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Preface

The Standard Model (SM) of particle physics stands as one of the most
successful scientific theories of the 20th century. It has passed numerous
experimental tests with extraordinary precision and has accurately described
the electromagnetic, weak, and strong interactions among elementary
particles. The discovery of the Higgs boson at the Large Hadron Collider
(LHC) in 2012 marked the crowning achievement of the SM, confirming its
mechanism of mass generation. Yet, despite these triumphs, the SM leaves
many fundamental questions unanswered.

Why do neutrinos have mass? What is the nature of dark matter? How
can we resolve the hierarchy problem? What explains the baryon
asymmetry of the universe? Is there a deeper symmetry behind the SM
gauge structure? These puzzles, and many others, provide strong motivation
for the search for physics beyond the SM (BSM).

This book offers a comprehensive introduction to BSM physics, aimed at
advanced undergraduate students, graduate students, and researchers with
an interest in high-energy theory and phenomenology. The topics covered
span a wide range of well-motivated extensions of the SM, including:

Two Higgs Doublet Models (2HDMs), which provide a richer scalar
sector and natural explanations for dark matter and baryogenesis;
Gauged U(1)B−L models, which accommodate neutrino masses and
right-handed neutrinos in a theoretically consistent manner;
Left-Right Symmetric Models (LRSMs), offering a compelling
framework for restoring parity symmetry and generating neutrino
masses through seesaw mechanisms;
Grand Unified Theories (GUTs), such as SU(5), which seek a unified
description of the SM forces;
Supersymmetry (SUSY), a symmetry that links fermions and bosons
and addresses the hierarchy problem;



Theories with extra spatial dimensions, which aim to resolve
outstanding theoretical puzzles and may connect particle physics with
quantum gravity.

Special emphasis is placed on the phenomenological implications of
these models. Chapters examine how BSM physics manifests in collider
signatures, flavor observables, neutrino experiments, and cosmological
measurements. Particular attention is given to the testability of these models
at current and future experiments, including the LHC and proposed next-
generation colliders. The interplay between particle physics and cosmology,
especially in addressing the nature of dark matter, dark energy, and the
matter-antimatter asymmetry, remains a central focus in contemporary
particle physics.

The structure of the book reflects a logical progression: from
foundational motivations for BSM physics, to detailed presentations of
theoretical frameworks, to their testable predictions. Throughout, both
theoretical consistency and experimental viability are prioritized.

This book is the result of years of engagement with the open questions at
the frontier of fundamental physics. It is intended as both a learning tool
and a reference for those aiming to deepen their understanding or contribute
to the development of particle physics BSM. Whether used in a classroom
setting, during independent study, or as a guide to research, we hope this
volume provides readers with both conceptual clarity and inspiration for
further exploration of the fundamental laws of nature.

Shaaban Khalil





CHAPTER 1

Introduction to Physics BSM

DOI: 10.1201/9781003457701-1

The Standard Model (SM) of particle physics is a highly successful
quantum field theory that describes electromagnetic, weak, and strong
interactions among elementary particles. It has provided a remarkably
accurate framework for understanding particle dynamics and interactions at
accessible energies. This chapter summarizes both the achievements and
limitations of the SM, drawing from reference [1].

1.1 SM OVERVIEW AND FEATURES

The SM is based on the gauge symmetry:
SU(3)C × SU(2)L × U(1)Y ,

where SU(3)C  corresponds to quantum chromodynamics (QCD), which
governs strong interactions, while SU(2)L × U(1)Y  describes electroweak
interactions.

The model respects gauge invariance and Poincaré symmetry, and it is
renormalizable, ensuring well-defined predictions at various energy scales.
The matter content of the SM comprises three generations of fermions, each
consisting of a left-handed quark doublet and a left-handed lepton doublet
transforming under SU(2)L, along with right-handed singlets for the up-
type quark, down-type quark, and charged lepton. The gauge sector
comprises eight gluons, three weak gauge bosons, and one hypercharge

https://doi.org/10.1201/9781003457701-1


gauge boson. Electroweak symmetry is spontaneously broken by the Higgs
mechanism, which gives masses to the weak bosons and fermions. Table 1.1
summarizes the field content and quantum numbers of the SM.

TABLE 1.1 The SM field content and quantum numbers under the gauge group 
SU(3)C × SU(2)L × U(1)Y . ⏎

Fields Components
(Spin)

SU(3)C SU(2)L U(1)Y

Fermions
L ( )

L

 (1/2) 1 2 − 1
2

E eR (1/2) 1 1 −1

Q ( )
L

 (1/2) 3 2 + 1
6

U uR (1/2) 3 1 + 2
3

D dR (1/2) 3 1 − 1
3

Gauge
Bosons

Bμ Bμ (1) singlet singlet singlet

Wμ W +,W −,W 3 (1) singlet triplet singlet

Gμ Ga
μ (a = 1 … 8) (1) octet singlet singlet

Higgs
ϕ ( ) (0) 1 2 + 1

2

A key relation in the SM is the Gell-Mann-Nishijima formula, which
links the electric charge Q to the third component of the weak isospin T3
and the hypercharge Y:

Q = T3 +
Y

2
.

(1.1)

This equation emerges from electroweak unification, where the symmetry 
SU(2)L × U(1)Y  is spontaneously broken to U(1)EM via the Higgs

ν

e

u

d

ϕ+

ϕ0



mechanism. The resulting massless photon and massive weak bosons reflect
the decomposition of gauge degrees of freedom. The Gell-Mann-Nishijima
relation provides a consistent framework for assigning electric charges to all
SM particles.

1.1.1 The SM Lagrangian
Having outlined the particle content, gauge symmetries, and charge
assignments in the SM, we now present its full Lagrangian formulation. The
SM Lagrangian encodes the dynamics and interactions of all fundamental
fields, incorporating gauge invariance under the group 
SU(3)C × SU(2)L × U(1)Y , spontaneous symmetry breaking via the
Higgs mechanism, and the generation of fermion masses through Yukawa
interactions [2–7].

The total SM Lagrangian can be written as:
LSM = LYM + LK + LHiggs + LY,

(1.2)

where:

LYM describes the gauge fields and their self-interactions.
LK contains the kinetic terms of fermions and their gauge interactions.
LHiggs governs the Higgs field dynamics and potential.

LY accounts for the Yukawa interactions between fermions and the
Higgs field.

Gauge Field Kinetic Terms
The Yang-Mills part of the SM Lagrangian describes the dynamics of the
gauge bosons:

LYM = −
1

4
Ga

μνG
μνa −

1

4
W i

μνW
μνi −

1

4
BμνB

μν,

(1.3)

where the field strength tensors for the SU(3)C , SU(2)L, and U(1)Y  gauge
groups are:

b b



(1.4)

(1.5)

(1.6)

Here, gs, g, and gY are the gauge couplings for SU(3)C , SU(2)L, and 
U(1)Y , respectively. The gluons Ga

μ (a = 1, … , 8), weak gauge bosons 
W i

μ (i = 1, 2, 3), and the hypercharge field Bμ correspond to the gauge
groups SU(3)C , SU(2)L, and U(1)Y , respectively. The structure constants 
f abc and ϵijk satisfy the commutation relations:

[T α,T β] = if αβγT γ, [τ a, τ b] = iεabcτ c,

(1.7)

for SU(3)C  and SU(2)L, respectively.

Fermion Kinetic Terms
The kinetic terms for fermions, including their gauge interactions, are given
by:

(1.8)

where the covariant derivative is:
Dμ = ∂μ − igsΛ

aGa
μ − igT iW i

μ − igY YBμ.

(1.9)

This expression depends on the specific gauge representation and
hypercharge Y of each fermion, as summarized in Table 1.1. For example:

Ga
μν = ∂μG

a
ν − ∂νG

a
μ − gsf

abcGb
μG

c
ν,

W i
μν = ∂μW

i
ν − ∂νW

i
μ − g ϵijkW j

μW
k
ν ,

Bμν = ∂μBν − ∂νBμ.

LK = i

3

∑
j=1

(Ljγ
μDμLj + Ejγ

μDμEj + Qjγ
μDμQj

+U jγ
μDμUj + Djγ

μDμDj),

–––

––



(1.10)

(1.11)

(1.12)

Analogous expressions hold for U and D quarks. Here, σi and λa are the
Pauli and Gell-Mann matrices, and the indices α,β denote color.

Higgs Sector
The Higgs Lagrangian consists of kinetic and potential terms for the scalar
doublet field ϕ:

LHiggs = (Dμϕ)†(Dμϕ) − V (ϕ),

(1.13)

with the covariant derivative:

Dμϕ = (∂μ −
ig

2
σ ⋅ Wμ −

igY

2
Bμ)ϕ.

(1.14)

The scalar potential is:
V (ϕ) = μ2ϕ†ϕ + λ(ϕ†ϕ)2,

(1.15)

where λ > 0 ensures the potential is bounded from below. Electroweak
symmetry breaking occurs when μ2 < 0, giving rise to the Higgs VEV and
generating masses for the weak bosons and fermions [7–9].

Yukawa Interactions

LγμDμL = Lγμ(∂μ −
ig

2
σ ⋅ Wμ +

igY

2
Bμ)L,

––

EγμDμE = Eγμ (∂μ + igYBμ)E,
––

Q
α
γμDμQ

β = Q
α
γμ [(∂μ −

ig

2
σ ⋅ Wμ −

igY

6
Bμ)δαβ

−
igs

2
λαβ ⋅ Gμ]Qβ.

––



The Yukawa Lagrangian governs the interactions between fermions and the
Higgs field, which after electroweak symmetry breaking generate fermion
masses:

LY = −
3

∑
i,j=1

(yeijLiϕEj + yuijQiϕ̃Uj + ydijQiϕDj)+ h.c.

(1.16)

Here, the dual Higgs doublet ϕ̃ is defined as:

(1.17)

and ye, yu, yd are complex 3 × 3 matrices of Yukawa couplings.

1.1.2 Spontaneous Symmetry Breaking and the Higgs Mechanism
In the SM Lagrangian, all fermions and gauge bosons are initially massless.
The Higgs mechanism introduces mass for these particles via spontaneous
symmetry breaking. The electroweak symmetry breaking pattern is given
by:

SU(2)L × U(1)Y U(1)EM,

(1.18)

where U(1)EM corresponds to the electromagnetic gauge symmetry.
The Higgs field in the SM is a complex scalar doublet under SU(2)L,

and is given by:

(1.19)

with quantum numbers listed in Table 1.1. For μ2 < 0 in the Higgs
potential (1.15), the vacuum is degenerate and spontaneous symmetry
breaking occurs, as illustrated in Fig. 1.1. The VEV of the Higgs field
satisfies:

–––

ϕ̃ ≡ iσ2ϕ∗ = ( ),
ϕ0∗

−ϕ−

⟨ϕ⟩
−→

ϕ = ( ),
ϕ+

ϕ0



|ϕ|2 =
v2

2
, where v = √ −μ2

λ
.

(1.20)

Figure 1.1  The scalar potential V (ϕ) for μ2 > 0 (symmetric phase) and 
μ2 < 0 (broken phase), respectively. ⏎

Choosing a specific vacuum, we take:

(1.21)

The action of the electroweak generators on the vacuum state ϕ0 is:

(1.22)

Thus, the vacuum is not invariant under SU(2)L × U(1)Y , indicating that
these symmetries are spontaneously broken. However, the electromagnetic
gauge symmetry remains unbroken since:

Qϕ0 = ( 1

2
τ 3 +

1

2
Y)ϕ0 = 0.

(1.23)

ϕ0 = ( ).
0
v

√2

1

2
τ 1ϕ0 =

1

2
( ),

1

2
τ 2ϕ0 =

1

2
( ),

1

2
τ 3ϕ0 = −

1

2
ϕ0, Y ϕ0 = ϕ0.

v/√2

0

−iv/√2

0



The Higgs field contains four real degrees of freedom, three of which
become the longitudinal components of the W± and Z bosons via the Higgs
mechanism. These can be parameterized as:

(1.24)

where ηi(x) (with i = 1, 2, 3) are Goldstone bosons and h(x) is the
physical Higgs field. In the unitary gauge, where ϕ → U(η)ϕ, the Higgs
field simplifies to:

(1.25)

1.1.3 Particle Mass Generation in the SM
Gauge Boson Masses
To derive gauge boson masses, consider the kinetic term of the Higgs
doublet:

Lkin = (Dμϕ)†(Dμϕ),

(1.26)

where the covariant derivative is:

Dμ = ∂μ − ig
τ a

2
W a

μ − ig′ Y

2
Bμ.

(1.27)

Substituting ϕ → ϕ0, the mass terms for gauge bosons become:

Lmass ⊃ M 2
WW +

μ W −μ +
M 2

Z

2
ZμZ

μ,

(1.28)

with the physical eigenstates:

ϕ(x) =
1

√2
e−iτ iηi(x)/2v( ),

0

v + h(x)

ϕ(x) =
1

√2
( ).

0

v + h(x)



(1.29)

(1.30)

(1.31)

The corresponding masses are:

(1.32)

(1.33)

(1.34)

The Weinberg angle θW is defined via:

(1.35)

(1.36)

Fermion Masses
In the unitary gauge, the Yukawa Lagrangian (1.16) becomes:

LY = −
v + h(x)

√2
(yeijeLieRj + yuijuLiuRj + ydijdLidRj)+ h.c.

W ±
μ =

1

√2
(W 1

μ ∓ iW 2
μ ),

Zμ = cos θWW 3
μ − sin θWBμ,

Aμ = sin θWW 3
μ + cos θWBμ.

MW =
1

2
gv,

MZ =
1

2
v√g2 + g′2,

MA = 0.

sin θW =
g′

√g2 + g′2
,

cos θW =
g

√g2 + g′2
.

–––



(1.37)

The corresponding fermion masses are:

me =
yev

√2
, mu =

yuv

√2
, md =

ydv

√2
.

(1.38)

For three families, the Yukawa matrices yf (with f = e,u, d) are 3 × 3

complex matrices. These can be diagonalized via unitary transformations:
fL → VffL, fR → UffR, νL → VeνL,

(1.39)

such that:

ydiag
f = V

†
f yfUf .

(1.40)

The physical masses are then:

mfi = y
diag
fi

v

√2
.

(1.41)

Higgs Mass
The Higgs potential after spontaneous symmetry breaking becomes:

(1.42)

(1.43)

From the quadratic term, the Higgs boson mass is:

Mh = √2λv2.

V (ϕ†ϕ) = −
μ2

2
(v + h)2 +

λ

4
(v + h)4

=
1

2
(2λv2)h2 + λvh3 +

λ

4
h4 −

μ2v2

4
.



(1.44)

The Higgs mass and the self-coupling λ are not predicted within the SM and
must be determined experimentally.

1.1.4 SM Interactions
This section provides a systematic overview of the SM interaction structure,
beginning with the electroweak and Higgs sectors, and highlighting their
implications for fermion masses, gauge boson couplings, and flavor
physics.

Electroweak Interactions
The electroweak interactions of leptons and quarks in the SM are derived
from the fermionic kinetic terms in the Lagrangian:

(1.45)

where the covariant derivative Dμ encodes the electroweak gauge fields.
The interactions of fermions with the gauge bosons are extracted from the
covariant derivatives:

(1.46)

where PL = 1
2

(1 − γ5), T ± = T1 ± iT2, and e = g sin θW = gY cos θW .
The full electroweak interaction Lagrangian can be written in a compact

form:
LEW = LEM + LNC + LCC,

(1.47)

where

LK = i
3

∑
j=1

(Ljγ
μDμLj + Ejγ

μDμEj + Qjγ
μDμQj

+U jγ
μDμUj + Djγ

μDμDj),

–––

––

ψiγμDμψ ⊃ ψγμ( g

√2
(W +

μ T + + W −
μ T −)PL + eQAμ

+
g

cos θW
(T 3PL − sin2 θWQ)Zμ)ψ,

––



(1.48)

(1.49)

(1.50)

With the currents:

(1.51)

(1.52)

(1.53)

Electromagnetic Interactions
Electromagnetic interactions, mediated by the photon, couple only to
electrically charged fermions:

LEM = eAμJ
μ

A,

(1.54)

with the current:

J
μ

A = ∑
i

Qi–f iγ
μfi = −–eγμe +

2

3
uγμu −

1

3

–
dγμd.

(1.55)

Neutral Current Interactions
Neutral weak interactions are mediated by the Z-boson:

LEM = eAμJ
μ
A,

LNC =
g

cos θW
ZμJ

μ
Z ,

LCC =
g

√2
(W +

μ J μ
W + W −

μ J μ†
W ).

J
μ

A
= ψγμQψ,
–

J
μ

Z = ψγμ(T 3PL − sin2 θWQ)ψ,
–

J μ
W = ψγμT +PLψ, J μ†

W = ψγμT −PLψ.
––

–



LNC =
g

cos θW
ZμJ

μ

Z ,

(1.56)

with current:

(1.57)

Charged Current Interactions

Charged weak interactions are mediated by the W± bosons:

LCC =
g

√2
(W +

μ J μ
W + W −

μ J μ†
W ),

(1.58)

with:

(1.59)

(1.60)

where V ≡ VCKM = V u†V d is the Cabibbo-Kobayashi-Maskawa (CKM)
matrix [10, 11].

The CKM matrix parameterizes quark generation mixing:

(1.61)

J
μ
Z = ∑

i

–
f iγ

μ(T 3
i PL − Qi sin2 θW )fi

=
1

2
–νeγ

μPLνe + –eγμ(−
1

2
PL + sin2 θW )e

+uγμ( 1

2
PL −

2

3
sin2 θW)u +

–
dγμ(−

1

2
PL +

1

3
sin2 θW)d.–

J
μ

W = ∑
i,j

(–νLiγ
μeLjδij + uLiγ

μdLjVij),–

J
μ†
W = ∑

i,j

(–eLjγ
μνLiδij +

–
dLjγ

μuLiV
†
ij),

VCKM = ,
⎛⎜⎝ c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

⎞⎟⎠



with sij = sin θij, cij = cos θij. Experimental values are [12]:

(1.62)

(1.63)

(1.64)

(1.65)

In the SM, neutrinos are massless and right-handed neutrinos are absent.
Thus, the lepton mixing matrix can be chosen trivial: V ν = V e, leading to
no observable lepton flavor mixing in the charged current sector.

Higgs Interactions in the SM
The kinetic Lagrangian (1.13) of the Higgs field contains the following
interaction terms of Higgs field and gauge bosons

L
K

Higgs ⊃ W +
μ W −μ(

g2

4
h2 + gMWh) + ZμZ

μ(
g2

8 cos2 θ
W

h2 +
gMZ

2 cos θ
W

h)

(1.66)

In the unitary gauge, the Yukawa Lagrangian Eq. (1.37) contains the
following interaction terms of the Higgs field with fermions

−LY ⊃
h

v
∑
f

mf
–
ff =

h

v
(me

–ee + muuu + md
–
dd)

(1.67)

As the neutrino is massless, it doesn't interact with the Higgs field. The
primary Higgs interaction channels in the SM are illustrated in Figs. 1.2 and
1.3.

sin θ12 = 0.2229 ± 0.0022,

sin θ23 = 0.0412 ± 0.0002,

sin θ13 = 0.0036 ± 0.0007,

δ = 1.02 ± 0.22.

–



Long Description for Figure 1.2

Figure 1.2  Feynman diagrams and rules of Higgs-gauge interactions in the
SM. ⏎

Figure 1.3  Feynman diagram and rule of Higgs-fermion interactions in the
SM. ⏎

1.2 EVIDENCE FOR PHYSICS BSM

The SM is a four-dimensional quantum field theory invariant under the
Poincaré group and based on the local gauge symmetry

SU(3)C × SU(2)L × U(1)Y .



It contains three generations of point-like fermions (quarks and leptons),
gauge bosons mediating the fundamental forces, and a single complex
scalar Higgs doublet responsible for electroweak symmetry breaking via the
Brout-Englert-Higgs mechanism [7, 8].

In its minimal form, the SM does not include right-handed neutrinos,
implying that neutrinos are massless. This is in clear contradiction with the
experimental observation of neutrino oscillations, which imply nonzero
neutrino masses and lepton flavor violation [13, 14].

Despite its tremendous success in describing particle physics phenomena
up to the electroweak scale [12], there are several theoretical and
experimental indications that the SM is incomplete:

Neutrino masses: The SM cannot accommodate nonzero neutrino
masses without extension.
Dark matter: Astrophysical and cosmological observations require a
stable, non-baryonic component of matter not accounted for in the SM.
Baryon asymmetry: The observed imbalance between matter and
antimatter in the universe cannot be explained by SM CP violation
alone.
Hierarchy problem: The quadratic sensitivity of the Higgs mass to
ultraviolet scales suggests the need for a naturalness mechanism.
Gauge coupling unification: The running of gauge couplings in the SM
does not result in unification at a high energy scale.

In addition to these conceptual issues, several experimental anomalies
provide further hints of new physics:

Muon anomalous magnetic moment: The long-standing discrepancy
between the measured value of the muon g − 2 and the SM prediction
persists at the level of about 4.2σ [15, 16].
Flavor anomalies in B-meson decays: Deviations from lepton flavor
universality in rare B decays, such as RD and RD∗ , have been observed
and interpreted as potential signs of new heavy gauge bosons or
leptoquarks [17, 18].

In the following chapters, we will explore well-motivated extensions of
the SM that aim to resolve these open questions and anomalies. These



efforts represent the forefront of modern particle physics and may provide
critical insights into a more fundamental underlying theory.

1.2.1 Neutrino Masses
One of the most compelling indications for physics beyond the SM is the
observation of nonzero neutrino masses. In the SM, fermion masses arise
through Yukawa couplings to the Higgs field, but neutrinos were originally
assumed to be massless due to the absence of right-handed (RH) neutrino
fields. Consequently, the SM predicts lepton flavor conservation and no
neutrino mixing.

However, neutrino oscillation experiments have conclusively
demonstrated that neutrinos undergo flavor transitions, which can only
occur if neutrinos have non-degenerate masses and nontrivial mixing
angles. These results were first established by the Super-Kamiokande
experiment [13] and later confirmed by multiple independent experiments.

A minimal extension to the SM that accommodates neutrino masses is to
introduce RH neutrinos νRi

, which are gauge singlets. This permits a
renormalizable Yukawa interaction:

Lν = yν ℓL ϕ νR + h.c.,

(1.68)

where ℓL is the left-handed lepton doublet, ϕ is the Higgs doublet, and yν is
the neutrino Yukawa coupling. After electroweak symmetry breaking, this
yields a Dirac mass term mν = yνv, with v ≈ 246 GeV.

To reproduce the sub-eV neutrino masses inferred from oscillation data,
one must assume a tiny Yukawa coupling, yν ∼ 10−12, which is many
orders of magnitude smaller than that of the electron. This severe hierarchy
is widely regarded as unnatural and has motivated alternative explanations
such as the seesaw mechanism [19, 20], which naturally generates small
Majorana neutrino masses through the exchange of heavy singlet fermions.

Type I Seesaw Mechanism
The Type I seesaw mechanism provides a compelling explanation for the
smallness of neutrino masses within a minimal extension of the SM. It
introduces heavy RH neutrinos, denoted by νR, which are gauge singlets and
therefore do not interact via the SM gauge bosons. However, they do

–



participate in Yukawa interactions with the SM lepton doublets and the
Higgs field [19, 20].

The extended Lagrangian includes the terms:

L ⊃ −yν ℓL
~
ϕνR −

1

2
(νR)cMRνR + h.c.,

(1.69)

where yν is the neutrino Yukawa coupling matrix, ~
ϕ = iσ2ϕ

∗ is the
conjugate Higgs doublet, and MR is a Majorana mass matrix for the RH
neutrinos, which can be taken diagonal, real, and positive without loss of
generality.

Since MR is not constrained by SM symmetries, it can naturally lie at a
very high scale. Integrating out the heavy RH neutrinos at energies below
MR generates the dimension-five Weinberg operator, yielding an effective
Lagrangian:

L
ν

eff =
y2
ν

2MR

ℓL ϕϕ
T ℓcL + h.c.

(1.70)

This results in a Majorana mass for the light neutrinos after electroweak
symmetry breaking:

mν ≃ −⟨ϕ0⟩2 yν M
−1
R yTν ,

(1.71)

naturally explaining their smallness for MR ≫ ⟨ϕ0⟩. This mechanism is
illustrated in Fig. 1.4.

––

–



Figure 1.4  Type I seesaw realization of the small Majorana mass for the left-
handed neutrino with mν ≃ −⟨ϕ0⟩2 yν M

−1
R

yTν . ⏎

After spontaneous symmetry breaking, the neutrino mass terms can be
written as:

L
ν
m = −νLmDνR −

1

2
(νR)cMRνR + h.c.,

(1.72)

where mD = yν⟨ϕ
0⟩ is the Dirac mass matrix. Combining terms, the full

mass matrix becomes:

(1.73)

Assuming mD ≪ MR, this matrix can be block-diagonalized via a
unitary transformation:

(1.74)

––

−L ν
m = ( )( )

Mν

( ) + h.c.–νL (νR)c
–0 mD

mT
D MR

(νL)c

νR

M diag
ν ≃ ( ),

−mDM
−1
R mT

D 0

0 MR

V ≃ ( )( ).
−1 mDM

−1
R

mT
DM

−1
R 1

i 0

0 −i



(1.75)

Thus, the light neutrino masses are suppressed by the large Majorana
scale MR, while the heavy states acquire masses of order MR. This
framework provides a natural mechanism for understanding the observed
neutrino mass hierarchy and is a cornerstone of many Grand Unified
Theories (GUTs) and leptogenesis scenarios.

Type II Seesaw Mechanism
In addition to the Type I seesaw mechanism, several extensions of the SM
have been proposed to generate small Majorana neutrino masses. One such
extension is the Type II seesaw mechanism [21, 22]. In this scenario, the SM
Higgs sector is augmented by a heavy scalar triplet Δ, which carries
hypercharge Y = −2 and transforms as a (1, 3, −2) under the SM gauge
group.

The triplet scalar field can be conveniently represented by a 2 × 2 matrix:

(1.76)

In this case, the relevant terms in the Lagrangian are given by:

−Ltype-II =
YΔ

2
ℓLiτ2 Δ ℓcL + μΔ ϕT iτ2Δϕ + M 2

Δ Tr(Δ†Δ) + h.c.,

(1.77)

where YΔ is the Yukawa coupling matrix, μΔ is a trilinear scalar coupling
with mass dimension one, and MΔ is the mass of the scalar triplet.

After electroweak symmetry breaking, the neutral component of the
Higgs doublet acquires a non-vanishing VEV, inducing a small VEV for the
neutral component of Δ through the μΔ term. This leads to the effective
Majorana mass for light neutrinos:

mII
eff ≃ μΔ YΔ

⟨ϕ0⟩2

M 2
Δ

= λΔ YΔ
⟨ϕ0⟩2

MΔ
,

(1.78)

Δ = ( ).
Δ−/√2 Δ−−

Δ0 −Δ−/√2

–



where μΔ ≡ λΔMΔ defines a dimensionless coupling λΔ. This expression
mirrors the general seesaw formula, where MΔ ≫ ⟨ϕ0⟩ ensures the
smallness of neutrino masses. A diagram representing this process appears
in the left panel of Fig. 1.5. This elegant mechanism is referred to as the
Type II seesaw.

Figure 1.5  (Left) Neutrino mass generation via the Type II seesaw
mechanism involving a scalar triplet Δ. (Right) Type III seesaw mechanism
mediated by a heavy fermionic triplet Σ. ⏎

Type III Seesaw Mechanism
Another compelling approach to generate neutrino masses is the Type III
seesaw mechanism [23]. Here, the SM is extended by introducing fermionic
triplets Σ with zero hypercharge (Y = 0), which couple to the SM lepton
and Higgs doublets via Yukawa interactions. In contrast to Type II seesaw,
this scenario does not alter the scalar sector.

The SU(2)L triplet fermion field is self-conjugate and can be written in
matrix form as:

(1.79)

The relevant Lagrangian terms are:

−Ltype-III = YΣ ℓL Σ
~
ϕ +

1

2
MΣ Tr(Σc Σ)+ h.c.,

(1.80)

Σ = ( ).
Σ0/√2 Σ+

Σ− −Σ0/√2

––



where YΣ is the Yukawa matrix and MΣ is the mass of the fermion triplet.
After electroweak symmetry breaking, integrating out the heavy Σ fields
gives an effective neutrino mass matrix:

mIII
eff ≃ YΣ

⟨ϕ0⟩2

MΣ
Y T

Σ .

(1.81)

This shows that, much like in the other seesaw variants, light Majorana
neutrino masses naturally emerge when MΣ ≫ ⟨ϕ0⟩. The process is
depicted in the right panel of Fig. 1.5. The Type III mechanism is
phenomenologically attractive due to the potential collider signatures of the
charged fermion components of Σ.

Linear and Inverse Seesaw Mechanisms
In the standard type I seesaw mechanism, the smallness of neutrino masses
is attributed to the exchange of heavy right-handed neutrinos with large
Majorana masses MR ≫ v, where v is the electroweak VEV. However, this
high scale is far beyond experimental reach. Alternative low-scale
mechanisms such as the inverse seesaw [24, 25] and linear seesaw [26]
offer phenomenologically accessible frameworks where lepton number is
only softly broken, allowing MR ∼ O(TeV).

Both mechanisms introduce two Standard Model (SM) singlet fermions:
the conventional right-handed neutrino νR and an additional singlet S. These
frameworks differ in the nature of lepton number violation and in how small
neutrino masses are generated.

Inverse Seesaw
The inverse seesaw extends the neutrino sector by adding a small Majorana
mass term μS for the singlet fermion S, leading to the Lagrangian:

L
ν

ISS = yνℓL
~
ϕνR + MR(νR)cS + μSS cS + h.c. ,

(1.82)

where yν is the neutrino Yukawa coupling, and μS ≪ MR softly breaks
lepton number. After electroweak symmetry breaking, with mD = yνv, the
light neutrino mass is approximately:

2

–––



mνℓ ≈
m2

D

M 2
R

μS.

(1.83)

This allows yν ∼ O(1) and MR ∼ TeV, provided μS ∼ O(10−7) GeV.

Linear Seesaw
In the linear seesaw, lepton number is broken via a small Dirac-type
Yukawa coupling yS between the SM lepton doublet and the new singlet S,
and the Majorana mass term μS is absent:

L
ν

LSS = yνℓL
~
ϕνR + MR(νR)cS + ySℓL

~
ϕS + h.c.,

(1.84)

with yS ≪ 1. The resulting light neutrino mass is:

mνℓ ≈
yνySv

2

MR
,

(1.85)

which is linearly suppressed by the small lepton-number-violating
parameter yS. This again allows for a low seesaw scale, potentially within
reach of current collider experiments.

Both mechanisms naturally explain the smallness of neutrino masses
without invoking ultra-high energy scales and open the door for rich
phenomenology at the TeV scale.

1.2.2 Dark Matter
A wide consensus among astronomers, cosmologists, and particle physicists
holds that approximately 95% of the matter in the Universe is composed of
an invisible, non-luminous component known as Dark Matter (DM) and
Dark Energy (DE). The evidence for DM, in particular, emerges from a
range of astrophysical observations. One of the earliest and most
compelling lines of evidence comes from the rotational dynamics of
galaxies. According to Newtonian mechanics, the rotational velocity of
stars in a galaxy should follow:

–––



v(r) = √ GM(r)

r
,

(1.86)

where v(r) is the velocity at radius r, G is the gravitational constant, and 
M(r) is the enclosed mass. However, observations of numerous spiral
galaxies reveal that their rotation curves remain flat or even rise with
increasing distance from the galactic center, as shown in Fig. 1.6, indicating
the presence of additional, unseen mass [27, 28].

Figure 1.6  The observed rotation curve of the dwarf spiral galaxy M33
overlaid on its optical image [28]. ⏎

Another powerful probe of DM is gravitational lensing, where the
deflection of light from distant galaxies by massive foreground objects
reveals much more mass than is visible. These lensing measurements



confirm that the gravitational mass far exceeds the luminous matter content
[29, 30].

These findings suggest that galaxies reside within massive DM halos,
extending far beyond their visible components. Moreover, precise
measurements of the cosmic microwave background (CMB), particularly
from the Planck satellite, provide strong evidence for the abundance and
non-baryonic nature of DM. The 2018 Planck results indicate [31]:

Ωmh
2 = 0.1430 ± 0.0011, Ωbh

2 = 0.02237 ± 0.00015,

(1.87)

where the significant difference between Ωm and Ωb implies that most
matter is not composed of baryons. This is consistent with Big Bang
nucleosynthesis predictions [32].

As shown in Fig. 1.7, the Universe consists of approximately 4.9%
ordinary (baryonic) matter, 26.6% DM, and 68.5% dark energy. Despite the
compelling evidence, the particle nature of DM remains unknown.



Figure 1.7  Composition of the universe based on Planck 2018 data. ⏎

There are three principal methods to detect DM: direct detection, indirect
detection, and collider production. These are diagrammatically represented
by a generic Feynman diagram involving DM particles χ and SM particles
(Fig. 1.8). Among various DM candidates, Weakly Interacting Massive
Particles (WIMPs) are particularly attractive. With masses in the 10 GeV–
TeV range and weak-scale interactions, WIMPs naturally lead to the correct
DM abundance through the freeze-out mechanism [33].

Figure 1.8  Generic Feynman diagrams for direct detection, indirect detection,
and collider production of DM. ⏎

In the early Universe, WIMPs were in thermal equilibrium. As the
Universe cooled below T < mχ, WIMP annihilation could no longer keep
up with the expansion, leading to a relic abundance. The Boltzmann
equation describing the evolution of WIMP number density nχ is:

dnχ

dt
+ 3Hnχ = −⟨σv⟩(n2

χ − (neq
χ )2),

(1.88)

where ⟨σv⟩ is the thermally averaged annihilation cross-section times
velocity. For non-relativistic DM, this cross-section can be expanded as
[34]:

⟨σv⟩ ≃ a +
6b

x
, x ≡

mχ

T
.

(1.89)

The relic density is then given by:

1



Ωh2 ≃
1.07 × 109 xf GeV−1

√g∗MPl(a + 3b
xf

)
,

(1.90)

where xf is the freeze-out parameter, g* is the effective number of
relativistic degrees of freedom, and MPl is the Planck mass. This expression
shows that a weak-scale cross-section yields the observed relic density 
Ωh2 ≈ 0.12, a phenomenon often referred to as the WIMP miracle.

1.2.3 Higgs Mass Hierarchy
As discussed earlier, electroweak symmetry breaking in the SM is triggered
by the Higgs VEV:

v2 =
4M 2

W

g2
≃ 104 GeV2 ≪ M 2

Pl ≃ 1038 GeV2,

(1.91)

where MW is the mass of the W boson, g is the SU(2) gauge coupling, and
MPl is the reduced Planck mass. This enormous disparity between the
electroweak scale and the Planck scale, spanning over 16 orders of
magnitude, has no natural explanation within the SM and constitutes what is
known as the hierarchy problem [35, 36].

The issue becomes more severe at the quantum level, as scalar masses in
quantum field theory receive large radiative corrections from higher energy
scales. For the Higgs boson, one-loop corrections from fermionic loops (see
Fig. 1.9) lead to a quadratically divergent mass correction:

δm2
H = −

|λ|2

8π2
[Λ2 − 2m2

f ln(
Λ

mf
)],

(1.92)



Figure 1.9  One-loop radiative correction to the Higgs boson mass from a
fermion loop. ⏎

where λ is the Yukawa coupling between the Higgs field and a fermion f, mf
is the fermion mass, and Λ is the ultraviolet (UV) cutoff scale, which can be
as high as the Planck scale. For Λ ∼ 1019 GeV, the correction becomes 
δmH ∼ 1030 GeV2, vastly exceeding the physical Higgs mass 
mH ≈ 125 GeV. Reconciling such corrections with the observed Higgs
mass would require extreme fine-tuning of bare parameters, a situation
considered highly unnatural [37, 38].

In contrast, fermion masses such as the electron mass receive only
logarithmically divergent corrections (see Fig. 1.10):

δme =
2αem

π
me ln( Λ

me

),

(1.93)



Figure 1.10  One-loop radiative correction to the electron mass. ⏎

where αem is the electromagnetic fine-structure constant. Even for a cutoff 
Λ ∼ 1019 GeV, the correction remains modest: δme ≈ 0.24me. Moreover,
in the limit me → 0, the correction vanishes due to the restoration of chiral
symmetry, which protects fermion masses from large radiative corrections.

To resolve the hierarchy problem, many theoretical frameworks propose
new physics at or near the TeV scale. One prominent example is
supersymmetry, which introduces superpartners for all SM particles and
naturally cancels the quadratic divergences in Higgs mass corrections.
Other approaches include models with composite Higgs bosons, extra
spatial dimensions, or invoking the anthropic principle in a multiverse
framework [39].

These models aim to stabilize the Higgs mass without unnatural fine-
tuning, and many of them predict new particles or interactions accessible to
current or future experiments, making the hierarchy problem one of the
central driving forces in the search for physics beyond the SM.

1.2.4 Baryon Asymmetry
Baryon asymmetry refers to the observed imbalance between baryons—
particles composed of three quarks, such as protons and neutrons—and
antibaryons, their corresponding antiparticles, in the universe. This
discrepancy is one of the most profound puzzles in physics, requiring an
explanation that goes beyond the SM of particle physics. The SM, in its
present form, lacks a mechanism to account for this asymmetry, known as
baryogenesis. According to the SM, the interactions in the early universe
should have resulted in equal amounts of matter and antimatter, which



would have led to their mutual annihilation, leaving behind a universe
devoid of any baryons.

The enigma of baryon asymmetry, also referred to as the matter-
antimatter asymmetry, raises a critical question: why does the universe
consist predominantly of matter, with a clear absence of antimatter? Neither
the SM of particle physics nor the theory of general relativity can provide a
satisfactory explanation for this striking imbalance. In 1967, Andrei
Sakharov outlined three necessary conditions for the generation of a net
baryon number in the universe [40]:

Baryon number violation,
Thermal non-equilibrium,
C (charge conjugation) and CP (charge-parity) violation.

During the early stages of the universe, all these conditions were likely
satisfied. However, our understanding of CP violation in particle
interactions and the ability to calculate the baryon asymmetry from first
principles remain topics of active research.

The baryon-to-photon ratio, which quantifies the baryon asymmetry of
the universe, is given by [41]:

nB − nB̄

nγ
= 6.1 × 10−10,

(1.94)

indicating a small excess of baryons over antibaryons. Investigating the
origin of this asymmetry, particularly the role of CP violation, and deriving
it from first principles are central goals in the search for physics beyond the
SM.

Several mechanisms have been proposed to explain the baryon
asymmetry. One of the most well-known is leptogenesis, which involves the
violation of lepton number conservation. In this scenario, the early universe
may have seen the decay of heavy particles known as right-handed
neutrinos. These decays could have resulted in an excess of quarks over
antiquarks, which then generated the observed baryon asymmetry through
sphaleron interactions. Other mechanisms beyond the SM have also been
suggested, including GUTs, where the three fundamental forces of the SM
(strong, weak, and electromagnetic forces) are unified at high energies [42].



1.2.5 Other Unresolved Theoretical Questions
Furthermore, when we look closely at particle physics, we find some really
interesting questions that the SM can't fully answer. These questions
include:

Electroweak Symmetry Breaking: We still lack a complete
understanding of how particles acquire mass, making this one of the
most important questions in modern physics.
Symmetry Group: The SM is based on a specific gauge symmetry
group, SU(3)C × SU(2)L × U(1)Y , but the reason for this particular
choice remains unclear. Understanding its origin could provide deeper
insight into the fundamental forces of nature.
Unification: Can all the known fundamental forces be described within
a single, unified framework? Achieving such unification would greatly
simplify and deepen our understanding of the universe.
Three Families of Particles: The Standard Model contains three
generations of similar fermions, but the reason for this replication is
unknown. Uncovering its origin could offer deeper insight into the
structure and behavior of fundamental particles.
Quantum Gravity: While we have successful quantum theories for
three of the four fundamental forces, gravity remains incompatible
with quantum mechanics. Developing a consistent theory of quantum
gravity is one of the most profound challenges in theoretical physics.
Cosmological Constant: The cosmological constant in Einstein's
equations is vastly smaller than theoretical expectations.
Understanding this discrepancy could shed light on the nature of
vacuum energy and the universe's accelerated expansion.

These questions highlight the limitations of the SM and underscore the
need for new theoretical frameworks to address these unresolved mysteries.
The pursuit of physics BSM represents a major endeavor in the scientific
community, aimed at achieving a deeper understanding of the fundamental
structure and dynamics of the universe.

1.3 POSSIBLE DIRECTIONS FOR BSM



In this section, we will explore a range of avenues and approaches that
physicists are actively investigating to expand our comprehension of
fundamental particles and forces beyond the SM. These diverse directions
encompass various theoretical frameworks and concepts, all geared toward
tackling the constraints of the SM and striving for a more encompassing
depiction of the universe.

Extension of Gauge Symmetry: One direction involves extending the
gauge symmetry beyond the SM gauge symmetries. This could
introduce new particles and interactions that might help explain some
of the unanswered questions in particle physics.
Extension of Higgs Sector: Another avenue is to expand the Higgs
sector, which is responsible for giving particles mass. Extending this
sector could provide new insights into the origins of mass and the
fundamental nature of the Higgs boson.
Extension of Matter Content: Expanding the matter content involves
introducing new types of particles or matter beyond what is currently
described in the SM. This can lead to a richer and more diverse particle
spectrum.
Extension with Flavor Symmetry: Flavor symmetry extensions seek to
understand the relationships between different types of particles and
their properties, such as different flavors of quarks and leptons. This
extension may reveal underlying patterns in particle physics.
Extension of Space-time Dimensions: Some theories propose the
existence of extra spatial dimensions beyond the familiar three
dimensions of space. These extra dimensions could help address
various questions in physics, including the unification of forces.
Extension of Lorentz Symmetry (Supersymmetry): Supersymmetry
extends the concept of spacetime symmetry, known as Lorentz
symmetry. It posits a connection between particles with different
intrinsic angular momenta (spin), potentially leading to a more unified
theory of particles and forces.
Incorporate Gravity (Supergravity): Incorporating gravity into the
framework of particle physics is a significant challenge. Supergravity
attempts to merge the principles of general relativity (gravity) with the



concepts of supersymmetry from particle physics. It is a step toward a
unified theory of all fundamental forces.
One-dimensional Object (Superstring): Superstring theory proposes
that the fundamental building blocks of the universe are not particles
but tiny, vibrating strings. This theory aims to reconcile gravity with
quantum mechanics and provide a unified framework for all
fundamental forces.

These directions represent the ongoing efforts in theoretical physics to
push the boundaries of our knowledge and explore new frameworks that
can address the unresolved questions posed by the SM. While each
direction has its own set of challenges and complexities, they collectively
contribute to the pursuit of a more comprehensive and unified theory of the
fundamental forces and particles in the universe.

Throughout the chapters of this book, our objective is to delve into as
many potential avenues beyond the SM as we can, providing a
comprehensive overview of the ongoing pursuit for a deeper comprehension
of the universe.





CHAPTER 2

Two Higgs Doublet Models

DOI: 10.1201/9781003457701-2

The Two Higgs Doublet Model (2HDM) is a well-motivated extension of
the SM of particle physics, achieved by introducing a second complex
scalar doublet in addition to the one present in the SM [43]. This extension
offers a promising framework to address phenomena beyond the SM, such
as the baryon asymmetry of the universe and the existence of dark matter
candidates. In this chapter, we examine the theoretical structure and
phenomenological implications of 2HDMs, highlighting how this
framework can resolve some of the SM limitations.

The two complex scalar doublets in a 2HDM are typically denoted as Φ1

and Φ2, and are expressed as follows:

Here, ϕ+
1 , ϕ0

1, ϕ+
2 , and ϕ0

2 represent the scalar fields associated with the two
Higgs doublets. These doublets can acquire VEVs, which break the
electroweak symmetry, giving mass to the W and Z bosons and to fermions
through Yukawa couplings.

The 2HDM can be classified into several types based on the manner in
which fermions (quarks and leptons) couple to the Higgs doublets and the
specific Yukawa couplings. The most common types are:

1. Type-I 2HDM: In this model, only one Higgs doublet, Φ2, couples to
the charged fermions (both up-type and down-type quarks as well as

Φ1 = ( ), Φ2 = ( ).
ϕ+

1

ϕ0
1

ϕ+
2

ϕ0
2
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charged leptons), while Φ1 does not couple to any fermions [44]. This
is sometimes referred to as a Fermiophobic 2HDM.

2. Type-II 2HDM: In this configuration, one Higgs doublet, Φ2, couples
to the up-type quarks, while the other, Φ1, couples to the down-type
quarks and leptons [44]. This model is the one most commonly used in
the Minimal Supersymmetric Standard Model (MSSM).

3. Lepton-Specific 2HDM: Here, one Higgs doublet exclusively interacts
with leptons, while the other interacts with quarks. This can lead to
interesting phenomena involving changes in lepton flavors.
Occasionally, this is referred to as Type-X 2HDM [45].

4. Flipped 2HDM: In this variation, the roles of the two Higgs doublets
are reversed compared to Type-II. The doublet that couples to up-type
quarks in Type-II now couples to down-type quarks and leptons, and
vice versa. This variation is sometimes referred to as Type-Y 2HDM
[46].

5. Type-III 2HDM: In this model, both Φ1 and Φ2 couple to both up-type
and down-type quarks as well as charged leptons. This type is known
for its tendency to generate Flavor Changing Neutral Current (FCNC)
interactions at the tree level [47]. To comply with strict experimental
limits, specific assumptions on the Yukawa couplings must be made.

The choice of the 2HDM type depends on the specific physics
phenomena under consideration and the experimental constraints. 2HDMs
can have a much richer Higgs boson phenomenology compared to the SM,
including the presence of additional Higgs bosons: a heavy neutral CP-even
Higgs boson (H), a pseudo-scalar (A), and charged Higgs bosons (H±).
Moreover, these models allow for the potential occurrence of FCNCs and
CP-violating effects.

It is important to emphasize that the 2HDM does not alter the successful
predictions of the SM but rather enriches the scalar particle spectrum. This
extension opens the door for the existence of new particles beyond those
predicted by the SM. Additionally, 2HDMs are not limited to SM but can
also be incorporated into larger frameworks such as Supersymmetry.

