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Preface
This book provides a textbook on electrodynamics and is in particular
suited for bachelor students in their second year of studies in
theoretical physics. The mathematical requirements include a
knowledge of differentiation and integration, elementary linear algebra
and concepts of vector analysis. Mathematical proofs are kept as simple
as possible, however, still kept stringent.

After introducing the concept of ‘charge’ of mass points and
strategies to measure ‘charge’ the electric �ield E(r) is de�ined and
discussed for a system of �ixed point charges or a continuous charge
distribution ρ(r) (electrostatics). It is shown that the divergence of the
electric �ield is proportional to the charge density ρ(r) and the �ield
itself emerges as the negative gradient of the scalar potential Φ(r). By
combining these �indings the Poisson equation is derived for static
charge distributions. In the case of constant currents j(r) a magnetic
�ield B(r) emerges that is discussed and evaluated for simple examples
(magnetostatics). This �ield is found to be characterized by a vanishing
divergence and thus can be written as the rotation of a vector �ield 
A(r). In case of time-dependent charge distributions ρ(r;t) and
currents j(r;t) the sources are coupled by a continuity equation, which
implies the conservation of the total charge. In this case
(electrodynamics) the electric and magnetic �ields are coupled via
Faraday’s law of induction and the basic equations for the E and B
�ields emerge in the form of Maxwell’s equations, which—together with
the Lorentz force—completely describe electrodynamics on the
classical level. However, these coupled differential equations are
dif�icult to solve directly. By introduction of time-dependent scalar and
vector potentials Φ(r;t) and A(r;t) general wave equations are derived
by exploiting the fact, that these potentials have a gauge freedom, i.e.
they provide the same E and B �ields in case of gauge transformations.
In this context the Coulomb and Lorentz conventions (gauges) are
discussed. It is, furthermore, shown that energy, momentum and
angular momentum have to be assigned to the electromagnetic �ield



and that a radiation pressure appears for radiation �ields. This paves
the way for an interpretation of the �ields as ‘photons’ or ‘γ-quanta’.

The wave equations are �irst solved in vacuum, i.e. without external
sources, and polarized plane waves are found as basic solutions, that
are characterized by an angular frequency ω, a wave number k and a
polarization vector orthogonal to the direction of propagation k. A
superposition of plane waves—in terms of a Fourier series—then
provides the general solution in vacuum in terms of wave packets,
which can be used for the transmission of information. The general
solution of the inhomogeneous wave equations is obtained with the
help of retarded Green’s functions, that lead to the retarded potentials
known as Liénard—Wichert potentials. A solution for a system of
moving point charges is computed explicitly and it is shown that
accelerated charges produce (or absorb) electromagnetic radiation. The
latter is analyzed with respect to the frequency ω and angular
distribution for electric and magnetic dipole radiation as well as for
electric quadrupole radiation.

The electromagnetic �ield in matter is discussed in the second part
of this book and macroscopic space-time averages are introduced for

the macroscopic electric and magnetic �ields 
→
E  and 

→
B. By a separation

of ‘localized’ and ‘free’ charge carriers the Maxwell equations for the

macroscopic �ields are derived, that include a dielectric polarization 
→
P

and magnetization 
→
M , which add to the auxiliary �ields 

→
D  and 

→
H  and

are easier to control experimentally than the �ields 
→
E  and 

→
B. The

energy, momentum and angular momentum of the matter �ields are
evaluated and Kirchhoff’s rules are derived from charge and energy
conservation. The electric and magnetic properties of matter are
analyzed in terms of material equations which are solved in linear
response theory, giving either the electric conductivity, the electric
polarization or magnetization. Furthermore, the properties of the
electromagnetic �ield at interfaces are derived and discussed explicitly
for linear and isotropic media. In this context the laws for re�lection and
refraction of light are derived as well as the propagation of
electromagnetic waves in conductive materials.



In the last part of this book a covariant formulation of
electrodynamics is presented and it is shown that the basic equations
are invariant with respect to Lorentz transformations, which
demonstrates that they have the same form in every inertial system and
thus satisfy Einstein’s principle of special relativity.

In the appendices simple introductions (as well as examples) are
given for volume integrals in different coordinate systems, surface
integrals as well as path integrals. Gauss’s theorem and Stoke’s theorem
are presented and veri�ied with the help of examples.
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In this chapter we introduce the ‘charge’ of mass points and provide a
survey of the different parts of this book, that address particular
questions in the context of electrodynamics in vacuum and in matter
and �inally lead to a covariant formulation of electrodynamics, which is
consistent with Einstein’s theory of special relativity.

1.1	 Electric	Charge
While in mechanics the property mass of mass points is of primary
interest, the charge of mass points is the starting point of
electrodynamics. It has a number of fundamental properties which are
characterized by a variety of experimental measurements:
(1.)

There are 2 types of charges: positive and negative. Charges of
the same signs repel each other, charges of different signs attract
each other.

 

(2.)
The total charge of a system of mass points is the algebraic sum of
the individual charges; the charge is a scalar.

 
(3.)

The total charge of a closed system is constant and independent
of the motion of the system.

 
(4.)

Charge only appears as a multiple of an elementary	charge e,  

https://doi.org/10.1007/978-3-031-95515-0_1


q = ne;n̂ = 0, ±1, ±2, ±3, . . . ,

where −e is the charge of an electron.
The classic proof for this quantization of the charge is the Millikan

experiment. Elementary particles quarks have fractional charges, i.e. 
q = ±1/3e or q = ±2/3e, however, quarks are not observable as free
particles in the energy range we are interested in here.

1.2	 Electrostatics
The most simple problem in electrodynamics is the case of stationary
charges, which we denote by electrostatics. Inserting a test	charge q
into the region of one (or more) spatially �ixed point charges, then a
force F acts on this test charge, which in general depends on its
position r:

F = F(r).

If one replaces q with another test charge q ′, one �inds for the force F′

acting on q ′:

F′/q ′ = F/q.

This �inding suggests to introduce the concept of the electric	�ield

E(r) =
1

q
F(r).

This �ield—created by the stationary point charges—assigns a triple
of real numbers to each space point r, which transforms as a vector.

The task of electrostatics is to �ind the general connection
between a charge distribution ρ(r) and the electric �ield E(r) and to
calculate the �ield E(r) from a given charge distribution ρ(r) (e.g. a
homogeneous spatial sphere).



1.3	 Magnetostatics
Moving charges in the form of stationary	currents are the origin of
magnetostatic �ields that we will introduce in analogy to electrostatic
�ields. We start from the following experimental observation: Inserting
a test charge q into the environment of a conductor with a stationary
electric current, the force acting on q at position r can be written as

F(r) = q(v × B(r)).

where v is the velocity of the test charge and B(r) (independent of 
v) the vector �ield generated by the given stationary electric current.

The task of magnetostatics is to �ind the general connection
between a stationary electric current distribution j(r) and the
magnetic �ield B(r) and to calculate the �ield B(r) for a given
current distribution (e.g. for a stationary circulating current).

1.4	 Concept	of	the	Electromagnetic	Field
One might get the impression that the electric and magnetic �ields are
independent quantities. The following simple considerations, however,
show that this is not the case:

(1.) If a point charge Q is at rest in an inertial system Σ, the force
acting on a test charge q for an observer in Σ is due to an electric �ield 
E ≠ 0, but there is no magnetic �ield B. For other observers in an
inertial system Σ′ moving relative to Σ with velocity v the charge is
moving. The observer in Σ′ therefore measures a force due to both an
electric �ield E′ ≠ 0 and a magnetic �ield B′ ≠ 0. The interaction
between the charge Q and a test charge q will be seen as electrical
interaction (mediated by the �ield E) by an observer in Σ, whereas an
observer in Σ′ will detect both electric and magnetic interactions
(mediated by the �ields E′ and B′). This consideration shows that
electric and magnetic �ields must be considered as a unit, i.e. as the
electromagnetic �ield.



Note: For the case discussed above, for a stationary current in the
conductor there is no electric �ield because no charge	accumulation
occurs in the conductor, such that the positive and negative charge
carriers (lattice building blocks—located in the conductor—and
conduction electrons) compensate each other.

(2.) The mutual dependence of electric and magnetic �ields
inevitably occurs in case of arbitrary charge and current distributions 
ρ(r) and j(r). The conservation of charge then results in a connection
between ρ and j, since the charge in a certain volume V can only
decrease (increase), if a corresponding current �lows out (in) through
the surface of V. But then E and B can no longer be calculated
independent of each other.

1.5	 Maxwell’s	Equations
The general connections between the �ields E, B and the charges or
currents (the sources of the electromagnetic �ield) are described by the
Maxwell	equations. The following task arises:

(1.) to formulate the Maxwell equations and to justify them
experimentally,

(2.) to examine their invariance properties, which directly leads
to the special theory of relativity. The investigation will show that
the transition from an inertial system Σ to another inertial system Σ′

must be described by a Lorentz	transformation, i.e. the same
physics	holds for all observers in inertial systems.

(3.) The energy, momentum and angular momentum balance for
a charged system of mass points will lead to assign energy,
momentum	and	angular	momentum to the electromagnetic �ield.
From these terms such phenomena emerge as radiation	pressure,
which leads to the introduction of photons.



(4.) Solutions of Maxwell’s equations. Examples are the
propagation of electromagnetic waves or the radiation of an
oscillating electric dipole in the vacuum.

1.6	 The	Electromagnetic	Field	in	Matter
The Maxwell equations basically determine the �ields E(r, t) and 
B(r, t), if the charge distribution ρ(r, t) and the current distribution 
j(r, t) are known. In practice the following problems arise:

(1.) For a system of N charged mass points one would have to solve
Newton’s equations of motion to get ρ(r, t) and j(r, t) microscopically
in order to be able to calculate the electromagnetic �ields. For matter of
macroscopic dimensions (e.g. the dielectric medium between the
plates of a capacitor or the iron core of a coil carrying a current) we are
dealing with 1020 − 1025 mass points and charges!

(2.) The microscopically calculated functions ρ(r, t) and j(r, t) will
in general �luctuate strongly for small spatial and temporal distances.
The solution of Maxwell equations (multidimensional integrations) will
then be practically impossible or not economical!

A way out of this problem is the following compromise: We discard
the knowledge of the electromagnetic �ield in microscopic dimensions
(volumes of 10−24 cm3, times of 10−8 sec) and are satis�ied with average
values (10−6 cm3, 10−3 sec). Instead of ρ(r, t), j(r, t), E(r, t) and 
B(r, t) then averages appear in the form,

< ρ(r, t) >=
1

ΔVΔt
∫ d3ξdτ ρ(r +

→
ξ, t + τ),

and correspondingly for < j(r, t) >, < E(r, t) > and < B(r, t) >.
From Maxwell’s equations for microscopic �ields then equations of a
similar structure arise for the macroscopic electromagnetic �ield. The
distributions < ρ > and < j > then are de�ined by the experimental
setup (and resolution).



In this context it is useful to introduce as auxiliary variables the
dielectric	displacement	�ield D and the magnetic	�ield	strengthH in
addition to the average values of the fundamental �ields, the electric
�ield	strength E and the magnetic	induction B. This requires an
additional determination of the relation between the different �ields;
these equations are obtained by assuming a linear connection of E and 
D or B and H, characterized by the dielectric	constant ϵ and the
permeability μ. In the most simple case (Ohm’s law) one establishes a
linear relationship between the macroscopic current and the electric
�ield strength, i.e. another material constant is introduced: the electric
conductivity σ (as a proportionality constant). The actual calculation
of these material constants (ϵ,μ,σ)—on the basis of the atomic
structure of matter—belongs to the �ield of atomic and solid state
physics and uses methods of statistical mechanics.

This results in the following tasks:

(1.) Transition from the microscopic to the macroscopic Maxwell
equations.

(2.) Introduction of material constants and their calculation from
the atomic structure of matter for simple models.

(3.) Behavior of the �ields at interfaces between different media.
As an example we will derive the laws of re�lection and refraction in
optics.

1.7	 Covariant	Formulation	of	Electrodynamics
The Maxwell equations are not Gallilei invariant but Lorentz invariant.
In the last part of this book we will give a fully covariant formulation of
electrodynamics and show the compatibility with Einstein’s principle of
special relativity.



Part	I
Electrostatics



(1)
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In this chapter we will introduce the electric �ield E(r) for a system of stationary point charges and
calculate the total energy of the system. Furthermore, an asymptotic multipole expansion of the �ield
will be analyzed for localized charge distributions and lead to characteristic properties of the systems,
i.e. the total charge Q, the electric dipole moment d and the electric quadrupole tensor Qij.

2.1	 Conservation	of	Charge	and	Charge	Invariance
In the introduction we have brie�ly summarized the basic properties of the electric charge. For
experimental tests, however, one �irst needs a rule for the measurement of charge. Such a
prescription will be given in the next subchapter. Some observations for charge conservation are
worth pointing out before.

Impressive evidence for charge conservation is pair creation and pair annihilation. For example,
an electron (e−) and a positron (e+) annihilate to a high-energy massive photon which is uncharged;
the opposite occurs when pairs are created (e.g. in π+,π− meson annihilation). In all these reactions
always the same charge shows up (see Fig. 2.1).

Fig.	2.1 Electron-positron annihilation into a π+π− pair and vice versa. The total charge is zero throughout

The charge invariance is shown, for example, by the fact that atoms and molecules are charge
neutral, although the state of motion of photons and electrons are very different. Particularly clear is
the example of the helium atom (4He) and the deuterium molecule (D2). Both consist of 2 protons, 2
neutrons and 2 electrons and are therefore electrically neutral, although the state of motion of the
protons in the nucleus of the helium atom and the D2 molecule are very different: the ratio of the
kinetic energies is about 106, the average distance of the protons in the D2 molecule is of the order of 
10−8 cm, in the He core of 10−13 cm.

2.2	 Coulomb	Force

https://doi.org/10.1007/978-3-031-95515-0_2


As an experimentally proven basis	for	electrostatics we use Coulomb’s law for the force between 2
point charges q1 and q2,

(2.1)

where r12 = r1 − r2 denotes the vector of their relative distance (see Fig. 2.2).

Fig.	2.2 Relative vector r12 between two point charges q1 and q2

Properties:

(1.) Attraction (repulsion) for opposite (equal) charges.

(2.) F12 = −F21 : actio = reactio (→ momentum conservation).

(3.) Central force: a point charge (described by the scalar quantities m, q) has no preferred
direction in space (→ conservation of angular momentum).

Note: For (fast) moving charges (2.1) no longer holds. The electromagnetic �ield then has to be
included in the momentum and angular momentum balance.

Equation (2.1) has to be supplemented by the superposition	principle:

(2.2)

for the force exerted by 2 point charges q2 and q3 on q1.

Prescription	for	the	measurement	of	charge:
Comparing 2 charges q, q ′—by measuring the forces exerted by a �ixed charge Q—we �ind

according to (2.1):

(2.3)

Thus ratios of charges can be determined by force measurements: Choosing a unit	charge (charge of
the electron or positron) we can measure charges relative to this unit charge.

Unit	systems:
In order to de�ine the constant Γe there are basically 2 common options:
(i) cgs- (Gauß) system: Here we choose Γe as a dimensionless constant; the special choice

(2.4)

F12 = Γe
q1q2

r3
12

r12,

F1 = F21 + F31

q

q ′ = F
F ′ .

Γe = 1,



then determines (by (2.1)) the dimension of the charge to

(2.5)

The electrostatic unit then is the charge that exerts the force 1 dyn on an equal charge at a distance of
1 cm. This system is preferred in fundamental physics.

In applied electrodynamics (electrical engineering) one uses the (ii) MKSA—system in which, in
addition to the mechanical units (meter, kilogram, second) still the charge unit Coulomb = ampère ⋅
second shows up. 1 ampère is the electrical current that deposits 1,118 mg of silver per second from a
silver nitrate solution. Writing

(2.6)

the constant ϵ0 has the value

(2.7)

2.3	 The	Electric	Field	of	a	System	of	Point	Charges
The force exerted by N point charges qi–located at positions ri–on a test charge q at the position r
according to (2.1) and (2.2) is:

(2.8)

where we denote

(2.9)

as (static) electric	�ield, which is generated by the point charges qi at the position r. According to
(2.8) E(r) is a vector �ield since q is a scalar. For a given charge q (2.8) shows how to measure an
electric �ield. In this case the test charge has to be ’small’ such that its in�luence on the �ield E can be
neglected. Simple examples for the electrostatic �ield are shown in Fig. 2.3.

In analogy to the theory of gravity in mechanics one can obtain the vector function E(r) from the

electric	potential

(2.10)

which is a scalar function, by differentiation:

(2.11)

The (potential) energy of the resting mass points with the charges qi then is

[q] = [force]1/2[length] = dyn1/2 × cm.

Γe = 1
4πϵ0

,

ϵ0 = 8.854 ⋅ 10−12 Coulomb2

Newton⋅meter2 .

F(r) = qΓe∑
N
i=1

qi(r−ri)

|r−ri|3 = qE(r),

E(r) = ∑N
i=1

qi
4πϵ0

(r−ri)

|r−ri|3

Φ(r) = ∑N
i=1

qi
4πϵ0

1
|r−ri|

,

E(r) = −∇Φ(r).

N N



(2.12)

where Φ(ri) is the potential at position ri.
Note: In principle the self-energy for i = j in the right expression has to be subtracted again from

(2.12).
Examples:

Fig.	2.3 Illustration for the electrostatic �ield in case of point charges and a condensator

2.4	 Continuous	Charge	Distributions
In this case we replace the sum over charges by a volume integral over the charge distribution

(2.13)

with the normalization

(2.14)

Equations (2.9), (2.10), (2.12) then turn to:

(2.15)

(2.16)

and

(2.17)

Example: homogeneously charged sphere

(2.18)

The integration in (2.16) gives:

U = 1
2
∑N

i≠j
qiqj
4πϵ0

1
|ri−rj|

= 1
2
∑N

i=1 qiΦ(ri),

∑i qi . . . . → ∫ dV ρ(r) . . .

Q = ∑i qi = ∫ dV ρ(r).

E(r) = 1
4πϵ0

∫ dV ′ρ(r
′)

(r−r
′)

|r−r′|3 ,

Φ(r) = 1
4πϵ0

∫ dV ′ρ(r
′) 1

|r−r′|

U = 1
2 ∫ dV ρ(r)Φ(r).

ρ(r) = ρ0 for |r| ≤ R; ρ(r) = 0 else.

2 2



(2.19)

with

(2.20)

The electric �ield E then follows from (2.11):

(2.21)

The energy U then reads (using (2.17) and (2.19)):

(2.22)

Application: Determination of the classical electron radius.
According to (2.22) the self-energy of a point-like charge becomes in�inite for R → 0. According

to the theory of relativity the energy of a stationary particle, e.g. an electron, with rest mass m0 is
linked to its self-energy by

(2.23)

A strictly point-like (charged) particle then will have an in�initely large rest mass according to (2.22)!
On the other hand, to regain the total (�inite) rest mass of an electron by its electrostatic energy, one
can introduce a �inite radius R0, the classical	electron	radius,

(2.24)

Thus for dimensions < 10−13 cm we have to expect deviations from Coulomb’s law.

2.5	 Multipole	Expansion
We consider a charge distribution (discrete or continuous) limited to a �inite volume V and examine
its potential Φ(r) at a point P far outside of the volume V (see Fig. 2.4).

Fig.	2.4 The charge distribution ρ(r), localized in the volume V, is analyzed in a distant point P

Φ(r) = Q

4πϵ0|r|
for r ≥ R; Φ(r) =

ρ0

ϵ0
( R2

2 − r2

6 ) for r ≤ R

Q = ∫ dV ρ(r) = 4π
3 ρ0R

3.

E(r) = Q

4πϵ0

r

|r|3 for r ≥ R; E(r) = ρ0

3ϵ0
r for r ≤ R.

U =
ρ0

2 ∫ dV Φ(r) =
4πρ2

0

2ϵ0
∫ R

0 r2dr ( R2

2 − r2

6 )

= 2π
ρ2

0

ϵ0

2R5

15 = 3
5

Q2

4πϵ0

1
R

.

E0 = m0c
2 ≡ Ue = 3

5
e2

4πϵ0

1
R0

.

R0 = 3
5

e2

4πϵ0

1
m0c

2 ≈ 10−13 cm = 1 fm.



We can use the coordinate origin O as the center of charge, de�ined by

(2.25)

As long as ri ≪ r, we can expand (2.10) in a Taylor series,

(2.26)

Using

(2.27)

for a scalar function f(r) (in�initely differentiable) or in our case

(2.28)

=
1

r
− (xi

∂

∂x
+ yi

∂

∂y
+ zi

∂

∂z
) 1

r
+

1

2
(xi

∂

∂x
+ yi

∂

∂y
+ zi

∂

∂z
)

2 1

r
⋯

the �irst terms are:
(1.) The	monopole	term

(2.29)

describes a point charge Q localized at the origin O. In 0th order approximation of the Taylor
expansion every charge distribution looks like a point charge if viewed from a suf�iciently large
distance!

(2.) Dipole	term
The linear term in the coordinates ri of the point charges has the following form:

(2.30)

−∑
i

qi

4πϵ0
xi

∂

∂x
(

1

|r−ri|
)

ri=0

−∑
i

qi

4πϵ0
yi

∂

∂y
(

1

|r−ri|
)

ri=0

−∑
i

qi

4πϵ0
zi

∂

∂z
(

1

|r−ri|
)

ri=0

= −∑
i

qi

4πϵ0
(xi

∂

∂x
+ yi

∂

∂y
+ zi

∂

∂z
)

1

r

= −
d

4πϵ0
⋅ ∇(

1

r
) =

d ⋅ r

4πϵ0r
3

=
d cos θ

4πϵ0r2

where the vector d, the dipole	moment, is given by

rq =
∑

i
|qi|ri

∑i|qi|
.

Φ(r) = Φ0(r) + Φ1(r) + Φ2(r) + Φ3(r)+. . .

f(r − a) = ∑∞
n=0

1
n! (−a ⋅ ∇r)

n
f(r)

1
|r−ri|

= ∑∞
n=0

1
n! (−ri ⋅ ∇r)

n 1
r

= 1
r

− ri ⋅ ∇r
1
r

+ 1
2 (ri ⋅ ∇r)

2 1
r

⋯

Φ0(r) = ∑
i

qi
4πϵ0r

= 1
4πϵ0

Q

r

Φ1(r) =



(2.31)

The angle θ—used in the transformations in (2.30)—is the angle between r and d (see Fig. 2.5).

Fig.	2.5 Illustration of the angle θ in (2.30)

(Example for ∂/∂x(1/r)):

(2.32)

Dependence	of	the	dipole	moment	on	the	coordinate	origin: If we shift the origin O by the spatial
vector a, the dipole moment becomes

(2.33)

If Q ≠ 0, we can choose a such that d’ = 0. On the other hand, if Q = 0, then d = d
′ independent of the

origin and the dipole moment describes a real internal property of the system under consideration
(e.g. a charge neutral molecule).

Extraction	of	the	dipole	moment: We determine the centers of mass of the positive and negative
charge carriers. If these coincide then according to (2.31) d = 0. Otherwise its connecting line gives
the direction of d, its distance is a measure for the magnitude of the dipole moment d.

Example: molecules (see Fig. 2.6).

Fig.	2.6 Illustration for the positive and negative centers of the charge distribution for H2O and CO2

(3.) Quadrupole	term:
We look at the quadratic term in the Taylor series (2.28) and get

(2.34)

where

(2.35)

d = ∑i qiri.

∂
∂x
( 1
r
) = ∂r

∂x
∂
∂r
( 1
r
) = − 1

r2
∂r
∂x

= − 1
r2

x
r

.

d
′ = ∑i qi(ri − a) = ∑i qiri − a∑i qi = d − aQ.

4πϵ0Φ2(r) = 1
2 {Qxx

∂ 2

∂x2 ( 1
r
) + Qyy

∂ 2

∂y2 ( 1
r
) + Qzz

∂ 2

∂z2 ( 1
r
)

+Qxy
∂ 2

∂x∂y
( 1
r
) + Qyz

∂ 2

∂y∂z
( 1
r
) + Qzx

∂ 2

∂z∂x
( 1
r
),

+Qyx
∂ 2

∂y∂x (
1
r
) + Qzy

∂ 2

∂z∂y (
1
r
) + Qxz

∂ 2

∂x∂z (
1
r
)},



are the components of the quadrupole	tensor. This tensor is symmetric and real and therefore
can always be diagonalized:

(2.36)

i.e.

(2.37)

in the principal axis system, in which the quadrupole tensor is diagonal. There is a wide analogy to
the inertia	tensor in mechanics.

Physical	normalization	of	the	diagonal	elements: The relation

(2.38)

= −
3

r3
+ 3

x2 + y2 + z2

r5
= 0 for r ≠ 0

allows to replace the components (2.35) in (2.36) in the principal axis system by:

(2.39)

Qy =
1

3
∑
i

qi{2y2
i − x2

i − z2
i },Qz =

1

3
∑
i

qi{2z2
i − x2

i − y2
i },

without changing Φ2(r) because an additional term −r2Δ( 1
r

) in (2.37) has no effect on Φ2(r).
The Eqs. (2.39) show that the eigenvalues Qm describe the deviations from spherical symmetry
because for a spherical charge distribution we get:

(2.40)

Special	case: Axial symmetry e.g. around the z-axis. Then with

< x2 >q:=
1

3
∑
i

qix
2
i =< y2 >q, < z2 >q:=

1

3
∑
i

qiz
2
i

(2.41)

i.e. the quadrupole term Φ2(r) is given by a single number, the quadrupole	moment. For this case
the angular dependence Φ2(r) is easy to specify: We form

(2.42)

Qxx = ∑i qi x
2
i ; Qxy = ∑i qi xiyi; etc.

Qmn = Qmδmn,

4πϵ0Φ2(r) = 1
2

{Qx
∂ 2

∂x2 + Qy
∂ 2

∂y2 + Qz
∂ 2

∂z2 }( 1
r

)

Δ( 1
r

) = ( ∂ 2

∂x2 + ∂ 2

∂y2 + ∂ 2

∂z2 ) 1
r

= ( ∂
∂x

x
r

∂
∂r

+ ∂
∂y

y

r
∂
∂r

+ ∂
∂z

z
r

∂
∂r

) 1
r

Qx = ∑i qi(x
2
i −

r2
i

3 ) = 1
3 ∑i qi{2x2

i − y2
i − z2

i },

∑i qi x
2
i = ∑i qi y

2
i = ∑i qi z

2
i = 1

3 ∑i qi r
2
i → Qm = 0.

Qx =< x2 >q − < z2 >q= Qy = − 1
2
Qz = − 1

2
(2 < z2 >q −2 < x2 >q),

∂ 2

∂x2 ( 1
r

) = − ∂
∂x ( x

r3 ) = − 1
r3 + 3 x2

r5 = 3x2−r2

r5 ,



∂ 2

∂y2
(

1

r
) =

3y2 − r2

r5
,

∂ 2

∂z2
(

1

r
) =

3z2 − r2

r5
,

and �ind with (2.41):

(2.43)

=
1

4πϵ0

Qz

2r5
(−

1

2
(3x2 − r2) −

1

2
(3y2 − r2) + (3z2 − r2))

=
1

4πϵ0

Qz

4r5
(−3x2 − 3y2 + 6z2 − 3z2 + 3z2))

=
3Qz(3z2 − r2)

4πϵ0 ⋅ 4r5
=

Q0

4πϵ0
⋅

(3 cos2 θ − 1)

2r3
,

where

(2.44)

is the quadrupole	moment of the axially symmetric charge distribution.
Equation (2.43) shows the characteristic r-dependence for the quadrupole term; the angular

dependence is clearly different from the dipole term.
Continuous	charge	distributions:
In analogy to Sect. 2.4 we get for a continuous (spatially localized) charge distribution (dV = d3r):

(2.45)

instead of Eqs. (2.31) and (2.39) is replaced by:

Qx =
1

3
∫ dV ρ(r) (2x2 − y2 − z2),

Qy =
1

3
∫ dV ρ(r) (2y2 − x2 − z2),

(2.46)

Φ2(r) = 1
4πϵ0

1
2r5 (Qx(3x2 − r2) + Qy(3y2 − r2) + Qz(3z2 − r2))

Q0 = 3
2 Qz

d = ∫ dV ρ(r) r

Qz = 1
3 ∫ dV ρ(r) (2z2 − x2 − y2).



Fig.	2.7 Examples for axially symmetric charge distributions with positive (left) and negative (right) quadrupole moment

Example: A series of atomic nuclei is (axially symmetrical) deformed and is characterized
electrostatically by a quadrupole moment Q0. On the other hand an atomic nucleus (by Coulomb
excitation) can by excited to a quadrupole-like deformed (rotating) state. Such deformed and rotating
atomic nuclei decay to the ground state by the emission of electromagnetic radiation. The deviation
from spherical symmetry can be both positive, Q0 > 0 (left Fig. 2.7), as well as negative, Q0 < 0
(right Fig. 2.7), which clearly shows a shape of a cigar or corresponds to a disk.

In summarizing this chapter we have introduced the electric �ield E(r) for a system of stationary
point charges and calculated the total energy of the system. Furthermore, an asymptotic multipole
expansion of the �ield has been analyzed for localized charge distributions and lead to characteristic
properties of the systems, i.e. the total charge Q, the electric dipole moment d and the electric
quadrupole tensor Qij.
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In this chapter we will address more formal aspects of electrostatics and
introduce the �lux of a vector �ield. The Gauss’ law will allow to relate the �lux of
the electrostatic �ield through a closed surface to the total charge within the
volume bordered by the surface considered. Some applications of the Gauss’ law
are discussed and differential equations for the electrostatic �ield E and its
potential Φ are derived.

3.1	 Flux	of	a	Vector	Field
 In the following we want to look for equivalent formulations of Coulomb’s law.
To this aim we introduce the concept of the �lux	of	a	vector	�ield.

Let a vector �ield A(r) be de�ined on a surface F, which is �inite and two-
sided, i.e. F has a �inite area and a top and bottom de�ined by the surface
normals. Counterexample: the Möbius’	band has not a well de�ined top and
bottom.

The �lux of the vector �ield A through the surface F we de�ine by the
surface integral

(3.1)

where An is the component of A in direction of the surface normal.

To interpret (3.1) we consider a �luid �lowing with the velocity v(r) and the
density ρ(r). Let’s choose the vector �ield as

(3.2)

then
(3.3)

∫
F

A(r) ⋅ df = ∫
F
An(r)df,

A(r) = ρ(r)v(r),

https://doi.org/10.1007/978-3-031-95515-0_3


is the amount of �luid �lowing through F per unit of time. Equation (3.3) shows
that only the area perpendicular to the �low contributes.

3.2	 Gauss’	Law
 We now choose the electrostatic �ield E(r) (for A(r)) and for F a closed surface
with the properties mentioned above. Then the electric	�lux

(3.4)

is linked to the total charge Q in the volume V by the

Gauss’	law:

(3.5)

Proof
1st	step: Let q be a single point charge at the center of a sphere with radius R.
Then at every point on the surface of the sphere E(r) is parallel to the (outer)
surface normal n (see Fig. 3.1) and for the magnitude of E we have:

Fig.	3.1 For a single charge q in the center of the sphere of radius R the electric �ield is oriented in the direction
of the surface vector n

(3.6)

Then

(3.7)

is independent of the radius R of the sphere.

∫
F

A(r) ⋅ df = ∫
F
ρ(r)v(r) ⋅ df

Ψ = ∮
F

E(r) ⋅ df = ∮
F
En(r) df

Ψ = ∮
F

E(r) ⋅ df = Q

ϵ0
.

E = En =
q

4πϵ0R
2 .

Ψ = ∮ q

4πϵ0R2 R
2dΩ = q

4πϵ0
∮ dΩ = q

ϵ0
,



2nd	step: We replace the spherical surface with any closed area within the
framework of the requirements stated in Sect. 3.1 (see Fig. 3.2). Detail (see
Fig. 3.3):

Fig.	3.2 Illustration of a closed area around the charge q in the center

Fig.	3.3 Detail of the angles at the surface of the area of Fig. 3.2

Then

(3.8)

since the area vector df
′ is parallel to E and the angle between df and df’ is given

by θ.
3rd	step: The charge q is located outside of F.

Fig.	3.4 Orientation of the E �ield on the surface of a sphere which does not include the charge q

Ψ = ∮
F

qcosθ
4πϵ0R

2 df = ∮
F

q

4πϵ0R
2 df

′ = q

4πϵ0
∮ dΩ = q

ϵ0
,



Taking into account the respective normal direction (according to the outside
normal) we �ind that e.g. the contributions from the area around points 1 and 2
(see Fig. 3.4) cancel each other since the �ield strength E(r) (from q) is always
radially directed and drops like 1/R2 while df increases with R2. Thus we get for
the electrical �lux

(3.9)

4th	step: For N point charges qi within the volume V with surface F = ∂V  we
�ind according to the superposition principle:

(3.10)

3.3	 Applications	of	Gauss’	Law
For symmetrical charge distributions Eq. (3.5) offers the possibility to calculate
the �ield strength E(r) with a rather low effort. We consider 2 examples:

1. Field	of	a	homogeneously	charged	sphere.
Let

(3.11)

Due to the spherical symmetry E(r) is directed radially, such that

(3.12)

where E(r) = |E(|r|)| and Qr is the charge contained in a concentric sphere
with radius r. For points with r ≥ R, Qr = Q is the total charge and it follows
from (3.12):

(3.13)

For r ≤ R the result depends on the special form of ρ(r). As an example we
choose

(3.14)

then:

(3.15)

Ψ = 0.

