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Preface

This book provides a textbook on quantum mechanics and is in
particular suited for bachelor students in their second or third year of
studies in theoretical physics. In Part I a short summary of classical
mechanics and its limits is given by pointing out those physical
observations, that are in conflict with (or opposed to) interpretations
within classical mechanics. Early attempts to extend the classical
physics by additional boundary conditions are discussed as well.

In Part Il the Elementary Quantum Mechanics for a single particle is
introduced and the statistical interpretation of its wave function, which
results from the Schrodinger equation in the presence of external
forces. It is shown how to translate classical observables in phase-space
representation to quantum mechanical operators acting in an abstract
Hilbert space of wave functions. Observable quantities like momentum,
angular momentum or energy then are defined by expectation values of
their corresponding operators. Contrary to classical mechanics the
sequence of measurements on different observables in general cannot
be exchanged; this is reflected in commutators between operators that
have the same algebra as the Poisson brackets in classical mechanics. A
prominent example is the uncertainty relation between position and
momentum, which states that the product of the uncertainty in position
and the uncertainty in momentum has a lower limit in quantum
mechanics and is increasing in time for free wave packets. Another
example is the angular momentum, whose components do not
commute and reflect the fact that the order of rotations cannot be
exchanged. In line with the observations in the Stern-Gerlach
experiments a spin is attributed to electrons and described by an
internal degree of freedom with the same algebra as the angular
momentum. This finally results in the Pauli equation that describes the
dynamics of charged spin 1/2 particles e.g. in an external
electromagnetic field.

The general properties of quantum mechanics then are illustrated
by a couple of examples including the infinite (and finite) square well,
the quantum mechanical tunnelling through a finite potential well as
well as problems with crystal (periodic) symmetries leading to finite



energy bands in solid state materials. The problem of the harmonic
oscillator is solved algebraically and its spectrum is derived as well as
its eigenfunctions in one and three dimensions. In case of radial
symmetry the radial Schrodinger equation is derived and solved
explicitly for the case of the hydrogen atom. Apart from bound states of
the single-particle problem, furthermore, continuum states are
investigated in the framework of scattering theory and an alternative
formulation of quantum mechanics is found in terms of the Lippmann-
Schwinger equation, which is more appropriate for scattering problems
due to the explicit implementation of proper boundary conditions. In
this context the scattering amplitude and the differential cross section
are introduced, that describe the scattering probability in quantum
theory. The Born series is set up for the scattering amplitude and
investigated in leading order approximation. Finally, the scattering
amplitude is derived in angular momentum representation and
scattering phase shifts are introduced, that define the S-matrix for
elastic scattering (and fixed angular momentum).

The Mathematical Foundations of Quantum Mechanics are addressed
in Part III of this book that aims at a rigid formulation of many-particle
problems in quantum physics. To this aim in particular self-adjoint,
unitary and projection operators are discussed in detail. In this context
the possible many-body states are characterized with respect to their
particle-exchange symmetry (in case of identical particles) which leads
to the classification of fermions and bosons, which differ by a minus-
sign in their wave function for the exchange of two particles. The Pauli
principle, furthermore, states that fermions can only occupy a state
(with given quantum numbers) once, whereas there is no limitation for
bosons. This distinction is not possible in classical mechanics, since the
particles can be distinguished by their trajectories in phase space, but
has severe consequences for many-body systems close to their ground
state.

In Part IV of this book the Quantum Mechanics of Many-Body Systems
is addressed and the different pictures for the time-evolution of the
system are pointed out, i.e. the Schrodinger picture, the Heisenberg
picture and the Dirac picture, which are equivalent, but have different
advantages depending on the problem under consideration. In order to
obtain a flexible and convenient formulation of the many-particle



problem the particle number representation for fermions and bosons is
introduced, which differ in the commutation relations for the particle
creation and annihilation operators. It is shown how to compute
observables in this representation and examples for ground states of
bosons and fermions are presented. Furthermore, the quantization of
the electromagnetic field is formulated, which—as in case of matter
fields—has a particle interpretation (photons) in addition to the wave
properties. The interactions between matter and the radiation field are
calculated in leading order, too.

Systematic Approximation Methods are in the focus of Part V of this
book, which starts with a formal formulation of scattering theory for
many-body systems and introduces the concept of the S-matrix and 7T'-
matrix. In particular the T-matrix is shown to follow a general Born-
series, which can be solved either by iteration or a systematic
expansion in powers of the interaction. Explicit formulae for the ground
state of many-body systems are presented. The Hartree-Fock approach
is derived and discussed in detail, which has a wide application in
atomic and nuclear physics as well as in theoretical chemistry. The
approach basically focusses on the properties of ground states of atoms
and molecules as well as nuclei and is an effective one-body theory,
where the individual two-body interactions are summed up in an
effective Hartree-Fock mean field. Residual interactions between pairs
of fermions with time-reversed quantum numbers are finally
incorporated in the BCS theory, which allows to describe
superconductivity in metals and nuclei at low temperatures.
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many students and collaborators throughout about 35 years of
common teaching and research. It follows the drafts of my teacher Prof.
Dr. Achim Weiguny to whom this volume is dedicated. Special thanks go
to my daughter Marie for preparing some of the figures and helpful
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About This Book

This book provides a textbook on quantum mechanics and is in
particular suited for bachelor students in their second or third year of
studies in theoretical physics.

After a short summary of classical mechanics and its limits the
elementary quantum mechanics for a single particle is introduced in
terms of the Schrodinger equation, which is solved for a couple of
representive examples. Apart from bound states of the single-particle
problem continuum states are investigated in the framework of
scattering theory. In this context the scattering amplitude and the
differential cross section are introduced, that describe the scattering in
quantum theory.

The mathematical foundations of quantum mechanics are
addressed in the second part of this book, that aims at a rigid
formulation of many-particle problems in quantum physics. For a
flexible and convenient formulation of the many-particle problem the
particle number representation for fermions and bosons is introduced.
Furthermore, a formal formulation of scattering theory for many-body
systems is presented in terms of the S-matrix and T-matrix. In
particular the T-matrix is shown to follow a general Born-series, which
can be solved by iteration. The Hartree-Fock approach is derived and
discussed in detail, while residual interactions between pairs of
fermions with time-reversed quantum numbers are finally
incorporated in the BCS theory, which allows to describe
superconductivity in metals and nuclei at low temperatures.

The author is a retired Professor of Theoretical Physics at the
university of Giesen and has shared the responsibility for the
introduction of Bachelor and Master courses in Physics since 2005. His
expertise is the phase-space dynamics of classical and quantum many-
body systems, which in part is published in a book on transport
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1. Principles of Classical Physics

Wolfgang Cassing!
(1) University of Giefden, Giefden, Hessen, Germany

Before coming to the actual formulation of quantum mechanics we
briefly summarize the basic concepts and equations of classical
mechanics. Furthermore, classical statistics is discussed with respect to
the concept of identical particles and the basic assumptions for
experimental measurements in classical physics are pointed out in
order to be confronted with the different perspectives in quantum
mechanics.

1.1 Motion of Mass Points

In classical physics a system of N mass points is fully characterized by
the positions and velocities of the particles as a function of time

To each mass point (particle) a trajectory is assigned, which can be
determined by integrating Newton’s equations of motion. The solution
is unique as soon as the positions and velocities of all particles are
determined (measured) at some time ¢y assuming that all internal and
external forces are known.

With respect to the formulation of quantum theory we write the
equations of motion using a characteristic function for the system, the
Lagrange function

(1.2)
L = L(gi, gist)


https://doi.org/10.1007/978-3-031-95521-1_1

as

#(5) - % ~o. (13)
If the forces are derived from a potential
V =V(gt) (1.4)
by forming the negative gradient, then L has the form
L=T-V, (1.5)
where
T= Zz mquz (1.6)

is the non-relativistic kinetic energy. By substituting (1.4), (1.5) and
(1.6) into (1.3) one immediately regains Newton'’s equations of motion.
In case of velocity-dependent forces (example: Lorentz force), I has to
be generalized to

V =V(q;,qgist). (1.7)

Instead of working with the » = 3N 2nd order differential equations
(1.3) in the Lagrange formalism, one can also use 2r differential
equations of first order in the Hamilton formalism. For the
transformation to the Hamilton formalism canonical momenta are
introduced by,

pi = 5 (1.8)

which reduce to the usual momenta
Di = M;q; (1.9)

if V does not depend on ¢;. With the help of the Hamilton function,
which is obtained by a Legendre transformation,



H = H(qi,piit) = >.; ¢ipi — L, (1.10)

the equations of motion then can be written as

0H . 0H

Qi = gy Pi = —5g - (1.11)
Furthermore:
OH oL
6 T ot (1.12)

For the proof one forms the complete differential of H(q;, pi;t)-
Note: Instead of the explicit equations of motion one can
alternatively employ the variation principle for the action S,

88(t1,t2) = & [* L(gs, gist) dt =0, (1.13)
with the boundary conditions

dgi(t1) = 6gi(t2) = 0. (1.14)

1.2 Poisson Brackets, Conservation Laws

An observable of the system (example: z-component of angular
momentum, mean square radius) can be represented as

F = F(qi,piit). (1.15)
For the total change in time of F one obtains:

E‘Z(aqi i o dt)+w

1

_N~(0F0H _OF oHY | OF
- <=\ 0q; Op;  Op; Ogi ot

(1.16)



0
={F,H} + 9.
In general, the expression

OF, OF: OF; OF:
{Fl,FZ} = ZZ( 6(11'1 8101‘2 - 8Pz'1 aqj) (117)

is denoted by the Poisson bracket of the quantities F;, F». For an
observable F, that not explicitly depends on time (example: z-
component of the angular momentum), its change in time is
determined by the Poisson bracket with H,

9E _(F,H} if 2 =0 (1.18)

Examples:

(i) Fundamental Poisson brackets {q;,p;} = §;;

(ii) Hamilton’s equations

¢ = OH/0p; = {q;, H}
pi = —O0H/0q; = {p;, H}

(i) dH /dt = {H,H} + 0H /0t = OH /Ot.

From (iii) the conservation law of energy arises if H is not explicitly
dependent on t and has the form H = T + V(g;).

For a closed system the fundamental mechanical quantities—
energy, momentum and angular momentum - are conserved quantities.
This is a direct consequence of the invariance of the Lagrange function
- and thus of the physical system—with respect to time translation,
space translation and space rotation. Since momentum and angular
momentum for a system of N particles does not depend explicitly on
time ¢, then from (1.16) or (1.18) follows for a conserved quantity G




¢ — {G,H} =0. (1.19)

Conservation laws imply that for the considered observable the
Poisson bracket with the Hamilton function vanishes.

1.3 Identical Particles Classical Statistics

Particles with the same physical properties (same mass, same charge,
etc.) are called identical particles. In classical physics identical
particles are distinguishable based on their trajectories: numbering
e.g. two identical particles at a time £y by 1 and 2, then at a later time
t > t( the particles can be identified again as 1 or 2 by following their
motion along the respective trajectory, which is unique.

If there are a lot of identical particles (like Hy molecules in a
macroscopic volume), the system is described using statistical methods
(probability statements), although in principle all physical properties of
the system are fixed for all times, if the initial conditions are known.
Statistics methods are used for practical reasons: if it is not possible to
measure or calculate all physical variables of the system or if
statements about certain quantities are practically uninteresting (e.g.
the positions of all molecules in a macroscopic volume).

1.4 Fundamental Interactions

The forces acting between mass points can be reduced to a few

fundamental types of interactions, that partially are described in the

context of field theories:

(1) Lo . .
the gravitational interaction, which couples to the mass of the
particles and is essential for the motion of macroscopic bodies
(especially celestial objects);

ii

) the electromagnetic interaction, which couples to the charge
and the magnetic moment of the particles. It is important for
problems in both macroscopic and microscopic dimensions;



(iii) the weak interaction which e.g. is responsible for the 5 decay;
(iv)
the strong interaction, which describes the nuclear forces
between the nucleons by the exchange of mesons. It is
fundamentally based on the exchange of colored gluons coupling
to the color charge of quarks in quantum chromodynamics

(QCD).

Note: (ii) and (iii) are also referred to as electroweak interaction,
which is based on the exchange of a massless vector particle (the
photon ) as well as massive vector bosons (W, W9 W -, Z0).

This book primarily focuses on electromagnetic interactions.

1.5 Concept of Measurement in Classical
Physics

In order to carry out a measurement of a physical system, the system
(object) to be examined must interact with a detector. The detector
changes its state (e.g. in the form of a mechanical pointer) and, in
principle, the system (object) to be examined is also inversely
influenced by the measurement process.

On the basis of classical physics the following fundamental
statements are assumed about the measurement process:

1.
The reaction of the measurement process on the object can in

principle be calculated according to the laws of classical physics.

The perturbations—caused by a measurement on the object - can
be made arbitrarily small. With a suitable setup of the
measurement the impact on the object can therefore be neglected.

Measurements of different properties (observables) on the same
system do not interfere with each other.

Example: If we measure positions and momenta at some time ¢ of a
system of mass points we obtain certain numerical values. If we carry
out the same measurement again at a later time ¢ > ¢y we obtain in



principle those values, which can be calculated from the first
measurement using the equations of motion.

The concept described above is indeed applicable to macroscopic
phenomena. We can determine the position of a macroscopic object
using e.g. a photograph. In principle the state of the macroscopic object
is changed because light interacts with it when the image is taken
(radiation pressure). However, this change can be made arbitrarily
small within the framework of classical physics by exposing the object
increasingly weakly or using a more sensitive film. As a condition for
this assumption all physical variables have to change continuously.
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2. Limits of Classical Physics

Wolfgang Cassing!
(1) University of Giefden, Giefden, Hessen, Germany

Classical physics has proven to be valid when applied to macroscopic
objects (e.g. celestial mechanics) and macroscopic fields (e.g. deflection
of an electron beam in an electric or magnetic field). However, in the
following we will discuss some characteristic experiments, where
explanations—based on classical physics—definitely fail.

2.1 The Photoelectric Effect

Experimentally one finds that e.g. electrons are emitted from an alkali
metal, if the metal is irradiated with UV light. In detail it is stated:
1
() The electric current density is proportional to the intensity of the
incident radiation as expected according to classical physics. But:
2
) The energy of the emitted electrons does not depend on the
intensity of radiation (in particular not from the distance between
the light source and the metal), but only on the frequency v of the
light and the metal used. With the help of a counter-voltage it can
be shown, that the energy of the electrons increases linear with
the frequency and that no electrons are emitted below a
(material-dependent) cutoff frequency v., independent of the
radiation intensity.
3) | -
Above the respective cut-off frequency v, the electron emission
starts instantaneously.


https://doi.org/10.1007/978-3-031-95521-1_2

Point (2) together with (3) cannot be explained in classical wave
theory; specifically point (3) shows that the process is not based on a
continuous collection of radiation energy in the metal.

Einstein’s explanation is based on the hypothesis that the incident
radiation can be viewed as a stream of light quanta (photons) with the
energy hv. These photons can be absorbed individually by the metal
electrons; if the energy hv of the photons is larger than the binding
energy of the electrons in the metal, the electrons can leave the metal
after absorbing a photon. The kinetic energy then is

Eyin=35 m v’ =hv—W, (2.1)
where W is the minimum binding energy of electrons in the metal
considered. Einstein’s hypothesis is confirmed by experiment
qualitatively and quantitatively; in particular (2.1) explains the cutoff
frequency. The proportionality constant h in (2.1) turns out to be
identical to that known from the radiation of black bodies (Planck’s
constant).

2.2 The Compton Effect

We consider the scattering of light on free (or very weakly bound)
electrons (see Fig. 2.1) and assume that the incident radiation is
monochromatic. One observes that the wavelength of the scattered
light differs from that of the incident light; for the deviation in
wavelength one finds,

AN =d(1—cos ) =X =, (2.2)

where the constant d is independent of the wavelength X of the
incident light and 1 is the angle between the direction of observation
and the direction of propagation of the incident radiation.



ANNsL )
A e'\) 5

Fig. 2.1 Kinematics for photon scattering (with wavelength A\) on an electron at rest

This finding can be easily explained within the framework of
Einstein’s photon hypothesis: Since photons (in vacuum) travel with the
velocity of light ¢, they cannot have a finite rest mass; accordingly the
relativistic energy-momentum relation is:

E = pc. (2.3)

If energy and frequency are linked via E = hv, then the magnitude of
the momentum of the photon is:

p="¢ (24)

The properties of the photons (E, p) are the same as those of the wave
packet (v, k) and linked by:

E=hy; p=ik; k=|k|=2 =2 =1 (2.5)

To explain (2.2) one only needs the conservation laws of energy and
momentum. If the light (the photon) interacts with an electron at rest,
then the following holds for the individual elementary process:

P=p + P, (2.6)

E+mc® = E' + /(m2c* + p2c?), (2.7)



with p’ denoting the momentum of the photon after scattering and p.
the momentum of the electron after scattering. We write (2.7) as

p? = C%(E +me? — E')2 — m?c? (2.8)
and square (2.6)
p?=p’+p? -2 p.p’:c—g(E2+E’2—2 EE’ cos9). (2.9)

Then follows

E—E' =22 (1- cos9) = 355 (X — \) (2.10)

or with (2.5)

AX =X — = L-(1— cos ). (2.11)

Indeed, the factor h/(mc) agrees with the experimentally
determined constant d in (2.2).

The explanation of the Compton effect within the framework of
Einstein’s photon hypothesis implies that the scattered photon and
the scattered electron occur simultaneously. This could be confirmed by
coincidence measurements.

It is instructive to compare these results with the predictions of
classical theory. According to Maxwell’s theory, the electron under
consideration is accelerated by the electric field of the incident
radiation, whereas the electric field of the incident radiation looses
energy and momentum. The energy absorbed by the accelerated
electron is emitted again in the form of a spherical wave of the same
frequency. Since the total momentum of the emitted radiation is zero
for symmetry reasons, the momentum law requires that the electron
takes up momentum in the direction of the incident radiation (k-
direction). If the electron initially was at rest, it then should move in the
k-direction. This is in contradiction to the experimental observation



that scattered electrons also have momentum components
perpendicular to the k-direction.

Note: The frequency of the absorbed and emitted light is only the
same in the rest frame of the electron under consideration; the
frequencies observed in the laboratory system are different due to the
Doppler effect as soon as the electron is in motion. The corresponding
shift in wavelength A\ depends on the angle ¥ as in equation (2.11),
however, for the factor d in (2.2) one doesn’t get the correct value in
classical theory!

The experiments outlined in (2.1) and (2.2) show that light has a
particle character; on the other hand, interference and diffraction
experiments show phenomena, that can only be understood in terms of
waves. Light thus presents itself in two forms, as a particle or as a wave,
respectively, according to the experiment under consideration. This
wave-particle duality is incompatible with the ideas of classical
physics.

If the electromagnetic radiation contradicts the classic wave pattern
by showing particle aspects, it is to be expected that inversely mass
points under certain conditions also show a wave character. This is
indeed the case as one can see from the

2.3 Electron Diffraction on Crystals

If one shoots electrons of defined energy F and momentum p on a
single crystal one observes Laue diagrams on a screen behind the
crystal similar to the scattering of X-rays on crystals. If the structure of
the crystal is known (lattice constant, crystal symmetry) one can—in
analogy to X-ray diffraction—determine a wavelength A from the Laue
diagram. One finds empirically that A is related to the energy E or the
magnitude of the momentum p of the electrons according to (p = |p|)

— h
A= (2.12)
(de Broglie relation), or using the wave number k = 27/

h
p=rk, h=--, (2.13)



in agreement with (2.5) for the case of photons!

The results reported above are compatible with other experimental
observations and also for other particles (e.g. neutrons, helium atoms)
and force us to attribute wave properties to matter, which obviously
contradicts the ideas of classical physics.

Apart from the wave-particle dualism, which is insolvable for
classical physics, there is further experimental evidence for the duality
for matter and electromagnetic radiation and for the limits of classical
physics: In the atomic domain there are situations in which physical
quantities (example: energy of a particle) can only assume discrete
values (excited states of atoms) in contrast to the classical theory.

2.4 Quantization of the Energy of Bound States

Characteristic for the emission and absorption of electromagnetic
radiation by matter is the existence of sharp spectral lines. Absorption
and emission spectra for a given system (atom, molecule, atomic
nucleus) are the same; every system has a characteristic spectrum that
can be used to identify it (detection of trace elements).

This experimental finding does not fit into the framework of the
classical theory, in which the energy is a continuous quantity. A
convenient explanation is provided by the following hypothesis (N.
Bohr): atoms (molecules, atomic nuclei) can only exist in certain
stationary states, which have a well-defined energy. When interacting
with electromagnetic radiation only discontinuous transitions
between the stationary states are possible, resulting in sharp spectral
lines in the emission pattern; the energy difference between the states
under consideration corresponds to the energy of the emitted
(absorbed) photon,

Ei — Ej = hl/ij. (214)

A further experimental confirmation of energy quantization is provided
by the Frank-Hertz experiment on inelastic collisions of electrons on
atoms: Monoenergetic electrons are scattered from the atoms of a
target, the energy of the scattered electrons is measured (by a counter
voltage) and from this the energy loss is determined. Let T be the



kinetic energy of the incoming electrons, Ey, E1, . .. the energies of the
stationary states of the target atoms. Since all atoms are practically in
the ground state with energy E (according to the experimental
conditions), according to Bohr’s hypothesis the atoms cannot absorb
energy as longasT' < E; — Ey, i.e. the collision is elastic. If
T > E; — E\, atoms can reach the first excited state and the electrons
lose the energy E'; — Ej (inelastic scattering). This is exactly what is
observed; with increasing energy T higher excitations are observed,
too.

An analog experiment in nuclear physics is Coulomb excitation, in
which protons move close to a nucleus and—with a loss of energy—
excite the nucleus to low lying states.

2.5 Quantization of Orientation

We consider the deflection of a beam of paramagnetic atoms with the
magnetic moment 4 in an inhomogeneous magnetic field B (Stern-
Gerlach experiment). The force acting on the dipole moments is

F =V B), (2.15)

since the potential energy is —(u - B) (see electrodynamics). For the

sake of simplicity we assume that (by appropriate shaping of the
magnets) only B, and 0B, /0z are non-zero. Then only the force in the

z direction acts on the particles with strength:

F|=F, = p. % (2.16)

If the magnetic moments are initially oriented statistically, then all

values for p, are possible between +p (p = \m) Accordingly, the
deflection angle can continuously vary between the extreme angles
belonging to p, = *u. On the screen—placed perpendicular to the
beam behind the magnet in the direction of the beam—one would
therefore expect—according to the classical theory—the image shown
in Fig. 2.2a; the length of the line depends on the kinetic energy of the
atoms, the strength of the magnetic field and the distance between the



magnet and the screen. Figure 2.2b shows the trivial result for the case
p=0.

classical 11 =0 i #0

a) b) c)

Fig. 2.2 The classical expected spatial distribution of the atoms (a); result for the case u = 0 (b);
result for the case of angular momentum /=27 (c)

Experimentally the case (c) is found, i.e. a sequence of equidistant
points along the z direction, symmetrical to the original beam direction.
Apparently only certain discrete values of i, are realized; since the
magnetic moment is directly related to the angular momentum of the
atoms, this implies that the z component of the angular momentum of
the atoms can only have certain discrete (integer) values (in units of 7).

Note: Figure 2.2 (c) refers to the case of orbital angular momentum
[ = 2h; in the case of spins (half integers) the central point is omitted.

The wave-particle duality as well as the quantization of certain
physical properties show that classical physics fails at the atomic level.
The classical theory must be replaced by a new theory—the quantum
theory—which, of course, must include the classical physics as a
limiting case, since this has been proven valid for macroscopic systems.
The fact that the wave-particle duality shows up both for matter as
well as for electromagnetic radiation, implies that a quantum
theory is needed not only for matter but also for radiation.

In the following we will first examine the quantum theory of matter
using the example of a single particle. Then we formulate the quantum
theory abstractly and axiomatically; this abstract formulation will also
show how to deal with the multi-particle problem and how to quantize
the electromagnetic field.
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3. Beginning of Quantum Theory:
Matter Waves

Wolfgang Cassing!
(1) University of Giefden, Giefden, Hessen, Germany

In this chapter we briefly discuss Bohr’s model of the atom and the
concept of matter waves.

3.1 Bohr’s Model of the Atom

The first attempt to solve the problems of classical physics was to add
certain quantum postulates to mechanics. This reduced the possible
continuum of classic paths to certain permitted paths. Despite some
successes (quantitative description of the hydrogen atom, etc.), this
attempt had to be abandoned because it.

@ N |
failed in some concrete cases (aperiodic motions, i.e. scattering
states; anomalous Zeeman effect) and

2

) is not free from contradictions: on the one hand, the concept of an
orbit in form of allowed orbits is required, on the other hand, in a
transition between two allowed orbits the particles should reach
their state discontinuously, i.e. not along a classic path.

3.2 Matter Waves

The second attempt, which ultimately led in the right direction, goes
back to the observation of interference phenomena from material


https://doi.org/10.1007/978-3-031-95521-1_3

beams. Experiments like the electron diffraction on crystals suggest to
attribute a wave to a monoenergetic particle beam; the most simple
approach - for geometrical reasons - is a plane wave

~exp (i[k - r — wt]). (3.1)

We now have to link the known properties of the particles—in our
case the energy F and the momentum p—to the quantities
characterizing the wave, i.e. angular frequency w and wave vector k.
According to experimental finding by de Broglie (2.12) we connect k
and p by

p = 7k. (3.2)

The analogy to photons suggests that the (kinetic) energy of the
articles with the angular frequency w = 27v to be given by

E = hw (3.3)

due to the Lorentz invariance of the phase in (3.1). The frequency w
is certainly independent of the direction of k due to spatial isotropy;, it
thus can only depend on the magnitude of k. So we have to find the
dispersion law

w = w(k) (3.4)
for material particles, that replaces the relationship for photons
w = kc. (3.5)

To this aim we consider a wave packet (i.e. a superposition of plane
waves)

(3.6)



Y(rit) = [ &k o(k) exp (ifk - — wi),

and assume that (k) is only significantly different from zero in the
neighborhood of k ~ k. Then we can expand the phase as:

k-r—wtrky-r—wit+ (k—ko) - (r—vgt)+--- (3.7)
with
— Ow
Vg~ ok ‘k:ko' (3.8)

Equation (3.6) then gives the approximate result

Y(r;t) =~ a(r;t) exp (i[ko - r — wypt]) (3.9)
with the amplitude
a(r;t) = [d*k o(k) exp {i(k — ko) - (r — v t)}. (3.10)

Equation (3.9) represents a plane wave modulated with the
amplitude (3.10) with wave vector kg and frequency wy and should be
more suitable to describe an experimentally realizable particle beam,
which is always localized in space and time contrary to an infinitely
extended plane wave.

The amplitude a(r;t) now has a maximum for such values of (r, ),

for which the oscillating exp-factor in (3.10) becomes stationary, i.e. for
r = vgt. (3.11)

The maximum of the amplitude therefore moves with the group
velocity v, in space. It now makes sense to compare this group velocity

with the velocity v,

(3.12)

_ Ow P _ ik dw
Vo= %8k = V= m T m = ok Sk



Due to (3.2) we get the (non-relativistic) relation by integration w.r.t. k,

w(k) = 5=k, (3.13)

where a possible integration constant is omitted here because in
(r;t) it only would provide a constant phase.

The dispersion relation (3.13) is in fact confirmed by diffraction
experiments with electrons or other atomic particles and thus the
interpretation (3.12) of the group velocity. We notice that (3.13) is
precisely the classical (non-relativistic) energy-momentum relation for
a free particle corresponding to:

E=ho= L. (3.14)

3.3 Wave Equation of Free Particles

We now want to set up a wave equation for the motion of free particles.
The desired equation must meet the following general criteria:
1

() It must be linear and homogeneous; the solutions then satisfy
the superposition principle as necessary for interference
phenomena: if 11 and v, are solutions of the (required) wave
equation, then the linear combination A;1; + A9t is a solution,
too.

@ | S
It must be a first-order differential equation in time such that
¥(r;t) completely describes the state of the physical system: if ¢
is known at any time ¢, then the temporal evolution for ) follows

from the wave equation in a unique way.

Such a wave equation can be obtained by taking the following

partial derivatives of the plane wave (3.1).
(3.15)



9% —k2¢

e

X = —iwp (3.16)

and account for the dispersion relation (3.13). From (3.15) and (3.16)
directly follows

ih =~ Ay, (3.17)

i.e. the Schrodinger equation for free particles.

Note: The wave equation for electromagnetic radiation is different
from (3.17) because it is of second order with respect to time. This is a
consequence of the different dispersion relations w(k). The analogy of
wave theory for matter and for radiation becomes more transparent
when comparing (3.17) with the Maxwell equations for the
components of E and B, which in line with (3.17) are first-order
differential equations with respect to time: the state of the free
radiation field is uniquely determined, if all components of EE and B are
fixed at some time t;. This comparison also shows that the description
of matter not necessarily must succeed with a single function ¥(r;t);
we will indeed see later that we require several (at least 2) wave
functions as soon as we include the electron spin in the theory.

3.4 Continuity Equation

Since in non-relativistic classical physics the mass of a system is a
conserved quantity, it makes sense to ask whether we can derive a
corresponding conservation law from the wave Eq. (3.17). To this aim
we consider the conjugate-complex equation to (3.17)

iRt = — L Ay 3.18
Zat’tp_ 2m w’ ( )



multiply (3.17) from the left by ¥*, (3.18) by v and consider the
difference:

in2 () = S {[AgH]yp — [ Ay} (3.19)
With the identity
(A3 — P AY] = V - {3 Vip* — *Vep} (3.20)

this results in a continuity equation of the form

LW+ V- (o WV~ V) = 0. (3.21)

3.5 Interpretation of Matter Waves
We identify

p(rit) = ¢*(rit)(rst) (3.22)

with the particle density and

i(r5t) = g (W (et) Vi (r3t) — 9(xst) Vo' (est)} (3.23)

with the particle current density. Gauf$’s theorem then gives
& ([ ¢ (rst)(rit)) =0, (3.24)

assuming that j for r — oo drops faster than 1/r2 Equation (3.24)
involves the conservation of the total mass or particle number. Since for
real physical systems the mass or particle number is always finite, we
et the constraint

J @ o (r;t)(r;t) < oo (3.25)




This implies that 1(r;t) is a square-integrable complex function, i.e.
Vve .

Since Eq. (3.17) is homogeneous, we can choose the normalization
constant in (3.25) arbitrarily. We can therefore describe also a single
particle with the wave function ¥(r;t). The position of the particle in

the classical sense we can identify with the center of mass

[dr ey (o)
[&r o9 () (3.26)

<r >=

where the scalar product

(6,9) := [ dr ¢*(x)y(x) (3.27)

is the dot-product defined in the space % for ¢, 1 €.%.

3.6 Criticism of the Concept of Matter Waves

The concept of spatially smeared particles (developed above) proves to

be misleading. The following considerations will show this:

(1) . S .
Describing a particle with a defined mass m and charge e by a
spatially sharply localized wave packet at time £ = ¢, then this
wave packet disintegrates in time.

2

) Within the framework of a strict wave theory, in diffraction
experiments the intensity of the diffraction image should decrease
with a decrease of the incoming matter wave, but the structure of
the diffraction image should remain. Experimentally one observes
something completely different: on a photographic plate behind
the diffracting object individual points appear for low beam
intensity; only a measurement over a long period of time
results in a statistical distribution of the individual points,
which reflect the structure of a diffraction pattern.



In summary, we have discussed Bohr’s model of the atom and the
early concepts of matter waves for a particle. The failures of these early
concepts have been pointed out and will pave the wave to a proper
formulation of quantum mechanics.



Part 11
Elementary Quantum Mechanics
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4. Quantum Theory of a Particle

Wolfgang Cassing!
(1) University of Giefden, Gief3en, Hessen, Germany

In this chapter we will present a discussion of the Schrodinger equation—without
and with external forces—and investigate the properties of stationary states.

4.1 Statistical Interpretation of the Wave Function

The results of diffraction experiments at very low intensity (see Sect. 3.6)
suggests a statistical interpretation of the wave function ¥(r;t). Following a
suggestion from Born we normalize by

J&r pEt)* = (¥,9) =1 (4.1)
and interpret
Y(rit)|” (4.2)

as probability density, i.e. as the probability that the particle can be found at
position r at time t in a respective measurement of its position. If we use the
Schrodinger equation in the form (3.17) the continuity Eq. (3.21) still holds, but
j(r;t) now has to be interpreted as probability current density. Then

Jpi-df (4.3)

is the probability that a particle passes through the surface F per unit of time. The
relation following from (3.21) for (V — o0)

L (fy @ lpe)?) =0 (4.9

shows the conservation of the overall probability, that particles can be found
somewhere in space (time independence of the norm).
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This statistical interpretation should be interpreted in such a way that ¢(r;t)
does not describe a single particle (as assumed in the naive theory of matter
waves), but the state of a quantum mechanical ensemble of particles, i.e. a
large number of particles with the same internal properties for the same
experimental conditions. As an example we mention the motion of electrons in a
large number of hydrogen atoms, which are all exposed to the same electrostatic
field.

Accordingly, the quantity—already introduced in (3.26):

[d3r ¢'r ¢

<I'>:W

(4.5)

has not to be identified with the position of a particle, but as an average of a
sufficiently large number of position measurements of the ensemble under
consideration.

This statistical interpretation is in full agreement with diffraction
experiments as discussed in Sect. 2.3. A diffraction experiment with an electron
beam of sufficiently high intensity is equivalent to a multitude of experiments
with a single electron of a quantum mechanical ensemble. One therefore obtains a
diffraction pattern corresponding to the probability distribution that is
determined by the wave function ¥(r;t). Reducing the intensity of the incident
electron beam (or photon beam) more and more, the diffraction pattern finally
disappears; instead one registers (in the detector) a sequence of well-defined
hits, for which the wave function 1(r;t) can not make a statement.

The temporal evolution of a quantum mechanical ensemble of free particles is
determined by the Schrodinger equation (3.17). Since this is a 1st order
differential equation with respect to time ¢, the specification of the wave function
¥(r;0) at time ¢ = 0 is sufficient to clearly determine the state of the ensemble at
later times ¢ # 0. In this sense quantum mechanics is also a strictly causal theory.

4.2 Schrodinger Equation of a Particle

in the Presence of External Forces

In the presence of external forces we must extend the Schrodinger equation (3.
17) without violating the fundamental properties quoted in Sect. 3.3. The
extension then has to be of the form:

ihg =0 1, (4.6)

where O is a linear operator to be determined. We can restrict the possible
approaches for O by requiring that the statistical interpretation of \1/1]2 should
continue to hold. As in Sect. 3.4 we get from (4.6):



ihgy [d'r ¢y = [d'r {70 ¢ — (OY)"¢}. (4.7)
The conservation of the total probability requires
(¥, 09) = [d*r 4*0 ¢ = [d*r (O9)"¢ = (0%, ). (4.8)

Now let 91 and 5 be two different solutions to (4.6) then—due to the linearity of
O—must hold

O(c191 + cath2) = c1091 + c20%, (4.9)

for arbitrary complex numbers c; and cs. By inserting in (4.8) ¢ = c1%1 + ca
we directly get:

(OY1,2) = [d3r (O¢1) Y2 = [d3r ¥10 ¢ = (Y1, 092). (4.10)

An operator with the property (4.10) is called hermitian.
To get the detailed structure of the hermitian operator O we recall that the
right side of the free Schrodinger equation

ihg = A Y (4.11)

originates from the kinetic energy £ = h2k2/(2m) of the free particle. Thus

attributing in quantum mechanics the differential operator to the momentum in
the form

p = —ihV, (4.12)
we can write (4.11) as
i =T 1, (4.13)
where
A . h2 . p2
T=-5-A=+— (4.14)




is the kinetic energy operator. For simplicity we denote the operator of the

kinetic energy in quantum mechanics again by 7,i.e. T = T'. - In case of a
conservative force (e.g. electrostatic field) the form (4.13) suggests to use as a

Schrodinger equation:

i P(rit) = (T + V)h(rst) = (—%A + V(r))w(r;t). (4.15)

Here the potential

V, in which the particle should move, appears as a real

multiplicative operator. Then

H=T+V (4.16)

is the operator corresponding to the Hamilton function in quantum
mechanics. We therefore write (4.15) also in the form

ihd ¢ =H 1. (4.17)

The Hamilton operator H is hermitian since Vis assumed to be real.
In the case of the velocity-dependent Lorentz force let’s adopt the classical
rule and replace (with a real vector potential A)

p—p—< A (4.18)

We then obtain the general Schrédinger equation for a particle of mass m and
charge e in the form (in cgs -Gauss units)

g wrt) = |2

{—inv — £ A(rt)}" + eq’(r;t)]tb(r;t) = H 1(r;t).(4.19

The connection to the electric field E(r;t) and the magnetic field B(r;t) is
given by (see electrodynamics)

B(r;t) =V x A(r;t), (4.20)




E(r;it) = —V&®(r;t) — %A(r;t).

The considerations above should not be understood as a derivation of the
Schrédinger equation, but only as a heuristic introduction to quantum theory in
the framework of the correspondence between classical and quantum mechanical
observables. A stricter mathematical formulation is presented in Chaps. 9 and 10.

4.3 Stationary States

If the Hamiltonian H does not depend on t (closed system), the time dependence
in ¢(r;t) is separated by the Ansatz

Y(rt) = ¢(r) exp {4 Et}. (421)

One then obtains the time-independent Schrodinger equation from (4.19)

H o(r) = E ¢(r) (4.22)

for calculating the stationary states ¢(r). We briefly prove some

fundamental properties:
(1) E'is real since H is hermitian. For the proof we form

(psHo) = [d’r o*"H ¢ = E [d’r "¢ = E(p,¢) (4.23)
and after complex conjugation of (4.22) obtain
(Hep,p) = [d°r(Hp) ¢ = E* [d*r ¢*p = E*(p, p)- (4.24)

Due to the hermiticity of H, the difference results in
0= (E—E") [d’ o0 = (E—E")(¢,¢) (4.25)
thus
E = FE~, (4.26)

since the normalization integral (¢, ¢) is # 0.



(2) For any time-independent operator F—such as e.g. the position operator r
—holds that

(%, Fy) = [d’r " (ct)F (rit) = [d’r " (r)F o(r) = (o, Fp)  (4.27)
is independent of ¢ (stationary). In particular we have
VY =9 p (4.28)
and
YV — 9 V' = "V —p V. (4.29)

(3) Orthogonality:

For solutions 1, (9 of (4.22) to different values E; # FE5 holds:

(¢1,02) = [dr @12 =0, (4.30)

Proof: We start from
p3(H — E1)p1=0; @1[(H — Ez)ps]" =0 (4.31)
and form f d3r - - - For the difference of the resulting equations we obtain
(B2 — En) [d*r p3p1 = (B2 — E1)(p2,41) =0 (4.32)

due to the hermiticity of H. Since £y # FE5 the proof completes.

(4) Degeneracy

Among the stationary states there are also those, that belong to the same
eigenvalue in energy E, but differ in some other physical properties. Such
solutions from (4.22) are called degenerate. Any linear combination of such
solutions then is again a solution of (4.22) to the same value E; in particular,
degenerate solutions are in general not orthogonal to each other. However, by
suitable linear combinations an orthogonal set can always be obtained from the
degenerate solutions (Schmidt orthogonalization).

Such degeneracies occur in connection with symmetries of H. We give a simple
example: For the free Schrédinger equation (V' = 0), H = T is invariant with
respect to the parity operation

r— —r (4.33)



and the solutions
exp (+tk - r), exp (—ik-r) (4.34)

are (twofold) degenerate. They differ physically from each other in the different
direction of the momentum.

In summarizing this chapter we have introduced the statistical interpretation
of the Schrédinger equation—without and with external forces—and investigated
the properties of stationary states.
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5. Operators and Expectation Values
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In this chapter we will introduce the rules to translate classical observables in phase-space
representation to hermitian operators in the formal space of wavefunctions (Hilbert space).
It is furthermore proven that the classical equations of motion also hold for the expectation
values of the corresponding quantum operator (Ehrenfest theorem). The formal translation
of the Poisson brackets in classical mechanics to commutators in quantum physics is
derived and it is shown, that the commutators follow the same algebra as the Poisson
brackets.

5.1 Quantum Mechanical Analogue of the Classical

Equations of Motion

In Sect. 4.2 we have assigned linear operators to various classical observables, which act in
the space of wave functions t(r;t). As an example we have introduced the position operator

r as a multiplication by r and interpreted—with the condition (4.1)—its expectation value

<r>= fd3r Y*(r;t) v Y(r;t) = (Y, ry) (5.1)

as the average of a very large number of position measurements on the ensemble
considered. We want to calculate now the temporal evolution of < r > and, for the sake of
simplicity, assume that the Hamilton operator of the particle has the form

H=—-"A+V() (5.2)

2m

For the temporal evolution of < r >—the operator r itself is independent of time—we
find by using the Schrodinger equation (4.17)

& <r>=[dr {5 ¢lr v+ 97r [§ 9} = 1 [dr {[HY]'r ¢ —y'r [HY]}.(53)
Due to the hermiticity of H we can rewrite

| | (5.4)
%<r>=%fd3r Y (Hr—r H)Yp=—(,(Hr—r H)p).
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For the further evaluation of (5.3) we have to calculate the commutator

[Hy,r]:=Hr—r H. (5.5)

Since r and V/(r) are pure multiplicative operators they commute with each other, V
does not contribute to (5.5); it remains to investigate

A, x] =7 (5.6)
Since operators like 8/9y and x commute with respect to their action on )(r;t),
2 @]t =0, (5.7)
only
[5’— m} W(rit) (5.8)
can contribute to (5.3). For this we get
[;—;az — a:aa—;]gb(r;t) =2 (zZ +D)y(rst) — z 53_;7»[’(1'575) = 25 9(r3t). (5.9)
In total we get from (5.3)
4 cr>=-2 [@Pr V=1L [drp*(—ikV) (5.10)

and finally with (4.12)

4 cr>=2L<p>. (5.11)

The classical relationship between velocity and momentum also holds for the
expectation values of the corresponding quantum mechanical operators.

Based on the result above we now follow the same procedure for the time derivative of
the momentum < p >

4 (p,pp) = & <p>= L [d® ¢*[H, py. (5.12)

Since —4?A = p? and every operator commutes with itself, only the contribution from the
potential energy remains in the commutator (5.12):

IV, p|=Vp—pV=irVV. (5.13)



This gives the quantum mechanical analogue to the classical equations of motion after
forming the expectation values,

4 <cp>=-<VV>. (5.14)

5.2 Hermitian Representation of Operators
We now want to extend the considerations above to arbitrary observables and note:

(1)
Every classical observable F can be represented as a function of position and
momentum coordinates r; and px; and possibly of time ¢,

F(rw, prst). (5.15)
(2) . . . .
We have assigned the classical variables rg; and pg; in quantum theory to the
operators r and p = —¢4V, which act in the space of wave functions (that will be

denoted later as Hilbert space).

