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Foreword

The book is a collection of theoretical and experimental problems
proposed by Prof. Mihail Sandu over two decades of physics competi-
tions between Hungary, Moldova, and Romania. These competitions
were designed to prepare participants for the International Physics
Olympiad (IPhO). The problems, along with their detailed solutions,
serve as an invaluable resource for high school students looking to
enhance their problem-solving skills and deepen their understanding
of physics.

Physics Olympiads occupy a unique space in science education.
They not only reward knowledge but also nurture creativity,
resilience, and a passion for discovery. Many students who participate
in these competitions go on to pursue degrees in physics, engineering,
and related fields, often becoming accomplished researchers and
innovators.

Mihail Sandu’s contributions to physics education are truly
unparalleled. He is the author of nearly one hundred problem books
on physics and astronomy and has been a dedicated member of
Romania’s National Committees for the Physics, Astronomy, and
Astrophysics Olympiads for decades. In recognition of his lifelong
commitment to the field, the International Astronomical Union
recently named a small planet in his honor: (670740) Mihailsandu.
This tribute reflects the profound impact of his work on students
and, by extension, on the broader scientific community.

This book is an outstanding resource for students, teachers, and
physics enthusiasts alike. The problems offer an opportunity to
explore the beauty and rigor of physics, while the detailed solutions
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inspire critical and creative thinking. I am confident that this collec-
tion will prove invaluable to anyone preparing for Physics Olympiads
or seeking to deepen their knowledge of the subject, just as Mihail
Sandu’s books have shaped and inspired my early experiences with
physics. I also hope it will remind readers of the joy and wonder that
lie at the heart of scientific inquiry.

Andrei Constantin
Royal Society Dorothy Hodgkin Fellow,

Department of Physics, University of Oxford,
and Physics & Mathematics Tutor

at Mansfield College Oxford
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Zalău, Romania 319

ix



x Physics Olympiad: Problems and Solutions

9. International Pre-Olympic Physics Contest,
Cluj-Napoca, Romania 337

10. International Pre-Olympic Physics Contest
2017, Satu Mare, Romania 359

Other Books by Mihail Sandu 377



Chapter 1

International Pre-Olympic Physics

Contest 1999, Târgovişte, Romania

Problem 1. Rarefied Gas

To achieve the best possible vacuum in a sufficiently large container
with volume V and containing an ideal gas at pressure p1, the walls
of the container are kept at temperature T, except for one sector
with a very small surface area ∆S. This lower part of the container
is kept at a temperature much lower than T. The gas molecules that
hit the specified container sector adhere to it, and the gas liquifies.

Given: µ, the molar mass of the gas, and R, the universal constant
of ideal gases. Consider the volume of the liquid resulting from the
liquefaction of the gas to be negligible. Determine how long it takes
the pressure of the gas in the container to become p2.

It is known that e−x = 1− x, if x ≪ 1.

Solution

Using the equation of state for ideal gases, we calculate the mass of
the gas that adheres, through liquefaction, to the lower sector in the
considered time interval.

1
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It results that:

p1V =
m1

µ
RT ;

p2V =
m2

µ
RT ;

∆m = m1 −m2 =
µ(p1 − p2)V

RT
.

On the other hand, according to the simplified model of an ideal
gas, the molecules move in three mutually perpendicular directions
with the thermal velocity vT . Thus, of the total number of molecules
in the container, only 1/6 will move vertically down.

Take n to be the concentration of the molecules in the vessel. After
a time interval ∆t = t2 − t1, the molecules located in the cylindrical
column with section area ∆S and height vT ·∆t will reach a sector
of the wall with surface area ∆S.

The number of these molecules is

∆N =
1

6
n ·∆S · vT ·∆t,

where n = N
V represents the concentration of molecules in the con-

tainer, so that the number of molecules adhering to the wall surface
per unit time decreases according to the law

dN

dt
= −

1

6

N

V
· vT ·∆S.

From this, it follows that:

dN

N
= −

1

6

∆S

V
· vT · dt;

∫ N2

N1

dN

N
= −

1

6

∆S

V
· vT

∫ t2

t1

dt;

lnN2 − lnN1 = −
1

6

∆S

V
· vT · (t2 − t1);

ln
N2

N1

= −
1

6

∆S

V
· vT ·∆t;

N2

N1

= e−
1

6
·
∆S
V

· vT ·∆t ≈ 1−
1

6
·
∆S

V
· vT ·∆t;
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N2 = N1 −N1
1

6
·
∆S

V
· vT ·∆t;

N1 −N2 = N1
1

6
·
∆S

V
· vT ·∆t;

m1

m0

−
m2

m0

=
m1

m0

·
1

6
·
∆S

V
· vT ·∆t,

where m0 is the mass of one molecule;

m1 −m2 =
1

6
·m1 ·

∆S

V
· vT ·∆t;

p1V = v1RT =
m1

µ
RT, m1 =

µp1V

RT
;

m1 −m2 =
1

6
·
µp1V

RT
·
∆S

V
· vT ·∆t;

m1 −m2 =
1

6
·
µp1
RT

·∆S · vT ·∆t;

p1V = v1RT =
m1

µ
RT ; m1 =

µp1V

RT
;

m1 −m2 =
1

6
·
µp1V

RT
·
∆S

V
· vT ·∆t;

m1 −m2 =
1

6
·
µp1
RT

·∆S · vT ·∆t;

p2V = v2RT =
m2

µ
RT ; m2 =

µp2V

RT
;

m1 −m2 =
µp1V

RT
−

µp2V

RT
;

m1 −m2 =
µ (p1 − p2)V

RT
; m1 −m2 =

1

6
·
µp1
RT

·∆S · vT ·∆t;

1

6
·
µp1
RT

·∆S · vT ·∆t =
µ (p1 − p2)V

RT
;

1

6
·
p1
RT

·∆S · vT ·∆t =
(p1 − p2)V

RT
;

1

6
· p1 ·∆S · vt ·∆t = (p1 − p2)V ;
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∆t =
6 (p1 − p2)V

p1 ·∆S · vT
VT =

√

3RT

µ
;

∆t =
6 (p1 − p2)V

p1 ·∆S
·
√

µ

3RT
;

[∆t]SI =
N
m2 ·m3

N
m2 ·m2 · m

s

;

m1 −m2 =
1

6
·
µp1V

RT
·
∆S

V
· vT ·∆t;

m1 −m2 =
1

6
·
µp1
RT

·∆S · vT ·∆t;

p2V = v2RT =
m2

µ
RT ; m2 =

µp2V

RT
;

m1 −m2 =
µp1V

RT
−

µp2V

RT
=

µ (p1 − p2)V

RT
;

1

6
·
µp1
RT

·∆S · vT ·∆t =
µ (p1 − p2)V

RT
;

1

6
· p1 ·∆S · vT ·∆t = (p1 − p2)V ;

∆t =
6 (p1 − p2)V

p1 ·∆S · vT
; vT =

√

3RT

µ
;

∆t =
6 (p1 − p2)V

p1 ·∆S
·
√

µ

3RT
;

m1 −m2 =
1

6
·
µp1V

RT
·
∆S

V
· vT ·∆t;

m1 −m2 =
1

6
·
µp1
RT

·∆S · vT ·∆t;

p2V = v2RT =
m2

µ
RT ; m2 =

µp2V

RT
;

m1 −m2 =
µp1V

RT
−

µp2V

RT
=

µ (p1 − p2)V

RT

=
1

6
·
µp1
RT

·∆S · vT ·∆t;
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m1 −m2 =
1

6
·
µp1
RT

·∆S · vT ·∆t;

1

6
·
µp1
RT

·∆S · vT ·∆t =
µ (p1 − p2)V

RT
;

1

6
·
p1
1

·∆S · vT ·∆t =
(p1 − p2)V

1
;

∆t =
6 (p1 − p2)V

p1 ·∆S · vT
; vT =

√

3RT

µ
;

∆t =
6 (p1 − p2)V

p1 ·∆S
·
√

µ

3RT
.

Problem 2. Gas Cylinder

A horizontal cylindrical metal vessel with length L0 and cross-
sectional area S contains an ideal gas at pressure p0 when the gas’s
temperature along the cylinder’s axis is kept constant and equal to
T0 = 00C. The temperature of the gas and the cylinder walls is made
to vary along the longitudinal axis of the cylinder according to the
law

T = ax2 + bx+ c,

so that, at the ends of the cylinder, the temperature is t0, and halfway
between the ends, the temperature is Tmax. The gas temperature is
the same at any point in a given cross-section of the cylinder. The
coefficient of linear expansion of the metal from which the vessel is
made is α ≪ 1. The expansion of the cylinder is only longitudinal.

(a) Determine the pressure p of the gas within the vessel, and cal-
culate the displacement ∆xCM of the center of mass, measured
from one end of the cylinder.

Two identical holes with very small surface areas are opened
simultaneously at one of the vessel’s ends and in the middle of its
length.

(b) Compare the numbers of molecules that escape into the sur-
rounding vacuum through the two holes per unit time if the
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temperature distribution remains as T (x), given that:

∫

dx

ax2 + bx+ c
=

1
√
Ω
ln

∣

∣

∣

∣

∣

2ax+ b−
√
Ω

2ax+ b+
√
Ω

∣

∣

∣

∣

∣

;

Ω = b2 − 4ac > 0;
∫

xdx

ax2 + bx+ c
=

1

2a
ln

∣

∣ax2 + bx+ c
∣

∣

−
b

2a
√
Ω
ln

∣

∣

∣

∣

∣

2ax+ b−
√
Ω

2ax+ b+
√
Ω

∣

∣

∣

∣

∣

.

Ω > 0.

Solution

(a) Corresponding to the normal initial conditions (p0, T 0), the num-
ber N of the gas molecules in the vessel is determined as follows:

p0V0 = vRT0 =
N

NA0

p0V0N0A;

N =
p0V0NA

RT 0

=
p0S0L0NA

RT 0

=
p0S0L0

R
NA

T0

;

R
NA

= k = Boltzmann’s constant;

N =
p0L0S0

kT0

.

If the temperature of the gas varies along the vessel, according to
the law

T = ax2 + bx+ c,

under the specified conditions it follows that:

a = −
4(Tmax − T0)

L2
; b =

4(Tmax − T0)

L
; c = T0;

T (x) = −
4(Tmax − T0)

L2
x2 +

4

L
(Tmax − T0)x+ T0.
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So, using the equation of the new equilibrium state of the ideal
gas, it results that:

pV = vRT =
N

NA
; p =

N

V
·
R

NA
· T ;

N

V
= n;

R

NA
= k;

p = nkT ; n(x); T (x);

p = n(x) · k · T (x);

n(x) =
p

k · T (x)
=

p

k · (ax2 + bx+ c)
;

n(x) =
p

k ·
[

− 4
L2 · (Tmax − T0) · x2 + 4

L · (Tmax − T0) · x+ T0

] ;

n̄ =
1

L
·
∫

n(x) · dx =
p

kL

∫

dx

ax2 + bx+ c
=

N

V
=

S0L0p0
kT0V

;

N =
p0L0S0

kT0

;

V = S0L;

Q(x) =

∫

dx

ax2 + bx+ c
=

1
√
δ
ln

∣

∣

∣

∣

∣

2ax+ b−
√
δ

2ax+ b+
√
δ

∣

∣

∣

∣

∣

;

δ = b2 − 4ac > 0;

a = −
4 (Tmax − T0)

L2
; b =

4 (Tmax − T0)

L
; c = T0;

δ =
16 (Tmax − T0)

2

L2
+

16 (Tmax − T0)T0

L2
;

δ =
16 (Tmax − T0)

L2
(Tmax − T0 + T0); δ =

16 (Tmax − T0)

L2
· Tmax;

√
δ =

4

L
·
√

Tmax(Tmax − T0);

2ax+ b−
√
δ = −

8 (Tmax − T0)

L2
x+

4 (Tmax − T0)

L

−
4

L
·
√

Tmax (Tmax − T0);
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2ax+ b−
√
δ =

4

L

[

− 2 (Tmax − T0) x+ (Tmax − T0)L

−L ·
√

Tmax (Tmax − T0)
]

;

2ax+ b+
√
δ = −

8 (Tmax − T0)

L2
x+

4 (Tmax − T0)

L

+
4

L
·
√

Tmax (Tmax − T0);

2ax+ b+
√
δ =

4

L

[

− 2 (Tmax − T0) x+ (Tmax − T0)L

+L ·
√

Tmax (Tmax − T0)
]

;

F (x) =

∫

dx

ax2 + bx+ c
=

1
√
δ
ln

∣

∣

∣

∣

∣

2ax+ b−
√
δ

2ax+ b+
√
δ

∣

∣

∣

∣

∣

;

F (x) =
L

4
√

Tmax (Tmax − T0)

· ln

∣

∣

∣

∣

∣

−2 (Tmax − T0)x+ (Tmax − T0)L− L
√

Tmax (Tmax − T0)

−2 (Tmax − T0)x+ (Tmax − T0)L+ L
√

Tmax (Tmax − T0)

∣

∣

∣

∣

∣

;

F (L) =
L

4
√

Tmax (Tmax − T0)

· ln

∣

∣

∣

∣

∣

−2 (Tmax − T0)L+ (Tmax − T0)L− L
√

Tmax (Tmax − T0)

−2 (Tmax − T0)L+ (Tmax − T0)L+ L
√

Tmax (Tmax − T0)

∣

∣

∣

∣

∣

;

F (L) =
L

4
√

Tmax (Tmax − T0)

· ln

∣

∣

∣

∣

∣

− (Tmax − T0)L− L
√

Tmax (Tmax − T0)

− (Tmax − T0)L+ L
√

Tmax (Tmax − T0)

∣

∣

∣

∣

∣

;

F (L) =
L

4
√

Tmax (Tmax − T0)

· ln

∣

∣

∣

∣

∣

− (Tmax − T0)−
√

Tmax (Tmax − T0)

− (Tmax − T0) +
√

Tmax (Tmax − T0)

∣

∣

∣

∣

∣

;
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F (0) =
L

4
√

Tmax (Tmax − T0)

· ln

∣

∣

∣

∣

∣

(Tmax − T0)L− L
√

Tmax (Tmax − T0)

(Tmax − T0)L+ L
√

Tmax (Tmax − T0)

∣

∣

∣

∣

∣

;

F (0) =
L

4
√

Tmax (Tmax − T0)

· ln

∣

∣

∣

∣

∣

(Tmax − T0)−
√

Tmax (Tmax − T0)

(Tmax − T0) +
√

Tmax (Tmax − T0)

∣

∣

∣

∣

∣

;

F (0) =
L

4
√

Tmax (Tmax − T0)

· ln

∣

∣

∣

∣

∣

√
Tmax − T0 ·

√
Tmax − T0 −

√

Tmax (Tmax − T0)√
Tmax − T0 ·

√
Tmax − T0 +

√

Tmax (Tmax − T0)

∣

∣

∣

∣

∣

;

F (0) =
L

4
√

Tmax (Tmax − T0)
· ln

∣

∣

∣

∣

√
Tmax − T0 −

√
Tmax√

Tmax − T0 +
√
Tmax

∣

∣

∣

∣

;

n̄ =
1

L
·
∫

n(x) · dx =
p

kL

∫

dx

ax2 + bx+ c
=

N

V
=

S0L0p0
kT0V

;

F (x) =

∫

dx

ax2 + bx+ c
=

1
√
δ
ln

∣

∣

∣

∣

∣

2ax+ b−
√
δ

2ax+ b+
√
δ

∣

∣

∣

∣

∣

;

n̄ =
p

kL
[F (x = L)− F (x = 0)]

∫

dx

ax2 + bx+ c
=

N

V
=

S0L0p0
kT0V

;

n̄ =
p

kL
[F (x = L)− F (x = 0)]; n̄ =

p

kL
·∆F ; n̄ =

S0L0p0
kT0V

;

p

kL
·∆F =

p

L
·∆F =

S0L0p0
T0V

;

V = SL; S ≈ S0; V = S0L;

p

L
·∆F =

S0L0p0
T0S0L

; p ·∆F =
L0p0
T0

;
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p =
L0p0
T0∆F

; ∆F = Fx=L − Fx=0;

Fx=L =
L

4
√

Tmax (Tmax − T0)

· ln

∣

∣

∣

∣

∣

− (Tmax − T0)−
√

Tmax (Tmax − T0)

− (Tmax − T0) +
√

Tmax (Tmax − T0)

∣

∣

∣

∣

∣

;

Fx=0 =
L

4
√

Tmax (Tmax − T0)
· ln

∣

∣

∣

∣

√
Tmax − T0 −

√
Tmax√

Tmax − T0 +
√
Tmax

∣

∣

∣

∣

.

In Figure 2.1, the cylindrical vessel is represented in its final state
(when its length is L) with the specified temperature distribution
along it, divided into n identical sectors, each with length d = L/n,
so that the temperature along each sector can be considered constant.

1 2 3 k n

L

x

x

k

Fig. 2.1

With the temperature variation along the cylinder being as spec-
ified, it follows that at distance x from the end of the cylinder, the
temperature is

Tx = −
4

L2
(Tmax − T0) · x2 +

4

L
(Tmax − T0) · x+ T0.

Under the specified conditions, the temperature of sector k is

Tk = −
4

L2
(Tmax − T0) · x2k +

4

L
(Tmax − T0) · xk + T0;

tk + 273.15 0C = −
4

L2
(Tmax − T0) · x2k

+
4

L
(Tmax − T0) · xk + t0 + 273.15 0C;
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tk = −
4

L2
(Tmax − T0) · x2k +

4

L
(Tmax − T0) · xk + t0;

L = nd; xk = kd;

tk = −
4

n2
(Tmax − T0) · k2 +

4

n
(Tmax − T0) · xk + t0.

If at temperature tk the length of sector k is dk = d, then the
length of the same sector at temperature t0 = 0 0C was

d0k =
d

1 + αtk
.

It results that:

∑

d0k = d ·
∑ 1

1 + αtk
=

L

n

∑ 1

1 + αtk
L0;

1

1 + αtk
= (1 + αtk)

−1 ≈ 1− αtk;

∑ 1

1 + αtk
=

∑

(1− αtk) = n− α
∑

tk;

L0 =
L

n

[

n− α
∑

(

−
4

n2
(Tmax − T0) k

2 +
4

n
(Tmax − T0) k + t0

)]

;

L0 = L+ α
L

n

4 (Tmax − T0)

n2

∑

k2 − α
L

n

4 (Tmax − T0)

n

∑

k +
L

n
αt0;

∑

k2 = 12 + 22 + 32 + · · ·+ n2 =
n (n+ 1) (2n+ 1)

6
;

∑

k = 1 + 2 + 3 + · · ·+ n =
n (n+ 1)

2
;

L0 = L

(

1−
2

3
α(Tmax − T0)

)

; L =
L0

1− 2
3
α(Tmax − T0)

.

The final coordinates of the center of mass of the gas in the vessel
are:

xCM =

∫

x · dm
m

=
S

N

∫

x · nx · dx =
S · p
N · k

∫

x · dx
ax2 + bx+ c

;
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∫

x · dx
ax2 + bx+ c

=
1

2a
ln

∣

∣ax2 + bx+ c
∣

∣

−
b

2a
√
δ
· ln

∣

∣

∣

∣

∣

2ax+ b−
√
δ

2ax+ b+
√
δ

∣

∣

∣

∣

∣

= G(x);

1

2a
ln

∣

∣ax2 + bx+ c
∣

∣ = H(x); G(x) = H (x)−
b

2a
F (x);

xCM =
pS

Nk
·∆G =

pS

Nk
(G(L) −G (0)) =

pS

Nk
·∆G;

∆G = ∆H −
b

2a
·∆F ;

∆H = 0; ∆G = −
b

2a
·∆F ;

p =
p0L0

T0 ·∆F
; N =

p0L0SNA

RT0

;

xCM =
∆G

∆F
; xCM = −

b

2a
; xCM = −

L

2
; x0,CM =

L0

2
;

∆xCM =
L

2
−

L0

2
; L =

L0

1− 2
3
α (Tmax − T0)

;

L = L0

(

1 +
2

3
α (Tmax − T0)

)

;

∆xCM =
1

3
L0α(Tmax − T0).

(b) Since the number of molecules crossing one unit area of the
section per unit time is

d =
∆N

∆S ·∆t
=

1

6
n · vT ,

it results that:

dx=0 =
1

6
nx=0 · vT0

=
1

6

p0
kT0

·

√

3RT0

µ
;

dx=L/2 =
1

6
nx=L/2 · vTmax

=
1

6

p0
kTmax

·

√

3RTmax

µ
;
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dx=L/2

dx=0

=
p

p0
·
√

T0

Tmax

=
L0

T0 ·∆F
·
√

T0

T
;

p =
L0p0
T0∆F

; ∆F =
L0p0
T0p

;

dx=L/2

dx=0

=
L0

T0 · L0p0
T0p

·

√

T0

T
=

p

p0
·

√

T0

T
;

p =
L0p0
T0∆F

;
p

p0
=

L0

T0∆F
;

dx=L/2

dx=0

=
L0

T0∆F
·

√

T0

T
;

∆F =
L0p0
T0p

;
dx=L/2

dx=0

=
L0

T0
L0p0
T0p

·

√

T0

T
;

dx=L/2

dx=0

=
L0T0p

T0L0p0
·

√

T0

T
;

dx=L/2

dx=0

=
p

p0
·

√

T0

T
.

Problem 3. Rutherford’s Experiment

The equilateral hyperbola in Figure 3.1 represents the trajectory of
a particle α at normal incidence on a very thin gold (Au) sheet,
as a result of its interaction with a fixed nucleus, in Rutherford’s
experiment.

(a) Determine the minimum distance between particle α and the
fixed nucleus, the velocity of particle α at that moment, and
the scattering angle of particle α. It should be considered that,
crossing the Au sheet, particle α interacts with a single nucleus.

Given: m, the mass of particle α; v0, the velocity of particle
α outside the Au sheet; q1, the electric charge of particle α; q2,
the electric charge of the Au nucleus; b, the collision parameter;
and ε0, the absolute permittivity of a vacuum. A non-relativistic
approach should be taken.

(b) For which values of the collision parameter does particle α not
cross the Au sheet? Estimate the radius of the Au nucleus.

(c) If the electron in the quantized model of a hydrogen atom is a
homogeneous sphere with mass m, then evaluate the minimum
radius that the electron can have.

Given: h, Planck’s constant, and s, the quantum spin number.
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Fig. 3.1

Solution

(a) From the conservation laws of energy and kinetic momentum, it
results that:

{

mv2
0

2
= mv2

2
+ 1

4πǫ0
h1h2

rmin
,

v0b = vrmin

where rmin = a+ c;

v =

√

q21q
2
2

16πǫ20v
2
0b

2m2 + v20
−

q1q2
4πǫ0v0bm

;

rmin =
v0b

v
.

Considering the properties of the hyperbola, highlighted by the
notation in Figure 3.1, it results that:

tg
θ

2
=

a

b
; c2 = a2 + b2.
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As a result, we have:

v =
v0b

a+ c
;

mv20
2

=
mv20b

2

(a+ c)2
+

1

4πε0

q1q2
a+ c

;

mv20
2

[

1−
b2

(a+ c)2

]

=
1

4πε0

q1q2
(a+ c)

;

mv20a =
q1q2
4πε0

; a =
q1q2

4πε0mv20
;

tg
θ

2
=

q1q2
4πε0mv20b

.

(b) If particle α does not cross the Au sheet, then the scattering
angle must be θ ≥ 90◦. (If particle α crosses the Au sheet, then
θ < 90◦.)

It results that:

θ

2
≥ 45◦; tg

θ

2
≥ tg 45◦ = 1;

q1q2
4πε0mv20b

≥ 1; 0 ≤ b ≤
q1q2

4πǫ0mv20
.

The limit condition, θ = 90◦, as shown in Figure 3.2, is determined
by the dimensions of the fixed nucleus.

It results that

R =
q1q2

4πǫ0mv20
.

(c) In the quantized model of the hydrogen atom, the electron pos-

sesses its own intrinsic angular momentum (spin) �S, which is quan-
tized according to the following law:

S =
√

s(s+ 1)
h

2π
.

If �ω is the angular velocity of the rotational motion of a sphere
around the axis of symmetry, then

�S = I�ω,

where I = 2
5
mR2 is the moment of inertia of the sphere in relation

to the axis passing through its center.
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Fig. 3.2

It results that

√

s(s+ 1)
h

2π
=

2

5
mR2 ·

v

R
.

For a point on the equator of the electron sphere, we have:

ω = v/R;
√

s(s+ 1)
h

2π
=

2

5
mR2 ·

v

R
· s.

According to the theory of special relativity, we have v ≤ c.
It results that:

√

s(s+ 1)
h

2π
=

2

5
mRv;

v =
5h

√

s(s+ 1)

4πmR
≤ c;

R ≥
5h

√

s(s+ 1)

4πmc
.
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Problem 4. An Artificial Satellite of Earth

An artificial satellite revolves around the Earth (considered a fixed
material point), outside the atmosphere, in an ellipse-shaped orbit.
As shown in Figure 4.1, the Earth is positioned in one of the ellipse’s
foci, so that the satellite’s rotation period is T , and the areolar speed
is Ω.

It is known that: r = p
1+e cos θ , where p = b2

a and e =
√

1− b2

a2
,

with the ellipse’s semi-axes (a and b) being unknown; and r2 =
dθ
dt

√
pKM , where K (the constant of universal attraction) and M

(the Earth’s mass) are known.

(a) Determine the time dependence of the elements of the position
vector of the satellite in relation to the Earth, r = f(t) and
θ = g(t), if at the moment t0 the satellite passes to perigee. Use

the substitutes a− r = ae cos u and n = 1
a

√

KM
a .

(b) Determine the geometric interpretation of the angle u in the
circle whose center is at the ellipse’s center and whose radius is
equal to the major semi-axis of the ellipse.

(c) Any satellite is inserted into the desired elliptical orbit by inject-
ing it into one of the orbit’s points; it is only necessary for the
satellite to reach the altitude of the chosen point and to give it
the required speed in the direction of the tangent to the trajec-
tory at that point.

To arrive at the base elliptical orbit shown, which is known
to reach perigee at a high altitude, the satellite is first raised

E

P

Fig. 4.1
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to a certain point of an elliptical parking orbit, whose apogee
has a low altitude. Then, after a few rotations on this orbit, the
satellite is passed into the base orbit.

Propose, from an energetic point of view, the optimal injection
point on the parking orbit and transfer point from the parking
orbit to the base orbit. Give a qualitative justification.

Solution

(a)

(1) Dependence r = f (t)

From the equation of the ellipse, by differentiation, it results that:

r =
p

1 + e cos θ
;

1

r
=

1

p
+

e

p
cos θ;

−
1

r2
dr = −

e

p
sin θ dθ;

cos θ =
p

e

(

1

r
−

1

p

)

; sin θ =

√

1−
p2

e2

(

1

r
−

1

p

)2

;

p

r2
dr =

√

e2 −
(p

r
− 1

)2

dθ;

r2dθ =
pdr

√

e2 −
(p
r − 1

)2
.

On the other hand, knowing that r2θ̇ = C, it results that:

r2
dθ

dt
= C; dt =

r2dθ

C
;

dt =
p

C

rdr
√

e2r2 − (p− r)2
;
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p = a(1− e2);

e2r2 − (p − r)2 = e2r2 − [a(1− e2)− r]2

= e2r2 − a2(1− e2)2 + 2a(1 − e2)r − r2

= −r2(1− e2)− a2(1− e2)2 + 2a(1 − e2)r

= (1− e2)[2ar − r2 − a2(1− e2)]

= (1− e2)[a2e2 − (a2 − 2ar + r2)]

= (1− e2)[a2e2 − (a− r)2];

dt =
p

C

rdr
√
1− e2

√

a2e2 − (a− r)2
;

C =
√

pKM ; p = a(1− e2);

dt =

√

a

KM

rdr
√

a2e2 − (a− r)2
;

a− r = ae cos u,

where u is the eccentric anomaly ;

r = a(1− e cos u);

dr = ae sin udu;

dt = a

√

a

KM
(1− e cos u)du.

By integrating from the value u = 0, which corresponds to the
passing of the satellite to the perigee, where rmin = a(1− e), we get:

t− t0 = a

√

a

KM

∫ u

0

(1− e cos u)du,
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where t0 is the moment of the passing of the satellite to the perigee;

u− e sinu =
1

a

√

KM

a
(t− t0); Ω =

L

2m
; Ω =

b

2

√

KM

a
;

n =
1

a

√

KM

a
; n =

2π

T
; T = 2π

√

a3

KM
,

where n is the average movement of the satellite;

u− e sinu = n(t− t0),

which is Kepler’s equation, where n(t− t0) is the average anomaly.
By solving the previous equation, the eccentric anomaly of the

satellite, u, is determined at the moment t, and then the time depen-
dence of r will be determined:

r = a(1− e cos u).

(2) Dependence θ = g(t)

Let us now determine the time dependence of the other polar
coordinate, θ, called the true anomaly. For this, we will first establish
the relationship between θ and u.

Comparing expressions

r =
p

1 + e cos θ
=

a
(

1− e2
)

1 + e cos θ

and

r = a(1− e cos u),

it results that:

1− e cos u =
1− e2

1 + e cos θ
;

1 + e cos θ =
1− e2

1− e cos u
;
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cos θ =
cos u− e

1− e cos u
;

1− cos θ =
(1 + e) (1− cos u)

1− e cos u
;

1− cos u =
r

a
; 1− cos θ = 2 sin2

θ

2
; 1− cos u = 2 sin2

u

2
;

sin2
θ

2
=

a (1 + e) sin2 u
2

r
;

1 + cos θ =
(1− e) (1 + cos u)

1− e cos u
;

1− e cos u =
r

a
; 1 + cos θ = 2cos2

θ

2
; 1 + cosu = 2cos2

u

2
;

cos2
θ

2
=

a (1− e) cos2 u
2

r
;

√
r sin

θ

2
=

√

a(1 + e) sin
u

2
;

√
r cos

θ

2
=

√

a(1− e)cos
u

2
;

tg
θ

2
=

√

1 + e

1− e
tg

u

2
.

(b) To establish the geometric significance of the eccentric anomaly,
u, using the drawing in Figure 4.2 (which represents, along with the
ellipse of the satellite’s orbit around the Earth, the circle whose center
aligns with the center of the ellipse and whose radius is equal to the
semi-major axis of the ellipse), it results that:

OS′′ = a; OS′ = OE+ ES′ = a · cos∠(S′OS′′);

OE = a− rmin = a−
p

1 + e
= a−

a
(

1− e2
)

1 + e
= ae;

ES′ = r cos θ;

ae+ r cos θ = a cos∠(S′OS′′).
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E

Fig. 4.2

Using the equation of the ellipse in polar coordinates, it results
that:

r =
p

1 + e cos θ
=

a
(

1− e2
)

1 + e cos θ
;

1 + e cos θ =
a
(

1− e2
)

r
; e cos θ =

a
(

1− e2
)

r
− 1;

cos θ =
a
(

1− e2
)

er
−

1

e
=

1

r

[

a
(

1− e2
)

e
−

r

e

]

;

cos θ =
1

r

(a

e
− ae−

r

e

)

;

r cos θ + ae =
a− r

e
;

ae+ r cos θ = a cos
3

(S′OS′′);

a− r = ae · cos
3

(S′OS′′);

a− r = ae cos u;

u = ∠(S′OS′′).
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(c) A satellite that will revolve around the Earth in an elliptical
orbit, whose elements (semi-axes, minimum altitude, maximum alti-
tude, etc.) have been fixed according to the satellite’s mission, can
be inserted into the elliptical orbit at any point. It only needs to
be raised to the altitude of the chosen “injection” point and to be
given there the necessary speed (called the “injection speed”) in the
direction of the tangent to the trajectory at that point.

A carrier rocket helps transport the satellite from the Earth to
the altitude of the injection point on the elliptical orbit so that on
this sector of the trajectory (active trajectory), the movement of the
ensemble is the result of the composition of the forces of reaction
(traction) with the forces of gravitational attraction.

At the injection point, the satellite detaches from the carrier
rocket. The higher the altitude of this point, the lower the injec-
tion speed that will have to be given to the satellite, as shown in
Figure 4.3.

The first part of the active trajectory taken by the launch vehicle
is approximately vertical to the launch site. It then curves according
to a program established so that when the engine of the last reactive
stage of the rocket stops working, both the injection point and the
speed with which the satellite can continue moving on the ellipse
have been reached.

Active orbit 

Fig. 4.3

If the satellite must be placed (injected) into an elliptical orbit
with a minimum velocity, it must be raised to the apogee altitude.
Could this also lead to the conclusion that the optimal solution from
the energetic point of view is to insert the satellite into orbit via
“injection” at the apogee, as it requires the minimum injection speed
there? The injection of the satellite at the apogee, however, would
require its transportation over the maximum distance, which would
mean that the energy consumption exceeds the energy savings due
to the injection point’s advantages.
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Conclusion: The optimal solution from the energetic point of view
is injection at the perigee, which assumes the maximum injection
speed but offers the advantage of energy economy, because the satel-
lite must be transported over the minimum distance.

This is how it is achieved in the case of elliptical orbits with a low
perigee (Figure 4.4). The satellite is lifted with the help of a carrier
rocket until the perigee. Then, it is injected into the elliptical orbit.

However, if the elliptical orbit on which the satellite will have to
revolve (base orbit) has a high perigee, then, from the active orbit,
the satellite is first inserted through “injection” into an elliptical
orbit with a low perigee, whose apogee coincides with the perigee of
the “base” orbit. This is called “parking” or “transfer”.

The injection of the satellite into the “parking” orbit is done at its
perigee (see point p in Figure 4.4), by giving the satellite the speed
�vmax corresponding to the parameters of the “parking” ellipse.

Active orbit 

Fig. 4.4

Problem 5. Contact of Two Spherical Molecules

When two rigid spherical molecules, each with diameter d, come into
close proximity, they cannot overlap. As a result, each molecule can
be represented as a point surrounded by a protective sphere — a
region that the center of another molecule cannot enter. This pro-
tective sphere defines a forbidden volume for the movement of other
molecules: the space around one molecule that is inaccessible to the
center of another due to their finite sizes.

Consequently, when many such rigid spherical molecules are intro-
duced into a container, part of the container’s volume becomes inac-
cessible to the centers of other molecules. This reduction in accessible
volume arises from the finite size of the particles.

The average excluded volume per mole of molecules, account-
ing for all pairwise interactions, is known as the co-volume. This
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quantity corresponds to the parameter b in the van der Waals equa-
tion and represents the total volume effectively unavailable for molec-
ular motion due to repulsive interactions. It should not be confused
with the actual molar volume occupied by the molecules themselves.

(a) Determine the co-volume b of the gas in a vessel if there are NA

identical molecules, each a rigid sphere with a radius r.
(b) One of the equations for real gases is the van der Waals equation:

(

p+
aν

V ν2

)

(V − νb) = νRT,

where a and b are coefficients that determine the pressure and
volume corrections. The dependence p = f(V ), whose graph
is represented in Figure 5.1, for different values of T, can be
extracted from it.
The graph has a point of inflection at point C, which is asso-

ciated with the substance’s critical state.
Determine, using two methods, the parameters of the criti-

cal state (pc, Vc, Tc) and then evaluate the radius of the gas
molecule.

(c) Write the van der Waals equation according to the reduced
parameters (the reduced form of the van der Waals equation):
pr = p/pc, Vr = V/Vc, Tr = T/Tc.

Fig. 5.1
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Solution

(a) Let us consider the molecules as rigid spheres with radius r and
diameter d = 2r. When two molecules collide, the spheres touch, and
the distance between their centers equals d.

The distance between the centers of the molecules cannot be
smaller than d. Then, we can consider the molecules reduced to mate-
rial points located in the centers of the spheres and imagine that each
material point has around it a sphere of protection with the radius d,
which the center of another molecule cannot penetrate.

The volume of the protective sphere is a forbidden volume and
has the value Vsp = 4πd3/3 = 32πr3/3. For a single molecule, the
forbidden volume is Vsp/2 = 16πr3/3.

Therefore, the forbidden (unavailable) volume for those NA gas
molecules placed in the container, i.e., the co-volume of the gas, b =
16NAπr

3/3, represents the real volume taken up by thoseN spherical
molecules.

Conclusion: The volume available for agitating the molecules is
V–b, where V is the volume of the vessel.

(b)
Method 1
The critical point is an inflection point of the critical isotherm, and
the tangent at this point is horizontal.

It results that:
(

p+
aν2

V 2

)

(V − νb) = νRT ;

p =
νRT

V − νb
−

aν2

V 2
;

(

dp

dV

)

C

=
−νRTC

(VC − νb)2
+

2aν2VC

V 4
C

= 0;

(

dp

dV

)

C

=
−νRTC

(VC − νb)2
+

2aν2

V 3
C

= 0;

νRTC

(VC − νb)2
=

2aν2

V 3
C

;
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(

d2p

dV 2

)

C

=
νRTC2(VC − νb)

(VC − νb)4
−

2aν23V 2
C

V 6
C

0;

νRTC

(VC − νb)3
=

3aν2

V 4
C

;

VC = 3νb; TC =
8a

27bR
; pC =

a

27b2
.

Method 2

(

p+
aν2

V 2

)

(V − νb) = νRT;

V 3 − ν

(

b+
RT

p

)

V 2 +
aν2

p
V −

abν3

p
= 0.

For the critical point, the equation is written as follows:

V 3 − ν

(

b+
RTC

pC

)

V 2 +
aν2

pC
V−

abν3

pC
= 0;

(V − VC)
3 = 0.

From this, by identifying the coefficients, it results that:

ν

(

b+
RTC

pC

)

= 3VC;
aν2

pC
= 3V 2

C ;
abν3

pC
= V 3

C ;

VC = 3νb; TC =
8a

27bR
; pC =

a

27b2
; b =

RTC

8pC
;

b = 4NA
4πr3

3
;

r =
1

4
3

√

3RTC

2πNApC
.



28 Physics Olympiad: Problems and Solutions

(c)
(

p+
aν2

V 2

)

(V − νb) = νRT ;

b =
VC

3ν
;

R =
8

3ν

pCVC

TC
;

a =
3pCV

2
C

ν2
;

(

p+
ν2

V 2

3pCV
2
C

ν2

)(

V − ν
VC

3ν

)

= νT
8

3ν

pCVC

TC
;

pC

(

p

pC
+ 3

V 2
C

V 2

)

VC

3

(

3
V

VC
− 1

)

=
8

3
pCVC

T

TC
;

pr =
p

pC
;

Vr =
V

VC
;

Tr =
T

TC
;

(

pr +
3

V 2
r

)

(3Vr − 1) = 8Tr.

Problem 6. The Reunion of a Space Station with a Satellite

A space station, coupled to a satellite, revolves in a circular orbit
with radius 1.25R around the Earth, where R is the Earth’s radius.
At a certain moment, the satellite is catapulted from the station in
the direction of the tangent to the circle. The satellite will continue
its movement on an elliptical orbit, with the apogee at a distance of
10R from the center of the Earth. The station and the satellite are
considered as material points.
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If m is the satellite’s mass and M is the space station’s mass, then
determine the value of the ratio m/M for which the satellite meets
the station after one satellite rotation around the Earth.

Given: 102/3 = 4.64, 112/3 = 4.94.

Solution

In Figure 6.1, the circular trajectory of the system before discon-
nection and the elliptical trajectories of the system elements after
their disconnection are represented: 1 — the trajectory of the satel-
lite with mass m; 2 — the trajectory of the carrier rocket with
mass M.

Fig. 6.1

If T 1 and T 2 are the rotation periods of the satellite and the
rocket, respectively, then the reunion of the elements at point A,



30 Physics Olympiad: Problems and Solutions

after a rotation of the satellite, is possible if

T1

T2

= k > 1,

where k must be an integer.
With the semi-axes of the two ellipses being

a1 =
1

2

(

5

4
R+ 10R

)

=
45

8
R, a2 =

1

2

(

5

4
R+ nR

)

=
5 + 4n

8
R,

from Kepler’s third law, it results that:

T 2
1

T 2
2

=
a31
a32

;
T1

T2

=

(

45

5 + 4n

)
3

2

= k.

The disconnection of the system elements proceeds according to
the law of conservation of momentum:

(M +m)�v0 = m�v1 +M�v2, (M +m)v0 = mv1 +Mv2.

Here, v0 is the speed of the system on the circular path:

v0 = 2

√

g0R

5
; g0 = KM2

R2 , where ME is the Earth’s mass.

The evolution of the elements after disconnection follows the laws
of conservation of mechanical energy and kinetic momentum.

At a certain moment, the gravitational potential energies of the
satellite–Earth and rocket–Earth systems are as follows:

Ep1 = mg0
R2

r1
; Ep2 = −Mg0

R2

r2
;

mv21
2

−mg0
R2

5R
4

=
mu21
2

−mg0
R2

10R
;

Mv22
2

−Mg0
R2

5
4
R

=
Mu22
2

−Mg0
R2

nR
;

5

4
v1 = 10u1;

5

4
v2 = nu2; v1 =

4v0
3

; v2 = 2v0

√

2n

4n+ 5
;

n = 5
(

1−
m

3M

)2

: 4

(

2−
(

1−
m

3M

)2
)

.
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By imposing the condition that the carrier rocket does not fall to
Earth (n < 1), it results that:

m

M
< 3− 2

√
2;

m

M
= 3−

√

2
(

9− k2/3
)

; k < 53/2 = 11.2;

m

M
> 0; k > 9.5;

9.5 < k < 11.2.

Because k must be an integer, its possible values are k1 = 10 and
k2 = 11.

It results that:
(m

M

)

1
= 3−

√

2(9 − 102/3) = 0.047;

(m

M

)

2
= 3−

√

2(9 − 112/3) = 0.150.
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Chapter 2

International Pre-Olympic Physics

Contest 2001, Craiova, Romania

Problem 1. Satellite Outside the Earth’s Atmosphere

A carrier rocket transports a satellite outside the Earth’s atmosphere.
It is launched at a point Q, at the distance r from the center of the
Earth, so that the movement with respect to the Earth (considered
fixed) follows a parabola arc, as shown in Figure 1.1, with the param-
eter p, having the Earth in the focus of the parabola.

(a) Determine the elements of the vector, representing the veloc-
ity, �v, of the satellite with respect to the Earth at the point of
injection on the parabolic trajectory.

Given: K, the constant of universal attraction; and M, the
mass of the Earth.
The direction of the axis of the parabola is fixed, and it is known.

(b) Write the equations that would allow one to establish the time
dependences of the satellite’s plane polar coordinates θ and r,
knowing that the trajectory of a material point in the field of the
central gravitational force, in general, is a conic whose equation,
in plane polar coordinates, is

r =
p

1 + e cos θ
,

where e is the numerical eccentricity of the conic.
(c) Considering that the satellite is injected into the trajectory at

point A, representing the vertex of the parabola, determine the

33
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distance traveled by it to point Q, at which θ = 2π/3, knowing
that:

∫

dx

cos3x
=

sin x

2 cos2 x
+

1

2
ln

∣

∣

∣
tg

(π

4
+

x

2

)∣

∣

∣
;

tg
5π

12
= 2 +

√
3; ln(2 +

√
3) = 1.3.

E 

Q 

r 

A 

Fig. 1.1

Solution

A parabola is the geometric locus of points in a plane at equal dis-
tances from a fixed point called the focus and a fixed line called the
directrix.

A satellite evolves on a parabolic trajectory, with the Earth in
its focus. The satellite must escape from the terrestrial gravitational
field and reach somewhere very far away, and its speed with respect
to the Earth should be null.

Suppose a satellite is prepared, by calculation, to escape from
the terrestrial gravitational field on the parabola represented in
Figure 1.2, whose focus is the Earth. Its equation in Cartesian coor-
dinates (x, y) is y2 = 2px, for which the parameter of the parabola,
p = 2rmin, is known.
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E

Q

r 

A
B

N

vmax

v 

rmin

p

X

Y

Fig. 1.2

To achieve such an escape, the satellite is first raised with the
help of a carrier rocket to the altitude of the chosen injection point
(Q), and there, it is given the velocity �v, called the injection velocity,
on a tangent to the parabola, so that the total mechanical energy of
the satellite–Earth system is

E =
mv2

2
−K

mM

r
= 0.

When the escape is successful, and the satellite arrives very far
from the Earth (r → ∞), it is at rest with respect to the Earth
(v∞ = 0).

The optical property of the parabola is demonstrated: all light
rays emitted from the focus of a concave parabolic mirror, after
reflection, become parallel to the principal optical axis, and recip-
rocally, the incident light rays parallel to the principal optical axis
are reflected through the focus.

As a result, the tangent to the parabola at point Q is the bisector
of the angle EQN.
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Considering the definition of the parabola, it follows that:

QE = QN;

r = EB+QPcos (π − θ);

r = 2rmin + r(− cos θ);

2rmin = r(1 + cos θ);

rmin = r cos2
θ

2
.

If the satellite injection were to be done at the point where
r = rmin, the injection speed would have to be v = vmax, so that we
would have:

E =
m

v2max2
mM
rmin

vmax =

√

2KM

rmin

;

rminvmax = rv sin

(

π

2
−

θ

2

)

= rv cos
θ

2
;

r cos2
θ

2
vmax = rv cos

θ

2
;

vmax =
v

cos θ
2

.

From the equation of the trajectory (conic) written in polar coor-
dinates, for e = 1 (parabola), it results that:

r =
p

1 + cos θ
; r =

p

2 cos2 θ
2

=
p

2

(

1 + tg2
θ

2

)

.

For the evolution on the parabola, taking place under the action
of the central force of gravitational attraction, we have:

r2 θ = C =
√

pKM ;

r2dθ = Cdt;
p2

4

(

1 + tg2
θ

2

)2

dθ = Cdt;

tg
θ

2
= u;

1

2

dθ

cos2 θ
2

= du;
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dθ = 2cos2
θ

2
du =

2

1 + tg2 θ
2

du;

dθ =
2

1 + u2
du;

p2

2C
(1 + u2)du = dt;

t− t0 =
p2

2C

∫ u

0

(1 + u2)du,

where t0 is the time at which the satellite passes through the point
corresponding to rmin, for which θ = 0 and u = 0. Thus, t is the
moment when the satellite’s polar coordinates are r and θ:

t− t0 =
p2

2C

(

u+
u3

3

)

;

tg
θ

2
+

1

3
tg3

θ

2
=

2
√
pKM

p2
(t− t0) ,

from the solution of which we can deduce θ = f(t).
Then, from the equation of the parabola, r = p

2 cos2 θ
2

, we deduce

the dependence r = f(t).
The distance traveled by the satellite between the two points on

the parabolic trajectory is:

S =

∫

vdt = vmax

∫

cos
θ

2
dt;

dt =
r2dθ

C
; r2 =

p2

4 cos4 θ
2

; C =
√

pKM ;

vmax = 2

√

KM

p
;

dt =
p2

4cos4 θ
2

√
pKM

dθ;
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S =
p

2

∫ 2π/3

0

dθ

cos3 θ
2

; x =
θ

2
;

S = p

∫ π
3

0

dx

cos3 x
=

[

sin x

2cos2 x
+

1

2
ln

∣

∣

∣
tg

(πx

4
+

x

2

)
∣

∣

∣

]
π
3

0

;

S = p

(

√
3 +

1

2
ln

tg 5π
12

tg π
4

)

;

S = p

[√
3 +

1

2
ln

(

2 +
√
3
)

]

;

S ≈ 2.4 · p.

Problem 2. Space Probe Leaving the Solar System

In a cosmic project, two options for launching a space probe from
Earth so that the probe leaves the solar system are discussed. In
the first variant (I), it is proposed that the probe be launched with
a sufficiently high speed to leave the solar system directly. In the
second variant (II), the probe would first approach Mars (a planet
further from the Sun than the Earth) and then, thanks to this planet,
change its direction of movement and reach the necessary speed to
leave the solar system.

It will be assumed that the probe moves so that, at each point of
its trajectory, it is either only under the action of the Sun’s gravi-
tational field or only under Mars’s gravitational field. At any point,
the Sun’s or Mars’s gravitational field is more intense.

(a) Establish the elements of the vector �va, representing the mini-
mum speed that the probe should have at the moment of launch
in relation to the Earth, so that it can leave the solar system in
the first variant (I). It will be admitted that the Earth’s orbit
in relation to the Sun is circular.

(b) Considering that the probe would be launched in the previously
established direction but at a speed whose modulus should be
vb < va, determine the modulus of the components (normal, �vn,
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and tangential, �vt) of the speed vector of the probe in relation
to the Sun, corresponding to the moment when the probe’s tra-
jectory will intersect the trajectory of Mars in relation to the
Sun. The orientations of the �vn and �vt components are consid-
ered relative to Mars’s circular orbit in relation to the Sun. At
that moment, the probe will be considered very far from Mars.

(c) Let us now admit that, intersecting the orbit of Mars, the probe
enters the region where the intensity of the gravitational field
of the planet Mars is greater than the intensity of the Sun’s
gravitational field. Corresponding to this moment, determine

the relationship between the speed of the probe in relation to
the planet Mars, �v, and the components of the speed of the probe
in relation to the Sun, �vn and �vt, determined at point (b), when
Mars is far away from the probe. During the interaction with the
probe, the exact position of the planet Mars is not important.
The component �vt and the vector �vM representing the speed of
the planet Mars can be considered two colinear vectors.

Determine the minimum speed that the space probe should
have at the moment of launching, with respect to the Earth,
vb,min, so that the probe can leave the solar system via the sec-
ond variant (II). It is useful to specify that from point (a), we
know the value and optimal orientation of the probe’s speed
upon launch from Earth so that the probe leaves the solar sys-
tem directly.

Given: the speed of the Earth in relation to the Sun, vp =
30 km/s; and the ratio of the radii of the circular orbits of the
planets Earth and Mars, respectively, rE/rM. The air resistance,
the rotational movement of the Earth, and the energy consumed
to detach from the Earth are neglected. The orbits of the planets
Earth and Mars are coplanar.

Solution

(a) In accordance with the notation in Figure 2.1 (S — Sun, E —
Earth, s — space probe, �vE — the speed of the Earth with respect to
the Sun, �va — the speed of the probe in relation to the Earth at the
time of launch, rE — the radius of the circular orbit of the Earth),
the results for variant I are:
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Earth (E) 

Space probe (s) 

va

E

vE

Fig. 2.1

K
MEMS

r2E
=

MEv
2
E

rE
; K

MS

rE
= v2E,

where ME is the mass of the Earth, MS is the mass of the Sun, and
K is the constant of universal attraction;

v2E = K
MS

rE
;

Ei = Ep,i + Ek,i,

representing the total energy of the space probe–Sun system, at the
time of the launch of the space probe;

Ei = −K
msMS

rE
+

msv
2
s

2
,

where ms is the mass of the space probe, and �vs is the speed of the
space probe with respect to the Sun at the time of the launch of the
space probe;

�vs = �vP + �va;

v2s = v2E + v2a + 2vEva cos θ,

whose maximum value will be achieved if the launch is in the direc-
tion θ = 0 (on the tangent to the trajectory of the Earth around the
Sun, in the direction of the movement of the Earth’s revolution), so
that the vectors �va and �vE have identical orientations;

v2s = v2E + v2a + 2vEva = (va + vE)
2; vs = vE + va;
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Ei = −K
msMS

rE
+

ms(va + vE)
2

2
;

Ei = −K
msMS

rE
+

ms (va + vE)
2

2
;

Ei = −msv
2
E +

ms(va + vE)
2

2
;

Ef = Epf + Ecf ,

representing the total energy of the probe–Sun system, after the
probe has left the solar system;

Ef = 0;

Ei = Ef ,

according to the law of conservation of the energy of the system,

−msv
2
E +

ms(va + vE)
2

2
= 0;

v2a + 2vEva − v2E = 0;

va = (
√
2− 1)vE,

representing the required speed of the probe, relative to the Earth,
at the moment of launch so that, according to variant I, the probe,
when launched from the Earth, exits the gravitational field of the
Sun and leaves the solar system;

va ≈ 12.4 km/s;

vs = vE + va;

vs =
√
2vE =

√

2
KMs

rE
,

representing the required speed of the probe, with respect to the Sun,
at the moment of launch from the Earth in the direction of the tan-
gent to the Earth’s orbit, in the direction of the movement of the
Earth’s revolution, so that, according to variant I, the probe, when
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launched from the Earth, exits the gravitational field of the Sun and
leaves the solar system, on a trajectory in the shape of a parabola,
with the Sun at the focus, as indicated in Figure 2.2, the minimum
distance from the Sun being rE.

