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Preface
This book provides a textbook on classical mechanics and is in
particular suited for bachelor students in their �irst year of studies in
theoretical physics. The mathematical requirements include a
knowledge of differentiation and integration and mathematical proofs
are kept as simple as possible, however, still kept stringent. Elements of
linear algebra are explained in detail in the text if needed in the context
of coordinate transformations, rotations, Galilei or Lorentz
transformations.

After de�ining the physical quantities of interest in the kinematics of
mass points in inertial systems, the transformations between different
inertial systems are derived. After these preparatory chapters, the
Newtonian dynamics is formulated and examples for the solution of the
equations of motion are presented. Furthermore, the tight connection
between Galilei invariance and the conservation laws of momentum
and angular momentum are pointed out. In case of conservative forces
a potential energy can be formulated that—together with the kinetic
energy of mass points—gives the energy of the system. The
conservation of the total energy for a closed system follows in a straight
forward manner. Applications of Newtonian mechanics for 1/r2-forces
lead to Kepler’s laws for the motion of planets and a gravitational �ield
for a static mass distribution can be de�ined. Another important
application is the harmonic oscillator being damped or driven by an
external periodic force.

Since Maxwell’s equations for electrodynamics are not Galilei
invariant a new transformation law is derived (Lorentz
transformation), which keeps the velocity of light c invariant in all
inertial systems moving with relative velocity υ < c. Some
consequences are pointed out such as Lorentz contraction, time
dilation, simultaneity, or causality of events. Mathematical aspects of
Lorentz transformations are pointed out and the relativistic dynamics
for mass points are derived accordingly. It is, furthermore, shown that
the relativistic equations of motion merge with Newtonian dynamics
for small velocities υ ≪ c.



The formal structure of mechanics is addressed in the second part
of this book that aims at an algebraic formulation of the dynamics,
which is independent on the particular choice of coordinates of an
observer. After introducing generalized coordinates, that account for
constraints on the system of particles and avoid the introduction of
coercive forces, we introduce the Lagrange function and a variational
principle to derive the Lagrange equations of motion. A Legendre
transformation of the Lagrange function to the Hamilton function will
lead to a description of the dynamics in phase-space variables, i.e.
generalized coordinates and momenta. The Lagrange equations of
motion turn to Hamilton’s equations of motion, which can be expressed
by Poisson brackets for the time evolution of an observable. The latter
are shown to be invariant with respect to point transformations and
extended canonical transformations of the phase-space variables such
that a formal formulation of the classical mechanics is achieved that
paves the way for the formulation of quantum mechanics, continuum
mechanics, and statistical mechanics.

In the appendices the relativistic Lagrange and Hamilton functions
for characteristic problems are given as well as numerical algorithms
for differentiation and integration. Furthermore, algorithms of different
order for the solution of differential equations are presented.
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About	This	Book
This book provides a textbook on classical mechanics and is in
particular suited for bachelor students in their �irst year of studies in
theoretical physics. The mathematical requirements include a
knowledge of differentiation and integration; mathematical proofs are
kept as simple as possible, however, still kept stringent.

The Newtonian dynamics are developed for systems of point masses
and solved for a couple of characteristic examples. The extension to
relativistic dynamics is outlined and the Lorentz transformation is
derived in a simple case. Some consequences are pointed out such as
Lorentz contraction, time dilation, simultaneity or causality of events.

The formal structure of mechanics is addressed in the second part
of this book that aims at an algebraic formulation of the dynamics. The
Lagrange and Hamilton functions are introduced and a variational
principle is formulated, that leads to the Lagrange or Hamilton
equations of motion. The latter are rewritten in terms of Poisson
brackets in phase-space variables such that a formal formulation of the
classical mechanics is achieved that paves the way for quantum
mechanics, continuum mechanics and statistical mechanics.
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1.1	 Introduction
The description of phenomena in our daily world is a subtle problem
since everybody has his personal point of view and different observers
of the same phenomenon will provide different descriptions sometimes
guided by personal preferences. Even the description of stationary
objects depends on the position of the observer, the viewing angle and
the relative motion of the observer who might be sitting in a car or train
or be located in a rotating system. Furthermore, not all phenomena in
our daily life are subject of a physical description and physical ‘objects’
need to be properly de�ined. Another mandatory requirement is that
observations from observes in different systems must follow some
transformation rules such that they can clearly specify if their
observations are different or identical. A mathematical description is
required to clearly de�ine ‘identical’ results.

In this book we will start with the most simple systems, i.e. the
motion of mass points in space and time and their trajectories under
the in�luence of forces. The mathematical tools will be differentiation
and integration in cartesian coordinate systems of a three-dimensional
real vector space, which will be used to uniquely de�ine physical
quantities like inertial systems, velocity, acceleration, force, momentum,
angular momentum or energy. A brief introduction to Euclidean vector
spaces will be given and linear transformations (like rotations) be
described by suitable 3 × 3 matrices. This will allow for a rigid
formulation of kinematics in case of circular motion.

https://doi.org/10.1007/978-3-031-95512-9_1


Once the physical quantities are de�ined it remains to clarify the
conditions, that observers in different inertial systems—moving with
some constant velocity →v0 relative to each other—can �ind their
observations to be identical. This leads us to the Galilean relativity
principle and the Galilei group of transformations. Of special interest
are rotating and center of mass systems which will be discussed in
detail. After this preparatory work we will be able to de�ine forces and
derive Newton’s equations of motion; their solution will provide the
trajectory of a mass point in space and time. Examples for characteristic
problems will be given and the explicit solutions derived in detail. It
will turn out that instead of velocities or angular velocities it is more
convenient to introduce momenta and angular momenta of particles
since for closed systems—without external forces—the total
momentum is a constant of motion. This also holds for the angular
momentum if no external torque acts on the system. Next we will
consider the connection between the work done by a force on a particle
along its trajectory and the actual kinetic energy. In case of conservative
forces we can introduce a potential energy U(

→
r) that allows to compute

the actual force by its negative gradient. Then the energy of the system
can be de�ined by the sum of kinetic and potential energy and—for
closed systems—is found to be a conserved quantity, too.

We will continue with applications of Newtonian mechanics for
central forces, where the potential U only depends on the magnitude of
the relative distance |→r1 −

→
r2| between two mass points. In this case the

conservation of momentum, angular momentum and energy holds
which drastically reduces the number of free degrees of freedom. An
important case are 1/r2-forces, which holds for Coulomb and
gravitational forces; we will classify the trajectories according to their
energy and derive Kepler’s laws for the motion of planets. In extension
the law of gravity is derived and gravity �ields are introduced for static
mass distributions. In addition the dynamics of a linear oscillator is
discussed—another important physical system—and the solutions are
computed from the equations of motion also in case of additional
frictional forces. The case of a damped oscillator, that is driven by an
external periodic force, will lead to the formation of resonances that are
analysed in some detail. In addition the problem of coupled harmonic



oscillations is addressed that is characteristic for the vibrational modes
in crystals.

So far we have introduced classical Newton mechanics which,
however, has different transformation properties than Maxwell’s
equations for electrodynamics. This incompatibility has been solved in
Einstein’s special theory of relativity. We thus have to replace the Galilei
transformation between inertial systems by the Lorentz transformation
that keeps the velocity of light c invariant in all inertial systems. We will
derive the Lorentz transformation explicitly (in a simple case) and
discuss its implications: Lorentz contraction, time dilation, simultaneity
in moving systems as well as causality and the limiting velocity of
signals. Some mathematical aspects of the Lorentz group of
transformations will be discussed and Lorentz scalars, four-vectors and
Lorentz tensors are identi�ied as well as corresponding physical
quantities like four-current densities. We close the discussion of
relativistic dynamics by introducing the energy-momentum four-vector,
which is conserved in all four components for closed systems, and
discuss scattering problems. As an example the important problem of
Compton scattering of a photon on a charge q is computed explicitly.
The derivation of the Lorentz transformation of the force �inalizes this
chapter.

The equations of motion can be written in different ways—
depending on the choice of coordinates—and in principle all
independent choices have equal rights. However, some choices facilitate
the solutions of the equations of motion and others might cause severe
problems. It is thus of general interest to �ind ‘optimal’ coordinates for
the description, which is also of practical help if the system is subject to
constraints, that require the introduction of coercive forces which often
are dif�icult to de�ine. It is thus meaningful to de�ine generalized
coordinates that ful�ill the constraints and also reduce the complexity of
the problem by reducing the number of (linear independent) degrees of
freedom. The equations of motion in generalized coordinates are
derived from Newton’s equations of motion. It is found that these
equations can also be generated by a variational principle, which
speci�ies a Lagrange function L, that is given by the difference between
the kinetic and potential energy in case of conservative forces. An
important consequence is that the Lagrange equations of motion can



also be applied to other areas of physics. Generalized momenta are
de�ined by the derivative of the Lagrange function with respect to the
generalized velocity. Accordingly, if the Lagrange function does not
depend on a speci�ic coordinate, e.g. the azimuthal angle φ, the
corresponding generalized momentum (here angular momentum) is a
constant of motion. This suggests to transform the formulation to
phase-space variables given by coordinates and their associated
momenta, which is carried out by a Legendre transformation de�ining
the Hamilton function H. In case of conservative forces the latter just
gives the energy of the system in phase-space variables. The variational
principle thus can be reformulated in terms of Hamilton’s (equivalent)
variational principle which gives the canonical equations of motion.
The latter are illustrated for a couple of examples. Furthermore, it is
shown that for a closed system the translational invariance leads to the
conservation of the total momentum, the rotational invariance to the
conservation of total angular momentum, and the invariance with
respect to time translations to the conservation of the total energy.

Applications of the Lagrange formalism will be given for the motion
of rigid bodies, which leads to the de�inition of an inertial tensor. The
eigenvectors and eigenvalues of this tensor de�ine the main axes of
inertia and main moments of inertia, respectively. From the Lagrange
function for the rigid body we will derive Euler’s equation of motion,
which are studied for the case of a symmetric heavy gyroscope.

Although the Lagrange formalism is a convenient method to tackle
complex problems it is of advantage to formulate the dynamics in
phase-space variables, i.e. in generalized coordinates and generalized
momenta. In this case the time evolution of an observable, that not
explicitly depends on time, is given by Poisson brackets which are
determined by the derivative of the observable and the Hamiltonian
with respect to the phase-space variables. The elementary Poisson
bracket between generalized coordinates and generalized momenta
turns out to be unity for associated pairs and their time evolution is
given by the Poisson bracket with the Hamilton function, i.e. by the
canonical equations of motion. The Poisson brackets thus allow for an
algebraic formulation of the dynamics. However, the choice of
generalized coordinates is not unique and invertible transformations
between the coordinates are allowed. But not all transformations are



meaningful since some transformations may lead to equations of
motion that are no longer canonical. Allowed transformations then will
be given by point transformations and extended canonical
transformations that keep the equations of motion canonical invariant.
Furthermore, the elementary Poisson brackets will be shown to be
invariant with respect to canonical transformations such that a
formulation of classical mechanics is achieved that is independent on
the choice of the generalized coordinates. This will pave the way to
quantum mechanics, where the Poisson brackets will be replaced by
commutators of operators in an abstract Hilbert space. This also leads
to a rigid formulation of statistical mechanics, where the physical
system—in equilibrium—is described by ensembles with properties
that are de�ined by expectation values of conserved observables.

In the appendices some useful extensions are presented: the
Lagrange and Hamilton functions for relativistic systems as well as for
continuum mechanics. We close by providing numerical algorithms for
differentiation and integration as well as for the numerical solution of a
set of differential equations.

1.2	 Newton’s	Axioms
The starting points for classical non-relativistic mechanics1 are
Newton’s	axioms for the motion of a mass point (of mass m) under the

in�luence of a force 
→
F . By a mass point we understand a rigid body that

possesses no internal degrees of freedom and can only perform
translations (displacements) and rotations (turns).

The Newtonian axioms are explicitly stated as follows:
1st	axiom

In an inertial	system a free particle moves colinear	and
uniform.

2nd	axiom

The state of motion of a particle of mass m changes under the

in�luence of a force 
→
F  according to



1

(1.1)

3rd	axiom

For the interaction between 2 mass points the principle	of	action
and	reaction applies, i.e.

(1.2)

when 
→
F12 is the force exerted by particle 1 on particle 2.

4th	axiom

If two forces 
→
Fa and 

→
Fb act on a mass point, then the resulting

force 
→
F =

→
Fa +

→
Fb has to be inserted into the equation of motion

(superposition	principle of forces).

The terms free particle, inertial	system, and force require
mathematical precision. A physical observation will always be
meaningful when the statements made are independent of the observer,
i.e. measurements in different reference systems can be compared and
con�irmed as identical. Mathematical tools—for the comparability of
measurements—are provided in mechanics by the vector calculus and
the theory of differential equations. Initially, however, it is expedient to
introduce a series of simple concepts (also corresponding to natural
intuition).

Footnotes
By non-relativistic we refer to all physical systems that move with velocities v ≪ c, where 

c ≈ 300, 000 km/s denotes the velocity of light.

 

m d2

dt2

→
r =

→
F .

→
F12 = −

→
F21 ,



(1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
W. Cassing, Theoretical	Physics	Compact	I
https://doi.org/10.1007/978-3-031-95512-9_2

2.	Kinematics
Wolfgang Cassing1  

University of Giessen, Gießen, Hessen, Germany

 

In this chapter we will describe the motion of mass points in space and time and their trajectories by
vectors →r(t), →v(t) and →a(t). The mathematical tools are differentiation in cartesian or polar coordinate
systems of a three-dimensional real vector space, which is used to uniquely de�ine physical quantities
like inertial systems, velocity, acceleration, angular velocity or angular acceleration. A brief introduction
to Euclidean vector spaces will been given and linear transformations (like rotations) be described by
suitable 3×3 matrices. This allows for a rigid formulation of kinematics also in case of circular motion.

2.1	 Basic	Terms
2.1.1	 Straight-Line	Motion
To describe the straight-line motion we select a cartesian coordinate system such that the mass point e.g.
is moving (in a single dimension) along the x-axis (see Fig. 2.1).

The sequence of motions is determined by the position x of the mass point at time t (x = x(t)). The
trajectory x(t) in this case is completely determined.

We de�ine the average	velocity by

(2.1)

where Δx is the displacement during the time interval Δt.

If x(t) is differentiable with respect to t we de�ine the velocity v(t) by 

(2.2)

If the velocity v remains constant during the entire motion, i.e. v is independent of t, we call the
motion uniform.

The average	acceleration, furthermore, is de�ined by

(2.3)

If x(t) is at least twice differentiable with respect to t the acceleration then is given by 

(2.4)

If a ≠ 0 is independent of time t we call the motion uniformly	accelerated.

vm =
x(t′)−x(t)

t′−t
= Δx

Δt
,

v(t) =limΔt→0
Δx
Δt

= dx
dt

.

am(t) =
v(t′)−v(t)

t′−t
= Δv

Δt
.

a(t) =limΔt→0
Δv
Δt

= dv
dt

= d2x
dt2 .

https://doi.org/10.1007/978-3-031-95512-9_2


Fig.	2.1 Illustration for straight-line motion in a single dimension (along the x-axis)

2.1.2	 Curved	Motion
We describe the position of a particle on its trajectory (in 3 spatial dimensions) by its coordinates x, y, z
in a cartesian coordinate system. We de�ine a coordinate	vector

(2.5)

which points from the coordinate origin to the position 
→
P  of the particle. The sequence of motions is

then determined by the functions

(2.6)

or in vector notation

(2.7)

The average	velocity then is given by:

(2.8)

It is represented by a vector in the direction of the displacement	vector Δ→
r.

If the functions x(t), y(t), z(t) are differentiable with respect to time t, the velocity is de�ined
by:

(2.9)

The velocity →v is represented by a vector in direction of the tangent to the trajectory at point 
→
P .

The length of the position vector →r is given by:

(2.10)

the magnitude	of	the	velocity by:

(2.11)

If the functions vx(t), vy(t), vz(t) are all differentiable with respect to t, the acceleration →a
becomes

→
r = ,

⎛⎜⎝x

y

z

⎞⎟⎠x = x(t), y = y(t), z = z(t)

→
r =

→
r(t)

→
vm =

→
r(t′)−

→
r(t)

t′−t
= Δ

→
r

Δt
= .

⎛⎜⎝ Δx
Δt

Δy

Δt

Δz
Δt

⎞⎟⎠→
v = =limΔt→0

Δ
→
r

Δt
= d

→
r
dt

.
⎛⎜⎝vx

vy

vz

⎞⎟⎠|
→
r|= r = √x2 + y2 + z2,

|
→
v|= v = √v2

x + v2
y + v2

z.



(2.12)

Note: More than 2nd derivatives of the trajectory →r(t) with respect to time t are not needed because
in Newton’s equations of motion at most 2nd derivatives appear.

2.1.3	 Curvature	of	Trajectories
The velocity →v is a vector in the direction of the tangent to the trajectory. We can therefore also write

(2.13)

with →eT  as unit	vector in the direction of the respective tangent to the trajectory.

The acceleration →a (according to the product rule of differentiation) then reads:

(2.14)

The acceleration thus can be separated in two components:

1.
the tangential	component (∼→

eT (t)):

(2.15)

 

2.
and the normal	component which is perpendicular to →eT  and given by:

(2.16)

 

A useful component	representation of →eT  is:

(2.17)

which gives

(2.18)

With the abbreviation dφ/dt = φ̇ we get

(2.19)

with

→
a =limΔt→0

Δ
→
v

Δt
= d

→
v
dt

= d2→r
dt2 .

→
v(t) = v(t)

→
eT (t); →

eT (t) =
→
v(t)

|
→
v(t)|

,

→
a = d

dt
(v(t)

→
eT (t)) = dv

dt

→
eT

1.

+ v d
→
eT
dt

2.
 

→
aT = dv

dt

→
eT

→
aN = v d

→
eT
dt

.

→
eT (t) = ,

⎛⎜⎝cos φ(t)

sin φ(t)

0

⎞⎟⎠d
→
eT
dt

= = φ̇ = φ̇
→
eN .

⎛⎜⎝−φ̇ sin φ

φ̇ cos φ

0

⎞⎟⎠ ⎛⎜⎝cos (φ + π
2

)

sin (φ + π
2

)

0

⎞⎟⎠→
a =

→
aT +

→
aN



(2.20)

The magnitude of φ̇ is closely related to the curvature of the trajectory. The arc	length s = s(t) depends
on the magnitude of the velocity via

(2.21)

Using the chain rule we obtain

(2.22)

The quantity introduced in this way can be calculated as dφ/ds and interpreted geometrically: The
intersection of the path normals of neighboring points A,A′ in the limit Δt → 0 is called center	of
curvature.

For the corresponding curvature	radius ϱ = ϱ(t) we get:

(2.23)

(2.24)

Special	cases:
1.

colinear motion:

(2.25)

 

2.
circular motion:

(2.26)

 

After these rather clear de�initions it is now important to clarify for which conditions 2 observers in
different systems Σ and Σ′ measure the same trajectories →r(t), →r ′(t) or denote them as identical. To
this aim we �irst brie�ly recall basic elements of vector analysis.

2.2	 Vectors
2.2.1	 De�inition
We de�ine a vector →a in R31 by a triple of real numbers a1, a2, a3 (components) and write

(2.27)

We call two vectors →a, 
→
b equal if and only if:

(2.28)

→
aN = vφ̇

→
eN .

ds
dt

= v.

φ̇ =
dφ

dt
=

dφ

ds
ds
dt

=
dφ

ds
v.

1
ϱ

=limΔt→0
Δφ

Δs
=

dφ

ds

→
→
aN = v2

ρ

→
eN .

ϱ → ∞, i. e. aN → 0

ϱ = Rcircle = const.

→
a = .

⎛⎜⎝a1

a2

a3

⎞⎟⎠



2.2.2	 Real	Vector	Spaces
In real vector spaces an addition (+) of vectors is de�ined as well as a multiplication of vectors with
real numbers.

The addition of 2 vectors →a, 
→
b:

(2.29)

is de�ined by

(2.30)

The addition introduced in this way assigns exactly a single vector to every two vectors and has the
following properties:

1.
commutativity

(2.31)

 

2.
associativity

(2.32)

 

3.
neutral	element There is a vector 

→
0 with the property

(2.33)

for any vector →a, i.e. the vector with the components (0, 0, 0).

 

4.
inverse	element For every vector →a with components a1, a2, a3 there is exactly one vector (−

→
a)

such that

(2.34)

i.e. the vector with the components (−a1, −a2, −a3).

 

Elements (here: vectors) with a connection (here: addition rule) with the properties 1 to 4 form a
commutative	group.

Furthermore, we de�ine the

multiplication of vectors with real numbers α by:
(2.35)

a1 = b1 a2 = b2 a3 = b3.

→
a +

→
b =

→
c

a1 + b1 = c1 a2 + b2 = c2 a3 + b3 = c3.

→
a +

→
b =

→
b +

→
a

(
→
a +

→
b) +

→
c =

→
a + (

→
b +

→
c)

→
a +

→
0 =

→
a

→
a + (−

→
a) =

→
0,

α
→
a = .

⎛⎜⎝αa1

αa2

αa3

⎞⎟⎠



The multiplication has the following properties:

1.
associativity

(2.36)

 

2.
distributivity

(2.37)

α(
→
a +

→
b) = α

→
a + α

→
b

for arbitrary real numbers α, β.

 

3.
neutral	element:

(2.38)

 

A commutative group, where elements are multiplied by real numbers and have the properties 1–3,
de�ines a real	vector	space. The position vectors →r and displacement vectors Δ→

r form such a real vector
space (in 3 dimensions R3).

2.2.3	 Euclidean	Vector	Spaces
In Euclidean vector spaces the length of vectors can be de�ined as well as an angle between 2 vectors.

In 3-dimensional position space, the length (or norm) of a position vector is given by

(2.39)

and the angle φ between arbitrary 2 position vectors is determined by

(2.40)

These properties characterize an Euclidean	space.
Mathematically, one gets an Euclidean vector space from a real vector space in the following way: One

de�ines—between two vectors, →a and 
→
b—a scalar	product (or dot	product) →a ⋅

→
b with the following

properties:

1. →
a ⋅

→
b is a real number  

2. →
a ⋅

→
b =

→
b ⋅

→
a (commutative)  

3.
(α

→
a) ⋅

→
b = α(

→
a ⋅

→
b) (associative)

(αβ)
→
a = α(β

→
a)

(α + β)
→
a = α

→
a + β

→
a

1
→
a =

→
a.

r =|
→
r|= √x2 + y2 + z2 ≥ 0

|
→
r1 −

→
r2|2 = r2

1 + r2
2 − 2r1r2 cos φ.



 
4. →

a ⋅ (
→
b +

→
c) =

→
a ⋅

→
b +

→
a ⋅

→
c (distributive) 

5. →
a ⋅

→
a = |

→
a|

2

{  

By

(2.41)

we can introduce an angle φ, which turns out to be the intermediate angle of →a and 
→
b.

Using the scalar product we can also de�ine the orthogonality	of	vectors:

2 vectors →a, 
→
b are called orthogonal to each other if:

(2.42)

Geometrically the two vectors then are perpendicular to each other.

2.2.4	 Basis	and	Dimension	of	Vector	Spaces
In order to de�ine a basis of a vector space we need the concept of linear	independence:

vectors →a1,
→
a2, … ,

→
ai are called linearly	independent, if in the vector addition

(2.43)

for all real coef�icients αk (k = 1, . . , i) always follows

(2.44)

otherwise the vectors are denoted to be linearly	dependent. 

The unit vectors

(2.45)

are linearly independent, because from

(2.46)

necessarily follows α1 = α2 = α3 = 0. Using the vectors (2.45) any vector →a can be represented by a
linear combination of the basis vectors:

= 0 if
→
a =

→
0

> 0 else

cos φ =
→
a⋅

→
b

|
→
a||

→
b|

→
a ⋅

→
b = 0.

α1
→
a1 + α2

→
a2 + … + αi

→
ai =

→
0

α1 = α2 = ⋯ = αi = 0;

→
e1 =

→
e2 =

→
e3 =

⎛⎜⎝1

0

0

⎞⎟⎠ ⎛⎜⎝0

1

0

⎞⎟⎠ ⎛⎜⎝0

0

1

⎞⎟⎠α1 + α2 + α3 =
⎛⎜⎝1

0

0

⎞⎟⎠ ⎛⎜⎝0

1

0

⎞⎟⎠ ⎛⎜⎝0

0

1

⎞⎟⎠ ⎛⎜⎝0

0

0

⎞⎟⎠



(2.47)

In short:

(2.48)

The basis	of	a	vector	space is  a set of linearly independent vectors covering the entire vector space
such that every vector of the considered vector space uniquely can be written as a linear combination of
the basis	vectors. The number of basis vectors for a given vector space is �ixed and de�ines the
dimension	of	the	vector	space. The vectors (2.45) form a basis of the vector space of dimension 3.

Of particular practical importance (in physics) are vectors →ei, which form an orthonormal	basis.

They have the property

(2.49)

with the abbreviation:

(2.50)

3 orthonormal vectors thus form a basis of a 3-dimensional vector space.
Note: When using an orthonormal basis, the dot product gets a particularly simple explicit form. Let 

ai, bi (i = 1, 2, 3) be the components (also called “coordinates”) of 2 vectors →a, 
→
b with respect to an

orthonormal basis →ek (k = 1, 2, 3)

(2.51)

(2.52)

the scalar product becomes:

(2.53)

Furthermore, the dot (or scalar) product of →a and →ek gives the components ak of →a with respect to →ek:

(2.54)

To illustrate these results, let us consider a position vector →r, given by its coordinates x, y, z in a cartesian
coordinate system:

(2.55)

= a1 + a2 + a3 .
⎛⎜⎝a1

a2

a3

⎞⎟⎠ ⎛⎜⎝1

0

0

⎞⎟⎠ ⎛⎜⎝0

1

0

⎞⎟⎠ ⎛⎜⎝0

0

1

⎞⎟⎠→
a = a1

→
e1 + a2

→
e2 + a3

→
e3 = ∑3

i=1 ai
→
ei.

→
ei ⋅

→
ek = δik

δik = {
1 for i = k

0 for i ≠ k.

→
a = ∑3

k=1 ak
→
ek

→
b = ∑3

i=1 bi
→
ei

→
a ⋅

→
b = (∑3

k=1 ak
→
ek) ⋅ (∑3

i=1 bi
→
ei) = ∑3

k=1 ∑i=1 akbi(
→
ek ⋅

→
ei) = ∑3

k=1 ∑
3
i=1 akbiδki = ∑3

i=1 aibi.

→
a ⋅

→
ek = ∑3

i=1 ai(
→
ei ⋅

→
ek) = ∑3

i=1 aiδik = ak.

→
r = = x

→
ex + y

→
ey + z

→
ez.

⎛⎜⎝x

y

z

⎞⎟⎠



Here →ex, →ey, →ez are unit vectors in direction of the mutually orthogonal axes (cartesian	basis),

(2.56)

Then the length squared of →r is given by

(2.57)

and the length by

(2.58)

The dot product

(2.59)

gives the length of the vector in x-direction by orthogonal	projection. The same holds for the y- and z-
direction when taking the scalar product with the respective basis vector →ey or →ez.

2.3	 Orthogonal	Transformations
2.3.1	 Vectors	in	Mathematics	and	Physics
While in mathematics vectors are simply elements of an (arbitrary) vector space, in physics a vector
space is always understood as elements of Euclidean vector spaces!

When exposing two position vectors to a rotation in space or a re�lection at the origin, the length and
intermediate angle do not change!

2.3.2	 Rotations
We now study the change of the components of a position vector →r when the coordinate system rotates
around the z-axis by an angle φ. We �ind:

(2.60)

With the notation

(2.61)

we can write in compact form

(2.62)

where the rotation matrix (dij) has the form:
(2.63)

→
ex =

→
ey =

→
ez = .

⎛⎜⎝1

0

0

⎞⎟⎠ ⎛⎜⎝0

1

0

⎞⎟⎠ ⎛⎜⎝0

0

1

⎞⎟⎠→
r ⋅

→
r = |

→
r|

2
= x2 + y2 + z2,

|
→
r|= r = √x2 + y2 + z2.

→
r ⋅

→
ex = x

x′ = x cos φ + y sin φ

y′ = −x sin φ + y cos φ

z′ = z.

x = x1 , y = x2 , z = x3 ; x′ = x1
′ , y′ = x2

′ , z′ = x3
′

xi
′ = ∑3

j=1 dijxj ; i = 1, 2, 3 ,

(dij) = .
⎛⎜⎝ cos φ sin φ 0

− sin φ cos φ 0

0 0 1

⎞⎟⎠



Remark:
For an arbitrary rotation the connection between the coordinates xi and xj

′ is linear again, but the
matrix (dij) has a more complicated form.

General	properties	of	the	matrix	for	a	rotation:
Since during rotations the length of vectors and the angle between each of two vectors cannot

change, the dot product must be invariant under rotations.
For 2 vectors →r1 ,

→
r2 with the components

(2.64)

must hold:

(2.65)

It follows that

(2.66)

for the invariance of the scalar product during the transformation. Linear transformations with the
property (2.66) are called orthogonal	transformations.

2.3.3	 Re�lection	at	the	Origin	(Inversion)
We now consider the discrete transformation

(2.67)

The corresponding transformation matrix (x′
i = ∑k sikxk) has the form

(2.68)

The difference between the orthogonal transformations presented here is that during rotations a
right-handed system remains right-handed, while in an inversion it goes over to a left-handed system.
This is expressed mathematically by the determinant of the transformation. The difference is that for
rotations always holds:

(2.69)

while in the case of re�lection we have

(2.70)

Remark: The re�lection on a plane, e.g.

x1i , x2i in the systemXYZ

x′
1j , x′

2j in the systemX ′Y ′Z ′

→
r′

1 ⋅
→
r′

2 = ∑3
i=1 x1i

′x2i
′ = ∑3

i=1(∑
3
m=1 dimx1m)(∑3

n=1 dinx2n) = ∑3
n=1 x1nx2n =

→
r1 ⋅

→
r2.

∑3
i=1 dimdin = ∑3

i=1 d
T
midin = δmn

xi → xi
′ = −xi.

(sik) = .
⎛⎜⎝−1 0 0

0 −1 0

0 0 −1

⎞⎟⎠det (dik) = 1,

det (sik) = −1.

′ ′ ′



(2.71)

can be done by combining the re�lection at the origin and a rotation around the z-axis.

Appendum:	Elementary	determinants
We recall that the determinant of a square matrix aik for 2 × 2 matrices is de�ined as:

(2.72)

and for 3 × 3 matrices by:

det (aik) = =

(2.73)

The following rules are useful for practical calculations:

Rule	1:

(2.74)

Rule	2:

If we swap in the matrix 2 rows (columns) the determinant changes sign.

Conclusion:

If 2 rows (columns) in a matrix are the same (or differ by a constant factor), then the
determinant is zero.

Rule	3:

If we add a multiple of another row (column) to a row (column) the determinant does not
change.

Note: The determinant of a matrix A (or linear transformation) is important for the existence of the
inverse matrix A−1. The latter only exists if det A ≠ 0, i.e. det (A−1A) = det A det A−1 = 1.

2.3.4	 Vectors	and	Scalars
We can now (in non-relativistic physics) de�ine vectors as (ordered) triples of real numbers, for which

1.
an addition and multiplication is de�ined in line with Sect. 2.2.2. 

2.
and which behave like position vectors →ri during rotations.  

x′
1 = x1 ; x′

2 = x2 ; x′
3 = −x3 ,

det (aik) = = a11a22 − a21a12,∣a11 a12

a21 a22∣∣a11 a12 a13

a21 a22 a23

a31 a32 a33∣a11 − a12 + a13 .∣a22 a23

a32 a33∣ ∣a21 a23

a31 a33∣ ∣a21 a22

a31 a32∣det (A) =det (aik) = det (aki) =det (AT )



Note: The velocity →v and acceleration →a are vectors. The vectors (position vectors, velocity,
acceleration), which change the sign by re�lection, are called polar vectors. This also holds for momenta
and forces (see following chapters).

The vectors, which do not change the sign by re�lection, are called axial vectors. Examples for axial
vectors are: angular momentum, torque (see following chapters).

2.3.5	 Bene�its	of	the	Vector	Calculation
Simpli�ication	of	notation: Instead of specifying the components x(t) ,  y(t) ,  z(t), one writes shorter: 
→
r(t).

Independence	of	the	coordinate	system: Statements in the form of vector equations hold
regardless of the choice of the coordinate system.

2.4	 Circular	Motion
2.4.1	 Angular	Velocity
We consider the motion of a mass point on a circle with radius r. A useful parameter representation of
the trajectory is given by:

(2.75)

with r = const and the center of the circle as the origin.
The velocity

(2.76)

has the magnitude

(2.77)

and is always directed perpendicular to →r, since

(2.78)

The magnitude of the angular	velocity ω is introduced via

(2.79)

If the position vector →r of any mass point of the rotating body is not in the orbital plane of the mass point
(see Fig. 2.2), (2.79) has to be replaced by:

(2.80)

We can characterize any rigid rotation by the vector angular	velocity →ω, whose magnitude is determined
by equation (2.80) and its direction is parallel to the axis of rotation in the sense of a right-hand	screw

→
r(t) = r

⎛⎜⎝cos φ(t)

sin φ(t)

0

⎞⎟⎠→
v = d

→
r
dt

= rφ̇ = rφ̇
→
eT

⎛⎜⎝− sin φ(t)

cos φ(t)

0

⎞⎟⎠v = |v| = rφ̇

→
r ⋅

→
v = r2φ̇(− cos φ sin φ+ sin φ cos φ) = 0.

ω = φ̇ = v
r

.

v = r0φ̇ = rφ̇ sin γ = rω sin γ.



Fig. 2.3.

Fig.	2.2 Illustration for circular motion if the origin of the coordinate system is not in the plane of motion

Fig.	2.3 Direction of the angular velocity →ω (right-handed)

The general connection of →r, →v and →ω is described by the

2.4.2	 Vector	Product

The vector product of 2 vectors →a, 
→
b is de�ined as a vector →c, written as

(2.81)

its length

(2.82)

with γ de�ined by the angle between →a and 
→
b and whose direction is perpendicular to →a and 

→
b, i.e.

