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Preface 

Isometry is not only widely used to describe the motion of rigid bodies that is a mixture 
of rotational and translational motions of solids, but is also an important tool in theoretical 
physics and geometry. The properties of isometry have been actively researched for a long 
time, and this theory is widely used in fields such as natural science, computer engineering, 
radiology, imaging science, and design. 

It is generally recognized that the theory of isometries in Banach spaces originated from 
the paper [50] by S. Mazur and S. M. Ulam. Indeed, they proved the following theorem: 

Every isometry from one real normed space onto another real normed space is affine. 

This is the famous Mazur-Ulam theorem. 
It is natural to ask whether the Mazur-Ulam theorem is true even without the “onto” 

assumption. In connection with this question, J. A. Baker [2] proved that the Mazur-
Ulam theorem still holds if the “onto” condition of relevant isometry is removed and the 
condition on the range space is further strengthened: 

If X is a real normed space and Y is a strictly convex real normed space, then every isometry 
f : X → Y . is affine. 

Many mathematicians have long been engaged in research to specify the conditions that 
determine isometry. The Aleksandrov problem falls within the scope of this research topic. 
In a paper [1], A. D. Aleksandrov posed the following problem: 

Is any mapping that preserves a distance necessarily an isometry? 

One of the goals in writing this book is to provide readers with a friendly explanation that 
draws their attention to the Aleksandrov problem. 

It is quite interesting, however, that F. S. Beckman and D. A. Quarles [3] provided a 
partial solution to the Aleksandrov problem in 1953, when the Aleksandrov problem had 
not yet been raised. In fact, they proved the following theorem:

vii



viii Preface

Let En . denote the n-dimensional Euclidean space, where n is a fixed integer greater than 1. 
If a mapping f : En → E

n . preserves a distance ρ > 0., then f is an affine isometry. 

Some mathematicians have constructed several examples showing that there are 
mappings that preserve certain distances but are not isometries. These examples show 
that the Aleksandrov problem is not trivial, and we will present these examples in detail in 
this book. 

If the range of the relevant mapping is a strictly convex real normed space, W. Benz 
and H. Berens [7] were able to generalize the Beckman-Quarles theorem as follows: 

Let X be a real normed space with dimX > 1. and let Y be a real normed space which 
is strictly convex. Assume that N is a fixed integer greater than 1. If a distance ρ > 0. is 
contractive and Nρ . is extensive by a mapping f : X → Y ., then f is an affine isometry. 

In 1990, Th. M. Rassias [57] further generalized the idea of Benz and Berens by posing 
the following problem, which can certainly be considered an extension of the Aleksandrov 
problem: 

Is a mapping that preserves two or more distances with non-integer ratios necessarily an 
isometry? 

Such a problem is called the Aleksandrov-Rassias problem. A number of examples and 
counterexamples of the Aleksandrov-Rassias problem can be found in Sects. 4.2 and 4.3. 
This shows that the Aleksandrov-Rassias problem is not trivial. The most important 
purpose of this book is to increase readers’ understanding by introducing the Aleksandrov-
Rassias problem in detail. 

This book is intended to give readers an overview of the process of solving the 
Aleksandrov-Rassias problem, which is still actively studied by many mathematicians, 
and to familiarize them with the details of the proof process. In addition, a lot of effort has 
been put into writing this book so that readers can easily understand the contents of the 
book and save readers the trouble of having to search the literature on their own. 

This book consists of eight chapters, and we will now briefly describe the content of 
each chapter.

 Chapter 1 provides a brief introduction to the basic concepts and theorems of metric 
spaces, vector spaces, normed spaces, Banach spaces, inner product spaces, and Hilbert 
spaces, which are necessary to explain the subject of this book, the Aleksandrov-
Rassias problems. In Sect. 1.6, we will systematically prove, from the point of view 
of a basic knowledge level, that  2

. is a real Hilbert space. Readers who are familiar 
with the mathematical objects mentioned above can skip this chapter.
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 In Chap. 2, we will examine in detail the Aleksandrov problem, one of the ways to find 
necessary and sufficient conditions for characterizing the isometries defined between 
Euclidean spaces. In the first section, we introduce the Mazur-Ulam theorem, which 
is believed to have triggered the study of the theory of isometries in Banach spaces. 
Section 2.2 presents Baker’s theorem, which significantly generalizes the Mazur-Ulam 
theorem and improves its applicability. In Sect. 2.4, we devote considerable space to 
the detailed presentation of the proof of the Beckman-Quarles theorem, which directly 
motivated us to write this book.

 F. S. Beckman and D. A. Quarles solved the Aleksandrov problem for mappings from 
a Euclidean space into the same one. After weakening the result of the Beckman-
Quarles theorem to make the proof easier, E. M. Schröder proved in 1979 that any 
mapping that preserves two distances ρ . and 2ρ . is an affine isometry. In a situation 
where the Beckman-Quarles theorem is known, Schröder’s theorem by itself is of little 
significance. Schröder, however, presented a novel idea like the m-chain in the process 
of proving his theorem, and using this idea, W. Benz was able to significantly expand 
the Beckman-Quarles theorem. In Chap. 3, we present historically important theorems, 
the Schröder’s theorem, the Benz’s theorem, and the Benz-Berens theorem in detail.

 In the case where the domain and range spaces are the same Euclidean space whose 
dimension is greater than 1, the Aleksandrov problem has already been solved by 
the Beckman-Quarles theorem. W. Benz and H. Berens also solved the extended 
Aleksandrov problem under the additional conditions that the domain is a real normed 
space with dimension greater than 1, the range is a strictly convex real normed space, 
two distances are preserved, and that the ratio of the two distances is an integer. In 
Chap. 4, we investigate the Aleksandrov-Rassias problems, which focus on cases where 
the domain and range of the mapping involved differ, and cases where the ratio of two 
distances that are preserved is not an integer. By introducing interesting examples and 
counterexamples related to these topics in detail, we try to help readers easily grasp the 
core reality of the problem.

 In Chap. 5 and the next chapters, we will introduce in more detail the ideas and methods 
used to solve the Aleksandrov-Rassias problems for each case. Section 5.1 focuses on 
examining the Aleksandrov-Rassias problems, where the relevant mapping preserves 
two distances, 1 and

√
3.. This is a special case among cases where the ratio of two 

distances is not an integer. In Sect. 5.2, we consider the Aleksandrov-Rassias problem 
where the relevant mapping preserves the distances 1 and

√
2.. Section 5.3 friendly 

presents the conditions under which any mapping that preserves three distances is 
necessarily an isometry. As shown in Problem 4.2 (ii)., this problem is also closely 
related to the Aleksandrov-Rassias problems.

 In Chap. 6, we will generalize the parallelogram law to all cases with a given number of 
points. In Sect. 6.1, we prove the short diagonals lemma which is a generalization of the 
parallelogram law for the given four points in the inner product space. Moreover, we
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prove an inequality for the distances between any two points among the given six points. 
Section 6.2 is devoted to a generalization of the short diagonals lemma to an inequality 
for the distances among the given 2n points in the inner product space. In this section, 
we conceive and prove an inequality involving all distances between an even number of 
points. In Sect. 6.3, we use a new method other than the short diagonals lemma to prove 
an inequality for the distances between any two of the given five points. We introduce 
in Sect. 6.4 a general inequality that relates to the distances among the given n points.

 In Chap. 7, we will discuss ideas for partially solving the Aleksandrov-Rassias prob-
lems using the inequalities presented in Chap. 6. In the first section, we give a partial 
solution to the Aleksandrov-Rassias problems by using the inequality for the distances 
among six points presented in Sect. 6.1. Section 7.2 is devoted to proving that any 
mapping between real Hilbert spaces is an affine isometry if the distance 1 is preserved, 
1√
2
. is contractive, and when

√
3. is extensive. In Sect. 7.3, we give a partial solution to 

the Aleksandrov-Rassias problems by proving that when the distance 1 is contractive 
and the golden ratio is extensive by a mapping defined between real Hilbert spaces, 
then this mapping is an affine isometry. In the last section of this chapter, we prove that 
a mapping between real Hilbert spaces is an affine isometry if the distances 1 and α . 

are contractive, β . is extensive, and if the distances 1, α ., and β . satisfy some suitable 
conditions.

 The Beckman-Quarles theorem states that every unit-distance preserving mapping 
f : En → E

n
. is an isometry if n is an integer greater than 1. Section 8.1 is devoted 

to the discussion of whether the Beckman-Quarles theorem also holds in rational n-
spaces. It is known that every unit-distance preserving mapping f : Q

n → Q
n
. 

is an isometry if n is an even integer greater than 5 or an odd integer of the f orm
n = 2m2 − 1., where m > 2.. Because it is beyond the scope of this book and due to 
space constraints, we must omit the interesting proofs of all theorems introduced in this 
section. In Sect. 8.2, we will discuss the theory of tensegrity structures that F. Rádo et 
al. used to partially solve the Aleksandrov-Rassias problems. Most of the content in 
this section comes from a paper by K. Bezdek and R. Connelly. Indeed, they were able 
to improve the result of Rádo et al. even further by refining the idea presented by Rádo 
et al. In Sects. 8.3 and 8.4, we provide some sufficient conditions for the Benz-Berens 
theorem and the Beckman-Quarles theorem to also hold in an open convex set. In the 
final section, we assume that the Beckman-Quarles theorem does not assume that the 
mapping preserves a certain distance, but rather a certain geometric figure. Over the 
past two decades, interesting results have been obtained on this topic, which will be 
systematically presented in the last section. 

Aleksandrov-Rassias problems grow well in the fertile soil of real inner product spaces 
and have brought us plenty of fruit so far. With the hope that more mathematicians will turn 
their attention to this field of research and bring it to full fruition, this book is dedicated 
to the mathematicians who played a decisive role in pioneering the field: Aleksandr D. 
Aleksandrov and Themistocles M. Rassias. In addition, the author would like to dedicate
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this book to all mathematicians who are currently working or will work in this area in the 
future. The author would like to express his sincere gratitude to his wife, Min-Soon Lee, 
who devotedly supported him in writing this book for a long time despite her poor health. 

Sejong, Republic of Korea Soon-Mo Jung 
January, 2024 
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1Preliminaries

Abstract

In this chapter provides a brief introduction to the basic concepts and theorems of
metric spaces, vector spaces, normed spaces, Banach spaces, inner product spaces,
and Hilbert spaces, which are necessary to explain the subject of this book, the
Aleksandrov–Rassias problems. For this purpose, we mainly refer to the book (Debnath
and Mikusiński, Introduction to Hilbert Spaces with Applications, 2nd edn. Academic,
New York, 2005) by L. Debnath and P. Mikusiński, among others. In Sect. 1.6, we
will systematically prove, from the point of view of a basic knowledge level, that 𝓁2

.

is a real Hilbert space. For this end, we mainly refer to the book by R. H. Kasriel
(Undergraduate Topology. W. B. Saunders, Philadelphia, 1971). Readers who are
familiar with the mathematical objects mentioned above can skip this chapter.

1.1 Metric Spaces

A metric space is a set along with a metric for the set, and the metric is a mapping that
generalizes the notion of a distance between any two elements of the set. In other literature,
the elements of a set are often referred to as points, but in this book, we will refer to them
interchangeably as points or elements.

Definition 1.1 Let X be a set, and let d : X × X → [0,∞). be a mapping that satisfies

(i). d(x, y) = 0. if and only if x = y .;
(ii). d(x, y) = d(y, x).;

(iii). d(x, y) ≤ d(x, z) + d(z, y).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
S.-M. Jung, Aleksandrov-Rassias Problems on Distance Preserving Mappings,
Frontiers in Mathematics, https://doi.org/10.1007/978-3-031-77613-7_1
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2 1 Preliminaries

for all x, y, z ∈ X .. Then the mapping d is called a metric on X, and (X, d). is called a
metric space. When it is clear what the metric d is, we often simply write X instead of
(X, d).. Let Y be a subset of X and let d∗

. be the restriction of the metric d to Y × Y .. Then
(Y, d∗). is a metric space, and it is called a subspace of (X, d).. In this case it is customary
to write (Y, d). instead of (Y, d∗)..

For each positive integer n ∈ N., , let Rn
. be the n-dimensional space of all ordered

n-tuples of real numbers. We define the mapping de : Rn × R
n → [0,∞). by

.de(x, y) =
( n7

i=1

(xi − yi)
2
01/2

for all x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ R
n
.. Then, de . satisfies all the

conditions in Definition 1.1, i.e., it is a metric on R
n
., which is called the Euclidean metric

on R
n
..

Any set X can be viewed as a metric space in a natural way. For example, we define the
mapping d : X × X → [0,∞). by

.d(x, y) =
9

0 (for x = y),

1 (for x /= y)

for all x, y ∈ X .. It is easy to check that d is a metric on the set X. This metric is called the
discrete metric.

Suppose x is an element of a metric space (X, d). and r > 0. is a real number. Define an
open ball and a closed ball with center at x and radius r as

.Br(x) = {
y ∈ X : d(y, x) < r

]
and Br(x) = {

y ∈ X : d(y, x) ≤ r
]
,

respectively.

Definition 1.2 Assume that K and U are subsets of a metric space (X, d)..

(i). U is said to be open if and only if for every x ∈ U ., there exists a real number ε > 0.

such that Bε(x) ⊂ U ..
(ii). K is said to be closed if and only if its complement X \ K . is open.

We will often write “U is open in X” and “K is closed in X” instead of “U is an open
subset of X” and “K is a closed subset of X,” respectively.

Lemma 1.3 Assume that x is an element of a metric space (X, d). and r is a positive real
number.
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(i). The open ball Br(x). is open in X.
(ii). The closed ball Br(x). is closed in X.

Proof

(i). For any element y ∈ Br(x)., we see that d(y, x) < r . and we set ε = r − d(y, x) > 0..
If z is an arbitrary element of Bε(y)., then we have

.d(z, x) ≤ d(z, y) + d(y, x) < ε + d(y, x) = r − d(y, x) + d(y, x) = r,

which implies that z ∈ Br(x)., i.e., y ∈ Bε(y) ⊂ Br(x).. Thus, according to
Definition 1.2 (i)., Br(x). is an open subset of X.

(ii). We encourage the reader to do his/her own proof of (ii).. ⨅⨆

Definition 1.4 Let T . be a collection of subsets of a set X. The collection T . is called a
topology for X if and only if T . satisfies the following conditions:

(i). ∅ ∈ T . and X ∈ T .;
(ii). If U1 ∈ T . and U2 ∈ T ., then U1 ∩ U2 ∈ T .;

(iii). If U . is an arbitrary sub-collection of T ., then
U

U∈U
U ∈ T ..

In this case (X, T ). is called a topological space. When it is clear what the topology T .

is, we often simply write X instead of (X, T ).. Let Y be a subset of X and let TY . be the
collection

.TY = {
U ∩ Y : U ∈ T

]
.

Then TY . is called the relative topology for Y induced by T .. Moreover, (Y, TY ). is called a
subspace of (X, T ).. In particular, a subset U of X is said to be open in X if and only if
U ∈ T ., and a subset K of X is said to be closed in X if and only if X \ K ∈ T ..

We denote by P(X). the power set of a set X, i.e., the collection of all subsets of X.Then
P(X). is a topology for X, which is called the discrete topology for X. Let T = {∅, X}..
Then T . is also a topology for X, which is called the trivial topology or the indiscrete
topology for X. In general, any set can have at least two topologies, the discrete topology
and the indiscrete topology.

Let (X, d). be a metric space, and let T (d). be the collection of all open subsets of X

defined by Definition 1.2. It is then easy to prove that (X, T (d)). is a topological space.

Definition 1.5 Let (X, d). be a metric space and T (d). the collection of all open subsets
U of X such that each element x of U satisfies the condition, that Bε(x) ⊂ U . for some
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ε > 0.. Then the collection T (d). is a topology for X, and it is called the topology for X
generated by d.

A topological space (X, T ). is said to be metrizable if and only if there exists a metric d

on X whose collection T (d). is exactly the topology T .. For this reason, we often treat the
metric space (X, d). as a topological space (X, T (d)).. We note that the discrete topology
is generated by the discrete metric, but the indiscrete topology cannot be generated by any
metric.

Definition 1.6 Let K and U be subsets of a topological space X.

(i). A point x ∈ X . is called an interior point of U if and only if there exists an open
subset V of X such that x ∈ V ⊂ U ..

(ii). A point x ∈ X . is called a limit point of K if and only if every open set containing x

intersects K in a point distinct from x.
(iii). The set of all interior points of U is called the interior of U and is denoted by U◦

..
(iv). The union of K and the set of all its limit points is called the closure of K and is

denoted by K ..

Theorem 1.7 Assume that S is a subset of a topological space X.

(i). The interior of S is the union of all open subsets of X that are included in S, i.e.,

.S◦ =
l {

U : U is an open subset of X included in S
]
.

(ii). The closure of S is the intersection of all closed subsets of X that include S, i.e.,

.S =
U {

K : K is a closed subset of X including S
]
.

Let N. be the set of all positive integers, and let N0 = N ∪ {0}.. A sequence {xi}i∈N . of
elements of a subset S of a topological space X is said to converge to an element x of X

if and only if for every open subset U of X containing x, there exists a positive integer N

such that xi ∈ U ∩ S . for all integers i ≥ N ..
The proof of the following theorem is left as an exercise for the reader.

Theorem 1.8 The closure of a subset S of a topological space is the set of limits of all
convergent sequences of elements of S.

Definition 1.9 Let X be a metric space.

(i). A subset D of X is called a dense subset of X (.or dense in X ). if and only if D = X ..
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(ii). X is called separable if and only if there exists a countable subset of X that is dense
in X.

The following characterization of denseness is easy to prove, and its proof will be left
as an exercise.

Theorem 1.10 Assume that D is a subset of a metric space X. Then D is dense in X if
and only if each nonempty open subset of X intersects D.

In topology, a homeomorphism is a bijective and continuous mapping between
topological spaces that has a continuous inverse mapping. Homeomorphisms preserve
all the topological properties of a given space. Therefore, two topological spaces with a
homeomorphism between them are called homeomorphic and are equal from a topological
point of view.

Definition 1.11 Let X and Y be topological spaces. A mapping f : X → Y . is called
a homeomorphism (.or a topological mapping). if and only if f satisfies the following
conditions:

(i). f is bijective;
(ii). f is continuous;

(iii). f −1
. is continuous.

Two topological spaces X and Y are called homeomorphic (.or topologically equivalent). if
and only if there is a homeomorphism from X onto Y .

Let Td . be the discrete topology, and let Te . be the usual topology for R., i.e., Te = T (de).,
where de(x, y) = |x − y|. for all x, y ∈ R.. Then the identity mapping id : (R, Td) →
(R, Te). is continuous and bijective. However, it is not a homeomorphism because id−1 :
(R, Te) → (R, Td). is not continuous.

Example 1.12 Let T . denote the usual topology for R.. We assert that (R, T ). is homeo-
morphic to ((−1, 1), T(−1,1)).: We define a mapping f : R → (−1, 1). by

.f (x) = x

1 + |x|
for all x ∈ R.. Then f is continuous and bijective. Moreover, the inverse mapping
f −1(y) = y

1−|y| . is continuous. Thus, f is a homeomorphism.

Suppose that if a topological space X has a property, then every topological space
homeomorphic to X also has this property. Then we say that this property is a topological
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property. Informally, a topological property is a property of space that can be expressed in
terms of open sets.

Definition 1.13 A property of a topological space is called a topological property (or a
topological invariant) if and only if it is invariant under homeomorphisms.

According to Example 1.12, the property that “the topological space has a finite
diameter” is not a topological property since the diameter of R. is infinite, but that of
(−1, 1). is finite.

Intuitively, we would like to say that a set is connected when it “hangs” as a whole.
Whatever definition we choose for connected space, we would certainly require, for
example, that the real line R.has this property. Note that there are many ways to decompose
the real line into a pair of nonempty disjoint subsets. However, it can be shown that R. is
not the union of two nonempty disjoint open sets.

Definition 1.14 Let (X, T ). be a topological space. Then (X, T ). is connected if and only
if X is not the union of two nonempty disjoint open subsets. A subset S of X is called
connected if and only if (S, TS). is a connected space. If a set is not connected, we say that
it is disconnected.

Obviously, the empty set ∅. is connected. Moreover, all single-element sets are
connected, but two-element sets may not be. For example, let Td . be the discrete topology
for the set X = {0, 1}.. Then the topological space (X, Td). is not connected because
X = {0} ∪ {1}. with {0}, {1} ∈ Td ..

Theorem 1.15 A topological space X is connected if and only if there is no subset S of X
with ∅ /= S /= X . that is both open and closed.

Proof We will prove that a topological space (X, T ). is disconnected if and only if there
is a subset S of X with ∅ /= S /= X . that is both open and closed.

First, assume that (X, T ). is disconnected. There are two nonempty disjoint open subsets
U1 . and U2 . such that X = U1 ∪ U2 .. If we set S = U1 ., then ∅ /= S /= X ., S ∈ T ., and
S = X \ U2 . is closed. That is, there exists a subset S of X with ∅ /= S /= X . that is both
open and closed.

Now we assume that there exists a subset S of X with ∅ /= S /= X . that is both open and
closed. If we set U1 = S . and U2 = X \ S ., then U1 . and U2 . are nonempty open subsets of
X, U1 . and U2 . are disjoint, and X = U1 ∪ U2 .. That is, (X, T ). is disconnected. ⨅⨆

Let X = (0, 1) ∪ (2, 3). be a topological subspace of (R, Te)., where Te . is the usual
topology. Then (0, 1). is open and closed in X, since (0, 1) = (0, 1) ∩ X = [0, 1] ∩ X .. In
addition, ∅ /= (0, 1) /= X .. Hence, X is disconnected.
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We note that a mapping f : X → Y . is continuous if and only if f −1(K). is closed in X

for each set K that is closed in Y .

Theorem 1.16 Let (X, T ). be a topological space and let Z = {0, 1}. have the discrete
topology Td .. Then X is connected if and only if every continuous mapping f : X → Z . is
constant.

Proof First, we assume that the topological space (X, T ). is connected. Suppose f : X →
Z . is a continuous mapping and z ∈ f (X).. Since f is continuous and {z} ∈ Td ., it holds that
f −1({z}) /= ∅., f −1({z}) ∈ T ., and f −1({z}). is closed. It then follows from Theorem 1.15
that f −1({z}) = X ., i.e., f (X) = {z}..

Now, we assume that every continuous mapping f : X → Z . is constant. On the
contrary, assume that X is disconnected. On account of Theorem 1.15, there is a subset S

of X with ∅ /= S /= X . that is both open and closed. We consider the characteristic mapping
χ

S
: X → Z . defined by

.χ
S
(x) =

9
1 (for x ∈ S),

0 (for x /∈ S).

Since χ−1
S

(∅) = ∅., χ−1
S

({0}) = X \ S ., χ−1
S

({1}) = S ., and since χ−1
S

(Z) = X ., χ
S
. is

a continuous mapping. However, χ
S
. is not constant, which contradicts our assumption.

Therefore, X has to be connected. ⨅⨆

Remark 1.17 A subset S of R. is connected if and only if S is an interval.

Proof Assume that S is connected and non-degenerated (i.e., S has two or more elements).
On the contrary, suppose S is not an interval. We can then choose a point x /∈ S . such that
(−∞, x) ∩ S /= ∅. and (x,∞) ∩ S /= ∅.. Then, we have

.S = (
(−∞, x) ∩ S

) ∪ (
(x,∞) ∩ S

)
.

Let Z = {0, 1}. have the discrete topology Td .. We define a mapping f : S → Z . by

.f (s) =
9

0 (for s ∈ (−∞, x) ∩ S),

1 (for s ∈ (x,∞) ∩ S).

It is easy to check that f is continuous, and it is not a constant mapping. It then follows
from Theorem 1.16 that S is disconnected, a contradiction. Therefore, we conclude that if
S is a connected subset of R., then it is an interval. We note that every single-element set is
connected and a degenerated interval.



8 1 Preliminaries

Assume that S is a non-degenerated interval and f : S → Z . is a continuous mapping.
Then, f : S → R. is also continuous and f (S) ⊂ {0, 1}.. Hence, f has to be constant.
Therefore, it follows from Theorem 1.16 that S is connected. ⨅⨆

Theorem 1.18 Assume that X and Y are topological spaces and X is connected. If there
is a surjective continuous mapping f : X → Y ., then Y is connected.

Proof Assume that X is connected, Z = {0, 1}. has the discrete topology, and g : Y → Z .

is an arbitrary continuous mapping. Then, g ◦ f : X → Z . is a continuous mapping.
According to Theorem 1.16, the composition g ◦ f . is a constant mapping.

We claim that g : Y → Z . is a constant mapping. Assume that y1 . and y2 . are arbitrary
elements of Y . Since f is surjective, there are x1, x2 ∈ X . such that y1 = f (x1). and
y2 = f (x2).. Since g ◦ f . is a constant mapping, it follows that g(y1) = (g ◦ f )(x1) =
(g ◦ f )(x2) = g(y2)., i.e., g is a constant mapping.

Finally, it follows from Theorem 1.16 that Y is connected. ⨅⨆

Theorem 1.18 reminds us that connectedness is a topological property.

Remark 1.19 The connectedness is a topological property. In view of Remark 1.17, every
line 𝓁. in R

n
. is connected since 𝓁. is homeomorphic to R..

Theorem 1.20 Suppose X is a topological space and r . is a class of connected subsets of
X such that

(i). A ∩ B /= ∅. for all A,B ∈ r .;
(ii). there exists a C ∈ r . such that A ∩ C /= ∅. for all A ∈ r ..

Then
U

S∈r

S . is connected.

Proof We set U = U
S∈r

S . and assume that Z = {0, 1}. has the discrete topology and

f : U → Z . is an arbitrary continuous mapping.
We assert that f is constant. For every S ∈ r ., the restriction f |S : S → Z . of f to S is

continuous and S is connected. Then, by Theorem 1.16, f |S . is constant for every S ∈ r ..
Using (i). and (ii)., we conclude that f is constant. Therefore, using Theorem 1.16 again,
we conclude that U is connected. ⨅⨆

Remark 1.21 R
n
. is connected.

Proof Let r . be the class of all lines 𝓁. through the origin. Due to Remark 1.19, each line 𝓁.

through the origin is connected. Since R
n = U

𝓁∈r

𝓁., it follows from Theorem 1.20 that Rn
.

is connected. ⨅⨆
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Determining whether two topological spaces are homeomorphic is one of the important
problems in topology. To prove that two spaces are not homeomorphic, it suffices to find a
topological property that they do not have in common.

Remark 1.22 For any integer n > 1., Rn
. is not homeomorphic to R..

Proof Assume that there is a homeomorphism f : R → R
n
.. Then, f |R\{0} : R \ {0} →

R
n \ {f (0)}. is also a homeomorphism. However, it contradicts the fact that connectedness

is a topological property. In fact, R \ {0}. is disconnected but Rn \ {f (0)}. is connected. ⨅⨆

Assume that f : X → Y . is a mapping between topological spaces X and Y . We note
that f is continuous if and only if f (S) ⊂ f (S). for any subset S of X.

Theorem 1.23 If S is a connected subset of a topological space X, then so is S ..

Proof Assume that Z = {0, 1}. has the discrete topology, S /= ∅., and f : S → Z . is
an arbitrary continuous mapping. Then, f |S : S → Z . is also a continuous mapping.
Moreover, since Z has the discrete topology, f (S). is closed in Z, i.e., f (S) = f (S) ⊃
f (S).. By Theorem 1.16, f (S). contains exactly one point. Hence, f (S). contains exactly
one point, which implies that f is constant. Finally, in view of Theorem 1.16, we conclude
that S . is connected. ⨅⨆

The property of the connectedness of intervals allows us to apply the intermediate value
theorem to all real-valued continuous mappings defined in an interval.

Theorem 1.24 Let X be a topological space. Then X is connected if and only if the
intermediate value theorem holds for every continuous mapping f : X → R..

Proof Assume that X is connected. According to Theorem 1.18, f (X). is a connected
subset of R.. Thus, it follows from Remark 1.17 that f (X). is an interval. Hence, for all
x1, x2 ∈ X . and c ∈ R. with f (x1) ≤ c ≤ f (x2)., there exists an x0 ∈ X . such that
c = f (x0)..

Conversely, we assume that the intermediate value theorem holds for every continuous
mapping f : X → R.. On the contrary, suppose X is disconnected. Then there are
nonempty disjoint open subsets U1 . and U2 . of X such that X = U1 ∪ U2 .. We define the
mapping f : X → R. by f (U1) = {0}. and f (U2) = {1}.. Then, f is a continuous mapping.
The intermediate value theorem does not hold for this continuous mapping f : X → R.,
which contradicts our assumption. Therefore, X has to be connected. ⨅⨆
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1.2 Vector Spaces

Let K. be either R. or C., where R. stands for the set of all real numbers and C. stands for the
set of all complex numbers. Throughout this book, we denote by Q. the set of all rational
numbers, by Z. the set of all integers, by N. the set of all positive integers, and by N0 . the
set of all nonnegative integers.

Definition 1.25 A nonempty set V is called a vector space (or a linear space) over K. if
there are two operations, called vector addition and scalar multiplication, such that the
following conditions are satisfied:

(i). x + y = y + x . for all x, y ∈ V .;
(ii). (x + y) + z = x + (y + z). for all x, y, z ∈ V .;

(iii). For any x, y ∈ V ., there exists a z ∈ V . such that x + z = y .;
(iv). α(βx) = (αβ)x . for all α, β ∈ K. and any x ∈ V .;
(v). (α + β)x = αx + βx . for all α, β ∈ K. and any x ∈ V .;

(vi). α(x + y) = αx + αy . for all α ∈ K. and all x, y ∈ V .;
(vii). 1x = x . for all x ∈ V ..

Every element of K. is called a scalar and each element of V is called a vector. If K = R.,
then V is called a real vector space, and if K = C., then V is called a complex vector
space.

Definition 1.26 A subset W of a vector space V over K. is called a vector subspace or a
subspace if and only if αx + βy ∈ W . for all α, β ∈ K. and x, y ∈ W .. That is, the sum
of two elements of W and the product of an element of W by a scalar belong to W . A
subset W of a vector space V is called a proper subspace of V if W is a subspace of V

and W /= V ..

We note that any subspace W of a vector space V is a vector space itself, which implies
that every linear combination of elements of W again belongs to W .

Definition 1.27 Let V be a vector space.

(i). A finite collection {x1, x2, . . . , xn}. of elements of V is said to be linearly indepen-
dent if and only if α1 = α2 = · · · = αn = 0. is the unique solution of the linear
equation α1x1 + α2x2 + · · · + αnxn = 0..

(ii). An infinite collection A. of elements of V is called linearly independent if and only
if every finite sub-collection of A. is linearly independent.

(iii). A collection of elements of V is called linearly dependent if and only if it is not
linearly independent.



1.3 Normed Spaces 11

A collection A. of elements of a vector space V is linearly independent if and only if
no member x of the collection is a linear combination of a finite number of members of A.

different from x.

Definition 1.28 Let A be a subset of a vector space V over K.. We denote by spanA. the
set of all finite linear combinations of members of A, i.e.,

.

spanA = {
α1x1 + α2x2 + · · · + αnxn : n ∈ N, αi ∈ K, xi ∈ A

for all i ∈ {1, 2, . . . , n}].
Then spanA. is a vector subspace of V and it is called the space spanned by A.

It is easy to see that the space spanA. (spanned by A) is the smallest vector subspace of
V that contains A.

Definition 1.29 Let B be a subset of a vector space V . Then B is called a basis of V if
and only if B is linearly independent and spanB = V ..

In general, a vector space V has multiple bases, but the number of vectors in each basis
is the same. In other words, if a basis of V has exactly n vectors, then every other basis also
has exactly n vectors. In this case, n is called the dimension of V , and we write dim V = n..

1.3 Normed Spaces

The notion of norm in the vector space is an abstract generalization of length in the
Euclidean space. In fact, we define the norm axiomatically as a real-valued mapping that
satisfies certain conditions.

Definition 1.30 Let V be a vector space over K.. A mapping ll · ll : V → R. is said to be a
norm if and only if it possesses the following three properties:

(i). llxll = 0. if and only if x = 0.;
(ii). llαxll = |α|llxll. for all x ∈ V . and α ∈ K.;

(iii). llx+yll ≤ llxll+llyll. for all x, y ∈ V .. This inequality is called the triangle inequality.

Since llxll = 1
2 (llxll + ll − xll) ≥ 1

2llx + (−x)ll = 1
2ll0ll = 0., it holds that llxll ≥ 0. for

any x ∈ V .. The inverse triangle inequality

.llx − yll ≥ llllxll − llyllll,
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for all x, y ∈ V ., is an elementary consequence of the triangle inequality that gives lower
bounds instead of upper bounds.

The mapping ll · ll : R
n → R. defined by llxll =

/
x2

1 + x2
2 + · · · + x2

n ., for all x =
(x1, x2, . . . , xn) ∈ R

n
., is a norm on R

n
.. This norm is called the Euclidean norm.

Definition 1.31 A vector space with a norm is called a normed space.

Several norms can be defined on one vector space. For example, if we define llxll1 =
|x1| + |x2| + · · · + |xn|. for all x = (x1, x2, . . . , xn) ∈ R

n
., then this mapping ll · ll1 : Rn →

R. is a norm on the vector space R
n
.. Moreover, llxll2 = /|x1|2 + |x2|2 + · · · + |xn|2 .,

for x = (x1, x2, . . . , xn) ∈ R
n
., is the Euclidean norm. Similarly, the mapping llxll∞ =

max{|x1|, |x2|, . . . , |xn|}. is also a norm on R
n
.. This norm ll · ll∞ . is called the sup-norm.

Therefore, to define a normed space, we have to specify both the vector space and the
norm. We denote a normed space as (V , ll ·ll)., where V is a vector space and ll ·ll. is a norm
defined on V . However, if the norm given in the normed space (V , ll · ll). is clear, then the
normed space can be simply written as V .

Throughout this book, we will use the notation {xi}. or {x1, x2, . . .}. to denote the
sequence whose ith term is xi ..

Definition 1.32 Let (V , ll·ll). be a normed space. A sequence {xi}. of vectors in V is called
a Cauchy sequence if and only if for each ε > 0. there exists a positive real number Mε .

such that llxi − xjll < ε . for all i, j > Mε ..

If a sequence {xi}. of vectors in a normed space (V , ll · ll). converges to a vector x ∈ V .,
i.e., llxi − xll → 0. as i → ∞., then

.llxi − xjll ≤ llxi − xll + llxj − xll → 0

as i, j → ∞.. Hence, every convergent sequence of vectors in a normed space is a Cauchy
sequence. However, the reverse is not usually true.

Lemma 1.33 If {xi}. is a Cauchy sequence in a normed space (V , ll ·ll)., then the sequence
{llxill}. converges.

Proof Since |llxill − llxjll| ≤ llxi − xjll. for all i, j ∈ N., the sequence {llxill}. is a Cauchy
sequence in R.. Thus, we can conclude that {llxill}. converges. ⨅⨆

According to Lemma 1.33, every Cauchy sequence in a normed space is bounded.

Definition 1.34 Let (V , ll · ll). be a normed space.
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(i). V is called complete if and only if every Cauchy sequence in V converges to an
element of V .

(ii). Each complete normed space is called a Banach space.

The n-dimensional Euclidean space E
n
. is an example of the Banach space.

Definition 1.35 Let (V , ll · ll). be a normed space.

(i). A series
∞E
i=1

xi . converges in V if and only if there exists an element x of V such that

.

llllllll
n7

i=1

xi − x

llllllll → 0 as n → ∞.

In this case, we write
∞E
i=1

xi = x ..

(ii). When
∞E
i=1

llxill < ∞., the series
∞E
i=1

xi . is called absolutely convergent.

It is surprising that even if a series converges absolutely, it might not converge.
The following theorem shows that completeness in a normed space is equivalent to the
statement that every absolutely convergent series converges.

Theorem 1.36 A normed space (V , ll · ll). is complete if and only if every absolutely
convergent series in V converges in V .

Proof Assume that (V , ll · ll). is a complete normed space and xi ∈ V . for all i ∈ N. such

that
∞E
i=1

llxill < ∞., i.e., the series
∞E
i=1

xi . converges absolutely. We now define

.sn = x1 + x2 + · · · + xn

for all n ∈ N..
We will prove that {sn}. is a Cauchy sequence in V . Assume that ε . is an arbitrary positive

real number and N is a positive integer that satisfy

.

∞7
n=N+1

llxnll < ε.

Then, using the triangle inequality, we obtain
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.llsm − snll = llxm+1 + xm+2 + · · · + xnll ≤
∞7

k=m+1

llxkll < ε

for all m, n ∈ N. with n > m > N ., which implies that {sn}. is a Cauchy sequence in V .
Since V is complete, the Cauchy sequence {sn}. converges in V , which implies that the

series
∞E
i=1

xi . converges in V .

Conversely, we assume that every absolutely convergent series converges and {xi}. is an
arbitrary Cauchy sequence in V . Then, for any positive integer k, there exists a positive
integer p

k
. such that llxi − xjll < 1

2k . for all integers i, j > p
k
.. We may assume that the

sequence {p
k
}. is strictly increasing.

Since the series
∞E

k=1
(xpk+1 − xpk

). is absolutely convergent, it converges by our

assumption. Since

.xpk
= xp1 + (xp2 − xp1) + · · · + (xpk

− xpk−1) = xp1 +
k−17
i=1

(xpi+1 − xpi
),

the sequence {xpk
}. converges to an element x of V . Thus, we obtain

.llxi − xll ≤ llxi − xpi
ll + llxpi

− xll → 0

as i → ∞., i.e., the Cauchy sequence {xi}. converges in V , which implies that (V , ll · ll). is
complete. ⨅⨆

We note that every normed space (V , ll · ll). is a metric space (V , d)., where the metric
d : V × V → R. is defined as d(x, y) = llx − yll. for all x, y ∈ V .. In this case, the metric
d is said to be the metric generated by the norm ll · ll..

We now introduce a well-known theorem in topology.

Lemma 1.37 Every closed subset of a complete normed space is complete.

Proof Let (V , ll · ll). be a complete normed space. If we define a mapping d : V ×V → R.

by d(x, y) = llx − yll., then (V , d). is a metric space. Thus, (V , d). is a complete metric
space. It is well known that a closed subset W of a complete metric space V is complete.

⨅⨆

Using this lemma, we can easily prove the following theorem.

Theorem 1.38 A closed subspace of a Banach space is a Banach space.
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Proof Let W be a closed subspace of a Banach space V . Then W is a normed space, which
is closed in V . According to Lemma 1.37, W is complete as a closed subset of a complete
normed space V . Therefore, W is a Banach space. ⨅⨆

1.4 Inner Product Spaces

An inner product space is a vector space over K. with an operation called an inner product.
The inner product of two vectors x and y in the space is a scalar, denoted with angle
brackets such as (x, y)..

We denote by α . the complex conjugate of the scalar α .. We see that α = α . for every
α ∈ R..

Definition 1.39 Let V be a vector space over K.. A mapping (·, ·) : V × V → K. is
said to be an inner product for V if and only if the mapping has the the following four
properties:

(i). (x, y) = (y, x).;
(ii). (αx + βy, z) = α(x, z) + β(y, z).;

(iii). (x, x) ≥ 0.;
(iv). (x, x) = 0. if and only if x = 0.

for all x, y, z ∈ V . and α, β ∈ K.. A vector space with an inner product is called an inner
product space or a pre-Hilbert space.

It follows from Definition 1.39 (i). that (x, x) = (x, x)., which implies that (x, x). is a
real number for any x ∈ V .. According to Definition 1.39 (i). and (ii)., we have

.(x, αy + βz) = (αy + βz, x) = α(x, y) + β(x, z)

for all x, y, z ∈ V . and α, β ∈ K..

Example 1.40 Let Kn
. be the vector space of all ordered n-tuples (x1, x2, . . . , xn)., where

xi ∈ K. for i ∈ {1, 2, . . . , n}.. We define a mapping (·, ·) : Kn × K
n → K. by

.(x, y) =
n7

i=1

xiyi

for all ordered n-tuples x = (x1, x2, . . . , xn). and y = (y1, y2, . . . , yn).. Then (·, ·). is an
inner product for the vector space K

n
. and (Kn, (·, ·)). is an inner product space.
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Every inner product (·, ·). for a vector space V naturally induces an associated norm
through llxll = √(x, x). for all x ∈ V .. Therefore, each inner product space is a normed
space. In general, the norm on an inner product space means the mapping defined by
llxll = √(x, x)..

Theorem 1.41 (Cauchy–Schwarz Inequality) Let (V , (·, ·)). be an inner product space
over K.. Then

.|(x, y)| ≤ llxllllyll

for all x, y ∈ V ..

Proof For any x, y ∈ V ., we set A = llxll2 = (x, x)., B = |(x, y)|., and C = llyll2 =
(y, y).. We note that B is a nonnegative real number. Then we can choose a scalar α ∈ K.

such that |α| = 1. and B = α(y, x).. For all r ∈ R., it follows from Definition 1.39 (iii).

that

.

0 ≤ (x − rαy, x − rαy)
= (x, x) − rα(y, x) − rα(x, y) + r2(y, y)
= (x, x) − rα(y, x) − rα(y, x) + r2(y, y)
= A − Br − Br + Cr2

= A − 2Br + Cr2.

If C = 0., it has to be B = 0.. (Otherwise, the aforementioned inequality does not hold for
large r > 0..) If C > 0., we take r = B

C
. in the above inequality and we obtain B2 ≤ AC .,

which completes the proof. ⨅⨆

We may now ask whether every normed space is an inner product space. However,
contrary to our expectation, the answer is negative. In the following theorem, we propose
a necessary and sufficient condition for a normed space to be an inner product space.

We recall that the norm on an inner product space is defined by llxll = √(x, x)..

Theorem 1.42 (Parallelogram Law) Let (V , (·, ·)). be an inner product space. Then

.llx + yll2 + llx − yll2 = 2llxll2 + 2llyll2 (1.1)

for all x, y ∈ V ..

Proof In view of Definition 1.39 (iii)., we have
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.

llx + yll2 = (x + y, x + y)
= (x, x) + (x, y) + (y, x) + (y, y)
= llxll2 + (x, y) + (y, x) + llyll2

for all x, y ∈ V .. If we replace y by − y . in the above equation, then we obtain

.llx − yll2 = llxll2 − (x, y) − (y, x) + llyll2

for all x, y ∈ V .. Finally, we obtain the parallelogram law by adding the last two equations.
⨅⨆

Assume that (V , ll · ll). is a normed space over K.. For any norm that satisfies
the parallelogram law (1.1), the inner product that generates the norm is unique as a
consequence of polarization identity. In the case of K = R., the polarization identity is
given by

.(x, y) = 1

4

(llx + yll2 − llx − yll2) (1.2)

for all x, y ∈ V .. For the case of K = C., the polarization identity is given by

.(x, y) = 1

4

(llx + yll2 − llx − yll2) + i

4

(llix − yll2 − llix + yll2) (1.3)

for all x, y ∈ V ..
Hence, if the parallelogram law is satisfied in a normed space (V , ll · ll)., then the

normed space is an inner product space that is correspondingly equipped with the inner
product (1.2) or (1.3).

Using the Cauchy–Schwarz inequality and the inverse triangle inequality, we will prove
that the inner product and the norm are continuous mappings.

Theorem 1.43 Let (V , (·, ·)). be an inner product space over K.. For any fixed x, y ∈ V .,
the mappings (x, ·) : V → K., (·, y) : V → K., and ll · ll : V → R. are (.uniformly).
continuous on V .

Proof By the Cauchy–Schwarz inequality, we have

.|(x, y1) − (x, y2)| = |(x, y1 − y2)| ≤ llxlllly1 − y2ll

for all y1, y2 ∈ V . and for a fixed x ∈ V .. That is, (x, ·). is a uniformly continuous
mapping. Similarly, we can prove that if y is a fixed element of V , then (·, y). is a uniformly
continuous mapping.
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Furthermore, using the inverse triangle inequality, we obtain

.
llllx1ll − llx2ll

ll ≤ llx1 − x2ll

for all x1, x2 ∈ V .. Therefore, ll · ll. is also a uniformly continuous mapping. ⨅⨆

We remember that any subset W of a vector space V is called a subspace of V if and
only if W is itself a vector space with the same vector addition and scalar multiplication,
which are defined on V . In sentences referring to vector spaces, the term “subspace”
always refers to the subspace aforementioned.

Theorem 1.44 If W is a subspace of an inner product space V , so is W ..

Proof Let x and y be arbitrary elements of W . and let α . be an arbitrary scalar. Then there
exist sequences {xi}. and {yi}. in W which converge to x and y, respectively. Since W is a
vector space, {xi + yi}. and {αxi}. are sequences in W , which converge to x + y . and αx .,
respectively. Therefore, since W . is closed, x + y ∈ W . and αx ∈ W ., which implies that W .

is a subspace of V by Definition 1.26. ⨅⨆

One of the most important uses of the inner product is to define the orthogonality of
the vectors. This distinguishes the Hilbert space theory from the general theory of Banach
spaces.

Definition 1.45 Let V be an inner product space. Two vectors x, y ∈ V . are called
orthogonal if and only if (x, y) = 0.. In the case, we write x ⊥ y ..

We notice that if x ⊥ y ., then (x, y) = 0., and hence, (y, x) = (x, y) = 0 = 0., i.e.,
y ⊥ x ..

Another example of the geometric property of the norm defined by an inner product
is the Pythagorean theorem. The Pythagorean theorem describes the basic relationship
between the sides of a right triangle in terms of Euclidean geometry.

The following theorem shows that the Pythagorean theorem holds in each inner product
space.

Theorem 1.46 (Pythagorean Theorem) Let (V , (·, ·)). be an inner product space. If the
norm ll · ll. on V is induced by the inner product (·, ·)., then the Pythagorean formula holds,
i.e.,

.llx + yll2 = llxll2 + llyll2

for any pair of orthogonal vectors in V .
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Proof If x and y are orthogonal vectors, then (x, y) = (y, x) = 0.. Hence, we have

.llx + yll2 = llxll2 + (x, y) + (y, x) + llyll2 = llxll2 + llyll2

for all x, y ∈ V .. ⨅⨆

The Pythagorean theorem can be generalized into the following theorem.

Theorem 1.47 (Generalized Pythagorean Theorem) Let V be an inner product space.
If the norm of V is given as in Theorem 1.46, then the Pythagorean formula holds, i.e.,

.

llllllll
n7

i=1

xi

llllllll
2

=
n7

i=1

llxill2

for all orthogonal vectors x1, x2, . . . , xn ∈ V ..

Proof We note that llx1+x2ll2 = llx1ll2+llx2ll2
.holds for all orthogonal vectors x1, x2 ∈ V .

according to Theorem 1.46. Hence, this theorem is true for n = 2.. Assume now that this
theorem holds for some integer n > 1.. For any orthogonal vectors x1, x2, . . . , xn, xn+1 ∈
V ., we set x =

nE
i=1

xi . and y = xn+1 .. Since x and y are orthogonal, we have

.

llllllll
n+17
i=1

xi

llllllll
2

= llx + yll2 = llxll2 + llyll2 =
n7

i=1

llxill2 + llxn+1ll2 =
n+17
i=1

llxill2,

which is our equality for n + 1.. We can complete the proof with the inductive conclusion.
⨅⨆

We say that a set of vectors forms an orthonormal set if and only if all vectors in the
set are mutually orthogonal and all have unit length. The Pythagorean formula will help
us prove Bessel’s inequality, which is an important property of orthonormal sets.

Theorem 1.48 (Bessel’s Inequality) Let {x1, x2, . . . , xn}. be an orthonormal set of vec-
tors in an inner product space V . Then

.

n7
i=1

|(x, xi)|2 ≤ llxll2 (1.4)

for all x ∈ V ..

Proof It follows from Theorem 1.47 that
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.

llllllll
n7

i=1

cixi

llllllll
2

=
n7

i=1

llcixill2 =
n7

i=1

|ci |2

for any scalars c1, c2, . . . , cn .. Thus, we have

.

llllllllx −
n7

i=1

cixi

llllllll
2

=
l
x −

n7
i=1

cixi, x −
n7

j=1

cj xj

l

= llxll2 −
l
x,

n7
j=1

cj xj

l
−

l n7
i=1

cixi, x

l
+

n7
i=1

|ci |2llxill2

= llxll2 −
n7

j=1

cj (x, xj ) −
n7

i=1

ci(x, xi) +
n7

i=1

cici

= llxll2 −
n7

i=1

|(x, xi)|2 +
n7

i=1

|(x, xi) − ci |2.

Since c1, c2, . . . , cn . are arbitrary scalars, if we set ci = (x, xi). for i ∈ {1, 2, . . . , n}., then
the previous equality yields

.

llllllllx −
n7

i=1

(x, xi)xi

llllllll
2

= llxll2 −
n7

i=1

|(x, xi)|2 (1.5)

for all x ∈ V ., which gives the Bessel’s inequality (1.4). ⨅⨆

1.5 Hilbert Spaces

Since Hilbert spaces allow the methods of linear algebra and calculus to be generalized
from (finite-dimensional) Euclidean spaces to possibly infinite-dimensional spaces, the
Hilbert spaces are widely used in mathematics and physics.

Definition 1.49 A Hilbert space is a complete inner product space.

In the aforementioned definition, the completeness of an inner product space (V , (·, ·)).
means the completeness of the normed space (V , ll · ll)., where the norm is defined by
llxll = √(x, x). for all x ∈ V ..