E
E

va

vs

Fig. 2.2

(b) Figure 2.3 shows the coplanar circular orbits of the planets Earth
and Mars in relation to the Sun, as well as the trajectory of the probe,
represented by a sector of an ellipse, from the moment of launch from
Earth (with relative speed �vb in the most favorable direction, vb < va)
until the moment of intersection with the orbit of Mars, when the
components of the velocity vector of the probe in relation to the
Sun, �u, with respect to the circular orbit of Mars are, respectively,
�vn and �vt:

�u = �vn + �vt.

From position 1 and up to position 2, evolving on an arc of an
ellipse, in whose close focus is the Sun (vS < vE), the probe’s trajec-
tory is in the region of the Sun’s gravitational field.

According to the laws of conservation of kinetic momentum and
total mechanical energy, written for the moment of the launch of the
space probe and for the moment when the trajectory of the space
probe intersects the orbit of Mars, it follows that:

�Li = ms�rE × �vs = ms�rE × (�vb + �vE) ;

�Lf = ms�rM × �vs = ms�rM × (�vn + �vt) ;
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Mars 

E
E

vn

vt
vE

vb

Fig. 2.3

�Li = �Lf ;

rE (vb + vE) = rMvt; vt = (vb + vE)
rE
rM

;

Ei = −K
msMS

rE
+

ms(vb + vE)
2

2
;

Ef = −K
msMs

rM
+

ms(v
2
n + v2t )

2
;

Ei = Ef ;

−K
msMs

rE
+

ms (vb + vE)
2

2
= −K

msMs

rM
+

ms

(

v2n + v2t
)

2
;

K
Ms

rE
= v2E; K

Ms

rM
= K

Ms

rE

rE
rM

= v2E
rE
rM

;

vt = (vb + vE)
rE
rM

;
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−v2E +
(vb + vE)

2

2
= −v2E

rE
rM

+

(

v2n + v2t
)

2
;

−v2E +
(vb + vE)

2

2
= −v2E

rE
rM

+
1

2
v2n +

1

2
(vb + vE)

2 r2E
r2M

;

vn =

√

(vb + vE)
2

(

1−
r2E
r2M

)

− 2v2E

(

1−
rE
rM

)

.

(c) In variant II, before leaving the solar system, the space probe first
leaves the region of the Sun’s gravitational field and enters the region
of the gravitational field of the planet Mars. Then, leaving the region
of the gravitational field of Mars, the space probe leaves the solar sys-
tem. This means that, in the region of the gravitational field of Mars,
the trajectory of the space probe in relation to Mars is a parabola
(open trajectory), having the center of the planet Mars in its focus,
as indicated in Figure 2.4.

Let �v be the speed of the probe relative to the planet Mars, corre-
sponding to the moment when the trajectory of the probe intersects
the orbit of Mars and enters the region of the gravitational field
of Mars. At that time, as noted previously, the speed of the probe
relative to the Sun is

�u = �vn + �vt

Using the result from (a), when we demonstrated that, for the
probe to exit the region of the Sun’s gravitational field, directly leav-
ing the solar system, the speed of the probe relative to Earth upon
launching from Earth must be

va = (
√
2− 1)vE,

we can write that, for the probe to leave the region of the gravita-
tional field of the planet Mars, where it arrived according to variant
II, and then leave the solar system, its speed relative to the planet
Mars must be

v = (
√
2− 1)vM,
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where vM is the speed of Mars on its orbit around the Sun;

vM =

√

K
MS

rM
= vE

√

rE
rM

;

�v = v⊥ + �v//,

where v⊥ and �v// are the components of the space probe’s velocity
relative to the planet Mars.

As a result of the collinearity of the vectors �vt and �vM, the inter-
action with the planet Mars does not change the �vn component of
the probe’s velocity.

E E

vn

v

v
v vt

vM

vt

v

vb,min

vE

v

Fig. 2.4
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It results that:

�v⊥ = �vn; v⊥ = vn;

�v// = �vt − �vM; v// = vt − vM;

v2 = v2n + (vt − vM)2 ;

vt = (vb + vE)
rE
rM

;

vn =

√

(vb + vE)
2

(

1−
r2E
r2M

)

− 2v2E

(

1−
rE
rM

)

;

v =
(√

2− 1
)

vM; vM = vE

√

rE
rM

;

(√
2− 1

)2

v2E
rE
rM

= (vb + vE)
2

(

1−
r2E
r2M

)

− 2v2E

(

1−
rE
rM

)

+

[

(vb + vE)
rE
rM

− vE

√

rE
rM

]2

;

(vb + vE)
2 − 2vE

rE
rM

√

rE
rM

(vb + vE)− 2v2E

(

1−
√
2
rE
rM

)

= 0;

vb + vE = vE
rE
rM

√

rE
rM

±

√

v2E
r2E
r2M

rE
rM

+ 2v2E

(

1−
√
2
rE
rM

)

;

vb = vE

[

rE
rM

√

rE
rM

+

√

r3E
r3M

− 2
√
2
rE
rM

+ 2− 1

]

= vb,min;

vb,min ≈ 5.5 km/s.

Problem 3. Oscillations of a Liquid Column

Figure 3.1 shows a U-shaped cylindrical tube with inner diameter d,
which is fixed in a vertical position, closed at one end and open at
the other. An air cushion is formed due to a column of water with
length L. In the equilibrium state of the system, the level difference
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Fig. 3.1

between the two branches of the liquid column is Ho, and the height
of the air cushion is h0.

Due to some disturbance, the water column in the tube starts to
oscillate, though the surface of the water in each branch of the tube
remains horizontal. Friction and surface tension forces are neglected.
It is known that during oscillations, the length of the water column,
L, remains constant, and ρ is the density of the water.

(a) Find the differential equation of the oscillations of the liquid
column, considering that the thermodynamic process evolves
isothermally or adiabatically.

Then, determine the periods of the small oscillations of the
water column, corresponding to the two thermodynamic pro-
cesses.

The adiabatic exponent of the air (γ), the atmospheric pres-
sure (patm), the mass of the liquid column in the tube (m), and
the gravitational acceleration (g) are known.

(b) Establish the time dependence of the air pressure in the tube if
the water column oscillations are small and have amplitude A.

Determine the maximum and minimum values of the air pres-
sure in the tube.

(c) When the air pressure in the tube is maximum, zmax air
molecules pass into the atmosphere through a hole in the wall
of the tube per unit time. Determine the number of molecules
that will pass into the atmosphere per unit time if the hole is
opened when the pressure in the tube is minimum, zmin. The
molecules are considered identical.
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Solution

(a)

(1) From diagram (a) in Figure 3.2, which shows the equilibrium
state of the liquid column in the tube, corresponding to the initial
moment, it follows that:

G0 + patmS = p0S; m0g + patmS = p0S; ρH0Sg + patmS = p0S;

p0 = patm + ρgH0,

representing the initial pressure of the air cushion in the tube.

(a) (b)

X

Fig. 3.2

As a result of some disturbance caused by pressure briefly exerted
on the surface of the column on the right, the liquid in the tube is
uneven, as indicated by diagram (b) in Figure 3.2. Then, the pressure
is released. From this moment, the liquid in the tube will return to
its initial state. It will pass through the tube, stop, and then start to
oscillate.

Diagram (b) of Figure 3.2 shows the column of liquid in the tube
at some moment during its oscillations, when the liquid level in the
column to the right of the tube drops, having the instantaneous veloc-
ity �v and the instantaneous elongation �ydr measured relative to its
initial level, Y Y ′. In the same diagram, the column of liquid on the
left of the tube is also shown, which rises with the instantaneous
velocity �v and the instantaneous elongation �yst from its initial refer-
ence level, XX ′, where �yst = −�ydr and yst = ydr = y.
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In these conditions, the instantaneous level difference between the
free surfaces of the liquid in the two columns, corresponding to the
considered moment and highlighted in the same figure, is:

∆H = ydr − (H0 − yst) = ydr + yst −H0; H = 2y −H0.

y + h = h0; y = h0 − h.

Corresponding to the same moment, when the disturbance has
disappeared, the result of the forces acting on the entire column of
liquid in the tube, opposing the further increase in the level difference
of the liquid in the two columns, is

�F = �G1 + �Fp + �Fpatm ,

where: �G1 is the weight of the column of liquid on the left of the
tube, having the height ∆H, representing the level difference between
the two columns at the considered moment; �Fp is the pressure force
exerted by the air cushion, with pressure p, located in the left-hand
column, on the liquid in the tube; and �Fpatm is the pressure force
exerted by the atmospheric pressure on the liquid in the column on
the right of the tube. As a result, this force, relative to the right-hand
column, is oriented vertically upwards, so that:

F = G1 + Fp − Fpatm ;

F = m1g + pS − patm;

F = ρ∆HSg + pS − patmS; ∆H = 2y −H0;

F = ρ(2y −H0)Sg + (p − patm)S.

Thus, considering the isothermal evolution of the air cushion, it fol-
lows that:

pV = p0V0; pSh = p0Sh0; ph = p0h0; h = h0 − y;

p (h0 − y) = p0h0; p =
p0h0
h0 − y

; p0 = patm + ρgH0;

p =
(patm + ρgH0) h0

h0 − y
;
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F = ρ (2y −H0)Sg +

(

(patm + ρgH0)h0
h0 − y

− patm

)

S;

F = ρ (2y −H0)Sg +

(

(patm + ρgH0) h0 − patm (h0 − y)

h0 − y

)

S;

F = ρ (2y −H0)Sg +

(

patmh0 + ρgH0h0 − patmh0 + patmy

h0 − y

)

S;

F = ρ (2y −H0)Sg +

(

ρgH0h0 + patmy

h0 − y

)

S;

F =
ρ (2y −H0) (h0 − y) g + ρgH0h0 + patmy

h0 − y
S;

F =
2ρyh0g − 2ρy2g − ρH0h0g + ρH0yg + ρgH0h0 + patmy

h0 − y
S;

F =
2ρyh0g − 2ρy2g + ρH0yg + patmy

h0 − y
S;

F =
2ρyg (h0 − y) + y (ρH0g + patm)

h0 − y
S;

F = 2ρgSy +
y (ρH0g + patm)

h0 − y
S;

F = 2ρgSy +
y (ρH0g + patm)

h0

(

1− y
h0

) S;

F = 2ρgSy +
y

h0

(ρH0g + patm)
(

1− y
h0

) S;

1

1− y
h0

=

(

1−
y

h0

)−1

;
y

h0
≪ 1;

1

1− y
h0

≈
(

1− (−1)
y

h0

)

;

1
1−

y

h0

=
(

1 + y
h0

)

;

F = 2ρgSy + (ρH0g + patm)S
y

h0

(

1 +
y

h0

)

;
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F = 2ρgSy + (ρH0g + patm)S

(

y

h0
+

y2

h20

)

;

y ≪ h0; ⇒
y2

h20
≪

y

h0
; ⇒

y

h0
+

y2

h20
≈

y

h0
;

F = 2ρgSy + (ρH0g + patm)S
y

h0
;

F =

(

2ρg +
ρH0g + patm

h0

)

Sy;

k =

(

2ρg +
ρH0g + patm

h0

)

S; S =
πd2

4
; F = ky; �F = −k�ydr;

�F = −k�y,

which proves that, in isothermic conditions, the oscillations of the
liquid column in the tube are harmonic;

k = mω2 = m
4π2

T 2
; T = 2π

√

m

k
;

T = 2π

√

m
(

2ρg + ρH0g+patm
h0

)

S
T = 2π

√

mh0
(2ρgh0 + ρgH0 + patm)S

,

representing the period of the harmonic oscillations of the liquid col-
umn in the U-tube in isothermic conditions.

(2) If the process of the air cushion is adiabatic, it results that:

pV γ = p0V
γ
0 ;

p = p0

(

V0

V

)γ

= p0

(

h0
h0 − y

)γ

= p0
hγ0
hγ0

(

1

1− y
h0

)γ

= p0

(

1−
y

h0

)−γ

;

(

1−
y

h0

)−γ

≈ 1− (−γ)
y

h0
= 1 + γ

y

h0
;

p = p0

(

1 + γ
y

h0

)

;



52 Physics Olympiad: Problems and Solutions

F = ρ (2y −H0)Sg + (p− patm)S;

F = ρ (2y −H0)Sg +

(

p0 + γp0
y

h0
− patm

)

S;

p0 = patm + ρgH0; p0 − patm = ρgH0;

F = ρ (2y −H0)Sg +

(

ρgH0 + γp0
y

h0

)

S;

F = ρ (2y −H0)Sg + ρgH0S + γp0
y

h0
S;

F = 2ρSgy − ρH0Sg + ρgH0S + γp0
S

h0
y;

F = 2ρSgy + γp0
S

h0
y;

F =

(

2ρg + γ
p0
h0

)

Sy; p0 = patm + ρgH0;

F =

(

2ρg + γ
patm + ρgH0

h0

)

Sy;

(

2ρg + γ
patm + ρgH0

h0

)

S = k;

F = ky; �F = −k�y,

which proves that, in the adiabatic scheme, the oscillations of the
liquid column in the U-tube are also harmonic;

k = mω2 = m4π2

T 2 ; T = 2π
√

m
k ;

T = 2π

√

m
(

2ρg + ρH0g+patm
h0

)

S
T = 2π

√

mh0
(2ρgh0 + ρgH0 + patm)S

.

(3) In order to establish the differential equation of the oscillations
of the liquid column in the U-tube, we demonstrate that the force
under the action of which the liquid column oscillates in adiabatic
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conditions due to the air cushion is given by the expression:

F =

(

2ρg +
ρH0g + patm

h0

)

Sy;

k =

(

2ρg +
ρH0g + patm

h0

)

S; S =
πd2

4
; F = ky; �F = −k�ydr;

�F = −k�y.

Thus, it results that:

F = ky; F = ma = m
d

dt

(

dy

dt

)

= m
d2y

dt2
= ky;

F = ma = m
d

dt

(

dy

dt

)

= m
d2y

dt2
= ky;

k

m
= ω2;

d2y

dt2
= ω2y;

d2y

dt2
− ω2y = 0,

representing the differential equation of the oscillations of the liquid
column, a homogeneous differential equation of the second degree,
whose general solution is

y = A sinωt.

(b) If h0 is the initial height of the air cushion in the tube, and if A is
the amplitude of the oscillations of the liquid level in the tube, then
the minimum and maximum heights, respectively, of the air cusion
in the tube during the oscillations of the liquid column are given by
the expressions

hmin = h0 −A; hmax = h0 +A.

These heights of the air cushion correspond to the air cushion pres-
sures pmax and pmin, respectively. In the case of the isothermal pro-
cess, it results that:

p0V0 = pmaxVmin; pmax = p0
V0

Vmin

= p0
Sh0
Shmin

= p0
h0

h0 −A
;
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pmax, isotherm = p0
h0

h0 −A
; p0 = patm + ρgH0;

p0V0 = pminVmax; pmin = p0
V0

Vmax

= p0
Sh0

Shmax

= p0
h0

h0 +A
;

pmin, isotherm = p0
h0

h0 +A
; p0 = patm + ρgH0.

In the case of the adiabatic process, it results that:

p0V
γ
0 = pmaxV

γ
min;

pmax = p0

(

V0

Vmin

)γ

= p0

(

Sh0
Shmin

)γ

= p0

(

h0
h0 −A

)γ

;

pmax, adiabatic = p0

(

h0
h0 −A

)γ

; p0 = patm + ρgH0;

p0V
γ
0 = pminV

γ
max;

pmin = p0

(

V0

Vmax

)γ

= p0

(

Sh0
Shmax

)λ

= p0

(

h0
h0 +A

)γ

;

pmin, adiabatic = p0

(

h0
h0 +A

)γ

; p0 = patm + ρgH0.

(c) According to the simplified model of an ideal gas, the gas
molecules in a given container move in three mutually perpendic-
ular directions (in both directions in each direction) with the ther-
mal speed vthermic. So, in a sense, only 1/6 of the total number of
molecules in the container will move in a certain direction. If n is
the concentration of gas molecules in the air cushion, after a time
∆t = t2 − t1, through the opening in the wall of the tube where
the air bag cushion is located, a sector with the surface area ∆S,
the molecules in a cylindrical column with the surface area ∆S and
height vthermic ·∆t.

The following expression gives the number of these molecules:

∆N =
1

6
n ·∆S · vthermic ·∆t; vthermic =

√

3kT

m0

,

where n = N
V is the concentration of gas molecules in the air cushion,

k is Boltzmann’s constant, m0 is the mass of a gas molecule, and T
is the absolute temperature of the gas in the air cushion.
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(1) We will first analyze the variation in the oscillations of the liquid
column in the tube when the air cushion below the liquid in the left
branch of the tube has an adiabatic evolution.

Considering that the gas molecules can only move in three mutu-
ally perpendicular directions, with identical speeds equal to the aver-
age thermal speeds, it follows that only 1/6 of the gas molecules will
move towards the opening in the tube wall with area ∆S.

Consider the number of gas molecules that escape from the tube
through the opening in the tube wall with surface area ∆S during
the time interval ∆t, when, in its adiabatic evolution, the gas pres-
sure is maximum, pmax. So, in its adiabatic evolution, when the gas
temperature is maximum, Tmax, and the thermal speeds of the gas
molecules are maximum, vmax, we have the expression:

Nmax =
1

6
nmax · vmax ·∆t ·∆S =

1

6
nmax ·

√

3kTmax

m0

·∆t ·∆S,

where nmax = N
Vmin

is the concentration of gas molecules under the
specified conditions, N is the total number of gas molecules, and m0

is the mass of a gas molecule;

Nmax =
1

6

N

Vmin

·
√

3kTmax

m0

·∆t ·∆S.

The number of gas molecules that leave the tube through the opening
with the surface area ∆S during the time interval ∆t, when, in its
adiabatic evolution, the pressure of the gas is minimal, pmin; the gas
temperature is minimal, Tmin; and the thermal velocities of the gas
molecules are minimal, vmin, is given by the following expression:

Nmin =
1

6
nmin · vmin ·∆t ·∆S =

1

6
nmin ·

√

3kTmin

m0

·∆t ·∆S;

nmin =
N

Vmax

;

Nmin =
1

6

N

Vmax

·
√

3kTmin

m0

·∆t ·∆S.
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Under these conditions, it results that:

Nmin

Nmax

=

1
6
· N
Vmax

·
√

3kTmin

m0
·∆t ·∆S

1
6
· N
Vmin

·
√

3kTmax

m0
·∆t ·∆S

;

Nmin

Nmax

=
Vmin

Vmax

·
√

Tmin

Tmax

;

pmaxVmin = vRTmax; pminVmax = vRTmin;

pminVmax

pmaxVmin

=
Tmin

Tmax

; Vmax = Shmax = S (h0 +A) ;

Vmin = Shmin = S (h0 −A) ;

Vmin

Vmax

=
h0 −A

h0 +A
;

pminS (h0 +A)

pmaxS (h0 −A)
=

Tmin

Tmax

=
pmin (h0 +A)

pmax (h0 −A)
;

Nmin

Nmax

=
h0 −A

h0 +A
·

√

pmin (h0 +A)

pmax (h0 −A)
;

pmin, adiabatic = p0

(

h0
h0 +A

)γ

;

pmax, adiabatic = p0

(

h0
h0 −A

)γ

;

Nmin

Nmax

=
h0 −A

h0 +A
·

√

√

√

√

√

p0

(

h0

h0+A

)γ
(h0 +A)

p0

(

h0

h0−A

)γ
(h0 −A)

;

Nmin

Nmax

=
h0 −A

h0 +A
·

√

√

√

√

√

√

(

1
h0+A

)γ−1

(

1
h0−A

)γ−1
;



International Pre-Olympic Physics Contest 2001, Craiova, Romania 57

Nmin

Nmax

=

√

(

h0 −A

h0 +A

)γ−1

;

Nmin = Nmax ·
h0 −A

h0 +A
·

√

(

h0 −A

h0 +A

)γ−1

;

Nmin = Nmax ·

√

(

h0 −A

h0 +A

)2(h0 −A

h0 +A

)γ−1

;

Nmin = Nmax ·

√

(

h0 −A

h0 +A

)γ+1

;

Nmin

∆t
=

Nmax

∆t
·

√

(

h0 −A

h0 +A

)γ+1

;

zmin = zmax ·

√

(

h0 −A

h0 +A

)γ+1

< zmax.

(2) Let us now analyze the variation in the oscillations of the liquid
column in the tube when the air cushion above the liquid located in
the left branch of the tube has an isothermal evolution. The number
of gas molecules leaving the tube through the opening in the tube
wall with the surface area ∆S, during the time interval ∆t, when,
in its isothermal evolution, the gas pressure is maximum, pmax; the
temperature of the gas is constant, T ; and, therefore, the thermal
velocities of the gas molecules are constant, v, is given by the expres-
sion

Nmax =
1

6
· nmax · v ·∆t ·∆S =

1

6
· nmax ·

√

3kT

m0

·∆t ·∆S,

where nmax = N
Vmin

is the concentration of gas molecules under the
specified conditions, N is the total number of gas molecules, and m0

is the mass of a gas molecule;

Nmax =
1

6

N

Vmin

·
√

3kT

m0

·∆t ·∆S; pmaxVmin = vRT ;
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Vmin =
vRT

pmax

;

Nmax =
1

6

N · pmax

vRT
·
√

3kT

m0

·∆t ·∆S.

The number of gas molecules that leave the tube through the
opening in the tube wall with the surface area ∆S during the time
interval ∆t, when, in its isothermal evolution, the gas pressure is
minimum, pmin; the gas temperature is constant, T ; and the ther-
mal velocities of the gas molecules are constant, v, is given by the
following expression:

Nmin =
1

6
nmin · v ·∆t ·∆S =

1

6
nmin ·

√

3kT

m0

·∆t ·∆S; nmin =
N

Vmax

;

Nmin =
1

6

N

Vmax

·
√

3kT

m0

·∆t ·∆S; pminVmax = vRT ; Vmax =
vRT

pmin

;

Nmin =
1

6

N · pmin

vRT
·
√

3kT

m0

·∆t ·∆S.

Under these conditions, it results that:

Nmin

Nmax

=

1
6
· N ·pmin

vRT ·
√

3kT
m0

·∆t ·∆S

1
6
· N ·pmax

vRT ·
√

3kT
m0

·∆t ·∆S
;

Nmin

Nmax

=
pmin

pmax

;

pmaxVmin = vRT ; pminVmax = vRT ;

pminVmax

pmaxVmin

= 1;
pmin

pmax

=
Vmin

Vmax

;

Nmin

Nmax

=
Vmin

Vmax

; Vmax = Shmax = S(h0 +A);

Vmin = Shmin = S (h0 −A) ;
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Vmin

Vmax

=
h0 −A

h0 +A
;

Nmin

Nmax

=
h0 −A

h0 +A
; Nmin = Nmax ·

h0 −A

h0 +A
;

Nmin

∆t
=

Nmax

∆t
·
h0 −A

h0 +A
; zmin = zmax ·

h0 −A

h0 +A
< zmax.

Problem 4. Liquid in Communicating Vessels

In a system of two cylindrical vessels located on the same horizontal
support with cross-sections S1 and S2 < S1, which communicate at
the base through an orthogonal cylindrical tube with a very small
cross-section, having in its middle a closed tap, R, there is a liquid
with density ρ. The heights of the liquid columns in the two vessels
are h01 and h02 < h01, respectively, as shown in Figure 4.1.

Fig. 4.1

At any moment, t, after opening the valve R, considered as the
initial moment, t = 0, the mass of the liquid that passes from vessel
V1 to vessel V2 through the very narrow connecting tube per unit
time is directly proportional to the level difference of the liquid in
the two vessels corresponding to that moment, t, so:

dm

dt
= k (h1 − h2) ,

where k is a constant of proportionality, and h1 = h1(t) and
h2 = h2(t) are the heights of the liquid columns in the two vessels
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corresponding to the moment t, considered from the moment the tap
R is opened.

Determine the time dependences for:

(a) the difference in the heights of the liquid columns in the two
vessels, ∆h(t) = h1(t)−h2(t), specifying the result for t = 0 and
for t → ∞;

(b) the height of the liquid column, h1(t), in the vessel V1, specifying
the result for t = 0 and for t → ∞;

(c) the height of the liquid column, h2(t), in the vessel V2, specifying
the result for t = 0 and for t → ∞.

Solution

(a) From moment t, when the heights of the liquid columns in the
two vessels are h1 (t) < h01 and h2 (t) > h02, respectively, and until
the moment t+dt, when the heights of the liquid columns in the two
vessels are h1 (t)−dh1 and h2 (t)+dh2, respectively, the mass of the
liquid that passes from vessel V1 to vessel V2 is:

dm = ρS1 [h1 (t)− (h1 (t)− dh1)] = ρS2 [(h2 (t) + dh2 )− h2 (t)] ;

dm = −ρS1 · dh1 = ρS2 · dh2.

Hence, it results that:

−S1 · dh1 = S2 · dh2; dh2 = −
S1

S2

· dh1;

dh1 − dh2 = dh1 +
S1

S2

· dh1 =

(

1 +
S1

S2

)

· dh1 =
S1 + S2

S2

· dh1;

dh1 − dh2 =
S1 + S2

S1 · S2

· S1 · dh1;

dm

dt
= k (h1 − h2) ; dm = k (h1 − h2) · dt;

dm = −ρS1 · dh1 = ρS2 · dh2;
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k (h1 − h2) · dt = −ρS1 · dh1 = ρS2 · dh2;

S1 · dh1 = −
k

ρ
· [h1 (t)− h2 (t)] · dt;

dh1 − dh2 =
S1 + S2

S1 · S2

· S1 · dh1;

dh1 − dh2 = −
k

ρ

S1 + S2

S1 · S2

· [h1 (t)− h2 (t)] · dt;

dh1 − dh2
h1 (t)− h2 (t)

= −
k

ρ

S1 + S2

S1 · S2

· dt;

d [h1 (t)− h2 (t)]

h1 (t)− h2 (t)
= −

k

ρ

S1 + S2

S1 · S2

· dt;

∫

d [h1 (t)− h2 (t)]

h1 (t)− h2 (t)
= −

k

ρ
·
S1 + S2

S1S2

∫

dt;

ln [h1 (t)− h2 (t)] = −
k

ρ
·
S1 + S2

S1S2

· t+ lnC1;

ln [h1 (t)− h2 (t)]− lnC1 = −
k

ρ
·
S1 + S2

S1S2

· t;

h1 (t)− h2 (t) = C1 · exp
(

−
k

ρ
·
S1 + S2

S1S2

· t
)

;

t = 0; h1 (t = 0) = h01; h2 (t = 0) = h02;

C1 = h01 − h02;

h1 (t)− h2 (t) = (h01 − h02) · exp
(

−
k

ρ
·
S1 + S2

S1S2

· t
)

,

representing the level difference of the liquid in the two vessels after
the time t from the opening of tap R. From this, for t = 0, it results
that:

h1 (t = 0)− h2 (t = 0) = (h01 − h02) · exp
(

−
k

ρ
·
S1 + S2

S1S2

· 0
)

;

h01 − h02 = (h01 − h02) · e0; h01 − h02 = (h01 − h02) .
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For t → ∞, it results that:

h1 (t)− h2 (t) = (h01 − h02) · exp
(

−
k

ρ
·
S1 + S2

S1S2

· t
)

;

h1 (t)− h2 (t) = (h01 − h02) ·
1

exp
(

k
ρ · S1+S2

S1S2
· t
) ;

h1 (t → ∞)− h2 (t → ∞) = (h01 − h02) ·
1

exp
(

k
ρ · S1+S2

S1S2
· ∞

) ;

h1 (t → ∞)− h2 (t → ∞) = (h01 − h02) · 0;

h1 (t → ∞)− h2 (t → ∞) = 0;

h1 (t → ∞) = h2 (t → ∞) .

(b)

−S1 · dh1 = S2 · dh2;

−S1

∫

dh1 = S2

∫

dh2; −S1 · h1 (t) = S2 · h2 (t) +C2;

t = 0; h1 (t = 0) = h01; h2 (t = 0) = h02;

C2 = −S1 · h01 − S2 · h02;

−S1 · h1 (t)− S2 · h2 (t) = −S1 · h01 − S2 · h02;

S1 · h1 (t) + S2 · h2 (t) = S1 · h01 + S2 · h02;

h1 (t)− h2 (t) = (h01 − h02) · exp
(

−
k

ρ
·
S1 + S2

S1S2

· t
)

;

S2 · h1 (t)− S2 · h2 (t) = S2 · (h01 − h02)

· exp
(

−
k

ρ
·
S1 + S2

S1S2

· t
)

;
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S2 · h1 (t) − S2 · h2 (t) + S1 · h1 (t) + S2 · h2 (t)

= S2 · (h01 − h02) · exp
(

−
k

ρ
·
S1 + S2

S1S2

· t
)

+S1 · h01 + S2 · h02;

S2 · h1 (t) + S1 · h1 (t) = S2 · (h01 − h02) · exp
(

−
k

ρ
·
S1 + S2

S1S2

· t
)

+S1 · h01 + S2 · h02;

h1 (t) · (S1 + S2) = S2 · (h01 − h02) · exp
(

−
k

ρ
·
S1 + S2

S1S2

· t
)

+S1 · h01 + S2 · h02;

h1 (t) =
S2

S1 + S2

· (h01 − h02) · exp
(

−
k

ρ
·
S1 + S2

S1S2

· t
)

+
S1 · h01
S1 + S2

+
S2 · h02
S1 + S2

;

h1 (t) =
S1 · h01
S1 + S2

+
S2

S1 + S2

×
[

h02 + (h01 − h02) · exp
(

−
k

ρ
·
S1 + S2

S1S2

· t
)]

,

representing the height of the liquid column in vessel V1, after the
time t. From this, the height of the liquid column at t = 0 is:

h1 (t = 0) =
S1 · h01
S1 + S2

+
S2

S1 + S2

×
[

h02 + (h01 − h02) · exp
(

−
k

ρ
·
S1 + S2

S1S2

· 0
)]

;

h1 (t = 0) =
S1 · h01
S1 + S2

+
S2

S1 + S2

[h02 + (h01 − h02)];

h1 (t = 0) =
S1 · h01
S1 + S2

+
S2 · h01
S1 + S2

; h1 (t = 0) = h01.
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For t → ∞, it results that:

h1 (t) =
S1 · h01
S1 + S2

+
S2

S1 + S2

×
[

h02 + (h01 − h02) · exp
(

−
k

ρ
·
S1 + S2

S1S2

· t
)]

;

h1 (t) =
S1 · h01
S1 + S2

+
S2

S1 + S2

×

⎡

⎣h02 + (h01 − h02) ·
1

exp
(

k
ρ · S1+S2

S1S2
· t
)

⎤

⎦;

h1 (t → ∞) =
S1 · h01
S1 + S2

+
S2

S1 + S2

×

⎡

⎣h02 + (h01 − h02) ·
1

exp
(

k
ρ · S1+S2

S1S2
· ∞

)

⎤

⎦;

h1 (t → ∞) =
S1 · h01
S1 + S2

+
S2

S1 + S2

[h02 + (h01 − h02) · 0];

h1 (t → ∞) =
S1 · h01
S1 + S2

+
S2 · h02
S1 + S2

;

h1 (t → ∞) =
S1 · h01 + S2 · h02

S1 + S2

< h01.

(c)

h1 (t)− h2 (t) = (h01 − h02) · exp
(

−
k

ρ
·
S1 + S2

S1S2

· t
)

;

h2 (t) = h1 (t)− (h01 − h02) · exp
(

−
k

ρ
·
S1 + S2

S1S2

· t
)

;
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h1 (t) =
S1 · h01
S1 + S2

+
S2

S1 + S2

×
[

h02 + (h01 − h02) · exp
(

−
k

ρ
·
S1 + S2

S1S2

· t
)]

;

h2 (t) =
S1 · h01
S1 + S2

+
S2

S1 + S2

×
[

h02 + (h01 − h02) · exp
(

−
k

ρ
·
S1 + S2

S1S2

· t
)]

− (h01 − h02) · exp
(

−
k

ρ
·
S1 + S2

S1S2

· t
)

;

h2 (t) =
S1 · h01
S1 + S2

+
S2 · h02
S1 + S2

+

[

S2

S1 + S2

· (h01 − h02) · exp
(

−
k

ρ
·
S1 + S2

S1S2

· t
)]

− (h01 − h02) · exp
(

−
k

ρ
·
S1 + S2

S1S2

· t
)

;

h2 (t) =
S1 · h01 + S2 · h02

S1 + S2

+ (h01 − h02)

· exp
(

−
k

ρ
·
S1 + S2

S1S2

· t
)

·
(

S2

S1 + S2

− 1

)

;

h2 (t) =
S1 · h01 + S2 · h02

S1 + S2

+ (h01 − h02)

· exp
(

−
k

ρ
·
S1 + S2

S1S2

· t
)

·
(

S2 − S1 − S2

S1 + S2

)

;

h2 (t) =
S1 · h01 + S2 · h02

S1 + S2

− (h01 − h02) ·
S1

S1 + S2

· exp
(

−
k

ρ
·
S1 + S2

S1S2

· t
)

,
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representing the height of the liquid column in vessel V2, after the
time t. From this, the height of the liquid column at t = 0 is:

h2 (t = 0) =
S1 · h01 + S2 · h02

S1 + S2

− (h01 − h02) ·
S1

S1 + S2

· exp
(

−
k

ρ
·
S1 + S2

S1S2

· 0
)

;

h2 (t = 0) =
S1 · h01 + S2 · h02

S1 + S2

− (h01 − h02) ·
S1

S1 + S2

;

h2 (t = 0) =
S1 · h01 + S2 · h02 − S1 · h01 + S1 · h02

S1 + S2

;

h2 (t = 0) =
S2 · h02 + S1 · h02

S1 + S2

; h2 (t = 0) =
h02 · (S1 + S2)

S1 + S2

;

h2 (t = 0) = h02.

For t → ∞, it results that:

h2 (t) =
S1 · h01 + S2 · h02

S1 + S2

− (h01 − h02) ·
S1

S1 + S2

· exp
(

−
k

ρ
·
S1 + S2

S1S2

· t
)

;

h2 (t) =
S1 · h01 + S2 · h02

S1 + S2

− (h01 − h02) ·
S1

S1 + S2

·
1

exp
(

k
ρ · S1+S2

S1·S2
· t
) ;

h2 (t → ∞) =
S1 · h01 + S2 · h02

S1 + S2

− (h01 − h02) ·
S1

S1 + S2

·
1

exp
(

k
ρ · S1+S2

S1·S2
· ∞

) ;

h2 (t → ∞) =
S1 · h01 + S2 · h02

S1 + S2

− (h01 − h02) ·
S1

S1 + S2

· 0;
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h2 (t → ∞) =
S1 · h01 + S2 · h02

S1 + S2

> h02;

h1 (t → ∞) =
S1 · h01 + S2 · h02

S1 + S2

< h01;

h1 (t → ∞) = h2 (t → ∞) ;

h02 < h2 (t → ∞) < h01.
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Chapter 3

International Pre-Olympic Physics

Contest 2003, Cluj-Napoca, Romania

Problem 1. Satellite and Mini-Satellite

A special satellite, S, revolves in an ellipse in the plane of the terres-
trial equator, having the Earth in one of its foci. When the satellite
is at perigee and the distance between it and the center of the Earth
is the minimum, rmin, a special mini-satellite S0 is launched from the
satellite to fly on a parabola, having the Earth in its focus.

At some point in its elliptical trajectory, the speed of the satel-
lite is

v =

√

KM

(

2

r
−

1

a

)

.

(a) Determine the mass ratio of the two satellites if, after the expul-
sion of the mini-satellite S0, the satellite S continues its move-
ment in a circular orbit around the Earth. The semi-major axis
of the ellipse, a, is known.

(b) Determine the visibility duration of the special satellite S, evolv-
ing in a circular orbit, for a terrestrial observer located at the
equator, at sea level. We know : the angular velocity correspond-
ing to the Earth’s rotation, ω0, and the radius of the Earth, R.

69
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(c) Satellite S must be transferred from its circular orbit to another
outer concentric circular orbit with radius Re.

Determine the speed corrections of satellite S necessary for
this transfer, specifying the positions of satellite S when these
corrections are made, as well as the duration of the satellite
transfer if the gravitational transfer orbit is tangent to the two
concentric circular orbits.

Given: the mass of the Earth,M ; and the constant of universal
attraction, K.

Solution

(a) At some point in its elliptical trajectory, the speed of the special
satellite S is

v =

√

KM

(

2

r
−

1

aenv

)

.

When the special satellite S is at the minimum distance from the
center of the Earth, as indicated in Figure 1.1, its speed is:

vmax =

√

KM

(

2

renv;min
−

1

aenv

)

;

vmax =

√

KM(λ+ 1)(1 − 2λ)

r0(λ− 1)
.

If, after its launch, the mini-satellite S0 evolves on a parabola, its
speed at the time of launch is

vS0 = v0 =

√

2KM

renv;min
=

√

−
2KM

r0
(λ+ 1),

and the speed of the satellite S, evolving continuously on the circle,
is

vS = v =

√

KM

renv;min
=

√

−
KM

r0
(λ+ 1).
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Fig. 1.1

Using the law of conservation of momentum, it follows that:

(m+m0)vmax = mv +m0v0;

m

m0
=

v0 − vmax

vmax − v
;

m

m0
=

√

2(1− λ)−
√
1− 2λ

√
1− 2λ−

√
1− λ

.

(b) For the terrestrial observer, located in position Or with respect to
the center of the Earth, as shown in Figure 1.2, the special satellite S,
whose direction in its uniform circular motion we consider to be the
same as the direction of the Earth’s rotation, appears on the horizon
in position R (rise). Due to the Earth’s rotation, when the satellite
passes below the horizon of the same observation place in position
A (set), the terrestrial observer will be in position O compared to the
center of the Earth. During the duration t of satellite S’s visibility,
the observer’s vector radius describes the angle at the center α, and
the vector radius of the satellite describes the angle at the center β.

If ω0 and ω, respectively, are the angular velocity of the Earth’s
rotation and the angular velocity of the uniform circular motion of
satellite S, it follows that:

α = ω0t;

β = ωt =
v

renv;min
t; β = α+ 2γ;
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cos γ =
R

renv;min
;

(

v

renv;min
− ω0

)

t = arc cos
R

renv;min
;

t =
2arc cos R

renv;min

v
renv;min

− ω0
.

env,min

Fig. 1.2

If the direction of the satellite’s movement is opposite to the direc-
tion of the Earth’s rotation, as indicated in Figure 1.3, it results that:

α+ β = 2γ; t =
2arc cos R

renv;min

v

renv;min
+ ω0

.
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env;min

Fig. 1.3

(c) The gravitational transfer of the special satellite S from the cir-
cular orbit with radius renv;min onto the outer concentric circular
orbit with radius Re is achieved as shown in Figure 1.4, creating the
conditions for the satellite to revolve on an elliptical orbit tangent to
the two circular orbits at the diametrically opposite points P and A,
so that the Earth fits in one of the foci of this ellipse.

The elements of the ellipse onto which the special satellite S is
transferred are determined as follows:

rmin = a(1− e) = renv;min; a =
1

2
(renv;min; +Re);

e = 1−
2renv;min

renv;min +Re
.

At point P on the circular orbit with radius renv;min, an initial
correction of the satellite’s speed, ∆�vin, must be performed so that
the resulting speed,

�vpg = �v +∆�vin,
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will be the speed of the satellite at the perigee, P, of the established
elliptical orbit:

vpg = vmax =

√

KM
1 + e

a(1 − e)
.

renv;min

Fig. 1.4

It results that:

∆vin = vmax − v;

∆vin =

√

KM

renv;min

(√

2Re

renv;min +Re
− 1

)

.

When the special satellite S reaches the apogee, A, of its elliptical
orbit at the distance rmax = Re, its speed is

vag = vmin =

√

KM
1− e

a(1 + e)
,
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or, using the law of conservation of kinetic momentum to find an
equivalent solution,

vmin =
rmin

Re
vmax.

At point A on the elliptical orbit, a second correction of the satel-
lite’s speed, ∆�vex, must be performed so that its resulting speed,

�vex = �vag +∆�vex,

is the speed required for the satellite to evolve on a circle with
radius Re:

vex =

√

KM

Re
.

It results that:

∆vex = vex − vmin;

∆vex =

√

KM

Re

(

1−

√

2renv;min

renv;min +Re

)

.

The duration of the transfer of the special satellite S from the inner
circular orbit to the outer concentric circular orbit is half of the
period of the satellite’s movement on the established elliptical orbit:

∆t = π

√

a3

KM
;

∆t =
π

2
(renv;min +Re)

√

renv;min +Re

2KM
.

Both speed corrections increase the local orbital speed values of the
satellite transferred from an inner circular orbit to an outer concen-
tric circular orbit.

In the scheme for the transfer of the special satellite S onto an
inner concentric circular orbit, as shown in Figure 1.5, the gravita-
tional transfer is performed on an elliptical trajectory, requiring two
speed corrections, which are also carried out at diametrically oppo-
site points.
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renv;min

Fig. 1.5

In this case, both speed corrections decrease the orbital speed values
of the transferred satellite.

The elements of the ellipse onto which the special satellite S has
now been transferred are determined as follows:

rmax = a(1 + e) = renv;min; a =
1

2
(renv;min +Ri);

e =
renv;min −Ri

renv;min +Ri
.

At point A on the circular orbit with radius renv;min, an initial cor-
rection of the satellite’s speed, ∆�vex, must be performed so that the
resulting speed,

�vag = �v +∆�vex,
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is the speed of the satellite at the apogee, A, of the established ellip-
tical orbit:

vag = vmin =

√

KM
1− e

a(1 + e)
.

It results that:

∆vex = v − vmin;

∆vex =

√

KM

renv;min

(

1−

√

2Ri

renv;min +Ri

)

.

When the special satellite S reaches the perigee, P, of its elliptical
orbit at the distance rmin = Ri, its speed is

vpg = vmax =

√

KM
1 + e

a(1 − e)
.

At point P on the elliptical orbit, a second correction of the speed
of the satellite, ∆�vin, must be performed in such a way that its result-
ing speed,

�vin = �vpg +∆�vin,

is the necessary speed for the satellite to evolve on a circle with the
radius Ri:

vin =

√

KM

Ri
.

It results that:

∆vin = vmax − vin;

∆vin =

√

KM

Ri

(√

2renv;min

renv;min +Ri
− 1

)

.

The duration of the transfer of the special satellite S from the outer
circular orbit to the inner concentric circular orbit is half the time of
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the satellite’s displacement on the established elliptical orbit, mean-
ing that:

∆t = π

√

a3

KM
;

∆t =
π

2
(renv;min; +Ri)

√

renv;min +Ri

2KM
.

Problem 2. The Enveloping of Satellites’ Orbits

From a point P0, located at a distance r0 from the center O of an
idealized spherical Earth, n identical satellites are launched in differ-
ent directions, all confined to the plane of the Earth’s equator. The
moduli of their speeds, with respect to the center of the Earth, are
identical, v0, in such a way that

r0v
2
0 < 2KM ,

where K is the constant of universal attraction and M is the mass
of the Earth.

(a) Formulate the equation and determine the orbital elements of a
special satellite S that, under the influence of Earth’s gravita-
tional attraction, follows a trajectory that acts as an external
envelope to the orbits of the n identical satellites.

Determine the position of the injection point P0 with respect
to the trajectory (envelope) of the special satellite S.

Finally, analyze the feasibility of such an enveloping trajec-
tory under the action of Earth’s gravity for the following two
scenarios:

r0v
2
0 = 2KM and r0v

2
0 > 2KM .

(b) When the special satellite S is at the minimum distance from
the center of the Earth, a special mini-satellite S0 is launched
from it. This satellite will revolve on a parabola with the Earth
in its focus. As a result, satellite S continues its movement in a
circle around the Earth.

Determine the ratio of the masses of the two special satellites,
m/m0, as well as the visibility duration of the special satellite S,
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evolving in a circular orbit, for a terrestrial observer located on
the Equator at sea level.

We know : the angular speed of the Earth corresponding to
its own rotation, ω0, as well as the radius of the Earth, R. The
mass of the fuel burned during the launch maneuvers of the
mini-satellite S0 is negligible.

(c) The satellite S must then be transferred to an outer concentric
circular orbit with radius Re. Determine the speed corrections
of satellite S necessary for this transfer, specifying its positions
when these corrections are made and the duration of the satellite
transfer if the transfer orbit is gravitationally tangent to the two
concentric circular orbits.

Analyze the case of satellite S’s transfer onto an inner concen-
tric circular orbit with the radius Ri, highlighting the differences
compared to the previous case.

The durations of the satellite speed corrections, as well as the
mass of the fuel burned while performing these corrections, are
neglected.

(d) Satellite S’s gravitational transfer from the inner circular orbit to
the outer circular orbit can be achieved on a parabolic trajectory,
with the Earth in its focus.

Determine the speed corrections of satellite S necessary for
this transfer, knowing that their moduli are equal. Specify the
positions of the satellite when these corrections are made, as
well as the duration of the satellite transfer if the gravitational
transfer orbit is tangent to the inner circular orbit and intersects
the outer circular orbit.

It is known that
∫

dx

cos4 x
=

sinx

3 cos3 x
+

2

3
tg x.

Solution

Suppose that a material point S (for example, a satellite with mass
m) moves in the gravitational field of the Earth (a fixed material
point, E, with massM) so that the instantaneous plane of the vectors

�r and �v is the XY plane shown in Figure 2.1. If �F is the gravitational
force that the planet exerts on the satellite, it results that:

m�̈r = �F ; m�r × �̈r = �r × �F = 0;
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m
d

dt
(�r × �̇r) = 0;

d

dt
(�r ×m�v) = 0;

�r ×m�v = �L;
d�L

dt
= 0;

�L = constant; �L⊥�r; �L⊥�v.

Fig. 2.1

In the following moments, the vectors �r and �v will change their
orientations (and moduli), but the vector �L will have to maintain a
constant orientation (and constant modulus). As a result, the plane
of the �r and �v vectors (the XY plane) remains constant, which means
that the movement of a material point under the action of the central
gravitational force is planar.

To study the movement of the satellite, we use the polar coordi-
nate system represented in Figure 2.2 so that we have:

trajectory 

E

e

Fig. 2.2
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�v = ṙ�ρ+ rθ̇�n;

�a = (r̈ − rθ̇2)�ρ+ (2ṙθ̇ + rθ̈)�n;

m�a = �F ; �F = −K
mM

r2
�ρ;

m(r̈ − rθ̇2)�ρ+m(2ṙθ̇ + rθ̈)�n = −K
mM

r2
�ρ;

m(r̈ − rθ̇2) = −K
mM

r2
;

m(2ṙθ̇ + rθ̈) = 0;

r̈ − rθ̇2 = −K
M

r2
;

2ṙθ̇ + rθ̈ = 0.

From this, multiplying by r, it results that:

2rṙθ̇ + r2θ̈ = 0;

d

dt
(r2θ̇) = 0; r2θ̇ = C,

where C is the constant of integration;

θ̇ =
C

r2
;

ṙ =
dr

dt
=

dr

dθ

dθ

dt
; ṙ = θ̇

dr

dθ
=

C

r2
dr

dθ
;

ṙ = −C
d

dθ

(

1

r

)

;

r̈ =
d2r

dt2
=

d

dt

(

dr

dt

)

=
d

dθ

(

dr

dt

)

dθ

dt
= θ̇

d

dθ

(

dr

dt

)

;

r̈ =
C

r2
d

dθ

[

−C
d

dθ

(

1

r

)]

;

r̈ = −C2

r2
d2

dθ2

(

1

r

)

.
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m(r̈ − rθ̇2) = −K
mM

r2
;

(r̈ − rθ̇2) = −K
M

r2
;

−C2

r2
d2

dθ2

(

1

r

)

− r
C2

r4
= −K

M

r2
;

d2

dθ

(

1

r

)

+
1

r
= K

M

C2.

This is an inhomogeneous differential equation, for whose integration
we first consider the associated homogeneous equation,

d

dθ2

(

1

r

)

+
1

r
= 0.

Making the substitution 1
r = z0, it results that:

z′′0 + z0 = 0; z0 = ekθ; k2 + 1 = 0;

k1 = +i; k2 = −i;

z0 = C ′eiθ + C ′′e−iθ;

z0 = C ′(cos θ + i sin θ) + C ′′(cos θ − i sin θ);

z0 = (C ′ + C ′′) cos θ + i(C ′ − C ′′) sin θ;

C ′ +C ′′ = C1; i(C ′ − C ′′) = C2;

z0 = C1 cos θ + C2 sin θ;

C1 = λ cos θ′; C2 = λ sin θ′,

where θ′ is a particular value of θ;

z0 = λ cos(θ − θ′),

representing the general solution of the homogeneous equation.
From the theory of differential equations, it is known that the

general solution of an inhomogeneous equation is equal to the solu-
tion of the associated homogeneous equation, with the addition of a
particular solution of the inhomogeneous equation,

1

r
= z0 + zp.
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Since the free term of the inhomogeneous equation is a constant, the
particular solution of the inhomogeneous equation is of the form of
the free term, so

zp = K
M

C2
.

It results that:

1

r
= λ cos(θ − θ′) +K

M

C2
;

λ =
e

p
; K

M

C2
=

1

p
;

1

r
=

e

p
cos(θ − θ′) +

1

p
;

r =
p

1 + e cos(θ − θ′)
.

If it is admitted that we have θ′ = 0, it follows that the equation of
the satellite’s trajectory, in relation to the Earth, is of the form

r =
p

1 + e cos θ
,

representing the equation of a conic, where p is the parameter of the
conic, and e is the numerical eccentricity of the conic.

Depending on the value of e, the conic can be an ellipse (0<e< 1),
a parabola (e = 1), a hyperbola (e > 1), or a circle (e = 0).

The previous equation,

−C2

r2
d2

dθ2

(

1

r

)

− r
C2

r4
= −K

M

r2
,

can be put into the form

−mC2

r2
d2

dθ2

(

1

r

)

− mC2

r3
= −K

mM

r2
= F,

F = −mC2

r2

[

d2

dθ2

(

1

r

)

+
1

r

]

,
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known as Binet’s equation, which allows the calculation of the central
force when the shape of the trajectory of the material point with mass
m subjected to the action of that force is known.

Transported from the ground to altitude h by means of a launch
vehicle, a satellite is injected into a trajectory at a point P0, as indi-
cated in Figure 2.3 (where R is the radius of the Earth). There, it is
given the velocity �v0 in a direction that forms the angle α with the
direction OP0.

Fig. 2.3

The general study of the movement of a material point in the field
of a central gravitational force, carried out using plane polar coor-
dinates, involves the integration of the inhomogeneous differential
equation,

d2

dθ2

(

1

r

)

+
1

r
= K

M

C2
,

whose solution is

1

r
=

1

p
+

e

p
cos(θ − θ′),

r =
p

1 + e cos(θ − θ′)
.

This represents the equation of the trajectory of the material point
in the field of the central gravitational force, a conic, where p is the
parameter of the conic; e is the numeric eccentricity of the conic; θ′ is
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an integration constant; and

C = r2θ̇, p =
C2

KM
,

where M is the mass of the Earth, K is the constant of universal
attraction, and C is the constant of integration.