These models are actively studied both theoretically and experimentally
to explore their predictions and assess whether they can explain observed
phenomena that the SM cannot. On the experimental front, this includes
searching for additional Higgs bosons and measuring their properties in



particle collider experiments such as those conducted at the Large Hadron
Collider (LHC).

2.1 2HDM SCALAR POTENTIAL

The most general SU(2)L × U(1)Y  -invariant scalar potential of the 2HDM
involving two complex scalar doublets Φ1 and Φ2 is given by [48, 49]:

(2.1)

Here, m2
11,m2

22,λ1,2,3,4 are real, while m2
12,λ5,6,7 are generally complex,

leading to 14 real independent parameters.

Discrete Symmetry and FCNC Suppression
To suppress FCNCs at tree level, a Z2 symmetry is imposed:

Φ1 → −Φ1, Φ2 → Φ2,

(2.2)

which eliminates terms with m2
12 = λ6 = λ7 = 0. Soft breaking of Z2 is

allowed via a non-zero but real m2
12 to retain CP conservation.

Theoretical Constraints
To ensure physical viability, the 2HDM parameters must satisfy several
theoretical constraints [48, 49]:

1. Perturbativity: Couplings must remain perturbative: |λi| ≲ 4π.

2. Tree-Level Unitarity: Scattering amplitudes must satisfy partial wave
unitarity bounds, restricting combinations of λi.
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11Φ†
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†
1Φ2)+λ7(Φ

†
2Φ2)(Φ

†
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3. Vacuum Stability: The potential must be bounded from below. This
implies:

λ1 > 0, λ2 > 0, λ3 > −√λ1λ2, λ3 + λ4 − |λ5| > −√λ1λ2.

(2.3)

4. Electroweak Precision Constraints: The model must comply with S, T,
and U parameter bounds.

5. FCNC Constraints: FCNCs are avoided by the Z2 symmetry; further
suppression can be achieved by proper Yukawa alignment.

6. Naturalness: Large hierarchies between mH and MZ introduce fine-
tuning. Define:

Δ =max
i

∂ lnM 2
Z

∂ ln pi
where pi ∈ {m2

ij,λk}.

(2.4)

Vacuum Expectation Values and CP Conservation
To preserve electric charge and CP symmetry, only the neutral CP-even
components develop VEVs:

(2.5)

with v2 = v2
1 + v2

2 = (246 GeV)2. The minimization conditions yield:

(2.6)
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where λ345 = λ3 + λ4 + λ5. In CP-conserving 2HDMs with softly broken
Z2, the model is characterized by eight parameters:

λ1,λ2,λ3,λ4,λ5,m2
12, tanβ =

v2

v1
, and v.

(2.8)

2.2 THE HIGGS SPECTRUM OF THE 2HDM

The scalar sector of the 2HDM consists of two SU(2)L scalar doublets, Φ1

and Φ2, each with hypercharge +1. They can be parameterized in the
unitary gauge as:

(2.9)

where v1 and v2 are the VEVs of the doublets with 
v2 = v2

1 + v2
2 ≃ (246 GeV)2. The 8 real degrees of freedom decompose

into three Goldstone bosons, eaten by the W± and Z bosons, and five
physical Higgs states: two CP-even scalars (h, H), one CP-odd pseudoscalar
(A), and two charged scalars (H±) [48, 49].

Charged Higgs Sector
The mass matrix for the charged scalars ϕ±

1 ,ϕ±
2  is given by:

(2.10)

which yields one zero eigenvalue corresponding to the charged Goldstone
boson G±, and one massive eigenstate:

m2
H± =

m2
12

v1v2
v2 −

1

2
(λ4 + λ5)v2.

(2.11)
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The physical charged Higgs boson is:

H± = − sinβϕ±
1 + cosβϕ±

2 , tanβ =
v2

v1
.

(2.12)

CP-Odd Scalar Sector
The pseudoscalar mass matrix in the (η1, η2) basis reads:

(2.13)

yielding one massless Goldstone boson G0 and one physical CP-odd scalar
with mass:

m2
A =

m2
12

v1v2
v2 − λ5v

2,

(2.14)

and eigenstate:
A = − sinβ η1 + cosβ η2.

(2.15)

CP-Even Scalar Sector
The CP-even scalar fields ϕ1 and ϕ2 mix to form the mass eigenstates h and
H. Their mass matrix is:

(2.16)

where λ345 = λ3 + λ4 + λ5. Diagonalizing this matrix via a mixing angle α
yields the mass eigenstates:

M 2
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m2
12
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12 + λ345v1v2 m2

12
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v2

+ λ2v2
2

h = − sinαϕ1 + cosαϕ2,



(2.17)

(2.18)

with m2
h

≤ m2
H  by convention. The lighter scalar h is typically identified

with the observed Higgs boson at 125 GeV.

2.3 2HDM INTERACTIONS

2HDM leads to richer phenomenology, including the possibility of FCNCs
and new interactions involving the Higgs and gauge bosons, as well as
fermions. In this section, we explore the key interactions in the 2HDM,
focusing on the gauge boson and Yukawa interactions.

Gauge Bosons in 2HDM
In the 2HDM, the gauge bosons interact with the Higgs bosons in a manner
similar to the SM. The kinetic terms for the Higgs doublets are given by:

LΦ = (DμΦ1)†(DμΦ1) + (DμΦ2)†(DμΦ2),

where Dμ represents the covariant derivative acting on the doublet fields. It
accounts for the interaction of the Higgs fields with the gauge fields while
maintaining gauge invariance. For a doublet field Φi, the covariant
derivative is expressed as:

DμΦi = (∂μ − ig
σa

2
W a

μ − ig′ Y

2
Bμ)Φi,

where g and g′ are the gauge coupling constants for the SU(2)L and U(1)Y
gauge groups, respectively, W a

μ  and Bμ are the gauge fields associated with
the SU(2)L and U(1)Y  groups, σa are the Pauli matrices, and Y represents
the weak hypercharge.

After spontaneous symmetry breaking, the Higgs doublets acquire VEVs,
denoted as v1 and v2. From the kinetic terms LΦ, one derives mass terms
for the gauge bosons, resulting in the following expressions for the gauge
boson masses:

H = cosαϕ1 + sinαϕ2,



MW =
1

4
g2v2, MZ =

1

4
(g2 + g′2)v2, M 2

A = 0,

where v = √v2
1 + v2

2 is the total vacuum expectation value. Additionally,
the neutral Higgs bosons couple to the W and Z gauge bosons. These
couplings are given by:

(2.19)

where h and H denote the light and heavy CP-even Higgs mass eigenstates,
respectively, and α and β are the mixing angles in the Higgs sector.

Yukawa Interactions in 2HDM
In the 2HDM, the most general gauge-invariant Lagrangian for the Yukawa
interactions between the Higgs doublets and SM fermions is given by:

LYukawa = − ∑
i=1,2

Y d
i QLΦidR + Y u

i QL

~
ΦiuR + Y ℓ

i LLΦiℓR + h.c.,

where i indexes the two Higgs doublets (Φ1 and Φ2), and ~
Φi = iσ2Φ∗

i

denotes the conjugate of the Higgs doublet Φi. The Yukawa coupling
matrices for the up-type quarks, down-type quarks, and leptons are
represented by Y u

i , Y d
i , and Y ℓ

i , respectively.
After electroweak symmetry breaking, the Higgs fields acquire VEVs,

resulting in fermion masses. The Yukawa couplings can be related to the
mass matrices. For example, the up-type quark mass matrix Mu is given by:

Mu =
v

√2
(Y u

1 + tanβY u
2 ),

where tanβ = v2/v1 is the ratio of the Higgs VEVs. This relation shows
that diagonalizing the fermion mass matrix does not necessarily diagonalize
the Yukawa coupling matrices, thus allowing for FCNCs at tree level. These
FCNCs can have observable consequences, such as in H → ds decays,
which contribute to K − K̄ oscillations [48]. To suppress these effects, it is
often required that the neutral flavor-changing mediator be heavy, with a

LΦ ⊃
g2 + g′2

4
v [sin(β − α)ZZh + cos(β − α)ZZH]

+
g2

2
v [sin(β − α)WWh + cos(β − α)WWH],

–––



mass scale around 10 TeV. One common method to reduce FCNCs is to
impose a Z2 symmetry, which can lead to Type I or Type II 2HDMs.

As previously noted, in the Type I 2HDM, all quarks couple to a single
Higgs doublet. In contrast, the Type II 2HDM assigns fermions to different
doublets based on their electric charge: up-type quarks (Q = +2/3) couple
to Φ1, while down-type quarks (Q = −1/3) couple to Φ2. This structure
plays a crucial role in suppressing FCNCs. The corresponding Z2 symmetry
charge assignments for Type I and Type II models are summarized in Table
2.1.

TABLE 2.1 Z2 charge assignments for the Higgs doublets, up-type quarks, down-type
quarks, and leptons in both Type I and Type II 2HDMs. ⏎

Field Type I Z2 Charge Type II Z2 Charge

Φ1 +1 +1

Φ2 -1 -1

Up-type quarks +1 +1

Down-type quarks +1 -1

Leptons +1 -1

In Type I and Type II 2HDMs, the Yukawa couplings to the neutral Higgs
bosons h, H, and A Higgs bosons are given by:

(2.20)

where PL/R denotes the projection operators for left-/right-handed
fermions, and the corresponding factors ξ are outlined in Table 2.2.

TABLE 2.2 Yukawa couplings of u, d, ℓ to the
neutral Higgs bosons h,H,A in the four different

LYukawa =− ∑
f=u,d,ℓ

mf

v
(ξfh

–
ffh + ξ

f

H
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ffH − iξ

f

A

–
fγ5fA)
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√2Vud

v
u (muξ

u
APL+mdξ

d
APR)dH+

+
√2mℓξ

ℓ
A

v
νLℓRH

++h. c.},

–
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models. The couplings to the charged Higgs
bosons follow Eq. 2.20. ⏎

Type I Type II
ξuh cosα/ sinβ cosα/ sinβ

ξdh cosα/ sinβ − sinα/ cosβ

ξℓ
h

cosα/ sinβ − sinα/ cosβ

ξuH sinα/ sinβ sinα/ sinβ

ξdH sinα/ sinβ cosα/ cosβ

ξℓ
H

sinα/ sinβ cosα/ cosβ

ξuA cotβ cotβ

ξdA − cotβ tanβ

ξℓ
A

− cotβ tanβ

2.4 PHENOMENOLOGICAL CONSEQUENCES

The 2HDM gives rise to distinctive signatures that can be tested through
collider experiments and precision measurements. This section highlights
key phenomenological implications, focusing on the decay modes of the
Higgs bosons, their production channels at the LHC, and potential
contributions to the anomalous magnetic moment of the muon.

2.4.1 Higgs Decays
We examine the dominant decay channels of the heavy neutral scalars H
and A, as well as the charged Higgs boson H±, in Type I and Type II
2HDMs. Our analysis is performed in the alignment limit, sin(β − α) ≃ 1,
in which the light CP-even scalar h exhibits SM-like couplings and
reproduces the observed Higgs boson properties [48]. In this limit, the tree-
level couplings of H to WW and ZZ vanish, while A and H± do not couple to
gauge boson pairs at tree level for any value of sin(β − α).

The partial decay widths of the heavy scalars into fermion pairs are given
by [50]:

2



(2.21)

(2.22)

where:

NC = 3 for quarks and NC = 1 for leptons,
GF is the Fermi constant,

mφ denotes the mass of the decaying scalar φ = h,H,A,

mH±  is the mass of the charged Higgs,
mf ,mf ′  are the masses of the final-state fermions,

Vff ′  is the CKM matrix element (or 1 for leptonic decays),

βf = √1 − 4m2
f
/m2

φ, and

βff ′ = λ1/2 ( m2
f

m2
H±

,
m2

f ′

m2
H±

),

ξ
f
φ are the model-dependent Yukawa coupling modifiers [48].

We also consider the loop-induced decays of the scalar particles,
including the decay modes φ → γγ, φ → Zγ, and φ → gg, where φ
represents any of the heavy scalars H, A, or H±. The corresponding decay
widths are given by [51]:

(2.23)
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(2.24)

(2.25)

where the fermionic loop functions I φ

f  and J φ

f  depend on the particle
masses and Yukawa couplings. The fermionic loop functions are as follows
[51]:

(2.26)

(2.27)

where cfV  is the vector coupling of the fermion f to the Z-boson, given by 
c
f
V = 1

2sWcW
(T f

3L − 2Qfs
2
W), with T f

3L denoting the third component of
the weak isospin for fermion f. The functions J1(mf) and J2(mf) are given
by:

(2.28)
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(2.29)

where B0 and C0 are the Passarino-Veltman functions [52]. These functions
are defined as:

(2.30)

(2.31)

with Δ denoting the regularization constant and g(x) and f(x) defined as:

(2.32)

(2.33)

Finally, the loop functions I φ

W , I φ

H± , J φ

W , and J φ

H±  are common to all types
of Yukawa interactions and can be found in Ref. [51].

In the type-I 2HDM, the decay of the neutral Higgs boson H into a gauge
boson pair, such as γγ or Zγ, can be enhanced for large values of tanβ.
This enhancement occurs because, while the fermionic decays (including
the gg mode) are suppressed at large tanβ, the charged scalar loop
contribution to the γγ and Zγ decay modes is not always suppressed. On
the other hand, such an enhancement does not occur in the decay of A, as
there is no AH+H− coupling.

For charged Higgs boson decays with mH± = 150 GeV, the dominant
decay mode in both the type-I and type-II 2HDM is into τν for tanβ ≳ 1,
while hadronic decay modes can also dominate in the type-Y 2HDM [53].
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2.4.2 Higgs Production at the LHC
At the LHC, neutral and charged Higgs bosons can be produced through
several key mechanisms, depending on the Higgs sector structure. In the
type-II 2HDM, the production of the additional neutral Higgs bosons H and
A occurs predominantly via:

Gluon fusion: gg → H,A, a loop-induced process mediated primarily
by top and bottom quarks. The effective coupling is enhanced at low 
tanβ by top loops and at high tanβ by bottom loops.

Associated production with bottom quarks: pp → bb̄H, bb̄A, relevant at
large tanβ where the Yukawa couplings to down-type quarks are
enhanced.
Associated production with top quarks: pp → tt̄H, tt̄A, most sensitive
at tanβ ∼ 1.

On the other hand, vector boson fusion V V → H and associated production
with gauge bosons are suppressed in the alignment limit (sin(β − α) ≃ 1),
and forbidden for the CP-odd Higgs A due to the absence of VVA couplings.

The dominant decay channels of H and A depend on mass and tanβ. At
high tanβ, decays to down-type fermions dominate: H/A → bb̄, τ +τ −,
though these suffer from significant QCD and Drell-Yan backgrounds.
Decays to μ+μ− offer better mass resolution despite lower branching ratios,
and can be competitive at low Higgs masses [54]. Simulations show that the
bb̄H/A → bb̄τ +τ − channel provides better sensitivity than gluon fusion in
the high tanβ regime [55, 56].

The charged Higgs bosons H± provide distinctive signatures that can be
probed at colliders:

For mH± < mt, they can be produced through top quark decays, 
t → H+b. In the type-II Two-Higgs-Doublet Model (2HDM), such
decays offer discovery potential for tanβ ≲ 2 and tanβ ≳ 20, given
sufficient integrated luminosity [57].
For mH± > mt, direct production channels such as gb → tH− and
pair production via qq̄, gg → H+H− become significant. These
processes are governed by the Yukawa interaction:



LH±tb =
g

√2MW

H+t̄ (mb tanβPR + mt cotβPL)b + h.c.

(2.34)

The cross-sections are enhanced for both low and high values of tanβ,
making these channels complementary in probing the parameter space of
the model.

2.4.3 Muon Anomalous Magnetic Moment
The anomalous magnetic moment of the muon, defined as aμ ≡ 1

2 (gμ − 2),
is a precisely measured observable that provides a sensitive probe of
physics beyond the SM. The latest combined measurement by the Fermilab
Muon g−2  experiment and the earlier E821 experiment at Brookhaven
reports a discrepancy with the SM prediction at the level of 4.2σ [15, 16]:

Δaμ ≡ aexp
μ − aSM

μ = (251 ± 59) × 10−11.

(2.35)

This suggests that potential new physics contributions should lie in the
range:

215 × 10−11 ≤ ΔaNP
μ ≤ 637 × 10−11.

(2.36)

Figure 2.1  One-loop Feynman diagrams for the muon g − 2.

In the 2HDM, additional contributions to aμ arise from both one-loop and
two-loop diagrams involving the extra scalar states H,A,H±. At one loop,
the electromagnetic vertex correction for a lepton ℓ has the general form:



–
ℓ(p′)Γμℓ(p) =

–
ℓ(p′) [γμF1(k2) +

iσμνkν

2mℓ
F2(k2)]ℓ(p),

(2.37)

where the anomalous magnetic moment is given by aℓ = F2(0).
The 2HDM one-loop contribution is [58]:

Δa1-loop
μ =

GF

4π2

m2
μ

√2
∑
j

(ξjμ)2 rjμ fj(r
j
μ),

(2.38)

where j = h,H,A,H±, rjμ = m2
μ/M 2

j , and the loop functions fj(r) are:

(2.39)

(2.40)

(2.41)

However, one-loop effects are typically too small to explain the observed
anomaly unless the scalar masses are of order a few tens of GeV. A more
significant contribution arises from two-loop Barr-Zee type diagrams [59,
60], especially when involving heavy fermion loops.

fh,H(r) = ∫
1

0
dx

x2(2 − x)

1 − x + rx2
,

fA(r) = ∫
1

0
dx

−x3

1 − x + rx2
,

fH±(r) = ∫
1

0
dx

−x(1 − x)

1 − (1 − x)r
.



Figure 2.2  Barr-Zee two-loop Feynman diagrams for the muon g − 2.

The dominant two-loop Barr-Zee contribution is:

ΔaBZ
μ =

GF αem

4√2π3
m2

μ∑
i,f

N f
c Q

2
f ξ

i
μξ

i
f

m2
f

M 2
i

gi(
m2

f

M 2
i

),

(2.42)

where i = h,H,A, and Qf, mf, N
f
c  are the electric charge, mass, and color

factor of the loop fermion, respectively. The loop functions are:

(2.43)

gh,H(x) = ∫
1

0
dx

2x(1 − x) − 1

x(1 − x) − x
ln [

x(1 − x)

x
],

gA(x) = ∫
1

0
dx

1

x(1 − x) − x
ln [

x(1 − x)

x
].



(2.44)

The pseudoscalar A yields a positive contribution to Δaμ, while the CP-
even scalars h,H give negative ones. Thus, a light pseudoscalar with
enhanced couplings to leptons, particularly in Type-II 2HDM with large 
tanβ, can provide a viable explanation for the observed anomaly.

2.5 INERT HIGGS DOUBLET

Within the framework of the 2HDM, the Inert Higgs Doublet Model
(IHDM) arises when one of the Higgs doublets, typically denoted as Φ1,
does not acquire a VEV, while the second doublet Φ2 does. This leads to the
vacuum structure:

(2.45)

As a result, Φ2 is responsible for electroweak symmetry breaking and
generates masses for the SM particles, whereas Φ1 remains inert: it does not
participate in symmetry breaking nor couple to fermions at tree level.

The inert nature of Φ1 is ensured by imposing a discrete Z2 symmetry
under which Φ1 → −Φ1, while all SM fields and Φ2 remain even. This
symmetry forbids Φ1 from acquiring a VEV and ensures that its
components interact only in pairs, preventing tree-level mixing with Φ2

[61].
After electroweak symmetry breaking, the doublets are parameterized as:

where G+ and G0 are the Goldstone bosons absorbed by the W+ and Z
bosons, respectively. The fields S, A, and H± originating from Φ1 are
physical scalars, which are stabilized by the unbroken Z2 symmetry and
thus become potential DM candidates.

The scalar potential, constrained by the exact Z2 symmetry (which
forbids the m2

12Φ†
1Φ2 term), takes the form:

⟨Φ1⟩ = ( ), ⟨Φ2⟩ = ( ).
0

0

0

v

Φ1 = ( ), Φ2 = ( ),
H+

1
√2

(S + iA)

G+

1
√2

(v + h + iG0)

2 2 2 2 2 2



(2.46)

After minimizing the potential, the physical scalar masses are:

(2.47)

(2.48)

(2.49)

(2.50)

where λL,A = 1
2

(λ3 + λ4 ± λ5). The model's independent parameters can
be expressed as {mh,mS,mA,mH± ,λ2,λL}, with the DM candidate
identified as the lighter neutral scalar between S and A. Here, we assume the
CP-odd scalar A is the lightest and thus serves as the DM candidate.

Assuming a standard thermal history of the Universe, the relic abundance
of inert scalar DM is determined by its annihilation cross-sections into SM
final states, including:

For mA < mW ,Z , three- and four-body final states from off-shell vector
bosons (V V ∗ and V ∗V ∗, with V = W ,Z) become relevant. The relic
density Ωh2 is obtained by solving the Boltzmann equation, which at
freeze-out yields the approximate expression:

Ωh2 ≈
1.07 × 109 GeV−1

MPl √g∗ ⟨σv⟩
,

V = μ2
1|Φ1|2 + μ2

2|Φ2|2 + λ1|Φ1|4 + λ2|Φ2|4 + λ3|Φ1|2|Φ2|2

+λ4|Φ
†
1Φ2|2 +

λ5

2
[(Φ

†
1Φ2)2 + h.c.].

m2
h = 2λ2v

2,

m2
S = μ2

1 +
1

2
(λ3 + λ4 + λ5)v2 = μ2

1 + λLv
2,

m2
A = μ2

1 +
1

2
(λ3 + λ4 − λ5)v2 = μ2

1 + λAv
2,

m2
H± = μ2

1 +
1

2
λ3v

2,

AA → ff̄ (f = t, b, c, τ,μ),

AA → W +W −, ZZ, γγ, γZ,

AA → H+H−.



(2.51)

where MPl is the Planck mass, g* is the effective number of relativistic
degrees of freedom, and ⟨σv⟩ is the thermally averaged annihilation cross-
section. Detailed relic density computations often require numerical tools
such as MicrOMEGAs [62], ensuring consistency with the latest observational
data from Planck:

ΩCDMh2 = 0.120 ± 0.001

(2.52)

The IHDM thus presents a minimal, well-motivated framework where a
stable scalar, protected by an exact symmetry, can account for the observed
DM in the Universe, while remaining consistent with current collider and
cosmological constraints.





CHAPTER 3

Minimal B − L extension of the
Standard Mode

DOI: 10.1201/9781003457701-3

As discussed in Chapter 1, the SM of electroweak and strong interactions
has been remarkably successful in accounting for a wide range of
experimental observations. Nevertheless, he discovery of non-zero neutrino
masses provides direct and compelling evidence for physics BSM. The
phenomenon of neutrino oscillations, confirmed by solar and atmospheric
neutrino experiments, implies that at least two neutrino species must
possess non-zero mass [13, 14].

A particularly well-motivated and minimal extension of the SM that
accommodates neutrino masses is based on the enlarged gauge group:

SU(3)C × SU(2)L × U(1)Y × U(1)B−L,

where B−L  denotes the difference between baryon (B) and lepton (L)
numbers. This extension, commonly referred to as the B−L  extended SM
(BLSM), is particularly attractive from a theoretical standpoint because it
becomes anomaly-free upon the inclusion of three SM singlet fermions, one
per generation. These additional fermions are naturally identified as RH
neutrinos [63, 64].

In the minimal B-L model, the breaking of the extra U(1)B−L gauge
symmetry is achieved via a complex scalar SM-singlet field that develops a
VEV at the TeV scale [64]. This gives rise to of an additional neutral gauge
boson Z′, and a new scalar particle. These new states can lead to observable
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signals at the LHC, such as resonant production of Z′ bosons or extended
Higgs-sector signatures [65, 66].

The minimal B−L  model is considered “minimal” in both its scalar and
fermion sectors:

A single additional complex scalar singlet is introduced to
spontaneously break the U(1)B−L symmetry.

Exactly three RH neutrinos, transforming as νR ∼ (1, 1, 0, −1), are
included to cancel all gauge and gravitational anomalies associated
with the extended gauge symmetry.

As we will discuss, this model offers a simple, testable, and elegant
framework to explain the origin of neutrino masses via the type-I seesaw
mechanism, while predicting new particles accessible at current or near-
future collider energies.

3.1 CONSTRUCTING THE BLSM

The particle content of the BLSM includes, in addition to the SM fields, the
following new states:

Table 3.1 summarizes the particle content of the BLSM, along with their
charge assignments under the extended gauge group.

TABLE 3.1 The SU(2)L × U(1)Y  and U(1)B−L quantum numbers of the particles in the model. ⏎

l νR eR Q uR dR ϕ

SU(2)L × U(1)Y (2, −1/2) (1, 0) (1, −1) (2, 1/6) (1, 2/3) (1, −1/3) (2, 1/2

U(1)B−L −1 −1 −1 1/3 1/3 1/3 0

A scalar field χ, which is a SM singlet carrying a B−L  charge of 
+2. Its VEV spontaneously breaks the U(1)B−L gauge symmetry.

(i)

Three SM-singlet fermions νi (i = 1, 2, 3), each with a B−L

charge of −1. These fermions serve a dual purpose: they cancel the 
B−L  gauge anomalies and enable the implementation of the type-I
seesaw mechanism for generating light neutrino mass generation.

(ii)



The minimal gauge-invariant Lagrangian of the B−L  extension of the
SM can be written as [64]:

LB−L = LYM +Lf +Ls +LY ,

(3.1)

where the Yang-Mills (gauge kinetic) part includes the kinetic terms for all
gauge bosons:

(3.2)

where k is a real parameter representing kinetic mixing between the two
Abelian gauge fields. The field strengths are defined as

Bμν = ∂μBν − ∂νBμ, B′
μν = ∂μB

′
ν − ∂νB

′
μ.

(3.3)

The kinetic mixing term can be removed via a suitable field redefinition,
leading to canonically normalized field strengths [66]. After diagonalization
of the kinetic terms, the most general covariant derivative takes the form:

Dμ = ∂μ − igST
αGα

μ − igτ aW a
μ − ig′YBμ − i(~gY + g′′YB−L)B′

μ,

(3.4)

where g′ and g′′ are the gauge couplings of U(1)Y  and U(1)B−L,
respectively, ~g is a mixing parameter arising from the diagonalization
procedure, and Y, YB−L are the respective charges.

The fermionic part of the Lagrangian is
Lf = ∑

ψ

ψ̄iγμDμψ,

(3.5)

where the sum runs over all SM fermions, including the RH neutrinos νR,
which are necessary for anomaly cancellation and for implementing the
seesaw mechanism. The B−L  charges are:

LYM = − 1
4 G

α
μνG

μνα − 1
4 W

a
μνW

μνa − 1
4 BμνBμν

− 1
4 B

′
μνB

′μν − k
2 BμνB

′μν,



The scalar content consists of the usual SM Higgs doublet H and an
additional SM-singlet scalar χ, which is charged under U(1)B−L and is
responsible for spontaneously breaking the B−L  symmetry. The scalar
Lagrangian is

Ls = |Dμϕ|2 + |Dμχ|2 − V (ϕ,χ),

(3.6)

with the scalar potential
V (ϕ,χ) = m2

1ϕ
†ϕ + m2

2χ
†χ + λ1(ϕ†ϕ)2 + λ2(χ†χ)2 + λ3(χ†χ)(ϕ†ϕ).

(3.7)

Recall that the scalar field ϕ is a Higgs doublet, and χ is a singlet, with 
B − L charges of 0 and +2, respectively.

Finally, the Yukawa interactions for quarks and charged leptons are as in
the SM:

LY ⊃ −yuq̄L
~
HuR − ydq̄LϕdR − yeℓ̄LϕeR + h.c.

(3.8)

And for neutrinos, the presence of νR allows both Dirac and Majorana mass
terms:

LY ⊃ −yν ℓ̄L
~
HνR −

1

2
yM ν̄ c

RχνR + h.c.

(3.9)

The first term generates a Dirac mass after EW symmetry breaking, while
the second provides a Majorana mass for νR when χ acquires a VEV,
realizing the type-I seesaw mechanism.

3.2 B − L BREAKING, HIGGS AND GAUGE MASSES

YB−L(qL,uR, dR) =
1

3
,

YB−L(ℓL, eR, νR) = −1.



The spontaneous breaking of the B−L  symmetry proceeds analogously to
electroweak symmetry breaking. It is triggered by a non-vanishing VEV of
a scalar field that is a singlet under the SM gauge group but charged under 
U(1)B−L. In this setup, the Higgs sector consists of:

A complex SU(2)L singlet scalar field, χ ∼ (1, 1, 0, 2), responsible
for breaking the U(1)B−L symmetry, and

The usual SM Higgs doublet, ϕ ∼ (1, 2, 1, 0), which breaks the 
SU(2)L × U(1)Y  symmetry down to U(1)em.

The most general renormalizable scalar potential involving both fields
can be written as:

(3.10)

As in the SM, for the potential to be bounded from below, the quartic terms
must satisfy positivity conditions. This requirement translates into the
following stability conditions:

(3.11)

(3.12)

To achieve spontaneous symmetry breaking with non-zero VEVs v and
v′, the mass-squared parameters must satisfy m2

1 < 0 and m2
2 < 0.

Minimizing the potential with respect to the fields yields:

(3.13)

(3.14)

V (ϕ,χ) = m2
1 ϕ

†ϕ + m2
2 χ

†χ + ( )( )( ).ϕ†ϕ χ†χ
λ1

λ3

2
λ3

2
λ2

ϕ†ϕ

χ†χ

λ1,λ2 > 0,

4λ1λ2 − λ2
3 > 0.

∂V

∂ϕ
= 0 ⇒ m2

1 + 2λ1ϕ
†ϕ + λ3χ

†χ = 0,

∂V

∂χ
= 0 ⇒ m2

2 + 2λ2χ
†χ + λ3ϕ

†ϕ = 0.



Solving these equations leads to the VEVs [64]:

(3.15)

(3.16)

The vacuum configuration is taken to be:

(3.17)

Since the denominators in Eqs. (3.15) and (3.16) are positive by Eq.
(3.12), the numerators must also be positive to ensure real VEVs:

−2λ2m
2
1 + λ3m

2
2 > 0, −2λ1m

2
2 + λ3m

2
1 > 0.

(3.18)

These inequalities imply that both m2
1,m2

2 > 0 are not allowed, regardless
of the sign of λ3. Scenarios with mixed signs, such as m2

1 > 0,m2
2 < 0,

require λ3 < 0. For m2
1,m2

2 < 0, both signs of λ3 are permitted. In the
decoupling limit λ3 → 0, the two sectors become independent, and v2

reduces to the familiar SM expression. Combining Eqs. (3.15) and (3.16),
one can express v′2 in terms of v:

v′2 =
−2(m2

1 + λ1v
2)

λ3
.

(3.19)

This relation shows that if v′ ≫ v, then a fine-tuned cancellation between
λ3v

′2 and 2m2
1 is needed to obtain the correct electroweak scale 

v ≈ 246 GeV. To avoid such fine-tuning, the B−L  symmetry should be
broken at a relatively low scale, typically v′ ∼ O(1) TeV. We assume that
the singlet VEV v′ is larger than the doublet VEV v, i.e.,

′

v2 =
−4λ2m

2
1 + 2λ3m

2
2

4λ1λ2 − λ2
3

,

v′2 =
−4λ1m2

2 + 2λ3m2
1

4λ1λ2 − λ2
3

.

⟨ϕ⟩ =
1

√2
( ), ⟨χ⟩ =

v′

√2
.

0

v



|⟨χ⟩| =
v′

√2
≫ |⟨ϕ0⟩| =

v

√2
.

It is important to note that the scale v′ is not fixed a priori. However, the
mass of the U(1)B−L gauge boson B′

μ, as well as the masses of the right-
handed neutrinos, depend directly on v′. Thus, experimental bounds on extra
neutral gauge bosons can be used to set lower limits on the B−L  breaking
scale.

3.2.1 Higgs Masses
To determine the scalar mass spectrum, we expand the potential (3.7)
around the VEVs, given in (3.15) and (3.16). Working in the unitary gauge,
the scalar fields can be written as:

(3.20)

The scalar potential then becomes:

(3.21)

The mass terms are given by the quadratic part of the potential:

(3.22)

This matrix is diagonalized by an orthogonal transformation:

(3.23)

where the mixing angle θ is defined as:
′

ϕ(x) = ( ), χ(x) =
v′ + h2(x)

√2
.

0
v+h1(x)

√2

V (h1,h2) = λ1v
2h2

1 + λ2v
′2h′

22 + λ3vv
′h1h

′
2 +

λ3

2
(v′h2

1h2 + vh1h
2
2)

+λ1vh
3
1 + λ2v

′h3
2 +

λ1

4
h4

1 +
λ2

4
h4

2.

1

2
M 2(h1,h2) = ( )( )( ).h1 h2

λ1v
2 λ3

2 vv′

λ3

2 vv′ λ2v
′2

h1

h2

( ) = ( )( ),
h

H

cos θ − sin θ

sin θ cos θ

h1

h2



tan 2θ =
|λ3|vv′

λ1v2 − λ2v′2
.

(3.24)

The masses of the physical Higgs bosons h and H are:

m2
h,H = λ1v

2 + λ2v
′2 ∓√(λ1v2 − λ2v′2)2 + λ2

3v
2v′2.

(3.25)

Here, h corresponds to the SM-like Higgs and H is the heavy Higgs
associated with the B−L  breaking sector. The parameter λ3 controls the
mixing between the two Higgs states [65]. In the limit λ3 → 0 or v′ ≫ v,
the mixing vanishes, and we recover the SM Higgs mass mh = √2λ1v and
the B−L  Higgs mass mH = √2λ2v

′. However, for non-zero λ3 and
moderate v′, the SM-like Higgs mass receives corrections and can be lighter
than in the pure SM case, which has important implications for Higgs
phenomenology [67].

3.2.2 Gauge Sector and Mass Mixing
The gauge boson masses arise from the scalar kinetic terms after
spontaneous symmetry breaking. In this U(1)B−L extension, the charged
gauge bosons W ± = (W 1

μ ∓ iW 2
μ )/√2 acquire their standard masses 

MW ± = gv/2, unaffected by the Abelian extension.
The neutral gauge bosons, however, mix due to the extra U(1)B−L

symmetry. In the unitary gauge, the scalar kinetic terms yield:

(3.26)

In the basis (Bμ,W μ
3 ,B′μ), the neutral gauge boson mass matrix is:

L
kin

scalar =
1

2
∂μh1 ∂μh1 +

1

8
(h1 + v)2[g2|W μ

1 − iW μ
2 |2 + (gW μ

3 − g′Bμ

−~gB′μ)2]+
1

2
∂μh2 ∂μh2 +

1

2
(h2 + v′)2(2g′′B′μ)2,

M
2 =

v2

2
.

⎛⎜⎝ g′2 −gg′ g′~g

−gg′ g2 −g~g

g′~g −g~g ~g2 + ( 4v′g′′

v )
2

⎞⎟⎠



(3.27)

Applying the electroweak rotation:

(3.28)

we isolate the massless photon and obtain the 2 × 2 submatrix for Z and Z′.
The physical eigenstates are:

(3.29)

where the mixing angle θ′ satisfies:

tan 2θ′ =
2~g√g2 + g′2

~g2 + ( 4v′g′′

v
)

2
− (g2 + g′2)

.

(3.30)

The physical masses are:

(3.31)

(3.32)

(3.33)

REW(θw) = ,
⎛⎜⎝ cos θw sin θw 0

− sin θw cos θw 0

0 0 1

⎞⎟⎠= ,
⎛⎜⎝Aμ

Zμ

Z ′μ

⎞⎟⎠ ⎛⎜⎝ cos θw sin θw 0

− sin θw cos θ′ cos θw cos θ′ sin θ′

sin θw sin θ′ − cos θw sin θ′ cos θ′

⎞⎟⎠⎛⎜⎝Bμ

W
μ
3

B′μ

⎞⎟⎠MA = 0,

MZ =
v√g2 + g′2

2

1

2
1 +

~g2 + ( 4v′g′′

v )
2

g2 + g′2
−

~g

s2θ′√g2 + g′2
,

⎡⎢⎣ ⎛⎜⎝ ⎞⎟⎠ ⎤⎥⎦MZ ′ =
v√g2 + g′2

2

1

2
1 +

~g2 + ( 4v′g′′

v )
2

g2 + g′2
+

~g

s2θ′√g2 + g′2
,

⎡⎢⎣ ⎛⎜⎝ ⎞⎟⎠ ⎤⎥⎦



where

s2θ′ =
2~g√g2 + g′2

(~g2 + ( 4v′g′′

v
)

2
− g2 − g′2)

2

+ (2~g)2

.

(3.34)

In the limit ~g → 0, corresponding to the pure B − L model, the mixing
vanishes (θ′ = 0), and one recovers the SM result MZ = 1/2v√g2 + g′22.
We adopt ~g = 0 in what follows, consistent with experimental limits on 
Z--Z ′ mixing, which require it to be less than 10−3 [68].

3.3 NEUTRINO MASSES IN THE BLSM

In this section, we analyze neutrino masses and mixing in the B − L
extension of the SM, where the neutrino masses arise through a TeV-scale
seesaw mechanism [64]. After U(1)B−L symmetry breaking, the field χ can
be shifted around its VEV:

χ =
1

√2
(h2 + v′).

The term 1
2 yM(νR)cχνR leads to a right-handed neutrino mass:

MR =
1

2√2
yMv′.

Similarly, after electroweak symmetry breaking, the field ϕ can be shifted
as:

giving rise to a Dirac neutrino mass term:

mD =
1

√2
yνv.

Thus, the mass matrix for the left- and right-handed neutrinos is:

–

ϕ = ( ),
0

h1+v

√2



The masses of the light and heavy neutrinos are given by diagonalizing this
mass matrix:

mνℓ ≃ mDM
−1
R mT

D, mνH ≃ MR.

This is the seesaw mechanism, where large MR results in very light neutrino
masses, mνℓ , of the order 10−2 eV.

In the usual seesaw mechanism, MR is typically assumed to be of the
order of the Planck scale, ∼ 1014 GeV, to accommodate a Dirac neutrino
mass mD of order 100 GeV. However, there is no direct evidence that such a
large scale is required, and a “low scale seesaw” with MR ∼ TeV is an
acceptable alternative, especially when Dirac neutrino masses are small, of
order 10−4 GeV.

A commonly used parametrization for the Dirac neutrino mass matrix is
[69]:

mD = UPMNS
√mdiag

νℓ R√MR,

where mdiag
νℓ  is the diagonal light neutrino mass matrix, UPMNS is the

lepton mixing matrix, and R is an orthogonal matrix parametrized by three
complex angles. A possible parametrization for R is:

where ci = cos(θi) and si = sin(θi), for i = 1, 2, 3.

3.4 Z′ GAUGE BOSON IN THE BLSM

The Lagrangian describing the dynamics and interactions of the additional 
U(1)B−L gauge boson, denoted by Z′, is given by:

M = ( ).
0 mD

mT
D

MR

R = ,
⎛⎜⎝ c2c1 s1c2 s2

−s1c3 − c1s2s3 c1c3 − s1s2s3 s1c2

s1s3 − c3s2c1 −c1s3 − s1s2c3 c3c2

⎞⎟⎠LZ ′ = −
1

4
Z ′
μνZ

′μν +
1

2
M 2

Z ′Z
′
μZ

′μ + 2g′′2Z ′
μZ

′μχ2 + 4g′′2v′χZ ′
μZ

′μ

−g′′J B−L
μ Z ′μ,



(3.35)

where the B − L current is

J B−L
μ =

1

3
ūγμu +

1

3
d̄γμd − ēγμe − ν̄γμν.

(3.36)

Experimental constraints from LEP II and LHC searches place a lower
bound on the Z′ mass in B − L models [70]. These constraints typically
yield

MZ ′

g′′ ≳ 6 TeV,

(3.37)

implying a scale for breaking symmetry v′ ∼ O(TeV), since MZ ′ = 2g′′v′.
Here, the electroweak scale remains v ≃ 246 GeV.

The interactions of the Z′ boson with SM fermions are governed by their 
B − L charges:

L
Z ′

int = ∑
f

g′′Y
f

B−L
Z ′
μ f̄γ

μf.

(3.38)

In this minimal B − L model, tree-level Z–Z′ mixing is absent, and Z′

couples directly to SM fermions via their B − L quantum numbers [64].
The partial decay widths of the Z′ boson are approximately given by:

(3.39)

(3.40)

Γ(Z ′ → ℓ+ℓ−) ≃
(g′′Y ℓ

B−L
)2

24π
MZ ′ ,

Γ(Z ′ → qq̄) ≃
(g′′Y

q

B−L
)2

8π
MZ ′ (1 +

αs

π
),

Γ(Z ′ → tt̄) ≃
(g′′Y t

B−L
)2

8π
MZ ′ (1 −

m2
t

M 2
Z ′

)√1 −
4m2

t

M 2
Z ′

(1 +
αs

π
).



(3.41)

As shown in Fig. 3.1, the leptonic branching ratio of the Z′ boson is
improved relative to its hadronic decays. This is due to |Y ℓ

B−L| = 3|Y q
B−L|,

leading to:
BR(Z ′ → ℓ+ℓ−) ≃ 20%, versus BR(Z → ℓ+ℓ−) ≃ 3%.

Figure 3.1  Branching ratios of the Z′ boson as functions of MZ ′ . Figure
adapted from [65]. ⏎

Hence, the clean di-lepton signal makes Z′ a promising early discovery
channel at the LHC [64, 65, 71].

3.5 BLSM WITH INVERSE SEESAW MECHANISM

In this section, we review the TeV-scale B−L  extension of the SM
incorporating the Inverse Seesaw (ISS) Mechanism, as proposed in Ref.
[72]. The model is based on the extended gauge group 



SU(3)C × SU(2)L × U(1)Y × U(1)B−L, where the U(1)B−L symmetry is
spontaneously broken by a SM singlet scalar field χ carrying a B−L

charge of −1. This breaking gives rise to a new neutral gauge boson Z′. To
ensure anomaly cancellation, the model introduces three RH neutrinos νRi

,
each with a B−L  charge of −1. In order to implement the ISS mechanism,
the model also includes three additional SM-singlet fermions S1 with B−L

charge −2, and three fermions S2 with charge +2. The complete set of 
B−L  charge assignments for the fermions and scalar fields is summarized
in Table 3.2.

The relevant part of the Lagrangian is given by:

(3.42)

where B′
μν = ∂μB

′
ν − ∂νB

′
μ is the field strength of U(1)B−L, and Dμ is the

covariant derivative. The last two terms in the Lagrangian are non-
renormalizable and are required for generating small masses for S1 and S2 at
the TeV scale, essential for the ISS.

After B − L symmetry breaking, the Z′ gauge boson acquires the mass:
MZ ′ = g′′v′ with v′ ∼ O(1 TeV),

(3.43)

where v′ = ⟨χ⟩/√2 is the vacuum expectation value (VEV) of the χ field.
The constraints from LEP II on Z − Z ′ mixing lead to MZ ′/g′′ > 6 TeV

TABLE 3.2 B − L quantum numbers of fermions and Higgs partic
⏎

Particle Q uR dR L eR νR ϕ χ S1 S

YB−L 1/3 1/3 1/3 −1 −1 −1 0 −1 −2 +

LB−L = −
1

4
B′

μνB
′μν + iℓLDμγ

μℓL + ieRDμγ
μeR + iνRDμγ

μνR

+ iS1Dμγ
μS1 + iS2Dμγ

μS2 + (Dμϕ)†Dμϕ + (Dμχ)†Dμχ

−V (ϕ,χ) − (yeℓLϕeR + yνℓL
~
ϕνR + yS(νR)cχS2 + h.c.)

−
1

M 3
(S1)cχ†4

S1 −
1

M 3
(S2)cχ4S2,

–––

––

–––

––



[73].
The neutrino mass terms arising from the Yukawa interactions are:

L
ν
m = mDνLνR + MR(νR)cS2 + h.c.,

(3.44)

where mD = 1
√2

yνv and MR = 1
√2

ySv
′. These terms give rise to the

neutrino mass matrix in the flavor basis:

(3.45)

where μs ∼ 10−10 GeV is the Majorana mass term for S2, and MR is of
order the TeV scale.

The diagonalization of the neutrino mass matrix leads to the light
neutrino masses:

mνℓ = mDM
−1
R

μs(M
T
R )−1mT

D.

(3.46)

Thus, the light neutrino masses can be of order eV, with a TeV-scale MR if 
μs ≪ MR. The heavy neutrino physics in this model can be probed at the
LHC [64].

––

Mν = ,
⎛⎜⎝ 0 mD 0

mT
D

0 MR

0 M T
R

μs

⎞⎟⎠





CHAPTER 4

Left-Right Symmetric Model

DOI: 10.1201/9781003457701-4

One of the most well-motivated extensions of the SM is the Left-Right
Symmetric Model (LRSM). Originally introduced by Pati and Salam in
1974 [74], the LRSM was further developed and analyzed in detail by
Mohapatra and Senjanović [22, 75]. These models provide a natural
framework for addressing parity violation in weak interactions, as well as
the origin of neutrino masses via the seesaw mechanism.

The LRSM is based on the extended gauge group:
SU(3)C × SU(2)L × SU(2)R × U(1)B−L.

(4.1)

At low energies, this symmetry is spontaneously broken down to the SM
gauge group, and eventually to electromagnetism. The symmetry breaking
proceeds in two stages:

SU(2)L × SU(2)R × U(1)B−L ⟶ SU(2)L × U(1)Y ⟶ U(1)EM,

where the electromagnetic charge operator is given by a generalized Gell-
Mann–Nishijima relation:

Q = T 3
L + T 3

R +
1

2
(B − L).

(4.2)

https://doi.org/10.1201/9781003457701-4


This expression emerges naturally from the symmetry-breaking sequence in
which the gauge group SU(2)R × U(1)B−L reduces to the SM hypercharge
group U(1)Y . The hypercharge itself is defined as a specific linear
combination of the right-handed isospin and the B − L quantum number.
When substituted into the conventional expression for electric charge, this
leads directly to the above generalized Gell-Mann–Nishijima relation. This
formulation not only reproduces the correct electric charges for all SM
fermions but also illustrates the consistent embedding of hypercharge
within the extended gauge symmetry of the LRSM.