There are many examples of Hilbert spaces. Rn
. and C

n
. are Hilbert spaces if they are

equipped with the inner products (x, y) =
nE

i=1
xiyi . and (x, y) =

nE
i=1

xiyi ., respectively.

Another example of Hilbert spaces is 𝓁2
., where 𝓁2

. is the space of all sequences {xi}. of real

numbers such that
∞E
i=1

x2
i < ∞. with the inner product defined by
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.(x, y) =
∞7
i=1

xiyi .

Two vectors in an inner product space are said to be orthonormal if and only if they are
orthogonal unit vectors. We say that a set of vectors forms an orthonormal set if and only
if all vectors in the set are mutually orthogonal and all have unit length.

Definition 1.50 Let (V , (·, ·)). be an inner product space.

(i). A collection S of nonzero vectors in V is said to be an orthogonal system if and only
if any two different vectors in S are orthogonal to each other.

(ii). An orthogonal system S is said to be an orthonormal system if and only if every vector
in S is a unit vector, i.e., llxll = 1. for every x ∈ S ..

In Definition 1.50 (ii)., we note that the norm is induced by the inner product, i.e., it is
defined by llxll = √(x, x)..

Every orthogonal system of nonzero vectors can be normalized. If S is an orthogonal
system, then the collection

.S' =
l

1

llxllx : x ∈ S

l

is an orthonormal system.

Theorem 1.51 Every orthogonal system in an inner product space is linearly indepen-
dent.

Proof Assume that S is an orthogonal system in an inner product space (V , (·, ·)). over K.

and that
nE

i=1
αixi = 0. for some x1, x2, . . . , xn ∈ S . and α1, α2, . . . , αn ∈ K.. Then, we have

.

0 =
n7

i=1

(0, αixi) =
n7

i=1

l n7
j=1

αjxj , αixi

l
=

n7
i=1

(αixi, αixi)

=
n7

i=1

|αi |2llxill2,

which implies that αi = 0. for all i ∈ {1, 2, . . . , n}.. Therefore, x1, x2, . . . , xn . are linearly
independent. ⨅⨆

Definition 1.52 Let V be an inner product space.
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(i). A sequence of vectors of V that constitutes an orthonormal system is called an
orthonormal sequence.

(ii). An orthonormal sequence {xi}. in V is called complete if and only if

.x =
∞7
i=1

(x, xi)xi

for all x ∈ V ..

We note that the equality of Definition 1.52 (ii). means

. lim
n→∞

llllllllx −
n7

i=1

(x, xi)xi

llllllll = 0,

where ll · ll. is the norm on V defined by llvll = √(v, v). for any v ∈ V ..

Lemma 1.53 Assume that V is a Hilbert space overK., {xi}. is an orthonormal sequence in
V , and that {ci}. is a sequence of scalars fromK.. Then the infinite series

∞E
i=1

cixi . converges

if and only if
∞E
i=1

|ci |2 < ∞.. In that case,

.

llllllll
∞7
i=1

cixi

llllllll
2

=
∞7
i=1

|ci |2.

Proof For any integers n > m > 0., it follows from Theorem 1.47 that

.

llllllll
n7

i=m

cixi

llllllll
2

=
n7

i=m

|ci |2. (1.6)

If
∞E
i=1

|ci |2 < ∞., it follows from (1.6) that the sequence {sn}., sn =
nE

i=1
cixi ., is a Cauchy

sequence in V . This fact, together with the completeness of V , implies the convergence of

the infinite series
∞E
i=1

cixi ..

Conversely, we assume that the infinite series
∞E
i=1

cixi . converges. Since the sequence

{σn}. of scalars from K., where σn =
nE

i=1
|ci |2 ., is a Cauchy sequence in R., the convergence

of
∞E
i=1

|ci |2 . follows from (1.6).
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Finally, it is enough to take m = 1. and put n → ∞. in (1.6) to obtain our equality. ⨅⨆

Definition 1.54 An orthonormal system S in an inner product space V over K. is called
an orthonormal basis if and only if every element x ∈ V . has a unique representation

.x =
∞7
i=1

cixi,

where ci ∈ K. and xi .’s are distinct elements of S.

We note that a complete orthonormal sequence is an orthonormal basis. In view of
Definition 1.52 (ii)., it is sufficient to show the uniqueness of the representation. We leave
this work to the reader’s practice.

Remark 1.55 Let V be an inner product space over K.. If {xi}. is a complete orthonormal
sequence in V , then the span

.span{x1, x2, . . .} =
l n7

i=1

cixi : c1, c2, . . . , cn ∈ K; n ∈ N

l

is dense in V .

Theorem 1.56 Let V be a Hilbert space. An orthonormal sequence {xi}. in V is complete
if and only if (x, xi) = 0. for all i ∈ N. implies x = 0..

Proof Assume that {xi}. is a complete orthonormal sequence in V . Then we have

.x =
∞7
i=1

(x, xi)xi

for all x ∈ V .. Hence, if (x, xi) = 0. for all i ∈ N., then x = 0..
Conversely, assume that (x, xi) = 0. for all i ∈ N. implies x = 0.. For any x ∈ V ., we

define

.y =
∞7
i=1

(x, xi)xi .

In view of Bessel’s inequality, we have

.

n7
i=1

|(x, xi)|2 ≤ llxll2
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for any x ∈ V . and n ∈ N.. By letting n → ∞. in Bessel’s inequality, we get

.

∞7
i=1

|(x, xi)|2 ≤ llxll2.

By Lemma 1.53 and the previous inequality, we conclude that the sum y exists.
We note that for any i ∈ N.,

.

(x − y, xi) = (x, xi) −
l ∞7

k=1

(x, xk)xk, xi

l

= (x, xi) −
∞7

k=1

(x, xk)(xk, xi)

= (x, xi) − (x, xi)
= 0,

which implies that x = y =
∞E
i=1

(x, xi)xi .. According to Definition 1.52 (ii)., the

orthonormal sequence {xi}. is complete. ⨅⨆

The Parseval’s formula presented in the following theorem can be interpreted as an
extension of the Pythagorean formula to infinite sums.

Theorem 1.57 (Parseval’s Formula) An orthonormal sequence {xi}. in a Hilbert space
V is complete if and only if

.llxll2 =
∞7
i=1

|(x, xi)|2 (1.7)

for all x ∈ V ..

Proof Assume that x is any element of V . If {xi}. is a complete orthonormal sequence,
then the expression on the left hand in (1.5) converges to 0 as n → ∞.. Thus, we have

. lim
n→∞

(
llxll2 −

n7
i=1

|(x, xi)|2
0

= 0,

which implies the validity of (1.7).
Conversely, if the Parseval’s formula (1.7) holds, then the expression on the right hand

in (1.5) converges to 0 as n → ∞.. Hence, we obtain
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. lim
n→∞

llllllllx −
n7

i=1

(x, xi)xi

llllllll
2

= 0,

which implies that the orthonormal sequence {xi}. is complete. ⨅⨆

Definition 1.58 A Hilbert space V1 . is said to be isomorphic to a Hilbert space V2 . if and
only if there exists a bijective linear mapping f : V1 → V2 . such that

.(f (x), f (y)) = (x, y)

for all x, y ∈ V1 .. In this case, the mapping f is called a Hilbert space isomorphism from
V1 . onto V2 ..

We note that a Hilbert space is said to be separable if and only if it contains a complete
orthonormal sequence (see Definition 1.9 or [16]). It should be noted that all finite-
dimensional Hilbert spaces are separable.

Theorem 1.59 If V is a real Hilbert space with dim V = n., then it is isomorphic to Rn
..

Proof Considering the Gram–Schmidt orthonormalization, we can assume that
{x1, x2, . . . , xn}. is an orthonormal basis of V and x is an arbitrary element of V . We
define a mapping f : V → R

n
. by f (x) = (c1, c2, . . . , cn)., where ci = (x, xi). for

i ∈ {1, 2, . . . , n}.. Then it is easy to check that f is a one-to-one linear mapping from V

onto R
n
..

In addition, for arbitrary x, y ∈ V ., we set ci = (x, xi). and di = (y, xi)., i ∈
{1, 2, . . . , n}.. Then we have

.

(f (x), f (y)) = l
(c1, c2, . . . , cn), (d1, d2, . . . , dn)

l

=
n7

i=1

cidi =
n7

i=1

(x, xi)(y, xi)

=
n7

i=1

l
x, (y, xi)xi

l

=
l
x,

n7
i=1

(y, xi)xi

l

= (x, y).

Therefore, according to Definition 1.58, f is an isomorphism from V onto R
n
.. ⨅⨆
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We note that any real infinite-dimensional separable Hilbert space is isomorphic to the
real space 𝓁2

., which is presented in the next section. In this sense, there is only one real
infinite-dimensional separable Hilbert space. The same applies to complex Hilbert spaces:
any two complex infinite-dimensional separable Hilbert spaces are isomorphic.

1.6 Hilbert Space 𝓁2

Let R∞
. be the set of all real-valued sequences. We define

.{xi} + {yi} = {xi + yi} and α{xi} = {αxi}

for all {xi}, {yi} ∈ R
∞

. and α ∈ R.. Moreover, we define

. − {xi} = {−xi}

for any {xi} ∈ R
∞

.. Using these definitions as the vector addition and the scalar
multiplication, we can easily check that R∞

. is a real vector space.
We now define

.𝓁2 =
l
{xi} ∈ R

∞ :
∞7
i=1

x2
i < ∞

l

as a subset of R∞
., consisting of all real-valued sequences {xi}. with the property

∞E
i=1

x2
i .

< ∞..

Theorem 1.60 Assume that {xi}, {yi} ∈ 𝓁2
.. Then

∞E
i=1

xiyi . converges and

.

llll
∞7
i=1

xiyi

llll ≤
( ∞7

i=1

x2
i

01/2( ∞7
i=1

y2
i

01/2

.

Proof For each n ∈ N., the ordered n-tuple (x1, x2, . . . , xn). is an element of Rn
., where

R
n
. is the n-dimensional Euclidean space. Thus, by using the Cauchy-Schwarz inequality

for Rn
., we obtain

.

n7
i=1

|xi ||yi | = |(x, y)n| ≤ llxllnllylln =
( n7

i=1

x2
i

01/2( n7
i=1

y2
i

01/2

,
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where we define

.(x, y)n =
n7

i=1

|xi ||yi | and llxlln =
( n7

i=1

x2
i

01/2

for all elements x = (x1, x2, . . . , xn). and y = (y1, y2, . . . , yn). of Rn
.. Since {xi}, {yi} ∈

𝓁2
., we have

.

n7
i=1

|xi ||yi | ≤
( ∞7

i=1

x2
i

01/2( ∞7
i=1

y2
i

01/2

.

Hence, the finite sum of the left-hand side is bounded above, and it increases with n.
Therefore, we have

.

∞7
i=1

|xi ||yi | ≤
( ∞7

i=1

x2
i

01/2( ∞7
i=1

y2
i

01/2

.

That is,
∞E
i=1

xiyi . converges absolutely and thus, it converges.

Moreover, we obtain

.

llll
∞7
i=1

xiyi

llll ≤
∞7
i=1

|xi ||yi | ≤
( ∞7

i=1

x2
i

01/2( ∞7
i=1

y2
i

01/2

for all {xi}, {yi} ∈ 𝓁2
.. ⨅⨆

Using the previous theorem, we can now show that 𝓁2
. is a subspace of the real vector

space R
∞

..

Theorem 1.61 𝓁2
. is a subspace of the real vector space R∞

..

Proof We just need to show that 𝓁2
. is closed under the action of vector addition and scalar

multiplication. It is obvious that if x ∈ 𝓁2
., then αx ∈ 𝓁2

. for any α ∈ R..
Assume that x = {xi} ∈ 𝓁2

. and y = {yi} ∈ 𝓁2
.. It then follows from Theorem 1.60 that

∞E
i=1

xiyi . converges, since both
∞E
i=1

x2
i . and

∞E
i=1

x2
i . converge. We note that

.

n7
i=1

(xi + yi)
2 =

n7
i=1

x2
i + 2

n7
i=1

xiyi +
n7

i=1

y2
i
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for every n ∈ N.. Since every sequence of partial sums on the right-hand side converges,

the sequence on the left-hand side also converges. That is,
∞E
i=1

(xi + yi)
2
. converges, which

implies that x + y ∈ 𝓁2
.. ⨅⨆

Now we define a real-valued mapping (·, ·) : 𝓁2 × 𝓁2 → R. by

.(x, y) =
∞7
i=1

xiyi (1.8)

for all x = {xi} ∈ 𝓁2
. and y = {yi} ∈ 𝓁2

..

Theorem 1.62 (·, ·). is an inner product for 𝓁2
..

Proof It is not difficult to check that the given mapping (·, ·). satisfies the four conditions
given in Definition 1.39. We therefore leave the proof of this theorem to the reader. ⨅⨆

Theorem 1.60 represents the 𝓁2
.-version of the Cauchy–Schwarz inequality. The inner

product defined by (1.8) induces the metric d on 𝓁2
.:

.d(x, y) = /(x − y, x − y) =
( ∞7

i=1

(xi − yi)
2
01/2

. (1.9)

We also note that 𝓁2
. contains the R̃

n
. for each n ∈ N., where R̃

n
. is an isomorphic copy of

R
n
.. More precisely, we define

.R̃
n = {{xi} ∈ R

∞ : xi = 0 for all i > n
]
.

Thus, the metric on 𝓁2
. given by (1.9) can be regarded as a generalization of the Euclidean

metric.

Theorem 1.63 𝓁2
. is complete.

Proof Assume that {qm}. is an arbitrary Cauchy sequence in 𝓁2
., where we set

.qm = {qm,1, qm,2, . . . , qm,n, . . .}

for every m ∈ N..

(a). We assert that for each j ∈ N., {qm,j }m . is a Cauchy sequence in R.. Let j be fixed
and let ε > 0. be arbitrarily given. Then there exists an integer N > 0. such that
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d(qm, qn) < ε . for all m, n > N ., where the metric d on 𝓁2
. is defined by (1.9).

Moreover, we have

.|qm,j − qn,j | ≤
( ∞7

i=1

(qm,i − qn,i)
2
01/2

= d(qm, qn) < ε

for all m, n > N .. Therefore, for every j ∈ N., {qm,j }m . is a Cauchy sequence in R. and
there exists a real number zj = lim

m→∞ qm,j .. We now let z = {zj }..
(b). We check that z ∈ 𝓁2

.. Let h > 0. be an arbitrary real number. Since {qm}. is a Cauchy
sequence in 𝓁2

., there is an integer N > 0. such that d(q
N
, q

N+p
) < h. for all integers

p > 0.. Then we have

.

∞7
i=1

(
q

N,i
− q

N+p,i

)2 = d
(
q

N
, q

N+p

)2
< h2

and hence, we obtain

.

n7
i=1

(
q

N,i
− q

N+p,i

)2
< h2

for every n ∈ N.. Since lim
p→∞ q

N+p,i
= zi . for any i ∈ N., it follows from the previous

inequality that

. lim
p→∞

n7
i=1

(
q

N,i
− q

N+p,i

)2 =
n7

i=1

(
q

N,i
− zi

)2 ≤ h2.

Since the sequence of real numbers

.

l n7
i=1

(
q

N,i
− zi

)2
l

n

is monotone increasing and bounded above, it converges. More precisely,

.

∞7
i=1

(
q

N,i
− zi

)2
< ∞.

Therefore, we conclude that {q
N,i

− zi}i ∈ 𝓁2
.. We note that

.{zi} = {q
N,i

}i − {q
N,i

− zi}i ∈ 𝓁2,
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since {q
N,i

}i = q
N

∈ 𝓁2
. and {q

N,i
− zi}i ∈ 𝓁2

.. That is, z = {zi} ∈ 𝓁2
..

(c). We will prove that lim
n→∞ qn = z.. Given ε > 0., there exists an integer N > 0. such that

d(qn, qn+p) < ε . for all integers n > N . and p > 0.. Then we have

.

∞7
i=1

(qn,i − qn+p,i)
2 < ε2

for all integers n > N . and p > 0.. Hence, we further obtain

.

k7
i=1

(qn,i − qn+p,i)
2 < ε2

for any integer k > 0.. Thus, since lim
p→∞ qn+p,i = zi . by (a)., we have

.

k7
i=1

(qn,i − zi)
2 ≤ ε2

for each integer k > 0.. Hence,

.

∞7
i=1

(qn,i − zi)
2 ≤ ε2

for all integers n > N ., which implies that d(qn, z) ≤ ε . for each integer n > N .. That
is, the Cauchy sequence {qn}. converges to z ∈ 𝓁2

. by (b).. Therefore, every Cauchy
sequence in 𝓁2

. converges (in 𝓁2
.), i.e., 𝓁2

. is complete. ⨅⨆

We have proved in the preceding theorems that (𝓁2, (·, ·)). is a complete real inner
product space, i.e., it is a real Hilbert space.

Theorem 1.64 (𝓁2, (·, ·)). is a real Hilbert space.

An important idea for the proof of the following theorem is that for each ε > 0., every
x0 ∈ 𝓁2

. is within ε . distance from the subset

.Dn = {{xi} ∈ 𝓁2 : xi ∈ Q for 0 < i ≤ n and xi = 0 for i > n
]

(1.10)

for some integer n > 0..

Theorem 1.65 𝓁2
. is separable.
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Proof First, we easily check that Dn . defined by (1.10) is a countable subset of 𝓁2
.. We now

define

.D =
∞l

n=1

Dn

and note that D is also a countable subset of 𝓁2
..

We assert that D is dense in 𝓁2
.. Assume that p = {pi}. is arbitrary element of 𝓁2

. and
ε > 0. is given arbitrarily. We complete the proof by showing that there is an element

z ∈ D . that satisfies d(z, p) < ε .. Since p ∈ 𝓁2
., we have

∞E
i=1

p2
i < ∞.. Thus, we can choose

an integer N > 0. such that

.

∞7
i=N+1

p2
i <

1

2
ε2.

Furthermore, we may choose rational numbers r1, r2, . . . , rN
. such that

.|ri − pi | <
1√
2N

ε

for i ∈ {1, 2, . . . , N}.. If we set z = {r1, r2, . . . , rN
, 0, 0, . . .}., then z ∈ D . and we obtain

.

d(z, p) =
( N7

i=1

(ri − pi)
2 +

∞7
i=N+1

p2
i

01/2

<

(
N

2N
ε2 + 1

2
ε2

01/2

= ε,

which implies that the countable subset D (of 𝓁2
.) is dense in 𝓁2

.. Therefore, 𝓁2
. is separable.

⨅⨆



2Aleksandrov Problem 

Abstract 

Isometry is not only widely used to describe the motion of rigid bodies that is a 
mixture of rotational and translational motions of solids but is also an important tool 
in theoretical physics and geometry. The properties of isometry have been actively 
researched for a long time, and this theory is widely used in fields such as natural 
science, computer engineering, radiology, imaging science, and design. In this chapter, 
we will examine in detail the Aleksandrov problem, one of the ways to find necessary 
and sufficient conditions for characterizing the isometries defined between Euclidean 
spaces. 

2.1 Theorem of Mazur and Ulam 

Let (X,  ·  ). and (Y,  ·  ). be some normed spaces. A mapping f : X → Y . is called an 
isometry if and only if f satisfies the equality  f (x)− f (y) =  x − y . for all x, y ∈ X .. 
In other words, a mapping is an isometry if and only if it preserves all distances. 

Definition 2.1 Let f : X → Y . be a mapping between the real normed spaces X and Y . 

(i). f is called linear if and only if it satisfies f (sx+ty) = sf (x)+tf (y). for all x, y ∈ X . 

and s, t ∈ R.. 
(ii). f is affine if and only if it satisfies f ((1 − t)x + ty) = (1 − t)f (x) + tf (y). for all 

x, y ∈ X . and t ∈ R.. 

The original version of the chapter has been revised. A correction to this chapter can be found at 
https://doi.org/10.1007/978-3-031-77613-7_9 
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Remark 2.2 Combining (i). and (ii). of Definition 2.1, the mapping f is affine if and only 
if it is linear up to a translation, and this happens if and only if f − f (0). is linear. 

Proof Assume that the mapping f : X → Y . is affine. Let us define the mapping g : X →
Y . by g(x) = f (x) − f (0). for all x ∈ X .. It then follows from Definition 2.1 (ii). that 

.g((1 − t)x + ty) = (1 − t)g(x) + tg(y) (2.1) 

for all x, y ∈ X . and t ∈ R..  If  we  set x = 0. in (2.1), then we obtain 

.g(ty) = tg(y) (2.2) 

for any y ∈ X . and t ∈ R.. Moreover, we set x = 1
2 . in (2.1) and we use (2.2)  to  ha  ve

.g(x + y) = g(x) + g(y) (2.3) 

for all x, y ∈ X .. 
We note that 

. sx + ty = s

t
(tx + ty) +

 
1 − s

t

 
(ty)

for all x, y ∈ X . and s, t ∈ R..  Thus,  b  y (2.1), (2.2), and (2.3), we get 

. 

g(sx + ty) = g

 
s

t
(tx + ty) +

 
1 − s

t

 
(ty)

 

= s

t
g(tx + ty) +

 
1 − s

t

 
g(ty)

= sg(x + y) + (t − s)g(y)

= sg(x) + tg(y)

for all x, y ∈ X . and s, t ∈ R.. That is, g is linear. 
The reverse implication is obviously true.   

The theory of isometries in Banach spaces originates from the paper [50] by S. Mazur 
and S. M. Ulam. They proved the theorem named after them, which states that every 
surjective isometry between real normed spaces is affine. 

Theorem 2.3 (Mazur and Ulam) Let X and Y be real normed spaces. Every surjective 
isometry f : X → Y . is affine.
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Proof We assume that f : X → Y . is an arbitrary surjective isometry between real normed 
spaces X and Y . We will show that f preserves midpoints, i.e., 

.f

 
1

2
(x + y)

 
= 1

2

 
f (x) + f (y)

  
(2.4) 

for all x, y ∈ X .. 

(a). First, we assume that g is an arbitrary surjective isometry defined on X. Tentatively, 
let x and y be two fixed vectors of X. We define 

. def(g) =
    g
 
1

2
(x + y)

 
− 1

2

 
g(x) + g(y)

      ,
which denotes the possible “affine defect.” Using the triangle inequality and our 
assumption that g is an isometry, we have 

. 

def(g) ≤ 1

2

    g
 
1

2
(x + y)

 
− g(x)

    + 1

2

    g
 
1

2
(x + y)

 
− g(y)

    
= 1

2

    12 (x + y) − x

    + 1

2

    12 (x + y) − y

    
= 1

2
 x − y 

for any surjective isometry g defined on X. Since x, y . are tentatively fixed vectors, 
the affine defect def(·). has a uniform bound. 

(b). We claim that for every surjective isometry g defined on X, there is another surjective 
isometry h (defined onX) whose affine defect is twice as large as the affine defect of g. 
In fact, the one-to-one correspondence of g allows us to define h = g−1 ◦ r ◦ g ., where 
r is the reflection in 1

2 (g(x) + g(y)). in the range space of g. Hence, the reflection r 
is given by r(z) = g(x) + g(y) − z., and h(x) = y ., h(y) = x .. Since g−1

. is also an 
isometry, we obtain 

.

def(h) =
    h
 
1

2
(x + y)

 
− 1

2

 
h(x) + h(y)

      
=
    g−1

 
g(x) + g(y) − g

 
1

2
(x + y)

  
− 1

2
(x + y)

    
=
    g−1

 
g(x) + g(y) − g

 
1

2
(x + y)

  
− g−1

 
g

 
1

2
(x + y)

      
=
    g(x) + g(y) − g

 
1

2
(x + y)

 
− g

 
1

2
(x + y)

     
= 2def(g).
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(c). If we had a surjective isometry defined on X with positive affine defect, then the 
repeated use of part (b). leads to the conclusion that we would obtain surjective 
isometries (defined on X) with arbitrarily large affine defect, which would contradict 
the uniform boundedness of the affine defect that we established in (a).. Thus, we 
conclude that def(g) = 0. for every surjective isometry g defined on X. 

(d). Therefore, the surjective isometry f : X → Y . satisfies def(f ) = 0., i.e., f satisfies 
the Eq. (2.4) for all x, y ∈ X .. (For convenience, x and y are assumed to be tentatively 
fixed, but in practice, they can be chosen arbitrarily.) 

(e). Since every isometry is obviously a continuous mapping, we now only have to prove 
that all continuous solutions of Eq. (2.4) are affine mappings. Equation (2.4)  is  called  
the “Jensen’s functional equation” and every solution to this equation is called a 
“Jensen function.” It is well known that each mapping f between real vector spaces
with f (0) = 0. is a Jensen function if and only if it is an additive mapping. Moreover, 
any continuous additive mapping is linear. Therefore, according to [31, §7.1] or [41, 
Result 1.54], we can conclude that f − f (0). is linear, i.e., f is affine.   

The aforementioned proof of the Mazur–Ulam theorem is an improved version of a 
new proof presented by B. Nica [52]. It should be noted that, prior to B. Nica, J. Väisälä 
presented another new proof of the Mazur–Ulam theorem (see [70]). 

2.2 Theorem of Baker 

As we see in Sect. 2.1, Mazur and Ulam proved that every isometry from one real normed 
space “onto” another is necessarily affine. It is natural to ask whether the Mazur–Ulam 
theorem is also true without the “onto” assumption. 

In connection with this question, we introduce an important property of special normed 
spaces: A normed space is strictly convex if and only if  x + y =  x +  y . implies that 
x and y are linearly dependent. It is easy to see that a normed space is strictly convex if 
and only if x  = 0., y  = 0., and  x + y =  x +  y . imply x = cy . for some c > 0..  A  
detailed definition of strict convexity is introduced as follo ws.

Definition 2.4 A normed space (X,  ·  ). is strictly convex if and only if for any nonzero 
vectors x, y ∈ X . that satisfy  x+y =  x + y ., there exists a constant c > 0., depending 
on x and y, such that x = cy .. 

For every strictly convex normed space X, we can check that if x and y are distinct unit 
vectors of X, then  αx + (1 − α)y < 1. for all scalars α . satisfying 0 < α < 1.:  Using  the  
triangle inequality, we ha ve

. αx + (1 − α)y ≤  αx +  (1 − α)y = α x + (1 − α) y = 1.
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On the contrary, assume that  αx + (1 − α)y = 1. for some 0 < α < 1.. Since 

. 

 αx + (1 − α)y = 1

= α + (1 − α)

= α x + (1 − α) y 
=  αx +  (1 − α)y .

On account of the strict convexity of X, there exists a constant c > 0. such that αx = c(1−
α)y . or x = c 1−α

α
y .. Since x and y are unit vectors, it follows that x = y ., which contradicts 

our assumption that x  = y .. Therefore, we can conclude that  αx + (1 − α)y < 1. for all 
real numbers α .with 0 < α < 1.. 

As a typical example of the strictly convex space, we can take the real Hilbert space we 
are familiar with. 

Theorem 2.5 Every real Hilbert space is strictly convex. 

Proof Let x and y be arbitrary nonzero elements of the real Hilbert space X with  x +
y =  x +  y .. Since  x = √ x, x . for all x ∈ X ., it follows from Definition 1.39 (iii). 

that 

.  x + y 2 =  x + y, x + y =  x 2 + 2 x, y +  y 2

and 

. 
  x +  y   2 =  x 2 + 2 x  y +  y 2.

Equating the last two equations, we get 

.  x, y =  x  y .

Furthermore, using the Cauchy–Schwarz inequality, we have 

.  x  y =  x, y ≤ | x, y | ≤  x  y ,

i.e., | x, y | =  x  y ., which implies that x and y are linearly dependent. Hence, there 
exists a real constant c  = 0. such that x = cy .. It follows from  x + y =  x +  y . that 
|c + 1| = |c| + 1., which yields that c > 0.. Due to Definition 2.4, we can conclude that 
the real Hilbert space X is strictly convex. In general, every real Hilbert space is strictly 
convex.   
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Lemma 2.6 Let Y be a real normed space that is strictly convex. If x, y ∈ Y ., then 1
2 (x+y). 

is the unique element of Y separated from both x and y by the distance 1
2 x − y .. 

Proof The claim is obviously true if x = y .. It is also easy to see that the element 1
2 (x +y). 

is separated from both x and y by a distance 1
2 x − y .. Therefore, all that remains is to 

prove the uniqueness. 
Assume that x  = y . and u, v ∈ Y .with 

.  x − u =  y − u =  x − v =  y − v = 1

2
 x − y .

Then we have 

.

    x − 1

2
(u + v)

    =
    12 (x − u) + 1

2
(x − v)

    
≤ 1

2
 x − u + 1

2
 x − v 

= 1

2
 x − y .

(2.5) 

Similarly, we obtain 

.

    y − 1

2
(u + v)

    ≤ 1

2
 x − y . (2.6) 

If either of these inequalities were strict, then we would have 

.  x − y ≤
    x − 1

2
(u + v)

    +
    y − 1

2
(u + v)

    <  x − y ,

a contradiction. Therefore, equality in (2.5) and (2.6) must hold, so that 

. 

    12 (x − u) + 1

2
(x − v)

    = 1

2
 x − y =

    12 (x − u)

    +
    12 (x − v)

    .

Since Y is strictly convex, x  = u. and x  = v ., it follows that x −u = c(x −v). for some real 
number c > 0.. However, since  x − u =  x − v .,  we  have c = 1. and thus u = v ..   

J. A. Baker [2] significantly generalized the Mazur–Ulam theorem by proving the 
following theorem without the “onto” condition: 

Theorem 2.7 (Baker) If X is a real normed space and Y is a strictly convex real normed 
space, then every isometry f : X → Y . is affine.
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Proof If f (0)  = 0., then we define a mapping g : X → Y . by g(x) = f (x) − f (0).. Then, 
g is also an isometry and g(0) = 0.. Therefore, without loss of generality, we can assume 
that f (0) = 0.. 

Since f is an isometry, it follows that  f (x) =  x . for all x ∈ X .. Hence,  −
f (−x) =  f (−x) =  − x =  x . for each x ∈ X .. Moreover, we have 

. 
  f (x) + (−f (−x))

  = 2 x =  f (x) +  − f (−x) .

Since Y is strictly convex, there is a c > 0. such that f (x) = −cf (−x).. But it is true that 
 f (x) =  x =  f (−x) . and it follows that c = 1.. Thus, it is true that f (−x) = −f (x). 

for all x ∈ X .. 
Since f is an isometry and f (0) = 0., we obtain 

. 

 f (x + y) =  x + y 
=  x − (−y) 
=  f (x) − f (−y) 
=  f (x) + f (y) 

for all x, y ∈ X .. Furthermore, we have 

. 

    f
 
1

2
(x + y)

 
− f (x)

    =
    12 (y − x)

    = 1

2
 x − y = 1

2
 f (x) − f (y) 

and similarly, 

. 

    f
 
1

2
(x + y)

 
− f (y)

    = 1

2
 f (x) − f (y) 

for all x, y ∈ X .. 
It follows from Lemma 2.6 that 

. f

 
1

2
(x + y)

 
= 1

2

 
f (x) + f (y)

  

for any x, y ∈ X .. Every solution to this equation is called a Jensen function. Any mapping 
f between real vector spaces with f (0) = 0. is a Jensen function if and only if it is additive. 
Moreover, any continuous additive mapping is linear. Since f is continuous as an isometry, 
it is linear and the proof is complete.   

The following simple but interesting lemma was presented in the paper [20]  by  P.  
Fischer and Gy. Muszély:
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Lemma 2.8 If Y is a normed space, x, y ∈ Y ., and  x+y =  x + y ., then  sx+ty =
s x + t y . for all s, t ≥ 0.. 

Proof If we assume that 0 ≤ s ≤ t ., then we have  sx + ty ≤ s x + t y .. On the other 
hand, using the inverse triangle inequality, we obtain 

. 

 sx + ty =  t (x + y) − (t − s)x 
≥   t x + y − (t − s) x   
= s x + t y ,

which completes our proof.   

Let Y be a real normed space that is not strictly convex. In this case, we can see from 
the following example that we have an isometry that is not affine. 

Example 2.9 Assume that Y is a real normed space that is not strictly convex. Due to 
Definition 2.4 and Lemma 2.8, we can choose a, b ∈ Y . such that a and b are linearly 
independent,  a =  b = 1., and  a + b =  a +  b .. 

Now we define a mapping f : R → Y . by 

. f (x) =
 
xa (for x ≤ 1),

a + (x − 1)b (for x > 1).

We note that 

. f (y) − f (x) =

 ⎪⎨
⎪⎩

(y − x)a (for x ≤ y ≤ 1),

(1 − x)a + (y − 1)b (for x ≤ 1 < y),

(y − x)b (for 1 < x ≤ y).

Using Lemma 2.8, we can easily show that f is an isometry. Furthermore, it holds that 
f (2) = a + b  = 2a = 2f (1).. Therefore, f is neither linear nor affine. 

As another example, we are going to construct a homogeneous isometry that is not 
linear. 

Example 2.10 Let us define a mapping g : R2 → R. by 

.g(x, y) =

 ⎪⎨
⎪⎩

x (for xy ≥ 0 and |x| ≤ |y|),
y (for xy ≥ 0 and |y| ≤ |x|),
0 (for xy < 0).
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It is easy to check that 

(i). g is homogeneous, i.e., g(tx, ty) = tg(x, y). for all t, x, y ∈ R.; 
(ii). |g(x, y) − g(u, v)| ≤  (x − u)2 + (y − v)2 . for all u, v, x, y ∈ R.; 
(iii). g is not linear. 

For example, the inequality (ii). can be checked by considering the following nine cases. 
Due to space constraints, we will discuss the first three and last of the nine cases. 

(1). If the points x, y, u, v . in R. satisfy the conditions that xy ≥ 0., |x| ≤ |y|., uv ≥ 0., and 
|u| ≤ |v|., then 

. |g(x, y) − g(u, v)| = |x − u| ≤
 
(x − u)2 + (y − v)2.

(2). If the points x, y, u, v . in R. satisfy the conditions that xy ≥ 0., |x| ≤ |y|., uv ≥ 0., and 
|v| ≤ |u|., then 

. 

|g(x, y) − g(u, v)| = |x − v|
≤ max

 |x − u|, |y − v| 

≤
 
(x − u)2 + (y − v)2.

(3). If the points x, y, u, v . in R. satisfy the conditions that xy ≥ 0., |x| ≤ |y|., and uv < 0., 
then 

. 

|g(x, y) − g(u, v)| = |x − 0|
≤ max

 |x − u|, |y − v| 

≤
 
(x − u)2 + (y − v)2.

In this way, we calculate up to the last case and check: 

(9). If the points x, y, u, v . in R. satisfy the conditions that xy < 0. and uv < 0., then 

. |g(x, y) − g(u, v)| = |0 − 0| ≤
 
(x − u)2 + (y − v)2.

We set X = R
2
. with the usual normed space structure and Y = R

3
. with the usual 

vector space structure but with
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.  (x, y, z) = max
  

x2 + y2, |z| .
Then, we can check that  ·  : Y → [0,∞). is a norm on Y . 

If we define f : X → Y . by f (x, y) = (x, y, g(x, y))., then we have 

. 

 f (x, y) − f (u, v) =    x − u, y − v, g(x, y) − g(u, v)
    

= max
  

(x − u)2 + (y − v)2, |g(x, y) − g(u, v)| 

=
 
(x − u)2 + (y − v)2

=  (x, y) − (u, v) 

for all (x, y), (u, v) ∈ R
2
., which implies that f is an isometry. Finally, it follows from (i)., 

(ii)., and (iii). that f is a homogeneous isometry but not linear. 

2.3 Aleksandrov Problem 

Many mathematicians have long studied the methods of characterizing isometries, one of 
which is what is known as the Aleksandrov problem, and it is a central goal of this book to 
explain this problem in detail so that readers can grasp it. 

Definition 2.11 Let f : X → Y . be a mapping between normed spaces. 

(i). A distance ρ > 0. is called contractive (.or non-expanding ). by f if and only if  x −
y = ρ . always implies  f (x) − f (y) ≤ ρ .. 

(ii). A distance ρ > 0. is called extensive (.or non-shrinking ). by f if and only if the 
inequality  f (x) − f (y) ≥ ρ . holds for all x, y ∈ X .with  x − y = ρ .. 

(iii). A distance ρ > 0. is called preserved (.or conservative ). by f if and only if ρ . is both 
contractive and extensive by f . 

Remark 2.12 Let f : X → Y . be a mapping between normed spaces, and let n be any 
positive integer. If f preserves a distance ρ ., then the distance nρ . is contractive. 

Proof Let x and y be arbitrary elements ofX that satisfies  x −y = nρ . and let f : X →
Y . be a mapping that preserves the distance ρ .. We define 

. xi = x + i

n
(y − x)

for each i ∈ {0, 1, . . . , n}.. Then we have x0 = x . and xn = y .. Moreover, we obtain
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.  xi − xi+1 = 1

n
 x − y = ρ

for any i ∈ {0, 1, . . . , n − 1}.. Since the distance ρ . is preserved by f ,  it  follows  th  at

.  f (xi) − f (xi+1) = ρ

for any i ∈ {0, 1, . . . , n − 1}.. Furthermore, using the triangle inequality, we have 

. 

 f (x) − f (y) =  f (x0) − f (xn) 

≤
n−1 
i=0

 f (xi) − f (xi+1) 

= nρ.

That is, the distance nρ . is contractive by f .   

If f is an isometry, then f preserves all distances ρ > 0., and vice versa. At this point, 
we may raise a question: 

Is a mapping that preserves certain distances an isometry? 

In relation to this question, A. D. Aleksandrov [1] posed the following problem. 

Problem 2.13 (Aleksandrov Problem) Does the existence of a single conservative 
distance for a mapping imply that it is an isometry? 

It is now known as the Aleksandrov problem. 
The following examples show that the Aleksandrov problem is nontrivial by presenting 

that there are some mappings that may not be isometries even if they preserve a certain 
distance. 

Example 2.14 We define the mapping f : R → R. by 

. f (x) =
 
x + 1 (for x ∈ Z),

x (for x  ∈ Z).

If x, y ∈ R. with |x − y| = 1., then either |f (x) − f (y)| = |(x + 1) − (y + 1)| = 1. for 
all integers x and y or |f (x) − f (y)| = |x − y| = 1. for all non-integers x and y. That 
is, f preserves the unit distance. However, if x = 3

2 . and y = 0., then |x − y| = 3
2 . but 

|f (x) − f (y)| = | 32 − 1| = 1
2 ., which shows that |f (x) − f (y)|  = |x − y|.. That is, f is 

not an isometry.
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Example 2.15 There is a mapping f :  2 →  2 . that is not an isometry, even if it preserves 
the unit distance: Since  2 . is separable by Theorem 1.65, there exists a countable subsetD 

of  2 . that is dense in  2 ., where we setD = {d1, d2, . . .}.. We choose a mapping g :  2 → D . 

such that  g(x) − x < 1
2 . for all x ∈  2 ., where  x 2 =  x, x =

∞ 
i=1

x2i .. Now, we define a 

mapping h : D →  2 . by 

. h(di) =
 

1√
2
δi1,

1√
2
δi2, . . . ,

1√
2
δii , . . .

 

for each i ∈ N., where δij . is the Kronecker delta. 
We assert that the mapping f = h ◦ g :  2 →  2 . preserves the unit distance: Assume 

that x1 . and x2 . are arbitrary points of  2 . with  x1 − x2 = 1.. By the inverse triangle 
inequality, we have 

. 

 g(x1) − g(x2) =    g(x1) − x1
  −  g(x2) − x2

  − (x2 − x1)
  

≥      g(x1) − x1
  −  g(x2) − x2

    −  x2 − x1 
  

= 1 −    g(x1) − x1
  −  g(x2) − x2

    
> 0,

since  (g(x1)−x1)− (g(x2)−x2) ≤  g(x1)−x1 +  g(x2)−x2 < 1.. Hence, g(x1)  =
g(x2).. Since g(x1), g(x2) ∈ D . and g(x1)  = g(x2)., there are two distinct m, n ∈ N. such 
that dm = g(x1). and dn = g(x2).. Thus f (x1). is the real-valued sequence whose mth term 
is 1√

2
. and whose remaining terms are all 0s. In the same way, we see that f (x2). is the 

real-valued sequence whose nth term is 1√
2
. and whose remaining terms are all 0s. Hence, 

f (x1)  = f (x2).. Therefore, we have 

.  f (x1) − f (x2) 2 =
 

1√
2

 2
+
 

− 1√
2

 2
= 1.

We assert that not all distances are preserved by f : By the argument of the preceding 
paragraph, we see that  f (x1) − f (x2) ∈ {0, 1}. for all x1, x2 ∈  2 .. That is, f is not an 
isometry. 

It is not yet known how the aforementioned example would change if the mappings 
involved were continuous. Another example of the mapping that preserves unit distance, 
but is not an isometry, was introduced by Th. M. Rassias [56]: 

Example 2.16 We define a continuous mapping f : R → R. by 

.f (x) = [x] + {x}2,



2.3 Aleksandrov Problem 45

where [x]. denotes the integer part of x and {x} = x − [x].. Since [x + 1] = [x] + 1. and 
{x + 1} = x + 1 − [x + 1] = x − [x] = {x}.,  we  ha  ve

. f (x + 1) = [x + 1] + {x + 1}2 = [x] + 1 + {x}2 = f (x) + 1

for any x ∈ R.. That is, f preserves the unit distance. But we see that f (0) = 0. and 
f ( 12 ) = 1

4 .. Therefore, f is not an isometry. 

Although a mapping f : R → R. is continuous and preserves unit distance, 
Example 2.16 shows that f may not be an isometry. However, under the Lipschitz 
condition with a Lipschitz constant 1, which is a stronger concept than continuity, we get 
a different result. The following theorem, which was proved in the paper [60] by Rassias 
and Xiang, is a pedagogically interesting example. 

Theorem 2.17 (Rassias and Xiang) Suppose f : R → R. is a Lipschitz mapping with a 
Lipschitz constant 1, i.e., 

.|f (x) − f (y)| ≤ |x − y| (2.7) 

for all x, y ∈ R..  If f preserves the unit distance, then f is an affine isometry .

Proof Without loss of generality, assume that f (0) = 0.. Otherwise, we substitute f (x)−
f (0). for f (x). for all x ∈ R.. Since f preserves the unit distance, it follows that |f (1) −
f (0)| = 1.. Hence, we have either f (1) = 1. or f (1) = −1.. 

(a). Assume that f (1) = 1.. We will prove by induction on n that f (n) = n. for all integers 
n ≥ 0.. Suppose f (m) = m. for any m ∈ {0, 1, . . . , n − 1}., where n > 1. is an integer. 
Since |f (n)−f (n−1)| = |f (n)−(n−1)| = 1., we obtain f (n) = n−2.or f (n) = n.. 
Assume that f (n) = n − 2..  Let r = 1

2 ((n − 2) + (n − 1)).. It then follows from (2.7) 
and the inverse triangle inequality that 

. 

1

2
≥ |f (r) − f (n − 2)|

≥   |f (r) − f (n − 1)| − |f (n − 2) − f (n − 1)|  
≥ 1 − |r − (n − 1)|

= 1

2
,

which implies that |f (r) − f (n − 2)| = 1
2 .. Applying the same argument, it follows 

that |f (r) − f (n − 1)| = 1
2 .. Since f (n − 2) = n − 2. and f (n − 1) = n − 1.,  we  have
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. f (r) = 1

2

 
(n − 2) + (n − 1)

  
.

We set s = 1
2 ((n − 1) + n).. Similarly, we obtain 

. 

1

2
≥ |f (s) − f (n − 1)|

≥   |f (s) − f (n)| − |f (n − 1) − f (n)|  
≥ 1 − |s − n|

= 1

2
,

which implies that |f (s) − f (n − 1)| = 1
2 .. Using the same argument, we get |f (s) −

f (n)| = 1
2 .. Since f (n − 1) = n − 1. and f (n) = n − 2., we further have 

. f (s) = 1

2

 
(n − 2) + (n − 1)

  
.

Therefore, |f (r) − f (s)| = 0. and |r − s| = 1., which contradicts the assumption that 
f preserves the unit distance. Hence, f (n) = n. for every integer n ≥ 0.. 

(b). Since f preserves the unit distance and f (0) = 0., it follows that either f (−1) = −1. 

or f (−1) = 1.. Assume that f (−1) = 1.. It follows from (2.7) that 

. 

    1 − f

 
− 1

2

     =
    f (−1) − f

 
− 1

2

     ≤ 1

2

and 

. 

    1 − f

 
1

2

     =
    f (1) − f

 
1

2

     ≤ 1

2
.

Moreover, by (2.7), we have 

. 

    f
 

− 1

2

     ≤ 1

2
and

    f
 
1

2

     ≤ 1

2
.

From the last four inequalities, it follows that f (− 1
2 ) = f ( 12 ) = 1

2 ., which contradicts 
our assumption that f preserves the unit distance. Hence, we can conclude that 
f (−1) = −1.. 

(c). We now define the mapping g : R → R. by g(x) = −f (−x). for every x ∈ R.. 
Then, g also satisfies condition (2.7) and g preserves unit distance if and only if f 
does. Furthermore, g(1) = 1. by (b).. Hence, it follows from (a). that g(n) = n. for all
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n ∈ N0 ., which is equivalent to the conclusion that f (n) = n. for all integers n ≤ 0.. 
Therefore, we can conclude by considering (a). that f (n) = n. for all n ∈ Z.. 

(d). For every x ∈ R. there is an integer n0 . such that n0 ≤ x ≤ n0 + 1.. Since f : R → R. 

satisfies inequality (2.7), we obtain 

. |f (x) − f (n0)| ≤ |x − n0| and |f (x) − f (n0 + 1)| ≤ |x − (n0 + 1)|.

Taking into account (c)., i.e., the fact that f (n) = n. for all n ∈ Z., we can transform 
the above inequalities into 

. 2n0 − x ≤ f (x) ≤ x and x ≤ f (x) ≤ 2(n0 + 1) − x.

We can easily solve the last inequalities as follows: f (x) = x .. That is, f (x) = x . for 
all x ∈ R.. Therefore, f is a linear isometry. 

(e). Finally, we examine the case f (1) = −1.. Define h(x) = −f (x). for all x ∈ R.. Then, 
h(1) = 1. and h preserves unit distance and satisfies condition (2.7). According to (d)., 
h must be a linear isometry and h(x) = x . for all x ∈ R.. Therefore, f is a linear 
isometry and f (x) = −x . for all x ∈ R..   

2.4 Theorem of Beckman and Quarles 

As we have seen in the preceding section, Aleksandrov asked in 1970 whether the 
existence of a single conservative distance for a mapping implies that it is an isometry. 
However, it is quite interesting that F. S. Beckman and D. A. Quarles [3] partially solved 
the Aleksandrov problem in 1953, when the Aleksandrov problem had not yet been raised. 
For this reason we might have used the term “Aleksandrov-Beckman-Quarles problem” 
instead of the term “Aleksandrov problem.” However, in this book, we will continue to 
refer to this problem as the Aleksandrov problem, following the convention. 

A Euclidean space is a finite-dimensional inner product space over R.. From now on, 
we use En

. and || · ||. to denote the n-dimensional Euclidean space and its corresponding 
Euclidean norm, respectively. The Euclidean inner product  ·, · . on En

. is defined as 

.  x, y =
n 

i=1

xiyi

for all points x = (x1, x2, . . . , xn). and y = (y1, y2, . . . , yn). of En
.. 

Although “affine mapping” and “linear mapping up to a translation” are synonymous, 
we will prefer to use “affine mapping” from now on.
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Theorem 2.18 (Beckman and Quarles) Let n be a fixed integer greater than 1.  If  a  
mapping f : En → E

n
. preserves a distance ρ > 0., then f is an affine isometry. 

Remark 2.19 If a mapping f : X → Y . between normed spaces preserves a distance 
ρ > 0., we can then assume that ρ = 1. (.see [58] ).: For example, we define another mapping 
g : X → Y . by g(x) = 1

ρ
f (ρx). for all x ∈ X ..  If  f preserves the distance ρ ., then g 

preserves the distance 1. On the other hand, if g preserves the unit distance, then 

.  f (x) − f (y) =
    ρg

 
1

ρ
x

 
− ρg

 
1

ρ
y

     = ρ

    1ρ x − 1

ρ
y

    =  x − y 

for all x, y ∈ X . with  x − y = ρ .. That is, f preserves the distance ρ .. For this reason, 
we often assume that the mapping f preserves the distance 1, instead of assuming that the 
mapping f preserves the distance ρ .. 

Beckman and Quarles [3] actually proved their theorem with respect to multi-valued 
mappings, but we can easily replace their original theorem with Theorem 2.18. Since the 
proof presented by Beckman and Quarles contains parts that are difficult to understand, the 
relatively easy-to-understand proof by W. Benz is here presented instead of the original 
authors’ proof (see [5]). Throughout this book, “distance 1” and “unit distance” are 
understood synonymously. 

Lemma 2.20 Let a, b,m. be arbitrary points in En
., where n is an integer greater than 1. 

Then,  m − a =  b − m = 1
2 b − a . if and only if m = 1

2 (a + b).. 

Proof In view of Theorem 2.5, it only needs to replace Y , x, and y in Lemma 2.6 with En
., 

a, and b, respectively.   

Let n be a fixed integer greater than 1. Suppose we are given n points in En
..  If  the  

distances between any two points are all β > 0., then we call the set of these n points a 
β .-set. 

Lemma 2.21 Assume that α . and β . are real positive numbers satisfying 

. γ (α, β) = 4α2 − 2β2
 
1 − 1

n

 
> 0.

