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Preface

The subject of statistical physics is to study the physical properties and behavior of
various macroscopic systems and condensed media under the thermodynamic (heat)
equilibrium. The thermodynamic or heat equilibrium implies that the physical system
can wholly be described by the canonical Gibbs distribution. The main difficulty that
arises here is to calculate the partition function and corresponding thermodynamic
potential.

At present, statistical physics is the basis of condensed matter physics and the tool
for studying a variety of condensed media. The condensed medium or macroscopic
system is usually understood as a physical system consisting of the macroscopic
number of particles and having the macroscopic number of degrees of freedom.
In essence, the term, macroscopic, implies implicitly the limiting transition to the
infinite system having, for example, an infinite number of particles or volume. At
the same time, the physical system in itself can also represent a single particle but
interacting with the macroscopic thermal bath.

As a typical example of condensed media, we can mention gases, normal and
superfluid liquids, crystalline and amorphous solids, superconductors, and various
magnets.

The starting point in the study of condensed matter is the introduction and deter-
mination of the necessary thermodynamic quantities depending on the type of the
physical system to be explored. For example, this may be temperature, volume,
pressure, polarization, magnetization, and thermodynamic potentials as functions of
these quantities, e.g. energy, free energy, and entropy.

The statistical physics is one of three main courses of theoretical physics which
students of Moscow Institute of Physics and Technology study. Over the past 50
years, statistical physics and condensed matter physics have developed rapidly in
the scientific context and have achieved outstanding success due, in particular, to
the development and usage of specific models and mathematical methods. The
latter often turns out to be very complicated, requires cumbersome calculations, and
may simply be inaccessible without special mathematical training. However, these
successes of statistical physics and condensed matter physics have not yet found
an accessible and complete reflection in the textbooks proposed for the students of
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x Preface

physical specialties. Apparently, this may be associated with the following reasons.
Firstly, it is necessary to convey the material to students, using the simplest mathe-
matical apparatus. Secondly, it is the limited time frame that is assigned to studying
the subject. Currently,Moscow Institute of Physics and Technology, in contrast to the
annual course of quantummechanics, has a single semester for studying the statistical
physics course. This is obviously insufficient due to the extent of the subject of statis-
tical and condensed matter physics. Thus, it is necessary to enhance the requirements
for selecting the instructional content that students of physical universities should
study under single semester course.

The practice of teaching the statistical physics course has led me to the following.
The content that relates to the principles, basic statements of statistical physics,
and properties of classical and quantum ideal gases poses no difficulties for the
MIPT students. The learning problems will concern a noticeable amount of students
when they start to study the physical properties of non-ideal quantum systems and
condensed media since this requires a comprehension of more complicated physical
models and application of more sophisticated mathematical tools.

The purpose of the present textbook is to help the students, future physicists, to
master the basic elements of statistical physics and learn how to apply its methods in
practice. For understanding the content of the book, it is sufficient to be familiar with
the basic concepts of statistical physics in the body of conventional general physics
courses.

When writing the book, the author came across some difficulties associated with
the reasonable text volume and, therefore, with the necessity to select the actual
content from the numerous number of interesting physical phenomena in condensed
media. Here the author’s personal preferences and work experience in this field of
physics are displayed as well as his viewpoint of statistical physics as a necessary
part of the full course of theoretical physics.

The structure of the book proposed to the reader is easy to understand from its
contents. In a few words, the author can say that the book is devoted both to the
fundamental laws of statistical physics and to most interesting physical phenomena
occurring in condensed media.

The book beginswith explaining the basic principles of statistical physics based on
the canonical Gibbs distribution and their connection with the laws of classical ther-
modynamics. Next, the thermodynamic properties are considered of non-interacting
media representing classical (Boltzmann) ideal gases and quantum Fermi and Bose
ideal gases. This section concludes with the thermal properties of black radiation and
solid crystals.

The next section is devoted to the thermodynamic fluctuations, various phase
transitions in the mean-field approximation, and basics of critical phenomena with
the approximate calculation of critical indices.

The following sections deal with the properties and description of non-ideal
quantum systems. First of all, these are normal Fermi liquid and non-ideal Fermi
gas with the dipole interparticle interaction as an example of an anisotropic Fermi
system. Thereafter the theory of superconductivity and its main manifestations are
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given in the framework of the BCS model by deriving the Ginzburg–Landau func-
tional. The phenomenon of superconductivity is one of most striking examples of
macroscopic quantum phenomena. One more fascinating example of macroscopic
quantum phenomena is the Bose–Einstein condensation in a weakly ideal Bose gas,
whose properties are interpreted in the framework of the Gross–Pitaevskii equation.
Considerable attention is also paid to the theory of superfluidity in liquid helium by
deriving the equations of two-fluid hydrodynamics.

Finally, the last section of the book deals both the fundamentals of magnetism and
with the thermodynamic properties for the major types of magnetic structures. Main
attention is paid to ferromagnets, antiferromagnets, and canted antiferromagnetswith
the Dzyaloshinskii–Moriya interaction.

As a rule, the introduction of some basic theoretical statement or question
concludes with an illustrative example of one or more problems. Each of them is
a useful addition for clarifying the material of the section or question considered.
As for the readers, this is also an opportunity to master their practical skills and the
comprehension of the section read. This book can be used as a supplement to the
textbooks published on statistical physics and condensed matter physics.

Unfortunately, a complete bibliographic review of books on statistical and
condensed matter physics would go far beyond our scope. For further details, a
small list is given of the books and textbooks where the questions and problems
raised in our book are discussed in more detail. Undoubtedly, this list is far from
being exhaustive.

The author received a number of useful comments from Prof. V. P. Krainov,
in particular, to the problem on the difference in the heat capacities of para- and
orthohydrogen.

In conclusion, the author expresses his sincere gratitude to the entire team of
teachers at the Theoretical Physics Department of Moscow Institute of Physics and
Technology.

Moscow, Russia Serguei N. Burmistrov



About This Book

The book outlines the fundamentals of statistical and condensed matter physics.
The selection of the material is mainly determined by the personal experience and
preferences of the author, taking into account the program of Statistical Physics as a
basic course of Theoretical Physics at Moscow Institute of Physics and Technology.

The book is intended for students and postgraduates studying statistical physics as
one of the threemain courses of theoretical physics: field theory, quantummechanics,
and statistical physics. To understand the subject matter, it is sufficient to know the
traditional courses of General Physics at physical universities. The book can be used
as a supplement to the textbooks published on statistical physics and condensed
matter physics.
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Notation

Operators are denoted by circumflex as ^
Mean values are denoted by angle brackets as 〈· · · 〉
Phase space
p, q the generalized momentum and coordinate
dpdq = dp1 . . . dpddq1 . . . dqd volume element in phase space of dimension d
d� = dpdq/(2π�)d

�(ε) Number of states
g(ε) Density of states
ŵ Density matrix
Thermodynamic variables
T Temperature
β = 1/T Inverse temperature
In all the formulas, temperature is expressed in energy units
Z Canonical partition function
E Energy
S Entropy
F = E − TS Helmholtz free energy or free energy
P Pressure
V Volume
C(T ) Specific heat
˜F or � = E + PV Conjugate free energy or Gibbs free energy
Z Grand partition function
N Number of particles
μ Chemical potential
� = F − μN Grand thermodynamic potential
ϕ(r) Order parameter
Gi The Ginzburg–Levanyuk number
BMagnetic induction
h, H Magnetic field strength
M Magnetization
χ Magnetic susceptibility
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φ0 Magnetic flux quantum
Ŝa Operator of spin at point a
�N Néel temperature
J Exchange coupling constant



Chapter 1
Main Principles of Statistical Physics

1.1 The Canonical Gibbs Distribution

According to the principles of quantum mechanics, the physical system, described
by certain Hamiltonian Ĥ , has a set of eigenstates denoted by vector |k〉. The vector
|k〉 is an eigenfunction of the Hamiltonian

Ĥ |k〉 = εk |k〉

where εk is the corresponding eigenvalue of energy or the energy level of the system.
The statistical specificationof the physical system implies its probabilistic descrip-

tion by introducing some distribution function wk = w(|k〉). The latter determines
the probability to find the system in the state with vector |k〉. When we adhere to the
mathematical positions alone, the choice of distribution functions wk is very wide.
From the physical point of view, the choice of the distribution function as the main
principle of the theory should result in a set of physical consequences and conclusions
fully consistent with the available experimental data and have predictive powers as
well.

First of all, statistical physics studies the physical systems whose states can be
specified by the canonical Gibbs distribution. The state when the physical system
is described with the Gibbs distribution will be called the thermodynamically equi-
librium state. In the thermodynamically equilibrium state, the probability to find the
system with the state vector |k〉 depends on the state energy εk alone and is given by
the canonical Gibbs distribution, as follows:

wk = w(εk) = 1

Z
exp

(
−εk

T

)
= 1

Z
exp

(−βεk
)
.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
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2 1 Main Principles of Statistical Physics

The parameter Z , determined by the normalization condition
∑

k wk = 1, is equal to
the statistical sum1 over all the possible states weighed with the Gibbs exponential

Z =
∑
k

exp
(−εk/T

)
,

and is referred to as the canonical partition function.
According to this distribution, such a thermodynamically equilibrium systemdoes

not have the strictly fixed energy and thus is not the energetically closed system. We
underline that each state in this sum is taken only once. The external non-negative
parameter T � 0 is called the absolute temperature or briefly temperature2 and,
correspondingly, β = 1/T is the inverse temperature.

The condition of non-negativity for temperature T � 0 means that in the thermo-
dynamically equilibrium system, the states of higher energy become less probable at
the fixed temperature. It is easy to see that the degenerate states of the same energy
have equal probabilities in spite of various sets of quantum numbers. At zero T = 0
temperature, the physical system will be in the minimum energy or ground state
which, in general, may be degenerate.

If the physical system under consideration consists of two independent and non-
interacting subsystems, i.e. the total Hamiltonian Ĥ = Ĥ1 + Ĥ2 is a sum of two
Hamiltonians Ĥ1 and Ĥ2 and, respectively,

|k〉 = |k1〉 ⊗ |k2〉 and εk = εk1 + εk2 ,

the Gibbs distribution represents the simplest and, in essence, single one satisfying
the probability product condition for the statistically independent random variables,
i.e.

w(εk1 + εk2) = w(εk1)w(εk2).

If two physical systems have the same temperature, i.e. T1 = T2, it is customary
to say that these two systems are in the thermodynamic or thermal equilibrium with
each other. Note the transitivity property of thermal equilibrium. In fact, when the
first and second systems are separately in the thermal equilibrium with the third
system, i.e. T1 = T3 and T2 = T3, then we find that the first and second systems are
in thermal equilibrium with each other, i.e. T1 = T2.

The canonical partition function Z can bewritten in the operator form independent
of the energetic representation chosen as

Z =
∑
k

e−εk/T =
∑
k

〈k|e−εk/T |k〉 =
∑
k

〈k|e−Ĥ/T |k〉 = tr e−Ĥ/T .

1 The sign of the sum may also imply an integral which can be of the infinite dimensionality if the
states of the system are specified, e.g. by the infinite set of continuous functions.
2 The temperature is usually expressed inKelvin degrees (K) instead of energy units. The conversion
factor is called the Boltzmann constant kB and equals kB =1.38·10−16 erg/K.



1.1 The Canonical Gibbs Distribution 3

Accordingly, the statistical operator or density matrix is given by

ŵ = 1

Z
e−Ĥ/T = e−Ĥ/T

tr e−Ĥ/T
.

The number of states �(ε) is introduced as the number of states with the energies
not exceeding the given one

�(ε) =
∑
k

ϑ(ε − εk).

Here ϑ(ε) is the Heaviside step function.3 The density of states g(ε) is determined
as a derivative of the number of states �(ε)

g(ε) = d�(ε)

dε
=

∑
k

δ(ε − εk).

The knowledge of the density of states is convenient since the partition function can
be written as a single integral over energy

Z =
∫

g(ε)e−ε/T dε.

Problem

1. Express the elements of density matrix ŵ for spin S = 1/2 in terms of the spin projections
Sx , Sy , and Sz onto axes x , y, and z.

Solution. Let us write the density matrix in the general form as

ŵ =
(

w11 w12
w21 w22

)
.

The magnitude of the average spin is determined by the trace

S = tr (ŵ Ŝ), Ŝ = σ̂/2, σ̂ = (σ̂x , σ̂y, σ̂z)

where σ̂x , σ̂y , and σ̂z are the Pauli matrices. Multiplying the matrices and calculating their traces,
we arrive at the following relations:

Sx = (w12 + w21)/2,

Sy = i(w12 − w21)/2,

Sz = (w11 − w22/2.

Then we augment them with the normalization condition tr ŵ = 1 for the density matrix

w11 + w22 = 1

3 ϑ(ε) = 1 if ε � 0 and ϑ(ε) = 0 if ε < 0.
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and find the final answer from the above four equations

ŵ =
( 1

2 + Sz Sx − i Sy
Sx + i Sy

1
2 − Sz

)
= 1

2
1̂ + Sx σ̂x + Sy σ̂y + Sz σ̂z .

1.2 The Relation Between Statistical Physics and Classical
Thermodynamics

To find the relation of statistical physics with classical phenomenological thermody-
namics based on the longstanding experimental examinations, we define the internal
energy E (or briefly energy) of the physical system as a usual average of statistical
quantity governed by the Gibbs distribution with probability wk

E = 〈ε〉 =
∑
k

εkw(εk) = tr (Ĥŵ).

Involving β = 1/T , we see the following relations: for the energy

E = −∂ ln Z

∂β

and for the mean square of energy fluctuations or dispersion

〈(�E)2〉 = 〈(ε − 〈ε〉)2〉 = ∂2 ln Z

∂β2
.

The presence of energy fluctuations in the thermodynamic system results immedi-
ately from the fact that such a system is not energetically closed and its energy is not
a fixed quantity. At zero temperature, the system stays only in the minimum energy
state, and we must expect that the mean square of energy fluctuations vanishes at
T = 0, i.e. 〈(�E)2〉T=0 = 0.

The specific heat C(T ) of the system is determined as a derivative of energy with
respect to the temperature

C(T ) = ∂E

∂T
= β2 ∂2 ln Z

∂β2
= 〈(�E)2〉

T 2
.

We can see from the last equality that the thermodynamically equilibrium sys-
tem should have the positive magnitude of specific heat C(T ) > 0. The inequality
∂E/∂T > 0 corresponds to the intuitive feeling that the energy of thermodynami-
cally equilibrium system grows as its temperature increases.
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The Helmholtz free energy F(T ) or for brevity, free energy, is introduced as
follows:

F(T ) = −T ln Z .

Thus the canonical Gibbs distribution can be represented as

wk = exp

(
F − εk

T

)
.

To obtain the well-known thermodynamic relations

F = E − T S and S = −∂F

∂T

established by the phenomenological thermodynamics between energy E , free
energy F , and entropy S, we should determine the entropy4 as an average value
of logarithm of distribution function wn with the minus sign

S = −〈lnw〉 = −
∑
k

wk lnwk = −tr (ŵ ln ŵ).

In fact, we have

− F − E

T
=

⎛
⎜⎝ln

∑
k

e−εk/T + 1

T

∑
k

εke−εk/T

∑
k
e−εk/T

⎞
⎟⎠ =

= ∂

∂T

(
T ln

∑
k

e−εk/T

)
= − ∂

∂T

(−T ln Z
) = − ∂F

∂T
.

On the other hand, using condition
∑

k wk = 1, we obtain

− F − E

T
= −

(∑
k

wk ln
1

Z
+

∑
k

wk ln e
−εk/T

)
=

=
∑
k

wk ln
e−εk/T

Z
= −

∑
k

wk lnwk .

Comparing these two equalities, we see the complete equivalence for the thermody-
namical and statistical definitions of entropies in the thermodynamically equilibrium
system.

4 The so-defined entropy is often referred to as the Gibbs–Shannon entropy. Formula S =
−tr (ŵ ln ŵ) is also called the definition of the von Neumann entropy. In the narrow sense, the
Shannon or von Neumann entropy implies base 2 for logarithm S = −tr (ŵ log2 ŵ).
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The entropy is the additive5 quantity. So, let the systemwith energy E = E1 + E2

consist of two non-interacting and thermodynamically equilibrium subsystems with
energies E1 and E2, respectively. Then, S(E1 + E2) = S(E1) + S(E2). In fact, for
the non-interacting and statistically independent systems, we have that the distribu-
tion function of the total unified system represents a product of distribution functions
of the separate systems: w(εk1 + εk2) = w(εk1)w(εk2). Then we find

S(E1 + E2) = −
∑
k1,k2

w(εk1)w(εk2) ln
[
w(εk1)w(εk2)

] =

= −
∑
k1,k2

w(εk1)w(εk2) lnw(εk1) −
∑
k1,k2

w(εk1)w(εk2) lnw(εk2) =

= −
∑
k1

w(εk1) lnw(εk1) −
∑
k2

w(εk2) lnw(εk2) = S(E1) + S(E2).

Provided that the physical system has only N states with the identical energy
values ε1, ε2, . . . εN = ε and, therefore, has the equal probabilitiesw1,w2, . . . wN =
1/N of filling the states, the entropy of the system will be equal to S = ln N .

With the aid of the density of states g(ε), the expression for entropy can be
represented as follows:

S =
∫

dε g(ε)w(ε) ln
1

w(ε)
.

The relation S = −∂F/∂T between free energy and entropy means that the total
differential of free energy equals

dF(T ) = −S dT .

To find the total differential of energy E , we employ relation E = F + T S, entailing
the obvious answer

dE = d(F + T S) = −S dT + TdS + SdT = T dS.

The thermodynamic quantity δQ = T dS, arising here, represents the amount of heat
transferred to the system as a result of the process called the heat exchange.

The energy E = E(S) of the system is a function of entropy, and the following
relation can be written: for the inverse temperature

5 Note that there are non-additive generalizations of the Gibbs entropy. For example, the Tsal-
lis entropy of index q reads Sq = (

1 − tr ŵq
)
/(q − 1) and, correspondingly, Sq (E1 + E2) =

Sq (E1) + Sq (E2) + (1 − q)Sq (E1)Sq (E2). Another example is the Rényi information entropy of
index α � 0 according to Sα = log

(
tr ŵα

)
/(1 − α). In the limit q → 1 and α → 1, both general-

izations go over to the Gibbs entropy.
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1

T
= ∂S

∂E
.

Inequality 1/T � 0 means that the entropy is a monotonous function of energy. The
amount of heat to be supplied to a body to produce a unit increase in its temperature
is referred to as the specific heat. From the above equations, one can obtain the
following formula for specific heat C = ∂E/∂T :

C = T
∂S

∂T
.

Let us further consider two non-interacting subsystems together composing the
closed system so that the total energy of the system conserves, i.e. E = E1 + E2 =
const, but the subsystems themselves can exchange energywith each other.Of interest
is the behavior of the total entropy S(E1 + E2) as a function of the energy, e.g. of the
first subsystem, provided that both subsystems are in the thermal equilibrium with
each other, i.e. T1 = T2 = T . So, for the derivative with respect to energy, we have
involving dE1 = −dE2

∂S(E1 + E2)

∂E1
= ∂S(E1)

∂E1
+ ∂S(E2)

∂E2

∂E2

∂E1
=

(
1

T1
− 1

T2

)
T1=T2

= 0.

Hence we draw the first conclusion. The entropy of the closed system on the whole is
extremum if its both subsystems relax to the thermal equilibrium state characterized
by the same temperatures in both subsystems. Using the transitivity property for the
thermodynamically equilibrium systems, this conclusion can be generalized to the
case of any number of the subsystems in the thermal equilibrium with each other.

It is of interest to clarify whether the given extremum is maximum or minimum.
Thus we need to calculate the second derivative and determine its sign. Then,

∂2S(E1 + E2)

∂E2
1

= ∂

∂E1

(
1

T1

)
− ∂

∂E2

(
1

T2

)
∂E2

∂E1
=

= − 1

T 2
1

∂T1
∂E1

− 1

T 2
2

∂T2
∂E2

= −
(

1

〈(�E1)2〉 + 1

〈(�E2)2〉
)

=

= − 2

〈(�E1)2〉 = − 2

T 2C1(T )
< 0.

Here we have taken �E1 = −�E2 into account. The negative sign of the second
derivative tells us that the extremum is a maximum. As a result, we can conclude
that the achievement of complete thermal equilibrium state in the closed system is
related with the maximum magnitude of its entropy.6

6 Within this statement in the century before last, the hypothesis was put forward about the heat
death of the Universe (Big Freeze), i.e. the Universe eventually has to evolve to a state of thermal
equilibrium over time. In the modern cosmology, taking into account the forces of gravity, it is
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In conclusion, we say a few words about the magnitudes of entropy and specific
heat at zero temperature. At zero temperature, according to the canonical Gibbs
distribution, the physical system is in the state with the minimum energy, which, in
general, can be N times degenerate, i.e. has N different quantum states. Accordingly,
the number of equally probable ways in which this state of the physical system can
be realized is also equal to N . The entropy at T = 0 will be equal to S(0) = ln N .
If the state with the minimum energy is non-degenerated, i.e. N = 1, the entropy
at zero temperature vanishes. Otherwise, when S(0) �= 0, one talks about residual
entropy which can be finite or infinite if the ground state of the physical system
is infinitely degenerate. Usually, in the latter case, there is a sense to consider the
difference �S(T ) = S(T ) − S(0) alone and analyze the change of entropy in the
physical processes instead of its absolute magnitude.

For the finite entropy magnitude at T = 0, we can conclude that the specific heat
vanishes in the zero temperature limit. From the expression for the specific heat,
written as

C = T
∂S

∂T
= ∂S

∂ ln T
,

we have the following limiting behavior:

C(T → 0) ∼ [
S(T → 0) − S(0)

] → 0.

In the case of entropy divergence in the limit T → 0, say, as S(T ) ∼ − ln T
typical for the non-quantum classical systems, e.g. classical ideal gas or classical
magnetic moments, the specific heat at zero temperature will be characterized by the
finite magnitude. Other examples of physical systems with the residual entropy are
the following: frustrated antiferromagnets, spin glasses, quasi-crystals, and incom-
mensurable systems.

Problems

1. Derive the above-obtained relations between free energy, energy, and entropy, using the
operator representation for the density matrix ŵ.

Solution. Let us differentiate the following definition of free energy F with respect to the
temperature:

e−F/T = tr
(
e−Ĥ/T )

.

As a result, we have the simple relation
(

F

T 2 − 1

T

∂F

∂T

)
e−F/T = 1

T 2 tr
(
Ĥe−Ĥ/T )

,

which reduces straightforwardly to the equation

F − T∂F/∂T = tr
(
Ĥe(F−Ĥ)/T ) = tr (Ĥŵ) = E .

considered that a homogeneous isothermal state is not most probable and does not correspond
to the entropy maximum. Other hypotheses have been put forward about the ultimate fate of the
Universe, e.g. Big Rip, Big Bang, and Big Crunch.
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Then the energy equals E = F + T S where entropy is S = −∂F/∂T .
On the analogy we have for the entropy

S = −tr
(
ŵ ln ŵ

) = −tr

(
ŵ
F − Ĥ

T

)
= − F

T
tr (ŵ) + 1

T
tr (ŵĤ) = − F − E

T
,

or the same usual expression E = F + T S.

2. The black hole entropy as a function of the energy is described as

S(E) = 4πG

�c5
E2

where c is the light velocity and G is the gravitational constant. Show that the thermodynamically
equilibrium state of such black holes is impossible.

Solution. Since in the thermodynamically stable state the energy should be minimum as a
function of entropy, the second derivative ∂2E/∂S2 = T/C(T ) must be positive, C(T ) being the
specific heat. If S(E) = (

E/E0
)n , we have

∂2E

∂S2
= E0

1 − n

n2
S

1−2n
n .

To provide the positive inequality, it is necessary to have n < 1. Since n = 2, the black hole proves
to be thermodynamically unstable and thus radiates.

3. Find the following fluctuations of energy: 〈(�E)3〉 and 〈(�E)4〉.
Solution. Let us express the cube of energy fluctuations in terms of the derivatives for partition

function Z with respect to inverse temperature β

〈(�E)3〉 = − 1

Z

∂3Z

∂β3 + 3

Z2

∂Z

∂β

∂2Z

∂β2 − 2

Z3

(
∂Z

∂β

)3

= −∂3 ln Z

∂β3 .

Employing the relation for the free energy βF = − ln Z , we find

〈(�E)3〉 = ∂3

∂β3

(
βF

)
.

The calculation for 〈(�E)4〉 is analogous to that considered above:

∂4 ln Z

∂β4 = 〈(�E)4〉 − 3〈(�E)2〉2.

Hence we have readily

〈(�E)4〉 = 3

(
∂2

∂β2 (βF)

)2

− ∂4

∂β4

(
βF

)
.

