


Wolfgang Cassing

Theoretical	Physics	Compact	III
Quantum	Mechanics



Wolfgang Cassing
University of Gießen, Gießen, Hessen, Germany

ISBN 978-3-031-95520-4 e-ISBN 978-3-031-95521-1
https://doi.org/10.1007/978-3-031-95521-1

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2025

This work is subject to copyright. All rights are solely and exclusively
licensed by the Publisher, whether the whole or part of the material is
concerned, speci�ically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on micro�ilms or in
any other physical way, and transmission or information storage and
retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks,
service marks, etc. in this publication does not imply, even in the
absence of a speci�ic statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general
use.

The publisher, the authors and the editors are safe to assume that the
advice and information in this book are believed to be true and accurate
at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the
material contained herein or for any errors or omissions that may have
been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional af�iliations.

This Springer imprint is published by the registered company Springer
Nature Switzerland AG

https://doi.org/10.1007/978-3-031-95521-1


The registered company address is: Gewerbestrasse 11, 6330 Cham,
Switzerland



Dedicated	to	Prof.	Dr.	Achim	Weiguny



Preface
This book provides a textbook on quantum mechanics and is in
particular suited for bachelor students in their second or third year of
studies in theoretical physics. In Part I a short summary of classical
mechanics and its limits is given by pointing out those physical
observations, that are in con�lict with (or opposed to) interpretations
within classical mechanics. Early attempts to extend the classical
physics by additional boundary conditions are discussed as well.

In Part II the Elementary	Quantum	Mechanics for a single particle is
introduced and the statistical interpretation of its wave function, which
results from the Schrödinger equation in the presence of external
forces. It is shown how to translate classical observables in phase-space
representation to quantum mechanical operators acting in an abstract
Hilbert space of wave functions. Observable quantities like momentum,
angular momentum or energy then are de�ined by expectation values of
their corresponding operators. Contrary to classical mechanics the
sequence of measurements on different observables in general cannot
be exchanged; this is re�lected in commutators between operators that
have the same algebra as the Poisson brackets in classical mechanics. A
prominent example is the uncertainty relation between position and
momentum, which states that the product of the uncertainty in position
and the uncertainty in momentum has a lower limit in quantum
mechanics and is increasing in time for free wave packets. Another
example is the angular momentum, whose components do not
commute and re�lect the fact that the order of rotations cannot be
exchanged. In line with the observations in the Stern-Gerlach
experiments a spin is attributed to electrons and described by an
internal degree of freedom with the same algebra as the angular
momentum. This �inally results in the Pauli equation that describes the
dynamics of charged spin 1/2 particles e.g. in an external
electromagnetic �ield.

The general properties of quantum mechanics then are illustrated
by a couple of examples including the in�inite (and �inite) square well,
the quantum mechanical tunnelling through a �inite potential well as
well as problems with crystal (periodic) symmetries leading to �inite



energy bands in solid state materials. The problem of the harmonic
oscillator is solved algebraically and its spectrum is derived as well as
its eigenfunctions in one and three dimensions. In case of radial
symmetry the radial Schrödinger equation is derived and solved
explicitly for the case of the hydrogen atom. Apart from bound states of
the single-particle problem, furthermore, continuum states are
investigated in the framework of scattering theory and an alternative
formulation of quantum mechanics is found in terms of the Lippmann-
Schwinger equation, which is more appropriate for scattering problems
due to the explicit implementation of proper boundary conditions. In
this context the scattering amplitude and the differential cross section
are introduced, that describe the scattering probability in quantum
theory. The Born series is set up for the scattering amplitude and
investigated in leading order approximation. Finally, the scattering
amplitude is derived in angular momentum representation and
scattering phase shifts are introduced, that de�ine the S-matrix for
elastic scattering (and �ixed angular momentum).

The Mathematical	Foundations	of	Quantum	Mechanics are addressed
in Part III of this book that aims at a rigid formulation of many-particle
problems in quantum physics. To this aim in particular self-adjoint,
unitary and projection operators are discussed in detail. In this context
the possible many-body states are characterized with respect to their
particle-exchange symmetry (in case of identical particles) which leads
to the classi�ication of fermions and bosons, which differ by a minus-
sign in their wave function for the exchange of two particles. The Pauli
principle, furthermore, states that fermions can only occupy a state
(with given quantum numbers) once, whereas there is no limitation for
bosons. This distinction is not possible in classical mechanics, since the
particles can be distinguished by their trajectories in phase space, but
has severe consequences for many-body systems close to their ground
state.

In Part IV of this book the Quantum	Mechanics	of	Many-Body	Systems
is addressed and the different pictures for the time-evolution of the
system are pointed out, i.e. the Schrödinger picture, the Heisenberg
picture and the Dirac picture, which are equivalent, but have different
advantages depending on the problem under consideration. In order to
obtain a �lexible and convenient formulation of the many-particle



problem the particle number representation for fermions and bosons is
introduced, which differ in the commutation relations for the particle
creation and annihilation operators. It is shown how to compute
observables in this representation and examples for ground states of
bosons and fermions are presented. Furthermore, the quantization of
the electromagnetic �ield is formulated, which—as in case of matter
�ields—has a particle interpretation (photons) in addition to the wave
properties. The interactions between matter and the radiation �ield are
calculated in leading order, too.

Systematic	Approximation	Methods are in the focus of Part V of this
book, which starts with a formal formulation of scattering theory for
many-body systems and introduces the concept of the S-matrix and T -
matrix. In particular the T -matrix is shown to follow a general Born-
series, which can be solved either by iteration or a systematic
expansion in powers of the interaction. Explicit formulae for the ground
state of many-body systems are presented. The Hartree-Fock approach
is derived and discussed in detail, which has a wide application in
atomic and nuclear physics as well as in theoretical chemistry. The
approach basically focusses on the properties of ground states of atoms
and molecules as well as nuclei and is an effective one-body theory,
where the individual two-body interactions are summed up in an
effective Hartree-Fock mean �ield. Residual interactions between pairs
of fermions with time-reversed quantum numbers are �inally
incorporated in the BCS theory, which allows to describe
superconductivity in metals and nuclei at low temperatures.

Acknowledgements This book results from the collaboration with
many students and collaborators throughout about 35 years of
common teaching and research. It follows the drafts of my teacher Prof.
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About	This	Book
This book provides a textbook on quantum mechanics and is in
particular suited for bachelor students in their second or third year of
studies in theoretical physics.

After a short summary of classical mechanics and its limits the
elementary quantum mechanics for a single particle is introduced in
terms of the Schrödinger equation, which is solved for a couple of
representive examples. Apart from bound states of the single-particle
problem continuum states are investigated in the framework of
scattering theory. In this context the scattering amplitude and the
differential cross section are introduced, that describe the scattering in
quantum theory.

The mathematical foundations of quantum mechanics are
addressed in the second part of this book, that aims at a rigid
formulation of many-particle problems in quantum physics. For a
�lexible and convenient formulation of the many-particle problem the
particle number representation for fermions and bosons is introduced.
Furthermore, a formal formulation of scattering theory for many-body
systems is presented in terms of the S-matrix and T-matrix. In
particular the T-matrix is shown to follow a general Born-series, which
can be solved by iteration. The Hartree-Fock approach is derived and
discussed in detail, while residual interactions between pairs of
fermions with time-reversed quantum numbers are �inally
incorporated in the BCS theory, which allows to describe
superconductivity in metals and nuclei at low temperatures.

The author is a retired Professor of Theoretical Physics at the
university of Giesen and has shared the responsibility for the
introduction of Bachelor and Master courses in Physics since 2005. His
expertise is the phase-space dynamics of classical and quantum many-
body systems, which in part is published in a book on transport
theories. Moreover, he has written a series of textbooks in Theoretical
Physics.
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Before coming to the actual formulation of quantum mechanics we
brie�ly summarize the basic concepts and equations of classical
mechanics. Furthermore, classical statistics is discussed with respect to
the concept of identical particles and the basic assumptions for
experimental measurements in classical physics are pointed out in
order to be confronted with the different perspectives in quantum
mechanics.

1.1	 Motion	of	Mass	Points
In classical physics a system of N mass points is fully characterized by
the positions and velocities of the particles as a function of time

(1.1)

To each mass point (particle) a trajectory is assigned, which can be
determined by integrating Newton’s equations of motion. The solution
is unique as soon as the positions and velocities of all particles are
determined (measured) at some time t0 assuming that all internal and
external forces are known.

With respect to the formulation of quantum theory we write the
equations of motion using a characteristic function for the system, the
Lagrange	function

(1.2)

{qi(t), q̇i(t)};i = 1, 2, … , 3N .

L = L(qi, q̇i;t)

https://doi.org/10.1007/978-3-031-95521-1_1


as

(1.3)

If the forces are derived from a potential

(1.4)

by forming the negative gradient, then L has the form

(1.5)

where

(1.6)

is the non-relativistic kinetic energy. By substituting (1.4), (1.5) and
(1.6) into (1.3) one immediately regains Newton’s equations of motion.
In case of velocity-dependent forces (example: Lorentz	force), V has to
be generalized to

(1.7)

Instead of working with the r = 3N  2nd order differential equations
(1.3) in the Lagrange	formalism, one can also use 2r differential
equations of �irst order in the Hamilton	formalism. For the
transformation to the Hamilton formalism canonical	momenta are
introduced by,

(1.8)

which reduce to the usual momenta

(1.9)

if V does not depend on q̇i. With the help of the Hamilton	function,
which is obtained by a Legendre	transformation,

d
dt
( ∂L

∂q̇i
)− ∂L

∂qi
= 0.

V = V (qi;t)

L = T − V ,

T = ∑i
mi

2 q̇2
i

V = V (qi, q̇i;t).

pi = ∂L
∂q̇i

,

pi = miq̇i



(1.10)

the equations of motion then can be written as

(1.11)

Furthermore:

(1.12)

For the proof one forms the complete differential of H(qi, pi;t).
Note: Instead of the explicit equations of motion one can

alternatively employ the variation	principle for the action S,

(1.13)

with the boundary conditions

(1.14)

1.2	 Poisson	Brackets,	Conservation	Laws
An observable of the system (example: z-component of angular
momentum, mean square radius) can be represented as

(1.15)

For the total change in time of F one obtains:

dF

dt
= ∑

i

(
∂F

∂qi

dqi

dt
+

∂F

∂pi

dpi

dt
) +

∂F

∂t

= ∑
i

( ∂F

∂qi

∂H

∂pi
−

∂F

∂pi

∂H

∂qi
) +

∂F

∂t

(1.16)

H = H(qi, pi;t) = ∑i q̇ipi − L,

q̇i = ∂H
∂pi

, ṗi = − ∂H
∂qi

.

∂H
∂t = − ∂L

∂t .

δS(t1, t2) = δ ∫
t2

t1
L(qi, q̇i;t) dt = 0,

δqi(t1) = δqi(t2) = 0.

F = F(qi, pi;t).



In general, the expression

(1.17)

is denoted by the Poisson	bracket of the quantities F1, F2. For an
observable F, that not explicitly depends on time (example: z-
component of the angular momentum), its change in time is
determined by the Poisson bracket with H, 

(1.18)

Examples:

(i) Fundamental	Poisson	brackets {qi, pj} = δij

(ii) Hamilton’s	equations

(iii) dH/dt = {H,H} + ∂H/∂t = ∂H/∂t.
From (iii) the conservation law of energy arises if H is not explicitly

dependent on t and has the form H = T + V (qi).
For a closed system the fundamental mechanical quantities—

energy, momentum and angular momentum - are conserved quantities.
This is a direct consequence of the invariance of the Lagrange function
- and thus of the physical system—with respect to time	translation,
space	translation and space	rotation. Since momentum and angular
momentum for a system of N particles does not depend explicitly on
time t, then from (1.16) or (1.18) follows for a conserved quantity G

= {F ,H} + ∂F
∂t .

{F1,F2} = ∑i(
∂F1

∂qi

∂F2

∂pi
− ∂F1

∂pi

∂F2

∂qi
)

dF
dt

= {F ,H} if ∂F
∂t = 0.

q̇i = ∂H/∂pi = {qi,H}

ṗi = −∂H/∂qi = {pi,H}



(1.19)

Conservation laws imply that for the considered observable the
Poisson bracket with the Hamilton function vanishes.

1.3	 Identical	Particles	Classical	Statistics
Particles with the same physical properties (same mass, same charge,
etc.) are called identical	particles. In classical physics identical
particles are distinguishable based on their trajectories: numbering
e.g. two identical particles at a time t0 by 1 and 2, then at a later time 
t > t0 the particles can be identi�ied again as 1 or 2 by following their
motion along the respective trajectory, which is unique.

If there are a lot of identical particles (like H2 molecules in a
macroscopic volume), the system is described using statistical methods
(probability statements), although in principle all physical properties of
the system are �ixed for all times, if the initial conditions are known.
Statistics methods are used for practical reasons: if it is not possible to
measure or calculate all physical variables of the system or if
statements about certain quantities are practically uninteresting (e.g.
the positions of all molecules in a macroscopic volume).

1.4	 Fundamental	Interactions
The forces acting between mass points can be reduced to a few
fundamental types of interactions, that partially are described in the
context of �ield	theories:
(i)

the gravitational	interaction, which couples to the mass of the
particles and is essential for the motion of macroscopic bodies
(especially celestial objects);

 

(ii)
the electromagnetic	interaction, which couples to the charge
and the magnetic moment of the particles. It is important for
problems in both macroscopic and microscopic dimensions;

 

dG
dt

= {G,H} = 0.



(iii) the weak	interaction which e.g. is responsible for the β decay;  
(iv)

the strong	interaction, which describes the nuclear forces
between the nucleons by the exchange of mesons. It is
fundamentally based on the exchange of colored gluons coupling
to the color	charge of quarks in quantum chromodynamics
(QCD).

 

Note: (ii) and (iii) are also referred to as electroweak	interaction,
which is based on the exchange of a massless vector particle (the
photon γ) as well as massive vector bosons (W +, W 0, W −, Z 0).

This book primarily focuses on electromagnetic interactions.

1.5	 Concept	of	Measurement	in	Classical
Physics
In order to carry out a measurement of a physical system, the system
(object) to be examined must interact with a detector. The detector
changes its state (e.g. in the form of a mechanical pointer) and, in
principle, the system (object) to be examined is also inversely
in�luenced by the measurement process.

On the basis of classical physics the following fundamental
statements are assumed about the measurement process:
1.

The reaction of the measurement process on the object can in
principle be calculated according to the laws of classical physics.

 
2.

The perturbations—caused by a measurement on the object - can
be made arbitrarily small. With a suitable setup of the
measurement the impact on the object can therefore be neglected.

 

3.
Measurements of different properties (observables) on the same
system do not interfere with each other.

 
Example: If we measure positions and momenta at some time t0 of a
system of mass points we obtain certain numerical values. If we carry
out the same measurement again at a later time t > t0 we obtain in



principle those values, which can be calculated from the �irst
measurement using the equations of motion.

The concept described above is indeed applicable to macroscopic
phenomena. We can determine the position of a macroscopic object
using e.g. a photograph. In principle the state of the macroscopic object
is changed because light interacts with it when the image is taken
(radiation pressure). However, this change can be made arbitrarily
small within the framework of classical physics by exposing the object
increasingly weakly or using a more sensitive �ilm. As a condition for
this assumption all physical variables have to change continuously.



(1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
W. Cassing, Theoretical	Physics	Compact	III
https://doi.org/10.1007/978-3-031-95521-1_2

2.	Limits	of	Classical	Physics
Wolfgang Cassing1  

University of Gießen, Gießen, Hessen, Germany

 

Classical physics has proven to be valid when applied to macroscopic
objects (e.g. celestial mechanics) and macroscopic �ields (e.g. de�lection
of an electron beam in an electric or magnetic �ield). However, in the
following we will discuss some characteristic experiments, where
explanations—based on classical physics—de�initely fail.

2.1	 The	Photoelectric	Effect
Experimentally one �inds that e.g. electrons are emitted from an alkali
metal, if the metal is irradiated with UV light. In detail it is stated:
(1)

The electric current density is proportional to the intensity of the
incident radiation as expected according to classical physics. But:

 
(2)

The energy of the emitted electrons does not depend on the
intensity of radiation (in particular not from the distance between
the light source and the metal), but only on the frequency ν of the
light and the metal used. With the help of a counter-voltage it can
be shown, that the energy of the electrons increases linear with
the frequency and that no electrons are emitted below a
(material-dependent) cutoff frequency νc, independent of the
radiation intensity.

 

(3)
Above the respective cut-off frequency νc the electron emission
starts instantaneously.

 

https://doi.org/10.1007/978-3-031-95521-1_2


Point (2) together with (3) cannot be explained in classical wave
theory; speci�ically point (3) shows that the process is not based on a
continuous collection of radiation energy in the metal.

Einstein’s explanation is based on the hypothesis that the incident
radiation can be viewed as a stream of light quanta (photons) with the
energy hν. These photons can be absorbed individually by the metal
electrons; if the energy hν of the photons is larger than the binding
energy of the electrons in the metal, the electrons can leave the metal
after absorbing a photon. The kinetic energy then is

(2.1)

where W is the minimum binding energy of electrons in the metal
considered. Einstein’s hypothesis is con�irmed by experiment
qualitatively and quantitatively; in particular (2.1) explains the cutoff
frequency. The proportionality constant h in (2.1) turns out to be
identical to that known from the radiation of black bodies (Planck’s
constant).

2.2	 The	Compton	Effect
We consider the scattering of light on free (or very weakly bound)
electrons (see Fig. 2.1) and assume that the incident radiation is
monochromatic. One observes that the wavelength of the scattered
light differs from that of the incident light; for the deviation in
wavelength one �inds,

(2.2)

where the constant d is independent of the wavelength λ of the
incident light and ϑ is the angle between the direction of observation
and the direction of propagation of the incident radiation.

Ekin = 1
2 m v2 = hν − W ,

Δλ = d(1− cos ϑ) = λ′ − λ,



Fig.	2.1 Kinematics for photon scattering (with wavelength λ) on an electron at rest

This �inding can be easily explained within the framework of
Einstein’s photon hypothesis: Since photons (in vacuum) travel with the
velocity of light c, they cannot have a �inite rest mass; accordingly the
relativistic energy-momentum relation is:

(2.3)

If energy and frequency are linked via E = hν, then the magnitude of
the momentum of the photon is:

(2.4)

The properties of the photons (E, p) are the same as those of the wave
packet (ν, k) and linked by:

(2.5)

To explain (2.2) one only needs the conservation laws of energy and
momentum. If the light (the photon) interacts with an electron at rest,
then the following holds for the individual elementary process:

(2.6)

(2.7)

E = pc.

p = hν
c

.

E = hν; p = ħk; k = |k| = 2π
λ

= 2πν
c
; ħ = h

2π .

p = p′ + pe,

E + mc2 = E ′ + √(m2c4 + p2
ec

2),



with p′ denoting the momentum of the photon after scattering and pe

the momentum of the electron after scattering. We write (2.7) as

(2.8)

and square (2.6)

(2.9)

Then follows

(2.10)

or with (2.5)

(2.11)

Indeed, the factor h/(mc) agrees with the experimentally
determined constant d in (2.2).

The explanation of the Compton effect within the framework of
Einstein’s photon	hypothesis implies that the scattered photon and
the scattered electron occur simultaneously. This could be con�irmed by
coincidence measurements.

It is instructive to compare these results with the predictions of
classical theory. According to Maxwell’s theory, the electron under
consideration is accelerated by the electric �ield of the incident
radiation, whereas the electric �ield of the incident radiation looses
energy and momentum. The energy absorbed by the accelerated
electron is emitted again in the form of a spherical wave of the same
frequency. Since the total momentum of the emitted radiation is zero
for symmetry reasons, the momentum law requires that the electron
takes up momentum in the direction of the incident radiation (k-
direction). If the electron initially was at rest, it then should move in the
k-direction. This is in contradiction to the experimental observation

p2
e = 1

c2 (E + mc2 − E ′)
2

− m2c2

p2
e = p2 + p′2 − 2 p ⋅ p′ = 1

c2 (E 2 + E ′2 − 2 EE ′ cos ϑ).

E − E ′ = EE ′

mc2 (1− cos ϑ) =
2πħc
λλ′ (λ′ − λ)

Δλ = λ′ − λ = h
mc

(1− cos ϑ).



that scattered electrons also have momentum components
perpendicular to the k-direction.

Note: The frequency of the absorbed and emitted light is only the
same in the rest frame of the electron under consideration; the
frequencies observed in the laboratory system are different due to the
Doppler effect as soon as the electron is in motion. The corresponding
shift in wavelength Δλ depends on the angle ϑ as in equation (2.11),
however, for the factor d in (2.2) one doesn’t get the correct value in
classical theory!

The experiments outlined in (2.1) and (2.2) show that light has a
particle character; on the other hand, interference and diffraction
experiments show phenomena, that can only be understood in terms of
waves. Light thus presents itself in two forms, as a particle or as a wave,
respectively, according to the experiment under consideration. This
wave-particle	duality is incompatible with the ideas of classical
physics.

If the electromagnetic radiation contradicts the classic wave pattern
by showing particle aspects, it is to be expected that inversely mass
points under certain conditions also show a wave character. This is
indeed the case as one can see from the

2.3	 Electron	Diffraction	on	Crystals
If one shoots electrons of de�ined energy E and momentum p on a
single crystal one observes Laue	diagrams on a screen behind the
crystal similar to the scattering of X-rays on crystals. If the structure of
the crystal is known (lattice constant, crystal symmetry) one can—in
analogy to X-ray diffraction—determine a wavelength λ from the Laue
diagram. One �inds empirically that λ is related to the energy E or the
magnitude of the momentum p of the electrons according to (p = |p|)

(2.12)

(de	Broglie	relation), or using the wave number k = 2π/λ

(2.13)

λ = h
p

p = ħk; ħ = h
2π ,



in agreement with (2.5) for the case of photons!
The results reported above are compatible with other experimental

observations and also for other particles (e.g. neutrons, helium atoms)
and force us to	attribute	wave	properties	to	matter,	which	obviously
contradicts	the	ideas	of	classical	physics.

Apart from the wave-particle dualism, which is insolvable for
classical physics, there is further experimental evidence for the duality
for matter and electromagnetic radiation and for the limits of classical
physics: In the atomic domain there are situations in which physical
quantities (example: energy of a particle) can only assume discrete
values (excited states of atoms) in contrast to the classical theory.

2.4	 Quantization	of	the	Energy	of	Bound	States
Characteristic for the emission and absorption of electromagnetic
radiation by matter is the existence of sharp	spectral	lines. Absorption
and emission spectra for a given system (atom, molecule, atomic
nucleus) are the same; every system has a characteristic spectrum that
can be used to identify it (detection of trace elements).

This experimental �inding does not �it into the framework of the
classical theory, in which the energy is a continuous quantity. A
convenient explanation is provided by the following hypothesis (N.
Bohr): atoms (molecules, atomic nuclei) can only exist in certain
stationary	states, which have a well-de�ined energy. When interacting
with electromagnetic radiation only discontinuous transitions
between the stationary states are possible, resulting in sharp spectral
lines in the emission pattern; the energy difference between the states
under consideration corresponds to the energy of the emitted
(absorbed) photon,

(2.14)

A further experimental con�irmation of energy quantization is provided
by the Frank-Hertz	experiment on inelastic collisions of electrons on
atoms: Monoenergetic electrons are scattered from the atoms of a
target, the energy of the scattered electrons is measured (by a counter
voltage) and from this the energy loss is determined. Let T be the

Ei − Ej = hνij.



kinetic energy of the incoming electrons, E0, E1, … the energies of the
stationary states of the target atoms. Since all atoms are practically in
the ground state with energy E0 (according to the experimental
conditions), according to Bohr’s hypothesis the atoms cannot absorb
energy as long as T ≤ E1 − E0, i.e. the collision is elastic. If 
T ≥ E1 − E0, atoms can reach the �irst excited state and the electrons
lose the energy E1 − E0 (inelastic scattering). This is exactly what is
observed; with increasing energy T higher excitations are observed,
too.

An analog experiment in nuclear physics is Coulomb	excitation, in
which protons move close to a nucleus and—with a loss of energy—
excite the nucleus to low lying states.

2.5	 Quantization	of	Orientation
We consider the de�lection of a beam of paramagnetic atoms with the
magnetic moment μ in an inhomogeneous magnetic �ield B (Stern-
Gerlach	experiment). The force acting on the dipole moments is

(2.15)

since the potential energy is −(μ ⋅ B) (see electrodynamics). For the
sake of simplicity we assume that (by appropriate shaping of the
magnets) only Bz and ∂Bz/∂z are non-zero. Then only the force in the
z direction acts on the particles with strength:

(2.16)

If the magnetic moments are initially oriented statistically, then all
values for μz are possible between ±μ (μ = |

→
μ|). Accordingly, the

de�lection angle can continuously vary between the extreme angles
belonging to μz = ±μ. On the screen—placed perpendicular to the
beam behind the magnet in the direction of the beam—one would
therefore expect—according to the classical theory—the image shown
in Fig. 2.2a; the length of the line depends on the kinetic energy of the
atoms, the strength of the magnetic �ield and the distance between the

F = ∇(
→
μ ⋅ B),

|F| = Fz = μz
∂Bz

∂z .



magnet and the screen. Figure 2.2b shows the trivial result for the case 
μ = 0.

Fig.	2.2 The classical expected spatial distribution of the atoms (a); result for the case μ = 0 (b);
result for the case of angular momentum l=2ħ (c)

Experimentally the case (c) is found, i.e. a sequence of equidistant
points along the z direction, symmetrical to the original beam direction.
Apparently only certain discrete values of μz are realized; since the
magnetic moment is directly related to the angular momentum of the
atoms, this implies that the z component of the angular momentum of
the atoms can only have certain discrete (integer) values (in units of ħ).

Note: Figure 2.2 (c) refers to the case of orbital angular momentum 
l = 2ħ; in the case of spins (half integers) the central point is omitted.

The wave-particle duality as well as the quantization of certain
physical properties show that classical physics fails at the atomic level.
The classical theory must be replaced by a new theory—the quantum
theory—which, of course, must include the classical physics as a
limiting case, since this has been proven valid for macroscopic systems.
The	fact	that	the	wave-particle	duality	shows	up	both	for	matter	as
well	as	for	electromagnetic	radiation,	implies	that	a	quantum
theory	is	needed	not	only	for	matter	but	also	for	radiation.

In the following we will �irst examine the quantum theory of matter
using the example of a single particle. Then we formulate the quantum
theory abstractly and axiomatically; this abstract formulation will also
show how to deal with the multi-particle problem and how to quantize
the electromagnetic �ield.



(1)
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In this chapter we brie�ly discuss Bohr’s model of the atom and the
concept of matter waves.

3.1	 Bohr’s	Model	of	the	Atom
The �irst attempt to solve the problems of classical physics was to add
certain quantum	postulates to mechanics. This reduced the possible
continuum of classic paths to certain permitted paths. Despite some
successes (quantitative description of the hydrogen atom, etc.), this
attempt had to be abandoned because it.
(1)

failed in some concrete cases (aperiodic motions, i.e. scattering
states; anomalous	Zeeman	effect) and

 
(2)

is not free from contradictions: on the one hand, the concept of an
orbit in form of allowed	orbits is required, on the other hand, in a
transition between two allowed	orbits the particles should reach
their state discontinuously, i.e. not along a classic path.

 

3.2	 Matter	Waves
The second attempt, which ultimately led in the right direction, goes
back to the observation of interference phenomena from material
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beams. Experiments like the electron diffraction on crystals suggest to
attribute a wave to a monoenergetic particle beam; the most simple
approach - for geometrical reasons - is a plane wave

(3.1)

We now have to link the known properties of the particles—in our
case the energy E and the momentum p—to the quantities
characterizing the wave, i.e. angular frequency ω and wave vector k.
According to experimental �inding by de	Broglie (2. 12) we connect k
and p by

(3.2)

The analogy to photons suggests that the (kinetic) energy of the
particles with the angular frequency ω = 2πν to be given by

(3.3)

due to the Lorentz invariance of the phase in (3.1). The frequency ω
is certainly independent of the direction of k due to spatial isotropy, it
thus can only depend on the magnitude of k. So we have to �ind the
dispersion law

(3.4)

for material particles, that replaces the relationship for photons

(3.5)

To this aim we consider a wave packet (i.e. a superposition of plane
waves)

(3.6)

∼exp (i[k ⋅ r − ωt]).

p = ħk.

E = ħω

ω = ω(k)

ω = kc.



and assume that φ(k) is only signi�icantly different from zero in the
neighborhood of k ≈ k0. Then we can expand the phase as:

(3.7)

with

(3.8)

Equation (3.6) then gives the approximate result

(3.9)

with the amplitude

(3.10)

Equation (3.9) represents a plane wave modulated with the
amplitude (3.10) with wave vector k0 and frequency ω0 and should be
more suitable to describe an experimentally realizable particle beam,
which is always localized in space and time contrary to an in�initely
extended plane wave.

The amplitude a(r;t) now has a maximum for such values of (r, t),
for which the oscillating exp-factor in (3.10) becomes stationary, i.e. for

(3.11)

The maximum of the amplitude therefore moves with the group
velocity vg in space. It now makes sense to compare this group velocity
with the velocity v,

(3.12)

ψ(r;t) = ∫ d3k φ(k) exp (i[k ⋅ r − ωt]),

k ⋅ r − ωt ≈ k0 ⋅ r − ω0t + (k − k0) ⋅ (r − vgt) + ⋯

vg = ∂ω
∂k k=k0

.∣ψ(r;t) ≈ a(r;t) exp (i[k0 ⋅ r − ω0t])

a(r;t) = ∫ d3k φ(k) exp {i(k − k0) ⋅ (r − vgt)}.

r = vgt.

vg = ∂ω
∂k

= v =
p

m
=

ħk

m
= ∂ω

∂k ek.



Due to (3.2) we get the (non-relativistic) relation by integration w.r.t. k,

(3.13)

where a possible integration constant is omitted here because in 
ψ(r;t) it only would provide a constant phase.

The dispersion	relation (3.13) is in fact con�irmed by diffraction
experiments with electrons or other atomic particles and thus the
interpretation (3.12) of the group velocity. We notice that (3.13) is
precisely the classical (non-relativistic) energy-momentum relation for
a free particle corresponding to:

(3.14)

3.3	 Wave	Equation	of	Free	Particles
We now want to set up a wave equation for the motion of free particles.
The desired equation must meet the following general criteria:
(1)

It must be linear	and	homogeneous; the solutions then satisfy
the superposition	principle as necessary for interference
phenomena: if ψ1 and ψ2 are solutions of the (required) wave
equation, then the linear combination λ1ψ1 + λ2ψ2 is a solution,
too.

 

(2)
It must be a �irst-order	differential	equation	in	time such that 
ψ(r;t) completely describes the state of the physical system: if ψ
is known at any time t0, then the temporal evolution for ψ follows
from the wave equation in a unique way.

 

Such a wave equation can be obtained by taking the following
partial derivatives of the plane wave (3.1).

(3.15)

ω(k) =
ħ

2m k2,

E = ħω = p2

2m .

2



(3.16)

and account for the dispersion relation (3.13). From (3.15) and (3.16)
directly follows

(3.17)

i.e. the Schrödinger	equation for free particles.

Note: The wave equation for electromagnetic radiation is different
from (3.17) because it is of second order with respect to time. This is a
consequence of the different dispersion relations ω(k). The analogy of
wave theory for matter and for radiation becomes more transparent
when comparing (3.17) with the Maxwell equations for the
components of E and B, which in line with (3.17) are �irst-order
differential equations with respect to time: the state of the free
radiation �ield is uniquely determined, if all components of E and B are
�ixed at some time t0. This comparison also shows that the description
of matter not necessarily must succeed with a single function ψ(r;t);
we will indeed see later that we require several (at least 2) wave
functions as soon as we include the electron spin in the theory.

3.4	 Continuity	Equation
Since in non-relativistic classical physics the mass of a system is a
conserved quantity, it makes sense to ask whether we can derive a
corresponding conservation law from the wave Eq. (3.17). To this aim
we consider the conjugate-complex equation to (3.17)

(3.18)

∂2ψ

∂r2 = −k2ψ

∂ψ
∂t

= −iω ψ

iħ ∂
∂t ψ = − ħ2

2m Δψ,

−iħ ∂
∂t ψ∗ = − ħ2

2m Δψ∗,



multiply (3.17) from the left by ψ∗, (3.18) by ψ and consider the
difference:

(3.19)

With the identity

(3.20)

this results in a continuity	equation of the form

(3.21)

3.5	 Interpretation	of	Matter	Waves
We identify

(3.22)

with the particle	density and

(3.23)

with the particle	current	density. Gauß’s theorem then gives

(3.24)

assuming that j for r → ∞ drops faster than 1/r2. Equation (3.24)
involves the conservation of the total mass or particle number. Since for
real physical systems the mass or particle number is always �inite, we
get the constraint

(3.25)

iħ ∂
∂t

(ψ∗ψ) = ħ2

2m {[Δψ∗]ψ − ψ∗[Δψ]}.

[Δψ∗]ψ − ψ∗[Δψ] = ∇ ⋅ {ψ ∇ψ∗ − ψ∗∇ψ}

∂
∂t (ψ∗ψ) + ∇ ⋅ ( ħ

2im [ψ∗∇ψ − ψ ∇ψ∗]) = 0.

ρ(r;t) ≡ ψ∗(r;t)ψ(r;t)

j(r;t) ≡ ħ
2im {ψ∗(r;t)∇ψ(r;t) − ψ(r;t) ∇ψ∗(r;t)}

∂
∂t (∫ d3r ψ∗(r;t)ψ(r;t)) = 0,

∫ d3r ψ∗(r;t)ψ(r;t) < ∞.



This implies that ψ(r;t) is a square-integrable complex function, i.e. 
ψϵL2.

Since Eq. (3.17) is homogeneous, we can choose the normalization
constant in (3.25) arbitrarily. We can therefore describe also a single
particle with the wave function ψ(r;t). The position of the particle in
the classical sense we can identify with the center of mass

(3.26)

where the scalar product

(3.27)

is the dot-product de�ined in the space L2 for ϕ,ψ ϵL2.

3.6	 Criticism	of	the	Concept	of	Matter	Waves
The concept of spatially smeared particles (developed above) proves to
be misleading. The following considerations will show this:
(1)

Describing a particle with a de�ined mass m and charge e by a
spatially sharply localized wave packet at time t = t0, then this
wave packet disintegrates in time.

 

(2)
Within the framework of a strict wave theory, in diffraction
experiments the intensity of the diffraction image should decrease
with a decrease of the incoming matter wave, but the structure of
the diffraction image should remain. Experimentally one observes
something completely different: on a photographic plate behind
the diffracting object individual points appear for low beam
intensity; only	a	measurement	over	a	long	period	of	time
results	in	a	statistical	distribution	of	the	individual	points,
which	re�lect	the	structure	of	a	diffraction	pattern.

 

< r >=
∫ d3r ψ∗r ψ

∫ d3r ψ∗ψ
=

(ψ,rψ)

(ψ,ψ)
,

(ϕ,ψ) := ∫ d3r ϕ∗(r)ψ(r)



In summary, we have discussed Bohr’s model of the atom and the
early concepts of matter waves for a particle. The failures of these early
concepts have been pointed out and will pave the wave to a proper
formulation of quantum mechanics.



Part	II
Elementary	Quantum	Mechanics



(1)
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In this chapter we will present a discussion of the Schrödinger equation—without
and with external forces—and investigate the properties of stationary states.

4.1	 Statistical	Interpretation	of	the	Wave	Function
The results of diffraction experiments at very low intensity (see Sect. 3. 6)
suggests a statistical interpretation of the wave function ψ(r;t). Following a
suggestion from Born we normalize by

(4.1)

and interpret

(4.2)

as probability	density, i.e. as the probability that the particle can be found at
position r at time t in a respective measurement of its position. If we use the
Schrödinger	equation in the form (3. 17) the continuity Eq. (3. 21) still holds, but 
j(r;t) now has to be interpreted as probability	current	density. Then

(4.3)

is the probability that a particle passes through the surface F per unit of time. The
relation following from (3. 21) for (V → ∞)

(4.4)

shows the conservation of the overall probability, that particles can be found
somewhere in space (time independence of the norm).

∫ d3r |ψ(r;t)|2 = (ψ,ψ) = 1

|ψ(r;t)|2

∫
F

j ⋅ df

d
dt
(∫

V
d3r |ψ(r;t)|2) = 0
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This statistical interpretation should be interpreted in such a way that ψ(r;t)
does not describe a single particle (as assumed in the naive theory of matter
waves), but the state	of	a	quantum	mechanical	ensemble	of	particles, i.e. a
large number of particles with the same internal properties for the same
experimental conditions. As an example we mention the motion of electrons in a
large number of hydrogen atoms, which are all exposed to the same electrostatic
�ield.

Accordingly, the quantity—already introduced in (3. 26):

(4.5)

has not to be identi�ied with the position of a particle, but as an average of a
suf�iciently large number of position measurements of the ensemble under
consideration.

This statistical	interpretation is in full agreement with diffraction
experiments as discussed in Sect. 2. 3. A diffraction experiment with an electron
beam of suf�iciently high intensity is equivalent to a multitude of experiments
with a single electron of a quantum mechanical ensemble. One therefore obtains a
diffraction pattern corresponding to the probability distribution that is
determined by the wave function ψ(r;t). Reducing the intensity of the incident
electron beam (or photon beam) more and more, the diffraction pattern �inally
disappears; instead one registers (in the detector) a sequence of well-de�ined
hits, for which the wave function ψ(r;t) can not make a statement.

The temporal evolution of a quantum mechanical ensemble of free particles is
determined by the Schrödinger equation (3. 17). Since this is a 1st order
differential equation with respect to time t, the speci�ication of the wave function 
ψ(r;0) at time t = 0 is suf�icient to clearly determine the state of the ensemble at
later times t ≠ 0. In this sense quantum mechanics is also a strictly causal theory.

4.2	 Schrödinger	Equation	of	a	Particle
in	the	Presence	of	External	Forces
In the presence of external forces we must extend the Schrödinger equation (3. 
17) without violating the fundamental properties quoted in Sect. 3. 3. The
extension then has to be of the form:

(4.6)

where O is a linear operator to be determined. We can restrict the possible
approaches for O by requiring that the statistical interpretation of |ψ|2 should
continue to hold. As in Sect. 3. 4 we get from (4.6):

< r >=
∫ d3r ψ∗r ψ

∫ d3r ψ∗ψ

iħ ∂
∂t ψ = O ψ,



(4.7)

The conservation of the total probability requires

(4.8)

Now let ψ1 and ψ2 be two different solutions to (4.6) then—due to the linearity of
O—must hold

(4.9)

for arbitrary complex numbers c1 and c2. By inserting in (4.8) ψ = c1ψ1 + c2ψ2

we directly get:

(4.10)

An operator with the property (4.10) is called hermitian.
To get the detailed structure of the hermitian operator O we recall that the

right side of the free Schrödinger equation

(4.11)

originates from the kinetic energy E = ħ2k2/(2m) of the free particle. Thus
attributing in quantum mechanics the differential	operator to the momentum in
the form

(4.12)

we can write (4.11) as

(4.13)

where

(4.14)

iħ ∂
∂t ∫ d3r ψ∗ψ = ∫ d3r {ψ∗O ψ − (Oψ)∗

ψ}.

(ψ,Oψ) = ∫ d3r ψ∗O ψ = ∫ d3r (Oψ)
∗
ψ = (Oψ,ψ).

O(c1ψ1 + c2ψ2) = c1Oψ1 + c2Oψ2

(Oψ1,ψ2) = ∫ d3r (Oψ1)∗
ψ2 = ∫ d3r ψ∗

1O ψ2 = (ψ1,Oψ2).

iħ ∂
∂t

ψ = − ħ2

2m
Δ ψ

p = −iħ∇,

iħ ∂
∂t ψ = T̂ ψ,

T̂ ≡ −
ħ2

2m Δ ≡
p2

2m



is the kinetic energy operator. For simplicity we denote the operator of the
kinetic energy in quantum mechanics again by T, i.e. T̂ = T . - In case of a
conservative force (e.g. electrostatic �ield) the form (4.13) suggests to use as a
Schrödinger equation:

(4.15)

Here the potential V, in which the particle should move, appears as a real
multiplicative operator. Then

(4.16)

is the operator corresponding to the Hamilton function in quantum
mechanics. We therefore write (4.15) also in the form

(4.17)

The Hamilton	operator H is hermitian since V is assumed to be real.
In the case of the velocity-dependent Lorentz force let’s adopt the classical

rule and replace (with a real vector potential A)

(4.18)

We then obtain the general Schrödinger equation for a particle of mass m and
charge e in the form (in cgs -Gauss units)

(4.19)

The connection to the electric �ield E(r;t) and the magnetic �ield B(r;t) is
given by (see electrodynamics)

(4.20)

iħ ∂
∂t

ψ(r;t) = (T + V )ψ(r;t) = (− ħ2

2m
Δ + V (r))ψ(r;t).

H = T + V

iħ ∂
∂t

ψ = H ψ.

p → p − e
c

A.

iħ ∂
∂t

ψ(r;t) = [ 1
2m

{−iħ∇ − e
c

A(r;t)}2
+ eΦ(r;t)]ψ(r;t) ≡ H ψ(r;t).

B(r;t) = ∇ × A(r;t),



E(r;t) = −∇Φ(r;t) −
∂

∂t
A(r;t).

The considerations above should not be understood as a derivation of the
Schrödinger equation, but only as a heuristic introduction to quantum theory in
the framework of the correspondence between classical and quantum mechanical
observables. A stricter mathematical formulation is presented in Chaps. 9 and 10.

4.3	 Stationary	States
If the Hamiltonian H does not depend on t (closed system), the time dependence
in ψ(r;t) is separated by the Ansatz

(4.21)

One then obtains the time-independent Schrödinger equation from (4.19)

(4.22)

for calculating the stationary states φ(r). We brie�ly prove some
fundamental	properties:

(1) E is	real	since H is	hermitian. For the proof we form

(4.23)

and after complex conjugation of (4.22) obtain

(4.24)

Due to the hermiticity of H, the difference results in

(4.25)

thus

(4.26)

since the normalization integral (φ,φ) is ≠ 0.

ψ(r;t) = φ(r) exp {− i
ħ Et}.

H φ(r) = E φ(r)

(φ,Hφ) = ∫ d3r φ∗H φ = E ∫ d3r φ∗φ = E(φ,φ)

(Hφ,φ) = ∫ d3r(Hφ)∗
φ = E ∗ ∫ d3r φ∗φ = E ∗(φ,φ).

0 = (E − E ∗) ∫ d3r φ∗φ = (E − E ∗)(φ,φ)

E = E ∗,



(2) For any time-independent operator F—such as e.g. the position operator r
—holds that

(4.27)

is independent of t (stationary). In particular we have

(4.28)

and

(4.29)

(3) Orthogonality:

For solutions φ1, φ2 of (4.22) to different values E1 ≠ E2 holds:

(4.30)

Proof: We start from

(4.31)

and form ∫ d3r⋯ For the difference of the resulting equations we obtain

(4.32)

due to the hermiticity of H. Since E1 ≠ E2 the proof completes.
(4) Degeneracy
Among the stationary states there are also those, that belong to the same

eigenvalue in energy E, but differ in some other physical properties. Such
solutions from (4.22) are called degenerate. Any linear combination of such
solutions then is again a solution of (4.22) to the same value E; in particular,
degenerate solutions are in general not orthogonal to each other. However, by
suitable linear combinations an orthogonal set can always be obtained from the
degenerate solutions (Schmidt	orthogonalization).

Such degeneracies occur in connection with symmetries of H. We give a simple
example: For the free Schrödinger equation (V ≡ 0), H = T  is invariant with
respect to the parity operation

(4.33)

(ψ,Fψ) = ∫ d3r ψ∗(r;t)F ψ(r;t) = ∫ d3r φ∗(r)F φ(r) = (φ,Fφ)

ψ∗ψ = φ∗φ

ψ∗∇ψ − ψ ∇ψ∗ = φ∗∇φ − φ ∇φ∗.

(φ1,φ2) = ∫ d3r φ∗
1φ2 = 0.

φ∗
2(H − E1)φ1 = 0; φ1[(H − E2)φ2]∗ = 0

(E2 − E1) ∫ d3r φ∗
2φ1 = (E2 − E1)(φ2,φ1) = 0

r → −r



and the solutions

(4.34)

are (twofold) degenerate. They differ physically from each other in the different
direction of the momentum.

In summarizing this chapter we have introduced the statistical interpretation
of the Schrödinger equation—without and with external forces—and investigated
the properties of stationary states.

exp (+ik ⋅ r), exp (−ik ⋅ r)



(1)
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In this chapter we will introduce the rules to translate classical observables in phase-space
representation to hermitian operators in the formal space of wavefunctions (Hilbert space).
It is furthermore proven that the classical equations of motion also hold for the expectation
values of the corresponding quantum operator (Ehrenfest theorem). The formal translation
of the Poisson brackets in classical mechanics to commutators in quantum physics is
derived and it is shown, that the commutators follow the same algebra as the Poisson
brackets.

5.1	 Quantum	Mechanical	Analogue	of	the	Classical
Equations	of	Motion
In Sect. 4. 2 we have assigned linear operators to various classical observables, which act in
the space of wave functions ψ(r;t). As an example we have introduced the position operator
r as a multiplication by r and interpreted—with the condition (4. 1)—its expectation	value

(5.1)

as the average of a very large number of position measurements on the ensemble
considered. We want to calculate now the temporal evolution of < r > and, for the sake of
simplicity, assume that the Hamilton operator of the particle has the form

(5.2)

For the temporal evolution of < r >—the operator r itself is independent of time—we
�ind by using the Schrödinger equation (4. 17)

(5.3)

Due to the hermiticity of H we can rewrite
(5.4)

< r >= ∫ d3r ψ∗(r;t) r ψ(r;t) = (ψ, rψ)

H = − ħ2
2m Δ+ V (r).

d
dt

< r >= ∫ d3r {[ ∂
∂t ψ∗]r ψ+ ψ∗r [ ∂

∂t ψ]} = i
ħ ∫ d3r {[Hψ]

∗
r ψ− ψ∗r [Hψ]}.

d
dt

< r >= i
ħ ∫ d3r ψ∗(H r − r H)ψ = i

ħ (ψ, (H r − r H)ψ).

https://doi.org/10.1007/978-3-031-95521-1_5


For the further evaluation of (5.3) we have to calculate the commutator

(5.5)

Since r and V (r) are pure multiplicative operators they commute with each other, V
does not contribute to (5.5); it remains to investigate

(5.6)

Since operators like ∂/∂y and x commute with respect to their action on ψ(r;t),

(5.7)

only

(5.8)

can contribute to (5.3). For this we get

(5.9)

In total we get from (5.3)

(5.10)

and �inally with (4. 12)

(5.11)

The classical relationship between velocity and momentum also holds for the
expectation values of the corresponding quantum mechanical operators.

Based on the result above we now follow the same procedure for the time derivative of
the momentum < p >

(5.12)

Since −ħ2Δ ≡ p2 and every operator commutes with itself, only the contribution from the
potential energy remains in the commutator (5.12):

(5.13)

[H, r] := H r − r H.

[Δ, r] =?

[ ∂
∂y , x]ψ(r;t) = 0,

[ ∂ 2

∂x2 , x]ψ(r;t)

[ ∂ 2

∂x2 x− x ∂ 2

∂x2 ]ψ(r;t) = ∂
∂x (x

∂
∂x + 1)ψ(r;t) − x ∂ 2

∂x2 ψ(r;t) = 2 ∂
∂x ψ(r;t).

d
dt

< r >= − iħ
m

∫ d3r ψ∗∇ψ = 1
m

∫ d3r ψ∗(−iħ∇)ψ

d
dt

< r >= 1
m

< p >.

d
dt
(ψ,pψ) = d

dt
< p >= i

ħ ∫ d3r ψ∗[H, p]ψ.

[V , p] ≡ V p − p V = iħ∇V .



This gives the quantum mechanical analogue to the classical equations of motion after
forming the expectation values,

(5.14)

5.2	 Hermitian	Representation	of	Operators
We now want to extend the considerations above to arbitrary observables and note:
(1)

Every classical observable F can be represented as a function of position and
momentum coordinates rkl and pkl and possibly of time t, 

(5.15)

 

(2)
We have assigned the classical variables rkl and pkl in quantum theory to the
operators r and p = −iħ∇, which act in the space of wave functions (that will be
denoted later as Hilbert	space).

 

The quantization rule for position and momentum suggests to assign to every
observable F an operator

(5.16)

In the non-relativistic theory, t plays the role of a parameter, and is not an operator! We’ll
come back to this point later. When translating classical observables to operators

(5.17)

the following points should be noted:
(i) The above quantization rule refers to cartesian	coordinates. To illustrate this point,

let us consider the Schrödung equation of a free particle in 2 dimensions:

(5.18)

Converting (5.18) to polar coordinates r, φ, we get

(5.19)

If we start from the classical Hamilton function in polar coordinates,

(5.20)

and adopt the rule for quantization, we obtain

d
dt

< p >= − < ∇ V >.

F(rkl,pkl;t).

F(r,p;t).

F(rkl,pkl;t) → F(r,p;t)

iħ ∂
∂t

ψ(x, y;t) = − ħ2
2m

{ ∂ 2

∂x2 + ∂ 2

∂y2
}ψ(x, y;t).

iħ ∂
∂t ψ(r,φ;t) = − ħ2

2m {
∂ 2

∂r2
+ 1

r
∂
∂r + 1

r2
∂ 2

∂φ2 }ψ(r,φ;t).

Hkl =
1

2m {p2r +
1
r2
p2φ}kl



(5.21)

In contrast to (5.19) the Schrödinger equation would read as

(5.22)

To avoid such ambiguities in quantization, we always refer to the quantization rule
formulated in (5.17) in cartesian coordinates.

(ii) Since the expectation values of the operators

(5.23)

have a direct physical interpretation and must be real, the operators have to be hermitian:

(5.24)

for every wave function ψ(r;t) of the particle. Except for the elementary operators for
position and momentum therefore are allowed: polynomials (with real coef�icients) in r
(e.g. potential energy of an oscillator) or p (e.g. kinetic energy of a particle), but also mixed
polynomials like

(5.25)

such as the operator of the orbital angular momentum. On the other hand,

(5.26)

is not a hermitian operator. In the transition from the classical mechanics to quantum
mechanics we must symmetrize and replace

(5.27)

The reason for the necessity of symmetrization is the non-commutativity of the
hermitian operators r and p,

(5.28)

This—in contrast to (5.25)—becomes effective in the scalar product (5.26) or (5.27).
For the x component one �inds—due to the hermiticity of r and p—e.g.:

(5.29)

(pr)kl → pr = −iħ ∂
∂r ; (pφ)kl → −iħ ∂

∂φ .

iħ ∂
∂t ψ(r,φ;t) = − ħ2

2m (
∂ 2

∂r2
+ 1

r2
∂ 2

∂φ2 )ψ(r,φ;t).

< F >= ∫ d3r ψ∗F(r,p;t)ψ

(ψ,Fψ) = ∫ d3r ψ∗F ψ = ∫ d3r (Fψ)∗ψ = (Fψ,ψ)

l ≡ r × p = −(p × r)

r ⋅ p

rkl ⋅ pkl →
1
2
(r ⋅ p + p ⋅ r).

[xi, pj] = iħδij; i, j = 1, 2, 3.

