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion


The ZMart updated their rewards program and now only provides points for purchases
over $10. With this change it would be ideal to simply drop any non-qualifying purchases
from the rewards stream.
ZMart has expanded and has bought an electronics chain and a popular coffee house
chain. All purchases from these new stores will flow into the streaming application
you’ve set up, but you’ll need to separate those purchases out for different treatment
while still processing everything else in the application the same.

NOTE From this point forward, all code examples are pared down to the essentials
to maximize clarity. Unless there’s something new to introduce, you can 
assume that the configuration and setup code remain the same. These 
truncated examples aren’t meant to stand alone—the full code listing for this
e x a m p l e  c a n  b e  f o u n d  i n 
src/main/java/bbejeck/chapter_6/
ZMartKafkaStreamsFilteringBranchingApp.java.

The first update is to remove non-qualifying purchases from the rewards stream. To accomplish
this, you’ll insert a  before the  method. The KStream.filter() KStream.mapValues filter

takes a  interface as a parameter, and it has one method defined, , which takesPredicate test()

two parameters—the key and the value—although, at this point, you only need to use the value.

NOTE There is also , which performs filtering, but in reverse.KStream.filterNot

Only records that  match the given predicate are processed further in thedon’t
topology.

By making these changes, the processor topology graph changes as shown in figure 6.12.

Listing 6.14 Adding a filter to drop purchases not meeting rewards criteria

The original rewards stream

Mapping the purchase into a  objectRewardAccumulator

The  method, which takes a  instance as aKStream.filter Predicate<K,V>

parameter

You have now successfully updated the rewards stream to drop purchases that don’t qualify for
reward points.

6.5.1 Filtering purchases

KStream<String, RewardAccumulatorProto.RewardAccumulator> rewardsKStream =
   retailPurchaseKStream 
   .mapValues(rewardObjectMapper) 
   .filter((key,potentialReward) ->

potentialReward.getPurchaseTotal() > 10.00); 
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1.  
2.  

3.  

There are new events flowing into the purchase stream and you need to process them differently.
You’ll still want to mask any credit card information, but after that the purchases from the
acquired coffee and electronics chain need to get pulled out and sent to different topics.
Additionally, you need to continue to process the original events in the same manner.

What you need to do is split the original stream into 3 sub-streams or branches; 2 for handling
the new events and 1 to continue processing the original events in the topology you’ve already
built. This splitting of streams sounds tricky, but Kafka Streams provides an elegant way to do
this as we’ll see now. Here’s an illustration demonstrating the conceptual idea of what splitting a
stream involves:

Figure 6.7 Creating branches for the two specific purchase types

The general steps you’ll take to split a stream into branches are the following:

Use the  method which returns a  objectKStream.split() BranchedKStream

Call  with a with a pair of  and BranchedKStream.branch() Predicate Branched

objects as parameters. The  contains a condition when tested against a recordPredicate

returns either true or false. The  object contains the logic for processing aBranched

record. Each execution of this method creates a new branch in the stream.
You complete the branching with a call to either BranchedKStream.defaultBranch()
or . If you define a default branch any recordsBranchedKStream.noDefaultBranch()

not matching all the predicates are routed there. With the  option,noDefaultBranch

non-matching records get dropped. When calling either of the branching termination
methods a  is returned. The   contain Map<String, KStream<K, V> Map may KStream

objects for new branch, depending on how you’ve built the  objects. We’llBranched

cover more options for branching soon.

The  acts as a logical gate for it’s companion  object. If the conditionPredicate Branched

returns , then the "gate" opens and the record flows into the processor logic for that branch.true

6.5.2 Splitting/branching the stream
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IMPORTANT When splitting a  you can’t change the types of the keys or values, asKStream

each branch has the same types as the parent or original branch.

In our case here, you’ll want to filter out the two purchase types into their own branch. Then
create a default branch consisting of everything else. This default branch is really the original
purchase stream so it will handle all of the records that don’t match either predicate.

Now that we’ve reviewed the concept let’s take a look at the code you’ll implement:

Listing 6.15 Splitting the stream found in
bbejeck/chapter_6/ZMartKafkaStreamsFilteringBranchingApp

Create the predicates for determining branches

Splitting the stream

Writing the coffee purchases out to a topic

Writing the electronic purchases out to a topic

The default branch where non-matching records go

Here in this example you’ve split the purchase stream into two new streams, one each for the
coffee and electronic purchases. Branching provides an elegant way to process records
differently within the same stream. While in this initial example each one is a single processor
writing records to a topic, these branched streams can be as complex as you need to make them.

//Several details left out for clarity

Predicate<String, Purchase> isCoffee =
  (key, purchase) ->
   purchase.getDepartment().equalsIgnoreCase("coffee"); 

Predicate<String, Purchase> isElectronics =
  (key, purchase) ->
  purchase.getDepartment().equalsIgnoreCase("electronics"); 

purchaseKStream.split())  
.branch(isCoffee,
 Branched.withConsumer(coffeeStream -> coffeeStream.to("coffee-topic"))) 
.branch(isElectronics,
  Branched.withConsumer(electronicStream ->
  electronicStream.to("electronics"))  
.defaultBranch(Branched.withConsumer(retailStream ->
                retailStream.to("purchases")); 
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NOTE This example sends records to several different topics. Although you can
configure Kafka to automatically create topics it’s not a good idea to rely on
this mechanism. If you use auto-creation, the topics are configured with
default values from the server.config properties file, which may or may not be
the settings you need. You should always think about what topics you’ll need,
the number of partitions, the replication factor and create them before
running your Kafka Streams application.

In this branching example, you’ve split out discrete  objects, which stand alone andKStream

don’t interact with anything else in the application and that is perfectly an acceptable approach.
But now let’s consider a situation where you have an event stream you want to tease out into
separate components, but you need to combine the new streams with existing ones in the
application.

Consider you have IoT sensors and early on you combined two related sensor readings into one
topic, but as time went on newer sensors started to send results to distinct topics. The older
sensors are fine as is and it would be cost prohibited to go back and make the necessary changes
to fit the new infrastructure. So you’ll need an application that will split the legacy stream into
two streams  combine or merge them with the newer streams consisting of a single readingand
type. Another factor is that any proximity readings are reported in feet, but the new ones are in
meters, so in addition to extracting the proximity reading into a separate stream, you need to
convert the reading values into meters.

Now let’s walk through an example of how you’ll do splitting and merging starting with the
splitting

Listing 6.16 Splitting the stream in a way you have access to new streams

Splitting the stream and providing the base name for the map keys

Creating the temperature reading branch and naming the key

Creating the proximity sensor branch with a ValueMapper function

//Details left out for clarity

KStream<String, SensorProto.Sensor> legacySensorStream =
    builder.stream("combined-sensors", sensorConsumed);

 Map<String, KStream<String, SensorProto.Sensor>> sensorMap =
        legacySensorStream.split(Named.as("sensor-")) 
        .branch(isTemperatureSensor, Branched.as("temperature")) 
        .branch(isProximitySensor,
            Branched.withFunction(
                ps -> ps.mapValues(feetToMetersMapper), "proximity")) 
        .noDefaultBranch(); 
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Specifying no default branch, because we know all records fall into only two
categories

What’s happening overall is each branch call places an entry into a  where the key is theMap

concatenation of name passed into the  method and the string provided in the KStream.split()

 parameter and the value is a  instance resulting from each  call.Branched KStream branch

In the first branching example, the split and subsequent branching calls also returns a , but inMap

that case it would have been empty. The reason is that when you pass in a 
 (a  interface) it’s a void method, it returnsBranched.withConsumer java.util.Consumer

nothing, hence no entry is placed in the map. But the  (a Branched.withFunction

 interface) accepts a  object as a parameter and java.util.Function KStream<K, V> returns a
 instance so it goes into the map as an entry. At annotation three, the functionKStream<K, V>

takes the branched  object and executes a  to convert the proximity sensorKStream MapValues

reading values from feet to meters, since the sensor records in the updated stream are in meters.

I’d like to point out some subtlety here, the  call at annotation two does not provide abranch

function, but it still ends up in the resulting , how is that so? When you only provide a Map

 parameter with name, it’s treated the same if you had used a Branched java.util.Function

that simply returns the provided  object, also known as an . So what’sKStream identity function
the determining factor to use either  or ? IBranched.withConsumer Branched.withFunction

can answer that question best by going over the next block of code in our example:

Listing 6.17 Splitting the stream and gaining access to the newly created streams

The stream with the new temperature IoT sensors

The stream with the updated proximity IoT sensors

Merging the legacy temperature readings with the new ones

Merging the updated to meters proximity stream with the new proximity stream

To refresh your memory, the requirements for splitting the stream were to extract the different
IoT sensor results by type and place them in the same stream as the new updated IoT results and

KStream<String, SensorProto.Sensor> temperatureSensorStream =  
      builder.stream("temperature-sensors", sensorConsumed);

KStream<String, SensorProto.Sensor> proximitySensorStream =  
      builder.stream("proximity-sensors", sensorConsumed);

temperatureSensorStream.merge(sensorMap.get("sensor-temperature"))
      .to("temp-reading", Produced.with(stringSerde, sensorSerde)); 

proximitySensorStream.merge(sensorMap.get("sensor-proximity"))
     .to("proximity-reading", Produced.with(stringSerde, sensorSerde)); 
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convert any proximity readings into meters. You accomplish this task by extracting the KStream
from the map with the corresponding keys created in the branching code in the previous code
block.

To accomplish putting the branched legacy stream with the new one, you use a DSL operator 
 which is the functional analog of  it merges different KStream.merge KStream.split KStream

objects into one. With  there is no ordering guarantees between records of theKStream.merge

different streams, but the relative order of each stream remains. In other words the order of
processing between the legacy stream and the updated one is not guaranteed to be in any order
but the order inside in each stream is preserved.

So now it should be clear why you use  or Branched.withConsumer Branched.withFunction

in the latter case you need to get a handle on the branched  so you can integrate into theKStream

outer application in some manner, while with the former you don’t need access to the branched
stream.

That wraps up our discussion on branching and merging, so let’s move on to cover naming
topology nodes in the DSL.

When you build a topology in the DSL, Kafka Streams creates a graph of processor nodes,
giving each one a unique name. Kafka Streams generates these node names by taking the name
the function of the processor and appending globally incremented number. To view this
description of the topology, you’ll need to get the  object. Then you canTopologyDescription

view it by printing it to the console.

Listing 6.18 Getting a description of the topology and printing it out

Running the code above yields this output on the console:

Listing 6.19 Full topology description of the KafkaStreamsYellingApplication

The source node name

6.5.3 Naming topology nodes

TopologyDescription topologyDescription =
  streamsBuilder.build().describe();
System.out.println(topologyDescription.toString());

Topologies:
   Sub-topology: 0
    Source: KSTREAM-SOURCE-0000000000 (topics: [src-topic])  
      --> KSTREAM-MAPVALUES-0000000001  
    Processor: KSTREAM-MAPVALUES-0000000001 (stores: []) 
      --> KSTREAM-SINK-0000000002
      <-- KSTREAM-SOURCE-0000000000  
    Sink: KSTREAM-SINK-0000000002 (topic: out-topic) 
      <-- KSTREAM-MAPVALUES-0000000001
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The processor that the source node sends records to

The name of the map values processor

The processor that provided input the the map values processor

The name of the sink node

From looking at the names, you can see the first node ends in a zero, with the second node 
 ending in a one etc. The  listing indicates a portion of theKSTREAM-MAPVALUES Sub-topology

topology that is a distinct source node and every processor downstream of the source node is a
member of the given . If you were to define a second stream with a new source,Sub-topology

then that would show up as . We’ll see more about sub-topologies a bit laterSub-topology: 1

in the book when we cover repartitioning.

The arrows  pointing to the right show the flow of records in the topology. The arrows pointing-

left  indicate the lineage of the record flow, where the current processor received records one.-

Note that a processor could forward records to more than one node and a single node could get
input from multiple nodes.

Looking at this topology description, it’s easy to get sense of the structure of the Kafka Streams
application. However, once you start building more complex applications, the generic names
with the numbers become hard to follow. For this reason, Kafka Streams provides a way to name
the processing nodes in the DSL.

Almost all the methods in the Streams DSL have an overload that takes a  object whereNamed

you can specify the name used for the node in the topology. Being able to provide the name is
important as you can make it relate to the processing nodes  in your application, not just whatrole
the processor . Configuration objects like  and  have a does Consumed Produced withName

method for giving a name to the operator. Let’s revisit the KafkaStreamsYellingApplication
but this time we’ll add a name for each processor:

Listing 6.20 Updated KafkaStreamsYellingApplication with names

Naming the source node

Giving a name to the mapValues processor

Naming the sink node

builder.stream("src-topic",
               Consumed.with(stringSerde, stringSerde)
                       .withName("Application Input")) 
       .mapValues((key, value) -> value.toUpperCase(),
                  Named.as("Convert to Yelling")) 
       .to("out-topic",
            Produced.with(stringSerde, stringSerde)
                    .withName("Application Output")) 
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And the description from the updated topology with names will now look like this:

Listing 6.21 Full topology description with provided names

Now you can view the topology description and get a sense of the role for each processor in the
overall application, instead of just what the processor itself does. Naming the processor nodes
becomes critical for your application when there is state involved, but we’ll get to that in a later
chapter.

Next we’ll take a look at how you can use dynamic routing for your Kafka Streams application.

Say you need to differentiate which department of the store the purchase comes
from—​housewares, say, or shoes. You can use dynamic routing to accomplish this task on a
per-record basis. The  method has an overload that takes a KStream.to() TopicNameExtractor

which will dynamically determine the correct Kafka topic name to use. Note that the topics need
to exist ahead of time, by default Kafka Streams will not create extracted topic names
automatically.

So, if we go back to the branching example each object has a  field, so instead ofdepartment

creating a branch we will process these events with everything else and use the 
 to determine the topic where we route the events to.TopicNameExtractor

The  has one method  which you implement to provide the logicTopicNameExtractor extract

for determining the topic name. What you’ve going to do here is check if the department of the
purchase matches one of the special conditions for routing the purchase events to a different
topic. If it does match, then return the name of the department for the topic name (knowing
they’ve been created ahead of time). Otherwise return the name of topic where the rest of the
purchase events are sent to.

Topologies:
   Sub-topology: 0
    Source: Application-Input (topics: [src-topic])
      --> Convert-to-Yelling
    Processor: Convert-to-Yelling (stores: [])
      --> Application-Output
      <-- Application-Input
    Sink: Application-Output (topic: out-topic)
      <-- Convert-to-Yelling

6.5.4 Dynamic routing of messages
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Listing 6.22 Implementing the extract method to determine the topic name based on
purchase department

Checking if the department matches one of special cases

The default case for the topic name

NOTE The  interface only has one method to implement, I’veTopicNameExtractor

chosen to use a concrete class because you can then write a test for it.

Although the code example here is using the value to determine the topic to use, it could very
well use the key or a combination of the key and the value. But the third parameter to the 

 method is a  object. Simply stated the TopicNameExtractor#extract RecordContext

 is the context associated with a record in Kafka Streams.RecordContext

The context contains metadata about the record- the original timestamp of the record, the original
offset from Kafka, the topic and partition it was received, and the . We discussedHeaders

headers in the chapter on Kafka clients, so I won’t go into the details again here. One of the
primary use cases for headers is routing information, and Kafka Streams exposes them via the 

. Here’s one possible example for retrieving the topic name via a ProcessorContext Header

In this example you’ll extract the  from the record context. You first need to check thatHeaders

the  are not null, then you proceed to drill down to get the specific routing information.Headers

From there you return the name of topic to use based on the value stored in the . Since Header

 are optional and may not exist or contain the specific "routing"  you’ve definedHeaders Header

a default value in the  and return it in the case where the output topicTopicNameExtractor

name isn’t found.

@Override
public String extract(String key,
                      Purchase value,
                      RecordContext recordContext) {
    String department = value.getDepartment();
    if (department.equals("coffee")
            || department.equals("electronics")) { 
        return department;
    } else {
        return "purchases";             
    }
}
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Listing 6.23 Using information in a Header for dynamically determining the topic name to
send a record to

Retrieving the headers from the RecordContext

Extracting the specific routing Header

Returning the name of the topic to use from the  valueHeader

If no routing information found, return a default topic name

Now you’ve learned about using the Kafka Streams DSL API.

public String extract(String key,
                      PurchaseProto.Purchase value,
                      RecordContext recordContext) {

        Headers headers = recordContext.headers(); 
       if (headers != null) {
        Iterator<Header> routingHeaderIterator =
          headers.headers("routing").iterator();

        if (routingHeaderIterator.hasNext()) {
             Header routing = routingHeaderIterator.next(); 

             return new String(routing.value(),
                               StandardCharsets.UTF_8); 
        }
      }
       return defaultTopicName; 
    }
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Kafka Streams is a graph of processing nodes called a topology. Each node in the
topology is responsible for performing some operation on the key-value records flowing
through it. A Kafka Streams applciation is minimally composed of a source node that
consumes records from a topic and sink node that produces results back to a Kafka topic.
You configure a Kafka Streams application minimally with the application-id and the
bootstrap servers configuration. Multiple Kafka Streams applications with the same
application-id are logically considered one application.
You can use the  function to map incoming record values to newKStream.mapValues

values, possibly of a different type. You also learned that these mapping changes
shouldn’t modify the original objects. Another method, , performs the sameKStream.map

action but can be used to map both the key and the value to something new.
To selectively process records you can use the  operation where recordsKStream.filter

that don’t match a predicate get dropped. A predicate is a statement that accepts an object
as a parameter and returns  or  depending on whether that object matches atrue false

given condition. There is also the  method that does the opposite - itKStream.filterNot

only forwards key-value pairs that  the predicate.don’t match
The  method uses predicates to split records into new streams when aKStream.branch

record matches a given predicate. The processor assigns a record to a stream on the first
match and drops unmatched records. Branching is an elegant way of splitting a stream up
into multiple streams where each stream can operate independantly. To perform the
opposite action there is  which you can use to merge 2  objectsKStream.merge KStream

into one stream.
You can modify an existing key or create a new one using the KStream.selectKey
method.
For viewing records in the topology you can use either  or KStream.print

 (by providing a  that does the acutal printing). KStream.peek ForeachAction

 is a terminal operation meaning that you can’t chain methods afterKStream.print

calling it.  returns a  instance and this makes it easier to embedKStream.peek KStream

before and after  methods.KStream

You can view the generated graph of a Kafka Streams application by using the 
 method. All graph nodes in Kafka Streams have auto-generatedTopology.describe

names by default which can make the graph hard to understand when the application
grows in complexity. You can avoid this situation by providing names to each KStream
method so when you print the graph, you have names describing the role of each node.
You can route records to different topics by passing a  as aTopicNameExtractor

parameter to the  method. The  can inspect the key,KStream.to TopicNameExtractor

value, or headers to determine the corect topic name to use for producing records back to
Kafka. The topics must be created ahead of time.