4. The heat engine operates in the Carnot cycle exchanging the heat between the hot and cold
thermal reservoirs. The hot thermal reservoir has positive temperature Th > 0, and the cold reservoir
has negative temperature Tc < 0. Show that the efficiency η of such a Carnot heat engine equals
unity.

Solution. Let us consider isothermal expansion at T = Th (Fig. 1.1). The amount of heat absorbed
by the heat engine from Point 1 to Point 2 is equal to Qh = Th(S2 − S1) = Th�Sh . There is no
further change in the entropy from Point 2 to Point 3. In the process of isothermal compression
from Point 3 to 4, the amount of heat that the engine exchanges with the refrigerator at temperature
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Fig. 1.1 The Carnot cycle in
the temperature–entropy
diagram

Fig. 1.2 The Carnot cycle of
magnetic moment between
the thermal reservoirs with
the opposite signs of
temperature

Tc equals Qc = Tc(S4 − S3) = Tc�Sc. The total entropy change �S = �Sh + �Sc, as a result of
the complete cycle, vanishes, i.e. �Sc = −�Sh and, respectively,

Qc = −Qh
Tc
Th

.

Since the heat engine returns to its initial state, the change in its internal energy vanishes.
Accordingly, the total work A is given by changing the heat balance A = Qin + Qout where Qin
and Qout are the heat taken from and put into the system, respectively, at the isothermal stages of
cycle. Let Qh > 0. In the usual situation, when the temperatures Th and Tc have the same signs, we
have the heat leaving the engine to the cold reservoir due to Qc < 0 and, thus, the heat input Qin
equals Qh . The efficiency is determined by the ratio

η = A/Qin

where A = Qh + Qc is given by the classical expression η = 1 − Tc/Th < 1.
If the temperatures of hot and cold reservoirs have the different signs (Tc < 0), the heat is

absorbed with the heat engine at both isothermal stages, i.e. Qh > 0 and Qc > 0. Therefore, no
amount of heat is removed from the engine, i.e. Qout = 0, and the heat absorbed in the complete
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cycle will be equal to the work done by the system, entailing Qin = A. As a result, we arrive at the
efficiency equal to unity

η = 1 (Th > 0, Tc < 0).

Since condition η < 1 does not hold for the different signs of temperatures Th and Tc, the negative
value of temperature cannot represent absolute temperature.7

In Fig. 1.2 the Carnot cycle is shown for the magnetic moment when the magnetic field plays

a role of the working parameter. The cycle here can be represented as two Carnot cycles. The first

cycle operates between zero temperature and temperature Th with η1 = 1 − 0/Th = 1. The second

does between Tc and zero temperature with η2 = 1 − 0/Tc = 1. The total efficiency will be η = 1.

1.3 Thermodynamic Variables and Potentials

So far, we have paid no attention to a possible dependence of physical states in the
system and its energy levels upon other allowable physical parameters determining
the state of the system. Such parameters or thermodynamic variables can be, for
example, number of particles N in the physical system, volume V in gases and liq-
uids, surface area in droplets, electrical induction D in dielectrics,magnetic induction
B in magnets, and strain tensor uik in solids. The choice of thermodynamic variables
or parameters, which can be scalars, vectors, or tensors, as well as the choice of the
number of variables, depend on the properties of the physical system, experimen-
tal conditions, types of physical processes, and specific purposes of describing the
system under study.

Letλ be the very parameterwhich theHamiltonian of the system Ĥ (λ) depends on
andwhich, alongwith temperature, is chosen to characterize the thermodynamic state
of the physical system. The dependence of the Hamiltonian on parameter λ results
naturally in the dependence of the energy eigenvalues εk(λ) of the system upon the
same parameter λ. This dependence can be determined from theHellmann–Feynman
theorem according to the following relation:

∂εk(λ)

∂λ
= 〈kλ

∣∣∣∣∂ Ĥ∂λ

∣∣∣∣kλ〉.

Here |kλ〉 is the eigenfunction of Hamiltonian Ĥ(λ).
Let us turn now to studying the free energy

F(λ) = −T ln Z(λ) = −T ln
∑
k

e−εk (λ)/T

7 Efficiency η = 1 implies a perpetual motion machine of the second kind that can convert all the
heat entirely into mechanical work, violating thus the subtle second law of thermodynamics for the
cyclic Carnot process.
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as a function of parameter λ. For this purpose, we differentiate this expression with
respect to λ at the fixed temperature

(
∂F

∂λ

)
T

=
∑
k

∂εk(λ)

∂λ

e−εk (λ)/T

Z(λ)
=

∑
k

∂εk(λ)

∂λ
wk(λ) = 〈∂ε(λ)

∂λ
〉 .

Accordingly, taking the temperature dependence of free energy into account, we can
represent its differential, as follows:

dF(T,λ) =
(

∂F

∂T

)
λ

dT +
(

∂F

∂λ

)
T

dλ = −S dT + � dλ.

Herewe introduce a new thermodynamic variable as a partial derivative of free energy
in accordance with the definition8

� =
(

∂F

∂λ

)
T

.

The pairs of thermodynamic quantities (T, S) and (�,λ) are referred to as the
conjugate thermodynamic variables. If we wish to go over from potential F(T,λ)

to conjugate thermodynamic potential F̃ = F̃(T,�) depending already on the con-
jugate variable �, one should employ the Legendre transformation:

F̃(T,�) = F − �λ.

It is easy to check that the following formula:

d F̃(T,�) = (−S dT + � dλ) − λ d� − � dλ = −S dT − λ d�

is valid for the differential of the conjugate thermodynamic function F̃(T,�). The
conjugate thermodynamic potential F̃ proves to be the function of T and � and,
correspondingly,

λ = −
(

∂ F̃

∂�

)
T

.

If necessary, one can simultaneously consider several parameters λi and, accord-
ingly, introduce the same number of conjugate thermodynamic variables �i .

Here are some examples of possible thermodynamic variables. For example, one
of the possible characteristics of a condensed medium (body) may be its volume
which is not necessarily constant and the energy of the condensed medium can be
volume-dependent. In this case, the partial derivative of free energy

8 For the clarity of physical interpretation, variable � can be defined with the opposite sign as well.
For example, λ = V is the volume and P = −� is the pressure.
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P = −
(

∂F

∂V

)
T

with respect to volume V of the system (body) is called its pressure. The physical
sense for the pressure is the density of force at which the system (body) acts on the
boundary of its volume. The differential for the energy of the system (body) reads

dE = T dS − P dV = δQ + δR.

Accordingly, the change in the energy of the system in the thermodynamically equi-
librium state can be represented as a sum of the amount of heat δQ = T dS trans-
ferred to the system (body) due to heat exchange and the work δR = −P dV done
on the system (body)9 by changing the volume.

The thermodynamic process that occurs without transferring the heat δQ = 0 is
called the adiabatic process. The isentropic process implies no net transfer of heat
and occurs at the constant entropy. The expression for the transferred amount of heat
δQ has a universal form. On the contrary, the expression δR for the work done by the
system depends on the physical properties of the system and the type of processes
occurring when the state of the system changes.

The energy of the system, in general, may depend on the number of particles
N in the system. If we take the number of particles in the system as an additional
thermodynamic variable, the partial derivative of free energy

μ =
(

∂F

∂N

)
T,V

is called the chemical potential μ of the system (body) and characterizes the change
of free energy by varying the particle number in the system by one particle. As a
result, we have for the total differential of free energy F(T, V, N )

dF(T, V, N ) = −S dT − P dV + μ dN .

The partial derivatives of free energy F per unit volume with respect to electrical
induction D and magnetic induction B determine the strengths of electric E and
magnetic H fields as follows:

E = 4π

(
∂F

∂D

)
T,V

and H = 4π

(
∂F

∂B

)
T,V

and, correspondingly, specify the following differential:

dF(T, D, B) = −s dT + E dD + H dB
4π

9 Accordingly, P dV is the work done by the system (body) when its volume changes.
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where s is the amount of entropy per unit volume. The stress tensor σik is the variable
conjugated to the strain tensor uik

σik =
(

∂F

∂uik

)
T

.

Here F is the free energy per unit volume, and the differential of free energy density
equals dF(T, uik) = −s dT + σikduik .

Depending on the experimental conditions and types of physical processes under
study, it is convenient to introduce various thermodynamic potentials and variables.
As we have seen above, the free energy F(T, V ) is the thermodynamic potential
depending on the temperature and volume and its differential dF = −SdT − PdV
serves for determining the entropy S and pressure P .

The energy or internal energy E(S, V ) = F + T S is the thermodynamic potential
expressed in terms of entropy and volume. The differential of energy dE = TdS −
PdV gives the following expressions for the temperature and pressure:

T =
(

∂E

∂S

)
V

and P = −
(

∂E

∂V

)
S

.

The variables of temperature T and pressure P are associated with the thermo-
dynamic Gibbs potential � or Gibbs free energy10 as well:

�(T, P) = F + PV = E − T S + PV,

d�(T, P) = −S dT + V dP.

Note that F − � = −PV .
The enthalpy orheat functionW (S, P) is introduced as a thermodynamic potential

depending on entropy and pressure

W (S, P) = E + PV = � + T S,

dW (S, P) = T dS + V dP.

Provided that the number of particles in the system can vary, i.e. system with
the variable number of particles under study, it is advisable to introduce the grand
thermodynamic potential into consideration. We hereafter denote this potential as
�(μ), and its independent variable will be called the chemical potential μ conjugated
to the number of particles N

�(T, V,μ) = F − μN .

Using d(μN ) = μ dN + N dμ, we obtain for the differential d�

10 In this sense the Gibbs free energy � is conjugate to the Helmholtz free energy F .



1.3 Thermodynamic Variables and Potentials 15

d�(T, V,μ) = −S dT − P dV − N dμ.

For the system (body) under the fixed volume, we find

d� = −S dT − N dμ.

The number of particles can be found by differentiating the grand potential � with
respect to the chemical potential under constant temperature and volume

N = −
(

∂�

∂μ

)
T,V

.

For simple and spatially homogeneous systems, it is straightforward to obtain
the relationship between thermodynamic Gibbs potential �(P, T, N ) and chemical
potential μ, using the property of extensivity of entropy S = S(E, V, N ). The exten-
sivity of entropy implies that, when varying such parameters of the system as energy
E , volume V , and number of particles N by a certain factor k, the entropy changes
by the same factor

S(kE, kV, kN ) = kS(E, V, N ).

Differentiating this equality with respect to k and putting k equal to unity, we arrive
at

S = ∂S

∂E
E + ∂S

∂V
V + ∂S

∂N
N = E

T
+ P

T
V − μ

T
N .

Hence we have E − T S + PV = Nμ. On the other hand, the left-hand side of this
equation represents the thermodynamicGibbs free energy� and, therefore,� = Nμ.
Comparing two differentials

d � = −S dT + VdP + μ dN = d(μN ) = Ndμ + μ dN

yields the Gibbs–Duhem equation

dμ = − S

N
dT + V

N
dP or d

(
μ

m

)
= −σdT + dP

ρ
.

Here m is the mass of single particle, σ is the entropy per unit mass, and ρ is the
density.

Problems

1. Let the Hamiltonian of system Ĥ = Ĥ(λ) depend on parameter λ. Derive the formula for the
free energy differential dF obtained above, using the matrix representation for density matrix ŵ.

Solution. Since tr ŵ = tr [exp(F − Ĥ)/T ] = 1, the differential d (tr ŵ) = tr (dŵ) vanishes. So,

tr

[(
dF − ∂ Ĥ

∂λ dλ

T
− F − Ĥ(λ)

T 2 dT

)
ŵ

]
= 0.
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Hence we have
(
dF − F

T

)
tr ŵ + tr (Ĥŵ)

T
− tr

(
∂ Ĥ

∂λ
ŵ

)
dλ = dF − F − E

T
− 〈∂ Ĥ

∂λ
〉dλ = 0

or

dF = −S dT + 〈∂ Ĥ

∂λ
〉dλ = −S dT + � dλ.

2. Let the energy of the states in the thermodynamic system depend on parameter λ as ε̃k =
εk + λ�k for all states of the system with no exception.

(a) Find the mean value of the conjugate parameter �.
(b) Find the mean square fluctuation or dispersion of parameter �.
Solution. (a) Consider the partition function Z̃ = ∑

k exp(−ε̃k/T ) and free energy F̃ =
−T ln Z̃ . Next, we calculate the derivative

∂ F̃

∂λ
= 1

Z̃

∑
k

e−ε̃k/T ∂̃εk

∂λ
=

∑
k

�k
e−ε̃k/T

Z̃
=

∑
k

�kw̃k = 〈�k〉 = �

which delivers the mean value of parameter �k . Note the normalization condition
∑

k w̃k = 1 for
the distribution of thermodynamic probability of populating the states.

(b) Let us employ the following relation for derivatives:

∂2 ln Z̃

∂λ2 = 1

Z̃

∂2 Z̃

∂λ2 −
(

∂ ln Z̃

∂λ

)2

.

The calculation yields

∂2 ln Z̃

∂λ2 = 1

T 2

∑
k

�2
k
e−ε̃k/T

Z̃
− 1

T 2

(∑
k

�k
e−ε̃k/T

Z̃

)2

= 1

T 2

(∑
k

�2
kw̃k − (∑

k

�kw̃k
)2)

.

Hence we find the simple formula for the mean square fluctuation

〈(��)2〉 = 〈�2
k〉 − (〈�k〉)2 = T 2 ∂2 ln Z̃

∂λ2 = −T
∂2 F̃

∂λ2 .



Chapter 2
Ideal Boltzmann Gas

2.1 Partition Function of an Ideal Gas

An ideal gas is referred to as a gas in which the interaction is completely neglected
between the particles composing the gas.Usually such an approximation is associated
with a sufficiently lowdensity or rarefaction of the condensedmedium.On the neglect
of the interparticle interaction the problem to calculate the partition function Z is
greatly simplified and, due to the identity of the particles in the gas, can be reduced
to determining the partition function of a single particle. From this point of view an
ideal gas is the simplest physical system.

So, let the Hamiltonian for the system of N identical particles

Ĥ = Ĥ1 + Ĥ2 + . . . + ĤN

represent a sum of identical N Hamiltonians. On the whole, the state of the sys-
tem is described by a set {|k1〉, |k2〉, . . . |kN 〉} of quantum numbers for each single
Hamiltonian Ĥi and single i th particle specified with state vector |ki 〉. In the lack of
interparticle interaction, the energy of the whole system is a sum of the energies of
single particles

εk1,...,kN = εk1 + εk2 + . . . + εkN .

As a result, the total partition function Z splits into a product of N identical partition
functions taken over the states of each separate particle

∑

{k1, ..., kN }
e−(εk1+···+εkN )/T =

∑

{k1, ..., kN }
e−εk1 /T × · · · × e−εkN /T =

=
N∏

i=1

∑

ki

e−εki /T =
⎛

⎝
∑

ki

e−εki /T

⎞

⎠
N

.
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18 2 Ideal Boltzmann Gas

Finally the calculation of partition function for the total system reduces to the product
of N identical one-particle partition functions z0

Z = zN0 where z0 =
∑

k

e−εk/T =
∫

g(ε) e−ε/T dε.

The answer can be expressed in terms of one-particle density of states g(ε) =∑
k δ(ε − εk).

2.2 Ideal Gas in the Classical Statistics

Let us treat motion of gas particles within the framework of classical mechanics.
Then, calculating the partition function, the following specific features of the classical
system must be taken into account. Firstly, the states of the system of N classical
particles are classified by a set of momenta and coordinates

{P,Q} = {( p1, q1), ( p2, q2), . . . , ( pN , qN )}

which represent a point in the phase space. The energy of the system ε(P,Q) is a
simultaneous function of momenta and coordinates

ε(P,Q) = ε
[
( p1, q1), ( p2, q2), . . . , ( pN , qN )

]
.

The vector notations for momentum pi = {pαi } and coordinate qi = {qαi } implicate
the spatial components α = 1, 2, . . . , d as well. Here d is the dimensionality of
geometrical space occupied by the particles of a gas or the number of degrees of
freedom of a particle. In this case the sum over all possible states of a gas, i.e. sum
over all possible momenta {P} and coordinates {Q}, represents an integration over
the whole region of accessible momenta {P} and coordinates {Q}. The number of
possible states dτ in the phase space element dPdQ equals

dτ =
N∏

i=1

d∏

α=1

dpαi dqαi

2π�
=

N∏

i=1

d pi dqi
(2π�)d

.

Secondly, we should take the identity of like particles into account. In fact, if we
transpose two identical particles, say i and j , the state of the whole system will be
characterized by another point in the phase space, corresponding to permuting the i th
particle coordinate and momentum with the j th particle coordinate and momentum,
i.e. ( pi , q i . . . p j , q j ) → ( p j , q j . . . pi , q i ).

Due to the principle of indistinguishability, such a permutation of particles does
not vary the energy as well as the state of the whole system. In other words, both
such points of phase space, though different, represent, in essence, the same state
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of the system in the case of identical particles. As a result, the total number of
various states in the system is smaller than the integral

∫
dτ by a factor equal to

the number of possible permutations between identical particles. For the system
composedwith N identical particles, the total number of possible permutations equals
N ! and, therefore, the total number of states in the classical system is expressed by
the following formula:

1

N !
∫

dτ .

Thus, provided that the classical expressions for the energy of ideal gas composed
of N identical particles are employed, the partition function of the gas is given by

Zcl = zN0
N !

where one-particle partition function z0 equals the integral

z0 =
∫

dp1dp2 . . . dpd dq1dq2 . . . dqd
(2π�)d

e−ε( p, q)/T =

=
∫

d p dq
(2π�)d

e−ε( p, q)/T =
∫

g(ε) e−ε/T dε.

The one-particle density of states g(ε) is expressed via integral

g(ε) =
∫

d p dq
(2π�)d

δ
(
ε − ε( p, q)

)
.

The proper approximation used for N ! in the macroscopic limit N → ∞ is given by
Stirling’s formula N ! ≈ (N/e)N . Accordingly, we arrive at

Zcl =
(ez0
N

)N
(N → ∞)

and obtain the following formula:

F = −NT ln
(
ez0/N

)

for the free energy.

2.3 Equation of State for Ideal Gas

Analyzing the thermodynamic properties of an ideal gas in the lack of external field,
we assume that the translational motion of gas particles obeys the laws of classical
mechanics. Then, calculating the one-particle partition function z0, we separate the
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total energy of a particle or gas molecule into the kinetic energy due to translational
center-of-mass motion of a particle and into the internal energy related to the internal
degrees of freedom of a particle or molecule

εk( p) = p2/2m + ε(in)
k .

The internal energy, depending on the type of a particle or molecule, can consist
of the rotational, vibrational, and electronic modes of motion and excitations. In the
simplest approximation, to describe the internal modes of motion, we assume their
independence from each other. This allows us to represent the internal energy as
a sum of rotational and vibrational energies and to take apart the contributions of
electronic and nuclear degrees of freedom into account.

Such an approximation results in

z0 = zkin0 z(in)
0 = z(in)

0

∫
d3r

∫
d3 p

(2π�)3
e−p2/2mT = V

(
mT

2π�2

)3/2

z(in)
0

where V is the volume occupied with the gas, and the partition function for the
internal states of a gas particle

z(in)
0 =

∑

k

e−ε(in)
k /T = e− f (T )/T

is a certain function depending on the temperature alone. Thus we obtain for the free
energy of ideal gas

F(T, V ) = −NT ln
eV

N

(
mT

2π�2

)3/2

+ N f (T ) .

The pressure of ideal gas is independent of the internal degrees of a gas particle and
equals

P = −∂F/∂V = NT/V .

This yields the equation of state of an ideal gas or ideal gas law

PV = NT .

Having the formula for the free energy, we can find the other thermodynamic
potentials and variables. So, the Gibbs free energy � = F + PV is proportional to
the number of particles N and equals

�(P, T ) = NT ln

[
P

T

(
2π�

2

mT

)3/2]
+ N f (T ) = Nμ(P, T ).

Here μ(P, T ) is the chemical potential or Gibbs energy per particle.
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The entropy, defined as S = −∂F/∂T , reads

S(T, V ) = N ln

[
V

N

(
mT

2π�2

)3/2]
+ 5

2
N − N f ′(T ).

Finally, the energy is proportional to the number of particles N in the gas and equal
to

E = N

(
3

2
T + f (T ) − T f ′(T )

)
.

The energy of ideal gas per one particle depends on the temperature alone. The same
statement refers to the enthalpy due to relation W = E + PV = E + NT .

The specific heats at constant pressure and volume

CP =
(

∂W

∂T

)

P

and CV =
(

∂E

∂T

)

V

are also the functions of the temperature alone. Since W − E = NT , the difference

CP − CV = N

demonstrates the universal Mayer’s relation for the ideal gas.
In conclusion, we note that the macroscopic description of the gas supposes the

transition to the following limits: N → ∞ and V → ∞, the gas density N/V =
const being constant.

Problems

1. Show that the equation of state PV = NT for an ideal gas is independent of the energy
spectrum type of its particles ε = ε(p) and spatial dimension d. Determine the energy and specific
heat of the gas for the particle spectrum εp = cpk(c, k > 0).

Solution. The partition function equals Z = zN0 /N ! where N is the number of particles and z0
is the one-particle partition function

z0 =
∫

dd x
∫

dd p

(2π�)d
e−ε(p)/T = V f (T ).

Here V is the d-dimensional volume occupied by the gas. Accordingly, the free energy equals
F = −T ln[(V f )N /N !] and the gas pressure is P = −∂F/∂V = NT/V .

For spectrum εp = cpk , we find z0 = AV T d/k where A is the constant quantity independent
of V and T . The free energy reads

F = −NT ln
(
AV T d/k)+ T ln N ! .

The specific heat of a gas is temperature-independent

C = −T

(
∂2F

∂V 2

)
= d

k
N
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with the corresponding energy equal to E = F + T S = (d/k)NT . This can be interpreted as a
classical equipartition property when each degree of freedom for the particle motion contributes an
equal fraction 1/k to the energy and specific heat of an ideal gas.

2. Let us assume that entropy S is an additive quantity represented by the integral over the space
and as a scalar is a relativistic invariant. In other words, the magnitude of entropy is independent
of the choice of the coordinate frame.

Find how the temperature of a body could change from the viewpoint of an observer in the
coordinate frame moving at velocity v. Show that the equation of state PV = NT for the ideal gas
keeps the relativistic invariance.

Solution. The energy differential of a body moving at velocity v reads

dE = T dS + v d P

where T is the temperature and P is the momentum of a body. Then we have for the entropy
differential

dS = 1

T
dE − v

T
d P .

Let us give a relativistically invariant form to this expression, involving that 4-vector of momentum
is presented by the covariant formula dPα = (dE/c, −d P

)
.

So, we introduce the contravariant 4-vector of inverse temperature βα = (c/T, v/T
)
and write

the entropy differential according to the rule xαyα = x0y0 − x y of the 4-vector product xα =
(x0, x) and yα = (y0,− y) in the identical form

dS = βαdPα = c

T

dE

c
− v

T
d P = dE

T
− v

T
d P .

Such a record dS = βαdPα = βαdPα has a form of relativistic invariant. For the square of inverse
temperature 4-vector, according to xαxα = (x0)2 − x2, we have

βαβα = c2 − v2

T 2 =
(

c

γT

)2

, γ = 1√
1 − v2/c2

,

γ being the Lorentz factor. From invariance for the square of inverse temperature 4-vector, we
can conclude the invariance of product γT under the Lorentz transformation. Therefore, body
temperatures T1 and T2, observed in the reference frames moving at velocities v1 and v2, should be
connected with the relation

�(T1, v1) = T1√
1 − v21/c

2
= T2√

1 − v22/c
2

= �(T2, v2).

The quantity �(T, v) is Lorentz-invariant. The thermodynamic equilibrium between two bodies
should be disturbed under �(T1, v1) �= �(T2, v2).

If the entropy is invariant dS′ = dS and the energy and volume should transform as E ′ = γE
and V ′ = V/γ, we arrive at

1

T ′ = ∂S′

∂E ′ = ∂S

γ∂E
= 1

γT
, i.e. T ′ = γT .

For the pressure, one has

P ′ = T ′ ∂S′

∂V ′ = γT
∂S

∂(V/γ)
= γ2T

∂S

∂V
= γ2P.
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On the analogy we find for the chemical potential: μ′ = γμ.
Involving that N = N ′, the equation of state for ideal gas proves to be Lorentz-invariant

P ′V ′

N ′T ′ = PV

NT
= 1

and the ideal gas remains ideal for any inertial observer.

