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Preface

This book provides a textbook on electrodynamics and is in particular
suited for bachelor students in their second year of studies in
theoretical physics. The mathematical requirements include a
knowledge of differentiation and integration, elementary linear algebra
and concepts of vector analysis. Mathematical proofs are kept as simple
as possible, however, still kept stringent.

After introducing the concept of ‘charge’ of mass points and
strategies to measure ‘charge’ the electric field E(r) is defined and
discussed for a system of fixed point charges or a continuous charge
distribution p(r) (electrostatics). It is shown that the divergence of the
electric field is proportional to the charge density p(r) and the field
itself emerges as the negative gradient of the scalar potential ®(r). By
combining these findings the Poisson equation is derived for static
charge distributions. In the case of constant currents j(r) a magnetic
field B(r) emerges that is discussed and evaluated for simple examples
(magnetostatics). This field is found to be characterized by a vanishing
divergence and thus can be written as the rotation of a vector field
A (r). In case of time-dependent charge distributions p(r;t) and
currents j(r;t) the sources are coupled by a continuity equation, which
implies the conservation of the total charge. In this case
(electrodynamics) the electric and magnetic fields are coupled via
Faraday’s law of induction and the basic equations for the E and B
fields emerge in the form of Maxwell’s equations, which—together with
the Lorentz force—completely describe electrodynamics on the
classical level. However, these coupled differential equations are
difficult to solve directly. By introduction of time-dependent scalar and
vector potentials ®(r;t) and A(r;t) general wave equations are derived
by exploiting the fact, that these potentials have a gauge freedom, i.e.
they provide the same E and B fields in case of gauge transformations.
In this context the Coulomb and Lorentz conventions (gauges) are
discussed. It is, furthermore, shown that energy, momentum and
angular momentum have to be assigned to the electromagnetic field



and that a radiation pressure appears for radiation fields. This paves
the way for an interpretation of the fields as ‘photons’ or ‘“y-quanta’

The wave equations are first solved in vacuum, i.e. without external
sources, and polarized plane waves are found as basic solutions, that
are characterized by an angular frequency w, a wave number k and a
polarization vector orthogonal to the direction of propagation k. A
superposition of plane waves—in terms of a Fourier series—then
provides the general solution in vacuum in terms of wave packets,
which can be used for the transmission of information. The general
solution of the inhomogeneous wave equations is obtained with the
help of retarded Green’s functions, that lead to the retarded potentials
known as Liénard—Wichert potentials. A solution for a system of
moving point charges is computed explicitly and it is shown that
accelerated charges produce (or absorb) electromagnetic radiation. The
latter is analyzed with respect to the frequency w and angular
distribution for electric and magnetic dipole radiation as well as for
electric quadrupole radiation.

The electromagnetic field in matter is discussed in the second part

of this book and macroscopic space-time averages are introduced for
- =
the macroscopic electric and magnetic fields & and Z. By a separation

of ‘localized’ and ‘free’ charge carriers the Maxwell equations for the
%
macroscopic fields are derived, that include a dielectric polarization &
> > o
and magnetization ./, which add to the auxiliary fields 2 and 5 and

are easier to control experimentally than the fields & and Z. The
energy, momentum and angular momentum of the matter fields are
evaluated and Kirchhoff’s rules are derived from charge and energy
conservation. The electric and magnetic properties of matter are
analyzed in terms of material equations which are solved in linear
response theory, giving either the electric conductivity, the electric
polarization or magnetization. Furthermore, the properties of the
electromagnetic field at interfaces are derived and discussed explicitly
for linear and isotropic media. In this context the laws for reflection and
refraction of light are derived as well as the propagation of
electromagnetic waves in conductive materials.



In the last part of this book a covariant formulation of
electrodynamics is presented and it is shown that the basic equations
are invariant with respect to Lorentz transformations, which
demonstrates that they have the same form in every inertial system and
thus satisfy Einstein’s principle of special relativity.

In the appendices simple introductions (as well as examples) are
given for volume integrals in different coordinate systems, surface
integrals as well as path integrals. Gauss’s theorem and Stoke’s theorem
are presented and verified with the help of examples.
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1. Introduction to Electrodynamics

Wolfgang Cassing!
(1) University of Giefden, Giefden, Hessen, Germany

In this chapter we introduce the ‘charge’ of mass points and provide a
survey of the different parts of this book, that address particular
questions in the context of electrodynamics in vacuum and in matter
and finally lead to a covariant formulation of electrodynamics, which is
consistent with Einstein’s theory of special relativity.

1.1 Electric Charge

While in mechanics the property mass of mass points is of primary

interest, the charge of mass points is the starting point of

electrodynamics. It has a number of fundamental properties which are

characterized by a variety of experimental measurements:

(1) " .
There are 2 types of charges: positive and negative. Charges of
the same signs repel each other, charges of different signs attract
each other.

(2.) . .
The total charge of a system of mass points is the algebraic sum of
the individual charges; the charge is a scalar.

3.

(5 The total charge of a closed system is constant and independent

of the motion of the system.

(4.)

Charge only appears as a multiple of an elementary charge e,


https://doi.org/10.1007/978-3-031-95515-0_1

q=mnen=0,+1,+2,+3,...,

where —e is the charge of an electron.

The classic proof for this quantization of the charge is the Millikan
experiment. Elementary particles quarks have fractional charges, i.e.
g = £1/3e or ¢ = +2/3e, however, quarks are not observable as free

particles in the energy range we are interested in here.

1.2 Electrostatics

The most simple problem in electrodynamics is the case of stationary
charges, which we denote by electrostatics. Inserting a test charge g
into the region of one (or more) spatially fixed point charges, then a
force F acts on this test charge, which in general depends on its
position r:

F =F(r).

If one replaces g with another test charge ¢/, one finds for the force F’
acting on q':

F' /¢ =F/q.

This finding suggests to introduce the concept of the electric field

This field—created by the stationary point charges—assigns a triple
of real numbers to each space point r, which transforms as a vector.

The task of electrostatics is to find the general connection
between a charge distribution p(r) and the electric field E(r) and to

calculate the field E(r) from a given charge distribution p(r) (e.g. a
homogeneous spatial sphere).




1.3 Magnetostatics

Moving charges in the form of stationary currents are the origin of
magnetostatic fields that we will introduce in analogy to electrostatic
fields. We start from the following experimental observation: Inserting
a test charge g into the environment of a conductor with a stationary
electric current, the force acting on g at position r can be written as

F(r) = q(v x B(x)).

where v is the velocity of the test charge and B(r) (independent of
v) the vector field generated by the given stationary electric current.

The task of magnetostatics is to find the general connection
between a stationary electric current distribution j(r) and the

magnetic field B(r) and to calculate the field B(r) for a given
current distribution (e.g. for a stationary circulating current).

1.4 Concept of the Electromagnetic Field

One might get the impression that the electric and magnetic fields are
independent quantities. The following simple considerations, however,
show that this is not the case:

(1.) If a point charge Q is at rest in an inertial system 3, the force
acting on a test charge g for an observer in X is due to an electric field
E = 0, but there is no magnetic field B. For other observers in an
inertial system ¥’ moving relative to X with velocity v the charge is
moving. The observer in ¥/ therefore measures a force due to both an
electric field E' # 0 and a magnetic field B’ 7 0. The interaction
between the charge Q and a test charge g will be seen as electrical
interaction (mediated by the field E) by an observer in 3, whereas an
observer in ¥’ will detect both electric and magnetic interactions
(mediated by the fields E’ and B’). This consideration shows that
electric and magnetic fields must be considered as a unit, i.e. as the
electromagnetic field.



Note: For the case discussed above, for a stationary current in the
conductor there is no electric field because no charge accumulation
occurs in the conductor, such that the positive and negative charge
carriers (lattice building blocks—Ilocated in the conductor—and
conduction electrons) compensate each other.

(2.) The mutual dependence of electric and magnetic fields
inevitably occurs in case of arbitrary charge and current distributions
p(r) and j(r). The conservation of charge then results in a connection
between p and j, since the charge in a certain volume V can only
decrease (increase), if a corresponding current flows out (in) through
the surface of V. But then E and B can no longer be calculated
independent of each other.

1.5 Maxwell’s Equations

The general connections between the fields EE, B and the charges or
currents (the sources of the electromagnetic field) are described by the
Maxwell equations. The following task arises:

(1.) to formulate the Maxwell equations and to justify them
experimentally,

(2.) to examine their invariance properties, which directly leads
to the special theory of relativity. The investigation will show that
the transition from an inertial system X to another inertial system X’
must be described by a Lorentz transformation, i.e. the same
physics holds for all observers in inertial systems.

(3.) The energy, momentum and angular momentum balance for
a charged system of mass points will lead to assign energy,
momentum and angular momentum to the electromagnetic field.
From these terms such phenomena emerge as radiation pressure,
which leads to the introduction of photons.




(4.) Solutions of Maxwell’s equations. Examples are the
propagation of electromagnetic waves or the radiation of an
oscillating electric dipole in the vacuum.

1.6 The Electromagnetic Field in Matter

The Maxwell equations basically determine the fields E(r, ¢) and
B(r, t), if the charge distribution p(r, t) and the current distribution
j(r,t) are known. In practice the following problems arise:

(1.) For a system of N charged mass points one would have to solve
Newton’s equations of motion to get p(r, ¢t) and j(r, t) microscopically
in order to be able to calculate the electromagnetic fields. For matter of
macroscopic dimensions (e.g. the dielectric medium between the
plates of a capacitor or the iron core of a coil carrying a current) we are
dealing with 10%° — 10?° mass points and charges!

(2.) The microscopically calculated functions p(r, t) and j(r, t) will

in general fluctuate strongly for small spatial and temporal distances.
The solution of Maxwell equations (multidimensional integrations) will
then be practically impossible or not economical!

A way out of this problem is the following compromise: We discard
the knowledge of the electromagnetic field in microscopic dimensions
(volumes of 1072 cm?®, times of 1078 sec) and are satisfied with average
values (107% cm?, 1073 sec). Instead of p(r, ), j(r, t), E(r, t) and
B(r, t) then averages appear in the form,

1
AV At

< p(r,t) >= /d3§d7' p(r —I—Zt +7),

and correspondingly for < j(r,t) >, < E(r,t) > and < B(r,t) >.
From Maxwell’s equations for microscopic fields then equations of a
similar structure arise for the macroscopic electromagnetic field. The
distributions < p > and < j > then are defined by the experimental
setup (and resolution).



In this context it is useful to introduce as auxiliary variables the
dielectric displacement field D and the magnetic field strengthH in
addition to the average values of the fundamental fields, the electric
field strength E and the magnetic induction B. This requires an
additional determination of the relation between the different fields;
these equations are obtained by assuming a linear connection of E and
D or B and H, characterized by the dielectric constant € and the
permeability p. In the most simple case (Ohm'’s law) one establishes a
linear relationship between the macroscopic current and the electric
field strength, i.e. another material constant is introduced: the electric
conductivity o (as a proportionality constant). The actual calculation
of these material constants (€, u, 0)—on the basis of the atomic
structure of matter—belongs to the field of atomic and solid state
physics and uses methods of statistical mechanics.

This results in the following tasks:

(1.) Transition from the microscopic to the macroscopic Maxwell
equations.

(2.) Introduction of material constants and their calculation from
the atomic structure of matter for simple models.

(3.) Behavior of the fields at interfaces between different media.
As an example we will derive the laws of reflection and refraction in
optics.

1.7 Covariant Formulation of Electrodynamics

The Maxwell equations are not Gallilei invariant but Lorentz invariant.
In the last part of this book we will give a fully covariant formulation of

electrodynamics and show the compatibility with Einstein’s principle of
special relativity.



Part 1
Electrostatics
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2. Coulomb’s Law

Wolfgang Cassing!
(1) University of Giefsen, Giefden, Hessen, Germany

In this chapter we will introduce the electric field E(r) for a system of stationary point charges and
calculate the total energy of the system. Furthermore, an asymptotic multipole expansion of the field
will be analyzed for localized charge distributions and lead to characteristic properties of the systems,
i.e. the total charge Q, the electric dipole moment d and the electric quadrupole tensor Q;;.

2.1 Conservation of Charge and Charge Invariance

In the introduction we have briefly summarized the basic properties of the electric charge. For
experimental tests, however, one first needs a rule for the measurement of charge. Such a
prescription will be given in the next subchapter. Some observations for charge conservation are
worth pointing out before.

Impressive evidence for charge conservation is pair creation and pair annihilation. For example,
an electron (e~) and a positron (e™) annihilate to a high-energy massive photon which is uncharged;
the opposite occurs when pairs are created (e.g. in 7", 7~ meson annihilation). In all these reactions
always the same charge shows up (see Fig. 2.1).

+

Fig. 2.1 Electron-positron annihilation into a 7w 7~ pair and vice versa. The total charge is zero throughout

The charge invariance is shown, for example, by the fact that atoms and molecules are charge
neutral, although the state of motion of photons and electrons are very different. Particularly clear is
the example of the helium atom (* He) and the deuterium molecule (D5). Both consist of 2 protons, 2
neutrons and 2 electrons and are therefore electrically neutral, although the state of motion of the
protons in the nucleus of the helium atom and the D5 molecule are very different: the ratio of the
kinetic energies is about 10°, the average distance of the protons in the D, molecule is of the order of
1078 cm, in the He core of 1075 cm.

2.2 Coulomb Force


https://doi.org/10.1007/978-3-031-95515-0_2

As an experimentally proven basis for electrostatics we use Coulomb’s law for the force between 2
point charges q; and qo,

Fpp=T. f—;; riz, (2.1)

where ris = r; — ro denotes the vector of their relative distance (see Fig. 2.2).

q
712
q1
Fig. 2.2 Relative vector r5 between two point charges g; and g,
Properties:
(1.) Attraction (repulsion) for opposite (equal) charges.
(2.) F;5 = —F5; : actio = reactio (— momentum conservation).

(3.) Central force: a point charge (described by the scalar quantities m, q) has no preferred
direction in space (— conservation of angular momentum).

Note: For (fast) moving charges (2.1) no longer holds. The electromagnetic field then has to be
included in the momentum and angular momentum balance.

Equation (2.1) has to be supplemented by the superposition principle:
Fi=Fy +F3 (2.2)

for the force exerted by 2 point charges g2 and g3 on q;.

Prescription for the measurement of charge:
Comparing 2 charges g, ¢'—by measuring the forces exerted by a fixed charge Q—we find
according to (2.1):

T F (2:3)

Thus ratios of charges can be determined by force measurements: Choosing a unit charge (charge of
the electron or positron) we can measure charges relative to this unit charge.

Unit systems:

In order to define the constant I, there are basically 2 common options:

(i) cgs- (GauRl) system: Here we choose I', as a dimensionless constant; the special choice

Fe - 1, (24‘)




then determines (by (2.1)) the dimension of the charge to
[q] = [force] 1/2 length] = dyn'/? x cm. (2.5)

The electrostatic unit then is the charge that exerts the force 1 dyn on an equal charge at a distance of
1 cm. This system is preferred in fundamental physics.

In applied electrodynamics (electrical engineering) one uses the (ii) MKSA—system in which, in
addition to the mechanical units (meter, kilogram, second) still the charge unit Coulomb = ampére -
second shows up. 1 ampeére is the electrical current that deposits 1,118 mg of silver per second from a
silver nitrate solution. Writing

1
Le= 4a (2.6)
the constant €( has the value
_ —12 __ Coulomb?
€p = 8.854-10 Nowton-meter? * (2.7)

2.3 The Electric Field of a System of Point Charges
The force exerted by N point charges g;-located at positions r;-on a test charge g at the position r
according to (2.1) and (2.2) is:

F(r) = g0 X, 45 = gB(r), (2.8)

where we denote

E(r) =TV, 24 (2.9)

as (static) electric field, which is generated by the point charges g; at the position r. According to
(2.8) E(r) is a vector field since q is a scalar. For a given charge g (2.8) shows how to measure an
electric field. In this case the test charge has to be ’small’ such that its influence on the field E can be
neglected. Simple examples for the electrostatic field are shown in Fig. 2.3.

In analogy to the theory of gravity in mechanics one can obtain the vector function E(r) from the

electric potential

B(r) = S0 7 (2.10)

=1 4mey |r—r;|°?

which is a scalar function, by differentiation:

E(r) = -V®(r). (2.11)

The (potential) energy of the resting mass points with the charges g; then is




N iq N

where ®(r;) is the potential at position r;.

Note: In principle the self-energy for i = j in the right expression has to be subtracted again from
(2.12).
Examples:

point charge condensator

YYVYYY YVYVY

g>0 g<0 homogeneous field

Fig. 2.3 Tllustration for the electrostatic field in case of point charges and a condensator

2.4 Continuous Charge Distributions
In this case we replace the sum over charges by a volume integral over the charge distribution

> - [dVp(x) ... (2.13)
with the normalization
Q=>,q=[dVp(r). (2.14)
Equations (2.9), (2.10), (2.12) then turn to:
E(r) = 1 [dV'p(r') {5 (2.15)
®(r) = g, [V p(r') 5 (2.16)
and
U=+ [dVp(r)®(r). (2.17)

Example: homogeneously charged sphere
p(r)=po for |r|]<R; p(r)=0 else. (2.18)

The integration in (2.16) gives:




2

B(r)= 2 for r>R; ®r)=2(F ) for r<R (2.19)

with
Q= [dVp(r) = %pgR:‘. (2.20)

The electric field E then follows from (2.11):

E(r) = @ r  for 1 >R; E(r) = 3”—6001- for r<R. (2.21)

47eg ‘1-|3

The energy U then reads (using (2.17) and (2.19)):

4mp? R R? 2
U = % [av &(r) = S fo ridr (T - %)
Pt 2R° _ 3 (2:22)

— 0 —
=2y = %

1
4meyg R

Application: Determination of the classical electron radius.

According to (2.22) the self-energy of a point-like charge becomes infinite for R — 0. According
to the theory of relativity the energy of a stationary particle, e.g. an electron, with rest mass my is
linked to its self-energy by

2
Ey=myc’=U, = % e RLO' (2.23)

A strictly point-like (charged) particle then will have an infinitely large rest mass according to (2.22)!
On the other hand, to regain the total (finite) rest mass of an electron by its electrostatic energy, one
can introduce a finite radius R, the classical electron radius,

2

Ry = 3 e 1 _~108 cm=1fm. (2.24)

5 4mey myc?

Thus for dimensions < 10~** cm we have to expect deviations from Coulomb’s law.

2.5 Multipole Expansion

We consider a charge distribution (discrete or continuous) limited to a finite volume V and examine
its potential ®(r) at a point P far outside of the volume V (see Fig. 2.4).

Fig. 2.4 The charge distribution p(r), localized in the volume V, is analyzed in a distant point P



We can use the coordinate origin O as the center of charge, defined by

_ Zzlql‘rl
ry= S (2.25)

Aslong as r; < r, we can expand (2.10) in a Taylor series,
®(r) = ®o(r) + @1(r) + S2(r) + B3(r)+. .. (2.26)

Using

flr—a)=>ar(-a- V)" f(r) (2.27)

for a scalar function f(r) (infinitely differentiable) or in our case

R S oY S A5 LS QR NI A0 R 4 I A0 L (2.28)

[r—r;] n=0 n! r r

o ' Oz ylay ‘0z)r 2\ 'Oz ylf)y ‘0z ) r

the first terms are:
(1.) The monopole term

_ i1 Q@
o(r) =2 ey = T v (2:29)

describes a point charge Q localized at the origin 0. In Oth order approximation of the Taylor
expansion every charge distribution looks like a point charge if viewed from a sufficiently large
distance!

(2.) Dipole term

The linear term in the coordinates r; of the point charges has the following form:

®y(r) = (2.30)
1 1 1
_Z 47760 <| —I‘i|)r Z 47reoy Oy <|r—ri|) Z 471'60 <|1' rl|>ri

= — Z F 9 + zg)l
- 47T60 Ly Oy ‘9z’ r

d 1 d-r d cos 0
= — . V — ) = —

47eg (r) 4meor3 Aregr?

=

where the vector d, the dipole moment, is given by




d=Y,qri. (2.31)

The angle 6—used in the transformations in (2.30)—is the angle between r and d (see Fig. 2.5).

Fig. 2.5 Tllustration of the angle 6 in (2.30)

(Example for 8/0z(1/r)):
B -8 --3f=--3= @3

Dependence of the dipole moment on the coordinate origin: If we shift the origin O by the spatial
vector a, the dipole moment becomes

=>qi(ri—a) =), qri—a) ;¢ =d —aqQ. (2.33)

If Q # 0, we can choose a such that d’ = 0. On the other hand, if Q = 0, then d = d’ independent of the
origin and the dipole moment describes a real internal property of the system under consideration
(e.g. a charge neutral molecule).

Extraction of the dipole moment: We determine the centers of mass of the positive and negative
charge carriers. If these coincide then according to (2.31) d = 0. Otherwise its connecting line gives
the direction of d, its distance is a measure for the magnitude of the dipole moment d.

Example: molecules (see Fig. 2.6).

0
C
O—@—0
H H o) 0
H,0 Co,

Fig. 2.6 Illustration for the positive and negative centers of the charge distribution for H,O and CO»

(3.) Quadrupole term:
We look at the quadratic term in the Taylor series (2.28) and get

treoalr) = {Qm L)+ Qi () +Qu (Y
+Qxy Bzay ( ) + Qyz ay;z (%) + QZ“” Bz;z (%) (234’)
#Quertiz (1) + Quifiy (1) + Qi (D).

where

(2.35)



Quz =>4 %5 Quy=>.;a Tiyi; etc.

are the components of the quadrupole tensor. This tensor is symmetric and real and therefore
can always be diagonalized:

Qmn = Qmémna (2.36)

i.e.

Amen®y(r) = ${Quilr + Quar + Q. 2x}(2) (2.37)

in the principal axis system, in which the quadrupole tensor is diagonal. There is a wide analogy to
the inertia tensor in mechanics.
Physical normalization of the diagonal elements: The relation

2 2 2
M) =+ g+ dt = G i g+ S+ 451 (239)

allows to replace the components (2.35) in (2.36) in the principal axis system by:

2
i

Qo =Y ai(zl — ) =3 3, ¢:{22? — y? — 27}, (2.39)

1 1
Q=LY a2t - 21,0 = 1 Yal2 - -4,
) %

without changing ®5(r) because an additional term —r?A(1) in (2.37) has no effect on ®»(r).
The Egs. (2.39) show that the eigenvalues Q,,, describe the deviations from spherical symmetry
because for a spherical charge distribution we get:

S =G =0 =534 = Qm=0. (2.40)

Special case: Axial symmetry e.g. around the z-axis. Then with

1 3 1
2 2 9 9 )
<z” >g= 3 i qiT; =< Y >4, < 2 >g= 3 El qiz;

Qr=<z?>,—<22>=0Q,=—1Q.=—1(2<22>,-2<2>)), (2.41)

i.e. the quadrupole term o
the angular dependence @

r) is given by a single number, the quadrupole moment. For this case
r) is easy to specify: We form
(2.42)

63_;2(%) _ _(E%(L) —_ 1 43z _ M,

3 » o b



—(_)_ 3y2_,,,,2 62 1 _ 3 2 2

Vo2 (Y °Z 7T
oy 'r 5 7922 rs
and find with (2.41):
@2(1') = 4:50 # (Qm(3$2 - T2) + Qy(3y2 - T2) + Qz(3z2 - 7,2)) (2.43)
1 Q. Lo o L .o o 2 .2
_47T602r5< 2(331: %) 2(3y %) + (32 — %)
1 Q. 2 2 2 2 2
= e 4t (=32 — 3y° + 62° — 32 + 32%))
B 3Q.(32% — r?) . Qy (3 cos? 6 — 1)
C dmey - 415 4meg 2r3 ’
where
Qo= 2Q. (2.44)

is the quadrupole moment of the axially symmetric charge distribution.

Equation (2.43) shows the characteristic r-dependence for the quadrupole term; the angular
dependence is clearly different from the dipole term.

Continuous charge distributions:

In analogy to Sect. 2.4 we get for a continuous (spatially localized) charge distribution (dV = d3r):

d= [dVp(r) r (2.45)

instead of Egs. (2.31) and (2.39) is replaced by:

Qz

5 [ o) (22 -7 - )
Q=5 [ Vo) (2" - 2* - )

Q. =3 [dVp(r) (22" —2* — ). (2.46)




B

\ 4

Fig. 2.7 Examples for axially symmetric charge distributions with positive (left) and negative (right) quadrupole moment

Example: A series of atomic nuclei is (axially symmetrical) deformed and is characterized
electrostatically by a quadrupole moment Q. On the other hand an atomic nucleus (by Coulomb
excitation) can by excited to a quadrupole-like deformed (rotating) state. Such deformed and rotating
atomic nuclei decay to the ground state by the emission of electromagnetic radiation. The deviation
from spherical symmetry can be both positive, Qg > 0 (left Fig. 2.7), as well as negative, Qg < 0
(right Fig. 2.7), which clearly shows a shape of a cigar or corresponds to a disk.

In summarizing this chapter we have introduced the electric field E(r) for a system of stationary
point charges and calculated the total energy of the system. Furthermore, an asymptotic multipole
expansion of the field has been analyzed for localized charge distributions and lead to characteristic
properties of the systems, i.e. the total charge Q, the electric dipole moment d and the electric
quadrupole tensor Q;;.
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3. Basics of Electrostatics

Wolfgang Cassingt
(1) University of Giefden, Giefden, Hessen, Germany

In this chapter we will address more formal aspects of electrostatics and
introduce the flux of a vector field. The Gauss’ law will allow to relate the flux of
the electrostatic field through a closed surface to the total charge within the
volume bordered by the surface considered. Some applications of the Gauss’ law
are discussed and differential equations for the electrostatic field E and its
potential ® are derived.

3.1 Flux of a Vector Field

In the following we want to look for equivalent formulations of Coulomb’s law.
To this aim we introduce the concept of the flux of a vector field.

Let a vector field A (r) be defined on a surface F, which is finite and two-
sided, i.e. F has a finite area and a top and bottom defined by the surface
normals. Counterexample: the Mobius’ band has not a well defined top and
bottom.

The flux of the vector field A through the surface F we define by the
surface integral

[ Alr) - df = [ An(r)df, (3.1)

where A,, is the component of A in direction of the surface normal.

To interpret (3.1) we consider a fluid flowing with the velocity v(r) and the
density p(r). Let’s choose the vector field as

A(r) = p(r)v(r), (3:2)

then
(3.3)
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[rA(r)-df = [Lp(r)v(r) - df

is the amount of fluid flowing through F per unit of time. Equation (3.3) shows
that only the area perpendicular to the flow contributes.

3.2 Gauss’ Law

We now choose the electrostatic field E(r) (for A(r)) and for F a closed surface
with the properties mentioned above. Then the electric flux

¥ =¢.E(r)-df = §,E,(r) df (3.4)

is linked to the total charge Q in the volume V by the

Gauss’ law:

U= §,E(r)-df = £ (3.5)

€0

Proof
1st step: Let g be a single point charge at the center of a sphere with radius R.
Then at every point on the surface of the sphere E(r) is parallel to the (outer)

surface normal n (see Fig. 3.1) and for the magnitude of E we have:

P E
n

Fig. 3.1 For asingle charge q in the center of the sphere of radius R the electric field is oriented in the direction
of the surface vector n

E = En = —47[-6?]]%2 . (36)
Then
U= f 47T€?]R2 R2dQ = ?qe(] fdQ = %’ (37)

is independent of the radius R of the sphere.