Ψ = 1
ϵ0
∑i qi = Q

ϵ0
.

ρ(r) = ρ(r) for r ≤ R, ρ(r) = 0 else.

Ψ = ∮
F(r) E(r) ⋅ df = 4πr2E(r) =

Qr

ϵ0
= 4π

ϵ0
∫ r

0 r′2ρ(r′) dr′,

E(r) = Q

4πϵ0r2 for r ≥ R.

ρ(r) = ρ0 = const,



and E(r) as in (2. 21):

(3.16)

2. Homogeneously	charged,	in�initely	extended	plane.
For symmetry reasons E is perpendicular to the charged plane, the

magnitude E = |E| is the same for the points 1 and 2 at a distance r from the
plane (see Fig. 3.5). The Gauss’ law then gives:

Fig.	3.5 Illustration of the electric �ield for a charged, in�initely extended plane

(3.17)

if a is the cylinder base area and σ the surface charge density. We don’t get
any contribution from the cylinder mantle because E has no component in the
direction of the normal on the cylinder mantle. Result:

(3.18)

independent of r.

Qr = 4π
3 r3ρ0,

E(r) = Qr

4πr2ϵ0
= ρ0

3ϵ0
r.

Ψ = ∮
F

E ⋅ df = aE(1) + aE(2) =
Q

ϵ0
= σa

ϵ0
,

E = σ
2ϵ0



3.4	 Differential	Equations	for	E	and	Φ
We want to represent the Gauss’ law (3.5) in differential form. To this aim we
transform the surface integral into a volume integral over the enclosed surface 
F = ∂V  of the volume V (Gauss’	formula):

(3.19)

With

(3.20)

then follows:

(3.21)

Since Eq. (3.21) must hold for any volume V the integrand has to disappear:

(3.22)

Equation (3.22) does not change if we add to E(r) any divergence-free vector
function E′(r); Eq. (3.22) is therefore not suf�icient to determine the electrical
�ield. Another differential relation for E(r) we get from (cf. (2. 11))

(3.23)

with the vector indentity

(3.24)

i.e.:

(3.25)

However, to calculate the electromagnetic �ield from a given charge
distribution ρ(r) from (3.22) and (3.25) is quite complex.

In practice it is more convenient to go a step ahead to the potential Φ(r) and
calculate the �ield strength E(r) by differentiation according to(3.23). Inserting

∮
F

E(r) ⋅ df = ∫
V

∇ ⋅ E(r) dV = Q
ϵ0

.

Q = ∫
V
ρ(r) dV

∫
V

(∇ ⋅ E(r) −
ρ(r)

ϵ0
) dV = 0.

∇ ⋅ E(r) =
ρ(r)

ϵ0
.

E(r) = −∇Φ(r)

∇ × (∇f) = 0,

∇ × E(r) = 0.



(3.23) in (3.22) we get the Poisson	equation 

(3.26)

with the abbreviation

(3.27)

Having found a solution to (3.26) we can always add any solution of the
homogeneous equation (Laplace	equation) 

(3.28)

and get a new solution of (3.26). This ambiguity can be avoided by specifying
boundary conditions. For a further discussion see Chap. 4.

3.5	 Energy	of	the	Electrostatic	Field
In order to transfer a point charge q1 from in�inity to a charge q2 by the distance 
r12, one needs (or gains) the energy

(3.29)

In order to get a speci�ic charge distribution of N point charges qi (characterized
by the mutual distances of the charges qi) one needs (or gains) the energy

(3.30)

where the factor 1/2 ensures that double counting is avoided. The restriction 
i ≠ j excludes self-energies of the point charges.

We can interpret U as the potential	energy of a system of charged mass
points. On the other hand the energy U can also be considered as the energy
stored in the electric �ield in form of �ield	energy.

∇ ⋅ (∇Φ)(r) = ΔΦ(r) = −
ρ(r)

ϵ0

Δ = ∂ 2

∂x2 + ∂ 2

∂y2 + ∂ 2

∂z2 .

ΔΦ(r) = 0

U = q1q2

4πϵ0r12
.

U = 1
2 ∑i≠j

qiqj
4πϵ0rij

,



To analyse the connection between the two perspectives quantitatively we
reformulate (3.30) (see Chap. 2) by:

(3.31)

where Φ(ri) is the potential at position ri of the point charge i, which the
other point charges have created. Now we can rewrite Eqs. (3.31) with (3.26) as:

(3.32)

Equation (3.32) completely describes the energy U in terms of the potential Φ
, i.e. by the electrostatic �ield without reference to the charges. Instead of the
potential Φ we can express the potential U by the �ield strength E using the
identity

(3.33)

for f = g = Φ, i.e. ΦΔΦ = ∇ ⋅ (Φ∇Φ) − (∇Φ)2 leading to:

(3.34)

and using the Gauss’ formula,

(3.35)

with F = ∂V  denoting the surface of V. Now if all charges are enclosed in a �inite
volume the surface integral (3.35) decreases with increasing volume V, since 
Φ(r)∇Φ(r) drops as ∼ R−3 with increasing distance R from the charge center,
while the surface only increases with R2. In the limit V → ∞ we then obtain

(3.36)

as the energy stored in the �ield. The quantity ϵ0E
2(r)/2 then gives the

energy	density.

3.6	 Multipoles	in	the	External	Electric	Field

U = 1
2 ∑i qiΦ(ri) = 1

2 ∫
V
ρ(r)Φ(r) dV ,

U = − ϵ0

2
∫
V

Φ(r)ΔΦ(r) dV .

∇ ⋅ (f∇g) = (∇f) ⋅ (∇g) + fΔg

U = ϵ0

2 ∫
V

(∇Φ(r))2
dV − ϵ0

2 ∫
V

∇ ⋅ (Φ(r)∇Φ(r)) dV ,

∫
V

∇ ⋅ (Φ(r)∇Φ(r)) dV = ∮
F

Φ(r)∇Φ(r) ⋅ df

U = ϵ0

2 ∫
V

(∇Φ(r))2
dV = ϵ0

2 ∫
V

E
2(r) dV



If a spatially localized charge distribution ρ is placed in an external electrostatic
�ield given by its potential Φa, then (according to Sect. 3.5) we get for its energy

(3.37)

if we assume that the external �ield is not changed (noticeably) by ρ(r) and the
charges—generating the external �ield Φa—are outside the area of V. This
explains the absence of the factor 1/2 in (3.37) compared to (3.31). Furthermore,
let Φa be slowly changing in the volume V such that we can expand Φa in a Taylor
series with respect to the center of the charge distribution ρ:

(3.38)

Since in the region of the volume V we have for the external	�ield

(3.39)

in line with our assumption, we can rewrite Eq. (3.38) as follows (see Sect. 2. 5):

(3.40)

with Eia(0) = −∂/∂xiΦa(0). The combination of (3.37) and (3.40) gives:

(3.41)

= ∫
V

ρ(r)(Φa(0) −
3

∑
i=1

xiEia(0) −
1

2

3

∑
i,j=1

(xixj −
r2

3
δij)

∂Eia

∂xj
(0)+. . .) dV

= QΦa(0) −
3

∑
i=1

diEia(0) −
1

2

3

∑
i,j=1

Qij
∂Eia

∂xj

(0)+. . .

Equation (3.41) shows how the multipole moments of a charge distribution 
ρ(r) interact with an external �ield Ea: the total charge Q with the potential Φa,
the dipole moment d with the �ield strength Ea, the quadrupole tensor Qij with
the �ield gradient ∂Eia/∂xj etc.

Examples: Atomic dipoles in external electric �ields, interaction of the
nuclear quadrupole moment with the electron shell or with time-dependent

U = ∫
V
ρ(r)Φa(r)dV ,

Φa(r) = Φa(0) + ∑3
i=1 xi

∂Φa

∂xi
(0) + 1

2
∑3

i,j=1 xixj
∂ 2Φa

∂xi∂xj
(0)+. . .

∇ ⋅ Ea = 0

Φa(r) = Φa(0) − ∑3
i=1 xiEia(0) − 1

2
∑3

i,j=1(xixj − r2

3
δij)

∂Eia

∂xj
(0)+. . .

U = ∫
V
ρ(r)Φa(r) dV



electrical �ields (e.g. in nuclear reactions with center of mass energies below the
Coulomb barrier).

In summarizing this chapter we have introduce the �lux of a vector �ield and
derived the Gauss’ law which relates the �lux of the electrostatic �ield through a
closed surface to the total charge within the volume bordered by the surface
considered. Some applications of the Gauss’ law have been presented and
differential equations for the electrostatic �ield E and its potential Φ have been
derived. Furthermore, the energy density of the electrostatic �ield has been
computed and the interaction of a static charge con�iguration with an external
�ield been discussed.
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The solution of the Poisson equation is in general subject to boundary
conditions that have to be ful�illed simultaneously. Apart from a
discussion of the uniqueness of the solution in this chapter we will
present three practical methods for the calculation of Φ(r) in case of
speci�ic boundary conditions, i.e. the mirror method, the inversion
method and the separation of variables.

4.1	 Uniqueness
In the following we want to show that the Poisson equation or the Laplace
equation has a unique solution for Φ(r), if one of the following boundary
conditions hold:

(i) Dirichlet	condition 

(4.1)

or
(ii) von	Neumann	condition 

(4.2)

Proof We assume that there are 2 solutions Φ1(r) and Φ2(r) of
(4.3)

Φ(r) is given on a closed area F

∇Φ(r) is given on a closed area F .

ΔΦ(r) = −
ρ

ϵ0

https://doi.org/10.1007/978-3-031-95515-0_4


with the same boundary conditions given by (4.1) or (4.2). Then we
obtain for the difference U(r) = Φ1(r) − Φ2(r):

(4.4)

in the volume V enclosed by F. Furthermore, due to the boundary
conditions we either have

(4.5)

or

(4.6)

With the identity

(4.7)

and (4.4) we obtain:

(4.8)

using the Gauss’ formula, if one of the two conditions (4.5) or (4.6) is
ful�illed. Thus:

(4.9)

i.e. in V:

(4.10)

since (∇U)2(r) ≥ 0. This leads to

(4.11)

and Φ1(r) and Φ2(r) differ by at most a (physically insigni�icant)
constant.

Special	case: V → ∞.

ΔU(r) = 0

U(r) = 0 on F

∇U(r) = 0 on F.

∇ ⋅ (U(r)∇U(r)) = (∇U)2(r) + U(r)ΔU(r)

∫
V

(∇U)2(r) dV = ∫
V

∇ ⋅ (U(r)∇U(r)) dV = ∮
F
U∇U(r) ⋅ df = 0

∫
V

(∇U)2(r) dV = 0,

∇U(r) = 0,

U(r) = const



If V is the entire 3-dim. space, then the solution of the Poisson
equation is unique, if ρ(r) is of �inite range and Φ(r) asymptotically drops
so fast that

(4.12)

where ∂Φ/∂n denotes the normal derivative of Φ(r). The proof above
follows directly when considering that the surface grows for a �ixed
volume as r2.

4.2	 Mirror	Method
This method consists in introducing so-called mirror	charges of

suitable size outside the area under investigation in such a way that the
required boundary conditions are met. This procedure is allowed because
one can solve the (inhomogeneous) Poisson equation by adding a solution
of the (homogeneous) Laplace equation (cf. Sect. 3.4). The mirror method
provides the solution of the Laplace equation which, together with the
selected special solution of the Poisson equation, ful�ills the required
boundary conditions.

As a simple example let’s consider a point charge q at a distance a
from a conducting plane, which has the potential Φ = 0 on the plane
(Fig. 4.1 left). The mirror charge q’ then is introduced mirror-symmetrical
to q with respect to the plane (see Fig. 4.1 right).

Fig.	4.1 Point charge q at a distance a from a conducting plane, which has the potential Φ = 0 (left).
The mirror charge q’ then is introduced mirror-symmetrical to q with respect to the plane (right)

Then the potential at point P is:

r2Φ(r) ∂Φ
∂n (r) → 0 for r → ∞,



(4.13)

and we get Φ = 0 for all points of the conducting plane, x = 0, choosing:

(4.14)

In the region x > 0 (which is of interest), q/(4πϵ0r) is a special solution of
the Poisson equation, q ′/(4πϵ0r

′) a solution of the Laplace equation,
which ensures that for x = 0 the required boundary condition is ful�illed.

For the x-component of the electric �ield E one gets from (4.13) and
(4.14):

(4.15)

thus for the plane (x = 0),

(4.16)

The components in the x = 0 plane (in y, z-direction) disappear because
the electric �ield is perpendicular to the plane (otherwise there would be a
current in the surface layer). Equation (4.16) implies that according to the
Gauss’ law (cf. Sect. 3.2) in the plane x = 0 a charge with the (spatially
dependent) charge density

(4.17)

appears, which is induced by the presence of the point charge q at
distance a.

4.3	 Inversion	Method
Let Φ(r, θ,ϕ) be the potential at the position r = (r, θ,ϕ) generated by
point charges qi:

(4.18)

4πϵ0Φ(P) =
q

r
+

q ′

r′

q ′ = −q.

Ex(P) = − ∂Φ
∂x =

q

4πϵ0
( x−a

r3 − x+a
r3 ),

Ex(x = 0) = − 2qa
4πϵ0r

3 .

σ = ϵ0Ex(x = 0) = − qa

2πr3

Φ(r, θ,ϕ) = ∑i
qi

4πϵ0√r2+r2
i −2rricosγi

;



here (ri, θi,ϕi) denote the positions of the point charges qi and γi the
angle between r and ri. Then

(4.19)

is the potential, that the point charges

(4.20)

at (a2/ri, θi,ϕi) generate in the position (r, θ,ϕ).

Proof We combine Eqs. (4.19) and (4.18) to

(4.21)

= ∑
i

aqi/ri

4πϵ0√r2 + a4/r2
i − 2a2r cos γi/ri

.

As an example we consider a point charge outside a conducting sphere,
which has the potential Φ = 0 on its surface. We replace the sphere with a
point charge q̄ , where its size and position is chosen such that the
resulting potential of q and q̄  on the surface disappears. The potential at
position (r, θ,ϕ), which is generated from the point charge q at (rq, 0, 0),
is denoted by Φ(r, θ,ϕ). Placing the charge q̄ = −Rq/rq at the position 
(R2/rq, 0, 0) (see Fig. 4.2).

Φ̄(r, θ,ϕ) = a
r

Φ( a2

r
, θ,ϕ)

q̄ =
aqi
ri

Φ̄(r, θ,ϕ) = a
r
∑i

qi

4πϵ0√a4/r2+r2
i −2a2ricosγi/r



Fig.	4.2 Geometry of a conducting sphere of radius R with a vanishing potential Φ on its surface and
the position of the charge q̄

then the potential, generated by q̄  at position (r, θ,ϕ), is (according to
(4.19)):

(4.22)

On the spherical surface, r = R, it is:

(4.23)

such that

(4.24)

The solution of the Poisson equation outside the conducting sphere then
is:

(4.25)

with

(4.26)

4.4	 Separation	of	Variables
 

In the following example we are looking for solutions of the Laplace
equation,

(4.27)

and for simplicity assume that Φ(r) does not depend on z,

(4.28)

Then (4.27) simpli�ies in cartesian coordinates to:

Φ̄(r, θ,ϕ) = − R
r

Φ( R2

r
, θ,ϕ).

Φ̄(R, θ,ϕ) = −Φ(R, θ,ϕ),

Φ̄(R, θ,ϕ) + Φ(R, θ,ϕ) = 0.

Φ̄(r, θ,ϕ) + Φ(r, θ,ϕ)

Φ(r, θ,ϕ) = q

4πϵ0|r−rq|
.

ΔΦ(r) = 0,

Φ(r) = Φ(x, y).

( )



(4.29)

Since (4.29) does not contain a mixed	term ∂ 2/∂x∂y, it is obvious to use
the following separation	Ansatz:

(4.30)

then (4.29) reads as:

(4.31)

With the exception of zero’s of f and g Eq. (4.31) is equivalent to:

(4.32)

The 1st term in (4.32) depends only on x, the 2nd only on y; since x and y
are independent variables it follows from (4.32):

(4.33)

If we choose the constant in (4.33) to be real and positive (= k2), we get
the following differential equations:

(4.34)

with the solutions:

(4.35)

The integration constants a, b, c, d and the separation constant k have to
be determined by boundary conditions. As an example let’s consider a
rectangular cylinder, which is in�initely extended in the z direction (with
edge lengths x0 and y0) and the boundary conditions at y = 0 and y = y0:

(4.36)

Then

( ∂ 2

∂x2 + ∂ 2

∂y2 )Φ(x, y) = 0.

Φ(x, y) = f(x)g(y);

g(y) ∂ 2

∂x2 f(x) + f(x) ∂ 2

∂y2 g(y) = 0.

1
f(x)

∂ 2f

∂x2 + 1
g(y)

∂ 2 g

∂y2 = 0.

1
f(x)

∂ 2f

∂x2 = const = − 1
g(y)

∂ 2 g

∂y2 .

∂ 2f

∂x2 − k2f(x) = 0; ∂ 2 g

∂y2 + k2 g(y) = 0

f(x) = a exp(kx) + b exp(− kx);g(y) = c sin(ky) + d cos(ky).

Φ(x, 0) = Φ(x, y0) = 0.



(4.37)

Furthermore, the boundary conditions at x = 0 and x = x0 are chosen as:

(4.38)

where V(y) is any given function. From (4.38) it follows that

(4.39)

In order to ful�ill the 4th condition, we expand Φ in a Fourier series:

(4.40)

and determine the coef�icients An by requiring

(4.41)

According to the inverse theorem for the Fourier series in the sin-
functions we get:

(4.42)

In case of boundary conditions of spherical symmetry one solves the
Laplace equation using a separation Ansatz in spherical coordinates; the
same procedure is followed in case of axial symmetry.

Overview	of	Electrostatics

(1.) Basis: Coulomb	law

F(r) = qE(r) with E(r) = ∑
i

qi(r − ri)

4πϵ0|r − ri|
3

(2.) Field	equations:

(a) integral equations:

d = 0; sin(ky0) = 0 → k = nπ
y0

= kn.

Φ(0, y) = 0;Φ(x0, y) = V (y),

a = −b → f = a{exp(knx) − exp(−knx)}.

Φ(x, y) = ∑∞
n=1 An sin(kny) sinh(knx);An = 2ancn,

Φ(x0, y) = V (y) = ∑∞
n=1 An sin(kny) sinh(knx0).

An = 2
y0 sinh(knx0) ∫

y0

0 V (y) sin(kny) dy.



∮
S

E(r) ⋅ ds = 0;∮
F

E(r) ⋅ df =
Q

ϵ0

(b) differential equations:

∇ × E(r) = 0;∇ ⋅ E(r) =
ρ(r)

ϵ0

(3.) Electrostatic	potential:

E(r) = −∇Φ(r) → ΔΦ(r) = −
ρ(r)

ϵ0
. Poisson equation

(4.) Field	energy:

1

2
∑
i≠j

qiqj

4πϵ0rij
→

1

2
∫
V

ρ(r)Φ(r) dV →
ϵ0

2
∫
V

E(r)2
dV

The potential energy of the point charges → electrostatic �ield energy.
In summarizing this chapter we have discussed the uniqueness of the

solution for the potential Φ in case of boundary conditions and presented
three practical methods for the calculation of Φ(r), i.e. the mirror method,
the inversion method and the separation of variables.



Part	II
Magnetostatics
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In this chapter we will present the basic equations of magnetostatics for the case of
stationary electric currents and introduce the magnetostatic �ield B(r) by
Ampère’s law as well as the magnetic dipole moment emerging from circulating
currents.

5.1	 Electric	Current	and	Conservation	of	Charge
Electric currents are caused by moving charge carriers. Charge carriers can be, for
example: ions in a particle accelerator, an electrolyte or a gas, electrons in a metal,
etc. The origins for the motion of charges are primarily electric �ields but it might
also involve material transport of charged objects. We de�ine the electric
current as the amount of charge that �lows through the conductor area per unit of
time.

We will initially consider the most simple case of a charge carrier with the same
charge q and constant velocity v. Let a be the vector perpendicular to the area of
the conductive medium, where the magnitude of a indicates the size of the area and
n is the density of the charge carriers. During the time Δt then the charge carriers
in the volume ΔV = (a ⋅ v)Δt pass the conductor cross section, i.e. n(a ⋅ v)Δt.
Thus the charge current is

(5.1)

In the more general case with ni charge carriers qi with velocity vi per unit volume
this becomes:

(5.2)

Equations (5.1) and (5.2) suggest to introduce the current	density j as

(5.3)

I(a) =
nq(a⋅v)Δt

Δt
= nq(a ⋅ v).

I(a) = a ⋅ (∑i niqivi).

j := ∑i niqivi,

https://doi.org/10.1007/978-3-031-95515-0_5


which is related (for qi = q) to the average velocity

(5.4)

and the charge density ρ by:

(5.5)

Equation (5.5) shows that high absolute velocities of the charge carriers do not
imply a high current since only the average value of the velocities of the charge
carriers are essential. For example, if the velocities of the charge carriers are
uniformly distributed in all directions, then < v >= 0 and therefore also j = 0. In
the general case ρ and < v > is space- and time-dependent, thus

(5.6)

The law of conservation of charge we can formulate in terms of the charge and
current density as follows: We consider an arbitrary �inite volume V with surface 
F = ∂V . The amount of charge contained inside is Q = Q(t). If V does not depend
on time the change in the amount of charge contained in V per unit of time is:

(5.7)

Since charge cannot be created or destroyed, the decrease (increase) of the charge
contained in V is equal to the amount of charge �lowing out (in) through F (in the
period of time considered). The latter is given by the surface integral of the current
density, which—according to Gauss’ formula—can be transformed to a volume
integral:

(5.8)

Then the charge balance reads:

(5.9)

or, since V can be chosen arbitrarily, we get the continuity	equation:

(5.10)

< v >= 1
n
∑i nivi

j = nq < v >= ρ < v >.

j = j(r, t).

dQ
dt

= ∫
V

∂ρ(r,t)
∂t dV .

∮
F

j(r, t) ⋅ df = ∫
V

∇ ⋅ j(r, t) dV .

− dQ
dt

= − ∫
V

∂ρ(r,t)
∂t dV = ∫

V
∇ ⋅ j(r, t) dV

∇ ⋅ j(r, t) +
∂ρ(r,t)

∂t = 0.



While (5.9) describes the conservation of charge in integral form, equation
(5.10) describes the charge conservation in differential form.

Special	cases:

(i) Electrostatics: stationary charges

(5.11)

(ii) Magnetostatics: stationary currents

(5.12)

For a stationary current, ∇ ⋅ j is constant in time, and this constant must be
zero everywhere because charge is not created or destroyed.

5.2	 Ampère’s	Law
 Let’s consider a stationary current distribution j = j(r). To eliminate electrostatic
effects we assume that the density of the moving charge carriers, which build up
the current, is compensated by resting charge carriers of opposite sign (e.g. moving
conduction electrons and resting lattice ions in a metallic conductor). On a moving
test charge q—in the vicinity of the current �lowing through the conductor—then
acts a force, which is found experimentally to be:

(5.13)

with

(5.14)

as the magnetic	induction. The Eqs. (5.13) and (5.14)—as the basis of
magnetostatics—is experimentally veri�ied on the same level as

(5.15)

j = 0 → ∂ρ
∂t

= 0 → ρ = ρ(r)

j = j(r) and ∇ ⋅ j = 0 → ∂ρ
∂t

= 0.

F(r) = q(v × B(r))

B(r) = Γm ∫
V

j(r′)×(r−r′)

|r−r′|3 dV ′

F(r) = qE(r)



with

(5.16)

in electrostatics! While (5.15) serves as a rule for measuring the electrostatic
�ield E(r), (5.13) provides a rule for the measurement of the magnetic induction 
B(r).

Unit	systems:
If one has de�ined Γe, i.e. one has de�ined the unit charge, then in (5.13) and

(5.14) all quantities are �ixed w.r.t. their units. Thus Γm can no longer be chosen
independently but in the

(i) MKSA system is

(5.17)

with

(5.18)

as the magnetic	permeability.

(ii) cgs system:

(5.19)

with the velocity of light c.

Note: Equation (5.14) contains—as in (5.16)—the superposition principle: the
�ields of two current distributions j1(r) and j2(r) superimpose linearly, since 
j(r) = j1(r) + j2(r) is the resulting current distribution. Furthermore, the ratio 
Γm/Γe must be a constant independent of the unit system. With (5.17) and (5.19)
and Γe = 1/(4πϵ0) or Γe = 1 in the cgs system (see Sect. 2.2) we obtain the
relationship

(5.20)

E(r) = Γe ∫V
ρ(r′) (r−r′)

|r−r′|3 dV ′

Γm =
μ0

4π Γe = 1
4πϵ0

μ0 = 4π ⋅ 10−7 m kg

Coul.2

Γm = 1
c2 Γe = 1

Γm

Γe
= ϵ0μ0 = 1

c2 .



This fundamental relation already points to a connection with Einstein’s theory
of special relativity.

In the following the vector �ield B(r) will be calculated for a couple of simple
current distributions.

5.3	 Biot-Savart
 For a thin conductor we can immediately integrate over the area f of the conductor
and (instead of (5.14)) obtain

(5.21)

with dl′ in direction of the conductor and

(5.22)

for the current strength (cf. Fig. 5.1).

Fig.	5.1 Sketch for a conductor with a �inite (thin) area df ′

If the conductor is straight, it follows from (5.21) or also (5.14), that the �ield
lines of B(r) run concentrically around the conductor. So we only need to calculate
the magnitude B(R), since all contributions to the integral (5.21) have the same
direction for a straight conductor. From Fig. 5.2 then follows (with d = |r−r′| and 
|dl′ × (r − r′)|= d sin (θ)dz):

(5.23)

B(r) =
μ0I

4π ∫
L

dl′×(r−r′)

|r−r′|3

I = ∫
f

j ⋅ df ′

B(R) =
μ0I

4π ∫
L

sin θ
d2 dz .



Fig.	5.2 Choice of the integration variable to calculate equation (5.25)

We carry out the remaining integration for an in�initely long conductor: With

(5.24)

we get for the �ield strength at point P with distance R:

B(R) =
μ0I

4π
∫

∞

−∞

sin3θ

R2
dz =

μ0I

4π
∫

0

π

sin3θ

R2

dz

dθ
dθ

 

(5.25)

This is the formula of Biot and Savart for a thin, straight, in�initely long
conductor.

5.4	 Force	and	Torque	on	a	Current	in	the	Magnetic
Field
Based on the force experienced by a charge qi moving with velocity vi in the
magnetic �ield B,

(5.26)

the force on a current with the current density j is obtained as:

(5.27)

R = d sin θ;z = d cos (θ) = R cotg θ → dz = −R
sin2θ

dθ

= μ0I

4π
∫ π

0
R sin θ
R2 dθ = μ0I

4πR
∫ 1

−1
d(cos θ) = μ0I

2πR
.

Fi = qi(vi × B(ri)),



where the volume V has to be chosen such that it completely includes the
current.

Example: For a thin wire, where the B �ield does not change (signi�icantly)
over its area, we can (as in Sect. 5.3) carry out 2 of the 3 integrations in (5.27):

(5.28)

The remaining line integral along the conductor L is easy for a straight conductor, if
B does not change along L:

(5.29)

where L is the length of the conductor. The force is therefore perpendicular to the
current direction and to the B �ield; it has a maximum, if I is perpendicular to B,
and disappears when I runs parallel to B.

On the charge qi with velocity vi in the �ield B acts the torque:

(5.30)

correspondingly for the current density j(r):

(5.31)

Simple examples are (rectangular or circular) current loops in a homogeneous 
B �ield.

For the practical evaluation of (5.31) it is expedient to employ the identity
(‘bac-cab rule’)

(5.32)

to transform (5.31) to:

(5.33)

For a stationary, spatially limited current, the 2nd term in (5.33) disappears. To
show this we use the relationship (n,m = 1, 2, 3)

(5.34)

F = ∑i qi(vi × B(ri)) = ∫
V

j(r) × B(r) dV ,

F = I ∫
L
dl × B.

F = (I × B)L,

Ni = ri × Fi = ri × (qivi × B(ri));

N = ∑i ri × (qivi × B(ri)) = ∫
V

r × (j(r) × B(r)) dV .

a × (b × c) = (a ⋅ c)b − (a ⋅ b)c = b(a ⋅ c) − c(a ⋅ b)

N = ∫
V

{(r ⋅ B)j − (r ⋅ j)B}dV .



= ∮
F

xnxmj ⋅ df − ∫
V

xmjn dV = −∫
V

xmjn dV

taking advantage of ∇ ⋅ j = 0, the product rule, the Gauss’ formula and the
disappearance of j on the surface F. For n = m it follows from (5.34)

(5.35)

such that in (5.33) the 2nd term (approximately) disappears for a homogeneous
(weakly changing) �ield. Correspondingly, it follows from (5.34) for m ≠ n:

(5.36)

such that (with the ‘bac-cab’ rule):

(5.37)

with Eq. (5.32). Result:

(5.38)

with the magnetic	dipole	moment 

(5.39)

For a plane current (e.g. circulating current in the (x,y) plane) m is
perpendicular to the current plane (in the direction ez) (see Fig. 5.3).

Fig.	5.3 The magnetic dipole moment m of a circulating current

∫
V
xnjm dV = ∫

V
xn∇ ⋅ (xmj) dV = ∫

V
∇ ⋅ (xnxmj) dV − ∫

V
xmjn dV

∫
V

(r ⋅ j) dV = 0,

∫
V

(r ⋅ B)j dV = − ∫
V

(j ⋅ B)r dV ,

∫
V

(B ⋅ r) j dV = 1
2 ∫

V
{(B ⋅ r) j − (B ⋅ j) r} dV = − 1

2 B × ∫
V

(r × j) dV

N = ( 1
2 ∫

V
(r × j(r)) dV ) × B = m × B

m = 1
2 ∫

V
(r × j(r)) dV .



If the current-carrying conductor is thin, we get (after integration over the
conductor area):

(5.40)

and for the magnitude of m:

(5.41)

where I is the current and F = πr2 the area formed by the closed current (cf.
the area law for the motion of a mass point in a central �ield!). For a particle of
mass M and charge q with angular momentum L of a closed (periodic) orbit we can
replace r × qv by (r × Mv)q/M = Lq/M  and get

m =
q

2M
L.

Applications: Measurement of currents.

5.5	 Forces	Between	Currents

Fig.	5.4 Example for the interaction between two directed currents

With (5.21) and (5.28) the force of a current I ′ on a current I in thin conductors
(see Fig. 5.4) reads as:

(5.42)

m = I
2
∮
L

(r × dl) = I
2
∫ 2π

0 dϕ r2 ez = πr2I ez,

m = IF ,

F = I ∫
L
dl × B = μ0II

′

4π
∫
L
∫
L′

dl×(dl′×(r−r′))

|r−r′|3 .



Equation (5.42) can be symmetrized using the ‘bac-cab’ rule (5.32):

(5.43)

since

(5.44)

for closed or in�initely long conductor circuits.
Equation (5.43) changes the sign when the two currents are exchanged, i.e. of I

and I ′ as well as of r and r′. This re�lects the actio-reactio principle, which holds
for electrostatic as well as for magnetostatic interactions. However, it will be
broken in case of arbitrary time-dependent current and charge distributions (see
Chap. 7).

In summarizing this chapter we have introduced the magnetic induction B(r)
for stationary currents and calculated the torque exerted by B(r) on a current j(r)
as well as the magnetic dipole moment m emerging from a circulating current.

F =
μ0II

′

4π ∫
L
∫
L′

(dl⋅dl′)(r−r′)

|r−r′|3 ,

∫
L

dl⋅(r−r′)

|r−r′|3 = − ∫
L

∇( 1
|r−r′| ) ⋅ dl = 0
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In this chapter we will focus on the mathematical aspects of magnetostatics, introduce the vector
potential A(r) and analyse the multipole expansion of the vector potential.

6.1	 Divergence	of	the	Magnetic	Induction
 Equation (5. 14) can be rewritten as follows:

(6.1)

The proof is given by differentiations corresponding to the operation ∇× in the integral: With

(6.2)

we �ind

(6.3)

According to (6.1) B(r) can now be written in the form

(6.4)

with the vector �ield de�ined by

(6.5)

Then

(6.6)

Equation (6.6) formally corresponds to
(6.7)

B(r) =
μ0

4π ∫
V

j(r′)×(r−r′)

|r−r′|3 dV ′ =
μ0

4π ∇ × (∫
V

j(r′)

|r−r′|
dV ′).