∫ d3r ψ∗
1 pxx ψ2 = ∫ d3r (pxψ1)

∗
x ψ2 = ∫ d3r (x pxψ1)

∗
ψ2 ≠ ∫ d3r (pxxψ1)

∗
ψ2,



because of (5.28). In analogy it is easy to prove that the form (5.27) is hermitian.
A practical example of the symmetrization performed in (5.27) is the transformation of

(5.30)

into quantum theory as

(5.31)

From (5.30) one obtains explicitly

(5.32)

The above statements have to be followed in the actual calculations with (4. 19)!
Note: Even with the demand for hermiticity the quantization rule is not unique in all

cases. We consider e.g. the classical quantity

(5.33)

for which we can specify 2 hermitian operators:

(5.34)

Such—formally possible—hermitian operators we will not encounter in practice and
therefore discard a deeper investigation of these ambiguities.

5.3	 Ehrenfest’s	Theorem;	Conservation	Laws
The investigations in Sect. 5.1 can now easily be generalized for the time evolution of the
expectation value of any observable represented by a hermitian operator

(5.35)

The following holds:

d

dt
< F >= ∫ d3r{(

∂

∂t
ψ∗)F ψ+ ψ∗F(

∂

∂t
ψ)+ ψ∗ ∂F

∂t
ψ}

(5.36)

If we compare (5.36) with (1. 16) we �ind that for quantum mechanical expectation
values the same relationships hold as for the corresponding classical observables when
using the commutator [ , ] instead of the corresponding Poisson bracket {, } (apart from the
factor −i/ħ).

For a time-independent observable G, according to (5.36), we get

(A ⋅ p)kl

1
2 (A ⋅ p + p ⋅ A).

1
2 (A ⋅ p + p ⋅ A) = A ⋅ p + 1

2 ∇ ⋅ A ≠ A ⋅ p.

(pxx)
2
kl,

1
2 (p

2
xx

2 + x2p2x) ≠
1
4 (pxx+ x px)

2.

F = F(r,p;t).

= − i
ħ < [F , H] > + < ∂F

∂t >.

d



(5.37)

if

(5.38)

In analogy to classical mechanics (cf. (1. 19)) we call such an observable a conserved
quantity.

The Ehrenfest	theorem is the statement, that for the expectation values of operators
the same equations of motion hold as for the classical observables, i.e. since—in case of
small �luctuations—the quantum mechanical equations of motion merge to the classical
equations of motion. To this aim we consider the temporal change in the expectation value
of the momentum (5.14) and expand < ∇ V (r) > in r around the expectation value 
< r >,

d

dt
< p >= − < ∇V (r) >= − <

∞

∑
n=0

∇n
1

n!
[(r− < r >) ⋅ ∇]nV (r)|r=<r> >

(5.39)

with

(5.40)

In the case of vanishing �luctuations σ2
i  in the local positions just the classical force 

−∇V (< r >) remains. On the other hand, for the harmonic oscillator (in any dimension)
the 2nd partial derivative is a constant, such that the correction terms with the gradients
always disappear. In this special case the classical equations of motion for the expectation
values of the operators < r > and < p > also hold identically.

5.4	 Algebra	of	Commutators
In the following we will present calculation	rules	for	commutators, that arise directly
from the de�inition and are used frequently: For any linear operators A, B, C we have

[A,B] = −[B,A]

[A,B+ C] = [A,B] + [A,C]

[A,BC] = [A,B]C +B[A,C]

(5.41)

d
dt

< G >= 0 → < G >= const.

[G,H] = 0.

= −∇V (< r >) − 1
2
∇[σ2

x
∂ 2

∂x2 + σ2
y

∂ 2

∂y2
+ σ2

z
∂ 2

∂z2
]V (r)|<r> −⋯

σ2
x =< x2 > − < x >2 ; σ2

y =< y2 > − < y >2 ; σ2
z =< z2 > − < z >2.



Example: [p2x, x] = px[px, x] + [px, x]px = 2ħ/i px.
Note: The rules (5.41) also hold for the Poisson brackets (see classical mechanics). The

identity of the algebras is a prerequisite for the compatibility of classical physics and
quantum mechanics in the limit of large actions!

In summarizing this chapter we have introduced the rules to translate classical
observables in phase-space representation to hermitian operators in Hilbert space. It has,
furthermore, been proven that the classical equations of motion also hold for the
expectation values of the corresponding quantum operator (Ehrenfest theorem). The formal
translation of the Poisson brackets in classical mechanics to commutators in quantum
physics has been derived and it was shown, that the commutators follow the same algebra
as the Poisson brackets.

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0.
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In this chapter we will investigate the connection between the possible expectation values of
an observable A and its �luctuations in context with its commutator [A, H]. Furthermore, we
will establish the relationship between momentum conservation and translational invariance
as well as the conservation of angular momentum and rotational invariance in quantum
theory. In addition we will introduce the ‘spin’ of electrons (or related fermions) and explore
its properties with respect to rotations.

6.1	 Expectation	Values
In Chap. 4 (Eq. (4. 5)) we have interpreted the expectation value (normalized according to (4. 
1))

(6.1)

as the average value for the position, that can be found for many measurements in the
ensemble described by ψ. We have, furthermore, interpreted

(6.2)

as the probability density for a position measurement to �ind particles at position r at time t.
Since t plays the role of a parameter we will suppress t in the following equations. We can also
write Eq. (6.1) as

(6.3)

with

(6.4)

We now want to investigate the general case of an arbitrary observable.
First of all a short preliminary remark on the de�inition of average. For a series of N

experiments for a certain quantity X with the values xi measured with the probability (relative

< r >= ∫ d3r ψ∗r ψ = (ψ, rψ)

|ψ(r;t)|2 ≡ w(r;t)

< r >= ∫ d3r w(r)r

∫ d3r w(r) = 1.

https://doi.org/10.1007/978-3-031-95521-1_6


probability) wi, the average of the quantity X is de�ined by

(6.5)

where

(6.6)

If for X a continuum of values x is possible, then in (6.5) and (6.6) we have to replace the
summation by an integration; this corresponds to the case of the quantity position r discussed
above. Of course, a combination of both cases is also possible (continuous and discrete values
of the quantity X).

Examples: Energy of a particle in a �inite potential; energy spectra of the H atom (see
Sect. 7. 6).

Let’s look at the point above for the expectation value of the momentum

(6.7)

This obviously doesn’t have the desired form since ∇ is not a multiplicative operator. To regain
the form of an average value here and in other cases we need to investigate the

6.2	 Hermitian	Eigenvalue	Problem	of	Operators
For the sake of simplicity, let’s consider for now such hermitian operators A(r, p), whose
eigenvalue problem

(6.8)

has only discrete, non-degenerate eigenvalues an (n = 0, 1, 2, …). In this case the solutions 
χn are square integrable (cf. various examples from Sect. 7. 6) and without any limitation of
generality we can assume,

(6.9)

For the interpretation of the expectation value of A in a state ψ(r;t) as the average value in the
sense of Eqs. (6.5) and (6.6) it is now essential, that the system of eigenfunctions χn of A is
complete: every square-integrable function must have an expansion within the functions χn, in
particular ψ(r;t),

(6.10)

The convergence of the series in (6.10) is to be understood as the convergence	on	average
(see Chap. 9). Since the functions χn are orthogonal (see Sect. 4.3 (Eq. (4. 30))) and normalized
(6.9) we �ind for the expansion coef�icients:

(6.11)

< X >= ∑N
i=1 xiwi,

∑N
i=1 wi = 1.

< p >= ∫ d3r ψ∗ ħ
i

∇ψ = (ψ, pψ).

A(r, p)χn(r) = anχn(r)

∫ d3r |χn(r)|2 = 1.

Ψ(r;t) = ∑∞
n=0 cn(t)χn(r).

cn(t) = ∫ d3r χ∗
n(r)ψ(r;t) = (χn,ψ).



Example: The Hamilton operator of the one-dimensional harmonic oscillator has a discrete,
non-degenerate, complete spectrum.

For an ensemble in the state ψ(r;t) we get for the expectation value of the observable A:

(6.12)

with

(6.13)

taking into account (6.8) and (6.10) as well as the orthogonality of the χn(r). Equations
(6.12) and (6.13) now allow for the desired interpretation of < A >:

The possible values of the observable A of a particle in a measurement of the ensemble
are the eigenvalues an. The probability (relative probability for many individual
measurements), with which one of the values an is measured, is given by |cn(t)|2.

While in classical physics the measured values of an observable form a continuum—
according to the considerations above—observables in quantum theory may have discrete
values (the eigenvalues). This is in accordance with energy and quantization of orientation
(see Chap. 2). Whether an observable is discrete and/or has continuous eigenvalues, must be
checked in each concrete case by solving the eigenvalue Eq. (6.8).

We now consider the case where an observable B has a complete, discrete spectrum which,
however, can still be degenerate; an example is the spectrum of the angular momentum (6.4).
The eigenvalue problem for B = B(r, p) we then can write as

(6.14)

where bn ≠ bm for n ≠ m; the index l numbers the degenerate solutions to the eigenvalue bn.
The solutions χn,l are chosen such that

(6.15)

(the orthogonality with respect to n follows automatically from the hermiticity of B); the
solutions, which are degenerate with respect to n, are orthogonalized according to Schmidt’s
method. Since the spectrum was assumed to be complete, we can expand ψ as

(6.16)

with

(6.17)

< A >= ∫ d3r ψ∗A ψ = ∑∞
n=0 an|cn(t)|2

1 = ∫ d3r ψ∗ψ = ∑∞
n=0 |cn(t)|2,

B χn,l(r) = bnχn,l(r),

∫ d3r χ∗
n,l χn′,l′ = δnn′δll′

ψ(r;t) = ∑n,l dnl(t)χn,l(r)

dnl(t) = ∫ d3r χ∗
n,l(r)ψ(r;t) = (χn,l,ψ).



In analogy to (6.12), (6.13) we �ind:

(6.18)

with

(6.19)

The sum ∑l |dnl(t)|2 is to be interpreted as the probability to encounter the eigenvalue bn
in a single measurement.

In the case of a continuous spectrum non-normalizable eigenfunctions occur; as an
important example we will examine the particle momentum in Sect. 6.3. Finally, there is also
the case of a partly discrete—partly continuous spectrum, e.g. the energy spectrum of the H
atom.

6.2.1	 Fluctuations	of	Observables
The mean-square	�luctuation

(6.20)

is a useful measure for the spreading of measured data, i.e. the deviation from the average.
If we apply this to the measured values of an observable A we get the mean-square �luctuation
of an observables A in the state ψ(r;t) :

(6.21)

= (ψ,A2ψ) − (ψ,Aψ)2.

Of particular interest is the case

(6.22)

i.e. for each individual measurement on a particles of the ensemble we get a well-de�ined value
with the probability 1 (sharp	value). We are now investigating, when this is the case, i.e. when

(6.23)

Equation (6.23) is written more compactly as

(6.24)

< B >= ∫ d3r ψ∗B ψ = ∑n bn ∑l |dnl(t)|2,

1 = ∫ d3r ψ∗ψ = ∑n∑l |dnl(t)|2.

(Δx)2 :=< (x− < x >)2 >=< x2 > − < x >2

(ΔA)2 = ∫ d3r ψ∗(A − ∫ d3r ψ∗A ψ)
2
ψ = ∫ d3r ψ∗A2ψ − (∫ d3r ψ∗A ψ)2

≥ 0

ΔA = 0,

(ψ,A2ψ) = ∫ d3r ψ∗A2ψ = (∫ d3r ψ∗A ψ)2
= (ψ,Aψ)2.

(ψ,A2ψ) = (Aψ,Aψ) = (ψ,Aψ)2,



where A is assumed to be hermitian. With the de�inition

(6.25)

we �ind alternatively

(6.26)

as the case of Schwarz’s	inequality	for	scalar	products (Chap. 9), in which this reduces to an
equation. This only occurs if

(6.27)

i.e. ψ̄ is proportional to ψ.
Result: The observable A has a well-de�ined value with probability 1 only if the state

function ψ is also an eigenfunction of the operator A; the measured value then is a
corresponding eigenvalue of A. We get the same result by inserting (6.10) in (6.21). The
demand (6.22) then is:

(6.28)

Equation (6.28) is ful�illed if and only if

(6.29)

for m = k (�ixed) and = 0 otherwise, such that ψ at time t of the measurement must have the
form:

(6.30)

for arbitrary but �ixed k.
As the expectation value < A > also ΔA in general is time-dependent, such that the

spreading of the measured values is not constant in time.

Only if A is a conserved quantity, [H,A] = 0, apart from < A > also the probabilities 
|cn(t)|2 and thus also ΔA remain constant.

Proof If [H, A] = 0, we have

(6.31)

thus also Hχn is eigenfunction of A with eigenvalue an,

(6.32)

If there is no degeneracy, Hχn must—up to a numerical factor—match χn,

ψ̄ ≡ Aψ

(ψ, ψ̄)
2

= (ψ̄, ψ̄) = (ψ̄, ψ̄)(ψ,ψ)

Aψ = aψ,

(ΔA)2 = ∑∞
n=0 {an − ∑∞

m=0 am|cm(t)|2}
2
|cn(t)|2 = 0.

|cm(t)| = 1

Ψ(r;t) = ck(t)χk(r)

Aχn = anχn,

H Aχn = A Hχn = anHχn.



(6.33)

Then we get from (6.11):

d

dt
cn(t) = ∫ d3r χ∗

n

∂

∂t
ψ = −

i

ħ
∫ d3r χ∗

nHψ = −
i

ħ
∫ d3r (Hχn)∗

ψ

(6.34)

with the solution

(6.35)

Thus

(6.36)

is time-independent and therefore also ΔA. For an observable B with a degenerate, discrete
spectrum (cf. (6.14)), one can prove in analogy that

(6.37)

for the case of [H,B] = 0.

We thus have obtained the general result, that for a conserved quantity in addition to the
expectation value also the relative probabilities and the �luctuations of the measured values
are constant in time.

6.2.2	 Commuting	Operators
We show that two observables—represented by operators A, B—can be measured
simultaneously sharp, if [A,B] = 0, and vice versa. We make the (simplifying) assumption that
A and B have purely discrete spectra. To this aim we prove that

(1) commuting (hermitian) operators have a common system	of	eigenfunctions, i.e. not
just individual eigenfunctions like l2 and lz for l = 0 (see below). If χn are eigenfunction of A
to the eigenvalue an,

(6.38)

then due to [A,B] = 0 :

(6.39)

such that Bχn is also eigenfunction of A with eigenvalue an. If now an is not degenerate,
then Bχn must be proportional to χn, such that

(6.40)

Hχn = Enχn; En real.

= − i
ħ Encn(t)

cn(t) = cn(0) exp {− i
ħ Ent}.

|cn(t)|2 = |cn(0)|2

d
dt
∑k |dnk(t)|2 = 0

Aχn = anχn,

ABχn = B Aχn = anBχn,

Bχn = bnχn.



If an is f-fold degenerate,

(6.41)

only follows due to (6.39)

(6.42)

But now we can always diagolnalize the hermitian f-dimensional matrix

(6.43)

by a linear transformation of the χnk. The resulting linear combinations of the χnk then are
simultaneous eigenfunctions of A and B; q.e.d.

(2) Conversely, if A and B have a common system of eigenfunctions,

(6.44)

we can commute A and B. We prove the statement by considering

(6.45)

for the difference follows:

(6.46)

Since the χn form a complete system (otherwise one could not interpret A, B as observables),
the operator	relation follows:

(6.47)

6.2.3	 Summary

(1) An operator A—representing an observable—must be hermitian and have a complete
spectrum of eigenfunctions in the Hilbert space H .

(2) Measured values of the observable A are the real eigenvalues an; they can be discrete
and/or continuous.

(3) The probability of measuring a value an is given by the square of the expansion
coef�icient of ψ with respect to the eigenfunction χn belonging to an, if an is not degenerate;
otherwise one has to sum over the contributions from the degenerate eigenfunctions.

(4) The �luctuation of the measured values is determined by the mean-square
deviations: (ΔA)2 =< A2 > − < A >2.

Aχnk = anχnk; k = 1, … , f,

Bχnk = ∑f
l=1 αklχnl.

(χnk,Bχnk′) = Bn
kk′ ≡ ∫ d3r χ∗

nkB χnk′ = (Bn
kk′)

∗

Aχn = anχn; Bχn = bnχn,

B Aχn = bnanχn and ABχn = anbnχn;

(BA − AB)χn = 0.

[B,A] = 0.



(5) The expectation value < A >, ΔA and the probabilities are exactly constant in time
if [A,H] = 0..

(6) Two observables can be measured simultaneously sharp, if and only if they
commute.

To (4) ΔA = 0 if and only if the wave function ψ(r;t) at time t—of the start of the
measurement—is an eigenfunction of A.

6.3	 Momentum
6.3.1	 Hermiticity
For the x component of the momentum (by partial integration) the following holds:

∫ dxdydz ψ∗
1(

ħ
i

∂

∂x
ψ2) = ∫ dxdydz (

ħ
i

∂

∂x
ψ1)

∗

ψ2

(6.48)

If the functions ψ1, ψ2 vanish at in�inity, the integrated term in (6.48) vanishes and we get:

(6.49)

The operator p is thus hermitian in the space of functions ψ, which together with their
partial derivatives are square-integrable.

In analogy to p the kinetic energy operator

(6.50)

is hermitian in the space of the functions ψ, which, together with their 1st and 2nd partial
derivatives, are square integrable. We have seen in Chap. 4 that this property of T (generally: H,
cf. Chap. 7) is necessary for the probability interpretation of ψ∗ψ.

6.3.2	 Translation
We consider an in�initesimal translation in space (ϵ ≪ 1)

(6.51)

the connection between ψ(r;t) and ψ(r − ϵa;t) in the Hilbert space we get by Taylor
expansion

(6.52)

+ ħ
i
∫ dy dz (|ψ∗

1ψ2|x=+∞
x=−∞).

∫ d3r ψ∗
1(

ħ
i

∂
∂x ψ2) = ∫ d3r( ħ

i
∂

∂x ψ1)
∗
ψ2.

T ≡ − ħ2

2m Δ = p2

2m

r → r − ϵa;

ψ(r − ϵa;t) = ψ(r;t) − ϵa ⋅ ∇ψ(r;t) ⋯ ≈ (1 − ϵa ⋅ ∇)ψ(r;t).



For a �inite translation in a the higher terms of the Taylor expansion must be taken into
account:

ψ(r − a;t) =
∞

∑
n=0

1

n!
(−a ⋅ ∇)nψ(r;t) =exp {−a ⋅ ∇}ψ(r;t)

(6.53)

The operator exp (−i/ħ a ⋅ p) therefore represents a translation in the space of wave
functions ψ, i.e. the Hilbert space H . The generators of such a translation in H  are the
components of the momentum p.

The operators

(6.54)

form an abelian	group (like the translations (6.51)) since the components of p commute
with each other and the group properties hold:
(1)

With τ(a1) and τ(a2) then also τ(a1)τ(a2) = τ(a1 + a2) is a translation operator. 
(2)

Associativity: τ(a1)[τ(a2)τ(a3)] = [τ(a1)τ(a2)]τ(a3)  
(3)

The identity is τ(0) = 1  
(4)

For every operator τ(a) there is an inverse τ(−a) since τ(a)τ(−a) = 1.  

The proofs follow directly from (6.53).

We call a physical system translation	invariant if

(6.55)

Thus if ψ is a solution of the Schrödinger equation

(6.56)

also τ(a)ψ is a solution of the Schrödinger equation because of

(6.57)

Equation (6.55) is satis�ied if and only if

( ) ( ) ( ) ( ) ( )

=exp (− i
ħ a ⋅ p)ψ(r;t) = ψ′(r;t).

τ(a) =exp (− i
ħ a ⋅ p)

[τ(a),H] = 0.

iħ ∂
∂t

ψ = Hψ,

iħ ∂
∂t (τ(a)ψ) = τ(a)Hψ = H(τ(a)ψ).



(6.58)

If [T , p] = 0, (6.58) is only possible for a single particle if V is constant in space. Conversely: If
a particle moves in a space-dependent potential V = V (r), then the translation invariance is
destroyed. For several particles, translation invariance (as will be discussed later) implies that
the interaction V between the particles only depends on the relative distance of the particles:

(6.59)

for any two particles i, k of the system.

6.3.3	 Eigenvalue	Problem

The momentum has a continuous	eigenvalue	spectrum; the eigenfunctions are plane
waves

(6.60)

with ħk as the eigenvalue. They are also eigenfunctions to T, 

(6.61)

and thus form a simultaneous system of eigenfunctions of the commuting operators T and p.
The orthogonality relation reads

(6.62)

but for k = k′ the integral (6.62) diverges; the eigenfunctions to the operator p thus are not
square-integrable and therefore cannot be considered as wave functions of the free particle in
the strict sense, but useful because they provide a ‘dense’ or ‘complete’ basis in H  (see
Chap. 9).

6.3.4	 Momentum	Representation
We now want to show that the interpretation of the expectation value < p > is possible as a
statistical average, although the spectrum of p is continuous and the eigenfunctions cannot be
normalized. The decisive point is that the plane waves form a complete	basis in H . For the
quantitative formulation of this fact we limit ourselves to a single dimension (x). The
completeness of the basis of the plane waves then states that every square-integrable function 
ψ(x;t) can be represented as

(6.63)

Equation (6.63) is—in analogy to (6.10)—to be understood in the sense of mean-square
convergence (not point-like). The Fourier	transform ~

ψ(k;t) can be calculated from ψ(x;t),

(6.64)

[H, p] = 0.

V = V (rik); rik = ri − rk

p exp (ik ⋅ r) = ħk exp (ik ⋅ r)

T exp (ik ⋅ r) = ħ2k2

2m exp (ik ⋅ r),

∫ d3r exp (ik ⋅ r)∗ exp (ik′ ⋅ r) = ∫ d3r exp (i[k′ − k] ⋅ r) = 0 for k ≠ k′,

ψ(x;t) =lima→∞ ∫ a

−a
1

√2π
exp (ikx)

~
ψ(k;t) dk.

~
ψ(k;t) =limb→∞

1
√2π

∫ b

−b
exp (−ikx)ψ(x;t) dx,



and is itself square-integrable. In the Fourier transformation—de�ined in the context of
(6.63) and (6.64)—the normalization is preserved which, however, is the underlying
requirement for the Fourier transform (6.64) to preserve the probability interpretation of ψ∗ψ,
i.e.. (ψ,ψ) = (

~
ψ,

~
ψ) :

(6.65)

To explain (6.65) we consider

(6.66)

For k ≠ k′ we do not get any contributions to the ∫ dx because of (6.62). We express this fact
using the δ- distribution,

(6.67)

then:

∫
∞

−∞
dx |ψ(x;t)|2 = lim

a→∞
lim
b→∞

∫
a

−a

dk′ ∫
b

−b

dk δ(k − k′)
~
ψ∗(k′;t) ~

ψ(k;t)

(6.68)

If the derivative ∂/∂x ψ exists and is itself square-integrable—this is the case for all solutions
of the Schrödinger equation, since the operator of the kinetic energy T is always contained in H
—then holds,

(6.69)

and k ~
ψ(k;t) is also square integrable. This implies—in analogy to (6.68):

< px >= lim
a→∞

lim
b→∞

∫
a

−a

dk′ ∫
b

−b

dk δ(k − k′)
~
ψ∗(k′;t) ħ k

~
ψ(k;t)

(6.70)

The generalization of (6.63)–(6.70) to the 3-dim. case is trivial.
In view of the statistical interpretation of quantum theory we consider

∫ ∞
−∞ dx |ψ(x;t)|2 = ∫ ∞

−∞ dk |
~
ψ(k;t)|

2
.

lima→∞limb→∞ (2π)−1 ∫ ∞
−∞ dx ∫ a

−a
dk′ ∫ b

−b
dk exp (i(k − k′)x)

~
ψ∗(k′;t) ~

ψ(k;t).

δ(k − k′) = 1
2π ∫

∞
−∞ dx exp {i(k − k′)x},

= ∫ ∞
−∞

dk
~
ψ∗(k;t) ~

ψ(k;t) = 1.

pxψ(x;t) =lima→∞
1

√2π
∫ a

−a
dk ħ k

~
ψ(k;t) exp (ikx),

= ∫ ∞
−∞ dk

~
ψ∗(k;t) ħk ~

ψ(k;t).



(6.71)

with

(6.72)

If one interprets ~
ψ∗(k;t) ~

ψ(k;t) as the probability	density to encounter the considered
particle of the ensemble at time t with the momentum ħk, then < p > can also be
interpreted as an average in the statistical sense.

6.3.5	 Periodic	Boundary	Conditions
If we want to avoid the use of the δ-function in practice, we can instead of the entire 3-dim.
space consider a suf�iciently large (but �inite) normalization volume. To simplify the notation,
let’s consider again only a single dimension (x). In order to keep px hermitian in the �inite
interval [−b/2, b/2], the wave functions ψ(x;t) must ful�ill certain boundary conditions.
According to (6.48) the hermiticity of px (due to partial integration) requires

(6.73)

such that

(6.74)

for any square-integrable functions ψ1, ψ2 in [−b/2, b/2]. Equation (6.74) leads to the
periodic boundary conditions (except for a phase factor)

(6.75)

for the functions permitted. The eigenfunctions of px can now be normalized

(6.76)

with

(6.77)

and the eigenvalues of px are discrete: ħkn.
Any function, that is square-integrable in [−b/2, b/2], then can be represented as a Fourier

series
(6.78)

< p >= ∫ d3k ħk
~
ψ∗(k;t) ~

ψ(k;t)

1 = ∫ d3k
~
ψ∗(k;t)

~
ψ(k;t).

ψ∗
1ψ2

b/2
−b/2

= 0,∣ψ∗
1(b/2)

ψ∗
1(−b/2) =

ψ2(−b/2)
ψ2(b/2)

ψ(b/2) = ψ(−b/2)

un = 1
√b

exp (iknx)

kn = 2π n
b
; n = 0, ±1, ±2, ±3, . . .

ψ(x;t) = ∑∞
n=−∞ cn(t)un(x)



with

(6.79)

6.3.6	 Uncertainty	Relation
Since x and px do not commute

(6.80)

they cannot be measured sharp at the same time, so it’s safe to expect

(6.81)

if Δx = 0 and Δx ≠ 0 if Δpx = 0.
We will show below that always holds

(6.82)

To this aim we consider the function

(6.83)

which can be written explicitly as:

f(α) = ∫ d3r ψ∗(x− < x >)2
ψ + α2 ∫ d3r ([px− < px >]ψ)∗(px− < px >)ψ

(6.84)

The �irst term in (6.84) is (Δx)2; the second results in (Δpx)2 using that px is hermitean; in
the linear term in α we can (with the help of (6.80)) transform the 2nd part:

∫ d3r([px− < px >]ψ)∗(x− < x >)ψ = ∫ d3r ψ∗(px− < px >)(x− < x >)ψ

(6.85)

such that (if ψ is normalized) this term contributes to f(α) by −αħ. In total we get

(6.86)

Since f(α) is positive semide�inite (by construction), f(α) can have at most a single real zero.
This implies that for the discriminant must hold:

(6.87)

cn(t) = 1
√b

∫ b/2
−b/2

dx ψ(x;t) exp (−iknx).

[px,x] = ħ
i

,

Δpx ≠ 0,

ΔpxΔx ≥ ħ
2

.

f(α) = ∫ d3r |(x− < x >)ψ + iα(px− < px >)ψ|2 ≥ 0,

+iα ∫ d3r{ψ∗(x− < x >)(px− < px >)ψ − ([px− < px >]ψ)∗(x− < x >)ψ}.

= ∫ d3r ψ∗(x− < x >)(px− < px >)ψ + ħ
i
∫ d3r ψ∗ψ,

f(α) = (Δx)2 + α2(Δpx)2 − αħ ≥ 0.



thus

(6.88)

For a plane wave Δpx = 0, such that according to (6.82) Δx = ∞ : the location of the
particle is completely undetermined! The equal sign in (6.82) appears for the case of a
Gaussian wave packet, which is brie�ly sketched below.

At time t = 0 let

(6.89)

the associated Fourier transform is

(6.90)

Since for a free particle [H, p] = 0, H = T , the expectation value of the momentum and its
mean square �luctuation are constant in time. With (6.90) we obtain (after performing the k
integration) using

I0 = ∫
∞

−∞
exp (−αx2) dx = √ π

α
;

(6.91)

(6.92)

for all times t. On the other hand < x > and Δx change in time. To see this we transform the
Schrödinger equation of the free particle to the momentum	representation

(6.93)

Equation (6.93) can be integrated with the initial condition (6.90):

(6.94)

The back transformation into the position	representation results in:

4(Δpx)2(Δx)2 − ħ2 ≥ 0,

Δx Δpx ≥ ħ
2

.

ψ(x;0) = 1
√b

1
4√π

exp {− x2

2b2 + ik0x};

~
ψ(k;0) = √b

4√π
exp {− 1

2 (k − k0)2
b2}.

dn

dαn I0 = (−1)n ∫ ∞
−∞ x2n exp (−αx2) dx

< px >= ħk0; Δpx = ħ
b√2

iħ ∂
∂t

~
ψ(k;t) = ħ2k2

2m
~
ψ(k;t);

~
ψ(k;t) =exp (− iħk2t

2m ) ~
ψ(k;0).



ψ(x;t) =
1

√2π
∫

∞

−∞

~
ψ(k;t) exp (ikx)dk

(6.95)

or

(6.96)

with

(6.97)

With (6.96) we get

(6.98)

Equations (6.92) and (6.98) show that for t = 0

(6.99)

however, for t ≠ 0 the product Δx Δpx > ħ/2 since the uncertainty in position grows
while the uncertainty in momentum remains constant. This

6.3.7	 Disintegration	of	Wave	Packets
is not limited to the Gaussian form (6.89), but holds in general. For a force-free particle we
always have (H = T ) :

(6.100)

such that

(6.101)

We can therefore always choose the coordinate system in a way that

(6.102)

= 1
4√π

1

√b+ iħt
mb

exp { 2ib2k0x−x2−
iħtk2

0b
2

m

2b2(1+ iħt
mb2 )

}

|ψ(x;t)|2 = 1
b(t)

1
√π

exp {− (x−v0t)
2

b(t)2 }

b(t)2 = b2 + [ ħt
mb
]

2
and v0 = ħk0

m .

< x >= v0t;Δx = b(t)

√2
.

Δx Δpx = ħ
2 ,

d
dt

< px >= i
ħ < [H, px] >= 0,

d
dt

< x >= <px>
m

= const.

< x >= 0; < px >= 0.



Then according to (5. 36):

(6.103)

and

(6.104)

Since T = p2/(2m) we need:

(6.105)

and

[p2
x, [p2

x,x2]] =
2ħ
i

[p2
x,xpx + pxx] =

2ħ
i

([p2
x,x]px + px[p2

x,x])

(6.106)

This results in (6.104)

(6.107)

such that (Δx)2 grows quadratically with t, i.e. every	wave	packet	disperses	in	time.

6.3.8	 Reduction	of	Degrees	of	Freedom
In classical physics we can reduce the number of degrees of freedom of a system with the help
of constraints. For example, if a particle is supposed to move on the surface of a sphere, we can
reduce the equations of motion in 3 dimensions with the additional condition

(6.108)

to a 2-dimensional problem in the degrees of freedom ϑ, φ. Due	to	the	uncertainty	relation
for	position	and	momentum	or	generally	for	canonically	conjugate	variables	this
freezing	of	degrees	of	freedom	in	quantum	mechanics	in	general	is	not	possible! An
important example is the spontaneous	emission of photons, which results precisely from the
fact, that the degrees of freedom of the radiation �ield in quantum theory cannot be frozen.

6.4	 The	Orbital	Angular	Momentum
6.4.1	 Hermiticity
The angular momentum operator

(6.109)

d
dt

(Δx)2 = d
dt

< x2 >= i
ħ < [T ,x2] >

d2

dt2 (Δx)2 = i
ħ

d
dt

< [T ,x2] >= − 1
ħ2 < [T , [T ,x2]] >.

[p2
x,x2] = x[p2

x,x] + [p2
x,x]x = 2ħ

i
(xpx + pxx)

= 2ħ
i

{px[px,x]px + [px,x]p2
x + p2

x[px,x] + px[px,x]px} = −8ħ2p2
x.

d2

dt2 (Δx)2 = 2
m2 < p2

x >= const > 0,

rkl. = const;(pr)kl. = 0

l = r × p



does not require any symmetrization in the sense of (5. 27), since for every component li the
relevant components of r and p commute, e.g.

(6.110)

The space of functions in which l is hermitian can be either speci�ied with respect to cartesian
coordinates or with respect to polar coordinates (see Sect. 6.4.4).

6.4.2	 Rotations
In analogy to Sect. 6.3.2 we consider an in�initesimal rotation, e.g. around the z axis:

(6.111)

A Taylor expansion of ψ(x + ϵy, −ϵx + y, z;t) around (x, y, z) then gives:

(6.112)

For a �inite rotation φ around the z axis we have (as in Sect. 6.3.2)

(6.113)

When rotating about an arbitrary axis by →φ, the generalization of (6.113) reads:

(6.114)

The operators

(6.115)

which represent rotations in the space of the wave functions ψ (like the translations), form
a group which, however (unlike the translations), is not	abelian: �inite rotations about
different axes are generally not interchangeable in their order. Since the components of l are
the generators of the rotations, this implies

(6.116)

We call a physical system rotationally	invariant if

(6.117)

If ψ is a solution of the Schrödinger equation,
(6.118)

lz = xpy − ypx = pyx − pxy.

(x, y, z) → (x + ϵy, −ϵx + y, z).

ψ(x + ϵy, −ϵx + y, z;t) = ψ(x, y, z;t) − ϵ(x ∂
∂y

− y ∂
∂x
)ψ = (1 − iϵ

ħ lz)ψ(x, y, z;t).

ψ(Rφr;t) = ∑∞
n=0

1
n! {− i

ħ φlz}
n

ψ(r;t) =exp {− i
ħ φlz}ψ(r;t).

ψφ(r;t) =exp {− i
ħ
→
φ ⋅ l}ψ(r;t).

R̂(
→
φ) =exp (− i

ħ
→
φ ⋅ l),

[li, lj] ≠ 0 for i ≠ j.

[R̂(
→
φ),H] = 0.



then also R̂(
→
φ)ψ :

(6.119)

Equation (6.117) is ful�illed if and only if

(6.120)

Since p2 is a scalar, p2 commutes with R̂(
→
φ), thus also

(6.121)

Furthermore, |r| (for several particles |rij|) is a scalar, such that

(6.122)

if

(6.123)

6.4.3	 Active	and	Passive	Transformations
When describing spatial transformations (rotations, translations) the following perspectives
are equivalent:
(1)

A rotation (translation) of the physical system (active	transformation), i.e. a rigid
rotation (translation) of the wave function ψ in	the	Hilbert	space H .

 
(2)

equivalent to (1) is (see Fig. 6.1) a (passive) inverse coordinate transformation (rotation,
translation), i.e. a transformation of the coordinate system of an observer (passive
transformation) in 3-dimensional	space.

 

iħ ∂
∂t ψ = Hψ,

iħ ∂
∂t (R̂(

→
φ)ψ) = R̂(

→
φ)Hψ = H(R̂(

→
φ)ψ).

[l,H] = 0.

[T , l] = 0.

[V , l] = 0,

V = V (|r|) or V = V (|rij|).



Fig.	6.1 Illustration of ‘passive’ and ‘active’ transformations

For a scalar wave function ψ, which assigns a complex number to every point in space, due
to the equivalence of the perspectives (1) and (2) then holds

(6.124)

where s stands for a rotation (translation) of the coordinate system in 3-dimensional space,
the operator S for the corresponding transformation of the wave function ψ in the Hilbert
space H .

For a vector �ield—e.g. the vector potential A(r;t)—the situation is a little more
complicated than in (6.124), since the components of A (as a vector) also change when
performing a rotation. In this case we get:

(6.125)

To �ind the explicit form of the operator S, an in�initesimal transformation, e.g. around the z
axis, is suf�icient. Then we get

A
′
x(r;t) = Ax(

→
ρ;t) − ϵAy(

→
ρ;t)

A
′
y(r;t) = ϵAx(

→
ρ;t) + Ay(

→
ρ;t)

ψ(s−1r;t) = Sψ(r;t) = ψ′(r;t);

sA(s−1r;t) = SA(r;t) = A′(r;t).



(6.126)

with

(6.127)

We carry out the Taylor expansion of Ai(
→
ρ;t) around r = (x, y, z) in analogy to (6.112). Then

(6.126) can be written as

(6.128)

where the 3 × 3 matrix sz is de�ined by

(6.129)

which leads to the explicit form

(6.130)

The matrices for rotations around the x, y axes are:

(6.131)

For a rotation about any axis with →φ we obtain

(6.132)

Equation (6.132) suggests that s has the character of angular momentum. In fact one �inds
commutation relations as for the components of l,

(6.133)

Furthermore, using the representations (6.130) and (6.131) one �inds directly:

A′
z(r;t) = Az(

→
ρ;t)

→
ρ ≡ s−1r = (x + ϵy, −ϵx + y, z).

A′(r;t) = (1 − i
ħ ϵ[lz + sz])A(r;t)

sz = ħ ,
⎛⎜⎝Ax

Ay

Az

⎞⎟⎠ ⎛⎜⎝−iAy

iAx

0

⎞⎟⎠sz = ħ .
⎛⎜⎝0 −i 0

i 0 0

0 0 0

⎞⎟⎠sx = ħ sy = ħ .
⎛⎜⎝0 0 0

0 0 −i

0 i 0

⎞⎟⎠ ⎛⎜⎝ 0 0 i

0 0 0

−i 0 0

⎞⎟⎠A′(r;t) =exp {− i
ħ
→
φ ⋅ [l + s]}A(r;t).

[sx, sy] = iħsz, [sz, sx] = iħsy, [sy, sz] = iħsx.



(6.134)

such that (anticipating the results of Sect. 6.4.4) we can assign spin 1 (in units of ħ) to the
vector �ield A. Since the operators sx, sy, sz—in contrast to the components of l—do not
depend on the position coordinates, the spin obviously describes an internal	property of the
system described by the vector �ield A(r;t).

Note: In addition to the radiation �ield A there are other physical systems that are
described by vector �ields like e.g. the ρ and ω meson, which, however, in contrast to the
radiation �ield (photon γ) are massive, i.e.. mω ≈ mρ ≈ 780 MeV /c2. In the weak interaction
the vector �ields W +, W −, W 0, Z 0 with masses around 90 GeV /c2 play the dominant role.

6.4.4	 Commutation	Relations;	Eigenvalues
From the de�inition (6.109) one calculates directly:

(6.135)

or short

[ln, lm] = iħϵnmklk

with the completely antisymmetric tensor ϵnmk of rank 3. One also �inds

(6.136)

as a result of the fact that l2 is a scalar quantity. From (6.135) and (6.136) it follows that l2
and one of the components li form a common system of eigenfunctions. For the following
considerations we choose lz = l3 and search for the solutions of

(6.137)

In a �irst step we want to investigate, which eigenvalues (λ,μ) are possible at all within the
framework of the commutation rules (6.135) and using the hermiticity of the components li as
well as the normalization of the solutions ψλμ. In a second step the eigenfunctions ψλμ of the
orbital angular momentum will be constructed explicitly.

For the determination of the possible eigenvalues λ, μ it is useful to introduce—instead of 
lx, ly—the linear combinations

(6.138)

Then it follows that

s2 = s2
x + s2

y + s2
z = 2ħ213x3, = 2ħ2 ,

⎛⎜⎝1 0 0

0 1 0

0 0 1

⎞⎟⎠[lx, ly] = iħlz, [lz, lx] = iħly, [ly, lz] = iħlx

[l2, li] = 0 for i = x, y, z

l2ψλμ = λψλμ; lzψλμ = μψλμ.

l± = lx ± ily.



(6.139)

due to (6.136) and from (6.135) we obtain

(6.140)

where, to simplify the notation, the units are chosen such that ħ= 1 (natural units). With the
operators l±, lz we can write l2 as:

(6.141)

From (6.140) and (6.139) now follows:

l2(l±ψλμ) = λ(l±ψλμ),

(6.142)

if we apply the operators l+, l− to Eq. (6.137). Thus using the operators l+, l−, the quantum
number μ can be increased or decreased by 1 each, i.e.

(6.143)

If one assumes an arbitrary angular momentum eigenstate ψλμ, the question is whether
this increase or decrease of the quantum numbers is in�initely possible or stops after a �inite
number of steps (which may depend on λ). In addition we have to investigate whether the new
emerging state can be normalized.

If we use (6.138), (6.141) and the hermiticity of li, we get:

(6.144)

and after multiple applications of l+ �inally:

(6.145)

For �ixed λ,μ now the factor

(6.146)

becomes negative for suf�iciently large m; since the normalization of the possible
eigenfunctions is ψλμ, l+ψλμ, l+ψλμ ⋯ has to be positive, we come to a contradiction unless
the series stops for a value m0 + 1, i.e.

(6.147)

[l2, lz] = [l2, l±] = 0

[lz, l±] = ±l±,

l2 = l+l− + l2z − lz = l−l+ + l2z + lz.

lz(l±ψλμ) = (μ ± 1)(l±ψλμ),

l±ψλμ ∼ ψλμ±1.

(l+ψλμ, l+ψλμ) = (ψλμ, l−l+ψλμ) = (λ − μ2 − μ)(ψλμ,ψλμ)

(lm+1
+ ψλμ, lm+1

+ ψλμ) = (λ − mu2 − μ) ⋯ (λ − [μ + m]2 − [μ + m])(ψλμ,ψλμ).

(λ − μ2 − μ) ⋯ (λ − [μ + m]2 − [μ + m])



or with (6.145) we get

(6.148)

The series of angular momentum eigenfunctions generated from ψλμ according to m = m0

must stop!
Corresponding considerations can be made when employing l−. We obtain in analogy to

(6.148) the condition

(6.149)

thus

(6.150)

Solving (6.148) and (6.149) for μ,λ we �ind:

(6.151)

(6.152)

We therefore have found the possible eigenvalues for l2, lz:

(6.153)

and

(6.154)

For every angular momentum quantum number j then there are (2j + 1) values of μ (in
agreement with the Stern-Gerlach experiments in Chap. 2). In the following we want to show
that for the orbital angular momentum l only the values j = 0, 1, 2, … occur, which we will
refer to below as l.

6.4.5	 Eigenfunctions	for	l2, lz
To construct the eigenfunctions to l2 and lz it is useful to introduce polar coordinates r,ϑ,φ.
The components li then are written as:

(6.155)

l
m0+1
+ ψλμ = 0

λ − [μ + m0]2 − [μ + m0] = 0.

λ − [μ − n0]2 + [μ − n0] = 0,

l
n0+1
− ψλμ = 0.

μ = n0−m0

2 ħ,

λ = 1
2 (m0 + n0)( [m0+n0]

2 + 1)ħ2.

λ = j(j + 1)ħ2;j = 0, 1
2 , 1, 3

2 , 2, 5
2 , ⋯

μ/ħ = −j, −j + 1, … , +j.

lz = −iħ ∂
∂φ ;l± = ħ exp (±iφ)[± ∂

∂ϑ + i cot ϑ ∂
∂φ ],



and for l2 follows:

(6.156)

Since the coordinate r does not occur in (6.155) and in (6.156), we omit r in the following.
Due to

(6.157)

we can use the Ansatz for the solutions of

(6.158)

involving the product function:

(6.159)

The possible eigenvalues are now restricted by the fact, that for a scalar function ψ(r) must
hold:

(6.160)

This implies for (6.159)

(6.161)

such that the possible values of l, m are given by

(6.162)

At this point we can brie�ly address the question of the hermiticity of lz. The requirement

(6.163)

leads (after partial integration (∫ d3r = ∫ dφ sinϑ dϑ r2dr) with respect to φ) to

(6.164)

The function domain, in which lz is hermitian, thus must have the property,
(6.165)

l2 = −ħ2( 1
sinϑ

∂
∂ϑ sin ϑ ∂

∂ϑ + 1
sin2ϑ

∂ 2

∂φ2 ).

lz exp (imφ) = −iħ ∂
∂φ

exp (imφ) = mħ exp (imφ)

l2χlm(ϑ,φ) = l(l + 1)ħ2χlm;lzχlm(ϑ,φ) = mħ χlm(ϑ,φ)

χlm(ϑ,φ) = flm(ϑ) exp (imφ).

ψ(r,ϑ,φ + 2π) = ψ(r,ϑ,φ).

exp (im2π) = 1 → m is an integer,

l = 0, 1, 2, . . . ;− l ≤ m ≤ l.

(ψ1, lzψ2) = (lzψ1,ψ2)

ψ∗
1(r,ϑ, 2π)ψ2(r,ϑ, 2π) = ψ∗

1(r,ϑ, 0)ψ2(r,ϑ, 0).

ψ(r,ϑ, 2π) =exp (iα)ψ(r,ϑ, 0),



where α is an arbitrary real number (but �ixed for all ψ). By (6.160), however, the condition
(6.165) is always ful�illed.

We now turn to the calculation of flm(ϑ); �irst we consider the case m = l. Then we have

(6.166)

which (with (6.155)) leads to the differential equation

(6.167)

The solution of (6.167) is (up to a normalization factor)

(6.168)

Starting from (6.168) one now obtains by applying l−

(6.169)

This provides a complete construction procedure for the eigenfunctions χlm(ϑ,φ).
To gain some more insight into the structure of the χlm, we use (with d

d(cosϑ) = − 1
sinϑ

d
dϑ

)
the identity:

l−[exp (ilφ)f(ϑ)] =exp (i(l − 1)φ)[−
d

dϑ
− l cot (ϑ)]f(ϑ)

(6.170)

from which we get:

l2−[exp (ilφ)f(ϑ)] = l−{exp (i(l − 1)φ)[(sin ϑ)1−l d

d(cos ϑ)
(sin ϑ)l]f(ϑ)}

(6.171)

Thus we can write (6.169) as

(6.172)

The functions flm(ϑ) therefore are polynomials of degree l in sin ϑ, cos ϑ.

By a twofold partial integration with respect to the variable cos ϑ it can be shown that in
addition to lz also l2 is hermitian in the space of functions χlm. Then

l+fll(ϑ) exp (ilφ) = 0,

( ∂
∂ϑ

− l cot ϑ)fll(ϑ) = 0.

fll(ϑ) ∼ (sin ϑ)l.

χlm(ϑ,φ) ∼ (l−)l−m
χll(ϑ,φ).

=exp (i(l − 1)φ)[(sin ϑ)1−l d
d(cosϑ) (sin ϑ)l]f(ϑ),

=exp (i(l − 2)φ){(sin ϑ)2−l d
d(cosϑ) (sin ϑ)l−1(sin ϑ)1−l d

d(cosϑ) (sin ϑ)lf(ϑ)}.

χlm(ϑ,φ) ∼exp (imφ)(sin ϑ)−m dl−m

d(cosϑ)l−m (sin ϑ)2l.



the orthogonality of the χlm follows from their property as eigenfunctions to l2, lz:

(6.173)

for l ≠ l′ and/or m ≠ m′.

To determine the normalization constants, we start again with the case m = l. The
functions

(6.174)

are normalized to 1 when using (determining the still free phase)

(6.175)

For the case m ≠ l we assume the relation in analogy to (6.144).

(6.176)

Using the usual phase convention we obtain from (6.176) for the normalized χlp :

(6.177)

Starting from the already normalized functions χll the normalized functions are obtained by
iteration of (6.177):

(6.178)

The standard solutions are therefore explicitly:

Ylm(ϑ,φ) = (−1)l/(2ll!)√
(2l + 1)(l + m)!

4π(l − m)!

(6.179)

Summary: For the functions Ylm(ϑ,φ) the following holds:

(6.180)

[∫ 2π
0 dφ(∫ 1

−1 d(cos ϑ) χ∗
lmχl′m′)] = 0

cl(sin ϑ)l exp (ilφ)

cl = (−1)l√ (2l+1)!
4π

1
2ll!

.

(l−χlp, l−χlp) = (l(l + 1) − p2 + p)(χlp,χlp) = (l − p + 1)(l + p)(χlp,χlp).

χl,p−1 = 1
√(l−p+1)(l+p)

l−χlp.

χlm(ϑ,φ) = √ (l+m)!
(2l)!(l−m)!

(l−)l−m
χll(ϑ,φ).

× exp (imφ)(sin ϑ)−m dl−m

d(cosϑ)l−m (sin ϑ)2l.

l2Ylm = l(l + 1)Ylm;lzYlm = mYlm;

l±Ylm = √(l ± m + 1)(l ± (−m))Ylm±1



and

(6.181)

6.4.6	 Angular	Momentum	Representation
The spherical harmonics Ylm(ϑ,φ) form a complete system of functions on the unit sphere.
Therefore every square-integrable function ψ(r) can be expanded in an (on average
convergent) series

(6.182)

For the expansion coef�icients glm(r) follows (due to the orthonormalization of the Ylm) :

(6.183)

For an ensemble in the state ψ the expectation values for l2 and lz

(ψ, l2ψ) =< l2 >=
∞

∑
l=0

l(l + 1)ħ2
l

∑
m=−l

∫
∞

0
r2dr |glm(r)|2;

(6.184)

with the normalization

(6.185)

Thus we can interpret the integral

(6.186)

as probability to �ind—in a simultaneous measurement of l2 and lz of a particle described
by ψ—the values l(l + 1) and m.

If the ensemble is prepared in such a way that ψ already is an eigenfunction of l2 to the
eigenvalue l(l + 1), then in a measurement of lz only the (2l + 1) discrete values −l ≤ m ≤ l

can be found. Thus the eigenvalues of l2 are (2l + 1)-fold degenerate. Conversely: If ψ is an
eigenfunction of lz with eigenvalue m, then for a measurement of l2 only the eigenvalues 
l(l + 1) with l ≥ |m| can be found.

∫ 2π
0 dφ ∫ 1

−1 d(cos ϑ) Y ∗
lmYl′m′ = δll′δmm′ .

ψ(r) = ∑∞
l=0 ∑

l
m=−l glm(r)Ylm(ϑ,φ).

glm(r) = ∫ 2π
0

∫ 1
−1

dφ d(cos ϑ) Y ∗
lm(ϑ,φ)ψ(r,ϑ,φ).

< lz >= ∑∞
l=0 ∑

l
m=−lmħ ∫ ∞

0 r2dr |glm(r)|2

1 = ∑∞
l=0 ∑

l
m=−l ∫

∞
0 r2dr |glm(r)|2.

∫ ∞
0

r2dr |glm(r)|2



In an eigenstate ψlm to l2 and lz the components lx, ly are not sharp due to (6.135). For the
mean square of the �luctuation, which for symmetry reasons are the same for lx and ly, one
immediately �inds:

(6.187)

if one considers that

(6.188)

because of (6.138), (6.142) and (6.173). Equation (6.187) shows that there is exactly a single
state in which, in addition to l2, all 3 components li can be measured sharply, i.e. the case 
l = m = 0.

6.4.7	 Angle–Angular	Momentum	Uncertainty
Accordingly to (6.80) the following commuation rule holds for the angle φ and the component 
lz,

(6.189)

Due to the analogy of (6.189) and (6.80) one is tempted to conclude from (6.189) the relation
(in analogy to (6.82)),

(6.190)

However, Eq. (6.190) cannot be valid in general because for eigenfunctions of lz the �luctuation 
Δlz = 0, while Δφ ≤ 2π is always �inite! The error in the conclusion is due to the fact that—in
the derivation of (6.82) from (6.80)—it was assumed in (6.85) (without explicit mentioning),
that with ψ also xψ belongs to the function space in which px is hermitian. Exactly this
prerequisite, necessary for the proof in Sect. 5. 2, is not ful�illed for the case of the angular
momentum lz and the angle φ: according to the previous analysis lz is hermitian in the space of
periodic functions ψ(r,ϑ,φ) with

(6.191)

but then φψ(r,ϑ,φ) is not periodic and the requirements for the proof in Sect. 5. 3 are not
ful�illed. This clari�ies that (6.190) cannot hold in general as the example above has shown.