If P is a β .-set, then there are exactly two distinct points in En
. with distance α . from each 

point in P . Those two points will be called the α .-associated points of P . The distance 
between these α .-associated points is

√
γ (α, β)..
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Proof 

(a). Let P = {p1, p2, . . . , pn}. be a β .-set. Then for i, j ∈ {1, 2, . . . , n − 1}.with i  = j .we 
have 

. pi − pn, pj − pn = 1

2
β2, (2.8) 

since 

. 

β2 =  pi − pj 2

=  (pi − pn) − (pj − pn) 2

=  pi − pn 2 − 2 pi − pn, pj − pn +  pj − pn 2.

We now define 

. λr = β√
2r(r + 1)

for all r ∈ N. and also define e1, e2, . . . , en−1 . inductively by using the formula 

.(1 + s)λses = (ps − pn) −
s−1 
r=1

λrer (2.9) 

for s ∈ {1, 2, . . . , n − 1}.. Obviously,  e1, e1 = 1.. We prove that {e1, e2, . . . , en−1}. is 
an orthonormal set in En

., i.e., 

. ei, ej  =
 
1 (for i = j < n),

0 (for i < j < n)
(2.10) 

by applying the following three steps. Indeed, the Eq. (2.10) will be proved in turn for 
(i, j). following the order of the sequence 

.(1, 1), (1, 2), (2, 2), (1, 3), (2, 3), (3, 3), (1, 4), . . . , (n − 1, n − 1). (2.11) 

(i). Step (i, i) → (1, i + 1).: This step is applied to prove equation (2.10) when 
jumping from (i, j) = (1, 1). to (1, 2).,  or  from (2, 2). to (1, 3).,  or  from (3, 3). to 
(1, 4)., . . ..,  or  from (n − 2, n − 2). to (1, n − 1).. It follows from (2.8) and (2.9) 
that
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. 

1

2
β2 =  p1 − pn, pi+1 − pn 

=
 
2λ1e1, (i + 2)λi+1ei+1 +

i 
r=1

λrer

 

= 2(i + 2)λ1λi+1 e1, ei+1 +
i 

r=1

2λ1λr  e1, er  

= 2(i + 2)λ1λi+1 e1, ei+1 + 2λ21

= 2(i + 2)λ1λi+1 e1, ei+1 + 1

2
β2,

since  e1, e1 = 1. and  e1, e2 =  e1, e3 = · · · =  e1, ei = 0. by inductive 
assumption. Hence, we obtain  e1, ei+1 = 0.. 

(ii). Step (i − 1, i) → (i, i).: This step is applied to prove equation (2.10) when 
jumping from (i, j) = (1, 2). to (2, 2).,  or  from (2, 3). to (3, 3).,  or  from (3, 4). to 
(4, 4)., . . ..,  or  from (n − 2, n − 1). to (n − 1, n − 1).. We obtain 

. 

β2 =  pi − pn, pi − pn 

=
 i−1 
r=1

λrer + (1 + i)λiei,

i−1 
s=1

λses + (1 + i)λiei

 

=
i−1 
r=1

i−1 
s=1

λrλs er , es + (1 + i)λi

i−1 
r=1

λr  er , ei 

+ (1 + i)λi

i−1 
s=1

λs ei, es + (1 + i)2λ2i  ei, ei 

=
i−1 
r=1

λ2r + (1 + i)2λ2i  ei, ei ,

since  er , es = 0. for r, s ∈ {1, 2, . . . , i − 1}. with r  = s .,  er , ei = 0. for 
r ∈ {1, 2, . . . , i − 1}., and  ei, es = 0. for s ∈ {1, 2, . . . , i − 1}. by inductive 
assumption. Thus, we obtain  ei, ei = 1.. 

(iii). Step (i − 1, j) → (i, j). for i < j .: This step is applied to prove equation (2.10) 
when jumping from (i, j) = (1, 3). to (2, 3).,  or  from (1, 4). to (2, 4).,  or  fr  om
(2, 4). to (3, 4)., . . ..,  or  from (n − 3, n − 1). to (n − 2, n − 1).. First, we remark 
that
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. 

i−1 
r=1

λ2r + (1 + i)λ2i =
i−1 
r=1

1

2
β2
 
1

r
− 1

r + 1

 
+ (1 + i)

1

2
β2 1

i(i + 1)
= 1

2
β2.

It follows from (2.8) and (2.9) that 

. 

1

2
β2 =  pi − pn, pj − pn 

=
 i−1 
r=1

λrer + (1 + i)λiei,

j−1 
s=1

λses + (1 + j)λj ej

 

=
i−1 
r=1

j−1 
s=1

λrλs er , es + (1 + j)λj

i−1 
r=1

λr er , ej  

+ (1 + i)λi

j−1 
s=1

λs ei, es + (1 + i)λi(1 + j)λj  ei, ej  

=
i−1 
r=1

λ2r + (1 + i)λ2i + (1 + i)λi(1 + j)λj  ei, ej  ,

and hence, we obtain  ei, ej  = 0.. 
(b). We now assume that q is a point of En

. and the distance from each ps ∈ P . is α ., which 
implies that 

. q − pn, ps − pn = 1

2
β2 (2.12) 

for all s ∈ {1, 2, . . . , n − 1}., since 

. 

α2 =  q − ps 2

=  (q − pn) − (ps − pn) 2

=  q − pn 2 − 2 q − pn, ps − pn +  ps − pn 2

= α2 − 2 q − pn, ps − pn + β2.

We set q − pn =
n 

r=1
μrer ., where μr ∈ R., by extending {e1, e2, . . . , en−1}. 

of part (a). to an orthonormal basis {e1, e2, . . . , en−1, en}. of En
.. Then it follows 

from (2.9), (2.10), and (2.12) that
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.
1

2
β2 =  q − pn, ps − pn =

s−1 
r=1

μrλr + (1 + s)μsλs (2.13) 

for all s ∈ {1, 2, . . . , n − 1}.. 

If we set s = 1. in (2.13), then we obtain μ1 = 1
2β = λ1 .. Assuming μi = λi . for all 

i ∈ {1, 2, . . . , s − 1}., where s < n., we also obtain μs = λs . by comparing equation (2.13) 
with 

. 
1

2
β2 =

s−1 
r=1

λ2r + (1 + s)λ2s .

Thus, q − pn =
n−1 
r=1

λrer + μnen .. Now, since α2 =  q − pn 2 =
n−1 
r=1

λ2r + μ2
n .,  we  ha  ve

. μ2
n = α2 −

n−1 
r=1

λ2r = α2 − 1

2
β2
 
1 − 1

n

 
= 1

4
γ (α, β).

There are exactly two solutions q, namely the points 

.qi = pn +
n−1 
r=1

λrer ± 1

2

 
γ (α, β) en, (2.14) 

where i ∈ {1, 2}., which are indeed of distance α . from each point of the β .-set P , i.e., they 
are the α .-associated points of the β .-set P . Obviously, we obtain  q1 − q2 = √

γ (α, β)..
  

Lemma 2.22 Assume that α, β > 0. are real numbers satisfying γ (α, β) > 0.. Let x and y 

be arbitrary points in En
. separated by a distance  x − y = √

γ (α, β).. Then there exists 
a β .-set whose α .-associated points are x and y. 

Proof Let us define 

. en = 1

 y − x (y − x) = 1√
γ (α, β)

(y − x)

and extend {en}. to an orthonormal basis {e1, e2, . . . , en}. of En
..  I  f pn . is a point of En

., then 
we inductively define P = {p1, p2, . . . , pn}. by
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. ps − pn =
s−1 
r=1

λrer + (1 + s)λses

for every s ∈ {1, 2, . . . , n − 1}., where λr = β√
2r(r+1)

. for all r ∈ N.. 
It is easy to check that P is a β .-set. In precisely, we obtain 

.  ps − pn 2 =
s−1 
r=1

λ2r + (1 + s)2λ2s = β2,

for all s ∈ {1, 2, . . . , n − 1}., and 

. 

 pj − pi 2 =  (pj − pn) − (pi − pn) 2

=
    

j−1 
r=i+1

λrer + (1 + j)λj ej − iλiei

    
2

=
j−1 

r=i+1

λ2r + (1 + j)2λ2j + (−iλi)
2

= β2

for all integers i and j with 0 < i < j < n.. 
If the point pn . is specially selected as 

. pn = 1

2
(x + y) −

n−1 
r=1

λrer ,

then it follows from (2.14) that the α .-associated points qi . of P are given by 

. qi = pn +
n−1 
r=1

λrer ± 1

2

 
γ (α, β) en = 1

2
(x + y) ± 1

2
(y − x),

which implies that {q1, q2} = {x, y}.. That is, x and y are the α .-associated points of P .   

Proposition 2.23 Let ρ > 0. be a fixed real number and let n > 1. and N > 2. be fixed 
integers. If a mapping f : En → E

n
. satisfies the following conditions

(i).  x − y = ρ . implies  f (x) − f (y) ≤ ρ .;
(ii).  x − y = Nρ . implies  f (x) − f (y) = Nρ . 

for all x, y ∈ E
n
., then f is an affine isometry.



54 2 Aleksandrov Problem

Proof 

(a). We will prove that f preserves the distances ρ . and 2ρ ..  Let x and z be arbitrary points 
separated by a distance of 2ρ . from each other. Then we can choose the midpoint 
y = 1

2 (x + z). of x and z such that  x − y = ρ =  y − z .. We put p
 

= x +
 
2 (z − x). for all  ∈ {0, 1, . . . , N}.. Then, it follows from the conditions (i). and (ii). 

that  f (p0) − f (p
N
) = Nρ . and  f (p

 
) − f (p

 +1) ≤ ρ . for  ∈ {0, 1, . . . , N − 1}. 
because of  p0 − p

N
 = Nρ . and  p

 
− p

 +1 = ρ .. 
Moreover, using the triangle inequality, we obtain 

. 

Nρ =  f (p0) − f (p
N
) 

≤  f (p0) − f (p2) +
N−1 
 =2

 f (p
 
) − f (p

 +1) 

≤
N−1 
 =0

 f (p
 
) − f (p

 +1) 

≤ Nρ,

and hence,  f (p
 
) − f (p

 +1) = ρ . for  ∈ {0, 1, . . . , N − 1}. and 

.  f (p0) − f (p2) =  f (p0) − f (p1) +  f (p1) − f (p2) .

We note that p0 = x ., p1 = y ., and p2 = z.. Considering the last equality, we can 
conclude that 

.  f (x) − f (z) = 2ρ and  f (x) − f (y) = ρ

for all x, y, z ∈ E
n
.with  x − z = 2ρ . and  x − y = ρ .. 

(b). We note that for all points x and y satisfying  x − y = ρ ., we can select a point 
z = 2y − x . so that  x − z = 2ρ .. Assume that x and y are arbitrary points of En

. and 
that the distance between these two points is ρ .. We now assert that 

.f
 
x +  (y − x)

  = f (x) +  
 
f (y) − f (x)

  
(2.15) 

for all  ∈ N0 .. If we put p 
= x +  (y − x). for each  ∈ N0 ., then we obtain 

.  p
 

− p
 −1 = ρ =  p

 +1 − p
 
 and  p

 +1 − p
 −1 = 2ρ.

According to (a)., f preserves the distances ρ . and 2ρ .. Thus, we have



2.4 Theorem of Beckman and Quarles 55

. ρ =  f (p
 
) − f (p

 −1) =  f (p
 +1) − f (p

 
) = 1

2
 f (p

 +1) − f (p
 −1) ,

and hence, by Lemma 2.20,  we  ha  ve

.f (p
 
) = 1

2

 
f (p

 −1) + f (p
 +1)
  

or f (p
 +1) = 2f (p

 
) − f (p

 −1) (2.16) 

for each  ∈ N.. 
Obviously, (2.15)  is  true  for  = 0. or 1. Now we assume that (2.15) is true for all 

 ∈ {0, 1, . . . , m}., where m is some positive integer. Then, by (2.15) and (2.16), we 
obtain 

. 

f
 
x + (m + 1)(y − x)

  
= f (pm+1)

= 2f (pm) − f (pm−1)

= 2
 
f (x) + m(f (y) − f (x))

  −  f (x) + (m − 1)(f (y) − f (x))
  

= f (x) + (m + 1)
 
f (y) − f (x)

  
.

By the mathematical induction, we conclude that (2.15) holds for all  ∈ N0 .. 
(c). Let  . and m be positive integers. Assume that x and y are arbitrary points in En

. such 
that  x − y =  

m
ρ .. Then, we assert that  f (x) − f (y) =  

m
ρ .. Since n > 1. and 

 x −y < 2 ρ ., there exists a point z in En
. such that  z−x =  ρ =  z−y .. Hence, 

we can choose the points a and b of En
. as follows 

.x = z +  (a − z) and y = z +  (b − z), (2.17) 

and we set 

.x = z + m(a − z) and y = z + m(b − z). (2.18) 

Since  a − z = ρ =  b − z .,  it  follows  from (b).,  (2.17), and (2.18) that 

.

f (x) = f
 
z +  (a − z)

  = f (z) +  
 
f (a) − f (z)

  
,

f (y) = f
 
z +  (b − z)

  = f (z) +  
 
f (b) − f (z)

  
,

f (x ) = f
 
z + m(a − z)

  = f (z) + m
 
f (a) − f (z)

  
,

f (y ) = f
 
z + m(b − z)

  = f (z) + m
 
f (b) − f (z)

  
.

(2.19) 

Since  a − b = 1
 
 x − y = 1

m
ρ .,  we  have  x − y  = m a − b = ρ ..  By (a).,  we  

obtain  f (x ) − f (y ) = ρ .. According to the first two equalities of (2.19), we get
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.  f (x) − f (y) =   f (a) − f (b) .

Due to the last two equalities of (2.19), we obtain 

. ρ =  f (x ) − f (y ) = m f (a) − f (b) .

The last two equalities imply  f (x) − f (y) =  
m
ρ .. 

(d). Let x and y be arbitrary points in En
. such that rρ <  x − y < sρ ., where r and s are 

positive rational numbers. We will prove that rρ ≤  f (x)−f (y) ≤ sρ .. Since n > 1. 
and  x − y < sρ ., there is a point z with  z − x = s

2ρ =  z − y .. It follows from 
(c). that  f (z) − f (x) = s

2ρ =  f (z) − f (y) ., and hence, 

.  f (x) − f (y) ≤  f (x) − f (z) +  f (z) − f (y) = sρ.

We set w = x + sρ
 y−x (y − x).. Then, we see that  w − x = sρ . and 

.  w − y =
 

sρ

 y − x − 1

 
 y − x = sρ −  y − x < (s − r)ρ.

Hence, it follows from (c). and the first part of (d). that  f (w) − f (x) = sρ . and 
 f (w) − f (y) ≤ (s − r)ρ ., which implies that 

.  f (x) − f (y) ≥  f (x) − f (w) −  f (y) − f (w) ≥ sρ − (s − r)ρ = rρ.

(e). Let x and y be distinct points of En
.. We note that there are some monotonic sequences 

{ri}. and {si}. consisting of positive rational numbers with the following properties: 

• riρ <  x − y < siρ . for all i ∈ N.; 
• lim 

i→∞ riρ =  x − y .; 

• lim 
i→∞ siρ =  x − y .. 

Therefore, it follows from (d). that 

.  x − y = lim
i→∞ riρ ≤  f (x) − f (y) ≤ lim

i→∞ siρ =  x − y ,

which implies that f is an isometry. Finally, due to the theorem of Baker, f is affine.
  

We recall that
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. γ (α, β) = 4α2 − 2β2
 
1 − 1

n

 
> 0

for some appropriate positive real numbers α . and β . (see Lemma 2.21). In the following 
lemma, we set ε = √

γ (α, β).. 

Lemma 2.24 Let n be a fixed integer larger than 1. Assume that α . and β . are positive 
real numbers that satisfy γ (α, β) > 0.. Moreover, assume that a mapping f : En → E

n
. 

preserves the distances α . and β . and that x and y are points of En
. with  x − y = ε ., 

where ε = √
γ (α, β).. Then,  f (x) − f (y) ∈ {0, ε}.. In particular, if 2ε > α ., then 

 f (x) − f (y) = ε .. 

Proof Without loss of generality, we assume that ε  = α ..  Let x and y be the α .-associated 
points of a β .-set P . Since f preserves the distance β ., P  = f (P ). is also a β .-set. If we 
denote the α .-associated points of P  

. by x 
. and y 

., then f (x), f (y) ∈ {x , y }. because 
f preserves the distance α . and the α .-associated points of P  

. are uniquely determined. 
According to Lemma 2.21 and the previous sentence, we have  f (x)−f (y) ∈ {0,  x −
y  } = {0, ε}.. 

Assume that 2ε > α .. We assert that f (x)  = f (y).. On the contrary, suppose f (x) =
f (y). and select a z in En

. with  z − x = ε . and  y − z = α .. It follows from the first 
part of this proof that  f (x) − f (z) ∈ {0, ε}.. That is,  f (y) − f (z) ∈ {0, ε}. because 
of f (x) = f (y).. Thus, α =  y − z =  f (y) − f (z) ∈ {0, ε}., which is contrary to our 
assumption that ε  = α ..   

Finally, we have all the tools to prove the Beckman–Quarles theorem. 

Theorem 2.17 (Beckman and Quarles) Let n be a fixed integer greater than 1.  If  a  
mapping f : En → E

n
. preserves a distance ρ > 0., then f is an affine isometry. 

Proof 

(a). We note that γ (ρ, ρ) = 2
 
1 + 1

n

  
ρ2 > 0., ε := √

γ (ρ, ρ) =
 
2
 
1 + 1

n

  
ρ ., and that 

2ε > ρ .. If we put α = β = ρ . in Lemma 2.24, then we see that f preserves the 

distance
 
2
 
1 + 1

n

  
ρ .. 

(b). We note that 

.

γ

  
2

 
1 + 1

n

 
ρ,

 
2

 
1 + 1

n

 
ρ

 
= 4

 
1 + 1

n

 2
ρ2 > 0,

ε := γ

  
2

 
1 + 1

n

 
ρ,

 
2

 
1 + 1

n

 
ρ

 1/2
= 2

 
1 + 1

n

 
ρ,
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and that 2ε > ρ .. If we put α = β =
 
2
 
1 + 1

n

  
ρ . in Lemma 2.24, then we can check 

that f preserves the distance 2
 
1 + 1

n

  
ρ .. 

(c). Now, if we set α = ρ . and β =
 
2
 
1 + 1

n

  
ρ . in Lemma 2.24, then we can see that 

 f (x) − f (y) ∈ {0, 2
n
ρ}. whenever the distance between x and y is 2

n
ρ .. That is, 

 f (x) − f (y) ≤ 2
n
ρ .whenever the distance between x and y is 2

n
ρ .. 

(d). Finally, if we replace ρ . with 2
n
ρ . and we set N = n + 1. in Proposition 2.23, then we 

may check that f is an affine isometry.   

We must now mention some historically important references. Independently of the 
aforementioned proof of the Beckman-Quarles theorem, in 1970, C. G. Townsend [66] 
proved the weakened Beckman–Quarles theorem for n = 2.: 

If an injective mapping f : E2 → E
2 . preserves the unit distance, then f is an affine isometry. 

R. L. Bishop, who did not satisfy with some of the unproven claims in Townsend’s 
paper, proved the Beckman–Quarles theorem on his own in 1973 (see [9]). 

Finally, it may be worth mentioning that V. Totik [65] recently presented a short and 
elementary proof of the Beckman–Quarles theorem by using only the triangle inequality 
but no calculation.



3Aleksandrov-Benz Problem

Abstract

In 1970, A. D. Aleksandrov asked whether a mapping must be an isometry if it
preserves a certain distance. As we saw in the previous chapter, F. S. Beckman and D.
A. Quarles solved this problem for mappings from an n-dimensional Euclidean space
into the same one. After weakening the result of the Beckman–Quarles theorem to
make the proof easier, E. M. Schröder proved in 1979 that any mapping that preserves
two distances ρ . and 2ρ . is an affine isometry. In a situation where the Beckman–
Quarles theorem is already known, Schröder’s theorem by itself is of little significance.
Schröder, however, presented a novel idea like the m-chain in the process of proving his
theorem, and using this idea, W. Benz was able to significantly expand the Beckman–
Quarles theorem. In this chapter, we present in detail three historically important
theorems, Schröder’s theorem, Benz’s theorem, and Benz–Berens theorem.

3.1 Theorem of Schröder

After about a quarter of a century, E. M. Schröder [61] supplemented the Beckman–
Quarles theorem by showing that any mapping that preserves two distances is an isometry,
and he suggested an easier way to prove the theorem of Beckman and Quarles. We will
introduce Schröder’s theorem here.

Theorem 3.1 (Schröder) Let n be a fixed integer greater than 1, and let ρ . be a fixed
positive real number. If a mapping f : En → E

n
. preserves two distances ρ . and 2ρ ., then

f is an affine isometry.
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Proof

(a). For each m ∈ N., let (x0, x1, . . . , xm). be an (m + 1).-tuple of m + 1. distinct collinear
points in E

n
. with llxi−1−xill = ρ . for all i ∈ {1, 2, . . . , m}.. The tuple (x0, x1, . . . , xm).

is called an m-chain.
We assert that f maps each m-chain onto an m-chain. Let (x0, x1, . . . , xm). be an

arbitrary m-chain, where m > 1.. Then, we have

.llxi − xi+1ll = llxi+1 − xi+2ll = ρ

for all i ∈ {0, 1, . . . , m − 2}.. Since (x0, x1, . . . , xm). is an m-chain, if we set a = xi .,
b = xi+2 ., and m = xi+1 . in Lemma 2.20, then it follows that xi+1 = 1

2 (xi + xi+2). for
each i ∈ {0, 1, . . . , m − 2}. and

.llxi − xi+2ll = 2ρ

for any i ∈ {0, 1, . . . , m − 2}.. Since ρ . and 2ρ . are preserved by f , we obtain

.llf (xi) − f (xi+1)ll = llf (xi+1) − f (xi+2)ll = ρ and llf (xi) − f (xi+2)ll = 2ρ,

and hence, by the strict convexity of En
., we have

.f (xi+1) = 1

2

(
f (xi) + f (xi+2)

)

for all i ∈ {0, 1, . . . , m − 2}.. Therefore, we see that (f (xi), f (xi+1), f (xi+2)). is a
2-chain for each i ∈ {0, 1, . . . , m − 2}., which means that (f (x0), f (x1), . . . , f (xm)).

is an m-chain.
(b). We will now prove that f preserves the distance rρ . for each positive rational number

r . Let r = l
m

. be an arbitrary rational number, where l,m ∈ N.. We assume that
arbitrary points x and y in E

n
. satisfy the condition llx − yll = l

m
ρ = rρ .. Then there

exists a point z in E
n
. such that llx − zll = lly − zll = lρ .. We set x' = z + m

l
(x − z).

and y' = z + m
l
(y − z).. Then, the points z, x, x'

. resp. z, y, y'
. are collinear and belong

to an lm.-chain (x0, . . . , xlm). resp. (y0, . . . , ylm)., where x0 = y0 = z., xl = x .,
xm = x'

., yl = y ., and ym = y'
.. Since llx' − y'll = ρ ., it follows from (a). that

llf (x) − f (y)ll = l
m

ρ = rρ ..
(c). For any r > 0. and x ∈ E

n
., we denote by Br(x). the closed ball in E

n
. of radius r and

centered at x:

.Br(x) = {
z ∈ E

n : llz − xll ≤ r
}
.
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We claim that f (Brρ(x)) ⊂ Brρ(f (x)). for all x ∈ E
n
. and for all rational numbers

r > 0.. For each z ∈ Brρ(x)., there is a point y ∈ E
n
. such that lly−xll = llz−yll = r

2ρ ..
Hence, it follows from (b). that llf (y) − f (x)ll = llf (z) − f (y)ll = r

2ρ .. Thus, using
the triangle inequality, we have

.llf (z) − f (x)ll ≤ llf (z) − f (y)ll + llf (y) − f (x)ll = rρ,

i.e., f (z) ∈ Brρ(f (x))., which implies that f (Brρ(x)) ⊂ Brρ(f (x))..
(d). Finally, we assert that llf (x)−f (y)ll = llx−yll. for all x, y ∈ E

n
.. If there would exist

some x, y ∈ E
n
. such that llf (x) − f (y)ll > llx − yll., then there would exist some

positive rational number r such that llx − yll ≤ rρ < llf (x) − f (y)ll.. Then, it would
follow that f (y) /∈ Brρ(f (x))., which would be contrary to (c).. On the other hand, we
assume that there would exist some x, y ∈ E

n
. such that llf (x) − f (y)ll < llx − yll..

Let z be a point on the line going through x and y such that llx − zll = rρ . for some
rational number r > 0. and such that y lies between x and z. Then, it would be true
that llx − yll < rρ .. Thus, there would exist a rational number s > 0. such that

.rρ − llx − yll ≤ sρ < rρ − llf (x) − f (y)ll.

Since lly − zll = rρ − llx − yll ≤ sρ ., we would obtain y ∈ Bsρ(z).. Now, by (b). and
(c).,

.

rρ = llx − zll
= llf (x) − f (z)ll
≤ llf (x) − f (y)ll + llf (y) − f (z)ll
≤ llf (x) − f (y)ll + sρ,

which would be contrary to sρ < rρ − llf (x) − f (y)ll.. Therefore, we conclude that
llf (x) − f (y)ll = llx − yll. holds for all x, y ∈ E

n
., i.e., f is an isometry. Since E

n
. is

strictly convex, it follows from the Baker’s theorem that f is affine. ///

Corollary 3.2 Let n be a fixed integer satisfying n > 1., let ρ . be a fixed positive real
number, and let f : En → E

n
. be a mapping that has the following property

.llx − yll = ρ if and only if llf (x) − f (y)ll = ρ (3.1)

for any pair of points x, y ∈ E
n
.. Then, f is an affine isometry.

Proof For any pair of points x, y ∈ E
n
. with llx − yll = 2ρ ., there exists a unique point z

in E
n
. such that llz − xll = llz − yll = ρ .. If llf (x) − f (y)ll /= 2ρ ., then f (x)., f (y). and
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f (z). would form the vertices of some (non-degenerate) triangle. Since n > 1., there would
exist a point w in E

n
. such that f (w) /= f (z). and llf (w) − f (x)ll = llf (w) − f (y)ll = ρ ..

It would then follow from (3.1) that llw − xll = llw − yll = ρ ., i.e., w = z. and f (w) =
f (z)., which would contradict the choice of w. Hence, f preserves the distances ρ . and 2ρ .

by (3.1) and the argument aforementioned. Therefore, it follows from Theorem 3.1 that f

is an affine isometry. ///

Instead of literally saying the condition (3.1), we will say that f preserves the distance
ρ . in both directions.

3.2 Theorem of Benz

E. M. Schröder shows that in the case of a Euclidean space X = Y = E
n
. with n > 1., a

mapping f : En → E
n
. is an affine isometry if and only if f preserves two distances ρ . and

2ρ ., where ρ > 0. is a real number.
In the proof of the following theorem, which significantly extends Schröder’s theorem,

the idea of m-chains developed by Schröder is widely used.

Theorem 3.3 (Benz) Let ρ > 0. and N > 1. be a fixed real number and an integer,
respectively. Assume that X and Y are real normed spaces with the following properties:

(i). For any a ∈ X .with llall < 1., there is b ∈ X .with lla − bll = 1 = lla + bll.;
(ii). If c, d ∈ Y . satisfy llcll = 1 = lldll. and llc + dll = 2., then c = d ..

If the distance ρ . is contractive and the distance Nρ . is extensive by a mapping f : X → Y .,
then f is an affine isometry.

Proof We carry out the proof of this theorem in several steps.

(a). Suppose x and y are arbitrary elements of X such that llx − yll = ρ .. We claim
that llf (x) − f (y)ll = ρ .. If we set pi = y + i(x − y). for each i ∈ {0, 1, . . . , N}.,
then we have llp

N
− yll = Nρ . and llpi − pi−1ll = ρ . for all i ∈ {1, 2, . . . , N}..

That is, (p0, p1, . . . , pN
). is an N -chain. Since Nρ . is extensive and ρ . is contractive

by f , it holds that llf (p
N
) − f (y)ll ≥ Nρ . and llf (pi) − f (pi−1)ll ≤ ρ . for each

i ∈ {1, 2, . . . , N}.. By using these facts, together with the triangle inequality, we
obtain

.Nρ ≤ llf (p
N
) − f (y)ll ≤

N7

i=1

llf (p
N+1−i

) − f (p
N−i

)ll ≤ Nρ.



3.2 Theorem of Benz 63

Thus, we get llf (x) − f (y)ll = llf (p1) − f (p0)ll = ρ ..
(b). Suppose x and y are arbitrary elements of X such that llx − yll = 2ρ .. We claim that

llf (x) − f (y)ll = 2ρ .. If we set pi = y + i
2 (x − y). for all i ∈ {0, 1, . . . , N}., then

we obtain llp
N

− yll = Nρ . and llpi − pi−1ll = ρ . for any i ∈ {1, 2, . . . , N}.. Indeed,
(p0, p1, . . . , pN

). is an N -chain. Using the triangle inequality and applying (a)., we
have

.Nρ ≤ llf (p
N
) − f (y)ll ≤

N7

i=1

llf (p
N+1−i

) − f (p
N−i

)ll = Nρ,

i.e.,

.llf (p
N
) − f (y)ll =

N7

i=1

llf (p
N+1−i

) − f (p
N−i

)ll. (3.2)

We will now show that

.

llf (x) − f (y)ll = llf (p2) − f (p0)ll
= llf (p2) − f (p1)ll + llf (p1) − f (p0)ll.

(3.3)

If the left side of (3.3) were smaller than the right side, we would have N > 2.

in (3.2) and due to the triangle inequality

.

llf (p
N
) − f (y)ll ≤

N−27

i=1

llf (p
N+1−i

) − f (p
N−i

)ll + llf (p2) − f (p0)ll

<

N7

i=1

llf (p
N+1−i

) − f (p
N−i

)ll,

which contradicts (3.2). Hence, the equality holds in (3.3), i.e., we have

.llf (x) − f (y)ll = llf (p2) − f (p1)ll + llf (p1) − f (p0)ll = 2ρ.

(c). Suppose a, b, c. are any elements of Y such that

.llb − all = ρ = llc − bll and llc − all = 2ρ.

We claim that c = 2b − a .. Since

.

llll
llll

1

ρ
(b − a)

llll
llll = 1 =

llll
llll

1

ρ
(c − b)

llll
llll and

llll
llll

1

ρ
(c − a)

llll
llll = 2,
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it follows from (ii). that 1
ρ
(b − a) = 1

ρ
(c − b)., i.e., c = 2b − a ..

(d). Suppose x and y are arbitrary elements of X such that llx − yll = ρ .. We claim that
f (x+m(y−x)) = f (x)+m(f (y)−f (x)). for all m ∈ N0 .. Our assertion obviously
holds for m ∈ {0, 1}.. Suppose our claim holds for m > 0. and set pm = x+m(y−x)..
Since

.llpm − pm−1ll = ρ = llpm+1 − pmll and llpm+1 − pm−1ll = 2ρ,

it follows from (a). and (b). that

.llf (pm) − f (pm−1)ll = ρ = llf (pm+1) − f (pm)ll

and

.llf (pm+1) − f (pm−1)ll = 2ρ.

But it follows from (c). that

.f (pm+1) = 2f (pm) − f (pm−1).

Therefore, we have

.

f
(
x + (m + 1)(y − x)

)

= 2f
(
x + m(y − x)

) − f
(
x + (m − 1)(y − x)

)

= 2f (x) + 2m
(
f (y) − f (x)

) − f (x) − (m − 1)
(
f (y) − f (x)

)

= f (x) + (m + 1)
(
f (y) − f (x)

)
,

which implies that our claim also applies to m + 1.. Therefore, by mathematical
induction, we conclude that our claim is true.

(e). Suppose α . and β . are arbitrary positive real numbers such that 2β ≥ α .. Furthermore,
suppose x and y are arbitrary elements of X such that llx − yll = α .. We claim that
there is a z ∈ X ., which satisfies llz − xll = β = llz − yll.. If 2β = α . we prove our
claim by choosing z = 1

2 (x + y)..
Now suppose that 2β > α .. In this case, we set a = 1

2β
(y − x).. Then we have

llall < 1.. Due to (i)., there is also a b ∈ X . such that lla−bll = 1 = lla+bll.. If we set
z = 1

2 (x +y)+βb., then llz−xll = βlla +bll = β . and llz−yll = βll−a +bll = β ..
By applying the proof ideas of Theorem 3.1 to the case at hand, we now come to

the following conclusion:
(f ). Suppose m, n ∈ N. and x, y ∈ X . satisfy llx − yll = m

n
ρ .. We claim that llf (x) −

f (y)ll = m
n
ρ .. If we set α = m

n
ρ . and β = mρ ., then (e). implies the existence of a

z ∈ X . with llx − zll = mρ = lly − zll.. Choose a, b ∈ X . such that
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.x = z + m(a − z), y = z + m(b − z) (3.4)

and we set

.x' = z + n(a − z), y' = z + n(b − z). (3.5)

Then, by (3.4) and (3.5), we have lla − zll = llb − zll = llx' − y'll = ρ ..
Moreover, using (d)., we obtain

.f (x) = f (z) + m
(
f (a) − f (z)

)
, f (y) = f (z) + m

(
f (b) − f (z)

)
(3.6)

and

.f (x') = f (z) + n
(
f (a) − f (z)

)
, f (y') = f (z) + n

(
f (b) − f (z)

)
. (3.7)

Hence, it follows from (a). and (3.7) that

.llx' − y'll = ρ = llf (x') − f (y')ll = nllf (a) − f (b)ll.

In addition, it follows from (3.6) that

.llf (x) − f (y)ll = mllf (a) − f (b)ll,

i.e., llf (x) − f (y)ll = m
n
ρ ..

(g). Suppose r1 . and r2 . are rational numbers with 0 < r1 < r2 .. We claim that r1ρ ≤
llf (x) − f (y)ll ≤ r2ρ . for any x, y ∈ X . with r1ρ < llx − yll < r2ρ ..

(g.1). Suppose x and y are arbitrary elements of X with r1ρ < llx − yll < r2ρ .. Due to (e).

for α = r1ρ . and β = r2
2 ρ ., there exists a z ∈ X . such that

.llx − zll = r2

2
ρ = lly − zll.

It then follows from (f ). that

.llf (x) − f (z)ll = r2

2
ρ = llf (y) − f (z)ll.

Thus, we obtain

.llf (x) − f (y)ll ≤ llf (x) − f (z)ll + llf (z) − f (y)ll = r2ρ.

(g.2). Suppose there were x, y ∈ X . such that r1ρ < llx −yll < r2ρ . and llf (x)−f (y)ll <

r1ρ .. Then we have
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.r2ρ − llx − yll < (r2 − r1)ρ < r2ρ − llf (x) − f (y)ll. (3.8)

We set z = x + λ(y − x)., where λ = r2ρllx−yll > 1.. Then, we obtain llz − xll = r2ρ .,
and it follows from (3.8) that llz− yll = (λ− 1)llx − yll < (r2 − r1)ρ .. Hence, using
(f )., we have llf (z) − f (x)ll = r2ρ .. It would now follow from (g.1). that

.r2ρ = llf (z) − f (x)ll ≤ llf (z) − f (y)ll + llf (y) − f (x)ll < (r2 − r1)ρ + r1ρ,

a contradiction. Therefore, we can conclude that llf (x) − f (y)ll ≥ r1ρ ..
(h). Assume that {αi}. is a strictly increasing sequence and {βi}. is a strictly decreasing

sequence with the following properties:
(iii). αi, βi ∈ Q. for all i ∈ N.;
(iv). lim

i→∞ αi = 1 = lim
i→∞ βi ..

It then follows from (g). that, for every i ∈ N., if αiρ < llx − yll < βiρ ., then
αiρ ≤ llf (x) − f (y)ll ≤ βiρ ., which implies that f is an isometry from X into Y .

Suppose x and y are nonzero elements of Y with llx+yll = llxll+llyll.. According
to Lemma 2.8, we can set s = 1

llxll . and t = 1
llyll . such that llsx + tyll = llsxll + lltyll..

Then, our hypothesis (ii). for c = sx . and d = ty . implies sx = ty ., i.e., x = t
s
y .

with t
s

> 0.. Due to Definition 2.4, Y is strictly convex. Finally, on account of the
theorem of Baker, f is affine. ///

Remark 3.4 Every real inner product space has the properties (i). and (ii). given in
Theorem 3.3 if its dimension is greater than 1.

Proof Let (X, /·, ·/). be a real inner product space with dim X > 1.. Assume that a is an
arbitrary element of X with llall < 1.. Since dim X > 1., there is an element b orthogonal
to a such that llbll2 = 1 − llall2

.. Then we have

.lla − bll2 = /a − b, a − b/ = llall2 − 2/a, b/ + llbll2 = 1

and

.lla + bll2 = /a + b, a + b/ = llall2 + 2/a, b/ + llbll2 = 1.

That is, (X, /·, ·/). has the property (i)..
Let (Y, /·, ·/). be a real inner product space with dim Y > 1.. Suppose c and d are

arbitrary elements of Y such that llcll = 1 = lldll. and llc + dll = 2.. On the contrary,
assume that c /= d .. Then we obtain

.4 = llc + dll2 = /c + d, c + d/ = llcll2 + 2/c, d/ + lldll2 = 2 + 2/c, d/.
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Hence, /c, d/ = 1.. According to the Cauchy-Schwarz inequality, the vectors c and d are
linearly dependent. Thus, there is a real number α /= 0. such that c = αd .. Since llcll =
1 = lldll. and c /= d ., it follows that α = −1.. Moreover, we have llc + dll = ll0ll = 0 /= 2.,
a contradiction. Hence, c and d must be the same. Therefore, (Y, /·, ·/). has the property
(ii).. ///

According to Remark 3.4, the Euclidean space E
n
. for n > 1. has the properties (i). and

(ii)., which are given in the theorem of Benz. It follows from (a). of the proof of Beckman–

Quarles theorem that if f preserves ρ > 0., then it also preserves
/

2(1 + 1
n
)ρ .. Due to (b).

of the proof of Beckman–Quarles theorem, f preserves 2
(
1+ 1

n

)
ρ .. Moreover, by (c). of the

proof, the distance 2
n
ρ . is contractive by f . In summary, 2

n
ρ . is contractive and 2

(
1 + 1

n

)
ρ .

is extensive by f . If we replace ρ . and N with 2
n
ρ . and n + 1., respectively, Benz’s theorem

provides the proof of the Beckman–Quarles theorem. This fact implies that Benz’s theorem
is a generalization of the Beckman–Quarles theorem.

3.3 Theorem of Benz and Berens

In the last part of the proof of Theorem 3.3, we showed that the second condition of the
theorem implies the strict convexity of the range space Y .

If the range space is a real normed space that is strictly convex, W. Benz and H. Berens
[7] could generalize both Schröder’s and Benz’s theorems by weakening their conditions.

The proof of the following theorem is similar to the proof of Benz’s theorem. We will
omit the parts that are similar to each other.

Theorem 3.5 (Benz and Berens) Let X be a real normed space with dim X > 1. and let
Y be a real normed space, which is strictly convex. Suppose f : X → Y . is a mapping and
N > 1. is a fixed integer. If a distance ρ > 0. is contractive and Nρ . is extensive by f , then
f is an affine isometry.

Proof We divide the proof of this theorem into several steps and prove each step one by
one.

(a). Following the part (a). of the proof of Theorem 3.3, we can prove that llf (x) −
f (y)ll = ρ . for any vectors x and y in X with llx − yll = ρ ..

(b). Now, we assume that x and y are arbitrary vectors in X with llx − yll = 2ρ .. It follows
from the part (b). of the proof of Theorem 3.3 that llf (x) − f (y)ll = 2ρ ..

(c). We assume that x, y, and z are arbitrary vectors in Y such that lly −xll = ρ = llz−yll.

and llz − xll = 2ρ .. Since Y is strictly convex, it follows from the facts

.ll(z − y) + (y − x)ll = llz − xll = 2ρ = llz − yll + lly − xll
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and

.llz − yll = lly − xll

that z − y = y − x ., i.e., z = 2y − x ..
(d). Suppose x and y are arbitrary vectors in X with llx − yll = ρ .. Just as with the part

(d). of the proof of Theorem 3.3, we use mathematical induction to prove

.f
(
x + m(y − x)

) = f (x) + m
(
f (y) − f (x)

)

for all m ∈ N0 ..
(e). Let α . and β . be positive real numbers with 2β ≥ α .. Furthermore, assume that x and y

are arbitrary vectors in X with llx − yll = α .. We claim that there exists a z ∈ X . with
llz − xll = β = llz − yll..

If 2β = α ., then we just set z = 1
2 (x + y).. Otherwise, if we set a = 1

2β
(y − x).,

then llall < 1.. Since X is a real normed space with dim X > 1., there exists a b ∈ X .

with lla − bll = 1 = lla + bll.. We now put z = 1
2 (x + y) + βb .. Then, we have

llz − xll = βlla + bll = β . and llz − yll = βllb − all = β ..
(f ). Assume that x and y are arbitrary vectors in X and m and n > 1. are positive integers

such that llx − yll = m
n
ρ .. We prove that llf (x) − f (y)ll = m

n
ρ ..

Due to (e)., there exists a z ∈ X . with llz−xll = mρ = llz−yll.. We choose a, b ∈ X .

such that

.x = z + m(a − z) and y = z + m(b − z) (3.9)

and we put

.x' = z + n(a − z) and y' = z + n(b − z). (3.10)

Then we have lla − zll = llb − zll = llx' − y'll = ρ ..
It follows from (d). that

.

l
f (x) = f (z) + m

(
f (a) − f (z)

)
,

f (y) = f (z) + m
(
f (b) − f (z)

) (3.11)

and

.

l
f (x') = f (z) + n

(
f (a) − f (z)

)
,

f (y') = f (z) + n
(
f (b) − f (z)

)
.

(3.12)
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Moreover, by (3.9), we get mlla − bll = llx − yll = m
n
ρ ., and thus, lla − bll = 1

n
ρ ..

In view of (3.10), we obtain llx' − y'll = nlla − bll = ρ .. Thus, due to (a)., we get
llf (x') − f (y')ll = ρ .. On the other hand, using (3.12), we obtain nllf (a) − f (b)ll =
llf (x') − f (y')ll = ρ ., and thus, llf (a) − f (b)ll = 1

n
ρ .. Furthermore, using (3.11), we

obtain llf (x) − f (y)ll = mllf (a) − f (b)ll = m
n
ρ ..

(g). Let x and y be arbitrary vectors in X and let r1 .and r2 .be positive rational numbers with
r1ρ < llx − yll < r2ρ .. By the same way as the part (g). of the proof of Theorem 3.3,
we can verify that r1ρ ≤ llf (x) − f (y)ll ≤ r2ρ ..

(h). Finally, by letting r1 ↑ r2 . in (g)., we may conclude that f : X → Y . is an isometry.
The affinity property of f is an immediate consequence of Baker’s theorem. ///

Using the triangle inequality, we can easily show that the conditions given in the
theorem of Benz and Berens are equivalent to the condition that f preserves the two
distances ρ . and Nρ ..

Considering the three main theorems of this chapter, we can now define the
Aleksandrov–Benz problem as follows:

Problem 3.6 (Aleksandrov–Benz Problem) Let X and Y be normed spaces and let f :
X → Y . be a mapping. If there exist a real number ρ > 0. and an integer N > 1. such that
f preserves the two distances ρ . and Nρ ., is f then necessarily an isometry?

We remark that the distance ratio in the Aleksandrov–Benz problem is restricted to an
integer greater than 1.

Let X and Y be real normed spaces such that dim X > 1. and Y is strictly convex. Also
assume that f : X → Y . preserves two distances whose ratio is not an integer. Whether f

should be an isometry in this case is still an open question, which we will discuss in detail
in the next chapters.



4Aleksandrov–Rassias Problems

Abstract

If the domain space and the range space are the same Euclidean space with dimension
greater than 1, the Aleksandrov problem has already been solved by the Beckman–
Quarles theorem. W. Benz and H. Berens also solved the extended Aleksandrov
problem under the additional conditions that the domain is a real normed space with
dimension greater than 1, the range is a strictly convex real normed space, two distances
are preserved, and that the ratio of the two distances is an integer. In this chapter,
we investigate the Aleksandrov–Rassias problems, which focus on cases where the
domain and range of the mapping involved differ, and cases where the ratio of two
distances that are preserved is not an integer. By introducing interesting examples and
counterexamples related to these topics, we try to help readers easily grasp the core
reality of the problem.

4.1 Aleksandrov–Rassias Problems

As we see in Sect. 3.1, E. M. Schröder proved that if a mapping f : En → E
n
. preserves

two distances ρ . and 2ρ ., then f is an affine isometry. Moreover, the theorem of Schröder
was further generalized by W. Benz and H. Berens.

We now introduce the concepts first established by Th. M. Rassias and P. Šemrl in their
paper [59].

Definition 4.1 Let X and Y be normed spaces and let f : X → Y . be a mapping.
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(i). We say that f has the distance one preserving property if and only if for all x, y ∈ X .,
llx − yll = 1. implies llf (x) − f (y)ll = 1.. In this case, we usually say that f satisfies
(DOPP).

(ii). We say that f has the strong distance one preserving property when for all x, y ∈ X .,
llx − yll = 1. if and only if llf (x) − f (y)ll = 1.. In this case, we usually say that f

satisfies (SDOPP).

Th. M. Rassias [57] further generalized the ideas of Schröder and of Benz and Berens
by posing the following problems, which are extensions of the Aleksandrov problem:

Problem 4.2 (Aleksandrov–Rassias Problems) Let X and Y be normed spaces.

(i). Is a mapping f : X → Y . that satisfies (DOPP) necessarily an isometry?
(ii). Is a mapping f : X → Y . that preserves two or more distances with non-integer ratios

necessarily an isometry?

Such problems are called Aleksandrov–Rassias problems. It should be noted that in
Problem 4.2 (ii). we constrain the distance ratios to be non-integers. This is because
when the distance ratios are integers, it is more appropriate to classify this case as an
Aleksandrov–Benz problem rather than an Aleksandrov–Rassias problem.

If X = Y = R., Examples 2.14 and 2.16 show that there are counterexamples to the
first Aleksandrov-Rassias problem. Nevertheless, we can ask for a solution to this problem
with an additional assumption like the differentiability of f . Unfortunately, the answer is
still negative, as shown in an example given in [12].

Example 4.3 Let us define a mapping f : R → R. by

.f (x) = x + sin(2πx).

Obviously, f is a differentiable mapping. Moreover, we easily check that

.

f (x + 1) = x + 1 + sin(2πx + 2π)

= f (x) + 1

for each x ∈ R., which implies that f satisfies (DOPP). However, f is not an isometry

because, e.g., f (0) = 0. and f ( 1
6 ) = 1

6 +
√

3
2 ..

If X = Y = E
n
., the n-dimensional Euclidean space with 1 < n < ∞., the

Beckman–Quarles theorem together with Remark 2.19 gives the positive answer to the
first Aleksandrov-Rassias problem. Finally, Example 2.15 gives a negative answer to the
first Aleksandrov–Rassias problem for X = Y = l2

..
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4.2 When Domain and Range Are Different

Now we are interested in Problem 4.2 (i). (the first Aleksandrov–Rassias problem) when
the domain and the range of the mappings involved are different.

Further, we outline a method to show how to construct examples to prove that for each
integer n > 1. there are an integer m and a mapping f : En → E

m
. that satisfies (DOPP) but

is not an isometry. The following example shows the case of the mapping f : E2 → E
8
.,

which was first introduced in [12] by K. Ciesielski and Th. M. Rassias.

Example 4.4 We can partition the Euclidean plane E
2
. into squares of diagonal length 1

as follows:
Now, the nine vertices of the unit regular 8-simplex E8 . in E

8
. are numbered 1 through

9, and f maps each square denoted by i in Fig. 4.1 to the ith vertex of E8 .. It is easy to see
that when two points lie in the same labeled squares, the distance between these points is
different from 1. This mapping f : E2 → E

8
. satisfies (DOPP) but is not an isometry.

Using regular hexagons instead of squares, we can construct such a mapping f : E2 →
E

6
. that satisfies (DOPP) but is not an isometry (see [17]). With this idea, it is easy to

construct such examples in higher-dimensional Euclidean spaces.
If a mapping f : E

n → E
m

. preserves a certain distance, then m is obviously not
smaller than n. This is true because E

m
. has regular n-simplexes if and only if m ≥ n..

Taking the Beckman–Quarles theorem into account, we now need to examine whether
there exists a mapping f : En → E

m
. that satisfies (DOPP) but is not isometric, only when

1 < n < m < ∞..
Indeed, an interesting theorem concerning this subject was proved by Rassias [56]. Here

we present only the outline of his proof.

Theorem 4.5 (Rassias) For any n ∈ N., there exists an mn ∈ N. such that for each integer
m ≥ mn ., there exists a mapping from E

n
. into E

m
. which satisfies (DOPP) but is not an

isometry.

Fig. 4.1 To construct a
mapping f : E2 → E

8 . that
satisfies (DOPP) but is not an
isometry, we partition the
Euclidean plane as shown in
this figure. Each square
contains the bottom edge, left
edge, and bottom left corner,
but none of the other corners
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Proof We partition E
n
. into the countably many regions D1,D2,D3, . . .. such that

(i). each region Di . is of diameter smaller than 1;
(ii). any closed n-ball of radius 1 intersects at most k of these regions.