∂
∂x

1
|r−r′|

= −
(x−x′)

|r−r′|3 , ∂
∂y

1
|r−r′|

= −
(y−y′)

|r−r′|3 , ∂
∂z

1
|r−r′|

= −
(z−z′)

|r−r′|3 ,

∇ × j(r′) 1
|r−r′|

= −
(r−r′)

|r−r′|3 × j(r′) = j(r′) ×
(r−r′)

|r−r′|3 .

B(r) = ∇ × A(r)

A(r) =
μ0

4π ∫
V

j(r′)

|r−r′|
dV ′.

∇ ⋅ B(r) = ∇ ⋅ (∇ × A(r)) = 0.

( )
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and shows that there are no magnetic	charges. Let’s formulate the corresponding integral
statement to (6.6):

(6.8)

We �ind that the �lux of the magnetic induction through a closed surface F disappears. The
comparison with:

(6.9)

explains this statement.

6.2	 Rotation	of	B
In electrostatics we found

(6.10)

or equivalently

(6.11)

according to the formula of Stokes. Accordingly, we want to examine the line integral

(6.12)

over a closed path S = ∂F , that encloses an area F, and use Stokes’ formula to calculate ∇ × B(r).
We �irst consider an in�initely long, thin, straight conductor. For that we have found

(6.13)

where r is the distance from the conductor, I is the current and eϕ indicates the direction: the �ield
lines run concentric around the conductor. We �irst consider a closed path S in the plane
perpendicular to the conductor, which includes the conductor (see Fig. 6.1).

Fig.	6.1 Integration in the plane (x, y) perpendicular to the conductor

∇ ⋅ E(r) =
ρ(r)

ϵ0
,

∫
V

∇ ⋅ B(r) dV = ∮
F

B(r) ⋅ df = 0.

∮
F

E(r) ⋅ df = Q

ϵ0
,

∇ × E(r) = 0

∮
S

E(r) ⋅ ds = 0

∮
S

B(r) ⋅ ds

B(r) =
Iμ0

2πr eϕ,



Then (with ds = eϕrdϕ):

(6.14)

If S does not include the current we obtain:

(6.15)

This is immediately clear for the following path (see Fig. 6.2).

Fig.	6.2 Example of a path with a vanishing path integral of B(r)—generated by the current I

The distances AD, BC do not contribute to the integral since they are perpendicular to B. Using
(6.14) we �ind that the contributions of AB, DC compensate each other due to the opposite
directions of circulation and the 1/r dependence of B(r).

These results can be generalized to several currents of the type discussed above due to the
superposition principle and closed space curves S can be composed of plane segments. Without
discussing the details of the general proof—which is the task of mathematics—we �ind the general
result:

(6.16)

where I is the current strength of the current enclosed by S.

Remark: If S circulates the current n times, then I has to be replaced by nI.

The integral statement (6.16)—analogous to Eq. (6.11)—we can transform to a differential
relationship using Stokes’	law. The latter allows to transform the line integral above into a surface
integral (S = ∂F):

(6.17)

∮
S

B(r) ⋅ ds = Iμ0

2π
∮
S

eϕ⋅ds

r
= Iμ0

2π
∮ dϕ = Iμ0.

∮
S

B(r) ⋅ ds = 0 .

∮
S

B(r) ⋅ ds = μ0I ,

∮
S

B(r) ⋅ ds = ∫
F

(∇ × B(r)) ⋅ df ,



where F is an arbitrary smooth orientable surface with the closed path S as a borderline. F and 
S = ∂F  are in the de�inition domain of the continuously differentiable vector �ield B(r). With
(6.17) this gives for (6.16):

(6.18)

or, since F can be chosen arbitrarily:

(6.19)

In contrast to the electrostatic �ield E with ∇ × E(r) = 0 the B �ield is	thus	not	vortex-free!

6.3	 Vector	Potential
Instead of computing B(r) for a given current distribution j(r) from (6.6) and (6.19) we want to
calculate B(r) from an auxiliary vector �ield corresponding to the electrostatic potential Φ(r) in
electrostatics. To this aim we introduce the vector	potential A(r), from which the magnetic
induction can be obtained by differentiation. In Sect. 6.1 we have already brie�ly introduced:

(6.20)

and now want to �ind a differential equation for the vector potential A(r) from which A(r) for a
given current distribution j(r) can be calculated. We form:

(6.21)

The 1st term on the right side in (6.21) can be eliminated and the desired differential equation be
simpli�ied by exploiting the fact, that A(r) is not uniquely de�ined by (6.20). The �ield B(r) doesn’t
change when applying the gauge	transformation 

(6.22)

where χ(r) is an arbitrary (at least twice partially differentiable) scalar function, since:

(6.23)

In case of

(6.24)

we can choose χ(r) such that

(6.25)

We �ind the scalar function χ(r) of interest by solving a differential equation of the type (3. 26):

∮
S

B(r) ⋅ ds = ∫
F

(∇ × B(r)) ⋅ df = μ0I = μ0 ∫F j(r) ⋅ df ,

∇ × B(r) = μ0j(r).

B(r) = ∇ × A(r),

∇ × (∇ × A(r)) = μ0j(r) = ∇(∇ ⋅ A(r)) − ΔA(r).

A(r) → A′(r) = A(r) + ∇χ(r),

∇ × A′(r) = ∇ × A(r) + ∇ × (∇χ(r)) = ∇ × A(r) + 0.

∇ ⋅ A(r) ≠ 0,

∇ ⋅ A′(r) = ∇ ⋅ A(r) + ∇ ⋅ (∇χ(r)) = 0.



(6.26)

where −∇ ⋅ A(r) has to be considered as a given inhomogeneity. It thus can always be achieved
(without changing the physics, i.e. the B �ield) that:

(6.27)

The vector Eq. (6.27) consists out of 3 components, where each equation is again the well-
known Poisson equation (3. 26).

6.4	 Multipole	Expansion
In analogy to the case of electrostatics one is often interested in the B �ield at a large distance from
the (spatially localized) current distribution j. It is then useful to expand the vector potential A(r)
into a Taylor series (as for Φ(r)):

(6.28)

=
μ0

4π
∫
V

dV ′ j(r′)( 1

r
− (x′ ∂

∂x
+ y′ ∂

∂y
+ z′ ∂

∂z
)

1

r
+ ⋯)

with the

monopole	term:

(6.29)

as the 1st term in the expansion of Eq. (6.5). Now for each component i = 1, 2, 3

(6.30)

because

∇′ ⋅ (x′
ij(r′) = ji(r′) + x′

I ∇ ⋅ j(r′),

∇ ⋅ j = 0, the formula of Gauss and the fact that j ≠ 0 only within V and disappears on the surface 
F = ∂V . We then get:

(6.31)

since there are no magnetic monopoles opposite to electric charges in electrodynamics (2. 29).

Dipole	component:

(6.32)

∇ ⋅ (∇χ(r)) = Δχ(r) = −∇ ⋅ A(r),

ΔA(r) = −μ0j(r).

A(r) = A0(r) + A1(r)+. . . .

A0(r) =
μ0

4πr ∫V j(r′) dV ′

∫
V
ji(r′) dV ′ = ∫

V
∇′ ⋅ (x′

i j(r′)) dV ′ = ∮
F
x′
i j(r′) ⋅ df ′ = 0

A0 = 0 ,

A1(r) =
μ0

4π ∫
V
dV ′ j(r′) (−r′ ⋅ ∇r)

1
r

=
μ0

4πr3 ∫V (r ⋅ r′) j(r′) dV ′.



We transform the integral (6.32) according to (5. 37):

(6.33)

= −
1

2
r × ∫

V

(r′ × j(r′)) dV ′ = (
1

2
∫
V

(r′ × j(r′)) dV ′) × r = m × r .

Result:

(6.34)

with the magnetic dipole moment m of (5. 39). Compare the result with equation (2. 30)!
Analysis	of	the	dipole	moment	m:
For N point charges qi the magnetic dipole moment m is given by:

(6.35)

Furthermore, m can be connected to the angular momentum L of the N charged mass points if 
Mi = M  and qi = q, i.e.:

(6.36)

The orbital angular momentum of a system of (identical) charged particles is thus linked to a
magnetic moment in the direction of L. This statement also holds in the atomic range, e.g. for the
electrons of an atom. However, not every magnetic moment corresponds to an orbital angular
momentum according to (6.36). Elementary particles (such as electrons) have an internal
magnetic dipole moment, which is not related to the orbital angular momentum but is linked to the
spin of these particles by:

(6.37)

where s is the spin vector and g the gyromagnetic	ratio. Esperimentally one �inds g ≈ 2.0024
for electrons, which can also be calculated within the scope of quantum electrodynamics (QED).

6.5	 Energy	of	a	Dipole	in	the	External	Magnetic	Field
For the force F on a magnetic dipole m in a (spatially weakly changing) �ield B one �inds:

(6.38)

For the proof we go back to (5. 27) and proceed as in the calculation of N in equation (5. 38). From
(6.38) we get the potential energy of the dipole in the B �ield as (F = −∇U):

(6.39)

∫
V

(r ⋅ r′)j(r′) dV ′ = 1
2 ∫

V
{(r ⋅ r′)j(r′) − (r ⋅ j(r′)) r′} dV ′ = 1

2 ∫
V

{r × (j(r′) × r′)} dV ′

A1(r) = m × ( μ0

4π
r

r3 )

m = 1
2

∑N
i=1 qi(ri × vi).

m = q

2M
L = q

2M
∑N

i=1 M(ri × vi) .

ms = g
q

2M s,

F = ∇(m ⋅ B).



in analogy to −(d ⋅ E) as the energy of an electric dipole in the electrostatic �ield (3. 41). Thus
the dipole will preferentially be oriented in the direction of the �ield since this gives the lowest
possible energy.

Overview	of	magnetostatics

(1.) Basis: Ampère’s	law

F(r) = q(v × B(r)) with B(r) =
μ0

4π
∫

V

j(r′) × (r − r′)

|r−r′|3
dV′

for stationary currents with ∇ ⋅ j(r) = −∂ρ/∂t = 0.

(2.) Field	equations: From

B(r) = ∇ × A(r) with A(r) =
μ0

4π
∫

V

j(r′)

|r−r′|
dV′

we obtain the

(a) differential relations:

∇ ⋅ B(r) = 0;∇ × B(r) = μ0j(r)

or in

(b) integral form:

∮
F

B(r) ⋅ df = 0;∮
S

B(r) ⋅ ds = μ0I

(3.) Vector	potential:

∇ × (∇ × A(r)) = μ0j(r) → ΔA(r) = −μ0j(r)

for ∇ ⋅ A(r) = 0 (i.e. in Coulomb	gauge).
In summarizing this chapter we have introduced the vector potential A(r) and analysed the

multipole expansion of the vector potential. Furthermore, we have calculated the energy of a dipole
in the external magnetic �ield.

U = −(m ⋅ B),



Part	III
Basics	of	Electrodynamics
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In this chapter we will extend the previous cases of static charges or stationary currents
and derive the �ield equations for E(r;t) and B(r;t) for arbitrary space-time dependent
sources ρ(r;t) and j(r;t) on the basis of Faraday’s law of induction.

7.1	 Concept	of	the	Electromagnetic	Field
As the de�inition of the �ields E(r;t) and B(r;t) we use–in extension of the Eqs. (2. 8) and
(5. 13)–the relation (Lorentz	force)

(7.1)

Since ρ(r, t) and j(r, t) are linked by the continuity equation

(7.2)

it is clear that the electric and the magnetic �ield can no longer be treated separately:
The Maxwell	equations are a system of coupled differential equations for the �ields 
E(r, t) and B(r, t).

7.2	 Faraday’s	Law	of	Induction
We start with the following experimental observation: If the magnetic �lux (Sect. 6. 1)
through a closed conductor circuit changes in time, then an electric �ield is induced
along the conductor circuit, which generates an induction	current in the conductor.
Quantitatively:

(7.3)

F(r, t) = q(E(r, t) + (v × B(r, t))).

∂ρ(r,t)

∂t
+ ∇ ⋅ j(r, t) = 0,

−k d
dt

(∫
F

B(r, t) ⋅ df) = ∮
S

E′(r, t) ⋅ ds,
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where:
(i) F is any smooth area with the conductor circuit S as boundary;
(ii) E′(r, t) is the induced electric �ield strength relative to a coordinate system Σ′

moving along with the conductor S;
(iii) k is a constant that depends on the unit system, i.e.:

(7.4)

Equation (7.1) refers to the MKSA system and has to be replaced in the cgs system by

(7.5)

with 
→
β = v/c. All following formulae refer to the MKSA system.

(iv) The sign in (7.3) re�lects the Lenz’	rule.
From (i) it follows that also for time-dependent �ields

(7.6)

as in magnetostatics. If F1 and F2 are arbitrary surfaces with boundary S, it follows
from (i):

(7.7)

Taking into account the orientation of the surfaces, Gauss’ theorem then gives for the
volume de�ined by the different surfaces F1 and F2:

(7.8)

The universal validity of ∇ ⋅ B(r, t) = 0 was already expected due to the interpretation in
Sect. 6. 1.

Discussion	of	the	Law	of	Induction
Case	1: Time-varying �ield B(r, t) with a stationary conductor circuit S.

Then E′(r, t) = E(r, t) is the induced �ield strength in the laboratory system Σ and it
follows according to the formula from Stokes:

(7.9)

or, since F is arbitrary (S = ∂F),

k = 1 in the MKSA system ; k = 1
c in the cgs system

F(r, t) = q(E(r, t) + 1
c

(v × B(r, t))) = q(E(r, t) + (
→
β × B(r, t)))

∇ ⋅ B(r, t) = 0

∫
F1

B(r, t) ⋅ df1 = ∫
F2

B(r, t) ⋅ df2.

0 = ∮
F1

B(r, t) ⋅ df1 − ∮
F2

B(r, t) ⋅ df2 = ∫
V

∇ ⋅ B(r, t) dV , q. e. d.

∮
S

E(r, t) ⋅ ds = ∫
F

(∇ × E(r, t)) ⋅ df = − ∫
F

∂B(r,t)

∂t
⋅ df ,

( )



(7.10)

Equation (7.10) shows the expected connection of the �ields E(r, t) and B(r, t).
Note: Equation (7.10) holds regardless of whether the conductor circuit actually

exists or not; the conductor circuit only serves to detect the induced �ield!
Application: Betatron.
Charged particles are accelerated in the induced electric �ield E(r, t) from a time-

dependent magnetic �ield B(r, t).
Case	2: Moving conductor circuit S in a constant, time-independent B �ield.

Fig.	7.1 Illustration of a moving conductor circuit S with the surfaces F1 and F2 at times t1 and t2, which de�ine an
enclosed volume V

Explanation: F1 and F2 are arbitrary surfaces with boundaries S1 and S2, F3 is the
lateral surface, which connects S1 and S2. The arrows give the orientations of the
surfaces (see Fig. 7.1).

According to the formula of Gauss we get:

(7.11)

considering (7.6).
For the temporal change of the �lux it follows (with df3/dt = v × ds):

(7.12)

= − lim
Δt→0

1

Δt
∫
F3

B(r, t) ⋅ df3 = ∮
S

B(r, t) ⋅ (v × ds),

and (7.3) takes the form:

(7.13)

∇ × E(r, t) = −
∂B(r,t)

∂t
.

− ∫
F1

B(r, t) ⋅ df1 + ∫
F2

B(r, t) ⋅ df2 + ∫
F3

B(r, t) ⋅ df3 = ∫
V

(∇ ⋅ B(r, t)) dV = 0

d
dt

∫
F

B(r, t) ⋅ df =limΔt→0
1

Δt
{∫

F2
B(r, t) ⋅ df2 − ∫

F1
B(r, t) ⋅ df1}

∮
S

E′(r, t) ⋅ ds = − ∮
S

B(r, t) ⋅ (v × ds)

= − ∮
S
ds ⋅ (B(r, t) × v) = ∮

S
ds ⋅ (v × B(r, t)).



Equation (7.13) allows to compute the potential ∮ E′ ⋅ ds (electromotive	force) that
is induced by a constant magnetic �ield in a moving conductor loop.

Application: Alternating current (AC) generator.
By combining case 1 and case 2 we get:

(7.14)

Since the conductor loop S can be chosen arbitrarily we obtain:

(7.15)

This connection between the (induced) electrical �ield strength E′ in the moving
system Σ′ and the (induced) �ield strength E and the magnetic induction B in the
laboratory system Σ can be explained for v ≪ c within the framework of Galilei’s
principle of relativity:

The force on a charge carrier q of the conductor circuit S in the laboratory system Σ
is:

(7.16)

whereas in the moving system Σ′ it is:

(7.17)

since q rests in Σ′, i.e. v′
q = 0. For v = const. the connection between Σ and Σ′ is given by

a Galilei	transformation, which keeps the forces invariant, i.e.

(7.18)

and from which (7.15) follows directly.

7.3	 Extension	of	Ampère’s	law
Ampère’s law of magnetostatics

(7.19)

only holds for stationary currents. From

(7.20)

follows, with the identity (for an arbitrary vector �ield a(r, t))
(7.21)

∮
S

E′ ⋅ ds = − ∫
F

∂B
∂t ⋅ df + ∮

S
ds ⋅ (v × B) = ∮

S
E ⋅ ds + ∮

S
(v × B) ⋅ ds.

E′ = E + (v × B).

F(r, t) = q(E(r, t) + (v × B(r, t))),

F′(r, t) = qE′(r, t),

F(r, t) = F′(r, t),

∇ × B(r, t) = μ0j(r, t)

∇ ⋅ (∇ × B(r, t)) = μ0∇ ⋅ j(r, t)

∇ ⋅ (∇ × a) = 0,



directly ∇ ⋅ j(r, t) = 0, i.e. stationary currents. In general, however, the continuity
equation applies

(7.22)

such that (7.19) has to be modi�ied for non-stationary currents.
This extension is straight forward when keeping the Gauss’ law of electrostatics

(Sect. 3. 4):

(7.23)

which is supported by the charge invariance. Now combining (7.22) and (7.23) we get:

(7.24)

We therefore replace

(7.25)

in order to obtain again a current with vanishing divergence as in magnetostatics. In
accordance with the conservation of charge we extend (7.19) as follows:

(7.26)

Ampère’s law (7.26) �inds its experimental con�irmation in the existence of
electromagnetic waves (see Chap. 10).

7.4	 Overview	of	Maxwell’s	Equations

Homogeneous	equations:

(7.27)

which corresponds to the absence of magnetic monopoles.

(7.28)

∇ ⋅ j(r, t) = −
∂ρ(r,t)

∂t ,

∇ ⋅ E(r, t) =
ρ(r,t)
ϵ0

,

∇ ⋅ j(r, t) +
∂ρ(r,t)

∂t = ∇ ⋅ (j(r, t) + ϵ0
∂E(r,t)

∂t ) = 0.

j(r, t) → j(r, t) + ϵ0
∂E(r,t)

∂t ,

∇ × B(r, t) = μ0j(r, t) + μ0ϵ0
∂E(r,t)

∂t .

∇ ⋅ B(r, t) = 0,

∇ × E(r, t) +
∂B(r,t)

∂t = 0,



which corresponds to the law of induction.

Inhomogeneous	equations:

(7.29)

which corresponds to the Gauss’ law;

(7.30)

which corresponds to the Ampère-Maxwell law.
In (7.29) and (7.30) the conservation of charge (7.22) is already implicitly included.

(7.28) and (7.30) show that a time-dependent magnetic �ield B(r, t) induces an electric
�ield E(r, t) and vice versa. The Eqs. (7.27)–(7.30) together with the Lorentz	force

(7.31)

completely describe the electromagnetic interaction of charged particles in the
context of classical physics.

In summarizing this chapter we have extended the previous cases of static charges or
stationary currents and derived the �ield equations for E(r;t) and B(r;t) for arbitrary
space-time dependent sources ρ(r;t) and j(r;t) on the basis of Faraday’s law of
induction.

∇ ⋅ E(r, t) =
ρ(r,t)

ϵ0
,

∇ × B(r, t) − μ0ϵ0
∂E(r,t)

∂t = μ0j(r, t),

F(r, t) = q(E(r, t) + (v × B(r, t))).
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Instead of solving the coupled differential Eqs. (7. 27)–(7. 30) for E(r;t) and 
B(r;t) directly, it is more convenient—in analogy to the procedure in
electrostatics and magnetostatics—to employ electromagnetic	potentials
which, however, are not unique. It will be shown that speci�ic gauge
transformation are allowed that do not change the physical �ields E and B.

8.1	 Scalar	Potential	and	Vector	Potential
Since in general we have

(8.1)

we can get a vector potential A = A(r, t) via the relation

(8.2)

Then (7. 28) can be written as

(8.3)

and the vector function (E(r;t) + ∂A(r;t)/∂t) can be written as a gradient
of a scalar function Φ = Φ(r, t):

(8.4)

∇ ⋅ B(r;t) = 0,

B(r;t) = ∇ × A(r;t).

∇ × (E(r;t) +
∂A(r;t)

∂t ) = 0,

E(r;t) +
∂A(r;t)

∂t = −∇Φ(r;t),
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or

(8.5)

Thus E(r;t) and B(r;t) can be expressed by the vector potential A(r;t)
and the scalar potential Φ(r;t), and now we have to set up differential
equations that allow to calculate A(r;t) and Φ(r;t), if the sources ρ(r, t)
and j(r, t) are given.

To this aim we use the inhomogeneous Eqs. (7. 29) and (7. 30). From (7. 
29) it follows with E(r;t) from (8.5):

(8.6)

and from (7. 30) with (8.2):

(8.7)

With the identity

(8.8)

Equation (8.7) turns to:

(8.9)

Thus the 8 Maxwell equations for E(r;t) and B(r;t) are converted to 4
equations for the potentials A(r;t) and Φ(r;t), which, however, are linked
to each other.

In order to decouple these equations we make use of the fact that the
Maxwell equations are invariant with respect to gauge	transformations:

(8.10)

(8.11)

E(r;t) = −
∂A(r;t)

∂t
− ∇Φ(r;t).

ΔΦ(r;t) + ∇ ⋅
∂A(r;t)

∂t = −
ρ(r;t)
ϵ0

∇ × (∇ × A(r;t)) + μ0ϵ0(∇
∂Φ(r;t)

∂t +
∂2A(r;t)

∂t2 ) = μ0j(r;t).

∇ × (∇ × a) = −Δa + ∇(∇ ⋅ a)

ΔA(r;t) − μ0ϵ0
∂2A(r;t)

∂t2 − ∇(∇ ⋅ A(r;t) + μ0ϵ0
∂Φ(r;t)

∂t ) = −μ0j(r;t).

A(r;t) → A(r;t) + ∇χ(r, t),

Φ(r;t) → Φ(r;t) −
∂χ(r,t)

∂t
,



where χ(r, t) is an arbitrary function that is twice continuously
differentiable.

8.2	 Lorentz	Convention
Equation (8.9) suggests to choose χ(r, t) such that

(8.12)

which corresponds to the Lorentz	convention. We then obtain
decoupled equations from (8.9) and (8.6):

(8.13)

(8.14)

which have the same mathematical structure. They simplify to the time-
independent �ields in Eqs. (3. 26) and (6. 27) of electrostatics or
magnetostatics. The Lorentz convention (8.12) is used also in the
relativistic formulation of electrodynamics employing μ0ϵ0 = c−2.

Construction	of χ(r, t): If

(8.15)

we preform a gauge transformation and require:

(8.16)

Equation (8.16) is an inhomogeneous, partial differential equation of 2nd
order of the form

(8.17)

∇ ⋅ A(r;t) + μ0ϵ0
∂Φ(r;t)

∂t = 0,

ΔA(r;t) − μ0ϵ0
∂2A(r;t)

∂t2 = −μ0j(r;t).

ΔΦ(r;t) − μ0ϵ0
∂2Φ(r;t)

∂t2 = −
ρ(r;t)
ϵ0

,

∇ ⋅ A(r;t) + μ0ϵ0
∂Φ(r;t)

∂t ≠ 0

∇ ⋅ A(r;t) + Δχ(r;t) + μ0ϵ0
∂Φ(r;t)

∂t − μ0ϵ0
∂2χ(r;t)

∂t2 = 0.

Δχ(r, t) − μ0ϵ0
∂2χ(r,t)

∂t2 = f(r, t).



For a given inhomogeneity

(8.18)

the solution is not unique, since for every solution of (8.17) another
arbitrary solution of the homogeneous equation

(8.19)

can be added. This situation is referred to as gauge	freedom.

8.3	 Coulomb	Gauge
In atomic and nuclear physics the gauge χ(r, t) usually is chosen such

that

(8.20)

Then (8.6) transforms to

(8.21)

with the known (particular) solution:

(8.22)

Equation (8.9) then reads

(8.23)

Application: In source-free areas where
(8.24)

f(r, t) = −∇ ⋅ A(r;t) − μ0ϵ0
∂Φ(r;t)

∂t

Δχ(r;t) − μ0ϵ0
∂2χ(r;t)

∂t2 = 0

∇ ⋅ A(r;t) = 0.

ΔΦ(r;t) = −
ρ(r;t)
ϵ0

,

Φ(r, t) = 1
4πϵ0

∫
V

ρ(r′,t)

|r−r′|
dV ′.

ΔA(r;t) − μ0ϵ0
∂2A(r;t)

∂t2 = −μ0j(r, t) + ϵ0μ0 ∇
∂Φ(r,t)

∂t

= −μ0j(r, t) −
ϵ0μ0

4πϵ0
∫
V

∂ρ(r′,t)/∂t (r−r′)

|r−r′|3
dV ′

= −μ0j(r, t) +
μ0

4π ∫
V

(∇⋅j(r′,t))(r−r′)

|r−r′|3
dV ′.



Equations (8.22) and (8.23) reduce to:

(8.25)

The solutions of (8.25) are electromagnetic	waves, e.g. in form of
transverse plane waves (see Chap. 10).

Construction	of χ(r, t): If the solution A(r, t) of (8.9) does not ful�ill
the gauge condition (8.20), we perform the transformation (8.10), (8.11)
and require

(8.26)

or

(8.27)

This is a special case of (8.17) with −∇ ⋅ A(r, t) as inhomogeneity.
Note: To any solution of (8.27) one can still add any solution of the

homogeneous equation,

(8.28)

(gauge	freedom).

8.4	 Law	of	Induction,	Self-induction
The magnetic �lux—as the decisive quantity of the law of induction—can be
determined with the vector potential as follows (arguments of the
integrands suppressed):

(8.29)

by applying Stokes’ law. The right side of (8.29) shows explicitly that the
�lux only depends on the path (conductor loop) S, but not on the special
shape of the surface F with boundary S = ∂F .

For the case of self-induction one has to calculate the vector potential 
A(r, t) for a given current density j(r, t) from (8.13) or (8.23) and then to

ρ(r;t) = 0; j(r;t) = 0,

Φ = 0; ΔA(r;t) − μ0ϵ0
∂2A(r;t)

∂t2 = 0.

∇ ⋅ A(r;t) + Δχ(r;t) = 0,

Δχ(r, t) = −∇ ⋅ A(r, t).

Δχ(r, t) = 0,

∫
F

B ⋅ df = ∫
F

(∇ × A) ⋅ df = ∮
S

A ⋅ ds,



calculate the integral (8.29). For a given current the result only depends on
the conductor geometry. Since

(8.30)

it is independent of the choice of the gauge, i.e. with respect to the
transformation A → A(r;t) + ∇χ(r;t).

In summary, we have rewritten the coupled Maxwell equations for the
�ields E and B in terms of inhomogeneous wave equations for the scalar
potential Φ and the vector potential A, which can be decoupled by a
speci�ic choice of the gauge χ due to the gauge	freedom, which leaves the
physical �ields E and B invariant.

∮
S
(∇χ) ⋅ ds = ∫

F
(∇ × ∇χ) ⋅ df = 0,
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In this chapter we will calculate the energy, momentum and angular momentum of the
electromagnetic �ield, which will provide the basis for the description of electromagnetic
phenomena in the atomic domain by particles (denoted by photons).

9.1	 Energy
In Sect. 3. 5 we have attributed an energy to the electrostatic �ield characterized by the
energy density

(9.1)

In analogy we can assign an energy to the magnetostatic �ield. We want to skip this step
and go straight on to the energy balance for an arbitrary electromagnetic �ield.

We �irst consider a point charge q, which is moving with the velocity v in an
electromagnetic �ield {E, B}. The work done by the �ield on the charge is given by:

(9.2)

since the magnetic �ield does not contribute to the work. Correspondingly, the
following holds for a current density j(r, t) (arguments of the integrands suppressed):

(9.3)

The work done by the �ield on the moving point charges is at the expense of the
electromagnetic �ield; its explicit form for the energy we will derive below.

We �irst eliminate the current density j in (9.3) with the help from Eq. (7. 30):

(9.4)

ωel(r;t) = ϵ0

2 E2(r;t).

dW
dt

= F ⋅ v = q(E + (v × B)) ⋅ v = qE ⋅ v,

dWM

dt
= ∫

V
(E ⋅ j) dV .

∫
V

(E ⋅ j) dV = ∫
V
( 1

μ0
E ⋅ (∇ × B) − ϵ0E ⋅ ∂E

∂t ) dV .
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This expression, which only includes the �ields E and B, can be symmetrized with
respect to E and B with the relations

(9.5)

and

(9.6)

Result:

(9.7)

Interpretation:
Case	1: V → ∞.
From (9.3) and (9.7) the �ield	energy becomes:

(9.8)

if the �ields decay asymptotically fast enough such that the ∇⋅—term in (9.7) disappears.
With the help of the Gauss’ formula,

(9.9)

with F denoting the surface of the (�inite) volume V, one �inds that the �ields E and B
must decay faster than 1/R because df increases with R2 (see Sect. 3. 5). The requirement
above is met for static �ields, but not for radiation �ields (see Chap. 12). In (9.8) we now
can introduce the energy	density	of	the	electromagnetic	�ield,

(9.10)

which results from an electric component (cf. (9.1))

(9.11)

and an magnetic component

(9.12)

∇ ⋅ (a × b) = b ⋅ (∇ × a) − a ⋅ (∇ × b)

∇ × E = − ∂B
∂t

.

dWM

dt
= ∫

V
(E ⋅ j) dV = − ∫

V
( 1

2μ0

∂B2

∂t
+ ϵ0

2
∂E2

∂t
+ 1

μ0
∇ ⋅ (E × B)) dV .

WF = ∫
V

( 1
2μ0

B2 + ϵ0

2 E2) dV ,

∫
V

∇ ⋅ (E × B) dV = ∮
F

(E × B) ⋅ df ,

ωF = 1
2μ0

B2 + ϵ0

2 E2

ωel = ϵ0

2 E2

ωmag = 1
2μ0

B2.



Case	2: V �inite.
We keep the interpretation of (9.10) and write, since the volume V can be chosen

arbitrarily, (9.7) as a (differential) energy balance:

(9.13)

with

(9.14)

Interpretation of (9.13): The �ield energy in a volume V can change because energy
—in the form of electromagnetic radiation (Chap. 12)—�lows in (out), as described by
the term ∇ ⋅ S, and/or that work is being done on point charges described by E ⋅ j. In
analogy to the charge conservation (Sect. 5. 1) we denote by S the energy	current
density (Poynting vector). The energy balance shows that the energy of the closed
system (point charges plus electromagnetic �ield) is a conserved quantity.

9.2	 Momentum
In addition to energy we can also assign a momentum to the electromagnetic �ield. We
start again with the momentum balance for a point charge q with velocity v. According
to Newton the change in the momentum of the point charge is:

(9.15)

Corresponding, for N point charges, characterized by a current density j and charge
density ρ, we obtain:

(9.16)

In analogy to Sect. 9.1 we try to eliminate ρ and j such that the right side in (9.16)
only contains the �ields E and B.

We use

(9.17)

and

(9.18)

E ⋅ j + ∂ωF

∂t
+ ∇ ⋅ S = 0.

S = 1
μ0

(E × B).

F = dpM

dt
= q(E + (v × B)).

dPM

dt
= ∫

V
(ρE + (j × B)) dV .

ρ = ϵ0∇ ⋅ E

j = 1
μ0

∇ × B − ϵ0
∂E
∂t .



The result,

(9.19)

we can symmetrize with respect to E and B by adding in (9.19) the (disappearing) term,

(9.20)

and using the product rule in

(9.21)

Inserting the law of induction

(9.22)

we obtain the result:

(9.23)

For the interpretation of (9.23) we sum up the [....] terms as follows:

(9.24)

=
3

∑
m=1

∂

∂xm

(EiEm) −
1

2

∂

∂xi

(∑
m

E 2
m) =

3

∑
m=1

∂

∂xm

(EiEm −
1

2
E 2δim).

We proceed for the B terms accordingly. The result is (i = 1, 2, 3):

(9.25)

with the tensor

(9.26)

dPM

dt
= ∫

V
(ϵ0E(∇ ⋅ E) + 1

μ0
(∇ × B) × B − ϵ0( ∂E

∂t
× B))dV ,

1
μ0

B(∇ ⋅ B),

−ϵ0( ∂E
∂t

× B) = −ϵ0
∂
∂t

(E × B) + ϵ0(E × ∂B
∂t
).