The way to arrive at correct uncertainty relations for angular momentum and angles is
already outlined by the discussion above. One must replace the observable φ by a periodic
function, e.g. cos φ or sin φ. Then we obtain

(6.192)

(6.193)

(ψlm, (Δlx)2
ψlm) = ∫ d3r ψ∗

lml
2
xψlm = 1

2 (ψlm, (l2 − l2z)ψlm) = 1
2 {l(l + 1) − m2}ħ2,

∫ d3r ψ∗
lmlxψlm = 0

[lz,φ] = ħ
i

.

Δφ Δlz ≥ ħ
2 .

ψ(r,ϑ,φ) = ψ(r,ϑ,φ + 2π)

[lz, cos φ] = − ħ
i

sin φ

[lz, sin φ] = ħ
i

cos φ,



and with ψ the function sin φ ψ or cos φ ψ is also periodic.

6.5	 The	Spin–Intrinsic	Angular	Momentum
6.5.1	 Experimental	Observations
If we carry out a Stern-Gerlach	experiment (see Chap. 2) with hydrogen atoms, which are all
in the ground state, we observe a (symmetric) splitting of the primary beam into two
secondary beams. This �inding is in contrast to the previous considerations on the quantum
theory of a point-like particle, according to which no splitting would be expected in the Stern-
Gerlach experiment, since

(i) in the ground state of the H atom (see Sect. 7. 6. 5) the electron has the orbital angular
momentum l = 0, such that no permanent magnetic moment results from the orbital motion
of the electron in the atom;

(ii) the induced magnetic moment (diamagnetism)—even for strong magnetic �ields—is
not suf�icient to split the beam of the size found experimentally.

The results of the Stern-Gerlach experiment can be easily explained, if we assign an
intrinsic angular momentum (spin)—and thus a corresponding magnetic moment—to the
electron. This intrinsic angular momentum of the particle is an internal	property
independent of the coordinate system without a classical analogue; in particular, it cannot be
transformed away by translating to another coordinate system. Since the primary beam splits
exactly into 2 secondary beams only the 2 values ms = +1/2, −1/2 (in units of ħ) are possible
for the z component of the spin. This implies that a spin s = 1/2 (in units of ħ) can be assigned
to the electron.

Other hints for the spin of the electron are provided by the �ine structure of spectral lines,
the Einstein-de	Haas	effect as well as the anomalous	Zeemann	effect. Other elementary
particles also have spin	1/2	:	 nucleons, muons, quarks, neutrinos; on the other hand, spin	0:
pions, kaons, η; Spin	1: photons, gluons, vector mesons ρ, ω, ϕ etc.

6.5.2	 The	Pauli	Spin	Matrices
The explanations above show that a scalar wave function—depending only on (r, t)—is not
suf�icient for a description of an ensemble of electrons; we have to assign an additional
(internal) degree of freedom to the electron. This additional degree of freedom can only be
characterized by two values ms = +1/2 or ms = −1/2. A mathematical description of such a
degree of freedom is possible in terms of a 2-dimensional vector space, its basis vectors

(6.194)

are assigned to the states (denoted by: spin	up or spin	down) with ms = +1/2 or 
ms = −1/2.

Operators that act in the space spanned by (6.194) can be represented by 2×2 matrices.
Since the operator of the z component of the spin Sz should have the eigenvalues ±1/2 (in
units of ħ), its representation is obvious

(6.195)

( ) or ( )
1

0

0

1

Sz = 1
2 ( ).

1 0

0 −1



We can �lip the electron spin (spin �lip) using the operators

(6.196)

This gives (cf. the operators l± from Sect. 6.4)

(6.197)

or

(6.198)

Every operator acting in the space de�ined by (6.194) can be written as a linear combination of
Sz, S+, S− and the identity matrix 12×2, e.g. the operators

(6.199)

which together with Sz are the cartesian components of the spin	vector

(6.200)

In the standard	representation we de�ine the components of the σ-matrices by

(6.201)

which are called Pauli	spin	matrices with the three components:

(6.202)

The following properties hold for these matrices, which follow directly from the de�inition
(6.202):

(i) Normalization

S+ = 1
2 ( );S− = 1

2 ( ).
0 2

0 0

0 0

2 0

S+( ) = ( );S+( ) = 0,
0

1

1

0

1

0

S−( ) = ( );S−( ) = 0.
1

0

0

1

0

1

Sx = 1
2

(S+ + S−) = 1
2
( );Sy = 1

2i
(S+ − S−) = 1

2
( ),

0 1

1 0

0 −i

i 0

S = .
⎛⎜⎝Sx

Sy

Sz

⎞⎟⎠S = 1
2 σ,

σx = ( ),σy = ( ),σz = ( ).
0 1

1 0

0 −i

i 0

1 0

0 −1



(6.203)

such that

(6.204)

in accordance with (6.153).
(ii) Commutators

(6.205)

or

(6.206)

as expected for angular momenta (cf. (6.135)).
(iii) Anti-commutators

(6.207)

6.5.3	 Spinors
We can now de�ine an arbitrary state of a set of particles with spin 1/2 by a two-component
wave function (spinor)

(6.208)

The operation of the spin operators on spinors follows directly from Sect. 6.5.2, e.g.

(6.209)

the operators of position and momentum (as well as all operators built from r and p, such as
angular momentum) are given by a multiplication with the identity matrix

(6.210)

and thus become operators in the space of spinors (6.208).
Example:

(6.211)

σ2
x = σ2

y = σ2
z = 12×2 = E2 = ( )

1 0

0 1

→
σ2 = 3E2 ⇒ S 2 = 3

4 E2 = 1
2 (1 + 1

2 )E2

σxσy − σyσx = 2i σz

[Sx,Sy] = i Sz

[σx,σy]+ = σxσy + σyσx = 0.

Ψ(r;t) = ψu(r;t)( )+ ψd(r;t)( ) = ( ).
1

0

0

1

ψu(r;t)
ψd(r;t)

σxΨ = ( )( ) = ( );0 1

1 0

ψu

ψd

ψd

ψu

E2 = ( )1 0

0 1



We de�ine the norm	of Ψ as

(6.212)

For spinors Ψ, that are normalized to 1 according to (6.212), we can e.g. interpret

(6.213)

as the probability to �ind an electron in the volume V with the spin component ms = +1/2. If
we discard the information about spin then

(6.214)

is the probability of �inding an electron in the volume V.
The de�inition of the expectation value of an observable in a state Ψ follows from (6.209) to

(6.212). It is explained by a few examples:
(i) Position:

(6.215)

(ii) Spin:

(6.216)

or

(6.217)

Of course, operator products are also possible, such as e.g. the spin-orbit coupling 
l ⋅ S = lxSx + lySy + lzSz, which follows from the relativistic theory and explains the �ine
structure of the spectral lines.

6.5.4	 Rotation	of	Spinors
In analogy to Sect. 6.4 we conclude the following property of a spinor Ψ in rotations:

r Ψ = ( ) ⋅ ( ) = ( ).
r 0

0 r

ψu

ψd

rψu

rψd

(Ψ, Ψ) = ∫ d3r (ψ∗
uψ

∗
d
)( ) = ∫ d3r {|ψu|2+|ψd|2}.

ψu

ψd

∫
V
d3r |ψu|2

∫
V
d3r {|ψu|2+|ψd|2}

< r >= (Ψ, rΨ) = ∫ d3r {(ψ∗
uψ

∗
d
)}( ) = ∫ d3r r{|ψu|2+|ψd|2};

rψu

rψd

< Sz >= (Ψ,SzΨ) = 1
2

∫ d3r {(ψ∗
uψ

∗
d
)( )} = 1

2
∫ d3r {|ψu|2−|ψd|2}

ψu

−ψd

< Sx >= (Ψ,SxΨ) = 1
2

∫ d3r{(ψ∗
uψ

∗
d
)( )} = 1

2
∫ d3r {ψ∗

uψd + ψ∗
d
ψu}.

ψd

ψu



(6.218)

with

(6.219)

where S now consists of the 2×2 Pauli matrices introduced in Sect. 6.5.2 (6.195), (6.199).
According to (6.125)–(6.127) we obtain for the transformation behavior of the spinor
components ψu, ψd in rotations, e.g. around the x axis by the angle φ

(6.220)

where →ρ arises from r by the inverse rotation, i.e. →ρ = s−1r.
As a proof, note that Ŝ can also be written as

(6.221)

since the operators l, S act in different spaces and consequently [l, S] = 0. We can
therefore consider separately:

(6.222)

= (cos (
φ

2
) ⋅ E2 − i sin (

φ

2
) ⋅ σx)Ψ,

since according to (6.203):

(6.223)

The transformation behavior of the spinor components differs from that of the components of
a vector �ield in that the angle φ/2 occurs in (6.222). This has the particular consequence that
in a rotation by φ = 2π

(6.224)

while for a vector �ield A we have:

(6.225)

Ψ′(r;t) = ŜΨ(r;t)

Ŝ =exp {− i
ħ
→
φ ⋅ [l + S]} = ∑∞

n=0
1
n! (− i

ħ
→
φ ⋅ [l + S])

n

,

( )(r;t) = ( )( )(
→
ρ, t)

ψ′
u

ψ′
d

cos ( φ

2 ) −i sin ( φ

2 )

−i sin ( φ

2 ) cos ( φ

2 )

ψu

ψd

Ŝ =exp (− i
ħ φlx) exp (− i

ħ φSx),

exp (− i
ħ φSx)Ψ =exp (−i

φ
2 σx)Ψ = ∑∞

n=0
1
n! (−i

φ
2 σx)

n
Ψ

σ2
x = E2,σ3

x = σx etc.

Ψ → Ψ′ =exp (−iπ)Ψ = −Ψ,

A → A′ = A.



6.5.5	 Pauli	Equation
The time evolution of the spinor Ψ is determined by a Schrödinger equation

(6.226)

where H can now contain spin-dependent terms. The internal angular momentum S is linked
to a magnetic moment

(6.227)

as the Einstein—de	Haas	experiment shows explicitly. In a magnetic �ield B such a
magnetic moment has the energy

(6.228)

Then the Hamiltonian is

(6.229)

Since from the de�inition of the spin matrices it follows that

(6.230)

also the (non-relativistic) Hamiltonian (6.229) for an electron with spin is hermitian, if the
components of the spinors Ψ drop fast enough in the asymptotic region. Then we get:

(6.231)

such that the norm (Ψ, Ψ) remains constant in time.
If [H, l + S] = 0, we obtain—as in Sect. 6.4—that with Ψ also ŜΨ is a solution of (6.226)

(rotational	invariance).
Additions:
(1) One might attempt to determine the internal magnetic moment of the electron

classically by describing the electron as a homogeneous sphere of charge −e with the classical
electron radius r0 = e2/(mc2) rotating around a principle axis. For a quantitative explanation
of the Stern-Gerlach experiments from Sect. 6.5.1 then an orbital velocity v ≈ 200 c at the
equator of the sphere would be required; This clearly marks the end of a classical description!

(2) The electron spin inevitably follows from relativistic quantum theory, the Dirac	theory,
from which the Pauli equation (6.226) with the Hamilton operator (6.229) results in the non-
relativistic limit.

In summarizing this chapter we have investigated the connection between the possible
expectation values of an observable A and its �luctuations in context with its commutator
[A, H]. Furthermore, we have established the relationship between momentum conservation
and translational invariance as well as the conservation of angular momentum and rotational

iħ ∂
∂t Ψ = H Ψ,

→
μs = e

mc
S

−
→
μs ⋅ B.

H = 1
2m (p − e

c
A)

2
+ eΦ − e

mc
S ⋅ B.

(Ψ, SΨ) = (SΨ, Ψ),

d
dt

(Ψ, Ψ) = 0,



invariance in quantum theory. In addition we have introduced the ‘spin’ of electrons (or related
fermions) and explored its properties with respect to rotations.
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7.	Motion	of	a	Particle	with	External	Forces
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In this chapter we will discuss the quantum mechanics of a single particle in an external
potential and classify the possible solutions. As examples we calculate the wave functions
for an in�inite and a �inite well and for potentials that are periodic in space. Furthermore,
the harmonic oscillator problem will be examined in detail as well as the motion of a
charged particle (and its spin) in a magnetic �ield. The bound states and energy levels of
the hydrogen atom will close this chapter.

7.1	 General	Properties	of	the	Wave	Function
The following discussion refers to the Schrödinger equation

(7.1)

with local potentials, i.e.

(7.2)

here ψ is a scalar function (not a two or more component spinor). Furthermore, due to the
2nd derivatives in r in the kinetic energy operator the	wave	function ψ must	be
continuous	together	with	its	�irst	derivatives	as	long	as	the	potential V remains
�inite.

Fig.	7.1 Example for a potential that only allows for closed orbits

iħ ∂
∂t

ψ = H ψ

H = T + V ;V = V (r);

https://doi.org/10.1007/978-3-031-95521-1_7


Fig.	7.2 Example for a potential that only allows for open orbits

Fig.	7.3 Example for a potential that has bound as well as scattering states

7.1.1	 Classi�ication	of	Solutions
It is useful to differentiate the following cases for the shape of the potential:
(1)

If all classical orbits are closed, the eigenvalue spectrum of H is purely discrete and
all eigenfunctions can be normalized. An example is the harmonic oscillator
(Fig. 7.1).

 

(2)
If the classical system only has open orbits, the energy spectrum is purely
continuous and the eigenfunctions cannot be normalized. Example: repulsive
Coulomb potential (Fig. 7.2).

 

(3)
The potential V has the shape as shown in Fig. 7.3:

This case corresponds to e.g. the potential between the atoms of a diatomic
molecule. Bound states as well as continuum states show up.

 

(4)
The α—decay of an atomic nucleus is determined by a potential of the form shown
in Fig. 7.4 (here x is the distance between the α particle and the remaining nucleus):

 



Fig.	7.4 Example for a potential that has bound states, scattering states as well as resonant Gamov states

The barrier stems (a) from the Coulomb repulsion and (b) from the centrifugal term of
the kinetic energy (see Sect. 7.6). In such a case we have—apart from bound states 
(E < 0) and scattering states (E > 0)—a third type of possible states in the range 
0 < E < B : states that are within the barrier can only exist for a �inite time τ  until they
decay by tunneling (Gamov	states). Classically, the situation is completely different: a
particle with 0 < E < B is either on a closed orbit within the barrier or on an open
trajectory outside the barrier. A transition (at �ixed energy) from one type of orbit type to
the other is impossible. In classical physics there would be no α—decay (or spontaneous
nuclear �ission).

7.1.2	 The	Wronski	Determinant
It is often possible to reduce the stationary Schrödinger equation to a one-dimensional
problem, which is determined by a differential equation of the form

(7.3)

with ϵ = 2mE/ħ2,U(x) = 2mV (x)/ħ2. Let’s consider 2 solutions ξ1, ξ2 with eigenvalues
ϵ1, ϵ2; then from (7.3) we get the relationship

(7.4)

We now show with (7.4) that square integrable solutions cannot be degenerate. We
provide the proof indirectly: If ϵ1 = ϵ2, we would have (7.4):

(7.5)

i.e. the Wronski	determinant

(7.6)

In line with the assumption of square integrability the functions ξ1, ξ2 must vanish at
in�inity; thus the constant of integration itself is zero:

(7.7)

ξ′′ + (ϵ − U(x))ξ = 0

ξ2ξ
′′
1 − ξ1ξ

′′
2 = (ϵ2 − ϵ1)ξ1ξ2.

ξ2ξ
′′
1 − ξ1ξ

′′
2 = 0 = W(ξ1, ξ2)′,

W(ξ1, ξ2) ≡ ξ2ξ
′
1 − ξ1ξ

′
2 = const. ∀x.

W(ξ1, ξ2) ≡ ξ2ξ
′
1 − ξ1ξ

′
2 = 0.



This directly leads to

(7.8)

i.e. the two solutions agree except for a normalization factor, in contradiction to the
assumption.

With the help of (7.4) we can also make statements about the zeros of the solutions of
(7.3). We consider 2 real solutions of (7.3) ξ1, ξ2—the solutions of the real differential
equation (7.3) can always be chosen real—and let ϵ2 > ϵ1; we then integrate (7.4) over an
interval whose endpoints a, b are two consecutive zeros of ξ1, therefore:

(7.9)

In the interval [a, b] ξ1 has a uniform sign, e.g. ξ1 >0. Then the following relations hold at
the endpoints:

(7.10)

It now follows that ξ2(x) must have at least 1 zero between 2 successive zeros of ξ1(x). If 
ξ2(x) > 0 (< 0) in between the zeros a, b of ξ1(x), then the right side according to (7.9)
will be > 0 (< 0), while the left side with (7.10) turns out to be ≤ 0 (≥ 0): contradiction!
Now if ξ1, ξ2 disappear at the boundaries x → ±∞ (bound states), the n1 zeros of ξ1(x)
divide the interval [−∞, ∞] in (n1 + 1) subintervals. Since ξ2(x) in each of these
intervals has at least 1 zero point, the function ξ2(x), which leads to the higher eigenvalue 
ϵ2 > ϵ1 (by assumption), must have at least (n1 + 1) zero points.

7.2	 Simple	Examples
7.2.1	 The	In�inite	Potential	Well
The most simple model system in quantum mechanics is the one-dimensional in�inite
potential well. It consists of a potential-free area which is surrounded by two in�initely
high potential walls:

(7.11)

V (x) = 0 for 0 < x < a

V (x) = ∞ for x > a.

The classical range is restricted to the interval 0 < x < a and the potential belongs to the
1st class of potentials. We will see that the energy quantization in this example results
directly from the restriction of the classical range.

Outside the classical region the potential is too strong, such that apart from the trivial
solution ψ = 0 no other solutions may exist. Inside the potential, however, we have a free
system described by the stationary Schrödinger equation

ξ1 = const. ξ2,

ξ2ξ
′
1|ba − ξ1ξ

′
2|ba= ξ2ξ

′
1|
b

a
= (ϵ2 − ϵ1) ∫ b

a
ξ1ξ2 dx.

ξ′
1(a) ≥ 0; ξ′

1(b) ≤ 0.

V (x) = ∞ for x < 0



(7.12)

The general solution of this equation is

(7.13)

with the wave number k = √2mE/ħ. The coef�icients A and B must be derived from
the continuity conditions of the wave function. Since the potential is no longer �inite, the
derivative of the wave function is not continuous, but the wave function itself continues to
be continuous and therefore must disappear at the edges of the potential, i.e. ψ(0) = 0
and ψ(a) = 0.

The �irst condition leads to B = 0 since cos (0) = 1. The second condition can only be
ful�illed if sin (ka) = 0. Therefore, the wave number only allows certain discrete values:

(7.14)

where n is an integer number. The energy then can also only take discrete values. The last
free coef�icient A follows from the normalization. The energies and wave functions of the
in�inite potential well therefore are (see Fig. 7.5):

(7.15)

In the more realistic case of the �inite potential well, the wave function does not have
to disappear at the edges, but can penetrate into the classically forbidden area and drops
here exponentially (∼exp (−κx) with real κ = √2m(V0 − E)/ħ) for E < V0. In this
case the derivative of the wave function is also continuous again.

In general, every potential can be approximated by many constant potentials. In this
case one has to determine two coef�icients per section and has two boundary conditions
from the continuity conditions. Since the wave function must also be normalizable, one
has to determine 2N coef�icients (for N potential sections) from 2N + 1 boundary
conditions. The system thus is overdetermined and solutions only exist for certain
discrete energy eigenvalues.

− ħ2

2m
∂ 2

∂x2 ψ(x) = Eψ(x).

ψ(x) = A sin (kx) + B cos (kx),

sin (ka) = 0 ⇒ ka = nπ,

En = ħ2π2

2ma2 n
2, ψn(x) = √ 2

a
sin ( πn

a
x).



Fig.	7.5 Illustration of the wave functions ψ(x) and the associated energy levels of an in�inite potential well (left) and the
densities |ψ(x)|2 (right)

7.2.2	 The	Finite	Potential	Well
In the previous section we have discussed an example with a discrete spectrum and now
want present an example with a continuous spectrum. The potential should be a single
�inite potential well,

(7.16)

VII(x) = V0 > 0 for − a ≤ x ≤ a.

A particle, coming from the left, moves to the right in direction of the potential well. There
are two classical options: If the energy of the particle is larger than the step (E > V0), it
can pass the step; if the energy is smaller, the particle is re�lected. Quantum mechanically,
both possibilities can occur.

For the wave function (I) in front of the step, we choose a plane wave traveling to the
right for the incoming wave and a plane wave traveling to the left for the re�lected wave,

(7.17)

The amplitude of the incoming wave here is set to 1. For the wave function behind the step
(III) we only take a plane wave running to the right, since the particle cannot be re�lected
at in�inity,

(7.18)

The wave function in the well for E < V0 has to be taken as

(7.19)

with κ = √2m(V0 − E)/ħ) for E < V0. For E > V0 we have the basis solutions 
exp (±i

~
kx) with ~k = 2m(E − V0)/ħ2. The overall solution then emerges from the

solution of the Schrödinger equation by exploiting the continuity conditions:

VI(x) = 0 for|x| > a

ψI
x<−a(x) = ψin(x) + ψR(x) = eikx + Re−ikx.

ψIII
x>a(x) = ψT (x) = Teikx.

ψII
|x|<a

(x) = AII exp (−κx) + BII exp (+κx)

I II II III



(7.20)

∂

∂x
ψI(−a) =

∂

∂x
ψII(−a),

∂

∂x
ψII(a) =

∂

∂x
ψIII(a)

for the four complex coef�icients R,T ,AII ,BII . Their explicit evaluation is straight
forward for E < V0 and E > V0 (but lengthy and serves as a good exercise).

Of particular interest is the re�lection	coef�icient R and the transmission
coef�icient T, which indicate the amplitude for re�lection at the step or transmission. The
conservation of probability here requires |R|2 + |T |2 = 1. Figure 7.6 shows the shape of
the probability density |ψ(x)|2 for an energy 0 < E < V0. The density oscillates in the
region before the well (I) due to the interference between the incoming and re�lected
wave; in the classically forbidden region (II) it drops roughly exponentially and becomes a
constant (|T |2) in the region III.

Fig.	7.6 Illustration of the probability density |ψ(x)|2 for the potential well in case of 0 < E < V0

In distinction to classical mechanics the particle can bypass the potential well with a
certain probability even if the necessary energy is missing. This effect is called tunnelling.
The inverse case is also possible: If the energy of the particle is higher than the potential
step, it would classically always pass the step. In quantum mechanics it can also be
re�lected in this case! Fig. 7.7 shows the re�lection |R|2 and the transmission |T |2

probability as a function of the energy of the particle (in units of V0). For small energies
the re�lection dominates, while for large energies the transmission is becoming more and
more likely. For certain discrete energies the step becomes completely transparent; these
energies correspond to the energy levels of the in�inite potential well (7.15).

ψI(−a) = ψII(−a), ψII(a) = ψIII(a),



Fig.	7.7 Illustration of the energy dependence of the re�lection and transmission probabilities |R|2 and |T |2

7.3	 Periodic	Potentials
7.3.1	 Crystal	Symmetry
For studying the motion of an electron in a crystal it is expedient to employ the periodicity
of the grid. We here assume an ideal grid; grid disturbances (local shifts), edge effects
therefore are neglected. The grid periodicity can then be formulated as

(7.21)

where Rm is a displacement vector which transfers the crystal lattice into itself.
We now will describe general properties of the stationary solutions for the potential

(7.21),

(7.22)

which follow directly from the periodicity of V. For simplicity we limit ourselves—due to
the separation of the wave function ψ(r) ≡ ψx(x)ψy(y)ψz(z)—to a one-dimensional
model. The essential statements also hold in the three-dimensional case.

7.3.2	 One-Dimensional	Periodic	Potential
We consider the differential equation

(7.23)

V (r) = V (r + Rm),

{− ħ2

2m ∇2 + V (r) − E}ψ(r) = 0,

ψ′′ + (ϵ − U(x))ψ = 0



with

(7.24)

and

(7.25)

where a is the length of the unit	cell.
It will now be shown that the solutions of (7.23) can always be chosen such that

(7.26)

or (after iteration)

(7.27)

If ψ1(x), ψ2(x) are two linearly independent solutions of (7.23) to the energy ϵ, then the
functions ψ1(x + a), ψ2(x + a), which are also solutions of (7.23) to the energy ϵ due to
the periodicity (7.25), can be represented as

ψ1(x + a) = C11ψ1(x) + C12ψ2(x);

(7.28)

To satisfy (7.26) we must diagonalize the matrix Cik; the eigenvalues λ result from

(7.29)

This is a quadratic equation for λ; about its solutions λ1, λ2 we can make the general
statement:

(7.30)

We prove Eq. (7.30) using the Wronski determinant. Then for any two solutions ψ1, ψ2 of
(7.23) for the same energy ϵ holds:

(7.31)

i.e., the Wronski determinant is constant

(7.32)

On the other hand, (7.28) gives

ϵ = 2m
ħ2 E;U(x) = 2m

ħ2 V (x)

U(x) = U(x + a),

ψ(x + a) = λψ(x)

ψ(x + na) = λnψ(x).

ψ2(x + a) = C21ψ1(x) + C22ψ2(x).

(C11 − λ)(C22 − λ) − C12C21 = λ2 − (C11 + C22)λ − C12C21 + C11C22 = 0.

λ1λ2 = 1.

ψ2ψ
′′
1 − ψ1ψ

′′
2 = 0,

W(ψ1,ψ2) = ψ2ψ
′
1 − ψ1ψ

′
2 = const.



(7.33)

leading to

(7.34)

The only physically interesting solutions are those for which |λ| = 1, otherwise—due to
(7.27)—ψ would grow beyond all limits for x → ±∞. Therefore we can write the
solutions as

(7.35)

Writing the phase in (7.35) as φ = ka is reasonable in view of

(7.36)

Obviously, it is suf�icient to consider values k in the interval

(7.37)

We thus have shown that all (physically meaningful) solutions from (7.23) can be chosen
such that

(7.38)

with n = 0, ±1, ±2, ±3, …. ψ then must have the following structure:

(7.39)

with

(7.40)

The statement formulated in (7.39) and (7.40) is called Bloch’s	theorem.

Fig.	7.8 Periodic potential for the case of a crystal in the direction of symmetry

W(ψ1(x + a),ψ2(x + a)) = W(ψ1(x),ψ2(x)) ( )
C11 C12

C21 C22

C11C22 − C12C21 = 1 = λ1λ2.

λ1 =exp (ika); λ2 =exp (−ika); k real.

τ(a)ψ =exp (− i
ħ apx)ψ = λψ.

− π
a

≤ k ≤ π
a

.

ψ(x + na) =exp (i nka)ψ(x)

ψ(x) =exp (ikx)vk(x)

vk(x) = vk(x + a).



The most simple model for the motion of an electron in the lattice of a crystal is the
assumption of a spatially constant potential U, which can be obtained by averaging over
the periodic potential assumed above (Fig. 7.8). The solutions for the constant potential
are

(7.41)

with k from (7.37). If we compare with (7.39)–(7.40), we may interpret the Bloch function
as grid-periodically modulated plane waves.

For an in�initely extended crystal the possible k values are continuous in the interval
(7.37). In case of a �inite crystal we account for the periodic boundary conditions (see
Sect. 6. 3. 5) and obtain (choosing the boundary points to be symmetrical to x = 0)

(7.42)

for L = na (length of the crystal), according to the Bloch theorem

(7.43)

We then obtain discrete k values in the interval (7.37) (1.	Brillouin	zone).

7.3.3	 Energy	Bands
We choose the coordinate origin such that

(7.44)

With ψ(x) then also ψ(−x) is a solution of (7.23) to the energy ϵ such that the functions

(7.45)

are also solutions for the same energy (solutions with positive	and	negative	parity). Any
Bloch solution ψB (with the property (7.38)) we then can write as a linear combination of 
ψ+ and ψ−:

(7.46)

Together with (7.38) the continuity of ψB, ψ′
B at the edge points of the unit cell, e.g. 

x = ±( a
2 ) requires:

(7.47)

and

(7.48)

Inserting (7.46) in (7.47), (7.48) and considering
(7.49)

ψ0(x) =exp (ikx)

exp (ik(x − L
2 ))vk(x − L

2 ) =exp (ik(x + L
2 ))vk(x + L

2 )

exp (ikL) = 1 ⇒ k = 2πn
L

for integers n.

U(x) = U(−x).

ψ±(x) = ψ(x) ± ψ(−x)

ψB(x) = A ψ+(x) + B ψ−(x).

ψB( a
2 ) =exp (ika) ψB(− a

2 )

ψ′
B(

a
2 ) =exp (ika) ψ′

B(− a
2 ).



we get

(7.50)

[A[1+ exp (ika)]ψ′
+(

a

2
)+ B[1− exp (ika)]ψ′

−(
a

2
) = 0.

Here we have used

(7.51)

as well as the fact that d/dx is odd in the transformation x → −x. The condition for a
solution of (7.50) is:

(7.52)

If we introduce the Wronski determinant at the position a/2,

(7.53)

Eq. (7.52) turns to

(7.54)

or

(7.55)

The right side of (7.55) depends on the energy ϵ, to which ψ+, ψ− are solutions of the
Schrödinger equation. We can also write (7.55) as

(7.56)

Now since −1 ≤cos (ka) ≤ +1, only such values ϵ are possible as solutions of (7.23) with

(7.57)

Since the solutions of (7.23) are continuous in ϵ the function f(ϵ) will also be a continuous
function of ϵ. It can therefore—depending on the speci�ic form of f(ϵ)—give related
energy ranges for which (7.57) is ful�illed (permitted	energy	bands), as well as those for
which (7.57) is not ful�illed (forbidden	energy	bands). A typical case is shown in Fig. 7.9.

Whereas any energy is possible for free electrons, the periodic potential modi�ies the
spectrum to a sequence of permitted and forbidden energy bands.

ψ+( a
2 ) = ψ+( a

2 );ψ−( a
2 ) = −ψ−(− a

2 ),

A[1− exp (ika)]ψ+( a
2 ) + B[1+ exp (ika)]ψ−( a

2 ) = 0

ψ′
±(x) = d

dx
{ψ(x) ± ψ(−x)}

[1− exp (ika)]2ψ+( a
2
)ψ′

−(
a
2
) = [1+ exp (ika)]2

ψ′
+(

a
2
)ψ−( a

2
).

W = ψ+( a
2
)ψ′

−(
a
2
) − ψ′

+(
a
2
)ψ−( a

2
),

[1− exp (ika)]2 = 4 exp (ika)ψ′
+(

a
2
)ψ−( a

2
)/W

cos (ka) = 2 ψ′
+(

a
2
) ψ−( a

2
)/W + 1.

cos (ka) = f(ϵ).

−1 ≤ f(ϵ) ≤ +1.



7.3.4	 Periodic	Box	Potential
As an example for the general considerations above we consider the following
(analytically solvable) potential:

(7.58)

U(x) = 0for −
a

2
≤ x ≤ −

b

2
and

b

2
≤ x ≤

a

2

with (see Fig. 7.10)

(7.59)

Fig.	7.9 Energy bands in crystals (allowed areas hatched)

Fig.	7.10 Illustration of the periodic box potential discussed in the text

The solutions of (7.23) in the area I (E < V0) are:

(7.60)

with the abbreviation

(7.61)

the general Bloch solution in the area I then is (according to (7.57)):

(7.62)

In region II
(7.63)

U(x) = U0for − b
2

≤ x ≤ b
2

U(x + a) = U(x).

ψI
± =exp (κx)± exp (−κx)

κ2 = 2m
ħ2 (V0 − E) = U0 − ϵ;

ψI(x) = 2{AI cosh (κx) + BI sinh (κx)}.

II



with

(7.64)

thus:

(7.65)

The conditions (7.47), (7.48) only refer to ψII(x) and its derivative:

(7.66)

and

(7.67)

In addition we have the continuity of ψ, ψ′ at x = b/2 as the connection between areas I
and II,

(7.68)

and

(7.69)

This gives 4 homogeneous equations for the 4 unknowns AI , BI , AII , BII . In order to
obtain a non-trivial solution for this system of equations its determinant must disappear.
The result (after some lengthy calculation) is:

(7.70)

and the right side of (7.70) gives the function f(ϵ) from (7.56) (see Fig. 7.9).

7.4	 The	Harmonic	Oscillator
7.4.1	 One-Dimensional	Case
We are looking for the eigenvalues of the Hamilton operator

(7.71)

and the associated eigenfunctions. For the solution of the eigenvalue equation
(7.72)

ψII
± (x) =exp (ikx)± exp (−ikx)

k2 = 2m
ħ2 E = ϵ,

ψII(x) = 2{AII cos (kx) + i BII sin (kx)} = AIIψ+(kx) + BIIψ−(kx).

ψII( a
2 ) =exp (ika) ψII(− a

2 )

ψII ′
( a

2 ) =exp (ika) ψII ′
(− a

2 ).

ψII( b
2 ) = ψI( b

2 )

ψII ′
( b

2 ) = ψI ′
( b

2 ).

cos (ka) =cosh (κb) cos (k[a − b]) + κ2−k2

2κk sinh (κb) sin (k[a − b]) = f(ϵ),

H = 1
2m p2

x + 1
2 m ω2x2



we proceed in analogy to Sect. 6. 4: instead of px and x with

(7.73)

we use the operators

(7.74)

a† = √
mω

2ħ
x − i

1

√2ħmω
px,

for which follows from (7.73)

(7.75)

The inverse of (7.74) gives

(7.76)

The Hamiltonian H can be expressed in the operators a, a† and achieves the simple
form:

(7.77)

We now determine the spectrum of the operator

(7.78)

according to Sect. 6. 4 by computing the commutation relations

(7.79)

(7.80)

H ψλ = Eλψλ

[px,x] = ħ
i

a = √ mω
2ħ x + i 1

√2ħmω
px;

[a, a†] = 1.

1
2 (a + a†)√ 2ħ

mω
= x, − i

2 (a − a†)√2ħmω = px.

H =
p2
x

2m + m
2 ω2x2 = ħω(a†a + 1

2 ).

N = a†a

[N , a] = −a

[N , a†] = a†



that follow directly from (7.75) and the de�inition (7.78).
We now assume that we have found a normalized eigenfunction ψλ with eigenvalue λ

of the operator N (note [H,N ] = 0) :

(7.81)

Then by applying a (a†) to ψλ we can decrease (increase) the eigenvalue by one:

(7.82)

For the norm of (aψλ) follows:

(7.83)

if one exploits the hermiticity of x and px and the de�inition (7.74). In analogy we get:

(7.84)

with

(7.85)

Since the norm of aψλ cannot be negative, the eigenvalue must be λ ≥ 0 due to (7.83). By
applying a† to ψλ repeatedly we get normalizable eigenfunctions of N with the
eigenvalues λ + 1, λ + 2, λ + 3, …; there is no upper limit to the spectrum. Downwards,
however, there is a limit: a μ times application of a to ψλ results in

(7.86)

Since the left side in (7.86) cannot become negative, λ must be an integer (non-negative)
number, such that the sequence

(7.87)

after μ = λ steps stops,

(7.88)

Thus the operator N has the eigenvalues

(7.89)

such that we get an equidistant spectrum for H that is unlimited upwards:

(7.90)

N ψλ = λ ψλ with (ψλ,ψλ) = 1.

N(aψλ) = a(N − 1)ψλ = (λ − 1)(aψλ).

(aψλ, aψλ) = (ψλ, a†aψλ) = λ,

N(a†ψλ) = (λ + 1)(a†ψλ)

(a†ψλ, a†ψλ) = λ + 1.

(aμψλ, aμψλ) = λ(λ − 1)(λ − 2) ⋯ (λ − μ + 1).

ψλ, aψλ, a2ψλ, …

aλ+1ψλ = 0; λ = 0, 1, 2, 3, …

n = 0, 1, 2, 3, … ,

En = ħω(n + 1
2 ); n = 0, 1, 2, 3, …



The operator N has the property of counting the excitations of energy ħω, which a
certain oscillator state ψn contains. The state of lowest energy—the ground	state—has
the energy

(7.91)

(zero point energy) and can be characterized by

(7.92)

The occurrence of the zero point energy (7.91) is typical for quantum theory and a
direct consequence of the non-commutability of x and px and thus the position-
momentum uncertainty: classically the oscillator may have the momentum (px)kl. = 0 at 
xkl. = 0 (rest position).

Starting from the ground state ψ0, whose existence we will show in Sect. 7.4.2 in the
form of a spatial representation, the excited states can be constructed as

(7.93)

The operator a† therefore generates excitations of the oscillator energy ħω—it is
therefore denoted as creation	operator—. Conversely, the annihilation	operator a leads
from a state with the excitation energy nħω to an energetically lower state with exitation
energy (n − 1)ħω.

If ψ0 is normalized,

(7.94)

we get by iteration of (7.85)

(7.95)

Thus the normalized eigenfunctions are:

(7.96)

In this normalization we get (except for an insigni�icant phase factor):

(7.97)

E0 = 1
2 ħω

aψ0 = 0.

a†ψ0, a†2ψ0, … , a†nψ0, …

(ψ0,ψ0) = 1,

(a†nψ0, a†nψ0) = 1 ⋅ 2 ⋅ 3 ⋯ = n!;

ψn = 1
√n!

(a†)
n
ψ0.

a†ψn = √n + 1ψn+1;aψn = √nψn−1.



7.4.2	 Spatial	Representation
We �irst determine the ground state wave function ψ0(x), which is de�ined by (7.92), i.e.

(7.98)

With the dimensionless coordinate

(7.99)

we get from (7.98)

(7.100)

with the solution

(7.101)

For the normalization

(7.102)

the constant c0 (with ∫ exp (−ξ2)dξ = √π) amounts to:

(7.103)

To determine the eigenfunctions of the excited states we express a† in terms of ξ and d/dξ
:

(7.104)

and obtain (taking into account (7.96)):

(7.105)

Then

(7.106)

where even and odd polynomials alternate, i.e. ψn has positive parity for n even and
negative parity for n odd (see Fig. 7.11). The lowest order Hermite	polynomials read:

(7.107)

aψ0 = {√ mω
2ħ x +√ ħ

2mω
d
dx
}ψ0 = 0.

ξ = √ mω
ħ x

{ d
dξ

+ ξ}ψ0(ξ) = 0

ψ0(ξ) = c0 exp (− 1
2 ξ2).

∫ ∞
−∞ |ψ0|2

dx = 1,

c2
0 = √ mω

πħ .

a† = 1
√2
(ξ − d

dξ
)

ψn = c0

√n!2n
((ξ − d

dξ
)
n

exp (− ξ2

2
)).

ψn ∼ ψ0 ⋅ (polynomial of degree n),



H1(x) = 2x

Fig.	7.11 Illustration of the oscillator wave functions and the associated energy levels

H2(x) = 4x2 − 2

H3(x) = 8x3 − 12x

H4(x) = 16x4 − 48x2 + 12

and follow the recursion relation:

(7.108)

The orthogonality of the wavefunctions follows from the hermiticity of H

(7.109)

for the proof see Sect. 4. 3.
Addition: The functions (7.105) also form a complete basis in the space of square-

integrable functions (which we do not want to prove explicitly).

7.4.3	 Three-Dimensional	Case
We consider the Hamilton operator

(7.110)

H0(x) = 1

Hn+1(x) = 2xHn(x) − 2nHn−1(x).

(ψn,ψm) = δnm;

H = 1
2m

(p2
x + p2

y + p2
z) + m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2),



where in general ωx ≠ ωy ≠ ωz. Since H obviously decouples in the coordinates x, y, z,

(7.111)

we can solve the eigenvalue problem of H by the separation	Ansatz

(7.112)

and employ the solutions for the one-dimensional case. For the energy eigenvalues of
H we get:

(7.113)

with ni = 0, 1, 2, ...
The separation process above can also be carried out in the case that the potential

energy has a positive-de�inite, quadratic form in x, y, z, also containing mixed terms in xy.
By an axis transformation one can then always achieve the form (7.110) in the new
coordinates.

As long as ωx ≠ ωy ≠ ωz and the particle under consideration has no internal degree
of freedom (like e.g. spin), the spectrum of H from (7.110) is not degenerate, if one
disregards so-called random degeneracies, that may occur for certain states (i.e. certain
values n1, n2, n3) depending on the ratio ωx : ωy : ωz. In contrast, the three-dimensional

7.4.4	 Isotropic	Oscillator
has a degenerate spectrum. With

(7.114)

(7.113) becomes

(7.115)

with

(7.116)

The same energy En can obviously be achieved in different ways. One �inds for the
degree of degeneracy

(7.117)

H = Hx + Hy + Hz,

ψ(r) = ψ1(x)ψ2(y)ψ3(z)

En1n2n3 = ħ{ωx(n1 + 1
2 ) + ωy(n2 + 1

2 ) + ωz(n3 + 1
2 )}

ωx = ωy = ωz ≡ ω

En1n2n3 = ħω(n + 3
2 ) = En

n = n1 + n2 + n3.

gn = 1
2 (n + 1)(n + 2),



since by choosing one of the numbers from 0 to n for n1, then n2 runs between 0 and 
(n − n1). This gives (n − n1 + 1) possible realizations of (7.116). This leads to

(7.118)

Instead of classifying the isotropic oscillator according to the quantum numbers n1, n2, n3

w.r.t. cartesian coordinates, we can also use the angular momentum quantum numbers
l, m, since for

(7.119)

the commutation rules

(7.120)

hold. We can thus choose the eigenfunctions of H in such a way that they – at the same
time – are eigenfunctions of l2 and lz. To this aim (for �ixed En) we just have to form
suitable linear combinations of degenerate functions in the cartesian basis (7.112). We
then get instead of ψn1n2n3(x, y, z) eigenfunctions ψνlm(r,ϑ,φ), which are determined by
the quantum numbers l, m of angular momentum as well as the one resulting from the
degree of freedom r which is denoted by the radial	quantum	number ν.

7.4.5	 Good	Quantum	Numbers
The quantum numbers n1, n2, n3 completely characterize spinless particles or ν, l, m the
eigenstates of the isotropic, harmonic oscillator in the respective representation. Such
quantum numbers, which belong to conserved quantities of the system and commute, are
denoted by good	quantum	numbers. If the particle moving in the oscillator potential has
spin 1/2, then e.g. the z component of the spin is also a good quantum number, since
trivially

(7.121)

as well as

(7.122)

The degree of degeneracy gn from (7.117) then has to be multiplied by a factor of 2
corresponding to the 2 possible eigenvalues of Sz.

In the following we will make extensive use of the concept of good	quantum
numbers by �irst �inding the commuting conserved quantities for each problem. This
already leads to a partial classi�ication of the intrinsic states of the system under
consideration.

7.5	 Spatially	Constant	Magnetic	Field

gn = ∑n
n1=0(n − n1 + 1) = 1

2
(n + 1)(n + 2).

H = 1
2m p2 + m

2 ω2r2

[H, li] = 0; i = x, y, z

[H,Sz] = 0

[li,Sz] = 0.



For a spatially constant magnetic �ield B the Pauli equation (with Φ ≡ 0)

(7.123)

can be rewritten with the separation Ansatz

(7.124)

with

(7.125)

as

(7.126)

and

(7.127)

with an arbitrary constant γ. For the proof one multiplies (7.126) with χ and (7.127)
with ψ and adds the resulting equations. The term with γχψ then is eliminated by the
addition and one gets (7.123).

The constant γ has no physical meaning and without loosing generality can be set to
zero, since with the Ansatz

(7.128)

(7.129)

the overall wave function

(7.130)

does not change and γ no longer appears in the differential equations for ~
ψ, ~χ. In the

following we will thus always use γ = 0.
We write the vector potential A in the form

(7.131)

iħ ∂
∂t Ψ = 1

2m (p − e
c

A)
2
Ψ − e

mc
S ⋅ B Ψ

Ψ(r;t) = ψ(r;t)χ(t)

χ(t) = a(t) ( ) + b(t) ( )1

0

0

1

iħ ∂
∂t ψ = 1

2m (p − e
c

A)
2
ψ + γψ

iħ ∂
∂t χ(t) = − eħ

2mc
σ ⋅ B χ(t) − γχ(t)

ψ =exp ( i
ħ γt)

~
ψ,

χ =exp (− i
ħ γt)

~χ

Ψ(r;t) = ψ χ =
~
ψ~χ



where B can still be time-dependent:

(7.132)

The Ansatz (7.131) leads to the gauge:

(7.133)

In the following we will examine two cases that are of practical importance:
(i) the (temporally and spatially) constant magnetic �ield B,
(ii) the time-periodic �ield B.
According to (7.126) and (7.127) we can calculate the spatial motion (i.e. ψ(r;t)) and

the time evolution of the spin (via χ(r;t)) separately.

7.5.1	 Stationary	States	in	a	Constant	Magnetic	Field
We �ix the coordinate origin such that

(7.134)

This choice is of advantage for computational reasons, although it does not account for the
axial symmetry of the problem given by the form of B,

(7.135)

With (7.134) or (7.135) equation (7.127) gets the form:

(7.136)

By the Ansatz for stationary solutions

(7.137)

with

(7.138)

A = 1
2

(B × r),

B = B(t).

→
∇ ⋅ A = 0.

A = .
⎛⎜⎝−By

0

0

⎞⎟⎠B =
→
∇ × A = .

⎛⎜⎝ 0

0

B

⎞⎟⎠iħ ∂
∂t χ = − eħ

2mc
σzBχ.

χ =exp (− i
ħ ϵst)χ0

χ0 = a0( )+ b0 ( )1

0

0

1



and normalization

(7.139)

(7.136) turns to the eigenvalue problem

(7.140)

The solutions are known from chapter 6. 5:
(i) a0 = 1; b0 = 0 ⇒

(7.141)

(ii) a0 = 0; b0 = 1 ⇒

(7.142)

The stationary solutions of (7.126) follow from

(7.143)

with

(7.144)

The Hamiltonian of orbital motion (righthand side of (7.143)) commutes with px and 
pz, since it only explicitly contains the coordinate y. The eigenvalues of px and pz hence
are good quantum numbers, according to which we can �ind the solutions (7.143). These,
as well as the eigenfunctions, are known from section 6. 3. 3. For φ(r) we can employ the
Ansatz:

(7.145)

We then get from (7.143) an equation in the single variable (y) : 

(7.146)

|a0|2 + |b0|2 = 1

ϵsχ0 = − eħ
2mc

Bσzχ0.

χ0 = ( )with ϵs = − eB ħ
2 mc

1

0

χ0 = ( )with ϵs = + eB ħ
2 mc .

0

1

ϵφ = 1
2m
{(px + e

c
By)2

+ p2
y + p2

z}φ,

ψ(r;t) =exp (− i
ħ ϵt)φ(r).

φ(r) =exp (i(kxx + kzz)) ~φ(y).

[ p2
y

2m + m
2 ω2(y + y0)2] ~φ = [ϵ − ħ2 k2

z

2m ] ~φ



with the abbreviations

(7.147)

Apart from the displacement y0, which is insigni�icant for the determination of the
eigenvalues, (7.146) represents the eigenvalue problem of a linear harmonic oscillator
with the frequency ω = eB

mc
 (Larmor	frequency). We can immediately specify the

eigenvalues (Landau	levels):

(7.148)

they are ∞—fold degenerate because the eigenfunctions ~φ belong to the same
eigenvalue (7.148) regardless of the value y0.

To interpret the solutions of (7.143) we recall the solution of the classical problem: a
charged particle in the constant B �ield moves on spirals whose axis—for the choice
(7.135)—points in the z direction and whose projections onto the x − y plane are circles.
The classical particle moves straight in z-direction; quantum mechanically this
corresponds to the plane wave exp (ikzz). The circular orbits in the x − y plane we can
decompose into 2 harmonic oscillations in x− and y− direction with the same frequency 
ω = eB

mc
 and a phase shift of π/2.

The quantum mechanical solution (7.145) corresponds to the y coordinate of the
classical motion: we have bound states in the form of harmonic vibrations. With regards
to the x coordinate, the solution (7.145) excludes a spatial localization (contrary to the
classical case) because in (7.145) the momentum px is sharp and therefore the coordinate
x completely undetermined due to the uncertainty relation. The solution of (7.143)
corresponds to, for a �ixed value of n (�ixed energy) and �ixed displacement y0, a family of
classical orbits with a �ixed radius and centers y = y0 (see Fig. 7.12).

Fig.	7.12 Illustration of the solution to (7.145)

If we want to achieve a symmetric treatment of the problem with respect to x, y, we
have to use (instead of (7.134))

(7.149)

ω = eB
mc
;y0 = ħkxc

eB
.

ϵn,kz = ħ2k2
z

2m
+ eħ

mc
B(n + 1

2
), n = 0, 1, 2, … ;

A = 1
2 ,
⎛⎜⎝−By

Bx

0

⎞⎟⎠



which also leads to (7.135) for B. The Hamiltonian for the path motion then is:

(7.150)

The Hamilton operator therefore consists of a 2-dim. isotropic oscillator in the x − y
plane, the kinetic energy in the z direction and the energy of the orbital motion of the
magnetic moment in the B �ield.

Instead of looking for the stationary solutions (7.126) and (7.127), we can also directly
transfer (7.123) with the Ansatz

(7.151)

to the time-independent Pauli equation

(7.152)

We know the solutions after the investigations above:

(7.153)

with the eigenvalues:

(7.154)

with ϵ from (7.148) and ϵs from (7.141) or (7.142).

7.5.2	 Spin	Precession
After having determined the stationary solutions of (7.123) in Sect. 7.5.1 we now turn to
the time evolution of the spin. Let B be constant and chosen according to (7.135). We now
use Ehrenfest’s theorem, which for particles with spin 1/2 can be proven in the same way
as for particles without spin in Sect. 5. 3. If Ψ(r;t) is a solution of the Pauli equation, then
for the temporal change in the expectation value of S in the state Ψ we get:

(7.155)

For the commutator [H, S] the following holds (for any magnetic �ield B)

H = 1
2m

(p2
x + p2

y) + 1
2
m( eB

2mc
)

2
(x2 + y2) + p2

z

2m
+ eB

2mc
lz.

Ψ(r;t) =exp (− i
ħ Et)Φ(r)

{ 1
2m

(p − e
c

A)2
− e

mc
S ⋅ B}Φ = EΦ.

Φ(r) = φ(r)χ0

E = ϵ + ϵs,

d
dt

< S >= i
ħ < [H, S] > + < ∂

∂t S >= i
ħ < [H, S] >.



(7.156)

this expression is simpli�ied by specifying B according to (7.135),

(7.157)

With (7.157) we immediately get

(7.158)

thus

(7.159)

For the x and y components we have (6. 206) and [Si,Sj] = iħϵijkSk:

(7.160)

(7.161)

A further differentiation with respect to t gives the decoupled equations:

(7.162)

(7.163)

with ω from (7.147). With the initial condition

(7.164)

the solution to (7.162), (7.163) is:

(7.165)

consistent with (7.160) and (7.161). The expectation value of the spin therefore leads
to a precession around the direction of B with frequency ω; in the general case < Sz > =
const. ≠ 0.

[H, S] = − e
mc

[S ⋅ B, S];

[H, S] = − eB
mc

[Sz, S].

d
dt

< Sz >= 0,

< Sz >= const.

d
dt

< Sx >= eB
mc

< Sy >

d
dt

< Sy >= − eB
mc

< Sx >.

d2

dt2 < Sx >= −ω2 < Sx >

d2

dt2 < Sy >= −ω2 < Sy >

< Sx >t=0= 1
2 ; < Sy >t=0=< Sz >t=0= 0

< Sx >= 1
2 cos (ωt); < Sy >= − 1

2 sin (ωt); < Sz >= 0



An important application of spin	precession is the measurement of the magnetic
moment of elementary particles, e.g. electrons, protons, etc.