(2.83)

in such a way that →a, 
→
b, →c give a right-handed system. The components of the vector →c then are (as a

function of the components of →a and 
→
b) given by:

(2.84)

→
c =

→
a ×

→
b,

c =|
→
c|= ab sin γ

→
a ⋅

→
c = 0

→
b ⋅

→
c = 0

→
c = .

⎛⎜⎝aybz − azby

azbx − axbz

axby − aybx

⎞⎟⎠



Properties	of	the	vector	product	:
1.

Anticommutativity:

(2.85)

 

2.
If →a is parallel to 

→
b, then

(2.86)

 

3.
Associative law: (α ∈ R)

(2.87)

 

4.
Distributive law:

(2.88)

 

Geometric	interpretation of |→a ×
→
b|: The area of the parallelogram formed by →a and 

→
b (see Fig. 2.4)

is given by:

(2.89)

Fig.	2.4 Illustration of the parallelogram formed by vectors →a and 
→
b

Calculation	rules:

For any vectors →a, 
→
b, →c the following identity holds:

(2.90)

The mixed product (→a ×
→
b) ⋅

→
c gives the volume of the parallelepiped spanned by →a, 

→
b, and →c.

2.4.3	 Angular	Acceleration
The acceleration is calculated from the time derivative of the velocity →v:

→
a ×

→
b = −

→
b ×

→
a

→
a ×

→
b =

→
0

(α
→
a) ×

→
b = α(

→
a ×

→
b)

→
a × (

→
b1 +

→
b2) =

→
a ×

→
b1 +

→
a ×

→
b2

A =|
→
a ×

→
b|= ab sin γ for 0 ≤ γ ≤ π

→
a × (

→
b ×

→
c) = (

→
a ⋅

→
c)

→
b − (

→
a ⋅

→
b)

→
c.



(2.91)

with d/dt
→
eT = ω

→
eN , where →eN  points to the center of the circle. For

(2.92)

follows:

(2.93)

The component

(2.94)

is the tangential	component of →a, to which the normal	component of →a,

(2.95)

is orthogonal.
Special	case: uniform circular motion (→ω = const) : With ω̇ = 0 and →r = −r

→
eN  follows

(2.96)

Example: Motion of a mass point �ixed on the earth’s surface Fig. 2.5.

Fig.	2.5 Position of a mass point �ixed on the earth’s surface

The following applies to the velocity of the mass point:

(2.97)

→
a = d

→
v
dt

= d
dt

(rω
→
eT ) = rω2→eN + ω̇r

→
eT =

→
aN +

→
aT

→
v =

→
ω ×

→
r

→
a = d

→
ω
dt

×
→
r +

→
ω ×

→
v.

→
aT = d

→
ω
dt

×
→
r

→
aN =

→
ω ×

→
v =

→
ω × (

→
ω ×

→
r),

→
a =

→
aN =

→
ω × (

→
ω ×

→
r) = (

→
ω ⋅

→
r)

→
ω − (

→
ω ⋅

→
ω)

→
r = rω2→eN : centripetal acceleration

v = ωR sin (90∘ − λ) = ωR cos (λ) ,



1

where R is the Earth’s radius, ω the magnitude of the angular velocity and λ the geographical width. The
acceleration →a = →aN  with magnitude

(2.98)

points to the center of the circular path of the considered mass point; it is perpendicular to the north-
south axis of the earth and to the velocity →v, which is directed tangential to the circular path.

Finally, we de�ine the angular	acceleration	by:

(2.99)

which is the change in angular velocity over time.
In summarizing this chapter, we have described the motion of mass points in space and time and

their trajectories by vectors →r(t), →v(t) and →a(t). The mathematical tools are differentiation in cartesian or
polar coordinate systems of a three-dimensional real vector space, which is used to uniquely de�ine
physical quantities like inertial systems, velocity, acceleration, angular velocity or angular acceleration. A
brief introduction to Euclidean vector spaces has been given and linear transformations (like rotations)
been described by suitable 3×3 matrices. This allows for a rigid formulation of kinematics also in case of
circular motion.

Footnotes
R

3 is the three dimensional real vector space.

 

|
→
aN |= ωv = ω2R cos λ

→
α = d

→
ω
dt

,



(1)
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Once the physical quantities of interest are de�ined it remains to clarify the conditions,
that observers in different inertial systems—moving with some constant velocity →v0

relative to each other—can �ind their observations to be identical. This leads us to the
Galilean	relativity	principle and the Galilei	group	of	transformations. Of special
interest are rotating and center of mass systems, which will be discussed in detail.

3.1	 Inertial	Systems
3.1.1	 Idea	and	Practice
According to Newton’s �irst axiom (Sect. 1. 2) an inertial	system is de�ined by a
uniform motion of a free particle. The practical use of Newton’s axioms therefore
depends on the question, if there are (at least approximately) inertial systems.

In the following we want to start from the idealized assumption that a strict
inertial system was found. In this system the 2nd Newton axiom applies in the form

(3.1)

where the mass m is viewed as a positive constant. Adding the principle of Actio =
Reactio (3rd axiom),

(3.2)

we can consider

(3.3)

as the de�inition of force and from the combination of the two equations obtain a
rule for the measurement of mass.

m
→
a =

→
F ,

→
F12 = −

→
F21,

m
→
a =

→
F

https://doi.org/10.1007/978-3-031-95512-9_3


3.1.2	 Galilean	Principle	of	Relativity
In addition to an inertial system Σ we consider another reference system Σ′, which

moves with constant velocity →v0 relative to Σ. A mass point 
→
P , whose position in the

system Σ is given by the position vector →r, is described by the position vector →r ′ in Σ′:

(3.4)

Taking time derivatives we get for the velocities

(3.5)

and for the accelerations

(3.6)

If P moves freely in the system Σ, then P also moves freely with respect to Σ′. An
observer in Σ′ comes to the same result for the force as in Σ,

(3.7)

This identity �inds its expression in the Galilean	principle	of	relativity

The basic laws of mechanics are the same in all reference systems moving
relative to each other with a constant velocity.

With the assumption that time measurements are the same in all inertial frames,

(3.8)

we de�ine a Galilean	transformation by:

(3.9)

Galilei’s addition law for velocities then gives:

→
r ′ =

→
r −

→
v0t.

→
v ′ =

→
v −

→
v0

→
a ′ =

→
a.

→
F ′ = m′→a ′ = m

→
a =

→
F .

t = t ′

→
r ′ =

→
r −

→
v0t; t ′ = t.



(3.10)

Limits	of	Galilei’s	principle	of	relativity:
1.

The basic equations of electrodynamics are not invariant with respect to the
transformation →v ′ =

→
v −

→
v0.

 
2.

For high velocities (v ≤ c; c: velocity of light) Newton’s equation of motion is no
longer applicable.

 
3.1.3	 Galilei	Group
The Galilean transformations form a commutative	group G(

→
v0), where the

connection between group elements is the successive execution of transformations.
1.

Commutativity: The combination of two Galilei transformations gives a Galilei-
transformation and is commutative.

 
2.

Associativity: The associativity of the Galilean transformations follows from the
associativity of the addition of velocities.

 
3.

Neutral	element: There is a neutral element,

(3.11)

describing the identical transformation.

 

4.
Inverse	element: For every Galilean transformation G, characterized by the
relative velocity →v0 of the systems under consideration, there is an inverse Galilei-
transformation G−1, which corresponds to the relative velocity −→

v0, i.e. 
G−1(

→
v0) = G(−

→
v0).

 

3.2	 Rotating	Reference	Systems
3.2.1	 Non-inertial	Systems
In inertial	systems the equation of motion applies in the simple form:

(3.12)

However, from time to time it may be useful to switch to a non-inertial	system in
which the trajectory has a simpler form. To do this we have to know how velocity and

→
v ′ =

→
v −

→
v0.

→
v0 =

→
0

m
→
a =

→
F .



acceleration change in the transformation from the inertial system to the non-inertial
system.

3.2.2	 Uniformly	Rotating	Systems
We consider the motion of a mass point in an inertial system Σ and in a system
rotating uniformly relative to Σ, i.e. Σ′. Both systems should initially have the same
origin. The position vector →r ≡

→
r ′ of the mass point is (at the initial time):

(3.13)

Here →ei and →ei′  are unit orthogonal vectors in the direction of the cartesian axes of Σ or
Σ′.

The velocity →v for the observer in Σ at �ixed coordinate system →ei is:

(3.14)

and for the observer in Σ′ with �ixed coordinate system →ei ′:

(3.15)

For the observer in Σ the axes of Σ′ rotate; the vectors →ei′  change in time, such that
(in the system Σ) →v can also be calculated as

(3.16)

Then

(3.17)

and →ω is the angular velocity with which Σ′ rotates relative to Σ.
The acceleration for an observer in Σ is given by:

(3.18)

→
r = x

→
ex + y

→
ey + z

→
ez = x′→ex′ + y′→ey′ + z′→ez′ =

→
r ′.

→
v = d

→
r
dt

= vx
→
ex + vy

→
ey + vz

→
ez

→
v ′ = d

→
r ′

dt
= v′

x′
→
ex′ + v′

y′
→
ey′ + v′

z′
→
ez′ .

→
v = v′

x′

→
ex′ + x′ d

→
ex′

dt
+ v′

y′

→
ey′ + y′ d

→
ey′

dt
+ v′

z′

→
ez′ + z′ d

→
ez′

dt
.

→
v =

→
v ′ +

→
ω ×

→
r ′

→
a = d

→
v
dt

= ax
→
ex + ay

→
ey + az

→
ez



and for an observer in Σ′ by:

(3.19)

For the observer in Σ the vectors →ei′  are time dependent; accordingly

→
a =

d

dt
(v′

x′
→
ex′ + x′ d

→
ex′

dt
+ v

′
y′
→
ey′ + y′ d

→
ey′

dt
+ v

′
z′
→
ez′ + z′ d

→
ez′

dt
) =

→
a ′ + v

′
x′

d
→
ex′

dt
+ v

′
y′

d
→
ey′

dt
+ v

′
z′

d
→
ez′

dt
+ (

→
ω ×

→
v′) +

→
ω × (x′ d

→
ex′

dt
+ y′ d

→
ey′

dt
+ z′ d

→
ez′

dt
) =

(3.20)

The term 2(
→
ω ×

→
v ′) is the Coriolis	acceleration and the term →ω × (

→
ω ×

→
r ′) the

centrifugal	acceleration.

The equation of motion in the rotating system Σ′ results from 
→
F = m

→
a in Σ:

(3.21)

Thus in Σ′, in addition to Newton’s force 
→
F , so-called inertial	forces show up:

the Coriolis	force

(3.22)

and the centrifugal	force

(3.23)

In contrast to the forces determined by Newton’s 2nd axiom the inertial forces do
not contribute to the Newtonian forces for the interaction between mass points.

3.2.3	 Explanations	and	Examples

→
a ′ = d

→
v ′

dt
= a′

x′
→
ex′ + a′

y′
→
ey′ + a′

z′
→
ez′ .

→
a ′ + 2(

→
ω ×

→
v ′) +

→
ω × (

→
ω ×

→
r ′).

m
→
a ′ =

→
F − 2m(

→
ω ×

→
v ′) − m

→
ω × (

→
ω ×

→
r ′).

−2m(
→
ω ×

→
v ′)

−m
→
ω × (

→
ω ×

→
r ′).



A mass point is located at the end of a stretched thread on a circular path moving with
constant angular velocity →ω.
1.

From the perspective of an observer in the inertial system Σ a force acts on the
particle via the stretched thread,

(3.24)

which accelerates the particle towards the center of the circle.

 

2.
For an observer in the (co-)rotating system Σ′ the particle is not accelerated; 
→
a ′ = 0. This can be interpreted as follows: in Σ′ the centrifugal force and the

Newtonian force 
→
F , originating from the stretched thread, balance each other.

 

3.2.4	 Generalization

In case that the origin of Σ′ is not the same as that of Σ, i.e. →r =
→
R +

→
r ′, we get

(3.25)

and

(3.26)

if Σ′ is accelerated relative to Σ (by 
→̈
R) or is moving with relative velocity 

→̇
R(t).

3.3	 Center	of	Mass	System
3.3.1	 De�inition	of	the	Center	of	Mass

(3.27)

where mi are the particle masses and →ri their positions in a space-�ixed coordinate
system Σ. We obtain for the velocity of the center of mass of N particles:

→
F = m

→
a = m

→
ω × (

→
ω ×

→
r),

→
v =

→̇
R +

→
v ′ + (

→
ω ×

→
r ′)

→
a =

→̈
R +

→
a′ + 2(

→
ω ×

→
v ′) +

→
ω × (

→
ω ×

→
r ,′ ),

→
rs = 1

M
∑N

i=1 mi
→
ri ; M = ∑N

i=1 mi (total mass) ,



(3.28)

and for the acceleration:

(3.29)

If the system is an inertial system, then according to Newton’s 2nd axiom:

(3.30)

The equation of motion for the center of mass then is given by Newton’s 4th axiom:

(3.31)

If no external	forces 
→
Fs act, we get

(3.32)

(according to Newton’s 3rd axiom), since the internal forces between the particles
cancel in pairs, i.e.

(3.33)

the center of mass moves uniformly on a straight line.

3.3.2	 Observables	in	the	Center	of	Mass	System
For many problems it is useful to move from the laboratory system to the center of
mass system. We consider a closed system which is de�ined by vanishing external
forces. We now move to the center of mass system Σ′ by the condition that the center
of mass is at rest:

(3.34)

If one speci�ically chooses the center of mass as the origin of the system Σ′, we have

→
vs = 1

M
∑N

i=1 mi
→
vi

→
as = 1

M
∑N

i=1 mi
→
ai.

mi
→
ai =

→
Fi, i = 1, 2, … ,N .

M
→
as =

→
Fs with

→
Fs = ∑N

i=1

→
Fi.

→
Fs = 0

M
→
as = 0 ;

→
vs

′ = 0.



(3.35)

The positions of the particles then are:

(3.36)

The velocities in Σ′ are:

(3.37)

and the accelerations:

(3.38)

Thus:

(3.39)

3.3.3	 Determination	of	the	Center	of	Mass
In case of a continuous mass distribution ρ(x, y, z) the center of mass vector is given
by:

(3.40)

with the total mass:

(3.41)

i.e. the summation over mass points mi at positions →ri is replaced by an integration
over space with the mass distribution ρ(

→
r).

3.3.4	 Collision	of	Two	Particles
In the system Σ (inertial system) we have:

(3.42)

→
rs

′ = 0.

→
ri

′ =
→
ri −

→
rs; accordingly∑imi

→
ri

′ = 0.

→
vi

′ =
→
vi −

→
vs ,

→
ai

′ =
→
ai −

→
as .

∑N
i=1 mi

→
vi

′ = 0.

→
rs = 1

M
∫∫
V

∫
→
r ρ(x, y, z) dx dy dz,

M = ∫∫
V

∫ ρ(x, y, z) dx dy dz,

m1
→
a1 =

→
F12 ; m2

→
a2 =

→
F21 = −

→
F12 ,



if no external forces are at work. In the center of mass system we then get (see
Fig. 3.1):

(3.43)

both before (left) and after the collision (right).

Fig.	3.1 Velocity vectors and positions before (left) and after the collision (right)

3.3.5	 Reduced	Mass
The advantage of the center of mass system is that the number of degrees of freedom
is reduced. After separating the center of mass motion only 3 degrees of freedom
remain for the 2-particle problem! By introducing the relative vector

(3.44)

the equation of motion for the relative motion reads:

(3.45)

with the reduced	mass

(3.46)

Since the problem of the center of mass motion has already been solved (in the
absence of external forces), we have reduced the two-body problem (6 degrees of
freedom) to an effective one-body problem (3 degrees of freedom).

Two simple	limiting	cases are:
1. m1 = m2 = m. Then we get

(3.47)

for example in proton-proton scattering.

 

m1
→
v1

′ = −m2
→
v2

′

→
r =

→
r1

s −
→
r2

s =
→
r1 −

→
r2

μ
→̈
r = μ(

→̈
r1 −

→̈
r2) = μ(

→
F12

m1
−

→
F21

m2
) = μ( 1

m1
+ 1

m2
)
→
F12 = μ

m1+m2

m1m2

→
F12 =

→
F12

μ = m1m2

m1+m2
.

μ = 1
2 m



2.
m1 ≫ m2. In this case we obtain:

(3.48)

 

Thus the mass of the lighter particle is approximately giving the reduced mass, e.g.
for the motion of an electron around a nucleus or of the earth around the sun.

In summarizing this chapter we have speci�ied inertial systems and introduced the
Galilean principle of relativity to compare observations in different inertial systems,
which move relative to each other with a constant velocity →v0. Of special interest have
been rotating systems and center of mass systems, where the latter is of particular
importance for the description of binary collisions.

μ = m2

1+
m2
m1

≈ m2.



(1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
W. Cassing, Theoretical	Physics	Compact	I
https://doi.org/10.1007/978-3-031-95512-9_4

4.	Dynamics
Wolfgang Cassing1  

University of Giessen, Gießen, Hessen, Germany

 

After the preparatory work in the previous chapters we here will de�ine forces and
derive Newton’s equations of motion; their solution will provide the trajectory of a
mass point in space and time. Examples for characteristic problems will be given
and the explicit solutions derived in detail. It will turn out that instead of velocities
or angular velocities it is more convenient to introduce momenta and angular
momenta of particles since for closed systems—without external forces—the total
momentum is a constant of motion. This also holds for the angular momentum if
no external torque acts on the system. Next we will consider the connection
between the work done by a force on a particle along its trajectory and the actual
kinetic energy. In case of conservative forces we can introduce a potential energy 
U(

→
r) that allows to compute the actual force by its negative gradient. Then the

energy of the system can be de�ined by the sum of kinetic and potential energy and
—for closed systems—is found to be a conserved quantity, too.

4.1	 Consequences	from	Newton’s	Axioms
The explicit formulation of Newton’s axioms has been given in Sect. 1. 2.

4.1.1	 Mass
The combination of the 2nd and 3rd axioms (in Sect. 1. 2) for the collision of 2
particles with masses m1 and m2 leads to:

(4.1)

(4.2)

It follows:
(4.3)

d
dt

(m1
→
v1) =

→
F12

d
dt

(m2
→
v2) =

→
F21 = −

→
F12.

https://doi.org/10.1007/978-3-031-95512-9_4


for the momenta of the particles (i = 1, 2) de�ined by

(4.4)

The sum of the momenta in the collision is thus constant in time:

(4.5)

or

(4.6)

if the mass is independent of the body’s state of motion.
We can use Eq. (4.6) as an operational de�inition of mass: We can do this by

measuring velocities and thus determine the ratio of two masses, i.e. if one mass is
speci�ied, but chosen uniquely as unit	mass m1, the mass m2 relative to m1 is
�ixed. The question of whether the mass possibly might be velocity-dependent can
be determined by scattering experiments: One �inds that in non-relativistic
mechanics (v ≪ c) the mass can be assumed to be independent of the velocity.

4.1.2	 Force
Since we have introduced the mass as a scalar, the force is (in line with the 2nd
axiom)—like the acceleration—a vector:

(4.7)

The superposition principle (4th axiom) does not follow from the vector character
of the force

(4.8)

because the vector property of the force would also be satis�ied if for the resulting
force we have

(4.9)

d
dt

(
→
p1 +

→
p2) = 0

→
pi = mi

→
vi.

→
p1

′ −
→
p1 = Δ

→
p1 = −Δ

→
p2 = −(

→
p2

′ −
→
p2)

m2

m1
=

|Δ
→
v1|

|Δ
→
v2|

,

→
F = m

→
a.

→
F =

→
F1 +

→
F2,



The vector function 
→
f is introduced here to account for a possible mutual in�luence

of the forces 
→
F1 and 

→
F2. The superposition principle is therefore an independent

axiom, which not automatically follows from the vector character of the force!

4.1.3	 Equations	of	Motion
The equations of motion for a system of N mass points are:

(4.10)

where 
→
Fi is the total force acting on particle i. It is composed additively by

1.
internal	forces,

from the interaction with the (N − 1) particles, for which the 3rd axiom
applies,

 

2.
external	forces,

describing the in�luence of the environment.
 

Mathematically speaking, the equations of motion are generally a coupled
system of 2nd order differential equations for the trajectories →ri(t) that have to be
calculated. One obtains unique solutions if the initial conditions

(4.11)

(4.12)

are known at some time t0. These are 2 ⋅ 3 ⋅ N = 6N  boundary conditions.
Example: Motion of a particle in a single dimension:
From the equation of motion

(4.13)

we obtain by integration in time
(4.14)

→
F =

→
F1 +

→
F2 +

→
f(

→
F1,

→
F2).

mi
→
ai =

→
Fi, i = 1, 2, 3, … ,N

→
ri(t0) =

→
ri

0

→
vi(t0) =

→
vi

0

mẍ = F(t)

ẋ(t) = 1
m
∫ t

t0
F(t′) dt′ + c1



and by further integration

(4.15)

The two integration constants c1 and c2 are determined as soon as the initial
conditions at t0 are known:

(4.16)

4.2	 Examples	for	Solving	Equations	of	Motion
4.2.1	 Charged	Particle	in	a	Homogeneous	Electric	Field
The force on a point charge q in an electrostatic �ield is given by

(4.17)

where 
→
E is the electric �ield strength, which we take as spatial and assume to be

constant in time, i.e. 
→
E =

→
E(

→
r).

The equation of motion then reads:

(4.18)

Let’s choose the coordinate system such that

(4.19)

In this case the equations of motion simplify to:

(4.20)

By time integration we get (t0 = 0)

(4.21)

for the velocities. Repeated integration gives
(4.22)

x(t) = ∫ t

t0
ẋ(t′)dt′ + c2.

ẋ(t0) = c1 x(t0) = c2.

→
F = q

→
E,

m
→
a = q

→
E.

→
E = .

⎛⎜⎝ 0

0

Ez

⎞⎟⎠ẍ = 0 ÿ = 0 z̈ = q

m
Ez .

ẋ = vx(0) ẏ = vy(0) ż =
qEz

m
t + vz(0)

x = x0 + vx(0)t y = y0 + vy(0)t z = z0 + vz(0)t +
qEz

2m t2.



In vector notation:

(4.23)

Important	special	cases:
1. →

v(0) parallel 
→
E. We obtain

(4.24)

There is a rectilinear accelerated motion as in case of the free fall.

 

2. →
v(0) perpendicular to 

→
E.

With a suitable choice of coordinates we get for →v(0) = vy(0)
→
ey

(4.25)

a parabola results for the trajectory:

(4.26)

 

4.2.2	 Charged	Particle	in	a	Constant	Homogeneous	Magnetic	Field

The force on a particle with charge q and velocity →v in a magnetic �ield 
→
B is given

by:

(4.27)

Let’s choose the coordinate system such that

(4.28)

which leads to:
(4.29)

→
r(t) =

→
r0 +

→
v(0)t + q

2m

→
Et2.

x, y = const. z = z0 + vz(0)t +
q

2 m Ezt2.

x(t) = 0 y(t) = vy(0)t z(t) = qEz

2m
t2;

z(t) = qEz

2mv2
y(0)

y2(t).

→
F = q

c
(
→
v ×

→
B) (c : velocity of light) .

→
B = ,

⎛⎜⎝ 0

0

Bz

⎞⎟⎠→
v ×

→
B = .

⎛⎜⎝ vyBz

−vxBz

0

⎞⎟⎠



The equation of motion then reads:

(4.30)

Obviously →a is perpendicular to →v,

(4.31)

such that

(4.32)

or

(4.33)

In z-direction the motion is trivial:

(4.34)

The equations of motion are coupled in the x, y direction. To �ind the solution, we
�irst use the complex auxiliary variable

(4.35)

Differentiation with respect to t yields

(4.36)

and

(4.37)

For the variable ax + iay we then obtain

(4.38)

or

(4.39)

With the Ansatz,

ax = q
mc

vyBz ay = − q
mc

vxBz az = 0.

→
v ⋅

→
a = 0,

d
dt
v2 = d

dt
(
→
v ⋅

→
v) = 2

→
v ⋅

→
a = 0

v2 = const.

vz = const, thus : z(t) = z0 + vz(0)t.

Q(t) = x(t) + iy(t).

Q̇ = ẋ + iẏ = vx + ivy

Q̈ = ẍ + iÿ = ax + iay.

ax + iay = qBz

mc
(vy − ivx)

Q̈ = −i
qBz

mc
Q̇.

λ



(4.40)

we get by insertion:

(4.41)

thus

(4.42)

The general solution then reads:

(4.43)

The 2 complex constants Q01 and Q02 are determined by the 4 real initial
conditions for x(0), y(0), ẋ(0) and ẏ(0):

(4.44)

(4.45)

Writing Q02 as

(4.46)

i.e. in polar coordinates, we get:

(4.47)

Thus

(4.48)

where v⊥ is the magnitude of the velocity perpendicular to the z-direction. For the
phase α one �inds:

(4.49)

Dividing Q(t) (4.43) again into real and imaginary parts, we obtain:

(4.50)

(4.51)

Q = Q0e
λt,

λ2 = −iωλ with ω = qBz

mc
,

λ = 0 orλ = −iω.

Q = Q01 + Q02e
−iωt.

x(0) + iy(0) = Q(0) = Q01 + Q02

ẋ(0) + iẏ(0) = −iωQ02.

Q02 = ϱeiα = (ρ cos α + iρ sin α),

ẋ(0)2 + ẏ(0)2 = v2
⊥ = ω2ϱ2.

ϱ = v⊥/ω,

tan α = −
ẋ(0)

ẏ(0)
.

x = x0 + ϱ cos (α − ωt),



with x0 = x(0) − ρ cos α and y0 = y(0) − ρ sin α. The trajectory then describes
a circle

(4.52)

with radius ϱ and center (x0, y0).

4.2.3	 Free	Fall	on	the	Rotating	Earth
Approximate	inertial	system:

We choose a system Σ′ whose origin is at the center of the earth and whose
axis directions are �irmly de�ined relative to the �ixed stars. In Σ′ then
(approximately) holds:

(4.53)

where 
→
F  is the gravitational force between the mass point of mass m and the

earth.
We now move to a system Σ that rotates rigidly with the earth, whose origin is

located on the earth’s surface. Then—according to Sect. 3. 2. 4—(exchanging Σ and 
Σ′) we get:

(4.54)

where 
→
R is the vector from the center of the earth Σ′ to the origin of the system Σ

rotating with the earth. Σ moves in a circular path with (constant) angular velocity
→
ω of the earth’s rotation. Therefore:

(4.55)

such that

(4.56)

where

(4.57)

y = y0 + ϱ sin (α − ωt)

(x − x0)2 + (y − y0)2 = ϱ2

m
→
a ′ =

→
F ,

→
a ′ =

→̈
R +

→
a + 2(

→
ω ×

→
v) +

→
ω × (

→
ω ×

→
r),

→̈
R =

→
ω × (

→
ω ×

→
R),

→
a =

→
g(λ) − 2(

→
ω ×

→
v) −

→
ω × (

→
ω ×

→
r),

→
g(λ) =

→
F
m

−
→
ω × (

→
ω ×

→
R)



is the ‘effective’ gravitational acceleration in Σ.
We now make the approximation that the height of the fall is small compared

to the distance R of the systems Σ and Σ′, i.e. |→r|≪|
→
R|. Then we can neglect 

→
ω × (

→
ω ×

→
r) relative to →ω × (

→
ω ×

→
R). The axes of the system Σ we de�ine as

follows: the z-axis is antiparallel to the effective gravitational acceleration →g(λ),
the x-axis in the north-south direction, and the y-axis in the west-east direction.
Then we obtain:

(4.58)

where γ is the angle between →ez and →ez′ . The equations of motion read:

(4.59)

(4.60)

(4.61)

As initial conditions we choose:

(4.62)

(4.63)

(4.64)

Since the Coriolis force is a small correction to gravity we can write the solution as
a Taylor series with respect to ω:

(4.65)

(4.66)

(4.67)

This approximation is inserted into the equations of motion (4.59), (4.60), (4.61)
and one has to take care that they must be identical in ω. One gets:

→
ω = −ω sin γ

→
ex + ω cos γ

→
ez,

ẍ = 2ẏω cos γ

ÿ = −2żω sin γ − 2ẋω cos γ

z̈ = −g(λ) + 2ẏω sin γ.

x(0) = 0 ẋ(0) = 0

y(0) = 0 ẏ(0) = 0

z(0) = z0 ż(0) = 0.

x = x1 + ωx2 + ⋯

y = y1 + ωy2 + ⋯

z = z1 + ωz2 + ⋯



(4.68)

and

(4.69)

(4.70)

(4.71)

for the terms linear in ω. This leads to:

(4.72)

and

(4.73)

(4.74)

(4.75)

A special solution is:

(4.76)

The complete solution then is:

(4.77)

Thus one gets an east	deviation from the normal fall law.
Estimate: For γ = 45∘ and z0 = 100m the deviation is y ≈ 1.5 cm; the effect is

maximum at the equator.

4.3	 Momentum	and	Angular	Momentum
4.3.1	 Momentum
The momentum of a particle of mass m is de�ined as

(4.78)

ẍ1 = 0 ÿ1 = 0 z̈1 = −g(λ),

ẍ2 = 2ẏ1 cos γ

ÿ2 = −2ż1 sin γ − 2ẋ1 cos γ

z̈2 = 2ẏ1 sin γ

x1 = 0 y1 = 0 z1 = z0 − 1
2 g(λ)t2

ẍ2 = 0

ÿ2 = 2gt sin γ

z̈2 = 0.

x2 = 0 y2 = 1
3 gt

3 sin γ z2 = 0.

x = 0 y = ω
3 gt

3 sin γ z = z0 − 1
2 gt

2.



if →v is its velocity. Since m is a scalar and →v is a vector, →p is also a vector. The
Newtonian equation of motion then reads:

(4.79)

In words: the force	is	identical	to	the	temporal	change	in	momentum. If
there is no force acting on a particle, the momentum of the particle is constant in
time:

(4.80)

For a system of N particles with masses mi the momentum of the i-th particle is
given by:

(4.81)

It’s equation of motion is:

(4.82)

where 
→
Fi is the total force acting on the i-th particle.

The total momentum of the N particles

(4.83)

is a conserved quantity for a closed system (constant of motion).

The following holds:

(4.84)

→
p = m

→
v,

d
→
p

dt
=

→
F .

d
→
p
dt

=
→
0 →

→
p = const.

→
pi = mi

→
vi

d
→
pi
dt

=
→
Fi ,

→
P = ∑N

i=1
→
pi = M

→
vs

d
→
P
dt

= ∑N
i=1

→
Fi =

→
Fa ,



where 
→
Fa is the sum of all "external forces",

(4.85)

The internal forces cancel each other in pairs because for each term 
→
Fij also 

→
Fji = −

→
Fij in ∑i

→
Fi occurs. For a closed system the following holds:

(4.86)

(4.87)

Thus the 3rd Newton axiom is crucial for the conservation of momentum in a
closed system.

4.3.2	 Momentum	Law	and	Galilean	Invariance
We assume that the momentum law holds in an inertial system Σv:

(4.88)

where mi, 
→
vi are the masses and velocities at some time t, m′

i, 
→
v′

i at another time 
t′. By the distinction between mi and m′

i as well as between N and N ′ we allow for
mass exchange between the particles.

According to the principle of relativity the momentum law must also hold in
every other inertialsystem Σu:

(4.89)

This gives the law	of	mass	conservation:

(4.90)

→
Fa = ∑N

i=1

→
Fia .

→
Fia = 0, thus

→
Fa = 0 ,

d
→
P
dt

= 0 →
→
P = const.

∑N
i=1 mi

→
vi = ∑N ′

i=1 m
′
i

→
v′

i ,

∑N
i=1 mi

→
ui = ∑N ′

i=1 m
′
i

→
u′

i .

M = ∑N
i=1 mi = ∑N ′

i=1 m
′
i.



Proof If →v ≠ (0, 0, 0) is the velocity of the systems Σv and Σu relative to each
other, then:

(4.91)

This leads to (4.88):

(4.92)

and—due to momentum conservation – to:

(4.93)

According to Galilei’s principle of relativity the momentum	law and mass-
conservation	law are connected to each other. (Note: This relationship does not
hold in relativistic mechanics.)

4.3.3	 Example:	Rocket	in	Gravity-Free	Space
We are looking for the velocity of the rocket as a function of the time changing
mass according to the emission of mass Δm with velocity vG. The momentum law
holds because in gravity-free space there is no external force acting on the rocket.

We can then formulate the problem as follows: At time t the rocket has the
mass m = m(t) and the velocity v = v(t) relative to the earth, which we want to
consider as an inertial system. In the time Δt the rocket mass changes by Δm < 0
; then the rocket at time t + Δt has the mass (m + Δm) at a changed velocity 
(v + Δ v). The (positive) repelled amount of gas (−Δ m) has the velocity 
(−vG + v + Δ v) relative to earth. According to the momentum law:

(4.94)

or

(4.95)

The change of the velocity during the time Δt is:

(4.96)

or in the limit Δt → 0:
(4.97)

→
vi =

→
ui +

→
v ;

→
v′

i =
→
u′

i +
→
v .

∑N
i=1 mi

→
ui +

→
v∑N

i=1 mi = ∑N ′

i=1 m
′
i

→
u′

i +
→
v∑N ′

i=1 m
′
i ,

→
0 =

→
v(∑N

i=1 mi − ∑N ′

i=1 mi′).

mv = (m + Δm)(v + Δv) + (−Δm)(−vG + v + Δv)

0 = mΔv + ΔmvG .

Δv
Δt

= −vG
1
m

Δm
Δt

dv
dt

= −vG
1
m

dm
dt

.



Integration in time gives:

(4.98)

if the rocket has mass m0 and velocity v0 at time t0.

4.3.4	 Angular	Momentum

The angular momentum 
→
l of a particle with momentum →p at position →r is de�ined

by

(4.99)

With d→p/dt =
→
F  we get

(4.100)

since →̇r ×
→
p = 0, i.e. the temporal change of 

→
l is determined by the torque

(4.101)

If there is no torque, →n = 0, the angular momentum is constant:

(4.102)

This is ful�illed for
1. →

F = 0 trivially and for 
2.

central	forces  
(4.103)

v = v0 + vG ln ( m0

m
) ,

→
l =

→
r ×

→
p .

d
→
l

dt
=

→
r ×

→
F ,

→
n =

→
r ×

→
F .

d
→
l

dt
= 0 →

→
l = const.



such as the important cases of gravitational force or Coulomb force (
k(r) ∼ 1/r3).