∇ × E = − ∂B
∂t

dPM

dt
= ∫

V
{[ϵ0E(∇ ⋅ E) + 1

μ0
B(∇ ⋅ B) + 1

μ0
(∇ × B) × B

+ϵ0(∇ × E) × E] − ϵ0
∂
∂t (E × B)} dV .

(E(∇ ⋅ E) + E × (∇ × E))i = Ei∑
3
m=1

∂Em

∂xm
− ∑3

m=1
∂Em

∂xi
Em + ∑3

m=1
∂Ei

∂xm
Em

d
dt

(PM + PF )i = ∫
V
∑3

m=1
∂

∂xm
Tim dV

Tim = ϵ0(EiEm − 1
2
E 2δim) + 1

μ0
(BiBm − 1

2
B2δim) and

PF = ϵ0 ∫V (E × B) dV .



Case	1: V → ∞.
As in Sect. 9.1 the right side in (9.25) disappears, if the �ields E and B drop faster

than 1/R. Then the momentum balance is:

(9.27)

Equation (9.27) suggests to interpret PF  as the momentum of the electromagnetic
�ield. For the complete system (point charges plus �ield) then the total momentum,
which is composed additively of particle and �ield momentum, is a conserved quantity.

Case	2: V �inite.
We use the Gauss’ theorem to rewrite the right side in (9.25):

(9.28)

where nm are the components of the normal vector of the surface F of V. Since the left
side of (9.28) is a force, we can attribute Timnm to the pressure of the �ield (radiation
pressure). The electromagnetic �ield can transfer not only energy but also momentum to
an absorber!

Remark: The fact that the momentum	density

(9.29)

and the energy current density S only differ by a constant factor,

(9.30)

is not a coincidence but arises inevitably within the framework of the relativistic
formulation (Chap. 19).

9.3	 Angular	Momentum
The change in the angular momentum of a point charge q in the electromagnetic �ield is
given by:

(9.31)

Correspondingly, for N point charges, which are represented by ρ and j in a volume V, we
get:

(9.32)

PM + PF = const.

d
dt

(PM + PF )i = ∮
F
∑3

m=1 Timnm df

→
πF = ϵ0(E × B)

→
πF = ϵ0μ0S = 1

c2 S,

dlM
dt

= r × dpM

dt
= qr × (E + (v × B)).

dL



If we eliminate ρ and j again and symmetrize the result with respect to E and B, we
obtain (in analogy to Sect. 9.2):

(9.33)

If the �ields drop asymptotically fast enough, i.e. stronger than 1/R for V → ∞, we
obtain

(9.34)

with

(9.35)

as angular	momentum of the �ield.

The sum of the mechanical angular momentum LM  and that of the �ield LF  is a
conserved quantity:

(9.36)

9.4	 Summary
In the absence of other forces the conservation laws for energy, momentum and angular
momentum hold for a closed system (point charges plus �ield). Since the energy,
momentum and angular momentum of the point charges change in time, we have to
assign energy, momentum and angular momentum to the electromagnetic �ield itself in
order to guarantee the conservation laws for the entire system. The basic quantities

energy	density

(9.37)

momentum	density

(9.38)

dLM

dt
= ∫

V
r × (ρE + (j × B)) dV .

dLM

dt
= ∫

V
r ×{ϵ0E(∇ ⋅ E) + 1

μ0
B(∇ ⋅ B) + 1

μ0
(∇ × B) × B

+ϵ0(∇ × E) × E − ϵ0
∂
∂t (E × B)} dV .

d
dt

(LM + LF ) = 0,

LF = ϵ0 ∫V r × (E × B) dV = ∫
V

(r ×
→
πF ) dV

LM + LF = const.

ωF (r;t) = ϵ0

2
E2(r;t) + 1

2μ0
B2(r;t),

→
πF (r;t) = ϵ0(E(r;t) × B(r;t)) = 1

c2 S(r;t)



and

angular	momentum	density

(9.39)

can be found from the respective balances using Maxwell’s equations.
The fact, that one can assign mechanical quantities such as energy, momentum and

angular momentum to the Maxwell �ield, provides the basis for the description of
electromagnetic phenomena in the atomic domain by particles, which are denoted by
photons (after quantization).

→
λF (r;t) = ϵ0r × (E(r;t) × B(r;t)) = r ×

→
πF (r;t)



Part	IV
Electromagnetic	Radiation
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In this chapter we will discuss the general solutions to the wave equations for the
electromagnetic �ields in vacuum, i.e. in a source-free region, which are the basis for the
transmission of information.

10.1	 Homogeneous	Wave	Equations
In the vacuum (ρ = 0; j =

→
0) the Maxwell equations are

(10.1)

To obtain a decoupling of E and B we form

(10.2)

The result is a homogeneous	wave	equation

(10.3)

We proceed in the same way for the E �ield. We then get

(10.4)

and

(10.5)

For the associated potentials one �inds according to Chap. 9:

(10.6)

∇ ⋅ E = 0; ∇ ⋅ B = 0; ∇ × E = − ∂B
∂t ; ∇ × B = ϵ0μ0

∂E
∂t .

∇ × (∇ × B) = ∇(∇ ⋅ B) − ΔB = −ϵ0μ0
∂ 2B

∂t2 .

(Δ − 1
c2

∂ 2

∂t2 )B = 0; 1
c2 = ϵ0μ0.

(Δ − 1
c2

∂ 2

∂t2 )B = 0; ∇ ⋅ B = 0

(Δ − 1
c2

∂ 2

∂t2 )E = 0; ∇ ⋅ E = 0.

(Δ − 1
c2

∂ 2

∂t2 )A = 0; ∇ ⋅ A = 0
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(10.7)

in Coulomb gauge (∇ ⋅ A = 0).
We thus have differential equations of the type

(10.8)

where f is representative for any component of E, B or A. The solutions for E, B and A,
however, are still subject to the additional condition that the divergence disappears
(transversality	condition).

10.2	 Plane	Waves
An important type of solutions of (10.8) are plane	waves,

(10.9)

for any (at least twice differentiable) function f and vectors q with q2 = 1.
Proof With the abbreviation

(10.10)

we form:

(10.11)

Thus

(10.12)

is a solution of (10.3); similar solutions hold for E and A.
Properties	of	the	solutions:
(i) Plane waves.
Functions of the type (10.9) describe plane waves whose wavefronts are planes: The

points r, in which f(r, t) has the same value at a �ixed time t lie on a plane (Hesse’s normal
form)

(10.13)

which is perpendicular to q. Depending on the choice of the sign in (10.9) we get waves that
run in the ±q direction.

(ii) Transversality of electromagnetic waves.
From ∇ ⋅ B = 0 it follows with (10.12)

Φ = 0

(Δ − 1
c2

∂ 2

∂t2 )f(r, t) = 0,

f = f(q ⋅ r ∓ ct)

ξ = q ⋅ r ∓ ct

∇f = q
df
dξ
; Δf = q2 d2f

dξ2 ; ∓ 1
c

∂f
∂t = df

dξ
; 1

c2

∂ 2f

∂t2 = d2f

dξ2 , q. e. d.

B = B0f(r, t)

q ⋅ r = const,



(10.14)

thus

(10.15)

correspondingly for E and A because of ∇ ⋅ E = 0 and the Coulomb gauge requires 
∇ ⋅ A = 0.

(iii) Orthogonality of E and B.
From

(10.16)

we get for the plane wave solutions

(10.17)

the relationship

(10.18)

therefore E ⊥ B with (10.15). E, B and q form an orthogonal tripod.
Choosing as solutions of the Maxwell equations f(ξ) = g(ξ) =sin (ξ) (or cos (ξ)) we get

(at �ixed time t) the following result for direction and amplitude of the E and B �ields in
space: E and B oscillate in space and time orthogonal to the direction of propagation ∼ q)
and also orthogonal to each other.

Comments:
(1.) In addition to plane waves there are also spherical waves that are solutions of (10.8);

they have the form (r = |r|):

(10.19)

where f is any (at least twice differentiable) function. The proof is analogous to (10.11) in
spherical coordinates.

(2.) The existence of electromagnetic waves (e.g. light waves, radio waves, microwaves, γ
radiation etc.) proves the validity of the relation ∇ × B = ϵ0μ0∂E/∂t in vacuum, which is
crucial in the derivation of the wave equations. This provides an experimental con�irmation
for the Maxwell-Ampère	law (7. 26).

10.3	 Monochromatic	Plane	Waves
A special form of the plane wave is (e.g. for the electrical �ield strength)

(10.20)

(B0 ⋅ q) df
dξ

= 0,

B ⋅ q = 0;

∇ × E = − ∂B
∂t

E = E0 f(q ⋅ r − ct); B = B0 g(q ⋅ r − ct)

(q × E0)
df

dξ
= cB0

dg

dξ
,

f(r−ct)
r

,

E = E0 exp (i(k ⋅ r ∓ ωt)).



In (10.20)

(10.21)

and ω and k are connected by the dispersion	relation

(10.22)

as can be seen immediately when inserting (10.20) into the wave Eq. (10.5). A plane wave of
the type (10.20) is called monochromatic. Corresponding solutions can be found for A and 
B, i.e.

B = B0 exp (i(k ⋅ r ∓ ωt)); A = A0 exp (i(k ⋅ r ∓ ωt)).

Remark: E, A and B are real vector �ields by de�inition. The complex notation in
Eq. (10.20) is to be understood in such a way that the physical vector �ield is described by
the real part of (10.20). The complex notation is often more convenient than the real one
(e.g. when differentiating); this does not create problems as long as only linear operations
are carried out.

When calculating physical quantities such as the energy current density (see below)
products of vector �ields appear. Time averages of such products can be expressed in
complex notation as follows: For two vector �ields (of the same frequency)

(10.23)

the temporal average of the product is given by (with τ = 2π/ω):

(10.24)

since in

(10.25)

=
1

4
(a0 ⋅ b0 exp (−2iωt) + a∗

0 ⋅ b∗
0 exp (2iωt) + a0 ⋅ b∗

0 + a∗
0 ⋅ b0)

mixed terms with the time factors exp (±2iωt) disappear after time averaging, i.e.

(10.26)

and only

(10.27)

remains.
Terminology: The quantity k of the wave	vector k is called wave	number and is linked

to the wavelength λ by

k = kq,

ω2 = k2c2,

a(r, t) = a0(r) exp (−iωt); b(r, t) = b0(r) exp (−iωt)

1
τ

∫ τ

0 dt Ra(t) ⋅ Rb(t) =: (Ra) ⋅ (Rb) = 1
2 R(a ⋅ b∗),

(Ra) ⋅ (Rb) = 1
4

(a0 exp (−iωt) + a∗
0 exp (iωt)) ⋅ (b0 exp (−iωt) + b∗

0 exp (iωt))

1
τ

∫ τ

0
dt exp (±2iωt) = 1

±2iωτ
exp (±2iωt)|τ0 = 1

±4πi
(exp (±4iπ) − 1) = 0

(Ra) ⋅ (Rb) = 1
4 (a ⋅ b∗ + a∗ ⋅ b) = 1

2 (Ra ⋅ Rb + Ia ⋅ Ib) = 1
2 R(a ⋅ b∗)



(10.28)

With (10.22) we get

(10.29)

for the connection of the angular	frequency ω with the oscillation	period τ . Instead of 
ω the frequency ν = ω/(2π) can also be used. Based on (10.20) one can see that τ
describes the temporal periodicity of the wave at �ixed position r,

(10.30)

in analogy λ gives the spatial periodicity:

(10.31)

for a wave in z direction at �ixed time t.
The quantity

(10.32)

is called the phase of the wave. The phase	velocity  vph is the velocity at which a wave
point moves for a given �ixed phase. To determine vph we consider again a plane wave in z
direction and form the total differential of ϕ(z, t):

(10.33)

For a constant phase ϕ we get:

(10.34)

the phase velocity is equal to the velocity of light c.
Remark: Strictly speaking, a plane wave is extended in�initely perpendicular to the

direction of propagation; any practically feasible wave, however, is limited in space.
Nevertheless, the plane wave is a reasonable approximation if the extension of the real wave
(perpendicular to the direction of propagation) is large compared to any obstacles (e.g. a
thin gap in a plate or a grid), by which the wave can be disturbed.

For monochromatic plane waves the relations

(10.35)

λ = 2π
k

.

τ = 2π
ω

exp (iω(t + τ)) =exp (iωt + 2πi) =exp (iωt);

exp (ik(z + λ)) =exp (ikz + 2πi) =exp (ikz)

ϕ(r, t) = k ⋅ r − ωt

dϕ(z, t) =
∂ϕ
∂z dz +

∂ϕ
∂t dt = kdz − ωdt.

vph = dz
dt

= ω
k

= c ;

B = ∇ × A; E = − ∂A
∂t ,



in complex representation turn to

(10.36)

Energy and momentum of the wave can be calculated easily using (10.36) and (10.24).
For the time average of the energy density

(10.37)

(in real representation),

(10.38)

we get (with A ⋅ k = 0):

(10.39)

In analogy we obtain for the energy current density (9. 14)

(10.40)

and directly by (9. 30) for the momentum density

(10.41)

By comparing (10.39) with (10.41) we �ind that the energy is transported with the
velocity c. In contrast to ωF , S and πF , the time average of the angular momentum density
(9. 39) depends on the position and is not suited for the characterization of a plane wave.
However, the angular momentum of the �ield has signi�icance for spherical waves, where it
plays an analogous role as the momentum for plane waves.

10.4	 Polarization
Due to the transversality and the orthogonality of E and B we can describe a
monochromatic plane wave in the form (10.20):

(10.42)

with
(10.43)

B = i(k × A); E = iωA.

ωF = 1
τ

∫ τ

0 ωF dt

ωF = ϵ0

2
E 2 + 1

2μ0
B2

ωF = ϵ0

4 Re(ω2A ⋅ A∗ + c2k2A ⋅ A∗) = ϵ0

2 ω2|A0|2 = ϵ0

2 |E0|2.

S = ω
2μ0

|A0|2 k = ϵ0c
2 |E0|2

q

πF = ϵ0

2c |E0|2
q = 1

c2 S.

E = e1E0 exp (i(k ⋅ r − ωt)); B = e2B0 exp (i(k ⋅ r − ωt))



Such a wave is called linearly	polarized. An equivalent, linearly independent plane wave
with equal wave vector k is obtained by moving E in the e2 direction and B in the e1

direction. The general polarization state of a monochromatic plane wave then results from
the superposition principle, e.g. for the electric �ield:

(10.44)

with El (l = 1,2) as arbitrary complex numbers El = |El| exp (iϕl). Equation (10.44)
describes all possible polarization states:

(1.) Linear	polarization occurs if

(10.45)

The direction and magnitude of E then are given by (see Fig. 10.1)

(10.46)

Fig.	10.1 Example for a linearly polarized wave

(2.) Circular	polarization
Exists if:

(10.47)

then (with exp (±iπ/2) = ±i)

(10.48)

or in real representation

(10.49)

if k points in the z direction. The direction of rotation is �ixed in (10.48) by the choice of the
sign; we get left	or	right	handed	circular	polarization, i.e. E− and B− �ield rotate around
the z axis in space and time (see Fig. 10.2).

ei ⋅ ej = δij; ei ⋅ k = 0.

E = (e1E1 + e2E2) exp (i(k ⋅ r − ωt))

ϕ1 = ϕ2.

θ = arctan( E2

E1
); E = √E2

1 + E2
2

E1 = E2; ϕ1 − ϕ2 = ± π
2
;

E = E0(e1 ± ie2) exp (i(k ⋅ r − ωt)),

Ex = E0 cos (kz − ωt); Ey = ∓E0 sin (kz − ωt),



Fig.	10.2 Example for a circularly polarized wave

(3.) Elliptic	polarization occurs for

(10.50)

E then describes an elliptical orbit for �ixed z, its position relative to e1 by ϕ1 − ϕ2 and their
principal axis ratio is determined by E1/E2.

In summary, the monochromatic plane waves (10.20) provide a convenient basis for the
construction of wave packets in the vacuum by suitable superposition.

E1 ≠ E2; ϕ1 − ϕ2 ≠ 0.
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An important application for electromagnetic radiation is the transmission of
information. Monochromatic plane waves are not suited for this task because they
contain practically no information other than their period (ω). One can, however,
modulate monochromatic plane waves and by this transfer information. Such a
superposition of plane waves is most conveniently described in terms of Fourier
series or Fourier	integrals (in the continuum). In this chapter we will introduce such
Fourier series, analyze their properties and �ind the general solution to the
homogeneous wave equation.

11.1	 Transmission	of	Information	by	Electromagnetic
Waves
In the most simple case one forms a superposition of 2 monochromatic waves,

(11.1)

describing the wave at �ixed position. Equation (11.1) can be represented as an
amplitude-modulated	oscillation:

(11.2)

= f0(cos (ω0 + ωm)+ cos (ω0 − ωm))

with

(11.3)

If we choose ω1 ≈ ω2 then (11.2) is an almost harmonic oscillation of frequency ω0

(carrier	frequency), whose amplitude changes with the modulation	frequency ωm.
We get the image of a levitation (see Fig. 11.1).

f(t) = f0 cos (ω1t) + f0 cos (ω2t)

f(t) = 2f0 cos (ωmt) cos (ω0t) = 2f0(cos ((ω1 − ω2)/2) cos ((ω1 + ω2)/2))

ωm = ω1−ω2

2 ; ω0 = ω1+ω2

2 ; ω1 = ω0 + ωm; ω2 = ω0 − ωm.

https://doi.org/10.1007/978-3-031-95515-0_11


Fig.	11.1 Superposition of two frequencies with ω1 ≈ ω2

More complicated oscillations and therefore more possibilities for the transmission
of information arise for a superposition of several different vibration frequencies.

11.2	 Fourier	Series	and	Fourier	Integrals
Starting from a fundamental	frequency ω = 2π/T  we form

(11.4)

The Fourier	series (11.4) converges uniformly (and thus also pointwise), if f(t) is
periodic with period T and smooth piecewise. The (weaker) requirement of
convergence is satis�ied for periodic functions f(t) that are �inite and continuous in the
interval [0, T].

The Fourier	coef�icients fn for a given function f(t), which satis�ies the
requirements above, can be calculated as follows:

(11.5)

Proof With

(11.6)

we get:

(11.7)

As an example of Fourier series we consider the periodic ‘triangle function’
(11.8)

f(t) = ∑∞
n=−∞ fn exp (−iωnt); ωn = nω.

fn = 1
T
∫ T/2

−T/2 f(t) exp (iωnt) dt.

1
T
∫ T/2

−T/2 exp (iω(m − n)t) dt = δmn

1
T
∫ T/2

−T/2 f(t) exp (iωmt) dt = ∑n fnδmn = fm.



in the interval [−π,π] with ϵ = 1 for x < 0 and ϵ = −1 for x ≥ 0. The corresponding
Fourier series (11.4) (in real representation) is:

(11.9)

The approximation of the function f(x) by (11.9) is shown in Fig. 11.2 for the case 
N = 1 as well as for N = 3, i.e. only the �irst four vibration modes are taken into
account. However, we can see from Fig. 11.2 that already N = 3 gives a useful
approximation.

Fig.	11.2 Illustration of the Fourier series (11.9) for N = 1 and N = 3

Non-periodic functions can be represented (for very weak assumptions, see below)
by Fourier	integrals, which result from (11.4) in the limit T → ∞.

With the distance Δω = 2π/T  of neighboring frequencies ωn we de�ine

(11.10)

and obtain

(11.11)

as the Riemann	sum of the Fourier	integral 

(11.12)

For the inverse of (11.12) we obtain:

(11.13)

f(x) = 1 + 2ϵ
π
x

f(x) =limN→∞
8
π2 ∑

N
n=0

1
(2n+1)2 cos ((2n + 1)x).

~
f(ωi) =limT→∞ ( T

2π fi),

f(t) = ∑∞
n=−∞

~
f(ωn) exp (−iωnt) Δω

f(t) = ∫ ∞
−∞

~
f(ω) exp (−iωt) dω.

~
f(ω) = 1

2π ∫
∞

−∞ f(t) exp (iωt) dt.



The function ~
f(ω) is called the Fourier	transform to f(t). It exists and (11.12)

converges	in	the	root	mean	square for all square integrable functions f(t) with

(11.14)

~
f(ω) then is also square integrable.

Example: square wave pulse

(11.15)

Fig.	11.3 The square wave pulse f(t) (left) and its Fourier transform ~
f(ω) (right)

Then we get

(11.16)

The width Δω of ~
f(ω) can be estimated from Fig. 11.3 (from the distance of the �irst

zeros) by:

(11.17)

A narrower (wider) signal f(t) leads to wider (narrower) frequency spectrum ~
f(ω).

This uncertainty	relation does not only hold for the example (11.15) but is a
characteristic property of the Fourier transformation (see quantum mechanics).

Note: The Fourier transform is often used in the symmetric form

(11.18)

with
(11.19)

∫ ∞
−∞ |f(t)|2

dt < ∞;

f(t) = 1 for − τ
2 ≤ t ≤ τ

2 ; f(t) = 0 else.

~
f(ω) = 1

2π ∫
τ/2

−τ/2 exp (iωt) dt = 1
πω

exp(iωt)
2i |τ/2

−τ/2 = sin(ωτ/2)
πω

.

Δω ≈ 2π
τ

or ΔωΔt ≈ 2π or ΔνΔt ≈ 1 .

f(t) = 1
√2π

∫ ∞
−∞

~
f(ω) exp (−iωt) dω

~
f(ω) = 1

√2π
∫ ∞

−∞ f(t) exp (iωt) dt.



11.3	 Spectral	Decomposition	of	Plane	Waves
The Fourier series of a periodic function f(q ⋅ r − ct) = f(ξ), which represents a
plane wave, is:

(11.20)

with

(11.21)

and the Fourier coef�icients fn are given by:

(11.22)

The Fourier integral is used for aperiodic plane waves:

(11.23)

with the inverse

(11.24)

The spatial or temporal extent of the wave then is determined by:

(11.25)

i.e.

(11.26)

for a �ixed position r and a �ixed time t:

(11.27)

if the wave travels in z direction.
Note: It is important for the transmission of information that the plane wave

packets of the form (11.23) keep their shape and do not disintegrate (see quantum
mechanics):

(11.28)

since f only depends on the argument ξ (11.21). This property no longer holds for the
propagation of electromagnetic waves in matter (see Part V)!

f(ξ) = ∑∞
n=−∞ fn exp (iωnξ/c)

ξ = q ⋅ r − ct, ωn = nω

fn = ω
2πc ∫

πc/ω
−πc/ω f(ξ) exp (−iωnξ/c) dξ.

f(ξ) = ∫
∞

−∞

~
f(ω) exp (iωξ/c) dω

~
f(ω) = 1

2π ∫
∞

−∞ f(ξ) exp (−iωξ/c) dξ/c.

ΔξΔω ≈ 2πc,

ΔtΔω ≈ 2π

ΔzΔk ≈ 2π,

f(r, 0) = f(r + qct, t),



11.4	 δ-Distribution
The Fourier transform (11.12), (11.13) leads to the following mathematical problem:
Inserting (11.13) in (11.12), we must get (after exchanging the order of integration)

(11.29)

with

(11.30)

for any square integrable functions f(t). The quantity δ(t − t′) obviously is not an
ordinary function, but a distribution, which strictly speaking can only	be	de�ined	in
connection	with	the	integration in (11.29).

The δ-distribution, de�ined in (11.29), can be represented by any sequence of
continuous functions δn, for which holds:

(11.31)

Examples:
(1) Rectangle

(11.32)

(2) Gauss’ function

(11.33)

(3) The representation

(11.34)

leads to the notation (11.30).
Warning: Equations (11.31)–(11.34) have to be understood in such a way that the 

t′-integration is carried out before the limit n → ∞ is taken!

Calculation	rules:

(1) δ(t) = δ(−t)

(2) δ(at) = 1
|a|
δ(t)

f(t) = 1
2π ∫

∞
−∞ ∫

∞
−∞ f(t′) exp (−iω(t − t′)) dωdt′ = ∫

∞
−∞ f(t′)δ(t − t′) dt′

δ(t − t′) = 1
2π ∫

∞
−∞ exp (−iω(t − t′)) dω

limn→∞ ∫
∞

−∞ f(t′) δn(t − t′) dt′ = f(t).

δn(t) = n for |t| < 1
2n ; δn(t) = 0 else.

δn(t) = n exp (−πt2n2).

δn(t) = 1
π

sin(nt)
t

= 1
2π ∫

n

−n
exp (iωt) dω = 1

2itπ (exp (int)− exp (−int))



(3) δ(t2 − a2) = 1
2|a|

(δ(t + a) + δ(t − a)); a ≠ 0 .

(4) δ(f(t)) = ∑k
1

|f ′(tk)| δ(t − tk),

where the tk are all (simple) zeros of f(t), i.e. f(tk) = 0.

11.5	 General	Solution	of	the	Homogeneous	Wave
Equation
The plane waves examined in Sect. 11.3 are indeed limited in time and space in their
direction of propagation, but not in the plane perpendicular to the propagation. They
are not suited for the transmission of information, since their in�inite surface extent
would require an in�initely large energy. Signals of �inite energy can only be obtained
for �ields that are limited in space and time (wave	packets), which can be built by
superposition of monochromatic plane waves. Starting from the two basic solutions 
exp (i(k ⋅ r ∓ ωt) with a �ixed k we expand the vector potential (in the extension of
the Fourier transform to 3 dimensions) as

(11.35)

Due to (10. 22) the expansion (11.35) covers all possible ω values. To obtain a real
function A(r, t), we replace in the 2nd term of (11.35) k by −k:

(11.36)

A(r, t) becomes real if (2Rz = z + z∗)

(11.37)

thus

(11.38)

A(r, t) = 1

2(2π)3/2 ∫ d
3k [A+(k) exp (i(k ⋅ r − ωt))

+A−(k) exp (i(k ⋅ r + ωt))].

A(r, t) = 1

2(2π)3/2 ∫ d
3k [A+(k) exp (i(k ⋅ r − ωt))

+A−(−k) exp (−i(k ⋅ r − ωt))].

A+(k) = A∗
−(−k) = A(k),

A(r, t) = 1

2(2π)3/2 ∫ d
3k [A(k) exp (i(k ⋅ r − ωt))

+A∗(k) exp (−i(k ⋅ r − ωt))].



With (11.38) we have found the general	solution of the homogeneous wave
Eq. (10. 6). The Coulomb gauge requires additionally

(11.39)

It is important for the formulation of quantum mechanics, where the
electromagnetic �ield is described by photons, that the energy, momentum and angular
momentum of the �ield emerge additively from the contributions of the
monochromatic plane waves.

We demonstrate this for the case of the energy and rewrite (11.38) again as,

(11.40)

with the abbreviations

(11.41)

Then according to (9. 10) the energy of the electromagnetic �ield is given by

(11.42)

where [....] still depends on k and k′. After performing the integration ∫ d3r we get –
due to

(11.43)

and δ3(k) = δ(kx)δ(ky)δ(kz) – only contributions for k = −k′ and thus ω = ω′:

(11.44)

+
1

2μ0
(ik × A(k, t) + ik × A∗(−k, t))(−ik × A(−k, t)) − ik×A∗(k, t))]

=
ϵ0

8
∫ d3k [(iω)2(A(k, t) − A∗(−k, t))(A(−k, t)) − A∗(k, t))

k ⋅ A(k) = 0.

A(r, t) = 1

2(2π)3/2 ∫ d
3k [A(k, t) + A∗(−k, t)] exp (ik ⋅ r)

A(k, t) = A(k) exp (−iωt); A∗(−k, t) = A∗(−k) exp (iωt).

W = ∫ ωF (r) d3r = ∫ [ ϵ0

2
( ∂A

∂t
)

2
+ 1

2μ0
(∇ × A)2] d3r

= 1
4(2π)3 ∫ d3r ∫ d3k ∫ d3k′[ ϵ0

2 (−iωA(k, t)

+iωA∗(−k, t))(−iω′A(k′, t)) + iω′A∗(−k′, t))

+ 1
2μ0

(ik × A(k, t) + ik × A∗(−k, t))(ik′ × A(k′, t))

+ik′ × A∗(−k′, t))] exp (i(k + k′) ⋅ r),

1
(2π)3 ∫ d

3r exp (i(k + k′) ⋅ r) = δ3(k + k′)

W = 1
4 ∫ d

3k [ ϵ0

2 (−iωA(k, t) + iωA∗(−k, t))(−iωA(−k, t)) + iωA∗(k, t))



−(ikc)2(A(k, t) + A∗(−k, t))(A(−k, t)) + A∗(k, t))]

Here we have used

(11.45)

and

(11.46)

as well as k ⋅ A(k) = 0 (11.39) and ϵ0μ0 = c−2.
In summary, Eq. (11.44) describes the �ield energy as a sum (integral) of the

individual contributions (10. 39) of the monochromatic waves involved. Together with
the corresponding equations for momentum and angular momentum this provides the
basis for the description of the electromagnetic �ield by independent particles
(photons) (see quantum electrodynamics). The energy W itself is independent of time
consistent with the conservation of energy.

= ϵ0

4 ∫ d3k ω2[A(k) ⋅ A∗(k) + A∗(−k) ⋅ A(−k)]

= ϵ0

2 ∫ d3kω2[A(k) ⋅ A∗(k)].

∂
∂t A(k, t) = −iωA(k, t)

∇ × A(k, t) exp (ik ⋅ r) = i(k × A(k, t)) exp (ik ⋅ r)
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Whereas in the previous chapter we have derived the general solution of the homogeneous wave
equation we now aim at solving the inhomogeneous wave equations for arbitrary sources ρ(r;t)
and j(r;t). To this aim we will use the method of Green’s functions that will lead to retarded
potentials. The latter will be employed to calculate the electromagnetic radiation from moving point
charges.

In the presence of charges we have to solve the inhomogeneous equations (cf. (8. 13), (8. 14))

(12.1)

(12.2)

with the secondary condition (Lorentz convention)

(12.3)

The problem is thus the solution	of	an	inhomogeneous	wave	equation

(12.4)

where Ψ stands for Φ and the components Ai, while ω stands for ρ/ϵ0 and the components μ0ji.
The general solution of (12.4) arises from a general solution of the homogeneous wave Eq. (10. 8)
(discussed in Chap. 11) and a special solution of the inhomogeneous wave equation.

To construct a special solution of (12.4) we use the method	of	Green’s	functions: With the
de�inition of the Green’s function:

(12.5)

(and the four-vector x = (t, x)) we can write as a (formal) special solution:

(12.6)

(Δ − 1
c2

∂ 2

∂t2 )A = −μ0j,

(Δ − 1
c2

∂ 2

∂t2 )Φ = −
ρ

ϵ0

∇ ⋅ A + 1
c2

∂Φ
∂t = 0.

(Δ − 1
c2

∂ 2

∂t2 )Ψ(r, t) = −ω(r, t),

(Δ − 1
c2

∂ 2

∂t2 )G(r, r′;t, t′) = −δ3(r − r′) δ(t − t′) =: −δ4(x − x′)

Ψ(r, t) = ∫ G(r, r′;t, t′) ω(r′, t′) d3r′dt′,
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as is directly con�irmed by substituting (12.6) in (12.4). This is done by exchanging the order of
the integration with respect to r′, t′ and the differentiation with respect to r, t, which has to be
done with caution.

12.1	 Construction	of	G(r, r′;t, t′)
Let’s �irst note 2 fundamental properties of G:

(12.7)

due to the invariance of (12.5) with respect to space and time translations;

(12.8)

due to the principle	of	causality.
As a preliminary exercise we consider the (known) case of static �ields, e.g. the electrostatic

�ield. The Poisson equation

(12.9)

has the (special) solution

(12.10)

i.e. the Coulomb potential of a charge distribution ρ(r). We can write Eq. (12.10) as

(12.11)

with the Green’s function

(12.12)

which satis�ies the differential equation

(12.13)

Proof
(i) R ≠ 0, where

(12.14)

G = G(r − r′;t − t′)

G(r − r′;t − t′) = 0 for t < t′

ΔΦ(r) = −
ρ(r)
ϵ0

Φ(r) = 1
4πϵ0

∫ ρ(r′)

|r−r′|
d3r′,

Φ(r) = 1
ϵ0

∫ G(r, r′) ρ(r′) d3r′

G(r, r′) = 1
4π|r−r′|

,

ΔG(r, r′) = −δ3(r − r′).

R = r − r′.



Then:

(12.15)

(ii) Due to (12.15) in a volume integral of type

(12.16)

the integration range can be restricted to a small sphere of radius a with center at R = 0,

(12.17)

If f(R) is continuous around 0, one can extract f(R) ≈ f(R = 0) from the integral

(12.18)

and obtaines by the Gauss’s theorem:

(12.19)

Thus:

(12.20)

Since (12.5) is the wave equation for a time and spatially point-like source, G(r − r′;t − t′) must
represent a spherical wave, which reaches the position r at time t = t′ + |r − r′|/c, if the
perturbation is at the position r′ at time t′. We start with the Ansatz:

(12.21)

with τ = t − t′ and R = |r−r′|. To determine the function g we insert (12.21) in (12.5) and form:

(12.22)

here we have used:

(12.23)

and

(12.24)

Δ( 1
R
) = ∇ ⋅ (∇ 1

R
) = −∇ ⋅ ( R

R3 ) = − 1
R3 ∇ ⋅ R + 3

R4 (R ⋅ R
R
) = − 3

R3 + 3
R3 = 0, q. e. d.