2.4 The Boltzmann Distribution

When describing the properties of a gas, it is of interest to know the average number
of gas particles n(ε) in the state with energy ε. In the general case we imply that
the particle energy ε = ε( p, q) depends on the momentum p and coordinate q.
According to the Gibbs distribution, the probability to find a particle in the state of
energy ε is proportional to the exponential exp(−ε/T ). Thus the average number of
particles in this state will also be proportional to the same exponential, i.e. n(ε) =
a exp(−ε/T ). The constant a is determined with the condition of normalizing the
function n(ε) by the total number of gas particles

N =
∫

dτn(ε) = a
∫

dτ exp(−ε/T ).

Taking into account that the partition function z0 equals

z0 =
∫

dτ exp(−ε/T ),

we readily find that a = N/z0 and

n(ε) = N

z0
e−ε/T .

On the other hand, we have using the relation ez0/N = exp(−F/NT ) for free energy
F and the equation of state PV = NT for an ideal gas

z0/N = e−(F+NT )/NT = e−(F+PV )/NT = e−�/NT = e−μ/T .

Here μ is the chemical potential of a gas. As a result, in the ideal classical gas the
average number of particles in the state with energy ε or population of the states with
energy ε is determined by the following formula:

n(ε) = e(μ−ε)/T .

This formula is called the Boltzmann distribution.
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The ideal gas entropy, expressed via the Boltzmann distribution function n(ε),
can be written as

S =
∫

dτ n ln
e

n
.

If no external potential is in the space region occupied with the gas and the
gas particle energy ε = p2/2m depends on the momentum alone, we arrive at the
distribution called theMaxwell distribution

n(ε) = N

V

e− p2

2mT

∫
e− p2

2mT
d3 p

(2π�)3

= N

V

(
2π�

2

mT

)3/2

e− p2

2mT ,

V being the volume occupied with the gas.
Consider next the gas of particles in the external potential field, the potential energy

u(r) of a particle being coordinate-dependent. Writing the energy of a particle as

ε( p, r) = p2

2m
+ u(r),

we see that the particle number distribution starts to depend on the spatial position
of particles with the probability proportional to the following exponential:

n(ε) ∝ e−u(r)/T .

As an example for the behavior of a gas in the external potential field, we consider
an ideal gas of N 	 1 particles in the harmonic potential u(x, y, z) producing a trap
for the particles of mass m:

u(x, y, z) = m

2

(
ω2
x x

2 + ω2
y y

2 + ω2
z z

2
)
.

Let us start to calculate the free energy of a gas in the trap from determining the
one-particle density of states

g(ε) =
∫

d3r
∫

d3 p

(2π�)3
δ
(
ε − ε( p, r)

)

where ε( p, r) = p2/(2m) + u(r) is the energy of a trapped particle. Integrating over
the particle momentum yields

g(ε) = 4π
√
2m3/2

(2π�)3

∫

u(r)<ε

d3r
√

ε − u(r) .
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The last integral is calculated with the aid of substituting the variables x →
x
√
2/(mω2

x ), etc. Hence

g(ε) = 16

8π2�3ωxωyωz

∫

x2+y2+z2<ε

dx dy dz
√

ε − (x2 + y2 + z2) =

= 8

π�3ωxωyωz

∫

r2<ε

dr r2
√

ε − r2 = ε2

2�3ωxωyωz
.

Knowing the one-particle density of states, we find readily the free energy for the
gas of N particles from the relation

F = −NT ln
e

N

∫
dε g(ε)e−ε/T =

= −NT ln

[
e

2�3ωxωyωz N

∞∫

0

dε ε2e−ε/T

]
= −NT ln

eT 3

�3ωxωyωz N
.

Differentiating the free energy with respect to the particle number results in the
chemical potential reading as

μ = ∂F

∂N
= −3T ln

T

�(ωxωyωz N )1/3
.

The specific heat of ideal gas in the harmonic trap equals

C(T ) = −T
∂2F

∂T 2
= 3N

and proves to be constant and temperature-independent.
Note the specific feature of the transition to the macroscopic limit for an ideal

gas in the harmonic trap. The following limits are meant here: N → ∞ and
ωx , ωy, ωz → 0, the quantity (ωxωyωz N )1/3 = const being kept constant.

Problem

1. The ideal gas of particles is in the centrally symmetric trap with the impenetrable core of
radius R and external logarithmic potential

U (r) =
{∞ , r = R ,

U0 ln(r/R) , r > R (U0 > 0) .

Find the specific heat of a gas and the limiting temperature above which it is impossible to heat the
gas.
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Solution. The free energy of a gas is calculated from the expression

F = −NT ln
ez0
N

= −NT ln
e

N

∫

r>R

d3r
∫

d3 p

(2π�)3
exp

(
− p2

2mT
− U (r)

T

)
=

= −NT ln

⎡

⎣ e

N

(2πmT )3/2

(2π�)3
4π

∞∫

R

dr r2 exp

(
− U0

T
ln

r

R

)⎤

⎦ .

The last integral converges only if the temperature T < U0/3. This condition determines the limiting
temperature Tlim = U0/3 below which the thermodynamically equilibrium state of the gas can still
exist in the trap. The physical reason is connected with the exponential growth of the one-particle
density of states as the energy of particles increases in the logarithmic potential. The point is that,
due to slow growth of the trap potential, the particles depart away from the trap center by increasing
the energy of particles and their kinetic energy turns out to be small compared with the potential
energy contribution.

Calculating the integral gives the magnitude of free energy

F = −NT ln

[
e

N

(
mT

2π�2

)3/2

4πR3 T

U0 − 3T

]
.

Next, the specific heat of gas reads

C(T ) = −T
∂2F

∂T 2 = N

[
3

2
+
(

U0

U0 − 3T

)2
]

with the corresponding energy E = F + T S of the trapped gas

E = NT

(
3

2
+ U0

U0 − 3T

)
.

As we see, when the temperature tends to the limiting value U0/3, both the specific heat and the

energy of the trapped gas diverge together with the amount of heat necessary for heating the gas in

the logarithmic trap.

2.5 Monatomic Ideal Gas

Above, describing the thermodynamic properties of an ideal gas, we have separated
the total energyof a particle or gasmolecule into the kinetic energydue to translational
center-of-mass motion and the internal energy associated with the internal degrees
of freedom of a particle or molecule. The internal energy, depending on the type
of a particle or molecule, can consist of the rotational, vibrational, and electronic
modes of motion and excitations. In general, it is necessary to perform the numerical
calculations of quantum states and energy levels of a single molecule.

In the simplest approximation for describing the internal modes of motion, their
independence from each other is assumed below. The reason for such an approxima-
tion can be a noticeable difference in the frequencies that characterize these modes of
motion. Usually, for the frequencies of rotational, vibrational, and electronic modes,
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one can approximately assume thatωr � ωv � ωel. Thismakes it possible to approx-
imate the internal energy as a sumof rotational and vibrational energies and to involve
separately the contributions of the electronic and nuclear degrees of freedom of a
molecule. In this case the one-particle partition function z(in) reduces to the prod-
uct of the partition functions for the corresponding modes of motion: z(in) = zrzvzel.
Below we start by treating a monatomic gas.

Turning to the case of amonatomic gas, wewill immediately imply the sufficiently
low temperatures as compared with the ionization energy of the atom and neglect
completely any possibility of its ionization. Denoting the atomic energy levels that
we count from the lowest one as εi and the corresponding degree of degeneracy as
gi , we arrive at the following one-particle partition function related to the electronic
degrees of freedom

zin = z(el)
0 =

∑

i

e−εi /T .

For free energy F , entropy S, and specific heat C , we obtain

F(T, V ) = −NT ln

[
eV

N

(
mT

2π�2

)3/2]
+ N fel(T ),

S(T, V ) = N ln

[
eV

N

(
mT

2π�2

)3/2]
+ 3

2
N − N f ′

el(T ),

C(T ) = 3

2
N − NT f ′′

el(T ),

where
fel(T ) = −T ln zel = −T ln

∑

i

gi e
−εi /T .

This expression simplifies in two limiting cases: T � εi and T 	 εi . For sufficiently
low temperatures T � εi , we have f ′

el(T ) = ln g0 and g0 is the multiplicity of atom
ground state. In the opposite limit T 	 εi we put approximately f ′

el(T ) = ln
∑

i gi .
Let us analyze specific features of this contribution to the specific heat. We con-

sider a simple example when there are two energy levels, say, ground level with
ε0 = 0 and the excited one with energy ε1, the difference � = ε1 − ε0 being the
excitation energy. Then we readily find

fel(T ) = −T ln
(
g0 + g1e

−�/T
)

and the contribution of these levels to the specific heat equals

Cel(T ) = N
�2

T 2

g0g1e−�/T

(
g0 + g1e−�/T

)2 = N
�2

T 2

{ g1
g0
e−�/T , T � �,
g0g1

(g0+g1)2
, T 	 �.
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So, if there are energy level splitting and corresponding fine (hyperfine) atomic
structure, in the usual monotonous temperature behavior of specific heat we should
expect a narrow maximum or peak with the width about � and at the temperatures
about �. Such an anomalous behavior of the specific heat with a drastic maximum
against the background of almost constant temperature behavior due to splitting the
atomic level structure is referred to as the Schottky anomaly.1

2.6 Diatomic Gas: The Vibrational Degree of Freedom

Let us turn to thermodynamic properties of diatomic gases. Of course we suppose
that the dissociation energy of gas molecules is large as compared with the temper-
atures analyzed. In comparison with the monatomic case, the molecule of diatomic
gas has additional degrees of freedom, namely two rotational and one vibrational.
The vibrational–rotational energy of a molecule, in first approximation, can be rep-
resented as an independent sum of the vibrational–rotational energies of the nuclei
in a molecule. We start from analyzing the vibrational contribution.

According to the concepts of quantum mechanics, the system displaying the har-
monic oscillations near the potential energyminimum at frequency� has an equidis-
tant spectrum

εn = �ω

(
n + 1

2

)
, n = 0, 1, 2 , . . .

Calculating the corresponding partition function z(v)
0 is straightforward

z(v)
0 =

∞∑

n=0

e− �ω
T

(
n+ 1

2

)
= e−�ω/2T

1 − e−�ω/T
.

Though the oscillation anharmonicity and relationship with the rotational degrees
of freedom start to interplay for the moderate vibrational quantum numbers n, we
have formally extended the summation to n = ∞. For our justification,we refer to the
rapid convergence of an exponential series and conservation of qualitative specific
features in the behavior of thermodynamic potentials.

As a result, we arrive at the vibrational contribution to the free energy for the gas
of N diatomic molecules

Fv = N
�ω

2
+ NT ln

(
1 − e−�ω/T

)
.

1 This notion is widely used in solid state physics when the specific heat of a solid has a peak at
low temperatures.
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So, we have for the vibrational contribution to the gas energy

Ev = N
�ω

2
+ N

�ω

e�ω/T − 1
≈ N

{
N�ω

(
1
2 + e−�ω/T

)
, T � �ω,

NT
(
1 + 1

12

(
�ω
T

)2)
, T 	 �ω,

and to the specific heat

Cv(T ) = N

(
�ω

T

)2 e�ω/T

(
e�ω/T − 1

)2 ≈ N

{(
�ω
T

)2
e−�ω/T , T � �ω,

1 − 1
12

(
�ω
T

)2
, T 	 �ω.

As one sees, in the high temperature T 	 �ω limit we arrive at the classical values
for energy Ev = NT and specific heat Cv = N . In the low temperature T � �ω
range, the vibrational contribution to the specific heat freezes exponentially due to
presence of energy gap �ω in the excitation spectrum of the vibrational degree of
freedom.

2.7 Diatomic Gas of Heteronuclear Molecules: The
Rotational Degrees of Freedom

Below we proceed to analyzing a possible effect of diatomic molecule rotation rel-
ative to the center of inertia on the thermodynamic properties of an ideal gas of
diatomic molecules. As a first approximation to describe the rotation of a diatomic
molecule, we choose the model of a rigid rotator with the given moment of inertia

J , which corresponds to the Hamiltonian Ĥ = �
2 K̂

2
/2J and �K̂ is the rotational

moment operator of themolecule.2 The rotational energy levels arewritten as follows:

EK ,Kz = �
2

2J
K (K + 1).

Here K = 0, 1, 2, . . . is the angular momentum quantum number, and each energy
is (2K + 1)-fold degenerate in the projection K̂z of angular momentum operator K̂ .
The corresponding one-particle partition function is given by the expression

z(r)0 =
∞∑

K=0

(2K + 1) exp

[
−T0

T
K (K + 1)

]
.

2 The product of the reduced mass for both atoms by the square of the internuclear spacing gives
us an estimate for the inertia moment J .
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Here T0 = �
2/2J is the typical rotational energy of a molecule or its rotational

constant. The rotational fraction of free energy Fr for the gas of N molecules is
determined by formula Fr = −NT ln z(r)0 .

In general, the analytical calculation of partition function z(r)0 is rather complicated
and we consider two limiting cases of low and high temperatures. We find in the low
T � T0 temperature limit

z(r)0 = 1 + 3e−2T0/T + · · ·

To determine the asymptotics at high T 	 T0 temperatures, we employ theEuler–
Maclaurin formula to evaluate a finite sum for slowly varying functions

N∑

n=0

f (n) =
N+1/2∫

−1/2

f (n) dn − Δ f ′

24
+ 7

5760
Δ f ′′′ − 31

967680
Δ f (V ) + · · ·

where Δ f (k) = f (k)(N + 1/2) − f (k)(−1/2) is the difference in the derivatives of
kth order at the boundary points N + 1/2 and −1/2.

The asymptotic high-temperature expansion of partition function z(r)0 reads

z(r)0 = T

T0
+ 1

3
+ 1

15

T0
T

+ 4

315

T 2
0

T 2
+ · · ·

Let us write first terms of the limiting behavior for the rotational contribution to the
specific heat of a gas

Cr(T ) = N

⎧
⎪⎪⎨

⎪⎪⎩

12

(
T0
T

)2

e−2T0/T + · · · , T � T0 ,

1 + 1

45

(
T0
T

)2

+ 16

945

(
T0
T

)3

+ · · · , T 	 T0 .

As a result, from classical magnitude Cr = N in the high-temperature limit the rota-
tional specific heat passes through the maximum at T ∼ 0.8T0 by lowering the tem-
perature. The further decrease of temperature to absolute zero results in the expo-
nential freezing of specific heat.

2.8 Diatomic Gas of Homonuclear Molecules: The
Rotational Degrees of Freedom

If a diatomic molecule is composed of homonuclear atoms, there appear quantum
effects due to permutation of identical particles and necessary corresponding symme-
try for the wave functions of the nuclei. This quantum effect in the rotational specific
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heat is most clearly manifested for the hydrogen molecules where rotational energy
T0 ≈ 85 K is one of largest values due to lighter hydrogen atom mass compared with
other chemical elements. First of all, let us pay attention to the nucleus spin of hydro-
gen atom which is a proton and spin i = 1/2 fermion. Therefore the complete wave
function of two nuclei, including the product of the spin and spatial (orbital) parts
of the wave function, must be antisymmetric with respect to permuting the nuclei.3

When we permute the nuclei, i.e. changing the direction of the radius vector equal to
the difference for the radius vectors of nucleus positions, the spatial or orbital part
of the wave function multiplies by factor (−1)K where K is the angular momentum
quantum number. In its turn, changing the sign for the spin part of the total wave
function depends on the total nuclear spin I . The latter for hydrogen molecule can
be either zero for the antiparallel nuclear spins or one for the parallel nuclear spins.
The number of states with the total nuclear spin I = 0 is only one, and this state is
antisymmetric with respect to permuting the nuclei. The number of states with the
total nuclear spin I = 1 equals three, and all these states are symmetric with respect
to permuting the nuclei. As a result, the total wave function of the nuclei multiplies
by factor (−1)K+I−1. The antisymmetry requirement for the total wave function of
two fermions means that the sum K + I must be even.

Molecular hydrogen with two proton nucleus spins aligned parallel or with total
nuclear spin I = 1 is called orthohydrogen, and that in the antiparallel nuclear spin
state with I = 0 is referred to as parahydrogen. Thus, in orthohydrogen there are
three nuclear states and angular momentum quantum number K takes the odd inte-
ger values alone. Accordingly, parahydrogen has a single nuclear state and angular
momentum quantum number K takes the even integer values alone.

Note that the total nuclear spin of a hydrogen molecule can change as a result
of the collisions between molecules (e.g. due to magnetic dipolar coupling). In this
case one says about ortho–para conversion. With conversion there occurs a change
of rotational number by unity �K = 1 with the simultaneous transitions between
the triplet I = 1 and singlet I = 0 nuclear states in a molecule. The ortho–para
conversion grows by increasing the magnetic field gradient at the nuclei. In the
low density gas, the probability of molecular collisions is small and the ortho–para
conversion process is sufficiently slow.4 The gasmixture inwhich all possible nuclear
states are represented in the equal probabilities is called the statistical mixture. In
the statistical mixture, the number of orthohydrogen molecules is three times larger
than that of parahydrogen molecules.

In pure parahydrogen, the one-particle partition function can bewritten as follows:

z p =
∑

K=0, 2, ...

(2K + 1) exp

[
−T0

T
K (K + 1)

]

3 The nucleus spin of deuterium atom, i.e. spin of deuteron, is equal to i = 1 and the total wave
function for two nuclei of deuterium molecule D2 as bosons should be symmetric to the nucleus
permutation.
4 The conversion rate in the hydrogen gas under normal conditions is about several percents per
week.
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and in pure orthohydrogen as

zo =
∑

K=1, 3, ...

3(2K + 1) exp

[
−T0

T
K (K + 1)

]
.

Hence we find readily in the low temperature T � T0 limit

z p = 1 + 5 e−6T0/T + · · · ,

zo = 9 e−2T0/T + 21 e−12T0/T + · · · .

For calculating the power asymptotics in the high temperature T 	 T0 limit,
we again employ the Euler–Maclaurin formula used in the previous paragraph for
estimating a sum of slowly varying functions. The asymptotic expansions for the
one-particle partition functions z p and zo into a power series have the same structure
in both cases

z p = 1

2

T

T0
+ 1

6
+ 1

30

T0
T

+ 2

315

T 2
0

T 2
+ · · · ,

zo = 3

(
1

2

T

T0
+ 1

6
+ 1

30

T0
T

+ 2

315

T 2
0

T 2
+ · · ·

)
.

Let us write below the corresponding expansions for the rotational contribution to
the specific heat of ideal para- and orthohydrogen gas per molecule in the low- and
high-temperature range

Cp(T ) =

⎧
⎪⎪⎨

⎪⎪⎩

180

(
T0
T

)2

e−6T0/T + · · · , T � T0,

1 + 1

45

(
T0
T

)2

+ 16

945

(
T0
T

)3

+ · · · , T 	 T0;

Co(T ) =

⎧
⎪⎪⎨

⎪⎪⎩

700

3

(
T0
T

)2

e−10T0/T + · · · , T � T0,

1 + 1

45

(
T0
T

)2

+ 16

945

(
T0
T

)3

+ · · · , T 	 T0.

The coincidence of power expansion for the specific heat of para- and orthohy-
drogen means that the specific heat difference will be exponentially small in the high
temperature T 	 T0 range

Cp(T ) − Co(T ) ∼ exp

(
−π2

4

T

T0

)
.
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Fig. 2.1 The temperature behavior of rotational contribution to the specific heat of parahydrogen
(p-H2) and orthohydrogen (o-H2) at low and intermediate temperatures

This high-temperature asymptotics behaves satisfactorily in the T > 10 T0 region.
Both functionsCp(T ) andCo(T ) pass through the maxima by lowering the tempera-
ture and then freeze exponentially out (Fig. 2.1). For orthohydrogen, themaximumof
rotational specific heat is small numerically. The noticeable quantitative difference
in the rotational specific heat of para- and orthohydrogen begins in the moderate
temperature region at T � 5 T0. The magnitudes 6 T0 and 10 T0 in the exponents
represent the energy gap between the first excited and ground levels, respectively.

Under complete thermal equilibrium between para- and ortho-molecules of a
gas, each nuclear state, para or ortho, should once be involved into the partition func-
tion with weight (2K + 1) exp[−T0 K (K + 1)/T ]. Therefore, one-particle partition
function will be a sum of the partition functions of para- and ortho-states

zeq = z p + zo =
∞∑

K=0

(
2 − (−1)K

)
(2K + 1) exp

[
−T0

T
K (K + 1)

]
.

In the gas mixture under thermal equilibrium, the probability to find a molecule in
the state with angular momentum quantum number K equals

wK = 1

zeq

(
2 − (−1)K

)
(2K + 1) exp

[
−T0

T
K (K + 1)

]
.

The probability to find a molecule in the para-state with the even K numbers will
equal a sum of probabilities wK over all even rotational numbers. Accordingly, the
probability to find in the ortho-state is a sum over all odd numbers. Hence, we have
for these probabilities, respectively,

z p/zeq and zo/zeq .

Thus, under complete thermal equilibrium the ratio x(T ) of the number No of ortho-
hydrogen molecules to the number Np of parahydrogen molecules is temperature-
dependent according to
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x(T ) = No

Np
= zo(T )

z p(T )
,

and varies from 0 to 3 as the temperature grows from T = 0 to T = ∞.
The thermodynamic equilibriumat the ortho–para conversion can also be analyzed

from the viewpoint of equilibrium condition for the chemical reaction like o � p.
The chemical equilibrium with respect to mutual conversion reaches under equality
of chemical potentials for para- and ortho-molecules

μp = −T ln(z p/Np) = −T ln(zo/No) = μo .

This means the same relation for x(T ). Using the equalities Np = Nzp/(z p + z p)
and No = Nzo/(zo + zo) where N is the total number of all molecules, one can be
convinced that the free energy of thermodynamically equilibrium gas Feq represents
a sum of free energies of para- and orthohydrogen Fp and Fo, i.e.

Feq = −NT ln
e(z p + zo)

N
= −T ln

(
e(z p + zo)

N

)Np
(
e(z p + zo)

N

)No

=

= −T ln

(
ez p
Np

)Np
(
ezo
No

)No

= −NpT ln
ez p
Np

− NoT ln
ezo
No

= Fp + Fo.

If the hydrogen atom nucleus would be a spinless particle, the partition function
would include the even angular momentum quantum numbers alone.

Problem

1.Estimate the limiting behavior for the difference in the specific heat of para- and orthohydrogen
per molecule at high T 	 T0 temperatures.

Solution. Let us write the one-particle partition functions for parahydrogen

z p =
∑

K=0,2,...

(2K + 1) exp

[
−T0

T
K (K + 1)

]
=

∞∑

n=0

(4n + 1)e−an(2n+1)

and for orthohydrogen

zo = 3
∑

K=1,3,...

(2K + 1) exp

[
−T0

T
K (K + 1)

]
= 3

∞∑

n=0

(4n + 3)e−a(n+1)(2n+1).

Here we have introduced notation a = 2T0/T for brevity. In the difference of the expressions

�z = z p − zo
3

=
∞∑

n=0

[
(4n + 1)e−an − (4n + 3)e−a(3n+1)

]
e−2an2 =

∞∑

n=0

g(n)e−2an2

at a � 1, the terms with numbers n � nm ∼ 1/
√
2a provide us the main contribution while the

factor exp(−2an2) differs little from unity.
To estimate the sum, the Poisson formula is employed
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∞∑

n=0

f (n) =
∞∫

−1/2

f (n)dn + 2Re
∞∑

k=1

∞∫

−1/2

f (n)e2πikndn

for f (n) = g(n) exp(−2an2). Integrating the first integral by parts,we see that this integral vanishes.
So,

�z = 2Re
∞∑

k=1

∞∫

−1/2

f (n)e2πikndn = 2Re
∞∑

k=1

∞∫

−1/2

g(n)e−2an2+2πikndn.

Let us estimate the integral using the saddle-point method. For the exponent

S(n) = −2an2 + 2πikn,

we find the saddle point

S′(n0) = −4an0 + 2πik = 0, n0 = iπk

2a
, S(n0) = −π2k2

4a
, S′′(n0) = −4a.

In the saddle-point method the preexponential factor equals

√
2π

|S′′(n0)| =
√

π

2a
.

Further, in the sum of integrals we keep the first k = 1 harmonic alone. The other k � 2 har-
monics are neglected due to exponentially smaller contribution. Thus, we arrive at the following
approximate estimate:

�z ≈ 2

(
Re g(n0)

)√
π

2a
exp

(
−π2

4a

)
.

The approximate calculation g(n0) with a � 1 yields

g(n0) = −i(4n0 + 1) − i(4n0 + 3)e−a ≈ −8in0 = 4π/a.

As a result, we obtain

�z = z p − zo
3

≈ 4

(
2π

a

)3/2

e− π2
2a = 4

(
πT

T0

)3/2

exp

(
−π2

4

T

T0

)
.