7.5.3	 Spin	Resonance
As a second example for the time evolution of spin we consider a spatially constant,
however, oscillating magnetic �ield of the form:

(7.166)

To solve equation (7.136) we note that the magnetic �ield (7.166) for an observer in a
moving coordinate system, which rotates with the frequency ωa around the z axis, appears
constant in time. According to Sect. 6. 4. 3 the transition to a rotated coordinate system
(moving by the angle φ = ωat around the z axis) is equivalent to a transformation of the
wave function; this was used for the case of spinors speci�ied in Sect. 6. 5. 4. The following
holds for the spin component of the wave function Ψ(r;t) for a rotation around the z axis
by the angle φ = ωat :

(7.167)

for the time evolution of χ′(t) we expect—according to the considerations above—a
differential equation which is represented by a B �ield that is constant in time.

In fact, the original differential equation

(7.168)

is transferred with the Ansatz

(7.169)

to

(7.170)

Proof: With the abbreviation (for the 2 × 2 matrix)

(7.171)

the left side of (7.168) gives

B(r;t) = .
⎛⎜⎝ B1 cos (ωat)

−B1 sin (ωat)

B0

⎞⎟⎠χ′(t) =exp (− i
ħ ωat Sz)χ(t) = ∑∞

n=0
1
n!
(− i

ħ ωat Sz)
n

χ(t);

iħ ∂
∂t χ = − eħ

2mc

→
σ ⋅ B χ

χ(t) =exp (+ i
2 ωat σz)χ′(t)

iħ ∂
∂t χ′ = ħ

2 {σz[ωa − ω0] + σxω1}χ′.

U(t) =exp ( i
2
ωat σz) = ∑∞

n=0
1
n!
( i

2
ωat σz)

n

{



(7.172)

To transform the right side of (7.168) we write

(7.173)

where the operator U −1(t) is the inverse to U(t) and has the explicit form

(7.174)

To prove (7.173) we write

(7.175)

(cf. (6. 220)) and note that

(7.176)

=cos2 ( ωat

2
)+ sin2 ( ωat

2
) = 1.

We now compute

(7.177)

and using (cf. (6. 207))

(7.178)

with

(7.179)

(cf. (6. 205), (6. 207)) we obtain:

(7.180)

= (cos φ − i σz sin φ)(σx cos φ − σy sin φ)B1

= B1{σx(cos2 φ+ sin2 φ) − σy(cos φ sin φ− sin φ cos φ)} = B1σx.

With the abbreviations
(7.181)

iħ ∂
∂t

{U(t)χ′(t)} = U(t){iħ ∂
∂t

χ′ − ħ
2
ωaσzχ

′}.

→
σ ⋅ B U(t) = U(t)U −1(t)

→
σ ⋅ BÛ(t),

U −1(t) =exp (− i
2 ωat σz).

U(t) =cos ( 1
2 ωat) + i sin ( 1

2 ωat)σz,

{cos ( ωat
2 ) + i sin ( ωat

2 )σz}{cos ( ωat
2 ) − i sin ( ωat

2 )σz}

(σxBx + σyBy)U(t) = U −1(t)(σxBx + σyBy)

σxσz = −σzσx;

σxσy = iσz (cyclic)

U −1(t){σxBx + σyBy}U(t) = (cos φ

2 − i σz sin φ

2 )
2
(σxBx + σyBy)

ω0 = eB0

mc
;ω1 = eB1

mc



we then obtain Eq. (7.170).
For the solution of (7.170), which corresponds to the case of a time-independent B-

�ield as in (7.136), we introduce the 2 × 2 matrix

(7.182)

with the abbreviation

(7.183)

The factor Ω−1 in (7.182) leads to the fact that—similar to σx, σz—also

(7.184)

Equation (7.170) then achieves the form

(7.185)

and has the solution

(7.186)

with

(7.187)

The full solution then reads

(7.188)

with

(7.189)

We now want to calculate the expectation value of σz within the state χ(t) as a function of
time t. As initial condition we choose

(7.190)

For the calculation of
(7.191)

~σ = σz
(ωa−ω0)

Ω + σx
ω1

Ω

Ω = √(ωa − ω0)2 + ω2
1.

~σ2 = 12×2 = E2.

iħ ∂
∂t χ′ = ħ

2 Ω~σχ′

χ′(t) =exp {− i
2
ωt~σ}χ′

0

χ′
0 = χ′(t = 0).

χ(t) =exp { i
2
ωat σz} exp {− i

2
Ωt ~σ}χ0

χ0 = χ(t = 0).

χ0 = χu, withσzχ
u = +χu (spin − up).

< σz >= (χ(t),σzχ(t))



we expand χ(t) in the basis of the eigenstates of σz

(7.192)

and obtain—in line with the general considerations about the expectation value of
observables (cf. Sect. 6. 1)—(using χ0 to be normalized to 1)

(7.193)

with

(7.194)

With (7.188) and (7.190) we obtain from (7.194):

(7.195)

= cos ( Ωt

2
)− i

(ωa − ω0)

Ω
sin ( Ωt

2
)

2

=cos2 ( Ωt

2
)+ [

(ωa − ω0)

Ω
]

2

sin2 ( Ωt

2
)

using

(7.196)

In analogy we obtain

(7.197)

= (χd, [cos ( Ωt

2
)− i~σ sin ( Ωt

2
)]χu)

2

= ( ω1

Ω
)

2
sin2 ( Ωt

2
),

since

(7.198)

and

(7.199)

Together we obtain:

(7.200)

χ(t) = cu(t)χu + cd(t)χd

< σz >= E2|cu(t)|2 − E2|cd(t)|2

cu(t) = (χu,χ(t));cd(t) = (χd,χ(t)).

|cu(t)|2 = (χu, exp (− i
2 Ωt~σ)χ0)

2
= (χu,{cos ( Ωt

2 ) − i~σ sin ( Ωt
2 )}χu)

2∣ ∣ ∣ ∣∣ ∣(χu,σxχ
u) = 0.

|cd(t)|2 = |(χd, exp {− i
2 ωt~σ}χ0)|

2∣ ∣(χd,σzχ
u) = 0

(χd,σxχ
u) = 1.

< σz >=cos2 ( Ωt
2 ) +

[(ωa−ω0)
2
−ω2

1]
Ω2 sin2 ( Ωt

2 )



The expectation value < σz > thus oscillates between its maximum value 1 (due to
(7.190)) and its minimum value

(7.201)

in particular we get for ωa = ω0 :

(7.202)

The minimum value (7.201) shows a resonant behavior as a function of ω0 (i.e. B0) for 
ωa = ω0, where the spin is �lipping periodically. In �lipping the spin it absorbs the energy
from the magnetic �ield (see (7.141) and (7.142))

(7.203)

thus by measuring the energy absorption as a function of B0 a spin	resonance can be
found experimentally.

7.6	 Central	Forces
7.6.1	 The	General	Radial	Equation
In this section we want to investigate the stationary states of a particle in a central
potential (r = |r|)

(7.204)

The Hamilton operator

(7.205)

does not contain any spin-dependent terms and therefore we can forget about the spin of
the particle when solving the eigenvalue problem

(7.206)

But in the end it should be taken into account that each eigenvalue E is at least 2-fold
degenerate due to the spin.

Since

(7.207)

as well as

< σz >min=
[(ωa−ω0)2−ω2

1]

[(ωa−ω0)2+ω2
1]
;

< σz >min= −1

Δϵs = eħB0

mc
= ħω0;

V = V (r).

H = T + V

Hψ = Eψ.

[T , li] = 0, i = x, y, z



(7.208)

we get

(7.209)

Thus H, l2 and lz have a common system of eigenfunctions and the quantum numbers
l, m of the angular momentum are good quantum numbers. The Hamiltonian H,
furthermore, is still invariant with respect to the parity	operation

(7.210)

such that the parity is also a good quantum number. However, the parity is automatically
determined for states with good orbital angular momentum l because the eigenfunctions 
Ylm(ϑ,φ) of l2, lz (cf. (6. 179)) with respect to the parity operation

(7.211)

behave like

(7.212)

This results from

(7.213)

(7.214)

and

(7.215)

such that

(7.216)

Now using the above symmetry considerations for the solutions from (7.206) we start
with the product Ansatz:

(7.217)

[V (r), li] = 0,

[H, li] = 0.

r → r′ = −r,

r → r; ϑ → π − ϑ; φ → φ + π

Ylm(ϑ,φ) → Ylm(π − ϑ,φ + π) = (−1)lYlm(ϑ,φ).

exp (imφ) →exp (im(φ + π)) = (−1)m exp (imφ),

sin ϑ →sin (π − ϑ) =sin ϑ

cos ϑ →cos (π − ϑ) = − cos ϑ,

dl−m

d(cosϑ)l−m → (−1)l−m dl−m

d(cosϑ)l−m .

ψ(r) = φlm(r)Ylm(ϑ,φ).



This reduces the Schrödinger equation (7.206) to an ordinary differential equation in
the variable r for the determination of φlm(r). In order to obtain the explicit form of this
radial equation we have to rewrite the kinetic energy operator in spherical coordinates 
(r,ϑ,φ)

(7.218)

To this aim we can either use the operator

(7.219)

and convert to (7.218) or use the classic expression for T in spherical coordinates and
refer to the procedure described in chapter 5. 2, which speci�ies the rules for the transition
to quantum theory. We use the latter method and start from

(7.220)

We can directly translate to quantum theory

(7.221)

however, to translate the radial component

(7.222)

we have to consider Eq. (5. 27) and obtain for the operator pr in quantum theory

(7.223)

which can be reduced to

(7.224)

using

(7.225)

=
x

r

∂

∂x
+

y

r

∂

∂y
+

z

r

∂

∂z
=

r

r
⋅ ∇.

Together we get for the operator of the kinetic energy:

x = r sin ϑ cos φ; y = r sin ϑ sin φ; z = r cos ϑ.

T = − ħ2

2m Δ = − ħ2

2m (
∂ 2

∂x2 + ∂ 2

∂y2 + ∂ 2

∂z2 )

Tkl. = 1
2m

p2
r kl. +

l2
kl.

2mr2
kl.

.

rkl. → r; lkl. → l̂;

pr kl. = 1
rkl.

(rkl. ⋅ pkl.)

pr = 1
2
{ r

r
⋅ p + p ⋅ r

r
},

pr = ħ
i
( r
r

⋅ ∇ + 1
r
) = ħ

i
( ∂

∂r
+ 1

r
)

∂
∂r = ∂x

∂r
∂

∂x + ∂y
∂r

∂
∂y + ∂z

∂r
∂
∂z



(7.226)

since

(7.227)

This gives the radial	equation to determine φlm(r):

(7.228)

with

(7.229)

The quantum number m no longer appears in the radial equation and therefore is
omitted for the radial function φlm(r). The independence of the radial equation from m is
based on the fact that the Hamilton operator does not contain a special spatial direction.

We can make the following statements (in the sense of necessary conditions)—
without having to specify the form of V(r)—for the behavior of φl(r) at r = 0 and for 
r → ∞:

(i) The normalization requires that

(7.230)

such that φl(r) must drop faster than 1/r for r → ∞, i.e.

(7.231)

For r → 0, r φl(r) must remain �inite.
(ii) The hermiticity of pr requires

(7.232)

Since according to (7.231) r φl(r) for r → ∞ vanishes, we have to require (7.232)

T = − ħ2

2m
{ ∂ 2

∂r2 + 2
r

∂
∂r

− l̂2

r2 },

p2
r = −ħ2( ∂ 2

∂r2 + 2
r

∂
∂r ).

{ ∂ 2

∂r2 + 2
r

∂
∂r

− l(l+1)
r2 + ϵ − U(r)}φl(r) = 0

ϵ = 2m
ħ2 E;U(r) = 2m

ħ2 V (r).

∫ ∞
0 r2dr |φl(r)|2 < ∞,

r φl(r) → 0 for r → ∞.

r2|φl(r)|2|
∞
0 = 0.



(7.233)

The problem is more simpli�ied when—instead of φl(r)—using

(7.234)

since due to

(7.235)

=
2

r3
χl −

1

r2

∂

∂r
χl +

1

r

∂ 2

∂r2
χl −

2

r3
χl −

1

r2

∂

∂r
χl +

2

r2

∂

∂r
χl =

1

r

∂ 2

∂r2
χl

the radial Eq. (7.228) simpli�ies to

(7.236)

and (7.230) translates to

(7.237)

From (7.233) we then get

(7.238)

and from (7.231)

(7.239)

Further statements about the solutions of the radial Eq. (7.228) or (7.236) require the
knowledge about the structure of V(r). Some general statements, which are based on the
behavior of V for r → 0 and r → ∞, are stated below.

(i) If

(7.240)

r φl(r) → 0 for r → 0.

χl(r) = r φl(r),

( ∂ 2

∂r2 + 2
r

∂
∂r
) 1

r
χl = ∂

∂r
(− 1

r2 χl + 1
r

∂
∂r
χl) + 2

r
(− 1

r2 χl + 1
r

∂
∂r
χl)

{ ∂ 2

∂r2 − l(l+1)
r2 + ϵ − U(r)}χl(r) = 0,

∫ ∞
0

dr |χl(r)|2 < ∞.

χl(r) → 0 for r → 0

χl(r) → 0 for r → ∞.

limr→0 r
2U(r) = 0,



the behavior of χl(r) at the origin is determined by the differential equation

(7.241)

Equation (7.241) has the solutions

(7.242)

with

(7.243)

thus

(7.244)

Due to (7.238) only the case s = l + 1 is possible for χl(r), thus:

(7.245)

(ii) If U(r) is bounded from below,

(7.246)

or if U(r) has a weaker singularity than −1/r2 for r → 0, the energy spectrum is limited
from below. This implies that the particle does not drop into the center r = 0 if the
conditions above are ful�illed. In the case (7.246) the claim is immediately clear, since the
expectation value of the kinetic energy is non-negative; the second case is only listed here
without proof.

(iii) If

(7.247)

then there is a continuous spectrum for ϵ > 0 and the solutions χl behave like the
solutions of the free particle (see Sect. 7.6.4); for ϵ < 0 there is a discrete spectrum and
the associated eigenfunctions behave asymptotically like

(7.248)

These statements are also cited without proof. The physically important case

(7.249)

is brie�ly outlined in Sect. 7.6.4 for positive energies.

7.6.2	 The	Isotropic	Oscillator

{r2 ∂ 2

∂r2 − l(l + 1)}~χl(r) = 0.

~χl(r) ∼ rs

s(s − 1) = l(l + 1),

s = −l or s = l + 1.

χl(r) ∼ rl+1 for r → 0.

U(r) ≥ U0 for all r,

limr→∞ r U(r) → 0,

χl(r)r→∞ ∼exp (−κr);κ > 0.

U(r) ∼ 1
r



The case

(7.250)

we have covered already in Sect. 7.6.2, but in the cartesian representation and only
mentioned the transition to the spherical representation (angular	momentum
representation). Thus some details have to be added and speci�ied here.

For �ixed energy

(7.251)

l can take a maximum value of n, since the cartesian solution ψn1n2n3  is a polynomial in
x, y, z of order n (multiplied by a spherical Gauss function) and the angular momentum
eigenfunctions are polynomials in cos ϑ, sin ϑ of order l (apart from the φ -dependence),
since x, y, z by (7.218) are linked to cos ϑ, sin ϑ.

Since the eigenfunctions ψn1n2n3
 for even (odd) values of n have positive (negative)

parity, for even (odd) n according to (7.212), only even (odd) l values may occur. The
connection between n and l therefore must be

(7.252)

with 2ν ≤ n. Some examples are displayed in the table, where the degeneracy gn is given
by (7.117):

n l m ν gn

0 0 0 0 1

1 1 0,± 1 0 3

2 0 0 1 6
	 2 0,± 1,± 2 0  

We now can also write the energy eigenvalues within the framework of the spherical
representation as

(7.253)

7.6.3	 The	Free	Particle
For a free particle,

(7.254)

we have

(7.255)

as well as

V (r) = const. r2

En = ħω(n + 3
2 );n = n1 + n2 + n3

n = 2ν + l;ν = 0, 1, 2, … ,

En = ħω(2ν + l + 3
2 );n = 2ν + l.

V = 0 ⇒ H = T ,

[H, p] = 0



(7.256)

Thus we can—depending on the problem—classify an ensemble of free particles either
according to energy and momentum—the eigenfunctions then are plane waves (see Sect.
6. 3. 3)—or according to energy and angular momentum. We want to examine the latter
representation here in more detail because it is of special interest with regards to
scattering problems (Chap. 8).

In this case we are looking for solutions of the radial equation

(7.257)

Since for free particles ϵ ≥ 0, we can assume

(7.258)

We then (for convenience) rewrite (7.257) in the variable

(7.259)

the result is:

(7.260)

For l = 0 we �ind the basic solutions

(7.261)

or real:

(7.262)

For l > 0 the solutions can be constructed by recursion from (7.262) or (7.261) by
introducing the following operators:

(7.263)

Then we can rewrite (7.260) as
(7.264)

[H, l] = 0.

{ ∂ 2

∂r2 − l(l+1)
r2 + ϵ}χl(r) = 0.

ϵ = k2, k real.

ρ = kr;

{ d2

dρ2 − l(l+1)
ρ2 + 1}χl(ρ) = 0.

χ0(ρ) =exp (±iρ)

χ0(ρ) =sin (ρ); cos (ρ).

d+
l

≡ d
dρ

− l
ρ
;d−

l
≡ d

dρ
+ l

ρ
.

{d+
l d

−
l + 1}χl(ρ) = [( ∂

∂ρ − l
ρ
)( ∂

∂ρ + l
ρ
)+ 1]χl(ρ) =



[( ∂ 2

∂ρ2
−

l

ρ

∂

∂ρ
−

l

ρ2
+

l

ρ

∂

∂ρ
−

l2

ρ2
)+ 1]χl(ρ) = [ ∂ 2

∂ρ2
−

l(l + 1)

ρ2
+ 1]χl(ρ) = 0

or equivalently

(7.265)

which is easily proven. Operating with d+
l+1 from the left of (7.265) we get

(7.266)

The function (d+
l+1χl) therefore is a solution of Eq. (7.260) or (7.264) for angular

momentum l + 1, i.e.

(7.267)

Since we already know χ0, we can recursively construct the solutions χl for l > 0 with
(7.267).

A compact relationship between χl and χ0 we get by noting

(7.268)

Then after recursion (7.267) reads

(7.269)

or

(7.270)

Depending on the choice of χ0 we get the following solutions:

χ0(ρ) (−1)l/ρ χl(ρ) label

sin ρ Spherical Bessel functions jl(ρ)

cos ρ Spherical Neumann functions nl(ρ)

exp (±iρ) spherical Hankel functions h±
l (ρ)

{d−
l+1d

+
l+1 + 1}χl(ρ) = 0,

{d+
l+1d

−
l+1 + 1}(d+

l+1χl(ρ)) = 0.

χl+1 ∼ d+
l+1χl.

d+
l ≡ ρl d

dρ
ρ−l = ρl(ρ−l d

dρ
− l

ρl+1 ) = d
dρ

− l
ρ

.

χl ∼ ρl d
dρ

ρ−l ⋯ ⋯ ρ d
dρ

ρ−1χ0

1
ρ
χl(ρ) ∼ ρl( 1

ρ
d
dρ

)
l
( 1
ρ
χ0(ρ)).



Apart from the oscillating parts the solutions to the angular momentum l contain
powers in 1/ρ up to the maximum power 1/ρl+1. Due to the condition (7.233) only
spherical Bessel functions jl(ρ) are solutions for the free particle, since only these are
regular at the origin r = 0, where they are (cf. (7.245)) ∼ ρl. The eigenfunctions of the
free particle in the angular	momentum	representation are (except for possible
normalization factors)

(7.271)

they are orthogonal with respect to the quantum numbers k, l, m, but—like plane
waves—not normalizable, since

(7.272)

With regards to the following chapter the asymptotic behavior of the solutions of
(7.257) are of interest for scattering problems. For ρ → ∞ we only need to take into
account the slowest decreasing term, i.e. the powers ρ0 in χl(ρ). If we start e.g. from 
h±

0 (ρ), the only interesting term in h±
1 (ρ) (arising from the differentiation of (7.270) is 

∼ ∓i exp (±iρ) =exp (±i[ρ − π/2]); in general:

(7.273)

Accordingly one �inds:

(7.274)

and

(7.275)

7.6.4	 Coulomb	Potential	for	Positive	Energies
Instead of (7.257) we now consider the differential equation

(7.276)

ψklm(r) = jl(kr)Ylm(ϑ,φ);

∫ ∞
0 j2

l
(kr)r2dr → ∞.

h±
l

(ρ)ρ→∞ ∼ 1
ρ

(∓i)l exp (±iρ) = 1
ρ

exp (±i[ρ − lπ
2 ]).

jl(ρ)ρ→∞ ∼ 1
ρ

sin (ρ − lπ
2 )

nl(ρ)ρ→∞ ∼ 1
ρ

cos (ρ − lπ
2 ).

{ ∂ 2

∂r2 − l(l+1)
r2 + k2 − 2γk

r
}χl = 0



with the Coulomb parameter

(7.277)

for the case of the Coulomb potential V (r) = ±Z1Z2e
2/r. We only want to focus here

on the asymptotics of the Coulomb solutions χl(r), which is important for scattering
problems.

For large values of r we neglect the centrifugal term (∼ 1/r2) versus the Coulomb
term (∼ 1/r) in (7.276) and �ind as an asymptotic solution

(7.278)

as can be con�irmed by insertion into (7.276); consequently all terms ∼ 1/r2 have to
be neglected. In (7.278) we have—as in (7.273)—another l-dependent phase free. Since
we are interested in the deviation from the case of the free particle, we introduce the
phase as follows:

(7.279)

It is worth noting that this asymptotic behavior (which is con�irmed by the exact
solution of (7.276)) has the additional phase ∼ γ ln (2kr), which shows that even for 
r → ∞ the Coulomb potential is still effective. We will come back to this point when
dealing with scattering problems (in Sect. 8. 3).

7.6.5	 Bound	States	of	the	Hydrogen	Atom
In the H atom an electron moves in an electrostatic Coulomb �ield (potential energy)

(7.280)

with energy E (or ϵ) < 0. In contrast to (7.258), ϵ = k2 cannot be ful�illed for real k, but
only for purely imaginary values. We thus de�ine

(7.281)

or ϵ = −κ2/4 with an additional factor 2 with regards to the normalization of wave
functions to be discussed later. In analogy to (7.259) we de�ine a dimensionless variable
by

(7.282)

γ = ±Z1Z2e
2 m
ħ2k

χl(ρ)r→∞ ∼ 1
ρ

exp (±i[kr − γ ln (2kr)]),

χl(ρ)r→∞ ∼ 1
ρ

exp (±i[kr − l π2 − γ ln (2kr) + σl]).

V (r) = − e2

r

κ = 2
ħ√2m(−E),



such that the radial Eq. (7.236)

(7.283)

(after division by κ2) turns to the dimensionless form

(7.284)

with the Sommerfeld	parameter

(7.285)

As an alternative to (7.285), the Sommerfeld parameter η(E), which includes the
information about the energy of the electron, can also be written as

(7.286)

with the �ine	structure	constant

(7.287)

which is characteristic of all electromagnetic forces.
To solve (7.284) we �irst consider the asymptotic behavior for ξ → ∞ (r → ∞),

which is determined by the differential equation

(7.288)

with the fundamental solutions exp (−ξ/2) and exp (ξ/2). Due to the requirement for
normalization of the wave function the solution ∼exp (ξ/2) is omitted. The asymptotics
for ξ → 0 (r → 0) on the other hand is determined by the differential equation

(7.289)

ξ = κ r,

{ d2

dr2 + [ 2me2

ħ2r
− l(l+1)

r2 ]− κ2

4 }χl(r) = 0

{ d2

dξ2 + [ η

ξ
− l(l+1)

ξ2 ]− 1
4 }χl(ξ) = 0

η = e2

ħ √
m

2|E| = η(E).

η(E) = e2

ħc√
mc2

2|E|
= α√ mc2

2|E|

α = e2

ħc ≈ 1
137 ,

{ ∂ 2

∂ξ2 − 1
4
}χl(ξ) = 0 (for ξ → ∞)

{



which in analogy to (7.241) is solved with the Ansatz ξs with

(7.290)

(cf. (7.243)). The solution with s = −l has to be excluded in accordance with the
considerations in Sect. 7.6.1 such that only the case s = l + 1 has to be considered. We
therefore write

(7.291)

and (7.284) turns to

(7.292)

For the solution of the differential equation (7.292) we now employ the power series

(7.293)

By insertion into (7.292) and renaming the summation indices appropriately in the series
for dg/dξ, ξ d2g/dξ2 we get

∞

∑
m=0

{m(m − 1)almξ
m−1 + [(2l + 2)malmξ

m−1 − malmξ
m] + (η − l − 1)almξ

m}

(7.294)

=
∞

∑
n=0

{[n + (2l + 2)(n + 1)]aln+1 − [n + l + 1 − η]aln}ξ
n,

from which we obtain the recursion	formula for the expansion coef�icients aln:

(7.295)

The start value al0 will be calculated later by normalizing the wave function. For large n
(7.295) becomes

(7.296)

{ ∂ 2

∂ξ2 − l(l+1)
ξ2 }χl(ξ) = 0

s(s − 1) = l(l + 1)

χl(ξ) = ξl+1 exp (− ξ

2 )gl(ξ),

{ξ d2

dξ2 + (2l + 2 − ξ) d
dξ

+ (η(E) − l − 1)}gl(ξ) = 0.

gl(ξ) = ∑∞
n=0 a

l
nξ

n.

= ∑∞
n=0{n(n + 1)aln+1 + [(2l + 2)(n + 1)aln+1 − naln] + (η − l − 1)aln}ξ

n = 0

aln+1 = n+l+1−η(E)
(n+2l+2)(n+1)

aln.

l



i.e. the power series (7.293) contains a subseries

(7.297)

if it does not stop in �inite order. Inserting this subseries in (7.291), the solution χl(ξ)
diverges like exp (ξ/2), i.e. χl(ξ) will not be normalizable. Thus (as in case of the
oscillator) the power series must be of �inite order: at a �inite n then the numerator
according to (7.295) is

(7.298)

Since l ≥ 0 is an integer,

(7.299)

is also an integer ≥ 1. Equation (7.298) then implies:

(7.300)

or

(7.301)

This implies that the energy eigenvalues of the H atom are

(7.302)

where the length a, the Bohr	radius is given by,

(7.303)

Quantum mechanics thus naturally explains the spectral lines of the H atom found
empirically (Lyman, Balmer, Paschen, Bracket, Pfund series), which follow the 1/N 2 law
(7.302) very precisely.

N is called the principal	quantum	number. According to (7.299) there are N different
possible l values for a given N

(7.304)

aln+1

aln
→ 1

n+1
(for n → ∞),

al0 ∑
∞
n=0

ξn

n! = al0 exp (ξ),

n + l + 1 − η(E) = 0 ↔ η(E) = n + l + 1.

N = n + l + 1

η(E) = N ; N = 1, 2, 3, …

α2mc2

2|E|
= e4mc2

2|E|ħ2c2 = N 2.

E = EN = − 1
2N 2 α2mc2 = − 1

2N 2
e4mc2

ħ2c2 = − 1
2N 2

e2

a
≈ −13.6 eV

N 2 ,

a = ħ2

me2 ≈ 0.529 ⋅ 10−10 m.

l = 0, 1, 2, … ,N − 1,



i.e. the angular momentum is limited from above for a given energy eigenvalue. On the
other hand, these l values arise because the radial Eq. (7.292)—apart from l—also
explicitly depends on N and there are N different radial wave functions—except for N = 1
, where only l = 0 is possible. For a certain eigenvalue E = EN  there are not only 2l + 1
different functions Ylm(ϑ,φ), but also N independent radial components. The degree	of
degeneracy for the eigenvalue EN  thus is not 2l + 1, but

(7.305)

This additional degeneracy is characteristic for the 1/r potential and not present for
other spherically symmetric potentials.

We now turn to the calculation of the hydrogen eigenfunctions. For each eigenvalue 
EN  we have a certain κ according to (7.281) and (7.302),

(7.306)

with (7.303). The polynomials of n-th degree, which arize from the termination
condition (7.298) in the series (7.294), with

(7.307)

are called—with conventional normalization:

Laguerre	polynomials

(7.308)

with ξ = κNr. The normalization can be calculated using the generating	function

(7.309)

Some results are e.g.

(7.310)

l = 0, n = 1 : L1
1(ξ) = 2(2 − ξ)

l = 1, n = 0 : L3
0( xi) = 6

∑N−1
l=0 (2l + 1) = 1 + (2 ⋅ 1 + 1) + ⋯ + (2[N − 1] + 1) = N 2.

κ = κN = 2
ħ√2m|EN | = 2

ħN
√ me2

a
= 2

N
√ me2

aħ2 = 2
aN

n = N − l − 1 = N − 1,N − 2, … , 0

L2l+1
n (ξ) = gN ,l(ξ) = L2l+1

N−l−1(ξ)

Up(ξ, s) ≡ 1

(1−s)p+1 exp [−ξ s
1−s

] = ∑∞
n=0 L

p
n(ξ) sn

(n+p)!
.

l = 0, n̂ = 0 : L1
0(ξ) = 1



Lp
n(ξ) =

exp (ξ)ξ−p

n!

dn

dξn
(exp (−ξ)ξn+p).

The complete radial function then is

(7.311)

where the normalization constant CN ,l is to be determined from

(7.312)

The total wave function

(7.313)

then is uniquely characterized by the 3 discrete quantum numbers N, l, m.
For the ground state of the H atom with N = 1 (only l = m = 0 is possible). we get

from (7.312) C1,0 = 1/√a and with Y00 = 1/√4π the ground	state	eigenfunction

(7.314)

For the expectation value < r > in the ground state we obtain (by partial integration)

(7.315)

Up to a factor of 3/2 the length a is the average distance of the electron from the
proton in the ground state. This statistical statement replaces the classic idea of the lowest
Bohr orbit of radius a.

In summarizing this chapter we have discussed the quantum mechanics of a single
particle in an external potential and classi�ied the possible solutions. As examples we have
calculated the wave functions for an in�inite and a �inite well and for potentials that are
periodic in space. Furthermore, the harmonic oscillator problem has been examined in
detail as well as the motion of a charged particle (and its spin) in a magnetic �ield.
Moreover, the bound states and energy levels of the hydrogen atom have been calculated.

χN ,l(r) = CN ,l[ 2r
aN

]
l+1

exp (− r
aN

)L2l+1
N−l−1(

2r
aN

),

∫ ∞
0 |χN ,l(r)|2

dr = 1.

ψN ,l,m(r,ϑ,φ) = 1
r
χN ,l(r)Ylm(ϑ,φ)

ψ1,0,0(r,ϑ,φ) = √ 1
a3π

exp (− r
a
).

< r >1,0,0= ∫ |ψ1,0,0|2
r d3r = 4

a3 ∫
∞

0 exp (− 2r
a
)r3 dr = 3

2 a.
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8.	Basic	Concepts	of	Scattering	Theory
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In this chapter we will introduce to the scattering theory of a single particle with an interaction
potential and investigate the continuum states of the effective single-particle problem in case of
two-body scattering.

In a scattering experiment a beam of particles with given properties (energy, momentum,
polarization) hits a target; the in�luence of the target on the incident particle beam is measured
in the form of the angular distribution, excitation function, the scattered radiation etc. (Fig. 8.1).

With such scattering experiments one essentially pursues two goals:
(i)

In scattering experiments with elementary particles an information is obtained about the
forces between the particles involved. For example, we know that the interaction between
two nucleons at small distances (∼ 0.25 fm) is strongly repulsive.

 

(ii)
If one scatters e.g. electrons on atoms (or molecules) one can get information about
possible excited states of the atom (molecule) because the interaction electron—atom
(molecule) is known (electromagnetic interaction). An example of such an (inelastic)
scattering experiment is the Franck-Hertz	experiment (cf. Chap. 2).

 

For the practical evaluation of scattering experiments we want to formulate the following
requirements:
(1)

The intensity of the primary beam is so low that one can neglect the interaction between
the particles of the incident beam.

 
(2)

The distances between the scattering centers of the target are large compared to the
wavelength of the incident particles, such that interference effects between the scattering
waves from different scattering centers are negligible; each scattering center then acts as a
single one. –This requirement is not ful�illed in diffraction experiments on crystals.–

 

(3)
The target is so thin that multiple scattering does not occur.  

https://doi.org/10.1007/978-3-031-95521-1_8


Fig.	8.1 Illustration of a scattering process

If the primary beam is well de�ined in terms of energy, direction, polarization etc., then with
the assumptions (1)–(3) a scattering experiment is equivalent to an ensemble of scattering
systems, which consist of a single incident particle and a single (resting) particle of the target.

In the following we will restrict to elastic scattering processes (unless stated otherwise).

8.1	 Basic	De�initions
8.1.1	 Scattering	Cross	Section
If j0 is the incident current density in z- direction and ΔN  the number of scattered particles per
unit time measured in the solid angle ΔΩ, we de�ine (within the assumptions (1)–(3)) the
differential	scattering	cross	sectionσ = σ(Ω)—as the quantity characterizing the scattering
process—by:

(8.1)

here Ω = (ϑ,φ) indicates the direction in which the scattered particles are observed
relative to the primary beam, and n is the number of scattering centers contained in the target. 
σ has the dimension of an area. In order to measure the quantity ΔN  in (8.1) the detector must
be placed outside the area of the incident wave; thus one cannot measure σ(Ω) in the forward
direction (ϑ = 0). Since by increasing the distance between detector and target—for a given
size of the primary beam—one can reach smaller angles Ω, this restriction is practically not
important.

The total	scattering	cross	section σ then is de�ined as

(8.2)

it gives the total number of scattered particles (from the primary beam) per unit of time
relative to the incident current density j0 and the number of scattering centers n in the target.

8.1.2	 Scattering	Amplitude
As stated above, a scattering experiment can be viewed as an ensemble of two-particle
scattering systems. Such a two-particle problem can be reduced in classical physics to a single-
particle problem by introducing center of mass and relative coordinates; the center of mass of

limΔΩ→0
ΔN
ΔΩ = n j0 σ(Ω);

σ = ∫ dΩ σ(Ω) = ∫ dΩ dσ
dΩ ;



the two particles moves—in the absence of external forces—like a free mass point with the
mass M = m1 + m2, and the relative motion of the particles is characterized by the reduced
mass μ = m1m2/(m1 + m2) and the potential V(r), where r is the relative coordinate. We will
show later that the separation in center of mass and relative coordinates is also possible in
quantum theory; this reduces our task to the scattering of a particle of mass μ at the potential
V(r).

There are two methods for the quantum mechanical treatment of potential scattering: In the
(1)

method	of	stationary	states it is assumed that the primary beam is switched on long
before the measurement and is switched off again only long after the measurement such
that the state of the system during the measurement can be described as stationary.

 

(2)
The	time-dependent	theory	of	scattering processes considers the scattering of the
incident particles at the target as a (time-dependent) perturbation which transforms the
incident particles from an initial state (before the collision) in a �inal state (after the
collision). One then calculates the probability for this transition and from that directly the
scattering cross section.

 

In the following we will use the (1) method and only later examine method (2) more closely.
For spinless particles the method of stationary states is to �ind solutions of the Schrödinger

equation

(8.3)

at given energy E in the center of mass system (determined by the energy of the primary beam
in the laboratory system) and to look for solutions, which asymptotically have the form:

(8.4)

if the potential V(r) drops asymptotically faster than 1/r. In the case of the Coulomb potential
(8.4) must be modi�ied due to the logarithmic phase ∼ln (2kr) (7. 279) (see Chap. 8.3).
According to (8.4) the asymptotic form of ψ(r) contains both the possibility that the particle is
de�lected in Ω-direction (direction-modulated spherical wave), as well as the case that no
scattering takes place (plane wave in z-direction).

We now want to show how to connect the scattering	amplitudef(Ω) with the differential
scattering cross section σ(Ω). To this aim we use Eq. (8.1); the current density j0 from (3. 23) for
the plane wave exp (ikz) is

(8.5)

On the left side of (8.1) the radial component of the current density of scattered particles
appears. Taking into account (7. 225) it follows that

(8.6)

(T + V )ψ = Eψ;E = ħ2k2

2μ

ψ(r)r→∞ ∼exp (ikz) + f(Ω)
exp(ikr)

r
,

j0 = ħk
μ

.

jscat =
ħ

2iμ |f(Ω)|2{ exp(−ikr)
r

1
r

∂
∂r exp (ikr) −

exp(ikr)
r

1
r

∂
∂r exp (−ikr)}



=
ħk
μ

|f(Ω)|2

r2
.

Then we get

(8.7)

if we consider that jscat is related to the area Δf = r2ΔΩ. The aim of the following
considerations is the practical calculation of the scattering amplitude f(Ω) from the
Schrödinger equation (8.3) with the boundary condition (8.4).

Before we look at methods for calculating f(Ω) let’s brie�ly state the requirements, for which
the method of stationary states, as developed above, is applicable. To the requirements (1)–(3)
we have to add:

(4) The incident wave is considered as a stationary state in form of a plane wave, which has
a sharp momentum ħk and sharp energy E. In practice, however, we are dealing with wave
packets of �inite spatial and temporal extent, which necessarily (see Sect. 6. 3. 7) have a width
with respect to E and k. If our idealization should be a useful approximation, then must hold

(8.8)

if k is the wave number, l and d are the longitudinal and transversal extensions of the wave
packet, respectively. In order to avoid the melting of the in- and out- wave packets, also the
following must apply,

(8.9)

if R denotes the distance between target and detector.
(5) The area in which the interaction between an incident particle and a target particle takes

place must be within distances r ≤ r0 from the scattering center and

(8.10)

(6) When calculating jscat the interference between the plane wave and the spherical wave is
neglected—as in (8.6)-, thus we must require

(8.11)

Within the assumptions above one can show that Eq. (8.7) remains valid also for wave packets.

8.1.3	 Reactions,	Inelastic	Scattering
The previous considerations relate to elastic scattering processes,

(8.12)

In addition, inelastic processes are also of interest such as
(8.13)

σ(Ω) = |f(Ω)|2,

kd ≫ 1;kl ≫ 1,

d ≫ √ R
k
;l ≫ √ R

k
,

d ≫ r0;l ≫ r0.

d ≪ R sin ϑ.

A1 + A2 → A1 + A2.

A1 + A2 → A1 + A∗
2,



where A∗
2 denotes an excited state of the target particles, or reactions

(8.14)

e.g. transfer of a particle C : 

(8.15)

To deal with such problems, we can no longer consider the particles A1 and A2—involved in the
process—as structureless mass points; in addition to the wave function of the relative motion
the internal state of the scattering partners has to be described by a wave function. Then we
have to deal with a multi-particle problem which we will describe later.

For a general reaction (8.12)–(8.14) we have to differentiate
(i) the input	channelA1 + A2, speci�ied by the type and state of the reaction partners and

their relative motion before the start of the reaction, and
(ii) the possible output	channelsA1 + A2, A1 + A∗

2 , B1 + B2, with the corresponding
speci�ication as in (i).

In general, a reaction channel is characterized by a certain fragmentation, speci�ication of
the internal state of the fragments as well as kinematic data (e.g. energy or angular momentum
of the relative motion). A distinction is made between open and closed channels depending on
whether the reaction in question is energetically possible or not.

8.2	 The	Integral	Equation	Method
8.2.1	 The	Lippmann-Schwinger	Equation
Conceptually, the following method for the calculation of scattering problems is of importance:
The Schrödinger equation (8.3) is transformed into an integral equation such that the solutions
automatically satisfy the boundary conditions (8.4). For this purpose we write (8.3) formally as
an inhomogeneous differential equation

(8.16)

with (as in (7. 3)), (7. 6)

(8.17)

The general solution of (8.16) then is:

(8.18)

where φk is an arbitrary solution of the homogeneous equation

(8.19)

and Gk(r, r′) the corresponding Green’s	function de�ined by,

A1 + A2 → B1 + B2,

B1 = A1 + C; B2 = A2 − C.

(Δ + k2)ψ(r) = U(r)ψ(r),

U(r) =
2μ

ħ2 V (r); k2 =
2μ

ħ2 E.

ψk(r) = φk(r) + ∫ Gk(r, r′)U(r′)ψk(r′)d3r′,

(Δ + k2)φk(r) = 0



(8.20)

For the proof one applies the operator (Δ + k2) to (8.18) and uses (8.19) and (8.20).
To explain the de�inition (8.20) of the Green’s function, let us multiply (8.20) from the right

by an arbitrary function χ(r′) and integrate the resulting equation over r′. We then get

(8.21)

or

(8.22)

with the abbreviation

(8.23)

According to (8.22) Gr can be interpreted as the inverse operator to (Δr + k2); as we will see,
it is not uniquely de�ined.

In the integral equation (8.18), which is equivalent to the Schrödinger equation, we can now
incorporate the boundary condition (8.4) as follows: Instead of the general solution φk(r) of the
homogeneous equation (8.19) we choose the special solution

(8.24)

Then the 2nd term in (8.18) for r → ∞ must convert into a directionally modulated outgoing
spherical wave. To investigate this question we need the explicit form of the solutions of (8.20).

Since (8.20) is invariant with respect to translations,

(8.25)

Gk(r, r′) depends only on (r − r′). We therefore write Gk(r, r′) ≡ Gk(r − r′) as a Fourier
integral of the form

(8.26)

Inserting (8.26) into (8.20) and using

(8.27)

we get for gk(q) the equation

(8.28)

and thus

(8.29)

(Δ + k2)Gk(r, r′) = δ3(r − r′).

∫ d3r′(Δ + k2)Gk(r, r′)χ(r′) = χ(r)

(Δr + k2)Grχ(r) = χ(r)

Grχ(r) ≡ ∫ d3r′ Gk(r, r′)χ(r′).

φk(r) =exp (ikz).

r → r + a; r′ → r′ + a,

Gk(r − r′) = 1

(2π)3 ∫ d3q gk(q) exp (iq ⋅ (r − r′)).

1

(2π)3 ∫ d3q exp (iq ⋅ (r − r′)) = δ3(r − r′),

(k2 − q2)gk(q) = 1

gk(q) = (k2 − q2)
−1

.



The integrand in (8.26) has poles of 1st order for q = ±k. We therefore must clarify—by
means of an additional rule - how the integral (8.26) has to be taken; depending on the choice of
this rule, we get different Green’s functions that have a different asymptotic behavior of the
desired solution (8.18).

With respect to the position of the poles at q = ±k it is useful to introduce polar
coordinates in q-space, i.e.

(8.30)

with

(8.31)

Since the singularities of the integrand only effect the q-integration, we can integrate over the
possible directions of q and obtain

(8.32)

The integrand in (8.32) is an even function in q and we can—instead of (8.32)—also write

(8.33)

We now carry out the q integration in (8.33) in the following way: We substitute

(8.34)

such that the pole at q = k (−k) is moved from the real axis into the upper (lower) half-
plane of the complex q-plane (see Fig. 8.2).

Fig.	8.2 Location of the poles in the complex q plane

We then de�ine as Green’s function

(8.35)

Gk(ρ) = 1

(2π)
3 ∫ q2dq dΩq

exp(iqρ cosϑq)

k2−q2

ρ ≡ |r−r′|.

Gk(ρ) = 1
4iπ2ρ

∫ ∞

0
q dq

exp(iqρ)−exp(−iqρ)

(k−q)(k+q)
.

Gk(ρ) = 1
4iπ2ρ

∫ ∞

−∞
q dq

exp(iqρ)

(k+q)(k−q)
.

k → k + iϵ; ϵreal > 0,

G
(+)
k (ρ) =limϵ→0

1
4iπ2ρ

∫ ∞

−∞ dq q
exp(iqρ)

{(k+iϵ−q)(k+iϵ+q)} ,



where the lim
ϵ→0

 has to be taken only after the q integration.

For positive ϵ > 0 the integral in (8.35) can be calculated as follows: Since ρ > 0, for Iq > 0
the argument of exp (. . ) is negative and exp (−Iqρ) disappears for |q| → ∞. Then the
integration path in the upper half plane of the complex q plane can be closed by a semicircle
with a radius pushed to in�inity.

The integral in (8.35) over the contour C then has the form:

(8.36)

using

(8.37)

According to the residue	theorem the value of the integral (8.36) is 2πi—times the sum of the
residues of the poles enclosed by the integration path. For the case considered, only the pole at 
k + iϵ is within the integration path; its residue is

(8.38)

Thus we get for ϵ → 0

(8.39)

which is the solution we are looking for, since the 2nd term in (8.18) asymptotically
describes a direction-modulated outgoing spherical wave.

There are alternative rules for calculating the integral (8.32): choosing ϵ < 0 in (8.34) an
analogous consideration (as above) gives

(8.40)

i.e. the asymptotics of (8.18) is an incoming spherical wave. Finally, the q integration in (8.32)
can be done in the sense of a principle value; one then arrives at a standing spherical wave

(8.41)

The integral equation (Lippmann-Schwinger	equation), which is equivalent to the
Schrödinger equation (8.16) with the boundary condition (8.4), then reads:

(8.42)

=exp (ikz) −
1

4π
∫

exp (ik|r − r′|)

|r−r′|
U(r′)ψ

(+)
k

(r′)d3r′.

1
2 ∫C dq exp (iqρ)[ 1

k+iϵ−q
− 1

k+iϵ+q
],

q

(k−q)(k+q)
= 1

2 [
1

k−q
− 1

k+q
].

− 1
2 exp (i(k + iϵ)ρ).

G
(+)
k (ρ) = − 1

4π
exp(+ikρ)

ρ
,

G
(−)
k (ρ) = − 1

4π
exp(−ikρ)

ρ
,

G
(0)
k (ρ) = − 1

4π
cos(kρ)

ρ
.

ψ
(+)
k (r) =exp (ikz) + ∫ G

(+)
k (r, r′)U(r′)ψ

(+)
k (r′)d3r′



Equation (8.42) represents a formal	solution of the scattering problem, which in a practical
calculation of the scattering solution ψ+

k
(r) can be solved by an iteration process. Before

addressing this issue in more detail we �irst will specify a formula for the scattering amplitude 
f(Ω) with the help of (8.42).

8.2.2	 Scattering	Amplitude
For distances r from the scattering center, that are large compared to the range r0 of the
potential V,

(8.43)

we can approximate the Green’s function in (8.42) by

(8.44)

with

(8.45)

Here we have used

(8.46)

The factor exp (ikr)/r in the integral in (8.42) now can be written in front of the integral and by
comparison with (8.4) we �ind

(8.47)

with φk(r′) =exp (ik ⋅ r′). The expression (8.47) for f(Ω) is exact for ψ(+)
k

 from (8.42); if 
V = V (r) is a central potential then f(Ω) simpli�ies to f(ϑ) since the scattering amplitude does
not depend on the angle φ.

For the practical evaluation of (8.47) one needs the exact solution of the Lippmann-
Schwinger equation (8.42). We want to show in the following how to get an approximate
solution to the scattering problem by means of an iteration	method.

8.2.3	 The	Born	Series
The starting solution for an iteration process for ψ(+)

0 (r) on the right of (8.42) (index k
furtheron suppressed) is:

(8.48)

which gives

(8.49)

r = |r| ≫ r0,

exp(ik|r−r′|)

|r−r′|
≈

exp(ikr)
r

exp (−ik ⋅ r′)

k ≡ k r
r

.

|r−r′|≈ r− r
r

⋅ r′ … for r ≫ r′.

f(Ω) = − 1
4π
∫ exp (−ik ⋅ r′)U(r′)ψ

(+)
k

(r′) d3r′ = − 1
4π

(φk,Uψ
(+)
k

)

ψ
(+)
0 (r) =exp (ikz),

ψ
(+)
1 (r) =exp (ikz) + ∫ d3r′ G(+)(r, r′)U(r′) exp (ikz′).



This procedure ultimately gives (assuming convergence) the exact solution in the form of the
Born	series

(8.50)

with

(8.51)

K1(r, r′) = G(+)(r, r′)U(r′).

The question of the convergence of the series (8.50) cannot be addressed here in detail; for
local potentials, which for r → 0 become singular less than 1/r2 and for r → ∞ drop stronger
than 1/r, the convergence is given in any case (without proof).

8.2.4	 The	First	Born	Approximation
In the best case scenario one can hope to get a meaningful solution to (8.42) by the �irst term in
the series (8.50):

(8.52)

Then we get for the scattering amplitude (see (8.47))

(8.53)

and especially for central forces

(8.54)

where the angular integration can be carried out explicitly. With

(8.55)

Equation (8.54) becomes

(8.56)

Equation (8.56) suggests to introduce the momentum change during the collision
(8.57)

ψ(+) =exp (ikz) + ∑∞
n=1 ∫ Kn(r, r′)ψ

(+)
0 (r′) d3r′

Kn(r, r′) = ∫ K1(r, r′′)Kn−1(r′′, r′) d3r′′,n > 1

ψ(+)(r) ≈exp (ikz) + ∫ d3r′ G(+)(r, r′)U(r′) exp (ikz′).

f(Ω) ≈ − 1
4π ∫ d3r′ exp (−ik ⋅ r′)U(r′) exp (ikz′),

f(ϑ) ≈ − 1
4π ∫ d3r′ exp (−ik ⋅ r′)U(r′) exp (ikz′),

k0 = (0, 0, k)

f(ϑ) ≈ − 1
4π ∫ d3r′ exp (i(k0 − k) ⋅ r′) U(r′).



such that

(8.58)

We now place the z′ axis for the r′ integration such that

(8.59)

and

(8.60)

After integration over the angles ϑ′, φ′ we then obtain in 1.	Born’s	approximation

(8.61)

where the ϑ -dependence is contained in K (see Fig. 8.3):

Fig.	8.3 Illustration of the momentum transfer K

(8.62)

For a short-range potential U we can �ind a criterion for the quality of the �irst Born
approximation. The main contribution to f(ϑ) then comes from small r values. For r ≈ 0 we get
from (8.52):

(8.63)

Since the �irst Born approximation can only be useful, if the modi�ication of the plane wave by
the potential U is small, we get the condition:

(8.64)

this condition can be satis�ied for high energies (large k values).
As an example, in which (8.61) can be evaluated exactly, we consider a Yukawa	potential

(or meson exchange potential) of the form

(8.65)

K = k0 − k,

f(ϑ) ≈ − 1
4π ∫ d3r′ exp (iK ⋅ r′) U(r′).

exp (iK ⋅ r′) =exp (iKr′ cos ϑ′)

∫ d3r′ … = ∫ 2π

0
∫ π

0
∫ ∞

0
dφ′ sin ϑ′dϑ′ r′2dr′ …

f(ϑ) ≈ − 1
K
∫ ∞

0 r′U(r′) sin (Kr′) dr′,

K = 2k sin ϑ
2

.

ψ(+)(r) ≈exp (ikz) − ∫ ∞
0

exp(ikr′)
r′ U(r′)

sin(kr′)
kr′ r′2 dr′.

1
k
∫ ∞

0 exp (ikr′)U(r′) sin (kr′) dr′ 2
≪ 1;∣ ∣( )



The elementary integration gives:

(8.66)

thus

(8.67)

as the result in �irst order Born approximation. For γ → 0 we obtain the

Rutherford	formula

(8.68)

for

(8.69)

which is classically and quantum mechanically exact (inspite of the comments on the validity
of the �irst Born approximation).