∫ f(R)Δ( 1
R
) d3R

∫ f(R)Δ( 1
R

) d3R =lima→0 ∫sphere(a) f(R)Δ( 1
R
) d3R.

∫ f(R)Δ( 1
R
) d3R =lima→0 f(R = 0) ∫sphere(a) Δ( 1

R
) d3R ,

∫sphere(a) Δ( 1
R
) d3R = ∫sphere(a) ∇ ⋅ (∇( 1

R
)) d3R

= ∫
F(a)(∇( 1

R
)) ⋅ df = − ∫

F(a)
1
R2 R

2dΩ = −4π.

∫ f(R) Δ( 1
R
) d3R = −4πf(0).

G(R, τ) =
g(τ−R/c)

R
=

g(t−t′−|r−r′|/c)

|r−r′|

ΔG = gΔ( 1
R
) + 1

R
Δg + 2∇( 1

R
) ⋅ ∇g

= −4πg δ(R) + 1
R

∂ 2

∂R2 g + 2
R2

∂
∂R

g − 2
R2

∂
∂R

g;

Δ = ∂ 2

∂R2 + 2
R

∂
∂R

+ 1
R2sinθ

∂
∂θ
(sin θ ∂

∂θ
) + 1

R2sin2θ

∂ 2

∂ϕ2

= ∂ 2

∂R2 + 2
R

∂
∂R

+ angular term

∂g
∂x =

∂g
∂R ⋅ x

R
,

∂g
∂y =

∂g
∂R ⋅

y

R
,

∂g
∂z =

∂g
∂R ⋅ z

R
.



This gives

(12.25)

since

(12.26)

for arbitrary (differentiable) functions g(τ − R/c). The comparison with (12.5) gives:

(12.27)

thus:

(12.28)

Remark:
When deriving (12.27) the differentiability of g(τ − R/c) is assumed. This requirement is

actually ful�illed because the δ-distribution can be differentiated (any number of times) in the
sense:

(12.29)

assuming that f is differentiable (any number of times).
Interpretation	of	G:
The inhomogeneity in (12.5) represents a point-like source, which at time t′ at position r′ is

switched on for an (in�initesimal) short time. The perturbation caused by this source propagates as
a spherical wave with velocity c. It follows that:

(i) The spherical wave G(r − r′;t − t′) must disappear for t < t′ according to the principle of
causality.

(ii) It must arrive at position r at time t = t′ + |r − r′|/c since electromagnetic waves move
with the (�inite) velocity of light c in the vacuum.

(iii) Since the energy of the wave is distributed on a spherical surface, G should disappear
asymptotically like R−1.

The retarded Green’s function (12.28) satis�ies these requirements exactly. Equation (12.6)
shows, how to get the potentials A(r, t), Φ(r, t) for given source distributions ρ(r, t), j(r, t) from
the contributions of point-like sources.

12.2	 Retarded	Potentials

(Δ − 1
c2

∂ 2

∂t2 )G = −4πg(τ − R/c) δ3(R),

1
R
( ∂ 2

∂R2 − 1
c2

∂ 2

∂τ 2 )g(τ − R/c) = 0

4πg(τ − R/c) = δ(τ − R/c)

G(r − r′;t − t′) =
δ(t−t′−|r−r′|/c)

4π|r−r′|
for t > t′

G(r − r′;t − t′) = 0 for t < t′.

∫ f(x) δ(n)(x) dx = (−)n ∫ f (n) δ(x) dx;



With (12.6) and (12.28) the (asymptotically vanishing) solutions of (12.1) and (12.2) for localized
charge and current distributions are

(12.30)

and

(12.31)

The solutions (12.30) and (12.31) are linked together by (12.3) or the conservation of charge (7. 
2). We will examine the integrations in (12.30) and (12.31) for 2 practically important special cases
with particular attention to the argument of the δ-distribution, that incorporates the retardation.

When ignoring the retardation in (12.30) and (12.31),

(12.32)

we obtain the quasi-stationary	�ields:

(12.33)

(12.34)

which appear in the theory of electrical networks and machines. The approach (12.32) is
justi�ied if ρ(r′, t) and j(r′, t) are (practically) not changing during the time, that an
electromagnetic wave needs to travel the distance |r−r′|.

Example	1 Time-periodic source distributions of the form

(12.35)

Then we get from (12.30), (12.31):

(12.36)

with k = ω/c and

(12.37)

Φ(r, t) = 1
4πϵ0

∫ ρ(r′,t′) δ(t−t′−|r−r′|/c)

|r−r′| d3r′dt′

A(r, t) =
μ0

4π ∫ j(r′,t′) δ(t−t′−|r−r′|/c)

|r−r′| d3r′dt′.

δ(t − t′ −
|r−r′|

c
) → δ(t − t′),

Φ(r, t) = 1
4πϵ0

∫ ρ(r′,t)

|r−r′| d3r′,

A(r, t) =
μ0

4π ∫ j(r′,t)

|r−r′| d3r′,

ρ(r, t) = ρ(r) exp (−iωt); j(r, t) = j(r) exp (−iωt).

Φ(r, t) = Φ(r) exp (−iωt); A(r, t) = A(r) exp (−iωt)

∫ dt′ exp (−iωt′) δ(t−t′ − |r−r′|/c) =exp (−iωt) exp (iω|r − r′|/c)

Φ(r) = 1
4πϵ0

∫ ρ(r′)exp(ik|r−r′|)

|r−r′| d3r′,



(12.38)

The associated differential equations result from Eqs. (12.1), (12.2) and (12.35):

(12.39)

where Ψ stands for Φ and Ai and γ for ρ and ji. We can write the solutions (12.37) and (12.38)
with the Green’s function belonging to (12.39),

(12.40)

as

(12.41)

The discussion of the integrals (12.37), (12.38) for Φ(r) and A(r) will be taken up in Chap. 13.
Example	2: Fields of moving point charges:
For a point charge q moving on the path r(t) we can write:

(12.42)

Then in (12.30) the d3r′—integration can be carried out:

(12.43)

and for A(r, t) we get in analogy

(12.44)

To perform the t′—integration we use

(12.45)

where xi are (simple) zeros of f(x), i.e. f(xi) = 0 and f ′(xi) ≠ 0. Then we obtain:

A(r) =
μ0

4π ∫ j(r′)exp(ik|r−r′|)

|r−r′| d3r′.

(Δ + k2)Ψ(r) = −γ(r),

G(r, r′;k) =
exp(ik|r−r′|)

4π|r−r′|
,

Ψ(r) = ∫ γ(r′) G(r, r′;k) d3r′.

ρ(r, t) = q δ3(r − r(t)); j(r, t) = q v(t) δ3(r − r(t)).

Φ(r, t) =
q

4πϵ0
∫ δ3(r′−r(t′))δ(t−t′−|r−r′|/c)

|r−r′|
d3r′dt′

=
q

4πϵ0
∫ δ(t−t′−|r−r(t′)|/c)

|r−r(t′)| dt′,

A(r, t) =
μ0q

4π ∫ v(t′) δ(t−t′−|r−r(t′)|/c)

|r−r(t′)|
dt′.

∫ ∞
−∞ g(x) δ(f(x)) dx = ∑i

g(xi)

|f ′(xi)|
,



(12.46)

with

(12.47)

In (12.47) the t′
i are solutions of the equation f(t′) = t′ − t + R(t′)/c =0. In analogy we get:

(12.48)

The potentials (12.46) and (12.48) (Liénard–Wichert	potentials) are written in shorthand form
as:

(12.49)

The limit v → 0 gives

(12.50)

i.e. the Coulomb potential known from electrostatics (as well as a vanishing vector potential).

12.3	 Electromagnetic	Radiation	from	Moving	Point	Charges
If the energy �low through an in�initely distant surface does not disappear,

(12.51)

we encounter radiation of electromagnetic waves caused by localized charge and current
distributions. This implies that the �ields E, B then do not decrease stronger than R−1, since the
surface increases like R2. Such �ields are called radiation	�ields in contrast to the static �ields that
decrease with R−2.

We now want to show that accelerated point charges radiate; to do this we have to calculate the
�ields associated to

(12.52)

where we want to use the form (12.43), (12.44) for Φ and A. With the abbreviations

(12.53)

we obtain:

(12.54)

Φ(r, t) = q

4πϵ0
∑i

1
R(t′

i
)κ(t′

i
)

R(t′
i) = r − r(t′

i); κ(t′
i) = 1 −

R(t′
i)⋅v(t′

i)

cR(t′
i
)

= ( df

dt′ )
t′=t′

i

.∣ ∣A(r, t) =
qμ0

4π ∑i

v(t′
i)

R(t′
i
)κ(t′

i
) .

Φ(r, t) = q
4πϵ0

( 1
Rκ

)
ret
; A(r, t) =

qμ0

4π ( v
Rκ

)
ret

.

A → 0; Φ(r, t) → q

4πϵ0R
,

limR→∞ ∫ S ⋅ df ≠ 0,

B = ∇ × A; E = −∇Φ − ∂A
∂t ,

∇f(R) = n
∂f
∂R ; n = R

R

−∇Φ(r, t) = q
4πϵ0

∫ dt′( n(t′)

R(t′)
2 δ(t′ − t +

R(t′)
c

) −
n(t′)

cR(t′)
δ′(t′ − t +

R(t′)
c

))



and

(12.55)

such that

(12.56)

Here δ′(t′ − t + R(t′)/c) is the derivative (12.29) de�ined with respect to the argument 
ξ = t′ − t + R(t′)/c. In analogy:

(12.57)

To carry out the t′ integration we use:

(12.58)

with κ(t′) (12.47). With (12.29), (12.45) and (12.49) we obtain:

(12.59)

To differentiate with respect to t′ we compute

(12.60)

and

(12.61)

with the acceleration a = d/dt′v. We insert (12.60), (12.61) into (12.59) and reorder in powers of 
R−1 to get:

(12.62)

∂
∂t

A(r, t) = − μ0q

4π
∫ dt′( v(t′)

R(t′)
δ′(t′ − t +

R(t′)

c
)),

E(r, t) =
q

4πϵ0
∫ dt′( n(t′)

R(t′)2 δ(t′ − t +
R(t′)
c

)

+
v(t′)/c−n(t′)

cR(t′)
δ′(t′ − t +

R(t′)
c

)).

B(r, t) =

−
μ0q

4π ∫ dt′ (n(t′) × v(t′))( 1

R(t′)2 δ(t′ − t +
R(t′)
c

) − 1
cR(t′)

δ′(t′ − t +
R(t′)
c

)).

δ′(ξ) = 1
κ(t′)

d
dt′ δ(t′ − t +

R(t′)
c

)

E(r, t) = q

4πϵ0
( n(t)

κ(t)R(t)2 + 1
κ(t)c

d
dt′ ( −v(t′)/c+n(t′)

κ(t′)R(t′)
))

ret
.

B(r, t) = μ0q

4π
( v×n(t)

κ(t)R(t)2 + 1
κ(t)c

d
dt′ ( v(t′)×n(t′)

κ(t′)R(t′)
))

ret
.

− dn
dt′ = R

R2 (n ⋅ v) − v
R

= 1
R

[(n ⋅ v)n − v]

d
dt′ (κR) = v2

c
− n ⋅ v − R

c
(n ⋅ a)

E(r, t) = q
4πϵ0

( 1
c2κ3R

[(n ⋅ a)(n − v
c
) − κa])

ret
+ O(R−2);



The latter terms, which decrease like R−2, are not interesting with respect to the condition
(12.51). Correspondingly for B we get:

(12.63)

To calculate the energy	�lux	density we use the identity

(12.64)

as well as the relation

(12.65)

which follows directly from (12.62), (12.63) for the asymptotic region. We then �ind for the
Poynting	vector 

(12.66)

with (12.62) and (12.64):

(12.67)

Since |S| ∼ R−2 the condition (12.51) is ful�illed and we get the result that accelerated point
charges, a ≠ 0, radiate. Point charges moving on straight lines and uniformly (a = 0) do not radiate
as a simple consequence: The rest system of the point charge then is an inertial system, in which
the electric �ield is the Coulomb �ield and the magnetic �ield, by de�inition, disappears such that 
S = 0.

Examples:
(1.)	Bremsstrahlung occurs when a charged particle (e.g. electron) is decelerated in an

external �ield (e.g. when colliding with some target). This results in the continuous Röntgen
spectrum.

(2.)	Synchrotron	radiation
The motion of charged particles on a circular paths is also an accelerated motion. The resulting
radiation is a major problem in cyclic particle accelerators (synchrotrons); some of the energy
supplied is lost by radiation. On the other hand, for highly relativistic electron beams the
synchrotron radiation is focused (with suitable de�lection magnets) at small forward angles such
that a suitable high-energy photon beam is created!

(3.)	Radiation	damping:
In the classical atomic model the bound electrons move in circular or elliptical orbits around the

atomic nucleus. Then they radiate continuously—as accelerated charges—electromagnetic waves.
The resulting energy loss leads to unstable orbits and ultimately to the collapse of the atoms in the
classical model. This contradiction to experimental observation can only be solved in quantum
theory or quantum electrodynamics (QED).

In summarizing this chapter we have derived the solution of the inhomogeneous wave equation
for arbitrary sources ρ(r;t) and j(r;t) employing the method of Green’s functions. This lead to

B(r, t) =
μ0q

4π ( 1
c2κ3R

[(n ⋅ a)(v × n) − κc (n × a)])
ret

+ O(R−2).

n × ((n − v
c
) × a) = (n ⋅ a)(n − v

c
) − κa

B = 1
c

(n × E),

S = E×B
μ0

=
E×(n×E)

μ0c
= 1

μ0c
(nE 2 − E(n ⋅ E)) = n

μ0c
E 2

S = q2n

16π2ϵ0c3κ6R2 (n × [(n − v
c
) × a])2

.



retarded (Liénard–Wichert) potentials, which have been used to calculate the electromagnetic
radiation from accelerated point charges and for time-periodic source distributions.
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In this chapter we will classify the leading order multipoles for magnetic and
electric radiation emerging from accelerated electric and magnetic dipole
moments as well as electric quadrupole moments.

13.1	 Long	Wave-Length	Approximation
For a source distribution of the form

(13.1)

we have found in Sect. 12. 3:

(13.2)

and (k = ω/c)

(13.3)

A(r) =
μ0

4π
∫

j(r′) exp (ik|r − r′|)

|r−r′|
d3r′.

When discussing (13.3) we may restrict to A(r), since A(r) and Φ(r) are
directly connected by the Lorentz convention: From

(13.4)

follows with (13.2)

ρ(r, t) = ρ(r) exp (−iωt);j(r, t) = j(r) exp (−iωt)

Φ(r, t) = Φ(r) exp (−iωt);A(r, t) = A(r) exp (−iωt)

Φ(r) = 1
4πϵ0

∫ ρ(r′)exp(ik|r−r′|)

|r−r′|
d3r′,

∇ ⋅ A + 1
c2

∂Φ
∂t

= 0

2
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(13.5)

and is therefore also known when A(r) is determined. For the further evaluation
of (13.3) we employ the long	wave-length	approximation 

(13.6)

where d indicates the radius of a sphere, which determines the charge and
current distribution inside.

Examples:
For the optical radiation of atoms we have d ≈ 10−8 cm, λ ≈ 10−5 cm; in

analogy we �ind for the γ radiation of atomic nuclei: d ≈ 10−13 cm, λ ≈ 10−11

cm.
When discussing (13.3) the lengths d,λ and r are essential. We investigate

the following cases:
Case	1: d < r ≪ λ (near	zone)
Then

(13.7)

and we get directly:

(13.8)

The spatial component of the potentials shows the same structure according
to (13.8) as in electrostatics and magnetostatics. Given the time dependency
(13.2) one deals with quasi-static	�ields, for which E, B decay as R−2, such that
the radiation condition (12. 51) is not ful�illed.

Case	2: d ≪ λ ≪ r (far	zone)
Since

(13.9)

we can employ the Taylor expansion

(13.10)

in (13.3):

Φ(r) = c2

iω
∇ ⋅ A(r),

d ≪ λ = 2π
k

,

k|r−r′|≪ 1

Φ(r) = 1
4πϵ0

∫ ρ(r′)

|r−r′|
d3r′, A(r) =

μ0

4π ∫ j(r′)

|r−r′|
d3r′.

kr ≫ 1

|r−r′|= ∑n
(−)n

n!
(r′ ⋅ ∇)nr ≈ r − r⋅r′

r
⋯



(13.11)

≈
μ0

4π

exp (ikr)

r
∫ d3r′ j(r′){1 − i

ω

c
(e ⋅ r′)}

with k = ω/c and the direction vector

(13.12)

13.2	 Electric	Dipole—Radiation
In the �irst term in (13.11)

(13.13)

we can rewrite

(13.14)

= ∫
F

x
′
i(j ⋅ df ′) − ∫

V

x
′
i(∇′ ⋅ j) d3r′ = −iω∫

V

x
′
iρ(r′) d3r′,

due to charge conservation

(13.15)

With (2. 31) we then get:

(13.16)

where the electric dipole moment d is involved.
For the �ields we get (following (13.9) and considering only terms ∼ r−1):

A(r) = A0(r) + A1(r) + ⋯

=
μ0

4π
exp(ikr)

r
∫ d3r′ j(r′){1 + ( 1

r
− ik)(e ⋅ r′) + ⋯}

e = r
r

.

A0(r) = μ0

4π

exp(ikr)

r
∫ d3r′ j(r′)

∫
V
ji d

3r′ = ∫
V

∇′ ⋅ (x′
ij) d3r′ − ∫

V
x′
i(∇′ ⋅ j) d3r′

∇ ⋅ j − iωρ = 0.

A0(r) = −iω
μ0

4π

exp(ikr)

r
d,



(13.17)

With

(13.18)

we obtain from (8. 5) the E �ield:

(13.19)

using e × d × e = d − e(e ⋅ d). We now can calculate the energy	current
density 

(13.20)

We use the real parts of (13.17) and (13.19) and �ind with (13.2) and 
(e × d × e) × (e × d) = ed2 sin2 θ:

(13.21)

where θ is the angle enclosed by e and d. For the time average we get:

(13.22)

The dipole does not radiate in the direction of d (θ = 0), but dominantly
perpendicular to d (θ = 90∘). The sin2 θ—dependence is characteristic for
dipole radiation.

Comments:
(1.) Typical for radiation �ields is that E, B and S form an orthogonal tripod

(cf. Sect. 10. 3).

B0(r) = ∇ × A0 =
μ0

4πc ω2 exp(ikr)

r
(e × d).

Φ0(r) = c2

iω
∇ ⋅ A(r) = −i

μ0c

4π ω
exp(ikr)

r
(e ⋅ d)

E0(r) = −∇Φ0(r) − ∂A0

∂t =
μ0

4π ω
2 exp(ikr)

r
(d − e(e ⋅ d)) = c (B0 × e),

S = E×B
μ0

= c
μ0

(B0 × e) × B0 = c
μ0

(eB2
0 − B0(B0 ⋅ e).

S0 =
μ0

16π2c
ω4d2 sin2 θ

cos2(kr−ωt)

r2 e,

S0 =
μ0

16π2c
ω4d2 sin2θ

2r2 e.



(2.) An oscillating dipole (with frequency ω) can be realized only by
accelerated point charges. Equation (13.22) is therefore conformal with the
general statement (12. 67).

(3.) The radiation of the lowest multipolarity is dipole radiation (l=1), not
monopole radiation (l=0)! Quantum theory shows how this multipolarity of the
radiation and the angular momentum of the photons are related. Since photons
have an intrinsic angular momentum (spin 1ħ), there is no angular
momentum-free radiation, i.e. monopole radiation. The spin of photons is
directly linked to the fact that radiation �ields are described by vector �ields.

13.3	 Magnetic	Dipole	and	Electric	Quadrupole
Radiation
The 2nd term of the expansion (13.11) is

(13.23)

the remaining integral is determined by the magnetic dipole moment and the
electric quadrupole tensor. To identify this, we use the identity:

(13.24)

which transforms the integrand in (13.23) into an antisymmetric and a
symmetric part with respect to r′. With the de�inition (5. 39) of the magnetic
dipole moment the antisymmetric part becomes:

(13.25)

The magnetic dipole component of the vector potential formally transfers to
the electric dipole component (13.16) when replacing

(13.26)

With (13.26), (13.17) and (13.19) we �ind for the �ield strengths:

(13.27)

A1(r) = −iω
μ0

4πc
exp(ikr)

r
∫ j(r′)(e ⋅ r′) d3r′;

(e ⋅ r′)j = 1
2 (r′ × j) × e + 1

2 ((e ⋅ r′)j + (e ⋅ j)r′),

A
(m)
1 (r) = −iω

μ0

4πc
exp(ikr)

r
(m × e).

1
c

(m × e) → d.

B
(m)
1 (r) =

μ0

4πc2 ω
2 exp(ikr)

r
(e × (m × e))



and

(13.28)

In analogy to (13.22) one determines the energy radiated over time:

(13.29)

where θ now is the angle between m and e. The comparison of (13.29) and
(13.22) shows that electric and magnetic dipole radiation do not differ in their
frequency and angle dependencies. The only difference is in the polarization:
for an electric dipole the vector of the electric �ield is in the plane spanned by e
and d, for a magnetic dipole, however, perpendicular to the plane spanned by e
and m.

We now consider the 2nd term in (13.24), which is given by

(13.30)

The integral in (13.30) can be reduced to the one introduced in Sect. 2. 5 for
the electric quadrupole tensor. In analogy to (13.14) we rewrite:

(13.31)

= − ∫
V

x′
ijm d3r′ − iω∫

V

x′
mx

′
iρ(r′) d3r′,

where a partial integration (1st term) and the charge conservation (2nd term)
are used. Thus:

(13.32)

and we can write (13.30) as:

(13.33)

E
(m)
1 (r) = c (B

(m)
1 × e).

S
(m)
1 =

μ0

16π2c3 ω
4m2 sin2θ

2r2 e,

A
(e)
1 (r) = −iω

μ0

4πc
exp(ikr)

2r ∫{j(e ⋅ r′) + r′(e ⋅ j)} d3r′.

∫
V
jix

′
m d3r′ = ∫

V
x′
m∇′ ⋅ (x′

ij) d3r′ − ∫
V

x′
mx

′
i(∇′ ⋅ j) d3r′

∫
V

{jix
′
m + x′

ijm} d3r′ = −iω ∫
V

x′
mx

′
iρ d3r′,

A
(e)
1 (r) = −

μ0

4πc ω2 exp(ikr)
2r ∫ (e ⋅ r′)r′ρ(r′) d3r′



For the �ields we obtain with (13.9)

(13.34)

and

(13.35)

since in a charge-free space we have:

(13.36)

Note: With the abbreviations

(13.37)

the magnetic �ield reads:

(13.38)

since all derivatives are of order O(r−1). In a similar way one proceeds in
(13.35) with the calculation of E(e)

1 .
With the help of the quadrupole tensor, given by its components

(13.39)

we obtain for B(e)
1 :

(13.40)

with the vector Q given by its components (m = 1, 2, 3)

(13.41)

Note that the 2nd term in (13.39) does not contribute to (13.40).

B
(e)
1 (r) = ∇ × A

(e)
1 (r) = ik (e × A

(e)
1 (r))

E
(e)
1 (r) = i c

2

ω
∇ × B

(e)
1 (r) = c (B

(e)
1 (r) × e),

∇ × B = 1
c2

∂E
∂t

.

f(r) = − μ0

4πc
ω2 exp(ikr)

r
, v(r) = ∫ d3r′(e ⋅ r′)r′ρ(r′)

B
(e)
1 = (∇f) × v + f ∇ × v = ikf(r)(e × v) + O(r−2)

= ik(e × A
(e)
1 ) + O(r−2),

Qmn = ∫
V

ρ(r′)(x′
mx

′
n − 1

3
r′2δmn) d3r′,

B
(e)
1 (r) = −i

μ0

4πc2 ω3 exp(ikr)
2r (e × Q),

Qm = ∑3
n=1 Qmnen.



As above we now can calculate the energy	current	density

(13.42)

With

(13.43)

we get

(13.44)

By time averaging this leads to

(13.45)

The difference to dipole radiation is obvious for the dependence on
frequency ω. For the discussion of the angular dependence we consider the case
of axial	symmetry (cf. Sect. 2. 5)

(13.46)

From

(13.47)

then follows

(13.48)

as well as

(13.49)

thus
(13.50)

S
(e)
1 = 1

μ0
(RE

(e)
1 × RB

(e)
1 ) = c

μ0
(RB

(e)
1 × e) × RB

(e)
1 .

(a × b) × c = (a ⋅ c)b − (b ⋅ c)a

S
(e)
1 = c

μ0
(RB

(e)
1 )

2
e =

μ0

16π2c3 ω6 cos2(kr−ωt)

4r2 (e × Q)2
e.

S
(e)
1 = μ0

16π2c3 ω
6 1

8r2 (e × Q)2
e.

Qmn = 0 for m ≠ n;Q11 = Q22 = − Q33

2 = − Q0

3 .

(e × Q)2 = Q2 − (e ⋅ Q)2

Q2 =
Q2

0

9
(e2

1 + e2
2) + 4

9
Q2

0e
2
3 =

Q2
0

9
(sin2 θ + 4 cos2 θ)

e ⋅ Q = − Q0

3 sin2 θ + 2
3 Q0 cos2 θ;



Result:

(13.51)

The electric quadrupole radiation differs from the electric and magnetic
dipole radiation both in its frequency dependence as well as in its angular
distribution.

Applications	in	atomic	and	nuclear	physics
Atoms and nuclei can emit or absorb electromagnet radiation. The multipole
expansion is a suitable tool for the description of the electromagnetic �ields. In
atomic physics the dipole radiation dominates: The comparison of (13.22) and
(13.51) shows that the electric dipole radiation is stronger—by about a factor of
order (kd0)−2—than the electric quadrupole radiation. The electric dipole
radiation also dominates the magnetic dipole radiation, which in line with
(13.22) and (13.29) is smaller by the factor (v/c)2. The relations are more
complex in nuclear physics. A thorough discussion of the multipole radiation
here is only possible within the framework of quantum	theory.

In summarizing this chapter we have classi�ied the leading order multipoles
for magnetic and electric radiation emerging from accelerated electric and
magnetic dipole moments as well as electric quadrupole moments with respect
to their frequency and angular dependence.

(e × Q)2 = Q2
0 sin2 θ cos2 θ.

S
(e)
1 = μ0

16π2c3 ω6 Q2
0

8r2 sin2 θ cos2 θ e.
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In this chapter we will generalize the multipole expansion discussed in the previous
chapter and introduce a particular set of orthogonal	functions on the spherical
surface denoted by spherical	harmonics. These functions are of general use also in
other areas of physics.

14.1	 Multipole	Expansion	of	Static	Fields
For a localized charge distribution ρ(r) we have the potential

(14.1)

which at a suf�iciently large distance from the charges (r ≫ r′) can be expanded in a
Taylor series:

(14.2)

=
1

4πϵ0
∫ d3r′ρ(r

′) ( 1

r
+

(r ⋅ r′)

r3
+

3(r ⋅ r′)2 − r2r′2

2r5
+ ⋯)

We now rewrite the expansion (14.2) in spherical	coordinates

(14.3)

x′ = r′ sin θ′ cos ϕ′;y′ = r′ sin θ′ sin ϕ′;z′ = r′ cos θ′.

In these coordinates (14.2) can be represented as follows:

(14.4)

Φ(r) = 1
4πϵ0

∫ ρ(r
′)

|r−r′|
d3r′,

Φ(r) = 1
4πϵ0

∫ ρ(r
′) (∑n

(−)
n

n! (r
′ ⋅ ∇)n 1

r
) d3r′

x = r sin θ cos ϕ;y = r sin θ sin ϕ;z = r cos θ

l
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with the expansion coef�icients

(14.5)

In (14.4) we have used that (for r > r′) the function |r−r′|−1 can be expanded by
spherical harmonics Ylm:

(14.6)

which is equivalent to the cartesian expansion in (14.2), but explicitly only depends
on the spherical coordinates r, θ,ϕ, r′, θ′,ϕ′. Another advantage of the expansion
(14.6) is that the spherical harmonics Ylm for different (l, m)—in a particular sense—
are orthogonal to each other (see below). The scalar �ield Φ(r) then can also be
written as:

(14.7)

=
∞

∑
l=0

l

∑
m=−l

qlm

ϵ0(2l + 1)
Ylm(θ,ϕ)

1

rl+1

with the expansion coef�icients qlm from (14.5) (q.e.d.).
Explanations:
(1.) Since the vectors r and r′ in (14.2) appear in a completely symmetric way (via

the scalar product (r ⋅ r
′)), Φ(r) must depend in the same manner on θ,ϕ as on θ′,ϕ′.

(2.) The index l ≥ 0 classi�ies the asymptotic behavior of each individual term in
the Taylor series.

(3.) The index m numbers the components of the multipole moments for �ixed l. For
every l there are 2(l + 1) values of m: −l, −l + 1, . . . . , l − 1, l. In the 2nd term of the
expansion the 3 components of the dipole moment d relate to m = −1, 0, +1.

The explicit comparison of (14.2) and (14.4) shows that the functions Ylm for low
l, m have the following form:

(14.8)

Φ(r) = ∑∞
l=0 ∑

l
m=−l

qlm
ϵ0(2l+1)

Ylm(θ,ϕ) 1
rl+1

qlm = ∫ d3r′ ρ(r
′)r′l Y ∗

lm(θ′,ϕ′).

1
|r−r′|

= 1
r
∑∞

l=0 ∑
l
m=−l

4π
2l+1 (

r′

r
)
l

Y ∗
lm(θ′,ϕ′) Ylm(θ,ϕ),

Φ(r) = 1
4πϵ0

∫(ρ(r
′) 1

r
∑∞

l=0 ∑
l
m=−l

4π
2l+1 (

r′

r
)
l

Y ∗
lm(θ′,ϕ′) Ylm(θ,ϕ)) d3r′



l = 1 : Y10 = √ 3

4π
cos θ;Y11 = −√ 3

8π
sin θ exp (iϕ)

l = 2 : Y22 = √ 15

32π
sin2 θ exp (2iϕ);Y21 = −√

15

8π
sin θ cos θ exp (iϕ);

Y20 = √ 5

4π
(

3

2
cos2 θ −

1

2
),

if we determine the phase by

(14.9)

The combination occurring in (14.4)

Ylm(θ,ϕ) Y ∗
lm(θ′,ϕ′) + Yl−m(θ,ϕ) Y ∗

l−m(θ′,ϕ′)

thus is real and symmetric with respect to (θ,ϕ) and (θ′,ϕ′).
The lowest expansion coef�icients qlm are with (14.8), (14.9):

l = 0 : q00 = √ 1

4π
Q

with

(14.10)

as the total charge.

l = 1 : q11 = −√
3

8π
∫ d3r′ ρ(r

′)(x′ − iy′) = −√
3

8π
(dx − idy);

q10 = √ 3

4π
∫ d3r′ ρ(r

′)z′ = √ 3

4π
dz,

l = 0 : Y00 = 1
√4π

Yl−m(θ,ϕ) = (−)mY ∗
lm(θ,ϕ).

Q = ∫ ρ(r′) d3r′



where dx, dy, dz are the components of the dipole moment d.

l = 2 : q22 = √ 15

32π
∫ d3r′ ρ(r

′)(x′ − iy′)2 = √ 15

32π
(Q11 − Q22 − 2iQ12);

q21 = −√ 15

8π
∫ d3r′ ρ(r

′)z′(x′ − iy′) = −√ 15

8π
(Q13 − iQ23);

q20 =
3

2
√ 5

4π
∫ d3r′ ρ(r

′)(z′2 −
r′2

3
) =

3

2
√ 5

4π
Q33.

Furthermore, due to (14.9) we obtain:

(14.11)

14.2	 General	Properties	of	Spherical	Harmonics
To determine the spherical harmonics Ylm we use the fact that outside the area of the
charges the Laplace equation for Φ(r) (14.4) holds,

(14.12)

Since the functions r−l−1 for different l values and the functions exp (imϕ) for
different m values are linearly independent, we must have according to (14.12):

(14.13)

The Δ operator in spherical coordinates has the explicit form:

(14.14)

If we carry out the r-differentiations in (14.13) we are left with

(14.15)

which is the determining differential equation for the Ylm. Within the separation
Ansatz

qlm = (−)mq∗
l−m.

ΔΦ = 0.

Δ(r−l−1Ylm(θ,ϕ)) = 0.

Δ = ∂ 2

∂r2 + 2
r

∂
∂r + 1

r2sin2θ
(sin θ ∂

∂θ (sin θ ∂
∂θ ) + ∂ 2

∂ϕ2 ).

( 1
sinθ

∂
∂θ (sin θ ∂

∂θ ) + 1
sin2θ

∂ 2

∂ϕ2 + l(l + 1))Ylm = 0,



(14.16)

(14.15) reduces to

(14.17)

Remarks:
(1.) Apart from r−l−1Ylm(θ,ϕ) the function rlYlm(θ,ϕ) is also a solution of

(14.12), i.e.