For N particles we de�ine the total angular momentum as follows:

(4.104)

The temporal change of the total angular momentum is:

(4.105)

The angular momentum 
→
L therefore is constant in time if the total torque 

→
N

vanishes.

4.3.5	 Conservation	of	Angular	Momentum	and	Galilean	Invariance
We assume that the angular momentum of the system under consideration (in
some inertial system Σv) is conserved. For the transition from Σv to another
inertial system Σu we have:

(4.106)

if →v is the relative velocity between Σu and Σv. This leads to:

(4.107)

or

(4.108)

where M is the total mass, →rs and →vs position and velocity of the center of mass.
If no external force acts, the motion of the center of mass is a straight line, such
that

(4.109)

→
F = k(r)

→
r ,

→
L = ∑N

i=1

→
li = ∑N

i=1(
→
ri ×

→
pi).

d
→
L
dt

= ∑N
i=1(

→
ri ×

→
Fi) = ∑N

i=1
→
ni =

→
N .

→
ri →

→
ri −

→
vt ;→vi →

→
ui =

→
vi −

→
v ,

∑N
i=1(

→
ri ×

→
pi) → ∑N

i=1(
→
ri −

→
vt) × (

→
pi − mi

→
v)

→
L →

→
L + M

→
v × (

→
rs −

→
vst) ,



⇒ The angular momentum 
→
L changes during the transition Σv → Σu only by an

additive constant.

4.3.6	 Examples
Uniform	circular	motion

The angular momentum 
→
l =

→
r ×

→
p is perpendicular to the plane of circular motion

and has the magnitude

(4.110)

It is constant because for uniform circular motion ω and r are constant.

Area	law
For a mass point under the in�luence of a central force the conservation of angular
momentum implies

1. that the motion takes place in a plane F spanned by →r and →v, and

2. that the surface	velocity is constant,

(4.111)

Proof We consider the plane F spanned by the 2 neighboring position vectors →r
and →r + Δ

→
r (Fig. 4.1):

Fig.	4.1 Plane F spanned by the 2 neighboring position vectors →r and →r + Δ
→
r

(4.112)

→
rs −

→
vst = const.

l = mωr2 .

d
→
F
dt

= const.

Δ
→
F = 1

2 (
→
r × [

→
r + Δ

→
r ]) = 1

2 (
→
r × Δ

→
r ) .



The surface	velocity then is:

(4.113)

(see Kepler’s laws below).

4.3.7	 External	and	Internal	Angular	Momentum
We introduce as coordinates:

the centroid coordinate

(4.114)

and

the coordinates of the particles in the center of mass system

(4.115)

Then 
→
L can be rewritten as:

(4.116)

∑
i

(
→
ri

s ×
→
pi

s) + (
→
rs ×

→
ps) =

→
Lint +

→
Ls ,

using

(4.117)

The �irst term in (4.116) 
→
Lint is called internal	angular	momentum; it is related

to the center of mass system and independent of its motion in space, i.e.

independent of the observer. The second term 
→
Ls is called external	angular

d
→
F
dt

= 1
2 (

→
r ×

→
v) =

→
l

2m = const.

→
rs = 1

M
∑N

i=1 mi
→
ri ; M = ∑N

i=1 mi

→
ri

s =
→
ri −

→
rs .

→
L = ∑i(

→
ri

s +
→
rs) × (mi

→
vi

s + mi
→
vs) =

∑imi
→
ri

s = 0 ;∑imi
→
vi

s = 0.



momentum; it corresponds to the angular momentum of a particle of mass M and
via →rs depends on the origin of the coordinate system, i.e. depends on the observer.

The change of 
→
L in time is:

(4.118)

where

(4.119)

If no external force is acting, 
→
Fa = 0, then

(4.120)

and the change of 
→
L arises only from the change in 

→
Lint.

To examine this change in more detail let’s separate the torque as follows

(4.121)

Here 
→
Fia is the external force acting on particle i, and it is used that 

→
Fij = −

→
Fji

according to the actio=reactio principle. The further discussion will be carried out

for the case that the internal forces are central forces, i.e. 
→
Fij is parallel 

→
rij =

→
ri −

→
rj. Then the 2nd term vanishes and we obtain:

(4.122)

i.e. the torque only arises from the external forces. For a closed	system we have

(4.123)

such that
(4.124)

d
→
L
dt

= d
→
Lint

dt
+ d

→
Ls

dt
,

d
→
Ls

dt
=

→
rs ×

d
→
ps
dt

=
→
rs ×

→
Fa .

→
Ls = const. ,

→
N = ∑i(

→
ri × [

→
Fia + ∑j≠i

→
Fij]) = ∑i(

→
ri ×

→
Fia) + ∑i<j(

→
ri −

→
rj) ×

→
Fij .

→
N = ∑i(

→
ri ×

→
Fia) =

→
Na ;

→
Fa = 0 ;

→
Na = 0

→
L = const ,

→
Ls = const, also

→
Lint = const.



4.3.8	 Exchange	of	Momentum	and	Angular	Momentum
in	the	Collision	of	Two	(or	Several)	Particles
We consider the collision between two particles that interact by a central force; in
this case there are no external forces. Angular momentum and momentum
conservation give:

(4.125)

before the collision after the collision

→
p1 +

→
p2 =

→
p1

′ +
→
p2

′ . .

For the change in momentum and angular momentum of particles 1 and 2
follows:

(4.126)

and

(4.127)

4.4	 Energy
In addition to momentum and angular momentum, the energy provides essential
information about a physical system. For many important cases energy is also a
conserved quantity.

4.4.1	 Kinetic	Energy	and	Work
A mass point of mass m is moving on a trajectory →r(t) under the in�luence of a

force 
→
F  from point a to b. The work done by the force 

→
F  on the mass point along

the trajectory from a to b (Wab) is de�ined by the line integral

(4.128)

→
l1 +

→
l2 =

→
l1

′ +
→
l2

′

Δ
→
p1 = −Δ

→
p2 : momentum exchange

Δ
→
l1 = −Δ

→
l2 : angular momentum exchange

Wab = ∫ b

a

→
F ⋅ d

→
r ,



where the line integral is carried out along the particle trajectory →r(t). Due to the
scalar product the work is only determined by the component of the force in the
direction of the path. The work Wab then is a scalar quantity.

The connection between the work Wab and the kinetic	energy of the mass
point follows from:

(4.129)

By forming the scalar product with →v and integrating in time we obtain:

(4.130)

The right side of this relationship is precisely the work:

(4.131)

if the mass point is at point a(b) at time ta(b). FT  denotes the component of the

force 
→
F  tangential to the trajectory and s is the arc length of the path. We can

integrate the left hand side:

(4.132)

with

(4.133)

De�ining the kinetic	energy T of a particle of mass m and of velocity →v by:

(4.134)

we �ind:

(4.135)

In	words:

m d
→
v
dt

=
→
F .

∫ tb
ta
m( d

→
v
dt

⋅
→
v)dt = ∫ tb

ta
(

→
F ⋅

→
v) dt .

∫ tb
ta
(

→
F ⋅

→
v) dt = ∫ tb

ta
FTv dt = ∫ b

a
FT ds = ∫ b

a

→
F ⋅ d

→
r ,

m ∫ tb
ta
( d

→
v
dt

⋅
→
v)dt = m ∫ tb

ta

d
dt
( v2

2
)dt = m

2
(v2

b
− v2

a)

v2
a = v(ta)2 , v2

b
= v(tb)

2 .

T = 1
2 mv2 = p2

2m ,

Tb − Ta = Wab .



The work done by the force 
→
F  along the trajectory →r(t) from a to b is equal

to the change in kinetic energy.

Example:	Free	fall
A body of mass m drops under the in�luence of constant gravity from the height z0,
where it is at rest at time t = 0 (→v(0) = 0). The work done by gravity then is:

(4.136)

it is equal to the kinetic energy that is reached before impact with the earth’s
surface:

(4.137)

since T (0) = 0 due to the initial condition.
Extension	to	a	system	of N particles:

The kinetic energy of a system of N particles is de�ined by

(4.138)

From the equations of motion

(4.139)

we derive (as above):

(4.140)

where a and b represent the position of the particles →ri at the times ta and tb. 

FTi is the component of the force 
→
Fi tangential to the path of the i-th particle; si

the associated arc length.

4.4.2	 Conservative	Forces,	Potential	Energy,	Energy	Theorem
For the sake of simplicity we limit ourselves to a single mass point below. The
de�inition of work generally depends not only on the integration boundaries a, b,

Wz0→0 = − ∫ 0

z0
mgdz = +mgz0 ;

T0 = m
2 v2

0 = mgz0 ,

T = ∑N
i=1 Ti = ∑N

i=1
1
2 miv

2
i .

mi
d
→
vi
dt

=
→
Fi

Tb − Ta = ∑i ∫
tb
ta

→
Fi ⋅

→
vi dt = ∑i ∫

b

a
FTi dsi = ∑iW

i
ab

= Wab ,



but also on the shape of the trajectory (Fig. 4.2):

(4.141)

Fig.	4.2 Illustration of two different trajectories connecting the points a and b

Particular forces have proven to be important in physics, where Wab is
independent of the trajectory between a and b. We refer to such forces as
conservative	forces. In the mathematical sense we call a force conservative, if a
scalar function U(

→
r) exists such that:

(4.142)

The function U(
→
r) is called potential	energy of the particle at position →r. It is only

determined up to an additive constant.
Conclusions:
Work	along	a	closed	path

For a conservative force the integration over any closed path gives:

(4.143)

Energy	theorem

For a conservative force we get:

(4.144)

The total energy of the particle

(4.145)

∫ tb
ta

→
F ⋅

→
v dt

path 1

≠ ∫ tb
ta

→
F ⋅

→
v dt

path 2
������ ������

Wab = ∫ b

a

→
F ⋅ d

→
s = U(a) − U(b) .

∮
→
F ⋅ d

→
s = ∮ FT ds = 0 .

Tb + U(b) = Ta + U(a) .

E = T + U



therefore is constant.

Example:	mass	point	under	the	in�luence	of	gravity

(4.146)

Since U is only �ixed up to an additive constant we can �ix U by the condition that at
the earth’s surface U(0) = 0. Then the potential energy U(h) = mgh of the
particle at the height h above the earth’s surface is equal to the work done (against
gravity) to raise the mass point from the earth’s surface to the height h without
changing its kinetic energy. If the mass point drops from a height h free we get

(4.147)

for every point on the trajectory, if the mass point was at rest at z = h. The
increase	in	kinetic	energy	is	equal	to	the	decrease	in	potential	energy.

Calculation	of	the	force 
→
F  from	the	potential	energy U(

→
r)

(4.148)

Here ∂U/∂x is the partial	derivative of the function U = U(x, y, z) for �ixed
values of y, z.

Proof
1. From Eq. (4.148) we get:

(4.149)

since:

∫
tb

ta

→
F ⋅

→
v dt = −∫

b

a

(
→
∇U ⋅ d

→
r) =

(4.150)

∫ tb
ta

→
F ⋅

→
v dt = − ∫ b

a
mg dz = mgza − mgzb = U(a) − U(b) .

E = 1
2 mv2 + mgz = const. = mgh

→
F = − = − gradU = −

→
∇U .

⎛⎜⎝ ∂U
∂x

∂U
∂y

∂U
∂z

⎞⎟⎠Wab = ∫ b

a
FT ds = U(a) − U(b) .

− ∫ b

a
( ∂U

∂x dx + ∂U
∂y dy + ∂U

∂z dz) = − ∫ b

a
dU = U(a) − U(b) .



The total	differential dU is the change of U in the transition from the point →r to
the in�initesimally neighboring point →r + d

→
r:

(4.151)

2. If a function U exists which ful�ills

(4.152)

the total energy of the particle is

(4.153)

The conservation of energy follows from the time derivative of E:

dE

dt
=

d

dt
( p2

2m
) +

d

dt
U(x, y, z) =

(4.154)

If the force 
→
F  does not depend on the velocity, the ( ) brackets are independent of 

→
v. Since →v may have arbitrary values it follows that

(4.155)

For a conservative system of N particles we get:

(4.156)

for the force acting on particle i, with

(4.157)

dU = ∂U
∂x dx + ∂U

∂y dy + ∂U
∂z dz = grad U ⋅ d

→
r.

Wab = ∫ b

a
FT ds = U(a) − U(b),

E = p2

2m + U(
→
r).

vx( dpx
dt

+ ∂U
∂x )+ vy(

dpy
dt

+ ∂U
∂y )+ vz( dpz

dt
+ ∂U

∂z ) = 0 .

dpx
dt

= Fx = − ∂U
∂x etc. for y, z .

→
Fi = − gradi U = −

→
∇iU

U = U(
→
r1,

→
r2, …

→
rN) .



Example:
The potential energy of a particle is given by:

(4.158)

with

(4.159)

The associated force is a central force:

(4.160)

using

(4.161)

∂

∂y
(

1

r
) =

d

dr
(

1

r
) ⋅

∂r

∂y
= (

−1

r2
)
y

r
,

∂

∂z
( 1

r
) =

d

dr
( 1

r
) ⋅

∂r

∂z
= ( −1

r2
) z

r
.

4.4.3	 Invariances	of	U;	Separation	of	Center	of	Mass	Energy
Translational	invariance

The property

(4.162)

for any vectors →a implies that U may only depend on the internal coordinates of the
system (of N particles), e.g. on the distance vectors

(4.163)

such that

(4.164)

From 
→
∇iU = −

→
∇jU  we obtain

(4.165)

U = a
r

+ b ,

r2 = x2 + y2 + z2 .

→
F = − grad( a

r
) = a

→
r
r3

∂
∂x
( 1
r
) = d

dr
( 1
r
) ⋅ ∂r

∂x
= ( −1

r2 ) x
r

,

U(
→
ri) = U(

→
ri +

→
a)

→
rij =

→
ri −

→
rj ,

U = U(
→
rij) .



since →rij = −
→
rji. This is the actio=reactio	principle, from which, together with

the equations of motion, we have derived the momentum conservation law. The
momentum	conservation is therefore a direct consequence of the translational
invariance of U.

Rotational	invariance
In case of rotational invariance we have

(4.166)

where →ri ′ emerges from →ri by an arbitrary rotation. It follows that U is only a
function of the distances

(4.167)

i.e.,

(4.168)

The force acting between 2 particles i, j then is a central force:

(4.169)

since for any function f(r) holds:

(4.170)

The angular	momentum	conservation holds for central forces, which is
therefore a consequence of the rotational invariance.

Invariance	with	respect	to	time	translations
When discussing the conservation of energy, we have assumed that U does not
depend explicitly on time t,

(4.171)

This equation can also be understood as a consequence of the invariance of U
against time translations, t → t + Δt for any Δt. The energy	conservation	law is
therefore a consequence of the invariance with respect to time translations.

→
Fij = −

→
Fji

U(
→
ri) = U(

→
ri

′) ,

rij = |
→
ri −

→
rj|

U = U(rij) .

→
Fij =

~
f(rij)

→
rij ,

∂
∂x
f(r) = df

dr
∂r
∂x

= df

dr
x
r

= g(r)x ; also for y, z .

∂U
∂t

= 0 .



Galilean	invariance
In this case the scalar function U = U(

→
rij) does not change for a Galilean

transformation. The kinetic energy is:

(4.172)

Since for a system with U = U(
→
rij) the momentum 

→
P = ∑imi ⋅

→
vi is conserved,

the kinetic energy only changes by an additive constant,

(4.173)

i.e. the energy for a closed system

(4.174)

is Galilean-invariant like the momentum and angular momentum.
If we speci�ically choose the coordinate system Σ as the center of mass system, 

→
P = 0, we get:

(4.175)

Tint here is the internal kinetic energy, Ts the center of mass energy with
respect to the system Σ′ with velocities →vi ′. Since U = U(

→
rij) in the transition 

Σ → Σ′ does not change, we can always separate the center of mass energy in a
closed system,

(4.176)

where Eint is the energy in the center of mass system.

4.4.4	 Friction	Forces
All fundamental forces known to us are conservative in the sense of equation

(4.177)

T ′ = 1
2 ∑imi(

→
vi −

→
v)

2

= T −
→
P ⋅

→
v + 1

2 Mv2 .

T ′ = T + const ,

E = T + U = const

T ′ = T + 1
2 Mv2 = Tint + Ts .

E = Ts + Eint ,

Wab = ∫ b

a
FT ds = U(a) − U(b) ,



i.e. the energy law applies. This includes the case of the Lorentz	force (force of a

magnetic �ield 
→
B on a charge q moving with velocity →v),

(4.178)

Since 
→
F  is always perpendicular to the direction of motion,

(4.179)

it doesn’t do any work; thus it doesn’t affect the energy balance.
Additionally, there are forces that enter into the energy balance and increase

the loss of energy in the system: frictional	forces. They become important for the
description of the motion of a body in a gas or a liquid or on a surface (sliding
friction). In the simplest case frictional forces are proportional to →v:

(4.180)

Then the system suffers a loss of energy because of

(4.181)

The occurrence of frictional forces does not contradict the statement that all
fundamental forces are conservative because frictional forces are not conservative
forces, but a result from a more general description of the interaction, e.g. between
the molecules of a rolling ball and those of the surface where the ball is rolling.

Addition:	vector	property	of gradU
1.

Addition
If U(

→
r) = U1(

→
r) + U2(

→
r) it follows from the rules of differentiation:

 

(4.182)

the vector addition law de�ined for vectors. It also holds for multiplication by a
real number α,

→
F =

q

c
(
→
v ×

→
B) .

→
F ⋅

→
v = q

c
(
→
v ×

→
B) ⋅

→
v = 0 ,

→
Fr = −c

→
v ; c > 0 .

∫ tb
ta

→
FR ⋅

→
v dt = −c ∫ tb

ta
v2 dt < 0.

gradU = gradU1 + gradU2 ,



(4.183)

2.
Transformation	behavior	for	rotations
The scalar function U(

→
r) assigns a real number to each point in space →r that

does not change when the coordinate system is rotated. Accordingly for a
scalar function U under rotations we have:

 

(4.184)

where the components of →r (see Sect. 2. 3. 2) are rotated with the matrix dij like:

(4.185)

It follows from the chain rule for differentiation:

(4.186)

i.e. the components of grad U transform under rotations like the components of
→
r. In Eq. (4.186) we have used:

(4.187)

employing (4.185).
In summarizing this chapter we have de�ined forces and derived Newton’s

equations of motion; their solution provides the trajectory of a mass point in space
and time. Examples for characteristic problems have been given and the explicit
solutions been derived in detail. We have found that instead of velocities or
angular velocities it is more convenient to introduce momenta and angular
momenta of particles since for closed systems - without external forces—the total
momentum is a constant of motion. This also holds for the angular momentum if
no external torque acts on the system and is a consequence of Galilean invariance.
We have examined the connection between the work done by a force on a particle

α gradU = grad(αU) .

U(x1,x2,x3) = U ′(x′
1,x′

2,x′
3) ,

x′
i = ∑j dijxj with ∑i dimdin = δmn .

∂U ′(x′
1,x′

2,x′
3)

∂x′
i

= ∑j
∂U(x1,x2,x3)

∂xj

∂xj

∂x′
i

= ∑j dij
∂U(x1,x2,x3)

∂xj
,

∑i dikx
′
i = ∑i,j dikdijxj = ∑j δkjxj = xk



along its trajectory and the actual kinetic energy. In case of conservative forces one
can introduce a potential energy U(

→
r) that allows to compute the actual force by

its negative gradient. Then the energy of the system is de�ined by the sum of
kinetic and potential energy and—for closed systems—is found to be a conserved
quantity, too. The energy balance, however, does not hold for frictional forces
which are some ’effective’ forces that result from a more general description of the
microscopic interactions, e.g. between the molecules of a rolling ball and those of
the surface.



(1)
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In this chapter we will continue with applications of Newtonian mechanics for
central forces, where the potential U only depends on the magnitude of the
relative distance |→r1 −

→
r2| between two mass points. In this case the

conservation of momentum, angular momentum and energy holds, which
drastically reduces the number of free degrees of freedom. An important case
are 1/r2-forces, which holds for Coulomb and gravitational forces; we will
classify the trajectories according to their energy and derive Kepler’s laws for
the motion of planets. In extension the law of gravity will be derived and
gravity �ields are introduced for static mass distributions. In addition the
dynamics of a linear oscillator is discussed—another important physical
system—and the solutions are calculated from the equations of motion also in
case of additional frictional forces. The case of a damped oscillator, that is
driven by an external periodic force, will lead to the formation of resonances
that are analysed in some detail. In addition the problem of coupled harmonic
oscillations is addressed, which is characteristic for the vibrational modes in
crystals.

5.1	 Central	Forces
One of the most important problems in theoretical physics is the motion of 2
mass points under the in�luence of a central force with applications in
astrophysics, atomic physics and nuclear physics.

5.1.1	 Reduction	of	Degrees	of	Freedom
We consider a closed system of two particles without any external forces,

(5.1)→
Fa = 0 .

https://doi.org/10.1007/978-3-031-95512-9_5


A central force acts between the particles

(5.2)

with

(5.3)

The equations of motion in the coordinates →r1, →r2,

(5.4)

can be rewritten in center of mass and relative coordinates (M = m1 + m2):

(5.5)

From

(5.6)

we get

(5.7)

The solution is known: this is a straight, uniform motion for the center of mass.
For the relative motion one obtains (by taking the difference)

(5.8)

or

(5.9)

with the reduced	mass μ,

→
F12 = − gradU = f(r)

→
r
r

= −
→
F21

→
r =

→
r12 =

→
r1 −

→
r2 = −

→
r21.

m1
→
a1 =

→
F12, m2

→
a2 =

→
F21

→
rs = 1

M
(m1

→
r1 + m2

→
r2),

→
r =

→
r1 −

→
r2.

m1
→
a1 + m2

→
a2 =

→
F12 +

→
F21 = 0

d2

dt2

→
rs =

→
as = 0.

→
a1 −

→
a2 =

→
F12

m1
−

→
F21

m2
= ( 1

m1
+ 1

m2
)

→
F12,

μ
→̈
r =

→
F12 =

→
F



(5.10)

This reduces the two-body problem to the equivalent one-body problem

for a �ictitious particle of mass μ under the in�luence of the force 
→
F . Instead of 6

differential equations there are only 3 differential equations to solve.
With the help of the energy and angular momentum theorem, the problem

can be reduced to only a single degree of freedom (in the variable r). From the
conservation of angular momentum

(5.11)

it follows that the motion proceeds in a plane. Thus we can - without
restrictions - employ the parameter representation (in the x, y plane)

(5.12)

Furthermore, only the energy of the internal motion is of interest,

(5.13)

which we can rewrite as:

(5.14)

This equation only contains a single variable (r) and its time derivative (ṙ)
(for �ixed l).

Proof For the velocity we get from (5.12)

(5.15)

Since
(5.16)

1
μ

= 1
m1

+ 1
m2

= m1+m2

m1m2
.

→
l = const

→
r = .

⎛⎜⎝ r cos φ

r sin φ

0

⎞⎟⎠Eint = 1
2
μv2 + U(r),

Eint = 1
2 μṙ

2 + l2

2μr2 + U(r).

→
v = + = ṙ

→
er + rφ̇

→
eφ.

⎛⎜⎝ ṙ cos φ

ṙ sin φ

0

⎞⎟⎠ ⎛⎜⎝−rφ̇ sin φ

rφ̇ cos φ

0

⎞⎟⎠



we obtain

(5.17)

The angle variable φ̇ can be eliminated using the magnitude of the angular

momentum 
→
l, which is constant in time:

(5.18)

Note: The total angular momentum of the two particles can be decomposed in
an ’outer’ (center of mass) part and an ’inner’ part. For central forces both parts

are separately conserved in the absence of external forces. 
→
l denotes the

internal part, i.e. the relative angular momentum of the two particles. Equation
(5.17) can be interpreted as energy for a 1-dimensional motion in the variable r
with an effective potential energy

(5.19)

thus

(5.20)

The term from the kinetic energy l2/(2μr2) = Uz is called centrifugal
potential and is added to the potential energy.

To explain the term "centrifugal potential" we calculate the associated force,

(5.21)

i.e. the product of μ and the centrifugal acceleration.

5.1.2	 Classi�ication	of	Trajectories

→
er ⋅

→
eφ = 0,

E =
μ

2 (ṙ
→
er + rφ̇

→
eϕ)

2

+ U(r) =
μ

2 (ṙ2 + r2φ̇2) + U(r).

l = μ|
→
r ×

→
v|= μr2φ̇ q. e. d.

U l
eff = l2

2μr2 + U(r),

E = 1
2 μṙ

2 + U l
eff(r).

→
Fz = − gradUz = l2

μr3

→
er = μrω2→er,



Fig.	5.1 Example for a potential Ueff  that is positive everywhere and decreasing with r

dU/dr < 0 for	all r
Since Uz is also repulsive everywhere, U l

eff(r) (with the convention 
U l

eff(∞) = 0) has the following qualitative shape (Fig. 5.1):
For �ixed energy E only orbits with r ≥ r0 are possible, since for r < r0 the

kinetic energy Tr is negative, i.e. the velocity ṙ will be imaginary. The permitted
trajectories are called unbound	states or scattering	states.

d2U/dr2 > 0 for	all r

1.
lim
r→∞

Ueff(r) → ∞ (Fig. 5.2).

Since Tr > 0 must always be positive we only get bound	states for 
r1 ≤ r ≤ r2.

 

2.
Normalization: Ueff(∞) = 0 (Fig. 5.3).

For E > 0 one gets unbound states (green dotted area), bound states
for E < 0 (green area).

 

3.
Normalization: Ueff(∞) = 0 (Fig. 5.4).

For E > Um there are only unbound states for arbitrary r ≥ 0. If 
0 ≤ E < Um both bound and unbound states exist. For E < 0 there are
only bound states.

 



Fig.	5.2 Example for a potential that only allows for bound states

Fig.	5.3 Example for potential that allows for bound states (E < 0) as well as scattering states (E > 0)



Fig.	5.4 Example for a potential with only unbound states for arbitrary r ≥ 0 and E > Um (green dots). For
0 ≤ E < Um both bound (green) and unbound states (green dots) exist, while for E < 0 only bound states
can appear

Equilibrium: In cases (1.) and (2.) there is no force for r = re since

(5.22)

The same applies to case 3.) at r = rm. In these points the system is in
equilibrium.

In cases (1.) and (2.) this equilibrium is stable but in case (3.) the
equilibrium is unstable: for a small de�lection from the equilibrium position a
repulsive force acts, which drives the particle away from the equilibrium
position at rm.

5.1.3	 1/r2–Forces
For the practically important case

(5.23)

we want to determine the trajectories explicitly.
The internal energy in this case is

(5.24)

and energy conservation gives:

(5.25)

Since in general ṙ ≠ 0, the equation of motion follows as:

(5.26)

For l = 0 the motion occurs along a straight line (φ̇ = 0):
(5.27)

( dUeff

dr
)
r=re

= 0.

U = ± c
r
; c > 0

E = 1
2 μṙ

2 + l2

2μr2 ± c
r

= const

dE
dt

= 0 = ṙ(μr̈ − l2

μr3 ∓ c
r2 ).

μr̈ − l2

μr3 ∓ c
r2 = 0.

→
l = 0⟶

→
r∥

→
v.



To �ind the possible trajectories r = r(φ) for l ≠ 0, we introduce the new
variable

(5.28)

and with (φ̇ = l/(μr2)) we �ind

(5.29)

as well as

(5.30)

Then the equation of motion (5.26) turns into:

(5.31)

or (l2 ≠ 0)

(5.32)

The solution of the inhomogeneous differential equation of 2nd order (5.32) is
the sum of the general solution of the homogeneous differential equation for ~w,

(5.33)

given by

(5.34)

and an arbitrary solution of the inhomogeneous equation. A particular solution
(for d2w/dφ2 = 0) is

(5.35)

The general solution of (5.32) then reads:

(5.36)

w = 1
r

with dw
dφ

= dw
dr

dr
dφ

= − 1
r2

dr
dφ

ṙ = dr
dφ

dφ

dt
= φ̇ dr

dφ
= l

μr2
dr
dφ

= − l
μ

dw
dφ

r̈ = − l
μ

d
dt

dw
dφ

= − l
μ

d2w
dφ2 φ̇ = − l2

μ2r2
d2w
dφ2 .

− l2

μr2 ( d2w
dφ2 + w ± μc

l2
) = 0

d2w
dφ2 + w = ∓ μc

l2
.

d2 ~w
dφ2 + ~w = 0,

~w = A cos φ + B sin φ = a cos (φ − φ0),

w = ∓
μc

l2
.

w = a cos (φ − φ0) ∓
μc

l2
,



or with (5.28)

(5.37)

using the abbreviations

(5.38)

The integration constant a or ε is determined by the energy. Using elementary
algebra we obtain (5.37)

(5.39)

and (after a somewhat lengthy calculation) for the energy

(5.40)

Equation (5.37) is the general form of a conic	section. By appropriately
choosing the coordinate system to which (r, φ) refers, we can rewrite (5.37) in
the normal form

(5.41)

We consider different cases:
1. U = −c/r: attraction, i.e. r(φ) = p/(1 + ε cos φ). Then the following

cases are possible:
(a)

ε = 0: circle; there is a bound state with E < 0.  
(b)

0 < ε < 1: ellipse; there is also a bound state with E < 0 (Fig. 5.5).  
(c) ε = 1: parabola; in this case E = 0, it is an unbound state.

 

r(∓1 + ε cos (φ − φ0)) = p,

ε = al2

μc
, p = l2

μc
.

ṙ = φ̇ dr
dφ

= l
μr2

p εsin(φ−φ0)

(∓1+εcos(φ−φ0))2

E =
μ

2 ṙ
2 + l2

2μr2 ± c
r

=
μc2

2l2
(ε2 − 1).

r(∓1 + ε cos φ) = p, ε ≥ 0.



 
(d)

ε > 1: branch of a hyperbola that encloses the origin r = 0; unbound
state with E > 0 (Fig. 5.6).

 
2.

U = c/r: repulsion, i.e. r(φ) = p/(−1 + ε cos φ).
We must require ε > 1, otherwise r would turn negative, and get the

branch of the hyperbola that is complementary to the case 1.d) (Fig. 5.7).

 

Examples:
Atomic systems:

An example for case (2.) is electron-electron or proton-proton scattering.
For the electron-proton system the orbits from case (1.) are possible, i.e.
there can be bound states as well as scattering states (depending on the
energy E).
Planetary motion (see Sect. 5.2).

Fig.	5.5 Case of an ellipse, which is a bound state with E < 0. The center of mass is located in the focal point
F



Fig.	5.6 Branch of a hyperbola that encloses the origin r = 0 and shows an unbound state with E > 0. The
center of mass is located in the focal point F ′

Fig.	5.7 Complementary branch of a hyperbola that does not include the origin r = 0 and shows an
unbound state with E > 0. The center of mass is located in the focal point F

5.2	 Planetary	Motion;	Gravity
5.2.1	 Kepler’s	Laws
Kepler’s laws describe the kinematics of the motion of planets:
1.

The	planetary	orbits	are	ellipses	with	the	sun	in	a	focal	point.  
2.

The	radius	vector	from	the	sun	to	the	planet	passes	the	same	areas	in
equal	times.

 
3.

The	squares	of	the	orbital	periods	of	different	planets	behave	like	the
cubes	of	the	semi-major	axis	of	their	elliptical	orbits.

 
The second law is the area	law and shows, together with the 1st law

containing the statement that the orbits are planar, that the angular
momentum is conserved. The force responsible for planetary motion is a
central force. Since the orbits are ellipses with the center of force in one of the
focal points, we conclude from Sect. 4. 4. 2 that the central force is of the form

(5.42)

i.e. the potential energy is of the form

(5.43)

These equations therefore are the dynamical basis for Kepler’s laws (1.) and
(2.).

→
F = − c

r2

→
r
r

= − c
r2

→
er,

U(r) = − c
r

, c > 0.



To explain the third law we use the area law

(5.44)

where we replaced the mass m by the reduced mass μ. Integration in time
gives:

(5.45)

where T is the orbital period and F is the area of the ellipse:

(5.46)

if a is the major axis and b the minor axis of the ellipse. Replacing
1.

r′ + r = 2a (de�inition of the ellipse)  
2.

a2 = b2 + c2 = b2 + ε2a2 with ε = c/a (Pythagoras)  
3.

(2a − r)
2

= r′2 = r2 + 4c2 + 4cr cos φ (cosine theorem according to 1.) 
4.

r(1 + ε cos φ) = (a2 − c2)/a = b2/a = p  
and using

(5.47)

we obtain:

(5.48)

According to Kepler the pre-factor should be 4π2μ/c and be equal for all
planets. To check this, let’s look at the general

5.2.2	 Law	of	Gravity
after which any 2 (electrically neutral) mass points at a distance r attract each
other by a central force

(5.49)

dF
dt

= l
2μ ,

F = l
2μ T ,

F = πab → T = 2πμ
l
ab,

l2 = μcp = μc b2

a
,

T 2 =
4π2a2b2μ2

l2
=

4π2μ

c
a3.



Here γ1 and γ2 are characteristic constants for the mass points that are
proportional to the masses m1 and m2 (in the equation of motion). This
statement is by no means trivial, but follows from experiment, e.g. the free	fall:
For a freely falling body (near the earth’s surface) we �ind

(5.50)

where m is the inertial	mass of the body, γ and γE  the constants for the
body and the earth; RE  is the radius of the earth. If we now compare the free
fall of two bodies 1 and 2, we have:

(5.51)

Since one always �inds a1 = a2 experimentally, we obtain

(5.52)

Accordingly the mass m and the factor γ differ by only a universal constant
factor such that the force can also be written as:

(5.53)

for two bodies with masses m1 and m2 at a distance r.
The constant γ is (up to a dimensional factor) denoted as heavy	mass of a

body. Equation (5.52) then implies the equivalence	of	heavy	and	inertial
mass.