2nd step: We replace the spherical surface with any closed area within the
framework of the requirements stated in Sect. 3.1 (see Fig. 3.2). Detail (see
Fig. 3.3):

n

Fig. 3.2 Illustration of a closed area around the charge q in the center

Fig. 3.3 Detail of the angles at the surface of the area of Fig. 3.2

Then

cosf
\P:fF 43!’60R2 df:fF 47re(f)R2 d‘f’: ?!eg-fdgz %’ (38)

since the area vector df’ is parallel to E and the angle between df and df’ is given
by 6.
3rd step: The charge q is located outside of F.

E(2)
q n(1) n(2)

Fig. 3.4 Orientation of the E field on the surface of a sphere which does not include the charge g



Taking into account the respective normal direction (according to the outside
normal) we find that e.g. the contributions from the area around points 1 and 2
(see Fig. 3.4) cancel each other since the field strength E(r) (from q) is always
radially directed and drops like 1/R? while df increases with R2. Thus we get for
the electrical flux

¥ =0. (3.9)

4th step: For N point charges g; within the volume V with surface F' = 0V we
find according to the superposition principle:

v=21%q="2 (3.10)

3.3 Applications of Gauss’ Law

For symmetrical charge distributions Eq. (3.5) offers the possibility to calculate
the field strength E(r) with a rather low effort. We consider 2 examples:

1. Field of a homogeneously charged sphere.
Let

p(r) =p(r) for r<R, p(r)=0 else. (3.11)

Due to the spherical symmetry E(r) is directed radially, such that

U = ) B@) - df = 4nr’B(r) = & = F [[%0) &', (312)

€0 €0

where E(r) = |E(|r|)| and @, is the charge contained in a concentric sphere
with radius r. For points with » > R, (), = @ is the total charge and it follows
from (3.12):

E(r) = 9 _ for r>R. (3.13)

4meqr?

For r < R the result depends on the special form of p(r). As an example we
choose

p(r) = po = const, (3.14)

then:

(3.15)



_ 4m 3
Qr— ?’I" Po,

and E(r) asin (2.21):

B(r)= 53— =2 (3.16)

2. Homogeneously charged, infinitely extended plane.

For symmetry reasons E is perpendicular to the charged plane, the
magnitude E = |E| is the same for the points 1 and 2 at a distance r from the
plane (see Fig. 3.5). The Gauss’ law then gives:

/ Q=ca
a

_____ v4

E(1) R E(2)
/(O

Fig. 3.5 Illustration of the electric field for a charged, infinitely extended plane
— — _Q _ oa
¥ =¢,E-df =aE(1) +aE(2)= & =2, (3.17)

if a is the cylinder base area and o the surface charge density. We don’t get
any contribution from the cylinder mantle because E has no component in the
direction of the normal on the cylinder mantle. Result:

E =35 (3.18)

independent of r.



3.4 Differential Equations for E and ¢

We want to represent the Gauss’ law (3.5) in differential form. To this aim we
transform the surface integral into a volume integral over the enclosed surface
F = 0V of the volume V (Gauss’ formula):

§oE(r)-df = [, V-E(r) dV = £. (3.19)
With
Q= [,p(r) dV (3.20)
then follows:
[, (V- E(r) - 22y av = 0. (3.21)

Since Eq. (3.21) must hold for any volume V the integrand has to disappear:

V-E(r) = 22 (3.22)

Equation (3.22) does not change if we add to E(r) any divergence-free vector
function E’(r); Eq. (3.22) is therefore not sufficient to determine the electrical
field. Another differential relation for E(r) we get from (cf. (2.11))

E(r) = —-V®(r) (3.23)
with the vector indentity

V x(Vf)=0, (3.24)
le.:

V x E(r) = 0. (3.25)

However, to calculate the electromagnetic field from a given charge
distribution p(r) from (3.22) and (3.25) is quite complex.

In practice it is more convenient to go a step ahead to the potential ®(r) and
calculate the field strength E(r) by differentiation according to(3.23). Inserting



(3.23) in (3.22) we get the Poisson equation

V- (V) (1) = Ad(r) = — 22 (3.26)

€0

with the abbreviation

_ 0 9? 9?
A= v + B 522" (3.27)

Having found a solution to (3.26) we can always add any solution of the
homogeneous equation (Laplace equation)

Ad(r) =0 (3.28)

and get a new solution of (3.26). This ambiguity can be avoided by specifying
boundary conditions. For a further discussion see Chap. 4.

3.5 Energy of the Electrostatic Field

In order to transfer a point charge q; from infinity to a charge g2 by the distance
r12, one needs (or gains) the energy

U= frern- (3:29)

In order to get a specific charge distribution of N point charges g; (characterized
by the mutual distances of the charges q;) one needs (or gains) the energy

1 qiq;
U - 5 ZZ#] 47['6():"1']' ’ (3'30)

where the factor 1/2 ensures that double counting is avoided. The restriction
it # j excludes self-energies of the point charges.

We can interpret U as the potential energy of a system of charged mass
points. On the other hand the energy U can also be considered as the energy
stored in the electric field in form of field energy.




To analyse the connection between the two perspectives quantitatively we
reformulate (3.30) (see Chap. 2) by:

U=+3,a2@) =1 [,p(r)®(r) dV, (3.31)

where ®(r;) is the potential at position r; of the point charge i, which the
other point charges have created. Now we can rewrite Egs. (3.31) with (3.26) as:

U=—%[,2(r)A%(r) dV. (3.32)

Equation (3.32) completely describes the energy U in terms of the potential ®
, 1.e. by the electrostatic field without reference to the charges. Instead of the
potential ® we can express the potential U by the field strength E using the
identity

V- (fVg) =(Vf)-(Vg) + fAg (3.33)
for f =g = ®,ie. BA® = V - (3VP) — (V®)? leading to:
U=3 [, (Ve(r S [y V- (2(r)Ve(r)) dV, (3.34)
and using the Gauss’ formula,

Jy V- (2(r)VE(r)) dV = § 2(r)VE(r) - df (3.35)

with F' = 0V denoting the surface of V. Now if all charges are enclosed in a finite
volume the surface integral (3.35) decreases with increasing volume V, since
®(r)V®(r) drops as ~ R~ with increasing distance R from the charge center,
while the surface only increases with R2. In the limit V' — oo we then obtain

U=2[,(Ve(r)) dV =2 [, EXr) dV (3.36)

as the energy stored in the field. The quantity €g E%(r) /2 then gives the
energy density.

3.6 Multipoles in the External Electric Field



If a spatially localized charge distribution p is placed in an external electrostatic
field given by its potential ®,, then (according to Sect. 3.5) we get for its energy

U= [, p(r)®,(r)dV, (3.37)

if we assume that the external field is not changed (noticeably) by p(r) and the
charges—generating the external field ®,—are outside the area of V. This
explains the absence of the factor 1/2 in (3.37) compared to (3.31). Furthermore,
let ®, be slowly changing in the volume V such that we can expand ¢, in a Taylor
series with respect to the center of the charge distribution p:

3 8%, 3 8%®,
@a(r) = (I)a(o) + Zizl L Oz; (0) + % Zi,j:1 xiwj dz;0z (0)+° c (3-38)
Since in the region of the volume V we have for the external field
V- -E,=0 (3.39)

in line with our assumption, we can rewrite Eq. (3.38) as follows (see Sect. 2.5):

Bo(r) = Ba(0) — 30 2iFia(0) — 1 300 (wim; — -0y) aai (0)+... (3.40)

with E;,(0) = —9/0x;®,(0). The combination of (3.37) and (3.40) gives:

U= [, p(r)®u(r) dV (3.41)
3 1 3 7“2 6Eia -
= Ap(r) (CI)G(O) — ; ZEZEW(O) — E Z;(mzx] — ?52])8—%(0)4— . ) dY

aEia
0)+...
o (O

[

3
— Q3,(0) — Y diEiq (0) - % 3 Qi
1,j=1

i=1

Equation (3.41) shows how the multipole moments of a charge distribution
p(r) interact with an external field E,: the total charge Q with the potential ®,,
the dipole moment d with the field strength E,, the quadrupole tensor @);; with
the field gradient OEF;, / 0z etc.

Examples: Atomic dipoles in external electric fields, interaction of the
nuclear quadrupole moment with the electron shell or with time-dependent



electrical fields (e.g. in nuclear reactions with center of mass energies below the
Coulomb barrier).

In summarizing this chapter we have introduce the flux of a vector field and
derived the Gauss’ law which relates the flux of the electrostatic field through a
closed surface to the total charge within the volume bordered by the surface
considered. Some applications of the Gauss’ law have been presented and
differential equations for the electrostatic field EE and its potential & have been
derived. Furthermore, the energy density of the electrostatic field has been
computed and the interaction of a static charge configuration with an external
field been discussed.
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4. Boundary Value Problems
in Electrostatics

Wolfgang Cassing!
(1) University of Gief3en, Gief3en, Hessen, Germany

The solution of the Poisson equation is in general subject to boundary
conditions that have to be fulfilled simultaneously. Apart from a
discussion of the uniqueness of the solution in this chapter we will
present three practical methods for the calculation of ®(r) in case of
specific boundary conditions, i.e. the mirror method, the inversion
method and the separation of variables.

4.1 Uniqueness
In the following we want to show that the Poisson equation or the Laplace
equation has a unique solution for ®(r), if one of the following boundary

conditions hold:
(i) Dirichlet condition

®(r)isgiven on a closed area F (4.1)

or
(ii) von Neumann condition

V&(r)isgivenonaclosed area F . (4.2)

Proof We assume that there are 2 solutions ®;(r) and ®(r) of

4.3
A®(r) = —£ (%3)

€0
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with the same boundary conditions given by (4.1) or (4.2). Then we
obtain for the difference U(r) = ®;(r) — ®5(r):

AU(r) =0 (4.4)

in the volume V enclosed by F. Furthermore, due to the boundary
conditions we either have

U(r)=0on F (4.5)
or
VU(r) = 0on F. (4.6)
With the identity
V- (U(r)VU(r)) = (VU)*(r) + U(r)AU(r) (4.7)

and (4.4) we obtain:
[, (VU)?(x) dV = [, V- (U(r)VU(r)) dV = §,UVU(r) - df = 0(4.8)

using the Gauss’ formula, if one of the two conditions (4.5) or (4.6) is
fulfilled. Thus:

Jy (VU)*(x) aV =0, (4.9)
ie.in V:
VU(r) = 0, (4.10)
since (VU)?(r) > 0. This leads to
U(r) = const (4.11)

and ®4(r) and ®,(r) differ by at most a (physically insignificant)
constant.

Special case: V — .



If Vis the entire 3-dim. space, then the solution of the Poisson
equation is unique, if p(r) is of finite range and ®(r) asymptotically drops
so fast that

r2¢>(r)g—§(r) — 0for r — oo, (4.12)

where 0®/0n denotes the normal derivative of ®(r). The proof above

follows directly when considering that the surface grows for a fixed

volume as 2.

4.2 Mirror Method

This method consists in introducing so-called mirror charges of
suitable size outside the area under investigation in such a way that the
required boundary conditions are met. This procedure is allowed because
one can solve the (inhomogeneous) Poisson equation by adding a solution
of the (homogeneous) Laplace equation (cf. Sect. 3.4). The mirror method
provides the solution of the Laplace equation which, together with the
selected special solution of the Poisson equation, fulfills the required
boundary conditions.

As a simple example let’s consider a point charge g at a distance a
from a conducting plane, which has the potential ® = 0 on the plane
(Fig. 4.1 left). The mirror charge g’ then is introduced mirror-symmetrical
to g with respect to the plane (see Fig. 4.1 right).

¢=0 ¢=0

Fig. 4.1 Point charge q at a distance a from a conducting plane, which has the potential ® = 0 (left).
The mirror charge ¢’ then is introduced mirror-symmetrical to g with respect to the plane (right)

Then the potential at point P is:



/

47T60‘I)(P) =414 Z

r r!

(4.13)

and we get ® = 0 for all points of the conducting plane, x = 0, choosing:
q =—q. (4.14)

In the region x > 0 (which is of interest), ¢/ (4mer) is a special solution of
the Poisson equation, g’ /(4meor’) a solution of the Laplace equation,
which ensures that for x = 0 the required boundary condition is fulfilled.

For the x-component of the electric field E one gets from (4.13) and
(4.14):

E,(P)= -2 = L (&2 _ zia) (4.15)

4reg r

thus for the plane (x = 0),

Ey(z=0) = — 2% (4.16)
The components in the = 0 plane (in y, z-direction) disappear because
the electric field is perpendicular to the plane (otherwise there would be a
current in the surface layer). Equation (4.16) implies that according to the
Gauss’ law (cf. Sect. 3.2) in the plane z = 0 a charge with the (spatially
dependent) charge density

o=¢E,(z=0)=—55 (4.17)

appears, which is induced by the presence of the point charge g at
distance a.

4.3 Inversion Method
Let ®(r, 6, ¢) be the potential at the position r = (7, 8, ¢) generated by
point charges gq;:

o(r,0,9) =3, - ; (4.18)

47eg \/rz +72—2rr;cosy;




here (r;, 8;, ¢;) denote the positions of the point charges ¢; and ~; the
angle between r and r;. Then

(r,0,9) = +2(%,06,9) (4.19)
is the potential, that the point charges

ag;

q=- (4.20)

at (a/r;, 0;, ;) generate in the position (r, , ¢).
Proof We combine Egs. (4.19) and (4.18) to

(i)(’l", 0’ ¢) - % Zz = (4'21)

4meq \/a4/r2+r§ —2a’r;cosy;/r

an’/Ti
i 4meg \/7‘2 + a4/r? — 2a%r cos ; /r;

As an example we consider a point charge outside a conducting sphere,
which has the potential ® = 0 on its surface. We replace the sphere with a
point charge g, where its size and position is chosen such that the
resulting potential of g and g on the surface disappears. The potential at
position (r, 8, ¢), which is generated from the point charge q at (r,, 0, 0),
is denoted by ®(r, 8, ¢). Placing the charge § = —Rgq/r, at the position
(R?*/7,,0,0) (see Fig. 4.2).

(r, 6, ¢)




Fig. 4.2 Geometry of a conducting sphere of radius R with a vanishing potential ® on its surface and
the position of the charge ¢

then the potential, generated by g at position (r, 8, ¢), is (according to
(4.19)):

3(r,0,¢) = —Lo(L 9, 4). (4.22)
On the spherical surface, r = R, itis:
®(R,0,¢) = —®(R, 0, 9), (4.23)
such that
®(R,0,0) + ®(R,0,9) = 0. (4.24)

The solution of the Poisson equation outside the conducting sphere then
is:

®(r,0,¢) + &(r,0,¢) (4.25)
with

®(r,0,6) = e (4.26)

4.4 Separation of Variables

In the following example we are looking for solutions of the Laplace
equation,

Ad(r) =0, (4.27)
and for simplicity assume that ®(r) does not depend on z,
®(r) = ®(z,y). (4.28)

Then (4.27) simplifies in cartesian coordinates to:



((9:c2 + 5 >¢>(w y) = 0. (4.29)

Since (4.29) does not contain a mixed term 82 /9z0y, it is obvious to use
the following separation Ansatz:

®(z,y) = f(z)9(y); (4.30)
then (4.29) reads as:

9(y ) 922 f(w) + f(m) By g( ) =0. (4.31)

With the exception of zero’s of fand g Eq. (4.31) is equivalent to:

1 0*f 1 9%g _
Fla) 027 gy o O (4.32)
The 1st term in (4.32) depends only on x, the 2nd only on y; since x and y
are independent variables it follows from (4.32):
1 62 1 0%g

WW = const = —g—

(4.33)

If we choose the constant in (4.33) to be real and positive (= k), we get
the following differential equations:

%—sz(w)z ,az 7 +k*g(y) =0 (4.34)
with the solutions:
f(x) = a exp(kx) +b exp(—kx);g(y) = c sin(ky) +d cos(ky).(4.35)

The integration constants a, b, ¢, d and the separation constant k have to
be determined by boundary conditions. As an example let’s consider a
rectangular cylinder, which is infinitely extended in the z direction (with
edge lengths z( and yg) and the boundary conditions at y = 0 and y = yo:

®(z,0) = ®(xz,y0) = 0. (4.36)

Then



d = 0;sin(kyo) =0 — k= I =ku. (4.37)

Furthermore, the boundary conditions at x = 0 and * = x¢ are chosen as:
®(0,y) = 0;®(z0,y) = V(y), (4.38)
where V(y) is any given function. From (4.38) it follows that
a=—b— f=a{exp(k,x) — exp(—kyx)}. (4.39)
In order to fulfill the 4th condition, we expand ® in a Fourier series:
®(z,y) =2, A, sin(k,y) sinh(k,x);A, = 2a,c,, (4.40)
and determine the coefficients A,, by requiring
D (zo,y) = V(y) =D~ Apsin(k,y) sinh(kyxo). (4.41)

According to the inverse theorem for the Fourier series in the sin-
functions we get:

In case of boundary conditions of spherical symmetry one solves the
Laplace equation using a separation Ansatz in spherical coordinates; the
same procedure is followed in case of axial symmetry.

Overview of Electrostatics

(1.) Basis: Coulomb law

F(r) = ¢E(r) withE(r) = ) gi(r — i)

i 47‘(’60‘1‘ - I‘i|3

(2.) Field equations:

(a) integral equations:




(b) differential equations:

V x E(r) = 0.V - B(r) = 2%
€0
(3.) Electrostatic potential:
_ o) o ,
E(r) = -V®(r) > A®(r) = — - . Poisson equation
0

(4.) Field energy:

—Z 44 / p(r)®(r) dV — 2 / E(r)’
Ameor;; 2 v 2 Jy

The potential energy of the point charges — electrostatic field energy.

In summarizing this chapter we have discussed the uniqueness of the
solution for the potential ® in case of boundary conditions and presented
three practical methods for the calculation of <I>(r), i.e. the mirror method,
the inversion method and the separation of variables.
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5. Ampere’s Law

Wolfgang Cassing!
(1) University of Giefden, Giefsen, Hessen, Germany

In this chapter we will present the basic equations of magnetostatics for the case of
stationary electric currents and introduce the magnetostatic field B(r) by
Ampere’s law as well as the magnetic dipole moment emerging from circulating
currents.

5.1 Electric Current and Conservation of Charge

Electric currents are caused by moving charge carriers. Charge carriers can be, for
example: ions in a particle accelerator, an electrolyte or a gas, electrons in a metal,
etc. The origins for the motion of charges are primarily electric fields but it might
also involve material transport of charged objects. We define the electric

current as the amount of charge that flows through the conductor area per unit of
time.

We will initially consider the most simple case of a charge carrier with the same
charge g and constant velocity v. Let a be the vector perpendicular to the area of
the conductive medium, where the magnitude of a indicates the size of the area and
n is the density of the charge carriers. During the time At then the charge carriers
in the volume AV = (a - v)At pass the conductor cross section, i.e. n(a - v)At.

Thus the charge current is

I(a) = % =ng(a-v). (5.1)

In the more general case with n; charge carriers q; with velocity v; per unit volume
this becomes:

I(a) = a- (D2;nigivi). (5.2)
Equations (5.1) and (5.2) suggest to introduce the current density j as

J =22 niqivy, (5.3)
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which is related (for g; = q) to the average velocity
<v>=L3 nv; (5.4)
and the charge density p by:
jJ=ng<v>=p<v>. (5.5)

Equation (5.5) shows that high absolute velocities of the charge carriers do not
imply a high current since only the average value of the velocities of the charge
carriers are essential. For example, if the velocities of the charge carriers are
uniformly distributed in all directions, then < v >= 0 and therefore also j = 0. In
the general case p and < v > is space- and time-dependent, thus

j=i(r,t). (5.6)

The law of conservation of charge we can formulate in terms of the charge and
current density as follows: We consider an arbitrary finite volume V with surface
F = 9V. The amount of charge contained inside is @ = Q(t). If V does not depend

on time the change in the amount of charge contained in V per unit of time is:

d Op(r,t
@ _j, e gy, 57)

Since charge cannot be created or destroyed, the decrease (increase) of the charge
contained in Vis equal to the amount of charge flowing out (in) through F (in the
period of time considered). The latter is given by the surface integral of the current
density, which—according to Gauss’ formula—can be transformed to a volume
integral:

$pi(r,t)-df = [, V- j(r,t) dV. (5.8)

Then the charge balance reads:

op(r, .
_d9 _ _f OmD gy — [V .j(r,t) dV (5.9)

or, since V can be chosen arbitrarily, we get the continuity equation:

V-j(r,t) + 250 — o, (5.10)




While (5.9) describes the conservation of charge in integral form, equation
(5.10) describes the charge conservation in differential form.
Special cases:

(i) Electrostatics: stationary charges

(ii) Magnetostatics: stationary currents

j=j(r)and V.-j=0— £ =0. (5.12)

For a stationary current, V - j is constant in time, and this constant must be
zero everywhere because charge is not created or destroyed.

5.2 Ampere’s Law

Let’s consider a stationary current distribution j = j(r). To eliminate electrostatic
effects we assume that the density of the moving charge carriers, which build up
the current, is compensated by resting charge carriers of opposite sign (e.g. moving
conduction electrons and resting lattice ions in a metallic conductor). On a moving
test charge g—in the vicinity of the current flowing through the conductor—then
acts a force, which is found experimentally to be:

F(r) = q(v x B(r)) (5.13)
with
B(r) = T, [, 12505 av (5.14)

as the magnetic induction. The Egs. (5.13) and (5.14)—as the basis of
magnetostatics—is experimentally verified on the same level as

F(r) = qE(r) (5.15)




with

—T, [, L0 gy (5.16)

P r’|3

in electrostatics! While (5.15) serves as a rule for measuring the electrostatic
field E(r), (5.13) provides a rule for the measurement of the magnetic induction
B(r).

Unit systems:

If one has defined I, i.e. one has defined the unit charge, then in (5.13) and
(5.14) all quantities are fixed w.r.t. their units. Thus I';,, can no longer be chosen
independently but in the

(i) MKSA system is

Ty = 42T = 7 (5.17)
with
po = 4 - 1077 28 (5.18)

as the magnetic permeability.

(ii) cgs system:
Iy=+T.=1 (5.19)

with the velocity of light c.

Note: Equation (5.14) contains—as in (5.16)—the superposition principle: the
fields of two current distributions j; (r) and ja(r) superimpose linearly, since
J(r) = ji(r) + j2(r) is the resulting current distribution. Furthermore, the ratio
I, /T must be a constant independent of the unit system. With (5.17) and (5.19)
andI'. = 1/(4meg) or I, = 1 in the cgs system (see Sect. 2.2) we obtain the
relationship

T = €ofo = 7 (5.20)




This fundamental relation already points to a connection with Einstein’s theory
of special relativity.

In the following the vector field B(r) will be calculated for a couple of simple
current distributions.

5.3 Biot-Savart

For a thin conductor we can immediately integrate over the area f of the conductor
and (instead of (5.14)) obtain

— ol dl‘r r,|3 (5.21)
with dl’ in direction of the conductor and
I'=[;j-df (5.22)
for the current strength (cf. Fig. 5.1).
df’
>,

.idl’

__ D

Fig. 5.1 Sketch for a conductor with a finite (thin) area d f’

If the conductor is straight, it follows from (5.21) or also (5.14), that the field
lines of B(r) run concentrically around the conductor. So we only need to calculate
the magnitude B(R), since all contributions to the integral (5.21) have the same
direction for a straight conductor. From Fig. 5.2 then follows (with d = |r—r’'| and

|dl' x (r — r')|= d sin (0)dz):

= Ll posinf gy (5.23)



Fig. 5.2 Choice of the integration variable to calculate equation (5.25)

We carry out the remaining integration for an infinitely long conductor: With

R=d sinf;z =dcos () =R cotgh — dz = —-df (5.24)
we get for the field strength at point P with distance R:
pol [ sin®6 pol [0 sin®0 dz
B(R) = dz = — —db
(R) = /oo R YT ). R 40
I 7™ Rsin I 1 I
=2/ —RR29 df = o= [7 d(cosf) = L. (5.25)

This is the formula of Biot and Savart for a thin, straight, infinitely long
conductor.

5.4 Force and Torque on a Current in the Magnetic
Field

Based on the force experienced by a charge q; moving with velocity v; in the
magnetic field B,

Fi = gi(vi x B(r;)), (5.26)

the force on a current with the current density j is obtained as:

(5.27)



F =3 ai(vixB(r:)) = [,,j(r) x B(r) dV,

where the volume I has to be chosen such that it completely includes the
current.

Example: For a thin wire, where the B field does not change (significantly)
over its area, we can (as in Sect. 5.3) carry out 2 of the 3 integrations in (5.27):

F=1/ dlxB. (5.28)

The remaining line integral along the conductor L is easy for a straight conductor, if
B does not change along L:

F = (IxB)L (5.29)

where L is the length of the conductor. The force is therefore perpendicular to the
current direction and to the B field; it has a maximum, if I is perpendicular to B,
and disappears when I runs parallel to B.

On the charge q; with velocity v; in the field B acts the torque:

N; =r; xF; =1; X (¢;vi x B(r;)); (5.30)

correspondingly for the current density j(r):

N = S,1i % (givi x B(r;)) = [, r % (j(r) x B(r)) dV. (5.31)

Simple examples are (rectangular or circular) current loops in a homogeneous
B field.

For the practical evaluation of (5.31) it is expedient to employ the identity
(‘bac-cab rule’)

ax(bxc)=(a-c)b—(a-b)c=Db(a-c)—c(a-b) (5.32)

to transform (5.31) to:

N = [{(r-B)j— (r-j)B}dV. (5.33)

For a stationary, spatially limited current, the 2nd term in (5.33) disappears. To
show this we use the relationship (n,m =1, 2, 3)
(5.34)



[y Tnjm AV = [, 2,V - (2nd) dV = [, V - (2nzn]) AV — [, Tmin dV

:fwnxmj-df—/xmjn dv=—/wmjn dv
F 1% v

taking advantage of V - j = 0, the product rule, the Gauss’ formula and the
disappearance of j on the surface F. For n = m it follows from (5.34)

Jy(x-j) dv =0, (5.35)

such that in (5.33) the 2nd term (approximately) disappears for a homogeneous
(weakly changing) field. Correspondingly, it follows from (5.34) for m # n:

Jy(®-B)jdV =~ [,(j-B)r dV, (5.36)
such that (with the ‘bac-cab’ rule):
fy(B-r)jdv=1[{B-r)j—(B-j)r}dV=-3Bx [,(rxj) dV(537)

with Eqg. (5.32). Result:

N= (3 [,(rxj{r))dV)xB=mxB (5.38)

with the magnetic dipole moment

m = 1 [,(r x j(r)) av. (5.39)

For a plane current (e.g. circulating current in the (x,y) plane) m is
perpendicular to the current plane (in the direction e) (see Fig. 5.3).