(14.18)

However, from these two linearly independent solutions in our context only r−l−1Ylm

is useful due to the boundary condition

(14.19)

(2.) The index m in (14.16) must be an integer since Φ is a unique periodic function:

(14.20)

In order to solve Eq. (14.17) we further introduce:

(14.21)

such that (14.17) turns to:

(14.22)

For l = m one immediately �inds the solution (except for a normalization factor):

(14.23)

The solutions to m ≠ l are then obtained by recursion (except for a normalization
factor):

(14.24)

Ylm(θ,ϕ) =exp (imϕ) Flm(θ)

( 1
sinθ

∂
∂θ

(sin θ ∂
∂θ

) − m2

sin2θ
+ l(l + 1))Flm(θ) = 0.

Δ(rlYlm(θ,ϕ)) = 0.

Φ(r, θ,ϕ) → 0 for r → ∞.

Φ(r, θ,ϕ) = Φ(r, θ,ϕ + 2π).

ξ =cos θ;i. e. 1
sinθ

d
dθ

= − d
dξ

,

( d
dξ

((1 − ξ2) d
dξ

) − m2

1−ξ2 + l(l + 1))Flm(ξ) = 0.

Fll = (1 − ξ2)
l/2

= (1− cos2 θ)
l/2

= (sin θ)l.

Flm−1 = (− d
dθ

− m cotg θ)Flm.



The proof (by substituting (14.24) in (14.17)) is just as elementary as lengthy (see
quantum mechanics). It is worth to note about the result (14.24) that the Flm are
polynomials in cos θ, sin θ of order l, since the differentiation with respect to θ and the
multiplication by cotg θ does not change the order of Fll. For all m values with |m| > l

the function Flm vanishes as a result of the recursion process, which justi�ies the �inite
summation over m from −l to l in (14.6).

Note:
Equation (14.22) has—in addition to the solution discussed here—as a differential

equation of 2nd order still a 2nd basic solution. This has singularities for θ = 0,π and
is not suitable for our problem.

An important property of spherical harmonics is their orthogonality. To de�ine
this let’s consider a sequence of functions f1(x), f2(x), ⋯ , fn(x), ⋯ , which are
continuous in the interval [a, b]. We then de�ine the dot	product of two functions 
fn, fm by:

(14.25)

The norm of fn is introduced by:

(14.26)

Two functions are called orthogonal if

(14.27)

Note: The terminology above is in analogy to vectors in vector spaces of �inite
dimension.

For the spherical harmonics Ylm(θ,ϕ) now the following relation holds:

(14.28)

where the integral for l = l′ and m = m′ speci�ies the normalization of Ylm. Due to

(14.29)

and = 0 for m ≠ m′ the orthogonality with respect to m is immediately clear. The
(normalized) functions (with respect to the ϕ-dependence) then are

(fm, fn) = ∫ b

a
f ∗
m(x)fn(x) dx.

(fn, fn) = ∫ b

a
|fn(x)|2

dx ≥ 0.

(fm, fn) = 0.

∫ 2π
0 dϕ ∫ π

0 sin θdθ Y ∗
lmYl′m′ = ∫ 2π

0 dϕ ∫ 1
−1 d cos θ Y ∗

lmYl′m′ = δll′δmm′ ,

∫ 2π
0 dϕ exp (i(m − m′)ϕ) = 2π for m = m′



(14.30)

We discard here the explicit calculation of the normalization factors for the functions 
Flm(θ) and refer the reader to the speci�ic literature ( or quantum mechanics).

We show the orthogonality with respect to l as follows: We take advantage of the
fact that the solution of the real differential equation (14.22) can always be chosen to
be real and consider the difference from

(14.31)

and

(14.32)

We get

(14.33)

where the 1st term in (14.31) (or (14.32)) was transformed by 2-fold partial
integration and that there are no contributions from the integrated terms due to the
factor (1 − ξ2). For l ≠ l′ we get from (14.33)

(14.34)

14.3	 Multipole	Expansion	of	the	Radiation	Field
The multipole solutions from Chap. 13 (in the source-free space) satisfy the
differential equation

(14.35)

Apart from plane waves also spherical waves are solutions, which we will discuss and
construct below.

With the Ansatz

(14.36)

Equation (14.35) turns to

(14.37)

1
√2π

exp (imϕ).

∫ +1
−1 dξ Fl′m( d

dξ
(1 − ξ2) d

dξ
− m2

1−ξ2 + l(l + 1))Flm = 0

∫ +1
−1 dξ Flm( d

dξ
(1 − ξ2) d

dξ
− m2

1−ξ2 + l′(l′ + 1))Fl′m = 0.

[l(l + 1) − l′(l′ + 1)] ∫ +1
−1 dξ Fl′mFlm = 0;

∫ +1
−1 dξ Fl′mFlm = 0, q. e. d.

ΔA + k2
A = 0.

A(r) = alm fl(r) Ylm(θ,ϕ)

( d2

dr2 + 2
r

d
dr

+ k2 − l(l+1)
r2 )fl(r) = 0,



using (14.14) and (14.15). Equation (14.37) becomes simpli�ied when using—instead
of fl—the function

(14.38)

which leads to:

(14.39)

Case	1: l=0
Then the solutions g0(r) are immediately apparent: sin (kr) and cos (kr) or 

exp (±ikr).
Case	2: l ≠ 0
In the variable

(14.40)

Equation (14.39) reads

(14.41)

To solve (14.41) we de�ine the operators

(14.42)

then (14.41) can be written as

(14.43)

using

(14.44)

In a similar way we get:

(14.45)

By applying the operation d+
l+1 on (14.45) we obtain,

(14.46)

and comparing with (14.43), we get (except for a constant factor)

gl = rfl

( d2

dr2 + k2 − l(l+1)
r2 )gl(r) = 0.

ρ = kr

( d2

dρ2 + 1 − l(l+1)
ρ2 )gl(ρ) = 0.

d+
l

= d
dρ

− l
ρ
;d−

l
= d

dρ
+ l

ρ
;

(d+
l
d−
l

+ 1)gl = 0,

d
dρ
( l

ρ
gl) = − l

ρ2 gl + l
ρ

dgl
dρ

.

(d−
l+1d

+
l+1 + 1)gl = 0.

(d+
l+1d

−
l+1d

+
l+1 + d+

l+1)gl = (d+
l+1d

−
l+1 + 1)(d+

l+1gl) = 0



(14.47)

Equation (14.47) allows to calculate gl(ρ) by recursion from g0(ρ). Depending on
the choice of the basic solution g0 one constructs the following functions:

solution	overview:
g0                           (−)lgl(ρ)/ρ                                 symbol

————————————————– ————————————————–
sin ρ                         spherical Bessel functions                    jl(ρ)
− cos ρ                      spherical Neumann functions                 nl(ρ)
exp (±iρ)                    spherical Hankel functions                    h±

l
(ρ)

————————————————– ————————————————–
For an easy calculation of the lowest order Bessel functions jl and Neumann

functions nl we write (14.42) as follows,

(14.48)

such that with (14.47)

(14.49)

or

(14.50)

One �inds by simple differentiation:

j0 =
sin ρ

ρ
;n0 = −

cos ρ

ρ
;

j1 =
sin ρ

ρ2
−

cos ρ

ρ
;n1 = −

cos ρ

ρ2
−

sin ρ

ρ
;

j2 = (
3

ρ3
−

1

ρ
) sin ρ −

3 cos ρ

ρ2
;n2 = (−

3

ρ3
+

1

ρ
) cos ρ −

3 sin ρ

ρ2
.

The procedure to construct the Hankel functions h±
l

 with the basic solution 
g0(ρ) =exp (±iρ) is analogous.

The general solution of (14.35) can now can be written as

gl+1 = d+
l+1gl.

d+
l

= ρl d
dρ
ρ−l,

gl = ρl d
dρ
ρ−l ⋯ ρ d

dρ
ρ−1g0

gl
ρ

= ρl( 1
ρ

d
dρ
)
l

( g0

ρ
).



(14.51)

where the angular dependence is determined by the Ylm(θ,ϕ) and the radial
dependence (for �ixed l) by the Hankel functions h±

l
(kr). For radiation problems blm =

0, since h−
l

 describes an incoming spherical wave. The remaining coef�icients alm of
the outgoing spherical wave h+

l
(kr) are determined from the multipole moments by

comparing (14.51) and (13. 11) for ρ = kr ≫ 1.

14.4	 Expansion	of	a	Plane	Wave	in	Spherical	Harmonics
The functions h±

l
(ρ)Ylm(θ,ϕ) form—like the plane waves exp (±ik ⋅ r)—a complete

basis; the general solution of the wave equation can be derived from one basis or the
other by superposition. The choice of a basis depends on the speci�ic problem (e.g. the
boundary conditions).

We want to show the connection between the two basic systems by expanding a
plane wave in spherical harmonics. For simplicity, we choose k = (0, 0, k), then in

(14.52)

the angle ϕ no longer shows up and the expansion has the (ϕ-independent) form:

(14.53)

The Neumann functions do not appear because the nl become singular for r → 0
(e.g. n0(ρ) → −1/ρ for ρ → 0). The coef�icients are:

(14.54)

To construct the Hankel functions h±
l

 with the basic solution g0(ρ) =exp (±iρ)
one exploits the orthogonality of the functions for the proof of (14.54): In general we
can determine the coef�icients of an expansion

(14.55)

within a (complete) orthonormal system of functions fm(x) with

(14.56)

A(r) = ∑l,m(almh
+
l

(ρ) + blmh
−
l

(ρ)) Ylm(θ,ϕ),

exp (ik ⋅ r) =exp (ikz) =exp (ikr cos θ)

exp (ikz) = ∑l al jl(kr) Yl0(θ).

al = il(2l + 1)√ 4π
2l+1

.

g(x) = ∑m cmfm(x)

(fn, fm) = δnm



by

(14.57)

For the example above (14.53) we get:

(14.58)

using an expansion for small values of r on the right and left sides of (14.58) the θ
integration can be carried out and the result just becomes (14.54).

14.5	 Bene�its	of	the	Expansion	in	Spherical	Harmonics
Knowing the angular dependence of the potentials Φ (14.4) or A (14.51) for �ixed r,
one immediately can decide which multipole moments are contained in the source of
the �ield. For example with

(14.59)

due to the orthogonality of the Ylm, we can to	pick	out a speci�ic term from the
expansion (14.4).

In summarizing this chapter we have generalized the multipole expansion
discussed in the previous chapter and introduced a particular set of orthogonal
functions on the spherical surface denoted by spherical	harmonics. As applications
we have presented the general multipole expansion of the radiation �ield and the
expansion of a plane wave in spherical harmonics.

cn = (fn, g) = ∫ b

a
f ∗
n(x)g(x) dx.

aljl(kr) = ∫ π

0 sin θdθ Yl0(θ) exp (ikr cos θ);

(Ylm, Φ) ∼ qlm,
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In principle, the Maxwell equations of Part III allow to calculate the
electromagnetic �ield for any arrangement of matter as soon as the charge
density ρ(r, t) and the current density j(r, t) are known exactly. In such a
microscopic theory the matter—in the area of space-time under
consideration—is decomposed into point charges (electrons and atomic
nuclei) and their state of motion then de�ines the charge density ρ(r, t) and
current density j(r, t). For distributions of matter of macroscopic
dimensions (e.g. a capacitor with a dielectric or current-carrying coil with
an iron core) such a microscopic calculation is neither feasible in practice
nor desirable, since experimentally only spatial and temporal averages of
the �ields can be controlled. We will therefore examine in the following
space-time averages of the �ields and derive the Maxwell equations for the
macroscopic �ields.

15.1	 Macroscopic	Averages
are integrals of the form

(15.1)

where ΔV  indicates the volume, ΔT  the time interval and f stands for
the charge or current density or the components of the �ield strengths (
f = ρ, j, E, B. .). In the following we want to establish the connections
between the average values (15.1) for charge and current density on the one

< f(r, t) >= 1
ΔVΔT

∫ d3ξdτ f(r +
→
ξ, t + τ)
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hand and the macroscopic �ields on the other hand. The starting point are
the microscopic Maxwell equations

(15.2)

and

(15.3)

If we assume that in (15.1) differentiations with respect to r and t may
be carried out in the integral,

(15.4)

we get the following equations for the average values from (15.2) and
(15.3):

(15.5)

and

(15.6)

The homogeneous equations (15.2) remain the same in the transition
from the microscopic �ields E, B to the macroscopic �ields

(15.7)

In the inhomogeneous equations (15.6) we now have to suitably divide 
< ρ > and < j > into free and bound charge carriers.

∇ ⋅ B = 0;∇ × E + ∂B
∂t

= 0

∇ ⋅ E = ρ

ϵ0
;∇ × B − ϵ0μ0

∂E
∂t

= μ0j.

∂
∂t

< f >=< ∂f
∂t

> ; ∂
∂x

< f >=< ∂f
∂x

> ; ∂
∂y

< f >=< ∂f
∂y

> ; etc. ,

∇⋅ < B >= 0;∇× < E > + ∂<B>
∂t

= 0

∇⋅ < E >= <ρ>
ϵ0
;∇× < B > −ϵ0μ0

∂<E>
∂t

= μ0 < j >.

→
E =< E > ;

→
B =< B >.



15.2	 Free	and	Bound	Charge	Carriers
We �irst look at (15.6) and the connection between 

→
E  and its sources. To this

aim we distinguish in the averaged charge density the density of the bound
charges ρb and the average density of the free charge carriers ρf, i.e.

(15.8)

Bound charge carriers are, for example, the lattice building blocks of an
ion crystal (like NaCl with the lattice building blocks Na+ and Cl−) or the
electrons of atoms and molecules. Bound does not imply that the charge
carriers cannot move, but that there are strong forces that keep the charge
carriers at their equilibrium	positions; small periodic oscillations around
these positions are possible (thermal �luctuations).

Freely moving charge carriers are e.g. conduction electrons in metals,
ions in gases or electrolytes. They are characterized by the fact that they
form	a	macroscopic	current	under	the	in�luence	of	an	external	�ield.

The density of free charges ρf is a macroscopic quantity that—in
contrast to ρb—can be directly controlled in experiments. The charges on
the plates of a capacitor e.g. can be speci�ied from the outside. They create
an electric �ield, which in a dielectric between the plates can generate or
align electrical dipoles. The effect for an observer are polarization	charges
on the surfaces of the dielectric, which depend on special conditions (type of

the dielectric, temperature of the environment, strength of the 
→
E  �ield)

(Fig. 15.1).

< ρ >= ρb + ρf.



Fig.	15.1 Polarization of a dielectric in a capacitor

It is thus reasonable to combine the �ield from the (bound) polarization
charges with the electric �ield generated by the free charges ρf on the plates.

We choose the auxiliary �ield 
→
P in such a way that:

(15.9)

and

(15.10)

Then we obtain:

(15.11)

or after introduction of the dielectric	displacement �ield

(15.12)

∇ ⋅
→
P = −ρb

→
P = 0 where ρb = 0.

∇ ⋅ (ϵ0

→
E +

→
P) = ρf

→
D := ϵ0

→
E +

→
P



(15.13)

We will show below that the auxiliary	�ield 
→
P is the density of the

(macroscopic) dipole moment of the dielectric under consideration
(dielectric	polarization).

In analogy to (15.8) we write for the macroscopic current:

(15.14)

where jf is the contribution of the free charge carriers (averaged
according (15.1)). The contribution arising from bound charge carriers, i.e.
(averaged) current density jb, is divided up again,

(15.15)

Here jP  is the temporal change of the polarization 
→
P, i.e. due to the

motion of the polarization charges,

(15.16)

The discussion of the remaining contribution jM, which results from
molecular circular currents, i.e. magnetic	dipoles, we postpone for later.

With (15.12), (15.14) and (15.16) the second inhomogeneous equation
is written as follows:

(15.17)

For the further transformation of (15.17) we employ the continuity
equation for the free charge carriers:

(15.18)

∇ ⋅
→
D = ρf.

< j >= jf + jb,

jb = jP + jM = ∂
→
P

∂t + jM.

jP = ∂
→
P

∂t .

∇ ×
→
B − μ0

∂
→
D

∂t = μ0jf + μ0jM.



Then we get from (15.13) and (15.18)

(15.19)

such that the vector ∂
→
D/∂t + jf can be represented as a rotation of a

vector, which we denote by 
→
H , i.e.

(15.20)

The connection between 
→
B and 

→
H  according to (15.17) is:

(15.21)

In analogy to the vector 
→
P we introduce the magnetization 

→
M :

(15.22)

such that according to (15.9):

(15.23)

We will show later that 
→
M  is the density of the (macroscopic) magnetic

dipole moment (magnetization).
Comments:

∇ ⋅ jf +
∂ρf
∂t

= 0.

∇ ⋅ ( ∂
→
D

∂t
+ jf) = 0,

∇ ×
→
H = ∂

→
D

∂t + jf.

∇ × (
→
B − μ0

→
H ) = μ0jM.

μ0

→
M =

→
B − μ0

→
H ,

∇ ×
→
M = jM;

→
M = 0 where jM = 0.



(1.) Only the �ields 
→
E  and 

→
B have a microscopic analogue, i.e. E and B

(cf. (15.7)). 
→
D  and 

→
H  are only auxiliary	�ields that we have introduced to

solve complicated electrical and magnetic properties of matter ‘on average’.
(2.) A macroscopic polarization (or magnetization) can show up when

existing electric (or magnetic) dipoles in the �ield are aligned or if dipoles
are induced by an external �ield. Without an external �ield permanent
dipoles are distributed statistically and—after averaging over a macroscopic
volume—no polarization (or magnetization) results.

Summary	of	the	macroscopic	�ield	equations:

Homogeneous equations:

(15.24)

Inhomogeneous equations:

(15.25)

Connections:

(15.26)

Equations (15.24), (15.25) have the same formal structure as (15.2),
(15.3); we can therefore use the same methods for the solution.

Equations (15.2), (15.3) are, however, not yet suf�icient to determine—

for given ρf, jf—the 4 �ields 
→
E ,

→
D,

→
B,

→
H  uniquely. To this aim we have to

convert the formal connections (15.26) with the help of special models (for
the matter under consideration) to explicit material	equations. Simple
examples will be discussed in the next chapters.

15.3	 Polarization	and	Magnetization

∇ ⋅
→
B = 0;∇ ×

→
E + ∂

→
B

∂t = 0

∇ ⋅
→
D = ρf;∇ ×

→
H − ∂

→
D

∂t
= jf

→
D = ϵ0

→
E +

→
P;

→
H = 1

μ0

→
B −

→
M .



For the interpretation of the polarization 
→
P and magnetization 

→
M  we

introduce via

(15.27)

the macroscopic scalar potential ~Φ and vector potential 
→
A . For these

potentials we obtain the inhomogeneous wave equations (in Lorentz gauge):

(15.28)

(15.29)

Special solutions are the retarded potentials (see Sect. 12. 3)

(15.30)

with the retarded time t′ = t + |r − r′|/c, and

(15.31)

The term with 
→
P (15.30) we reformulate by partial integration:

(15.32)

→
B = ∇ ×

→
A ;

→
E = −∇

~
Φ − ∂

→
A

∂t

−(Δ − 1
c2

∂2

∂t2 )
~
Φ = 1

ϵ0
(ρf − ∇ ⋅

→
P),

−(Δ − 1
c2

∂2

∂t2 )
→
A = μ0(jf + ∇ ×

→
M + ∂

→
P

∂t ).

~
Φ(r, t) = 1

4πϵ0
(∫ d3r′ ρf(r′,t′)

|r−r′|
− ∫ d3r′ ∇′⋅

→
P(r′,t′)

|r−r′|
)

→
A (r, t) =

μ0

4π(∫ d3r′ jf(r′,t′)

|r−r′|
+ ∫ d3r′ ∂

→
P(r′,t′)/∂t′

|r−r′|

+ ∫ d3r′ ∇′×
→
M (r′,t′)

|r−r′|
).

∫ d3r′ ∇′⋅
→
P(r′,t)

|r−r′|
= ∫ d3r′ (r−r′)⋅

→
P(r′,t)

|r−r′|3
,



where—for simplicity—we have neglected retardation (t = t′). For matter
of �inite extension no surface term arises from the partial integration.

The comparison with Sect. 13. 2 or Sect. 2. 5 shows that 
→
P has the

interpretation of the density of the macroscopic electric dipole moment,
as already mentioned above.

Accordingly, neglecting the retardation (t = t′) in the last term in
(15.31):

(15.33)

The comparison with Sect. 6. 4 or Sect. 13. 3 shows that 
→
M (r, t) is the

density of the macroscopic magnetic dipole moment.

It arises because either permanent magnetic dipoles are aligned in the
�ield or induced by the �ield as in the case of electric dipoles.

The charge conservation for the bound charge carriers,

(15.34)

follows from (15.9), (15.14) as well as (15.16) and (15.23).
In summary, we have extended the microscopic Maxwell equations to the

macroscopic �ields and introduced two auxiliary �ields, i.e. the density of the

(macroscopic) electric dipole moment 
→
P (dielectric	polarization) and the

density of the (macroscopic) magnetic dipole moment 
→
M  (magnetization),

that have to be speci�ied separately by material equations.

∫ d3r′ ∇′×
→
M (r′,t)

|r−r′|
= ∫ d3r′ (r−r′)×

→
M (r′,t)

|r−r′|3
.

∇ ⋅ jb +
∂ρb
∂t = 0,
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In Chap. 9 we have introduced the energy, momentum and angular momentum of the microscopic
�ield and applied this concept in Part IV to the radiation �ield in vacuum. In the following we want to
discuss how the considerations in Chap. 9 can be transferred to the macroscopic �ield.

16.1	 Energy
The starting point for the energy balance in Chap. 9 was that of the work done per unit of time of a
(microscopic) �ield (E, B) on a system of charged mass points:

(16.1)

The basis of (16.1) is the Lorentz force, e.g. for a point charge q:

(16.2)

whose magnetic component does not contribute to (16.1). From (16.2) we obtain with (15. 1) the

(average) force, which a macroscopic �ield (
→
E ,

→
B) exerts on a point charge q moving with velocity v:

(16.3)

The work per unit of time done by the macroscopic �ield on the free charges of the density ρf
then is in analogy to (16.1):

(16.4)

The right hand side of (16.4) we can rewrite using (15. 25) (jf = ∇ ×
→
H − ∂

→
D

∂t ) as:

(16.5)

dWM

dt
= ∫ (j ⋅ E) dV .

F = q(E + (v × B)),

→
F = q(

→
E + (v ×

→
B)).

dWM

dt
= ∫ (jf ⋅

→
E ) dV .

dWM

dt
= ∫(

→
E ⋅ (∇ ×

→
H ) −

→
E ⋅ ∂

→
D

∂t ) dV .
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As in Chap. 9 we can symmetrize (16.5) using the identity

(16.6)

and (15. 24),

(16.7)

We get:

(16.8)

The comparison with (9. 7) shows that

(16.9)

is the energy	current	density	of	the	macroscopic	�ield (Poynting vector). To interpret the
remaining terms we consider the

approximation of linear,	isotropic	media:

(16.10)

Then we get

(16.11)

and in analogy to (9. 10) can interpret

(16.12)

as the energy	density	of	the	macroscopic	�ield (in the case of linear, isotropic media).

16.2	 Momentum,	Angular	Momentum
According to (16.3)

(16.13)

∇ ⋅ (a × b) = b ⋅ (∇ × a) − a ⋅ (∇ × b)

∇ ×
→
E = − ∂

→
B

∂t
.

dWM

dt
= − ∫ dV (∇ ⋅ (

→
E ×

→
H ) +

→
E ⋅ ∂

→
D

∂t +
→
H ⋅ ∂

→
B

∂t ).

→
S =

→
E ×

→
H

→
D = ϵ

→
E ;

→
B = μ

→
H .

→
E ⋅ ∂

→
D

∂t +
→
H ⋅ ∂

→
B

∂t = 1
2

∂
∂t (

→
E ⋅

→
D +

→
H ⋅

→
B)

1
2 (

→
E ⋅

→
D +

→
H ⋅

→
B)

dp

dt
= q(

→
E + (v ×

→
B))



is the change of the momentum of a test charge q with velocity v in the �ield (
→
E ,

→
B). For the change

in momentum of a system of free charges, described by ρf , jf , in the �ield (
→
E ,

→
B) follows:

(16.14)

In analogy to chapter 9.2 we rewrite (16.14) with

(16.15)

to get

(16.16)

We symmetrize (16.16) using

(16.17)

(16.18)

As in Chap. 9 we then can interpret

(16.19)

as the momentum	density	of	the	macroscopic	electromagnetic	�ield (cf. (9. 38)).

The transfer from (9. 39) to the case of the macroscopic �ield then is trivial, i.e.

(16.20)

can be interpreted as the angular	momentum	density	of	the	macroscopic	electromagnetic
�ield.

16.3	 Kirchhoff’s	Rules
The theory of electrical circuits is based on the following rules:

dPM

dt
= ∫ dV (ρf

→
E + (jf ×

→
B)).

∇ ⋅
→
D = ρf ; ∇ ×

→
H − ∂

→
D

∂t = jf

dPM

dt
= ∫ dV (

→
E (∇ ⋅

→
D) + (∇ ×

→
H ) ×

→
B − ∂

→
D

∂t ×
→
B).

∇ ⋅
→
B = 0; ∇ ×

→
E = − ∂

→
B

∂t
,

dPM

dt
= ∫ dV (

→
E (∇ ⋅

→
D) +

→
H (∇ ⋅

→
B) + (∇ ×

→
H ) ×

→
B + (∇ ×

→
E ) ×

→
D − ∂

∂t (
→
D ×

→
B)).

→
D ×

→
B

r ×
→
D ×

→
B



Fig.	16.1 Illustration of the knot rule

(1.) Kirchhoff’s law (knot	rule)
For a current splitting of stationary and quasi-stationary currents holds (Fig. 16.1):

(16.21)

Proof
For stationary and quasi-stationary currents the continuity equation gives

(16.22)

with the Gauss’ integral theorem:

(16.23)

Remark: The quasi-stationary case is de�ined such that in (15. 19) ∂
→
D/∂t can be neglected, which

directly gives (16.22). In the stationary case ∂ρf/∂t = 0 and (16.22) follows from (15. 18). The basis
of the �irst Kirchhoff’s rule is the conservation	of	charge.

(2.) Kirchhoff’s (circuit	rule)
The sum of the voltages along a closed path in a circuit disappears,

(16.24)

For Uj in (16.24) we can have (see Fig. 16.2)
(i) ohmic voltage (resistance R)

(16.25)

(ii) capacitor voltage (capacity C)

(16.26)

(iii) induced voltage (inductance L)

(16.27)

as well as an external (battery) voltage UB.

∑N
i=1 Ii = 0.

∇ ⋅ jf = 0,

∫
F

jf ⋅ df = ∑N
i=1 Ii = 0.

∑j Uj = 0.

UR = IR,

UC = 1
C
∫ Idt,

UL = L dI
dt



Fig.	16.2 Illustration of a resonant circuit with capacitor C, inductance L, ohmic resistance R and battery voltage UB

Proof From

(16.28)

we get with Stoke’s integral theorem

(16.29)

The basis of Kirchhoff’s 2nd rule is the law of induction or the energy	theorem. E.g. carrying a
charge q on a closed path through the circuit, then (16.24)—after multiplication by q—gives the
energy balance.

Resonant	circuit: For a circuit with a capacitor C, an inductance L and an ohmic resistance R we
get according to (16.25),

(16.30)

After a further time differentiation (and division by L) this gives

(16.31)

which is the differential equation for a damped harmonic oscillator - with known solutions
incorporating ω2 = 1/(LC) and γ = R/L.

Note: The inductance L creates—except for superconducting materials and correspondingly low
temperatures—a �inite resistance R such that ordinary resonant circuits have an oscillation of �inite
lifetime τ = 1/γ.

In summary, we have computed the energy, momentum and angular momentum of the
macroscopic �ield and discussed Kirchhoff’s rules in the context with charge and energy
conservation.

∇ ×
→
E = − ∂

→
B

∂t

∫
F

(∇ ×
→
E ) ⋅ df = ∮

S

→
E ⋅ ds = − ∂

∂t ∫F
→
B ⋅ df .

1
C
∫ t

Idt′ + IR + L dI
dt

= 0.

( d2

dt2 + R
L

d
dt

+ 1
LC

)I(t) = 0,
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The macroscopic Maxwell equations

(17.1)

and

(17.2)

are not suf�icient (as already mentioned in Sect. 16. 2) to determine the �ields 
→
E ,

→
B,

→
D  and 

→
H  as long as there are no explicit material	equations, which connect 

→
E ,

→
B,

→
D  and 

→
H  to

each other. The macroscopic sources ρf  and jf  are often also not given as a function of r
and t, but have to be calculated functionally from the �ields. In this chapter we will present
some simple cases for such material equations using linear response theory.

17.1	 Material	Equations
For the discussion of material equations we rewrite (17.2) such that the �ields 

→
E  and 

→
B are

represented in their dependence on the macroscopic sources ρf , jf ,
→
P and 

→
M :

(17.3)

where ρf , jf ,
→
P and 

→
M  are functionals of the �ields 

→
E  and 

→
B; they can also dependent

on external parameters such as the temperature T (see thermodynamics), i.e.:

(17.4)

∇ ⋅
→
B = 0;∇ ×

→
E + ∂

→
B

∂t
= 0

∇ ⋅
→
D = ρf ;∇ ×

→
H − ∂

→
D

∂t = jf

∇ ⋅
→
E = 1

ϵ0
(ρf − ∇ ⋅

→
P);

∇ ×
→
B − ϵ0μ0

∂
→
E

∂t = μ0(jf + ∂
→
P

∂t + ∇ ×
→
M ),

→
P =

→
P[

→
E ,

→
B,T ],

→
M =

→
M [

→
E ,

→
B,T ], jf = jf [

→
E ,

→
B,T ].
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Then ρf  is also determined by jf  via the continuity equation:

(17.5)

In the following we will discuss simple models of material equations of the type (17.4).
We will be guided by concepts of linear	response	theory, which are based mathematically
on the convolution	theorem.

We recall that in case of inhomogeneous differential equations of 2nd order, �irst of all a
Green’s function G0(x − x′), i.e. the inverse of the differential operator D0 of the
homogeneous equation, is de�ined by:

(17.6)

and a special solution to the inhomogeneous equation (with inhomogeneity f(x)) then is
given by

(17.7)

where n denotes the dimension of the problem. We already have exploited this procedure
in Sect. 12. 2 in connection with retarded potentials.

In the following we limit ourselves (for the sake of simplicity) to a single dimension, i.e.
explicitly to the time variable t:

(17.8)

where it should be noted that G0(t − t′) = 0 for t′ > t. Equation (17.8) is a folding integral
of the type

(17.9)

After a Fourier transformation of the quantities a(t), b(t) and c(t) we obtain the simple
algebraic relation for the Fourier transforms a(ω), b(ω) and c(ω):

(17.10)

= ∫ dt exp (iωt)∫ dt′ ∫ dω′

2π
exp (−iω′(t − t′)) ∫ dω′′

2π
exp (−iω′′t′) b(ω′)c(ω′′)

= ∫ dt exp (iωt) ∫ dω′

2π
exp (−iω′t) ∫ dω′′ δ(ω′′ − ω′) b(ω′)c(ω′′)

= ∫ dt exp (iωt) ∫
dω′

2π
exp (−iω′t) b(ω′)c(ω′)

∇ ⋅ jf +
∂ρf
∂t = 0.

D0(x)G0(x − x′) = δn(x − x′),

Φ(x) = ∫ dnx′ G0(x − x′) f(x′),

Φ(t) = ∫ dt′ G0(t − t′) f(t′),

a(t) = ∫
∞

−∞ b(t − t′) c(t′) dt′.

a(ω) = ∫ ∞
−∞ dt exp (iωt) a(t) = ∫ dt exp (iωt) ∫ dt′ b(t − t′)c(t′)



= ∫ dω′ δ(ω − ω′) b(ω′)c(ω′) = b(ω)c(ω).

The connection between (17.9) and (17.10) is denoted by convolution	theorem. This
folding theorem is used in linear	response	theory because for ‘small perturbations’ f(t) in
the system—described by the differential operator D0—the solution is given explicitly in
Fourier representation in the form (17.10). The Fourier transform b(ω) is also referred to
as response	function.

Example: To illustrate the role of the response function b(ω) we consider the simple
example of the damped oscillator. The equation of motion for a damped harmonic oscillator
under the in�luence of an external force f(t) is:

(17.11)

By Fourier transformation of q(t) and f(t) this leads to

(17.12)

or

(17.13)

The response function b(ω) is thus given by

(17.14)

As seen immediately the poles of b(ω) are in the lower complex half plane for γ > 0.
Analogous examples will show up frequently (see below).

17.2	 Ohm’s	Law;	Electric	Conductivity
In metals the conductivity is due to the existence of free electrons in the conduction band.
The equation of motion for such a conduction electron i is:

(17.15)

where Ei is the electric �ield acting on the electron i and the friction term (∼ vi) accounts
for the net effect, that the conduction electrons lose energy by collisions with the ions from
the grid.