Kepler’s 3rd law (5.48) with c = Γm1m2 then reads as:

(5.54)

→
F = −

γ1γ2

r2

→
r
r

.

ma = −
γγE
R2

E

,

m1a1

m2a2
=

γ1

γ2
.

m1

m2
=

γ1

γ2
.

→
F = −Γ m1m2

r2

→
r
r

T 2 = 4π2m1m2

c(m1+m2)
a3 = 4π2

Γ(m1+m2)
a3.



The ratio T 2/a3 therefore is (practically) constant for all planets since 
mplanet ≪ msun.

5.2.3	 Equivalence	Principle
Due to the equivalence	of	inertial	and	heavy	mass (5.52) the force acting on
a body of mass m in the earth’s gravity �ield is

(5.55)

where the gravitational	�ield	strength  →g is independent of the properties of
the body under consideration. Therefore, every body experiences the same
acceleration at a certain place

(5.56)

This result has an important consequence:
If an observer notices that different (electrically neutral) bodies at the same

place experience the same acceleration →g, he can interpret this in two ways:

1.
The system is an inertial system Σ and is located in a gravitational �ield
that gives the same acceleration →g for every body.

 
2.

The observed bodies are free with respect to some inertial system Σk, but
the observer system is located in an accelerated system Σ′. If its
acceleration is →a0, the acceleration →a′

k measured relative to Σ′ is connected
with the acceleration →ak with respect to Σk by:

(5.57)

If the bodies under consideration are free, ak = 0, then they experience an
acceleration relative to the observer in Σ′ given by →a′

k = −
→
a0. The

experimental �inding thus can also be explained with →a0 = −
→
g.

 

Conclusion: An observer cannot determine whether his laboratory is in
a homogeneous gravity �ield or in an accelerated reference system. This
equivalence	principle is the basis	of	the	theory	of	general	relativity.

→
F = m

→
g,

→
a =

→
g.

→
a′
k =

→
ak −

→
a0.



5.2.4	 Examples
(i)

Weightlessness	in	an	earth	satellite  
(ii)

Minimum	velocity	for	leaving	the	earth’s	gravitational	�ield 
According to Sect. 5.1.3 the escape	condition (limiting case of the

parabola!) is given by

(5.58)

where RE  is the earth’s radius, ME  the earth’s mass and m the mass of the
considered body; μ is the corresponding reduced mass, which may be replaced
by m as long as m ≪ ME; v is the relative velocity of the body to the earth.
From equation (5.58) we get for the escape	velocity

(5.59)

regardless of the mass of the body as long as m ≪ ME .

5.2.5	 Gravitational	Field	of	a	Static	Mass	Distribution
A mass m′ at position →r = 0 exerts the force to another mass located at →r ≠ 0

(5.60)

with

(5.61)

Interpretation: The mass m′ creates a gravitational	�ield at the position →r,
whose strength (gravity	�ield	strength) is determined by →g(

→
r). The �ield

strength →g is a vector function that assigns a triple of real numbers to every
point in space →r, i.e. gx(

→
r), gy(

→
r), gz(

→
r), which during rotations behave like the

components of a vector. Here →g(
→
r) shows always in the direction of the

coordinate origin.
The potential energy corresponding to the force (5.60) is

E = 1
2 μv

2 − Γ mME

RE
= 0,

vF = √ 2ΓME

RE
≈ 104 m

sec

→
F = m

→
g

→
g(

→
r) = − Γm′

r2

→
r
r

.



(5.62)

with

(5.63)

The quantity ϕ(
→
r) is called the potential belonging to →g. Knowing ϕ(

→
r) one

can calculate →g(
→
r) via:

(5.64)

The function ϕ(
→
r) describes a scalar	�ield which assigns a real number to

every point in space.
We can visualize the gravitational �ield of a resting mass point by its �ield

lines: The tangent to a �ield line gives the direction of the force at each point →r
and the density of the �ield lines is a measure of the magnitude of the force. In
the case of an individual mass point the associated �ield is always directed
radially. The surfaces of constant potential then are spherical surfaces, whose
common center lies at the origin of the coordinate system (see Fig. 5.8).

Fig.	5.8 Gravitational �ield lines and equipotential surfaces in case of a single mass located in the center

U(
→
r) = mϕ(

→
r)

ϕ(
→
r) = − Γm′

r
.

→
g = − gradϕ .



General	statement:

When moving any test mass within an equipotential surface the potential
ϕ does not change,

(5.65)

Since d→r ≠ 0, it follows that →g is perpendicular to the equipotential surfaces.
This applies to every �ield whose �ield strength can be written as the gradient
of a scalar �ield.

Of practical signi�icance is the application to (discrete or continuous) mass
distributions. According to the superposition principle (Chap. 1.2)

the gravitational �ield strength, generated by N mass points mi at the
positions →ri, is given by:

(5.66)

or the potential ϕ by:

(5.67)

For a continuous mass distribution the sums are replaced by integrals:

(5.68)

and

(5.69)

where ϱ(
→
r′) denotes the mass density.

dϕ = ∂ϕ
∂x
dx + ∂ϕ

∂y
dy + ∂ϕ

∂z
dz = (gradϕ) ⋅ d

→
r = −

→
g ⋅ d

→
r = 0 .

→
g(

→
r) = −Γ∑N

i=1 mi
(
→
r−

→
ri)

|
→
r−

→
ri|3

,

ϕ(
→
r) = −Γ∑N

i=1
mi

|
→
r−

→
ri|

.

→
g(

→
r) = −Γ ∫ ϱ(

→
r ′)

(
→
r−

→
r ′)

|
→
r−

→
r ′|3

d3r′

ϕ(
→
r) = −Γ ∫ ϱ(

→
r ′)

|
→
r−

→
r ′|

d3r′ ,



Example:	Homogeneous	sphere	of	radius R :

(5.70)

We carry out the volume integration within polar coordinates (see Fig. 5.9).

Fig.	5.9 Illustration of polar coordinates for the volume integral in case of a homogenous sphere

Using

σ2 = (
→
r −

→
r′)

2
= r′2 + r2 − 2rr′ cos ϑ ;

dσ2

dϑ
= 2σ

dσ

dϑ
= 2rr′ sin ϑ;

(5.71)

we �ind

(5.72)

= −Γϱ0 ∫
R

0

∫
π

0

∫
2π

0

dr′dϑdφ
r′2 sin ϑ

rr′ sin ϑ

dσ

dϑ
= −

2πΓϱ0

r
∫

R

0

∫
σmax

σmin

r′dr′dσ.

Case 1: r > R (σmax = r + r′,σmin = r − r′)

(5.73)

Only the total mass M and the distance r determine ϕ(r).
Case 2: r < R For the integration we distinguish: i) r > r′, i.e. 

σmax = r + r′,σmin = r − r′ and ii) r′ > r, i.e. σmax = r + r′,σmin = r′ − r.
Elementary integration gives:

R

ϱ(
→
r ′) = {

ϱ0 r′ ≤ R

0 else

2σ = 2rr′ sin ϑ dϑ
dσ

.

ϕ(
→
r) = −Γϱ0 ∫

R

0 ∫ π

0 ∫
2π

0
dr′r′dϑ r′sinϑdφ

σ

ϕ(
→
r) = − 2πΓϱ0

r
(∫ R

0 r′(r + r′ − (r − r′)) dr′ = − Γ
r

⋅ 4π
3
ϱ0R

3 = − ΓM
r

.



ϕ(
→
r) = −

2πΓϱ0

r
(∫

r

0

r′(r + r′ − (r − r′)) dr′ + ∫
R

r

r′(r + r′ − (r′ − r)) dr′)

(5.74)

The gravitational �ield →g(
→
r) then follows as negative gradient of ϕ(

→
r), i.e. 

→
g(

→
r) = −

→
∇ϕ(

→
r).

5.3	 Small	Oscillations
5.3.1	 The	Linear	Harmonic	Oscillator
The equation of motion for a linear	harmonic	oscillator is:

(5.75)

or with

(5.76)

(5.77)

The general (real) solution to the differential equation (5.77) is:

(5.78)

or

(5.79)

The general solution contains 2 integration constants A1 and A2 or C and δ.
In (5.79) δ gives the phase of the oscillation at time t = 0; the amplitude C is
linked to the energy which can be found as follows: the potential energy of the
oscillator is

(5.80)

= − 2πΓϱ0

r
(∫ r

0 2r′2dr′ + ∫ R

r
r′2r dr′) = −4πΓϱ0[ R2

2 − r2

6 ] .

mẍ = −kx , k > 0,

ω2
0 = k

m
,

ẍ + ω2
0x = 0.

x = A1 cos ω0t + A2 sin ω0t

x = C sin (ω0t + δ).



such that the energy is given by

(5.81)

or (with k = mω2
0)

(5.82)

At the inversion points x = ±C the kinetic energy T = 0 while the
potential energy U(±C) is maximum. In the equilibrium position (x = 0) the
potential energy U = 0 and the kinetic energy is maximum (see Fig. 5.10).

Fig.	5.10 Energy balance in case of a harmonic oscillator

Example: Thread pendulum (Fig. 5.11).

U(x) = 1
2
kx2

E = 1
2
mẋ2 + 1

2
kx2 = const.

E = C 2

2
{mω2

0 cos2 (ω0t + δ) + k sin2 (ω0t + δ)} = kC 2

2
.



Fig.	5.11 Coordinates in case of a thread pendulum

The change in angular momentum is given by

(5.83)

or

(5.84)

For small de�lections, sin φ ≈ φ, we get

(5.85)

For larger pendulum de�lections one obtains an anharmonic	vibration.

5.3.2	 Damped	Oscillator
We extend the equation of motion (5.77) to:

(5.86)

where the velocity-dependent term (2βẋ) describes damping. With the
solution x(t) = eλt we get by insertion into (5.86):

(5.87)

d
dt
lz = d

dt
(ml2φ̇) = (

→
r ×

→
F)z = −mgl sin φ

φ̈ + g
l

sin φ = 0.

φ̈ + ω2
0φ = 0 with ω2

0 = g
l
.

ẍ + ω2
0x + 2βẋ = 0, β > 0,

λ2 + ω2
0 + 2βλ = 0



with the two solutions

(5.88)

The general solution of (5.86) is a linear combination of the basic	solutions 
eλ1t and eλ2t. For the further discussion the following cases must be
distinguished:

(i) β < ω0 (weak	damping) With

(5.89)

we can write the general solution as

(5.90)

with the integration constants A1 and A2, or as a real function:

(5.91)

This equation describes a damped oscillation (see Fig. 5.12).

Fig.	5.12 Time dependence of the amplitude x(t) in case of a weakly damped oscillator

(ii) β = ω0 (critical	damping) In this case λ1 = λ2 and the approach 
x = eλt only provides one of the two basic solutions. The second basic solution
turns out to be

λ1,2 = −β ± √β2 − ω2
0.

√β2 − ω2
0 = iω

x(t) = (A1e
iωt + A2e

−iωt)e−βt

x(t) = ce−βt sin (ωt + δ).



(5.92)

The general solution in the aperiodic	limit takes the form:

(5.93)

(iii) β > ω0 (strong	damping) We set

(5.94)

and obtain the general solution:

(5.95)

In this case we get an aperiodic motion; for β > γ the amplitude x(t) → 0
for large t.

Energy	balance: Multiplying (5.86) by mẋ gives:

(5.96)

The oscillator is constantly losing energy due to friction (∼ β).

5.3.3	 Forced	Oscillations;	Resonance
We now consider a damped harmonic oscillator driven by an external force f(t)
described by the equation of motion:

(5.97)

The general solution is composed of the general solution of the
homogeneous equation and a speci�ic solution of the inhomogeneous equation;
the latter we determine for the important special case of a periodic force,

(5.98)

x(t) = te−βt.

x(t) = A1e
−βt + A2te

−βt.

√β2 − ω2
0 = γ > 0

x(t) = (A1e
−γt + A2e

γt)e−βt.

d
dt
( m

2
ẋ2 + k

2
x2) = −2mβẋ2 < 0.

ẍ + ω2
0x + 2βẋ = 1

m
f(t).

1
m
f(t) = f0 cos ωt.



Choosing

(5.99)

we obtain from (5.97):

(5.100)

After squaring (5.100) and using the addition theorems

cos (α − β) =cos α cos β+ sin α sin β

(5.101)

we get for the phase φ:

(5.102)

and for the amplitude

(5.103)

In addition to the special solution to the inhomogeneous equation, there is
also the general solution of the homogeneous equation, i.e. a free damped
oscillation. Due to the factor e−βt this part decays in time and for long times
only the inhomogeneous solution remains as a stationary	solution
independent of the initial conditions.

The amplitude ξ and phase φ of the stationary solution have the following
form as a function of ω (see Fig. 5.13):

x(t) = ξ cos (ωt − φ)

ξ((ω2
0 − ω2) cos (ωt − φ) − 2βω sin (ωt − φ)) = f0 cos ωt.

sin (α − β) =sin α cos β− cos α sin β

tan φ = 2βω

ω2
0−ω2

ξ = f0

√(ω2−ω2
0)

2
+4β2ω2

.



Fig.	5.13 The phase φ(ω) for the driven oscillator

For small frequencies ω the system follows the external force (practically)
without delay: φ → 0 for ω → 0. With increasing ω the phase φ increases,
reaches π/2 for ω = ω0, where the frequency of the external force is equal to
the natural	frequency ω0 of the oscillator, and approaches the value π for 
ω → ∞, where the osillator is in antiphase to the external force.

For the special case β → 0, φ changes suddenly from 0 to π for ω = ω0

(dashed line in Fig. 5.13).
The amplitude ξ has the value f0/ω2

0 for ω = 0. If ω2
0 > 2β2, ξ grows with

increasing frequency ω, reaches a maximum for ωa = √ω2
0 − 2β2 ≤ ω0 and

then approaches monotonically towards zero (see Fig. 5.14).

Fig.	5.14 The amplitude ξ(ω) for the driven oscillator



For strong damping, 2β2 > ω2
0, no maximum is formed; ξ tends towards

zero as ω increases, starting at f0/ω2
0 for ω = 0.

Of particular importance is the frequency ω = ω0. There the phase φ passes
the value π/2 and the work done by the external force becomes maximum
(energy	resonance).

Proof We calculate the average work done on the oscillator by the external
force during time T = 2π/ω :

(5.104)

where

(5.105)

Result

(5.106)

From

(5.107)

one �inds that the average energy transferred to the oscillator Wf  has a
maximum for ω = ω0.

The supplied energy Wf  exactly compensates for the energy which the
oscillator loses due to the damping—averaged over the period T- (5.96), i.e.

(5.108)

Examples:
1. Ionic	crystals, e.g. NaCl

If a light wave falls on such a crystal the oscillating electric �ield of the
light wave generates a vibration of the positively charged ions relative to
the negatively charged ions. The crystal absorbs energy from the light
wave; the energy absorption of the crystal is maximum when the frequency

 

Wf = 1
T
∫ T

0
f(t) ẋ dt = mf0

T
∫ T

0
ẋ(t) cos (ωt) dt,

ẋ(t) = −ξω sin (ωt − φ).

Wf =
βmf 2

0ω
2

(ω2−ω2
0)

2
+(2βω)2

.

d
dω

Wf(ω) = d
dω

βmf 2
0ω

2

(ω2−ω2
0)

2
+(2βω)2

= 0

Wβ = 1
T
∫ T

0
dE
dt

dt = −
2mβ

T
∫ T

0 ẋ2 dt = −Wf .



ω of the light coincides with the natural frequency ω0 of the crystals
vibration.

2.
By tuning an electrical	resonant	circuit one can adjust the natural
frequency ω0 of a radio to the frequency ω of the radio wave of a speci�ic
station. The receiver then dominantly absorbs radio waves of the desired
station.

 

3.
Microwave	oven
By tuning the frequency of the microwave ω0 resonant vibrations of H2O
molecules are excited; the absorbed vibration energy is converted into
thermal energy by interactions.

 

5.3.4	 Coupled	Harmonic	Oscillations
Simple	example: 2 coupled strings (Fig. 5.15).

Fig.	5.15 Two particles of mass m1 and m2 are coupled by a string with strength k and attached to the outer
walls by strings of strength k1 and k2

Two particles with masses m1 and m2, which can move only in a single
dimension (x-axis), are coupled by an attractive force (k), which is proportional
to the difference between the de�lections from the rest position (x1 = 0, 
x2 = 0). The particles are also attached to their position by spring forces (k1, 
k2) to their resting positions. Then the equations of motion are:

(5.109)

(5.110)

The terms −k1x1 and −k2x2 are “external forces” but 
k12 = −k(x1 − x2) = −k21 is an “internal force”, for which the actio = reactio
principle applies.

To solve the equations of motion we transform to:

m1ẍ1 = −k1x1 − k(x1 − x2)

m2ẍ2 = −k2x2 − k(x2 − x1).

k



(5.111)

(5.112)

with

(5.113)

Structure	of	the	problem:
For k = 0 we have 2 decoupled oscillators; for k ≠ 0 rhe right sides of

(5.111) and (5.112) describe the coupling.
We continue to consider the simpli�ied case:

(5.114)

leading to:

(5.115)

(5.116)

With the Ansatz

(5.117)

we obtain

(5.118)

and

(5.119)

In order to �ind non-trivial solutions for the unknown coef�icients a1 and a2 of
the linear system of equations, the determinant of the coef�icients must vanish:

(5.120)

ẍ1 + ω2
1x1 = k

m1
x2

ẍ2 + ω2
2x2 = k

m2
x1

ω2
i = k+ki

mi
; i = 1.2

m1 = m2 = m ; k1 = k2 = k0 → ω1 = ω2 = ω0

ẍ1 + ω2
0x1 = k

m
x2

ẍ2 + ω2
0x2 = k

m
x1.

x1 = a1 cos ωt ; x2 = a2 cos ωt

(ω2
0 − ω2)a1 − k

m
a2 = 0

− k
m
a1 + (ω2

0 − ω2)a2 = 0.



thus:

(5.121)

The solutions are:
1.

ωa = √k0 + 2k/m; this leads to:

(5.122)

i.e. the particles oscillate in anti-phase (antisymmetric	vibration).

 

2.
ωs = √k0/m: In this case we get a symmetric	oscillation,

(5.123)

i.e. the spring k is not vibrating at all and therefore the particles oscillate at
the undisturbed frequency ω = √k0/m, as in case of no coupling.

 

In case (1.), however, the spring k during the vibration is stretched or
pressed together. The general solution is a superposition of both solutions and
reads:

(5.124)

(5.125)

It contains 2 ⋅ 2 = 4 free constants (As, Aa, αs, αa) corresponding to the
number of degrees of freedom of the system.

The vibration types found above suggest to introduce normal	coordinates:

(5.126)

(5.127)

= 0∣(ω2
0 − ω2) − k

m

− k
m

(ω2
0 − ω2)∣(ω2

0 − ω2)
2

= k2

m2 .

a1 = −a2,

a1 = a2,

x1 = As cos (ωst + αs) + Aa cos (ωat + αa),

x2 = As cos (ωst + αs) − Aa cos (ωat + αa).

qs = x1 + x2

qa = x1 − x2.



The variables qs, qa then follow decoupled equations of motion,

(5.128)

(5.129)

as can easily be found by insertion into (5.115) and (5.116). Accordingly
one �inds for the energy:

E =
m

2
ẋ2

1 +
k0

2
x2

1 +
m

2
ẋ2

2 +
k0

2
x2

2 +
k

2
(x1 − x2)2

(5.130)

The method for decoupling vibrations—as outlined above—by introduction
of normal coordinates is generally possible in the harmonic approximation.

Example: Vibrations of molecules and crystals.
In summarizing this chapter we have presented important applications of

Newtonian mechanics for central forces, where the potential U only depends on
the magnitude of the relative distance |→r1 −

→
r2| between two mass points. In

this case the conservation of momentum, angular momentum and energy holds
which drastically reduces the number of free degrees of freedom. An important
case are 1/r2-forces, which holds for Coulomb and gravitational forces; we
have classi�ied the trajectories according to their energy and derived Kepler’s
laws for the motion of planets. In extension the law of gravity has been
formulated and gravity �ields been introduced for static mass distributions. In
addition the dynamics of a linear oscillator was discussed and the solutions
have been computed from the equations of motion also in case of additional
frictional forces. The case of a damped oscillator, that is driven by an external
periodic force, has lead to the formation of resonances that have been analysed
with respect to the energy balance. In addition the problem of coupled
harmonic oscillations was addressed that is solved by introducing ‘normal’
coordinates which decouple the equations of motion.

q̈s + (ω2
0 − k

m
)qs = 0,

q̈a + (ω2
0 + k

m
)qa = 0,

= m
4 q̇2

s + k0

4 q2
s + m

4 q̇2
a + k0+2k

4 q2
a .
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6.	Relativistic	Mechanics
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So far we have introduced classical Newton mechanics which, however, has different
transformation properties than Maxwell’s equations for electrodynamics. This incompatibility
has been solved in Einstein’s	special	theory	of	relativity: we have to replace the Galilei
transformation between inertial systems by the Lorentz	transformation that keeps the
velocity of light c invariant in all inertial systems. We will derive the Lorentz transformation
explicitly (in a simple case) and discuss its implications: Lorentz contraction, time dilation,
simultaneity in moving systems as well as causality and the limiting velocity of signals. Some
mathematical aspects of the Lorentz group of transformations will be discussed and Lorentz
scalars, four-vectors and Lorentz tensors are identi�ied as well as corresponding physical
quantities like four-current densities. We close the discussion of relativistic dynamics by
introducing the energy-momentum four-vector, which is conserved in all four components for
closed systems and discuss scattering problems. As an example the important problem of
Compton scattering of a photon on a resting charge q is computed explicitly. The derivation of the
Lorentz transformation of the force will �inalize this chapter.

6.1	 Special	Relativity
6.1.1	 Lorentz	Transformations
Galilei’s principle of relativity (see Sect. 3. 1. 2) is:

The basic laws of mechanics exist in all inertial systems and have the same form.

If there are two inertial systems Σ and Σ′ linked together by a Galilean transformation
(see Sect. 3. 1. 2)

(6.1)

we obtain for the velocities:

(6.2)

The relationships (6.1) and (6.2) have to be used, if two inertial observers—moving with
constant velocity →v0 relative to each other—want to compare measurements.

Newton’s equations of motion (as the basic laws of classical mechanics) are indeed invariant
for Galilean transformations, since according to (6.1) and (6.2) we have for the acceleration

→
r′ =

→
r −

→
v0t; t′ = t,

→
v′ =

→
v −

→
v0.

https://doi.org/10.1007/978-3-031-95512-9_6


(6.3)

and the mass in Newtonian mechanics is a property independent of the state of motion for a
mass point. The conservation laws for energy, momentum and angular momentum are also
Galilean invariant statements (see Sects. 4. 3 and 4. 4).

Galileo’s principle of relativity is well proven for ‘small’ particle velocities. Dif�iculties arise,
however,

(i)
for ‘fast moving’ particles and  

(ii)
in the connection with electrodynamics, especially optics. 

Consider a light source moving—in relation to the observer—with the velocity →v0, then
according to (6.2) the velocity of a light source emitting signal c ± v0, will depend on whether
the light source and observer approach each other or remove from each other. Maxwell equations
(see electrodynamics)–especially the wave equations in vacuum–then could only apply to a
single reference system. All attempts (such as the Michelson experiment), to prove the existence
of such an absolutely	resting system, have clearly failed.

The right conclusion from this obvious problem was drawn by Albert Einstein. His special
theory	of	relativity is based on 2 postulates:

(1)
The	laws	of	nature	are	the	same	in	all	inertial	systems.  

(2)
The	velocity	of	light	in	the	vacuum	is	the	same	in	all	inertial	systems. 

Since the postulates (1.) and (2.) are not compatible with (6.1), (6.2), we have to �ind a new
transformation rule for the transition from an inertial system Σ to another inertial system Σ′.

6.1.2	 Derivation	of	the	Lorentz	Transformation
We consider two inertial systems Σ, Σ′ moving with constant velocity v = v0 (for simplicity in 
x− direction) relative to each other. A light signal is emitted from the origin O of Σ at time t=0,
where O just coincides with the origin O′ of Σ′. According to Einstein’s principle of relativity, 2
observers—in Σ and Σ′—must describe the propagation of the light signal according to the same
laws. For the observer in Σ the signal propagates as a spherical wave originating in O, whose
front has the distance r = ct from O at time t. The wavefront is therefore determined by:

(6.4)

For the observer in Σ′ the center of the spherical wave is in O′; for him the following relation
applies instead of (6.4):

(6.5)

The observations (6.4) and (6.5) are not compatible with (6.1) since it follows from (6.5) (with
(6.1)):

→
a ′ =

→
a

r2 = x2 + y2 + z2 = c2t2.

r′2 = x′2 + y′2 + z′2 = c2t′2.



(6.6)

which for v ≠ 0 does not agree with (6.4). We now try to modify (6.1), (6.2) such that (6.4) and
(6.5) merge by the new transformation.

The transformation we are looking for must be linear such that the force-free motion of a
particle in the system Σ to any other inertial system Σ′ is force-free: the trajectory →r =

→
vt+ const.

in Σ must be a linear one in →r ′ and t′ when transforming to Σ′. Due to the homogeneity of space
and time we can always choose Σ and Σ′ in such a way that for t=0 the points O and O′ coincide;
the transformation then is homogeneous. For the case selected above

(6.7)

we can always choose the axes in Σ′ such that the x′-axis constantly coincides with the x-axis due
to the isotropy of space. For a point on the x axis with y = 0 = z in Σ then y′ = 0 = z′ also holds
in Σ′. The transformation

(6.8)

then separates such that

(6.9)

and

(6.10)

By rotation around the x axis one then can always achieve that

(6.11)

Due to the equivalence of the systems Σ and Σ′ we must have λ = 1, wich gives

(6.12)

For the transformation (6.9) we assume a linear transformation in x and t:

(6.13)

Since the origin O′ of Σ′ relative to Σ has the velocity v, it follows from

(6.14)

immediately

(6.15)

Thus (6.13) turns to:
(6.16)

(x − vt)2 + y2 + z2 = c2t2,

→
v =

⎛⎜⎝v

0

0

⎞⎟⎠(x, y, z, ct) → (x′, y′, z′, ct′)

(x, ct) → (x′, ct′)

(y, z) → (y′, z′).

y = λy′, z = λz′ .

y′ = y; z′ = z.

x′ = a1x + a2t; t′ = a3x + a4t.

0 = a1x + a2t

a2 = −a1v.

x′ = a1(x − vt); t′ = a3x + a4t.



We determine the remaining coef�icients a1, a3, a4 from the requirement that (6.5) with (6.12),
(6.16) should give (6.4). For

(6.17)

to match (6.4) for all x, y, z, t the following conditions must hold:

(6.18)

with the abbreviation

(6.19)

The combination of the �irst two equations in (6.18) yields

(6.20)

the 3rd equation in (6.18) (solved for a3a4) gives:

(6.21)

thus

(6.22)

With (6.22) we obtain for (6.18):

(6.23)

The choice of the sign is still pending: For β → 0 (6.12) and (6.13) should go over to (6.1), i.e.:

(6.24)

The Lorentz transformation then reads:

(6.25)

The inversion

(6.26)

is obtained by replacing v by −v, i.e. by exchanging the systems Σ and Σ′ (of equal rights).

6.1.3	 Space-Time	Diagrams

(a2
1 − a2

3c
2)x2 + y2 + z2 = 2(a2

1v + c2a3a4)xt + (c2a2
4 − a2

1v
2)t2

a2
1 − c2a2

3 = 1; a2
4 − β2a2

1 = 1; a2
1v + c2a3a4 = 0

β = v
c

.

c2a2
3a

2
4 = (a2

1 − 1)(1 + β2a2
1);

a4
1β

2 = (a2
1 − 1)(1 + β2a2

1) = a2
1 + a4

1β
2 − a2

1β
2 − 1,

−a2
1 + 1 + β2a2

1 = 0 → a2
1 = 1

1−β2 .

a2
4 = 1 + β2

1−β2 = a2
1; a2

3 =
a2

1−1

c2 = β2

c2(1−β2)
.

a1 = a4 = 1
√1−β2

; a3 = − β

c√1−β2
.

x′ = x−vt

√1−β2
; y′ = y; z′ = z; t′ =

t−vx/c2

√1−β2
.

x = x′+vt′

√1−β2
; y = y′; z = z′; t =

t′+vx′/c2

√1−β2



The connections between inertial systems can be summarized and displayed in space-time
diagrams. Except for the coordinate x0 = ct let’s consider another representative coordinate x1.
Points (x0,x1), or generally (x0,x1,x2,x3), in this diagram are called events or world	points.
The connection of two world points by a world	line can be the path of a mass point or a light
signal.

It is crucial for the representation of events in different inertial systems that the world
distance of an event from the origin

(6.27)

is invariant for Lorentz transformations (see (6.4), (6.5)). In the 2-dimensional
representation in the x0,x1− plane the distance squared is

(6.28)

in general:

(6.29)

According to (6.4) the propagation of light, i.e. the world lines of photons, is characterized by

(6.30)

In the 2-dimensional representation (6.30) reduces to the two straight lines

(6.31)

if we add another position coordinate x2, we get (from (6.31)) a cone by rotating around the x0

axis (light	cone), in the general case we get a hypercone in 4 dimensions. Equation (6.30)
describes for x0 < 0 a light signal arriving at the origin (0, 0) and for x0 > 0 a light signal
emitted by (0, 0).

The light cone divides the Minkowski	space in 2 areas (Fig. 6.1) for

(6.32)

The area s2 > 0 includes the past, x0 < 0, from which an observer in (0, 0) can receive signals,
and the future, x0 > 0, into which it can send signals. World lines that we can physically realize
always run in the area s2 > 0, since c is the limiting velocity for the transport of matter or energy
(see below).

s2 = c2t2 − r2

r2 = x2
1;

r2 = x2
1 + x2

2 + x2
3.

s2 = 0.

x1 = ±x0;

s2 > 0 and s2 < 0.



Fig.	6.1 Space-time diagram dividing past and future as well as time-like (dashed) and space-like areas

The area s2 < 0 cannot be reached; we can neither get there (or send signals) nor receive
signals from there. In this (space-like) region there could be particles, for which the velocity of
light c forms a lower limit (tachyons). However, such speculations are without implications for
the further formulation of relativistic mechanics.

Note: The division of past, future and space-like world points (s2 < 0) is the same in every
inertial frame since the separating light cone is Lorentz invariant!

In order to display 2 inertial systems Σ, Σ′ in a Minkowski diagram we write (6.25) in the
form

(6.33)

using the abbreviation

(6.34)

The x′
1 axis then consists of all points with x′

0 = 0; conversely, the x′
0 axis is determined by x′

1

= 0. It follows from (6.33):

(6.35)

Thus the axes in Σ′ are straight lines through the origin (see Fig. 6.2); they are symmetrically to
the light cone and are inclined by the angle α with respect to the axes in Σ with

(6.36)

To de�ine (time and length) units we use that the size s2 is Lorentz-invariant. The intersection of
the hyperbola (or the single-shell hyperboloid)

(6.37)

x′
0 = γ(x0 − βx1); x′

1 = γ(x1 − βx0)

γ = 1

√1−β2
.

0 = γ(x0 − βx1) → x0 = βx1; 0 = γ(x1 − βx0) → x1 = βx0.

tan α = β.

s2 = −1



with the (positive) x1 or x′
1 axis is the point (0, 1) in Σ or Σ′ and de�ines the unit of length. The

intersection of the hyperbola (or the double-shell hyperboloid)

(6.38)

with the (positive) x0 or x′
0 axis is the point (1, 0) in Σ or Σ′ which de�ines the time unit.

Fig.	6.2 Illustration of a Lorentz transformation in x-direction with velocity β. The x0 and x1 axes are tilted by the angle α de�ined
by tan (α) = β in Σ′

6.2	 Consequences	of	the	Lorentz	Transformations
6.2.1	 Addition	of	Velocities
A mass point moves with velocity →v in Σ,

(6.39)

We now look for the connection between →v and the velocity of the mass point →v ′ that another
inertial observer found in Σ′,

(6.40)

To this aim we form the differentials to (6.25):

(6.41)

Then we obtain

(6.42)

and as well

s2 = +1

→
v = d

→
r
dt

.

→
v ′ = d

→
r ′

dt′ .

dx′ = γ(dx − vdt) = γ(vx − v)dt; dt′ = γ(dt − v
c2 dx) = γ(1 − vvx

c2 )dt.

v′
y =

dy′

dt′ =
dy

dt

√1−β2

(1−vvx/c2)
= vy

√1−β2

(1−vvx/c2)



(6.43)

since dy′ = dy, dz′ = dz. On the other hand, for v′
x we get (6.41):

(6.44)

Special	case: For vy = vz = 0 the component v′
x becomes

(6.45)

and we obtain for the limiting case
(i)

v ≪ c

(6.46)

directly (6.2) and in the limit

 

(ii)
v → c

(6.47)

thus showing that c plays the role of a limiting velocity.

 

6.2.2	 Lorentz	Contraction
We consider a rod of length l0 in the system Σ which is at rest and (for simplicity) located in x-
direction. The coordinates of the end points of the rod then are x1,x2 independent of time t in Σ
and

(6.48)

is the rest	length of the rod. In order to calculate the length of the rod in a system Σ′—moving
relative to Σ with the velocity v in x-direction—one has to consider the coordinates of the end
points x′

1,x′
2 simultaneously in Σ′, i.e. at a time t′

1 = t′
2 = t′; then the length

(6.49)

is linked to l0 according to (6.25) by:

(6.50)

or

(6.51)

v′
z = dz′

dt′ = dz
dt

√1−β2

(1−vvx/c2)
= vz

√1−β2

(1−vvx/c2)
,

v′
x = dx′

dt′ = dx′

dt

√1−β2

(1−vvx/c2)
= vx−v

(1−vvx/c2)
.

v′
x = vx−v

(1−vvx/c2)
; v′

y = 0, v′
z = 0,

v′
x = vx − v

|v′
x|→ c,

l0 = x2 − x1

l′ = x′
2 − x′

1

l0 = x2 − x1 = γ(x′
2 − x′

1) = γl′

l′ = l0
γ

< l0,



since γ > 1. The observer moving relative to the rod in Σ′ �inds its length to be shorter than
the rest length in Σ (Lorentz	contraction). Perpendicular to the direction of motion the length
measurements in Σ and Σ′ give the same result.