8.2.5	 The	Electric	Form	Factor
For the elastic scattering of electrons on atoms one can start (in lowest order approximation)
with the assumption, that the atom can be described by an electrostatic potential V(r), which
contains the nuclear charge Z and the charge distribution of the electrons ρ(r) in the form

(8.70)

with

(8.71)

due to the charge neutrality of the atom. If v(q) and F(q) are the Fourier—transforms of V (r)
and ρ(r),

(8.72)

then after Fourier transformation follows from (8.70),

U = U0
exp(−γr)

r
, γ > 0.

f(ϑ) = −U0
1

4 k2sin2 ϑ
2 +γ 2

= − U0

K 2+γ 2 ,

σ(ϑ) =
U 2

0

(4 k2sin2 ϑ
2 +γ 2)

2 =
U 2

0

(K 2+γ 2)2

σ(ϑ) = { Z1Z2e
2

4E }
2

1

sin4 ϑ
2

U0 = ±Z1Z2e
22

μ

ħ2 .

ΔV (r) = 4π e2[Zδ3(r) − ρ(r)]

Z = ∫ d3r ρ(r)

v(q) = ∫ d3r exp (−iq ⋅ r)V (r); F(q) = ∫ d3r exp (−iq ⋅ r)ρ(r),



(8.73)

Now σ(Ω) in �irst order Born approximation (according to (8.58)) is:

(8.74)

and with (8.73) follows:

(8.75)

For a spherical charge distribution

(8.76)

the formfactor becomes

(8.77)

This implies for the form	factor F(q) : 
(i)

(8.78)

and for small values of K
(ii)

(8.79)

with the abbreviation

(8.80)

Here R2
0 is the mean square radius of the charge distribution of the electrons of the atoms,

which can be determined from the scattering of electrons on atoms.
In analogy, by electron scattering at suf�iciently high energy one can measure the charge

distribution in atomic nuclei or even within hadrons (nucleons, mesons, etc.).

8.3	 The	Partial	Wave	Method
8.3.1	 Scattering	in	the	Central	Field
For a central potential

(8.81)

q2v(q) = −4π e2(Z − F(q)).

σ(Ω) = |f(Ω)|
2

=
4μ2

16π2ħ4 |v(K)|
2
,

σ(Ω) =
4μ2e4

ħ4K 4 (Z − F(K))2.

ρ = ρ(r)

F = F(q) = 4π
q
∫ ∞

0 sin (qr)ρ(r)r dr.

F(0) = Z

F(K) ≈ Z − 1
6 K 2R2

0 …

R2
0 = 4π ∫ ∞

0
r2ρ(r)r2dr.

V = V (r)



the Schrödinger equation can be calculated using the separation Ansatz (see Sect. 7. 6. 1)

(8.82)

leading to

(8.83)

with

(8.84)

and

(8.85)

in case of a scattering problem. Due to the boundary conditions speci�ied experimentally
(incident plane wave in z-direction, directionally modulated outgoing spherical wave) the
scattering solution cannot be an eigenfunction of l2. However, it has axial symmetry around the
z-axis because of (8.81) and the axial symmetry of the incident particle beam; the scattering
solution then has the general form

(8.86)

where the φ -dependence can be omitted due to the special geometry. The remaining
Legendre polynomials are

Yl0(ϑ) = √(2l + 1)/(4π)Pl(cos ϑ).

If

(8.87)

the solutions for (8.86) asymptotically merge with the solutions of the free particle (cf. 7. 6). We
can therefore (by combining (7. 274) and (7. 275)) write for the asymptotics of χl(r)

(8.88)

The separation of the phase in (8.88) into two parts (lπ/2 and δl) is useful because for 
V ≡ 0 (7. 271)

(8.89)

such that asymptotically (cf. (7. 274))

ψlm(r) = 1
r
χl(r)Ylm(ϑ,φ)

{ ∂ 2

∂r2 −
l(l+1)

r2 + k2 − U(r)}χl(r) = 0,

U(r) =
2μ

ħ2 V (r)

k2 =
2μ

ħ2 E > 0

ψ(r) = ∑∞
l=0

1
r
χl(r)Yl0(ϑ,φ),

limr→∞ rV (r) → 0,

χl(r)r→∞ = Al sin (kr − lπ
2 + δl).

χl = kr jl(kr),

l



(8.90)

Thus the phases δl are phase	shifts of the individual partial waves (for the respective angular
momentum l) caused by the potential V. The scattering	phases δl of course not only depend on
V(r), but also on E or k, i.e.

(8.91)

8.3.2	 Convergence	of	the	Partial	Wave	Expansion
The expansion (8.86) is only of practical use if one focuses on a few l values; this is the case if V
is short-range or if the energy is low.

Instead of a mathematical investigation of convergence, we limit ourselves to the following
physical argument: In the scattering of a classical particle at a central potential the possible
trajectories are characterized by the impact parameter b. The latter depends on the angular
momentum and the momentum of the particle by:

(8.92)

For a potential of �inite range r0,

(8.93)

a classical particle is only de�lected if

(8.94)

or because of (8.92)

(8.95)

Accordingly, we expect that in (8.86) only the l values have to be taken into account with

(8.96)

if k is the wave number associated with pkl.. For low energy E = ħ2k2/(2μ) therefore only a few
l values in (8.86) should be suf�icient.

The following consideration leads to the same estimate: For �ixed energy E the minimum
distance rmin of the particle from the scattering center is determined by the condition

(8.97)

With increasing angular momentum lkl the closest distance rmin becomes larger since the
centrifugal barrier becomes more and more repulsive until �inally no more de�lection can take
place for rmin > r0 by the potential V.

The classical estimates above are con�irmed qualitatively by the quantum theory.

8.3.3	 Scattering	Phases	and	Scattering	Amplitude
We now try to connect the scattering phases δl with the scattering amplitude f(ϑ), which in
turn gives the differential cross section σ(ϑ) by its magnitude squared.

χl(r)r→∞ ∼sin (kr − lπ
2 ).

δl = δl(k).

lkl. = b pkl..

V (r) = 0 for r > r0,

b ≤ r0

lkl. ≤ r0 pkl..

l ≤ r0 k,

E ≥ V (r)kl. +
l2kl.

2μr2
kl.

.



To this aim we expand the asymptotic form

(8.98)

by partial waves. According to section 7. 6. 3 the plane wave—as the solution of the Schrödinger
equation for the free particle—can be represented as (7. 271)

(8.99)

The expansion coef�icients al are obtained according to Sect. 7. 6. 3 and read

(8.100)

In the 2nd term of (8.98) we expand

(8.101)

and get

(8.102)

With the asymptotics of the jl from (7. 274) we obtain

(8.103)

On the other hand, according to (8.86) and (8.88)

(8.104)

= ∑
l

1

r
Yl0(ϑ)Al

1

2i
[exp (i(kr −

lπ

2
+ δl))− exp (−i(kr −

lπ

2
+ δl))].

By a comparison of the coef�icients (with il =exp (ilπ/2)) we get

(8.105)

and

(8.106)

Then we obtain for f(ϑ)

(8.107)

1

ψ(r)r→∞ =exp (ikz) + f(ϑ)
exp(ikr)

r

exp (ikz) = ∑∞
l=0 al jl(kr)Yl0(ϑ).

al = il(2l + 1)√ 4π
2l+1 .

f(ϑ) = ∑l fl Yl0(ϑ)

exp (ikz) + f(ϑ)
exp(ikr)

r
= ∑l{al jl(kr) + fl

exp(ikr)
r

}Yl0(ϑ).

ψ(r)r→∞ = ∑l
1
r
Yl0(ϑ){[fl +

(−i)l

2ik
al] exp (ikr) −

(+i)l

2ik
al exp (−ikr)}.

ψ(r)r→∞ = ∑l
1
r
Yl0(ϑ)Al sin (kr − lπ

2 + δl)

Al = il
√4π(2l+1)

k
exp (iδl)

fl =
√4π(2l+1)

k
exp (iδl) sin (δl).

f(ϑ) = 1
k
∑l

√4π(2l + 1) exp (iδl) sin (δl)Yl0(ϑ)



=
1

k
∑
l

(2l + 1) exp (iδl) sin (δl)Pl(cos ϑ),

and for the differential scattering cross section

(8.108)

After integration over the angles we �inally obtain for the total scattering cross section

(8.109)

taking into account the orthogonality of the Pl(cos ϑ).
Comparing (8.107) and (8.109) we obtain the

8.3.4	 Optical	Theorem

(8.110)

since Pl(cos ϑ = 1) = 1. Equation (8.110) is the quantitative expression for the fact, that
the scattering of particles is necessarily linked to a weakening of the particle beam in the
forward direction (ϑ = 0).

Since (8.110) is important for an understanding of the scattering process we will prove
(8.110) still in another way, that allows for an easier physical interpretation. Since V(r) was
assumed to be real, the continuity Eq. (3. 21) holds. Due to the stationarity of the states Eq. (3. 
21) simpli�ies to

(8.111)

We integrate (8.111) over a sphere centered around the origin r = 0 with the radius R chosen
so large that the asymptotic form (8.4) can be used:

(8.112)

where jR = jR(Ω) is the radial component of j on the surface of the sphere at a distance R from
the scattering center. The radial component at distance r (suf�iciently large)

(8.113)

gives three parts when inserting ψ according to (8.4):

(8.114)

σ(ϑ) = 1
k2 ∑l,l′(2l + 1)(2l′ + 1) exp (i(δl − δl′)) sin (δl) sin (δl′)Pl(cos ϑ)Pl′(cos ϑ).

σ = 4π
k2 ∑

∞
l=0 (2l + 1) sin2 δl,

σ = 4π
k

I(f(0)),

∇ ⋅ j = 0.

∫ d3r ∇ ⋅ j = R2 ∫ dΩ jR = 0,

jr = ħ
2iμ {ψ

∗ ∂
∂r ψ − ψ ∂

∂r ψ
∗}

jr,0 = ħk
μ

cos ϑ,



which arizes from the plane wave exp (ikz) =exp (ikr cos ϑ);

(8.115)

from the spherical wave and the interference term

(8.116)

when considering only the leading term in 1/r.
The term (8.114) gives no contribution to (8.112) since

(8.117)

From (8.115) we get the contribution

(8.118)

according to (8.2) and (8.7). For the validity of (8.112) to hold, (8.118) must be compensated by
the contribution of (8.116). Since we know the exact result, equation (8.110), the following
heuristic considerations are suf�icient: Due to the rapidly oscillating terms in (8.116) for kr ≫ 1
contributions to the integral (8.112) arize only for values ϑ ≈ 0. We therefore get:

R2 ∫ jR,int dΩ

(8.119)

provided that f(ϑ) changes slowly. After performing the x integration a contribution
proportional to I(f(0)) = 1/2(f(0) + f ∗(0)) remains in accordance with the exact result
(8.110).

8.3.5	 Calculation	of	the	Scattering	Phases	δl
We consider again the radial equation

(8.120)

and assume that the (real) solutions are normalized in such a way that

(8.121)

We now compare the solutions χl (or the phases δl) with the solutions χ0
l
 (or phases δ0

l
) to the

potential U 0(r) at the same energy. To this aim we use the Wronski theorem (cf. Sect. 7. 1. 2):

(8.122)

Choosing speci�ically the integration limits a = 0 and b = ∞, we get

jr,scat =
ħk
μ

|f(Ω)|
2

r2

jr,int = ħk
μ

1+cosϑ
2r {f(ϑ) exp (ik(r − z)) + f ∗(ϑ) exp (−ik(r − z))},

∫ dΩ cos ϑ = 2π ∫ 1

−1 d cos ϑ cos ϑ = 0.

ħk
μ

σ

≈ ħk
μ

R 2π{f(0) ∫ dx exp (ikR(1 − x)) + f ∗(0) ∫ dx exp (−ikR(1 − x))},

{ ∂ 2

∂r2 −
l(l+1)

r2 + k2 − U(r)}χl(r) = 0

χl(r)r→∞ ∼sin (kr − lπ
2 + δl).

W(χl,χ
0
l
)|ba= χlχ

0
l

′
− χ0

l
χl

′|
b

a
= − ∫ b

a
χ0
l
(U − U 0)χl dr.



(8.123)

since according to Sect. 7. 6. 1

(8.124)

Thus

(8.125)

Equation (8.125) is exact. We can get two important results from (8.125):
(i) For U 0 ≡ 0 we have δ0

l
≡ 0 and

(8.126)

such that

(8.127)

Equation (8.127) can be used to calculate the phases iteratively in the same way as in
Sect. 8.2.3. In the �irst	Born	approximation we obtain:

(8.128)

Now the Bessel functions behave for small values of the argument ρ ≡ kr like (cf. Sect. 7. 6. 1),

(8.129)

For a potential of �inite range r0 follows from (8.127) or (8.128) that the phases δl for �ixed
energy E (�ixed k value) decrease with increasing l. For k ≈ 0 one expects only contributions to
the scattering cross section for small l values; especially for k → 0 we only expect contributions
for l = 0, i.e. isotropic scattering (s-wave	scattering).

In this limiting case the scattering cross section σ (8.109) is given by

(8.130)

and in �irst order Born’s approximation (with (8.128) and (8.129)) we get explicitly,

(8.131)

with the scattering	length 

(8.132)

W(χl,χ
0
l )|∞

0 = k sin (δl − δ0
l ),

χl(0) = 0 = χ0
l
(0).

sin (δl − δ0
l
) = − 1

k
∫ ∞

0 χ0
l
(U − U 0)χl dr.

χ0
l

= kr jl(kr),

sin (δl) = − ∫ ∞
0 jl(kr)U(r)χl(r)r dr.

sin (δl) ≈ −k ∫ ∞
0 U(r)j2

l
(kr)r2dr.

jl(kr) ∼ (kr)l.

σ(k = 0) =limk→0
4π
k2 sin2 δ0(k)

σ(k = 0) = 4π a2,



With increasing k, except for l = 0, also l = 1 (p-wave scattering), l = 2 (d-wave scattering)
etc. become important which is re�lected in the experimental angular distribution. The results of
the classical discussion in Sect. 8.3.2 thus are con�irmed.

(ii) If ΔU ≡ U − U 0 is small, in general - with the exception of resonance scattering - the
phase difference Δδl ≡ δl − δ0

l
 will be small and (8.125) turns to:

(8.133)

the difference between χ0
l
 and χl on the right side of (8.125) has been neglected here. Thus

if ΔU > 0 (< 0) for all r then Δδl < 0 (> 0); in particular for a repulsive potential
everywhere the phase δl is negative, for an attractive potential everywhere the phase δl is
positive. Thus from the sign of δl (or a change in sign for a certain energy) we can extract
general properties of the potential V.

8.3.6	 Coulomb	Scattering
Due to the requirement (8.87) the Coulomb potential needs a special treatment. The crucial
point is that for the Coulomb potential for the asymptotics of χl Eq. (8.88) no longer holds, but
has to be replaced by (7. 279). The phases σl are the scattering phases of the Coulomb potential
in analogy to the phases δl used above; the Coulomb phases σl can be calculated exactly.

8.3.7	 Inelastic	Scattering
For elastic scattering we can rewrite the asymptotics of ψ (8.104) as follows:

(8.134)

=
i

2kr
∑
l

(2l + 1)[(−1)l exp (−ikr) − Sl exp (ikr)]Pl(cos ϑ)

with

(8.135)

As long as δl is real, Sl is a pure phase factor, such that ψ contains incoming and outgoing
spherical waves with the same weight. This characterizes elastic scattering, for which the
continuity Eq. (8.111) or (8.112) holds.

For inelastic processes the outgoing spherical wave - in the elastic channel - must be
weakened compared to the incoming one because part of the current �lows into the inelastic
channels. We can formally take this into account by replacing the real phases δl with complex
phases

a =limk→0
1
k
∫ ∞

0
U(r)j0(kr)χ0(kr)r dr.

Δδl = − 1
k
∫ ∞

0 ΔU χ2
l dr;

ψ(r)r→∞ = ∑l(2l + 1)il exp (iδl)
sin(kr− lπ

2 +δl)
kr

Pl(cos ϑ)

Sl =exp (2iδl).



(8.136)

such that the magnitude of Sl will be

(8.137)

while for elastic scattering we always have

(8.138)

The scattering amplitude in the elastic channel then (in analogy to (8.107)) is

(8.139)

or expressed by Sl

(8.140)

Using (8.140) one can characterize two limiting cases: for a given partial wave l then Sl = 1
means no scattering and Sl = 0 total absorption.

For the scattering cross section of elastic scattering follows from (8.140):

(8.141)

By Sl also the reaction	cross	section σr—with respect to all inelastic channels—and the
total	scattering	cross	section

(8.142)

can be expressed. For σt again the optical theorem (expressed via the continuity Eq. (8.111) or
(8.112)) must hold:

(8.143)

using (8.140). Note that the imaginary part of the forward scattering amplitude for the elastic
channel enters (8.143), since this weakens the incident particle beam! From (8.142) and (8.143)
we then obtain

(8.144)

For purely real potentials inelastic scattering, of course, does not happen since the current is
conserved alone as shown in Sect. 8.3.4. Without discussing the mechanism, which causes
inelasticity, we can formally describe inelastic scattering by introducing a complex potential.
The scattering phases—calculated for such a complex potential—are then the complex phases 
ηl introduced ad hoc above. From the scattering phases ηl we then can calculate σel, σr and σt.

ηl = δl + iγl;γl > 0,

|Sl|< 1,

|Sl|= 1.

f(ϑ) = 1
k
∑l(2l + 1) exp (iηl) sin (ηl)Pl(cos ϑ)

f(ϑ) = 1
2ik ∑l(2l + 1)[Sl − 1]Pl(cos ϑ).

σel. = π
k2 ∑l(2l + 1)|Sl − 1|2.

σt ≡ σel. + σr

σt = 4π
k

I(f(0)) = 2π
k2 ∑l(2l + 1)[1 − R(Sl)]

σr = π
k2 ∑l(2l + 1)[1−|Sl|

2].



Remark: Inelastic scattering,

(8.145)

is necessarily accompanied by elastic scattering,

(8.146)

since with (8.145)

(8.147)

This is clear, since inelastic channels imply a loss of current in the elastic channel such that the
plane wave cannot remain undisturbed.

8.3.8	 Gamov	States	Resonance	Scattering
We have seen in Sect. 7. 1. 1 that for positive energy—apart from pure scattering states
(classically: open trajectories)—also Gamov	states may occur. In the following we only want to
make (qualitatively) clear that the phases δl and the scattering cross section σ in the two cases
behaves differently. In the �irst case (Sect. 7. 1. 1, type 2 + 3) we expect that δl and σ vary
monotonically with energy (a); in the second case (Sect. 7. 1. 1, type 4) we note that quasi-bound
states in the inner region of the potential (Gamov states) can exist, which due to tunneling decay
in time. In a scattering experiment for a (type 4) potential then δl and σ will depend sensitively
on whether the energy is close to that of a Gamov state or not. In the latter case, the incident
plane wave only weakly penetrates into the potential wall; the potential behaves in analogy to a
hard sphere, for which the scattering consists of re�lection and diffraction. In the other case,
however, a sizeable fraction of the incident wave can penetrate the interior area, where quasi-
bound	states exist for a time τ , which strengthen the scattering wave after decay. Such Gamov
states thus will induce a pronounced variation of δl and σ with the energy (see Fig. 8.4).

Fig.	8.4 Illustration of ‘hard sphere’ and ‘resonant’ scattering

In this case we are dealing with resonance	scattering. The maxima in Fig. 8.4 at k1
G

 and k2
G

correspond to the center position (in energy) of the Gamov states.
We now will brie�ly indicate the quantitative treatment of the Gamov states. We consider the

�inite-range potential

(8.148)

|Sl|< 1, σr ≠ 0,

σel ≠ 0,

|Sl − 1| ≠ 0.

V (r) = v(r) for r ≤ r0,



which vanishes for r > r0, and restrict ourselves to the case l = 0:

(8.149)

The Gamov solutions χm(r) from (8.149) can decay by tunneling; for r > r0 therefore only
outgoing waves exist,

(8.150)

where

(8.151)

is the energy of the Gamov state χm. The solutions χm must be connected continuous and with
a continuous derivative to the outside area r > r0. This is given by the condition:

(8.152)

which is independent from the normalization constant introduced in (8.150).
The condition (8.152) leads to solutions of (8.149), for which the Hamiltonian (more

precisely: the kinetic energy) is not hermitian, such that the energies Em, which have to be
calculated, become complex

(8.153)

The time-dependent solutions—corresponding to the χm—then have a time factor

(8.154)

which for Γm > 0 corresponds to an exponential decay with the decay constant Γm. In
simple cases (e.g. for box-shaped potentials) an analytical solution of (8.149) with the boundary
condition (8.152) can be carried out.

Since for a negative imaginary part of Em (i.e. Γm > 0) also km—according to (8.151)—has
a negative imaginary part, we get from (8.150) that a solution diverges exponentially in the
outer space. This defect, however, is not a problem in practice, since we are interested in the
decay constant Γm, which is determined by the wave function χm in the range r ≤ r0. To show
this, we’ll use again the Wronsky theorem:

(8.155)

Due to

(8.156)

{− ħ2

2μ
∂ 2

∂r2 + V (r) − E}χ(r) = 0.

χm(r) = Am exp (ikmr) for r > r0.

Em =
ħ2k2

m

2μ

( ∂χm

∂r
1
χm
)
r=r0

= ikm,

Em = ϵm − i
2Γm

.

exp (− i
ħ Emt) =exp (− i

ħ ϵmt) exp (− Γm

2ħ t),

− ħ2

2μ (χ∗
mχ

′
m − χmχ

∗
m

′)|r0

0 = (Em − E ∗
m) ∫ r0

0 |χm|2
dr.

χm(0) = 0



and (8.150) we get from (8.155)

(8.157)

Thus the decay constant Γm is actually determined by χm in the range r ≤ r0; it is
proportional to the probability to �ind the fragments (e.g. α particles or the residual nucleus) at
the distance r0 from each other, relative to the probability to �ind the entire system inside the
sphere with radius r0 around the origin r = 0.

Formula (8.157) shows that the decay model outlined above only applies for very slowly
decaying Gamov states: while Γm is de�ined as real by (8.153), the right-hand side of (8.157) is
complex since km is complex. For very slowly decaying states (Γm ≪ |ϵm − ϵm+1|) we can
neglect I(km) in (8.157) and obtain

(8.158)

with

(8.159)

as the relative velocity of the (separated) fragments.
Finally, we want to examine the case of resonance scattering on a simple, idealized example.

For l = 0 we can solve the radial equation in the outer space r > r0 and write as

(8.160)

with

(8.161)

cf. (8.134) and (8.135). We use the logarithmic derivative of χ at the point r = r0 as an auxiliary
variable:

(8.162)

Then we get as a connection condition between innner and outer space

(8.163)

or solving for S0

(8.164)

Γm =
ħ2km
μ

|χm(r0)|2

∫ r0
0 |χm|2

dr
.

Γm = ħvm
|χm(r0)|2

∫ r0
0 |χm|2

dr

vm = ħ R(km)

μ

χk(r) = 1
2ik (S0 exp (ikr)− exp (−ikr))

S0 =exp (2iδ0);

R = ∂χ
∂r

1
χ(r)

|r=r0 .

R = ik
S0 exp(ikr0)+exp(−ikr0)

S0 exp(ikr0)−exp(−ikr0)
,

S0 = R+ik
R−ik

exp (−2ikr0).



For the scattering cross section follows from (8.164) with (8.109) or (8.141):

(8.165)

where

(8.166)

(8.167)

The signi�icance of the contribution of fpot becomes immediately clear when considering the
scattering on a hard sphere:

(8.168)

and = 0 else. Since χ(r0) = 0 for the potential (8.168), R → ∞ and fres → 0. For the hard
sphere then we get

(8.169)

We now consider the other extreme case, where fpot can be neglected versus fres. This
happens if one (or more) Gamov states exist in the potential and the scattering energy 
E = ħ2k2/(2μ) is close to the energy ϵm of the Gamov state χm. Then we can approximate, if
other Gamov states are energetically far away from χm, the wave function χ(r) in the interior
region r ≤ r0 by

(8.170)

Then according to (8.152)

(8.171)

thus

(8.172)

For k = R(km), fres has a maximum, which is narrow if the width of the Gamov state
considered is small. Accordingly, one expects a strong change for σ = σ(k): resonance
scattering in the neighborhood of k = R(km).

In summary, we have formulated the scattering theory for a single particle with an
interaction V(r), investigated the continuum states in different representations and derived the
scattering amplitude as well as the differential cross section. Furthermore, the partial wave
expansion for the scattering amplitude has been presented and the scattering phase shifts δl(k)

σ0 = π
k2 |S0−1|2 ≡ π

k2 |fres + fpot|
2,

fres = 2ik
R−ik

fpot = 1− exp (2ikr0).

V (r) = ∞ for r ≤ r0

σ0 = 4π r2
0{

sin(kr0)
kr0

}
2

.

χ(r) ≈ χm(r) for r ≤ r0.

R ≈ ikm,

fres ≈ 2k
km−k

.



been computed in lowest order. The discussion of resonance scattering has completed this
chapter.
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In this chapter we introduce to the concept of abstract states in a Hilbert
space H  and specify the formal requirements. Furthermore, we will
introduce the Dirac notation which is particularly suited for many-body
problems.

The central quantity in the quantum mechanics of a particle without spin
is the spatial wave function ψ(r), which describes the state of an ensemble of
particles. However, this

(i) spatial	representation
of a quantum mechanical state is not the only possible one. We have seen

in Sect. 6. 3 that the knowledge of the Fourier amplitudes ~
ψ(k;t) of the wave

function ψ(r;t) are also suitable for describing the state under consideration.
We then have a

(ii) momentum	representation
In general, we can expand a spatial wave function ψ(r;t)—describing a

quantum mechanical state—according to any complete, orthonormalized set
of functions φμ(r) and use the expansion coef�icients

cμ(t) = ∫ d3r φ∗
μ(r)ψ(r;t) = (φμ,ψ)

to characterize the state under consideration. In this
(iii) C -representation
the state is represented by a column vector

(9.1)

https://doi.org/10.1007/978-3-031-95521-1_9


This kind of representation also includes the description of the spin of
fermions using column vectors of dimension 2 (Sect. 6. 5).

The same picture emerges for the operators to which we assign
observables. In the spatial representation, r and −iħ∇r are the basic
operators from which we built all other operators such as orbital angular
momentum or potentials (see Chap. 5). In the momentum representation, the
roles of position and momentum are just exchanged: the basic operators are 
p = ħk and iħ∇p. Starting from an observable in the spatial representation 
F = F(r, p), by forming the integrals

(9.2)

in a complete basis {φμ}, one arrives at the C-representation of F in the form
of ∞-dimensional matrices. We recall that the Pauli spin matrices form a C-
representation of the spin operators for fermions, even if they are not de�ined
via an integral like (9.2).

The independence of quantum mechanical statements from the speci�ic
representation is shown explicitly by the fact, that e.g. the eigenvalues of the
harmonic oscillator or the angular momentum can be determined solely on
the basis of formal commutation rules of the operators describing the
problem. It will be shown that quantum mechanical states can be described by
vectors	in	Hilbert	space.

9.1	 De�inition	of	Hilbert	Space
A Hilbert space H  is a set of elements f, g,h⋯ (vectors) for which the
following axioms are ful�illed:

(1)	Linearity.
In H  there is a connection of the elements (addition), with respect to

which H  forms an additive, abelian group. This implies in detail:

(1.1) For all f, g ϵ H  also f + g = g + f ϵ H ;

C(t) = .

⎛⎜⎝ c1(t)

c2(t)

c3(t)

.

.

⎞⎟⎠∫ d3r φ∗
μ F φν = (φμ,F φν) ≡ Fμν



(1.2) Associativity: f + (g + h) = (f + g) + h,

(1.3) Neutral element: there is an element 0 ϵ H  with f + 0 = f  for all
f ϵ H .

(1.4) Inverse element: for every f ϵ H  there is an inverse element 
(−f) such that f + (−f) = 0. Instead of g + (−f) we write in short: 
g − f.

Furthermore, a multiplication with complex numbers is de�ined as follows:
for complex numbers a, b, c.. the following holds

(1.5) If f ϵ H , then also af ϵ H .

(1.6) Distributivity: a(f + g) = af + ag ; (a + b)f = af + bf .

(1.7) Associativity: a(bf) = (ab)f .

(1.8) 1 f = f for all f ϵ H .

(2)	Metric:
In H  an inner	product is de�ined as follows: To each pair of vectors f, g

we assign a complex number, denoted by (f, g) ϵ C, with the properties:

(2.1) (f, g) = (g, f)∗

(2.2) (f, ag) = a(f, g) for any complex numbers a,

(2.3) (f, g1 + g2) = (f, g1) + (f, g2)

(2.4) (f, f) ≥ 0 for all f ϵ H , where



(2.5) (f, f) = 0 only holds for the neutral element.

Because of (2.1) (f, f) is real.
The following properties directly follow from the de�inition of the inner

product:
(i) Orthogonal	vectors

Two vectors f, g are called orthogonal if

(9.3)

in particular the neutral element (zero vector) is orthogonal to every 
f ϵ H .

(ii) Parallel	vectors

Two vectors f, g ϵ H  are called parallel if f = ag with a ϵ C.

(iii) Length	of	a	vector

We de�ine the length of a vector as

(9.4)

Before we complete the de�inition of the Hilbert space, we want to point
out that axioms (1) and (2) guarantee the superposition principle (see Sect. 3. 
3) and the probability interpretation (Chap. 4).

(3)	Completeness
As an auxiliary term we introduce the strong	convergence of vectors: A
sequence of vectors fnϵ H  is called to converge to a vector f ϵ H ,

(9.5)

if

(9.6)

(f, g) = 0;

∥f∥ = √(f, f).

limn→∞ fn = f,

limn→∞ ∥fn − f∥ = 0.



From (9.6) follows by the triangle inequality

(9.7)

since

(9.8)

A sequence of vectors fn with the property (9.7) is called Cauchy	sequence.
The limit (9.7) is a necessary but not suf�icient condition for (9.6); e.g. 
(1 + 1/n)n as a Cauchy sequence has no limit in the space of rational
numbers. We therefore require that in H  for every Cauchy sequence of
vectors fn there exists a limit element f ϵ H : completeness	axiom.

(4)	Separability
In contrast to the usual de�inition of a Hilbert space in mathematics, in physics
the additional requirement of separability is requested: In H  there is a �inite
set {N} of vectors fν  with the property, that for every vector f ϵ H  and any 
ϵ > 0 there exists a vector fν0

ϵ{N} that satis�ies the inequality

(9.9)

This completes the de�inition of the Hilbert space H  as required in
quantum theory.

The implications of axioms (3) and (4) become clear when we compare
the Hilbert space H  with a �inite-dimensional, linear unitary vector space 
LN . Axioms (1) and (2) hold for both spaces; for LN  it follows that any
vector γ ϵ LN  can be represented as

(9.10)

with

(9.11)

where the vectors φi, i = 1, 2, … ,N , are orthonormalized. For an ∞-
dimensional vector space one must add axioms 3 and 4 such that each vector

limn,m→∞ ∥fm − fn∥ = 0,

∥fm − fn∥ ≤ ∥fm − f∥ + ∥fn − f∥.

∥f−fν0∥ < ϵ.

γ = ∑N
i=1 ci φi

ci = (φi, γ),



g of the space can be represented by a �inite set of orthogonal vectors fi of the
same space as

(9.12)

with

(9.13)

The (=)sign in (9.12) is to be understood in the sense of equation (9.6) as

(9.14)

Equation (9.14) is equivalent to the completeness	relation 

(9.15)

While axiom (4) ensures that every vector g ϵ H  can be expanded
according to (9.12), (9.14), axiom (3) guarantees that the sequence 
gn ≡ ∑i<n difi does not lead out of H .

Axioms (3) and (4) guarantee the probability	interpretation of
expectation	values (Chap. 6). The concept of convergence used in (9.6) is
precisely tailored to the requirements of quantum theory, since all measurable
quantities have been introduced as scalar products.

9.2	 Schwarz’s	Inequality
For f, g,h ϵ H  we have

(9.16)

Proof
(1) If f or g or both are the neutral element, then (9.16) is correct: the (=)

sign then holds.
(2) If f ≠ 0, g ≠ 0, we decompose (h ϵ H )

(9.17)

g = ∑∞
i=1 difi

di = (fi, g).

limn→∞ ∥g −∑n
i=1 difi∥ = 0.

∥g∥2 = ∑∞
i=1 |di|

2.

|(f, g)| ≤ ∥f∥ ⋅ ∥g∥.

f =
(g,f)

(g,g) g + h.



Then obviously

(9.18)

i.e.

(9.19)

such that

(9.20)

Schwarz’s inequality (9.16) becomes an equality if and only if (in the proof) 
h = 0, i.e. f = ag (parallel vectors).

The triangle	inequality follows from Schwarz’s inequality:

(9.21)

Proof
(1) If ∥f + g∥ = 0 the statement is correct.
(2) Let ∥f + g∥ ≠ 0. Then

(9.22)

the statement follows after division by ∥f + g∥.

9.3	 Realizations	of	H
The abstract Hilbert space H  can be realized in various ways. We give two
examples that are important for quantum theory.

(i) The set of all column vectors
(9.23)

(g,h) = 0,

(f, f) = (
(g,f)

(g,g)
g + h,

(g,f)

(g,g)
g + h) =

|(f,g)|2

(g,g)2 (g, g) + (h,h),

(f, f) ≥
|(f,g)|2

(g,g)
, q. e. d.

∥f + g∥ ≤ ∥f∥ + ∥g∥.

∥f + g∥2 = (f + g, f + g) = (f + g, f) + (f + g, g)

≤ ∥f + g∥ ⋅ ∥f∥ + ∥f + g∥ ⋅ ∥g∥;



with ∞-many complex numbers ci as components, for which

(9.24)

The addition of two column vectors c, d is de�ined as

(9.25)

and the multiplication of a column vector with a complex number α as

(9.26)

Finally, the scalar product is de�ined by

(9.27)

The space thus formed is indeed a Hilbert space: Axiom 1.1 is ful�illed,
because for two complex numbers ci, di the following holds

(9.28)

such that with (9.24)
(9.29)

c =: C =

⎛⎜⎝ c1

c2

c3

.

.

⎞⎟⎠∑∞
i=1 |ci|

2 < ∞.

c + d =

⎛⎜⎝ c1 + d1

c2 + d2

c3 + d3

.

.

⎞⎟⎠αc =: .

⎛⎜⎝αc1

αc2

αc3

.

.

⎞⎟⎠(c, d) = ∑∞
i=1 c

∗
i di.

|ci + di|
2 ≤ (|ci|+|di|)

2 ≤ (|ci|+|di|)
2 + (|ci|−|di|)

2 = 2|ci|
2 + 2|di|

2,



i.e. the sum c + d (de�ined by (9.25)) is an element of the space under
consideration. The remaining requirements 1.2–1.8 are ful�illed trivially. From
(9.27) together with (9.24) it follows that (c, d) is a complex number:

(9.30)

due to (9.24)

(9.31)

and thus

(9.32)

The axioms 2.1–2.5 then are satis�ied trivially. Furthermore, the in�initely
many vectors

(9.33)

whose components all vanish except for a single one (which is chosen as 1),
form a complete, orthonormal basis such that axioms 3. and 4. are ful�illed.

(ii) The set of all complex-valued functions f(r), that are integrable in the
sense of Lebesgue, for which holds:

(9.34)

form a Hilbert space, if we de�ine addition and multiplication with complex
numbers in the usual way and introduce the scalar product by

(9.35)

∑∞
i=1 |ci + di|

2 < ∞,

|c∗
i di|=|ci||di|≤

1
2 (|ci|2+|di|2);

∑∞
i=1|c∗

i di| < ∞

∑∞
i=1 c

∗
i di < ∞.

, , , … ,

⎛⎜⎝1

0

0

.

.

⎞⎟⎠ ⎛⎜⎝0

1

0

.

.

⎞⎟⎠ ⎛⎜⎝0

0

1

0

.

.

⎞⎟⎠∫ d3r |f(r)|2 < ∞

(f, g) := ∫ d3r f ∗(r) g(r).



The scalar product de�ined in (9.35) exists because of (9.34); the proof is
as in example (i). Axioms 1.1–1.8 and 2.1–2.4 are obviously ful�illed. In
contrast, 2.5 only holds, if we consider functions to be equivalent that differ
only on a set of points of measure 0. For the proofs of axioms 3. and 4. we
refer to the mathematical literature.

Remark: Axioms 3. and 4. with the scalar product (9.35) do not hold for
merely continuous functions!

In the space L2(−∞, ∞) de�ined above, there are countably in�inite,
orthonormal systems of functions φi(r); an example are the eigenfunctions of
the harmonic oscillator. We can therefore expand any function f(r) from 
L2(−∞, ∞) as

(9.36)

The (=) sign in (9.36) implies no	pointwise convergence, but convergence
in	the	mean,

(9.37)

The function f(r) and its expansion (9.36) can therefore still differ on a set of
points with measure 0.

The realization of the Hilbert space H  by the space L2(−∞, ∞) just
gives the spatial representation for a particle without spin. If we want to
describe a particle with spin 1/2 or several particles, we need the concept of
the product	space. To simplify the notation we use the

9.4	 Dirac	Notation
We denote a Hilbert vector, that describes a quantum mechanical state, by

(9.38)

We assign a ‘bra vector’ ⟨Ψ| uniquely to each ‘ket vector’ |Ψ⟩ by specifying
that

(i) the ‘ket vector’ a|Ψ⟩(a ϵ C) is assigned to the ‘bra vector’ a∗⟨Ψ|, and
(ii) the sum |Ψ1⟩+|Ψ2⟩ to the ‘bra vector′⟨Ψ1|+⟨Ψ2|.
By (i) and (ii) an antilinear	mapping is de�ined, i.e. for an antilinear

operator O the following holds:

f(r) = ∑∞
i=1 ci φi(r).

limn→∞ ∫ d3r |f(r) −∑n
i=1 ci φi(r)|

2
= 0.

|Ψ⟩ : ′ ket vector′.



O(a|ψ1⟩ + b|ψ2⟩) = a∗O|ψ1⟩+b∗O|ψ2⟩.

Between a ket vector |Ψ1⟩ and a bra vector ⟨Ψ2| a scalar product is
introduced by

(iii) ⟨Ψ2|Ψ1⟩ = (Ψ2, Ψ1).

If the vectors |φν⟩, ν = 1, 2, …, form a complete, orthonormalized basis
in the Hilbert space, then the expansion of an arbitrary vector |Ψ⟩ in this basis
is:

(9.39)

with the expansion coef�icients

(9.40)

Equation (9.39) suggests, that

(9.41)

can be interpreted as the identity	operator in Hilbert space. This is possible
indeed: the mathematical background (keyword: dual spaces H †; |Ψ⟩ϵ H , 
⟨Ψ|ϵ H †; H † ≡ H  in the case of Hilbert spaces) will not be discussed here
explicitly.

9.5	 Product	Spaces
Let the vectors |χ1

i ⟩; i = 1, 2, …, form a complete, orthonormal basis in a
Hibert space H1, |φ2

j⟩ a similar basis in another Hilbert space H2. We now
consider the set of products

(9.42)

which should have the following properties:
(1) The multiplication (9.42) is commutative

(9.43)

|Ψ⟩ = ∑∞
ν=1|φν⟩⟨φν|Ψ⟩

⟨φν|Ψ⟩ = (φν, Ψ).

∑∞
ν=1 |φν⟩⟨φν|= EH ≡ 1H

|Ψ
1,2
k ⟩ =:|χ1

i ⟩|φ
2
j⟩;k =: (i, j),



(2) The multiplication (9.42) is distributive with respect to the addition in 
H1 or H2, if

(9.44)

then

(9.45)

If one declares a scalar product in the space of vectors |Ψ1,2
k

⟩ by (k = (i, j)

, k′ = (i′, j′))

(9.46)

then the product	space spanned by the vectors |Ψ1,2
k

⟩, which we denote by

(9.47)

is also a Hilbert space in which the vectors |Ψ1,2
k

⟩ form a complete,
orthonormal basis.

Examples:
(i) 2	particles	without	spin
Particle 1 is described in a Hilbert space H1, realized by spatial wave

functions χi(r1), which form a complete	orthonormal	system in H1. φj(r2)

is also a complete orthonormal system in the Hilbert space H2 belonging to
particle 2. The product functions

(9.48)

form a complete basis in H1 ⊗H2 in which every wave function of the two-
particle system can be expanded as:

(9.49)

|χ1
i ⟩|φ

2
j⟩ =|φ2

j⟩|χ
1
i ⟩.

|χ1
i ⟩ = λ|χ1

n⟩+λ′|χ1
n′⟩,

|χ1
i ⟩|φ

2
j⟩ = λ|χ1

n⟩|φ
2
j⟩+λ′|χ1

n′⟩|φ2
j⟩.

⟨Ψ1,2
k

|Ψ1,2
k′ ⟩ =: ⟨χ1

i |χ
1
i′⟩⟨φ2

j |φ
2
j′⟩,

H1 ⊗H2,

ψk(r1, r2) =: χi(r1)φj(r2);k =: (i, j),

Ψ(r1, r2) = ∑∞
k=1 ck ψk(r1, r2).



(ii)	Separation	Ansatz
The Ansatz

(9.50)

leads to a decomposition of the Hilbert space H , to which the vectors ψ(r)
belong, i.e.

(9.51)

(iii)	Particles	with	spin	1/2
The Hilbert space of the spinors introduced in Chap. 6.5

(9.52)

can be understood as a product space of the Hilbert space of the pure spatial
functions Ψu/d(r;t) and the space of the pure spin states, built up from the
two unit vectors

(9.53)

9.6	 Improper	Hilbert	Vectors
In Sect. 6. 3 we have seen that the momentum operator has a continuous
spectrum and the eigenfunctions are plane waves:

(9.54)

The plane waves are orthogonal for different k, but not normalizable. They
are nevertheless useful because of their completeness: according to Fourier’s
integral	theorem, every square-integrable function ψ(x;t) can be
represented as

(9.55)

ψ(r) = ψ1(x)ψ2(y)ψ3(z)

H = Hx ⊗Hy ⊗Hz.

Ψ(r;t) = Ψu(r;t)( ) + Ψd(r;t)( )
1

0

0

1

( ), ( ).
1

0

0

1

p exp (ik ⋅ r) = ħk exp (ik ⋅ r).

ψ(x;t) =lima→∞
1

√(2π
∫ a

−a
exp (ikx)

~
ψ(k;t) dk,



(cf. Sect. 6. 3). After extension to the 3-dimensional case, we write for (9.55) in
Dirac notation brie�ly (including the formation of the limit) as

(9.56)

where the improper vector |k⟩ corresponds to the plane wave 
(2π)

−3/2
exp (ik ⋅ r) ≡ ⟨r|k⟩ and

(9.57)

is the Fourier transform of the spatial wave function ψ(r), which describes the
abstract Hilbert vector |ψ⟩ in spatial representation. We write the
completeness relation in analogy to (9.41) as

(9.58)

The ‘normalization’ of the improper vectors |k⟩ is

(9.59)

Similar to the momentum, but mathematically a little more subtle, is the
eigenvalue problem of the position operator. The ‘eigenfunctions’ of the
operator r̂ for the eigenvalue r′ are δ-distributions

(9.60)

This system of δ-distributions is complete, since every wave function ψ(r)
has the integral representation

(9.61)

according to the de�inition of the δ- distribution. If |r′⟩ is the improper vector,
which is assigned to the distribution δ3(r − r′) with a �ixed r in Dirac
notation, then (9.61) is written in Dirac notation as

(9.62)

|ψ⟩ = ∫ d3k |k⟩⟨k|ψ⟩,

⟨k|ψ⟩ =
~
ψ(k)

∫ d3k |k⟩⟨k| = 1H .

⟨k|k′⟩ = δ3(k − k′).

r̂ δ3(r − r′) = r′ δ3(r − r′).

ψ(r) = ∫ d3r′ δ3(r − r′)ψ(r′)



Since

(9.63)

(9.61) follows from (9.62) after forming ⟨r|ψ⟩. We can therefore identify

(9.64)

Spatial wave functions ψ(r) or their Fourier transforms ~
ψ(k) are thus

expansion coef�icients of a state vector |ψ⟩ in the basis of the position
eigenvectors |r⟩ or the momentum eigenvectors |k⟩.

If one wants to avoid the use of distributions, one must give up the sharp
localization in momentum or position space inherent in the improper vectors 
|k⟩ or |r⟩. Instead of plane waves one uses wave	packets; the use of the plane
waves in the asymptotics of scattering states always has to be understood in
this sense. From the δ-distribution, e.g. a Gauss function of small but �inite
width is obtained. An alternative is to restrict the position space (or
momentum space) to a very large but �inite normalization	volume and to
introduce suitable boundary conditions (e.g. periodic). This provides a
discrete spectrum and normalizable functions.

In summarizing this chapter we have introduced the concept of abstract
states in a Hilbert	space H  and speci�ied the formal requirements.
Furthermore, we have introduced the Dirac notation, which is particularly
suited for many-body problems, and speci�ied the eigen-vectors for
momentum and position in H .

|ψ⟩ = ∫ d3r′ |r′⟩⟨r′|ψ⟩ = ∫ d3r′ |r′⟩ψ(r′).

⟨r|r′⟩ = ∫ d3r′′ δ3(r − r′′)δ3(r′ − r′′) = δ3(r − r′),

⟨r|ψ⟩ ≡ ψ(r).



(1)
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In this chapter we introduce linear operators in H  and their respective domains.
Physical observables will be identi�ied with matrix-elements of self-adjoint
operators in H  and their spectra and eigenstates will be investigated. This
concept will be extended to operators in product spaces. As an example we will
calculate the coupling of angular momenta in H  and the separation of the center
of mass and relative motion. Furthermore, the exchange symmetry for identical
particles will be studied and lead to a separation of symmetric and anti-symmetric
many-body states, i.e. Bose and Fermi systems.

10.1	 Heuristic	Introduction
In the context of the quantum theory of a particle we have assigned operators to
classical observables using a quantization rule. In the case of spin, which has no
analogue in classical physics, we have introduced spin	operators in the form of 2
× 2 matrices with characteristic commutation rules based on the orbital angular
momentum.

In order to be able to interpret the expectation values of such operators as
statistical averages, these operators had to be hermitean (i.e. only have real
eigenvalues, which represent the possible measured values) and have a complete
set of eigenfunctions. The discussion of the hermiticity of momentum and orbital
angular momentum has shown that for the complete determination of an operator,
its domain	of	de�inition and its domain	of	image are also important. We will
clarify these concepts again using the operators x and px. In the space L2(−∞, ∞)
of square-integrable functions, x is applicable to every element ψ(x) of the space
(domain of de�inition); the image functions xψ(x) (domain of image), however, do
not always belong to L2(−∞, ∞), e.g. functions ψ(x), which drop asymptotically
as 1/x. On the other hand, px is only applicable to differentiable functions 
ϵ L2(−∞, ∞); the image functions −iħ∂/∂x ψ(x) also do not always belong to 
L2(−∞, ∞). This problem of the domain of de�inition and the domain of image

https://doi.org/10.1007/978-3-031-95521-1_10


has already been discussed in connection with the uncertainty relation (see Sect. 6. 
4).

10.2	 Basic	Concepts
An operator (mapping) in Hilbert space H  is de�ined by a mapping rule A, a
domain DA ⊆ H  and an image domain BA ⊆ H , which consists of all elements

(10.1)

if f runs through the entire domain DA, i.e. ∀fϵDA.
In quantum theory, due to the superposition principle, only the class of linear

operators is of interest, which is de�ined by the fact that DA is a linear manifold
and for any f1, f2 ϵ DA and any complex numbers a1, a2 the following holds:

(10.2)

10.3	 Calculation	Rules
1. Equality: 2 operators A and B are called to be equal if

(10.3)

and

(10.4)

2. Products: Let two operators be de�ined by A, DA, BA and by B, DB, BB.
Then we can execute the mapping AB in the order AB(= �irst B, then A) one after
the other, if BB and DA have common elements. The domain of the product with
the mapping AB is thus the set of all f ϵ DB for which Bfϵ DA.

This somewhat complex de�inition already shows that operators do not
commute in general. The de�inition of the commutator of operators is only simple,
if the domain of both operators is the entire Hilbert space H . Commutability then
means

(10.5)

f ′ = Af

A(a1f1 + a2f2) = a1Af1 + a2Af2.

A = B

DA = DB.

AB = BA.



In contrast, operator multiplication is always associative.
Example: Operators that can be represented by (∞-dimensional) matrices in

general do not commute, since the matrix multiplication is not commutative;
however, it is always associative.

3. Addition: a, b are arbitrary complex numbers; DA, DB are the domains of
the operators A, B. Then it is declared

(10.6)

for all f from the intersection DA⋂DB. The addition is commutative and
associative.

10.4	 Linear	Operators	in	Product	Spaces
In H1 a linear operator is de�ined by the rule A1 and the domain DA1 = H1,

(10.7)

likewise in H2 :

(10.8)

The application of A1 to elements of the product space H1 ⊗ H2 should then
imply:

(10.9)

and correspondingly

(10.10)

From (10.9) and (10.10) it follows that—when forming a product—the order of
the operators is unimportant: operators	from	different	Hilbert	spaces
commute.

In (10.9) and (10.10) we have de�ined the operation of the operators A1 and 
B2 in the product space operational, as explained in H1 and H2. In principle, one
must extend the operators—declared in H1, H2—to operators in the product
space H1 ⊗H2, de�ined by the commutative direct	product (Kronecker product)

(10.11)

(aA + bB)f = aAf + bBf

A1|χ1
i ⟩ =|χ

′1
i ⟩; |χ1

i ⟩ and |χ
′1
i ⟩ϵ H1;

B2|φ2
j⟩ =|φ

′2
j ⟩; |φ2

j⟩ and |φ
′2
j ⟩ϵ H2.

A1|χ1
i ⟩|φ

2
j⟩ =|χ

′1
i ⟩|φ2

j⟩

B2|χ1
i ⟩|φ

2
j⟩ =|χ1

i ⟩|φ
′2
j ⟩.

A1 ⊗ E2; E1 ⊗ B2,



where E1, E2 are the unit operators in H1 and H2.
Example: In Sect. 6. 5 the position operator in the space of spinors was

described by

(10.12)

10.5	 The	Inverse	Operator
We have introduced the concept of the inverse operator in Sect. 8. 2 using the
example of the Green’s function. We now de�ine in general:

The inverse	operator of an operator A, DA, BA is de�ined by the domain 
DA−1 = BA and the rule A−1(Af) = f for all f ϵ DA.

The inverse operator exists if and only if different images Afϵ BA belong to
different f ϵ DA; if it exists, it is unique.

As an example we consider Az := H − z de�ined in H , where H is the
Hamiltonian of a particle without spin. Az has an inverse for all z with the
exception of values for which

(10.13)

i.e. with the exception of the (discrete and (or) continuous) eigenvalues of H. In
particular, for z with I(z) ≠ 0, Az always has an inverse.

The following statements are important for practical calculations:
1. If A is de�ined in DA = H  and if A−1 exists, then

(10.14)

thus

(10.15)

where EH  is the unit operator in H . From (10.14) we do not directly get

(10.16)

Only if DA = BA = H  we obtain that
(10.17)

r ⊗ E2 = ( ).
r 0

0 r

Hψ = zψ, ψ ϵ H ,

A−1Af = f ∀f ϵ DA = H ,

A−1A = EH ,

AA−1 = EH .

AA−1 = A−1A = EH .