Then we proceed to estimating the difference in the specific heats of para- and orthohydrogen
in the high (T � T0) temperature limit. For the difference in specific heats per molecule, we have

Cp − Co = T
∂2

∂T 2

[
T
(
ln z p − ln zo

)] = T
∂2

∂T 2

[
T
(
ln z p − ln(zo/3)

)] =

= T
∂2

∂T 2

(
T ln

z p
z p − �z

)
≈ T

∂2

∂T 2

(
T

�z

z p

)
= 2T0T

∂2

∂T 2 �z.

Here, for the partition function z p , we can put its limiting T → ∞ value equal to z p = 1/a =
T/2T0. The main contribution in the last formula gives the differentiation of the exponential alone,
resulting in the final answer

Cp(T ) − Co(T ) ∼ 4
√

π

(
π2

4

T

T0

)5/2

exp

(
−π2

4

T

T0

)
, T 	 T0 .
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2.9 Gas of Polyatomic Molecules

Below we make a few remarks about the thermodynamic properties for the gas
consisting of polyatomic molecules. As above, in first approximation it is possible
to represent the total energy of a molecule as a sum of two terms. The first is the
kinetic energy associated with the translational center-of-mass motion of a molecule
and the second is the internal energy associated with the internal degrees of freedom
of a molecule. The internal energy of the molecule is the rotational, vibrational, and
electronic modes of motion and excitations. In general, it is necessary to analyze the
quantum states and calculate the energy levels of a molecule.

The molecule composed of na atoms has 3na degrees of freedom. Among them,
three degrees of freedom correspond to the translational motion of a molecule. The
number nr of rotational degrees of freedom equals three for the nonlinear molecule
and equals two in the case of a linear molecule. The other degrees of freedom are
vibrational and the number of vibrational degrees of freedom v in the na-atomic
molecule reads

v = 3na − 3 − nr .

As a first approximation, the rotation of a molecule can be treated as a rigid body
rotation described by the Hamiltonian

Ĥ = �
2

2

(
K̂ 2

ξ

J1
+ K̂ 2

η

J2
+ K̂ 2

ζ

J3

)
.

Here, the operators K̂ξ,η,ζ are the angular momentum components in the rotating
coordinate frame in which the axes are directed along three principal axes of inertia.
Accordingly, the principal momenta of inertia of a molecule are denoted with J1,
J2, and J3. In the general case of asymmetrical spinning top when J1 �= J2 �= J3 the
calculation of the energy levels, in general, is a complicated problem. In this case,
the degeneracy in the angular momentum directions relative to the spinning top is
completely removed, i.e. for the given angular momentum quantum number K there
are 2K + 1 various non-degenerated levels.

In the case symmetrical spinning top J1 = J2 > J3, the molecule has one sym-
metry axis higher than the second order and the expression for the rotational energy
levels simplifies as

E = �
2K (K + 1)

2J1
+ �

2k2

2

(
1

J3
− 1

J1

)
.

Here we denote k as eigenvalues of operator K̂ζ , which run the values k =
−K , −K + 1, . . . , +K . The level k = 0 is degenerated by (2K + 1) times. The
levels with k �= 0 are degenerated twice as larger, i.e. 2(2K + 1) times.

The most simple case is the ball top when all three principal momenta of inertia
are identical J1 = J2 = J3 = J . In this case the energy of the levels is given by the
simple formula
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E = �
2

2J
K (K + 1).

The corresponding degeneracy of the level5 equals (2K + 1)2.
From the above expressions for the rotational energy levels, one can see that the

analytical calculation of both corresponding one-particle partition function and rota-
tional contribution to the specific heat is a complicated task. From the general con-
sideration, the following conclusions can be drawn about the behavior of rotational
specific heat. For sufficiently low T � �

2/2J temperatures, the rotational specific
heat freezes exponentially out. As it concerns the high T � �

2/2J temperature limit,
the rotational specific heat tends to its classical magnitude.

The crossover to the classical high-temperature limit is most readily traced in the
case of a ball top. Setting the typical energy interval between the rotational levels as
T0 = �

2/2J , we have for the one-particle partition function

z(r)
0 =

∞∑

K=0

(2K + 1)2e− T0
T K (K+1).

Replacing the summation with integrating over K is justified in the T0/T � 1 limit.
Then we find

z(r)
0 ≈

∞∫

−1/2

dK (2K + 1)2e− T0
T K (K+1) = √

π

(
T

T0

)3/2

e
T0
4T .

Hencewe obtain the classical magnitude for the rotational contribution to the specific
heat per molecule

Cr(T 	 T0) = 3

2
.

For T → 0, the rotational contribution to the specific heat freezes out according to
the exponential law

Cr(T ) ≈ 72

(
T0
T

)3

e− 2T0
T .

As for the linear molecules, in which all atoms are located along one straight
line, such molecules similar to diatomic molecules have only two rotational modes
(degrees of freedom) and onemoment of inertia J . At high T 	 �

2/2J temperatures,
the specific heat tends to the constant classical limitCcl = 1 and freezes exponentially
when the temperature lowers down to zero.

Here we shouldmake the following remark. If we employ the classical description
for the rotational modes of a molecule and calculate the corresponding rotational

5 We do not consider the effects associated with the spins of homonuclear atoms in a molecule.
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partition function z(r)
0 , we should keep in mind that a molecule may have several

symmetric axes, when a rotation around these axes at a certain angle translates the
molecule into itself and thus reduces to a permutation of atoms. Since these states
are physically completely equivalent, then the statistical sum z(r)

0,cl must be divided
by the number of different rotations around the axes of symmetry.

The calculation of vibrational contribution to the thermodynamic properties of
ideal gas can be performed in the analogousmanner as for diatomicmolecules.Unlike
diatomic molecules, the polyatomic molecule has several vibrational modes as v =
3na − 3 − nr . In first harmonic approximation, we can assume that the vibrational
modes (or normal oscillations) are independent of each other and are characterized
by frequencies ωα, the index α numerating all v types of vibrational modes. Since
in the harmonic approximation the vibrational modes are completely independent,
the vibrational fraction of free energy reduces to a sum of contributions from each
vibrational mode

Fv = NT
v∑

α=1

ln
(
1 − e−�ωα/T

)
.

Correspondingly, the vibrational fraction of specific heatCv(T )will be a sum of par-
tial contributions delivered with each vibrational mode to the specific heat. It is clear
that the vibrational contribution to specific heat freezes exponentially at the temper-
atures T � �ωmin , ωmin being the minimum frequency of vibrational modes. As the
temperature grows and reaches the next magnitude about �ωα, the specific heat of a
gas per molecule will increase by unity. Finally, at high temperatures exceeding the
maximummagnitude among �ωα, the vibrational fraction of specific heat approaches
its classical magnitude equal to Cv(T ) = Nv. Here it is implicitly assumed that the
molecule does not decay at such temperatures yet.

Problem

1.Estimate the limiting behavior for the rotational specific heat of polyatomicmolecule described
by the model of ball spinning top with the moment of inertia J at high temperatures T 	 T0 =
�
2/2J .
Solution. Let us write the one-particle partition function for the rotational mode

z(r)0 =
∞∑

K=0

(2K + 1)2e− T0
T K (K+1) = 4ea/4

∞∑

n=0

(n + 1/2)2e−a(n+1/2)2

where we denote a = T0/T for brevity. For a � 1, the main contribution results from the terms
with large numbers while n � 1/

√
a.

To estimate, the Poisson formula is employed

∞∑

n=0

f (n) =
∞∫

−1/2

f (n)dn + 2Re
∞∑

k=1

∞∫

−1/2

f (n)e2πikndn

for f (n) = (n + 1/2)2 exp
[−a(n + 1/2)2

]
. Integrating the first integral yields π1/2/(4a3/2). The

integrals under the summation sign are estimated with the aid of the saddle-point method
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�z = 2Re
∞∑

k=1

∞∫

−1/2

f (n)e2πikndn = 2Re
∞∑

k=1

∞∫

−1/2

g(n)e−2an2+2πikndn.

For the exponent
S(n) = −a(n + 1/2)2 + 2πikn,

we determine the stationary point n0

S′(n0) = −2a

(
n0 + 1

2

)
+ 2πik = 0, n0 + 1

2
= iπk

a
,

S(n0) = −π2k2

a
− πik , S′′(n0) = −2a.

In the saddle-point method the preexponential factor equals

√
2π

|S′′(n0)| =
√

π

a
.

Then we arrive at the following estimate of the integral:

−
√

π

a

π2k2

a2
(−1)ke−π2k2/a .

Further, we keep only the first harmonic with k = 1 in the sum. The other harmonics with
k � 2 are neglected due to their exponentially smaller contribution. So, we obtain the following
approximate estimate for the partition function:

z(r)0 ≈
√

π

a3/2
e

a
4

(
1 + 2π2

a
e− π2

a

)

and free energy

Fr = −T ln z(r)0 ≈ −T ln

(√
π
T 3/2
0

T 3/2 e
T0
4T

)
− 2π2T 2

T0
exp

(
−π2 T

T0

)
.

Calculating the entropy, according to S = −T∂2F/∂T 2, and differentiating only the large exponent
in the correction term, we find

Cr(T ) ≈ 3

2
+ 2

(
π2T

T0

)3

exp

(
−π2 T

T0

)
.

Thus, in the temperature range T � T0 the rotational specific heat exceeds slightly the classical

value 3/2. The latter numerically turns out to be a good approximation.

2.10 Thermal Ionization of Monatomic Gas

At sufficiently high temperatures in a neutral gas, the process of ionization becomes
noticeable. In this process an electrically neutral atom or a molecule acquires a
negative or positive charge by gaining or losing electrons. The thermal ionization
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results mainly from the collisions between the high-energy particles of a gas. The
collisional ionization is the most important mechanism of ionization in gases and
rarefied plasma. Below we consider the main specific features of thermal ionization
on a simple example of a monatomic ideal gas, neglecting for simplicity the effects
of multiple ionization and excited states of atoms.

So, let ionization of atoms occur in the closed system under constant volume at
temperature T . We treat the process of singly thermal ionization of an atom A

A � A+ + e−,

assuming the thermodynamic equilibrium in the system. The latter is composed of
three ideal subsystems, namely subsystem of atoms A, subsystem of ions A+, and
subsystem of electrons e−. The complete thermodynamic equilibrium in the system
means the thermodynamic equilibrium between all three subsystems, setting in via
the exchange of particles between these three subsystems.

Under thermodynamic equilibrium, the entropy of total system S due to property
of additivity is a sum of the entropies of the subsystems with the number of atoms
Na , ions Ni , and electrons Ne. Each of the subsystems occupies the same volume V .
Under thermodynamic equilibrium, the entropy of the whole system S = Sa + Si +
Se should reach its maximummagnitude via redistributing the number of particles in
every subsystem. As a result, we should have for the differential of the total entropy
in equilibrium

dS = dSa + dSi + dSe =
(
dEa

T
+ Pa

T
dV − μa

T
dNa

)
+

+
(
dEi

T
+ Pi

T
dV − μi

T
dNi

)
+
(
dEe

T
+ Pe

T
dV − μe

T
dNe

)
= 0.

Here Pa , Pi , Pe are the partial pressure and μa , μi , μe are the chemical potentials,
respectively, for each of the subsystems. Above, we have taken the condition for an
equality of the subsystem temperatures Ta = Ti = Te = T into account. This condi-
tion is necessary for the thermal equilibrium between all the subsystems. Involving
the conservation of total energy d(Ea + Ei + Ee) = 0 and invariance of total volume
dV = 0, we arrive at the following equation for the chemical potentials:

μadNa + μi dNi + μedNe = 0.

Involving the stoichiometry for ionization of an atom, i.e. relationship between the
variations in the number of particles in each subsystem as dNi = −dNa and dNe =
dNi , we canwrite down the final equation determining the thermal equilibrium under
the particle exchange between subsystems

μa(Pa, T ) − μi (Pi , T ) − μe(Pe, T ) = 0.
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The chemical potential of a monatomic gas with the particle energy εp = ε0 +
p2/2m reads

μ(P, T ) = −T ln

[
T

P

(
mT

2π�2

)3/2

g e−ε0/T

]

where g is the multiplicity of degeneracy or statistical weight for the lower level of
a particle. Hence, in equilibrium this entails the equality

εa + T ln

[
Pa

gaT

(
2π�

2

MaT

)3/2]
=

= εi + T ln

[
Pi

gi T

(
2π�

2

MiT

)3/2]
+ T ln

[
Pe

geT

(
2π�

2

mT

)3/2]
.

Here the electron energy is measured from zero εe = 0. The pressures Pa , Pi , and Pe
are the partial ones in the subsystems of atoms, ions, and electrons. The corresponding
masses are denoted as Ma , Mi , and m. Next, we have

T ln

[
T

Pa
Pi Pe

gegi

ga

(
mMi

Ma

T

2π�2

)3/2
]

= εi − εa = Ii

where the ionization potential of atom is defined according to equality Ii = εi − εa .
Let us rewrite this equation using the ideal gas equation of state P = nT for each

of subsystems where n is the number density of the particles in each subsystem. Then
we arrive at the Saha ionization equation6

nine
na

= gige

ga

(
mMi

Ma

T

2π�2

)3/2

e−Ii /T .

The region of applicability of the Saha ionization equation is limited. The equation
is fulfilled only for the weakly ionized plasma when the Coulomb energy of the
interparticle interaction is small as compared with the kinetic energy of particles
which is of the order of the temperature.

We define the degree of ionizationα = Ni/N of the gas as a ratio of the number of
ions to the total number of atoms. Then the number of ions and electrons reads Ni =
Ne = αN and the number of non-ionized atoms equals Na = (1 − α)N . Expressing
the partial pressures of the subsystems in terms of the total pressure P = Pa + Pi +
Pe, we have

⎧
⎨

⎩

Pa ∼ Na ∼ (1 − α)N
Pi ∼ Ni ∼ αN
Pe ∼ Ne ∼ αN

=⇒ P ∼ (1 + α)N =⇒
⎧
⎨

⎩

Pa ∼ 1−α
1+α

P
Pi ∼ α

1+α
P

Pe ∼ α
1+α

P
.

6 Also the Saha–Langmuir equation.
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Taking into account that the atom and ion masses are practically the same Mi ≈ Ma

due to m � Ma and the multiplicity of degeneracy for the electrons of the same
energy equals ge = 2, we obtain the equation

1 − α2

α2P
= ga

2gi

(
2π�

2

m

)3/2
eIi/T

T 5/2
≡ K (T ) .

The quantity K (T ) is the equilibrium constant, and the formula

α(P, T ) = 1/
√
1 + PK (T )

determines completely the dependence of the ionization degree as a function of
temperature and pressure.

In the low-temperature region the degree of ionization is an exponentially small
quantity. Let us estimate the temperature when the degree of ionization equals 50%.
For convenience, we express the degree of ionization via the non-ionized gas density
n = N/V , using the relation for the total pressure P = (1 + α)nT :

α =
√
1 + 4nT K (T ) − 1

2nT K (T )
.

It is convenient to represent quantity nT K (T ) in the following dimensionless form:

nT K (T ) =
(
Te
T

)3/2

eIi/T

where temperature Te is defined according to

Te =
(

ga

gi

)2/3

21/3π
�
2n2/3

m
∼ �

2n2/3

m
.

This temperature has a sense of the degeneracy temperature for the electron gas of
the same density n as that of the non-ionized atom gas. At nT K (T ) = 2 the gas
becomes half-ionized. The corresponding temperature satisfies the equation

(
Te
T

)3/2

eIi/T = 2 or T = Ii
(3/2) ln(22/3T/Te)

.

The most interesting situation appears in the limit of sufficiently rarified gas under
Te � Ii . Solving the equation by the successive approximation method and using
T ≈ Ii as a first approximation, we find in second approximation

T ≈ Ii
(3/2) ln(22/3 Ii/Te)

� Ii if ln(Ii/Te) 	 1 .
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Fig. 2.2 The density of
states in a semiconductor.
The gap of forbidden band is
�

Thus, the noticeable degree of ionization in the rarefied gas occurs starting from
the temperature significantly lower than the ionization potential of an atom. In the
dense gas for which the degeneracy temperature Te is comparable with or exceeds
the ionization potential Ii , the higher temperature comparable with the ionization
potential is necessary to achieve the same degree of ionization.

Problems

1. Semiconductors are characterized by the presence of energy gap � or forbidden band in the
density of electronic states (Fig. 2.2). The available states are separated into two bands, namely
valence band whose states extend from ε = −∞ to the band top Ev = 0 and the conduction band
whose states extend from the band bottom Ec = Ev + � to ε = +∞. At zero temperature, the
states in the valence band are all occupied and in the conduction band the state are all free. As the
temperature increases, there occurs thermal excitation of electrons into the conduction band and
depletion of occupied electronic states in the valence band.

Find the electron concentration ne(T ) in the conduction band as a function of temperature,
assuming T � �. The electron spectrum in the conduction band is described by the effective mass
me and in the valence band by mass mh .

Solution. Let us write the expression for the total number of electrons at an arbitrary temperature

N =
Ev∫

−∞
gv(ε)dε =

Ev∫

−∞
n(ε)gv(ε)dε +

∞∫

Ec

n(ε)gc(ε)dε

where gv(ε) and gc(ε) are the density of states in the valence and conduction bands, n(ε) =[
e(ε−μ)/T ) + 1

]−1 being the Fermi–Dirac distribution. Then we rewrite this equality as follows:

Ev∫

−∞

[
1 − n(ε)

]
gv(ε)dε =

∞∫

Ec

n(ε)gc(ε)dε.

In this representation, this equality means that the number of electrons excited into the conduction
band is equal to the number of free states or to the number of holes originated in the valence band.
Then we denote 1 − n(ε) as nh(ε) where
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nh(ε) = 1 − n(ε) = 1

1 + e(μ−ε)/T
= 1

e(εh−μh )/T + 1
, εh = −ε and μh = −μ.

It is convenient to interpret the last expression as the Fermi–Dirac distribution for holes to which
we can attribute the energy εh( p) = −ε( p) and the chemical potential μh = −μ with the signs
opposite to these quantities related to the valence band. It follows from this expression that the
hole number Nh equals the number Ne of electrons occupying the conduction band. Since the total
charge of all electrons in both valence and conduction bands remains unchanged, we can write
equality eh Nh + eNe = 0 and interpret it as if the charge sign of holes is opposite to the electron
one, i.e. positive eh = −e.

Let us consider thermal excitation of electrons to the conduction band as a thermal ionization of
the completely occupied valence band by producing the negatively charged electrons and positively
charged holes. We have in the thermal equilibrium

μh + μe = 0.

Due to smallness T � �, the concentrations of holes nh and electrons ne are not large and the
Fermi–Dirac distribution can be replaced with the Boltzmann one. Then the chemical potentials are
given for the ideal gases of electrons and holes with the particle masses me and mh , respectively,

μe = Ec + T ln
ne
2

(
2π�

2

meT

)3/2

,

μh = −Ev + T ln
nh
2

(
2π�

2

mhT

)3/2

.

To derive these formulas, we have employed the following dispersion laws for electrons and holes:

εe( p) = Ec + p2/2me (Ec = �),

εh( p) = −Ev + p2/2mh (Ev = 0).

Substituting these chemical potentials into the above-derived equation of thermal equilibrium yields
the analog of the Saha ionization equation

nenh = 4

(√
memh T

2π�2

)3

e−�/T .

Taking the equality nh = ne into account, we find

ne(T ) = nh(T ) = 2

(√
memh T

2π�2

)3/2

e−�/2T .

The following chemical potential μ = μe of a semiconductor corresponds to these concentrations:

μ = �

2
+ 3

4
T ln

mh

me
≈ �

2
.

The condition � 	 T justifies the use of the Boltzmann approximation. Within this accuracy, the
chemical potential of an intrinsic (undoped) semiconductor is in the middle of the forbidden band.

2.Aclassical ideal gas of charged particles and antiparticles in volumeV is in the thermodynamic
equilibrium with the electromagnetic radiation (photon gas). Determine the energy E = E(T ) of
the gas provided that the total charge of the gas is fixed.

Solution. Let us treat the particle–antiparticle production and annihilation as a thermodynamic
equilibrium with respect to the process a + ā � γ by producing one or several photons. Involving
that the chemical potential of photons is zero, we find the following relation between the chemical
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potentials of particles and antiparticles: μ+ + μ− = 0. Then we set μ+ = μ and μ− = −μ. The
condition of conserving the total electric charge means that difference Q = N+ − N− between the
numbers of particles and antiparticles is fixed.

Employing the Boltzmann distribution leads to

N = N+ + N− = V
∫

dτp e
μ−εp
T + V

∫
dτp e

−μ−εp
T = 2V cosh

μ

T

∫
dτp e

− εp
T ,

Q = N+ − N− = V
∫

dτp e
μ−εp
T − V

∫
dτp e

−μ−εp
T = 2V sinh

μ

T

∫
dτp e

− εp
T .

Here εp is the energy of a particle (antiparticle), and dτp = d3 p/(2π�)3 is the phase volume
element. Hence the total number N (T ) of all particles equals

N (T ) = N+ + N− =
√
Q2 + V 2χ2(T ) and χ(T ) = 2

∫
dτp e

− εp
T .

The calculation of the gas energy is performed in a similar manner

E(T ) = V
∫

dτp εpe
μ−εp
T + V

∫
dτp εp e

−μ−εp
T = 2V cosh

μ

T

∫
dτp εpe

− εp
T .

Introducing the average energy according to

〈εp〉 =
∫
dτp εp exp(−εp/T )∫
dτp exp(−εp/T )

,

we represent the result in the obvious form

E(T ) = N (T )〈εp〉.
For the spectrum εp = p2/2m, we have 〈εp〉 = 3T/2 and 〈εp〉 = 3T if εp = cp.

The thermodynamic Gibbs free energy will be equal to

�(T ) = μ+N+ + μ−N− = μ(N+ − N−) = μ(T )Q.

3. An ideal electron–positron plasma is in the thermodynamic equilibrium with the electromag-
netic radiation (photon gas). Determine the chemical potential, and electron and positron densities
as a function of temperature provided that the total electric charge of the plasma is fixed.

Solution. Let us treat the production and annihilation of electron–positron pairs as a thermody-
namic equilibrium with respect to the process

e+ + e− � γ

by producing one or several photons. Taking into account that the chemical potential of photons is
zero, we have the following relation between the chemical potentials of electrons and positrons:

μ+ + μ− = 0.

Then we set μ+ = μ and μ− = −μ. The condition of conserving the total electric charge means
that the difference between the electron and positron densities is fixed as well

�n = n+ − n− = 2
∫

d3 p

(2π�)3

(
1

e(εp−μ)/T + 1
− 1

e(εp+μ)/T + 1

)
=

= 2
∫

d3 p

(2π�)3

sinh μ/T

cosh εp/T + cosh μ/T
= const.
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Here εp = c
√
p2 + m2c2 is the relativisticmagnitude of energy and the equation determines implic-

itly the function μ = μ(T ). It is obvious that μ is an odd function �n and μ = 0 at �n = 0. We set
�n > 0 below so that μ > 0.

For T = 0, nonzero contribution arises from the electronic term alone and is limited by the
Fermi energy in energy εp � μ(T = 0) = εF and by the Fermi momentum in momentum p � pF .
Then,

pF = �(3π2�n)1/3 and εF = c
√
p2F + m2c2 .

In the low-temperature limit T → 0, the chemical potential behavior can be estimated with the aid
of the expression for the density of states

ν(ε) = ε

π2�3c3

√
ε2 − m2c4 ,

according to

μ(T ) ≈ εF − π2T 2

6

ν ′(εF )

ν(εF )
= εF

[
1 − π2

6

ε2F + p2Fc
2

ε2F

(
T

pFc

)2]
, (T � cpF ).

The situation changes significantly in the high-temperature limit T → ∞. Due to increasing the
positron number as the temperature grows, the chemical potential continues to decrease and vanish,
remaining always positive. In fact, assuming μ � T and T 	 mc2, we find

�n ≈ 2
∫

d3 p

(2π�)3

μ/T

cosh εp/T + 1
≈ μT 2

π2�3c3

∞∫

0

x2 dx

cosh x + 1
= μT 2

3�3c3
.

We have set x = pc/T and neglected the term (mc2/T )2 � 1 in the spectrum. Finally, we have
for the high-temperature behavior μ(T ) under the fixed value �n

μ(T ) ≈ 3�3c3�n

T 2 = (pFc)3

π2T 2 ∼ T−2.