6.6 Summary
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7
This chapter covers

In the last chapter, we dove headfirst into the Kafka Streams DSL and built a processing
topology to handle streaming requirements from purchase activity. Although you built a
nontrivial processing topology, it was one dimensional in that all transformations and operations
were stateless. You considered each transaction in isolation, without any regard to other events
occurring at the same time or within certain time boundaries, either before or after the
transaction. Also, you only dealt with individual streams, ignoring any possibility of gaining
additional insight by joining streams together.

In this chapter, you’ll extract the maximum amount of information from the Kafka Streams
application. To get this level of information, you’ll need to use state. State is nothing more than
the ability to recall information you’ve seen before and connect it to current information. You
can utilize state in different ways. We’ll look at one example when we explore the stateful
operations, such as the accumulation of values, provided by the Kafka Streams DSL.

We’ll get to another example of using state when we’ll discuss the joining of streams. Joining
streams is closely related to the joins performed in database operations, such as joining records
from the employee and department tables to generate a report on who staffs which departments
in a company.

We’ll also define what the state needs to look like and what the requirements are for using state

Streams and state

Adding stateful operations to Kafka Streams
Using state stores in Kafka Streams
Enriching event streams with joins
Learning how timestamps drive Kafka Streams
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when we discuss state stores in Kafka Streams. Finally, we’ll weigh the importance of
timestamps and look at how they can help you work with stateful operations, such as ensuring
you only work with events occurring within a given time frame or helping you work with data
arriving out of order.

Before we go on with examples, let’s provide a description of the difference between stateless
and stateful. In a stateless operation there is no additional information retrieved, what’s present is
enough to complete the desired action. On the other hand, a stateful operation is more complex
because it involves keeping the state of previous event. A basic example of a stateful operation is
an aggregation.

For example, consider this function:

Listing 7.1 Stateless function example

Here all the  object contains all the information needed to execute the predicate, there’sWidget

no need to lookup or store data. Now let’s take a look at an example of a stateful function

Listing 7.2 Stateful function example

Here in the  function, we are computing the total of widgets with the same id. To performcount

the count we first must look up the current number by id, increment it, and then store the new
number. If no number is found, we go ahead and provide an initial value, a 1 in this case.

While this is a trivial example of using state, the principals involved are what matter here. We
are using a common identifier across different objects, called a key, to store and retrieve some
value type to track a given state that we want to observe. Additionally, we use an initializing
function to produce a value when one hasn’t been calculated yet for a given key.

These are the core steps we’re going to explore and use in this chapter, although it will be far
more robust than using the humble !HashMap

7.1 Stateful vs stateless

public boolean numberIsOnePredicate (Widget widget) {

    return widget.number == 1;
}

public int count(Widget widget) {

  int widgetCount = hashMap.compute(widget.id,
   (key, value) -> (value == null) ? 1 : value + 1)

  return widgetCount;
}
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So the next question is why you need to use state when processing an event stream? The answer
is any time you need to track information or progress across related events. For example consider
a Kafka Streams application tracking the progress of players in an online poker game.
Participants play in rounds and their score from each round is transmitted to a server then reset to
zero for the start of the next round. The game server the produces the players score to a topic.

A stateless event stream will give you the opportunity to work with the current score from the
latest round. But for tracking their total, you’ll need to keep the state of all their previous scores.

This scenario leads us to our first example of a stateful operation in Kafka Streams. For this
example we’re going to use a reduce. A reduce operation takes multiple values and reduces or
merges them into a single result. Let’s look at an illustration to help understand how this process
works:

Figure 7.1 A reduce takes several inputs and merges them into a single result of the same type

As you can see in the illustration, the reduce operation takes five numbers and "reduces" them
down to a single result by summing the numbers together. So Kafka Streams takes an unbounded
stream of scores and continues to sum them per player. At this point we’ve described the reduce
operation itself, but there’s some additional information we need to cover regarding how Kafka
Streams sets up to perform the reduce.

When describing our online poker game scenario, I mentioned that there are individual players,
so it stands to reason that we want to calculate total scores for each . But we aren’tindividual
guaranteed the order of the incoming player scores, so we need the ability to group them.
Remember Kafka works with key-value pairs, so we’ll assume the incoming records take the
form of playerId-score for the key-value pair.

So if the key is the player-id, then all Kafka Streams needs to do is bucket or group the scores by
the id and you’ll end up with the summed scores per player. It will probably be helpful for us to

7.2 Adding stateful operations to Kafka Streams
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view an illustration of the concept:

Figure 7.2 Grouping the scores by player-id ensures we only sum the scores for the individual players

So by grouping the scores by player-id, you are guaranteed to only sum the scores for each
player. This group-by functionality in Kafka Streams is similar to the SQL group-by when
performing aggregation operations on a database table.

NOTE At this point going forward, I’m not going to show the basic setup code
needed i.e. creating the  instance and serdes for the recordStreamBuilder

types. You’ve learned in the previous chapter how these components fit into
an application, so you can refer back if you need to refresh your memory.

Now let’s see the reduce in action with Kafka Streams

Listing 7.3 Performing a reduce in Kafka Streams to show running total of scores in an
online poker game

Grouping by key so that scores are calculated by individual keys

Reducer as a method reference

Converting the KTable to a stream

Writing the results out to a topic

This Kafka Streams application results in key-value pairs like "Neil, 650" and it’s a continual
stream of summed scores, continually updated.

KStream<String, Double> pokerScoreStream = builder.stream("poker-game",
        Consumed.with(Serdes.String(), Serdes.Double()));

pokerScoreStream
        .groupByKey() 
        .reduce(Double::sum,  
                Materialized.with(Serdes.String(), Serdes.Double()))
        .toStream()  
        .to("total-scores",
                Produced.with(Serdes.String(), Serdes.Double())); 
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Looking over the code you can see you first perform a  call. It’s important to notegroupByKey

that grouping by key is a prerequisite for stateful aggregations in Kafka Streams. So what do you
do when there is no key or you need to derive a different one? For the case of using a different
key, the  interface provides a  method that accepts a KStream groupBy KeyValueMapper

parameter that you use to select a new key. We’ll see an example of selecting a new key in the
next example.

We should take a quick detour to briefly discuss the return type of the group-by call, which is a 
. The  is an intermediate object and it provides methods KGroupedStream KGroupedStream

, , and . In most cases, you won’t need to keep a reference to the aggregate count reduce

, you’ll simply execute the method you need and its existence is transparent toKGroupedStream

you.

What are the cases when you’d want to keep a reference to the ? Any time youKGroupedStream

want to perform multiple aggregation operations from the same key grouping is a good example.
We’ll see one when we cover windowing later on. Now let’s get back to the discussion of our
first stateful operation.

Immediately after the  call we execute , and as I’ve explained before the groupByKey reduce

 object is transparent to us in this case. The  method has overloadsKGroupedStream reduce

taking anywhere from one to three parameters, in this case we’re using the two parameter version
which accepts a  interface and a  configuration object as parameters. ForReducer Materialized

the  you’re using a method reference to the static method  which sums theReducer Double.sum

previous total score with the newest score from the game.

The  object provides the serdes used by the state store for (de)serializing keys andMaterialized

values. Under the covers, Kafka Streams uses local storage to support stateful operations. The
stores store key-value pairs as byte arrays, so you need to provide the serdes to serialize records
on input and deserialize them on retrieval. We’ll get into the details of state stores in an
upcoming section.

After  you call  because the result of all aggregation operations in Kafkareduce toStream

Streams is a  object (which we haven’t covered yet, but we will in the next chapter), andKTable

to forward the aggregation results to downstream operators we need to convert it to a .KStream

Then we can send the aggregation results to an output topic via a sink node represented by the to
operator. But stateful processors don’t have the same forwarding behavior as stateless ones, so
we’ll take a minute here to describe that difference.

Kafka Streams provides a caching mechanism for the results of stateful operations. Only when
Kafka Streams flushes the cache are stateful results forwarded to downstream nodes in the

7.2.1 Group By details
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topology. There are two scenarios when Kafka Streams will flush the cache. The first when the
cache is full, which by default is 10MB, or secondly when Kafka Streams commits, which is
every thirty seconds with default settings. An illustration of this will help to cement your
understanding of how the caching works in Kafka Streams.

Figure 7.3 Caching intermediate results of an aggregation operation

So from looking at the illustration you can see that the cache sits in front forwarding records and
as a result you won’t observe several of the intermediate results, but you will always see the
latest updates at the time of a cache flush. This also has the effect of limiting writes to the state
store and its associated changelog topic. Changelog topics are internal topics created by Kafka
Streams for fault tolerance of the state stores. We’ll cover changelog topics in an upcoming
section.

TIP If you want to observe every result of a stateful operation you can disable the
cache by setting the StreamsConfig.CACHE_MAX_BYTES_BUFFERING_CONFIG
setting to 0.

At this point you’ve learned about one stateful operator, but we have another option for stateful
operations. If you noticed with , since you are merging record values, it’s expected that a reduce

 returns the same type as a result. But sometimes you’ll want to build a different resultreduce

type and for that you’ll want to use the  operation. The concept behind an aggregationaggregate

is similar, but you have the flexibility to return a type different from the record value. Let’s look
at an example to answer why you would use  over .aggregate reduce

7.2.2 Aggregation vs. reducing
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Imagine you work for ETrade you need to create an application that tracks stock transactions of
individual customers, not large institutional traders. You want to keep a running tally of the total
volume of shares bought and sold, the dollar volume of sales and purchases, and the highest and
lowest price seen at any point.

To provide this type of information, you’ll need to create a custom data object. This where the 
 comes into play, because it allows for a different return type from the incomingaggregate

value. In this case the incoming record type is singular stock transaction object, but the
aggregation result will be a different type containing the required information listed in the
previous paragraph.

Since we’ll need to put this custom object in a state store which requires serialization, we’ll
create a Protobuf schema so we can generate it and leverage utility methods for creating Protobuf
serdes . Since this application has detailed aggregation requirements, we’ll implement the 

 interface as a concrete class which will allow us to test itAggregator<K, V, VR>

independently.

Let’s take a look at part of the aggregator implementation. Since this class contains some logic
not directly related to learning Kafka Streams, I’m only going to show partial information on the
class, to view full details, consult the source code and look for the 

 class.bbejeck.chapter_7.aggregator.StockAggregator

Listing 7.4 Aggregator implementation used for creating stock transaction summaries

public class StockAggregator implements Aggregator<String,
                                             Transaction,
                                             Aggregate> {

    @Override
    public Aggregate apply(String key,
                          Transaction transaction,
                          Aggregate aggregate) { 

   Aggregate.Builder currAggregate =
                                aggregate.toBuilder(); 

    double transactionDollars =
           transaction.getNumberShares()
         * transaction.getSharePrice(); 

    if (transaction.getIsPurchase()) {       
        long currentPurchaseVolume =
             currAggregate.getPurchaseShareVolume();
        currAggregate.setPurchaseShareVolume(
                      currentPurchaseVolume
                     + transaction.getNumberShares());

        double currentPurchaseDollars =
                currAggregate.getPurchaseDollarAmount();

        currAggregate.setPurchaseDollarAmount(
                      currentPurchaseDollars
                      + transactionDollars);
    }
    //Further details left out for clarity
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Implementation of the apply method the second parameter is the incoming record,
third parameter is the current aggregate

Need to use a builder to update Protobuf object

Getting the total dollars of the transaction

If the transaction is a purchase update the purchase related details

I’m not going to go into much detail about the  instance here, since the main point ofAggregator

this section how to build a Kafka Streams aggregation application, the particulars of how you
implement the aggregation is going to vary from case to case. But from looking at this code, you
can see how we’re building up the transactional data for a given stock. Now let’s look at how
we’ll plug this  implementation into a Kafka Streams application to capture theAggregator

information. The source code for this example can be found in
bbejeck.chapter_7.StreamsStockTransactionAggregations

NOTE There’s some details I’m going to leave out of the source code as presented in
the book, printing records to the console for example. Going forward our
Kafka Streams applications will get more complex and it will be easier to
learn the essential part of the lesson if I only show the key details. Rest
assured the source code is complete and will be thoroughly tested to ensure
that the examples compile and run.

Listing 7.5 Kafka Streams aggregation

Creating the  instanceKStream

Grouping by key and providing a function to select the key

Calling the aggregate function

Converting the resulting aggregation  to a KTable KStream

Writing the aggregation results out to a topic

In annotation one, this application starts out in familiar territory, that is creating the KStream
instance by subscribing it to a topic and providing the serdes for deserialization. I want to call

 KStream<String, Transaction> transactionKStream =
    builder.stream("stock-transactions",
                   Consumed.with(stringSerde, txnSerde)); 

transactionKStream.groupBy((key, value) -> value.getSymbol(), 
      Grouped.with(Serdes.String(), txnSerde))
  .aggregate(() -> initialAggregate, 
            new StockAggregator(),
            Materialized.with(stringSerde, aggregateSerde))
  .toStream() 
  .peek((key, value) -> LOG.info("Aggregation result {}", value))
  .to("stock-aggregations", Produced.with(stringSerde, aggregateSerde)); 
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your attention to annotation two, as this is something new.

You’ve seen a group-by call in the reduce example, but in this example the inbound records are
keyed by the client-id and we need to group records by the stock ticker or symbol. So to
accomplish the key change, you use  which takes a , which is aGroupBy KeyValueMapper

lambda function in our code example. In this case the lambda returns the ticker symbol in the
record to enable to proper grouping.

Since the topology changes the key, Kafka Streams needs to repartition the data. I’ll discuss
repartitioning in more detail in the next section, but for now it’s enough to know that Kafka
Streams takes care of it for you.

Listing 7.6 Kafka Streams aggregation

Calling the aggregate function

Converting the resulting aggregation  to a KTable KStream

Writing the aggregation results out to a topic

At annotation three is where we get to the crux of our example, applying the aggregation
operation. Aggregations are little different from the reduce operation in that you need to supply
an initial value.

Providing an initial value is required, because you need an existing value to apply for the first
aggregation as the result could possibly be a new type. With the reduce, if there’s no existing
value, it simply uses the first one it encounters.

Since there’s no way for Kafka Streams to know what the aggregation will create, you need to
give it an initial value to seed it. In our case here it’s an instantiated 

 object, with all the fields uninitialized.StockAggregateProto.Aggregate

The second parameter you provide is the  implementation, which contains your logicAggregator

to build up the aggregation as it is applied to each record it encounters. The third parameter,
which is optional, is a  object which you’re using here to supply the serdesMaterialized

required by the state store.

The final parts of the application are used to covert the  resulting from the aggregation toKTable

a  so that you can forward the aggregation results to a topic. Here you’re also using a KStream

transactionKStream.groupBy((key, value) -> value.getSymbol(),
      Grouped.with(Serdes.String(), txnSerde))
  .aggregate(() -> initialAggregate, 
            new StockAggregator(),
            Materialized.with(stringSerde, aggregateSerde))
  .toStream() 
  .peek((key, value) -> LOG.info("Aggregation result {}", value))
  .to("stock-aggregations", Produced.with(stringSerde, aggregateSerde)); 
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 operate before the sink processor to view results without consuming from a topic. Using a peek

 operator this way is typically for development or debugging purposes only.peek

NOTE Remember when running the examples that Kafka Streams uses caching so
you won’t immediately observe results until the cache gets flushed either
because it’s full or Kafka Streams executes a commit.

So at this point you’ve learned about the primary tools for stateful operations in the Kafka
Streams DSL, reduce and aggregation. There’s another stateful operation that deserves mention
here and that is the  operation. The count operation is a convenience method for acount

incrementing counter aggregation. You’d use the  when you simply need a running tally ofcount

a total, say the number of times a user has logged into your site or the total number of readings
from an IoT sensor. We won’t show an example here, but you can see one in action in the source
code at bbejeck/chapter_7/StreamsCountingApplication.

In this previous example here where we built stock transaction aggregates, I mentioned that
changing the key for an aggregation requires a repartitioning of the data, let’s discuss this in a
little more detail in the next section.

In the aggregation example we saw how changing the key required a repartition. Let’s have a
more detailed conversation on why Kafka Streams repartition and how it works. Let’s talk about
the why first.

We learned in a previous chapter that the key of a Kafka record determines the partition. When
you modify or change the key, there’s a strong probability it belongs on another partition. So, if
you’ve changed the key and you have a processor that depends on it, an aggregation for example,
Kafka Streams will repartition the data so the records with the new key end up on the correct
partition. Let’s look at an illustration demonstrating this process in action:

7.2.3 Repartitioning the data
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Figure 7.4 Repartitioning: changing the original key to move records to a different partition

As you can see here, repartitioning is nothing more than producing records out to a topic and
then immediately consuming them again. When the Kafka Streams embedded producer writes
the records to the broker, it uses the updated key to select the new partition. Under the covers,
Kafka Streams inserts a new sink node for producing the records and a new source node for
consuming them, here’s an illustration showing the before and after state where Kafka Streams
updated the topology:
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Figure 7.5 Updated topology where Kafka Streams adds a sink and source node for repartitioning of the
data

The newly added source node creates a new sub-topology in the overall topology for the
application. A sub-topology is a portion of a topology that share a common source node. Here’s
an updated version of the repartitioned topology demonstrating the sub-topology structures:

Figure 7.6 Adding a sink and source node for repartitioning creates a new sub-topology

So any processors that come after the new source node are part of the new sub-topology.

What is the determining factor that causes Kafka Streams to repartition? If you have a key
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changing operation  there’s a downstream operation that relies on the key, such as a and
, aggregation, or join (we’ll get to joins soon). Otherwise, if there are nogroupByKey

downstream operations dependent on the key, Kafka Streams will leave the topology as is. Let’s
look a couple of examples to help clarify this point:

Listing 7.7 Examples of when repartitioning is needed

Using  followed by a groupBy reduce

Executing a  followed by a map groupByKey

Using a  to choose a new key and the resulting  later calls selectKey KStream

groupByKey

What these code examples demonstrate is when you execute an operation where you could
change the key, Kafka Streams sets an internal boolean flag, , to .repartitionRequired true

Since Kafka Streams can’t possibly know if you changed the key or not, when it finds an
operation dependent on the key and the internal flag evaluates to , it will automaticallytrue

repartition the data.

On the other hand, even if you change the key, but don’t do an aggregation or join, the topology
remains the same:

Listing 7.8 Examples of when repartitioning is not needed

Using a map but no downstream operation depends on the key

Using a selectKey but also no downstream operations rely on the key

In these examples, even if you updated the key, it doesn’t affect the results of the downstream
operators. For example filtering a record solely depends on if the predicate evaluates to  ortrue

not. Additionally, since these  instances write out to a topic, the records with updatedKStream

keys will end up on the correct partition.

So the bottom line is to only use key-changing operations ( , , ) when youmap flatMap transform

actually need to change the key. Otherwise it’s best to use processors that only work on values
i.e. ,  etc. this way Kafka Streams won’t needlessly repartition themapValues flatMapValues

myStream.groupBy(...).reduce(...)... 

myStream.map(...).groupByKey().reduce(...)... 

filteredStream = myStream.selectKey(...).filter(...); 
....
filteredStreaam.groupByKey().aggregate(...)... 

myStream.map(...).peek(...).to(...); 

myStream.selectKey(...).filter(...).to(...); 
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data. There are overloads to XXXValues methods that provide  to the key when*access*
updating a value, but changing the key in this case will lead to undefined behavior.