We can choose an integer mn > 0. with the property that the regions D1,D2,D3, . . .. can
be partitioned into mn + 1. sets, namely U1, U2, . . . , Umn+1 ., such that if x ∈ Di ., y ∈ Dj .,
and Di . and Dj . belong to the same Uk ., then d(x, y) l= 1..

Let us define a mapping f : En → E
m

. for m ≥ mn . such that it maps each set

.Sk =
l l

Di∈Uk

Di

to a different vertex of a unit regular mn .-simplex in E
m

.. It then follows that d(x, y) = 1.

implies that both x and y are not in the same set Sk .. Thus, we have d(f (x), f (y)) = 1. for
all x, y ∈ E

n
. with d(x, y) = 1.. Hence, f satisfies (DOPP) but is not an isometry. ll

We do not even know if a non-isometric mapping f : E2 → E
3
. can satisfy (DOPP).

Furthermore, it is still an open problem whether there is a continuous mapping f : En →
E

m
., for m > n., that satisfies (DOPP) but is not an isometry (see [55, 57]).
Finally, we cannot help but mention the following: In 2003, S.-M. Jung [25] proved the

following theorems in connection with the first Aleksandrov–Rassias problem.

Theorem 4.6 Assume that X and Y are real Hilbert spaces with dim X > 2. and dim Y >

2.. If a mapping f : X → Y . preserves a distance ρ > 0. and if f maps the vertices of every
square with side lengths ρ . and

√
2ρ . in X onto the vertices of a rhombus with side lengths

ρ . and
√

2ρ . in Y , respectively, then f is an affine isometry.

Theorem 4.7 Let X and Y be real Hilbert spaces with each dimension greater than 1.
Assume that the distance ρ > 0. is contractive by a mapping f : X → Y . and that there
exists an integer n > 1. such that

√
n2 + 1 ρ . is extensive by f . If f maps the midpoint of

every line segment joining v and w of length 2nρ . into the line segment between f (v). and
f (w)., then f is an affine isometry.

4.3 Aleksandrov Problems with Non-standardMetrics

So far we have investigated the Aleksandrov problems mainly in Euclidean spaces. We
now consider the Aleksandrov problems by extending them to more general metric spaces,
rather than restricting them to the problems in the Euclidean spaces. This section is mainly
based on the paper [12] by K. Ciesielski and Th. M. Rassias.

We know that the following classical metrics in R
n
. induce the same topology:
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.de(x, y) =
( n7

i=1

(xi − yi)
2
)1/2

, dm(x, y) = max
i∈{1,2,...,n} |xi − yi |,

and

.dσ (x, y) =
n7

i=1

|xi − yi |

for all points x = (x1, x2, . . . , xn). and y = (y1, y2, . . . , yn). in R
n
..

We note that for n = 1. all three metrics aforementioned are the same. We now consider
the metric space R

2
., which has the metric dm .. The following example shows that in this

case some mappings satisfy (DOPP) but are not isometries.

Example 4.8 We define a mapping f : R
2 → R

2
. by f (x, y) = ([x], [y])., where [x].

denotes the integer part of x. The mapping f maps each point of an appropriate unit
square to its lower-left corner such that f (R2) = Z

2
.. Therefore, f satisfies (DOPP) but is

not isometric.

Next, we assume that the space R
2
. has the metric dσ .. In the following example, we

construct a mapping that satisfies (DOPP) but is not isometric.

Example 4.9 We define the mapping g : (R2, dσ ) → (R2, dσ ). by

.g =
(√

2 · Rπ
4

)
◦ f ◦

(
1√
2

· R−1
π
4

)
,

where f is defined in Example 4.8 and Rπ/4 . and R−1
π/4 . are the rotations defined as

.

Rπ
4
(x, y) =

(
1√
2
(x + y),

1√
2
(y − x)

)
,

R−1
π
4

(x, y) =
(

1√
2
(x − y),

1√
2
(x + y)

)
.

These rotations map unit balls in metric dm . to balls of radius
√

2. with respect to the
metric dσ .. Then we have

.

g(x, y) =
(√

2 · Rπ
4

)
◦ f ◦

(
1√
2

· R−1
π
4

)
(x, y)

=
(l

x − y

2

l
+

l
x + y

2

l
,

l
x + y

2

l
−

l
x − y

2

l)
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for all x, y ∈ R.. The mapping g satisfies (DOPP) but is not an isometry. Readers are
encouraged to perform the calculations in detail as part of their exercises.

In the general case R
n
. for n > 2., the rotation does not work as in R

2
.. This happens

because the balls in the metrics dm . and dσ . have the same shape only for n ∈ {1, 2}.. In R
2
.,

the balls are squares in both cases, but in R
3
. the balls are cubes for dm . and octahedrons

for dσ ..

Example 4.10 Let n be an integer greater than 2. We define a mapping f : (Rn, dm) →
(Rn, dm). by f (x1, x2, . . . , xn) = ([x1], [x2], . . . , [xn])..

Let Ci1,i2,...,in . denote an n-cube defined by

.

Ci1,i2,...,in = l
(x1, x2, . . . , xn) ∈ R

n : ik ≤ xk < ik + 1

for all k ∈ {1, 2, . . . , n}l
(4.1)

for all i1, i2, . . . , in ∈ Z.. Then, we have

.R
n =

l l

i1∈Z

l l

i2∈Z
· · ·

l l

in∈Z
Ci1,i2,...,in .

Due to the definition of the mapping f and by (4.1), it follows that

.

f (x) = f (x1, x2, . . . , xn)

= l[x1], [x2], . . . , [xn]
l

= (i1, i2, . . . , in)

(4.2)

for all x = (x1, x2, . . . , xn) ∈ Ci1,i2,...,in ..
If x, y ∈ R

n
. with dm(x, y) = 1., then there are i1, i2, . . . , in, j1, j2, . . . , jn ∈ Z. with

the following properties:

(i). x ∈ Ci1,i2,...,in .;
(ii). y ∈ Cj1,j2,...,jn .;

(iii). There exists a nonempty subset I of {1, 2, . . . , n}. such that

.|ik − jk| =
l

1 (for k ∈ I ),

0 (otherwise).

Thus, it follows from (4.2) and (iii). that

.dm

l
f (x), f (y)

l = max
k∈{1,2,...,n} |ik − jk| = 1
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for all x, y ∈ R
n
. with dm(x, y) = 1., which implies that f satisfies (DOPP) with respect

to the metric dm ..
On the other hand, in view of the definition of the mapping f , it is easy to show that f

is not an isometry. Therefore, the mapping f satisfies (DOPP) but is not an isometry.

We have not yet constructed an example for the metric dσ . like Example 4.10, nor
have we proved that each mapping satisfying (DOPP) with respect to the metric dσ . is
an isometry. So for n > 2. the following problem still remains unsolved:

Does every mapping f : (Rn, dσ ) → (Rn, dσ ). that satisfies (DOPP) have to be an isometry?

In case we could construct an appropriate non-isometric mapping that satisfies (DOPP),
we could express Rn

. as the union of unit balls (which intersect only at boundary points).
This is related to the partition hypothesis that applies to the relationship of the two
conditions given in the problem below (see [13]).

Problem 4.11 What is the relationship between the following conditions?

(i). There exists a mapping f : (Rn, d) → (Rn, d). that satisfies (DOPP) but is not an
isometry.

(ii). There exists a partition of Rn
. into unit balls with respect to the metric d having only

boundary points in common.

Let us consider a surjective mapping f : R
2 → R

2
. whose domain and range have

different metrics.

Theorem 4.12 There is no mapping f : (R2, dm) → (R2, de). that satisfies (DOPP).

Proof Set A = {(0, 0), (1, 0), (0, 1), (1, 1)}.. If x l= y . for x, y ∈ A., then dm(x, y) = 1.. It
then follows from (DOPP) that de(f (x), f (y)) = 1. for all x, y ∈ A. with x l= y ., which
is a contradiction, since every subset of R2

. (with metric de .) having this property consists
of at most three points. We have thus proved that no mapping f : (R2, dm) → (R2, de).

satisfies (DOPP). ll

Now consider a mapping f , whose domain is endowed with the Euclidean metric de .

and whose range is endowed with the maximum metric dm ..

Theorem 4.13 If there exists a non-isometric mapping f : (R2, de) → (R2, dm). that
satisfies (DOPP), then there exists a non-isometric mapping F : (R2, de) → (R3, de). that
also satisfies (DOPP).
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Proof Assume that f : (R2, de) → (R2, dm). is a non-isometric mapping that satisfies
(DOPP). Let us define

.

g : R2 → Z
2 by g(x, y) = ([x], [y]);

h : Z2 → A by h(k, l) = (k (mod 2), l (mod 2)), where

A = {(0, 0), (1, 0), (0, 1), (1, 1)};
o : A → B as the bijection, where B is the set of four

vertices of a unit simplex in R
3.

It follows that the mappings

.g : (R2, dm) → (Z2, dm), h : (Z2, dm) → (A, dm), o : (A, dm) → (B, de)

satisfy (DOPP). Then the mapping F : (R2, de) → (R3, de). defined by

.F = o ◦ h ◦ g ◦ f : R2 → B ⊂ R
3

satisfies (DOPP), but of course it is not an isometry. ll

The aforementioned theorem illustrates an interesting consequence of considering
different metrics in domain and range in the context of the classical problem mentioned
in front of Example 4.4. A similar consequence can be obtained if we consider mappings
between (R2, dσ ). and (R2, de)..

Considering metrics other than the Euclidean metric, we obtain the following theorem
based on previous considerations. When the Euclidean metric is applied in the following
theorem, the mapping that satisfies (DOPP) is an isometry due to the Beckman-Quarles
theorem.

Theorem 4.14 (Ciesielski and Rassias) Let n be a fixed integer greater than 1. A
continuous mapping f : (Rn, dm) → (Rn, dm). satisfying (DOPP) need not be an isometry.

Proof Let us define a continuous mapping f : (R2, dm) → (R2, dm). by

.f (x, y) = l[x] + {x}2, [y] + {y}2l,

where {x} = x − [x]. and {y} = y − [y].. We note that



4.4 Aleksandrov–Rassias Problems with (SDOPP) 79

.

dm

l
f (x, y), f (xl, yl)

l

= dm

ll[x] + {x}2, [y] + {y}2l,
l[xl] + {xl}2, [yl] + {yl}2ll

= max
lll[x] + {x}2 − [xl] − {xl}2

ll,
ll[y] + {y}2 − [yl] − {yl}2

lll

for all (x, y), (xl, yl) ∈ R
2
.. When dm((x, y), (xl, yl)) = 1., we may assume that |x−xl| =

1. and |y − yl| ≤ 1. without loss of generality. In this case, we have either [x] = [xl] − 1.

and {x} = {xl}. or [x] = [xl]+1. and {x} = {xl}.. Hence, f satisfies (DOPP) with respect to
the maximum metric but it is not an isometry. This example proves our theorem for n = 2..
By the same construction, we get examples for any integer n > 2.. ll

The following theorem can be proven using the rotation shown in Example 4.9. We
encourage readers to prove this theorem themselves as an exercise.

Theorem 4.15 A continuous mapping f : (R2, dσ ) → (R2, dσ ). that satisfies (DOPP)
need not be an isometry.

The following problem is still open: Assume that a continuous mapping f :
(Rn, dσ ) → (Rn, dσ ). satisfies (DOPP) for an integer n > 2.. Does f have to be an
isometry?

4.4 Aleksandrov–Rassias Problems with (SDOPP)

In this section, we will investigate the properties of mappings that satisfy (SDOPP).
Indeed, the content of this section is based on the paper [59] by Th. M. Rassias and P.
Šemrl and follows its notations whenever possible.

We say that f preserves the distance n in both directions if for all x, y ∈ X ., llx−yll = n.

if and only if llf (x) − f (y)ll = n.. This is a concept similar to (SDOPP) defined in
Definition 4.1 (ii)..

Theorem 4.16 (Rassias and Šemrl) Let X and Y be real normed spaces such that
dim X > 1. or dim Y > 1.. If f : X → Y . is a surjective mapping that satisfies (SDOPP),
then f is an one-to-one mapping such that

.
llllf (x) − f (y)ll − llx − yllll < 1 (4.3)

for all x, y ∈ X .. Moreover, f preserves distance n in both directions for any n ∈ N..
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Proof

(a). We prove that both spaces have dimension greater than 1. If dim Y > 1., then there
exist elements x, y, z ∈ Y . such that

.llx − yll = lly − zll = llz − xll = 1.

Since the mapping f is assumed to be surjective and preserve the distance 1 in both
directions, there are x1, y1, z1 ∈ X . that satisfy

.llx1 − y1ll = lly1 − z1ll = llz1 − x1ll = 1.

This implies that dim X > 1.. Likewise, we may prove that if dim X > 1., then
dim Y > 1..

(b). We claim that f is one-to-one. On the contrary, suppose there are x, y ∈ X . with
x l= y . such that f (x) = f (y).. Since dim X > 1., we can choose a z ∈ X . such that
llx − zll = 1. and lly − zll l= 1.. Because of our assumption that f (y) = f (x)., we
have llf (y) − f (z)ll = llf (x) − f (z)ll = 1., where the last equality follows from
(SDOPP). Furthermore, it follows from (SDOPP) that lly − zll = 1., which leads to a
contradiction. Hence, we conclude that f is one-to-one. Therefore, we conclude that
f is a bijective mapping and both f and f −1

. preserve the unit distance.
(c). From now on, we need the following notations:

.

Br(x) = l
z : llz − xll ≤ r

l
,

Br(x) = l
z : llz − xll < r

l
,

C(n,n+1](x) = l
z : n < llz − xll ≤ n + 1

l
.

Let x be any element of X and n > 1. any integer. Assume that z ∈ Bn(x).. Because
of dim X > 1., there exists a sequence x = x0, x1, . . . , xn = z. with

.llxi+1 − xill = 1

for any i ∈ {0, 1, . . . , n − 1}.. Consequently, we have

.

llf (z) − f (x)ll = llf (xn) − f (x0)ll

≤
n−17

i=0

llf (xi+1) − f (xi)ll

= n.
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Hence, we obtain

.f
l
Bn(x)

l ⊂ Bn

l
f (x)

l
.

A similar result can be obtained for f −1
.. Therefore, we conclude that

.f
l
Bn(x)

l = Bn

l
f (x)

l
.

for all x ∈ X . and integers n > 1.. However, f is bijective and thus

.f
l
C(n,n+1](x)

l = C(n,n+1]
l
f (x)

l
(4.4)

for all x ∈ X . and integers n > 1..
(d). We fix an element x ∈ X . and choose z ∈ C(1,2](x).. Then, it follows from (4.4) that

f (z) ∈ B2(f (x)).. We set u = z+ 1
llz−xll (z−x).. Then llu− zll = 1. and u ∈ C(2,3](x)..

According to (4.4), we have f (u) ∈ C(2,3](f (x)).. Thus, we obtain

.llf (u) − f (x)ll > 2. (4.5)

If llf (z) − f (x)ll ≤ 1., then

.llf (u) − f (x)ll ≤ llf (u) − f (z)ll + llf (z) − f (x)ll ≤ llf (u) − f (z)ll + 1 = 2,

which contradicts (4.5). Hence, we have proved that

.f
l
C(1,2](x)

l ⊂ C(1,2]
l
f (x)

l
.

The same result holds for the mapping f −1
.. Consequently, the relations

.f
l
C(1,2](x)

l = C(1,2]
l
f (x)

l
and f

l
B1(x)

l = B1
l
f (x)

l

hold for all x ∈ X .. This together with (4.4) implies the validity of inequality (4.3).
(e). To complete the proof, we will show by induction on n that f preserves the distance

n in both directions for all n ∈ N.. Assume that f preserves the distance n in both
directions. Let x and z be elements of X such that llz − xll = n + 1.. According
to (4.4), we have llf (z) − f (x)ll ≤ n + 1.. Let us define v by

.v = f (x) + 1

llf (z) − f (x)ll
l
f (z) − f (x)

l
.

Since f is surjective, there is a u ∈ X . such that v = f (u).. From llv − f (x)ll = 1. we
obtain llu − xll = 1. by (SDOPP).
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If llv − f (z)ll < n., it then follows from (4.4) that llu − zll < n.. This fact together with
llu − xll = 1. implies that

.llz − xll ≤ llz − ull + llu − xll < n + 1,

which contradicts our assumption that llz − xll = n + 1.. Thus, it necessarily follows that
llv − f (z)ll ≥ n.. This implies

.

n ≤ llv − f (z)ll

=
llll

(
1 − 1

llf (z) − f (x)ll
)

f (x) −
(

1 − 1

llf (z) − f (x)ll
)

f (z)

llll

= llllf (z) − f (x)ll − 1
ll.

Therefore, we can conclude that llf (z) − f (x)ll = n + 1.. A similar proof also confirms
that f −1

. preserves the distance n + 1.. ll

Remark 4.17 The assumption that one of the spaces has dimension greater than 1 cannot
be omitted in Theorem 4.16.

Proof If we define the mapping f : R → R. by

.f (x) =
l

x + 2 (for x ∈ Z),

x (for x l∈ Z),

then f is a bijective mapping that preserves distance n in both directions for any n ∈ N..
However, since f (0) = 2. and f ( 1

3 ) = 1
3 ., we have

.

llll

llllf
(

1

3

)
− f (0)

llll −
llll
1

3
− 0

llll

llll = 4

3
> 1.

Therefore, f does not fulfill inequality (4.3). ll

Remark 4.18 In Theorem 4.16, (SDOPP) cannot be replaced by (DOPP).

Proof Let g : [0, 1) → [0, 1) × R. be a bijective mapping. Furthermore, we define f :
R → R

2
. by

.f (t) = g({t}) + ([t], 0),

where we set {t} = t − [t]., and we denote by [t]. the integer part of t .
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We claim that f is a one-to-one mapping. Assume that t and t l . are real numbers with
[t] l= [t l]. and {t} l= {t l}.. Then we have

.

f (t) − f (t l) = g({t}) − g({t l}) + ([t] − [t l], 0)

∈ l
(x, y) ∈ R

2 : [t] − [t l] − 1 < x < [t] − [t l] + 1, y ∈ R
l

ll (0, 0).

Suppose t and t l . are real numbers with [t] l= [t l]. and {t} = {t l}.. Then, we see that

.f (t) − f (t l) = ([t] − [t l], 0) l= (0, 0).

Finally, if t and t l . are real numbers with [t] = [t l]. and {t} l= {t l}., then

.f (t) − f (t l) = g({t}) − g({t l}) l= (0, 0).

Hence, f is a one-to-one mapping.
Now we claim that f is a surjective mapping. Assume that (x, y). be an arbitrary point

in R
2
.. Since g : [0, 1) → [0, 1) × R. is a bijective mapping, we can choose a real number

t such that x − 1 < [t] ≤ x . and

.g({t}) = (x − [t], y) = (x, y) − ([t], 0),

i.e., f (t) = g({t}) + ([t], 0) = (x, y)., which implies that f is a surjective mapping.
Moreover, f preserves the unit distance:

.

llf (t + 1) − f (t)ll = llg({t + 1}) + ([t + 1], 0) − g({t}) − ([t], 0)
ll

= ll(1, 0)ll
= 1

for t ∈ R., i.e., f satisfies (DOPP). However, f does not satisfy inequality (4.3). ll

Remark 4.19 The inequality (4.3) is sharp.

Proof

(a). Given ε ∈ (0, 1
2 )., we define a mapping gε : [0, 1] → [0, 1]. by

.gε(t) =
l

ε
1−ε

t (for t ∈ [0, 1 − ε]),
1−ε
ε

t + l
2 − 1

ε

l
(for t ∈ [1 − ε, 1]).
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We note that gε . is a strictly increasing mapping. We also define hε : R → R. by

.hε(s) = [s] + gε({s}),

where we set {s} = s − [s]..
We assert that hε . is a strictly increasing mapping. We note that for any real numbers

s and t , s > t . if and only if either [s] > [t]. or [s] = [t]. and {s} > {t}.. Assume that
[s] > [t].. Then we obtain

.hε(s) − hε(t) = l[s] − [t]l + l
gε({s}) − gε({t})

l
> 0,

since 0 < gε({s}) − gε({t}) < 1.. Now we assume that [s] = [t]. and {s} > {t}.. Then
we have

.hε(s) − hε(t) = gε({s}) − gε({t}) > 0,

since gε . is a strictly increasing mapping. Thus, hε . is a strictly increasing mapping.
(b). Since − 1 < gε({s}) − gε({t}) < 1. for all s, t ∈ R., it holds that for n ∈ N0 .,

.|hε(s) − hε(t)| = lll[s] − [t]l + l
gε({s}) − gε({t})

lll = n

if and only if gε({s}) = gε({t})., which is equivalent to the fact that {s} = {t}.. In this
case, we remark that s − t = [s] + {s} − [t] − {t} = [s] − [t] = ±n.. Hence, we may
conclude that

.|s − t | = n if and only if |hε(s) − hε(t)| = n

for each n ∈ N..
(c). Without loss of generality, assume that s and t are real numbers with s > t .. Similarly,

we can verify that if |s − t | ≤ n. for some n ∈ N., then |hε(s) − hε(t)| ≤ n.. The
aforementioned proof is not difficult, so readers are encouraged to solve it themselves.

We now concentrate on proving the converse. Assume that |hε(s) − hε(t)| ≤ n.

for some n ∈ N.. If s and t are arbitrary real numbers with s > t . and [s] = [t]., then
{s} > {t}.. Hence, we have

.|s − t | = [s] − [t] + {s} − {t} = {s} − {t} < 1 ≤ n.

Assume that [s] − [t] ∈ {1, 2, . . . , n − 1}. for some s, t ∈ R. with s > t .. Since
− 1 < {s} − {t} < 1., we obtain

.|s − t | = [s] − [t] + {s} − {t} < n − 1 + 1 = n.
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Finally, suppose [s] − [t] = n.. From our assumption that

.|hε(s) − hε(t)| = [s] − [t] + gε({s}) − gε({t}) ≤ n,

it follows that gε({s}) ≤ gε({t})., which implies that {s} ≤ {t}.. Thus, we get

.|s − t | = [s] − [t] + {s} − {t} ≤ n.

Consequently, we have showed that

.|s − t | ≤ n if and only if |hε(s) − hε(t)| ≤ n

for any n ∈ N..
(d). Now we assert that

.|hε(s) − hε(t)| ≤ 1 − ε

ε
|s − t | (4.6)

for all s, t ∈ R.. Without loss of generality, we assume that s > t ., which is equivalent
to the fact that either [s] > [t]. or [s] = [t]. and {s} > {t}.. If [s] > [t]., then

.

|hε(s) − hε(t)| − 1 − ε

ε
|s − t |

= hε(s) − hε(t) − 1 − ε

ε
(s − t)

= [s] − [t] + l
gε({s}) − gε({t})

l − 1 − ε

ε
(s − t)

≤ [s] − [t] + 1 − ε

ε
{s} + 2 − 1

ε
− ε

1 − ε
{t} − 1 − ε

ε

l[s] + {s} − [t] − {t}l

=
(

2 − 1

ε

)l[s] − [t]l + 2 − 1

ε
+

(
1

ε
− 1 − ε

1 − ε

)
{t}

=
(

2 − 1

ε

)l[s] − [t] + 1 − {t}l +
(

1 − ε

1 − ε

)
{t}

< 2 − 1

ε
+ 1 − ε

1 − ε

< 0

for any ε ∈ (0, 1
2 )..

We now consider the other case when [s] = [t]. and {s} > {t}.. If 0 ≤ {t} < {s} ≤
1 − ε ., then
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.

|hε(s) − hε(t)| − 1 − ε

ε
|s − t |

= gε({s}) − gε({t}) − 1 − ε

ε
(s − t)

≤ ε

1 − ε
{s} − ε

1 − ε
{t} − 1 − ε

ε

l[s] + {s} − [t] − {t}l

=
(

ε

1 − ε
− 1 − ε

ε

)l{s} − {t}l

< 0

for any ε ∈ (0, 1
2 )..

If [s] = [t]. and 0 ≤ {t} ≤ 1 − ε < {s} ≤ 1., then

.

|hε(s) − hε(t)| − 1 − ε

ε
|s − t |

= gε({s}) − gε({t}) − 1 − ε

ε
(s − t)

≤ 1 − ε

ε
{s} + 2 − 1

ε
− ε

1 − ε
{t} − 1 − ε

ε

l[s] + {s} − [t] − {t}l

= 2 − 1

ε
+

(
1 − ε

ε
− ε

1 − ε

)
{t}

≤ 2 − 1

ε
+

(
1 − ε

ε
− ε

1 − ε

)
(1 − ε)

= 0

for all ε ∈ (0, 1
2 )..

If [s] = [t]. and 1 − ε < {t} < {s} ≤ 1., then

.

|hε(s) − hε(t)| − 1 − ε

ε
|s − t |

= gε({s}) − gε({t}) − 1 − ε

ε
(s − t)

= 1 − ε

ε
{s} − 1 − ε

ε
{t} − 1 − ε

ε

l{s} − {t}l

= 0

for any ε ∈ (0, 1
2 ).. Therefore, we have proved that inequality (4.6) holds for all s, t ∈

R. and ε ∈ (0, 1
2 )..
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(e). We use the notation C[0, 1]. to denote the set of all real-valued continuous mappings
defined on [0, 1].. We introduce the norm llxllm = max

t∈[0,1] |x(t)|. on C[0, 1]., where

x ∈ C[0, 1].. In addition, we define the mapping φε : C[0, 1] → C[0, 1]. by

.
l
φε(x)

l
(t) = hε

l
x(t)

l

for all x ∈ C[0, 1]. and t ∈ [0, 1].. Obviously, φε . is a bijective mapping, and we see
that (φ−1

ε (x))(t) = h−1
ε (x(t))..

Moreover, for any pair x, y ∈ C[0, 1]. the following conditions are equivalent:
(i). llx − yllm = n..

(ii). There exists t0 ∈ [0, 1]. such that |x(t0) − y(t0)| = n. and |x(t) − y(t)| ≤ n. for
all t ∈ [0, 1]..

(iii). |hε(x(t0)) − hε(y(t0))| = n. and |hε(x(t)) − hε(y(t))| ≤ n. for t ∈ [0, 1]..
(iv). llφε(x) − φε(y)llm = n..
In view of the definition of the norm ll · llm ., conditions (i). and (ii). are equivalent. Due
to (b). and (c)., the conditions in (ii). and (iii). are equivalent. By the definition of φε .,
(iii). and (iv). are obviously equivalent. Therefore, the mapping φε . preserves distance
n in both directions for any n ∈ N..

(f ). We define x, y ∈ C[0, 1]. by x(t) = 1 − ε . and y(t) = 1. for all t ∈ [0, 1].. Then
llx − yllm = ε .. In addition, we see that

.
l
φε(x)

l
(t) = hε

l
x(t)

l = hε(1 − ε) = [1 − ε] + gε({1 − ε}) = ε

and

.
l
φε(y)

l
(t) = hε

l
y(t)

l = hε(1) = [1] + gε({1}) = 1

for all t ∈ [0, 1].. It thus follows that llφε(x) − φε(y)llm = 1 − ε .. Consequently, we
obtain

.
llllφε(x) − φε(y)llm − llx − yllm

ll = 1 − 2ε,

and since we can choose ε . as small as we like, the inequality (4.3) is sharp. ll

The mapping φε : C[0, 1] → C[0, 1]. in Remark 4.19 is not only continuous, but also
satisfies a stronger condition (Lipschitz condition):

.

llφε(x) − φε(y)llm = max
t∈[0,1]

lllφε(x) − φε(y)
l
(t)

ll

= max
t∈[0,1]

llhε

l
x(t)

l − hε

l
y(t)

lll

≤ 1 − ε

ε
max

t∈[0,1] |x(t) − y(t)|

= Kllx − yllm
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for any x, y ∈ C[0, 1]., where the inequality sign is due to (4.6) and we set K = 1−ε
ε

> 1..
It follows that surjective Lipschitz mappings (K > 1.) that satisfy (SDOPP) need not be
isometries. However, for the case that K = 1., we can prove an extension of the Beckman-
Quarles theorem.

Theorem 4.20 (Rassias and Šemrl) Let X and Y be real normed spaces such that
dim X > 1. or dim Y > 1.. Assume that f : X → Y . is a Lipschitz mapping with a
Lipschitz constant 1, i.e.,

.llf (x) − f (y)ll ≤ llx − yll

for all x, y ∈ X .. If f is a surjective mapping satisfying (SDOPP), then f is an affine
isometry.

Proof According to Theorem 4.16, f preserves the distance n in both directions for any
n ∈ N.. We can choose two different elements x, y ∈ X . and an integer n0 > 0. such that
llx − yll < n0 .. Assume that

.llf (x) − f (y)ll < llx − yll. (4.7)

If we set

.z = x − n0

llx − yll (x − y),

then llz − xll = n0 . and

.llz − yll =
llll

(
1 − n0

llx − yll
)

(x − y)

llll = n0 − llx − yll.

Since f preserves distance n0 . in both directions, it follows from the Lipschitz condition
that

.llf (z) − f (x)ll = n0 and llf (z) − f (y)ll ≤ n0 − llx − yll. (4.8)

On the other hand, by (4.7) and (4.8), we obtain

.

llf (z) − f (x)ll ≤ llf (z) − f (y)ll + llf (y) − f (x)ll
< n0 − llx − yll + llx − yll
= n0,
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which contradicts (4.8). Hence, the strict inequality (4.7) cannot hold. Therefore, we
conclude that

.llf (x) − f (y)ll = llx − yll
for all x, y ∈ X ., which implies that f is an isometry. Finally, we use the theorem of Mazur
and Ulam to prove that f is an affine isometry. ll

Let X and Y be real normed spaces such that dim X > 1. and Y is strictly convex. It
follows from the theorem of Benz and Berens that if f : X → Y . preserves two distances
ρ . and Nρ . (where N > 1. is an integer and ρ > 0. is a real number), then f is an affine
isometry.

Corollary 4.21 Let X and Y be real normed spaces such that dim X > 1. or dim Y > 1..
Also assume that one of them is strictly convex. If f : X → Y . is a surjective mapping that
satisfies (SDOPP), then f is an affine isometry.

Proof According to Theorem 4.16, f is a bijective mapping that preserves the distance
m in both directions for every m ∈ N.. Moreover, the proof of Theorem 4.16 shows that
dim X > 1. and dim Y > 1.. So, without loss of generality, we can assume that Y is strictly
convex.

We first claim that f preserves the distance 1
n
. for every n ∈ N.: If we choose x, y ∈ X .

with llx − yll = 1
n
., then there exists a vector z ∈ X . such that llx − zll = lly − zll = 1.. Set

.u = z + n(y − z) and v = z + n(x − z).

Obviously, we have

.llx − vll = n − 1 and llv − zll = n.

Since f preserves the distance m in both directions for any m ∈ N., we have

.llf (x) − f (z)ll = 1, llf (x) − f (v)ll = n − 1, llf (v) − f (z)ll = n.

Since Y is strictly convex, it necessarily follows that

.f (x) = 1

n
f (v) + n − 1

n
f (z).

Similarly, we get

.f (y) = 1

n
f (u) + n − 1

n
f (z).

Using llv − ull = 1., we obtain llf (x) − f (y)ll = 1
n
llf (v) − f (u)ll = 1

n
..
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Now we assume that llx−yll ≤ m
n

., where m is an integer greater than 1. Since dim X >

1., there is a finite sequence {z0 = x, z1, . . . , zm = y}. of vectors in X such that llzi −
zi+1ll = 1

n
. for i ∈ {0, 1, . . . , m − 1}.. Hence, we have

.llf (x) − f (y)ll ≤
m−17

i=0

llf (zi) − f (zi+1)ll = m

n
.

Using the ideas of (g). and (h). in the proof of Theorem 3.3, we conclude that

.llf (x) − f (y)ll ≤ llx − yll
for all x, y ∈ X .. We now apply Theorem 4.20 to complete the proof. ll

4.5 Aleksandrov–Rassias Problems with (DOPP)

In the previous section, we investigated the properties of mappings that satisfy (SDOPP).
In this section, we will examine the properties of mappings that satisfy (DOPP).

The following result was proved in [51] by B. Mielnik and Th. M. Rassias under the
additional assumption that f is a homeomorphism.

Theorem 4.22 (Mielnik and Rassias) Suppose X and Y are real normed spaces such
that dim X > 1., and one of them is strictly convex. If f : X → Y . is a homeomorphism
satisfying (DOPP), then f is an affine isometry.

Proof Let x be an arbitrary vector in X. Since f satisfies (DOPP), f maps the unit sphere
S1(x) = {z ∈ X : llz − xll = 1}. into the sphere S1(f (x)) = {z ∈ Y : llz − f (x)ll = 1}..
Let Z be the complement of S1(x). in X and Z̃ . the complement of f (S1(x)). in Y . While
the homeomorphism f maps S1(x). onto f (S1(x))., it must simultaneously map Z onto Z̃ ..

We claim that f (S1(x)) = S1(f (x)).. On the contrary, suppose f (S1(x)). is a proper
subset of S1(f (x)).. Then its complement Z̃ . is connected, which is impossible since Z̃ =
f (Z). and Z is disconnected (see Remark 1.19). Thus, the unit sphere S1(x). is mapped
onto the unit sphere S1(f (x)).. Therefore, the mapping f satisfies (SDOPP). Finally, we
complete the proof using Corollary 4.21. ll

Theorem 4.20 was further generalized by Th. M. Rassias and S. Xiang [60].

Theorem 4.23 (Rassias and Xiang) Let X and Y be real normed spaces. Assume that Y

is strictly convex and f : X → Y . is a Lipschitz mapping with a Lipschitz constant 1:

.llf (x) − f (y)ll ≤ llx − yll
for all x, y ∈ X .. If f satisfies (DOPP), then f is an affine isometry.
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Proof

(a). Assume that x and y are arbitrary elements of X with llx − yll = 1
2 .. If we set z =

x + 2(y − x)., then we have llx − zll = 1. and lly − zll = 1
2 .. Since f is a Lipschitz

mapping with a Lipschitz constant 1 and satisfies (DOPP), we get

.

1

2
= llx − yll

≥ llf (x) − f (y)ll
≥ llf (x) − f (z)ll − llf (y) − f (z)ll
≥ 1 − lly − zll

= 1

2
.

Hence, we have llf (x) − f (y)ll = 1
2 .. Therefore, f preserves the distances 1 and 1

2 ..
(b). Applying a similar method as in the proof of Theorem 3.3, it is easy to verify that f

preserves the distance n + 1
2 . in both directions for any n ∈ N.. We invite the reader to

try out this proof.
(c). We now choose arbitrary elements x, y .of X and an n0 ∈ N. such that llx−yll < n0+ 1

2 ..
Assume that

.llf (x) − f (y)ll < llx − yll. (4.9)

If we set

.z = x + 2n0 + 1

2llx − yll (y − x),

then we have

.llz − xll = n0 + 1

2
and llz − yll = n0 + 1

2
− lly − xll.

Moreover, since f preserves the distances n + 1
2 ., n ∈ N., by (b). and f is a Lipschitz

mapping with a Lipschitz constant 1, it holds that

.llf (z) − f (x)ll = n0 + 1

2
and llf (z) − f (y)ll ≤ n0 + 1

2
− lly − xll.

On the other hand, it follows from (4.9) that
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.

n0 + 1

2
= llf (z) − f (x)ll

≤ llf (z) − f (y)ll + llf (y) − f (x)ll

< n0 + 1

2
− lly − xll + lly − xll

= n0 + 1

2
,

which leads to a contradiction. Hence, the strict inequality (4.9) is not valid. Therefore,
since f is a Lipschitz mapping with a Lipschitz constant 1, we conclude that llf (x) −
f (y)ll = llx − yll. for all x, y ∈ X ., i.e., f is an isometry. Finally, by Baker’s theorem, f is
an affine isometry. ll

We note that Y. Ma [48] proved the following theorem, which is more general than
Theorem 4.23.

Theorem 4.24 (Ma) Let X and Y be real normed spaces. Assume that Y is strictly convex
and f : X → Y . is a local Lipschitz mapping with a Lipschitz constant 1:

.llf (x) − f (y)ll ≤ llx − yll

for all x, y ∈ X . with llx − yll ≤ 1.. If f satisfies (DOPP), then f is an affine isometry.

We assume that a mapping f : En → E
n
. satisfies (DOPP), where n is an integer greater

than 1. According to part (a). of the proof of the Beckman-Quarles theorem presented at

the end of Chap. 2 or Lemma 2.21, the mapping f preserves distance
l

2(1 + 1
n
)..

In general, let X and Y be real Hilbert spaces with dim X ≥ n., where n is an integer
greater than 1. We assert that if a mapping f : X → Y . satisfies (DOPP), then llf (p) −
f (q)ll ≤

l
2(1 + 1

n
). for any p, q ∈ X . with llp − qll =

l
2(1 + 1

n
).: Let p, p1, . . . , pn .

and q, p1, . . . , pn . be the vertices of two unit regular n-simplices in X, respectively, and

llp − qll =
l

2(1 + 1
n
)..

We set z = f (p) − f (q)., xi = f (p) − f (pi). and yi = f (pi) − f (q). for each
i ∈ {1, 2, . . . , n}.. Then we have

.llxill = llyill = llxi − xjll = 1 and z = xi + yi

for all i, j ∈ {1, 2, . . . , n}. with i l= j .. Since llz − xill2 = llz − yill2 = 1. for any i ∈
{1, 2, . . . , n}., it follows from the Cauchy-Schwarz inequality that
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.llzll2 = 2|lz, xill| = 2

n

llll

l
z,

n7

i=1

xi

lllll ≤ 2

n
llzll

llll
n7

i=1

xi

llll ≤
l

2

(
1 + 1

n

)
llzll.

Therefore, it holds that llf (p) − f (q)ll = llzll ≤
l

2(1 + 1
n
)..

The following theorem is a consequence of the Benz–Berens theorem.

Theorem 4.25 Let X and Y be real Hilbert spaces with dim X ≥ n., where n is an integer
greater than 1. If a mapping f : X → Y . satisfies (DOPP) and preserves the distance

k

l
2(1 + 1

n
). for some integer k > 1., then f is an affine isometry.

In addition, many researchers have attempted to solve the Aleksandrov–Rassias
problems several times, but have not yet succeeded in completely solving the problems.



5Rassias and Xiang’s Partial Solutions

Abstract

In this and the next chapters, we will introduce in more detail the ideas and methods
used to solve the Aleksandrov–Rassias problems for each case. Section 5.1 focuses on
examining the Aleksandrov–Rassias problem, where the relevant mapping preserves
two distances, 1 and

√
3.. This case is a special case among cases where the ratio of two

distances is not an integer. In Sect. 5.2, we consider in detail the Aleksandrov–Rassias
problem where the relevant mapping preserves the distances 1 and

√
2.. Section 5.3

investigates the conditions under which the relevant mapping preserving three distances
necessarily become an isometry. As shown in Problem 4.2 (ii)., this problem is also
closely related to the Aleksandrov–Rassias problems. In this chapter, we extract the
main results from the papers by Rassias and Xiang (Univ Beograd Publ Elektrotehn
Fak 11(4):1–8, 2000), Xiang (Aleksandrov problem and mappings which preserve
distances, in Functional Equations and Inequalities, ed. by Th.M. Rassias, pp. 297–
323, Kluwer, Alphen aan den Rijn, 2000), Xiang (J Math Anal Appl 254(1):262–274,
2001) and organize them so that readers can easily understand them.

5.1 The CaseWhere 1 and
√
3 Are Preserved

In this section, we consider the Aleksandrov–Rassias problem for the case that the
mapping preserves two distances 1 and

√
3.. This is a special case among cases where

the ratio of two distances is not an integer.
The following theorem is excerpted from a paper [72] written by S. Xiang.

Theorem 5.1 (Xiang) Let X and Y be real Hilbert spaces with dim X > 1.. If a mapping
f : X → Y . preserves the distances 1 and

√
3., then f is an affine isometry.
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Fig. 5.1 A rhombus with sides
of length 1 and diagonals of
length

√
3. and 1 is drawn. The

vertices of this rhombus are
p1, p2, p3, p4 .

Fig. 5.2 The image of vertices
of a rhombus under f is
depicted, and their preimage
was presented in Fig. 5.1

Proof

(a). Let p1, p2, p3, p4 . be the points of X, which are the vertices of a rhombus with unit
side length such that llp1 l p3ll = √

3. and llp2 l p4ll = 1., as shown in Fig. 5.1.
(b). We now set x = f (p2) l f (p1)., y = f (p4) l f (p1)., and z = f (p3) l f (p1).. Since

f preserves the distances 1 and
√

3., it holds that

.llxll = llyll = llx l yll = llz l xll = llz l yll = 1 and llzll = √
3.

Since Y is a real Hilbert space, we obtain

.

llx l yll2 = llxll2 l 2lx, yl + llyll2 = 1,

llz l xll2 = llzll2 l 2lz, xl + llxll2 = 1,

llz l yll2 = llzll2 l 2lz, yl + llyll2 = 1.

Thus, it follows that

.lx, yl = 1

2
, lz, xl = lz, yl = 3

2
,

and

.llz l x l yll2 = llzll2 l 2lz, xl l 2lz, yl + llxll2 + 2lx, yl + llyll2 = 0.

The previous equality implies that z = x + y ., i.e., f (p1), f (p2), f (p3), f (p4). in Y

are the vertices of a rhombus of unit side length such that llf (p1) l f (p3)ll = √
3.

and llf (p2)lf (p4)ll = 1.. Moreover, f (p3). is in the span of {f (p1), f (p2), f (p4)}..
In particular, f (p3) l f (p1) = (f (p2) l f (p1)) + (f (p4) l f (p1)).. (See Fig. 5.2.)
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Fig. 5.3 Let p and q be two points whose distance from each other is 2, and let the midpoint of
these points be p1 .. Two more points p2 . and p3 . are chosen such that p, p1, p2, p3 . and p1, q, p2, p3 .

are the vertices of two rhombi with side length 1

(c). Assume that p and q are arbitrary points of X with llp l qll = 2.. We set p1 =
1
2 (p + q).. Since dim X > 1., there are points p2 . and p3 . of X such that p, p1, p2, p3 .

and p1, q, p2, p3 . are the vertices of two rhombi of unit side length with llp2 l pll =
llp3 l qll = √

3. (see Fig. 5.3).
By (b)., f (p), f (p1), f (p2), f (p3). and f (p1), f (q), f (p2), f (p3). are the vertices
of two rhombi of unit side length with llf (p2) l f (p)ll = llf (p3) l f (q)ll = √

3..
If we set x = f (p1)lf (p). and y = f (p3)lf (p)., then x ly = f (p1)lf (p3).,

x + y = f (p2) l f (p)., and f (q) l f (p3) = (f (p1) l f (p3)) + (f (p2) l f (p3))..
Thus, we obtain

.f (q) = (
f (p1) l f (p3)

0 + f (p2) = (x l y) + f (p2).

Hence, we have

.

f (q) l f (p) = (x l y) + (
f (p2) l f (p)

0

= (x l y) + (x + y)

= 2x

= 2
(
f (p1) l f (p)

0

and llf (q) l f (p)ll = 2.. Therefore, f preserves the distance 2.
(d). Finally, it follows from Theorem 2.5 and the Benz–Berens theorem that f is an affine

isometry. ll

In Theorem 5.1, the condition that dim X > 1. cannot be relaxed. For example, let
f : R → R. be a mapping of the form f (x) = x + φ(x)., where φ . is defined by

.φ(x) =
l

0 (for x ∈ A),

1 (for x l∈ A),
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Fig. 5.4 Let p and q be two points whose distance from each other is
√

3.. Two more points p1 . and
p2 . are chosen such that p, p1, q, p2 . become the vertices of a rhombus with side length 1

where A = {a + b
√

3 ∈ R : a, b ∈ Q}.. Then f preserves the distances 1 and
√

3., but it is
not an isometry.

Corollary 5.2 Let X and Y be real Hilbert spaces with dim X > 1.. If a mapping f :
X → Y . preserves the distances 1 and n

√
3. for some n ∈ N., then f is an affine isometry.

Proof

(a). Assume that p and q are arbitrary points of X with llp l qll = √
3.. Since

dim X > 1., we can choose two points p1 . and p2 . of X such that the pair of four
points {p, p1, q, p2}. comprises the vertices of a rhombus with unit side length with
llp2 l p1ll = 1., as we can see in Fig. 5.4.
If we set x = f (p1) l f (p)., y = f (p2) l f (p)., and z = f (q) l f (p)., then

.llxll = llyll = llx l yll = llz l xll = llz l yll = 1.

Hence, we have

.

llx l yll2 = llxll2 l 2lx, yl + llyll2 = 1,

llz l xll2 = llzll2 l 2lz, xl + llxll2 = 1,

llz l yll2 = llzll2 l 2lz, yl + llyll2 = 1.

It then follows from the last three equalities that

.lx, yl = 1

2
and lz, xl = lz, yl = 1

2
llzll2.

Thus, we obtain

.llx + yll2 = llxll2 + 2lx, yl + llyll2 = 3
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and

.llzll2 = lz, xl + lz, yl = lz, x + yl.

Moreover, it follows from the Cauchy–Schwarz inequality that

.llzll2 = lz, x + yl = |lz, x + yl| ≤ llzllllx + yll = √
3 llzll,

and hence, llzll = llf (q) l f (p)ll ≤ √
3..

(b). Assume that f preserves the distances 1 and n
√

3. for some integer n > 1.. Let p and
q1 . be any points of X with llp l q1ll = √

3.. If we set

.qk = p + k(q1 l p)

for all k ∈ {1, 2, . . . , n}., then we obtain llqk+1 l qkll = llq1 l pll = √
3. for any

k ∈ {1, 2, . . . , n l 1}. and llqn l pll = n
√

3.. Since dim X > 1., we can construct n

rhombi of unit side length, as shown in Fig. 5.5.
(c). It follows from (a). and (b). that

.llf (qk) l f (qkl1)ll ≤ √
3

for any k ∈ {1, 2, . . . , n}., where we set q0 = p ., and

.n
√

3 = llf (qn) l f (p)ll ≤
nl

k=1

llf (qk) l f (qkl1)ll ≤ n
√

3,

since f preserves the distance n
√

3.. Thus, we obtain

.llf (q1) l f (p)ll = llf (q2) l f (q1)ll = · · · = llf (qn) l f (qnl1)ll = √
3.

Therefore, the distance
√

3. is also preserved by f . By Theorem 5.1, f is an affine
isometry. ll

Fig. 5.5 The tail vertex of the preceding rhombus overlaps the head vertex of the succeeding
rhombus
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5.2 The CaseWhere 1 and
√
2 Are Preserved

In the previous section, we considered the case where the distances 1 and
√

3.are preserved,
as a special case of the Aleksandrov–Rassias problem where the ratio of two distances
is not an integer. As in the previous section, we use “points,” “elements,” and “vectors”
interchangeably and treat them as synonyms.

In this section, we will consider the case where the distances 1 and
√

2. are preserved.
Xiang proved the following theorem in his papers [71, 72].

Theorem 5.3 (Xiang) Let X and Y be real Hilbert spaces with dim X > 2.. If a mapping
f : X → Y . preserves the distances 1 and

√
2., then f is an affine isometry.

Proof

(a). Suppose p1, p2, p3, p4 . are arbitrary points of X that form the vertices of a rhombus
whose sides have unit length and whose diagonal lengths are both llp1 lp3ll = llp2 l
p4ll = √

2., as shown in Fig. 5.6.
We claim that the pair of four points {f (p1), f (p2), f (p3), f (p4)}. comprises the
vertices of a unit rhombus with llf (p1) l f (p3)ll = llf (p2) l f (p4)ll = √

2..
First, we set x = f (p2) l f (p1)., y = f (p4) l f (p1)., and z = f (p3) l f (p1)..

Since f preserves the distances 1 and
√

2., we have

.llxll = llyll = llz l xll = llz l yll = 1 and llzll = llx l yll = √
2.

Moreover, since Y is a real Hilbert space, we obtain

.

llx l yll2 = llxll2 l 2lx, yl + llyll2 = 2,

llz l xll2 = llzll2 l 2lz, xl + llxll2 = 1,

llz l yll2 = llzll2 l 2lz, yl + llyll2 = 1.

Thus, it follows that

.lx, yl = 0, lz, xl = lz, yl = 1,

Fig. 5.6 p1, p2, p3, p4 . are the
vertices of a rhombus whose
side length is 1 and whose
diagonals have length

√
2.
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Fig. 5.7
f (p1), f (p2), f (p3), f (p4).

are the vertices of a rhombus
whose side length is 1 and
whose diagonals have length√

2.

Fig. 5.8 Let p and q be two points whose distance from each other is
√

3.. The figure shows a unit
cube with the vertices p, p1, p2, p3, p4, q, p6 . and p5 .

and

.llz l x l yll2 = llzll2 l 2lz, xl l 2lz, yl + llxll2 + 2lx, yl + llyll2 = 0.

Hence, it follows that z = x +y .. That is, f (p1), f (p2), f (p3), f (p4). are the vertices
of a unit rhombus with llf (p1) l f (p3)ll = llf (p2) l f (p4)ll = √

2.. In particular,
f (p3). is in the span of {f (p1), f (p2), f (p4)}.. Furthermore, f (p3) l f (p1) =
(f (p2) l f (p1)) + (f (p4) l f (p1)).. (See Fig. 5.7.)