The solution of the previous differential equation can be obtained
in an equivalent form if, according to the theory of differential equa-
tions, we proceed as follows:

d2

dθ2

(

1

r

)

+
1

r
= 0;

1

r
= z0;

d2z0
dθ2

+ z0 = 0;

z′′0 + z0 = 0; z0 = ekθ; k2 + 1 = 0;

k = ±
√
−1; k1 = +i; k2 = −i;

z0 = C ′eiθ + C ′′e−iθ;

z0 = C ′(cos θ + i sin θ) + C ′′(cos θ − i sin θ);

z0 = (C ′ + C ′′) cos θ + i(C ′ − C ′′) sin θ;

C ′ +C ′′ = C1; i(C ′ − C ′′) = C2;

z0 = C1 cos θ + C2 sin θ;

C1 = λ cos θ′; C2 = λ sin θ′;

z0 = λ cos(θ − θ′),

where z0 is the general solution of homogeneous equations associated
with given inhomogeneous equations;

1

r
= z0 + zp,

where zp is a particular solution of an inhomogeneous equation;

zp = K
M

c2
;

1

r
= K

M

c2
+ λ cos(θ − θ′);
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K
M

c2
=

1

p
; λ =

e

p
;

1

r
=

1

p
+

e

p
cos(θ − θ′);

r =
p

1 + e cos(θ − θ′)
.

If the situations, from the initial moment and from some moment t,
are those represented in Figure 2.4, we get:

1

r
=

1 + e cos(θ − θ′)

p
;

ṙ

r2
=

e

p
θ̇ sin(θ − θ′);

�v = ṙ�ρ+ rθ̇�n;

t = 0; r = r0 = R+ h; ṙ = ṙ0;

θ = 0; θ̇ = θ̇0;

vρ = vρ0 = ṙ0 = v0 cosα;

vn = vn0
= r0θ̇0 = v0 sinα;

r20 θ̇0 = r0v0 sinα;

C = r2θ̇;

C = r20 θ̇0; C = r0v0 sinα;

p =
C2

KM
;

p =
r20v

2
0 sin

2 α

KM
;

1

r
=

1 + e cos(θ − θ′)

p
;

p

r
= 1 + e cos(θ − θ′);

θ = 0; cos(θ − θ′) = cos(−θ′) = cos θ′; r = r0;

p

r0
= 1 + e cos θ′; e cos θ′ =

p

r0
− 1;
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e cos θ′ =
p− r0
r0

;

ṙ

r2
=

e

p
θ̇ sin (θ − θ′);

pṙ

r2
= eθ̇ sin (θ − θ′);

pṙ0
r20

= eθ̇0 sin θ′;

vρ = vρ0 = ṙ0 = v0 cosα;

vn = vn0
= r0θ̇0 = v0 sinα; θ̇0 =

v0

r0
sinα;

pv0 cosα

r20
= e

v0

r0
sinα sin θ′;

p cosα

r0
= e sinα sin θ′;

e sin θ′ =
p cosα

r0 sinα
; e sin θ′ =

p

r0
ctgα;

p

r0
= 1 + e cos θ′; e cos θ′ =

p

r0
− 1; e cos θ′ =

p− r0

r0
;

tg θ′ =
p

p− r0
ctgα;

tg θ′ =
p

p− r0
ctgα;

e sin θ′ =
p

r0
ctg α; e cos θ′ =

p− r0

r0
;

e2 sin2 θ′ + e2 cos2 θ′ =
p2

r20

cos2 α

sin2 α
+

(p − r0)
2

r20
;

e2 = 1− 2p

r0

(

1− p

2r0 sin
2 α

)

;

p =
r20v

2
0 sin

2 α

KM
;

e2 = 1− 2r0v
2
0 sin

2 α

KM

(

1− r0v
2
0

2KM

)

;
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Fig. 2.4

r0v
2
0 < 2KM , 0 < e < 1, ellipse;

r0v
2
0 = 2KM , e = 1, parabola;

r0v
2
0 > 2KM , e > 1, hyperbola;

r0v
2
0 = KM , α =

π

2
, e = 0, circle.

If, based on Figure 2.4, the launch is made so that α = 900, it
results that:

tg θ′ =
p

p− r0
ctg α; tg θ′ = 0; θ′ = 0;

r =
p

1 + e cos(θ − θ′)
; r =

p

1 + e cos θ
.

(a) Considering the conditions of the problem, when r0v
2
0 < 2KM ,

the orbits of the n satellites form a family of ellipses, as shown in
Figure 2.5, having a common focus at the center of the Earth, whose
equations in plane polar coordinates are:

r =
p

1 + e cos(θ − θ′)
;

1

r
=

1

p
+

e

p
cos(θ − θ′);

p =
c2

KM
=

r20v
2
0 sin

2 α

KM
;

tg θ′ =
p

p− r0
ctg α,

where the parameter (angle) α characterizes the individual trajecto-
ries of the satellites.
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Fig. 2.5

For each element of the family of ellipses, α is a given constant, as
indicated by Figure 2.6. In the above form, the equation of the conic
is preferable to the original form because it shows that for θ = θ′,
the value of r becomes maximum.

Fig. 2.6

If the total energy of each satellite (Sk)–Earth system is the same
for all systems,

E =
mv20
2

−K
mM

r0
= −K

mM

2a
,

then the semi-major axes of the ellipses described by those n satellites
are identical:

2a =
r0

1− r0v20
2KM

.
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Finally, the family of trajectories of those n satellites is described by
a parametric equation of the form

F (r, θ,α) =
1

p
+

e

p
cos(θ − θ′)− 1

r
= 0.

The envelope of the trajectories of the n satellites, if it exists, is of
course a tangent curve external to all the individual orbits. It satisfies
the same equation, F (r, θ, α) = 0, at every point shared with the
individual trajectories, because for specific values of r and θ, a point
on the envelope coincides with a point on an individual trajectory
corresponding to a value of α.

Because the common points between the envelope and the indi-
vidual trajectories are their tangent points, it follows that the para-
metric equation of the envelope, F (r, θ, α) = 0, must also fulfill the
condition

∂F

∂α
= 0.

From F (r, θ, α) = 0 and ∂F
∂α

= 0, by eliminating the parameter α, we
obtain the equation of the envelope of the family of ellipses, F (r, θ) =
0, representing the trajectory equation of the special satellite S. This
satellite evolves under the action of the Earth’s gravitational attrac-
tion and envelops, through the external tangent, the totality of the
orbits of those n satellites launched under the specified conditions.

Under these conditions, from the equation of the ellipse written
in plane polar coordinates,

1

r
=

1

p
+

e

p
cos(θ − θ′),

by derivation in relation to t, it results that:

− 1

r2
dr

dt
= −e

p
sin(θ − θ′)

dθ

dt
;

1

r2
ṙ =

e

p
sin(θ − θ′)θ̇;

p =
c2

KM
=

r20v
2
0 sin

2 α

KM
;
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r2θ̇ = C = r0v0 sinα;

sin2 α =
1

1 + ctg2 α
; p =

r20v
2
0

KM(1 + ctg2 α)
.

For the initial moment, t = 0, when r = r0 and θ = θ0 = 0, we
have:

ṙ = ṙ0 = v0 cos α; θ̇ = θ̇0 =
v0 sinα

r0
;

1

r2
ṙ =

e

p
sin(θ − θ′)θ̇;

1

r20
ṙ0 =

e

p
sin(−θ′)θ̇0;

1

r20
v0 cosα = −e

p
sin θ′

v0 sinα

r0
;

e

p
sin θ′ = −ctgα

r0
;

r =
p

1 + e cos(θ − θ′)
;

1

r
=

1

p
+

e

p
cos(θ − θ′),

θ = 0;

1

r0
=

1

p
+

e

p
cos(−θ′);

1

r0
=

1

p
+

e

p
cos(θ′);

e

p
cos θ′ =

1

r0
− 1

p
;

e

p
sin θ′ = −ctgα

r0
.

It results that:
1

r
=

1

p
+

e

p
cos(θ − θ′),

1

r
=

1

p
+

e

p
cos θ cos θ′ +

e

p
sin θ sin θ′;

e

p
cos θ′ =

1

r0
− 1

p
;

e

p
sin θ′ = −ctg α

r0
;
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1

r
=

1

p
+

(

1

r0
− 1

p

)

cos θ − ctg α

r0
sin θ;

1

r
=

1

p
(1− cos θ) +

cos θ

r0
− ctg α

r0
sin θ;

p =
r20v

2
0

KM(1 + ctg2 α)
;

1

r
= (1− cos θ)

KM(1 + ctg2 α)

r20v
2
0

+
cos θ

r0
− ctgα

r0
sin θ;

q =

the initial gravitational potential energy of the satellite−
Earth system

the initial kinetic energy of the system
,

q < 0;

q =
−KmM

r0
mv20
2

= −2KM

r0v
2
0

< −1;

r0v
2
0 < 2KM ; q = −2KM

r0v
2
0

< −1;

1

r
= (1− cos θ)

KM(1 + ctg2 α)

r20v
2
0

+
cos θ

r0
− ctgα

r0
sin θ;

q = −2KM

r0v
2
0

;
q

r0
= −2KM

r20v
2
0

;
KM

r20v
2
0

= − q

2r0
;

1

r
= −(1− cos θ)

q

2r0
(1 + ctg2 α) +

cos θ

r0
− ctgα

r0
sin θ;

1

r
=

1

p
(1− cos θ) +

cos θ

r0
− ctg α

r0
sin θ;

p =
r20v

2
0

KM(1 + ctg2 α)
; q = −2KM

r0v
2
0

;

F (r, θ, α) =
1

p
+

e

p
cos(θ − θ′)− 1

r
= 0;
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F (r, θ,α) = −(1− cos θ)
q

2r0
(1 + ctg2 α) +

cos θ

r0

− ctgα

r0
sin θ − 1

r
= 0;

∂F

∂α
=

∂F

∂(ctg α)

d(ctg α)

dα
= − 1

sin2 α

∂F

∂(ctg α)
= 0;

α �= 0;
∂F

∂(ctg α)
= 0;

∂F

∂(ctg α)
= −(1− cos θ)

q

r0
ctgα− sin θ

r0
= 0;

(1− cos θ)
q

r0
ctgα = −sin θ

r0
;

ctg α = − sin θ

q(1− cos θ)
;

F (r, θ, α) = −(1− cos θ)
q

2r0
(1 + ctg2 α) +

cos θ

r0

− ctgα

r0
sin θ − 1

r
= 0;

F (r, θ, α) = −(1− cos θ)
q

2r0

(

1 +
sin2 θ

q2(1− cos θ)2

)

+
cos θ

r0
− ctg α

r0
sin θ − 1

r
= 0;

sin θ

(1 + cos θ)
=

1− cos θ

sin θ
; sin2 θ = (1− cos θ)(1 + cos θ);

F (r, θ, α) = −(1− cos θ)
q

2r0

(

1 +
(1− cos θ)(1 + cos θ)

q2(1− cos θ)2

)

+
cos θ

r0
− ctg α

r0
sin θ − 1

r
= 0;
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F (r, θ,α) = −(1− cos θ)
q

2r0

(

1 +
(1 + cos θ)

q2(1− cos θ)

)

+
cos θ

r0
− ctg α

r0
sin θ − 1

r
= 0;

1

r
= −(1− cos θ)

q

2r0

(

1 +
(1 + cos θ)

q2(1− cos θ)

)

+
cos θ

r0
− ctg α

r0
sin θ;

ctg α = − sin θ

q(1− cos θ)
;

1

r
= −(1− cos θ)

q

2r0

(

1 +
(1 + cos θ)

q2(1− cos θ)

)

+
cos θ

r0
+

sin2 θ

r0q(1− cos θ)
;

1

r
= −(1− cos θ)

q

2r0
− q

2r0

(1− cos θ)(1 + cos θ)

q2(1− cos θ)

+
cos θ

r0
+

sin2 θ

r0q(1− cos θ)
;

1

r
= −(1− cos θ)

q

2r0
− (1− cos θ)(1 + cos θ)

2r0q(1− cos θ)

+
cos θ

r0
+

sin2 θ

r0q(1− cos θ)
;

1

r
= −(1− cos θ)

q

2r0
− 1− cos2 θ

2r0q(1− cos θ)
+

cos θ

r0
+

sin2 θ

r0q(1− cos θ)
;

1

r
= −(1− cos θ)

q

2r0
− sin2 θ

2r0q(1− cos θ)
+

cos θ

r0
+

sin2 θ

r0q(1− cos θ)
;

1

r
= −(1− cos θ)

q

2r0
+

sin2 θ

2r0q(1− cos θ)
+

cos θ

r0
;

1

r
=

−q2(1− cos θ)2 + sin2 θ

2r0q(1− cos θ)
+

cos θ

r0
;

1

r
=

−q2(1− cos θ)2 + sin2 θ + 2q cos θ(1− cos θ)

2r0q(1− cos θ)
;
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1

r
=

−q2(1− cos θ)2 + 1− cos2 θ + 2q cos θ(1− cos θ)

2r0q(1− cos θ)
;

1

r
=

−q2(1− cos θ)2 + (1− cos θ)(1 + cos θ) + 2q cos θ(1− cos θ)

2r0q(1− cos θ)
;

1

r
=

−q2(1− cos θ) + (1 + cos θ) + 2q cos θ

2r0q
;

1

r
=

−q2 + q2 cos θ + 1 + cos θ + 2q cos θ

2r0q
;

1

r
=

1− q2 + (1 + 2q + q2) cos θ

2r0q
;

1

r
=

(1− q2) + (1 + q)2 cos θ

2r0q
;

r =
2r0q

(1− q2)
[

1 + (q+1)2

1−q2
cos θ

] ;

r =
2r0q

(1− q2)
[

1 + (q+1)2

(1−q)(1+q) cos θ
] ;

r =
2r0q

(1− q2)
[

1 + (1+q)
(1−q) cos θ

] ;

r =

2r0q
1−q2

1 + 1+q
1−q cos θ

;

q = −2KM

r0v
2
0

< 0;

q2 =

(

−2KM

r0v
2
0

)2

=

(

2KM

r0v
2
0

)2

;

r0v
2
0 < 2KM ; q2 > 1;

1− q2 < 0; q < 0;
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2r0q

1− q2
> 0;

2r0q

1− q2
= penv

1 + q

1− q
=

1− |q|
1 + |q| < 1;

1 + q

1− q
= eenv

r =
penv

1 + e cos θenv
.

This represents the equation of an ellipse in plane polar coordi-
nates, which proves that the trajectory of the special satellite S that
envelops by an external tangent the totality of the orbits of the n
satellites is an ellipse, having the Earth in one of its foci. The elements
of the orbit (envelope) of the special satellite, S, are determined as
follows:

r =

2r0q
1−q2

1 + 1+q
1−q cos θ

;

rθ=0 =
r0q

q + 1
= renv;max > 0; rθ=π = − r0

q + 1
= renv;min > 0;

renv;max + renv;min = 2aenv; aenv =
r0(q − 1)

2(q + 1)
> 0;

q < −1;

eenv =

√

1− b2env
a2env

;

benv = aenv
√

1− e2env =
√
aenvpenv = −r0

√−q

q + 1
> 0;

benv =
1

2

√

(renv;max + renv;min)2 − (renv;max − renv;min)2.

The value of renv;max must correspond to the distance from the
center of the Earth to which the satellite is launched from point
P0 at an angle α = 0, so that, based on the law of conservation of
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the total mechanical energy of the system, and using the drawing in
Figure 2.7:

mv20
2

−K
mM

r0
= −K

mM

renv;max
; renv;max =

r0q

q + 1
; q < −1;

renv;max − r0 = − r0
1 + q

= renv;min.

This proves that the injection point of the n satellites (point P0)
is one of the foci of the envelope on which the special satellite S
revolves.

That the Earth is in one of the foci of the envelope ellipse is
proven by Figure 2.7, representing the elliptical orbit of the satellite
Sk, which was launched at an angle α = π

2 .
Under these conditions, it results that:

p =
r20v

2
0

KM
; e2 =

(

1− p

r0

)2

; e = 1− p

r0
= 1− r0v

2
0

KM
;

rk;min =
p

1 + e
;

rk;min =
r0

2KM
r0v

2
0

(

1− r0v
2
0

2KM

) ;

rk;min = − r0

1 + q
= renv;min;

rk;max =
p

1− e
= r0.

If the injections of the satellites at point P0 are done in such a
way that the conditions

r0v
2
0 < 2KM , r0v

2
0 = 2KM , r0v

2
0 > 2KM ,

are met, then the orbits of those n satellites form a family of ellipses,
parabolas, and hyperbolas, respectively, having the Earth in their
focus, for which

q =

the initial gravitational potential energy of the satellite−
Earth system

the initial kinetic energy of the system
,

according to the variations below:
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renv;min
rk;min = renv;min renv;max

2aenv

envelope

Fig. 2.7

(1)

r0v
2
0 < 2KM ; q =

−KmM
r0

mv20
2

= −2KM

r0v20
; q = −2KM

r0v20
< 0;

r =
penv

1 + eenv cos θ
;

2r0q

1− q2
= penv > 0;

1 + q

1− q
= eenv,

which implies the possibility of the special satellite S enveloping the
elliptical orbits of the n satellites through the external tangent under
the action of the Earth’s gravitational attraction.

(2)

q =
−KmM

r0
mv20
2

= −2KM

r0v20
; r0v

2
0 = 2KM ;

q = −1;

1

r
=

(1− q2) + (1 + q)2 cos θ

2r0q
= 0; r → ∞,



International Pre-Olympic Physics Contest 2003, Cluj-Napoca, Romania 99

which implies the impossibility of the special satellite S enveloping
the parabolic orbits of the n satellites through the external tangent
under the action of the Earth’s gravitational attraction.

(3)

q =
−KmM

r0
mv20
2

= −2KM

r0v20
; r0v

2
0 > 2KM ;

−1 < q < 0;

r =

2r0q
1−q2

1− (q+1)2

q2−1 cos θ
=

penv
1 + eenv cos θ

;

penv < 0,

which implies the impossibility of the special satellite S enveloping
the hyperbolic orbits of those n satellites through the external tan-
gent under the action of the Earth’s gravitational attraction.

(b) At some point on its elliptical trajectory, the speed of the special
satellite S is

v =

√

KM

(

2

r
− 1

aenv

)

.

When the special satellite S is at the minimum distance from the
center of the Earth, as indicated in Figure 2.8, its speed is:

vmax =

√

KM

(

2

renv;min
− 1

aenv

)

;

vmax =

√

KM(q + 1)(1 − 2q)

r0(q − 1)
.

If, after its launch, the mini-satellite S0 evolves on a parabola, its
speed at the moment of launch is

vS0 = v0 =

√

2KM

renv;min
=

√

−2KM

r0
(q + 1),
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Fig. 2.8

and the speed of satellite S, still revolving in a circle, is

vS = v =

√

KM

renv;min
=

√

−KM

r0
(q + 1).

Using the law of conservation of momentum, it follows that:

(m+m0)vmax = mv +m0v0;

m

m0
=

v0 − vmax

vmax − v
;

m

m0
=

√

2(1 − q)−√
1− 2q√

1− 2q −√
1− q

; q < 0;
m

m0
> 0.

For the terrestrial observer, located at position Or, facing the center
of the Earth (Figure 2.9), the special satellite S, whose direction in its
uniform circular motion we consider to be the same as the direction
of the Earth’s rotation, appears on the horizon in position R (rise).
Due to the rotation of the Earth, when the satellite passes below
the horizon of the same observation place (set) in position A, the
terrestrial observer will be in position O, compared to the center of
the Earth.

Within the duration t of the satellite S’s visibility, the observer’s
vector radius describes the angle at center α, and the satellite’s vector
radius describes the angle at center β.

If ω0 and ω are the angular velocity of the Earth’s rotation and
the angular velocity of the uniform circular motion of satellite S,
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respectively, it follows that:

α = ω0t;

β = ωt =
v

renv;min
t;

β = α+ 2γ;

cos γ =
R

renv;min
;

(

v

renv;min
− ω0

)

t = arc cos
R

renv;min
;

t =
2arc cos R

renv;min

v
renv;min

− ω0
.

renv;min

Fig. 2.9

If the direction of the satellite’s movement is opposite to the
direction of the Earth’s rotation, as shown in Figure 2.10, it results
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that:

α+ β = 2γ;

t =
2arc cos R

renv;min

v
renv;min

+ ω0
.

renv;min

Fig. 2.10

(c) The gravitational transfer of the special satellite S from a cir-
cular orbit with radius renv; min to an outer concentric circular orbit
with radius Re is achieved as shown in Figure 2.11, providing the
conditions for the satellite to evolve on an elliptical orbit tangent to
the two circular orbits at the diametrically opposite points P and A,
so that the Earth is in one of the foci of this ellipse.

The elements of the ellipse onto which the special satellite S is
transferred are established as follows:

rmin = a(1− e) = renv;min; a =
1

2
(renv; min; +Re);

e = 1− 2renv;min

renv;min +Re
.
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At point P on the circular orbit with radius renv;min, an initial
correction of the satellite’s speed, ∆�vin, must be performed so that
the resulting speed,

�vpg = �v +∆�vin,

is the speed of the satellite at the perigee P of the established ellip-
tical orbit:

vpg = vmax =

√

KM
1 + e

a(1 − e)
.

A (apogee) 

P (perigee) 

renv;min

Fig. 2.11

It results that:

∆vin = vmax − v;

∆vin =

√

KM

renv;min

(
√

2Re

renv;min +Re
− 1

)

.

When the special satellite S reaches the apogee A of its elliptical
orbit, at the distance rmax = Re, its speed is

vag = vmin =

√

KM
1− e

a(1 + e)
,
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or, equivalently, using the law of conservation of kinetic momentum,

vmin =
rmin

Re
vmax.

At point A on the elliptical orbit, a second correction of the speed
of the satellite, ∆�vex, must be performed so that its resulting speed,

�vex = �vag +∆�vex,

is the speed required for the satellite to evolve on a circle with radius
Re:

vex =

√

KM

Re
.

It results that:

∆vex = vex − vmin;

∆vex =

√

KM

Re

(

1−
√

2renv;min

renv;min +Re

)

.

The duration of the transfer of the special satellite S from the inner
circular orbit to the outer concentric circular orbit is half the period
of the satellite’s movement on the established elliptical orbit, that is:

∆t = π

√

a3

KM
;

∆t =
π

2
(renv;min; +Re)

√

renv;min +Re

2KM
.

Both speed corrections increase the value of the satellite’s local orbital
speeds when it is transferred from an inner circular orbit to an outer
concentric circular orbit.

In the case of the transfer of the special satellite S to an inner
concentric circular orbit, as shown in Figure 2.12, the gravitational
transfer is performed on an elliptical trajectory. Two corrections of
the velocities are necessary, which are also carried out at diametri-
cally opposite points.

In this case, both velocity corrections cause the local orbital veloc-
ity values of the transferred satellite to decrease.
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The elements of the ellipse onto which the special satellite S is
now transferred are determined as follows:

rmax = a(1 + e) = renv;min; a =
1

2
(renv;min +Ri);

e =
renv;min −Ri

renv;min +Ri
.

At point A on the circular orbit with radius renv;min, an initial cor-
rection of the satellite’s speed, ∆�vex, must be performed in such a
way that the resulting speed,

�vag = �v +∆�vex,

is the speed of the satellite at apogee A of the established elliptical
orbit:

vag = vmin =

√

KM
1− e

a(1 + e)
.

P (perigee) A (apogee) 

renv;min

Fig. 2.12
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It results that:

∆vex = v − vmin;

∆vex =

√

KM

renv;min

(

1−
√

2Ri

renv;min +Ri

)

.

When the special satellite S reaches the perigee P of its elliptical
orbit, at the distance rmin = Ri, its speed is

vpg = vmax =

√

KM
1 + e

a(1 − e)
.

At point P on the elliptical orbit, a second correction of the satel-
lite’s speed, ∆�vin, must be performed in such a way that its resulting
speed,

�vin = �vpg +∆�vin,

is the speed necessary for the satellite to evolve on a circle of
radius Ri:

vin =

√

KM

Ri
.

It results that:

∆vin = vmax − vin;

∆vin =

√

KM

Ri

(√

2renv;min

renv;min +Ri
− 1

)

.

The duration of the transfer of the special satellite S from the outer
circular orbit to the inner concentric circular orbit is half the period
of the satellite’s displacement on the established elliptical orbit, so:

∆t = π

√

a3

KM
;

∆t =
π

2
(renv; min; +Ri)

√

renv;min +Ri

2KM
.
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(d) The gravitational transfer of the special satellite S from the cir-
cular orbit with radius renv;min to the outer concentric circular orbit
with radius Re is performed as indicated in Figure 2.13. It provides
the conditions for the satellite to evololve on a parabolic orbit, with
the Earth in its focus, tangent to the inner circular orbit at point A
and intersecting the outer circular orbit at point Q.

The first correction of the speed of the satellite S is performed
at point A, so that at this point, which becomes the vertex of the
parabola, the speed of the satellite is:

�vA = �vmax = �vin +∆�vin;

vin =

√

KM

renv;min
; vmax =

√

2
KM

renv;min
;

∆vin = vmax − vin =

√

KM

renv;min

(√
2− 1

)

.

The transfer trajectory of satellite S being a parabola, for which
e =1, its equation in plane polar coordinates is

r =
p

1 + cos θ
=

p

2 cos2 θ
2

,

where p = 2renv; min.
The intersection of the transfer trajectory with the outer circular

orbit is at point Q, for which:

cos
θmax

2
=

p

2Re
=

renv;min

Re
; θmax = 2arc cos

renv;min

Re
;

vQ = vmax cos
θmax

2
=

√

2KMrenv;min

Re
,

where the second correction of the satellite speed (∆�vex; ∆vex =
∆vin) must be performed, for its arrival on the outer circular orbit
with the speed

�vex = �vQ +∆�vex,

vex =

√

KM

Re
,
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renv;min

Fig. 2.13

so that we have:

v2ex = v2Q + (∆vex)
2 + 2vQ(∆vex) cosα;

cosα =
v2ex − v2Q − (∆vex)

2

2vQ(∆vex)
=

v2ex − v2Q − (∆vin)
2

2vQ(∆vin)
;

cosα =
1− 2

renv;min

Re
− Re

renv;min
(
√
2− 1)2

2
√
2(
√
2− 1)

.

We use well-known reasoning to calculate the duration of the grav-
itational transfer of satellite S between the two concentric circular
orbits.
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The transfer trajectory of the satellite S being a parabola, for
which e = 1, its equation in plane polar coordinates is:

r =
p

1 + cos θ
=

p

2 cos2 θ
2

,

C = r2θ̇ = r2
dθ

dt
; p =

C2

KM
,

dt =
p2

4
√
pKM cos4 θ

2

dθ;

t =
p2

4
√
pKM

∫ θmax

0

dθ

cos4 θ
2

;

t =
p2

2
√
pKM

(

2 sin θ
2

3 cos3 θ
2

+
2

3
tg

θ

2

)θmax

0

;

t =
p2

2
√
pKM

(

2 sin θmax

2

3 cos3 θmax

2

+
2

3
tg

θmax

2

)

.

Problem 3. Parallel River and Railway

In a land region in the Northern Hemisphere, with geographic lati-
tude ϕ, where the gravitational acceleration is g, a river flows from
south to north, and, on an adjacent railway, a locomotive moves
from south to north along the same meridian, their relative velocities
with respect to the Earth being equal and constant, v. The influence
of the Earth’s rotation on the Earth’s gravitational acceleration is
neglected.

(a) Determine the water level difference between the two banks of
the river. We know : the width of the river (l) and the angular
speed of the Earth’s rotation (ω). The speed of the water is the
same at any point of the cross-section of the river.
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(b) Determine the ratio of the vertical normal reactions of the two
rails on the locomotive.

It is known that the distance between the two rails is equal
to the distance from the center of mass of the locomotive to the
plane of the rails.

Solution

(a) The real forces acting on an elementary volume of liquid with
mass dm from the surface of the river are pressure, with resultant
d�Fp (from the interaction with the surrounding liquid), and gravity,

with d �G = �gdm.
Apart from these forces, a non-inertial observer participating in

the rotating movement of the Earth, located on the bank of the river,
must consider that the complementary elementary Coriolis force acts
on the elementary volume of liquid, in relative motion on the Earth’s
surface,

d�Fcor = −2dm�ω × �v,

whose orientation is represented in Figure 3.1.
From the fundamental principle of dynamics, relative to the non-

inertial reference system X′Y′Z′, fixed to the Earth at point O′, writ-
ten in general form, we have

dm�arel = d�F + d�Fc,

where d�F is the resultant of the real force and d �Fc is the resultant
of the acting complementary forces based on the elementary volume.
Considering that its movement is uniform,

0 = d�Fp + d �G+ d�Fcor,

where d�Fcor is the elementary complementary Coriolis force acting
on the elementary volume of the liquid:

d�Fcor = −2dm�ω × �v;

d�R = d �G+ d�Fcor;

d�Fp + d�R = 0.
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Fig. 3.1

According to the fundamental law of fluid statics, with the free
surface of the river water being isobaric (p = patm = constant), it
will have to be a flat surface, perpendicular to the resultant elemental
force d�R, inclined at an angle α to the horizontal plane X′O′Y′, so
that d�Fp = −d�R, as shown in Figure 3.2. From this, it follows that:

tgα =
2ωv sinφ

g
;

tgα ≈ sinα =
∆h

l
;

∆h ≈ l tgα =
2lωv sinφ

g
.

(b) In Figure 3.3, in relation to the non-inertial reference system X′

Y′ Z′, fixed to the Earth at point O′ on its surface, we represent the
complementary Coriolis force in addition to the real forces acting on
the locomotive (rail reactions and the weight of the locomotive).

In relation to the reference system considered, the locomotive’s
movement is a straight line and uniform, so that:
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Fig. 3.2

Fig. 3.3

�R1 + �R2 + �G+ �Fcor = 0;

�Fcor = −2m�ω × �v;

R1⊥ +R2⊥ = mg;

R1// = Fcor = 2mωv sinϕ.
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The translational movement of the locomotive assumes that, in
relation to its center of mass, the resultant of the forces acting on
the locomotive is null, so:

�M�R1
+ �M�R2

+ �M �G + �M�Fcor
= 0;

R2⊥ + 2R1// = R1⊥.

In these conditions, it results that:

R1⊥ =
mg

2
+ 2mωv sinϕ;

R2⊥ =
mg

2
− 2mωv sinϕ;

R1⊥

R2⊥
=

(

1 +
4ωv

g
sinφ

)(

1− 4ωv

g
sinφ

)−1

;

4ωv

g
sinϕ ≪ 1;

R1⊥

R2⊥
≈ 1 +

8ωv

g
sinϕ.

Problem 4. Oscillating Rod

Consider a homogeneous horizontal rod suspended by an inextensible
wire, which is at rest in the east–west direction and can only rotate
around the vertical axis that passes through its center of mass. On
this rod, in symmetrical positions, two identical bodies are at rest,
each a material point with mass m at distances b from the vertical
axis. A special device on the rod simultaneously launches the two
bodies towards the axis of rotation with equal speeds; they then stop
simultaneously at distances a from the vertical axis, after sliding
along a symmetrical path in relation to the rod’s center of mass.

(a) Determine the angular velocity acquired by the entire system in
relation to the Earth. The following are known: I0 – the moment
of inertia of the rod in relation to the vertical axis; ω – the
angular speed of rotation of the Earth; ϕ – the geographical
latitude of the place. It will be assumed that the rod remains at
rest while the two bodies are moving along the rod.
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(b) Determine the angular amplitude of the oscillations of the rod,
occuring in a horizontal plane, if the elastic suspension wire has
the torsion constant C, and write the law of harmonic oscillations
of the rod.

Solution

(a) The geometry of the system at the initial moment and at
the moment of immobilization of bodies 1 and 2 is represented in
Figure 4.1. At an intermediate moment, when the instantaneous
velocities of the two bodies are �v1 and �v2, respectively, oriented as
shown in the drawing, a complementary instantaneous Coriolis force
acts on each body:

�Fcor,1 = −2m�ω × �v1;

�Fcor,1 = −2m�ωy′ × �v1 − 2m�ωz′ × �v1;

�Fcor,1 = −2m

∣

∣

∣

∣

∣

∣

∣

∣

�i′ �j′ �k′

0 ω cosφ ω sinφ

−v1 0 0

∣

∣

∣

∣

∣

∣

∣

∣

= 2mωv1 sinϕ�j
′ − 2mωv1 cosϕ�k′;

v1 = −dx′

dt
; dx′ < 0;

�Fcor,1 = −2mω sinϕ
dx′

dt
�j′ + 2mω cosϕ

dx′

dt
�k′ = �Fcor,1,y′ + �Fcor,1,z′ ;

�Fcor,2 = −2m�ω × �v2;

�Fcor,2 = −2m�ωy′ × �v2 − 2m�ωz′ × �v2;

�Fcor,2 = −2m

∣

∣

∣

∣

∣

∣

∣

�i′ �j′ �k′

0 ω cosφ ω sinφ

−v2 0 0

∣

∣

∣

∣

∣

∣

∣

= −2mωv2 sinϕ�j
′ + 2mωv2 cosϕ�k

′;
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Fig. 4.1

v2 = +
dx′

dt
; dx′ > 0;

v2 = v1; v2 = −dx′

dt
; dx′ < 0;

�Fcor,2 = 2mω sinϕ
dx′

dt
�j′ − 2mω cosϕ

dx′

dt
�k′;

�Fcor,2 = �Fcor,2,y
′ + �Fcor,2,z

′.

Considering that the rod can only rotate around the O′Z′ axis,
the resultant moment of the two Coriolis forces is reduced to
the resultant moment of their components parallel to the O′Y
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axis, so:

�Mcor,O′Z′ =
−−−→
O′M1 × �Fcor,1,y′ +

−−−→
O′M2 × �Fcor,2,y′ ;

Mcor,O′Z′ = −4mω sinϕx′
dx′

dt
.

According to the kinetic momentum variation theorem, it follows
that:

d �J

dt
= �Mresultant = �Mcor,O′Z′ ;

dJ = −4mω sinϕx′dx′;

J − J0 = −4mω sinϕ

∫

−a

−b
x′dx′;

(I0 + 2ma2)Ω = 2mω sinϕ(b2 − a2);

Ω =
2mω(b2 − a2) sinφ

I0 + 2ma2
.

(b) From the moment of immobilization of the two bodies, the system
is a torsion pendulum, whose movement is described by the equation:

(I0 + 2ma2)
d2θ

dt2
+ Cθ = 0;

d2θ

dt2
+ ω′2θ = 0;

ω′2 =
c

I0 + 2ma2
,

where ω′′ is the pulsation of the oscillations of the torsion pendulum.
The general solution of bottom motion equations is

θ = A cosω′t+B sinω′t.
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Taking into account the initial conditions, it follows that:

t = 0; θ = 0;
dθ

dt
= Ω;

A = 0; B =
Ω

ω′
;

θ =
Ω

ω′
sinω′t = θmax sinω′t;

θmax =
Ω

ω′
=

2mω(b2 a2) sin φ
√

C(I0 + 2ma2)
.
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Chapter 4

International Pre-Olympic Physics

Contest 2005, Călimăneşti, Romania

Problem 1. Satellite with a Solar Sail

A special satellite with mass m is evolving around the Sun in the
Earth’s circular orbit. At a certain time, a “solar sail” (a circular
disk with the radius r) opens on the satellite, with one of its sides
forming a flat, perfectly reflective mirror, which will be permanently
oriented perpendicular to the direction of the Sun.

(a) Determine the elements of the pressure force that acts at every
moment on the satellite’s sail due to the solar radiation with
normal incidence on the sail’s plane.

(b) Specify the type of motion of the satellite after the sail opens.
(c) Determine the period of the satellite’s rotation around the Sun

after the sail opens.
Given: L, the integral luminosity of the Sun; c, the speed of

light in vacuum; R0, the radius of the Earth’s circular orbit
around the Sun; M , the mass of the Sun; and K, the constant of
the gravitational attraction. The gravitational influence of the
Earth on the satellite is neglected.

Consider that

m >
Lr2

2cKM
.

The energy of the total radiation emitted by the Sun per unit time
across its entire surface, at all the wavelengths, and in all directions is

119
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called the integral luminosity of the Sun, L. Dimensionally, luminosity
is a power: L = 3.86 · 1026 W.

Solution

(a) As Figure 1.1 indicates, let’s admit that the Sun is a sphere with
surface Σ0, having the radius RS.

If Σ is the surface of the circumsolar sphere, whose radius R rep-
resents the instantaneous distance between the satellite (the sail of
the satellite) and the center of the Sun, then the energy of the solar
radiation that crosses the surface Σ per unit time is equal to L.

In these conditions, the energy of the solar radiation that arrives
per unit time on the surface of the solar sail with the area πr2 is

x = L
πr2

4πR2
.

Fig. 1.1

As a result, the illumination of the surface of the sail (the amount
of solar radiation energy reaching the sail per unit time per unit area
of the sail’s surface) is:

E =
x

πr2
=

L

4πR2
; 〈E〉SI =

W

m2
.
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Using Figure 1.2, let us now calculate the variation in the momen-
tum of a photon as a result of the reflection of sunlight on the surface
of the sail at a certain time:

∆�p = �pr − �pi;

∆p = pr + pi; pr = pi = p0 =
hν

c
; ∆p = 2

hν

c
,

where h is Planck’s constant, ν is the frequency of light, and c is the
speed of light in vacuum.

As a result of the principle of reciprocal actions, a force will act
on the sail:

�f = −∆�p

∆t
.

Fig. 1.2

If, during the time interval ∆t, a number of photons ∆Nk with
frequency νk are reflected on the reflective face of the solar sail, then
the force that will act on the sail will be:

Fk = fk∆Nk = ∆Nk
∆pk

∆t
= Nkπr

2∆t
2hνk

c

∆t
,
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where Nk is the number of photons with frequency νk that arrive per
unit area of the sail’s surface per unit time;

Fk = 2
Nkhνk

c
πr2;

〈Nkhνk〉SI =
W

m2
;

Nkhνk = Ek,

representing the illumination of the sail’s surface due to the compo-
nent of the solar radiation with frequency νk;

Fk = 2
Ek

c
πr2;

Pk =
Fk

πr2
= 2

Ek

c
,

representing the pressure exerted on the sail by the component of
the solar radiation with frequency νk.

We next calculate the resultant force acting on the sail for all
components of the solar radiation (ν1, ν2, . . . , νn):

F =

n
∑

k=1

Fk = 2

∑n
k=1Ek

c
πr2;

n
∑

k=1

Ek = E,

representing the total illumination of the sail’s surface due to all
components of the solar radiation;

F = 2
E

c
πr2;

P =
F

πr2
= 2

E

c
,
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representing the pressure from the sunlight on the sail;

F = 2
L

c

πr2

4πR2
=

Lr2

2cR2
;

�F =
Lr2

2cR2
R̂ =

Lr2

2cR3
�R.

Conclusion: The pressure force acting at any moment on the sail
of the satellite due to the solar radiation with normal incidence on
the plane of the sail is inversely proportional to the square of the
distance between the satellite and the center of the Sun and has
the same orientation as the position vector of the satellite relative
to the center of the Sun, as shown in Figure 1.3.

Fig. 1.3

(b) Before the opening of the sail, the movement of the satellite
follows the circular orbit of the Earth under the action of the force
of gravitational attraction, so that:

mv20
R0

= K
mM

R2
0

= Fg0; v0 =

√

K
M

R0
;

T0 = 2π

√

R3
0

KM
,

where R0 is the radius of the Earth’s orbit.
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At a certain moment, after the sail is deployed, the resultant of
the forces acting on the satellite, as shown in Figure 1.3, is:

�Fres = �Fg + �F ;

�Fres = −KmM − Lr2

2c

R2
R̂; Fres =

KmM − Lr2

2c

R2
.

We identify this as a central force, the effect of which is the movement
of the satellite, with the sail open, on an elliptical orbit with the
Sun in its focus close to the point where the sail was opened (the
perihelion of the elliptical orbit).

According to the laws of conservation of kinetic momentum and
total mechanical energy for the satellite with open sail–Sun system,
it follows that:

v0R0 = v1R1;

mv20
2

− KmM − Lr2

2c

R0
=

mv21
2

− KmM − Lr2

2c

R1
;

α = KmM − mv20
2

− KmM − Lr2

2c

R0
=

mv21
2

− KmK − lr2

2c

R1
;

(

mv20 − 2
α

R0

)

R2
1 + 2αR1 −mv20R

2
0 = 0;

R1 =
KmM

KmM − Lr2

c

R0; a =
1

2
(R0 +R1),

where a is the semi-major axis of the ellipse;

a =
2KmM − Lr2

c

2KmM − Lr2

2c

R0.

(c) In accordance with Kepler’s third law, if the satellite with the
open sail were to evolve around the Sun on a circular orbit with
radius r0, or on an elliptical orbit with semi-major axis a, we could
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write that:

T 2
circ = kr30; T 2

ellipse = ka3;

Tcirc =
2πr0
vcirc

;
mv2circ
r0

=
KmM − Lr2

2c

r20
;

v2circ
r20

=
KmM − Lr2

2c

mr30
; Tcirc = 2π

√

mr30

KmM − Lr2

2c

;

T 2
ellipse

T 2
circ

=
a3

r30
; Tellipse = 2π

√

ma3

KmM − Lr2

2c

;

Tellipse = 2πR0
2KmM − Lr2

c

2KmM − Lr2

2c

√

√

√

√

√

R0

(

2KmM − Lr2

c

)

(

2KmM − Lr2

2c

)(

KmM − Lr2

2c

) .

The same result is reached if we admit that the period of rotation
of the satellite with the sail open, evolving around the Sun on an
ellipse with the semi-major axis a, is equal to the period of rotation
of the same satellite if it were to evolve on the confocal circle of
the ellipse (a circle with radius a and its center in the center of the
Sun, represented in Figure 1.4) with speed u, equal to the speed of
the satellite on the elliptical orbit at its minor peak B, the same as
the average speed of the satellite on the elliptical orbit.

Fig. 1.4
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It results that:

mu2

a
= Fres, B =

KmM − Lr2

2c

a2
;

a2

u2
=

ma3

KmM − Lr2

2c

;

T =
2πa

u
; T = 2π

√

ma3

KmM − Lr2

2c

.

Problem 2. Bodies Hidden in Identical Cubic Boxes

Inside one of two identical cubic “black boxes”, A and B, is a massive
metal cylinder; inside the other box is a massive cone.

The masses of the two internal parts, which are homogeneous and
made of the same metal, are identical (m = 280 g). The two inner
bodies are fixed so that their axes of longitudinal symmetry coincide
with the axes joining the centers of two opposite lateral faces of each
cubic box, and their centers of mass coincide with the centers of mass
of the cubic boxes.

(a) Identify the opposite lateral faces of each box through whose
centers pass the axes of longitudinal symmetry of the objects
fixed inside each box.

(b) Identify the box inside which the cylinder is located and the box
inside which the cone is located.

(c) Determine the geometric dimensions of the two bodies inside the
two cubic boxes.

Materials available: An empty cubic black box, identical to the
two given black boxes; a metal support; a manual electronic timer; a
ruler; an inextensible wire; very light and resistant metallic flanges;
screws; a wrench for the screws.

We know: the moment of inertia of a homogeneous, massive
cylinder relative to its longitudinal axis of symmetry, I0;cylinder =
1
2mR2

cylinder; the moment of inertia of a massive, homogeneous cylin-
der relative to an axis that passes through its center of mass and
is perpendicular to its axis of longitudinal symmetry, Icylinder =
1
12m(3R2

cylinder + h2cylinder); the moment of inertia of a homoge-
neous, massive cone relative to its longitudinal axis of symmetry,
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I0;cone = 3
10mR2

cone; the moment of inertia of a massive, homoge-
neous cone relative to an axis that passes through its center of
mass and is perpendicular to its axis of longitudinal symmetry,
I0 =

3
20m

(

R2
cone +

1
4h

2
cone

)

.
Given: the mass of the walls of each cubic box together with the

two attached flanges, m0; the diameter of the shaft on which the wire
is wound, d; and the gravitational acceleration, g.

We know that Rcylinder <
√

3
5Rcone.

Solution

(a) With the two flanges mounted on the opposite lateral faces X
and X′ of box A, using the thread available, we make a Maxwell
pendulum, so that the length of the pendulum is close to the height
of the support.

From the higher position, with the two wires wrapped around
the horizontal rods of the flanges, we time the duration t1A of the
descent of box A after its release until it reaches the lower position.
The process is repeated several times, and only three very close val-
ues are kept. The arithmetic mean of the three determinations will
be accepted as the final result of the descent duration. Knowing the
height H from which the box fell and accepting that its center of
mass descends in a uniformly accelerated rectilinear motion, regard-
less of the initial speed, the acceleration of this descent a1A can be
determined:

a1A =
2H

t21A
.

On the other hand, the dynamics of the process, based on
Figure 2.1, are as follows:

�Gtotal + 2�T1A = M�a1A; M = m0 +m;

Mg − 2T1A = Ma1A;

2T1Ar = IA;XX′ε1A; a1A = ε1Ar;

Mg −
IA;XX′

r
ε1A = Ma1A;
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a1A =
Mg

M +
IA;XX′

r2

; IA;XX′ = Mr2
(

g

a1A
− 1

)

;

IA;XX′ = Ibox + Iobject;A;XX′.

2 T

G

a

ε

Fig. 2.1

The two flanges are then mounted on the opposite lateral faces Y
and Y′ and the opposite lateral faces Z and Z′, respectively, using the
same suspension wire. The box, therefore, descends from the same
height H, and the acceleration of the descent is determined each time
as follows:

a2A =
2H

t22A
; a2A =

Mg

M +
IA;YY′

r2

;

IA;YY′ = Mr2
(

g

a2A
− 1

)

;

IA;YY′ = Ibox + Iobject;A;YY′;

a3A =
2H

t23A
; a3A =

Mg

M +
IA;ZZ′

r2

;

IA;ZZ′ = Mr2
(

g

a3A
− 1

)

;

IA;ZZ′ = Ibox + Iobject;A;ZZ′ .

The results of the determinations made for box A should be presented
in the accompanying cumulative table (Table 2.1), from which it
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follows that:

t1A �= t2A; t1A �= t3A; t2A ≈ t3A;

a1A �= a2A; a1A �= a3A; a2A ≈ a3A;

IA;XX′ �= IA;YY′ ; IA;XX′ �= IA;ZZ′ ; IA;YY′ ≈ IA;ZZ′ ,

which proves that the object in box A has its axis of longitudinal
symmetry along the direction of the centers of the opposite lateral
faces X and X′.

Table 2.1.

H t1A a1A IA;XX′ t2A a2A IA;YY′ t3A a3A IA;ZZ′

Proceeding identically but mounting the two flanges on each pair
of lateral faces of box B, we establish that:

t1B �= t2B; t1B �= t3B; t2B ≈ t3B; a1B =
Mg

M +
IB;XX′

r2

;

IB;XX′ = Mr2
(

g

a1B
− 1

)

; IB;XX′ = Ibox + Iobject;B;XX′ ;

a2B =
2H

t22B
; a2B =

Mg

M +
IB;YY′

r2

;

IB;YY′ = Mr2
(

g

a2B
− 1

)

; IB;XX′ = Ibox + Iobject;B;XX′ ;

a3B =
2H

t23B
; a3B =

Mg

M +
IB;ZZ′

r2

;

IB;ZZ′ = Mr2
(

g

a3B
− 1

)

; IB;ZZ′ = Ibox + Iobject;B;ZZ′ .

The results of the determinations made for box B should be pre-
sented in the accompanying cumulative table (Table 2.2). From this,
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it follows that:

t1B �= t2B; t1B �= t3B; t2B ≈ t3B;

a1B �= a2B; a1B �= a3B; a2B ≈ a3B;

IB;XX′ �= IB;YY′; IB;XX′ �= IB;ZZ′ ; IB;YY′ ≈ IB;ZZ′ ,

which proves that the object in box B has its axis of longitudinal
symmetry along the direction of the centers of the opposite lateral
faces X and X′.

Table 2.2.

H t1B a1B IB;XX′ t2B a2B IB;YY′ t3B a3B IB;ZZ′

Conclusion : Each of the two hidden objects has its longitudinal
axis of symmetry along the direction of the centers of the opposite
sides X and X′ of the two boxes.

(b) Let’s assume that the cylinder is hidden in box A and the cone
is hidden in box B.

As a result, we can write that:

IA;XX′ = Ibox + Iobject;A;XX′ = Ibox + I0;cylinder = Ibox +
1

2
mR2

cylinder;

IB;XX′ = Ibox + Iobject;B;XX′ = Ibox + I0;cone = Ibox +
3

10
mR2

cone.

From the experimental data entered into the two tables, we find
that

IA;XX′ < IB;XX′ ,

which can happen only if

Ibox +
1

2
mR2

cylinder < Ibox +
3

10
mR2

cone; Rcylinder <

√

3

5
Rcone.

These are the exact conditions expressed in the content of the
problem.



International Pre-Olympic Physics Contest 2005, Călimăneşti, Romania 131

Conclusion: The cylinder is hidden in box A, and the cone is hidden
in box B.

(c) Using the previous measurements, it results that:

IA;XX′ = Ibox + I0;cylinder = Ibox +
1

2
mR2

cylinder;

Rcylinder =

√

2

m
(IA;XX′ − Ibox);

IA;YY′ = Ibox + Iobject;A;YY′ = Ibox + Icylinder;

Icylinder = IA;YY′ − Ibox =
1

12
m

(

3R2
cylinder + h2cylinder

)

;

IA;ZZ′ = Ibox + Icylinder = IA;YY′ ;

hcylinder =

√

12

m
(IA;YY′ − Ibox)− 3R2

cylinder;

IB;XX′ = Ibox + Iobject;B;XX′ = Ibox + I0;cone = Ibox +
3

10
mR2

cone;

Rcone =

√

10

3m
(IB;XX′ − Ibox);

IB;YY′ = Ibox + Iobject;B;YY′

= Ibox + Icone = Ibox +
3

20
m

(

R2
cone +

1

4
h2cone

)

;

R2
cone +

1

4
h2cone =

20

3m
(IB;YY′ − Ibox);

hcone = 2

√

20

3m
(IB;YY′ − Ibox)−R2

cone.

After a similar procedure, using the empty box, it is determined
that

Ibox = I0 = m0r
2

(

g

a0
− 1

)

.

Conclusion : Figures 2.2 and 2.3 show the geometric dimensions and
arrangement of the two bodies inside the two cubic boxes.
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Problem 3. Practical Problem: Lenses, a Plane Mirror,

and a Transparent Liquid

Materials Provided (See Figure 3.1)

(1) Support with plug; (2) rods of Φ = 10 mm and L = 600 mm;
(3) Petri dish cover; (4) plane mirror; (5) biconvex lens; (6) white
linear body; (7) graduated ruler; (8) bottle containing water;
(9) bottle containing an unkown transparent liquid; (10) plug;
(11) funnel.

Determine:

(a) the convergence of the biconvex lens;
(b) the radii of curvature of the lens surfaces;
(c) the refractive index of the unknown liquid.
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Water
Unknown

Liquid

Fig. 3.1

The refractive index of water is known to be nwater =
4
3 .

Solution

(a) Determining the convergence of the lens

To determine the convergence of the biconvex lens, the process shown
in Figure 3.2 is carried out, and the position of the object is adjusted,
keeping it perpendicular to the main optical axis of the lens so that,
looking vertically from top to bottom, from above the object, the
object and the image are identical in length and size (width). The
distance d, corresponding to this state, is measured.

Fig. 3.2

As shown in Figure 3.2, on its way from the object to the eye of
the observer, the light traveling from the object to the given optical
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system passes through the lens, from top to bottom (following the
laws of refraction). It is then reflected by the mirror (following the
laws of reflection), before passing through the lens again, from bot-
tom to top (according to the laws of refraction), forming the image of
the object, in its extension and identical to it, as explained in detail
in Figure 3.3.

Fig. 3.3
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In these conditions, the optical system comprises two identical
lenses joined together, equivalent to a single lens with the equivalent
focal length given by the following expression:

1

fequivalent
=

1

flens
+

1

flens
=

2

flens
;

fequivalent =
flens
2

.

Since “distance from object” = “distance from image” = d, it results
that:

1

fequivalent
=

1

d
+

1

d
=

2

d
;

fequivalent =
d

2
=

flens
2

; flens = d;

Clens =
1

flens
=

1

d
.

(b) Determining the radii of curvature of the lens

surfaces

(1) To determine the radii of curvature of the two identical biconvex
surfaces of the lens, water is placed between the lens and the mirror,
as shown in Figure 3.4, forming there a plane divergent concave lens
with focal distance fa.