The quantization rule for position and momentum suggests to assign to every
observable F an operator

F(r,p;t). (5.16)

In the non-relativistic theory, t plays the role of a parameter, and is not an operator! We'll
come back to this point later. When translating classical observables to operators

F(rw, pust) — F(r, pit) (5.17)
the following points should be noted:

(i) The above quantization rule refers to cartesian coordinates. To illustrate this point,
let us consider the Schrodung equation of a free particle in 2 dimensions:

. 2 2 2
i o, yt) = 9o { L + 2 (@ u). (5.18)

Converting (5.18) to polar coordinates r, ¢, we get

. 2 2 2
ihg P(r,pit) = —;—m{% oyt leaa_sﬂ}w(r’ #it)- (>19)

If we start from the classical Hamilton function in polar coordinates,
_ 1 2, 1,2
Hu = ﬁ{Pr + r_chp}kz (5.20)

and adopt the rule for quantization, we obtain



(pr)yy — Pr = —ihE; (Py)y — iy (5.21)
In contrast to (5.19) the Schrodinger equation would read as
. 72 2 2
iy W(r,pit) = — 4 (& + 2 ) ¥, 030). (5.22)

To avoid such ambiguities in quantization, we always refer to the quantization rule
formulated in (5.17) in cartesian coordinates.
(ii) Since the expectation values of the operators

< F>= [d3 *F(r,p;t)y (5.23)

have a direct physical interpretation and must be real, the operators have to be hermitian:

(%, FY) = [dr *F ¢ = [d’r (FY)"¢ = (FY,¢) (5.24)

for every wave function ¢(r;t) of the particle. Except for the elementary operators for
position and momentum therefore are allowed: polynomials (with real coefficients) inr
(e.g. potential energy of an oscillator) or p (e.g. kinetic energy of a particle), but also mixed
polynomials like

l=rxp=—(p Xr) (5.25)
such as the operator of the orbital angular momentum. On the other hand,
r-p (5.26)

is not a hermitian operator. In the transition from the classical mechanics to quantum
mechanics we must symmetrize and replace

ri - Pu— 5(r-p+p-r). (5.27)

The reason for the necessity of symmetrization is the non-commutativity of the
hermitian operators r and p,

[xiv p]] - lh(sl]: 27.7 - 17273~ (528)

This—in contrast to (5.25)—becomes effective in the scalar product (5.26) or (5.27).
For the x component one finds—due to the hermiticity of r and p—e.g.:

[ &r Y} pow 2 = [dr (poth1) @ o = [dr (z patf1) Y2 # [ dr (pewtp1) b2, (5.29)



because of (5.28). In analogy it is easy to prove that the form (5.27) is hermitian.
A practical example of the symmetrization performed in (5.27) is the transformation of

(A-pP)y (5.30)
into quantum theory as
%(A-p—l—p-A). (5.31)
From (5.30) one obtains explicitly
1(Ap+p-A)=A-p+3V-A£A p (5.32)

The above statements have to be followed in the actual calculations with (4.19)!
Note: Even with the demand for hermiticity the quantization rule is not unique in all
cases. We consider e.g. the classical quantity

(P) (5.33)
for which we can specify 2 hermitian operators:
1 (p2a® + 27p?) # F(pzz + z pa)”. (5.34)

Such—formally possible—hermitian operators we will not encounter in practice and
therefore discard a deeper investigation of these ambiguities.

5.3 Ehrenfest’s Theorem; Conservation Laws

The investigations in Sect. 5.1 can now easily be generalized for the time evolution of the
expectation value of any observable represented by a hermitian operator

F = F(r,p;t). (5.35)
The following holds:
d 3 o . 0 , OF
=—L <[F, H >+ <% > (5.36)

If we compare (5.36) with (1.16) we find that for quantum mechanical expectation
values the same relationships hold as for the corresponding classical observables when
using the commutator [, ] instead of the corresponding Poisson bracket {, } (apart from the
factor —i/h).

For a time-independent observable G, according to (5.36), we get



% <G>=0 — < G >= const. (5.37)
if
|G, H] = 0. (5-38)

In analogy to classical mechanics (cf. (1.19)) we call such an observable a conserved
quantity.

The Ehrenfest theorem is the statement, that for the expectation values of operators
the same equations of motion hold as for the classical observables, i.e. since—in case of
small fluctuations—the quantum mechanical equations of motion merge to the classical
equations of motion. To this aim we consider the temporal change in the expectation value
of the momentum (5.14) and expand < V V(r) > inr around the expectation value

<r >,

d o0
= <P>=—<VV(r)>=- ZO = <r>) V'V(r)lop >
— VV(<r>) - %V[a%aa—; +o2 s+ agg—;}V(r)kD . (5.39)
with
ol=<a’>—-—<z>*;0 =<y >-<y>?;0l=<2>—-<z>% (540)

In the case of vanishing fluctuations a? in the local positions just the classical force
—VV(< r >) remains. On the other hand, for the harmonic oscillator (in any dimension)
the 2nd partial derivative is a constant, such that the correction terms with the gradients
always disappear. In this special case the classical equations of motion for the expectation
values of the operators < r > and < p > also hold identically.

5.4 Algebra of Commutators

In the following we will present calculation rules for commutators, that arise directly
from the definition and are used frequently: For any linear operators A4, B, C we have

[A,B] = —[B, 4]
[A,B+C] =[A,B| +[A,0]
[A, BC] = [A, B|C + B[A, C]

(5.41)




[A,[B,C]] + [B,[C, A]] +[C, [A, B]] = 0.

Example: [p2, z] = py[ps, 2]+ [p2y T)pe = 2h/i po.

Note: The rules (5.41) also hold for the Poisson brackets (see classical mechanics). The
identity of the algebras is a prerequisite for the compatibility of classical physics and
quantum mechanics in the limit of large actions!

In summarizing this chapter we have introduced the rules to translate classical
observables in phase-space representation to hermitian operators in Hilbert space. It has,
furthermore, been proven that the classical equations of motion also hold for the
expectation values of the corresponding quantum operator (Ehrenfest theorem). The formal
translation of the Poisson brackets in classical mechanics to commutators in quantum
physics has been derived and it was shown, that the commutators follow the same algebra
as the Poisson brackets.
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6. Expectation Values and Fluctuations
of Observables

Wolfgang Cassing!
(1) University of Giefden, Giefsen, Hessen, Germany

In this chapter we will investigate the connection between the possible expectation values of
an observable A4 and its fluctuations in context with its commutator [4, H]. Furthermore, we
will establish the relationship between momentum conservation and translational invariance
as well as the conservation of angular momentum and rotational invariance in quantum
theory. In addition we will introduce the ‘spin’ of electrons (or related fermions) and explore
its properties with respect to rotations.

6.1 Expectation Values
In Chap. 4 (Eq. (4.5)) we have interpreted the expectation value (normalized according to (4.

1)
<r>= [d ¢*r P = (Y, 1¢) (6.1)

as the average value for the position, that can be found for many measurements in the
ensemble described by 1. We have, furthermore, interpreted

(r:t))* = w(rst) (6.2)

as the probability density for a position measurement to find particles at position r at time ¢.
Since t plays the role of a parameter we will suppress t in the following equations. We can also
write Eqg. (6.1) as

<r>= [d w(r)r (6.3)

with

[dr w(r) = 1. (6.4)

We now want to investigate the general case of an arbitrary observable.
First of all a short preliminary remark on the definition of average. For a series of N
experiments for a certain quantity X with the values ; measured with the probability (relative
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probability) w;, the average of the quantity X is defined by
<X>=2V 2w, (6.5)
where

Yy w; = 1. (6.6)

If for X a continuum of values x is possible, then in (6.5) and (6.6) we have to replace the
summation by an integration; this corresponds to the case of the quantity position r discussed
above. Of course, a combination of both cases is also possible (continuous and discrete values
of the quantity X).

Examples: Energy of a particle in a finite potential; energy spectra of the H atom (see
Sect. 7.6).

Let’s look at the point above for the expectation value of the momentum

<p>= [dir ¢* 21V = (¢, pY). (6.7)

This obviously doesn’t have the desired form since V is not a multiplicative operator. To regain
the form of an average value here and in other cases we need to investigate the

6.2 Hermitian Eigenvalue Problem of Operators

For the sake of simplicity, let’s consider for now such hermitian operators A(r, p), whose
eigenvalue problem

A(r,p)xn(r) = apxn(r) (6.8)

has only discrete, non-degenerate eigenvalues a,, (n = 0,1,2,...). In this case the solutions
Xr are square integrable (cf. various examples from Sect. 7.6) and without any limitation of
generality we can assume,

[d3r |xa(r)]* = 1. (6.9)

For the interpretation of the expectation value of A in a state ¢(r;t) as the average value in the
sense of Egs. (6.5) and (6.6) it is now essential, that the system of eigenfunctions x,, of 4 is
complete: every square-integrable function must have an expansion within the functions , in
particular i(r;t),

W (rst) = >0l Calt)xn(r). (6.10)

The convergence of the series in (6.10) is to be understood as the convergence on average
(see Chap. 9). Since the functions x,, are orthogonal (see Sect. 4.3 (Eq. (4.30))) and normalized
(6.9) we find for the expansion coefficients:

cn(t) = [d3r x5 (r)p(r;t) = (Xn, ¥)- (6.11)



Example: The Hamilton operator of the one-dimensional harmonic oscillator has a discrete,
non-degenerate, complete spectrum.
For an ensemble in the state 1)(r;t) we get for the expectation value of the observable A:

<A>= [dr A =3 anlea(t)] (6.12)

with

1= [dr ¢ = 30 lea(t) |, (6.13)

taking into account (6.8) and (6.10) as well as the orthogonality of the x,(r). Equations
6.12) and (6.13) now allow for the desired interpretation of < A >:

The possible values of the observable A of a particle in a measurement of the ensemble
are the eigenvalues a,,. The probability (relative probability for many individual
measurements), with which one of the values a,, is measured, is given by |c,(t) |2.

While in classical physics the measured values of an observable form a continuum—
according to the considerations above—observables in quantum theory may have discrete
values (the eigenvalues). This is in accordance with energy and quantization of orientation
(see Chap. 2). Whether an observable is discrete and/or has continuous eigenvalues, must be
checked in each concrete case by solving the eigenvalue Eq. (6.8).

We now consider the case where an observable B has a complete, discrete spectrum which,
however, can still be degenerate; an example is the spectrum of the angular momentum (6.4).
The eigenvalue problem for B = B(r, p) we then can write as

B xn,i(r) = buXn,(r), (6.14)

where b,, # b,, for n # m; the index I numbers the degenerate solutions to the eigenvalue b,,.
The solutions X are chosen such that

S & X5, xn' v = S (6.15)
(the orthogonality with respect to n follows automatically from the hermiticity of B); the

solutions, which are degenerate with respect to n, are orthogonalized according to Schmidt’s
method. Since the spectrum was assumed to be complete, we can expand 1) as

P(rst) = >, dni(t)Xna(r) (6.16)

with

du(t) = [ d®r x,()(rst) = (Xni, ¥)- (6.17)




In analogy to (6.12), (6.13) we find:

<B>=[dr¢*By=3, by 3 ldu(t), (6.18)

with

1= [d® =3, |du(®)]. (6.19)

The sum ), |dy(2) ]2 is to be interpreted as the probability to encounter the eigenvalue b,

in a single measurement.

In the case of a continuous spectrum non-normalizable eigenfunctions occur; as an
important example we will examine the particle momentum in Sect. 6.3. Finally, there is also
the case of a partly discrete—partly continuous spectrum, e.g. the energy spectrum of the H
atom.

6.2.1 Fluctuations of Observables
The mean-square fluctuation

(Az)? =< (z— <z >)’ >=<a2?> - <z >’ (6.20)

is a useful measure for the spreading of measured data, i.e. the deviation from the average.
If we apply this to the measured values of an observable A we get the mean-square fluctuation
of an observables 4 in the state (r;t) :

(AA)? = [dPr " (A — [dr " A $)°p = [d3r ¢ A% — ([dPr ¥*A $)° > 0 (621)

= (¢, A%p) — (3, A)*.

Of particular interest is the case
AA =0, (6.22)

i.e. for each individual measurement on a particles of the ensemble we get a well-defined value
with the probability 1 (sharp value). We are now investigating, when this is the case, i.e. when

(v, A2%9) = [dPr 4 A% = ([ d*r v* A ¥)” = (¢, Ap)°. (6:23)
Equation (6.23) is written more compactly as

(v, A%) = (Ay, AY) = (¢, AY)?, (6.24)



where 4 is assumed to be hermitian. With the definition
P = A (6.25)
we find alternatively
.9 = 6,9) = @, D), ¥) (6.26)

as the case of Schwarz'’s inequality for scalar products (Chap. 9), in which this reduces to an
equation. This only occurs if

Ay = ayp, (6.27)

i.e. 1 is proportional to /.

Result: The observable A has a well-defined value with probability 1 only if the state
function 9 is also an eigenfunction of the operator 4; the measured value then is a
corresponding eigenvalue of A. We get the same result by inserting (6.10) in (6.21). The
demand (6.22) then is:

(84) = £ {an = S g anlen®)*} leal®) = 0. (629)

Equation (6.28) is fulfilled if and only if
lem(t)] =1 (6.29)

for m = k (fixed) and = 0 otherwise, such that ¢ at time t of the measurement must have the
form:

(rit) = cx(t)xe(r) (6:30)

for arbitrary but fixed k.
As the expectation value < A > also A A in general is time-dependent, such that the
spreading of the measured values is not constant in time.

Only if A is a conserved quantity, [H, A] = 0, apart from < A > also the probabilities
|, (t)|? and thus also A A remain constant,

Proof 1f [H, A] = 0, we have
Axn = @nXn, (6.31)
thus also H,, is eigenfunction of A with eigenvalue a,,
H Ax, = A Hx, = a,Hxp. (6.32)

If there is no degeneracy, H x,, must—up to a numerical factor—match x,,



Hyx, = EnXn; Enreal. (6.33)
Then we get from (6.11):

d — 3 *g __i 3 * __i 3 *
o= [drgg v=—1 [@ramy=— [@r ()

= —LFEnca(t) (6.34)
with the solution
cn(t) = ¢n(0) exp {—%Ent}. (6.35)
Thus
[en(®)I* = lea(0)]” (6.36)

is time-independent and therefore also A A. For an observable B with a degenerate, discrete
spectrum (cf. (6.14)), one can prove in analogy that

45 ldul®) =0 (637)

for the case of [H, B] = 0.

We thus have obtained the general result, that for a conserved quantity in addition to the
expectation value also the relative probabilities and the fluctuations of the measured values
are constant in time.

6.2.2 Commuting Operators
We show that two observables—represented by operators 4, B—can be measured
simultaneously sharp, if [A, B] = 0, and vice versa. We make the (simplifying) assumption that
A and B have purely discrete spectra. To this aim we prove that

(1) commuting (hermitian) operators have a common system of eigenfunctions, i.e. not
just individual eigenfunctions like I? and I, for I = 0 (see below). If x,, are eigenfunction of A
to the eigenvalue a,,

AXn = GnXn, (638)

then dueto [A,B] =0:

ABXn =B AXn = anBXn7 (639)

such that By, is also eigenfunction of A with eigenvalue a,,. If now a,, is not degenerate,
then By, must be proportional to x,, such that

6.40
Bxn = by Xn- ( )



If a,, is f-fold degenerate,
AXnk = anXnk; k=1,...,f, (6.41)
only follows due to (6.39)
Bxuk = 201 axnt- (6.42)
But now we can always diagolnalize the hermitian f-dimensional matrix
(Xnk, Bxnk) = Bjy, = [ d°r X3y B Xnr = (Bjy,)" (6.43)

by a linear transformation of the xx. The resulting linear combinations of the x,x then are
simultaneous eigenfunctions of A and B; g.e.d.
(2) Conversely, if A and B have a common system of eigenfunctions,

Axn = anXn; BXn = bnXn, (6.44)
we can commute A and B. We prove the statement by considering
B Axn = byanxn and ABx, = apbnxu; (6.45)
for the difference follows:
(BA — AB)x, = 0. (6.46)

Since the x,, form a complete system (otherwise one could not interpret 4, B as observables),
the operator relation follows:

[B, A] = 0. (6:47)

6.2.3 Summary

(1) An operator A—representing an observable—must be hermitian and have a complete
spectrum of eigenfunctions in the Hilbert space 2.

(2) Measured values of the observable A are the real eigenvalues a,,; they can be discrete
and/or continuous.

(3) The probability of measuring a value a,, is given by the square of the expansion
coefficient of 1) with respect to the eigenfunction ,, belonging to a,, if a,, is not degenerate;
otherwise one has to sum over the contributions from the degenerate eigenfunctions.

(4) The fluctuation of the measured values is determined by the mean-square
deviations: (AA)?> =< A% > — < A >2,




(5) The expectation value < A >, A A and the probabilities are exactly constant in time
if[A, H] = 0..

(6) Two observables can be measured simultaneously sharp, if and only if they
commute.

To (4) AA = 0 if and only if the wave function 1(r;t) at time t—of the start of the
measurement—is an eigenfunction of A.

6.3 Momentum

6.3.1 Hermiticity
For the x component of the momentum (by partial integration) the following holds:

B0 o0 *
/dwdydz P] (7 52 ¢2> = /d:cdydz (7 £ 1/11> ()

+2 [dy dz (|92 ). (6.48)

If the functions 1)1, Y9 vanish at infinity, the integrated term in (6.48) vanishes and we get:

[d3r ¢’{<§ 2 ¢2> — fd%(g 2 1/)1>*¢2. (6.49)

The operator p is thus hermitian in the space of functions v, which together with their
partial derivatives are square-integrable.

In analogy to p the kinetic energy operator
hZ 2

is hermitian in the space of the functions 1), which, together with their 1st and 2nd partial
derivatives, are square integrable. We have seen in Chap. 4 that this property of T (generally: H,
cf. Chap. 7) is necessary for the probability interpretation of 1/*.

6.3.2 Translation
We consider an infinitesimal translation in space (¢ < 1)

r - r—ea; (6.51)

the connection between t(r;t) and ¥(r — ea;t) in the Hilbert space we get by Taylor
expansion

(6.52)
Y(r —east) = Y(r;t) —ea- Vy(r;t) - - = (1 — ea - V)Y(r;t).




For a finite translation in a the higher terms of the Taylor expansion must be taken into
account:

Y —at) =" (- V)"y(rt) =exp {~a- V(e
n=0 """
—exp (~+a-p)p(rt) = ¥'(x:t) (6.53)

The operator exp (—i/% a - p) therefore represents a translation in the space of wave
functions 1), i.e. the Hilbert space 7. The generators of such a translation in ¢ are the
components of the momentum p.

The operators
7(a) =exp (—%a . p) (6.54)

form an abelian group (like the translations (6.51)) since the components of p commute
with each other and the group properties hold:

1

. With 7(a;1) and 7(a2) then also 7(a;)7(a2) = 7(a; + ay) is a translation operator.
2

(2) Associativity: T(a;)[T(a2)7(as)] = [r(a1)7(az)]r(as)

3

) The identity is 7(0) = 1

(4)

For every operator 7(a) there is an inverse 7(—a) since 7(a)7(—a) = 1.

The proofs follow directly from (6.53).

We call a physical system translation invariant if

[7(a), H] = 0. (6.55)

Thus if % is a solution of the Schrodinger equation
il ¢ = Hy, (6.56)
also 7(a) is a solution of the Schrédinger equation because of
ih4; (r(a)p) = T(a) Hy = H(r(a)p). (6.57)

Equation (6.55) is satisfied if and only if



[H,p| = 0. (6.58)

If [T, p] = 0, (6.58) is only possible for a single particle if Vis constant in space. Conversely: If
a particle moves in a space-dependent potential V' = V(r), then the translation invariance is

destroyed. For several particles, translation invariance (as will be discussed later) implies that
the interaction V between the particles only depends on the relative distance of the particles:

V = V(I‘ik); rir=7r; — I (6.59)
for any two particles i, k of the system.

6.3.3 Eigenvalue Problem

The momentum has a continuous eigenvalue spectrum; the eigenfunctions are plane
waves

p exp (tk-r) =7k exp (k- r) (6.60)

with 7k as the eigenvalue. They are also eigenfunctions to T,

27,2

T exp (ik-r) =2k

2m

exp (ik - r), (6.61)

and thus form a simultaneous system of eigenfunctions of the commuting operators T and p.
The orthogonality relation reads

[d®r exp (ik-r)" exp (ik'-r) = [d’r exp (i[k' —k]-r) =0 for k #k', (6.62)

but for k = k’ the integral (6.62) diverges; the eigenfunctions to the operator p thus are not
square-integrable and therefore cannot be considered as wave functions of the free particle in
the strict sense, but useful because they provide a ‘dense’ or ‘complete’ basis in ¢ (see

Chap. 9).

6.3.4 Momentum Representation

We now want to show that the interpretation of the expectation value < p > is possible as a
statistical average, although the spectrum of p is continuous and the eigenfunctions cannot be
normalized. The decisive point is that the plane waves form a complete basis in 7. For the
quantitative formulation of this fact we limit ourselves to a single dimension (x). The
completeness of the basis of the plane waves then states that every square-integrable function
¥ (z;t) can be represented as

Y(xit) =limg oo [*, <= exp (ika)P(kst) dk. (6.63)

Equation (6.63) is—in analogy to (6.10)—to be understood in the sense of mean-square
convergence (not point-like). The Fourier transform 1) (k;t) can be calculated from ¢ (z;t),

(6.64)

P(kst) =limp o ﬁ f_bb exp (—tkx)y(z;t) dz,



and is itself square-integrable. In the Fourier transformation—defined in the context of
(6.63) and (6.64)—the normalization is preserved which, however, is the underlying
requirement for the Fourier transform (6.64) to preserve the probability interpretation of ¥*1,

ie. (1,9) = (%, ) :

[% da (b)) = [ dk [(kt)| (6.65)

To explain (6.65) we consider
lim, oolimy o (27) " [ dz [* dK [°, dk exp (i(k — K)z) ¢*(K';t)d(kst).  (6.66)

For k # k' we do not get any contributions to the f dx because of (6.62). We express this fact
using the §- distribution,

§(k— k') =5 [> dx exp {i(k—K')z}, (6.67)

then:

o0 a b
/ dz |(z;t)]? =lim lim [ dk' / dk 8(k — k)9 (K';t)d(k;t)
_ —a —b

0 a—r00b—00

= [, dk ¢~ (kit)d(k;t) = 1. (6.68)

If the derivative 0/0z 1 exists and is itself square-integrable—this is the case for all solutions
of the Schrodinger equation, since the operator of the kinetic energy T is always contained in H
—then holds,

pa(z5t) =limg o0 ﬁ ffa dk h k 1/;(k;t) exp (ikz), (6.69)

and lm]}(k;t) is also square integrable. This implies—in analogy to (6.68):

a b
< p, >=lim lim [ dk' / dk §(k — k') *(K'st) 1 k P(k;t)
—b

a—r00b—00

= [ dk §*(Kit) hk P(kst). (6.70)

The generalization of (6.63)-(6.70) to the 3-dim. case is trivial.
In view of the statistical interpretation of quantum theory we consider




<p>= [d®k rk P*(kt)P(k;t) (6.71)
with

1= [d3k ¥* (k;t)P(k;t). (6.72)

If one interprets 1* (k;t)(k;t) as the probability density to encounter the considered
particle of the ensemble at time t with the momentum 7k, then < p > can also be
interpreted as an average in the statistical sense.

6.3.5 Periodic Boundary Conditions

If we want to avoid the use of the d-function in practice, we can instead of the entire 3-dim.
space consider a sufficiently large (but finite) normalization volume. To simplify the notation,
let’s consider again only a single dimension (x). In order to keep p, hermitian in the finite
interval [—b/2, b/2], the wave functions 1 (x;t) must fulfill certain boundary conditions.
According to (6.48) the hermiticity of p, (due to partial integration) requires

* b
wlwz\f,f/z =0, (6.73)
such that
¥i(b/2) $a(—b/2)
e RTs (75) (6.74)

for any square-integrable functions 1)1, ¥ in [—b/2, b/2]. Equation (6.74) leads to the
periodic boundary conditions (except for a phase factor)

P(b/2) = P(-b/2) (6.75)

for the functions permitted. The eigenfunctions of p, can now be normalized

Uy = % exp (iknx) (6.76)

with

kn=2m 2, n=0,+1,+2,+3,... (6.77)

and the eigenvalues of p, are discrete: /ik,,.
Any function, that is square-integrable in [—b/2, b/2], then can be represented as a Fourier

series
=~ (6.78)
P(@it) = Do Cn(t)un(z)



with

cn(t f fb{jQ dz (z;t) exp (—ik,x). (6.79)

6.3.6 Uncertainty Relation
Since x and p, do not commute

h
[Py 2] = 7, (6.80)
they cannot be measured sharp at the same time, so it’s safe to expect
Ap, # 0, (6.81)

if Az = 0and Az # 0if Ap, = 0.
We will show below that always holds

Ap, Az > 2. (6.82)

To this aim we consider the function
a) = [dr |(z— < & >)¢ + ia(p.— < p: >)P|* >0, (6.83)

which can be written explicitly as:

f(o) = / Br gt (a— <z >) 7+ o2 / &1 (o < po >19) (Pam < 12 >0

+ia [dBr{y*(z— <z >)(pe— <pr > — ([Po— <P >Y) (z— <z >)P}.  (6.84)

The first term in (6.84) is (Az)?; the second results in (Ap,)? using that p, is hermitean; in
the linear term in o we can (with the help of (6.80)) transform the 2nd part:

/d3r([px— <pe >Y) (x— <z >)p = /d3r P (pe— < pe >)(z— < T >)

= [dr ¢ (z— <2 >)Po— <pe >+ 2 [dPr o, (6.85)
such that (if ¢ is normalized) this term contributes to f(c) by —a. In total we get
f(@) = (Az)* + a*(Ap,)* — ah > 0. (6.86)

Since f(«) is positive semidefinite (by construction), f(a«) can have at most a single real zero.

This implies that for the discriminant must hold:
(6.87)



4(Ap,)*(Az)® — % >0,

thus

Ax Ap, > g (6.88)

For a plane wave Ap, = 0, such that according to (6.82) Az = oo : the location of the
particle is completely undetermined! The equal sign in (6.82) appears for the case of a
Gaussian wave packet, which is briefly sketched below.

Attime ¢t = 0 let

Y(xz;0) = % +ﬁ exp {—% + ikox}; (6.89)

the associated Fourier transform is

Pk0) = Y& exp {3k~ ko)’0?}. (6.90)

Since for a free particle [H, p] = 0, H = T, the expectation value of the momentum and its
mean square fluctuation are constant in time. With (6.90) we obtain (after performing the k

integration) using
-~ —
I, = / exp (—az?) de = \/1;
. o

d(f" Iy=(-1)" ffooo z?" exp (—az?) dx (6.91)
<ps >=Thko; Apy = o= (6.92)

for all times t. On the other hand < z > and Az change in time. To see this we transform the
Schrodinger equation of the free particle to the momentum representation

ingrd(kit) = S5 (kit); (6.93)

Equation (6.93) can be integrated with the initial condition (6.90):

Plkst) =exp (—55° ) d(k:0). (6.94)

The back transformation into the position representation results in:



/_00 U(k;t) exp (ikz)dk

1 1 2ib2kom—.’1:2— ihtk%b?
IR W (69
or
|’Q/)(:Et)|2 -1 1 exp {_(w_—”ot)Q} (6.96)
’ b(t) vx b(t)? '
with
b(t)? = b2 + [%] and vy = 2K (6.97)
With (6.96) we get
<z >=vgt;Ax = b%. (6.98)
Equations (6.92) and (6.98) show that for ¢t = 0
i
Az Ap, = 5, (6.99)

however, for t # 0 the product Az Ap, > %/2 since the uncertainty in position grows
while the uncertainty in momentum remains constant. This

6.3.7 Disintegration of Wave Packets
is not limited to the Gaussian form (6.89), but holds in general. For a force-free particle we
always have (H =T) :

L <pp>=1 <[H,p,] >=0, (6.100)

such that
<pg>

(6.101)

d _ —
5 T >= = const.
We can therefore always choose the coordinate system in a way that

<z >=0; <p;, >=0. (6.102)



Then according to (5.36):

4(An)’ =& <a?>=1 <[T,2% > (6.103)
and
£ (A2)? = 14 < [T,2%] >= — % < [T,[T,2%)] >. (6.104)
Since T = p?/(2m) we need:
[p%,2%) = xlp}, 2] + [p3, 2l = T (zps + pa2) (6.105)

and

2h 2h

[p?w [p?ca w2]] = 7 [piaxpw +pmm] = ([pi7m]pm +pm[pi7w])

1

24
= = {pz (P2, T|ps + [P2> P2 + D2[Pes ] + Palpe, T|Pa} = —8A7DE. (6.106)

This results in (6.104)

4 (Az)’ = 2 < p? >=const >0, (6.107)

such that (Az)? grows quadratically with ¢, i.e. every wave packet disperses in time.

6.3.8 Reduction of Degrees of Freedom

In classical physics we can reduce the number of degrees of freedom of a system with the help
of constraints. For example, if a particle is supposed to move on the surface of a sphere, we can
reduce the equations of motion in 3 dimensions with the additional condition

7. = const;(p,) =0 (6.108)

to a 2-dimensional problem in the degrees of freedom 4, . Due to the uncertainty relation
for position and momentum or generally for canonically conjugate variables this
freezing of degrees of freedom in quantum mechanics in general is not possible! An
important example is the spontaneous emission of photons, which results precisely from the
fact, that the degrees of freedom of the radiation field in quantum theory cannot be frozen.

6.4 The Orbital Angular Momentum
6.4.1 Hermiticity
The angular momentum operator

l=r x p (6.109)



does not require any symmetrization in the sense of (5.27), since for every component /; the
relevant components of r and p commute, e.g.

l, =zp, — yp, = pyx — Py (6.110)

The space of functions in which 1 is hermitian can be either specified with respect to cartesian
coordinates or with respect to polar coordinates (see Sect. 6.4.4).

6.4.2 Rotations
In analogy to Sect. 6.3.2 we consider an infinitesimal rotation, e.g. around the z axis:

(z,9,2) = (z + ey, —ez + g, 2). (6.111)
A Taylor expansion of ¢(z + ey, —ex + y, z;t) around (, y, z) then gives:

¢(93 + €Y, —€T + Y, Z;t) = ¢(x7ya Z;t) - 6(%% - y%)/(p = (1 - % z)’lp(mvya Z;t)' (6112)

For a finite rotation ¢ around the z axis we have (as in Sect. 6.3.2)

P(Rerit) = 32,7, #{—%solz}nw(r;t) —exp {— %solz}zb(r;t). (6.113)
When rotating about an arbitrary axis byz the generalization of (6.113) reads:
,(rst) =exp {— ig. 1}1/)(r;t). (6.114)
The operators
R(¢) =exp (-%?- 1), (6.115)

which represent rotations in the space of the wave functions 1 (like the translations), form
a group which, however (unlike the translations), is not abelian: finite rotations about
different axes are generally not interchangeable in their order. Since the components of 1 are
the generators of the rotations, this implies

[li,lj] 75 0 for 17£J (6.116)

We call a physical system rotationally invariant if

[R(y), H] = 0. (6.117)

If 1 is a solution of the Schrédinger equation,
(6.118)



then also R(?)v,/; :

ihZ&-(R(9)y) = R(p)Hy = H(R(P)).

Equation (6.117) is fulfilled if and only if

1, H] = 0.

Since p2 is a scalar, p2 commutes with R(?), thus also

T,1] = 0.

Furthermore, |r| (for several particles |r;;|) is a scalar, such that

if

V,1 =0,

V=V(r]) or V= V(’rij|)'

6.4.3 Active and Passive Transformations

When describing spatial transformations (rotations, translations) the following perspectives
are equivalent:

(1)

(2)

A rotation (translation) of the physical system (active transformation), i.e. a rigid
rotation (translation) of the wave function v in the Hilbert space 7.

(6.119)

(6.120)

(6.121)

(6.122)

(6.123)

equivalent to (1) is (see Fig. 6.1) a (passive) inverse coordinate transformation (rotation,

translation), i.e. a transformation of the coordinate system of an observer (passive
transformation) in 3-dimensional space.



a) translation

v Y y

AN
U \l/

‘passive’” <= |_n|t|al_ => ‘active’
configuration

X

b) rotation

S,
b
)

Fig. 6.1 Illustration of ‘passive’ and ‘active’ transformations

For a scalar wave function ¢, which assigns a complex number to every point in space, due
to the equivalence of the perspectives (1) and (2) then holds

P(s~lrst) = Sy(rit) = o' (r3t); (6.124)

where s stands for a rotation (translation) of the coordinate system in 3-dimensional space,
the operator S for the corresponding transformation of the wave function ¥ in the Hilbert
space .

For a vector field—e.g. the vector potential A (r;t)—the situation is a little more
complicated than in (6.124), since the components of A (as a vector) also change when
erforming a rotation. In this case we get:

sA(s7'r;t) = SA(r;t) = A'(rst). (6.125)

To find the explicit form of the operator S, an infinitesimal transformation, e.g. around the z
axis, is sufficient. Then we get

AL (rit) = Aq(pit) — eAy(pit)

— —
Ay (r;t) = eAs(pit) + Ay(pit)




—>
Al (r;t) = A, (pit) (6.126)
with
R |
p=s'r=(x+ ey, —ex+y,z2). (6.127)

We carry out the Taylor expansion of Ai(;ét) around r = (z, y, z) in analogy to (6.112). Then
(6.126) can be written as

Al(r;t) = (1 — %e[lz + sz])A(r;t) (6.128)

where the 3 X 3 matrix s, is defined by
( ) \ o)
)

(6.129)

which leads to the explicit form

(0 —i 0\
s,=hli 0 0}. (6.130)

The matrices for rotations around the x, y axes are:

(0 0 0 z\
L =h s, =h 0 00 (6.131)

i o) o)

For a rotation about any axis with ¢ we obtain

A'(r;t) =exp {—%? 14 s]}A(r;t). (6.132)

Equation (6.132) suggests that s has the character of angular momentum. In fact one finds
commutation relations as for the components of ],

84,8y = ihs,, [s,,8,] =ihs,, [s,,s,] =ihs,. (6.133)

Furthermore, using the representations (6.130) and (6.131) one finds directly:




s2 =352 + 312/ + 82 = 21%13,3, = 2h%

o O =
o = O

0
0], (6.134)
1

such that (anticipating the results of Sect. 6.4.4) we can assign spin 1 (in units of 7) to the
vector field A. Since the operators s, sy, s,—in contrast to the components of 1—do not
depend on the position coordinates, the spin obviously describes an internal property of the
system described by the vector field A (r;t).

Note: In addition to the radiation field A there are other physical systems that are
described by vector fields like e.g. the p and w meson, which, however, in contrast to the

radiation field (photon ) are massive, i.e. m, ~ m, ~ 780 MeV /c?.In the weak interaction
the vector fields W, W—, W9, Z° with masses around 90 GeV /c? play the dominant role.

6.4.4 Commutation Relations; Eigenvalues
From the definition (6.109) one calculates directly:

o, ly] = ihl,, [l,1a) = ihly, [l,,1.] = ihl, (6.135)

or short

[lna lm] - Zhenmklk

with the completely antisymmetric tensor €,,,,% of rank 3. One also finds

[12,1;) =0 for i=x,y,z (6.136)

as a result of the fact that [2 is a scalar quantity. From (6.135) and (6.136) it follows that /2
and one of the components /; form a common system of eigenfunctions. For the following
considerations we choose [, = l3 and search for the solutions of

Pipoy = Mprus Lhag = pthap. (6.137)

In a first step we want to investigate, which eigenvalues (A, ) are possible at all within the
framework of the commutation rules (6.135) and using the hermiticity of the components /; as
well as the normalization of the solutions v,. In a second step the eigenfunctions ), of the
orbital angular momentum will be constructed explicitly.

For the determination of the possible eigenvalues A, p it is useful to introduce—instead of
I3, l,—the linear combinations

le =1, +il, (6.138)

Then it follows that




[12,1,] = [1%14] =0 (6.139)

due to (6.136) and from (6.135) we obtain

15,14] = £, (6.140)

where, to simplify the notation, the units are chosen such that 7= 1 (natural units). With the
operators I, [, we can write [? as:

P=11 4+ -1,=11 +12+1,. (6.141)

From (6.140) and (6.139) now follows:

lz(l:t"/)ku) = )‘(l:tw)\u)a

L(etn) = (£ 1) (Lethan), (6.142)

if we apply the operators,! to Eq. (6.137). Thus using the operators ., [ _, the quantum
number u can be increased or decreased by 1 each, i.e.

Lty ~ Yyptr- (6.143)

If one assumes an arbitrary angular momentum eigenstate 1, the question is whether

this increase or decrease of the quantum numbers is infinitely possible or stops after a finite
number of steps (which may depend on ). In addition we have to investigate whether the new
emerging state can be normalized.

If we use (6.138), (6.141) and the hermiticity of /;, we get:

(l-l—"vb)\/u l-&-"/)/\u) = ('Qb)\u’ l_l+’([),\u) = ()‘ - :u’z - ,u') (’Q[),\N, "/)/\u) (6-144)

and after multiple applications of [ finally:
U e, 1T ha) = (A= mu? —p) -~ (A = [+ m)* — [+ m]) (s, Yoa)-  (6.145)
For fixed A\, 4 now the factor
A=p?=p)-- A= [p+m)* - [p+m]) (6.146)

becomes negative for sufficiently large m; since the normalization of the possible
eigenfunctions is 1, [+ Y. 1415, - - - has to be positive, we come to a contradiction unless
the series stops for a value my + 1, i.e.

(6.147)



ZT0+1¢)\“ -0

or with (6.145) we get

A — [+ mo)? — [+ mo] = 0.

(6.148)

The series of angular momentum eigenfunctions generated from 1), according to m = my

must stop!

Corresponding considerations can be made when employing [_. We obtain in analogy to

(6.148) the condition

A—[u—n0)® + [ —no] =0, (6.149)
thus
"y, = 0. (6.150)
Solving (6.148) and (6.149) for u, A we find:
p = 570, (6.151)
A= 5(mo+ no)(m + 1)h2. (6.152)
We therefore have found the possible eigenvalues for 12, 1 :
A=jG+1r%i=0,%,1,3,2, 3, (6.153)
and
p/h=—j,—j+1,...,+j (6.154)

For every angular momentum quantum number j then there are (25 + 1) values of u (in

agreement with the Stern-Gerlach experiments in Chap. 2). In the following we want to show
that for the orbital angular momentum 1 only the values j = 0,1, 2, . .. occur, which we will

refer to below as L.

6.4.5 Eigenfunctions for 12,1,

To construct the eigenfunctions to [? and [, it is useful to introduce polar coordinates r, 9, (.

The components [; then are written as:

R
l,= zh&p,

l. = hexp (Lip) ia%—ki cot ¢ % ,

(6.155)




and for 2 follows:

Pty snd G+ ok ). (6.156)

Since the coordinate r does not occur in (6.155) and in (6.156), we omit r in the following.
Due to

I, exp (imyp) = —ih% exp (imyp) = mh exp (imyp) (6.157)

we can use the Ansatz for the solutions of

Pxim(9,9) = U1+ 1) XumiloXim (9, @) = mh Xim (9, @) (6.158)

involving the product function:

Xim (9, ©) = fim(F) exp (imyp). (6.159)

The possible eigenvalues are now restricted by the fact, that for a scalar function () must
hold:

Y(r, 9, o + 21) = P(r, 9, ). (6.160)
This implies for (6.159)
exp (im27) =1 — misaninteger, (6.161)

such that the possible values of I, m are given by

1=0,1,2,...;—1<m<L (6.162)

At this point we can briefly address the question of the hermiticity of /. The requirement

(Y1, 1:42) = (191, %2) (6.163)
leads (after partial integration ( [ d3r = [do sind dd r2dr) with respect to ) to
Yi(r, 9, 2m)a(r, 9, 2m) = ¥i(r, 9, 0)9a(r, 9, 0). (6.164)

The function domain, in which [, is hermitian, thus must have the property,

. (6.165)
Y(r, 9, 2m) =exp (ia)y(r,3,0),



where « is an arbitrary real number (but fixed for all ¢/). By (6.160), however, the condition
(6.165) is always fulfilled.
We now turn to the calculation of fi,,,(¢); first we consider the case m = I. Then we have
L fu(9) exp (ilp) =0, (6.166)
which (with (6.155)) leads to the differential equation
(& —1 cot 9) fy(¥) = 0. (6.167)
The solution of (6.167) is (up to a normalization factor)

Fu(®) ~ (sin 9)". (6.168)

Starting from (6.168) one now obtains by applying [ _

Xim (9, 0) ~ (1) ™ xu (9, @) (6.169)

This provides a complete construction procedure for the eigenfunctions (%, ¢).

To gain some more insight into the structure of the x,,,, we use (with d(a‘fsﬂ) = — 5111119 %
the identity:
. ) d
L fexp (1)1 (9)] =exp (i1~ D) |5~ 1 <ot (2)| 700
—exp (i(1 — 1)) [(sin 9)' ™ 2 (sin 19)1} £(9), (6.170)

from which we get:

1 fexp (i) 0)] = - { exp (0 - 1) (s 9)* sin )| 10)

d(cos )

—exp (i(l — 2)<p){(sin 9)° ™ ey (sin 9)' 7 (sin ) 7oy (sin 9) f(ﬂ)}. (6.171)

Thus we can write (6.169) as

Xim (9, ) ~exp (imp)(sin 19)_’”# (sin 9)%. (6.172)

The functions fi,, (1) therefore are polynomials of degree [ in sin J, cos 9.

By a twofold partial integration with respect to the variable cos ¥ it can be shown that in
addition to I, also 2 is hermitian in the space of functions . Then



the orthogonality of the X, follows from their property as eigenfunctions to I2, I

[ on dso(f,ll d(cos 9) X?‘mxz/m/)] =0 (6.173)

forl # I’ and/orm # m/.