Like the SM, the LRSM includes strong interactions via the SU(3)C
gauge group. However, its weak interaction sector is extended to 
SU(2)L × SU(2)R × U(1)B−L, which implies the existence of additional
heavy gauge bosons. In particular, the LRSM predicts two charged right-
handed gauge bosons W ±

R  and a neutral gauge boson ZR, in addition to the
SM gauge bosons.

The phenomenology of the LRSM strongly depends on the scalar (Higgs)
sector responsible for symmetry breaking. Various choices for the scalar
content, such as bidoublets, triplets, or doublets under SU(2)L,R, lead to
different variants of the model with distinct features. These choices impact
not only the mass spectrum of gauge and scalar bosons but also the nature
of neutrino masses (type-I, type-II, or hybrid seesaw mechanisms), flavor
structure, and potential collider signatures.

4.1 CONVENTIONAL LEFT-RIGHT MODEL

In the LRSM, RH fermions are grouped into doublets under SU(2)R, and
the B − L quantum number plays a crucial role in anomaly cancellation and
neutrino mass generation. The spontaneous symmetry breaking of 
SU(2)R × U(1)B−L to U(1)Y  is achieved via a triplet scalar field ΔR. The
field content of this model and the associated quantum numbers are given in
Table 4.1. Contrary to the SM, all RH components of fermion fields
transform as doublets under SU(2)R, reflecting the left-right symmetric
nature of the model.

TABLE 4.1 Field content of the LRSM and respective quantum numbers. ⏎

Fields Components SU(2)L × SU(2)R × U(1)B−L



Fields Components SU(2)L × SU(2)R × U(1)B−L

Fermions
LL ( )

L

2 1 − 1
2

LR ( )
R

1 2 − 1
2

QL ( )
L

2 1 + 1
6

QR ( )
R

1 2 + 1
6

Gauge bosons
WL W ±

L ,W 3
L triplet singlet singlet

WR W ±
R ,W 3

R singlet triplet singlet

B Bμ singlet singlet singlet

Scalars
Φ

( )
2 2 0

ΔL

L

3 1 +1

ΔR

R

1 3 +1

The full Lagrangian of the LRSM includes gauge, kinetic, scalar, and
Yukawa parts:

LLRSM = LGauge + LKinetic + LScalar + LYukawa.

(4.3)

The gauge kinetic terms for the gauge bosons are

LGauge = −
1

4
Ga

μνG
aμν −

1

4
W i

LμνW
iμν
L −

1

4
W i

RμνW
iμν
R −

1

4
VμνV

μν,

(4.4)

ν

e

ν

e

u

d

u

d

Φ0
1 Φ+

1

Φ−
2 Φ0

2

⎛
⎝

Δ+

√2
Δ++

Δ0 − Δ+

√2

⎞
⎠

⎛
⎝

Δ+

√2
Δ++

Δ0 − Δ+

√2

⎞
⎠



with field strength tensors:

(4.5)

(4.6)

(4.7)

(4.8)

The fermionic kinetic terms and their gauge interactions are encoded as:

(4.9)

where the covariant derivatives for the leptons and quarks take the form:

(4.10)

(4.11)

(4.12)

(4.13)

Ga
μν = ∂μG

a
ν − ∂νG

a
μ − gsf

abcGb
μG

c
ν,

W i
Lμν = ∂μW

i
Lν − ∂νW

i
Lμ − gLϵ

ijkW j
LμW

k
Lν,

W i
Rμν = ∂μW

i
Rν − ∂νW

i
Rμ − gRϵ

ijkW
j
RμW

k
Rν,

Vμν = ∂μVν − ∂νVμ.

LKinetic =
3

∑
j=1

[LLjiγ
μDμLLj + LRjiγ

μDμLRj

+ QLjiγ
μDμQLj + QRjiγ

μDμQRj],

––

––

DμLL = (∂μ −
igL

2
σ ⋅ WLμ +

igBL

2
Vμ)LL,

DμLR = (∂μ −
igR

2
σ ⋅ WRμ +

igBL

2
Vμ)LR,

DμQL = (∂μ −
igL

2
σ ⋅ WLμ −

igBL

6
Vμ − igsλ ⋅ Gμ)QL,

DμQR = (∂μ −
igR

2
σ ⋅ WRμ −

igBL

6
Vμ − igsλ ⋅ Gμ)QR.



The scalar sector in the LRSM plays a crucial role in the sequential
symmetry breaking:

SU(2)L × SU(2)R × U(1)B−L SU(2)L × U(1)Y U(1)EM .

In addition to breaking the gauge symmetry, the scalar VEVs are
responsible for generating particle masses. The electroweak symmetry is
broken by the VEV of the bidoublet scalar Φ, giving rise to the masses of
SM fermions and gauge bosons, while the heavy masses of the RH gauge
bosons WR,ZR and RH neutrinos are generated through the VEV of the
RH triplet ΔR.

The gauge-invariant Yukawa interaction ψLΦψR requires that fermions
transform as doublets under both SU(2)L and SU(2)R, and the scalar field
Φ transforms as a bidoublet under the extended gauge group. Specifically,
Φ is a 2 × 2 complex matrix with B − L = 0, whose columns form
doublets under SU(2)L and rows under SU(2)R. As a result, the VEV of Φ
does not break the U(1)B−L symmetry.

To spontaneously break SU(2)R × U(1)B−L and reduce the symmetry to
that of the SM, an additional scalar field is introduced. This is typically
chosen to be a right-handed triplet ΔR ∼ (1, 3, +2), which acquires a large
VEV. For the restoration of discrete parity symmetry at high energies, a left-
handed counterpart ΔL ∼ (3, 1, +2) is also included in the scalar sector
[74].

The Lagrangian of scalar fields is given by
LScalar = L

Kin
Scalar − V (Φ, Δ

L
, Δ

R
),

(4.14)

where the kinetic Lagrangian is given by
L

Kin
Scalar = Tr[|DμΦ|2] + Tr[|DμΔ

L
|2] + Tr[|DμΔ

R
|2].

(4.15)

The most general gauge invariant and renormalizable Higgs potential given
as follows [76]:

⟨ΔR⟩
−→

⟨Φ⟩
−→

–



(4.16)

where the conjugate Higgs bidoublet is defined as

(4.17)

which transforms in the same way as Φ.
Finally, the Yukawa interactions responsible for fermion masses are given

by:

(4.18)

Here, Yq,
~
Yq,Yℓ,

~
Yℓ are Dirac-type Yukawa matrices for quarks and leptons,

and fL, fR are symmetric Majorana-type couplings for neutrinos. After
symmetry breaking, the Lagrangian generates:

Dirac masses for charged fermions and neutrinos via ⟨Φ⟩,

Majorana masses for neutrinos via ⟨ΔL,R⟩,

naturally realizing both the type-I and type-II seesaw mechanisms [20]. The
LRSM thus provides a compelling framework for addressing open
questions in the SM, including the origin of neutrino masses, the nature of
parity violation, and new physics at the TeV scale [77].

V (Φ, Δ
L
, Δ

R
) = −μ2

1Tr(Φ†Φ) − μ2
2Tr(Φ̃†Φ + Φ†Φ̃) − μ2

3Tr(Δ†
L
Δ

L
+ Δ†

R
Δ

R
)

+ λ1[Tr(Φ†Φ)]2 + λ2{[Tr(Φ̃†Φ)]2 + [Tr(Φ†Φ̃)]2} + λ3Tr(Φ̃†Φ)Tr(Φ†Φ̃)

+ λ4Tr(Φ†Φ)Tr(Φ̃†Φ + Φ†Φ̃) + ρ1{[Tr(Δ†
L
Δ

L
)]2 + [Tr(Δ†

R
Δ

R
)]2}

+ ρ2{Tr(Δ†
L
Δ†

L
)Tr(Δ

L
Δ

L
) + Tr(Δ†

R
Δ†

R
)Tr(Δ

R
Δ

R
)} + ρ3{Tr(Δ†

L
Δ

L
)

× Tr(Δ†
R
Δ

R
)} + ρ4{Tr(Δ

L
Δ

L
)Tr(Δ†

R
Δ†

R
) + Tr(Δ

R
Δ

R
)Tr(Δ†

L
Δ†

L
)}

+ α1Tr(ΦΦ†)[Tr(Δ†
L
Δ

L
+ Δ†

R
Δ

R
)] + α2{Tr(Φ†Φ̃)Tr(Δ†

L
Δ

L
)

+ Tr(ΦΦ̃†)Tr(Δ†
R
Δ

R
)} + α∗

2{Tr(Φ†Φ̃)Tr(Δ†
R
Δ

R
) + Tr(ΦΦ̃†)Tr(Δ†

L
Δ

L
)}

+ α3Tr(ΦΦ†Δ
L
Δ†

L
+ Φ†ΦΔ

R
Δ†

R
) + β1Tr(Δ†

L
ΦΔ

R
Φ† + Δ†

R
Φ†Δ

L
Φ)

+ β2Tr(Δ†
L
Φ̃Δ

R
Φ† + Δ†

R
Φ̃†Δ

L
Φ)} + β3Tr(Δ†

L
ΦΔ

R
Φ̃† + Δ†

R
Φ†Δ

L
Φ̃)},

Φ̃ = σ2Φ∗σ2 = ( ),
Φ0

2
∗

−Φ+
2

−Φ−
1 Φ0

1
∗

LY = QL (YqΦ +
~
Yq

~
Φ)QR + LL (YℓΦ +

~
Yℓ

~
Φ)LR

+fLL
T
LCiσ2ΔLLL + fRL

T
RCiσ2ΔRLR + h.c.

––



4.2 SPONTANEOUS SYMMETRY BREAKING IN THE
LRSM

The gauge symmetries imply that all gauge bosons and fermions must be
massless, thus the symmetry with massive gauge bosons (short-range forces
like the weak interaction) must be spontaneously broken. The spontaneous
symmetry breaking (SSB) in the LRSM occurs in two stages, and the
mechanism is similar to that of the SM. Specifically, it is achieved by the
VEV of scalar Higgs multiplets. The symmetry breaking scheme is as
follows:

SU(2)L × SU(2)R × U(1)B−L SU(2)L × U(1)Y ,

(4.19)

at this stage, only the RH scalar Higgs triplet gets a VEV and breaks the LR
symmetry down to the electroweak (EW) symmetry. After this stage of
symmetry breaking, the physical W ±

R
 and ZR gauge bosons acquire masses

through interactions with the right-handed triplet Higgs. Additionally, the
hypercharge operator Y appears as a linear combination of the difference
between baryon and lepton numbers and the third component of the right-
handed isospin:

Y = T 3
R + QB−L,

(4.20)

where QB−L is the generator of the U(1)B−L group, as defined in Eq. (4.2).
The values of the new gauge couplings gR and gB−L are related to the SM
hypercharge coupling gY by:

gY =
gRgB−L

√g2
R + g2

B−L

.

(4.21)

From the definition of the hypercharge, it follows that Y (Δ0
R) = 0,

ensuring that hypercharge remains an exact symmetry. Note that ΔR is a
singlet under the SU(2)L gauge group, so it remains an exact symmetry at
this stage as well.

⟨ΔR⟩
−→



The second stage of symmetry breaking further reduces the symmetry,
breaking the electroweak group down to electromagnetism, just like in the
SM but with an extended Higgs sector. The breaking is achieved by the
neutral components of the bidoublet Higgs Φ and the left-handed triplet
Higgs ΔL, which acquire VEVs, as follows:

SU(2)L × U(1)Y U(1)EM.

(4.22)

Here the neutral components of the bidoublet Higgs and LH triplet get
VEVs and break the EW symmetry down to EM. After this stage of
symmetry breaking, physical W ±

Lμ
 and Z

Lμ gauge bosons acquire masses.
Without loss of generality, the VEVs of the neutral components of the
Higgs fields can be written as

(4.23)

The minimization conditions of the scalar potential V (k1, k2, vL, vR)
with respect to the neutral VEVs yield four equations from the derivatives
with respect to k1, k2, vL, and vR. Solving these, one obtains the following
relations among the potential parameters and VEVs:

(4.24)

(4.25)

(4.26)

⟨Φ⟩,⟨ΔL⟩
−→

⟨Φ⟩ =
1

√2
( ), ⟨ΔR⟩ =

1

√2
( ), ⟨ΔL⟩ =

1

√2
( ).

k1 0

0 k2

0 0

vR 0

0 0

vL 0

β3 = −
β2k

2
1 + β1k1k2 − ρ−

13vL
v
R

k2
2

,

μ2
3 =

1

2
(α1k

2
1 + 4α2k1k2 + α13k

2
2 + 2ρ1(v2

L + v2
R)),

vLvR =
β2k

2
1 + β1k1k2 + β3k

2
2

ρ−
13

,

v2
L + v2

R =
1

2ρ1
(2μ2

3 − α1k
2
1 − 4α2k1k2 − α13k

2
2),



(4.27)

where the shorthand notations are defined as:
α13 = α1 + α3, ρ−

13 = 2ρ1 − ρ3, v2
+ = v2

L + v2
R, v2

× = vLvR.

The expressions for the mass parameters μ2
1 and μ2

2 are more involved and
are omitted for brevity. In the phenomenologically relevant limit where 
vL ≪ k1,2 ≪ vR, the SM VEV is given by

√k2
1 + k2

2 ≡ v ≃ 246 GeV.

4.2.1 Gauge Boson Masses in the LRSM
After SSB, the gauge bosons masses are generated as follows, from Higgs
kinetic term Tr|Dμ⟨ΔR

⟩|2 one obtains the mass terms:

g2
R
v2
R

2
W μ−

R
W +

Rμ +
v2
R

2
(g

R
W μ3

R
− g

BL
V μ)(g

R
W 3

Rμ − g
BL
Vμ)

(4.28)

Defining the mass eigenstates via:

(4.29)

where the mixing angle φ is defined as:

sinφ =
gBL

√g2
R + g2

BL

, cosφ =
gR

√g2
R + g2

BL

,

(4.30)

the massless field B is identified with the hypercharge gauge boson, while
ZR is a heavy neutral boson that decouples at low energies.

In the second stage, the electroweak symmetry is broken by the bidoublet
Higgs Φ acquiring a VEV ⟨Φ⟩ = diag(k1, k2) and the left-handed triplet 
ΔL developing a small VEV ⟨ΔL⟩ = vL. The kinetic terms yield masses
for the SM gauge bosons:

W ±
R =

W 1
R ∓ iW 2

R

√2
, ( ) = ( )( ),

ZR

B

cosφ − sinφ

sinφ cosφ

W 3
R

V

2



(4.31)

(4.32)

where gY is the hypercharge coupling:

gY =
gRgBL

√g2
R + g2

BL

.

(4.33)

Neutral gauge bosons in the LRSM
After diagonalization, the neutral gauge bosons mix via the Weinberg angle
θW as in the Standard Model:

(4.34)

with

sin θW =
gY

√g2
L + g2

Y

, cos θW =
gL

√g2
L + g2

Y

.

(4.35)

The full neutral gauge boson mass matrix in the basis (W 3
L

,W 3
R

,V ) is
given by [20]:

(4.36)

Tr|Dμ⟨Φ⟩|
2 ⊃

v2

4
(g2

LW
+
L W −

L + g2
RW

+
RW −

R ) −
gLgRk1k2

2
(W +

L W −
R +h.c. )

+
v2

8
(gLW

3
L − gYB)2,

Tr|Dμ⟨ΔL⟩|
2 ⊃

g2
Lv

2
L

2
W +

L W −
L +

v2
L

2
(gLW

3
L − gYB)2,

( ) = ( )( ),
ZL

A

cos θW − sin θW

sin θW cos θW

W 3
L

B

M 2
V 0 =

1

4
.

⎛⎜⎝g2
L(4v2

L + v2) −gLgRv
2 −4gLgBLv

2
L

−gLgRv
2 g2

R(4v2
R + v2) −4gRgBLv

2
R

−4gLgBLv
2
L −4gRgBLv

2
R g2

BL(4v2
L + 4v2

R)

⎞⎟⎠



This matrix can be diagonalized to extract the masses of the physical bosons
(ZL,A,ZR) by

(4.37)

The bidoublet Φ induces mixing between the neutral gauge bosons ZL
and ZR, resulting in the mass-squared matrix in the basis {ZLμ,ZRμ}:

(4.38)

where the matrix elements depend on the gauge couplings (gL, gR, gBL)
and the VEVs (k1,2, vL,R). The physical states Z and Z′ are obtained via a
mixing angle ϑ,

(4.39)

with corresponding eigenvalues:

M 2
Z,Z ′ =

1

2
(M 0

LL + M 0
RR ∓√(M 0

LL − M 0
RR)2 + 4(M 0

LR)2).

(4.40)

In the limit vR ≫ v, one finds Z ≃ ZL and Z ′ ≃ ZR. Experimental
constraints require ϑ ≲ 10−3 and MZ ′ ≳ 2 TeV [78].

Charged Gauge Bosons in the LRSM
The bidoublet Φ, transforming under both SU(2)L × SU(2)R, induces
mixing between W ±

L  and W ±
R  through the mass matrix:

= .
⎛⎜⎝W 3

Lμ

W 3
Rμ

Vμ

⎞⎟⎠ ⎛⎜⎝ e

g
Y

e

g
L

0

−eg
Y

g
L
g
R

e

g
R

g
Y

g
BL

−eg
Y

g
L
g
BL

e

g
BL

−g
Y

g
R

⎞⎟⎠⎛⎜⎝Z
Lμ

Aμ

Z
Rμ

⎞⎟⎠M 2
ZLZR

= ( ),
M 0

LL M 0
LR

M 0
LR M 0

RR

tan 2ϑ =
2M 0

LR

M 0
LL − M 0

RR

, ( ) = ( )( ),
Z

Z ′

cosϑ sinϑ

− sinϑ cosϑ

ZL

ZR



(4.41)

The physical states W ±
1  and W ±

2  arise via an orthogonal rotation:

(4.42)

where ξ is the mixing angle, constrained to ξ < 10−3 [79].
Defining k1 = v cosβ, k2 = v sinβ with v = 246 GeV, the trace and

determinant of the matrix are:

(4.43)

(4.44)

The masses are given by:

(4.45)

with

tan 2ξ =
2MLR

MLL − MRR
≈

4gRLk1k2

2g2
RLv

2
R + (g2

RL − 1)v2

and
gRL ≡ gR/gL.

In the limit ξ → 0, the mass eigenstates reduce to:

MWL
=

vgL

2
, MWR

=
vRgR

√2
.

MV ± =
1

4
( ).
g2
L(k2

1 + k2
2 + 2v2

L) −2gLgRk1k2

−2gLgRk1k2 g2
R(k2

1 + k2
2 + 2v2

R)

( ) = ( )( ),
W ±

1

W ±
2

cos ξ e−iω sin ξ

− sin ξ e−iω cos ξ

W ±
L

W ±
R

T g± =
1

4
((g2

L + g2
R)v2 + 2(g2

Lv
2
L + g2

Rv
2
R)),

Dg± =
1

16
g2
Lg

2
R [(v2 + 2v2

L)(v2 + 2v2
R) − 4v4 sin2 β cos2 β].

M 2
W1,W2

=
1

2
(T g± ∓√(T g±)2 − 4Dg±),



(4.46)

4.2.2 Fermion Masses in the LRSM

Fermion masses arise from Yukawa couplings to the bidoublets Φ, Φ̃, and
the triplets ΔL,R:

(4.47)

The Dirac mass matrices for quarks and leptons are given by:

(4.48)

(4.49)

while the Majorana mass matrices for the left- and right-handed neutrinos
are:

MνL =
1

√2
yMvL, MνR =

1

√2
yMvR.

(4.50)

The charged fermion mass matrices can be diagonalized using biunitary
transformations:

V
u†
L MuV

u
R = M diag

u , V
d†
L MdV

d
R = M

diag
d , V

e†
L MeV

e
R = M diag

e .

(4.51)

Neutrino mass terms receive contributions from both Dirac (yL, ỹL) and
Majorana (yM) couplings. It is convenient to express them using self-
conjugate Majorana spinors [20, 22, 76]:

ν =
νL + ν c

L

√2
, N =

ν c
R + νR

√2
.

−LYukawa ⊃ LL(yL⟨Φ⟩+ ỹL⟨Φ̃⟩)LR + QL(yQ⟨Φ⟩+ ỹQ⟨Φ̃⟩)QR

+ iyM (LT
LCσ

2⟨ΔL⟩LL + LT
RCσ

2⟨ΔR⟩LR) + h.c.

––

Mu =
1

√2
(yQk1 + ỹQk2), Md =

1

√2
(yQk2 + ỹQk1),

Mν =
1

√2
(yLk1 + ỹLk2), Me =

1

√2
(yLk2 + ỹLk1),



(4.52)

We also define the Dirac Yukawa coupling as:

yD ≡
1

√2

yLk1 + ỹLk2

v
=

Mν

v
,

(4.53)

which governs the magnitude of the Dirac-type neutrino mass.
In terms of yD and yM, the full neutrino mass matrix in the (ν,N) basis

becomes:

(4.54)

For natural values of Yukawa couplings yM ∼ yD ∼ Me/v, and the
hierarchy vR ≫ v ≫ vL (required for MWR

≫ MWL
), the light and heavy

neutrino states become approximate flavor eigenstates with masses given by
the seesaw mechanism [76]:

mN ≃ √2yMvR, mν ≃ √2(yMvL −
v2

2vR
yD(yM)−1yTD).

(4.55)

Finally, the light and heavy neutrino mass matrices mν and mN are
diagonalized by unitary matrices V ν

L  and V N
R :

V
ν†
L mνV

ν
L = mdiag

ν , V
N†
R mNV

N
R = m

diag
N .

(4.56)

4.3 ELECTROWEAK INTERACTIONS IN THE LRSM

In the LRSM, the electroweak interactions arise from the covariant
derivatives acting on fermion fields in the kinetic Lagrangian:

( )( )( ).–ν N
–√2yMvL yDv

yDv √2yMvR

ν

N



(4.57)

where LL,R and QL,R are the left- and right-handed lepton and quark
doublets, respectively. The electric charge of any fermion in LRSM is given
by:

Q = T 3
L + T 3

R +
B − L

2
,

(4.58)

with T 3
L,R being the third generators of SU(2)L,R and B − L the baryon-

minus-lepton number. This leads to the correct embedding of
electromagnetic and weak interactions [75].

After symmetry breaking, the gauge bosons mix to yield the photon, the
SM-like Z, a heavier Z′, and the charged bosons W ±

L  and W ±
R . The gauge

interactions of fermions then include:

Charged currents: mediated by W ±
L  and W ±

R , involving left- and right-
handed fermions respectively, with mixing encoded in CKM and RH-
CKM matrices.
Neutral currents: mediated by Z,Z ′, and the photon A, coupling to
combinations of T 3

L ,T 3
R, and B − L.

Summarizing the weak interaction terms:

(4.59)

where ψ represents any SM fermion field. After diagonalization, these
interactions yield the familiar electromagnetic coupling and the
neutral/charged weak currents, now extended by right-handed counterparts
[22].

Lkin = i
3

∑
j=1

(L̄Ljγ
μDμLLj + L̄Rjγ

μDμLRj + Q̄Ljγ
μDμQLj

+ Q̄Rjγ
μDμQRj),

Lweak ⊃ ψ̄γμ [ gL

√2
(W +

L T +
L +W −

L T −
L )PL+

gR

√2
(W +

R T +
R +W −

R T −
R )PR]ψ

+ ψ̄γμ [gLT 3
LW

3
L + gRT

3
RW

3
R + gBL

B − L

2
Vμ]ψ,



4.4 HIGGS SECTOR IN THE LRSM

The scalar content of the LRSM consists of a complex bidoublet Φ and two
triplets ΔL,R, all complex. As emphasized above, the neutral scalar
components are expanded around their VEVs as:

(4.60)

The mass spectrum of the physical Higgs scalar states is summarized as
follows [76]:

Doubly-Charged Scalars
In the basis (Δ±±

L , Δ±±
R ), the doubly-charged mass matrix is a 2 × 2

symmetric matrix M ±±, whose eigenvalues are:

m2
1,2±± =

1

2
(Tr(M ±±) ±√[Tr(M ±±)]

2
− 4 det (M ±±)).

(4.61)

The physical states are obtained via a unitary transformation ZD:
ZD†M ±±ZD = diag(m2

1±±,m2
2±±).

(4.62)

Singly-Charged Scalars

In the basis (ϕ±
1 ,ϕ±

2 , Δ±
L , Δ±

R), the singly-charged mass matrix M± is 4 × 4
and has two physical eigenstates and two Goldstone modes. The non-zero
eigenvalues are:

m2
1,2± =

1

2
(T ± ±√(T ±)2 − 4D±

2 ),

Φ0
1 =

1

√2
(k1 + h0

1 + iφ0
1),

Φ0
2 =

1

√2
(k2 + h0

2 + iφ0
2),

Δ0
L,R =

1

√2
(vL,R + h0

L,R + iφ0
L,R).



(4.63)

where T ± = Tr(M ±) and D±
2  is the second principal invariant: 

D2 = 1
2 [(Tr(M ±))2 − Tr((M ±)2)]. The matrix is diagonalized by Z±:

Z±†M ±Z± = diag(m2
1±,m2

2±, 0, 0).

(4.64)

with two physical charged states and two Goldstone modes. The
eigenvalues follow:

Neutral Pseudoscalars
The pseudoscalar sector consists of four fields (φ0

1,φ0
2,φ0

L,φ0
R) forming a 

4 × 4 symmetric mass matrix. Two eigenstates correspond to Goldstone
bosons; the other two are physical pseudoscalars with masses determined
analogously.

Neutral Scalars
The CP-even neutral scalars form a 4 × 4 real symmetric mass matrix in the
basis

S 0t
i = (ϕre

1 ,ϕre
2 , Δre

L , Δre
R),

with entries determined by the scalar potential parameters and VEVs 
k1,2, vL,R. The mass eigenstates are obtained by diagonalizing the matrix
via a unitary transformation:

ZS†MHZS = diag(m2
1,m2

2,m2
3,m2

4),

where one eigenstate corresponds to the SM-like Higgs boson with 
mh ≈ 125 GeV. The characteristic equation is quartic and solvable
analytically [80], allowing constraints on model parameters.

4.5 HIGGS INTERACTIONS IN THE LRSM

The kinetic terms of the Higgs fields in the LRSM encode their interactions
with the gauge bosons via the covariant derivatives. For the bidoublet field
Φ, the covariant derivative is given by

( ) ( )



DμΦ = ∂μΦ − ig
L
(WLμ ⋅ TL)Φ + ig

R
Φ(WRμ ⋅ TR),

(4.65)

where W a
Lμ and W a

Rμ are the gauge fields of SU(2)L and SU(2)R,
respectively. In terms of the physical gauge bosons W ±

L,R,ZL,ZR, and A,
the derivative becomes

(4.66)

Expanding the Higgs fields in components allows extraction of the
interaction terms between the physical gauge bosons and scalar fields,
which are essential for phenomenological analyses.

In the LRSM, the bidoublet Φ couples to quarks through Yukawa
interactions:

LY ⊃ QL(yQΦ + ỹQΦ̃)QR + h.c.

(4.67)

After symmetry breaking, the Yukawa couplings are expressed in terms of
the physical quark masses:

(4.68)

(4.69)

This leads to flavor-changing couplings between the neutral components of
Φ and the mass eigenstate quarks:

DμΦ = ∂μΦ − i
gL

√2
(W +

LμT
+
L + W −

LμT
−
L )Φ

+i
gR

√2
Φ(W +

RμT
+
R + W −

RμT
−
R )− ie (T 3

LΦ − ΦT 3
R)Aμ

−iZLμ(
gL

cos θW
T 3
LΦ +

gY

tanφ
ΦT 3

R) + i
gY

tanφ
ΦT 3

RZRμ.

–

yQ =
√2

k2
1 − k2

2

(k1V
u
LM

diag
u V u†

R − k2V
d
LM

diag
d V d†

R ),

ỹQ =
√2

k2
1 − k2

2

(−k2V
u
LM

diag
u V

u†
R + k1V

d
LM

diag
d V

d†
R ).

LY ⊃ uL(yQΦ0
1 + ỹQΦ0∗

2 )uR +
–
dL(yQΦ0

2 + ỹQΦ0∗
1 )dR + h.c.–



(4.70)

With the scalar and pseudoscalar fields rotated to their mass eigenstates,
the quark couplings are given by:

(4.71)

with couplings

(4.72)

(4.73)

(4.74)

(4.75)

The off-diagonal terms in these couplings are induced by the nontrivial
structure of the mixing matrices VL and VR, leading to tree-level flavor-
changing neutral currents (FCNC). These interactions are tightly
constrained by experimental limits on FCNC processes [76]. A similar
mechanism applies in the leptonic sector due to the non-diagonality of the
PMNS matrix.

4.6 PROBLEMS IN THE LRSM

While the LRSM elegantly addresses several shortcomings of the SM, such
as restoring parity symmetry at high energies and explaining non-zero

LY ⊃ ui (λHUU
ijk Hk + iλAUU

ijk Akγ
5)uj +

–
di (λHDD

ijk Hk − iλADD
ijk Akγ

5)dj,–
––––

λHUU
ijk =

k1ZS,1k − k2ZS,2k

k2
1 − k2

2

Muiδij +
−k2ZS,1k + k1ZS,2k

k2
1 − k2

2

∑
l

V L
il MdlV

R∗
jl ,

–

λHDD
ijk =

k1ZS,1k − k2ZS,2k

k2
1 − k2

2

Mdiδij +
−k2ZS,1k + k1ZS,2k

k2
1 − k2

2

∑
l

V L∗
li MulV

R
lj ,

–

λAUU
ijk =

k1ZP ,1k + k2ZP ,2k

k2
1 − k2

2

Muiδij −
k2ZP ,1k + k1ZP ,2k

k2
1 − k2

2

∑
l

V L
il MdlV

R∗
jl ,

–

λADD
ijk =

k1ZP ,1k + k2ZP ,2k

k2
1 − k2

2

Mdiδij −
k2ZP ,1k + k1ZP ,2k

k2
1 − k2

2

∑
l

V L∗
li MulV

R
lj .

–



neutrino masses through a natural seesaw mechanism, it also faces
significant theoretical and phenomenological challenges:

Doubly Charged Higgs Bosons: The scalar triplet fields ΔL,R

introduced to break the LR symmetry and implement the seesaw
mechanism predict the existence of doubly charged Higgs bosons, 
H±±. These exotic states have yet to be observed at collider
experiments, such as the LHC, and current bounds place stringent
constraints on their masses and couplings. The absence of detection
challenges the minimal LRSM or pushes the relevant scale beyond
current experimental reach.
Fine-Tuning of the Left-Handed Triplet VEV: To generate light
neutrino masses via the type-I or type-II seesaw mechanism, the VEV
of the LH triplet, vL, must be highly suppressed (vL ≲ O(1 eV)).
However, the scalar potential naturally induces a non-zero vL through
terms proportional to the RH triplet VEV, vR. Achieving a sufficiently
small vL requires delicate fine-tuning of parameters in the scalar
potential, raising concerns about naturalness and stability.
Extended Higgs Sector: The minimal LRSM contains a large number
of scalar fields: a bidoublet Φ and two triplets ΔL and ΔR. This rich
scalar content leads to a complicated scalar potential with many
parameters and mass eigenstates. Diagonalizing the full scalar mass
matrices and analyzing the physical spectrum and couplings becomes a
technically challenging task. Moreover, the mixing among scalars
complicates the phenomenology and makes it harder to identify SM-
like Higgs signatures.
Tree-Level FCNC: In the minimal LRSM, both the up-type and down-
type quark mass matrices receive contributions from two Yukawa
couplings due to the bidoublet Φ, leading to a non-diagonal structure in
the physical basis. As a result, the Higgs-mediated neutral current
interactions are not flavor-diagonal at tree level. This gives rise to
FCNC processes such as K 0 − K̄ 0 and B0 − B̄0 mixing, which are
tightly constrained by experiment. Suppressing these FCNCs either
requires fine-tuning the Yukawa matrices or introducing additional
symmetries or mechanisms.



Due to these challenges, various extensions and modifications of the
LRSM have been proposed. In the following chapter, we explore one such
alternative: the LRSM with an inverse seesaw mechanism, which alleviates
some of the aforementioned problems while preserving the appealing
features of LR symmetry.





CHAPTER 5

Doublet Left-Right Symmetric Model

DOI: 10.1201/9781003457701-5

In the previous chapter, it was emphasized that the conventional LRSM suffers
from a non-minimal Higgs sector, typically involving a bidoublet and two triplet
scalar fields. This setup complicates the model and often leads to tensions with
low-scale phenomenology. An alternative approach is to consider a simplified
Higgs sector consisting of a single bidoublet and one SU(2)R doublet Higgs field,
with the possible inclusion of an SU(2)L doublet in certain extensions. This
minimal configuration defines the Doublet LRSM, which offers a more economical
structure and improved compatibility with experimental constraints [81, 82].

In this framework, neutrino masses are generated via the Inverse Seesaw (IS) or
Linear Seesaw (LS) mechanisms, as discussed in Chapter 1.

5.1 MODEL STRUCTURE

The DLRSM is based on the extended gauge group:
SU(3)C × SU(2)L × SU(2)R × U(1)B−L.

The fermion content mirrors that of the conventional LRSM, with left- and RH
doublets for both quarks and leptons:

(5.1)

QL = ( ) ∼ (3, 2, 1, 1/3), QR = ( ) ∼ (3, 1, 2, 1/3),

LL = ( ) ∼ (1, 2, 1, −1), LR = ( ) ∼ (1, 1, 2, −1).

uL

dL

uR

dR

νL

eL

νR

eR
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Parity symmetry is manifest at high energies, implying invariance of the
Lagrangian under the exchange QL ↔ QR, LL ↔ LR. Notably, the presence of
the RH neutrino νR is required for the completeness of the lepton doublet.

To implement the IS mechanism, the model introduces three SM singlet
fermions S1 with B − L = −2 and three singlets S2 with B − L = +2. This
pairwise inclusion ensures cancellation of U(1)B−L anomalies [72]. To avoid a
direct Majorana mass term MS̄ c

1S2, which would spoil the structure of the IS, a
discrete Z2 symmetry is imposed, under which all fields are even except S1, which
is odd. Here, we consider the following Higgs sector consists of:

A scalar bidoublet ϕ, responsible for EW symmetry breaking,
An SU(2)R scalar doublet χR, which breaks SU(2)R × U(1)B−L down to 
U(1)Y .

The hypercharge is defined via the relation:
Y = 2T 3

R + (B − L),

where T 3
R is the third component of the SU(2)R isospin. The full field content and

their quantum numbers under the gauge group are summarized in Table 5.1.

TABLE 5.1 Field content of the DLRSM and their gauge quantum numbers. ⏎

Fields SU(3)C × SU(2)L × SU(2)R × U(1)B−L

QL = ( ) (3, 2, 1, 1
3 )

QR = ( ) (3, 1, 2, 1
3 )

LL = ( ) (1, 2, 1, −1)

LR = ( ) (1, 1, 2, −1)

S1 (1, 1, 1, −2)

S2 (1, 1, 1, 2)

ϕ = ( )
(1, 2, 2, 0)

uL

dL

uR

dR

νL

eL

νR

eR

ϕ0
1 ϕ+

1

ϕ−
2 ϕ0

2



Fields SU(3)C × SU(2)L × SU(2)R × U(1)B−L

χR = ( )
(1, 1, 2, 1)

This LR extension with IS, henceforth referred to as LRIS, leads to rich
phenomenological implications, including TeV-scale RH gauge bosons and
observable lepton flavor violation, which have been studied in Refs. [72, 81–84].
The symmetry breaking in the LRIS model proceeds in two stages. The first stage
reduces the gauge symmetry SU(2)L × SU(2)R × U(1)B−L to the SM gauge
group via the VEV of a RH scalar doublet χR:

SU(2)L × SU(2)R × U(1)B−L SU(2)L × U(1)Y .

(5.2)

This breaking occurs when χR develops a VEV in its neutral component:

(5.3)

where vR ≫ 1 TeV ensures that the associated gauge bosons W ±
R

 and ZR acquire
large masses [85, 86].

The SM hypercharge is identified as a combination of the SU(2)R and U(1)B−L

generators:
Y = T 3

R + QB−L,

(5.4)

which is unbroken by ⟨χR⟩, since:

Y (⟨χR⟩) = T 3
R(⟨χR⟩) + QB−L(⟨χR⟩) = 0.

(5.5)

The corresponding gauge couplings obey:
1

g2
Y

=
1

g2
R

+
1

g2
B−L

.

(5.6)

The second stage of symmetry breaking, from the SM to electromagnetism, is
driven by the VEVs of the neutral components of a Higgs bidoublet Φ:

χ+
R

χ0
R

⟨χR⟩
−→

⟨χR⟩ =
1

√2
( ),

0

vR



SU(2)L × U(1)Y U(1)EM,

(5.7)

with

(5.8)

where √k2
1 + k2

2 = v = 246 GeV is the electroweak scale. At this stage, the gauge
bosons W ±

L  and ZL acquire masses, and the electromagnetic coupling constant
satisfies:

1

e2
=

1

g2
L

+
1

g2
R

+
1

g2
B−L

=
1

g2
L

+
1

g2
Y

.

(5.9)

5.2 NEUTRINO AND FERMION MASSES IN THE LRIS

The Yukawa Lagrangian gives Dirac masses for fermions and light neutrino
masses via the IS mechanism for all three generations. The relevant terms are:

(5.10)

The bidoublet ϕ and its conjugate ~
ϕ couple to both quarks and leptons, generating

Dirac masses. The RH doublet χR couples only to leptons and sterile singlet
fermions S2, generating the IS mechanism for neutrino masses. After B − L

breaking, a small Majorana mass term μsS̄
c
2S2 arises from a dimension-seven non-

renormalizable operator, yielding:

μs = λs

v4
R

M 3
≲ O(1) keV,

(5.11)

where λs is a dimensionless coupling. For vR ∼ O(103) GeV, μs ∼ 10−7 GeV for 
M ∼ 103 TeV and λs ∼ O(1) [87]. Tus the neutrino mass terms are:

⟨Φ⟩
−→

⟨Φ⟩ =
1

√2
( ),
k1 0

0 k2

LY =
3

∑
i,j=1

[yLijL̄LiϕLRj + ~yLijL̄Li
~
ϕLRj + yQijQ̄LiϕQRj

+ ~yQijQ̄Li
~
ϕQRj + ysijL̄Ri

~χRS
c
2j]+ h.c.



L
ν
m = MDν̄LνR + MRν̄

c
RS2 + μsS̄

c
2S2 + h.c.,

(5.12)

where MD = v

√2
(yLsβ + ~yLcβ) is the Dirac mass matrix, and MR = vR

√2
ys. The

complete 9 × 9 neutrino mass matrix in the basis ψ = (ν c
L, νR,S2) is:

(5.13)

This matrix yields three light neutrino masses:
mνℓ = MDM

−1
R μs(M

T
R )−1M T

D ,

(5.14)

and six heavy states with masses:
m2

νh = M 2
R + M 2

D.

(5.15)

The matrix Mν  is diagonalized by a unitary matrix V such that:
V T
MνV = M diag

ν .

(5.16)

The light neutrino mass matrix in Eq. (5.14) is diagonalized by the physical
lepton mixing matrix, known as the PMNS matrix UMNS [88], according to the
relation:

U T
MNS mνl UMNS = mdiag

νl ≡ diag(mνe ,mνμ ,mντ ).

(5.17)

This allows us to express the Dirac neutrino mass matrix as:

mD = UMNS
√m

diag
νl R√μ−1

s MN ,

(5.18)

where R is a general orthogonal matrix. This expression extends the well-known
Casas-Ibarra parameterization for type-I seesaw [69], which corresponds to

mD = UMNS
√mdiag

νl R√MN .

Mν = .
⎛⎜⎝ 0 MD 0

M T
D 0 MR

0 M T
R μs

⎞⎟⎠



The full 9 × 9 neutrino mass matrix Mν  is diagonalized by a unitary matrix V
such that

V T
Mν V = M diag

ν ,

(5.19)

where V has the block structure:

(5.20)

The submatrix V3×3, which governs the mixing among the light neutrinos, is
approximately given by

V3×3 ≃ (1 −
1

2
FF T)UMNS,

(5.21)

where the correction term 1
2 FF

T  characterizes the deviation from unitarity due to
mixing with the heavy neutrino states. Here, F is defined as

F = mDM
−1
N .

(5.22)

Hence, in general, V3×3 is not exactly unitary, and the extent of non-unitarity is
governed by the size of FF T . The matrix V3×6, which encodes the mixing between
light and heavy neutrinos, takes the form:

V3×6 = (03×3, F)V6×6,

(5.23)

while V6×6 is the matrix that diagonalizes the mass matrix in the heavy neutrino
sector involving νR and S2.

Furthermore, after electroweak symmetry breaking, quarks and charged leptons
acquire masses via the Higgs mechanism:

(5.24)

V = ( ).
V3×3 V3×6

V6×3 V6×6

Mu =
v

√2
(yQsβ + ~yQcβ),

Md =
v

√2
(yQcβ + ~yQsβ),



(5.25)

(5.26)

with k1 = vsβ, k2 = vcβ, and v = 246 GeV. Diagonalization of these matrices
gives the physical masses:

M diag
f = V f†

L M ′
fV

f
R , f = u, d, ℓ.

(5.27)

The original Yukawa matrices are expressed as:

(5.28)

(5.29)

Unlike the SM, fermion masses arise from two distinct VEVs, leading to a non-
trivial flavor structure and the potential for tree-level FCNCs via neutral Higgs
exchange.

5.3 HIGGS SECTOR IN LRIS

The Higgs sector of the LRIS model consists of a bidoublet Φ and a RH doublet
χR. The symmetry breaking occurs in two stages:

(5.30)

(5.31)

The neutral components of these Higgs fields expand around their VEVs as:

Φ0
1 =

k1 + h0
1 + iφ0

1

√2
, Φ0

2 =
k2 + h0

2 + iφ0
2

√2
, χ0

R =
vR + h0

R + iφ0
R

√2
.

Mℓ =
v

√2
(yLcβ + ~yLsβ),

yQ = −
√2

vc2β
(sβV

u
LMuV

u†
R − cβV

d
LMdV

d†
R ),

~yQ = −
√2

vc2β
(cβV

u
LMuV

u†
R − sβV

d
LMdV

d†
R ).

SU(2)L × SU(2)R × U(1)B−L → SU(2)L × U(1)Y ,

SU(2)L × U(1)Y → U(1)EM.



Before symmetry breaking, the model contains 12 scalar degrees of freedom (8
from Φ and 4 from χR). After breaking, 6 scalars remain as physical Higgs bosons:
two charged Higgs bosons, one pseudoscalar, and three neutral CP-even Higgs
bosons.

Singly Charged Scalars
The mass matrix for the charged Higgs bosons in the basis (ϕ±

1 ,ϕ±
2 ,χ±

R) is given
by:

Diagonalizing this matrix leads to a physical charged Higgs mass:

m2
H± =

α32

2
(

v2
R

c2β
+ v2c2β),

where α32 = α3 − α2. The mass is typically in the range of hundreds of GeV for 
vR ∼ O(TeV).

The physical charged Higgs is a combination of ϕ±
1 , ϕ±

2 , and χ±
R, with the

following mixing:

H± = ZH±

13 ϕ±
1 + ZH±

23 ϕ±
2 + ZH±

33 χ±
R.

Neutral Pseudoscalars
For the neutral CP-odd Higgs bosons, the mass matrix is:

The eigenvalue for the pseudoscalar mass is:

m2
A =

1

2
(

v2
R

c2β
α32 − 4v2(2λ2 − λ3)),

which is typically in the range of a few hundred GeV for vR ∼ O(TeV).
The physical pseudoscalar is given by:

A = cβϕ
0I
1 + sβϕ

0I
2 ,

M 2
H± =

α32

2
.

⎛⎜⎝ v2
Rs

2
β

c2β

v2
Rs2β

2c2β
−vvRsβ

.
v2
Rc

2
β

c2β
−vvRcβ

. . v2c2β

⎞⎟⎠M 2
A =

1

2
(
v2
Rα32

c2β
− 4v2(2λ2 − λ3)) .

⎛⎜⎝c2
β sβcβ 0

. s2
β 0

. . 0

⎞⎟⎠



where sβ ≪ 1, so A ≈ ϕ0I
1 .

Neutral Scalar
The mass matrix for the neutral CP-even Higgs bosons is:

M 2
H =

∂ 2V (ϕ,χL,R)

∂ϕ0R
i ∂ϕ0R

j
⟨ϕ0R

i,j ⟩=0.

This matrix can be diagonalized to yield the masses of the physical neutral Higgs
bosons. In particular, one of the eigenvalues corresponds to the SM-like Higgs
boson, while the other three eigenvalues correspond to the heavy Higgs bosons.
However, there is the possibility that one of the new scalar states could be lighter
than the SM Higgs, with a mass of order 95 GeV, potentially explaining some
observed anomalies (such as deviations in Higgs-like particle searches at the
LHC). The mass spectrum can therefore exhibit a light new Higgs state below the
standard 125 GeV threshold, which could also affect phenomenology at colliders.

5.4 PHENOMENOLOGICAL IMPLICATIONS OF THE LRIS
MODEL

The LRIS model offers a rich and testable phenomenology at both low-energy
precision experiments and high-energy collider searches. Its extended gauge
structure, additional Higgs fields, and the presence of quasi-Dirac heavy neutrinos
lead to distinctive experimental BSM signatures. In this section, we explore three
key phenomenological aspects of the LRIS framework. First, we examine its
potential to address the long-standing discrepancy in the muon's anomalous
magnetic moment, (g − 2)μ, through loop contributions involving new gauge and
scalar degrees of freedom. Second, we investigate the prospects for detecting
heavy Higgs bosons predicted by the model at the LHC, focusing on their
production channels and decay patterns. Finally, we analyze the lepton flavor
violating process μ → eγ, which can receive significant enhancements in the LRIS
scenario due to the interplay between the IS mechanism and new flavor-violating
interactions. These complementary probes collectively constrain the parameter
space of the LRIS model and offer promising avenues for its experimental
verification.

5.4.1 Muon g − 2 in the LRIS Framework
In this section, we investigate the contributions of the LRIS model to the muon
anomalous magnetic moment, aμ, arising from the exchange of both light and

∣



heavy gauge bosons (W ,W ′,Z,Z ′), neutral scalars (hi,A), and charged Higgs
bosons (H±), as illustrated in Fig. 5.1 [89].