On the other hand, if an observer in Σ measures a rod resting in Σ′, he also �inds a
contraction according to the principle of relativity and not an elongation! The Lorentz
contraction does not change the object rod, but only the different points of view of the observers
in Σ and Σ′.

6.2.3	 Simultaneity
We consider two events that occur in the inertial frame Σ in the points x1 and x2 with x1 ≠ x2 at
the same time t1 = t2 = t. After the Lorentz transformation (6.25) the two events in another
inertial system Σ′ then are not only spatially separated, x′

1 ≠ x′
2, but also in time t′

1 ≠ t′
2: The

event occurring at time t and position x1 in Σ is taking place in Σ′ at the time

(6.52)

accordingly, the event occurring in Σ at the position x2 and time t, at time

(6.53)

in Σ′. Thus

(6.54)

if x1 ≠ x2. The simultaneous events in Σ are no longer simultaneous in Σ′.

Simultaneity can only be de�ined in a speci�ic system and is lost when switching to
another system! This implies that Newton’s concept of an absolute	time has to be abandoned.

6.2.4	 Time	Dilation
We consider a transmitter at position x in the system Σ, which sends out signals at a time
difference

(6.55)

For an observer in a system Σ′, which is moving with constant velocity v along the x-axis of Σ
follows for the time interval between the signals (6.25)

(6.56)

The time Δt′ measured in Σ′ is therefore longer than the proper	time τ = Δt of the
transmitter measured in Σ (time	dilation). Observers in various inertial systems measure
different time intervals but via (6.56) all calculate the same proper time τ . In analogy to the
Lorentz contraction the time dilation is not a change in the object transmitter.

6.2.5	 Causality	and	Limiting	Velocity	of	Signals
The principle of causality states:

t′
1 = γ(t − vx1/c2);

t′
2 = γ(t − vx2/c2)

Δt′ = t′
2 − t′

1 ≠ 0

Δt = t2 − t1.

Δt′ = t′
2 − t′

1 = γΔt > Δt.



If	an	event A is	the	cause	of	another	event B ,	then	there	cannot	be	an	inertial	system
in	which B occurs	before A .

Otherwise by changing the reference system the temporal order of cause and effect would be
reversed.

As a consequence of the causality principle, the velocity of light c in vacuum is an upper limit
for the transmission of information in the form of energy transport (light signal) or mass
transport (exchange of particles).

Explanation: A neutron may be created in the system Σ at point A (e.g. by the decay of an
excited nucleus) and move from position A to position B, where it decays. Then, according to the
principle of causality, there is no other inertial system Σ′, where for an observer the neutron in 
B′ decays before it is formed in A′.

We now assume that the neutron moves with velocity v = ηc with η > 1 and show that this
contradicts the principle of causality: In Σ′ one �inds for the time interval Δt′ between formation
and decay of the neutrons

(6.57)

if Σ′ moves relative to Σ with velocity v along the x− direction. Δt is the running time of the
neutrons in Σ, Δx the corresponding distance,

(6.58)

This will give:

(6.59)

and since we assumed η > 1, we can choose v < c such that

(6.60)

In this case there would be a system Σ′ in which Δt′ < 0 but Δt > 0, i.e. in which the neutron in 
B′ decays before it was created in A′!

Note: The considerations above do not exclude that ’geometrical’ velocities > c occur. For
example, a light spot, emitted from a laser beam from the earth to the moon, may move with a
velocity > c over the lunar surface. This does not contradict the principle of causality because
the path of the light spot on the moon is just the ensemble of impact points of individual light
pulses, each of which travels the distance from earth to the moon with the velocity c. The velocity
of the light spot is not the same as the transport of mass or energy on the lunar surface!
Velocities > c can also be achieved in the propagation of electromagnetic waves in dispersive
media in form of phase	velocities (see electrodynamics).

6.2.6	 Examples	and	Explanations
Lifetime	of	muons
An example for time dilation is provided by the observation of muons (μ±), which are produced
by cosmic radiation in the earth’s atmosphere and are observed at the earth’s surface. The muons
are created between hmin = 10 km and hmax = 20 km above the earth’s surface; their minimum
running time is then

(6.61)

Δt′ = γ(Δt − vΔx/c2),

Δx = ηcΔt.

Δt′ = γΔt(1 −
ηv

c
),

(1 − ηv

c
) < 0.

Δt = hmin

c
≈ 30 ⋅ 10−6sec. = 30μs.



However, the lifetime of a muon at rest is only τ ≈ 2 μs, which corresponds to a maximum
running distance of cτ ≈ 600 m! Consequently, muons created in the earth’s atmosphere cannot
reach the earth’s surface at all according to Newtonian mechanics!

The apparent contradiction is resolved within the framework of Einstein’s theory of
relativity: The decay of muons is a structure property and therefore the lifetime τ  comparable to
the proper time of a clock. The lifetime in the rest frame τ  therefore has to be distinguished from
the time Δt measured by an observer on earth; equation (6.56) shows that for β ≈ 0.98 the
above values for τ  and Δt are compatible with each other. On the other hand, the problem is
solved from the perspective of the muon’s rest system by the Lorentz contraction of the distance
from the upper atmosphere to the earth’s surface.

Lorentz	contraction	in	the	Minkowski	diagram
We consider a unit scale at rest in Σ, which at time t = 0 may have the endpoints O and A. In the
Minkowski diagram the scale moves perpendicular to the x1 axis in positive x0 direction. For an
observer in Σ′ the length of the scale is given by the distance OA′, which is obviously shorter
than the length unit OB′ in Σ′. For an observer in Σ the latter appears shortened to the distance
OB (see Fig. 6.3).

Fig.	6.3 For an observer in Σ′ the length of the scale is given by the distance OA′ while for an observer in Σ the latter appears
shortened to the distance OB

6.3	 Mathematical	Aspects	of	Lorentz	Transformations
In this section we will show that the basic equations of relativistic mechanics have the same form
in all inertial frames (covariance) and thus obey the principle of relativity. Before, however, we
will examine the mathematical structure of the Lorentz transformations.

6.3.1	 Lorentz	Group
First of all it will be shown that the Lorentz transformation is a complex orthogonal
transformation in a 4-dimensional pseudo-euclidean vector space (Minkowski	space). To this
aim we introduce the following coordinates:

(6.62)x0 = ict, x1 = x, x2 = y, x3 = z.



The square of the length of a space-time vector in different reference systems Σ and Σ′ then can
be written as:

(6.63)

Comment:
The imaginary component x0 might appear disturbing at �irst sight but this can be

counterbalanced by a rede�inition of the metric in the scalar product

(6.64)

with the new real component x′
0 = ct (x′

k = xk for k=1,2,3) and the pseudo-metric tensor

(6.65)

with determinant det (gμν) = −1. An alternative to (6.65) is

(6.66)

Both choices have been used in the literature and one has to take care about signs in the
formulae presented according to the choice of the metric.

A general	Lorentz	transformation

(6.67)

must keep the length of the vector (x0,x1,x2,x3) invariant:

(6.68)

In analogy to the 3-dimensional euclidean space this condition can be written as an
orthogonality relation for the transformation coef�icients aμν:

(6.69)

where aT  is the transposed matrix to the matrix a. Equation (6.69) follows from:

(6.70)

For a Lorentz transformation in x1− direction with velocity β = v/c the transformation
matrix aμν  has the special form

(6.71)

∑3
μ=0 x

2
μ = ∑3

μ=0 x
′2
μ .

∑3
μ=0 xμxμ → ∑3

μ=0 x
′
μ∑

3
ν=0 gμνx

′
ν

gμν =

⎛⎜⎝−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎠gμν = .

⎛⎜⎝1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞⎟⎠x′
μ = ∑ν aμνxν;μ, ν = 0, 1, 2, 3

∑3
μ=0 x

2
μ =

→
r2 − c2t2 = −s2 = const.

∑ν a
T
μνaνλ = δμλ,

∑μ x
′2
μ = ∑μ∑νν ′ aμνaμν ′xνxν ′ = ∑νν ′{∑μ a

T
νμaμν ′}xνxν ′ = ∑νν ′ δνν ′xνxν ′ = ∑ν x

2
ν.



with γ 2 = 1/(1 − β2).

The speci�ication of the x1-axis contained in (6.71) can be corrected by an additional
orthogonal transformation in R3 in the form of a rotation. This possibility is based on the fact
that Lorentz transformations form a group:
(1.)

If we carry out 2 Lorentz transformations one after the other,

(6.72)

the result

(6.73)

is again a Lorentz transformation because for the matrices a′′, a′ and a we have:

(6.74)

since by de�inition

(6.75)

with 14 denoting the 4 × 4 identity matrix. The connection between the elements of the
group is therefore the (4 ×4) matrix multiplication.

 

(2.)
The neutral element is the 14 matrix for Lorentz transformations with velocity v = 0.  

(3.)
For every transformation a there exists the inverse, since from (6.69) we have:

(6.76)

thus

(6.77)

 

(4.) Since the matrix multiplication is associative, the associative law applies also to Lorentz
transformations.

The orthogonal transformations in R3 (rotations and re�lections) form a subgroup of
the Lorentz group represented by

(6.78)

with i, k = 1,2,3 and
(6.79)

 

aμν =

⎛⎜⎝ γ −iγβ 0 0

iγβ γ 0 0

0 0 1 0

0 0 0 1

⎞⎟⎠x′
μ = ∑ν aμνxν; x′′

ρ = ∑ν a
′
ρνx

′
ν; (Σ → Σ′ → Σ′′),

x′′
ρ = ∑ν,μ a

′
ρνaνμxμ = ∑μ a

′′
ρμxμ; (Σ → Σ′′),

(a′′)Ta′′ = (a′a)T (a′a) = aT (a′Ta′)a = aTa = 14,

aTa = 14; (a′)Ta′ = 14

det(aTa) = (det(a))2 = 1,

det(a) ≠ 0.

dμν = ( )1 0

0 dik



(6.79)

The general Lorentz transformation (6.67) with the condition (6.69) is obtained by
combining (6.71) with (6.78), (6.79) and adding the time	inversion

(6.80)

The Lorentz transformations therefore include: rotations in R3, space re�lections and time
inversion as well as the transition between inertial systems that move with a constant
relative velocity towards each other.

When there is a translation in space or time, this does not change condition (6.63)
because it only affects spatial and temporal distances.

To the group of homogenous	Lorentz	transformations (discussed above) we can
therefore add translations in space and time and then get the 10-parameter Poincaré	group,
which has 3 parameters for spatial rotations, 3 parameters for Lorentz boosts with the
velocity →v and 4 parameters for space-time translations. It	is	considered	as	the	basic
invariance	group	of	physical	systems.

6.3.2	 Lorentz	Scalars,	Vectors,	Tensors
In analogy to the group of rotations we now de�ine tensors with respect to the Lorentz group:
(1.)

Lorentz	scalar 
We denote a quantity Ψ a Lorentz	scalar, if Ψ does not change for Lorentz

transformations,

 

(6.81)

Examples are the electric charge, the mass squared M 2 (see Sect. 6.4) or the space-time
distance squared s2.
(2.)

Lorentz	vector 
We de�ine a quantity Aμ to be a Lorentz	or	four-vector, if in Lorentz transformations

its components Aμ (μ = 0, 1, 2, 3) transform the same as the components xμ

 

(6.82)

Examples:
(i) The partial derivatives of a Lorentz scalar Ψ with respect to xμ form the components of a

four-vector because:

(6.83)

using the inverse formula to (6.67):

 

∑3
m=1 d

T
imdmj = δij.

x′
i = xi; x′

0 = −x0; i = 1, 2, 3.

Ψ → Ψ′ = Ψ.

Aμ → A′
μ = ∑3

ν=0 aμνAν.

∂Ψ′

∂x′
μ

= ∑ν
∂Ψ
∂xν

∂xν

∂x′
μ

= ∑ν aμν
∂Ψ
∂xν

′



(6.84)

(ii)
The 4-divergence of a four-vector is a Lorentz scalar:

(6.85)

considering (6.69).

 

(iii)
Choosing the components of the four-vector according to (6.82)

(6.86)

we �ind (6.85):

(6.87)

i.e. the operator (△ − 1
c2

∂ 2

∂t2 ) = ∑μ ∂ 2/∂x2
μ thus is invariant for Lorentz

transformations. Then for a four-vector with components Aμ the (wave) equation

(6.88)

transforms like the μ-th component of a four-vector (see electrodynamics).

 

(iv)
The scalar product of two four-vectors is a Lorentz scalar:

(6.89)

 

(3.)
Lorentz	tensors	of	2nd	rank 

Except for the scalars (≡ tensors of 0th rank) and the vectors (≡ tensors of 1st rank) we will
encounter tensors of 2nd rank. They are de�ined as 4 × 4 matrices; their components Fμν  have
the transformation property

(6.90)

6.3.3	 Four-Current	Density

As an example for a four-vector we examine the transformation properties of the sources 
→
j and ρ

of the electromagnetic �ield. The conservation of charge serves as a starting point:

(6.91)

xν = ∑ρ aρνx
′
ρ.

∑ν
∂A′

ν

∂x′
ν

= ∑ν∑μ,μ′ aνμaνμ′
∂Aμ

∂xμ′
= ∑μ

∂Aμ

∂xμ

Aμ = ∂Ψ
∂xμ

,

∑ν
∂ 2

∂x2
ν

Ψ = ∑ν
∂ 2

∂x′2
ν

Ψ′,

∑ν
∂ 2

∂x2
ν
Aμ = (△ − 1

c2
∂ 2

∂t2 )Aμ

∑μA
′
μB

′
μ = ∑μ∑ν,ρ aμρaμνAρBν = ∑ν AνBν.

F ′
μν = ∑λ,σ aμλaνσFλσ.

∇ ⋅
→
j + ∂ρ

∂t
= 0.



With the notations

(6.92)

we can write the continuity equation in four-notation as

(6.93)

Because of charge invariance (6.93) holds in every inertial system since (6.93) is invariant for
Lorentz transformations. Then—according to (6.85)—the components jμ are the components of
a four-vector (four-current	density).

6.4	 Relativistic	Dynamics
Newton’s equations of motion are invariant with respect to Galilei transformations but not with
respect to Lorentz transformations (cf. Sect. 6.1). The principle of relativity thus requires a
modi�ication of Newton’s equation such that for velocities v ≪ c Newton’s equations remain
valid.

6.4.1	 Momentum	and	Energy
We �irst consider the case of a free particle. The Newton momentum

(6.94)

is extended to a four-momentum pμ with components given by

(6.95)

where τ  is the eigentime of the particle in its rest system and m0 its restmass. The eigentime 
τ  is related to the time t in the system Σ, where the coordinates xμ are de�ined, as follows:

(6.96)

For v ≪ c the Lorentz factor γ → 1 and the spatial components of (6.95) merge with (6.94). In
order to interpret the additional 0th component in (6.95),

(6.97)

we recall that the pμ are components of a four-vector since m0 and τ  are Lorentz scalars.
However, the length of a four-vector is Lorentz invariant according to Sect. 6.3:

(6.98)

j0 = icρ; j1 = jx; j2 = jy; j3 = jz

∑μ
∂

∂xμ
jμ = 0.

→
p = m0

d
→
r
dt

pμ = m0
dxμ

dτ
,

t = γτ ; γ = (1 − v2

c2 )
−1/2

= γ(v).

p0 = m0
dx0

dτ
= i

c
m0γc

2



The right side of (6.98) is obtained as follows: For the spatial components we have

(6.99)

where v is the magnitude of the velocity →v of the particle. Furthermore,

(6.100)

such that

(6.101)

To interpret p0 we expand γ(v) for v ≪ c as:

(6.102)

Since the 2nd term on the right side is the non-relativistic (kinetic) energy of the particle, it is
reasonable to interpret

(6.103)

as the energy of the free particle; the contribution

(6.104)

is its rest	energy. Accordingly

(6.105)

is its relativistic kinetic	energy. Equation (6.101) can then be written as a relativistic energy-
momentum relation:

(6.106)

and the four-vector (6.95) has the components

(6.107)

∑μ p
2
μ = const = −m2

0c
2.

p2 = ∑3
i=1 p

2
i = m2

0γ
2v2,

p2
0 = −m2

0γ
2c2,

∑μ p
2
μ = m2

0c
2(γ 2β2 − γ 2) = −m2

0c
2.

m0c
2γ = m0c

2(1 + β2

2
⋯) = m0c

2 + 1
2
m0v

2 + ⋯

ϵ = m0γ(v)c2 = m(v)c2

ϵ0 = m0c
2

T = ϵ − ϵ0

ϵ2 = c2(p2 + m2
0c

2)

( i
c
ϵ, p1, p2, p3).



The equivalence	of	energy	and	mass in (6.103) has been con�irmed by a variety of
experiments. Some representative examples are:
(1.)

Binding	energies	of	atoms	and	nuclei
For the deuteron the mass difference

(6.108)

corresponds to an energy

(6.109)

which is the binding energy of the deuteron. In atoms the binding energy is orders of
magnitude lower: from

(6.110)

it follows for the binding energy of hydrogen

(6.111)

 

(2.)
Energy	production	in	stars
One of the essential reactions for energy production in stars is the fusion of hydrogen (H)
to helium (4He). This elementary process has the mass balance

(6.112)

which gives about 25 MeV of energy gain.

 

(3.)
Pair	creation	and	destruction  

When electrons collide with positrons, high-energy γ quanta (hard photons) are produced,

(6.113)

where the energy-momentum balance requires the appearance of 2 γ-quanta. On the other hand,
a γ-quantum (> 1.02 MeV ≈ 2mec

2) can be converted into an electron-positron pair,

(6.114)

if another particle (e.g. an atomic nucleus) ensures the momentum balance.
We generalize Newton’s	inertial	law for a free particle,

(6.115)

to

(6.116)

Δm = mp + mn − md ≈ 3.5 ⋅ 10−27g

ϵd = Δm c2 ≈ 2.2MeV,

mp + me − mH ≈ 2.4 ⋅ 10−32g

ϵH ≈ 13.5eV.

4mp + 2me − m4He ≈ 0.5 ⋅ 10−25g,

e+ + e− → 2γ,

γ → e+ + e−,

→
p = const,

pμ = const; μ = 0, 1, 2, 3,



thus also demand that the 0th component, the energy ϵ, is constant.
The generalization (6.116) of (6.115) follows necessarily from the transformation property of

pμ. Since they are components of a four-vector the following holds for a Lorentz transformation
(in x− direction with velocity v):

(6.117)

The mixing of space and time components leads to the fact that the conservation of
momentum and energy are only possible simultaneously!

We de�ine the rest	system of a particle (Σ′) by:

(6.118)

such that—according to (6.117)—in another inertial system Σ we get:

(6.119)

Note:
For particles with m0 = 0 such as photons, a rest system cannot be de�ined because

according to (6.118), (6.119) in every inertial system we would obtain pμ = 0, μ = 0, 1, 2, 3.

6.4.2	 Scattering	Problems
For the relativistic description of collision processes we de�ine energy and momentum for N
particles as:

(6.120)

where →pi are the spatial components of the momentum of particle i, ϵi its energy according to
(6.103).

We now consider the collision of two particles

(6.121)

where (1, 2) denote the particles before the collision and (3, 4) after the collision. Since
asymptotically there are free particles (before and after the collision), the conservation of
momentum must apply:

(6.122)

But if the 3 spatial components of a four-vector disappear, then the 0th component must also
disappear according to (6.117),

(6.123)

ϵ = γ(v)(ϵ′ + vp′
x);px = γ(v)(p′

x + v
c2 ϵ

′);py = p′
y;pz = p′

z.

ϵ′ = m0c
2; p′

x = p′
y = p′

z = 0,

ϵ = γ(v)ϵ′ = m0γc
2 = m(v)c2; px = γ(v) v

c2 ϵ
′ = m(v)v; py = pz = 0.

→
P = ∑N

i=1
→
pi; ϵ = ∑N

i=1 ϵi,

1 + 2 → 3 + 4,

→
p1 +

→
p2 −

→
p3 −

→
p4 = 0.



i.e. energy conservation must also hold such that the conservation of momentum holds in every
inertial system. Energy and momentum conservation—as Lorentz-invariant statements—can
only hold simultaneously as pointed out above!

Example:	Compton	effect
We investigate the scattering of a photon from a free, initially resting electron. The energy of

the photon depends on the frequency ω of the light wave according to

(6.124)

where ħ ≈ 197 MeV fm/c is Planck’s constant. It follows for the momentum (6.106)

(6.125)

since the photon has no rest mass (Fig. 6.4).

Fig.	6.4 Scattering of a photon on a free, initially resting electron. The �inal momentum of the electron is denoted by 
→
P  while the

scattering angle of the photon is θ

According to energy and momentum conservation:

(6.126)

and

(6.127)

for the kinetic energy of the electron after the collision. We square both equations

(6.128)

as well as

(6.129)

and consider the difference:

(6.130)

ϵ1 + ϵ2 − ϵ3 − ϵ4 = 0,

ϵγ = ħω,

pγ =
ϵγ
c

= ħω
c

= 2πħ
λ

= ħk,

→
P = ħ(

→
k −

→
k′)

c√P 2 + m2
0c

2 − m0c
2 = ħ(ω − ω′)

P 2 = ħ2(k2 − 2kk′ cos θ + k′2),

P 2 + m2
0c

2 = m2
0c

2 + ħ2(k − k′)
2

+ 2m0ħc(k − k′),



We get the change in the wave number of light as a function of the scattering angle θ. The
experimental con�irmation of (6.130) is an important support for the description of a light wave
by photons, massless particles, whose energy and momentum are de�ined by (6.124), (6.125).

6.4.3	 Equations	of	Motion
In generalizing Newton’s de�inition of force we introduce a four-force	in	Minkowski	space via
its components as:

(6.131)

Here dτ  is de�ined in the instantaneous rest frame of the particle as a differential proper
time. The spatial components of (6.131) result in the relativistic generalization of Newton’s
equations of motion:

(6.132)

where 
→
F  e.g. stands for the Lorentz force. With (6.99) we can also write:

(6.133)

which for v ≪ c, γ → 1 leads to the non-relativistic equation of motion:

(6.134)

Equation (6.133) has two possible interpretations:
(i)

One keeps the non-relativistic velocity →v and accepts a velocity-dependent mass,

(6.135)

with

(6.136)

or

 

(ii) one always works with the rest mass m0, a Lorentz invariant quantity, and modi�ies the
de�inition of velocity:

(6.137)

with the modi�ied velocity

 

( 1
k′ − 1

k
) =

ħ
m0c

(1− cos θ).

Fμ =
dpμ
dτ

= γ(v)
dpμ
dt

.

d
→
p

dt
= γ−1F =

→
F ,

d
dt

(m0γ(v)
→
v) =

→
F ,

m0
d
→
v
dt

= m0
→
a =

→
F .

d
dt

(m(v)
→
v) =

→
F ,

m(v) = γ(v) m0,

m0
d
→
u
dt

=
→
F



with the modi�ied velocity
(6.138)

The equations (6.135) and (6.136) show that particles of the rest mass m0 ≠ 0 cannot
reach the velocity v = c, since for

(6.139)

in case of v → c an in�initely large energy would be necessary.
To discuss the component F0 we use:

(6.140)

due to (6.98), which gives

(6.141)

or according to (6.95), (6.97)

(6.142)

Since 
→
F ⋅

→
v is the work done by the force 

→
F  on the particle per unit of time, we can also

write

(6.143)

or

(6.144)

as expected according to (6.107). The equations (6.142) and (6.143) con�irm once again the
equivalence	of	energy	and	mass.

6.4.4	 Lorentz	Transformation	of	the	Force
Since Fμ are the components of a four-vector, the following holds for a transformation from the
current rest system Σ to another inertial system Σ′ with the special transformation (6.71):

(6.145)

since F0 = 0 in Σ as the instantaneous rest system according to (6.142). In short:

(6.146)

Due to (6.132) the inverse relations hold

(6.147)

→
u = γ(v)

→
v.

m(v) → ∞

∑μFμpμ = 1
2

d
dτ

(∑μ p
2
μ) = 0

∑3
i=1 Fipi = −F0p0

F0 = i
c

→
F ⋅

→
v = i

c
γ(v)

→
F ⋅

→
v.

F0 = i
c
γ(v) dϵ

dt

F0 = γ(v)−1
F0 = i

c
dϵ
dt

F ′
1 = γ(v)(F1 + iβF0) = γ(v)F1;F ′

2 = F2;F ′
3 = F3,

→
F⊥

′ =
→
F⊥;

→
F∥

′ = γ(v)
→
F∥.



since in the current rest system Σ we have

(6.148)

Result:
We have extended the basic concepts and basic equations of Newton’s mechanics to

relativistic mechanics in such a way that

(i)
Newtonian mechanics is regained in the limit v ≪ c,  

(ii)
the modi�ied basic equations are covariant with respect to Lorentz transformations. 

In summarizing this chapter we have introduced Einstein’s special theory of relativity and
replaced the Galilei transformation between inertial systems in Newtonian dynamics by the
Lorentz transformation that keeps the velocity of light c invariant in all inertial systems. To this
aim we explicitly have derived the Lorentz transformation (in a single spatial dimension) and
discussed its implications: Lorentz contraction, time dilation, simultaneity in moving systems as
well as causality and the limiting velocity of signals. Some mathematical aspects of the Lorentz
group of transformations have been discussed and Lorentz scalars, four-vectors and Lorentz
tensors been identi�ied as well as corresponding physical quantities like four-current densities.
We, furthermore, have discussed the relativistic dynamics by introducing the energy-momentum
four-vector, which is conserved in all four components for closed systems and discussed
scattering problems. As an example the important problem of Compton scattering of a photon on
a resting charge q has been computed explicitly. The derivation of the Lorentz transformation of
the force has completed this chapter.

→
F⊥

′ = √1 − v2/c2
→
F⊥;

→
F∥

′ =
→
F∥,

γ(v) = γ(0) = 1.
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The equations of motion of Newtonian mechanics can be written in different ways—depending on
the choice of coordinates—and in principle all independent choices have equal rights. However,
some choices facilitate the solutions of the equations of motion and others might cause severe
problems. It is thus of general interest to �ind ‘optimal’ coordinates for the description, which is
also of practical help, if the system is subject to constraints that require the introduction of
‘coercive forces’, which often are dif�icult to de�ine. It is thus meaningful to de�ine ‘generalized
coordinates’ that ful�ill the constraints and also reduce the complexity of the problem by reducing
the number of (linear independent) degrees of freedom. The equations of motion in generalized
coordinates then are derived from Newton’s equations of motion. It will be found that these
equations can also be generated by a variational principle, which speci�ies a Lagrange function L,
which is given by the difference between the kinetic and potential energy in case of conservative
forces. An important consequence is that the Lagrange equations of motion can also be applied to
other areas of physics. Generalized momenta are de�ined by the derivative of the Lagrange function
with respect to the generalized velocities. Accordingly, if the Lagrange function does not depend on
a speci�ic coordinate, e.g. the azimuthal angle φ, the corresponding generalized momentum (here
angular momentum) is a constant of motion. This suggests to transform the formulation to phase-
space variables given by coordinates and their associated momenta, which is carried out by a
Legendre transformation de�ining the Hamilton function H. In case of conservative forces the latter
just gives the energy of the system in phase-space variables. The variational principle thus can be
reformulated in terms of Hamilton’s (equivalent) variational principle which leads to the canonical
equations of motion. The latter will be illustrated for a couple of examples. Furthermore, it will be
shown again that—for a closed system—the translational invariance leads to the conservation of
the total momentum, the rotational invariance to the conservation of total angular momentum, and
the invariance with respect to time translations to the conservation of the total energy.

7.1	 Generalized	Coordinates
7.1.1	 Constraints
The starting point of Newtonian mechanics are the equations of motion for N particles in cartesian
coordinates:

(7.1)

Dif�iculties arise if the motion of the system is subject to constraints:
1.

The coordinates →ri then are dependent on the constraints.  
2. In order to comply with certain constraints one must introduce coercive	forces  which are not

mi
→̈
ri =

→
Fi ; i = 1, 2, … ,N .

https://doi.org/10.1007/978-3-031-95512-9_7


explicitly speci�ied, but in some cases can only be determined from the solution.  
Classi�ication	of	constraints:
1.

Holonome conditions:
(a)

Scleronome conditions: 
Examples:

rigid body

(7.2)

ball pendulum of length l

(7.3)

 

(b)
Rheonome conditions 

(7.4)

contain an explicit time dependence.
Example: ‘Pearl’ on a straight rotating wire.

 

 

2.
Nonholonomic conditions

explicitly require the solution of the equations of motion!
Example: Gas molecules in a spherical container, ri ≤ R .

 

For holonome conditions we can solve the problem by introducing generalized	coordinates 
qj such that for

(7.5)

the m constraints

(7.6)

are identically ful�illed in the new variables qj and t. The variables qj are independent of each
other; if m constraints are given, then for N particles we have

(7.7)

generalized coordinates qj.

7.1.2	 Equations	of	Motion	in	Generalized	Coordinates

(
→
ri −

→
rj)

2

− c2
ij = 0 ; i, j = 1, 2, … ,N .

x2 + y2 + z2 − l2 = 0.

f(
→
r1, …

→
rN , t) = 0

→
ri =

→
ri(q1, … , qs, t)

fr(
→
r1, … ,

→
rN , t) = 0 ; r = 1, 2, … ,m

s = 3N − m ≤ 3N



Starting from Newton’s equations of motion we form the following (3N − m) differential
equations (with →ri =

→
ri(ql)):

(7.8)

We write the left side as:

(7.9)

using

(7.10)

because

(7.11)

since ∂→ri/∂qj and ∂→ri/∂t do not depend on q̇j. With

(7.12)

we get for the 2nd term on the right side of (7.9):

(7.13)

With the kinetic energy

(7.14)

we obtain after summation over all particles i:

(7.15)

To interpret the quantities Ql it is suf�icient to consider the case, where the time t does not

occur explicitly. Then the work carried out by the forces 
→
Fi for in�initesimal displacements d→ri of

the particles, which comply with the constraints, is given by:

(7.16)

∑N
i=1 mi

→̈
ri ⋅ ∂

→
ri

∂ql
= ∑N

i=1

→
Fi ⋅ ∂

→
ri

∂ql
= Ql .

mi
→̈
ri ⋅ ∂

→
ri

∂ql
= d

dt
(mi

→̇
ri ⋅ ∂

→
ri

∂ql
) − mi

→̇
ri ⋅ d

dt
( ∂

→
ri

∂ql
),

mi
→̇
ri ⋅ ∂

→
ri

∂ql
= mi

→
vi ⋅ ∂

→
vi

∂q̇l
= ∂

∂q̇l
( 1

2 miv
2
i ) = ∂

∂q̇l
Ti ,

∂
∂q̇l

→
vi = ∂

∂q̇l

→̇
ri = ∂

∂q̇l
[∑j

∂
→
ri

∂qj
q̇j + ∂

→
ri

∂t ] = ∂
→
ri

∂ql
,

d
dt
( ∂

→
ri

∂ql
) = ∑j

∂ 2→ri
∂qj∂ql

q̇j + ∂ 2→ri
∂ql∂t

= ∂
∂ql

(∑j
∂
→
ri

∂qj
q̇j + ∂

→
ri

∂t ) = ∂
∂ql

→
vi

mi
→
vi ⋅ d

dt
( ∂

→
ri

∂ql
) = mi

→
vi ⋅ ∂

∂ql

→
vi = ∂

∂ql
( 1

2 miv
2
i ) = ∂

∂ql
Ti.

T = ∑N
i=1 Ti = 1

2
∑N

i=1 miv
2
i = T (qj, q̇j, t)

d
dt
( ∂T

∂q̇l
) − ∂

∂ql
T = Ql .

dW = ∑N
i=1

→
Fi ⋅ d

→
ri = ∑N

i=1 ∑
s
l=1

→
Fi ⋅ ∂

→
ri

∂ql
dql = ∑s

l=1 Qldql.



This suggests that the quantities Ql can be considered as generalized	forces. Since the
displacements dql were introduced in such a way that the constraints are ful�illed, coercive
forces cannot contribute, since they do only serve to comply with the mandatory conditions. This

implies that when calculating the Ql from the forces 
→
Fi (which additionally contain the

constraining forces) the coercive forces cancel out.

7.1.3	 Conservative	Forces
We consider the case, where a function U = U(qj) ≠ U(q̇j) exists such that

(7.17)

We then de�ine the Lagrange	function of the system by

(7.18)

and from (7.15) get the Lagrange	equation	of	the	second	kind

(7.19)

In analogy to Newton’s equations

(7.20)

de�ines generalized	momenta. Then (for T = T (q̇i))

(7.21)

achieves the form of a Newtonian equation of motion.

7.1.4	 Examples
1. Particles	without	constraints: In this case the generalized coordinates are ql = (x, y, z); we

form

(7.22)

and get

(7.23)

 

Ql = − ∂U
∂ql

.

L = T − U ,

d
dt
( ∂L

∂q̇l
) = ∂L

∂ql
.

pl = ∂L
∂q̇l

d
dt
pl = ṗl = ∂L

∂ql
= − ∂U

∂ql
= Ql

T = m
2 (ẋ2 + ẏ2 + ż2) ,

∂T
∂x = ∂T

∂y = ∂T
∂z = 0 ; ∂T

∂ẋ
= mẋ; ∂T

∂ẏ
= mẏ; ∂T

∂ż
= mż.



With

(7.24)

we obtain

(7.25)

etc. for y, z, which just gives Newton’s equations of motion.
2. Motion	of	a	particle	in	the	plane: For convenience we use polar coordinates (see Fig. 7.1), i.e.

(7.26)

Then we get for the velocities:

(7.27)

The kinetic energy amounts to:

(7.28)

and

(7.29)

(7.30)

For the forces we obtain

(7.31)

(7.32)

The Lagrange equations then are:

(7.33)

In the right equation, mr2φ̇ is the angular	momentum, whose temporal change is given by
the torque rFφ = Qφ, which plays the role of a generalized force. Special	case: For the �lat
pendulum (see Fig. 7.2) we have the constraint:

(7.34)

if l is the constant length of the pendulum. In this case T reduces to

(7.35)

The Lagrange equations with U(φ) = mgl(1− cos φ) simplify, too:

 

Qx = Fx

d
dt
( ∂T

∂ẋ
) = mẍ = Fx = Qx

x = r cos φ ; y = r sin φ .