*m

T

Fig. 5.3 The magnetic dipole moment m of a circulating current




If the current-carrying conductor is thin, we get (after integration over the
conductor area):

m = % fL(r X dl) = % 027r d¢ 72 €, = w2l €., (5.40)

and for the magnitude of m:

m = IF, (5.41)

where [ is the current and F' = 7r? the area formed by the closed current (cf.
the area law for the motion of a mass point in a central field!). For a particle of
mass M and charge g with angular momentum L of a closed (periodic) orbit we can
replacer x qv by (r x Mv)q/M = Lq/M and get

m — LL.
2M

Applications: Measurement of currents.

5.5 Forces Between Currents

L |

I r
Fig. 5.4 Example for the interaction between two directed currents

With (5.21) and (5.28) the force of a current I’ on a current / in thin conductors
(see Fig. 5.4) reads as:

F=1I[dxB=l/ @ @&x@xr) (5.42)

4m |r—r/|3




Equation (5.42) can be symmetrized using the ‘bac-cab’ rule (5.32):

Ir (dl-al')(
P il [, f, B0, (5:43)

since

Jo ) = — [ V() cdl=0 (5.44)

for closed or infinitely long conductor circuits.

Equation (5.43) changes the sign when the two currents are exchanged, i.e. of I
and I’ as well as of r and r’. This reflects the actio-reactio principle, which holds
for electrostatic as well as for magnetostatic interactions. However, it will be
broken in case of arbitrary time-dependent current and charge distributions (see
Chap. 7).

In summarizing this chapter we have introduced the magnetic induction B(r)
for stationary currents and calculated the torque exerted by B(r) on a current j(r)

as well as the magnetic dipole moment m emerging from a circulating current.
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6. Basic Equations of Magnetostatics

Wolfgang Cassing!
(1) University of GiefRen, Giefsen, Hessen, Germany

In this chapter we will focus on the mathematical aspects of magnetostatics, introduce the vector
potential A(r) and analyse the multipole expansion of the vector potential.

6.1 Divergence of the Magnetic Induction
Equation (5.14) can be rewritten as follows:

mop 3 r‘r r’P ) gy = BV < (fy \i(jr)q av’). (6.1)

The proof is given by differentiations corresponding to the operation V X in the integral: With

9 _1 (@=2) o 1 _ _(y) o8 1 (z=%)

o] T e T oy e e % ] e (6:2)
we find
V() e = e ¥ 30) =5 x e (6-3)
According to (6.1) B(r) can now be written in the form
B(r) = V x A(r) (6.4)
with the vector field defined by
_ j(r)
Ar) =3 [y 5 AV (6.5)
Then
V:B(r)=V-(VxA(r))=0. (6.6)

Equation (6.6) formally corresponds to
(6.7)
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V'E(I‘):%;‘),

and shows that there are no magnetic charges. Let’s formulate the corresponding integral
statement to (6.6):

Jy V-B(r) dV = §,.B(r) - df = 0. (6.8)

We find that the flux of the magnetic induction through a closed surface F disappears. The
comparison with:

$-E(r) - df = £, (6.9)
explains this statement.
6.2 Rotation of B
In electrostatics we found
VxE(r) =0 (6.10)
or equivalently
fs E(r)-ds=0 (6.11)

according to the formula of Stokes. Accordingly, we want to examine the line integral
§sB(r) - ds (6.12)

over a closed path § = OF, that encloses an area F, and use Stokes’ formula to calculate V x B(r).
We first consider an infinitely long, thin, straight conductor. For that we have found

B(r) = 3ey, (6.13)

27r

where ris the distance from the conductor, / is the current and e indicates the direction: the field

lines run concentric around the conductor. We first consider a closed path S in the plane
perpendicular to the conductor, which includes the conductor (see Fig. 6.1).

y

\ 4

Fig. 6.1 Integration in the plane (x, y) perpendicular to the conductor



Then (with ds = eyrd¢):

$sB(r) -ds = Iz_? $s %fds = Iz_l:ro §do = Ip,. (6.14)

If S does not include the current we obtain:
fSB(r) -ds=0. (6.15)

This is immediately clear for the following path (see Fig. 6.2).

D

C
Fig. 6.2 Example of a path with a vanishing path integral of B(r)—generated by the current

The distances AD, BC do not contribute to the integral since they are perpendicular to B. Using
(6.14) we find that the contributions of AB, DC compensate each other due to the opposite
directions of circulation and the 1/r dependence of B(r).

These results can be generalized to several currents of the type discussed above due to the
superposition principle and closed space curves S can be composed of plane segments. Without
discussing the details of the general proof—which is the task of mathematics—we find the general
result:

$sB(r) - ds = pol , (6.16)

where [ is the current strength of the current enclosed by S.

Remark: If S circulates the current n times, then I has to be replaced by nl.

The integral statement (6.16)—analogous to Eq. (6.11)—we can transform to a differential
relationship using Stokes’ law. The latter allows to transform the line integral above into a surface
integral (S = OF):

$sB(r) -ds = [,(V x B(r)) - df , (6.17)




where F is an arbitrary smooth orientable surface with the closed path S as a borderline. F and
S = OF are in the definition domain of the continuously differentiable vector field B(r). With

(6.17) this gives for (6.16):

$gB(r) -ds = [.(V x B(r)) - df = pol = po [j(r) - df, (6.18)

or, since F can be chosen arbitrarily:

V x B(r) = poj(r). (6.19)

In contrast to the electrostatic field E with V x E(r) = 0 the B field is thus not vortex-free!

6.3 Vector Potential

Instead of computing B(r) for a given current distribution j(r) from (6.6) and (6.19) we want to
calculate B(r) from an auxiliary vector field corresponding to the electrostatic potential ®(r) in
electrostatics. To this aim we introduce the vector potential A (r), from which the magnetic
induction can be obtained by differentiation. In Sect. 6.1 we have already briefly introduced:

B(r) =V x A(r), (6.20)

and now want to find a differential equation for the vector potential A (r) from which A(r) fora
given current distribution j(r) can be calculated. We form:

V x (Vx A(r)) = poj(r) =V(V-A(r)) — AA(r). (6.21)

The 1st term on the right side in (6.21) can be eliminated and the desired differential equation be
simplified by exploiting the fact, that A (r) is not uniquely defined by (6.20). The field B(r) doesn’t
change when applying the gauge transformation

A(r) - A'(r) = A(r) + Vx(r), (6.22)

where x(r) is an arbitrary (at least twice partially differentiable) scalar function, since:

VxA'(r) =V xA(r)+V x (Vx(r)) =V x A(r) + 0. (6.23)

In case of
V- A(r) #0, (6.24)
we can choose x(r) such that
V-A'(r)=V-A(r) + V- (Vx(r)) =0. (6.25)

We find the scalar function x(r) of interest by solving a differential equation of the type (3.26):



V- (Vx(r)) = Ax(r) = =V - A(r), (6.26)

where —V - A(r) has to be considered as a given inhomogeneity. It thus can always be achieved
(without changing the physics, i.e. the B field) that:

AA(r) = —poj(r). (6.27)

The vector Eq. (6.27) consists out of 3 components, where each equation is again the well-
known Poisson equation (3.26).

6.4 Multipole Expansion

In analogy to the case of electrostatics one is often interested in the B field at a large distance from
the (spatially localized) current distribution j. It is then useful to expand the vector potential A (r)

into a Taylor series (as for ®(r)):

A(I‘) = A(](I') + Al(r)—l—. PN (6.28)
™ s 1 , 0 , 0 , 0.1
20 14 Z (g = S Vel
dr Jy VJ(r)(r (wa +y8y 0z)r+
with the
monopole term:
Ao(r) = = [, i(x') dV’ (6.29)

as the 1st term in the expansion of Eq. (6.5). Now for each component: = 1,2, 3
Jydi@’) av' = [, V' (f j(x')) dV' = $p2; j(x') - df' =0 (6.30)
because
V' (zii(r') = 5i(x') + 27 V- §(r),

V - j =0, the formula of Gauss and the fact that j # 0 only within V and disappears on the surface
F = 9V. We then get:

Ay=0, (6.31)

since there are no magnetic monopoles opposite to electric charges in electrodynamics (2.29).

Dipole component:

Ai(r) =42 [, dV' j(x') (-0 - V)1 = L% [, (x- 1) j(x') dV'. (6.32)

7




We transform the integral (6.32) according to (5.37):

fole T AV’ =+ [ Al -2)i() — (r-3() £} dV' = & [ {r x () x ©')} dV'(633)

_ —%r < /V (& x (') dV' = (%/V (& % §(r')) dV’) Xr—mxr.

Result:

Ai(r)=mx (4 %) (6.34)

with the magnetic dipole moment m of (5.39). Compare the result with equation (2.30)!
Analysis of the dipole moment m:
For N point charges gq; the magnetic dipole moment m is given by:

m = % Zfil qi(r; X v;). (6.35)

Furthermore, m can be connected to the angular momentum L of the N charged mass points if
M; = M and q; = g, i.e.

m=LL=53Y, Mr;xvy) . (6.36)

The orbital angular momentum of a system of (identical) charged particles is thus linked to a
magnetic moment in the direction of L. This statement also holds in the atomic range, e.g. for the
electrons of an atom. However, not every magnetic moment corresponds to an orbital angular
momentum according to (6.36). Elementary particles (such as electrons) have an internal
magnetic dipole moment, which is not related to the orbital angular momentum but is linked to the
spin of these particles by:

m, = g5irs, (6.37)

where s is the spin vector and g the gyromagnetic ratio. Esperimentally one finds g ~ 2.0024
for electrons, which can also be calculated within the scope of quantum electrodynamics (QED).

6.5 Energy of a Dipole in the External Magnetic Field

For the force F on a magnetic dipole m in a (spatially weakly changing) field B one finds:
F=V(m-B). (6.38)

For the proof we go back to (5.27) and proceed as in the calculation of N in equation (5.38). From
f 6.38) we get the potential energy of the dipole in the B field as (F = —VU):

(6.39)



U= _(m'B)a

in analogy to —(d - E) as the energy of an electric dipole in the electrostatic field (3.41). Thus

the dipole will preferentially be oriented in the direction of the field since this gives the lowest
possible energy.

Overview of magnetostatics

(1.) Basis: Ampere’s law

F(r) = q(v x B(r)) with B(r) = Z_;; /V i(r )|r>ii1;|3_ r) v

for stationary currents with V - j(r) = —8p/0t = 0.

(2.) Field equations: From

B(r) = V x A(r) with A(r) = 22 / @) gy

4 Jy |r—r'|

we obtain the

(a) differential relations:

V -B(r) = 0;V x B(r) = poj(r)

orin

(b) integral form:

f;B(r)-dsz;%B(r)wis:uoI

S

(3.) Vector potential:

V X (V x A(r)) = poj(r) = AA(r) = —poj(r)

for V- A(r) =0 (i.e. in Coulomb gauge).
In summarizing this chapter we have introduced the vector potential A (r) and analysed the

multipole expansion of the vector potential. Furthermore, we have calculated the energy of a dipole
in the external magnetic field.
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7. Maxwell’s Equations

Wolfgang Cassing!
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In this chapter we will extend the previous cases of static charges or stationary currents
and derive the field equations for E(r;t) and B(r;t) for arbitrary space-time dependent
sources p(r;t) and j(r;t) on the basis of Faraday’s law of induction.

7.1 Concept of the Electromagnetic Field

As the definition of the fields E(r;t) and B(r;t) we use-in extension of the Egs. (2.8) and
(5.13)-the relation (Lorentz force)

F(I‘,t) = q(E(r7t) + (V X B(I‘,t))). (7.1)

Since p(r, t) and j(r, t) are linked by the continuity equation

D 45 j(e,t) =0, (7.2)

itis clear that the electric and the magnetic field can no longer be treated separately:
The Maxwell equations are a system of coupled differential equations for the fields
E(r,t) and B(r, ?).

7.2 Faraday’s Law of Induction

We start with the following experimental observation: If the magnetic flux (Sect. 6.1)
through a closed conductor circuit changes in time, then an electric field is induced
along the conductor circuit, which generates an induction current in the conductor.
Quantitatively:

—kL ([ B(r,t) - df) = §sE'(r,1) - ds, (7.3)
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where:

(i) F is any smooth area with the conductor circuit S as boundary;

(ii) E(r, t) is the induced electric field strength relative to a coordinate system ¥’
moving along with the conductor S;

(iii) k is a constant that depends on the unit system, i.e.:

k=1 inthe MKSAsystem; k= % inthe cgssystem (7.4)

Equation (7.1) refers to the MKSA system and has to be replaced in the cgs system by
%
F(r,t) = (B(r,t) + (v x B(r,1))) = ¢(E(r,t) + (B x B(r,))) (75

_>
with 8 = v/c. All following formulae refer to the MKSA system.

(iv) The sign in (Z.3) reflects the Lenz’ rule.
From (i) it follows that also for time-dependent fields

V- -B(r,t) =0 (7.6)

as in magnetostatics. If F; and F’ are arbitrary surfaces with boundary S, it follows
from (i):

fF ) - dfy = fF (r,t) - df>. (7.7)

Taking into account the orientation of the surfaces, Gauss’ theorem then gives for the
volume defined by the different surfaces F; and Fj:

0= ¢p B(r,t)-dfi — §p, B(r,t)-dfz = [, V-B(r,t) dV,q.e.d. (7.8)

The universal validity of V - B(r, t) = 0 was already expected due to the interpretation in
Sect. 6.1.

Discussion of the Law of Induction
Case 1: Time-varying field B(r, t) with a stationary conductor circuit S.

Then E'(r,t) = E(r, t) is the induced field strength in the laboratory system ¥ and it
follows according to the formula from Stokes:

$oE(r,t) - ds = [p(V x E(r,t)) - df = — [, B0 gf, (7.9)

or, since F is arbitrary (S = 0F),




V x E(r,t) = - 80, (7.10)

Equation (Z.10) shows the expected connection of the fields E(r,¢) and B(r, t).

Note: Equation (7.10) holds regardless of whether the conductor circuit actually
exists or not; the conductor circuit only serves to detect the induced field!

Application: Betatron.

Charged particles are accelerated in the induced electric field E(r, ¢) from a time-
dependent magnetic field B(r, t).

Case 2: Moving conductor circuit S in a constant, time-independent B field.

At

Fig. 7.1 Tllustration of a moving conductor circuit S with the surfaces F; and F» at times t; and 2, which define an
enclosed volume V

Explanation: F'; and F) are arbitrary surfaces with boundaries S; and S5, F3 is the
lateral surface, which connects S; and Ss. The arrows give the orientations of the
surfaces (see Fig. 7.1).

According to the formula of Gauss we get:

— [, B(xr,t) - dfi + [ B(r,t) - dfs + [, B(r,t) - dfs = [;,(V-B(r,t)) dV =0(7.11)
considering (Z.6).
For the temporal change of the flux it follows (with dfs /dt = v x ds):
i JpB(r,t) - df =limarso 2 {fF (r,t) - dfy — [, B(r,t) - df1} (7.12)
~ _ lim i/ B(r,t) - df. —fB(r £ (v x ds)
T Ao At R ek !

and (7.3) takes the form:

(7.13)
$sE(r,t)-ds = — §.B(r,t)- (v x ds)
= —§ds- (B(r,t) x v) = §.ds - (v x B(r,t)).



Equation (7.13) allows to compute the potential § E’ - ds (electromotive force) that
is induced by a constant magnetic field in a moving conductor loop.

Application: Alternating current (AC) generator.
By combining case 1 and case 2 we get:

$oE ds=— [ 98 df + §.ds- (vxB)=§,E-ds+ §s(vxB)-ds. (7.14)

Since the conductor loop S can be chosen arbitrarily we obtain:

E' =E + (v x B). (7.15)

This connection between the (induced) electrical field strength E’ in the moving
system X’ and the (induced) field strength E and the magnetic induction B in the
laboratory system . can be explained for v < ¢ within the framework of Galilei’s
principle of relativity:

The force on a charge carrier g of the conductor circuit S in the laboratory system X
is:

F(r,t) = q(E(r,t) + (v x B(r,t))), (7.16)

whereas in the moving system X' it is:
F'(r,t) = qE'(r, 1), (7.17)
o

q
a Galilei transformation, which keeps the forces invariant, i.e.

since g rests in X/, i.e. v, = 0. For v = const. the connection between X and X’ is given by

F(r,t) = F'(r,t), (7.18)

and from which (7.15) follows directly.

7.3 Extension of Ampere’s law
Ampere’s law of magnetostatics

V x B(r,t) = poj(r,t) (7.19)
only holds for stationary currents. From
V- (V xB(r,t)) = uoV - j(r,t) (7.20)
follows, with the identity (for an arbitrary vector field a(r, t))

7.21
V-(V xa)=0, (7:21)



directly V - j(r, t) =0, i.e. stationary currents. In general, however, the continuity
equation applies

Vi) = - 250, (7:22)

such that (7.19) has to be modified for non-stationary currents.
This extension is straight forward when keeping the Gauss’ law of electrostatics
(Sect. 3.4):

V. E(r,t) = 250 (7.23)

which is supported by the charge invariance. Now combining (7.22) and (7.23) we get:

Vi) + 250 — v (5(r, 1) + e ) — 0. (7.24)

We therefore replace

i) = i t) + et (7.25)

in order to obtain again a current with vanishing divergence as in magnetostatics. In
accordance with the conservation of charge we extend (7.19) as follows:

V x B(r,t) = poj(r, t) + poeo T . (7.26)

Ampeére’s law (7.26) finds its experimental confirmation in the existence of
electromagnetic waves (see Chap. 10).

7.4 Overview of Maxwell’s Equations

Homogeneous equations:

V- B(r,t) =0, (7.27)

which corresponds to the absence of magnetic monopoles.

V x E(r,t) + 8 _ g, (7.28)




which corresponds to the law of induction.

Inhomogeneous equations:

V. E(r,t) = 250 (7.29)

€0

which corresponds to the Gauss’ law;

V x B(r,t) — po€o 6E§;’t) = poj(r,t), (7.30)

which corresponds to the Ampére-Maxwell law.

In (7.29) and (Z.30) the conservation of charge (7.22) is already implicitly included.
(Z.28) and (Z.30) show that a time-dependent magnetic field B(r, ¢) induces an electric
field E(r, t) and vice versa. The Egs. (Z.27)-(Z.30) together with the Lorentz force

F(r,t) = q(E(r,t) + (v x B(r,1))). (7.31)

completely describe the electromagnetic interaction of charged particles in the
context of classical physics.

In summarizing this chapter we have extended the previous cases of static charges or
stationary currents and derived the field equations for E(r;t) and B(r;t) for arbitrary
space-time dependent sources p(r;t) and j(r;t) on the basis of Faraday’s law of
induction.
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8. The Electromagnetic Potentials

Wolfgang Cassing!
(1) University of Giefden, Gief3en, Hessen, Germany

Instead of solving the coupled differential Egs. (7.27)-(7.30) for E(r;t) and
B(r;t) directly, it is more convenient—in analogy to the procedure in

electrostatics and magnetostatics—to employ electromagnetic potentials
which, however, are not unique. It will be shown that specific gauge
transformation are allowed that do not change the physical fields E and B.

8.1 Scalar Potential and Vector Potential
Since in general we have

V- B(r;t) =0, (8.1)

we can get a vector potential A = A(r,t) via the relation

B(r;t) = V x A(r;t). (8.2)

Then (7.28) can be written as

V x (E(r;t) + 8A§f”> =0, (8.3)

and the vector function (E(r;t) + 0A(r;t)/0t) can be written as a gradient
of a scalar function ® = ®(r, ¢):

E(rit) + 257 = —Va(r;t), (84)
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or

E(r;t) = — aAa(:;t) — V&(r;t). (8.5)

Thus E(r;t) and B(r;t) can be expressed by the vector potential A (r;t)
and the scalar potential ®(r;t), and now we have to set up differential
equations that allow to calculate A (r;t) and ®(r;t), if the sources p(r, t)
and j(r, t) are given.

To this aim we use the inhomogeneous Egs. (7.29) and (7.30). From (Z.
29) it follows with E(r;t) from (8.5):

Ad(rit) + V- 2450 _ o) (8.6)

€0

and from (7.30) with (8.2):

V x (V x A(rit)) + moeo <V o20t) 4 2 g,f;;“) — wj(rt).  (87)

With the identity
Vx(Vxa)=—-Aa+V(V-a) (8.8)

Equation (8.7) turns to:

AA(x3t) — poco 55— V (V- A(rst) + poeo 52 ) = —puai(xit). (8.9)

Thus the 8 Maxwell equations for E(r;t) and B(r;t) are converted to 4
equations for the potentials A (r;t) and ®(r;t), which, however, are linked
to each other.

In order to decouple these equations we make use of the fact that the
Maxwell equations are invariant with respect to gauge transformations:

A(r;t) — A(r;t) + Vx(r,t), (8.10)

(8.11)

®(r;t) — ®(r;t) — —8Xg’t) :




where x(r, t) is an arbitrary function that is twice continuously
differentiable.

8.2 Lorentz Convention
Equation (8.9) suggests to choose x(r, t) such that

V- A(rit) + poeo 228 — o, (8.12)

which corresponds to the Lorentz convention. We then obtain
decoupled equations from (8.9) and (8.6):

AA(r;t) - uoeoa‘;‘—g;” = —paj(rst). (8.13)
A<I>(r;t) _ [Loﬁo% — P(EI‘O;t) , (8.14)

which have the same mathematical structure. They simplify to the time-
independent fields in Egs. (3.26) and (6.27) of electrostatics or
magnetostatics. The Lorentz convention (8.12) is used also in the
relativistic formulation of electrodynamics employing pyey = ¢ 2.
Construction of x(r, t): If

V- A(I‘;t) + Mo€o 8¢(§I;t) #0 (8.15)

we preform a gauge transformation and require:

V- A(rit) + Ax(rit) + poco 2L — poee 05 = 0. (8.16)

Equation (8.16) is an inhomogeneous, partial differential equation of 2nd
order of the form

; (8.17)
2 r,t
AX(I‘, t) — Ho€o giz ) — f(I', t)'




For a given inhomogeneity

0P (r;t
flr,t) = —V - Arst) — poco 2ogs (8.18)
the solution is not unique, since for every solution of (8.17) another
arbitrary solution of the homogeneous equation
8% (r:
Ax(r3t) — proeo 28 = 0 (8.19)

can be added. This situation is referred to as gauge freedom.

8.3 Coulomb Gauge

In atomic and nuclear physics the gauge x(r, t) usually is chosen such
that

V-A(r;t) =0. (8.20)

Then (8.6) transforms to

AdD(r;t) = — 2= (8.21)

€0

with the known (particular) solution:

B(r,t) = o [, & Ax ’if dv’. (8.22)

Equation (8.9) then reads

AA(rit) - Moﬁoag—g;t) = —pj(r,t) + eopo V 8@(r’)
€ 3 Ot (r—r
= —pai(r, ) - 42’23 Jy L) GV (8.23)
_ (V-j(r',t))(r—r')
= —puaj(r,t) + fV ']|r rE av’.

Application: In source-free areas where
(8.24)



p(r;t) = 0; j(r;t) =0,
Equations (8.22) and (8.23) reduce to:

®=0; AA(rst) — poeo o) — g, (8.25)

The solutions of (8.25) are electromagnetic waves, e.g. in form of
transverse plane waves (see Chap. 10).
Construction of x(r, t): If the solution A (r,t) of (8.9) does not fulfill

the gauge condition (8.20), we perform the transformation (8.10), (8.11)
and require

V- A(r;t) + Ax(r;t) =0, (8.26)
or
Ax(r,t) = =V - A(r,1t). (8.27)

This is a special case of (8.17) with —V - A(r, t) as inhomogeneity.
Note: To any solution of (8.27) one can still add any solution of the
homogeneous equation,

Ax(r,t) =0, (8.28)

(gauge freedom).

8.4 Law of Induction, Self-induction

The magnetic flux—as the decisive quantity of the law of induction—can be
determined with the vector potential as follows (arguments of the
integrands suppressed):

[pB-df = [(V x A)-df = §;A -ds, (8.29)

by applying Stokes’ law. The right side of (8.29) shows explicitly that the
flux only depends on the path (conductor loop) S, but not on the special
shape of the surface F with boundary S = OF.

For the case of self-induction one has to calculate the vector potential
A (r,t) for a given current density j(r, t) from (8.13) or (8.23) and then to



calculate the integral (8.29). For a given current the result only depends on
the conductor geometry. Since

$5(Vx) -ds = [o(V x Vx) - df =0, (8.30)

it is independent of the choice of the gauge, i.e. with respect to the
transformation A — A(r;t) + Vx(r;t).

In summary, we have rewritten the coupled Maxwell equations for the
fields E and B in terms of inhomogeneous wave equations for the scalar
potential ¢ and the vector potential A, which can be decoupled by a
specific choice of the gauge x due to the gauge freedom, which leaves the
physical fields E and B invariant.
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9. Energy, Momentum and Angular Momentum

Wolfgang Cassing!
(1) University of Giefden, Giefden, Hessen, Germany

In this chapter we will calculate the energy, momentum and angular momentum of the
electromagnetic field, which will provide the basis for the description of electromagnetic
phenomena in the atomic domain by particles (denoted by photons).

9.1 Energy

In Sect. 3.5 we have attributed an energy to the electrostatic field characterized by the
energy density

we(rit) = L E(rit). (9.1)

In analogy we can assign an energy to the magnetostatic field. We want to skip this step
and go straight on to the energy balance for an arbitrary electromagnetic field.

We first consider a point charge g, which is moving with the velocity v in an
electromagnetic field {EE, B}. The work done by the field on the charge is given by:

W —F-v=qE+ (vxB)) - v=¢gE-v, (9.2)

since the magnetic field does not contribute to the work. Correspondingly, the
following holds for a current density j(r, t) (arguments of the integrands suppressed):

P — [ (E-j) dV. (9.3)

The work done by the field on the moving point charges is at the expense of the
electromagnetic field; its explicit form for the energy we will derive below.
We first eliminate the current density j in (9.3) with the help from Eq. (7.30):

Jy(B-3) @V = [, (£E-(V x B) ~ B &) av. (9.4)
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This expression, which only includes the fields E and B, can be symmetrized with
respect to EE and B with the relations

V-(axb)=b-(Vxa)—a-(Vxb) (9.5)
and
VxE=-2. (9.6)
Result
dWy _ 1 €0 OE? 1
i = Jy(E-J) _fv(mo BT T Vo (EX B)> av.  (9.7)
Interpretation:

Case1l:V — oo.
From (9.3) and (9.7) the field energy becomes:

Wr = [ (5,-B* + $E?) dV, (9.8)

if the fields decay asymptotically fast enough such that the V-—term in (9.7) disappears.
With the help of the Gauss’ formula,

[y V- (ExB) dV = §.(E x B) - df, (9.9)

with F denoting the surface of the (finite) volume V, one finds that the fields E and B
must decay faster than 1/R because df increases with R? (see Sect. 3.5). The requirement
above is met for static fields, but not for radiation fields (see Chap. 12). In (9.8) we now
can introduce the energy density of the electromagnetic field,

wp = 5-B? + E? (9.10)

which results from an electric component (cf. (9.1))

we = FE2 (9.11)

and an magnetic component

Wmag = %ILOB% (912)




Case 2: Vfinite.
We keep the interpretation of (9.10) and write, since the volume V can be chosen
arbitrarily, (9.7) as a (differential) energy balance:

E-j+2r4v.8=0. (9.13)
with
S = i(E x B). (9.14)

Interpretation of (9.13): The field energy in a volume V can change because energy
—in the form of electromagnetic radiation (Chap. 12)—flows in (out), as described by
the term V - S, and/or that work is being done on point charges described by E - j. In
analogy to the charge conservation (Sect. 5.1) we denote by S the energy current
density (Poynting vector). The energy balance shows that the energy of the closed
system (point charges plus electromagnetic field) is a conserved quantity.