To determine the normalization constants, we start again with the case m = [. The
functions

¢;(sin 9)" exp (ily) (6.174)

are normalized to 1 when using (determining the still free phase)

2[+1)!
o = (—1)hy/ &R L (6.175)

For the case m # [ we assume the relation in analogy to (6.144).
(X L-xip) = (1T + 1) — p* + ) (Xaps Xip) = (L —p + 1)L + ) (Xip» Xip)- (6.176)

Using the usual phase convention we obtain from (6.176) for the normalized X, :

1
Xip-1 = 7L-Xip- (6.177)

(I—p+1)(I+p

Starting from the already normalized functions ;; the normalized functions are obtained by
iteration of (6.177):

Xim (9, 0) = 1/ i (1) " xu (9, ). (6.178)

The standard solutions are therefore explicitly:

Yin(9,0) = (—1)1/(279)\/ L 10 )

x exp (imy)(sin 9) _md(ci%(sin 9)%. (6.179)

Summary: For the functions Y}, (14, ¢) the following holds:

l2lem - l(l + 1)Y2m;lz}[lm - mYlm;
1:Yim =/ (1Em+ 1)1+ (-m))Yime

(6.180)




and

[Zde [1 d(cos 9) Y Yim = OuSmm (6.181)

6.4.6 Angular Momentum Representation

The spherical harmonics Y}, (19, ¢) form a complete system of functions on the unit sphere.
Therefore every square-integrable function ¥(r) can be expanded in an (on average
convergent) series

P(r) = 0 S i () Yim (9, ). (6.182)

For the expansion coefficients g, (r) follows (due to the orthonormalization of the Y7,,,) :

gim(r) = [77 [1, de d(cos 9) Yy, (9, 0)(r, 0, ). (6.183)

For an ensemble in the state 1) the expectation values for I and [,

0 l 00
(%, 129) =< 2 >= 11+ 1)a* ) | / r2dr |gun(r)|*;
=0 m=—170
o 00 l oo 92 2
<L >=3 70> emh [ ridr |gim(r)] (6.184)
with the normalization
1= 320 e o7 rdr |gim(r)[*. (6.185)

Thus we can interpret the integral

S rdr |gim(r)]® (6.186)

as probability to find—in a simultaneous measurement of [? and I, of a particle described
by 1)—the values [(l + 1) and m.

If the ensemble is prepared in such a way that 1) already is an eigenfunction of I2 to the
eigenvalue [(I 4 1), then in a measurement of [, only the (2! + 1) discrete values — < m <1
can be found. Thus the eigenvalues of [? are (2 + 1)-fold degenerate. Conversely: If 1/ is an
eigenfunction of [, with eigenvalue m, then for a measurement of [2 only the eigenvalues
[(I+ 1) with > |m| can be found.



In an eigenstate 9, to I2 and I, the components I, l, are not sharp due to (6.135). For the
mean square of the fluctuation, which for symmetry reasons are the same for [, and [, one
immediately finds:

(ims (AL) i) = [ & Y1 latbim = 5 (Wim, (1 = B)thim) = {11+ 1) — m*}r%,(6.187

N

if one considers that
J & Y letim = 0 (6.188)

because of (6.138), (6.142) and (6.173). Equation (6.187) shows that there is exactly a single
state in which, in addition to 12, all 3 components /; can be measured sharply, i.e. the case
[=m=0.

6.4.7 Angle-Angular Momentum Uncertainty

Accordingly to (6.80) the following commuation rule holds for the angle ¢ and the component
lZ)

Ly 0] = % (6.189)

Due to the analogy of (6.189) and (6.80) one is tempted to conclude from (6.189) the relation
(in analogy to (6.82)),

Ap AL > 2. (6.190)

However, Eq. (6.190) cannot be valid in general because for eigenfunctions of [, the fluctuation
Al, = 0, while Ap < 27 is always finite! The error in the conclusion is due to the fact that—in
the derivation of (6.82) from (6.80)—it was assumed in (6.85) (without explicit mentioning),
that with 1) also x belongs to the function space in which p, is hermitian. Exactly this
prerequisite, necessary for the proofin Sect. 5.2, is not fulfilled for the case of the angular
momentum [, and the angle ¢: according to the previous analysis [, is hermitian in the space of
periodic functions ¥(r, ¥, ¢) with

Y(r, 9, 0) = P(r, 9, ¢ + 27) (6.191)

but then p1)(r, 9, ¢) is not periodic and the requirements for the proof in Sect. 5.3 are not
fulfilled. This clarifies that (6.190) cannot hold in general as the example above has shown.

The way to arrive at correct uncertainty relations for angular momentum and angles is
already outlined by the discussion above. One must replace the observable ¢ by a periodic
function, e.g. cos ¢ or sin ¢. Then we obtain

[1,,cos o] = =L sin (6.192)

1

[l.,sin ] = % cos ¢, (6.193)




and with 1 the function sin ¢ % or cos ¢ 9 is also periodic.

6.5 The Spin-Intrinsic Angular Momentum

6.5.1 Experimental Observations

If we carry out a Stern-Gerlach experiment (see Chap. 2) with hydrogen atoms, which are all
in the ground state, we observe a (symmetric) splitting of the primary beam into two
secondary beams. This finding is in contrast to the previous considerations on the quantum
theory of a point-like particle, according to which no splitting would be expected in the Stern-
Gerlach experiment, since

(i) in the ground state of the H atom (see Sect. 7.6.5) the electron has the orbital angular
momentum 1 = 0, such that no permanent magnetic moment results from the orbital motion
of the electron in the atom;

(ii) the induced magnetic moment (diamagnetism)—even for strong magnetic fields—is
not sufficient to split the beam of the size found experimentally.

The results of the Stern-Gerlach experiment can be easily explained, if we assign an
intrinsic angular momentum (spin)—and thus a corresponding magnetic moment—to the
electron. This intrinsic angular momentum of the particle is an internal property
independent of the coordinate system without a classical analogue; in particular, it cannot be
transformed away by translating to another coordinate system. Since the primary beam splits
exactly into 2 secondary beams only the 2 values m; = +1/2, —1/2 (in units of /) are possible
for the z component of the spin. This implies that a spin s = 1/2 (in units of /) can be assigned
to the electron.

Other hints for the spin of the electron are provided by the fine structure of spectral lines,
the Einstein-de Haas effect as well as the anomalous Zeemann effect. Other elementary
particles also have spin 1/2 : nucleons, muons, quarks, neutrinos; on the other hand, spin 0:
pions, kaons, n; Spin 1: photons, gluons, vector mesons p, w, ¢ etc.

6.5.2 The Pauli Spin Matrices

The explanations above show that a scalar wave function—depending only on (r, t)—is not
sufficient for a description of an ensemble of electrons; we have to assign an additional
(internal) degree of freedom to the electron. This additional degree of freedom can only be
characterized by two values ms = +1/2 or my; = —1/2. A mathematical description of such a
degree of freedom is possible in terms of a 2-dimensional vector space, its basis vectors

1 0
() () oasn

are assigned to the states (denoted by: spin up or spin down) with m, = +1/2 or
my, = —1/2.

Operators that act in the space spanned by (6.194) can be represented by 2 x 2 matrices.
Since the operator of the z component of the spin S, should have the eigenvalues +1/2 (in
units of ), its representation is obvious

(6.195)



We can flip the electron spin (spin flip) using the operators

0 2 0 0
S+:%<o 0>;S‘:%(2 0)'

This gives (cf. the operators /. from Sect. 6.4)

o)~ () -
S ()-(0)s ()

or

(6.196)

(6.197)

(6.198)

Every operator acting in the space defined by (6.194) can be written as a linear combination of

S., S, S_ and the identity matrix 1242, e.g. the operators

01 0 —2
Sy = %(SJF +5.) = %(1 0>;Sy - %(Sﬁ- —-5.)= %(Z 0 )’ (6.199)
which together with S, are the cartesian components of the spin vector
Sz
S=15, (6.200)
S,
In the standard representation we define the components of the o-matrices by
S=1 o, (6.201)
which are called Pauli spin matrices with the three components:
01 0 —1 1 0
“=\10)%" i 0)7 o -1/ (6.202)

The following properties hold for these matrices, which follow directly from the definition

(6.202):

(i) Normalization
I



0l=02=02=19=FE;= <1 0) (6:203)

such that

P =3B, = $’=2 B, =11+1)E (6.204)

in accordance with (6.153).
(ii)) Commutators

OOy — OyOy = 21 0, (6.205)

or

Sz, 8, =i 8. (6.206)

as expected for angular momenta (cf. (6.135)).
(iii) Anti-commutators

(02, 0|+ = 020y + 0yoz = 0. (6.207)

6.5.3 Spinors

We can now define an arbitrary state of a set of particles with spin 1/2 by a two-component
wave function (spinor)

1 0 Py (r;t)
U(r;t) = r;t + r;t = . 6.208
(rit) = ulrst) (0) Yalrst) (1> (W(T;t) (6.208)
The operation of the spin operators on spinors follows directly from Sect. 6.5.2, e.g.

L0 1\ (b (%),
oY = (1 0) (w) - (w) (6.209)

the operators of position and momentum (as well as all operators built from r and p, such as
angular momentum) are given by a multiplication with the identity matrix

10
Ey = (0 1) (6.210)

and thus become operators in the space of spinors (6.208).
Example:

(6.211)



2= (g 0) () = (o)

We define the norm of ¥ as

= fatr i) (57) = Fatr ol 6212)

For spinors ¥, that are normalized to 1 according to (6.212), we can e.g. interpret

[ @ |9, (6.213)

as the probability to find an electron in the volume V with the spin componentm, = +1/2. If
we discard the information about spin then

Jy @r {[$ul>+1al?} (6.214)

is the probability of finding an electron in the volume V.

The definition of the expectation value of an observable in a state ¥ follows from (6.209) to
(6.212). It is explained by a few examples:

(i) Position:

<r>=(V,r¥) = [d3r {(¢Y:¢}) }( :Z > = [d3r r{|9. |2+ [v4|*}; (6.215)

(ii) Spin:

<S,>=(¥,5,9) =

N

fdir (o %)(‘ﬁ;d)}:% Fdbr {alP=d?}  (6216)

or

< Sy 5= (B,8,9) = 1 [dr{(rr) (;fd)} — L [ {Yige+ W) (6217)

Of course, operator products are also possible, such as e.g. the spin-orbit coupling
1-S =1,5, +1,S, + 1.5, which follows from the relativistic theory and explains the fine
structure of the spectral lines.

6.5.4 Rotation of Spinors
In analogy to Sect. 6.4 we conclude the following property of a spinor ¥ in rotations:




U'(r;t) = SU(r;t) (6.218)

with

§=exp {17 11+8]} =, & (—57 1+ SJ)", (6.219)

where S now consists of the 2 x 2 Pauli matrices introduced in Sect. 6.5.2 (6.195), (6.199).
According to (6.125)-(6.127) we obtain for the transformation behavior of the spinor
components v, ¥4 in rotations, e.g. around the x axis by the angle ¢

(Zé) (rst) = (_:O:if()%) i;ﬁﬁ)) (ZZ) (o;t) (6.220)

—_ . . . . _
where p’arises from r by the inverse rotation, i.e. p’ = 57!

r.
As a proof, note that S can also be written as

A

S =exp (—%cplm) exp <—%¢Sm), (6.221)

since the operators 1, S act in different spaces and consequently [1, S] = 0. We can
therefore consider separately:

exp (45, ) ¥ =exp (i £ 0.) U=, L (i § 0.)"¥ (6222)

since according to (6.203):
0 = Es,03 =0, etc. (6.223)

The transformation behavior of the spinor components differs from that of the components of
a vector field in that the angle ¢ /2 occurs in (6.222). This has the particular consequence that
in a rotation by ¢ = 27

¥ — ¥’ —exp (—im)¥ = -, (6.224)
while for a vector field A we have:

A A=A (6.225)



6.5.5 Pauli Equation
The time evolution of the spinor ¥ is determined by a Schrodinger equation

ihy U=HUT, (6.226)

where H can now contain spin-dependent terms. The internal angular momentum S is linked
to a magnetic moment

[y = -8 (6.227)

as the Einstein—de Haas experiment shows explicitly. In a magnetic field B such a
magnetic moment has the energy

i, -B. (6.228)
Then the Hamiltonian is
_ 1 e 2 _e_ 6.229
H_2m(p—cA) +ed - -=S-B. (6.229)

Since from the definition of the spin matrices it follows that
(T, ST) = (ST, V), (6.230)

also the (non-relativistic) Hamiltonian (6.229) for an electron with spin is hermitian, if the
components of the spinors ¥ drop fast enough in the asymptotic region. Then we get:

%(\Il, U) =0, (6.231)

such that the norm (¥, ¥) remains constant in time.

If[H,1+ S] = 0, we obtain—as in Sect. 6.4—that with ¥ also SV is a solution of (6.226)
(rotational invariance).

Additions:

(1) One might attempt to determine the internal magnetic moment of the electron
classically by describing the electron as a homogeneous sphere of charge —e with the classical
electron radius 7y = e2/(mc?) rotating around a principle axis. For a quantitative explanation

of the Stern-Gerlach experiments from Sect. 6.5.1 then an orbital velocity v ~ 200 c at the
equator of the sphere would be required; This clearly marks the end of a classical description!
(2) The electron spin inevitably follows from relativistic quantum theory, the Dirac theory,
from which the Pauli equation (6.226) with the Hamilton operator (6.229) results in the non-
relativistic limit.
In summarizing this chapter we have investigated the connection between the possible
expectation values of an observable A and its fluctuations in context with its commutator
[4, H]. Furthermore, we have established the relationship between momentum conservation
and translational invariance as well as the conservation of angular momentum and rotational




invariance in quantum theory. In addition we have introduced the ‘spin’ of electrons (or related
fermions) and explored its properties with respect to rotations.
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7. Motion of a Particle with External Forces

Wolfgang Cassing!
(1) University of Gief3en, Gief3en, Hessen, Germany

In this chapter we will discuss the quantum mechanics of a single particle in an external
potential and classify the possible solutions. As examples we calculate the wave functions
for an infinite and a finite well and for potentials that are periodic in space. Furthermore,
the harmonic oscillator problem will be examined in detail as well as the motion of a
charged particle (and its spin) in a magnetic field. The bound states and energy levels of
the hydrogen atom will close this chapter.

7.1 General Properties of the Wave Function
The following discussion refers to the Schrédinger equation

ihd p=H (7.1)
with local potentials, i.e.
H=T+V,V=V(r); (7.2)

here 1 is a scalar function (not a two or more component spinor). Furthermore, due to the
2nd derivatives in r in the kinetic energy operator the wave function 1) must be
continuous together with its first derivatives as long as the potential V' remains
finite.

V 1

v

Fig. 7.1 Example for a potential that only allows for closed orbits
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scattering states

Fig. 7.2 Example for a potential that only allows for open orbits

\%

scattering states

bound states

Fig. 7.3 Example for a potential that has bound as well as scattering states

7.1.1 Classification of Solutions
It is useful to differentiate the following cases for the shape of the potential:

(1)

(2)

(3)

(4)

If all classical orbits are closed, the eigenvalue spectrum of H is purely discrete and
all eigenfunctions can be normalized. An example is the harmonic oscillator

(Fig. 2.1).

If the classical system only has open orbits, the energy spectrum is purely
continuous and the eigenfunctions cannot be normalized. Example: repulsive
Coulomb potential (Fig. 7.2).

The potential V has the shape as shown in Fig. 7.3:
This case corresponds to e.g. the potential between the atoms of a diatomic
molecule. Bound states as well as continuum states show up.

The a—decay of an atomic nucleus is determined by a potential of the form shown
in Fig. 7.4 (here x is the distance between the « particle and the remaining nucleus):



scattering states

B ..................
Gamov-states /\

0 Fi X
75 bound states

Fig. 7.4 Example for a potential that has bound states, scattering states as well as resonant Gamov states

The barrier stems (a) from the Coulomb repulsion and (b) from the centrifugal term of
the kinetic energy (see Sect. 7.6). In such a case we have—apart from bound states
(E < 0) and scattering states (E > 0)—a third type of possible states in the range

0 < E < B : states that are within the barrier can only exist for a finite time 7 until they
decay by tunneling (Gamov states). Classically, the situation is completely different: a
particle with 0 < E < B is either on a closed orbit within the barrier or on an open
trajectory outside the barrier. A transition (at fixed energy) from one type of orbit type to
the other is impossible. In classical physics there would be no a—decay (or spontaneous
nuclear fission).

7.1.2 The Wronski Determinant

It is often possible to reduce the stationary Schrodinger equation to a one-dimensional
problem, which is determined by a differential equation of the form

"+ (e—U(z))é=0 (7.3)

with e = 2mE/h?,U(z) = 2mV (x)/h?. Let’s consider 2 solutions &1, £ with eigenvalues
€1, €2; then from (7.3) we get the relationship

£26] — &1&y = (e2 — €1)&1a. (7.4)

We now show with (7.4) that square integrable solutions cannot be degenerate. We
provide the proof indirectly: If e; = €5, we would have (Z.4):

&€ — &8 =0 =W(£, &), (7.5)

i.e. the Wronski determinant

W (&1,&2) = €8] — 1€, = const.  Vx. (7.6)

In line with the assumption of square integrability the functions &1, £2 must vanish at
infinity; thus the constant of integration itself is zero:

(7.7)
W (1, &2) = &6 — &€, = 0.



This directly leads to
§1 = const. &2, (7.8)

i.e. the two solutions agree except for a normalization factor,; in contradiction to the
assumption.

With the help of (7.4) we can also make statements about the zeros of the solutions of
(Z.3). We consider 2 real solutions of (7.3) £1, £2—the solutions of the real differential
equation (Z.3) can always be chosen real—and let €5 > €1; we then integrate (7.4) over an
interval whose endpoints a, b are two consecutive zeros of &1, therefore:

§€11% — &60= 525'1’2 = (€2 — €1) fab §1€2 dz. (7.9)

In the interval [a, b] &1 has a uniform sign, e.g. £&1 >0. Then the following relations hold at
the endpoints:

€i(a) >0; & (b) <0. (7.10)

It now follows that £2(x) must have at least 1 zero between 2 successive zeros of &1 (z). If
&2(z) > 0 (< 0) in between the zeros a, b of {1 (), then the right side according to (7.9)
will be > 0 (< 0), while the left side with (7.10) turns out to be < 0 (> 0): contradiction!
Now if &3, &2 disappear at the boundaries  — F-oo (bound states), the n; zeros of £ ()
divide the interval [—00, 00| in (n1 + 1) subintervals. Since {3 () in each of these
intervals has at least 1 zero point, the function &»(z), which leads to the higher eigenvalue
€2 > €1 (by assumption), must have at least (n1 + 1) zero points.

7.2 Simple Examples
7.2.1 The Infinite Potential Well

The most simple model system in quantum mechanics is the one-dimensional infinite
potential well. It consists of a potential-free area which is surrounded by two infinitely
high potential walls:

V(z) =0 for x <0 (7.11)
V(z)=0 for 0<x<a
V(z) =00 for x > a.

The classical range is restricted to the interval 0 < x < a and the potential belongs to the
1st class of potentials. We will see that the energy quantization in this example results
directly from the restriction of the classical range.

Outside the classical region the potential is too strong, such that apart from the trivial
solution ¥ = 0 no other solutions may exist. Inside the potential, however, we have a free
system described by the stationary Schrodinger equation



— e Z(e) = By(a). (7.12)

The general solution of this equation is

Y(z) = A sin (kx) 4+ B cos (kz), (7.13)

with the wave number k£ = \/2mE/h. The coefficients A and B must be derived from
the continuity conditions of the wave function. Since the potential is no longer finite, the
derivative of the wave function is not continuous, but the wave function itself continues to
be continuous and therefore must disappear at the edges of the potential, i.e. 1)(0) = 0
and ¢(a) = 0.

The first condition leads to B = 0 since cos (0) = 1. The second condition can only be
fulfilled if sin (ka) = 0. Therefore, the wave number only allows certain discrete values:

sin (ka) =0 = ka = nm, (7.14)

where n is an integer number. The energy then can also only take discrete values. The last
free coefficient A follows from the normalization. The energies and wave functions of the
infinite potential well therefore are (see Fig. 7.5):

B, =42n?  t(z) = \/E sin (). (7.15)

In the more realistic case of the finite potential well, the wave function does not have
to disappear at the edges, but can penetrate into the classically forbidden area and drops
here exponentially (~exp (—kz) with real & = \/2m(Vy — E) /i) for E < Vj. In this
case the derivative of the wave function is also continuous again.

In general, every potential can be approximated by many constant potentials. In this
case one has to determine two coefficients per section and has two boundary conditions
from the continuity conditions. Since the wave function must also be normalizable, one
has to determine 2N coefficients (for N potential sections) from 2N + 1 boundary
conditions. The system thus is overdetermined and solutions only exist for certain
discrete energy eigenvalues.
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Fig. 7.5 Illustration of the wave functions 1(z) and the associated energy levels of an infinite potential well (left) and the
densities |1(z)|? (right)

7.2.2 The Finite Potential Well

In the previous section we have discussed an example with a discrete spectrum and now
want present an example with a continuous spectrum. The potential should be a single
finite potential well,

Vi(z) =0 for|x| > a (7.16)

Vir(z) =V >0 for —a < x < a.

A particle, coming from the left, moves to the right in direction of the potential well. There
are two classical options: If the energy of the particle is larger than the step (£ > V}), it
can pass the step; if the energy is smaller, the particle is reflected. Quantum mechanically,
both possibilities can occur.

For the wave function (I) in front of the step, we choose a plane wave traveling to the
right for the incoming wave and a plane wave traveling to the left for the reflected wave,

r<-a(®) = Yin(z) + Pr(z) = €™ + Re ™. (7.17)

The amplitude of the incoming wave here is set to 1. For the wave function behind the step
(IIT) we only take a plane wave running to the right, since the particle cannot be reflected
at infinity,

I (z) = ¢r(z) = Te'e. (7.18)
The wave function in the well for E < V;, has to be taken as

(hea(®) = Arr exp (—kz) + Bir exp (+xz) (7.19)

|z|<a

with & = \/2m(Vy — E)/h) for E < V;. For E > V, we have the basis solutions

exp (+ikz) with k = 2m(E — V;)/A2. The overall solution then emerges from the
solution of the Schrodinger equation by exploiting the continuity conditions:



P!(—a) = ¢! (~a), P! (a) = ¢! (a), (7.20)

o b 0 0
2 yica) = Lyii(-a) 2 yitay = Lyina)

for the four complex coefficients R, T, Ay, Bys. Their explicit evaluation is straight
forward for E < Vy and E > Vj (but lengthy and serves as a good exercise).

Of particular interest is the reflection coefficient R and the transmission
coefficient T, which indicate the amplitude for reflection at the step or transmission. The
conservation of probability here requires | R|*> + |T|* = 1. Figure 7.6 shows the shape of

the probability density ]1/)(:E)]2 for an energy 0 < E < Vj. The density oscillates in the
region before the well (I) due to the interference between the incoming and reflected
wave; in the classically forbidden region (II) it drops roughly exponentially and becomes a
constant (|7'|%) in the region IIL
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Fig. 7.6 lllustration of the probability density |[)(z)|? for the potential well in case of 0 < E < V;

In distinction to classical mechanics the particle can bypass the potential well with a
certain probability even if the necessary energy is missing. This effect is called tunnelling.
The inverse case is also possible: If the energy of the particle is higher than the potential
step, it would classically always pass the step. In quantum mechanics it can also be
reflected in this case! Fig. 7.7 shows the reflection | R| and the transmission |T'|*
probability as a function of the energy of the particle (in units of Vj). For small energies
the reflection dominates, while for large energies the transmission is becoming more and
more likely. For certain discrete energies the step becomes completely transparent; these
energies correspond to the energy levels of the infinite potential well (7.15).
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Fig. 7.7 Tlustration of the energy dependence of the reflection and transmission probabilities |R|” and |T|*

7.3 Periodic Potentials

7.3.1 Crystal Symmetry

For studying the motion of an electron in a crystal it is expedient to employ the periodicity
of the grid. We here assume an ideal grid; grid disturbances (local shifts), edge effects
therefore are neglected. The grid periodicity can then be formulated as

V(r) =V(r+Rn), (7.21)

where R, is a displacement vector which transfers the crystal lattice into itself.
We now will describe general properties of the stationary solutions for the potential
(2.21),

{~ 4592+ V(r) - E}y() = 0, (7.22)

which follow directly from the periodicity of V. For simplicity we limit ourselves—due to
the separation of the wave function 9(r) = v, (z)v¥,(y)¥.(2)—to a one-dimensional

model. The essential statements also hold in the three-dimensional case.

7.3.2 One-Dimensional Periodic Potential
We consider the differential equation

'+ (e —U(z))yp =0 (7.23)




with

€= %E;U(m) = 2h—TV(:z:) (7.24)
and
U(z) =U(z + a), (7.25)

where a is the length of the unit cell.
[t will now be shown that the solutions of (7.23) can always be chosen such that

Y(z + a) = M(z) (7.26)
or (after iteration)
Y(x + na) = A"Y(x). (7.27)

If 1 (x), ¥2(z) are two linearly independent solutions of (7.23) to the energy ¢, then the
functions ¥1(z + a), ¥2(x + a), which are also solutions of (Z.23) to the energy € due to
the periodicity (7.25), can be represented as

Y1(z + a) = Ciyps(z) + Crava(z);

Ya(z + a) = Corth1(z) + Caatha(z). (7.28)
To satisfy (7.26) we must diagonalize the matrix Cj; the eigenvalues A result from
(Cll — )\)(022 — )\) — C19Cy = A2 — (011 —+ 022))\ — C12051 + C11C52 = 0. (7.29)

This is a quadratic equation for A; about its solutions A1, A2 we can make the general
statement:

A1A2 = L. (7.30)

We prove Eq. (7.30) using the Wronski determinant. Then for any two solutions 1, Y5 of
(Z.23) for the same energy € holds:

Y] — 13y = 0, (7.31)
i.e., the Wronski determinant is constant

W (1,v2) = ¥o9] — 9195 = const. (7.32)

On the other hand, (7.28) gives



Cn 012) (7.33)

W(1(z + a),Y2(z + a)) = W(¢1(x),v2(x)) (021 o

leading to
C11C2 — C12C91 = 1 = A1 ). (7.34)

The only physically interesting solutions are those for which |A| = 1, otherwise—due to
(7.27)—1) would grow beyond all limits for x — F0c. Therefore we can write the
solutions as

A1 =exp (ika); Ao =exp (—ika); kreal. (7.35)
Writing the phase in (Z.35) as ¢ = ka is reasonable in view of
7(a)y =exp (—+ap.) = M. (7.36)
Obviously, it is sufficient to consider values k in the interval
—>-<k< 2. (7.37)

We thus have shown that all (physically meaningful) solutions from (7.23) can be chosen
such that

Y(x + na) =exp (i nka)yp(z) (7.38)
withn = 0, £1, £2, £3, .. .. ¢ then must have the following structure:
Y(z) =exp (ikz)vi(x) (7.39)
with
vp(z) = vp(z + a). (7.40)

The statement formulated in (7Z.39) and (7.40) is called Bloch’s theorem.

Fig. 7.8 Periodic potential for the case of a crystal in the direction of symmetry



The most simple model for the motion of an electron in the lattice of a crystal is the
assumption of a spatially constant potential U, which can be obtained by averaging over
the periodic potential assumed above (Fig. 7.8). The solutions for the constant potential
are

Yo(x) =exp (ikz) (7.41)

with k from (7.37). If we compare with (7.39)-(7.40), we may interpret the Bloch function
as grid-periodically modulated plane waves.

For an infinitely extended crystal the possible k values are continuous in the interval
(7.37). In case of a finite crystal we account for the periodic boundary conditions (see
Sect. 6.3.5) and obtain (choosing the boundary points to be symmetrical to x = 0)

exp (zk:(a: — %))vk(a: — %) =exp (zk(az + %))vk(x + %) (7.42)
for L = na (length of the crystal), according to the Bloch theorem
exp (ikL) =1 = k= 2LLnfor integers n. (7.43)
We then obtain discrete k values in the interval (7.37) (1. Brillouin zone).

7.3.3 Energy Bands

We choose the coordinate origin such that
U(z) = U(—2). (7.44)
With v (z) then also ¥(—=z) is a solution of (Z.23) to the energy € such that the functions
Yi(z) = Y(z) = Y(—z) (7.45)

are also solutions for the same energy (solutions with positive and negative parity). Any
Bloch solution ¢ g (with the property (7.38)) we then can write as a linear combination of

Yy and Y_:
¥a(z) = A $,(2) + B ¥_(2). (7.46)

Together with (7.38) the continuity of 1, ¢ at the edge points of the unit cell, e.g.
T = j:(%) requires:

¥B(5) =exp (ika) ¥p(—3) (7.47)
and

1/133(%) =exp (ika) ’QZJIB(—%) (7.48)

Inserting (7.46) in (7.47), (7.48) and considering

(7.49)



v+ (5) = ¥+ (5)9-(3) = —¢-(=%),

NS

we get

A[1— exp (ika)]y (§) + B[1+ exp (ika)]y(

XY

)=0 (7.50)

[A[1+ exp (ika)], (%) + B[1— exp (ika)|y" (%) = 0.
Here we have used

¥, () = L{y(x) £ ¢(-=)} (7.51)

as well as the fact that d/dx is odd in the transformation £ — —=. The condition for a
solution of (7.50) is:

[1- exp (ka)]*¢, ($)¢ (%) = [1+ exp (ka)]*¢, (£)¥(%)- (7.52)

If we introduce the Wronski determinant at the position a/2,

W=l ()0 (3) =0 ()% (), (753
Eq. (Z.52) turns to
[1— exp (ika)]? = 4 exp (ika)y, (£)y_ (%) /W (7.54)
or
cos (ka) =2 ¢/, (%) ¥_(%)/W +1. (7.55)

The right side of (7.55) depends on the energy ¢, to which v, 1 _ are solutions of the
Schréodinger equation. We can also write (7.55) as

cos (ka) = f(e). (7.56)
Now since —1 <cos (ka) < +1, only such values € are possible as solutions of (7.23) with
—1 < f(e) < +1. (7.57)

Since the solutions of (7.23) are continuous in € the function f(e) will also be a continuous
function of €. It can therefore—depending on the specific form of f(e)—give related
energy ranges for which (7.57) is fulfilled (permitted energy bands), as well as those for
which (7.57) is not fulfilled (forbidden energy bands). A typical case is shown in Fig. 7.9.

Whereas any energy is possible for free electrons, the periodic potential modifies the
spectrum to a sequence of permitted and forbidden energy bands.



7.3.4 Periodic Box Potential

As an example for the general considerations above we consider the following

(analytically solvable) potential:

a b a
U(z) = 0for — — <x < ——and; <x< 5
with (see Fig. 7.10)
U(x+a) =U(z)
A 1)

+1

-1 g
Fig. 7.9 Energy bands in crystals (allowed areas hatched)

[ U(x)
Uo
I 1I I 1I I

-al2 b2 0 b2 al2

Fig. 7.10 llustration of the periodic box potential discussed in the text
The solutions of (7.23) in the area I (E < Vj) are:
! =exp (kz)+ exp (—kz)
with the abbreviation
2 _ 2m _ .
R~ = W(VO_E)—UO_Q
the general Bloch solution in the area I then is (according to (7.57)):
YI(z) = 2{As cosh (kx) + By sinh (kz)}.

In region II

(7.58)

(7.59)

(7.60)

(7.61)

(7.62)

(7.63)



Y (z) =exp (ikz)+ exp (—ikz)
with
K= 2LE = (7.64)
thus:
P! (z) = 2{Aps cos (kz) + i By sin (kz)} = A (kz) + Brrp-(kz).  (7.65)
The conditions (7.47), (Z.48) only refer to ¢/!(z) and its derivative:
P! (5) =exp (ika) ' (—%) (7.66)
and
wII'(%) =exp (ika) ng'(—%). (7.67)

In addition we have the continuity of 1, ¢’ at = b/2 as the connection between areas I
and I,

v (5) =4'(5) (7.68)
and
() =" (5)- (7.69)

This gives 4 homogeneous equations for the 4 unknowns Ay, By, Az, By In order to
obtain a non-trivial solution for this system of equations its determinant must disappear.
The result (after some lengthy calculation) is:

cos (ka) =cosh (kb) cos (k[a — b]) + ”2_152 sinh (kb) sin (k[a — b]) = f(¢€), (7.70)

2
K

and the right side of (7.70) gives the function f(e) from (7.56) (see Fig. 7.9).

7.4 The Harmonic Oscillator

7.4.1 One-Dimensional Case
We are looking for the eigenvalues of the Hamilton operator

H= ﬁpi + % m w?z? (7.71)

and the associated eigenfunctions. For the solution of the eigenvalue equation
(7.72)



H ¢y = Exy

we proceed in analogy to Sect. 6.4: instead of p, and x with

[Pz, ) =+ (7.73)
we use the operators
a= \/n;_;$+impx; (7.74)
; mw 1
=,/ —x—1 Dz

for which follows from (7.73)

[a,a] = 1. (7.75)

The inverse of (7.74) gives
L( tya/ 2 — i f — 7.76
s(a+a')y/ — ==, —+5(a—a')y/2imw = p,. (7.76)

The Hamiltonian H can be expressed in the operators a, a' and achieves the simple
form:

2
x

H=2

2m

+ %w2a:2 = hw(aTa + %) (7.77)

We now determine the spectrum of the operator
N =a'a (7.78)

according to Sect. 6.4 by computing the commutation relations

[N,a] = —a (7.79)

[N,al] = af (7.80)




that follow directly from (7.75) and the definition (7.78).
We now assume that we have found a normalized eigenfunction ) with eigenvalue A
of the operator N (note [H, N] = 0) :

N ¥y = X ¥y with (¥, 9¥n) = 1. (7.81)

Then by applying a (aT) to ¥\ we can decrease (increase) the eigenvalue by one:

N(agr) = a(N — Lypr = (A — 1) (a): (7.82)
For the norm of (a1 ) follows:
(athr, apy) = (¥, a’appy) = A, (7.83)
if one exploits the hermiticity of x and p, and the definition (7.74). In analogy we get:
N(a'$y) = (A + 1)(al9y) (7.84)
with
(afpr,a’y) = A+ 1. (7.85)

Since the norm of a® ), cannot be negative, the eigenvalue must be A > 0 due to (7.83). By
applying a' to 1) repeatedly we get normalizable eigenfunctions of N with the

eigenvalues A + 1, A + 2, A 4 3, .. .; there is no upper limit to the spectrum. Downwards,
however, there is a limit: a u times application of a to ¥, results in
(a"46r,a"462) = A = (A= 2) -+ (A= p+ 1). (7.86)

Since the left side in (7.86) cannot become negative, A must be an integer (non-negative)
number, such that the sequence

P, ahy, &y, ... (7.87)

after u = A steps stops,

aMlYy=0; X=0,1,2,3,... (7.88)

Thus the operator N has the eigenvalues

n=0,1,23,..., (7.89)

such that we get an equidistant spectrum for H that is unlimited upwards:

(7.90)
En:hw(n—i—%); n=20,1,23,...




The operator N has the property of counting the excitations of energy 7w, which a
certain oscillator state v, contains. The state of lowest energy—the ground state—has
the energy

Ey = +hw (7.91)

(zero point energy) and can be characterized by

apy = 0. (7.92)

The occurrence of the zero point energy (7.91) is typical for quantum theory and a
direct consequence of the non-commutability of x and p, and thus the position-
momentum uncertainty: classically the oscillator may have the momentum (p,),; = 0 at
x. = 0 (rest position).

Starting from the ground state 1)y, whose existence we will show in Sect. 7.4.2 in the
form of a spatial representation, the excited states can be constructed as

CLT’(po, aTz’gbo, ey aTn’(/)(], ce (7.93)

The operator a' therefore generates excitations of the oscillator energy fiw—it is
therefore denoted as creation operator—. Conversely, the annihilation operator a leads
from a state with the excitation energy n#iw to an energetically lower state with exitation
energy (n — 1)hw.

If 1 is normalized,

(¢0,¢0) =1, (7.94)

we get by iteration of (7.85)
(aTn¢0,aTn¢0) =1.2.3... :n!; (795)

Thus the normalized eigenfunctions are:

n = —=(af) "4ho. (7.96)

In this normalization we get (except for an insignificant phase factor):

(7.97)

ajwn = \/TL + 11300, = \/ﬁ"/)n—lo



7.4.2 Spatial Representation
We first determine the ground state wave function ¥ (z), which is defined by (7.92), i.e.

m,bo:{«/%m%—\/ﬁ%}?ﬁo:o- (7.98)

With the dimensionless coordinate

§= \/@w (7.99)

we get from (7.98)

{d% + £}¢o(£) =0 (7.100)
with the solution
Po(€) = co exp (—5 &7). (7.101)
For the normalization
[ Jabo|*dz = 1, (7.102)

the constant ¢y (with [ exp (—£%)d¢ = 1/m) amounts to:

e = \/% (7.103)

To determine the eigenfunctions of the excited states we express a' in terms of £ and d/d¢

af = L (5 — %) (7.104)

and obtain (taking into account (7.96)):

Y= A= (6~ )" exp (= 5)). (7.105)
Then
¥, ~ 1 - (polynomial of degreen), (7.106)

where even and odd polynomials alternate, i.e. ¥,, has positive parity for n even and
negative parity for n odd (see Fig. 7.11). The lowest order Hermite polynomials read:
(7.107)



Fig. 7.11 Tllustration of the oscillator wave functions and the associated energy levels
Hy(x) = 4a* — 2
Hs(z) = 8z° — 12z
Hy(z) = 162" — 4822 4 12
and follow the recursion relation:
H,.1(x) =2zH,(z) — 2nH, (). (7.108)
The orthogonality of the wavefunctions follows from the hermiticity of H

(¢m ¢m) = Onm; (7.109)

for the proof see Sect. 4.3.
Addition: The functions (7.105) also form a complete basis in the space of square-
integrable functions (which we do not want to prove explicitly).

7.4.3 Three-Dimensional Case
We consider the Hamilton operator

H = 5= (p2 +p2 +p?) + 2 (w2z? + wiy? + w?z?), (7.110)

2m




where in general w, # w, # w.. Since H obviously decouples in the coordinates x, y, z,
H=H,+H,+ H., (7.111)

we can solve the eigenvalue problem of H by the separation Ansatz

Y(r) = P1(z)Y2(y)¥s(2) (7.112)

and employ the solutions for the one-dimensional case. For the energy eigenvalues of
Hwe get:

Eningng = h{ws(n1 + %) +wy(ns + 3) +w.(ns + 5)} (7.113)

withn; =0,1, 2, ...

The separation process above can also be carried out in the case that the potential
energy has a positive-definite, quadratic form in x, y, z, also containing mixed terms in xy.
By an axis transformation one can then always achieve the form (7.110) in the new
coordinates.

Aslong as w, # wy # w, and the particle under consideration has no internal degree
of freedom (like e.g. spin), the spectrum of H from (7.110) is not degenerate, if one
disregards so-called random degeneracies, that may occur for certain states (i.e. certain
values n1, no, ng) depending on the ratio w; : wy : w.. In contrast, the three-dimensional

7.4.4 Isotropic Oscillator
has a degenerate spectrum. With

Wy =Wy =W, =w (7.114)
(7.113) becomes
—_ 3y
Epingng = hw(n+ 5) = By, (7.115)
with
n=mni+ Ny + ng. (7.116)

The same energy E,, can obviously be achieved in different ways. One finds for the
degree of degeneracy

(7.117)
gn = %(n +1)(n+2),



since by choosing one of the numbers from 0 to n for nq, then n, runs between 0 and
(n — nq). This gives (n — n1 + 1) possible realizations of (7Z.116). This leads to

9n =m0 —n1+1) =5 (n+1)(n+2). (7.118)

Instead of classifying the isotropic oscillator according to the quantum numbers n;, ns, n3
w.r.t. cartesian coordinates, we can also use the angular momentum quantum numbers
|, m, since for

H=-p?+ 2 w? (7.119)
the commutation rules
(H,l;] =0, i=2z,y,2 (7.120)

hold. We can thus choose the eigenfunctions of H in such a way that they - at the same
time - are eigenfunctions of /2 and [,. To this aim (for fixed E,,) we just have to form
suitable linear combinations of degenerate functions in the cartesian basis (7.112). We
then get instead of ¥y, n,n, (€, y, 2) eigenfunctions ¥, (r, 9, ), which are determined by
the quantum numbers /, m of angular momentum as well as the one resulting from the
degree of freedom r which is denoted by the radial quantum number v.

7.4.5 Good Quantum Numbers

The quantum numbers n1, n9, n3 completely characterize spinless particles or v, I, m the
eigenstates of the isotropic, harmonic oscillator in the respective representation. Such
quantum numbers, which belong to conserved quantities of the system and commute, are
denoted by good quantum numbers. If the particle moving in the oscillator potential has
spin 1/2, then e.g. the z component of the spin is also a good quantum number, since
trivially

[H,S.] =0 (7.121)
as well as
1;,8.] = 0. (7.122)

The degree of degeneracy g,, from (7.117) then has to be multiplied by a factor of 2
corresponding to the 2 possible eigenvalues of S,.

In the following we will make extensive use of the concept of good quantum
numbers by first finding the commuting conserved quantities for each problem. This
already leads to a partial classification of the intrinsic states of the system under
consideration.

7.5 Spatially Constant Magnetic Field



For a spatially constant magnetic field B the Pauli equation (with ® = 0)

ihld = (p—cA)’

2m

-2 S.BY (7.123)

can be rewritten with the separation Ansatz

P (r;t) = (r;t)x(t) (7.124)
with
() = a(t) ((1)) +b(t) (g) (7.125)
as
il =5 (p— <A) % + 7 (7.126)
and
ihgr X(t) = =m0 - B x(t) —x(?) (7.127)

with an arbitrary constant . For the proof one multiplies (7.126) with x and (7.127)
with ¢ and adds the resulting equations. The term with yx1) then is eliminated by the
addition and one gets (7.123).

The constant v has no physical meaning and without loosing generality can be set to
zero, since with the Ansatz

1 =exp (%vt) P, (7.128)
X =exp (—%vt)fc (7.129)

the overall wave function
U(r;t) =P x = ¥X (7.130)

does not change and vy no longer appears in the differential equations for ¥, %. In the
following we will thus always use v = 0.

We write the vector potential A in the form
(7.131)



A=1(Bxr),
where B can still be time-dependent:
B =B(t). (7.132)

The Ansatz (7.131) leads to the gauge:

_>
V-A=0. (7.133)

In the following we will examine two cases that are of practical importance:

(i) the (temporally and spatially) constant magnetic field B,

(ii) the time-periodic field B.

According to (7Z.126) and (Z.127) we can calculate the spatial motion (i.e. ¢)(r;t)) and
the time evolution of the spin (via x(r;t)) separately.

7.5.1 Stationary States in a Constant Magnetic Field
We fix the coordinate origin such that

[ =By |
A:l\ 8 /l (7.134)

This choice is of advantage for computational reasons, although it does not account for the
axial symmetry of the problem given by the form of B,

[ 0]

B—VxA—: 0 (7.135)
\5/ |

With (7.134) or (7.135) equation (7.127) gets the form:

ihd X = —520,Bx. (7.136)

By the Ansatz for stationary solutions

_4

X =exp ( hest)x() (7.137)

1 0
X0 = ao (0) + bo (1) (7.138)

with



and normalization

lao|? + [bo|® = 1 (7.139)
7.136) turns to the eigenvalue problem
€sX0 = — 5= Bo . x0- (7.140)
The solutions are known from chapter 6.5:
(Jap=1b0=0=
. 1 . _ eBr
xo={, withes = — 5 (7.141)
(ii)CLO :O;b(): 1=
. 0 . . eB7
Xo= {4 with €5 = +5_. (7.142)
The stationary solutions of (7.126) follow from
2
€p = ﬁ{( » + £ By) +p§+p§}s0, (7.143)
with
Y(r;t) =exp (—%et)go(r). (7.144)

The Hamiltonian of orbital motion (righthand side of (7.143)) commutes with p, and
P, since it only explicitly contains the coordinate y. The eigenvalues of p, and p, hence
are good quantum numbers, according to which we can find the solutions (7.143). These,
as well as the eigenfunctions, are known from section 6.3.3. For ¢(r) we can employ the

Ansatz:
p(r) =exp (i(k,z + k.2))5(y)- (7.145)
We then get from (7.143) an equation in the single variable (y) :
2 - k2
4 3 )] e = [e- 1] (7146)




with the abbreviations

ik,
w=Loyy= 2L (7.147)

Apart from the displacement yg, which is insignificant for the determination of the
eigenvalues, (7.146) represents the eigenvalue problem of a linear harmonic oscillator
with the frequency w = ;L—li (Larmor frequency). We can immediately specify the

eigenvalues (Landau levels):

h2k2
€np. = 5=+ 2=B(n+1), n=0,1,2,...; (7.148)

they are co—fold degenerate because the eigenfunctions ¢ belong to the same
eigenvalue (7.148) regardless of the value yy.