(b). Let p and q be any points of X with llp l qll = √
3.. Since dim X > 2., we can

construct a unit cube, whose vertices are p, p1 ., p2 ., p3 ., p4 ., q, p6 ., and p5 ., such that
llp l qll = √

3. as we see in Fig. 5.8. (In Fig. 5.8, the point p5 . is not shown.):
It is to be noted that the six pairs of four points {p, p1, p2, p3}., {p1, p4, q, p2}.,
{p, p1, p4, p5}., {p2, q, p6, p3}., {p, p5, p6, p3}., and {p4, q, p6, p5}. are the sets of
vertices of unit rhombi with diagonal lengths

√
2., respectively.

According to (a)., each of the following six pairs of four points

.

{f (p), f (p1), f (p2), f (p3)}, {f (p1), f (p4), f (q), f (p2)},
{f (p), f (p1), f (p4), f (p5)}, {f (p2), f (q), f (p6), f (p3)},
{f (p), f (p5), f (p6), f (p3)}, {f (p4), f (q), f (p6), f (p5)}

comprises the vertices of a corresponding unit rhombus with diagonal lengths
√

2..
Moreover, f (p5). is in the span of {f (p), f (p1), f (p4)}. and f (p6). is in the span
of {f (p2), f (q), f (p3)}.. Hence, f (p), f (p1), f (p2), f (p3), f (p4), f (q), f (p6), f (p5).

are the vertices of a unit cube. Therefore, it is obvious that llf (p) l f (q)ll = √
3., which

implies that f preserves the distance
√

3.. Consequently, due to Theorem 5.1, f is an affine
isometry. ll
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Assume that X and Y are real Hilbert spaces with dim X > 2.. If a mapping f : X → Y .

transforms every unit square in X into a unit square in Y , it then follows from Theorem 5.3
that f is an affine isometry. This corollary can be proved in a similar way to the proof of
Corollary 8.40.

5.3 The CaseWhere Three Distances Are Preserved

So far we have mainly been concerned with whether every mapping that preserves at most
two distances is an isometry. In this section, we will examine under what conditions
a mapping that preserves three distances can become an isometry. As we can see in
Problem 4.2 (ii)., this problem is closely related to the Aleksandrov-Rassias problem.

We introduce a theorem that was proved in a paper [60] by Th. M. Rassias and S. Xiang.

Theorem 5.4 (Rassias and Xiang) Let X and Y be real normed spaces such that
dim X > 1. and Y is strictly convex. Suppose f : X → Y . preserves three distances 1,
ρ ., and 1 + ρ ., where ρ . is any positive constant. Then f is an affine isometry.

Proof

(a). We claim that f preserves the distance 2 + ρ .. Suppose x and y are arbitrary points of
X with llx l yll = 2 + ρ .. If we put

.x1 = x + 1

2 + ρ
(y l x) and x2 = x + 1 + ρ

2 + ρ
(y l x),

then we have

.
llx1 l xll = 1, llx2 l x1ll = ρ, lly l x1ll = 1 + ρ,

llx2 l xll = 1 + ρ, lly l x2ll = 1.

By our assumption that f preserves the distances 1, ρ ., and 1 + ρ ., we obtain

.
llf (x1) l f (x)ll = 1, llf (x2) l f (x1)ll = ρ, llf (y) l f (x1)ll = 1 + ρ,

llf (x2) l f (x)ll = 1 + ρ, llf (y) l f (x2)ll = 1,

and thus, it follows that

.
llf (x2) l f (x)ll = 1 + ρ = llf (x2) l f (x1)ll + llf (x1) l f (x)ll,
llf (y) l f (x1)ll = 1 + ρ = llf (y) l f (x2)ll + llf (x2) l f (x1)ll.
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Since Y is a real normed space that is strictly convex, we have

.f (x1) = ρ

1 + ρ
f (x) + 1

1 + ρ
f (x2)

and

.f (x2) = ρ

1 + ρ
f (y) + 1

1 + ρ
f (x1).

Thus, llf (x) l f (y)ll = 2 + ρ . for all x, y ∈ X . with llx l yll = 2 + ρ .. Therefore, f

preserves the distance 2 + ρ ..
(b). We claim that f preserves the distance 2 + 2ρ .. Let x and y be arbitrary points of X

with llx l yll = 2 + 2ρ .. If we set

.x1 = x + 1 + ρ

2 + 2ρ
(y l x) and x2 = x + 2 + ρ

2 + 2ρ
(y l x),

then

.
llx1 l xll = 1 + ρ, llx2 l x1ll = 1, lly l x1ll = 1 + ρ,

llx2 l xll = 2 + ρ, lly l x2ll = ρ.

Since f preserves the distances 1, ρ ., 1 + ρ ., and 2 + ρ . by (a)., we have

.
llf (x1) l f (x)ll = 1 + ρ, llf (x2) l f (x1)ll = 1, llf (y) l f (x1)ll = 1 + ρ,

llf (x2) l f (x)ll = 2 + ρ, llf (y) l f (x2)ll = ρ.

Hence, it follows that

.
llf (x2) l f (x)ll = 2 + ρ = llf (x2) l f (x1)ll + llf (x1) l f (x)ll,
llf (y) l f (x1)ll = 1 + ρ = llf (y) l f (x2)ll + llf (x2) l f (x1)ll.

Since Y is a real normed space that is strictly convex, it holds that

.f (x1) = 1

2 + ρ
f (x) + 1 + ρ

2 + ρ
f (x2)

and

.f (x2) = 1

1 + ρ
f (y) + ρ

1 + ρ
f (x1).



104 5 Rassias and Xiang’s Partial Solutions

Hence, we get

.f (x) = (2 + ρ)f (x1) l (1 + ρ)f (x2) and f (y) = (1 + ρ)f (x2) l ρf (x1).

Thus, llf (x) l f (y)ll = 2 + 2ρ . for all x, y ∈ X . with llx l yll = 2 + 2ρ .. Therefore,
f preserves the distance 2 + 2ρ ..

(c). Consequently, by (a)., (b)., and the Benz-Berens theorem, we may conclude that f is
an affine isometry. ll

Remark 5.5 Theorem 5.4 is also true if the distances 1, ρ . and 1 + ρ . are replaced by
σ ., τ . and σ + τ ., where σ . and τ . are positive constants. In particular, if the ratio of the two
positive constants σ .and τ . is an integer, then f is an affine isometry due to the Benz-Berens
theorem.

Corollary 5.6 Let X and Y be real normed spaces such that dim X > 1. and Y is strictly
convex. Assume that ρ . is a real constant greater than 1. If a mapping f : X → Y .preserves
three distances 1, ρ ., and {ρ}., where {ρ} = ρ l [ρ]. and [ρ]. is the largest integer not
exceeding ρ ., then f is an affine isometry.

Proof

(a). If 1 < ρ < 2., then ρ = 1 + {ρ}., then it follows from Theorem 5.4 that f is an affine
isometry.

(b). When ρ = 2., it then follows from Theorem 2.5 and theorem of Benz and Berens that
f is an affine isometry.

(c). Assume that ρ > 2. and [ρ] = n > 1.. Let x and y be arbitrary points of X with
llx l yll = n.. If we set

.z = x + ρ

n
(y l x) and xk = x + k

n
(y l x)

for any k ∈ {0, 1, . . . , n}., then llxk l xk+1ll = 1. for each k ∈ {0, 1, . . . , nl 1}., where
x0 = x . and xn = y .. Moreover, we have llx l zll = ρ . and lly l zll = {ρ}.. Since f

preserves the distances 1, ρ ., and {ρ}., we obtain

.

ρ = llf (x) l f (z)ll
≤ llf (x) l f (xn)ll + llf (y) l f (z)ll

≤
nl1l

k=0

llf (xk) l f (xk+1)ll + llf (y) l f (z)ll

= [ρ] + {ρ}
= ρ.
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Hence, it follows that

.llf (x) l f (y)ll = llf (x) l f (xn)ll =
nl1l

k=0

llf (xk) l f (xk+1)ll = n.

Therefore, f preserves the distance [ρ] = n > 1.. Consequently, it follows from the
Benz–Berens theorem that f is an affine isometry. ll

The following theorem proved by Xiang generalizes Theorem 5.1 (see [72, Theorem
2.3]).

Theorem 5.7 (Xiang) Let X and Y be real Hilbert spaces with dim X > 1.. Assume that
ρ . and σ . are positive constants that satisfy 0 < ρ ≤ 2σ .. If a mapping f : X → Y .

preserves the distances ρ ., σ ., and
l

2ρ2 + σ 2 ., then f is an affine isometry.

Proof

(a). If ρ = 2σ ., then f is an affine isometry due to Theorem 2.5 and the Benz–Berens
theorem.

(b). Now we assume that 0 < ρ < 2σ .. Let {p1, p2, p3, p4}. be an arbitrary pair of four
points that comprises the vertices of a parallelogram in X with llp4 l p1ll = llp3 l
p2ll = ρ ., llp3lp4ll = llp2lp1ll = σ ., llp1lp3ll = l

2ρ2 + σ 2 ., and llp2lp4ll = σ .,
as we see in Fig. 5.9.
Then, the pair of four points {f (p1), f (p2), f (p3), f (p4)}. comprises the vertices
of a parallelogram lying in Y with llf (p4) l f (p1)ll = llf (p3) l f (p2)ll = ρ .,
llf (p3) l f (p4)ll = llf (p2) l f (p1)ll = σ ., llf (p1) l f (p3)ll = l

2ρ2 + σ 2 .,
llf (p2) l f (p4)ll = σ ., and f (p3) l f (p1) = (f (p4) l f (p1)) + (f (p2) l f (p1))..

(c). Let p and q be arbitrary points of X with llp l qll = 2ρ . and let p1 = 1
2 (p + q)..

Since dim X > 1., there are points p2 . and p3 . in X such that {p, p1, p2, p3}. and
{p1, p3, p2, q}. are the sets of vertices of two parallelograms with llp1 l pll = ρ . and
llp2 l p1ll = llp3 l p1ll = σ .. (See Fig. 5.10.)
According to (b)., {f (p), f (p1), f (p2), f (p3)}. and {f (p1), f (p3), f (p2), f (q)}. are
the sets of vertices of two parallelograms with side lengths ρ . and σ ., respectively.

Fig. 5.9 The four points p1, p2, p3, p4 . are vertices of a parallelogram, where llp4 l p1ll = llp3 l
p2ll = ρ ., llp3lp4ll = llp2lp1ll = llp2lp4ll = σ ., and llp1lp3ll =

l
2ρ2 + σ 2 . for 0 < ρ < 2σ .
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Fig. 5.10 Let p and q be two points separated by 2ρ . and the midpoint of these points be p1 .. Two
more points p2 . and p3 . are chosen such that p, p1, p2, p3 . and p1, q, p2, p3 . are the vertices of two
parallelograms with side lengths ρ . and σ .

(d). If we set x = f (p1) l f (p). and y = f (p3) l f (p)., then x l y = f (p1) l f (p3).,
x + y = f (p2) l f (p)., and f (q) l f (p3) = (f (p1) l f (p3)) + (f (p2) l f (p3))..
Thus, the points f (p)., f (p1)., f (p2)., f (p3)., and f (q). lie on a plane in Y . Hence, we
have f (q) l f (p) = 2x = 2(f (p1) l f (p)). and llf (q) l f (p)ll = 2ρ .. Therefore,
f preserves the distance 2ρ .. Consequently, by Theorem 2.5 and the Benz–Berens
theorem, we may conclude that f is an affine isometry. ll

We can easily prove the following corollary by exchanging the roles of ρ . and σ . in
Theorem 5.7.

Corollary 5.8 Let X and Y be real Hilbert spaces with dim X > 1.. Assume that ρ . and
σ . are positive constants that satisfy 0 < σ ≤ 2ρ .. If a mapping f : X → Y . preserves the
distances ρ ., σ ., and

l
ρ2 + 2σ 2 ., then f is an affine isometry.

Let X and Y be real Hilbert spaces with dim X > 1.. Assume that a mapping f : X →
Y . preserves the two distances ρ . and σ .. Suppose {p1, p2, p3, p4}. is a pair of four points
that comprise the vertices of a parallelogram in X with llp2 l p1ll = llp3 l p4ll = ρ . and
llp3 l p2ll = llp4 l p1ll = llp2 l p4ll = σ .. By the same way presented in the proof of
Corollary 5.2, we can obtain llf (p3) l f (p1)ll ≤ l

2ρ2 + σ 2 .. If f preserves the distance
n
l

2ρ2 + σ 2 ., using a similar method as the proof of Corollary 5.2, we can show that f

preserves the distance
l

2ρ2 + σ 2 ..

Corollary 5.9 Let X and Y be real Hilbert spaces with dim X > 1.. Assume that ρ . and
σ . are positive constants that satisfy 0 < ρ ≤ 2σ .. If a mapping f : X → Y . preserves the
distances ρ ., σ ., and n

l
2ρ2 + σ 2 . for some n ∈ N., then f is an affine isometry.

To prove the following corollary, we only need to exchange the roles of ρ . and σ . in
Corollary 5.9.

Corollary 5.10 Let X and Y be real Hilbert spaces with dim X > 1.. Assume that ρ . and
σ . are positive constants that satisfy 0 < σ ≤ 2ρ .. If a mapping f : X → Y . preserves the
distances ρ ., σ ., and n

l
ρ2 + 2σ 2 . for some n ∈ N., then f is an affine isometry.
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In addition, Xiang proved the following theorem in terms of three distance-preserving
mappings.

Theorem 5.11 (Xiang) Let X and Y be real Hilbert spaces with dim X > 1.. Assume that
ρ . is a real number with 0 ≤ ρ ≤ 2.. If a mapping f : X → Y . preserves the distances 1, ρ .,
and n

l
4 l ρ2 . for some integer n > 1., then f is an affine isometry.

Proof

(a). If ρ = 0. or ρ = 2., it then follows from Theorem 2.5 and Benz–Berens theorem that
f is an affine isometry.

(b). We assume that 0 < ρ < 2.. Suppose p and q are arbitrary points in X with llplqll =l
4 l ρ2 .. We assert that llf (p)lf (q)ll ≤ l

4 l ρ2 .. Since dim X > 1., we can select
two points p1 . and p2 . in X such that {p, p1, q, p2}. comprises the vertices of some
rhombus with llp1 lpll = llp2 lpll = llqlp1ll = llqlp2ll = 1. and llp2 lp1ll = ρ .,
as shown in Fig. 5.11.
Since f preserves 1 and ρ ., it follows that llf (p1) l f (p)ll = llf (p2) l f (p)ll =
llf (q) l f (p1)ll = llf (q) l f (p2)ll = 1. and llf (p2) l f (p1)ll = ρ ..

We set x = f (p1) l f (p)., y = f (p2) l f (p)., and z = f (q) l f (p).. Then we
obtain

.

llx l yll2 = llxll2 l 2lx, yl + llyll2 = ρ2,

llz l xll2 = llzll2 l 2lz, xl + llxll2 = 1,

llz l yll2 = llzll2 l 2lz, yl + llyll2 = 1.

Hence, we have

.llx + yll2 = llxll2 + 2lx, yl + llyll2 = 4 l ρ2 and lz, xl = lz, yl = 1

2
llzll2.

Thus, it follows from the Cauchy–Schwarz inequality that

.llzll2 = lz, x + yl ≤ |lz, x + yl| ≤ llzllllx + yll =
l

4 l ρ2llzll.

Fig. 5.11 The four points
p, p1, q, p2 . are the vertices of
a rhombus with side length 1,
llp l qll =

l
4 l ρ2 . and with

llp2 l p1ll = ρ . for 0 < ρ < 2.
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Therefore, we obtain

.llf (q) l f (p)ll = llzll ≤
l

4 l ρ2.

(c). Assume that f preserves the distances 1 and n
l

4 l ρ2 . for some integer n > 1.. Let p

and q1 . be points of X with llq1 l pll = l
4 l ρ2 .. If we set

.qk = p + k(q1 l p)

for every k ∈ {1, 2, . . . , n}., then llqk+1 l qkll = llq1 l pll = l
4 l ρ2 . for all k ∈

{1, 2, . . . , n l 1}. and llqn l pll = n
l

4 l ρ2 .. Since dim X > 1., we can construct n

rhombi of unit side length, as shown in Fig. 5.12.

Now, it follows from (b). that

.llf (qk) l f (qkl1)ll ≤
l

4 l ρ2

for all k ∈ {1, 2, . . . , n}., where we set q0 = p .. Thus, we have

.llf (qn) l f (p)ll ≤
nl

k=1

llf (qk) l f (qkl1)ll ≤ n

l
4 l ρ2.

Since Y is a real Hilbert space and f preserves the distance n
l

4 l ρ2 ., we obtain

.llf (qk) l f (qkl1)ll =
l

4 l ρ2

for all k ∈ {1, 2, . . . , n}.. Therefore, f preserves the distance
l

4 l ρ2 .. Since we assumed
that f preserves the distance n

l
4 l ρ2 . for some integer n > 1., it follows from

Theorem 2.5 and the Benz–Berens theorem that f is an affine isometry. ll

If we set ρ = n
l

4 l ρ2 = 2n√
n2+1

. for some integer n > 1., then 0 ≤ ρ ≤ 2.. The

following corollary is an immediate consequence of Theorem 5.11.

Corollary 5.12 Let X and Y be real Hilbert spaces with dim X > 1.. If a mapping f :
X → Y . preserves the distances 1 and 2n√

n2+1
. for some integer n > 1., then f is an affine

isometry.

Fig. 5.12 The tail vertex of the preceding rhombus and the head vertex of the succeeding rhombus
are the same



6Inequalities for Distances Between Points

Abstract

In this chapter, we will generalize the parallelogram law to all cases with a given
number of points. In Sect. 6.1, we prove the short diagonals lemma, which is a
generalization of the parallelogram law for the given four points in the inner product
space. Moreover, applying the short diagonals lemma and the parallelogram law, we
prove an inequality for the distances between any two points among the given six points.
Section 6.2 is devoted to a generalization of the short diagonals lemma to an inequality
for the distances among the given 2n points in the inner product space. In this section,
we conceive and prove an inequality involving all distances between an even number
of points. It seems to be more difficult to prove an inequality for the distances between
any two points among an odd number of points than among an even number of points.
In Sect. 6.3, we use a new method other than the short diagonals lemma to prove an
inequality for the distances between any two of the given five points. It is somewhat
surprising that the golden ratio appears in this inequality. In Sect. 6.4, an inequality
is introduced that describes in general the relationship between distances among the
given n points. When studying inequalities for distances between given n points, it is
recommended to pay attention to the following two requirements:

(†). All possible distances between points are included in the inequality.
(‡). The necessary and sufficient condition for the equality sign is presented.

The main results presented in this chapter have been extracted from the papers by Jung
(Nonlinear Anal 62(4):675–681, 2005), Jung and Lee (J Math Anal Appl 324(2):1363–
1369, 2006), Jung and Nam (J Math Inequal 12(4):1189–1199, 2018), Jung and Nam (J
Math Inequal 13(4):969–981, 2019) and explained in detail so that the reader can easily
understand them.
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110 6 Inequalities for Distances Between Points

6.1 An Inequality for Distances Among Six Points

Throughout this chapter, unless otherwise stated, letH be a real (or complex) inner product
space, l·, ·l. the inner product for H , and let ll · ll. be the norm on H defined by llxll =√lx, xl. for all x ∈ H .. In this book, we often use the terms “points,” “elements,” and
“vectors” interchangeably and treat them as synonyms.

If dimH > 1., then the Pythagorean theorem states that for each pair of three points
x, y, z. of H , the equality

.llx − zll2 = lly − xll2 + llz − yll2

holds if and only if the vectors y − x . and z − y . are orthogonal to each other. This is one
of the most important theorems in mathematics.

In connection with this topic, we first consider the case of four points x, y, z,w . of H .
The parallelogram law states that the equality

.lly − xll2 + llz − yll2 + llw − zll2 + llx − wll2 = llz − xll2 + llw − yll2

holds if and only if y − x ., z − y ., w − z., x − w . are the sides of a (possibly degenerate)
parallelogram with diagonals z−x . and w−y . (see Theorem 1.42). However, if y−x ., z−y .,
w−z., x−w . are not the sides of a (possibly degenerate) parallelogram with diagonals z−x .

and w − y ., the following strict inequality holds (cf. [49, Lemma 15.4.2]):

.lly − xll2 + llz − yll2 + llw − zll2 + llx − wll2 > llz − xll2 + llw − yll2.

The parallelogram law can be generalized to an inequality that can be applied to any
four points in an inner product space. This inequality is known as the short diagonals
lemma and was proved in [49, Lemma 15.4.2] for the case of Euclidean spaces.

Because of its pedagogical importance, we will first introduce the proof of the short
diagonals lemma for the case of inner product spaces.

Lemma 6.1 (Short Diagonals Lemma) If H is a real (.or complex). inner product space,
then

.lly − xll2 + llz − yll2 + llw − zll2 + llx − wll2 ≥ llz − xll2 + llw − yll2

for all x, y, z,w ∈ H ..

Proof We will prove the lemma when H is a complex inner product space. Let x, y, z,w .

be arbitrary vectors of H . Then, we get
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.

lly − xll2 + llz − yll2 + llw − zll2 + llx − wll2 − llz − xll2 − llw − yll2

= ly − x, y − xl + lz − y, z − yl + lw − z,w − zl + lx − w, x − wl
− lz − x, z − xl − lw − y,w − yl

= ly − x, y − xl + lz, zl − ly, zl − ly, zl + ly, yl
+ lw − z,w − zl + lx, xl − lw, xl − lw, xl + lw,wl − lz, zl
+ lx, zl + lx, zl − lx, xl − lw,wl + ly,wl + ly,wl − ly, yl

= ly − x, y − xl + lw − z,w − zl + ly,w − zl + ly,w − zl
+ lz − w, xl + lz − w, xl

= ly − x, y − xl + lw − z,w − zl + ly − x,w − zl + ly − x,w − zl
= ly − x + w − z, y − x + w − zl
≥ 0,

which completes the proof. ll

By applying the short diagonals lemma and the parallelogram law, we prove an
inequality for the distances between any two points among the given six points. The
following theorem proved by S.-M. Jung [27] may be regarded as a generalization of the
short diagonals lemma.

Theorem 6.2 (Jung) Let H be a real (.or complex). inner product space.

(i). The inequality

.

2
(llz − ull2 + llx − vll2 + lly − wll2)

≤ llv − ull2 + llz − vll2 + llx − zll2 + llu − xll2

+ llw − ull2 + llz − wll2 + lly − zll2 + llu − yll2

+ llw − vll2 + llx − wll2 + lly − xll2 + llv − yll2

(6.1)

holds for any six points u, v,w, x, y, z ∈ H ..
(ii). The equality sign is true if and only if each pair of four points {u, v, z, x}., {u,w, z, y}.,

{v,w, x, y}. comprises the vertices of an appropriate (.possibly degenerate). parallel-
ogram such that z − u. and x − v ., resp., z − u. and y − w ., resp., x − v . and y − w . are
the diagonals of the corresponding parallelogram.
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Proof

(i). Applying Lemma 6.1 to each ordered quadruplet, (u, v, z, x)., (u,w, z, y).,
(v,w, x, y). consecutively, we have

.

llz − ull2 + llx − vll2 ≤ llv − ull2 + llz − vll2 + llx − zll2 + llu − xll2,
llz − ull2 + lly − wll2 ≤ llw − ull2 + llz − wll2 + lly − zll2 + llu − yll2,
llx − vll2 + lly − wll2 ≤ llw − vll2 + llx − wll2 + lly − xll2 + llv − yll2,

(6.2)

respectively. By summing up the three inequalities, we easily obtain the desired
inequality (6.1).

(ii). We now assume that the equality sign holds in (6.1). Lemma 6.1 implies that every
inequality in (6.2) is true. Hence, it is easy to check that strict inequality in at least one
of three inequalities of (6.2) implies the strict inequality sign in (6.1), a contradiction.
Hence, we conclude that if the equality sign holds in (6.1), then the equality sign
has to be true in each inequality of (6.2). That is, in view of parallelogram law, we
conclude that each of {v − u, z − v, x − z, u − x}., {w − u, z − w, y − z, u − y}.,
and {w − v, x − w, y − x, v − y}. comprises the sides of an appropriate (possibly
degenerate) parallelogram such that z − u. and x − v ., resp., z − u. and y − w ., resp.,
x − v . and y − w . are the diagonals of the corresponding parallelogram.

Conversely, we assume that each of {v−u, z−v, x−z, u−x}., {w−u, z−w, y−z, u−y}.,
and {w−v, x−w, y−x, v−y}. comprises the sides of an appropriate (possibly degenerate)
parallelogram such that z−u. and x−v ., resp., z−u. and y−w ., resp., x−v . and y−w . are the
diagonals of the corresponding parallelogram. Due to the parallelogram law, the equality
sign holds in each inequality of (6.2), and hence, the equality sign holds in (6.1). ll

Remark 6.3 Let H be a real (.or complex). inner product space.

(i). Every possible distance between two points among six different points is included in
the inequality (6.1).

(ii). Theorem 6.2 (ii). provides a necessary and sufficient condition to ensure the equality
sign in the inequality (6.1).

(iii). We ask whether there is another inequality besides the inequality (6.1) that satisfies
the aforementioned conditions (i). and (ii)..
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6.2 An Inequality for Distances Among 2n Points

In this section, using the short diagonals lemma, we will generalize the inequality (6.1) to
an inequality for the distances among the given 2n points, where n is an integer greater
than 1.

The following theorem was presented in the paper [36] by S.-M. Jung and K.-S. Lee.

Theorem 6.4 (Jung and Lee) Let n be an integer greater than 1, let H be a real (.or
complex). inner product space, and let pik . be any distinct 2n points of H , where i ∈
{1, 2, . . . , n}. and k ∈ {1, 2}..

(i). It holds that

.

7

i, j ∈ {1, 2, . . . , n}
k, l ∈ {1, 2}

i < j

llpik − pjlll2 ≥ (n − 1)
7

i∈{1,2,...,n}
llpi1 − pi2ll2. (6.3)

(ii). The equality sign holds in the inequality (6.3) if and only if for all i, j ∈ {1, 2, . . . , n}.
with i < j ., the pair of four points {pi1, pi2, pj1, pj2}. comprises the vertices of
an appropriate (.possibly degenerate). parallelogram such that pi1 . and pj1 . are the
opposite vertices to pi2 . and pj2 ., respectively.

Proof

(i). We will prove the inequality (6.3) by mathematical induction. For n = 2., inequal-
ity (6.3) is clearly correct according to Lemma 6.1. Now we assume that the
inequality (6.3) holds for any 2n points pik ., i ∈ {1, 2, . . . , n}. and k ∈ {1, 2}., where n

is some integer greater than 1.
Assume that pik . are 2(n + 1). arbitrary points, where i ∈ {1, 2, . . . , n + 1}. and

k ∈ {1, 2}.. According to our induction assumption, the inequality (6.3) holds for the
2n points pik ., where i ∈ {1, 2, . . . , n}. and k ∈ {1, 2}.. If we choose four points pi1 .,
p(n+1)1 ., pi2 ., and p(n+1)2 ., then Lemma 6.1 implies that

.

7

k,l∈{1,2}
llpik − p(n+1)lll2 ≥ llpi1 − pi2ll2 + llp(n+1)1 − p(n+1)2ll2 (6.4)

for each i ∈ {1, 2, . . . , n}..
By summing the inequalities in (6.3) and (6.4) for all i ∈ {1, 2, . . . , n}., we obtain
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.

7

i, j ∈ {1, 2, . . . , n}
k, l ∈ {1, 2}

i < j

llpik − pjlll2 +
7

i ∈ {1, 2, . . . , n}
k, l ∈ {1, 2}

llpik − p(n+1)lll2

≥ (n − 1)
7

i∈{1,2,...,n}
llpi1 − pi2ll2

+
7

i∈{1,2,...,n}

(llpi1 − pi2ll2 + llp(n+1)1 − p(n+1)2ll2
)

and hence,

.

7

i, j ∈ {1, 2, . . . , n + 1}
k, l ∈ {1, 2}

i < j

llpik − pjlll2 ≥ n
7

i∈{1,2,...,n+1}
llpi1 − pi2ll2,

which is the inequality (6.3) for n+1.. Finally, it follows from the induction conclusion
that (6.3) holds for all integers n > 1..

(ii). According to Lemma 6.1, the inequality

.

7

k,l∈{1,2}
llpik − pjlll2 ≥ llpi1 − pi2ll2 + llpj1 − pj2ll2 (6.5)

holds for any i, j ∈ {1, 2, . . . , n}.with i < j .. Furthermore, it is obvious that

.

7

i, j ∈ {1, 2, . . . , n}
i < j

(llpi1 − pi2ll2 + llpj1 − pj2ll2
)

= (n − 1)
7

i∈{1,2,...,n}
llpi1 − pi2ll2.

(6.6)

If we assume that the equality sign holds in (6.3) and the strict inequality holds in (6.5)
for some i, j ∈ {1, 2, . . . , n}.with i < j ., then it follows from (6.5) and (6.6) that

.

7

i, j ∈ {1, 2, . . . , n}
k, l ∈ {1, 2}

i < j

llpik − pjlll2 =
7

i, j ∈ {1, 2, . . . , n}
i < j

7

k,l∈{1,2}
llpik − pjlll2

>
7

i, j ∈ {1, 2, . . . , n}
i < j

(llpi1 − pi2ll2 + llpj1 − pj2ll2
)

= (n − 1)
7

i∈{1,2,...,n}
llpi1 − pi2ll2,
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which contradicts our assumption that the equality sign holds in (6.3). Hence, equality
sign in (6.3) implies the equality sign in (6.5) for i, j ∈ {1, 2, . . . , n}. with i < j .. That
means, according to the parallelogram law: If the equality sign in (6.3) holds, then for any
i, j ∈ {1, 2, . . . , n}. with i < j ., the pair of four points {pi1, pi2, pj1, pj2}. comprises the
vertices of a (possibly degenerate) parallelogram such that pi1 . and pj1 . are the opposite
vertices to pi2 . and pj2 ., respectively.

Conversely, assume that for any i, j ∈ {1, 2, . . . , n}. with i < j ., the pair of four
points {pi1, pi2, pj1, pj2}. comprises the vertices of an appropriate (possibly degenerate)
parallelogram such that pi1 . and pj1 . are the opposite vertices to pi2 . and pj2 ., respectively.
It then follows from the parallelogram law that the equality sign holds in (6.5) for all
i, j ∈ {1, 2, . . . , n}.with i < j .. Hence, it follows from (6.5) and (6.6) that

.

7

i, j ∈ {1, 2, . . . , n}
k, l ∈ {1, 2}

i < j

llpik − pjlll2 =
7

i, j ∈ {1, 2, . . . , n}
i < j

7

k,l∈{1,2}
llpik − pjlll2

=
7

i, j ∈ {1, 2, . . . , n}
i < j

(llpi1 − pi2ll2 + llpj1 − pj2ll2
)

= (n − 1)
7

i∈{1,2,...,n}
llpi1 − pi2ll2,

which confirms that the equality sign in (6.3) holds. ll

Theorem 6.4 was already proved in [27, Lemma 1] and [27, Theorem 2] for n = 2. and
n = 3., respectively. Indeed, Theorem 6.4 becomes the short diagonals lemma when n = 2.

and becomes Theorem 6.2 when n = 3..

Remark 6.5 Let H be a real (.or complex). inner product space and n > 1..

(i). All possible distances between two points among the given 2n points of H are
included in the inequality (6.3).

(ii). Theorem 6.4 (ii). provides a necessary and sufficient condition to ensure the equality
sign in inequality (6.3).

(iii). Besides the inequality (6.3), is there another inequality that satisfies the two
conditions (i). and (ii). aforementioned?
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6.3 An Inequality for Distances Among Five Points

In the previous sections, using the short diagonals lemma, we proved the inequality for the
distances between any two of the 2n points, where n is an integer greater than 1. It seems
more difficult to prove an inequality for the distances between any two points among an
odd number of points than among an even number of points.

Recently, S.-M. Jung and D. Nam [37] succeeded in proving an inequality for the
distances between any two among the five given points.

We denote by φ . the golden ratio, i.e., φ = 1+√
5

2 .. Then φ2 − φ − 1 = 0., and φ . is
the ratio of a diagonal to a side in a regular pentagon. It is somewhat surprising that the
golden ratio appears in an inequality for the distances between every two points among
five points.

Theorem 6.6 (Jung and Nam) Let H be a real (.or complex). inner product space.

(i). For any five points x1, x2, x3, x4, x5 ∈ H ., the following inequality holds:

.

φ2(llx1 − x2ll2 + llx2 − x3ll2 + llx3 − x4ll2

+ llx4 − x5ll2 + llx5 − x1ll2
)

≥ llx1 − x3ll2 + llx2 − x4ll2 + llx3 − x5ll2

+ llx4 − x1ll2 + llx5 − x2ll2.

(6.7)

(ii). The equality sign holds if and only if

.x4 = x1 − φx2 + φx3 and x5 = φx1 − φx2 + x3 (6.8)

for any x1, x2, x3 ∈ H ..

Proof We will only prove this theorem if H is a complex inner product space.

(i). For notational convenience, we set x6 = x1 ., x7 = x2 ., and x8 = x3 .. We set

.Sj =
57

i=1

lxi, xi+j l

for each j ∈ {0, 1, 2}.. Then, for any j ∈ {0, 1, 2}., we obtain
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.

57

i=1

llxi − xi+jll2

=
57

i=1

lxi − xi+j , xi − xi+j l

=
57

i=1

(lxi, xil − lxi, xi+j l − lxi, xi+j l + lxi+j , xi+j l
)

=
57

i=1

(
2lxi, xil − lxi, xi+j l − lxi, xi+j l

)

= 2S0 − Sj − Sj ,

(6.9)

where c. denotes the complex conjugation of a complex number c.
Due to (6.9), φ2 = φ + 1. and 2φ = 1 + √

5., inequality (6.7) becomes

.

0 ≤ φ2
57

i=1

llxi − xi+1ll2 −
57

i=1

llxi − xi+2ll2

= φ2(2S0 − S1 − S1) − (2S0 − S2 − S2)

= (2φ2 − 2)S0 − φ2(S1 + S1) + (S2 + S2)

= 2φS0 − (φ + 1)(S1 + S1) + (S2 + S2),

i.e., it is to prove that

.
(
1 + √

5
)
S0 − 3 + √

5

2
(S1 + S1) + (S2 + S2) ≥ 0. (6.10)

Since

.

57

i=1

lxi − xi+3, xi+1 − xi+2l

=
57

i=1

(lxi, xi+1l + lxi+2, xi+3l − lxi, xi+2l − lxi+1, xi+3l
)

=
57

i=1

lxi, xi+1l +
57

i=1

lxi, xi+1l −
57

i=1

lxi, xi+2l −
57

i=1

lxi, xi+2l

= (S1 + S1) − (S2 + S2),
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it follows from (6.9) that

.

0 ≤
57

i=1

llxi − xi+3 − φ(xi+1 − xi+2)ll2

=
57

i=1

(
(xi − xi+3) − φ(xi+1 − xi+2), (xi − xi+3) − φ(xi+1 − xi+2)

)

=
57

i=1

llxi+3 − xill2 − φ

57

i=1

lxi − xi+3, xi+1 − xi+2l

− φ

57

i=1

lxi − xi+3, xi+1 − xi+2l + φ2
57

i=1

llxi+1 − xi+2ll2

=
57

i=1

llxi − xi+2ll2 − 2φ(S1 + S1 − S2 − S2) + φ2
57

i=1

llxi − xi+1ll2

= (2φ2 + 2)S0 − (φ2 + 2φ)S1 − (φ2 + 2φ)S1

+ (2φ − 1)S2 + (2φ − 1)S2

= (
5 + √

5
)
S0 − 5 + 3

√
5

2
S1 − 5 + 3

√
5

2
S1 + √

5S2 + √
5S2.

(6.11)

If we divide the inequality (6.11) by
√
5., then the resulting inequality becomes exactly

the inequality (6.10), which is equivalent to our main inequality (6.7).
(ii). Equality condition. The right-hand side of (6.11) is just 0 if and only if xi − xi+3 −

φ(xi+1 − xi+2) = 0. for all i ∈ {1, 2, . . . , 5}., which is equivalent to

.xi+3 = xi − φxi+1 + φxi+2 (6.12)

for all i ∈ {1, 2, . . . , 5}.. Assume that the right hand side of (6.11) is 0 and x1, x2, x3 .

are given points in H . Then, by (6.12), we have

.x4 = x1 − φx2 + φx3

and

.

x5 = x2 − φx3 + φx4

= x2 − φx3 + φ(x1 − φx2 + φx3)

= φx1 + (−φ2 + 1)x2 + (φ2 − φ)x3

= φx1 − φx2 + x3.



6.3 An Inequality for Distances Among Five Points 119

Thus, the conditions in (6.8) are true.

On the other hand, we should check under the assumptions in (6.8) that the equa-
tion (6.12) also holds when i ∈ {1, 2, . . . , 5}.. Indeed, our assumptions in (6.8) imply
that the Eq. (6.12) holds for i ∈ {1, 2}. as we see in the last paragraph. It follows from (6.8)
that

.

x3 − φx4 + φx5 = x3 − φ(x1 − φx2 + φx3) + φ(φx1 − φx2 + x3)

= (φ2 − φ)x1 + (φ2 − φ2)x2 + (−φ2 + φ + 1)x3

= x1 = x6,

which is just the case of (6.12) for i = 3., where we notice that x6 = x1 ., x7 = x2 ., and
x8 = x3 .. Moreover, by (6.8), we have

.

x4 − φx5 + φx6 = x4 − φx5 + φx1

= (x1 − φx2 + φx3) − φ(φx1 − φx2 + x3) + φx1

= (−φ2 + φ + 1)x1 + (φ2 − φ)x2 + (φ − φ)x3

= x2 = x7,

which is just the case of (6.12) for i = 4.. Similarly, we obtain

.

x5 − φx6 + φx7 = x5 − φx1 + φx2

= (φx1 − φx2 + x3) − φx1 + φx2

= x3 = x8,

which is the case of (6.12) for i = 5..
Hence, Eq. (6.12) holds for every i ∈ {1, 2, . . . , 5}.. Since x1 ., x2 ., and x3 . can be any

points of H , the equality sign in (6.7) holds if and only if the conditions in (6.8) hold for
any x1, x2, x3 ∈ H .. ll

Remark 6.7 Let H be a real (.or complex). inner product space.

(i). The number of possible distances between two of five different points of H is
(5
2

) =
10., and the number of distances contained in the inequality (6.7) is also 10.

(ii). Theorem 6.6 (ii). provides a necessary and sufficient condition to ensure the equality
sign in the inequality (6.7).

(iii). In addition to the inequality (6.7), it is currently unknown whether another inequality
exists that satisfies the two conditions (i). and (ii). aforementioned.
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6.4 An Inequality for Distances Among n Points

From now on, let n be an integer greater than 3 and let cn . be defined as

.cn = sin 3π
n

sin π
n

,

where the value of cn . depends on n only. We note that it follows from (6.13) below that
1 ≤ cn < 3..

Lemma 6.8 Given an integer n > 3., let

.cn = sin 3π
n

sin π
n

and An =
⎛

⎜
⎝
0 1 0

0 0 1

1 −cn cn

⎞

⎟
⎠ .

Then An
n = I ., where I denotes the 3 × 3. identity matrix.

Proof Since sin(α + β) − sin(α − β) = 2 cosα sinβ ., it holds that

.cn − 1 = sin 3π
n

sin π
n

− 1 = sin 3π
n

− sin π
n

sin π
n

= 2 cos 2π
n
sin π

n

sin π
n

= 2 cos
2π

n
. (6.13)

Using (6.13), the characteristic polynomial of An ., denoted by φn(t)., is

.

φn(t) = det(An − tI )

= det

⎛

⎜
⎝

−t 1 0

0 −t 1

1 −cn cn − t

⎞

⎟
⎠

= −(t − 1)
(
t2 + (1 − cn)t + 1

)

= −(t − 1)

l
t2 − 2t cos

2π

n
+ 1

l
.

Let ω = cos 2π
n

+i sin 2π
n

., and let ω = cos 2π
n

−i sin 2π
n

.. Then the eigenvalues of An . are 1,
ω ., and ω .. Because the eigenvalues of An . are all distinct, their corresponding eigenvectors
are linearly independent. Thus An . is diagonalizable.

We define P by
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.P =
⎛

⎜
⎝
1 0 0

0 ω 0

0 0 ω

⎞

⎟
⎠ .

Then there exists a matrix U satisfying U−1AnU = P .. Hence, we obtain

.U−1An
nU = P n =

⎛

⎜
⎝
1 0 0

0 ωn 0

0 0 ωn

⎞

⎟
⎠ = I.

Therefore, An
n = UIU−1 = I .. ll

The number of distances between any two points among the n different points is
(
n
2

)
.,

while the number of distances involved in the inequality (6.14) is 3n, which is not equal to(
n
2

)
. unless n = 7.. Nevertheless, the inequality (6.14) is interesting and important enough.

Indeed, the following theorem was proved by S.-M. Jung and D. Nam [38].

Theorem 6.9 (Jung and Nam) Given an integer n > 3., let cn = sin 3π
n

sin π
n

. and H a real (.or

complex). inner product space.

(i). If n points x1, x2, . . . , xn . are arbitrarily given in H , then the following inequality
holds:

.

(
c2n + 2cn

) n7

i=1

llxi − xi+1ll2 +
n7

i=1

llxi − xi+3ll2

≥ 2cn

n7

i=1

llxi − xi+2ll2,
(6.14)

where xn+1 = x1 ., xn+2 = x2 ., and xn+3 = x3 . for notational convenience.
(ii). The equality sign in (6.14) holds if and only if for previously given points x1, x2, x3 ∈

H ., the points x4, x5, . . . , xn . are determined by the recursion formula

.xi+3 = xi − cnxi+1 + cnxi+2 (6.15)

for all i ∈ {1, 2, . . . , n − 3}..

Proof Because the proof of this theorem for real inner product spaces is similar as the
complex case, we will prove this theorem when H is a complex inner product space.
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(i). We set

.Sj =
n7

i=1

lxi, xi+j l

for each j ∈ {0, 1, 2, 3}.. Then, as we did in (6.9), we obtain

.

n7

i=1

llxi − xi+jll2

=
n7

i=1

lxi − xi+j , xi − xi+j l

=
n7

i=1

(lxi, xil − lxi, xi+j l − lxi, xi+j l + lxi+j , xi+j l
)

=
n7

i=1

(
2lxi, xil − lxi, xi+j l − lxi, xi+j l

)

= 2S0 − Sj − Sj ,

(6.16)

for each j ∈ {0, 1, 2, 3}., where c. denotes the complex conjugation of a complex
number c.

Since

.

n7

i=1

lxi − xi+3, xi+1 − xi+2l

=
n7

i=1

(lxi, xi+1l + lxi+2, xi+3l − lxi, xi+2l − lxi+1, xi+3l
)

=
n7

i=1

lxi, xi+1l +
n7

i=1

lxi, xi+1l −
n7

i=1

lxi, xi+2l −
n7

i=1

lxi, xi+2l

= (S1 + S1) − (S2 + S2),

(6.17)

it follows that

.

n7

i=1

lxi − xi+3, xi+1 − xi+2l = (S1 + S1) − (S2 + S2), (6.18)

and by (6.16), (6.17) and (6.18), the following inequality holds:
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.

0 ≤
n7

i=1

llxi − xi+3 − cn(xi+1 − xi+2)ll2

=
n7

i=1

(
(xi − xi+3) − cn(xi+1 − xi+2), (xi − xi+3) − cn(xi+1 − xi+2)

)

=
n7

i=1

llxi − xi+3ll2 − cn

n7

i=1

lxi − xi+3, xi+1 − xi+2l

− cn

n7

i=1

lxi − xi+3, xi+1 − xi+2l + c2n

n7

i=1

llxi+1 − xi+2ll2

=
n7

i=1

llxi − xi+3ll2 − 2cn(S1 + S1 − S2 − S2) + c2n

n7

i=1

llxi − xi+1ll2

=
n7

i=1

llxi − xi+3ll2 − 2cn

(
(2S0 − S2 − S2) − (2S0 − S1 − S1)

)

+ c2n

n7

i=1

llxi − xi+1ll2

=
n7

i=1

llxi − xi+3ll2 − 2cn

n7

i=1

llxi − xi+2ll2 + 2cn

n7

i=1

llxi − xi+1ll2

+ c2n

n7

i=1

llxi − xi+1ll2

= (c2n + 2cn)

n7

i=1

llxi − xi+1ll2 +
n7

i=1

llxi − xi+3ll2

− 2cn

n7

i=1

llxi − xi+2ll2.

(6.19)

Hence, inequality (6.14) is true.
(ii). Equality condition. We choose arbitrary x1, x2, x3 ∈ H . and determine x4, x5, . . . , xn .

recursively by substituting i with 1, 2, . . . , n − 3. in (6.15). Then, with the same An .

in Lemma 6.8, it follows from (6.15) that

.An

⎛

⎜
⎝

xi

xi+1

xi+2

⎞

⎟
⎠ =

⎛

⎜
⎝
0 1 0

0 0 1

1 −cn cn

⎞

⎟
⎠

⎛

⎜
⎝

xi

xi+1

xi+2

⎞

⎟
⎠ =

⎛

⎜
⎝

xi+1

xi+2

xi − cnxi+1 + cnxi+2

⎞

⎟
⎠ =

⎛

⎜
⎝

xi+1

xi+2

xi+3

⎞

⎟
⎠
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for all i ∈ {1, 2, . . . , n − 3}..

Temporarily, we set

.

y1 = xn−2 − cnxn−1 + cnxn

y2 = xn−1 − cnxn + cny1

y3 = xn − cny1 + cny2.

Since An
n = I . by Lemma 6.8, it holds that

.

⎛

⎜
⎝

x1

x2

x3

⎞

⎟
⎠ = An

n

⎛

⎜
⎝

x1

x2

x3

⎞

⎟
⎠ = A3

nA
n−3
n

⎛

⎜
⎝

x1

x2

x3

⎞

⎟
⎠

= A3
n

⎛

⎜
⎝

xn−2

xn−1

xn

⎞

⎟
⎠ = A2

n

⎛

⎜
⎝

xn−1

xn

xn−2 − cnxn−1 + cnxn

⎞

⎟
⎠

= A2
n

⎛

⎜
⎝

xn−1

xn

y1

⎞

⎟
⎠ = An

⎛

⎜
⎝

xn

y1

xn−1 − cnxn + cny1

⎞

⎟
⎠

= An

⎛

⎜
⎝

xn

y1

y2

⎞

⎟
⎠ =

⎛

⎜
⎝

y1

y2

xn − cny1 + cny2

⎞

⎟
⎠ =

⎛

⎜
⎝

y1

y2

y3

⎞

⎟
⎠ .

Therefore, y1 = x1 ., y2 = x2 ., y3 = x3 ., and

.

x1 = xn−2 − cnxn−1 + cnxn

x2 = xn−1 − cnxn + cnx1

x3 = xn − cnx1 + cnx2.

Hence, condition (6.15) is satisfied for each i ∈ {1, 2, . . . , n}..
Finally, it is obvious that the right hand side of (6.19) is zero if and only if

condition (6.15) is satisfied for all i ∈ {1, 2, . . . , n}.. ll

When studying inequalities for distances between any two points among given n points,
it is advisable to adhere to the following two recommendations:

(†). All possible distances between those n points are included in the inequality.
(‡). The necessary and sufficient condition for the equality sign is presented.
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Remark 6.10 Let H be a real (.or complex). inner product space and n > 3..

(i). The number of distances between any two points among the n different points is
(
n
2

)
.,

while the number of distances involved in the inequality (6.14) is 3n, which is not
equal to

(
n
2

)
. unless n = 7..

(ii). Theorem 6.9 (ii). provides a necessary and sufficient condition to ensure the equality
sign in the inequality (6.14).

(iii). In this section, for each n ∈ {4, 5, 6, 7, 8, 10, 12, . . .}., we have presented an
inequality that satisfies both conditions (†). and (‡)..

(iv). If n ∈ {9, 11, 13, . . .}., it is not yet known whether an inequality exists that satisfies
both conditions (†). and (‡)..



7Jung, Lee, and Nam’s Partial Solutions

Abstract

In this chapter, we discuss ideas for partially solving the Aleksandrov-Rassias problems
using the inequalities presented in Chap. 6. In the first section, we partially solve
the Aleksandrov-Rassias problems by using the inequality for the distances among
six points presented in Sect. 6.1. Section 7.2 is devoted to proving that any mapping
between real Hilbert spaces whose dimensions are greater than 2 is an affine isometry
if the distance 1 is preserved, 1√

2
. is contractive, and when

√
3. is extensive. In Sect. 7.3,

we give a partial solution to the Aleksandrov-Rassias problems by proving that when
the distance 1 is contractive and the golden ratio is extensive by a mapping defined
between real Hilbert spaces and when the dimension of its domain is greater than 2,
then this mapping is an affine isometry. In the last section of this chapter, we prove that
a mapping between real Hilbert spaces whose domain has the dimension greater than 2
is an affine isometry if the distances 1 and α . are contractive, β . is extensive, and if the
distances 1, α . and β . satisfy some suitable conditions. The main results presented in this
chapter have been extracted from the papers by Jung (Nonlinear Anal 62(4):675–681,
2005); Jung and Lee (J Math Anal Appl 324(2):1363–1369, 2006); Jung and Nam (J
Math Inequal 12(4):1189–1199, 2018); Jung and Nam (J Math Inequal 13(4):969–981,
2019) and explained in detail so that the reader can easily understand them.