In the low-temperature limit the positron density can be estimated as

n+(T ) ≈ 2
∫

d3 p

(2π�)3
e−(εp+μ)/T ≈

≈ e−εF /T

∞∫

0

p2 dp

π2�3
e−(mc2+p2/2m)/T = 2

(
mT

2π�2

)3/2

e−(εF+mc2)/T ,

and it is exponentially small due to presence of the gap in the energy spectrum of particles. In limit
T 	 mc2, the electron and positron densities become approximately equal and can be estimated
with the integral at zero value of chemical potential with the ultrarelativistic energy spectrum
εp = pc of particles

n+ ∼ n− ≈ 2
∫

d3 p

(2π�)3

1

epc/T + 1
= T 3

π2�3c3

∞∫

0

x2 dx

ex + 1
= 3ζ(3)

2π2

(
T

�c

)3

.

In the high temperature, the electron and positron densities in the plasma amount to three-quarters

of the photon gas density, i.e. n− = n+ = (3/4)nγ .
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2.11 Chemical Equilibrium in the Ideal Gas Mixture

Let us apply the general statements of statistical physics and thermodynamics to
describing the chemical equilibrium when the reactants and chemical reaction prod-
ucts are in the thermodynamic equilibrium. We consider below the chemical system
as several subsystems numerated by index i , and each subsystem amounts to Ni

particles (atoms or molecules) of i th component of the system. Each subsystem or
component occupies the same overall volume V and has the identical temperature
T as one of necessary conditions for the thermodynamic equilibrium between the
subsystems. The physical process that makes it possible to establish the thermody-
namic equilibrium between the subsystems consists in a possibility of transferring
the particles from one subsystem to another.

According to additivity principle of entropy for the independent subsystems in the
thermodynamic equilibrium, the entropy of the whole system S =∑i Si is a sum of
entropies of each subsystems. The thermodynamic equilibrium of the closed system
corresponds to the maximummagnitude of its entropy. Accordingly, we should have
for the differential of the total entropy

dS =
∑

i

dSi =
∑
i
dEi

T
+
∑
i
Pi

T
dV −

∑
i

μi dNi

T
= 0

where Pi is the partial pressure and μi is the chemical potential in i th subsys-
tem. Taking into account that the entire system is closed, energy is conserved, i.e.
d(
∑

i Ei ) = 0, and the total volume remains unchanged, i.e. dV = 0, we arrive at
the following relationship between the chemical potentials and the variations in the
particle numbers of the subsystems:

∑

i

μi dNi = 0.

The chemical reaction or exchange with the reacting substances is represented as the
following equation if all the terms are transferred to one side:

∑

i

νi Ai � 0.

Here the Ai is the symbol for denoting the reacting substances. The stoichiometric
coefficients νi are the positive integers for the products of reaction and negative
integers for the initial reactants of chemical conversion. The changes in the particle
numbers Ni of components are related with the reaction equation. If, say, particle
number N1 changes by factor ν1, each of the other numbers Ni will change by factor
νi . Correspondingly,
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dN1

ν1
= dN2

ν2
= · · · dNi

νi
= · · · = dn.

Substituting this relation into the equation for the chemical potentials and canceling
by dn, we derive the condition of thermodynamic equilibrium between the compo-
nents of the system ∑

i

νiμi (Pi , T ) = 0

where Pi is the partial pressure of i th components.
Let us apply the above-derived condition for chemical equilibrium to reactions in

the ideal gas media. The general dependence for the chemical potential of ideal gas
upon the pressure and temperature is given by the relation7

μi (Pi , T ) = T ln Pi + χi (T ).

Then we have ∑

i

νiμi = T
∑

i

νi ln Pi +
∑

i

χi (T ) = 0.

Hence, ∏

i

Pνi
i = e

−∑
i

νiχi/T = Kp(T ).

This relation is called the law of mass action. The right-hand side of equation,
temperature-dependent alone, is referred to as the equilibrium constant.

This equation can be represented in the other way if we use the equation of ideal
gas state Pi = ni T for each i th component, ni being the particle density. Introducing
the total pressure P =∑i Pi and total particle density n =∑i ni , we can represent
the law of mass action in the following equivalent form:

∏

i

(
ni
n

)νi

= e
−∑

i
νiχi/T

P
∑
i

νi
= Kp(T )P

−∑
i

νi = Kc(P, T ).

Determining the specific type of temperature behavior for the equilibrium constant
Kp(T ) requires more knowledge about the properties of gases undergoing in the
reaction.

Problem

1. Find the degree of dissociation for the ideal gas of diatomic molecules AB placed into the
symmetrical harmonic trap of frequency ωab. The molecule consists of various atoms A and B.
Consider the case of moderately low temperatures when the thermal excitation of the rotational and
vibrational modes in the molecule can be neglected.

7 The quantity ϕ(T ) = eχ(T )/T is often referred to as the fugacity.
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Solution. The reaction looks like AB � A + B. The thermodynamic equilibrium condition in
the system consisting of three ideal gas subsystems implies the following equality for the chemical
potentials:

μab(Nab, T ) = μa(Na, T ) + μb(Nb, T )

where Nab, Na , and Nb are the numbers of molecules and corresponding atoms. Substituting the
values of chemical potentials yields

εab − 3T ln
T

�ωabN
1/3
ab

= εa − 3T ln
T

�ωa N
1/3
a

+ εb − 3T ln
T

�ωbN
1/3
b

.

Here εab, εa , and εb are the energies of molecule and atoms, respectively. The frequencies ωab,
ωa , and ωb for the molecule and atoms under the trapping potential U (r) = kr2/2 are related
as mabω

2
ab = maω

2
a = mbω

2
b = k via the corresponding masses of particles. This results in the

equation

NaNb

Nab
=
(

Tωab

�ωaωb

)3

e−�/T = N0

(
T

�ωabN
1/3
0

√
mamb

mab

)3

e−�/T = N0K (T, N0),

where � = εa + εb − εab is the dissociation energy for the molecule and N0 is the initial number
of molecules.

Let us introduce degree of dissociation as a ratio α = (N0 − Nab)/N0 of the number of disso-
ciated molecules to the initial total number of molecules. Accordingly, Na = Nb = αN0. Then,

α2

1 − α
= K (T, N0) or α = 2K

K + √
K 2 + 4K

.

At low T � � temperatures it is expected α(T ) ∼ e−�/2T .



Chapter 3
Quantum Ideal Gases

3.1 The Gibbs Distribution for the Systems with a Variable
Number of Particles. The Grand Thermodynamic
Potential

When treating the quantum thermodynamic systems with the macroscopically large
number of interacting particles N → ∞, in order to simplify the calculations, it is
more convenient to assume that the number of particles in the system under study
is not fixed and can vary. Thus, we should consider the thermodynamic potentials
depending on the variable conjugated to the number of particles N , namely chem-
ical potential μ. In other words, we introduce the Grand thermodynamic potential
�(T, μ) instead of the Helmholtz free energy F(T, N ) according to

�(T, μ) = F − μN .

Here the chemical potentialμ plays a role of an independent thermodynamic variable
instead of the number of particles N . Accordingly, the number of particles N =
N (μ) in the system becomes a function of chemical potential and is determined
with the formula relating the number of particles with the chemical potential in a
thermodynamically equilibrium system

N = −
(

∂�

∂μ

)
T

.

On the analogy with the definition of partial function Z which allows us to calcu-
late the free energy F , we can introduce the definition of the grand partition function
in order to find the grand thermodynamic potential � and then to determine the
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number of particles in the system. In accordance with the content presented in the
first chapter, for this purpose it is sufficient to consider the following Hamiltonian:

Ĥ = Ĥ − μN̂

where N̂ is the particle number operator. The grand partition functionZ correspond-
ing to Hamiltonian Ĥ is written as

Z = tr e−Ĥ/T .

Here we should take into account that the state of the system under variable number
of particles is already characterized by an additional parameter Nk or number of
particles in state |k〉 over and above the set of quantum states |k〉with the appropriate
energies εk . Thus, the state of the system is classified with the enlarged state vector
|N 〉= |k, Nk〉. The equivalent expression for the grand partition function reads

Z =
∑
k,Nk

〈k, Nk | exp
(

− Ĥ − μN̂

T

)
|k, Nk〉 =

∑
k,Nk

exp

(
−εk,Nk − μNk

T

)
.

The probability to find the system in the state with vector |N 〉 =|k, Nk〉 is given by
the grand canonical distribution

w̃k,Nk = exp

(
� + μNk − εk,N

T

)
.

The normalization condition
∑

N w̃N = 1 agrees with the definition of grand ther-
modynamic potential �(μ)

�(μ) = −T ln
∑
k,Nk

e(μNk−εk,Nk )/T .

It is easy to check the correspondence between the thermodynamic and statistical
definitions of the average number of particles in the system. In fact,

N = −
(

∂�

∂μ

)
T

= T

∑
N

Nke(μNk−εk,Nk )/T

∑
N

e(μNk−εk,Nk )/T
=
∑
k,Nk

Nkw̃k,Nk .

The thermodynamic properties of the system and its physical behavior are greatly
affected by such a factor as the maximum number of particles M , which can simul-
taneously occupy the same quantum state and have the same quantum numbers.
The possible sets of population numbers with vector |k〉 and energy εk , in general,
run through the integers Nk = 0, 1, 2, . . ., M . For the Fermi particles or fermions in
accordance with the Pauli principle, this is Nk = 0, 1 (M = 1) alone or nomore than
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one particle can be in the same quantum state. On the contrary, for the Bose particles
or bosons an arbitrary number of particles with the identical quantum numbers can
occupy the same quantum state. In the limiting case all the particles, at least, can
populate the same quantum state. In formal words: Nk = 0, 1, 2, . . . ∞ (M = ∞).1

When we analyze the systems with the variable number of particles, the quantity
n(εk), i.e. average number of particles in the quantum state |k〉 with energy εk , plays
a key role in the description of their physical properties. In the case of fermions, the
average number of particles in state |k〉 is referred to as the Fermi–Dirac distribution
and is found from the following sum over the occupation numbers:

nF (εk) =
1∑

Nk=0

Nkw̃k Nk = 0 · 1 + 1 · e(μ−εk )/T

1 + e(μ−εk )/T
= 1

e(εk−μ)/T + 1
.

The total number of particles N in the system can be found by summarizing over all
possible states |k〉 of the system

N =
∑

k

nF (εk) =
∑

k

1

e(εk−μ)/T + 1
.

This equality determines the relation between chemical potential μ and the number
of particles N in the Fermi system.

The grand potential �F is determined from the relation

e−�F /T =
∑
k, Nk

e(μNk−εk Nk )/T =
1∑

Nk=0

∑
k

(
e(μ−εk )/T

)Nk =

=
∏

k

1∑
Nk=0

(
e(μ−εk )/T

)Nk =
∏

k

(
1 + e(μ−εk )/T

)

and equals the following sum over the states |k〉 of the system:

�F = −T
∑

k

ln
(
1 + e(μ−εk )/T

)
.

For the system of the Bose particles, the speculations are completely analogous.
For the Bose system, the average number of particles in quantum state |k〉with energy
εk is referred to as the Bose–Einstein distribution and can be determined from the
following sum over the occupation numbers:

1 The intermediate case 1 < M < ∞ is called parastatistics and is not examined in the book.
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nB(εk) =
∞∑

Nk=0

Nkw̃k Nk = 0 · 1 + 1 · e(μ−εk )/T + 2 · e2(μ−εk )/T + · · ·
1 + e(μ−εk )/T + e2(μ−εk )/T + · · · =

= 1

e(εk−μ)/T − 1
.

The total number of particles N in the system is given by summarizing over all
possible states |k〉 and equals

N =
∑

k

nB(εk) =
∑

k

1

e(εk−μ)/T − 1
.

This equality determines the relation between chemical potential μ and particle
number N in the Bose system. For convergency and positive definiteness of the
Bose–Einstein distribution in the thermodynamically equilibrium Bose system, the
chemical potential cannot exceed the minimally possible magnitude of energy for
the states in the system, i.e. μ � εmin.

The grand thermodynamic potential �B is given by the relation

e−�B/T =
∑
k, Nk

e(μNk−εk Nk )/T =
∞∑

Nk=0

∑
k

(
e(μ−εk )/T

)Nk =

=
∏

k

∞∑
Nk=0

(
e(μ−εk )/T

)Nk =
∏

k

(
1 − e(μ−εk )/T

)−1
.

Hence the grand potential � in the Bose system equals the following sum over all
the states |k〉:

�B = T
∑

k

ln
(
1 − e(μ−εk )/T

)
.

The relation N = −∂�B/∂μ is obvious and remains valid as well.
In conclusion, we will show how the general scheme of speculations outlined

above can be applied to the case of classical Boltzmann statistics. In the latter case,
the unlimited number of particles can occupy the same state (M = ∞). However,
before calculating the partition function

e−�cl/T = Z =
∑
k,Nk

e−(Nkεk−μNk )/T

Nk ! =
∞∑

Nk=0

∑
k

(
e(μ−εk )/T

)Nk

Nk ! =

=
∏

k

∞∑
Nk=0

(
eμ−εk )/T

)Nk

Nk ! =
∏

k

exp
(
e(μ−εk )/T

)
,
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it is important to determine correctly the number of different physical states in the
system of classical particles. Thus we have divided the above sum by the Gibbs factor
Nk !, taking into account the number of the possible particle permutations which keep
the state of the system unchanged. As a result, we arrive at the grand thermodynamic
potential

�cl = −T
∑

k

e(μ−εk )/T .

The total number of particles in the system equals

N =
∑

k

e(μ−εk )/T .

Obviously, this corresponds completely to the Boltzmann distribution

ncl(εk) = exp(μ − εk)/T .

Let us note here, in the limit exp(εk − μ/T ) � 1 both Fermi–Dirac and Bose–
Einstein distributions go over to the classical Boltzmann distribution. At the same
time the occupation numbers of states n(εk) � 1 are small for all three statistics.

Problems

1. Find the mean square of the number of fermions 〈n2(εk)〉 in the quantum state |k〉with energy
εk .

Solution. Using the definition for the mean value, we find

〈n2(εk)〉 =
1∑

Nk=0

N 2
k w̃k Nk = 02 · 1 + 12 · e(μ−εk )/T

1 + e(μ−εk )/T
= 1

e(εk−μ)/T + 1
= nF (εk).

The mean square fluctuation of the number of fermions 〈(n(εk) − nF (εk)
)2〉 in the quantum state

|k〉 is equal to
〈(�nk)

2〉 = 〈n2
k〉 − 〈nk〉2 = nF (εk)

(
1 − nF (εk)

)
.

2. Find the mean square of the number of bosons 〈n2(εk)〉 in the quantum state |k〉 with energy
εk .

Solution. We find using the analogy with the previous problem

〈n2(εk)〉 =
∞∑

Nk=0

N 2
k w̃k Nk = 02 · 1 + 12 · e(μ−εk )/T + 22 · e2(μ−εk )/T + · · ·

1 + e(μ−εk )/T + e2(μ−εk )/T + · · · =

= e(εk−μ)/T + 1(
e(εk−μ)/T − 1

)2 = 2n2
B(εk) + nB(εk).

Calculating the sum in the numerator, we employ the formula

∞∑
n=0

n2qn = q(1 + q)

(1 − q)3
(q < 1).
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The mean square fluctuation of the number of bosons 〈(n(εk) − nF (εk)
)2〉 in the quantum state

|k〉 is equal to
〈(�nk)

2〉 = 〈n2
k〉 − 〈nk〉2 = nB(εk)

(
1 + nB(εk)

)
.

For the Boltzmann distribution, we have from the condition nF (εk) � 1 or nB(εk) � 1

〈(�nk)
2〉 = 〈nk〉.

3.2 Ideal Fermi Gas

Let us proceed to analyzing the physical properties of ideal Fermi systems.Weassume
below that the system consists of non-interacting fermionswith spin σ = 1/2. So, the
Fermi–Dirac distribution, representing themean number of fermions nk,σ in quantum
state |k, σ 〉 with energy εk,σ , is given by the formula

n(εk,σ ) =
∑
k,σ

1

e(εk,σ −μ)/T + 1

and μ is the chemical potential of fermions. Summing over all possible states yields
the total number of fermions N and grand potential �(T, μ) in the system

N (μ) =
∑
k,σ

n(εk,σ ) =
∑
k,σ

1

e(εk,σ −μ)/T + 1
,

�(T, μ) = −T
∑
k,σ

ln
(
1 + e(μ−εk,σ )/T

)
.

These equations are the main ones describing the properties of an ideal Fermi gas.
Let us focus first on the low-temperature properties of a Fermi gas. The high-

temperature properties can be described by theBoltzmann distribution and, therefore,
are similar to those of a classical gas.Belowwemean theFermi gas of neutral particles
or non-interacting spin-1/2 electrons with energy spectrum εp = p2/2m.

At zero temperature the Fermi–Dirac distribution takes the step-like behavior
n(εp,σ ) = ϑ(μ − εp,σ ). From the physical point of view, thismeans that the fermions
occupyprogressively all the energy states to the chemical potentialmagnitude in order
to realize the state with the least possible total energy, i.e. ground state of the Fermi
system. The boundary energy or chemical potential μ at T = 0 is called the Fermi
energy εF = μ(T = 0). The corresponding boundary momentum pF = √

2mεF is
referred to as the Fermi momentum.

In the momentum space the particles occupy all the states inside the sphere of
radius p = pF , called the Fermi sphere or Fermi surface. The Fermi momentum
depends on the gas density n = N/V alone

pF = �(3π2n)1/3
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and is calculated from the equality

N =
∑

σ

∫
V d3 p

(2π�)3
ϑ(μ − εp) = 2

V

(2π�)3

4π

3
p3

F .

Here we have involved that the fermions with the opposite spin directions are two
different states, though they have the same energies εp = p2/2m. The Fermi energy
equals

εF = p2
F

2m
= (3π2)2/3

�
2n2/3

2m
.

The total energy of the gas reads

E(T = 0) = 2
∫

V d3 p

(2π�)3
εpn(εp) = 3

5
εF N .

Hence we obtain the corresponding pressure or equation of states at T = 0

P(T = 0) = (3π2)2/3

5

�
2

m

(
N

V

)5/3

= 2

3

E

V
∼ V −5/3

and then we find the sound velocity c in an ideal Fermi gas at zero temperature

c = √∂ P/∂ρ = vF/
√
3.

Here the mass density is ρ = m N/V . The Fermi velocity vF = pF/m is defined as
the velocity of particles at the Fermi surface.

The Fermi gas at temperatures T � εF is referred to as degenerate and as non-
degenerate at T � εF . The temperature defined by relation T ∼ εF is often called
the degeneracy temperature.

Problems

1. Let electron energy spectrum ε( p) be given by the model of effective mass tensor where the
constant-energy surface represents the ellipsoid with the following dispersion in the principal axes:

ε( p) = p2x
2mx

+ p2y
2my

+ p2z
2mz

,

mx , my , and mz being the effective electron masses along the principal axes of the ellipsoid.
Find the Fermi energy and one-particle density of states if the electron density equals n.
Solution. The number of states with energy ε in the volume V is determined with the integral


(ε) = 2V
∫

ε( p)�ε

d3 p

(2π�)3
= V

√
mx mymz (2ε)3/2

3π2�3
.

At zero temperature all the states with the energy smaller than the Fermi energy are occupied with
the electrons. In other words, the number of electrons N = nV equals the number of states 
(εF ).
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Hence we have

εF = 1

2

(3π2
�
3n)2/3

(mx mymz)1/3
.

The density of states g(ε) is given by the routine differentiation

g(ε) = d
(ε)

dε
= V

√
mx mymz

(
2ε
)1/2

π2�3
.

2. The electrical field of strength E is applied in the normal direction to the surface of low doped
n-type semiconductor. Find the electron density profile near the semiconductor surface, using the
semiclassical Thomas–Fermi approximation. The permittivity equals κ and electron mass is m. The
electron concentration n is very small, Fermi level εF lies near the conduction band bottom, and
na3

B � 1 where aB = κ�
2/me2 is the effective Bohr radius. The temperature of semiconductor is

T � εF , and the gas of electrons is implied to be completely degenerate.
Solution. The electric field strength E can be related with the electron surface density N as

follows:

E = 4πeN

κ
.

To find the electron density profile, we use the condition of the electrochemical potential constancy
over the conductor volume

eϕ(x) + μ(x) = εF ≈ 0.

Here ϕ(x) is the electrostatic potential at distance x from the surface. The local chemical potential
is related to the electron density n(x) as usual

μ(x) = �
2
[
3π2n(x)

]2/3
2m

.

The electrostatic potential and charge density satisfy the Poisson equation

κϕ′′(x) = −4πen(x).

Employing μ(x) = −eϕ(x) and last two equations, we arrive at

aB

(
−2me

�2
ϕ′′
)

= 8

3π

(
−2me

�2
ϕ

)3/2

.

Solving this equation under condition ϕ(x → ∞) = 0 discloses a power-like behavior

ϕ(x) = −225π2

8

e

κ

a3
B

(x + d)4
.

The integration constant d means the width of the surface charged layer. The electron density
behavior is subjected to the power-like behavior as well

n(x) = 1125π

8

a3
B

(x + d)6
.

The layer width d can be related to the surface electron density N as

N =
∞∫
0

n(x)dx = 1125π

8

∞∫
0

a3
Bdx

(x + d)6
= 225π

8

a3
B

d5
.
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Hence we find

d = aB

(
225π

8

1

Na2
B

)1/5

= aB

(
225π2

2

e

κa2
B

1

E

)1/5

.

Let us discuss condition of small electron concentration n0 corresponding to the Fermi
energy εF = �

2(3π2n0)
2/3/2m. The approximation chosen supposes inequality εF � |eϕ(x ∼

d)|. Accordingly,
n0a3

B �
(

aB

d

)6

or E � Ec ∼ e

κa2
B

(
n0a3

B

)5/6
.

Thus, the strength E of the necessary electric field proves to be small as compared with the typical
electric field strength e/κa2

B due to inequality n0a3
B � 1.

3. An ideal gas of the Fermi particles with the fixed spin projection and energy spectrum
εp = p2/2m is in the one-dimensional potential box of length L . If the particles do not penetrate
through the box walls, the energy spectrum becomes discrete

εn = �
2π2

2mL2 n2, n = 1, 2, 3, . . .

At zero temperature the particles occupy progressively the energy levels to the Fermi energy. The
total energy for the gas of N particles equals

E(N ) =
N∑

n=1

εn = �
2π2

2mL2

N (N + 1)(2N + 1)

6
.

The box is split with the membrane into two sections of sizes L1 and L2 (L = L1 + L2).
In the sections there are N1 and N2 particles (N = N1 + N2), respectively. The small holes in the
membrane do not disturb the energy levels in the separate sections of the box but permit the particles
to penetrate from the left-hand side of the box to the right-hand one and vice versa.

Find the mesoscopic oscillations of the force that acts on the membrane as a function of its
position. The mesoscopic oscillations are due to finiteness of the particle numbers.

Solution. The total energy of the system is a sum of the energies of the left- and right-hand box
sections E = E1 + E2, i.e.

E(N1, N2) = �
2π2

12m

(
N1(N1 + 1)(2N1 + 1)

L2
1

+ N2(N2 + 1)(2N2 + 1)

L2
2

)
.

Since the left- and right-hand sections of the box can exchange the particles, the ground state of
the system can be found by minimizing its total energy in N1 under the fixed total number of
particles N = N1 + N2. In the macroscopic limit when N1, 2 and L1, 2 → ∞, we have an equality
of chemical potentials

μ1 = ∂ E1/∂ N1 = ∂ E2/∂ N2 = μ2 ,

resulting in the equalities of the particle densities and pressures in both sections

n = N1

L1
= N2

L2
, P1 = P2 = �

2π2

3m
n3 and n = N1 + N2

L1 + L2
= N

L
.

Thus the net force acting on the membrane vanishes at any position of the membrane.
The finiteness of particle numbers in the system leads to the mesoscopic effects. Let us consider

the membrane position characterized by the lengths L1 and L2 and compare the energy minima
corresponding to the neighboring set of particle numbers (N1, N2) and (N1 + 1, N2 − 1). The
transition from one set to another becomes energetically favorable provided that



60 3 Quantum Ideal Gases

E(N1 + 1, N2 − 1) − E(N1, N2) = �
2π2

2m

(
(N1 + 1)2

L2
1

− N 2
2

L2
2

)
= 0.

This yields the following values for the membrane positions:

N1 + 1

L1
= N2

L2
or

L1

L
= N1 + 1

N + 1
and

L2

L
= N2

N + 1
.

The force acting on the membrane in the state (N1, N2) is given by the difference of derivatives

F(N1, L1; N2, L2) = − ∂ E1(N1, L1)

∂L1
+ ∂ E2(N2, L2)

∂L2
=

= �
2π2

6m

(
N1(N1 + 1)(2N1 + 1)

L3
1

− N2(N2 + 1)(2N2 + 1)

L3
2

)
.