Figure 5.1  One-loop LRIS contributions to lepton gℓ − 2 via massive neutrino loops.
The exchanged particles include V ± = W ,W ′, V 0 = Z,Z ′, S 0 = hi,A, and the
charged Higgs boson H±. ⏎

The total new physics contribution to aμ in this framework is given by

δaμ ≡ aLRIS
μ = aWμ + aW

′

μ + aZμ + aZ
′

μ + ahμ + aAμ + aH
±

μ ,

(5.32)

where the individual terms, neglecting W−W ′  and Z−Z ′  mixing, are given by

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

aWℓ = Gℓ
F

9

∑
k=1

|Uk,|ℓ||
2 ( 10

3
+F2(xνk

W )),

aW
′

ℓ = Gℓ
F

9

∑
k=1

|Uk,3+|ℓ||
2 (

10

3
+F2(xνk

W ′))[
1

cw
xW
W ′],

aZℓ = Gℓ
F (c4w − 5)( 1

3
),

aZ
′

ℓ = Gℓ
F (c4w′ − 12c2w′ − 5)[

t2
w

48s2
2w′

xW
Z ′],

ahℓ = Gℓ
F

3

∑
i=1

xℓ
hi(Γhi

ℓℓ)2 (
7

6
+ logxℓ

hi),

aAℓ = −
1

2
Gℓ

Fx
ℓ
A(ΓA

ℓℓ)
2 ( 7

6
+ logxℓ

A),



(5.38)

with |ℓ| = 1, 2 for ℓ = e,μ, and Gℓ
F =

GFm
2
ℓ

8√2π2
. The mass ratios are defined as 

xa
b = m2

a/m2
b . The mixing angles are sw′ = gY /gR and sw = e/gL, with 

tan θw′ ≲ 10−4 [90], and the charged gauge boson mass satisfies 
mW ′ ≳ O(4 TeV).

Among these, the Z′, W′, hi, and A contributions are highly suppressed due to
small mass ratios and can be neglected. Additionally, the second term in Eq. (5.33),
which involves heavy RH neutrino loops, contributes only O(10−2), less than 
0.4% of the dominant term, and is further suppressed by the GIM mechanism [91]
due to the unitarity of the full 9 × 9 neutrino mixing matrix [87, 92, 93].
The charged Higgs contribution aH±

ℓ  takes the form

(5.39)

where ζ ′
kℓ = v

mνk

ζkℓ, ξ′
kℓ = v

mℓ
ξkℓ, and the loop functions are

(5.40)

(5.41)

In the limit x → 1, F1(1) = 1 and F2(1) = 1
2

. Over all x, the ratio F2/F1

remains O(1), ranging between 1/3 and 2/3.
The effective photon coupling is approximated by

ΓH±

γ ≃
1

6e
(gLU

0
21 + gRU

0
31),

(5.42)

valid in the limit vR ≫ v, with a typical value ΓH±

γ ∼ 0.076. The first term in the
sum contributes only about 0.02% of the second term, which dominates. Thus, the
leading contribution is

aH
±

ℓ = Gℓ
F ΓH±

γ

9

∑
k=1

(|ζ ′
kℓ|

2
F2(xνk

H±) + 2 ζ ′
kℓξ

′
kℓF1(xνk

H±)),

Fk(x) =
xPk(x)

(x − 1)k+1
−

6xk+1 logx

(x − 1)k+2
,

P1(x) = 3x + 3, P2(x) = 2x2 + 5x − 1.

aH
±

ℓ ≃ 2Gℓ
F ΓH±

γ

9

∑
k=4

ζ ′
kℓξ

′
kℓF1(x

νk
H±) ≲

3ΓH±

γ

8π2
mℓ

9

∑
k=4

ζkℓξkℓ

mνk

.



(5.43)

This contribution is enhanced by the inverse dependence on the charged lepton
mass in ξ′

kℓ, making it potentially significant in explaining the aμ anomaly, as
shown in Fig. 5.2.

Figure 5.2  Muon magnetic moment anomaly δaμ as a function of the mass ratio
parameter xν5

H± = m2
ν5

/m2
H± , where mν5  and mH±  denote the second-heaviest

neutrino and charged Higgs masses, respectively. The 1σ and 2σ confidence
regions from experimental measurements are shown with bands between
horizontal lines. The benchmark point, circulated in dark–shaded region, was
considered in Ref. [89]. ⏎

5.4.2 Heavy Higgs Search in the LRIS Model at the LHC
As discussed above, following Left-Right and electroweak symmetry breaking, the
CP-even neutral Higgs mass matrix M 2

H  is diagonalized by the unitary matrix ZH.
The lightest eigenstate, H1 ≡ h, is identified with the SM-like Higgs boson. The
remaining two eigenvalues are given by

m2
H2,3

=
1

2
(T h − m2

h ∓√(T h − m2
h)2 −

4Dh

m2
h

),



(5.44)

where T h = Tr(M 2
H) and Dh =det (M 2

H) denote the trace and determinant of the
mass matrix, respectively.

From Eq. (5.44), the next-to-lightest CP-even neutral Higgs boson, H2 ≡ h′,
can acquire a mass in the few hundred GeV range. In our analysis, we scan the
scalar potential parameters within the ranges:

(5.45)

The physical eigenstate h′ is composed of real parts of neutral scalar fields:
h′ = ZH

21 ϕ
0R
1 + ZH

22 ϕ
0R
2 + ZH

23 χ
0R
R ,

(5.46)

where ZH is the CP-even Higgs mixing matrix. Benchmark points with mh′ = 250,
400, and 600 GeV are adopted as in Ref. [94]. The h′ state is dominantly composed
of the ϕ1 component, with subdominant contributions from ϕ2 and χR.

The trilinear coupling of h′ with two SM-like Higgs bosons is given by:
gh′hh ≈ −2iZH

21Z
H
12 {v [(λ1 − λ23) cosβ + 3λ4 sinβ]ZH

12 + α4vRZ
H
13},

(5.47)

where we fix gL = gR = g2 = 0.663, gBL = 0.422, and vR = 6400 GeV, while
the scalar potential parameters are varied as in Eq. (5.45). At the LHC, the heavy
Higgs boson h′ is predominantly produced via gluon-gluon fusion (ggF), which
accounts for approximately 90% of its total production. For mh′ ≤ 600 GeV, the
decay branching ratio BR(h′ → hh) remains sizable, typically exceeding 10%,
making this channel promising for discovery.

Among the possible final states, the decay chain h′ → hh → bb̄γγ offers a clean
experimental signature and manageable background. The corresponding Feynman
diagram is shown in Fig. 5.3. We perform a dedicated analysis for the three
benchmark masses of h′: 250, 400, and 600 GeV.

λ1 ∈ [0.18, 0.30], λ4 ∈ [0.70, 0.99], α1 ∈ [0.06, 0.16],

α4 ∈ [0.60, 0.99], ρ1 ∈ [0.08, 0.14], λ23 ∈ [−0.1, 3].



Figure 5.3  Feynman diagram for h′ production via ggF and decay into hh → bb̄γγ. ⏎

Using the narrow width approximation, the total cross-section for the process is:

Table 5.2 summarizes the production cross-section, branching ratio, and total
signal rate for the three considered h′ masses. To assess the discovery potential, we
analyze the signal and background distributions at √s = 14 TeV with an
integrated luminosity of 300 fb−1. Figure 5.4 shows the number of signal events
for mh′ = 250 and 400 GeV before and after applying selection cuts, following the
procedure of Ref. [94].

TABLE 5.2 Production cross-section and decay branching ratios for different values of mh′ . ⏎

mh′ (GeV) σ(pp → h′) (pb) BR(h′ → hh) σ(pp → h′ → hh → bb̄γγ) (fb)

250 12.140 0.30 6.30

400 5.050 0.20 1.01

600 0.504 0.18 0.05

σ(pp → h′ → hh → bb̄γγ) ≈ σ(pp → h′) × BR(h′ → hh)

× BR(h → bb̄) × BR(h → γγ).



Figure 5.4  Signal event distributions for h′ → bb̄γγ at mh′ = 250 GeV (dotted line)
and 400 GeV (dashed line), compared to the SM background (solid line), before
(left) and after (right) applying selection cuts at √s = 14 TeV and 
Lint = 300 fb−1 [94]. ⏎

5.4.3 μ → eγ in the TeV-Scale B − L Model with IS
We now examine the charged lepton flavor violating (LFV) process μ → eγ within
the framework of LRIS. A number of experimental efforts have been dedicated to
probing such LFV decays, with the μ → eγ channel receiving particular attention.
The most stringent upper limit to date, reported by the MEG collaboration [95], is:

BR(μ → eγ) < 4.2 × 10−13.

(5.48)

Future experiments aim to enhance this sensitivity by up to three orders of
magnitude.

It is worth noting that, within the SM augmented by tiny neutrino masses, the
branching ratio for this decay is extremely suppressed:

BR(μ → eγ)SM ≃ 10−55,

(5.49)

rendering any experimental signal of this process a definitive indicator of new
physics.

The decay amplitude receives contributions from both light and heavy neutrinos
in the loop, along with the W boson, as depicted in Fig. 5.5. In the limit me → 0,
the amplitude can be expressed as:

A(μ → eγ) ≃
mμGF

32√2π2

9

∑
i=1

V ∗
μiVeif(ri) × ū(p)[2e(p′ ⋅ ϵ)]u(p′),

(5.50)



Figure 5.5  Feynman diagram for the dominant contribution to μ → eγ in the LRIS.
⏎

where f(ri) is the loop function and ri = m2
νi

/M 2
W .

Defining the overall amplitude coefficient as:

a =
emμGF

32√2π2

9

∑
i=1

V ∗
μiVeif(ri),

(5.51)

the decay width becomes:

Γ(μ → eγ) =
m3

μ

8π
|a|2.

(5.52)

Normalizing to the standard muon decay width Γ(μ → eνν̄) ≃ m5
μG

2
F/(192π3)

, the branching ratio is given by:

BR(μ → eγ) =
Γ(μ → eγ)

Γ(μ → eνν̄)
=

3α

64π

9

∑
i=1

V ∗
μiVeif(ri)

2

,

(5.53)

with α = e2/(4π) ≃ 1/137.
From the MEG upper limit in Eq. (5.48), one obtains the constraint:∣ ∣



9

∑
i=1

V ∗
μiVeif(ri) < 1.95 × 10−5.

(5.54)

In the limit where LH neutrinos are extremely heavy, the mixing matrix V3×3

becomes nearly unitary, and the light neutrino contributions (i = 1, 2, 3) to the
amplitude are negligible. Additionally, in this regime, the heavy neutrino
contributions are highly suppressed due to the smallness of the mixing terms (
Vμi,Vei ∼ mD/MN ∼ O(10−9)), ensuring that the bound in Eq. (5.54) is easily
satisfied and BR(μ → eγ) ≪ 10−12.

Conversely, in the TeV-scale IS scenario, the lepton mixing matrix is
significantly non-unitary, and the mixing between light and heavy neutrinos is no
longer suppressed (mD/MN ∼ O(0.1)). In this context, the constraint can be
rewritten as:

10

3

3

∑
i=1

V ∗
μiVei +

9

∑
j=4

V ∗
μjVejf(rj) < 1.95 × 10−5,

(5.55)

where rj = (mνHj
/MW )2 and the mixing elements Ve(μ)j are given by:

(5.56)

Assuming rj ≫ 1 so that f(rj) ≃ 4/3, the constraint simplifies to:
3

∑
i=1

V ∗
μiVei < 0.8 × 10−5,

(5.57)

which imposes the condition (FF T )21,12 ≲ 10−4. This limit is typically satisfied
in the IS framework, given the restrictions on the off-diagonal components of the
non-unitary UMNS matrix.

∣ ∣∣ ∣Ve(μ)j = [(0,mDM
−1
N )V6×6]1(2),j−3

= [(0,UMNS
√mdiag

νl R√μ−1
s )V6×6]

1(2),j−3

.∣ ∣





CHAPTER 6

SU(5) Grand Unified Theory

DOI: 10.1201/9781003457701-6

The SU(5) theory stands as a widely studied example of a simple Grand
Unified Theory (GUT), first proposed by Georgi and Glashow in 1974 [96].
Unlike SM, SU(5) is a rank-four group1. Since the SM gauge group, 
SUC(3) × SUL(2) × UY (1), also has rank four, any viable GUT must have
at least this rank. Possible candidate groups with rank four include:

After careful examination, only [SU(3)]2 and SU(5) remain viable
candidates, as complex representations are required to accommodate chiral
fermions. In the SM, left- and RH fermions transform differently, e.g., 
e

†
L ≠ eR. However, [SU(3)]2 is ultimately excluded because it implies that

leptons carry color quantum numbers and leads to unphysical flavor
assignments, both of which are incompatible with experimental
observations. Consequently, SU(5) stands out as the unique minimal
candidate for unification.
 1The rank of a group is the number of mutually commuting generators that can be simultaneously
diagonalized.⏎

6.1 SU  (5) FERMION CONTENT

[SU(3)]2, [SU(2)]4, O(9), O(8), Sp(8), SU(5),

F4 (exceptional group).

https://doi.org/10.1201/9781003457701-6


A defining feature of GUTs, particularly SU(5), is the unification of the
SM matter content into irreducible representations of higher dimensions of
the unified group. This must be achieved while preserving the correct
transformation properties under the SM subgroup.

Each generation of SM fermions consists of 15 left-handed Weyl spinors.
We organize them using the fundamental representations of SU(5), that is,
5 and its conjugate 5*. These decompose under 
SU(3)C × SU(2)L × U(1)Y  as [97]:

5 = (3, 1)−1/3 ⊕ (1, 2)1/2, 5∗ = (3∗, 1)1/3 ⊕ (1, 2)−1/2.

(6.1)

Here, we adopt the convention that the first three components correspond to
SU(3)C  and the last two to SU(2)L. The hypercharge is embedded to
satisfy the tracelessness condition of SU(5) generators. In particular, a
decomposition such as (3, 1)2/3 ⊕ (1, 2)1/2 would violate tracelessness and
is therefore not allowed.

The 5 representation can be populated as:

(6.2)

where dr,g,b are RH down-type quarks, and e+ and ν c
e  denote the RH

charged lepton and neutrino, respectively.
Applying charge conjugation, (ψR)c = Cγ0ψ

∗
R ≡ (ψc)L, we obtain the

5* representation:

(6.3)

5 ≡ (ψi)R =

R

,

⎛⎜⎝ dr

dg

db

e+

−ν c
e

⎞⎟⎠5∗ ≡ (ψi)L ≡ ψc
L =

L

.

⎛⎜⎝ dcr
dcg

dcb
e−

−νe

⎞⎟⎠



This assignment matches precisely the quantum numbers of SM particles.
To incorporate the remaining left-handed SM fermions, we consider

higher-dimensional representations built from tensor products:
5 ⊗ 5 = 15S ⊕ 10A, 5 ⊗ 5∗ = 24 ⊕ 1,

(6.4)

where the subscripts denote symmetric (S) and antisymmetric (A) parts.
Their decompositions are:

15 = (6, 1)−4/3 ⊕ (3, 2)1/3 ⊕ (1, 3)2,

(6.5)

10 = (3∗, 1)−4/3 ⊕ (3, 2)1/3 ⊕ (1, 1)2.

(6.6)

The 15 representation contains exotic color sextets not observed
experimentally, while the 10 representation beautifully matches the SM
content.

Explicitly, the antisymmetric 10 representation, accommodating uc
L, QL,

and e+
L , is given by:

(6.7)

Thus, the SM fermions of a single generation neatly fit into the 5∗ ⊕ 10 of 
SU(5).

6.2 CHARGE QUANTIZATION IN SU(5)

One of the profound successes of SU(5) GUTs is the natural explanation of
electric charge quantization [98]. In this framework, charge quantization
arises from two key principles:

10 ≡ (χij)L =
1

√2

L

.

⎛⎜⎝ 0 uc
3 −uc

2 u1 d1

−uc
3 0 uc

1 u2 d2

uc
2 −uc

1 0 u3 d3

−u1 −u2 −u3 0 e+

−d1 −d2 −d3 −e+ 0

⎞⎟⎠



The SM gauge groups SU(3)C , SU(2)L, and U(1)Y  commute,
implying that particles differing only by color or weak isospin have
identical hypercharges.
The SU(5) generators are traceless, constraining the embedding of 
U(1)Y .

Remarkably, the sum of electric charges within a given SU(5) multiplet
vanishes. For instance, in the 5* representation:

3q(dc) + q(e−) + q(νe) = 0,

(6.8)

leading to the relation 3(− 1
3

) + (−1) + 0 = 0, which fixes the down quark
charge as q(d) = −1/3. This elegant result is a direct consequence of group
theory and provides deep insight into one of the most mysterious features of
the SM.

6.3 SU  (5) GENERATORS

The group SU(n) is defined as the set of n × n unitary matrices with
determinant one. A general SU(n) transformation is expressed as

U = exp (i
n2−1

∑
a=1

Ba Ta) = exp (−iB ⋅ T),

(6.9)

where the Ta are the generators of the Lie algebra, satisfying the properties
of being Hermitian, traceless, and normalized according to

Tr(λaλb) = 2δab,

(6.10)

with λa the analogs of Gell-Mann matrices. For SU(5), there are 24
generators (a = 1, … , 24), corresponding to the dimension of the group.

To identify the 24 associated vector bosons, denoted by 
Aμ = Aa

μ Ta = Aa
μλa/2, we embed the SM gauge group 



SU(3)C × SU(2)L × U(1)Y  into SU(5) as follows:

Eight generators (T1, … ,T8) are associated with the SU(3)C
subgroup,
Three generators (T9,T10,T11) correspond to SU(2)L,

One generator (T12) is assigned to U(1)Y .

The SU(3) generators act on the first three indices, while the SU(2)
generators act on the last two, ensuring their commutativity. Explicitly:

(6.11)

where λ1...8 are the usual SU(3)C  Gell-Mann matrices. Similarly, the 
SU(2)L generators are embedded as

(6.12)

where σ1,2,3 are the Pauli matrices.
The SU(2)L weak isospin third generator, corresponding to T11, is given

explicitly by

(6.13)

T1...8 =
1

2
,

⎛⎜⎝ 0 0

λ1...8 0 0

0 0

0 0 0 0 0

0 0 0 0 0

⎞⎟⎠T9,10,11 =
1

2
,

⎛⎜⎝ 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 σ1,2,3

0 0 0

⎞⎟⎠T11 = .

⎛⎜⎝0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1/2 0

0 0 0 0 −1/2

⎞⎟⎠



The generator associated with U(1)Y  is chosen to respect commutation
with SU(3)C  and SU(2)L generators, tracelessness, and correct
hypercharge normalization:

(6.14)

Thus, the SM gauge group is embedded naturally inside SU(5), and the
twelve corresponding gauge bosons are associated with the above
generators.

The remaining twelve generators correspond to massive vector bosons X
and Y, responsible for transitions between quarks and leptons and mediating
proton decay. They are represented as off-diagonal matrices connecting the 
SU(3)C  triplet and SU(2)L doublet indices. Schematically, they are of the
form:

(6.15)

where M contains elements corresponding to raising and lowering
operators between color and weak indices.

Finally, we note that SU(5) is a rank 4 group, having four diagonal
generators. These can be identified as T3 and T8 from SU(3)C , T11 from 
SU(2)L, and T12 from U(1)Y , consistent with the SM structure.

Charge Operator
In the SM, the Gell-Mann-Nishijima relation expresses the electric charge
Q as

Q = T3 +
Y

2
,

(6.16)

T12 = √ 3

5
.

⎛⎜⎝− 1
3 0 0 0 0

0 − 1
3 0 0 0

0 0 − 1
3 0 0

0 0 0 1
2 0

0 0 0 0 1
2

⎞⎟⎠T ∼
1

√2
( ),

03×3 M3×2

M
†
2×3 02×2



where I3 is the third component of weak isospin and Y is the weak
hypercharge.

In SU(5), the electromagnetic charge operator Q is expected to be a
linear combination of the four diagonal generators. Since Q must commute
with all SU(3)C  generators (implying that quarks of the same flavor have
the same electric charge irrespective of color), we can express Q as

Q = T11 + T12 ≡ T11 +
3

5
Y ,

(6.17)

where T11 is the third generator of SU(2)L and Y is the properly normalized
hypercharge generator defined earlier.

Substituting the explicit matrix forms of T11 and T12, the action of the
charge operator Q on the fundamental representation 5 yields

(6.18)

Accordingly, the fundamental conjugate representation 5̄ (i.e., 5*)
transforms with opposite charges:

(6.19)

To determine the charge assignment for the 10 representation, we recall
that it transforms as an antisymmetric tensor:

ψij → Uik Ujl ψkl,

(6.20)

Q(ψi) = ≡ Qi δij.

⎛⎜⎝− 1
3 0 0 0 0

0 − 1
3 0 0 0

0 0 − 1
3 0 0

0 0 0 1 0

0 0 0 0 0

⎞⎟⎠Q(ψi) = −Qi δij = .

⎛⎜⎝ 1
3

0 0 0 0

0 1
3

0 0 0

0 0 1
3

0 0

0 0 0 −1 0

0 0 0 0 0

⎞⎟⎠



where U = eiα
aTa  is an element of SU(5). Infinitesimally, the variation

under a generator Ta reads

δψij = i ((Ta)ikψkj + (Ta)jlψil),

(6.21)

which implies that the charge operator acts as
Q(χij) = (Qi + Qj)χij.

(6.22)

Thus, the charge of a component χij is simply the sum of the charges Qi
and Qj corresponding to the fundamental indices i and j.

For example, taking i = 1, j = 2 yields

Q(χ12) = Q1 + Q2 = −
1

3
−

1

3
= −

2

3
,

(6.23)

which matches the charge of an up-type quark.
Explicitly, the full charge matrix for the 10 is

(6.24)

An important consequence of charge quantization in SU(5) arises from
the tracelessness condition imposed on the generators. Specifically, for the
quarks and leptons, the condition

3Qd + Qe+ = 0

(6.25)

must hold, where Qd denotes the down-type quark charge and Qe+  the
positron charge. This naturally explains why quarks carry electric charge 
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1/3 of that of leptons in grand unified theories [96–98].

6.4 GAUGE BOSONS

The SU(5) group possesses 52 − 1 = 24 gauge bosons. Twelve of these
correspond to the well-known gauge bosons of the SM, including the
photon, W±, Z0, and the eight gluons. The remaining twelve are exotic
gauge bosons capable of transforming quarks into leptons and vice versa, a
distinctive feature of grand unification [96].

This distinction becomes apparent when decomposing the SU(5) adjoint
representation under the SM subgroup:

24 = (8, 1)0 ⊕ (3, 2)−5/3 ⊕ (3̄, 2)5/3 ⊕ (1, 3)0 ⊕ (1, 1)0.

(6.26)

Here, the (8, 1)0 corresponds to the eight gluons of SU(3)C , the (1, 3)0

corresponds to the three weak gauge bosons W± and W3, and the (1, 1)0 is
the U(1)Y  hypercharge boson B. The (3, 2)−5/3 and (3̄, 2)5/3 components
represent the twelve new heavy gauge bosons, often called X and Y bosons,
which mediate baryon and lepton number-violating interactions.

Following the construction of the SU(5) generators, these 24 gauge
fields can be organized in matrix form as:

(6.27)

Aμ = Aa
μTa =

1

√2

+√ 3

5
Bμ,

⎛⎜⎝ X̄ r
μ Ȳ r

μ

G8
μ X̄ g

μ Ȳ g
μ

X̄ b
μ Ȳ b

μ

X r
μ X g

μ X b
μ W 3

μ W +
μ

Y r
μ Y g

μ Y b
μ W −

μ − 1
√2

W 3
μ

⎞⎟⎠⎛⎜⎝− 1
3 0 0 0 0

0 − 1
3 0 0 0

0 0 − 1
3 0 0

0 0 0 1
2 0

0 0 0 0 1
2

⎞⎟⎠



where G8
μ = A1…8

μ T1…8 are the gluons, W ±
μ = 1

√2
(A9

μ ∓ iA10
μ ) are the

charged weak bosons, W 3
μ = A11

μ T11, and Bμ = A12
μ T12 corresponds to

hypercharge.
The twelve new gauge bosons are defined via linear combinations, for

example:

X̄ r
μ =

1

√2
(A13

μ − iA14
μ ), X r

μ =
1

√2
(A13

μ + iA14
μ ),

(6.28)

and similarly for the other color indices g and b.
The charges of these gauge bosons, obtained analogously using Eq.

(6.17), are:

(6.29)

Eqs. (6.27) and (6.29) reveal that the X and Y gauge bosons transform under
the SM gauge group as (3̄, 2)−5/3, and not as their conjugate
representations.

These new bosons can be organized as doublets in color space:

(6.30)

The existence of these twelve heavy gauge bosons leads to distinct new
interactions. As previously noted, in SU(5), quarks and leptons are unified
into common multiplets [98]. Thus, the X and Y bosons can mediate
transitions between quarks and leptons, or between two quarks, thereby
enabling baryon and lepton number-violating processes. In particular, the
combination of two such vertices can induce proton decay, a key prediction
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of SU(5) grand unified theories [99], which will be discussed in detail in
the next section.

6.5 INTERACTIONS

The Lagrangian for the SU(5) gauge field theory incorporates the dynamics
of fundamental particles and their interactions. It includes terms governing
gauge fields, matter fields, and their mutual couplings. A simplified
expression for the SU(5) interaction Lagrangian reads [96, 98]:

L = Lgb + Lf + LΦ + LY ,

(6.31)

where each term corresponds to a distinct sector of the theory. We now
describe these contributions in more detail.

Gauge Boson Sector
The kinetic term for the SU(5) gauge bosons is governed by the field
strength tensor F a

μν . The gauge boson Lagrangian is given by

Lgb = −
1

4
F a
μνF

aμν,

(6.32)

where the field strength tensor is defined as
F a
μν = ∂μA

a
ν − ∂νA

a
μ + gf abcAb

μA
c
ν,

(6.33)

with f abc denoting the structure constants of SU(5). The structure constants
are given by

fabc =
1

4i
Tr (λa [λb,λc]),

(6.34)

where λa are the generators of SU(5) in the fundamental representation.



The covariant derivative acting on a field in the fundamental
representation is

Dμ = ∂μ − igG

24

∑
a=1

Aa
μ

λa

2
≡ ∂μ − igG Aμ,

(6.35)

where gG is the unified gauge coupling constant, and Aμ collectively
denotes the gauge fields.

Explicitly, the action of the covariant derivative on a fundamental field
ψp reads

Dμψp = ∂μψp − igG(Aμ)pqψq,

(6.36)

whereas for a two-index tensor field χpq (such as the antisymmetric 10

representation), the covariant derivative is
Dμχpq = ∂μχpq − igG(Aμ)prχrq − igG(Aμ)qsχps.

(6.37)

These structures form the basis for understanding the dynamics and
interactions of matter and gauge fields within the SU(5) grand unified
theory framework.

Fermion Sector
The kinetic term for the matter fields, denoted by Lf , describes the
propagation and gauge interactions of the fermions ψi. It incorporates the
covariant derivative Dμ to ensure local SU(5) gauge invariance. The
fermion Lagrangian reads

Lf = i(ψ
p
)Lγ

μDμ(ψp)L + i(χ
pq

)Lγ
μDμ(χpq)L,

(6.38)

where ψp and χpq represent the left-handed Weyl fermions in the 5∗ and 10

representations, respectively.

––



Substituting the explicit forms of the covariant derivatives from Eqs.
(6.36) and (6.37), the Lagrangian becomes

(6.39)

clearly exhibiting both the kinetic terms (independent of gG) and the
interaction terms between gauge bosons and fermions.

In particular, the interactions involving the heavy X and Y gauge bosons
with the SM fermions are given by

(6.40)

where α,β, γ are color indices, and ϵαβγ is the totally antisymmetric tensor.
These interactions lead to baryon and lepton number violation, providing a
framework for proton decay predictions in SU(5) GUTs [98, 99].

Scalar Sector
The scalar sector of SU(5) plays a crucial role in achieving spontaneous
symmetry breaking. In particular, scalar fields belonging to the adjoint 24

representation and the fundamental 5 representation are responsible for
breaking SU(5) down to the SM gauge group and further to U(1)EM.

The adjoint scalar field Φ acquires a VEV that triggers the breaking 
SU(5) → SU(3)C × SU(2)L × U(1)Y , while the 5-plet scalar field H5 is
responsible for electroweak symmetry breaking and giving masses to
fermions via Yukawa interactions.

The scalar Lagrangian LΦ is given by
LΦ = Tr [(DμΦ)†(DμΦ)] + (DμH5)†(DμH5) − V (Φ,H5),

(6.41)

where the trace is taken over the group indices and the covariant derivatives
are defined as

Lf = i ψ
p
γμ∂μψp + gG ψ

p
γμ(Aμ)pqψq + i χpqγμ∂μχpq

− igG(Aμ)prχpqγμχrq − igG(Aμ)qsχpqγμχps,

–––

––

L(X,Y ) =
gG

√2
[X

α

μ (
–
dαRγ

μe+
R +

–
dαLγ

μe+
L +ϵαβγu

cγ

L γ
μuβL)

+Y
α

μ (−
–
dαRγ

μν c
R+uαLγ

μe+
L +ϵαβγu

cγ

L γ
μdβL)]+h.c,

––

–––



DμΦ = ∂μΦ + igG[Aμ, Φ],

(6.42)

DμH5 = (∂μ − igG Aμ)H5.

(6.43)

The scalar potential V (Φ,H5) governs the self-interactions and the
mixing between Φ and H5. A simple form of the potential can be written as
[96, 97]

(6.44)

where μ2
24

, μ2
H5

 are mass parameters and λ24, λH5 , λ24H5  are
dimensionless couplings controlling the strengths of the interactions.

These terms dictate the vacuum structure of the theory and the mass
spectra of the resulting scalar and gauge bosons after spontaneous
symmetry breaking.

Yukawa sector
In the construction of the SU(5) invariant Yukawa Lagrangian, the tensor
product decompositions are given by:

The above decompositions reveal that, in adhering to the scalar
representations of the minimal SU(5) theory, namely H5 ≡ 5H  and 
Φ ≡ 24H , only two invariant Yukawa mass terms exist:

5∗ ⊗ 10 ⊗ 5∗
H ,

(6.45)

10 ⊗ 10 ⊗ 5H .

(6.46)

V (Φ,H5) = μ2
24

Tr(Φ†Φ) + μ2
H5

(H
†
5H5) + λ24 [Tr(Φ†Φ)]2

+λH5 (H
†
5H5)2 + λ24H5 Tr(Φ†Φ) (H

†
5H5),

5∗ × 10 = 5 + 45∗,

10 × 10 = 5∗ + 45 + 50,

5∗ × 5∗ = 10∗ + 15∗.



Consequently, the Yukawa Lagrangian at the GUT scale becomes:

L
G
Y = Γ1 (5Cα

L )T C 10
αβ
L 5

∗β
H + Γ2 ϵαβγδr (10

αβ
L )T C 10

γδ
L 5r + h.c.,

(6.47)

where Γ1 and Γ2 denote the Yukawa couplings.

6.6 SPONTANEOUS SYMMETRY BREAKING

As discussed previously, the scalar potential for the adjoint Higgs multiplet
Φ in SU(5) is given by [96]:

V (Φ) = m2
1 Tr(Φ2) + λ1[Tr(Φ2)]

2
+ λ2 Tr(Φ4),

(6.48)

where Φ is expanded over the generators Ta of the adjoint representation:

Φ =
24

∑
a=1

ϕaT a.

(6.49)

To achieve symmetry breaking SU(5) → SU(3)c × SU(2)L × U(1)Y ,
we align the VEV of Φ along the T24 generator:

⟨Φ⟩ = ϕ24T
24 =

1

√15
ϕ24 Diag(−2, −2, −2, 3, 3).

(6.50)

This choice leaves the SM subgroup unbroken while breaking the rest of 
SU(5). Symmetry is preserved for generators T satisfying [Φ,T ] = 0, with
the transformation Φ → UΦU †, U = exp(−iα ⋅ T ). The VEV ⟨Φ⟩
commutes with the SM generators but not with the X and Y leptoquark
generators, indicating partial symmetry breaking [98]. We find:

Tr(Φ2) = 2ϕ2
24, [Tr(Φ2)]2

= 4ϕ4
24,

(6.51)

and

––



Tr(Φ4) =
14

15
ϕ4

24.

(6.52)

Minimizing the potential yields:
δV

δΦ
= ϕ24 [−4m2

1 + (16λ1 +
56

15
λ2)ϕ2

24] = 0,

(6.53)

leading to the VEV:

ϕ2
24 = v2

Φ =
m2

1

4λ1 + 14
15
λ2

,

(6.54)

with stability conditions:

λ2 > 0, λ1 > −
7

30
λ2.

(6.55)

Thus, the explicit form of the VEV is:

(6.56)

The VEV generates masses for the X and Y gauge bosons via the kinetic
term:

Lmass = −g2
G Tr([Aμ, Φ]2),

(6.57)

⟨Φ⟩ =
vΦ

√15
.

⎛⎜⎝−2

−2

−2

3

3

⎞⎟⎠



leading to:

Lmass =
20

3
g2
Gv

2
Φ

3

∑
i=1

(X
μ

i Xiμ + Y
μ

i Yiμ),

(6.58)

with gauge boson masses:

m2
X = m2

Y =
20

3
g2
Gv

2
Φ.

(6.59)

Thus, X and Y bosons acquire superheavy masses of order MGUT and
decouple from low-energy physics [97, 98].

In the second stage, the scalar field H5 acquires a VEV, breaking 
SU(3)c × SU(2)L × U(1)Y  down to SU(3)c × U(1)em. The scalar
potential reads:

V (H5) =
m2

2

2
H

†
5H5 +

λ3

4
(H

†
5H5)2.

(6.60)

Choosing the VEV in the neutral component:

(6.61)

and minimizing the potential gives:

v2
H = −

m2
2

λ3
.

(6.62)

This mechanism is analogous to electroweak symmetry breaking in the SM,
generating W± and Z0 masses.

The fermion mass terms arise from Yukawa couplings:

––

⟨H5⟩ = ,

⎛⎜⎝ 0

0

0

0

vH

⎞⎟⎠



(6.63)

At tree level, the minimal SU(5) model predicts:

(6.64)

(6.65)

(6.66)

at the unification scale [96]. However, renormalization effects modify these
relations. Notably, at low energies:

mb ≈ 3mτ ,

(6.67)

consistent with observations [100]. Yet, discrepancies arise for lighter
generations:

(6.68)

(6.69)

The ratios md/ms ≃ 1/24 and me/mμ ≃ 1/207 are starkly different,
posing a major flaw in minimal SU(5) [101].

Possible remedies include: (i) extending the Higgs sector by adding a 45
representation [102]; (ii) introducing higher-dimensional operators
suppressed by the Planck scale [100].

Lm =Y1(d̄CLCdL+ēTLCe
C
L)

v∗
H

√2
+4Y2(ūT

LCuL+ūCT
L CuL)

vH

√2
+h.c.

=(Y1d̄RdL−Y T
1 ēReL)

v∗
H

√2
+4(Y2ūRuL−Y T

2 ūRuL)
vH

√2
.

md = me,

ms = mμ,

mb = mτ ,

ms ≈ 3mμ,

mμ

me

≈
ms

md

.



6.7 DOUBLET-TRIPLET SPLITTING PROBLEM

The coupling terms between the 24-Higgs scalar representation and the 5-
Higgs scalar representation, denoted as V (Φ,H), are given by:

(6.70)

where the underlined terms yield coupling between h3 (triplet colored Higgs
scalars) and h2 (SM Higgs doublet) with 24-Higgs. Consequently, the 5-
Higgs scalars acquire mass as follows:

(2α +
4

15
β)υ2

Φh
†
3h3 + (2α +

9

15
β)υ2

Φh
†
2h2.

(6.71)

However, this leads to a problem: the mass of both h3 (Higgs triplet) and h2
(Higgs doublet) would be of the order of υ2

Φ ≈ 1015 GeV. While this may
be acceptable for h3, as it can contribute to proton decay, the doublet Higgs
h2 should ideally have a mass of around 100 GeV to facilitate electroweak
symmetry breaking. This discrepancy is known as the doublet-triplet
splitting problem [96, 103].

Nevertheless, it is possible to fine-tune the parameters in the equation to
make the second term zero, which yields:

α = −
9

30
β and β < 0.

(6.72)

The doublet-triplet splitting problem has motivated the development of
various mechanisms to naturally generate the splitting without extreme fine-
tuning. One of the most notable proposals is the so-called “missing VEV
mechanism” [104], originally introduced in the context of supersymmetric
GUTs. More sophisticated solutions often involve introducing extended
symmetries, additional Higgs fields, or extra dimensions [105]. Resolving

V (Φ,H) =m2
1TrΦ2 + λ1[Tr(Φ2)]2 + λ2TrΦ4 +

m2
2

2
H

†
5H5

+
λ3

4
(H

†
5H5)2+αH †HTrΦ2+βH †Φ2H ,



this issue remains essential for ensuring the consistency and viability of
realistic GUT models.

6.8 GAUGE COUPLING UNIFICATION IN SU(5)

The possibility of unifying the gauge couplings within a GUT was first
proposed in the seminal work of Georgi and Glashow [96]. In the SM, there
are three gauge couplings corresponding to the SM gauge groups. The
renormalization group equations (RGEs) describe how the coupling
constants of a quantum field theory evolve with the energy scale at which
the theory is probed. The RGEs for the gauge couplings in the SM, 
αi = g2

i /4π with i = 1, 2, 3 referring to U(1)Y , SU(2)L, and SU(3)C ,
respectively, can be written as:

dαi

dt
=

α2
i

2π
bi,

(6.73)

where t = lnμ and μ is the renormalization scale. The solution to these
equations is given by

α−1
i (μ) = α−1

i (MX) +
bi

2π
ln(MX

μ
).

(6.74)

Here, the running is from the low scale μ (e.g., MZ) up to a high energy
scale MX. The beta function coefficients, bi, in the SM with nf families are
given by:

(6.75)

(6.76)

b1 =
1

10
+

4

3
nf ,

b2 = −
43

6
+

4

3
nf ,

b3 = −11 +
4

3
nf .



(6.77)

For nf = 3, one obtains b1 = 41
10 , b2 = − 19

6 , and b3 = −7. Since b1 is
positive, α1 increases with energy, while α2 and α3 decrease. However, α3
decreases more rapidly than α2. Thus, at some scale higher than the Fermi
scale, the strength of the strong interactions may become comparable to the
strength of the electroweak interactions.

The evolution of the SM gauge couplings is illustrated in Fig. 6.1,
emphasizing that there is no high-energy scale MX where the gauge
couplings meet at a single point. Consequently, their unification within the
framework of the SM is not achieved [98].

Figure 6.1  Evolution of the inverse of the SM three coupling constants. ⏎

In the context of the SU(5) GUT, the primary goal is to consolidate all
fundamental forces under a single gauge coupling at a high energy scale
conventionally denoted as MX. At energy scales Q > MX, the theory
predicts a unique coupling constant gG associated with the unified gauge
group. Thus, at these energies, the strong, weak, and electromagnetic
interactions are governed by identical couplings:

gG = g3 = g2 = g1.



(6.78)

This unification provides an elegant framework for understanding the
fundamental forces within a single theoretical structure.

Given the normalization condition imposed on λ12, one has Y = √ 5
3
λ12,

leading to g′ = √ 3
5 g1. Consequently, one finds that the Weinberg mixing

angle at the unification scale satisfies:

sin2 θW =
g′2

g′2 + g2
=

3

8
,

(6.79)

which holds at MX. For scales Q < MX, the running of the couplings
follows

α−1
i (Q) = α−1

5 +
bi

2π
ln(MX

Q
),

(6.80)

where α5 denotes the unified coupling at the scale MX. This running is
depicted in Fig. 6.2.



Figure 6.2  The predicted unification scale by the minimal-SU(5) theory for
the SM gauge coupling constants. ⏎

The inputs to the problem are the measurable values of the U(1)em and 
SU(3)C  couplings at low energies, given by [106]:

αem =
3

5
α1 cos2 θW = α2 sin2 θW ,

(6.81)

which implies

α−1
em =

5

3
α−1

1 + α−1
2 .

(6.82)

From Eq. (6.80), it follows that

(6.83)

α−1
1 − α−1

2 =
b1 − b2

2π
ln(

MX

Q
),



(6.84)

For Q = MZ , one finds

α−1
em =

8

3
α−1

3 +
22

2π
ln(MX

MZ
),

(6.85)

which leads to MX ≃ 8 × 1014 GeV. Furthermore, the unified coupling is
given by α−1

5 ≃ 41.5.
Additionally, one can estimate sin2 θW (MZ) as follows:

(6.86)

which deviates significantly from the experimental value
[sin2 θW (MZ)]exp = 0.23120 ± 0.00015

reported in [106]. Thus, minimal SU(5) with the SM particle content does
not successfully achieve gauge coupling unification [98].

6.9 PROTON DECAY

In SU(5) GUTs, the unification of quarks and leptons into common
multiplets naturally predicts baryon number violation, leading to proton
decay [96, 98]. Proton decay processes are primarily mediated by the heavy
X and Y leptoquark gauge bosons, whose interactions with fermions are
described by the Lagrangian in Eq. (6.40). These interactions give rise to
various proton decay channels, the most notable being p → e+π0, as
illustrated in Fig. 6.3.

α−1
2 − α−1

3 =
b2 − b3

2π
ln(MX

Q
).

sin2 θW (MZ) =
αem(MZ)

α2(MZ)

= αem(MZ) [ 1

α3(MZ)
+

22

12π
ln(MX

MZ
)]

=
5

9

αem(MZ)

α3(MZ)
+

1

6
≃ 0.201,



Figure 6.3  Baryon number violating processes at the lowest order via X and Y
boson exchange. ⏎

Experimentally, the Super-Kamiokande collaboration has set a lower
bound on the proton lifetime [107]:

τp(p → e+π0) ≳ 5 × 1033 years.

(6.87)

On the theoretical side, the model-independent estimate for the proton
decay width due to dimension-6 operators is given by

Γp ≈ α2
GUT

m5
p

M 4
X

,

(6.88)

where αGUT  is the unified coupling constant, mp is the proton mass, and MX
is the mass scale of the heavy leptoquark gauge bosons.

This leads to a lower bound on the MX scale, assuming 
αGUT ∼ 1/40 − 1/25:

MX ≳ 3.2 × 1015 GeV.

(6.89)

However, in minimal SU(5) models, gauge coupling unification predicts 
MX ∼ 1014 GeV [108], which is in tension with the experimental lower
limits on proton lifetime. This discrepancy highlights a major challenge for
minimal SU(5) GUTs, motivating extensions such as supersymmetric
unification, missing partner mechanisms, or higher-dimensional
constructions [109].

6.10 SU(5) ASSESSMENT



6.10.1 Advantages

1. SU(5) is the only GUT with rank 4. While other GUTs, such as 
SO(10), have higher ranks, which provide greater flexibility in their
breaking patterns, they may sacrifice predictability.

2. A distinctive feature of SU(5) is the quantization of electric charge
(Q), where TrQ|5 = 0 implies Q(d) = 1

3 Q(e−).

3. The prediction for the weak mixing angle, sin2 θW , is in excellent
agreement with current experimental data.

4. SU(5) predicts a ratio mb/mτ ≃ 3 at low energy, which is consistent
with experimental observations.

5. The simplest version of SU(5), with a single Higgs 5-plet, avoids tree-
level FCNCs.

6. The model is free of gauge anomalies, making it a consistent quantum
field theory.

7. SU(5) explains the baryon asymmetry by enabling baryon number
violating processes required for baryogenesis; proton decay is a low-
energy manifestation of such processes.

8. The minimal SU(5) model makes unique, testable predictions
regarding the weak mixing angle sin2 θW  and nucleon lifetime, both of
which can be probed experimentally.

6.10.2 Disadvantages

1. The SU(5) model faces significant challenges from new experimental
constraints on proton decay, especially the P → e+π0 channel. If the
proton lifetime bound of 1032 years is confirmed, the minimal SU(5)
model may be ruled out, requiring extensions that reduce predictability.

2. In the minimal version of the model, which only includes Higgs 5-
plets, the ratio me/mμ is predicted to be equal to md/ms, which does
not match the experimentally observed mass hierarchy of leptons and
quarks.



3. Fermions in the SU(5) model are assigned to reducible representations
(5∗ + 10), which complicates the understanding of their properties.

4. SU(5) does not provide a clear explanation for the masses of fermions.
The Yukawa couplings and the structure of the Higgs potential must be
fine-tuned to fit experimental data.

5. There exists a significant gap (the “great desert”) between the W boson
mass (MW) and the X boson mass (MX), with no natural explanation for
the intermediate mass scale.

6. The Higgs scalar potential introduces considerable arbitrariness due to
undetermined parameters in the Higgs potential and the Yukawa
Lagrangian.

7. Despite the proximity of the GUT scale MX to the Planck scale MP,
gravity remains excluded from the unified gauge group picture in 
SU(5).

8. The gauge hierarchy problem remains unsolved within the SU(5)
framework, requiring additional mechanisms such as supersymmetry or
extra dimensions.





CHAPTER 7

Non-Minimal SU(5) Model

DOI: 10.1201/9781003457701-7

In this chapter, we discuss the non-minimal SU(5) GUT in which the Higgs sector is
extended by the inclusion of a scalar field in the 45 representation [102]. The 45 arises
from the tensor product of the antisymmetric 10 representation and the conjugate
fundamental 5* representation, as follows:

5 × 5 = 10A ⊕ 15S,

(7.1)

10A × 5∗ = 45 ⊕ 5.