NOTE The same is true when grouping records before an aggregation. Only use 
 when you need to change the key, otherwise favor .groupBy groupByKey

It’s not that you should avoid repartitioning, but since it adds processing overhead it is a good
idea to only do it when required.

Before we wrap up coverage of repartitioning we should talk about an important additional
subject; inadvertently creating redundant repartition nodes and ways to prevent it. Let’s say you
have an application with two input streams. You need to perform an aggregation on the first
stream as well as join it with the second stream. Your code would look something like this:

Listing 7.9 Changing the key then aggregate and join

Changing the key of the original stream setting the "needsRepartition" flag

The second stream

Performing a group-by-key triggering a repartition

Performing a join between inputStreamOne and inputStreamTwo triggering
another repartition

This code example here is simple enough. You take the  and need you tooriginalStreamOne

change the key since you’ll need to do an aggregation and a join with it. So you use a selectKey
operation, which sets the  flag for the returned . Then yourepartitionRequired KStream

perform a  and then a  with . What is not obvious here is thatcount() join inputStreamOne

Kafka Streams will automatically create two repartition topics, one for the  operatorgroupByKey

and the other for the , but in reality you only need one repartition.join

It will help to fully understand what’s going on here by looking at the topology for this example.

// Several details omitted for clarity

KStream<String, String> originalStreamOne = builder.stream(...);

KStream<String, String> inputStreamOne = originalStreamOne.selectKey(...); 

KStream<String, String> inputStreamTwo = builder.stream(...); 

inputStreamOne.groupByKey().count().toStream().to(...); 

KStream<String, String> joinedStream =       
  inputStreamTwo.join(inputStreamOne,
                (v1, v2)-> v1+":"+v2,
                JoinWindows.ofTimeDifferenceWithNoGrace(...),
                StreamJoined.with(...);

....
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Notice there are two reparititions, but you only need the first one where the key is changed.

Figure 7.7 Redundant repartition nodes due to a key changing operation occurring previously in the
topology

When you used the key-changing operation on  the resulting , originalStreamOne KStream

, now carries the  setting. So any inputStreamOne repartitionRequired = true KStream

resulting from  that uses a processor involving the key will trigger a repartition.inputStreamOne

What can you do to prevent this from happening? There are two choices here; manually
repartition earlier which sets the repartition flag to , so any subsequent streams won’tfalse

trigger a repartition. The other option is let Kafka Streams handle it for you by enabling
optimizations. Let’s talk about using the manual approach first.

NOTE While repartition topics do take up disk space, Kafka Streams actively purges
records from them, so you don’t need to be concerned with the size on disk,
but avoiding redundant repartitions is still a good idea.

For the times when you might need to repartition the data yourself, the KStream API provides
the  method. Here’s how you use it to manually repartition after a key change:repartition

7.2.4 Proactive Repartitioning
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Listing 7.10 Changing the key, repartitioning then performing an aggregation and a join

Changing the key setting the "needs repartition" flag

Calling the repartition method and providing key-value serdes and a name for the
repartition topic

Performing an aggregation on the repartitioned stream

Performing a join with the repartitioned stream.

The code here has only one change, adding  operation before performing the repartition

. What happens as a result is Kafka Streams creates a new sink-source nodegroupByKey

combination that results in a new subtopology. Let’s take a look at the topology now and you’ll
see the difference compared to the previous one:

//Details left out of this example for clarity

KStream<String, String> originalStreamOne = builder.stream(...);
KStream<String, String> inputStreamOne = originalStreamOne.selectKey(...); 

KStream<String, String> inputStreamTwo = builder.stream(...);

KStream<String, String> repartitioned =
  inputStreamOne.repartition(Repartitioned   
                .with(stringSerde, stringSerde)
                .withName("proactive-repartition"));

repartitioned.groupByKey().count().toStream().to(...); 

KStream<String, String> joinedStream = inputStreamTwo.join(...) 

.....
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1.  
2.  
3.  
4.  

Figure 7.8 Now only one repartition node due to a proactive repartition also allows for more stateful
operations without repartitioning

This new sub-topology ensures that the new keys end up on the correct partition, and equally as
important, the returned  object has the  flag set to . As aKStream needsRepartition false

result, all downstream stateful operations that are descendants of this  object don’tKStream

trigger any further repartitions (unless the one of them changes the key again).

The  method accepts one parameter, the  configurationKStream.repartition Repartitioned

object.  allows you to specify:Repartitioned

The serdes for the key and value
The base name for the topic
The number of partitions to use for the topic
A  instance should you need customize the distribution of records toStreamPartitioner

partitions

Let’s pause on our current discussion and review some of these options. Since I’ve already
covered serdes and the  in the previous chapter, I’m going to leave themStreamPartitioner

out here.

Providing a base-name for the repartition topic is always a good idea. I’m using the term
base-name because Kafka Streams takes the name you provide and adds a prefix of
"<application-id>-" which comes from the value you supplied in the configs and a suffix of
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"-repartition".

So given an application-id of "streams-financial" and a name of "stock-aggregation" results in a
repartition topic named "streams-financial-stock-aggregation-repartition". The reason it’s a good
idea to always provide a name is two fold. First having a meaningful topic name is always
helpful to understand its role when you list the topics on your Kafka cluster.

Secondly, and probably more important, is the name you provide remains fixed even if you
change you topology upstream of the repartition. Remember, when you don’t provide names for
processors, Kafka Streams generates names for them, and part of the name includes a zero
padded number generated by a global counter.

So if you add or remove operators upstream of your repartition operation and you haven’t
explicitly named it, its name will change due to changes in global counter. This name shift can
be problematic when re-deploying an existing application. I’ll talk more about importance of
naming stateful components of a Kafka Streams application in an upcoming section.

NOTE Although there are four parameters for the  object, you don’tRepartitioned

have to supply all of them. You can use any combination of the parameters
that suit your needs.

Specifying the number of partitions for the repartition topic is particularly useful in two cases:
co-partitioning for joins and increasing the number of tasks to enable higher throughput. Let’s
discuss the co-partitioning requirement first. When performing joins, both sides must have the
same number of partitions (we’ll discuss why this is so in the upcoming joins section). So by
using the  operation, you can change the number partitions to enable a join, withoutrepartition

needing to change the original source topic, keeping the changes internal to the application.

If you recall from the previous chapter, the number of partitions drive the number of tasks which
ultimately determines the amount of active threads a application can have. So one way to
increase the processing power is to increase the number of partitions, since that leads to more
tasks and ultimate more threads that can process records. Keep in mind that tasks are evenly
assigned to all applications with the same id, so this approach to increase throughput is
particularly useful in an environment where you can elastically expand the number of running
instances.

While you could increase the number of partitions for the source topic, this action might not
always be possible. The source topic(s) of a Kafka Streams application are typically "public"
meaning other developers and applications use that topic and in most organizations, changes to
shared infrastructure resources can be difficult to get done.

7.2.5 Repartitioning to increase the number of tasks
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Let’s look at an example of performing a repartition to increase the number of tasks (example
found in bbejeck.chapter_7.RepartitionForThroughput)

Listing 7.11 Increasing the number of partitions for a higher task count

Increasing the number of partitions

Now this application will have 10 tasks which means there can up to 10 stream threads
processing records driven by the increase in the number of partitions.

You need to keep in mind however, that adding partitions for increased throughput will work
best when there is a fairly even distribution of keys. For example, if seventy percent of you key
space lands on one partition, increasing the number of partitions will only move those keys to a
new partition. But since the overall  of the keys is relatively unchanged, you won’t*distribution*
see any gains in throughput, since one partition, hence one task, is shouldering most of the
processing burden.

So far we’ve covered how you can proactively repartition when you’ve changed the key. But this
requires you to know when to repartition and always remember to do so, but is there a better
approach, maybe have Kafka Streams take care of this for you automatically? Well there is a
way, by enabling optimizations.

While you’re busy creating a topology with various methods, Kafka Streams builds a graph or
internal representation of it under the covers. You can also consider the graph to be a "logical
representation" of your Kafka Streams application. In your code, when you execute 

 method, Kafka Streams traverses the graph and builds the final orStreamBuilder#build

physical representation of the application.

At a high level, it works like this: as you apply each method, Kafka Streams adds a "node" to the
graph as depicted in the following illustration:

KStream<String, String> repartitioned =

initialStream.repartition(Repartitioned
            .with(stringSerde, stringSerde)
            .withName("multiple-aggregation")
            .withNumberOfPartitions(10)); 

7.2.6 Using Kafka Streams Optimizations
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Figure 7.9 Each call to a KStream method adds a node to the graph

When you make an additional method call, the previous "node" becomes the parent of the current
one. This process continues until you finish building your application.

Along the way, Kafka Streams will record metadata about the graph it’s building, specifically it
records if it has encountered a repartition node. Then when use the StreamsBuilder#build
method to create the final topology, Kafka Streams will examine the graph for redundant
repartition nodes, and if found, it will re-write your topology to have only one! This is opt-in
behavior for Kafka Streams, so to get this feature working, you’ll need to enable optimizations
by doing the following:

Listing 7.12 Enabling optimizations in Kafka Streams

Enabling optimizations via configuration

Passing properties to the StreamBuilder

So to enable optimizations you need to first set the proper configuration because by default it is
turned off. The second step is to pass the properties object to the StreamBuilder#build
method. Then Kafka Streams will optimize your repartition nodes when building the topology.

NOTE If you have more than one key-changing operation with a stateful one further
downstream the optimizing will not remove that repartition. It only takes away
redundant repartitions for single key-changing processor.

But when you enable optimizations Kafka Streams automatically updates the topology by
removing the three repartition nodes preceding the aggregation and inserts a new single
repartition node immediately after the key-changing operation which results in a topology that
looks like the illustration in the "Proactive Repartitioning" section.

So with a configuration setting and passing the properties to the  you canStreamBuilder

streamProperties.put(StreamsConfig.TOPOLOGY_OPTIMIZATION_CONFIG,
                     StreamsConfig.OPTIMIZE);   
builder.build(streamProperties);  
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automatically remove any unnecessary repartitions! The decision on which one to use really
comes down to personal preference, but by enabling optimizations it guards against you
overlooking where you may need it.

Now we’ve covered repartitioning, let’s move on to our next stateful operation, joins

Sometimes you may need to combine records from different event streams to "complete the
picture" of what your application is tasked with completing. Say we have stream of purchases
with the customer ID as the key and a stream of user clicks and we want to join them so we can
make connection between pages visted and purchases. To do this in Kafka Streams you use a
join operation. Many of you readers are already familiar with the concept of a join from SQL and
the relational database world and the concept is the same in Kafka Streams.

Let’s look at an illustration to demonstrate the concept of joins in Kafka Streams

Figure 7.10 Two Streams with the same keys but different values

From looking at the graphic above, there are two event streams that use the same values for the
key, a customer id for example, but the values are different. In one stream the values are
purchases and the other stream the values are links to pages the user clicked visiting the site.

IMPORTANT Since joins depend on identical keys from different topics residing on the
same partition, the same rules apply when it comes to using a key-changing
operation. If a  instance is flagged with , KafkaKStream repartitionRequired

Streams will partition it before the join operation. So all the information in the
repartitioning section of this chapter applies to joins as well.

In this section, you’ll take different events from two streams with the same key, and combine
them to form a new event. The best way to learn about joining streams is to look at a concrete

7.3 Stream-Stream Joins
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example, so we’ll return to the world of retail. Consider a big box retailer that sells just about
anything you can imagine. In an never ending effort to lure more customers in the store, the
retailer partners with a national coffee house and it embeds a cafe in each store.

To encourage customers to come into the store, the retailer has started a special promotion where
if you are a member of the customer-club and you buy a coffee drink from the embedded cafe
and a purchase in the store (in either order), they’ll automatically earn loyalty points at the
completion of your second purchase. The customers can redeem those points for items from
either store. It’s been determined that purchases must made within 30 minutes of each other to
qualify for the promotion.

Since the main store and the cafe run on separate computing infrastructure, the purchase records
are in two event streams, but that’s not an issue as they both use the customer id from the club
membership for the key, so it’s a simply a case of using a stream-stream join to complete the
task.

The next step is to perform the actual join. So let’s show the code for the join, and since there are
a couple of components that make up the join, I’ll explain them in a section following the code
example. The source code for this example can be found in
src/main/java/bbejeck/chapter_7/KafkaStreamsJoinsApp.java).

Listing 7.13 Using the  method to combine two streams into one new stream basedjoin()

on keys of both streams

The streams you will join

7.3.1 Implementing a stream-stream join

// Details left out for clarity

KStream<String, CoffeePurchase>
                     coffeePurchaseKStream = builder.stream(...) 

KStream<String, RetailPurchase>
                     retailPurchaseKStream = builder.stream(...) 

ValueJoiner<CoffeePurchase,
            RetailPurchase,
            Promotion> purchaseJoiner =
                                          new PromotionJoiner(); 

JoinWindows thirtyMinuteWindow =
     JoinWindows.ofTimeDifferenceWithNoGrace(Duration.minutes(30)); 

KStream<String, Promotion> joinedKStream =
    coffeePurchaseKStream.join(retailPurchaseKStream, 
                               purchaseJoiner,
                               thirtyMinuteWindow,
                                StreamJoined.with(stringSerde, 
                                                  coffeeSerde,
                                                  storeSerde)
                                      .withName("purchase-join")
                                      .withStoreName("join-stores"));
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ValueJoiner instance which produces the joined result object

JoinWindow specifying the max time difference between records to participate in
join

Constructs the join

StreamJoined configuration object

You supply four parameters to the  method:KStream.join

retailPurchaseKStream — The stream of purchases from to join with.
purchaseJoiner — An implementation of the  interface. ValueJoiner<V1, V2, R>

 accepts two values (not necessarily of the same type). The ValueJoiner

 method performs the implementation-specific logic and returns aValueJoiner.apply

(possibly new) object of type R. In this example,  will add somepurchaseJoiner

relevant information from both  objects, and it will return a Purchase PromotionProto

object.
thirtyMinuteWindow — A  instance. The JoinWindows

 method specifies a maximum timeJoinWindows.ofTimeDifferenceWithNoGrace

difference between the two values to be included in the join. Specifically the timestamp
on the secondary stream,  can only be a maximum of 30retailPurchaseKStream

minutes before or after the timestamp of a record from the coffeePurchaseKStream
with the same key.
A  instance — Provides optional parameters for performing joins. In thisStreamJoined

case, it’s the key and the value  for the calling stream, and the value  for theSerde Serde

secondary stream. You only have one key  because, when joining records, keysSerde

must be of the same type. The  method provides the name for the node in thewithName

topology and the base name for a repartition topic (if required). The  iswithStoreName

the base name for the state stores used for the join. I’ll cover join state stores usage in an
upcoming section.

NOTE Serde objects are required for joins because join participants are materialized
in windowed state stores. You provide only one  for the key, becauseSerde

both sides of the join must have a key of the same type.

Joins in Kafka Streams are one of the most powerful operations you can perform and it’s also
one the more complex ones to understand. Let’s take a minute to dive into the internals of how
joins work.

Under the covers, the KStream DSL API does a lot of heavy lifting to make joins operational.
But it will be helpful for you to understand how joins are done under the covers. For each side of
the join, Kafka Streams creates a join processor with its own state store. Here’s an illustration
showing how this looks conceptually:

7.3.2 Join internals
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Figure 7.11 In a Stream-Stream join both sides of the join have a processor and state store

When building the processor for the join for each side, Kafka Streams includes the name of the
state store for the reciprocal side of the join - the left side gets the name of the right side store
and the right side processor contains the left store name. Why does each side contain the name of
opposite side store? The answer gets at the heart of how joins work in Kafka Streams. Let’s look
at another illustration to demonstrate:

Figure 7.12 Join processors look in the other side’s state store for matches when a new record arrives

When a new record comes in (we’re using the left-side processor for the 
) the processor puts the record in its own store, but then looks for acoffeePurchaseKStream
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match by retrieving the right-side store (for the ) by name. TheretailPurchaseKStream

processor retrieves records with the same key and within the time range specifed by the
.JoinWindows

Now, the final part to consider is if a match is found. Let’s look at one more illustration to help
us see what’s going on:

Figure 7.13 When matching record(s) is found the processor executes the joiner’s apply method with the
key, its own record value and the value from the other side

So now, after an incoming record finds a match by looking in the store from the other join side,
the join processor (the coffeePurchaseKStream in our illustration) takes the key and the value
from its incoming record, the value for each record it has retrieved from the store and executes
the  method which creates the join record specified by the implementationValueJoiner.apply

you’ve provided. From there the join processor forwards the key and join result to any down
stream processors.

Now that we’ve discussed how joins operate internally let’s discuss in more detail some of the
parameters to the join

To create the joined result, you need to create an instance of a . The ValueJoiner<V1, V2, R>

 takes two objects, which may or may not be of the same type, and it returns aValueJoiner

single object, possibly of a third type. In this case,  takes a  and a ValueJoiner CoffeePurchase

 and returns a  object. Let’s take a look at the code (found inRetailPurchase Promotion

src/main/java/bbejeck/chapter_7/joiner/PromotionJoiner.java).

7.3.3 ValueJoiner
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Listing 7.14  implementationValueJoiner

Extracting how much was spent on coffee

Summing the total of purchased items

Calculating the promotion points

Build and return the new Promotion object

To create the  object, you extract the amount spent from both sides of the join andPromotion

perform a calculation resulting in the total amount of points to reward the customer. I’d like to
point out that the  interface only has one method, , so you could use aValueJoiner apply

lambda to represent the joiner. But in this case you create a concrete implementation, because
you can write a separate unit test for the . We’ll come back this approach in theValueJoiner

chapter on testing.

NOTE Kafka Streams also provides a  interface which providesValueJoinerWithKey

access to the key for calculating the value of the join result. However the key
is considered  and making changes to it in the joiner implementationread-only
will lead undefined behavior.

The  configuration object plays a critical role in the join process; it specifies theJoinWindows

difference between the timestamps of records from both streams to produce a join result.

Let’s refer to the following illustration as an aid to understand the  role.JoinWindows

public class PromotionJoiner
     implements ValueJoiner<CoffeePurchase,
                            RetailPurchase,
                            Promotion> {

    @Override
    public Promotion apply(
            CoffeePurchase coffeePurchase,
            RetailPurchase retailPurchase) {

    double coffeeSpend = coffeePurchase.getPrice(); 
    double storeSpend = retailPurchase.getPurchasedItemsList() 
            .stream()
            .mapToDouble(pi -> pi.getPrice() * pi.getQuantity()).sum();
    double promotionPoints = coffeeSpend + storeSpend;  
    if (storeSpend > 50.00) {
        promotionPoints += 50.00;
    }
    return Promotion.newBuilder()  
            .setCustomerId(retailPurchase.getCustomerId())
            .setDrink(coffeePurchase.getDrink())
            .setItemsPurchased(retailPurchase.getPurchasedItemsCount())
            .setPoints(promotionPoints).build();
}

7.3.4 Join Windows
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Figure 7.14 The JoinWindows configuration specifies the max difference (before or after) from the
timestamp of the calling side the secondary side can have to create a join result.