When the numbers of the particles vary by unity on the left-hand and right-hand sides of the
membrane, i.e. at L1/L = (N1 + 1)/(N + 1) and L2/L = N2/(N + 1), the magnitude of the force
depends on the particle numbers in the left-hand and right-hand sides of the membrane

F(N1, N2) = − �
2

6m

(
N + 1

L

)3( 3N1 + 2

(N1 + 1)2
+ 3N2 + 1

N 2
2

)
< 0,

F(N1 + 1, N2 − 1) = �
2π2

6m

(
N + 1

L

)3( 3N1 + 4

(N1 + 1)2
+ 3N2 − 1

N 2
2

)
> 0.

Every time when a particle transmits from one side of the membrane to another, a jump in the force,
acting on the membrane, occurs from the negative value to the positive one. The magnitude of the
jump depends on N1 and N2 and equals

F(N1 + 1, N2 − 1) − F(N1, N2) = �
2π2

m

(
N + 1

L

)3( 1

N1 + 1
+ 1

N2

)
.

This results in the force oscillations around zero macroscopic value as a function of the membrane
position. The oscillation period is L/(N + 1) and the relative amplitude of oscillations is about

�F

�2π2n3/m
∼ 1

min(N1, N2)
.

The example of oscillations is shown in Fig. 3.1.
4. The size quantization of electron spectrum in a metal film influences the physical properties

of the film.
Find the surface energy of the film and its surface tension, using themodel of free non-interacting

electrons. Assume that the film thickness L is much larger as compared with the mean spacing
between electrons. The temperature of the film is zero and electron concentration is n.

Solution. In order to calculate the surface energy of an electron gas limited with size L in
one of the directions, we should compare the energy of the system for the uniform electron density
distribution over the film thickness with that when the density distribution becomes inhomogeneous
near the film walls. It is more convenient to perform such a comparison for the energy as a function
of chemical potential μ but as a function of the total electron number N . In other words, we will
compare two grand thermodynamic potentials �(μ) determined as

�(μ) = E(N ) − μN .

Let us write energy for electron of mass m, which quantizes in the normal direction to the film
walls and is continuous in the two longitudinal directions
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Fig. 3.1 The example of
mesoscopic force
oscillations depending on the
membrane position L1

εk(px , py) = p2x + p2y
2m

+ εk , εk = π2
�
2k2

2mL2 k = 1, 2, 3 . . .

The total electron number N in the film of the wall area S is given by the following integral with
the step-like Heaviside function ϑ :

N = S
∑

k

∫
2dpx dpy

(2π�)2
ϑ
(
μ − εk(px , py)

) = S
m

π�2

∑
k

∞∫
0

ϑ(μ − κ − εk)dκ =

= S
m

π�2

K∑
k=1

(
μ − π2

�
2k2

2mL2

)
= S

m

π�2

(
μK − π2

�
2

2mL2

K (K + 1)(2K + 1)

6

)
.

Here μ is the chemical potential and K is the number of the upper occupied energy level for the
transverse motion. Accordingly, we obtain the relation

μ = π2
�
2K 2

2mL2 .

Calculating the energy of a gas is performed in a similar way

E = S
∑

k

∫
2dpx dpy

(2π�)2
εk(px , py)ϑ

(
μ − εk(px , py)

) =

= S
m

π�2

∞∫
0

(κ + εk)ϑ(μ − κ − εk)dκ = S
m

2π�2

K∑
k=1

[
μ2 −

(
π2

�
2

2mL2

)2

k4
]

=

= S
m

2π�2

[
μ2K −

(
π2

�
2

2mL2

)2 K (K + 1)(2K + 1)(3K 2 + 3K − 1)

30

]
.

The grand potential �(μ) reads

�(μ) = E − μN = − 4

15
S

m

π�2

(
π2

�
2

2mL2

)2

K 5
(
1 − 15

16

1

K
− 1

16

1

K 4

)
.

In the expansion of grand potential �(μ) in powers K −1 � 1 the term proportional to the film
thickness L yields themagnitude of potential�V for the homogeneous electron density distribution,
and its magnitude is proportional to the film volume V = SL . The next expansion term proportional
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to the film area S will determine the surface contribution�S to the total energy of the film. For L �
�/pF where pF is the Fermi momentum, it is sufficient to restrict ourselves with the approximation

�(μ) = − 4

15
S

m

π�2

(
π2

�
2

2mL2

)2

K 5
(
1 − 15

16

1

K

)
+ · · · , μ = π2

�
2

2mL2 K 2.

Hence we readily arrive at

�(μ) = −2

5
SLnμ + 3

8
Snμ

π�

pF
= �V + �S where n = p3F

3π2�3
and

p2F
2m

= μ.

The first term in the sum corresponds to the bulk contribution and the second one does to the surface
contribution. Since the film has two sides, we determine the surface tension coefficient σ from the
relation �S = 2σ S. As a result,

σ = 3π

16
nμ

�

pF
= (9π)1/3

16
μn2/3 = 1

32π

1

m

(
�

pF

)4

.

The magnitude of surface tension proves to be about μ/a2, a ∼ n−1/3 being the mean distance

between electrons.

3.3 Specific Heat and the Pauli Paramagnetism of a
Degenerate Fermi Gas

The thermodynamic potentials of a Fermi gas can readily be found using the one-
particle density of states g(ε). So, the total energy of a gas with N fermions in volume
V can be calculated as follows:

E =
∞∫
0

dε εg(ε) f (ε) =
∞∫
0

dε
εg(ε)

e(ε−μ)/T + 1
,

N =
∞∫
0

dε g(ε) f (ε) =
∞∫
0

dε
g(ε)

e(ε−μ)/T + 1
,

g(ε) = 2V
4πp2(ε)

(2π�)3

dp

dε
= V

mp(ε)

π2�3
, p(ε) = √

2mε.

The chemical potential μ = μ(N ) is implicitly determined by the second equation.
For the low temperature T � εF calculations, the following Sommerfeld expansion
is useful: ∞∫

0

F(ε)

(
−∂n(ε)

∂ε

)
= F(μ) + π2T 2

6
F ′′(μ) + · · ·

for the smooth functions within the vicinity ε = μ.
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Integrating the expressions for the energy and particle number by parts and using
the Sommerfeld expansion, we obtain

E(T ) =
μ∫

0

εg(ε)dε + π2T 2

6

(
μg(μ)

)′ + · · · = E(μ) + π2T 2

6

(
μg(μ)

)′ + · · · ,

N = V

3

(2mεF )3/2

π2�3
= V

3

(2mμ)3/2

π2�3
+ π2T 2

6
g′(μ) + · · ·

Employing these two equations, we find first terms of the low-temperature expansion
for the total energy and chemical potential

E(T ) = E(0) + π2

6
T 2g(εF ) + · · · and μ(T ) = εF − π2T 2

6

g′(εF )

g(εF )
+ · · ·

This gives straightforwardly the linear law for the low-temperature behavior of spe-
cific heat and entropy in the degenerate Fermi gas

C(T ) = π2

3
T g(εF ) and S(T ) = π2

3
T g(εF ).

The qualitative nature of this behavior is related to the effective number of
fermions involved in the thermal excitation near the Fermi surface. The number
of such fermions is about the product of temperature T by the density of states
g(εF ). Each fermion near the Fermi surface gives an increase of the order of tem-
perature to the gas energy. As a result, the gas energy will increase by the order of
T × T g(εF ) ∼ T 2g(εF ).

The linear law for the temperature growth of specific heat and entropy in an ideal
Fermi gas is independent of the spatial dimensionality d. However, this property
does not hold for the chemical potential. Since for the d-dimensional gas the density
of states reads g(ε) ∼ ε(d−2)/2, the derivative of chemical potential with respect to
temperature dμ/dT 2 ∼ (2 − d) changes the sign from positive at d = 1 to negative
at d = 3 and larger.

The origination of magnetization in a neutral fermionic gas2 in the magnetic field
results from the presence of the spin and corresponding magnetic moment. The latter
interacts alreadywith themagnetic field. Let uswrite the energy of a spin-1/2 fermion
in the magnetic field H as

ε(p, H) = ε(p) ± 1

2
μeffH

whereμeff is the effective fermionicmagneton. Two signs in the energy correspond to
two values (±1/2) in the fermion spin projections onto the magnetic field directions.

2 These can be the 3He atoms whose magnetic moments are due to nuclear spins.
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The number of fermions with the spin projections parallel or antiparallel to the
magnetic field is equal to

N+ = 1

2

∞∫
0

n
(
ε − 1

2
μeffH

)
g(ε)dε, N− = 1

2

∞∫
0

n
(
ε + 1

2
μeffH

)
g(ε)dε.

Factor 1/2 reflects the point that both possible spin projections are incorporated
into the definition of the density of states g(ε). The total magnetic moment M =
(1/2)μeff(N+ − N−) then reads

M = μeff

4

∞∫
0

[
n
(
ε − 1

2
μeffH

)− n
(
ε + 1

2
μeffH

)]
g(ε)dε.

In the weak magnetic field, we can decompose the difference in the distribution
functions under the integral sign and find the paramagnetic Pauli susceptibility of
fermionic gas according to M = χP H

χP = μ2
eff

4

∞∫
0

(
−∂n(ε)

∂ε

)
g(ε)dε.

At low temperatures T � εF , the spin (paramagnetic) susceptibility or Pauli sus-
ceptibility of degenerate Fermi gas is given by the expansion

χP = μ2
eff

4
g(εF )

(
1 + π2T 2

6

∂2

∂ε2F
ln g(εF )

)
.

Remaining finite at zero temperature, the Pauli spin susceptibility behaves differently
by increasing the temperature, depending on the dimensionality d of the system d.
The behavior is similar to that of chemical potential. This conclusion results from
the relation ∂2 ln g(ε)/∂ε2 = −(d/2 − 1)/ε2.

The high temperature T � εF behavior of susceptibility can be obtained if we
take into account that, for the high temperatures, the Fermi–Dirac distribution goes
over into the Boltzmann one for which −∂n/∂ε = n/T . Then

χP = μ2
eff

4T

∞∫
0

n(ε)g(ε)dε = μ2
eff

4T
N ,

and the susceptibility follows the classical Curie law.
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Problems

1. How do the Fermi momentum and energy vary under complete spin polarization of an ideal
3He atom gas in the magnetic field?

Solution. Under complete spin polarization, a single fermion alone can occupy the state with the
same momentum instead of two fermions as in the case of zero magnetic field. Then the number of
atoms is determined by the relation

N =
∫

p�pF

V d3 p

(2π�)3
= V

p3F
6π2�3

.

Therefore, the Fermi sphere radius increases and equals pF = 21/3 p0, p0 being the Fermi momen-
tum in zero field. The Fermi energy equals εF = 22/3ε0 where ε0 is the Fermi energy in zero
field.

2. Graphene is a single layer of graphite. Near the conical points the dependence of electron
energy as a function of momentum p = (px , py) is described by themassless Dirac spectrum ε p =
vσ p where v is the electron velocity and σ = (σx , σy) are the Pauli matrices. The corresponding
dispersion law ε p = ±v| p| represents two subbands. In pure graphene, the chemical potential
μ = 0 is temperature-independent and crosses always the conical Dirac point ε = 0 relating to
charge neutrality.

Determine the one-particle density of states g(ε). Find the specific heatC(T ) of graphene. (Take
into account the double electron spin degeneracy and the presence of two conical points.)

Solution. As the chemical potential crosses the conical point of the electronic spectrum, the
Fermi surface degenerates into a point and the single energy parameter is temperature. Let us write
one-particle density of states per unit area

g(ε) = ν

∫
d2 p

(2π�)2

[
δ(ε − vp) + δ(ε + vp)

]= ν
|ε|

2π�2v2

where ν = 2 × 2 = 4 is the degree of degeneracy resulted from the spin and the number of conical
points. Differentiating the expression for energy at μ = 0

E(T ) =
∫ ∞

−∞
dε εg(ε)

eε/T + 1

with respect to temperature, we find the specific heat

C(T ) = ν

2π�2v2

∞∫
−∞

dε |ε|ε
4T cosh2 ε/2T

ε

T
= νT 2

2π�2v2
2

∞∫
0

x3 dx

4 cosh2(x/2)
= ν

9ζ(3)

2π

T 2

�2v2
.

Such quadratic dependence results directly from the conical shape of isoenergetic surface and the
density of states g(ε) ∼ |ε|. In fact, the electrons of energy |ε| � T near the conical point contribute
mostly to the thermal excitation of the system. The number of such electrons is n(T ) ∼ T g(ε ∼ T )

and, therefore, the thermal excitation energy reads E(T ) ∼ T n(T ) ∼ T 3. This entails C(T ) ∼ T 2.
3. Find the paramagnetic susceptibility of graphene under conditions of the previous problem.
Solution. The energy of an electron in the magnetic field equals εp ± β H , β being the effective

magnetic moment. The total magnetic moment, expressed with the aid of distribution function n(ε)

can be written as

M = β

2

∫ ∞

−∞
dε g(ε)

[
n(ε − β H) − n(ε + β H)

]
.

Differentiating the magnetization with respect to magnetic field yields the paramagnetic suscepti-
bility χP = ∂M/∂ H
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χP = −β2

2

∞∫
−∞

dε g(ε)

(
∂n(ε − β H)

∂ε
− ∂n(ε + β H)

∂ε

)
=

= β2

2

∞∫
−∞

dε
[
g(ε − β H) + g(ε + β H)

] (− ∂n(ε)

∂ε

)
=

= ν

2π�2v2

β2

2

∞∫
−∞

dε

4T

|ε − β H | + |ε + β H |
cosh2(ε/2T )

.

Using the value of the integral

∞∫
−∞

|x + a|
cosh2 x

dx = 2 ln(2 cosh a) ,

we obtain the following answer:

χP (T, H) = 2β2g(T ) ln

(
2 cosh

β H

T

)
.

Let us give the limiting expressions for the low- and high magnetic fields

χP (H) =
{

(2 ln 2) β2g(T ) ∼ T, β H � T (low field),
β2g(β H) ∼ H , β H � T (high field).

4. A tachyon is a hypothetical particle which is introduced to describe the faster-than-light motion.
Its spectrum is given by the relativistic formula

εp =
√

p2c2 − m2c4 (p � mc)

where c is the light velocity, p is the momentum, and m is the tachyonic mass. The tachyons are
assumed to be fermions with the number g of internal degree of freedom.

Find the Fermi momentum pF , energy density E , pressure P , and sound velocity u in an ideal
tachyonic gas with the particle density n at zero temperature. The sound velocity in relativistic gas
is determined by the relation u = c(∂ P/∂ E)1/2.

Solution. The one-particle density of states per unit volume equals

ν(ε) = g

2π2�3c3
ε
√

ε2 + m2c4 .

We find the Fermi momentum pF from the condition

n =
pF∫

mc

g
4πp2 dp

(2π�)3
= g

p3F − m3c3

6π2�3
and pF = mc

(
1 + 6π2

�
3n

gm3c3

)1/3

.

Accordingly, the Fermi energy reads

εF = c
[(
6π2

�
3n/g + m3c3

)2/3 − m2c2
]1/2 = mc2

√
β2 − 1 where β = pF/mc.
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The energy density of the gas at temperature T = 0 equals the integral

E = g

(2π�)3

pF∫
mc

εp 4πp2 dp = gm4c5

16π2�3

β∫
1

y2
√

y2 − 1 dy =

= gm4c5

16π2�3

[
(2β3 − β)

√
β2 − 1 − ln(β +

√
β2 − 1 )

]
.

We determine the pressure at T = 0 from the relation P = −∂(EV )/∂V where V is the volume
and EV is the total energy of the gas. This entails P = n∂ E/∂n − E . We can use the definition of
potential � = −PV as well. Then,

P = T
∫

g
d3 p

(2π�)3
ln
(
1 + e(μ−εp)/T )

and μ is the chemical potential. For T = 0, this expression goes over to the simple relation

P = g

∫
d3 p

(2π�)3
(εF − εp) = nεF − E .

As a result, the pressure of ideal tachyonic gas equals

P = gm4c5

16π2�3

[(2
3
β3 + β − 8

3

)√
β2 − 1 + ln(β +

√
β2 − 1 )

]
.

The square of sound velocity reads

u2 = c2 ∂ P/∂ E = c2
∂ P/∂β

∂ E/∂β
= c2

3

β2 + β + 1

β2 + β
.

Since for tachyons we have pF � mc (β � 1), the sound velocity varies from c/
√
2 for the small

density gas (β − 1 � 1) to c/
√
3 in the large density gas (β � 1), remaining always smaller than

the speed of light c.

3.4 Degenerate Fermi Gas in the Harmonic Trap

Let us turn to considering the properties of a degenerate ideal Fermi gas in the
harmonic trap with the confining potential

U (x, y, z) = m
(
ω2

x x2 + ω2
y y2 + ω2

z z2
)
/2.

The energy levels of a particle in the harmonic potential are given by the simple
formula

ε(n1, n2, n3) = �ωx
(
n1 + 1/2

)+ �ωy
(
n2 + 1/2

)+ �ωz
(
n3 + 1/2

)

where n1, n2, and n3 are the integer non-negative numbers. Below we assume the
macroscopic limit when the number of fermions N � 1 is large and the energy levels
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are arranged sufficiently close to each other. In this case for calculating the thermo-
dynamic functions of the gas, we can employ the semiclassical approximation and
replace the summation over the neighboring discrete levels with the corresponding
integration approximated with the continuous level spectrum.

The simplest method to introduce the semiclassical description is to apply the
local density approximation for the Fermi–Dirac distribution

n(r, p) = (e
(
ε( p,r)−μ

)
/T + 1

)−1
.

Here ε(r, p) = p2/2m + U (r) is the classical energy of a fermion, and μ is the
chemical potential determined with the normalization condition for the total number
of fermions

N = 2
∫

d3r d3 p

(2π�)3
n(r, p) =

∞∫
0

g(ε)dε

e(ε−μ)/T + 1
.

Here we have introduced the one-particle density of states according to

g(ε) = 2
∫

d3r d3 p

(2π�)3
δ
(
ε − ε( p, r)

)= ε2

�3ωxωyωz
.

The use of the one-particle density of states3 allows us to apply the results from
the previous sections for calculating the thermodynamic functions. So, for T = 0
from the condition

N =
εF∫
0

g(ε)dε =
εF∫
0

ε2

�3ωxωyωz
dε = ε3F

3�3ωxωyωz
,

we obtain the Fermi energy εF = μ(T = 0)

εF = �(3Nωxωyωz)
1/3.

The total energy of the gas E0 at T = 0 equals

E0 =
εF∫
0

εg(ε) dε = ε4F

4�3ωxωyωz
= 3

4
NεF .

The low temperature T � εF corrections to the energy, chemical potential,
entropy, and specific heat are obvious

3 Note that from the formal point of view, such a behavior of the density of states as a function
of energy would be the same for the spatially homogeneous gas of particles with the conventional
energy dispersion ε p = p2/2m in the six-dimensional space d = 6.
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E(T ) = E0 + π2

6
T 2g(εF ) , μ(T ) = εF − π2

3

T 2

εF
,

S(T ) = π2

3
T g(εF ) , C(T ) = π2

3
T g(εF ) .

Here g(εF ) = ε2F/(�3ωxωyωz) = 3N/εF is the density of one-particle states at the
Fermi surface.

Of interest is the spatial distribution of the particle density n(r) in the trap. It can
be found by integrating the distribution function n(r, p) with respect to momentum.
For T = 0, we have n(r, p) = ϑ

(
εF − ε(r, p)

)
and then

n(r) = 2
∫

d3 p

(2π�)3
ϑ
(
εF − ε(r, p)

) = (2m)3/2

3π2�3

(
εF − U (r)

)3/2

= 8

π2

N

Rx Ry Rz

(
1 − x2

R2
x

− y2

R2
y

− z2

R2
z

)3/2

.

The above density distribution of fermions in the trap is called the Thomas–Fermi
distribution. In the harmonic trap, it has the ellipsoid shape with semi-axes Rx , Ry ,
and Rz whose magnitudes are determined by the following relations:

1

2
mω2

i R2
i = εF = p2

F

2m
(i = x, y, z).

The particle distribution over momenta n( p) can be found by integrating the total
distribution function n(r, p) over the coordinate. At temperature T = 0 we find

n( p) = 2

(2π�)3

∫
d3r ϑ

(
εF − ε(r, p)

) = 8

π2

N

p3
F

(
1 − p2

p2
F

)3/2

if p < pF and n( p) = 0 on the contrary. This equation is a complete analog of
the momentum distribution of particles similar to the step-like behavior n(p) =
ϑ(1 − p2/p2

F ) in the spatially homogeneous Fermi gas. Note that the magnitudes of
the boundary Fermi momentum pF = �[3π2n(r = 0)]1/3 are proved to be the same
in both cases.

Problem

1. The classical string with the fixed end-points has an infinite set of oscillation frequencies
ωl = lω, which are the multiples of the fundamental frequency ω. The fermionic quantum non-
relativistic string represents a set of the infinite number of harmonic oscillators with frequencies ω,
2ω, 3ω, . . . and energies

El = �ωl (nl + 1/2), ωl = lω, l = 1, 2, 3, . . .

According to the Pauli principle, the occupation numbers nl for each oscillator takes the values 0
and 1 alone.
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For the fermionic string, find the free energy F(T ), entropy S(T ), specific heat C(T ), and
number of states 
(E) in the high energy limit E � �ω.

Solution. Since the oscillators do not interact with each other, the total partition function reduces
to the product of the partition functions of independent oscillators

Z =
∞∏

l=1

zl , zl =
1∑

nl =0

e− �ωl
T (nl +1/2) = e−�ωl /2T

1 + e−�ωl /T
.

Hence the free energy equals

F = E0 − T
∞∑

l=1

ln
(
1 + e−�ωl/T ), E0 =

∞∑
l=1

�ωl/2,

E0 being the energy of zero oscillations. Then we find the entropy and specific heat

S(T ) =
∞∑

l=1

[
�ωl/T

e�ωl /T + 1
+ ln

(
1 + e−�ωl /T )],

C(T ) =
∞∑

l=1

[
�ωl/2T

cosh(�ωl/2T )

]2
, ωl = lω.

For low temperatures (T � �ω), both these quantities vanish exponentially

S(T ) = (�ω/T )e−�ω/T , C(T ) = (�ω/T )2e−�ω/T .

The behavior at high temperatures (T � �ω) is of more interest. In this limit the main contribution
to the sums over l results from the terms with the large numbers l � 1. So, we can convert the sum
over l into an integration over l and arrive at

F − E0 = −T

∞∫
0

dl ln
(
1 + e−�ωl/T ) = − T 2

�ω

∞∫
0

dx ln
(
1 + e−x ) = − π2

12

T 2

�ω
,

C(T ) =
∞∫
0

dl

(
�ωl/2T

cosh(�ωl/2T )

)2

= 2T

�ω

∞∫
0

dx
x2

cosh2 x
= π2

6

T

�ω
.

To find the number of the string states 
(E) at high energies, we employ the relation S(E) =
ln
(E). From the equations

E − E0 = π2T 2/12�ω and S = π2T/6�ω

valid at T � �ω, we find

ln
(E) = 2π

√
E − E0

12�ω
= 2π

√
N

12
where 
(E) ∼ e2π

√
N/12, N = E − E0

�ω
� 1.

Here the number N = n1 + 2n2 + 3n3 + . . . plays a role of the particle number expressed in terms

of the occupation numbers.
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3.5 Diamagnetism of Ideal Electron Gas

Diamagnetism of an electron gas4 is due to electric charge of an electron as well as to
the interaction between the electric charge and magnetic field. We start analyzing the
diamagnetic properties of the electron gas with the calculation of the thermodynamic
grand potential �. First of all, it is necessary to determine the electron energy levels
quantized in the magnetic field. The electron energy levels in the magnetic field H
parallel to the z-axis or the Landau levels are given by the formula

εn(pz, x0) = �ωH

(
n + 1

2

)
+ p2

z

2m∗ , ωH = eH

m∗c
, n = 0, 1, 2, . . .

where ωH = eH/m∗c is the cyclotronic frequency.To generalize our speculations,
we introduce the effective electron mass m∗, supposing the dispersion law εp =
p2/2m∗. The electron spectrum in the magnetic field is degenerate in the orbit center
x0 = cpy/eH which is proportional to momentum py normal to the magnetic field
direction. In view of double degeneracy in the electron spin, we write the number of
states at each Landau level within the momentum interval dpz/(2π�) as

2
eH

2π�c
V

dpz

2π�

where V is the volume occupied with electrons.
Let us calculate the grand potential

�H (μ) = −V T
∞∑

n=0

∞∫
−∞

dpz

2π�

2eH

2π�c
ln

(
1 + e

μ−εn (pz )

T

)
=

= − V T

(π�)2

eH

c

∞∑
n=0

∞∫

�ωH (n+ 1
2 )

dε
dpz(ε)

dε
ln

(
1 + e

μ−ε

T

)
,

putting pz =
√
2m∗(ε − �ωH (n + 1/2)

)
andμ as the chemical potential. Integrating

by parts results in

�H (μ) = − V

(π�)2

eH

c

∞∑
n=0

∞∫
�ωH (n+1/2)

dε

√
2m∗(ε − �ωH (n + 1

2 )
)

e(ε−μ)/T + 1
.