7.1 Applications of an Inequality for Six Points

A distance ρ > 0. is said to be contractive (or non-expanding) by a mapping f : X → Y .

between normed spaces if and only if llf (x)−f (y)ll ≤ ρ . for all x, y ∈ X .with llx −yll =
ρ .. Similarly, a distance ρ . is said to be extensive (or nonshrinking) by f if and only if the
inequality llf (x) − f (y)ll ≥ ρ . holds for all x, y ∈ X .with llx − yll = ρ .. We say that ρ . is

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
S.-M. Jung, Aleksandrov-Rassias Problems on Distance Preserving Mappings,
Frontiers in Mathematics, https://doi.org/10.1007/978-3-031-77613-7_7
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preserved (or conservative) by f if and only if ρ . is both contractive and extensive by f . If
f is an isometry, every distance ρ > 0. is preserved by f , and conversely.

First, using the short diagonals lemma and the parallelogram law, we study the
Aleksandrov-Rassias problems when two distances are contractive and another one is
extensive by a mapping. The following theorem was proved by S.-M. Jung [27].

Theorem 7.1 (Jung) Let En
. be an n-dimensional Euclidean space, where n is an integer

greater than 1. If the distances ρ, σ > 0. are contractive and the distance
l

ρ2 + σ 2 . is
extensive by a mapping f : En → E

n
., then f is an affine isometry.

Proof As before, we denote by llu − vll. the distance between two points u, v ∈ E
n
., i.e.,

llu − vll2 =
nl

i=1
(ui − vi)

2
., where u = (u1, u2, . . . , un). and v = (v1, v2, . . . , vn).. We

consider a rectangle (a quadrilateral with four right angles) with llo − pll = llq − rll = ρ .

and llp − qll = llr − oll = σ ..
It follows from the parallelogram law that llo − qll = llp − rll = l

ρ2 + σ 2 .. Since the
distance

l
ρ2 + σ 2 . is extensive, we have

.llf (o) − f (q)ll2 + llf (p) − f (r)ll2 ≥ llo − qll2 + llp − rll2. (7.1)

Due to the fact that the points o, p, q, r . comprise the vertices of a rectangle such that o−q .

and p − r . are the diagonals, the parallelogram law implies that

.llo − qll2 + llp − rll2 = llo − pll2 + llp − qll2 + llq − rll2 + llr − oll2. (7.2)

Moreover, since both ρ . and σ . are assumed to be contractive, it holds that

.

llo − pll2 + llp − qll2 + llq − rll2 + llr − oll2

≥ llf (o) − f (p)ll2 + llf (p) − f (q)ll2

+ llf (q) − f (r)ll2 + llf (r) − f (o)ll2.
(7.3)

By the short diagonals lemma, we obtain

.

llf (o) − f (p)ll2 + llf (p) − f (q)ll2

+ llf (q) − f (r)ll2 + llf (r) − f (o)ll2

≥ llf (o) − f (q)ll2 + llf (p) − f (r)ll2.
(7.4)

Altogether, combining (7.1), (7.2), (7.3), and (7.4), we have

.llo − qll2 + llp − rll2 = llf (o) − f (q)ll2 + llf (p) − f (r)ll2 (7.5)
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and

.

llo − pll2 + llp − qll2 + llq − rll2 + llr − oll2

= llf (o) − f (p)ll2 + llf (p) − f (q)ll2

+ llf (q) − f (r)ll2 + llf (r) − f (o)ll2.
(7.6)

Our hypotheses obviously imply that

.

llo − qll ≤ llf (o) − f (q)ll, llp − rll ≤ llf (p) − f (r)ll,
llo − pll ≥ llf (o) − f (p)ll, llp − qll ≥ llf (p) − f (q)ll,
llq − rll ≥ llf (q) − f (r)ll, llr − oll ≥ llf (r) − f (o)ll.

(7.7)

It follows from (7.5), (7.6), and (7.7) that

.

llf (o) − f (q)ll = llf (p) − f (r)ll =
l

ρ2 + σ 2,

llf (o) − f (p)ll = llf (q) − f (r)ll = ρ,

llf (p) − f (q)ll = llf (r) − f (o)ll = σ.

For example, we can check llf (o)− f (q)ll = llo − qll = l
ρ2 + σ 2 . using (7.5) and (7.7):

If llf (o) − f (q)ll > llo − qll., it would then follow from (7.7) that

.llf (o) − f (q)ll2 + llf (p) − f (r)ll2 > llo − qll2 + llp − rll2,

which would contradict (7.5). Hence, considering (7.7), we can conclude that llf (o) −
f (q)ll = llo − qll = l

ρ2 + σ 2 ..
For any given points o, p ∈ E

n
.with llo − pll = ρ ., we can select two points q, r ∈ E

n
.

such that the four points o, p, q, r .comprise the vertices of a rectangle, as shown in Fig. 7.1.
On account of the above argument, we may conclude that llf (o)−f (p)ll = ρ .. Therefore,
f preserves the distance ρ .. (To prove that f preserves the other distances σ .and

l
ρ2 + σ 2 .,

we could make a similar argument to the one above, but this is not necessary. Because we
will apply the Beckman-Quarles theorem, for which it is enough to prove that f preserves
the distance ρ ..) Finally, we apply the Beckman-Quarles theorem to our case and conclude
that f is an affine isometry. ll

Fig. 7.1 The four points
o, p, q, r . are the vertices of a
rectangle with
llo − pll = llq − rll = ρ . and
llp − qll = llr − oll = σ .
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Fig. 7.2 The six points
u, v, w, x, y, z. are the vertices
of the octahedron. Each four
points {u, v, z, x}., {u,w, z, y}.,
and {v,w, x, y}. is the vertices
of the corresponding
parallelogram, respectively

We assume that H1 . is a real (or complex) inner product space with dimH1 > 2.
and there exist six points u, v,w, x, y, z ∈ H1 . with the property that each pair of four
points {u, v, z, x}., {u,w, z, y}., and {v,w, x, y}.determines a corresponding parallelogram,
respectively, as we see in Fig. 7.2:
We may say that the points u, v,w, x, y, z. determine the octahedron in Fig. 7.2.

In addition, all distances among the six points u, v,w, x, y, z. are assumed to be

.

llv − ull = llx − zll = a1, llz − vll = llu − xll = a2,

llw − ull = lly − zll = b1, llz − wll = llu − yll = b2,

llw − vll = lly − xll = c1, llx − wll = llv − yll = c2,

llz − ull = α, lly − wll = β, llx − vll = γ,

(7.8)

where a1, a2, b1, b2, c1, c2, α, β, γ . are some positive real numbers.

Theorem 7.2 (Jung) Let H1 . and H2 . be real (.or complex). inner product spaces with
dimH1 > 2. and dimH2 > 2.. Assume that the distances a1 ., a2 ., b1 ., b2 ., c1 ., and c2 . are
contractive and the distances α ., β ., and γ . are extensive by a mapping f : H1 → H2 .,
where a1 ., a2 ., b1 ., b2 ., c1 ., c2 ., α ., β ., and γ . are assumed to satisfy all the conditions in (7.8)
for the octahedron in Fig. 7.2. Then, f preserves the distances a1 ., a2 ., b1 ., b2 ., c1 ., c2 ., α ., β .,
and γ ..

Proof Assume that the points u, v,w, x, y, z ∈ H1 . determine the octahedron shown in
Fig. 7.2 and satisfy the conditions of (7.8).

Since llz − ull = α ., lly − wll = β ., llx − vll = γ . by (7.8), and α ., β ., and γ . are extensive
by f , we have

.

2
lllf (z) − f (u)ll2 + llf (x) − f (v)ll2 + llf (y) − f (w)ll2l

≥ 2
lllz − ull2 + llx − vll2 + lly − wll2l.

(7.9)

Since each pair of four points {u, v, z, x}., {u,w, z, y}., and {v,w, x, y}. comprises the ver-
tices of the corresponding parallelogram presented in Fig. 7.2, it follows from Theorem 6.2
(ii). that



7.1 Applications of an Inequality for Six Points 131

.

2
lllz − ull2 + llx − vll2 + lly − wll2l

= llv − ull2 + llz − vll2 + llx − zll2 + llu − xll2

+ llw − vll2 + llx − wll2 + lly − xll2 + llv − yll2

+ llw − ull2 + llz − wll2 + lly − zll2 + llu − yll2.

(7.10)

Moreover, since the distances a1 ., a2 ., b1 ., b2 ., c1 ., and c2 . are contractive, it follows
from (7.8) and Theorem 6.2 (i). that

.

llv − ull2 + llz − vll2 + llx − zll2 + llu − xll2

+ llw − vll2 + llx − wll2 + lly − xll2 + llv − yll2

+ llw − ull2 + llz − wll2 + lly − zll2 + llu − yll2

≥ llf (v) − f (u)ll2 + llf (z) − f (v)ll2 + llf (x) − f (z)ll2

+ llf (u) − f (x)ll2 + llf (w) − f (v)ll2 + llf (x) − f (w)ll2

+ llf (y) − f (x)ll2 + llf (v) − f (y)ll2 + llf (w) − f (u)ll2

+ llf (z) − f (w)ll2 + llf (y) − f (z)ll2 + llf (u) − f (y)ll2

≥ 2
lllf (z) − f (u)ll2 + llf (x) − f (v)ll2 + llf (y) − f (w)ll2l.

(7.11)

Since our hypotheses imply

.

llz − ull ≤ llf (z) − f (u)ll, llx − vll ≤ llf (x) − f (v)ll,
lly − wll ≤ llf (y) − f (w)ll, llv − ull ≥ llf (v) − f (u)ll,
llz − vll ≥ llf (z) − f (v)ll, llx − zll ≥ llf (x) − f (z)ll,
llu − xll ≥ llf (u) − f (x)ll, llw − vll ≥ llf (w) − f (v)ll,
llx − wll ≥ llf (x) − f (w)ll, lly − xll ≥ llf (y) − f (x)ll,
llv − yll ≥ llf (v) − f (y)ll, llw − ull ≥ llf (w) − f (u)ll,
llz − wll ≥ llf (z) − f (w)ll, lly − zll ≥ llf (y) − f (z)ll,
llu − yll ≥ llf (u) − f (y)ll,

(7.12)

it follows from (7.9), (7.10), (7.11), and (7.12) that

.

llf (v) − f (u)ll = llf (x) − f (z)ll = a1, llf (z) − f (u)ll = α,

llf (z) − f (v)ll = llf (u) − f (x)ll = a2, llf (y) − f (w)ll = β,

llf (w) − f (u)ll = llf (y) − f (z)ll = b1, llf (x) − f (v)ll = γ

llf (z) − f (w)ll = llf (u) − f (y)ll = b2,

llf (w) − f (v)ll = llf (y) − f (x)ll = c1,

llf (x) − f (w)ll = llf (v) − f (y)ll = c2.
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For any given u, v ∈ H1 .with llv − ull = a1 ., we can select four points w, x, y, z. in H1 .

such that u, v,w, x, y, z. determine the octahedron, as shown in Fig. 7.2. Due to the above
argument, we can conclude that llf (v) − f (u)ll = a1 .. For other distances such as a2 ., b1 .,
b2 ., c1 ., c2 ., α ., β ., and γ ., we can apply a similar argument. Therefore, f preserves all the
distances a1 ., a2 ., b1 ., b2 ., c1 ., c2 ., α ., β ., and γ .. ll

If a1 = a2 = b1 = b2 = c1 = c2 = 1. and α = β = γ = √
2., the six points

u, v,w, x, y, z. determine the unit regular octahedron in Fig. 7.2. For this case, it follows
from Theorem 7.2 that f preserves the distances 1 and

√
2.. Due to Theorem 5.3, the

following statement is true.

Corollary 7.3 Let H1 . and H2 . be real Hilbert spaces with dimH1 > 2. and dimH2 > 2..
Assume that the distance 1 is contractive and the distance

√
2. is extensive by a mapping

f : H1 → H2 .. Then, f is an affine isometry.

Remark 7.4 In Theorem 7.2 and Corollary 7.3, H1 . and H2 . are allowed to be infinite-
dimensional inner product spaces (or Hilbert spaces), while we assume in Theorem 7.1
that En

. is a finite-dimensional Euclidean space.

7.2 Applications of an Inequality for 2n Points

We label the vertices of an arbitrary (possibly degenerate) parallelogram with p11 ., p12 .,
p21 ., and p22 ., as we see on the left side of Fig. 7.3 . Similarly, we label the vertices of any
(possibly degenerate) octahedron with p11 ., p12 ., p21 ., p22 ., p31 ., and p32 . as shown on the
right-hand side of Fig. 7.3.

We continue this construction by extending it to the general case. Suppose we have
constructed an n-dimensional polyhedron with 2n vertices, p11, p12, . . . , pn1 ., pn2 .. Now,
we add two more points, denoted by p(n+1)1 . and p(n+1)2 ., to construct an (n + 1).-
dimensional polyhedron in the following manner: Each of the new points, p(n+1)1 . and
p(n+1)2 ., is connected to the existing 2n vertices, p11, p12, . . . , pn1, pn2 ..

Fig. 7.3 The vertices of any n-dimensional polyhedron are denoted as p11, p12, . . . , pn1 ., pn2 .,
where pi1 . and pi2 . are opposite vertices for all i ∈ {1, 2, . . . , n}.
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For the n-dimensional polyhedron constructed as above, we will denote its 2n vertices
by p11, p12, . . . , pn1, pn2 . as the above construction. We define

.αij = llpi1 − pj1ll, βij = llpi2 − pj2ll, γij = llpi1 − pj2ll

for all i, j ∈ {1, 2, . . . , n}..
In the following theorem, which was proved in a paper [36] by S.-M. Jung and K.-S.

Lee, we assume that for any i, j ∈ {1, 2, . . . , n}. with i < j ., each pair of four points,
{pi1, pi2, pj1, pj2}., comprises the vertices of a corresponding parallelogram.

Theorem 7.5 (Jung and Lee) Let H1 . and H2 . be real (.or complex). inner product spaces
with dimH1 ≥ n. and dimH2 ≥ n., where n is an integer greater than 1. Assume
that the distances αij ., βij ., and γij . are contractive by a mapping f : H1 → H2 . for
all i, j ∈ {1, 2, . . . , n}. with i < j . and that the distances γii . are extensive by f for
each i ∈ {1, 2, . . . , n}.. Then, f preserves all the distances αij ., βij ., and γii . for all
i, j ∈ {1, 2, . . . , n}.with i < j ..

Proof According to the short diagonals lemma, the inequality

.

l

k,l∈{1,2}
llpik − pjlll2 ≥ llpi1 − pi2ll2 + llpj1 − pj2ll2

holds for any i, j ∈ {1, 2, . . . , n}.with i < j .. Furthermore, it holds that

.

l

i, j ∈ {1, 2, . . . , n}
i < j

lllpi1 − pi2ll2 + llpj1 − pj2ll2
l

=
n−1l

i=1

nl

j=i+1

lllpi1 − pi2ll2 + llpj1 − pj2ll2
l

=
n−1l

i=1

(n − i)llpi1 − pi2ll2 +
n−1l

i=1

nl

j=i+1

llpj1 − pj2ll2

=
n−1l

i=1

(n − i)llpi1 − pi2ll2 +
nl

j=2

j−1l

i=1

llpj1 − pj2ll2

=
nl

i=1

(n − i)llpi1 − pi2ll2 +
nl

j=1

(j − 1)llpj1 − pj2ll2

= (n − 1)
l

i∈{1,2,...,n}
llpi1 − pi2ll2.

(7.13)
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Since the distances γii = llpi1 − pi2ll. are extensive by f for all i ∈ {1, 2, . . . , n}.
and each pair of four points {pi1, pi2, pj1, pj2}. comprises the vertices of a corresponding
parallelogram for any i, j ∈ {1, 2, . . . , n}. with i < j ., it follows from (7.13) and the
parallelogram law that

.

(n − 1)
l

i∈{1,2,...,n}
llf (pi1) − f (pi2)ll2

≥ (n − 1)
l

i∈{1,2,...,n}
llpi1 − pi2ll2

=
l

i, j ∈ {1, 2, . . . , n}
i < j

lllpi1 − pi2ll2 + llpj1 − pj2ll2
l

=
l

i, j ∈ {1, 2, . . . , n}
i < j

l

k,l∈{1,2}
llpik − pjlll2

=
l

i, j ∈ {1, 2, . . . , n}
k, l ∈ {1, 2}

i < j

llpik − pjlll2.

(We recall that the set of four points {pi1, pi2, pj1, pj2}. comprises the vertices of a
parallelogram and that pi1 . and pj1 . are the opposite vertices to pi2 . and pj2 ., respectively.)

We note that the distances αij ., βij ., and γij . are contractive by f for all i, j ∈
{1, 2, . . . , n}. with i < j . and that the distances γii . are extensive by f for any i ∈
{1, 2, . . . , n}.. Since pi1 ., pi2 ., pj1 ., and pj2 . comprise the vertices of a parallelogram, it fol-
lows that llpi2−pj1ll = llpi1−pj2ll = γij .. Hence, it follows from the last inequality that

.

(n − 1)
l

i∈{1,2,...,n}
llf (pi1) − f (pi2)ll2

≥ (n − 1)
l

i∈{1,2,...,n}
llpi1 − pi2ll2

=
l

i, j ∈ {1, 2, . . . , n}
k, l ∈ {1, 2}

i < j

llpik − pjlll2

≥
l

i, j ∈ {1, 2, . . . , n}
k, l ∈ {1, 2}

i < j

llf (pik) − f (pjl)ll2

≥ (n − 1)
l

i∈{1,2,...,n}
llf (pi1) − f (pi2)ll2,

where the last inequality follows from Theorem 6.4 (i)..
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From the first two lines of the last inequality, it follows that

.

l

i∈{1,2,...,n}
llf (pi1) − f (pi2)ll2 =

l

i∈{1,2,...,n}
llpi1 − pi2ll2. (7.14)

In addition, it follows from the third and fourth lines of the last inequality that

.

l

i, j ∈ {1, 2, . . . , n}
k, l ∈ {1, 2}

i < j

llpik − pjlll2 =
l

i, j ∈ {1, 2, . . . , n}
k, l ∈ {1, 2}

i < j

llf (pik) − f (pjl)ll2. (7.15)

Since llf (pi1) − f (pi2)ll ≥ llpi1 − pi2ll. and llpik − pjlll ≥ llf (pik) − f (pjl)ll. for all
i, j ∈ {1, 2, . . . , n}.with i < j . and k, l ∈ {1, 2}., it follows from (7.14) and (7.15) that

.

llf (pi1) − f (pi2)ll = llpi1 − pi2ll = γii ,

llf (pik) − f (pjl)ll = llpik − pjlll =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αij (for k = l = 1),

βij (for k = l = 2),

γij (for k = 1 and l = 2),

γij (for k = 2 and l = 1)

for all i, j ∈ {1, 2, . . . , n}.with i < j ., which completes our proof. ll

We now deal with the case of n = 3.. Let H1 . be a real Hilbert space with dimH1 > 2..
We consider the octahedron in H1 .which is determined by

.

p11 = l√
3
2 , 0, 0, 0, . . . , 0

l
, p12 = l −

√
3
2 , 0, 0, 0, . . . , 0

l
,

p21 = l
0, 1

2 , 0, 0, . . . , 0
l
, p22 = l

0,− 1
2 , 0, 0, . . . , 0

l
,

p31 = l
0, 0, 1

2 , 0, . . . , 0
l
, p32 = l

0, 0,− 1
2 , 0, . . . , 0

l
.

In this case, we have

.

α12 = llp11 − p21ll = 1, α13 = llp11 − p31ll = 1,

α23 = llp21 − p31ll = 1√
2
, β12 = llp12 − p22ll = 1,

β13 = llp12 − p32ll = 1, β23 = llp22 − p32ll = 1√
2
,

γ12 = llp11 − p22ll = 1, γ13 = llp11 − p32ll = 1,

γ23 = llp21 − p32ll = 1√
2
, γ11 = llp11 − p12ll = √

3,

γ22 = llp21 − p22ll = 1, γ33 = llp31 − p32ll = 1.

Using Theorems 5.1 and 7.5, we can easily prove the following corollary.
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Corollary 7.6 Let H1 . and H2 . be real Hilbert spaces with dimH1 > 2. and dimH2 > 2..
If the distance 1 is preserved, 1√

2
. is contractive, and if the distance

√
3. is extensive by a

mapping f : H1 → H2 ., then f is an affine isometry.

7.3 Applications of an Inequality for Five Points

In this section, we assume that H1 . is a real (or complex) inner product space and c1 .,
c2 ., c3 ., c4 ., c5 ., e1 ., e2 ., e3 ., e4 ., e5 . are positive numbers such that there exist five points
x1, x2, x3, x4, x5 ∈ H1 .which satisfy the conditions in (6.8) as well as

.

llx1 − x2ll = c1, llx2 − x3ll = c2, llx3 − x4ll = c3,

llx4 − x5ll = c4, llx5 − x1ll = c5,

llx1 − x3ll = e1, llx2 − x4ll = e2, llx3 − x5ll = e3,

llx4 − x1ll = e4, llx5 − x2ll = e5,

(7.16)

as we see in Fig. 7.4. (Obviously, due to (6.8), the five points x1 ., x2 ., x3 ., x4 ., x5 . lie on a
two-dimensional subspace of H1 ..)

The following theorem was proved in a paper [37] by S.-M. Jung and D. Nam.

Theorem 7.7 Let H1 . and H2 . be real (.or complex). inner product spaces. Assume that the
distances c1 ., c2 ., c3 ., c4 ., c5 . are contractive and the distances e1 ., e2 ., e3 ., e4 ., e5 . are extensive
by a mapping f : H1 → H2 ., where ci .’s and ei .’s are given by (7.16) and the corresponding
xi .’s satisfy the conditions in (6.8) (.see Fig. 7.4).. Then f preserves all the distances c1 ., c2 .,
c3 ., c4 ., c5 ., e1 ., e2 ., e3 ., e4 ., and e5 ..

Proof Since the distances c1 ., c2 ., c3 ., c4 ., c5 . are contractive by f , it holds that

.

φ2lllx1 − x2ll2 + llx2 − x3ll2 + llx3 − x4ll2 + llx4 − x5ll2 + llx5 − x1ll2
l

≥ φ2lllf (x1) − f (x2)ll2 + llf (x2) − f (x3)ll2 + llf (x3) − f (x4)ll2

+ llf (x4) − f (x5)ll2 + llf (x5) − f (x1)ll2
l
.

(7.17)

Fig. 7.4 An example is given
for five points x1, x2, . . . , x5 .

that satisfy the conditions (6.8)
and (7.16)



7.3 Applications of an Inequality for Five Points 137

It further follows from Theorem 6.6 (i). that

.

φ2lllf (x1) − f (x2)ll2 + llf (x2) − f (x3)ll2 + llf (x3) − f (x4)ll2

+ llf (x4) − f (x5)ll2 + llf (x5) − f (x1)ll2
l

≥ llf (x1) − f (x3)ll2 + llf (x2) − f (x4)ll2 + llf (x3) − f (x5)ll2

+ llf (x4) − f (x1)ll2 + llf (x5) − f (x2)ll2.

(7.18)

Moreover, since the distances e1 ., e2 ., e3 ., e4 ., and e5 . are extensive by f , we con-
sider (7.16) to obtain

.

llf (x1) − f (x3)ll2 + llf (x2) − f (x4)ll2 + llf (x3) − f (x5)ll2

+ llf (x4) − f (x1)ll2 + llf (x5) − f (x2)ll2

≥ llx1 − x3ll2 + llx2 − x4ll2 + llx3 − x5ll2 + llx4 − x1ll2

+ llx5 − x2ll2.

(7.19)

Since x4 . and x5 . satisfy the conditions in (6.8) (see Fig. 7.4), by Theorem 6.6 (ii)., we
conclude that

.

llx1 − x3ll2 + llx2 − x4ll2 + llx3 − x5ll2 + llx4 − x1ll2 + llx5 − x2ll2

= φ2lllx1 − x2ll2 + llx2 − x3ll2 + llx3 − x4ll2 + llx4 − x5ll2

+ llx5 − x1ll2
l
,

(7.20)

which implies that the equality sign holds in each of (7.17), (7.18), and (7.19).
On the other hand, our hypotheses imply that

.

c1 = llx1 − x2ll ≥ llf (x1) − f (x2)ll,
c2 = llx2 − x3ll ≥ llf (x2) − f (x3)ll,
c3 = llx3 − x4ll ≥ llf (x3) − f (x4)ll,
c4 = llx4 − x5ll ≥ llf (x4) − f (x5)ll,
c5 = llx5 − x1ll ≥ llf (x5) − f (x1)ll,
e1 = llx1 − x3ll ≤ llf (x1) − f (x3)ll,
e2 = llx2 − x4ll ≤ llf (x2) − f (x4)ll,
e3 = llx3 − x5ll ≤ llf (x3) − f (x5)ll,
e4 = llx4 − x1ll ≤ llf (x4) − f (x1)ll,
e5 = llx5 − x2ll ≤ llf (x5) − f (x2)ll.

(7.21)
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By combining (7.17), (7.18), (7.19) with equality signs, (7.20), and (7.21), we conclude
that

.

llx1 − x2ll = c1 = llf (x1) − f (x2)ll,
llx2 − x3ll = c2 = llf (x2) − f (x3)ll,
llx3 − x4ll = c3 = llf (x3) − f (x4)ll,
llx4 − x5ll = c4 = llf (x4) − f (x5)ll,
llx5 − x1ll = c5 = llf (x5) − f (x1)ll,
llx1 − x3ll = e1 = llf (x1) − f (x3)ll,
llx2 − x4ll = e2 = llf (x2) − f (x4)ll,

.

llx3 − x5ll = e3 = llf (x3) − f (x5)ll,
llx4 − x1ll = e4 = llf (x4) − f (x1)ll,
llx5 − x2ll = e5 = llf (x5) − f (x2)ll.

For any given x1, x2 ∈ H1 .with llx1−x2ll = c1 ., we can choose three points x3, x4, x5 ∈
H1 . such that x1 ., x2 ., x3 ., x4 ., and x5 . determine the geometric figure that is congruent to the
one in Fig. 7.4. In view of the above argument, we may conclude that llf (x1) − f (x2)ll =
c1 .. For other distances such as c2 ., c3 ., c4 ., c5 ., e1 ., e2 ., e3 ., e4 ., and e5 ., we can apply a
similar argument. Therefore, f preserves all the distances c1 ., c2 ., c3 ., c4 ., c5 ., e1 ., e2 ., e3 ., e4 .,
and e5 .. ll

Remark 7.8 Assume that x1 ., x2 ., x3 ., x4 ., and x5 . are the vertices of a unit regular pentagon
as we see in Fig. 7.5. If we let c1 = c2 = c3 = c4 = c5 = 1. and e1 = e2 = e3 = e4 =
e5 = φ . in Theorem 7.7, then we see that f preserves the distances 1 and φ ., where φ . is the
golden ratio.

Theorem 7.9 (Jung and Nam) Assume that H1 . and H2 . are real Hilbert spaces with
dimH1 > 2.. If the distance 1 is contractive and the distance φ . is extensive by a mapping
f : H1 → H2 ., then f is an affine isometry.

Proof According to Theorem 7.7 and Remark 7.8, f preserves both the distances 1 and
φ .. We claim that f preserves the distance

√
2φ .. Suppose v1 . and v3 . are arbitrary points of

Fig. 7.5 The vertices of a unit
regular pentagon are denoted
as x1, x2, . . . , x5 .
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Fig. 7.6 In the left figure,
v1, v5, v6, v2 . are some of the
vertices of a unit regular
pentagon, and v4, v5, v6, v3 .

are some of the vertices of
another unit regular pentagon

H1 .with llv1−v3ll = √
2φ .. Since dimH1 > 2., there exists a subspace U of H1 . containing

v1 . and v3 . that is (Hilbert space) isomorphic to 3-dimensional Euclidean space E
3
. (see

Theorem 1.59).
In the first (roof-shaped) figure of Fig. 7.6, {v1, v5, v6, v2}. is a part of the vertices of a

unit regular pentagon in U and also {v4, v5, v6, v3}. is a part of the vertices of another unit
regular pentagon in U such that llv1 − v4ll = llv2 − v3ll = φ .. Here are the details:

.

llv1 − v5ll = 1, llv4 − v5ll = 1, llv5 − v6ll = 1, llv2 − v6ll = 1,

llv3 − v6ll = 1, llv1 − v2ll = φ, llv2 − v3ll = φ, llv3 − v4ll = φ,

llv4 − v1ll = φ, llv1 − v6ll = φ, llv2 − v5ll = φ, llv3 − v5ll = φ,

llv4 − v6ll = φ.

Now we define wi = f (vi). for all i ∈ {1, 2, . . . , 6}.. Since f preserves the distances 1
and φ ., we obtain

.

llw1 − w5ll = 1, llw4 − w5ll = 1, llw5 − w6ll = 1,

llw2 − w6ll = 1, llw3 − w6ll = 1, llw1 − w2ll = φ,

llw2 − w3ll = φ, llw3 − w4ll = φ, llw4 − w1ll = φ,

llw1 − w6ll = φ, llw2 − w5ll = φ, llw3 − w5ll = φ,

llw4 − w6ll = φ.

(7.22)

If we set xi = wi − w1 . for i ∈ {2, 3, . . . , 6}., then

.xj − xk = (wj − w1) − (wk − w1) = wj − wk (7.23)

for any j, k ∈ {2, 3, . . . , 6}.. The distances between four points w1 ., w2 ., w5 ., and w6 . are
given:

.

llx2ll = llw2 − w1ll = φ, llx5 − x2ll = llw5 − w2ll = φ,

llx5ll = llw5 − w1ll = 1, llx6 − x2ll = llw6 − w2ll = 1,

llx6ll = llw6 − w1ll = φ, llx6 − x5ll = llw6 − w5ll = 1.

(7.24)
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Since

.llxj − xkll2 = llxjll2 − 2lxj , xkl + llxkll2

for all j, k ∈ {2, 3, . . . , 6}., it follows from (7.24) that

.lx2, x5l = 1

2

lllx2ll2 + llx5ll2 − llx2 − x5ll2
l = 1

2
. (7.25)

Similarly, we have lx2, x6l = 1
2 (2φ

2 − 1). and lx5, x6l = 1
2φ

2
..

Hence, we can calculate llx6 − x5 − 1
φ
x2ll2 = 0. as follows:

.

llllx6 − x5 − 1

φ
x2

llll

2

=
l
x6 − x5 − 1

φ
x2, x6 − x5 − 1

φ
x2

l

= llx6ll2 + llx5ll2 + 1

φ2 llx2ll2 − 2lx5, x6l − 2

φ
lx2, x6l + 2

φ
lx2, x5l

= φ2 + 1 + 1

φ2
φ2 − φ2 − 1

φ

l
2φ2 − 1

l + 1

φ

= − 2

φ

l
φ2 − φ − 1

l

= 0.

Therefore, we have

.x6 = 1

φ
x2 + x5. (7.26)

Moreover, it follows from the definition of xi .’s that

.0 = x6 − 1

φ
x2 − x5 = w6 − w1 − 1

φ
(w2 − w1) − (w5 − w1). (7.27)

As we see in Fig. 7.6, the structures of {w1, w2, w6, w5}. and {w4, w3, w6, w5}. are con-
gruent. Thus, we can replace w1, w2, w6, w5 . in (7.27) with w4, w3, w6, w5 ., respectively,
and use (7.23) to get

.

0 = w6 − w4 − 1

φ
(w3 − w4) − (w5 − w4)

= x6 − x4 − 1

φ
(x3 − x4) − (x5 − x4).
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Therefore, x6 − x4 = 1
φ
(x3 − x4) + (x5 − x4).. And it follows from (7.26) and the last

equality that

.x3 = x2 + x4. (7.28)

In view of (7.22), the distances between the three points w1, w4, w5 . are given below.

.

llx4ll = llw4 − w1ll = φ,

llx5ll = llw5 − w1ll = 1,

llx5 − x4ll = llw5 − w4ll = 1.

(7.29)

Hence, by (7.29), we obtain

.lx4, x5l = 1

2

lllx4ll2 + llx5ll2 − llx4 − x5ll2
l = 1

2
φ2. (7.30)

Using (7.22), (7.23), (7.25), (7.26), (7.28), and (7.30), we have

.

φ2 = llw6 − w4ll2 = llx6 − x4ll2 =
llll
1

φ
x2 + x5 − x4

llll

2

= 1

φ2
llx2ll2 + llx4ll2 + llx5ll2 + 2

φ
lx2, x5l − 2

φ
lx2, x4l − 2lx4, x5l

= 1

φ2φ2 + φ2 + 1 + 1

φ
− 2

φ
lx2, x4l − φ2

= 2 + 1

φ
− 2

φ
lx2, x4l.

Hence, using the formula φ2 − φ − 1 = 0., we get

.lx2, x4l = φ

2

l
2 + 1

φ
− φ2

l
= 1

2

l
φ + 1 − φ2l = 0.

Hence, by (7.22), (7.24), (7.28) and the last equality, we get

.llx3ll2 = llx2 + x4ll2 = llx2ll2 + llx4ll2 = llx2ll2 + llw4 − w1ll2 = 2φ2,

i.e.,

.llf (v3) − f (v1)ll = llw3 − w1ll = llx3ll = √
2φ.

Since f preserves distances φ . and
√
2φ ., we conclude that f is an affine isometry by

Remark 2.19 and Theorem 5.3. ll
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7.4 Applications of an Inequality for n Points

In this section, we assume that H1 . is a real (or complex) inner product space and c12 ., c23 .,
c34 ., c45 ., c56 ., c67 ., c71 ., e13 ., e24 ., e35 ., e46 ., e57 ., e61 ., e72 ., c14 ., c25 ., c36 ., c47 ., c51 ., c62 ., c73 . are
positive real numbers such that there exist points x1 ., x2 ., x3 ., x4 ., x5 ., x6 ., x7 . of H1 . which
satisfy the condition (6.15) as well as

.

llx1 − x2ll = c12, llx1 − x3ll = e13, llx1 − x4ll = c14,

llx2 − x3ll = c23, llx2 − x4ll = e24, llx2 − x5ll = c25,

llx3 − x4ll = c34, llx3 − x5ll = e35, llx3 − x6ll = c36,

llx4 − x5ll = c45, llx4 − x6ll = e46, llx4 − x7ll = c47,

llx5 − x6ll = c56, llx5 − x7ll = e57, llx5 − x1ll = c51,

llx6 − x7ll = c67, llx6 − x1ll = e61, llx6 − x2ll = c62,

llx7 − x1ll = c71, llx7 − x2ll = e72, llx7 − x3ll = c73,

(7.31)

as we see in Fig. 7.7. (Obviously, due to (6.15), the seven points x1 ., x2 ., x3 ., x4 ., x5 ., x6 ., x7 .
lie on a two-dimensional subspace of H1 ..)

The following theorem was proved in a paper [38] by S.-M. Jung and D. Nam.

Theorem 7.10 Let H1 . and H2 . be real (.or complex). inner product spaces. Assume
that the distances c12 ., c23 ., c34 ., c45 ., c56 ., c67 ., c71 ., c14 ., c25 ., c36 ., c47 ., c51 ., c62 ., c73 . are
contractive and the distances e13 ., e24 ., e35 ., e46 ., e57 ., e61 ., e72 . are extensive by a mapping
f : H1 → H2 ., where cij .’s and eij .’s are given by (7.31) and the corresponding xi .’s satisfy
the condition (6.15) with n = 7. (.see Fig. 7.7).. Then, f preserves all the distances cij .’s
and eij .’s.

Proof To simplify the notations, we temporarily set xi,j = llxi −xjll. and yi,j = llf (xi)−
f (xj )ll. for all i, j ∈ {1, 2, . . . , 7}. with i l= j .. Since the distances c12 ., c23 ., c34 ., c45 ., c56 .,
c67 ., c71 ., c14 ., c25 ., c36 ., c47 ., c51 ., c62 ., c73 . are contractive by f , we have

Fig. 7.7 An example is given
for seven points x1, x2, . . . , x7 .

that satisfy the
conditions (6.15) and (7.31)
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.

l
c27 + 2c7

ll
x2
1,2 + x2

2,3 + x2
3,4 + x2

4,5 + x2
5,6 + x2

6,7 + x2
7,1

l

+ x2
1,4 + x2

2,5 + x2
3,6 + x2

4,7 + x2
5,1 + x2

6,2 + x2
7,3

≥ l
c27 + 2c7

ll
y2
1,2 + y2

2,3 + y2
3,4 + y2

4,5 + y2
5,6 + y2

6,7 + y2
7,1

l

+ y2
1,4 + y2

2,5 + y2
3,6 + y2

4,7 + y2
5,1 + y2

6,2 + y2
7,3.

(7.32)

Now we can use Theorem 6.9 (i). to get

.

l
c27 + 2c7

ll
y2
1,2 + y2

2,3 + y2
3,4 + y2

4,5 + y2
5,6 + y2

6,7 + y2
7,1

l

+ y2
1,4 + y2

2,5 + y2
3,6 + y2

4,7 + y2
5,1 + y2

6,2 + y2
7,3

≥ 2c7
l
y2
1,3 + y2

2,4 + y2
3,5 + y2

4,6 + y2
5,7 + y2

6,1 + y2
7,2

l
.

(7.33)

Since the distances e13 ., e24 ., e35 ., e46 ., e57 ., e61 ., e72 . are extensive by f , we obtain

.

2c7
l
y2
1,3 + y2

2,4 + y2
3,5 + y2

4,6 + y2
5,7 + y2

6,1 + y2
7,2

l

≥ 2c7
l
x2
1,3 + x2

2,4 + x2
3,5 + x2

4,6 + x2
5,7 + x2

6,1 + x2
7,2

l
.

(7.34)

Since the xi .’s satisfy the conditions in (6.15), it follows from Theorem 6.9 (ii). that

.

2c7
l
x2
1,3 + x2

2,4 + x2
3,5 + x2

4,6 + x2
5,7 + x2

6,1 + x2
7,2

l

= l
c27 + 2c7

ll
x2
1,2 + x2

2,3 + x2
3,4 + x2

4,5 + x2
5,6 + x2

6,7 + x2
7,1

l

+ x2
1,4 + x2

2,5 + x2
3,6 + x2

4,7 + x2
5,1 + x2

6,2 + x2
7,3.

(7.35)

Altogether, we arrive at the conclusion that the equal sign must hold in each of the
inequalities (7.32), (7.33), (7.34), and (7.35). In particular, it holds that

.

l
c27 + 2c7

ll
x2
1,2 + x2

2,3 + x2
3,4 + x2

4,5 + x2
5,6 + x2

6,7 + x2
7,1

l

+ x2
1,4 + x2

2,5 + x2
3,6 + x2

4,7 + x2
5,1 + x2

6,2 + x2
7,3

= l
c27 + 2c7

ll
y2
1,2 + y2

2,3 + y2
3,4 + y2

4,5 + y2
5,6 + y2

6,7 + y2
7,1

l

+ y2
1,4 + y2

2,5 + y2
3,6 + y2

4,7 + y2
5,1 + y2

6,2 + y2
7,3

(7.36)

and

.

x2
1,3 + x2

2,4 + x2
3,5 + x2

4,6 + x2
5,7 + x2

6,1 + x2
7,2

= y2
1,3 + y2

2,4 + y2
3,5 + y2

4,6 + y2
5,7 + y2

6,1 + y2
7,2.

(7.37)
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On the other hand, our hypotheses imply that

.

c12 = x1,2 ≥ y1,2, c14 = x1,4 ≥ y1,4, c23 = x2,3 ≥ y2,3,

c25 = x2,5 ≥ y2,5, c34 = x3,4 ≥ y3,4, c36 = x3,6 ≥ y3,6,

c45 = x4,5 ≥ y4,5, c47 = x4,7 ≥ y4,7, c56 = x5,6 ≥ y5,6,

c51 = x5,1 ≥ y5,1, c67 = x6,7 ≥ y6,7, c62 = x6,2 ≥ y6,2,

c71 = x7,1 ≥ y7,1, c73 = x7,3 ≥ y7,3, e13 = x1,3 ≤ y1,3,

e24 = x2,4 ≤ y2,4, e35 = x3,5 ≤ y3,5, e46 = x4,6 ≤ y4,6,

e57 = x5,7 ≤ y5,7, e61 = x6,1 ≤ y6,1, e72 = x7,2 ≤ y7,2.

(7.38)

By combining (7.36), (7.37), and (7.38), we conclude that

.

x1,2 = c12 = y1,2, x1,4 = c14 = y1,4, x2,3 = c23 = y2,3,

x2,5 = c25 = y2,5, x3,4 = c34 = y3,4, x3,6 = c36 = y3,6,

x4,5 = c45 = y4,5, x4,7 = c47 = y4,7, x5,6 = c56 = y5,6,

x5,1 = c51 = y5,1, x6,7 = c67 = y6,7, x6,2 = c62 = y6,2,

x7,1 = c71 = y7,1, x7,3 = c73 = y7,3, x1,3 = e13 = y1,3,

x2,4 = e24 = y2,4, x3,5 = e35 = y3,5, x4,6 = e46 = y4,6,

x5,7 = e57 = y5,7, x6,1 = e61 = y6,1, x7,2 = e72 = y7,2.

For example, with (7.38), we can check that x1,2 = c12 = y1,2 .: If x1,2 > y1,2 ., then it
follows from (7.38) that

.

l
c27 + 2c7

ll
x2
1,2 + x2

2,3 + x2
3,4 + x2

4,5 + x2
5,6 + x2

6,7 + x2
7,1

l

+ x2
1,4 + x2

2,5 + x2
3,6 + x2

4,7 + x2
5,1 + x2

6,2 + x2
7,3

>
l
c27 + 2c7

ll
y2
1,2 + y2

2,3 + y2
3,4 + y2

4,5 + y2
5,6 + y2

6,7 + y2
7,1

l

+ y2
1,4 + y2

2,5 + y2
3,6 + y2

4,7 + y2
5,1 + y2

6,2 + y2
7,3,

which contradicts (7.36). Thus, considering (7.38), we conclude that x1,2 = y1,2 ..
For any given x1, x2 ∈ H1 . with llx1 − x2ll = x1,2 = c12 ., we can choose five points

x3 ., x4 ., x5 ., x6 ., x7 . in H1 . such that x1, x2, . . . , x7 . determine a geometric figure congruent
to that shown in Fig. 7.7. In view of the above argument, we may conclude that llf (x1) −
f (x2)ll = y1,2 = c12 .. For other distances such as c23 ., c34 ., c45 ., c56 ., c67 ., c71 ., c14 ., c25 ., c36 .,
c47 ., c51 ., c62 ., c73 ., e13 ., e24 ., e35 ., e46 ., e57 ., e61 ., and e72 ., we can apply a similar argument.
Therefore, f preserves the distances c12 ., c23 ., c34 ., c45 ., c56 ., c67 ., c71 ., c14 ., c25 ., c36 ., c47 ., c51 .,
c62 ., c73 ., e13 ., e24 ., e35 ., e46 ., e57 ., e61 ., and e72 .. ll
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Fig. 7.8 The seven points
x1, x2, . . . , x7 . are the vertices
of a unit regular heptagon
whose diagonal lengths are α .

and β .

Fig. 7.9 The four points v1, v2, v3, v4 . lie on a plane. Note that wi = f (vi). for all i ∈ {1, 2, 3, 4}.

Remark 7.11 Assume that x1 ., x2 ., x3 ., x4 ., x5 ., x6 ., x7 . are the vertices of a unit regular

heptagon S (see Fig. 7.8). Let α = sin 2π
7

sin π
7

≈ 1.8019 . . .. be the shorter diagonal and β =
c7 = sin 3π

7
sin π

7
≈ 2.2469 . . .. be the longer diagonal of S. If we set c12 = c23 = c34 =

c45 = c56 = c67 = c71 = 1., e13 = e24 = e35 = e46 = e57 = e61 = e72 = α . and
c14 = c25 = c36 = c47 = c51 = c62 = c73 = β . in Theorem 7.10, then the mapping f

given in Theorem 7.10 preserves the distances 1, α ., and β ..

Lemma 7.12 Assume thatH1 .andH2 .are real inner product spaces, and let f : H1 → H2 .

be a mapping. Let v1 ., v2 ., v3 ., v4 . be arbitrary four points in H1 .. If v1 ., v2 ., v3 ., v4 . lie on one
plane and llvi − vjll = llf (vi) − f (vj )ll. for all i, j ∈ {1, 2, 3, 4}.with i < j ., then f (v1).,
f (v2)., f (v3)., f (v4). also lie on one plane.

Proof In Fig. 7.9, each wi . stands for f (vi).. Since the translation preserves distances
between points and does not affect coplanarity of points, we assume that v4 = f (v4) = 0.
without loss of generality. Then the condition of this lemma becomes simple as follows:

.

llv1ll = llf (v1)ll, llv1 − v2ll = llf (v1) − f (v2)ll,
llv2ll = llf (v2)ll, llv2 − v3ll = llf (v2) − f (v3)ll,
llv3ll = llf (v3)ll, llv3 − v1ll = llf (v3) − f (v1)ll.
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It follows from the above condition that

.

lv1, v2l = 1

2

lllv1ll2 + llv2ll2 − llv1 − v2ll2
l

= 1

2

lllf (v1)ll2 + llf (v2)ll2 − llf (v1) − f (v2)ll2
l

= lf (v1), f (v2)l.

By a similar way, we obtain

.lv2, v3l = lf (v2), f (v3)l and lv3, v1l = lf (v3), f (v1)l.

Because v1 ., v2 ., v3 ., v4(= 0). lie on one plane, i.e., they are coplanar, there exists r1, r2 ∈
R. satisfying v3 = r1v1 + r2v2 .. Hence, 0 = v3 − r1v1 − r2v2 ., and so

.

0 = llv3 − r1v1 − r2v2ll2

= llv3ll2 + r21llv1ll2 + r22llv2ll2

− 2r1lv3, v1l − 2r2lv3, v2l + 2r1r2lv1, v2l
= llf (v3)ll2 + r21llf (v1)ll2 + r22llf (v2)ll2

− 2r1lf (v3), f (v1)l − 2r2lf (v3), f (v2)l + 2r1r2lf (v1), f (v2)l
= llf (v3) − r1f (v1) − r2f (v2)ll2,

i.e., f (v3) − r1f (v1) − r2f (v2) = 0.. Therefore, f (v3) = r1f (v1) + r2f (v2)., and f (v1).,
f (v2)., f (v3)., f (v4)(= 0). also lie on one plane. ll

We define α . and β . in the following theorem exactly as in Remark 7.11, i.e., α =
sin 2π

7
sin π

7
≈ 1.8019 . . .. and β = sin 3π

7
sin π

7
≈ 2.2469 . . ..

Theorem 7.13 (Jung and Nam) Assume that H1 . and H2 . are real Hilbert spaces with
dimH1 > 2.. If the distances 1 and α . are contractive and the distance β . is extensive by a
mapping f : H1 → H2 ., then f is an affine isometry.

Proof According to Theorem 7.10 and Remark 7.11, the mapping f preserves the three
distances 1, α ., and β ..

We claim that f preserves the distance
√
2.. Assume that the distance between two

points v1 . and v3 . of H1 . is
√
2., i.e., llv1 − v3ll = √

2.. Since dimH1 > 2., there exists a
3-dimensional subspace U of H1 . that contains v1 . and v3 .. Due to Theorem 1.59, there is
a Hilbert space isomorphism between two finite-dimensional Hilbert spaces if they have
the same dimension. Since dimU = 3 = dimE

3
., there is a Hilbert space isomorphism
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Fig. 7.10 The “shape 1” represents an isosceles trapezoid, “shape 2” represents an isosceles
triangle, and “shape 3” represents a unit square

Fig. 7.11 “shape 4” is an
assembly of two “shape 1s,”
two “shape 2s,” and a “shape
3”

L1 : E3 → U .. As shown in Fig. 7.10, we can draw an isosceles trapezoid on a unit regular
heptagon in E3

..
Let “shape 1” denote the isosceles trapezoid illustrated in Fig. 7.10, “shape 2” denote a

triangle whose side lengths are 1, α ., α ., and let “shape 3” denote a unit square. In E
3
., two

“shape 1s,” two “shape 2s,” and one “shape 3” are assembled into a geometric figure, as
shown in Fig. 7.11. Let “shape 4” denote this figure.

There are two points u1, u3 ∈ E
3
. such that L1(u1) = v1 . and L1(u3) = v3 .. Since

the Hilbert space isomorphism preserves distance, it holds that llu1 − u3ll = llL1(u1) −
L1(u3)ll = llv1 − v3ll = √

2.. Thus, we can choose u2 ., u4 ., u5 ., and u6 . in E
3
., so that

the pair of six points {u1, u2, . . . , u6}. comprises the vertices of “shape 4” (Fig. 7.11). Let
vi = L1(ui). and wi = f (vi). for each i ∈ {1, 2, . . . , 6}.. (See Fig. 7.12.)