(7.2)

The 45 representation consists of two upper indices from the 10 and a lower index
corresponding to the 5*. To isolate the 45 component from a general tensor T αβ

γ , we
need to construct a combination that is antisymmetric in α and β, traceless, and satisfies
the condition of vanishing total antisymmetrization over all three indices. This leads to
the projected form

45α;β
γ = 45αβ

γ + 45γβ
α − 45βγ

α − 45
αγ

β ,

(7.3)

which ensures the proper mixed symmetry required for the irreducible 45
representation. Therefore, the 45 Higgs scalars field satisfy the following conditions:

45αβ
γ = −45βα

γ ,
5

∑
α

(45)αβα = 0,

(7.4)

with
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3

∑
i=1

< 45 >i5
i = − < 45 >45

4

and
υ45 =< 45 >15

1 =< 45 >25
2 =< 45 >35

3 ,

where the VEVs are defined as υ45.
The SU(5)-invariant Higgs potential for the 45H representation is given by [110]:

(7.5)

The SM decomposition of the 45 Higgs representation is given by [97]:

(7.6)

This decomposition follows directly from the tensor product relations in Eq. (7.1) and
Eq. (7.2). These components correspond to the fields defined in the spectrum table
(Table 7.1).

TABLE 7.1 45-Higgs scalars spectrum. ⏎

(6∗, 1, −1/3)ij
k

≡ ϕij
k = 1

6 ϵijlϕlk

(3∗, 2, −7/6)ijc ≡ ϕij
c = 1

6 ϵijlϕlc = 1
6 ϵijl45lc

(3∗, 1, 4/3)abk ≡ ϕab
k = 1

2 δab45k

(3, 1, 1/3)ibc ≡ T i
1 = 1

2 δbc45i = − 1
2 δjk45i

(3, 1, 1/3)ij
k

(3, 3, −1/3)ibc ≡ T i
3 = 45ib

c − 1
2 δ

b
c45id

d

(1, 2, 1/2)abc ≡ Db = 1
2 δac45b = − 1

2 δik45b

(1, 2, 1/2)ibk

The color octet scalars are defined as:

(8, 2, 1/2)iaj ≡ S ia
j = (45H)iaj −

1

3
δij(45H)ma

m .

(7.7)

V (45H) = −
1

2
μ2

45(45αβ
γ 45

γ

αβ) + λ1(45αβ
γ 45

γ

αβ)2

+λ245αβ
γ 45δ

αβ45kλ
δ 45

γ
kλ

+λ345αβ
γ 45δ

αβ45
kγ

λ 45λ
kδ + λ445αδ

β 45β
αγ45

kγ

λ 45λ
kδ

+λ545
αγ

δ 45β
γe45kδ

α 45e
kβ + λ645

αγ

δ 45β
γe45ke

α 45δ
kβ

+λ745
αγ

δ 45β
γe45kδ

β 45e
kα + λ845

αγ

δ 45β
γe45ke

β 45
γ
kα.

45H =(8, 2)1/2 ⊕ (6∗, 1)−1/3 ⊕ (3, 3)−1/3 ⊕ (3∗, 2)−7/6 ⊕ (3, 1)−1/3

⊕ (3∗, 1)4/3 ⊕ (1, 2)1/2.



7.1 LOW ENERGY IMPLICATIONS OF 45-HIGGS

7.1.1 Fermion Masses
From the above mentioned decompositions, the SU(5) invariant Yukawa Lagrangian
can be extended to include the 45-Higgs representation as follows [102, 111, 112]:

(7.8)

After electroweak symmetry breaking, the fermion masses are given by:

(7.9)

The fermion masses are then:

(7.10)

where υ2 = υ2
5 + υ2

45. This formulation corrects the fermion mass relations from the
previous chapter.

7.1.2 Nucleon Decay Constraints on 45-Higgs Masses
Nucleon decay can be induced by dimension-five operators involving color-triplet
Higgs multiplets, where the decay rate is proportional to the square of the Higgs masses
(τ −1

n.p ∝ M −2
Φ ). Therefore, matter stability provides a strong experimental constraint on

the masses of new scalars in GUT theories, particularly those carrying color quantum
numbers.

The 45-Higgs fields contributing to nucleon decay are derived from the GUT Yukawa
Lagrangian:

L45H
Y = Γ2 (5

Cγ

L )TC 10αβ
L 45αβ

γ
∗ + ϵαβγδr Γ4 (10αβ

L )TC 10
mγ

L 45δr
m.

(7.11)

LG
Y = Γ1 (5Cα

L )TC 10αβ
L 5∗β

H + Γ2 (5Cγ
L )TC 10αβ

L 45∗αβ
γ

+ ϵαβγδr [Γ3 (10αβ
L )TC 10γδ

L 5r + Γ4 (10αβ
L )TC 10mγ

L 45δr
m].

Lm = (Y1 d̄Ri dLi + Y T
1 ēR eL)

υ∗
5

√2
+ (2Y2 d̄Ri dLi − 6Y T

2 ēR eL)
υ∗

45

√2

+ [4(Y3 + Y T
3 )

υ5

√2
− 8(Y4 − Y T

4 )
υ45

√2
]ūRiuLi.

ME = Y T
1

υ∗
5

√2
− 6Y T

2

υ∗
45

√2
,

MD = Y1
υ∗

5

√2
+ 2Y2

υ∗
45

√2
,

MU = 4(Y3 + Y T
3 )

υ5

√2
− 8(Y4 − Y T

4 )
υ45

√2
,



Starting with the colored octet scalars, S ia
j , we have:

where A = 1, … , 8 and TA are the SU(3) generators. The relevant Yukawa interactions
are:

(7.12)

For the 45-Higgs doublet, Da:

(7.13)

the Yukawa interactions are:
LD
Y = Y eT

2 ēRD† lL + Y d
2 d̄RD† QL + 2ϵαβY4 ūRQα

LD
β + h.c..

(7.14)

Table 7.2 summarizes the interactions of the 45-Higgs scalar multiplets with matter,
showing which fields contribute to nucleon decay [111]. Experimental lower bounds on
the proton decay rate, such as τ(p → k+ν̄) > 2.3 × 1033 years [113], require the
scalars responsible for nucleon decay to be superheavy.

TABLE 7.2 The interactions of 45-Higgs scalars with matter and their contributions to proton decay. ⏎

45H Scalar Y 2
AB5∗

A10B45∗ Y 4
AB

10A10B45 Interactions Proton
Decay

(6∗, 1, −1/3) 2Y 2
ABd

cT
AkCu

c
Blϕ

lk∗ 4Y 4
AB(ulT

A CdkB − dlTA Cuk
B)ϕlk ŪD̄, UD No

(3∗, 2, −7/6) 2Y 2
ABe

T
ACu

c
Biϕ

i1∗ 4(Y 4
AB − Y 4

BA)uiT
A CecBϕi1 LŪ,QĒ No

−2Y 2
AB

νT
A
Cuc

Biϕ
i2∗ 4(Y 4

AB − Y 4
BA)diTA CecBϕi2

(3∗, 1, 4/3) 2Y 2
ABd

cT
AkCe

c
Bϕ

k∗ 4(Y 4
AB − Y 4

BA)ϵmnkucT
AmCu

c
Bnϕk ĒD̄, ŪŪ Yes

(3, 1, −1/3) 2Y 2
ABe

T
ACu

i
BT

∗
i 4(Y 4

AB − Y 4
BA)ucT

AiCe
c
BT

i LQ, ŪD̄ ŪĒ Yes

−2Y 2
AB

νT
A
CdiBT

∗
i

2Y 2
AB

ϵlkjd
cT
Al
Cuc

BkT
∗
j

(3, 3, −1/3) −2Y 2
ABν

T
ACu

i
BT

∗
i1 4(Y 4

AB − Y 4
BA)ϵjkid

T
AjCdBkT

i1 LQ, QQ Yes

S ia
j = ( ) = ( ) ≡ SAT A,

S i4
j

S i5
j

S i+
j

S i0
j

LS
Y = 2Y2 (5

Cj

L )TC 10ia
L S ∗ + 4Y4 [ϵklbia (10kl

L )TC 10
jb

L

+ϵkblia (10kb
L )TC 10

jl

L]S + h.c.

= 2Y2 d̄Ri S
† QLj − 4ϵαβ(Y4 − Y T

4 ) ūRiQ
α
Lj S

β + h.c..

Da = ( ),
D+

D0



45H Scalar Y 2
AB

5∗
A10B45∗ Y 4

AB
10A10B45 Interactions Proton

Decay
Y 2
AB

eT
A
Cui

BT
∗
i2 2(Y 4

AB − Y 4
BA)ϵjkiu

T
AjCuBkT

i2

−Y 2
AB

νT
A
CdiBT

∗
i2

2Y 2
AB

eT
A
CdiBT

∗
i3 4(Y 4

AB − Y 4
BA)ϵjkid

T
AjCuBkT

i3

7.1.3 Gauge Coupling Unification
The minimal SU(5) model fails to achieve gauge coupling unification at a consistent
scale and is incompatible with current experimental limits on nucleon decay. To address
these issues, we propose an effective SU(5) framework featuring two Higgs doublets,
H5 and D45, at the electroweak scale [114]. In addition, we introduce color-octet scalars
with masses in the 1–2 TeV range, and color-triplet scalars T i

3  with masses around 108

GeV. The remaining components of the 45-dimensional Higgs multiplet acquire GUT-
scale masses via their couplings with the adjoint 24H scalar.

The one-loop bi-coefficients in these effective models are:

bEWi = ( 21

5
, −3, −7), bSi = (5, −

5

3
, −5), bTi = ( 26

5
,

1

3
, −

9

5
).

(7.15)

Thus, the renormalization group equations (RGEs) become:

(7.16)

(7.17)

(7.18)

Solving these equations at QS ∼ 1 − 2 TeV and QT ∼ 108 GeV results in a unification
at MX ∼ 1016 GeV, as shown in Fig. 7.1 [115], consistent with grand unification scale
predictions.

α−1(MX) = α−1
1 (100)−

1

2π
[b(SM+2HD)

1 ln
OS

QEW
+b

(SM+2HD+S)
1 ln

OT

QS

+ b
(SM+2HD+S+Φ)
1 ln

MX

QT
],

α−1(MX) = α−1
2 (100)−

1

2π
[b(SM+2HD)

2 ln
OS

QEW
+b

(SM+2HD+S)
2 ln

OT

QS

+ b
(SM+2HD+S+Φ)
2 ln

MX

QT

],

α−1(MX) = α−1
3 (100)−

1

2π
[b(SM+2HD)

3 ln
OS

QEW
+b

(SM+2HD+S)
3 ln

OT

QS

+ b
(SM+2HD+S+Φ)
3 ln

MX

QT
].



Figure 7.1  Gauge coupling running in the effective SU(5) model with 2HD, TeV-scale
octet, and intermediate-scale triplet scalars. ⏎

7.2 EFFECTIVE SU(5)TWO-HIGGS-DOUBLET MODEL

After the breaking of the SU(5) GUT to the SM, the scalar sector contains two
electroweak doublets: one from the 5H  and one from the 45H  representations. These
doublets are defined as

(7.19)

Electroweak symmetry breaking induces vacuum expectation values (vevs),

(7.20)

where we define v1 ≡ v5, v2 ≡ −3v45, and v = √v2
1 + v2

2. The angle tanβ = v2/v1

parameterizes the ratio of vevs. The effective scalar potential at low energies takes the
form [114, 116]:

H ≡ (1, 2)1/2 = ( ), D ≡ (1, 2)1/2 = ( ).
H+

H 0

D+

D0

⟨H⟩ = ( ), ⟨D⟩ = ( ),
0

v5

0

−3v45



(7.21)

where λ4 and λ5 encode the mixing between the doublets. The minimization conditions
yield:

(7.22)

(7.23)

Expanding around the vevs,

(7.24)

the CP-even Higgs mass matrix is

(7.25)

This matrix is diagonalized by the mixing angle α, defined by

tan 2α =
(λ3 + λ4 + λ5)v1v2

λ1v
2
1 − λ2v

2
2

.

(7.26)

The mass eigenstates h and H are given by:

(7.27)

with masses

M 2
H,h = λ1v

2
1 + λ2v

2
2 ±√(λ1v

2
1 − λ2v

2
2)2 + ((λ3 + λ4 + λ5)v1v2)2.

(7.28)

This effective 2HDM structure emerges naturally in non-minimal SU(5) extension and
plays a key role in scalar sector phenomenology, including potential implications for

V (H,D) = − μ2
HH

†H+λ1(H †H)2−μ2
DD

†D + λ2(D†D)2

+ λ3(H †H)(D†D) + λ4|H †D|2+[ λ5

2
(H †D)2 + h.c.],

μ2
H = λ1v

2
1 + 1

2 (λ3 + λ4 + λ5)v2
2,

μ2
D = λ2v

2
2 + 1

2 (λ3 + λ4 + λ5)v2
1.

H = ( ), D = ( ),
H+

v1 + h1 + ia1

D+

v2 + h2 + ia2

M
2
R = ( ).

2λ1v
2
1 (λ3 + λ4 + λ5)v1v2

(λ3 + λ4 + λ5)v1v2 2λ2v
2
2

( ) = ( )( ),
H

h

cosα sinα

− sinα cosα

h1

h2



flavor, CP violation, and collider signatures.
The effective Yukawa couplings of the SM-like Higgs doublet arise from interactions

involving the 5H and 45H Higgs representations. After symmetry breaking, the relevant
Yukawa Lagrangian takes the form:

(7.29)

where Y ′
3 = 4(Y3 + Y T

3 ) and Y ′
4 = 2Y4. The couplings Y1 and Y2 can be related to

fermion mass matrices as:

Y1 =
3MD + ME

4v5
, Y2 =

MD − ME

8v45
.

(7.30)

In the physical basis, assuming flavor diagonal charged leptons and up-quarks, and
that the down-quark mass matrix is diagonalized by left-handed rotations only (
V d
L = VCKM ,V d

R = I), the couplings of the SM-like Higgs to fermions are:

(7.31)

(7.32)

(7.33)

The up-quark mass relation mU = Y ′
3v5 − 8(Y T

4 − Y4)v45 implies that Y ′
4  vanishes if

Y4 is symmetric.
The couplings of the SM-like Higgs to electroweak gauge bosons arise from the

kinetic terms of H and D:
Lkin = (DμH)†(DμH) + (DμD)†(DμD).

(7.34)

After electroweak symmetry breaking and field redefinitions, the couplings to massive
vector bosons are:

(7.35)

LY = ēR (Y eT
1 H † + Y eT

2 D†)lL + d̄R (Y d
1 H

† + Y d
2 D

†)QL

+ϵαβūR (Y ′
3H

β + Y ′
4D

β)Qα
L + h.c.,

Yhuu = −Y ′
3 sinα + Y ′

4 cosα = −
mU

v

sinα

cosβ
+ Y ′

4 cosα,

Yhdd = −(
3mD + mEVCKM

4v5
) sinα + (

mD − mEVCKM

4v45
) cosα,

Yhee = −( 3mDVCKM + mE

4v5
) sinα + (mDVCKM − mE

4v45
) cosα.

ghW +W − = gMW sin(β − α),

M



(7.36)

The effective Yukawa couplings of the SM-like Higgs doublet arise from interactions
involving the 5H and 45H Higgs representations. After symmetry breaking, the relevant
Yukawa Lagrangian takes the form:

(7.37)

where Y ′
3 = Y3 + Y T

3  and Y ′
4 = Y4 − Y T

4 . In the up-quark sector, the contraction 
ϵαβūRD

βQα
L is antisymmetric in SU(2) indices. Therefore, only the antisymmetric part

of Y4 contributes to this interaction, and if Y4 is symmetric, the contribution vanishes.
The couplings Y1 and Y2 are related to fermion mass matrices as:

Y1 =
3MD + ME

4v5
, Y2 =

MD − ME

8v45
.

(7.38)

In the physical basis, assuming flavor-diagonal up-type quarks and charged leptons,
and that the down-type quark mass matrix is diagonalized by a left-handed CKM
rotation only (i.e., V d

L = VCKM, V d
R = 𝟙), the couplings of the SM-like Higgs to

fermions become:

(7.39)

(7.40)

(7.41)

Here, mU ,mD,mE are the diagonal mass matrices for up-type quarks, down-type
quarks, and charged leptons, respectively.

Note that the up-quark mass relation
mU = Y ′

3v5 + Y ′
4v45

(7.42)

ghZZ =
gMZ

cos θW
sin(β − α).

LY = ēR (Y eT
1 H † + Y eT

2 D†)lL + d̄R (Y d
1 H

† + Y d
2 D

†)QL

+ϵαβūR (Y ′
3H

β + Y ′
4D

β)Qα
L + h.c.,

Yhuu = −Y ′
3 sinα + Y ′

4 cosα = −
mU

v

sinα

cosβ
+ Y ′

4 cosα,

Yhdd = −(
3mD + mEVCKM

4v5
) sinα + (

mD − mEVCKM

8v45
) cosα,

Yhee = −( 3mDVCKM + mE

4v5
) sinα + (mDVCKM − mE

8v45
) cosα.



implies that Y ′
4 = 0 if the original Y4 is symmetric, since Y ′

4 = 2Y4 and antisymmetric
parts cancel out due to fermion symmetries.

The couplings of the SM-like Higgs to the electroweak gauge bosons originate from
the kinetic terms of the scalar fields:

Lkin = (DμH)†(DμH) + (DμD)†(DμD).

(7.43)

After electroweak symmetry breaking and rotation to the Higgs mass eigenstates, the
trilinear couplings to massive vector bosons are given by:

(7.44)

(7.45)

where α is the mixing angle between the CP-even Higgs bosons, and tanβ = v5/v45 is
the ratio of vacuum expectation values.

7.3 CHARGED HIGGS IN NON-MINIMAL SU(5)

In the non-minimal SU(5), the physical charged Higgs field emerges as the orthogonal
combination to the Goldstone boson eaten by the W± bosons:

H± = − sinβH±
5 + cosβD±, tanβ =

v45

v5
.

(7.46)

From the SU(5) -invariant scalar potential, one obtains the following charged Higgs
mass matrix in the (H±,D±) basis is then given by

(7.47)

where λ5, λ45 are effective quartic couplings. Diagonalizing this matrix yields one
Goldstone boson and a physical charged Higgs boson H± with mass:

m2
H± ≃ μ2

45 + λ45v
2 + Δm2,

(7.48)

ghW +W − = gMW sin(β − α),

ghZZ =
gMZ

cos θW
sin(β − α),

M
2

charged = ( ),
μ2

5 + λ5v
2
5 μ54v

μ54v μ2
45 + λ45v

2
45



where Δm2 encodes contributions from the mixing parameter μ54 and possible loop
corrections.

The charged Higgs couplings to fermions depend on both Y2 and Y3 and can
introduce non-trivial flavor structures:

LH± ⊃ H+ ūi [Vij (AdjPR + AujPL)]dj + H+ ν̄iAeij PR ej + h.c.,

(7.49)

with Afij determined by the underlying Yukawa structure and tanβ. These interactions
can lead to flavor-violating processes not present in standard 2HDMs, such as 
H± → μν, H± → cs̄, or tb̄ with non-standard rates.

7.4 COLORED OCTET SCALARS

In our SU(5) effective model, the color octet scalars arise from the 45H representation
as defined above, with

S ia
j = (45ia

j )H −
1

3
δij(45ma

m )H , S ia
j ≡ (8, 2)1/2 = SAT A,

(7.50)

where i, j = 1, 2, 3, A = 1, … , 8, and TA are the SU(3) generators. These scalars
preserve SU(3)C  due to their vanishing VEVs.

The scalar potential involving the octets can be derived from the SU(5)-invariant
potential terms [114, 116]. After electroweak symmetry breaking, the mass terms
become:

(7.51)

(7.52)

where λ′ = λ′
2 + λ′

3 + λ′
4 − λ′

6. The VEV v5 induces a mass splitting between the
charged and neutral components.

The octet scalars couple to fermions via SU(5) Yukawa interactions:
L

S
Y = 2Y2 d̄RiQLjS

† − 4ϵαβ(Y4 − Y T
4 )ūRiQ

α
LjS

β + h.c.

(7.53)

Assuming that Y4 is symmetric, then the couplings to up-quarks vanish. Using Eq.
(7.38), the interaction simplifies to:

m2
S± = −m2

S + λ′v2
45, m2

S 0
R,I

= −m2
S + λ′v2

45,

m2
S±,5 = −m2

S + λ3v
2
5, m2

S 0
R,I ,5 = −m2

S + (λ3 + λ4 ± λ5)v2
5,



L
S
Y =

1

4v45
d̄Ri(MD − M T

E )S †QLj + h.c.

(7.54)

In the physical basis and assuming V d
R = I, V d

L = VCKM, we find:

(7.55)

This leads to flavor-violating couplings of the neutral octet scalar due to the
misalignment of MD and ME [114, 116]. While the minimal flavor violation hypothesis
suppresses these effects, we consider Y2 as a generic matrix without assuming MFV.

The kinetic term Tr[(Dμ45H)†Dμ45H ] induces interactions between octet scalars
and gluons. The covariant derivative acting on the octet scalar S ia

j  is:

DμS
ia
j = ∂μS

ia
j − i

gs

2
(Gα

μT
α)ikS ka

j − i
gs

2
(Gα

μT
α)njS

ia
n + ⋯ ,

(7.56)

resulting in gluon interactions:

(7.57)

with structure constants F ABD = Tr(T AT BT D) and F ABCD = Tr(T AT BT DtE).
The SU(3) generators satisfy:

{tA, tB} =
1

N
δAB + dABCtC, [tA, tB] = ifABCtC,

(7.58)

where dABC  and fABC  are the symmetric and antisymmetric structure constants,
respectively.

7.5 SCALAR LEPTOQUARK IN NON-MINIMAL SU(5)

As emphasized in Table 7.2 that while the scalar triplets ϕab
k  and ϕib

c  contribute to the
proton decay and they must be superheavy, the scalar triplet ϕij

c  does not. It has no
interaction terms that would cause proton decay. By writing ϕij

c  as (ϕi
1,ϕi

2)T , one can
demonstrate that the scalar triplet has the following peculiar interactions:

L
S
Y =

1

4v45
[d̄Ri(M diag

D V
†

CKM − M
diag
E )uLjS

−

+ d̄Ri(M
diag
D − M

diag
E VCKM)dLjS

0]+ h.c.

LSgg = igsF
ABD (SA−GμB∂μS

D+ + SA0
R,IG

μB∂μS
D0
R,I)

+g2
sF

ABCD (SA−GμBGC
μS

D+ + SA0
R,IG

μBGC
μS

D0
R,I)+ h.c.,

2 T i1 iT



(7.59)

The first two interaction terms would imply the decay of b → sℓ+ℓ− through scalar
triplet leptoquark ϕi1 mediation, while the last two interaction terms clearly account for
the decay b → cτν via scalar triplet leptoquark ϕi2 mediation. These terms can be
written as

L = 2Y 2
ABūBiPLνAϕ

i2∗ − 4Y 4′

ABēBPLd
i
Aϕi2 + h. c. ,

(7.60)

where we used C T = −C and Ψ̄ = ΨcT
L

, and define Y 4′

AB
≡ (Y 4

AB
− Y 4

BA
). In the mass

eigenstate basis, where
dA → V CKM

AB dB, νA → V PMNS
AB νB, uA → uA, eA → eA,

the above Lagrangian takes the form:

(7.61)

In this regards, the amplitude of b → cτν transition is given by

(7.62)

Because V CKM
13  and V CKM

23  are so small (10−3 and 10−2, respectively), the amplitude
of b → cτν is essentially determined by the leptoquark masses Mϕ,Y 2

22,Y 2
32, and Y 4′

13 .

L =2Y 2
ABe

T
ACu

c
Biϕ

i1∗+4(Y 4
AB−Y 4

BA)uiT
A CecBϕi1

− 2Y 2
ABν

T
ACu

c
Biϕ

i2∗+4(Y 4
AB−Y 4

BA)diTA CecBϕi2.

L =2Y 2
ABū

′
BiPLV

PMNS
AK ν ′

kϕ
i2∗ − 4Y 4′

ABē
′
BPLV

CKM
AK d′

Kϕi2

+h. c.

M = −
8Y 4′

13V
CKM

13

M 2
ϕ

[
1

2
(ūτPLvντ )(ūCPLub)

+
1

8
(ūτσ

μνPLvντ )(ūCPLσ
μνub) × (Y 2

12V
PMNS

13

+ Y 2
22V

PMNS
23 +Y 2

32V
PMNS

33 )]+(Y 4′

13V
CKM

13 →Y 4′

23V
CKM

23 ).





CHAPTER 8

Supersymmetry: Central Candidate for
BSM

DOI: 10.1201/9781003457701-8

Supersymmetry (SUSY) is a theoretical framework that extends the symmetries of
space-time. At its core is the Super Poincaré algebra [117, 118], which includes:

Pμ (Translation): This represents the symmetry of translations in space and time.

Mμν  (Rotation and Lorentz Transformation): These are the symmetries of
rotations and Lorentz transformations, crucial for maintaining the consistency of
relativistic theories.
Qα (SUSY Transformation): The SUSY transformation introduces a symmetry
between fermions and bosons, extending the standard symmetries of space-time.

SUSY plays a critical role in addressing some of the fundamental challenges in modern
theoretical physics:

1. Stability of the Hierarchy: SUSY provides a mechanism that ensures the stability
of the hierarchy between the weak scale and the Planck scale. Without SUSY, the
vast difference between these scales could be destabilized by quantum corrections,
leading to a severe fine-tuning problem in the SM.

2. Unified Theory BSM: Supersymmetric theories are promising candidates for a
unified theory that extends beyond the SM. They offer a framework that could
potentially integrate all fundamental forces under a single theoretical umbrella.

3. Natural Electroweak Symmetry Breaking: SUSY makes the mechanism of
electroweak symmetry breaking more natural. In the SM, the Higgs boson mass is
sensitive to quantum corrections, leading to a fine-tuning problem. SUSY
alleviates this issue by introducing superpartners that cancel out the problematic
corrections, thereby stabilizing the Higgs boson mass.
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Overall, Supersymmetry offers a compelling extension to our understanding of the
universe, providing solutions to some of the most profound challenges in high-energy
physics [118].

8.1 HIERARCHY PROBLEM AND SUPERSYMMETRY

One of the significant challenges in modern physics is the hierarchy problem, which
arises when attempting to unify gravity with the other fundamental forces. Theories
like string theory and GUTs suggest that the fundamental forces should unify at a very
high energy scale, close to the Planck scale ( 1019 GeV). However, this presents a
dilemma when considering the vastly lower energy scale associated with the
electroweak interactions, particularly the mass of the Higgs boson.

The main issue is that quantum corrections to the Higgs boson mass are extremely
sensitive to the highest energy scales, leading to potential divergences that require
severe fine-tuning. Specifically, without any additional mechanisms, the Higgs boson
mass would need to be fine-tuned to an accuracy of O(1034), which is an
extraordinarily unnatural requirement.

SUSY offers a compelling solution to this problem by introducing a symmetry
between fermions and bosons. In SUSY, the quantum corrections to the Higgs mass
from standard particles are exactly canceled by the corresponding contributions from
their superpartners. This cancellation occurs because the loop diagrams that are
quadratically divergent in the SM cancel out, term by term, against equivalent
diagrams involving the superpartners. This mechanism avoids the problematic fine-
tuning and stabilizes the Higgs boson mass at a natural scale.

For SUSY to effectively address the hierarchy problem, the superpartner masses
should lie around O(1) TeV, especially given the observed Higgs boson mass of 
mH ≈ 125 GeV. This prediction implies that some of these superpartners should be
detectable at the LHC, providing a testable aspect of the theory. Through this
mechanism, SUSY provides a natural framework for solving the hierarchy problem,
making it a central candidate for BSM [118].

8.2 GAUGE COUPLING UNIFICATION

A compelling motivation for low-scale SUSY, particularly around the TeV scale, stems
from the idea of gauge coupling unification. In the SM, the gauge couplings, α1
(U(1)Y), α2 (SU(2)L), and α3 (SU(3)C), evolve differently with energy due to quantum
corrections, as governed by the renormalization group equations (RGEs).

The one-loop RGE for the gauge coupling αi is:

dαi(t)

dt
=

bi

2π
α2
i (t), t = ln(μ),

(8.1)



where bi are beta function coefficients that depend on the field content of the theory. In
the SM, the beta function coefficients for ng = 3 generations and nH = 1 Higgs
doublet are:

(8.2)

(8.3)

(8.4)

These couplings do not unify at a single scale, suggesting that the SM alone does not
naturally lead to unification.

However, in the Minimal Supersymmetric Standard Model (MSSM), the particle
content is extended to include superpartners and typically nH = 2 Higgs doublets. The
beta function coefficients become:

(8.5)

(8.6)

(8.7)

With these values, the RG evolution of the gauge couplings leads to convergence at a
common unification scale, around MGUT ∼ 1016 GeV [119–121]. This elegant
unification strongly supports the MSSM and motivates the presence of superpartners
near the TeV scale, potentially within reach of collider experiments such as the LHC.

8.3 WHAT IS SUPERSYMMETRY?

SUSY is a theoretical framework that postulates a fundamental symmetry between two
distinct classes of particles: bosons (integer spin) and fermions (half-integer spin). In
SUSY, each bosonic state has a corresponding fermionic partner and vice versa. This
symmetry is encapsulated by the action of fermionic operators Qα and their Hermitian
conjugates Q̄α̇, which satisfy:

| ⟩ | ⟩ | ⟩ | ⟩

bSM
1 =

41

10
,

bSM
2 = −

19

6
,

bSM
3 = −7.

bMSSM
1 =

33

5
,

bMSSM
2 = 1,

bMSSM
3 = −3.



Qα|Boson⟩ = |Fermion⟩, Qα| Fermion⟩ = |Boson⟩.

(8.8)

Since Qα carries spin- 1
2 , SUSY extends the symmetries of space-time, making it a

space-time symmetry rather than a purely internal one.
Supersymmetry was first formulated as an extension of the Poincaré group, which

underlies special relativity, by Golfand and Likhtman in 1971 [122], and later
developed into a full quantum field theoretic framework in 1973 [123]. In quantum
field theory, symmetries are generally classified as:

1. External (Space-Time) Symmetries: These include translations xμ → xμ + aμ and
Lorentz transformations xμ → Λμ

νx
ν .

2. Internal Symmetries: These act on the fields themselves, e.g., ϕa(x) → M a
bϕ

b(x),
and include gauge symmetries like U(1), SU(2), and SU(3).

According to Noether's theorem, every continuous symmetry corresponds to a
conserved quantity. In particle physics, conserved quantities such as energy,
momentum, electric charge, and color charge are associated with these fundamental
symmetries.

Efforts to unify internal and space-time symmetries into a larger algebraic structure
encountered a major obstacle: the Coleman-Mandula theorem [124]. It states that under
certain reasonable assumptions, the most general symmetry group of the S-matrix is a
direct product of the Poincaré group and an internal symmetry group, implying no non-
trivial unification is possible.

SUSY evades this restriction by introducing fermionic symmetry generators that
transform as spinors, rather than scalars. These additional generators extend the
Poincaré algebra to the so-called Super-Poincaré algebra, enabling a consistent and
non-trivial unification of space-time and internal symmetries.

SUSY Algebra and Mass Degeneracy
The complete set of SUSY generators includes not only those of the Poincaré group
but also two additional spinor generators, Q and Q̄, which act on the fields. These
spinor generators introduce a symmetry between bosons and fermions and satisfy
specific algebraic relations:

{Qα,Qβ} = 0, {Q̄α̇, Q̄β̇} = 0, {Qα, Q̄β̇} = 2σ
μ

αβ̇
Pμ,

(8.9)

where σμ ≡ (1,σi) and σ̄μ ≡ (1, −σi). Here, α,β, α̇, β̇ = 1, 2 are spinor indices, and
Pμ represents the momentum operator [123, 125].

These generators also obey specific commutation relations with the generators of the
Poincaré group:



(8.10)

The commutators of Qα and Q̄α̇ with internal symmetry generators Ti generally vanish,
indicating that SUSY transformations do not mix with internal symmetries.

The momentum squared operator P 2 = PμP
μ serves as a Casimir operator in the

SUSY algebra, meaning it is invariant under SUSY transformations:
[Qα,P 2] = 0.

(8.11)

This invariance implies that particles related by SUSY transformations, such as a
fermion |F⟩ and a boson |B⟩, must have the same mass. Specifically, if a fermion state 
|F⟩ is obtained from a bosonic state |B⟩ through the action of the SUSY generator Qα,
then:

(8.12)

This relation confirms that particles within the same irreducible representation of the
SUSY algebra, such as a boson and its corresponding fermion partner, share the same
mass, a defining prediction of supersymmetric theories [122, 125].

8.4 SUPERSPACE AND SUSY TRANSFORMATIONS

Supersymmetric theories are naturally formulated in superspace, an extension of
spacetime incorporating both bosonic coordinates xμ and anticommuting fermionic
coordinates θα, –θ

α̇
. Fields in this space are represented by superfields Φ(x, θ,

–
θ), which

encapsulate entire SUSY multiplets.
Supersymmetry extends spacetime translations by introducing fermionic generators

Qα and Qα̇. A finite SUSY transformation induces specific shifts in superspace
coordinates:

(8.13)

[P μ,Qα] = [P μ, Q̄α̇] = 0, [M μν,Qα] = −i(σμν)βαQβ,

[M μν, Q̄α̇] = −i(σ̄μν)α̇
β̇
Q̄β̇.

mF |F⟩ = P 2|F⟩ = P 2Qα|B⟩ = QαP
2|B⟩ = mBQα|B⟩ = mB|F⟩

⟹ mF = mB.

–

xμ → xμ + yμ + iησμ–
θ − iθσμ–η,

θα → θα + ηα,

–
θ
α̇

→
–
θ
α̇

+ –ηα̇,



where ηα, –ηα̇ are Grassmann-valued parameters. These transformations unify bosonic
and fermionic degrees of freedom through geometry.

Expanding an infinitesimal transformation allows identification of the SUSY
generators:

(8.14)

To construct SUSY-invariant actions, one introduces covariant derivatives that
anticommute with the supercharges:

(8.15)

with the algebra:

{Dα,D
β̇
} = 2iσμ

αβ̇
∂μ, {Dα,Dβ} = {Dα̇,D

β̇
} = 0.

(8.16)

This framework forms the basis for constructing supersymmetric field theories and
ensures manifest SUSY invariance in superspace [117, 118, 125].

8.5 SUSY LAGRANGIANS

Supersymmetric theories unify bosons and fermions through superfields. Two essential
types are the chiral and vector superfields. A chiral superfield Φ satisfies Dα̇Φ = 0,
depending only on the shifted coordinate yμ = xμ + iθσμθ̄. Its component expansion
includes a complex scalar ϕ, a Weyl fermion ψ, and an auxiliary field F [117, 126].
Chiral superfields are closed under multiplication, enabling the construction of
supersymmetric superpotentials.

Vector superfields V, satisfying V = V †, describe gauge bosons. Gauge
redundancies are removed via SUSY gauge transformations V → V + Λ + Λ†, with Λ
chiral. In the Wess-Zumino (WZ) gauge, V contains only the physical components:
gauge field vμ, gauginos λ, λ̄, and auxiliary field D [117].

A general renormalizable SUSY Lagrangian in superspace reads:

L = Φ
†
iΦ

i
θ2θ̄2 + W(Φi) θ2 + W̄(Φ

†
i ) θ̄2 ,

Pμ = i∂μ,

Qα = i(∂θα + iσμ

αα̇

–
θ
α̇

∂μ),

Qα̇ = i(∂–
θ
α̇ − iθασ

μ

αα̇∂μ).
–

Dα = ∂θα + iσμ

αα̇

–
θ
α̇

∂μ,

Dα̇ = −∂–
θ
α̇ − iθασ

μ

αα̇
∂μ,

–

–––

–∣ ∣ ∣



(8.17)

where the superpotential W is:

W(Φi) =
1

2
MijΦ

iΦj +
1

3
YijkΦiΦjΦk.

(8.18)

Expanding Φ in components gives:

(8.19)

(8.20)

The kinetic term is:

Φ
†
iΦ

i
θ2θ̄2 = ∂μϕ

†
i∂

μϕi + iψ̄iσ̄
μ∂μψi + F ∗

i Fi.

(8.21)

The full component Lagrangian becomes:

(8.22)

(8.23)

Eliminating the auxiliary field via its equation of motion:

F ∗
i = −

∂W

∂ϕi
,

(8.24)

yields the on-shell Lagrangian:

(8.25)

(8.26)

Φ(x, θ, θ̄) = ϕ + √2θψ + θθF + iθσμθ̄∂μϕ

−
i

√2
θθσμθ̄∂μψ +

1

4
θθθ̄θ̄□ϕ.∣L = ∂μϕ

†
i∂

μϕi + iψ̄iσ̄
μ∂μψi + F ∗

i Fi

+ [Mij(ϕiFj −
1

2
ψiψj) + Yijk(ϕiϕjFk − ψiψjϕk) + h.c.].

L = ∂μϕ
†
i∂

μϕi + iψ̄iσ̄
μ∂μψi −

∂W

∂ϕi

2∣ ∣−(
1

2
Mijψiψj + Yijkψiψjϕk + h.c.).



The scalar potential is:

V = ∑
i

∂W

∂ϕi

2

.

(8.27)

For Abelian gauge fields, define the field strength superfields:

Wα = −
1

4
D̄D̄DαV , W̄α̇ = −

1

4
DDD̄α̇V .

(8.28)

In the WZ gauge:

VWZ = θσμθ̄vμ + iθθθ̄λ̄ − iθ̄θ̄θλ +
1

2
θθθ̄θ̄D,

(8.29)

and the vector Lagrangian becomes:

∫ d2θW αWα =
1

2
D2 −

1

4
vμνvμν − iλσμ∂μλ̄.

(8.30)

The potential is:

V =
1

2
D2.

(8.31)

In non-Abelian SUSY gauge theories, the chiral superfields transform as Φ → eiΛΦ,
with Λ = ΛaT a, where Ta are Lie algebra generators obeying:

[T a,T b] = if abcT c, Tr(T aT b) =
1

2
δab.

(8.32)

The vector superfield transforms as:

eV → eiΛ
†
eV e−iΛ.

(8.33)

Define:

Wα = −
1

4
D̄D̄ (e−VDαe

V ), Wα → eiΛWαe
−iΛ.

(8.34)

∣ ∣



The complete non-Abelian SUSY Lagrangian is:

L = Φ
†
i (e

V )ijΦ
j
θ2θ̄2 +

1

4g2
Tr[W αWα] θ2 + W(Φi) θ2 + h.c.

(8.35)

After eliminating auxiliary fields:

VSUSY =
1

2
DaDa + F ∗

i F
i, F i =

∂W

∂ϕi
, Da = gaϕ∗

iT
aϕi.

(8.36)

8.6 SUPERSYMMETRY BREAKING

SUSY, while theoretically well-motivated, cannot be an exact symmetry of nature. If it
were unbroken, superpartners of the SM particles, such as electrons and squarks,
would have the same masses as their SM counterparts, which is clearly not the case
experimentally. The absence of such degenerate states implies that SUSY must be
broken. To stabilize the electroweak scale and resolve the hierarchy problem, SUSY
breaking should occur at or moderately above the electroweak scale.

As with other symmetries, SUSY can be broken spontaneously, dynamically, or
explicitly. The SUSY algebra is given by

{Qα, Q̄α̇} = 2σ
μ

αα̇Pμ,

(8.37)

which, upon contraction with (σ̄ν)β̇α, leads to

H =
1

4
(Q̄1Q1 + Q1Q̄1 + Q̄2Q2 + Q2Q̄2) ≥ 0.

(8.38)

This implies a semi-positive definite Hamiltonian. For a supersymmetric vacuum
where Qα|0⟩ = Q̄α̇|0⟩ = 0, the vacuum energy vanishes:

Evac = ⟨0|H|0⟩ = 0.

(8.39)

Conversely, if the vacuum is not annihilated by some SUSY generators, then Evac > 0,
signaling spontaneous SUSY breaking.

Spontaneous SUSY breaking implies that the variation of some field under SUSY
transformations acquires a non-zero vacuum expectation value (VEV). For a chiral
superfield,

⟨0|δξψ(x)|0⟩ ∝ ⟨0|F |0⟩ ≠ 0,

∣ ∣ ∣



(8.40)

and for a vector superfield,
⟨0|δξλ(x)|0⟩ ∝ ⟨0|D|0⟩ ≠ 0.

(8.41)

While spontaneous SUSY breaking is conceptually attractive, constructing realistic
models remains challenging. Alternatively, SUSY can be broken explicitly by
introducing terms in the Lagrangian that violate SUSY but do not reintroduce quadratic
divergences. These are the so-called soft SUSY breaking terms, classified in [127]:

Scalar mass terms: ~m2
ijϕ

∗
iϕj,

Gaugino mass terms: 1
2
Maλ

aλa + h.c.,

Bilinear scalar terms: Bijϕiϕj + h.c.,

Trilinear scalar terms: Aijkϕiϕjϕk + h.c..

These soft terms are essential for phenomenology: they shape the SUSY mass
spectrum and contribute to radiative electroweak symmetry breaking [118]. Ultimately,
a full understanding of SUSY breaking would allow all soft terms to be derived from a
fundamental theory, such as gravity mediation, gauge mediation, or anomaly mediation
[118].

8.7 MINIMAL SUPERSYMMETRIC STANDARD MODEL

The Minimal Supersymmetric Standard Model (MSSM) is the simplest
supersymmetric extension of the SM that retains its gauge group 
SU(3)C × SU(2)L × U(1)Y  while introducing a superpartner for each SM particle
[118, 126]. The MSSM arranges fields into supermultiplets, pairing SM particles with
superpartners differing in spin by 1/2:

Supermultiplet SM
Particle

SUSY
Partner

SU(3)C × SU(2)L × U(1)Y

QL (uL, dL)T (~uL,
~
dL)T (3, 2, 1/6)

U c
L

uc
L

~uc
L (3̄, 1, −2/3)

Dc
L

dcL
~
dcL (3̄, 1, 1/3)

LL (νL, eL)T (~νL, ~eL)T (1, 2, −1/2)

E c
L

ecL
~ecL (1, 1, 1)

Hu (H+
u ,H 0

u) (
~
H+

u ,
~
H 0

u) (1, 2, 1/2)

Hd (H 0
d ,H−

d ) (
~
H 0

d ,
~
H−

d ) (1, 2, −1/2)



Unlike the SM, the MSSM requires two Higgs doublets. This stems from the
requirement that the superpotential be analytic in chiral superfields, thus excluding
conjugate fields like H* [117]. Furthermore, anomaly cancellation demands both Hu
and Hd, since their fermionic superpartners (Higgsinos) contribute oppositely to the
gauge anomalies [118]. The MSSM includes gauge superfields for each SM
interaction:

(Bμ,
~
B) for U(1)Y ,

(W a
μ ,

~
W a) for SU(2)L,

(Ga
μ, ~ga) for SU(3)C .

The full MSSM Lagrangian is
LMSSM = Lgauge +Lmatter +Lsuperpotential +Lsoft.

(8.42)

The gauge and matter sectors follow from supersymmetric field theory [117]. The
superpotential encodes Yukawa interactions and Higgs mixing:

W = YuQU cHu + YdQDcHd + YeLE
cHd + μHuHd.

(8.43)

An explicit example involving the top quark superfield illustrates the structure of
SUSY interactions:

(8.44)

In addition to the standard top Yukawa interaction, SUSY introduces new interactions
involving the scalar superpartners (stops) and the Higgsino. These additional terms are
a distinctive feature of SUSY and play a crucial role in its phenomenology.

The Higgs and lepton doublets share gauge quantum numbers, allowing for lepton
and baryon number-violating terms:

W ′ = λijkLiLjE
c
k + λ′

ijkLiQjD
c
k + λ′′

ijkD
c
iD

c
jU

c
k + μ′

iLiHu,

(8.45)

which can mediate rapid proton decay [118, 128]. For instance:
λ′′

211λ
′
112

m2
~s

(ucdc)(ue),

Lint =−
Yt

2
(tLHut

c
L +

~
tL

~
Hut

c
L + tL

~
Hu

~
tcL + h.c.)

−Y 2
t (|Hu

~
tcL|2 + |Hu

~
tL|2 + |

~
tL

~
tcL|2).



(8.46)

contributes to p → e+π0, with decay rate:

Γ ∼ λ′
112λ

′′
211

m5
p

m4
~s

, τp ∼ 6 × 10−13 s(
m~s

1 TeV
)

4
(λ′

112λ
′′
211)−2.

(8.47)

To satisfy experimental limits τp > 1.6 × 1033 yr, these couplings must be extremely
suppressed:

λ′
112λ

′′
211 < 3 × 10−26.

(8.48)

To forbid these terms, R-parity is introduced, defined by:
RP = (−1)3B+L+2S.

(8.49)

Its consequences are:

1. SUSY particles must be pair-produced.
2. The lightest supersymmetric particle (LSP) is stable and a dark matter candidate.

Soft SUSY-breaking terms introduce masses and trilinear couplings:

Lsoft = −
1

2
Maλ

aλa − m2
ϕi
ϕ∗
iϕi − (AfYf

~
fL

~
fRH + BμHuHd + h.c.).

(8.50)

These terms, if unconstrained, introduce ∼ 100 new parameters. The constrained
MSSM (cMSSM) assumes GUT-scale universality:

(8.51)

(8.52)

reducing the parameter space to {m0,m1/2,A0, tanβ, sign(μ)}. This setup is often
motivated by minimal supergravity (mSUGRA) models.

8.8 SUPERSYMMETRIC SPECTRUM IN THE MSSM

m2
~
f

= m2
0, m2

Hu
= m2

Hd
= m2

0,

Af = A0, M1 = M2 = M3 = m1/2,



In the MSSM, each SM particle has a corresponding superpartner differing by half a
unit of spin. These superpartners, collectively known sparticles, play a crucial role in
stabilizing the electroweak scale and providing viable dark matter candidates. The
MSSM particle spectrum includes gauginos, Higgsinos, squarks, and sleptons. This
section discusses the mass generation, mixing, and phenomenological roles of the key
supersymmetric particles: gluinos, charginos, neutralinos, squarks, and sleptons [118].

Gluinos
The gluino (~g), the fermionic partner of the gluon, acquires mass from the soft SUSY-
breaking term:

Lsoft ⊃ −
1

2
M3

~ga~ga.

(8.53)

At tree level, the gluino mass is m~g = |M3(Q)|. At one-loop, the gaugino mass
parameters run as:

Mi(Q) =
αi(Q)

αi(MX)
Mi(MX), i = 1, 2, 3,

(8.54)

with universal boundary condition M1 = M2 = M3 = m1/2 at the GUT scale. At the
electroweak scale:

M3 : M2 : M1 ≈ 7 : 2 : 1.