To interpret the solutions of (7.143) we recall the solution of the classical problem: a
charged particle in the constant B field moves on spirals whose axis—for the choice
(7.135)—points in the z direction and whose projections onto the £ — y plane are circles.
The classical particle moves straight in z-direction; quantum mechanically this
corresponds to the plane wave exp (ik,z). The circular orbits in the z — y plane we can
decompose into 2 harmonic oscillations in z— and y— direction with the same frequency
w = <8 and a phase shift of 7/2.

mc

The quantum mechanical solution (7.145) corresponds to the y coordinate of the
classical motion: we have bound states in the form of harmonic vibrations. With regards
to the x coordinate, the solution (7.145) excludes a spatial localization (contrary to the
classical case) because in (7.145) the momentum p, is sharp and therefore the coordinate
x completely undetermined due to the uncertainty relation. The solution of (7.143)
corresponds to, for a fixed value of n (fixed energy) and fixed displacement y, a family of
classical orbits with a fixed radius and centers y = y (see Fig. 7.12).

y

Fig. 7.12 1llustration of the solution to (7.145)

If we want to achieve a symmetric treatment of the problem with respect to x, y, we
have to use (instead of (7.134))
(7.149)
[ =By |
A = %l\ Bz ,
0



which also leads to (7.135) for B. The Hamiltonian for the path motion then is:

H=ged i)+ d m(E) @ )+ f b gl 050

2mce

The Hamilton operator therefore consists of a 2-dim. isotropic oscillator in the z — y
plane, the kinetic energy in the z direction and the energy of the orbital motion of the
magnetic moment in the B field.

Instead of looking for the stationary solutions (7.126) and (7.127), we can also directly
transfer (7.123) with the Ansatz

U(rit) —exp (—%Et) (r) (7.151)

to the time-independent Pauli equation

{7 (- <)’ £ s-B}o = Fe. (7.152)

We know the solutions after the investigations above:

®(r) = p(r)xo0 (7.153)

with the eigenvalues:

E =€+, (7.154)

with € from (7.148) and €, from (7.141) or (Z.142).

7.5.2 Spin Precession

After having determined the stationary solutions of (7.123) in Sect. 7.5.1 we now turn to
the time evolution of the spin. Let B be constant and chosen according to (7.135). We now
use Ehrenfest’s theorem, which for particles with spin 1/2 can be proven in the same way
as for particles without spin in Sect. 5.3. If U(r;t) is a solution of the Pauli equation, then
for the temporal change in the expectation value of S in the state ¥ we get:

dt <S>—% [H,S] >+ < % S >— % < [H,S] >. (7.155)

For the commutator [H, S| the following holds (for any magnetic field B)




[H,S] = —-=[S-B,S]; (7.156)

this expression is simplified by specifying B according to (7.135),

[H,S] = -<£1s,,8]. (7.157)

With (7.157) we immediately get
4 <S8, >=0, (7.158)
thus
< S, >= const. (7.159)

For the x and y components we have (6.206) and [S;, S;] = ifi€;1Sk:

4 <8, >=<L g > (7.160)
4§, >=—B 65 > 7.161
dt ¥y  me z - (7. )

A further differentiation with respect to t gives the decoupled equations:

4 <8 >=—w?< 8, > (7.162)
4 < Sy >=—w? <8, > (7.163)

with w from (7.147). With the initial condition
< Sy >i0= 733 < Sy >t0=<8, >10=0 (7.164)

the solution to (7.162), (7.163) is:

<S8, >= 3 cos (wt); < Sy >=—3 sin (wt); < S, >=0 (7.165)

consistent with (7.160) and (7.161). The expectation value of the spin therefore leads
to a precession around the direction of B with frequency w; in the general case < S, > =
const. # 0.



An important application of spin precession is the measurement of the magnetic
moment of elementary particles, e.g. electrons, protons, etc.

7.5.3 Spin Resonance

As a second example for the time evolution of spin we consider a spatially constant,
however, oscillating magnetic field of the form:

[ Bj cos (w,t) |
B(r;t) = —Bj sin (w,t) ;. (7.166)
\ g

To solve equation (7.136) we note that the magnetic field (7.166) for an observer in a
moving coordinate system, which rotates with the frequency w, around the z axis, appears
constant in time. According to Sect. 6.4.3 the transition to a rotated coordinate system
(moving by the angle ¢ = w,t around the z axis) is equivalent to a transformation of the
wave function; this was used for the case of spinors specified in Sect. 6.5.4. The following
holds for the spin component of the wave function ¥(r;t) for a rotation around the z axis
by the angle ¢ = w,t :

X'(t) =exp (—fwat S2)x(0) = Ty g (—fwat 8:) (@ (7167)

for the time evolution of x'() we expect—according to the considerations above—a
differential equation which is represented by a B field that is constant in time.
In fact, the original differential equation

ihd x=—2d By (7.168)

is transferred with the Ansatz

X(t) =exp (+5 wat 02)X/(t) (7.169)
to
ihgr X' = §{0:lwa — wo] + oawi}X. (7.170)

Proof: With the abbreviation (for the 2 X 2 matrix)
U(t) =exp (4 wat 02) = >0ty o (5 wat 02)" (7.171)

the left side of (7.168) gives



i Z{UOX ()} = U {ing X' — 5 waox'}.
To transform the right side of (7.168) we write
F-BU®) =U®U () BU(®),
where the operator U ~1(t) is the inverse to U(t) and has the explicit form
U~1(t) =exp (—+ wat 02).
To prove (7.173) we write
U(t) =cos (% wat) 4+ ¢ sin (% wat)az,

(cf. (6.220)) and note that

{cos (“’é‘t) +14 sin (wé’t)az}{cos (WT“t) — 4 sin (“’Z“t)az}
g2 [(Wat ) oo ((Wal)
=cos ( 5 )+sm ( 5 )_1.

(02By + 0yBy)U(t) = U '(t)(0,B; + oyBy)

We now compute

and using (cf. (6.207))
0,0, = —0,04;
with
0,0, = 10, (cyclic)

(cf. (6.205), (6.207)) we obtain:

U tt){osB: + 0yB,}U(t) = (cos & —i o, sin %)2(023333 + oy By)

= (cos ¢ — i 0, sin )(o, cos ¢ — oy sin p) By

= B1{o(cos? o+ sin? ¢) — o,(cos ¢ sin p— sin ¢ cos p)} = Bio,.

With the abbreviations

(7.172)

(7.173)

(7.174)

(7.175)

(7.176)

(7.177)

(7.178)

(7.179)

(7.180)

(7.181)



we then obtain Eq. (7.170).
For the solution of (7.170), which corresponds to the case of a time-independent B-
field as in (7.136), we introduce the 2 X 2 matrix

§=o, L ;o8 (7.182)

with the abbreviation

Q= \/(wa — w0)2 + w?. (7.183)

The factor ! in (7.182) leads to the fact that—similar to o, o,—also

5% =1y = Es. (7.184)
Equation (7.170) then achieves the form
2 9 1 h o=t
ihy X = 5 Q06X (7.185)
and has the solution
X' (t) =exp {— wtd}xg (7.186)
with
Xo = X'(t=0). (7.187)
The full solution then reads
x(t) =exp {tw,t 0.} exp {—< Qt 5}xo (7.188)
with
xo = x(t =0). (7.189)

We now want to calculate the expectation value of o, within the state x(t) as a function of
time ¢. As initial condition we choose

xo = x*, witho,x" = +x" (spin — up). (7.190)

For the calculation of

(7.191)
<o, >=(x(t),0.x(t))



we expand x(t) in the basis of the eigenstates of o,

x(t) = cu(t)x" + ca(t)x” (7.192)

and obtain—in line with the general considerations about the expectation value of
observables (cf. Sect. 6.1)—(using x( to be normalized to 1)

< 0, >= Eslcy(t)]? — Ealeq(t)]? (7.193)
with
cu(t) = (x*, x(t))sca(t) = (X, x(t))- (7.194)

With (7.188) and (7.190) we obtain from (7.194):

ca(®))? = |(x" exp (=& Qt&)x0)|” = | (x* {cos (%) —i& sin (L) }x)|* (7.195)

(32 () < () [ o (3)

using

(x*yo2x") = 0. (7.196)
In analogy we obtain

lea(t)]® = |(x% exp {—% wté}xo)|’ (7.197)
= ‘(Xd, lcos <%> — 16 sin (%)1)(“) : = (%)2 sin? (%),

since

(x%a.x*) =0 (7.198)
and

(x4, 0,x%) = 1. (7.199)
Together we obtain:

< 0, >=cos> (%) + [(%;—Ofﬂ sin? (%) (7.200)



The expectation value < o, > thus oscillates between its maximum value 1 (due to
7.190)) and its minimum value

< 0, >pin= (@ueo) ] ; (7.201)
in particular we get for w, = wy :

The minimum value (7.201) shows a resonant behavior as a function of wy (i.e. By) for
wq = wo, Where the spin is flipping periodically. In flipping the spin it absorbs the energy
from the magnetic field (see (7.141) and (7.142))

Aes = ezf:o = hwy; (7.203)

thus by measuring the energy absorption as a function of By a spin resonance can be
found experimentally.

7.6 Central Forces

7.6.1 The General Radial Equation

In this section we want to investigate the stationary states of a particle in a central
potential (r = |r|)

V =V(r). (7.204)
The Hamilton operator
H=T+V (7.205)

does not contain any spin-dependent terms and therefore we can forget about the spin of
the particle when solving the eigenvalue problem

Hy = Evp. (7.206)

But in the end it should be taken into account that each eigenvalue E is at least 2-fold
degenerate due to the spin.
Since

T,l;] =0,i==x,y, 2 (7.207)

as well as



[V(r),ls] =0, (7.208)

we get

[H,1;] = 0. (7.209)

Thus H, I? and I, have a common system of eigenfunctions and the quantum numbers
I, m of the angular momentum are good quantum numbers. The Hamiltonian H,
furthermore, is still invariant with respect to the parity operation

r—>r =-r, (7.210)

such that the parity is also a good quantum number. However, the parity is automatically
determined for states with good orbital angular momentum 1 because the eigenfunctions
Yo (9, @) of 12,1, (cf. (6.179)) with respect to the parity operation

ronrmid—o-nr—9 @—>p+T7 (7.211)
behave like
Yim (8, 9) = Yim(m — 9,0 + 7) = (—1)'¥im (9, ). (7.212)
This results from
exp (imp) —exp (im(p + 7)) = (—1)" exp (imyp), (7.213)
sin ¢ —sin (7 — ) =sin ¥ (7.214)
and
cos ¥ —cos (m — ) = — cos ¥, (7.215)
such that
dl—m B l—m dlfm
d(cos?) ™ - ( 1) d(cos®)™™ ° (7.216)

Now using the above symmetry considerations for the solutions from (7.206) we start
with the product Ansatz:

Y(r) = Pim(r)Yim (9, ¢). (7.217)




This reduces the Schrédinger equation (7.206) to an ordinary differential equation in
the variable r for the determination of ¢y, (7). In order to obtain the explicit form of this
radial equation we have to rewrite the kinetic energy operator in spherical coordinates

(7,9, 0)

x=7r sin¥ cosp;, y=r sind sin p; z=1r cos V. (7.218)

To this aim we can either use the operator

_ A9 ik ik
T__2mA__ﬁ<W+8_y2+W (7.219)
and convert to (Z.218) or use the classic expression for T in spherical coordinates and
refer to the procedure described in chapter 5.2, which specifies the rules for the transition
to quantum theory. We use the latter method and start from

1 %
T, = 5002, + Pl (7.220)
We can directly translate to quantum theory
ry —r; ly — i; (7.221)
however, to translate the radial component
_ 1
pri. = 7~ (T - Pri.) (7.222)
we have to consider Eq. (5.27) and obtain for the operator p, in quantum theory
pr=3{f-p+p- L}, (7.223)
which can be reduced to
i i
po=d(E V) = HE+ D) 7224
using
0 _ 0z 0 0 0 [é) 0
=9 T o o T o s (7.225)
x y O 0 r
Or r Oy r 0z r

Together we get for the operator of the Kinetic energy:




_ h2 8> 9 _ P
T_ - {8’/"2 + r 87,_ - _}, (7226)

r2

since

)

0?2 o)
pr =1 (5= + ¥ 5 ) (7.227)

This gives the radial equation to determine @, (7):

{2 - e UM al) =0 (7.228)
with
e=2REU(r) = 22V(r). (7.229)

The quantum number m no longer appears in the radial equation and therefore is
omitted for the radial function ¢y, (). The independence of the radial equation from m is
based on the fact that the Hamilton operator does not contain a special spatial direction.

We can make the following statements (in the sense of necessary conditions)—
without having to specify the form of V(r)—for the behavior of ¢;(r) at 7 = 0 and for

r — OQ:
(i) The normalization requires that

Jo"rdr oi(r)]? < oo, (7.230)

such that ¢;(r) must drop faster than 1/r for r — oo, i.e.

r @i(r) = 0 for 1 — oo. (7.231)

Forr — 0,7 ;(r) must remain finite.
(ii) The hermiticity of p, requires

r2pi(r)|?|g = 0. (7.232)

Since according to (7Z.231) r ¢;(r) forr — oo vanishes, we have to require (7.232)




r ¢i(r) -0 for r—0.

(7.233)
The problem is more simplified when—instead of ¢;(r)—using
xi(r) =r @i(r), (7.234)
since due to
2
(e + 28 )= (bt 1) + 2 (—hat Hx) (7239
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the radial Eq. (7.228) simplifies to
1t
{59—; - e U(T)}Xz(?‘) =0, (7.236)
and (7.230) translates to
I dr ()| < oo. (7.237)
From (7.233) we then get
xi(r) -0 for r—0 (7.238)
and from (7.231)
xi(r) = 0 for r— oo. (7.239)

Further statements about the solutions of the radial Eq. (7.228) or (7.236) require the

knowledge about the structure of V(r). Some general statements, which are based on the
behavior of Vfor »r — 0 and » — oo, are stated below.

(i) If

lim, .o r2U(r) = 0, (7.240)



the behavior of x;(7) at the origin is determined by the differential equation
{r*ds 10+ 1) fialr) = 0. (7.241)

Equation (7.241) has the solutions

xi(r) ~ ré (7.242)

with
s(s—1)=1(1+1), (7.243)

thus
s=—l ors=1+1. (7.244)

Due to (7.238) only the case s = [ + 1 is possible for x;(r), thus:

xi(r) ~ 1 forr — 0. (7.245)

(ii) If U(r) is bounded from below,
U(r) > Uy forall r, (7.246)

or if U(r) has a weaker singularity than —1/1"2 for » — 0, the energy spectrum is limited
from below. This implies that the particle does not drop into the center » = 0 if the
conditions above are fulfilled. In the case (7.246) the claim is immediately clear, since the
expectation value of the kinetic energy is non-negative; the second case is only listed here

without proof.
(iii) If

lim, ,o, » U(r) — 0, (7.247)

then there is a continuous spectrum for € > 0 and the solutions x; behave like the
solutions of the free particle (see Sect. 7.6.4); for € < 0 there is a discrete spectrum and
the associated eigenfunctions behave asymptotically like

Xi(T)y—s00 ~€XP (—k7)5K > 0. (7.248)
These statements are also cited without proof. The physically important case
Ur) ~ 1 (7.249)

is briefly outlined in Sect. 7.6.4 for positive energies.

7.6.2 The Isotropic Oscillator



The case
V(r) = const. 1? (7.250)

we have covered already in Sect. 7.6.2, but in the cartesian representation and only
mentioned the transition to the spherical representation (angular momentum
representation). Thus some details have to be added and specified here.

For fixed energy

E, :hw(n—|— %);n:n1+n2+n3 (7.251)

[ can take a maximum value of n, since the cartesian solution ¥, n,n, is a polynomial in
x, Yy, z of order n (multiplied by a spherical Gauss function) and the angular momentum
eigenfunctions are polynomials in cos 9, sin 9 of order I (apart from the ¢ -dependence),
since x, y, z by (7.218) are linked to cos ¥, sin 9.

Since the eigenfunctions v, n,,, for even (odd) values of n have positive (negative)
parity, for even (odd) n according to (7.212), only even (odd) / values may occur. The
connection between n and / therefore must be

n=2v+Lr=0,1,2,..., (7.252)

with 2v < n. Some examples are displayed in the table, where the degeneracy g, is given
by (7.117):

n 1 m v 9n

0 0 0 0 1

1 1 0,1 0 3

2 0 0 1 6
2 01,2 0

We now can also write the energy eigenvalues within the framework of the spherical
representation as

E, = hw(2l/ + 1+ %),n =2v+1L (7.253)

7.6.3 The Free Particle
For a free particle,

V=0= H=T, (7.254)
we have
[H,p] =0 (7.255)

as well as



[H,1] = 0. (7.256)

Thus we can—depending on the problem—classify an ensemble of free particles either
according to energy and momentum—the eigenfunctions then are plane waves (see Sect.
6.3.3)—or according to energy and angular momentum. We want to examine the latter
representation here in more detail because it is of special interest with regards to
scattering problems (Chap. 8).

In this case we are looking for solutions of the radial equation

{g_; B l(l:;l) —I—G}Xl("“) = 0. (7.257)

Since for free particles € > 0, we can assume

€ = k2, kreal. (7.258)
We then (for convenience) rewrite (7.257) in the variable
p = kr; (7.259)
the result is:
(-2 1l = 0. (7.260)

For | = 0 we find the basic solutions

Xo(p) =exp (Lip) (7.261)
or real:
Xo(p) =sin (p); cos (p). (7.262)

For [ > 0 the solutions can be constructed by recursion from (7.262) or (7.261) by
introducing the following operators:

+ d L.j— d l
df =& - Ld =4+ L. (7.263)

Then we can rewrite (7.260) as

(7.264)
{did; +1bale) = [(£ - 5) (& +35) +1]xlo) =



8 18 1 18 P 8% I(1+1)
Ml A IS = - 1 =0
K 07 ooy + p2> + ]xl(p) l ; — +1|xi(p)

or equivalently

{d;,df + 1xalp) =0, (7.265)

which is easily proven. Operating with dl++1 from the left of (7.265) we get

{df 1, +1}Hd 1 x(p)) = 0. (7.266)

The function (d;" ; x:) therefore is a solution of Eq. (7.260) or (7.264) for angular
momentum [ + 1, i.e.

Xi1 ~ d) X (7.267)

Since we already know Y, we can recursively construct the solutions ; for [ > 0 with
(2.267).
A compact relationship between ; and o we get by noting

df =p'55 pt=p! (p‘ld% - pzil) o (7.268)
Then after recursion (7.267) reads
xi~plg ptee P 45 P X0 (7.269)
or
L x(p) ~ 2% 5 (% xo(p))- (7.270)

Depending on the choice of xg we get the following solutions:

Xo(p) (-1)'/p x1(p) label
sin p Spherical Bessel functions Ji(p)

cos p Spherical Neumann functions ny(p)
exp (+ip) |spherical Hankel functions hli (p)




Apart from the oscillating parts the solutions to the angular momentum / contain
powers in 1/p up to the maximum power 1/pl+1. Due to the condition (7.233) only
spherical Bessel functions j;(p) are solutions for the free particle, since only these are
regular at the origin » = 0, where they are (cf. (7.245)) ~ p'. The eigenfunctions of the
free particle in the angular momentum representation are (except for possible
normalization factors)

"/)klm(r) = jl(kr)Ylm('ﬂ, (P); (7.271)

they are orthogonal with respect to the quantum numbers k, I, m, but—like plane
waves—not normalizable, since

Jo© 3i(kr)r?dr — oo. (7.272)

With regards to the following chapter the asymptotic behavior of the solutions of
(7.257) are of interest for scattering problems. For p — 0o we only need to take into
account the slowest decreasing term, i.e. the powers p° in xi(p). If we start e.g. from
h(jf (p), the only interesting term in hI—L (p) (arising from the differentiation of (7.270) is
~ Fi exp (Lip) =exp (+i[p — 7/2]); in general:

R (P) psoo ~ L (F4) exp (Hip) = L exp (Fip — &]). (7.273)

Accordingly one finds:

§1(P) psoo ~ 5 s (p— F) (7.274)

and

M(P)y o & cos (0 1) 7.275)

7.6.4 Coulomb Potential for Positive Energies
Instead of (7.257) we now consider the differential equation

72 r

{3_; _ WD) g 2k }xz 0 (7.276)




with the Coulomb parameter

v = +Z1Z2e* 5 (7.277)

for the case of the Coulomb potential V(r) = +Z1 Zse? /7. We only want to focus here
on the asymptotics of the Coulomb solutions x;(r), which is important for scattering
problems.

For large values of r we neglect the centrifugal term (~ 1/7“2) versus the Coulomb
term (~ 1/r) in (Z.276) and find as an asymptotic solution

Xt(P)rsoo ~ 5 €xp (Hi[kr —v In (2kr))), (7.278)

as can be confirmed by insertion into (7.276); consequently all terms ~ 1/ 2 have to
be neglected. In (7.278) we have—as in (7.273)—another /-dependent phase free. Since
we are interested in the deviation from the case of the free particle, we introduce the
hase as follows:

X1(P), oo ™~ % exp (iz’ [kzr — 15 —v In (2kr) + crlD. (7.279)

It is worth noting that this asymptotic behavior (which is confirmed by the exact
solution of (7.276)) has the additional phase ~ v In (2kr), which shows that even for
r — oo the Coulomb potential is still effective. We will come back to this point when
dealing with scattering problems (in Sect. 8.3).

7.6.5 Bound States of the Hydrogen Atom
In the H atom an electron moves in an electrostatic Coulomb field (potential energy)

V(ir)=-% (7.280)

with energy E (or €) < 0. In contrast to (7.258), € = k? cannot be fulfilled for real k, but
only for purely imaginary values. We thus define

k= 2,/2m(-E), (7.281)

or e = —k? /4 with an additional factor 2 with regards to the normalization of wave
functions to be discussed later. In analogy to (7.259) we define a dimensionless variable
by

(7.282)



such that the radial Eq. (7.236)

(o [ - 2] - fuc =0 (7209

(after division by x2) turns to the dimensionless form

(5[] o=

with the Sommerfeld parameter

n= %2 \/% = n(E). (7.285)

As an alternative to (7.285), the Sommerfeld parameter n( E), which includes the
information about the energy of the electron, can also be written as

2 2

e m mc?

with the fine structure constant

R
I
|
X

1
hc 137 (7287)

which is characteristic of all electromagnetic forces.
To solve (7.284) we first consider the asymptotic behavior for { — oo (r — o0),
which is determined by the differential equation

{Z — 4 }x(© =0 (for £ o0) (7.288)

with the fundamental solutions exp (—&/2) and exp (£/2). Due to the requirement for
normalization of the wave function the solution ~exp (£/2) is omitted. The asymptotics
for £ — 0 (r — 0) on the other hand is determined by the differential equation

(7.289)




{2 w62
which in analogy to (7.241) is solved with the Ansatz £° with

s(s—1)=1(l+1) (7.290)
(cf. (Z.243)). The solution with s = —[ has to be excluded in accordance with the

considerations in Sect. 7.6.1 such that only the case s = [ + 1 has to be considered. We
therefore write

xi(6) = €41 exp (—%)gz(ﬁ), (7.291)

and (7.284) turns to
{5 S+ +2-9F+mEB) —1- 1)}91(5) = 0. (7.292)

For the solution of the differential equation (7.292) we now employ the power series

91(&) = 2ot ané™ (7.293)
By insertion into (7.292) and renaming the summation indices appropriately in the series

for dg/d¢, & d?g/dE? we get

S fm(m — 1)ab,e™ ! 4 [(21+ 2)mal €™ — mal "] + (n— 1 1)al,e")
m=0
=Y o{n(n+1al,, + [(2A+2)(n+ 1al,, —nal] + (n—1—1)al, }¢" = 0(7.294)

S ([t @ 2)(nt Dby — L1l ),
n=0

from which we obtain the recursion formula for the expansion coefficients a’,:

l n+l+1-n(E) |

Unt1 = (nrair2)(ntl) dn (7.295)

The start value af] will be calculated later by normalizing the wave function. For large n

(7.295) becomes
(7.296)



l
Zl — —L (forn — o0),

(1

i.e. the power series (7.293) contains a subseries

ah Yo 5 = a) exp (§), (7.297)

if it does not stop in finite order. Inserting this subseries in (7.291), the solution x;(&)
diverges like exp (£/2), i.e. x;(&) will not be normalizable. Thus (as in case of the
oscillator) the power series must be of finite order: at a finite n then the numerator
according to (7.295) is

n+l+1-nE)=0«nE)=n-+1+1. (7.298)
Since [ > 0 is an integer,
N=n+l+1 (7.299)

is also an integer > 1. Equation (7.298) then implies:

n(E) =N; N=1,2,3,... (7.300)
or
a’me? _ e*me? 2
2B = aEme = N (7.301)

This implies that the energy eigenvalues of the H atom are

4 2 2 _
E - EN - - 2]1/'2 azmc2 - - 2]1/'2 ehgzg - — 2]]\.]2 % ~ %26‘]7 (7302)
where the length g, the Bohr radius is given by,
a=-"7~052-10""" m. (7.303)

Quantum mechanics thus naturally explains the spectral lines of the H atom found
empirically (Lyman, Balmer, Paschen, Bracket, Pfund series), which follow the 1 / N2 law
(7.302) very precisely.

N is called the principal quantum number. According to (7.299) there are N different
possible [ values for a given N

1=0,1,2,...,N —1, (7.304)



i.e. the angular momentum is limited from above for a given energy eigenvalue. On the
other hand, these I values arise because the radial Eq. (7.292)—apart from [—also
explicitly depends on N and there are N different radial wave functions—except for N = 1
, Where only [ = 0 is possible. For a certain eigenvalue £ = E there are not only 2/ + 1
different functions Y7, (¢, ), but also N independent radial components. The degree of
degeneracy for the eigenvalue Ey thusis not 2] + 1, but

Mo+ =1+ 2141+ +(2N-1]+1) = N~ (7.305)

This additional degeneracy is characteristic for the 1/r potential and not present for
other spherically symmetric potentials.

We now turn to the calculation of the hydrogen eigenfunctions. For each eigenvalue
FEx we have a certain k according to (7.281) and (7.302),

T VoLl R S EE WY I RN (210

with (7.303). The polynomials of n-th degree, which arize from the termination
condition (7.298) in the series (7.294), with

n=N-1-1=N—-1,N-2,....0 (7.307)

are called—with conventional normalization:

Laguerre polynomials

LZ(E) = gna(€) = Ly 1 (9) (7.308)

with £ = k7. The normalization can be calculated using the generating function

Up(§,5) = ﬁ exp [—€17%5] = 200 Lh(&) i (7.309)

Some results are e.g.

1=0,A=0:Lj& =1 (7.310)




exp ()7 d"

e = TP

(exp (—€)€"?).

The complete radial function then is

} I+1

xna(r) = Cny[ 2 exp (—aLN)L%S_l(f—JC), (7.311)

where the normalization constant C'y; is to be determined from

I3 Ixwva(r)Pdr = 1. (7.312)

The total wave function

YN m (7,0, 0) = + XN(T)Yim (D, ©) (7.313)

then is uniquely characterized by the 3 discrete quantum numbers N, [, m.
For the ground state of the H atom with N = 1 (only [ = m = 0 is possible). we get

from (7.312) C1 9 = 1/+/a and with Yy = 1/v/4n the ground state eigenfunction

P100(r, 0, 0) = 1/ == exp (= L). (7.314)

For the expectation value < r > in the ground state we obtain (by partial integration)

<7 >100= [|100)*r d*r = % [ exp (—Z)r® dr = 2a. (7.315)

Up to a factor of 3/2 the length a is the average distance of the electron from the
proton in the ground state. This statistical statement replaces the classic idea of the lowest
Bohr orbit of radius a.

In summarizing this chapter we have discussed the quantum mechanics of a single
particle in an external potential and classified the possible solutions. As examples we have
calculated the wave functions for an infinite and a finite well and for potentials that are
periodic in space. Furthermore, the harmonic oscillator problem has been examined in
detail as well as the motion of a charged particle (and its spin) in a magnetic field.
Moreover, the bound states and energy levels of the hydrogen atom have been calculated.
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8. Basic Concepts of Scattering Theory

Wolfgang Cassing!
(1) University of Gief3en, Giefsen, Hessen, Germany

In this chapter we will introduce to the scattering theory of a single particle with an interaction
potential and investigate the continuum states of the effective single-particle problem in case of
two-body scattering.

In a scattering experiment a beam of particles with given properties (energy, momentum,
polarization) hits a target; the influence of the target on the incident particle beam is measured
in the form of the angular distribution, excitation function, the scattered radiation etc. (Fig. 8.1).

With such scattering experiments one essentially pursues two goals:

(1 . . . . . o
In scattering experiments with elementary particles an information is obtained about the
forces between the particles involved. For example, we know that the interaction between
two nucleons at small distances (~ 0.25 fm) is strongly repulsive.

ii

) If one scatters e.g. electrons on atoms (or molecules) one can get information about
possible excited states of the atom (molecule) because the interaction electron—atom
(molecule) is known (electromagnetic interaction). An example of such an (inelastic)
scattering experiment is the Franck-Hertz experiment (cf. Chap. 2).

For the practical evaluation of scattering experiments we want to formulate the following
requirements:
. . . . . .
The intensity of the primary beam is so low that one can neglect the interaction between
the particles of the incident beam.
(2)
The distances between the scattering centers of the target are large compared to the
wavelength of the incident particles, such that interference effects between the scattering
waves from different scattering centers are negligible; each scattering center then acts as a
single one. -This requirement is not fulfilled in diffraction experiments on crystals.-

(3)

The target is so thin that multiple scattering does not occur.


https://doi.org/10.1007/978-3-031-95521-1_8

primary beam target scattered beam

Fig. 8.1 Illustration of a scattering process

If the primary beam is well defined in terms of energy, direction, polarization etc., then with
the assumptions (1)-(3) a scattering experiment is equivalent to an ensemble of scattering
systems, which consist of a single incident particle and a single (resting) particle of the target.

In the following we will restrict to elastic scattering processes (unless stated otherwise).

8.1 Basic Definitions

8.1.1 Scattering Cross Section
If jo is the incident current density in z- direction and AN the number of scattered particles per

unit time measured in the solid angle A2, we define (within the assumptions (1)-(3)) the
differential scattering cross sectiono = o({2)—as the quantity characterizing the scattering

rocess—by:

limaooo 28 =1 jo o(); (8.1)

here Q = (19, ¢) indicates the direction in which the scattered particles are observed
relative to the primary beam, and n is the number of scattering centers contained in the target.
o has the dimension of an area. In order to measure the quantity AN in (8.1) the detector must
be placed outside the area of the incident wave; thus one cannot measure o(2) in the forward
direction (¢ = 0). Since by increasing the distance between detector and target—for a given
size of the primary beam—one can reach smaller angles €2, this restriction is practically not
important.

The total scattering cross section o then is defined as

o= [dQ o(Q) = [dD 3—6; (8.2)

it gives the total number of scattered particles (from the primary beam) per unit of time
relative to the incident current density jo and the number of scattering centers n in the target.

8.1.2 Scattering Amplitude

As stated above, a scattering experiment can be viewed as an ensemble of two-particle
scattering systems. Such a two-particle problem can be reduced in classical physics to a single-
particle problem by introducing center of mass and relative coordinates; the center of mass of



the two particles moves—in the absence of external forces—like a free mass point with the
mass M = mj + my, and the relative motion of the particles is characterized by the reduced
mass g = mims/(m1 + m2) and the potential V(r), where r is the relative coordinate. We will
show later that the separation in center of mass and relative coordinates is also possible in
quantum theory; this reduces our task to the scattering of a particle of mass p at the potential
V(r).
There are two methods for the quantum mechanical treatment of potential scattering: In the
(1) . . . o
method of stationary states it is assumed that the primary beam is switched on long
before the measurement and is switched off again only long after the measurement such
that the state of the system during the measurement can be described as stationary.
2
) The time-dependent theory of scattering processes considers the scattering of the
incident particles at the target as a (time-dependent) perturbation which transforms the
incident particles from an initial state (before the collision) in a final state (after the
collision). One then calculates the probability for this transition and from that directly the
scattering cross section.

In the following we will use the (1) method and only later examine method (2) more closely.
For spinless particles the method of stationary states is to find solutions of the Schrodinger
equation

21,2
(T+ V) = BpE = 5 (8.3)
at given energy E in the center of mass system (determined by the energy of the primary beam
in the laboratory system) and to look for solutions, which asymptotically have the form:
. xp(ik
(1), o0 ~exp (ik2) + F(Q) 2, (84)

if the potential V(r) drops asymptotically faster than 1/r. In the case of the Coulomb potential
(8.4) must be modified due to the logarithmic phase ~In (2kr) (7.279) (see Chap. 8.3).
According to (8.4) the asymptotic form of ¢)(r) contains both the possibility that the particle is
deflected in 2-direction (direction-modulated spherical wave), as well as the case that no
scattering takes place (plane wave in z-direction).

We now want to show how to connect the scattering amplitude f(2) with the differential
scattering cross section o(£2). To this aim we use Eq. (8.1); the current density j, from (3.23) for
the plane wave exp (ikz) is

jo =12, (8.5)

On the left side of (8.1) the radial component of the current density of scattered particles
appears. Taking into account (7.225) it follows that

seat = gl F@QP{ S L 2 exp (ikr) - <PELL 2 exp (<ikr)}  (36)




_ ik [F(Q)I
-

Then we get

a(Q) = |F(Q), (8.7)

if we consider that j,.,; is related to the area A f = r2 AQ. The aim of the following
considerations is the practical calculation of the scattering amplitude f(2) from the

Schrodinger equation (8.3) with the boundary condition (8.4).

Before we look at methods for calculating f(2) let’s briefly state the requirements, for which
the method of stationary states, as developed above, is applicable. To the requirements (1)-(3)
we have to add:

(4) The incident wave is considered as a stationary state in form of a plane wave, which has
a sharp momentum 7k and sharp energy E. In practice, however, we are dealing with wave
packets of finite spatial and temporal extent, which necessarily (see Sect. 6.3.7) have a width
with respect to E and k. If our idealization should be a useful approximation, then must hold

kd > Lkl > 1, (8.8)

if k is the wave number, / and d are the longitudinal and transversal extensions of the wave
packet, respectively. In order to avoid the melting of the in- and out- wave packets, also the
following must apply,

d> /21> /&, (8.9)

if R denotes the distance between target and detector.
(5) The area in which the interaction between an incident particle and a target particle takes
place must be within distances r < 7 from the scattering center and

d > rol > ry. (8.10)

(6) When calculating j ..+ the interference between the plane wave and the spherical wave is
neglected—as in (8.6)-, thus we must require

d < R sin 9. (8.11)
Within the assumptions above one can show that Eq. (8.7) remains valid also for wave packets.

8.1.3 Reactions, Inelastic Scattering
The previous considerations relate to elastic scattering processes,

A1 + AQ — Al + AQ. (812)
In addition, inelastic processes are also of interest such as

(8.13)
A+ Ay — A+ A,



where A} denotes an excited state of the target particles, or reactions
A+ Ay — By + By, (8.14)
e.g. transfer of a particle C:
By =A,+C; Bo=A,—-C. (8.15)

To deal with such problems, we can no longer consider the particles A; and As—involved in the
process—as structureless mass points; in addition to the wave function of the relative motion
the internal state of the scattering partners has to be described by a wave function. Then we
have to deal with a multi-particle problem which we will describe later.

For a general reaction (8.12)-(8.14) we have to differentiate

(i) the input channel A; + A, specified by the type and state of the reaction partners and
their relative motion before the start of the reaction, and

(ii) the possible output channelsA; + A,, A; + A5, By 4+ Bs, with the corresponding
specification as in (i).

In general, a reaction channel is characterized by a certain fragmentation, specification of
the internal state of the fragments as well as kinematic data (e.g. energy or angular momentum
of the relative motion). A distinction is made between open and closed channels depending on
whether the reaction in question is energetically possible or not.

8.2 The Integral Equation Method

8.2.1 The Lippmann-Schwinger Equation

Conceptually, the following method for the calculation of scattering problems is of importance:
The Schrodinger equation (8.3) is transformed into an integral equation such that the solutions

automatically satisfy the boundary conditions (8.4). For this purpose we write (8.3) formally as
an inhomogeneous differential equation

(A +E*)Y(r) = U(r)y(r), (8.16)
with (as in (Z.3)), (Z.6)
Ur) = %V (r); k¥* = 24 E. (8.17)

The general solution of (8.16) then is:

Yi(r) = @r(r) + [ Gi(r,r)U(x")ihy(x")d’r, (8.18)

where ¢y, is an arbitrary solution of the homogeneous equation
(A+k)pp(r) =0 (8.19)

and Gy (r,r') the corresponding Green’s function defined by,




(A + k?)G(r,r') = &(r — 1'). (8.20)

For the proof one applies the operator (A + kz) to (8.18) and uses (8.19) and (8.20).
To explain the definition (8.20) of the Green’s function, let us multiply (8.20) from the right
by an arbitrary function x(r’) and integrate the resulting equation over r’. We then get

[ a3 (A + k) Gr(r,x)x(r") = x(r) (8.21)
or
(A, + k)G, x(r) = x(r) (8.22)
with the abbreviation
G,x(r) = [d3r" Gi(r,r")x(r'). (8.23)

According to (8.22) G, can be interpreted as the inverse operator to (A, + kz); as we will see,
it is not uniquely defined.

In the integral equation (8.18), which is equivalent to the Schrodinger equation, we can now
incorporate the boundary condition (8.4) as follows: Instead of the general solution ¢ (r) of the
homogeneous equation (8.19) we choose the special solution

or(r) =exp (ikz). (8.24)

Then the 2nd term in (8.18) for 7 — oo must convert into a directionally modulated outgoing
spherical wave. To investigate this question we need the explicit form of the solutions of (8.20).
Since (8.20) is invariant with respect to translations,

r—>r+a;r —r' +a, (8.25)

G (r,r') depends only on (r — r’). We therefore write Gi(r,r') = Gi(r — r') as a Fourier
integral of the form

Gulr —r') = oL [ gu(a) exp (ia - (r —x'). (8.26)

Inserting (8.26) into (8.20) and using

o J &0 exp (iq- (r = 1)) = &*(r — 1), (8.27)
we get for gi(q) the equation

(k* —q¢®)gr(q) =1 (8.28)

and thus

(8.29)



The integrand in (8.26) has poles of 1st order for q = k. We therefore must clarify—by
means of an additional rule - how the integral (8.26) has to be taken; depending on the choice of
this rule, we get different Green’s functions that have a different asymptotic behavior of the
desired solution (8.18).

With respect to the position of the poles at q = +k it is useful to introduce polar
coordinates in g-space, i.e.

exp(igp costy
Gi(p) = o7 | a*dg A2, . (8.30)

with
p=|r—r']. (8.31)

Since the singularities of the integrand only effect the g-integration, we can integrate over the
possible directions of q and obtain

Gilp) = gk J* q dg “2EoeeCi), (8:32)

The integrand in (8.32) is an even function in g and we can—instead of (8.32)—also write

Gilp) = 5z [0, q da oo (8.33)

We now carry out the g integration in (8.33) in the following way: We substitute

k — k + ie; ereal > 0, (8.34)

such that the pole at ¢ = k (—k) is moved from the real axis into the upper (lower) half-
plane of the complex g-plane (see Fig. 8.2).
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Fig. 8.2 Location of the poles in the complex g plane

We then define as Green'’s function

" . (8.35)
. 1 00 exp(i
Gy (p) =lime o din?p S wdaa {(k+iefg)(Ziie+Q)} ’




where the lin(} has to be taken only after the g integration.
€E—

For positive € > 0 the integral in (8.35) can be calculated as follows: Since p > 0, for Jg > 0
the argument of exp (.. ) is negative and exp (—Jgp) disappears for |g| — co. Then the
integration path in the upper half plane of the complex g plane can be closed by a semicircle
with a radius pushed to infinity.

The integral in (8.35) over the contour C then has the form:

3 Jodq exp (iqp)[kﬂi_q — k+36+q], (8.36)

using

q 1 1 1
(k—q)(k+q) ~ 2 [kTq B m} (8:37)

According to the residue theorem the value of the integral (8.36) is 2mi—times the sum of the
residues of the poles enclosed by the integration path. For the case considered, only the pole at
k + ie is within the integration path; its residue is

—5 exp (i(k+ ie)p). (8.38)
Thus we get fore — 0
exp(+ik
G (p) = — g 2L, (839)

which is the solution we are looking for, since the 2nd term in (8.18) asymptotically
describes a direction-modulated outgoing spherical wave.

There are alternative rules for calculating the integral (8.32): choosing € < 0 in (8.34) an
analogous consideration (as above) gives

— exp(—ik
G (p) = — 2 2272, (8.40)

i.e. the asymptotics of (8.18) is an incoming spherical wave. Finally, the g integration in (8.32)
can be done in the sense of a principle value; one then arrives at a standing spherical wave

0 cos(k,
GY(p) = — <=l (8.41)

The integral equation (Lippmann-Schwinger equation), which is equivalent to the
Schrodinger equation (8.16) with the boundary condition (8.4), then reads:

1/1,(c+)(r) =exp (ikz) + f G,(:)(r, r')U(r") gj)(r’)d?'r' (8.42)

—exp (ikz) — i/ exp (ikjr —r) U(r')g/)](:r) (r')d3r'.

47 lr—r'|




Equation (8.42) represents a formal solution of the scattering problem, which in a practical
calculation of the scattering solution @bZ(r) can be solved by an iteration process. Before

addressing this issue in more detail we first will specify a formula for the scattering amplitude
f(€2) with the help of (8.42).