This expression is valid at any temperature. First, we restrict ourselves with the case
T � μ and put T = 0 as a first approximation. Then the Fermi–Dirac distribution

4 The Landau diamagnetism as well.
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can be replaced with the step-like function. So,

�H (μ) = − V

(π�)2

eH

c

∑
n

∞∫
�ωH (n+1/2)

dε θ(μ − ε)

√
2m∗(ε − �ωH (n + 1/2)

)=

= −2
√
2m∗

3

V

(π�)2

eH

c

N∑
n=0

(
μ − �ωH (n + 1/2)

)3/2

where the integer N equal to5

N =
[

μ

�ωH
− 1

2

]

has the sense of the last Landau level occupied completely.
For low magnetic fields H and large numbers N , the sum can be estimated with

aid of the formula

N∑
n=0

f (n) =
N+1/2∫
−1/2

f (n) dn − f ′(N + 1/2) − f ′(−1/2)

24
+ · · ·

As a result, we find the thermodynamic grand potential equal to

�H (μ) = −2
√
2m∗

3

V

(π�)2

eH

c

(
5

2

μ5/2

�ωH
− 3

2

�ωHμ1/2

24
+ · · ·

)
=

= −5

3

√
2m∗V

π2�3
m∗μ5/2 + V

24π2�

(
eH

c

)2
√

2μ

m∗ + · · ·

The total magnetic moment of electron gas is determined by the following deriva-
tive:

M = −∂�H

∂H
= − V

12π2�

e2

c2

√
2μ

m∗ H =

= − V

3

(
e�

2m∗c

)2 m∗ pF

π2�3
H = −1

3

(
e�

2m∗c

)2

g(μ)H

where g(μ) is the one-particle density of states at the Fermi level andμ(T = 0) = εF .
Thus, the magnetic susceptibility of electron gas, associated with the Landau levels
of a charged particle in the magnetic field, results in the diamagnetic character of the
response to the magnetic field. The zero temperature susceptibility reads

5 Here we mean the domain of integers n for which the square root argument is non-negative.
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χdia = −1

3

(
me

m∗

)2( e�

2mec

)2

g(εF ) = −1

3

(
me

m∗

)2
μ2
eff

4
g(εF ).

Here we have introduced the notation me for the genuine electron mass and μeff =
2μB for the magnetic moment equal to the double Bohr magneton μB = e�/2mec.

If we compare the diamagnetic susceptibility χdia with the paramagnetic suscep-
tibility χP for the free electron gas when m∗ = me, we see that the diamagnetic
response compensates the paramagnetic response by one third alone. Therefore, the
free electron gas remains paramagnetic on the whole.

On the other hand, an existence of diamagnetic metals is related to the point that
the energy spectrum of electron excitations in a metal, as a result of the interactions
between the particles composing the metal, demonstrates much more complicated
dependence upon the momentum as compared with the free electron spectrum. As
we have seen above on the example of the simplest model for the energy spectrum
with effective mass m∗ 
= me, the ratio of susceptibilities reads

χdia/χP = (1/3)(me/m∗)2.

This magnitude can exceed unity at m∗/me < 1/
√
3.

3.6 The de Haas–van Alphen Effect

We have considered above the diamagnetic susceptibility of an ideal degenerate
electron gas in first approximation in the magnetic field strength. In first approxi-
mation, the correction to the thermodynamic grand potential is a quadratic one of
the order (μeffH/μ)2. Below we analyze the next corrections to the thermodynamic
grand potential. The corrections will prove to be oscillating as a function of the
magnetic field and result in the magnetization oscillations in the electron gas, the
oscillation period being proportional to the inverse magnetic field magnitude 1/H .
The phenomenon of magnetization oscillations in the magnetic field is called the de
Haas–van Alphen effect.

So, we write down the thermodynamic grand potential found above

�H (μ) = −V T
∞∑

n=0

∞∫
−∞

dpz

(2π�)2

2eH

c
ln

(
1 + e

μ−εn (pz )

T

)
.

For the further analysis of the this expression, we employ the Poisson summation
formula:

∞∑
n=0

f (n) =
∞∫

−1/2

f (n) dn + 2Re
∞∑

k=1

∞∫
−1/2

f (n) e2π ikn dn .
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Putting

f (n) = −2V T

∞∫
−∞

2πm∗dpz

(2π�)3
�ωH ln

(
1 + e

μ−εn (pz )

T

)
,

we represent the grand potential �H (μ) as

�H (μ) = �0(μ) + ��H (μ) = �0(μ) − 2
2V T

(2π�)3

∞∑
k=1

(−1)kRe Ik

where �0(μ) is the potential in zero magnetic field

�0(μ) = −2V T

∞∫
−∞

2πm∗dpz

(2π�)3

∞∫
0

dε⊥ ln

(
1 + e

μ−ε⊥−p2z /2m∗)

T

)
=

= −2V T
∫

d3 p

(2π�)3
ln

(
1 + e

μ− p2/2m∗)

T

)
,

and the integral Ik is determined by the following expression:

Ik = 2πm∗
∞∫

−∞
dpz

∞∫
−1/2

dn �ωH ln

(
1 + e

μ−εn (pz )

T

)
e2π ik(n+1/2) =

= 4πm∗
∞∫
0

dpz

∞∫
0

dη ln

(
1 + e

μ−η−p2z /2m∗
T

)
e2π ikη/�ωH .

Integrating the last integral twice by parts yields

Re Ik

4πm∗ = −Re

∞∫
0

dpz
�ωH

2π ikT

[
T ln

(
1 + e

μ−p2z /2m∗
T

)
+

+ �ωH

2π ik

⎛
⎝ 1

1 + e− μ−p2z /2m∗
T

−
∞∫
0

dη

T

e2πkη/�ωH

4 cosh2 η+p2
z /2m∗−μ

2T

⎞
⎠
⎤
⎦ =

= Re
(�ωH )2

(2πk)2T

∞∫
0

dpz

⎛
⎝

∞∫
0

e2π ikη/�ωH

4T cosh2 η+p2
z /2m∗−μ

2T

dη − 1

1 + e− μ−p2z /2m∗
T

⎞
⎠ .
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In the remaining integrals we replace the variables (η − μ)/T = ξ and pz =
q
√
2m∗T . Then,

Re Ik

4πm∗ = (�ωH )2
√
2m∗

(2πk)2T 1/2
×

× Re

∞∫
0

dq

⎛
⎜⎝

∞∫
−μ/T

e
2π ikμ

�ωH
e2π ikξT/�ωH

4 cosh2(ξ + q2)/2
dξ − 1

1 + e(q2−μ/T )

⎞
⎟⎠ .

In the integral over ξ the lower limit equal to −μ/T can be substituted for −∞ due
to condition of gas degeneracy μ � T . Then, after shifting the variable ξ with q2,
we integrate with respect to ξ , using the magnitude of integral

∞∫
−∞

eiax

4 cosh2 x/2
= πa

sinh πa
.

As a result, we have

Re Ik

4πm∗ = (�ωH )2
√
2m∗

(2πk)2T 1/2
×

× Re

∞∫
0

dq

(
e− 2π ikq2T

�ωH
2π2kT/�ωH

sinh(2π2kT/�ωH )
e

2π ikμ

�ωH − 1

1 + e(q2−μ/T )

)
.

The further integration with respect to q is performed with the aid of integrals:

∞∫
0

e−iax dx = e−iπ/4

2

√
π

a
(a > 0) and

∞∫
0

dx

1 + ex2−a
≈ √

a, a � 1.

This already delivers the clear expression

Re Ik

4πm∗ = (�ωH )2
√
2m∗μ

(2πk)2T

[√
�ωH

8μk

2π2kT/�ωH

sinh(2π2kT/�ωH )
cos

(
2πkμ

�ωH
− π

4

)
− 1

]
.

Finally, we find for the magnetic field-dependent part of grand potential��H (μ)

��H (μ) = − 4V

(2π�)3

∞∑
k=1

(−1)k (m∗)3/2(�ωH )5/2

2πk5/2
×

×
(

2π2kT/�ωH

sinh(2π2kT/�ωH )
cos

(
2πkμ

�ωH
− π

4

)
−
√

8μk

�ωH

)
.
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Let us now analyze the result obtained. First of all, we underline that the ther-
modynamic grand potential contains the oscillating terms, the oscillation period
�(1/H) being determined by condition μ/�ωH = 1. From the physical point of
view, the oscillations occur when the chemical potential passes through the next
Landau energy level by varying the magnetic field and the Landau level becomes
either filled or emptied. This condition is satisfied if (n + 1/2)�ωH = μ where n is
the integer. Accordingly, the oscillation period is determined by varying the number
n by unity, i.e. if variation �(μ/�ωH ) = 1 or

�

(
1

H

)
= e�

m∗cμ
= 2e�

cp2
F

.

The measurement of oscillation period allows one to determine the boundary Fermi
momentum in the direction normal to the magnetic field.

At the finite temperature, the oscillation amplitude even for the first harmonic
demonstrates the exponentially drastic reduction proportional to exp[−2π2T/�ωH ]
as the temperature grows. Thus, starting from T > 2π2

�ωH , the deHaas–vanAlphen
oscillations become insignificant. The physical reason lies in the temperature broad-
ening of the energy levels and in the smearing of the discrete structure of Landau
levels.

As we have seen, the relative magnitude of the oscillating term in the thermo-
dynamic potential is of the order (�ωH/μ)5/2 � 1. The non-oscillating term in the
thermodynamic potential has the larger relative magnitude about (�ωH/μ)2. In this
sense the oscillating term as compared with the monotonous one is small. However,
in such quantities as magnetic moment and susceptibility, the role of the oscillating
terms increases by many times and becomes essential and basic. In fact, we have for
the magnetic moment

M = −∂��H

∂ H
=

= 4V

(2π�)3

e�

c

∞∑
k=1

(−1)k μ
√

m∗�ωH

k3/2

2π2kT/�ωH

sinh(2π2kT/�ωH )
sin

(
2πkμ

�ωH
− π

4

)
.

Here we have differentiated the most rapidly changing multipliers alone, i.e. cosines,
with respect to magnetic field H . The relative magnitude of the magnetic moment
oscillations becomes already predominant:

Mosc/M0 ∼ (μ/�ωH
)1/2 � 1.

Thus, at low temperatures the oscillating part of magnetic moment and susceptibility
gives significantly larger contribution as compared with the monotonous one.
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3.7 Ideal Fermi Gas with the Spin–Orbit Spectrum of
Dispersion

Here we discuss the degenerate ideal gas of electrons whose energy spectrum has the
spin–orbit effect. As an instructive model, which is often applied to describing the
thin metal plates or films with the strong spin–orbit interaction, we will consider the
two-dimensional ideal gas in which the electron spectrum is given by the following
Bychkov–Rashba Hamiltonian:

H = p2

2m
+ α(σ × p)z .

Here the z-axis is chosen perpendicular to the film plane (x, y). Vector σ = (σx , σy)

and σz are the Pauli matrices, p = (px , py) is the momentum of an electron, and m
is its mass. The parameter α > 0 denotes the spin–orbit Rashba coupling constant.

Due to spin–orbit effect, there occurs a splitting of the electron spectrum into
two subbands with respect to the spin direction, respectively, corresponding to the
electron spin orientations up (+) and down (-):

ε±(p) = p2

2m
∓ αp = ξ ∓√2�ξ

where ξ = p2/2m and � = mα2.
The density of states per unit volume equals

N±(ε) =
∫

dpx dpy

(2π�)2
δ
(
ε − ε±( p)

) = m

2π�2

∞∫
0

dξ δ
[
ε − (ξ ∓√2�ξ )

]

for the spins directed up and down. Calculating the integral results in the expression

N±(ε) = m

2π�2
�

∣∣∣∣ ∂ε

∂ξ

∣∣∣∣
−1

ξ=ξ0

where the sign � implies the sum over all the roots of equation ε± = ξ ∓ √
2�ξ in

the region ξ � 0.
For the spin down direction, there is a single root alone

ξ
(−)
1 = ε + � −

√
2ε� + �2 at ε � 0.

Then we obtain for the density of states with the spin down projection

N−(ε) = m

2π�2

(
1 − �√

2ε� + �2

)
ϑ(ε).
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For the spin up direction, there may exist one or two roots of equation ε+(ξ) = 0,
depending on the sign ε. If ε � 0, there is a single root

ξ
(+)
1 = ε + � +

√
2ε� + �2 at ε � 0.

As a result, we find for the density of states N+(ε) with the spin projection up

N+(ε) = m

2π�2

(
1 + �√

2ε� + �2

)
ϑ(ε) at ε � 0.

In the energy region εmin � ε � 0, there are two roots ξ
(+)
1 and ξ

(+)
2

ξ
(+)
1 = ε + � +

√
2ε� + �2 and ξ

(+)
2 = ε + � −

√
2ε� + �2.

The minimum energy εmin = −�/2 as possible in the electron spectrum is achieved
at ξ = ξm = �/2.

Finally, taking into account that ∂ε/∂ξ < 0 at ξ = ξ
(+)
2 , we obtain for the density

of states N+(ε) at ε � 0

N+(ε) = m

2π�2

[(
�√

2ε� + �2
− 1

)
+
(
1 + �√

2ε� + �2

)]
=

= m

π�2

�√
2ε� + �2

for εmin � ε � 0.

The total density of states, involving both spin projections, will equal

N (ε) = N−(ε) + N+(ε) = m

π�2

{
�/

√
2ε� + �2, εmin � ε � 0,
1, ε � 0,

and N (ε < εmin) = 0.
At zero temperature the electrons occupy only those states whose energy does not

exceed the chemical potential or Fermi energy. In this case the electron density n is
related with the density of states N (ε)

n =
εF∫

εmin

N (ε) dε = m

π�2

{√
2εF� + �2 , εF � 0,

εF + �, εF � 0.

Hence we arrive at the Fermi energy as a function of electron concentration

εF = �

⎧⎪⎪⎨
⎪⎪⎩

− 1
2

[
1 −

(
n
nc

)2]
, n � nc ,(

n
nc

− 1

)
, n � nc

(
nc = m�

π�2

)
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where nc is the critical electron density meaning the start of the upper subband
occupation for n > nc.

At zero temperature, the following integral represents the total energy of the gas
in the two-dimensional film of area A:

E =
εF∫

εmin

εN (ε) dε = π�
2

6m
A

{−n(3n2
c − n2)/nc, n � nc ,

(3n2 − 6nnc + n2
c), n � nc .

On the analogy with the bulk case, we determine the pressure of two-dimensional
gas as a derivative of the total energy with respect to area

P = −
(

∂ E

∂ A

)
N

where N = n A is the total particle number in the gas. The simple calculation yields

P = π�
2

6m

{
2n3/nc, n � nc ,

(3n2 − n2
c), n � nc .

We can now find the square of sound velocity in such two-dimensional gas at zero
temperature. In fact, introducing the mass density of gas as ρ = mn, we have

c2 = ∂ P

∂ρ
= v2

F

2

{
n/nc, n � nc ,

1, n � nc ,

where vF = �
√
2πn/m is the Fermi velocity in the ideal Fermi gas of density n.

Let us turn to determining the spin magnetization M of electrons at zero temper-
ature when the electrons occupy the states with the energies smaller than the Fermi
energy. So, we have

M = β

εF∫
εmin

[
N+(ε) − N−(ε)

]
dε,

and β is the effective magnetic moment of an electron. It is obvious that, if the Fermi
energy εF does not exceed zero magnitude or the electron concentration n < nc, the
upper subband, corresponding to the spin down direction, remains unoccupied and
N (ε) = N+(ε). Accordingly, all the electrons have the spin and the magnetization
will be maximum

M = βn, n � nc .

In the regions of larger density magnitudes n > nc, the simple calculation leads
to the following result:
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M = βnc

(
2n

nc
− 1

)1/2

, n � nc .

An existence of spontaneous magnetization due to spin–orbital effects leads to
appearing of the current states in the electron gas. This results from the relation
j = c rotM between the magnetization current j and magnetization M. Since the
electron magnetic moment is β ∼ e�/(2mc), the magnetization current magnitude
is independent of the luminal speed c. Such states appear in the regions of spin
magnetization inhomogeneity, for example, at the film edges or at the boundaries of
domains with the different electron polarization of electrons. In this case such states
are referred to as edge current states.

3.8 Ideal Bose Gas

In the region of temperatures small as compared with the degeneracy one, the prop-
erties of the Bose systems are drastically different from those of fermionic systems.
First of all, the point is that the Bose gas at zero temperature must occupy the ground
state with the lowest energy. To satisfy the ground state of a gas with the particle
spectrum εp = p2/2m at T = 0, all the Bose particles should be placed at the same
state with the lowest possible energy, i.e. with zero momentum p = 0. According
to the Bose statistics, the unlimited number of particles can be in the same quantum
state. Thewave function of the ground state in an ideal Bose gas will be the product of
the one-particle wave functions of all particles. The physical phenomenon of macro-
scopically large population of the same quantum state is called the Bose–Einstein
condensation. The accumulation of particles in the same state is referred to as the
condensation of particles in this state.

The particles in the macroscopically populated state are called the condensate
particles or condensate. The particles beyond the condensate and occupying the
excited states are the overcondensate particles or overcondensate. As the temper-
ature grows, the number of particles in the excited p > 0 states increases and the
number of condensate particles decreases. The transition temperature Tc, at which
the macroscopically large population of the quantum state disappears, i.e. density
of condensate particles vanishes, is called the Bose–Einstein condensation temper-
ature. The transition of a Bose gas to the condensed state from the non-condensed
one and, vice versa, is an example of phase transition in the condensed medium from
one thermodynamic state to another.

The maximum possible number of particles that can be in all excited states will
be achieved at the maximum possible value of the chemical potential. In an ideal gas
of bosons this takes place at μ = 0. For the gas of N spinless particle in volume V ,
we obtain
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max[Nexc(T )] =
∫

p>0

V d3 p

(2π�)3

1

eεp/T − 1
= V

m3/2

√
2π2�3

∞∫
ε=+0

√
ε dε

eε/T − 1
=

= V

(
mT

2π�2

)3/2 2√
π

∞∫
0

√
x dx

ex − 1
= V

(
mT

2π�2

)3/2

ζ(3/2).

The value of the Riemann zeta-function equals approximately ζ(3/2) ≈ 2.612.
At sufficiently low temperatures, the particle number not smaller than N −

max[Nexc(T )] should be in the ground state with zero momentum p = 0, i.e. in
the condensate. The Bose–Einstein condensation temperature Tc is determined from
condition N = max[Nexc(T )] and depends on the Bose gas density n = N/V as

Tc = 2π

ζ 2/3(3/2)

�
2n2/3

m
≈ 3.31

�
2n2/3

m
.

If one lowers the temperature of a Bose gas under its fixed density, the chemical
potential of gas takes zero value at T = Tc and this zero value conserves down to
absolute zero, i.e. μ(T � Tc) = 0. The overcondensate particle density at T � Tc

reads

nexc(T ) =
∫

p>0

d3 p

(2π�)3

1

eεp/T − 1
=
(

mT

2π�2

)3/2

ζ(3/2) = n

(
T

Tc

)3/2

.

Accordingly, the condensate particle density will be finite and equal to

n0(T ) = n − nexc(T ) = n

[
1 −

(
T

Tc

)3/2]
.

The energy of the condensed gas at T < Tc is governed with the particles whose
energy εp > 0. Hence the energy is given by the following integral:

E =
∫

V d3 p

(2π�)3

εp

eεp/T − 1
= V T

(
mT

2π�2

)3/2 2√
π

∞∫
0

dx x3/2

ex − 1
=

= 3ζ(5/2)

2
V T

(
mT

2π�2

)3/2

= 3ζ(5/2)

2ζ(3/2)
T nexc(T )V ∼ V T 5/2.

The specific heat Cv at constant volume equals

Cv =
(

∂ E

∂T

)
V

= 5

2

E

T
= 15

4

ζ(5/2)

ζ(3/2)

(
T

Tc

)3/2

N ∼ V T 3/2
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and remains finite at the Bose–Einstein condensation point as Cv(Tc) ≈ 1.93N . This
magnitude of specific heat is slightly higher than 1.5N in the limit of high T � Tc

temperatures.
The condensed gas pressure P can be found, for example, from the grand ther-

modynamic potential � = −PV

� = T
∫

V d3 p

(2π�)3
ln
(
1 − e−εp/T

) =

= V T

(
mT

2π�2

)3/2 2√
π

∞∫
0

dx x1/2 ln
(
1 − e−x

) =

= −V T

(
mT

2π�2

)3/2

ζ(5/2) = −2

3
E .

Then we obtain the pressure of ideal Bose–Einstein condensed gas

P(T ) = T

(
mT

2π�2

)3/2

ζ(5/2) ∼ T 5/2.

The pressure is independent of the gas volume since the condensate particles with
momentum p = 0 produce no contribution to the pressure. The volume-independent
pressure results in the divergent magnitudes of isothermal expansion and compress-
ibility as well as specific heat at constant pressure.

Sinceμ = 0, the free energy F(T, V ) of condensed gas can readily be found from
relation F = μN + �

F = � = − 2

3
E ∼ −V T 5/2.

Hence we obtain the entropy S according to the formula S = −∂ F/∂T

S = 5

3

E

T
= 2

3
Cv ∼ V T 3/2.

Since the entropy of a gas depends on its volume, the adiabatic coefficients of
expansion and compressibility conserve their finite magnitudes in contrast to the
isothermal counterparts. While varying the temperature and volume along the adia-
bat, the ratio T/Tc remains unchanged and, therefore, the relation between the over-
condensate and condensate fractions holds for a constant in the adiabatic (S = const)
process. In the ideal condensed Bose gas, we have PV 5/3 = const along the adiabatic
curve. This entails the following magnitude for the adiabatic compressibility:

− 1

V

(
∂V

∂ P

)
S

= 3

5

1

P(T )
∼ T −5/2
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which remains finite at T 
= 0 unlike the infinite magnitude of isothermal compress-
ibility. Using the equality ρ(∂ P/∂ρ) = −V (∂ P/∂V ) where ρ ∼ 1/V is the gas
density, we find the square of adiabatic sound velocity from the formula

c2s =
(

∂ P

∂ρ

)
S

= 5

3

P(T )

ρ
∼ T 5/2.

The magnitude of adiabatic sound velocity T 
= 0 is finite as well. This is in
contrast to zero magnitude of isothermal sound velocity determined by equation
c2T = (∂ P/∂ρ

)
T .

In conclusion, we would like to discuss a possibility of the Bose–Einstein conden-
sation in an ideal gas as a function of the spatial dimensionality d and one-particle
density of states g(ε). Let us write down the maximum possible number of particles
in all excited states ε > 0

max[Nexc(T )] =
∞∫
0

g(ε) dε

eε/T − 1
= T

∞∫
0

g(xT ) dx

ex − 1
.

The answer depends on the behavior g(ε) for the small values of energy ε. If the
above integral is convergent and unlimitedly decreases by lowering the temperature,
the particle condensation to the lowest energy level is necessary at some temperature
since all the particles cannot be put into the excited states.

Provided that the integral is divergent and the value max[Nexc(T 
= 0)] exceeds
the total particle number N , the normalization with the total particle number satisfies
always at the chemical potential value smaller than its maximum possible one, i.e.
at μ < 0. The population of the ground level ε = 0 will be proportional to the factor[
exp(−μ/T ) − 1

]−1
limited in magnitude and thus no macroscopic population of

the ground level appears.
In the space of dimensionality d and for usual dispersion law εp = p2/2m, the

one-particle density of states g(ε) is proportional to ε(d−2)/2. Since the integral above
converges if onlyd > 2,wedrawa conclusion about the absence of theBose–Einstein
condensation phenomenon for the ideal gas of bosons in the space of dimensionality
d � 2 at any finite temperature.

For bosons with the relativistic energy spectrum ε = cp, the one-particle density
of states reads g(ε) ∼ ε(d−1) and the Bose–Einstein condensation in the ideal gas of
bosons will be possible in the spatial dimensionality d > 1.

Problems

1. Find the behavior for specific heat C p(T ) in the ideal Bose gas at the constant pressure in the
vicinity of the Bose–Einstein condensation temperature.