(8.55)

Charginos

Charginos are mass eigenstates formed from charged winos ( ~
W ±) and Higgsinos ( ~

H+
u ,

~
H−

d
). The mass terms arise from:

(8.56)

with

(8.57)

L ⊃ −( ~
W − ~

H−
d )MC ( )+ h.c.,

~
W +

~
H+

u

MC = ( ).
M2 √2MW sinβ

√2MW cosβ μ



This matrix is diagonalized by unitary matrices U and V to yield the physical chargino
masses m ~χ±

1
, m ~χ±

2
, where the lighter mass is often near the electroweak scale.

Neutralinos

Neutralinos are mixtures of bino ( ~
B), wino ( ~

W 3), and neutral Higgsinos ( ~
H 0

u , ~
H 0

d ).
The mass matrix is:

(8.58)

Diagonalization yields four neutralino mass eigenstates. The lightest, χ0
1, is a dark

matter candidate. Its composition is:

χ = N11
~
B + N12

~
W 3 + N13

~
H 0

d + N14
~
H 0

u .

(8.59)

The gaugino fraction fg = |N11|2 + |N12|2 indicates the neutralino's character:
gaugino-like (fg > 0.5) or Higgsino-like (fg < 0.5).

Squarks
Squarks are scalar partners of quarks. Their mass matrices include soft terms, Yukawa
interactions, and D-term contributions. For third-generation squarks, mixing is
significant due to large Yukawa couplings. The stop mass matrix is:

(8.60)

The lighter stop mass m~
t1

 can be significantly below the TeV scale.

Sleptons
Sleptons are scalar partners of leptons. The stau (~τ) mass matrix in mSUGRA takes the
form:

MN = .

⎛⎜⎝ M1 0 −MZsWcβ MZsWsβ

0 M2 MZcWcβ −MZcWsβ

−MZsWcβ MZcWcβ 0 −μ

MZsWsβ −MZcWsβ −μ 0

⎞⎟⎠M
2

~t
= .
⎛

⎝

m2
~qL

+ m2
t −

cos 2β
6 (M 2

Z − 4M 2
W ) mt(At − μ cotβ)

mt(At − μ cotβ) m2
~tc
L

+ m2
t + 2

3 M
2
Z sin2 θW cos 2β

⎞

⎠

M
2
~τ = .

⎛⎜⎝m2
~
ℓL

+ m2
τ +

cos 2β
2 (M 2

Z − 2M 2
W ) mτ(Aτ − μ tanβ)

mτ(Aτ − μ tanβ) m2
~
ℓc
L

+ m2
τ − M 2

Z cos 2β sin2 θW

⎞⎟⎠



(8.61)

For large tanβ, significant left-right mixing occurs, which can impact LSP
coannihilation and collider signals.

8.9 THE HIGGS SECTOR IN THE MSSM

The MSSM requires two Higgs doublets, Hu and Hd, to give mass to both up- and
down-type fermions and ensure anomaly cancellation. These doublets acquire vacuum
expectation values (VEVs) vu = v sinβ and vd = v cosβ, with v ≃ 246 GeV and 
tanβ = vu/vd. The Higgs potential receives contributions from the superpotential,
soft SUSY-breaking terms, and D-terms:

(8.62)

Charged Higgs Bosons
The charged Higgs mass matrix, expressed in the basis (H±

d ,H±
u ), yields a physical

charged Higgs with mass:
m2

H± = m2
A + m2

W ,

(8.63)

where mA is the mass of the CP-odd Higgs. The light charged Higgs decays
predominantly into τ ±ν and cs̄, while heavier states decay into tb̄ or τν, depending on
phase space.

CP-odd Higgs Boson
The CP-odd Higgs mass matrix in the (ad, au) basis has one zero eigenvalue
(Goldstone boson) and a massive pseudoscalar:

m2
A =

2Bμ

sin 2β
.

(8.64)

This state decays primarily into heavy fermions such as τ +τ − and bb̄, with rates
sensitive to tanβ.

CP-even Higgs Bosons

V =(m2
Hu

+ |μ|2)H †
uHu + (m2

Hd
+ |μ|2)H

†
dHd + (BμHu ⋅ Hd + h.c.)

+
g2 + g′2

8
(H †

uHu − H
†
dHd)2 +

g2

2
|H †

uHd|2.



The CP-even Higgs mass matrix in the (hd,hu) basis is:

(8.65)

The lighter eigenstate satisfies mh ≤ mZ| cos 2β| at tree level, necessitating radiative
corrections to reach the observed value of 125 GeV [129–131]. These loop corrections
primarily involve top-stop loops:

V (1) =
1

64π2
Str [M 4(φi)(ln

M 2(φi)

Q2
− Cs)],

(8.66)

where Cs is a spin-dependent constant in the DR scheme.

8.10 SUSY SEARCHES AT THE LHC

The search for SUSY particles at the LHC is a central aspect of the experimental effort
to discover new physics beyond the SM. At the LHC, SUSY particle production is
predominantly driven by strongly interacting particles, such as squarks and gluinos.
These particles have substantial production cross-sections due to their strong
interactions, making them the primary focus of SUSY searches [132, 133].

In typical high-mass SUSY scenarios, the production of SUSY particles initiates
with squarks and gluinos. These particles then undergo a series of decay steps,
eventually leading to lighter SUSY particles and SM particles. The decay chains
typically involve:

Squarks and Gluinos: Decay into quarks, gluons, and lighter SUSY particles such
as charginos and neutralinos.
Charginos and Neutralinos: Further decay into electroweak gauge bosons (W and
Z bosons), Higgs bosons, and eventually to the lightest SUSY particle, which is
often the neutralino (~χ0

1).

The decay processes result in final states characterized by energetic jets and
significant missing transverse energy (Emiss

T ), as the lightest SUSY particle escapes
detection. The general search strategy involves identifying these distinctive signatures
in the data collected by the LHC detectors [134, 135].

LHC Constraints on the MSSM Spectrum
The LHC has significantly constrained the parameter space of the MSSM spectrum,
particularly in the context of SUSY particle masses, cross-sections, and decay modes

M
2
H = ( ).

m2
Z cos2 β + m2

A sin2 β −(m2
Z + m2

A) sinβ cosβ

−(m2
Z + m2

A) sinβ cosβ m2
Z sin2 β + m2

A cos2 β

–



[135, 136]. Key constraints include:

Gluino Mass: Lower bounds of ∼ 2.5 TeV in simplified models, reaching 
∼ 2.7– 3.0 TeV in complex scenarios [132].
Squark Mass: ∼ 2.0 TeV for first/second-generation, and up to ∼ 2.5 TeV for
stops/bottoms [135].
Neutralino and Chargino Masses: Neutralino ≳ 100– 200 GeV, chargino 
≳ 500– 600 GeV [133].
Higgs Sector: Light Higgs mass fixed at ∼ 125 GeV, heavy Higgs and charged
Higgs constrained above ∼ 100 GeV [136].
Stop Mass: Approx. ∼ 1.0– 1.5 TeV, depending on decay channels [134].

Despite no direct SUSY signals yet, the exclusion of parameter space is substantial
and continues to shape theoretical developments. Future LHC runs with higher
luminosity will improve sensitivity [134].





CHAPTER 9

BSM and Extra Dimensions

DOI: 10.1201/9781003457701-9

9.1 INTRODUCTION

The concept of extra dimensions is a central theme in theories that extend
beyond the SM of particle physics. By postulating the existence of
additional spatial dimensions beyond the familiar three, these frameworks
aim to resolve longstanding theoretical and phenomenological puzzles, such
as the hierarchy problem, the unification of forces, and the formulation of a
consistent theory of quantum gravity.

One of the earliest and most influential attempts to incorporate extra
dimensions was the Kaluza-Klein theory [137, 138], which unified gravity
and electromagnetism by introducing a compact fifth spatial dimension.
This pioneering idea laid the foundation for modern approaches involving
higher dimensions.

A major revival of interest came with the proposal of Large Extra
Dimensions in Arkani-Hamed, Dimopoulos, and Dvali (ADD) model [139],
which suggested that extra dimensions could be large compared to the
Planck scale. This framework offers an elegant resolution to the hierarchy
problem by lowering the fundamental scale of gravity. Subsequently, the
Randall-Sundrum (RS) models [140, 141] introduced the idea of warped
extra dimensions, providing an alternative geometric mechanism to address
the same problem.

https://doi.org/10.1201/9781003457701-9


Beyond addressing the hierarchy problem, extra dimensions are integral
to string theory, where consistency requires spacetime to be ten-dimensional
[142], or eleven-dimensional in the context of M-theory [143]. These extra
dimensions also appear in cosmological models, offering insights into early-
universe inflation [144] and the nature of dark matter and dark energy
[145].

9.2 GENERAL RELATIVITY IN 5D SPACETIME

One of the earliest attempts to formulate a unified field theory was
introduced by Theodor Kaluza in 1921 [137]. Kaluza extended Einstein's
theory of general relativity by proposing a five-dimensional spacetime,
integrating both gravitational and electromagnetic forces within the same
framework. This innovative approach set the foundation for many modern
theories involving extra dimensions. In this five-dimensional model, the
spacetime is described by a generalized line element:

dŝ2 = gMNdx
MdxN ,

(9.1)

where gMN  is the metric tensor that encompasses all five dimensions, and
M,N represent the spacetime indices ranging from 0 to 4. The five-
dimensional metric tensor is structured as follows:

(9.2)

Here, gμν  represents the familiar four-dimensional gravitational field, Aμ is
the electromagnetic four-potential, and ϕ is a scalar field. Together, they
form the five-dimensional gravitational potential, where the electromagnetic
and gravitational components are unified.

A key assumption in this model is that the five-dimensional metric is
independent of the extra-dimensional coordinate, denoted by y. This
assumption is known as the “cylindrical condition”:

∂gMN

∂x4
= 0.

gMN = ( )gμν − κ2ϕ2AμAν −κϕ2Aμ

−κϕ2Aν −ϕ2.



(9.3)

By adopting this condition, Kaluza was able to reduce the theory to a four-
dimensional spacetime with an embedded electromagnetic field. After
identifying g44 = −ϕ2 = −1 and κ = √ 16πG

c4 , the resulting field
equations, GMN = 0, naturally split into two familiar sets of equations:

(9.4)

(9.5)

In these equations, Tμν  is the energy-momentum tensor for the
electromagnetic field, defined as:

Tμν ≡
1

2
(gμνFαβF

αβ − F α
μ Fνα).

(9.6)

This remarkable result, where the field equations of general relativity yield
both Einstein's gravitational equations and Maxwell's equations of
electromagnetism, is often referred to as the “Kaluza miracle” [137]. It
demonstrated, for the first time, how extra dimensions could provide a path
toward unifying the fundamental forces of nature, laying the groundwork
for more advanced theories like String Theory [142].

9.3 COMPACTIFIED EXTRA DIMENSION

To justify the cylindrical condition in Kaluza's five-dimensional theory,
Oskar Klein proposed a groundbreaking idea in 1926: the extra dimension
is not infinite and extended, but rather compactified, curled up into a
microscopic, unobservable scale [138]. This compactification of the extra
dimension is assumed to be toroidal, meaning that the extra spatial
dimension is rolled into a circle with a small radius, R. The periodic nature
of the compactified dimension is described as:

X(xμ,x4) = X(xμ,x4 + 2πR).

~
Gμν =

8πG

c4
Tμν,

∇μFμν = 0



(9.7)

In this scenario and as shown in Fig. 9.1, the extra dimension y = x4 is
periodic, with each point in the dimension returning to itself after traveling
a distance of 2πR. This compactification allows the theory to remain
consistent with the observation that we experience only four large
dimensions while the fifth dimension remains hidden due to its extremely
small size.

Figure 9.1  Fifth dimension compactification on a circle ⏎

Klein's assumption that all fields are periodic in the extra dimension led
to the expansion of these fields into Fourier series. This approach allows
each field to be decomposed into a series of harmonics, indexed by an
integer n, corresponding to different modes of the compactified dimension.
The expansions for the metric, electromagnetic potential, and scalar field
are given by:

(9.8)

(9.9)

gμν(x, y) =
+∞

∑
n=−∞

gμνn(x)ein⋅y/R,

Aμ(x, y) =
+∞

∑
n=−∞

Aμn(x)ein⋅y/R,



(9.10)

Here, gμνn(x), Aμn(x), and ϕn(x) represent the Fourier coefficients,
corresponding to different Kaluza-Klein modes. These modes reflect the
quantized nature of the extra dimension. The harmonics n introduce an
entire tower of particles with increasing mass, known as Kaluza-Klein
excitations. For consistency, the following relations hold between the
Fourier components:

g∗
μνn(x) = gμν−n(x), A∗

μn(x) = Aμ−n(x), ϕ∗
n(x) = ϕ−n(x).

(9.11)

These conditions ensure that the physical fields are real, with their complex
conjugates satisfying the necessary symmetries.

The compactification of the extra dimension explains why we do not
directly observe the fifth dimension. Since the dimension is microscopic,
the higher Kaluza-Klein modes, corresponding to larger values of n, acquire
masses that are too large to be detected at low energies, leaving only the
zero modes to manifest as observable particles in four-dimensional
spacetime. Thus, the compactified extra dimension provides a consistent
framework to incorporate higher-dimensional theories while maintaining
agreement with experimental observations. This compactification
mechanism is crucial not only for Kaluza-Klein theory [137, 138] but also
for modern approaches such as string theory [142], where additional
dimensions are similarly compactified on complex geometrical shapes, like
Calabi-Yau manifolds. The notion of compactified extra dimensions has
deep implications, providing insight into the structure of spacetime and
offering a pathway to unification of the fundamental forces.

The Kaluza-Klein theory describes an infinite number of four-
dimensional fields, each corresponding to different modes of a compactified
extra dimension. These fields obey the equations of motion derived from
the five-dimensional action. The equations of motion for the metric,
electromagnetic field, and scalar field in this framework are:

(9.12)

ϕ(x, y) =
+∞

∑
n=−∞

ϕn(x)ein⋅y/R.

(∂μ∂μ − ∂ y∂y)gμν(x, y) = (∂μ∂μ +
n2

R2
)gμνn(x) = 0,

2



(9.13)

(9.14)

These resemble the Klein-Gordon equation, with an added term that gives
rise to a “mass” for each field mode. The Kaluza-Klein modes introduce a
mass scale for these fields, given by:

mn ∼
n

R
.

(9.15)

Here, n denotes the mode of excitation, and R is the radius of
compactification. The higher the mode n, the larger the associated mass of
the field. In four-dimensional spacetime, these excited states appear with
masses proportional to O(n/R), and since the goal is to unify the
electromagnetic interactions with gravity, the natural radius of
compactification is of the order of the Planck length, R = 1

Mp
, where the

Planck mass: Mp ∼ 1018 GeV.
The resulting action for the scalar field (often referred to as the “dilaton”)

is expressed as:

S = ∫ d4x { 1

2
∂μϕ

(0)∂μϕ(0) +
∞

∑
n=1

[∂μϕ
(n)†

∂μϕ(n) −
n2

R2
ϕ(n)†

ϕ(n)]}.

(9.16)

This action describes both the zero mode and the infinite tower of massive
Kaluza-Klein states, where each higher mode contributes a scalar field with
a mass proportional to n/R.

From the four-dimensional perspective, the action describes an infinite
series of particles, known as the Kaluza-Klein tower, with masses given by:

m(n) =
n

R
.

(9.17)

(∂μ∂μ − ∂ y∂y)Aμ(x, y) = (∂μ∂μ +
n2

R2
)Aμn(x) = 0,

(∂μ∂μ − ∂ y∂y)ϕ(x, y) = (∂μ∂μ +
n2

R2
)ϕn(x) = 0.



If the original field Φ(xμ, y) in five dimensions has a mass m0, the
corresponding four-dimensional Kaluza-Klein particles will have masses:

m2
(n) = m2

0 +
n2

R2
.

(9.18)

This relation introduces a mass spectrum for the Kaluza-Klein modes,
where the lowest mode n = 0 represents the massless or lightest state,
while the higher modes n > 0 are increasingly massive. The diagram in
Fig. 9.2 illustrates the Kaluza-Klein mass spectrum for a field compactified
on a circular dimension:

Figure 9.2  KK mass spectrum for a field on the circle ⏎

In this framework, the five-dimensional gauge field AM(xμ, y) has a
Fourier decomposition along the compact dimension:

AM(xμ, y) =
1

√2πR
∑
n

A
(n)
M (xμ)ei

n
R
y.

(9.19)

The action for the five-dimensional gauge field can be written as:

S = ∫ d4x dy [−
1

4
FMNF

MN].

(9.20)



Upon compactification, the action becomes:

(9.21)

This shows that the zero modes consist of a four-dimensional gauge field
and a real scalar field, while the higher modes include massive vector and
scalar fields. These Kaluza-Klein excitations introduce a rich structure of
particles that could be relevant in models of unification or physics beyond
the SM [137, 138, 142].

Graviton Spectrum in Kaluza-Klein Theory
In the framework of Kaluza-Klein theory, the metric in higher-dimensional
spacetime, specifically a five-dimensional (5D) spacetime, has 15
independent components due to the additional dimension. However, not all
of these components represent physical degrees of freedom. To reduce this
number, gauge fixing is required. The harmonic gauge condition is imposed
to simplify the metric components by applying the following constraint:

∂MgMN −
1

2
∂Ng

M
M = 0

(9.22)

This condition eliminates 5 components, reducing the independent degrees
of freedom to 10. Additionally, the residual gauge symmetry

gMN → gMN + ∂MϵN + ∂NϵM

(9.23)

with the condition □ϵN = 0, allows the imposition of 5 more constraints.
Ultimately, the 5D graviton has 5 physical degrees of freedom.

In contrast, a massless graviton in four-dimensional (4D) spacetime
possesses only 2 polarization states. This discrepancy indicates that upon
compactification, the extra degrees of freedom manifest as additional fields
from the 4D perspective, specifically, a vector field and a scalar field. This

S =∫ d4x{(−
1

4
F

(0)
μν F

(0)μν +
1

2
∂μA

(0)
5 ∂μA

(0)
5 )

+∑
n≥1

2(−
1

4
F

(−n)
μν F (n)μν +

1

2

n2

R2
A

(−n)
μ A

(n)
μ )}.



decomposition of the higher-dimensional graviton forms the essence of the
Kaluza-Klein spectrum [146].

These additional fields reflect the influence of the compactified extra
dimension and provide the theoretical basis for the Kaluza-Klein spectrum,
where the higher-dimensional graviton yields not only the usual graviton
but also additional particles in four-dimensional spacetime.

To understand this more concretely, consider the five-dimensional
Einstein-Hilbert action:

Ŝ =
1

2k̂2
∫ d5x̂√−ĝR̂.

(9.24)

Upon compactification of the fifth dimension on a circle of radius R, and
focusing on the zero modes (n = 0), the effective four-dimensional action
becomes:

S =
1

2k2
∫ d4x√−g [R −

1

4
e−√3ϕF

(0)
μν F

μν(0) −
1

2
∂μϕ

(0)∂μϕ(0)].

(9.25)

Here, R is the Ricci scalar of the 4D spacetime, F (0)
μν  corresponds to the

field strength of a U(1) gauge field arising from gμ5, and ϕ(0) is a scalar
field (commonly called the dilaton) associated with g55. These fields reflect
the zero-mode decomposition of the 5D graviton and are the physical
remnants of the higher-dimensional geometry in the compactified theory.

The higher Fourier modes (n ≠ 0) correspond to massive spin-2 Kaluza-
Klein excitations, which appear as a tower of massive gravitons in four-
dimensional spacetime with masses quantized as mn = n/R. These modes
are generically suppressed at low energies if the compactification radius R
is sufficiently small, typically near the Planck scale [147].

9.4 THEORIES WITH LARGE EXTRA DIMENSIONS

A key consideration in formulating theories with higher dimensions is
ensuring that the low-energy limit, often referred to as the four-dimensional
(4D) effective theory, matches experimental observations in our familiar 4D
spacetime. This serves as a critical test of the viability of such theories. A



generalization of the Einstein-Hilbert action in 4 + n dimensions is given
by:

S4+n = −M n+2
∗ ∫ d4+nx√−g(4+n)R(4+n),

(9.26)

where M* is the fundamental mass scale of the higher-dimensional theory.
The power n + 2 ensures that the action remains dimensionless in natural
units. In this framework, the extra dimensions are compactified on an n-
sphere or torus with a characteristic radius R. The full spacetime metric is
then:

ds2 = ημνdx
μdxν − R2dΩ2

n,

(9.27)

where ημν  denotes the flat Minkowski metric in four dimensions, and dΩ2
n

is the line element on the n-dimensional compact space.
To connect this higher-dimensional theory with 4D gravity, one must

match the low-energy limit of the higher-dimensional Einstein-Hilbert
action to the standard 4D action. This comparison yields:

−M n+2
∗ ∫ dny√g(n) ∫ d4x√−g(4)R(4) = −M 2

Pl ∫ d4x√−g(4)R(4),

(9.28)

where MPl ∼ 1018 GeV is the four-dimensional Planck mass. The integral
over the compact space gives its volume:

Vn(R) = ∫ dny√g(n) =
πn/2

Γ ( n
2 + 1)

Rn,

(9.29)

which corresponds to the volume of an n-dimensional ball or torus,
depending on the geometry.

Equating both sides, we find the relationship between the Planck scale
and the fundamental scale of gravity:

M 2
Pl = M n+2

∗ Vn(R).



(9.30)

Solving for the compactification radius gives:

R ∼
M

2/n
Pl

M
1+2/n
∗

.

(9.31)

This expression reveals how the size of the extra dimensions depends on the
number of dimensions n and the fundamental scale M*. For instance, if 
M∗ ∼ 1 TeV, a scale motivated by attempts to solve the hierarchy problem,
then for n = 2, the radius R could be as large as a fraction of a millimeter,
potentially within the reach of submillimeter gravitational experiments
[139, 148].

Gauge Field in Higher Dimensions
The action for a gauge field in 4 + n dimensions generalizes the standard
Yang-Mills action as:

S (4+n) = − ∫ d4+nx
1

4g2
∗
FMNF

MN√−g(4+n),

(9.32)

where FMN  is the field strength tensor in the higher-dimensional space, and
g* is the higher-dimensional gauge coupling. Assuming that g∗ ∼ O(1), we
can match the higher-dimensional gauge action to its four-dimensional
effective counterpart. This procedure yields the relation:

1 ≈ RnM n
∗ ,

(9.33)

where R is the radius of the compact extra dimensions and M* is the
fundamental scale of gravity. Combining this with the previous relation
between MPl, M*, and R,

M 2
Pl = M n+2

∗ Rn,

(9.34)



we find that:

R ∼
1

MPl
,

(9.35)

if M∗ ∼ MPl, implying extremely small compactification scales consistent
with the absence of observed deviations from four-dimensional physics.

Historically, it was widely assumed that any extra dimensions must be
compactified at the Planck scale, R ∼ 10−33 cm, rendering their physical
effects unobservable. However, this paradigm was revolutionized in the late
1990s by developments in string theory and brane-world scenarios. In
particular, the idea that Standard Model fields may be localized on a four-
dimensional submanifold (brane) embedded in a higher-dimensional bulk
allowed for a radical rethinking of extra-dimensional geometry.

In the ADD model, only gravity propagates in the higher-dimensional
bulk, while SM particles are confined to a 3-brane. This framework permits
large compactification radii up to R ≲ 0.1 mm, without violating known
experimental constraints from tests of Newtonian gravity at short distances.

In this scenario, the fundamental scale of gravity M* can be as low as the
electroweak scale, M∗ ∼ 1 TeV, providing a compelling solution to the
hierarchy problem. The apparent weakness of gravity at large distances is
then explained as a consequence of its dilution into the extra dimensions.

Gravitational Field in Higher Dimensions
We consider a flat five-dimensional metric:

ds2 = ηMNdx
MdxN , M,N = 0, 1, 2, 3, 4,

(9.36)

where ηMN  is the Minkowski metric in 5D spacetime. In the weak-field
limit and for static perturbations, the gravitational field equation generalizes
Gauss's law to higher dimensions [139]:

∂i∂
iϕ = 4πGDρ,

(9.37)



where GD is the gravitational constant in D-dimensions and ρ is the mass
density. Applying the divergence theorem, and defining the gravitational
field as g ≡ −∇ϕ, we obtain:

∮
S

(g ⋅ n) dS = −4πGDm,

(9.38)

where S is the surface enclosing a D-dimensional volume, and m is the
enclosed mass.

In a space with n extra spatial dimensions (i.e., D = 4 + n), this surface
becomes a sphere in n + 3 spatial dimensions:

∮
Sn+2

(g ⋅ n) dA = −4πGDm.

(9.39)

The surface area of a (n + 2) -dimensional sphere is related to the volume
of the corresponding ball:

Vn+2(r) =
π

n
2 +1

Γ ( n
2 + 2)

rn+2.

(9.40)

From this, the magnitude of the gravitational field is:

g =
−4Γ ( n

2
+ 2)GDm

πn/2rn+2
,

(9.41)

and integrating this expression yields the gravitational potential:

ϕ(r) =
4Γ ( n

2
+ 2)GDm

πn/2
∫

r

∞

1

r′n+2
dr′ =

4Γ ( n
2

+ 2)GDm

πn/2rn+1
.

(9.42)

This result illustrates that gravity becomes stronger at short distances in the
presence of extra dimensions due to the modified scaling of the potential, a
central feature of models with large extra dimensions [148].



The higher-dimensional Newton constant GD is related to the
fundamental Planck scale MD ≡ Mpl(4+n) by dimensional analysis. In
natural units (ℏ = c = 1), its mass dimension is:

[GD] =
1

MD
n+2

.

(9.43)

This scaling is crucial for understanding how gravity can appear weak in 4D
while being fundamentally strong in higher-dimensional theories [139,
148].

Matching to Newtonian Gravity
To recover an effective four-dimensional theory in the limit R ≪ r, we
compare the potential derived from the higher-dimensional theory to the
familiar Newtonian potential:

ϕ(4) ∼
m

RnrMpl(4+n)
2+n

≈
m

M 2
plr

.

(9.44)

This matching condition leads to the relation [139, 148]:

Rn =
M 2

pl

Mpl(4+n)
2+n

.

(9.45)

If we assume that the electroweak scale mEW ∼ 1 TeV is the fundamental
Planck scale, we can choose the radius R of the extra dimensions to
reproduce the observed four-dimensional Planck mass. This yields:

R ∼ 10
30
n

−17 cm × ( 1 TeV

mEW
)

1+ 2
n

.

(9.46)

Constraints from Experimental Bounds



For n = 1, the radius R of the extra dimension would be approximately 
1013 cm, comparable to the size of the solar system, and thus clearly
excluded by observations. To remain consistent with current experimental
constraints, at least two extra dimensions are required. For n = 2, the radius
drops to about 100μm, which lies within the current experimental bounds
on deviations from Newtonian gravity at submillimeter scales [149].

9.5 RANDALL-SUNDRUM MODEL

Motivated by the large extra dimensions framework proposed by Arkani-
Hamed, Dimopoulos, and Dvali (ADD) [139], a variety of models
incorporating extra spatial dimensions have emerged. A particularly
influential example is the Randall-Sundrum (RS) model, proposed in 1999
by Lisa Randall and Raman Sundrum [140, 141]. The RS model introduces
a non-factorizable, warped geometry between our four-dimensional (4D)
spacetime and an additional fifth dimension.

Specifically, the five-dimensional (5D) metric is a warped product
between the 4D Minkowski space with coordinates xμ and the extra-
dimensional coordinate y, with the 4D geometry multiplied by a scalar warp
factor f(y). The general form of a warped product metric is:

ds2 = f(y) gμν(x) dxμdxν + gab(y) dyadyb,

(9.47)

where gμν(x) is the metric of the 4D spacetime, and gab(y) represents the
geometry of the internal extra-dimensional space.

In the RS scenario, there is only a single extra dimension compactified on
a circle S1 of radius R, subject to a Z2 symmetry under reflection y → −y,
resulting in the orbifold S 1/Z2. This orbifold structure has strong roots in
string-theoretic constructions, particularly in the Horava-Witten scenario
[150], where eleven-dimensional M-theory is compactified on 
R10 × S 1/Z2, with six dimensions curled up into a Calabi-Yau manifold.
Such constructions motivate the effective appearance of five-dimensional
physics at low energies.

Warped Metric and Einstein Field Equations



The RS model assumes that the induced 4D metric on the brane is flat, 
gμν(x) = ημν , while the warp factor depends solely on the extra dimension.
The resulting metric becomes:

ds2 = f(y) ημν dx
μdxν − dy2,

(9.48)

where ημν  is the Minkowski metric and f(y) is to be determined.
To determine the functional form of f(y), we consider the 5D Einstein-

Hilbert action with a bulk cosmological constant Λ:

S = −∫ d5x√−g (R + Λκ2),

(9.49)

where κ2 = 1/M 3, and M is the 5D Planck mass. The vacuum Einstein
field equations take the form:

GMN = −
Λ

2M 3
gMN ,

(9.50)

where GMN  is the 5D Einstein tensor.

Solving for the Warp Factor
Using the metric in Eq. (9.48), the non-zero components of the Einstein
tensor are:

(9.51)

Substituting these into Eq. (9.50), we obtain:

(9.52)

G00 = −
3

2

d2f(y)

dy2
, G11 = G22 = G33 =

3

2

d2f(y)

dy2
,

G44 =
3

2f(y)2
(
df(y)

dy
)

2

.

d2f(y)

dy2
= −

Λκ2

3
f(y),



(9.53)

These equations require Λ < 0, implying an anti-de Sitter (AdS5)
geometry. Solving Eqs. (9.52) and (9.53) for negative Λ gives:

f(y) = e±2ky,

(9.54)

where k = √−Λκ2/6. Imposing the Z2 symmetry y → −y selects:

f(y) = e−2k|y|.

(9.55)

The full RS metric is therefore:

ds2 = e−2k|y| ημνdx
μdxν − dy2.

(9.56)

The exponential suppression factor e−2k|y| generates a large hierarchy of
scales from modest input parameters, thus providing a geometric solution to
the hierarchy problem.

Conformally Flat Form of the RS Metric
For certain applications, it is useful to express the RS metric in a
conformally flat form. Defining a new coordinate z via:

dy = e−k|y|dz,

(9.57)

and solving for z, the metric becomes:
ds2 = f(z) (ημνdxμdxν − dz2),

(9.58)

where

df(y)

dy
= ±√

−Λκ2

3
f(y).



f(z) =
1

(k|z| + 1)2
.

(9.59)

Thus, the RS metric in conformally flat coordinates takes the form:

ds2 =
1

(k|z| + 1)2
(ημνdxμdxν − dz2),

(9.60)

which is particularly advantageous for calculations involving field
propagation in the bulk.

Brane Tension
It is important to note that the metric (9.56) is not fully determined by the
bulk field equations alone; rather, it arises from the specific physical setup
of the S 1/Z2 orbifold. To ensure consistency, we must verify that this
metric satisfies the Einstein field equations, potentially requiring an
additional interpretation of its source terms.

By transforming the RS metric into its conformally flat form (9.60), the
Einstein tensor components can be computed straightforwardly. The
relevant component for the four-dimensional spacetime is:

Gμν = ημν (
6k2

(k|z| + 1)2
+

3k sgn′(z)

k|z| + 1
).

(9.61)

The first term corresponds to the contribution of the negative bulk
cosmological constant, as expected. The second term, however, is singular
and proportional to the derivative of the sign function, indicating the
presence of localized sources at the orbifold fixed points. Specifically, since
sgn′(z) = 2δ(z) − 2δ(z − b), these contributions are delta functions
centered at z = 0 and z = b, the locations of the two 3-branes.

To account for these singularities, one must introduce brane-localized
energy-momentum sources, interpreted as the brane tensions. These are
incorporated into the total action as:

S = Sgravity + Svis + Shid,



(9.62)

where Svis and Shid are the contributions from the visible and hidden branes,
respectively. These terms have the form:

Sbrane = −∫ d4x√−gind λ,

(9.63)

where λ is the brane tension and gind is the induced 4D metric on the brane.
Matching the coefficients in the Einstein equations yields the fine-tuning

condition:
λvis = −λhid = 24M 3k,

(9.64)

where M is the 5D Planck mass. This setup is characteristic of the original
RS model (RS1) [140], which features a compact extra dimension bounded
by two branes, one of which necessarily has negative tension.

The presence of a negative-tension brane in RS1 is often considered a
theoretical drawback, as it may lead to instabilities and violates certain
energy conditions. This issue is addressed in the second RS model (RS2)
[141], where the extra dimension is extended to infinity, and only a single
positive-tension brane remains at z = 0. In this configuration, the warp
factor still localizes gravity near the brane, effectively reproducing four-
dimensional Newtonian gravity despite the infinite extra dimension.

9.6 HIERARCHY PROBLEM

To understand the physical implications of the RS model, we now examine
how it addresses its original motivation: the hierarchy problem.
Specifically, we compute the effective four-dimensional Planck scale and
mass parameters in terms of the five-dimensional fundamental scales.

Starting from the metric (9.56), we perform the coordinate transformation
y = rcϕ, where rc is the compactification radius, and ϕ ∈ [−π,π]. In the
low-energy limit, we introduce weak-field perturbations hμν(xμ) ≪ 1, so
the metric takes the form:

( )∣ ∣



ds2 = e−2kT (xμ)∣ϕ∣ [ημν + hμν(xμ)]dxμdxν + T 2(xμ)dϕ2,

(9.65)

where the modulus field T (x) parametrizes the size of the extra dimension
and is assumed to be stabilized at its vacuum expectation value ⟨T (x)⟩ = rc
. The stabilization mechanism, such as the Goldberger–Wise (GW)
mechanism [151], is essential to dynamically fix this scale without fine-
tuning. For simplicity, we now treat the modulus as a constant, T = rc,
yielding the background metric:

ds2 = e−2krc∣ϕ∣ [ημν + hμν(xμ)]dxμdxν + r2
cdϕ

2.

(9.66)

The Ricci scalar in five dimensions includes the four-dimensional
curvature term, scaled by the warp factor:

R(5) ⊃ e2k∣y∣R(4), √−g(5) ⊃ e−4k∣y∣√−g(4).

(9.67)

Using this, the gravitational part of the action becomes:

(9.68)

where M is the 5D Planck scale and κ2 is the bulk cosmological constant
(here treated generically). Since the graviton zero mode is independent of y,
the effective four-dimensional Planck scale is:

M 2
Pl = M 3 ∫

b

−b

dy e−2k∣y∣ =
M 3

k
(1 − e−2kb).

(9.69)

This result shows that M ∼ MPl even for moderately large values of b,
unlike in the ADD model, where a large compactification volume is
required. However, this alone does not fully resolve the hierarchy problem,
we must still explain the smallness of the weak scale.

S = −M 3 ∫ d5x√−g(5) (R(5) + κ2)

⊃ −M 3 ∫ dy e−2k∣y∣ ∫ d4x√−g(4) (R(4) + κ2),



Let us now consider a matter field, such as the Higgs field, localized on
the brane at y = b. The action for the Higgs scalar is:

SH = ∫ d4x√−gind [gμνindDμHDνH − λ(H †H − v2)2],

(9.70)

where gind
μν = e−2kbημν  is the induced metric on the brane. Substituting this

yields:

SH = ∫ d4x e−4kb [e2kbημνDμHDνH − λ(H †H − v2)
2].

(9.71)

We rescale the field to obtain a canonically normalized kinetic term: 
~
H = e−kbH. The action becomes:

SH = ∫ d4x [ημν∂μ
~
H∂ν

~
H − λ( ~

H † ~
H − (e−kbv)2)

2
].

(9.72)

This is the standard 4D Higgs action, but with an effective vacuum
expectation value:

~v = e−kbv.

(9.73)

Taking v ∼ MPl as the fundamental input scale, we find that choosing 
kb ≈ 37 generates ~v ∼ TeV, providing a natural explanation for the
smallness of the electroweak scale relative to the Planck scale. Therefore,
the brane at y = b is referred to as the “TeV brane,” while the brane at 
y = 0 is the “Planck brane,” where physical masses remain at the
fundamental scale.

This exponential suppression of energy scales via the warped geometry
elegantly resolves the hierarchy problem without requiring a large extra
dimension or fine-tuning of fundamental parameters.

Linearized field equations



We now proceed to explore the implications of gravity in the context of the
RS model by studying graviton fluctuations around the metric in the
conformal gauge. As discussed earlier, the presence of a negative-tension
object at the TeV brane introduces nonphysical outcomes. A closer look at
Eq. (9.69) suggests a potential alternative approach. Notably, even if the
size of the extra dimension approaches the limit b → ∞, the TeV brane can
be excluded from the physical setup. This concept forms the basis of the
RS2. Although this approach abandons the original solution for the
hierarchy problem discussed in the previous section, RS2 focuses on
studying the more intriguing aspects of gravity [141, 152].

In this modified model, where only one brane exists, Einstein's equations
derived from the action take the form:

RMN −
1

2
gMNR = ΛgMN + σgμνδ(z)δ

μ
MδνN ,

(9.74)

where σ is the brane tension. The linearized field equations for a perturbed
metric ds2 = e−A(z)dxMdxN(ηMN + hμν) can be obtained using the
relation that connects the Einstein tensor for a manifold with another
conformally related manifold, i.e., gMN = e−A(z)~gMN , where 
e−A(z) = 1

(k|z|+1)2  in our case:

(9.75)

Here, ~
∇ refers to the covariant derivative with respect to the perturbed

metric ~gMN = (ηMN + hMN).
With the knowledge of ~

GMN  and the covariant derivatives of A(z), the
linearized Einstein equation takes the form:

−
1

2
∂M∂Mhμν +

d − 2

4
∂MA∂Mhμν = 0.

(9.76)

GMN =
~
GMN +

d − 2

d
[ 1

2
~
∇MA

~
∇NA

+
~
∇M

~
∇NA − ~gMN (

~
∇k

~
∇kA −

d − 3

4
~
∇kA

~
∇kA)] .



The linear expansion of the perturbed metric is performed using Eq. (9.76)
under the gauge condition ∂μhμν = h

μ
μ = 0, known as the RS gauge

choice. A detailed discussion of this specific gauge choice can be found in
[152]. After performing a separation of variables h(x, y) = ψ(y)eip⋅x, the
resulting equation of motion is:

[−
m2

2
e2k|y| −

1

2
∂ 2
y − 2kδ(y) + 2k2]ψ(y) = 0,

(9.77)

where m represents the four-dimensional mass eigenvalue, □hμν = m2hμν .
To cast this equation in a Schrödinger-like form, we perform a change of
variables z ≡ sgn(y) ek|y|−1

k
, yielding:

[−
1

2
∂ 2
z + V (z)]ψ(z) = m2ψ(z),

(9.78)

with the potential

V (z) =
15k2

8(k|z| + 1)2
−

3k

2
δ(z).

(9.79)

This potential forms a “volcano” with a minimum at z = 0 due to the
delta function. This equation predicts a Yukawa-like correction to the
gravitational potential on the brane, similar to the screened Poisson
equation:

U(r) ∼
GNM1M2

r
+ ∫

∞

0
dm

GNM1M2

r
e−mrψ2

m(z),

(9.80)

where the integral is over the massive Kaluza-Klein modes. Equation (9.78)
has a solution in terms of Bessel functions:

ψm = amz
1
2 Yα+ 1

2
(m(z +

1

k
)) + bmz

1
2 Jα+ 1

2
(m(z +

1

k
)),

(9.81)



For our purposes, we are primarily interested in the effective four-
dimensional theory at the brane, where ψm(0) ∼ √ m

k
. Thus, the corrected

gravitational potential takes the form:

(9.82)

(9.83)

where C is a constant related to the integration over m. With k of the order
of the fundamental Planck scale, the correction to the Newtonian potential
is highly suppressed. To detect these higher Kaluza-Klein modes,
extraordinarily high energies beyond current experimental reach would be
required. Thus, this RS2 model with a semi-infinite extra dimension
successfully reproduces the ordinary four-dimensional Newtonian potential
[141, 151, 152].

U(r) ∼
GNM1M2

r
+ c∫

∞

0
dm

GNM1M2

kr
me−mr

= GN

M1M2

r
(1 +

C

r2k2
),





CHAPTER 10

BSM Collider Phenomenology

DOI: 10.1201/9781003457701-10

10.1 INTRODUCTION

Physicists are driven by the goal of understanding the fundamental nature of the
universe, which has led them to explore ideas BSM of particle physics. Collider
experiments have played a key role in this search, as they allow scientists to probe
extremely high energies where new particles or forces might appear. The main goal
of BSM collider studies is to search for signs of new particles predicted by
theoretical models. These models aim to answer open questions in particle physics
and improve our understanding of matter at the smallest scales. High-energy
collisions at the Large Hadron Collider (LHC) and future colliders provide a unique
opportunity to discover such new physics [153]. The main areas of focus include:

Supersymmetric Particles: SUSY predicts a partner particle for each SM
particle. These superpartners could help resolve major open questions, such as
the hierarchy problem, and may provide a framework for unifying the
fundamental forces [118].
Extra Gauge Bosons: Particles like Z’ and W’ are predicted by extensions of the
SM and may indicate new interactions that could help explain observed
anomalies in current experimental data [78].
Extended Higgs Sector: The discovery of additional Higgs bosons could reshape
our understanding of electroweak symmetry breaking and the dynamics of the
Higgs mechanism [48, 51].
Dark Matter Candidates: Exploring particles such as Weakly Interacting Massive
Particles (WIMPs) and axions may lead to significant breakthroughs in
understanding dark matter's elusive nature [32, 33].
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In addition to the search for new particles, collider experiments seek to identify
signatures of new physics. These signatures offer crucial insights into the existence
of BSM phenomena, including:

Missing Energy: A hallmark of stable or weakly interacting particles that may
indicate the production of new physics [154].
Jet and Lepton Production: Observable events that suggest the involvement of
new particles [155].
Resonance Searches: The detection of specific decay products that could
confirm the presence of new particles or interactions [156].

This chapter will explore the experimental strategies employed in probing BSM
collider phenomenology. Due to the limited space available in this chapter, we will
focus on a select few examples of new particle discoveries at the LHC and will not
consider other future colliders.

10.2 SUPERSYMMETRY COLLIDER PHENOMENOLOGY

This section focuses on identifying signatures of SUSY particles, understanding their
production mechanisms, and measuring their properties to test SUSY theories. SUSY
particles can be produced at colliders through strong interactions, which primarily
generate squarks and gluinos due to the strong coupling, as well as electroweak
interactions, leading to the production of sleptons, neutralinos, and charginos.
Additionally, associated production processes, such as gluino-neutralino or squark-
neutralino pairs, contribute to the variety of production mechanisms.

Additionally, SUSY particles decay through cascades involving intermediate
states, ultimately producing the lightest supersymmetric particle (LSP). Key
observables include missing transverse energy (Emiss

T ) from the undetectable LSP
[157], multiple energetic jets and leptons from squark, gluino, or slepton decays, and
potential signatures of long-lived particles, such as displaced vertices or charged
tracks, arising from particles like staus or neutralinos [158, 159].

Here, we focus on three fundamental SUSY particles: the Lightest Supersymmetric
Particle (LSP), typically the lightest neutralino and a prime candidate for dark matter;
the gluino, a key participant in strong interactions and a potential gateway to new
physics; and squarks, the superpartners of quarks, which provide insights into flavor
physics and the hierarchy problem.

Search for gluinos, first and second generation squarks
As discussed in Chapter 8, within the MSSM, the gluino mass is approximately given
by m~g ≈ 2.5m1/2, typically resulting in a value of at least a few TeV. The five light-
flavored squark species (

~
d, ~u, ~s, ~c,

~
b), including both left- and right-chiral



components, are generally assumed to be mass-degenerate. In contrast, the third-
generation squarks ~tL and ~tR experience significant left-right mixing, giving rise to
two distinct mass eigenstates, ~t1 and ~t2. Notably, ~t1 is considerably lighter than the
other squark states, necessitating a dedicated discussion of its production
mechanisms and decay channels [118].

At the LHC, squarks and gluinos can be produced in pairs {~g~g, ~q~q, ~q~g} and decay
through processes such as ~q → q~χ0

1 and ~g → qq̄~χ0
1, where ~χ0

1 is the lightest
neutralino, as depicted in Fig. 10.1. Searches for squarks and gluinos in final states
with high transverse momentum jets and missing transverse momentum have been
conducted by both the ATLAS and CMS experiments, using center-of-mass energies
of √s = 7, 8, 13 TeV and a total integrated luminosity of approximately 20 fb-1 [160,
161]. No significant excess above the SM predictions was observed. In Fig. 10.2, we
show the ATLAS exclusion limits at 95% confidence level for the MSSM model with
tanβ = 30, A0 = −2m0, and μ > 0, presented (left) in the (m~g − m~q) plane [160].
The CMS limits are quite similar [161]. It is noteworthy that values of m1/2 < 340
GeV are excluded for m0 < 6 TeV in this scenario, consistent with constraints
derived from the measured lightest Higgs mass of mh ≈ 125 GeV [162].

Figure 10.1  Representative diagrams for (left) gluino- and (right) squark-pair
production and their direct decays: ~g → qq̄~χ0 and ~q → q~χ0. ⏎



Figure 10.2  ATLAS exclusion limits, at 95% CL, for the MSSM model with 
tanβ = 30, A0 = −2m0 and μ > 0, projected on the (m~g − m~q) plane [160]. CMS
limits are quite similar [161]. ⏎

Search for stops
The stop plays an essential role in solving the hierarchy problem in the MSSM,
through the cancellations of the quadratic divergences of top-quark loops. As
mentioned, in most SUSY models, a light stop quark mass arises naturally. A search
for the pair production of stop quarks has been performed by both the ATLAS and
CMS experiments, using the full data set collected at √s = 7, 8 TeV and integrated
luminosity of order 20 fb−1. LHC searches focus on the semileptonic decay mode,
where ~t → t~χ0

1 → bW ± ~χ0
1 and ~

t → b~χ±
1 → bW ± ~χ0

1, as shown in Fig. 10.3. Then
one W± decays hadronically and the other leptonically. Thus, the final state searched
for is 4j + ℓ+ missing energy (ℓ = e,μ) [163, 164].