ẋ = ṙ ∂x
∂r

+ φ̇ ∂x
∂φ

= ṙ cos φ − rφ̇ sin φ ; ẏ = ṙ sin φ + rφ̇ cos φ .

T = m
2 (ẋ2 + ẏ2) = m

2 (ṙ2 + r2φ̇2)

∂T
∂r

= mrφ̇2 ; ∂T
∂φ

= 0

∂T
∂ṙ

= mṙ ; ∂T
∂φ̇

= mr2φ̇.

Qr =
→
F ⋅ ∂

→
r

∂r =
→
F ⋅

→
r
r

=
→
F ⋅

→
er = Fr

Qφ =
→
F ⋅ ∂

→
r

∂φ = r
→
F ⋅

→
eφ = rFφ.

mr̈ − mrφ̇2 = Fr ; d
dt

(mr2φ̇) = rFφ .

r − l = 0 ,

T = ml2

2 φ̇2 ; ∂T
∂φ̇

= ml2φ̇.



(7.36)

(7.37)

For small de�lections we may approximate sin φ ≈ φ and thus get

(7.38)

3.
Atwood’s	machine
The constraint (see Fig. 7.3)

(7.39)

is identically ful�illed in the coordinate q = x. Then the kinetic energy is given by:

(7.40)

and the potential energy by

(7.41)

The Lagrangian is

(7.42)

and the Lagrange equation reads

(7.43)

We get:

(7.44)

 

4.
Pearl	on	a	rotating	wire
For (see Fig. 7.4)

(7.45)

the kinetic energy according to (7.28) is given by

(7.46)

The equations of motion for the force-free case L = T  are

(7.47)

with mrω2 as the well known centrifugal	force.

 

mlφ̈ = Fφ = −mg sin φ,

φ̈ + ω2
0 sin φ = 0 with ω2

0 = g
l
.

φ̈ + ω2
0φ = 0.

x1 + x2 = l = x + (l − x)

T = 1
2 (m1 + m2)ẋ2 ,

U = −m1gx − m2g(l − x).

L = m1+m2

2 ẋ2 + m1gx + m2g(l − x)

d
dt
( ∂L

∂ẋ
) = (m1 + m2)ẍ

(m1 + m2)ẍ = (m1 − m2)g.

x = r cos (ωt) ; y = r sin (ωt)

T = m
2 (ṙ2 + r2ω2).

mr̈ − mrω2 = 0



Fig.	7.1 The �lat pendulum of length l

Fig.	7.2 Illustration of Atwood’s machine with a rope of length l

Fig.	7.3 Pearl on a rotating wire



Fig.	7.4 Choice of coordinates for motions in a plane

7.1.5	 Velocity-Dependent	Forces
The Lagrange equations of second kind hold for velocity-dependent forces, if a function U(qi, q̇i, t)
exists such that:

(7.48)

An important example for such a velocity-dependent force is the Lorentz	force, which arises
from

(7.49)

for a particle of charge e with velocity →v (see electrodynamics). Here Φ(
→
r, t) is a scalar function

(related to the charge density) and A(
→
r, t) a vector �ield (related to the charge current density).

The force (in cartesian coordinates ql = (x, y, z)) is given by:

Fx = e(− grad Φ −
∂

→
A

∂t
+ (

→
v × rot

→
A))

x
,

Fy = e(− grad Φ −
∂

→
A

∂t
+ (

→
v × rot

→
A))

y
,

(7.50)

using

(7.51)

Important	note: For a gauge	transformation 

(7.52)

Ql = − ∂U
∂ql

+ d
dt
( ∂U

∂q̇l
).

U(
→
r,

→
v, t) = e(Φ(

→
r, t) −

→
v ⋅

→
A(

→
r, t))

Fz = e(− grad Φ − ∂
→
A

∂t
+ (

→
v × rot

→
A))

z
,

dAx

dt
= ∂Ax

∂x
vx + ∂Ax

∂y
vy + ∂Ax

∂z
vz + ∂Ax

∂t
.

→
A →

→
A + gradχ Φ → Φ − ∂χ

∂t
,



where the function χ = χ(
→
r, t) is arbitrary but continuously differentiable in all variables, the

potential transforms as

(7.53)

The equations of motion then do not change for a gauge transformation

(7.54)

with any twice continuously differentiable function g = g(ql, t). Due to

(7.55)

we have

(7.56)

such that the additional term (7.56) in the Lagrange equation

(7.57)

is cancelled again by the additional term in the partial derivative with respect to ql

(7.58)

since g = g(ql, t) was assumed to be twice continuously differentiable.

The invariance of the equations of motion for the transformation (7.52) implies that the
Lagrange function L itself is not uniquely determined.

We will exploit this property in �ield	theory to derive the Lorentz force itself from ‘simple
considerations’.

7.2	 Hamilton’s	Variational	Principle
7.2.1	 Variational	Principle	and	Euler’s	Equations
Let a system of N particles with m holonome constraints be described by generalized coordinates 
qi. The values of the coordinates at a �ixed time t then determine a point in the con�iguration
space with dimension s = 3N − m that is spanned by the coordinates qi. The temporal evolution
of the system corresponds to a trajectory	in	con�iguration	space with the time t as a parameter
of the trajectory.

U → U − e(→v ⋅ gradχ +
∂χ
∂t ) = U − e

dχ

dt
.

L → L′ = L +
dg

dt

dg
dt

= ∑j
∂g
∂qj

q̇j + ∂g
∂t

d
dt
( ∂

∂q̇l
( dg

dt
)) = d

dt
( ∂g

∂ql
) ,

d
dt
( ∂g

∂ql
)

∂
∂ql

( dg

dt
),



The actual trajectory—traversed by the system—is the solution of s Lagrange equations (7.19).
It is uniquely determined if—for �ixing the 2s integration constants—
1.

at a time t1 apart from the qi(t1) also the generalized velocities q̇i(t1) are known, or 
2.

the trajectory points qi(t1) and qi(t2) are given for different times t1 ≠ t2.  
In the latter case we can indeed characterize the actual trajectory relative to neighboring

trajectories, which also pass through the points qi(t1) and qi(t2), by the fact that the action

(7.59)

given by the time integral of the Lagrange function L(qi, q̇i, t), has an extremum for the actual
trajectory, i.e.

(7.60)

Fig.	7.5 Illustration of an actual trajectory and a neighboring trajectory, which pass through the same points at t1 and t2

In order to explain the variation principle (7.59) in more detail, we consider any neighboring
trajectory to the actual trajectory qi(t) (for small ε),

(7.61)

with the property that q ′
i(t) matches with the trajectory qi(t) at the times t1 and t2 (see Fig. 7.5),

i.e.

(7.62)

Then for

(7.63)

(after applying (7.60)) must hold:
(7.64)

S[qi, q̇i] = ∫ t2

t1
L(qi, q̇i, t) dt,

δS[qi, q̇i] = 0.

q ′
i(t) = qi(t) + εηi(t),

ηi(t1) = ηi(t2) = 0.

~
S(ε) = ∫ t2

t1
L(qi + εηi, q̇i + εη̇i, t) dt

( ∂
~
S

∂ε )
ε=0

= 0.



Explicitly this leads to:

(7.65)

By partial integration in time for the 2nd term

(7.66)

it follows, since the integrated term [...] vanishes according to the assumption (7.62), that (7.65)
becomes

(7.67)

Since the functions ηi(t) are linearly independent and arbitrary in the time interval t1 < t < t2,
the Euler	equations	of	the	variation	principle are identical to the Lagrange	equations

(7.68)

Note: The variation principle not only offers an elegant formulation, which is equivalent to the
equations of motion of classical non-relativistic mechanics, but can also be applied to other areas
of physics, such as elastic media, electrodynamics, and �ield theory of elementary particles.

7.2.2	 Canonical	Equations
For the transition from classical mechanics to quantum	mechanics and for statistical	mechanics
it will be useful to transform from the variables {qi, q̇i} to an equivalent set of variables {qi, pi}. In
the following we want to derive canonical	equations in the variables qi, pi which are equivalent
to those formulated in the variables qi, q̇i (7.68). Instead of the Lagrange function L = L(qi, q̇i, t) a
new function H = H(qi, pi, t), the Hamilton	function of the system, will be introduced.

The transition in the variables

(7.69)

as well as

(7.70)

is performed by a Legendre	transformation .
To explain the Legendre transformation, we �irst consider—as a simple example—a function

f(x, y) of the independent variables x, y. Then the total differential of f can be written as:

(7.71)

with

(7.72)

where v(x, y) and u(x, y) are connected via

∫ t2

t1
∑i{ ∂L

∂qi
ηi + ∂L

∂q̇i
η̇i}dt = 0.

∫ t2

t1

∂L
∂q̇i

η̇idt = [ ∂L
∂q̇i

ηi]
t2

t1

− ∫ t2

t1

d
dt
( ∂L

∂q̇i
)ηi dt

∫ t2

t1
∑i{ ∂L

∂qi
− d

dt
( ∂L

∂q̇i
)}ηi dt = 0.

d
dt
( ∂L

∂q̇i
) − ∂L

∂qi
= 0.

{qi, q̇i, t} → {qi, pi, t}

L(qi, q̇i, t) → H(qi, pi, t)

df = vdx + udy

v = ∂f
∂x

u = ∂f
∂y

,

2



(7.73)

if f is assumed to be twice continuously differentiable. Now in the transformation

(7.74)

the function

(7.75)

can be represented alone by the independent variables (x, u).
Proof: For the total differential of g, which according to (7.75) is a function of x, y, u at �irst

sight, we get:

(7.76)

i.e. the function g in fact depends only on x and u = ∂f/∂y and no longer on y (q.e.d.). After
comparing the coef�icients we �ind:

(7.77)

In analogy we now introduce the Hamilton	function H by:

(7.78)

Forming the total differential of H according to the de�inition (7.78),

(7.79)

we obtain with the de�inition of

(7.80)

for the total differential of H:

(7.81)

The comparison with

(7.82)

shows that (using the Lagrange equation):

(7.83)

and
(7.84)

∂v
∂y =

∂ 2f

∂y∂x = ∂u
∂x ,

{x, y} → {x,u},

uy − f(x, y) = g(x,u)

dg = udy + ydu − df = udy + ydu − vdx − udy = −vdx + ydu = ∂g
∂x
dx + ∂g

∂u
du,

v = −
∂g
∂x =

∂f
∂x ; y =

∂g
∂u .

H(qi, pi, t) = ∑s
i=1 q̇ipi − L(qi, q̇i, t).

dH = ∑s
i=1{q̇idpi + pidq̇i − ∂L

∂qi
dqi − ∂L

∂q̇i
dq̇i} − ∂L

∂t dt,

pi = ∂L
∂q̇i

dH = ∑s
i=1 q̇idpi − ∑s

i=1
∂L
∂qi

dqi − ∂L
∂t dt.

dH = ∑s
i=1

∂H
∂qi

dqi + ∑s
i=1

∂H
∂pi

dpi + ∂H
∂t dt

q̇i = ∂H
∂pi

; ṗi = − ∂H
∂qi

∂H
∂t = − ∂L

∂t .



The 2s differential equations of �irst order (7.83), which are denoted as canonical	differential
equations, replace the s differential equations of second order (7.68).

The system at time t is now represented by a point in phase	space  with the dimension 2s,
which is spanned by the independent variables (qi, pi). Contrary to the con�iguration space, where
there is an in�inite manifold of orbits at qi, that are distinguished by the generalized velocities q̇i,
there is only a single trajectory in phase space through each point (qi, pi) (in case of given forces),
since the values of qi and pi at a �ixed point in time uniquely determine the temporal evolution of
the system.

Note: The canonical equations (7.83) can also be derived from Hamilton’s variational principle,
i.e.:

(7.85)

Equation (7.85) is equivalent to (7.60), since (7.85) arises from (7.60) using (7.78). The
‘variations’ of qi and pi are considered to be independent from each other.

7.2.3	 Examples
(1.)

For the one-dimensional	harmonic	oscillator the Lagrangian reads

(7.86)

accordingly the Hamiltonian is:

(7.87)

with ω2
0 = D/m. The canonical differential equations then are given by:

(7.88)

and

(7.89)

or together (with ω2
0 = D/m):

(7.90)

 

(2.) For a particle	in	the	electromagnetic	�ield with charge e and velocity →v the Lagrangian is

(7.91)

with a scalar potential Φ and a vector potential 
→
A. The momentum components are:

(7.92)

 

∫ t2

t1
{∑i piq̇i − H(qi, pi, t)}dt = extremum

L = 1
2 mv2 − D

2 x2, p = ∂L
∂v = mq̇ = mv,

H = q̇p − L = 2T − T + U = T + U = 1
2m (p2 + ω2

0 m
2x2)

q̇i = ẋ = ∂H
∂p = p

m
= v

ṗ = − ∂H
∂x = −Dx,

ẍ + ω2
0x = 0.

L = T − eΦ + e
→
v ⋅

→
A

px = ∂L
∂vx

= mvx + eAx, py = ∂L
∂vy

= mvy + eAy, pz = ∂L
∂vz

= mvz + eAz



and with m→
v =

→
p − e

→
A we get

H =
→̇
r ⋅

→
p − L =

→
v ⋅

→
p − T + eΦ − e

→
v ⋅

→
A

=
→
v ⋅ (m

→
v + e

→
A) − T + eΦ − e

→
v ⋅

→
A

(7.93)

The canonical differential equations e.g. for the components in x direction read:

(7.94)

(7.95)

In summary:

(7.96)

or

(7.97)

(3.) Rotating	coordinate	systems
The relationship between two coordinate systems rotating around the z-axis with relative
angular velocity →ω = (0, 0,ω) = ω

→
ez is:

x = x′ cos ωt − y′ sin ωt

y = x′ sin ωt + y′ cos ωt

(7.98)

For the time derivatives we get:

ẋ = ẋ′ cos ωt − x′ω sin ωt − ẏ′ sin ωt − y′ω cos ωt

ẏ = ẋ′ sin ωt + x′ω cos ωt + ẏ′ cos ωt − y′ω sin ωt

(7.99)

This leads to the kinetic energy:
(7.100)

 

= mv2 − T + eΦ = T + eΦ = 1
2m (→

p − e
→
A)

2

+ eΦ.

ẋ = ∂H
∂px

= 2mvx
2m = vx = 1

m
(px − eAx)

ṗx = − ∂H
∂x = −e ∂Φ

∂x + e
m
(→
p − e

→
A) ⋅ ∂

→
A

∂x .

mẍ = −e ∂Φ
∂x + e

m
(
→
p − e

→
A) ⋅ ∂

→
A

∂x − e
dAx

dt
,

mẍ = −e( ∂Φ
∂x + ∂Ax

∂t ) + e(→
v × (

→
∇ ×

→
A))

x

.

z = z′.

ż = ż′.

T = 1
2 m(ẋ2 + ẏ2 + ż2) = m

2 (ẋ′2 + ẏ′2 + ż′2) + mω(x′ẏ′ − ẋ′y′) + mω2

2 (x′2 + y′2).



For velocity-independent potentials U(x, y, z) the momentum components then read:

(7.101)

(7.102)

(7.103)

This results in the Hamilton function in the momenta p′
x, p′

y, p
′
z and coordinates x′, y′, z′:

(7.104)

The canonical equations are:

(7.105)

(7.106)

(7.107)

As in the 2nd example, →v′ is not simply proportional to →p′. The time derivatives of the
momentum components read:

(7.108)

(7.109)

(7.110)

The combination of the equations above gives the well-known equations of motion:

(7.111)

(7.112)

(7.113)

in which by default Coriolis and centripetal	acceleration appear. For the explicit proof one
uses →ω = ω

→
ez and evaluates the Coriolis acceleration 2→ω ×

→
v′ as well as the centripetal

2 ( y ) 2 ( y ) ( y y ) 2 ( y )

p′
x = ∂L

∂ẋ′ = ∂T
∂ẋ′ = m(ẋ′ − ωy′)

p′
y = ∂L

∂ẏ′ = ∂T
∂ẏ′ = m(ẏ′ + ωx′)

p′
z = ∂L

∂ż′ = ∂T
∂ż′ = mż′.

H =
→
p′ ⋅

→
v′ − T + U = 1

2m (p′2
x + p′2

y + p′2
z) + ω(p′

xy
′ − p′

yx
′) + U .

ẋ′ = ∂H
∂p′

x
=

p′
x

m
+ ωy′ = v′

x

ẏ′ = ∂H
∂p′

y
=

p′
y

m
− ωx′ = v′

y

ż′ = ∂H
∂p′

z
=

p′
z

m
= v′

z.

ṗ′
x = − ∂H

∂x′ = − ∂U
∂x′ + ωp′

y

ṗ′
y = − ∂H

∂y′ = − ∂U
∂y′ − ωp′

x

ṗ′
z = − ∂H

∂z′ = − ∂U
∂z′ .

ẍ′ − 2ωẏ′ − ω2x′ =
Fx′

m

ÿ′ + 2ωẋ′ − ω2y′ =
Fy′

m

z̈′ =
Fz′

m



acceleration →ω × (
→
ω ×

→
r′) for each component.

Note: Examples 2 and 3 show that the canonical momentum, e.g. px = ∂L/∂vx, has to be
distinguished from the mechanical momentum mvx.

7.3	 Symmetry	and	Conservation	Laws
7.3.1	 Cyclic	Variables
If the Lagrangian function L(qi, q̇i, t) does not depend on the generalized coordinate qC , i.e.

(7.114)

the associated Lagrange equation gives

(7.115)

The generalized momentum pC  is therefore a constant of motion,

(7.116)

Generalized coordinates with the property (7.114) are denoted as cyclic	variables.
Example: For a particle in a central �ield the lagrangian reads in spherical coordinates (r,ϑ,φ)

:

(7.117)

and is independent of the angle φ, which is a cyclic variable. The associated generalized
momentum thus is a conserved quantity,

(7.118)

7.3.2	 Translation	Invariance	and	Momentum	Conservation
Due to the homogeneity of space the Lagrangian function of a closed system must be invariant with
respect to translations, i.e.

(7.119)

where →a is an arbitrary vector and the same for all particle displacement vectors. Since the
translations form a continuous group it is suf�icient to consider small shifts for which (by Taylor
expansion) follows:

(7.120)

∂L
∂qC

= 0,

d
dt
( ∂L

∂q̇C
) = 0.

pC = ∂L
∂q̇C

= const.

L = m
2 (ṙ2 + r2ϑ2 + r2 sin2 ϑ φ̇2) − U(r),

pφ = ∂L
∂φ̇

= mr2 sin2 ϑ φ̇ = lz = const.

L(
→
ri,

→
vi, t) = L(

→
ri +

→
a,

→
vi, t);

∑i(
∂L
∂xi

ax + ∂L
∂yi

ay + ∂L
∂zi

az) = ∑i
∂L

∂
→
ri

⋅
→
a = 0,



i.e.

(7.121)

since →a was arbitrary. From the Lagrange equations of motion we get:

(7.122)

thus

(7.123)

which corresponds to the conservation	of	momentum.

7.3.3	 Rotational	Invariance	and	Angular	Momentum	Conservation
Due to the isotropy of space we must have—in case of a closed system—for suf�iciently small
angles φ:

(7.124)

The vectors →ri, 
→
vi here are rotated by an angle φ around an arbitrary axis given by the unit vector →u

. In analogy to the considerations in case of translation invariance, it follows by Taylor expansion:

(7.125)

or with the Langrange equations:

(7.126)

With the cyclic invariance of the product, →a ⋅ (
→
b ×

→
c) =

→
b ⋅ (

→
c ×

→
a) =

→
c ⋅ (

→
a ×

→
b), and the product

rule equation (7.126) simpli�ies to

(7.127)

Since the unit vector →u can be chosen arbitrarily, we get

(7.128)

i.e. the	angular	momentum	conservation.

∑i
∂L

∂
→
ri

= 0,

d
dt
(∑i

∂L

∂
→
ṙi

) = d
dt
(∑i

→
pi) = 0,

→
P = ∑N

i=1
→
pi = const,

L(
→
ri,

→
vi, t) = L(

→
ri + φ(

→
u ×

→
ri),

→
vi + φ(

→
u ×

→
vi), t).

∑
i

∂L

∂
→
ri

⋅ (
→
u ×

→
ri) + ∑

i
∂L

∂
→
vi

⋅ (
→
u ×

→
vi) = 0,

∑i
→̇
pi ⋅ (

→
u ×

→
ri) + ∑i

→
pi ⋅ (

→
u ×

→
vi) = 0.

d
dt
(∑i(

→
ri ×

→
pi) ⋅

→
u) = ∑i((

→
vi ×

→
pi) ⋅

→
u + (

→
ri ×

→
ṗi) ⋅

→
u) = 0.

→
L = ∑N

i=1

→
li = ∑i(

→
ri ×

→
pi) = const,



7.3.4	 Time–Translation	and	Energy	Conservation
The homogeneity of time allows us to set the time zero point arbitrarily. For a closed system the
Lagrange function is invariant with respect to the transformation

(7.129)

for any τ , i.e.

(7.130)

Using the Lagrange equations we get:

(7.131)

accordingly

(7.132)

and thus

(7.133)

The Hamilton	function H of the system is therefore a conserved	quantity. It is identical to the
energy E of the system, if conservative forces and scleronome constraints exist. We then have:

(7.134)

if U is the potential energy of the system, and

(7.135)

such that

(7.136)

or

(7.137)

The special role of the Hamilton function H is also re�lected in the canonical differential
equations (7.83): the change of H with respect to a momentum pi determines the time evolution of
the associated coordinate qi and vice versa.

For the proof of (7.135) we use the fact that for conservative forces the potential U does not
depend on q̇j such that

(7.138)

t → t + τ

∂L
∂t = 0.

dL
dt

= ∑j(
∂L
∂qj

q̇j + ∂L
∂q̇j

q̈j) = ∑j(
d
dt
( ∂L

∂q̇j
)q̇j + ∂L

∂q̇j
q̈j) = d

dt
(∑j

∂L
∂q̇j

q̇j);

d
dt
(L − ∑j

∂L
∂q̇j

q̇j) = − d
dt
H = 0

∑j
∂L
∂q̇j

q̇j − L = ∑j pjq̇j − L = H = const.

L = T − U ,

∑j
∂L
∂q̇j

q̇j = 2T ,

T − U − 2T = −H

H = T + U = E.



For scleronome conditions we have

(7.139)

and thus

(7.140)

where ∂→ri/∂qj is a function of the generalized coordinates ql alone. The kinetic energy is therefore
a quadratic form in the velocities q̇j:

(7.141)

in which the coef�icients ajl only depend on the coordinates ql. Then

(7.142)

if one accounts for the symmetry of the coef�icients ajl = alj. With (7.142) the proof completes:

(7.143)

In summarizing this chapter we have de�ined generalized coordinates, that ful�ill the constraints
imposed on the system and also reduce the complexity of the problem by reducing the number of
(linear independent) degrees of freedom. The equations of motion in generalized coordinates then
have been derived from Newton’s equations of motion. It is found that these equations can also be
generated by a variational principle, which speci�ies a Lagrange function L, which is given by the
difference between the kinetic and potential energy in case of conservative forces. Generalized
momenta have been de�ined by the derivative of the Lagrange function with respect to the
generalized velocities. Accordingly, if the Lagrange function does not depend on a speci�ic
coordinate, e.g. the azimuthal angle φ, the corresponding generalized momentum (here angular
momentum) is a constant of motion. This suggested to transform the formulation to phase-space
variables given by coordinates and their associated momenta, which was carried out by a Legendre
transformation de�ining the Hamilton function H. In case of conservative forces the latter just gives
the energy of the system in phase-space variables. The variational principle then can be
reformulated in terms of Hamilton’s (equivalent) variational principle, which gives the canonical
equations of motion. The latter have been illustrated for a couple of examples. Furthermore, it was
shown again that—for a closed system—the translational invariance leads to the conservation of
the total momentum, the rotational invariance to the conservation of total angular momentum, and
the invariance with respect to time translations to the conservation of the total energy.

∂L
∂q̇j

= ∂T
∂q̇j

.

→
ri =

→
ri(q1, . . , qs)

→
vi = ∑j

∂
→
ri

∂qj
q̇j,

T = 1
2 ∑imiv

2
i = ∑j,l ajl q̇jq̇l,

∂T
∂q̇r

= ∑l arl q̇l + ∑j ajr q̇j = 2∑l arl q̇l,

∑r
∂L
∂q̇r

q̇r = ∑r
∂T
∂q̇r

q̇r = 2∑r,l arl q̇rq̇l = 2T .
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Applications of the Lagrange formalism will be given in this chapter for the motion of rigid
bodies, which leads to the de�inition of an inertial tensor. The eigenvectors and eigenvalues
of this tensor de�ine the main axes of inertia and main moments of inertia, respectively. From
the Lagrange function for the rigid body we will derive Euler’s equation of motion, which will
be studied for the case of a symmetric heavy gyroscope.

8.1	 Motions	of	Rigid	Bodies
As an explicit application of the Lagrange formalism we want to calculate the dynamics of a
rigid	body. A rigid body is a solid body whose mass elements form a solid and have a
constant distance to each other such that they do not deform. Rigid bodies are also de�ined
by the fact that only translations and rotations can be carried out. To describe rigid bodies
we introduce two coordinate systems: an inertial system xI , yI , zI  (Fig. 8.1) and a body-�ixed
coordinate system x, y, z, which is �irmly attached to the moving body (Fig. 8.2).

The motion of a rigid body consists of (i) a translation, in which the angular position of
the body does not change and all mass points have the same velocity, and (ii) a rotation
around a freely selectable coordinate origin O (Euler theorem). Since translations can be
described by three coordinates and rotations by the axis of rotation and the size of the
rotation angle, a freely moving rigid body has six	degrees	of	freedom.

Since every motion of a rigid body consists of a translation and a rotation of the body-
�ixed coordinate system by O the velocity vI  of a point P—�ixed to the body in the inertial
system—is given by

Fig.	8.1 Inertial system with axes xI , yI , zI

https://doi.org/10.1007/978-3-031-95512-9_8


Fig.	8.2 Body-�ixed coordinate system with axes x, y, z

(8.1)

where
→
v0 = the velocity of the coordinate origin O in the inertial system
→
ω = the angular velocity of the rigid body in the inertial system
→
r = OP = the position vector of P in the rigid body coordinate system.

8.2	 Kinetic	Energy	and	Inertia	Tensor
We assume that the rigid body consists of n mass points ma. The kinetic energy then is:

(8.2)

(8.3)

(8.4)

with the total mass

(8.5)

The �irst term is the translation energy Ttrans, the third term the rotational energy Trot and
the middle term is an energy TW , which is determined by translation and rotation both. If

→
vI =→

v0 +→
ω ×→

r

T = ∑n
a=1

ma

2
v2
Ia

= ∑n
a=1

ma

2
[→v0 + (→ω ×→

ra)]
2

= ∑n
a=1

ma

2 (v2
0 +

→
v0 ⋅ (

→
ω ×

→
ra) + ([

→
ω ×

→
ra)

2
)

= M
2
v2

0

Ttrans

+ (→v0 ×→
ω) ⋅ ∑n

a=1 ma
→
ra

TW

+ ∑n
a=1

ma

2
(→ω ×→

ra)
2

Trot

���� ������ ������

M := ∑n
a=1 ma.



the rigid body is free, the coordinate origin O is best placed in the center of mass 
→
S. Then 

∑ama
→
ra = 0 and the energy TW  disappears, i.e.:

(8.6)

The kinetic energy in this case is the sum of the kinetic translational energy of the mass M
(located in the center of mass) and the rotational energy from the rotation around the center
of mass.

If the rigid body is �ixed in at least one point, the origin O of the body-�ixed coordinate
system is placed in one of these points and since →v0 = 0 we get:

(8.7)

The kinetic energy is equal to the rotational energy arising from the rotation around the
�ixed point.

We now recalculate the rotation	energy within the body-�ixed components ωi and xai—
with i = 1, 2, 3—of the vectors →ω and →ra. With the notation

(8.8)

and the identity

(8.9)

we obtain:

(8.10)

with the Kronecker	symbol

(8.11)

In (8.10) the parameters (masses and positions) can now be derived from the projections
of the angular velocity →ω on the body-�ixed axes. To this aim we de�ine the inertia	tensor by

(8.12)

T = Ttrans + Trot.

T = Trot.

→
ra = (xa, ya, za) := (xa1,xa2,xa3) a = 1, …n.

(→a ×
→
b)

2

= a2b2 − (→a ⋅
→
b)

2

= ∑3
i,j=1(aiaibjbj − aibiajbj)

Trot = ∑n
a=1

ma

2 (
→
ω ×

→
ra)

2
= ∑n

a=1
ma

2
∑3

i,j=1[ωiωixajxaj − ωixaiωjxaj]

= 1
2 ∑

n
a=1 ma∑

3
i,j=1 ωiωj[∑3

k=1 xakxakδij − xaixaj]

δij := { .
1 for i = j

0 for i ≠ j

Iij := ∑n
a=1 ma[∑3

k=1 xakxakδij − xaixaj]



and obtain

(8.13)

It should be emphasized that the components ωi are the body-�ixed components of the
angular velocity, i.e. the projections of →ω on the body �ixed axes x, y, z = x1,x2,x3.

Note:
If the rigid body only rotates around one of its body-�ixed axes, i.e. only a single component
of →ω is different from zero, or if Iij = Iδij holds, the above equation gives the more
familiar result

(8.14)

If the rigid body forms a continuous mass distribution we de�ine the inertia tensor by

(8.15)

with the mass density ρ(x1,x2,x3). To clarify, we present the inertia tensor Iij (8.12)
also in matrix notation:

(8.16)

for n discrete masses ma. In the case of a continuous mass density ρ(x1,x2,x3) we get
with (8.15):

(8.17)

The diagonal elements of the inertia tensor are denoted by moments	of	inertia, the off-
diagonal elements by deviation	moments.

The inertia tensor by de�inition is symmetric (8.12):
(8.18)

Trot = 1
2 ∑

3
i,j=1 Iij ωiωj.

T = 1
2 Iω

2.

Iij := ∫ ρ(x1,x2,x3)[∑3
k=1 xkxkδij − xixj]dx1dx2dx3

I = ∑n
a=1 ma

⎛⎜⎝y2
a + z2

a −xaya −xaza

−yaxa x2
a + z2

a −yaza

−zaxa −zaya x2
a + y2

a

⎞⎟⎠I = ∫ ρ(x1,x2,x3) dx1dx2dx3.
⎛⎜⎝x2

2 + x2
3 −x1x2 −x1x3

−x2x1 x2
1 + x2

3 −x2x3

−x3x1 −x3x2 x2
1 + x2

2

⎞⎟⎠Iij = Iji



and therefore, by introducing a new rotated coordinate system, can always be transformed to
diagonal form. The corresponding axes will be denoted by main	axes	of	inertia
(eigenvectors), the diagonal elements Iii =: λi by main	moments	of	inertia (eigenvalues).

The determination of the main axes of inertia, that pass through the center of mass, is
simple for symmetrical bodies: one main axis of inertia coincides with the axis of symmetry;
the other two main axes of inertia are orthogonal to it, but can be chosen arbitrarily. The
rotational energy for the main axes of inertia is:

(8.19)

Def.: A rigid body is called
1.

rotator, if it is one-dimensional and its mass points only lie on an axis, e.g. the z axis,
such that λ1 = λ2; λ3 = 0,

 
2.

asymmetric, if all three main moments of inertia are different,  
3.

symmetric, if two main moments of inertia are equal,  
4.

spherical	top if λ1 = λ2 = λ3.
Tops are not necessarily balls. For example, cubes are spherical tops and cylinders of

height h = √3r, where r is the radius of the cylinder.

 

8.3	 Angular	Momentum
We assume again that the rigid body consists of n mass points ma. The total angular

momentum 
→
Ltot in the inertial frame then is

(8.20)

We denote the position vectors in the body-�ixed coordinate system by →ra, set

(8.21)

(8.22)

and get:

(8.23)

Trot = 1
2

(λ1ω
2
1 + λ2ω

2
2 + λ3ω

2
3).

→
Ltot = ∑n

a=1 ma(
→
rIa ×

→
via).

→
rIa =

→
r0 +

→
ra,

→
vIa =

→
v0 +

→
ω ×

→
ra

→
Ltot = M(

→
r0 ×

→
v0) +

→
r0 × [→ω × (∑n

a=1 ma
→
ra)]

+(∑n
a=1 ma

→
ra) ×

→
v0 + ∑n

a=1 ma(
→
ra × (

→
ω ×

→
ra)).



Free	system:
If the rigid body is not held �ixed at any point, we place the coordinate origin O back to

the center of mass 
→
S ⇒→

r0 =
→
rS  and →v0 =

→
vS . Furthermore, from ∑ama

→
ra = 0 we obtain in

the transformed system:

(8.24)

The total angular momentum 
→
Ltot is the sum of the term M(

→
rS ×

→
vS), which is the orbital

angular	momentum of the center of mass motion with respect to the origin OI , and the

intrinsic	angular	momentum 
→
L for the rotation around the centroid 

→
S.

Fixed	system:
If the rigid body is �ixed in at least one point, we place the coordinate origin OI  of the

inertial system and the coordinate origin O of the body-�ixed system in one of these �ixed
points and obtain due to →r0 =

→
v0 = 0:

(8.25)

For rotations about a �ixed point the total angular momentum 
→
Ltot is equal to the intrinsic

angular momentum 
→
L, if both coordinate origins OI  and O are located in this point. With

(8.26)

the body-�ixed components of the intrinsic angular momentum 
→
L get the form

(8.27)

Using the main axes of inertia as body-�ixed coordinate axes the body-�ixed components

of the intrinsic angular momentum 
→
L become:

(8.28)

Accordingly, the intrinsic angular momentum 
→
L of a rigid body is generally not parallel to

the angular velocity →ω. Only when rotating around a main axis of inertia the angular

momentum 
→
L and →ω have the same direction! The different directions of 

→
L and →ω are one of

the reasons for the mathematical dif�iculty in the description of rigid bodies.