We note that {u1, u2, u5, u6}. and {u3, u4, u5, u6}. are coplanar, respectively. Since both
L1 . and f preserve the distances 1, α ., and β ., we can conclude that each of {v1, v2, v5, v6}.
and {v3, v4, v5, v6}. is coplanar. In view of Lemma 7.12, we also conclude that each of
{w1, w2, w5, w6}. and {w3, w4, w5, w6}. is coplanar. All of them compose “shape 1.” We
will now prove that llw1 − w3ll = √

2..
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Fig. 7.12 Note that vi = L1(ui). and wi = f (vi). for all i ∈ {1, 2, . . . , 6}., where L1 : E3 → U . is
a Hilbert space isomorphism

Fig. 7.13 Note that T : H2 → H2 . is a translation and L2 : W → E
n . is a Hilbert space

isomorphism

We define T : H2 → H2 . by T (x) = x − w6 ., and we set wl
i = T (wi) = wi − w6 . for

every i ∈ {1, 2, . . . , 5}.. Since T is a translation, T preserves all distances. By Lemma 7.12,
each of {0, wl

1, w
l
2, w

l
5}. and {0, wl

3, w
l
4, w

l
5}. is coplanar, and all of them compose “shape

1.” Thus, wl
1 . is a linear combination of wl

2 . and wl
5 ., and wl

4 . is a linear combination of wl
3 .

and wl
5 .. Let W be a subspace of H2 . spanned by {wl

2, w
l
3, w

l
5}.. Then, {0, wl

1, . . . , w
l
5} ⊂ W .

and dimW ≤ 3.. Thus, there exists a Hilbert space isomorphism L2 : W → E
n
.with n ≤ 3.

(see Fig. 7.13). We note that L2 . preserves all distances.
Let L2(w

l
i ) = xi . for all i ∈ {1, 2, . . . , 5}. and L2(0) = x6 .. Then each of {x1, x2, x5, x6}.

and {x3, x4, x5, x6}. is coplanar by Lemma 7.12. Hence, each of {x1, x2, x5, x6}. and
{x3, x4, x5, x6}. composes “shape 1.” In addition, each of {x1, x4, x5}. and {x2, x3, x6}.
composes “shape 2,” and we know llx2 − x3ll = llx1 − x4ll = 1.. For such a structure
to be possible, n must be at least 3. Thus, we conclude that n = 3..
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Since the points x1, x2, . . . , x6 . are in E
3
. with the property that each pair of

{x1, x2, x5, x6}. and {x3, x4, x5, x6}. composes “shape 1,” and each of {x1, x4, x5}. and
{x2, x3, x6}. composes “shape 2,” we conclude that {x1, x2, x3, x4}. should compose “shape
3.” Hence, we have llx1 −x3ll = √

2.. Since T and L2 . preserve all distances, it follows that
llw1 − w3ll = √

2.. Therefore, f preserves the distance
√
2.. Since f preserves distances 1

and
√
2., it follows from Theorem 5.3 that f is an affine isometry. ll
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Abstract

The Beckman-Quarles theorem states that every unit-distance preserving mapping f :
E

n → E
n
. is an isometry if n is an integer greater than 1. Section 8.1 is devoted to the

discussion of whether the Beckman-Quarles theorem also holds in rational n-spaces. It
is known that every unit-distance preserving mapping f : Qn → Q

n
. is an isometry if n

is an even integer greater than 5 or 5 or an odd integer of the form n = 2m2 − 1., where
m > 2.. We have to omit the interesting proofs of all theorems introduced in this section
due to space constraints. In Sect. 8.2, we will discuss the theory of tensegrity structures
that F. Rádo et al. used to partially solve the Aleksandrov-Rassias problems. Most of
the content in this section comes from the paper by Bezdek and Connelly (Period Math
Hungar 39(1–3):185–200, 1999). Indeed, they were able to improve the result of Rádo
et al. even further by refining the idea presented by Rádo et al. In Sects. 8.3 and 8.4,
we provide some sufficient conditions for the Benz-Berens theorem and the Beckman-
Quarles theorem to also hold in an open convex set. The contents of those sections are
mainly based on the papers by Jung (Bull Braz Math Soc (NS) 37(3):351–359, 2006);
Jung (Bull Braz Math Soc (NS)40(1):77–84, 2009); Jung and Rassias (J Korean Math
Soc 41(4):667–680, 2004). In the final section, we assume that the Beckman-Quarles
theorem does not assume that the mapping preserves a certain distance but rather a
certain geometric figure. S.-M. Jung and B. Kim have achieved interesting results on
this topic, which we will systematically present in the last section.

8.1 Discrete Versions of Theorem of Beckman and Quarles

As we have seen in Sect. 2.3, Aleksandrov asked in 1970 whether the existence of a single
conservative distance for a mapping implies that the mapping is an isometry. However, it is

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
S.-M. Jung, Aleksandrov-Rassias Problems on Distance Preserving Mappings,
Frontiers in Mathematics, https://doi.org/10.1007/978-3-031-77613-7_8
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interesting to note that Beckman and Quarles [3] partially solved the Aleksandrov problem
by presenting the following theorem in 1953, long before the Aleksandrov problem was
even posed.

Let n be a fixed integer greater than 1. If a mapping f : Rn → R
n .preserves the unit distance,

then f is an affine isometry.

This famous theorem has prompted a number of mathematicians to turn their attention
to research in this area and has also inspired the author to write this book.

Let Qn
. denote the rational n-dimensional space (rational n-space) equipped with the

usual Euclidean metric. The following theorem presented by A. Tyszka [67] can be
considered as a discrete version of the Beckman-Quarles theorem for n = 2..

For all points x = (x1, x2). and y = (y1, y2). in R
2
., we use the notation llx − yll. to

denote the distance between x and y, i.e., llx − yll = l
(x1 − y1)2 + (x2 − y2)2 ..

Theorem 8.1 (Tyszka) If x, y ∈ R
2
. and llx − yll. can be constructed with a ruler and

compass, then there is a finite subset Sxy . of R2
.with the following properties:

(i). x, y ∈ Sxy .;
(ii). Every unit-distance preserving mapping f : Sxy → R

2
. preserves distance between x

and y.

In addition to classifying real numbers into rational and irrational numbers, there is
another way to classify real numbers into algebraic and transcendental numbers.

Definition 8.2 If a real number is a solution to a nonzero polynomial equation of the form

.cnx
n + cn−1x

n−1 + · · · + c1x + c0 = 0

with integral coefficients, the real number is said to be an algebraic number. When a real
number is not a solution to every nonzero polynomial equation of the form mentioned
above, it is said to be a transcendental number.

Complex numbers are also classified into algebraic and transcendental numbers in
exactly the same way, but we will only focus on real numbers here.

By D2 ., we denote the set of all real numbers ρ ≥ 0. such that for every pair of two
points x, y ∈ R

2
. with llx − yll = ρ ., there is a finite subset Sxy . of R2

. with the properties
(i). and (ii). presented in Theorem 8.1. We then remark that ρ ∈ D2 . if and only if ρ . is an
algebraic number (see [67]).

Furthermore, Tyszka was able to extend Theorem 8.1 to the case of n-dimensional
Euclidean spaces in his paper [68].
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Theorem 8.3 (Tyszka) Let n be an integer greater than 1. If x, y ∈ R
n
. and llx − yll.

is an algebraic number, then there is a finite subset Sxy . of R
n
. with the following

properties:

(i). x, y ∈ Sxy .;
(ii). Every unit-distance preserving mapping f : Sxy → R

n
. preserves distance between x

and y.

Similar to the case of Theorem 8.1, we denote by Dn . the set of all real numbers ρ ≥ 0.
such that for every pair of two points x, y ∈ R

n
.with llx − yll = ρ ., there is a finite subset

Sxy . of Rn
. with the properties (i). and (ii). presented in Theorem 8.3. We note that the set

Dn . plays a key role in the proof of Theorem 8.3.
Tyszka [69] succeeded in proving not only these theorems but also the following

theorems.

Theorem 8.4 (Tyszka) Let n be an integer greater than 1. If x, y ∈ R
n
. and llx − yll. are

constructible by means of ruler and compass, then there is a finite subset Sxy . of Rn
. with

the following properties:

(i). x, y ∈ Sxy .;
(ii). Every unit-distance preserving mapping f : Sxy → R

n
. preserves distance between x

and y.

The set Dn . also plays a key role in the proof of Theorem 8.4.
A subset F.ofR. is called a Euclidean field if and only if for all x ∈ F. there exists a y ∈ F.

such that x = y2
. or x = −y2

.. The real constructible numbers, those (signed) lengths that
can be constructed from a rational segment using ruler and compass constructions, form a
Euclidean field.

Remark 8.5 Let n be an integer greater than 1. The proof of Theorem 8.4 implies that
if x, y ∈ F

n
. and llx − yll. are constructible by means of ruler and compass, then there

is a finite subset Sxy . of Fn
. that contains x and y such that every unit-distance preserving

mapping f : Sxy → R
n
. preserves the distance between x and y.

Theorem 8.6 (Tyszka) If x, y ∈ Q
8
., then there exists a finite subset Sxy . of Q8

. with the
following properties:

(i). x, y ∈ Sxy .;
(ii). Every unit-distance preserving mapping f : Sxy → R

8
. preserves distance between x

and y.
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Theorem 8.6 (ii). implies that any unit-distance preserving mapping from Q
8
. to Q

8
.

must preserve the distance between any two points of Q8
.. Therefore, Theorem 8.6 implies

the validity of the following corollary.

Corollary 8.7 (Tyszka) Any unit-distance preserving mapping f : Q
8 → Q

8
. is an

isometry.

Another statement that corresponds to Corollary 8.7 is: Any mapping f : Q8 → Q
8
.

that satisfies (DOPP) is an isometry.
Tyszka [69] asked whether there are other values of n than 8 for which Theorem 8.6

and Corollary 8.7 hold. J. Zaks [74] immediately replied to Tyszka’s question as follows:

Theorem 8.8 (Zaks) If n is an even number of the form n = 4m(m + 1)., where m ∈ N.,
and if x, y . are any two points of Qn

., then there exists a finite subset Sxy . of Qn
. such that

every unit-distance preserving mapping f : Sxy → Q
n
. preserves the distance between x

and y.

Theorem 8.9 (Zaks) If n is a perfect square of the form n = 2m2 − 1. for some m > 1.
and if x, y . are any two points of Qn

., then there exists a finite subset Sxy . of Qn
. containing

x and y such that every unit-distance preserving mapping f : Sxy → Q
n
. preserves the

distance between x and y.

Corollary 8.10 (Zaks) If n is an even number of the form n = 4m(m + 1). for some
m ∈ N., then every unit-distance preserving mapping f : Qn → Q

n
. is an isometry.

Corollary 8.11 (Zaks) If n is a perfect square of the form n = 2m2 − 1. for some m > 1.,
then every unit-distance preserving mapping f : Qn → Q

n
. is an isometry.

Additionally, Zaks presented the following conjecture:

For every integer n > 4. and for any pair of two points x, y ∈ Q
n ., there is a finite subset Sxy .

of Qn .with the following properties:

(i). x, y ∈ Sxy .;
(ii). Every unit-distance preserving mapping f : Sxy → Q

n . preserves distance between x
and y.

If the above conjecture is correct, it is reinterpreted as an interesting conjecture as
follows:

For every integer n > 4., every unit-distance preserving mapping f : Q
n → Q

n . is an
isometry.
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For convenience, we will call this conjecture the conjecture of Tyszka and Zaks.
We define the subset Ñ . of N. by

.Ñ = l
4m(m + 1) : m ∈ N

l ∪ l
2m2 − 1 : m ∈ N, m > 2

l
.

By proving the following theorem, Zaks [75] has showed that the Tyszka-Zaks
conjecture is partially true.

Theorem 8.12 (Zaks) If n ∈ Ñ ., then each unit-distance preserving mapping f : Qn →
Q

n
. is an isometry.

Remark 8.13 R. Connelly and J. Zaks [15] proved that for all even integers n > 5., every
unit-distance preserving mapping f : Qn → Q

n
. is necessarily an isometry. In addition,

W. Hibi [22–24] proved that every unit-distance preserving mapping f : Qn → Q
n
. is an

isometry, if n is an integer greater than or equal to 5. On the other hand, W. Benz [5,6] and
H. Lenz [44] proved that in the case of n ∈ {2, 3, 4}., there is a mapping f : Qn → Q

n
. that

preserves unit distance but is not an isometry.
Moreover, Benz [5, 6] proved that every mapping f : Q

n → Q
n
. that preserves the

distances 1 and 2 is an isometry if n is greater than 4. On the other hand, Zaks [76] proved
that every mapping f : Qn → Q

n
. that preserves the distances 1 and

√
2. is an isometry,

assuming n > 4..

According to [19], it is also known that every injective mapping f : Qn → Q
n
., which

preserves the distances 1
2ρ . and ρ > 0., where ρ . is rational, is an isometry if n > 4.. From

[44], it follows that every mapping f : Qn → Q
n
. (n > 4). that preserves the distances 1

and 4 is an isometry. On the other hand, by Farrahi [18,19], we may conclude that for any
n ∈ {1, 2, 3, 4}., there is a bijective mapping f : Qn → Q

n
. that preserves all distances

ρ ∈ { 12k : k ∈ N}. but is not an isometry.
As we have seen in this section, especially in Theorem 8.12 and Remark 8.13, it is not

yet entirely clear whether the Tyszka-Zaks conjecture is true. It might be worth proving
whether this conjecture is true or false.

8.2 Remarks on the Aleksandrov-Rassias Problems

Let n be an integer greater than 1. Assume that p = (p1, p2, . . . , pk). is a configuration of
k labeled points of En

.. Furthermore, assume that G is a graph without loops or multiple
edges, whose vertices are those k points and whose edges are specified by cables or
struts. We call such a graph a tensegrity graph. Moreover, we call the pair of a graph
G and a configuration p a tensegrity, and we denote it as G(p).. For any m ∈ N0 ., let
q = (q1, q2, . . . , qk). be another configuration, where q1, q2, . . . , qk ∈ E

m
.. The tensegrity
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G(q). is said to satisfy the tensegrity constraints of G(p). if the following two conditions
hold:

(c). If {i, j}. is a cable, then the inequality llqi − qjll ≤ llpi − pjll. holds:
(s). If {i, j}. is a strut, then the inequality llqi − qjll ≥ llpi − pjll. is true.

The tensegrity G(p). is said to be unyielding if for any other configuration q in Em
. such

that G(q). satisfies the tensegrity constraints of G(p)., then llqi − qjll = llpi − pjll. for
every cable or strut {i, j}. of G. We note that in the definition of unyielding, the target
configuration q can lie in any Euclidean space of arbitrary dimension.

One of the simplest examples of unyielding tensegrities G(p). has its configuration
consisting of three different collinear points, p = (p1, p2, p3)., where p2 . lies between p1 .

and p3 ., and its tensegrity graph G is defined to have cables {1, 2}., {2, 3}. and a strut {1, 3}..
Moreover, here is a simple but more interesting tensegrity: Let p = (p1, p2, p3, p4). be
a configuration consisting of the vertices, in cyclic order, of a rectangle in E

2
.. We define

the external edges {1, 2}., {2, 3}., {3, 4}., and {4, 1}. to be cables and the diagonals {1, 3}.,
{2, 4}. to be struts for the tensegrity graph G. Then, by Beckman and Quarles [3], G(p). is
a unyielding tensegrity.

Assume that f : En → E
m

. is a mapping, where n is an integer greater than 1. Let us
define

.

Cf = l
c ∈ R : llf (x) − f (y)ll ≤ c for all x, y ∈ E

n with llx − yll = c
l
,

Sf = l
s ∈ R : llf (x) − f (y)ll ≥ s for all x, y ∈ E

n with llx − yll = s
l
.

We call Cf . the cable lengths for f and Sf . the strut lengths for f . Indeed, Cf . is considered
as the set of all contractive distances by f and Sf . as the set of all extensive distances by
f . We note that both Cf . and Sf . include all positive real numbers if and only if f is an
isometry.

Suppose a set C of positive real numbers is a subset of Cf . and another set S is a subset
of Sf .. If some other real number c belongs to Cf ., then c is said to be an implied cable
length for f . Analogously, if some other real number s belongs to Sf ., then s is called an
implied strut length for f . For example, if c1 . and c2 . are cable lengths for f , then c1 + c2 .

is an implied cable length for f .
K. Bezdek and R. Connelly [8] proved the following lemmas.

Lemma 8.14 Given an integer n > 1., let f : En → E
m

. be a mapping, and let G(p). be
an unyielding tensegrity in E

n
. with cables of lengths c1, c2, . . .. and with struts of lengths

s1, s2, . . ..

(i). If c2, c3, . . . ∈ Cf . and s1, s2, . . . ∈ Sf ., then the length c1 . is an implied strut length
for f .

(ii). If c1, c2, . . . ∈ Cf . and s2, s3, . . . ∈ Sf ., then the length s1 . is an implied cable length
for f .
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Proof We first consider the case (i)., where c2, c3, . . . ∈ Cf . and s1, s2, . . . ∈ Sf .. We claim
that c1 . is a strut length for f . On the contrary, assume that c1 . is not a strut length for f .
Suppose there are points u, v ∈ E

n
.with llu−vll = c1 .but llf (u)−f (v)ll < c1 .. Construct a

configuration p̂ . in En
. that is congruent to p, where p̂i = u. and p̂j = v . for some i, j ∈ N..

Then, llp̂i − p̂jll = c1 .. We define a configuration q = (f (p̂1), f (p̂2), . . . , f (p̂k))., where
k is the number of vertices of G. Then, we have

.llpi − pjll = llp̂i − p̂jll = llu − vll = c1 > llf (u) − f (v)ll = llqi − qjll.

Since the cable lengths of G are in Cf ., if {i., j .}. is the other cable in G, then we get

.llpi. − pj . ll = llp̂i. − p̂j . ll ≥ llf (p̂i.) − f (p̂j .)ll = llqi. − qj . ll.

Since the strut lengths of G are in Sf ., if {i., j .}. is a strut in G, then we obtain

.llpi. − pj . ll = llp̂i. − p̂j . ll ≤ llf (p̂i.) − f (p̂j .)ll = llqi. − qj . ll.

Hence, G(q). satisfies the tensegrity constraints of G(p)., but the strict inequality con-
tradicts the unyielding property of G(p).. Therefore, our assumption is wrong, and we
conclude that llf (u)−f (v)ll ≥ c1 . for each u, v ∈ E

n
.with llu−vll = c1 ., which completes

the proof of (i)..
The other case (ii). can be proven in a similar way. ll

Lemma 8.15 Let f : En → E
m

. be a mapping, where n is an integer greater than 1. If
c2 . and s1 . are positive real numbers with c2 ≤ s1 ≤ 2c2 ., c2 ∈ Cf ., and s1 ∈ Sf ., then

c1 = s21−c22
c2

. is an implied strut length in Sf ..

Proof Let G(p). be the tensegrity shown in the following figure.
Consider the isosceles triangle defined by three edges of lengths c2 ., c2 ., and s1 ., where

s1 . is the base length. (This is possible because s1 ≤ 2c2 ..) Place the two isosceles triangles
as shown in Fig. 8.1. In this case, these four points form a trapezoid with diagonals of
length s1 . if and only if c2 ≤ s1 .. The equality cases correspond to degenerate cases where
the configuration becomes collinear (when s1 = 2c2 .) and when the two vertices at the
bottom of Fig. 8.1 coincide (when c2 = s1 .). It is a simple calculation to see, under these

assumptions, that c1 = s21−c22
c2

..

Fig. 8.1 In this figure, c2 . is a
contractive distance by f and
s1 . is an extensive distance by f
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Based on the results in [14], the tensegrity graph in Fig. 8.1 is unyielding. Since c1 . is
the length of a cable shown in Fig. 8.1, by Lemma 8.14, it is an implied strut length for
every mapping f : En → E

m
.. ll

Let φ . be the golden ratio, i.e., φ =
√
5+1
2 ..

Lemma 8.16 Let g : [1, 2] → [0, 3]. be the mapping defined by g(t) = t2 − 1.. For every
t0 ∈ (φ, 2]., a finite iteration of t0 . through g lies in the interval [2, 3]..

Proof It is easy to show that g is strictly monotonically increasing and continuous and
that g−1(t) = √

t + 1.. It is also obvious that the only fixed point for g (and g−1
.) is the

solution of the quadratic equation t2 − 1 = t . (t ≥ 1).. Thus, the unique fixed point for g

is the golden ratio φ .. We note that φ . is a repulsive fixed point for g but an attractive fixed
point for g−1

.. Indeed, if any t in the domain of g satisfies t > φ ., then g(t) > t .. Since
g(t) > t . for t > φ ., and g(φ) = φ ., and since g is monotonically increasing, it follows that
φ < g−1(t) < t . for t > φ ..

We now set α0 = 3. and inductively αi = g−1(αi−1). for all i ∈ N.. Thus, we have

α1 = 2., α2 = √
3., α3 =

l√
3 + 1, . . .. By the argument above, {αi}. is a well-defined

decreasing sequence, where each αi > φ .. So this sequence must converge to a fixed point
of g. Therefore, since φ . is the unique fixed point in the domain of g, we conclude that
lim

i→∞ αi = φ ..

If we consider images of intervals under g−1
., we then have

.[2, 3] → l√
3, 2

ll →
ll√

3 + 1,
√
3
l

→ · · ·

In other words, g−1([αi, αi−1]) = [g−1(αi), g
−1(αi−1)] = [αi+1, αi]. for i ∈ N.. But this

implies

.

∞l

i=1

[αi, αi−1] = (φ, 3],

which completes the proof. ll

At a seminar held in 1986, F. Rádo et al. [53] presented the following excellent result.

Theorem 8.17 (Rádo, Andreason and Válcan) Let n be an integer greater than 1, and
let c, s . be positive real numbers that satisfy 0 < c

s
≤ 1√

3
.. Assume that a mapping f :

E
n → E

m
. satisfies the following conditions:
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(i). If llx − yll = c. for x, y ∈ E
n
., then llf (x) − f (y)ll ≤ c.;

(ii). If llx − yll = s . for x, y ∈ E
n
., then llf (x) − f (y)ll ≥ s ..

Then f is an isometry.

Using both conditions given in Theorem 8.17, we define

.Fk(c, s) = l
f : En → E

m : f satisfies the conditions (i) and (ii) for all n ≥ k
l
,

where k is a fixed positive integer. Then the set we want to identify is:

.Xk =
l
r ∈ R : If c

s
= r, then each f ∈ Fk(c, s) is an isometry

l
.

So Theorem 8.17 simply says that (0, 1√
3
] ⊂ X2 .. It is easy to check that

.X2 ⊂ X3 ⊂ X4 ⊂ · · · .

We are now ready to prove the main theorem of this section.

Theorem 8.18 (Bezdek and Connelly) (0, 1
φ
) ⊂ X2 ..

Proof Assume that 0 < c < s ., 0 < c
s

< 1
φ
., f : En → E

m
. is a mapping for n > 1., and

that f ∈ F2(c, s).. In other words, c is a cable length for f and s is a strut length for f .
Rescaling if necessary, we can assume c = 1.without loss of generality.

If c
s

≤ 1
2 < 1√

3
., then 1

s
≤ 1

2 . and s ≥ 2.. Therefore, f is an isometry by Theorem 8.17.

If 1
2 ≤ c

s
= 1

s
< 1

φ
., then φ < s ≤ 2.. It follows from Lemma 8.16 that a finite iteration

of s under g lies in the interval [2, 3]., where we set g(t) = t2 − 1.. We set s0 = s . and
si = g(si−1). for i ∈ N.. From Lemma 8.15, it follows that if si−1 ∈ Sf ., then si =
s2i−1 − 1 = g(si−1) ∈ Sf ., too. Hence, for some positive integer k, sk . is an implied strut
in Sf ., and sk ∈ [2, 3].. Therefore, using Theorem 8.17, we conclude that f is an isometry.
These imply that s ∈ X2 ., which completes the proof. ll

The following corollary is a direct consequence of Theorems 2.7 and 8.18.

Corollary 8.19 (Bezdek and Connelly) Let m and n be integers with 1 < n ≤ m.. If a

mapping f : En → E
m

. preserves two distances ρ . and σ ., where 0 <
ρ
σ

<
√
5−1
2 ., then f is

an affine isometry.
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8.3 Aleksandrov-Benz Problemwith Restricted Domains

In 1987, W. Benz and H. Berens [7] presented a sufficient condition for a mapping with
both contractive and extensive distances to be an affine isometry (see Theorem 3.5):

Let X be a real normed space with dimX > 1. and let Y be a real normed space that is strictly
convex. Suppose f : X → Y . is a mapping and N > 1. is a fixed integer. If a distance ρ > 0.
is contractive and Nρ . is extensive by f, then f is an affine isometry.

In this section, we present sufficient conditions for the Benz-Berens theorem to hold
even in a restricted domain.

Let H be a real Hilbert space with dimH > 2. for which there exists a unit vector
w ∈ H . and a subspace Hs . of H with H = Hs ⊕ spanw . and Hs ⊥ spanw ., where spanw .

denotes the subspace spanned by w. We now define the half space Hθ . by

.Hθ = l
x + λw : x ∈ Hs, λ > θ

l
(8.1)

for any real number θ .. Assume that Y is a real normed space which is strictly convex.
Throughout this section, let a real number ρ > 0. and an integer N > 1. be

fixed. Furthermore, assume that a mapping f : Hθ → Y . satisfies both the following
conditions:

(P1). ρ . is contractive by f ;
(P2). Nρ . is extensive by f .

Following the steps presented in the paper [4], S.-M. Jung and Th. M. Rassias [39]
proved in the following two lemmas that if a mapping f : Hθ → Y . satisfies both
conditions (P1). and (P2)., then f preserves the distances ρ . and 2ρ ..

Lemma 8.20 Assume that a mapping f : Hθ → Y ., together with a real number ρ > 0.
and an integer N > 1., satisfies both conditions (P1). and (P2)., where Hθ . is given by (8.1)
and Y is a real normed space that is strictly convex. Then llf (x) − f (y)ll = ρ . holds for
all x, y ∈ Hθ .with llx − yll = ρ ..

Proof Assume that x and y are points of Hθ . with llx − yll = ρ . and x − y ∈ H 0 ., where
we set

.H 0 = l
x + λw : x ∈ Hs, λ ≥ 0

l
.

If we define pn = y +n(x −y). for any n ∈ {0, 1, . . . , N}., then pn ∈ Hθ ., llp
N

−yll = Nρ .

and llpn − pn−1ll = ρ . for all n ∈ {1, 2, . . . , N}.. Since f satisfies both conditions (P1).
and (P2)., we have
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.Nρ ≤ llf (p
N
) − f (y)ll ≤

Nl

n=1

llf (pn) − f (pn−1)ll ≤ Nρ.

Hence, we conclude that llf (x) − f (y)ll = llf (p1) − f (p0)ll = ρ ..
Now assume that x and y of Hθ . satisfy llx − yll = ρ . but x − y l∈ H 0 .. Then we have

y − x ∈ H 0 .. In this case, if we define pn = x + n(y − x)., we get the same result using a
similar method as before. ll

Lemma 8.21 Assume that a mapping f : Hθ → Y ., together with a real number ρ > 0.
and an integer N > 1., satisfies both conditions (P1). and (P2)., where Hθ . is given by (8.1)
and Y is a real normed space that is strictly convex. Then llf (x) − f (y)ll = 2ρ . holds for
all x, y ∈ Hθ .with llx − yll = 2ρ ..

Proof Assume that x and y are points of Hθ .with llx − yll = 2ρ . and x − y ∈ H 0 ., where
we may refer to the proof of Lemma 8.20 for the definition of H 0 .. Let us define

.pn = y + n

2
(x − y)

for all n ∈ {0, 1, . . . , N}.. It then follows that pn ∈ Hθ ., llp
N

− yll = Nρ ., and llpn −
pn−1ll = ρ . for all n ∈ {1, 2, . . . , N}.. Now, we make use of (P1). and (P2). to get

.Nρ ≤ llf (p
N
) − f (y)ll ≤

Nl

n=1

llf (pn) − f (pn−1)ll ≤ Nρ,

i.e.,

.llf (p
N
) − f (y)ll =

Nl

n=1

llf (pn) − f (pn−1)ll. (8.2)

If we assume

.llf (p2) − f (p0)ll < llf (p2) − f (p1)ll + llf (p1) − f (p0)ll,

then, in view of (8.2), it should be N > 2., and further

.

llf (p
N
) − f (y)ll ≤

Nl

n=3

llf (pn) − f (pn−1)ll + llf (p2) − f (p0)ll

<

Nl

n=1

llf (pn) − f (pn−1)ll,
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which is contrary to (8.2). Therefore, we conclude by Lemma 8.20 that

.

llf (x) − f (y)ll = llf (p2) − f (p0)ll
= llf (p2) − f (p1)ll + llf (p1) − f (p0)ll
= 2ρ.

For the case of x − y l∈ H 0 ., we define pn = x + n
2 (y − x). and follow the same process

as before to prove our assertion. ll

Due to the strict convexity of Y , the following lemma is an immediate consequence of
Lemma 2.6. Therefore, the proof is omitted.

Lemma 8.22 Assume that Y is a real normed space that is strictly convex. For all a, b, c ∈
Y . and α > 0., llb − all = α = llc − bll. and llc − all = 2α . imply c = 2b − a ..

We will use mathematical induction to prove the following theorem, which is essential
to handle the case where x and y have the same Hs .-components. From now on, we denote
by xs ., ys ., and zs . the Hs .-component of x, y and z, respectively, unless specified.

Lemma 8.23 Assume that a mapping f : Hθ → Y ., together with a real number ρ > 0.
and an integer N > 1., satisfies both conditions (P1). and (P2)., where Hθ . is given by (8.1)
and Y is a real normed space that is strictly convex. For any given n ∈ N., let x = xs +λw .

and y = ys + μw . be any points of Hθ .with xs = ys . and

.λ,μ > θ +
l

1

22
+ 1

23
+ · · · + 1

2n+1

l
ρ.

Then, llx − yll = 1
2n ρ . implies llf (x) − f (y)ll = 1

2n ρ ..

Proof Assume that x = xs + λw . and y = ys + μw . are points of Hθ . such that

.xs = ys, λ, μ > θ + 1

4
ρ, llx − yll = |λ − μ| = 1

2
ρ.

Choose a z = zs + 1
2 (λ + μ)w ∈ Hθ .with llx − zll = lly − zll = ρ .. Furthermore, select x.

.

and y.
. on the rays zx . and zy ., respectively, such that llx. − zll = lly. − zll = 2ρ .. Then, we

have llx. − y.ll = ρ ..
If we set x. = x.

s + λ.w . and y. = y.
s + μ.w ., then

.λ. = λ + 1

2
(λ − μ) >

l
θ + 1

4
ρ

l
+ 1

2

l
− 1

2
ρ

l
= θ
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and

.μ. = μ + 1

2
(μ − λ) >

l
θ + 1

4
ρ

l
+ 1

2

l
− 1

2
ρ

l
= θ.

Thus, it follows that both x.
. and y.

. are points in Hθ ..
According to Lemmas 8.20 and 8.21, we get

.

llf (x) − f (z)ll = llf (y) − f (z)ll = llf (x.) − f (y.)ll = ρ,

llf (x.) − f (x)ll = llf (y.) − f (y)ll = ρ,

llf (x.) − f (z)ll = llf (y.) − f (z)ll = 2ρ.

By Lemma 8.22, f (x). is the midpoint of f (x.). and f (z)., and the same is true for f (y)..
Hence, the triangles f (x)f (z)f (y). and f (x.)f (z)f (y.). are similar. Hence, we conclude
that llf (x) − f (y)ll = 1

2ρ ..
We now assume that our assertion holds for some n ∈ N. and moreover assume that

x = xs + λw . and y = ys + μw . satisfy

.xs = ys, λ, μ > θ +
l

1

22
+ 1

23
+ · · · + 1

2n+2

l
ρ, llx − yll = 1

2n+1 ρ.

Choose a z = zs + 1
2 (λ + μ)w . with llx − zll = lly − zll = ρ .. Moreover, select x.

. and y.
.

on the rays zx . and zy ., respectively, such that llx. − zll = lly. − zll = 2ρ .. Then we obtain
llx. − y.ll = 1

2n ρ .. Similarly as in the first part, it follows that both the x.
. and y.

. lie in Hθ ..
By Lemmas 8.20 and 8.21, we get

.

llf (x) − f (z)ll = llf (y) − f (z)ll = ρ,

llf (x.) − f (x)ll = llf (y.) − f (y)ll = ρ,

llf (x.) − f (z)ll = llf (y.) − f (z)ll = 2ρ.

By Lemma 8.22, f (x). is a midpoint of f (x.). and f (z)., and likewise for f (y).. Further-
more, we know that x. = x.

s + λ.w . and y. = y.
s + μ.w . satisfy

.x.
s = y.

s , λ., μ. > θ +
l

1

22
+ 1

23
+ · · · + 1

2n+1

l
ρ, llx. − y.ll = 1

2n
ρ.

By the assumption of induction, it follows that llf (x.) − f (y.)ll = 1
2n ρ ..

Since the triangles f (x)f (z)f (y). and f (x.)f (z)f (y.). are similar, we conclude that
llf (x) − f (y)ll = 1

2n+1 ρ .. ll



164 8 Miscellaneous

In the following lemma, we prove that if x and y are separated from each other by a
specific distance, then some equidistant points on the line through x and y are mapped by
f onto some equidistant points of the line through f (x). and f (y)..

Lemma 8.24 Assume that a mapping f : Hθ → Y ., together with a real number ρ > 0.
and an integer N > 1., satisfies both conditions (P1). and (P2)., where Hθ . is given by (8.1)
and Y is a real normed space that is strictly convex.

(i). If x and y are any points of Hθ .with llx − yll = ρ ., then f (x + m(y − x)) = f (x) +
m(f (y) − f (x)). holds for all m ∈ N0 .with x + m(y − x) ∈ Hθ ..

(ii). Let x, y . be points of Hθ+ρ/2 . with xs = ys . and llx − yll = 1
2n ρ . for some n ∈ N.. If

x +m(y −x) ∈ Hθ+ρ/2 . for some m ∈ N., then f (x +m(y −x)) = f (x)+m(f (y)−
f (x))..

Proof

(i). Assume that x and y are points ofHθ .with llx−yll = ρ .. We use induction to show that
f (x+m(y−x)) = f (x)+m(f (y)−f (x)).holds for all m ∈ N0 .with x+m(y−x) ∈
Hθ .. If m = 0. or 1, there is nothing to prove. We now assume that our assertion is true
for m ∈ {0, 1, . . . , k}., where k > 0. is some integer. We set pi = x + i(y − x). for
i ∈ N. and assume that pk+1 ∈ Hθ .. Then, we get

.llpk − pk−1ll = ρ = llpk+1 − pkll and llpk+1 − pk−1ll = 2ρ.

According to Lemmas 8.20 and 8.21, we have

.

llf (pk) − f (pk−1)ll = ρ = llf (pk+1) − f (pk)ll,
llf (pk+1) − f (pk−1)ll = 2ρ.

Hence, it follows from Lemma 8.22 that

.f (pk+1) = 2f (pk) − f (pk−1) = f (x) + (k + 1)
l
f (y) − f (x)

l
,

as we desired.
(ii). Let x = xs + λw . and y = ys + μw . be any points of Hθ+ρ/2 .. Assume that xs = ys .

and llx − yll = 1
2n ρ . for some n ∈ N.. We also use induction to prove our assertion.

For m = 1., there is nothing to prove. We assume that our assertion holds for m ∈
{1, 2, . . . , k}., where k > 0. is some integer. We now set pi = x + i(y − x). for i ∈ N.

and let pk+1 ∈ Hθ+ρ/2 .. Then, we have

.llpk − pk−1ll = 1

2n
ρ = llpk+1 − pkll and llpk+1 − pk−1ll = 1

2n−1 ρ.
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Since the Hs .-component of pi . is equal to xs . and pi ∈ Hθ+ρ/2 . for each i ∈ {1, 2, . . . , k +
1}., we can make use of Lemma 8.23 to check that

.

llf (pk) − f (pk−1)ll = 1

2n
ρ = llf (pk+1) − f (pk)ll,

llf (pk+1) − f (pk−1)ll = 1

2n−1 ρ.

Hence, it follows from Lemma 8.22 that

.f (pk+1) = 2f (pk) − f (pk−1) = f (x) + (k + 1)
l
f (y) − f (x)

l
,

which completes the proof of (ii).. ll

Lemma 8.25 Assume that a mapping f : Hθ → Y ., together with a real number ρ > 0.
and an integer N > 1., satisfies both conditions (P1). and (P2)., where Hθ . is given by (8.1)
and Y is a real normed space that is strictly convex. Let n be a fixed positive integer. If
x, y ∈ Hθ . satisfy llx − yll = nρ ., then llf (x) − f (y)ll = nρ ..

Proof Assume that x and y are points of Hθ . and are separated from each other by a
distance nρ .. Choose a point z on the line segment between x and y such that x = y +
n(z − y).. Then, we have llz − yll = ρ .. From Lemma 8.24 (i)., it follows that f (x) =
f (y) + n(f (z) − f (y)).. Hence, by Lemma 8.20, we have

.llf (x) − f (y)ll = nllf (z) − f (y)ll = nρ,

which completes the proof. ll

Using Lemmas 8.23, 8.24, and 8.25, we can prove the following lemma which is
indispensable for the proof of Theorem 8.28 below.

Lemma 8.26 Assume that a mapping f : Hθ → Y ., together with a real number ρ > 0.
and an integer N > 1., satisfies both conditions (P1). and (P2)., where Hθ . is given by (8.1)
and Y is a real normed space that is strictly convex. Let x = xs + λw . and y = ys + μw .

be any points of Hθ .. Assume that m, n ∈ N. are given.

(i). If xs l= ys . and llx − yll = n
m

ρ ., then llf (x) − f (y)ll = n
m

ρ ..
(ii). If x, y ∈ Hθ+ρ/2 ., xs = ys ., and llx − yll = m

2n ρ ., then llf (x) − f (y)ll = m
2n ρ ..

Proof

(i). Assume that x and y are points of Hθ .with llx − yll = n
m

ρ .which are represented by
x = xs + λw . and y = ys + μw ., where xs l= ys ., λ ≥ μ > θ ., and where m > 1. and n

are positive integers.
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Set z = zs + μw ., and examine whether there exists a zs ∈ Hs .which is a solution
of the following parametric equations

.

llz − xll2 = llzs − xsll2 + (μ − λ)2 = k2ρ2,

llz − yll2 = llzs − ysll2 = k2ρ2,

llx − yll2 = llxs − ysll2 + (μ − λ)2 =
l

n

m
ρ

l2

,

where k is a parameter whose value is integral. It follows from these equations that

.

llzs − xsll =
l

k2ρ2 − (μ − λ)2,

llzs − ysll = kρ,

llxs − ysll =
ll

n

m
ρ

l2

− (μ − λ)2.

(8.3)

The sphere in Hs . with radius
l

k2ρ2 − (μ − λ)2 . and center at xs . is expressed by
the first equation of (8.3). We use the notation S1 . for this sphere. The second of (8.3)
is an equation for the sphere S2 . in Hs .with radius kρ . and center at ys .. If k is so large
that the inequality

.kρ ≤
l

k2ρ2 − (μ − λ)2 +
ll

n

m
ρ

l2

− (μ − λ)2

holds, then S1 ∩ S2 l= ∅.. Hence, we can select a zs . from S1 ∩ S2 ., i.e., the parametric
equations (8.3) are solvable in zs .. With such a zs ., z = zs + μw . is separated from x

resp. from y by a same distance kρ ..
If we choose x., y. ∈ Hθ . on the ray zx . resp. zy . such that llx. − zll = lly. − zll =

kmρ ., then we have llx. − y.ll = nρ .. By Lemma 8.25, we get

.

llf (x) − f (z)ll = llf (y) − f (z)ll = kρ,

llf (x.) − f (z)ll = llf (y.) − f (z)ll = kmρ,

llf (x.) − f (y.)ll = nρ.

Furthermore, by a slight modification of Lemma 8.24 (i)., we can conclude that f (x).

lies on the line segment between f (z). and f (x.). and also that f (y). lies on the line
segment between f (z). and f (y.)..

Hence, the triangles f (x)f (z)f (y). and f (x.)f (z)f (y.). are similar. Therefore, we
obtain llf (x) − f (y)ll = n

m
ρ ..
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(ii). Assume that x = xs + λw . and y = ys + μw . are points of Hθ+ρ/2 .with xs = ys . and
llx−yll = m

2n ρ .. Choose a z on the line segment between x and y with llz−yll = 1
2n ρ ..

Then, by Lemma 8.23, llf (z) − f (y)ll = 1
2n ρ .. Further, in view of Lemma 8.24 (ii).,

we get

.f (x) = f
l
y + m(z − y)

l = f (y) + m
l
f (z) − f (y)

l
,

i.e.,

.llf (x) − f (y)ll = mllf (z) − f (y)ll = m

2n
ρ,

which completes the proof. ll

Lemma 8.27 Let Hθ . be defined by (8.1). Assume that α . and β . are real numbers with
2β ≥ α > 0.. Then, for all x, y ∈ Hθ . with llx − yll = α ., there exists a z ∈ Hθ . satisfying
llz − xll = β = llz − yll.. In particular, if xs l= ys ., then zs l∈ {xs, ys}..

Proof Assume that x = xs + λw . and y = ys + μw . are points of Hθ . with llx − yll = α .,
where λ,μ > θ .. We find a solution z = zs + δw ∈ Hθ . of the following equations:

.

llz − xll2 = llzs − xsll2 + (δ − λ)2 = β2,

llz − yll2 = llzs − ysll2 + (δ − μ)2 = β2,

llx − yll2 = llxs − ysll2 + (λ − μ)2 = α2.

(8.4)

Put δ = 1
2 (λ + μ) (> θ).. It then follows from (8.4) that

.

llzs − xsll2 = β2 − 1

4
(μ − λ)2,

llzs − ysll2 = β2 − 1

4
(μ − λ)2,

llxs − ysll2 = α2 − (μ − λ)2.

Since dimHs > 1. and

.

llzs − xsll + llzs − ysll = 2llzs − xsll

=
l

(2β)2 − (μ − λ)2

≥
l

α2 − (μ − λ)2

= llxs − ysll
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(where llxs −ysll > 0. for xs l= ys ., and hence zs l= xs . and zs l= ys .), there exists at least one
zs ∈ Hs .which is a solution of the above equations. With such a zs ., z = zs + 1

2 (λ+μ)w ∈
Hθ . satisfies our requirement. Therefore, the proof is complete. ll

So far, we have proved all the preliminary lemmas to the main theorem of this section.
In the following theorem, we generalize the theorem of Benz and Berens:

Theorem 8.28 (Jung and Rassias) Let H be a real Hilbert space with dimH > 2..
Assume that Hθ . is given by (8.1) and Y is a real normed space that is strictly convex.
Let ρ > 0. be a real number and let N > 1. be an integer. If ρ . is contractive and Nρ . is
extensive by a mapping f : Hθ → Y ., then f |Hθ+ρ/2 . is an isometry. In particular, it holds
that llf (x) − f (y)ll = llx − yll. for all points x, y ∈ Hθ .with xs l= ys ..

Proof We note that there exists a unit vector w ∈ H . and a subspace Hs = (spanw)⊥ .

of H with H = Hs ⊕ spanw . and Hs ⊥ spanw ., where (spanw)⊥ . denotes the orthogonal
complement of spanw ..

Assume that x and y are distinct points of Hθ+ρ/2 .. For those x and y, choose
the sequences, {ki}., {mi}., and {ni}., of nonnegative integers with the following three
properties:

(K).
ki

2ni
ρ ≤ llx − yll <

ki+1
2ni

ρ . for all sufficiently large integers i;

(M).
mi−1
2ni

ρ < llx − yll ≤ mi

2ni
ρ . for all sufficiently large integers i;

(N). {ni}. increases strictly to infinity.

Since Hθ+ρ/2 . is open, we can select a zi . on the line segment xy . and a wi ∈ Hθ+ρ/2 .

such that

.llx − zill = ki

2ni
ρ and llzi − will = llwi − yll = 1

2ni
ρ

for any sufficiently large integer i. It then follows from Lemma 8.26 (i). and (ii). that

.llf (x) − f (zi)ll = ki

2ni
ρ and llf (zi) − f (wi)ll = llf (wi) − f (y)ll = 1

2ni
ρ

for any sufficiently large integer i. Thus, it follows from (K). that

.

llf (x) − f (y)ll ≤ llf (x) − f (zi)ll + llf (zi) − f (wi)ll + llf (wi) − f (y)ll

≤ llx − yll + 1

2ni−1 ρ

for any sufficiently large integer i, i.e., we get llf (x) − f (y)ll ≤ llx − yll..
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On the other hand, since Hθ+ρ/2 . is an open subset of the real Hilbert space H , we can
choose a vi ∈ Hθ+ρ/2 . such that

.llx − vill = mi

2ni
ρ and lly − vill = 1

2ni
ρ

for all sufficiently large integers i. From Lemma 8.26 (i). and (ii)., we get

.llf (x) − f (vi)ll = mi

2ni
ρ and llf (y) − f (vi)ll = 1

2ni
ρ.

Hence, it follows from (M). that

.llf (x) − f (y)ll ≥ llf (x) − f (vi)ll − llf (y) − f (vi)ll ≥ llx − yll − 1

2ni
ρ

for all sufficiently large integers i, i.e., we get llf (x)−f (y)ll ≥ llx −yll., which completes
the proof of the first part.

For the second part of this theorem, assume that x, y ∈ Hθ . satisfy xs l= ys . and r1ρ <

llx − yll < r2ρ ., where r1, r2 > 0. are given rational numbers. We claim that r1ρ ≤
llf (x) − f (y)ll ≤ r2ρ .: According to Lemma 8.27, there exists a z ∈ Hθ . with llz − xll =
r2
2 ρ = llz − yll., xs l= zs ., and ys l= zs .. Due to Lemma 8.26 (i)., we get

.llf (z) − f (x)ll = r2

2
ρ = llf (z) − f (y)ll.

Hence, we have

.llf (x) − f (y)ll ≤ llf (x) − f (z)ll + llf (z) − f (y)ll = r2ρ.

On the other hand, we assume that there existed x, y ∈ Hθ .with the properties:

.xs l= ys, r1ρ < llx − yll < r2ρ, llf (x) − f (y)ll < r1ρ. (8.5)

Then, we obtain

.r2ρ − llx − yll < r2ρ − r1ρ < r2ρ − llf (x) − f (y)ll.

Define z = x+λ(y−x). for the case y−x ∈ H 0 .with λ = r2llx−yllρ > 1.. (Otherwise, i.e., if

y−x l∈ H 0 ., we replace the definition of z by y+λ(x−y). and repeat the following process
similarly.) It then follows that xs l= zs ., ys l= zs ., and llz − xll = r2ρ .. Furthermore, (8.5)
implies that llz − yll = (λ − 1)llx − yll < (r2 − r1)ρ .. Due to Lemma 8.26 (i)., we have
llf (z) − f (x)ll = r2ρ . and by considering the argument in the last paragraph, we see that
llf (z) − f (y)ll ≤ (r2 − r1)ρ .. Subsequently, we have
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.

r2ρ = llf (z) − f (x)ll
≤ llf (z) − f (y)ll + llf (y) − f (x)ll
< (r2 − r1)ρ + r1ρ

= r2ρ,

which is a contradiction. Therefore, it should be r1ρ ≤ llf (x) − f (y)ll ≤ r2ρ ..
Since the set of all rational numbers is dense inR., we conclude that the second assertion

is true. ll

Let H be a real Hilbert space with dimH > 1.. For a fixed integer N > 1. and a constant
ρ > 0., we define a sequence {di}. by

.d1 = Nρ and di = N3−iρ

for all i ∈ {2, 3, . . .}..
Let {Hi}. be a sequence of open convex subsets of H with

.H0 ⊃ H1 ⊃ · · · ⊃ Hi ⊃ Hi+1 ⊃ · · · and d(Hi+1, ∂Hi) ≥ di+1

for all i ∈ N0 ., where we set

.d(Hi+1, ∂Hi) = inf
lllx − yll : x ∈ Hi+1, y ∈ ∂Hi

l

and ∂Hi . denotes the boundary of Hi .. (If one of Hi+1 . and ∂Hi . is unbounded, we will set
d(Hi+1, ∂Hi) = ∞..)

Furthermore, we assume

.H∞ :=
l ∞l

i=0

Hi

l◦
l= ∅.

We know that the intersection of any family of convex subsets of a topological vector space
is convex. Moreover, the interior of any convex subset of a topological vector space is a
convex set. Thus, H∞ . is an open convex subset of H .

S.-M. Jung proved, in his paper [29], the following theorem, which in some sense
generalizes Theorem 8.28 (compare with the result in [40]).

Theorem 8.29 (Jung) Let H and H .
. be real Hilbert spaces with dimH > 1.. Assume

that H0 . is a nonempty open convex subset of H . If a mapping f : H0 → H .
. satisfies both

the conditions (P1). and (P2)., then f |H∞ . is an isometry.
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8.4 Beckman-Quarles Theoremwith Restriced Domains

In this section, let En
.be the n-dimensional Euclidean space, where n > 2. is a fixed integer.

Then there exists a unit vectorw ∈ E
n
. and a subspaceEs .of En

. such that En = Es⊕spanw .

and Es . is orthogonal to spanw ., where spanw . is the subspace of En
. which is spanned by

w. (We simply take Es = (spanw)⊥ ..)
We now define

.r0 = θ, r1 = θ + ρ, r2 = θ + ρ + ρ1, r3 = θ +
l
1 + 1

n

l
ρ + ρ1,

where θ . is a real number, ρ . is a positive real number, and ρ1 =
l
2(1 + 1

n
)ρ .. Using these

rk .’s, we further define

.Ek = l
x + λw : x ∈ Es, λ > rk

l

for k ∈ {0, 1, 2, 3}.. We note that

.E3 ⊂ E2 ⊂ E1 ⊂ E0 ⊂ E
n.