Figure 10.3  Representative diagrams for stop pair production and decay into bb̄
W +W − ~χ0

1
~χ0

1. ⏎

An analysis of ∼ 13 fb−1 and √s = 13 TeV at ATLAS [165] and CMS [166]
detectors indicated no significant excess over the SM background. Exclusion limits at
95% CL, shown in Fig. 10.4, are reported. These limits are presented in terms of stop
and lightest neutralino masses. In the considered simplified model, where 
BR(

~
t → t~χ0) = 1, the stop masses between ∼ 310 and ∼ 820 GeV are excluded for

m ~χ0 < 160 GeV.

Figure 10.4  ATLAS (left) and CMS (right) exclusion limits at 95% CL for direct stop
production, followed by the ~t → t~χ0 decay [165, 166]. ⏎

Charginos and neutralinos
The lightest chargino (~χ±

1 ) has several leptonic decay modes, producing an isolated
lepton and missing energy, due to the undetectable neutrino and the LSP [167, 168]:

(10.1)

~χ±
1 → ~χ0

1 ℓ± ν,



(10.2)

(10.3)

(10.4)

In hadronic collisions, the charginos and neutralinos can be produced directly via
21 different reactions or through the cascade decays of strongly interacting sparticles.

The first searches for the direct electroweak production of supersymmetric
charginos and neutralinos at √s = 13 TeV were conducted using pp collisions with a
luminosity of approximately 13 fb-1 in the CMS detector [169]. These searches focus
on signatures involving two same-flavor light leptons or three or more leptons, as
illustrated in Fig. 10.5. The results are categorized based on the number, sign, and
flavor of the leptons, as shown in Fig. 10.6. No significant deviation from Standard
Model expectations was observed, and these results were used to set limits on
simplified models with large chargino-neutralino pair production cross-sections.
Specifically, they probe chargino and neutralino masses up to 400 − 1000 GeV,
depending on the assumed model parameters.

Figure 10.5  Representative diagrams for direct charginos/neutralinos production and
decay mediated by sleptons (left) and sneutrinos (right), leading to leptonic final
states. ⏎

~χ±
1 →

~
ℓ±
L ν → ~χ0

1 ℓ±,

~χ±
1 → ~νL ℓ± → ~χ0

1 ν,

~χ±
1 → ~χ0

1 W
± → ℓ± ν.



Figure 10.6  CMS results of the three-lepton search in the flavor-democratic signal
model with the slepton/sneutrino mass given by m~

ℓ = m~ν = 1
2 (m ~χ+ + m ~χ0) [169].

⏎

10.3 SEARCH FOR EXTRA GAUGE BOSONS AT THE LHC

The ATLAS and CMS experiments at the Large Hadron Collider (LHC) have
conducted extensive searches for extra gauge bosons, such as Z′ and W′, predicted by
various extensions of the SM. These searches are particularly compelling in the
leptonic Drell-Yan (DY) channel, where heavy gauge bosons could manifest as
resonant peaks in the invariant mass spectrum of lepton pairs (e+e− or μ+μ−). DY
processes, characterized by the production of lepton pairs through quark-antiquark
annihilation (qq̄ → Z ′/W ′ → ℓ+ℓ−), offer a clean experimental signature and serve
as powerful tools for discovering or constraining new physics involving heavy spin-1
gauge bosons [170, 171].

Searches for Z′-bosons focus on identifying resonances in the invariant mass
spectrum, which could indicate the presence of new physics. These heavy gauge
bosons arise in theoretical frameworks such as GUTs, Left-Right Symmetric Models,
and models with additional U(1) symmetries. Experimentally, a Z′-boson would
appear as a narrow peak above SM backgrounds, with angular distributions and
forward-backward asymmetry providing further discriminating power. Recent results
from ATLAS and CMS have placed stringent lower bounds on Z′-boson masses,
excluding them up to 4.5 TeV depending on the model [170, 171]. Future upgrades at
the High-Luminosity LHC are expected to extend the reach of these searches,
enabling sensitivity to even heavier Z′-bosons. Enhanced detector resolution and
increased luminosity will allow the exploration of rarer events and further tighten
constraints, maintaining Z′-searches as a cornerstone of BSM physics exploration at
the energy frontier.

Search for Z′ at the LHC



The existence of new neutral gauge bosons is a possible signature of GUT models,
such as left-right-symmetric (LRS) models and U(1)′ extensions of the SM.

Searches for Z′ bosons have been extensively conducted by the ATLAS and CMS
Collaborations, resulting in stringent bounds on Z′ boson production as a function of
its mass, mZ ′ , particularly in the Z ′ → μ+μ− and Z ′ → e+e− decay channels. By
combining these two final states and adopting the sequential Standard Model (SSM)
framework, the production of an SSM Z′ boson has been excluded at the 95%
confidence level (CL) for masses below 5.15 TeV (CMS) [172] and 5.10 TeV
(ATLAS) [173]. The SSM assumes that the Z′ boson has the same couplings to SM
particles as the Z boson, specifically with generation-independent couplings to SM
fermions.

In Fig. 10.7, the left panel shows the CMS upper limits [172] at the 95%
confidence level (CL) on the product of the production cross-section and the
branching fraction for a spin-1 resonance with a width equal to 0.6% of the
resonance mass. These limits are normalized to the corresponding product for the SM
Z boson. Results are provided for the (top left) dielectron channel, (top right) dimuon
channel, and (bottom) the combined dilepton channels. The shaded bands represent
the 68% and 95% quantiles of the expected limits. Simulated predictions for spin-1 
Z ′

SSM and Z ′
ψ resonances are also included for comparison. The right panel presents

the ATLAS upper limits [173] at 95% CL on the fiducial cross-section times
branching ratio as a function of the pole mass for the combined dilepton channel. The
limits are shown for signals with relative widths of zero, 3%, and 10%. Observed
limits are depicted as solid lines, while expected limits are indicated by dotted or
dashed lines. Theoretical cross-sections for the Z ′

SSM resonance, with a width-to-
mass ratio of Γ/m = 3.0%, are overlaid for comparison. These results highlight the
combined sensitivity of the CMS and ATLAS searches to Z′ boson models with
varying resonance widths.

Figure 10.7  CMS and ATLAS Upper Limits on Z′ Boson Production: Left: CMS 95%
CL upper limits on the normalized cross-section times branching fraction for a spin-1



resonance [172]. Right: ATLAS 95% CL upper limits on the fiducial cross-section
times branching ratio for combined dilepton channels with varying resonance widths
[173]. ⏎

Search for W′ at the LHC
Many extensions of the SM of particle physics predict the existence of new, heavy
charged gauge bosons, often referred to as W′ bosons. These additional particles arise
in various theoretical frameworks, such as grand unified theories (GUTs), composite
models, and certain models of extra dimensions. The search for these new W′ bosons
provides an essential tool for probing a wide range of new physics scenarios. By
investigating the production and decay of W′ bosons, experiments at particle colliders
like the LHC can offer insights into the nature of new interactions, the possible
structure of underlying physics beyond the SM, and the mass scale of new particles
that could explain phenomena unexplained by the SM.

Searches for W′ bosons, hypothetical heavier counterparts to the SM W boson,
have been extensively conducted by the CMS and ATLAS collaborations. The
production of a W′ boson in proton-proton collisions at the LHC occurs primarily
through quark-antiquark annihilation (qq̄ ′ → W ′). The production cross-section is
influenced by the parton distribution functions (PDFs) of the quarks and antiquarks
in the proton and the coupling strength of the W′ boson to quarks. In models like the
SSM, the W′ boson has couplings similar to the SM W, while other models may
propose different coupling patterns. The cross-section is sensitive to the mass of the
W′ boson, which decreases rapidly with increasing mass due to the behavior of PDFs
at high momentum transfer. Experimental searches at the LHC focus on various
decay channels, such as leptonic (W ′ → ℓν) and hadronic (W ′ → qq̄ ′) decays, with
additional sensitivity to the W ′ → tb decay mode, especially in models with
enhanced couplings to third-generation fermions.

The decay modes of the W′ boson provide distinctive signatures for experimental
searches. In leptonic decays, the W′ boson decays to a charged lepton and a neutrino,
yielding a signature of high transverse momentum (pT) leptons and missing
transverse energy (Emiss

T ), which are prominent in the final states. Hadronic decays
lead to high-mass dijet systems, and the W ′ → tb decay produces top-bottom quark
pairs, which require advanced reconstruction techniques due to the boosted top
quarks. Searches by the CMS and ATLAS collaborations have set stringent upper
limits on the mass of the W′ boson. For example, CMS results exclude W′ boson
masses up to approximately 6.1 TeV in the leptonic decay channels [174], while
ATLAS constraints in the same channels exclude masses up to about 5.9 TeV [170].
Limits for hadronic and heavy-flavor decays extend to approximately 4.5 TeV and
3.8 TeV, respectively.

Both the ATLAS and CMS collaborations have conducted searches for the decay 
W ′ → ℓν (where ℓ = e,μ, τ). The ATLAS search sets an SSM mass limit of 



mW ′ > 5.9 TeV, while the CMS search places a slightly stronger limit of 
mW ′ > 6.1 TeV. Fig. 10.8 illustrates the corresponding cross-section limits as a
function of W′ mass. As typically observed in these analyses, there is good agreement
between the observed and expected limits, providing strong constraints on the mass
of the W′ boson in this decay channel.

Figure 10.8  ATLAS [170] (left) and CMS [174] (right) cross-section limits on 
W ′ → ℓν. ⏎

10.4 SEARCH FOR HEAVY HIGGS BOSONS AT THE LHC

As discussed in previous chapters, the heavy Higgs boson is a central feature of many
BSM theories, including the 2HDM [48], the LRSM) [75], and the MSSM [118].
These models extend the Higgs sector to address unresolved challenges such as the
hierarchy problem and the nature of dark matter. Typically possessing a mass in the
multi-hundred GeV to TeV range, the heavy Higgs exhibits distinct couplings to
fermions and gauge bosons and can decay into exotic particles. Its discovery would
mark a breakthrough in the search for new physics, offering crucial insights into
extended mechanisms of electroweak symmetry breaking and helping to differentiate
between competing BSM frameworks.

The heavy Higgs boson, h′, is predominantly produced at the LHC through the
gluon-gluon fusion (ggF) process, which accounts for approximately 90% of its total
production cross-section [175]. Other production mechanisms, such as vector boson
fusion (VBF), Higgs strahlung, and top-associated Higgs production, contribute to
the remaining 10%. Figure 10.9 illustrates the h′ ggF production cross-section, 
σ(pp → h′), as a function of its mass, mh′ , for a range of coupling values. Notably, 
σ(pp → h′) can reach values ≳ 2 pb for mh′ ≲ 400 GeV. In this scenario, an
integrated luminosity of Lint = 300 fb−1 is sufficient to probe a relatively light h′,



while higher luminosities of Lint = 3000 fb−1 are required for heavier h′ masses, at a
center-of-mass energy of √s = 14 TeV.

Figure 10.9  Left: The h′ production cross-section from ggF as a function of its mass 
mh′ . Three benchmark points, under consideration, are surrounded by dark-shaded
region circles [94]. ⏎

In Fig. 10.9 (right), we show the relevant h′ decay branching ratios as functions of 
mh′ . It is remarkable to notice that for mh′ ≤ 600 GeV, the h′ decay branching ratio
to two SM Higgs bosons is not small, mainly BR(h′ → hh) ≥ 10%, which gives
hope for probing this heavy Higgs boson through this channel.

One may begin with the decay h′ → hh → bb̄bb̄ for probing h′ at the LHC, as the
branching ratio BR(h → bb̄) is the largest of h decays. However, this process has a
huge background and the signal is much lower than the relevant background, even
for a quite heavy Higgs boson. Therefore, the decay process h′ → hh → bb̄γγ, given
by the Feynman diagram in Fig. 10.10, is considered as the most relevant signal for
probing h′ [94]. We analyzed this process for mh′ = 250 GeV, 400 GeV, and 
600 GeV.



Figure 10.10  Feynman diagram for the h′ ggF production and decay process 
gg → h′ → hh → bb̄γγ. ⏎

As the h′ decay width Γh′  is much smaller than its mass, Γh′/mh′ ≪ 1, the narrow
width approximation can be used and the total cross-section 
σ(pp → h′ → hh → bb̄γγ) can be approximated as

(10.5)

The branching ratio of the h′ → hh decay, BR(h′ → hh), is expressed in terms of
the coupling gh′hh. Table 10.1 presents the calculated cross-sections and decay
branching ratios for the three considered mh′  values, following the results from [94].

TABLE 10.1 pp → h′ production cross-section and its h′ → hh decay branching ratio and the total cross-
section for its production and decay process pp → h′ → hh → bb̄γγ for three different values of
mh′ = 250 GeV, 400 GeV, and 600 GeV. ⏎

mh′(GeV) σ(pp → h′)(pb) BR(h′ → hh) σ(pp → h′ → hh → bb̄γγ)(fb)

250 12.140 0.30 6.30

400 5.050 0.20 1.01

600 0.504 0.18 0.05

σ(pp → h′ → hh→ bb̄γγ) ≈ σ(pp → h′) × BR(h′ → hh)

× BR(h → bb̄) × BR(h → γγ).



For potential discovery of h′ at the LHC, we analyze both its signal and the
corresponding relevant background from the SM processes. These backgrounds can
be reduced by appropriate kinematical cuts [94]. Fig. 10.11 shows the number of
signal events distributions for mh′ = 250 GeV and 400 GeV with the relevant
irreducible background before (left) and after (right) applying cuts, respectively. The
benchmark point with mh′ = 600 GeV is not included here as its cross-section is
quite tiny with the considered (Lint = 300 fb−1).

Figure 10.11  Number of signal events for h′ → bb̄γγ decays at mass mh′ = 250 GeV
(dotted line) and 400 GeV (dashed line) induced by ggF versus the invariant mass of
the final states bb̄γγ, at √s = 14 TeV and Lint = 300 fb−1 alongside the relevant
background events (solid line) before (left) and after (right) applying the cut flow
[94].. ⏎

As can be seen, the application of kinematic cuts effectively suppresses the
majority of background events. These backgrounds exhibit broad distributions, as
they originate primarily from non-resonant elastic scattering processes rather than
resonant production in the signal region. The results clearly establish the 2γ + 2b -jet
final state in SM Higgs boson pair production as a distinctive signature for probing
the heavy CP-even Higgs (h′) in models with enhanced h′hh couplings.

10.5 COLLIDER SEARCHES FOR DARK MATTER

Collider searches for dark matter (DM) focus on the exciting prospect of identifying
its particle content, which remains one of the most significant open questions in
modern physics. While the existence of dark matter is well established through its
gravitational effects on galaxies and galaxy clusters, as well as its impact on the
cosmic microwave background, the exact nature of its constituent particles remains
elusive. Various theories beyond the Standard Model (SM) suggest potential
candidates for dark matter, including weakly interacting massive particles (WIMPs),
axions, and dark photons, but none have been conclusively detected.



Colliders such as the LHC provide an ideal environment for probing DM by
searching for missing transverse energy (Emiss

T ) and other signatures indicative of
DM production. These searches focus on events where DM is produced in high-
energy collisions but does not interact directly with the detector, leaving a detectable
imbalance in momentum. Through the analysis of such events, physicists aim to
constrain the properties of DM, such as its mass and interactions. Despite the
challenges, collider experiments remain one of the most promising avenues for
shedding light on this mysterious component of the universe.

Initial state radiation (ISR), which can involve photons, jets, or vector bosons, or
associated production as shown in Fig. 10.12, provides valuable signatures for
tagging dark matter (DM) pair production in collider experiments. In these searches,
the production of a Standard Model (SM) particle(s) X in conjunction with large
missing transverse energy (Emiss

T ) serves as a key indicator of DM interactions. The
large Emiss

T  arises from the undetected dark matter particles, which carry away
momentum, resulting in an imbalance that can be measured [176, 177].

Figure 10.12  Initial state radiation vector boson, Associated production: scalar/pseudo-
scalar, and mono-Higgs signatures. ⏎

The Monojet search is a very general DM search focusing on events with jets and
large missing transverse energy (Emiss

T ). The selection criteria for this search include:

The primary SM backgrounds considered in this analysis include Z+ jets, W+ jets,
diboson, and tt̄ events. These backgrounds are estimated using control regions
defined by final states with one or two leptons. The background contributions from 
Z+ jets and W+ jets processes are predicted with high precision, carrying
uncertainties of approximately O(1--2%) [176].

Both ATLAS and CMS employ semi-data-driven techniques in their analyses,
utilizing statistically independent signal regions to enhance the robustness of their
results. Backgrounds are estimated using control regions defined by events with one
or two leptons, enabling precise validation of Standard Model predictions. Despite
the sensitivity of these methods, no significant excess over the expected background
has been observed so far.

An energetic jet with transverse momentum pT > 150 GeV,(i)

Missing transverse energy Emiss
T > 200 GeV.(ii)



Figure 10.13 displays the measured distributions of recoil transverse momentum 
precoil
T  for events with precoil

T > 200 GeV, compared against SM predictions in the
signal region. These distributions are a crucial diagnostic tool for identifying
potential deviations from SM expectations, which could indicate DM production or
other new physics phenomena. The SM predictions shown include contributions from
the dominant backgrounds: Z + jets, W + jets, diboson, and tt̄, which are estimated
and validated through control regions and precise theoretical calculations [177].
Comparing these distributions enables the identification of excesses or discrepancies
in precoil

T , offering valuable insights into potential new physics.

Figure 10.13  ATLAS results for the data and background predictions in the signal
region [177] ⏎





CHAPTER 11

BSM Flavor Implications

DOI: 10.1201/9781003457701-11

11.1 INTRODUCTION

Flavor physics provides a powerful probe of BSM physics. The patterns of
quark and lepton masses, mixing angles, and CP violation observed in
nature remain unexplained within the SM, pointing to the need for a deeper
theoretical framework. While the SM successfully describes these
phenomena at the level of effective interactions, it provides no fundamental
explanation for the origin of the flavor hierarchy, the smallness of neutrino
masses, or the matter-antimatter asymmetry in the universe. These open
questions strongly suggest the presence of new physics at higher energy
scales.

BSM theories often address these questions by introducing new particles,
symmetries, or dynamics that modify the SM's flavor structure. For
example, mechanisms such as the seesaw mechanism for neutrino masses
[20], flavor symmetries, or additional Higgs sectors can provide a more
fundamental understanding of the observed flavor patterns. However, these
modifications must carefully align with the stringent experimental
constraints imposed by precision measurements of flavor-changing
processes, such as neutral meson oscillations, rare decays, and lepton flavor
violations [178, 179]. The absence of significant deviations from SM
predictions in these processes places tight restrictions on the parameter

https://doi.org/10.1201/9781003457701-11


space of many BSM models, making flavor physics a key testing ground for
new theories.

This chapter focuses on the theoretical implications of BSM physics for
flavor phenomena. We explore how various BSM scenarios reshape our
understanding of flavor. Particular attention is given to the mechanisms
through which these theories generate flavor structures, including the role
of spontaneous symmetry breaking, alignment mechanisms, and the
dynamics of flavor-changing interactions. Additionally, we discuss the
potential for new sources of CP violation beyond the SM, which could have
profound implications for cosmology and the matter-antimatter asymmetry.
Finally, we examine the interplay between flavor physics and other BSM
phenomena, such as neutrino masses, dark matter, and the hierarchy
problem, highlighting how flavor observables can provide indirect probes of
these interconnected aspects of new physics.

11.2 THE FLAVOR PUZZLE AND BSM MOTIVATIONS

The SM of particle physics provides a remarkably successful description of
fundamental particles and their interactions. However, when it comes to
flavor: the patterns of quark and lepton masses, mixing angles, and CP
violation, the SM falls short in providing a fundamental explanation. Key
limitations include:

Unexplained Mass Hierarchies: The masses of the fundamental
fermions span many orders of magnitude, from the electron (
me ∼ 0.5 MeV) to the top quark (mt ∼ 173 GeV). The SM does not
explain why these hierarchies exist or why the Yukawa couplings vary
so dramatically.
Neutrino Masses: The SM predicts neutrinos to be massless, yet
neutrino oscillation experiments have conclusively shown that
neutrinos have small but non-zero masses [180]. This requires an
extension of the SM.
Flavor Mixing and CP Violation: The observed patterns in the CKM
(quark) and PMNS (lepton) mixing matrices are not predicted by the
SM. The origin of CP violation in the quark sector (via the CKM
phase) and the potential for CP violation in the lepton sector remain
unexplained.



No Fundamental Theory of Flavor: The SM treats Yukawa couplings
as free parameters, with no underlying principle to determine their
values. This lack of a predictive framework for flavor is a major
theoretical gap.

These unresolved issues collectively form the “flavor puzzle,”
highlighting the need for a deeper theoretical framework beyond the SM
[181].

11.3 FLAVOR SYMMETRIES AND MODEL BUILDING

Flavor symmetries are a cornerstone of BSM physics, providing a
theoretical framework to explain the observed patterns in fermion masses
and mixing angles [182, 183]. By imposing symmetry constraints on the
Lagrangian, model builders can reduce the number of free parameters and
predict specific structures in the fermion mass matrices. This section
explores the role of discrete and continuous flavor symmetries in generating
fermion masses and mixing patterns, highlighting their potential to address
the flavor puzzle.

11.3.1 Discrete Flavor Symmetries
Discrete flavor symmetries are finite groups that act on the flavor space of
quarks and leptons. They are particularly attractive because they can
naturally explain the observed hierarchies and mixing patterns without
introducing excessive complexity [184, 185]. As a widely studied example,
we consider the A4 symmetry, which is a discrete symmetry group with 12
elements. It is the group of even permutations of four objects and is
isomorphic to the symmetry group of a regular tetrahedron. It has four
irreducible representations:

Three singlets: 1, 1′, and 1′′.
One triplet: 3.

The multiplication rules for these representations are as follows:

1
′ ⊗ 1

′ = 1
′′

1
′ ⊗ 1

′′ = 1



1
′′ ⊗ 1

′′ = 1
′

3 ⊗ 3 = 1 ⊕ 1
′ ⊕ 1

′′ ⊕ 31 ⊕ 32

These rules are essential for constructing invariant terms in the Lagrangian.
In A4 models, the three generations of leptons are typically assigned to the
triplet representation 3, while the Higgs fields and right-handed neutrinos
are assigned to either singlet or triplet representations [186].

We consider the following representations of fields under the discrete
flavor symmetry group A4:

Left-handed lepton doublets: L = (L1,L2,L3) ∼ 3

Right-handed neutrinos: νR = (νR1, νR2, νR3) ∼ 3

Standard Model Higgs: H ∼ 1

Flavons: ϕ,χ ∼ 3, ξ ∼ 1

Therefore, the Lagrangian for the lepton sector includes Yukawa terms and
mass terms that are invariant under A4. These terms are constructed as
follows:

Charged Lepton Sector:
The Yukawa terms for charged leptons are constructed using the Higgs

field H and the flavon field ϕ, as follows:

LY =
ye

Λ
L̄ϕHeR +

yμ

Λ
L̄ϕHμR +

yτ

Λ
L̄ϕHτR + h.c.

(11.1)

Here, Λ represents the non-renormalizable suppression scale, and the
Yukawa interactions involve both the Higgs field H (for SU(2)L
invariance) and the flavon field ϕ (for A4 invariance). When the flavon field
ϕ and Higgs field H acquire vacuum expectation values, the A4 and SU(2)L
symmetries are spontaneously broken, generating the charged lepton mass
matrix.

After electroweak and flavor symmetry breaking:

⟨ ⟩



The charged lepton mass matrix is generated and given by:

(11.2)

In this context, the A4 symmetry leads to a diagonal structure for the
charged lepton mass matrix Mℓ. Consequently, the observed hierarchy 
me ≪ mμ ≪ mτ  can be naturally accommodated by a corresponding
hierarchy among the Yukawa couplings ye, yμ, yτ . While the symmetry
does not predict the specific values of these couplings, it provides a natural
framework where the mass eigenstates coincide with the flavor eigenstates,
simplifying the analysis of lepton mixing.

Neutrino Sector:
The neutrino mass terms arise from a combination of Dirac and Majorana

terms, constructed to be invariant under A4 symmetry. The relevant
effective Lagrangian is:

Lν =
yD

Λ
(L̄ϕ)1

~
HνR −

1

2
νT
RC

−1(y1ξ + y2(χ)3)νR + h.c.

(11.3)

The singlet flavon ξ is not strictly essential, but it is particularly useful. It
allows for a simple invariant contraction (νRνR)1ξ and provides flexibility
in generating the structure and scale of the Majorana mass matrix MR. The
presence of both ξ and χ allows for the construction of more realistic
models that can reproduce observed neutrino mass hierarchies and mixing
angles.

The Dirac mass matrix mD and Majorana mass matrix MR are generated
as follows:

⟨H⟩ = v,

⟨ϕ⟩ = (vϕ, vϕ, vϕ),

⟨χ⟩ = (vχ, vχ, vχ),

⟨ξ⟩ = vξ.

Mℓ =
vϕv

Λ
.

⎛⎜⎝ye 0 0

0 yμ 0

0 0 yτ

⎞⎟⎠



The light neutrino mass matrix then follows from the type-I seesaw
mechanism:

mν = −mDM
−1
R mT

D

(11.4)

With appropriate flavon VEV alignments, this framework can accommodate
the observed neutrino mixing patterns, such as tri-bimaximal mixing pattern
for the PMNS matrix, given by:

(11.5)

This pattern predicts the following mixing angles: θ13 = 0, θ23 = π/4, and 
θ12 = arcsin(1/√3), which are consistent with early neutrino oscillation
data but require modifications to account for the non-zero θ13 observed in
later experiments. This discrepancy has motivated further refinements of A4
models, such as the inclusion of additional flavons or small symmetry-
breaking effects.

11.3.2 Continuous Flavor Symmetries
The simplest example of continuous symmetries is the U(1) flavor
symmetry that assigns different charges to the fermion generations. It is
widely used in BSM physics to explain the observed hierarchies in fermion
masses and mixing angles [187, 188]. The U(1) symmetry is often
spontaneously broken by the vacuum expectation value (VEV) of a scalar
field (flavon), leading to hierarchical Yukawa couplings through the
Froggatt-Nielsen mechanism.

mD = yD
vvϕ

Λ
,

MR = y1vξ + y2vχ

⎛⎜⎝1 0 0

0 1 0

0 0 1

⎞⎟⎠⎛⎜⎝1 0 0

0 1 0

0 0 1

⎞⎟⎠ ⎛⎜⎝0 1 1

1 0 1

1 1 0

⎞⎟⎠UPMNS = .

⎛⎜⎝ 2
√6

1
√3

0

− 1
√6

1
√3

− 1
√2

− 1
√6

1
√3

1
√2

⎞⎟⎠



The U(1) flavor symmetry group consists of all complex numbers of unit
modulus under multiplication. In the context of flavor physics, the U(1)
symmetry acts on the fermion and scalar fields, assigning them specific
charges. Each fermion generation fi (where i = 1, 2, 3) and the flavon field
ϕ are assigned U(1) charges:

fi → eiqiαfi, ϕ → eiqϕαϕ,

(11.6)

where qi and qϕ are the U(1) charges of the fermions and flavon,
respectively, and α is the transformation parameter.

The Yukawa couplings are constrained by the U(1) symmetry. For
example, the Yukawa term for the charged leptons takes the form:

LY ∼ L̄iHeRj(
ϕ

Λ
)

nij

,

(11.7)

where Λ is the cutoff scale of the theory, and nij are integers determined by
the U(1) charge conservation:

nij = qLi
+ qeRj

+ qH .

(11.8)

The Froggatt-Nielsen mechanism explains the hierarchical structure of
fermion masses through the spontaneous breaking of the U(1) flavor
symmetry. The flavon field ϕ acquires a VEV, breaking the U(1) symmetry.
The VEV is typically much smaller than the cutoff scale Λ:

⟨ϕ⟩ = ϵΛ, ϵ ≪ 1.

(11.9)

Thus, the Yukawa couplings are suppressed by powers of the small
parameter ϵ:

yij ∼ ϵnij .

(11.10)



This generates a hierarchical structure in the fermion mass matrices. For
example, the charged lepton mass matrix takes the form:

(11.11)

where vH is the VEV of the Higgs field.
One can demonstrate that the U(1) flavor symmetry helps construct the

correct fermion masses by generating hierarchical Yukawa couplings. For
example, the charged lepton mass matrix is diagonalized by the hierarchy 
ϵn11 ≪ ϵn22 ≪ ϵn33 , which naturally leads to the observed mass hierarchy 
me ≪ mμ ≪ mτ .

The quark mass matrices exhibit similar hierarchies, explaining the
smallness of the up, charm, and top quark masses relative to each other. For
example:

(11.12)

In the neutrino sector, the U(1) symmetry can be combined with the
seesaw mechanism to generate small neutrino masses. The Dirac mass
matrix MD and the Majorana mass matrix MR take the form:

(11.13)

The effective light neutrino mass matrix Mν is then given by:

Mν = M T
DM

−1
R MD.

(11.14)

It has been shown that the U(1) flavor symmetry also influences the
mixing patterns in both the quark and lepton sectors. For quarks, the

Me ∼ vH ,
⎛⎜⎝ϵn11 ϵn12 ϵn13

ϵn21 ϵn22 ϵn23

ϵn31 ϵn32 ϵn33

⎞⎟⎠Mu ∼ vH .
⎛⎜⎝ϵn11 ϵn12 ϵn13

ϵn21 ϵn22 ϵn23

ϵn31 ϵn32 ϵn33

⎞⎟⎠MD ∼ vH , MR ∼ Λ .
⎛⎜⎝ϵn11 ϵn12 ϵn13

ϵn21 ϵn22 ϵn23

ϵn31 ϵn32 ϵn33

⎞⎟⎠ ⎛⎜⎝ϵm11 ϵm12 ϵm13

ϵm21 ϵm22 ϵm23

ϵm31 ϵm32 ϵm33

⎞⎟⎠



hierarchical structure of the mass matrices leads to small mixing angles in
the CKM matrix, consistent with experimental observations. In the lepton
sector, the U(1) symmetry can predict specific patterns in the PMNS
matrix, depending on the charge assignments and symmetry-breaking
mechanism, such as generating the large mixing angles observed in neutrino
experiments.

While the U(1) flavor symmetry offers a compelling framework for
explaining fermion masses and mixing patterns, it faces several challenges.
For instance, the introduction of additional parameters, such as charges and
vacuum expectation values (VEVs), reduces the model's predictive power.
Additionally, precision measurements of flavor-changing processes place
strict constraints on the parameter space of U(1) models. Furthermore, the
symmetry must align with other BSM phenomena, such as neutrino masses,
dark matter, and baryogenesis. Despite these challenges, the U(1) flavor
symmetry remains a valuable tool for understanding the origins of fermion
masses and mixing. Future experiments, including those studying rare
decays and neutrino oscillations, will play a crucial role in testing U(1)
models and advancing our understanding of flavor physics.

11.4 FLAVOR AND CP VIOLATION BEYOND THE SM

BSM theories introduce new particles and interactions that can significantly
alter the flavor structure and CP-violating mechanisms of the SM. These
extensions aim to address unresolved questions in the SM, such as the
origin of fermion mass hierarchies, the smallness of neutrino masses, and
the matter-antimatter asymmetry in the universe. In this context, we focus
on three key examples: the Two-Higgs-Doublet Model (2HDM), described
in detail in Chapter 2; the Left-Right Symmetric Model (LRSM), discussed
in Chapters 4 and 5; and the Minimal Supersymmetric Standard Model
(MSSM), explored in Chapter 8. These models demonstrate how BSM
physics can reshape our understanding of flavor and CP violation, offering
testable predictions for current and future experiments.

11.4.1 Flavor and CP Violation in 2HDM
The flavor structure of the 2HDM depends on how the Higgs doublets
couple to fermions, leading to different types of 2HDMs (Type I, II, and III)
[48]. In particular, Type III models allow for tree-level flavor-changing



neutral currents (FCNCs), which are tightly constrained by experimental
data [189]. In the 2HDM, the Yukawa Lagrangian for the quark sector can
be written as:

LY = −Q̄LY
u

1
~
Φ1uR − Q̄LY

u
2

~
Φ2uR − Q̄LY

d
1 Φ1dR − Q̄LY

d
2 Φ2dR + h.c.,

(11.15)

where QL is the left-handed quark doublet, uR and dR are the right-handed
up- and down-type quark singlets, Φ1 and Φ2 are the two Higgs doublets
(with ~

Φi = iσ2Φ∗
i ), and Y u

1 , Y u
2 , Y d

1 , and Y d
2  are the Yukawa coupling

matrices. In Type I and Type II models, a Z2 symmetry is imposed to
eliminate tree-level FCNCs by coupling each type of fermion to only one
Higgs doublet. However, in Type III models, this symmetry is relaxed,
allowing both Higgs doublets to couple to all fermions, leading to tree-level
FCNCs. The flavor-violating interactions can be parameterized as:

LFCNC = −
√2

v
(d̄LXddRϕ + ūLXuuRϕ + h.c.),

(11.16)

where ϕ represents the neutral Higgs bosons (h, H, A), Xd and Xu are the
flavor-violating coupling matrices for down-type and up-type quarks,
respectively, and v = √v2

1 + v2
2 ≈ 246 GeV is the SM Higgs VEV. These

couplings lead to flavor-violating processes such as K 0 − K̄ 0 mixing, 
B0 − B̄0 mixing, and rare decays like B → Xsγ.

The flavor-violating couplings in the 2HDM are tightly constrained by
experimental data. For example, the mass difference ΔmK  and the CP-
violating parameter ϵK in K 0 − K̄ 0 mixing provide stringent constraints on
the off-diagonal elements of Xd [190]. The contribution to ΔmK  is given
by:

ΔmK ∼
1

m2
H

|(Xd)12|2,

(11.17)

where mH is the mass of the mediating Higgs boson. Similarly, the mass
differences ΔmBd

 and ΔmBs
 in B0 − B̄0 mixing constrain the off-diagonal



elements (Xd)13 and (Xd)23. The contribution to ΔmBd
 is:

ΔmBd
∼

1

m2
H

|(Xd)13|2.

(11.18)

Rare decays such as B → Xsγ and Bs → μ+μ− provide additional
constraints. For instance, the branching ratio of B → Xsγ is sensitive to the
charged Higgs contribution:

BR(B → Xsγ) ∝
(Xd)23

m2
H±

2

,

(11.19)

where mH±  is the mass of the charged Higgs boson.
In the alignment limit, the light CP-even Higgs boson h behaves like the

SM Higgs, suppressing FCNCs [191]. This limit is achieved when the
mixing angle α between the CP-even Higgs states satisfies α ≈ β − π/2. In
this limit, the flavor-violating couplings are suppressed, and the model
becomes consistent with experimental constraints. The charged Higgs
bosons H± can also mediate flavor-changing processes, such as B → Xsγ.
The contribution to the decay amplitude is proportional to:

A (B → Xsγ) ∝
(Xd)23

m2
H±

.

(11.20)

This imposes constraints on the charged Higgs mass and the flavor-
violating couplings. It is worth stressing that experimental constraints on
significant flavor violation in 2HDM Type III necessitate either a precise
alignment of the Higgs couplings or severe fine-tuning to suppress tree-
level FCNCs.

In addition, CP violation can arise in the 2HDM from complex phases in
the Higgs potential, Yukawa couplings, or interactions involving the
additional Higgs bosons [192]. These new sources of CP violation can have
significant implications for flavor physics, electric dipole moments
(EDMs), and cosmology.

In Type III 2HDM, where both Higgs doublets couple to all fermions,
complex Yukawa couplings can introduce new sources of CP violation.

∣ ∣



These phases can contribute to CP-violating observables, such as B0 − B̄0

mixing and electric dipole moments (EDMs). The contribution to the
electron EDM, for example, can be written as:

de ∝ Im(
(Ye)11

m2
H

),

(11.21)

where (Ye)11 is the Yukawa coupling of the electron to the Higgs bosons,
and mH is the mass of the mediating Higgs boson. Current experimental
limits on EDMs place stringent constraints on the CP-violating phases in
the 2HDM.

The 2HDM can also contribute to CP violation in meson mixing, such as 
K 0 − K̄ 0 and B0 − B̄0 mixing. The contribution to the CP-violating
parameter ϵK in K 0 − K̄ 0 mixing can be written as:

ϵK ∝ Im(
(Xd)2

12

m2
H

).

(11.22)

The experimental value of the CP-violating parameter is precisely
measured, with |ϵK| ≈ 2.228 × 10−3. This stringent constraint severely
limits the imaginary part of the flavor-changing couplings in the down-
quark sector, particularly Im[(Xd)2

12], thus placing strong bounds on new
sources of CP violation within the 2HDM framework. As a result, any
viable model must ensure that such contributions remain sufficiently
suppressed, either through flavor alignment or by pushing the mass scale
mH to higher values.

11.4.2 Flavor and CP Violation in LRSM
The LRSM introduces new sources of flavor violation through the
interactions of the right-handed gauge bosons W ±

R
 and the additional Higgs

fields. The right-handed gauge boson W ±
R  mediates flavor-changing

interactions between right-handed quarks, described by the interaction
Lagrangian:



LWR
=

gR

√2
ūRγ

μVRdRW
+
Rμ

+ h.c.,

(11.23)

where gR is the SU(2)R gauge coupling, and VR is the right-handed analog
of the CKM matrix [193]. The bidoublet Higgs field Φ can also induce tree-
level flavor-changing neutral currents (FCNCs) through its Yukawa
couplings. The Yukawa Lagrangian for the quark sector is:

LY = Q̄L(Y1Φ + Y2
~
Φ)QR + h.c.,

(11.24)

where ~
Φ = σ2Φ∗σ2, and Y1, Y2 are Yukawa coupling matrices. These

couplings can lead to flavor-violating processes such as K 0 − K̄ 0 mixing
and B0 − B̄0 mixing. The LRSM contributions to FCNCs are tightly
constrained by experimental data. For example, the contribution to 
K 0 − K̄ 0 mixing is given by:

ΔmK ∝
(VR)2

12

m2
WR

,

(11.25)

where (VR)12 is the flavor-violating coupling between the first and second
generations of right-handed quarks, and mWR

 is the mass of the right-
handed gauge boson [194].

The LRSM also introduces new sources of CP violation through complex
phases in the right-handed CKM matrix VR and the Higgs sector. The right-
handed CKM matrix VR can have complex phases that contribute to CP-
violating observables. For example, the phase of (VR)13 can affect B0 − B̄0

mixing. The bidoublet Higgs field Φ can have complex Yukawa couplings,
leading to CP-violating interactions. The contribution to the CP-violating
parameter ϵK in K 0 − K̄ 0 mixing is given by:

ϵK ∝ Im(
(Y1)12(Y ∗

2 )12

m2
H

),

(11.26)



where mH is the mass of the mediating Higgs boson. The LRSM can also
contribute to electric dipole moments (EDMs) of particles such as the
electron, neutron, and atoms through CP-violating interactions involving the
right-handed gauge bosons and Higgs fields. The contribution to the
electron EDM is given by:

de ∝ Im(
(Ye)11

m2
WR

),

(11.27)

where (Ye)11 is the Yukawa coupling of the electron to the Higgs fields
[190].

11.4.3 Flavor and CP Violation in the MSSM
In the MSSM, the soft SUSY breaking terms, such as sfermion masses and
trilinear couplings, can introduce new sources of flavor-changing neutral
currents (FCNCs) and CP-violating phases [118]. These terms must be
carefully constrained to avoid large contributions to FCNCs and CP-
violating observables, which are tightly constrained by precision
experimental data.

For example, transitions like ~
dL → ~sL, arising from off-diagonal

elements in the down-type squark mass matrix, can contribute to processes
such as K 0 − K̄ 0 mixing [118]. The key observables in the neutral kaon
system are the mass difference ΔmK  and the CP-violating parameter ϵK. It
is essential that SUSY contributions to ΔmK  and ϵK remain smaller than
the SM predictions and do not exceed the difference between experimental
results and SM predictions. This requirement imposes the following
stringent constraint on the off-diagonal elements of the squark mass
matrices ( ~m2

Q,D)12:

( ~m2
Q,D)12

~m2
≲ 10−3 for ~m ∼ 1 TeV.

(11.28)

Moreover, the neutral B-meson system also imposes significant
constraints on the SUSY parameter space [118]. The B0 − B̄0 mixing∣ ∣



observables, ΔmBd
 and ΔmBs

, require that the off-diagonal elements in the
squark mass matrices ( ~m2

Q,D)13 and ( ~m2
Q,D)23 satisfy:

( ~m2
Q,D)13

~m2
,

( ~m2
Q,D)23

~m2
≲ 10−2 for ~m ∼ 1 TeV.

(11.29)

In addition, rare decays such as B → Xsγ and Bs → μ+μ−, with their SM
predictions, impose stringent constraints on SUSY parameters. Specifically,
the trilinear coupling At and the charged Higgs mass mH±  must satisfy:

|At| ≲ 2 TeV, mH± ≳ 500 GeV.

(11.30)

On the other hand, the CP-violating parameter ϵK and sin 2β (B-meson
system), with their SM predictions, imply that the off-diagonal elements in
the squark mass matrices and the CP-violating phases in SUSY must
satisfy:

( ~m2
Q,D)12

~m2
≲ 10−3, ϕSUSY ≲ 10−2.

(11.31)

The Electric Dipole Moments (EDMs) of the electron (de), neutron (dn),
and atoms (e.g., dHg) impose stringent constraints on SUSY CP-violating
phases. Their current experimental limits are:

(11.32)

(11.33)

(11.34)

The CP-violating phases in the SUSY soft terms (e.g., ϕμ, ϕAt
) must satisfy:

2

∣ ∣ ∣ ∣∣ ∣|de| < 1.1 × 10−29 e ⋅ cm,

|dn| < 1.8 × 10−26 e ⋅ cm,

|dHg| < 6.3 × 10−30 e ⋅ cm.



ϕμ,ϕAt
≲ 10−2 for ~m ∼ 1 TeV.

(11.35)

These constraints highlight the stringent limits on SUSY parameter space
imposed by flavor and CP-violating observables. Future experiments will
further test these constraints and guide the development of SUSY models.

11.5 SCALAR LEPTOQUARK FLAVOR VIOLATION IN
SU(5)

As advocated above, the scalar triplets contained in the 45H  Higgs
representation decompose under the Standard Model gauge group as:

(11.36)

(11.37)

(11.38)

As emphasized in [195], while Φab
k  and Φib

c  mediate proton decay and
must therefore be superheavy, the scalar triplet Φij

c  does not couple to
baryon number violating operators and hence does not contribute to proton
decay. Writing Φij

c  as a weak doublet Φij
c = (ϕi

1,ϕi
2)T , its relevant

interactions with matter fields are:

(11.39)

The first two terms induce b → sℓ+ℓ− transitions via ϕi1 exchange,
while the last two account for b → cτν through ϕi2 [196]. These
interactions can be rewritten using Dirac notation and antisymmetric
coupling definitions:

′

(3∗, 2)
ij

−7/6
≡ (45H)ijc ≡ Φij

c ,

(3∗, 1)ab4/3 ≡ (45H)abk ≡ Φab
k ,

[(3, 1) ⊕ (3, 3)]ib−1/3 ≡ (45H)ibc ≡ Φib
c .

L = 2Y 2
AB eTACu

c
Bi ϕ

i1∗ + 4(Y 4
AB − Y 4

BA)uiT
A CecB ϕi1

−2Y 2
AB νT

ACu
c
Bi ϕ

i2∗ + 4(Y 4
AB − Y 4

BA) diTA CecB ϕi2.



L = 2Y 2
AB ūBiPLνA ϕi2∗ − 4Y 4′

AB ēBPLd
i
A ϕi2 + h.c.,

(11.40)

where Y 4′

AB
≡ Y 4

AB
− Y 4

BA
 and we used the identities C T = −C and 

Ψ̄ = ΨcT
L . In the mass eigenstate basis:

dA → V CKM
AK d′

K, νA → V PMNS
AK ν ′

K, uA → u′
A, eA → e′

A,

the Lagrangian becomes:

(11.41)

Consequently, the amplitude for the process b → cτν is given by[196]:

(11.42)

Since V CKM
13 ∼ 10−3 and V CKM

23 ∼ 10−2, the amplitude is predominantly
controlled by the leptoquark mass Mϕ, the couplings Y 2

22,Y 2
32, and Y 4′

13 . The
general expression of the effective Hamiltonian for the transition b → cℓν̄ℓ

reads [197]:

(11.43)

where PL,R = (1 ∓ γ5)/2 and gi = CNP
i /C SM with C SM = 4GFVcb

√2
.

L = 2Y 2
AB ū′

BiPLV
PMNS
AK ν ′

K ϕi2∗ − 4Y 4′

AB ē′
BPLV

CKM
AK d′

K ϕi2 + h.c.

M = −
8Y 4′

13V
CKM

13

M 2
ϕ

[
1

2
(ūτPLvντ ) (ūcPLub) +

1

8
(ūτσ

μνPLvντ )

× (ūcPLσμνub) (Y 2
12V

PMNS
13 + Y 2

22V
PMNS

23 + Y 2
32V

PMNS
33 )]

+ (Y 4′

13V
CKM

13 → Y 4′

23V
CKM

23 ).

Heff =
4GFVcb

√2
[(1 + gVL

)[c̄γμPLb][ℓ̄γ
μPLνℓ] + gVR

[c̄γμPRb][ℓ̄γ
μPLνℓ]

+ gSL
[c̄PLb][ℓ̄PLνℓ]+gSR

[c̄PRb][ℓ̄PLνℓ]+gT [c̄σμνPLb][ℓ̄σμνPLνℓ]],



Figure 11.1  RD and RD∗  as function of the Leptoquark mass and The
correlation between RD and RD∗ . ⏎

In our model, gVL
= gVR

= gSR
= 0, while:

gSL
= −

√2Z

M 2
ϕGF

, gT =
gSL

4
= −

Z

2√2M 2
ϕ
GF

,

(11.44)

with

Z=(Y 2
12V

PMNS
13 +Y 2

22V
PMNS

23 +Y 2
32V

PMNS
33 )(

Y 4′

13V
CKM

13

V CKM
23

+Y 4′

23).

(11.45)

Using SM inputs and central form factor values [198], the observables 
R(D) and R(D∗) are given by:

(11.46)

(11.47)

A numerical scan shows that for TeV-scale leptoquarks, the model can
accommodate the current values of R(D) and R(D∗) [196], while

R(D) = R(D)SM [1+1.02|gSL
|2+0.9|gT |2+1.49 Re(g∗

SL
)+1.14 Re(g∗

T )].