Knowing that the focal length of a lens is given, in general, by
the expression

1

f
= (n− 1)

(

1

R1
+

1

R2

)

,

it follows that the expression of the focal length of the plane divergent
concave lens formed by the water between the lens and the flat mirror
surface is

1

fwater
= −nwater − 1

R
< 0,

where nwater (index of refraction for water) is known.

(2) The experiment is repeated, again adjusting the position of the
object, keeping it perpendicular to the main optical axis of the lens,
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Fig. 3.4

so that, looking vertically from top to bottom, from above the object,
the object and its image are elongated and identical in size (width).
The distance d′ corresponding to this new state is measured.

Since, in this case, the light passes in both directions, through the
glass lens and through the water lens, before being reflected by the
mirror, the given system comprises four joined lenses, equivalent to
a single lens with the equivalent focal length given by the expression

1

f ′
e

= 2

(

1

flens
+

1

fwater

)

=
2

d′
.

It results that:

1

flens
+

1

fwater
=

1

d′
;

1

d
− nwater − 1

R
=

1

d′
;

R =
dd′(nwater − 1)

d′ − d
.

(3) In order to repeat the determination of the radii of curvature of
the two identical biconvex surfaces of the lens, water is placed in the
tub until it covers the lens, as shown in Figure 3.5, forming there two
concave plane divergent lenses, each with focal length fa.
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Fig. 3.5

Since, in this case, the light passes in both directions, through
the glass lens and the water lens, and is then reflected on the mirror,
the given system comprises six lenses joined together, equivalent to
a single lens with the equivalent focal length given by the expression

1

f ′′
e

= 2

(

1

fwater
+

1

flens
+

1

fwater

)

=
2

d′′
.

It follows that:

1

flens
+

2

fwater
=

1

d′′
;

1

d
− 2

nwater − 1

R
=

1

d′′
;

R = 2dd′′(nwater−1)
d′′−d .

(c) Determining the refractive index of the unknown

liquid

(1) To determine the refractive index of the glass from which the
lens is made, we consider the fact that, in general:

1

f
= (n− 1)

(

1

R1
+

1

R2

)

; R1 = R2 = R.
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It follows that:

1

flens
=

2(n − 1)

R
=

1

d
= C;

n = 1 +
R

2d
.

(2) To determine the refractive index of the unknown transparent
liquid, we repeat the experiment presented in Figure 3.5, replacing
the water with the unknown liquid, whose refractive index is nx, as
shown in Figure 3.6.

Fig. 3.6

(3) We determine the distance d1 at which the object and its image
appear as a continuous extension of one another. In these conditions,
we have:

1

f1,equivalent
= 2

(

1

flens
+

1

fx

)

=
2

d1
;

1

flens
+

1

fx
=

1

d1
;

1

d
− nx − 1

R
=

1

d1
;

nx = 1 +
R(d1 − d)

dd1
.
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(4) In order to repeat the determination of the refractive index of
the unknown transparent liquid, we repeat the experiment presented
in Figure 3.5, replacing the water with the unknown liquid, whose
refractive index is nx, as indicated in Figure 3.7.

Fig. 3.7

(5) We determine the distance d2 at which the object and its image
appear as a continuous extension of one another.

In these conditions, we have:

1

f2,equivalent
= 2

(

1

fx
+

1

flens
+

1

fx

)

=
2

d2
;

1

flens
+

2

fx
=

1

d2
;

1

d
− 2

nx − 1

R
=

1

d2
;

nx = 1 +
R(d2 − d)

2dd2
.

Problem 4. Practical Problem: Ideal Capacitor

and Real Coil

Materials Provided (See Figure 4.1)

(1) Coil with unknown characteristics; (2) box with two identi-
cal ideal capacitors, each with unknown capacity, C, which will
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be connected in parallel using a switch; (3) connecting conductors
(10 total); (4) ferrite core with handle; (5) alternative voltage source
with digital display of the voltage value of the terminals; (6) digital
multimeter (ideal ammeter!); (7) switch.

15
4

6

237

Fig. 4.1

With the given devices, the scheme presented in Figure 4.2 is
assembled.

Fig. 4.2

(a) Determine the inductance L of the coil for an alternating current,
with the ferromagnetic core inside the coil and within the lim-
its of the positives of the core, corresponding to which the indica-
tion of the ammeter A is the same regardless of the closed/open
state of the switch k2, while the switch k1 remains open.

Hint: After each use of the switch k2 and after each move-
ment of the ferromagnetic core inside the coil, following the
same indication of the ammeter, the voltage constant at the
generator booms should be adjusted for each of its values,
U = (1, 2, 3, . . . , 9, 10) V.
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(b) Justify phenomenologically the possibility of the constancy of
the inductance L of the coils containing the core, although for
each voltage value, U = (1, 2, 3, . . . , 9, 10) V, the length of the
ferromagnetic core inside the coil is different.

(c) Keeping the ferromagnetic core inside the coil within the lim-
its of the previously established positions, determine the coil’s
alternating current equivalent ohmic resistance, R.

Hint: The voltage constant at the generator terminals should
be adjusted for each of its values, U = (1, 2, 3, . . . , 9, 10) V, after
closing the switch k1, regardless of the position of the switch k2.
The frequency of the alternating voltage used is known,
ν = 50 Hz.

Clarifications

The voltage source can only be used for alternating voltages (whose
values cannot exceed 12 V to ensure the protection of the capacitors
used). Only the proposed scheme should be used, without eliminat-
ing any of its elements, by operating the two switches, moving the
ferromagnetic core inside the coil, and turning the button of the
alternative voltage source. After each switch operation or movement
of the ferromagnetic core, restore the voltage to the initial value. Do
not change the scale of the ammeter (200 mA a.c.) nor its connecting
pins in the circuit (COM—white; mA—red). If you have damaged the
ammeter, the source, or the capacitors, replacing them is impossible!

Solution

(a) Determining the inductance L of the coil

containing a ferromagnetic core

(1) With the switches k1 and k2 open, corresponding to scheme (a)
in Figure 4.3, the indication I1 of the ammeter A is given by the
expression

I1 =
U

XC
= UωC.
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Fig. 4.3

(2) The switch k1 remains open and the switch k2 closes, as shown
in diagram (b), Figure 4.3. Using the phasor diagrams in Figure 4.4,
it follows that the indication of the ammeter, I2, is given by the
expression

Ī2 = ĪC + ĪL,

where Ī2, ĪC and ĪL are phasors associated with the effective values
of the current intensities on each side of the network:

I22 = I2C + I2L + 2ICIL cos(902 + ϕ) = I2C + I2L − 2ICIL sinϕ;

IL =
U√

R2 + ω2L2
;

sinϕ =
UL

U
=

ILXL

IL
√
R2 + ω2L2

=
XL√

R2 + ω2L2
.

Fig. 4.4

(3) We move the ferromagnetic core inside the coil very slowly until
the moment when the indication of the ammeter A is consant, regard-
less of the closed or open position of the switch k2. If necessary, we
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adjust the source voltage so that its value is equal to the initial one,
U . Under these conditions, it results that:

I2 = I1; IC =
U

XC
= I1; I2 = I1 = IC ;

I22 = I21 + I2L − 2I1IL sinϕ;

I21 = I21 + I2L − 2I1IL sinϕ;

IL = 2I1 sinϕ;

U√
R2 + ω2L2

= 2
U

XC

XL√
R2 + ω2L2

;

2XL = XC ; XL = ωL; XC =
U

I1
;

2ωL =
U

I1
; L =

U

2ωI1
=

U

4πνI1
.

(4) The experiment is repeated for different values of the voltage U,
each time making a very small adjustment to the ferromagnetic core,
so that the ammeter indication is constant, regardless of the position
of the switch k2. Complete the attached Table 4.1.

Table 4.1.

No. U I1 L Laverage

det. (V) (mA) (H) (H)

1 1.00 3.2 0.4976 0.49407
2 2.00 6.6 0.4825
3 3.00 9.7 0.4924
4 4.00 12.8 0.4976
5 5.00 15.8 0.5039
6 6.00 19.3 0.4950
7 7.00 22.6 0.4932
8 8.00 25.5 0.4995
9 9.00 28.8 0.4976

10 10.00 32.4 0.4914
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(b) Phenomenological justification

The intensity of the current through the windings of the coil being
variable, additional currents appear in the ferromagnetic core of the
coil, called Foucault eddy currents, whose magnetic fields contribute
to the coil’s magnetic flux, so that, under these conditions, the induc-
tance L of the coil changes, depending not only on the characteristics
of the coil. To compensate for the losses in the coil inductance due to
Foucault currents, the displacement of the ferromagnetic core inside
the coil must be carried out, thus ensuring the constancy of the coil
inductance.

(c) Determination of the ohmic resistance of the coil

(1) By closing the switch k1, the two capacitors are connected in
parallel, as shown in Figure 4.5, so that their equivalent capacity
is C ′ = 2C. As a result, the indication of the ammeter A (whose
internal resistance is negligible) when the switch k2 remains open
will double compared to the previous situation, at the same voltage
value, and will be

I ′1 =
U

Xe
=

U
1

ωCe

= UωCe = 2UωC ≈ 2I1.

Fig. 4.5

(2) We close the switch k2, as shown in diagram (a), Figure 4.6, and
read indication I ′2 of ammeter A.

If the real impedances of the network elements are associated with
complex impedances, according to known rules, using the equivalent
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(a)

(b)

Fig. 4.6

scheme (b) from Figure 4.6, it results that:

Z̄e =
Z̄1Z̄2

Z̄1 + Z̄2
;

Z̄1 = −jXe; Z̄2 = R+ jXL;

Z̄e =
−jXe(R+ jXL)

−jXe +R+ jXL
=

XeXL − jRXe

R+ j(XL −Xe)
;

Z̄e =
RX2

e − jXe[R
2 +XL(XL −Xe)]

R2 + (XL −Xe)2
;

Xe =
1

ωCe
=

1

2ωC
=

XC

2
=

2XL

2
;

Xe = XL;

Z̄e =
X2

L

R
− jXL;

Ze =
U

I ′2
;
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Z2
e =

X4
L

R2
+X2

L =
U2

I ′22
;

X4
L

R2
=

U2

I ′22
−X2

L;

R =
X2

L
√

(

U
I′2

)2
−X2

L

;

R =
ω2L2

√

(

U
I′2

)2
− ω2L2

; 2ωL =
U

I1
; ωL =

U

2I1
;

R =

(

U
2I1

)2

√

(

U
I′2

)2
−

(

U
2I1

)2
; R =

(

U
I′1

)2

√

(

U
I′2

)2
−

(

U
I′1

)2
.

(3) The same experiment is repeated for different values of U .
We then complete Tables 4.2 and 4.3.

Table 4.2.

No. U I1 I
′

1 ≈ 2I1 I
′

2

(

U

I ′1

)2 (

U

I ′2

)2

det. (V) (mA) (mA) (mA)

1 1.00 3.2 6.5 4.5 23668.63 49382.71
2 2.00 6.5 13.4 9.3 22276.67 46248.12
3 3.00 9.6 19.3 13.1 24161.72 52444.49
4 4.00 12.8 25.7 17.3 24224.43 53459.85
5 5.00 16.1 32.4 21.6 23814.96 53583.67
6 6.00 19.2 38.3 25.7 24541.71 54504.98
7 7.00 22.4 44.2 30.4 25081.38 53021.12
8 8.00 26.2 52.4 35.5 23308.66 50783.57
9 9.00 29.2 58.7 39.4 23507.62 52178.61

10 10.00 32.5 65.2 44.4 23523.65 50726.40
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Table 4.3.

No. det.

√

(

U

I ′2

)2

−

(

U

I ′1

)2

R =

(

U

I′
1

)

2

√

(

U

I′
2

)

2

−

(

U

I′
1

)

2
Raverage (Ω)

1 160.35 V/A 147.60 142.864
2 154.94 143.77
3 168.17 143.67
4 170.98 141.67
5 172.53 138.03
6 173.09 141.78
7 167.15 150.05
8 165.75 140.62
9 169.32 138.83

10 164.93 142.62

Working Method

1. Generalities

With the help of this source, the following values of voltage and
current can be obtained:

• direct current voltages, with continuous adjustment at the output
in the range 0–40 V;

• alternating current voltages, with continuous adjustment at the
output in the range 0–30 V;

• the maximum current in the loads, 8 A in d.c. and 12 A in a.c.;
• the power charged, max. 160W;
• supply voltage, 220 V, ±20%/50 Hz;
• room temperature, −5, . . . ,+40 degrees Celsius;
• relative humidity, max. 65%;
• net mass, 5.5 kg.

2. Description of the Device (See Figure 4.7)

On the front panel are the control and adjustment elements of the
source:

(1) the main ON/OFF switch;
(2) LED indicator for the power source;
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(3) button for repriming the protection;
(4) LED indicator for the protection status;
(5) terminals for alternating voltage, 0–30V a.c.;
(6) button for voltage adjustment;
(7) terminals for continuous voltage, 0–40V d.c.;
(8) numerical display for voltage and current intensity in d.c. and

a.c.;
(9) terminal for grounding or protective neutral;

(10) switch for choosing the value (U or L, d.c. or c.a.) that the
display (8) will indicate.

The terminals (7) are not independent of the terminals of the
alternating current (5). Thus, the accidental connection of the ter-
minals (5) with the terminals (7) of alternating current produces a
short circuit and can cause fuse burning.

Fig. 4.7

3. Instructions for Use

3.1 Initiating operation

We connect the cord ending with a switch and a grounding plug to
the network of alternating current at 220 V.

Toggle the ON/OFF switch to the ON position.
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The light of the LED (2) indicates the connection of the
network.

The button (3) is pressed, and the LED (4) goes out, indicating
the protection priming.

3.2 Working method

After putting the device into operation, the load is connected with
the help of connecting conductors.

Alternating voltage can be collected at the alternating current
terminals (5). The voltage value is adjusted using the adjustment
button (6) on the side of the device. The same button also adjusts
the continuous voltage.

Depending on the position of the switches (10) and (11) on the
device display, you can read:

(a) the value of the current through the load corresponding to the
voltage applied when the switch (10) is in the A position;

(b) the value of the current or direct voltage from the terminals (7)
if the switch (12) is in the d.c. position;

(c) the value of the alternating current or voltage from the booms
(5) if the switch (12) is in the a.c. position.

The voltage source produces a continuous (0–40 V) and alternat-
ing voltage in the 0–30 V range. It is continuously adjustable, and
short-circuit protection is provided.

4. Maintenance and Troubleshooting

The device does not need special maintenance; only cleaning is nec-
essary for the removal of dust.

If there is a lack of voltage at the direct current output, first,
safety should be checked.

If necessary, the fuse should only be replaced with a fuse of
the same value or 1.6A. If a higher-value fuse is installed, you risk
destroying the autotransformer.
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Problem 5. Real Capacitor and Ideal Coils

Materials Available

(1) two identical ideal coils with unknown inductances;
(2) a real capacitor, with unknown capacity, C;
(3) connecting conductors—10 pieces;
(4) two ferrite cores with identical handles;
(5) alternating voltage source with digital display of the voltage

value at the terminals;
(6) digital multimeter (ideal ammeter!);
(7) circuit breaker.

With the given devices, the scheme presented in Figure 5.1 is
assembled.

Fig. 5.1

Requirements

(a) Determine:

• the ideal elements of the equivalent series circuit for the real
coil with the support provided, as well as the relative magnetic
permeability of the core of the real coil;

• the ideal elements of the equivalent series circuit for the real
supported capacitor.

It is known that the frequency of the alternating voltage from
the network is ν = 50 Hz.
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Clarification: Ceramic capacitors (ideal capacitors) with iden-
tical external appearances can be considered to have identical
(unknown) capacities.

The ferromagnetic core is inside the coil, in the position at
which the indication of the ammeter A is constant regardless of
the closed/open state of the switch k2, while switch k1 remains
open.

Determine the capacity C of the capacitor. Hint: After the
actuation of the switch k2 and each movement of the ferro-
magnetic core inside the coil, with the indication of the amme-
ter remaining the same, the voltage constant at the genera-
tor terminals should be adjusted to each of its values, U =
(1, 2, 3, . . . , 9, 10) V.

(b) Justify phenomenologically the possibility of the constancy of
the inductance L of the coil containing the core, although for
each voltage value, U = (1, 2, 3, . . . , 9, 10) V, the length of the
ferromagnetic core inside the coil is different.

(c) Keeping the ferromagnetic core inside the coil, within the limits
of the positions established previously, determine the equivalent
ohmic resistance in the alternating current, R, of the capacitor.
Hint: The voltage constant at the generator terminals should be
adjusted to each of its values, U = (1, 2, 3, . . . , 9, 10) V, after
closing the switch k1, regardless of the position of the switch k2.

The frequency of the alternating voltage used is known, ν =
50 Hz.

Clarifications

The voltage source can only be used for alternating voltages (whose
values cannot exceed 12 V, to ensure the protection of the capaci-
tors used). Only the proposed scheme should be used, without elim-
inating any elements, by activating the two switches, moving the
ferromagnetic core inside the coil, and turning the voltage source’s
button alternately. After each actuation of a switch or movement of
the ferromagnetic core, the voltage should be returned to the initial
value. Do not change the scale of the ammeter (200 mA a.c.), nor its
connecting pins in the circuit (white—COM; red—mA). If you have
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damaged the ammeter, source, or capacitor, there is no possibility of
replacing them!

Solution

(a) Determining C, the capacity of the capacitor

(1) With switches k1 and k2 open, corresponding to scheme (a) in
Figure 5.2, the indication I1 of ammeter A is given by the expression

I1 =
U

XL
=

U

ωL
.

~ 

b a 

Fig. 5.2

(2) The switch k1 remains open, and the switch k2 closes, as shown
in Figure 5.2. Using the phasor diagrams in Figure 5.3, it turns out
that the indication I2 of the ammeter is given by the expression

Ī2 = ĪL + ĪC ,

where Ī2, ĪL and ĪC are phasors associated with the effective values
of the current intensities on each side of the network;

I22 = I2L + I2C + 2ILIC cos(902 + ϕ);

IC =
U

√

R2 + 1
ω2C2

; sinϕ =
UC

U
=

ICXC

IC

√

R2 + 1
ω2C2

=
XC

√

R2 + 1
ω2C2

.
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Fig. 5.3

(3) Move the ferromagnetic core inside the coil very slowly until the
moment when the indication of the ammeter A is constant, regardless
of the closed or open position of the switch k2. If necessary, adjust
the voltage of the source so that its value is equal to the initial one,
U . In these conditions, results that:

I2 = I1; IL =
U

XL
= I1; I2 = I1 = IL;

I22 = I21 + I2C − 2I1IC sinϕ;

I21 = I21 + I2C − 2I1IC sinϕ;

IC = 2I1 sinϕ;

U
√

R2 + 1
ω2C2

= 2
U

XL

XC
√

R2 + 1
ω2C2

;

2XC = XL;

2
1

ωC
=

U

I1
; C =

2I1
ωU

=
I1

πνU
.

(4) The experiment is repeated for different values of the voltage U ,
each time making a very small adjustment to the ferromagnetic core
so that the ammeter indication remains the same, regardless of the
position of the k2 switch. Complete the Table 5.1.

(b) Phenomenological justification

As the intensity of the current through the turns of the coil is vari-
able, additional currents appear in the ferromagnetic core of the coil,
called Foucault eddy currents, whose magnetic fields contribute to
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Table 5.1.

No. U I1 C Cmedium

det. (V) (mA) (F) (F)

1
2
3

the coil’s magnetic flux, so that, under these conditions, the induc-
tance L of the coil changes, depending not only on the characteristics
of the coil. Due to the effect of the Foucault currents, the displace-
ment of the ferromagnetic core inside the coil must be carried out to
compensate for the variations in the coil inductance, thus ensuring
the constancy of the coil inductance.

(c) Determination of the ohmic resistance R of the

capacitor

(1) Closing switch k1 connects the two coils in parallel so that their
equivalent inductance is Le =

L
2 , as shown in Figure 5.4. As a result,

the indication of the ammeter A (whose internal resistance is negli-
gible) when the switch k2 remains open will double compared to the
previous situation at the same voltage value, becoming

I ′1 =
U

Xe
=

U

ωLe
=

U

ωL
2

=
2U

ωL
≈ 2I1.

Fig. 5.4
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(2) Close the switch k2, as shown in diagram (a) of Figure 5.5, and
read indication I2 of ammeter A.

Fig. 5.5

If the real impedances of the relay elements are associated, accord-
ing to known rules, with complex impedances, using the equivalent
scheme (b) in Figure 5.5, it results that:

Z̄e =
Z̄1Z̄2

Z̄1 + Z̄2
;

Z̄1 = jXe; Z̄2 = R− jXC ;

Z̄e =
jXe(R− jXC)

jXe +R− jXC
=

XeXC + jRXe

R+ j(Xe −XC)
;

Z̄e =
RX2

e + jXe[R
2 −XC(Xe −XC)]

R2 + (Xe −XC)2
;

Xe = ωLe =
ωL

2
=

XL

2
; 2XC = XL;

Xe = XC ;
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Z̄e =
X2

C

R
+ jXC ;

Ze =
U

I ′2
;

Z2
e =

X4
C

R2
−X2

C =
U2

I ′22
;

X4
C

R2
=

U2

I ′22
+X2

C ;

R =
X2

C
√

(

U
I′2

)2
+X2

C

;

R =
1

ω2C2
√

(

U
I′2

)2
+ 1

ω2C2

;
1

ωC
=

U

2I1
;

R =

(

U
2I1

)2

√

(

U
I′2

)2
+

(

U
2I1

)2
; R =

(

U
I′1

)2

√

(

U
I′2

)2
+

(

U
I′1

)2
.

(3) The same experiment is repeated for different values of U . Com-
plete Tables 5.2 and 5.3.

Table 5.2.

No. U I1 I′1 ≈ 2I1 I′2
(

U

I′1

)2 (

U

I′2

)2

det. (V) (mA) (mA) (mA)

1 1.00
2 2.00
3 3.00

Table 5.3.

No. det.

√

(

U

I′2

)2

+
(

U
I′
1

)2
R =

(

U

I′
1

)

2

√

(

U

I′
2

)

2

+

(

U

I′
1

)

2
Raverage (Ω)

1
2
3
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Problem 1. Near and Far from the Moon!

In two photographs taken using the same camera mounted on an
artificial satellite of the Moon, the Moon appears as a circular disk
with diameter d1 = 46.5mm and d2 = 40.5mm, respectively, similar
to how it appears from the Earth. The first photo was taken when
the satellite was in an elliptical orbit around the Moon and near the
periselenium, and the second photo was taken when the satellite was
near the aposelenium.

(a) Eccentricity of the ellipse: Using all this information, deter-
mine the numerical eccentricity a of the satellite’s orbit. Esti-
mate the minimum value of the time interval between the
moments of execution of the two photos. It is known that the
apparent diameter of the image of the Moon on each photo is
directly proportional to the angle at which the Moon is seen
from the satellite.

(b) Stable Lagrange points: Locate the points in the plane of
the circular orbit of the Moon around the Earth at which the
satellite could be located, such that it would evolve in a circular
orbit around the Earth, remaining in the same stable position
relative to the Earth and the Moon. We know : rEM, the distance

157
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between the center of the Earth and the center of the Moon; ME ,
the mass of the Earth; and MM , the mass of the Moon.

(c) Cosmic impact: A meteorite, in free fall towards the
Moon (along the line that passes through the center of the
Moon), collides with an automatic space laboratory, which
moves around the Moon in a circular orbit of radius R.
After the impact with the meteorite, it remains incorporated
into the orbital station, and the system revolves around the
Moon in a new orbit. Thus, the minimum distance from
the center of the Moon is rmin = R/2. Determine the
speed of the meteorite before the collision with the space
station.

Given: the mass of the Moon, M ; the constant of universal
attraction, K; the mass of the space laboratory, m1; and the
mass of the meteorite, m1.

(d) The third cosmic velocity: Determine the approximate min-
imum value of the escape velocity, with respect to the Earth,
that must be given to a body launched from the Earth so that
it leaves the Solar System forever (the third cosmic velocity).

Given: RTS ≈ 1.5 ·108 km; TTS = 1 year; and v0 ≈ 7.9 km
s , the

velocity of a terrestrial satellite orbiting the Earth in a very low
circular orbit (the first cosmic velocity).

We know that MT

RT
≪ MS

RTS
. The variation of the body’s kinetic

energy with respect to the Sun is neglected during the body’s
evolution from the Earth’s surface to the limit of the Earth’s
gravitational attraction zone.

Solution

(a) The eccentricity of the ellipse

The images of the Moon’s hemisphere in the two photos are approx-
imately the same as the image of the Moon’s hemisphere that we
see from Earth. Considering that the Moon always faces us with the
same face, we can conclude that when the two photos were taken,
the satellite was located at points approximately between Earth and
the Moon. The length of the diameter of the Moon image (d) on each
photo is proportional to the angle at which the Moon is seen from
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the satellite:

d ∼ α =
D

r
,

where D is the real diameter of the Moon, and r is the (variable)
distance from the satellite to the center of the Moon for the rest of
the month.

The equation of the ellipse, representing the trajectory of the
satellite around the Moon, in plane polar coordinates is:

r =
p

1 + e cos θ
; p = a(1− e2).

For the moments corresponding to the passage of the satellite through
the aposelenium and the periselenium respectively, it results that:

θ = 0; raposelenium = rmin = a(1− e);

θ = π; rperiselenium = rmax = a(1 + e).

If dP and dA are the diameters of the Moon images on the
two photos of the Moon taken when the satellite passed exactly
through the periselenium and the aposelenium, respectively, it follows
that:

dP
dA

=
αP

αA
=

D
rmin

D
rmax

=
rmax

rmin
=

1 + e

1− e
;

e =
1− dP

dA

1 + dP
dA

=
dA − dP
dA + dP

.

The photos were taken at moments close to the moments when the
satellite passed through the periselenium and aposelenium, respec-
tively, so the lengths of the diameters of the Moon images in the two
photographs are:

d1 ≈ dP; d2 ≈ dA.

Under these conditions, it results that:

e ≈ d1 − d2
d1 + d2

; d1 = 46.5mm; d2 = 40.5mm; e = 0.07.

Considering that the satellite’s orbit is more or less stable in space,
it will take about half a year to change from “full Moon at perisele-
nium” to “full Moon at aposelenium” (where the Sun is in opposition
to the Moon).
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(b) Stable Lagrange points

The stable internal Lagrange point, Lint, is the point between the
centers of the Moon and the Earth where the forces of gravitational
attraction exerted by the Earth and the Moon on a material point
with a negligible mass ensure its dynamic balance, the material point
being permanently in the same position compared to the Earth and
the Moon:

ω =

√

KME

r3EM
,

where ME is the mass of the Earth, rEM is the distance from the
Earth to the Moon, and K is the constant of universal attraction.

If x is the distance from the center of the Moon to the stable
internal Lagrange point, Lint, then, writing the equilibrium equation
of the motion of the material point located in the internally stable
Lagrange point, it results that:

K
mME

(rEM − x)2
−K

mMM

x2
= mω2(rEM − x);

K
ME

(rEM − x)2
−K

MM

x2
= ω2(rEM − x);

K
ME

r2EM

(

1− x
rEM

)2 −K
MM

x2
= ω2(rEM − x);

K
ME

r2EM

(

1− x

rEM

)−2

−K
MM

x2
= ω2(rEM − x);

x ≪ rEM;

(

1− x

rEM

)−2

≈ 1 + 2
x

rEM
;

K
ME

r2EM
+ 2K

ME

r3EM
x−K

MM

x2
= K

ME

r3EM
(rEM − x);

x = rEM
3

√

MM

3ME
; rEM = 384.400 km;

MM

ME
=

1

81.3
; x = 61.500 km.
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Under similar conditions, it is demonstrated that there is also a stable
external Lagrange point, Lext, also located in the direction of the
centers of the Moon and the Earth, but on the other side of the
Moon, at a distance y from its center, and rotating around the Earth
with the same angular velocity as the Moon, for which we have:

K
mME

(rEM + y)2
+K

mMM

y2
= mω2(rEM + y);

K
ME

(rEM + y)2
+K

MM

y2
= ω2(rEM + y);

K
ME

r2EM

(

1 + y
rEM

)2 +K
MM

y2
= ω2(rEM + y);

K
ME

r2EM

(

1 +
y

rEM

)−2

+K
MM

y2
= ω2(rEM + y);

y ≪ rEM;

(

1 +
y

rEM

)−2

≈ 1− 2
y

rEM
;

K
ME

r2EM
− 2K

ME

r3EM
y +K

MM

y2
= K

ME

r3EM
(rEM + y);

y = rEM
3

√

MM

3ME
= x.

Conclusion: The two stable Lagrange points are symmetrical about
the center of the Moon.

(c) Cosmic impact

Notation: �v1 — velocity of the meteorite before the collision with the

orbital station, v1 =
√

KM
R ; �v2 — velocity of the meteorite before

the collision with the orbital station; �v — speed of the assembly after
the collision. According to the law of conservation of momentum,
based on Figure 1.1, it results that:

m1�v1 +m2�v2 = (m1 +m2)�v;

v =

√

m2
1v

2
1 +m2

2v
2
2

m1 +m2
.
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M 

R 

Fig. 1.1

After the collision, the assembly will evolve on an ellipse with the cen-
ter of the Moon in its focus, so that when the assembly has reached
the minimum distance from the center of the Moon, rmin = R/2,
its speed will be �vmax. For this, in accordance with the law of con-
servation of mechanical energy and Kepler’s second law (the law of
conservation kinetic momentum), it results that:

(m1 +m2)v
2

2
−K

(m1 +m2)M

R

=
(m1 +m2)v

2
max

2
−K

2(m1 +m2)M

R
;

v2

2
−K

M

R
=

v2max

2
−K

2M

R
;

v2 = v2max − 2
KM

R
;

(m1 +m2)�v × �R = (m1 +m2)�vmax × �rmin;

v1R = vmaxrmin = vmax
R

2
; vmax = 2v1 = 2

√

KM

R
;

v =

√

2
KM

R
=

√

m2
1v

2
1 +m2

2v
2
2

m1 +m2
;
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2KM

R
=

m2
1
KM
R +m2

2v
2
2

(m1 +m2)2
;

v2 =

√

2KM

R

(

m1

m2
+ 1

)2

−
(

m1

m2

)2 KM

R
.

(d) The third cosmic velocity

(1) Let �vp be the velocity, relative to the Sun, of the body C at
the time of its launch from the Earth, so that the body reaches the
limit of the Sun’s gravitational attraction zone and is there at rest
in relation to the Sun. Using the details in Figure 1.2, according to
the law of conservation of mechanical energy, it results that:

RT ≪ RTS;

mv2p

2
−K

mMT

RT
−K

mMS

RTS
= 0;

MT

RT
≪ MS

RTS
;

Sun 

Earth 

C 

RTS 

The body at the limit of the 
gravitational attraction 

zone of the Sun  

Fig. 1.2
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mv2p
2

−K
mMS

RTS
= 0;

vp =
√
2

√

K
MS

RTS
;

√

K
MS

RTS
= vTS = Vorbital = V0,

representing the orbital speed of the Earth on its circular path around
the Sun;

vp =
√
2V0,

representing the second cosmic velocity in relation to the Sun
(parabolic speed);

RTS ≈ 1.5 · 108 km; TTS = 1 year;

V0 =
2πRTS

TTS
≈ 30

km

s
; vp ≈ 42.42

km

s
.

Conclusion: The body launched from Earth follows a parabolic
trajectory — relative to the Sun — and reaches the outer boundary
of the Sun’s gravitational influence, with the Sun located at the focus
of the parabola.

(2) Let �v be the speed, relative to the Earth, of the body C at the
time of its release from the Earth, so that the body reaches the limit
of the gravitational attraction zone of the Sun and is there at rest in
relation to the Sun.

This escape velocity, �v, will have the minimum value when its
orientation is the same as the orientation of the vector representing
the speed of the Earth in relation to the Sun, �V0.

As a result, at the limit of the zone of gravitational attraction
of the Earth, before reaching the limit of the zone of gravitational
attraction of the Sun, the velocity of the body relative to the Earth,
�v∞, will not be null, v∞ �= 0. In these conditions, relative to the
Earth, in accordance with the law of conservation of mechanical
energy, it results that:

mv2

2
−K

mMT

RT
=

mv2∞
2

;
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v2∞ = v2 − 2K
MT

RT
;

√

K
MT

RT
= vorbital = v0 = 7.9

km

s
,

representing the orbital speed of the body if it were to evolve in a cir-
cle around the Earth at very low altitude (the first cosmic velocity);

v2∞ = v2 − 2v20 ; v∞ =
√

v2 − 2v20 ,

representing the body’s speed in relation to the Earth at the limit of
the Earth’s gravitational attraction zone.

Conclusion: The body launched from Earth follows a hyperbolic
trajectory—relative to the Earth—and reaches the boundary of
Earth’s gravitational influence, with Earth’s center located at the
focus of the hyperbola.

(3) Let �vCS∞ be the speed of the body C in relation to the Sun at
the limit of the Earth’s gravitational attraction zone:

�vCS∞ = �v∞ + �vTS = �v∞ + �V0,

where the orientations of the vectors �v∞ and �V0 must be identical;

vCS∞ = v∞ + V0 =
√

v2 − 2v20 + V0.

(4) The variation of the body’s kinetic energy in relation to the Sun
during the body’s evolution from the Earth’s surface to the limit of
the Earth’s gravitational attraction zone being negligible, in accor-
dance with the law of conservation of mechanical energy, it results
that:

vCS∞ ≈ vp =
√
2V0;

√
2V0 =

√

v2 − 2v20 + V0;

v =

√

(
√
2− 1)2V 2

0 + 2v20 ≈ 16.7
km

s
,

representing the speed in relation to the Earth of the body C at the
moment of its release from the Earth, so that the body reaches the
limit of the gravitational attraction zone of the Sun and is there at
rest in relation to the Sun (the third cosmic velocity).
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Problem 2. Cylinder in a Vertical Guide

A vertical cylinder, having the plane of its lower base inclined to the
vertical with an angle α, can slide without friction in a vertical guide,
resting on a horizontal cylinder, with the same mass, m, located on
a horizontal support (see Figure 2.1). The sliding friction coefficient
between the two cylinders is µ.

(a) Determine the accelerations of the two cylinders, the coefficient
of friction between the horizontal cylinder and its support, and
the acceleration of one of the tangent points between the two
cylinders in relation to the vertical cylinder, if the horizon-
tal cylinder does not roll. The gravitational acceleration, g, is
known. Initially, the elements of the system are at rest.

(b) After traveling a distance d, the vertical cylinder encounters an
obstacle. At that moment, the horizontal cylinder enters the hor-
izontal platform of a cart of massM at rest, and a rigid, homoge-
neous, very thin rod engages with the horizontal cylinder along
the generator which was in contact with the vertical cylinder.

Determine the mass of the rod and the length of the trolley
platform if the cylinder moved without rolling along the entire
path and stopped at the opposite end of the platform. The coef-
ficient of friction on the platform is that previously determined.
The movement of the trolley on its support occurs without fric-
tion.

(c) Having reached the end of the platform, the cylinder is fixed,
and the rod on its generator disengages and begins to slide, by
translation and without friction, on the surface of the cylinder.

Determine the speed of the rod in relation to the cylinder at
the moment of their separation if the vertical displacement of
the rod until the moment of separation is ∆h. We know that R
is the radius of the cylinder.

Particular case: M+m >> mrod.

Solution

(a) The forces acting on the elements of the fund system are those
represented in the drawing in Figure 2.2. It results that:
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Fig. 2.1

Fig. 2.2
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m1 = m; m2 = m;

m2�a2 = �G2 + �N2 + �Ff2 +
�N ′ + �N ′′;

ma1 = N2(cosα− µ sinα)− µ′N1;

0 = N2(sinα+ µ cosα) +mg− N1;

µN2 = µ′N1;

ma2 = mg− N2(sinα+ µ cosα).

Fig. 2.3

If the relationship between the accelerations a1 and a2 deduced
from Figure 2.3 is added to these equations, it results that:

d1 =
a1t

2

2
; d2 =

a2t
2

2
;

a1 = a2tg α;

N2 =
mg sinα

1− µ cosα
;

a2 =
g cosα(cosα− µ− µ sinα)

1− µ cosα
;

a1 =
g sinα(cosα− µ− µ sinα)

1− µ cosα
;
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N1 =
mg(1 − µ cosα+ sinα)

1− µ cosα
;

µ′ =
µ sinα

1− µ cosα+ sinα
.

If the movements of the system elements are uniform, it means that
a1 = 0 and a2 = 0. As a result, we have:

µ =
cosα

1 + sinα
;

µ′ =
sinα cosα

1 + sinα+ 2 sin2 α
.

For the distance traveled in time t by one of the points of tangency
between the two cylinders, we can write the expression

d =
at2

2
,

where a is the acceleration of this point relative to the vertical
cylinder.

From Figure 2.3, it follows that:

a =
a1

sinα
=

a2
cosα

;

a =
g(cosα− µ− µ sinα)

1− µ cosα
.

(b) Immediately after the separation of the two cylinders, when
the forces acting on the horizontal cylinder are those represented
in Figure 2.4, it results that:

N = (m+m0)g; Ff = µ′N;

m0 cosα = µ′(m0 +m);

m0 =
µ′m

cosα− µ′
;

m0 =
µm sinα

cosα(1− µ cosα) + sinα(cosα− µ)
.

In the drawing, �a0 is the braking acceleration of the horizontal cylin-
der immediately after separation, and �v0 is speed of the horizontal
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Fig. 2.4

cylinder at the moment of separation. It is easy to prove that

v0 =
√

2a2d tg α.

In Figure 2.5, �ac is the acceleration of the cart relative to the ground,
�a0 is the acceleration of the cylinder relative to the ground, �ar is the
acceleration of the cylinder relative to the cart, �v0 is the speed of
the cylinder relative to the cart/ground at the moment of entering
the trolley, and l is the length of the trolley platform. It results that:

Ff = µ′(m+m0)g = Mac; a0 = µ′g;

ar = −(a0 + ac);

l =
−v20
2ar

;

ar = −µ′g

[

1 +
m

M

1 + µ sinα

cosα(1− µ cosα) + sinα(cosα− µ)

]

.

Fig. 2.5
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(c) When the horizontal cylinder has reached the opposite end of
the platform and is at rest relative to it, the speed of the assembly
relative to the ground is:

v = acto,

where t0 is the duration of the movement of the cylinder in relation
to the platform;

to = −v0
ar

;

v = v0
ac

a0 + ac
.

(a)

(b)

Fig. 2.6

In drawing (a) in Figure 2.6, �v is the speed of the cart–cylinder–
rod assembly, in relation to the ground, at the moment of release of
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the rod from the horizontal cylinder generator. In drawing (b) in the
same figure, �v1 is the speed of the cart–cylinder assembly relative to
the ground at the moment of separation of the rod from the cylinder,
�v2 is the speed of the rod in relation to the ground at the moment
of separation from the cylinder, and �vr is the speed of the rod in
relation to the cylinder at the moment of separation.

Using the laws of conservation of mechanical energy and momen-
tum, knowing that the system is isolated only in the horizontal direc-
tion, it results that:

(M +m+m0)v2
2

+m0g∆h =
(M +m)v21

2
+

m0v
2
2

2
,

where ∆h is the vertical displacement of the rod,

∆h = R(sinα− cos θ);

(M +m+m0)v = (M+m)v1 −m0v2x,

where �v2x is the horizontal component of �v2;

�vr = �v2 − �v1;

�v2 = �vr + �v1,

where �vr is tangent to the surface of the cylinder;

v2x = vr cos θ − v1;

(M+m+m0)v = (M +m+m0)v1 −m0vr cos θ;

v1 = v +
m0vr cos θ

M +m+m0
;

v22 = v2r + v21 − 2vrv1 cos θ;

v2r =
2gR(sinα− cosα)

1− m0 cos2 θ
M+m+m0

.

v2r =
2g∆h

1− m0

M+m+m0

(

sinα+ ∆h
R

)2
.

Particular case: M+m >> m0; vr =
√
2g∆h.
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Problem 3. Rarefied Gases

In two compartments of the same container, with volumes V1 and V2,
rarefied oxygen is present at the same pressure, with temperatures
T1 and T2 > T1, respectively.

(a) Determine the gas pressures in the two compartments after
opening a hole in the dividing wall, if there are Vo moles of gas
in the entire container, and the temperatures of the two com-
partments are kept constant. The universal constant of perfect
gases, R, is known.

Inside a vessel containing a very rarefied gas made up of iden-
tical molecules, there is a horizontal, homogeneous plate of mass
M whose face has an area of S, supported by four identical, very
light springs, each with the elasticity constant k, above another
plate, fixed in a horizontal position (Figure 3.1). The length of
each spring in the undeformed state is lo. The temperature of
the walls of the container and the plate are kept constant, T1,
and the temperature of the bottom plate is kept constant, T2.

(b) Determine the gas pressure in the container if T1 < T2 and the
distance between the plates is d. The gravitational acceleration
is known as g.

It will be considered that the molecules of a rarefied gas have
a single speed, represented by the average thermal speed, at a
given temperature.

The balance of some rarefied gases assumes the equality of the
molecular flows, in both directions, between one compartment
and another compartment.

Fig. 3.1
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Solution

(a) Gases manifest their kinetic-molecular nature when they are
very rarefied; in these conditions, there are no collisions between
molecules. Under normal conditions, at appreciable gas densities,
the balance means the equality of the pressures in the communi-
cating compartments due to the flow of the gas as a homogeneous
medium from the higher-pressure compartment to the lower-pressure
compartment.

In conditions of advanced rarefaction, the balance means the
equality of the number of molecules that transit from one compart-
ment to the other compartment in a unit of time through the com-
municating section.

Using the previous result, we know that the number of molecules
that cross a unit area of a section per unit time is

d =
∆Z

∆S∆t
=

1

6
nvT .

Conclusion: The molecular flow rate, d, is directly proportional to
n and vT .

Using Figure 3.2, let’s first evaluate the molecular flow rates
immediately after opening the hole in the partition wall.

It results that:

d0;1→2∼n01
vT1

∼ p

kT1

√

3RT1

µ
∼ p

k

√

3R

µT1
;

d0;2→1∼n02vT2
∼ p

kT2

√

3RT2

µ
∼ p

k

√

3R

µT2
;

T2 > T1; d0;1→2 > d0;2→1.

Fig. 3.2
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Conclusion: Although the pressures in the two compartments are
equal, with the gases being very rarefied, there will be a net trans-
fer of molecules (of gas) from the cold compartment to the hot
compartment.

To calculate the pressures in the two compartments at the
moment of equilibrium, according to Figure 3.3, it follows that:

Fig. 3.3

d1→2∼n1vT1
∼ p1

kT1

√

3RT1

µ
∼ p1

k

√

3R

µT1
;

d2→1∼n2vT1
∼ p2

kT2

√

3RT2

µ
∼ p2

k

√

3R

µT2
;

d1→2 = d2→1;

p1√
T1

=
p2√
T2

; T1 < T2; p1 < p2;

n1kT1√
T1

=
n2kT2√

T2
; n1

√

T1 = n2
√

T2;

N1

V1

√

T1 =
N2

V2

√

T2;

N1 +N2 = N01 +N02 = N0;

N1 =
N0

1 + V2

V1

√

T1

T2

; N2 =
N0

1 + V1

V2

√

T2

T1

;

p1 = n1kT1 =
N0kT1

√
T2

V1

√
T2 + V2

√
T1

;

p2 = n2kT2 =
N0kT2

√
T1

V1

√
T2 + V2

√
T1

;
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p1 =
ν0RT1

√
T2

V1

√
T2 + V2

√
T1

;

p2 =
ν0RT2

√
T1

V1

√
T2 + V2

√
T1

.

(b) The number of molecules that arrive during ∆t in a cylindrical,
normal beam on a surface with area ∆S is

∆Z =
1

6
vTn∆S∆t,

where n is the concentration of molecules, and vT is the quadratic
velocity of the molecules.

The molecular flux (the number of molecules crossing the unit
area per unit time) is

Φ =
∆Z

∆S∆t
=

1

6
nvT .

The gas between the plates is a mixture composed of two gases:
a component whose molecules have an average thermal velocity
vT1

, corresponding to the temperature T1, and a component whose
molecules have an average thermal velocity vT2

, corresponding to the
temperature T2.

It results that:

pi =
1

3
n1mv21 +

1

3
n1mv22;

pi =
1

3
n1mv2T1

+
1

3
n1mv2T2

.

From the equality of the flows through the lateral faces of the paral-
lelepiped, as well as between the plates, it follows that:

nvT1
= n1vT1

+ n2vT2
,

nvT1
= n2vT2

,

n1 =
1

2
n;

n2 =
1

2
n
vT1

vT2

=
1

2

√

T1

T2
;
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pi =
pe
2

(

1 +

√

T2

T1

)

; T1 < T2; pi > pe.

From the condition of mechanical balance, for the upper plate, it
follows that:

G = F+ 4Fe;

Mg = (pint − pext)S+ 4k(l0 − d);

Mg =
(pext

2

)

(

√

T2

T1
− 1

)

S+ 4k(l0 − d);

pext =
2[Mg − 4k(l0 − d)]

(√

T2

T1
− 1

)

S
;

pint =
pext
2

(

1 +
T2

T1

)

;

pint =
Mg − 4k(l0 − d)
(√

T2

T1
− 1

)

S

(

1 +

√

T2

T1

)

.

Problem 4. Eddy Electric Field

A long cylindrical solenoid, with radius R, having N turns per unit
length, is traversed by a current of intensity I. On the same axis as
the solenoid is a cylinder with radius r < R and length h, as shown in
Figure 4.1(a). The inner cylinder, at rest, carrying on its outer surface
the electric charge g, uniformly distributed, is very light, being made
of a thin sheet of paper.

(a) (b)

Fig. 4.1
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(a) Justify the rotational movement acquired by the inner cylinder
and specify the direction of this rotation in relation to the direc-
tion of the current through the solenoid coils when the intensity
of the current in the solenoid coils increases by n times. Deter-
mine the angular velocity of the inner cylinder. Analyze the sce-
nario in which the intensity of the current in the solenoid coils
decreases by n times. In both scenarios, it will be assumed that
q > 0 and q < 0. Air viscosity is neglected.

(b) Analyze, under the same conditions, the scenario r > R.
(c) Two very light, coaxial cylinders with radii R and r < R,

made of a thin sheet of paper, are lying at rest as shown in
Figure 4.1(b). They are electrified uniformly, with charges of the
same sign and identical surface charge densities. The outer cylin-
der begins to rotate with uniform acceleration until its angular
speed becomes Ω.

Explain the rotational movement acquired by the inner cylin-
der, specifying the direction of this rotation in relation to the
direction of the outer cylinder’s rotation, and determine the
angular velocity of the inner cylinder.

Analyze, under the same conditions, the scenario in which the
inner cylinder is rotated. In both scenarios, the following con-
ditions will be considered: the loads of the cylinders are of the
same sign; the cylinder loads are of different signs. Air viscosity is
neglected.

Hint : A variable magnetic field generates an “eddy” electric
field, whose field lines are closed curves, the direction of which
is correlated with the direction of the field lines of the variable
magnetic field, as indicated in Figure 4.2 (reverse drill rule: the
direction of the electric field lines is the direction of rotation
of the drill, so that it advances in the opposite direction with
respect to the direction of ∆ �B).

Solution

(a)When the intensity of the current through the coils of the solenoid
increases, the induction of the uniform magnetic field inside the
solenoid is variable (increases). This causes the appearance (in the
same region) of an electric field whose field lines are closed circles
around the magnetic field lines, with their center lying on the solenoid
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Increase in magnetic field Diminution in magnetic field

Fig. 4.2

axis. Their direction is illustrated in Figure 4.3, where the electric
field line at the cross-section level of the electrified inner cylinder is
represented, as well as the electric field intensity vector at different
points on the field line ( �E).

Fig. 4.3

Under these conditions, on each elementary sector on the surface
of the paper cylinder, carrying the positive elementary electric charge
∆q, will exert one force �F = �E∆q, explaining the direction of rotation
of the electrified inner cylinder inside the solenoid when the intensity
of the current through its coils increases.

Figure 4.4 illustrates the direction of rotation of the inner cylinder
for the proposed scenarios.

The variation of the magnetic induction inside the solenoid, as a
result of the variation of the current intensity through the coils of
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Diminution in magnetic
field

Increase in magnetic field

Increase in magnetic field Diminution in magnetic
field

Fig. 4.4

the solenoid, is:

∆Bsolenoid = µ
Ntotal∆Isolenoid

l
;

Ntotal = Nl; ∆Isolenoid = (n− 1)I;

∆Bsolenoid = (n− 1)µNI,

so that the variation of the magnetic flux through the inner cylinder,
due to the variation of the current intensity through the coils of the
solenoid, is

∆Φinductor = πr2∆Bsolenoid = πµr2NI(n− 1).

From the moment the electrified inner cylinder starts to rotate, it is
equivalent to a solenoid, having only one “wide” coil, through which
an evenly distributed electric current will pass, whose intensity, when
the angular velocity of the cylinder is ω, has the value

I0 =
q

T
=

qω

2π
,
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so that the magnetic induction at a point inside the cylinder is

Bcylinder = µ
I0
h

= µ
qω

2πh
.

As a result, the variation of the magnetic induction inside the cylin-
der is

∆Bcylinder = Bcylinder − 0 = µ
qω

2πh
,

so that the variation of the magnetic flux through the inner cylinder,
due to its rotation, is

∆Φinduced = πr2∆Bcylinder = µ
r2qω

2h
.

Since the inner cylinder is very light, the two magnetic fluxes must
be equal for energy reasons.

It results that:

∆Φinductor = ∆Φinduced;

ω =
2πNIh(n − 1)

q
.

Similarly, when the intensity of the current in the solenoid’s coils
decreases by n times, it turns out that

ω =
2π(n− 1)hNI

nq
.

(b) If r > R, as Figure 4.5 indicates, then we can assume that the

drawing in Figure 4.3 also depicts the eddy electric field line at the
level of the transverse section of the electrified cylinder when it is
outside the solenoid (r > R), the reasoning remaining the same.

As a result, if the working conditions are maintained (the same
direction of the current through the coils of the solenoid, the same
variation of the intensity of the current through the solenoid, the
same electrical load of the cylinder), the direction of rotation of the
electrified cylinder is the same, regardless of the scenario: r < R or
r > R.

For the four possible scenarios, the direction of rotation of the
external electrified cylinder can be established by adapting the
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Fig. 4.5

sequences from Figure 4.4 and simply changing the positions of the
two circles.

If, from a qualitative point of view, the process is the same in
both scenarios (r < R; r > R), the angular momentum gained by
the electrified cylinder cannot be the same in both scenarios.

Indeed, since the magnetic field induction of the solenoid is very
small around the solenoid, it follows that, in the scenario r > R,
we must admit that the magnetic flow varies through the external
electrified cylinder due to the varying intensity of the current in the
solenoid, which corresponds only to the transverse section of the
solenoid, so

∆Φinductor = πR2∆Bsolenoid = πµR2NI(n− 1).

Well-known reasoning leads us to the variation of the magnetic flux
through the outer electrified cylinder:

∆Φinduced = πr2∆Bcylinder = µ
r2qω′

2h
.

So, it results that:

∆Φinductor = ∆Φinduced;

ω′ =
2πNIh(n − 1)

q

R2

r2
; R < r;

ω′ = ω
R2

r2
; ω′ < ω.

Similarly, when the current intensity in the coils of the solenoid
decreases by n times, it results that:

ω′ =
2π(n − 1)hNI

nq

R2

r2
< ω.
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(c) If the external electrified cylinder is in rotational motion with
angular velocity Ω, then it is equivalent to an electric current having
the intensity

I =
q

T
=

σ2πRl
2π
Ω

= σRlΩ,

uniformly distributed in a single “wide” circular coil, equivalent to
a solenoid having a large number of coils arranged closely along its
entire length so that the intensity of the current through each coil is

I1 =
I

Ntotal
.

This equivalence is indicated in Figure 4.6, so that the induction of
the magnetic field inside the equivalent solenoid (inside the rotating
electrified outer cylinder) is

B = µ
NtotalI1

l
=

µI

l
= µσRΩ.