8.2.2 Scattering Amplitude

For distances r from the scattering center, that are large compared to the range r( of the
potential V,

r = |r[>ro, (8.43)

we can approximate the Green’s function in (8.42) by

et Tl ~ 22 exp (—ik 1) (8.44)
with
k = kx. (8.45)
Here we have used
r—r'|~r—= -r'.. . forr >r'. (8.46)

The factor exp (ikr) /7 in the integral in (8.42) now can be written in front of the integral and by
comparison with (8.4) we find

F(Q) = L [ exp (—ik - YU (1) d3r' = — L (o1, UBL) (8.47)

with @y (r') =exp (ik - r’). The expression (8.47) for f(£2) is exact for @b,(j) from (8.42); if
V = V(r) is a central potential then f(£2) simplifies to f(¢) since the scattering amplitude does
not depend on the angle ¢.

For the practical evaluation of (8.47) one needs the exact solution of the Lippmann-
Schwinger equation (8.42). We want to show in the following how to get an approximate
solution to the scattering problem by means of an iteration method.

8.2.3 The Born Series

The starting solution for an iteration process for ¢(()+) (r) on the right of (8.42) (index k
furtheron suppressed) is:

) (r) =exp (ikz), (8.48)

which gives

1/)§+)(r) =exp (ik2) + [d®' G (r,v")U(r') exp (ik2'). (8.49)



This procedure ultimately gives (assuming convergence) the exact solution in the form of the
Born series

) =exp (ikz) + 2, [ Kn(r,r)y{” () d3r’ (8:50)

with

Ky(r,r') = [ Ki(r,x")K,_1(z",1') &*",n > 1 (8.51)

Ki(r,r') = GH)(x,e")U(r).

The question of the convergence of the series (8.50) cannot be addressed here in detail; for
local potentials, which for » — 0 become singular less than 1/7“2 and for  — oo drop stronger
than 1/r, the convergence is given in any case (without proof).

8.2.4 The First Born Approximation

In the best case scenario one can hope to get a meaningful solution to (8.42) by the first term in
the series (8.50):

P (r) ~exp (ikz) + [d3 G (r, ") U(x') exp (ik2"). (8.52)

Then we get for the scattering amplitude (see (8.47))

f(Q) ~ - [ & exp (—ik-r")U(r') exp (ik2'), (8.53)

and especially for central forces

f0) = -k [ & exp (—ik-r)U(r') exp (ik2'), (8.54)

where the angular integration can be carried out explicitly. With
ko = (0,0, k) (8.55)

Equation (8.54) becomes

fO) ~ -4 [ d&® exp (i(ko — k) -r') U(r)). (8.56)

Equation (8.56) suggests to introduce the momentum change during the collision
(8.57)



K=k, —k,
such that
f) = —4 [ d* exp (iK-r') U(r)). (8.58)
We now place the 2’ axis for the r’ integration such that
exp (iK - r') =exp (K7’ cos ¥') (8.59)
and
fddr ... = 027T Jo [ de' sin9'dy’ 2dr ... (8.60)

After integration over the angles 1, ¢’ we then obtain in 1. Born’s approximation

f(0) = —5 [0 r'U(r') sin (Kr') dr, (8.61)

where the ¥ -dependence is contained in K (see Fig. 8.3):

Fig. 8.3 Illustration of the momentum transfer K

K =2k sin 2. (8.62)

For a short-range potential U we can find a criterion for the quality of the first Born
approximation. The main contribution to f(«}) then comes from small r values. For r ~ 0 we get
from (8.52):

P (r) ~exp (ikz) — [3° exp(ikr’) U(r') sin(kr’) 2 gy (8.63)

r! kr!

Since the first Born approximation can only be useful, if the modification of the plane wave by
the potential U is small, we get the condition:

| f5° exp (ikr")U(r") sin (kr') dr’\2 < 1 (8.64)
this condition can be satisfied for high energies (large k values).

As an example, in which (8.61) can be evaluated exactly, we consider a Yukawa potential
(or meson exchange potential) of the form

(8.65)



U=U, 2 .

The elementary integration gives:

1 U
F9) = U iparr o = ~Fom (8.66)
thus
_ Ug _ U3
0(19) - (4 k2sin2%+72)2 - (K2+’YZ)2 (8.67)

as the result in first order Born approximation. For v — 0 we obtain the

Rutherford formula

62 2
a(9) = { 2 } T (8.68)

for

Up = £21Z2e*2 L. (8.69)

which is classically and quantum mechanically exact (inspite of the comments on the validity
of the first Born approximation).

8.2.5 The Electric Form Factor

For the elastic scattering of electrons on atoms one can start (in lowest order approximation)
with the assumption, that the atom can be described by an electrostatic potential V(r), which
contains the nuclear charge Z and the charge distribution of the electrons p(r) in the form

AV (r) = 4r e2[Z83(r) — p(r)] (8.70)
with
Z = [d3r p(r) (8.71)

due to the charge neutrality of the atom. If v(q) and F'(q) are the Fourier—transforms of V (r)
and p(r),

v(q) = [d® exp (—iq-1)V(r); F(q)= [d’r exp (—iq-r)p(r), (8.72)

then after Fourier transformation follows from (8.70),
[ |




¢*v(q) = —4m e*(Z — F(a)). (8.73)

Now () in first order Born approximation (according to (8.58)) is:

() = £ = 14 |o(K)[, (8.74)

and with (8.73) follows:

o(Q) = < (7 — F(K))>. (8.75)

For a spherical charge distribution

p = p(r) (8.76)

the formfactor becomes

F=F() = % [5 sin (gr)p(r)r dr. (8.77)

This implies for the form factor F(q) :

()
F0)=2Z (8.78)
and for small values of K
(i)
F(K)~Z -+ K*R}... (8.79)
with the abbreviation
R3 = 4x [ r2p(r)ridr. (8.80)

Here R2 is the mean square radius of the charge distribution of the electrons of the atoms,
which can be determined from the scattering of electrons on atoms.

In analogy, by electron scattering at sufficiently high energy one can measure the charge
distribution in atomic nuclei or even within hadrons (nucleons, mesons, etc.).

8.3 The Partial Wave Method

8.3.1 Scattering in the Central Field
For a central potential

.81
V=V(r) (881)



the Schrodinger equation can be calculated using the separation Ansatz (see Sect. 7.6.1)

Yim(®) = 1 x0(r)Yim(9, ) (8.82)
leading to
{3—; - k- U(r)}Xz(r) =0, (8.83)
with
U(r) = #V(r) (8.84)
and
K =25E>0 (8.85)

in case of a scattering problem. Due to the boundary conditions specified experimentally
(incident plane wave in z-direction, directionally modulated outgoing spherical wave) the
scattering solution cannot be an eigenfunction of I2. However, it has axial symmetry around the
z-axis because of (8.81) and the axial symmetry of the incident particle beam; the scattering
solution then has the general form

P(r) =320+ xi(r)Y(d, ¢), (8.86)

where the ¢ -dependence can be omitted due to the special geometry. The remaining
Legendre polynomials are

Yio(9) = 1/ (21 + 1)/ (47) Py(cos 9).
If

lim, ,o rV(r) — 0, (8.87)

the solutions for (8.86) asymptotically merge with the solutions of the free particle (cf. 7.6). We
can therefore (by combining (7.274) and (Z.275)) write for the asymptotics of x;(r)

Xi(7), oo = As sin (kr — %T +67). (8.88)

The separation of the phase in (8.88) into two parts (I7r/2 and §;) is useful because for
V =0(7271)

xi = kr ji(kr), (8.89)

such that asymptotically (cf. (7.274))



Xi(), o0 ~sin (kr — %T) (8.90)

Thus the phases ¢; are phase shifts of the individual partial waves (for the respective angular
momentum [) caused by the potential V. The scattering phases d; of course not only depend on
V(r), but also on E or k, i.e.

d; = 6;(k). (8.91)

8.3.2 Convergence of the Partial Wave Expansion

The expansion (8.86) is only of practical use if one focuses on a few [ values; this is the case if V
is short-range or if the energy is low.

Instead of a mathematical investigation of convergence, we limit ourselves to the following
physical argument: In the scattering of a classical particle at a central potential the possible
trajectories are characterized by the impact parameter b. The latter depends on the angular
momentum and the momentum of the particle by:

k. = b pr.- (8.92)
For a potential of finite range 7,
V(r) = 0forr > ry, (8.93)
a classical particle is only deflected if
b<rg (8.94)
or because of (8.92)
lki. < 7o DrL.- (8.95)

Accordingly, we expect that in (8.86) only the I values have to be taken into account with
1<k, (8.96)

if k is the wave number associated with py;.. For low energy E = /%k?/(2u) therefore only a few
I values in (8.86) should be sufficient.

The following consideration leads to the same estimate: For fixed energy E the minimum
distance 7 of the particle from the scattering center is determined by the condition

2
lkl.

E>V(r)y + 2,

(8.97)

With increasing angular momentum ly; the closest distance rp,;, becomes larger since the
centrifugal barrier becomes more and more repulsive until finally no more deflection can take
place for rin, > 7o by the potential V.

The classical estimates above are confirmed qualitatively by the quantum theory.

8.3.3 Scattering Phases and Scattering Amplitude
We now try to connect the scattering phases J; with the scattering amplitude f(¢), which in
turn gives the differential cross section o() by its magnitude squared.



To this aim we expand the asymptotic form

W(E), 00 =exp (ikz) + f(9) 22 (8.98)

by partial waves. According to section 7.6.3 the plane wave—as the solution of the Schrodinger
equation for the free particle—can be represented as (7.271)

exp (tkz) = > o0 ar ji(kr)Yp(9). (8.99)

The expansion coefficients a; are obtained according to Sect. 7.6.3 and read

a;r =321+ 1)y/ 5 L (8.100)

In the 2nd term of (8.98) we expand

F(9) =22 fi Yuo(9) (8.101)

and get

exp (ik2) + F(9) 2 = 5 Ly Gulkr) + =20 Ly (9). (8.102)
With the asymptotics of the j; from (7.274) we obtain
) = S0 2 Yo [fi+ Glar] exp (ikr) - Ghaiexp (—ikr)}.  (8.103)
On the other hand, according to (8.86) and (8.88)

P(r), 0o = 2 7 Yio(9)A;sin (kr — 5 +6)) (8.104)

p> ~ Ya(®)Ar- {exp <i(kr - 51)> ~ exp <—i(kr SR 51)”,

By a comparison of the coefficients (with i’ =exp (ilm/2)) we get

A= il@ exp (id;) (8.105)
and
fi = YACED - orn (i6)) sin (6)). (8.106)
Then we obtain for f(19)

F9) = 237, /4n (20 + 1) exp (i6;) sin (6;)Yio(9) (8.107)




= % Z(2l + 1) exp (29;) sin (6;) Py(cos 9),
]

and for the differential scattering cross section

o(¥) = % >+ 1)(20' + 1) exp (i(d; — 0r)) sin (d;) sin (6y)Pi(cos ¥) Py (cos ¥).(8.108

After integration over the angles we finally obtain for the total scattering cross section

o="532 (21+1) sin® §, (8.109)

taking into account the orthogonality of the P;(cos 9).
Comparing (8.107) and (8.109) we obtain the

8.3.4 Optical Theorem

o= FI(£(0)), (8.110)

since Pj(cos ¢ = 1) = 1. Equation (8.110) is the quantitative expression for the fact, that
the scattering of particles is necessarily linked to a weakening of the particle beam in the
forward direction (¢ = 0).

Since (8.110) is important for an understanding of the scattering process we will prove
(8.110) still in another way, that allows for an easier physical interpretation. Since V(r) was
assumed to be real, the continuity Eq. (3.21) holds. Due to the stationarity of the states Eq. (3.
21) simplifies to

V-j=o. (8.111)

We integrate (8.111) over a sphere centered around the origin » = 0 with the radius R chosen
so large that the asymptotic form (8.4) can be used:

[dr V-j=R?[dQ jgr =0, (8.112)

where jr = jg(2) is the radial component of j on the surface of the sphere at a distance R from
the scattering center. The radial component at distance r (sufficiently large)

. h * 0 0 /% 8.113
Jr = S {’lﬁ ar ¢ — ’lp—ar ’(/) } ( . )
giVGS three parts when inserting ’(/) according to (84)

Jro = %’“ cos ¥, (8.114)



which arizes from the plane wave exp (ikz) =exp (ikr cos 9);

2
A (8.115)

jr,scat = L
from the spherical wave and the interference term
Grint = 22 L0 L £(9) exp (ik(r — 2)) + f*(9) exp (—ik(r — 2))}, (8.116)

when considering only the leading term in 1/r.
The term (8.114) gives no contribution to (8.112) since

JdY cos ¥ = 27rf_11 dcos ¥ cos = 0. (8.117)
From (8.115) we get the contribution
™ (8.118)
according to (8.2) and (8.7). For the validity of (8.112) to hold, (8.118) must be compensated by
the contribution of (8.116). Since we know the exact result, equation (8.110), the following

heuristic considerations are sufficient: Due to the rapidly oscillating terms in (8.116) for kr > 1
contributions to the integral (8.112) arize only for values ¢ ~ 0. We therefore get:

R2/ jR,int dQ2

~ %k R 2r{f(0) f[dz exp (ikR(1 —x)) + f*(0) [dz exp (—ikR(1—x))}, (8.119)

provided that f(«9) changes slowly. After performing the x integration a contribution
proportional to J(£(0)) = 1/2(f(0) + £*(0)) remains in accordance with the exact result
(8.110).

8.3.5 Calculation of the Scattering Phases §;
We consider again the radial equation

1(1+1
{g— LS U(r)}X,(r) _0 (8.120)
and assume that the (real) solutions are normalized in such a way that
Xi(7), o0 ~sin (kr — & 4 4)). (8.121)

We now compare the solutions x; (or the phases §;) with the solutions X? (or phases 5?) to the
potential U%(r) at the same energy. To this aim we use the Wronski theorem (cf. Sect. 7.1.2):

b
W0 xD[e= xix? — x0x/'|, = — [2x0(U — U%)x; dr. (8.122)

Choosing specifically the integration limits a = 0 and b = oo, we get



W(xi, 1)1 =k sin (8 — 67), (8.123)
since according to Sect. 7.6.1
x1(0) = 0 = x7(0). (8.124)

Thus

sin (6 — %) = —¢ [°xNU - U, dr. (8.125)

Equation (8.125) is exact. We can get two important results from (8.125):
(i) For U? = 0 we have 5? = 0 and

X = kr ji(kr), (8.126)

such that

sin (§;) = — fo Ji(kr)U(r)xi(r)r dr. (8.127)

Equation (8.127) can be used to calculate the phases iteratively in the same way as in
Sect. 8.2.3. In the first Born approximation we obtain:

sin (&;) ~ —k fo ]l (kr)r2dr. (8.128)
Now the Bessel functions behave for small values of the argument p = kr like (cf. Sect. 7.6.1),
Ji(kr) ~ (kr)". (8.129)

For a potential of finite range r( follows from (8.127) or (8.128) that the phases §; for fixed
energy E (fixed k value) decrease with increasing I. For k£ =~ 0 one expects only contributions to
the scattering cross section for small / values; especially for £ — 0 we only expect contributions
for [ = 0, i.e. isotropic scattering (s-wave scattering).

In this limiting case the scattering cross section o (8.109) is given by

o(k = 0) =limj_o 35 sin? §o(k) (8.130)

and in first order Born’s approximation (with (8.128) and (8.129)) we get explicitly,

o(k =0) = 4r a?, (8.131)

with the scattering length

(8.132)




a =lim,, ., %fooo U(r)jo(kr)xo(kr)r dr.

With increasing k, except for [ = 0, also [ = 1 (p-wave scattering), [ = 2 (d-wave scattering)
etc. become important which is reflected in the experimental angular distribution. The results of
the classical discussion in Sect. 8.3.2 thus are confirmed.

(ii) If AU = U — U" is small, in general - with the exception of resonance scattering - the
phase difference Ad; = §; — 5? will be small and (8.125) turns to:

NS = —— [° AU x? dr; (8.133)

the difference between X? and x; on the right side of (8.125) has been neglected here. Thus
if AU > 0 (< 0) for all rthen Ad; < 0 (> 0); in particular for a repulsive potential
everywhere the phase d; is negative, for an attractive potential everywhere the phase J; is
positive. Thus from the sign of §; (or a change in sign for a certain energy) we can extract
general properties of the potential V.

8.3.6 Coulomb Scattering

Due to the requirement (8.87) the Coulomb potential needs a special treatment. The crucial
point is that for the Coulomb potential for the asymptotics of x; Eq. (8.88) no longer holds, but
has to be replaced by (7.279). The phases o; are the scattering phases of the Coulomb potential
in analogy to the phases 9; used above; the Coulomb phases o; can be calculated exactly.

8.3.7 Inelastic Scattering
For elastic scattering we can rewrite the asymptotics of ¢ (8.104) as follows:

D), o0 = 2120+ 1)i' exp (iéz)wﬂ(ms 9) (8.134)

= ;W zl:(QZ +1)[(-1)" exp (—ikr) — S; exp (ikr)] Pi(cos 9)

with

S; =exp (2id;). (8.135)

As long as ¢ is real, S; is a pure phase factor, such that ¢ contains incoming and outgoing
spherical waves with the same weight. This characterizes elastic scattering, for which the
continuity Eq. (8.111) or (8.112) holds.

For inelastic processes the outgoing spherical wave - in the elastic channel - must be
weakened compared to the incoming one because part of the current flows into the inelastic
channels. We can formally take this into account by replacing the real phases d; with complex
phases



m = 0 + iy > 0, (8.136)
such that the magnitude of S; will be
1S1]< 1, (8.137)
while for elastic scattering we always have
|S1]= 1. (8.138)
The scattering amplitude in the elastic channel then (in analogy to (8.107)) is

f(9) = % > (204 1) exp (in;) sin (1;) Py(cos ) (8.139)

or expressed by .S;

F(9) = 55 3,20 + 1)[S; — 1] Py(cos 9). (8.140)

Using (8.140) one can characterize two limiting cases: for a given partial wave / then S; = 1
means no scattering and .S; = 0 total absorption.
For the scattering cross section of elastic scattering follows from (8.140):

ga. = & 3,20+ 1)[S - 1. (8.141)

By S also the reaction cross section o,—with respect to all inelastic channels—and the
total scattering cross section

0t = 0el. + Oy (8.142)

can be expressed. For o; again the optical theorem (expressed via the continuity Eq. (8.111) or
(8.112)) must hold:

or = FI((0)) = 77 X2+ DL - R(SY)] (8.143)
using (8.140). Note that the imaginary part of the forward scattering amplitude for the elastic

channel enters (8.143), since this weakens the incident particle beam! From (8.142) and (8.143)
we then obtain

or = 5 2L+ 1)[1-|5;?]. (8.144)

For purely real potentials inelastic scattering, of course, does not happen since the current is
conserved alone as shown in Sect. 8.3.4. Without discussing the mechanism, which causes
inelasticity, we can formally describe inelastic scattering by introducing a complex potential.
The scattering phases—calculated for such a complex potential—are then the complex phases
7; introduced ad hoc above. From the scattering phases n; we then can calculate o, o, and o;.



Remark: Inelastic scattering,
|Si|< 1, o #0, (8.145)
is necessarily accompanied by elastic scattering,
o # 0, (8.146)
since with (8.145)
[S1 — 1] # 0. (8.147)

This is clear, since inelastic channels imply a loss of current in the elastic channel such that the
plane wave cannot remain undisturbed.

8.3.8 Gamov States Resonance Scattering

We have seen in Sect. 7.1.1 that for positive energy—apart from pure scattering states
(classically: open trajectories)—also Gamov states may occur. In the following we only want to
make (qualitatively) clear that the phases d; and the scattering cross section o in the two cases
behaves differently. In the first case (Sect. 7.1.1, type 2 + 3) we expect that §; and o vary
monotonically with energy (a); in the second case (Sect. 7.1.1, type 4) we note that quasi-bound
states in the inner region of the potential (Gamov states) can exist, which due to tunneling decay
in time. In a scattering experiment for a (type 4) potential then §; and o will depend sensitively
on whether the energy is close to that of a Gamov state or not. In the latter case, the incident
plane wave only weakly penetrates into the potential wall; the potential behaves in analogy to a
hard sphere, for which the scattering consists of reflection and diffraction. In the other case,
however, a sizeable fraction of the incident wave can penetrate the interior area, where quasi-
bound states exist for a time 7, which strengthen the scattering wave after decay. Such Gamov
states thus will induce a pronounced variation of §; and o with the energy (see Fig. 8.4).

0]

Fig. 8.4 Illustration of ‘hard sphere’ and ‘resonant’ scattering

In this case we are dealing with resonance scattering. The maxima in Fig. 8.4 at le and k%

correspond to the center position (in energy) of the Gamov states.
We now will briefly indicate the quantitative treatment of the Gamov states. We consider the
finite-range potential

V(r) = v(r)forr < ry, (8.148)



which vanishes for 7 > 7(, and restrict ourselves to the case ! = 0:
L
{_WW +V(r)— E}X(r) =0. (8.149)

The Gamov solutions X, () from (8.149) can decay by tunneling; for » > rg therefore only
outgoing waves exist,

Xm(r) = A, exp (iky,r) for r > 1. (8.150)
where
n2k?
E,, = 1k (8.151)

is the energy of the Gamov state . The solutions x,, must be connected continuous and with
a continuous derivative to the outside area r > 7. This is given by the condition:

Oxm 1 .
(Bes),, =ik (8152)

which is independent from the normalization constant introduced in (8.150).

The condition (8.152) leads to solutions of (8.149), for which the Hamiltonian (more
precisely: the Kinetic energy) is not hermitian, such that the energies E,,,, which have to be
calculated, become complex

i

The time-dependent solutions—corresponding to the x,,—then have a time factor

exp (—%Emt) =exp (—%emt> exp (—g—gt), (8.154)

which for I';;, > 0 corresponds to an exponential decay with the decay constant I',,,. In
simple cases (e.g. for box-shaped potentials) an analytical solution of (8.149) with the boundary
condition (8.152) can be carried out.

Since for a negative imaginary part of E,, (i.e.I",, > 0) also k,,—according to (8.151)—has
a negative imaginary part, we get from (8.150) that a solution diverges exponentially in the
outer space. This defect, however, is not a problem in practice, since we are interested in the
decay constant I',,,, which is determined by the wave function X, in the range r < r(. To show
this, we’ll use again the Wronsky theorem:

2 T
— 37 X = XmXi e = (B — E) [o" [xm! dr. (8.155)

Due to

xm(0) =0 (8.156)



and (8.150) we get from (8.155)

L T G
Lm == o rar (8.157)

Thus the decay constant I';,, is actually determined by ¥, in the range r» < rg; itis
proportional to the probability to find the fragments (e.g. « particles or the residual nucleus) at
the distance r¢ from each other, relative to the probability to find the entire system inside the
sphere with radius 7 around the origin r = 0.

Formula (8.157) shows that the decay model outlined above only applies for very slowly
decaying Gamov states: while I',, is defined as real by (8.153), the right-hand side of (8.157) is
complex since k., is complex. For very slowly decaying states (I';, < |€p, — €mt1]) We can
neglect J(k,,) in (8.157) and obtain

_ [xm (7o) ®
r'n,= hvmm (8.158)
with
U = h ) (8.159)

as the relative velocity of the (separated) fragments.
Finally, we want to examine the case of resonance scattering on a simple, idealized example.
For [ = 0 we can solve the radial equation in the outer space r > ry and write as

xk(r) = 57 (So exp (ikr)— exp (—ikr)) (8.160)
with
So =exp (2idp); (8.161)

cf. (8.134) and (8.135). We use the logarithmic derivative of x at the point » = 7 as an auxiliary
variable:

0
R=% |, (8.162)

Then we get as a connection condition between innner and outer space

1. 80 exp(ikro)+exp(—ikro)
R =ik So exp(ikrg)—exp(—ikry) ’

(8.163)

or solving for Sy

So = BHE exp (—2ikry). (8.164)




For the scattering cross section follows from (8.164) with (8.109) or (8.141):

00 = 1 1S0=11" = F|fres + Fratl ", (8.165)

where
res — ﬁifk (8.166)
fpot =1- €xXp (217{:7"0). (8.167)

The significance of the contribution of f,,: becomes immediately clear when considering the
scattering on a hard sphere:

V(r) = cofor r <rg (8.168)

and = 0 else. Since x(r¢) = 0 for the potential (8.168), R — oo and f,; — 0. For the hard
sphere then we get

oo = 4y p2d 500 | 8.169
0= 42T Ty Ero . (8. )

We now consider the other extreme case, where f,,: can be neglected versus f,. This

happens if one (or more) Gamov states exist in the potential and the scattering energy
E = #?k?/(2u) is close to the energy ,, of the Gamov state ,,,. Then we can approximate, if

other Gamov states are energetically far away from x,, the wave function x(r) in the interior
regionr < rg by

X(r) = xm(r)forr < ry. (8.170)
Then according to (8.152)
R~ iky, (8.171)
thus
Fres = 725 (8.172)

For k = MR(k,,), fres has a maximum, which is narrow if the width of the Gamov state
considered is small. Accordingly, one expects a strong change for o = o(k): resonance
scattering in the neighborhood of k = R (k,,).

In summary, we have formulated the scattering theory for a single particle with an
interaction V(r), investigated the continuum states in different representations and derived the
scattering amplitude as well as the differential cross section. Furthermore, the partial wave
expansion for the scattering amplitude has been presented and the scattering phase shifts §;(k)



been computed in lowest order. The discussion of resonance scattering has completed this
chapter.
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9. Hilbert Space

Wolfgang Cassing!
(1) University of Giefden, Giefsen, Hessen, Germany

In this chapter we introduce to the concept of abstract states in a Hilbert
space ¢ and specify the formal requirements. Furthermore, we will
introduce the Dirac notation which is particularly suited for many-body
problems.

The central quantity in the quantum mechanics of a particle without spin
is the spatial wave function t(r), which describes the state of an ensemble of
particles. However, this

(i) spatial representation

of a quantum mechanical state is not the only possible one. We have seen
in Sect. 6.3 that the knowledge of the Fourier amplitudes &(k;t) of the wave
function v(r;t) are also suitable for describing the state under consideration.
We then have a

(ii) momentum representation

In general, we can expand a spatial wave function 9 (r;t)—describing a
quantum mechanical state—according to any complete, orthonormalized set
of functions ¢, (r) and use the expansion coefficients

cult) = / @ " (£ p(xit) = (9 )

to characterize the state under consideration. In this
(iii) C -representation
the state is represented by a column vector
(9.1)


https://doi.org/10.1007/978-3-031-95521-1_9

This kind of representation also includes the description of the spin of
fermions using column vectors of dimension 2 (Sect. 6.5).

The same picture emerges for the operators to which we assign
observables. In the spatial representation, r and —:#V . are the basic
operators from which we built all other operators such as orbital angular
momentum or potentials (see Chap. 5). In the momentum representation, the
roles of position and momentum are just exchanged: the basic operators are
p = ik and ¢4V, Starting from an observable in the spatial representation

F = F(r,p), by forming the integrals
& ¢ F oy = (¢ F ¢,) = Flu (9.2)

in a complete basis {¢,, }, one arrives at the C-representation of F in the form

of co-dimensional matrices. We recall that the Pauli spin matrices form a C-
representation of the spin operators for fermions, even if they are not defined
via an integral like (9.2).

The independence of quantum mechanical statements from the specific
representation is shown explicitly by the fact, that e.g. the eigenvalues of the
harmonic oscillator or the angular momentum can be determined solely on
the basis of formal commutation rules of the operators describing the
problem. It will be shown that quantum mechanical states can be described by
vectors in Hilbert space.

9.1 Definition of Hilbert Space

A Hilbert space ¢ is a set of elements f, g, h - - - (vectors) for which the
following axioms are fulfilled:

(1) Linearity.

In S¢ there is a connection of the elements (addition), with respect to
which S forms an additive, abelian group. This implies in detail:

(1.1) Forall f,g € s also f+g=g+ f € F,;




(1.2) Associativity: f + (g+ h) = (f + g) + h,

(1.3) Neutral element: there is an element 0 € 5 with f + 0 = f for all
f e F.

(1.4) Inverse element: for every f € J there is an inverse element
(—f) such that f 4+ (—f) = 0. Instead of g + (— f) we write in short:

g—r.

Furthermore, a multiplication with complex numbers is defined as follows:
for complex numbers g, b, c.. the following holds

(1.5) If f € 5%, then also afe F€.

(1.6) Distributivity: a(f + g) = af + ag; (a + b)f = af + bf.

(1.7) Associativity: a(bf) = (ab)f.

(1.8)1 f = fforall f € J2.

(2) Metric:
In € an inner product is defined as follows: To each pair of vectors f, g
we assign a complex number, denoted by (f, g) € C, with the properties:

2.1 (f,9) = (9, f)"

(2.2) (f,ag9) = a(f, g) for any complex numbers g,

(2'3) (f7 g1 + 92) = (f7 gl) + (f7 92)

(2.4) (f, f) > Oforall f € 5, where




(2.5) (f, f) = 0 only holds for the neutral element.

Because of (2.1) (f, f) is real.

The following properties directly follow from the definition of the inner
product:

(i) Orthogonal vectors

Two vectors f, g are called orthogonal if

(f,9) =0; (9.3)

in particular the neutral element (zero vector) is orthogonal to every
f e .

(ii) Parallel vectors

Two vectors f, g € S are called parallel if f = agwitha € C.

(iii) Length of a vector

We define the length of a vector as

I£l = v/ (f5 £)- (94

Before we complete the definition of the Hilbert space, we want to point
out that axioms (1) and (2) guarantee the superposition principle (see Sect. 3.
3) and the probability interpretation (Chap. 4).

(3) Completeness
As an auxiliary term we introduce the strong convergence of vectors: A
sequence of vectors f,e € is called to converge to a vector f € €,

lim, o fn = f, (9.5)

if

lim,, o0 ||fn - f” = 0. (9.6)




From (9.6) follows by the triangle inequality
1imn,m—>oo Hfm - an =0, (9.7)

since

[ fm = Full < fm = I+ 1 fn = £l (9.8)

A sequence of vectors f, with the property (9.7) is called Cauchy sequence.
The limit (9.7) is a necessary but not sufficient condition for (9.6); e.g.

(1 + 1/n)™ as a Cauchy sequence has no limit in the space of rational
numbers. We therefore require that in 5 for every Cauchy sequence of
vectors f, there exists a limit element f € 5#: completeness axiom.

(4) Separability

In contrast to the usual definition of a Hilbert space in mathematics, in physics
the additional requirement of separability is requested: In S there is a finite
set { N} of vectors f, with the property, that for every vector f €  and any
e > 0 there exists a vector f, e{ N} that satisfies the inequality

| f=Full <e. (9.9)

This completes the definition of the Hilbert space ¢ as required in
quantum theory.

The implications of axioms (3) and (4) become clear when we compare
the Hilbert space ¢ with a finite-dimensional, linear unitary vector space
Zn. Axioms (1) and (2) hold for both spaces; for £ it follows that any
vector v € £y can be represented as

7=Yiic e (9.10)
with
ci = (¥i,7), (9.11)
where the vectors ;,7 = 1,2,..., N, are orthonormalized. For an oo-

dimensional vector space one must add axioms 3 and 4 such that each vector



g of the space can be represented by a finite set of orthogonal vectors f; of the
same space as

9=t difi (9.12)
with
di = (fi,9)- (9.13)
The (=)sign in (9.12) is to be understood in the sense of equation (9.6) as
limp, o0 [lg — > 52 difil = 0. (9.14)

Equation (9.14) is equivalent to the completeness relation

Igll® =323, ldq|*. (9.15)

While axiom (4) ensures that every vector g € 5 can be expanded
according to (9.12), (9.14), axiom (3) guarantees that the sequence
gn =Y ;- difi does notlead out of 2.

Axioms (3) and (4) guarantee the probability interpretation of
expectation values (Chap. 6). The concept of convergence used in (9.6) is
precisely tailored to the requirements of quantum theory, since all measurable
quantities have been introduced as scalar products.

9.2 Schwarz’s Inequality
For f,g,h € 5 we have

(£ 9) < [I£1] - llgll- (9.16)

Proof

(1) If for g or both are the neutral element, then (9.16) is correct: the (=)
sign then holds.

(2)If f £ 0, g # 0, we decompose (h € )

(9.17)

f:%g%—h.



Then obviously

(g7 h’) =0, (9.18)
l.e.
(1) = (&gt b, 2B g+ n) = 1290 (g,9) + (h,B),  (919)
such that
(f, f) > 112 ))| ,q.e.d. (9.20)

Schwarz’s inequality (9.16) becomes an equality if and only if (in the proof)
h = 0,i.e. f = ag (parallel vectors).
The triangle inequality follows from Schwarz’s inequality:

1 +gll < 1A+ llgll- (9.21)

Proof
(1) If || f + g|| = O the statement is correct.

(2) Let || f + g|| # 0. Then

If+gl> =(f+af+9=(+9Ff+(f+g09

9.22
<1+l - 11+ 17+l Il (.22)

the statement follows after division by || f + g||-

9.3 Realizations of .77

The abstract Hilbert space ¢ can be realized in various ways. We give two
examples that are important for quantum theory.
(i) The set of all column vectors
(9.23)



with co-many complex numbers ¢; as components, for which
2
Yo lei]” < oo, (9.24)
The addition of two column vectors ¢, d is defined as

[ c1+d1 )
c2 + da
c+d=| c3+ds3 (9.25)

and the multiplication of a column vector with a complex number « as

[ aci |
(8763}
ac=:| acs |. (9.26)

Finally, the scalar product is defined by
(e,d) = 320 cids. (9.27)

The space thus formed is indeed a Hilbert space: Axiom 1.1 is fulfilled,
because for two complex numbers c;, d; the following holds

lei + di|? < (Jei|+[di))® < (les+[di])® + (les]—|di])® = 2| + 2|di|,(9.28)

such that with (9.24)
(9.29)



Z;.il |Ci + dz|2 < 00,

i.e. the sum ¢ + d (defined by (9.25)) is an element of the space under
consideration. The remaining requirements 1.2-1.8 are fulfilled trivially. From
(9.27) together with (9.24) it follows that (¢, d) is a complex number:

leidil=lcilldi| < 5 (leil*+]dil?); (9.30)
due to (9.24)
doisgleidi] < oo (9.31)
and thus
> ity €jd; < 0o, (9.32)

The axioms 2.1-2.5 then are satisfied trivially. Furthermore, the infinitely
many vectors

(1) (o) 10
0 1 1
Of, 0], ol (9.33)

whose components all vanish except for a single one (which is chosen as 1),
form a complete, orthonormal basis such that axioms 3. and 4. are fulfilled.

(ii) The set of all complex-valued functions f(r), that are integrable in the
sense of Lebesgue, for which holds:

[dr 1£(r)]? < o0 (9.34)

form a Hilbert space, if we define addition and multiplication with complex
numbers in the usual way and introduce the scalar product by

(f,9) == [dr f*(r) g(r). (9.35)




The scalar product defined in (9.35) exists because of (9.34); the proof is
as in example (i). Axioms 1.1-1.8 and 2.1-2.4 are obviously fulfilled. In
contrast, 2.5 only holds, if we consider functions to be equivalent that differ
only on a set of points of measure 0. For the proofs of axioms 3. and 4. we
refer to the mathematical literature.

Remark: Axioms 3. and 4. with the scalar product (9.35) do not hold for
merely continuous functions!

In the space 32(—00, oo) defined above, there are countably infinite,

orthonormal systems of functions ¢;(r); an example are the eigenfunctions of
the harmonic oscillator. We can therefore expand any function f(r) from
Z5(—00,00) as

f(r) =222 ci wi(r). (9.36)

The (=) sign in (9.36) implies no pointwise convergence, but convergence
in the mean,

limy, oo [d®r |f(r) = X0, ¢ gi(r)]” = 0. (9.37)

The function f(r) and its expansion (9.36) can therefore still differ on a set of

points with measure O.

The realization of the Hilbert space 5% by the space %5 (—00, 00) just
gives the spatial representation for a particle without spin. If we want to
describe a particle with spin 1/2 or several particles, we need the concept of
the product space. To simplify the notation we use the

9.4 Dirac Notation

We denote a Hilbert vector, that describes a quantum mechanical state, by

|T) : "ket vector’. (9.38)

We assign a ‘bra vector’ (¥| uniquely to each ‘ket vector’ |¥) by specifying
that

(i) the ket vector’ a|¥)(a € C) is assigned to the ‘bra vector’ a* (¥

(ii) the sum |¥;)+|¥,) to the ‘bra vector’ (¥ |+ (5|

By (i) and (ii) an antilinear mapping is defined, i.e. for an antilinear
operator O the following holds:

, and



O(al$1) +bltpa)) = a”Ol¢h1)+b"Olepa).

Between a ket vector |¥1) and a bra vector (¥s| a scalar product is
introduced by

(iii) (¥2|¥1) = (¥2, ¥1).

If the vectors |p,), v =1,2,..., form a complete, orthonormalized basis
in the Hilbert space, then the expansion of an arbitrary vector |¥) in this basis
is:

) =D 0l len) (0| T) (9.39)

with the expansion coefficients
(pu|¥) = (¢, ¥). (9.40)
Equation (9.39) suggests, that
> ooy leu)(@ul= Es = 1 (9.41)

can be interpreted as the identity operator in Hilbert space. This is possible
indeed: the mathematical background (keyword: dual spaces ¢ 1; Ve F,
(Ule ST, AT = 5 in the case of Hilbert spaces) will not be discussed here
explicitly.

9.5 Product Spaces

Let the vectors \le>; 1 =1,2,..., form a complete, orthonormal basis in a
Hibert space 7, go?) a similar basis in another Hilbert space .7¢5. We now
consider the set of products

%) =t ek =: (4, ), (9.42)

which should have the following properties:
(1) The multiplication (9.42) is commutative

(9.43)



X le?) =13 Ix7)-

(2) The multiplication (9.42) is distributive with respect to the addition in
€1 or F65, if

Xi) = Alxa) +X [x)s (9.44)

then

X3 = Alxa) @3 +X [x) [ 03)- (9.45)

If one declares a scalar product in the space of vectors \‘I’}f} by (k = (3, j)

K = (1)
(T2 02) = (X! X (92l e%), (9.46)
then the product space spanned by the vectors \‘Iﬁf}, which we denote by
I ® I, (9.47)

is also a Hilbert space in which the vectors \\I!}f) form a complete,

orthonormal basis.

Examples:

(i) 2 particles without spin

Particle 1 is described in a Hilbert space .7¢7, realized by spatial wave
functions x;(r;), which form a complete orthonormal system in J#. ;(r5)

is also a complete orthonormal system in the Hilbert space .74 belonging to
particle 2. The product functions

Yr(r1,r2) =: xi(r1)pj(re):k =: (4,7), (9.48)

form a complete basis in 5] ® 5% in which every wave function of the two-
particle system can be expanded as:

(9.49)
W(ri,ra) =D ooy ¢k Yr(ry,r2).




(ii) Separation Ansatz
The Ansatz

P(r) = P1(x)2(y)9s(2) (9.50)

leads to a decomposition of the Hilbert space 2, to which the vectors ¢ (r)
belong, i.e.

H = H, Q H,Q H. (9.51)

(iii) Particles with spin 1/2
The Hilbert space of the spinors introduced in Chap. 6.5

U(r;t) = Uy (r;t) <(1)> + Wy(r;t) (2) (9.52)

can be understood as a product space of the Hilbert space of the pure spatial
functions \Ifu/d(r;t) and the space of the pure spin states, built up from the

0

9.6 Improper Hilbert Vectors

In Sect. 6.3 we have seen that the momentum operator has a continuous
spectrum and the eigenfunctions are plane waves:

two unit vectors

p exp (tk-r) =ik exp (ik-r). (9.54)

The plane waves are orthogonal for different k, but not normalizable. They
are nevertheless useful because of their completeness: according to Fourier’s
integral theorem, every square-integrable function ¥(x;t) can be
represented as

Y(z;t) =lim, o0 ﬁ [, exp (ikx)p(k;t) dE, (9.55)



(cf. Sect. 6.3). After extension to the 3-dimensional case, we write for (9.55) in
Dirac notation briefly (including the formation of the limit) as

) = [d°k [k)(k[¢), (9.56)

where the improper vector |k) corresponds to the plane wave
(27) %2 exp (ik - r) = (r|k) and

(k|yp) = (k) (9.57)

is the Fourier transform of the spatial wave function ¥(r), which describes the
abstract Hilbert vector |1) in spatial representation. We write the
completeness relation in analogy to (9.41) as

[dk k) (k| = 1. (9.58)

The ‘normalization’ of the improper vectors |k) is
(k|k') = 8%(k — k). (9.59)

Similar to the momentum, but mathematically a little more subtle, is the
eigenvalue problem of the position operator. The ‘eigenfunctions’ of the
operator T for the eigenvalue r’ are J-distributions

£t &B3(r—r)=r -1 (9.60)

This system of d-distributions is complete, since every wave function (r)
has the integral representation

Y(r) = [ 83 (r —r')y(r)) (9.61)

according to the definition of the §- distribution. If |r} is the improper vector,
which is assigned to the distribution §%(r — r') with a fixed r in Dirac

notation, then (9.61) is written in Dirac notation as
(9.62)



) = [dr" [e)(x'|[4) = [d*r" [x")p(r").
Since
(rlr') = [d3" §%(r — r")B3(x' — ") = &%(r — r'), (9.63)
(9.61) follows from (9.62) after forming (r|t). We can therefore identify
(rlyp) = p(r). (9.64)

Spatial wave functions (r) or their Fourier transforms (k) are thus
expansion coefficients of a state vector |1) in the basis of the position
eigenvectors |r) or the momentum eigenvectors |k).

If one wants to avoid the use of distributions, one must give up the sharp
localization in momentum or position space inherent in the improper vectors
k) or |r). Instead of plane waves one uses wave packets; the use of the plane
waves in the asymptotics of scattering states always has to be understood in
this sense. From the §-distribution, e.g. a Gauss function of small but finite
width is obtained. An alternative is to restrict the position space (or
momentum space) to a very large but finite normalization volume and to
introduce suitable boundary conditions (e.g. periodic). This provides a
discrete spectrum and normalizable functions.

In summarizing this chapter we have introduced the concept of abstract
states in a Hilbert space ¢ and specified the formal requirements.
Furthermore, we have introduced the Dirac notation, which is particularly
suited for many-body problems, and specified the eigen-vectors for
momentum and position in JZ.



© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
W. Cassing, Theoretical Physics Compact 1]
https://doi.org/10.1007/978-3-031-95521-1 10

10. Operators in Hilbert Space

Wolfgang Cassing!
(1) University of Giefden, Giefsen, Hessen, Germany

In this chapter we introduce linear operators in ## and their respective domains.
Physical observables will be identified with matrix-elements of self-adjoint
operators in 7 and their spectra and eigenstates will be investigated. This
concept will be extended to operators in product spaces. As an example we will
calculate the coupling of angular momenta in 7 and the separation of the center
of mass and relative motion. Furthermore, the exchange symmetry for identical
particles will be studied and lead to a separation of symmetric and anti-symmetric
many-body states, i.e. Bose and Fermi systems.

10.1 Heuristic Introduction

In the context of the quantum theory of a particle we have assigned operators to
classical observables using a quantization rule. In the case of spin, which has no
analogue in classical physics, we have introduced spin operators in the form of 2
X 2 matrices with characteristic commutation rules based on the orbital angular
momentum.