9.2 Momentum

In addition to energy we can also assign a momentum to the electromagnetic field. We
start again with the momentum balance for a point charge g with velocity v. According
to Newton the change in the momentum of the point charge is:

F =% _ ¢(E + (v x B)). (9.15)

Corresponding, for N point charges, characterized by a current density j and charge
density p, we obtain:

Py — [ (pE + (j x B)) dV. (9.16)

In analogy to Sect. 9.1 we try to eliminate p and j such that the right side in (9.16)

only contains the fields E and B.
We use

p=¢V-E (9.17)
and

j= -V xB-ed. (9.18)



The result,

B — [, (&B(V-E) + (V x B) x B - (%2 x B))dV, (9.19)

we can symmetrize with respect to E and B by adding in (9.19) the (disappearing) term,

—B(V-B), (9.20)

and using the product rule in
—eo(22 x B) = —eg2-(Ex B) + ¢(E x 22). (9.21)

Inserting the law of induction
VxE=-%2 (9.22)

we obtain the result:

Py fv{ leOE (V-E) +-B(V-B)+-(VxB)xB
(9.23)
+e(V x E) x E] — g5 (E x B)} dv.

For the interpretation of (9.23) we sum up the [....] terms as follows:

(E(V-E)+Ex (VxE),=EY) = S0 Sap 450  2EF.(9.24)

3 3
0 1 0 0 1
= E E.E,)— — E E?) = E E,E,, — —E?,,).
) ( 1 m) 9 8331 ( — m) ( i~m 2 6zm)

m=1 9Tm m=1 8.’Bm

We proceed for the B terms accordingly. The resultis (i = 1,2, 3):

4 Pu+Pr); = [, 01 50 Tim dV (9.25)

with the tensor

) ) - (9.26)
Timm = GO(EiEm E 0; )+ E(BiBm — EB 5zm) and

PF = €9 IV(E X B) dVv.




Case1: V — oo.
As in Sect. 9.1 the right side in (9.25) disappears, if the fields E and B drop faster
than 1/R. Then the momentum balance is:

Py + Pp = const. (9.27)

Equation (9.27) suggests to interpret P r as the momentum of the electromagnetic
field. For the complete system (point charges plus field) then the total momentum,
which is composed additively of particle and field momentum, is a conserved quantity.

Case 2: Vfinite.
We use the Gauss’ theorem to rewrite the right side in (9.25):

(PM + PF fp m=1 zmnm df (928)

where n,, are the components of the normal vector of the surface F of V. Since the left
side of (9.28) is a force, we can attribute T;,,n., to the pressure of the field (radiation
pressure). The electromagnetic field can transfer not only energy but also momentum to
an absorber!

Remark: The fact that the momentum density

7 = €(E x B) (9.29)

and the energy current density S only differ by a constant factor,

%
TE = €opoS = C%S, (9.30)

is not a coincidence but arises inevitably within the framework of the relativistic
formulation (Chap. 19).

9.3 Angular Momentum
The change in the angular momentum of a point charge g in the electromagnetic field is
given by:

Ay —px BY — gr x (E+ (v x B)). (9.31)
Correspondingly, for N point charges, which are represented by p and j in a volume V, we

get:
(9.32)



L — [ rx (pE+ (j x B)) dV.

If we eliminate p and j again and symmetrize the result with respect to E and B, we
obtain (in analogy to Sect. 9.2):

By = f,r x{cE(V-E)+ LB(V B)+ L(VxB)xB

“o , (9.33)
+e0(V X E) X E — ¢35 (E x B)} dV.

If the fields drop asymptotically fast enough, i.e. stronger than 1/R for V' — oo, we
obtain

4 (Ly +Lp) =0, (9.34)

with

Lr=e [yt x (ExB)dV = [,(r x7r) dV (9.35)

as angular momentum of the field.

The sum of the mechanical angular momentum L ;; and that of the field Lz is a
conserved quantity:

L) + Lr = const. (9.36)

9.4 Summary

In the absence of other forces the conservation laws for energy, momentum and angular
momentum hold for a closed system (point charges plus field). Since the energy,
momentum and angular momentum of the point charges change in time, we have to
assign energy, momentum and angular momentum to the electromagnetic field itself in
order to guarantee the conservation laws for the entire system. The basic quantities

energy density

wr(r;t) = FE(r;t) + 5-B2(rit), (9.37)

momentum density

Tr(rst) = eo(E(rit) x B(rst)) = LS(r;t) (9.38)




and

angular momentum density

Yp(r;t) =¢eor X (E(r;t) x B(r;t)) =r X?F(r;t) (9.39)

can be found from the respective balances using Maxwell’s equations.

The fact, that one can assign mechanical quantities such as energy, momentum and
angular momentum to the Maxwell field, provides the basis for the description of
electromagnetic phenomena in the atomic domain by particles, which are denoted by
photons (after quantization).



Part IV
Electromagnetic Radiation
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10. The Electromagnetic Field in Vacuum

Wolfgang Cassing!
(1) University of Giefden, Giefden, Hessen, Germany

In this chapter we will discuss the general solutions to the wave equations for the
electromagnetic fields in vacuum, i.e. in a source-free region, which are the basis for the
transmission of information.

10.1 Homogeneous Wave Equations

In the vacuum (p = 0; j :63 the Maxwell equations are
V-E=0; V-B=0;, VxE=-2: VxB=¢puyZ. (10.1)
To obtain a decoupling of E and B we form
V x (VxB)=V(V-B)~AB = —¢uo%2. (10.2)
The result is a homogeneous wave equation
<A . c%gt_z)B =0; L =eopo. (10.3)

We proceed in the same way for the E field. We then get

(A- %2 )B=0; V-B=0 (104)
and
(A- L& )E=0; V-E=0. (10.5)

For the associated potentials one finds according to Chap. 9:

(10.6)

(A- L& )a=0 v-A=0
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$=0 (10.7)

in Coulomb gauge (V - A = 0).
We thus have differential equations of the type

(A . C%g—;)f(r, t) =0, (10.8)

where fis representative for any component of E, B or A. The solutions for E, B and A,
however, are still subject to the additional condition that the divergence disappears
(transversality condition).

10.2 Plane Waves

An important type of solutions of (10.8) are plane waves,

f=fla-rFc) (10.9)

for any (at least twice differentiable) function fand vectors q with g = 1.
Proof With the abbreviation

f=q-rTct (10.10)
we form:
d d? i) d o2 d?
Thus
B = Bof(r, t) (10.12)

is a solution of (10.3); similar solutions hold for E and A.

Properties of the solutions:

(i) Plane waves.

Functions of the type (10.9) describe plane waves whose wavefronts are planes: The
points r, in which f(r, t) has the same value at a fixed time t lie on a plane (Hesse’s normal
form)

q-r= const, (10.13)

which is perpendicular to q. Depending on the choice of the sign in (10.9) we get waves that
run in the 4+q direction.

(ii) Transversality of electromagnetic waves.
From V - B = 0 it follows with (10.12)



(Bo-q)4 =0, (10.14)

thus

B-q=0; (10.15)

correspondingly for E and A because of V - E = 0 and the Coulomb gauge requires
V-A=0.

(iii) Orthogonality of E and B.

From

VxE=-28 (10.16)
we get for the plane wave solutions
E=E; f(q-r—ct); B=Bg g(q-r—ct) (10.17)
the relationship
(% Eo) % =By, (10.18)

therefore E | B with (10.15). E, B and q form an orthogonal tripod.

Choosing as solutions of the Maxwell equations f(§) = g(&) =sin (&) (or cos (£)) we get
(at fixed time t) the following result for direction and amplitude of the E and B fields in
space: E and B oscillate in space and time orthogonal to the direction of propagation ~ q)
and also orthogonal to each other.

Comments:

(1.) In addition to plane waves there are also spherical waves that are solutions of (10.8);
they have the form (r = |r|):

fr=ct) (10.19)

r ’

where fis any (at least twice differentiable) function. The proof is analogous to (10.11) in
spherical coordinates.

(2.) The existence of electromagnetic waves (e.g. light waves, radio waves, microwaves, y
radiation etc.) proves the validity of the relation V x B = €yuo0E /0t in vacuum, which is
crucial in the derivation of the wave equations. This provides an experimental confirmation
for the Maxwell-Ampere law (7.26).

10.3 Monochromatic Plane Waves
A special form of the plane wave is (e.g. for the electrical field strength)

E =Ejexp (i(k-r F wt)). (10.20)



In (10.20)
k = kq, (10.21)
and w and k are connected by the dispersion relation

w? = k%c?, (10.22)

as can be seen immediately when inserting (10.20) into the wave Eq. (10.5). A plane wave of
the type (10.20) is called monochromatic. Corresponding solutions can be found for A and
B,ie.

B=Bjexp (i(k-rFuwt)); A=Apexp (i(k-rFwt)).

Remark: E, A and B are real vector fields by definition. The complex notation in
Eq. (10.20) is to be understood in such a way that the physical vector field is described by
the real part of (10.20). The complex notation is often more convenient than the real one
(e.g. when differentiating); this does not create problems as long as only linear operations
are carried out.

When calculating physical quantities such as the energy current density (see below)
products of vector fields appear. Time averages of such products can be expressed in
complex notation as follows: For two vector fields (of the same frequency)

a(r,t) = ag(r) exp (—iwt); b(r,t) = by(r) exp (—iwt) (10.23)
the temporal average of the product is given by (with 7 = 27 /w):
L [, dt Ra(t) - Rb(t) =: (Ra) - (Rb) = ;R(a-b"), (10.24)
since in
(Ra) - (Rb) = %(ao exp (—iwt) + aj exp (iwt)) - (bg exp (—iwt) + bj exp (iwt))(10.25)
1

= Z(ag - bo exp (—2iwt) + ay - by exp (2iwt) + ag - by + ag - by)

mixed terms with the time factors exp (42iwt) disappear after time averaging, i.e.

L [, dt exp (+2iwt) = —exp (£2iwt)|§ = = (exp (£4im) —1) =0  (10.26)

and only
(Ra) - (Rb) = 1 (a-b* +a*-b) = 1(Ra - Rb + Ja-Ib) = +R(a-b*) (10.27)

remains.
Terminology: The quantity k of the wave vector k is called wave number and is linked
to the wavelength \ by




A= 2T, (10.28)

With (10.22) we get

=2 (10.29)

for the connection of the angular frequency w with the oscillation period 7. Instead of
w the frequency v = w/(2) can also be used. Based on (10.20) one can see that 7
describes the temporal periodicity of the wave at fixed position r,

exp (iw(t 4+ 7)) =exp (iwt + 27i) =exp (iwt); (10.30)
in analogy ) gives the spatial periodicity:
exp (ik(z + A)) =exp (ikz + 2mi) =exp (ikz) (10.31)

for a wave in z direction at fixed time ¢t.
The quantity

¢(r,t)=k-r—wt (10.32)

is called the phase of the wave. The phase velocity v, is the velocity at which a wave
point moves for a given fixed phase. To determine v,, we consider again a plane wave in z
direction and form the total differential of ¢(z, t):

dp(z,t) = 2dz + % dt = kdz — wd. (10.33)

For a constant phase ¢ we get:

vpp =L =2 = ¢ (10.34)

the phase velocity is equal to the velocity of light c.

Remark: Strictly speaking, a plane wave is extended infinitely perpendicular to the
direction of propagation; any practically feasible wave, however, is limited in space.
Nevertheless, the plane wave is a reasonable approximation if the extension of the real wave
(perpendicular to the direction of propagation) is large compared to any obstacles (e.g. a
thin gap in a plate or a grid), by which the wave can be disturbed.

For monochromatic plane waves the relations

B=VxA E=-% (10.35)



in complex representation turn to

B=ilkxA); E=iwA. (10.36)

Energy and momentum of the wave can be calculated easily using (10.36) and (10.24).
For the time average of the energy density

wp =21 [fwr dt (10.37)
(in real representation),
wp= G E*+ 5B (10.38)
we get (with A -k =0):
wp = L Re(w?A - A* + 2K2A - A*) = Lw?|Ag)? = L|Eo|’. (10.39)

In analogy we obtain for the energy current density (9.14)

S = 52 |Ag* k= S |E* q (10.40)

and directly by (9.30) for the momentum density

Tr = 2 |Eo|* q= LS. (10.41)

By comparing (10.39) with (10.41) we find that the energy is transported with the
velocity c. In contrast to wg, S and 7, the time average of the angular momentum density
(9.39) depends on the position and is not suited for the characterization of a plane wave.
However, the angular momentum of the field has significance for spherical waves, where it
plays an analogous role as the momentum for plane waves.

10.4 Polarization

Due to the transversality and the orthogonality of E and B we can describe a
monochromatic plane wave in the form (10.20):

E=e1FEjexp (i(k-r—wt)); B=-esByexp (i(k-r—wt)) (10.42)

with
(10.43)



ei-ej:&-j; eszO

Such a wave is called linearly polarized. An equivalent, linearly independent plane wave
with equal wave vector k is obtained by moving E in the es direction and B in the e;
direction. The general polarization state of a monochromatic plane wave then results from
the superposition principle, e.g. for the electric field:

E = (e1E1 + e3Es) exp (i(k - r — wt)) (10.44)

with Ej (I = 1,2) as arbitrary complex numbers E; = |E;| exp (i¢;). Equation (10.44)
describes all possible polarization states:
(1.) Linear polarization occurs if

h1 = ¢a. (10.45)

The direction and magnitude of E then are given by (see Fig. 10.1)

0= arctan(%—f); E=,/E?+ EZ (10.46)

A 4

Fig. 10.1 Example for alinearly polarized wave

(2.) Circular polarization
Exists if:

Ey =Ey; ¢1— ¢2==+7; (10.47)
then (with exp (+in/2) = £i)
E = Ey(e; £ ies) exp (i(k - r — wt)), (10.48)
or in real representation
E, = Ey cos (kz — wt); E, = FEj sin (kz — wt), (10.49)
if k points in the z direction. The direction of rotation is fixed in (10.48) by the choice of the

sign; we get left or right handed circular polarization, i.e. E— and B — field rotate around
the z axis in space and time (see Fig. 10.2).




.
' o

Y

Fig. 10.2 Example for a circularly polarized wave

(3.) Elliptic polarization occurs for
E1 # Es; ¢1— ¢2 # 0. (10.50)

E then describes an elliptical orbit for fixed z, its position relative to €; by ¢1 — ¢2 and their
principal axis ratio is determined by E; / E.

In summary, the monochromatic plane waves (10.20) provide a convenient basis for the
construction of wave packets in the vacuum by suitable superposition.
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11. Wave Packets in Vacuum

Wolfgang Cassing!
(1) University of Giefden, Giefden, Hessen, Germany

An important application for electromagnetic radiation is the transmission of
information. Monochromatic plane waves are not suited for this task because they
contain practically no information other than their period (w). One can, however,
modulate monochromatic plane waves and by this transfer information. Such a
superposition of plane waves is most conveniently described in terms of Fourier
series or Fourier integrals (in the continuum). In this chapter we will introduce such
Fourier series, analyze their properties and find the general solution to the
homogeneous wave equation.

11.1 Transmission of Information by Electromagnetic
Waves

In the most simple case one forms a superposition of 2 monochromatic waves,
f(t) = fo cos (wit) + fo cos (wat) (11.1)

describing the wave at fixed position. Equation (11.1) can be represented as an
amplitude-modulated oscillation:

f(t) = 2fo cos (wmt) cos (wot) = 2fo(cos ((w1 —wa)/2) cos ((w1 +w2)/2)) (11.2)

= fo(cos (wo + wm)+ cos (wg — wi))

with
w1—ws wi1tws |

Wm = "5 5 Wo= "7 ; WI=WtWn W2=wo— Wn (11.3)

If we choose w; ~ wy then (11.2) is an almost harmonic oscillation of frequency wq
(carrier frequency), whose amplitude changes with the modulation frequency w,,,.
We get the image of a levitation (see Fig. 11.1).
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Fig. 11.1 Superposition of two frequencies with w; ~ w2

More complicated oscillations and therefore more possibilities for the transmission
of information arise for a superposition of several different vibration frequencies.

11.2 Fourier Series and Fourier Integrals
Starting from a fundamental frequency w = 27 /7T we form

f(t) =302 o fnexp (—iwnt); wy = nw. (11.4)

The Fourier series (11.4) converges uniformly (and thus also pointwise), if f(t) is
periodic with period T and smooth piecewise. The (weaker) requirement of
convergence is satisfied for periodic functions f{t) that are finite and continuous in the
interval [0, T].

The Fourier coefficients f, for a given function f{t), which satisfies the
requirements above, can be calculated as follows:

f =% [0 £(t) exp (iwnt) dt. (11.5)
Proof With
T ij/iz exp (iw(m —n)t) dt = dpn (11.6)
we get:
T2 ¢ .
T J 12 F(8) exp (iwmt) dt =3, fubmn = fm- (11.7)

As an example of Fourier series we consider the periodic ‘triangle function’
(11.8)




fz) =1+ %=

™

in the interval [—m, 7] with e = 1 for z < 0 and € = —1 for > 0. The corresponding
Fourier series (11.4) (in real representation) is:

f(@) =limy-00 5 3000 o 08 (2n+ 1)), (11.9)

The approximation of the function f{x) by (11.9) is shown in Fig. 11.2 for the case
N = laswellas for N = 3, i.e. only the first four vibration modes are taken into

account. However, we can see from Fig. 11.2 that already N = 3 gives a useful
approximation.

1.0 L 1.0 L

N=1 ] =3

0.5 L B 0.5 L

0.0

f(x)

f(x)

05 L B 0.5 L

-1.0 | 4 -1.0 |
s L L L

Fig. 11.2 Tllustration of the Fourier series (11.9) for N = land N = 3

Non-periodic functions can be represented (for very weak assumptions, see below)
by Fourier integrals, which result from (11.4) in the limit 7' — oo.
With the distance Aw = 27/T of neighboring frequencies w,, we define

Flwi) =limr o (£ f2), (11.10)

and obtain

F#) =322 f(wn) exp (—iwnt) Aw (11.11)

as the Riemann sum of the Fourier integral

@) = [ f(w) exp (—iwt) dw. (11.12)

For the inverse of (11.12) we obtain:

Flw) = 2= [° f(t) exp (iwt) dt. (11.13)




The function f(w) is called the Fourier transform to f{t). It exists and (11.12)
converges in the root mean square for all square integrable functions f{t) with

S0 [£(@®)]? dt < oo; (11.14)

f(w) then is also square integrable.
Example: square wave pulse

f@)=1 for — 5 <t<4; f(t)=0 else. (11.15)

fw)
: \\/ =

0

f(t)

—7/2 0 T/2
Fig. 11.3 The square wave pulse f{t) (left) and its Fourier transform f (w) (right)

Then we get

flw) = & [77, exp (iwt) dt = 2 B |72 swlers) (11.16)

2 J— W 21 —-7/2 W

The width Aw of f (w) can be estimated from Fig. 11.3 (from the distance of the first
zeros) by:

Awm 2L or AwAt~2m or AvAt~1 . (11.17)

A narrower (wider) signal f{t) leads to wider (narrower) frequency spectrum f (w).
This uncertainty relation does not only hold for the example (11.15) butis a
characteristic property of the Fourier transformation (see quantum mechanics).

Note: The Fourier transform is often used in the symmetric form

ft) = ﬁ [ f(w) exp (—iwt) dw (11.18)

with
(11.19)



11.3 Spectral Decomposition of Plane Waves
The Fourier series of a periodic function f(q - r — ct) = f(£), which represents a
plane wave, is:

(&) =200 fnexp (iwyé/c) (11.20)
with
£=q-r—ct, w,=nw (11.21)

and the Fourier coefficients f,, are given by:

fo = 5% [T, £(€) exp (—iwn/c) de. (1122)
The Fourier integral is used for aperiodic plane waves:
£&) = [ f(w) exp (iw€/c) dw (11.23)
with the inverse
Fw) = 57 [2o £(6) exp (—iwg/c) dg/e. (11.24)
The spatial or temporal extent of the wave then is determined by:
AlAw =~ 2mc, (11.25)
ie.
AtAw ~ 27 (11.26)

for a fixed position r and a fixed time t:

AzAk ~ 2, (11.27)

if the wave travels in z direction.

Note: It is important for the transmission of information that the plane wave
packets of the form (11.23) keep their shape and do not disintegrate (see quantum
mechanics):

f(r,0) = f(r + qct, t), (11.28)

since fonly depends on the argument £ (11.21). This property no longer holds for the
propagation of electromagnetic waves in matter (see Part V)!



11.4 4-Distribution

The Fourier transform (11.12), (11.13) leads to the following mathematical problem:
Inserting (11.13) in (11.12), we must get (after exchanging the order of integration)

t) = o [ [7 f(t') exp (—iw(t —t')) dwdt' = [*_f(t')o(t —t') dt’ (11.29)

with

St —t') = 5 [ exp (—iw(t —t')) dw (11.30)

for any square integrable functions f{t). The quantity §(¢ — t') obviously is not an
ordinary function, but a distribution, which strictly speaking can only be defined in
connection with the integration in (11.29).

The d-distribution, defined in (11.29), can be represented by any sequence of
continuous functions §,,, for which holds:

Hm, o0 [0 f(t) Sn(t —t') dt' = f(2). (11.31)

Examples:
(1) Rectangle

Sn(t)=n for [t|< s da(t) =0 else. (11.32)
(2) Gauss’ function
dn(t) = n exp (—mt2n?). (11.33)
(3) The representation

on(t) = £ sin(nt) _ L " exp (iwt) dw = 5i—(exp (int)— exp (—int)) (11.34)

™ t 2m

leads to the notation (11.30).
Warning: Equations (11.31)-(11.34) have to be understood in such a way that the
t'-integration is carried out before the limit n — oo is taken!

Calculation rules:

(1) 6(¢) = 6(—1)

(2) 6(at) = L-6(t)

la|




(3)d(t? —a?) = - (8(t+a) +6(t —a)); a#0,

2|al

(4) 8(£(t)) = Xk 170t — te),

where the tj, are all (simple) zeros of f(t), i.e. f(tx) = 0.

11.5 General Solution of the Homogeneous Wave

Equation

The plane waves examined in Sect. 11.3 are indeed limited in time and space in their
direction of propagation, but not in the plane perpendicular to the propagation. They
are not suited for the transmission of information, since their infinite surface extent
would require an infinitely large energy. Signals of finite energy can only be obtained
for fields that are limited in space and time (wave packets), which can be built by
superposition of monochromatic plane waves. Starting from the two basic solutions
exp (i(k - r F wt) with a fixed k we expand the vector potential (in the extension of

the Fourier transform to 3 dimensions) as

A(r,t) = 2(2;)3/2 [d3k [A;(k)exp (i(k T — wt))
(11.35)
FA_(K) exp (ifk - x + b))

Due to (10.22) the expansion (11.35) covers all possible w values. To obtain a real
function A (r,t), we replace in the 2nd term of (11.35) k by —k:

A(r,t) = —57 [d®k [A (k) exp (i(k - T — wi))
2(2m) (11.36)
+A_(—k) exp (—i(k - r — wt))].
A(r,t) becomes real if (2082 = z + 2*)
A (k) =A*(-k) = A(k), (11.37)

thus

A(r,t) = W [d®k [A(k) exp (i(k - T — wt))

(11.38)
+A*(k) exp (—i(k - r — wt))].




With (11.38) we have found the general solution of the homogeneous wave
Eqg. (10.6). The Coulomb gauge requires additionally

k-A(k)=0. (11.39)

It is important for the formulation of quantum mechanics, where the
electromagnetic field is described by photons, that the energy, momentum and angular
momentum of the field emerge additively from the contributions of the
monochromatic plane waves.

We demonstrate this for the case of the energy and rewrite (11.38) again as,

A(r,t) = o [k [Ak,t) + A*(<k,1)] exp (ik ) (11.40)

with the abbreviations
A(k,t) = A(k) exp (—iwt); A*(—k,t) = A*(—k) exp (iwt). (11.41)
Then according to (9.10) the energy of the electromagnetic field is given by

W = [wp(r) d'r = [[$(%) + - (V < A)"] d*r

ot
= o [ @r [ &k [ PH [ (—iwA(k, )
+iwA* (—k, 1)) (—iw/ A(K', 1)) + iw' A*(—K', 1)) (11.42)

+ o (ke x Ak, t) + ik x A*(—k,1))(ik' x A(K,t))
+ik’ x A*(=k’,t))] exp (i(k + k') - ),

where [...] still depends on k and k'. After performing the integration [ d3r we get -
due to

s [dr exp (i(k + 1K) 1) = 8 (k + k) (11.43)

and 6°(k) = 6(k,)0(k,)d(k,) - only contributions for k = —k’ and thus w = w':

W =1 [d%k [2(—iwA(k,t) + iwA*(—k, t))(—iwA(—k, 1)) + iwA*(k,t))(11.44)
+2Lm(7:k x A(k,t) + ik x A*(—k,t))(—ik x A(=k,t)) — ikxA*(k,t))]

= % Pk [(iw)*(A(k, t) — A*(—k, t))(A(=k,t)) — A*(k,t))




_(ikc)z(A(ka t) + A*(_k?t )(A(_ka t)) + A*(k& t))]

)
=2 [dk w?[A(k)- A*(k) + A*(~k) - A(—k)]
= 2 [Pro’[A(k) - A*(K)].

Here we have used
D Ak, t) = —iwA(k,t) (11.45)
and
V x A(k,t) exp (tk-r) =i(k x A(k,t)) exp (ik - r) (11.46)

aswellask - A(k) = 0 (11.39) and egug = ¢ 2.

In summary, Eq. (11.44) describes the field energy as a sum (integral) of the
individual contributions (10.39) of the monochromatic waves involved. Together with
the corresponding equations for momentum and angular momentum this provides the
basis for the description of the electromagnetic field by independent particles
(photons) (see quantum electrodynamics). The energy W itself is independent of time
consistent with the conservation of energy.
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12. Solutions of the Inhomogeneous Wave Equations

Wolfgang Cassing!
(1) University of Giefden, Giefden, Hessen, Germany

Whereas in the previous chapter we have derived the general solution of the homogeneous wave
equation we now aim at solving the inhomogeneous wave equations for arbitrary sources p(r;t)
and j(r;t). To this aim we will use the method of Green'’s functions that will lead to retarded

potentials. The latter will be employed to calculate the electromagnetic radiation from moving point
charges.
In the presence of charges we have to solve the inhomogeneous equations (cf. (8.13), (8.14))

(A_ c%é’—;)A= — 100§, (12.1)

(A—%&—Z)@:—é (12.2)

with the secondary condition (Lorentz convention)

V-A+L%2 =0 (12.3)

The problem is thus the solution of an inhomogeneous wave equation
2
(8- %5 ) vt = —wln,p), (124)

where ¥ stands for ® and the components A;, while w stands for p/€( and the components g j;.
The general solution of (12.4) arises from a general solution of the homogeneous wave Eq. (10.8)
(discussed in Chap. 11) and a special solution of the inhomogeneous wave equation.