(a) (b)

Fig. 4.6

In these conditions, the variation of the induction of the magnetic
field inside the electrified outer cylinder throughout its accelerated
rotation, starting from rest, is

∆B = B = µσRΩ,

where σ is the density of the superficial electric charge, and the vari-
ation of the magnetic flux through the inner electrified cylinder, due
to the accelerated rotation of the outer electrified cylinder, is

∆Φinductor = πr2∆B = πσr2RΩµ.

As we already know, the variable (increasing) magnetic field inside
the outer cylinder causes the appearance in the same region of an
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eddy electric current that will rotate the inner electrified cylinder
(as indicated in Figure 4.3 for the previously analyzed case). As a
result, based on the equivalence of the two systems represented in
Figure 4.6, the motion of the inner cylinder, indicated by the first
arrow in Figure 4.4, occurs in the opposite direction to the direction
of rotation imposed on the outer cylinder (the vectors �ω and �Ω have
opposite directions).

From the moment the electrified inner cylinder starts spinning, it
is equivalent to an electric current with the intensity

I0 =
q0

T0
=

σ2πrl
2π
ω

= σrlω,

uniformly distributed in a single, “wide” circular coil, which is equiv-
alent to a solenoid with a large number of coils closely arranged along
its entire length so that the current intensity through each coil is

I ′0 =
I0

Ntotal
,

and the self-magnetic induction at a point inside the small cylinder is

B′ = µ
N ′

totalI
′

0

l
=

µI ′0
l

= µσrω.

In these conditions, throughout the accelerated drive of the inner
cylinder, the variation of its magnetic induction is

∆B′ = B′ − 0 = µσrω,

and the variation of its magnetic flux through the inner cylinder is

∆Φinduced = πr2∆B′ = πµr3σω.

For energy reasons, because the inner cylinder is very light, the two
variations of the magnetic fluxes are equal, so it results that

ω =
R

r
Ω > Ω.

Let us now assume that the electric charge of the inner cylinder is
negative. In this case, shown in the bottom left diagram in Figure 4.4,
the inner cylinder rotates in the same direction as the outer cylinder,
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the angular velocity values remaining in the previously established
relationship. Let us now consider the rotation imposed on the inner
cylinder with angular velocity �Ω. Based on its equivalence with the
solenoid represented in Figure 4.7, the outer cylinder gains a rotary
movement in the opposite direction.

(a) (b)

Fig. 4.7

Repeating the reasoning presented previously, it follows that

ω =
r3

R3
Ω < Ω.

In this case, if the outer cylinder’s electric charge is negative, it will
acquire a rotational movement in the same direction as the inner
cylinder.

Problem 5. Astronomical Refraction

The light traveling from a star σ through the interstellar vacuum
towards Earth propagates in a straight line until the upper limit of
the Earth’s atmosphere (Figure 5.1).

Let us admit that the Earth is spherical and that the atmosphere
around it is made up of concentric, very thin, homogeneous spherical
layers whose density increases uniformly when the altitude decreases,
so that the refractive index of the atmospheric air, dependent on
its density (and hence dependent on its temperature and pressure)
increases from the value 1 (corresponding to the upper limit of the
atmosphere) to the average value 1.00029255 (corresponding to the
observation point at the base of the lower air layer, at a temperature
of 0◦C and a pressure of 1 atm).

Under these conditions, respecting the laws of refraction, the light
ray entering the Earth’s atmosphere will describe a flat curve to
reach the eye of the observer, who will see the star in an apparent
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Fig. 5.1

position σ′, in the direction tangent to the light ray at the observation
point.

The angle ρr formed by the initial direction of the light ray (before
entering the Earth’s atmosphere) with the tangent to the light ray
at the point of observation is called astronomical refraction.

If z0 is the true zenithal distance of the star, and z is its observed
(apparent) zenithal distance, then ρr = z0 − z.

Therefore, the value of the astronomical refraction (the value of
the angle ρr) fulfills the role of a correction which, applied to the
value of the apparent zenith distance (z, determined directly from
astronomical observations), allows one to determine the value of the
true zenith distance of the star.

The method for determining the value of a star’s refraction cor-
rection depends on the value (small or large) of its apparent zenithal
distance.

(a) Determine the correction ρr for stars with a small apparent
zenithal distance, assuming that the layers of air, with different
densities and refractive indices, through which the light beam
passes are flat and parallel, as shown in Figure 5.2, which repre-
sents two neighboring layers of air with different but very close
constant refractive indices, n, and n+ dn, so that dn < 0.
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Astronomical refraction for stars 
with small apparent zenithal 

distance, z 

Fig. 5.2

(b) Determine the correction ρr for stars with a large apparent
zenithal distance, assuming that the layers of air surrounding the
Earth are spherical, as shown in Figure 5.3, which represents two
neighboring spherical layers of air with different but very close
constant refractive indices, n and n + dn, where dn < 0, and
with radii r and r + dr, respectively, where dr > 0.

Astronomical refraction for large 
apparent zenithal distance, z 

Fig. 5.3
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The result of the “refraction integral” is known:
∫ nO

1

1
√

(

nr
nOR

)2
− sin2 z

dn

n
.

Solution

(a) Following a linear path in each of these layers of air, the light
ray is refracted at the boundary between them, respecting the laws
of refraction:

sin(i+ di)

sin i
=

n

n+ dn
;

n sin i = (n+ dn) sin(i+ di).

This relation, when applied (written) according to the same proce-
dure for the neighboring layers, starting from the entrance of the
light beam into the atmosphere (coming from the cosmic vacuum,
for which n = 1, under an incidence angle i = z0) and up to the
ground level (where n = nO, and i = z), leads to:

sin z0 = nO sin z;

sin(z + ρr) = nO sin z;

sin z cos ρr + cos z sin ρr = nO sin z;

cos ρr ≈ 1; sin ρr ≈ ρr,

because the angle ρr is very small;

ρr = (nO − 1)tgz;

ar = nO = −1;

ρr = artgz.

This relation allows the calculation of the astronomical refraction
correction, ρr, for a star whose measured apparent zenith distance
is z, knowing the astronomical refraction constant of the observation
site (ar).
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Under these conditions, the true zenithal distance of the star is

z0 = z + artg z.

(b) Following a linear path in each of these layers of air, the light ray
refracts at the limit between them, respecting the laws of refraction:

sin(i+ di)

sin(i dθ)
=

n

n+ dn
.

In addition, from ∆ABT, with the help of the sine theorem, it follows
that:

r + dr

sin i
=

r

sin(i dθ)
;

(n+ dn)(r + dr) sin(i+ di) = nr sin i,

a relationship that we interpret as representing an “optical invariant”
of the light ray on its way through the atmosphere, so

nr sin i = constant.

The value of this constant is determined by the specifying the invari-
ant at the point of observation, where:

n = nO; r = R; i = z,

so that the invariant of the light ray that crosses the Earth’s atmo-
sphere, under the specified conditions, is

nr sin i = nOR sin z.

Logarithmically differentiating (logarithm + differentiation) the pre-
vious expression results in

dn

n
+

dr

r
+ ctg idi = 0.

Points A and B, being very close, imply that dθ and dr are very
small, the direction of the segment AB coincides with the direction
of the tangent to the light ray at point A, and the sector ACB can
be assimilated to a right triangle. From this, it results that

tg i =
(r + dr)dθ

dr
≈ rdθ

dr
.
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If ζ is the angle formed by the tangent to the light ray at point A and
the vertical of the place of observation, then, from AADT, it results
that

ζ = θ + i.

Thus, using the previous relations, it results that:

dζ = dθ + di;

dζ = −dn

n
tg i,

representing the differential equation of astronomical refraction.
Noting now that if point A coincides with the point where the light

ray enters the atmosphere when ζ = z0, and if point A coincides with
the observation point O on the ground when ζ = z, then integrating
the previous expression for limits corresponding to the two points
results in:

∫ z0

z
dζ = −

∫ 1

nO

dn

n
tg i = z0 − z = ρr;

sin i =
nOR sin z

nr
;

cos i =

√

1− n2
OR

2sin2 z

n2r2
;

ρr = sin z

∫ nO

1

1
√

(

nr
nOR

)2
− sin2 z

dn

n
.

This relationship allows the calculation of the astronomical refraction
correction ρr for a star whose measured apparent zenith distance is z,
knowing the value of the “refraction integral.”

Problem 6. A Relativistic Rocket

From the classical study of the dynamics of a material point with
variable mass, it is known that, in a field of external forces �Fext,
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the equation of motion of a material point with a variable mass
(Mescerscki–Levi-Civita equation) is:

m
d�v

dt
= �Fext + �vrel

dm

dt
,

where m and �v are the mass and the velocity, respectively, of the
material point at time t, and �vrel is the speed, relative to the mate-
rial point, of the particles captured or expelled by the material
point;

�vrel = �u− �v,

where �u is the absolute velocity of the particles captured or expelled
by the material point.

Let us now assume that the relativistic material point with a
variable (decreasing) mass is the rocket represented in Figure 6.1, to
which the mobile system O′X′Y′Z′ is attached, whose speed, relative
to the observer O in the fixed system XYZ at time t, is �v.

Clarification: In relativistic conditions, �vrel = �u−�v is not identified
with the relative velocity �u′.

Fig. 6.1

At the initial moment, the absolute speed of the rocket was �v0,
and the initial rest mass of the rocket (in the rocket system) was M ′.
Determine the mass of the rocket (expressed in the rocket system),
after part of the fuel has burned, when the absolute speed of the
rocket is �v, and u′ = constant is the speed of the ejected particles
relative to the mobile system. The presence of any external forces
will be neglected.

Particular case: v0 = 0; v ≪ c; u′ = c.
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Solution

If the initial absolute velocity of the rocket was �v0, and the initial rest
mass of the rocket (in the rocket system) was M ′, then, after some
of the fuel has burned and the absolute velocity of the rocket is �v,
the rest of the mass of the rocket (in the rocket system) is m ′ (the
next variable), so that, at time t, the mass of the rocket in relation
to the observer O is

m =
m′

√

1− v2

c2

.

If the absolute speed of the ejected particles at the time t is �u, then, in
the absence of external forces, the equation of the rocket’s motion is:

m
dv

dt
= −(u+ v)

dm

dt
;

m′

√

1− v2

c2

dv

dt
= −(u+ v)

d

dt

⎛

⎝

m′

√

1− v2

c2

⎞

⎠ ;

d

dt

⎛

⎝

m′

√

1− v2

c2

⎞

⎠ =
1

√

1− v2

c2

dm′

dt
+

m′

c2
v

(

1− v2

c2

)3/2

dv

dt
;

m′

1− v2

c2

(

1 +
uv

c2

) dv

dt
= −(u+ v)

dm′

dt
.

Considering the relativistic velocity composition rule, it follows that:

�u′ =
�u− �v

1− �u�v
c2

; u′ =
u+ v

1 + uv
c2

,

where u′ is the speed of the ejected particles with respect to the
mobile system (u′ = constant);

m′
dv

dt
= −u′

(

1− v2

c2

)

dm′

dt
;

dm′

m′
= − dv

u′
(

1− v2

c2

) < 0,
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because during the flight of the rocket, its mass is decreasing (mean-
ing that the variation in the mass of the rocket is dm′ < 0);

1

1− v2

c2

=
1

2

1

1− v
c

+
1

2

1

1 + v
c

;

dm′

m′
= − 1

2u′
dv

1− v
c

− 1

2u′
dv

1 + v
c

.

From this, by integration, it results that:

∫ m′

M ′

dm′

m′
= − 1

2u′

[
∫ v

v0

dv

1 + v
c

+

∫ v

v0

dv

1− v
c

]

;

ln
m′

M ′
= − c

2u′

[

ln
(

1 +
v

c

)

∣

∣

∣

∣

∣

v

v0

− ln
(

1− v

c

)

∣

∣

∣

∣

∣

v

v0

]

;

ln
m′

M ′
= − c

2u′

[

ln
1 + v

c

1− v
c

− ln
1 + v0

c

1− v0
c

]

;

ln
m′

M ′
= − c

2u′
ln

(

1 + v
c

) (

1− v0
c

)

(

1− v
c

) (

1 + v0
c

) ;

m′ = M ′

[

(

1 + v
c

) (

1− v0
c

)

(

1− v
c

) (

1 + v0
c

)

]

−c/2u′

.

In particular, if the acceleration of the rocket starts from rest
(v0 = 0), it results that

m′ = M ′

(

1 + v
c

1− v
c

)

−c/2u′

,

and for low speeds (v ≪ c), we have:

1 + v
c

1− v
c

=
(

1 +
v

c

)(

1− v

c

)

−1
≈ 1 + 2

v

c
;

m′ = M ′

[

(

1 +
2v

c

)
c
2v

]

−v/u′

;
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lim
n→∞

(

1 +
1

n

)n

= e;

m′ = M ′e−v/u′

.

This relation is known from the study of non-relativistic rockets.
Note: If the relativistic rocket is photonic, for which u′ = c, it

results that:

m′ = M ′

(

1 + v
c

1− v
c

)

−1/2

.

Problem 7. Relativistic Collision

Two atoms, with rest masses m01 and m02, moving rectilinearly and
uniformly with the relativistic velocities �v1 = v1x�i and �v2 = v2x�i +
v2y�j, respectively, where�i and �j are the vertices of the perpendicular
axes OX and OY, respectively, collide at a certain moment and form
a molecule, considered a material point.

Determine the speed and rest mass of the molecule.
Particular case: �v2 = −v2x�i and m1�v1x = −m2�v2x, where m1 and

m2 are the moving masses of the two atoms, and c is known.

Solution

Figure 7.1 represents the two atoms before the collision, as well as
the molecule resulting from their collision.

The interaction of the two atoms occurs in compliance with the
laws of conservation of momentum and total energy, in the relativistic
form.

From the momentum conservation law, in projections on the two
axes, it follows that:

m1v1x +m2v2x = mvx;

m01v1x
√

1− v21x
c2

+
m02v2x

√

1− v22x+v22y
c2

=
m0vx

√

1− v2x+v2y
c2

,
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Fig. 7.1

where m0 is the rest mass of the resulting molecule;

m2v2y = mvy;

m02v2y
√

1− v22x+v22y
c2

=
m0vy

√

1− v2x+v2y
c2

.

From the law of conservation of total energy, it follows that:

m1c
2 +m2c

2 = mc2;

m1 +m2 = m;

m01
√

1− v21x
c2

+
m02

√

1− v22x+v22y
c2

=
m0

√

1− v2x+v2y
c2

.

Solving the system formed by the previous three equations, it results
that:

vx =

m01v1x
√

1−
v2
1x
c2

+ m02v2x
√

1−
v2
2x

+v2
2y

c2

m01
√

1−
v2
1x
c2

+ m02
√

1−
v2
2x

+v2
2y

c2

;

vy =

m02v2y
√

1−
v2
2x

+v2
2y

c2

m01
√

1−
v2
1x
c2

+ m02
√

1−
v2
2x

+v2
2y

c2

;
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m0 =

⎡

⎣

m01
√

1− v21x
c2

+
m02

√

1− v22x+v22y
c2

⎤

⎦

×

⎡

⎢

⎢

⎢

⎢

⎣

1− 1

c2

m2
01v

2
1x

1−
v2
1x
c2

+
m2

02(v
2
2x+v22y)

1−
v2
2x

+v2
2y

c2

+ 2m01m02v1xv2x
√

1−
v2
1x
c2

√

1−
v2
2x

+v2
2y

c2

m2
01

1−
v2
1x
c2

+
m2

02

1−
v2
2x

+v2
2y

c2

+ 2m01m02
√

1−
v2
1x
c2

√

1−
v2
2x

+v2
2y

c2

⎤

⎥

⎥

⎥

⎥

⎦

.

If the two atoms move along the OX axis in opposite directions, with
equal magnitudes of momentum, the following specifications apply
to the previous formulas:

v2y = 0;

m01v1x
√

1− v21x
c2

= − m02v2x
√

1− v22x
c2

.

It results that:

vx = 0; vy = 0;

m0 =
m01

√

1− v21x
c2

+
m02

√

1− v22x
c2

,

that is, the molecule resulting from the collision of the two atoms
remains at rest, but with a rest mass m0 > m01 +m02.

Problem 8. Electromagnetic Submarine

On the two sides of a special submarine made of insulating plastic,
two longitudinal metal strips are mounted, as shown in Figure 8.1,
connected to the terminals of a continuous voltage generator. An
electromagnet is mounted in a vertical position inside the submarine,
between the two metal strips.

Analyze and justify the possibility of moving the submarine
through the seawater.
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Fig. 8.1

Solution

Due to the dissociation of NaCl molecules, there are Na+ ions and
Cl− ions in the seawater, with Cl in the free state. The electric fields
of the two metal strips will act on the two types of ions, moving them
in opposite directions inside the submarine. As a result, ionic currents
will be formed around the submarine, through both its upper and
lower parts, whose direction is from the (+) band to the (−) band.
The two types of ions move in opposite directions, but their move-
ments are equivalent to two electric currents of the same direction.

Moving in the magnetic field of the electromagnet, the Lorentz
force acts on these ions, �FL = q�v × �B. For either of the two types
of ions, wherever they are within the vicinity of the submarine, the
Lorentz forces are oriented in the same direction along the submarine,
as shown in Figure 8.2.

The effect of these Lorentz forces will be to push the apsis along
the submarine. Following the principle of reciprocal actions, the sub-
marine will be propelled in the opposite direction.

The submarine’s forward direction can be changed by changing
the electrical polarities of the two strips or the polarity of the elec-
tromagnet.
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Chapter 6

International Pre-Olympic Physics

Contest 2009, Călimăneşti, Romania

Problem 1. Gravitational Equatorial Ring on the Surface

of the Sun

This problem was proposed by Andrei Constantin, Romanian

Olympian in Physics, participant and medalist at IOPH.

Due to the Sun’s rotation, its equatorial radius is slightly larger
than its polar radius, so that the distribution of solar matter around
the axis of rotation no longer has a spherical symmetry. This is why
the precession of the orbits of the planets in our solar system occurs
(the slip/deflection/rotation of the perihelion of each planet’s orbit).
In a simple model, we can consider that the rotation of the Sun has
the effect of forming a gravitational equatorial ring on the surface
of the solar sphere, with negligible thickness and mass M << MS,
where MS is the mass of the Sun (which includes the mass of the
ring).

To prove the existence of this effect, we will consider that the solar
mass is distributed uniformly and symmetrically with respect to the
axis perpendicular to the plane of the planet’s orbit, and the gravi-
tational potential energy of the Sun–planet system, corresponding to
the proposed model, when the planet with mass m is at a distance

199
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r >> R relative to the center of the Sun, is given by the expression

Ep = −k

r

[

1 +
1

2
J2

(

R

r

)2

− 3

8
J4

(

R

r

)4

+
5

16
J6

(

R

r

)6

+ · · · · · ·
]

,

where R is the radius of the Sun. The constants J2, J4, J6, . . . depend
on the exact distribution of the solar matter around the axis of rota-
tion of the Sun.

(a) Using arguments of a qualitative nature, determine the constant
k from the previous expression of the gravitational potential
energy, Ep. The constant of universal attraction, K, is known.

Determine the constant J2 from the previous expression of
gravitational potential energy, Ep, using the proposed model.

It will be admitted that: (1 + α)n ∼= 1 + nα + 1
2n(n − 1)α2;

α << 1.
(b) For elliptical orbits with very small eccentricity, the very small

deviation of a planet from the equatorial circular orbit can be
explained by admitting that the planet performs radial oscilla-
tions with a very small amplitude, around a distance r = r0.
These oscillations overlap with the circular motion of the planet
around the Sun. (If this process is analyzed under the conditions
of observing the law of conservation of kinetic momentum, then
it is demonstrated that the radial oscillations of the planet must
be accompanied by angular oscillations with the same period. In
this problem, this effect is neglected.)

Determine the period of the radial oscillations of the planet,
considering that J2 = 0. The revolution period of the planet
around the Sun, Trev, is known.

Considering J2 = 0, write the expression of the planet’s kinetic
energy depending on: the projection of the planet’s momentum
in the radial direction, prad; the kinetic moment of the planet,
L; the mass of the planet, m; and the distance from the planet
to the center of the Sun, r.

(c) Given that the kinetic moment of the planet L = constant, iden-
tify, as the effective gravitational potential of the point where
the planet is located, Vef = Vef(r), all the terms in the expression
of the total energy of the Sun–planet system that do not depend
on the radial momentum of the planet. The introduction of the
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concept of effective gravitational potential reduces the planar
movement of the planet to a radial movement.

Determine the distance r0 for which the effective gravitational

force, Fef =
dVef

dr , is null.
(d) Using the approximation proposed in the problem, deter-

mine the approximate expression of the total energy of the
Sun–planet system for r = r0 + ∆r, where ∆r << r0,
keeping most of the terms in R2. Then, comparing this
expression with the expression of the total energy of a har-
monic oscillator, determine the period of the planet’s radial
oscillations, Tosc, in the case of J2 �= 0. Particular case:
J2 = 0.

Solution

(a) From the expression given for the gravitational potential energy
of the Sun–planet system, true in the case of deviations from the
spherical distribution,

Ep = −
k

r

[

1 +
1

2
J2

(

R

r

)2

−
3

8
J4

(

R

r

)4

+
5

16
J6

(

R

r

)6

+ · · · · · ·

]

,

where the additional terms appear only in the case of deviations
from the spherical distribution, the known expression of the potential
energy of the Sun–planet system when the distribution of the Sun’s
mass is spherical must be

Ep = −K
mMS

r
.

In these conditions, by neglecting the terms due to deviations
from the spherical distribution, it results that

k = KmMS,

where m is the mass of the planet, MS is the mass of the Sun, and
K is the constant of universal attraction.

Figure 1.1 shows an elementary sector, with mass dM, on the out-
line of the circular ring with mass M. The elementary gravitational
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potential energy of the system formed by the planet with mass m and
the elementary sector with mass dM on the outline of the circular
ring is:

dEp = −K
mdM√

r2 +R2 − 2rR cos θ
;

M = 2πRγ,

where γ is the linear density of the ring;

dM = γds = γRdθ; dM =
M

2π
dθ;

dEp = −K
mMdθ

2π
√
r2 +R2 − 2rR cos θ

.

dM 

d 

m 

r 

R 

Fig. 1.1

The gravitational potential energy of the system, consisting of the
planet with mass m and the entire circular ring with mass M, is:

Ep,ring−planet = −K
mM

2π

∫ 2π

0

dθ√
r2 +R2 − 2rRcos θ

;

Ep,ring−planet = −K
mM

2π

∫ 2π

0

dθ

r
√

1 + R2

r2
− 2R

r
cos θ

;

Ep,ring−planet = −K
mM

2π

∫ 2π

0

1

r

[

1 +

(

R2

r2
− 2

R

r
cos θ

)]−
1
2

dθ;
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R2

r2
− 2

R

r
cos θ = α << 1;

(1 + α)n ∼= 1 + nα+
1

2
n (n− 1)α2; α << 1;

[

1 +

(

R2

r2
− 2

R

r
cos θ

)]−
1
2

∼= 1−
1

2

(

R2

r2
− 2

R

r
cos θ

)

+
3

8

(

R2

r2
− 2

R

r
cos θ

)2

;

[

1 +

(

R2

r2
− 2

R

r
cos θ

)]−
1
2

∼= 1−
1

2

(

R2

r2
− 2

R

r
cos θ

)

+
3

8

(

R4

r4
− 4

R3

r3
cos θ + 4

R2

r2
cos2 θ

)

;

R4

r4
→ 0;

R3

r3
→ 0 ;

[

1 +

(

R2

r2
− 2

R

r
cos θ

)]−
1
2

∼= 1−
1

2

(

R2

r2
− 2

R

r
cos θ

)

+
3

2

(

R2

r2
cos2 θ

)

;

[

1 +

(

R2

r2
− 2

R

r
cos θ

)]−
1
2

∼= 1 +
R

r
cos θ +

R2

r2
3 cos2 θ − 1

2
;

Ep,ring−planet = −K
mM

2π

∫ 2π

0

1

r

(

1 +
R

r
cosθ +

R2

r2
3cos2θ − 1

2

)

dθ.

The gravitational potential energy of the system consisting of the
planet with mass m and the sun in the proposed model is:

Ep,Sun−planet model = Ep,Sun−planet + Ep,ring−planet;
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Ep,Sun−planet model = −K
m (MS −M)

r

− K
mM

2π

∫ 2π

0

1

r

(

1 +
R

r
cos θ +

R2

r2
3 cos2 θ − 1

2

)

dθ;

∫ 2π

0

1

r

(

1 +
R

r
cos θ +

R2

r2
3 cos2 θ − 1

2

)

dθ

=
1

r

∫ 2π

0
dθ +

R

r2

∫ 2π

0
cos θdθ +

3R2

2r3

∫ 2π

0
cos2 dθ − R2

2r3

∫ 2π

0
dθ;

∫

cos θdθ = −sin θ;

∫

cos2 θdθ =
1

2

(

θ +
sin 2θ

2

)

;

∫ 2π

0

1

r

(

1 +
R

r
cos θ +

R2

r2
3 cos2 θ − 1

2

)

dθ

=
1

r
θ|2π0 − R

r2
sin θ|2π0 +

3R2

2r3
1

2

(

θ +
sin 2θ

2

)∣

∣

∣

∣

2π

0

− R2

2r3
θ|2π0 ;

∫ 2π

0

1

r

(

1 +
R

r
cos θ +

R2

r2
3 cos2 θ − 1

2

)

dθ

=
1

r
2π +

3R2

2r3
1

2
2π − R2

2r3
2π;

∫ 2π

0

1

r

(

1 +
R

r
cos θ +

R2

r2
3 cos2 θ − 1

2

)

dθ

=
1

r
2π +

3R2

2r3
1

2
2π − R2

2r3
2π;

∫ 2π

0

1

r

(

1 +
R

r
cos θ +

R2

r2
3 cos2 θ − 1

2

)

dθ =
2π

r

(

1 +
R2

4r2

)

;

Ep,Sun−planet model = −K
m (MS −M)

r
− KmM

r

(

1 +
R2

4r2

)

;

Ep,Sun−planet model = −K
mMS

r
−K

mM

4r

R2

r2
.
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Comparing with the expression

Ep = −k

r

[

1 +
1

2
J2

(

R

r

)2

− 3

8
J4

(

R

r

)4

+
5

16
J6

(

R

r

)6

+ · · ·
]

,

from which we retain only the first two terms, it follows that:

−K
mMS

r
−K

mM

4r

R2

r2
= −k

r

[

1 +
1

2
J2

(

R

r

)2
]

= −K
mMS

r

[

1 +
1

2
J2

R2

r2

]

;

J2 =
1

2

M

MS
.

(b) If J2 = 0, it means that the planet’s trajectory around the Sun
is an ellipse. In this case, the orbit of the planet being closed, during
one complete revolution, representing the revolution period of the
planet, Trev, the distance between the planet and the Sun has an
exact minimum value (when the planet is at perihelion) and maxi-
mum value (when the planet is at aphelion). As a result, the period
of small radial oscillations of the planet, Tosc, is strictly equal to the
period of revolution of the planet around the Sun, Tosc = Trev.

From Figure 1.2, where we decomposed the tangential velocity
vector of the planet into two components, it follows that:

�v = �v// + �v⊥; v2 = v2// + v2⊥;

Ec =
mv2

2
=

1

2
mv2// +

1

2
mv2

⊥
;

�L = �r ×m�v; L = rmv sinα = rmv⊥; v⊥ =
L

mr
;

Ec =
1

2
mv2// +

L2

2mr2
; Ec =

1

2m
p2rad +

L2

2mr2
.
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Fig. 1.2

(c) Using the general expression of gravitational potential energy of
the Sun–planet system,

Ep = −k

r

[

1 +
1

2
J2

(

R

r

)2

− 3

8
J4

(

R

r

)4

+
5

16
J6

(

R

r

)6

+ · · ·
]

,

written for the elliptical orbit of the planet,

Ep = −k

r

[

1 +
1

2
J2

(

R

r

)2
]

,

as well as the general expression of the kinetic energy, deduced above,

Ec =
1

2m
p2rad +

L2

2mr2
,

it results that the total energy of the Sun–planet system is

E = Ec + Ep =
1

2m
p2rad +

L2

2mr2
− k

r

[

1 +
1

2
J2

(

R

r

)2
]

.

The effective gravitational potential of the point where the planet is
located (Vef), being represented by the sum of all the terms in the
expression of the total energy of the Sun–planet system, which do
not depend on the radial momentum of the planet, it results that:

Vef =
L2

2mr2
−K

mMS

r

[

1 +
1

2
J2

R2

r2

]

;
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Vef =
L2

2mr2
−K

mMS

r
−K

mMSJ2R
2

2r3
;

Vef (r) =
L2

2mr2
− k

r
− kJ2R

2

2r3
.

The distance r0, relative to the Sun, where the effective force
cancels out, is obtained as the solution of the equation

Fef =
dVef

dr
= 0.

It results that:

2kmr2 − 2L2r + 3kmJ2R
2 = 0;

r1,2 =
L2

2km

⎡

⎣1±

√

1− 6J2R2

(

km

L2

)2
⎤

⎦ .

If J2 → 0, the solution with “minus”→ 0, and the corresponding
effective potential Vef→ +∞. To ensure that the effective potential
is a finite value, we keep only the solution with “plus”, so we have

r0 =
L2

2km

⎡

⎣1 +

√

1− 6J2R2

(

km

L2

)2
⎤

⎦ .

(d) Knowing that

Vef (r) =
L2

2mr2
− k

r
− kJ2R

2

2r3
,

it results that:

Vef (r0 +∆r) =
L2

2m (r0 +∆r)2
− k

r0 +∆r
− kJ2R

2

2 (r0 +∆r)3
;

Vef (r0 +∆r) =
L2

2mr20

(

1 +
∆r

r0

)−2

− k

r0

(

1 +
∆r

r0

)−1

− kJ2R
2

2r30

(

1 +
∆r

r0

)−3

;
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∆r

r0
<< 1;

(1 + α)n ∼= 1 + nα+
1

2
n (n− 1)α2; α << 1;

Vef (r0 +∆r) ∼=
L2

2mr20

(

1− 2
∆r

r0
+ 3

(∆r)2

r20

)

−
k

r0

(

1−
∆r

r0
+

(∆r)2

r20

)

−
kJ2R

2

2r30

(

1− 3
∆r

r0
+ 6

(∆r)2

r20

)

;

Vef (r0 +∆r) ∼=

(

L2

2mr20
−

k

r0
−

kJ2R
2

2r30

)

+

(

−
L2

mr30
+

k

r20
+

3kJ2R
2

2r40

)

(∆r) +

(

3L2

2mr40
−

k

r30
−

3kJ2R
2

r50

)

(∆r)2;

(

L2

2mr20
−

k

r0
−

kJ2R
2

2r30

)

= Vef (r0);

(

−
L2

mr30
+

k

r20
+

3kJ2R
2

2r40

)

=
1

r20

2kmr20 − 2L2r0 + 3kmJ2R
2

2mr20
= 0;

Vef (r0 +∆r) ∼= Vef (r0) +

(

3L2

2mr40
−

k

r30
−

3kJ2R
2

r50

)

(∆r)2;

r0 =
L2

2km

⎡

⎣1 +

√

1− 6J2R2

(

km

L2

)2
⎤

⎦ ;

√

1− 6J2R2

(

km

L2

)2

=

[

1− 6J2R
2

(

km

L2

)]
1
2

; 6J2R
2

(

km

L2

)

<< 1;
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(1 + α)n ∼= 1 + nα+
1

2
n (n− 1)α2; α << 1;

√

1− 6J2R2

(

km

L2

)2

=

[

1− 6J2R
2

(

km

L2

)]
1
2

∼= 1− 3J2R
2

(

km

L2

)2

−
9

2
J2
2R

4

(

km

L2

)4

∼= 1− 3J2R
2
(

km
L2

)2
;

r0 ∼=
L2

2km

[

2− 3J2R
2

(

km

L2

)2
]

;

r0 ∼=
L2

km

[

1−
3

2
J2R

2

(

km

L2

)2
]

;

(

3L2

2mr40
−

k

r30
−

3kJ2R
2

r50

)

=
3L2k4m4

2mL8

[

1−
3

2
J2R

2

(

km

L2

)2
]−4

−
kk3m3

L6

[

1−
3

2
J2R

2

(

km

L2

)2
]−3

−
3kJ2R

2k5m5

L10

[

1−
3

2
J2R

2

(

km

L2

)2
]−5

;

(

3L2

2mr40
−

k

r30
−

3kJ2R
2

r50

)

∼=
3k4m3

2L6

[

1 + 4
3

2
J2R

2

(

km

L2

)2
]

−
k4m3

L6

[

1 + 3
3

2
J2R

2

(

km

L2

)2
]

−
3k6m5J2R

2

L10

[

1 + 5
3

2
J2R

2

(

km

L2

)2
]

;
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(

3L2

2mr40
− k

r30
− 3kJ2R

2

r50

)

=
k4m3

L6

[

3

2
+ 6

3

2
J2R

2

(

km

L2

)2

− 1− 9

2
J2R

2

(

km

L2

)2
]

− 3k6m5J2R
2

L10

[

1 +
15

2
J2R

2

(

km

L2

)2
]

;

(

3L2

2mr40
− k

r30
− 3kJ2R

2

r50

)

∼=
k4m3

L6

[

1

2
+

9

2
J2R

2

(

km

L2

)2
]

−
3k6m5J2R

2

L10
;

(

3L2

2mr40
−

k

r30
−

3kJ2R
2

r50

)

=
k4m3

L6

[

1

2
+

9

2
J2R

2

(

km

L2

)2

− 3J2R
2

(

km

L2

)2
]

;

(

3L2

2mr40
−

k

r30
−

3kJ2R
2

r50

)

=
k4m3

2L6

[

1 + 3J2R
2

(

km

L2

)2
]

;

Vef (r0 +∆r) ∼= Vef (r0) +

(

3L2

2mr40
−

k

r30
−

3kJ2R
2

r50

)

(∆r)2;

Vef (r0 +∆r) = Vef (r0) +
k4m3

L6

[

1 + 3J2R
2

(

km

L2

)2
]

(∆r)2

2
.
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Under these conditions, the total energy of the Sun–planet system
for r = r0 +∆r, is

Er0+∆r =
p2rad
2m

+ Vef (r0 +∆r);

Er0+∆r =
p2rad
2m

+ Vef (r0) +
k4m3

L6

[

1 + 3J2R
2

(

km

L2

)2
]

(∆r)2

2
.

For a harmonic oscillator, the total energy and period of its oscil-
lations are given by expressions

E =
p2

2m
+ k0

x2

2
;

T = 2π

√

m

k0
.

Comparing the two expressions of the total energies, it results
that:

k0 =
k4m3

L6

[

1 + 3J2R
2

(

km

L2

)2
]

;

Tosc = 2π
L3

k2m

√

1

1 + 3J2R2
(

km
L2

)2
= 2π

L3

k2m

[

1 + 3J2R
2

(

km

L2

)2
]−

1
2

;

3J2R
2

(

km

L2

)2

<< 1;

(1 + α)n ∼= 1 + nα+
1

2
n (n− 1)α2; α << 1;

Tosc
∼= 2π

L3

k2m

(

1−
3

2

k2m2R2

L4
J2

)

.

For a planet that evolves around the Sun, in an elliptical orbit with
semi-axes a and b, respectively, it is demonstrated that the kinetic
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moment and the period of revolution are given by the expressions

L = mb

√

KMS

a
; Trev = 2π

√

a3

KMS
.

In particular, if the orbit is approximately circular (a ≈ b), it
follows that:

2π
L3

k2m
= 2π

L3

(KmMS)
2 m

= Trev;

Tosc = Trev

(

1− 3

2

k2m2R2

L4
J2

)

; Tosc < Trev.

Particular case: J2 = 0 → Tosc = Trev.

Problem 2. Intercontinental Ballistic Missiles

Suppose an intercontinental ballistic missile must be launched at the
miminum speed from the geographical North Pole of the Earth to
reach a point on the Earth’s Equator. In that case, its trajectory
must be a sector of the ellipse represented in Figure 2.1, with the
center of the Earth (O) in one of its foci (F2), and the other focus
(F1) being midway between the launch point and the landing point
of the rocket.

(a) Determine the elements of the vector representing the initial
speed required for this launch. The following are known: the
radius of the Earth, R, and the gravitational acceleration on the
ground, g0.

We know that : (1) the sum of the distances from every point of the
ellipse to the two foci is constant, 2a, representing the length of the
axis of the ellipse; (2) the tangent between a point on an ellipse is
perpendicular to the bisector of the angle formed by the directions
that pass through that point and through the foci of the ellipse (the
optical property of the ellipse); (3) the total energy of the rocket–
Earth system, when the rocket evolves on an ellipse with semi-major
axis a, having the Earth in one of its foci, is E = −KmM

2a , where K

is the constant of universal attraction, m is the mass of the rocket,
and M is the mass of the Earth.
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(b) Determine the speed of the rocket at point A, representing the
peak of the elliptical orbit and its altitude at that moment.

(c) Study, under the same conditions, the scenario represented in
Figure 2.2, where the intercontinental ballistic missile must
reach the geographic South Pole of the Earth, evolving on a
sector of another ellipse, having the center of the Earth (O) in
one of its foci (F2).

Equator 

North Pole 

Fig. 2.1

North Pole 

Fig. 2.2
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(d) From the two poles of the Earth, two ballistic missiles are
launched simultaneously, in the same plane, with the same ini-
tial speeds, oriented horizontally. After time t, the rockets reach
their maximum distance from each other. Determine this dis-
tance. We know: the acceleration of free fall at the surface of
the Earth, g0, and the radius of the Earth, R.

Solution

(a) From the geometry of Figure 2.1, since ONF1 is an isosceles
triangle, it follows that:

∠ONF1 = 45◦; ∠ONB = ∠BNF1 = 22.5◦;

α = 22.5◦,

representing the angle between the direction of the launch of the
ballistic missile from the North Pole and the direction of the local
horizon, so that the missile lands at a point on the equator.

The North Pole being a point on the ellipse, in accordance with
the definition of the ellipse, it results that:

NF1 +NF2 = 2α;

R

√
2

2
+R = 2a;

a =
R

2

(

1 +

√
2

2

)

,

representing the semi-major axis of the ellipse.
According to the law of conservation of mechanical energy of the

rocket–Earth system, we obtain:

mv20
2

−K
mM

R
= −K

mM

2a
;

v0 =

√

2KM

R(
√
2 + 1)

;
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g0 = K
M

R2
; v0 =

√

2g0R√
2 + 1

,

representing the rocket’s speed at the moment of launch from the
North Pole in order for it to reach, under the specified conditions, a
point on the equator.

(b) Since the apogee A is a point on the ellipse, it results that:

AF1 +AF2 = 2a; AF2 = R+ h; AF1 = AF2 −R

√
2

2
;

h =
R

2
(
√
2− 1),

representing the maximum altitude of the rocket in its ballistic flight
from the North Pole to the equator.

According to the law of conservation of mechanical energy, it
results that:

mv2min

2
−K

mM

R+ h
= −K

mM

2a
;

vmin = 2

√

g0R

(
√
2 + 1)(

√
2 + 2)

.

(c) From the geometry of Figure 2.2, it follows that:

∠ONF1 = 60◦; ∠ONB = ∠BNF1 = 30◦;

α = 30◦; NF1 +NF2 = 2a;

a =
3

2
R.

From the law of conservation of mechanical energy, it follows that:

v0 = 2

√

g0R

3
;

h =
R

2
(
√
3 + 1);

vmin =

√

2g0R(3−
√
3)

3(3 +
√
3)

.

(d) The two rockets will move on identical elliptical orbits, each orbit
being tangent to the surface of the Earth at one of the geographic
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poles, and the center of the Earth being in one of the foci of the
two ellipses, as shown in Figure 2.3. Each rocket is launched from
the perigee of the ellipse. The maximum distance between the two
rockets is achieved when each rocket reaches the apogee of its orbit,
which happens after a time t = T/2.

N 

S 

h 

R 
L 

Fig. 2.3

For the movement of each rocket on its elliptical trajectory,
according to Kepler’s third law, we can write that

T 2 = k

(

h+R

2

)3

.

This relationship proves that the period of movement is the same
for any other rocket that moves on any other ellipse with the same
major semi-axis, regardless of its minor semi-axis. Thus, for the move-
ment of a rocket on a circular trajectory whose radius is

r =
h+R

2
,

we can have:

T =
2πr

v
=

2πr
√

KM
r

=
2πr

R

√

r

g0
;

r =
3

√

R2g0T 2

4π2
=

h+R

2
; h =

3

√

2R2g0T 2

π2
−R,
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so that the maximum distance between the rockets is

L = 2h = 2

(

3

√

4R2g0t

π2
−R

)

.

Problem 3. An Electromagnetic Pendulum

In the images in Figure 3.1, a multiplier coil (2) with mass m is
represented, having identical circular turns, each with radius r, sus-
pended at the level of the diameter or horizontally with the help of
two vertical conducting rods, each having length L. The north pole
area of a U-shaped permanent magnet (1) is located in the center
of the coil. The width of each pole of the magnet (the width of the
U-shaped magnetic strip) is 1, and the induction of the magnetic field
of the magnet, considered uniform throughout the space between the
poles, is represented by the vertical vector �B. The ends of the coil
conductor are connected to the lower ends of the rods, and their
upper ends are connected to the two terminals of the device shown.
A direct voltage generator is connected to the terminals (S) of the
device. After closing the switch (4), when the device’s mobile frame
is in the equilibrium position, the intensity of the current through
the turns of the coil is I.

(a) Demonstrate that the small oscillations of the mobile frame in
relation to the equilibrium position are harmonic.

(b) Determine the period of the small oscillations of the mobile
frame in relation to the equilibrium position. The gravitational
acceleration, g, is known.

(c) Particular case: B = 0.

In the space between the magnet poles, the sectors of the coil turns
can be considered linear and horizontal. During the oscillations, the
coil does not move out from between the magnet’s poles. Neglect
the electromagnetic induction, the non-uniformity of the magnetic
field between the magnet’s poles, the magnetic field around the mag-
net’s poles, the masses of the coil suspension rods, and the forces of
friction.
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Fig. 3.1

Solution

(a) When the electric current passes through the turns of the multi-
plier coils, the mobile frame is moved from the vertical position due
to the inertia of the electromagnetic forces. It will settle in an equi-
librium position, as shown in Figure 3.2, when the resultant moment
of the forces acting on the mobile frame is null.

For this equilibrium position, in relation to point 0, it follows that:

Fem (L+ r) cosα0 = GL sinα0;

tanα0 =
Fem (L+ r)

mgL
.
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Fig. 3.2

If the moving coil is displaced from the equilibrium position by a
small angle a, as indicated in Figure 3.3, and then released, it will not
remain there but will return to the equilibrium position, because the
torques of the two forces, �Fem and �G, in relation to the suspension
point O are no longer equal in modulus and are in the opposite
direction. It is easy to verify that, in this position, M �G > M�Fem

.

2  

Fig. 3.3

As a result, the resultant moment of the forces acting on the
mobile frame is no longer zero. Consequently, the mobile frame will
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return to the equilibrium position, exceed it due to inertia, and then
oscillate relative to the initial equilibrium position.

2  

Fig. 3.4

In order to establish the type of oscillatory movement, we will
replace the forces acting on the mobile system (�Fem, �G, 2�Tm), with

a single force, called the equivalent force, �Fequivalent, whose effect
should be the same as that of the forces acting on the mobile frame.
We will consider that the equivalent force acts at the center of mass
of the mobile system (approximately the center of the multiplier) and
is perpendicular to the arm OC, as indicated in Figure 3.4.

So, we will look for the modulus of the force �F , in such a way
that we have:

FL+ Fem (L+ r) cos (α+ α0) = GL sin (α+ α0);

FL+ Fem (L+ r)(cosα cosα0 − sinα sinα0)

= GL (sinα cosα0 + cosα sinα0);

FL+ [Fem (L+ r) cosα0 −GL sinα0] cosα

= [Fem (L+ r) sinα0 +GL cosα0] sinα;

Fem (L+ r) cosα0 −GL sinα0 = 0;

FL = [Fem (L+ r) sinα0 +GL cosα0] sinα; sinα ≈ α;
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FL ≈ [Fem (L+ r) sinα0 +GL cosα0]α; y ≈ Lα;

F =
Fem (L+ r) sinα0 +GL cosα0

L2
y;

k =
Fem (L+ r) sinα0 +GL cosα0

L2
;

F = ky = Fequivalent; �F = k�y = −�Fequivalent; �Fequivalent = −k�y.

This proves that the mobile frame’s motion is a harmonic oscillatory
motion.

(b)

k = mω2 = m
4π2

T 2
;

Fem (L+ r) sinα0 +GL cosα0

L2
= m

4π2

T 2
;

tanα0 =
Fem (L+ r)

mgL
;

sinα0 =
tanα0

√

1 + tan2 α0

; cosα0 =
1

√

1 + tan2 α0

;

Fem (L+ r)

L2

tanα0
√

1 + tan2 α0

+
mg

L

1
√

1 + tan2 α0

= m
4π2

T 2
;

Fem (L+ r)

L2
tanα0 +

mg

L
= m

4π2

T 2

√

1 + tan2 α0;

Fem (L+ r)

L2

Fem (L+ r)

mgL
+

mg

L
= m

4π2

T 2

√

1 +
F 2
em (L+ r)2

m2g2L2
;

mg

L

[

1 +
F 2
em (L+ r)2

m2g2L2

]

= m
4π2

T 2

√

1 +
F 2
em (L+ r)2

m2g2L2
;

√

1 +
F 2
em (L+ r)2

m2g2L2
=

4π2L

T 2g
;

F 2
em (L+ r)2

m2g2L2
=

16π4L2

T 4g2
− 1;
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Fem = nIlB;

T = 2πL

(

4

√

m2

n2I2l2 (L+ r)2 B2 +m2g2L2

)

.

(c)

B = 0; T = 2π

√

L

g
.

Problem 4. A Linear Accelerator

In a linear accelerator for electrified particles, its n coaxial conduc-
tive cylinders are connected to the poles of a high-frequency electric
generator (v = constant), as shown in Figure 4.1.

Î 

Fig. 4.1

The ions resulting from an electric discharge, S, are considered at
rest, with mass m0 and electric charge q. They are then accelerated
in an electric field under constant voltage U0 and injected into the
first cylinder along its axis.

The lengths of the accelerator cylinders are calculated in such a
way that, reaching the space between any two neighboring cylinders,
the electrified particle will find there identical acceleration condi-
tions, under the alternating electric voltage, whose polarity must
change when the electrified particle crosses the distance between any
two neighboring acceleration intervals.

The length of any acceleration interval is negligible in relation
to the lengths of the cylinders, and the duration of the particle’s
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passage through any acceleration interval is infinitely small. Under
these conditions, the passage of the particle through the acceleration
interval is equivalent to crossing a region where there is a constant
potential difference, U0.

(a) Determine the relationship between the period of electric volt-
age maintained by the generator and the duration of cross-
ing each cylinder, as well as the length of each cylinder, if
the speeds acquired by the accelerated electrified particles are
relativistic.

(b) Calculate the limit speed of the accelerated electrified particles
and the limit length of the last cylinder if n → ∞.

(c) Establish the expression of the energy acquired by the elec-
trified particle on each acceleration interval if its length is D
and the phases of the acceleration voltage when the particle is
at the entrance to the acceleration interval and in the middle of
the acceleration interval are zero and φ0, respectively. Particular
cases: D → 0, ϕ0 �= 0; D → 0, ϕ0 = 0. Neglect the weight of
the particle and the deviations from the rectilinear trajectory.

(d) Find the length of the accelerator in the non-relativistic scenario
for D → 0.

Solution

(a) The relationship between the period of electrical oscillations of
the generator and the duration of the passing of each cylinder is

T

2
= t =

l1
v1

=
l2
v2

= · · · =
ln
vn

,

where (l1, l2, l3 . . . . . . ln) are the lengths of the cylinders and
(v1, v2, v3 . . . . . . . . . vn) are the speeds of the particles along each
cylinder.

(b) The speed of the electrified particle, v1, upon entering the first
cylinder, accelerated under the constant voltage U0 immediately after
its excitement in the electric discharge S, is calculated in accordance
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with the law of energy conservation, as follows:

m1c
2 −m0c

2 = qU0; m0c
2

(

1
√

1− β2
1

− 1

)

= qU0; β1 =
v1
c
;

v1 = c

√

q2U2
0 + 2qU0m0c2

qU0 +m0c2
.

Within each cylinder, the electric field intensity is zero; therefore,
the motion of the particle inside each cylinder is uniform (i.e., with
constant velocity). Specifically, for the motion of the charged particle
inside the first cylinder, we can conclude:

l1 = v1
T

2
=

v1
2v

,

where v is the frequency of the alternating voltage maintained by
the generator;

l1 =
c

2v

√

q2U2
0 + 2qU0m0c2

qU0 +m0c2
.

The speed of the electrified particle, v2, upon entering cylinder 2,
accelerated under voltage U0 immediately after exiting cylinder 1, is
calculated in accordance with the law of conservation of energy as
follows:

m2c
2 −m1c

2 = qU0; m2c
2 −m0c

2 = 2qU0;

m0c
2

(

1
√

1− β2
2

− 1

)

= 2qU0; β2 =
v2
c
;

v2 = c

√

22q2U2
0 + 2 · 2qU0m0c2

2qU0 +m0c2
.

For the length of the cylinder 2, it results that:

l2 = v2
T

2
=

v2
2v

;

l2 =
c

2v

√

22q2U2
0 + 2 · 2qU0m0c2

2qU0 +m0c2
.
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In a similar way, v3 and l3 are calculated, as well as, by general-
ization, vn and ln, respectively. Then, for n → ∞, we calculate the
required limit values. It results that:

v3 = c

√

32q2U2
0 + 2 · 3qU0m0c2

3qU0 +m0c2
;

l3 =
c

2v

√

32q2U2
0 + 2 · 3qU0m0c2

3qU0 +m0c2
;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

vn = c

√

n2q2U2
0 + 2 · nqU0m0c2

nqU0 +m0c2
;

ln =
c

2v

√

n2q2U2
0 + 2 · nqU0m0c2

nqU0 +m0c2
;

vmax = lim
n→∞

vn = c; lmax = lim
n→∞

ln =
c

2v
=

λ

2
.

(c) Let dW be the variation of the kinetic energy of the electrified
particle achieved over the distance dx in the acceleration interval
between two neighboring cylinders, as shown in Figure 4.2:

Fig. 4.2

dW = qExdx,

where Ex is the electric field intensity of the electromagnetic wave
propagating along the acceleration interval.

If at time t = 0 the wavefront of the electromagnetic wave is at
the beginning of the acceleration interval and at time t = t0 the
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wavefront is at half the distance between the cylinders, then the
wavefront will be at the point P(x) at time t, such that:

x = c(t− t0); t =
x

c
+ t0.

Since the tension between the cylinders varies over time according
to the law u = U0 cosωt, then corresponding to the moment t0, we
have:

u0 = U0 cosωt0 = U0 cosϕ0; φ0 = ωt0; t0
ϕ0

ω
;

t =
x

c
+

ϕ0

ω
.

The intensity of the electric field at the point P(x) varies over
time according to the following law:

Ex =
u

D
=

U0

D
cosωt; Ex =

U0

D
cosω

(x

c
+

ϕ0

ω

)

;

Ex =
U0

D
cosω

(

2πx

λ
+

ϕ0

ω

)

; Ex =
U0

D
cosω

(

πx

ln
+

ϕ0

ω

)

.

It results that:

dW =
qU0

D
cosω

(

πx

ln
+

ϕ0

ω

)

dx;

∆W =
qU0

D

∫ +D/2

−D/2
cos

(

πx

ln
+ ϕ0

)

dx;

∆W =
qU0

D

ln
π

[

cosϕ0 sin
πx

ln

∣

∣

∣

∣

+D/2
−D/2 + sinϕ0 cos

πx

ln

∣

∣

∣

+D/2
−D/2

]

;

∆W = qU0

sin πD
2ln

πD
2ln

cosϕ0.