2. If inverse operators for two operators A, B with domains DA, DB and AB are
de�ined, then the product also has an inverse and is

(10.18)

10.6	 The	Adjoint	Operator
For a (linear) operator A with domain DA—for the image domain, in the following
it is only necessary that BA ⊆ H —where DA is dense in H  (see de�inition
(10.23)), we de�ine an adjoint operator A† with domain DA†  as follows:

The domain DA†  is given by the set of all g ϵ H  for which a ~g ϵ H  exists
such that

(10.19)

The mapping rule should be

(10.20)

Thus for any f ϵ DA, g ϵ DA†  the relationship holds

(10.21)

or in Dirac notation

(10.22)

Due to property 2. of the scalar product in H  and the linearity of A on DA, it
follows that A† on DA†  is linear. Since DA was assumed to be dense in H , i.e. DA

dense in H <=> ∀g ϵ H  there is a sequence fn ϵ DA with

(10.23)

A† is uniquely de�ined on DA† .

(AB)−1 = B−1A−1.

(g,Af) = (~g, f) ∀f ϵ DA.

A†g = ~g.

(g,Af) = (A†g, f) = (f,A†g)
∗

⟨g|A|f⟩ = ⟨f|A†|g⟩∗.

limn→∞ ∥g − fn∥ = 0,



Proof If for a �ixed g ϵ H  two elements ~g, ~g′ϵ H  exist with the properties
(10.19) and (10.20), then

(10.24)

and for Δ~g = ~g − ~g′ we get

(10.25)

for all f ϵ DA. But this cannot be the case, since DA was assumed to be dense in 
H !

The domains of all operators in quantum theory are dense in H , such that
no dif�iculties arise in de�ining adjoint operators.

10.7	 Self-Adjoint	Operators
Are particularly important for quantum theory, since observables are represented
in quantum theory by self-adjoint	operators.

We call an operator self-adjoint if

(10.26)

and

(10.27)

Then follows

(10.28)

or in Dirac notation

(10.29)

Operators with the property (10.28) we have denoted by hermitian in Chap. 5
without regards to their domain of de�inition. According to the de�inition above,
self-adjoint operators have the essential additional requirement that their domain
of de�inition is dense in H . This additional requirement guarantees that the (real)
spectrum of self-adjoint operators is complete (without proof). We can therefore

(~g, f) = (~g′, f)

(Δ~g, f) = 0

DA = DA†

Af = A†f ∀f ϵ DA.

(g,Af) = (Ag, f) ∀f, g ϵ DA

⟨g|A|f⟩ = ⟨f|A|g⟩∗.



represent physical observables by self-adjoint operators, since this class of
operators has the properties necessary for the statistical interpretation of
expectation values.

We now turn to the eigenvalue problem of self-adjoint operators A,

(10.30)

and �irst consider the case of a purely discrete spectrum with eigenvalues ai and
eigenvectors |φi⟩. As in Chap. 6, one proves that the eigenvalues ai are real and
eigenvectors are orthogonal for different eigenvalues. The completeness of |φi⟩—
which are assumed to be orthonormalized in the following—can be expressed (cf.
(9. 41)) in Dirac notation as

(10.31)

We can also give a representation for A in analogy to (10.31). The expectation value
of A in an arbitrary state |ψ⟩,

(10.32)

we insert the unit operator EH  before and after A in the form (10.31)

(10.33)

= ∑
i

⟨ψ|φi⟩ai⟨φi|ψ⟩ = ∑
i

ai |⟨φi|ψ⟩|2

due to the orthonormalization ⟨φi|φj⟩ = δij and ⟨φi|ψ⟩ = ⟨ψ|φi⟩
∗ according to

the de�inition of the scalar product. From (10.33) we can read off the

spectral	representation of A:

(10.34)

A corresponding spectral representation is also possible if the spectrum is
continuous or partly discrete and partly continuous. In (10.34) the summation
then has to be replaced (in whole or in part) by an integration. For the general case
we obtain

(10.35)

A|φ⟩ = a|φ⟩,

∑i |φi⟩⟨φi|= EH .

⟨A⟩ =: ⟨ψ|A|ψ⟩,

⟨ψ|A|ψ⟩ = ∑i∑j⟨ψ|φi⟩⟨φi|A|φj⟩⟨φj|ψ⟩

A = ∑i ai |φi⟩⟨φi|.

∑i |φi⟩⟨φi|+ ∫ dν |φν⟩⟨φν|= EH



(10.36)

Examples:
1. The z component	of	the	spin:
We form the dyadic products (with eigenvalues ±ħ/1):

(10.37)

=
ħ
2
[( ) − ( )] =

ħ
2
( ).

2. The	momentum	operator:
The spectral representation of the momentum operator

(10.38)

yields as expectation value in an arbitrary (normalizable) state |ψ⟩

(10.39)

as we already know from Sect. 6. 3. (Note again that according to Axiom 2.1 
⟨ψ|k⟩ = ⟨k|ψ⟩∗. )

10.8	 Projection	Operators
An important class of self-adjoint operators in Hilbert space H  are the projection
operators (≡ projectors). We consider a subspace Hr ⊂ H  spanned by the
orthonormal vectors φi, i = 1, 2, … , r; then we de�ine the projector, which
projects vectors from H  onto the subspace Hr, by

(10.40)

or in Dirac notation

(10.41)

i.e. in short:

(10.42)

∑i ai |φi⟩⟨φi|+ ∫ dν a(ν) |φν⟩⟨φν|= A.

ħ
2
( )(1 0) − ħ

2
( )(0 1) = Sz

1

0

0

1

1 0

0 0

0 0

0 1

1 0

0 −1

p = ∫ d3k ħk |k⟩⟨k|

⟨p⟩ = ∫ d3k ħk⟨ψ|k⟩⟨k|ψ⟩ = ∫ d3k ħk
~
ψ∗(k)

~
ψ(k),

Prf = ∑r
i=1 φi (φi, f) ∀f ϵ H

Pr|f⟩ = ∑r
i=1|φi⟩⟨φi|f⟩ ∀f ϵ H ;

Pr = ∑r
i=1 |φi⟩⟨φi|.



The de�inition above might give the impression that the de�inition of Pr

depends on the choice of the basis of φi. But this is not the case: if χm, 
m = 1, … , r is another orthonormal basis in Hr, then we can use the expansion

(10.43)

to express Pr in terms of |χm⟩

(10.44)

If we consider the inverse of (10.43)

(10.45)

then the orthonormalization of |χm⟩

(10.46)

provides the independence from the basis, i.e.

(10.47)

It was already mentioned above that the projectors are also self-adjoint operators.
To prove this, since the Pr are de�ined in the entire Hilbert space H , we only need
to check whether

(10.48)

for all f, g ϵ H . This is indeed the case since

(10.49)

We thus have

(10.50)

The eigenvalue spectrum of Pr is particularly simple. We �irst prove the
idempotence 

(10.51)

|φi⟩ = ∑r
m=1|χm⟩⟨χm|φi⟩

Pr = ∑r
i,m∑

r
m′=1 |χm′⟩⟨χm′ |φi⟩⟨φi|χm⟩⟨χm|.

|χm⟩ = ∑r
i=1|φi⟩⟨φi|χm⟩,

∑r
i=1⟨χm′ |φi⟩⟨φi|χm⟩ = δmm′

Pr = ∑r
m=1 |χm⟩⟨χm|.

⟨f|Pr|g⟩ = ⟨g|Pr|f⟩
∗

∑r
i=1⟨f|φi⟩⟨φi|g⟩ = ∑r

i=1 ⟨φi|f⟩
∗⟨g|φi⟩

∗ = ∑r
i=1 (⟨g|φi⟩⟨φi|f⟩)

∗.

Pr = P
†
r .



For any vector |f⟩ϵ H  the following holds

(10.52)

=
r

∑
i=1

|φi⟩⟨φi|f⟩ = Pr|f⟩,

since ⟨φj|φi⟩ = δij by assumption. With (10.51) it follows from the eigenvalue
equation

(10.53)

since for the eigenvalues er we have

(10.54)

Every operator P de�ined in the entire Hilbert space H  with the properties
(10.50) and (10.51) is a projector, and can therefore be written in the form (10.42).
Such an operator P decomposes the entire Hilbert space H  into two mutually
orthogonal subspaces. To prove it, we use the identity:

(10.55)

for any vector |f⟩ϵ H . With the notation

(10.56)

we obtain with (10.50) and (10.51)

(10.57)

Mathematical	addition: If two projectors P1, P2 are given in H , the question
arises if the sum P1 + P2 and the product P1P2 are also projectors. The result is:

(i) P1P2 is a projector if and only if

(10.58)

P 2
r = Pr.

P 2
r |f⟩ = Pri∑

r
i=1 |φi⟩⟨φi|f⟩ = ∑r

i=1∑
r
j=1|φj⟩⟨φj|φi⟩⟨φi|f⟩

Pr|f⟩ = P 2
r |f⟩ = er|f⟩,

e2
r = er => er = 0, 1.

|f⟩ ≡ P |f⟩ + (EH − P)|f⟩

P |f⟩ =|f1⟩; (EH − P)|f⟩ =|f0⟩,

⟨f1|f0⟩ = ⟨f1|P(EH − P)|f0⟩ = 0.

P1P2 = P2P1,



since with (10.58)

(10.59)

such that (10.51) is satis�ied, and from

(10.60)

also (10.50) follows (whereby we exploit the fact that P1, P2 are de�ined on the
whole H ). The condition (10.58) is also necessary; the proof is trivial. If P1P2 is a
projector, then it obviously projects onto the intersection HP1 ⋂HP2 ; P1P2 = 0
then implies orthogonality of HP1  and HP2 .

(ii) P1 + P2 is a projector if and only if P1P2 = 0;

it projects onto the direct sum HP1
⊕HP2

.
The physical meaning of projectors is explained by two examples:
1. We want to analyze the state |ψ⟩ of a particle according to the orbital angular

momentum l, i.e. ask the question whether or with which probability a certain
orbital angular momentum l is contained in |ψ⟩. This question is answered by the
projector

(10.61)

where |αlm⟩ are eigenvectors of l2, lz with eigenvalues l, m, while α is the radial
quantum number. The sum is taken over all m, α that are possible for a given l. The
expectation value of Pl in the state |ψ⟩

(10.62)

has exactly the form of a measurement probability. The measured values are 0 or 1
and state, that in each individual experiment the answer to the question posed
above is ‘no’ or ‘yes’.

2. We consider two particles 1, 2 described by a wave function Ψ(1, 2), where
1, 2 stands for all the degrees of freedom (position, spin, possibly isospin, color ...)
of the particles 1, 2. If they are identical particles (bosons or fermions), then the
wave function must not change (bosons) or only in sign (fermions) with respect
to particle exchange P12,

(10.63)

(P1P2)2 = P 2
1 P

2
2 = P1P2,

(P1P2)† = P
†
2P

†
1 = P2P1 = P1P2

Pl = ∑l
m=−l∑α(l)|αlm⟩⟨αlm|,

⟨ψ|Pl|ψ⟩ = ∑l
m=−l∑α(l) |⟨ψ|αlm⟩|2

P12Ψ(1, 2) = Ψ(2, 1) = ±Ψ(1, 2),



since double exchange reproduces the original state,

(10.64)

For the case of independent particles, eigenfunctions for the Hamiltonian
operator H(1, 2) = H(1) + H(2) are now product functions, φ(1)χ(2). Such a
product function will, however, generally not have the property (10.63), but it can
be decomposed into a symmetric and an antisymmetric part by projectors S
and A  with the properties:

(10.65)

A φ(1)χ(2) =
1

√2
{φ(1)χ(2) − φ(2)χ(1)}.

Examples 1 and 2 show that projectors measure	properties of quantum
systems, e.g. the property of having a certain angular momentum or a certain
symmetry with respect to the exchange of identical particles.

10.9	 Unitary	Operators
An operator U in Hilbert space H  is called unitary, if its domain and its image
domain is the whole Hilbert space H ,

(10.66)

and if the mapping rule U is:

(10.67)

Unitary operators are linear, as follows immediately from the properties of the
scalar product with (10.67). They also always have an inverse

(10.68)

P 2
12 = EH2 .

S φ(1)χ(2) =: 1
√2

{φ(1)χ(2) + φ(2)χ(1)};

DU = H = BU ,

(Uf,Ug) = (f, g) ∀f, g ϵ H .

U −1 = U †,



since U is de�ined in the whole H , one gets

(10.69)

since

(10.70)

which directly gives (10.68).
Two examples of unitary operators are translations,

(10.71)

and rotations

(10.72)

with j = l + s. The domains of de�inition of p and j do not cover the entire
Hilbert space, but are dense in H . This is enough to achieve a continuation of the
de�initions (10.71) and (10.72) for the entire Hilbert space H . The rotations and
translations are linear and norm-preserving, such that (10.67) is satis�ied. We will
see later that the time translation operator is also unitary. Ultimately, every
transition from one representation to an equivalent one is described by a unitary
mapping.

Example: The transition from the spatial representation to the momentum
representation by Fourier transformation is a unitary mapping; likewise the half-
side Fourier transformation from the spatial representation or momentum
representation to the phase-space representation (Wigner	transformation) 

(10.73)

or

(10.74)

(Uf,Ug) = (U †Uf, g) = (f, g) ∀f, g ϵ H ,

U †U = EH = UU †,

τ(a) =exp {− i
ħ a ⋅ p}

R(φ) =exp {− i
ħ φ ⋅ j}

f(r, p;t) = (2πħ)−3/2 ∫ d3 s exp (− i
ħ p ⋅ s) ψ(r + s

2 ;t)ψ
∗(r − s

2 ;t)

f(r, p;t) = (2πħ)−3/2 ∫ d3q exp ( i
ħ q ⋅ r)

~
ψ(p + q

2 ;t)
~
ψ∗(p − q

2 ;t)



for square-integrable wave functions ψ(r;t) = ⟨r|ψ⟩, which allows for a simple
transition to the classical limit.

The measurable properties of an observable A must be independent on the
speci�ic representation or the choice of a speci�ic coordinate system. This requires
a special transformation behavior of observables with respect to unitary mappings.
To this aim we transform the expectation value of an observable A in an arbitrary
state |ψ⟩, taking into account (10.70) as follows:

(10.75)

From (10.75) we get

(10.76)

It is easy to check that A and A′ have the same spectrum.

10.10	 Realizations	of	Linear	Operators	in	H
In line with the vectors of the abstract Hilbert space the linear operators can also
be realized (represented) in different ways. Important examples are:

(1) In the C-representation, linear operators are represented by ∞-
dimensional matrices. They act on the column vectors introduced in (9. 23) in the
same way as �inite matrices on �inite column vectors. If one represents g ϵ DA by
the column vector

(10.77)

correspondingly f ϵ BA by
(10.78)

⟨ψ|A|ψ⟩ = ⟨ψ|U †U A U †U |ψ⟩ = ⟨ψ′|U A U †|ψ′⟩ = ⟨ψ′|A′|ψ′⟩.

A′ = U A U †.

g = ,

⎛⎜⎝g1

g2

g3

.

.

⎞⎟⎠



the mapping

(10.79)

in matrix representation is

(10.80)

If the operator in question is de�ined in the entire Hilbert space H , then all the
calculation rules apply as de�ined for �inite matrices. If, on the other hand, the
domain of de�inition is not the entire Hilbert space H , then one must be cautious!
To illustrate this, we consider the commutator

(10.81)

which in matrix representation is:

(10.82)

Now, for �inite matrices the trace of a product is invariant with respect to cyclic
permutations of the factors. According to this rule, after formation of the trace in
(10.82) the left side of the resulting equation should disappear, whereas the right
side obviously diverges!

For an operator A with domain DA = H , a matrix representation can always
be obtained: we choose a complete, orthonormalized system of vectors 
|φi⟩, i = 1, 2, … in H  and form

(10.83)

If DA ≠ H , caution is again necessary! For the physically interesting operators,
however, no dif�iculties arise, since DA is always dense in H .

Examples: The domains of x, p do not enclose the entire Hilbert space H , but
are dense in H . If one chooses the eigenvectors of the harmonic oscillator as the

f = ,

⎛⎜⎝f1

f2

f3

.

.

⎞⎟⎠f = Ag

fi = ∑∞
j=1 Aijgj i = 1, 2, … .

xp − px = iħEH ,

∑∞
k=1(xjk pkl − pjk xkl) = iħδjl.

⟨φi|A|φj⟩ =: Aij.



basis, then this complete system of vectors is contained in the domains of x, p. One
can therefore represent x, p by the following matrices:

(10.84)

and

(10.85)

as can be easily veri�ied with

x = ( ħ
2mω

)
1/2

(a + a†) and p = i(mωħ
2

)
1/2

(a† − a).

The eigenvalue problem (10.30) is equivalent to diagonalizing the matrix Aij

using a unitary transformation. The matrix Ukl has to be determined, for which

(10.86)

We will present a practical approximation method in the form of a
diagonalization of Aij in a �inite-dimensional subspace elsewhere.

(2) Spatial	representation
We obtain the spatial representation of an operator A de�ined in all H  by

considering the scalar product

x ≡ ( ħ
2mω

)
1/2

⎛⎜⎝ 0 √1 0 0 0 .

√1 0 √2 0 0 .

0 √2 0 √3 0 .

0 0 √3 0 √4 .

0 0 0 √4 0 .

. . . . . .

⎞⎟⎠p ≡ i( mωħ
2 )

1/2

⎛⎜⎝ 0 −√1 0 0 0 .

√1 0 −√2 0 0 .

0 √2 0 −√3 0 .

0 0 √3 0 −√4 .

0 0 0 √4 0 .

. . . . . .

⎞⎟⎠∑i,j UkiAijU
†
jl

= alδkl.



(10.87)

where |r⟩ is the improper position eigenvector and |ψ⟩ is an arbitrary normalized
Hilbert vector. If we write the identity in the form

(10.88)

in (10.87), then

(10.89)

Thus A in general is represented in position space by a nonlocal operator

(10.90)

The local potentials V (r) introduced in Chap. 4 are a practical exception.
Equivalent to this is a position- and momentum-dependent operator, which we
obtain from (10.89) by using

(10.91)

Then

(10.92)

and ~
A(r, p) is the position- and momentum-dependent operator we are looking

for.
Special cases are r and p themselves; e.g. for the position operator rOp. follows

from (10.89)

(10.93)

In the spatial representation, the position operator simply means ’multiplication
by r’. The momentum operator, according to the derivation of (10.91), has the well-
known form

p = −iħ∇r.

(3) Momentum	representation
In analogy to (2) we form

(10.94)

⟨r|A|ψ⟩,

EH = ∫ d3r′ |r′⟩⟨r′|

∫ d3r′⟨r|A|r′⟩⟨r′|ψ⟩ =: ∫ d3r′ A(r, r′) ψ(r′).

∫ d3r′ A(r, r′).

ψ(r′) =exp ( i
ħ (r − r′) ⋅ p)ψ(r).

∫ d3r′ A(r, r′)ψ(r′) =
~
A(r, p) ψ(r),

⟨r|rOp.|Ψ⟩ = ∫ d3r′⟨r|rOp.|r′⟩⟨r′|ψ⟩ = ∫ d3r′ r′ δ3(r − r′)ψ(r′) = r ψ(r).

⟨k|A|ψ⟩ = ∫ d3k′ ⟨k|A|k′⟩⟨k′|ψ⟩ = ∫ d3k′ ~
A(k, k′)

~
ψ(k′)



and obtain with

(10.95)

the momentum representation of the operator A. Here the momentum operator
has the simple form ’multiplication by p = ħk’, while the position operator has the
form

(10.96)

as is easily con�irmed by Fourier transformation.
(4) General	uncertainty	relation
Let A on DA and B on DB be two self-adjoint operators. Then AB is de�ined on 

DA⋂BB =: DAB. On DAB⋂DBA the commutator

(10.97)

is de�ined and C is a self-adjoint operator, too. We now want to prove that for all 
ψ ϵ DC  the following holds:

(10.98)

where ΔA and ΔB are the mean square �luctuations of A and B in the state ψ,
respectively.

To prove (10.98) we introduce

(10.99)

such that

(10.100)

For any real number β we then have

(10.101)

If we use the self-adjointness of A, B in the brackets {. . . }, then we obtain with
(10.100):

(10.102)

∫ d3k′ ~
A(k, k′)

iħ∇p ≡ i∇k,

[A,B] = iC

ΔA ΔB ≥ 1
2 |⟨ψ|C|ψ⟩|,

A′ = A − ⟨A⟩; B′ = B − ⟨B⟩,

⟨A′2⟩ = ΔA2; ⟨B′2⟩ = ΔB2; [A′,B′] = [A,B].

0 ≤ ∥(A′ + iβB′)ψ∥2 = ∥A′ψ∥2 + β2∥B′ψ∥2

+iβ{(A′ψ,B′ψ) − (B′ψ,A′ψ)}.



The right-hand side in (10.102) cannot have two real zeros in β. The discriminant
condition

(10.103)

proofs the claim (10.98).
Based on the considerations above about the domains of de�inition of A, B and C

it is clear that (10.98) does not apply universally to arbitrary Hilbert vectors ψ.
Typical examples have already been discussed in Sect. 6. 4. The proof above is valid
for position and momentum, since with ψ, xψ is also differentiable again and
belongs to Dp if ψ ϵ Dp and vice versa the asymptotic drop required by the
elements of Dx is not weakened by differentiation. It is therefore

(10.104)

A counterexample is the false relation ΔlzΔφ ≥ ħ/2. The angular momentum
operator lz is only self-adjoint in the space of periodic functions

(10.105)

Then φ ψ(r,ϑ,φ) does not belong to the domain Dlz  on which lz is self-adjoint.

10.11	 Coupling	of	Angular	Momenta
The problem of the coupling of angular momenta can occur in two forms:

1.	Coupling	of	the	angular	momenta	of	two	different	particles, e.g. two
atomic electrons outside closed shells. In order to calculate the total angular
momentum of the electron shell, the angular momenta of the two electrons must
be ‘added’ (in Hilbert space).

2.	Coupling	of	the	spin	and	the	orbital	angular	momentum	of	a	single
particle for the case of a strong spin-orbit interaction (which follows naturally
from the relativistic theory of electrons).

We can treat both cases in a uni�ied manner, since the rules for angular
momentum coupling depend only on the angular momentum commutation rules.

Since the angular momenta j1, j2—to be coupled—commute,

(10.106)

we can �ind the product states,

0 ≤ ΔA2 + β2ΔB2 + iβ⟨ψ|[A,B]|ψ⟩.

ΔA2ΔB2 − { i
2 ⟨Ψ|[A,B]|ψ⟩}2 = ΔA2ΔB2 − { 1

2 ⟨Ψ|C|ψ⟩}2 ≥ 0

Dxp = Dpx = Dx⋂Dp.

ψ(r,ϑ,φ) = ψ(r,ϑ,φ + 2π).

[j1, j2] = 0,



(10.107)

which are simultaneous eigenstates of j2
1, j1z with eigenvalues j1, m1 and of j2

2, j2z

with eigenvalues j2, m2, where α stands for the remaining quantum numbers
characterizing the product state. We are looking for the eigenstates

(10.108)

of the total angular momentum

(10.109)

From the commutation rules for the components of j1 and j2 it follows directly that
j also satis�ies the usual angular momentum commutation rules. Since

(10.110)

the states |α j m⟩ can be represented as linear combinations of the product states
|αj1m1j2m2⟩ for �ixed j1, j2, i.e.

(10.111)

The expansion coef�icients (Clebsch-Gordon	coef�icients) do not depend on
the index α. We now have to �ind out which values j, m are possible for a given j1, 
j2 and how the coef�icients ⟨j1m1j2m2|jm⟩ can be calculated.

We �irst note that |αj1m1j2m2⟩ automatically is an eigenstate for jz with
eigenvalue m = m1 + m2:

(10.112)

= (m1 + m2)|αj1m1j2m2⟩ = m|αj1m1j2m2⟩.

The following table lists the possible m values and their degeneracy Nm:
(10.113)

|α j1 m1;j2 m2⟩ = |α⟩|j1m1⟩|j2m2⟩,

|α j m⟩

j = j1 + j2.

[j2, j2
1] = [j2, j2

2] = 0,

|α j m⟩ = ∑m1,m2
|αj1m1j2m2⟩⟨j1m1j2m2|jm⟩.

jz|αj1m1j2m2⟩ = (j1z + j2z)|αj1m1j2m2⟩



From Chap. 9 we know that the eigenvalues of j2 have the form j(j + 1) with 
j = 0, 1/2, 1, 3/2, 2, 5/2, … as possible values for j; for every j-value there are 
(2j + 1) values for m. We now show that eigenstates for j2 can be constructed
from the states |αj1m1j2m2⟩. To this aim we �irst show that |αj1j1j2j2⟩ is an
eigenstate of j2 and write

(10.114)

with

(10.115)

and note

(10.116)

and

(10.117)

Then
(10.118)

m Nm

− − − − − − − − − − −− − − − − − − − − −−

j1 + j2 1

j1 + j2 − 1 2

j1 + j2 − 2 3

. .

j1 − j2 2j2 + 1

. .

−(j1 − j2) 2j2 + 1

. .

−j1 − j2 3

−j1 − j2 + 1 2

−j1 − j2 1

j2 = j2
1 + j2

2 + 2j1 ⋅ j2 = j2
1 + j2

2 + (j+
1 j

−
2 + j+

2 j
−
1 ) + 2j1zj2z

j±
1 = j1x ± i j1y j±

2 = j2x ± i j2y

j+
1 |αj1j1j2m2⟩ = 0

j+
2 |αj1m1j2j2⟩ = 0.



We thus have found one of the j-values that actually occurs to be j1 + j2; according
to (10.113), there are no other j-values for m = j1 + j2. The states 
|α j = (j1 + j2) m = (j1 + j2)⟩ and |αj1j1j2j2⟩ therefore are the same (except
for a phase). Using the usual phase convention, we set

(10.119)

Next, we consider m = j1 + j2 − 1 (see (10.113)); there the possible product
states are

(10.120)

We now are looking for the linear combination of the states (10.120), that are also
eigenstates of j2. One of them can be found by applying j− = j−

1 + j−
2 :

(10.121)

=
[j−

1 + j−
2 ]

√2√j1 + j2

|α(j1 + j2)(j1 + j2)⟩

= √ j1

j1 + j2
|αj1(j1 − 1)j2j2⟩+√

j2

j1 + j2
|αj1j1j2(j2 − 1)⟩.

Apart from this eigenstate for j = j1 + j2 and m = j1 + j2 − 1, according to
table (10.113) there is exactly one further eigenstate with j = j1 + j2 − 1 for the
same value m; it must be orthogonal to (10.121). The only linear combination,
which can be formed from (10.120) and is orthogonal to (10.121), can be speci�ied
directly (except for a phase factor):

(10.122)

j2|αj1j1j2j2⟩ = [j1(j1 + 1) + j2(j2 + 1) + 2j1j2]|αj1j1j2j2⟩

= (j1 + j2)(j1 + j2 + 1)|αj1j1j2j2⟩.

|α j = (j1 + j2) m = (j1 + j2)⟩ = |αj1j1j2j2⟩.

|αj1(j1 − 1)j2j2⟩ and |αj1j1j2(j2 − 1)⟩.

|α j = (j1 + j2) m = (j1 + j2 − 1)⟩ = j−

√2√(j1+j2)
|α(j1 + j2)(j1 + j2)⟩

|α j = (j1 + j2 − 1) m = (j1 + j2 − 1)⟩



= −√
j2

j1 + j2
|αj1(j1 − 1)j2j2⟩+√

j1

j1 + j2
|αj1j1j2(j2 − 1)⟩.

In the next step we have three product states for m = j1 + j2 − 2

(10.123)

from which exactly 3 orthogonal eigenstates of j2, jz can be formed. Two of
them are obtained by applying j− to (10.121) or (10.122), the third by
constructing the orthogonal state. This procedure is continued until it terminates,
which occurs when either m1 = −j1 or m2 = −j2. The positive of the two
numbers j1 + j2 − 2j1 and j1 + j2 − 2j2 gives the smallest value of j that can be
reached. For given values j1, j2, j runs through the values

(10.124)

For each j1, j2 there are (2j1 + 1)(2j2 + 1) product states; on the other hand,
the number of possible eigenstates for the total angular momentum j2 and the
component jz :

(10.125)

as expected.
Since by the transformation (10.111) orthonormalized vectors |αj1m1j2m2⟩

are mapped to the same number of orthonormalized vectors |α j m⟩, the
transformation coef�icients ⟨j1m1j2m2|jm⟩ de�ine a unitary matrix. For the usual
phase convention all coef�icients are real by construction, such that the unitarity
condition is:

(10.126)

or vice versa

(10.127)

|αj1(j1 − 2)j2j2⟩;|αj1j1j2(j2 − 2)⟩ and |αj1(j1 − 1)j2(j2 − 1)⟩,

|j1 − j2|≤ j ≤ j1 + j2.

∑j1+j2

j=|j1−j2|(2j + 1) = (2j1 + 1)(2j2 + 1)

∑m1,m2
⟨j′m′|j1m1j2m2⟩⟨j1m1j2m2|jm⟩ = δjj′ δmm′

′ ′



According to (10.112) and (10.111) only those coef�icients ⟨j1m1j2m2|jm⟩ are
different from zero for which

(10.128)

and the ‘triangle inequality’

(10.129)

are satis�ied.
The Clebsch-Gordon	coef�icients calculated by the method above can be read

off from tables; when using the tables (or source codes) one should always pay
attention to the respective phase convention!

10.12	 Center	of	Mass	and	Relative	Motion
We �irst consider a system of 2 particles, described by the Hamiltonian operator

(10.130)

with the relative coordinate of the two particles

(10.131)

The 2-particle problem can then be reduced (as in classical physics) to an
equivalent single-particle problem by reducing the kinetic energy to the relative
coordinate

(10.132)

and the center of mass coordinate

(10.133)

or

(10.134)

∑j,m⟨j1m
′
1j2m

′
2|jm⟩⟨jm|j1m1j2m2⟩ = δm1m

′
1
δm2m

′
2
.

m = m1 + m2

|j1 − j2|≤ j ≤ j1 + j2

H = p2
1

2m1
+ p2

2

2m2
+ V (r)

r = r1 − r2.

r = r1 − r2

R = m1r1+m2r2

m1+m2
= m1r1+m2r2

M
,

r1 = R + m2

M
r, r2 = R − m1

M
r



to the corresponding momenta

(10.135)

The result is

(10.136)

with

(10.137)

The separation Ansatz

(10.138)

converts the Schrödinger equation

(10.139)

into

(10.140)

with

(10.141)

The solution for the center of mass motion is trivial:

(10.142)

with

(10.143)

This leaves

(10.144)

P = ħ
i

∇R, p = ħ
i

∇r.

H = P 2

2M + p2

2μ + V (r)

M = m1 + m2 and μ = m1m2

m1+m2
.

Ψ = ψs(R) ψr(r)

H Ψ = EΨ

Hsψs = Esψs and Hrψr(r) = Erψr(r)

E = Es + Er.

ψs(R) =exp (iK ⋅ R)

Es = ħ2 K 2

2M .

2



as the equivalent	single-particle	problem.
For N particles the separation of center of mass and relative motion is

performed in analogy to the procedure above by introducing Jacobi	coordinates:

(10.145)

and

(10.146)

If we consider the corresponding momenta

πn =
ħ
i

∇ρn

and πN ≡ P = −iħ∇R, then the Hamiltonian reads

(10.147)

Mixed terms between P and the πn (n = 1 ⋯N − 1) do not occur since such
terms would lead to the violation of Gallilei invariance.

An illustration of the Jacobi coordinates for 4 particles is given in Fig. 10.1.

Fig.	10.1 Illustration of Jacobi coordinates for 4 particles

[ p2

2μ + V (r)] ψr(r) = Erψr(r)

ρn =
∑n

i=1 miri

∑n
i=1 mi

− rn+1 n = 1, 2, … ,N − 1

ρN = R =
∑N

i=1 miri

∑N
i=1 mi

.

H = P 2

2M + Hr(ρn, πn).



10.13	 Pauli	Principle	for	N	Identical	Particles
In analogy to the case of two particles we require for N identical	particles, that
only such states are possible for which, for any chosen particle pair (i, j), either

(10.148)

or

(10.149)

when applying the particle exchange operator Πij.
This requirement is consistent: if +(−) holds for any particle pair (i, j), then it

also holds for any other particle pair of the system. If for (1, 2)

(10.150)

then

(10.151)

since

(10.152)

regardless of whether Π1j and Π2i (in the state Ψ) have the eigenvalue +1 or −1,
since these operators appear twice in (10.151).

10.14	 Composite	Particles
All elementary particles known to date can be classi�ied as bosons or fermions.
Without exception, bosons have integer spin, fermions have half-integer spin.
Examples: Fermions are e.g. electrons, muons, protons, neutrons, quarks,
neutrinos -spin 1/2 -particles -, whereas photons, pions, kaons, phonons (≡ lattice
vibrations in crystals) or gluons are bosons.

Atomic nuclei are bosons, if the number of nucleons is even, and fermions if the
number of nucleons is odd, provided that the ’nuclei’ can be treated as particles.
This is the case in molecular and solid-state physics. To prove the property of
atomic nuclei claimed above, we consider two identical nuclei, each with Z protons
and N neutrons, a total of 2Z + 2N = 2A particles. Exchanging the two nuclei

ΠijΨ(ξ1, … , ξN) = +Ψ(ξ1, … , ξN)

ΠijΨ(ξ1, … , ξN) = −Ψ(ξ1, … , ξN)

Π12Ψ = ±Ψ

Πij = Π1jΠ2iΠ12Π1jΠ2i,

ΠijΨ = Π12Ψ = ±Ψ



then implies exchanging the nucleons of one nucleus with those of the other, this
gives a total of A exchanges. Since the wave function Ψ changes sign with every
single exchange of two fermions,

(10.153)

if ~Π12 is the operator for the exchange of two identical nuclei of mass A. The
extension to more than two identical nuclei is trivial; nuclei with an even number
of nucleons behave like bosons (e.g. 4He). These properties of composite particles
are essential when calculating the speci�ic heat of an ideal gas of diatomic
molecules (see quantum	statistics).

In summarizing this chapter we have introduced linear operators in H  and
their respective domains. Physical observables have been identi�ied with matrix-
elements of self-adjoint operators in H  and their spectra and eigenstates have
been investigated. This concept has been extended to operators in product spaces,
which is mandatory for a quantum description of many-body problems. As an
example we have calculated the coupling of angular momenta in H  and the
separation of the center of mass and relative motion. Furthermore, the exchange
symmetry for identical particles has been studied and lead to a separation of
symmetric and anti-symmetric many-body states, i.e. Bose and Fermi systems.

~
Π12Ψ = (−)AΨ,
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11.	The	Time-Evolution	Operator
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In order to describe the time evolution of a quantum system different ‘pictures’ may be
employed, which in principle all are equivalent, but in practice are used in different expansion
schemes. We will start with the

11.1	 Schrödinger	Picture	
Here the starting point is the time-dependent Schrödinger equation

(11.1)

which describes the dynamical evolution of the system by the (N-body) Hamiltonian H. If the
vector |Ψ(t0)⟩, which describes the state of the system at time t0, is known then Eq. (11.1)
uniquely de�ines |Ψ(t)⟩ for any other time t ≠ t0. Accordingly, there must be a unique
transformation

(11.2)

with a linear operator U(t, t0) due to the linearity of Eq. (11.1). Since the Hamiltonian H
must be self-adjoint we get:

(11.3)

or

(11.4)

Accordingly, U(t, t0) is a unitary operator, i.e.

(11.5)

where 1H  denotes the identity in the Hilbert space H . U(t, t0) is denoted as time-
evolution	operator and as in case of rotations or spatial translations de�ines a group with

iħ ∂
∂t

|Ψ(t)⟩ = H|Ψ(t)⟩,

|Ψ(t)⟩ = U(t, t0)|Ψ(t0)⟩

d

dt
⟨Ψ(t)|Ψ(t)⟩ = 0,

⟨Ψ(t)|Ψ(t)⟩ = ⟨Ψ(t0)|Ψ(t0)⟩ = ⟨Ψ(t0)|U †(t, t0)U(t, t0)|Ψ(t0)⟩.

U †(t, t0)U(t, t0) = 1H ,

https://doi.org/10.1007/978-3-031-95521-1_11


(11.6)

As in case of spatial translations this group is abelian contrary to rotations.
Inserting (11.2) in (11.1) we get:

(11.7)

Since the time t0 is arbitrary one obtains the operator	equation

(11.8)

It is useful to consider two cases separately:
(i) If H does not depend on time t the solution is simply given by

(11.9)

as one �inds out by differentiation of (11.9) with respect to t. In case of an eigenvector |ΨE(t0)⟩
of H with energy E we have

(11.10)

i.e. the time-evolution is described by a phase shift.
(ii) If H depends on t, i.e. H = H(t), it is useful to consider the integral equation,

(11.11)

where the boundary condition U(t0, t0) = 1H  is employed explicitly. Equation (11.11)
practically can be solved by iteration. A formal solution is given by

(11.12)

where T denotes the time-ordering operator which places all operators at lower times to the
right.

Instead of time-dependent Hilbert vectors in the Schrödinger picture the

11.2	 Heisenberg	Picture	
employs time-independent Hilbert vectors, however, explicitly time-dependent	operators.
The equations of motion for the operators then replace Eq. (11.1). To obtain the latter
equations of motion we consider the expectation value of an operator A in the state |Ψ(t)⟩,

(11.13)

U
−1(t, t0) = U

†(t, t0).

iħ ∂
∂t U(t, t0)|Ψ(t0)⟩ = H U(t, t0)|Ψ(t0)⟩.

iħ ∂
∂t U(t, t0) = H U(t, t0).

U(t, t0) =exp (− i

ħ H(t − t0)),

U(t, t0)|ΨE(t0)⟩ =exp (− i

ħ E(t − t0))|ΨE(t0)⟩,

U(t, t0) = 1H − i

ħ ∫
t

t0
dt

′
H(t′) U(t′, t0),

U(t, t0) = T(exp [− i

ħ ∫
t

t0
dt

′
H(t′)]) = ∑∞

n=0
1
n! T [− i

ħ ∫
t

t0
dt

′
H(t′)]

n

,

⟨Ψ(t)|A(t)|Ψ(t)⟩ = ⟨Ψ(t0)|U †(t, t0)A(t)U(t, t0)|Ψ(t0)⟩.



In this case the operator A(t) may also explicitly depend on time t, which is useful for unclosed
systems, i.e. for systems in contact with some time-dependent environment. In the Heisenberg
picture one uses the Hilbert vector

(11.14)

which �ixes the system at some time t0, and represents the observable by the time-
dependent operator

(11.15)

The expectation value of A in time then reads

(11.16)

The time evolution of Ah(t) is obtained from (11.15) and (11.8):

(11.17)

= [Ah(t),Hh] + iħ( ∂

∂t
A(t))

h

,

with

(11.18)

and

(11.19)

If the observable C does not explicitly depend on time t, i.e. C ≠ C(t), it represents a
conserved quantity if

(11.20)

which is equivalent to

(11.21)

|Ψh⟩ =: |Ψ(t0)⟩,

Ah(t) =: U †(t, t0)A(t)U(t, t0).

⟨A⟩
t

= ⟨Ψh|Ah(t)|Ψh⟩.

iħ ∂
∂t Ah(t) = iħU †(t, t0)( ∂

∂t A(t))U(t, t0) + U
†(t, t0)[A(t)H − HA(t)]U(t, t0)

Hh =: U †(t, t0)H U(t, t0)

( ∂
∂t A(t))

h
=: U †(t, t0)( ∂

∂t A(t))U(t, t0).

[Ch,Hh] = 0,

[C,H] = 0



in the Schrödinger picture.

11.3	 Interaction	or	Dirac	Picture
For practical calculations it is useful to change to the Dirac	picture. To this aim one rewrites
the Hamiltonian as

(11.22)

with a time independent H0 and known system of eigenvectors. In this case the state

(11.23)

allows to separate the time evolution of the state |Ψ(t)⟩ determined by H0 such that the
time evolution of |Ψ(t)⟩ is essentially determined by H ′(t). Inserting (11.23) in (11.1) we get:

(11.24)

= −H0|ΨD(t)⟩+ exp (
i

ħ
H0t) [H0 + H

′]|Ψ(t)⟩

=exp (
i

ħ
H0t) H

′(t) exp (−
i

ħ
H0t)|ΨD(t)⟩

or

(11.25)

with

(11.26)

Equation (11.25) differs from (11.1) in the respect that only the interaction H ′
D

(t) appears
and not the full Hamiltonian H(t) as in (11.1); the exponential terms in (11.26) are known
phase factors in the basis of eigenvectors of H0.

In order to obtain an iterative solution of Eq. (11.25) we introduce the time-evolution
operator	in	the	Dirac	picture by

(11.27)

H = H0 + H
′(t),

|ΨD(t)⟩ =exp ( i

ħ H0 t)|Ψ(t)⟩

iħ ∂
∂t |ΨD(t)⟩ = −H0|ΨD(t)⟩ + iħ exp ( i

ħ H0t)
∂
∂t |Ψ(t)⟩

iħ ∂
∂t

|ΨD(t)⟩ = H
′
D

(t)|ΨD(t)⟩

H
′
D(t) =exp ( i

ħ H0t) H
′(t) exp (− i

ħ H0t).

|ΨD(t)⟩ = UD(t, t0)|ΨD(t0)⟩



and obtain from (11.25)

(11.28)

with the boundary condition UD(t0, t0) = 1H . The corresponding integral equation for 
UD(t, t0) reads:

(11.29)

and contrary to (11.11) only contains the interaction operator H ′
D

(t). Accordingly, an
iterative solution of (11.29) should converge fast if H0 already provides some reasonable
approximation to the system. The formal result of such an iteration (with UD(t, t0) = 1H  in
0’th order) is the Dyson	series

(11.30)

= 1H +∑
n=1

(−
i

ħ
)

n

∫
t

t0

dtn ∫
tn

t0

dtn−1 ∫
tn−1

t0

dtn−2 ⋯∫
t2

t0

dt1 H
′
D(tn)H ′

D(tn−1) ⋯H
′
D(t1)

with

(11.31)

One has to take care about the sequence of the operators H ′
D

(tn) H ′
D

(tn−1) ⋯H
′
D

(t1) etc.,
since for t1 ≠ t2

(11.32)

except for the trivial case [H0, H ′] = 0 und H ′ ≠ H
′(t).

In summary: we have introduced the Schrödinger picture, the Heisenberg picture and the
Dirac picture in order to describe the time evolution of a quantum system. These different
‘pictures’ in principle all are equivalent, but in practice are used in different situations and
expansion schemes.

iħ ∂
∂t UD(t, t0) = H

′
D(t)UD(t, t0)

UD(t, t0) = 1H − i

ħ ∫
t

t0
dt

′
H

′
D(t′)UD(t′, t0)

UD(t, t0) = 1H − i

ħ ∫
t

t0
dt

′
H

′
D

(t′) − 1
ħ2 ∫

t

t0
dt2 ∫

t2

t0
dt1 H

′
D

(t2)H ′
D

(t1) ⋯

t ≥ tn ≥. . . . . . ≥ t1 ≥ t0.

[H ′
D(t1),H ′

D(t2)] ≠ 0,



(1)
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12.	Particle	Number	Representation	for	Fermions
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In this chapter we will introduce the particle number representation for fermions, which allows
for a transparent formulation of many-body problems and takes care about the antisymmetry of
the fermion wave function by simple (anti)-commutation relations. Furthermore, we give
explicit expressions for one-body and two-body operators in particle number representation
and calculate some characteristic examples.

12.1	 Representation	in	Con�iguration	Space
The state of a system of N identical fermions with coordinates ξi (position, spin, isospin, etc.); 
i = 1, … ,N , can be described by a wave function in con�iguration space

(12.1)

For the calculation of Ψ from the Schrödinger equation of the N—particle system

(12.2)

one generally has to rely on approximate methods. The most frequently used approximation
methods are ultimately all based on splitting the Hamiltonian H,

(12.3)

where

(12.4)

describes a system of independent particles in an average potential U(ξ) and HR captures
the remaining residual	interaction between the particles.

Example: For the electrons of an atom one could use a shielded Coulomb potential as U(ξ),
which captures the nucleus-electron interaction exactly and the electron-electron interaction
approximately in the sense of an average potential. The approach (12.3) then forms, together
with the Pauli principle, the basis of the shell	model	of	atomic	physics.

The Schrödinger equation for H0 can be solved strictly (for ‘reasonable’ potentials U), since
the task is reduced to a single-particle	problem

Ψ(ξ1, … , ξN ;t).

iħ ∂
∂t Ψ(ξ1, … , ξN ;t) = H Ψ(ξ1, … . , ξN ;t)

H := H0 + HR,

H0(ξ1, … , ξN) = ∑N
i=1 h(ξi) = ∑N

i=1[ti + U(ξi)]

https://doi.org/10.1007/978-3-031-95521-1_12


(12.5)

The eigenfunctions for H0 then are product functions (ignoring the Pauli principle, i.e. the
symmetry of the states with respect to particle exchange):

(12.6)

where μ characterizes the single-particle states {i1 ⋯ iN} ≡ μ. If the eigenfunctions for h form
a complete system (which we will always assume to be orthonormalized in the following), then
the product functions Φμ form a complete basis in con�iguration space.

The general N particle wave function Ψ(ξ1, … , ξN ;t), furthermore, can be constructed as a
linear combination of the product functions Φμ.

(12.7)

The coef�icients Cμ(t) have to be determined from the Schrödinger equation (12.2). If we want
e.g. calculate the stationary solutions of (12.2), one method is to determine the coef�icients Cμ

by diagonalizing HR in the basis Φμ: we take a �inite number of states (usually the k most
energetically favorable states) from the basis of Φμ and diagonalize the �inite-dimensional (
k × k) matrix

(12.8)

which ensures the diagonalization of H according to the construction of Φμ; by adding further
product functions (k → ∞) this approximation method can be improved systematically.

Since we are considering systems of identical particles, the resulting N-particle wave
function Ψ—in every step of an approximation method—must satisfy the Pauli principle. This is
not automatically the case in the method outlined above, since the matrix (12.8) does not
‘know’ whether we are considering bosons or fermions. It is therefore appropriate to carry out
the required antisymmetrization directly on the basis functions Φμ in the expansion of Ψ
(12.7).

In analogy to the case of two identical particles we form antisymmetrized product functions
in the form of Slater	determinants

(12.9)

here P runs through all possible permutations and (−)p is the signature of the permutation.
According to the rules for determinants, Φa

μ is totally antisymmetric with respect to particle
exchange (≡ exchange of two columns or rows). In particular, Φa

μ = 0 as soon as any two
functions φi from the set {μ} are the same. This implies that the Pauli principle for a system of
independent fermions can also be formulated in such a way that each	single-particle	state	can
only	be	occupied	once. However, this formulation of the Pauli principle assumes independent
fermions (HR ≡ 0) and is therefore only a special case of (10. 149)! The expansion of Ψ in the
basis (12.9) guarantees that the solutions in every step of an approximation procedure satisfy

h φk(ξ) = ϵk φk(ξ).

Φμ(ξ1 ⋯ ξN) = φi1(ξ1) ⋅ ⋅ ⋅ ⋅ ⋅ φiN (ξN),

Ψ = ∑μ Cμ(t) Φμ.

⟨Φμ|HR|Φμ′⟩,

Φa
μ = 1

√N !
∑p (−)pP [φi1(ξ1) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ φiN (ξN)];



the Pauli principle; it is of practical advantage since the expansion of Ψ in the basis Φa
μ contains

fewer expansion coef�icients, that have to be calculated, than the expansion (12.7). As a general
approach, we therefore choose

(12.10)

By an optimal choice of U(ξ) one can try to keep HR so ‘small’ that the system in good
approximation is described by H0, such that the particles behave approximately independent.
This is a good approximation for many questions in atomic physics; (example: structure of the
periodic system of elements). The ground state of the system is then approximated by the
ground state of H0, in which the lowest N single-particle states φi are occupied.

This state is not always uniquely de�ined: If degenerate single-particle states are present
(which is always the case in central potentials), then—depending on the number of particles in
the system—the lowest eigenstate of H0 can be degenerate, e.g. if two or more energetically
equal levels are available for the last particle.

Excited states of the N-particle system are obtained – in the approximation of independent
particles!—by ‘raising’ one or more particles to levels that are unoccupied in the ground state
(particle-hole	excitations).

12.2	 Structure	of	the	Fock	Space
The following particle	number	representation (discussed below) has two main advantages
relative to the con�iguration space representation:

1. While the wave functions Ψ(ξ1, … , ξN ;t) describe systems with a �ixed particle number
N, the particle number representation allows for the description of systems whose particle
number is not	sharp. This is the case e.g. for superconducting or super�luid systems (see
Chap. 17).

2. The antisymmetrization can be incorporated in the particle number representation in the
form of a few, simple commutation relations for particle creation—or annihilation—
operators. This generates a calculus that is easier and safer to handle than dealing with Slater
determinants in the context of the con�iguration space representation.

In the following, we consider a system of fermions whose particle number is not �ixed. We
describe such a system in the so-called Fock	space, which is constructed from all Hilbert spaces
HN  with a �ixed particle number N as follows:

H1 is the Hilbert space of a 1-fermion system, spanned by vectors |i⟩, whose representation
in con�iguration space are the wave functions φi(ξ),

(12.11)

where i includes a complete set of quantum numbers for a particle.
H2 is the Hilbert space of a 2-fermion system, spanned by vectors |i1i2⟩. Such a vector 

|i1i2⟩ describes a state in which the single-particle states i1, i2 are occupied; the con�iguration
space representation of these states |i1i2⟩ are 2 × 2 Slater determinants, formed with the wave
functions φi1 , φi2 ,

Ψ(ξ1, … , ξN ;t) = ∑μ C
a
μ(t) Φa

μ(ξ1, … , ξN).

⟨ξ|i⟩ ≡ φi(ξ),



(12.12)

General	case: Let HN  be the Hilbert space of an N-fermion system, spanned by vectors 
|i1 ⋯ iN⟩. The notation |i1 ⋯ iN⟩ implies that the single-particle states i1, i2, …, iN  each are
singly occupied according to the Pauli principle. In the con�iguration space, the vectors 
|i1 ⋯ iN⟩ are represented by N-particle Slater determinants, formed from the single-particle
functions φi1 , …, φiN :

(12.13)

Phase	de�inition:
In order to de�ine the sign in the determinant (12.13) unambiguously, the functions φi must

be numbered in an arbitrary but �ixed way (exchanging two indices means exchanging rows, i.e.
changing the sign!). We can e.g. sort the functions φi in the order of increasing particle energy 
ϵi. If several φi are degenerate, then for a �ixed energy e.g. we order according to increasing
angular momentum j and component mj, always starting at −mj. In this way we generate a
standard	ordering

(12.14)

which is arbitrary, but must be maintained consistently within a calculation. This also implies
that the index order in the state |i1 ⋯ iN⟩ is �ixed!

In every Hilbert space HN  the vectors |i1 ⋯ iN⟩ are orthonormalized due to the
correspondence with Slater determinants,

(12.15)

if the single-particle functions φi are orthonormalized.
Proof We write

(12.16)

where the operator

(12.17)

is a projector onto the space of antisymmetrized N-particle functions. As a projection
operator it has the characteristic properties

(12.18)

as can be explicitly proven using (12.17) (cf. for example A. Messiah, Quantum Mechanics II, p.
97). We now form:

⟨ξ2ξ1|i1i2⟩ = 1
√2

.∣φi1(ξ1) φi1(ξ2)

φi2(ξ1) φi2(ξ2)∣⟨ξN ⋯ ξ1|i1 ⋯ iN⟩ = 1
√N !