To construct a special solution of (12.4) we use the method of Green'’s functions: With the
definition of the Green’s function:

(A _ %%)G(r, r'it,t') = -8(r—1') §(t—t') = —&*(z — ') (12.5)

(and the four-vector z = (¢, x)) we can write as a (formal) special solution:

U(r,t) = [G(r,r'5t,t') w(r',t') d*r'dt’, (12.6)
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as is directly confirmed by substituting (12.6) in (12.4). This is done by exchanging the order of
the integration with respect to r’, ¢’ and the differentiation with respect to r, ¢, which has to be
done with caution.

12.1 Construction of G(r,r’;t,t’)

Let’s first note 2 fundamental properties of G:

G=G(r—-r'it-1t (12.7)

due to the invariance of (12.5) with respect to space and time translations;

Gr—r'st—t)=0 for t <t (12.8)

due to the principle of causality.

As a preliminary exercise we consider the (known) case of static fields, e.g. the electrostatic
field. The Poisson equation

Ad(r) = — L&) (12.9)

has the (special) solution

(r) = 7 [ 2D dr, (12.10)

i.e. the Coulomb potential of a charge distribution p(r). We can write Eq. (12.10) as

®(r) = LO [G(x,r') p(r') d®r' (12.11)

with the Green'’s function

G(r,r') = 5 (12.12)

which satisfies the differential equation

AG(r,r') = —8(r — 1'). (12.13)

Proof
(i) R # 0, where

R=r-r'. (12.14)



Then:
A(£)=V-(VE)=-V- (F)=—-mV R+ ZR-B)=-2 + 2% =0, qed 1215
(ii) Due to (12.15) in a volume integral of type
[f(R)A(%) &°R (12.16)
the integration range can be restricted to a small sphere of radius a with center at R = 0,
JIR)A() d°R =lima o o) FR)A() d°R. (12.17)
If f(R) is continuous around 0, one can extract f(R) ~ f(R = 0) from the integral
JFR)A(%) &R =limg o F(R = 0) [yem AlF) E°R, (12.18)
and obtaines by the Gauss’s theorem:

fsphere(a) A(%) d3R = fsphere(a) V. (V(%)) ng (12-19)

- IF(G) (V(%)) -df = — fF(a) #R2dﬂ = —Ar
Thus:
JI®R) A(%) d°R = —4xf(0). (12.20)

Since (12.5) is the wave equation for a time and spatially point-like source, G(r — r';t — ¢’) must
represent a spherical wave, which reaches the position r at time ¢t = ¢’ + |r — r'| /¢, if the
perturbation is at the position r’ at time t’. We start with the Ansatz:

G(R,7) = Hr-RI _ l-t—irxijo (12.21)

r—r'|
with 7 =t — t'and R = |[r—r'|. To determine the function g we insert (12.21) in (12.5) and form:

AG =gA(%)+ iAg+ 2v(i) -Vg

2 (12.22)
= _47Tg 5(R) R ,9Rzg+ R2 8Rg R ﬁg;
here we have used:
_ B 1 8 (3 il 1 H?
A= 8R2 + %37 + o o (Sin 055) + Risin’0 067 (12.23)
= aRQ + = R aR + angularterm
and
0g Og dg 09 'y Og _ 9y
%= PR B " 9R R 9" 9R F - (12.24)



This gives
(8- £2)6 = —4ng(r — Rfc) F(R), (12.25)
since
L2 _ L2 Vg(r—R/c)=0
E\orz — o2 )IT ¢ (12.26)

for arbitrary (differentiable) functions g(7 — R/c). The comparison with (12.5) gives:

4dwg(t — R/c) = 6(1 — R/c) (12.27)
thus:
Glr—r'it —t') = 2D for ¢ > ¢/ (12.28)
Gr—r'st—t)=0 for t <t
Remark:

When deriving (12.27) the differentiability of g(7 — R/c) is assumed. This requirement is

actually fulfilled because the J-distribution can be differentiated (any number of times) in the
sense:

[ f(z) 6" (z) dx = (—)" [ ™ 6(z) da (12.29)

assuming that fis differentiable (any number of times).

Interpretation of G:

The inhomogeneity in (12.5) represents a point-like source, which at time ¢’ at position r’ is
switched on for an (infinitesimal) short time. The perturbation caused by this source propagates as
a spherical wave with velocity c. It follows that:

(i) The spherical wave G(r — r';t — t') must disappear for ¢ < t’ according to the principle of
causality.

(i) It must arrive at position r at time ¢ = ¢’ + |r — r’|/c since electromagnetic waves move
with the (finite) velocity of light c in the vacuum.

(iii) Since the energy of the wave is distributed on a spherical surface, G should disappear
asymptotically like R~

The retarded Green’s function (12.28) satisfies these requirements exactly. Equation (12.6)
shows, how to get the potentials A (r,t), ®(r, t) for given source distributions p(r, t), j(r, t) from
the contributions of point-like sources.

12.2 Retarded Potentials



With (12.6) and (12.28) the (asymptotically vanishing) solutions of (12.1) and (12.2) for localized
charge and current distributions are

B(r,t) = o [ AT g3pgy (12.30)
and
Ar,t) = o AR SCLrlD gspngy, (12.31)

The solutions (12.30) and (12.31) are linked together by (12.3) or the conservation of charge (Z.
2). We will examine the integrations in (12.30) and (12.31) for 2 practically important special cases
with particular attention to the argument of the -distribution, that incorporates the retardation.
When ignoring the retardation in (12.30) and (12.31),

st —t — Iy st — 1), (12.32)
we obtain the quasi-stationary fields:
B(r,t) = i [ 250 ¥, (12.33)
Afr,t) = 2o [0 g3y, (12.34)

which appear in the theory of electrical networks and machines. The approach (12.32) is
justified if p(r', ) and j(r’, t) are (practically) not changing during the time, that an
electromagnetic wave needs to travel the distance [r—r’|.

Example 1 Time-periodic source distributions of the form

p(r,t) = p(r) exp (—iwt); j(r,t) = j(r) exp (—iwt). (12.35)

Then we get from (12.30), (12.31):

®(r,t) = ®(r) exp (—iwt); A(r,t) = A(r) exp (—iwt) (12.36)

with k = w/cand

Jdt'" exp (—iwt’) §(t—t' — |r—r'|/c) =exp (—iwt) exp (iw|r —1r'|/c)

2(r) = g [T B, (1237)

r—r|



j(r')exp(ik|r—r1')
A(r) =4 [ 5 & (12.38)
The associated differential equations result from Eqs. (12.1), (12.2) and (12.35):
(A +E)¥(r) = —7(r), (12.39)

where W stands for ® and A; and + for p and j;. We can write the solutions (12.37) and (12.38)

with the Green’s function belonging to (12.39),

1\ exp(ik|r—r'])
G(I‘,r’,k) = ﬁ, (12.40)
as
U(r) = [~(r') G(r,r';k) d3r'. (12.41)

The discussion of the integrals (12.37), (12.38) for ®(r) and A (r) will be taken up in Chap. 13.

Example 2: Fields of moving point charges:
For a point charge ¢ moving on the path r(¢) we can write:

p(r,t) =q & —x(t)); j(r,t) =qv(t) & —x(t)). (12.42)
Then in (12.30) the d®>r'—integration can be carried out:
B(r,t) = 11 [ ‘53(“““'))&(:,7'*'H‘"/ ) @3 dt! (12.43)
— i A gy,
and for A(r, t) we get in analogy
Ar,t) = 4 [ XOACEEOV gy (12.44)
To perform the ¢'—integration we use
% 9(@) 8(f(2)) dz = 3, 1525, (12.45)

where z; are (simple) zeros of f{x), i.e. f(z;) = 0and f'(z;) # 0. Then we obtain:




B(r,t) = 53, R(t;)ln(tg) (12.46)

with

R(t) =r —r(t):; r(t})=1- 20 — ‘(ﬂ)” (12.47)

4 cR(t})

In (12.47) the ¢} are solutions of the equation f(t') = ¢’ — t + R(t) /c =0. In analogy we get:

v(t
Afr,t) = 2 W (12.48)

The potentials (12.46) and (12.48) (Liénard-Wichert potentials) are written in shorthand form
as:

q)(r’t) = #qe()(%)ret; A(I‘,t) - %(%)ret' (1249)

The limit v — 0 gives

A —0; &(r,t) > L (12.50)

4dmegR ?

i.e. the Coulomb potential known from electrostatics (as well as a vanishing vector potential).

12.3 Electromagnetic Radiation from Moving Point Charges
If the energy flow through an infinitely distant surface does not disappear,

limp .o, [S-df #0, (12.51)

we encounter radiation of electromagnetic waves caused by localized charge and current
distributions. This implies that the fields E, B then do not decrease stronger than R1, since the
surface increases like R2. Such fields are called radiation fields in contrast to the static fields that
decrease with R~2.

We now want to show that accelerated point charges radiate; to do this we have to calculate the
fields associated to

B=VxA;, E=-V&-2 (12.52)

where we want to use the form (12.43), (12.44) for ® and A. With the abbreviations

ViR) =nd, n=1R (12.53)

we obtain:

C C

—Ve(r,t) = g [t (B s(¢ — ¢+ 20 ) — 205 (¢ — ¢+ 12 ) (12.54)



and

L@ 1) = —22 fdt' (5 o (v ¢+ 22)), (12.55)
such that
_ n(t') R(t')
E(r,t) = g [dt’ T 6(t’ —t+ T)
(12.56)
v(t')/c—n(t') R(t)
+ cR(t") o'\t —t+ c ))
Here §'(t' — t + R(t')/c) is the derivative (12.29) defined with respect to the argument
£ =1t'—t+ R(t')/c. In analogy:
B(r,t) = (12.57)
R(¢t' 1 R(¢
_ [ gyt (n(t) x v(t'))(ﬁs(t' —t+ L) - =7 5'(1‘,’ it L))
To carry out the t’ integration we use:
R(t'
§'(6) = gy dro(t -+ 2 (1258)
with s(¢') (12.47). With (12.29), (12.45) and (12.49) we obtain:
_ g n(t) 1 d (=v(t)/cin(t)
E(I‘,t) T 4me (n(t)R(t)2 + K(t)e dt ( K(t)R(¢") ))ret. (12.59)
_ wog [ _vxn(t) 1 d [ v(')xn(t')
B(r,t) = 47 (K(t)R(t)2 T R @ ( R(EVR{t") ))ret'
To differentiate with respect to ' we compute
G =5mv)- =50 v)n-v| (12.60)
and
%(HR):”?Z—n-V—%(n-a) (12.61)

with the acceleration a = d/dt'v. We insert (12.60), (12.61) into (12.59) and reorder in powers of

R~ to get:

E(r,t) = #eo(m (n-a)(n—¥) - K,a})ret + O(R™%);

(12.62)



The latter terms, which decrease like R~2, are not interesting with respect to the condition
12.51). Correspondingly for B we get:

B(r,t) = 44 (ZLz[(n-a)(v x n) — ke (n x a)])ret +  O(R™?). (12.63)

To calculate the energy flux density we use the identity

v

nx(n-Y¥)xa)=(m-a)(n—-¥)—rka (12.64)

as well as the relation
B=1(nxE), (12.65)

which follows directly from (12.62), (12.63) for the asymptotic region. We then find for the
Poynting vector

S — E:OB _ EX;(»I;:E) _ ﬁ(nEz ~E(n-E)) = %E2 (12.66)

with (12.62) and (12.64):

S = 16ﬂ2§)1?ﬁ632 (nx [(n—¥)x a])Q- (12.67)

Since |S| ~ R~2 the condition (12.51) is fulfilled and we get the result that accelerated point
charges, a # 0, radiate. Point charges moving on straight lines and uniformly (a = 0) do not radiate
as a simple consequence: The rest system of the point charge then is an inertial system, in which
the electric field is the Coulomb field and the magnetic field, by definition, disappears such that
S=0.

Examples:

(1.) Bremsstrahlung occurs when a charged particle (e.g. electron) is decelerated in an
external field (e.g. when colliding with some target). This results in the continuous Réntgen
spectrum.

(2.) Synchrotron radiation

The motion of charged particles on a circular paths is also an accelerated motion. The resulting
radiation is a major problem in cyclic particle accelerators (synchrotrons); some of the energy
supplied is lost by radiation. On the other hand, for highly relativistic electron beams the
synchrotron radiation is focused (with suitable deflection magnets) at small forward angles such
that a suitable high-energy photon beam is created!

(3.) Radiation damping:

In the classical atomic model the bound electrons move in circular or elliptical orbits around the
atomic nucleus. Then they radiate continuously—as accelerated charges—electromagnetic waves.
The resulting energy loss leads to unstable orbits and ultimately to the collapse of the atoms in the
classical model. This contradiction to experimental observation can only be solved in quantum
theory or quantum electrodynamics (QED).

In summarizing this chapter we have derived the solution of the inhomogeneous wave equation
for arbitrary sources p(r;t) and j(r;t) employing the method of Green’s functions. This lead to



retarded (Liénard-Wichert) potentials, which have been used to calculate the electromagnetic
radiation from accelerated point charges and for time-periodic source distributions.
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13. Multipole Radiation

Wolfgang Cassing!
(1) University of Giefden, Gief3en, Hessen, Germany

In this chapter we will classify the leading order multipoles for magnetic and
electric radiation emerging from accelerated electric and magnetic dipole
moments as well as electric quadrupole moments.

13.1 Long Wave-Length Approximation

For a source distribution of the form
p(x,t) = p(r) exp (—iwt)(r,t) = j(r) exp (—iwt) (13.1)

we have found in Sect. 12.3:

®(r,t) = ®(r) exp (—iwt);A(r,t) = A(r) exp (—iwt) (13.2)
and (k = w/c)
(1) = g S EEEE @ (13.3)

A= o U)o He D)y,

4 lr—r’|

When discussing (13.3) we may restrict to A(r), since A(r) and ®(r) are
directly connected by the Lorentz convention: From

V-A+52 =0 (13.4)

follows with (13.2)
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B(r) =< V-A(r), (13.5)

and is therefore also known when A (r) is determined. For the further evaluation
of (13.3) we employ the long wave-length approximation

d< A= 2L, (13.6)

where d indicates the radius of a sphere, which determines the charge and
current distribution inside.

Examples:

For the optical radiation of atoms we have d ~ 108 cm, A\ ~ 107° cm; in
analogy we find for the  radiation of atomic nuclei: d ~ 10" em, A ~ 10~
cm.

When discussing (13.3) the lengths d, A and r are essential. We investigate
the following cases:

Case 1: d < r < ) (near zone)

Then

klr—r'|< 1 (13.7)

and we get directly:

B(r) = 2 [ 2L dr, Ar) = 42 [ aty (13.8)

The spatial component of the potentials shows the same structure according
to (13.8) as in electrostatics and magnetostatics. Given the time dependency
(13.2) one deals with quasi-static fields, for which E, B decay as R~2, such that
the radiation condition (12.51) is not fulfilled.

Case 2: d < A < r (far zone)

Since

kr >1 (13.9)

we can employ the Taylor expansion

r—r'|=) C)" (r'-V)'r~pr— ...

n nl

(13.10)

in (13.3):
|




A(r) = Ao(r)+ Ay(r) +--
exp(ikr . . 13.11
:%#Id?’r"](r’){l%—(%—zk)(e-r’)+---} ( )
ik
~ ,ZO exp (ikr) /d37"/ jrNH{1 _iﬂ(e. r')}
7r r c
with £ = w/c and the direction vector
e= . (13.12)
13.2 Electric Dipole—Radiation
In the first term in (13.11)
Ag(r) = 4o &) 1 g3 5(p) (13.13)
we can rewrite
Jyii dr' = [, V' (2if) d¥r' = [ 2i(V'-§) dr (13.14)
— [ @iy = [ 295 @ = i [ @l dv
F 1% 1
due to charge conservation
V-j—iwp=0. (13.15)
With (2.31) we then get:
Ag(r) = —iwhs 220 g (13.16)

where the electric dipole moment d is involved.

For the fields we get (following (13.9) and considering only terms ~ r—1):
| 1




Bo(r) = V x Ag = 2o (220 (¢ . g), (13.17)

4rc

With
Bo(r) = SV - Ar) = —i 22 W) (o q) (13.18)

r

we obtain from (8.5) the E field:

Eo(r) = —V®y(r) — % = ﬂw2M(d —e(e-d)) =c (By x €),(13.19)

47 r

usinge x d X e = d — e(e - d). We now can calculate the energy current
density

g — ExB _ ﬁ(Bo x e) x By = -=(eB2 — B((By - e). (13.20)

<
Ko

We use the real parts of (13.17) and (13.19) and find with (13.2) and
(e x d x e) x (e x d) = ed? sin® 6:

Sy = X ,4d? sin® 6 We, (13.21)

1672c

where 0 is the angle enclosed by e and d. For the time average we get:

Sp = - wid? sife, (13.22)

The dipole does not radiate in the direction of d (# = 0), but dominantly
perpendicular to d (6 = 90°). The sin? §—dependence is characteristic for
dipole radiation.

Comments:

(1.) Typical for radiation fields is that E, B and S form an orthogonal tripod
(cf. Sect. 10.3).



(2.) An oscillating dipole (with frequency w) can be realized only by
accelerated point charges. Equation (13.22) is therefore conformal with the
general statement (12.67).

(3.) The radiation of the lowest multipolarity is dipole radiation (/=1), not
monopole radiation (/=0)! Quantum theory shows how this multipolarity of the
radiation and the angular momentum of the photons are related. Since photons
have an intrinsic angular momentum (spin 17), there is no angular
momentum-free radiation, i.e. monopole radiation. The spin of photons is
directly linked to the fact that radiation fields are described by vector fields.

13.3 Magnetic Dipole and Electric Quadrupole

Radiation
The 2nd term of the expansion (13.11) is

A (r) = —iwpe SR pap ) dr'; (13.23)

4me

the remaining integral is determined by the magnetic dipole moment and the
electric quadrupole tensor. To identify this, we use the identity:

(e-r)j=1('xj)xe+ 3((e-r)j+ (e-j)r), (13.24)

which transforms the integrand in (13.23) into an antisymmetric and a
symmetric part with respect to r’. With the definition (5.39) of the magnetic
dipole moment the antisymmetric part becomes:

Al (r) = it ) (1 e, (13.25)

r

The magnetic dipole component of the vector potential formally transfers to
the electric dipole component (13.16) when replacing

limxe)—d. (13.26)

With (13.26), (13.17) and (13.19) we find for the field strengths:

Bgm)(r) — B2 eva(fkT) (e x (m x e)) (13.27)

4dme




and

E{"(r) =c (B™ xe). (13.28)

In analogy to (13.22) one determines the energy radiated over time:

S = 8 im? st e (13.29)

where 6 now is the angle between m and e. The comparison of (13.29) and
(13.22) shows that electric and magnetic dipole radiation do not differ in their
frequency and angle dependencies. The only difference is in the polarization:
for an electric dipole the vector of the electric field is in the plane spanned by e
and d, for a magnetic dipole, however, perpendicular to the plane spanned by e
and m.

We now consider the 2nd term in (13.24), which is given by

Al (r) = —iw o ) 156 v) 4 r'(e- )} & (13.30)

4me 2r

The integral in (13.30) can be reduced to the one introduced in Sect. 2.5 for
the electric quadrupole tensor. In analogy to (13.14) we rewrite:

[ diz, d3r' = [y =, V' (zj) d>r’ — [y znzi(V'-J) d>r' (13.31)

= —/ g A — iw/ z' xip(r') d*r,
14 14

where a partial integration (1st term) and the charge conservation (2nd term)
are used. Thus:

[z, + zijn} &' = —iw [, z),zip &7, (13.32)

and we can write (13.30) as:

Age)(r) _ _ Mo 2 explikr) f(e ')’ p(r') d3r! (13.33)

47e 2r



For the fields we obtain with (13.9)

Bl9(r) = vV x Al9(r) = ik (e x Al (r)) (13.34)

and

EY(r) =2V xBY(r) =c B (r) x e), (13.35)

since in a charge-free space we have:

VxB=LE (13.36)

Note: With the abbreviations

Fr) = — 2o 2 =lkn) gy [d3r'(e-r')r'p(r’) (13.37)

47e r

the magnetic field reads:

BlY = (Vf)xv+fVxv=ikf(r)(exv)+O(r?)

- © (13.38)
=ik(e x A7) +O(r?),
since all derivatives are of order O(r~!). In a similar way one proceeds in
(13.35) with the calculation onge).
With the help of the quadrupole tensor, given by its components
Qun = [ p(x')(z), ), — +7726,,,) d37, (13.39)
we obtain for Bﬁe):
B(e) _ - Mo 3 exp(ikr)
() = —itS P T (e x Q), (13.40)
with the vector Q given by its components (m =1, 2, 3)
m — Zizl anen- (1341)

Note that the 2nd term in (13.39) does not contribute to (13.40).



As above we now can calculate the energy current density

${7 = L(RE x ®B) = < (RBY x e) x RB{. (13.42)
With
(axb)xc=(a-c)b—(b-c)a (13.43)
we get
2 2
Si7 = £ (BY) o= gty of (e x Qe (1344
By time averaging this leads to
Sge) = 16’[711'—303&}6 81?(6 X Q)ze. (1345)

The difference to dipole radiation is obvious for the dependence on

frequency w. For the discussion of the angular dependence we consider the case

of axial symmetry (cf. Sect. 2.5)
Qmn =0 for m#n;Qu = Qmn = — 4 = -
From
2 2 2
(exQ)"=Q°—(e-Q)
then follows
2 2
Q? = %(e% +el)+ $Qel = %(sin2 6 + 4 cos? 6)
as well as
e- Q= —% sin? 0 + %Qo cos? 6;

thus

(13.46)

(13.47)

(13.48)

(13.49)

(13.50)



(e x Q)% = Q3 sin? 6 cos? 6.

Result:

S(e) _ o

2
= s WS 372 sin? @ cos? 4 e. (13.51)

c3w

The electric quadrupole radiation differs from the electric and magnetic
dipole radiation both in its frequency dependence as well as in its angular
distribution.

Applications in atomic and nuclear physics

Atoms and nuclei can emit or absorb electromagnet radiation. The multipole
expansion is a suitable tool for the description of the electromagnetic fields. In
atomic physics the dipole radiation dominates: The comparison of (13.22) and
(13.51) shows that the electric dipole radiation is stronger—by about a factor of
order (kdo)_2—than the electric quadrupole radiation. The electric dipole
radiation also dominates the magnetic dipole radiation, which in line with
(13.22) and (13.29) is smaller by the factor (v/c)®. The relations are more
complex in nuclear physics. A thorough discussion of the multipole radiation
here is only possible within the framework of quantum theory.

In summarizing this chapter we have classified the leading order multipoles
for magnetic and electric radiation emerging from accelerated electric and
magnetic dipole moments as well as electric quadrupole moments with respect
to their frequency and angular dependence.
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14. Systematics of the Multipole Expansion

Wolfgang Cassing!
(1) University of Gief3en, Giefden, Hessen, Germany

In this chapter we will generalize the multipole expansion discussed in the previous
chapter and introduce a particular set of orthogonal functions on the spherical
surface denoted by spherical harmonics. These functions are of general use also in
other areas of physics.

14.1 Multipole Expansion of Static Fields

For a localized charge distribution p(r) we have the potential

d(r) = 4 f(_r2| d*r’, (14.1)

47eg |

which at a sufficiently large distance from the charges (r > r') can be expanded in a
Taylor series:

B(r) = 2= [ p(r') (Zn or (r’-V)”%) &3 (14.2)
1 1 (r-r)  3(r- r’)2 — r2p2
— d3 / / = .
dreg / rp) (r * r3 * 275 +

We now rewrite the expansion (14.2) in spherical coordinates

x = r sin 0 cos ¢;y = r sin 0 sin ¢;z = r cos 0 (14.3)

z' =7"sin 6 cos ¢';y' = 7' sin @' sin ¢';2' =7’ cos @'.

In these coordinates (14.2) can be represented as follows:

(14.4)
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( ) Zl OZm——l eof %lﬁ_l) Ylm(e ¢) rl%

with the expansion coefficients

qm = [ &3 p(x")r" Y} (0, ¢). (14.5)

In (14.4) we have used that (for » > r') the function |r—r’|~! can be expanded by
spherical harmonics Yj,,:

A\ !
= D 0 X met T (T?) Y (60',4") Yim(6, ¢), (14.6)

which is equivalent to the cartesian expansion in (14.2), but explicitly only depends
on the spherical coordinates r, 6, ¢, 7', &', ¢’. Another advantage of the expansion
(14.6) is that the spherical harmonics Y}, for different (I, m)—in a particular sense—
are orthogonal to each other (see below). The scalar field ®(r) then can also be
written as:

o) = o [(p) LSRN S ol (2) V000 Yin6.0)) a7

l

. = qim L
= Z E 60(2l—|— 1) Ylm(ea ¢) pltl

=0 m=—1

with the expansion coefficients gq;,,, from (14.5) (q.e.d.).

Explanations:

(1.) Since the vectors r and r’ in (14.2) appear in a completely symmetric way (via
the scalar product (r - r')), ®(r) must depend in the same manner on 8, ¢ ason ', ¢'.

(2.) The index ! > 0 classifies the asymptotic behavior of each individual term in
the Taylor series.

(3.) The index m numbers the components of the multipole moments for fixed I. For
every I there are 2(I 4+ 1) values of m: —I, =1+ 1,....,l — 1,1. In the 2nd term of the
expansion the 3 components of the dipole moment d relate tom = —1, 0, +1.

The explicit comparison of (14.2) and (14.4) shows that the functions Y, for low
I, m have the following form:

(14.8)



l:O:YOOZ_\/Z—ﬂ_
3 3 . ,
l:1:Y10:\/— cosO;Yn:—\/— sin 0 exp (i)
4 8
15 | )
[=2: ng—\/— sin? @ exp (2i¢); Y21——\/8—ﬂ_sm0c039 exp (i9);

5 3 1
Yoo = 4/ — (2 cos? 6 —
20 (g st - 3)

if we determine the phase by

lefm(ea ¢) = (_)myvl:n(a ¢) (14.9)

The combination occurring in (14.4)
Yim(6, ) Yi(6',8") + Yiem(0,¢) V1", (0, &)

thus is real and symmetric with respect to (6, ¢) and (6', ¢’).
The lowest expansion coefficients gq;,,, are with (14.8), (14.9):

1
lZO!QooZ\/EQ

with
Q = [p(r') &3 (14.10)

as the total charge.

/3 /3 )
l=1:q11 =— /d3 V' —iy') = — S—W(dm_ldy);
3
Q10 =4/ - /d?’?"'P :\/4 d,,




where d,, dy, d, are the components of the dipole moment d.

15 /d37°' p(r')(z' —iy')? = %(Qn — Q2 — 2iQ12);

321

15 15 )
g21 = \/ /d3 (' —dy') = Y —(Q13 — 1Q23);
8w
— 3 5 3.,/ AYSV r’? — 3 5
Q20—§\/E/d7“ p(r)(z ?)—5\/ EQ?’?"