Particular cases:

(1) D → 0, ϕ0 �= 0; ∆W = qU0 cosϕ0;
(2) D → 0, ϕ0 = 0; ∆W = qU0.
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(d) If we admit that c → ∞, the non-relativistic variant from the
previous results gives us:

v1 =

√

2qU0

m0
; l1 =

1

v

√

qU0

2m0
;

v2 =

√

2 · 2qU0

m0
; l2 =

1

v

√

2qU0

2m0
;

v3 =

√

3 · 2qU0

m0
; l3 =

1

v

√

3qU0

2m0
;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

vn =

√

n · 2qU0

m0
=

√
nv1; ln =

1

v

√

nqU0

2m0
=

√
nl1;

L = l1 + l2 + · · · + ln;

L =
1

v

√

qU0

2m0

(

1 +
√
2 +

√
3 + · · ·+

√
n
)

;

L =
1

v

√

qU0

2m0

N
∑

n=1

√
n.

Problem 5. Spherical Space Probe

A spherical space probe, with one hemisphere perfectly reflecting and
the other hemisphere perfectly absorbing, is in a vacuum, very far
from the Sun and any other planet. Positions 1, 2, and 3 in Figure 5.1
represent different orientations of the space probe with respect to
the direction of the incident sunlight (the shaded hemisphere is the
absorbing one).

(a) Determine the momentum and kinetic moment transmitted to
the sphere by a photon, with frequency ν, incident at an angle θ.
The probe is oriented as shown in drawings 1 and 2 of Figure 5.1.
We know: the radius of the sphere, R; Planck’s constant, h; and
the speed of light in vacuum, c.
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1                      2 3

Fig. 5.1

(b) Justify the behavior of the space probe, oriented as in drawings
1 and 2 of Figure 5.1, if it is rotated with a small angle around
a fixed axis relative to the Sun, perpendicular to the direction
of incident light, passing through the center of the sphere and
then released from rest. The center of mass of the probe is at
the center of the sphere.

(c) Determine the force acting on the sphere in drawings 1 and 2.
We know: the average power of solar radiation per unit area of
a surface at normal incidence, E0.

(d) Qualitatively describe the non-relativistic movement of the space
probe under the action of solar light, if it is free and initially at
rest with respect to the Sun and has the orientation presented
in drawing 3. The gravitational actions of the probe, the photo-
electric effect, and the emission of electromagnetic radiation are
neglected.

Solution

(a) The variation in the impulse of the incident photon on the absorb-
ing face of the sphere is:

∆�p = 0− �pi = −�pi; ∆p = pi = h/λ = hv/c.

The impulse transmitted to the sphere by a photon, incident at
a point on the absorbing face of the probe (Figure 5.2), is equal in
magnitude and identical in orientation to the impulse of the incident
photon:

�p = −∆�p = �pi; p = pi = h/λ = hv/c.
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Fig. 5.2

As a result, the kinetic moment transmitted to the probe by the
incident photon is:

�L = �R × �p;

L = Rp sin
(

1800 − θ
)

= Rp sin θ =
Rh

λ
sin θ =

Rhv

c
sin θ.

The variation in the momentum of a photon, incident on the
reflecting face of the probe (Figure 5.3), is:

∆�p = �pr − �pi;

∆p = 2pi cos θ = 2
h

λ
cos θ = 2

hv

c
cos θ.

In this case, the impulse transmitted to the sphere is:

�p = −∆�p; p = 2
h

λ
cos θ = 2

hν

c
cos θ.

The kinetic momentum transmitted to the sphere by the incident
photon on the reflecting surface of the space probe is

�L = �R × �p.

(b) If the sphere is rotated, compared to the initial position (1), with
a small angle ∆α, as shown in Figure 5.4, where sectors I (reflective
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Fig. 5.3

sector) and III (absorbing sector) are symmetrical with respect to
the diameter of the sphere parallel to the solar rays, and sector II
(absorbing sector) is symmetrical with respect to the diameter of
the sphere parallel to the solar rays, then the resultant forces acting
on the three sectors have the orientations represented in the figure,
so that only the component �F3 (light pressure force acting on the
absorbing sector III) has a rotation effect.

Fig. 5.4

As a result, the probe will continue its accelerated rotation in the
direction imposed by the initial rotation, evolving as indicated by
the sequences in Figure 5.5 until it reaches position 2.

Due to inertia, the sphere will continue to rotate in the same
direction before slowing to a stop. The final position of the probe
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Fig. 5.5

will represent a rotation of 180◦ after releasing the probe from the
initial position. Figure 5.6 presents the justification for the slowing
motion.

Fig. 5.6

After stopping, the probe will rotate in the opposite direction by
180◦, returning to the initial position, at rest. If the sphere is rotated
relative to the initial position (2) by a small angle ∆α, as shown
in Figure 5.7, where sectors I (absorbing sector) and III (reflecting
sector) are symmetrical with respect to the diameter of the sphere
parallel to the sun’s rays, and sector II (reflective sector) is sym-
metrical with respect to the diameter of the sphere parallel to the
sun’s rays, then the resultant forces acting on the three sectors have
the orientations represented in the drawing, so that only the compo-
nent �F1 (light pressure force acting on the absorbent sector I) has a
rotation effect.

After release, the probe will begin to rotate rapidly in the opposite
direction to the direction imposed by the initial rotation, evolving
towards position 2, which it will overcome due to gravity. After this,
the sphere will continue to rotate in the same direction but will slow
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Fig. 5.7

to a stop. The final position of the probe will represent a rotation with
an angle of 2∆α compared to the initial position. The justification
for the slowing movement is presented in Figure 5.8.

Fig. 5.8

After stopping, the probe will rotate in the opposite direction with
an angle of 2∆a, returning to the initial position, at rest.

(c) N1 photons with frequency ν1, N2 photons with frequency ν2,
etc., arrive on the elementary spherical sector from the reflecting
surface of the probe (Figure 5.9) corresponding to position (2), under
the same angle of incidence, θ. The total impulse transmitted to the
sphere from the direction of light propagation is:

p// = N12
hν1
c

cos2 θ +N22
hν2
c

cos2 θ + · · ·

=
2

c
(N1hν1 +N2hν2 + · · · ) cos2 θ

=
2

c
Eθ;θ+dθ cos

2 θ,
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Fig. 5.9

where Eθ;θ+dθ is the energy of all photons incident on the elementary
spherical sector considered, whose area is

dS = 2πR2 sin θdθ.

The cross-section of the light beam incident on the elementary
spherical sector considered has the surface area

dS⊥ = dS cos θ.

Considering the definition of the average power of solar radiation
per unit area of a surface at normal incidence, it follows that:

E0 =
Eθ;θ+dθ

dS⊥dt
;

Eθ;θ+dθ = E0dS⊥dt;

p// =
2

c
E0dS⊥dt cos

2 θ;

p// =
4πR2E0

c
cos3 θ sin θdθdt.
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In these conditions, the elementary force that acts on the sphere
as a result of the photons incident on the elementary sector consid-
ered is:

dF =
p//

dt
=

4πR2E0

c
cos3 θ sin θdθ;

dF = −4πR2E0

c
cos3 θd(cos θ).

The force acting on the sphere as a result of the photons incident
on the reflecting hemisphere of the space probe will be:

F = −4πR2

c
E0

∫ π/2

0
cos3 θd(cos θ);

F = −πR2

c
E0 cos

4 θ
∣

∣

∣

π/2
0

;

F =
E0

c
πR2.

Similarly, if N1 photons with frequency ν1, N2 photons with fre-
quency ν2, etc., arrive on the elementary spherical sector from the
absorbing surface of the probe (Figure 5.10), corresponding to posi-
tion (1), under the same angle of incidence, θ, then the total impulse
transmitted to the sphere along the direction of light propagation is:

p// = N1
hν1
c

+N2
hν2
c

+ · · ·

=
1

c
(N1hν1 +N2hν2 + · · · )

=
1

c
Eθ;θ+dθ,

where Eθ;θ+dθ is the energy of all photons incident on the elementary
spherical sector considered, whose area is

dS = 2πR2 sin θdθ.

The cross-section of the light beam incident on the elementary
spherical sector considered has the surface area

dS⊥ = dS cos θ.
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Fig. 5.10

Considering the definition of the average power of solar radiation
per unit area of a surface at normal incidence, it results that:

E0 =
Eθ;θ+dθ

dS⊥dt
;

Eθ;θ+dθ = E0dS⊥dt;

p// =
1

c
E0dS⊥dt;

p// =
2πR2E0

c
cos θ sin θdθdt.

Under these conditions, the elementary force acting on the sphere
as a result of the photons incident on the considered elementary
sector is:

dF =
p//

dt
=

2πR2E0

c
cos θ sin θdθ;

dF = −2πR2E0

c
cos θd (cos θ).

The force acting on the sphere as a result of the photons incident
on the absorbing hemisphere of the space probe is:

F = −2πR2

c
E0

∫ π/2

0
cos θd (cos θ);
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F = −πR2

c
E0 cos

2 θ
∣

∣

∣

π/2
0

;

F =
E0

c
πR2.

(d) The probe will rotate around the axis that passes through its
center and is perpendicular to the direction of the sun’s rays, peri-
odically changing its direction of rotation and permanently moving
away from the Sun, oscillating either side of the direction of its for-
ward movement, in the order of the sequences shown in Figure 5.11.
At the extreme positions on either side, the static angular velocity is

Fig. 5.11
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zero, and the direction of rotation changes. In the middle positions,
the angular speed of the probe is maximum. This behavior of the
probe results from the orientation of the light pressure forces, which
act either on the reflective sector or on the absorbing sector of the
sphere, when exposed to the light of the Sun.

Problem 6. The Movement of Train Wheels

A train is moving at a velocity �v = constant, while the wheels of its
carriages roll without slipping on the railway tracks. The wheel rim
has an outer radius R, and the flange on the rim (the protruding part
of the rim, acting as a guide) has a height h (Figure 6.1).

Fig. 6.1

(a) Using the velocity composition rule, demonstrate that, while
rolling, each point of the wheel executes an instantaneous rota-
tional movement in relation to the point on the rail with which
the wheel makes instantaneous contact.

(b) Identify : (1) the points of the wheel whose instantaneous veloc-
ities in relation to the ground indicate instantaneous movements
in the same direction as the train’s movement, calculating this
velocity for the point where its value is maximum; (2) the points
of the wheel whose instantaneous velocities in relation to the
ground indicate instantaneous movements in the opposite direc-
tion to the movement of the train, calculating this velocities
for the point where its value is maximum; (3) the points of the
wheel whose instantaneous velocities relative to the ground indi-
cate instantaneous movements perpendicular to the direction of
the train’s moevement, calculating this velocity for the point
where its value is maximum.
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(c) Compare the instantaneous velocity relative to the points on the
ground with which instantaneous contact is made: (1) in front
of the vertical plane of the point of contact between the wheel
and the rail, above the horizontal plane of the point of contact
between the wheel and the rail, and at the points located in
front of the same vertical plane but below the specified horizon-
tal plane; (2) behind the vertical plane of the point of contact
between the wheel and the rail, below the horizontal plane of the
point of contact between the wheel and the rail, and at the points
located behind the same vertical plane but above the specified
horizontal plane.

Solution

(a) Let XOY be a system of axes fixed to the railway track, where
O is the point on the track where instantaneous contact is made
with the rolling rim, and the axes OX and OY have the orientations
represented in Figure 6.2.

The system X′Y′ in the center of the wheel is in translational
motion with a velocity relative to the fixed system OXY.

Fig. 6.2



International Pre-Olympic Physics Contest 2009, Călimăneşti, Romania 239

A point P on the wheel is in uniform circular motion relative to
the system O′X′Y (relative motion) with the velocity

�vrel = �vP(O′) = �vrot

and in absolute motion (transport motion) relative to the fixed sys-
tem OXY with velocity

�vabs = �vP (O).

Thus, the velocity of the mobile system’s movement is

�vtr = �vO′(O) = �v,

such that:

�vabs = �vrel + �vtr;

�vP(O) = �vP(O′) + �vO′(O);

�vP(O′) = �vrot = �ω ×
−−→
O′P,

where �ω is the angular velocity of the wheel’s rotational motion rel-
ative to the O′X′Y′ system for all points of the wheel (rigid solid
body).

In particular, for point C on the wheel, in contact with point O
on the rail, we have:

�vC(O) = �vC(O′) + �vO′(O);

�vC(O′) = �v′rot = �ω ×
−−→
O′C;

−−→
OC′ = −

−−→
CO′ = −

−−→
OO′;

�vC(O′) = −�ω ×
−−→
OO′.

Since the wheel rolls on the rail without slipping,

�vC(O) = 0.

It results that:

0 = �v′rot + �v;
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�v′rot = �ω ×
−−→
O′C = −�v;

�vrot = �ω ×
−−→
O′P;

O′C = O′P;

vrot = v′rot = ωR = v,

The module of the tangential (rotational) velocity of a point on
the wheel rim is the same for all points (referring to the mobile
system) and is equal to the modulus of the velocity of the center of
the wheel in relation to the fixed system. Thus,

0 = −�ω ×
−−→
OO′ + �vO′(O);

�vO′(O) = �ω ×
−−→
OO′;

�vP(O) = �ω ×
−−→
O′P + �ω ×

−−→
OO′;

�vP(O) = �ω ×
(−−→
OO′ +

−−→
O′P

)

;

�vP(O) = �ω ×−→
OP.

This proves that the instantaneous movement of the point P, rela-
tive to O, is circular, corresponding to a circle with the instantaneous

radius OP, so that �vP(O)⊥
−→
OP, and an angular velocity equal to the

angular velocity of the wheel’s rotation in relation to X′O′Y′.

(b) The wheel’s uniform rolling motion without slipping is equiva-
lent at any time to the composition of the translational motion of a
“locked” wheel (in which the velocity of each point of the wheel is �v)
with the uniform rotational motion of the wheel about its fixed axis
(in which the angular velocity of each point is ω = v

R), as indicated
by Figure 6.3. Thus, the velocity of each point of the wheel during
rolling is the result of the composition of the velocities of that point
corresponding to the combined movements.

For example:

�vA = �v + �vrot,A;

vA = v + vrot,A = v + ωRA = 2v;
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�vB = �v + �vrot,B; �vB ⊥−→
CB;

vB =
√

v2 + v2rot,B = v
√
2;

�vC = �v + �vrot,C;

vC = v − vrot,C = 0.

Fig. 6.3

For the points that belong to the rim of the wheel, as shown in
Figure 6.4, the instantaneous velocities relative to the ground result
from the same composition of the velocities of the two simultaneous
movements.

For example:

�vH = �v + �vrot,H;

vH = v + vrot,H; vrot,H = ωRH;

RH = R+ h;
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vH = 2v + v
h

R
;

�vK = �v + �vrot,K;

vK = vrot,K − v; vrot,K = ωRK;

RK = R+ h; vK = v
h

R
;

�vM = �v + �vrot,M;

�vM = �ω ×−−→
CM; �vM⊥−−→

CM;

vM = ωCM; ω =
v

R
;

CM =
√

h (2R + h); vM =
v

R

√

h (2R+ h);

�vN = �v + �vrot,N;

�vN = �ω ×−→
CN; vN = ωCN;

CN =
√

h(2R + h); vN =
v

R

√

h(2R + h).

(1) The velocities of all points located on the common instantaneous
vertical plane of the wheel center (O′) and the point of contact with
the rail (C) above point C are oriented in the same direction as vector
�v, which means that the instantaneous movements of these points
are in the direction of the train’s movement. Among the velocities of
these points, the highest is the velocity of point H (vH = vmax).

Fig. 6.4
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(2) The velocities of all points of the wheel located in the com-
mon instantaneous vertical plane of the center of the wheel and the
contact point with the rail, below point C, are oriented in opposite
directions to vector �v, meaning that the instantaneous movements of
these points in relation to the ground are in the opposite direction
to the movement of the train. Among the velocities of these points,
the highest is at point K (vK = vmax).

(3) The velocities of all points of the wheel located in the instan-
taneous horizontal plane of the point of contact with the rail are
vectors whose directions are vertical, which means that the instan-
taneous movements of these points in relation to the ground are
perpendicular to the direction of the train’s movement. Among the
velocities of these points, the velocities of points M and N are highest
(vM = vN = vmax), so that �vM = −�vN.

(c) If the wheel is divided into four sectors, as shown in Figure 6.5,
then from the previous analyses, it results that: (1) the horizontal
components of the velocities of the points in regions I and II in rela-
tion to the ground have opposite orientations (in region I to the right,
in region II to the left), and the orientations of the vertical compo-
nents are identical (vertically down); (2) the horizontal components
of the velocities of the points in regions III and IV in relation to the
ground have opposite orientations (in region III to the left, and in
region IV to the right), and the vertical components are identical
(vertically upwards).

Fig. 6.5
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Observations:

• The velocities of the points on the borders of sectors I and IV
and sectors II and III, in relation to the ground, have horizontal
directions.

• The velocities of the points on the borders of sectors I and II
and sectors III and IV, in relation to the ground, have vertical
directions.



Chapter 7

International Pre-Olympic Physics

Contest 2011, Satu Mare, Romania

Problem 1. What Newton Didn’t Know!

The revolution movement of the Moon around the Earth is
accompanied by a rotation movement of the Moon around its own
axis, the directions of the two movements being identical. The ellipse
in Figure 1.1 represents the trajectory of the center of the Moon in
its movement resulting from the gravitational interaction with the
planet Earth. In the focus F1 of this ellipse, we find the center of the
Earth.

Fig. 1.1

245
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In the initial position, L0, the center of the Moon coincides with
the perigee of the ellipse. After a certain time, the center of the
Moon reaches the ellipse in position L, and the vector radius �r of
the center of the Moon rotates by an angle of θ. In the same time
interval, the Moon rotates around its axis (perpendicular to the
plane of the drawing) with an angle δ, highlighted in the drawing
as the angle by which the reference axis from the Moon’s orbital sec-
tion has rotated, in the plane of the Moon’s orbit. As a result, the
direction of the reference axis in the plane of the orbital section of
the Moon intersects the major axis of the ellipse at a point C near its
focus F2.

Conclusion : When the Moon moves around the Earth, the point C
moves along the major axis of the ellipse, oscillating to either side
of the focus F2, thus highlighting the role of the second focus of the
ellipse, F2, a role that Newton did not know about!

(a) Identify and explain the optical phenomenon in which the Moon
is involved, the observer being on Earth (in the focus F1 of
the ellipse), a phenomenon resulting from the simultaneous
occurence of the two movements of the Moon, specified in the
statement of the problem.

Determine the intervals of the values of the distance ∆, to
the left and right of the focus F2, if ∆ represents the distance
from point C to the focus F2, at a certain moment during the
movement of the Moon’s center from the perigee to the apogee.
Analyze the symmetry/asymmetry of these intervals in relation
to the focus F2 and interpret the result.

(b) Localize on the ellipse the position LF2
of the center of the Moon

for which the direction of the reference axis from the plane of
the Moon’s orbital section intersects the major axis of the ellipse
in its focus F2.

Given that : (1) the relationship between the angles θ and ε, high-

lighted in Figure 1.1, is cos θ = cos ε−e
1−e cos ε , where e =

√

1− b2/a2 is
the numerical eccentricity of the ellipse; (2) the area of the surface
described by the vector radius of the center of the Moon until the
center of the Moon has reached the position L is S = ab

2 (ε− e sin ε),
where a and b are the two semi-axes of the ellipse; (3) the major
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semi-axis of the ellipse is a = 384.400 km; (4) the average angu-
lar velocity during the movement of the Moon on the large ellipse
around the Earth, ω, is equal to the angular velocity corresponding
to the rotation of the Moon around its own axis, Ω; (5) because the
numerical eccentricity of the ellipse is very small, e ≈ 0.0549, we will
accept the following approximation:

f(e) = sin ε
√

1− e2 cot(ε− e sin ε)− e− cos ε

≈ cos ε

2
e2 − 1

3

(

1

2
− 2 cos2 ε

)

e3.

Solution

(a) We will first analyze the situation from the statement of the
problem, when the Moon is on an elliptical orbit, at a moment when
the angle δ is small and the point C is to the left of the focus F2, as
shown in Figure 1.2.

Fig. 1.2

If in the time interval t, during which the center of the Moon
moves on the large ellipse from position L0 to position L, the area
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of the surface described by the vector radius of the center of the
Moon is

S =
ab

2
(ε− e sin ε),

then, according to Kepler’s second law, it results that:

S

S0
=

t

T
,

where T is the period of the Moon’s rotation around the Earth, and
S0 is the surface area of the ellipse;

S0 = πab;

ab
2 (ε− e sin ε)

πab
=

t

T
;

t =
T (ε− e sin ε)

2π
,

representing the duration of the movement of the center of the Moon
from position L0 to position L.

If the average angular speed during the movement of the Moon
on the large ellipse around the Earth is

ω =
2π

T
,

and Ω is the angular velocity corresponding to the rotation of the
Moon around its axis, knowing that the two angular velocities are
equal (ω = Ω), then the angle with which, in time t, the Moon
uniformly rotates around its axis (equal to the rotational angle of
the reference axis in the plane of the Moon’s orbital section) is

δ = Ωt = ωt =
2π

T

T (ε− e sin ε)

2π
= ε− e sin ε.

From the triangle LCF1, using the theorem of sines, it follows
that:

dCF1

sinϕ
=

dLF1

sin(θ − ϕ)
;

δ + ϕ = θ; dLF1
= r;

dCF1
= r

sinϕ

sin(θ − ϕ)
= r

sinϕ

sin δ
,
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such that, for the interval ∆ = dCF2
, which interests us,

∆ = dCF2
= dCF1

− dF1F2
.

To calculate the distance between the foci of the ellipse, dF1F2
, we

use the equation of the ellipse in plane polar coordinates and the
drawing in Figure 1.3, resulting in:

r =
p

1 + e cos θ
; θ = 0;

r = rmin =
p

1 + e
; θ = π; r = rmax =

p

1− e
;

rmin + rmax = 2a =
p

1 + e
+

p

1− e
=

2p

1− e2
;

p = a(1− e2);

rmin =
p

1 + e
= a(1− e);

c = a− rmin = ae;

dF1F2
= 2c = 2ae.

Fig. 1.3

In these conditions, for the interval ∆ = dCF2
, it results that:

∆ = dCF1
− dF1F2

= r
sinϕ

sin δ
− 2ae;

∆ =
p

1 + e cos θ

sinϕ

sin δ
− 2ae =

a(1− e2)

1 + e cos θ

sinϕ

sin δ
− 2ae;

∆

a
=

(1− e2)

1 + e cos θ

sinϕ

sin δ
− 2e; ϕ = θ − δ;
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∆

a
=

(1− e2)

1 + e cos θ

sin(θ − δ)

sin δ
− 2e;

∆

a
=

(1− e2)

1 + e cos θ
(sin θ cot δ − cos θ)− 2e;

δ = ε− e sin ε;

cot δ = cot(ε− e sin ε);

cos θ =
cos ε− e

1− e cos ε
; sin θ =

√

1− cos2 θ =
sin ε

1− e cos ε

√

1− e2;

1 + e cos θ =
1− e2

1− e cos ε
;

∆

a
= −e+ sin ε

√

1− e2 cot δ − cos ε;

∆

a
= sin ε

√

1− e2 cot(ε− e sin ε)− e− cos ε;

∆

a
≈ cos ε

2
e2 − 1

3

(

1

2
− 2 cos2 ε

)

e3;

ε = 0; e = 0.0549;

∆

a
=

1

2
0.00301401 − 1

3

(

1

2
− 2

)

0.000165469;

∆

a
=

1

2
0.00301401 +

1

2
0.000165469 = 0.00158974;

a = 384.400 km;

∆ = 611.09 km,

representing the maximum distance between point C, to the left, and
focus F, for ε → 0;

∆max,left = 611.09 km.

Let us now analyze the situation represented in Figure 1.4, when
the Moon is on an elliptical orbit, at a time when the angle δ is large,
and point C is to the right of the focus F2.
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Fig. 1.4

In these conditions, for the interval ∆ = dCF2
, it results that:

∆ = dF1F2
− dCF1

= 2ae− r
sinϕ

sin δ
;

∆ = 2ae− p

1 + e cos θ

sinϕ

sin δ
= 2ae− a(1− e2)

1 + e cos θ

sinϕ

sin δ
;

∆

a
= 2e− (1− e2)

1 + e cos θ

sinϕ

sin δ
; ϕ = θ − δ;

∆

a
= 2e− (1− e2)

1 + e cos θ

sin(θ − δ)

sin δ
;

∆

a
= 2e− (1− e2)

1 + e cos θ
(sin θ cot δ − cos θ);

δ = ε− e sin ε;

cot δ = cot(ε− e sin ε);
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cos θ =
cos ε− e

1− e cos ε
; sin θ =

√

1− cos2 θ =
sin ε

1− e cos ε

√

1− e2;

1 + e cos θ =
1− e2

1− e cos ε
;

∆

a
= e− sin ε

√

1− e2 cot δ + cos ε;

∆

a
= e− sin ε

√

1− e2 cot(ε− e sin ε) + cos ε;

∆

a
= −

[

−e+ sin ε
√

1− e2 cot(ε− e sin ε)− cos ε
]

;

∆

a
≈ −cos ε

2
e2 +

1

3

(

1

2
− 2 cos2 ε

)

e3;

∆

a
≈ −

[

cos ε

2
e2 − 1

3

(

1

2
− 2 cos2 ε

)

e3
]

;

ε = π; e = 0.0549;

∆

a
=

1

2
0.00301401 +

1

3

(

1

2
− 2

)

0.000165469;

∆

a
=

1

2
0.00301401 − 1

2
0.000165469 = 0.001424271;

a = 384.400 km;

∆ = 547.48 km,

representing the maximum distance between point C, to the right,
and the focus F2, for ε → π;

∆max,right = 547.48 km;

∆max,right < ∆max,left.

This proves the asymmetry of the two intervals near the focus F2, as
illustrated in Figure 1.5.

Fig. 1.5
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(b) If the direction of the reference axis from the plane of the Moon’s
orbital section intersects the major axis of the ellipse in its focus F2,
it means that

∆

a
≈ cos ε

2
e2 − 1

3

(

1

2
− 2 cos2 ε

)

e3 = 0,

from which it results that:

4e cos2 ε+ 3cos ε− e = 0;

cos ε =
−3±

√
9 + 16e2

8e
;

cos ε =
−3± 3.008

0.4392
;

cos ε =
−3 + 3.008

0.4392
= 0.018214;

ε ≈ 890;

cos θ =
cos ε− e

1− e cos ε
;

cos θ ≈ −0.036722721;

θ ≈ 92.150.

Analyze the phenomenon referred to in this problem and the scenar-
ios wherein the observer is in the focus F2 or the center O of the
ellipse.

Problem 2. Geostationary Satellite

The circular orbit of a geostationary satellite lies in the plane of the
equator. Due to a brief malfunction or shutdown of one of the satel-
lite’s thrusters, its orbital speed decreases by an amount ∆v, which
is small compared to the satellite’s original geostationary velocity.
As a result, the orientation of the velocity vector changes.

Determine:

(a) the new rotation period of the satellite, T ;
(b) the maximum possible value of ∆v, so that the satellite does not

fall to the surface of the Earth.
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Given: T0, the period of the geostationary satellite; g0, the gravi-
tational acceleration on the ground; and R, the radius of the Earth.

It is known that : (1 + x)n ≈ 1 + nx, if x << 1.

Solution

(a) The geostationary evolution of the satellite on the orbit with
radius r, highlighted in Figure 2.1, makes the angular velocity of the
satellite equal to the angular velocity of the Earth’s rotation (the
external satellite’s rotation period is equal to the Earth’s rotation
period). The force of gravitational attraction exerted by the Earth
on the satellite is centripetal, so it results that:

K
mM

r2
=

mv2

r
; K

M

r
= v2;

g0 = K
M

R2
; T0 =

2πr

v
;

g0R
2

r
=

4π2r2

T 2
0

;

r =
3

√

g0R2T 2
0

4π2
; v =

2π

T0
r; v = 3

√

2πg0R2

T0
.

After reducing the magnitude of the velocity vector by the amount
∆v ≪ v, the satellite will evolve on an elliptical orbit. The point
where the speed correction was achieved represents the apogee of
the new elliptical orbit, in whose distant focus is the center of the
Earth.

E

Fig. 2.1



International Pre-Olympic Physics Contest 2011, Satu Mare, Romania 255

In accordance with the laws of conservation of kinetic momentum
and mechanical energy, it follows that:

vminrmax = vmaxrmin;

(v −∆v)r = vmaxrmin;

−K
mM

rmax
+

mv2min

2
= −K

mM

rmin
+

mv2max

2
;

−K
M

r
+

(v −∆v)2

2
= −K

M

rmin
+

v2max

2
;

r + rmin = 2a;

a =
r + rmin

2
,

representing the major semi-axis of the ellipse.
In accordance with Kepler’s third law, if T is the period of rota-

tion of the satellite on the new orbits, it results that:

T 2

T 2
0

=
a3

r3
;

T 2

T 2
0

=
(r + rmin)

3

(2r)3
;

−K
M

r
+

(v −∆v)2

2
= −K

M

rmin
+

v2max

2
; K

M

r
= v2;

−v2 +
(v −∆v)2

2
= −K

M

r

r

rmin
+

v2max

2
;

−v2 +
(v −∆v)2

2
= −v2

r

rmin
+

v2max

2
;

(v −∆v)
r

rmin
= vmax;

−v2 +
(v −∆v)2

2
= −v2

r

rmin
+

1

2
(v −∆v)2

r2

r2min

;

v2
(

r

rmin
− 1

)

= −(v −∆v)2

2
+

1

2
(v −∆v)2

r2

r2min

;

v2
(

r

rmin
− 1

)

=
1

2
(v −∆v)2

(

r2

r2min

− 1

)

;

v2 =
1

2
(v −∆v)2

(

r

rmin
+ 1

)

;
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r + rmin

2rmin
=

v2

(v −∆v)2
;

r + rmin

2r
=

v2

(v −∆v)2
rmin

r
;

T 2

T 2
0

=

(

r + rmin

2r

)3

;

−K
M

r
+

(v −∆v)2

2
= −K

M

rmin
+

v2max

2
;

−K
M

R2

R2

r
+

(v −∆v)2

2
= −K

M

R2

R2

rmin
+

v2max

2
;

−g0
R2

r
+

(v −∆v)2

2
= −g0

R2

rmin
+

v2max

2
;

(v −∆v)
r

rmin
= vmax;

−g0
R2

r
+

(v −∆v)2

2
= −g0

R2

rmin
+

1

2
(v −∆v)2

r2

r2min

;

g0R
2

(

1

rmin
− 1

r

)

=
1

2
(v −∆v)2

(

r2

r2min

− 1

)

;

g0R
2 r − rmin

rrmin
=

1

2
(v −∆v)2

r2 − r2min

r2min

;

g0R
2 1

r
=

1

2
(v −∆v)2

r + rmin

rmin
;

g0R
2 1

r
=

1

2
(v −∆v)2

(

r

rmin
+ 1

)

;

r

rmin
+ 1 =

2g0R
2 1
r

(v −∆v)2
;

v2 = K
M

r
= K

M

R2

R2

r
= g0

R2

r
;

r

rmin
+ 1 =

2v2

(v −∆v)2
;

r

rmin
=

2v2

(v −∆v)2
− 1;
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r

rmin
=

2v2 − v2 + 2v∆v − (∆v)2

(v −∆v)2
=

v2 + 2v∆v − (∆v)2

(v −∆v)2
;

r

rmin
≈ v2 + 2v∆v

(v −∆v)2
=

v2
(

1 + 2∆v
v

)

(v −∆v)2
;

rmin

r
=

(v −∆v)2

v2
(

1 + 2∆v
v

) ;

r + rmin

2r
=

v2

(v −∆v)2
rmin

r
;

r + rmin

2r
=

v2

(v −∆v)2
(v −∆v)2

v2
(

1 + 2∆v
v

) ;

r + rmin

2r
=

1

1 + 2∆v
v

=

(

1 + 2
∆v

v

)−1

;

r + rmin

2r
≈ 1− 2

∆v

v
;

T 2

T 2
0

=

(

r + rmin

2r

)3

;

T 2

T 2
0

=

(

1− 2
∆v

v

)3

; T 2 = T 2
0

(

1− 2
∆v

v

)3

;

T = T0

√

(

1− 2
∆v

v

)3

= T0

(

1− 2
∆v

v

)3/2

;

T ≈ T0

(

1− 3
∆v

v

)

;

v = 3

√

2πg0R2

T0

;

T = T0

(

1− 3

√

T0

2πg0R2
3∆v

)

.
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(b) The admissible extreme situation is the one represented in
Figure 2.2, when rmin = R. In accordance with the laws of conserva-
tion of kinetic momentum and mechanical energy, it results that:

(v −∆v)r = vmaxR;

−K
M

r
+

(v −∆v)2

2
= −K

M

R
+

v2max

2
;

−K
M

R2

R2

r
+

(v −∆v)2

2
= −K

M

R2
R+

v2max

2
;

−g0
R2

r
+

(v −∆v)2

2
= −g0R+

v2max

2
;

vmax = (v −∆v)
r

R
;

g0R

(

1− R

r

)

=
1

2
(v −∆v)2

(

r2

R2
− 1

)

;

2g0R

(

r −R

r

)

= (v −∆v)2
(

r2 −R2

R2

)

;

(v −∆v)2 =
2g0R

3

r(r +R)
; ∆v = v −R

√

2g0R

r(r +R)
.

E

Fig. 2.2
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Appendix: Geostationary Satellites

To achieve such an evolution, the satellite is first raised to the altitude
of the injection point, where it is given the horizontal speed �v neces-
sary for maintaining the satellite on a circular orbit with the radius
r around the Earth.

In these conditions, from Figure 2.3, it results that:

F = K
mM

r2
=

mv2

r
; v =

√

k
M

r
;

E =
mv2

2
−K

mM

r
= −K

mM

2r
< 0;

g = K
M

r2
; v =

√
gr; r = R+ h;

g = K
M

(R+ h)2
R2

R2
; g0 = K

M

R2
;

g = g0
R2

(R+ h)2
; v = R

√

g0
R+ h

;

T =
2πr

v
,

where T is the time required for one complete rotation on the circular
orbit (the sidereal revolutionary period of the satellite);

T =
2π(R + h)

R

√

R+ h

g0
,

Fig. 2.3
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where g0 is the gravitational acceleration at the ground;

T =
2π

ω
; ω =

R

R+ h

√

g0
R+ h

.

We can define the period of synodic revolution of the satellite, Ts,
as the time between two consecutive passes of the satellite across the
zenith of an observer located on the equatorial line:

Ts =
2π

ω ± ω0
,

where ω0 is the angular speed of the Earth’s rotation;

Ts =
2π

R
R+h

√

g0
R+h ± ω0

,

where the sign “+” corresponds to the case when the direction of
the satellite’s rotation is opposite to the Earth’s rotation, and the
sign “−” corresponds to the case when the satellite’s and Earth’s
directions of rotation are identical.

A particularly interesting case is when the satellite revolves in a
circle around the Earth in the same direction as the rotation of the
Earth, at a certain height, so that

R

R+ h

√

g0
R+ h

= ω0.

Therefore, the satellite’s angular rotational speed should be equal to
the Earth’s angular rotational speed.

Such a satellite is called a geostationary satellite, and it appears
to be fixed above a point on the surface of the Earth.

The period of synodic revolution of a geostationary satellite is
Ts → ∞.

To be geostationary, the satellite must evolve at the altitude

h = 3

√

g0R2

ω2
0

−R ≈ 35800 km,
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so that its tangential speed must be

v = R

√

g0
R+ h

≈ 3.08 km/s.

Problem 3. Cylindrical Planet

One of the planets of a nameless star is a very long, homogeneous
cylinder. The average density of the planet and its radius are the
same as those of the Earth, so its rotation period around its axis is
the same as the Earth’s period of rotation.

(a) Determine the value of the first cosmic velocity of the satellite
that revolves around this planet, vI,planet, given that the first
cosmic velocity of a satellite that revolves in a circular orbit
around the Earth, very close to its surface, is vI,Earth = 7.9 km/s.

(b) Determine the value of the altitude at which a stationary satel-
lite for telecommunications must revolve around this planet,
knowing that the radius of the circular orbit of a geostation-
ary satellite for telecommunications is r∗E = 42.170 km, and the
radius of the Earth is RE = 6.370 km.

(c) It is shown that the speed required for a satellite to escape from
the gravitational field of the cylinder-shaped planet (second cos-
mic speed) is

vII,planet =
√
2 ln

H

R
vI,planet,

where H is the length of the planet and R is the radius of the
planet.
The satellite is launched from a point on the planet’s surface,
located midway along one of its meridional generators, in the
plane of the cross-section of a cylinder tangent to the planet.
Calculate the length, H, of the planet, knowing that the

gravitational potential energy of the satellite–cylindrical planet
system is equal to the gravitational potential energy of the
satellite–Earth system when the same satellite is launched, for
the same purpose, from the Earth’s surface. It is known that the
gravitational acceleration at the level of the Earth’s surface is
g0E = 9.8ms−2.
Given: ln(2.28) ≈ 0.82, or e0.82 = (2.71)0.82 =

100
√
e82 =

100
√

(2.71)82 ≈ 2.28.
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Solution

(a) The gravitational field around a plate in the shape of a very
long cylinder has cylindrical symmetry, so that the direction of the
intensity of the gravitational field vector �Γ = �g, at those points
located far from the ends of the cylinder, towards its interior, is
perpendicular to the axis of the cylinder, as shown in Figure 3.1, and
its modulus depends only on the distance to this axis.

Fig. 3.1

Gauss’s theorem for the electric field generated by an electrified
body has the form

Φ =

∮

Σ

⇀

E · d�S =
qint
ε0

,

so that the flow of the electric field through a closed surface surround-
ing an electrified body is equal to the ratio of the electric charge inside
the surface and the dielectric permittivity of a vacuum.

Analogously, this theorem can also be written for the gravitational
field of a cylinder-shaped planet with the radius R and the length H,
so that the flow of the gravitational field through the closed surface
Σ, represented in Figure 3.1, is

Φ =

∮

Σ

�Γ · d�S = 4πKmint,

where �Γ is the intensity of the gravitational field at the distance r

from the central axis of the planet, K is the constant of universal
attraction, and mint is the part of the mass of the planet located
inside the surface Σ.

Due to the symmetry, the intensity of the gravitational field
is perpendicular to the cylinder Σ’s generator. The flux of the
gravitational field through the bases of the cylinder Σ is null.
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In these conditions, it results that:

Φ = 2πrhΓ = 4πKmin; min = ρπR2h,

where ρ is the average density of the planet (ρ = ρE);

2πrhΓ = 4πKρπR2h;

Γ(r) =
2πρKR2

r
= g(r).

As a result, the speed of a satellite evolving around this planet in
a circular orbit with the radius r (the first cosmic speed) is obtained
as follows:

mg =
mv2I,planet

r
; vI,planet =

√

2πρKR2,

an expression independent of the value of the radius of the orbit and
therefore true also for the evolution of the satellite in a very low
orbit, very close to the surface of the planet (r = R);

ρ = ρE =
ME

VE
;

vI,planet =

√

2π
ME

VE
KR2; VE =

4πR3
E

3
,

where VE is the volume of the Earth;

vI,planet =

√

3

2

ME

R3
E

KR2; R = RE; vI,planet =

√

3

2
K

ME

RE
.

The first cosmic speed, in the case of the evolution of the satellite
around the Earth, very close to its surface, is

vI,Earth =

√

K
ME

RE
; R = RE.

It results that:

vI,planet =

√

3

2
K

ME

RE
=

√

3

2
vI,Earth;

vI,planet = 1.22 · 7.9 km/s = 9.63 km/s.
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(b) It is known that, to be geostationary, a satellite must evolve on
a circular orbit whose radius is:

r∗E = 3

√

g0ER2
E

ω2
0

,

where g0E is the gravitational acceleration at the level of the Earth’s
surface and ω0 is the angular velocity corresponding to the rotation
of the Earth around its axis;

ω0 =
2π

T0
,

where T0 is the period of the Earth’s rotation around its axis
(T0 = 24h);

g0E = K
ME

R2
E

; r∗E = 3

√

g0ER
2
E

ω2
0

;

r∗E =
3

√

KMET 2
0

4π2
,

for which

r∗3E =
KMET

2
0

4π2
.

On the other hand, for a satellite to evolve synchronously around
the cylindrical planet, the radius of its orbit must be:

r0 =
T0v

2π
=

T0

2π

√

2πρKR2 = R

√

T 2
0 ρK

2π
;

ρ = ρE =
ME

VE

=
3ME

4πR3
E

; R = RE;

r0 =

√

3

2

KMET
2
0

4π2

1

RE

;

r0 =

√

3

2

r∗3E
RE

;

r0 = r∗E

√

3

2

r∗E
RE

; r0 = 1.33 · 108 m;
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h0 = r0 −R = r0 −RE;

h0 = r0 −RE = r∗E

√

3

2

r∗E
RE

−RE = 1.27 · 108 m.

(c) To launch the satellite so that it escapes from the gravitational
field of the planet, the satellite must evolve on a parabolic arc in
whose focus is located the center of mass of the planet, so that the
total energy of the system meets the following condition:

Ekin + Epot = 0;

mv2II,planet
2

+ Epot = 0;

vII,planet =
√
2 ln

H

R
vI,planet; vI,planet = 9.63 km/s.

It results that:

Epot = −m

(

ln
H

R

)2

v2I,planet;

R = RE; Epot = −K
mME

RE

;

(

ln
H

RE

)2

v2I,planet = K
ME

RE

;

ln
H

RE

=

√

K
M

E

R
E

vI,planet
=

√

K
M

E

R2
E

RE

vI,planet
;

ln
H

RE

=

√

goERE

vI,planet
; g0E = 9.8ms−2; vI,planet = 9.63 km/s;

ln
H

RE

= 0.82; H = REe
0.82; H = RE

100
√

(2.71)82;

e0.82 = 100
√

(2.71)82 ≈ 2.28; ln(2.28) ≈ 0.82;

H = 2.28 · 6370 km = 14523.6 km.
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Problem 4. Automatic Space Station Hit by a Meteorite

A meteorite, which was approaching the Earth along a straight line
passing through the center of the Earth, as shown in Figure 4.1, hits
an automatic space station rotating around the Earth in a circular
orbit with radius R. After the impact, the meteorite remains incor-
porated into the space station and is forced to evolve around the
Earth in a new closed orbit, so that the minimum distance from the
center of the Earth is R/2.

Fig. 4.1

(a) Specify the shape of the orbit of the space station after the
impact with the meteorite and determine: (1) the speed of the
meteorite before hitting the station; (2) the minimum and max-
imum speeds of the station on the new orbit after the impact
with the meteorite; (3) the maximum distance of the station
from the center of the Earth on the new orbit.

Given: M, the mass of the Earth; K, the constant of universal
attraction; m1, the mass of the meteorite; and m2, the mass of
the space station.

Establish the relationship between the two masses, m1 and
m2, so that the proposed scenario is possible.

(b) Determine the minimum speed that the meteorite should have
at the moment of impact with the station so that, after the
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impact, the space station evolves in an open orbit in relation to
the Earth.

Specify the shape of the station’s orbit after impact.
Determine the minimum distance between the station and

the Earth after the impact, as well as the maximum speed of
the station after the impact with the meteorite.

(c) Determine: (1) the angle at the center described by the position
vector of the meteorite–station assembly, from the moment of
impact until the moment when, evolving on the open orbit, the
assembly passes at the minimum distance from the center of the
Earth; (2) the duration of the evolution of the assembly on the
specified sector of the open orbit.

Solution

(a) In accordance with the notation in Figure 4.2 (�v1, velocity of
the meteorite before the impact; �v2, velocity of the station before

Fig. 4.2
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collision; v2 =
√

KM
R ;�v, velocity of the assembly immediately after

the collision), using the laws of conservation of momentum, energy,
and kinetic momentum, it results that:

m1�v1 +m2�v2 = (m1 +m2)�v;

m1v1 = (m1 +m2)vy = (m1 +m2)v cosα;

m2v2 = (m1 +m2)vx = (m1 +m2)v sinα;

tanα =
m2v2

m1v1
;

vx =
m2v2

m1 +m2
; v2 =

√

K
M

R
;

vx =
m2

m1 +m2

√

K
M

R
; vy =

m1v1

m1 +m2
;

m2
1v

2
1 +m2

2v
2
2 = (m1 +m2)

2v2;

−K
(m1 +m2)M

R
+

1

2
(m1 +m2)v

2

= −K
(m1 +m2)M

R
2

+
1

2
(m1 +m2)v

2
max < 0;

−K
M

R
+

1

2
v2 = −K

M
R
2

+
1

2
v2max; v2 = v2max − 2K

M

R
;

−K
(m1 +m2)M

R
+

1

2
(m1 +m2)(v

2
x + v2y)

= −K
(m1 +m2)M

R
2

+
1

2
(m1 +m2)v

2
max;

−K
M

R
+

1

2
(v2x + v2y) = −K

M
R
2

+
1

2
v2max;

(m1 +m2)vR sinα = (m1 +m2)vmaxrmin;

(m1 +m2)vxR = (m1 +m2)vmax
R

2
; vx =

1

2
vmax; vmax = 2vx;
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−K
M

R
+

1

2
(v2x + v2y) = −K

2M

R
+

1

2
v2max;

−K
M

R
+

1

2

(

v2x +
m2

1v
2
1

(m1 +m2)2

)

= −K
2M

R
+

1

2
4v2x;

vx =
m2

m1 +m2

√

K
M

R
;

1

2

m2
1v

2
1

(m1 +m2)2
=

3

2

m2
2

(m1 +m2)2
K

M

R
−K

M

R
;

1

2

m2
1v

2
1

(m1 +m2)2
= K

M

R

(

3m2
2

2(m1 +m2)2
− 1

)

;

v1 =
m1 +m2

m1

√

2K
M

R

(

3m2
2

2(m1 +m2)2
− 1

)

;

3m2
2

2(m1 +m2)2
> 1; m1 <

(

√

3

2
− 1

)

m2; m1 < 0.22m2;

rminvmax = rmaxvmin;

vx =
m2

m1 +m2

√

K
M

R
; vmax = 2vx;

vmax =
2m2

m1 +m2

√

K
M

R
; rmin =

R

2
;

−K
(m1 +m2)M

rmin
+

1

2
(m1 +m2)v

2
max

= −K
(m1 +m2)M

rmax
+

1

2
(m1 +m2)v

2
min;

−K
M

rmin
+

1

2
v2max = −K

M

rmax
+

1

2
v2min; rmax =

rminvmax

vmin
;

−K
M

rmin
+

1

2
v2max = −K

Mvmin

rminvmax
+

1

2
v2min;
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v2min − 2
KM

rminvmax
vmin + 2K

M

rmin
− v2max = 0; vmin =

rminvmax

rmax
;

(

v2max − 2K
M

rmin

)

r2max + 2KMrmax − r2minv
2
max = 0;

vmax =
2m2

m1 +m2

√

K
M

R
; rmin =

R

2
;

rmax = R

√

(m1 +m2)4 + 4m2
2(m

2
2 − (m1 +m2)2)− (m1 +m2)

2

4(m2
2 − (m1 +m2)2)

.

(b) In accordance with the notation in Figure 4.3 (�v1,min, velocity
of the meteorite before the impact; �v2, station’s velocity before the

collision; v2 =
√

KM
R ;�v, velocity of the assembly immediately after

the collision), using the laws of conservation of momentum, energy,
and kinetic momentum, it results that:

m1�v1,min +m2�v2 = (m1 +m2)�v;

m1v1,min = (m1 +m2)vy = (m1 +m2)v cosα;

m2v2 = (m1 +m2)vx = (m1 +m2)v sinα;

tanα =
m2v2

m1v1,min
; vx =

m2v2

m1 +m2
; v2 =

√

K
M

R
;

vx =
m2

m1 +m2

√

K
M

R
; vy =

m1v1,min

m1 +m2
;

m2
1v

2
1,min +m2

2v
2
2 = (m1 +m2)

2v2;

−K
(m1 +m2)M

R
+

1

2
(m1 +m2)v

2

= −K
(m1 +m2)M

rmin
+

1

2
(m1 +m2)v

2
max = 0;

−K
M

R
+

1

2
v2 = 0; −K

M

rmin
+

1

2
v2max = 0;

v =

√

2K
M

R
; vmax =

√

2K
M

rmin
;
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m2
1v

2
1,min +m2

2

KM

R
= (m1 +m2)

2 2KM

R
;

v1,min =
1

m1

√

KM

R
(2(m1 +m2)2 −m2

2);

(m1 +m2)vR sinα = (m1 +m2)vmaxrmin;

(m1 +m2)vxR = (m1 +m2)vmaxrmin;

vR sinα = vmaxrmin;

vxR = vmaxrmin; vx =
m2

m1 +m2

√

K
M

R
;

−K
M

rmin
+

1

2
v2max = 0; rmin =

m2
2R

2(m1 +m2)2
;

vmax =
2(m1 +m2)

m2

√

KM

R
.

Fig. 4.3

(c)
(1) The satellite revolves on a parabolic trajectory, with the Earth in
its focus, when it has to escape from the Earth’s gravitational field.
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Then, after reaching a very distant point, the speed of the satellite
in relation to the Earth should be null.

The parabola describes the geometric locations of the points Q in
a plane located at an equal distance from one fixed point P, called the
focus, and a fixed straight line ∆, called the guiding line, as shown
in Figure 4.4.

After the impact with the meteorite, occuring at point Q, as
shown in Figure 4.4, the station–meteorite assembly with the speed
�v, in order to escape from the terrestrial gravitational field, will begin
its evolution on the parabola in whose focus is the Earth and whose
equation in cartesian coordinates (x; y) is y2 = 2px, for which the
parameter of the parabola is known, p = 2rmin.

The optical properties of the parabola are as follows: all light rays
emitted from the focus of a concave parabolic mirror, after reflection,
will become parallel to the main optical axis, and reciprocally, the
incident rays parallel to the main optical axis are reflected through
the focus. As a result, the tangent to the parabola at the point Q is
the bisector of the angle PQN.

Considering the definition of the parabola, it follows that:

QP = QN;

R = PB +QPcos(π − θ);

R = 2rmin +R(− cos θ);

2rmin = R(1 + cos θ); rmin = R cos2
θ

2
;

cos
θ

2
=

m2√
2(m1 +m2)

.

When the station–meteorite assembly reaches point A, represent-
ing the vertex of the parabola, where r = rmin, its speed will be
v = vmax, so that we have:

E =
mv2max

2
−K

mM

rmin
= 0; vmax =

√

2KM

rmin
;

rminvmax = Rv sin

(

π

2
− θ

2

)

= Rv cos
θ

2
;

R cos2
θ

2
vmax = Rv cos

θ

2
; vmax =

v

cos θ
2

;
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cos
θ

2
=

v

vmax
=

m2√
2(m1 +m2)

.

Fig. 4.4

With the same result, we can observe from Figure 4.5 that:

α =
π

2
− θ

2
;

θ

2
=

π

2
− α;

cos
θ

2
= cos

(π

2
− α

)

= sinα;

vR sinα = vmaxrmin; sinα =
vmaxrmin

vR
;

vmax =
2(m1 +m2)

m2

√

KM

R
;

rmin =
m2

2R

2(m1 +m2)2
; v =

√

2K
M

R
;

cos
θ

2
=

m2√
2(m1 +m2)

.
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Fig. 4.5

(2) From the equation of the trajectory (of the conic) written in
polar coordinates, for e = 1 (parabola), it results that:

r =
p

1 + e cos θ
; r =

p

1 + cos θ
;

r =
p

2 cos2 θ
2

=
p

2

(

1 + tan2
θ

2

)

.