From (17.15) we get with (5. 4), (5. 5) the equation for the current density (after division
by M):

(17.16)

M( d2

dt2 q(t) + ω2
0q(t)) + γ d

dt
q(t) = f(t).

{M(ω2
0 − ω2) − iγω}q(ω) = f(ω),

q(ω) = 1
M(ω2

0−ω2)−i γω
f(ω) = b(ω)f(ω).

b(ω) = 1
M(ω2

0−ω2)−i γω
= − 1

M
( 1

ω2−ω2
0+i γ/Mω

).

M
dvi

dt
+ ξvi = eEi,



where we have identi�ied the average over Ei with the macroscopic �ield 
→
E . In Eq. (17.16) n

denotes the density of conduction electrons, i.e. jf = e < v > n. For static 
→
E  �ields (17.16)

has the stationary solution (djf/dt = 0):

(17.17)

with the

DC	conductivity

(17.18)

For a time-periodic �ield

(17.19)

we expect (after Fourier transformation) a solution of (17.16) as:

(17.20)

Equation (17.16) then gives the relation

(17.21)

with the frequency-dependent	conductivity (response function)

(17.22)

where the damping constant τ  is determined by

(17.23)

For low frequencies (ωτ ≪ 1) the conductivity σ(ω) becomes real, σ(ω) ≈ σ0, while
vice versa for high frequencies (ωτ ≫ 1) σ(ω) becomes purely imaginary such that jf  and 

djf

dt
+ ξ

M
jf = n e2

M

→
E ,

jf = ne2

ξ

→
E = σ0

→
E

σ0 = ne2

ξ
.

→
E (t) =

→
E0 exp (−iωt)

jf(t) = j0 exp (−iωt).

jf(ω) = σ(ω)
→
E (ω)

σ(ω) = σ0

1−iωτ
=

σ0(1+iωτ)

1+ω2τ 2 = σ0

1+ω2τ 2 + i σ0ωτ
1+ω2τ 2 ;

τ = M
ξ

.



→
E  are out of phase by π/2. By measuring σ(ω) one can determine the density of the
conduction electrons n as well as the decay time τ .

17.3	 Dielectrics
A polarization 

→
P arises under the in�luence of an electric �ield 

→
E  in a non-conductive,

polarizable medium. We differentiate between 2 types:

1.	Polarization	by	orientation

Already existing (permanent) electric dipoles are aligned in the 
→
E  �ield. The organizing

in�luence of the �ield counteracts the thermal motion of the electric dipoles and the

resulting macroscopic polarization is temperature dependent. For 
→
E  = 0 the directions of

the elementary dipoles are statistically distributed and 
→
P = 0. For �inite 

→
E  �ields the

temperature-dependent polarization will be calculated explicitly in Sect. 17. 5.

2.	Induced	polarization

In atoms or molecules the 
→
E  �ield shifts electrons and nuclei relative to each other and thus

generates (induces) electric dipoles in the �ield direction (induced	polarization). In this
way, a temperature-independent polarization is created.

At low �ield strengths and/or high temperatures the linear relationship

(17.24)

(linear response) is a good approximation of (17.4); χe is the electric	susceptibility 
(response function) and in general temperature dependent. With (17.24) the following
holds:

(17.25)

with the dielectric	constant

(17.26)

Remark:
Equations (17.24) and (17.25) assume an isotropic material. For anisotropic media χe

and ϵ have to replaced by tensors [χe]ij and ϵij.
For rapidly oscillating �ields ϵ (or the response function χe) turns out to be frequency-

dependent,

→
P = χeϵ0

→
E

→
D = ϵ

→
E

ϵ = ϵ0(1 + χe).



(17.27)

Example: For H2O (at T = 20 ∘C) ϵ/ϵ0 ≈ 40 if one chooses ω as the frequency of the yellow
Na line.

The frequency dependence of ϵ(ω) can be explained using the following (very
simpli�ied) model for the structure of atoms and molecules: We assume that the electrons
in an atom or molecule perform harmonic oscillations (see above). Then the equation of

motion for the n-th electron of an atom (or molecule) under the in�luence of a periodic 
→
E

�ield is:

(17.28)

With the Ansatz

(17.29)

(or Fourier transform) we �ind as a solution to (17.28)

(17.30)

and from this for the dipole moment

(17.31)

if Z electrons are in the atom (molecule). Then we obtain for the electric susceptibility

(with 
→
P = χeϵ0

→
E , 

→
P = Nd):

(17.32)

where N is the number of atoms (molecules) per unit volume.
The damping term in (17.28) accounts for the fact that the atomic oscillators lose

energy by collisions between the atoms or molecules. This implies that χe or ϵ becomes
complex. As an example we will consider the absorption of electromagnetic waves in
matter in the next chapter, where the imaginary part of ϵ is made explicit.

17.4	 Para-	and	Diamagnetism
A magnetization 

→
M  can (in analogy to the case of polarization 

→
P) arise in the following

way:

1.	Magnetization	by	orientation	(paramagnetism)
Permanent elementary magnetic dipoles are aligned against the thermal motion in an

external magnetic �ield and lead to a macroscopic magnetization 
→
M . Without a magnetic

ϵ = ϵ(ω).

d2

dt2 rn(t) + γn
d
dt

rn(t) + ω2
nrn(t) = e

M

→
E0 exp (−iωt).

rn(t) = r0
n exp (−iωt)

rn(t) = e
M(ω2

n−ω2−iωγn)

→
E0 exp (−iωt)

d = ∑Z
n=1 ern = e2

M

→
E0 exp (−iωt)∑Z

n=1
1

(ω2
n−ω2−iωγn)

,

χe(ω) = Ne2

ϵ0M
∑Z

n=1
1

(ω2
n−ω2−iωγn)

,



�ield, the elementary dipole moments m are statistically distributed with respect to their

direction and in the macroscopic average 
→
M  = 0.

2.	Induced	magnetization	(diamagnetism)
In the magnetic �ield the orbits of the electrons are changed, especially their angular
momentum. Such a change in angular momentum is, according to (6. 36), associated with a
change in the magnetic dipole moment of the atom. Thus atoms, that don’t have a
permanent magnetic dipole moment, get—in the external magnetic �ield—an induced
dipole moment. Its direction is given by the direction of the external �ield (see below).

The magnetization 
→
M  generally depends on the external �ield and the temperature.

Since the fundamental �ield is the 
→
B �ield, we should consider according to (17.4)

(17.33)

However, it is common to replace (17.33) by

(17.34)

since 
→
H  is practically easier to control—via the current density jf—than 

→
B.

Note:
In the electrical case one considers—in accordance with the microscopic theory—

(17.35)

since potential differences can be controlled more conveniently than the free charge

density ρf  and the associated 
→
D  �ield.

For suf�iciently weak �ields and/or high temperatures one expects

(17.36)

to be a good approximation of (17.34); here χm is the magnetic	susceptibility. With
(17.36) and (15. 22) we get:

(17.37)

where the permeability μ is related to χm by

(17.38)

Finally, we want to study the diamagnetism more quantitatively. In a simple model we
consider an electron, that is elastically bound to the atomic nucleus, under the in�luence of

→
M =

→
M [

→
B,T ].

→
M =

→
M [

→
H ,T ]

→
P =

→
P[

→
E ,T ],

→
M = χm

→
H

→
B = μ

→
H = μ0

→
H + μ0

→
M ,

μ = μ0(1 + χm).



an external magnetic �ield:

(17.39)

with the abbreviation

(17.40)

For the solution of the equation of motion (17.39) we go over to a system Σ′ that is rotating
with the angular velocity →ωL relative to the laboratory system Σ. Due to

(17.41)

we get from (17.39):

(17.42)

Since in general ωn ≫ ωL, we get approximately

(17.43)

the electron (almost) does not see the magnetic �ield in the rotating coordinate system Σ′;
it oscillates with the undisturbed frequency ωn. From the perspective of the laboratory
system Σ, a rotation about the direction of B with the Lamor	frequencyωL has to added.

According to this decomposition of the motion we divide the magnetic moment of an
atom with Z electrons in 2 parts:

(17.44)

The 1st term in (17.44) provides the permanent magnetic dipole moment; it is different
from zero if the angular momentum (here: orbital angular momentum) of the undisturbed
atom L′ = ∑i l′

i ≠ 0. The 2. term describes the induced moment mind.
In order to discuss the induced moment mind we consider a spherically symmetric

charge distribution. Then the mixed terms, e.g. ∑i x
′
iy

′
i, in (17.44) give no contribution; the

contribution of the remaining quadratic terms can be expressed by the average radius ρ of
the atom. One gets:

(17.45)

d2

dt2 rn + ω2
nrn = e

M
vn × B = 2

→
ωL × d

dt
rn

→
ωL = − e

2M B.

r = r′; d
dt

r = d
dt

r′ + (
→
ωL × r′); d

2

dt2 r = d2

dt2 r′ + 2(
→
ωL × d

dt
r′) +

→
ωL × (

→
ωL × r′)

d2

dt2 r′ + ω2
nr′

n =
→
ωL × (

→
ωL × r′

n).

d2

dt2 r′ + ω2
nr′

n ≈ 0;

m = e
2M

∑Z
i=1(r′

i × p′
i) + e

2
∑Z

i=1 r′
i × (

→
ωL × r′

i)

= e
2M ∑Z

i=1 l′
i − e2

4M ∑Z
i=1(Br′2

i − r′
i(B ⋅ r′

i)).

mind = − e2

4M B∑Z
i=1 r′2

i = − e2

6M ρ2B.



The diamagnetism (χm < 0) obviously counteracts the paramagnetism (χm ≥ 0).
Atoms with L′ = 0 are diamagnetic; if a substance turns out as paramagnetic, then the 1st
term in (17.44) dominates the 2nd term.

Note:
Atomic nuclei can also have angular momentum. Due to (6. 36) the associated moment

of the nucleus is considerably smaller than that generated by the electrons, since the
nucleon mass is ≈ 2000 times larger than the electron mass.

17.5	 Temperature	Dependence	of	the	Polarization
We assume a homogeneous and isotropic medium; then we have for the polarization of

permanent	dipoles by orientation in the 
→
E  �ield:

(17.46)

where N is the number of atoms per unit volume and < p >T  is determined by averaging

the dipoles of magnitude p with respect to their direction to the 
→
E  �ield at a given

temperature T,

(17.47)

with

(17.48)

and θ as the angle between the dipole p and the �ield 
→
E . The weight factor

(17.49)

is taken from thermodynamics; it is proportional to the probability that an elementary

dipole forms the angle θ with the �ield 
→
E  at given temperature T. The denominator in

(17.47) ensures the correct normalization (see thermodynamics); kB is the Boltzmann
constant.

The evaluation of the integrals in (17.47) results in:

(17.50)

1

→
P = N < p >T ,

< p >T=
∫ d(cosθ)cosθexp(ξcosθ)

∫ d(cosθ)exp(ξcosθ)
p

ξ = pE
kT

exp (ξ cos θ) =exp ( p⋅
→
E

kBT
) =exp (− Hint

kBT
)

P = Np
∫ 1

−1 dz zexp(ξz)

∫ 1
−1 dzexp(ξz)

= Np
exp(ξ)+exp(−ξ)−1/ξ(exp(ξ)−exp(−ξ))

(exp(ξ)−exp(−ξ))



= Np {coth ξ −
1

ξ
}.

Discussion:
Case	1: strong �ields, low temperatures, i.e.

(17.51)

such that—as expected—the saturation	value

(17.52)

is reached.
Case	2: weak �ields, high temperatures, i.e.

(17.53)

such that with

(17.54)

we get:

(17.55)

i.e. the linear	response	region discussed in Eq. (17.24) with the temperature-
dependent electric susceptibility

(17.56)

Remark:
The procedure above can be directly applied to the treatment of the paramagnetism by

replacing the energy of the dipole p in the 
→
E  �ield: Hint = −p ⋅

→
E , by Hint = −m ⋅

→
B,

where m is the (permanent) magnetic dipole moment.
In summary, we have discussed simple models for material equations in linear response

theory and derived explicit formulae for the conductivity and the temperature dependence
of electric and magnetic (permanent) dipoles in an external electric or magnetic �ield.

ξ ≫ 1,

P = Np
exp(ξ)+exp(−ξ)−1/ξ(exp(ξ)−exp(−ξ))

(exp(ξ)−exp(−ξ))
≈ Np

ξ ≪ 1,

coth ξ = coshξ
sinhξ

≈
1+1/2ξ2

ξ(1+1/6ξ2)
≈

1+1/2ξ2−1/6ξ2

ξ
= 1

ξ
+ ξ

3

P =
Npξ

3 =
Np2

3kBT
E = χeϵ0E ,

χe =
Np2

3kBTϵ0
.
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18.	The	Electromagnetic	Field	at	Interfaces
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In this chapter we will analyze the properties of the macroscopic �ields at
interfaces between the vacuum and dielectrics or conducting materials for
linear, isotropic media and in particular study the re�lection and refraction of
light. Furthermore, we will investigate the propagation of electromagnetic
waves in conductive materials.

18.1	 General	Continuity	Conditions
The macroscopic Maxwell equations result in a number of consequences for
the behavior of the �ields at the interface between two media with different
electrical and magnetic properties. For the sake of simplicity it is assumed
below that the interface is planar.

We get

1.	Normal	components of 
→
B and 

→
D  from

(18.1)

To this aim we apply the Gauss’ integral theorem to the volume (see Fig. 18.1):
The top surfaces (F1,F2) of a box with volume V and surface F is assumed

to be symmetrically to the interface; size and shape of the top surfaces can be
arbitrary. Reducing the height h of the box to in�initesimal size, we get (18.1):

(18.2)

since for the surface normals n1 = n = −n2. Since F1 can be chosen
arbitrarily we obtain:

∇ ⋅
→
B = 0;∇ ⋅

→
D = ρf .

∫
V

∇ ⋅
→
B dV = ∫

F

→
B ⋅ df = ∫

F1
(

→
B

(1)
n −

→
B

(2)
n ) df = 0,
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(18.3)

The normal component of 
→
B is continuous at the interface.

Fig.	18.1 Finite volume V including the interface of height h

In analogy we get

(18.4)

for the normal component of 
→
D :

(18.5)

if γf  is the surface charge density of the free charge carriers in the interface.

For dielectrics with γf  = 0 the normal component of 
→
D  is continuous; on the

other hand, 
→
Dn jumps at the interface of a conductor with a non-conductor by 

γf .

2.	Tangential	components of 
→
E  and 

→
H . We use:

(18.6)

and apply Stokes’ integral theorem to the area in Fig. 18.2.

→
B

(1)
n =

→
B

(2)
n .

∫
V

∇ ⋅
→
D dV = ∫

F

→
D ⋅ df = ∫

F1
(
→
D

(1)
n −

→
D

(2)
n ) df = Qf ,

→
D

(1)
n −

→
D

(2)
n = γf ,

∇ ×
→
E = − ∂

→
B

∂t ;∇ ×
→
H = − ∂

→
D

∂t + jf ,



Fig.	18.2 Rectangular loop including the interface with length L and in�initesimal height h

A rectangular loop S has sides of length L parallel to the interface and the
length h perpendicular to it. Then the integration over the �lat surface F
bordered by S in the limit h → 0 leads to:

(18.7)

since for h → 0 the contents of the area F disappears, such that:

(18.8)

Since L can be chosen arbitrarily in (18.7), the continuity of the tangential

component of 
→
E  follows directly:

(18.9)

In analogy the second equation of (18.6) results in

(18.10)

if If  is the current strength of the (free) current �lowing in the interface

perpendicular to the tangential component 
→
Ht of 

→
H .

With the representation

(18.11)

follows from (18.10) accordingly

(18.12)

where if  is the surface current density in the interface perpendicular to 
→
Ht.

We now examine the above results for linear, isotropic media.

∫
F

(∇ ×
→
E ) ⋅ df = ∮

S

→
E ⋅ ds = ∫ l

0
ds (

→
E

(1)
t −

→
E

(2)
t ) = 0,

∫
F

( ∂
→
B

∂t ) ⋅ df → 0 for h → 0.

→
E

(1)
t =

→
E

(2)
t .

∫ l

0 ds (
→
H

(1)
t −

→
H

(2)
t ) = If ,

If = ∫ l

0 if dl

→
H

(1)
t −

→
H

(2)
t = if ;



18.2	 Linear,	Isotropic	Media
If

(18.13)

holds, we obtain from (18.3), (18.5), (18.9) and (18.12):

(18.14)

and

(18.15)

If Ohm’s law applies,

(18.16)

then follows from (18.9) (
→
E

(1)
t =

→
E

(2)
t ) for the tangential component of jf :

(18.17)

For the normal component the continuity equation reads as:

(18.18)

and by applying the Gauss’ theorem (as for 1.) we get

(18.19)

Especially for stationary currents with

→
B = μ

→
H ;

→
D = ϵ

→
E

μ1

→
H

(1)
n = μ2

→
H

(2)
n ;

→
D

(1)
t

ϵ1
=

→
D

(2)
t

ϵ2

ϵ1

→
E

(1)
n − ϵ2

→
E

(2)
n = γf ;

→
B

(1)
t

μ1
−

→
B

(2)
t

μ2
= if .

jf = σ
→
E ,

j
(1)
ft

σ1
=

j
(2)
ft

σ2
.

∇ ⋅ jf +
∂ρf
∂t = 0

j
(1)
fn

− j
(2)
fn

= −
∂γf
∂t .



(18.20)

we get the continuity of the normal components

(18.21)

Example: Conductor (1)—non-conductor (2)
Since no current can �low in the non-conductor, we have from (18.21)

(18.22)

and therefore with (18.16)

(18.23)

since σ1 ≠ 0. On the other hand, for 
→
E

(2)
n  we get from (18.15):

(18.24)

In case of electrostatics, due to jf = 0, we obtain

(18.25)

which demands (18.9)

(18.26)

Thus the 
→
E  �ield is perpendicular to the conductor surface; it is zero within the

conductor.

18.3	 Re�lection	and	Refraction	of	Light
In the absence of free charges (ρf = 0) the Maxwell equations are:

(18.27)

∇ ⋅ jf = 0

j
(1)
fn

= j
(2)
fn

.

j
(1)
fn

= j
(2)
fn

= 0,

→
E

(1)
n = 0,

ϵ2E
(2)
n = −γf .

→
E

(1)
t = 0;

→
E

(2)
t = 0.

∇ ⋅
→
B = 0;∇ ⋅

→
D = 0



and

(18.28)

They are simpli�ied by assuming linear, isotropic media

(18.29)

to

(18.30)

and

(18.31)

As in Chap. 10 the Eq. (18.31) can be decoupled in view of (18.30). We get the
wave equations

(18.32)

where c′ is the phase velocity in the medium (see Sect. 10. 3):

(18.33)

Since in the following we study the behavior of the electromagnetic �ield for
�lat interfaces, we consider special solutions of (18.32) in the form of plane
waves, e.g.:

(18.34)

where the relationship between ω and k is

(18.35)

∇ ×
→
E = − ∂

→
B

∂t ;∇ ×
→
H = ∂

→
D

∂t .

→
B = μ

→
H ;

→
D = ϵ

→
E ,

∇ ⋅
→
H = 0;∇ ⋅

→
E = 0

∇ ×
→
E = −μ ∂

→
H

∂t ;∇ ×
→
H = ϵ ∂

→
E

∂t .

Δ
→
E − 1

c′2
∂ 2

∂t2

→
E = 0;Δ

→
H − 1

c′2
∂ 2

∂t2

→
H = 0,

1
c′2 = ϵμ.

→
E =

→
E0 exp {i(k ⋅ r − ωt)},

′



As in Chap. 10 one �inds that 
→
E ,

→
H  and k are perpendicular to each other.

Equation (18.35) differs from (10. 22) since there c is a constant while c′

depends on the frequency ω, i.e. ϵ = ϵ(ω). The components of different
frequency ω in a wave packet run with different velocities c′ = c′(ω); the wave
packet does not maintain its shape in time (disintegration of wave packets;
see Sect. 11. 3).

Note:
Depending on the form of ϵ(ω), we can get c′ > c. This is no contradiction

to the theory of special relativity since the phase	velocity vph is not identical
to the group	velocity

(18.36)

of a wave packet whose amplitude is concentrated in the vicinity of the wave
number k0; the energy transport in such a wave packet is determined by vg and
not by vph.

We now examine the behavior of a light wave, described by (18.34), at a �lat
interface (Fig. 18.3).

Fig.	18.3 Geometry for light re�lection and transmission at a �lat interface

From the continuity of the tangential component of 
→
E  (18.9) (

→
E

(1)
t =

→
E

(1)
t )

we get

(18.37)

ω = kc′.

vg = ( dω
dk

)
k=k0

→
τ ⋅ (

→
Ee +

→
Er) =→

τ ⋅
→
Ed



for all times t and all vectors r of the interface; let →τ  be a unit vector parallel

to the interface, then 
→
Ee,

→
Er and 

→
Ed denote the electric �ield strength of the

incident, re�lected and transmitted light wave. Placing the coordinate origin in
the interface, we obtain from (18.37) and (18.34) for r = 0 the conservation of
the frequency,

(18.38)

On the other hand, for t = 0 we get the phase equality

(18.39)

i.e. the coplanarity of ke, kr and kd; thus all k-vectors must be in a plane.
To prove this statement we choose a speci�ic r = r0 such that ke ⋅ r0 = 0; then
according to (18.39) all 3 vectors ke, kr and kd must be perpendicular to r0,
which implies that ke, kr and kd lie in a plane. Then from (18.39) we obtain,

(18.40)

and with the conservation of the frequency (18.38) (ωe = ωr), ke = kr, the

re�lection	law:

(18.41)

Also from (18.38) (ωe = ωd) we get:

(18.42)

such that (with (18.39)) we obtain the

refraction	law:
(18.43)

ωe = ωr = ωd.

ke ⋅ r = kr ⋅ r = kd ⋅ r,

ke sin θe = kr sin θr,

θe = θr.

ke
kd

= √ϵ1μ1

√ϵ2μ2
= n1

n2
,

sinθe
sinθd

= kd
ke

= n2

n1
.



When evaluating the conditions contained in (18.37) for the amplitudes,
one gets the Fresnel	formulas, Brewster’s	law (generation of linearly
polarized light) and the total	re�lection (�iber optics).

Note:
By (17. 32) ϵ(ω) in general is complex and thus also k. An electromagnetic

wave in the medium consequently is weakened (absorption).

18.4	 Propagation	of	Electromagnetic	Waves	in
Conductive	Materials
We consider an ohmic conductor with a plane interface and surface charge σ.
In this case the Maxwell equations read:

(18.44)

As long as no charge accumulation occurs, the surface charge density ρf  = 0
(see section 5.2), although

(18.45)

As a solution to (18.44) we take:

(18.46)

also for 
→
H  and �ind with (18.44):

(18.47)

Eliminating in the last expression 
→
E  or 

→
H  we obtain:

(18.48)

∇ ⋅
→
H = 0;∇ ⋅

→
E = 0;∇ ×

→
H − ϵ ∂

→
E

∂t − σ
→
E = 0;∇ ×

→
E + μ ∂

→
H

∂t = 0.

jf = σ
→
E ≠ 0.

→
E =

→
E0 exp {i(k ⋅ r − ωt)},

→
H = 1

μω
(k ×

→
E );i(k ×

→
H ) + iϵω

→
E − σ

→
E = 0.

k2 = ω2μϵ (1 + i σ
ωϵ

),



using the transversality of 
→
E  and 

→
H  (

→
E ⋅

→
H = 0), which follows from (18.44).

If we write

(18.49)

we get with

(18.50)

thus:

(18.51)

Eliminating in the 1st equation α = μωσ/(2β) and using the 2. equation, this
gives:

(18.52)

Since β is real, the only possible solution is:

(18.53)

thus

(18.54)

For σ → 0 follows:

(18.55)

in accordance with (18.35). Since μωσ ≥ 0, α and β must have the same
sign according to (18.51). For β ≠ 0 (i.e. σ ≠ 0) a light wave—incident on a
metal surface—is damped exponentially in the metal; for a plane wave
travelling in the positive x direction then holds

(18.56)

since with α > 0 also β > 0.

k = α + iβ;α,β real,

k2 = α2 − β2 + 2iαβ,

α2 − β2 = μϵω2;2αβ = μωσ.

β4 − 1
4 (μωσ)2 + β2μϵω2 = 0.

β2 = μϵω2

2
(√1 + ( σ

ϵω
)2 − 1);

α2 = β2 + μϵω2 = μϵω2

2
(√1 + ( σ

ϵω
)2 + 1).

β → 0;α2 → μϵω2

exp {i(kx − ωt)} =exp {i(αx − ωt)} exp {−βx},



Limiting	cases:
(1.) At high conductivity (σ → ∞) the light wave is practically totally

re�lected since the penetration	depth d ∼ β−1 vanishes.
(2.) For high frequencies (ω → ∞) the conductivity σ is frequency

dependent according to (17. 22): σ will be purely imaginary for ω → ∞ , i.e. k2

in (18.48) is real; the material becomes transparent. However, this fact implies
that it is dif�icult to ‘focus’ hard X-rays.

As a result of the attenuation β, alternating currents can �low only in a
surface layer of the conductor due to (18.45); the thickness of the layer is
determined by β−1 (skin	effect).

In summarizing this chapter we have analyzed the properties of the
macroscopic �ields at interfaces between the vacuum and dielectrics or
conducting materials for linear, isotropic media and in particular studied the
re�lection and refraction of light at interfaces. Furthermore, we have
investigated the propagation of electromagnetic waves in conductive materials
and derived the skin effect.
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19.	Covariance	of	Electrodynamics
Wolfgang Cassing1  

University of Gießen, Gießen, Hessen, Germany

 

In the following we want to show that the basic equations of electrodynamics have the same
form in all inertial systems (covariance	of	electrodynamics) and thus obey the principle of
special relativity. In preparation we examine the mathematical structure of the Lorentz
transformations, de�ine the four-current density, the four-potential and show the Lorentz
invariance of the wave equations. In addition the transformation of the �ields E and B are
derived with help of the electromagnetic �ield-strength tensor.

19.1	 Lorentz	Group
First of all it should be shown that the Lorentz transformations are orthogonal complex
transformations in a 4-dimensional pseudo-Euclidean vector space (Minkowski	space). To this
aim we introduce the following coordinates:

(19.1)

In these coordinates the length (squared) of a space-time vector in different reference systems Σ
and Σ′ can be written as:

(19.2)

A general Lorentz transformation 

(19.3)

must keep the length of the vector (x0,x1,x2,x3) invariant:

(19.4)

In analogy to the 3-dimensional Euclidean space one can ful�ill this condition in terms of an
orthogonality relation for the transformation coef�icients aμν:

(19.5)

where aT  is the transposed matrix to a. Equation (19.5) follows from:

x0 = ict, x1 = x, x2 = y, x3 = z.

∑3
μ=0 x

2
μ = ∑3

μ=0 x
′2
μ .

x′
μ = ∑ν aμνxν; μ, ν = 0, 1, 2, 3

∑3
μ=0 x

2
μ = r2 − c2t2 = const.

∑3
ν=0 a

T
μνaνλ = δμλ,
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(19.6)

For a Lorentz transformation in the x1 direction with velocity β = v/c the transformation matrix
aμν  has the special form

(19.7)

with γ 2 = 1/(1 − β2). The restriction in (19.7) to a boost in x1-direction can be solved by
replacing (19.7) with an orthogonal transformation in 3-dim space in the form of a rotation. The
basis for this is the group property of Lorentz transformations:

(1.) If we carry out 2 Lorentz transformations one after the other,

(19.8)

the result

(19.9)

is again a Lorentz transformation, since for the matrices a′′, a′ and a we have:

(19.10)

and as required

(19.11)

with 14 as the 4 × 4 identity matrix.

The connection between the elements of the group is therefore the (4 ×4) matrix
multiplication.

(2.) The neutral element is the 14 matrix for Lorentz transformations with velocity v = 0.
(3.) For every transformation a there is an inverse transformation, since from (19.5) we have:

(19.12)

thus:

(19.13)

(4.) Since the matrix multiplication is associative, it also applies to Lorentz transformations.
The orthogonal transformations in 3-dim. space (rotations and re�lections) form a subgroup

of the Lorentz group, represented by
(19.14)

∑μ x‵
2
μ= ∑μ∑νν ′ aμνaμν ′xνxν ′ = ∑νν ′{∑μ a

T
νμaμν ′}xνxν ′ = ∑νν ′ δνν ′xνxν ′ = ∑ν x

2
ν.

aμν =

⎛⎜⎝γ −iγβ 0 0

iγβ γ 0 0

0 0 1 0

0 0 0 1

⎞⎟⎠x′
μ = ∑ν aμνxν; x′′

ρ = ∑ν a
′
ρνx

′
ν; (Σ → Σ′ → Σ′′),

x′′
ρ = ∑ν,μ a

′
ρνaνμxμ = ∑μ a

′′
ρμxμ; (Σ → Σ′′)

(a′′)Ta′′ = (a′a)T (a′a) = aT (a′Ta′)a = aTa = 14,

aTa = 14; (a′)Ta′ = 14

det(aTa) = (det(a))2 = 1,

det(a) ≠ 0.



with i, k = 1, 2, 3 and

(19.15)

The general Lorentz transformation (19.3) with the condition (19.5) is obtained by combining
(19.7) with (19.14), (19.15) and adding the time	reversal

(19.16)

as well as re�lections in space

(19.17)

The Lorentz transformations therefore include: rotations in 3-dim. space, space re�lections and
time reversal as well as the transition between inertial systems that move with constant velocity
relative to each other.

Addition: For translations in space or time the condition (19.2) does not change because it
only affects spatial and temporal distances. The group of the homogeneous Lorentz
transformations (discussed above) we can therefore extend by translations	in	space	and	time.
We then get the 10-parameter Poincaré	group, which has 3 parameters for spatial rotations, 3
parameters for Lorentz boosts with the velocity v and 4 parameters for space-time translations.
Today	it	is	considered	as	the	basis	invariance	group	for	all	physics.

19.2	 Lorentz	Group	(Four-Tensors)
Analogous to the case of the group of rotations, we now de�ine tensors (of different rank) with
respect to the Lorentz group:

(1.) Lorentz	scalar
We call a quantity Ψ a Lorentz	scalar, if Ψ does not change for Lorentz transformations,

(19.18)

An example for this is the electric charge (see Sect. 2. 1).
(2.) Lorentz	vector
We de�ine a Lorentz	or	four-vector by the property that for Lorentz transformations its

components Aμ transform as the components xμ, i.e.

(19.19)

Examples:

(i) The partial derivatives of a Lorentz scalar Ψ with respect to the xμ form the
components of a four-vector:

(19.20)

dμν = ( )
1 0

0 dik

∑3
m=1 d

T
imdmj = δij.

x′
i = xi; x′

0 = −x0; i = 1, 2, 3

x′
i = −xi; x′

0 = x0; i = 1, 2, 3.

Ψ → Ψ′ = Ψ.

Aμ → A′
μ = ∑ν aμνAν.

∂Ψ′

∂x′
μ

= ∑ν
∂Ψ
∂xν

∂xν

∂x′
μ

= ∑ν aμν
∂Ψ
∂xν

,



using the inverse expression to (19.3),

(19.21)

(ii) The 4-divergence of a four-vector is a four-point scalar

(19.22)

considering (19.5).
(iii) Choosing the components of the four-vector according to (19.19) as

(19.23)

then follows from (19.22):

(19.24)

The operator

(Δ −
1

c2

∂ 2

∂t2
) = ∑

μ

∂ 2

∂x2
μ

is invariant for Lorentz transformations.

Thus for a four-vector with the components Aμ the wave equation

(19.25)

transforms as like the μth component of a four-vector.

(iv) The dot product of two four-vectors is a four-point scalar:

(19.26)

(3.) Lorentz	tensors	of	2nd	rank
Except for scalars (=tensors of 0th rank) and the vectors (=tensors of 1st rank) we will still

encounter tensors of 2nd rank like the electromagnetic �ield-strength tensor (see below). They
are de�ined as 4 × 4 matrices; their components Fμν  have the transformation property

(19.27)

xν = ∑ρ aρνx
′
ρ.

∑ν
∂A′

ν

∂x′
ν

= ∑ν∑μ,μ′ aνμaνμ′
∂Aμ

∂xμ′
= ∑μ

∂Aμ

∂xμ

Aμ = ∂Ψ
∂xμ

,

∑ν
∂ 2

∂x2
ν

Ψ = ∑ν
∂ 2

∂x′2
ν

Ψ′.

∑ν
∂ 2

∂x2
ν
Aμ = (Δ − 1

c2
∂ 2

∂t2 )Aμ

∑μA
′
μB

′
μ = ∑μ∑ν,ρ aμρaμνAρBν = ∑ν AνBν.

F ′
μν = ∑λ,σ aμλaνσFλσ.