More precisely the  setting is the maximum difference, either before or after, theJoinWindows

secondary (other) side’s timestamp can from the primary side timestamp to create a join result.
Looking at the example in listing XXX, the join window there is set for thirty minutes. So let’s
say a record from the  has a timestamp of 12:00 PM, for a corresponding recordcoffeeStream

in the  to complete the join, it will need a timestamp from 11:30 AM to 12:30 PM.storeStream

There are two additional  methods are available  and , which youJoinWindows() after before

can use to specify the timing and possibly the order of events for the join.

Let’s say you’re fine with the opening window of the join at thirty minutes but you want the
closing window to be shorter, say five minutes. You’d use the  methodJoinWindows.after

(still using the example in listing XXX) like so

Listing 7.15 Using the JoinWindows.after method to alter the closing side of the join
window

Here the opening window stays the same, the  record can have a timestamp of atstoreStream

least 11:30 AM , but the closing window is shorter, the latest it can be is now 12:05 PM.

The  method works in a similar manner, just in the opposite direction.JoinWindows.before

Let’s say now you want to shorten the opening window, so you’ll now use this code:

coffeeStream.join(storeStream,...,
    thirtyMinuteWindow.after(Duration.ofMinutes(5))....
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Listing 7.16 The JoinWindows.before method changes the opening side of the join window

Now you’ve changed things so the timestamp of the  record can be at most 5storeStream

minutes  the timestamp of a  record. So the acceptable timestamps for abefore coffeeStream

join (  records) now start at 11:55 AM but end at 12:30 PM. You can also use storeStream

 and  to specify the order of arrival of records toJoinWindows.before JoinWindows.after

perform a join.

For example to set up a join when a store purchase only happens within 30 minutes after a cafe
 y o u  w o u l d  u s e  p u r c h a s e

 and to onlyJoinWindows.of(Duration.ofMinutes(0).after(Duration.ofMinutes(30)

consider  s tore  purchases   you would  use  before
.JoinWindows.of(Duration.ofMinutes(0).before(Duration.ofMinutes(30))

IMPORTANT In order to perform a join in Kafka Streams, you need to ensure that all join
participants are , meaning that they have the same number ofco-partitioned
partitions and are keyed by the same type. Co-partitioning also requires all
Kafka producers to use the same partitioning class when writing to Kafka
Streams source topics. Likewise, you need to use the same 

 for any operations writing Kafka Streams sink topics viaStreamPartitioner

the  method. If you stick with the default partitioning strategies,KStream.to()

you won’t need to worry about partitioning strategies.

As you can see the  class gives you plenty of options to control joining twoJoinWindows

streams. It’s important to remember that it’s the timestamps on the records driving the join
behavior. The timestamps can be either the ones set by Kafka (broker or producer) or they can be
embedded in the record payload itself. To use a timestamp embedded in the record you’ll need to
provide a custom  and I’ll cover that as well as timestamp semantics in theTimestampExtractor

next chapter.

The final paramter to discuss is the  configuration object. With StreamJoined StreamJoined

you can provide the serdes for the key and the values involved in the join. Providing the serdes
for the join records is always a good idea, because you may have different types than what has
been configured at the application level. You can also name the join processor and the state
stores used for storing record lookups to complete the join. The importance of naming state
stores is covered in the upcoming  section.7.4.5

coffeeStream.join(storeStream,...,
    thirtyMinuteWindow.before(Duration.ofMinutes(5))....

7.3.5 StreamJoined
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Before we move on from joins let’s talk about some of the other join options available.

The join in listing for the current example is an . With an inner join, if either recordinner join
isn’t present, the join doesn’t occur, and you don’t emit a  object. There are otherPromotion

options that don’t require both records. These are useful if you need information even when the
desired record for joining isn’t available.

Outer joins always output a record, but the result may not include both sides of the join. You’d
use an outer join when you wanted to see a result regardless of a successful join or not. If you
wanted to use an outer join for the join example, you’d do so like this:

An outer join sends a result that contains records from either side or both. For example the join
result could be , , or , depending on what’s present. Theleft+right left+null null+right

following illustration demonstrates the three possible outcomes of the outer join.

Figure 7.15 Three outcomes are possible with outer joins: only the calling stream’s event, both events,
and only the other stream’s event.

7.3.6 Other join options

7.3.7 Outer joins

coffeePurchaseKStream.outerJoin(retailPurchaseKStream,..)
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A left-outer join also always produces a result. But the difference from the outer-join is the left
or calling side of the join is always present in the result,  or  for example.left+right left+null

You’d use a left-outer join when you consider the left or calling side stream records essential for
your business logic. If you wanted to use a left-outer join in listing 7.13, you’d do so like this:

Figure 7.17 shows the outcomes of the left-outer join.

Figure 7.16 Two outcomes are possible with the left-outer join left and right side or left and null.

At this point you’ve learned the different join types, so what are the cases when you need to use
them? Let’s start with the current join example. Since you are determining a promotional reward
based on the purchase of two items, each in their own stream an inner-join makes sense. If there
is no corresponding purchase on the other side, then you don’t have an actionable result, so to
emit nothing is desired.

For cases where one side of the join is critical and the other is useful, but not essential then a
left-side join is a good choice where you’d use the critical stream on the left or calling side. I’ll
cover an example when we get to stream-table joins in an upcoming section.

Finally, for a case where you have two streams where both sides enhance each other, but each
one is important on its own, then an outer join fits the bill. Consider IoT, where you have two
related sensor streams. Combining the sensor information provides you with a more complete
picture but you want information from either side if it’s available.

In the next section, let’s go into the details of the workhorse of stateful operations, the state store.

7.3.8 Left-outer join

coffeePurchaseKStream.leftJoin(retailPurchaseKStream..)
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So far, we’ve discussed the stateful operations in the Kafka Streams DSL API, but glossed over
the underlying storage mechanism those operations use. In this section, we’ll look at the
essentials of using state stores in Kafka Streams and the key factors related to using state in
streaming applications in general. This will enable you to make practical choices when using
state in your Kafka Streams applications.

Before I go into any specifics, let’s cover some general information. At a high-level, the state
stores in Kafka Streams are key-value stores and they fall into two categories, persistent and
in-memory. Both types are durable due to the fact that Kafka Streams uses changelog topics to
back the stores. I’ll talk more about changelog topics soon.

Persistent stores store their records in local disk, so they maintain their contents over restarts.
The in-memory stores place records well, in memory, so they need to be restored after a restart.
Any store that needs restoring will use the changelog topic to accomplish this task. But to
understand how a state store leverages a changelog topic for restoration, let’s take a look at how
Kafka Streams implements them.

In the DSL, when you apply a stateful operation to the topology, Kafka Streams creates a state
store for the processor (persistent are the default type). Along with the store, Kafka Streams also
creates a changelog topic backing the store at the same time. As records are written the store,
they are also written to the changelog. Here’s an illustration depicting this process:

Figure 7.17 As the key-value records get written to the store they also get written to the changelog topic
for data durability

So as Kafka Streams places record into a state store, it also sends it to a Kafka topic that backs
the state store. Now if you remember from earlier in the chapter, I mentioned that with an
aggregation you don’t see every update as Kafka Streams uses a cache to initially hold the

7.4 State stores in Kafka Streams
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results. It’s only on when Kafka Streams flushes the cache, either at a commit or when it’s full,
that records from the aggregation go to downstream processors. It’s at this point that Kafka
Streams will produce records to the changelog topic.

NOTE If you’ve disabled the cache then every record gets sent to the state store so
this also means every record goes to the changelog topic as well.

So how does the Kafka Stream leverage the changelog topic? Let’s first consider the case of a
in-memory state store. Since an in-memory store doesn’t maintain it’s contents across restarts,
when starting up, any in-memory stores will rebuild their contents from head record of the
changelog topic. So even though the in-memory store loses all its contents on application
shut-down, it picks up where it left off when restarted.

For persistent stores, usually it’s only after all local state is lost, or if data corruption is detected
that it will need to do a  restore. For persistent stores, Kafka Streams maintains a checkpointfull
file for persistent stores and it will use the offset in the file as a starting point to restore from
instead of restoring from scratch. If the offset is no longer valid, then Kafka Streams will remove
the checkpoint file and restore from the beginning of the topic.

This difference in restoration patterns brings an interesting twist to the discussion of the
trade-offs of using either persistent or in-memory stores. While an in-memory store should yield
faster look-ups as it doesn’t need to go to disk for retrieval, under "happy path" conditions the
topology with persistent stores will generally resume to processing faster as it will not have as
many records to restore.

IMPORTANT An exception to using a checkpoint file for restoration is when you run Kafka
Streams in EOS mode (either  or  is enabled)exactly_once exactly_once_v2

as state stores are fully restored on startup to ensure the only records in the
stores are ones that were included in successful transactions.

Another situation to consider is the make up of running Kafka Streams applications. If you recall
from our discussion on task assignments, you can change the number of running applications
dynamically, either by expansion or contraction. Kafka Streams will automatically assign tasks
from existing applications to new members, or add tasks to those still running from an
application that has dropped out of the group. A task that is responsible for a stateful operation
will have a state store as part of its assignment (I’ll talk about state stores and tasks next).

Let’s consider the case of a Kafka Streams application that loses one of its members, remember
you can run Kafka Streams applications on different machines and those with the same
application id are considered all part of one logical application. Kafka Streams will issue a

7.4.1 Changelog topics restoring state stores
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rebalance and the tasks from the defunct application get reassigned. For any reassigned stateful
operations, since Kafka Streams creates a new  store for the newly assigned task, they’ll*empty*
need to restore from the beginning of the changelog topic before they resume processing.

Here’s an illustration demonstrating this situation:

Figure 7.18 When a stateful task gets moved to a new machine Kafka Streams rebuilds the state store
from the beginning of the changelog topic

So by using changelog topics you can be assured your applications will have a high degree of
data durability even in the face of application loss, but there’s delayed processing until the store
is fully online. Fortunately, Kafka Streams offers a remedy for this situation, the standby task.

To enable fast failover from an application instance dropping out of the group Kafka Streams
provides the standby task. A standby task "shadows" an active task by consuming from the
changelog topic into a state store local to the standby. Then should the active task drop out of the
group, the standby becomes the new active task. But since it’s been consuming from the
changelog topic, the new active task will come online with minimum latency.

IMPORTANT To enable standby tasks you need to set the num.standby.replicas
configuration to a value greater than 0 and you need to deploy N+1 number of
Kafka Streams instances (with N being equal to the number of desired
replicas). Ideally you’ll deploy those Kafka Streams instances on separate
machines as well.

While the concept is straight forward, let’s review the standby process by walking through the

7.4.2 Standby Tasks
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following illustration:

Figure 7.19 A standby task shadows the active task and consumes from the changelog topic keeping a
local state store in-sync with store of the active task

So following along with the illustration a standby task consumes records from the changelog
topic and puts them in its own local state store. To be clear, a standby task does not process any
records, its only job is to keep the state store in sync with the state store of the active task. Just
like any standard producer and consumer application, there’s no coordination between the active
and standby tasks.

With this process since the standby stays fully caught up to the active task or at minimum it will
be only a handful of records behind, so when Kafka Streams reassigns the task, the standby
becomes the active task and processing resumes with minimal latency as its already caught up.
As with anything there is a trade-off to consider with standby tasks. By using standby’s you end
up duplicating data, but with benefit of near immediate fail-over, depending on your use case it’s
definitely worth consideration.

NOTE Significant work went into improving the scaling out performance of Kafka
S t r e a m s w i t h K a f k a K I P - 4 4 1 (
cwiki.apache.org/confluence/display/KAFKA/KIP-441%3A+Smooth+Scaling
+Out+for+Kafka+Streams ). When you enable standby tasks and the standby 
instance becomes the
active one, if at a later time Kafka Streams determines a more favorable
assignment is possible, then that stateful task may get migrated to another
instance.

So far we’ve covered how state stores enable stateful operations and how the stores are robust
due to changelog topic and using standby tasks to enable quick failover. But we still have some
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more ground to cover. First we’ll go over state store assignment, from there you’ll learn how to
configure state stores including how to specify a store type including an in-memory store and
finally how to configure changelog topics if needed.

In the previous chapter we discussed the role of tasks in Kafka Streams. Here I want to reiterate
that tasks operate in a shared nothing architecture and only operate in a single thread. While a
Kafka Streams application can have multiple threads and each thread can have multiple tasks,
there is nothing shared between them. I emphasize this "shared nothing" architecture again,
because this means that when a task is stateful, only the owning task will access its state store,
there are no locking or concurrency issues.

Going back to the  example, let’s say the source topic has two partitions,[Stock-Aggregation]
meaning it has two tasks. Let’s look at an updated illustration of tasks assignment with state
stores for that example:

Figure 7.20 Stateful tasks have a state store assigned to it

By looking at this illustration you can see that the task associated with the state store is the only
task that will ever access it. Now let’s talk about how Kafka Streams places state stores in the
file system.

7.4.3 Assigning state stores in Kafka Streams
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When you have a stateful application, when Kafka Streams first starts up, it creates a root
directory for all state stores from the  configuration. If notStreamsConfig.STATE_DIR_CONFIG

set, the  defaults to the temporary directory for the JVM followed by theSTATE_DIR_CONFIG

system dependent separator and then "kafka-streams".

IMPORTANT The value of the  configuration must be unique for eachSTATE_DIR_CONFIG

Kafka Streams instance that shares the same file system

For example on my MacOS the default root directory for state stores is 
./var/folders/lk/d_9__qr558zd6ghbqwty0zc80000gn/T/kafka-streams

TIP To view the system dependent temporary directory on you machine you can
start a Java shell from a terminal window by running the  command.jshell

Then type in , hit the  keySystem.getProperty("java.io.tmpdir") return

and it will display on the screen.

Next Kafka Streams appends the application-id, which you have to provide in the configurations,
t o  t h e  p a t h .  A g a i n  o n  m y  l a p t o p  t h e  p a t h  i s  
/var/folders/lk/d_9__qr558zd6ghbqwty0zc80000gn/T/kafka-streams/test-application/

From here the directory structure branches out to unique directories for each task. Kafka Streams
creates a directory for each stateful task using the subtopology-id and partition (separated by an
underscore) for the directory name. For example a stateful task from the first subtopology and
assigned to partition zero would use  for the directory name.0_0

The next directory is named for the implementation of the store which is . So at thisrocksdb

p o i n t  t h e  p a t h  w o u l d  l o o k  l i k e
/var/folders/lk/d_9__qr558zd6ghbqwty0zc80000gn/T/kafka-streams/test-
application/0_0/rocksdb

. It is under this directory there is the final directory from the processor (unless provided by a 
 object and I’ll cover that soon). To understand how the final directory gets itsMaterialized

name, let’s look at snippet of a stateful Kafka Streams application and the generated topology
names.
Listing 7.17 Simple Kafka Streams stateful application

This application has topology named accordingly: .Topology names

7.4.4 State store location on the file system

builder.stream("input")
.groupByKey()
.count()
.toStream()
.to("output")
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The name of the aggregate processor

The name of the store assigned to processor

From the topology here Kafka Streams generates the name KSTREAM-AGGREGATE-0000000002
for the  method and notice it’s associated with the store named count()

. So Kafka Streams takes the base name of theKSTREAM-AGGREGATE-STATE-STORE-0000000001

stateful processor and appends a  and the number generated from the globalSTATE-STORE

counter. Now lets take a look at the full path you would find this state store: 
/var/folders/lk/d_9__qr558zd6ghbqwty0zc80000gn/T/kafka-streams/test-application/0_0/rocksdb/KSTREAM-AGGREGATE-STATE-STORE-0000000001

So it’s the final directory  in the path thatKSTREAM-AGGREGATE-STATE-STORE-0000000001

contains the RocksDB files for that store. Now if you were to check the topics on the broker after
starting the Kafka Streams application you’d see this name in the list 

. This topictest-application-KSTREAM-AGGREGATE-STATE-STORE-0000000001-changelog

is the changelog for the state store and notice how Kafka Streams uses a naming convention of
<application-id>-<state store name>-changelog for the topic.

This naming raises an interesting question, what happens if we add an operation before the 
? Let’s say you want to add a filter to exclude certain records from the counting. You’dcount()

simply update the topology like so:

Listing 7.18 Updated Topology with a filter

Remember, Kafka Streams uses a global counter for naming the processor nodes, so since you’ve
added an operation, every processor downstream of it will have a new name since the number
will be greater by 1. Here’s what the new topology will look like:

Topologies:
   Sub-topology: 0
    Source: KSTREAM-SOURCE-0000000000 (topics: [input])

--> KSTREAM-AGGREGATE-0000000002
    Processor: KSTREAM-AGGREGATE-0000000002 

(stores: [KSTREAM-AGGREGATE-STATE-STORE-0000000001]) 
--> KTABLE-TOSTREAM-0000000003
<-- KSTREAM-SOURCE-0000000000

    Processor: KTABLE-TOSTREAM-0000000003 (stores: [])
--> KSTREAM-SINK-0000000004
<-- KSTREAM-AGGREGATE-0000000002

    Sink: KSTREAM-SINK-0000000004 (topic: output)
<-- KTABLE-TOSTREAM-0000000003

7.4.5 Naming Stateful operations

builder.stream("input")
.filter((key, value) -> !key.equals("bad"))
.groupByKey()
.count()
.toStream()
.to("output")
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Listing 7.19 Updated Topology names

The new name for the aggregation operation

The new name for the state store

Notice how the state store name has changed which means there is a new directory named 
and the corresponding changelog topic isKSTREAM-AGGREGATE-STATE-STORE-0000000002

n o w n a m e d
.test-application-KSTREAM-AGGREGATE-STATE-STORE-0000000002-changelog

NOTE Any changes before a stateful operation could result in the generated name
shift, i.e. removing operators will have the same shifting effect.

What does this mean to you? When you redeploy this Kafka Streams application the directory
will only contain some basic RocksDB file, but not your original contents they are in the
previous state store directory. Normally an empty state store directory does not present an issue,
as Kafka Streams will restore it from the changelog topic. Except in this case the changelog topic
is also new, so it’s empty as well. So while your data is still safe in Kafka, the Kafka Streams
application will start over with empty state store due to the name changes.

While it’s possible to reset the offsets and process data again, a better approach is to avoid name
shifting situation all together by providing a name for the state store instead of relying on the
generated one. In the previous chapter I covered naming processor nodes for providing a better
understanding of what the topology does. But in this case it goes beyond better understanding of
its role in the topology, which is important, but also makes your application robust in the face of
a changing topology.