∑p (−)pP [φi1(ξ1) ⋯φiN (ξN)].

i1 < i2 < ⋯ < iN ,

⟨i1 ⋯ iN |j1 ⋯ jN⟩ = δi1j1 ⋯ δiNjN ,

Φa{i} = √N ! A [φi1(ξ1) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅φiN (ξN)]

A := 1
N ! ∑p (−)pP

A = A
†, A

2 = A ,



(12.19)

where Φ{i} = φi1(ξ1) ⋅ ⋅ ⋅ ⋅φiN (ξN), Φ{j} = φj1(ξ1) ⋅ ⋅ ⋅ ⋅φjN (ξN) are the pure product
functions. With (12.18)

(12.20)

If we expand A Φ{j} according to (12.17), then:

(12.21)

This expression is only ≠ 0 if the sequences {i1 ⋯ iN} and {j1 ⋯ jN} agree, since otherwise
in every product term of the expansion of det (⟨φin |φjm⟩) at least 1 factor = 0. The
normalization of the φi then guarantees that

(12.22)

By adding the space H0 for the particle vacuum with the only state |0⟩, we now sum up the
spaces H0, H1, …, HN  as a direct sum to form the Fock	space H ,

(12.23)

We supplement the scalar product—already de�ined in the individual spaces Hi—with

(12.24)

This introduces a scalar product in the entire Fock space; the choice in (12.24) is free, since
a scalar product between Slater determinants Φa{μ} with different particle numbers is not
de�ined. Thus, in contrast to (12.15), in Eq. (12.24) we are not bound by the correspondence to
the con�iguration space.

The choice made in (12.24), i.e. the direct summation of the subspaces, implies that we have
composed the subspaces Hi in an orthogonal manner. This choice is also the only suitable one
with regards to operators preserving the particle number, e.g. the particle number operator N̂
itself. This operator is diagonal by de�inition in every subspace Hi,

(12.25)

In order to keep the property (12.25) in the Fock space H , we must require (12.24), which
gives

(12.26)

for N ≠ M . This implies that all basis vectors in H  are orthonormalized if one also adds
(12.27)

⟨Φa{i}|Φa{j}⟩ = N !⟨A Φ{i}|A Φ{j}⟩

⟨Φa{i}|Φa{j}⟩ = N !⟨Φ{i}|A 2 Φ{j}⟩ = N !⟨Φ{i}|A Φ{j}⟩.

N !⟨Φ{i}|A Φ{j}⟩ =det (⟨φin |φjm⟩).

⟨i1 ⋯ iN |i1 ⋯ iN⟩ = 1.

H = H0 ⊕H1 ⊕H2 ⊕ ⋯ ⊕HN ⊕ ⋯

⟨i1 ⋯ iN |j1 ⋯ jM⟩ = 0 if N ≠ M.

N̂ |i1 ⋯ iN⟩ = N |i1 ⋯ iN⟩.

⟨i1 ⋯ iN |N̂ |j1 ⋯ jM⟩ = N⟨i1 ⋯ iN |j1 ⋯ jM⟩ = M⟨i1 ⋯ iN |j1 ⋯ jM⟩

⟨0|0⟩ = 1,



since the correspondence between the vectors |i1 ⋯ iN⟩ and the Slater determinants does not
provide any information about the scalar product ⟨0|0⟩. (Caution: do not confuse the vacuum
state |0⟩ with the zero vector!)

12.3	 Creation	and	Annihilation	Operators
We now introduce linear operators in the Fock space H . The two basic types, from which all
others can be constructed, are creation	and	annihilation	operators for particles. Creation
operators connect the subspaces HN  for different values N in the following way:

(12.28)

a†
m|i1 ⋯ iN⟩ = |mi1 ⋯ iN⟩ = (−)k|i1 ⋯ ikm⋯ iN⟩ else.

Here k denotes the number of states occupied in |i1 ⋯ iN⟩ that precede the state m in the
standard	ordering. The factor (−)k in (12.28) therefore comes from the fact that when two
particles, i.e. two occupied states, are exchanged, the vector |i1 ⋯ iN⟩ changes its sign due to
the antisymmetry.

The interpretation of (12.28) is obvious: The operator a†
m creates a particle in the state m, if

this is not occupied in |i1 ⋯ iN⟩; the operators a†
m for different m values thus lead from HN  to 

HN+1. If m is occupied in |i1 ⋯ iN⟩, we cannot create a second particle in m due to the Pauli
principle. The following therefore holds in general:

(12.29)

due to the Pauli principle.
Consequences	from	the	de�inition	(12.28):
1.	Annihilation	operators
The operators am—adjoint to the operators a†

m—are particle annihilation operators. To
prove this, we employ the unit operator in H  according to the completeness relation

(12.30)

Then we can write ({jM} = (j1 ⋯ jM))

(12.31)

and for the coef�icients ⟨j1 ⋯ jM |am|i1 ⋯ iN⟩ we get:

(12.32)

a
†
m|i1 ⋯ iN⟩ = 0 if m occupied in |i1 ⋯ iN⟩

(a†
m)

2
= 0 ∀m

∑M≥0 ∑{jM} |j1 ⋯ jM⟩⟨j1 ⋯ jM |= 1H0 ⊕ 1H1 ⊕ 1H2 ⊕ ⋯ = 1H .

am|i1 ⋯ iN⟩ = 1H am|i1 ⋯ iN⟩ = ∑M≥0 ∑{jM} |j1 ⋯ jM⟩⟨j1 ⋯ jM |am|i1 ⋯ iN⟩,

⟨j1 ⋯ jM |am|i1 ⋯ iN⟩ = ⟨i1 ⋯ iN |a†
m|j1 ⋯ jM⟩∗



according to the de�inition of the adjoint operator. Furthermore:

(12.33)

Now ⟨i1 ⋯ iN |j1 ⋯ jkm⋯ jM⟩ ≠ 0 only if
(a) N = M + 1 due to the orthogonality of the spaces HN  and
(b) the sequences (i1 ⋯ iN) and (j1 ⋯ jkm⋯ jM) are the same. Thus:

(12.34)

am|i1 ⋯ iN⟩ = (−)k|i1 ⋯ ikik+2 ⋯ iN⟩ if m occupied and m = ik+1.

In (12.31) only a single vector from HN−1 contributes to the double sum, i.e. the one that
(except for the sign) results from the vector |i1 ⋯ iN⟩, if the state m = ik+1 is eliminated. Thus 
am annihilates a particle in the state m, if m is occupied in |i1 ⋯ iN⟩.

12.4	 Construction	of	N-Particle	States
We obtain a N-particle state |i1 ⋯ iN⟩ by application of creation operators to the vacuum,

(12.35)

The vacuum is characterized by the fact that

(12.36)

12.5	 Particle	Number	Operator	N̂
From (12.28) and (12.34) follows

(12.37)

a†
mam|i1 ⋯ iN⟩ =|i1 ⋯ iN⟩ if m occupied in |i1 ⋯ iN⟩ .

The operator a†
mam has the eigenstates |i1 ⋯ iN⟩ with the eigenvalues 0 and 1,

(12.38)

⟨i1 ⋯ iN |a†
m|j1 ⋯ jM⟩∗ = ⟨i1 ⋯ iN |mj1 ⋯ jM⟩∗ = (−)k⟨i1 ⋯ iN |j1 ⋯ jkm⋯ jM⟩∗.

am|i1 ⋯ iN⟩ = 0 if m in |i1 ⋯ iN⟩ empty

|i1 ⋯ iN⟩ = a
†
i1

⋯ a
†
iN

|0⟩ = ∏i1

m=iN
a

†
m|0⟩.

am|0⟩ = 0 ∀m.

a
†
mam|i1 ⋯ iN⟩ = 0 if m in |i1 ⋯ iN⟩ empty

a
†
mam|i1 ⋯ iN⟩ = nm|i1 ⋯ iN⟩ with nm = 0, 1;



i.e. a†
mam indicates (measures) whether the state m is occupied (nm = 1) or empty 

(nm = 0).

The operator ∑m a
†
mam therefore checks all single-particle states, whether they are

occupied or not and adds up the number of occupied states; it thus determines the particle
number of the system under consideration.

(12.39)

is an explicit representation of the particle number operator, whose eigenvalues for the
eigenvectors |i1 ⋯ iN⟩ result in the particle number N of the system. According to (12.39), N̂  is
obviously hermitian. In any state of H ,

(12.40)

however, N̂  is not sharp and may have �luctuations (ΔN̂)
2

≠ 0 (see Chap. 17).

12.6	 Commutation	Rules
From the de�inition of a†

m we get

(12.41)

a†
ma

†
n|i1 ⋯ iN⟩ = |mni1 ⋯ iN⟩ otherwise

and vice versa,

(12.42)

a†
na

†
m|i1 ⋯ iN⟩ = |nmi1 ⋯ iN⟩ = −|mni1 ⋯ iN⟩ otherwise.

Adding (12.41) and (12.42) gives

(12.43)

since (12.41) and (12.42) hold for any vector |i1 ⋯ iN⟩. In analogy one proves:

(12.44)

N̂ = ∑m a
†
mam

|Ψ(t)⟩ = ∑N≥0 ∑{jN} CN ,{jN}(t) |j1 ⋯ jN⟩,

a
†
ma

†
n|i1 ⋯ iN⟩ = 0 if m,n occupied or n = m

a
†
na

†
m|i1 ⋯ iN⟩ = 0 if n,m occupied or n = m

a
†
ma

†
n + a

†
na

†
m = 0,

aman + anam = 0



and

(12.45)

Note: The commutation	relations (12.43), (12.44) and (12.45) become more complicated
when using a non-orthogonal basis of single-particle functions.

12.7	 Observables	in	Particle	Number	Representation
In order to be able to do physics in the Fock space H , we must be able to explicitly represent
operators such as the kinetic energy T, potential energy V or angular momentum J. We want to
show that operators (like those mentioned above) can be constructed from the ai, a†

i .
We make use of the fact that we know the representation of the operators in the

con�iguration space. The corresponding operators in the Fock space H  then are to be de�ined
in such a way, that the matrix elements of an operator in the subspaces HN  are the same in
both representations. It is suf�icient to show this for the basis vectors:

(12.46)

Since the operators we are interested in, such as energy or angular momentum, preserve the
number of particles, the following must also hold in addition to (12.46)

(12.47)

The Eqs. (12.46) and (12.47) completely de�ine the operator Ô(a†
m, am) in H .

In the following we are interested in one- and two-particle operators and claim that any
single-particle operator

(12.48)

and any two-particle operator

(12.49)

have the following representation in Fock space:

(12.50)

with

(12.51)

or

a
†
man + ana

†
m = δmn.

∫ dτξ Φ∗
a{iN}O(ξ1, … , ξN)Φa{jN} = ⟨i1 ⋯ iN |Ô(a†

m, am)|j1 ⋯ jN⟩.

⟨i1 ⋯ iN |Ô(a†
m, am)|j1 ⋯ jM⟩ = 0 if N ≠ M.

f = ∑N
α=1 f(ξα)

g = 1
2 ∑

N
α,β=1,α≠β g(ξα, ξβ)

f̂ = ∑m,n(m|f|n) a
†
man

(m|f|n) = ∫ dξ φ∗
m(ξ) f(ξ) φn(ξ)



(12.52)

with

(12.53)

As desired, the operators f̂ and ĝ conserve the particle number, since a† and a always occur
in pairs. Therefore:

(12.54)

which can also be proven explicitly using the commutation relations for a†, a. With (12.54)
we obtain

(12.55)

for Ô = f̂ , ĝ , such that (12.47) is satis�ied,

(12.56)

for N ≠ M.

Qualitatively, the structure of f̂ and ĝ is immediately clear: In the con�iguration space each
summand of f = ΣN

α=1f(ξα) ‘acts on’ only one particle and changes the state of this particle
according to

(12.57)

The operator f̂ works in exactly the same way in Fock space: each summand of f̂ in (12.50)
changes the state |i1 ⋯ iN⟩ in such a way that a particle in state n is destroyed, but another one
is created again in m. Correspondingly: A two-particle operator g acts on two particles at the
same time and changes their state; ĝ achieves the same by �irst destroying two particles in the
states m, n and then creating two particles in the states p, q.

We want to carry out the proof for (12.50), (12.51) explicitly; for (12.52), (12.53) the proof
can be carried out in analogy. Due to (12.57) the following holds when applying f to a product
function:

(12.58)

= ∑
m

(m|f|i) φm(ξ1)φj(ξ2) +∑
m

(m|f|j) φi(ξ1)φm(ξ2) + ⋯

Due to the identity of the particles the operator f is symmetric in all particles—otherwise the
observable f could be used to distinguish the particles in contradiction to the assumption of

ĝ = 1
2 ∑n,m,p,q(pq|g|mn) a

†
pa

†
qanam

(pq|g|mn) = ∫ ∫ dξ dξ′ φ∗
p(ξ)φ∗

q(ξ
′) g(ξ, ξ′) φm(ξ)φn(ξ′).

[f̂, N̂ ] = [ĝ, N̂ ] = 0,

⟨i1 ⋯ iN |[N̂ , Ô]|j1 ⋯ jM⟩ = (N − M)⟨i1 ⋯ iN |Ô|j1 ⋯ jM⟩ = 0

⟨i1 ⋯ iN |Ô|j1 ⋯ jM⟩ = 0

f(ξα)φm(ξα) = ∑n φn(ξα)(n|f|m).

f φi(ξ1)φj(ξ2) ⋅ ⋅ ⋅ ⋅



identical particles—we have

(12.59)

with A  from (12.17). Applying A  to Eq. (12.58) then gives

(12.60)

+∑
m

(m|f|k) Φa{ijm⋯} + ⋯

We compare this result with

(12.61)

= ∑
m

(m|f|i) |mjk⋯⟩ +∑
m

(m|f|j) |imk⋯⟩ +∑
m

(m|f|k) |ijm⋯⟩ + ⋯

(Note the phase factors in (12.28) and (12.34)!) One can now easily verify the de�ining Eq.
(12.46) by forming the required matrix elements in (12.60) and (12.61) and comparing them
term by term.

12.8	 Applications
1.	Ground	state	and	simple	excitations	of	an N fermion	system

We obtain the ground state by taking the N lowest (in energy) single-particle levels i1, i2, ..., 
iN  (Fig. 12.1):

(12.62)

[f,A ] = 0

f Φa{ijk⋯} = ∑m(m|f|i) Φa{mjk⋯} + ∑m(m|f|j) Φa{imk⋯}

f̂|ijk⋯⟩ = ∑m,n(m|f|n) a
†
man|ijk⋯⟩

|Φ0⟩ = a
†
i1

⋅ ⋅ ⋅ a†
iN

|0⟩.



Fig.	12.1 Groundstate, 1 particle—1 hole and 2 particle—2 hole states

1-particle—1-hole	excitations then have the form:

(12.63)

where m in |Φ0⟩ is empty and i is occupied.

2.	Expectation	values
For the expectation value of the kinetic energy in a N-particle state |i1 ⋯ iN⟩ one obtains using
(12.50) as well as (12.28) and (12.34):

(12.64)

since only values n can contribute that occur in (i1 ⋯ iN) and due to the orthogonality of
different states |i1 ⋯ iN⟩ we must have m = n. The expectation value of the kinetic energy is
therefore (as expected) the sum of the contributions of the particles present, i.e. of the occupied
states; the analogous statement applies to the angular momentum, the momentum or other
single-particle operators.

The case of the potential energy (in general: of a two-particle operator) is somewhat more
complicated. In

(12.65)

only the values n ≠ m contribute that are occupied in |i1 ⋯ iN⟩. Furthermore, due to the
orthogonality of the basis states |i1 ⋯ iN⟩ of the Fock space, we must have either p = m and 

|Φ1p−1h⟩ = a
†
mai|Φ0⟩,

⟨i1 ⋯ iN |T̂ |i1 ⋯ iN⟩ = ∑m,n(m|t|n)⟨i1 ⋯ iN |a†
man|i1 ⋯ iN⟩ = ∑iN

m=i1
(m|t|m),

⟨i1 ⋯ iN |V̂ |i1 ⋯ iN⟩ = 1
2 ∑m,n,p,q(pq|V |mn)⟨i1 ⋯ iN |a†

pa
†
qanam|i1 ⋯ iN⟩



q = n or q = m and p = n. We therefore obtain:

(12.66)

where terms with m = n automatically cancel out as self-interactions. The direct term

(12.67)

corresponds to the classical	interaction	integral:

(12.68)

=
1

2
∫ ∫ dξ dξ′ ρ(ξ) V (ξ, ξ′) ρ(ξ′).

Here

(12.69)

is the probability density of �inding a particle with the coordinate ξ; it is composed additively
from the contributions |φm(ξ)|2 of the individual particles.

Example: Coulomb energy of a charge distribution described by ρ(r).
The second term in (12.66) is a typical quantum mechanical effect for systems of fermions

(exchange	term); it is responsible for the homopolar binding e.g. in the H2 molecule.
Remark:
For historical reasons, the formalism developed above is often referred to as second

quantization. However, it should be clear that the particle number representation—apart from
the extension to systems with an uncertain particle number—is only a different
representation than the con�iguration space representation of a system of N identical particles.

In summarizing this chapter we have introduced the particle number representation for
fermions, which allows for a transparent formulation of many-body problems and takes care
about the antisymmetry of the fermion wave function by simple (anti)-commutation relations.
Furthermore, we have given explicit expressions for one-body and two-body operators in
particle number representation and calculated some characteristic examples.

⟨V̂ ⟩ = 1
2
∑m,n occupied{(mn|V |mn) − (mn|V |nm)},

1
2 ∑m,n occupied(mn|V |mn)

1
2
∑m,n occupied(mn|V |mn) = 1

2
∑m,n ∫ ∫ dξ dξ′ |φm(ξ)|2

V (ξ, ξ′) |φn(ξ′)|2

ρ(ξ) = ∑N
m=1 |φm(ξ)|2



(1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
W. Cassing, Theoretical	Physics	Compact	III
https://doi.org/10.1007/978-3-031-95521-1_13

13.	Particle	Number	Representation	for	Bosons
Wolfgang Cassing1  

University of Gießen, Gießen, Hessen, Germany

 

The case of bosons is analogous to that of fermions to a large extent; we will therefore
restrict ourselves to a brief presentation and only work out the differences between
bosons and fermions.

13.1	 Representation	in	Con�iguration	Space
We describe N independent bosons in the con�iguration space by completely
symmetrized product functions:

(13.1)

In contrast to fermions, it is possible for a single-particle state to be occupied nj-
fold; of course,

(13.2)

for every possible state (13.1). From the basis states, the exact N particle states for
interacting bosons (in principle) can be constructed by superposition.

13.2	 Fock	Space	for	Bosons
In the particle number representation, we assign vectors

(13.3)

to the symmetrized product functions (13.1), where the numbers ni1
, ni2

 etc.
indicate which single-particle states are occupied and how many times they are

Φs{iN} = 1
√N !n1!⋅⋅⋅nN !

∑p P [φi1(ξ1) ⋅ ⋅ ⋅ ⋅φiN (ξN)].

∑j nj = N

|ni1
ni2

⋯⟩
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occupied. Of course, the same holds for the total particle number (13.2). From the
orthonormalization of the functions Φs{iN} (as can be proven for fermions) we obtain
in the particle number representation

(13.4)

The Hilbert spaces HN  spanned by the states (13.1) or (13.3) with the constraint
(13.2) for a �ixed number of bosons N are now combined to the Fock space H  for
bosons in analogy to Sect. 12. 2:—We only differentiate quantities that refer to
fermions or bosons by their designation when necessary. Of course, the Fock space H
for bosons must be distinguished from that for fermions!—

(13.5)

H0 adds the boson vacuum, described by the vector |0⟩, which we assume to be
normalized in the following,

(13.6)

Of course, the boson vacuum is not identical to the fermion vacuum, |0⟩B ≠ |0⟩F . Since
in Chap. 12 only fermions and here only bosons are described, we omit the indexing
(for bosons or fermions).

With the same reasoning as in Sect. 12. 2 we introduce the scalar product between
states with different particle numbers by

(13.7)

if

(13.8)

To simplify the notation, we have numbered the single-particle states with 
1, 2, … k; n′

1,n′
2. .. are the corresponding occupation numbers, which in the case of

bosons uniquely characterize the N particle state. (For fermions, the occupation
numbers are either 0 or 1, such that an N particle state is uniquely determined by the
sequence of the single-particle states with occupation number 1.) In the Fock space H
, by construction, all basis states |n1n2 ⋯nk ⋯⟩ are orthogonal to each other and
normalized.

⟨ni1
ni2

⋯ |nj1
nj2

⋯⟩ = δni1
nj1
δni2

nj2
⋯

H = H0 ⊕ H1 ⊕ H2 ⊕ ⋯ ⊕ HN ⊕ ⋯

⟨0|0⟩ = 1.

⟨n1n2 ⋯nk. . |n′
1n

′
2 ⋯n′

k. . ⟩ = 0

∑i ni ≠ ∑j′ n
′
j.



13.3	 Creation	and	Annihilation	Operators
We now introduce linear operators in H  which link states from HN  with those from 
HN±1:

(13.9)

The operators b†
k each produce a particle in the state k; bk acts correspondingly as

an annihilation operator. With the prefactors √nk or √nk + 1 chosen in (13.9),—as
already anticipated in the notation—b

†
k

 and bk are adjoint operators.
Proof We form

(13.10)

and

(13.11)

Conclusions:

1.	Boson	vacuum
The boson vacuum is (in analogy to the fermion case) characterized by

(13.12)

as follows directly from (13.9). Starting from the vacuum, all other states can be
constructed by applying creation operators,

(13.13)

with ∑i ni = N .

2.	Particle	number	operator
From (13.9) follows

(13.14)

b
†
k|⋯nk ⋯⟩ = √nk + 1|⋯nk + 1 ⋯⟩, bk|⋯nk ⋯⟩ = √nk|⋯nk − 1 ⋯⟩.

⟨. .nk. . |bk|⋯n′
k. . ⟩ = √n′

k
δnk,n′

k
−1

⟨⋯n′
k. . |b†

k|. .nk. . ⟩ = √nk + 1 δn′
k
,nk+1 = √n′

k δn′
k
−1,nk

bk|0⟩ = 0∀k,

∏i (b†
i
)
ni

|0⟩ =|n1n2n3 ⋯⟩

b
†
kbk|⋯nk ⋯⟩ = b

†
k√nk|⋯nk − 1 ⋯⟩ = nk|⋯nk. . ⟩;



the operator b†
k
bk counts the particles in state k. The operator for the total particle

number is thus

(13.15)

Since

(13.16)

there are states in H  in which both the total particle number N and the occupation
numbers nk of the single-particle states k are sharp.

3.	Commutation	relations
From the de�inition (13.9) we obtain

(13.17)

and

(13.18)

(according to (13.14)), from which—by taking the difference—we get

(13.19)

Since |⋯nk ⋯⟩ was chosen arbitrarily, the operator relation results:

(13.20)

All other commutators vanish as can be proven in analogy. In total, we obtain the
following boson	commutation	rules:

(13.21)

[bk, bk′ ] = bkbk′ − bk′bk = 0

[b†
k
, b†

k′ ] = b
†
k
b

†
k′ − b

†
k′b

†
k

= 0.

N̂ = ∑k b
†
k
bk = ∑k N̂k.

[N̂ , N̂k] = 0,

bkb
†
k|⋯nk ⋯⟩ = bk√nk + 1|⋯nk + 1 ⋯⟩ = (nk + 1)|⋯nk ⋯⟩

b
†
kbk|⋯nk. . ⟩ = nk|⋯nk. . ⟩

(bkb
†
k − b

†
kbk)|⋯nk ⋯⟩ = | ⋯nk ⋯⟩.

bkb
†
k

− b
†
k
bk = 1.

[bk, b†
k′ ] = bkb

†
k′ − b

†
k′bk = δkk′



13.4	 Observables
As in Sect. 12. 7 one proves that a single-particle operator f in the particle number
representation has the form

(13.22)

correspondingly, for a two-particle operator g in particle number representation

(13.23)

f̂ and ĝ have formally the same structure for bosons and fermions; the difference is
only in the commutation rules for the creation and annihilation operators and the
states on which f̂ , ĝ act.

13.5	 Applications
The following examples should clarify the difference between fermions and bosons.

1.	Groundstate	and	simple	excited	states	in	boson	systems	of N particles.
In the groundstate of a system of N independent bosons, all N particles are in the

lowest single-particle level (Fig. 13.1).

Fig.	13.1 Groundstate of a 4 particle boson system

Simple excited states are obtained by placing one (or more) particles in a higher
level (Fig. 13.2).

f̂ = ∑m,n(m|f|n) b
†
mbn ;

ĝ = 1
2
∑p,q,m,n(pq|g|mn) b

†
pb

†
qbnbm.



Fig.	13.2 Illustration of a 2p − 2h excitation for a 4 particle boson system

2.	Ground	state	expectation	values
For the kinetic energy (or other single-particle operators) we obtain

(13.24)

where t0 is the kinetic energy of a particle in the lowest single-particle state φ0 = |1⟩.
For the potential energy (or other two-particle operators) b†

l bn = −δln + bnb
†
l

(13.25)

where V0 is given by the matrix element

(13.26)

Addition:
The eigenvalues of N̂k = b

†
k
bk are real, since N̂k is hermitian. They are also not

negative, because

(13.27)

= ∑
ni′

|⟨⋯n′
i ⋯|bk|⋯nk ⋯ ⟩|2 ≥ 0.

The formal properties of N̂k or N̂  are thus consistent with the physical interpretation.
In summary, we have obtained a calculus with creation and annihilation operators

for bosons that differs characteristically from fermions in the commutation relations,
which take care about the symmetry (or antisymmetry) of the N-body wave functions.

⟨Φ0|T̂ |Φ0⟩ = ∑m,n(m|t|n)⟨Φ0|b†
mbn|Φ0⟩ = N t0,

⟨Φ0|V̂ |Φ0⟩ = 1
2 ∑m,n,k,l(kl|V |mn)⟨Φ0|b†

kb
†
l bnbm|Φ0⟩ = 1

2 N(N − 1)V0,

V0 = ∫ ∫ dξ dξ′ |φ0(ξ)|2
V (ξ, ξ′) |φ0(ξ′)|2.

⟨⋯nk ⋯|b†
k
bk|⋯nk ⋯⟩ = ∑i

′⟨⋯nk ⋯|b†
k
|⋯n′

i. . ⟩⟨⋯n′
i ⋯|bk|⋯nk ⋯⟩



(1)
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In this chapter we describe the quantization of the electromagnetic radiation �ield, that in
quantum mechanics can no longer be described by a classical vector �ield A(r;t).
Furthermore, we will calculate the interaction between matter and the quantized radiation
�ield in leading order of the coupling.

Electromagnetic radiation (Planck’s	radiation	formula) plays an important role in
physics. We will carry out the description of the radiation �ield by photons, which was
implicitly used by Planck, after quantization within the framework of the particle number
representation.

14.1	 Energy	of	the	Classical	Radiation	Field
In Coulomb gauge

(14.1)

the vector potential A(r;t), that has to be calculated from the wave equation

(14.2)

describes the free radiation �ield completely. With the separation Ansatz

(14.3)

Equation (14.2) turns to

(14.4)

and

(14.5)

with
(14.6)

∇ ⋅ A(r;t) = 0

ΔA(r;t) − 1
c2

∂ 2

∂t2 A(r;t) = 0,

A(r;t) = U(r)v(t)

ΔU + k2U = 0

∂ 2

∂t2 v + ω2v = 0

k2 = ω2

c2 .
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Special solutions are plane waves

(14.7)

from which the general solution can be constructed by superposition with respect to k.
If the radiation �ield is enclosed in a very large—but �inite normalization volume V (with

periodic boundary conditions)—we obtain the general solution in the form of a Fourier
series:

(14.8)

Here

(14.9)

where the μi are integers (with V = L3), the wave vector (–not the four-momentum in
covariant notation!–) and

(14.10)

are real polarization	vectors, which are perpendicular to each other and—due to the
transversality of light—perpendicular to kμ. The representation (14.8) for A is real if we
require

(14.11)

We therefore write explicitly:

(14.12)

We now want to calculate—with regards to the quantization of the radiation �ield—the
energy of the �ield, starting from the well-known formula (in Gauss units)

(14.13)

With

(14.14)

we get

A(r;t) ∼exp {±i(k ⋅ r − ωt)},

A(r;t) = ∑μ,j√
4πc2

V ωμ
bμ,j(t) eμ,j exp {ikμ ⋅ r}.

kμ = 2π
L

(μ1,μ2,μ3), μ = (μ1,μ2,μ3),

eμ,j, j = 1, 2

b∗
μ,j = b−μ,j.

A(r;t) = ∑μ,j√
2πc2

V ωμ
(bμ,j(t) eμ,j exp {ikμ ⋅ r} + b∗

μ,j(t) eμ,j exp {−ikμ ⋅ r}).

Hr,kl. = 1
8π ∫ dτ [E2 + B2].

B = ∇ × A, E = − 1
c

∂A
∂t



(14.15)

If we insert (14.12) we �inally obtain:

(14.16)

using

(14.17)

except for kμ = −kμ′ , where (14.17) just gives the volume V. As expected for a closed
system, Hr,kl. is independent of time, since the coef�icients bμ,j obey the differential equation

(14.18)

with the basic solutions

(14.19)

14.2	 Quantization	of	the	Radiation	Field
For the quantization we note that the classical energy according to (14.16) and (14.18) is
composed additively of the contributions of individual oscillators described by the
amplitudes bμ,j(t). The same holds for the momentum or angular momentum of the �ield.
The quantization of the harmonic oscillator is known: we replace the classical amplitudes 
bμ,j and b∗

μ,j by operators bμ,j and b†
μ,j with the commutation rule

(14.20)

for t = t′; all other commutators for t ≠ t′ should disappear. It is convenient to
substitute

(14.21)

such that the commutator (14.20) changes at equal times to

(14.22)

Hr,kl. = 1
8π ∫ dτ [ 1

c2 ( ∂A
∂t )

2
+ (∇ × A)2].

Hr,kl. = 1
2 ∑μ,j ωμ(bμ,jb

∗
μ,j + b∗

μ,jbμ,j),

∫ dτ exp {i[kμ + kμ′ ] ⋅ r} = 0

∂ 2

∂t2 bμ,j + ω2
μbμ,j = 0

bμ,j(t) ∼exp {±iωμt}.

[bμ,j, b
†
μ′,j′] = ħ δμμ′δjj′

bμ,j = √ħ ~
bμ,j,

[~bμ,j,
~
b

†
μ′,j′] = δμμ′δjj′ .



From now on we only use the operators ~bμj and ~b†
μj, but for simplicity again write 

bμj ≡
~
bμj. The Hamiltonian of the radiation �ield then is (initially)

(14.23)

The radiation �ield can thus be treated like a system of decoupled harmonic oscillators.
If we compare (14.22) with (14.24), we can see that the degrees of freedom are bosons.

These bosons—photons—are characterized by their momentum ħkμ, energy ħωμ and
polarization state j. In (14.23)

(14.24)

is the particle number operator for the oscillation type (μ, j), whose eigenvalues indicate
how many photons of the type (μ, j) are present; in addition, in each oscillation type there is
a zero-point energy of 1/2ħωμ. The eigenstates of Hr are characterized by the number of
photons of the type (μ, j) :

(14.25)

after subtracting the zero-point energy, which is divergent in (14.23). In order to avoid such
divergences and to obtain a vacuum state |0⟩ (bμ,j|0⟩ = 0 ∀μ, j) of the lowest energy with 
Hr|0⟩ = 0, we introduce the normal	ordering of the operators in �ield theory bμ,j, b

†
μ′,j′ , i.e.

arranging all bμ,j to the right of b†
μ′,j′ . The normal	ordered	Hamilton	operator then has the

form

(14.26)

Remarks:
1. We have intentionally written the classical energy in (14.16) symmetrically in b, b∗ in

order to make the transition to the Hamiltonian operator unambiguous.
2. Instead of plane waves, spherical waves could also have been used as basic solutions of

(14.2). After quantization, we then would have obtained photons, which are characterized
not only by energy and polarization but also by their angular momentum. The transition
between the two representations is mediated by the expansion of the plane wave according
to spherical harmonics (cf. Sect. 7. 6. 3). The situation is in close analogy to the case of free,
material particles (i.e. rest mass ≠ 0), where we can use the momentum (plane wave) or
angular momentum (spherical wave) classi�ication depending on the problem of interest.
The angular momentum representation of photons is used in radiation problems of atoms or
atomic nuclei, since atomic and nuclear states are characterized by sharp angular
momentum; in solid-state physics, the momentum representation is appropriate for
geometric reasons.

3. In addition to the transversal photons introduced above (transversal, since always 
eμj ⋅ kμ = 0), there are also longitudinal photons, which can be used to describe the

Hr = 1
2
∑μ,j ħωμ (bμ,jb

†
μ,j + b

†
μ,jbμ,j) = ∑μ,j ħωμ (b†

μ,jbμ,j + 1
2

).

N̂μ,j = b
†
μ,jbμ,j

Hr|⋯nμ,j ⋯⟩ = ∑μ,j ħωμnμ,j |⋯nμ,j ⋯⟩

: Hr := 1
2
∑μ,j ħωμ : (bμ,jb

†
μ,j + b

†
μ,jbμ,j) := ∑μ,j ħωμ (b†

μ,jbμ,j).



Coulomb interaction (analogy: explanation of nuclear forces by the exchange of mesons).
They correspond to a Fourier decomposition of the scalar potential Φ(r, t), which describes
the interaction in static charge distributions. Since we are only interested in the radiation
�ield above, we have chosen Φ ≡ 0; when describing the interaction of radiation and matter,
we then must treat the Coulomb energy as a contribution to the energy of the charged
particles.

14.3	 Interaction	of	the	Radiation	Field	and	Matter
The Hamiltonian of a system of identical particles—the generalization to non-identical
particles requires only the indexing of mass, charge and magnetic moment—with mass m,
charge e and magnetic moment μ, in the presence of the radiation �ield, including the �ield
energy (non-relativistically) is (in Gauss units)

(14.27)

With regards to a perturbation series we separate the Hamiltonian in

(14.28)

where Hr describes the free radiation �ield according to (14.26), Hp is the Hamiltonian
of the particles in the absence of the A �ield (but including the Coulomb interaction)

(14.29)

and H ′ the interaction between particles and photons. In H ′, A(ri) is an operator:

(14.30)

which contains photon creation b†
μ,j and annihilation bμ,j operators in linear form. In

detail, H ′ consists of 3 parts:
(i) a contribution that acts on the charge of the particles,

(14.31)

which contains the operators bμ,j and b†
μ,j linearly, thus enabling processes in which (in

lowest order) 1 photon is created or destroyed.
(ii) a part acting on the magnetic moment μ,

(14.32)

H = 1
2m ∑N

i=1 (pi − e
c

A(ri))2 + 1
2 ∑i≠j Vij − μ∑N

i=1(→σi ⋅ [∇ × A(ri)]) + Hr.

H = Hp + Hr + H ′,

Hp = 1
2m

∑i p
2
i + 1

2
∑i≠j Vij,

A(ri) = ∑μ,j ħc√ 2π
V ħωμ

eμ,j (bμ,j exp (ikμ ⋅ ri) + b
†
μ,j exp (−ikμ ⋅ ri)),

− e
2mc

∑i(pi ⋅ A(ri) + A(ri) ⋅ pi),



which has the same structure as i) with respect to bμ,j and b†
μ,j,

(iii) a quadratic term in b, b†,

(14.33)

which (in lowest order) enables two-photon processes.

14.4	 The	0th	Approximation
We will assume in the following that the eigenfunctions are known for

(14.34)

i.e.

(14.35)

Here, λ characterizes the (at least approximately known) eigenstates of Hp with the
energy Eλ, e.g. the eigenstates of the H atom.

Based on (14.34), (14.35) as 0th order approximation we will now try to calculate the
in�luence of H ′ within the framework of a perturbation calculation.

14.5	 Absorption	and	Emission	of	Photons
Photons can be created (absorbed) under the in�luence of H ′. Due to the conservation laws
for the closed system (matter + radiation �ield), the energy (as well as momentum, angular
momentum), which is absorbed (released) by the radiation �ield, must be released
(absorbed) by the matter (e.g. atoms, molecules). When photons are absorbed the matter
goes into an excited state (Fig. 14.1), conversely, the matter can change from an excited state
to a lower state (e.g. the ground state) by emitting photons (Fig. 14.2).

Fig.	14.1 Absorption of a photon with an excitation of the matter from state λ to state λ′

−μ∑i(→σi ⋅ [∇ × A(ri)]),

e2

2mc2 ∑i A(ri) ⋅ A(ri),

H0 = Hp + Hr,

H0|λ;nμj⟩ = (Eλ + ∑μ,j nμj ħωμ)|λ;nμj⟩.



Fig.	14.2 Emission of a photon by the decay of an excited state λ′ of the matter

We now have to quantitatively calculate the probability, that the non-interacting system
described by H0 changes from an initial state |λ;nμj⟩ to a �inal state |λ′;n′

μj⟩ by virtue of the
interaction H ′. To this aim we use the time evolution of a system in the Dirac picture (see
Sect. 11. 3).

At time t = 0 the system is in the state |λ;nμj⟩; the time evolution occurs in the Dirac
picture according to

(14.36)

with

(14.37)

where

(14.38)

The operator H ′ in the Schrödinger picture—for the closed system under consideration
—is time-independent. The amplitude, with which the �inal state |λ′;n′

μj⟩ is contained in 
|ΨD(t)⟩, is

(14.39)

the square of its absolute value gives the probability of �inding the system in |λ′;n′
μj⟩ in the

�inal state at time t.
If we restrict ourselves to the most simple process—absorption or emission of 1 photon

—we can use the approximation for UD(t, 0)

(14.40)

the 1st term does not contribute to the transition probability due to the orthogonality of
the states |λ;nμj⟩. It remains to calculate (except for the factor −i/ħ)

|ΨD(t)⟩ = UD(t, 0)|λ;nμj⟩

UD(t, 0) = 1 − i
ħ ∫

t

0 dt
′ H ′

D(t′)UD(t′, 0),

H ′
D(t′) =exp ( i

ħ H0t
′) H ′ exp (− i

ħ H0t
′).

⟨λ′;n′
μj|UD(t, 0)|λ;nμj⟩;

UD(t, 0) ≈ 1 − i
ħ ∫

t

0 dt
′ H ′

D(t′);

( )



(14.41)

where for H ′ (14.31) and (14.32) have to be inserted; furthermore, we use the abbreviation

(14.42)

The time integration in (14.41) results in

(14.43)

with the abbreviation

(14.44)

For the probability W(t), that the system has passed from the initial state |λ;nμj⟩ to the �inal
state |λ′;n′

μj⟩ after time t, we obtain

(14.45)

The function (sin (tξ)/ξ)2 has the form shown in Fig. 14.3; the main maximum at ξ = 0
becomes sharper with increasing t, the secondary maxima are reduced.

Fig.	14.3 Illustration of the function (sin (tξ)/ξ)
2 in (14.45)

Transitions are particularly likely if ξ ≈ 0 or

(14.46)

∫ t

0 dt
′⟨λ′;n′

μj|H
′
D(t′)|λ;nμj⟩ = ⟨λ′;n′

μj|H
′|λ;nμj⟩ ∫

t

0 dt
′ exp ( i

ħ t
′[E ′ − E]),

E = Eλ + ∑μ,j nμjħωμ; E ′ = Eλ′ + ∑μ,j n
′
μjħωμ.

−iħ
[exp( i

ħ t[E
′−E])−1]

E ′−E
= −i

exp(2iξt)−1
2ξ =exp (iξt)

exp(iξt)−exp(−iξt)
2iξ

ξ = E ′−E
2ħ .

W(t) = 1
ħ2 ( sin(tξ)

ξ
)

2
|⟨λ′;n′

μj|H
′|λ;nμj⟩|

2

E ′ ≈ E.



The factor (sin (tξ)/ξ)2 in (14.45) thus includes the conservation of energy within the
framework of the energy-time uncertainty. For t → ∞ the conservation of energy is strictly
ful�illed, i.e. E ′ = E.

The matrix element ⟨λ′;n′
μj|H

′|λ;nμj⟩ from (14.45) splits into parts that only concern
the matter and those that only concern the radiation. When restricting to 1 photon—
processes, only the terms (14.31) and (14.32) contribute. The electrical transitions are
determined by

(14.47)

and the magnetic transitions by

(14.48)

An expansion of the plane wave according to spherical harmonics yields dipole radiation,
quadrupole radiation etc. To (14.47) and (14.48) the parts concerning the radiation �ield
have to be added

(14.49)

or

(14.50)

In the case of absorption of radiation we have

(14.51)

The absorption probability is thus proportional to the number of photons initially
present or to the intensity of the �ield. The emission probability, on the other hand, is

(14.52)

A remarkable difference to photon absorption is that photon emission also takes place if 
nμj = 0 in the initial state, i.e. there is a spontaneous	emission (in contrast to the induced
emission that increases with nμj). Due to this spontaneous emission all excited states of
atomic systems are unstable; they have a natural	line	width.

The fact that atomic systems spontaneously pass from excited states to the ground state
by emitting photons due to the electromagnetic interaction cannot be understood within the

⟨λ′|∑l pl exp (±ik ⋅ rl)|λ⟩,

⟨λ′|∑i(→σi × k) exp (±ik ⋅ ri)|λ⟩.

⟨n′
μj|bμj|nμj⟩

⟨n′
μj|b

†
μj|nμj⟩.

|⟨nμj − 1|bμj|nμj⟩|
2 = nμj.

∼ |⟨nμj + 1|b
†
μj|nμj⟩|

2 = nμj + 1.



framework of classical physics. Classically, the ground state of the free radiation �ield is
characterized by the fact that

(14.53)

However, if there is no electromagnetic �ield, then there can be no electromagnetic
interaction with matter. The situation is different after quantization of the radiation �ield: the
ground state of the free radiation �ield is the photon vacuum |0⟩; in this state, the
expectation value of the �ield operators A, E and B are zero,

(14.54)

but there are non-zero mean-square �luctuations (vacuum	�luctuations), e.g.

(14.55)

The formal reason for the non-vanishing expectation values of E2 and B2 is that the
operators for E and B do not commute with the Hamiltonian of the radiation �ield and
therefore cannot be measured sharp at the same time!

Remark: The vacuum �luctuations of gauge �ields (gluons) play a decisive role for the
stability of hadrons and the ‘con�inement’ of quarks and gluons in hadrons (nucleons and
mesons) (see quantum chromodynamics).

In summary, we have quantized the radiation �ield and evaluated the interaction between
matter and the radiation �ield (photons) in leading order, which corresponds to the
absorption (emission) of photons by matter.

Ekl. ≡ 0.

⟨0|A|0⟩ = ⟨0|E|0⟩ = ⟨0|B|0⟩ = 0,

(ΔE)2 = (⟨0|E2|0⟩ − ⟨0|E|0⟩2) = ⟨0|E2|0⟩ ≠ 0.
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15.	Formal	Scattering	Theory
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In Chap. 8 we have presented the scattering theory of a particle interacting with another
independent particle by some potential interaction V (r) and de�ined the relevant quantities such
as the scattering amplitude and the differential cross section. In this chapter we will provide the
formal scattering theory for many-particle systems, which will end up in the de�inition of the S-
matrix, the general T-matrix and Born-series.

15.1	 Time-Dependent	Formulation	of	Scattering
To describe a scattering process, we write the Hamiltonian operator of the entire system—after
separating the center of mass motion (see Sect. 11. 2)—as

(15.1)

where T is the kinetic energy of the relative motion (with the reduced mass) of the scattering
partners, V is their interaction and Hint is the Hamiltonian operator of the remaining internal
degrees of freedom.

Long before the collision, the system is described in terms of its relative motion by a force-free
wave packet:

(15.2)

where

(15.3)

and the discrete and/or continuous index a stands for a complete set of quantum numbers. Ea

consists of the internal energy of the collision partners and the kinetic energy of the relative
motion; c(a) describes the shape of the wave packet before the collision. The wave packet (15.2)
then develops according to the time evolution operator U(t, −∞) belonging to the full Hamiltonian
operator H and long after the collision it takes the shape of a force-free wave packet again:

(15.4)

If we compare with Chap. 8, then |Ψi⟩ corresponds to the incident plane wave and |Ψf⟩ to the
combination of a plane wave and a direction-modulated outgoing spherical wave. The indices i and

H = T + V + Hint =: H0 + V ;

|Ψi⟩ =:limt→−∞ |Ψ(t)⟩ =limt→−∞ ∑a ∫ da c(a) exp (− i
ħ Eat) |Φa⟩,

H0|Φa⟩ = Ea|Φa⟩,

|Ψf⟩ =:limt→∞ |Ψ(t)⟩ =limt→∞ ∑a ∫ da
~c(a) exp (− i

ħ Eat) |Φa⟩.
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f stand for initial and �inal.
The task of the scattering theory is to calculate the unknown function ~c(a), which characterizes

the state of the system after the collision, from the given initial distribution c(a). It is therefore
suitable to introduce the

15.2	 S-Matrix
as the fundamental quantity of scattering theory, which is de�ined by

(15.5)

It must be unitary in order to ensure the conservation of the norm:

(15.6)

For a classi�ication of the concept as well as the practical calculation of the S-matrix it is useful to
consider alternative de�initions to (15.5).

If we translate |Ψi⟩ and |Ψf⟩ into the Dirac picture,

(15.7)

and introducing an operator S by

(15.8)

then the matrix elements of S in the basis |Φa⟩ turn out to be the S-matrix elements introduced
in (15.5). To this aim we form

(15.9)

= ∑
a′

∫ da′ ⟨Φa|S|Φa′⟩c(a′).

The operator S—introduced in (15.8)—is directly related to the time evolution operator of the
Dirac picture:

(15.10)

i.e.

(15.11)

~c(a) = ∑a′ ∫ da′ S(a, a′)c(a′) with S(a, a′) = ⟨Φa|S|Φa′⟩.

∑a ∫ da |~c(a)|2 = ∑a ∫ da |c(a)|2.

|ΨD
i ⟩ =limt→−∞exp ( i

ħ H0t)|Ψ(t)⟩;|ΨD
f
⟩ =limt→∞exp ( i

ħ H0t)|Ψ(t)⟩,

|ΨD
f
⟩ = S|ΨD

i ⟩,

⟨Φa|ΨD
f ⟩ = ~c(a) = ⟨Φa|S|ΨD

i ⟩ = ∑a′ ∫ da′ ⟨Φa|S|Φa′⟩⟨Φa′ |ΨD
i ⟩

|ΨD
f ⟩ = UD(∞, −∞)|ΨD

i ⟩,

S = UD(∞, −∞).



Mathematical details of the limit formation in UD(t, t0) cannot be discussed here (see P. Roman,
Advanced Quantum Theory, Sect. 4. 3). From (15.11) we obtain the unitarity of S,

(15.12)

Alternatively, S can be de�ined using the eigenstates of H. With (15.11), (15.9) and (15.5) we
have

(15.13)

= lim
t→∞,t′→−∞

⟨Φa|exp (
i

ħ
Eat) U(t, t′) exp (−

i

ħ
Ea′t′)|Φa′⟩,

with

(15.14)

since H as the Hamiltonian of a closed system does not explicitly depend on t. This gives

(15.15)

if we introduce (see below for details of the formation of the limit)

(15.16)

To deal with the limits in (15.16) we note that for a function F(t), whose limit exists for 
t → −∞, this can be written as an abelian	limit 

lim
t→−∞

F(t) = lim
ϵ→+0

ϵ∫
0

−∞

dt′ exp (ϵt′) F(t′)

(15.17)

as can be seen immediately by partial integration. This gives

(15.18)

after executing the t-integration. Since the inverse operator for (H − Ea) does not exist for
values Ea of the continuous spectrum (scattering states!) of H (Chap. 8), the transition ϵ → +0 can
only be carried out after execution of the operators iϵ/(Ea − H + iϵ) acting on |Φa⟩.

We now show that |Ψ(+)
a ⟩ is an eigenvector of H with eigenvalue Ea:

SS † = 1H = S †S.

S(a, a′) =limt→∞,t′→−∞ ⟨Φa|UD(t, t′)|Φa′⟩

U(t, t′) =exp (− i
ħ H(t − t′)),

S(a, a′) = ⟨Ψ
(−)
a |Ψ

(+)
a′ ⟩,

|Ψ
(±)
a ⟩ =limt→∓∞exp (− i

ħ (Ea − H)t)|Φa⟩.

=limϵ→+0 ( ϵ
ϵ

exp (ϵt)F(t)|0
−∞ − ϵ

ϵ
∫ 0

−∞ dt′ exp (ϵt′)F ′(t′)) ≡ F(0) − ∫ 0

−∞ dt′ F ′(t′),

|Ψ
(+)
a ⟩ =limϵ→+0

ϵ
ħ ∫

0
−∞ dt exp [− i

ħ (Ea − H + iϵ)t] |Φa⟩ =limϵ→+0
iϵ

Ea−H+iϵ
|Φa⟩



(15.19)

thus

(15.20)

In (15.20) we have assumed that H and H0 have the same continuous spectrum and thus only
differ in the discrete spectrum. This assumption is not always ful�illed:
(i)

In the case of non-local	interactions V, bound states of H may be embedded in the
continuous spectrum of H, which H0 does not possess.

 
(ii)

According to the above assumption, the energy of the system must not change when the
interaction V is switched on; this absence of level	shifts in the continuum is not present in
quantum electrodynamics (QED).

 

We therefore assume in the following that V is such that the limit (15.16) exists, such that (15.3)
and (15.20) are simultaneously satis�ied for the scattering process.

15.3	 The	Lippmann-Schwinger	Equation
We want to show next that |Ψ(±)

a ⟩ are solutions of the scattering problem, that contain incoming
and outgoing spherical waves in the spatial representation. For this we use the operator identity,
which is generally important in quantum theory (H = H0 + V )

(15.21)

Proof
In the identity

(15.22)

insert A = Ea − H0 + iϵ and B = −V . Equation (15.22) is easy to show by multiplying by 
(A + B), e.g.:

(15.23)

If we apply (15.21) to |Φa⟩, we obtain

(15.24)

With (15.18) we �inally get after formation of the limit ϵ → 0

(Ea − H)|Ψ
(+)
a ⟩ =limϵ→+0 (iϵ Ea−H

Ea−H+iϵ
|Φa⟩) =limϵ→+0 (iϵ|Φa⟩) = 0,

H|Ψ
(+)
a ⟩ = Ea|Ψ

(+)
a ⟩.

1
Ea−H+iϵ

= 1
Ea−H0+iϵ

+ 1
Ea−H0+iϵ

V 1
Ea−H+iϵ

.

[A + B]−1 = A−1(1 − B[A + B]−1)

[A + B]−1(A + B) = 1 = A−1(A + B) − A−1B[A + B]−1(A + B) = 1 + A−1B − A−1B.

iϵ
Ea−H+iϵ

|Φa⟩ = iϵ
Ea−H0+iϵ

|Φa⟩+
1

Ea−H0+iϵ
V iϵ

Ea−H+iϵ
|Φa⟩.

( ) ( ) ( )



(15.25)

with the Green’s	operator

(15.26)

Using the same procedure, we �ind

(15.27)

with

(15.28)

The spatial representation of (15.25) and (15.26) is the Lippmann-Schwinger	equation and
the Green’s function from Chap. 8, if we consider the scattering of a particle at a potential V, where 
H0 ≡ T .

We form

(15.29)

=
1

(2π)3
∫ d3q exp (iq ⋅ r)

1

E −
ħ2q2

2μ + iϵ
exp (−iq ⋅ r′)

=
1

(2π)3

2μ

ħ2
∫ d3q

exp (iq ⋅ (r − r′))

k2 − q2 + iϵ
=

2μ

ħ2
G(+)(r, r′);

where

(15.30)

and

(15.31)

Accordingly, (15.25) turns into the Lippmann-Schwinger equation.