19.3	 Four-Current	Density
To prove the covariance of electrodynamics we investigate the transformation properties of the
sources j and ρ of the electromagnetic �ield. The charge conservation serves as a starting point:

(19.28)

With the notation

(19.29)

we can write the continuity Eq. (19.28) in four-notation as

(19.30)

Since charge invariance (19.30) must hold in every inertial frame (19.30) is invariant for
Lorentz transformations. Then according to (19.22) the jμ must be the components of a four-
vector (four-current	density).

Let’s convince ourselves directly for a simple case. We consider a charge distribution at rest
in the system Σ′:

(19.31)

As components of a four-vector j′
μ transforms for the Lorentz transformation with velocity 

β = v/c in x1-direction as

(19.32)

the same as

(19.33)

A comparison with (19.29) gives:

(19.34)

We know that a volume element dV0 resting in Σ′ for an observer in Σ has the size

(19.35)

due to the length contraction. The charge invariance,

(19.36)

shows that icρ can be viewed as the 0th component of a four-vector. Furthermore, with (19.34)
we get

∇ ⋅ j +
∂ρ
∂t = 0.

j0 = icρ; j1 = jx; j2 = jy; j3 = jz

∑μ
∂

∂xμ
jμ = 0.

j′
0 = icρ0, j′

1 = j′
2 = j′

3 = 0.

x0 = γ(iβx′
1 + x′

0); x1 = γ(x′
1 − iβx′

0); x2 = x′
2; x3 = x′

3,

j0 = icγρ0; j1 = γρ0v; j2 = 0; j3 = 0.

ρ = γρ0.

dV = dV0

γ

∫
V
ρ dV = ∫ γρ0

dV0

γ
= ∫ ρ0dV0



(19.37)

in accordance with the de�inition of the (ordinary) current density; the components of 
→
j are the

1, 2, 3 components of a four-vector.

19.4	 Four-Potential
To determine the transformation properties of the vector potential A and the scalar potential Φ
we employ the Lorentz gauge 

(19.38)

Then for A and Φ the following inhomogeneous wave equations hold:

(19.39)

Introducing in analogy to (19.29):

(19.40)

the inhomogeneous wave equations can be summarized as:

(19.41)

using

(19.42)

The right side of (19.41) shows the components of a four-vector and the differential operator 
(Δ − 1

c2
∂ 2

∂t2 ) according to (19.24) is a four-scalar, then the Aμ turn out to be the components of

a four-vector.
The Lorentz convention (19.38) is now written as:

(19.43)

and is Lorentz-invariant according to (19.22).

Result:
The equations (19.30) and (19.43) are Lorentz-invariant, i.e. they do not change when moving
from an inertial system to another. If in Σ holds

j1 = ρv

∇ ⋅ A + 1
c2

∂Φ
∂t

= 0.

(Δ − 1
c2

∂ 2

∂t2 )A = −μ0j; (Δ − 1
c2

∂ 2

∂t2 )Φ = −
ρ

ϵ0
.

(Aμ) = ( i
c

Φ, A),

(Δ − 1
c2

∂ 2

∂t2 )Aμ = −μ0jμ

ϵ0μ0 = c−2.

∑μ
∂

∂xμ
Aμ = 0



(19.44)

then also in Σ′:

(19.45)

The 4 equations (19.41) are covariant because from (19.41) in Σ follows for Σ′

(19.46)

since:

(19.47)

= −μ0∑
ν

aνμjμ = −μ0j
′
μ.

19.5	 Plane	Waves
A plane wave in vacuum is described (in an inertial system Σ) by

(19.48)

with the abbreviations:

(19.49)

Due to the covariance of the wave equation

(19.50)

it follows from (19.48) that in another system Σ′ one again obtains a plane wave in line with
(19.19):

(19.51)

∑μ
∂

∂xμ
jμ = 0; ∑μ

∂
∂xμ

Aμ = 0,

∑μ
∂

∂x′
μ
j′
μ = 0; ∑μ

∂
∂x′

μ
A′

μ = 0.

(Δ − 1
c2

∂ 2

∂t2 )A′
μ = −μ0j

′
μ,

∑ν aνμ(Δ − 1
c2

∂ 2

∂t2 )Aμ = (Δ − 1
c2

∂ 2

∂t2 )∑ν aνμAμ = (Δ − 1
c2

∂ 2

∂t2 )A′
μ

Aμ(xρ) = A
(0)
μ exp (i(k ⋅ r − ωt)) = A

(0)
μ exp (i∑λ kλxλ)

k0 = i ω
c
; k1 = kx; k2 = ky; k3 = kz.

(Δ − 1
c2

∂ 2

∂t2 )Aμ = 0

A′
μ(x′

ρ) = ∑ν aμνAν(xλ) = ∑ν aμνA
(0)
ν exp (i∑λ kλxλ)

= A
′(0)
μ exp (i∑λ k

′
λx

′
λ).



The phase of the wave must be Lorentz-invariant:

(19.52)

as in case of a point-like source, where the wavefronts are spherical surfaces—moving with
velocity c—in each inertial system.

Since (19.52) has the form of an (invariant) scalar product, the components kμ are the
components of a four-vector. For a boost in x-direction they transform as:

(19.53)

(19.54)

Using the dispersion relation (for massless photons),

(19.55)

and denoting by ϕ and ϕ′ the angles between k and k′ with the direction of v (the x-direction
in the present case) we get:

(19.56)

and

(19.57)

Equation (19.56) describes the Doppler-effect, which apart from the longitudinal effect,

(19.58)

for β ≪ 1 and ϕ = 0,π, also includes a transversal effect,

(19.59)

for ϕ = ±π/2, which is a typical relativistic phenomenon. This effect was proven in 1938
when studying the radiation of moving hydrogen atoms. As an example for the longitudinal effect
we mention the red	shift of light from distant galaxies, which shows that these galaxies are
moving away from us.

∑λ kλxλ = ∑λ k
′
λx

′
λ

k′
x = γ(kx − v

c2 ω); k′
y = ky; k′

z = kz;

ω′ = γ(ω − vkx).

ω
k

= c = ω′

k′ ,

ω′ = γω(1 − β cos ϕ)

cos ϕ′ = k
k′ γ(cos ϕ − β) =

cosϕ−β

1−βcosϕ .

ω′ = ω
1∓β

√1−β2
≈ ω(1 ∓ β)

ω′ = ω

√1−β2
,



19.6	 Transformation	of	the	Fields	E	and	B
Knowing A and Φ we can calculate the �ields E and B by

(19.60)

We now want to rewrite (19.60) in the coordinates xμ and the components of the four-potential 
Aμ. We get e.g.:

(19.61)

Equation (19.61) suggests to introduce the following antisymmetric 4×4 matrix:

(19.62)

It has exactly 6 independent elements, for which according to 19.60), (19.61) one �inds:

(19.63)

The matrix (19.62) is a 2nd rank Lorentz tensor since:

(19.64)

Thus we also know the transformation properties of the �ields E and B. For the special
transformation (19.7) we �ind from (19.64) and (19.63)

(19.65)

E ′
z = γ(Ez + vBy); B′

z = γ(Bz −
v

c2
Ey).

In general, the parallel components (in the direction of v) remain without change:

(19.66)

while the transversal components change according to:

B = ∇ × A; E = −∇Φ − ∂A
∂t

.

i
c
E1 = ∂A1

∂x0
− ∂A0

∂x1
; B1 = ∂A3

∂x2
− ∂A2

∂x3
.

Fμν = ∂Aν

∂xμ
−

∂Aμ

∂xν
= −Fνμ.

Fμν = .

⎛⎜⎝ 0 i
c
E1

i
c
E2

i
c
E3

− i
c
E1 0 B3 −B2

− i
c
E2 −B3 0 B1

− i
c
E3 B2 −B1 0

⎞⎟⎠F ′
μν = ∑λρ aμλaνρ{

∂Aρ

∂xλ
− ∂Aλ

∂xρ
} = ∑λρ aμλaνρFλρ.

E ′
x = Ex; B′

x = Bx; E ′
y = γ(Ey − vBz); B′

y = γ(By + v
c2 Ez);

E′
∥ = E∥; B′

∥ = B∥,



(19.67)

The inverse transformation

(19.68)

is obtained in analogy to the case of coordinate transformations. The equations (19.67),
(19.68) show the inevitable connection of the �ields E and B in the electromagnetic	�ield.

19.7	 The	Coulomb	Field
The �ield of a point charge q resting in Σ′ is:

(19.69)

According to (19.66), (19.68) in a system Σ′ moving with the velocity v = (v, 0, 0) relative to Σ
the �ield components become:

(19.70)

Ey = γE
′
y =

q

4πϵ0

γy

(γ 2(x − vt)2 + y2 + z2)
3/2
;

Ez = γE ′
z =

q

4πϵ0

γz

(γ 2(x − vt)2 + y2 + z2)
3/2

.

Here x′, y′, z′ is written explicitly (after Lorentz transformation) as a function of x, y, z. The
�ield appears in Σ as well as in Σ′ as a central �ield; However, in Σ it is no longer isotropic
because the factor γ 2 in (19.70) the x direction is speci�ied compared to the y and z directions.
According to (19.68) an observer in Σ sees a magnetic �ield:

(19.71)

since the charge q is moving for him, i.e. represents a current. To illustrate (19.70) and
(19.71) we consider the limiting case γ ≫ 1:

E′
⊥ = γ(E⊥ + (v × B)); B′

⊥ = γ(B⊥ − 1
c2 (v × E)).

E⊥ = γ(E′
⊥ − (v × B′)); B⊥ = γ(B′

⊥ + 1
c2 (v × E′))

E′(r′) = q
4πϵ0

r′

r′3 ; B′(r′) = 0.

Ex = E ′
x =

q

4πϵ0

γ(x−vt)

(γ 2(x−vt)2+y2+z2)
3/2 ;

B = 1
c2 (v × E),



Fig.	19.1 Field lines of a static (left) and boosted (right) electric �ield

(i) Close to the x axis (y, z ≈ 0;x − vt ≠ 0) Ex becomes

(19.72)

which, compared to the static �ield, reduces the �ield strength by a factor of γ−2.
(ii) In the plane parallel to the y − z plane to q we get:

(19.73)

which, compared to the static �ield, results in an ampli�ication by a factor of γ. The—radially
directed—�ield lines therefore are diluted in the direction of the motion compared to the static
�ield, but condensed perpendicular to it (Fig. 19.1).

For γ → ∞ (ultra-relativistic case) E ⊥ B, such that with (19.71) the �ield lines of the B-
�ield run concentrically around q in the y − z plane, i.e. perpendicular to the direction of motion.

Summary: The basic equations of electrodynamics are covariant with respect to Lorentz
transformations and have the same form in every inertial system. They thus satisfy Einstein’s
principle of special relativity. In addition the transformation of the �ields E and B have been
derived with help of the electromagnetic �ield-strength tensor.

Ex ≈ 1
γ 2

q

4πϵ0

1

(x−vt)2 ,

Ey = γy

(y2+z2)3/2 ; Ez = γz

(y2+z2)3/2 ,



Appendix

Appendix
In this appendix we provide a brief introduction to volume, surface and path integrals which are of
particular importance for mechanics and electrodynamics. Furthermore, the Gauss’	theorem and Stoke’s
theorem are introduced and discussed in connection with a variety of examples, that should help the reader
to solve physical problems.

A.1	Volume	Integrals
In physics volume	integrals are of particular interest; they are triple integrals e.g. over a spatial region V,
i.e. dV = d3x. A simple example in cartesian coordinates (x, y, z) for the integration of a scalar function 
ρ(x, y, z) over a �inite cuboid is:

(A.1)

Here V is the volume of a cuboid extending in the x direction from xa to xb, in the y direction from ya to yb
and in the z direction from za to zb. The function ρ(x, y, z) e.g. is a mass density or charge density de�ining
the mass (or charge) at position r = (x, y, z). The mass or charge in an in�initesimal volume dV around the
point r then is ρ(x, y, z) dV = ρ(x, y, z) dx dy dz.

Example	1: Volume VQ of a cuboid of dimensions l, b, h.
We choose a cartesian coordinate system with its origin O in a corner of the cuboid and the adjacent

edges with the positive coordinate semi-axes:

(A.2)

Example	2: Volume of a cylinder with radius R and length L.
We choose the cartesian coordinates such that the z axis coincides with the cylinder axis and the bottom

surface of the cylinder in the x-y plane is at z = 0, while the top surface is at z = L. The interior of the
cylinder then is: 0 < z < L, −R < x < R, −√R2 − x2 < y < √R2 − x2. The volume in cartesian
coordinates is calculated as:

(A.3)

This integral can in principle be solved by the substitution x = R cos θ (recommended for practice). It’s
easier to compute the integral for a better choice of coordinates, i.e. here cylindrical coordinates:

(A.4)

where the transformation of the integral to cylindrical coordinates includes a transformation determinant
(r). Any integral of a scalar function f(x, y, z) over a cylinder volume (radius R and length L) then can be
written as

(A.5)

if one takes the cylinder base at z = 0.
Example	3: Integral of f(x, y, z) = x2 + y2 − 2z2 over a cylinder volume:

(A.6)

∫
V

dV ρ(x, y, z) :=
xb

∫
xa

dx
yb

∫
ya

dy
zb

∫
za

dz ρ(x, y, z) :=
xb

∫
xa

dx(
yb

∫
ya

dy(
zb

∫
za

dz ρ(x, y, z))) .

VQ =
l

∫
0
dx

b

∫
0
dy

h

∫
0
dz 1 = lbh .

VC = ∫
C
dV =

L

∫
0
dz

R

∫
−R

dx
√R2−x2

∫
−√R2−x2

dy 1 = L
R

∫
−R

dx 2√R2 − x2 .

VC = ∫
C
dV = ∫ R

0
dr r ∫ 2π

0
dφ ∫ L

0
dz = L ∫ R

0
dr r ∫ 2π

0
dφ = 2πL ∫ R

0
dr r = πLR2,

∫
C
dx dy dz f(x, y, z) = ∫ R

0
r dr ∫ 2π

0
dφ ∫ L

0
dz f(r cos φ, r sin φ, z) ,

R L



= ∫
R

0
dr ∫

2π

0
dφ ∫

L

0
dz (r3 − 2z2r) = 2π∫

R

0
dr ∫

L

0
dz (r3 − 2z2r) =

= 2π∫
R

0
dr (r3L − 2r

L3

3
) = 2π(

R4

4
L − R2 L

3

3
) = πL(

R4

2
−

2

3
R2L2) .

Example	4: Volume of a cone in cylindrical coordinates. Let the distance of the tip from the base be h and
the radius of the base be R. We choose the coordinate system in such a way that the z axis is on the cone axis
and the tip of the cone is at the origin. z = h (�loor), r/z = R/h (A mantle); interior: 0 < z < h, r < zR/h:

(A.7)

Many problems in physics have spherical symmetry such that a proper choice are spherical coordinates.
In this case the transformation determinant from cartesian to spherical coordinates is r2 sin ϑ. Each integral
of a scalar function f(x, y, z) over a spherical volume K(R) with radius R then also can be written as

(A.8)

Example	5: Sphere with radius R → ∞ (and center at coordinate origin) with the mass density 
ρ =exp (−r/r0) g/cm3 with r0 = 1 cm. The mass density of the spherically symmetric system only depends
on r = |r|. We set R = ∞, ρ0 = 1 g/cm3, a = r/r0, (r0da = dr); the total mass M then is calculated as

(A.9)

= 2 ⋅ 2π r3
0 ρ0

∞

∫
0

a2 exp (−a) = 4πr3
0 ρ0 2 = 8π [g] ≈ 25 [g] ,

with the help of the additional integral (partial integration):

(A.10)

A.2	Surface	Integrals	of	Scalar	Functions
In a number of physical problems one has to integrate scalar functions f(x, y, z) over the surface of a
geometric volume. The integration over the surface of a cuboid ∂Q contains 6 contributions, i.e.

(A.11)

+∫
yb

ya

dy∫
xb

xa

dx f(x, y, z = za) + ∫
yb

ya

dy∫
xb

xa

dx f(x, y, z = zb)

I = ∫
Z
dxdydz (x2 + y2 − 2z2) = ∫ R

0
r dr ∫ 2π

0
dφ ∫ L

0
dz (r2 − 2z2)

Vcone =
h

∫
0
dz

2π

∫
0
dφ

zR/h

∫
0

dr r =
h

∫
0
dz 2π z2R2

2h2 = π h3

3
R2

h2 = 1
3 hπR2 .

∫
K(R) dx dy dz f(x, y, z)

= ∫ R

0 r2 dr ∫ 2π
0 dφ ∫ π

0 sin ϑ dϑ f(r sin ϑ cos φ, r sin ϑ sin φ, r cos ϑ) .

M = ∫
V

dV ρ(r) =
π

∫
0
dϑ sin ϑ

2π

∫
0
dφ

∞

∫
0
dr r2ρ0 exp (−r/r0)

∞

∫
0
da a2 exp (−a) = −a2 exp (−a)

∞

0
−

∞

∫
0
da 2a (−1) exp (−a)

= −2
∞

∫
0
da (−1) exp (−a) = 2.∣∫

F=∂Q dF f(x, y, z) = ∫ yb
ya
dy ∫ zb

za
dz f(x = xa, y, z) + ∫ yb

ya
dy ∫ zb

za
dz f(x = xb, y, z)



+∫
zb

za

dz∫
xb

xa

dx f(x, y = ya, z) + ∫
zb

za

dz∫
xb

xa

dx f(x, y = yb, z) .

In the case of cylindrical coordinates we get for the integration over the cylinder surface 3 contributions
from the bottom and top surfaces (at z = za and z = zb) and the lateral surface (r = R):

In case of a sphere K(R) of radius R there is only an integration over the spherical surface contribution (for 
r = R):

(A.13)

If f(r,ϑ,φ) does not depend on ϑ or just from cos ϑ, we substitute and get

(A.14)

= ∫
1

−1
d cos ϑ∫

2π

0
dφ R2 f(r = R, cos ϑ,φ) .

In the special case that f only depends on r we obtain the simple result:

(A.15)

i.e. the function f(r) at the point r = R is multiplied by the spherical surface 4πR2.

A.3	Surface	Integrals	of	Vector	Fields
Areas in a plane (e.g. the (x, y) plane) have apart from their surface area also an orientation in 3-dim. space,
i.e. in ±z-direction (in this case). For in�initesimal surfaces df  with area |df | and area unit vector f/|f |—
perpendicular to the surface—one de�ines the �lux of a vector �ield A(r) by the in�initesimal area df  as a dot
product, i.e.

(A.16)

The generalization to �inite surfaces F then is the sum over all in�initesimal surfaces, i.e. the surface integral
of the vector �ield A(r)

(A.17)

Example: We consider a circular area with radius R and center at z = 0 in the x, y plane. Let the circular area
vector be in the +z direction. The �lux of the vector �ield A(r) = (Ax(r),Ay(r),Az(r)) through this circular
area only provides the surface integral of the component Az(x, y, z = 0) since A ⋅ ez = Az: (in cylindrical
coordinates)

(A.18)

In case of general areas the determination of the local surface vector is not unique. However, for closed
surfaces this ambiguity can be avoided by de�ining the direction of the area vector to be ‘outwards’.

Gauss’	integral	theorem:
It is often very helpful to establish a connection between a volume integral over the divergence of a vector
�ield A(r) and a surface integral over the border of the volume F = ∂V  with the vector �ield A(r).
Especially in electrodynamics this connection allows for a simple calculation of central quantities such as the

∫
F=∂C dF f(r,φ, z) = ∫ R

0 rdr ∫ 2π
0 f(r,φ, z = za) + ∫ R

0 rdr ∫ 2π
0 dφ f(r,φ, z = zb) + ∫ zb

za
dz ∫ 2π

0 dφ R f(r

∫
F=∂K dF f(r,ϑ,φ) = ∫ π

0 sin ϑ dϑ ∫ 2π
0 dφ R2 f(r = R,ϑ,φ) .

∫
F=∂K dF f(r, cos ϑ,φ) = − ∫ cos(π)

cos(0)
d cos ϑ ∫ 2π

0 dφ R2 f(r = R, cos ϑ,φ)

∫
F=∂K

dF f(r) = ∫ 1
−1

d cos ϑ ∫ 2π
0

dφ R2 f(r = R) = 4πR2f(R) ,

dΦ = A(r) ⋅ df .

Φ = ∫
F
dΦ = ∫

F
A(r) ⋅ df .

Φ = ∫
F
Az(x, y, z = 0) dxdy = ∫ 2π

0 dφ ∫ R

0 dr r Az(r cos φ, r sin φ, z = 0) .



electric �ield E(r). Gauss’ integral theorem provides this connection, i.e. the scalar �lux of the �ield A(r)
through the closed area F = ∂V  is equal to the integral of the divergence of A over the enclosed volume V:

(A.19)

The area element df  is a directed quantity and is oriented vertically (outwards). Depending on the
symmetry of the given problem, appropriate coordinates have to be chosen.

Examples:
(1.) Let V be a cube with side length 2a and center at the coordinate origin and A = (0, 0, z). In this case it is
convenient to use cartesian	coordinates. With

(A.20)

the volume integral becomes

(A.21)

The surface integral can be written as

(A.22)

Only the z component of the �ield contributes to the integral since Ax = Ay = 0. The The integration—to be
carried out—therefore consists of two terms corresponding to the sides of the cube for z = a and z = −a.
The surface integral therefore is

(A.23)

= a(2a)(2a) + a(2a)(2a) = 8a3,

where the minus sign in front of the second integral comes from the orientation of the side z = −a in the
negative z-direction.

(2.) Let V be a cylinder with radius R, height h and center at the coordinate origin and A = (x, y, z). In
this case it is convenient to use cylindrical	coordinates. With

(A.24)

the volume integral is

(A.25)

To calculate the surface integral, we must add the contributions of the top, the bottom and the mantle of the
cylinder. For the bottom we get:

(A.26)

For the top

(A.27)

∫
∂V

A ⋅ df = ∫
V

(∇ ⋅ A(r)) dV .

∇ ⋅ A = 0 + 0 + 1 = 1

∫ a

−a
dx ∫ a

−a
dy ∫ a

−a
dz 1 = (2a)(2a)(2a) = 8a3.

∫
F=∂V (Axdydz + Aydzdx + Azdxdy).

∫ a

−a
dy ∫ a

−a
dxAz(a) − ∫ a

−a
dy ∫ a

−a
dxAz(−a) = ∫ a

−a
dy ∫ a

−a
dx a − ∫ a

−a
dy ∫ a

−a
dx (−a)

∇ ⋅ A = 1 + 1 + 1 = 3

3 ∫ R

0 rdr ∫ 2π
0 dφ ∫ h/2

−h/2 dz = 3( R2

2 )(2π)( h
2 − −h

2 ) = 3πR2h.

∫ 2π
0 dφ ∫ R

0 rdr ⋅ = ∫ 2π
0 dφ ∫ R

0 rdr h
2

= πR2h
2

.
⎛⎜⎝ x

y

h/2

⎞⎟⎠ ⎛⎜⎝0

0

1

⎞⎟⎠∫ 2π
0 dφ ∫ R

0 rdr ⋅ = ∫ 2π
0 dφ ∫ R

0 rdr h
2

= πR2h
2

.
⎛⎜⎝ x

y

−h/2

⎞⎟⎠ ⎛⎜⎝ 0

0

−1

⎞⎟⎠



The mantle gives

(A.28)

The sum of all contributions also provides the value 3πR2h for this surface integral.
(3.) Let V be a sphere with radius R and center at the coordinate origin and A = (x, y, z). In this case, it

is best to use spherical	coordinates. With

(A.29)

the volume integral is

(A.30)

The surface integral can be written as

(A.31)

= ∫
2π

0
dφ∫

1

−1
d(cos θ) R2 ⋅

= ∫
2π

0
dφ∫

1

−1
d(cos θ) R3((cos2 φ+ sin2 φ) sin2 θ+ cos2 θ)

= ∫
2π

0
dφ∫

1

−1
d(cos θ) R3 = 4πR3,

which is identical to (A.30).

A.4	Line	Integrals	and	Stokes’	Integral	Theorem
An oriented	path in space from a point A to a point B is characterized by vectors r(s), which provide a
parameterization of the path such that r(a) = A and r(b) = B. The parameter s runs through all values
between a and b. For a closed path we have r(a) = A = B = r(b).

Examples:
(1.) Every linear path from A = (xA, yA, zA) to B = (xB, yB, zB) is given by

(A.32)

For A = (0, 1, 0) and B = (2, 2, 0) a corresponding parameterization is given by

(A.33)

∫ 2π
0 dφ ∫ h/2

−h/2
dzR ⋅

= ∫ 2π
0 dφ ∫ h/2

−h/2 dzR
2(cos2 φ+ sin2 φ) = 2πR2h.

⎛⎜⎝R cos φ

R sin φ

z

⎞⎟⎠ ⎛⎜⎝cos φ

sin φ

0

⎞⎟⎠∇ ⋅ A = 1 + 1 + 1 = 3

3 ∫ R

0 r2dr ∫ 2π
0 dφ ∫ 1

−1 d(cos θ) = 3( R3

3 )(2π)2 = 4πR3.

∫ 2π
0 dφ ∫ 1

−1 d(cos θ) R2
A(R,ϑ,φ) ⋅ er

⎛⎜⎝R cos φ sin θ

R sin φ sin θ

R cos θ

⎞⎟⎠ ⎛⎜⎝cos φ sin θ

sin φ sin θ

cos θ

⎞⎟⎠= + s with s ∈ [0, 1].
⎛⎜⎝x

y

z

⎞⎟⎠ ⎛⎜⎝xA

yA

zA

⎞⎟⎠ ⎛⎜⎝xB − xA

yB − yA

zB − zA

⎞⎟⎠r(s) = = + s with s ∈ [0, 1].
⎛⎜⎝x(s)

y(s)

z(s)

⎞⎟⎠ ⎛⎜⎝0

1

0

⎞⎟⎠ ⎛⎜⎝2

1

0

⎞⎟⎠



Closed pathes such as triangles, squares, polygons etc. then are constructed from parts of the form (A.32).
(2.) A circle in the x − y plane with radius R and center in the coordinate origin has the standard

parameterization,

(A.34)

For parts of the circular arc the parameter s is limited to the corresponding interval [θA, θB].
(3.) A helix in the z direction with radius R is described by

(A.35)

where the screw reaches the height h after one revolution. In case of an in�inite helical line s ∈ [0, ∞] has to
be set.

(4.) With the de�inition of an oriented path we can de�ine the path integral (or line	integral) of a vector
�ield E along the path S as follows:

(A.36)

In this way, a line	integral of a vector �ield turns out to be a simple one-dimensional integral, since the dot
product of vectors is a scalar function (depending on the parameter s).

Physical	example: The work done by a force F(r) on a body along a path S is

(A.37)

In this case the parameter s = t has the meaning of time and dr

dt
 that of a velocity.

Examples:
(1.) Let E = (y2, y, z/4). We want to calculate the line integral of the vector �ield E along a line segment of 
A = (0, 0, 0) to B = (0, 1, 2). In this case a parameterization of the path is given by

(A.38)

and for the derivative with respect to s follows

(A.39)

For the line integral we then get from (A.36)

(A.40)

(2.) Let E = (y, −x, z3). We want to calculate the line integral of the vector �ield E along the positive
semicircle from the point A = (R, 0, 0) to B = (−R, 0, 0) with radius R and center in the coordinate origin.
In this case we use the parameterization of the path (A.34)

r(s) = = with s ∈ [0, 2π].
⎛⎜⎝x(s)

y(s)

z(s)

⎞⎟⎠ ⎛⎜⎝R cos s

R sin s

0

⎞⎟⎠r(s) = = with s ∈ [0, 2π],
⎛⎜⎝x(s)

y(s)

z(s)

⎞⎟⎠ ⎛⎜⎝ R sin s

R cos s

hs/(2π)

⎞⎟⎠IS = ∫
S
dr ⋅ E(r) = ∫ b

a
ds ( dr

ds
⋅ E(r(s))).

W = ∫
S
dr ⋅ F(r) = ∫ sb

sa
ds( dr

ds
⋅ F(r(s))) = ∫ tb

ta
dt( dr

dt
⋅ F(r(t))).

r(s) = = s with s ∈ [0, 1]
⎛⎜⎝x(s)

y(s)

z(s)

⎞⎟⎠ ⎛⎜⎝0

1

2

⎞⎟⎠dr

ds
= .
⎛⎜⎝0

1

2

⎞⎟⎠IS = ∫ 1
0 ds ⋅ = ∫ 1

0 ds (0 + s + s) =′ 2 ∫ 1
0 ds s = 1.

⎛⎜⎝0

1

2

⎞⎟⎠ ⎛⎜⎝ s2

s

s/2

⎞⎟⎠



(A.41)

its derivative is

(A.42)

The line integral follows from (A.36)

(A.43)

The length	of	a	path is de�ined by

(A.44)

As an example, let’s consider the arc length of a circle with radius R:

(A.45)

Stokes’ theorem provides an answer to the question with respect to the path	(in)dependence of line
integrals with �ixed start and end points. This question is particularly important for the concept of work W
(A.37), because for a given force F(r) one could perform different work to move a body from A to B in
different ways.

We now consider two different paths S1 and S2, which connect points A and B. For an arbitrary vector
�ield E usually we have

(A.46)

The necessary (and suf�icient) condition for the path independence of the line integral of a vector �ield gives
Stokes	theorem:

(A.47)

Here the line integral of E(r) along a closed path S is considered, which has an oriented area F. We write in
short: S = ∂F . The direction of rotation of the curve is chosen such that the direction of rotation of the edge
of the surface element with the surface normal forms a right-handed screw.

We claim now that the path independence of the line integral from E(r) exists if and only if

(A.48)

For the proof let’s consider two different paths S1 and S2 from A to B. Let’s �irst take the path S1 from A to B
and then the path S2 back from B to A (in the opposite direction); in this way we get a closed path with an
enclosed area F ≠ 0, i.e. according to Stokes’ theorem:

(A.49)

r(s) = = with s ∈ [0,π] ;
⎛⎜⎝x(s)

y(s)

z(s)

⎞⎟⎠ ⎛⎜⎝R cos s

R sin s

0

⎞⎟⎠dr

ds
= with s ∈ [0,π].
⎛⎜⎝−R sin s

R cos s

0

⎞⎟⎠IS = ∫ π

0 ds ⋅ = − ∫ π

0 ds R2(sin2 s+ cos2 s) = −πR2.
⎛⎜⎝−R sin s

R cos s

0

⎞⎟⎠ ⎛⎜⎝ R sin s

−R cos s

0

⎞⎟⎠∫
S

|dr| = ∫ b

a
ds dr

ds
= ∫ b

a
ds ( dr

ds
⋅ dr

ds
)

1/2
.∣ ∣L = ∫ 2π

0 ds = ∫ 2π
0 ds √R2(sin2 s+ cos2 s) = 2πR.∣⎛⎜⎝−R sin s

R cos s

0

⎞⎟⎠∣∫
S1
dr ⋅ E(r) ≠ ∫

S2
dr ⋅ E(r).

∫
S=∂F dr ⋅ E(r) = ∫

F
(∇ × E) ⋅ df .

∇ × E = 0.

∫
S1
dr ⋅ E(r) − ∫

S2
dr ⋅ E(r) = ∫

F
(∇ × E) ⋅ df .



Thus if Eq. (A.48) is satis�ied, the right side of the Eq. (A.49) is zero, i.e. the difference of the path integrals
must vanish.

Example: Let E = (z5 + x, 2x, 0). We want to verify the theorem of Stokes for the path over the positive
semicircle from the point A = (R, 0, 0) to B = (−R, 0, 0) with radius R and center in the coordinate origin
and from a straight line from B to A.

For the line integral we �irst calculate the contribution from the semicircle. The corresponding
parameterization is given by (A.34),

The contribution of the straight line can be calculated as

(A.50)

Now the calculation over the surface integral: Since the enclosed surface is oriented in the z-direction, we
only need the z-component of the rotation of the �ield:

(A.51)

The surface integral thus is

(A.52)

in agreement with Stokes’ theorem.

I1 = ∫ π

0 ds ⋅ = ∫ π

0 ds R2(− cos s sin s + 2 cos2 s)

= R2[− sin2s
2 + s+ sin s cos s]

π

0
= πR2.

⎛⎜⎝−R sin s

R cos s

0

⎞⎟⎠ ⎛⎜⎝0 + R cos s

2R cos s

0

⎞⎟⎠I2 = ∫ 1
0 ds ⋅ = ∫ 1

0 ds 2R2(2s − 1) = 2R2[s2 − s]1

0
= 0.

⎛⎜⎝2R

0

0

⎞⎟⎠ ⎛⎜⎝0 + 2Rs − R

4Rs − 2R

0

⎞⎟⎠(∇ × E)z = ( ∂
∂xEy − ∂

∂y Ex) = 2 + 0 = 2.

IF = 2 ∫ R

0 rdr ∫ π

0 dφ = 2( R2

2 )π = πR2
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Galilei transformation
Gauge freedom
Gauge transformation
Gauss' law
Green's functions
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Radiation damping
Radiation �ields
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Retarded potentials
Röntgen spectrum

S
Separation of variables
Skin effect
Special relativity
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Transversality condition
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Vector potential
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Wave packets
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