Going back to the simple  example in this section, you’ll update the application bycount()

passing  object to  operation:Materialized count()

Topologies:
   Sub-topology: 0
    Source: KSTREAM-SOURCE-0000000000 (topics: [input])

--> KSTREAM-FILTER-0000000001
    Processor: KSTREAM-FILTER-0000000001 (stores: [])

--> KSTREAM-AGGREGATE-0000000003
<-- KSTREAM-SOURCE-0000000000

    Processor: KSTREAM-AGGREGATE-0000000003 
(stores: [KSTREAM-AGGREGATE-STATE-STORE-0000000002]) 
--> KTABLE-TOSTREAM-0000000004
<-- KSTREAM-FILTER-0000000001

    Processor: KTABLE-TOSTREAM-0000000004 (stores: [])
--> KSTREAM-SINK-0000000005
<-- KSTREAM-AGGREGATE-0000000003

    Sink: KSTREAM-SINK-0000000005 (topic: output)
<-- KTABLE-TOSTREAM-0000000004
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Listing 7.20 Naming the state store using a Materialized object

Explicitly naming the state store

By providing the name of the state store, Kafka Streams will name the directory on disk 
and the changelog topic becomes counting-store

, and both of these names are "frozen" andtest-application-counting-store-changelog

will not change regardless of any updates you make to the topology. It’s important to note that
the names of state stores within a topology must be unique, otherwise you’ll get a 

.TopologyException

NOTE Only stateful operations are affected by name shifting. But since stateless
operations don’t keep any state, changes in processor names from topology
updates will have no impact.

The bottom line is to  name state stores and repartition topics using the appropriatealways
configuration object. By naming the stateful parts of your applications, you can ensure that
topology updates don’t break the compatibility. Here’s a table summarizing which configuration
object to use and the operation(s) it applies to:

Naming state stores provides the added benefit of being able to query them while your Kafka
Streams application is running, providing live, materialized views of the streams. I’ll cover
interactive queries in the next chapter.

So far you’ve learned how Kafka Streams uses state stores in support of stateful operations. You
also learned that the default is for Kafka Streams to use persistent stores and there are in-memory
store implementations available. In the next section I’m going to cover how you can specify a
different store type as well as configuration options for the changelog topics.

builder.stream("input")
.groupByKey()
.count(Materialized.as("counting-store")) 
.toStream()
.to("output")

Table 7.1 Kafka Streams configuration objects for naming state stores and repartitionm
topics
Configuration Object What’s Named Where Used

Materialized State Store, Changelog topic Aggregations

Repartitioned Repartition topic Repartition (manual by user)

Grouped Repartition topic GroupBy (automatic repartitioning)

StreamJoined State Store, Changelog topic, Repartition topic Joins (automatic repartitioning)
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All the examples so far in this chapter use persistent state stores, but I’ve stated that you can use
in-memory stores as well. So the question is how do you go about using an in-memory store? So
far you’ve used the  configuration object to specify  and the name for aMaterialized Serdes

store, but you can use it to provide a custom  instance to use. Kafka Streams makesStateStore

it easy to provide an in-memory version of the available store types (so far I’ve only covered
"vanilla" key-value stores, but I’ll get to sessioned, windowed, timestamped stores in the next
chapter).

The best way to learn how to use a different store type is to change one of our existing examples.
Let’s revisit the first stateful example used to keep track of scores in an online poker game:

Listing 7.21 Performing a reduce in Kafka Streams to show running total of scores in an
online poker game updated to use in-memory stores

Passing a  to specify an in-memory storeStoreSupplier

Specifying the  for the keySerdes

Specifying the  for the valueSerdes

So by using the overloaded  method, you provide a  usingMaterialized.as StoreSupplier

one of the factory methods available from the  class. Notice that you still pass the serdeStores

instances needed for the store. And that’s all it takes to switch the store type from persistent to
in-memory.

NOTE Switching in a different store type is fairly straight forward so I’ll only have the
one example here. But the source code will contain a few additional
examples.

So why would you want to use an in-memory store? Well, an in-memory store will give you
faster access since it doesn’t need to go to disk to retrieve values. So a topology using in-memory
stores should have higher throughput than one using persistent ones. But there are trade-offs you
should consider.

7.4.6 Specifying a store type

KStream<String, Double> pokerScoreStream = builder.stream("poker-game",
Consumed.with(Serdes.String(), Serdes.Double()));

pokerScoreStream
.groupByKey()
.reduce(Double::sum,

Materialized.<String, Double>as(
Stores.inMemoryKeyValueStore("memory-poker-score-store")) 

.withKeySerde(Serdes.String())  

.withValueSerde(Serdes.Double())) 
.toStream()
.to("total-scores",

Produced.with(Serdes.String(), Serdes.Double()));
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First, an in-memory store has limited storage space, and once it reaches it’s memory limit it will
evict entries to make space. The second consideration is when you stop and restart a Kafka
Streams application, under "happy-path" conditions, the one with persistent stores will start
processing faster due to the fact that it will have all its state already, but the in-memory stores
will always need to restore from the changelog topic.

Kafka Streams provides a factory class  that provides methods for creating either Stores

 or . The choice of which one to use depends on the KafkaStoreSuppliers StoreBuilders

Streams API. When using the DSL you’ll use  with a  object. InStoreSuppliers Materialized

the Processor API, you’ll use a  and directly add it to the topology. I’ll cover theStoreBuilder

Processor API in chapter 9.

TIP To see all the different store types you can create view the JavaDoc for the 
c l a s sS t o r e s

javadoc.io/doc/org.apache.kafka/kafka-streams/latest/org/apache/kafka/
streams/state/Stores.html

Now that you’ve learned how to specify a different store type, let’s move on to one more topic to
cover with state stores, how you can configure the changelog topic.

There’s nothing special about changelog topics, so you can use any configuration parameters
available for topics. But for the most part the default settings should suffice, so you should only
consider changing the configurations when it’s absolutely necessary.

NOTE State store changelogs are compacted topics, which we discussed in chapter
2. As you may recall, the delete semantics require a null value for a key, so if
you want to remove a record from a state store permanently, you’ll need to do
a put(key, null) operation.

Let’s revisit the example from above where you provided a custom name for the state store. Let’s
say the data processed by this application also has a large key space. The changelogs in Kafka
Streams are  topics. Compacted topics use a different approach to cleaning up oldercompacted
records.

Instead of deleting log segments by size or time, log segments are  by keeping onlycompacted
the latest record for each key—older records with the same key are deleted. But since the key
space is large compaction may not be enough, as the size of the log segment will keep growing.
In that case, the solution is simple. You can specify a cleanup policy of  and  .delete compact

7.4.7 Configuring changelog topics
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Listing 7.22 Setting a cleanup policy and using Materialized to set the new configuration

Using the withLoggingEnabled method to set a configuration

So here you can adjust the configurations for this specific changelog topic. Earlier I mentioned
that to disable the caching that Kafka Streams uses for stateful operations, you’d set the 

 setting to zero. But since it’s in theStreamsConfig.CACHE_MAX_BYTES_BUFFERING_CONFIG

configuration, it is globally applied to all stateful operations. If you only wanted to disable the
cache for a specific one you could disable it by calling 

 method when passing in the  object.Materialized.withCachingDisabled() Materialzied

WARNING The  object also provides a method to disable logging. Doing soMaterialized

will cause the state store to not have a changelog topic, hence it is subject to
getting in a state where it can’t restore its previous contents. It is
recommended to only use this method if absolutely necessary. In my time
working with Kafka Streams, I can’t say I’ve encountered a good reason for
using this method.

Stream processing needs state. Stateless processing is acceptable in a lot of cases, but to
make more complex decisions you’ll need to use stateful operations.
Kafka Streams provides stateful operations reduce, aggregation, and joins. The state store
is created automatically for you and by default they use persistent stores.
You can choose to use in-memory stores for any stateful operation by passing a 

 from the  factory class to the  configurationStoreSupplier Stores Materialized

object.
To perform stateful operations your records need to have valid keys-if your records don’t
have a key or you’d like to group or join records by a different key you can change it and
Kafka Streams will automatically repartition the data for you.
It’s important to always provide a name for state stores and repartition topics-this keeps
your application resilient from breaking when you make topology changes.

7.5 Summary

Map<String, String> changeLogConfigs = new HashMap<>();
changeLogConfigs.put("cleanup.policy", "compact,delete");

builder.stream("input")
.groupByKey()
.count(Materialized.as("counting-store")

.withLoggingEnabled(changeLogConfigs)) 
.toStream()
.to("output")
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8
This chapter covers

In this chapter, we’re going to continue working with state in a Kafka Streams application.
You’ll learn about the  which is considered an update or changelog stream. As a matter ofKTable

fact you’ve already used a  as any aggregation operations in Kafka Streams result in a KTable

. The  is an important abstraction for working with records that have the sameKTable KTable

key. Unlike the  where records with the same key are still considered independent event,KStream

in the  a record is an update to the previous record that has the same key.KTable

To make a comparison to a relational database, the event stream (a ) could beKStream

considered a series of inserts where the primary key is an auto-incriminating number. As a result
each insert of a new record has no relationship to previous ones. But with a  the key inKTable

the key-value pair is the primary key, so each time a record arrives with the same key, it’s
consider an update to the previous one.

From there you’ll learn about aggregation operations with a . Aggregations work a littleKTable

differently because you don’t want to group by primary key, you’ll only ever have on record that
way, instead you’ll need to consider how you want to group the records to calculate the
aggregate.

Advanced stateful concepts

Changelog streams, the KTable and the GlobalKTable
Aggregating records with a KTable
Joining a KTable with KStream or another KTable
Windowing to capture aggregations in specific period of time
Using suppression for final windowed results
Understanding the importance of timestamps in Kafka Streams
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Since you can use the  as lookup table, a join between a stream and table is a powerKTable

combination, where you can enrich the event stream records by performing a lookup in the table
for additional details. You can also join two tables together, even using a foreign key. You’ll also
learn about a unique construct called the  which, unlike the  whichGlobalKTable KTable

sharded by partitions, contains all records from it’s underlying source across all application
instances.

After covering the table abstractions we’ll get into how to "bucket" your aggregations into
specific time periods using windowing. For example, how many purchases have there been over
the past hour, updated every ten minutes? Windowing allows you to place data in discrete blocks
of time, as opposed to having an unbounded collection. You’ll also learn how to produce a single
final result from a windowed operation when the window closes. There’s also the ability to
expose the underlying state stores to queries from outside the application allowing for real-time
updates on the information in the event stream.

Our final topic for the chapter is how timestamps drive the behavior in Kafka Streams and
especially their impact on windowing and stateful operations.

To fully understand the concept of an update stream, it will be useful to compare with an event
stream to see the differences between the two. Let’s use a concrete example of tracking stock
price updates.

Figure 8.1 A diagram for an unbounded stream of stock quotes

You can see that each stock price quote is a discrete event, and they aren’t related to each other.
Even if the same company accounts for many price quotes, you’re only looking at them one at a
time. This view of events is how the  works—it’s a stream of records.KStream

Now, let’s see how this concept ties into database tables. Each record is an insert into the table,
but the primary key is a number increment for each insert, depicted simple stock quote table in
figure 8.2.

8.1 KTable The Update Stream
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Figure 8.2 A simple database table represents stock prices for companies. There’s a key column, and
the other columns contain values. You can consider this a key/value pair if you lump the other columns
into a “value” container.

Next, let’s take another look at the record stream. Because each record stands on its own, the
stream represents inserts into a table. Figure 5.3 combines the two concepts to illustrate this
point.
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Figure 8.3 A stream of individual events compares to inserts into a database table. You could similarly
imagine streaming each row from the table.

What’s important here is that you can view a stream of events in the same light as inserts into a
table, which can help give you a deeper understanding of using streams for working with events.
The next step is to consider the case where events in the stream  related to one another.are

Let’s say you want to track customer purchase behavior, so you take the same stream of
customer transactions, but now track activity over time. If you add a key of customer ID, the
purchase events can be related to each other, and you’ll have an update stream as opposed to an
event stream.

If you consider the stream of events as a log, you can consider this stream of updates as a
changelog. Figure 8.4 demonstrates this concept.

8.1.1 Updates to records or the changelog
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Figure 8.4 In a changelog, each incoming record overwrites the previous one with the same key. With a
record stream, you’d have a total of four events, but in the case of updates or a changelog, you have
only two.

Here, you can see the relationship between a stream of updates and a database table. Both a log
and a changelog represent incoming records appended to the end of a file. In a log, you see all
the records; but in a changelog, you only keep the latest record for any given key.

NOTE With both a log and a changelog, records are appended to the end of the file
as they come in. The distinction between the two is that in a log, you want to
see  records, but in a changelog, you only want the  record for eachall latest
key.

To trim a log while maintaining the latest records per key, you can use log compaction, which
we discussed in chapter 2. You can see the impact of compacting a log in figure 8.5. Because
you only care about the latest values, you can remove older key/value pairs.6
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Figure 8.5 On the left is a log before compaction—you’ll notice duplicate keys with different values,
which are updates. On the right is the log after compaction—you keep the latest value for each key, but
the log is smaller in size.

You’re already familiar with event streams from working with s. For a changelog orKStream

stream of updates, we’ll use an abstraction known as the . Now that we’ve established theKTable

relationship between streams and tables, the next step is to compare an event stream to an update
stream.

We’ll use the  and the  to drive our comparison of event streams versus updateKStream KTable

streams. We’ll do this by running a simple stock ticker application that writes the current share
price for three (fictitious!) companies. It will produce three iterations of stock quotes for a total
of nine records. A  and a  will read the records and write them to the console viaKStream KTable

the  method.print()

NOTE The  does not have methods like  or  in its API, so to doKTable print() peek()

any printing of records you’ll need to convert the  from an updateKTable

stream to an event stream by using the  method first.toStream()

Figure 8.6 shows the results of running the application. As you can see, the  printed allKStream

nine records. We’d expect the  to behave this way because it views each recordKStream

individually. In contrast, the  printed only three records, because the  viewsKTable KTable

records as updates to previous ones.

8.1.2 Event streams vs. update streams
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Figure 8.6  versus  printing messages with the same keysKTable KStream

From the ’s point of view, it didn’t receive nine individual records. The  receivedKTable KTable

three original records and two rounds of updates, and it only printed the last round of updates.
Notice that the  records are the same as the last three records published by the .KTable KStream

We’ll discuss the mechanisms of how the  emits only the updates in the next section.KTable

Here’s the program for printing stock ticker results to the console (found in
src/main/java/bbejeck/chapter_8/KStreamVsKTableExample.java; source code can be found on
the book’s website here: ).manning.com/books/kafka-streams-in-action-second-edition

Listing 8.1  and  printing to the consoleKTable KStream

Creates the KTable instance

KTable<String, StockTickerData> stockTickerTable =
builder.table(STOCK_TICKER_TABLE_TOPIC);
KStream<String, StockTickerData> stockTickerStream =
builder.stream(STOCK_TICKER_STREAM_TOPIC);

stockTickerTable.toStream()
  .print(Printed.<String, StockTickerData>toSysOut()
  .withLabel("Stocks-KTable")); 

stockTickerStream
  .print(Printed.<String, StockTickerData>toSysOut()
  .withLabel("Stocks-KStream"));
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Creates the KStream instance

KTable prints results to the console

KStream prints results to the console

SIDEBAR Using default serdes

In creating the  and , you didn’t specify any serdes to use. TheKTable KStream

same is true with both calls to the  method. You were able to do thisprint()

because you registered a default serdes in the configuration. like so:

If you used different types, you’d need to provide serdes in the overloaded
methods for reading or writing records.

The takeaway here is that records in a stream with the same keys are updates, not new records in
themselves. A stream of updates is the main concept behind the , which is the backboneKTable

of stateful operations in Kafka Streams.

In the previous example when you created the table with the  statementStreamsBuilder.table

Kafka Streams also creates a  for tracking the state and by default it’s a persistentStateStore

store. Since state stores only work with byte arrays for the keys and values you’ll need to provide
the  instances so the store can (de)serialize the keys and values. Just as you can provideSerde

specific serdes to an event stream with  configuration object, you can do the sameConsumed

when creating a :KTable

Now the serdes you’ve provided with the  object get passed along to the state store.Consumed

There’s an additional overloaded version of  that accepts a StreamsBuilder.table

 instance as well. This allows you to customize the type of store and provide aMaterialized

name to make it available for querying. We’ll discuss interactive queries later in this chapter.

It’s also possible to create a  directly by using the  method. Using thisKTable KStream.toTable

method changes the interpretation of the records from events to updates. You can also use the 
 method to convert the update stream into an event stream. We’ll talk moreKTable.toStream

about this conversion from update stream to event stream when we discuss the  API.KTable

8.2 KTables are stateful

props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG,
   Serdes.String().getClass().getName());
props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG,
   StreamsSerdes.StockTickerSerde().getClass().getName());

builder.table(STOCK_TICKER_TABLE_TOPIC,
Consumed.with(Serdes.String(),

StockTradeSerde()));
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1.  

2.  

The main point here is you are creating a  directly from a topic, which results in creatingKTable

a state store.

So far I’ve talked about how the  handles inserts and updates, but what about when youKTable

need to delete a record? To remove a record from a  you send send a key-value pair withKTable

the value set to  and this will act as a tombstone marker ultimately getting removed from thenull

state store and the changelog topic backing the store, in other words it’s deleted from the table.

Just like the , the  is spread out over tasks determined by the number ofKStream KTable

partitions in the underlying source topic, meaning that the records for the table are potentially
distributed over separate application instances. We’ll see a little later in this chapter an
abstraction where all the records are available in a single table.

The  API offers similar methods to what you’d see with the  - , KTable KStream filter

, , and  (I won’t talk about  here, butfilterNot mapValues transformValues transformValues

we’ll cover it in Processor API chapter later in the book). Executing these methods also follow
the fluent pattern, they return a new  instance.KTable

While the functionality of these methods are very similar as the same methods in the KStream
API, there are some differences in how they operate. The differences come into play due to the
fact that key-value pairs where the value is  has delete semantics.null

So the delete semantics have the following effects on how the  operates:KTable

If the incoming value is null the processor is not evaluated at all and the key-value with
the  is forwarded to the new table as a tombstone marker.null

In the case of the  and  methods records that get dropped a tombstonefilter filterNot

record is forwarded to the new table as a tombstone marker as well.

As an example to follow along with see the  in the KTableFilterExample bbejeck.chapter_8

package. It runs a simple  example where some of the incoming values are KTable.filter null

as well as filtering out some of the non-null values. But since we’ve discussed filtering
previously, I won’t review the example here and I’ll leave up to you as an exercise to do on your
own.

Since I’ve already covered stateless operations in a previous chapter and we’ve discussed the
different semantics of the , we’ll move on at this point to discuss aggregations and joins.KTable

8.3 The KTable API
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Aggregations in the  operate a little differently than the ones we’ve seen in the ,KTable KStream

so let’s dive in with an example to illustrate. Imagine you build an application to track stocks.
You’re only interested in the latest price for any given symbol, so using a  makes sense asKTable

that is its default behavior. Additionally, you’d like tp keep track of how different market
segments are performing. For example, you’d group the stocks of Google, Apple, and Confluent
into the tech market segment. So you’ll need to perform an aggregation and group different
stocks together by the market segment they belong to. Here’s what your  aggregationKTable

would look like:

Listing 8.2 Aggregates with A KTable

Creating the original KTable

Grouping by the market segment also providing Serdes for the repartition via a 
Grouped

Creating the aggregate

Providing the adder Aggregator

Providing the subtractor Aggregator

Annotation one is where you create the  and is what you’d expect to see but annotationKTable

two you’re performing a  and updating the key to be the market segment which willgroupBy

force a repartition of the data. Now this makes sense, since the original key is the stock symbol
you’re not guaranteed that all stocks from a given market segment reside on the same partition.