15.4	 The	T-Matrix
We go back to

(15.32)

|Ψ
(+)
a ⟩ =|Φa⟩+G

(+)
a V |Ψ

(+)
a ⟩

G
(+)
a :=limϵ→+0

1
Ea−H0+iϵ

.

|Ψ
(−)
a ⟩ =|Φa⟩+G

(−)
a V |Ψ

(−)
a ⟩

G
(−)
a :=limϵ→+0

1
Ea−H0−iϵ

.

⟨r|G(+)|r′⟩ = ∫ ∫ d3q d3q ′ ⟨r|q⟩⟨q|G(+)|q′⟩⟨q′|r′⟩

⟨r|q⟩ = ⟨q|r⟩∗ = (2π)−3/2 exp (iq ⋅ r)

⟨q|G(+)|q′⟩ =
δ3(q−q′)

E− ħ2q2

2μ +iϵ
.

S(a, a′) = ⟨Φa|S|Φa′⟩.



Since we are only interested in real scattering processes

(15.33)

it is useful to extract the unit-operator from S, which describes the trivial transition Φa → Φa:

(15.34)

For discrete quantum numbers a, a′, the δ-function δ(a − a′) has to be replaced by δaa′ ; 
δ(Ea − Ea′) takes into account energy conservation, while the factor −2πi is split off by
convention. The T matrix introduced in (15.34) is then responsible for real transitions.

By (15.34) the T matrix is de�ined only for transitions Φa → Φa′  at Ea = Ea′ , i.e. for elastic
processes (on	the	energy	shell T matrix). However, the concept of the T matrix can be generalized
to any processes. We refer back to (15.18):

(15.35)

= lim
ϵ→+0

iϵ + Ea − H + V

Ea − H + iϵ
|Φa⟩ = lim

ϵ→+0
[1 +

1

Ea − H + iϵ
V ]|Φa⟩

and form

|Ψ
(−)
a ⟩ = lim

ϵ→+0

iϵ

Ea − H − iϵ
|Φa⟩ = lim

ϵ→+0
[1 +

1

Ea − H − iϵ
V ]|Φa⟩

(15.36)

With (15.15) we then get (the limϵ→+0 is suppressed in the following)

(15.37)

= δ(a − a′) + ⟨Ψ
(+)
a′ |[

1

Ea − H − iϵ
−

1

Ea − H + iϵ
]V |Φa⟩

∗

= δ(a − a′) + ⟨Φa|V [
1

Ea − H + iϵ
−

1

Ea − H − iϵ
]|Ψ

(+)
a′ ⟩.

We note that |Ψ(+)
a′ ⟩ is an eigenvector of H for the energy Ea′ , i.e.

(15.38)

If we use the representation of the δ-function

(15.39)

Φa′ → Φaa ≠ a′,

S(a, a′) = δ(a − a′) − 2πi δ(Ea − Ea′)T (a, a′).

|Ψ
(+)
a ⟩ =limϵ→+0

iϵ
Ea−H+iϵ

|Φa⟩ =limϵ→+0
iϵ+Ea−H0

Ea−H+iϵ
|Φa⟩

=|Ψ
(+)
a ⟩+ limϵ→+0 [ 1

Ea−H−iϵ
− 1

Ea−H+iϵ
]V |Φa⟩.

S(a, a′) = ⟨Ψ
(−)
a |Ψ

(+)
a′ ⟩ = ⟨Ψ

(+)
a′ |Ψ

(−)
a ⟩

∗

[ 1
Ea−H+iϵ

− 1
Ea−H−iϵ

]|Ψ
(+)
a′ ⟩ = − 2iϵ

(Ea−Ea′)
2+ϵ2

|Ψ
(+)
a′ ⟩.

δ(x) =: 1
π

limϵ→+0
ϵ

x2+ϵ2 ,



we get

(15.40)

and with (15.34)

(15.41)

We now introduce an operator T in general by

(15.42)

from which we obtain with (15.25)

(15.43)

Since G(+) = G(+)(E), we also write more precisely T = T (E); the operator T is thus
explicitly energy-dependent. Let us now form arbitrary matrix elements of T in the basis Φa,

(15.44)

where in general Ea ≠ Ea′ , we have found the desired generalization of (15.34).
We distinguish 3 types of matrix elements of T : 
1. on	energy	shell:

⟨Φa|T |Φa′⟩ for Ea = Ea′ = E.

They describe elastic scattering.
2. off	energy	shell:

⟨Φa|T |Φa′⟩ for Ea ≠ E ≠ Ea′ .

They occur e.g. in inelastic nucleon-nucleus scattering: N1 + (A + N2) → N1 + N2 + A∗.
3. half	energy	shell:

⟨Φa|T |Φa′⟩ for Ea ≠ Ea′ ;E = Ea or E = Ea′ .

Example: Proton-proton bremsstrahlung, since due to the photon in the �inal state k2
a ≠ k2

a′ .
The ‘on energy shell’ elements are directly related to the scattering amplitude f(Ω):

(15.45)

S(a, a′) = δ(a − a′) − 2πi δ(Ea − Ea′)⟨Φa|V |Ψ
(+)
a′ ⟩,

T (a, a′) = ⟨Φa|V |Ψ
(+)
a′ ⟩.

T |Φa′⟩ = V |Ψ
(+)
a′ ⟩,

T = V + V G(+)T .

⟨Φa|T |Φa′⟩,

f(Ω) = −
μ

2πħ2 ⟨Φa|V |Ψ
(+)
a′ ⟩ = −

μ

2πħ2 T (a, a′).



To calculate T and thus f(Ω), it is obvious to solve (15.43) by iteration. This leads to the Born
series, which we introduced in Sect. 8. 2. 3:

(15.46)

The convergence properties of (15.46) can be improved within the framework of the

15.5	 Generalized	Born	Series	(DWBA)
To this aim we separate H into

(15.47)

where now

(15.48)

in addition to the kinetic energy of the relative motion of the collision partners also contains a
part of their interaction (e.g. the Coulomb interaction). If we succeed in �inding the solutions of

(15.49)

the procedure described above can be carried out with the interaction V ′ instead of V and

(15.50)

instead of G(+). One then obtains a better convergent series

(15.51)

An example is the scattering of protons on nuclei, where one can include the Coulomb
interaction in H ′

0, since the Coulomb problem can be solved exactly; V − V ′ then is the interaction
solely caused by the nuclear forces. While the Coulomb waves exhibit non-vanishing scattering
phases for all collision parameters (angular momentum) (Chap. 8) and thus the series (15.46)
converges poorly, (15.51) is a much better convergent series due to the short range nature of the
nuclear forces (V − V ′). Since in this case the plane waves of the ordinary Born series change into
Coulomb waves, the method is also called Distorted-Wave-Born-Approximation (DWBA).

15.6	 S-Matrix	in	Angular	Momentum	Representation

T = V + VG(+)V + VG(+)VG(+)V + ⋯ = V 1
1−G(+)V

.

H = H ′
0 + V ′,

H ′
0 = T + Hint + (V − V ′)

H ′
0|Φ′

a⟩ = E ′
a|Φ′

a⟩,

G′(+) = 1
E−H ′

0+iϵ

T = V ′ + V ′G′(+)V ′ + V ′G′(+)V ′G′(+)V ′ + ⋯



According to the partial wave expansion (Chap. 8) we expand for V = V (r)

(15.52)

While Ψ(+)
k (r) contains an outgoing spherical wave, Ψ(−)

k (r) contains an incoming spherical
wave. Therefore,

(15.53)

If we denote the individual components in (15.52), (15.53) with �ixed l by Ψ(±)
k,l , then

(15.54)

if one appropriately normalizes χl,k. The S-matrix is therefore diagonal in l and k and the
following holds:

(15.55)

The S matrix is thus completely described by momentum-dependent phases δl(k) for each
partial wave l.

15.7	 Energy	of	the	Ground	State
We go back to Sect. 11. 3 and write the exact ground state at time t = 0 as

(15.56)

where we have separated the Hamiltonian operator in the form H = H0 + H ′ and the problem 
(H0 − ϵn)|Φn⟩ is considered to be known. With

(15.57)

we get by forming the scalar product with ⟨Φ0| and subtracting ⟨Φ0|H0|Ψ0⟩

(15.58)

When forming (15.58) it must be ensured, however, that the states |Φ0⟩ and |Ψ0⟩ are not
orthogonal to each other. To this aim we consider the explicitly time-dependent Hamiltonian (
η > 0)

(15.59)

Ψ
(+)
k

(r) = ∑l=0 i
l(2l + 1) exp (iδl(k)) Pl(cos ϑ)

χl,k(r)

r
.

Ψ
(−)
k

(r) = ∑l=0 i
l(2l + 1) exp (−iδl(k)) Pl(cos ϑ)

χl,k(r)

r
.

S(l, k;l′k′) = ⟨Ψ
(−)
l,k |Ψ

(+)
l′k′ ⟩ =exp (2iδl(k)) δll′ δ(k − k′),

S(l, k;l, k) = Sl(k) =exp (2iδl(k)).

|Ψ0⟩ = UD(0, −∞)|Φ0⟩,

H|Ψ0⟩ = E0|Ψ0⟩

ΔE0 = E0 − ϵ0 =
⟨Φ0|H ′|Ψ0⟩

⟨Φ0|Ψ0⟩
=

⟨Φ0|H ′UD(0,−∞)|Φ0⟩

⟨Φ0|UD(0,−∞)|Φ0⟩
.

′



with

(15.60)

With the Ansatz (15.59) the interaction H ′ is switched on and off adiabatically, such that at
time t=0 the full Hamiltonian is effective. Now in the case of (15.59) the time evolution operator 
UD depends on η via H ′(t) =exp (−η|t|) H ′ and only those quantities are meaningful for which
the limit η → 0 exists. The theorem	of	Gell-Mann	and	Low states: If

(15.61)

exists in every order of perturbation theory, then |Ψ0⟩/⟨Φ0|Ψ0⟩ is an eigenstate of H and

(15.62)

It should be noted that in (15.61) numerator and denominator do not necessarily exist
separately!

We suppress the (lengthy) proof of the theorem and give an important transformation for ΔE0

for applications. With

(15.63)

or

(15.64)

we obtain (t0 = −∞)

(15.65)

This gives (for η → 0)

(15.66)

We write (in the sense of a perturbation series)

(15.67)

and use
(15.68)

Hη(|t|) = H0+ exp (−η|t|) H ′,

lim|t|→∞ Hη = H0, limη→0 Hη = H = Hη(t = 0).

limη→0
UD(0,−∞)|Φ0⟩

⟨Φ0|UD(0,−∞)|Φ0⟩
=

|Ψ0⟩
⟨Φ0|Ψ0⟩

ΔE0 =limη→0
⟨Φ0|H ′UD(0,−∞)|Φ0⟩

⟨Φ0|UD(0,−∞)|Φ0⟩
.

iħ ∂
∂t
UD(t, t0) = H ′

D(t) UD(t, t0)

iħ ∂
∂t

⟨Φ0|UD(t, t0)|Φ0⟩ = ⟨Φ0|H ′
D(t) UD(t, t0)|Φ0⟩

iħ ∂
∂t ln (⟨Φ0|UD(t, −∞)|Φ0⟩) =

⟨Φ0|H ′
D(t) UD(t,−∞)|Φ0⟩

⟨Φ0|UD(t,−∞)|Φ0⟩
.

iħ limη→0 ( ∂
∂t

ln (⟨Φ0|UD(t, −∞)|Φ0⟩))t=0
=limη→0

⟨Φ0|H ′
D(t) UD(t,−∞)|Φ0⟩

⟨Φ0|UD(t,−∞)|Φ0⟩
= ΔE0.

ΔE0 = ΔE
(1)
0 + ΔE

(2)
0 + ⋯

2



In 1.	order	approximation:
only

x = ⟨Φ0|UD(t, −∞) − 1|Φ0⟩ ≈ ⟨Φ0|−
i

ħ
∫

t

−∞

dt1 H ′
D(t1)|Φ0⟩

appears and we obtain:

(15.69)

lim
η→0

(⟨Φ0|
∂

∂t
∫

t

−∞

dt1 H ′
D(t1)|Φ0⟩)

t=0

=

lim
η→0

(⟨Φ0| H ′
D(t)|Φ0⟩)t=0

= ⟨Φ0|H ′|Φ0⟩.

2nd	order	approximation:
Then x = ⟨Φ0|UD(t, −∞) − 1|Φ0⟩ in (15.68) for a series with respect to H ′ all contributions

of 2nd order in H ′ must be considered. Contributions of 2nd order we obtain both from 
x = ⟨Φ0|UD(t, −∞) − 1|Φ0⟩ with UD(t, −∞) in 2nd order as well as from the 2nd term in the
expansion (15.68) −x2/2, where x with UD(t, −∞) − 1 has to be considered in 1st order in H ′.
We thus form:

(i) UD(t, −∞) − 1 in 2nd	order	in H ′:

(15.70)

−
i

ħ
(⟨Φ0|H ′

D(t)∫
t

−∞

dt1 H ′
D(t1)|Φ0⟩))

t=0

=

−
i

ħ
⟨Φ0|H ′ ∫

0

−∞

dt1 exp (
i

ħ
H0t1)H ′ exp (−

i

ħ
H0t1) exp (−η|t1|)|Φ0⟩ =

−
i

ħ

∞

∑
n=0

⟨Φ0|H ′|Φn⟩⟨Φn|∫
0

−∞

dt1 exp (
i

ħ
H0t1)H ′ exp (−

i

ħ
H0t1) exp (−η|t1|)|Φ0⟩ =

−
i

ħ

∞

∑
n=0

|⟨Φn|H ′|Φ0⟩|
2 ∫

0

−∞

dt1 exp (−
i

ħ
(ϵ0 − ϵn)t1 + ηt1) =

∞

∑
n=0

|⟨Φn|H ′|Φ0⟩|
2

ϵ0 − ϵn + iη
.

(ii) (UD(t, −∞) − 1) ≡ x in 1st order in H ′:
With

(15.71)

ln (1 + x) = x − x2

2 ± ⋯

ΔE
(1)
0 = iħ limη→0 ( ∂

∂t (⟨Φ0|− i
ħ ∫

t

−∞ dt1 H ′
D(t1)|Φ0⟩))

t=0
=

iħ ∂
∂t (⟨Φ0|( −i

ħ )
2 ∫ t

−∞ dt2 H ′
D(t2) ∫ t2

−∞ dt1 H ′
D(t1)|Φ0⟩)

t=0
=

1
2

∂
∂t x

2 = x ∂x
∂t



the 2nd contribution to ΔE
(2)
0  reads:

(15.72)

i|⟨Φ0|H ′|Φ0⟩|
2 ∫

0

−∞

dt1 exp (ηt1) =
i

η
|⟨Φ0|H ′|Φ0⟩|

2.

After adding contributions (i) and (ii) we get:

(15.73)

Since 1/(iη) + i/η = 0 the limit η → 0 exists for (15.73), while the individual contributions (i)
and (ii) diverge.

15.8	 Time-Independent	Perturbation	Theory
For the energy shift of the ground state due to the (time-independent) perturbation H ′ we found
(15.62):

(15.74)

if we normalize |Ψ0⟩ such that ⟨Φ0|Ψ0⟩ = 1. Formula (15.74) only becomes meaningful, if we
succeed to calculate |Ψ0⟩ at least in different ways. To this aim we introduce the projector

(15.75)

and write (with the free constant ~
E) the Schrödinger equation in the form:

(15.76)

The formal solution of (15.76) is

(15.77)

and after multiplication with

(15.78)

we get the equation

(15.79)

−i(⟨Φ0|−i ∫ t

−∞ dt1 H ′
D(t1)|Φ0⟩⟨Φ0|−i H ′

D(t)|Φ0⟩))
t=0

=

ΔE
(2)
0 =limη→0 ∑

∞
n=0 (

|⟨Φn|H ′|Φ0⟩|
2

ϵ0−ϵn+iη
+ i

η
|⟨Φ0|H ′|Φ0⟩|

2) = ∑
n≠0

|⟨Φn|H ′|Φ0⟩|
2

ϵ0−ϵn
.

ΔE0 = ⟨Φ0|H ′|Ψ0⟩,

P |Ψ0⟩ =|Φ0⟩⟨Φ0|Ψ0⟩ = |Φ0⟩

(
~
E − H0)|Ψ0⟩ = (

~
E + H ′ − E0)|Ψ0⟩.

|Ψ0⟩ = (
~
E − H0)

−1
(

~
E − E0 + H ′)|Ψ0⟩

Q = 1 − P

|Ψ0⟩ =|Φ0⟩+
Q

(
~
E−H0)

(
~
E − E0 + H ′)|Ψ0⟩,



which is suitable for a solution by iteration:

(15.80)

+
Q

(
~
E − H0)

(
~
E − E0 + H ′)

Q

(
~
E − H0)

(
~
E − E0 + H ′)|Ψ0⟩

=
∞

∑
n=0

( Q

(
~
E − H0)

(
~
E − E0 + H ′))

n

|Φ0⟩.

This gives the energy shift ΔE0 as

(15.81)

There are two obvious options for determining ~
E. If we set ~

E = E0 (Brillouin-Wigner	method),
the equations

(15.82)

and

(15.83)

have to be solved iteratively, since E0 is unknown!
In the Rayleigh-Schrödinger	method one sets ~

E = ϵ0 and the equations become

(15.84)

and

(15.85)

which in turn must be solved iteratively for the unknown quantity ΔE0!
Examples:

(15.86)

(15.87)

|Ψ0⟩ =|Φ0⟩+
Q

(
~
E−H0)

(
~
E − E0 + H ′)|Φ0⟩

ΔE0 = ⟨Φ0|H ′|Ψ0⟩ = ∑∞
n=0 ⟨Φ0|H ′( Q

(
~
E−H0)

(
~
E − E0 + H ′))

n

|Φ0⟩.

|Ψ0⟩ = ∑∞
n=0 ( Q

(E0−H0)
H ′)

n

|Φ0⟩

ΔE0 = ∑∞
n=0 ⟨Φ0|H ′( Q

(E0−H0)
H ′)

n

|Φ0⟩

|Ψ0⟩ = ∑∞
n=0 ( Q

(ϵ0−H0) (H ′ − ΔE0))
n

|Φ0⟩

ΔE0 = ∑∞
n=0 ⟨Φ0|H ′( Q

(ϵ0−H0) (H ′ − ΔE0))
n

|Φ0⟩,

n = 0 → ΔE
(1)
0 = ⟨Φ0|H ′|Φ0⟩

n = 1 → ΔE
(2)
0 = ⟨Φ0|H ′ Q

(ϵ0−H0)
(H ′ − ΔE0)|Φ0⟩ =



⟨Φ0|H ′ Q

(ϵ0 − H0)
H ′|Φ0⟩ = ∑

n

⟨Φ0|H ′ Q

(ϵ0 − H0)
|Φn⟩⟨Φn|H ′|Φ0⟩

= ∑
n≠0

|⟨Φ0|H ′|Φn⟩|
2

ϵ0 − ϵn
,

since Q|Φ0⟩ = 0.
For n = 2 we obtain

(15.88)

= ∑
n

∑
m

⟨Φ0|H ′ Q

(ϵ0 − H0)
|Φn⟩⟨Φn|(H ′ − ΔE0)

Q

(ϵ0 − H0)
|Φm⟩⟨Φm|H ′|Φ0⟩

= ∑
n≠0

∑
m≠0

⟨Φ0|H ′|Φn⟩⟨Φn|(H ′ − ΔE0)|Φm⟩⟨Φm|H ′|Φ0⟩

(ϵ0 − ϵn)(ϵ0 − ϵm)
,

= ∑
n≠0

∑
m≠0

⟨Φ0|H ′|Φn⟩⟨Φn|H ′|Φm⟩⟨Φm|H ′|Φ0⟩

(ϵ0 − ϵn)(ϵ0 − ϵm)
− ΔE0∑

n≠0

|⟨Φ0|H ′|Φn⟩|
2

(ϵ0 − ϵn)2
,

where ΔE0 = ΔE
(1)
0 + ΔE

(2)
0 + ΔE

(3)
0  has to be set and calculated iteratively. Higher orders are

obtained in analogy by inserting ∑ν |Φν⟩⟨Φν| and using the fact that Q projects onto 
∑ν≠0 |Φν⟩⟨Φν|.

In summary, we have de�ined the S-matrix and the T-matrix for general scattering problems and
given a generalized Born series for the T-matrix, that can be solved by iteration in arbitrary order.

ΔE
(3)
0 = ⟨Φ0|H ′ Q

(ϵ0−H0)
(H ′ − ΔE0) Q

(ϵ0−H0)
(H ′ − ΔE0)|Φ0⟩ =



(1)
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16.	The	Hartree-Fock	Approximation
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In this chapter we will present the Hartree-Fock approach, which is a leading order selfconsistent
approach to the many-body problem and is extensively applied in calculations of the groundstate
properties of atoms, molecules and nuclei.

The Hartree-Fock theory (HF) has the task of optimally representing the groundstate of an N fermion
system (in the sense of a variational principle) by a single	Slater	determinant (SD); i.e. the single-
particle states φi of a Slater determinant Φ are varied until the energy

(16.1)

becomes minimal. The Hamiltonian H of the system consists in the following of a single-particle part T
and a two-particle part V of the form

(16.2)

where v(ij) describes the interaction between particles i and j. If the Slater determinant is normalized,
i.e. ⟨Φ|Φ⟩ = 1, the task is reduced to �ind the minimum of ⟨Φ|H|Φ⟩ by varying the φi.

The solution Φ0 of such a procedure can also be seen as the 0th approximation for the calculation of
the exact ground state Ψ0 in the context of a perturbation calculation. The single-particle wave functions
then de�ine an effective	mean-�ield	potential UHF , such that the Hamiltonian operator (16.2) can be
rewritten in the form

(16.3)

with

(16.4)

where H0 describes the motion of independent particles. One can then consider HR as a residual
interaction and calculate the exact ground state Ψ0 within the framework of a perturbation calculation.
We then obtain

(16.5)

where Φn
ph

 are the n-particle—n-hole states related to Φ0.

16.1	 General	Properties	of	the	Hartree-Fock	Problem
We �irst assume that the solution Φ0 and the energy E0 = ⟨Φ0|H|Φ0⟩ are known. For an in�initesimal
change in the Slater determinant

E =
⟨Φ|H|Φ⟩

⟨Φ|Φ⟩

H = T + V = ∑N
i=1

p2
i

2mi
+ ∑N

i<j v(ij),

H = H0 + HR

H0 = T + UHF ,

Ψ0 = Φ0 + ∑n C
n
ph

Φn
ph

,

′
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(16.6)

after variation the stationarity	condition must be ful�illed,

(16.7)

as can be shown by varying (16.1). The in�initesimal change of the N-particle state δΦ0 corresponds to
an in�initesimal change of the single-particle functions

(16.8)

For the further investigations it is convenient to use the particle number representation. Instead of the
Slater determinant Φ0 we then can write

(16.9)

where the creation operators a†
i , applied to the vacuum, create the state

(16.10)

In the groundstate Φ0 all single-particle states |i⟩ of lowest single-particle energy (i = 1, … ,N) are
occupied with probability 1. Then the variations φ′

i introduced in (16.8) can be represented (for i ≤ N)
by

(16.11)

i.e. by an admixture of states above the Fermi level (given by the single-particle state |N⟩), since an
admixture of states below the Fermi level does not change the Slater determinant. For the Φ′

0 we obtain:

(16.12)

which can also be written more simply (proof see below) as

(16.13)

if the single-particle states |i⟩ are orthonormalized, such that the a†
i , ai satisfy the standard

commutation rules for fermions.
Proof With the relation

(16.14)

we �irst have

(16.15)

If we continue to use for i ≠ k
(16.16)

Φ0 → Φ′
0 = Φ0 + δΦ0

⟨Φ0|H|δΦ0⟩ = 0,

φi → φ′
i = φi + δφi.

|Φ0⟩ = ∏N
i=1 a

†
i |0⟩,

φi(ξ) = ⟨ξ|i⟩ = ⟨ξ|a
†
i |0⟩.

φ′
i ≡ (a†

i
+ ∑m>N cmia

†
m)|0⟩,

Φ′
0(ξ1, … , ξN) ≡|Φ′

0⟩ = ∏i≤N(a†
i

+ ∑m>N cmia
†
m)|0⟩,

|Φ′
0⟩ = ∏i≤N(1 + ∑m>N cmia

†
mai)|Φ0⟩,

a
†
maia

†
i |0⟩ = a

†
m(1 − a

†
iai)|0⟩ = a

†
m|0⟩

|Φ′
0⟩ = ∏i≤N(1 + ∑m>N cmia

†
mai)a

†
i |0⟩.



we get (16.13) via

(16.17)

For in�initesimal admixtures (|cmi|2 ≪ 1) the above product can be expanded and we obtain

(16.18)

From the stationarity condition (16.7)–due to the linear independence of the vectors 
a

†
mai|Φ0⟩ =|Φmi⟩—we obtain the Brillouin	theorem:

(16.19)

for any 1p − 1h states |Φmi⟩.
A direct consequence of the Brillouin theorem is the stability of the HF solution against 1p − 1h

excitations, since these cannot improve the HF ground state |Φ0⟩ because of (16.19). Only by 2p − 2h
corrections (as well as 3p − 3h terms etc.) the ground state

(16.20)

can be improved.
Instead of the Brillouin theorem (16.19) for N-particle states, we now want to establish an equivalent

statement for the single-particle states |α⟩. To this aim we need the explicit matrix elements of 
⟨Φ0|H|Φmi⟩ with the Hamiltonian operator

(16.21)

For the matrix elements of Ha
†
mai with Φ0 we then obtain in detail:

(16.22)

(16.23)

for m > N , i ≤ N . With (16.22), (16.23) the Brillouin theorem then reads

(16.24)

Taking into account the symmetry

(αβ|v|γδ) = (βα|v|δγ)

—(from (12. 53) for v(1, 2) = v(2, 1))—we �inally obtain

(16.25)

a
†
i (a

†
mak) = −a

†
ma

†
iak = (a†

mak)a†
i ,

|Φ′
0⟩ = ∏

i≤N
(1 + ∑

m>N
cmia

†
mai)∏k≤N

a
†
k
|0⟩ = ∏

i≤N
(1 + ∑

m>N
cmia

†
mai)|Φ0⟩.

|Φ′
0⟩ = {1 + ∑i≤N ∑m>N cmia

†
mai}|Φ0⟩ ≡|Φ0⟩ + |δΦ0⟩.

⟨Φ0|H a
†
mai|Φ0⟩ ≡ ⟨Φ0|H|Φmi⟩ = 0i ≤ N ,m > N

Ψ0 = Φ0 + ∑2p,2h c2p2hΦ2p2h + ⋯

H = ∑αβ(α|t|β)a†
αaβ + 1

2
∑αβγδ(αβ|v|γδ) a

†
αa

†
β
aδaγ.

⟨Φ0|a
†
αaβa

†
mai|Φ0⟩ = δiαδmβ,

⟨Φ0|a
†
αa

†
β
aδaγa

†
mai|Φ0⟩ = ⟨Φ0|a

†
αa

†
β
aδai|Φ0⟩δmγ − ⟨Φ0|a

†
αa

†
β
aγai|Φ0⟩δmδ

(i|t|m) + 1
2
(∑β≤N(iβ|v|mβ) − ∑α≤N(αi|v|mα) − ∑β≤N(iβ|v|βm) + ∑α≤N(αi|v|αm)) = 0.

(i|t|m) + ∑α≤N(iα|v|mα) − (iα|v|αm) = 0



for i ≤ N , m > N . To interpret (16.25) we introduce the (hermitian) operator

(16.26)

with

(16.27)

which, as a result of the Brillouin theorem, can be diagonalized separately in the subspaces of the
occupied and unoccupied states! This diagonalization process has no in�luence on the Slater determinant 
Φ0, because

(i) Φ0 is independent of φm for m > N  and
(ii) Φ0 is invariant under arbitrary unitary transformations of the φi for i ≤ N  among themselves.
We can thus assume, without loss of generality, that hHF  is diagonal in the basis of {φi}, i.e.

(16.28)

Then HHF  takes the simple form

(16.29)

with real single-particle energies ϵα. The Slater determinant Φ0 then is the ground state of HHF  with

(16.30)

To �ind an explicit form for UHF , we go back to (16.28). Since this equation is supposed to hold for all 
α, we can also write (in the spatial	representation	of	the	Hartree-Fock	equations)

(16.31)

with the local Hartree	potential

(16.32)

and the nonlocal Fock	potential

(16.33)

Formally, we can also write (16.28) as a Schrödinger equation for a single particle,

(16.34)

HHF ≡ ∑αβ((α|t|β) + ∑n≤N (αn|v|βn)
A
) a

†
αaβ = ∑αβ(α|hHF |β) a

†
αaβ

(αn|v|βn)
A

= (αn|v|βn) − (αn|v|nβ)

(α|t|β) + ∑n≤N (αn|v|βn)
A

= ϵαδαβ.

HHF = ∑α ϵαa
†
αaα

HHF |Φ0⟩ = (T + UHF )|Φ0⟩ = ∑i≤N ϵi|Φ0⟩.

(t + UH)φβ(ξ) − ∫ dξ′ UF (ξ, ξ′)φβ(ξ′) = ϵβ φβ(ξ)

UH(ξ) = ∑n≤N ∫ dξ
′ φ∗

n(ξ′) v(ξ, ξ′) φn(ξ′)

UF (ξ, ξ′) = ∑n≤N φ∗
n(ξ′) v(ξ, ξ′) φn(ξ).

(t + UHF )φα = ϵαφα,



where the mean-�ield potential UHF = UH − UF  is nonlocal. This self-consistent single-particle
potential UHF  is completely determined by the interaction v(1, 2) and by the single-particle states 
φi (i ≤ N) occupied in Φ0.

16.2	 Practical	Implementation	of	the	HF	Method
Equation (16.34) represents a system of N coupled integro-differential equations for α ≤ N , while for 
α > N  only one integro-differential equation has to be solved. The usual procedure in practice for solving
(16.34) consists in expanding the desired HF solutions φα according to an arbitrary (but ‘close’)
orthonormal basis {ψν},

(16.35)

The system of equations (16.34) then turns into a nonlinear system of equations for the expansion
coef�icients Cα

ν . The explicit form of this system is obtained by inserting (16.35) into (16.34), multiplying
from the left by ψ∗

μ and integration over ξ:

(16.36)

We can solve this system of equations iteratively by writing it formally as a linear system,

(16.37)

and note that hμν = hμν(C ∗,C).
The iteration procedure then is carried out as follows:
1st	step:
A basis {ψν} is chosen such that the matrix elements of t and v are easy to calculate (e.g. oscillator

eigenfunctions or eigenfunctions of the H atom – depending on the problem). As a starting	solution one
then sets:

(16.38)

and chooses the energetically lowest states ψν (ν ≤ N).
2nd	step:
Using the ψν  the matrix

(16.39)

is calculated. In the
3rd	step:
the linear system of equations

(16.40)

is diagonalized and the new states

(16.41)

are calculated. In the

φα = ∑ν C
α
ν ψν.

∑ν((ψμ|t|ψν)+∑n≤N ∑ρσ C
n∗
ρ (ψμψρ|v|ψνψσ)AC n

σ) Cα
ν = ϵα Cα

μ .

∑ν hμνC
α
ν = ϵαC

α
μ ,

C
α(0)
μ = δμα,

h
(0)
μν = (ψμ|t|ψν)+∑n≤N(ψμψn|v|ψνψn)

∑ν h
(0)
μνC

α(1)
ν = ϵαC

α(1)
μ

φ
(1)
α = ∑ν C

α(1)
ν ψν



4th	step:
one then selects the ‘occupied’ states φ(1)

α (α ≤ N) and starts again with step 2, i.e. the calculation of
the matrix h(1)

μν  with the states φ(1)
α .

The procedure is continued until the self-consistency

(16.42)

is achieved. Since the matrices h(n)
μν  are Hermitian in each iteration step, the corresponding

eigenvalues ϵ(n)
α  are real and the φ(n)

α  orthogonal to different ϵ(n)
α .

A practical problem, however, is that the solution does not have to be unique due to the non-linearity
of the HF equations. By choosing the wrong occupied states in the n − th iteration step, it can happen
that instead of the absolute minimum, only a local minimum or even a maximum is found, which then
corresponds to an unstable solution (see Fig. 16.1).

Fig.	16.1 Illustration of possible solutions to the Hartree-Fock problem

16.3	 Koopman’s	Theorem
The ground state energy

(16.43)

differs from the expectation value of HHF  in the state |Φ0⟩, since in

(16.44)

the interaction between the particles is counted twice.
The most simple excitations of the system on top of the ground state

(16.45)

are 1p − 1h states

(16.46)

Its excitation energy

(16.47)

in turn is different from the difference of the expectation value of H in the states |Φ0⟩ and |Φmi⟩,

C
α(n)
μ ≡ C

α(n+1)
μ or h

(n)
μν ≡ h

(n+1)
μν

⟨Φ0|H|Φ0⟩ = E0 = ∑α≤N((α|t|α) + 1
2 ∑n≤N (αn|v|αn)

A
)

⟨Φ0|HHF |Φ0⟩ = ∑α≤N((α|t|α) + ∑n≤N (αn|v|αn)
A
) = ∑α≤N ϵα ≠ E0

|Φ0⟩ = ∏α≤N a
†
α|0⟩

|Φmi⟩ = a
†
mai|Φ0⟩with m > N , i ≤ N .

ΔE = ϵm − ϵi



(16.48)

due to the double counting of the interaction in ϵm and ϵi. The question therefore arises about the
physical interpretation of the single-particle energies ϵμ.

The theorem	of	Koopman now states that the HF single-particle energy ϵμ is precisely the
separation	energy	of	a	particle	in	the	state φμ. For the ‘proof’ we make use of the assumption, that the
HF single-particle states φν  do not change approximately during the transition from the N particle system
to the (N − 1) particle system, if N is suf�iciently large. We then can represent a state of the (N − 1)
particle system by annihilating a particle in the state φμ of the Slater determinant |Φ0⟩ (16.45), i.e.

(16.49)

The separation energy now is the difference between

(16.50)

and

(16.51)

thus

(16.52)

as claimed. We �ind deviations from this statement in nuclear physics, especially in systems with a
small number of particles, where the φν  change noticeably during the transition from the N− to the 
(N − 1) particle system, or where the HF approximation itself is too poor for the exact ground state |Ψ0⟩.

Remark: In the time-dependent	Hartree-Fock	theory one restricts to the calculation of the time
evolution of a Slater determinant with time-dependent single-particle wave functions φβ(ξ, t),

(16.53)

where the Hartree-Fock potential—calculated with the wave functions φβ(ξ, t)—is also explicitly time-
dependent. The time-dependent Hartree-Fock (TDHF) method is always applicable, if the residual
interaction HR is negligible and the time evolution of the system is dominated by the independent motion
of particles in a self-consistent (time-dependent) single-particle potential. Examples	for	applications
are low-energy reactions of atoms and molecules.

In summarizing this chapter we have derived the Hartree-Fock approach, which is a leading order
selfconsistent approach to the many-body problem and is extensively applied in calculations of the
groundstate properties of atoms, molecules and nuclei.

⟨Φmi|H|Φmi⟩−E0 = ϵm − ϵi − (mi|v|mi)
A

|Φμ⟩ = aμ|Φ0⟩ = ∏α≤N ,α≠μ a
†
α|0⟩.

Eμ = ⟨Φμ|H|Φμ⟩ = ∑α≤N ,α≠μ((α|t|α) + 1
2 ∑n≤N ,n≠μ (αn|v|αn)

A
)

E0 = ⟨Φ0|H|Φ0⟩ = ∑α≤N((α|t|α) + 1
2 ∑n≤N (αn|v|αn)

A
),

Eμ − E0 = −(μ|t|μ) − ∑i≤N (iμ|v|iμ)
A

= −ϵμ

(−
ħ2

2m ∇2 + UH(ξ, t))φβ(ξ, t) − ∫ dξ′ UF (ξ, ξ′;t)φβ(ξ′, t) = iħ ∂
∂t φβ(ξ, t),



(1)
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In this chapter we will introduce to the description of superconductivty, which is a generic property of
fermion systems at low temperatures, if an attractive residual interaction between speci�ic states exists.

17.1	 Experimental	Evidence	for	Cooper	Pairs
In

(I) solid	state	physics pairs of electrons with antiparallel momentum and spin

(17.1)

in
(II) nuclear	physics pairs of nucleons with total angular momentum I=0:

(17.2)

Below we will summarize some experimental evidence for the existence of Cooper pairs.
(1) Odd-Even	effect	in	nuclear	physics
The system of nuclear masses shows that

(17.3)

for odd mass numbers A. Using the energy-mass relation

(17.4)

where m is the nucleon mass and BA is the nuclear binding energy, we have for odd mass numbers:

(17.5)

(2) Energy-gap
Single-particle excitations are systematically higher in even-even nuclei (each with an even number

of protons and neutrons) than in odd-even nuclei,

(17.6)

since in even-even nuclei - in contrast to odd-even nuclei - a Cooper pair must be broken up in order to
enable a single-particle excitation (see below).

(3) Superconductivity	in	solids
In a normal conductor, electrical conduction occurs by quasi-free electrons; the resistance is a

consequence of the collisions between the electrons and the lattice atoms. Without an external �ield the
state of the conduction electrons is described by a Fermi sphere around the origin in momentum space

(k up, −k down),

(mj, −mj).

MA > 1
2 (MA−1 + MA+1)

Am = MA + BA/c2,

BA < 1
2 (BA−1 + BA+1).

ΔEs.p.(even − even) > ΔEs.p.(odd − even),

https://doi.org/10.1007/978-3-031-95521-1_17


(state without current). By an external �ield (applied voltage U) the Fermi sphere is (in �irst order)
linearly displaced in momentum space by,

(17.7)

such that a non-vanishing expectation value of the current results. When switching off the external �ield
the equilibrium state (without current) is restored by collisions between electrons and lattice atoms.

In a superconductor this relaxation process is strongly suppressed in the presence of Cooper pairs,
as long as the energy eU supplied by the external �ield is not suf�icient to break up the Cooper pairs!
The current continues to �low without resistance! In a simple estimate, for

(17.8)

a supercurrent then can �low, where in (17.8) kF  stands for the Fermi momentum, Δk for the
displacement of the Fermi sphere by the external �ield (17.7) and P for the pair energy. The critical
current jc can be estimated via

(17.9)

where n is the electron density, which together with (17.8) leads to a critical current jc ∼ 107 Amp/cm
2.

Above a critical temperature kBTc ≥ P  the Cooper pairs can be broken up ‘thermally’; the
superconductivity disappears again. An estimate gives Tc < 20o K for metals.

17.2	 Origin	of	the	Pair	Force
In solid	state	physics the electron-phonon coupling in second order perturbation theory generates an
attractive contribution to the electron-electron interaction, which under certain circumstances
overcompensates the Coulomb repulsion of the electrons and leads to pair formation.

In nuclear	physics, components of high multipolarity of the nucleon-nucleon interaction,

(17.10)

favor the formation of nucleon pairs with total angular momentum I = 0.

17.3	 BCS	Ground	State
In the model of Bardeen-Cooper-Schrieffer, the ground state of the system is constructed by Cooper
pairs (k, k̄):

(17.11)

where k̄ is the time-reversed state of k and uk, vk are real expansion coef�icients. The notation 
k > 0 means that only states with mj > 0 in nuclear physics or only states with spin up in solid state
physics are counted, since the time-reversed state k̄ is already taken into account via the pair
formation. Normalizing |~

Φ0⟩ yields

(17.12)

Δk = √2emeU
ħ ,

ħ2

2m
((kF + Δk)2 − (kF − Δk)2) = ħ2kFΔk

m
< P

Δk = mΔv
ħ = m

eħn jc,n =
k3
F

3π2 ,

V (r12) = ∑l fl(r1, r2) Pl(cos (θ12)) ,

|
~
Φ0⟩ = ∏k>0 (uk + vka

†
k
a

†

k̄
)|0⟩,

⟨
~
Φ0|

~
Φ0⟩ = ∏k>0(u2

k
+ v2

k
).



Consequently ⟨~
Φ0|

~
Φ0⟩ is normalized to 1 if

(17.13)

To prove (17.12) note that

(17.14)

and

(17.15)

In the products (with (a†
l
a

†

l̄
)

†
= a

l̄
al)

(17.16)

one thus can move the a
l̄
al for l ≠ k past the a†

k
a

†

k̄
, such that the product for l > 0 only results in a

factor with l = k:

∏
k≠l,k>0

⟨0|ukuk + ukvka
†
k
a

†

k̄
+ vkukak̄ak + vkvkak̄aka

†
k
a

†

k̄
|0⟩ = (u2

k + v2
k)⟨

~
Φ0|

~
Φ0⟩

′

where ′ indicates that the pair (k, k̄) has to be omitted. Repeated application then leads to (17.12).
Remark: The shell model limiting case is contained in the approach (17.11) if we set (

uk = 0, vk = 1) for states k below the Fermi energy and (uk = 1, vk = 0) above the Fermi energy.
As a result, one can interpret v2

k as the occupation	probability of the pair state (k, k̄). For �inite 
0 ≤ v2

k
≤ 1 the sharp Fermi edge in the shell model is ‘smeared’ by the residual interaction. This

smearing looks similar to the case of �inite temperatures T in quantum statistics, but here the
correlated ground state (17.11) (at T = 0) is already ‘smeared’ relative to the single-particle shell
model!

The parameters uk and vk can be determined from the variational principle:

(17.17)

where the Lagrange parameter λ has to be chosen such that the matrix element of the particle
number operator N

(17.18)

corresponds to the required number of particles, since the state |~
Φ0⟩ is not sharp with respect to

the number of particles (see below).

17.4	 BCS	Quasiparticles
Quasiparticles are de�ined in relation to a reference vacuum, which does not have to coincide with the
physical vacuum |0⟩⟨0|. For the operators

u2
k + v2

k = 1∀ k .

[a†
k
a

†

k̄
, a†

l
a

†

l̄
]
+

= 0;[a†
k
a

†

k̄
, a

l̄
al]

+
= 0∀ k ≠ l

⟨0|a
l̄
ala

†
k
a

†

k̄
|0⟩ = δlkδ l̄ k̄.

⟨
~
Φ0|

~
Φ0⟩ = ∏k>0∏l>0 ⟨0|(ul + vla l̄

al)(uk + vka
†
k
a

†

k̄
)|0⟩

δ⟨
~
Φ0|H − λN |

~
Φ0⟩ = 0,

⟨
~
Φ0|N |

~
Φ0⟩ = N



(17.19)

α
†
k

= uka
†
k

− vkak̄;α
†

k̄
= uka

†

k̄
+ vkak

we have

(17.20)

The proof is done in 2 steps:
(1)

(17.21)

= ( ∏
l≠k,k>0

(uk + vka
†
ka

†

k̄
))(ulal − vla

†

l̄
)(ul + vla

†
la

†

l̄
)|0⟩,

i.e. one can move (ulal − vla
†

l̄
) past the operators a†

k
a

†

k̄
 for l ≠ k, k̄, since for l ≠ k, k̄ the following

holds

(17.22)

(2) Step:

(17.23)

= (ulvlala
†
l

− ulvl)a
†

l̄
|0⟩ = (ulvl − ulvl)a

†

l̄
|0⟩ ≡ 0.

Consequently, |~
Φ0⟩ can be considered as the quasiparticle	vacuum with respect to the operators αl.

The inverse of (17.18) is

(17.24)

a
†
k

= ukα
†
k

+ vkαk̄
;a†

k̄
= ukα

†

k̄
− vkαk,

as can easily be calculated. In compact form:

(17.25)

with Sk = 1 for k > 0 and Sk = −1 for k̄ = k < 0. From the Fermi commutation relations of the ak, a†
k

also follow the Fermi commutation relations of αk,α†
k

,

αk = ukak − vka
†

k̄
;α

k̄
= ukak̄ + vka

†
k

αk|
~
Φ0⟩ = αk̄|

~
Φ0⟩ = 0∀ k, k̄.

αl|
~
Φ0⟩ = (ulal − vla

†

l̄
)∏k>0(uk + vka

†
k
a

†

k̄
)|0⟩

[a†
k
a

†

k̄
, al]

+
= [a†

k
a

†

k̄
, a†

l
]
+

= 0.

(ulal − vla
†

l̄
)(ul + vla

†
l
a

†

l̄
) |0⟩ = (u2

l al + ulvlala
†
l
a

†

l̄
− ulvla

†

l̄
− v2

l a
†

l̄
a

†
l
a

†

l̄
) |0⟩

ak = ukαk + vkα
†

k̄
;a

k̄
= ukαk̄

− vkα
†
k

ak = ukαk + Skvkα
†

k̄
, a†

k
= ukα

†
k

+ Skvkαk̄



(17.26)

The transition from particles to quasiparticles proves to be helpful for the calculation of matrix
elements and as physically meaningful for the construction of excited states.

Note: The BCS quasiparticles are not to be mixed up with the Cooper pairs!

17.5	 Matrix	Elements	in	the	BCS	Model
The particle	number in the BCS ground state is given by

(17.27)

=∑
m

⟨
~
Φ0|(u2

mα
†
mαm + Smvmumαm̄αm + umvmSmα

†
mαm̄ + SmvmSmvmαm̄α

†
m̄

)|
~
Φ0⟩

=∑
m

⟨
~
Φ0|αm̄α

†
m̄

|
~
Φ0⟩v

2
m =∑

m

v2
m = 2∑

m>0

v2
m.

It is generally not sharp since the particle	number	�luctuation

(17.28)

except for the shell model limit! To prove this, we form

(17.29)

= ⟨
~
Φ0|∑

m

a†
manδnm|

~
Φ0⟩ − ⟨

~
Φ0|∑

m,n

a†
ma

†
naman|

~
Φ0⟩

=∑
m

v2
m −∑

m,n

⟨
~
Φ0|αm̄αn̄α

†
m̄α

†
n̄|

~
Φ0⟩v

2
mv

2
n −∑

m,n

⟨
~
Φ0|αm̄α

†
nαmα

†
n̄|

~
Φ0⟩SnvnSmvmunum

=∑
m

v2
m + ∑

m≠n

v2
mv

2
n +∑

m

v2
mu

2
m

with (v2
m = 1 − u2

m) and

(17.30)

=∑
m

v2
m +∑

m

u2
mv

2
m −∑

m

v4
m =∑

m

v2
m +∑

m

u2
mv

2
m −∑

m

v2
m(1 − u2

m) = 2∑
m

v2
mu

2
m.

The matrix elements of the Hamiltonian operator are

(17.31)

[αk,α†
l
]
+

= δkl, [αk,αl]+ = [α†
k
,α†

l
]
+

= 0.

⟨
~
Φ0|N |

~
Φ0⟩ = ∑m⟨

~
Φ0|a†

mam|
~
Φ0⟩

(ΔN)2 = ⟨
~
Φ0|N 2|

~
Φ0⟩ − ⟨

~
Φ0|N |

~
Φ0⟩

2 = 2∑m u2
mv

2
m ≠ 0

⟨
~
Φ0|N 2|

~
Φ0⟩ = ⟨

~
Φ0|∑m,n a

†
mama

†
nan|

~
Φ0⟩

⟨
~
Φ0|N 2|

~
Φ0⟩ − ⟨

~
Φ0|N |

~
Φ0⟩2 = ∑m v2

m +∑m≠n v
2
mv

2
n +∑m u2

mv
2
m −∑m v4

m −∑m≠n v
2
mv

2
n

⟨
~
Φ0|H|

~
Φ0⟩ = ∑m((m|t|m) + 1

2 ∑n (mn|V |mn)
A

v2
n)v

2
m



+ ∑
m>0,n>0

(mm̄|V |nn̄)
A

(unvn)(umvm),

where the 1st term is a sum over modi�ied	single-particle	energies and the second term results
from the pure pair	interaction, which disappears in the shell model limit. In (17.31) t is the one-body
operator for the kinetic energy and V the two-body operator for the 2-body interaction. To prove
(17.31) we transform

(17.32)

to quasiparticle operators. The intermediate result is

(17.33)

(17.34)

+⟨
~
Φ0|α

k̄
α

†
l
αnα

†
m̄

|
~
Φ0⟩SkvkulSmvmun.

Non-vanishing matrix elements in the 1st term of (17.34) only exist for k = m, l = n or k = n, l = m

and in 2. term of (17.34) only for n = m̄, l = k̄. The evaluation yields

(17.35)

+
1

2
∑
m,n

(mm̄|V |nn̄)SnSmunvnumvm

with the antisymmetrized matrix element

(17.36)

Due to the time reversal invariance of the interaction and hermiticity of the kinetic energy also
holds

(17.37)

and

(17.38)

(mn̄|V |mn̄)
A

= (m̄n|V |m̄n)
A

SnSm(mm̄|V |nn̄) + Sn̄Sm(mm̄|V |n̄n) = (mm̄|V |nn̄)
A

.

⟨
~
Φ0|H|

~
Φ0⟩ = ∑m,n(m|t|n)⟨

~
Φ0|a†

man|
~
Φ0⟩+ 1

2 ∑k,l,m,n(kl|V |mn)⟨
~
Φ0|a†

k
a

†
l
anam|

~
Φ0⟩

⟨
~
Φ0|a†

man|
~
Φ0⟩ = δnmv

2
m,

⟨
~
Φ0|a†

k
a

†
l
anam|

~
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Summing up the contributions we obtain the result (17.35).

17.6	 BCS	Solutions
Since u2

m + v2
m = 1, the variation (17.17) with respect to the parameters um, vm is not independent and

one takes advantage of the fact that

(17.39)

To calculate the remaining variation

(17.40)

we introduce (with regards to (17.27) and (17.31)) generalized	single-particle	energies,

(17.41)

as well as an average	pair	potential

(17.42)

Equation (17.40) then gives

(17.43)

The formal solutions of (17.43) are

(17.44)

which have to be solved iteratively. One sees immediately that

(17.45)

As starting	values	for	the	iteration one chooses
(1) the Hartree-Fock values, i.e. one sets in (17.41) v2

m = 1 for energies below the Fermi energy and
v2
m= 0 above.

(2) In the gap	equation (using (17.45)),

(17.46)

if ~ϵ2
n is inserted according to step (1) and Δn is approximated by a state-independent gap	parameter 

Δ, which results from (17.46) after division by Δ,
(17.47)
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The meaning of λ becomes clear if one de�ines the generalized	Fermi	level by

(17.48)

then

(17.49)

17.7	 Excitations	on	the	BCS	Ground	State
In the shell model we have assumed

(17.50)

with the quasiparticle operators αi from (17.18) (for vi = 1, 0) and

(17.51)

ei = ϵF − ϵi if ϵi ≤ ϵF .

1-particle	-	1	hole	(1p − 1h)	excitations then are

(17.52)

with i ≤ N  and m > N ; they correspond to 2-quasiparticle	excitations with the excitation energy 
ϵm − ϵi = em + ei.

We proceed in the same way in the BCS model with the new separation

(17.53)

where ~
H0 now also contains the parts of HR that lead to the formation of Cooper pairs. By converting

H to the BCS quasiparticle operators α†
i ,αi we �ind

(17.54)

1-quasiparticle	excitations describe systems with odd mass number, e.g. (even-odd) nuclei:

(17.55)

since

(17.56)

The ground state of an odd-even system is α†
n|

~
Φ0⟩ if ~ϵn = 0; a 1p − 1h excitation of the odd-even system

then is described by

(17.57)

with the energy:
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(17.58)

2-quasiparticle	excitations are described by

(17.59)

and have the excitation energy en + en′ , i.e. at least Δn + Δn̄ ≈ 2Δ for the breakup of a Cooper pair.
This explains the effects in Sect. 17.1 in a ‘simple’ way.

In summary, we have presented a �irst extension of the Hartree-Fock theory by including the
attractive residual interaction of Cooper pairs, which may lead to the phenomenon of
superconductivity in fermion systems at low temperature (and appropriate density).
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