In order to be able to interpret the expectation values of such operators as
statistical averages, these operators had to be hermitean (i.e. only have real
eigenvalues, which represent the possible measured values) and have a complete
set of eigenfunctions. The discussion of the hermiticity of momentum and orbital
angular momentum has shown that for the complete determination of an operator,
its domain of definition and its domain of image are also important. We will
clarify these concepts again using the operators x and p,. In the space Z»(—o00, 00)
of square-integrable functions, x is applicable to every element ¢(z) of the space
(domain of definition); the image functions () (domain of image), however, do
not always belong to %5 (—o00, 00), e.g. functions ¥(z), which drop asymptotically
as 1/x. On the other hand, p, is only applicable to differentiable functions
€ Z(—00, 00); the image functions —i0/0x () also do not always belong to
%, (—00, 00). This problem of the domain of definition and the domain of image
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has already been discussed in connection with the uncertainty relation (see Sect. 6.
4).

10.2 Basic Concepts

An operator (mapping) in Hilbert space J# is defined by a mapping rule 4, a
domain D 4 C 4% and an image domain B4 C J¢, which consists of all elements

fr=Af (10.1)

if fruns through the entire domain D 4, i.e. VfeD 4.

In quantum theory, due to the superposition principle, only the class of linear
operators is of interest, which is defined by the fact that D 4 is a linear manifold
and for any f1, fo € D4 and any complex numbers a1, as the following holds:

Aarfi + a2 f2) = a1Afi + a2Af. (10.2)

10.3 Calculation Rules
1. Equality: 2 operators A and B are called to be equal if

A=B (10.3)
and

Dy = Dgp. (10.4)

2. Products: Let two operators be defined by A, D 4, B4 and by B, D, Bp.
Then we can execute the mapping AB in the order AB(= first B, then A) one after
the other, if Bg and D 4 have common elements. The domain of the product with
the mapping AB is thus the set of all f € D pg for which Bfe D 4.

This somewhat complex definition already shows that operators do not
commute in general. The definition of the commutator of operators is only simple,
if the domain of both operators is the entire Hilbert space . Commutability then
means

AB = BA. (10.5)




In contrast, operator multiplication is always associative.

Example: Operators that can be represented by (co-dimensional) matrices in
general do not commute, since the matrix multiplication is not commutative;
however, it is always associative.

3. Addition: g, b are arbitrary complex numbers; D 4, D p are the domains of
the operators 4, B. Then it is declared

(aA +bB)f = aAf + bBf (10.6)

for all ffrom the intersection D 4[] D g. The addition is commutative and
associative.

10.4 Linear Operators in Product Spaces
In J# alinear operator is defined by the rule A; and the domain D 4, = J4,

!

Ailxh) =xih); [x}) and |x;!)e H4; (10.7)
likewise in J%4 :
Bslp?) =|¢?); |p?) and |p?)e H. (10.8)

The application of A; to elements of the product space 4 ® 5 should then
imply:

Arlxdle?) =Ixi')e3) (10.9)
and correspondingly
Bslx}Hle?) =IxHle?). (10.10)

From (10.9) and (10.10) it follows that—when forming a product—the order of
the operators is unimportant: operators from different Hilbert spaces
commute.

In (10.9) and (10.10) we have defined the operation of the operators A; and
B; in the product space operational, as explained in 5% and %3. In principle, one
must extend the operators—declared in J¢3, ##5—to operators in the product
space J¢ ® %, defined by the commutative direct product (Kronecker product)

A1 ® Ey;  E1® B, (10.11)



where E1, E are the unit operators in %, and J&3.
Example: In Sect. 6.5 the position operator in the space of spinors was
described by

r O
rQ E, = (0 r). (10.12)

10.5 The Inverse Operator

We have introduced the concept of the inverse operator in Sect. 8.2 using the
example of the Green'’s function. We now define in general:

The inverse operator of an operator 4, D 4, B 4 is defined by the domain
Dy = Bjandtherule A71(Af) = fforall f € D4.

The inverse operator exists if and only if different images A fe B4 belong to
different f € D y; if it exists, it is unique.

As an example we consider A, := H — z defined in J#, where H is the
Hamiltonian of a particle without spin. A, has an inverse for all z with the
exception of values for which

Hy=zp, e, (10.13)

i.e. with the exception of the (discrete and (or) continuous) eigenvalues of H. In
particular, for z with J(2) # 0, A, always has an inverse.

The following statements are important for practical calculations:

1.If A is defined in D4 = ¢ and if A~! exists, then

AYAf=f VfeDy=#, (10.14)

thus

A7A = Ep, (10.15)

where FE 4 is the unit operator in JZ. From (10.14) we do not directly get
AAL = Ey. (10.16)
Only if D4 = By = 4% we obtain that

(10.17)
AA = A YA = Eu.



2. If inverse operators for two operators A, B with domains D 4, D g and AB are
defined, then the product also has an inverse and is

(AB) ' =B A1, (10.18)

10.6 The Adjoint Operator

For a (linear) operator A with domain D 4—for the image domain, in the following
itis only necessary that B4 C 5 —where D 4 is dense in JZ (see definition
(10.23)), we define an adjoint operator AT with domain D 4; as follows:

The domain D 4 is given by the set of all g € S for which a § € JZ exists
such that

(9,Af) =(3,f)  Vf e Da. (10.19)

The mapping rule should be

Alg=3. (10.20)

Thus forany f € D4, g € D 4 the relationship holds

(9, Af) = (Alg, f) = (f,Alg)" (10.21)

or in Dirac notation

(9lAlf) = (f|AT]g)". (10.22)

Due to property 2. of the scalar product in % and the linearity of A on D g4, it
follows that AT on D 4t is linear. Since D 4 was assumed to be dense in JZ, i.e. D 4
dense in ¥ <=> Vg € J€ thereisasequence f,, € D4 with

AT is uniquely defined on D 4.



Proof If for a fixed g € J# two elements g, §'e J# exist with the properties
(10.19) and (10.20), then

(9, f) = (7 f) (10.24)
and for Ag = g — g’ we get
(Ag,f)=0 (10.25)

forall f € D 4.But this cannot be the case, since D 4 was assumed to be dense in

J!

The domains of all operators in quantum theory are dense in ¢, such that
no difficulties arise in defining adjoint operators.

10.7 Self-Adjoint Operators

Are particularly important for quantum theory, since observables are represented
in quantum theory by self-adjoint operators.
We call an operator self-adjoint if

Dg =Dy (10.26)
and
Af =ATf  Vfe Dy (10.27)
Then follows
(9,Af) = (Ag,f)  Vf,geDa (10.28)
or in Dirac notation
(glAlf) = (flAlg)" (10.29)

Operators with the property (10.28) we have denoted by hermitian in Chap. 5
without regards to their domain of definition. According to the definition above,
self-adjoint operators have the essential additional requirement that their domain
of definition is dense in 4#. This additional requirement guarantees that the (real)
spectrum of self-adjoint operators is complete (without proof). We can therefore



represent physical observables by self-adjoint operators, since this class of
operators has the properties necessary for the statistical interpretation of
expectation values.

We now turn to the eigenvalue problem of self-adjoint operators 4,

Alp) = alp), (10.30)

and first consider the case of a purely discrete spectrum with eigenvalues a; and
eigenvectors ;). As in Chap. 6, one proves that the eigenvalues a; are real and
eigenvectors are orthogonal for different eigenvalues. The completeness of |¢;)—

which are assumed to be orthonormalized in the following—can be expressed (cf.
(9.41)) in Dirac notation as

> i lpi)(pil= Eze. (10.31)

We can also give a representation for 4 in analogy to (10.31). The expectation value
of A in an arbitrary state |1)),

(A4) =: (Y| Alyp), (10.32)
we insert the unit operator E ;» before and after 4 in the form (10.31)
(lA[Y) = >, 32 (Wlwi) (il Alps) (@) (10.33)

= ZWWPQ%(%’@ = Zai (i) |?

due to the orthonormalization (p;|¢;) = d;; and (p;|¥) = (|;) " according to
the definition of the scalar product. From (10.33) we can read off the

spectral representation of A:

A=Y, 0 i)l (10.34)

A corresponding spectral representation is also possible if the spectrum is
continuous or partly discrete and partly continuous. In (10.34) the summation
then has to be replaced (in whole or in part) by an integration. For the general case
we obtain

Yoilpi) (wil+ [dv |p,) (@ |= Esx (10.35)



> i i) {pil+ [dv a(v) p.)(e.|= A. (10.36)

Examples:
1. The z component of the spin:
We form the dyadic products (with eigenvalues +7/1):

g((l)) (10)— g(g) 01)=28, (10.37)

_hf/1 0y (0 0y _n/1 0
-~ 2[\0 0 01/] 2\0 -1/
2. The momentum operator:
The spectral representation of the momentum operator

p = [d’k ik |k) (K| (10.38)

yields as expectation value in an arbitrary (normalizable) state |)

(p) = [k nk(y|k)(k|y) = [d®k 1k *(k)p(k), (10.39)

as we already know from Sect. 6.3. (Note again that according to Axiom 2.1

(Ylk) = (kly)".)

10.8 Projection Operators

An important class of self-adjoint operators in Hilbert space J# are the projection
operators (= projectors). We consider a subspace /%, C 4 spanned by the
orthonormal vectors ¢;, 7 = 1,2, ..., r; then we define the projector, which
projects vectors from ¢ onto the subspace ¢, by

P.f=>" 19 (pi,f) VYfedt (10.40)
or in Dirac notation
P lf)=>ialelelf)  Vfe A, (10.41)

i.e.in short:

T (10.42)
P =311 les){pil.



The definition above might give the impression that the definition of P,
depends on the choice of the basis of ;. But this is not the case: if x,,,
m = 1,...,ris another orthonormal basis in ¢, then we can use the expansion

[pi) = D et [Xm) (Xmlps) (10.43)
to express P, in terms of |x,)
Pr =30 2t [Xomt) (X |03) (03[ xtm) (X - (10.44)
If we consider the inverse of (10.43)
Xm) = D ic1l9i) (@il Xm), (10.45)
then the orthonormalization of |x,,,)
> i1 (X! [90) (PilXm) = O (10.46)
provides the independence from the basis, i.e.
Pr=3 01 [Xm) (Xoml- (10.47)
[t was already mentioned above that the projectors are also self-adjoint operators.

To prove this, since the P, are defined in the entire Hilbert space ¢, we only need
to check whether

<.ﬂPr|g> - <9|Pr‘f>* (10.48)

for all f, g € S€. This is indeed the case since
Dicalflea)(pilg) = 2iq (il £) (gl = 221 (gl (@il £))". (10.49)

We thus have

P. = Pl (10.50)

The eigenvalue spectrum of P, is particularly simple. We first prove the
idempotence

(10.51)



P2=rP,.

T

For any vector | f)e ¢ the following holds
P2f) = Pr, Yoy Lo (@il ) = Doiy Yo i leid (wiles) (il ) (10.52)

- Z o) oilf) = P17,

since (@;|p;) = 0;; by assumption. With (10.51) it follows from the eigenvalue
equation

P,|f) = P?|f) = e/ f), (10.53)

since for the eigenvalues e, we have

e2=e, => e,=0,1. (10.54)

r —

Every operator P defined in the entire Hilbert space 5 with the properties
(10.50) and (10.51) is a projector, and can therefore be written in the form (10.42).
Such an operator P decomposes the entire Hilbert space # into two mutually
orthogonal subspaces. To prove it, we use the identity:

|f) = P|f) + (Ex — P)|f) (10.55)
for any vector | f)e €. With the notation
Plf) =If1);  (Bx — P)|f) =[fo), (10.56)
we obtain with (10.50) and (10.51)
(f1lfo) = (Ll P(Es — P)|fo) = 0. (10.57)

Mathematical addition: If two projectors P;, Ps are given in 2, the question
arises if the sum P; 4+ P> and the product P; P, are also projectors. The result is:

(i) P, P, is a projector if and only if
PPy = PP, (10.58)




since with (10.58)
(P,P,)*> = P2P2 = P\ P, (10.59)
such that (10.51) is satisfied, and from
(PP, = P/P] = PP, = P, P, (10.60)
also (10.50) follows (whereby we exploit the fact that P;, P» are defined on the
whole ##°). The condition (10.58) is also necessary; the proofis trivial. If P; P, is a

projector, then it obviously projects onto the intersection ¢, (| #p,; P1Py = 0
then implies orthogonality of ¢, and J¢p,.

(ii) P; 4+ P> is a projector if and only if P; P, = 0;

it projects onto the direct sum J¢p, @ F¢p,.

The physical meaning of projectors is explained by two examples:

1. We want to analyze the state |¢) of a particle according to the orbital angular
momentum /, i.e. ask the question whether or with which probability a certain
orbital angular momentum [ is contained in |4)). This question is answered by the
projector

Pr=Y_ Y. 0ledm){adm], (10.61)

where |alm> are eigenvectors of 2, [, with eigenvalues I, m, while « is the radial

quantum number. The sum is taken over all m, a that are possible for a given I. The
expectation value of P, in the state |))

(WBIP) = Yo0e 1 D ay [(Wlodm)|? (10.62)

has exactly the form of a measurement probability. The measured values are 0 or 1
and state, that in each individual experiment the answer to the question posed
above is ‘no’ or ‘yes’.

2. We consider two particles 1, 2 described by a wave function ¥(1, 2), where
1, 2 stands for all the degrees of freedom (position, spin, possibly isospin, color ...)
of the particles 1, 2. If they are identical particles (bosons or fermions), then the
wave function must not change (bosons) or only in sign (fermions) with respect
to particle exchange Pyo,

Pp¥(1,2) = ¥(2,1) = £9(1,2), (10.63)




since double exchange reproduces the original state,

P}, = Ex. (10.64)

For the case of independent particles, eigenfunctions for the Hamiltonian
operator H(1,2) = H(1) + H(2) are now product functions, ¢(1)x(2). Such a
product function will, however, generally not have the property (10.63), but it can
be decomposed into a symmetric and an antisymmetric part by projectors .
and o with the properties:

S o()x(2) = T={e()x(2) + ¢(2)x(1)}: (10.65)

o p(1)x(2) = %{w(l)x(% —(2)x(1)}-

Examples 1 and 2 show that projectors measure properties of quantum
systems, e.g. the property of having a certain angular momentum or a certain
symmetry with respect to the exchange of identical particles.

10.9 Unitary Operators

An operator U in Hilbert space ¢ is called unitary, if its domain and its image
domain is the whole Hilbert space ¢,

Dy = 5¢ = By, (10.66)

and if the mapping rule U is:

(Uf,Ug)=(f9) Vfget. (10.67)

Unitary operators are linear, as follows immediately from the properties of the
scalar product with (10.67). They also always have an inverse

U1 =Ut, (10.68)



since U is defined in the whole 57, one gets
(Uf,Ug) = (U'Uf,9) = (f,9) Vg€, (10.69)
since
UlU = E, =UUT, (10.70)

which directly gives (10.68).
Two examples of unitary operators are translations,

7(a) =exp {—Ja-p} (10.71)

and rotations

R(p) =exp {—+ - j} (10.72)

with j = 1+ s. The domains of definition of p and j do not cover the entire
Hilbert space, but are dense in ##. This is enough to achieve a continuation of the
definitions (10.71) and (10.72) for the entire Hilbert space . The rotations and
translations are linear and norm-preserving, such that (10.67) is satisfied. We will
see later that the time translation operator is also unitary. Ultimately, every
transition from one representation to an equivalent one is described by a unitary
mapping.

Example: The transition from the spatial representation to the momentum
representation by Fourier transformation is a unitary mapping; likewise the half-
side Fourier transformation from the spatial representation or momentum
representation to the phase-space representation (Wigner transformation)

f(r,pit) = (27h) 2 [d®s exp (—+p-s) P(r + $it)*(r — £it) (10.73)

or

f(r,pst) = (2mh) *2 [dPq exp (+q-r) ¥(p + it)P*(p — Lit) (10.74)




for square-integrable wave functions ¢ (r;t) = (r|v), which allows for a simple
transition to the classical limit.

The measurable properties of an observable A must be independent on the
specific representation or the choice of a specific coordinate system. This requires
a special transformation behavior of observables with respect to unitary mappings.
To this aim we transform the expectation value of an observable 4 in an arbitrary
state |v), taking into account (10.70) as follows:

(WlAlY) = (WIUTU A UTULp) = (¢'|U A UT|y') = (| A'[Y).  (10.75)

From (10.75) we get

A'=U AU (10.76)

It is easy to check that A and A’ have the same spectrum.

10.10 Realizations of Linear Operators in J7

In line with the vectors of the abstract Hilbert space the linear operators can also
be realized (represented) in different ways. Important examples are:

(1) In the C-representation, linear operators are represented by oo-
dimensional matrices. They act on the column vectors introduced in (9.23) in the
same way as finite matrices on finite column vectors. If one represents g € D 4 by

the column vector
( g1

g2
g=193], (10.77)

./

correspondingly f € B4 by
(10.78)



(1
fo

the mapping
f=Ag (10.79)

in matrix representation is

fi=2271 Aijg; i=1,2,.... (10.80)

If the operator in question is defined in the entire Hilbert space Z, then all the
calculation rules apply as defined for finite matrices. If, on the other hand, the
domain of definition is not the entire Hilbert space .7#, then one must be cautious!
To illustrate this, we consider the commutator

xp — pr = thE 4, (10.81)

which in matrix representation is:

e i(Tjk P — Dk T) = Thdji. (10.82)

Now, for finite matrices the trace of a product is invariant with respect to cyclic
permutations of the factors. According to this rule, after formation of the trace in
(10.82) the left side of the resulting equation should disappear, whereas the right
side obviously diverges!

For an operator A with domain D 4 = ¢, a matrix representation can always
be obtained: we choose a complete, orthonormalized system of vectors
|pi),i=1,2,...in S and form

(pi|Alp;) =2 Ayj. (10.83)

If D4 # ¢, caution is again necessary! For the physically interesting operators,
however, no difficulties arise, since D 4 is always dense in 2.

Examples: The domains of x, p do not enclose the entire Hilbert space ¢, but
are dense in JZ. If one chooses the eigenvectors of the harmonic oscillator as the



basis, then this complete system of vectors is contained in the domains of x, p. One
can therefore represent x, p by the following matrices:

(

and

[0
V1

p:i(m_m)”z 0
’ 0
0

\ -

as can be easily verified with

\ .

0 V1 0
Vi 0 V2
V2 0
0
0

[\)

V3

0 0

° 5

—V1
0
V2
0 V3
0

0
0

V3
0

V4

w

0
0
—V/3
0
V4

V4

0

0
0o .
0

A

0
0
0
V4
0

3

(10.84)

(10.85)

2mw

5 1/2
T = (—> (a—l—aT) and p =

Z [

[ mwh
2

)1/2((1T _a).

The eigenvalue problem (10.30) is equivalent to diagonalizing the matrix A;;
using a unitary transformation. The matrix Uj; has to be determined, for which

Zi,j U]mAZJUJTl = al(5k1.

(10.86)

We will present a practical approximation method in the form of a
diagonalization of A;; in a finite-dimensional subspace elsewhere.

(2) Spatial representation

We obtain the spatial representation of an operator A defined in all 5% by

considering the scalar product



(r[Al4), (10.87)

where |r) is the improper position eigenvector and |v) is an arbitrary normalized
Hilbert vector. If we write the identity in the form

Ey = [d*" |t'){r'| (10.88)
in (10.87), then
J &3 (x| Al ) (' |¢p) = [dPr' A(r,x') (r'). (10.89)
Thus A in general is represented in position space by a nonlocal operator
[d®r" A(r,r'). (10.90)

The local potentials V (r) introduced in Chap. 4 are a practical exception.

Equivalent to this is a position- and momentum-dependent operator, which we
obtain from (10.89) by using

P(r') =exp ((r — ') - p)e(r). (10.91)
Then
[ dr" A(x,x')y(x') = A(x,p) ¥(r), (10.92)

and fl(r, p) is the position- and momentum-dependent operator we are looking

for.
Special cases are r and p themselves; e.g. for the position operator r,, follows

from (10.89)
(r|rop.|¥) = [d®r'(r|rop.|t') (*'|¥) = [dr' ' & (r — r')p(r') =1 ¥(r).(10.93)

In the spatial representation, the position operator simply means 'multiplication
by r’. The momentum operator, according to the derivation of (10.91), has the well-
known form

p = —ihV,.

(3) Momentum representation
In analogy to (2) we form

(K|A[) = [d* (KAK)K[Y) = [dF Ak K)FE)  (10.94)



and obtain with
[d*k' A(k,X') (10.95)

the momentum representation of the operator A. Here the momentum operator
has the simple form 'multiplication by p = 7#k’, while the position operator has the
form

ihV, = iV, (10.96)

as is easily confirmed by Fourier transformation.

(4) General uncertainty relation

LetAon D 4 and B on D g be two self-adjoint operators. Then AB is defined on
D, Bp =: Dyp.On D4 5() Dy the commutator

[4,B] = iC (10.97)

is defined and C is a self-adjoint operator, too. We now want to prove that for all
1 € D¢ the following holds:

AA AB > 5 |(y|Cly)], (10.98)

where A A and A B are the mean square fluctuations of A and B in the state ),
respectively.
To prove (10.98) we introduce

A=A (A); B' =B - (B), (10.99)
such that
(A”) = AAZ, (B"*) = AB?; [A',B'] = [A,B].  (10.100)

For any real number 5 we then have

0 <|(A"+4BB")|* = |A'Y|* + 82| By’

10.101
LiB{(AS, B) — (B, AD)}. (10101

If we use the self-adjointness of 4, B in the brackets { .. }, then we obtain with
(10.100):
(10.102)



0 < AA% + B2AB? +iB(y|[A, Bl|¢).

The right-hand side in (10.102) cannot have two real zeros in . The discriminant
condition

AA’AB? — {i(U|[A, B|j$)}* = AA?AB? — {1(¥|C|$)}* > 0 (10.103)

proofs the claim (10.98).

Based on the considerations above about the domains of definition of 4, Band C
itis clear that (10.98) does not apply universally to arbitrary Hilbert vectors 2.
Typical examples have already been discussed in Sect. 6.4. The proof above is valid
for position and momentum, since with v, z1) is also differentiable again and
belongs to D, if ¢ € D, and vice versa the asymptotic drop required by the

elements of D, is not weakened by differentiation. It is therefore
Dyp = Dpy = Dy () Dp. (10.104)

A counterexample is the false relation Al,Ap > /2. The angular momentum
operator [, is only self-adjoint in the space of periodic functions

Y(r, 9, ) = P(r, 9, o + 2m). (10.105)

Then ¢ 9(r, ¥, ¢) does not belong to the domain D;_ on which [, is self-adjoint.

10.11 Coupling of Angular Momenta

The problem of the coupling of angular momenta can occur in two forms:

1. Coupling of the angular momenta of two different particles, e.g. two
atomic electrons outside closed shells. In order to calculate the total angular
momentum of the electron shell, the angular momenta of the two electrons must
be ‘added’ (in Hilbert space).

2. Coupling of the spin and the orbital angular momentum of a single
particle for the case of a strong spin-orbit interaction (which follows naturally
from the relativistic theory of electrons).

We can treat both cases in a unified manner, since the rules for angular
momentum coupling depend only on the angular momentum commutation rules.

Since the angular momenta ji, jo—to be coupled—commute,

J1,d2] =0, (10.106)

we can find the product states,



o j1 masja ma) = |a)|jima)|jama), (10.107)

which are simultaneous eigenstates ofj%, j1. with eigenvalues 71, m; and ofjg, J22
with eigenvalues j2, mo, where a stands for the remaining quantum numbers
characterizing the product state. We are looking for the eigenstates

la j m) (10.108)
of the total angular momentum
J=J1+J2 (10.109)

From the commutation rules for the components of j; and j, it follows directly that
j also satisfies the usual angular momentum commutation rules. Since

5%, 31 = [3%,33] = 0, (10.110)

the states |& j m) can be represented as linear combinations of the product states
|ajimyjams) for fixed j1, jo, i.€.

la g m) =D, o ladimyjams) (Jimyjama|jm). (10.111)

The expansion coefficients (Clebsch-Gordon coefficients) do not depend on
the index a. We now have to find out which values j, m are possible for a given j;,
j2 and how the coefficients (j1mjjsms|jm) can be calculated.

We first note that |aj1m1jamo) automatically is an eigenstate for j, with
eigenvalue m = m; + mo:

Jlagimijoms) = (jiz + J2.)lagimijams) (10.112)

= (my + ma)|ajimyjams) = m|ajim;joms).

The following table lists the possible m values and their degeneracy IV,,:
(10.113)



Jj1+ J2 1
J1t+72—1
J1+Jj2—2 3
J1—J2 2j2 +1
—(j1 — J2) 252 + 1
—Jj1— J2 3
—Jj1—J2+1
—J1 — J2 1

From Chap. 9 we know that the eigenvalues of 52 have the form j(7+ 1) with
j=0,1/2,1,3/2,2,5/2,... as possible values for j; for every j-value there are
(27 + 1) values for m. We now show that eigenstates for 42 can be constructed

from the states |aj1mij2ma). To this aim we first show that |aj;j17272) is an
eigenstate of 52 and write

=01+ 0+ 2 je =+ 55+ (5 dp +dsdr) + 20152 (10.114)

with
Jv =dwtijiy Gy =Jawti gy (10.115)
and note
j1 lagijijems) = 0 (10.116)
and
ja |ajimajaga) = 0. (10.117)
Then

(10.118)




Plajijigege) = 711 + 1) + ja(j2 + 1) + 2j152]| g1 jigego)
= (j1 + 72)(J1 + J2 + 1)|agrjigege)-

We thus have found one of the j-values that actually occurs to be j; + 7; according
to (10.113), there are no other j-values for m = j; + j2. The states

la 7= (j1+ j2) m = (j1 + j2)) and |aj1717272) therefore are the same (except
for a phase). Using the usual phase convention, we set

la § = (j1+ j2) m= (j1+J2)) = |ajijigado)- (10.119)

Next, we consider m = j; + 72 — 1 (see (10.113)); there the possible product
states are

laj1(jr — 1)j2g2) and |ag1j1j2(j2 — 1)) (10.120)

We now are looking for the linear combination of the states (10.120), that are also
eigenstates of j2. One of them can be found by applying j~ = Ji tJy:

la j=(j1+Jo) m=(j1+j2—1)) = Wmh(ﬁ + J2)(J1 + J2))(10.121

_ “5”5] it + j2) Gt + 7o)

\/31 + 72

\/ IaJ1 g1 — D)jajo)+

Apart from this eigenstate for 7 = j1 + 72 and m = j; + j2 — 1, according to
table (10.113) there is exactly one further eigenstate with 3 = j; 4+ j2 — 1 for the
same value m; it must be orthogonal to (10.121). The only linear combination,
which can be formed from (10.120) and is orthogonal to (10.121), can be specified
directly (except for a phase factor):

!ajmjz j2 — 1)).

o j=(G1+7d2—1) m=(j1+j2—1)) (10.122)




J2 . . J1 S
= —4/ = — | —1 +4/ = — | —1)).
\/ ]1+]2\ J1(J1 — 1)j2g2) \/ jl+]2\ J1j1g2(j2 — 1))

In the next step we have three product states form = j; + jo — 2

laj1(d1 — 2)j2d2)sljijige(d2 — 2)) and  [agi(j1 — 1)j2(j2 — 1)), (10.123)

from which exactly 3 orthogonal eigenstates of 52, j, can be formed. Two of
them are obtained by applying 5~ to (10.121) or (10.122), the third by
constructing the orthogonal state. This procedure is continued until it terminates,
which occurs when either m; = —j; or my = —j5. The positive of the two
numbers j1 + j2 — 271 and 71 + j2 — 272 gives the smallest value of j that can be
reached. For given values j1, jo, j runs through the values

g1 — Jal< 5 < g1 + da. (10.124)

For each j;, j, there are (2j; + 1)(2j5 + 1) product states; on the other hand,
the number of possible eigenstates for the total angular momentum j* and the
component j, :

(254 1) = (251 + 1) (252 + 1) (10.125)

as expected.
Since by the transformation (10.111) orthonormalized vectors |ajim1jams)

are mapped to the same number of orthonormalized vectors |« j m), the
transformation coefficients (j1m1jama|jm) define a unitary matrix. For the usual

phase convention all coefficients are real by construction, such that the unitarity
condition is:

D myms U M1 jome) (Gimajame|jm) = b5 Smn (10.126)

or vice versa

(10.127)




> jmtdimygama|im) (Gm|jimijema) = dmm; momy-

According to (10.112) and (10.111) only those coefficients (j1m1jama|jm) are
different from zero for which

m = m1 + M2 (10.128)
and the ‘triangle inequality’
g1 — J2/< J < g1+ 32 (10.129)

are satisfied.

The Clebsch-Gordon coefficients calculated by the method above can be read
off from tables; when using the tables (or source codes) one should always pay
attention to the respective phase convention!

10.12 Center of Mass and Relative Motion

We first consider a system of 2 particles, described by the Hamiltonian operator

7 S R S (10.130)
2m2 '

2m1
with the relative coordinate of the two particles
r =r; —rs. (10.131)

The 2-particle problem can then be reduced (as in classical physics) to an
equivalent single-particle problem by reducing the kinetic energy to the relative
coordinate

r=r;—rp (10.132)

and the center of mass coordinate

__ Mmyri+mery _ Mmri+msra
R = Muiiman _ mubibmt (10.133)

or

r =R+ 37, ro=R— Jlr (10.134)




to the corresponding momenta

P =1vp, p=1V,. (10.135)
The result is
H=fr+2 +V() (10.136)
with
M=mi+m; and p= " (10.137)

The separation Ansatz
U = 9s(R) 9,(r) (10.138)

converts the Schréodinger equation

HY=FEY (10.139)

into
Hyaps =By and  H,(r) = B, (r) (10.140)

with
E=E;+ E,. (10.141)

The solution for the center of mass motion is trivial:

Ys(R) =exp (iK - R) (10.142)
with
W K?
FE, = SV (10.143)

This leaves

(10.144)



2+ V()] % (r) = Bty (x)

as the equivalent single-particle problem.
For N particles the separation of center of mass and relative motion is
erformed in analogy to the procedure above by introducing Jacobi coordinates:

pn:%_rnﬂ n=1,2...,N—1 (10.145)

and

py =R = =" (10.146)

If we consider the corresponding momenta

T, = <V
n ;P
and wny = P = —#/4V g, then the Hamiltonian reads
2
H= 4+ H.(pn,mn). (10.147)

Mixed terms between P and the 7w,, (n = 1--- N — 1) do not occur since such
terms would lead to the violation of Gallilei invariance.
An illustration of the Jacobi coordinates for 4 particles is given in Fig. 10.1.

3

Fig. 10.1 Illustration of Jacobi coordinates for 4 particles



10.13 Pauli Principle for N Identical Particles

In analogy to the case of two particles we require for N identical particles, that
only such states are possible for which, for any chosen particle pair (i, j), either

IL;; U (&1,. .., €n) = +TP(&, ..., EN) (10.148)

or

IL; (&1, .., €n) = —U(&, ..., EN) (10.149)

when applying the particle exchange operator I1;;.
This requirement is consistent: if +(—) holds for any particle pair (i, j), then it
also holds for any other particle pair of the system. If for (1, 2)

I, ¥ =¥ (10.150)

then
I1;; = Iy ;1091115115 1155, (10.151)

since
I;; ¥ = I1;,¥ = £V (10.152)

regardless of whether I1;; and IIy; (in the state ¥) have the eigenvalue +1 or —1,
since these operators appear twice in (10.151).

10.14 Composite Particles

All elementary particles known to date can be classified as bosons or fermions.
Without exception, bosons have integer spin, fermions have half-integer spin.
Examples: Fermions are e.g. electrons, muons, protons, neutrons, quarks,
neutrinos -spin 1/2 -particles -, whereas photons, pions, kaons, phonons (= lattice
vibrations in crystals) or gluons are bosons.

Atomic nuclei are bosons, if the number of nucleons is even, and fermions if the
number of nucleons is odd, provided that the 'nuclei’ can be treated as particles.
This is the case in molecular and solid-state physics. To prove the property of
atomic nuclei claimed above, we consider two identical nuclei, each with Z protons
and N neutrons, a total of 27 + 2N = 2 A particles. Exchanging the two nuclei



then implies exchanging the nucleons of one nucleus with those of the other, this
gives a total of A exchanges. Since the wave function ¥ changes sign with every
single exchange of two fermions,

.0 = (—)49, (10.153)

iff[12 is the operator for the exchange of two identical nuclei of mass A. The
extension to more than two identical nuclei is trivial; nuclei with an even number
of nucleons behave like bosons (e.g. 4‘He). These properties of composite particles
are essential when calculating the specific heat of an ideal gas of diatomic
molecules (see quantum statistics).

In summarizing this chapter we have introduced linear operators in ¢ and
their respective domains. Physical observables have been identified with matrix-
elements of self-adjoint operators in 7 and their spectra and eigenstates have
been investigated. This concept has been extended to operators in product spaces,
which is mandatory for a quantum description of many-body problems. As an
example we have calculated the coupling of angular momenta in ¢ and the
separation of the center of mass and relative motion. Furthermore, the exchange
symmetry for identical particles has been studied and lead to a separation of
symmetric and anti-symmetric many-body states, i.e. Bose and Fermi systems.



Part IV
Quantum Mechanics of Many-Body
Systems
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11. The Time-Evolution Operator

Wolfgang Cassing!
(1) University of Gief3en, Giefden, Hessen, Germany

In order to describe the time evolution of a quantum system different ‘pictures’ may be
employed, which in principle all are equivalent, but in practice are used in different expansion
schemes. We will start with the

11.1 Schrodinger Picture

Here the starting point is the time-dependent Schrodinger equation
ing [¥(t)) = H|®(t)), (11.1)

which describes the dynamical evolution of the system by the (N-body) Hamiltonian H. If the
vector |¥(tg)), which describes the state of the system at time %, is known then Eq. (11.1)
uniquely defines |¥(t)) for any other time ¢ # t(. Accordingly, there must be a unique
transformation

[¥(2)) = U(t,t0) ¥ (t0)) (11.2)

with a linear operator U (¢, t) due to the linearity of Eq. (11.1). Since the Hamiltonian H
must be self-adjoint we get:

(@) =0, (11.3)

or

(T()T(t)) = (L(to)| T (t0)) = (T(to)[UT(t, to)U(t, to) ¥ (t0))- (11.4)

Accordingly, U(t, to) is a unitary operator, i.e.

UT(t,to)U(t,to) = 1%’ (11.5)

where 1 denotes the identity in the Hilbert space . U (t, t¢) is denoted as time-
evolution operator and as in case of rotations or spatial translations defines a group with
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ULt to) = Ul(t,to). (11.6)

As in case of spatial translations this group is abelian contrary to rotations.
Inserting (11.2) in (11.1) we get:

ih g U(t,0)| ¥ (to)) = H U(t, t0)|¥(to)). (11.7)

Since the time ¢ is arbitrary one obtains the operator equation

ihd Ut to) = H Ult,tg). (11.8)

[t is useful to consider two cases separately:
(i) If H does not depend on time t the solution is simply given by

U(t, to) =exp (=4 H(t —to)), (11.9)

as one finds out by differentiation of (11.9) with respect to t. In case of an eigenvector |V g(t¢))
of H with energy E we have

U(t, t0)| ¥ p(to)) =exp (— 4 E(t — t0))|¥ u(to)), (11.10)

i.e. the time-evolution is described by a phase shift.
(ii) If H depends on t, i.e. H = H(t), it is useful to consider the integral equation,

U(t,to) = Lp — L [ dt’ H{') U(t', 1), (11.11)

where the boundary condition U(tg,t9) = 1 4 is employed explicitly. Equation (11.11)
practically can be solved by iteration. A formal solution is given by

Ut to) = T(exp [~ [} dt’ HE))) = $2, ST [l at HE)",  (1112)

where T denotes the time-ordering operator which places all operators at lower times to the
right.
Instead of time-dependent Hilbert vectors in the Schrédinger picture the

11.2 Heisenberg Picture

employs time-independent Hilbert vectors, however, explicitly time-dependent operators.
The equations of motion for the operators then replace Eq. (11.1). To obtain the latter
equations of motion we consider the expectation value of an operator A4 in the state |¥(¢)),

(T AR)E(E) = (L(to)|UT(, to) AU (¢, t0) ¥ (to))- (11.13)



In this case the operator A(t) may also explicitly depend on time ¢, which is useful for unclosed
systems, i.e. for systems in contact with some time-dependent environment. In the Heisenberg
icture one uses the Hilbert vector

[Wr) =: [¥(to)), (11.14)

which fixes the system at some time £y, and represents the observable by the time-
dependent operator

Ap(t) = U'(t, to)A(t)U(t, o). (11.15)

The expectation value of 4 in time then reads
(A), = (Tn|An() L) (11.16)

The time evolution of A (¢) is obtained from (11.15) and (11.8):

i3 Ap(t) = ihUT(t,t0) (2 A())U(t, to) + UT (¢, to)[A(t)H — HA(t)|U(t, o) (11.17)

- (4t 1)+ in( g A))
with
Hy, =:UT(t,t0)H Ul(t,to) (11.18)
and
(% A®), = U'(t,t0) (5 A@)U(tto). (11.19)

If the observable C does not explicitly depend on time ¢, i.e. C # C(t), it represents a
conserved quantity if

[Ch, Hp] = 0, (11.20)

which is equivalent to

C.H] =0 (11.21)




in the Schrodinger picture.

11.3 Interaction or Dirac Picture

For practical calculations it is useful to change to the Dirac picture. To this aim one rewrites
the Hamiltonian as

H = H,+ H'(t), (11.22)

with a time independent Hy and known system of eigenvectors. In this case the state

(¥ (t)) =exp (+Ho t)|¥(t)) (11.23)

allows to separate the time evolution of the state |¥(¢)) determined by H such that the
time evolution of |¥(t)) is essentially determined by H'(¢). Inserting (11.23) in (11.1) we get:

ih g |Wp(t)) = —Ho|¥p(t)) + ik exp (L Hot) 2 |¥(t)) (11.24)

— _H|Wp(t))+ exp (%Hot) [Ho + H'|%(2))

—exp (- Hot) H'(t) exp (~+ Hyf) [ (1)

or

ih4|¥p(t)) = Hp(t)|¥p(t)) (11.25)

with

Hp(t) =exp (+Hot) H'(t) exp (—+Hot). (11.26)

Equation (11.25) differs from (11.1) in the respect that only the interaction H,(t) appears
and not the full Hamiltonian H(t) as in (11.1); the exponential terms in (11.26) are known
phase factors in the basis of eigenvectors of Hy.

In order to obtain an iterative solution of Eq. (11.25) we introduce the time-evolution
operator in the Dirac picture by

(11.27)
|¥p(t)) = Up(t,to)|¥p(to))



and obtain from (11.25)

ih9r Upl(t,to) = Hp(t)Un(t to) (11.28)

with the boundary condition Up(tg,tq) = 1 4. The corresponding integral equation for
Up(t,ty) reads:

Up(t,to) = 1w — + [} dt' Hp,(¢)Up(t', to) (11.29)

and contrary to (11.11) only contains the interaction operator H,(t). Accordingly, an
iterative solution of (11.29) should converge fast if H( already provides some reasonable
approximation to the system. The formal result of such an iteration (with Up(t, t9) = 1 in
0’th order) is the Dyson series

Up(t,to) = Lo — + [y dt' Hp(t') = 3¢ [ dta [, dtr Hp(t2)Hp(t) -+ (11.30)

:\ N t tn th-1 to
=lr+) <—1> / dtn/ dtn_l/ dtn_g"'/ dty Hp(t)Hp(tn 1) --- Hp(ts
" h to to to to

with

>ty > >t > to. (11.31)

One has to take care about the sequence of the operators Hp,(t,) Hp)(tn-1) - - - Hp(t1) etc,
since fort; # t

[Hp(t1), Hp(t2)] # O, (11.32)

except for the trivial case [Ho, H'] = Ound H' # H'(t).

In summary: we have introduced the Schrodinger picture, the Heisenberg picture and the
Dirac picture in order to describe the time evolution of a quantum system. These different
‘pictures’ in principle all are equivalent, but in practice are used in different situations and
expansion schemes.
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12. Particle Number Representation for Fermions

Wolfgang Cassing!
(1) University of Giefden, Giefen, Hessen, Germany

In this chapter we will introduce the particle number representation for fermions, which allows
for a transparent formulation of many-body problems and takes care about the antisymmetry of
the fermion wave function by simple (anti)-commutation relations. Furthermore, we give
explicit expressions for one-body and two-body operators in particle number representation
and calculate some characteristic examples.

12.1 Representation in Configuration Space

The state of a system of N identical fermions with coordinates &; (position, spin, isospin, etc.);
t=1,..., N, can be described by a wave function in configuration space

U1, ENst). (12.1)
For the calculation of ¥ from the Schrédinger equation of the N—particle system
ih W(E, ..., Enit) = H ¥(&y, ..., Enit) (12.2)

one generally has to rely on approximate methods. The most frequently used approximation
methods are ultimately all based on splitting the Hamiltonian H,

H := H, + Hp, (12.3)

where

Hy(ér,...,6n) = S h(&) = SN[t + U&)] (12.4)

describes a system of independent particles in an average potential U(§) and H y captures
the remaining residual interaction between the particles.

Example: For the electrons of an atom one could use a shielded Coulomb potential as U (§),
which captures the nucleus-electron interaction exactly and the electron-electron interaction
approximately in the sense of an average potential. The approach (12.3) then forms, together
with the Pauli principle, the basis of the shell model of atomic physics.

The Schrodinger equation for Hy can be solved strictly (for ‘reasonable’ potentials U), since
the task is reduced to a single-particle problem
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h ¢i(§) = e pi(§)- (12.5)

The eigenfunctions for H then are product functions (ignoring the Pauli principle, i.e. the
symmetry of the states with respect to particle exchange):

(&1 &n) =i (&) -+ Qin(€En), (12.6)

where p characterizes the single-particle states {i; - - - iy } = p. If the eigenfunctions for h form
a complete system (which we will always assume to be orthonormalized in the following), then
the product functions ®,, form a complete basis in configuration space.

The general N particle wave function ¥ (&1, . .., £n;t), furthermore, can be constructed as a
linear combination of the product functions ®,,.
¥=>,Cut) pu (12.7)

The coefficients C),(t) have to be determined from the Schrodinger equation (12.2). If we want
e.g. calculate the stationary solutions of (12.2), one method is to determine the coefficients C|,
by diagonalizing Hg in the basis ®,: we take a finite number of states (usually the k most
energetically favorable states) from the basis of ¢, and diagonalize the finite-dimensional (

k x k) matrix

(®u|Hg|®), (12.8)

which ensures the diagonalization of H according to the construction of ®,; by adding further

product functions (kK — 00) this approximation method can be improved systematically.