But this requirement somewhat hides the fact with a  aggregation you’ll  need toKTable always
perform a group-by operation. Why is this so? Remember that with a , the incoming keyKTable

is considered a , and just like in a relational database, grouping by the primary-keyprimary key
always results in a single record - hence not much is provided for an aggregation. So you’ll need
to group records by another field because the combination of the primary-key and the grouped
field(s) will yield results suitable for an aggregation. And similar to the  API, calling theKStream

8.4 KTable Aggregations

KTable<String, StockAlertProto.StockAlert> stockTable =
builder.table("stock-alert",
Consumed.with(stringSerde, stockAlertSerde)); 

stockTable.groupBy((key, value) ->
KeyValue.pair(value.getMarketSegment(), value),

Grouped.with(stringSerde, stockAlertSerde)) 
.aggregate(segmentInitializer, 

adderAggregator,
subtractorAggregator,
Materialized.with(stringSerde, segmentSerde))

.toStream()

.to("stock-alert-aggregate",
Produced.with(stringSerde, segmentSerde));
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 method returns an intermediate table -  which you’ll use toKTable.groupBy KGroupedTable

execute the  method.aggregate

The second difference occurs with annotations four and five. With the  aggregations, justKTable

like with the  the first parameter you provide is an  instance, to provideKStream Initializer

the default value for the first aggregation. However you then supply  one thattwo aggregators
adds the new value into the aggregation and the other one  values from the aggregationsubtracts
for the previous entry with the same key. Let’s look at an illustration to help make this process
clear:

Figure 8.7 KTable Aggregations use an Adder aggregator and a Subtractor aggregator

Here’s another way to think about it - if you were to perform the same thing on a relational table,
summing the values in the rows created by a grouping, you’d only every get the latest, single
value per row created by the grouping. For example the SQL equivalent of this KTable
aggregation could look something like this:

Listing 8.3 SQL of KTable aggregation

From the SQL perspective, when a new record arrives, the first step is to update the alerts table,
then run the aggregation query to get the updated information. This is exactly the process taken
by the , the new incoming record updates the table for the stock_alerts and it’s forwardedKTable

to the aggregation. Since you can only have one entry per stock symbol in the roll-up, you add
the new record into the aggregation, then remove the previous value for the given symbol.

SELECT market_segment,
sum(share_volume) as total_shares,
sum(share_price * share_volume) as dollar_volume
FROM stock_alerts
GROUP BY market_segment;
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Consider this example, a record comes in for the ticker symbol CFLT so the  is updatedKTable

with new entry. Then the aggregate updates with new entry for CFLT, but since there’s already a
value for it in the aggregation you must remove it then recalculate the aggregation with the new
value.

Now that we’ve covered how the  aggregation works, let’s take a look at the KTable Aggregator

instances. But since we’ve covered them in a previous chapter, let’s just take a look at the logic
of the adder and subtractor. Even though this is just one example the basic principals will be true
for just about any  aggregation.KTable

Let’s start with the adder:

Listing 8.4 KTable adder Aggregator

Extracting the share volume from the current StockAlert

Calculating the dollar volume for the current StockAlert

Setting the total share volume by adding share volume from the latest StockAlert
to the current aggregate

Setting the total dollar volume by adding calculated dollar volume to current
aggregate

Here the logic is very simple: take the share volume from the latest  and add it to theStockAlert

current aggregate, then do the same with the dollar volume (after calculating it by multiplying
the share volume by the share price).

NOTE Protobuf objects are immutable so when updating values we need to create
new instances using a builder that is generated for each unique object.

Now for the subtractor, you guessed it, you’ll simply do the reverse and  the same*subtract*
values/calculations for the previous record with the same stock ticker symbol in the given market
segment. Since the signature is the same I’ll only show the calculations:

//Some details omitted for clarity

final Aggregator<String,
StockAlertProto.StockAlert,
SegmentAggregateProto.SegmentAggregate> adderAggregator =

(key, newStockAlert, currentAgg) -> {

long currentShareVolume =
newStockAlert.getShareVolume(); 

double currentDollarVolume =
newStockAlert.getShareVolume() * newStockAlert.getSharePrice(); 

aggBuilder.setShareVolume(currentAgg.getShareVolume() + currentShareVolume); 
aggBuilder.setDollarVolume(currentAgg.getDollarVolume() + currentDollarVolume); 

}
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Listing 8.5 KTable subtractor Aggregator

Subtracting the share volume from the previous StockAlert

Subtracting the dollar volume from the previous StockAlert

The logic is straight forward, you’re subtracting the values from the  that has beenStockAlert

replaced in the aggregate. I’ve added some logging to the example to demonstrate what is going
on and it will be a good idea to look over a portion of that now to nail down what’s going on:

Listing 8.6 Logging statements demonstrating the adding and subtracting process of the
KTable aggregate

First entry and the aggregate is empty

The aggregate now updates with the values from the PXLW stock statistics

As a result of a new entry for PXLW the aggregation runs the subtractor

Returning the updated aggregation minus previous values for PXLW

The incoming entry for the new PXLW stock alert

Returning the updated aggregation with new values added

By looking at this output excerpt you should be able to clearly see how the  aggregateKTable

works, it keeps only the latest value for each unique combination of the original  key andKTable

the key used to execute the grouping, which is exactly what you’d expect, since you’re
performing an aggregation over a table with only one entry per primary key.

It’s worth noting here that  API also provides  and  methods which you’llKTable reduce count

take similar steps. You first perform a , and for the  provide an adder andgroupBy reduce

//Some details omitted
long prevShareVolume = prevStockAlert.getShareVolume();
double prevDollarVolume =

prevStockAlert.getShareVolume() * prevStockAlert.getSharePrice();

aggBuilder.setShareVolume(currentAgg.getShareVolume() - prevShareVolume); 
aggBuilder.setDollarVolume(currentAgg.getDollarVolume() - prevDollarVolume);

Adder   and 
aggregat
e  Adder

: -> key textiles stock alert symbol: "PXLW" share_price: 2.52 share_volume: 4 

market_segment: "textiles" : <- updated aggregate dollar_volume: 10.08 share_volume: 4  
Subtractor: -> key textiles stock alert symbol: "PXLW" share_price: 2.52 share_volume: 4 
market_segment: "textiles"

and aggregate dollar_volume: 54.57 share_volume: 18    

Subtractor: <- updated aggregate dollar_volume: 44.49 share_volume: 14  

Adder : -> key textiles stock alert symbol: "PXLW" share_price: 3.39 share_volume: 6 
market_segment: "textiles"

and aggregate dollar_volume: 44.49 share_volume: 14  
Adder : <- updated aggregate dollar_volume: 64.83 share_volume: 20 
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subtractor  implementation. I won’t cover them here, but there will be examples of both Reducer

 and  in the source code for the book.reduce count

This wraps up our coverage of the  API but before we move on to more advanced statefulKTable

subjects, I’d like to go over another table abstraction offered by Kafka Streams, the 
.GlobalKTable

I alluded to the  earlier in the chapter when we discussed that the  isGlobalKTable KTable

partitioned, hence its distributed out among Kafka Streams application instances (with the same
application id of course). What makes the  unique is the fact that it’s notGlobalKTable

partitioned, it fully consumes the underlying source topic. This means there is a full copy of all
records in the table for all application instances.

Let’s look at an illustration to help make this clear:

Figure 8.8 GlobalKTable contains all records in a topic on each application instance

As you can see the source topic for the  has three partitions and with three applicationKTable

instances, each  is responsible for one partition of data. But the  has the KTable GlobalKTable

 of its three-partition source topic on each instance. Kafka Streams materializes the*full copy*
 on local disk in a , but there is no changelog topic crated for thisGlobalKTable KeyValueStore

store as the source topic serves as the backup for recovery as well.

Here’s how you’d create one in your application:

8.5 GlobalKTable
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Listing 8.7 Creating a GlobalKTable

The interesting thing to note about the  is that it doesn’t offer an API. So I’m sureGlobalKTable

you’re asking yourself "why would I ever want to use one?". The answer to that question will
come in our next section when we discuss joins with the .KTable

In the previous chapter you learned about performing joins with two  objects, but youKStream

can also perform - , - , and -  joins. WhyKStream KTable KStream GlobalKTable KTable KTable

would you want to join a stream and a table? Stream-table joins represent an excellent
opportunity to create an  event with additional information. For the stream-table andenriched
table-table joins, both sides need to be co-partitioned - meaning the underlying source topics
must have the same number of partitions. If that is not the case then you’ll need to do a 

 operation to achieve the co-partitioning. Since the  has a full copyrepartition GlobalKTable

of the records there isn’t a co-partitioning requirement for stream-global table joins.

For example, let’s say you have an event stream of user activity on a website, a clickstream, but
you also maintain a table of current users logged into the system. The clickstream event object
only contains a user-id and the link to the visited page but you’d like more information. Well you
can join the clickstream against the user table and you have much more useful information about
the usage patterns of your site - in real time. Here’s an example to work through:

Listing 8.8 Stream-Table join to enrich the event stream

Looking at the code in this example, you first create the click-event stream then a table of logged
in users. In this case we’ll assume the stream has the user-id for the key and the user tables'
primary key is the user-id as well, so we can easily perform a join between them as is. From
there you call the  method of the stream passing in the table as a parameter.join

8.6 KTable Joins

StreamsBuilder builder = new StreamsBuilder();
GlobalKTable<String, String> globalTable =
  builder.globalTable("topic",

Consumed.with(Serdes.String(),
Serdes.String()));

KStream<String, ClickEventProto.ClickEvent> clickEventKStream =
builder.stream("click-events",

Consumed.with(stringSerde, clickEventSerde));

KTable<String, UserProto.User> userTable =
builder.table("users",

Consumed.with(stringSerde, userSerde));

clickEventKStream.join(userTable, clickEventJoiner)
.peek(printKV("stream-table-join"))
.to("stream-table-join",

Produced.with(stringSerde, stringSerde));
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At this point I’d like to cover a few of differences with the stream-table joins from the
stream-stream join. First of all stream table joins aren’t reciprocal - the stream is always on the
left or calling side and the table is always on the right side. Secondly, there is no window that the
timestamps of the records need to fit into for a join to occur, which dove tails into the third
difference; only updates on the stream produce a join result.

In other words, it’s only newly arriving records on the stream that trigger a join, new records to
the table update the value for the key in table, but don’t result in a join result. To capture the join
result you provide a  object that accepts the value from both sides and produces aValueJoiner

new value which can be the same type of either side or a new type altogether. With stream-table
joins you can perform an inner (equi) join or a left-outer join (demonstrated here).

Next, let’s talk about table-table joins. Joins between the two tables are pretty much the same
that you’ve seen so far with join functionality. Joins between two tables is similar to
stream-stream joins, except there is now windowing, but updates to either side will trigger a join
result. You provide a  instance that calculates the join results and can return anValueJoiner

arbitrary type. Also, the constraint that the source topic for both sides have the same number
partitions applies here as well.

But there’s something extra offered for table-table joins. Let’s say you have two s you’dKTable

like to join; users and purchase transactions, but the primary key for the users is user-id and the
primary key for transactions is a transaction-id, although the transaction object contains the
user-id. Usually a situation like this would require some sort of workaround, but not now, as the 

 API offers a foreign-key join, so you can easily join the two tables. To use theKTable

foreign-key join you use the signature of the  method that looks like this:KTable.join

Listing 8.9 KTable Foreign Key join

Other table or right side of the join

The foreign key extractor function

The ValueJoiner parameter

Setting up the foreign key join is done like any other table-table join except that you provide an
additional parameter a  object, that extracts the key used to complete thejava.util.Function

join. Specifically, the function extracts the key from the left-side value to correspond with the

8.7 Stream-Table join details

8.8 Table-Table join details

userTable.join(transactionTable,   
foreignKeyExtractor, 
joiner);  
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key of the right side table. If the function returns  then no join occurs.null

Inner and left-outer joins support joining by a foreign key. As with primary-key table joins, an
update on either side will trigger a potential join result. The inner workings of the foreign-key
join in Kafka Streams is involved and I won’t go into those details, but if you are interested in
more  de ta i l s  then  I  sugges t  r ead ing  KIP-213  

.cwiki.apache.org/confluence/display/KAFKA/KIP-213+Support+non-key+joining+in+KTable

NOTE There isn’t a corresponding explicit foreign-key joins available in the KStream
API and that is intentional. The  API offers methods  and KStream map

 where you can easily change the key of a stream to facilitate aselectKey

join.

The final table join for us to discuss is the stream-global table join. There a few differences with
the stream-global table we should cover. First it’s the only join in Kafka Streams that does not
require co-partitioning. Remember the  is not sharded like the  is, aGlobalKTable KTable

partition per task, but instead contains all the data of its source topic. So even if the partitions of
the stream and the global-table don’t match, if the key is present in the global table, a join result
will occur.

The semantics of a global table join are different as well. Kafka Streams process incoming 
 records along with every other incoming records by timestamps on the records, so with aKTable

stream-table join the records are aligned by timestamps. But with a , updates areGlobalKTable

simply applied when records are available, it’s done separately from the other components of the
Kafka Streams application.

Having said that, there are some key advantages of using a . In addition to havingGlobalKTable

all records on each instance, stream-global tables support foreign key joins, the key of the stream
does not have to match the key of the global table. Let’s look at a quick example:

Listing 8.10 KStream GlobalTable Join example

The  to join againstGlobalTable

A key selector to perform the join

The  instance to compute the resultValueJoiner

So with the -  join the second parameter is a  that takesKStream GlobalKTable KeyValueMapper

8.9 Stream-GlobaTable join details

userStream.join(detailsGlobalTable, 
keySelector, 
valueJoiner); 
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1.  

2.  

the key and value of the stream and creates the key used to join against the global table (in this
way it is similar to the  foreign-key join). It’s worth noting that the result of the join willKTable

have the key of the stream regardless of the  key or what the supplied functionGlobalTable

returns.

Of course every decision involves some sort of trade-off. Using a  means usingGlobalKTable

more local disk space and a greater load on the broker since the data is not sharded, but the entire
topic is consumed. The stream-global table join is not reciprocal, the  is always on theKStream

calling or left-side of the join. Additionally, only updates on the stream produce a join result, a
new record for the  only updates the internal state of the table. Finally, eitherGlobalKTable

inner or left-outer joins are available.

So what’s best to use when joining with a  a  or ? That’s a toughKStream KTable GlobalKTable

question to answer as there are no hard guidelines to follow. But a good rule of thumb would be
to use a  for cases where you have fairly static lookup data you want to join withGlobalKTable

a stream. If the data in your table is large strongly consider using a  since it will end upKTable

being sharded across multiple instances.

At this point, we’ve covered the different joins available on both the  and .KTable GlobalKTable

There’s more to cover with tables, specifically viewing the contents of the tables with interactive
queries and suppressing output from a table (  only) to achieve a single final result. We’llKTable

cover interactive queries a little later in the chapter. But we’ll get to suppression in our next
section when we discuss windowing.

So far you’ve learned about aggregations on both the  and . While they bothKStream KTable

produce an aggregation, how they are calculated is bit different. Since the  is an eventKStream

stream where all records are unrelated, the aggregations will continue to grow over time. But
with either case the results produced are cumulative over time. Maybe not as much for KTable
aggregations, but that’s definitely the case for  aggregations.KStream

There’s good chance that you’ll want to see results within given time intervals. For example,
what’s the average reading of a IoT temperature sensor every 15 minutes? To capture
aggregations in slices of time, you’ll want to use windowing. In Kafka Streams windowing an
aggregation means that you’ll get results in distinct blocks of time as defined by the size of the
window. There are four window types available:

Hopping - Windows with a fixed size by time and the advance time is less than the
window size resulting in overlapping windows. As a result, results may be included in
more than one window. You’d use a hopping window when a result from the previous
window is useful for comparison such as fraud detection.
Tumbling - A special case of a hopping window where the advance time is the same as

8.10 Windowing
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2.  

3.  

4.  

the window size, so each window contains unique results. A good use case for tumbling
windows is inventory tracking because you only want the unique amount of items sold
per window.
Session - A different type of window where its size is not based on time but on behavior
instead. Session windows define an inactivity-gap and as long as new events arrive
within the defined gap, the window grows in size. But once reaching the inactivity gap,
new events will go into a new window. Session windows are great for tracking behavior
becuase the windows are determined by activity.
Sliding - Sliding windows are fixed time windows, but like the session window, they can
continue to grow in size because they are based on behavior as well. Sliding windows
specify the maximum difference between timestamps of incoming records for inclusion
in the window.

What we’ll do next is present some examples and illustrations demonstrating how to add
windowing to aggregations and more detail on how they work.

The first example will show how to implement a hopping window on a simple count application.
Although the examples will be simple to make learning easier to absorb, the simplicity of the
aggregation doesn’t matter. You can apply windowing to any aggregation.

Listing 8.11 Setting up hopping windows for an aggregation

Setting up the window (hopping) with a size of one minute

Establishing the advance by time

Convert the KTable to a KStream

Mapping the Windowed key back to the original inner key

In this example you’re using a hopping window with a size of one minute and an advance of 10
seconds. Let’s review the code here to understand what your specifying. The  call atwindowedBy

annotation one sets up the windowing and specifies the size of the window. You no doubt
noticed the method name , so what does the  mean (otherofSizeWithNoGrace WithNoGrace

than dribbling your dinner down the front of your shirt!)? Grace is a concept in Kafka Streams
that allows you to define how you want to handle out-of-order records, but I’d like to defer that
conversation until we’ve finished discussing the hopping window.

At annotation two, you use the  call which determines the interval that theadvanceBy

aggregation will occur. Since the  is less than the window size, it is a hoppingadvanceBy

window. At annotation three we convert the  to a  as we need to convert fromKTable KStream

//Some details omitted for clarity
  countStream.groupByKey()
   .windowedBy(TimeWindows.ofSizeWithNoGrace(Duration.ofMinutes(1)) 

.advanceBy(Duration.ofSeconds(10)))
   .count(Materialized.as("hopping-window-counting-store"))
   .toStream()
   .map((windowedKey, value) -> KeyValue.pair(windowedKey.key(), value)) 
   .to("counting-output", Produced.with(stringSerde, longSerde));
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the update stream to an event stream so we can perform some operations on each result.