Furthermore, due to (14.9) we obtain:

qm = (=)"q - (14.11)

l:2:Q22:

14.2 General Properties of Spherical Harmonics

To determine the spherical harmonics Y}, we use the fact that outside the area of the
charges the Laplace equation for ®(r) (14.4) holds,

A® = 0. (14.12)

Since the functions r~/~! for different I values and the functions exp (im¢) for
different m values are linearly independent, we must have according to (14.12):

A(r Y (6, 4)) = 0. (14.13)

The A operator in spherical coordinates has the explicit form:

H? 2 0 1 : 0 (o2 0 52

If we carry out the r-differentiations in (14.13) we are left with

(ﬁ%(sin 0%) + -t 2+ + 1))Yzm =0, (14.15)

which is the determining differential equation for the Y,,. Within the separation
Ansatz




Yim (0, ¢) =exp (ime) Fi(6) (14.16)

14.15) reduces to

2

( L0 (5in 0-2) — 2L 4 (1 + 1))Flm(9) ~0. (14.17)

sinf sin26

Remarks:
(1.) Apart from r 1Y}, (6, ¢) the function 'Yy, (6, ¢) is also a solution of
(14.12), i.e.

A(rly'lm(e, ¢)) =0. (14.18)

However, from these two linearly independent solutions in our context only r—=1Y7,,
is useful due to the boundary condition

®(r,0,¢) — 0for r — oco. (14.19)

(2.) The index m in (14.16) must be an integer since ® is a unique periodic function:
®(r,0,9) = ®(r,0,¢ + 2m). (14.20)

In order to solve Eq. (14.17) we further introduce:

£ =cosbii.e. 555 = —de» (14.21)
such that (14.17) turns to:
L ((1—€)L)— = 41+ 1)) Em() =0
£(1=8) %) — 2z +l1+1)) Fm(§) =0. (14.22)

For [ = m one immediately finds the solution (except for a normalization factor):

Fu=(1-8)" = (1- cos’ 6)"* = (sin 0)". (14.23)

The solutions to m # [ are then obtained by recursion (except for a normalization
factor):

Fi,1= (—% —m cotg G)Flm. (14.24)




The proof (by substituting (14.24) in (14.17)) is just as elementary as lengthy (see
quantum mechanics). It is worth to note about the result (14.24) that the Fj,, are
polynomials in cos 6, sin 6 of order /, since the differentiation with respect to € and the
multiplication by cotg 6 does not change the order of F};. For all m values with |m/| > [
the function F},, vanishes as a result of the recursion process, which justifies the finite
summation over m from —[ to [ in (14.6).

Note:

Equation (14.22) has—in addition to the solution discussed here—as a differential
equation of 2nd order still a 2nd basic solution. This has singularities for 8 = 0, 7 and
is not suitable for our problem.

An important property of spherical harmonics is their orthogonality. To define
this let’s consider a sequence of functions fi(z), fa(z),- - -, fn(z), - - -, which are
continuous in the interval [a, b]. We then define the dot product of two functions

fns fm by:

(s fn) = [2 £ (@) fulz) de. (14.25)

The norm of f,, is introduced by:

(frs ) = [0 |fu(2)]* dz > 0. (14.26)

Two functions are called orthogonal if

(fm> fn) = 0. (14.27)

Note: The terminology above is in analogy to vectors in vector spaces of finite
dimension.
For the spherical harmonics Y}, (0, ¢) now the following relation holds:

J5Td¢ [T sin 0d0 Yy Yo = [T de [1, d cos 0 Y\ Y = Suwbmm, (14.28)

where the integral for [ = I’ and m = m/ specifies the normalization of Y},,. Due to

fo27r d¢ exp (i(m —m')¢) = 2nfor m = m’ (14.29)

and = 0 for m # m/ the orthogonality with respect to m is immediately clear. The
(normalized) functions (with respect to the ¢-dependence) then are



% exp (ima). (14.30)
We discard here the explicit calculation of the normalization factors for the functions
F},,,(0) and refer the reader to the specific literature ( or quantum mechanics).

We show the orthogonality with respect to [ as follows: We take advantage of the
fact that the solution of the real differential equation (14.22) can always be chosen to
be real and consider the difference from

5 de Fl'm(d%(l — )& - B+ 10+ 1))Flm =0 (14.31)
and
S dg Flm(d%(l )& - Ea U+ 1))Fl’m = 0. (14.32)
We get
11 +1) =V +1)] [7 dé FrpmFim = 0; (14.33)

where the 1st term in (14.31) (or (14.32)) was transformed by 2-fold partial
integration and that there are no contributions from the integrated terms due to the
factor (1 — £2). For I # I’ we get from (14.33)

[l de FunFim =0,q.e.d. (14.34)

14.3 Multipole Expansion of the Radiation Field

The multipole solutions from Chap. 13 (in the source-free space) satisfy the
differential equation

AA + E2A =0. (14.35)

Apart from plane waves also spherical waves are solutions, which we will discuss and
construct below.
With the Ansatz

A(I‘) = am fl(r) lem(ea ¢) (14.36)

Equation (14.35) turns to

r dr r2

(j_; + 2d + k2 _ 1(I+1) )fl('r) = O, (1437)



using (14.14) and (14.15). Equation (14.37) becomes simplified when using—instead
of f;—the function

g =rfi (14.38)
which leads to:
(dﬂ +k2 - U )gl("“) = 0. (14.39)
Case 1:1=0
Then the solutions go(7) are immediately apparent: sin (kr) and cos (kr) or
exp (tikr).
Case2:l#0
In the variable
p=kr (14.40)
Equation (14.39) reads
(j; +1- 10 ) gi(p) = 0. (14.41)

To solve (14.41) we define the operators

_ d l.j— _ d L.
df =4, — 4 =5+ 5 (14.42)
then (14.41) can be written as
(dd; +1)g1 =0, (14.43)
using
d (1 1dg
d—p(zgl> g+ (14.44)
In a similar way we get:
(d.,d) . +1)g=0. (14.45)
By applying the operation dl ", on (14.45) we obtain,
(dfqdidly +di)g = (& dn, +1)(dfq1) =0 (14.46)

and comparing with (14.43), we get (except for a constant factor)




g1 = dj 91 (14.47)

Equation (14.47) allows to calculate g;(p) by recursion from go(p). Depending on
the choice of the basic solution gg one constructs the following functions:

solution overview:

!
90 (=)'aqlp)/p symbol
sin p spherical Bessel functions Ji(p)
— cos p spherical Neumann functions ni(p)
exp (+ip) spherical Hankel functions ki (p)

For an easy calculation of the lowest order Bessel functions j; and Neumann
functions n; we write (14.42) as follows,

df = pldd—pp‘l, (14.48)
such that with (14.47)
gi=pgp "t pibp 9 (14.49)
or
l
g _ (1 d 9o
: —p(pdp) (p) (14.50)
One finds by simple differentiation:
sin Cos
Jo = P Mo = — p;
P p
. sinp cosp cosp sinp
h=—7 - = —— — ;
P P P P
_ (3 1) , 3 cos p ( 3+1> 3 sin p
J2=|—— — | smp— o = | ———= — ] cos p — .
p P p? p* P P

The procedure to construct the Hankel functions hli with the basic solution
go(p) =exp (Lip) is analogous.
The general solution of (14.35) can now can be written as




A(r) =32, (amh] (p) + bimhy (p)) Yin(6,¢), (14.51)

where the angular dependence is determined by the Y7, (6, ¢) and the radial
dependence (for fixed I) by the Hankel functions hli(kr) For radiation problems by, =
0, since h; describes an incoming spherical wave. The remaining coefficients ay;, of
the outgoing spherical wave h;r(k'r’) are determined from the multipole moments by
comparing (14.51) and (13.11) for p = kr > 1.

14.4 Expansion of a Plane Wave in Spherical Harmonics
The functions hi=(p) Yy (0, ¢) form—Ilike the plane waves exp (£ik - r)—a complete

basis; the general solution of the wave equation can be derived from one basis or the
other by superposition. The choice of a basis depends on the specific problem (e.g. the
boundary conditions).

We want to show the connection between the two basic systems by expanding a
plane wave in spherical harmonics. For simplicity, we choose k = (0, 0, k), then in

exp (tk - r) =exp (ikz) =exp (ikr cos 6) (14.52)

the angle ¢ no longer shows up and the expansion has the (¢-independent) form:

exp (ikz) = >, a; ji(kr) Yi(6). (14.53)

The Neumann functions do not appear because the n; become singular for r — 0
(e.g.no(p) — —1/p for p — 0). The coefficients are:

ap =" (21 + 1)1/ 55 (14.54)

To construct the Hankel functions ;" with the basic solution go(p) =exp (+ip)

one exploits the orthogonality of the functions for the proof of (14.54): In general we
can determine the coefficients of an expansion

g(x) = >, cmfm(z) (14.55)

within a (complete) orthonormal system of functions f,,(z) with

(fns fm) = Onm (14.56)



en = (fnr9) = [, Fi(@)g(2) da. (14.57)

For the example above (14.53) we get:

aji(kr) = foﬂ sin 6d0 Yy (0) exp (ikr cos 0); (14.58)

using an expansion for small values of r on the right and left sides of (14.58) the 8
integration can be carried out and the result just becomes (14.54).

14.5 Benefits of the Expansion in Spherical Harmonics

Knowing the angular dependence of the potentials ® (14.4) or A (14.51) for fixed r,
one immediately can decide which multipole moments are contained in the source of
the field. For example with

due to the orthogonality of the Y},,, we can to pick out a specific term from the
expansion (14.4).

In summarizing this chapter we have generalized the multipole expansion
discussed in the previous chapter and introduced a particular set of orthogonal
functions on the spherical surface denoted by spherical harmonics. As applications
we have presented the general multipole expansion of the radiation field and the
expansion of a plane wave in spherical harmonics.



PartV
The Electromagnetic Field in Matter
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15. Macroscopic Fields

Wolfgang Cassing!
(1) University of Gief3en, Giefden, Hessen, Germany

In principle, the Maxwell equations of Part III allow to calculate the
electromagnetic field for any arrangement of matter as soon as the charge
density p(r, t) and the current density j(r, t) are known exactly. In such a
microscopic theory the matter—in the area of space-time under
consideration—is decomposed into point charges (electrons and atomic
nuclei) and their state of motion then defines the charge density p(r, t) and
current density j(r, t). For distributions of matter of macroscopic
dimensions (e.g. a capacitor with a dielectric or current-carrying coil with
an iron core) such a microscopic calculation is neither feasible in practice
nor desirable, since experimentally only spatial and temporal averages of
the fields can be controlled. We will therefore examine in the following
space-time averages of the fields and derive the Maxwell equations for the
macroscopic fields.

15.1 Macroscopic Averages
are integrals of the form

< flr,8) >= by [dedr fx 6t +7) (15.1)

where AV indicates the volume, AT the time interval and f stands for
the charge or current density or the components of the field strengths (
f = p,j, E,B..). In the following we want to establish the connections
between the average values (15.1) for charge and current density on the one
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hand and the macroscopic fields on the other hand. The starting point are
the microscopic Maxwell equations

V-B=0GVxE+2£ =9 (15.2)

and

V-E =2,V xB-eu? = pj (15.3)

If we assume that in (15.1) differentiations with respect to r and t may
be carried out in the integral,

L <fr=<g L <fo=<F > <fr=< g >ete, 154

we get the following equations for the average values from (15.2) and

(15.3):
V-<B>=0Vx <E>+&B= = (15.5)

and
V-<E>= F2Ux <B> —eu?5> = <j>  (15.6)

The homogeneous equations (15.2) remain the same in the transition
from the microscopic fields E, B to the macroscopic fields

— —
E=<E>:B=<B >. (15.7)

In the inhomogeneous equations (15.6) we now have to suitably divide
< p > and < j > into free and bound charge carriers.



15.2 Free and Bound Charge Carriers

%
We first look at (15.6) and the connection between & and its sources. To this
aim we distinguish in the averaged charge density the density of the bound
charges pp and the average density of the free charge carriers py, i.e.

< p >= pp+ Py (15.8)

Bound charge carriers are, for example, the lattice building blocks of an
ion crystal (like NaCl with the lattice building blocks Na™ and C17) or the
electrons of atoms and molecules. Bound does not imply that the charge
carriers cannot move, but that there are strong forces that keep the charge
carriers at their equilibrium positions; small periodic oscillations around
these positions are possible (thermal fluctuations).

Freely moving charge carriers are e.g. conduction electrons in metals,
ions in gases or electrolytes. They are characterized by the fact that they
form a macroscopic current under the influence of an external field.

The density of free charges p; is a macroscopic quantity that—in

contrast to pp—can be directly controlled in experiments. The charges on

the plates of a capacitor e.g. can be specified from the outside. They create

an electric field, which in a dielectric between the plates can generate or

align electrical dipoles. The effect for an observer are polarization charges

on the surfaces of the dielectric, which depend on special conditions (type of
%

the dielectric, temperature of the environment, strength of the & field)
(Fig. 15.1).



- dielectric

+++++++++++++
1
+++++++++++
|

Fig. 15.1 Polarization of a dielectric in a capacitor

It is thus reasonable to combine the field from the (bound) polarization
charges with the electric field generated by the free charges p on the plates.

%
We choose the auxiliary field &2 in such a way that:

%
V- ZP=—p (15.9)
and
%
& = Owhere p, = 0. (15.10)
Then we obtain:
- =
V- (o + P) = py (15.11)

or after introduction of the dielectric displacement field

— "
D =€ + & (15.12)




_>
V.2 p; (15.13)

%

We will show below that the auxiliary field & is the density of the
(macroscopic) dipole moment of the dielectric under consideration
(dielectric polarization).

In analogy to (15.8) we write for the macroscopic current:

<J>=]r+ v (15.14)

where jy is the contribution of the free charge carriers (averaged

according (15.1)). The contribution arising from bound charge carriers, i.e.
(averaged) current density jp, is divided up again,

%
jo=Jr+iv=2% +iu. (15.15)

%
Here jp is the temporal change of the polarization &, i.e. due to the

motion of the polarization charges,

-
jp = 38_«?_ (15.16)
The discussion of the remaining contribution jz, which results from
molecular circular currents, i.e. magnetic dipoles, we postpone for later.

With (15.12), (15.14) and (15.16) the second inhomogeneous equation
is written as follows:

- —
V x B — poSr = pais + poim (15.17)

For the further transformation of (15.17) we employ the continuity
equation for the free charge carriers:
(15.18)



. 0
V'Jf—f-% =0.

Then we get from (15.13) and (15.18)

—

vV - (08_? +3j5) =0, (15.19)

%
such that the vector 092 /0t + Jr can be represented as a rotation of a

_>
vector, which we denote by JZ, i.e.

— —
Vx A= 5, (15.20)

o S
The connection between & and ¢ according to (15.17) is:

— —
V x (B — o) = piur. (15.21)

— —
In analogy to the vector & we introduce the magnetization ./#:

— = —
pol = B — i, (15.22)

such that according to (15.9):

— —
V X M = jy; M =0 where jy = 0. (15.23)

%
We will show later that ./ is the density of the (macroscopic) magnetic
dipole moment (magnetization).
Comments:



- =
(1.) Only the fields & and & have a microscopic analogue, i.e. E and B

— —
(cf. (15.7)). Z and ¢ are only auxiliary fields that we have introduced to

solve complicated electrical and magnetic properties of matter ‘on average’.
(2.) A macroscopic polarization (or magnetization) can show up when
existing electric (or magnetic) dipoles in the field are aligned or if dipoles
are induced by an external field. Without an external field permanent
dipoles are distributed statistically and—after averaging over a macroscopic
volume—no polarization (or magnetization) results.
Summary of the macroscopic field equations:

Homogeneous equations:

— — =
V-%:O;Vx@@—i—%zo (15.24)

Inhomogeneous equations:

— —
V-@zpf;Vx%—%:jf (15.25)
Connections:
— = =
D =eb + P =-—-—PB— M. (15.26)

Equations (15.24), (15.25) have the same formal structure as (15.2),
(15.3); we can therefore use the same methods for the solution.

Equations (15.2), (15.3) are, however, not yet sufficient to determine—
. == = —
for given py¢, j;—the 4 fields &, 2, %, 7 uniquely. To this aim we have to

convert the formal connections (15.26) with the help of special models (for
the matter under consideration) to explicit material equations. Simple
examples will be discussed in the next chapters.

15.3 Polarization and Magnetization




— —
For the interpretation of the polarization & and magnetization .# we

introduce via

— —— - =
B=Vxo=-Vd— 2 (15.27)

- —
the macroscopic scalar potential ¢ and vector potential .<7. For these

otentials we obtain the inhomogeneous wave equations (in Lorentz gauge):
2 \ &
— (A — % ¥ )CI) (pf -V ﬂ) (15.28)
— — =
—<A—%§t—2)d:uo<jf+V><///+ %) (15.29)

Special solutions are the retarded potentials (see Sect. 12.3)

b(r,t) = 1= (fd?’ o) [y %(r'”) (15.30)

with the retarded time t' = ¢ + |r — r'| /¢, and

— /
o 3 1 Jr(r'st) 3 63”(1‘ ) /0t
“et) = (fdllrr+fd' =
(15.31)
3,0 %4 xx/l ")
%
The term with & (15.30) we reformulate by partial integration:
(15.32)

[ R Ry = S )

|r—r/| |r—r/|3 ?




where—for simplicity—we have neglected retardation (¢ = t'). For matter
of finite extension no surface term arises from the partial integration.

%
The comparison with Sect. 13.2 or Sect. 2.5 shows that & has the
interpretation of the density of the macroscopic electric dipole moment,
as already mentioned above.

Accordingly, neglecting the retardation (¢ = t') in the last term in
(15.31):

— —
fd?”l“' VTI{/S',"J) _ fd3r’ (r_r|3i§/|{3(r’t) _ (15.33)

_>
The comparison with Sect. 6.4 or Sect. 13.3 shows that .# (r, t) is the

density of the macroscopic magnetic dipole moment.

It arises because either permanent magnetic dipoles are aligned in the
field or induced by the field as in the case of electric dipoles.
The charge conservation for the bound charge carriers,

Vs + 2 =0, (15.34)
follows from (15.9), (15.14) as well as (15.16) and (15.23).

In summary, we have extended the microscopic Maxwell equations to the
macroscopic fields and introduced two auxiliary fields, i.e. the density of the

_>
(macroscopic) electric dipole moment &2 (dielectric polarization) and the
_>

density of the (macroscopic) magnetic dipole moment .# (magnetization),
that have to be specified separately by material equations.
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16. Energy, Momentum and Angular Momentum of
— =
(&, )

Wolfgang Cassing!
(1) University of Giefden, Giefden, Hessen, Germany

In Chap. 9 we have introduced the energy, momentum and angular momentum of the microscopic
field and applied this concept in Part IV to the radiation field in vacuum. In the following we want to
discuss how the considerations in Chap. 9 can be transferred to the macroscopic field.

16.1 Energy

The starting point for the energy balance in Chap. 9 was that of the work done per unit of time of a
(microscopic) field (E, B) on a system of charged mass points:

d .
"L = [(j-E) dV. (16.1)

The basis of (16.1) is the Lorentz force, e.g. for a point charge g:
F = ¢(E + (v x B)), (16.2)

whose magnetic component does not contribute to (16.1). From (16.2) we obtain with (15.1) the

(average) force, which a macroscopic field (&', %) exerts on a point charge g moving with velocity v:

— — —
F = q<(5”+ (v x %)). (16.3)

The work per unit of time done by the macroscopic field on the free charges of the density py
then is in analogy to (16.1):

—

P = [(iy- &) dV. (16.4)

— —
The right hand side of (16.4) we can rewrite using (15.25) (j; = V x J¢ — %—?) as:

— — = .7
2 :f(g-(vX%)—g- %) dv. (16.5)
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As in Chap. 9 we can symmetrize (16.5) using the identity

V-(axb)=b-(Vxa)—a-(Vxb) (16.6)
and (15.24),
Vx&—_ 08 (16.7)
ot
We get:
e S S
P — _ [dv <V~(£x%)+£-3—?+%~a—?>. (16.8)

The comparison with (9.7) shows that

S Ex A (16.9)

is the energy current density of the macroscopic field (Poynting vector). To interpret the
remaining terms we consider the

approximation of linear, isotropic media:
D=t B (16.10)
Then we get
692 4. 03 _ 105 5. 4 g (16.11)
and in analogy to (9.10) can interpret
L&D+ #-B) (16.12)

as the energy density of the macroscopic field (in the case of linear, isotropic media).

16.2 Momentum, Angular Momentum
According to (16.3)

P _ <é"_>—i— (v x ,§)>
i = (16.13)



- =
is the change of the momentum of a test charge g with velocity v in the field (&, %). For the change

- =
in momentum of a system of free charges, described by p¢, j#, in the field (&', %) follows:
Py o s L
Gt =JdV | ps6+ (5 x B) | (16.14)

In analogy to chapter 9.2 we rewrite (16.14) with

— — =
V-9 = py; fo_%:jf (16.15)
to get
P — — O =
= [dV (c‘?(V-@)%—(VX%)x%—Wx%’). (16.16)
We symmetrize (16.16) using
— — =
V- -%=0; Vx&=—92, (16.17)

Py e - = = =, = =
S =[dV | ENV-D)+H(V-B)+ (VxH)x B+ (VXE)XD— (2 x AB)).(16.18)

As in Chap. 9 we then can interpret

B (16.19)

as the momentum density of the macroscopic electromagnetic field (cf. (9.38)).

The transfer from (9.39) to the case of the macroscopic field then is trivial, i.e.

r X §>>< eg (16.20)

can be interpreted as the angular momentum density of the macroscopic electromagnetic
field.

16.3 Kirchhoff’s Rules

The theory of electrical circuits is based on the following rules:



Fig. 16.1 1llustration of the knot rule

(1.) Kirchhoff’s law (knot rule)
For a current splitting of stationary and quasi-stationary currents holds (Fig. 16.1):

Y Li=0. (16.21)
Proof
For stationary and quasi-stationary currents the continuity equation gives
V-j;=0, (16.22)
with the Gauss’ integral theorem:
Jrip-df =1 I =0. (16.23)

Remark: The quasi-stationary case is defined such that in (15.19) 85 /Ot can be neglected, which
directly gives (16.22). In the stationary case dps/0t = 0 and (16.22) follows from (15.18). The basis
of the first Kirchhoff’s rule is the conservation of charge.

(2.) Kirchhoft’s (circuit rule)

The sum of the voltages along a closed path in a circuit disappears,

>;Ui=0. (16.24)

For U; in (16.24) we can have (see Fig. 16.2)
(i) ohmic voltage (resistance R)

Ur = 1R, (16.25)
(ii) capacitor voltage (capacity C)
Uc = + [1dt, (16.26)
(iii) induced voltage (inductance L)
U,=L4% (16.27)

as well as an external (battery) voltage Up.



C L
R
Up
O O

Fig. 16.2 Illustration of a resonant circuit with capacitor C, inductance L, ohmic resistance R and battery voltage Up

Proof From
V x Z: _o% (16.28)

we get with Stoke’s integral theorem

— — —
[o(Vx &) df =§,6 -ds=—2 [, B-df. (16.29)

The basis of Kirchhoff’s 2nd rule is the law of induction or the energy theorem. E.g. carrying a
charge q on a closed path through the circuit, then (16.24)—after multiplication by g—gives the
energy balance.

Resonant circuit: For a circuit with a capacitor C, an inductance L and an ohmic resistance R we
get according to (16.25),

L [fI1dt' + IR+ LY =o. (16.30)
After a further time differentiation (and division by L) this gives
? R d
(W +RL %)I(t) —0, (16.31)

which is the differential equation for a damped harmonic oscillator - with known solutions
incorporatingw? = 1/(LC) andy = R/L.

Note: The inductance L creates—except for superconducting materials and correspondingly low
temperatures—a finite resistance R such that ordinary resonant circuits have an oscillation of finite
lifetime 7 = 1/7.

In summary, we have computed the energy, momentum and angular momentum of the
macroscopic field and discussed Kirchhoff’s rules in the context with charge and energy
conservation.
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17. Electric and Magnetic Properties of Matter
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The macroscopic Maxwell equations

— — —
V-%zO;Vxé"jL%:O (17.1)
and
— — =
V-Q:pf;Vx%—%—?:jf (17.2)

— — =
are not sufficient (as already mentioned in Sect. 16.2) to determine the fields &, #, 2 and
e — = — s
J¢ as long as there are no explicit material equations, which connect &, 8, 2 and ¢ to

each other. The macroscopic sources p and j; are often also not given as a function of r
and t, but have to be calculated functionally from the fields. In this chapter we will present
some simple cases for such material equations using linear response theory.

17.1 Material Equations

- =

For the discussion of material equations we rewrite (17.2) such that the fields & and £ are
— —

represented in their dependence on the macroscopic sources py, j, & and

V- 1 —V-;-
< (ps );

L &y
I

(17.3)
— = —
VX B—epoly = polis+ % +V xA),

— — - =
where py, j, & and . are functionals of the fields & and %; they can also dependent
on external parameters such as the temperature T (see thermodynamics), i.e.:

— —— — — —>— — — —
32:32[ aﬁaT]’%:%[gvf@aT]’jf:jf[é?aﬁaT]' (17'4)
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Then p; is also determined by j via the continuity equation:

Voir+ 2L —o. (17.5)

In the following we will discuss simple models of material equations of the type (17.4).
We will be guided by concepts of linear response theory, which are based mathematically
on the convolution theorem.

We recall that in case of inhomogeneous differential equations of 2nd order, first of all a
Green’s function Go(z — z'), i.e. the inverse of the differential operator D of the
homogeneous equation, is defined by:

Dy(z)Go(z — z') = ™ (z — 2'), (17.6)

and a special solution to the inhomogeneous equation (with inhomogeneity f{x)) then is
given by

®(z) = [d"z' Go(z — ') f(z'), (17.7)

where n denotes the dimension of the problem. We already have exploited this procedure
in Sect. 12.2 in connection with retarded potentials.

In the following we limit ourselves (for the sake of simplicity) to a single dimension, i.e.
explicitly to the time variable t:

®(t) = [dt’ Go(t —t') f(t'), (17.8)

where it should be noted that Gy (t — t') = 0 for ¢’ > t. Equation (17.8) is a folding integral
of the type

a(t) = [2 bt —t) c(t') dt'. (17.9)

After a Fourier transformation of the quantities a(t), b(t) and c(t) we obtain the simple
algebraic relation for the Fourier transforms a(w), b(w) and c(w):

a(w) = [7 dt exp (iwt) a(t) = [dt exp (iwt) [dt’' b(t —t')c(t') (17.10)

/ "
:/dt exp (iwt)/dt' /c;w exp (—iw'(t — t')) /d; exp (—iw"t") b(w")e(w"
™ s
/

= [at e ) [95 ep (i) [’ " - ) b))

/dt exp (iwt) /(;c:rl exp (—iw't) b(w')e(w')




The connection between (17.9) and (17.10) is denoted by convolution theorem. This
folding theorem is used in linear response theory because for ‘small perturbations’ f{t) in
the system—described by the differential operator Dy—the solution is given explicitly in
Fourier representation in the form (17.10). The Fourier transform b(w) is also referred to
as response function.