Since we are considering systems of identical particles, the resulting N-particle wave
function ¥—in every step of an approximation method—must satisfy the Pauli principle. This is
not automatically the case in the method outlined above, since the matrix (12.8) does not
‘know’ whether we are considering bosons or fermions. It is therefore appropriate to carry out
the required antisymmetrization directly on the basis functions @, in the expansion of ¥
(12.7).

In analogy to the case of two identical particles we form antisymmetrized product functions
in the form of Slater determinants

&) = —= 3, ()" Plea(&) o i (EN)]: (12.9)

here P runs through all possible permutations and (—)? is the signature of the permutation.
According to the rules for determinants, ), is totally antisymmetric with respect to particle
exchange (= exchange of two columns or rows). In particular, ¢}, = 0 as soon as any two

functions ¢; from the set {1} are the same. This implies that the Pauli principle for a system of
independent fermions can also be formulated in such a way that each single-particle state can
only be occupied once. However, this formulation of the Pauli principle assumes independent
fermions (Hg = 0) and is therefore only a special case of (10.149)! The expansion of ¥ in the
basis (12.9) guarantees that the solutions in every step of an approximation procedure satisfy




the Pauli principle; it is of practical advantage since the expansion of W in the basis @Z contains

fewer expansion coefficients, that have to be calculated, than the expansion (12.7). As a general
approach, we therefore choose

\Il(é‘la s 7€N;t) = ZM Cﬁ(t) QZ(gh cee ,£N)' (12.10)

By an optimal choice of U(&) one can try to keep Hp so ‘small’ that the system in good
approximation is described by H), such that the particles behave approximately independent.
This is a good approximation for many questions in atomic physics; (example: structure of the
periodic system of elements). The ground state of the system is then approximated by the
ground state of Hy, in which the lowest N single-particle states ¢; are occupied.

This state is not always uniquely defined: If degenerate single-particle states are present
(which is always the case in central potentials), then—depending on the number of particles in
the system—the lowest eigenstate of H( can be degenerate, e.g. if two or more energetically
equal levels are available for the last particle.

Excited states of the N-particle system are obtained - in the approximation of independent
particles!—by ‘raising’ one or more particles to levels that are unoccupied in the ground state
(particle-hole excitations).

12.2 Structure of the Fock Space

The following particle number representation (discussed below) has two main advantages
relative to the configuration space representation:

1. While the wave functions ¥ (&1, . . ., €n;t) describe systems with a fixed particle number
N, the particle number representation allows for the description of systems whose particle
number is not sharp. This is the case e.g. for superconducting or superfluid systems (see
Chap. 17).

2. The antisymmetrization can be incorporated in the particle number representation in the
form of a few, simple commutation relations for particle creation—or annihilation—
operators. This generates a calculus that is easier and safer to handle than dealing with Slater
determinants in the context of the configuration space representation.

In the following, we consider a system of fermions whose particle number is not fixed. We
describe such a system in the so-called Fock space, which is constructed from all Hilbert spaces
J¢N with a fixed particle number N as follows:

J€] is the Hilbert space of a 1-fermion system, spanned by vectors |i), whose representation
in configuration space are the wave functions p;(§),

(i) = ¢i(§), (12.11)

where i includes a complete set of quantum numbers for a particle.

J% is the Hilbert space of a 2-fermion system, spanned by vectors |i143). Such a vector
|i129) describes a state in which the single-particle states iy, i, are occupied; the configuration
space representation of these states |i1i2) are 2 x 2 Slater determinants, formed with the wave
functions ;,, Yi,,




v (§1) ©i(€2)
(Piz(gl) (Pi2(€2) .

(€281liniz) = =5 (12.12)

General case: Let ¢ be the Hilbert space of an N-fermion system, spanned by vectors
i1 - - - in). The notation |45 - - - ¢ y) implies that the single-particle states i1, 72, . . ., iy each are
singly occupied according to the Pauli principle. In the configuration space, the vectors
|41 - - - i) are represented by N-particle Slater determinants, formed from the single-particle
functions ¢;,, ..., @iy :

(En--&livein) = 7= 30, (2) Plei(€r) - i ()] (12.13)

Phase definition:

In order to define the sign in the determinant (12.13) unambiguously, the functions ¢; must
be numbered in an arbitrary but fixed way (exchanging two indices means exchanging rows, i.e.
changing the sign!). We can e.g. sort the functions ¢; in the order of increasing particle energy
€;. If several ¢; are degenerate, then for a fixed energy e.g. we order according to increasing
angular momentum j and component m j, always starting at —m ;. In this way we generate a
standard ordering

i <y <o <ip, (12.14)

which is arbitrary, but must be maintained consistently within a calculation. This also implies
that the index order in the state |i; - - - i ) is fixed!

In every Hilbert space %y the vectors |i; - - - iy) are orthonormalized due to the
correspondence with Slater determinants,

(G1---in|J1 - JN) = Gijy - Dinjns (12.15)

if the single-particle functions ¢; are orthonormalized.
Proof We write

&, {i} = VN! [ (€&1) -+ - iy (EN)] (12.16)

where the operator

o =57 2, (—)'P (12.17)

is a projector onto the space of antisymmetrized N-particle functions. As a projection
operator it has the characteristic properties

o =1, 2=, (12.18)

as can be explicitly proven using (12.17) (cf. for example A. Messiah, Quantum Mechanics I, p.
97). We now form:



(@a{i}|@u{j}) = NN & 2{i}|& 2{j}) (12.19)

where ®{i} = ©;,(£1) - - - ~piy (EN), {5} = @i (&1) - - - <@y (§n) are the pure product
functions. With (12.18)

(@u{i}|®.{7}) = N{@{i}&? 2{j}) = NU(®{i}| & &{j}). (12.20)
If we expand & ®{j} according to (12.17), then:
NUB{i}|os B{j}) =det ({1, [1,)). (1221)

This expression is only # 0 if the sequences {i; - - -ix } and {41 - - - jn} agree, since otherwise
in every product term of the expansion of det ({(¢;, |¢;, )) atleast 1 factor = 0. The
normalization of the ¢, then guarantees that

(iy---inliy---in) = 1. (12.22)

By adding the space % for the particle vacuum with the only state |0), we now sum up the
spaces g%, J41, . . ., 7€ as a direct sum to form the Fock space /2,

H =D DIy D - (12.23)

We supplement the scalar product—already defined in the individual spaces ¢, —with

(i1 inlji---ju) =0 if N # M. (12.24)

This introduces a scalar product in the entire Fock space; the choice in (12.24) is free, since
a scalar product between Slater determinants ®,{u} with different particle numbers is not
defined. Thus, in contrast to (12.15), in Eq. (12.24) we are not bound by the correspondence to
the configuration space.

The choice made in (12.24), i.e. the direct summation of the subspaces, implies that we have
composed the subspaces . in an orthogonal manner. This choice is also the only suitable one

with regards to operators preserving the particle number, e.g. the particle number operator N
itself. This operator is diagonal by definition in every subspace ¢,

Nliy---in) = N|iy---in). (12.25)

In order to keep the property (12.25) in the Fock space .77, we must require (12.24), which
gives

(iy - in|Njr---dm) = N{iy--in|gr---ju) = My ---in|ji--- jar) (12.26)

for N # M. This implies that all basis vectors in ¢ are orthonormalized if one also adds

0l0) = 1 (12.27)



since the correspondence between the vectors |1 - - - i ) and the Slater determinants does not
provide any information about the scalar product (0|0). (Caution: do not confuse the vacuum
state |0) with the zero vector!)

12.3 Creation and Annihilation Operators

We now introduce linear operators in the Fock space .#. The two basic types, from which all
others can be constructed, are creation and annihilation operators for particles. Creation
operators connect the subspaces 7y for different values N in the following way:

ain|i1---iN> =0 if m occupied in |i;---iy) (12.28)

ain|i1 ceedN) = |miy - in) = (—)k|i1 ce-fpme--iy)  else.

Here k denotes the number of states occupied in |i; - - - i) that precede the state m in the
standard ordering. The factor (—)k in (12.28) therefore comes from the fact that when two
particles, i.e. two occupied states, are exchanged, the vector |i1 - - - ;) changes its sign due to
the antisymmetry.

The interpretation of (12.28) is obvious: The operator ajn creates a particle in the state m, if
this is not occupied in |é; - - - i y); the operators a;fn for different m values thus lead from J#y to
HN+1. If mis occupied in |é; - - - i), we cannot create a second particle in m due to the Pauli

rinciple. The following therefore holds in general:

@)’=0  vm (12.29)

due to the Pauli principle.

Consequences from the definition (12.28):

1. Annihilation operators

The operators a,,—adjoint to the operators ajn—are particle annihilation operators. To
rove this, we employ the unit operator in 5 according to the completeness relation

D0 2y 1 )G M= L ® 1o © 1o @ -+ = L. (12.30)

Then we can write ({ja} = (J1- - jmr))
amli1 - in) = 1op amliy---in) = X0 Dogjn 91 dm) U1+~ Julamlia - - - in), (12.31)
and for the coefficients (j1 - - - jar|am|is - - - i) we get:

1+ jarlamlin - in) = (@1 -in|ah|ir - ja)* (12.32)



according to the definition of the adjoint operator. Furthermore:

(iq - -iN|a:[n|j1 i) = (N Mgy e gu)t = (_)k@'l il gEme - gar) "L (12.33)

Now (i1 -+ -in|j1 - Jem---jum) # 0 only if
(a) N = M + 1 due to the orthogonality of the spaces % and
(b) the sequences (i; - - - i) and (ji - - - jym - - - jpr) are the same. Thus:

amliy---iy) =0 if min [|i;---in) empty

i1 in) = (—)k|i1 e digso - -tn) if m occupied and m = igyq.

(12.34)

In (12.31) only a single vector from 5% _1 contributes to the double sum, i.e. the one that
(except for the sign) results from the vector |i; - - - i), if the state m = ij1 is eliminated. Thus

an, annihilates a particle in the state m, if m is occupied in |i; - - - i n).

12.4 Construction of N-Particle States

We obtain a N-particle state |i; - - - i ) by application of creation operators to the vacuum,

[ir---in) = al ---al 10) =TT%_; ahl0). (12.35)
The vacuum is characterized by the fact that
am|0) =0 Vm. (12.36)
12.5 Particle Number Operator IV
From (12.28) and (12.34) follows
Ahamlii---in) =0 if min |iy---iy) empty (12.37)
a:[ﬂam\il---im =l|é1---in) if m occupied in |i1---in) .
The operator a;rnam has the eigenstates |i; - - - iy) with the eigenvalues 0 and 1,
ahamlir- - in) = npliy - in) with n, = 0,1; (12.38)




ie. altnam indicates (measures) whether the state m is occupied (n,, = 1) or empty
(n, =0).

The operator ) ainam therefore checks all single-particle states, whether they are
occupied or not and adds up the number of occupied states; it thus determines the particle

number of the system under consideration.

N = >om ajnam

(12.39)

is an explicit representation of the particle number operator, whose eigenvalues for

the

eigenvectors |i; - - - i) result in the particle number N of the system. According to (12.39), Nis

obviously hermitian. In any state of 2,

[R(t)) =D N0 2wy ONLint () |1+ Gn), (12.40)
however, N is not sharp and may have fluctuations (A]\Af)2 # 0 (see Chap. 17).
12.6 Commutation Rules
From the definition of a;fn we get
aina;rl|i1 -+-iny) =0 if m,n occupied or n =m (12.41)
al alliy---iy) = |mniy---iy) otherwise
and vice versa,
ala;rnﬁl -+-iny) =0 if n,m occupied or n =m (12.42)
alal i1 --in) = |nmiy---in) = —|mniy---ix) otherwise.
Adding (12.41) and (12.42) gives
alal + alal, =0, (12.43)

since (12.41) and (12.42) hold for any vector |i; - - - iy). In analogy one proves:

amQn, + anam =0

(12.44)




and

a;fnan + anain = Omn- (12.45)

Note: The commutation relations (12.43), (12.44) and (12.45) become more complicated
when using a non-orthogonal basis of single-particle functions.

12.7 Observables in Particle Number Representation

In order to be able to do physics in the Fock space .7, we must be able to explicitly represent
operators such as the Kinetic energy T, potential energy V or angular momentum J. We want to

show that operators (like those mentioned above) can be constructed from the a;, al

-

We make use of the fact that we know the representation of the operators in the
configuration space. The corresponding operators in the Fock space 5 then are to be defined
in such a way, that the matrix elements of an operator in the subspaces .7¢y are the same in
both representations. It is sufficient to show this for the basis vectors:

Jdre @:{in}O(&y, ..., EN)Ru{in} = (31" iy |O(ahy, am)ldr - in)- (12.46)

Since the operators we are interested in, such as energy or angular momentum, preserve the
number of particles, the following must also hold in addition to (12.46)

(i1 - in|O(ah, ap)lji---ju) =0 if N # M. (12:47)
The Egs. (12.46) and (12.47) completely define the operator OA(aIn, ap) in J2.

In the following we are interested in one- and two-particle operators and claim that any
single-particle operator

f=30 f(6) (12.48)

and any two-particle operator

9= % X ng-1,0z89(Eas€p) (12.49)

have the following representation in Fock space:

f= malmlfin) ahan (12.50)

with

(m|fln) = [d€ ©5,(&) F(€) ¢n(€) (12.51)

or




9= % Y mpq(Palglmn) alalananm (12.52)

with

(palglmn) = [ [d€ & @5 (€)¢;(€) 9(&,€) Pm(E)en(E). (12.53)

As desired, the operators fand g conserve the particle number, since af and a always occur
in pairs. Therefore:

[f,N] = [3,N] =0, (12.54)

which can also be proven explicitly using the commutation relations for a', a. With (12.54)
we obtain

(iv -+ in|[N,Ollgr- - jm) = (N — M)(iy---in|Olj1-- - jar) = 0 (12.55)

A

for O = f, g, such that (12.47) is satisfied,
(iy-+-in|Olj1---ju) =0 (12.56)

for N # M.

Qualitatively, the structure of f and g is immediately clear: In the configuration space each
summand of f = Efj:lf(ga) ‘acts on’ only one particle and changes the state of this particle
according to

f(a)pm(€a) = Zn @n(€a)(n|flm). (12.57)

The operator fworks in exactly the same way in Fock space: each summand of f in (12.50)
changes the state |i; - - - i) in such a way that a particle in state n is destroyed, but another one
is created again in m. Correspondingly: A two-particle operator g acts on two particles at the
same time and changes their state; g achieves the same by first destroying two particles in the
states m, n and then creating two particles in the states p, g.

We want to carry out the proof for (12.50), (12.51) explicitly; for (12.52), (12.53) the proof
can be carried out in analogy. Due to (12.57) the following holds when applying fto a product
function:

f i(€1)p;(€a) -+ - (12.58)

= (m|fl5) em(E)p;(62) + > (mIflf) ¢i(€1)pm(E2) +

m

Due to the identity of the particles the operator fis symmetric in all particles—otherwise the
observable f could be used to distinguish the particles in contradiction to the assumption of



identical particles—we have

[f, ] =0 (12.59)

with &7 from (12.17). Applying < to Eq. (12.58) then gives
f @udigk-- -} = 2 (mlfli) Ra{mgk- -} + 32, (m|flj) Ra{imk---} (12.60)

+_(mlflk) ®afijm--}+ -

We compare this result with

fligk-+) = 3 n(m|fin) ahanlijk---) (12.61)

= (mlfli) [mgk---) + Y (m|flj) [imk---) + > (ml|flk) [ijm---) + -

m m

(Note the phase factors in (12.28) and (12.34)!) One can now easily verify the defining Eq.
(12.46) by forming the required matrix elements in (12.60) and (12.61) and comparing them
term by term.

12.8 Applications

1. Ground state and simple excitations of an N fermion system
We obtain the ground state by taking the N lowest (in energy) single-particle levels 4, 29, ...,
iy (Fig. 12.1):

_ f
@) =a] ---a] |0). (12.62)

11



unoccupied states

—l

groundstate |

occupied states

excitations | O

1

"1 particle - 1 hole"

"2 particle - 2 hole"

Fig. 12.1 Groundstate, 1 particle—1 hole and 2 particle—2 hole states

1-particle—1-hole excitations then have the form:
D1 11) = abai|B), (12.63)
where m in |®) is empty and i is occupied.

2. Expectation values
For the expectation value of the Kinetic energy in a N-particle state |1 - - - iy) one obtains using
(12.50) as well as (12.28) and (12.34):

(i in|Tlis - -in) = X (mltin) i1 - inlahuanlis - -in) = X0, (mltlm), (12.64)
since only values n can contribute that occur in (¢; - - - i) and due to the orthogonality of
different states |i; - - - i y) we must have m = n. The expectation value of the kinetic energy is
therefore (as expected) the sum of the contributions of the particles present, i.e. of the occupied
states; the analogous statement applies to the angular momentum, the momentum or other
single-particle operators.

The case of the potential energy (in general: of a two-particle operator) is somewhat more
complicated. In

(i1 in[Vlis - in) = 5 S paPalVImn)is - ixlajajanamlis - --in)  (12.65)

only the values n # m contribute that are occupied in |1 - - - ¢ ). Furthermore, due to the
orthogonality of the basis states |i1 - - - i) of the Fock space, we must have either p = m and



g = nor g = mand p = n. We therefore obtain:
(V) = 3 Xomn oceupicat (mn|V|mn) — (mn|Vinm)}, (12.66)

where terms with m = n automatically cancel out as self-interactions. The direct term

% Em,n occupied(mnlvlmn) (1267)

corresponds to the classical interaction integral:

%Zm,n occupied(mn|v|mn) = %Zm,nffdg d§I |90m(€)|2 V(fa 5/) |(Pn(fl)|2 (12-68)

- / / de d¢' p(€) V(& €) p(€).
Here

p(&) =Sy lom () (12.69)

is the probability density of finding a particle with the coordinate &; it is composed additively
from the contributions |¢,, (€)|? of the individual particles.

Example: Coulomb energy of a charge distribution described by p(r).

The second term in (12.66) is a typical quantum mechanical effect for systems of fermions
(exchange term); it is responsible for the homopolar binding e.g. in the H2 molecule.

Remark:

For historical reasons, the formalism developed above is often referred to as second
quantization. However, it should be clear that the particle number representation—apart from
the extension to systems with an uncertain particle number—is only a different
representation than the configuration space representation of a system of N identical particles.

In summarizing this chapter we have introduced the particle number representation for
fermions, which allows for a transparent formulation of many-body problems and takes care
about the antisymmetry of the fermion wave function by simple (anti)-commutation relations.
Furthermore, we have given explicit expressions for one-body and two-body operators in
particle number representation and calculated some characteristic examples.
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13. Particle Number Representation for Bosons

Wolfgang Cassing!
(1) University of Giefen, Giefsen, Hessen, Germany

The case of bosons is analogous to that of fermions to a large extent; we will therefore
restrict ourselves to a brief presentation and only work out the differences between
bosons and fermions.

13.1 Representation in Configuration Space

We describe N independent bosons in the configuration space by completely
symmetrized product functions:

*{in} = ﬁ >, Ploi (€1) - - iy (EN)]- (13.1)

In contrast to fermions, it is possible for a single-particle state to be occupied n ;-
fold; of course,

>.nj=N (13.2)

for every possible state (13.1). From the basis states, the exact N particle states for
interacting bosons (in principle) can be constructed by superposition.

13.2 Fock Space for Bosons

In the particle number representation, we assign vectors

|ni1ni2 .. > (13.3)

to the symmetrized product functions (13.1), where the numbers n;,, n;, etc.
indicate which single-particle states are occupied and how many times they are
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occupied. Of course, the same holds for the total particle number (13.2). From the
orthonormalization of the functions ®°{ix} (as can be proven for fermions) we obtain
in the particle number representation

(i iy - [0, ) = Gy, gy, (13.4)

The Hilbert spaces . spanned by the states (13.1) or (13.3) with the constraint
(13.2) for a fixed number of bosons N are now combined to the Fock space ¢ for
bosons in analogy to Sect. 12.2:—We only differentiate quantities that refer to
fermions or bosons by their designation when necessary. Of course, the Fock space ¢
for bosons must be distinguished from that for fermions!—

H =006 - OHyD- - (13.5)

¢, adds the boson vacuum, described by the vector |0), which we assume to be
normalized in the following,

(0]0) = 1. (13.6)

Of course, the boson vacuum is not identical to the fermion vacuum, |0) 5 # |0) 5. Since
in Chap. 12 only fermions and here only bosons are described, we omit the indexing
(for bosons or fermions).

With the same reasoning as in Sect. 12.2 we introduce the scalar product between
states with different particle numbers by

(ning -+ M. . NNy -+ -np..) =0 (13.7)

if

Doimi F DM (13.8)

To simplify the notation, we have numbered the single-particle states with
1,2,...k;n},ny. .. are the corresponding occupation numbers, which in the case of
bosons uniquely characterize the N particle state. (For fermions, the occupation
numbers are either 0 or 1, such that an N particle state is uniquely determined by the
sequence of the single-particle states with occupation number 1.) In the Fock space ¢
, by construction, all basis states |ning - - - ng - - -) are orthogonal to each other and
normalized.



13.3 Creation and Annihilation Operators
We now introduce linear operators in . which link states from .7¢y with those from

%Nil:

b,1|nk> = Ve + 1] ong+ 1), bl gy = VAl ng — 1--4).(13.9)

The operators bL each produce a particle in the state k; by acts correspondingly as
an annihilation operator. With the prefactors y/n;, or v/n;, + 1 chosen in (13.9),—as
already anticipated in the notation—bL and b;, are adjoint operators.

Proof We form

(e [br[ - e ) = v/ Sy (13.10)
and
ool DL ke ) = Ve + 1 et = V7 S 1 (13.11)
Conclusions:

1. Boson vacuum
The boson vacuum is (in analogy to the fermion case) characterized by

bi|0) = OVE, (13.12)

as follows directly from (13.9). Starting from the vacuum, all other states can be
constructed by applying creation operators,

I1; 0)™|0) =|nynyns---) (13.13)

with > . n; = N.

2. Particle number operator
From (13.9) follows

blb|- - ng--) = bl /ARl g — 1) = ngl- - ng. ) (13.14)



the operator bzbk counts the particles in state k. The operator for the total particle
number is thus

N=Y,blb, =3, Ny (13.15)

Since

A A

[N, N, =0, (13.16)

there are states in ¢ in which both the total particle number N and the occupation
numbers ny of the single-particle states k are sharp.

3. Commutation relations
From the definition (13.9) we obtain

bkbl\- s =bgvng + 1) ong 4+ 1) = (ng + 1) ng ) (13.17)
and
bibg|- - ng..) = ngl|- - ng..) (13.18)
(according to (13.14)), from which—by taking the difference—we get
(bibl — bLbR)|- - mp -y = |- mg-- ). (13.19)

Since |- - - ny, - - ) was chosen arbitrarily, the operator relation results:

bibl — blbg = 1. (13.20)

All other commutators vanish as can be proven in analogy. In total, we obtain the
following boson commutation rules:

[k, bl,] = bybl, — bl by = S (13.21)

[bk, brr] = brby — bpbr =0

Pty gttt
b, b1 =blbl, — bl bl = 0.




13.4 Observables

As in Sect. 12.7 one proves that a single-particle operator fin the particle number
representation has the form

f =3 mn(mlfln) bhby ; (13.22)

correspondingly, for a two-particle operator g in particle number representation

§=13, gmn(Palglmn) bibib,b,,. (13.23)

f and g have formally the same structure for bosons and fermions; the difference is
only in the commutation rules for the creation and annihilation operators and the

states on which f, § act.

13.5 Applications

The following examples should clarify the difference between fermions and bosons.
1. Groundstate and simple excited states in boson systems of N particles.
In the groundstate of a system of N independent bosons, all N particles are in the
lowest single-particle level (Fig. 13.1).

'\
\ /

=N W A~

Fig. 13.1 Groundstate of a 4 particle boson system

Simple excited states are obtained by placing one (or more) particles in a higher
level (Fig. 13.2).

p——

— N W b

N=4



Fig. 13.2 Tllustration of a 2p — 2h excitation for a 4 particle boson system

2. Ground state expectation values
For the kinetic energy (or other single-particle operators) we obtain

(@o[T|B0) = 3, (mt|n) (Bo|bhbal o) = N to, (13.24)

where t is the kinetic energy of a particle in the lowest single-particle state ¢y = |1).
For the potential energy (or other two-particle operators) b;rbn = —0;m + bnb;r

(@0|V|@0) = 5 3 s (kL[ VImn) (R0 [bLb]bpbm| B0) = 3 N(N — 1)Vp,  (13.25)
where V} is given by the matrix element

Vo= [ [d€ de¢ |oo(€)” V(&) |wo(€)). (13.26)

Addition:
The eigenvalues of N = bLbk are real, since N is hermitian. They are also not
negative, because

<---nk---|b2bk|---nk---> =Zy<'-'nk'--|b2|---né--><---né---Ibkl---nk--->(13-27)
:ZK'"n;;"'|bk|"‘nk"'>|2 > 0.

The formal properties of Ny, or N are thus consistent with the physical interpretation.
In summary, we have obtained a calculus with creation and annihilation operators

for bosons that differs characteristically from fermions in the commutation relations,

which take care about the symmetry (or antisymmetry) of the N-body wave functions.
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14. Quantization of the Radiation Field: Photons

Wolfgang Cassing!
(1) University of Gief3en, Gief3en, Hessen, Germany

In this chapter we describe the quantization of the electromagnetic radiation field, that in
quantum mechanics can no longer be described by a classical vector field A (r;t).
Furthermore, we will calculate the interaction between matter and the quantized radiation
field in leading order of the coupling.

Electromagnetic radiation (Planck’s radiation formula) plays an important role in
physics. We will carry out the description of the radiation field by photons, which was
implicitly used by Planck, after quantization within the framework of the particle number
representation.

14.1 Energy of the Classical Radiation Field

In Coulomb gauge
V-A(r;t) =0 (14.1)

the vector potential A (r;t), that has to be calculated from the wave equation

AA(r;t) — L2 A(r;t) = 0, (14.2)

describes the free radiation field completely. With the separation Ansatz

A(r;t) = U(r)v(t) (14.3)
Equation (14.2) turns to
AU+ kU =0 (14.4)
and
Lvt+wiv=0 (14.5)
with
(14.6)

€
o

k2

Q
[N
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Special solutions are plane waves

A(r;t) ~exp {+i(k -r —wt)}, (14.7)

from which the general solution can be constructed by superposition with respect to k.

If the radiation field is enclosed in a very large—but finite normalization volume V (with
periodic boundary conditions)—we obtain the general solution in the form of a Fourier
series:

A(rit) =3, 51/ o bu(t) eu; exp {ik, -r}. (14.8)

Here

ky = 2% (1, pa, p3), p= (p1, g2, 43), (14.9)

where the p; are integers (with V = L?), the wave vector (-not the four-momentum in
covariant notation!-) and

€. 7=12 (14.10)

are real polarization vectors, which are perpendicular to each other and—due to the
transversality of light—perpendicular to k.. The representation (14.8) for A is real if we

require
b;,j =b_,; (14.11)

We therefore write explicitly:

Art) =2, %}fz (bj(t) en; exp {ik, -r}+ b} (t) eu; exp {—ik, -r}).(14.12

N

We now want to calculate—with regards to the quantization of the radiation field—the
energy of the field, starting from the well-known formula (in Gauss units)

1
H, =+

s Jdr [E? + B2 (14.13)

With
B=Vx A, E=-10 (14.14)

we get



Hoy =& [dr [L(22)" +(V x A)Y. (14.15)

If we insert (14.12) we finally obtain:

Hyw =5 ZM ‘*’u(bu,jb;,j + b;,jbu,j)a (14.16)
using
[dr exp {ik, +ky]-r} =0 (14.17)
except for k, = —k,/, where (14.17) just gives the volume V. As expected for a closed

system, H, y;. is independent of time, since the coefficients b,, ; obey the differential equation
2
2 b+ wibu; =0 (14.18)

with the basic solutions

b,,;(t) ~exp {tiw,t}. (14.19)

14.2 Quantization of the Radiation Field

For the quantization we note that the classical energy according to (14.16) and (14.18) is
composed additively of the contributions of individual oscillators described by the
amplitudes b,, j(t). The same holds for the momentum or angular momentum of the field.

The quantization of the harmonic oscillator is known: we replace the classical amplitudes
bu,; and by, ; by operators by, ; and bLj with the commutation rule

[b bl ] = 1 8,005 (14.20)

for t = t/; all other commutators for ¢ # ¢’ should disappear. It is convenient to
substitute

buj=h b,j (14.21)

such that the commutator (14.20) changes at equal times to

[bu N ] = 8,07 (14.22)




From now on we only use the operators Buj and ELJ.,

b = Buj- The Hamiltonian of the radiation field then is (initially)

but for simplicity again write

_ 1 T T — f 1
H,=33,w, (bu,jbp,j + bu,jbu,j) =W, (b”,jb#’j +35)- (14.23)

The radiation field can thus be treated like a system of decoupled harmonic oscillators.
If we compare (14.22) with (14.24), we can see that the degrees of freedom are bosons.
These bosons—photons—are characterized by their momentum 7k, energy /w,, and

polarization state j. In (14.23)

A~

Nyj=b! bu; (14.24)

is the particle number operator for the oscillation type (u, 7), whose eigenvalues indicate
how many photons of the type (u, j) are present; in addition, in each oscillation type there is
a zero-point energy of 1/2/iw,,. The eigenstates of H, are characterized by the number of
photons of the type (y, j) :

HT|. .. nu,j .o > = Zﬂyj hw‘un’u’j | . n,w' . > (1425)

after subtracting the zero-point energy, which is divergent in (14.23). In order to avoid such
divergences and to obtain a vacuum state |0) (b, ;|0) = 0 Vu, j) of the lowest energy with

H,|0) = 0, we introduce the normal ordering of the operators in field theory b, ;, bL’,j" ie.

arranging all b, ; to the right of bL, ;- The normal ordered Hamilton operator then has the

form

cHy = %Zm hw,, (bu,jbz,j + bL,jbu,j) = Z,L,j hwy, (bL,jblhj)' (14.26)

Remarks:

1. We have intentionally written the classical energy in (14.16) symmetrically in b, b* in
order to make the transition to the Hamiltonian operator unambiguous.

2. Instead of plane waves, spherical waves could also have been used as basic solutions of
(14.2). After quantization, we then would have obtained photons, which are characterized
not only by energy and polarization but also by their angular momentum. The transition
between the two representations is mediated by the expansion of the plane wave according
to spherical harmonics (cf. Sect. 7.6.3). The situation is in close analogy to the case of free,
material particles (i.e. rest mass # 0), where we can use the momentum (plane wave) or
angular momentum (spherical wave) classification depending on the problem of interest.
The angular momentum representation of photons is used in radiation problems of atoms or
atomic nuclei, since atomic and nuclear states are characterized by sharp angular
momentum; in solid-state physics, the momentum representation is appropriate for
geometric reasons.

3. In addition to the transversal photons introduced above (transversal, since always
€uj- ku = 0), there are also longitudinal photons, which can be used to describe the



Coulomb interaction (analogy: explanation of nuclear forces by the exchange of mesons).
They correspond to a Fourier decomposition of the scalar potential ®(r, t), which describes
the interaction in static charge distributions. Since we are only interested in the radiation
field above, we have chosen & = 0; when describing the interaction of radiation and matter,
we then must treat the Coulomb energy as a contribution to the energy of the charged
particles.

14.3 Interaction of the Radiation Field and Matter

The Hamiltonian of a system of identical particles—the generalization to non-identical
particles requires only the indexing of mass, charge and magnetic moment—with mass m,
charge e and magnetic moment p, in the presence of the radiation field, including the field

energy (non-relativistically) is (in Gauss units)
N [ 2 N —
H= 3230 0~ Ar)" + 3 X0 Vi — #2550 - [V x Ar)]) + H,- (14.27)

With regards to a perturbation series we separate the Hamiltonian in

H=H,+H, +H, (14.28)

where H, describes the free radiation field according to (14.26), H, is the Hamiltonian
of the particles in the absence of the A field (but including the Coulomb interaction)

Hy= 5300 + 5 2z Vigy (14.29)

and H' the interaction between particles and photons. In H’, A(r;) is an operator:

A(ry) =3, hcy/ Vf{;ﬂ e, <b“7j exp (ik, - T;) + bL,j exp (—ik, - ri)), (14.30)

which contains photon creation bLj and annihilation b, ; operators in linear form. In

detail, H' consists of 3 parts:
(i) a contribution that acts on the charge of the particles,

gme 2i(Pi - A(ri) + A(ri) - pi), (14.31)

which contains the operators b, j and bL ; linearly, thus enabling processes in which (in

lowest order) 1 photon is created or destroyed.
(ii) a part acting on the magnetic moment p,

(14.32)



—pdi(oi - [V x A(r:)]),

which has the same structure as i) with respect to b,, ; and bL I

(iii) a quadratic term in b, b',

< S A(r) - A(ry), (14.33)

2mc?

which (in lowest order) enables two-photon processes.

14.4 The Oth Approximation

We will assume in the following that the eigenfunctions are known for
Hy,=H,+ H,, (14.34)

i.e.

Ho|Am,;) = (E,\ 3 hwﬂ) Asm). (14.35)

Here, A characterizes the (at least approximately known) eigenstates of H,, with the
energy E), e.g. the eigenstates of the H atom.

Based on (14.34), (14.35) as Oth order approximation we will now try to calculate the
influence of H' within the framework of a perturbation calculation.

14.5 Absorption and Emission of Photons

Photons can be created (absorbed) under the influence of H'. Due to the conservation laws
for the closed system (matter + radiation field), the energy (as well as momentum, angular
momentum), which is absorbed (released) by the radiation field, must be released
(absorbed) by the matter (e.g. atoms, molecules). When photons are absorbed the matter
goes into an excited state (Fig. 14.1), conversely, the matter can change from an excited state
to a lower state (e.g. the ground state) by emitting photons (Fig. 14.2).

i’

haw
absorption VAV S

Fig. 14.1 Absorption of a photon with an excitation of the matter from state )\ to state A’



emission NN\

A

Fig. 14.2 Emission of a photon by the decay of an excited state A’ of the matter

We now have to quantitatively calculate the probability, that the non-interacting system
described by Hy changes from an initial state | A\;n,,;) to a final state |\';n,,;) by virtue of the

interaction H'. To this aim we use the time evolution of a system in the Dirac picture (see
Sect. 11.3).
At time t = 0 the system is in the state |A\;n,;); the time evolution occurs in the Dirac

picture according to

[¥p(t)) = Up(t,0)[An,,) (14.36)
with
Up(t,0) =1~ 1 [y di' Hp(¢)Up(t',0), (14.37)
where
Hp(t') =exp (%Hﬁ') H' exp <—%H0t'>. (14.38)

The operator H' in the Schrédinger picture—for the closed system under consideration
—is time-independent. The amplitude, with which the final state |\’ ;n:U.> is contained in

“I’D(t», is
(A, |Up(t,0)| Am ) (14.39)

the square of its absolute value gives the probability of finding the system in |)\’;n;”-> in the

final state at time t.
If we restrict ourselves to the most simple process—absorption or emission of 1 photon
—we can use the approximation for Up(¢, 0)

Up(t,0) ~ 1 — £ [y dt' Hp(t'); (14.40)

the 1st term does not contribute to the transition probability due to the orthogonality of
the states |A;n,;). It remains to calculate (except for the factor —i/#)



fg dt'(Nsn ;[ Hp () [ Asmyg) = (Nin) ;| H' [ Asmy,) f(f dt’ exp (%t’[E’ - E]), (14.41)

where for H' (14.31) and (14.32) have to be inserted; furthermore, we use the abbreviation
E=FE\+), inuhwu; E'=Ex+3,;n,hwp. (14.42)
The time integration in (14.41) results in

exp(Lt[E'—E])— exp(2i&t)— . exp(iét)—exp(—i
'h[ p(hg,_E -1 _ p(22§§t) L _exp (ict) p( St)mp( £t) (14.43)

with the abbreviation

¢= 21 (14.44)

For the probability W(t), that the system has passed from the initial state |A;n,;) to the final
state |\';n),;) after time ¢, we obtain

sin 2
W(t):h_lz( étﬁ)) |(N'snl s H A | (14.45)

The function (sin (t£)/£)? has the form shown in Fig. 14.3; the main maximum at £ = 0
becomes sharper with increasing ¢, the secondary maxima are reduced.

A

Tl 4

|
-
t
Fig. 14.3 Tllustration of the function (sin (££)/€)? in (14.45)

Transitions are particularly likely if £ =~ 0 or

E'~ E. (14.46)



The factor (sin (t£)/£)? in (14.45) thus includes the conservation of energy within the

framework of the energy-time uncertainty. For ¢ — oo the conservation of energy is strictly
fulfilled, i.e. E' = E.

The matrix element <A’;nLj|H’|)\;nM) from (14.45) splits into parts that only concern
the matter and those that only concern the radiation. When restricting to 1 photon—

processes, only the terms (14.31) and (14.32) contribute. The electrical transitions are
determined by

(N>, piexp (£ik - )| N), (14.47)

and the magnetic transitions by

(N[ S2,(35 % k) exp (dik - )|\, (14.48)

An expansion of the plane wave according to spherical harmonics yields dipole radiation,
quadrupole radiation etc. To (14.47) and (14.48) the parts concerning the radiation field
have to be added

(Ml buglmg) (14.49)
or
(! [l Jr). (14.50)

In the case of absorption of radiation we have

(g = Lbplng) |* = me (14.51)

The absorption probability is thus proportional to the number of photons initially
resent or to the intensity of the field. The emission probability, on the other hand, is

2
~ (g + 106 ) | =m0y + 1. (14.52)

A remarkable difference to photon absorption is that photon emission also takes place if
n,; = 0 in the initial state, i.e. there is a spontaneous emission (in contrast to the induced
emission that increases with n,,;). Due to this spontaneous emission all excited states of
atomic systems are unstable; they have a natural line width.

The fact that atomic systems spontaneously pass from excited states to the ground state
by emitting photons due to the electromagnetic interaction cannot be understood within the



framework of classical physics. Classically, the ground state of the free radiation field is
characterized by the fact that

Ey. = 0. (14.53)

However, if there is no electromagnetic field, then there can be no electromagnetic
interaction with matter. The situation is different after quantization of the radiation field: the
ground state of the free radiation field is the photon vacuum |0); in this state, the
expectation value of the field operators A, EE and B are zero,

(0]A|0) = (O|E|0) = (0|B|0) = 0, (14.54)

but there are non-zero mean-square fluctuations (vacuum fluctuations), e.g.

(AE)” = ((0|E2|0) — (0|E[0)*) = (0|E20) # 0. (14.55)

The formal reason for the non-vanishing expectation values of E? and B? is that the
operators for E and B do not commute with the Hamiltonian of the radiation field and
therefore cannot be measured sharp at the same time!

Remark: The vacuum fluctuations of gauge fields (gluons) play a decisive role for the
stability of hadrons and the ‘confinement’ of quarks and gluons in hadrons (nucleons and
mesons) (see quantum chromodynamics).

In summary, we have quantized the radiation field and evaluated the interaction between
matter and the radiation field (photons) in leading order, which corresponds to the
absorption (emission) of photons by matter.
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15. Formal Scattering Theory

Wolfgang Cassing!
(1) University of GiefRen, Giefsen, Hessen, Germany

In Chap. 8 we have presented the scattering theory of a particle interacting with another
independent particle by some potential interaction V' (r) and defined the relevant quantities such
as the scattering amplitude and the differential cross section. In this chapter we will provide the
formal scattering theory for many-particle systems, which will end up in the definition of the S-
matrix, the general T-matrix and Born-series.

15.1 Time-Dependent Formulation of Scattering

To describe a scattering process, we write the Hamiltonian operator of the entire system—after
separating the center of mass motion (see Sect. 11.2)—as

H=T+V+Hy= Hy+V; (15.1)

where T is the kinetic energy of the relative motion (with the reduced mass) of the scattering
partners, Vis their interaction and H,,; is the Hamiltonian operator of the remaining internal
degrees of freedom.

Long before the collision, the system is described in terms of its relative motion by a force-free
wave packet:

¥;) =:limy o [¥(t)) =limy o Y., [da c(a) exp (—%Eat) |®,), (15.2)

where
Hy|®,) = E,|®,), (15.3)

and the discrete and/or continuous index a stands for a complete set of quantum numbers. E,
consists of the internal energy of the collision partners and the kinetic energy of the relative
motion; c(a) describes the shape of the wave packet before the collision. The wave packet (15.2)
then develops according to the time evolution operator U(t, —o0) belonging to the full Hamiltonian
operator H and long after the collision it takes the shape of a force-free wave packet again:

(W f) =:limy o0 |P(2)) =lims o0 Zafda é(a) exp (—%Eat) |D,). (15.4)

If we compare with Chap. 8, then |¥;) corresponds to the incident plane wave and |¥ ) to the
combination of a plane wave and a direction-modulated outgoing spherical wave. The indices i and
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f'stand for initial and final.
The task of the scattering theory is to calculate the unknown function é(a), which characterizes

the state of the system after the collision, from the given initial distribution c(a). It is therefore
suitable to introduce the

15.2 S-Matrix

as the fundamental quantity of scattering theory, which is defined by

éla) =Y, [da' S(a,a’)c(a’) with S(a,a’) = (2,|S|®y). (15.5)

It must be unitary in order to ensure the conservation of the norm:
Y. [da [&a)]? =3, [da |c(a)]. (15.6)

For a classification of the concept as well as the practical calculation of the S-matrix it is useful to
consider alternative definitions to (15.5).

If we translate |¥;) and | ¥ f) into the Dirac picture,

[WP) =lim;, ooexp (5 Hot)[¥(t));|¥7) =lim; ,0exp (§ Hot)[¥(¢)), (15.7)

and introducing an operator S by

[wP) = S|¥P), (15.8)

then the matrix elements of S in the basis |®,) turn out to be the S-matrix elements introduced
in (15.5). To this aim we form

(a|T7) = E(a) = (Ba|S|TP) = Xy [ da’ (B4lS] ) (B[ TP) (15.9)

- ;/da, (®4|S[®ar)e(a’).

The operator S—introduced in (15.8)—is directly related to the time evolution operator of the
Dirac picture:

[0 P) = Up(o0, —00)|¥P), (15.10)

i.e.

S = Up(oo0, —00).