At annotation four, you use a  processor to create a new  object, specificallymap KeyValue

creating a new key. This new key is actually the original key for the pair when it entered the
aggregation. When you perform a windowed aggregation on a  the key going into the KStream

 gets "upgraded" to a  key. The  class contains the original key fromKTable Windowed Windowed

the record in the aggregation and a reference to the specific  the record belongs to.Window

Processing the key-values coming from a windowed aggregation presents you with a choice;
keep the key as is, or use the  processor to set the key the original one. Most of the time itmap

will make sense for you to revert to the original key, but there could be times where you want to
keep the  one, there really isn’t any hard rules here. In the source code there’s anWindowed

example of using both approaches.

Getting back to how a hopping window operates, here’s an illustration depicting the action:

Figure 8.9 Hopping windows hop to the right by the given advance time which

From looking at the illustration, the first record into the aggregation opens the window with the
time of its timestamp. Every ten seconds, again based on record timestamps, the aggregation
performs its calculation, a simple count in this case. So a hopping window has a fixed size where
it collects records, but it doesn’t wait the entire time of the window size to perform the
aggregation; it does so at intervals within the window corresponding to the advance time. Since
the aggregation occurs within the window time it may contain some records from the previous
evaluation.

You now have learned about the hopping window, but so far we’ve assumed that records allways
arrive in order. Suppose some of your records don’t arrive in order and you’d still like to include
them (up to a point) in your count, what whould you do to handle that? Now’s a good time to
circle back to the concept of out-of-order and grace I mentioned previously.
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It will be easier to grasp the concept of grace if we first describe what an out-of-order record is.
You’ve learned in a previous chapter the  will set the timestamp on a record. InKafkaProducer

this case timestamps on the records in Kafka Streams should always increase. But in some cases
you may want to use a timestamp embedded in the value, and in that scenario you can’t be
guaranteed that those timestamps always increase. The following illustration demonstrates this
concept:

Figure 8.10 Out of order records didn’t arrive in the correct sequence

So an out-of-order record is simply one where the timestamp is less than the previous one.

Now moving on to grace, it is the amount of time after a window is considered closed that you’re
willing to allow an out-of-order record into the aggregation. Here’s an illustration demonstrating
the concept:

8.11 Out order records and grace
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Figure 8.11 Grace is the amount of time you’ll allow out-of-order records into a window after its
configured close time

So from looking at the illustration, grace allows records into an aggregation that would have
, and allows for a more accurate calculation. Once the gracebeen included were they on-time

period has expired, any out-of-order records are considered late and dropped. In the case of our
example above, since we’re not providing a grace period, when the window closes Kafka
Streams drops any out-of-order records.

We’ll revisit windowing and grace periods when we discuss timestamps later in the chapter, but
for now it’s enough to understand that timestamps on the records drive the windowing behavior
and grace is a way to ensure you’re getting the most accurate calculations by including records
that arrive out of order.

Now let’s get back to our discussion of window types and move on to the tumbling window. A
tumbling window is actually a special case of a hopping window where the advance of the
window is the same as its size. Since it advances the size of the window the calculation of the
window contains no duplicate results. Let’s take a look of an illustration showing the tumbling
window in action:

8.12 Tumbling windows
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Figure 8.12 Tumbling windows move to the right by an advance equal to the size of the window

So you can see here how a tumbling window gets its name - thinking of the window as square
when it’s time to advance it "tumbles" into an entirely new space, and as a consequence it’s
guaranteed to not have any overlapping results. Specifying to use a tumbling window is easy,
you simple leave off the  method and the size you set automatically becomes theadvanceBy

advance time. Here’s the code for setting up a tumbling window aggregation:

Listing 8.12 Setting up tumbling windows for an aggregation

Setting up the tumbling window of one minute

Using 30 seconds for the grace period

From looking at annotation one using a tumbling window is simply a matter not setting the
advance time. Also I’d like to point out that in this example you are using a grace period of thirty
seconds, so there’s a second  parameter passed into the Duration

 method. Note that I’m only showing the required code forTimeWindows.ofSizeAndGrace

tumbling windows with a grace period, but the source code contains a full runnable example.

The choice of using a tumbling or a hopping window depends entirely on your use case. A
hopping window gives you finer grained results with potentially overlapping results, but the
tumbling window result are a little more course-grained but will not contain any overlapping
records. One thing to keep in mind is that a hopping window is re-evaluated more frequently, so
how often you want to observe the windowed results is one potential determinant.

//Some details omitted for clarity
countStream.groupByKey()
    .windowedBy(TimeWindows.ofSizeAndGrace(Duration.ofMinutes(1) 

,Duration.ofSeconds(30))) 
    .count(Materialized.as("Tumbling-window-counting-store"))
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Next up in our tour of window type is the session window. The session window differs from
hopping and tumbling in that it doesn’t have fixed size. Instead you specify an inactivity gap; if
there’s no new records within the gap time, Kafka Streams closes the window. Any subsequent
records coming in after the inactivity gap result in creating a new session. Otherwise it will
continue to grow in size Looking at a visual pictorial of a session window is in order to fully
understand how it works:

Figure 8.13 Session windows continue to grow unless no new records arrive before the inactivity gap
expires

By looking at the illustration you can see that a session window is driven by behavior, unlike the
hopping or tumbling window which are governed by time. Let’s take a look at an example of
using a session window. As before I’m only going to show the essential part here, the source
code contains the full, runnable example.

Listing 8.13 Setting up the session window

Using a session window for the aggregation

Specifying a grace period

So to use sessions with your aggregation is to use a  factory method. In thisSessionWindows

case you specify an inactivity period of one minute and you include a grace period as well. The
grace period for session window works in the similar manner, it provides a time for Kafka
Streams to include out-of-order records arriving after the inactivity period passes. As with the
other window implementations, there’s also a method you can use to specify no grace period.

8.13 Session windows

//Some details omitted

countStream.groupByKey()
 .windowedBy(SessionWindows.ofInactivityGapAndGrace(Duration.ofMinutes(1), 

Duration.ofSeconds(30)))  
 .count(Materialized.as("Session-window-counting-store"))
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The choice to use a session window vs. hopping/tumbling is more clear cut, it’s best suited where
you are tracking behavior. For example think of a user on a web application, as long as they are
active on the site you’ll want to get calculate the aggregation and it’s impossible to know how
long that could be.

We’re now on to the last window type to cover, . The sliding window is aSlidingWindows

fixed-size window, but instead of specifying the size, it’s the difference between timestamps that
determine if a record is added to the window. So it’s a combination of time-based window, but
To fully understand how a  operates, take a look at the following illustration:SlidingWindow

Figure 8.14 Sliding windows are fixed-size and slide along the time-axis

As you can see from the diagram, two records are in the same window if the difference in the
value of their timestamps falls within the window size. So as the  slides alongSlidingWindow

records may end up in several overlapping calculations, but each window will contain a unique
set of records. Another way to look at the  is that as it moves along theSlidingWindow

time-axis, records come into the window and others fall out on continual basis.

Here’s how you’d set up a sliding window for an aggregation:

Listing 8.14 Setting up the sliding window

Specifying a sliding window with time difference of 30 seconds

8.14 Sliding windows

//Some details omitted

 countStream.groupByKey()
    .windowedBy(SlidingWindows.ofTimeDifferenceWithNoGrace(

Duration.ofSeconds(30))) 
    .count(Materialized.as("Sliding-window-counting-store"))
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As with the all the windowed options we’ve seen so far, it’s simply a matter of providing a
factory method for the desired windowing functionality. In this case, you’ve set the time
difference to thirty seconds with no grace period. Just like the other windowing options, you
could specify a grace period as well with the SlidingWindows.ofTimeDifferenceWithGrace
method.

The determining factor to go with a sliding window over a hopping or tumbling window is a
matter of how fine-grained of a calculation is desired. When you need to generate a continual
running average or sum is a great use-case for the .SlidingWindow

You could achieve similar behavior with a  by using a small advance interval.HoppingWindow

But this approach will result in poor performance because the hopping windows will create
redundant windows and performing aggregation operations over them is inefficient. Compared to
the  that only creates windows containing distinct items so the calculations areSlidingWindow

more efficient.

This wraps up our coverage of the different windowing types that Kafka Streams provides, but
before we move on to another section we will cover one more feature that is available for all
windows. As records flow into the windowed aggregation processor, Kafka Streams continually
updates the aggregation with the new records. Kafka Streams updates the  with the newKTable

aggregation, and it forwards the previous aggregation results to downstream operators.

Remember that Kafka Streams uses caching for stateful operations, so every update doesn’t flow
downstream. It’s only on cache flush or a commit that the updates make it downstream. But
depending on the size of your window, this means that you’ll get partial results of your
windowing operations until the window closes. In many cases receiving a constant flow of fresh
calculations is desired.

But in some cases, you may want to have a single,  result forwarded downstream from a*final*
windowed aggregation. For example, consider a case where your application is tracking IoT
sensor readings with a count of temperature readings that exceed a given threshold over the past
30 minutes. If you find a temperature breach, you’ll want to send an alert. But with regular
updates, you’ll have to provide extra logic to determine if the result is an intermediate or final
one. Kafka Streams provides an elegant solution to this situation, the ability to suppress
intermediate results.

For stateless operations the behavior of always forwarding a result is expected in the nature of a
stream processing system. But sometimes for a windowed operation it’s desirable for a final
result when the window closes. For example, take the case of the tumbling window example
above, instead of incremental results, you want a single final count.

8.15 Suppression

244

©Manning Publications Co. To comment go to liveBook  
https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion

https://livebook.manning.com/#!/book/kafka-streams-in-action-second-edition/discussion


1.  

2.  

NOTE Final results are only available for windowed operations. With an event
streaming application like Kafka Streams, the number of incoming records is
infinite, so there’s never a point we can consider a record final. But since a
windowed aggregation represents a discrete point in time, the available
record when the window closes can be considered final.

So far you’ve learned about the different windowing operations available, but they all yield
intermediate results, now let’s suppose you only want the final result from the window. For that
you’d use the  operation.KTable.suppress

The  method takes a  configuration object which allows you toKTable.suppress Suppressed

configure the suppression in two ways:

Strict - results are buffered by time and the buffering is strictly enforced by never
emitting a result early until the time bound is met
Eager - results are buffered by size (number of bytes) or by number of records and when
these conditions are met, results are emitted downstream. This will reduce the number of
downstream results, but doesn’t guarantee a final one.

So you have two choices - the strict approach which guarantees a final result or the eager one
which could produce a final result, but also has the likelihood of emitting a few intermediate
results as well. The trade-off to make can be thought of this way - with strict buffering, the size
of the buffer doesn’t have any bounds, so the possibility of getting an  (OOM)OutOfMemory

exists, but with eager buffering you’ll never hit an OOM exception, but you could end up with
multiple results. While the possibility of incurring an OOM may sound extreme, if you have feel
the buffer won’t get that large or you have a sufficiently large heap available then using the strict
configuration should be OK.

NOTE The possibility of an OOM is not as harsh as it seems at first glance. All Java
applications that use a data-structures in-memory, List, Set or Map have the
potential for causing an OOM if you continually add to them. To use them
effectively requires a balance of knowledge between the incoming data and
the amount of heap you have available.

Let’s take a look now at how at an example of using suppression.

Listing 8.15 Setting up suppression on a KStream aggregation

Creating a one-minute tumbling window

countStream.groupByKey()
    .windowedBy(TimeWindows.ofSizeWithNoGrace(Duration.ofMinutes(1))) 
    .count(Materialized.as("Tumbling-window-suppressed-counting-store"))
    .suppress(untilWindowCloses(unbounded())) 
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Suppressing results until the window closes with an unbounded configuration

So setting up suppression is as easy as adding one line of code, which you can see at annotation
two. In this case you’re suppressing all output until the window closes along with an unbounded
buffering of records. For testing scenarios this is an acceptable configuration, but if running with
such a configuration in a production setting gives you pause, let’s quick show two alternative
settings.

First you can configure the final result with a maximum number records or bytes, then if the
constraint is violated, you can have a graceful shutdown:

Listing 8.16 Setting up suppression for final result controlling the potential shutdown

Setting max records to 10K

Specifying to shutdown if limit is reached

Here you’re specifying to go with an unbounded window, but you’d rather have a graceful
shutdown should the buffer start to grow beyond what you feel is a reasonable amount. So in this
case you specify the maximum number of records is 10K and should the buffering exceed that
number, the application will shut down gracefully.

Note that we technically could have used a  with our original suppressionshutDownWhenFull

example, but the default limit is , so in practice most likely that you’d get anLONG.MAX_VALUE

OOM exception before reaching that size constraint. With this change you’re favoring shutting
down before emitting a possible non-final result.

On the other hand, if you’d rather trade-off a possible non-final result over shutting down you
could use a configuration like this:

Listing 8.17 Using suppression emulating a final result with a possible early result instead
of shutting down

Setting time limit of one hour before sending result downstream

Specifying to buffer a maximum of 1K records

Take the action of emitting a record if the maximum number of buffered records is
reached

With this example, you’ve set the time limit to match the size of the window (plus any grace

.suppress(untilWindowCloses(maxRecords(10_000) 
.shutDownWhenFull()) 

.suppress(untilTimeLimit(Duration.ofMinutes(1),  
maxRecords(1000)
.emitEarlyWhenFull())) 
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period) so you’re reasonable sure to get a final result, but you’ve set the maximum size of the
buffer, and if the number of records reaches that size, the processor will forward a record
regardless if the time limit is reached or not. One thing to bear in mind is if you want to set the
time limit to correspond to the window closing, you need to include the grace period, if any, as
well in the time limit.

This wraps up our discussion on suppression of aggregations in Kafka Steams. Even though the
examples in the suppression section only demonstrated using the  and windowedKStream

aggregations, you could apply the same principal to non-windowed  aggregations byKTable

using the time-limit API of suppression.

Now let’s move on to the last section of this chapter, timestamps in Kafka Streams.

Earlier in the book, we discussed timestamps in Kafka records. In this section, we’ll discuss the
use of timestamps in Kafka Streams. Timestamps play a role in key areas of Kafka Streams
functionality:

Joining streams
Updating a changelog (  API)KTable

Deciding when the  method is triggered (Processor API)Processor.punctuate()

Window behavior

With stream processing in general, you can group timestamps into three categories, as shown in
figure 8.10:

Event time — A timestamp set when the event occurred, usually embedded in the object
used to represent the event. For our purposes, we’ll consider the timestamp set when the 

 is created as the event time as well.ProducerRecord

Ingestion time — A timestamp set when the data first enters the data processing pipeline.
You can consider the timestamp set by the Kafka broker (assuming a configuration
setting of ) to be ingestion time.LogAppendTime

Processing time — A timestamp set when the data or event record first starts to flow
through a processing pipeline.

8.16 Timestamps in Kafka Streams
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Figure 8.15 There are three categories of timestamps in Kafka Streams: event time, ingestion time, and
processing time.

You’ll see in this section how the Kafka Streams by using a , gives youTimestampExtractor

the ability to chose which timestamp semantics you want to support.
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NOTE So far, we’ve had an implicit assumption that clients and brokers are located
in the same time zone, but that might not always be the case. When using
timestamps, it’s safest to normalize the times using the UTC time zone,
eliminating any confusion over which brokers and clients are using which time
zones.

In most cases using event-time semantics, the timestamp placed in the metadata by the 
 is sufficient. But there may be cases when you have different needs. ConsiderProducerRecord

these examples:

You’re sending messages to Kafka with events that have timestamps recorded in the
message objects. There’s some lag time in when these event objects are made available to
the Kafka producer, so you want to consider only the embedded timestamp.
You want to consider the time when your Kafka Streams application processes records as
opposed to using the timestamps of the records.

To enable different processing semantics, Kafka Stream provides a TimestampExtractor
interface with one abstract and four concrete implementations. If you need to work with
timestamps embedded in the record values, you’ll need to create a custom TimestampExtractor
implementation. Let’s briefly look at the included implementations and implement a custom 

.TimestampExtractor

Almost all of the provided  implementations work with timestamps set byTimestampExtractor

the producer or broker in the message metadata, thus providing either event-time processing
semantics (timestamp set by the producer) or log-append-time processing semantics (timestamp
set by the broker). Figure 4.19 demonstrates pulling the timestamp from the ConsumerRecord
object.

8.17 The TimestampExtractor
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Figure 8.16 Timestamps in the object: either the producer or broker set thisConsumerRecord

timestamp, depending on your configuration.

Although you’re assuming the default configuration setting of  for the timestamp,CreateTime

bear in mind that if you were to use , this would return the timestamp value forLogAppendTime

when the Kafka broker appended the record to the log.  isExtractRecordMetadataTimestamp

an abstract class that provides the core functionality for extracting the metadata timestamp from
the . Most of the concrete implementations extend this class. ImplementorsConsumerRecord

override the abstract method, , toExtractRecordMetadataTimestamp.onInvalidTimestamp

handle invalid timestamps (when the timestamp is less than 0).

Here’s a list of classes that extend the  class:ExtractRecordMetadataTimestamp

FailOnInvalidTimestamp — Throws an exception in the case of an invalid timestamp.
LogAndSkipOnInvalidTimestamp — Returns the invalid timestamp and logs a warning
message that the record will be discarded due to the invalid timestamp.
UsePreviousTimeOnInvalidTimestamp — In the case of an invalid timestamp, the last
valid extracted timestamp is returned.

We’ve covered the event-time timestamp extractors, but there’s one more provided timestamp
extractor to cover.

WallclockTimestampExtractor provides process-time semantics and doesn’t extract any
timestamps. Instead, it returns the time in milliseconds by calling the System

 method. You’d use the  when you.currentTimeMillis() WallclockTimestampExtractor

need processing time semantics.

That’s it for the provided timestamp extractors. Next, we’ll look at how you can create a custom

8.18 WallclockTimestampExtractor
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version.

To work with timestamps (or calculate one) in the value object from the ,ConsumerRecord

you’ll need a custom extractor that implements the  interface. ForTimestampExtractor

example, let’s say you are working with IoT sensors and part of the information is the exact time
of the sensor reading. It’s important for your calculations to have the precise timestamp, so
you’ll want to use the one embedded in the record sent to Kafka and not the one set by the
producer.

The figure here depicts using the timestamp embedded in the value object versus one set by
Kafka (either producer or broker).

Figure 8.17 A custom  provides a timestamp based on the value contained in the TimestampExtractor

. This timestamp could be an existing value or one calculated from propertiesConsumerRecord

contained in the value object.

Here’s an example of a  implementation (found in src/main/TimestampExtractor

java/bbejeck/chapter_4/timestamp_extractor/TransactionTimestampExtractor.java), also used in
the join example from listing 4.12 in the section “Implementing the Join” (although not shown in
the text, because it’s a configuration parameter).

8.19 Custom TimestampExtractor
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Listing 8.18 Custom TimestampExtractor

Retrieves the Purchase object from the key/value pair sent to Kafka

Returns the timestamp recorded at the point of sale

In the join example, you used a custom  because you wanted to use theTimestampExtractor

timestamps of the actual purchase time. This approach allows you to join the records even if
there are delays in delivery or out-of-order arrivals.

Now that we’ve discussed how timestamp extractors work, let’s tell the application which one to
use. You have two choices for specifying timestamp extractors.