For the evolution on the parabola, taking place under the action
of the central force of gravitational attraction, we have:

r2θ̇ = C =
√

pKM ; r2dθ = Cdt;

p2

4

(

1 + tan2
θ

2

)2

dθ = Cdt;

tan
θ

2
= u;

1

2

dθ

cos2 θ
2

= du;

dθ = 2cos2
θ

2
du =

2

1 + tan2 θ
2

du; dθ =
2

1 + u2
du;

p2

2C
(1 + u2)du = dt;
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t− t0 =
p2

2c

∫ π

0
(1 + u2)du,

where t0 is the time when the satellite passes through the point
corresponding to rmin, for which θ = 0 and u = 0, and t is the
moment when the satellite’s polar coordinates are r and θ;

t− t0 =
p2

2C

(

u+
u3

3

)

;

t0 = 0; t =
p2

2C

(

u+
u3

3

)

,

where the parameter of the conic (parabola) is

p =
r20v

2
0 sin

2 α

KM
,

with the values of the terms r0, v0 and α, represented in Figure 4.4,
being associated with the conditions under which the injection
(entry) onto the parabolic trajectory was achieved (the initiation
of the parabolic movement);

p =
R2v2 sin2 α

KM
=

Rm2
2

(m1 +m2)2
,

an identical relationship to that obtained directly from the definition
of the conic (parabola) parameter;

p = 2rmin = 2
m2

2R

2(m1 +m2)2
=

m2
2R

(m1 +m2)2
.

Problem 5. Superficial Phenomena

A. Pulsating Liquid Film Bubble

At one end of a short, thin cylindrical tube, open at both ends, a
spherical bubble is formed from a solution of soapy water, as shown in
Figure 5.1, having mass m. The surface tension coefficient of the solu-
tion is σ. The bubble is uniformly electrified with electric charge q.
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Given: the absolute electrical permittivity of air, ε0, and the
density of the soapy water solution, ρ.

Fig. 5.1

Determine:

(a) the equilibrium radius of the bubble, R0, if the tube remains
open, and the period of the bubble’s small pulsating oscilla-
tions, if during the pulsating oscillations, its spherical shape is
preserved;

(b) the velocities of the n identical drops resulting from the “explo-
sion” of the bubble, produced when it suddenly acquires the
total load Q = nq.

B. The Narrow Space Between Coaxial Cylindrical

Glasses

Into a cylindrical glass with the inner diameter Di, containing water,
another cylindrical glass with the outer diameter De, mass m, and
walls of negligible thickness is introduced, mouth down, so that the
two cylinders are perfectly coaxial.

(c) Determine the difference in water level in the system after
releasing the inner glass if the space between the glasses is
extremely narrow. The water wets the walls of the glasses
perfectly.
Given: σ, ρ and g.
Particular case: σ = 0.

Solution

(a) First, we will calculate the pressure exerted by the electrostatic
forces on the bubble. On the surface of the bubble, as shown in
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Figure 5.2, we separate an elementary sector with the surface area
∆S, carrying the uniformly distributed electric charge ∆q, and with
the same density as the rest of the bubble’s surface.

Fig. 5.2

The electrostatic force exerted by the electric charges over the
rest of the bubble’s surface on the charges of the elementary sec-
tor, represented in the drawing, whose orientation is justified by the
symmetrical distribution of the electric charges, is:

Fe = Erest∆q,

where Erest is the intensity of the electric field generated by the rest
of the electric charges on the surface of the balloon at the point where
the elementary sector is located;

∆q =
q∆S

4πR2
;

Fe = Erest
q∆S

4πR2
.

If the elementary sector can be considered a plane sector with the
surface area ∆S, carrying the electrical charge ∆q, then the intensity
of the electric field generated by this distribution is

E∆q =
1

2

1

ε0

∆q

∆S
,

so that we have:

E0 = Erest + E∆q,
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where E0 is the intensity of the electric field generated by the electric
charge distributed over the entire bubble;

Erest = E0 − E∆q =
q

4πε0R2
− 1

2

1

ε0

∆q

∆S
=

1

ε0

q

4πR2
− 1

2

1

ε0

∆q

∆S
;

∆q

∆S
=

q

4πR2
,

representing the density of the electric charge;

Erest =
1

ε0

q

4πR2
− 1

2

1

ε0

q

4πR2
=

1

2

q

4πε0R2
=

1

2
E0;

Felectrostatic =
1

2

q

4πε0R2

q∆S

4πR2
=

1

32

q2

ε0R4
∆S.

Thus, the electrostatic pressure exerted on the bubble, towards its
exterior is

pelectrostatic =
Fe

∆S
=

q2

32π2ε0R4
.

At the same time, the pressure from the superficial tensional forces
towards the interior of the bubble is

psuperficial =
4σ

R
.

The two pressures will be balanced for a certain radius of the
bubble, so that we obtain:

pelectrostatic,equilibrium = psuperficial,equilibrium;

q2

32π2ε0R
4
0

=
4σ

R0

;

R0 =
3

√

q2

128π2ε0σ
.

Figure 5.3 shows the bubble in its initial state, when the equi-
librium radius between the pressure of the electrostatic forces and
the pressure of the superficial tensional forces is R0, as well as an
elementary sector with a surface area ∆S, at first in the equilibrium
position, when the resultant of the forces that act on it is

�F0,superficial + �F0,electrostatic = 0.
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Fig. 5.3

In the same figure, the bubble is then represented at some moment
during the oscillations when its radius is R = R0+∆R, and the forces
acting on the same elementary sector, whose area has not changed
significantly, are:

Fsuperficial =
4σ

R
∆S =

4σ

R0 +∆R
∆S < F0,superficial;

Felectrostatic =
q2

32π2ε0R4
∆S

=
q2

32π2ε0(R0 +∆R)4
∆S < F0,electrostatic;

Fsuperficial > Felectrostatic.

Thus, if ∆R ≪ R0, it results that:

Fsuperficial =
4σ

R0 +∆R
∆S =

4σ

R0

(

1 +
∆R

R0

)

−1

∆S

≈ 4σ

R0

(

1− ∆R

R0

)

∆S;

Felectrostatic =
q2

32π2ε0(R0 +∆R)4
∆S =

q2

32π2ε0R4
0

(

1 +
∆R

R0

)

−4

∆S

≈ q2

32π2ε0R
4
0

(

1− 4
∆R

R0

)

∆S;
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q2

32π2ε0R4
0

=
4σ

R0
;

Felectrostatic =
4σ

R0

(

1− 4
∆R

R0

)

∆S;

F = Fsuperficial − Felectrostatic

=
4σ

R0

(

1− ∆R

R0

)

∆S − 4σ

R0

(

1− 4
∆R

R0

)

∆S;

F =
12σ∆S

R2
0

∆R;

k =
12σ∆S

R2
0

;

F = k∆R;

�F = −k∆�R.

This proves that the oscillations of the elementary sector and,
therefore, the oscillations of the entire bubble are harmonic oscilla-
tions.

If ∆m is the mass of the considered elementary sector, it follows
that:

k = ω2∆m =
4π2

T 2
∆m =

12σ

R2
0

∆S;

∆m =
m∆S

4πR2
0

;

T =

√

πm

12σ
.

(b) From the law of conservation of energy, it results that:

1

2

n2q2

4πε0R0
+ 2σ4πR2

0 =
mv2

2
+ n

1

2

q2

n2

4πε0r
+ nσ4πr2;

1

2

n2q2

4πε0R0
+ 2σ4πR2

0 =
mv2

2
+ n

1

2

q2

n2

4πε0r
+ nσ4πr2;
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mv2

2
=

1

2

n2q2

4πε0

(

1

R0
− 1

n3r

)

− 4πσ(nr2 − 2R2
0);

m = nm1 = nρ
4πr3

3
;

r3 =
3m

4πρn
;

r = 3

√

3m

4πρn
;

mv2 =
n2q2

4πε0

(

1

R0
− 1

n3r

)

− 8πσ(nr2 − 2R2
0);

v =

√

n2q2

4πε0m

(

1

R0
− 1

n3r

)

− 8πσ

m
(nr2 − 2R2

0).

(c) The space between the two glasses, which has capillary dimen-
sions, makes the system uneven, as shown in Figure 5.4.

Fig. 5.4
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At the level XX′, from the condition of equilibrium of the
pressures transmitted in the liquid, it results that

p0 + ph = ps + p,

where p0 is the atmospheric pressure, ph is the hydrostatic pressure
of the coloumn of liquid, ps is the additional pressure of the curved
superficial layer, and p is the pressure of the air inside the glass.

The free surface of the liquid between the two glasses is a concave
surface identical to the inner surface of a cylindrical sector. An ele-
mentary sector of this surface can be considered as a cylindrical sector
whose radius we calculate using the drawing in Figure 5.5:

Fig. 5.5

2d+De = Di; d = 2r; r =
Di −De

4
.

As a result:

ps =
σ

r
=

4σ

Di −De
;

p0 + ρgh =
4σ

Di −De
+ p.

Figure 5.6 represents the forces that act on the liquid, perpen-
dicular to the contour of its free surface, as a result of the interac-
tion with the walls of the glasses. Since the liquid wets the walls of
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the glass perfectly, these forces (the superficial tensional forces) are
parallel to the walls, oriented vertically upwards. In accordance with
the principle of reciprocal actions, a strong and opposite force will
act from the liquid on the wall of the glass.

Fig. 5.6

Fig. 5.7

The forces that act on the inner glass, ensuring its balance, are
those represented in the drawing in Figure 5.7. It results that:

�F0 + �F + �G+ F ′

s +
�F ′′

s = 0,

where �F0 is the force determined by atmospheric pressure, �F is the
force determined by the air pressure inside the glass, and F ′

s and
�F ′′

s
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are the reactions of superficial tensional forces,

F0 +G+ F ′

s + F ′′

s = F;

p0S+mg+ σπDe + σπDe = pS;

S =
πD2

e

4
;

p = p0 +
mg + 2πσDe

πD2
e/4

.

p = p0 +
4(mg + 2πσDe)

πD2
e

.

It results that:

h =
4

ρg

(

σ

Di −De
+

mg + 2πσDe

πD2
e

)

;

σ = 0; h =
4m

πρD2
e

.

Problem 6. Magnetic Induction

A. Induction in a Ring

A conducting ring, with electrical resistance R, is placed in a mag-
netic field whose flux is variable over time according to the law
Φ = Φ(t) = Φ0 cosωt, where Φ0 and ω are known quantities. The
variable magnetic field is concentrated in a narrow area, as shown in
Figure 6.1. The points M, N and P are divided into three identical
sectors.

N

A

M

P

Fig. 6.1
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(a) Determine the indication of the alternating current ammeter
connected at points M and N, if the electrical resistance is r. The
electrical resistance of the connecting conductors is negligible.

B. Induction in Two Rings

Two conducting rings, placed on a horizontal plane support, as shown
in Figure 6.2, with mass m and radius r, are located inside a uniform
magnetic field, whose magnetic induction vector, �B0, is perpendicular
to the horizontal plane of the rings. The points A and C at which the
rings are touching each other, such that ∠AOC = α = π

3 , are points
of very good electric contact.

C

B
�

�

g

�

g

α B

B

�

�

⊗

⊗

⊗

⊗⊗

0 0

C

Fig. 6.2

B

O

A

C

B

�

��
�

α rg⊗

⊗

⊗

Fig. 6.3

(b) Determine the speed acquired by the ring after the rapid
disconnection of the magnetic field. The electrical resistance of
the piece of conductor from which each ring is made is R. Neglect
the displacement of the rings during the disconnection of the
magnetic field, the inductances of the rings, and any friction.
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(c) Two rings are attached, placed on the same horizontal support.
They move through translation towards each other over equal
distances, in the direction of the line of their centers, as indi-
cated by Figure 6.3, while the magnetic induction vector, �B,
perpendicular to the plane of the rings, remains constant.

Determine the orientations and values of the electromagnetic
forces acting on each ring when their velocities are equal in mod-
ulus, (v), and of opposite directions, and α = π/3. The induc-
tances of the rings are neglected.

Solution

(a) The total electromotive voltage induced in the closed circuit
MNPM of the conductive ring is

e = −dΦ

dt
= Φ0ω sinωt.

Its distribution on the three identical sectors of the ring (MN, NP,
PM) is, respectively, eMN = e

3 , eNP = e
3 , and ePM = e

3 , whose polari-
ties are those represented in Figure 6.4.

The total electromotive voltage induced in the closed circuit
MNAM, which includes the MN sector of the ammeter and the two
connecting conductors of the ammeter, must be zero because this
contour is far from the region of the variable magnetic field. As the
electromotive voltages induced in the identical sectors of the two con-
necting conductors are identical, e0

2 , with the polarities indicated in
Figure 6.4, so that eMNAM = 0, then e0 =

e
3 .

Accepting the instantaneous distribution of the currents through
the sides of the network as represented in Figure 6.4, in accordance
with Kirchhoff’s laws, it results that:

3
e

3
= e = i1

R

3
+ i2

(

R

3
+

R

3

)

;

e0 −
e

3
=

e

3
− e

3
= 0 = i3r − i1

R

3
;

i2 = i1 + i3;

i3 =
3e

9r + 2R
=

3Φ0ω

9r + 2R
sinωt,
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Fig. 6.4

representing the expression of the current intensity’s instantaneous
value through the side of the ammeter.

The indication of the ammeter, being the effective value of the
intensity of the alternating current, results in:

i3 = I3,max sinωt; I3,max =
3Φ0ω

9r + 2R
;

I3 =
I3,max√

2
=

3Φ0ω√
2(9r + 2R)

.

(b) When the external magnetic field is disconnected, the abso-
lute value of the magnetic inductance varies over time from the
initial value to the zero value. The variable magnetic field causes
the appearance of an eddy electric field (with closed field lines), set-
ting in orderly motion electric charge carriers in a free state, thus
determining the appearance of inductive electric currents in the two
conductive rings.

Let’s analyze the contour AbCdA, which overlaps exactly the out-
line of the ring on the left, as shown in Figure 6.5. The electromotive
induction voltage on this outline of the ring is

e = −
(

∆Φ

∆t

)

AbCdA

= −SAbCdA
∆B

∆t
= −πr2

∆B

∆t
.

According to Lentz’s rule, the directions of the induction currents
on the outline of this ring are aligned with the direction of rotation
of the needles of a watch.
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Fig. 6.5

For a certain moment t ∈ ∆t, where ∆t is the duration of the
cancellation of the magnetic field, let I1(t) be the intensity of the
current induced on the sector AbC of the specified outline and I2(t)
the current intensity induced on the sector CdA of the same out-
line. In accordance with Kirchhoff’s second theorem, for the outline
AbCdA:

e =
lAbC

2πr
RI1(t) +

lCdA

2πr
RI2(t);

lAbC = αr =
π

3
r; lCdA =

5π

3
r;

I1(t) + 5I2(t) = −6πr2

R

∆B

∆t
.

Similarly, for the outline AbCfA, represented in Figures 6.6 and
6.7, it results that:

e′ = −
(

∆Φ

∆t

)

AbCfA

= −SAbCfA
∆B

∆t
;

SAbCfA = 2SAbCA = 2(SOAbCO − SOACO)

= 2
(α

2
r2 − r sin

α

2
r cos

α

2

)

;

SAbCfA = 2r2
(α

2
− sin

α

2
cos

α

2

)

;

e′ =
lAbC

2πr
RI1(t) +

lCfA

2πr
RI1(t) = 2

lAbC

2πr
RI1(t) =

lAbC

πr
RI1(t)

=
α

π
RI1(t);
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−2r2
(α

2
− sin

α

2
cos

α

2

) ∆B

∆t
=

α

π
RI1(t);

∆B

∆t
< 0;

I1(t) = −6r2

R

(α

2
− sin

α

2
cos

α

2

) ∆B

∆t
> 0;

I2(t) = −6r2

5R

(

π − α

2
+ sin

α

2
cos

α

2

) ∆B

∆t
> 0;

I2(t) > I1(t).

Fig. 6.6

Fig. 6.7
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For the very small duration (∆t) of the cancellation of the mag-
netic field, in accordance with Ampere’s law, at every moment (t) on
any elementary sector with a very small thickness (∆l) of each ring
traversed by an electric current with the intensity I(t), an electro-
magnetic force

�F = I(t)∆�lx �B(t)

will act, oriented in the direction of the radius of the ring to the
exterior of the ring, whose value can be considered constant:

F = I(t)∆lB(t).

Considering the symmetry with respect to the center of the ring
(I), any elemental sector on the arc EA of the ring (I), as shown
in Figure 6.8, corresponds to an identical elementary sector on the
arc CD of the same ring, through which the intensity of the current
is the same, I2(t), so that the forces acting on the two elementary
sectors in the same magnetic field are equal in magnitude and of
opposite directions, their resultant being null. The resultant of the
forces acting on the current from arcs EA and CD is null.

Fig. 6.8
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Let us now analyze the forces that act upon the currents in the
identical and symmetrical arcs AC and DE, which are traversed by
currents of different intensities (I1(t) �= I2(t)).

For reasons of symmetry, each of the arcs AC and DE are placed
relative to the XX′ axis. Additionally, considering the symmetrical
distribution of the intensity values I1(t) and I2(t) through each of the
two arcs, relative to the XX′ axis, the resultant of the forces acting
on each of the arcs AC and DE in the direction of the YY′ is null.
Indeed, for two identical elementary sectors on the AC arc, located
symmetrically with respect to the XX′ axis and traversed by a current
with the intensity I1(t), the forces acting on them are identical, ∆�F1,

and their components, ∆�F1Y, parallel to the YY′ axis, are equal in
modulus but of opposite directions.

Similarly, for two identical elementary sectors on the DE arc,
located symmetrically with respect to the XX′ axis and traversed
by a current with the intensity I2(t), the forces acting on them are

identical, ∆�F2, and their components, ∆�F2Y, parallel to the axis YY
′,

are equal in modulus but of opposite directions.
As a result, considering the forces �F1 and �F2, which act on the

arcs AC and DE, respectively, traversed by electric currents with
intensities I1(t) and I2(t), only the components ∆�F1X and ∆�F2X will
be found:

�F1 = Σ∆�F1X,k;

F1 = Σ∆F1X,k = Σ∆F1 cos βk = ΣI1(t)∆lkB(t) cos βk

= I1(t)B(t)Σ∆lk cos βk;

F1 = I1(t)B(t)Σ∆yk = I1(t)B(t)(AC) = I1(t)B(t)2r sin
α

2
;

�F2 = Σ∆�F2X,k;

F2 = Σ∆F2X,k = Σ∆F2 cos γk = ΣI2(t)∆lkB(t) cos γk

= I2(t)B(t)Σ∆lk cos γk;

F2 = I2(t)B(t)Σ∆yk = I2(t)B(t)(DE) = I2(t)B(t)2r sin
α

2
;

I2(t) > I1(t);

F2 > F1.
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Thus, the resultant of the forces acting on ring (I) is:

F = F2 − F1 = 2rB(t)(I2(t)− I1(t));

F = −12r3

R
sin

α

2

[

1

5

(

π − α

2
+ sin

α

2
cos

α

2

)

−
(α

2
− sin

α

2
cos

α

2

)

]

×B(t)
∆B(t)

∆t
;

F = −12r3

5R
sin

α

2

(

π − 3α+ 6 sin
α

2
cos

α

2

)

B(t)
∆B(t)

∆t
;

∆(B2(t))

∆t
= 2B(t)

∆B(t)

∆t
;

F = −6r3

5R

(

π − 3α+ 6 sin
α

2
cos

α

2

)

sin
α

2

∆(B2(t))

∆t
.

This force, acting on the ring for a very short time, causes a
variation in the ring’s momentum, so that:

m∆v = F∆t = −6r3

5R

(

π − 3α+ 6 sin
α

2
cos

α

2

)

sin
α

2
∆(B2(t));

∆v = v − 0 = v; ∆(B2(t)) = 0−B2
0 ;

v =
6r3B2

0

5mR

(

π − 3α + 6 sin
α

2
cos

α

2

)

sin
α

2
;

α =
π

3
; v =

9
√
3r3B2

0

10mR
.

(c) When a conductive ring moves through plane transitions in a uni-

form magnetic field, with magnetic induction �B, a Lorentz force acts
on each free electron in its structure, �fL = q�v× �B, whose orientation
is shown in Figure 6.9.

Fig. 6.9
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Due to these forces, each elementary sector on the ring, having
length ∆l, can be considered a linear conductor, in which an electro-
motive induction voltage appears.

Figure 6.10 shows two such elementary sectors located on the arc
CmM of ring (I), symmetrical to the YY′ axis, and two elementary
sectors located on the arc NnA of the same ring, symmetrical to the
same YY′ axis. The polarities of the electromotive voltages induced
in these elementary sectors, shown in the figure and justified by the
tangential components of the Lorentz forces, prove that the total
electromotive voltages induced in the arcs CmM and NnA are null.

Fig. 6.10

Figure 6.11 shows two elementary sectors on the AbC arc and
two elementary sectors on the MdN arc, symmetrical to the XX′

axis. The polarities of the electromotive voltages induced in these
elementary sectors, shown in the figure and justified by the tangential
components of the Lorentz forces, prove that the total electromotive
voltages induced in the arcs AbC and MdN are no longer zero; they
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add up arithmetically. The arcs AbC and MdN are symmetrical to the
YY′ axis, and each of them is symmetrical to the XX′ axis, identical,
and moves identically. As a result, the electromotive voltages induced
in these arcs of ring (I) are identical.

Fig. 6.11

Under these conditions, the distribution of the two identical total
electromotive voltages of induction, EAbC = ECdA = E, on sectors
AbC and CmMdNnA of ring (I), sectors whose electrical resistances
are R1 and R2, respectively, is that represented in Figure 6.12, where
the magnitudes and intensities of the induction currents are also
noted.

It is easily demonstrated that:

R1 =
α

2π
R; R2 =

2π − α

2π
R.

Knowing that the electromotive voltage of inductance in a coiled
conductor with length l that is released with velocity �v in a magnetic
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Fig. 6.12

field with induction �B⊥�v is

e = −∆Φ

∆t
= −∆( �B · �S)

∆t
= B

∆S

∆t
,

based on Figure 6.13, it results that:

∆S = (l cos β + v∆t)l sinβ − l2 sin β cos β = vl∆t sinβ;

e = Blv sin β.

Fig. 6.13

Under these conditions, using Figure 6.14, it results that:

ek = Bv∆lk sin βk;

E = Σek = BvΣ∆lk sinβk = Bv(AC);
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Fig. 6.14

AC = 2r sin
α

2
;

E = 2Bvr sin
α

2
.

Following the same statements for ring (II) and noting the results
in Figure 6.15, using Kirchhoff’s theorems, we obtain:

Fig. 6.15
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2E = 2I1R1; I1 =
E

R1
;

I1 =
4πBvr

αR
sin

α

2
;

2E = I1R1 + I2R2;

I2 =
2E

R2
− I1

R1

R2
;

I2 =
4πBvr

(2π − α)R
sin

α

2
.

With the electromagnetic forces that act on each of the four
sectors of ring (I) being those shown in Figure 6.16, it is very easily
demonstrated that, for reasons of symmetry,

�Fm = −�Fn,

so that their resultant is null.
In these conditions, the resultant of the forces acting on ring (I) is:

�FI = �Fb + �Fd;

FI = Fb + Fd;

FI = (I1 + I2)BlAB = (I1 + I2)B2r sin
α

2
;

FI =
16π2B2vr2

α(2π − α)R
sin2

α

2
;

α =
π

3
; FI =

36

5

B2vr2

R
.

Similarly, using Figure 6.17, it is proved that the force acting on
ring (II) is FII = Ff + Fh = FI.
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Fig. 6.16

Fig. 6.17
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Problem 7. Lens Between a Light Source and a Photodiode

A photodiode with the flat receiving surface Spd = 0.5mm2 is located
in the focus of a convergent lens, arranged perpendicular to the main
optical axis of the lens. On the other side of the lens, on the same
main axis, there is a point source of light at a distance d from the
lens.

Determine the ratio of the intensities of the currents through the
photodiode if the light source located at a distance d1 = 1m from
the lens moves, approaching the lens until it reaches the distance
d2 = 0.3m.

Given: the diameter of the lens, D = 1cm; the focal length of the
lens, f = 5cm.

It is known that the intensity of the current through the photo-
diode is directly proportional to the incident radiation flow.

Solution

In the absence of the photodiode, the image of the source would be
formed in S, as Figure 7.1 indicates, such that:

1

d
+

1

p
=

1

f
; p =

fd

d− f
.

Fig. 7.1

Under these conditions, for the diameter of the light spot on the
face of the photodiode and its surface area, from simple geometric
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considerations, we obtain:

h =
fD

d
; Sspot =

πh2

4
=

πf2D2

4d2
.

Thus, for the two distances of the source to the lens, we have:

f = 5 cm; D = 1 cm; d1 = 1 m;

r1 =
h1
2

=
fD

2d1
= 0.25 mm; Sspot,1 = πr21 =

πf2D2

4d21
≈ 0.2 mm2;

Spd = 0.5 mm2; rpd ≈ 0.4 mm;

r1 < rpd; Sspot,1 < Spd.

This proves that, in this case, the entire flux of light falling on the
lens will reach the surface of the photodiode, so that the intensity of
the current through the photodiode, in this case, will be:

I1 = kΦ1 = KSspot,1;

f = 5 cm; D = 1 cm; d2 = 0.3 m;

r2 =
h2
2

=
fD

2d2
= 1.66 mm; Sspot,2 = πr22 =

πf2D2

4d22
≈ 2.18 mm2;

r2 > rpd; Sspot,2 > Spd.

This proves that, from the flow of light that falls on the lens, only a
part, Φ2 < Φ0, corresponding to the surface area of the photodiode,
Spd, will reach the photodiode, so that the intensity of the current
through the photodiode, in this case, will be

I2 = kΦ2 = KSpd.

In these conditions:

Spd

Sspot,2
=

0.5 mm2

2.18 mm2
=

1

4.36
;

I2
I1

=
kΦ2

kΦ1
=

KSpd

KSspot,1
=

Spd

Sspot,1
=

Spd

Sspot,2

Sspot,2

Sspot,1
;

I2
I1

=
1

4.36

d21
d22

≈ 2.54.
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Problem 8. Two Transparent Plates

From the light intensity I0, normally incident on a glass plate with
very thin, semi-transparent parallel plane faces, the slide allows only
I0/k to pass, the rest being reflected. In the path of a parallel beam
of monochromatic light of intensity I0, two such semi-transparent
plates are placed, their planes being parallel and close, as shown in
the drawing in Figure 8.1.

Fig. 8.1

Determine the intensity I ′ transmitted beyond the second plate,
and locate and calculate the difference I = I0−I ′. Compare intensities
I ′ and I. Then, verify that I + I ′ = I0. Neglect the absorption of
light. It is known that 1 + q + q2 + q3 + · · ·+ qn = 1

1−q .

Solution

Using the representation in Figure 8.2, it results that:

i0 =
I0
k
; I1 = I0 − i0 = I0 −

I0
k

= I0

(

1− 1

k

)

;

I1 = I0

(

1− 1

k

)

; I ′1 =
i0
k

=
I0
k2

;

i1 = i0 − I ′1 =
I0
k

− I0
k2

; i1 =
I0
k

(

1− 1

k

)

;

I2 =
i1
k

=
I0
k2

(

1− 1

k

)

; i′1 = i1 − I2;

i′1 =
I0
k

(

1− 1

k

)2

; I ′2 =
i′1
k
; I ′2 =

I0
k2

(

1− 1

k

)2

;
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Fig. 8.2

i2 = i′1 − I ′2; i2 =
I0
k

(

1− 1

k

)3

;

I3 =
i2
k

=
I0
k2

(

1− 1

k

)3

; i′2 = i2 − I3;

i′2 =
I0
k

(

1− 1

k

)4

; I ′3 =
i′2
k
; I ′3 =

I0
k2

(

1− 1

k

)4

;

i3 = i′2 − I ′3; i3 =
I0
k

(

1− 1

k

)5

;

I4 =
i3
k

=
I0
k2

(

1− 1

k

)5

;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

I ′ = I ′1 + I ′2 + I ′3 + · · · · · · · · · ;

I ′ =
I0
k2

+
I0
k2

(

1− 1

k

)2

+
I0
k2

(

1− 1

k

)4

+ · · · · · · · · · ;
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I ′ =
I0
k2

[

1 +

(

1− 1

k

)2

+

(

1− 1

k

)4

+

(

1− 1

k

)6

+ · · · · · ·
]

;

q =

(

1− 1

k

)2

;

1 +

(

1− 1

k

)2

+

(

1− 1

k

)4

+

(

1− 1

k

)6

+ · · · · · ·+
(

1− 1

k

)2n

= 1 + q + q2 + q3 + · · ·+ qn =
1

1− q
;

1 +

(

1− 1

k

)2

+

(

1− 1

k

)4

+

(

1− 1

k

)6

+ · · · · · ·

=
1

1−
(

1− 1
k

)2 =
k2

2k − 1
;

I ′ =
I0

2k − 1
;

I = I1 + I2 + I3 + I4 + · · · · · · · · · ;

I = I0

(

1− 1

k

)

+
I0
k2

(

1− 1

k

)

+
I0
k2

(

1− 1

k

)3

+
I0
k2

(

1− 1

k

)5

+ · · · · · · · · · ;

I = I0

(

1− 1

k

)

+
I0
k2

(

1− 1

k

)

[

1 +

(

1− 1

k

)2

+

(

1− 1

k

)4

+

(

1− 1

k

)6

+ · · · · · ·
]

;

I =
2I0(k − 1)

2k − 1
; I ′ < I; I + I ′ = I0.

This is shown in Figure 8.3.
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Fig. 8.3

Problem 9. The Flux of Light Beyond a Transparent Slide

The flux of radiation coming from a point-shaped light source is mea-
sured with the help of a photosensitive detector located at a distance
l0 from the source. Between the source and the photodetector, there
is a transparent glass slide with flat and parallel faces, placed so that
the planes of its faces are perpendicular to the right of the centers of
the source and the detector. The refractive index of glass is n.

Determine the thickness d of the transparent slide if the pho-
todetector indication remains the same as in the absence of the
slide. The reflective coefficient of light, under normal incidence, at

a glass–air or air–glass boundary is k = (n−1)2

(n+1)2
. It is known that

1 + q2 + q4 + · · ·+ q2n = 1
1−q2

.

Solution

After crossing the plate, the light flux reaching the photodetector is
lower than the incident light flux on the slide due to light reflection
at the air–glass and glass–air boundaries. However, this decrease also
has a compensatory effect. Due to light refraction, the light source
appears closer to the photodetector than in the absence of the plate.

To begin with, using Figure 9.1, we will analyze the effect of light
reflection on the two faces (a and b) of the slide.

For the first reflection on the face of the slide at the air–glass
boundary, according to the definition of the coefficient of reflection,
we have:

k =
Φr1,a

Φin1,a
; Φr1,a = kΦin1,a,



International Pre-Olympic Physics Contest 2011, Satu Mare, Romania 305

Fig. 9.1

where Φin1,a is the light flux recorded by the photodetector in the
absence of a transparent slide, and Φr1,a is the light flux after the
first reflection on face a;

Φt1,a = Φin1,a −Φr1,a = Φin1,a(1− k),

where Φt1,a is the flux transmitted during the first passage of light
through face a.

Similar, corresponding to the first reflection on face b at the glass–
air boundary, we have:

k =
Φr1,b

Φin1,b
=

Φr1,b

Φt1,a
; Φr1,b = kΦt1,a;

Φr1,b = Φin1,ak(1− k);

Φt1,b = Φin1,b − Φr1,b = Φt1,a − Φr1,b = Φt1,a(1− k);

Φt1,b = Φin1,a(1− k)2.

Continuing this reasoning, for the second reflection produced on
face a at the glass–air boundary, as well as for the following reflections
on faces a and b, we have:

k =
Φr2,a

Φin2,a
=

Φr2,a

Φr1,b
; Φr2,a = kΦr1,b;

Φr2,a = Φin1,ak
2(1− k)
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k =
Φr2,b

Φin2,b
=

Φr2,b

Φr2,a
; Φr2,b = kΦr2,a;

Φr2,b = Φin1,ak
3(1− k);

Φt2,b = Φin2,b − Φr2,b = Φr2,a − Φr2,b

= Φin1,ak
2(1− k)− Φin1,ak

3(1− k);

Φt2,b = Φin1,ak
2(1− k)2

k =
Φr3,a

Φin3,a
=

Φr3,a

Φr2,b
; Φr3,a = kΦr2,b;

Φr3,a = Φin1,ak
4(1− k);

k =
Φr3,b

Φin3,b
=

Φr3,b

Φr3,a
; Φr3,b = kΦr3,a;

Φr3,b = Φin1,ak
5(1− k);

Φt3,b = Φin3,b − Φt3,b = Φr3,a − Φr3,b

= Φin1,ak
4(1− k)− Φin1,ak

5(1− k);

Φt3,b = Φin1,ak
4(1− k)2;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Φt = Φt1,b +Φt2,b +Φt3,b + · · · · · · · · · ;

Φt = Φin1,a(1− k)2(1 + k2 + k4 + · · · · · · ); k < 1;

Φt = Φin1,a(1− k)2
1

1− k2
= Φin1,a

1− k

1 + k
.

This means that the light flux at the detector in the presence of
the slide, due to the multiple reflections, is lower than the light flux
that would reach the detector in the absence of the slide. We will
now analyze the effect of the proximity of the source to the detector,
an effect that is due to the refraction of light through the two faces
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Fig. 9.2

(a and b) of the slide, using the drawing in Figure 9.2. For light rays
departing at very small angles α from the source located in position
S0, using the law of refraction, as well as geometrical considerations,
if d is the thickness of the transparent blade, it results that:

sinα = n sin β; α ≈ nβ; β =
α

n
;

tan β =
h

d
≈ β; h = βd =

α

n
d;

tanα =
h

d−∆l
≈ α; h = α(d −∆l);

α

n
dα(d −∆l);

∆l =

(

1− 1

n

)

d.

Thus, in the presence of the slide, the source is in position S, closer
than in the absence of the slide, at the distance l = l0 −∆l from the
detector, which implies an increase in the light flux at the detector.

The energy that a point source of light emits per unit time, per
unit solid angle, represents the energy intensity of the light source
(

Ie =
W

∆t·∆Ω

)

.
The energy that arrives per unit time on a unit area of a body’s

surface under normal incidence represents the illumination energy

that the light source produces on a certain surface
(

Ee =
W

∆t·∆A

)

. If
W
∆t = Φ represents the energy flux of the light emitted by the source
(representing the energy of the radiation that crosses under normal
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incidence a given surface area, or the energy of the radiation that
reaches under normal incidence a given surface area), then:

Ie =
Φ

∆Ω
;

Ee =
Φ

∆A
=

Ie∆Ω

∆A
= Ie

∆Ω

∆A
;

∆Ω =
∆A

r2
; Ee =

Ie
r2

,

where r is the distance from the point source to the photodetector.
In the absence of the transparent slide, the illumination energy

produced by the light source, located at point S0, on a given surface
area of the photodetector is:

Ee0 =
Ie0
l20

,

where Ie0 is the energy intensity of the light source located at point
S0;

Ie0 =
Φin1,a

∆Ω
; Ee0 =

Φin1,a

l20∆Ω
.

In the presence of the glass slide, the illumination energy that the
light source located at point S produces on a given surface area of
the photodetector is:

Ee =
Ie
l2

=
Ie

(l0 −∆l)2
,

where Ie is the energy intensity of the light source located at point S;

Ie =
Φt

∆Ω
=

Φin1,a

∆Ω

1− k

1 + k
;

Ee =
Φin1,a

(l0 −∆l)2∆Ω

1− k

1 + k
.

If the photodetector’s reading is the same, regardless of the pres-
ence or absence of the transparent slide between the light source and
the photodetector, it results that:

Ee = Ee0;
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Φin1,a

(l0 −∆l)2∆Ω

1− k

1 + k
=

Φin1,a

l20∆Ω
;

1

(l0 −∆l)2
1− k

1 + k
=

1

l20
;

l0 −∆l

l0
=

√

1− k

1 + k
; ∆l =

(

1− 1

n

)

d;

d =
n

n− 1
l0

(

1−
√

1− k

1 + k

)

;

k =
(n− 1)2

(n+ 1)2
.

Problem 10. The Relativistic Doppler Effect

A source of electromagnetic radiation, S, moves with speed �v relative
to a fixed observer, O, so that, as Figure 10.1 indicates, the direction
of the vector �v does not coincide with the direction of the vector−→
OS . The source’s emission of electromagnetic oscillations begins in

position S1, when the angle between vectors �v and
−→
OS1 is θ, and

ends when the source is in position S2, very close to position S1.
The physical parameters and characteristics of the emitted radiation
in relation to the reference system of the source S (mobile reference
system) are: frequency, vs; period, Ts; wavelength, λs.

Fig. 10.1

Determine the quantities of the physical characteristics of the
radiation recorded by the fixed observer O (fixed reference system):
frequency, vobs; period, Tobs; wavelength, λobs.
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Particular cases: (1) θ = 0; θ = π;→ longitudinal Doppler effect;
(2) θ = π/2;→ transverse Doppler effect. We know the speed of light
in a vacuum, c.

Solution

Following the drawing in Figure 10.2, the source’s emission of electro-
magnetic oscillations begins in position S1, when the angle between

the vectors �v and
−→
OS1 is θ, at time t′1 (relative to the source) and

time t1 (relative to the fixed observer). The emission of the N elec-
tromagnetic oscillations terminates in the very nearby position S2
at time t′2 (relative to the source) and time t2 (relative to the fixed
observer), so that we have:

∆t′ = t′2 − t′1; ∆t = t2 − t1 �= ∆t′;

∆t =
∆t′

√

1− β2
.

Fig. 10.2

Under these conditions, the reception of the N electromagnetic
oscillations by the fixed observer will begin at the time

τ1 = t1 +
D1

c
,

and it will end at the time

τ2 = t2 +
D2

c
,
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so that the reception duration of the N electromagnetic oscillations
will be:

∆τ = τ2 − τ1 = ∆t+
D2 −D1

c
;

D2 −D1 ≈ S1S2 cos θ = v cos θ∆t;

∆τ = (1 + β cos θ)∆t.

It results that:

N = νs∆t′ = νs
√

1− β2∆t;

N = νobs∆τ = νobs(1 + β cos θ)∆t;

νobs = νs

√

1− β2

1 + β cos θ
;

λobs = λs
1 + β cos θ
√

1− β2
.

The variants θ = 0 and θ = π, representing the longitu-
dinal Doppler effect, correspond to the situations highlighted in
Figure 10.3, for which we have

νobs = νs

√

1− β2

1± β
; λobs = λs

1± β
√

1− β2
,

known as the longitudinal relativistic Doppler effect.

Fig. 10.3

In addition, νobs �= νs and λobs �= λs, and for θ = π/2, the folowing
relations are obtained:

νobs = νs
√

1− β2 < νs;

Tobs =
Ts

√

1− β2
> Ts;

λobs =
λs

√

1− β2
> λs,
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representing the transversal relativistic Doppler effect, for which no
classical correspondence exists. The transversal Doppler effect proves
that even when the detection of light propagation toward the observer
is perpendicular to the direction of movement of the source, the fre-
quency and wavelength of the recorded radiation differ from those of
the emitted radiation. However, their variations are much smaller
than those corresponding to the longitudinal relativistic Doppler
effect.

Problem 11. The Ives and Stilwell Experiment

Among the experiments that confirmed the existence of the rela-
tivistic Doppler effect (longitudinal and transverse), especially the
transverse effect, predicted by the theory of special relativity, is the
experiment proposed by Ives and Stilwell in 1938.

Fig. 11.1

In a channel radiation tube (aH+
2 ion bundle), a plane mirror is

mounted, as shown in Figure 11.1. Channel radiation is corpuscular
radiation made up of positive ions that, after being accelerated in
the intense electric field of an electrical discharge, propagates behind
the perforated cathode of a discharge tube. It was discovered by
E. Goldstein in 1886.

Using a spectrophotometer whose axis falls within the limits of
the experimental curves, with the normal on the plane of the mirror,
both the radiation emitted by the H+

2 , which comes directly from
these ions, and that reflected by the mirror are recorded. The speed of
the ions at the moment of crossing the axis of the spectrophotometer
is �v, and the angle between the axis of the spectrophotometer and
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the axis of the radiation tube is θ. If the light emitted by the H+
2

ions were observed along the RC direction (channel radiation) in the
absence of mirrors, as shown in Figure 11.1, then the wavelength of
the recorded radiation would correspond to the longitudinal Doppler
effect. The wavelength of the emitted radiation relative to its own
reference system (attached to the H+

2 ions) is λs.
Determine the wavelengths λ1 and λ2 of the spectral lines

recorded by the spectrophotometer, specifying their location relative
to the spectral line λs. The speed of light in a vacuum, c, is known.
For the values of the two wavelengths, identify the contribution ∆λ
from the longitudinal Doppler effect, as well as the contribution ∆λ′

from the transverse Doppler effect.

Solution

In the mirror shown in Figure 11.2, the radiation emitted from
the source S (the H+

2 ion) is recorded by the observer O (the
spectrophotometer) following the direction of the normal to the
mirror.

The part of the wave reaching the mirror seems to come towards
the observer, being emitted by a virtual source S′, representing the
image of S in the plane mirror. Using the previous results, this wave

Fig. 11.2
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will be recorded by the spectrophotometer as having the following
wavelength:

λ′

obs = λ1 = λs
1 + β cos(

−−→
OS′;�v′)

√

1− β2
;

λ1 =
1 + β cos(π − θ)

√

1− β2
λs;

λ1 =
λs(1− β cos θ)

√

1− β2
.

This wave, received by the spectrophotometer O after reflection
on the mirror, will be recorded with a variation −∆λ in the wave-
length, corresponding to the longitudinal Doppler effect, and with an
additional variation +∆λ′, corresponding to the transverse Doppler
effect:

λ1 = λs −∆λ+∆λ′.

The part of the wave emitted directly to the observer will be
registered as having the following wavelength:

λ′′

obs = λ2 = λs
1 + β cos(

−→
OS ;�v)

√

1− β2
;

λ2 = λs
1 + β cos θ
√

1− β2
.

This wave is recorded with a length variation of +∆λ, correspond-
ing to the longitudinal Doppler effect, and an additional variation
+∆λ′, corresponding to the transverse Doppler effect:

λ2 = λs +∆λ+∆λ′.
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As a result, in the spectrophotometer, smooth spectral lines will
appear with wavelengths λ1 and λ2, arranged asymmetrically with
respect to the corresponding division λs.

The variations in the wavelengths due to the longitudinal Doppler
effect and transverse Doppler effect, respectively, are given by the
expressions:

∆λ =
1

2
(λ2 − λ1);

∆λ′ =
1

2
(λ1 + λ2 − 2λs).

Ives and Stilwell found these values to be very close to the calculated
theoretical values.

Problem 12. Invariant of Lorentz Transformations

It is known that the phase of a plane electromagnetic wave is an
invariant of special Lorentz transformations.

Determine the spectral displacement corresponding to the longi-
tudinal relativistic Doppler effect.

Solution

In the origin of the fixed inertial system XYZ, represented in Fig-
ure 12.1, there is a source S of electromagnetic harmonic oscillations,
occurring along the Z axis, according to the law

ES = Emax sinωst = Emax sin 2πνst.

The end-to-end transmission of these oscillations along the Y axis
with speed c represents a planar (transversal) electromagnetic wave,
whose equation is

E = Emax sinωs

(

t− y

c

)

= Emax sin 2πνs

(

t− y

c

)

,

where y is the coordinate of the position of the wave front at time
t in relation to the fixed system XYZ, and E is the instantaneous
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value of the intensity of the electric field of the electromagnetic wave
at the considered point.

Fig. 12.1

The expression

φ = 2πνs

(

t− y

c

)

represents the phase of the electromagnetic oscillations in the fixed
system XYZ.

Corresponding to the mobile system X′Y′Z′, the phase of the oscil-
lations is

φ′ = 2πνobs

(

t′ − y′

c

)

,

where y′ and t ′ represent the spacetime coordinates of the same wave-
front relative to the system X′Y′Z′.

The phase of a wave is a quantity directly proportional to the
number of maxima that pass by one observer located in a certain
inertial reference system.

Because counting these maxima is independent of the coordinate
system, the wave’s phase is an invariant of Lorentz transformations.
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Using the Lorenz transformations, it results that:

t =
t′ + v

c2
y′

√

1− β2
; y =

y′ + vt′
√

1− β2
;

2πνs

(

t− y

c

)

= 2πνs

(

t′ + v
c2
y′

√

1− β2
− y′ + vt′

c
√

1− β2

)

;

2πνobs

(

t′ − y′

c

)

= 2πνs

(

t′ + v
c2
y′

√

1− β2
− y′ + vt′

c
√

1− β2

)

;

νobs = νs
1− β

√

1− β2
.
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Chapter 8

International Pre-Olympic Physics

Contest, Zalău, Romania

Problem 1. Adventures and Gravitational Catastrophes

A. The Jump of the Polar Bear

The beginning of the 21st century. In a guide about the Spitsbergen
polar ice cap (the largest island in the Svalbard Archipelago, in the
Arctic Ocean), it is said that “a polar bear can move, without warn-
ing, from one frozen sector to another frozen sector, the distance
between these sectors being L = 8 m”, as shown below.

The middle of the 26th century. To populate the remote areas
of the Solar System, biologists plan to send some polar bears from

319
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the land of Spitsbergen to an icy asteroid in the Kuiper belt. Physi-
cists have warned that, through their jumps, the bears could become
independent bodies of the Kuiper belt.

(a) Estimate the diameter that such an asteroid can have so that
polar bears, brought from the land of Spitsbergen, can be com-
fortably placed there.

B. Gravitational Catastrophe in Our Galaxy

Let’s consider that, as a result of a gravitational catastrophe occur-
ring in a region of our galaxy, the constant of universal attraction
decreases, becoming K = ηK0, where K0 is the constant of the
current gravitational attraction, and η < 1.

(b) If the current orbit of the Earth in relation to the Sun is a sky,
determine the new shape of the Earth’s orbit in relation to the
Sun, as well as the elements of this orbit, after the occurrence
of the gravitational catastrophe.

C. Gravitational Catastrophe in the Sun

Let’s imagine that, following a catastrophe of gravitational forces,
the mass of the Sun suddenly decreases, reducing to half its current
value.

(c) Determine the new period of revolution of the Earth around the
Sun.

Solution

(a) Using the notation in Figure 1.1, we determine the speed the
bear has at the time of the start of the jump under the conditions
offered by the Spitsbergen ice cap:

xmax = v0xt = v0 cosα · 2tu = v0 cosα · 2v0y
g

= v0 cosα · 2v0 sinα
g

;

xmax =
v20
g

sin 2α;
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α = 45◦; xmax =
v20
g

= L = 8 m; g ≈ 10
m

s2
;

v0 =
√

gL ≈ 9
m

s
.

v
�

v
�

v
�

0
0 y

α

ox

g
�

maxx

maxy

Fig. 1.1

Arriving on the asteroid’s surface, the bear will execute a jump
with the initial speed calculated previously. If v0 > vII, where vII
is the second cosmic velocity, under the conditions offered by the
asteroid, it is obvious that the bear will leave the asteroid, which will
not be at all comfortable. And if v0 = vI, where vI is the first cosmic
velocity, under the conditions offered by the asteroid, the bear will
not be comfortable, for he will have to gravitate around the frozen
asteroid.

As a result, for the comfort of the bear, the initial speed of the
jump on the asteroid must meet the condition

v0 < vI .

Thus, we get:

vI =

√

K
M

R
,

where M is the mass of the asteroid, R is the asteroid’s radius, and
K is the constant of universal attraction;

M = ρ
4πR3

3
,

where ρ is the density of the asteroid (ice density);

vI = D

√

Kπρ

3
,
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where D is the diameter of the asteroid;

v0 < D

√

Kπρ

3
;

√

gL < D

√

Kπρ

3
; D >

√

3gL

Kπρ
≈ 35 km.

(b) Before the occurrence of the gravitational catastrophe, the total
mechanical energy of the Earth–Sun system is:

E0 =
mv20
2

−K0

mM

r0
; v0 =

√

K0

M

r0
.

Immediately after the gravitational catastrophe, the total
mechanical energy of the Earth–Sun system is:

E =
mv20
2

−K
mM

r0
; K = ηK0; E > E0,

Thus, from that moment, the Earth’s revolution around the Sun will
be on an ellipse-shaped orbit, with the center of the Sun in the near
focus, as indicated by Figure 1.2.

 

a

v
�

maxr

M

m

0r

0v
�

Fig. 1.2
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The evolution of the Earth around the Sun, on the new orbit,
occurs in accordance with the laws of conservation of mechanical
energy and kinetic momentum, so that:

mv20
2

−K
mM

r0
=

mv2min

2
−K

mM

rmax

;
v20
2

−K
M

r0
=

v2min

2
−K

M

rmax

;

r0mv0 = rmaxmvmin; r0v0 = rmaxvmin;

vmin = v0
r0

rmax

;

v20
2

−K
M

r0
=

v20
2

r20
r2max

−K
M

rmax

;

(

2KM − v20r0
)

r2max − 2KMr0rmax + v20r
3
0 = 0;

(2η − 1) r2max − 2ηr0rmax + r20 = 0;

rmax =
r0

2η − 1
> r0;

rmax + r0 = 2a; a =
ηr0

2η − 1
.

Using the definition of the ellipse and the notation from
Figure 1.3, it results that:

a

a

a

b
c

2F

B

1F

A

C

0min rr =
maxr O

Fig. 1.3
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rmin = r0 = a− c; rmax = a+ c;

rmax − r0 = 2c; c =
1− η

2η − 1
r0;

b =
√

a2 − c2 =
r0√

2η − 1
;

e =

√

1− b2

a2
=

√

(

η − 1

η

)2

= ±η − 1

η
;

e = −η − 1

η
=

1− η

η
;

p = a
(

1− e2
)

=
r0
η

= b
√

1− e2.

(c) We must realize that the proposed process is hypothetical and
that the laws of conservation can no longer be used to compare
parameters of the Earth’s movements before and after the process,
because the system is not closed.

Since no other change occurs, we will consider that when the mass
of the Sun decreases, it does not change the relative positions of the
Sun and the Earth, nor the speed of the Earth in relation to the Sun.
Accepting these postulates, in the first approximation, if the mass
of the central body is reduced by half compared to the initial value,
the speed of the spherical motion of the Earth becomes the speed
of a parabolic motion. As a result, the Earth’s orbit in relation to
the Sun will become parabolic, which means that the period of the
movement is infinite.

It is known, however, that on July 5, in its ellipse movement
around the Sun, the Earth is close to the aphelion of its orbit, the
farthest from the Sun, where its speed is lower than that required for
circular movements. If the Earth was in this place at the time of the
Sun’s mass reduction, the Earth’s speed would already be lower than
that required to continue moving on a parabola. The Earth would
continue moving around the Sun on an elongated elliptical orbit.

To begin with, let’s establish the relationship between the speed
of the Earth at the aphelion, v0,aph, on an elliptical orbit with the
semi-major axis a0 and the speed of the circular movement of the
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Earth, v0, on an orbit whose radius is r0 = a0, under the conditions
of the initial Sun.

According to Kepler’s second law and the law of conservation of
energy, based on Figure 1.4, it results that:

v0,per r0,per = v0,aph r0,aph;

v20,per
2

−K
M0

r0,per
=

v20,aph
2

−K
M0

r0,aph
;

r0,min = r0,per = a0 (1− e0) ; r0,max = r0,aph = a0 (1 + e0) ;

KM0 = v20 r0 = v20 a0.

v0,per = v0

√

1 + e0
1− e0

; v0,aph = v0

√

1− e0
1 + e0

.

00
;S  M

aph,0v
�

peraph,0 rr =

 MS

perv
�

;

Fig. 1.4

For the new elliptical orbit of the Earth, after halving the mass
of the Sun, we have:

rper = r0,aph;

rmin = rper = a(1− e);

a0(1 + e0) = a(1− e); a = a0
1 + e0
1− e

;
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vper = v0,aph;

vper = v

√

1 + e

1− e
,

where v is the speed of the Earth in a circular orbit whose radius is
r = a, under the conditions of the new Sun (with the mass reduced
by half, M = M0/2);

v

√

1 + e

1− e
= v0

√

1− e0
1 + e0

;

v =

√

K
M

r
=

√

K
M0

2a
=

√

K
M0

a0

√

a0
2a

= v0

√

a0
2a

;

e = 1− 2e0; a = a0
1 + e0
2e0

.