Example: To illustrate the role of the response function b(w) we consider the simple
example of the damped oscillator. The equation of motion for a damped harmonic oscillator
under the influence of an external force f{t) is:

M(Lq(t) + wiat)) +7 L q(t) = f(t). (17.11)

By Fourier transformation of g(t) and f{¢t) this leads to

{M(w% —w?) —iywlq(w) = f(w), (17.12)
or
1(w) = S e F(@) = b(w) f(w). (17.13)

The response function b(w) is thus given by

_ 1 _ 1 1
b(w) o M(w%—wz)—i w oo M ( w2—w3+i v/ Mw ) : (1714)

As seen immediately the poles of b(w) are in the lower complex half plane for v > 0.
Analogous examples will show up frequently (see below).

17.2 Ohm’s Law; Electric Conductivity

In metals the conductivity is due to the existence of free electrons in the conduction band.
The equation of motion for such a conduction electron i is:

M%i 4 ¢v; = eE;, (17.15)

where E; is the electric field acting on the electron i and the friction term (~ v;) accounts
for the net effect, that the conduction electrons lose energy by collisions with the ions from
the grid.
From (17.15) we get with (5.4), (5.5) the equation for the current density (after division
by M):
(17.16)



dj R
d_g+ﬁjf_neﬁéa7

%
where we have identified the average over E; with the macroscopic field &. In Eq. (17.16) n

_>
denotes the density of conduction electrons, i.e. j = e < v > n. For static & fields (17.16)
has the stationary solution (dj s/dt = 0):

. ne? — —
with the
DC conductivity
2
o0 = % (17.18)

For a time-periodic field

— —

E(t) = &, exp (—iwt) (17.19)

we expect (after Fourier transformation) a solution of (17.16) as:
jr(t) = jo exp (—iwt). (17.20)
Equation (17.16) then gives the relation

Jrlw) = o(w)E(w) (17.21)

with the frequency-dependent conductivity (response function)

O'(CU) _ _ o0 _ oo(1+iwT) _ oo . 44 oowT . (17.22)

1—iwr 14+w2r? 1+w?r 1+w2r2?

where the damping constant 7 is determined by

- M
T=F-

(17.23)

For low frequencies (wr < 1) the conductivity o(w) becomes real, o(w) ~ o, while
vice versa for high frequencies (wr > 1) o(w) becomes purely imaginary such that j s and



%
& are out of phase by 7/2. By measuring o(w) one can determine the density of the
conduction electrons n as well as the decay time 7.

17.3 Dielectrics

e —
A polarization & arises under the influence of an electric field & in a non-conductive,
polarizable medium. We differentiate between 2 types:

1. Polarization by orientation

_)
Already existing (permanent) electric dipoles are aligned in the & field. The organizing
influence of the field counteracts the thermal motion of the electric dipoles and the

%
resulting macroscopic polarization is temperature dependent. For & = 0 the directions of

— —
the elementary dipoles are statistically distributed and &2 = 0. For finite & fields the
temperature-dependent polarization will be calculated explicitly in Sect. 17.5.

2. Induced polarization

In atoms or molecules the Z field shifts electrons and nuclei relative to each other and thus
generates (induces) electric dipoles in the field direction (induced polarization). In this
way, a temperature-independent polarization is created.

At low field strengths and/or high temperatures the linear relationship

— —
P = xee0f (17.24)

(linear response) is a good approximation of (17.4); x. is the electric susceptibility
(response function) and in general temperature dependent. With (17.24) the following
holds:

D — ek (17.25)

with the dielectric constant

€ = €o(1 + Xe)- (17.26)

Remark:
Equations (17.24) and (17.25) assume an isotropic material. For anisotropic media .
and € have to replaced by tensors [x.];; and €;;.

For rapidly oscillating fields € (or the response function ) turns out to be frequency-
dependent,



€ = €(w). (17.27)

Example: For H20 (at 7" = 20°C) €/¢g ~ 40 if one chooses w as the frequency of the yellow
Na line.
The frequency dependence of €(w) can be explained using the following (very

simplified) model for the structure of atoms and molecules: We assume that the electrons

in an atom or molecule perform harmonic oscillations (see above). Then the equation of

%
motion for the n-th electron of an atom (or molecule) under the influence of a periodic &
field is:

2

%
Lorn(t) + YngTa(t) + wita(t) = 760 exp (—iwt). (17.28)
With the Ansatz

(or Fourier transform) we find as a solution to (17.28)

_>
ry(t) = —5%—— & exp (—iwt) (17.30)

M (w2 —w?—iwy,)

and from this for the dipole moment

9 —
d=37 er,= 46 exp (—iwt) Y0 | ———F—— (17.31)

n=1 (w2—w?—iwy,)’

if Z electrons are in the atom (molecule). Then we obtain for the electric susceptibility
— — =
(with & = x.€08, & = Nd):

2 Z
Xe(w) = 357 Yo oy (17.32)

where N is the number of atoms (molecules) per unit volume.

The damping term in (17.28) accounts for the fact that the atomic oscillators lose
energy by collisions between the atoms or molecules. This implies that . or e becomes
complex. As an example we will consider the absorption of electromagnetic waves in
matter in the next chapter, where the imaginary part of € is made explicit.

17.4 Para- and Diamagnetism

— —
A magnetization ./ can (in analogy to the case of polarization &?) arise in the following
way:

1. Magnetization by orientation (paramagnetism)

Permanent elementary magnetic dipoles are aligned against the thermal motion in an
_>
external magnetic field and lead to a macroscopic magnetization .. Without a magnetic



field, the elementary dipole moments m are statistically distributed with respect to their
_>
direction and in the macroscopic average .# = 0.

2. Induced magnetization (diamagnetism)

In the magnetic field the orbits of the electrons are changed, especially their angular
momentum. Such a change in angular momentum is, according to (6.36), associated with a
change in the magnetic dipole moment of the atom. Thus atoms, that don’t have a
permanent magnetic dipole moment, get—in the external magnetic field—an induced
dipole moment. Its direction is given by the direction of the external field (see below).

_)
The magnetization .# generally depends on the external field and the temperature.

%
Since the fundamental field is the 4 field, we should consider according to (17.4)

M- BT (17.33)

However, it is common to replace (17.33) by

M= AT (17.34)

— —
since J¢ is practically easier to control—via the current density j ;/—than %.

Note:
In the electrical case one considers—in accordance with the microscopic theory—

7 - P61, (17.35)

since potential differences can be controlled more conveniently than the free charge

%
density py and the associated Z field.
For sufficiently weak fields and/or high temperatures one expects

M = (17.36)

to be a good approximation of (17.34); here Y, is the magnetic susceptibility. With
(17.36) and (15.22) we get:

— — — —
B = pH = pg i + po M, (17.37)

where the permeability p is related to x,, by

p=po(l+ xm) (17.38)

Finally, we want to study the diamagnetism more quantitatively. In a simple model we
consider an electron, that is elastically bound to the atomic nucleus, under the influence of



an external magnetic field:

2

%rn + wir, = 17 Ve X B = QjL X %rn (17.39)

with the abbreviation

&1 = —55B. (17.40)

For the solution of the equation of motion (17.39) we go over to a system X’ that is rotating
with the angular velocity wy, relative to the laboratory system .. Due to

— 2 2 — — —
r=rtr=2r + (W xr')iGr =L + 2(0; x Lr') + WL x (W x 1) (1741)
we get from (17.39):
— =
j—;r' +wir! = wp x (Wr x r). (17.42)

Since in general w, > wr, we get approximately

Lor' + wlr), & O; (17.43)

the electron (almost) does not see the magnetic field in the rotating coordinate system X';
it oscillates with the undisturbed frequency w,,. From the perspective of the laboratory
system 3, a rotation about the direction of B with the Lamor frequencyw;, has to added.

According to this decomposition of the motion we divide the magnetic moment of an
atom with Z electrons in 2 parts:

m = 5 Zzzzl(r; xp;)+ 5 Ziz=1 r; x (W X rj)

) 17.44
= ﬁ 25:1 12 - 46M 22221 <B7’/? - ré(B : ri)) ( )

The 1st term in (17.44) provides the permanent magnetic dipole moment; it is different
from zero if the angular momentum (here: orbital angular momentum) of the undisturbed
atom L' = ZZ 1; # 0. The 2. term describes the induced moment m;,,4.

In order to discuss the induced moment m;,,; we consider a spherically symmetric
charge distribution. Then the mixed terms, e.g. Y ., z;y}, in (17.44) give no contribution; the
contribution of the remaining quadratic terms can be expressed by the average radius p of
the atom. One gets:

2

2
mig = —rBYL, 7 = —570°B. (17.45)




The diamagnetism (x,,, < 0) obviously counteracts the paramagnetism (., > 0).
Atoms with L' = 0 are diamagnetic; if a substance turns out as paramagnetic, then the 1st
term in (17.44) dominates the 2nd term.

Note:

Atomic nuclei can also have angular momentum. Due to (6.36) the associated moment
of the nucleus is considerably smaller than that generated by the electrons, since the
nucleon mass is ~ 2000 times larger than the electron mass.

17.5 Temperature Dependence of the Polarization

We assume a homogeneous and isotropic medium; then we have for the polarization of

%
permanent dipoles by orientation in the & field:

%
P—N<p>r, (17.46)

where N is the number of atoms per unit volume and < p >r is determined by averaging

_>
the dipoles of magnitude p with respect to their direction to the & field at a given
temperature T,

<pop- Lt @747)
with
¢ =22 (17.48)
and @ as the angle between the dipole p and the field zThe weight factor
exp (£ cos 0) =exp (k—‘?) =exp (— Z;’%i) (17.49)

is taken from thermodynamics; it is proportional to the probability that an elementary

dipole forms the angle 8 with the field é—a> at given temperature T. The denominator in
(17.47) ensures the correct normalization (see thermodynamics); kg is the Boltzmann
constant.

The evaluation of the integrals in (17.47) results in:

M exp(&)+exp(—&)—1/&(exp(€)—exp(—¢))
& =Np J!, dzexp(¢z) =N (exp(§)—exp(—¢))

(17.50)



= Np {coth& — %}

Discussion:
Case 1: strong fields, low temperatures, i.e.

£ 1, (17.51)

such that—as expected—the saturation value

_ exp(€)+exp(—€)—1/&(exp(§)—exp(—§))
& =Np (exp(€)—exp(~£)) ~ Np (17.52)

is reached.
Case 2: weak fields, high temperatures, i.e.

£k, (17.53)
such that with
_ coshe 1417282 1+41/282-1/6€2 4 ¢
cothé = snbe 2 EA1/68) z =+ t3 (17.54)
we get:
N Np?
P =T = T8 = xeeo6, (17.55)

i.e. the linear response region discussed in Eq. (17.24) with the temperature-
dependent electric susceptibility

_ _Np?
Xe = BkpTeo *

(17.56)

Remark:
The procedure above can be directly applied to the treatment of the paramagnetism by

replacing the energy of the dipole p in the zfield: Hy;=-p- Z",by Hy;=-m- %
where m is the (permanent) magnetic dipole moment.

In summary, we have discussed simple models for material equations in linear response
theory and derived explicit formulae for the conductivity and the temperature dependence
of electric and magnetic (permanent) dipoles in an external electric or magnetic field.
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18. The Electromagnetic Field at Interfaces

Wolfgang Cassing’
(1) University of Gief3en, Gief3en, Hessen, Germany

In this chapter we will analyze the properties of the macroscopic fields at
interfaces between the vacuum and dielectrics or conducting materials for
linear; isotropic media and in particular study the reflection and refraction of
light. Furthermore, we will investigate the propagation of electromagnetic
waves in conductive materials.

18.1 General Continuity Conditions

The macroscopic Maxwell equations result in a number of consequences for
the behavior of the fields at the interface between two media with different
electrical and magnetic properties. For the sake of simplicity it is assumed
below that the interface is planar.

We get

— =
1. Normal components of & and & from

— —
V-B=0,V-9=np; (18.1)

To this aim we apply the Gauss’ integral theorem to the volume (see Fig. 18.1):
The top surfaces (F1, F3) of a box with volume V and surface F is assumed

to be symmetrically to the interface; size and shape of the top surfaces can be

arbitrary. Reducing the height h of the box to infinitesimal size, we get (18.1):

— — — —
[y V-B AV = [, B df = [, (B — B df =0, (18.2)
since for the surface normals n; = n = —ny. Since F} can be chosen

arbitrarily we obtain:
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20 _ 7@ (18.3)

%n - e%n
%
The normal component of 44 is continuous at the interface.
I n
I'n
interface
P
Fig. 18.1 Finite volume Vincluding the interface of height h
In analogy we get
fVV-@dV:fF@-df:fFl(@n - 2,7) df = Qy, (18.4)
%
for the normal component of &:
s —
9 — 9@ = 4, (18.5)

if 7v1 is the surface charge density of the free charge carriers in the interface.
_>
For dielectrics with ¢ = 0 the normal component of Z is continuous; on the

%
other hand, Z,, jumps at the interface of a conductor with a non-conductor by
Vi

— —
2. Tangential components of & and 5. We use:
— — — —
_ _0&#. __ 089 |

A
I_
Y

interface

v



Fig. 18.2 Rectangular loop including the interface with length L and infinitesimal height h

A rectangular loop S has sides of length L parallel to the interface and the
length h perpendicular to it. Then the integration over the flat surface F
bordered by S in the limit A — 0 leads to:

— — =
VX&) -df = §.& ds= [Lds (€Y — €@y =0, (18.7)
F S 0 t t

since for h — 0 the contents of the area F disappears, such that:

R
[(82).df — 0for h — 0. (18.8)

Since L can be chosen arbitrarily in (18.7), the continuity of the tangential

%
component of & follows directly:

gV _ g (18.9)
In analogy the second equation of (18.6) results in
— —
Jyds (A0 — ) =14, (18.10)

if I; is the current strength of the (free) current flowing in the interface

— =
perpendicular to the tangential component % of 7.

With the representation
Ir = [li; di (18.11)

follows from (18.10) accordingly

%(1) _ %(2) —ig (18.12)

%
where i is the surface current density in the interface perpendicular to 7.

We now examine the above results for linear, isotropic media.



18.2 Linear, Isotropic Media
If

— S
B = pui;9 = €& (18.13)

holds, we obtain from (18.3), (18.5), (18.9) and (18.12):

A — @, 2 _ A (18.14)
and
a8V _ 8 — W;% _ %j” — i (18.15)
If Ohm’s law applies,
i = o, (18.16)

2 _ 22 - -
then follows from (18.9) (&’ = &, ) for the tangential component of j ¢:

i _ i (18.17)

o1 o2

For the normal component the continuity equation reads as:
Vej+ % =0 (18.18)
and by applying the Gauss’ theorem (as for 1.) we get

. . 0
iW— = (18.19)

Especially for stationary currents with



V-jr=0 (18.20)

we get the continuity of the normal components

iW=3 (18.21)

Example: Conductor (1)—non-conductor (2)
Since no current can flow in the non-conductor, we have from (18.21)

J}ln) =j(f2n) =0, (18.22)
and therefore with (18.16)
OB (18.23)
since o1 # 0. On the other hand, for é_3n>(2) we get from (18.15):

267 = —4. (18.24)
In case of electrostatics, due tojf = 0, we obtain

%

(%(1) — 0: (18.25)
which demands (18.9)

%

& = . (18.26)

%
Thus the & field is perpendicular to the conductor surface; it is zero within the
conductor.

18.3 Reflection and Refraction of Light

In the absence of free charges (p; = 0) the Maxwell equations are:

vV - j: 0;V - 5: 0 (18.27)



and

_>
ngz—at,vx;f_ 97 (18.28)

They are simplified by assuming linear, isotropic media

By D — & (18.29)
to
v-%:o;v-zzo (18.30)
and
Vx &= ply x A= (1831)

As in Chap. 10 the Eq. (18.31) can be decoupled in view of (18.30). We get the
wave equations

2 _> 2
AE— L L e=0A#—L 2 % =0, (18.32)

where ¢’ is the phase velocity in the medium (see Sect. 10.3):

6—}2 = €. (18.33)

Since in the following we study the behavior of the electromagnetic field for
flat interfaces, we consider special solutions of (18.32) in the form of plane
waves, e.g.:

- -
& =& exp {i(k-r — wt)}, (18.34)

where the relationship between w and k is

(18.35)




w = kc'.

As in Chap. 10 one finds that z ,%7 and k are perpendicular to each other.

Equation (18.35) differs from (10.22) since there c is a constant while ¢’
depends on the frequency w, i.e. € = €(w). The components of different
frequency w in a wave packet run with different velocities ¢’ = ¢(w); the wave
packet does not maintain its shape in time (disintegration of wave packets;
see Sect. 11.3).

Note:

Depending on the form of €(w), we can get ¢’ > c. This is no contradiction

to the theory of special relativity since the phase velocity v, is not identical
to the group velocity

U

W

Vg = (G ) iry (18.36)

of a wave packet whose amplitude is concentrated in the vicinity of the wave
number k; the energy transport in such a wave packet is determined by v, and

not by vpp,.
We now examine the behavior of a light wave, described by (18.34), at a flat
interface (Fig. 18.3).

interface

Fig. 18.3 Geometry for light reflection and transmission at a flat interface

L . = 1) )
From the continuity of the tangential component of & (18.9) (&, ' = &, )
we get

— = —
TAE+E)=T"& (18.37)



for all times t and all vectors r of the interface; let 7 be a unit vector parallel
— = =
to the interface, then &, & and &; denote the electric field strength of the

incident, reflected and transmitted light wave. Placing the coordinate origin in
the interface, we obtain from (18.37) and (18.34) for r = 0 the conservation of
the frequency,

We = Wy = Wy. (18.38)

On the other hand, for £ = 0 we get the phase equality

k.- r=k,-r=ky-r, (18.39)

i.e. the coplanarity of k., k.. and kg; thus all k-vectors must be in a plane.
To prove this statement we choose a specificr = r( such that k. - ro = 0; then
according to (18.39) all 3 vectors k., k, and k; must be perpendicular to r,
which implies that k., k, and k; lie in a plane. Then from (18.39) we obtain,

k. sin 0. = k, sin 6,, (18.40)

and with the conservation of the frequency (18.38) (w. = w..), k. = k,, the

reflection law:

96 — 97“- (184‘1)

Also from (18.38) (we. = wq) we get:

ke _ veam _ ng

===, (18.42)
such that (with (18.39)) we obtain the
refraction law:
(18.43)

sinf. _ kg N9
sinfy ~— ke ny’



When evaluating the conditions contained in (18.37) for the amplitudes,
one gets the Fresnel formulas, Brewster’s law (generation of linearly
polarized light) and the total reflection (fiber optics).

Note:

By (17.32) €(w) in general is complex and thus also k. An electromagnetic

wave in the medium consequently is weakened (absorption).

18.4 Propagation of Electromagnetic Waves in

Conductive Materials

We consider an ohmic conductor with a plane interface and surface charge o.
In this case the Maxwell equations read:

— — — = = — =
V- H=0V =0V xH—e —06=0V x &+ pt =0.(1844)

As long as no charge accumulation occurs, the surface charge density ps =0
(see section 5.2), although

—
i = o0& 20, (18.45)

As a solution to (18.44) we take:

- =
& =&y exp {i(k-r —wt)}, (18.46)

%
also for ¢ and find with (18.44):

— — — - =
H = (kX E)ii(k x H) + iews — 08 = 0. (18.47)
- =

Eliminating in the last expression & or ¢ we obtain:

k2 = w?pe (1+iZ), (18.48)



— — = =
using the transversality of & and € (& - #¢ = 0), which follows from (18.44).
If we write

k=a+1i6;a,B real, (18.49)
we get with
k? = a? — B% + 2iaf, (18.50)
thus:
a? — % = pew?;2aB = uwo. (18.51)

Eliminating in the 1st equation @ = pwo/(2f) and using the 2. equation, this
gives:

Bt — %(,uwcr)2 + B2 pew? = 0. (18.52)

Since (3 is real, the only possible solution is:

e \/1 +(2)2—1); (18.53)
thus
a? = B2 + pew? = %‘*’2(\/1“&)%1). (18.54)
For o — 0 follows:
B — 0;0% — pew? (18.55)

in accordance with (18.35). Since pwo > 0, @ and 8 must have the same
sign according to (18.51). For 8 # 0 (i.e. o # 0) a light wave—incident on a
metal surface—is damped exponentially in the metal; for a plane wave
travelling in the positive x direction then holds

exp {i(kx — wt)} =exp {i(azx —wt)} exp {—pBz}, (18.56)

since with a > Q also 8 > 0.



Limiting cases:

(1.) At high conductivity (o — o0o) the light wave is practically totally
reflected since the penetration depth d ~ 3! vanishes.

(2.) For high frequencies (w — oc0) the conductivity o is frequency
dependent according to (17.22): o will be purely imaginary for w — oo, i.e. k?
in (18.48) is real; the material becomes transparent. However, this fact implies
that it is difficult to ‘focus’ hard X-rays.

As a result of the attenuation (3, alternating currents can flow only in a
surface layer of the conductor due to (18.45); the thickness of the layer is
determined by 3! (skin effect).

In summarizing this chapter we have analyzed the properties of the
macroscopic fields at interfaces between the vacuum and dielectrics or
conducting materials for linear, isotropic media and in particular studied the
reflection and refraction of light at interfaces. Furthermore, we have
investigated the propagation of electromagnetic waves in conductive materials
and derived the skin effect.




Part VI
Relativistic Formulation of
Electrodynamics
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19. Covariance of Electrodynamics

Wolfgang Cassing!
(1) University of Giefsen, Giefsen, Hessen, Germany

In the following we want to show that the basic equations of electrodynamics have the same
form in all inertial systems (covariance of electrodynamics) and thus obey the principle of
special relativity. In preparation we examine the mathematical structure of the Lorentz
transformations, define the four-current density, the four-potential and show the Lorentz
invariance of the wave equations. In addition the transformation of the fields E and B are
derived with help of the electromagnetic field-strength tensor.

19.1 Lorentz Group

First of all it should be shown that the Lorentz transformations are orthogonal complex
transformations in a 4-dimensional pseudo-Euclidean vector space (Minkowski space). To this
aim we introduce the following coordinates:

Ty = ict, T ==, Ty =Y, T3 = 2. (19.1)

In these coordinates the length (squared) of a space-time vector in different reference systems X
and X’ can be written as:

3 3
D 0T = D0 T (19.2)

A general Lorentz transformation

:cL =, ATy w,v=0,1,2,3 (19.3)

must keep the length of the vector (x, 21, z2, z3) invariant:

ZZ:O z% =r? — c*t* = const. (19.4)

In analogy to the 3-dimensional Euclidean space one can fulfill this condition in terms of an
orthogonality relation for the transformation coefficients a

213/:0 agyar/)\ = 5uA, (19.5)

where a is the transposed matrix to a. Equation (19.5) follows from:
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> = Dou D Ol Ty =D, {0, ay G YTy =Y Sy =Y, 2. (19.6)

For a Lorentz transformation in the x; direction with velocity 8 = v/c the transformation matrix
a,, has the special form

[v —i#B 0 0]

1By 00
a,w—ko 0 ) 0) (19.7)
0 0 0 1

with v2 = 1/(1 — 8?). The restriction in (19.7) to a boost in z;-direction can be solved by

replacing (19.7) with an orthogonal transformation in 3-dim space in the form of a rotation. The
basis for this is the group property of Lorentz transformations:
(1.) If we carry out 2 Lorentz transformations one after the other,

acL =3, auty; mz =>, a’pym;j; (X=X = 3", (19.8)
the result
T =D, 00, ATy = D, Ay Ty (2 — %" (19.9)
is again a Lorentz transformation, since for the matrices a”, a’ and a we have:
(@) Ta" = (a'a)"(a'a) = aT(a'"a')a = aTa = 14, (19.10)
and as required

aTa =1y (a')Ta’ =1y (19.11)

with 14 as the 4 x 4 identity matrix.

The connection between the elements of the group is therefore the (4 x4) matrix
multiplication.

(2.) The neutral element is the 14 matrix for Lorentz transformations with velocity v = 0.
(3.) For every transformation a there is an inverse transformation, since from (19.5) we have:

det(aTa) = (det(a))® =1, (19.12)
thus:
det(a) # 0. (19.13)

(4.) Since the matrix multiplication is associative, it also applies to Lorentz transformations.
The orthogonal transformations in 3-dim. space (rotations and reflections) form a subgroup
of the Lorentz group, represented by
(19.14)



10
dul/ - (O dzk;)

S dl dmj = 8. (19.15)

withi,k=1,2,3 and

The general Lorentz transformation (19.3) with the condition (19.5) is obtained by combining
(19.7) with (19.14), (19.15) and adding the time reversal

J,‘; = Z;; a76 = —Zo, 1=1,2,3 (19.16)

as well as reflections in space

/

T, = —T;; Ty = To; 1=1,2,3. (19.17)
The Lorentz transformations therefore include: rotations in 3-dim. space, space reflections and
time reversal as well as the transition between inertial systems that move with constant velocity
relative to each other.

Addition: For translations in space or time the condition (19.2) does not change because it
only affects spatial and temporal distances. The group of the homogeneous Lorentz
transformations (discussed above) we can therefore extend by translations in space and time.
We then get the 10-parameter Poincaré group, which has 3 parameters for spatial rotations, 3
parameters for Lorentz boosts with the velocity v and 4 parameters for space-time translations.
Today it is considered as the basis invariance group for all physics.

19.2 Lorentz Group (Four-Tensors)

Analogous to the case of the group of rotations, we now define tensors (of different rank) with
respect to the Lorentz group:

(1.) Lorentz scalar

We call a quantity ¥ a Lorentz scalar, if ¥ does not change for Lorentz transformations,

-0 =0 (19.18)

An example for this is the electric charge (see Sect. 2.1).

(2.) Lorentz vector

We define a Lorentz or four-vector by the property that for Lorentz transformations its
components Au transform as the components z, i.e.

A,u — A:L = ZV a’/_tl/AI/' (1919)

Examples:

(i) The partial derivatives of a Lorentz scalar ¥ with respect to the z, form the
components of a four-vector:

oY _ 0¥ Oz, __ T
Fe, = Juv e, Bal = Duv U g, (19.:20)




using the inverse expression to (19.3),

T, =), Qpy. (19.21)

(ii) The 4-divergence of a four-vector is a four-point scalar

0A! 0A, 0A
ZI/ 8—a:’y = Ev Z,u,u’ a’VMaVH'am—;, = Z,u aw: (19'22)

considering (19.5).
(iii) Choosing the components of the four-vector according to (19.19) as

Au= 45 (19.23)

then follows from (19.22):

2 2
Y=, 5n ¥ (19.24)

The operator

is invariant for Lorentz transformations.

Thus for a four-vector with the components A, the wave equation

2 2
Y, LA, = <A _ 6_12%)14# (19.25)

transforms as like the uth component of a four-vector.

(iv) The dot product of two four-vectors is a four-point scalar:

2 ALB, = Dou Do upuApBy =3, AyB,. (19.26)

(3.) Lorentz tensors of 2nd rank

Except for scalars (=tensors of Oth rank) and the vectors (=tensors of 1st rank) we will still
encounter tensors of 2nd rank like the electromagnetic field-strength tensor (see below). They
are defined as 4 x 4 matrices; their components F,, have the transformation property

F = 20 4r0uoFs. (19.27)



19.3 Four-Current Density

To prove the covariance of electrodynamics we investigate the transformation properties of the
sources j and p of the electromagnetic field. The charge conservation serves as a starting point:

V-j+ B = 0. (19.28)
With the notation
Jo=tcp;  J1=1Js  Je=1Jy  J3=1I: (19.29)

we can write the continuity Eq. (19.28) in four-notation as

> podn = 0. (19.30)

Since charge invariance (19.30) must hold in every inertial frame (19.30) is invariant for
Lorentz transformations. Then according to (19.22) the 7, must be the components of a four-
vector (four-current density).