Let E be a nonempty subset of En
.. We call a set of n different points of E a β .-set in E

if the distance between any two points is β > 0.. If there are two distinct points of En
. that

have the distance α . from each point of a β .-set P , the two points are called the α .-associated
points of P .

Due to Lemmas 2.21 and 2.22, the following two lemmas are obvious.

Lemma 8.30 Let E be a nonempty subset of En
., where n > 2.. Assume that α . and β . are

positive real numbers with

.γ (α, β) = 4α2 − 2β2
l
1 − 1

n

l
> 0

and that P is a β .-set in E. The α .-associated points of P are uniquely determined and the
distance between them is

√
γ (α, β)..

Lemma 8.31 Assume that α . and β . are positive real numbers with γ (α, β) > 0.. If x and
y are points of En

. with llx − yll = √
γ (α, β)., then there exists a β .-set P in E

n
. such that

x and y are the α .-associated points of P .

Lemma 8.32 If a mapping f : E0 → E
n
. (n > 2). preserves a distance ρ > 0., then the

distance ρ1 = √
γ (ρ, ρ). is preserved by f |E1 ..
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Proof Assume that x, y . are points of E1 . with llx − yll = ρ1 .. According to Lemma 8.31
and the definition of Ek ., there exists a ρ .-set P in E0 . such that x and y are the ρ .-associated
points of P . Since f preserves ρ ., P . = f (P ). is also a ρ .-set in En

..
Due to Lemma 8.30, there are exactly two distinct ρ .-associated points x.

. and y.
. of P .

.,
and they satisfy llx. − y.ll = √

γ (ρ, ρ) = ρ1 .. Since there exist only two ρ .-associated
points of P .

., we have {f (x), f (y)} ⊂ {x., y.}., i.e., llf (x) − f (y)ll = 0. or ρ1 ..
Assume that f (x) = f (y).. Choose a z ∈ E0 . with llx − zll = ρ1 . and lly − zll = ρ ..

According to Lemma 8.31, there exists a ρ .-set Q in E0 . such that x and z are the ρ .-
associated points of Q (Because x ∈ E1 . and llx − qll = ρ . for each q ∈ Q., Q is a subset
of E0 .). Similarly, Q. = f (Q). is a ρ .-set in En

..
Due to Lemma 8.30, there exist exactly two distinct ρ .-associated points x..

. and z..
.

of Q.
. which satisfy llx.. − z..ll = √

γ (ρ, ρ) = ρ1 .. Hence, {f (x), f (z)} ⊂ {x.., z..}.,
i.e., llf (x) − f (z)ll = 0. or ρ1 ., i.e., llf (y) − f (z)ll = 0. or ρ1 ., because we assumed
f (x) = f (y)..

On the other hand, we obtain ρ = lly − zll = llf (y) − f (z)ll = 0. or ρ1 ., which is a
contradiction. Altogether, we conclude that llf (x) − f (y)ll = ρ1 .. ll

Lemma 8.33 If a mapping f : E0 → E
n
. (n > 2). preserves a distance ρ > 0., then the

distance ρ2 = √
γ (ρ1, ρ1) = 2(n+1)

n
ρ . is preserved by f |E2 ..

Proof Assume that x and y are points of E2 . that satisfy llx − yll = ρ2 .. According to
Lemma 8.31, there exists a ρ1 .-set P in E1 . such that x and y are the ρ1 .-associated points
of P . Since f |E1 . preserves ρ1 . by Lemma 8.32, P . = f (P ). is also a ρ1 .-set in En

..
According to Lemma 8.30, there exist only two distinct ρ1 .-associated points x.

. and y.
.

of P .
. whose distance is llx. − y.ll = ρ2 .. Hence, it follows that {f (x), f (y)} ⊂ {x., y.}.,

i.e., llf (x) − f (y)ll = 0. or ρ2 ..
Assume that f (x) = f (y).. Choose a z ∈ E1 . with llx − zll = ρ2 . and lly − zll = ρ1 ..

(Because of y ∈ E2 . and lly − zll = ρ1 ., we conclude that z ∈ E1 ..) In view of Lemma 8.31,
there exists a ρ1 .-set Q in E1 . such that x and z are the ρ1 .-associated points of Q. (Because
x ∈ E2 . and llx − qll = ρ1 . for all q ∈ Q., Q is a subset of E1 ..) Hence, Q. = f (Q). is a
ρ1 .-set in En

. (see Lemma 8.32).
By Lemma 8.30, there exist exactly two distinct ρ1 .-associated points x..

. and z..
. of Q.

.

and llx..−z..ll = ρ2 .. Therefore, we have llf (x)−f (z)ll = 0.or ρ2 ., i.e., llf (y)−f (z)ll = 0.
or ρ2 ., because we assumed f (x) = f (y)..

Since y, z ∈ E1 ., by Lemma 8.32, we have ρ1 = lly − zll = llf (y) − f (z)ll = 0. or ρ2 .,
a contradiction. Altogether, we conclude that llf (x) − f (y)ll = ρ2 .. ll

Lemma 8.34 If a mapping f : E0 → E
n
. (n > 2). preserves a distance ρ > 0., then the

distance ρ3 = √
γ (ρ, ρ1) = 2

n
ρ . is contractive by f |E2 ..

Proof Assume that x and y are points of E2 . with llx − yll = ρ3 .. By Lemma 8.31, there
exists a ρ1 .-set P in E1 . such that x and y are the ρ .-associated points of P . (We note that
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x ∈ E2 . and llx − pll = ρ . for all p ∈ P .. Hence, P is a subset of E1 ..) By Lemma 8.32,
P . = f (P ). is also a ρ1 .-set in En

..
According to Lemma 8.30, there exist only two distinct ρ .-associated points x.

. and y.
.

of P .
.with llx. −y.ll = ρ3 .. Hence, it follows that llf (x)−f (y)ll = 0. or ρ3 .. Consequently,

we have llf (x) − f (y)ll ≤ ρ3 .. ll

We are ready to generalize the theorem of Beckman and Quarles by proving that if
a mapping, from a half space E0 . of En

. into E
n
., preserves a distance ρ > 0., then the

restriction of f to a half space E3 . is an isometry.
S.-M. Jung and Th. M. Rassias [39] proved the following theorem (see also [35]).

Theorem 8.35 (Jung and Rassias) If a mapping f : E0 → E
n
. (n > 2). preserves a

distance ρ > 0., then the restriction f |E3 . is an isometry. In particular, if any points x and
y of E2 . satisfy xs l= ys ., where xs . and ys . are the Es .-components of x and y, then it holds
that llf (x) − f (y)ll = llx − yll..

Proof According to Lemmas 8.33 and 8.34, the distance 2
n
ρ . is contractive, and the

distance 2(n+1)
n

ρ . is extensive (preserved) by f |E2 .. Hence, by Theorem 8.28, the restriction
f |E3 . is an isometry. In view of the second part of Theorem 8.28, the second part of this
theorem is obviously true. ll

From now on, we assume that j and n are fixed integers with 0 ≤ j ≤ n. and n > 1.. Let
w1, w2, . . . , wj . be some orthonormal vectors in E

n
., and let Es . be a subspace of En

. such
that

.E
n = Es ⊕ (spanw1) ⊕ (spanw2) ⊕ · · · ⊕ (spanwj).

We set Es = E
n
. for j = 0..

Let us define a sequence {sk}. of positive real numbers by

.

s0 = 0, s1 = ρ, s2 =
l
1 +

l
2(n + 1)

n

l
ρ,

sk =
l

n + 2 +
l
2(n + 1)

n
+

kl

i=4

1

(n + 1)i−5

l
ρ

for all k ∈ {3, 4, . . .}., where ρ > 0. is a fixed real number. We denote by s∞ . the limit point
of the sequence {sk}., i.e.,

.s∞ = lim
k→∞ sk =

l
n + 2 +

l
2(n + 1)

n
+ (n + 1)2

n

l
ρ.
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By Ck ., we denote an open convex subset of En
. defined by

.

Ck = l
x + λ1w1 + · · · + λjwj : x ∈ Es, ci + sk < λi < di − sk

for i ∈ {1, 2, . . . , j}l

for any k ∈ N0 ∪ {∞}., where ci, di ∈ R ∪ {±∞}. are constants with di − ci > 2s∞ . for
every i ∈ {1, 2, . . . , j}.. We then note that

.C∞ ⊂ · · · ⊂ Ck+1 ⊂ Ck ⊂ · · · ⊂ C0 ⊂ E
n.

S.-M. Jung [30] proved the following theorem.

Theorem 8.36 (Jung) If a mapping f : C0 → E
n
. (n > 1). preserves a distance ρ > 0.,

then the restriction f |C∞ . is an isometry.

8.5 Beckman-Quarles Theoremwith Geometric Figures

F. S. Beckman and D. A. Quarles [3] solved the Aleksandrov problem for finite-
dimensional Euclidean spaces En

., where n is an integer greater than 1:

If a mapping f : En → E
n . preserves a distance ρ > 0., then f is an affine isometry.

It seems interesting to investigate whether the “distance ρ > 0.” in the Beckman-
Quarles theorem can be replaced by some properties characterized by “geometric figures.”

In this section, the triangles (quadrilaterals, pentagons, hexagons, and circles) denote
the peripheries of the geometric figures. A side of a triangle (a quadrilateral, a pentagon,
or a hexagon) without its endpoints (vertices) is called an open side.

Mappings Preserving Regular Triangles
For an integer n > 1. and a constant r > 0., we use T n

r . to denote the set of all regular
triangles in E

n
. whose side length is r . We note that if two regular triangles T1, T2 ∈ T n

r .

intersect each other in an infinite number of points distributed on two open sides of T1 .,
then T2 . is either coincident with T1 . or a shift of T1 . along a side of T1 . including infinitely
many intersection points. In the latter case, T2 . must intersect one of the open sides of T1 .

in exactly one point.
The following theorem was proved by S.-M. Jung [26].

Theorem 8.37 (Jung) Let m, n. be integers greater than 1 and let a, b. be positive
constants. If f : E

m → E
n
. is a one-to-one mapping under which the image of each

regular triangle in T m
a . belongs to T n

b ., then the equality llf (x) − f (y)ll = b. holds for all
x, y ∈ E

m
.with llx − yll = a ..
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Proof Let x and y be any points of Em
.with llx−yll = a .. We choose another point z ∈ E

m
.

such that the three points comprise the vertices of a triangle T1 ∈ T m
a .. Furthermore, we

choose a point w ∈ E
m \ {x}. coplanar with x, y, z. such that y, z,w . are the vertices of a

triangle T2 ∈ T m
a ..

Let x., y., z.
. be the vertices of the image of the triangle T1 . under f . Assume that the

image of the side yz. is spread out on the open sides x.y. . and y.z. .. If each of the open
sides includes more than one image point of yz., then the image of the triangle T2 . would
coincide with the image of T1 ., which would be a contradiction to the injectivity of f . Thus,
we assume without loss of generality that x.y. . contains infinitely many image points of yz.

and the open side y.z. . contains only one image point of yz., say u.
., and let u be the unique

point of yz. satisfying u. = f (u)., where u is allowed to be y or z.
We choose another regular triangle T3 ∈ T m

a ., which is different from T1 . and T2 ., with
the following properties:

(i). T3 . is coplanar with T1 . and T2 .;
(ii). T3 . contains infinitely many points of yz.. In particular, T3 . contains u.

Then, the image of T3 . under f would coincide with the image of T1 . or T2 ., which would
also be a contradiction to the injectivity of f .

By applying the same argument, we see that f maps each side of T1 . into one of the
sides of its image triangle. Because of the hypothesis, f (T1) ∈ T n

b ., f maps each side of
T1 . onto a corresponding side of its image triangle.

We note that x is the unique intersection point of the sides zx . and xy .of T1 ., and likewise
for y and z. Thus, f (x), f (y), f (z). should be the vertices of the image of T1 . under f ,
which belongs to T n

b .. Altogether, we conclude that f (x). is separated from f (y). by a
distance b, which completes the proof. ll

In the following corollary, we prove that if a one-to-one mapping f : En → E
n
. maps

the periphery of every regular triangle of side length a > 0. onto the periphery of a regular
triangle of side length b > 0., then there exists an affine isometry I : En → E

n
. such that

f (x) = b
a
I (x)..

Corollary 8.38 Let n be an integer greater than 1, and let a, b . be some real positive
constants. If f : E

n → E
n
. is a one-to-one mapping under which the image of each

regular triangle from T n
a . belongs to T n

b ., then there exists an affine isometry I : En → E
n
.

such that

.f (x) = b

a
I (x)

for all x ∈ E
n
..
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Proof If we define a mapping I : En → E
n
. by I (x) = a

b
f (x). for all x ∈ E

n
., then it

follows from Theorem 8.37 that I satisfies llI (x) − I (y)ll = a . for all x, y ∈ E
n
. with

llx − yll = a .. According to the Beckman-Quarles theorem, the mapping I is an affine
isometry, and hence the assertion of this corollary is proved. ll

Mappings Preserving Regular Quadrilaterals
By Qn

r ., we denote the set of all regular quadrilaterals (squares) in E
n
. whose side length

is r , where n is an integer greater than 1 and r is a positive constant. We remember that
quadrilateral means the periphery of the quadrilateral.

We remark that when two regular quadrilaterals Q1,Q2 ∈ Qn
r . intersect in an infinite

number of points distributed on two adjacent open sides of Q1 ., they actually coincide. The
proof of the following theorem was presented in [26].

Theorem 8.39 (Jung) Let m, n. be integers greater than 1, and let a, b. be positive
constants. If f : E

m → E
n
. be a one-to-one mapping under which the image of each

regular quadrilateral in Qm
a . belongs to Qn

b ., then the equality llf (x) − f (y)ll = b. holds
for all x, y ∈ E

m
.with llx − yll = a ..

Proof Let p1 . and p2 . be arbitrary points in Em
. that satisfy llp1−p2ll = a .. We then choose

p3, p4 ∈ E
m

. such that p1 ., p2 ., p3 ., and p4 . comprise the vertices of a regular quadrilateral
Q0 ∈ Qm

a .. Moreover, for every i ∈ {1, 2, 3, 4}., we choose a regular quadrilateral Qi . that
is coplanar with Q0 . and has the common side pipi+1 .with Q0 ., where we set p5 = p1 ., as
shown in Fig. 8.2.

Let Q.
i . be the image of Qi . under f for every i ∈ {0, 1, 2, 3, 4}.. According to the

hypotheses, the Q.
i .’s are regular quadrilaterals of Qn

b .with the following properties:

(i). Q.
0 ∩ Q.

i . is an infinite set for i ∈ {1, 2, 3, 4}.;
(ii). Q.

1 ∩ Q.
2 ., Q

.
2 ∩ Q.

3 ., Q
.
3 ∩ Q.

4 . and Q.
4 ∩ Q.

1 . are one-point sets;
(iii). Q.

0 . is a proper subset of Q.
1 ∪ Q.

2 ∪ Q.
3 ∪ Q.

4 .;
(iv). Q.

i . and Q.
i+2 . are disjoint for i ∈ {1, 2}..

Fig. 8.2 Each of the regular
quadrilaterals Q1, Q2, Q3, Q4 .

is coplanar with Q0 . and
intersects Q0 . in a
corresponding whole side
of Q0 .

Q3

Q0Q4 Q2

Q1
p1 p2

p3p4
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The vertices of Q.
0 . are denoted by p.

1, p
.
2, p

.
3, p

.
4 .. The side p1p2 . is the only common

side of Q0 . and Q1 .. If the image of p1p2 . were spread out on two adjacent open sides of
Q.

0 ., then Q.
1 .would coincide with Q.

0 . as we mentioned in the sentence immediately before
this theorem, which would contradict the injectivity of f .

Assume now that the image of the side p1p2 . is spread out on both parallel open sides
p.
1p

.
2 . and p.

3p
.
4 . of Q.

0 .. Since the injectivity of f causes Q.
1 . not to coincide with Q.

0 ., the

Q.
1 . has to be a shift of Q.

0 . along the sides p.
1p

.
2 . and p.

3p
.
4 .. In view of (i). and (iii)., and

by considering the above argument, one of Q.
2 ., Q.

3 ., Q.
4 . should meet Q.

0 . in two parallel
(opposite) sides of Q.

0 ., since each side of Q.
0 . contains a nondegenerate line segment that

is a part of Q.
0 \ Q.

1 .. In this case, however, the Q.
0,Q

.
1, . . . ,Q

.
4 . cannot satisfy all the

conditions (i)., (ii)., (iii)., and (iv)..
Therefore, the image of p1p2 . under f should be included in one side of Q.

0 .. In general,
every side of Q0 . should be mapped into (and hence onto) a corresponding side of Q.

0 ..
Since p1, p2, p3, p4 . are unique intersection points of the sides p4p1 . and p1p2 ., p1p2 .

and p2p3 ., p2p3 . and p3p4 ., p3p4 . and p4p1 ., respectively, the points f (p1)., f (p2)., f (p3).,
f (p4). comprise the vertices of Q.

0 . in the same (or opposite) cyclic order as Q0 .. Therefore,
f (p1). is separated from f (p2). by the distance b. ll

In the following corollary, we prove that if a one-to-one mapping f : En → E
n
. maps

the periphery of every regular quadrilateral of side length a > 0. onto the periphery of a
regular quadrilateral of side length b > 0., then there exists an affine isometry I : En → E

n
.

such that f (x) = b
a
I (x)..

Corollary 8.40 Let n be an integer greater than 1, and let a, b > 0. be some constants.
If f : E

n → E
n
. is a one-to-one mapping under which the image of each regular

quadrilateral from Qn
a . belongs to Qn

b ., then there is an affine isometry I : E
n → E

n
.

such that

.f (x) = b

a
I (x)

for all x ∈ E
n
..

Proof We define a mapping I : En → E
n
.by I (x) = a

b
f (x). for all x ∈ E

n
.. It then follows

from Theorem 8.39 that I satisfies llI (x)− I (y)ll = a . for all x, y ∈ E
n
.with llx −yll = a ..

By the Beckman-Quarles theorem, I is an affine isometry. ll

Mappings Preserving Regular Pentagons
We now use P n

r . to denote the set of all regular pentagons in E
n
. whose side length is r ,

where n > 1. is an integer and r > 0. is a real number.
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Assume that P1, P2 ∈ P n
r .. The following statement is obviously true:

(P ). If P1 . intersects P2 . in an entire side, except for a finite number of points, and in a
point on another open side, then P1 . coincides with P2 ..

Let L be a line segment in E
n
. with length r . If we denote by |P1 ∩ L|., the number of

elements of P1 ∩ L., then

.|P1 ∩ L| ∈ {0, 1, 2,∞},
where |P1 ∩ L| = ∞. holds if and only if L lies upon a substantial part of a side of P1 ..

Assume that P1 . intersects P2 . in three distinct points which lie on a side of P2 .. If we
select this side of P2 . and call it L, then it follows from our assumption that |P1 ∩ L| > 2.,
which is equivalent to |P1 ∩ L| = ∞.. This argument can be restated as follows:

(Q). If P1 . intersects P2 . in three distinct points on a side of P2 ., then P1 . intersects P2 . in a
line segment containing those three points.

If P1 . intersects P2 . in four different points, three points of which lie on one side of P2 .

and the remaining point is not collinear with the three points, then either P2 . coincides with
P1 . or P2 . is a shift of P1 . along the side containing the three points, as we see in Fig. 8.3:

According to the above conclusion, we can easily see that:

(R). P1 . coincides with P2 . if P1 . intersects two different sides of P2 . in an infinite number
of points each.

Now assume that P1 . intersects P2 . in an infinite number of points, including two vertices
of P2 . that are not adjacent to each other. Choose a side of P2 ., so that P1 . intersects that
side in at least three different points. Then P1 . additionally intersects P2 . in a vertex of P2 .,
and this vertex is not collinear with those three points. In this case, P1 . coincides with P2 .,
as shown in Fig. 8.4:

The above argument may be summarized as follows:

(S). If P1 . intersects P2 . in an infinite number of points, including two vertices of P2 . that
are not adjacent, then P1 . coincides with P2 ..

P1 P2 P1 P2

Fig. 8.3 Three of the intersection points lie on one side of P2 ., and the remaining point lies either
on the adjacent or the far side of P2 .
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Fig. 8.4 If P1 . intersects P2 . in
three points on a side of P2 . and
in a vertex that is not collinear
with these three points, then
they are identical

P1 P2 P1 P2

Fig. 8.5 The image P .
i
. of a regular pentagon Pi . under f is also a regular pentagon for all i ∈

{0, 1, . . . , 5}.

From now on, for given integersm, n > 1. and real constants a, b > 0., let f : Em → E
n
.

be a one-to-one mapping under which the image of every regular pentagon in P m
a . belongs

to P n
b ..
We now consider the following figure:
On the left side of Fig. 8.5, six regular pentagons are labeled P0 ., P1, . . . , P5 ., all of

which belong to P m
a .. The pentagon P0 . consists of five sides, denoted s1, s2, . . . , s5 .. Each

side si . is a line segment containing only one point vi . of its two endpoints (vertices).
Due to our hypothesis, the image of any regular pentagon Pi . under f is also a regular

pentagon, and we use the notation P .
i . for the image of Pi ., i.e., P .

i = f (Pi). for each
i ∈ {0, 1, . . . , 5}.. Furthermore, we use the notations s.

i . and v.
i . for the sides and vertices

of P .
0 ., respectively. Each side s.

i . is a line segment containing only one point v.
i . of its two

endpoints. (At this point, we are not sure that all the v.
i . are images of the vj ., and likewise

for the s.
i ..)

The following lemma is obvious.

Lemma 8.41 It holds that

.P .
0 =

5l

k=1

s.
k ⊂

5l

k=1

P .
k

under the above assumptions.

Since f is a one-to-one mapping, considering (R)., we can easily verify the following
lemma. We therefore omit the proof.
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Lemma 8.42 For every i ∈ {1, 2, . . . , 5}., there exists a unique j ∈ {1, 2, . . . , 5}. such that
s.
j ∩ P .

i . is an infinite set, but (P
.
0 \ s.

j ) ∩ P .
i . is a finite set.

Conversely, we can prove the following lemma.

Lemma 8.43 For every i ∈ {1, 2, . . . , 5}., there is a j ∈ {1, 2, . . . , 5}. such that s.
i ∩ P .

j . is
an infinite set, but s.

i ∩ l

k l=j

P .
k . is a finite set.

Proof For every fixed i ∈ {1, 2, . . . , 5}., it follows from Lemma 8.41 that

.s.
i ⊂

5l

k=1

P .
k or s.

i =
5l

k=1

(s.
i ∩ P .

k).

Since s.
i . contains infinitely many points, there must be a j ∈ {1, 2, . . . , 5}. such that s.

i ∩P .
j .

is an infinite set.
We now prove the second claim. Without loss of generality, we assume that both s.

1∩P .
1 .

and s.
1 ∩ P .

2 . were infinite sets. It would then follow from (R). and Lemmas 8.41 and 8.42
that

.

5l

k=1

s.
k = P .

0 =
5l

k=1

(P .
0 ∩ P .

k)

= (s.
1 ∩ P .

1) ∪ (s.
1 ∩ P .

2) ∪
5l

k=3

(P .
0 ∩ P .

k)

∪ l
finite number of points on P .

0 \ s.
1

l

= l
s.
1 ∩ (P .

1 ∪ P .
2)

l ∪ (s.
i1

∩ P .
3) ∪ (s.

i2
∩ P .

4) ∪ (s.
i3

∩ P .
5)

∪ l
finite number of points on P .

0

l

l=
5l

k=1

s.
k,

which would be a contradiction, where i1, i2, i3 ∈ {1, 2, . . . , 5}. are chosen such that s.
i1

∩
P .
3 ., s

.
i2

∩ P .
4 . and s.

i3
∩ P .

5 . are infinite sets. ll

According to (P )., two congruent regular pentagons are identical if they have an entire
side and a point on another open side in common.

In the following lemma, we prove that f maps every vertex vi . of P0 . to a vertex v.
j . of

P .
0 = f (P0)..
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Lemma 8.44 For every i ∈ {1, 2, . . . , 5}., there exists a j ∈ {1, 2, . . . , 5}.with f (vi) = v.
j ..

Proof Without loss of generality, we assume that f (v1) ∈ s.
1 \ {v.

1}.. (We assume that
f (v1). lies on the open side s.

1 .without endpoints.) According to Lemma 8.43, there exists
a j ∈ {1, 2, . . . , 5}. such that s.

5 ∩P .
j . is an infinite set but s.

5 ∩ l

k l=j

P .
k . is a finite set. Without

loss of generality, we may choose 5 for such j , i.e., we assume that s.
5 ∩ P .

5 . is an infinite
set (see Fig. 8.5). Since P .

0 l= P .
5 ., it follows from Lemma 8.42 that both the sets

.

4l

k=1

s.
k ∩ P .

5 and s.
5 ∩

4l

k=1

P .
k

are finite sets. Since s.
5∩P .

5 . is an infinite set and s.
5∩P .

5 ⊂ P .
0∩P .

5 ., the property (Q). implies
that P .

5 . intersects P .
0 . in a line segment L including s.

5 ∩ P .
5 . such that (s.

5 \ L) ∩ P .
5 = ∅..

Suppose s. = s.
5 \L. is an infinite set, i.e., a line segment of positive length. However, it

follows that s. = s.
5 \ L ⊂ s.

5 \ (s.
5 ∩ P .

5) = s.
5 \ P .

5 ., and hence s. ∩ P .
5 = ∅.. Thus, we have

.s. = s. ∩ P .
0 ⊂ s. ∩

5l

k=1

P .
k = s. ∩

4l

k=1

P .
k ⊂ s.

5 ∩
4l

k=1

P .
k,

and the last set is finite, while s.
. is assumed to be an infinite set. It clearly leads to

a contradiction. Hence, P .
5 . intersects P .

0 . in a whole side s.
5 . except for finitely many

points. Since f (v1) ∈ P .
0 ∩ P .

5 . (see Fig. 8.5), it follows from (P ). that P .
0 = P .

5 ., which
obviously contradicts the fact that f is a one-to-one mapping. Therefore, we conclude that
f (v1) = v.

1 .. ll

Using Lemmas 8.42 and 8.44 together with (S)., we can now prove that the images of
v1 . and v2 . are two vertices of P .

0 ., which are adjacent to each other.

Lemma 8.45 It holds that llf (v1) − f (v2)ll = b..

Proof It follows from Lemma 8.44 that f (v1), f (v2) ∈ {v.
1, v

.
2, . . . , v

.
5}.. Assume that

f (v1). and f (v2). are two vertices of P .
0 . that are not adjacent to each other. Since v1, v2 ∈

P0∩P1 ., we have f (v1), f (v2) ∈ P .
0∩P .

1 .. Since s.
j . is a side of P .

0 ., Lemma 8.42 implies that
the congruent regular pentagons P .

0 . and P .
1 . intersect each other in infinitely many points

including f (v1). and f (v2). which are vertices of P .
0 . not adjacent to each other. In view

of (S)., P .
0 . should coincide with P .

1 .. This would contradict the fact that f is a one-to-one
mapping. Hence, f (v1). and f (v2). are two vertices of P .

0 . that are adjacent to each other.
Therefore, we can conclude that llf (v1) − f (v2)ll = b.. (We recall that the side length of
P .
0 . is b.) ll
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By referring to Lemmas 8.41 through 8.45, we can prove the following theorem
presented in [28].

Theorem 8.46 (Jung) Let n be an integer greater than 1, and let a, b > 0. be some real
constants. If f : E

n → E
n
. is a one-to-one mapping under which the image of every

regular pentagon of P n
a . belongs to P n

b ., then there is an affine isometry I : En → E
n
. such

that

.f (x) = b

a
I (x)

for all x ∈ E
n
..

Proof We define a mapping I : E
n → E

n
. by I (x) = a

b
f (x). for all x ∈ E

n
.. For any

two points v1, v2 ∈ E
n
. with llv1 − v2ll = a ., we can construct six regular pentagons

P0, P1, . . . , P5 . as indicated on the left side of Fig. 8.5. It then follows from Lemma 8.45
that

.llI (v1) − I (v2)ll = a

b
llf (v1) − f (v2)ll = a.

Hence, the mapping I preserves the distance a. According to the Beckman-Quarles
theorem, I is an affine isometry. ll

Mappings Preserving Regular Hexagons
LetHn

r .be the set of all regular hexagons in En
.whose side length is r , where n is an integer

greater than 1 and r is a positive constant.
We note that if two different regular hexagons H1,H2 ∈ Hn

r . intersect each other in
an infinite number of points distributed on two open sides of H1 ., these two open sides lie
opposite each other and H2 . is a shift of H1 . along these two open sides of H1 ..

The following theorem was presented in [26].

Theorem 8.47 (Jung) Let m, n. be integers greater than 1, and let a, b. be positive real
constants. If f : E

m → E
n
. is a one-to-one mapping under which the image of every

regular hexagon in Hm
a . belongs to Hn

b ., then the equality llf (x) − f (y)ll = b. holds for all
x, y ∈ E

m
.with llx − yll = a ..

Proof

(a). Let p1, p2, . . . , p6 ∈ E
m

. be vertices of a regular hexagon P ∈ Hm
a .with center at p0 ..

Furthermore, we assume that the point sets

.{p0, p3, q3, q4, q5, p5}, {r1, p1, p0, p5, r5, r6}, {s1, s2, s3, p3, p0, p1}
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are the vertices of regular hexagons Q,R, S ∈ Hm
a . with centers at p4 ., p6 ., and p2 .,

respectively (see Fig. 8.6).
Let P .

., Q.
., R.

., and S.
. be regular hexagons in Hn

b . which are the images of P , Q,
R, and S under f , respectively. Since p0 . is the only intersection point of Q, R, and S,
and since the sides p0p5 ., p0p1 ., and p0p3 . are the intersections of Q and R, R, and S,
S, and Q, respectively, the injectivity of f and the hypothesis imply that
(i). Q. ∩ R. ∩ S.

. is a one-point set;
(ii). Q. ∩ R.

., R. ∩ S.
., S. ∩ Q.

. are infinite sets.
(b). Since f is one-to-one, there are only two ways for Q.

. to intersect S.
. in an infinite

number of points:

. Q. ∩ S.
. is contained in one side of Q.

.;
. Q. ∩ S.

. is contained in two opposite sides of Q.
..

We note that two regular hexagons Q., S. ∈ Hn
b . that intersect in an infinite number of

points are coincident in other cases. The above statements also apply to Q.
. and R.

. or
R.

. and S.
..

(c). We will first prove that the image hexagons Q.
., R.

. and S.
. are coplanar. For example,

assume that Q.
. and R.

. are not coplanar. According to (ii). and (b)., only one side of Q.
.

overlaps with only one side of R.
.. (Otherwise, they would be coplanar.) Let the line

segment q .r . . be the nondegenerate intersection of Q.
. and R.

., where q .
. is a vertex of

Q.
. and r .

. is a vertex of R.
. (see Fig. 8.7).

Also assume that S.
. has common points with Q.

. on at least two open sides of Q.
.. It

then follows from (ii). and (b). that Q.
. and S.

. intersect in only two opposite (parallel)
sides of them, since in other cases they would coincide. Therefore, in view of (i)., S.

. is
a shift of Q.

. along these opposite sides such that S. ∩ q .r . = {q .}. or {r .}.. However, in
view of (i). and assuming that Q.

. and R.
. are not coplanar, R. ∩ S.

. consists of only one
point, either q .

. or r .
., which contradicts (ii).. Therefore, S.

. has points in common with
Q.

. only on one side of Q.
., the same is true for S.

. and R.
., considering the symmetry

of regular hexagons shown in Fig. 8.6.

Fig. 8.6 P,Q, R, S . are
regular hexagons on the same
plane, where p0, p2, p4, p6 .

are the centers of P, S,Q, R .,
respectively, and also
Q ∩ R ∩ S = {p0}.
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Fig. 8.7 Assuming that the
image hexagons Q. . and R. . are
not coplanar, Q. . intersects R. .
only in the nondegenerate line
segment q .r . ., where q . . is a
vertex of Q. . and r . . is a vertex
of R. .

Fig. 8.8 This is the case when
Q. ∩ R. . is included in two
opposite sides of Q. .

Since S.
. has points in common with Q.

. on exactly one side of Q.
. (also for S.

. and
R.

.), it follows from (i). that S. ∩q .r . = {q .}. or {r .}.. Without loss of generality, assume
that S. ∩ q .r . = {q .}.. In this case, line segment S. ∩ Q.

. is contained in the side of Q.
.

that is adjacent to q .r . . and has q .
. as one of its endpoints. This fact implies that q .

. is the
unique intersection of S.

.with the side of R.
. containing q .r . .. Since R. ∩S.

. is an infinite
set, we can choose three different and noncollinear points (including q .

.) of R. ∩ S.
..

This fact implies that R.
. and S.

. are coplanar. However, the plane containing Q.
.meets

the plane containing both R.
. and S.

. in two distinct lines, each determined by two sides
of Q.

., where these two sides of Q.
. meet in q .

., which contradicts the assumption that
Q.

. and R.
. are not coplanar. Therefore, Q.

. and R.
. should be coplanar, and so should

R.
. and S.

., given the symmetry of regular hexagons shown in Fig. 8.6.
(d). Now we will prove that Q. ∩ R.

., R. ∩ S.
., and S. ∩ Q.

. are contained in a side of Q.
.,

R.
., and S.

., respectively. Assume that Q. ∩R.
. is contained in two opposite sides of Q.

.,
say q .

1q
.
2 . and q .

4q
.
5 .. (See Fig. 8.8.)

Because of (i)., S.
. has exactly one point in Q. ∩ R.

., say in Q. ∩ R. ∩ q .
1q

.
2 .. Since S.

.

does not coincide with Q.
., the condition (ii). implies that S.

. has infinitely many points
in q .

1q
.
2 \Q. ∩R.

.or q .
4q

.
5 \Q. ∩R.

.. (Otherwise, S.
. contains infinitely many points from

some sides of Q.
. except q .

1q
.
2 . and q .

4q
.
5 .. In this case, S.

. has infinitely many points in
common with Q.

. on at least two sides of Q.
., and two of them are not opposite each

other. Then it follows from (b). that S.
. coincides with Q.

., a contradiction.)
In the first case, i.e., if S.

.has infinitely many points in q .
1q

.
2\Q.∩R.

., then it follows

from (i)., (b). and the fact S. ∩Q. ∩R. ∩q .
4q

.
5 = ∅. that S.

. should meet Q.
. in only a part

of the side q .
1q

.
2 .. Therefore, R

. ∩ S.
.would be a one-point set, which would contradict

(ii)..
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Fig. 8.9 The side q .
2q

.
3 . of Q. .

partially overlaps the side r .
5r

.
6 .

of R. ., but Q. . does not intersect
R. . anywhere else

In the second case, if S. ∩ q .
4q

.
5 \ Q. ∩ R.

. is an infinite set, S.
. would be a shift of

Q.
. along sides q .

1q
.
2 . and q .

4q
.
5 .. (We recall that S.

. contains points on the side q .
1q

.
2 . of

Q.
..) Hence, the set S. ∩ Q. ∩ R.

.would consist of at least two different points, which
would contradict (i).. From these arguments and (b)., we conclude that Q. ∩ R.

. should
be contained in a side of Q.

..
By considering the symmetry of Q, R, and S, we can apply the same argument to

the case for R.
. and S.

. as well as for S.
. and Q.

.. Therefore, R. ∩ S.
. should be contained

in one side of R.
., and the same statement should also apply to S.

. and Q.
..

(e). Without loss of generality, we assume that the side q .
2q

.
3 . of Q.

. partially overlaps the

side r .
5r

.
6 . of R.

. such that the vertex q .
3 . of Q.

. lies on the open side r .
5r

.
6 . of R.

. and the

vertex r .
6 . of R.

. lies on the open side q .
2q

.
3 . of Q.

., as shown in Fig. 8.9.
According to (d)., the infinite set S. ∩Q.

.must be contained in one side of Q.
., so by

(i)., S. ∩ Q.
. is contained either in the line segment q .

2r
.
6 . or in the side q .

3q
.
4 . of Q.

. that

is directly adjacent to q .
2q

.
3 .. In both cases, S

.
. can intersect R.

. in just two points, which

contradicts (ii).. Therefore, we conclude that Q. ∩ R.
. is the entire side q .

2q
.
3 = r .

5r
.
6 . of

Q.
. or R.

..
Now we can conclude that Q.

., R.
., and S.

. can satisfy the conditions (i). and (ii). if
and only if Q. ∩R. ∩S.

. is the common vertex of these three image hexagons and each
of Q. ∩ R.

., R. ∩ S.
. and S. ∩ Q.

. is an entire common side of Q.
. and R.

., of R.
. and S.

.,
and of S.

. and Q.
., respectively.

These facts imply that Q.
., R.

. and S.
. have the only common vertex f (p0). and f

maps the side p0p5 . of Q onto an adequate side of Q.
.. Using the same argument and

considering the symmetry of regular hexagons shown in Fig. 8.6, we can conclude that
f maps each side of Q onto a corresponding side of Q.

..
(f ). Using an analogous argument presented in the final part of the proof of Theorem 8.39,

we conclude that f maps all six vertices of Q onto all six vertices of Q.
. in the same

(or opposite) cyclic order as Q. Similarly, we can verify the same argument for P , R,
or S by considering the symmetry of those regular hexagons and the arbitrary choice
of Q. We note that P,Q,R, S ∈ Hm

a . and P .,Q., R., S. ∈ Hn
b ..

(g). Finally, let p1 . and p2 . be arbitrary points of Em
. with llp1 − p2ll = a .. Then we can

select the points p0 ., p3 ., p4 ., p5 ., p6 ., q3 ., q4 ., q5 ., r1 ., r5 ., r6 ., s1 ., s2 . and s3 ., as we see in
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Fig. 8.6. It then follows from (f ). that llf (p1) − f (p2)ll = b., which completes the
proof. ll

In the following corollary, we prove that if a one-to-one mapping f : En → E
n
. maps

the periphery of every regular hexagon of side length a > 0. onto the periphery of a regular
hexagon of side length b > 0., then there is an affine isometry I : En → E

n
. such that

f (x) = b
a
I (x)..

Corollary 8.48 Let n be an integer greater than 1, and let a, b. be some positive real
constants. If f : E

n → E
n
. is a one-to-one mapping under which the image of every

regular hexagon from Hn
a . belongs to Hn

b ., then there exists an affine isometry I : En → E
n
.

such that

.f (x) = b

a
I (x)

for all x ∈ E
n
..

Proof If we define a mapping I : En → E
n
. by I (x) = a

b
f (x). for all x ∈ E

n
., then it

follows from Theorem 8.47 that I satisfies llI (x) − I (y)ll = a . for any x, y ∈ E
n
. with

llx − yll = a .. By the Beckman-Quarles theorem, I is an affine isometry. ll

Mappings Preserving Spheres
Let n be an integer greater than 1. A unit (n − 1).-sphere is a set of points of En

., defined
as {y ∈ E

n : lly − xll = 1}. for some x ∈ E
n
..

The following theorem was proved by S.-M. Jung and B. Kim (see [33]).

Theorem 8.49 (Jung and Kim) Let n be an integer greater then 1. If a one-to-one
mapping f : E

n → E
n
. maps every unit (n − 1).-sphere onto a unit (n − 1).-sphere,

then f is an affine isometry.

Proof We first assume that n > 2. and v1, v2 . are arbitrary points of En
.with llv1−v2ll = 1..

Without loss of generality, we assume that

.v1 =
l

1√
2
,

1√
2
, 0, . . . , 0

l
and v2 =

l
0,

1√
2
,

1√
2
, 0, . . . , 0

l
.

Choose the unit (n − 1).-spheres S1, S2, . . . , Sn+1 . centered at a1 = (
√
2, 0, . . . , 0)., a2 =

(0,
√
2, 0, . . . , 0), . . . , an = (0, 0, . . . , 0,

√
2)., and an+1 = (x, x, . . . , x)., respectively,

where x is the unique negative real number satisfying llai − an+1ll = 2. for i ∈
{1, 2, . . . , n}.. The Si .’s are all unit (n − 1).-spheres such that any pair of these spheres
meet each other at exactly one point. Then the same must be true for their image spheres



8.5 Beckman-Quarles Theorem with Geometric Figures 187

Fig. 8.10 C1, C2, C3 . are unit circles such that any two of them intersect in exactly one point. This
property also holds for C.

1, C
.
2, C

.
3 ., where C.

i
= f (Ci).

S.
1, S

.
2, . . . , S

.
n+1 .. We use a.

1, a
.
2, . . . , a

.
n+1 . to denote the centers of these image spheres.

Since any pair of those image spheres intersect each other at exactly one point, we have
lla.

i − a.
jll = 2.whenever i l= j ..

There exists an isometry φ : En → E
n
.with φ(a.

i ) = ai ., and consequently (φ◦f )(Si) =
Si . for i ∈ {1, 2, . . . , n+ 1}.. Since S1 ∩ S2 = {v1}. and S2 ∩ S3 = {v2}., we have necessarily
(φ ◦ f )(v1) = v1 . and (φ ◦ f )(v2) = v2 .. Thus, it holds that

.llf (v1) − f (v2)ll = ll(φ ◦ f )(v1) − (φ ◦ f )(v2)ll = llv1 − v2ll = 1,

which implies that if n > 2., f : En → E
n
. preserves unit distance.

For n = 2., consider two points a and b in E
2
. which are separated from each other by

the unit distance. We can then draw three unit circles C1 .,C2 ., andC3 ., as shown in Fig. 8.10,
so that any two of them touch each other at a point. If we call C.

i = f (Ci). for i ∈ {1, 2, 3}.,
then we get the three contact points a.

., b.
., c.

.which form the three vertices of a unit regular
triangle. Since f (a) = a.

. and f (b) = b.
., f preserves the unit distance.

Consequently, using the theorem of Beckman and Quarles, we conclude that f is an
affine isometry. ll

Furthermore, Jung and Kim [32] have proven an interesting theorem regarding the
circle-preserving mapping, but it is unfortunate that a detailed proof of this theorem cannot
be presented here due to space constraints.

Theorem 8.50 (Jung and Kim) Let n be an integer greater than 1. If a one-to-one
mapping f : E

n → E
n
. maps every unit circle onto a unit circle, then f is an affine

isometry.

Mappings Preserving Regular Hexahedrons
From now on, a cube means a regular hexahedron whose side length is 1. We first clarify
our terms as follows. In Fig. 8.11, we call the points a, b, c, and d vertices and the line
segments ab ., bc ., cd ., da . edges and the plane bounded by the four edges ab ., bc ., cd ., da .
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Fig. 8.11 The points a, b, c, d .

are called vertices, the line
segments ab., bc., cd ., da . are
called edges, and the plane
enclosed by the four edges ab.,
bc., cd ., da . is called a face

face abcd or simply a face. Furthermore, by a cube or hexahedron, we mean only the six
faces and not the three-dimensional open set bounded by these six faces. Let us denote the
three-dimensional open set bounded by the cube A as inside of A or simply as Inside(A)..

Assume that p ∈ A., where p is a point and A is a cube. First we review the solid
angles in three dimensions. If p is a vertex, say p = a ., then the solid angle subtended
by Inside(A). with respect to p is 1

2π .. If p is a point that belongs to an edge and is not
a vertex, then the solid angle subtended by Inside(A). with respect to p is π .. If p ∈ A.

is neither a vertex nor an edge point, then the solid angle subtended by Inside(A). with
respect to p is 2π .. Let us denote the solid angle that Inside(A). subtends with respect to
p ∈ A. as o(A,p)..

Remark 8.51 Let A be a cube and p a point of A.

(i). o(A,p) = 1
2π . if and only if p is a vertex of A;

(ii). o(A,p) = π . if and only if p is an edge point of A (and not a vertex);
(iii). o(A,p) = 2π . if and only if p is neither a vertex nor an edge point of A.

Now we prove the following lemma.

Lemma 8.52 Let f : E
3 → E

3
. be a one-to-one mapping that maps every cube onto

a cube. It then holds for all cubes A and B: If Inside(A) ∩ Inside(B) = ∅., then
Inside(f (A)) ∩ Inside(f (B)) = ∅..

Proof First we check that if f (b) ∈ Inside(f (A))., then b ∈ Inside(A).. In other words,
we show that if b l∈ Inside(A)., then f (b) l∈ Inside(f (A)).. Assume that b ∈ A.. Then
f (b) ∈ f (A). and so f (b) l∈ Inside(f (A)).. Assume that b l∈ Inside(A). and b l∈ A.. Then
we choose another cube B such that b ∈ B . and B ∩ A = ∅.. Then f (B) ∩ f (A) = ∅. and
therefore f (b) l∈ Inside(f (A))..

Now let us assume that Inside(f (A)) ∩ Inside(f (B)) l= ∅.. Then, we obtain
Inside(f (A)) ∩ f (B) l= ∅., which implies that f (b) ∈ Inside(f (A)). for some b ∈ B ..
Therefore, b ∈ Inside(A). and Inside(A) ∩ B l= ∅., from which we conclude that
Inside(A) ∩ Inside(B) l= ∅.. ll
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Fig. 8.12 Let a be a vertex of a given cube A1 .. Seven more cubes A2, A3, . . . , A8 . are then
constructed such that a is the common vertex of the eight cubes and Inside(Ai) ∩ Inside(Aj ) = ∅.

for i l= j .

Fig. 8.13 Any two points a and e separated by the distance
√
3. become the two opposite vertices

of a cube A1 .

Now we prove that it is actually an isometry if a one-to-one mapping preserves regular
hexahedrons (see [34]).

Theorem 8.53 (Jung and Kim) If a one-to-one mapping f : E3 → E
3
.maps every cube

onto a cube, then f is an affine isometry.

Proof We show that f preserves the distance
√
3..

Let a be a vertex of a cube A1 .. We can then construct seven more cubes Ai ., where
i ∈ {2, 3, . . . , 8}., such that a is the common vertex of eight cubes Ai ., i ∈ {1, 2, . . . , 8}.,
and Inside(Ai) ∩ Inside(Aj ) = ∅. for i l= j . (see Fig. 8.12, where A4 . and A6 . are not
shown). Then f (a). belongs to f (Ai). for i ∈ {1, 2, . . . , 8}., and by Lemma 8.52, we
have Inside(f (Ai)) ∩ Inside(f (Aj )) = ∅. for i l= j .. Now the solid angle subtended by
Inside(f (Ai)). with respect to f (a). is at least 1

2π . for each i, i.e., o(f (Ai), f (a)) ≥ 1
2π ..

Since the maximum solid angle with respect to the point f (a). is 4π ., o(f (Ai), f (a)) =
1
2π ., and it follows from Remark 8.51 that f (a). is a vertex of f (Ai). for each i ∈
{1, 2, . . . , 8}.. Hence, we conclude that if a is a vertex of a cube A, then f (a). is a vertex of
a cube f (A)..

Any two points a and e separated by the distance
√
3. become the two vertices of the

cube A1 ., as shown in Fig. 8.13. We then construct seven more cubes A2, A3, . . . , A8 . such
that the following conditions are met (see Fig. 8.13):
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(i). Inside(Ai) ∩ Inside(Aj ) = ∅. for i l= j ..
(ii). a is the common vertex of the eight cubes A1, A2, . . . , A8 ..

(iii). Each cube Ai . has exactly three vertices (like vertex b), each of which is the common
vertex of exactly four cubes. They are all separated by the distance 1 from a.

(iv). Each cube Ai . has exactly three vertices (like vertex c), each of which is the common
vertex of exactly two cubes. They are all separated by the distance

√
2. from a.

(v). Each cube Ai . has exactly one vertex (like vertex e) that belongs to only one cube Ai ..
It is separated from a by the distance

√
3..

It follows from Lemma 8.52 that Inside(f (Ai)) ∩ Inside(f (Aj )) = ∅. for i l= j .. f (a).

is the common vertex of the eight cubes f (A1), f (A2), . . . , f (A8).. Thus, as shown on
the right side of Fig. 8.13, eight image cubes f (A1), f (A2), . . . , f (A8). must be placed,
so that they have the following properties:

. Each cube f (Ai). has exactly three vertices (.like vertex f (b))., each of which is
the common vertex of exactly four cubes. They are all separated by the distance 1
from f (a).;

. Each cube f (Ai). has exactly three vertices (.like vertex f (c))., each of which is the
common vertex of exactly two cubes. They are all separated by the distance

√
2.

from f (a).;
. Each cube f (Ai). has exactly one vertex (.like vertex f (e)). that belongs to only one

cube f (Ai).. It is separated from f (a). by the distance
√
3..

Therefore, we conclude that the distance between f (a). and f (e). is
√
3..

Finally, it follows from the theorem of Beckman and Quarles that f is an affine
isometry. ll

Remark 8.54 We now conclude this chapter by presenting two interesting open prob-
lems:

(i). Does Theorem 8.47 hold for regular heptagons, regular octagons, regular nonagons,
etc. instead of regular hexagons?

(ii). Is Theorem 8.53 still valid if n > 3.? More precisely, it would be interesting to study
the two cases where the one-to-one mapping f : E

n → E
n
. preserves either the

3-dimensional unit cube or the n-dimensional unit cube.

It is interesting to compare Remark 8.54 (i).with the problems presented in paper [21].
The problems presented in [21] were solved in paper [64].

There are also many results published on mappings that preserve unit area, unit
perimeter, equilateral triangles, orthogonality of vectors, fixed angles, etc. Related papers
include J. Chmieliński [11], J. Lester [45–47], J. Sikorska and T. Szostok [62, 63], A.
Koldobsky [43], A. Blanco and A. Turnsek [10], and others.
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