→
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vS + ∑n

a=1 ma
→
ra × (

→
ω ×

→
ra)

→
L

=: M(
→
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→
vS) +

→
L .

������

→
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a=1 ma(
→
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→
ω ×

→
ra)) =:

→
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→
r × (

→
ω ×

→
r) =

→
ω(

→
r ⋅

→
r) −

→
r(

→
r ⋅

→
ω)

Li = ∑3
j=1(∑

n
a=1 ma[∑3

k=1 xakxakδij − xaixaj])ωj = ∑3
j=1 Iij ωj i = 1, 2, 3.

L1 = λ1ω1, L2 = λ2ω2, L3 = λ3ω3.



8.4	 Euler’s	Equations
We now have to take a closer look at the angular momentum law. In general the inertia
tensor is only constant in the body-�ixed coordinate system, such that it is necessary for the

equation of motion, i.e. primarily the time derivative of the angular momentum 
→
LS , to move

back to the inertial system:

(8.29)

where ωj =
→
ej ⋅

→
ω are the body-�ixed coordinates of →ω and →ei are the basis vectors of the

body-�ixed coordinate system. With

(8.30)

we get:

(8.31)

The �irst term is the time derivative of the angular momentum for an observer in the
body-�ixed system and therefore the basis vectors →ei for him look constant. We denote this

body-�ixed	derivative by dk
→
Ls/dt and get

(8.32)

where the vectors 
→
LS,

→
ω,

→
NS  are expanded in the body-�ixed basis and 

→
NS  denotes an

external torque.
If the body-�ixed axes are main axes of inertia, we �ind with Li = λiωi by multiplying

(8.31) or (8.32) by the basis vectors →ek,

(8.33)

for k = 1, 2, 3 the coupled nonlinear Euler	equations

λ1ω̇1 − (λ2 − λ3)ω2ω3 = N1

λ2ω̇2 − (λ3 − λ1)ω3ω1 = N2

(8.34)

→̇
LS = d

dt
[∑n

a=1 ma
→
ra × (

→
ω ×

→
ra)] = d

dt
[∑i,j Iijωj
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→
ėi =→

ω ×→
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d
dt

→
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→̇
LS = ∑3

i,j=1 Iijω̇j
→
ei +→

ω × ∑3
i,j=1 Iijωj

→
ei.

d
dt

→
LS =

→̇
LS = dk

dt

→
LS +→

ω ×
→
LS =

→
NS,

→
ek ⋅ d

dt

→
LS =

→
ek ⋅ (∑i λiω̇i

→
ei) +

→
ek ⋅ (→ω × ∑i λiωi

→
ei) =

→
ek ⋅

→
NS = Nk

λ3ω̇3 − (λ1 − λ2)ω1ω2 = N3.



Here ωi and Ni are the projections of →ω and 
→
N  on to the body-�ixed coordinate axes →ei,

which must be the main axes of inertia.
As an example for the Euler equations (8.35) we examine the force-free,	symmetrical

gyroscope, i.e. 
→
NS = 0 and λ1 = λ2. The Eqs. (8.34) then simplify to

λ1ω̇1 − (λ1 − λ3)ω2ω3 = 0

λ1ω̇2 − (λ3 − λ1)ω3ω1 = 0

(8.35)

From (8.34) it follows that ω3 = const. and accordingly

(8.36)

As a result we get a linear coupled system in the variables ω1,ω2, i.e. with (8.36)

(8.37)

We form another time derivative of the �irst equation, insert the 2nd equation and get

(8.38)

The solution of (8.38) is

(8.39)

with a phase α to be determined by the initial conditions. We obtain the solution for ω2(t) by
integration of the 2nd equation in (8.37) using (8.39):

(8.40)

such that with ω2
1(t) + ω2

2(t) = A2 the magnitude of →ω is constant. The free symmetrical top
rotates with the frequency Ω around the �igure axis.

8.5	 The	Euler	Angles
Euler’s equations only determine the projections of the angular velocity →ω(t) ⋅

→
ei = ωi(t). We

now introduce Euler angles, which determine the angular position, i.e. the orientation of the
body-�ixed coordinate system (and thus of the body) in the inertial system, very clearly.

The transition from the inertial system ΣI  to the rotated rigid system Σ is carried out by
three rotations, as shown in Fig. 8.3, in the following order:

λ3ω̇3 = 0.

Ω = λ3−λ1

λ1
ω3 = const.

ω̇1 + Ωω2 = 0, ω̇2 − Ωω1 = 0.

ω̈1 + Ω2ω1 = 0.

ω1(t) = A cos (Ωt + α)

ω2(t) = A sin (Ωt + α),



Fig.	8.3 Euler angles and rotations (see text)

1.
rotation	by φ around	the zI -axis. The x-axis goes over to the dotted ’nodal line’ 0N  and
a new coordinate system (x̂, ŷ, ẑ) emerges.

 
2.

rotation	by ϑ around	the	nodal	line 0N . The inertial zI  axis and the body-�ixed z-axis
then have the angle ϑ.

 
3.

rotation	by ψ around	the	z-axis. We get the body rigid coordinate system (x, y, z).  
The Euler angles determine the orientation of the body-�ixed coordinate system and thus

also the rigid body relative to the inertial system: According to Fig. 8.3 the angles φ and ϑ
give the position of the body-�ixed z-axis in the inertial system. The angle ψ describes the
rotation around the z-axis.

The angular velocity →ω is now written as the sum of the three Euler angular velocities 
→
ωφ,

→
ωϑ,

→
ωψ as:

(8.41)

We project these three angular velocities onto the rigid body coordinate system in order to
obtain the components ω1,ω2,ω3.

1. →
ωφ in the inertial system has the components

(8.42)

and in the body-�ixed system:
(8.43)

 

→
ω =

→
ωφ +

→
ωϑ +

→
ωψ.

→
ωφI = ,

⎛⎜⎝ 0

0

φ̇

⎞⎟⎠



2. →
ωϑ in the coordinate system (x̂, ŷ, ẑ) has the form

(8.44)

such that in the body-�ixed coordinate system we have:

(8.45)

 

3.
For the angular velocity →ωψ we get:

(8.46)

 

The body-�ixed components of →ω we obtain by adding the components:

(8.47)

8.6	 Lagrange	Equations	of	the	Rigid	Body
With the preparatory work done the Lagrange function is set up easily. For a symmetric
system with λ1 = λ2, whose body-�ixed coordinate system coincides with the main axes of
inertia, we get:

(8.48)

Example: Heavy	gyroscope
A popular example for the application of the Lagrangian formalism is the symmetric top

in the homogeneous gravity �ield, in which a point different from the center of mass on the
axis of symmetry is �ixed. Such a top is denoted by heavy	gyroscope.

→
ωφ = φ̇ .

⎛⎜⎝ sin ψ sin ϑ

cos ψ sin ϑ

cos ϑ

⎞⎟⎠→
ω̂ϑ = ,

⎛⎜⎝ ϑ̇

0

0

⎞⎟⎠→
ωϑ = ϑ̇ .

⎛⎜⎝ cos ψ

− sin ψ

0

⎞⎟⎠→
ωψ = .

⎛⎜⎝ 0

0

ψ̇

⎞⎟⎠→
ω = = + .

⎛⎜⎝ω1

ω2

ω3

⎞⎟⎠ ⎛⎜⎝ φ̇ sin ϑ sin ψ

φ̇ sin ϑ cos ψ

φ̇ cos ϑ

⎞⎟⎠ ⎛⎜⎝ cos ψ ϑ̇

− sin ψ ϑ̇ψ̇

0

⎞⎟⎠Trot = 1
2 ∑i,j Iijωiωj = 1

2 ∑i λiω
2
i = λ1

2 (φ̇2 sin2 ϑ + ϑ̇2) + λ3

2 (φ̇ cos ϑ + ψ̇)
2
.



Fig.	8.4 Rotation of a heavy gyroscope (see text)

The zero points of the spatial and body-�ixed coordinate systems are shown in Fig. 8.4 as
well as the support point of the gyroscope. With the potential energy U = mgl cos ϑ it’s
Lagrangian function according to (8.48) is:

(8.49)

Here λ1 = λ2,λ3 are the main moments of inertia for rotations around the support
point, m is the mass of the top and l is the distance of the center of mass from the support
point.

It follows that the angles φ,ψ, which represent the rotations about the zI– and the z-axis,
are cyclic and their momenta are conserved quantities:

(8.50)

pφ is the space-�ixed zI  component of the angular momentum 
→
L and

(8.51)

L = T − U = λ1

2 (φ̇2 sin2 ϑ + ϑ̇2) + λ3

2 (φ̇ cos ϑ + ψ̇)
2

− mgl cos ϑ.

pφ = ∂L
∂φ̇

= λ1 sin2 ϑφ̇ + λ3(φ̇ cos ϑ + ψ̇) cos ϑ = const.

pψ = ∂L

∂ψ̇
= λ3(φ̇ cos ϑ + ψ̇) = λ3ω3 = const.



In the general case of a non-symmetric gyroscope with λ1 ≠ λ2 ≠ λ3 we get the
Lagrangian function L by substituting (8.47) into (8.48), which leads to somewhat more
lengthy expressions, since L then consists of the angles ϑ,ψ and the time derivatives φ̇, ϑ̇, ψ̇
explicitly, only the variable φ is cyclic, if the potential does not depend on φ, i.e. U ≠ U(φ).
The Lagrange equations of motion are modi�ied correspondingly and their solutions become
more subtle.

In summarizing this chapter we have given applications of the Lagrange formalism for
the motion of rigid bodies, which lead to the de�inition of an inertial tensor. The eigenvectors
and eigenvalues of this tensor de�ine the main axes of inertia and main moments of inertia,
respectively. From the Lagrange function for the rigid body we have derived Euler’s equation
of motion and solved these for the case of a symmetric heavy gyroscope.
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9.	Dynamics	in	Phase	Space
Wolfgang Cassing1  
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Although the Lagrange formalism is a convenient method to tackle complex problems,
it is of advantage to formulate the dynamics in phase-space variables, i.e. in generalized
coordinates and generalized momenta. In this case the time evolution of an observable,
that not explicitly depends on time, is given by Poisson	brackets which are
determined by the derivative of the observable and the Hamiltonian with respect to the
phase-space variables. The elementary Poisson bracket between generalized
coordinates and generalized momenta will turn out to be unity for associated pairs and
their time evolution is given by the Poisson bracket with the Hamilton function, i.e. by
the canonical equations of motion. The Poisson brackets thus allow for an algebraic
formulation of the dynamics. However, the choice of generalized coordinates is not
unique and invertible transformations between the coordinates are allowed, too. But
not all transformations are meaningful, since some transformations may lead to
equations of motion that are no longer canonical. Allowed transformations then will be
given by point transformations and extended canonical transformations, that keep the
equations of motion canonical	invariant. Furthermore, the elementary	Poisson
brackets will be shown to be invariant with respect to canonical transformations such
that a formulation of classical mechanics is achieved, which is independent on the
choice of the generalized coordinates. This will pave the way to quantum mechanics,
where the Poisson brackets will be replaced by commutators of operators in an
abstract Hilbert space. This also will lead to a rigid formulation of statistical mechanics,
where the physical system—in equilibrium—is described by ensembles with
properties, that are de�ined by expectation values of conserved quantities and their
�luctuations.

9.1	 Temporal	Change	of	an	Observable
We here attempt to ‘directly’ determine the temporal change of an observable

(9.1)

of the system under consideration, such as the energy, the momentum, the magnetic
moment in an external �ield etc. We do this by writing the total time-derivative of O as

O = O(qi, pi;t)

( )
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(9.2)

and use the canonical equations:

(9.3)

Equation (9.3) can also be written in terms of Poisson	brackets de�ined by:

(9.4)

This leads to the shorthand form:

(9.5)

Special	cases:
(i)

O = H , then (9.5) reads

(9.6)

if H does not explicitly depend on time t, i.e. for a closed system H is constant.

 

(ii)
Canonical	equations  

For O = qi we get:

(9.7)

since

(9.8)

For O = pi we obtain:

(9.9)

dO
dt

= ∑s
i=1( ∂O

∂qi
q̇i + ∂O

∂pi
ṗi)+ ∂O

∂t

dO
dt

= ∑s
i=1( ∂O

∂qi
∂H
dpi

− ∂O
∂pi

∂H
dqi
)+ ∂O

∂t
.

{u, v} = ∑s
i=1( ∂u

∂qi
∂v
dpi

− ∂u
∂pi

∂v
dqi
).

dF
dt

= {F ,H} + ∂F
∂t

.

dH
dt

= ∂H
∂t

= 0,

q̇i = {qi,H} = ∂H
∂pi

,

∂qi
∂qj

= δij; ∂qi
∂pj

= 0.

ṗi = {pi,H} = − ∂H
∂qi

,



due to

(9.10)

9.2	 Properties	of	Poisson	Brackets
The Poisson brackets de�ined in (9.4) are important not only in context with the time
evolution of an observable, they also allow to formulate classical mechanics in a form
where the connection with quantum mechanics can be clearly demonstrated. We
therefore give a series of important rules below which simplify the calculation of
Poisson brackets:

(i) antisymmetry

(9.11)

(ii)
linearity

(9.12)

 

(iii)
product	rule

(9.13)

 

(iv)
Jacobi	identity

(9.14)

 

The proofs for (9.11)–(9.14) follow directly from the de�inition (9.4) and the
standard rules of differentiation.

Examples:
(1.)

Canonical	conjugate	variable qi, pi are distinguished because 

(9.15)

(2.)
Angular	momentum: The following holds for the components of the angular
momentum:

 

∂pi
∂pj

= δij; ∂pi
∂qj

= 0.

{u, v} = −{v,u}

{u, v + w} = {u, v} + {u,w}

{u, vw} = v{u,w} + {u, v}w

{u, {v,w}} + {v, {w,u}} + {w, {u, v}} = 0.

{qi, qj} = 0; {pi, pj} = 0; {qi, pj} = δij.



(9.16)

as can be easily proven using (9.15). The quantum mechanical analogue of (9.16) is
the basis for the quantization of angular momentum!
(3.)

Conserved	quantities: If an observable G is not explicitly dependent on time t,
we have

(9.17)

and thus G= const., if {G,H} = 0. The importance of Poisson brackets is, that
they provide an algebraic formulation for the dynamics of physical systems and
allow for a formal ’introduction’ to quantum mechanics, in which the conjugate
variables (ql, pl) are replaced by operators in an abstract Hilbert	space (see
quantum mechanics).

 

(4.) The	harmonic	oscillator:
A completely algebraic solution is possible e.g. for the harmonic oscillator, i.e.

for the Hamilton function

(9.18)

With (9.7) we get q̇ using (9.15):

q̇ = {q,H} = {q,
p2

2m
+

m

2
ω2

0q
2} =

1

2m
{q, p2}

(9.19)

and ṗ as:

ṗ = {p,H} = {p,
p2

2m
+

m

2
ω2

0q
2} =

mω2
0

2
{p, q2}

(9.20)

Together:

(9.21)

 

{L1,L2} = L3; {L3,L1} = L2; {L2,L3} = L1,

dG
dt

= {G,H} = 0,

H(q, p) = p2

2m + m
2 ω2

0q
2.

= 1
2m (p{q, p} + {q, p}p) = 1

2m (p + p) = p
m

=
mω2

0

2 (q{p, q} + {p, q}q) =
mω2

0

2 (−q − q) = −mω2
0q.

q̈ = ṗ

m
= −ω2

0q or q̈ + ω2
0q = 0,



i.e. an equation for a vibration with frequency ω0.

9.3	 Canonical	Transformations
We now want to investigate the conditions, that the Lagrange equations and canonical
equations of motion do not change for transformations of the 2s coordinates of a
physical system, i.e. are form	invariant.

9.3.1	 Point	Transformations
When formulating Lagrangian dynamics we have introduced generalized coordinates ql
such that constraints imposed by the system are met identically. However, the choice of
generalized coordinates ql for many-body systems is by no means clear and one can
choose different coordinate systems. The question then arises, if the dynamics are
invariant under point	transformations

(9.22)

As an example for such a point transformation we mention again the transformation of
cartesian coordinates to spherical coordinates:

(9.23)

On the other hand, we are interested in an ‘optimal’ set of coordinates Qj in which all
cyclic	variables	of	the	system occur explicitly.

We now show that the Lagrange equations are indeed form-invariant with respect
to point transformations (9.22), i.e.

(9.24)

in the sense:

(9.25)

For the proof we calculate

(9.26)

with the s × s transformation matrix
(9.27)

qi → Qi(ql;t), l = 1, . . , s.

→ .
⎛⎜⎝x

y

z

⎞⎟⎠ ⎛⎜⎝r(x, y, z)

ϑ(x, y, z)

φ(x, y, z)

⎞⎟⎠L(qi, q̇i;t) → L′(Qi, Q̇i;t) = L(qi(Qj, t), q̇i(Qj, Q̇j, t);t)

d
dt

∂L
∂q̇i

− ∂L
∂qi

= 0 ⟺
d
dt

∂L′

∂Q̇j

− ∂L′

∂Qj
= 0.

∂L′

∂Qj
= ∑s

i=1
∂L
∂qi

∂qi
∂Qj

= ∑s
i=1 aij

∂L
∂qi



In anlogy we obtain for the momenta Pj with (9.27):

(9.28)

i.e. with (9.26)

(9.29)

The form invariance now follows from the fact, that the Lagrange equations in the
coordinates ql and Qj emerge from each other by multiplying with an invertible s × s

matrix (a)ij whose determinant is ≠ 0.
For the Hamilton function H ′(Qi,Pi;t) we get

(9.30)

and according to the variational principle (7. 85) the equations of motion

(9.31)

Obviously the form of the equations of motion (9.31) is invariant with respect to a
point transformation of the form (9.23).

9.3.2	 Examples
Free	particle	in	a	plane
We restrict ourselves to the transformation in the (x, y) plane for a free particle of mass
m, i.e. ż = 0:

(9.32)

The Lagrange function L then reads

(9.33)

and we obtain with
(9.34)

aij = ∂qi
∂Qj

.

Pj = ∂L′

∂Q̇j

= ∑s
i=1

∂L
∂q̇i

∂q̇i

∂Q̇j

= ∑s
i=1 pi

∂q̇i

∂Q̇j

= ∑s
i=1 pi

∂qi
∂Qj

= ∑s
i=1 aij pi,

d
dt
Pj = ∑s

i=1 aij
d
dt
pi = ∂L′

∂Qj
= ∑s

i=1 aij
∂L
∂qi

.

H(qi, pi;t) → H ′(Qi,Pi;t) = ∑i Q̇iPi − L′(Qi, Q̇i;t)

Q̇i = ∂H ′

∂Pi
; Ṗi = − ∂H ′

∂Qi
.

qi = → Qi = .
⎛⎜⎝x

y

z

⎞⎟⎠ ⎛⎜⎝r cos φ

r sin φ

z

⎞⎟⎠L = m
2

(ẋ2 + ẏ2) → L′(ẋ(r,φ, z, ṙ, φ̇, ż), ẏ(r,φ, z, ṙ, φ̇, ż);t)



(9.35)

the Lagrangian function

(9.36)

The momenta Pi = ∂L′/∂Q̇i result in

(9.37)

The Hamilton function H ′ follows from (9.30)

(9.38)

The equations of motion according to (9.31) are:

(9.39)

i.e. the variable φ is cyclic.

Free	particle	in	a	rotating	reference	system
A particle of mass m continues to move in a system, which additionally rotates around
the z axis with the angular velocity ω. We introduce the following new coordinates as:

(9.40)

where the new coordinate Φ now explicitly depends on time t. The Lagrangian function
L′′(R, Ṙ, Φ, Φ̇;t) then reads with

(9.41)

as:

(9.42)

With the momenta

(9.43)

the new Hamilton function H ′′ results in

ẋ = Q̇1 = d
dt

(r cos φ) = ṙ cos φ − rφ̇ sin φ,

ẏ = Q̇2 = d
dt

(r sin φ) = ṙ sin φ + rφ̇ cos φ

L′ = m
2

(ṙ2 + r2φ̇2) = L′(Qi, Q̇i;t).

Pr = ∂L′

∂ṙ
= mṙ, Pφ = ∂L′

∂φ̇
= mr2φ̇.

H ′ = ṙPr + φ̇Pφ − L′(ṙ, r, φ̇) = P 2
r

2m
+

P 2
φ

2mr2 .

ṙ = ∂H ′

∂Pr
= Pr

m
; φ̇ = ∂H ′

∂Pφ
=

Pφ

mr2 ; Ṗr = − ∂H ′

∂r
=

P 2
φ

mr3 ; Ṗφ = − ∂H ′

∂φ
= 0,

r → R = r; φ → Φ = φ + ωt,

Ṙ = ṙ; Φ̇ = φ̇ + ω

L′′(R, Ṙ, Φ, Φ̇;t) = m
2 (Ṙ2 + R2(Φ̇ − ω)

2
).

Pr = ∂L′′

∂Ṙ
= mṘ, PΦ = ∂L′′

∂Φ̇
= mR2(Φ̇ − ω)

2 2



(9.44)

Note: With (9.44) it becomes clear from the additional term ωPΦ that from

(9.45)

in general it does	not	follow that the Hamilton function H ′ can be calculated from H
by inserting q(Qi,Pi;t), p(Qi,Pi;t), i.e. for explicitly time-dependent transformations

(9.46)

The equations of motion for the free particle in the rotating reference system with the
Hamilton function (9.44) read:

(9.47)

which implies that the variable Φ is cyclic in this case.

9.4	 Extended	Canonical	Transformations
So far we have considered point transformations of the form (9.22), which are just
transformations of the coordinates qi. In the Hamilton function H(qi, pi;t), however,
the variables qi and pi are independent (equal right) variables, such that we have to
investigate general transformations of the form

(9.48)

Example: The extended transformation

(9.49)

which exchanges coordinates and momenta, is canonical, since with H(qi, pi;t) the
Hamilton function H ′(Qi,Pi;t) is given by

(9.50)

The canonical equations of motion follow

(9.51)

H ′′ = ṘPR + Φ̇PΦ − L′′(Ṙ,R, Φ̇) =
P 2
R

2m +
P 2

Φ

2mR2 + ωPΦ.

L′(Qi, Q̇i;t) = L(qi(Qi;t), q̇i(Qi, Q̇i;t);t)

H ′(Qi,Pi;t) ≠ H(qi(Qi,Pi;t), pi(Qi,Pi;t);t).

Ṙ = ∂H ′′

∂PR
= PR

m
; Φ̇ = ∂H ′′

∂PΦ
= PΦ

mR2 + ω;

ṖR = − ∂H ′′

∂R
= P 2

Φ

mR3 ; ṖΦ = − ∂H ′′

∂Φ
= 0,

( ) → ( ).
qi

pi

Qi(qj, pj;t)
Pi(qj, pj;t)

( ) → ( ) = ( ),
qi

pi

Qi

Pi

−pi

qi

H ′(Qi,Pi;t) = H(Pi, −Qi;t).

∂H ′(Qj,Pj;t)
∂Pi

=
∂H(Pj,−Qj;t)

∂Pi
=

∂H(qj,pj;t)
∂qi

= −ṗi = Q̇i;

( ) ( ) ( )



(9.52)

thus the form invariance of the canonical equations of motion is shown with respect to
the transformation (9.49).

The example clari�ies that generalized coordinates and generalized momenta are
‘exchangeable’ and therefore have equal rights. Both degrees of freedom become
‘abstract’ coordinates in the Hamilton function, which can be represented by 2s
independent degrees of freedom in the 2s-dimensional phase space.

General transformations (9.48) are described by a transformation T (qj, pj;t),
which should be arbitrary but invertible, i.e. the inverse transformation T −1(Pi,Qi;t)
gives

(9.53)

The problem with general invertible transformations T, however, is that the Lagrange
equations are no longer ‘from invariant’. Hamilton’s equations then also are no longer
‘form invariant’, i.e. have the form (9.31). We therefore must look for ‘restrictions’ on
the transformation T, which generally ensure ‘form invariance’.

First we de�ine suitable transformations as follows: we denote a transformation T
canonical	in	the	lower	sense, if for all Hamilton functions H(qi, pi;t) a function 
H ′(Qi,Pi;t) in the new variables Pi,Qi exists such that the equations of motion are
‘form invariant’.

To provide suitable conditions for such transformations, let’s go back to the
variation principle (7. 85), where the variations

(9.54)

vanish for arbitrary interval boundaries t1, t2. We recall that the variational
problem (9.54) leads directly to Hamilton’s (canonical) equations of motion. The
connection becomes immediately apparent, when we consider in addition to the actual
trajectory (qi(t), pi(t)) any neighboring trajectory (qi(t) + ϵηi(t), pi(t) + ϵκi(t)),
where the functions ηi and κi must be linear independent since the qi, pi are also
linear independent. The derivative of the action S(ϵ) with respect to ϵ leads (in the
limit ϵ → 0) to:

dS

dϵ
= ∫

t2

t1

d

dϵ
(

s

∑
i=1

[q̇i + ϵη̇i][pi + ϵκi] − H(qi + ϵηi, pi + ϵκi;t)) dt

∂H ′(Qj,Pj;t)
∂Qi

=
∂H(Pj,−Qj;t)

∂Qi
= −

∂H(qj,pj;t)
∂pi

= −q̇i = −Ṗi,

( ) → ( ).
Qi

Pi

qi(Qj,Pj;t)
pi(Qj,Pj;t)

δS = δ ∫ t2

t1
(∑s

i=1 q̇ipi − H(qi, pi;t)) dt = 0

= δ ∫ t2

t1
(∑s

i=1 Q̇iPi − H ′(Qi,Pi;t)) dt

( )



(9.55)

After partial integration of the term with η̇i and consideration of the boundary
conditions (ηi(t1) = ηi(t2) = 0) on the integration limits we get

dS

dϵ
= ∫

t2

t1

(
s

∑
i=1

[−ηiṗi] + q̇iκi −
∂H

∂qi
ηi −

∂H

∂pi
κi) dt

(9.56)

Since the functions ηi,κi are arbitrary and linearly independent, the coef�icients in the
brackets (..) themselves must disappear, which just leads to the canonical equations of
motion (9.31) in the variables (qi, pi).

We now come back to Equation (9.54). Since the variation is vanishing at the
integration limits, the integrands differ–apart from an insigni�icant constant c—only by
a total time differential of any continuous differentiable function F in the variables 
qi, pi,Qi,Pi;t;

(9.57)

since the end points are kept during the variation, i.e.

(9.58)

After these preparatory remarks, we now de�ine a transformation as canonical, if the
constant c=1, i.e. if for any Hamilton function H(qi, pi;t) a Hamilton function 
H ′(Pi,Qi;t) exists with the property:

(9.59)

9.4.1	 Generators	of	Canonical	Transformations
The function introduced in (9.59) F(qi, pi,Qi,Pi;t) is an arbitrary (continuously
differentiable) function of 4s + 1 variables, where only 2s + 1 are linear independent,
since the number of degrees of freedom of the system is s and for each degree of
freedom we need 2 independent variables; the time t is an additional parameter. Thus
there are—except for linear combinations—only 6 different classes of generating
functions  with 2s + 1 independent variables each:

= ∫ t2

t1
(∑s

i=1 η̇ipi + q̇iκi − ∂H
∂qi

ηi − ∂H
∂pi

κi) dt.

= ∫ t2

t1
∑s

i=1[(−ṗi − ∂H
∂qi
)ηi + (q̇i − ∂H

∂pi
)κi] dt = 0.

(∑i q̇ipi − H(qi, pi;t)) =

c(∑i Q̇iPi − H ′(Qi,Pi;t))+ d
dt
F(qi, pi,Qi,Pi;t),

δ ∫ t2

t1
dt dF

dt
= δ(F(t1) − F(t2)) = 0.

∑s
i=1(q̇ipi − PiQ̇i)− H(qi, pi;t) + H ′(Qi,Pi;t) = d

dt
F(qi, pi,Qi,Pi;t).



(9.60)

Only F5 is a function of the variables (qi, pi) alone such that (9.59) can be written in
the form

(
s

∑
i=1

q̇ipi − H(qi, pi;t))−(
s

∑
i=1

PiQ̇i − H ′(Qi,Pi;t)) =
d

dt
F5(qi, pi;t)

(9.61)

The time derivative in the coordinate Qi we can rewrite using the functional
dependence on the (qi, pi;t),

(9.62)

and obtain from (9.61)

s

∑
i=1

q̇ipi −
s

∑
k=1

Pk(
s

∑
i=1

[ ∂Qk

∂qi
q̇i +

∂Qk

∂pi
ṗi] +

∂Qk

∂t
)− H(qi, pi;t) + H ′(Qi,Pi;t)

(9.63)

Since the qi, pi are linearly independent, the quantities q̇i, ṗi must also be linearly
independent and thus the coef�icients of the terms ∼ q̇i and ∼ ṗi vanish identically. By
comparing the coef�icients we get:

(9.64)

(9.65)

(9.66)

The Eqs. (9.64) and (9.65) represent a system of coupled equations (of dimension
2s), which can be solved for the Pk(qi, pi;t),Qk(qi, pi;t). The Hamilton function 

F1(qi,Qi;t), F2(qi,Pi;t), F3(pi,Qi;t),

F4(pi,Pi;t),F5(qi, pi;t), F6(Qi,Pi;t).

= ∑s
i=1(q̇i

∂F5

∂qi
+ ṗi

∂F5

∂pi
)+ ∂F5

∂t .

Q̇i = ∑s
k=1(

∂Qi

∂qk
q̇k + ∂Qi

∂pk
ṗk)+ ∂Qi

∂t

= ∑i(q̇i
∂F5

∂qi
+ ṗi

∂F5

∂pi
)+ ∂F5

∂t .

pi − ∑s
k=1 Pk

∂Qk

∂qi
= ∂F5

∂qi
,

−∑s
k=1 Pk

∂Qk

∂pi
= ∂F5

∂pi
,

H ′ = H + ∑s
k=1 Pk

∂Qk

∂t
+ ∂F5

∂t
.



H ′(Qk,Pk;t) then follows from (9.66) by inserting the solutions 
Pk(qi, pi;t),Qk(qi, pi;t), where the partial time derivative of F5 still can be chosen
arbitrarily. The	generating	function F5 thus	generates	an	in�inite	number	of
canonical	transformations! Without explicit proof we note that this holds true also
for the generating function F6(Qi,Pi;t), since it is also a function of the conjugate
variables Qi,Pi. The solution of the coupled system of equations (9.64) and (9.65),
however, is quite complex since all equations include the functions Pk and Qk in a
nontrivial way.

Therefore, we will examine in the following the functions F1, . . ,F4 and start with 
F1(qi,Qi;t). A transformation is called canonical if

s

∑
i=1

q̇ipi −
s

∑
i=1

PiQ̇i − H(qi, pi;t) + H ′(Qi,Pi;t) =
dF1

dt

(9.67)

Due to the linear independence of q̇i and Q̇i we obtain by a comparison of the
coef�icients

(9.68)

(9.69)

(9.70)

If the coordinates qi,Qi are linearly independent, the transformation to the
coordinates pi,Pi is canonical, if a function F1(qi,Qi;t) exists with the properties
(9.68), (9.69) and (9.70).

As an example we calculate the transformation equations from the generating
function

(9.71)

According to (9.68) we get
(9.72)

= ∑s
i=1(q̇i

∂F1

∂qi
+ Q̇i

∂F1

∂Qi
)+ ∂F1

∂t
.

pi = ∂F1(qi,Qi;t)
∂qi

,

Pi = − ∂F1(qi,Qi;t)
∂Qi

,

H ′ = H + ∂F1(qi,Qi;t)
∂t .

F1(q,Q) = − Q
q

.

p =
∂F1(q,Q)

∂q = Q

q2



and with (9.69)

(9.73)

With (9.72) this then results in

(9.74)

i.e. the problem of the transformation equations from the variables (q, p) to the new
variables (Q, P) is solved.

On the other hand, when knowing a transformation, e.g.

(9.75)

we can calculate the generating function F1(q,Q). Equation (9.75) immediately gives

(9.76)

We start with (9.68) and integrate over dq, which gives F1 in the form

(9.77)

with any continuously differentiable function g(Q; t). With (9.69) we get

(9.78)

from which follows immediately:

(9.79)

Thus the generating function F1 = q exp (Q) is determined (except for an insigni�icant
constant).

The general	procedure for calculating the transformations Qj(qi, pi;t) and 
Pj(qi, pi;t) is as follows: for a given F1(qi,Qi;t) one �irst calculates the s equations of
motion for the pi by differentiating the generators F1 with respect to the qi and solves
the equations for the Qj(qi, pi;t). Then one calculates the derivatives of F1 formally
with respect to the Qj and inserts the calculated Qj(qi, pi;t) into the expression
obtained for the Pj, from which the transformations Pj(qi, pi;t) �inally result.

The	generating	function F2(qi,Pi;t)
We’ll start with a function ~

F2(qi,Pi;t), which has the same linear	independent
variables as the function F2(qi,Pi;t) (to be de�ined later). A transformation (9.48) then
is canonical if:

P = −
∂F1(q,Q)

∂Q = 1
q

= P(q, p).

Q = pq2 = Q(q, p),

( ) → ( ) = ( ),
q

p

Q(q, p)

P(q, p)

ln p

−qp

p =exp (Q).

F1(q,Q;t) = ∫ p(q,Q) dq + g(Q;t) = q exp (Q) + g(Q;t)

P = − ∂F1

∂Q = −q exp (Q) + ∂g(Q;t)
∂Q = −qp(q,Q),

∂g(Q;t)
∂Q = 0.



s

∑
i=1

q̇ipi −
s

∑
i=1

PiQ̇i − H(qi, pi;t) + H ′(Qi,Pi;t) =
d

~
F2

dt

=
s

∑
i=1

(q̇i
∂

~
F2

∂qi
+ Ṗi

∂
~
F2

∂Pi

)+
∂

~
F2

∂t
=

(9.80)

using the functional dependence Qi(qk,Pk;t). Due to the linear independence of q̇i and
Ṗi we get (by a comparison of the coef�icients)

(9.81)

(9.82)

(9.83)

where we also have used the linear independence of the variables (qi,Pk), i.e. 
∂Pk/∂qi=0.