(15.11)




Mathematical details of the limit formation in Up (¢, o) cannot be discussed here (see P. Roman,
Advanced Quantum Theory, Sect. 4.3). From (15.11) we obtain the unitarity of S,

SST =1, =818. (15.12)

Alternatively, S can be defined using the eigenstates of H. With (15.11), (15.9) and (15.5) we
have

S(a,a’) =lmy 0 p oo (®4|Up(t,t')|w) (15.13)

= lim  (®lexp (= Eut) U(t,t)) exp (——Eut)|®u),
t—00,t'——00 h h
with
Ul(t,t") =exp (—+H(t —t')), (15.14)

since H as the Hamiltonian of a closed system does not explicitly depend on t. This gives

S(a,a’) = (¥ |0y, (15.15)

if we introduce (see below for details of the formation of the limit)

105)) =limy socexp (— £ (B, — H)t)|®,). (15.16)

To deal with the limits in (15.16) we note that for a function F(t), whose limit exists for
t — —oo, this can be written as an abelian limit

0
lim F(t) =lim e/ dt' exp (et') F(t')
t——00 e—+0 PN

—lim,_, ¢ (fexp (e)F(t)]° . — < [°_dt’ exp ((—:t’)F’(t’)) =F(0)— [°_dt' F'(t'), (15.17)

as can be seen immediately by partial integration. This gives

) =lime o £ [0 dt exp [ 4 (Ba— H+ie)t] [®,) =lime o 5 [@a) (15.18)

after executing the t-integration. Since the inverse operator for (H — E,) does not exist for

values E, of the continuous spectrum (scattering states!) of H (Chap. 8), the transition € — 40 can
only be carried out after execution of the operators ie/(E, — H + ie€) acting on |®,).

We now show that ]\I’g+)> is an eigenvector of H with eigenvalue E,:




(Bo — H)|®S) =lim,1o (27— |®,)) =lime o (ie@,)) =0, (15.19)

thus

HTy = B, vy, (15.20)

In (15.20) we have assumed that H and H have the same continuous spectrum and thus only
differ in the discrete spectrum. This assumption is not always fulfilled:
(0 : : .
In the case of non-local interactions V, bound states of H may be embedded in the
continuous spectrum of H, which Hy does not possess.
(i)
According to the above assumption, the energy of the system must not change when the
interaction V is switched on; this absence of level shifts in the continuum is not present in
quantum electrodynamics (QED).

We therefore assume in the following that V is such that the limit (15.16) exists, such that (15.3)
and (15.20) are simultaneously satisfied for the scattering process.

15.3 The Lippmann-Schwinger Equation

+ . . o .
We want to show next that ]\Ilg )> are solutions of the scattering problem, that contain incoming
and outgoing spherical waves in the spatial representation. For this we use the operator identity,
which is generally important in quantum theory (H = Hy 4+ V)

11 1 1
FHTie = Boborie T By V Bl (15.21)

Proof
In the identity

[A+ B '=A11-B[A+ B (15.22)

insert A = E, — Hy + ie and B = —V. Equation (15.22) is easy to show by multiplying by
(A+ B),eg:

[A+ B "(A+B)=1=A"(A+B)—A'B[A+ B '(A+B) =1+ A"'B— A'B.(15.23)

If we apply (15.21) to |®,), we obtain

. . X .
B | o) = Bomre Rt Eome V Bt | Pa)- (15.24)

With (15.18) we finally get after formation of the limite — 0




2,") =|22)+Gu V2L (15.25)

with the Green’s operator

G((z+) ::lime_>+0 m (1526)

Using the same procedure, we find

¥5) =|2)+Go VT (15.27)

with

G((,i) :zlimeﬁﬂ) m. (1528)

The spatial representation of (15.25) and (15.26) is the Lippmann-Schwinger equation and
the Green’s function from Chap. 8, if we consider the scattering of a particle at a potential V, where

HO =T.
We form
(e|GD|r') = [ [dPq d*¢ (r|a)(alG™)|q)(d[r) (15.29)
1 3 . 1 L
= 5 [ d°q exp (iq-r) P exp (—iq-r')
(2m) E — 22 + i€
1L 2u 53 exp(iq-(r—1'))  2u .y,
(2m)® 2 T TR T2 e h? (r,x)
where
(rla) = (alr)* = (2m) > exp (iq - ) (15.30)
and
()] — _0*(a-a)
(a|G'[d") BT i (15.31)

Accordingly, (15.25) turns into the Lippmann-Schwinger equation.

15.4 The T-Matrix

We go back to
(15.32)
S(a,a’) = (2a|S|Pa).



Since we are only interested in real scattering processes
®, — Pua # ad, (15.33)

it is useful to extract the unit-operator from S, which describes the trivial transition ®, — ®,:

S(a,a’) =6(a—a') — 2mi 6(E, — Ey)T(a,d’). (15.34)

For discrete quantum numbers a, a’, the §-function §(a — a’) has to be replaced by ,4/;
d(E, — Ey) takes into account energy conservation, while the factor —2i is split off by
convention. The T matrix introduced in (15.34) is then responsible for real transitions.

By (15.34) the T matrix is defined only for transitions &, — ®, at £, = E,, i.e. for elastic
processes (on the energy shell T matrix). However, the concept of the T matrix can be generalized
to any processes. We refer back to (15.18):

(U5 =lime g i |B,) =lim, o B |G,) (15.35)
E,—H 1
—lim 2T V8, —lim 1+ 1|®.,)
e—+0 FE,— H+ie e—+0 E, — H+ie
and form
_ ' 1
N —lim —* ) —=lim 1+ —— VI®
Vo) = lim ) ¢ 1%a) = Jim (1 + V[ @)
=[O+ lime o [ — 5 1V a). (15.36)

With (15.15) we then get (the lim._, ¢ is suppressed in the following)

S(a,a’) = () 100) = (@ P ey (15.37)

1
—Sa—d)+ (¥

o |[Ea—H—ie B Ea—H+ie]V|(I)a>

1 1
E,— H +ic E,— H —ic

=da — a') 4+ (®.|V]

We note that |\IJ((;F)> is an eigenvector of H for the energy E/, i.e.

[z — =119 = —ﬁ%"l’y)% (15.38)

If we use the representation of the d-function

. (15.39)
é(z) =: - lim,, 10 ﬁ,



we get

S(a,a’) = 8(a — a') — 2mi §(Eq — Eu)(®,|V|TD), (15.40)

and with (15.34)

T(a,a') = (V[T ). (15.41)

We now introduce an operator T in general by

T|®y) = V[E')), (15.42)

from which we obtain with (15.25)

T=V+V GHT. (15.43)

Since G) = G)(E), we also write more precisely T' = T(E); the operator T is thus
explicitly energy-dependent. Let us now form arbitrary matrix elements of T in the basis ®,,

(®,|T|® o), (15.44)

where in general E, # E,, we have found the desired generalization of (15.34).
We distinguish 3 types of matrix elements of T':
1. on energy shell:

(®,|T|®,) for B, = Ey = E.

They describe elastic scattering.
2. off energy shell:

(8,|T|®y) for B, # E # E,.

They occur e.g. in inelastic nucleon-nucleus scattering: N1 + (A + N2) — N1 + Ny + A*.
3. half energy shell:

(8,|T|®4) for B, # Eg;E = E, or E=E,.

Example: Proton-proton bremsstrahlung, since due to the photon in the final state kg + kZ,.
The ‘on energy shell’ elements are directly related to the scattering amplitude f():

(15.45)

Q) = —#@alvlﬁfﬁb = —55T(a,d’).



To calculate T and thus f(£2), it is obvious to solve (15.43) by iteration. This leads to the Born
series, which we introduced in Sect. 8.2.3:

T=V+VGOIV+VGHIVGIV + ... =V—arr-. (15.46)

The convergence properties of (15.46) can be improved within the framework of the

15.5 Generalized Born Series (DWBA)

To this aim we separate H into

H=H+V, (15.47)

where now

Hy=T+H;;+(V-V') (15.48)

in addition to the kinetic energy of the relative motion of the collision partners also contains a
part of their interaction (e.g. the Coulomb interaction). If we succeed in finding the solutions of

Hg|®,) = E,|®,), (15.49)

the procedure described above can be carried out with the interaction V' instead of V and

1
G = g (15.50)

instead of G(). One then obtains a better convergent series

T=V'+V'GOV +V'GHV'GDV' +... (15.51)

An example is the scattering of protons on nuclei, where one can include the Coulomb
interaction in Hé, since the Coulomb problem can be solved exactly; V' — V' then is the interaction
solely caused by the nuclear forces. While the Coulomb waves exhibit non-vanishing scattering
phases for all collision parameters (angular momentum) (Chap. 8) and thus the series (15.46)
converges poorly, (15.51) is a much better convergent series due to the short range nature of the
nuclear forces (V' — V). Since in this case the plane waves of the ordinary Born series change into

Coulomb waves, the method is also called Distorted-Wave-Born-Approximation (DWBA).

15.6 S-Matrix in Angular Momentum Representation




According to the partial wave expansion (Chap. 8) we expand for V' = V(r)

U (r) = 33,21+ 1) exp (i6i(k)) Pycos 9) XL (15.52)

r .

While \Ilf:r) (r) contains an outgoing spherical wave, \If](c_) (r) contains an incoming spherical
wave. Therefore,

U (r) = 3,021+ 1) exp (—idy(k)) Pycos ®) X0 (15.53)

r

If we denote the individual components in (15.52), (15.53) with fixed / by \Ilg;), then

SUkUK) = (B [T5)) =exp (2i81(K)) uw 6(k — k'), (15.54)

if one appropriately normalizes X; ;. The S-matrix is therefore diagonal in / and k and the
following holds:

S, kil k) = Si(k) =exp (2i8,(k)). (15.55)

The S matrix is thus completely described by momentum-dependent phases d;(k) for each
partial wave I.

15.7 Energy of the Ground State

We go back to Sect. 11.3 and write the exact ground state at time ¢t = 0 as
[¥o) = Up(0, —00)|®0), (15.56)

where we have separated the Hamiltonian operator in the form H = Hy + H' and the problem
(Ho — €p,)|®) is considered to be known. With

H|¥o) = Eo|¥o) (15.57)

we get by forming the scalar product with (®| and subtracting (®o|H|¥¢)

(Po|H'|Wo) _ (®o|H'Up(0,—00)|®o)
(@o]To) —  (20|Up(0,—0)[®0) * (15.58)

AE():EO_EO:

When forming (15.58) it must be ensured, however, that the states |®) and |¥) are not
orthogonal to each other. To this aim we consider the explicitly time-dependent Hamiltonian (
n > 0)

(15.59)



Hy(|t]) = Ho+ exp (—nlt|) H',

with

limyy| o, H, = Ho,lim, o H, = H = H,(t = 0). (15.60)

With the Ansatz (15.59) the interaction H' is switched on and off adiabatically, such that at
time t=0 the full Hamiltonian is effective. Now in the case of (15.59) the time evolution operator
Up depends onnvia H'(t) =exp (—n|t|) H' and only those quantities are meaningful for which

the limit n — 0 exists. The theorem of Gell-Mann and Low states: If

- Up(O—so)l®0) |¥)
Ly, 0 130, o) @er = @) (15.61)

exists in every order of perturbation theory, then | W) /(®o|¥() is an eigenstate of H and

. &o|H'Up(0,—00)|®
ABy =lim,, o o0 (15.62)

[t should be noted that in (15.61) numerator and denominator do not necessarily exist
separately!

We suppress the (lengthy) proof of the theorem and give an important transformation for AE|,
for applications. With

ih4;Up(t,to) = Hp(t) Up(t, to) (15.63)
or
ih -4 (2o|Un(t, t0)|@o) = (Ro|Hp(t) Un(t,to)|®o) (15.64)

we obtain (tg = —o0)

(®o|Hp(t) Up(t,—oc0)|®)
(®0|Up(t,—00)|®0)

ihg In ((®0|Up(t, —00)|®o)) = (15.65)

This gives (for n — 0)

i limy o (- In ((@0|Up(t, —00)|®o))),_, =limyo Garrelasl® — AR, (15.66)

We write (in the sense of a perturbation series)
AE, = AE) + AE® + ... (15.67)

and use
(15.68)



2
In(l1+z)=z—5 £---

In 1. order approximation:
only
t

o = (@olUp(t, ~00) 1) ~ (ol [ dts Hp(t:)|®)

—0o0

appears and we obtain:

AE) = if lim, 0 (%(@d—% J o dts Hb(tl)\@o»)t_o = (15.69)

lim ((M%/t dt, H,’:,(tl)|<1>0>> —

n—0 —00 t=0

},lin ((Ro] Hp(t)|®0)),_, = (Ro|H'|®0).

2nd order approximation:
Then z = (®¢|Up(t, —o0) — 1|®¢) in (15.68) for a series with respect to H' all contributions

of 2nd order in H' must be considered. Contributions of 2nd order we obtain both from
z = (®9|Up(t, —00) — 1|®¢) with Up(¢, —o0) in 2nd order as well as from the 2nd term in the
expansion (15.68) —z2/2, where x with Up (¢, —0o) — 1 has to be considered in 1st order in H'.

We thus form:
(i) Up(t, —o0) — 1 in 2nd order in H':

indy (Rol(55)” [ dt Hp(ta) [, dty Hp(t2)|®0) = (15.70)

2 (@almpte) [ ans mpeie) =

t=0

. 0 . .
1 1 1
@B [ty exp (- Hot) ' exp (— Hoty) exp (~nlt])[2o) =

i 0 i i
_;Z <<I’0|H'|‘I>n><¢’n\/ diy exp (- Hot1)H' exp (——Hot1) exp (—nlt1])| o) =
n=0 -0

i i [(@n|H'|®0)|* ENE
——§ & |H'|®,)|? dt - )t t1) E: )
h = (@l H[0)] /_OO 1 exp (=g (e —en)ti £ €0 — €n + i

n=

(ii) (Up(t, —o0) — 1) = z in st order in H":

With
(15.71)

o[~

Yo
)
I
)

g®



2)

the 2nd contribution to AEé reads:
—i((@ol =i [ a1 Hp(t)|®0)(@ol—i Hp(0)|®0)) = (15.72)
. ! 2 0 1 / 2
i1(@o| H'|By)| / ity exp (n11) = = |(@0|H|0).

After adding contributions (i) and (ii) we get:

2) .. &, |H|®,)> | 3,|H'|®)[*
ABY) —tim,, o 327 (L0 L@ | HY@0)|*) = 32, LEERL. (15.73)

€0—€n+in €0—€n

Since 1/(in) + ¢/n = 0 the limit n — 0 exists for (15.73), while the individual contributions (i)
and (ii) diverge.

15.8 Time-Independent Perturbation Theory

For the energy shift of the ground state due to the (time-independent) perturbation H' we found
(15.62):

AEq = (®|H'|¥y), (15.74)

if we normalize |¥,) such that (®(|¥,) = 1. Formula (15.74) only becomes meaningful, if we
succeed to calculate |¥() at least in different ways. To this aim we introduce the projector

P|¥g) =|®0)(Po|¥o) = [®o) (15.75)

and write (with the free constant E) the Schrédinger equation in the form:

(E — Hy)|¥o) = (E+ H' — Eo)|¥y). (15.76)

The formal solution of (15.76) is

Wo) = (B— Hy) ' (B— Eo+ H')[T) (15.77)

and after multiplication with
Q=1-P (15.78)

we get the equation

(15.79)

[W0) =|%o)+ 55 (B~ Eo+H')[),




which is suitable for a solution by iteration:

[Wo) =|20)+ 55 (B~ Bo+ H')|%) (15.80)
NL (E—Ey+ H') L (E— Ey+ H')|¥,)
(£ — Ho) (E — Ho)
_ N Q ” /
_Z _ (E—Eo—l—H) |<I’0>.
=0 \ (F—Hy)
This gives the energy shift AFE as
Ay = (B|H'[¥0) = S22 (@olH' (% (B~ o+ H)" [%0). (1581)

There are two obvious options for determining E.lIfweset E = E, (Brillouin-Wigner method),
the equations

and

o) = > 00 (W% H’) @) (15.82)

AEy =37, <‘I’0\H'(ﬁ H’) [®o) (15.83)

have to be solved iteratively, since Fy is unknown!
In the Rayleigh-Schrodinger method one sets F = ¢y and the equations become

and

[To) = 3nto (ﬁ (H' - AEo)>n |®0) (15.84)

AEy =30 <<I>o!H’( gy (H' - AEo)) |B0), (15.85)

which in turn must be solved iteratively for the unknown quantity A Ey!
Examples:

n=0-— AE = (&|H'|®,) (15.86)

n=1-— AEY = (&|H' s (H' — AB)|®) = (15.87)



' Q / - ' Q '
(®o|H mﬂ Do) = > (®o|H e()_—’@n><‘1>n|H @)

since Q|®y) = 0.
For n = 2 we obtain

3
ABY = (&|H' 4 (H' — AE)

& ?HO) (H' — AE)|®0) = (15.88)

_ ) Q - Q )

= 3 Bl s B Bl (B~ AB) s ) (2 H20)
Ty (Bo|H'|®,) (®n|(H' — AE)| @) (B, | H'|®0)

n#0 m#£0 (60 - Gn)(G() - Gm)

)

LYy ) @l 00) @l 18y 5 (@0l |2
owr ey (€0 — €n) (€0 — €m) nz0 (€0 — en)2 ’

where AFEy = AEél) + AE(()Z) + AE(()S) has to be set and calculated iteratively. Higher orders are

obtained in analogy by inserting > , |®,)(®, | and using the fact that Q projects onto

20 [B0) (@0

In summary, we have defined the S-matrix and the T-matrix for general scattering problems and
given a generalized Born series for the T-matrix, that can be solved by iteration in arbitrary order.
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16. The Hartree-Fock Approximation

Wolfgang Cassing!
(1) University of GiefRen, Giefden, Hessen, Germany

In this chapter we will present the Hartree-Fock approach, which is a leading order selfconsistent
approach to the many-body problem and is extensively applied in calculations of the groundstate
properties of atoms, molecules and nuclei.

The Hartree-Fock theory (HF) has the task of optimally representing the groundstate of an N fermion
system (in the sense of a variational principle) by a single Slater determinant (SD); i.e. the single-
particle states ¢; of a Slater determinant ® are varied until the energy

®|H|®
B =0 (16.1)

becomes minimal. The Hamiltonian H of the system consists in the following of a single-particle part T
and a two-particle part V of the form

2
H=T+V =YY 5+ 37 v(ij), (16.2)

where v(ij) describes the interaction between particles i and j. If the Slater determinant is normalized,
ie. (®|®) = 1, the task is reduced to find the minimum of (®|H|®) by varying the ;.

The solution @ of such a procedure can also be seen as the 0th approximation for the calculation of
the exact ground state ¥ in the context of a perturbation calculation. The single-particle wave functions
then define an effective mean-field potential Uy, such that the Hamiltonian operator (16.2) can be
rewritten in the form

H=Hy+ Hg (16.3)
with
Hy =T+ Ugp, (16.4)

where Hj describes the motion of independent particles. One can then consider Hg as a residual
interaction and calculate the exact ground state ¥, within the framework of a perturbation calculation.
We then obtain

To=20+3,C, 20, (16.5)

where @Zh are the n-particle—n-hole states related to ®,.

16.1 General Properties of the Hartree-Fock Problem

We first assume that the solution @ and the energy Ey = (®(|H|®() are known. For an infinitesimal
change in the Slater determinant
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by — q)i) =Py + 6Py (16.6)

after variation the stationarity condition must be fulfilled,

(®o|H|0®¢) = 0, (16.7)

as can be shown by varying (16.1). The infinitesimal change of the N-particle state & corresponds to
an infinitesimal change of the single-particle functions

Yi = P = @i+ 0p;. (16.8)

For the further investigations it is convenient to use the particle number representation. Instead of the
Slater determinant ®; we then can write

N
[20) = [17; a{/0), (169)
where the creation operators a}, applied to the vacuum, create the state

i(€) = (€]i) = (¢la]|0). (16.10)

In the groundstate ® all single-particle states |i) of lowest single-particle energy (i = 1,..., N) are
occupied with probability 1. Then the variations ¢} introduced in (16.8) can be represented (for i < N)
by

0L = (al + 3oy Cmiah)|0), (16.11)

i.e. by an admixture of states above the Fermi level (given by the single-particle state | N)), since an
admixture of states below the Fermi level does not change the Slater determinant. For the ®{, we obtain:

BY(&1,- -, En) =I00) = [Tien(al + X e n Cmiahn)|0), (16.12)

which can also be written more simply (proof see below) as

1®5) = [Lien(1+ 2w Cmi@ha;)|®0), (16.13)

if the single-particle states \z> are orthonormalized, such that the a;-r, a; satisfy the standard
commutation rules for fermions.

Proof With the relation
ajna,iaHO) = a:rn(l - a}ai)|0) = aIn|0) (16.14)
we first have
20) = [Tien (1 + X oy Cmiahiai)a][0). (16.15)

If we continue to use for i # k
(16.16)



a;r(ajnak) = —ainagak = (ainak)a;f,
we get (16.13) via
180) = [Ticn (X + Xy Cmitha) Tley ahl0) = TTey (1 + X,0e i Cmiihas) | @0). (16.17)

For infinitesimal admixtures (|c,;|?> < 1) the above product can be expanded and we obtain

180) = {1+ X Yoy Cmi@nai}|Bo) =|8o) + |680). (16.18)

From the stationarity condition (16.7)-due to the linear independence of the vectors
ajnai\@g) =|®,,;)—we obtain the Brillouin theorem:

(®0|H alya;|®o) = (B|H|® ) =0i < Nym > N (16.19)

for any 1p — 1h states |® ;).

A direct consequence of the Brillouin theorem is the stability of the HF solution against 1p — 1h
excitations, since these cannot improve the HF ground state |®,) because of (16.19). Only by 2p — 2h
corrections (as well as 3p — 3h terms etc.) the ground state

Wo=Po+ D 9,0 C22nPopon + - (16.20)

can be improved.

Instead of the Brillouin theorem (16.19) for N-particle states, we now want to establish an equivalent
statement for the single-particle states |a). To this aim we need the explicit matrix elements of
(®o|H|® ;) with the Hamiltonian operator

H =Y (alt|B)alas + + 3 os5s(aBlvrd) alalasa,. (16.21)

For the matrix elements of Hainal- with @, we then obtain in detail:

(®olalagahail®o) = diadmg, (16.22)

(¢0|a2a2a5a7ainai|<§g> = <<I>0|a]§.[a}.3a5ai|<P0>5m7 — (<I'0|ajla};a7ai|<1>o>5m5 (16.23)
form > N,¢ < N.With (16.22), (16.23) the Brillouin theorem then reads
(ilt1m) + £ (S pen @BlolmB) — ey (ailvime) = X s (iBlo]fm) + Loey(ailvlam)) = 0.(16.24)
Taking into account the symmetry

(afBlv[yd) = (Bev|6v)
—(from (12.53) for v(1,2) = v(2, 1))—we finally obtain

(16.25)

(i[tlm) + > < y(iavIma) — (ialvlam) =0



fort: < N,m > N.To interpret (16.25) we introduce the (hermitian) operator

Hir = o5 ((@lt1B) + ey (anlolBn).,,) alas = Yos(alhnrl8) ahas (16.26)

with

(an|v|pn) , = (an|v|fn) — (an|v|nB) (16.27)

which, as a result of the Brillouin theorem, can be diagonalized separately in the subspaces of the
occupied and unoccupied states! This diagonalization process has no influence on the Slater determinant
®,, because

(i) ®¢ is independent of ¢,, for m > N and

(ii) ®¢ is invariant under arbitrary unitary transformations of the ; for ¢ < N among themselves.

We can thus assume, without loss of generality, that h g is diagonal in the basis of {¢;}, i.e.

(alt[B) + > < (anfv|Bn) ;= €adap. (16.28)

Then H g5 takes the simple form

Hyp =Y, €athan (16.29)

with real single-particle energies €,. The Slater determinant ®( then is the ground state of H ;r with

Hyp|®0) = (T + Unr)|®0) = X<y €ilPo)- (16.30)

To find an explicit form for Ugr, we go back to (16.28). Since this equation is supposed to hold for all
a, we can also write (in the spatial representation of the Hartree-Fock equations)

(t+Un)pp(&) — [dE Up(&,€)pp(E') = es pp(£) (16.31)

with the local Hartree potential

Un(€) = Ynen [ 3 (€) v(&,€) en(€) (16.32)

and the nonlocal Fock potential

Ur(§,€) =2 nen n(&) v(& &) on(8). (16.33)

Formally, we can also write (16.28) as a Schrodinger equation for a single particle,

(16.34)

(t + UHF)SDa = €aPa;



where the mean-field potential Uyr = Uy — Up is nonlocal. This self-consistent single-particle
potential Uy is completely determined by the interaction v(1, 2) and by the single-particle states
¢; (i < N) occupied in .

16.2 Practical Implementation of the HF Method

Equation (16.34) represents a system of N coupled integro-differential equations for o < IV, while for

a > N only one integro-differential equation has to be solved. The usual procedure in practice for solving
(16.34) consists in expanding the desired HF solutions ¢, according to an arbitrary (but ‘close’)
orthonormal basis {¢, },

Yo =3,C% Py (1635)

The system of equations (16.34) then turns into a nonlinear system of equations for the expansion
coefficients C. The explicit form of this system is obtained by inserting (16.35) into (16.34), multiplying
from the left by ¢}, and integration over £:

S (Wl + ey o O3 (b lvlutbn) O ) CF = ea C. (1636)

We can solve this system of equations iteratively by writing it formally as a linear system,
> hwCy = eaCy, (16.37)

and note that b, = h,, (C*,C).
The iteration procedure then is carried out as follows:

1st step:
A basis {1, } is chosen such that the matrix elements of ¢t and v are easy to calculate (e.g. oscillator

eigenfunctions or eigenfunctions of the H atom - depending on the problem). As a starting solution one
then sets:

s = 5,0, (16.38)

and chooses the energetically lowest states ¢, (v < N).

2nd step:
Using the 1, the matrix

R = (Wultln) + X e (Yutbnlolntpn) (16.39)

is calculated. In the
3rd step:
the linear system of equations

>, hesM = e oW (16.40)
is diagonalized and the new states
oM =3, Wy, (16.41)

are calculated. In the



4th step:
one then selects the ‘occupied’ states go&l) (a < N) and starts again with step 2, i.e. the calculation of
the matrix h,(},,) with the states gogl).

The procedure is continued until the self-consistency

0 = g or BY) = AL (1642)

is achieved. Since the matrices h,(ﬁ,) are Hermitian in each iteration step, the corresponding

eigenvalues e,(ln) are real and the cp,(ln) orthogonal to different e&n).

A practical problem, however, is that the solution does not have to be unique due to the non-linearity
of the HF equations. By choosing the wrong occupied states in the n — th iteration step, it can happen
that instead of the absolute minimum, only a local minimum or even a maximum is found, which then
corresponds to an unstable solution (see Fig. 16.1).

EA

instable

relative minimum

absolute minimum

> C“P
Fig. 16.1 Illustration of possible solutions to the Hartree-Fock problem
16.3 Koopman’s Theorem
The ground state energy
(Ro|H|®0) = Eg = Yooy ((aft|la) + 3 3oy (@n|v|an) ) (16.43)
differs from the expectation value of Hy in the state |®g), since in
(@0l Hzr|®o) = Yacn ((altla) +32,<y (anfvlan) ;) = 3,y €a # Eo (16.44)
the interaction between the particles is counted twice.
The most simple excitations of the system on top of the ground state
[20) = [acy ac0) (16.45)
are 1p — 1h states
|®ni) = al,a;|®)with m > N,i < N. (16.46)
Its excitation energy
AFE =€, —¢€; (16.47)

in turn is different from the difference of the expectation value of H in the states |®,) and |®,,,),



(Poi| H|®mi)—Eo = € — €; — (milvimi) (16.48)

due to the double counting of the interaction in €,, and ¢;. The question therefore arises about the
physical interpretation of the single-particle energies €.

The theorem of Koopman now states that the HF single-particle energy €, is precisely the
separation energy of a particle in the state ¢,,. For the ‘proof’ we make use of the assumption, that the
HF single-particle states ¢, do not change approximately during the transition from the N particle system
to the (IV — 1) particle system, if N is sufficiently large. We then can represent a state of the (N — 1)
particle system by annihilating a particle in the state ¢,, of the Slater determinant |®) (16.45), i.e.

1,) = a,|®0) = [Taey ar, akl0)- (16.49)

The separation energy now is the difference between

By = (@,/H|9,) = Locnan((0lt0) + § Loy, (anlvlan) ) (16.50)
and
Ey = (®|H|®0) = > -y ((aft|la) + + > nen (anfvlan) ), (16.51)
thus
E, — Eo = —(ultlp) — X<y (inlvlin) , = —€, (16.52)

as claimed. We find deviations from this statement in nuclear physics, especially in systems with a
small number of particles, where the ¢, change noticeably during the transition from the N— to the
(N — 1) particle system, or where the HF approximation itself is too poor for the exact ground state |¥y).
Remark: In the time-dependent Hartree-Fock theory one restricts to the calculation of the time
evolution of a Slater determinant with time-dependent single-particle wave functions ¢g(&, t),

(— 2 V2 + Un(6,0))a(&,t) — [ A€ UR(e,€:t)pa(€1) = ih %y 05(6,0), (1653)

where the Hartree-Fock potential—calculated with the wave functions ¢g(&, t)—is also explicitly time-
dependent. The time-dependent Hartree-Fock (TDHF) method is always applicable, if the residual
interaction Hp, is negligible and the time evolution of the system is dominated by the independent motion
of particles in a self-consistent (time-dependent) single-particle potential. Examples for applications
are low-energy reactions of atoms and molecules.

In summarizing this chapter we have derived the Hartree-Fock approach, which is a leading order
selfconsistent approach to the many-body problem and is extensively applied in calculations of the
groundstate properties of atoms, molecules and nuclei.
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17. Superconductivity in the BCS Model

Wolfgang Cassing’
(1) University of Gief3en, Gief3en, Hessen, Germany

In this chapter we will introduce to the description of superconductivty, which is a generic property of
fermion systems at low temperatures, if an attractive residual interaction between specific states exists.

17.1 Experimental Evidence for Cooper Pairs

In
(I) solid state physics pairs of electrons with antiparallel momentum and spin

(k up, —k down), (17.1)

in
(II) nuclear physics pairs of nucleons with total angular momentum I=0:

(m]-, —m]-). (17.2)

Below we will summarize some experimental evidence for the existence of Cooper pairs.
(1) Odd-Even effect in nuclear physics
The system of nuclear masses shows that

Ma > 5 (M1 + M) (17.3)
for odd mass numbers A. Using the energy-mass relation
Am = My + Bya/c?, (17.4)
where m is the nucleon mass and B 4 is the nuclear binding energy, we have for odd mass numbers:
By <+ (Ba-1+ Bas1). (17.5)

(2) Energy-gap
Single-particle excitations are systematically higher in even-even nuclei (each with an even number
of protons and neutrons) than in odd-even nuclei,

AE;, (even — even) > AE,, (odd — even), (17.6)

since in even-even nuclei - in contrast to odd-even nuclei - a Cooper pair must be broken up in order to
enable a single-particle excitation (see below).

(3) Superconductivity in solids

In a normal conductor, electrical conduction occurs by quasi-free electrons; the resistance is a
consequence of the collisions between the electrons and the lattice atoms. Without an external field the
state of the conduction electrons is described by a Fermi sphere around the origin in momentum space
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(state without current). By an external field (applied voltage U) the Fermi sphere is (in first order)
linearly displaced in momentum space by,

]

2em,
Ak = 2l (17.7)

such that a non-vanishing expectation value of the current results. When switching off the external field
the equilibrium state (without current) is restored by collisions between electrons and lattice atoms.

In a superconductor this relaxation process is strongly suppressed in the presence of Cooper pairs,
as long as the energy eU supplied by the external field is not sufficient to break up the Cooper pairs!
The current continues to flow without resistance! In a simple estimate, for

o (Ukp + AR) = (kp — AR)*) = ZE22E < p (17.8)

a supercurrent then can flow, where in (17.8) kr stands for the Fermi momentum, Ak for the
displacement of the Fermi sphere by the external field (17.7) and P for the pair energy. The critical
current j. can be estimated via

Ak = mbo _ m o, K (17.9)
where n is the electron density, which together with (17.8) leads to a critical current j, ~ 107 Amp/cm
2

Above a critical temperature kg7, > P the Cooper pairs can be broken up ‘thermally’; the
superconductivity disappears again. An estimate gives T}, < 20° K for metals.

17.2 Origin of the Pair Force

In solid state physics the electron-phonon coupling in second order perturbation theory generates an
attractive contribution to the electron-electron interaction, which under certain circumstances
overcompensates the Coulomb repulsion of the electrons and leads to pair formation.

In nuclear physics, components of high multipolarity of the nucleon-nucleon interaction,

V(ri2) = 32, fi(r1,72) Pi(cos (612)) , (17.10)
favor the formation of nucleon pairs with total angular momentum I = 0.
17.3 BCS Ground State

In the model of Bardeen-Cooper-Schrieffer, the ground state of the system is constructed by Cooper
airs (k, k):

[@0) = 0 (ur + vialal)|o), (17.11)

where k is the time-reversed state of k and Uug, Vi, are real expansion coefficients. The notation
k > 0 means that only states with m; > 0 in nuclear physics or only states with spin up in solid state

physics are counted, since the time-reversed state k is already taken into account via the pair
formation. Normalizing |®,) yields

(®0|®0) = [Tgoo(u} + v2). (17.12)



Consequently (®g|®) is normalized to 1 if

ui +vi=1v k. (17.13)
To prove (17.12) note that
[aia%,a}az_h = 0;[a;2a£,al—al]+ =0V k#1 (17.14)
and
<0‘aiala]ta£‘0> = 007 (17.15)
In the products (with (alTaJ;_)T = a;ay)
(@9|®0) = [Tjo0 [T1n0 (Ol(wi + viazar)(us + 'Ukala;g)‘m (17.16)

T

one thus can move the ara for I # k past the azal_c,

factor with [ = k:

such that the product for [ > 0 only results in a

~ ~ !
H (Olugur + ukvkaia;fc + vpurazar + vkvka,—gakazagm = (uz + 'vi)<<I>0|<I>o>
kALE>0

where / indicates that the pair (k, k) has to be omitted. Repeated application then leads to (17.12).
Remark: The shell model limiting case is contained in the approach (17.11) if we set (
uy, = 0,v; = 1) for states k below the Fermi energy and (u;, = 1, v;, = 0) above the Fermi energy.

As aresult, one can interpret vi as the occupation probability of the pair state (k, k). For finite
0< vi < 1 the sharp Fermi edge in the shell model is ‘smeared’ by the residual interaction. This
smearing looks similar to the case of finite temperatures T in quantum statistics, but here the
correlated ground state (17.11) (atT' = 0) is already ‘smeared’ relative to the single-particle shell
model!

The parameters ux and v can be determined from the variational principle:

§(®o|H — AN|®p) = 0, (17.17)

where the Lagrange parameter A has to be chosen such that the matrix element of the particle
number operator A4

(@o|A Do) = N (17.18)

corresponds to the required number of particles, since the state |<i>0> is not sharp with respect to
the number of particles (see below).

17.4 BCS Quasiparticles

Quasiparticles are defined in relation to a reference vacuum, which does not have to coincide with the
physical vacuum |0)(0|. For the operators




ap = upay — 'vka;;a,—C = ugag, + vka]t (17.19)

] T T 1

o = URG; — vka,—g;ak = ukal_c —+ viag
we have
ar|®o) = az|®o) = OV k, k. (17.20)
The proofis done in 2 steps:
(1)
ai|®o) = (wa; — via,; B! [Tje0(ur + vkaka "0) (17.21)

= ( H (ur + vw,ta%)) (wia; — vlaz_)(ul + vlal )|0>
I#kk>0

i.e. one can move (u;a; — 'UlaT) past the operators a a% for I # k, k, since for | # k, k the following
holds

Tt ot ot
lagap, al], = lagag, ] =0 (17.22)
(2) Step:
N | Tt _ P 2atalal
(war — viap)(w + ’ulal ) 0) = (ula; + wYaa;a; — wuia; vlalal ) 10) (17.23)
= (ulvlala; — uwl)a;]0> = (uv; — ulvl)a];, |0) = 0.
Consequently, <i>0> can be considered as the quasiparticle vacuum with respect to the operators q;.

The inverse of (17.18) is

ap = upog + vkoﬂi;a,—c = upoy — vkaz (17.24)

k

a,t = uka}; + 'vkoz,—c;a;c = uka; — VO,
as can easily be calculated. In compact form:
ar = upog + Skvka;fc, a;'c = u/rgoz;rC + Spvray, (17.25)
with S = 1fork > 0and S, = —1 for k = k < 0. From the Fermi commutation relations of the ay, az

also follow the Fermi commutation relations of o, O‘L'




ok, o], = 0w, o, o], = [o), 0], =0. (17.26)

The transition from particles to quasiparticles proves to be helpful for the calculation of matrix
elements and as physically meaningful for the construction of excited states.
Note: The BCS quasiparticles are not to be mixed up with the Cooper pairs!

17.5 Matrix Elements in the BCS Model

The particle number in the BCS ground state is given by

(Bo|A|B0) = 3, (Bolatiam|®o) (17.27)

Z @0\ (u2,al, 0 + SmVmUmmQm + UnmVm Smack, am + vamvamamaT )| @o)

m
—Z $olanal L1 @g)v2, Zv —221}

m>0

It is generally not sharp since the particle number fluctuation

(AN)? = (80| N 2|Bo) — (Bo|H|B0)2 =23, udw? #0 (17.28)

except for the shell model limit! To prove this, we form

(BolA?®0) = (Bo| X1 Ahnmatian|®o) (17.29)

= (@] > al,anbum|®o) — (Bo| Y alalaman| o)

2 Tt
= g vy, — E <<I>g\amana a; |<I>0 v E <I>0]ama amoy |<§0> SnUnSmUmlnlm
m m,n m,n
Z 2 Z 2 2 Z 2 2
m m;én m

with (v2, =1 —u2,) and

<(i)0|‘/1/2’(i)0> - <‘i)0“/V’(i)0>2 = Z + Zm#nv + Zmu mvfn - Zm#n vfn'vi(17,30)

_ 2 2,2 4 _ 2 2.2 _
—g vm+§ umvm—E vm—g vm—i—E U, Uy — v 1—u 25 vmum
m m m m m m

The matrix elements of the Hamiltonian operator are

o (17.31)
(Ro|H| o) = 32, ((mltlm) + 5 3, (mn|V]mn) , v7,)v7,



Y mmlVinm) g (v (o),

m>0,n>0

where the 1st term is a sum over modified single-particle energies and the second term results
from the pure pair interaction, which disappears in the shell model limit. In (17.31) t is the one-body
operator for the kinetic energy and V the two-body operator for the 2-body interaction. To prove
(17.31) we transform
(Bo|H|Bo) = 3 (mltln) (Bolatan] Bo)+5 g mn (klVImn) (@olalalanam|®o)  (17.32)

to quasiparticle operators. The intermediate result is

(Bo|aban|Bo) = Sumv2, (17.33)

(@ |a2a}anam\<i>0> = (® |a,—cal—aj_laih|<§0>SkkalvlSnvnvam (17.34)

+<&>0 |a]_€a;ranaj‘ﬁ|&>0>Skvkulsmvmun~

Non-vanishing matrix elements in the 1st term of (17.34) only existfork =m,l =nork=n,l=m
and in 2. term of (17.34) only for n = m, [ = k. The evaluation yields

(BolH|®o) = 5, ((mlthn) + 32, (mnl VImm) ;03 )02, (17.35)

1 _ _
+ 9 Z (mm|V|nn) S, Smtnvntimvm

m,n

with the antisymmetrized matrix element

(mn|V|mn) , = (mn|V|mn) — (mn|V|nm). (17.36)

Due to the time reversal invariance of the interaction and hermiticity of the kinetic energy also
holds

(mltlm) = (m|tlm)" = (mt|m), (17.37)
and

(mn|V|mn) , = (mn|V|imn),, , (17.38)

(ma|V|mn) , = (mn|V|mn),,

Sy S (mm|V|nn) + S; S, (mm|V|an) = (mm|Vina) .



Summing up the contributions we obtain the result (17.35).

17.6 BCS Solutions

Since u2, + v2, = 1, the variation (17.17) with respect to the parameters t,,, v, is not independent and
one takes advantage of the fact that

2 2,2
%(Umvm) = %( V 1-— ’U,?nvm) = _Z_m +um = Zo"n, (17.39)

To calculate the remaining variation

o (®9|H — AN @) = 0 (17.40)

we introduce (with regards to (17.27) and (17.31)) generalized single-particle energies,

€m = (mtim) — X+ Y, (mn|V|imn) , v2 , (17.41)

n

as well as an average pair potential

Am =3 s (mm|VnR) ; unvy (17.42)

Equation (17.40) then gives

2 2
2EmVm + A= = 0. (17.43)
The formal solutions of (17.43) are
2 1 Em 2 1 €m

which have to be solved iteratively. One sees immediately that

2.2 _ 1 & _ 1A
UmYm = Z(l - e$n+A2m) = 1E74% (17.45)

As starting values for the iteration one chooses

(1) the Hartree-Fock values, i.e. one sets in (17.41) vfn = 1 for energies below the Fermi energy and
v2,= 0 above.

(2) In the gap equation (using (17.45)),
_ _ A,
A = 5 Xpsn (M| VInh) oy, (17.46)

if €2 is inserted according to step (1) and A,, is approximated by a state-independent gap parameter
A, which results from (17.46) after division by A,

1 - _ 1
1= 3> (mm|Vina),, A

(17.47)




The meaning of X becomes clear if one defines the generalized Fermi level by
vi=ul=1; (17.48)
then

17.7 Excitations on the BCS Ground State

In the shell model we have assumed
H=Hy+ Hg,Hy = ZZ eiazai = Zz eia;rai (17.50)
with the quasiparticle operators «; from (17.18) (for v; = 1,0) and

e; =€ —ep if € > ep; (17.51)

e;=¢cp—e¢; if ¢ <ep.
1-particle - 1 hole (1p — 1h) excitations then are
’(I’mz> = amaz‘(I)SM> = amaT“I’SM> (17.52)
with¢ < N and m > N; they correspond to 2-quasiparticle excitations with the excitation energy
€Em — € = €y, + €;.
We proceed in the same way in the BCS model with the new separation

H= ﬂo + ﬁR,ﬂo = Zk ékaiak, (17.53)

where Hy now also contains the parts of H that lead to the formation of Cooper pairs. By converting
H to the BCS quasiparticle operators a;r, a; we find

Er =1/ & + AL (17.54)
1-quasiparticle excitations describe systems with odd mass number, e.g. (even-odd) nuclei:
ah|®o) = ah, 1T k=0 (ue + Ukaka 5 o), (17.55)
since

(una:rz — Upas)(un —|—vnana ) |0) = (u2 + v )an|0> and [an,aka | =0V k,k#n . (17.56)

The ground state of an odd-even system is aIL|<i>O) if €, = 0; a 1p — 1h excitation of the odd-even system
then is described by

ahapal|®o)e = ahar|®o),, (17.57)

with the energy:



en—erRAL+RF - )-ARE, . (17.58)
2-quasiparticle excitations are described by
ahal | ®0) = alal, TT, i so0(us +vralal) 10) (17.59)

and have the excitation energy e,, + e, i.e. atleast A, + Ay ~ 2A for the breakup of a Cooper pair.
This explains the effects in Sect. 17.1 in a ‘simple’ way.

In summary, we have presented a first extension of the Hartree-Fock theory by including the
attractive residual interaction of Cooper pairs, which may lead to the phenomenon of
superconductivity in fermion systems at low temperature (and appropriate density).
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