Let’s convince ourselves directly for a simple case. We consider a charge distribution at rest
in the system Y':

jo =icpo,  Ji=Jo =133 =0. (19.31)

As components of a four-vector jL transforms for the Lorentz transformation with velocity
B = v/cin x;-direction as

ro = y(ifzy +xg); =z —iBry); xp=1xy  xy =y, (19.32)
the same as
Jo=rtcypo;  Ji=7pov;  j2=0;  j3=0. (19.33)
A comparison with (19.29) gives:
P = 7Ypo- (19.34)
We know that a volume element dV) resting in X’ for an observer in ¥ has the size

_ d
dv = =% (19.35)

due to the length contraction. The charge invariance,
Jyp AV = [1p0 T2 = [ podVy (19.36)

shows that i¢cp can be viewed as the Oth component of a four-vector. Furthermore, with (19.34)
we get



J1=pv (19.37)

%
in accordance with the definition of the (ordinary) current density; the components of j are the
1, 2, 3 components of a four-vector.

19.4 Four-Potential

To determine the transformation properties of the vector potential A and the scalar potential ®
we employ the Lorentz gauge

V-A+ 5% =0 (19.38)

Then for A and ® the following inhomogeneous wave equations hold:

(A — %B—Z)A — —poji; (A - %‘9—2>@ _ 2, (19.39)

Introducing in analogy to (19.29):

(4,) = (£9,A), (19.40)
the inhomogeneous wave equations can be summarized as:
(&~ 55) 4. = i (19.41)
using
€opto = ¢ 2. (19.42)

The right side of (19.41) shows the components of a four-vector and the differential operator

(A — 0—12 g—;) according to (19.24) is a four-scalar, then the A, turn out to be the components of

a four-vector.
The Lorentz convention (19.38) is now written as:

oAy =0 (19.43)

and is Lorentz-invariant according to (19.22).

Result:
The equations (19.30) and (19.43) are Lorentz-invariant, i.e. they do not change when moving
from an inertial system to another. If in X holds




Zu %Ju =0 Zu agu A,=0, (19.44)
then also in X':
Yard, =0 X, %A =0
u oz, Jp > K Oz), “TH ’ (19.45)
The 4 equations (19.41) are covariant because from (19.41) in X follows for X’
(A _ c%g_;)A# — —pof,, (19.46)
since:
Eyaw(A - 0%972),4” - (A . ABT) S ayA, = (A . C%B—Z)A’ (19.47)
= —Ho Z AQupdp HoJ,
v
19.5 Plane Waves
A plane wave in vacuum is described (in an inertial system 3.) by
Ay(z,) = A,(P) exp (i(k - r —wt)) = A,(?) exp (i), kxazy) (19.48)
with the abbreviations:
ko=1%;  ki=ks  ka=ky  ks=k. (19.49)
Due to the covariance of the wave equation
(a-%25)4a, =0 (19.50)

it follows from (19.48) that in another system X’ one again obtains a plane wave in line with

(19.19):

A@) =Y, awd(@) =, Al exp (i, kazy)
— A" exp (i, Kyz))-

(19.51)




The phase of the wave must be Lorentz-invariant:
Yk = 3, Kyl (19.52)

as in case of a point-like source, where the wavefronts are spherical surfaces—moving with
velocity c—in each inertial system.
Since (19.52) has the form of an (invariant) scalar product, the components k,, are the

components of a four-vector. For a boost in x-direction they transform as:

Ky =y(ke — Sw);  ky=ky; Kk, =k (19.53)

W =vy(w — vkg). (19.54)

@ —c=w, (19.55)

and denoting by ¢ and ¢’ the angles between k and k’ with the direction of v (the x-direction
in the present case) we get:

w' = yw(1 — B cos @) (19.56)

and

cos ¢’ = £(cos ¢ — B) = % (19.57)

Equation (19.56) describes the Doppler-effect, which apart from the longitudinal effect,

w' = W% ~w(1F p) (19.58)

for 8 < 1and ¢ = 0, 7, also includes a transversal effect,

W= T (19.59)

for ¢ = 4/2, which is a typical relativistic phenomenon. This effect was proven in 1938
when studying the radiation of moving hydrogen atoms. As an example for the longitudinal effect
we mention the red shift of light from distant galaxies, which shows that these galaxies are
moving away from us.



19.6 Transformation of the Fields E and B
Knowing A and ® we can calculate the fields E and B by

B=VxA, E=-V&-2 (19.60)

We now want to rewrite (19.60) in the coordinates z,, and the components of the four-potential

A, Wegeteg.:

4 _ 0A; _ 04. _ 0As _ 04y
cEl T Oz, ° Bl T Oz Oxs * (19'61)

Equation (19.61) suggests to introduce the following antisymmetric 4 X 4 matrix:

F— 04 _ 04 _ o

w= 9z, ~ bz, —  Lw (19.62)

It has exactly 6 independent elements, for which according to 19.60), (19.61) one finds:

[ 0 1B iE, iE;)
~iE, 0 By -B,

Fw=1 19.63
YTl —im By 0 B (19.63)
_%E?) Bg —Bl 0
The matrix (19.62) is a 2nd rank Lorentz tensor since:
04 dA
F,Liu = Z)\p a,u/\a’l/p{W; - W;} = Z)\p au)\aupF/\p- (19.64)

Thus we also know the transformation properties of the fields E and B. For the special
transformation (19.7) we find from (19.64) and (19.63)

E,=E,; B,=B,;, E,=~(E,—vB.); B,=7By+ %E.); (19.65)

E.=~(E,+vB,); B.=+(B,— —E,).

In general, the parallel components (in the direction of v) remain without change:

while the transversal components change according to:




E| =~(E, + (v x B)); B =v(B, - 5(vxE)). (19.67)

The inverse transformation

E, =v(E| - (vxB)); B, =9B +L(vxE)) (19.68)

is obtained in analogy to the case of coordinate transformations. The equations (19.67),
(19.68) show the inevitable connection of the fields E and B in the electromagnetic field.

19.7 The Coulomb Field

The field of a point charge g resting in X’ is:

E’(r')zir

4dmey 73 °

!

B'(r') = 0. (19.69)

According to (19.66), (19.68) in a system X' moving with the velocity v = (v, 0, 0) relative to &
the field components become:

g y(z—t) .
By = By = gl (19.70)

' q Y .

By =1E, = 4re 2 3/27
O (v2(z — vt)” + y? + 2?)

q z

B = ’YE; - 4re 27 3/2°

(e vt) 4P+ )

Here 2’, v/, 2’ is written explicitly (after Lorentz transformation) as a function of x, y, z. The
field appears in X as well as in X’ as a central field; However, in X it is no longer isotropic
because the factor v2 in (19.70) the x direction is specified compared to the y and z directions.
According to (19.68) an observer in X sees a magnetic field:

B = 5 (v xE), (19.71)

since the charge q is moving for him, i.e. represents a current. To illustrate (19.70) and
(19.71) we consider the limiting case y > 1:




X
Fig. 19.1 Field lines of a static (left) and boosted (right) electric field
(i) Close to the x axis (y, z ~ 0;x — vt # 0) E, becomes
~ -1 _4a 1
By~ y? dmey (z—ot)?”’ (19.72)

which, compared to the static field, reduces the field strength by a factor of y 2.

(ii) In the plane parallel to the y — z plane to q we get:

z
Ey= iam Be= (19.73)

which, compared to the static field, results in an amplification by a factor of «v. The—radially
directed—field lines therefore are diluted in the direction of the motion compared to the static
field, but condensed perpendicular to it (Fig. 19.1).

For v — oo (ultra-relativistic case) E | B, such that with (19.71) the field lines of the B-
field run concentrically around g in the y — 2z plane, i.e. perpendicular to the direction of motion.

Summary: The basic equations of electrodynamics are covariant with respect to Lorentz
transformations and have the same form in every inertial system. They thus satisfy Einstein’s
principle of special relativity. In addition the transformation of the fields E and B have been
derived with help of the electromagnetic field-strength tensor.



Appendix

Appendix

In this appendix we provide a brief introduction to volume, surface and path integrals which are of
particular importance for mechanics and electrodynamics. Furthermore, the Gauss’ theorem and Stoke’s
theorem are introduced and discussed in connection with a variety of examples, that should help the reader
to solve physical problems.

A.1 Volume Integrals

In physics volume integrals are of particular interest; they are triple integrals e.g. over a spatial region V,
i.e.dV = d3z. A simple example in cartesian coordinates (x, y, z) for the integration of a scalar function
p(z,y, ) over a finite cuboid is:

T Yo 2b Ty Yo 2b
Vdep(x,y, 2):= [dz [dy [dzp(z,y,2) = [ d:c(f dy(f dz p(z,y, z))) ) (A1)
Zq Ya Za Za Ya Za

Here Vis the volume of a cuboid extending in the x direction from x, to z, in the y direction from y, to y
and in the z direction from z, to 2. The function p(z, y, 2) e.g. is a mass density or charge density defining
the mass (or charge) at position r = (z, y, z). The mass or charge in an infinitesimal volume dV around the
pointr then is p(z, y, 2) dV = p(z,y, z) dz dy dz.

Example 1: Volume V{; of a cuboid of dimensions ], b, h.

We choose a cartesian coordinate system with its origin O in a corner of the cuboid and the adjacent
edges with the positive coordinate semi-axes:

I b h
Vo= [dx [dy [dz1=Ibh. (A.2)
0o 0 0

Example 2: Volume of a cylinder with radius R and length L.

We choose the cartesian coordinates such that the z axis coincides with the cylinder axis and the bottom
surface of the cylinder in the x-y plane is at z = 0, while the top surface is at z = L. The interior of the
cylinderthenis:0 < 2 < L,—R <z < R, —vV R? — 22 < y < v/ R? — z2. The volume in cartesian

coordinates is calculated as:

L R VR2—z? R
Vo= [,dV=[dz [de [ dyl=L [dz2VR?—z?. (A3)
0 —R VRI_? -R

This integral can in principle be solved by the substitution z = R cos 8 (recommended for practice). It's
easier to compute the integral for a better choice of coordinates, i.e. here cylindrical coordinates:

Vo= fC dVv = fOR drr f027r dy fOL dz = LfOR dr r fOZﬂ dy = 2L fOR dr r = wLR?, (A4)

where the transformation of the integral to cylindrical coordinates includes a transformation determinant
(r). Any integral of a scalar function f{x, y, z) over a cylinder volume (radius R and length L) then can be
written as

Jodzdydz f(z,y,z) = fOerr 0277 dp fOL dz f(r cos ¢,rsin @, 2), (A.5)

if one takes the cylinder base at z = 0.
Example 3: Integral of f(z,y, 2) = 2% + y*> — 22% over a cylinder volume:
(A.6)



I = [,dzedydz (x* 4 y* — 22%) = fOerr OZW dy fOL dz (r? — 222)

R 2 L R L
= / dr / do / dz (r® —22%r) = 27r/ dr / dz (r® —22%r) =
0 0 0 0 0

R 3 4 3 4
= 27r/ dr (3L — 27"L—) = 27r(R—L - RQL—) = wL(i - ER2L2) :
0 3 4 3 2 3

Example 4: Volume of a cone in cylindrical coordinates. Let the distance of the tip from the base be h and
the radius of the base be R. We choose the coordinate system in such a way that the z axis is on the cone axis
and the tip of the cone is at the origin. z = h (floor), r/z = R/h (A mantle); interior: 0 < z < h,r < zR/h:

h 27 zZR/h h

Vine = [dz [dp [ drr= [dz2n 25 =n 2 B — L paR?, (A7)
0 0 0 0

Many problems in physics have spherical symmetry such that a proper choice are spherical coordinates.
In this case the transformation determinant from cartesian to spherical coordinates is 72 sin 1. Each integral
of a scalar function f{x, y, z) over a spherical volume K(R) with radius R then also can be written as

fK(R) dz dydz f(z,y,2)

A8
= [Er2qr 0277 do [ sind d¥ f(r sin 9 cos ¢, sin 9 sin ¢, 7 cos 9) . (48)

Example 5: Sphere with radius R — oo (and center at coordinate origin) with the mass density
p =exp (—r/7o) g/cm?® with rg = 1 cm. The mass density of the spherically symmetric system only depends
onr = |r|.Weset R =00, p9 =1 g/cm?®, a = r/70, (roda = dr); the total mass M then is calculated as

T 2w 0
M= [dVp(r)= [d9 sin® [dp [drr?pyexp (—r/rq) (A.9)
v 0 0 0

o0

=2- 27Trgp0/ a® exp (—a) = 4nrd pg2 = 87 [g] = 25 [g] ,
0

with the help of the additional integral (partial integration):

:foda a? exp (—a) = —a?exp (—a)|; — :foda 2a (—1) exp (—a)

o (A10)
= -2 [da(-1) exp (—a) = 2.
0
A.2 Surface Integrals of Scalar Functions
In a number of physical problems one has to integrate scalar functions f(x, y, z) over the surface of a
geometric volume. The integration over the surface of a cuboid Q) contains 6 contributions, i.e.
JrogdF f(z,y,2) = ['dy [ dz f(z = 2a,y,2) + [, dy [ dz f(z = 2,9, 2) (A11)

Yb Ty Yo Ty
[Ty [ sz =2+ [y [Cdo fez=a)
Ya Tq T

a a



Zp Ty Zb Tp
+/ dz/ dx f(w,nya,zH/ dZ/ dz f(z,y=yp,2) -

In the case of cylindrical coordinates we get for the integration over the cylinder surface 3 contributions
from the bottom and top surfaces (at z = z, and z = 23) and the lateral surface (r = R):

Jr_ocdF f(r,p,z) = fOR rdr f027r flryp,z2=24) + fOR 7’(17"]’027r do f(r,p,z=z) + f;” dz 027r de R f(:

In case of a sphere K(R) of radius R there is only an integration over the spherical surface contribution (for
r = R):

Jr_ox dF f(r,9,¢) = [y sind dd f;ﬂ de R* f(r=R,9,¢) . (A.13)
If f(r, ¥, ¢) does not depend on ¥ or just from cos ¥, we substitute and get

Jr_ox AF f(r,cos ¥,p) = — CCO(;S((O? d cos ﬁf027r de R? f(r = R,cos ¥, ) (A.14)

1 2T
—/ dcosﬁ/ do R* f(r = R,cos ¥, ) .
- 0

1

In the special case that fonly depends on r we obtain the simple result:
1 2w
fF:aK dF f(r) = f71 d cos ¥ fo de R? f(r = R) = 4rR?f(R) , (A.15)
i.e. the function f{r) at the point » = R is multiplied by the spherical surface 4T R

A.3 Surface Integrals of Vector Fields

Areas in a plane (e.g. the (x, y) plane) have apart from their surface area also an orientation in 3-dim. space,
i.e. in +-z-direction (in this case). For infinitesimal surfaces df with area |df| and area unit vector f/|f|—
perpendicular to the surface—one defines the flux of a vector field A (r) by the infinitesimal area df as a dot
product, i.e.

d® = A(r) - df . (A.16)

The generalization to finite surfaces F then is the sum over all infinitesimal surfaces, i.e. the surface integral
of the vector field A(r)

&= [,dd= [, A(r) df . (A17)

Example: We consider a circular area with radius R and center at z = 0 in the x, y plane. Let the circular area
vector be in the 4z direction. The flux of the vector field A (r) = (A, (r), Ay(r), A.(r)) through this circular

area only provides the surface integral of the component A,(z,y, z = 0) since A - e, = A,: (in cylindrical
coordinates)

® = [pA.(z,y,2=0) dady = 027r dep fOR dr v A,(r cos p,rsin p,z2=10) . (A.18)

In case of general areas the determination of the local surface vector is not unique. However, for closed
surfaces this ambiguity can be avoided by defining the direction of the area vector to be ‘outwards’.

Gauss’ integral theorem:

It is often very helpful to establish a connection between a volume integral over the divergence of a vector
field A(r) and a surface integral over the border of the volume F' = 0V with the vector field A(r).
Especially in electrodynamics this connection allows for a simple calculation of central quantities such as the



electric field E(r). Gauss’ integral theorem provides this connection, i.e. the scalar flux of the field A (r)
through the closed area F' = JV is equal to the integral of the divergence of A over the enclosed volume V:

Joy A-df= [, (V-A(r)) dv. (A.19)

The area element df is a directed quantity and is oriented vertically (outwards). Depending on the
symmetry of the given problem, appropriate coordinates have to be chosen.

Examples:
(1.) Let Vbe a cube with side length 2a and center at the coordinate origin and A = (0, 0, z). In this case it is

convenient to use cartesian coordinates. With

V-A=0+0+1=1 (A.20)
the volume integral becomes
[¢ de [¢ dy [® dz1 = (2a)(2a)(2a) = 8a®. (A.21)
The surface integral can be written as
Jr_ov(Asdydz + Aydzde + A dzdy). (A.22)
Only the z component of the field contributes to the integral since A, = A, = 0. The The integration—to be
carried out—therefore consists of two terms corresponding to the sides of the cube for z = a¢ and z = —a.
The surface integral therefore is
[ dy [® dzA.(a) — [° dy [* dzA.(—a)= [ dy [ dz a— [° dy[® dz (—a) (A.23)

= a(2a)(2a) + a(2a)(2a) = 8a®,

where the minus sign in front of the second integral comes from the orientation of the side z = —a in the
negative z-direction.

(2.) Let Vbe a cylinder with radius R, height h and center at the coordinate origin and A = (z,y, 2). In
this case it is convenient to use cylindrical coordinates. With

V-A=1+1+1=3 (A24)
the volume integral is
3y rdr [ ", dz = 3( 5 ) (2m) (4 — ) = 3xR%h. (A25)

To calculate the surface integral, we must add the contributions of the top, the bottom and the mantle of the
cylinder. For the bottom we get:

f027r dp fOR rdr( \l (0\‘ f dp fOR rdrl = %ﬁh. (A.26)

\w2) \

For the top

(o)
foh de fOR rdr( y} -1 o] = fo% dp fOR rdrl = %Zh. (A.27)

-1

—



The mantle gives

R cos ¢ cos
2m h/2 . .
o dy me dzR| Rsing | - | sin ¢
Py 0 (A.28)
h/2

= 02” dp [} dzR?(cos® o+ sin? ¢) = 27R%h.
The sum of all contributions also provides the value 3wR2h for this surface integral.

(3.) Let Vbe a sphere with radius R and center at the coordinate origin and A = (z, y, 2). In this case, it
is best to use spherical coordinates. With

V-A=14+141=3 (A.29)
the volume integral is
3 fOR r2dr 027r do fjl d(cos 0) = 3(%3)(2702 = 47R3. (A.30)
The surface integral can be written as
[2dep [ d(cos 6) R? A(R,9,¢)- e, (A31)

o 1 (Rcoscpsinﬁ (cosgosin@
= / dgo/ d(cos 8) R*| Rsinpsin@| - | sinpsin@
‘ ! \ R cos 0 \ cos 0

2m 1
= / dcp/ d(cos 0) R*((cos® ¢+ sin? ) sin? 84 cos® 6)
0 -1

2m 1
= / dcp/ d(cos 0) R® = 4nR?,
0 -1

which is identical to (A.30).

A.4 Line Integrals and Stokes’ Integral Theorem

An oriented path in space from a point A to a point B is characterized by vectors r(s), which provide a
parameterization of the path such thatr(a) = A and r(b) = B. The parameter s runs through all values
between a and b. For a closed path we have r(a) = A = B = r(b).

Examples:
(1.) Every linear path from A = (z 4,y4,24) to B = (2, yp, 25) is given by

T T TR —TA
y|=|ya| +s| ys—vya with s €[0,1]. (A32)
z ZA ZB — RA

For A = (0,1,0) and B = (2, 2,0) a corresponding parameterization is given by

z(s) 0 2
r(s)=|yls)| =11] +s]|1 with s € [0,1]. (A.33)
2(s) 0 0



Closed pathes such as triangles, squares, polygons etc. then are constructed from parts of the form (A.32).
(2.) A circle in the £ — y plane with radius R and center in the coordinate origin has the standard

parameterization,
(:c(s)\ R cos s\
y(s) i =1 Rsin s

BV )

For parts of the circular arc the parameter s is limited to the corresponding interval [6 4, 05].
(3.) A helix in the z direction with radius R is described by

with s € [0, 27]. (A.34)

z(s) Rsin s
r(s)=[y(s)| =| Rcoss with s € [0, 27], (A.35)
2(s) hs/(27)

where the screw reaches the height h after one revolution. In case of an infinite helical line s € [0, co] has to
be set.

(4.) With the definition of an oriented path we can define the path integral (or line integral) of a vector
field E along the path S as follows:

Is= [gdr-E(r) = f ds (& - E(x(s))). (A.36)
In this way, a line integral of a vector field turns out to be a simple one-dimensional integral, since the dot

product of vectors is a scalar function (depending on the parameter s).
Physical example: The work done by a force F(r) on a body along a path S is

W= [gdr-F(r) = [ ds( - F(x(s)) = [} dt (G - F(r(®)))- (A37)
In this case the parameter s = ¢ has the meaning of time and that of a velocity.
Examples:

(1) LetE = (y2, Yy, z/4). We want to calculate the line integral of the vector field E along a line segment of
A = (0,0,0) to B = (0,1,2).In this case a parameterization of the path is given by

r(s) = (28\ =s (2\ with s €]0,1] (A.38)
2

2(s)

and for the derivative with respect to s follows

[\V]

For the line integral we then get from (A36)

).
IS:fol ds( s :fol ds (0+s+s) :’2f01 ds s=1. (A.40)

o) s

(2) LetE = (y, —=, 23). We want to calculate the line integral of the vector field E along the positive
semicircle from the point A = (R, 0,0) to B = (—R, 0, 0) with radius R and center in the coordinate origin.
In this case we use the parameterization of the path (A.34)



z(s) R cos s (A41)

r(s)=|y(s)| = | Rsins with s € [0,7] ;
2(s) 0
its derivative is
—Rsin s
R cos s with s € [0, 7). (A.42)

The line integral follows from (A.36)

—Rsin s Rsin s
Is = fow ds| Rcoss —Rcoss | =— fow ds Rz(Sin2 s+ cos® s) = —mR®. (A43)

The length of a path is defined by
b d dr\1/2
[slde| = [, ds | ] —f ds (g5 @) (A44)
As an example, let’s consider the arc length of a circle with radius R:

—Rsin s
L= fozﬂ ds Rcoss || = 027r ds \/R2(sin2 s+ cos? s) = 2mR. (A.45)
0

Stokes’ theorem provides an answer to the question with respect to the path (in)dependence of line
integrals with fixed start and end points. This question is particularly important for the concept of work W
(A.37), because for a given force F(r) one could perform different work to move a body from 4 to B in
different ways.

We now consider two different paths S; and Ss, which connect points A and B. For an arbitrary vector
field E usually we have

fS dr - E(r) # fS dr - E(r). (A.46)

The necessary (and sufficient) condition for the path independence of the line integral of a vector field gives
Stokes theorem:

[s_opdr-E(r) = [L(V X E) - df. (A47)

Here the line integral of E(r) along a closed path S is considered, which has an oriented area F. We write in
short: S = OF. The direction of rotation of the curve is chosen such that the direction of rotation of the edge
of the surface element with the surface normal forms a right-handed screw.

We claim now that the path independence of the line integral from E(r) exists if and only if

V x E = 0. (A.48)

For the proof let’s consider two different paths S; and S3 from A to B. Let’s first take the path S; from A to B
and then the path S2 back from B to A4 (in the opposite direction); in this way we get a closed path with an
enclosed area F' # 0, i.e. according to Stokes’ theorem:

Js, dr - B(r) = [g,dr-E(r) = [p(V x E) - df. (A49)



Thus if Eq. (A.48) is satisfied, the right side of the Eq. (A.49) is zero, i.e. the difference of the path integrals
must vanish.

Example: Let E = (2° + z, 22, 0). We want to verify the theorem of Stokes for the path over the positive
semicircle from the point A = (R, 0,0) to B = (—R, 0, 0) with radius R and center in the coordinate origin
and from a straight line from B to A.

For the line integral we first calculate the contribution from the semicircle. The corresponding
parameterization is given by (A.34),

—R sin s 0+ Rcos s
I, = f07r ds| Rcoss| - 2Rcoss | = fow ds R?(— cos s sin s + 2 cos? s)
0 0

. 9 g
= Rﬂ—% + s+ sin s cos s] = 7R>.
0

The contribution of the straight line can be calculated as

2R\ [0+2Rs—R
Li=[lds| 0| - 4Rs—2R|=[) ds 2R*(2s — 1) = 2R*[s* — 5], = 0. (A50)
0 0

Now the calculation over the surface integral: Since the enclosed surface is oriented in the z-direction, we
only need the z-component of the rotation of the field:

(VXE),=(&£Ey— §E)=2+0=2. (A.51)
The surface integral thus is
Ip =2 )" rdr [7 dp = 2(% )7 = nR? (A52)

in agreement with Stokes’ theorem.



Index
A

Ampere's law
Angular frequency

B

Biot-Savart
Bremsstrahlung

C

Carrier frequency
Causality

Circular polarization
Continuity equation
Convolution theorem
Coulomb gauge
Current density

D

Dielectric constant
Dielectric displacement
Dielectric displacement field
Dielectric polarization
Dipole moment

Dirichlet condition
Doppler-effect

E

Electric conductivity
Electric current

Electric dipole—radiation
Electric field

Electric potential

Electric quadrupole tensor
Electric susceptibility
Electromotive force



Electrostatics

Elliptic polarization

Energy current density

Energy density

Energy density of the electromagnetic field

F

Faraday's law

Field energy

Flux of a vector field
Four-current density
Fourier integral
Fourier transform
Four-potential

G

Galilei transformation
Gauge freedom

Gauge transformation
Gauss' law

Green's functions
Gyromagnetic ratio

H

Hesse's normal form

I

Induction current
Inversion method

K
Kirchhoff rules

L

Lamor frequency

Laplace equation

Lenz' rule

Liénard-Wichert potentials
Linear response theory



Long wave—Ilength approximation
Lorentz convention

Lorentz force

Lorentz gauge

Lorentz transformation

M

Magnetic dipole moment
Magnetic field
Magnetic field strength
Magnetic induction
Magnetic susceptibility
Magnetization
Magnetostatics
Maxwell equations
Millikan experiment
Minkowski space
Mirror method
Modulation frequency
Monochromatic wave
Multipole moments

o

Oscillation period

P

Permeability
Phase velocity
Photons

Plane waves
Poisson equation
Polarization
Potential energy
Poynting vector

Q

Quadrupole moment
Quantum electrodynamics



R

Radiation damping
Radiation fields
Radiation pressure
Reflection law
Refraction law
Response function
Retardation
Retarded potentials
Rontgen spectrum

S

Separation of variables
Skin effect

Special relativity
Spherical harmonics
Stokes formula

Stokes' law
Synchrotron radiation

T

Transversality condition

U

Uncertainty relation

Vv

Vector potential
Von Neumann condition

w

Wavelength
Wave number
Wave packets
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