The Eqs. (9.81), (9.82), (9.83) suggest to de�ine a generating function F2(qi,Pi;t)
via

(9.84)

We then can write the Eqs. (9.81), (9.82), (9.83) in compact form:

(9.85)

(9.86)

(9.87)

∑s
i=1[q̇ipi − Pi∑

s
k=1(

∂Qi

∂qk
q̇k + ∂Qi

∂Pk
Ṗk)− Pi

∂Qi

∂t ]

−H(qi, pi;t) + H ′(Qi,Pi;t)

pi = ∑s
k=1 Pk

∂Qk

∂qi
+

∂
~
F2(qj,Pj;t)

∂qi
= ∂

∂qi
[ ~
F2 + ∑s

k=1 PkQk],

0 = ∑s
k=1 Pk

∂Qk

∂Pi
+

∂
~
F2(qj,Pj;t)

∂Pi
= ∂

∂Pi
[ ~
F2 + ∑s

k=1 PkQk]− Qi,

H ′ = H + ∑s
i=1 Pi

∂Qi

∂t +
∂

~
F2(qj,Pj;t)

∂t = H + ∂
∂t [

~
F2 + ∑s

k=1 PkQk],

F2(qi,Pi;t) =
~
F2(qi,Pi;t) + ∑s

k=1 PkQk.

pi =
∂F2(qj,Pj;t)

∂qi
,

Qi =
∂F2(qj,Pj;t)

∂Pi
,

H ′ = H +
∂F2(qj,Pj;t)

∂t .



Example: We calculate the generating function F2 for the transformation

(9.88)

With p = −P/q we get by integration (9.85):

(9.89)

with any continuous differentiable function g(P). We now use (9.86) to get g(P) via
(9.89):

(9.90)

Integration of ∂g(P)/∂P  over P yields (with ln (p)+ ln (q) =ln (pq))

(9.91)

Thus the generating function F2(q,P) reads

(9.92)

Relationship	between	the	generators F1 and F2

From the de�ining equations for canonical transformations (9.67) and (9.80) we
have immediately:

(9.93)

where the constant can be assumed to be 0 without any restrictions. With (9.84) we
then get using (9.69):

(9.94)

It thus turns out that the generating function F2 is the Legendre	transform of F1.

9.4.2	 Overview	of	the	Generating	Functions

( ) = ( ).
Q

P

ln p

−qp

F2(q,P) = ∫ p(P , q)dq + g(P) = −P ln q + g(P)

Q =ln p = ∂F2

∂P = ∂[−P lnq+g(P)]
∂P = − ln q + ∂g(P)

∂P .

g(P) = ∫ ln (pq)dP = ∫ ln (−P)dP = P ln (−P) − P .

F2(q,P) = −P ln q + P ln (−P) − P = P(ln (−P/q) − 1)).

d
dt
(F1 −

~
F2) = 0 or F1 =

~
F2 + const. ,

F2(qi,Pi;t) =
~
F2(qi,Pi;t) + ∑s

k=1 PkQk

= F1(qi,Pi;t) + ∑s
k=1(− ∂F1

∂Qk
)Qk

= F1(qi,Pi;t) − ∑s
k=1

∂F1

∂Qk
Qk.



In analogy to the previous considerations one �inds that the generating functions F3

and F4 are also Legendre transforms of F1:

(9.95)

while F4(pi,Pi;t) results from a double Legendre transformation:

(9.96)

The connections, that follow from the requirements (9.59) by a comparison of the
coef�icient, are given in Table 9.1 for the generators F1, . . ,F4:

Table	9.1 Overview of the generating functions F1,F2,F3 and F4

and the de�inition of their variables

Overview

F1(q,Q;t) p = +∂F1/∂q P = −∂F1/∂Q H ′ = H + ∂F1/∂t

F2(q,P ;t) p = +∂F2/∂q Q = +∂F2/∂P H ′ = H + ∂F2/∂t

F3(p,Q;t) q = −∂F3/∂p P = −∂F3/∂Q H ′ = H + ∂F3/∂t

F4(p,P ;t) q = −∂F4/∂p Q = +∂F4/∂P H ′ = H + ∂F4/∂t

Remark	1: From Table 9.1 it follows immediately that for time-independent
transformations the Hamilton function itself is a canonical	invariant, i.e. H ′ = H.

Remark	2: All point transformations qi → Qi(qj;t) are canonical since there is a
generating function

(9.97)

with

(9.98)

and

(9.99)

F3(pi,Qi;t) = F1(qi,Qi;t) − ∑s
k=1

∂F1

∂qk
qk,

F4(pi,Pi;t) = F1(qi,Qi;t) − ∑s
k=1(

∂F1

∂qk
qk + ∂F1

∂Qk
Qk)

= F1(qi,Qi;t) + ∑s
k=1(PkQk − pkqk).

F2(qi,Pi;t) = ∑s
i=1 Qi(qj;t)Pi

pi = ∂F2

∂qi
= ∑s

k=1
∂Qk

∂qi
(qj;t)Pk

Qi = ∂F2

∂Pi
= ∑s

k=1
∂Pk

∂Pi
(qj;t)Qk.



As an example we consider the harmonic oscillator again,

(9.100)

and examine the canonical transformation generated by the function

(9.101)

According to Table 9.1 we get:

(9.102)

By simple transformations we obtain:

(9.103)

(9.104)

The Hamilton function H ′(Q,P) in the new coordinates is given by:

H ′(Q,P) = H(q(P ,Q), p(Q,P)) =
p2

2m
+

m

2
ω2

0q
2 =

(9.105)

and the equations of motion in the coordinates P, Q are:

(9.106)

These equations of motion show immediately that P = H ′/ω0 = P0 is a constant of
motion, which is proportional to the energy E = H ′. On the other hand, the solution
for the angle variable follows immediately from the second equation,

(9.107)

where α denotes an arbitrary phase that has to speci�ied by initial conditions. The
solution is complete, when inserting the results for P and Q(t) into the transformation
formulae (9.103) and (9.104):

(9.108)

H(q, p) = p2

2m + m
2 ω2

0q
2,

F1(q,Q) = m
2 ω0q

2 cot (Q).

p = ∂F1

∂q = mω0q cot (Q); P = − ∂F1

∂Q = mω0q
2

2sin2(Q)
or q2 = 2Psin2(Q)

mω0
.

p = mω0q
cos(Q)
sin(Q)

= mω0
cos(Q)
sin(Q)

√ 2P
mω0

sin (Q) = √2Pmω0 cos (Q) = p(P ,Q).

q = psin(Q)
mω0cos(Q)

= √2Pmω0 cos (Q) sin(Q)
mω0cos(Q)

= √ 2P
mω0

sin (Q) = q(P ,Q).

= 2Pmω0cos2(Q)
2m

+ m
2
ω2

0
2P
mω0

sin2 (Q) = Pω0 cos2 (Q) + Pω0 sin2 (Q) = Pω0,

Ṗ = − ∂H ′

∂Q
= 0 Q̇ = ∂H ′

∂P
= ω0.

Q(t) = ω0t + α,

q(t) = √ 2P0

mω0
sin (ω0t + α),



(9.109)

The induced transformation by the generating function F1 (9.101) thus allows for a
simple solution of the oscillator problem.

9.4.3	 Canonical	Invariants
We denote quantities, which do not change with respect to canonical transformations,
by canonical	invariants. So far we have pointed out the invariance of the Hamilton
function H as an example for time-independent canonical transformations, and the
form invariance of Hamilton’s equations of motion. We now will show that the
formulation of the dynamics can be formulated canonically	invariant with the help of
the Poisson brackets (9.4) for	time-independent	transformations. We start with the.

Invariance	of	fundamental	Poisson	brackets
Let (qi, pi) and (Qj,Pj) be two canonically conjugated sets of variables, for which both
the Hamiltonian equations of motion hold with

(9.110)

Then the following Poisson brackets are canonical invariants:

(9.111)

To prove (9.111) we calculate the time derivative of Qi,

Q̇i =
s

∑
k=1

(
∂Qi

∂qk
q̇k +

∂Qi

∂pk
ṗk) =

s

∑
k=1

(
∂Qi

∂qk

∂H

∂pk
−

∂Qi

∂pk

∂H

∂qk
) =

=
s

∑
k,l=1

(
∂Qi

∂qk
[

∂H ′

∂Ql

∂Ql

∂pk
+

∂H ′

∂Pl

∂Pl

∂pk
] −

∂Qi

∂pk
[

∂H ′

∂Ql

∂Ql

∂qk
+

∂H ′

∂Pl

∂Pl

∂qk
]) =

=
s

∑
k,l=1

(
∂H ′

∂Ql

[
∂Qi

∂qk

∂Ql

∂pk
−

∂Qi

∂pk

∂Ql

∂qk
] +

∂H ′

∂Pl

[
∂Qi

∂qk

∂Pl

∂pk
−

∂Qi

∂pk

∂Pl

∂qk
]) =

(9.112)

Consequently we must have:
(9.113)

p(t) = √2P0mω0 cos (ω0t + α).

H ′(Qj,Pj) = H(qi(Qj,Pj), pi(Qj,Pj)).

{Qi,Qj}p,q = 0; {Pi,Pj}p,q = 0;{Qi,Pj}p,q = δij.

= ∑s
l=1(−Ṗl{Qi,Ql}p,q + Q̇l{Qi,Pl}p,q) = Q̇i.

{Qi,Ql}p,q = 0; {Qi,Pl}p,q = δil.



The still missing proof for {Pi,Pl}p,q = 0 follows in analogy from the calculation of Ṗi.

General	Poisson	brackets
We now want to show that the value of a Poisson bracket is independent of the set of
canonical variables that are used as a basis. To this aim we consider any two phase-
space functions F and G and two sets of canonical variables (qi, pi) and (Qj.Pj)

(9.114)

The Poisson bracket of F and G in the variables q, p then gives:

{F ,G}p,q =
s

∑
j=1

( ∂F

∂qj

∂G

∂pj
−

∂F

∂pj

∂G

∂qj
) =

=
s

∑
j,l=1

( ∂F

∂qj
[ ∂G

∂Ql

∂Ql

∂pj
+

∂G

∂Pl

∂Pl

∂pj
] −

∂F

∂pj
[ ∂G

∂Ql

∂Ql

∂qj
+

∂G

∂Pl

∂Pl

∂qj
]) =

(9.115)

Two intermediate results following immediately from (9.115) are:
(i) For F = Qk we get using the fundamental Poisson brackets:

(9.116)

(ii) For F = Pk the result is:

(9.117)

Inserting (9.116) and (9.117) into (9.115) we obtain the invariance of the Poisson
bracket with respect to canonical transformations, since F and G have been chosen
arbitrarily:

(9.118)

( ) = ( ), ( ) = ( ).
ql

pl

ql(Qj,Pj)

pl(Qj,Pj)

Ql

Pl

Ql(qj, pj)

Pl(qj, pj)

= ∑s
l=1(

∂G
∂Ql

{F ,Ql}p,q + ∂G
∂Pl

{F ,Pl}p,q).

{G,Qk}q,p = − ∂G
∂Pk

.

{G,Pk}q,p = ∂G
∂Qk

.

{F ,G}q,p = ∑s
l=1( ∂G

∂Ql
[− ∂F

∂Pl
]+ ∂G

∂Pl
[ ∂F

∂Ql
]) = {F ,G}P ,Q.



Accordingly we can omit the indices at the Poisson brackets, which have been
introduced to specify the basic variables.

9.4.4	 Criteria	for	Canonical	Transformations
In practice the question often arises, if a speci�ic transformation is canonical or not.
This question often is not easy to answer if the associated explicit generating function
is not known. For practical purposes, on the other hand, the following theorem is of
great help:

An	extended	transformation (9.48) is canonical, if and only if the fundamental
Poisson brackets are ful�illed in the new variables, i.e.

(9.119)

We provide the proof for non-explicitly time-dependent transformations, i.e. for
vanishing explicit time derivative of the generators ∂Fk/∂t = 0, such that again:

(9.120)

Since according to Sect. 9.4.3 the Poisson brackets are invariant with respect to
canonical transformations we choose, for the sake of simplicity, the variables qi, pi. The
time derivative of Qj and Pj then reads:

(9.121)

(9.122)

The partial derivatives of the Hamilton function can be rewritten as follows:

(9.123)

(9.124)

We insert (9.123) and (9.124) into Eq. (9.121),

(9.125)

and summarize as:

{Qi,Qj} = 0 = {Pi,Pj}; {Qi,Pj} = δij.

H(qi, pi) = H ′(Qj,Pj) = H(qi(Qj,Pj), pi(Qj,Pj)).

Q̇j = {Qj,H}
q,p = ∑s

l=1(
∂Qj

∂ql
∂H
∂pl

−
∂Qj

∂pl
∂H
∂ql
),

Ṗj = {Pj,H}
q,p = ∑s

l=1(
∂Pj

∂ql
∂H
∂pl

−
∂Pj

∂pl
∂H
∂ql
).

∂H
∂pl

= ∑s
k=1( ∂H ′

∂Qk

∂Qk

∂pl
+ ∂H ′

∂Pk

∂Pk

∂pl
).

∂H
∂ql

= ∑s
k=1( ∂H ′

∂Qk

∂Qk

∂ql
+ ∂H ′

∂Pk

∂Pk

∂ql
).

Q̇j = {Qj,H}
q,p

= ∑s
l,k=1(

∂Qj

∂ql
( ∂H ′

∂Qk

∂Qk

∂pl
+ ∂H ′

∂Pk

∂Pk

∂pl
)−

∂Qj

∂pl
( ∂H ′

∂Qk

∂Qk

∂ql
+ ∂H ′

∂Pk

∂Pk

∂ql
)),

( )



(9.126)

In the same way we �ind with (9.122):

(9.127)

Hamilton’s equations of motion

(9.128)

thus hold, if and only if the fundamental Poisson brackets (9.119) are ful�illed in the
new variables (q.e.d.).

The formulation of Newtonian dynamics in form of Poisson brackets, which are
invariant with respect to canonical transformations and introduce conjugate
variables by the fundamental Poisson brackets (9.119), allows for a simple transition
to quantum	mechanics.

9.5	 Liouville’s	Theorem
Liouville’s theorem provides an elegant introduction to statistical	mechanics. In
order to specify the state of a system of particles as a point in phase space exactly, one
has to de�ine (or measure) initial conditions for solving the canonical equations; for
systems with a lot of particles (N ∼ 1023) this is practically impossible. Then a less
precise (but for many questions still suf�icient) description is to specify the
probability ρ(qi, pi;t) for a system to be at point (qi, pi) at time t in phase space.
Knowing the probability ρ(qi, pi;t) one can calculate the expectation	value of an
observable G as an average:

(9.129)

with the normalization

(9.130)

If the mean-square deviations ΔG2 =< G2 > − < G >2 are suf�iciently small (which
is the case for large numbers of particles) one can identify the average (9.129) with the
macroscopic measurement.

The concept of the ensemble serves as an illustration of ρ in statistical mechanics:
One replaces the actual system, whose initial conditions are imprecise (or incompletely
known), by a sequence of many similar systems (ensembles) with different, but
precisely speci�ied initial conditions each, in accordance with the macroscopic
knowledge about the actual system. Each member of the ensemble is represented by a

Q̇j = {Qj,H}
q,p = ∑s

k=1( ∂H ′

∂Qk
{Qj,Qk}

q,p + ∂H ′

∂Pk
{Qj,Pk}

q,p).

Ṗj = {Pj,H}
q,p = ∑s

k=1(− ∂H ′

∂Qk
{Qk,Pj}q,p + ∂H ′

∂Pk
{Pj,Pk}

q,p).

Q̇j = ∂H ′

∂Pj
, Ṗj = − ∂H ′

∂Qj

< G >= ∫ ρ(qi, pi;t) G(qi, pi;t)∏i dqidpi

∫ ρ(qi, pi;t)∏i dqidpi = 1.



point in phase space and the ensemble by a ’swarm’ of points in phase space; their
distribution is determined by the probability ρ(qi, pi;t).

Following this idea we obtain the Liouville	equation for the distribution function ρ
, which reads:

(9.131)

To explain (9.131) we use the canonical equations and get

(9.132)

according to the de�inition (9.4). Since now

(9.133)

we get

(9.134)

thus

(9.135)

due to (9.131).

Equation (9.135) can now be written as a continuity	equation	in	phase	space,

(9.136)

with

(9.137)

as velocity in phase space and

(9.138)

The Liouville	Theorem—expressed in (9.131), (9.135) or (9.136)—then can be
interpreted as the conservation of the number of the (ensemble representing) points in
phase space (in analogy to the conservation of charge in electrodynamics): according

dρ
dt

= {ρ,H} + ∂ρ
∂t = 0.

{ρ,H} = ∑i(
∂ρ
∂qi

q̇i + ∂ρ
∂pi

ṗi)

ρ∑i(
∂q̇i
∂qi

+ ∂ṗi
∂pi
) = ρ∑i( ∂ 2 H

∂qi∂pi
− ∂ 2 H

∂pi∂qi
) = 0,

{ρ,H} = ∑i( ∂
∂qi

(ρq̇i) + ∂
∂pi

(ρṗi)),

∑i( ∂
∂qi

(ρq̇i) + ∂
∂pi

(ρṗi))+ ∂ρ
∂t

= 0

∂ρ
∂t + div(ρ

→
v) = 0

→
v = ( )

q̇i

ṗi

div = ( ∂
∂qi

, ∂
∂pi
).



to (9.136) the number of points in a certain area VPh of the phase space can only
change if points of the ‘swarm’ move in or out.

Of particular interest for equilibrium thermodynamics is the case of a stationary
distribution,

(9.139)

for which holds

(9.140)

Important solutions of (9.140) are:

(9.141)

which is denoted by the microcanonical	ensemble, where the total energy of the
system is precisely known. If only the average (9.129) of the energy < H > is known
due to an interaction with a heat	bath, ρ becomes

(9.142)

which is denoted by the canonical	ensemble. In (9.142) then T can be identi�ied with
the phenomenological temperature of the system while kB is the Boltzmann	constant.

Furthermore, if the particle number N is a constant of motion,

(9.143)

and only known on average < N >, ρ becomes

(9.144)

where the Lagrange parameter α is related to the chemical potential and the
temperature (see thermodynamics). Such an ensemble is called grand-canonical.

In addition to the microcanonical, canonical and grand-canonical ensembles the
statistical physics also includes further ensembles, each of which is characterized by
whether a thermodynamic observable is preserved exactly or only	on	average. These
distinctions play no role for very large particle numbers in classical statistics but are of
great importance for quantum	statistics, where the thermodynamic	potentials—
similar to the generating functions F1, . . ,F4—emerge from each other by Legendre
transformations (see thermodynamics).

In summarizing this chapter we have formulated the dynamics in phase-space
variables, i.e. in generalized coordinates and generalized momenta. In this case the
time evolution of an observable, that not explicitly depends on time, is given by
Poisson	brackets, which are determined by the derivative of the observable and the
Hamiltonian with respect to the phase-space variables. The elementary Poisson
bracket between generalized coordinates and generalized momenta was shown to be

∂ρ
∂t = 0,

{ρ,H} = 0.

ρ = δ(H − E),

ρ =exp (−H/(kBT )),

{N ,H} = 0,

ρ =exp (− H
kT

− αN),



unity for associated pairs and their time evolution to be given by the Poisson bracket
with the Hamilton function, i.e. the canonical equations of motion. The Poisson
brackets thus allow for an algebraic formulation of the dynamics. Furthermore, we
have proven that point transformations and extended canonical transformations
between the generalized coordinates and momenta keep the equations of motion
canonical	invariant. Furthermore, the elementary	Poisson	brackets were proven to
be invariant with respect to canonical transformations such that a formulation of
classical mechanics could be achieved, that is independent on the choice of the
generalized coordinates. This will pave the way to quantum mechanics, where the
Poisson brackets will be replaced by commutators of operators in an abstract Hilbert
space. The algebraic formulation also leads to a rigid formulation of statistical
mechanics, where the physical system - in equilibrium - is described by ensembles with
properties that are de�ined by expectation values of conserved quantities.



Appendix

Appendix
In these appendices some useful extensions are presented: The Lagrange and Hamilton
functions for relativistic systems are given as well as for continuum mechanics. We will
close by providing numerical algorithms for differentiation and integration as well as for
the numerical solution of a set of differential equations.

A.1	Relativistic	Mechanics
Using the example of the relativistic treatment of a charged particle in an electromagnetic
�ield we want to show how the Lagrange and Hamilton formalism can be transferred and
related to other areas of physics.

A.1.1	Lagrange	Function	for	a	Relativistic	Particle
We are looking for a Lagrange function that leads to the equation of motion

(A.1)

with

(A.2)

and

(A.3)

for the case of the Lorentz force. The fundamental relationships of Lagrangian mechanics,

(A.4)

for the generalized momenta (A.4) as well as the Lagrange equations remain,

(A.5)

Since in comparison to the non-relativistic case only (A.2) changes, it thus makes sense to
start with:

(A.6)

d
dt

(m(v)
→
v) =

→
F

m(v) = γ(v)m0 = m0

√1−v2/c2

→
F = q(

→
E + (

→
v ×

→
B))

pi = ∂L
∂vi

,

d
dt
( ∂L

∂vi
) = ∂L

∂xi
.

L =
~
T − qΦ + q

→
v ⋅

→
A,



where ~
T  must be constructed in such a way that

(A.7)

The solution is (up to a constant of integration)

(A.8)

obviously different from the kinetic energy

(A.9)

By inserting (A.8), (A.6) into (A.5) we get–as desired–Eqs. (A.1)–(A.3).

A.1.2	Hamilton	Function	for	a	Relativistic	Particle
The Hamilton function turns out to be identical to the energy:

(A.10)

with

(A.11)

A.2	Continuum	Mechanics
A.2.1	Lagrange	Function	for	an	Oscillating	String
We assume a (long) linear chain of mass points (see Fig. A.1); their Lagrange function in
case of harmonic forces (limited to next	neighbor	interactions	) is:

(A.12)

The generalized coordinates qi are the de�lections of the particles from the equilibrium
position, q̇i are the associated generalized velocities (Fig. A.1).

∂
~
T

∂vi
= m(v)vi.

~
T = −m0c

2√1 − v2/c2 = − m0c
2

γ(v)
,

T = m0c
2

√1−v2/c2
− m0c

2 = m0c
2(γ(v) − 1).

H =
3

∑
i=1

vipi + m0c
2√1 − v2/c2 + qΦ − q

3

∑
i=1

viAi =

m0v
2

√1−v2/c2
+ m0c

2√1 − v2/c2 + qΦ = T + qΦ + m0c
2 = E,

pi = ∂L
∂vi

= m(v)vi + qAi.

L = m
2 ∑i q̇

2
i − k

2 ∑i (qi+1 − qi)
2.



Fig.	A.1 Illustration of an oscillating string for mass points at equal distances

Fig.	A.2 Illustration of an oscillating string in the continuum limit

The well-known equations of motion resulting from (A.12) are coupled harmonic
oscillators:

(A.13)

For the transition	to	the	continuum (see Fig. A.2) let us reformulate (A.13) with 
μ = m/a and κ = ka as:

(A.14)

and replace (in the limit a → 0)

(A.15)

Then

(A.16)

Allowing that in general
(A.17)

mq̈i − k(qi+1 − qi) + k(qi − qi−1) = 0.

L = ∑i(
μ

2 q̇
2
i − κ

(qi+1−qi)
2

2a2 )a = ∑i aLi

i → x; ∑i. . . . → ∫ dx. . . . ; qi → ψ(x;t); q̇i → ∂ψ
∂t
; 1

a
(qi+1 − qi) → ∂ψ

∂x
.

L = 1
2
∫(μ( ∂ψ

∂t
)

2
− κ( ∂ψ

∂x
)

2
)dx = ∫ L dx.



the (generalized) Hamilton’s variational principle,

(A.18)

leads to the associated Euler equations:

(A.19)

in analogy to

(A.20)

Especially in the case above (A.16) from (A.19) one gets the known vibration equation

(A.21)

A.2.2	Hamilton	Function	for	an	Oscillating	String
Instead of the generalized momentum in the discrete case,

(A.22)

we have accordingly:

(A.23)

and can use the Lagrange	density L  to de�ine the Hamilton	density by a Legendre
transformation

(A.24)

The Hamilton function is then the spatial integral of h:

L = L (ψ, ∂ψ
∂t , ∂ψ

∂x ;t),

∫(∫ L (ψ,
∂ψ
∂t ,

∂ψ
∂x ;t) dx) dt = extremum,

∂
∂t (

∂L

∂(
∂ψ
∂t )

) + ∂
∂x(

∂L

∂(
∂ψ
∂x )

) = ∂L
∂ψ ,

d
dt
( ∂L

∂q̇i
) = ∂L

∂qi
.

( ∂ψ
∂x )

2

−
μ

κ
(

∂ψ
∂t )

2
= 0.

pi = ∂L
∂q̇i

,

π(x, t) = ∂L

∂(
∂ψ
∂t )

,

h = π
∂ψ
∂t − L .

( )



(A.25)

in analogy to the discrete case

(A.26)

Extensions:
(1.) The generalization to 3 spatial dimensions is simple:

(A.27)

and (l = 1, 2, 3)

(A.28)

(2.) In the case of electrodynamics not only a single �ield function occurs ψ(
→
r, t), but 4

independent �ield functions forming a four-vector:

(A.29)

The general equations for the four-�ield Aμ(
→
r, t) with (μ = 0, 1, 2, 3) are the subject of

electrodynamics.

A.3	Numerical	Methods
Finally, we present the most important numerical algorithms for solving problems in
mechanics.

A.3.1	Differentiation
Let a function fn = f(xn) be de�ined on a grid with the same distance h, i.e.

(A.30)

To calculate the derivative of the function f(xn) at the position x = 0 we expand f in the
neighborhood of x in a Taylor series

(A.31)

where all derivatives have to be calculated at the point x = 0. This gives the function f at
the grid points x±1 via

(A.32)

By O(h4) terms of order h4 or higher powers of h are summarized. Furthermore:

H = ∫ h dx = ∫(π ∂ψ
∂t

− L) dx

H = ∑i piq̇i − L.

x → xl; ∫ dx. . . → ∫ dx1dx2dx3. . . . .

ψ(x, t) → ψ(xl, t); ∂ψ
∂x → ∂ψ

∂xl
.

(Aμ(
→
r, t)) = ( i

c
Φ(

→
r, t),

→
A(

→
r, t)).

fn = f(xn);xn = nh; (n = 0, ±1, ±2, . . . ).

f(x) = f0 + xf ′ + x2

2 f ′′ + x3

3! f
′′′+. . .

f±1 = f0 ± hf ′ + h2

2 f ′′ ± h3

6 f ′′′ + O(h4).

2 3



(A.33)

After subtracting f−1 from f1 in (A.32) and rearranging the terms:

(A.34)

where the term ∼ f ′′′ vanishes for suf�iciently small h. The difference formula

(A.35)

is exact if the function f - in the interval [−h,h]—is a polynomial of second order because
higher derivatives vanish.

By suitable combinations of (A.32), (A.33) difference formulae for higher derivatives
can be speci�ied. For example, one �inds directly that

(A.36)

Then the second derivative of f at place x = 0 with a precision of order h2 is

(A.37)

For the 3rd derivative of f in x = 0 one obtains

(A.38)

Note: For calculating the derivative of f at position xn one moves the arguments in the
discrete formulae around n.

A.3.2	Integration
For the integration of a function f(x) in the interval [a, b] one divides the integral as:

(A.39)

The underlying idea is now to replace the function f within the integration interval 
[−h,h] by an approximate function (with the same values at the grid points), which can
easily be integrated exactly. The simplest function is a linear approximation, which yields
the trapezoid	formula

(A.40)

More precise integration formulae can be found again by using the Taylor expansions
(A.32), (A.33):

(A.41)

f±2 = f0 ± 2hf ′ + 4h2

2 f ′′ ± 8h3

6 f ′′′ + O(h4).

f ′ =
f1−f−1

2h − h2

6 f ′′′ + O(h4),

f ′ = f1−f−1

2h

f1 − 2f0 + f−1 = h2f ′′ + O(h4).

f1−2f0+f−1

h2 ≈ f ′′.

f2−2f1+2f−1−f−2

2h3 ≈ f ′′′.

∫ b

a
f(x)dx = ∫ a+2h

a
f(x)dx + ∫ a+4h

a+2h f(x)dx + ∫ a+6h

a+4h f(x)dx+. . . . + ∫ b

b−2h f(x)dx.

∫ h

−h
f(x)dx = h

2 (f−1 + 2f0 + f1) + O(h3).

f(x) = f0 + f1−f−1

2h
x + f1−2f0+f−1

2h2 x2 + O(x3).



This expression can be integrated elementary and we obtain the Simpson	rule,

(A.42)

which is more accurate than (A.40) by 2 orders in h. With (A.42) the integral (A.39) is
approximated by:

(A.43)

Taking into account higher order terms in the Taylor expansion yields the Bode	formula

(A.44)

which is more precise by 2 orders in h than (A.42), but also clearly increases the
computing effort.

A.3.3	Ordinary	Differential	Equations
The most general form of an ordinary differential equation is a set of M = 2s coupled
�irst-order equations,

(A.45)

with an independent variable t and an M-dimensional vector y = (y1, . . . , yM), such as
the canonical equations of motion in Hamiltonian dynamics. The task is now to determe
the value of y(t) if an initial value of y(t0) = y0 is given.

One of the simplest algorithms is the Euler	method, in which the equation (A.45) is
considered at the point tn and the derivative on the left is replaced by the forward
difference approximation:

(A.46)

Then yn+1 can be calculated by a recursion formula from yn:

(A.47)

This expression has a local error of order h2 since the error of the forward difference
formula is O(h). The global error for N integration steps from t = 0 to t = 1 is then of
order NO(h2) ≈ O(h). This mistake only decreases linearly with the step size h = Δt.

Another way to solve the differential equation with higher accuracy is to set up
recursion formulae in which yn+1 is not only linked with yn, but also with 
yn−1, yn−2, yn−3, . .. In order to derive such formulae explicitly, we integrate each single
step of the differential equation exactly and get:

(A.48)

∫ h

−h
f(x)dx = h

3 (f1 + 4f0 + f−1) + O(h5),

∫ b

a
f(x)dx = h

3 [f(a) + 4f(a + h) + 2f(a + 2h) + 4f(a + 3h)

+2f(a + 4h) + 4f(a + 5h)+. . . +4f(b − h) + f(b)].

∫ x4

x0
f(x)dx = 2h

45 (7f0 + 32f1 + 12f2 + 32f3 + 7f4) + O(h7),

dy

dt
= f(y, t),

yn+1−yn

h
+ O(h) = f(yn, tn).

yn+1 = yn + hf(yn, tn) + O(h2).

t



One can now use the values of y at tn and tn−1 to �ind a linear extrapolation of f for the
required integral:

(A.49)

Inserting (A.49) into (A.48) and performing the t-integral, one obtains the two-step
method	of	Adams-Bashforth:

(A.50)

Higher order methods can be achieved by using the f extrapolation with a higher order
polynomial. When approximated by a cubic polynomial this results in the four-step
process	of	Adams	and	Bashforth:

(A.51)

For these algorithms the knowledge of the initial value alone is not suf�icient to start the
algorithms. That’s why it is necessary to calculate the values of y at the �irst support
points �irst, for example, by using the Runge-Kutta method.

The previous methods are explicit, since yn+1 is calculated from the known values of 
yn. Implicit algorithms, in which an equation must be solved, pave another way to
achieve a higher accuracy. As an example let’s mention the

Runge-Kutta	algorithm	of	second	order, which is often used. To this aim we
approximate the function f in the integral of (A.48) by its Taylor expansion around the
middle	point of the integration interval and get

(A.52)

Since the error is of order O(h3) an approximation of f(yn+1/2, tn+1/2) is of order O(h2)

and good enough as provided by the simple Euler method (A.46). De�ining now k as an
intermediate approximation for the double difference between yn+1/2 and yn then we
can calculate yn+1 from yn by the following two-step procedure:

(A.53)

The advantage of the Runge-Kutta method is that there are no special restrictions on the
function f such as easy differentiability or linearity in y. It also uses only the value of y at
a single preceding point as opposed to the multi-step process described above. Equation
(A.53), however, is required which implies that the value f at each integration step has to
be calculated twice.

Runge-Kutta	algorithms	of	higher	order can be derived relatively directly. For this
we use higher order integration formulae (see subchapter A.3.2) in order to replace the
integral (A.48) by a �inite sum of f values. For example, the Simpson rule gives:

yn+1 = yn + ∫ tn+1

tn
f(y, t) dt.

f(y, t) ≈ t−tn−1

h
f(y, tn) − t−tn

h
f(y, tn−1) + O(h2).

yn+1 = yn + h( 3
2 fn − 1

2 fn−1) + O(h2).

yn+1 = yn + h
24

(55fn − 59fn−1 + 37fn−2 − 9fn−3) + O(h4).

yn+1 = yn + hf(yn+1/2, tn+1/2) + O(h3).

k = hf(yn, tn); yn+1 = yn + hf(yn + k
2

, tn + h
2

) + O(h3).

h



(A.54)

The algorithm is completed by the fact that successive approximations are used for the y
’s (with a comparable accuracy) in the right side of (A.54). A third-order	algorithm with
a local error O(h4) then is:

(A.55)

It is based on Simpson’s formula (A.42) and requires a threefold calculation of the
function f per integration step.

Runge-Kutta	algorithm	of	fourth	order: By experience we have learned that a
fourth-order algorithm, which needs 4 function f calculations per integration step, gives
the best balance between accuracy and numerical effort. The algorithm for 4 intermediate
variables ki is:

(A.56)

yn+1 = yn + h
6 [f(yn, tn) + 4f(yn+1/2, tn+1/2) + f(yn+1, tn+1)] + O(h5).

k1 = hf(yn, tn);

k2 = hf(yn + k1

2 , tn + h
2 );

k3 = hf(yn − k1 + 2k2, tn + h);

yn+1 = yn + 1
6

[k1 + 4k2 + k3] + O(h4).

k1 = hf(yn, tn);

k2 = hf(yn + k1

2 , tn + h
2 );

k3 = hf(yn + k2

2 , tn + h
2 );

k4 = hf(yn + k3, tn + h);

yn+1 = yn + 1
6

[k1 + 2k2 + 2k3 + k4] + O(h5).
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