R(D∗) = R(D∗)SM[1+0.04|gSL
|2+16.07|gT |2−0.11 Re(g∗

SL
)−5.12 Re(g∗

T )].



respecting bounds from Bc decays and polarization observables (see Fig.
11.1).





CHAPTER 12

BSM Cosmological Implications

DOI: 10.1201/9781003457701-12

12.1 INTRODUCTION

We now turn our attention to the cosmological implications of BSM
physics. As emphasized throughout this work, the SM of particle physics
has been extraordinarily successful in describing the fundamental particles
and forces that make up the universe. However, we have also highlighted its
limitations, gaps that strongly suggest the existence of new physics beyond
the SM. These limitations are not just theoretical curiosities; they are
intimately tied to some of the most profound questions in cosmology,
including the nature of dark matter, the origin of dark energy, the generation
of neutrino masses, and the baryon asymmetry of the universe. In this
chapter, we will explore how BSM physics addresses these questions and
enriches our understanding of the universe [199].

As emphasized earlier, one of the most compelling examples of the SM's
limitations is dark matter, which makes up approximately 27% of the
universe's energy density. Astronomical observations, such as galaxy
rotation curves, gravitational lensing, and the cosmic microwave
background (CMB), provide robust evidence for the existence of dark
matter. However, the SM lacks a viable candidate particle to account for it.
Neutrinos, the only weakly interacting particles in the SM, are far too light
to explain the observed dark matter density [200]. This significant gap has
driven the search for BSM candidates.
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Another profound puzzle is dark energy, the mysterious force responsible
for the accelerated expansion of the universe. Observations of distant
supernovae [201, 202] and the large-scale structure of the cosmos have
firmly established the presence of dark energy, which constitutes
approximately 68% of the universe's total energy content. Despite its
dominance, the SM offers no explanation for dark energy. While the
cosmological constant in Einstein's equations could, in principle, account
for it, the predicted value is orders of magnitude larger than what is
observed, a glaring inconsistency known as the “cosmological constant
problem” [203, 204]. To address this enigma, BSM theories propose
alternative explanations, such as dynamic scalar fields (quintessence) [205],
modifications to general relativity [206], or contributions from extra
dimensions [139].

The baryon asymmetry of the universe, the observed dominance of
matter over antimatter, is another profound mystery that the SM cannot
resolve. While the SM includes processes that violate baryon number, such
as sphaleron transitions, these mechanisms are insufficient to generate the
observed asymmetry [207]. Furthermore, the SM fails to satisfy all three
Sakharov conditions: baryon number violation, C and CP violation, and
departure from thermal equilibrium, required to explain the matter-
antimatter imbalance [40]. To address this puzzle, BSM theories propose
compelling mechanisms, such as leptogenesis [208, 209] and electroweak
baryogenesis [210]. These frameworks introduce new sources of CP
violation, additional particles, or cosmological phase transitions, providing
viable explanations for the origin of the baryon asymmetry and its role in
the evolution of the universe. In this context, cosmology plays a pivotal role
in testing and constraining BSM theories.

12.2 DARK MATTER AND BSM PHYSICS

Despite profound implications of dark matter (DM) for cosmology and
fundamental physics, the nature of DM remains one of the most significant
unsolved mysteries in modern science. Although its existence was first
suggested over seven decades ago, we still lack a definitive understanding
of its composition or interactions beyond gravitational effects. The first
strong evidence for DM emerged in 1933 when Swiss astrophysicist Fritz
Zwicky studied the Coma galaxy cluster. He observed that the visible,
luminous matter in the cluster accounted for only a fraction of the total



mass required to explain the gravitational motions of its member galaxies.
This discrepancy suggested the presence of an unseen mass component,
which he referred to as DM [211]. However, for decades, this idea remained
largely speculative. It was not until the 1970s, through the work of Vera
Rubin and others on the anomalous rotation curves of spiral galaxies, that
dark matter began to be seriously considered as a necessary component of
the Universe. The observed rotational speeds of galaxies could not be
explained by visible matter alone, reinforcing the hypothesis that a
dominant, yet invisible, form of matter must be present to account for these
observations [212].

The concept of inferring unseen masses based on gravitational effects is
not new. A historical analogy can be drawn from the discovery of Neptune
in 1846, which was guided by irregularities in Uranus' orbit. These
deviations could not be explained by known celestial bodies, leading
astronomers to predict the existence of an unknown planet, later confirmed
through direct observation. Similarly, the unexplained gravitational effects
in galaxies and clusters suggest the presence of DM, even though it has yet
to be directly detected.

While the dark matter hypothesis is widely accepted, a small number of
researchers argue that it may not be necessary to explain observed galactic
rotation curves. Instead, they propose modifications to Newtonian dynamics
at galactic scales, suggesting that deviations from expected motion could
result from an incomplete understanding of gravity rather than the presence
of an unseen mass component. The most well-known alternative in this
regard is Modified Newtonian Dynamics (MOND), which introduces
adjustments to Newton's laws at extremely low accelerations to account for
the observed rotational speeds of galaxies without invoking DM [213].
However, these approaches are generally considered ad hoc and lack a
strong theoretical foundation within a broader physical framework.
Moreover, while such modifications may offer an explanation for galaxy
rotation curves, they fail to account for the full range of astrophysical and
cosmological evidence supporting DM, including gravitational lensing
effects, cosmic microwave background anisotropies [31], and large-scale
structure formation [214]. The necessity of dark matter extends far beyond
individual galaxies, as its presence is also inferred from observations of
galaxy clusters and the evolution of the Universe on cosmological scales,
reinforcing the view that a fundamental, non-luminous component must
exist [215].



12.2.1 What is DM made of?
The nature of DM remains one of the most compelling mysteries in modern
physics. Observations from CMB radiation, galaxy rotation curves, and
large-scale structure formation strongly suggest the existence of dark
matter, which interacts primarily through gravity and possibly weakly via
other forces [211, 212]. However, its exact composition is unknown.
Constraints from Big Bang nucleosynthesis indicate that DM cannot be
baryonic, as the abundance of baryonic matter in the universe is insufficient
to account for the observed gravitational effects [216]. A viable DM
candidate must satisfy several essential properties:

It must be stable on cosmological timescales, suggesting either
absolute stability or a lifetime much longer than the age of the
universe.
It is non-baryonic, as the observed baryonic matter is insufficient to
explain the total gravitational effects attributed to DM.
It interacts very weakly with SM particles, at least through non-
electromagnetic forces, to remain undetected in direct searches.
It is cold and non-relativistic at the time of structure formation, as
required by large-scale structure observations.
It does not emit, absorb, or reflect light and does not participate in
strong interactions.
It must produce a relic density consistent with cosmological
observations (ΩDM ≈ 0.27) [31].

The SM of particle physics does not provide a suitable DM candidate, as
all known particles either interact too strongly or fail to match the required
relic density [217]. Extensions beyond the SM propose new particles, which
may fulfill the above criteria. DM is broadly classified based on its velocity
dispersion and interaction properties in the early Universe. The main types
of dark matter include:

Cold Dark Matter (CDM), which consists of particles that were non-
relativistic (moving at sub-relativistic speeds) at the time of their
decoupling from the thermal bath. These particles clump under
gravitational attraction, leading to the formation of large-scale



structures in the Universe. Weakly Interacting Massive Particles
(WIMPs) [218] and axions [219] are prominent CDM candidates.
Warm Dark Matter (WDM), which had a relativistic speed at early
times but became non-relativistic later. Their intermediate velocity
suppresses small-scale structure formation compared to CDM, making
them a possible solution to certain discrepancies in standard structure
formation models [220]. Sterile neutrinos are a leading candidate for
WDM [221].
Hot Dark Matter (HDM), which consists of particles that remained
relativistic for a significant period after their decoupling. Due to their
high velocities, HDM particles do not easily cluster, suppressing the
formation of small-scale structures. A classic example is the standard
neutrino [222].

Each of these DM types has distinct implications for cosmology and
structure formation. Observational evidence, such as measurements from
the CMB, galaxy distributions, and large-scale structure evolution, strongly
favors a cold dark matter-dominated Universe, as predicted by the ΛCDM
model [31]. WIMPs are among the most compelling candidates for CDM in
the Universe. These hypothetical particles are expected to interact only
through the weak nuclear force and gravity, making their direct detection
extremely challenging [218].

In the early Universe, WIMPs were in thermal equilibrium with SM
particles. Frequent interactions kept their number density comparable to that
of photons. As the Universe expanded and cooled, the interaction rate
between WIMPs and SM particles diminished. When the temperature
dropped below the WIMP mass (T ≪ MWIMP), annihilation processes
became inefficient at maintaining thermal equilibrium, resulting in the
decoupling of WIMPs from the thermal plasma. This freeze-out process left
behind a relic abundance of WIMPs, which persists today as a substantial
component of the dark matter [215]. The decoupling of WIMPs is a key
aspect of their cosmological evolution. At high temperatures (T ≫ MWIMP

), WIMPs and SM particles maintained equilibrium through frequent
interactions. As the Universe cooled, the WIMP number density underwent
an exponential suppression, with their abundance freezing out at a
characteristic value. Today, these relic WIMPs form a dominant, non-
relativistic component of dark matter, with their number density
significantly lower than that of photons [217].



This thermal production mechanism, often referred to as the “WIMP
miracle,” naturally leads to a relic abundance that aligns with observations
from CMB measurements and large-scale structure formation [31]. Despite
their strong theoretical motivation, WIMPs have yet to be detected
experimentally, making their search a major goal of ongoing direct and
indirect detection experiments, as well as collider studies [223].

12.2.2 Experimental Evidence for Dark Matter
Multiple lines of astronomical and cosmological observations provide
compelling evidence for the existence of DM:

1. Galaxy Cluster Rotation Curves:
Early signs of dark matter were suggested by mass discrepancies in
galaxy clusters, but strong empirical support came in the 1970s through
observations of spiral galaxy rotation curves [212]. These studies
showed that stars and gas in the outer regions of galaxies orbit at nearly
constant velocities, inconsistent with the distribution of visible matter.
According to Newtonian dynamics, the rotational velocity v(r) at a
radius r should satisfy:

M(r) =
Gv(r)2

r
,

(12.1)

where M(r) is the mass enclosed within radius r, and G is Newton's
gravitational constant. If only luminous matter contributed, v(r) would
decrease with increasing r. Instead, observations show that v(r)
remains flat at large radii, as shown in Fig. 12.1, indicating the
presence of additional unseen mass.



Figure 12.1  Rotation curve of the dwarf spiral galaxy M33
overlaid on its optical image [28]. ⏎

This phenomenon has been observed in hundreds of spiral galaxies,
supporting the idea that they are embedded in extended dark matter
halos. These halos dominate the mass distribution at large distances and
provide the gravitational influence needed to sustain the flat rotation
curves, reinforcing the dark matter hypothesis.

2. Gravitational Lensing:
When light from distant galaxies passes through a massive foreground
object like a galaxy cluster, its path is bent by gravity, a phenomenon
known as gravitational lensing. This effect distorts the images of
background galaxies, allowing astronomers to map the mass
distribution of the lensing object. In many cases, the mass inferred from
lensing far exceeds that of visible matter, providing strong evidence for
the presence of DM [224].

3. The Bullet Cluster:



The Bullet Cluster (1E0657-558) [30] offers one of the most
compelling pieces of evidence for the existence of dark matter. X-ray
observations from the Chandra satellite reveal a shock front in the hot
gas resulting from the collision of two galaxy clusters. Meanwhile,
weak gravitational lensing maps derived from Hubble Space Telescope
data show that most of the mass is located in regions offset from the
luminous matter. This spatial separation between the baryonic matter
and the gravitational potential strongly indicates the presence of non-
luminous, collisionless dark matter halos. The Bullet Cluster thus
serves as a striking, direct observational demonstration of DM's
gravitational influence (see Fig. 12.2).

Figure 12.2  Optical (left) and X-ray (right) images of the Bullet
Cluster with gravitational lensing contours, showing that most
of the mass is offset from the luminous matter [30]. ⏎

4. Cosmic Microwave Background
While various observations provide compelling evidence for dark
matter (DM), they do not directly determine its total abundance or
composition. In contrast, the analysis of the Cosmic Microwave
Background (CMB) offers crucial insights into these fundamental
properties. The CMB, a relic radiation from the early universe, was
discovered in 1965 by Arno Penzias and Robert Wilson. Since then,
experiments such as WMAP and Planck have mapped its anisotropies
with remarkable precision, providing a wealth of cosmological data. In
the 2018 data release, the Planck collaboration reported the following
values for the total matter and baryonic matter density parameters [31]:

Ωmh
2 = 0.1430 ± 0.0011, Ωbh

2 = 0.02237 ± 0.00015.



(12.2)

The significant gap between the total matter density Ωm and the
baryonic matter density Ωb indicates that most of the matter in the
universe is non-baryonic, that is, DM. These results are also consistent
with predictions from Big Bang nucleosynthesis (BBN), lending
additional support to the inferred value of Ωb [32].
CMB observations have significantly advanced our understanding of
DM's role in cosmic evolution. The precise measurements of
temperature fluctuations reveal the composition of the universe as
follows (see Fig. 12.3):

Figure 12.3  Left: Energy density distribution among different
components of the universe. Right: Temperature fluctuations in
the CMB as observed by the Planck satellite. ⏎

4.9%: Ordinary (baryonic) matter, atoms that make up
stars, planets, and visible structures.
26.6%: Dark matter, non-luminous matter detectable only
through its gravitational effects.
68.5%: Dark energy, responsible for the accelerated
expansion of the universe.

These results provide one of the most robust confirmations of dark
matter's existence, underscoring its essential role in the formation and
structure of the universe.

12.2.3 DM Relic Abundance



In this framework, we assume that χ, a DM candidate, was initially in
thermal equilibrium with SM particles in the early universe and decoupled
when it became non-relativistic. The annihilation rate of χ, given by 
Γχ = ⟨σann

χ v⟩nχ, eventually became smaller than the expansion rate of the
universe (Γχ ≤ H), at which point χ ceased to annihilate and fell out of
equilibrium [199]. The relic density of χ was then frozen and has remained
constant ever since [225]. Here, ⟨σann

χ v⟩ represents the thermally averaged
cross-section for annihilation.

The relic density is determined by solving the Boltzmann equation for the
number density nχ, coupled with the law of entropy conservation [225]:

(12.3)

(12.4)

where neq
χ  is the equilibrium number density, which depends on the

temperature T, and is given by:

neq
χ = gχ(

mχT

2π
)

3/2

e−mχ/T .

(12.5)

The Hubble parameter H is related to the temperature T as [215]:

H(T ) = 2π√ πg∗

45

T 2

MPl

,

(12.6)

where MPl is the Planck mass, and g* is the number of relativistic degrees
of freedom at the time. For the MSSM, g∗ ≃ 228.75.

To simplify the Boltzmann equation, it is convenient to introduce the
dimensionless variable x = mχ/T  and the comoving number density 
Y = nχ/s, where s is the entropy density. The equation then becomes:

dnχ

dt
= −3Hnχ − ⟨σann

χ v⟩ [n2
χ − (neq

χ )2],

ds

dt
= −3Hs,



dY

dx
=

1

3H

ds

dx
⟨σann

χ v⟩ (Y 2 − Y 2
eq).

(12.7)

During the radiation-dominated era, the entropy density is approximately:

s(x) =
2π2

45
g∗s(x)m3

χ x
−3,

(12.8)

with its derivative given by:
ds

dx
= −

3s

x
.

(12.9)

Assuming g∗ ≃ g∗s
, the Boltzmann equation simplifies to:

dY

dx
= −√ πg∗

45
MPlmχ

⟨σann
χ v⟩

x2
(Y 2 − Y 2

eq).

(12.10)

If the DM candidate annihilates predominantly via s-wave and p-wave
processes, the thermally averaged cross-section can be approximated as
[226]:

⟨σann
χ v⟩ ≃ aχ +

6bχ
x

,

(12.11)

where aχ and bχ correspond to the s-wave and p-wave contributions,
respectively. The present-day relic abundance of DM is given by:

Ωh2 =
mχs0Yχ(∞)

ρc/h2
,

(12.12)

where Yχ(∞) is the asymptotic value of the comoving number density, s0 is
the current entropy density, and ρc is the critical density of the universe.
Solving the Boltzmann equation yields:

1



Yχ(∞) =
1

λχ
(
aχ

xf
+

3bχ

x2
f

)
−1

,

(12.13)

where xf = mχ/Tf  is the freeze-out parameter and λχ = s(mχ)/H(mχ).
The value of xf is obtained from the transcendental equation:

xf = ln [
αχλχc(c + 2)

√xf
(aχ +

6bχ
xf

)],

(12.14)

with αχ = 45
2π4 √ π

8

gχ

g∗s(Tf) , and c ≈ 0.5 is a fitting parameter that yields
sufficient accuracy for most cosmological applications.

12.2.4 Lightest Neutralino as DM in SUSY Theories
The lightest neutralino (χ) in supersymmetric (SUSY) theories is among the
most compelling dark matter (DM) candidates. In the Minimal
Supersymmetric Standard Model (MSSM), it naturally arises as a linear
combination of the bino ( ~

B), wino ( ~
W 0), and the neutral higgsinos (

~
H 0

1 ,
~
H 0

2 ) [33]. The mass eigenstate is given by:

χ = N11
~
B + N12

~
W 0 + N13

~
H 0

1 + N14
~
H 0

2 ,

(12.15)

where Nij are elements of the neutralino mixing matrix. The specific
composition of the lightest neutralino determines its couplings and
annihilation mechanisms.

Depending on its nature, the neutralino can annihilate into various final
states such as fermion-antifermion pairs (ff̄), W +W −, ZZ, Zh, ZH, ZA, 
H+H−, and others involving Higgs bosons. For a bino-like LSP (i.e., 
N11 ≃ 1, N1i ≃ 0 for i = 2, 3, 4), the dominant annihilation channels are
into fermion-antifermion pairs, as shown in Fig. 12.4, while all other
channels are suppressed.



Figure 12.4  Feynman diagrams contributing to early-universe neutralino χ
annihilation into fermions through sfermions, Z-gauge boson, and Higgs. ⏎

In this scenario, annihilation via Z-boson exchange is typically negligible
due to the small Zχχ coupling, which is proportional to N 2

13 − N 2
14, unless

the process occurs near the Z-resonance (mχ ≈ mZ/2). However, such a
mass range is excluded by current experimental bounds.

The dominant annihilation proceeds through t-channel exchange of
sleptons, particularly into lepton pairs via ~lL,

~
lR (with l = e,μ, τ), as shown

in the first diagram of Fig. 12.4. Annihilation via squark exchange is
generally suppressed due to their heavier masses.

In Fig. 12.5, we illustrate the constraints from the observed relic
abundance Ωh2 in the (m0,m1/2) plane for two values of the trilinear
coupling, A0 = 0 and 2000 GeV, and for tanβ = 10 and 50, with μ > 0
[227]. The relic abundance of the lightest neutralino was computed using
the micrOMEGAs package [62], which includes all relevant annihilation
and coannihilation channels. In particular, coannihilation with the next-to-
lightest supersymmetric particle (NLSP), typically the lightest stau, ~τ1, is
fully accounted for [228].



Figure 12.5  LSP relic–abundance constraints shown as differently shaded
regions in the (m0 − m1/2) plane. The LUX constraint corresponds to the
light–shaded region. The parameter points yielding the correct neutralino
relic abundance, 0.09 < Ωh2 < 0.14, appear as the medium–shaded curved
band. The dark–shaded and hatched areas denote parameter points excluded
by experimental or theoretical constraints. ⏎

It is important to note that these coannihilation effects are not captured by
the simplified analytic expressions in Eqs. (12.11)–(12.14). In the figure,
the medium-shaded region corresponds to points where the computed relic
abundance falls within the experimentally allowed range, [229]:

0.09 < Ωh2 < 0.14.

(12.16)

The LUX constraint is satisfied in the light–shaded region.



It is noticeable that for low values of tanβ (around 10), the allowed
region corresponds to light m1/2 values (below 500 GeV), where efficient
coannihilation between the LSP and the lightest stau occurs. However, this
region is now excluded due to current constraints on the Higgs and gluino
masses [230]. At large tanβ, an additional viable region appears,
corresponding to a resonance in the s-channel annihilation of DM pairs into
fermion-antifermion final states via the pseudoscalar Higgs boson A, when 
MA ≃ 2mχ. For A0 = 0, only a small part of this region satisfies the Higgs
mass constraint, while for larger A0 values (around 2 TeV), a modest
enhancement of the allowed region can be achieved.

12.3 BARYON ASYMMETRY OF THE UNIVERSE

The baryon asymmetry of the universe refers to the observed imbalance
between matter and antimatter, where matter vastly dominates. This
asymmetry is quantified by the baryon-to-photon ratio, η, defined as [31]:

η ≡
nB − nB̄

nγ
≈ 6 × 10−10,

(12.17)

where nB and nB̄ denote the number densities of baryons and antibaryons,
respectively, and nγ is the photon number density. The small but non-zero
value of η implies that, despite the near-equal creation of matter and
antimatter in the early universe, an imbalance emerged, leaving a surplus of
matter [231].

In the hot, dense conditions of the early universe, matter and antimatter
were produced in almost equal amounts and subsequently annihilated into
photons as the universe cooled. In the absence of any asymmetry, this
process should have left a universe devoid of matter. However, the presence
of a substantial matter component today, with negligible amounts of
primordial antimatter, indicates that a fundamental asymmetry developed
during the early stages of cosmic evolution. This leads to one of the most
profound open questions in modern physics: Why does the universe exhibit
a preference for matter over antimatter? Understanding the origin of this
asymmetry is essential to comprehending the conditions and mechanisms
that shaped the early universe.



12.3.1 Sakharov Conditions
In 1967, Andrei Sakharov identified three essential conditions required to
generate the baryon asymmetry of the universe [40]. These conditions,
known as the Sakharov conditions, provide the minimal ingredients for a
matter-dominated universe:

1. Baryon Number Violation: Interactions that violate baryon number (B)
must exist to allow a net excess of baryons over antibaryons.

2. C and CP Violation: Charge conjugation (C) and charge-parity (CP)
symmetries must be violated so that baryons and antibaryons behave
differently, enabling an imbalance in their production rates.

3. Departure from Thermal Equilibrium: The universe must have
undergone periods out of thermal equilibrium; otherwise, any generated
asymmetry would be washed out by inverse processes.

Although the SM includes mechanisms that partially satisfy these
conditions, they fall short of explaining the observed asymmetry. This
limitation motivates extensions of the SM and ongoing research into the
early universe.

12.3.2 Leptogenesis
Leptogenesis is one of the most compelling mechanisms proposed to
explain the observed baryon asymmetry of the universe. It provides a
natural connection between the matter-antimatter imbalance and neutrino
physics, relying on processes beyond the SM. The core idea is that a lepton
asymmetry is first generated and subsequently converted into a baryon
asymmetry via electroweak sphaleron transitions [232]. This elegantly links
the baryon asymmetry to the properties of neutrinos, which are already
known to possess non-zero masses and mixing angles not accounted for in
the SM.

In the SM extended by three right-handed neutrinos νRi
, the relevant

Lagrangian involving these fields is given by

L = ∑
i

Mi (ν̄ c
RiνRi + ν̄Riν

c
Ri) + ∑

ij

λ∗
ji ν̄RiϕLj + ∑

ij

λji L̄jϕ̄νRi

+∑
ij

λ∗
jiL̄

c
jϕν

c
Ri + ∑

ij

λjiν̄
c
Riϕ̄L

c
j,



(12.18)

where L denotes the lepton doublet, ϕ the Higgs doublet, and 
ψc = Cγ 0ψ∗ = iγ 2ψ∗ = Cψ̄T  is the charge-conjugated spinor.

Asymmetry εi arises from the CP-violating decays of the heavy Majorana
right-handed neutrinos Ni into the Higgs doublet ϕ and lepton doublets Lα,
where α = e,μ, τ , i.e., Ni → ϕ + Lα. In most scenarios, the resulting
lepton asymmetry is dominated by the decay of the lightest right-handed
neutrino N1. The Ni are Majorana fermions, representing the mass
eigenstates of the right-handed neutrinos, and are defined as:

Ni = νRi + ν c
Ri, N c = N .

(12.19)

The chiral components relate to N via the projection operators:
νR = PRN , ν c

R = PLN ,

(12.20)

where PL = 1
2 (1 − γ 5) and PR = 1

2 (1 + γ 5) are the standard left- and
right-handed helicity projectors.

The CP asymmetry ε1 generated by the decay of the lightest right-handed
neutrino N1 is defined as

ε1 =
∑α (|A(N1 → ϕLα)|2 − A(N1 → ϕ̄Lα)

2)

∑α (|A(N1 → ϕLα)|2 + A(N1 → ϕ̄Lα)
2)

,

(12.21)

where A(N1 → ϕLα) denotes the total decay amplitude, including both
tree-level and one-loop contributions:

A(N1 → ϕLα) = A0(N1 → ϕLα) + A1(N1 → ϕLα).

(12.22)

The CP asymmetry arises from the interference between the tree-level
amplitude and the loop corrections. In the SM extended by right-handed
neutrinos, the decay of N1 proceeds via the tree-level process, as well as∣ ∣∣ ∣



through one-loop vertex and self-energy diagrams, as illustrated in Fig.
12.6.

Figure 12.6  Feynman diagrams in SM with right-handed neutrinos that
contribute to the decay N1 → ϕLα. ⏎

The tree-level decay amplitude of νR1  into the Higgs doublet ϕ and
lepton doublet Lα is given by:

A0(N1 → ϕLα) = −(λν)α1 (ū(p)PRu
c(q)),

(12.23)

where ū(p) is the Dirac spinor of the outgoing lepton lα, uc(q) is the spinor
of the incoming Majorana neutrino N1, and PR is the right-handed
projection operator.

The one-loop vertex correction contributes:

A1V (N1 → ϕLα) =
1

16π
∑
i

(λν)αi(λ
†
νλν)1i (ū(p)PRu

c(q))FV (
M 2

i

M 2
1

),

(12.24)

where the loop function FV (x) has the imaginary and real parts:

ImFV (x) = √x [1 − (1 + x) ln( 1 + x

x
)],

(12.25)

ReFV (x) = −√x [1 + ln(x)(1 − (1 + x) ln(
1 + x

x
))].

(12.26)

The self-energy contribution to the decay amplitude is:



A1S(N1 → ϕLα) =
1

16π
∑
i

(λν)αi(λ
†
νλν)1i (ū(p)PRu

c(q))FS (
M 2

i

M 2
1

),

(12.27)

where FS(x) = ReFS(x) + i ImFS(x), and in the limit 
|Mi − M1| ≫ |Γi − Γ1|, the imaginary part simplifies to:

ImFS(x) =
√x

1 − x
.

(12.28)

The CP asymmetry in N1 → ϕLα decays arises from complex phases in
the Yukawa couplings λν, which violate CP symmetry. These phases change
sign under CP conjugation, leading to differences in the decay amplitudes
of particles and antiparticles. In contrast, the phases of the loop functions 
FV (x) and FS(x) are CP-conserving, i.e., they remain unchanged under CP.

To analyze the asymmetry, the decay amplitudes can be factorized into
CP-violating and CP-conserving components. Specifically, we write:

A0(N1 → ϕLα) = Atree, Ā0(N1 → ϕ̄L̄α) = A∗
tree,

(12.29)

A1(N1 → ϕLα) = Aloop ⋅ F , Ā1(N1 → ϕ̄L̄α) = A∗
loop ⋅ F .

(12.30)

Here, F represents the loop function (from vertex and self-energy
corrections), which is CP-even, while Atree and Aloop carry the CP-odd
phases from the Yukawa couplings.

The CP asymmetry then follows from the interference between tree and
loop amplitudes:

ε =
Im [AtreeA

∗
loop] ⋅ Im[F ]

|Atree|2 + |AloopF |2 + 2 Re[F ] Re [AtreeA
∗
loop]

.

(12.31)

Since the tree-level amplitude typically dominates, this simplifies to:



ε1 ≃
1

|Atree|2
Im [A treeA

∗
loop] ⋅ Im[F ].

(12.32)

In the SM with right-handed neutrinos, the resulting CP asymmetry
becomes:

ε1 ≃
1

8π

1

(λ
†
νλν)11

∑
i=2,3

Im [(λ†
νλν)2

1i][ImFV (
M 2

Ri

M 2
R1

) + ImFS (
M 2

Ri

M 2
R1

)].

(12.33)

Several key points follow from this expression: (i) A non-zero lepton
asymmetry requires Im[(λ†

νλν)1i] ≠ 0, which translates to

Im(√MRRmdiag
ν R†√MR) ≠ 0, for i = 2, 3.

(ii) Leptogenesis is independent of the phases in the PMNS matrix due to
its unitarity. (iii) If both R and MR are real, then ε1 = 0, and leptogenesis
cannot proceed. (iv) In the case of quasi-degenerate right-handed neutrino
masses, the CP asymmetry can be resonantly enhanced due to the near-zero
denominator in the loop function g(x), a scenario known as resonant
leptogenesis [233]. This becomes particularly relevant for models with
suppressed Yukawa couplings.

Once a lepton asymmetry is generated, it can be partially converted into a
baryon asymmetry via electroweak sphaleron processes. Sphalerons are
non-perturbative configurations in the Standard Model that violate baryon
number (B) and lepton number (L) individually, but preserve their
difference, B − L. Active during the electroweak phase transition in the
early universe, these processes convert part of the lepton asymmetry into a
baryon asymmetry.

The final baryon asymmetry ηB is related to the initial lepton asymmetry 
ηL ∼ κ ε, where ε is the CP asymmetry from heavy neutrino decays, and κ
is an efficiency factor accounting for washout processes and the thermal
history. In typical thermal leptogenesis scenarios, κ ranges from 10−3 to 
10−1, depending on the model parameters [209]. The conversion between
lepton and baryon asymmetries can be approximated as:

ηB ≃ −
1

3
ηL,



with the factor −1/3 arising from the equilibrium conditions of sphaleron
interactions and the Standard Model particle content.

12.4 INFLATION AND BSM

The SM of cosmology, grounded in the cosmological principle, has
successfully predicted key phenomena such as the universe's expansion and
the existence of the CMB. However, it originally faced several challenges
related to initial conditions. To resolve these, the theory of inflation was
introduced [234, 235], providing a mechanism that explains the observed
homogeneity, isotropy, and large-scale structure of the universe. Inflation
thereby addresses many of the initial value problems inherent in the
classical Big Bang framework.

The theoretical foundation of cosmology rests on General Relativity
(GR), formulated by Einstein in 1915 [236], with field equations:

Rμν −
1

2
gμνR = 8πGTμν.

(12.34)

In the 1920s, Friedmann used these equations to derive a solution for a
homogeneous and isotropic universe [237, 238], leading to the Friedmann-
Lemaitre-Robertson-Walker (FLRW) metric:

ds2 = dt2 − a2(t) [ dr2

1 − κr2
+ r2 (dθ2 + sin2 θ dϕ2)],

(12.35)

where κ = −1, 0, 1 corresponds to open, flat, and closed geometries,
respectively. The evolution of the scale factor a(t) is governed by the
Friedmann equations:

ä = −
4πG

3
(ρ + 3p)a,

(12.36)

H 2 +
κ

a2
=

8πG

3
ρ,

(12.37)



with the Hubble parameter defined as H = ȧ/a. For a spatially flat universe
(κ = 0), two distinct eras emerge: Radiation domination, with 
a(t) ∝ t1/2, ρ ∝ a−4, and Matter (dust) domination, with 
a(t) ∝ t2/3, ρ ∝ a−3. In both cases, if ρ + 3p > 0, the expansion is
decelerating (ä < 0).

The Friedmann equation can also be recast as:

Ω − 1 =
κ

a2H 2
,

(12.38)

where Ω = ρ/ρc and the critical density is given by ρc = 3H 2

8πG . Present
observations, particularly those from the Planck satellite, indicate that the
density parameter Ω is very close to unity (Ω ∼ O(1)), implying that the
universe is nearly flat [31]. This near-flatness today suggests that in the
early universe, Ω must have been extraordinarily fine-tuned to be even
closer to one. For instance, at the Planck time (t ∼ 10−43 s), the deviation
from exact flatness would have had to satisfy:

|Ω − 1| < O(10−64).

(12.39)

This extreme sensitivity to initial conditions is known as the flatness
problem [239], and it poses a major challenge to the standard Big Bang
model, which lacks a dynamical mechanism to explain why Ω should be so
close to one.

Closely related is the horizon problem, which concerns the causal
structure of the early universe. Observations of the CMB reveal that regions
of the sky separated by large angular distances have nearly identical
temperatures, as shown in Fig. 12.7, differing by less than one part in 105.
However, under standard Big Bang evolution, these regions should have
been causally disconnected, meaning they could not have exchanged
information or energy due to the finite speed of light [240]. The observed
uniformity suggests that these regions were once in thermal equilibrium, a
state that cannot be explained without invoking a mechanism that allows
causal contact over large distances.



Figure 12.7  The CMB temperature map shows uniform temperatures across
causally disconnected regions, highlighting the horizon problem and
motivating cosmic inflation. ⏎

Alan Guth proposed that at t ∼ 10−37 seconds, the universe underwent a
brief period of exponential expansion, known as inflation, increasing in size
by over 25 orders of magnitude within 10−34 seconds [234]. After inflation
ended, the universe resumed a slower expansion over the next 13.7 billion
years. Inflation requires accelerated expansion, ä > 0, which from the
Friedmann equations implies negative pressure:

p < −
ρ

3
.

(12.40)



This yields exponential growth of the scale factor:
a(t) ∝ eHt, t ∈ [ti, tf ].

(12.41)

A scalar field with potential V (ϕ) provides a natural mechanism for this
behavior [241]. Its Lagrangian is:

L =
1

2
gμν∂μϕ∂νϕ − V (ϕ),

(12.42)

with energy density and pressure:

ρϕ =
1

2
ϕ̇2 + V (ϕ), pϕ =

1

2
ϕ̇2 − V (ϕ).

(12.43)

When the potential dominates, ϕ̇2 ≪ V (ϕ), the condition for inflation is
met [242]. This requires a flat potential for slow-roll and a minimum to end
inflation [243].

The dynamics of a homogeneous scalar field in an expanding universe
are governed by the following equations:

H 2 =
8πG

3
[V (ϕ) +

1

2
ϕ̇2],

(12.44)

ϕ̈ + 3Hϕ̇ = −V ′(ϕ),

(12.45)

which describe the evolution of the scalar field and the expansion during
inflation, as shown in Fig. 12.8 [244]. Scalar fields, fundamental in many
physical theories, are characterized by their potential forms. Notable
examples include:

The Higgs potential:

V (ϕ) = λ(ϕ2 − M 2)
2
,



(12.46)
central to the Higgs mechanism and spontaneous symmetry breaking
[7],
The massive scalar field potential:

V (ϕ) =
1

2
m2ϕ2,

(12.47)
describing a scalar field with mass m [241],
The self-interacting scalar field potential:

V (ϕ) = λϕ4,

(12.48)
modeling a scalar field with quartic self-interactions [245].

Figure 12.8  The flat region of the potential allows for slow-roll inflation,
while the minimum provides a natural endpoint for the inflationary phase. ⏎



In inflationary cosmology, the slow-roll approximation describes when a
scalar field ϕ induces exponential expansion. This is quantified by two
slow-roll parameters:

ϵ =
m2

pl

16π
(
V ′(ϕ)

V (ϕ)
)

2

, η =
m2

pl

8π

V ′′(ϕ)

V (ϕ)
,

(12.49)

where V (ϕ) is the potential, V ′(ϕ) and V ′′(ϕ) are its first and second
derivatives, and mpl is the Planck mass. The slow-roll condition holds
when:

ϵ ≪ 1, |η| ≪ 1,

(12.50)

allowing for prolonged accelerated expansion [246]. Inflation ends when
either ϵ or |η| approaches unity [247].

The amount of inflation required to address the horizon and flatness
problems of the Big Bang model is quantified by the number of e-foldings,
denoted by N. The number of e-foldings is defined as:

N(ϕ) = ln(
af

ai
) = ∫

tf

ti

H dt = −
8π

m2
pl

∫
ϕf

ϕi

V (ϕ)

V ′(ϕ)
dϕ,

(12.51)

where:

ai and af are the initial and final scale factors,

H is the Hubble parameter,
ϕi and ϕf are the initial and final values of the scalar field.

This formulation provides a detailed description of inflationary dynamics
and the conditions necessary to resolve cosmological issues.

12.5 DARK ENERGY AND BSM



Dark energy, which accounts for approximately 68% of the total energy
density of the universe [31], is one of the most profound mysteries in
modern cosmology. It is responsible for the observed accelerated late
expansion of the universe, first discovered through observations of Type Ia
supernovae in the late 1990s. Despite its dominance, the nature of dark
energy remains unknown, and its explanation often requires physics beyond
the BSM. This section explores the dark energy problem, BSM
explanations, and observational constraints.

12.5.1 Observational Evidence for Cosmic Acceleration
The accelerated expansion of the universe is strongly supported by multiple
independent lines of observational evidence:

Type Ia Supernovae (SN Ia): Observations of distant Type Ia
supernovae provided the first direct evidence for cosmic acceleration,
showing that the universe's expansion is speeding up over time [248,
249].
CMB: Measurements of temperature anisotropies in the CMB,
particularly by the Wilkinson Microwave Anisotropy Probe (WMAP),
have confirmed the presence of dark energy and its influence on the
universe's large-scale structure [31].
Baryon Acoustic Oscillations (BAO): The detection of BAO in the
distribution of galaxies has provided additional evidence for cosmic
acceleration, serving as a “standard ruler” for measuring the expansion
history of the universe.

12.5.2 The Nature of Dark Energy
Dark energy is a mysterious form of energy that plays a crucial role in the
dynamics of the universe. It is believed to be the driving force behind the
accelerated expansion, acting as a repulsive force that counteracts gravity
on cosmic scales. Unlike matter, dark energy does not clump or cluster but
is uniformly distributed throughout space, making it homogeneous. This
uniformity ensures that its density remains constant across different regions
of the universe, in contrast to visible matter and dark matter, which tend to
cluster due to gravitational attraction.



The exact nature of dark energy remains one of the most profound
questions in modern cosmology. Several theories have been proposed to
explain its origin, including:

Cosmological Constant (Λ): A constant energy density that fills space
homogeneously, representing the simplest explanation for dark energy
[203].
Dynamical Fields (e.g., Quintessence): A time-varying scalar field that
provides a dynamic explanation for dark energy [250], potentially
addressing some of the theoretical challenges associated with the
cosmological constant.

12.5.3 Cosmological Constant
The dark energy problem arises from the observed acceleration of the
universe's expansion, as described by the Friedmann equation:

H 2 =
8πG

3
(ρm + ρr + ρΛ),

(12.52)

where H is the Hubble parameter, ρm and ρr represent the energy densities
of matter and radiation, respectively, and ρΛ is the energy density associated
with dark energy.

The concept of dark energy originates from Einstein's cosmological
constant (Λ), introduced in 1916 to describe a static universe. He proposed
Λ as a repulsive force to counteract gravity, ensuring a non-expanding
universe. However, after Edwin Hubble's discovery of the expansion of the
universe in the 1920s, Einstein discarded the cosmological constant, calling
it his “biggest mistake.”

Modern cosmology has revived the cosmological constant, driven by the
observed acceleration of the universe's expansion, first confirmed in 1998
through Type Ia supernova measurements [248, 249]. In this context, the
cosmological constant corresponds to a constant energy density:

ρΛ =
Λ

8πG
.

(12.53)



This energy density is uniform in space and time, providing a simple
explanation for the accelerated expansion.

Despite its success, the cosmological constant faces two significant
theoretical challenges.

Cosmological Constant Problem: The observed value of ρΛ is
exceedingly small (∼ 10−47 GeV4), and is very different from
theoretical predictions from quantum field theory, suggesting a value
many orders of magnitude larger. This discrepancy highlights the
difficulty in reconciling the observed dark energy density with
quantum physics [203].
Coincidence Problem: The energy densities of dark energy and matter
are comparable in the present epoch, even though they evolve
differently over the universe's history. Matter density decreases with
expansion, while dark energy remains constant. This raises the
question of why the two densities are so similar today, challenging our
understanding of the timing and nature of dark energy's dominance, as
shown in Fig. 12.9 [251, 252].



Figure 12.9  Energy density evolution in the universe as a function of scale
factor a, showing logarithmic densities (in GeV4) for radiation, matter, and
dark energy. The vertical axis represents log density, and the horizontal axis
the scale factor, with “Today” marking the present. Source: [253]. ⏎

These challenges highlight the elusive nature of dark energy and its deep
implications for cosmology and fundamental physics. Addressing them may
require new theoretical frameworks, such as modifications to general
relativity, dynamical fields like quintessence, or more radical extensions
beyond the SM. Observations from the CMB, large-scale structure surveys,
and supernova data continue to offer essential insights, guiding the quest to
understand dark energy and its role in the universe.

12.5.4 Quintessence
To address the limitations of the cosmological constant, several BSM
explanations have been proposed. One prominent idea is that dark energy
arises from a dynamical field, known as quintessence, which differs from
the cosmological constant by varying over time and space. Unlike matter
and radiation, which slow down the expansion through gravitational
attraction, quintessence generates a repulsive force that accelerates the
universe's expansion [250].

Quintessence is described by a dynamical scalar field ϕ that evolves over
time, providing a time-varying dark energy density. The energy density ρϕ
and pressure pϕ of the quintessence field are:

(12.54)

(12.55)

where V (ϕ) is the scalar field potential [254].
A key feature of quintessence is the time-varying equation of state 

wϕ = pϕ/ρϕ, distinguishing it from the cosmological constant, which has a
fixed equation of state wΛ = −1. This dynamism may help resolve the

ρϕ =
1

2
ϕ̇2 + V (ϕ),

pϕ =
1

2
ϕ̇2 − V (ϕ),



coincidence problem, which questions why dark energy and matter densities
are similar in the present epoch [255].

However, the specific form of the potential V (ϕ) remains unknown, and
various models have been proposed, each with distinct implications for the
evolution of the universe. Common choices for V (ϕ) include exponential,
power-law, and tracker potentials, each leading to different cosmological
behaviors [256]. Despite this diversity, none of these models have been
conclusively supported by observational data.

A classic example of a quintessence potential is the exponential form:
V (ϕ) = V0e

−λκϕ,

(12.56)

where V0 is a constant with dimensions of energy density, λ is a
dimensionless parameter controlling the slope of the potential, and 
κ = √8πG is the gravitational coupling constant. The equation of state
parameter wϕ for the quintessence field is given by:

wϕ =
pϕ

ρϕ
=

1
2
ϕ̇2 − V (ϕ)

1
2 ϕ̇

2 + V (ϕ)
.

(12.57)

The evolution of the field depends on λ: for small λ, the field rolls slowly
down the potential, leading to wϕ ≈ −1, mimicking a cosmological
constant. For large λ, the field rolls faster, and wϕ deviates from −1,
potentially resulting in a time-varying equation of state.

12.5.5 Modified Gravity
Modified gravity theories propose that dark energy is not a new form of
energy but rather a manifestation of deviations from general relativity on
cosmological scales [257, 258]. The action for f(R) gravity, an arbitrary
function of the Ricci scalar R, is given by:

S =
1

2κ2
∫ d4x√−g f(R) + ∫ d4xLM(gμν, ΨM),

(12.58)



where κ2 = 8πG is the gravitational coupling constant, G is the Newtonian
coupling constant, g is the determinant of the metric tensor gμν , and LM  is
the matter Lagrangian depending on the metric gμν  and matter fields ΨM .
Varying the action (12.58) with respect to the metric gμν  leads to the field
equations for f(R) gravity [259]:

F(R)Rμν(g) −
1

2
f(R)gμν − ∇μ∇νF(R) + gμν□F(R) = κ2Tμν,

(12.59)

where F(R) ≡ ∂f/∂R is the derivative of f(R) with respect to R, Rμν  is
the Ricci tensor, and Tμν = − 2

√−g

δLM

δgμν
 is the energy-momentum tensor of

matter [258].
In f(R) gravity, the modified Friedmann equations for a flat Friedmann-

Robertson-Walker (FRW) universe with the metric
ds2 = −dt2 + a(t)2dx2,

are:

(12.60)

(12.61)

Here, ρm and ρr are the energy densities of matter and radiation,
respectively, and H = ȧ

a
 is the Hubble parameter [257].

The total energy density ρtot and pressure ptot in f(R) gravity include
contributions from matter, radiation, and the effective dark energy
component arising from the modification of gravity. The conservation
equation for the total energy-momentum tensor is:

ρ̇tot + 3H(ρtot + ptot) = 0.

(12.62)

3FH 2 = κ2(ρm + ρr) +
FR − f

2
− 3HḞ ,

−2FḢ = κ2 (ρm +
4

3
ρr) + F̈ − HḞ .



This equation can be split into separate conservation equations for matter
and radiation:

ρ̇m + 3Hρm = 0, (matter)

(12.63)

ρ̇r + 4Hρr = 0. (radiation)

(12.64)

In f(R) gravity, the dark energy component arises from the modification
of the gravitational action. The effective dark energy density ρDE and
pressure pDE are defined as:

ρDE =
1

κ2
(
FR − f

2
− 3HḞ),

(12.65)

pDE =
1

κ2
( f − FR

2
+ F̈ + 2HḞ).

(12.66)

These definitions ensure that the Friedmann equations can be written in the
standard form:

(12.67)

(12.68)

The effective equation of state parameter weff is defined as the ratio of the
total pressure to the total energy density of the universe:

weff =
ptot

ρtot
.

(12.69)

From Friedmann equations, one can express Ḣ as follows:

3H 2 = κ2(ρm + ρr + ρDE),

−2Ḣ = κ2 (ρm +
4

3
ρr + ρDE + pDE).



Ḣ = −
3

2
H 2 (1 + weff).

(12.70)

Solving for weff, we arrive at:

weff = −1 −
2Ḣ

3H 2
.

(12.71)

The effective equation of state weff describes the overall behavior of the
universe's expansion:

If weff < − 1
3 , the universe undergoes accelerated expansion (dark

energy domination).
If weff = −1, the expansion mimics a cosmological constant (ΛCDM).
If weff > − 1

3 , the expansion decelerates (matter or radiation
domination).

It is worth mentioning that weff depends on the functional form of f(R)

[257, 259].
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