The first option is to set a global timestamp extractor, specified in the properties when setting up
your Kafka Streams application. If no property is set, the default setting is 

. For example, the following code would configure the FailOnInvalidTimestamp.class

 via properties when setting up the application:TransactionTimestampExtractor

The second option is to provide a  instance via a  object:TimestampExtractor Consumed

The advantage of doing this is that you have one  per input source,TimestampExtractor

whereas the other option provides a  instance used application wide.TimestampExtractor

8.20 Specifying a TimestampExtractor

public class TransactionTimestampExtractor implements TimestampExtractor {

    @Override
    public long extract(ConsumerRecord<Object, Object> record,

long previousTimestamp) {
Purchase purchaseTransaction = (Purchase) record.value(); 
return purchaseTransaction.getPurchaseDate().getTime();

    }
}

props.put(StreamsConfig.DEFAULT_TIMESTAMP_EXTRACTOR_CLASS_CONFIG,
TransactionTimestampExtractor.class);

Consumed.with(Serdes.String(), purchaseSerde)
.withTimestampExtractor(new TransactionTimestampExtractor()))
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Before we end this chapter, we should discuss how Kafka Streams keeps track of time while
processing, that is by using streamtime. Streamtime is not another category of timestamp, it is the
current time in a Kafka Streams processor. As Kafka Streams selects the next record to process
by timestamp and as processing continues the values will increase. Streamtime is the largest
timestamp seen by a processor and represents the current time for it. Since a Kafka Streams
application is broken down into tasks and a task is responsible for records from a given partition,
the value of streamtime is not global in a Kafka Streams application, it’s only unique at the task
level.

Streamtime only moves forward never backwards. Out of order records are always processed,
with the exception of windowed operations depending on the grace period, but its timestamp
does not affect streamtime. Here’s an illustration showing how streamtime works in a Kafka
Streams application.

Figure 8.18 Streamtime represents the highest timestamp seen so far and is the current time of the
application

So as the illustration shows, the current time of the application moves forward as records go
through the topology and out of order records still go through the application but do not change
streamtime.

Streamtime is vital for the correctness of windowed operations as a window only advances and
closes as streamtime moves forward. If the source topics for your application are bursty or have a
sporadic sustain volume of records, you might encounter a situation where you don’t observe
windowed results. This apparent lack of processing is due to the fact that there hasn’t been
enough incoming records to move streamtime forward to force window calculations.

8.21 Streamtime
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This effect that timestamps have on operations in Kafka Streams is important to keep in mind
when testing applications, as manually adjusting the value of timestamps can help you drive
useful tests to validate behavior. We’ll talk more about using timestamps for testing in the
chapter on testing.

Streamtime also comes into play when you have punctuations which we’ll cover in the next
chapter when we discuss the Processor API.

The  is an update stream and models a database table where the primary key is theKTable

key from the key-value pair in the stream. Records with the same key are considered
updates to previous ones with the same key. Aggregations with the  are analogousKTable

to running a  SQL query against a relational database table.Select…. Group By

Performing joins with a  against a  is a great way to enrich an eventKStream KTable

stream. The  contains the event data and the  contains the facts orKStream KTable

dimension data.
It’s possible to perform joins between two s and you can also do a foreign keyKTable

join between two sKTable

The  contains all records of the underlying topic as it’s not sharded soGlobalKTable

each application instance contains all the records making it suitable for acting as a
reference table. Joins with the  don’t require co-partitioning with the GlobalKTable

, you can supply a function that calculates the correct key for the join.KStream

Windowing is a way to calculate aggregations for a given period of time. Like all other
operations in Kafka Streams, new incoming records mean an update is released
downstream, but windowed operations can use suppression to only have a single final
result when the window closes.
There are four types of windows hopping, tumbling, sliding, and session. Hopping and
tumbling windows are fixed in size by time. Sliding windows are fixed in size by time,
but record behavior drives record inclusion in a window. Session windows are
completely driven by record behavior, and the window can continue to grow as long as
incoming records are within the inactivity gap.
Timestamps drive the behavior in a Kafka Streams application and this most obvious in
windowed operations as the timestamps of the records drive the opening and closing of
these operations. Streamtime is the highest timestamp viewed by a Kafka Streams
application during it’s processing.
Kafka Streams provides different  instances so you can useTimestampExtractor

different timestamp semantics event-time, log-append-time, or processing time in your
application.

8.22 Summary
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B
In this appendix, you’ll take a guided walk through of updating schemas in different compatiblity
modes. You’ll change the schemas compatibiltiy mode, make changes, test those changes and
finally run updated producers and consumers to see the different compatibilty modes in action.
I’ve already made all the changes, you just need to read along and run the provided commands.
There are three sub-projects sr-backward, sr-forward, and sr-full. Each sub-project contains
producers, consumers and schemas updated and configured for the representative compatiblity
mode.

NOTE There is a lot of overlap with code and the build.gradle files between the
sub-projects. This is intentional as I wanted each module isolated. The focus
of using these modules is for learning about evolving schemas in Schema
Registry and the related changes you need to make to Kafka Producers and
Consumers, not how to set up the ideal Gradle project!

In this section I’ll only go into how Schema Registry ensures compatibility between clients. For
schema compatibility rules of the serilaiztion frameworks themselves, you’ll want to look at each
one specifially. Avro schema resolution rules are available here 

. Protobuf provides backwardhttps://avro.apache.org/docs/current/spec.html#Schema+Resolution
compatibility rules in the langage specification found here 

.https://developers.google.com/protocol-buffers/docs/proto3

Let’s go over the different compatibility modes now. For each compatibility mode you’ll see the
changes made to the scheama and you’ll run the a few steps to needed to sucessfuly migrate a
schema.

I’d like to point out that for the sake of clarity each schema migration for the different
compatibility modes has it’s own gradle sub-module in the source code for the book. I did this as
each Avro schema file has changes resulting in different Java class structures when you build the
code. Instead of having you rename files, I opted for a structure where each migration type can

Schema compatibility workshop
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stand on its own. In a typical development evrionment you will not follow this practice. You’ll
modify the schema file, generate the new Java code and update the producers and consumers in
the same project.

All of the schema migration examples will modify the original  schema file.avenger.avsc

Here’s the original schema file for reference so it’s easier to see the changes made for each
schema migration.

Listing B.1 The original Avenger Avro schema

NOTE For working through schema evolution and the comaptibility types, I’ve
created three sub-modules in the source code, , , andsr-backward sr-forward

. These sub-modules are self contained and intentionally containsr-full

duplicated code and setup. The modules have updated schemas, producers
and consumers for each type of compatibility mode. I did this to make the
learning process easier, as you can look at the changes and run new
examples without stepping on the previous ones.

Backward compatibility is the default migration setting. With backward compatibility you update
the consumer code first to support the new schema. The updated consumers can read records
serialized with the new schema or the immediate previous schema.

B.1 Backward compatibility

{
  "namespace": "bbejeck.chapter_3.avro",
  "type": "record",
  "name": "AvengerAvro",
  "fields": [
    {"name": "name", "type": "string"},
    {"name": "real_name", "type": "string"},
    {"name": "movies", "type":

{"type": "array", "items": "string"},
"default": []

    }
  ]
}
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Figure B.1 Backward compatitbility updates consumers first to use the new schema then they can
handle records from producers using either the new schema or the previous one

As shown in this illustration the consumer, can work with both the previous and the new
schemas. The allowed changes with backwards compatibility are deleting fields or adding
optional fields. An field is considered optional when the schema provides a default value. If the
serialized bytes don’t contain the optional field, then the deserializer uses the specifed default
value when deserializing the bytes back into an object.

Before we get started, lets run the producer with the original schema. That way after the next
step you’ll have records using both the old schema and the new one and you’ll be able to see
backwards compatibility in action. Make sure you’ve started docker with docker-compose up

, then run the following commands:-d

Listing B.2 Producing records with the original schema

Making sure you’ve registered the original avengers.avsc schema

Run a producer with the original schema

Now you’ll have records with the original schema in the topic. When you complete the next step,
having these records available will make it clear how backwards compatibility works as the
consumer will be able to accept records using the old and the updated schema.

So let’s update the original schema and delete the  field and add a  field withreal_name powers

default value.

./gradlew streams:registerSchemasTask

./gradlew streams:runAvroProducer
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NOTE The schema file and code can be found in  sub-module in the sr-backward

 directory in the source code.src/main/avro

Listing B.3 Backwards compatible updated schema

The  field replaced the deleted  fieldpowers real_name

Provding a default value of an empty powers list for backwards compatibility.

Now that you have updated the schema, you’ll want to test that the schema is compatible before
uploading it to Schema Registry. Fortunately testing a new schema is a simple process. You’ll
use the  in the  module from the gradle plugin for testingtestSchemasTask sr-backward

compatibility. So let’s test the compatibility first by running this command from the root of the
project:

Listing B.4 Testing a new schema is backwards compatible

IMPORTANT For you to run the example successfully, you need to run the command exacty
as its displayed here including the leading  character.:

The result of running the  should be  which means that thetestSchemasTask BUILD SUCESSFUL

new schema is backwards compatible with the existing one. The  makes a calltestSchemasTask

to Schema Registry to compare the proposed new schema against the current one to ensure it’s
comaptible. Now that we know the new schema is valid, let’s ahead and register oit with the
following command:

Listing B.5 Registering the new schema

{
  "namespace": "bbejeck.chapter_3.avro",
  "type": "record",
  "name": "AvengerAvro",
  "fields": [
    {"name": "name", "type": "string"},
    {"name": "powers", "type":

{"type": "array", "items": "string"},
"default": []

    },
    {"name": "movies", "type":

{"type": "array", "items": "string"},
"default": []

    }
    ]
}

./gradlew :sr-backward:testSchemasTask

./gradlew :sr-backward:registerSchemasTask
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Again the result of running the register command print a  on the console.BUILD SUCESSFUL

Before we move on to the next step let’s run a REST API command to view the latest schema for
the :avro-avengers-value

Running this command should yield results resembling the following:

From the results, you can see the increase in the version from 1 to 2 as you’ve loaded a new
schema. With this changes in place, you’ll need to update your clients, starting with the
consumer. With compatibility of  you want to update the consumer first to handle anyBACWARDS

records produced using the new schema.

For example you originally expected to work with the  field, but you deleted it in thereal_name

schema, so you want to remove references to it in the new schema. You also added the powers
field, so you’ll want to be able to work with that field. That also implies you’ve generated new
model objects.

Earlier in the chapter when you ran the  command it generated the correct objectsclean, build

for all of our modules. So you should not have to do that now.

Take note that since we are in  compatiblity mode, if your updated consumer were toBACKWARDS

getrecords in the previous format, then it won’t blow-up. The updated ignores the real_name
field, and the  field uses the default value.powers

After you have updated the consumer, then you’ll want to update your producer applications to
use the new schema. The  in the  submodule has had the updatesAvroProducer sr-backward

applied already. Now run the following command to producer records using the new schema.

Listing B.6 Producing records with the new schema

You’ll see some text scroll by followed by the familiar  text. If youBUILD SUCESSFUL

remember, just a few minutes ago you ran the produce command from the original sub-module
adding records in the previous schema. So now that you’ve run the producer using the new
schema, you have a mix of old and new schema records in the topic. But our consumer example
should be able to handle both types, since we are in the  compatibility mode.BACKWARDS

Now when you run the consumer you should be able to see the records produced with the

curl -s "http://localhost:8081/subjects/avro-avengers-value/versions/latest" | jq '.'

{
  "name" : "avro-avengers-value",
  "version" : 2,
  "schema" : "{\"type\": \"record\", \"namespace\": \"bbejeck.chapter_3\", \"name\": 
\"AvengerAvro\"..."

}

./gradlew :sr-backward:runAvroProducer
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previous schema as well as the records produced with the new schema. Run the following
command to execute the updated consumer:

Listing B.7 Consuming records against new schema

In the console you should see the first results printing . The empty valuewith powers []

indicates those are the older records using the default value, since the original records did not
have a  field on the object.powers

NOTE For this first compatibility example, your consumer read all the records in the
topic. This happened because we used a new  for the consumer ingroup.id

the  module and we’ve configured it to read from the earliestsr-backwards

available offset, if none were found. For the rest of the compatiblity examples
and modules, we’ll use the same  and the consumer will only readgroup.id

newly produced records. I’ll go into full details on the  configurationgroup.id

and offset behavior in chapter four.

Forward compatibility is a mirror image of backward compatibility regarding field changes. With
forward compatibility you can add fields and delete  fields. Let’s go ahead and updateoptional
the schema again, creating  which you can find in the avenger_v3.avsc

 directory.sr-forward/src/main/avro

Listing B.8 Foward compatible Avenger schema

Added a new field, nemeses

In this new version of the schema, you’ve removed the  field which defaults to an emptymovies

list and added a new field . In forward compatibility you would upgrade the producernemeses

B.2 Forward compatibility

./gradlew :sr-backward:runAvroConsumer

{
  "namespace": "bbejeck.chapter_3.avro",
  "type": "record",
  "name": "AvengerAvro",
  "fields": [
    { "name": "name", "type": "string" },
    { "name": "powers", "type": {

"type": "array", "items": "string"},
"default": []

    },
    {"name": "nemeses","type": {

"type": "array","items": "string"
}

    }
  ]
}
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client code first.

Figure B.2 Forward compatitbility updates producers first to use the new schema and consumers can
handle the records either the new schema or the previous one

By upgrading the producer code first, you’re making sure the new fields are properly populated
and only records in the new format are available. Consumers you haven’t upgraded can still work
with the new schema as it will simply ignore the new fields and the deleted fields have default
values.

Now you need to change the compatibility mode from  to . In the BACKWARD FORWARD sr-forward

sub-module the configuration for the Schema Registry plugin has this section setting the
compatibility:

Listing B.9 Comatibility in build.gradle for sr-forward sub-module

Now with the configuration set, to change the compatibility mode, run this command:

Listing B.10 Changing the compatbility mode to FORWARD

As we’ve seen before, the result of this command produces a  result on theBUILD SUCCESSFUl

console. If you want to confirm the compatibility mode for your subject, you can use this REST
API command:

Listing B.11 REST API to view configured compatibility mode for a subject

config {
subject('avro-avengers-value', 'FORWARD')

 }

./gradlew :sr-forward:configSubjectsTask

curl -s "http://localhost:8081/config/avro-avengers-value" | jq '.'
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The  at the end of the curl command formats the returned JSON and you should see somethingjq

like:

Listing B.12 Formatted configuration response

Now that you have configured the  subject with forward compatibility,avro-avengers-value

go ahead and test the new schema by running the following command:

Listing B.13 Testing a new schema is foward compatible

This command should print a  on the console, then you can register the newBUILD SUCESSFUL

schema:

Listing B.14 Register the new forward compatible schema

Then run a producer already updated to send records in the new format with this command:

Listing B.15 Run producer updated for records in the new schema format

Now that you’ve run the producer with an updated schema let’s first run the consumer that *is
 updated:not*

Listing B.16 Run a consumer not yet updated for the new schema changes

The results of the command show how that with forward compatibility even if the consumer is 
 it can still handle records written using the new schema. Now we need to produce*not updated*

some records again for the  consumer:updated

Listing B.17 Run producer again

Now run the consumer that is updated for the new schema:

{
   compatibility: FORWARD
}

./gradlew :sr-forward:testSchemasTask

./gradlew :sr-forward:registerSchemasTask

./gradlew :sr-forward:runAvroProducer

./gradlew :sr-backward:runAvroConsumer

./gradlew :sr-forward:runAvroProducer
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Listing B.18 Run consumer updated for new schema

In both cases, the consumer runs sucessfully, but the details in the console are different due to
having upgraded the consumer to handle the new schema.

At this point you’ve seen two compatibility types, backward and forward. As the compatibility
name implies, you must consider record changes in one direction. In backward compatibility,
you updated the consumers first as records could arrive in either the new or old fomrat. In
forward compatiblity, you updated the producers first to ensure the records from that point in
time are only in the new format. The last compatibility strategy to explore is the FULL
compatibility mode.

In full compatiblity mode, you free to add or remove fields, but there is one catch. *Any
 you make must be to  fields only.changes* *optional*

Figure B.3 Full compatitbility allows for producers to send with the previous or new schema and
consumers can handle the records either the new schema or the previous one

Since the fields involved in the updated schema are optional, these changes are considered
compatibable for existing producer and consumer clients. This means that the upgrade order in
this case is up to you. Consumers will continue to work with records produced with the new or
old schema.

Let’s take a look at an schema to work with  compatibility:FULL

B.3 Full compatibility

./gradlew :sr-forward:runAvroConsumer
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Listing B.19 Full compatibility schema avengers_v4.avsc

Added new optional field yearPublished

Added back optional field realName

Added new field partners

Before you update the schema, let’s produce a set of records one more time so that we can have a
batch of records in the format prior to our next schema change. I’ll explain why we are doing this
in an upcoming section.

Listing B.20 Run producer again to create a batch of records in the format before we
migrate the schema

This will give us a batch of records to read with an updated consumer. But first let’s change the
compatibility, this time to :FULL

Listing B.21 Change the compatibility to FULL

And to keep consistent with our process, let’s test the compatibility of the schema before we
migrate it:

Listing B.22 Test schema for full compatibility

With the migrated schema compatibility tested, let’s go ahead and register it

{
  "namespace": "bbejeck.chapter_3.avro",
  "type": "record",
  "name": "AvengerAvro",
  "fields": [
    { "name": "name", "type": "string" },
    { "name": "yearPublished", "type": "int", "default": 1960 }, 
    { "name": "realName", "type": "string", "default": "unknown" }, 
    { "name": "partners", "type": {

"type": "array","items": "string"},  
"default": []

    },
    {"name": "nemeses", "type": {

"type": "array", "items": "string"},
"default": []

    }
  ]
}

./gradlew :sr-forward:runAvroProducer

./gradlew :sr-full:configSubjectsTask

./gradlew :sr-full:testSchemasTask
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Listing B.23 Register the FULL compatibility schema

With the a new version of the schema registered, let’s have some fun with the order of records
we produce and consume. Since all of the updates to the schema involve optional fields the order
in which we update the producers and consumers doesn’t matter.

A few minutes ago, I had you create a batch of records in the previous schema format. I did that
to demonstrate that we can use an updated consumer in  compatiblity mode to read olderFULL

records. Remember before with  compatibility it was essential to ensure the updatedFORWARD

consumers would only see records in the new format.

Now let’s run an updated consumer to read records using the previous schema. But let’s watch
what happens now:

Now run the updated consumer

Listing B.24 Consuming with the updated consumer

And it runs just fine! Now let’s flip the order of operations and run the updated producer:

Listing B.25 Producing records with the new schema

And now you can run the consumer that we haven’t updated yet for the new record format:

Listing B.26 Consuming new records with a consumer not updated

As you can see from playing with the different versions of producers and consumers with FULL
compatibility, when you update the producer and consumer is up to you, the order doesn’t
matter.

./gradlew :sr-full:registerSchemasTask

./gradlew :sr-full:runAvroConsumer

./gradlew :sr-full:runAvroProducer

./gradlew :sr-forward:runAvroConsumer
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