It results that:

T0 =
2πr0
v0

=
2πa0
v0

; T =
2πr

v
=

2πa

v
;

T

T0

=
a

a0

v0
v

=
1 + e0
2e0

√

2a

a0
=

1 + e0
2e0

√
2

√

1 + e0
2e0

;

T = T0

√
2

(

1 + e0
2e0

)3/2

≈ 230 years.

Problem 2. Air Bubble in a Glass Sphere

A monochromatic light ray arrives on the surface of a glass sphere
in the direction of one of its diameters. At a distance r from the
center of the sphere, the light is scattered uniformly, in all direc-
tions, by a small air bubble embedded in the glass, as shown in
Figure 2.1.

Determine the percentage of the light diffused by the air bubble
that leaves the glass sphere. For the glass sphere, the following are
known: radius, R; the refractive index, n. The light absorption in the
glass is neglected.
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Light
incident

n

r

R

Fig. 2.1

Solution

Figure 2.2 shows the behavior of the light rays diffused by the air
bubble located at point A inside the sphere when they reach the
separation surface between the glass and the air.

θ

θ

θθ

θ

A C

B

R

r

0

Fig. 2.2

It is observed that, depending on the value of the incident angle
on the air–glass separation surface, some of the light rays leave the
sphere, and the others, through total reflection, remain inside the
sphere.
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From the triangle ABC, writing the theorem of sines, it follows
that

r

sin θ
=

R

sin θ0
.

The value θ0 at which the total reflection occurs is determined by
knowing the limit for this case:

sin θ =
1

n
;

sin θ =
r

R
sin θ0 =

1

n
;

sin θ0 =
R

nr
;

θ01 = arcsin

(

R

nr

)

; θ02 = π − arcsin

(

R

nr

)

.

The light rays are diffused by the bubble at an angle of θ0, so that

θ01 < θ0 < θ02.

These light rays stay inside the sphere, and the others leave the
sphere. Figure 2.3 shows a sphere with the center at point A, having
a certain radius, R0. With its help, we calculate the percentage of
light that leaves the sphere. It results that:

θ A

R

0

0

h

Fig. 2.3
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η =
2 · 2πR0h

4πR2
0

=
h

R0

;

h = R0 (1− cos θ0) = R0

⎛

⎝1−

√

1−
(

R

nr

)2

⎞

⎠;

η = 1−

√

1− R

nr

2

.

Problem 3. Flat Plate with Variable Transparency

On the main optical axis of a converging lens with focal length f at
a distance 2f from the lens, there is a point source S, which emits
monochromatic light. A very thin, non-uniformly transparent circular
flat plate of radius R is placed immediately behind the lens, as shown
in Figure 3.1. A screen E is placed at a distance 3f from the lens.
The spot of light on the screen has the greatest possible illumination.

Determine the distribution law of the transparency of the plate
along its radius, T = f(r).

We know the radius of the lens, RL.

Fig. 3.1
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Solution

From the lens formula, it follows that:

1

d
+

1

d′
=

1

f
; d = 2f ; d′ = 2f.

That is, the image is formed at a f distance from the screen.
Under these conditions, if RL is the radius of the lens, then the

radius of the light spot on the screen is

Rspot =
RL

2
.

At a point on the screen located at the distance r from the main
optical axis (r < Rspot), the light from the lens arrives at a distance
2r from the main optical axis. The illumination at this point on the
screen, in the absence of the plate P, is

E0 =
I

x2
cos i,

where I is the luminous intensity of the source, x is the distance
from the source to the illuminated surface, and i is the angle of light
incident on the respective surface,

E0 (r) =
I

f2 + r2
· f
√

f2 + r2
=

If

(f2 + r2)3/2
.

In the presence of plate P, as Figure 3.2 indicates, the illumination
of the same point on the screen is

E(r) = E0(r) · T (2r) =
If

(f2 + r2)3/2
· T (2r),

where T (2r) is the transparency of plate P at the points located
at a distance of 2r from the main optical axis. By introducing a
proportionality coefficient, k, whose value must be determined, it
can be written that

T (2r) = k
(

f2 + r2
)3/2

.
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Fig. 3.2

Under these conditions, the transparency of the plate at a distance
r from the main optical axis of the lens is

T (r) = k

(

f2 +
r2

4

)3/2

.

Since T (r) ≤ 1, it follows that the maximum possible illumination
of the spot at all points on the screen in the presence of the plate
P cannot be greater than the minimum illumination of the spot in
the absence of the plate. The minimum illumination of the plate P is
obtained at the points on the outline of the spot, i.e., at the distance
Rspot from the main optical axis of the lens.

It results that:

T (RL) = 1;

k

(

f2 +
R2

L

4

)3/2

= 1; k =
1

(

f2 +
R2

L

4

)3/2
;

T (r) =

(

4f2 + r2

4f2 +R2
L

)3/2

.

Problem 4. Light Transmitted through a Glass Cylinder

A thin opaque disk, provided with a vertical rectangular slit, covers
one of the ends of a long glass cylinder, having radius R, placed
on a horizontal support, as indicated in Figure 4.1. The width of
the slot, d, is adjustable. A parallel beam of monochromatic light
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arrives at the opaque disk at an angle of incidence α, so that the
illumination of the disk is E. At the other end of the cylinder is a
photocell, F.

Establish the dependence on the slot width, d, of the luminous
flux, Φ, recorded by the photocell, Φ = f(d). The refractive index of
the glass, n, is known.

d

α

n

R2

F

Fig. 4.1

Solution

After refraction on the face of the cylinder, as shown in Figure 4.2,
the light enters the glass at an angle β with respect to the axis of
the system, so that

sinα

sin β
= n.

We study the light rays located in a vertical plane at a distance x
from the cylinder’s axis (Figures 4.2 and 4.3). The points where all
these rays arrive at the glass–air boundary are on the same side (the
generator AB).

We calculate the angle γ under which the light rays fall on the
boundary AB, and we compare it with the limiting angle of total
internal reflection.

We study the course of the ray CD, located in the plane AA′B′B.
We draw through point C a line parallel to the line AB (and to the
axis of the cylinder) and delimit on it the segment CC′ = AD = L.
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Fig. 4.3

From ∆CC′O′ and from the cosine theorem written for ∆CO′D,
it results that:

(CO′)2 = L2 + x2;

L2 + x2 =
L2

cos2β
+R2 − 2 · LR

cos β
· cos γ.

From ∆C′O′D, we get

L2 tan2 β + x2 = R2.

It results that

cos γ =

√
R2 − x2

R
· sinα

n
.

For a certain value, x = x0, the angle γ becomes equal to the
corresponding limit angle for total reflection:

γ = γ0 = arcsin

(

1

n

)

; sin γ0 =
1

n
.
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As a result,

x20 = R2(1 + sin2 α− n2)/ sin2 α,

so that all the light rays that fall on the side of the cylinder at the
distance x ≥ x0 from its vertical diameter, at the first ray that falls
on the side of the cylinder, fulfill the conditions for total internal
reflection.

In particular, if

n2 = 1 + sin2 α,

the internal reflection conditions are met for all rays (x0 = 0).
In this way, in the absence of the opaque plate, the light rays that

fall on the entrance face arrive at the photocell in the shaded regions
in Figure 4.4, for which

S0 = 2R2 arccos
(x0
R

)

− 2x0

√

R2 − x20.

2

0S

2

0S

R
ϕ

0x

Fig. 4.4

In the presence of the opaque plate with a slit, the light rays do
not reach the photocell if the slot width is d < 2x0.

If

2x0 < d ≤ 2R,

the luminous flux received by the photocell is determined by the light
rays that fall on the entrance face (in the shaded region in Figure 4.5),
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for which

S = S0 − S1 = 2R2 arccos
(x0
R

)

− 2x0

√

R2 − x20

− 2R2 arccos

(

d

2R

)

+ d

√

R2 − d2

4
.

2

2

2
1S 1S

d

R

0x

Fig. 4.5

The size of the flux is proportional to the surface area of the
shaded region. Therefore, if d ≤ 2x0, then Φ = 0, and if 2x0 ≤ d ≤
2R, it results that:

Φ = E

[

S0 − 2R2 arccos

(

d

2R

)

+ d

√

R2 − d2

4

]

;

S0 = 2R2 arccos
(x0
R

)

− 2x0

√

R2 − x20.
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Chapter 9

International Pre-Olympic Physics

Contest, Cluj-Napoca, Romania

Problem 1. The Maximum Radial Speed on an Elliptical

Orbit

The ecliptic orbit of star σ around the star Σ is represented in
Figure 1.1, where the observation line of the system is also indicated.

(a) Determine the maximum radial speed of the star σ. We know :
the semi-axes of the ellipse, a and b; K, the constant of universal
attraction; and M , the mass of the star Σ.

(b) Determine the time interval, τ1, in which the radial component
of star σ’s velocity increases from zero to the maximum value, as
well as the time interval, τ2, in which this component decreases
from the maximum value to the zero value if τ1/τ2 = n.

Solution

(a) For a star σ, which moves with speed �v relative to an observer O,
as shown in Figure 1.2, we define the radial speed, �vrad, as being the
component of the speed oriented along the direction of observation
of the star, and the tangential speed, �vtang, as being the component
of the speed perpendicular to the direction of vision.

337
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6
3

12

4
5

σ

r
�

a

b
Σ

Fig. 1.1

Direction

of vision

O

σ

tang

rad

Fig. 1.2

In these conditions, as shown in Figure 1.2, it results that:

v1 = vmax = vtang.max; v2 = vmin = vtang.min;

vrad,1 = vrad,2 = 0;

v5 = v6 = v = vrad.

The acceleration of star σ due to the central gravitational force,

�a =
�F

m
, exerted on it by star Σ can be decomposed into a tangential

component and a radial component, as indicated by Figure 1.3:

�a = �arad + �atang,

of which only the radial component, �arad, determines the variation
in the radial component, �vrad, of star σ’s velocity.

Figure 1.4 shows the evolution of the radial and tangential com-
ponents of the velocity and acceleration vectors in relation to the
observer when the line of sight is in the plane of the orbit.
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On the 2–6–3 sector of the ellipse, when the angle α between the
acceleration vector, �a, and the radial velocity vector, �vrad, is

0 ≤ α ≤ 90◦,
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the effect of acceleration (the effect of the force of gravitational
attraction) on the radial component of the speed is an accelerat-
ing effect. As a result, on this sector, the radial component of the
velocity is

0 ≤ vrad ≤ vrad,max.

On sector 3–1 of the ellipse, when the angle α between the accel-
eration vector, �a, and the radial velocity vector, �vrad, is

90 ≤ α ≤ 180◦,

the accelerating effect (the effect of the gravitational attraction force)
on the radial component of the velocity is a decelerating effect. As a
result, on this sector, the radial component of the velocity is

0 ≤ vrad ≤ vrad,max.

Conclusions:

• for α = 90◦, when the star σ is in position 3, the radial component
of its velocity has the maximum value;

• on sector 2–3 of the ellipse, the radial effect of the gravitational
attraction force is an accelerating effect, and on sector 3–1 of the
ellipse, the radial effect of the gravitational attraction force is a
decelerating effect;

• on sector 2–3 of the ellipse, the tangential effect of the gravitational
attraction force is a decelerating effect, and on sector 3–1 of the
ellipse, the tangential effect of the gravitational attraction force is
an accelerating effect;

• on sector 2–3 of the ellipse, the vectors �vrad and �arad have identical
orientations, and on sector 3–1, the vectors �vrad and �arad have
opposite orientations;

• at point 3, where the direction of the vector �arad changes, the
vector �vrad has an extreme (maximum) value.

At some point on the ellipse, the kinetic moment of the star σ is:

�L = �r ×m�v; L = rmv · sin(�r; �v).

Thus, according to the law of conservation of kinetic momentum, it
results that:

�L = constant; L = rmv · sin(�r; �v) = rminmvmax = rmaxmvmin;
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rmin =
p

1 + e
; vmax =

√

KM(1 + e)

1− e
; rmin =

p

1− e
;

vmin =

√

KM(1− e)

1 + e
;

p = a(1− e2); p = b
√

1− e2;

L = m

√

KMa2(1− e)2(1 + e)

a(1− e)
= mb

√

KM

a
.

Corresponding to position 3 of star σ, when its kinetic moment is

L = Y mvrad,max,

it results that:

Y mvrad,max = mb

√

KM

a
; vrad,max =

b

Y
·
√

KM

a
;

x2

a2
+

y2

b2
= 1;

x = c; y = Y ;
c2

a2
+

Y 2

b2
= 1; c2 = a2 − b2; Y =

b2

a
;

vrad,max =
a

b
·
√

KM

a
.

(b)

∆vrad,23 = vrad,max − 0 = vrad,max; ∆t23 = τ1;

∆vrad,31 = 0− vrad,max = −vrad,max; ∆t31 = τ2;

∆S1

τ1
=

∆S2

τ2
=

Selipse

T
=

πab

T
; ∆S1 = πab · τ1

T
; ∆S2 = πab · τ2

T
;

∆S1 +∆S2 =
1

2
· Selipse; πab · τ1

T
+ πab · τ2

T
=

1

2
· πab;

τ1 + τ2 =
1

2
T ;

τ1
τ2

= n;

τ1 =
nT

2 (n+ 1)
; τ2 =

T

2 (n+ 1)
; T = 2π

√

a3

KM
.
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Problem 2. A Satellite in the Upper Atmosphere

A satellite moves around the Earth in an approximately circular
orbit, with speed v. The change in the satellite’s orbit is determined
by the fact that the air in the upper atmosphere exerts on it a resis-
tance force Fr = qvα, where q is a known constant.

Determine the constant α, knowing that the radius of the satel-
lite’s orbit varies very slowly.

Solution

If after the time ∆t, the radius of the satellite’s orbit decreases by the
amount ∆R ≪ R, then the variation of the total mechanical energy
of the satellite–Earth system is:

WR = −K
mM

R
+

mv2

2
; K

mM

R2
=

mv2

R
;

WR = −1

2
K

mM

R
;

WR−∆R ≈ −K
mM

R−∆R
+

mv2

2
; K

mM

R−∆R
=

mv2

R−∆R
;

WR−∆R = −
1

2
K

mM

R−∆R
;

∆W = WR−∆R −WR = −
1

2
KmM

∆R

R(R−∆R)
;

∆W ≈ −
1

2
KmM

∆R

R2
.

During this time, ∆t, the mechanical work of the air resistance
force is:

∆L = Frv∆t = qvα+1∆t; v =

√

KM

R
.

According to the theorem of the variation in the total mechanical
energy of a system, it follows that:

∆W = −∆L;
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1

2
KmM

∆R

R2
= q

(

KM

R

)
α+1
2

∆t;

q

(

KM

R

)
α+1
2

=
1

2

KmM

R2

∆R

∆t
,

where ∆R
∆t , representing the speed of the satellite’s approach to the

Earth, is a constant quantity;

q
(KM)

α+1
2

R
α+1
2

=
1

2

KmM

R2

∆R

∆t
.

Because the previous equality must be true regardless of the value
of R, it follows that:

α+ 1

2
= 2; α = 3.

Problem 3. An Abandoned Satellite

A satellite abandoned in a circular orbit at H0 ≪ R0, where R0 is the
radius of the Earth, is braked in the upper layers of the atmosphere.
The angular acceleration of the satellite is ε.

Determine the satellite’s altitude after time t. The acceleration is
known according to the terrestrial gravity on the ground, g0.

Solution

The resistance to the forward movement of the atmosphere reduces
the satellite’s orbiting altitude. In this way, the satellite advances
towards regions where the gravitational acceleration is higher. The
movement of the satellite is accelerated, so its speed is increasing
(paradox of satellites). This result is in contradiction to what we
would have expected to happen, in general, because of friction.

Under these conditions, it can be considered that the angular
speed of the satellite increases over time according to the law of
uniformly accelerated circular motion,

ω = ω0 + ε t,
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from which it results that:

ω0 =
v0

R0 +H0
=

1

R0 +H0

√

KM

R0 +H0
=

R0

R0 +H0

√

g0
R0 +H0

;

ω =
v

R0 +H
=

1

R0 +H

√

KM

R0 +H
=

R0

R0 +H

√

g0
R0 +H

;

R0

R0 +H

√

g0
R0 +H

=
R0

R0 +H0

√

g0
R0 +H0

+ ε t;

R2
0g0

(R0 +H)3
=

R2
0g0

(R0 +H0)
3 + 2

R0ε t

R0 +H0

√

g0
R0 +H0

+ ε2t2;

ε2t2 → 0;

R2
0g0

(R0 +H)3
≈

R2
0g0

(R0 +H0)
3 + 2

R0ε t

R0 +H0

√

g0
R0 +H0

;

R2
0g0

R3
0

(

1 + H
R0

)3 =
R2

0g0

R3
0

(

1 + H0

R0

)3 + 2
R0ε t

R0 +H0

√

g0
R0 +H0

;

g0
R0

(

1− 3
H

R0

)

=
g0
R0

(

1− 3
H0

R0

)

+ 2
R0ε t

R0 +H0

√

g0
R0 +H0

;

H = H0 −
2

3

R3
0ε t

g0(R0 +H0)

√

g0
R0 +H0

.

Problem 4. Satellite in a Rarefied Atmosphere

A satellite of the Earth with massm, moving in the upper atmosphere
in a circular orbit with radius r, encounters a resistance force Fr from
the rarefied air.

Determine the satellite’s speed variation after a rotation around
the Earth. The altitude of the satellite’s orbit is considered small
compared to the radius of the Earth. We know : M, the mass of the
Earth, and K, the constant of gravitational attraction.



International Pre-Olympic Physics Contest, Cluj-Napoca, Romania 345

Solution

In a circular orbit with radius r, the total mechanical energy of the
satellite–Earth system is

E =
mv2

2
−K

mM

r
= −1

2
K

mM

r
.

After a rotation, when the radius of the orbit has decreased and
is r′ = r −∆r, so that ∆r ≪ r, the total mechanical energy of the
satellite–Earth system has decreased and is

E′ =
mv′2

2
−K

mM

r −∆r
= −1

2
K

mM

r −∆r
.

The variation in the total mechanical energy of the system due to
air resistance is

∆E = E′ − E = −1

2
KmM

∆r

r (r −∆r)
.

According to the theorem of the variation in the total mechanical
energy of a system, it results that:

∆E = Lr; −1

2
KmM

∆r

r (r −∆r)
= −2πrFr;

r −∆r ≈ r; ∆r =
4πr3Fr

KmM
.

As a result of the action of the air resistance force, the radius of
the satellite’s orbit decreases, and the speed of the satellite increases
(paradox of satellites). The kinetic energies of the satellite in orbits
with radii r and (r −∆r) are, respectively:

Ec =
mv2

2
= K

mM

2r
; E′

c =
mv′2

2
= K

mM

2 (r −∆r)
,

so that the variation in the kinetic energy of the satellite after a
complete revolution around the Earth is:

∆Ec = K
mM∆r

2r2
= 2πrFr;
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∆Ec =
m

2

(

v′2 − v2
)

=
m

2

(

v′ − v
) (

v′ + v
)

=
m

2
(2v +∆v)∆v ≈ mv∆v;

∆v =
2πrFr

mv
=

2πrFr

m

√

r

KM
.

Problem 5. Gyroscopic Disk

The ends of a horizontal axis with length 2l, represented in Figure 5.1,
in the middle of which is fixed a gyroscopic disk with mass m and
with the moment of inertia compared to its own axis I, are inserted
securely into the inner rings of some spherical ball bearings, while the
outer rings of the bearings rest on the tops of the vertical supports
S1 and S2.

The disk rotates uniformly around its own axis with angular veloc-
ity �ω, and the support S2 rotates uniformly around the support S1
with angular velocity �Ω.

Determine the value of Ω for which the system continues to rotate
uniformly around the support S1 and, after removing the support S2,
the axis of the disk rests in the horizontal plane.

It is known that Ω ≪ ω.

l

Fig. 5.1
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Solution

If the axis of the disk were fixed in space and the disk rotated around
it with angular velocity �ω, then the kinetic moment of the disk,
�Jrot = I�ω, would be oriented along the axis of the disk.

When the axis of the disk also rotates around the vertical support
S1, then an additional angular momentum, �jrot, occurs, so that the
total angular momentum, �Jrot +�jrot, is no longer oriented along the
disk’s axis.

If Ω ≪ ω, then jrot ≪ Jrot and, as a result, jrot can be neglected in
relation to Jrot, so that in these conditions, the total kinetic moment
of the system is identified with the �Jrot component and is perma-
nently oriented along the disk’s axis, rotating in space “solidary”
with it, as shown in Figure 5.2.

Fig. 5.2

If �Jrot is the kinetic momentum vector of the system at time
t0 = 0, with the origin at point O (the sprue point of the disk axis
on top of the support S1) and with its direction along the disk axis,

then, after the time ∆t, the kinetic moment of the system is �J ′

rot,
a vector with its origin at point O and modulus J ′

rot = Jrot, also
oriented along the axis of the disk, but in its new position, rotated in
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the horizontal plane with an angle ∆ϕ, as shown in Figure 5.3. From
this, it results that the peak of the angular momentum vector of the
system during the interval of time ∆t is represented by the vector:

∆ �Jrot = �J ′

rot − �Jrot;

∆Jrot ≈ Jrot∆ϕ,

whose orientation, for ∆ϕ, is very small, ∆ �Jrot⊥ �Jrot.
It is known, however, that any variation in the kinetic moment

of a mechanical system is caused by a non-zero resultant moment of
the external forces acting on the system. The external forces acting
on the system are the normal reaction of the top of the support, �N ,
and the weight, �G. Their resulting moment is reduced to

�M =
−→
OC× �G,

a horizontal vector perpendicular to the disk axis ( �M ⊥ �Jrot;
�M//∆ �Jrot), having the modulus

M = mgl.

O

Fig. 5.3

According to the kinetic momentum variation theorem, it follows
that:

�M =
∆ �Jrot
∆t

;

M =
∆Jrot
∆t

;

mgl =
Jrot∆ϕ

∆t
;

∆ϕ

∆t
= Ω;

Ω =
mgl

Jrot
; Ω =

mgl

I ω
.
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This represents the angular velocity with which the system must
rotate around the vertical of the support S1 so that, in the absence
of the support S2, the system continues its movement, i.e., while
the disk rotates around its axis, this axis rotates around the vertical
point O, remaining permanently in the same horizontal plane. This
movement of the disk axis is called precession movement.

Since, during its precession movement, the disk axis remains per-
manently in the horizontal plane of points O and C, the resultant of
the external forces acting on the system is

�N + �G = 0,

from which it follows that there must be a pressure �F , oriented ver-
tically downwards, exerted by the end of the disk axis on the top of
the support S1, equal to the weight of the system (�F = �G), to which
a normal reaction should correspond:

�N = −�F = − �G.

Indeed, the force �F exists, and it is the result of the gyroscopic
effect. If on the free end of the disk axis, when the axis performs
the precession movement in the horizontal plane of the support
point, a small impulse is applied for a short time vertically down-
wards/upwards, then, simultaneously with the horizontal precession,
the axis will oscillate vertically up and down, representing a nutation
movement.

Problem 6. Collision of Disks

Two disks (A and B) with identical masses and thicknesses but with
different radii (RA and RB, respectively) can move over the flat and
horizontal surface of a table with an air cushion, sliding without
friction, as shown in Figure 6.1.

Disk A moves through horizontal plane translation with speed �v,
parallel to the axis OX, at a distance b from it (RB < b < RA+RB)
and perfectly elastically collides with disk B at rest (its center being
at the origin O of the XY axis system from the horizontal plane of
the table), so that the distance from its center to the direction of �v
is b, as indicated in Figure 6.1.
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(a) Determine the velocities of the two disks after their perfectly
elastic collision if there is no relative movement of one disk
in relation to the other disk at the contact point of the disks.
Special case: b = 0.

(b) Determine the directions in which the two disks move after the
collision.

A

v
�

AR

BR

b
O

B

g
�

X

Fig. 6.1

Solution

(a) Corresponding to the moment of collision of the disks, at their
point of contact, let �n and �τ , respectively, be versors of the line of
the centers and of the common tangent at the point of contact and
the angle α between the direction of the centers (at the moment of
collision) and the axis OX, as shown in Figure 6.2.

If �uA and �uB are the velocities of the centers of the two disks after
the collision, as shown in Figure 6.3, in accordance with the law of
conservation of momentum, maintaining the direction of the centers
of the disks, with the versors �n and �τ , we get

muA,n +muB,n = mv cosα. (9.1)

In the projection on the tangent of the point of contact of the two
disks, where equal and opposite frictional forces act on the disks, the
variations in the impulses of the two disks are equal and in opposite
directions:

∆�p1
∆t

= −∆�p

∆t
; ∆p1 = ∆p2;
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Fig. 6.2

Fig. 6.3

∆p1 = mv sinα−muA,τ ; ∆p2 = muB,τ ;

−muA,τ +mv sinα = muB,τ ;

muA,τ +muB,τ = mv sinα,

where m is the mass of a disk.
From the definition of the coefficient of restitution for the collision

of the two disks, it follows that:

k =
uB,n − uA,n

vA,n − vB,n
,
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where vA,n and vB,n are the components along �n of the disk velocities
before the collision;

vA,n = v cosα; vB,n = 0;

k =
uB,n − uA,n

v cosα
= 1,

because the collision is perfectly elastic;

{

uB,n − uA,n = v cosα;

uA,n + uB,n = v cosα;

uA,n = 0; uB,n = v cosα.

Due to the frictional forces from the contact of the disks (forces in the
direction of �τ , equal in mode and of opposite directions), they will
also acquire after the collision an instantaneous rotational movement
around the axes of the centers, with the angular velocities �ωA and
�ωB, respectively, perpendicular to the plane XOY and of the same
direction.

In this way, after the collision, the movement of each disk is a
parallel plane movement (the result of the composition of a trans-
lational movement and a rotational movement). Because there is no
relative motion at the contact points of those two disks, the resultant
instantaneous tangential velocities of the contact points on the two
disks, as shown in Figure 6.4, are equal in mode and of the same

Fig. 6.4



International Pre-Olympic Physics Contest, Cluj-Napoca, Romania 353

direction, so that

uA,τ − ωARA = uB,τ + ωBRB .

Since the directions of the instantaneous rotations at the contact
points of the disks are opposite, the sliding friction forces that act
on each disk in the direction of the common tangent will be oppo-
site. The kinetic moment of disk B, as a result of the collision, is:
Paragraph Font result A. On the other hand, from the theorem of
the variation of angular momentum, for disk B, we have:

�RB ×m�uB = �RB × �Pint,med + �RB × �Pext,B;

Pext,B ≪ Pint,med;

�Pint,med = �Ff,B;med ∆t;

�Ff,B;med =
1

∆t

∫ tc

t0

�Ff,Bdt.

It results that:

RBmuB,τ = RBPint,med = RBFf,B;med∆t ; Ff,med,B =
muB,τ

∆t
.

On the other hand, from the theorem of kinetic momentum vari-
ation, for disk B, we have:

∆ �Jrot,B
∆t

= �MB = �RB × �Ff,med,B ;

IBωB = RBFf,med,B∆t ;

RBmuB,τ = IBωB.

From the theorem of kinetic momentum variation, for disk A, we
have:

�RA ×m�uA = �RA × �Pint,med + �RA × �Pext,A;

Pext,A ≪ Pint,med;

�Pint,med = �Ff,A;med∆t;

�Ff,A;med =
1

∆t

∫ tc

t0

�Ff,Adt;

RAmuA,τ = RAPint,med = RAFf,A;med∆t; Ff,med,A =
muA,τ

∆t
;
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uA,τ = ωARA + uB,τ + ωBRB ;

uA,τ = ωARA + uB,τ + ωBRB;

∆ �Jrot,A
∆t

= �MA = �RA × �Ff,med,A.

The collision of the two disks complies with the law of conserva-
tion of kinetic momentum. If IA and IB are the moments of inertia
of the two disks in relation to the axes of symmetry perpendicular
to the plane XOY, it results that:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

muA,τ (RA +RB) + IAωA + IBωB = mvb;

muB,τRB = IBωB;

uA,τ + uB,τ = v sinα;

uA,τ = ωARA + uB,τ + ωBRB;

uA,τ − uB,τ = ωARA + ωBRB;

ωA =
uA,τ − uB,τ − ωBRB

RA
;

ωB =
muB,τRB

IB
;

ωA =
uA,τ − uB,τ − muB,τR

2
B

IB

RA
;

mvb = muA,τ (RA +RB) + IA
uA,τ − uB,τ − muB,τR

2
B

IB

RA

+muB,τRB;

mvb = muA,τ (RA +RB) + IA
(uA,τ − uB,τ ) IB −muB,τR

2
B

IBRA

+muB,τRB;

mvb = uA,τ

[

m (RA +RB) +
IA
RA

]

+uB,τ

(

mRB − IA
RA

− mR2
BIA

IBRA

)

;
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IA =
1

2
mR2

A; IB =
1

2
mR2

B;

mvb = uA,τ

[

m (RA +RB) +
1

2
mRA

]

+uB,τ

(

mRB − 1

2
mRA −mRA

)

;

⎧

⎪

⎨

⎪

⎩

vb = uA,τ

(

RB +
3

2
RA

)

+ uB,τ

(

RB − 3

2
RA

)

;

uA,τ + uB,τ = v sinα;

vb = uA,τ

(

RB +
3

2
RA

)

+ (v sinα− uA,τ )

(

RB − 3

2
RA

)

;

vb = uA,τ

(

RB +
3

2
RA

)

+ (v sinα)

(

RB − 3

2
RA

)

−uA,τ

(

RB − 3

2
RA

)

;

vb = uA,τ

(

3

2
RA

)

+ (v sinα)

(

RB − 3

2
RA

)

+ uA,τ

(

3

2
RA

)

;

3RAuA,τ = vb− v sinα

(

RB − 3

2
RA

)

;

b = (RA +RB) sinα;

uA,τ =
5

6
v sinα; uB,τ =

1

6
v sinα;

ωA =
uA,τ − uB,τ − muB,τR

2
B

IB

RA
;

ωA =
v sinα

3RA
; ωB =

v sinα

3RB
;

�uA = �uA,τ + �uA,n; �uA = �uA,τ ; uA =
5

6

vb

RA +RB
;
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�uB = �uB,τ + �uB,n; uB,τ =
1

6
v sinα; uB,n = v cosα ;

uB =
√

u2
B,τ

+ u2
B,n

=
v
√

36 (RA +RB)
2 − 35b2

6 (RA +RB)
;

b = 0; uA = 0; uB = v.

(b) �uB = �uB,x + �uB,y;

uB,x = uB,τ sinα+ uB,n cosα = v

[

1− 5

6

b2

(RA +RB)

]

;

uB,y = uB,τ cosα− uB,n sinα = −5vb

6

√

(RA +RB)
2 − b2

(RA +RB)
2 ;

tg β =
uB,y

uB,x
,

where β = ∠(�uB; OX).

Problem 7. Rolling Disk

A massy and homogeneous cylindrical disk with radius r, rotating
around its own axis with angular velocity ω, rolls without slipping
on a horizontal support plane, the plane of the disk being inclined
to the support plane at an angle α, as indicated in Figure 7.1. It
describes on the support plane a circle with the radius R ≪ r during
the time T.

Determine T and R. We know the gravitational acceleration, g.
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ω

g
�

α

Fig. 7.1

Solution

Fig. 7.2



358 Physics Olympiad: Problems and Solutions

Using the theorem of the variation of kinetic momentum, the Steiner
theorem and the drawing in Figure 7.2, it results that:

�̇Jrot = �Ω× �Jrot = �M ;

ΩJrot sinα = mgr sin (90− α);

Jrot = I∆ω = (I0 +mr2)ω;

I0 =
1

2
mr2;

3

2
Ωωr sinα = g cosα;

T =
3πωr

g
tgα;

ωr = ΩR;

R =
3

2

ω2r2

g
tgα.
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Problem 1. Bicycle Wheel

An experimenter, at rest on a rotating chair, as shown in Figure 1.1, is
handed the vertical axis of a bicycle wheel, which is in rapid rotation
with angular velocity �Ω, and is additionally uniformly loaded with a
large axial moment of inertia, I.

(a) (b) (c)

Fig. 1.1

(a) Determine the angular speed of the man–chair assembly, �ω, when
the experimenter tilts the wheel axis at an angle α with respect

359
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to the vertical. We know : I0, the axial moment of inertia of the
man–chair assembly, and I, the axial moment of inertia of the
wheel.

Particular cases: α = 900, α = 1800.
Specify what the experimenter must do to be able to easily

hand over the bicycle wheel axle.
(b) Analyze the case in which the experimenter receives the entire

axis of the bicycle as in scenario b, considering that the chair is
initially at rest.

Determine the angular velocity, �ω, of the man–chair assembly,
when, after receiving the wheel axle as in scenario b, the exper-
imenter raises the bicycle wheel axle to a vertical position, so
that the wheel is above his head.

Specify what the experimenter must do to be able to easily
hand over the bicycle wheel axle.

(c) Analyze the case in which the experimenter receives the bicycle
wheel axle as in scenario c, considering that the chair is initially
at rest.

Determine the angular speed of the man–chair assembly, �ω,
when, after receiving the wheel axle as in scenario c, the experi-
menter raises the axis of the bicycle wheel to a vertical position,
so that the wheel is above his head.

Specify what the experimenter must do to be able to easily
hand over the bicycle wheel axle.

Note that: In each step of the described experiment, the posi-
tion of the experimenter’s body will be considered to remain
vertical.

Solution

(a) The kinetic moment of the wheel in relation to the vertical axis of

symmetry of the whole system is �J = I�Ω, directed vertically upward,
as indicated in drawing a of Figure 1.2. At the initial moment, this
is the total kinetic moment of the man–chair–wheel system.

The experimenter tilts the wheel axis, forming an angle α with
the vertical so that in the new position, the kinetic moment of the
wheel in relation to its axis is the same, �J = I �Ω, as indicated by
Figures 1.1 and 1.2, respectively.
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(a) (b)

ω

ω

ω

�

�

0I

α

J
�

J
�

Fig. 1.2

In the new situation, when the axis of the bicycle wheel is inclined
to the vertical by an angle α, the component of its kinetic moment
along the vertical axis (⊥) of the man–chair system is:

J⊥,wheel = J cosα = IΩcosα;

�J⊥,wheel = I �Ωcosα.

This implies a variation in the vertical component (⊥) of the wheel’s
kinetic moment:

(∆ �J)⊥,wheel = �J⊥,wheel − �J = I�Ωcosα− I�Ω;

(∆ �J)⊥,wheel = −I �Ω(1− cosα).

Its orientation is represented in Figure 1.3.
According to the law of conservation of kinetic momentum, the

vertical component (⊥) of the total kinetic momentum of the system

(man–chair–wheel) will remain constant ( �J) if, after tilting the wheel
axis, the vertical component (⊥) of the varying kinetic moment of
the man–chair system is

(∆ �J)⊥,man−chair = −(∆ �J)⊥,wheel,

which corresponds to a rotation around the vertical of the man–chair
assembly with the angular velocity �ω, orientated along the ascending
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Fig. 1.3

vertical so that

I0�ω = (∆ �J)⊥,man−chair,

where I0 is the axial moment of inertia of the man–chair assembly;

ω =
I

I0
Ω(1− cosα).

For α = 90◦, as shown in Figure 1.4, the angular velocity of the
man–chair assembly is calculated as follows:

I �Ω = I0�ω
′;

ω′ =
I

I0
Ω.

Alternatively:

α = 90◦; cos 90◦ = 0; ω′ =
I

I0
Ω.

For α = 180◦, as Figure 1.5 indicates, the angular velocity of the
man–chair assembly is calculated as follows:
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Fig. 1.4

Fig. 1.5

I �Ω = I0 �ωmax + (−I �Ω);

2I �Ω = I0 �ωmax; 2I Ω = I0 ωmax;

ωmax = 2
I

I0
Ω.
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Alternatively:

α = 180◦; cos 180◦ = −1; ωmax = 2
I

I0
Ω.

At the end of each of the two particular cases, we discover that,
for the man–chair–wheel assembly, the total kinetic moment is �J .

Returning the wheel to its position in Figure 1.1 a will bring the
man–chair assembly to a rest again, and the experimenter will be
able to hand over the wheel without difficulty.

(b) Using the drawing from Figure 1.6, in accordance with the law
of conservation of axial kinetic moment, it results that:

0 = I �Ω+ I0�ω
′;

�ω′ = − I

I0
�Ω; ω′ =

I

I0
Ω.

Fig. 1.6

(c) Using the diagram in Figure 1.7, in accordance with the law of
conservation of axial kinetic moment, it results that:

I �Ω = I0�ωmax + (−I �Ω);

2I �Ω = I0�ωmax; �ωmax = 2
I

I0
�Ω; ωmax = 2

I

I0
Ω.
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Fig. 1.7

Problem 2. A Spinning Egg

A boiled egg (a solid body with longitudinal axial symmetry) located
in a special device, which provides it with a rotational movement
around the longitudinal axis of symmetry, with a high angular veloc-
ity, �ω, is released on a horizontal support, as shown in drawings a
and b in Figure 2.1.

In each scenario, the initial value of the angle between the axis of
longitudinal symmetry of the egg and the vertical is the same, α.

Justify the evolution of the value of the angle α after releasing the
egg on the horizontal support in each of the two scenarios.

(a) (b)

ω
ω

α α

g
�

Fig. 2.1
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Solution

The egg, a solid body with axial symmetry, whose longitudinal cross-
section is shown in Figure 2.2, rotates with angular velocity �ω around
its longitudinal axis and is placed with its pointed end on a horizontal
support.

Fig. 2.2

Due to the shape of the egg, its axis of rotation, on which its
center of mass CM is located, does not pass through the point of
contact of the egg with the support.

The external forces acting on the egg, represented in the drawing,
are the weight ( �G), the normal reaction of the support ( �N), and the

frictional force (�Ff , perpendicular to the plane of the diagram, i.e.,
entering the diagram).

The moment of the external forces relative to the point of con-
tact, which, according to the kinetic momentum variation theorem,
determines the emergence of the gyroscopic effect, materializing in
the egg’s precessional motion with angular velocity �Ω around the
vertical point of contact, is

�M = I �Ω× �ω,

where the angular velocity of precession, �Ω, represents the angular
velocity with which the kinetic moment vector ( �Jrot) rotates around
the vertical point of contact.

The moment of the frictional force relative to the center of mass
(CM) of the egg, �Mf , whose orientation is represented in the diagram,
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causes the kinetic moment of the egg to vary by the magnitude δ �Jrot
in a very small time interval, so that �Jrot is brought to a vertical
position, and the egg rises at the pointed end. For the situation rep-
resented in Figure 2.3, when the spinning egg, which rotates around
its axis with the angular velocity �ω, is placed on the horizontal sup-
port on its the round end, the moment of the external forces governs
the precession movement with the angular velocity �Ω around the ver-
tical point of contact, as in the previous case, while the moment of
the frictional force relative to the center of mass, �Mf , determines, in
a very short time interval, a variation δ �Jrot in the kinetic moment, so
that �Jrot is brought to a horizontal position and then inverted. Thus,
the egg continues its movement, inverting its position to rest on its
pointed end, before evolving according to the first scenario analyzed.

Conclusion: The rotation of the spinning egg, supported by its
pointed end, gives it stability during rotation.

f

Fig. 2.3

Problem 3. Intergalactic Cloud

At the time of its formation, an intergalactic, spherical, and homoge-
nous cloud rotates around its own axis with the angular velocity
ωcloud. The cloud is made of rarefied gas and cosmic dust. It has a
radius R and a mass m.

Due to internal gravitational effects, the cloud substance has accu-
mulated in two massive spheres of different radii. Thus, a binary
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stellar system is created, and its components rotate rapidly around
their common center of mass.

(a) Determine the rotation period (Trot) of the two stars formed in
the initial cloud around the common center of mass, if the stars’
masses are m1 and m2 < m1, respectively. The gravitational
attraction constant, K, is known.

(b) Demonstrate that the two stars can not only rotate around the
center of mass, but also oscillate along the line of their centers.
Determine the period (Tosc) of the “small” oscillations of the two
stars.

(c) The astronomical observations made by an interstellar cosmic
laboratory on this binary stellar system have proved that the
oscillation period of its components uniformly decreases over
time. Specify the physical meaning of these observations and
determine the minimum value of the system’s oscillation period.
Estimate the evolution of the system after the moment when the
minimum rotation period is reached.

Solution

(a) According to the notation in Figure 3.1, if �Lcloud is the initial

angular moment of the cosmic cloud, and �L is the total angular
moment of the binary stellar system, the entire evolution of the sys-
tem complies with the law of conservation of angular momentum.
Thus, it results that:

cloud

�

m

ω

ω ω

R

1m

2m

CM

0a
0,2a

0rot

��

0,1a

cloudL
�

CM

0L =
�

X

Y

Z Z

Y

X

1v
�

2v
�

Fig. 3.1



International Pre-Olympic Physics Contest 2017, Satu Mare, Romania 369

Lcloud = Icloudωcloud =
2

5
mR2ωcloud;

L0 = m1 v1 a1,0 +m2 v2 a2,0 = m1ωrota
2
1,0 +m2ωrota

2
2,0

= ωrot(m1a
2
1,0 +m2a

2
2,0);

m1a1,0 = m2a2,0; a1,0 + a2,0 = a0; m1 +m2 = m;

a1,0 =
m2a0

m1 +m2
; a2,0 =

m1a0

m1 +m2
; a1,0 =

m2

m1
a2,0;

L0 = ωrot(m1a
2
1,0 +m2a

2
2,0);

L0 = ωrot

(

m1
m2

2

m2
1

a22,0 +m2a
2
2,0

)

= ωrotm2

(

1 +
m2

m1

)

a22,0;

L0 = Lcloud;

ωrot = ω0 =
Lcloud

m2

(

1 + m2

m1

)

a22,0

;

Fcp,2 = m2ω
2
rota2,0 = m2

L2
cloud

m2
2

(

1 + m2

m1

)2
a42,0

a2,0 =
L2
cloud

m2

(

1 + m2

m1

)2
a32,0

;

Fg = K
m1m2

a20
; a0 =

a2,0(m1 +m2)

m1
;

Fg = K
m1m2

a2
2,0(m1+m2)2

m2
1

= K
m3

1m2

(m1 +m2)2a22,0
= K

m3
1m2

m2
1

(

1 + m2

m1

)2
a22,0

;

Fg = K
m1m2

(

1 + m2

m1

)2
a22,0

;

Fcp,2 = Fg;

L2
cloud

m2

(

1 + m2

m1

)2
a32,0

= K
m1m2

(

1 + m2

m1

)2
a22,0

;

L2
cloud

m2a2,0
= Km1m2;
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a2,0 =
L2
cloud

Km1m2
2

; m1a1,0 = m2a2,0; a2,0 =
m1

m2
a1,0;

a1,0 =
L2
cloud

Km2
1m2

;

a1,0 + a2,0 = a0;

a0 =
L2
cloud

Km2
1m2

+
L2
cloud

Km1m2
2

=
L2
cloud

Km1m2

(

1

m1
+

1

m2

)

;

a0 =
L2
cloud(m1 +m2)

Km2
1m

2
2

;

Lcloud =
2

5
mR2ωcloud =

2

5
(m1 +m2)R

2ωcloud;

ωrot = ω0 =
Lcloud

m2

(

1 + m2

m1

)

a22,0

; a2,0 =
m1a0

m1 +m2
;

ωrot = ω0 =
Lcloud

m2

(

m1+m2

m1

)

m2
1
a2
0

(m1+m2)2

=
Lcloud(m1 +m2)

m1m2a
2
0

=
2π

Trot
;

a0 =
L2
cloud(m1 +m2)

Km2
1m

2
2

;

Trot =
2πm1m2

Lcloud(m1 +m2)
a20 =

2πm1m2

Lcloud(m1 +m2)

L4
cloud(m1 +m2)

2

K2m4
1m

4
2

;

Trot =
2π(m1 +m2)L

3
cloud

K2m3
1m

3
2

; Lcloud =
2

5
mR2ωcloud.
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(b) According to the notation in Figures 3.2 and 3.3, it results that:

Fig. 3.2

Fig. 3.3
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�Fg,0 = �Fcp,0; Fg,0 = Fcp,0;

�Fg + �F2 = �Fcp; Fg + F2 = Fcp; F2 = Fcp − Fg;

�F2,0 = �Fcfi,2,0 + �Fg,0 = 0; Fcfi,2,0 = Fg,0;

Fg,0 = K
m1m2

a20
; a0 =

a2,0(m1 +m2)

m1
; Fg,0 = K

m1m2
(

1 + m2

m1

)2
a22,0

;

Fcfi,2,0 = m2ω
2
0a2,0;

m2ω
2
0a2,0 = K

m1m2
(

1 + m2

m1

)2
a22,0

; ω2
0a2,0 = K

m1
(

1 + m2

m1

)2
a22,0

;

ω2
0 = K

m1
(

1 + m2

m1

)2
a32,0

;

L2
cloud

m2a2,0
= Km1m2; L2

cloud = Km1m
2
2a2,0;

ω2
0 = K

m1m
2
2a2,0

m2
2

(

1 + m2

m1

)2
a42,0

; ω2
0 =

L2
cloud

m2
2

(

1 + m2

m1

)2
a42,0

;

ω0 =
Lcloud

m2

(

1 + m2

m1

)

a22,0

;

Fcfi,2,0 = m2
L2
cloud

m2
2

(

1 + m2

m1

)2
a42,0

· a2,0;

Fcfi,2,0 =
L2
cloud

m2

(

1 + m2

m1

)2
a32,0

;

Fg,0 = K
m1m2

(

1 + m2

m1

)2
a22,0

;
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Fcfi,2,0 = Fg,0;

L2
cloud

m2

(

1 + m2

m1

)2
a32,0

= K
m1m2

(

1 + m2

m1

)2
a22,0

;

�F2 = �Fg + �Fcfi,2 �= 0;

F2 = Fg − Fcfi,2 �= 0;

Fg = K
m1m2

a2
; a =

a2(m1 +m2)

m1
; Fg = K

m1m2
(

1 + m2

m1

)2
a22

;

Fcfi, 2 = m2ω
2a2;

ωrot =
Lcloud

m2

(

1 + m2

m1

)

a22

; ω =
Lcloud

m2

(

1 + m2

m1

)

a22

;

Fcfi,2 = m2 ·
L2
cloud

m2
2

(

1 + m2

m1

)2
a42

a2;

Fcfi,2 =
L2
cloud

m2

(

1 + m2

m1

)2
a32

;

L0 = L;

I0ω0 = Iω; ω =
I0

I
ω0 =

m1a
2
1,0 +m2a

2
2,0

m1a
2
1 +m2a

2
2

ω0;

a1,0 =
m2a0

m1 +m2
; a2,0 =

m1a0

m1 +m2
;

a1 =
m2a

m1 +m2
; a2 =

m1a

m1 +m2
;

ω =
m1

m2
2
a2
0

(m1+m2)2
+m2

m2
1
a2
0

(m1+m2)2

m1
m2

2
a2

(m1+m2)2
+m2

m2

1
a2

(m1+m2)2

ω0 =
(a0

a

)2
ω0;

a > a0;→ ω < ω0;
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Fcfi,2,0 =
L2
cloud

m2

(

1 + m2

m1

)2
a32,0

; Fcfi,2 =
L2
cloud

m2

(

1 + m2

m1

)2
a32

;

a2 > a2,0;→ Fcfi,2 < Fcfi,2,0;

Fg,0 = K
m1m2

(

1 + m2

m1

)2
a22,0

; Fg = K
m1m2

(

1 + m2

m1

)2
a22

;

Fg < Fg,0;

F2 = Fg − Fcfi,2 = K
m1m2

(

1 + m2

m1

)2
a22

−
L2
cloud

m2

(

1 + m2

m1

)2
a32

;

a2 = a2,0 + y2; y2 ≪ a2,0;

F2 = K
m1m2

(

1 + m2

m1

)2
(a2,0 + y2)2

−
L2
cloud

m2

(

1 + m2

m1

)2
(a2,0 + y2)3

;

F2 = K
m1m2

(

1 + m2

m1

)2
a22,0

(

1 +
y2
a2,0

)

−2

−
L2
cloud

m2

(

1 + m2

m1

)2
a32,0

(

1 +
y2
a2,0

)

−3

;

F2 = K
m1m2

(

1 + m2

m1

)2
a22,0

(

1− 2
y2
a2,0

)

−
L2
cloud

m2

(

1 + m2

m1

)2
a32,0

(

1− 3
y2
a2,0

)

;

F2 = K
m1m2

(

1 + m2

m1

)2
a22,0

− 2K
m1m2

(

1 + m2

m1

)2
a32,0

y2

−
L2
cloud

m2

(

1 + m2

m1

)2
a32,0

+
3L2

cloud

m2

(

1 + m2

m1

)2
a42,0

y2;
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Fg,0 = K
m1m2

(

1 + m2

m1

)2
a22,0

; Fcfi,2,0 =
L2
cloud

m2

(

1 + m2

m1

)2
a32,0

;

Fcfi,2,0 = Fg,0;

F2 = −2K
m1m2

(

1 + m2

m1

)2
a32,0

y2 +
3L2

cloud

m2

(

1 + m2

m1

)2
a42,0

y2;

F2 =
1

(

1 + m2

m1

)2
a32,0

(

3L2
cloud

m2a2,0
− 2Km1m2

)

y2;

L2
cloud

m2a2,0
= Km1m2;

F2 =
1

(

1 + m2

m1

)2
a32,0

(3Km1m2 − 2Km1m2)y2;

F2 =
Km1m2

(

1 + m2

m1

)2
a32,0

y2; k =
Km1m2

(

1 + m2

m1

)2
a32,0

;

a2,0 =
m1a0

m1 +m2
; a0 =

L2
cloud(m1 +m2)

Km2
1m

2
2

;

k =
Km1m2

(

1 + m2

m1

)2 m3
1
a3
0

(m1+m2)3

=
Km1m2

(m1+m2)2

m2
1

m3
1

(m1+m2)3
L6

cloud
(m1+m2)3

K3m6
1
m6

2

;

k =
K4m6

1m
7
2

L6
cloud(m1 +m2)2

= m2ω
2
osc = m2

4π2

T 2
osc

;

F2 = ky2; �F2 = −k�y2;

Tosc = 2π
L3
cloud(m1 +m2)

K2m3
1m

3
2

.
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(c) K4m6
1m

6
2

L6
cloud(m1 +m2)2

= ω2
osc;

ωosc =
K2m3

1m
3
2

L3
cloud(m1 +m2)

;

Tosc ↓⇒ ωosc ↑⇒ ωosc,max;

m1 +m2 = constant;

ωosc = ωosc,max, when m1 = m2 =
m

2
;

ωosc,max =
K2m5

64L3
cloud

=
4π2

T 2
osc,min

; Tvibr,min = 16π
Lcloud

Km2

√

Lcloud

m
.

Tosc = 2π
L3
cloud(m1 +m2)

K2m3
1m

3
2

.
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1991, 283 p.

13. PROBLEME DE PERFORMANŢĂ ÎN FIZICĂ, Editura
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Moldova, 1993, 179 p.
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182 p.

18. PROBLEME DE FIZICĂ PENTRU LICEU, Editura
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19. PROBLEME DE FIZICĂ DIN REVISTA “KVANT”,
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TRU CERCURILE DE FIZICĂ, VOL. II, Editura
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ULUI VÂLCEA, Editura Conphys, Rm. Vâlcea, 2004, 406 p.

35. IN MEMORIAM – PROFESORUL LIVIU TĂTAR, Edi-
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36. PROBLEME DE FIZICĂ PENTRU GIMNAZIU,
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NOMIE ŞI ŞTIINŢE, Editura Conphys, Rm. Vâlcea, 2007,
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tura Conphys, Rm. Vâlcea, 2007, 530 p.

43. TOP-FIZ, PROBLEME DE FIZICĂ, Editura Didactică şi
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OLIMPICE, SELECŢII PENTRU IPhO 1995–2009,
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Bucharest, 2023, 460 p.

81. ASTRONOMY AND ASTROPHYSICS – MY NEW
PROBLEMS, THIRD ED., VOL. I (for IAO 2023, Edi-
tion XXVII, China), Editura Didactică şi Pedagogică, Bucharest,
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