Solution. We employ the relation between the specific heats at constant pressureC p and constant
volume Cv

C p = Cv

(
∂ P/∂V

)
S(

∂ P/∂V
)

T

.
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The quantities Cv and
(
∂ P/∂V

)
S are continuous at the phase transition point Tc and, therefore,

divergency C p is associated with zero value of (δP/δV )T . We have at the transition point

Cv

(
∂ P

∂V

)
S

= − 25

4

P2(Tc)

Tc
= −

(
5ζ(5/2)

2ζ(3/2)

)2 ( N

V

)2

Tc .

Then we determine pressure P , using the relation
(
∂ P/∂μ

)
T,V = N/V . So,

P = P0(T ) + μ
N

V

where P0(T ) is the pressure at μ = 0. Next, we have for the derivative with respect to volume
(

∂ P

∂V

)
T

= ∂

∂V

(
N

V
μ(T, V )

)
.

In the vicinity of phase transition temperature Tc, the chemical potential μ equals approximately

μ = − 9 ζ 2(3/2)

16π

(T − Tc)
2

Tc
θ(T − Tc).

Taking ∂Tc/∂V = −(2/3) Tc/V into account, we find the leading contribution to the inverse com-
pressibility at T → Tc

(
∂ P

∂V

)
T

= − 3 ζ 2(3/2)

4π

N

V 2 (T − Tc) θ(T − Tc).

Finally, unlike the specific heat Cv at the constant volume, we get the divergent behavior near
T = Tc

C p = 25πζ 2(5/2)

3 ζ 4(3/2)
N

Tc

T − Tc
∼ 1

T − Tc
.

The jump in the second derivative of chemical potential with respect to temperature

∂2μ

∂T 2 = −9ζ 2(3/2)

8πTc
θ(T − Tc)

at the transition point leads to the corresponding discontinuity in derivative ∂Cv/∂T . In fact, using
the relation for the energy of a gas

E = 3

2

(
P0(T )V + μN

)
= E0(T ) + �E,

we have for the difference in the specific heats of the non-condensed and condensed states near the
transition point

�

(
∂Cv

∂T

)
= ∂

∂T

(
∂�E

∂T

)
= ∂

∂T

(
3

2

∂μ

∂T
N

)
= −27ζ 2(3/2)

16π

N

Tc
≈ −3.66

N

Tc
.

2. There is an ideal gas of charged bosons on the neutralizing homogeneous background of
opposite-sign charges.

Consider the screening of a trial charge Q, using the self-consistent Debye–Hückel approxima-
tion. The charge of spinless bosons equals q.

Solution. The trial charge produces an electric field with certain potential ϕ(r). We have for the
density n(r) of the boson distribution
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n(r) =
∫

d3 p

(2π�)3
nB(εp + qϕ(r) − μ)

wherenB is theBose–Einstein distribution for the particleswith dispersion εp and chemical potential
μ. Far from the trial charge, where ϕ → 0, the density of induced charges should cross over into
the average density n0 of bosons.

The potential ϕ is connected with the charge density by means of the Poisson equation

∇2ϕ = −4πq
(
n(r) − n0

)
.

Next, we apply the Debye–Hückel approximation, assuming the relative weakness of interaction
qϕ

n(r) = n0 + qϕ(r)

(
− ∂n0

∂μ

)∣∣∣∣
ϕ=0

.

As a result, we obtain equation ∇2ϕ = κ
2ϕ where

κ
2 = 4πq2 ∂n0

∂μ
= 4πq2

∫
d3 p

(2π�)3

∂nB(εp − μ)

∂μ
= −4πq2

∫
g(ε)n′

B(ε − μ)dε

and g(ε) is the density of states. The centrally symmetric solution, satisfying ϕ → Q/r as r → 0,
has the form of Debye screening

ϕ(r) = Q

r
e−κr .

The length 1/κ has a sense of the screening radius (Debye radius). For the temperatures higher as
compared with the degeneracy temperature of ideal boson gas, the Bose–Einstein distribution can
be replaced with the Boltzmann one nB ≈ exp[(μ − εp)/T ]. Hence we obtain the answer for the
inverse Debye radius in the classical ideal plasma

κ =
√
4πq2n0

T
.

For the gas of bosons with dispersion εp = p2/2m, it is interesting to consider the behavior of
the Debye radius at the temperatures close to the Bose–Einstein condensation temperature T = Tc.
As T → Tc, the estimate of the above integral yields

κ
2 = 4πq2

(
mT

2π�2

)3/2 √
π

T

√
T

|μ| → 4πq2n0

Tc

4π

3ζ 2(3/2)

Tc

T − Tc
.

Thus, in the ideal gas of charged bosons as T → Tc the Debye screening radius tends to zero
according to 1/κ ∼ √

T − Tc.
Note that, for bosons with the relativistic spectrum εp = pc, the Debye radius remains finite at

the temperatures near the condensation temperature Tc

κ(T → Tc) = π√
6ζ(3)

√
4πq2n0

Tc
.

The example considered demonstrates that the behavior of a Bose gas at temperatures below the
degeneracy temperature is very sensitive to the type of the particle energy dispersion and, corre-
spondingly, density of states.

3. Find the isothermal sound velocity cT in the two-dimensional ideal gas of spinless bosons of
mass m and particle density n.

Solution. The square of the isothermal sound velocity is determined by the derivative of pressure
P with respect to the mass density ρ = mn:
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c2T =
(

∂ P

∂ρ

)
T

= 1

m

(
∂ P

∂n

)
T

= n

m

(
∂μ

∂n

)
T

where μ is the chemical potential which can be found from the equation

n =
∫

d2 p

(2π�)2

1

e(εp−μ)/T − 1
= − mT

2π�2
ln
(
1 − eμ/T ), εp = p2

2m
.

Hence chemical potential equals

μ = T ln
(
1 − e−2π�

2n/mT ).
Differentiating the chemical potential yields the final answer

cT =
√
2π�2n

m

(
e2π�

2n/mT − 1
)−1/2 ≈

⎧⎪⎪⎨
⎪⎪⎩

√
2π�2n

m exp
(
− π�

2n
mT

)
, T � 2π�

2n
m

√
T
m , T � 2π�

2n
m

according to cT = √nμ′(n)/m. The isothermal sound velocity vanishes at T = 0.
4. Find the isothermal sound velocity cT in the two-dimensional ideal gas of spin-1/2 fermions

of mass m and particle density n.
Solution. The square of the isothermal sound is determined by the derivative of pressure P with

respect to the mass density ρ = mn:

c2T =
(

∂ P

∂ρ

)
T

= 1

m

(
∂ P

∂n

)
T

= n

m

(
∂μ

∂n

)
T

where μ is the chemical potential which can be found from the equation

n = 2
∫

d2 p

(2π�)2

1

e(εp−μ)/T + 1
= mT

π�2
ln
(
1 + eμ/T ), εp = p2

2m
.

Hence the chemical potential equals

μ = T ln
(
eπ�

2n/mT − 1
)
.

Differentiating the chemical potential yields the final answer

cT =
√

π�2n

m

(
1 − e−π�

2n/mT )−1/2 ≈

⎧⎪⎪⎨
⎪⎪⎩

vF√
2
, T � mv2F

2

√
T
m , T � mv2F

2

according to cT = √nμ′(n)/m and vF = √
2π�2n/n is the Fermi velocity.

Note the different low-temperature behavior of isothermal sound velocity in the fermion and

boson ideal gases at the temperatures below the degeneracy one. As is expected, the sound velocity

in both systems has the same classical magnitude in the high-temperature limit.
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3.9 The Degenerate Bose Gas in the Harmonic Trap

Let us consider the behavior of ideal degenerateBose gas in the trapwith the harmonic
confining potential

U (x, y, z) = m
(
ω2

x x2 + ω2
y y2 + ω2

z z2
)
/2.

The energy levels of a particle in the harmonic potential are given by the simple
formula

ε(n1, n2, n3) = �ωx
(
n1 + 1/2

)+ �ωy
(
n2 + 1/2

)+ �ωz
(
n3 + 1/2

)

where n1, n2, and n3 are the non-negative integers. Belowwe assume themacroscopic
limit when the number of bosons N � 1 is large and the energy levels in the trap
are located sufficiently close to each other. In this case, instead of summing over the
energy levels, we can use the semiclassical approximation for calculating the ther-
modynamic functions of a gas. So, we replace the sum over the close discrete levels
with the integral, thus assuming an approximation with the continuous spectrum of
levels.

First of all, we determine the one-particle density of states in the trap

g(ε) =
∫

d3 p d3r

(2π�)3
δ

(
ε − p2

x + p2
y + p2

z

2m
− m(ω2

x x2 + ω2
y y2 + ω2

z z2)

2

)
=

=
∫

d3 p d3r

π3�3ωxωyωz
δ
(
ε − p2 − r2

)
.

The last integral can be interpreted as an integral in the six-dimensional space R =
( p, r). Then,

g(ε) =
∫

d6R

(π�)3ωxωyωz
δ
(
ε − R2

) =
∫

π3R5 d R

(π�)3ωxωyωz
δ
(
ε − R2

)
.

Here we have taken into account that the area for the six-dimensional sphere of unit
radius equals π3. Calculating the last integral with the substitution R2 = ρ, we find
the one-particle density of states in the harmonic trap

g(ε) = ε2

2�3ωxωyωz
.

The Bose–Einstein condensation Tc is determined with the aid of condition

N =
∞∫
0

dε ε2

2�3ωxωyωz

1

eε/Tc − 1
= T 3

c

2�3ωxωyωz
2ζ(3).
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Hence the condensation temperature equals

Tc = �
(
ωxωyωz N/ζ(3)

)1/3
.

Here we emphasize the following point. Unlike the conventional trap as a box
of volume V = Lx L y Lz when the macroscopic limit means N →∞, V →∞,
and the gas density N/V to be held constant, the macroscopic description of the
gas condensation in the trap assumes the following limiting conditions: N →∞,
(ωxωyωz)

1/3→ 0 under N (ωxωyωz)
1/3 =const.

The number of overcondensate particles is given by the integral

Nexc(T ) =
∞∫
0

dε ε2

2�3ωxωyωz

1

eε/T − 1
= T 3

�3ωxωyωz
ζ(3) = N

(
T

Tc

)3

.

The energy of condensed gas is determined with the expression

E(T ) =
∞∫
0

dε ε2

2�3ωxωyωz

ε

eε/T − 1
= T 4

2�3ωxωyωz

π4

15
= π4

30ζ(3)
T Nexc(T ).

The specific heat of condensed gas is found by differentiating with respect to tem-
perature

C(T ) = 4
E(T )

T
= 2π4

15ζ(3)
Nexc(T ) ∼ T 3.

Let us analyze the behavior of chemical potential μ(T ) near the condensation
temperature Tc. For this aim, we write

N =
∞∫
0

dε ε2

2�3ωxωyωz

1

e(ε−μ/T ) − 1
= T 3

2�3ωxωyωz

∞∫
0

dx x2

e−μ/T ex − 1

≈ T 3

2�3ωxωyωz

(
2ζ(3) + π2

3

μ

T

)
= T 3

c

�3ωxωyωz
ζ(3) .

Estimating the integral, we have taken into account that the chemical potential |μ| �
T ∼ Tc near Tc. Then we have

μ(T ) = − 18ζ(3)

π2
(T − Tc)θ(T − Tc) at |T − Tc| � Tc .

Unlike the usual case of three-dimensional trap as a cubic box, we see that the first
derivative ∂μ/∂T experiences already the finite jump.

Let us turn to variable x = ε/T and differentiate the energy of a gas with respect
to temperature. As a result we represent the specific heat as
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C(T ) = ∂

∂T

∞∫
0

dx x2

2�3ωxωyωz

x

ex−μ/T − 1

= 4T 3

2�3ωxωyωz

∞∫
0

dx x3

ex−μ/T − 1
+ T 4

2�3ωxωyωz

∞∫
0

dx x3ex−μ/T

(ex−μ/T − 1)2
∂(μ/T )

∂T
.

Involving the continuity of chemical potential μ and the jump of derivative ∂μ/∂T ,
we obtain near the transition temperature Tc

C(Tc + 0) = C(Tc − 0) + T 4
c

2�3ωxωyωz

∞∫
0

dx x3ex

(ex − 1)2

(
− 18 ζ(3)

π2Tc

)
.

Substituting the value of integral equal to 6ζ(3), we arrive at the magnitude of the
specific heat jump at the transition point T = Tc

�C(Tc) = C(Tc − 0) − C(Tc + 0) = 54 ζ(3)

π2
N .

The Bose–Einstein condensation in the harmonic trap is an example of the second-
order phase transition.

Problems

1.The classical string with the fixed end-points has an infinite set of oscillation frequenciesωl =
lω, which are themultiplies of the fundamental frequencyω. Its quantummechanical generalization
or bosonic quantum non-relativistic string represents a set of the infinite number of harmonic
oscillators with frequencies ω, 2ω, 3ω, . . . and energies

El = �ωl (nl + 1/2), ωl = lω, l = 1, 2, 3, . . .

The occupation numbers nl = 0, 1, 2, . . . for each oscillator are unlimited and vary from zero to
infinity.

Find the free energy F(T ), entropy S(T ), specific heat C(T ), and the number of states 
(E)

for the quantum Bose string in the high energy E � �ω limit (Hardy–Ramanujan formula).
Solution. Since the oscillators do not interact with each other, the total partition function reduces

to a product of partition functions for the separate oscillators

Z =
∞∏

l=1

zl , zl =
∞∑

nl =0

e− �ωl
T (nl +1/2) = e−�ωl /2T

1 − e−�ωl /T
.

Hence the free energy reads

F = E0 + T
∞∑

l=1

ln
(
1 − e−�ωl/T ), E0 =

∞∑
l=1

�ωl/2,
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E0 being the energy of zero oscillations. Then we find the entropy and specific heat

S(T ) =
∞∑

l=1

[
�ωl/T

e�ωl /T − 1
− ln

(
1 − e−�ωl /T )],

C(T ) =
∞∑

l=1

[
�ωl/2T

sinh(�ωl/2T )

]2
, ωl = lω.

For the low (T � �ω) temperatures, all these quantities vanish exponentially as

S(T ) = (�ω/T )e−�ω/T , C(T ) = (�ω/T )2e−�ω/T .

The behavior at high (T � �ω) temperature is more interesting. In this limit the main contribution
to the sum over l is given by the terms with large l � 1 numbers, and we can approximately convert
the sum into the integral. Then,

F − E0 = T

∞∫
0

dl ln
(
1 − e−�ωl/T ) = T 2

�ω

∞∫
0

dx ln
(
1 − e−x ) = − π2

6

T 2

�ω
,

C(T ) =
∞∫
0

dl

(
�ωl/2T

sinh(�ωl/2T )

)2

= 2T

�ω

∞∫
0

dx
x2

sinh2 x
= π2

3

T

�ω
.

Note that the specific heat C(T ) of quantum string does not cross over into the usual classical
behavior C(T ) = const even in the high-temperature limit.

To determine the number of states 
(E) of the string, we employ the relation S(E) = ln
(E).
From the relations

E − E0 = π2T 2/6�ω and S = π2T/3�ω

valid at T � �ω, we find

ln
(E) = S(E) = 2π

√
E − E0

6�ω
= 2π

√
N

6
, N = E − E0

�ω
� 1.

Here N = n1 + 2n2 + 3n3 + . . . plays a role of particle number expressed in terms of occupation
numbers.

In fact, function 
(N ) coincides completely with that p(N ) called the partition function and
is determined as the number of possible partitions of a non-negative integer N onto the integer
terms regardless of their order. For instance, for N = 4 we have five partitions: 4, 3+1, 2+2, 2+1+1,
1+1+1+1, and p(4) = 5. We here present more precise Hardy–Ramanujan asymptotic for the num-
ber of string states at N � 1, containing one more expansion term

ln
(N ) ≈ 2π
√

N/6 − ln(4
√
3 N ) and 
(N ) ≈ (4

√
3 N )−1e2π

√
N/6.

Emphasize that the thermodynamic properties for the fermionic and bosonic strings are isomor-
phic to each other in the high T � �ω limit.

2.Determine the Bose–Einstein condensation temperature for an ideal gas consisting of N � 1
spinless bosons having mass M and restricted in motion with the spherical surface of radius R. Find
the number N0(T ) of condensate particles.

Solution. The energy εl,m of a boson equals

εl = �
2

2M R2 l(l + 1), l = 0, 1, 2, . . .
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where l is the orbital quantum number and each energy level has the 2l + 1 states degenerated
with respect to magnetic quantum number m = −l, −l + 1, . . . , l − 1, l. The maximum possible
number of particleswhich can be in all excited states l > 0will be achieved at themaximumpossible
value of the chemical potential μ. In our case this is μ = 0 and we have

N =
∞∑

l=1

2l + 1

eεl /T − 1
=

∞∑
l=1

2l + 1

eal(l+1) − 1
, a = �

2

2M R2T
.

This equation determines the Bose–Einstein condensation temperature Tc.
Assuming that the condensation temperature is large on the scale of energy level discreteness,

i.e. Tc � �
2/2M R2, we estimate the sum by the following integral within the logarithmic accuracy:

N ≈
∞∫

l=1

(2l + 1) dl

eal(l+1) − 1
= − ln(1 − e−2a)

a
≈ 1

a
ln

1

2a
(a � 1).

Solving this equation, we find the condensation temperature within the logarithmic accuracy

Tc ≈ �
2

2M R2

N

ln(cN )

where c ∼ 1 is the number of about unity. In the crossover limit R → ∞ to the plane surface at the
fixed gas density n = N/4π R2, as is expected, we have Tc → 0 for the finite magnitude R.

The number of condensate particles N0(T ) at T < Tc is given by the following difference:

N0(T ) = N −
∞∑

l=1

2l + 1

eεl /T − 1
≈ 1

ac
ln

1

2ac
− 1

a
ln

1

2a

or
N0(T )

N
≈ 1 − ac

a

ln(1/2a)

ln(1/2ac)
= 1 − T

Tc

ln(M R2T/�
2)

ln(M R2Tc/�2)
.

3.10 Ideal Gas of Elementary Bose Excitations

The Bose statistics can be applied to studying the thermal equilibrium of electro-
magnetic radiation and to calculating the thermodynamic properties for a series of
condensedmedia. The latter can be described as a set of Bose elementary excitations.
The radiation or electromagneticwaves can be represented as a set of electromagnetic
field quanta, i.e. photons, whose energy is given by the momentum and polarization.

Another object of such a approach is solids or elastic condensed media in which
excitations are vibrations of atoms near their equilibrium position. On the whole,
such collective vibrations of a deformed medium correspond to the sound waves
described as a set of quanta of elastic deformation or phonons whose energy is also
determined by the momentum and type (branch) of the corresponding sound wave.
The sound waves are simplest in an isotropic liquid which has a single acoustic
branch. In the crystalline medium the sound spectrum is more complicated. There
are always one longitudinal and two transverse sound waves. In the media with
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the complex crystalline lattice containing ν > 1 atoms in a unit cell, there are extra
3(ν − 1) sound branches called the optical ones. As concerns the acoustic branches,
the sound wave frequency vanishes at zero wave vector. As for the optical branches,
the sound frequency at zero wave vector remains finite.

Another example of condensed media, where elementary excitations of the Bose
type exist, are magnetically ordered media. The rotation of magnetic moments or
spins is accompanied with the propagation of waves through the magnetic system.
The waves are referred to as spin waves, and the corresponding quanta are called
magnons.

The physical process that provides us the thermal equilibrium of excitations is the
generation and absorption of elementary excitations with the condensed medium.
This circumstance leads to the following feature of elementary excitations. The total
number of elementary excitations N in the condensed medium is not fixed and
does not conserve. Accordingly, the number of excitations is wholly determined
by the conditions of thermodynamic equilibrium alone, i.e. temperature, and N =
N (T ). Thus, the total number of elementary excitations cannot be treated as an
independent thermodynamic variable that can be set at its ambiguity. It must be
determined from the condition of thermodynamic equilibrium, i.e. from theminimum
of thermodynamic potentials, e.g. free energy F or Gibbs potential �. Since the
derivative of potentials with respect to the number of particles yields the chemical
potential

μ =
(

∂ F

∂ N

)
T,V

=
(

∂�

∂ N

)
P,T

,

the requirement for the minimum coincides with the condition μ = 0.
Zero value of chemical potential is a general property for elementary excitations

when their total number is not fixed and does not conserve. This property can also be
examined from the viewpoint of the chemical equilibrium condition for the reaction
of producing and absorbing an elementary excitation in a medium according to

medium + excitation � medium.

Since under thermodynamic (thermal) equilibrium μm + μex = μm, we expect
μex = 0.

In first approximation and at low temperatures when the number of elementary
excitations is small, the excitations can be treated as an ideal gas of particles with zero
chemical potential μ = 0. The energy of such a particle is εs(k) = �ωs(k) where
ωs(k) is the frequency of sth branch or excitation type, k is the wave vector, and
p = �k is the momentum of excitation. The distribution of the Bose-type excitations
or their average number in the quantum states with wave vector k and frequency
ωs(k) is given by the formula

n
(
ωs(k)

) = 1

e�ωs (k)/T − 1
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which represents the Planck distribution. Below, we consider the application of this
approach for studying some physical systems.

3.11 Black-Body Radiation

Let us apply the Planck distribution for describing the black-body radiation or ther-
modynamically equilibrium radiation representing a gas of photons. The photons are
governed by the Bose statistics since they carry the integer spin angular momentum,
which is related to photon polarization. Bearing in mind the two possible polariza-
tions and dispersion of photons ω(k) = ck where c is the speed of light, we find the
density of equilibrium photon gas at temperature T

n(T ) = N (T )

V
= 2
∫

d3k

(2π)3

1

e�ck/T − 1
= T 3

π2�3

∞∫
0

x2 dx

ex − 1
= 2ζ(3)

π2

(
T

�c

)3
.

With the aid of grand potential � and condition μ = 0, we calculate the free energy
F of photon gas

F = � = 2T V
∫

d3k

(2π)3
ln
(
1 − e−�ck/T

) = T V

π2

∞∫
0

k2 ln
(
1 − e−�ck/T

)
dk.

Introducing variable x = �ck/T and integrating by parts, we arrive at

F = −V
T 4

3π2�3c3

∞∫
0

x2 dx

ex − 1
= − π2

45

V T 4

(�c)3
.

Hence the expression for entropy reads

S = −∂ F

∂T
= 4π2

45

(
T

�c

)3

V

and, accordingly, the specific heat at constant volume is given by

CV = T

(
∂S

∂T

)
V

= 4π2

15

(
T

�c

)3

V .

As concerns the specific heat C p at constant pressure, it diverges, i.e. C p = ∞, since
the pressure of equilibrium photon gas
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P = −
(

∂ F

∂V

)
T

= π2

45

T 4

(�c)3

is volume-independent.
The energy density u(T ) of equilibrium photon gas or bulk density of black-body

radiation will equal

u(T ) = E(T )

V
= 2
∫

d3k

(2π)3

�ck

e�ck/T − 1
= 4σ T 4

c
, σ = π2

60�3c2
.

The factor σ is referred to as the Stefan–Boltzmann constant. The energy density
of black-body radiation u(T ) can be associated with the energy density of electro-
magnetic field and with the time-averaged squares 〈E2〉 and 〈H2〉 of the electric and
magnetic field strengths, as follows:

u = 〈E2〉 + 〈H2〉
8π

= 〈E2〉
4π

, 〈E2〉 = 〈H2〉 = 16πσ

c
T 4.

In these relations we have involved that for the electromagnetic field in the space
devoid of a matter, the electric and magnetic field components have the same mag-
nitudes.

Since all photons have the same energy-independent velocity, the radiant energy
flux density� or the energy transfer per unit area and unit time can straightforwardly
be evaluated as a product of photon velocity by the radiation energy density u(T ),
i.e.

� = cu(T ).

In order to characterize the radiant energy flux in one direction or another, one
introduces the concept of radiant intensity I (�) as a density of the radiated energy
flux d� coming into the element of solid angle d�, according to equation d� =
I (�)d�. Due to complete spatial isotropy of black-body radiation,6 the identical
radiation flux emits equally in all directions from each volume element, i.e. I (�) =
const. Therefore, the same energy flux fraction equal to �/4π gets per unit solid
angle since the full solid angle is 4π .

The radiant capacity of a body is described by another quantity referred to as
luminosity L = d F/d A. The latter equals a ratio of the total radiant energy flux d F
emitted with the surface element of area d A to the particular side of this surface
element, say, outward in all directions and accordingly within the solid angle equal
to 2π .

To determine the luminosity of the radiation emitted with the surface element d A,
we need to integrate the vector of the radiant energyflux dF = dF(�) over thewhole
solid angle corresponding to the hemisphere and equal to 2π . In general, the energy
flux vector could depend on the direction of radiation. Due to full independence

6 The black-body radiation is a non-polarized one.
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of black-body radiation from its direction, i.e. from solid angle �, the resultant
energy flux dF will be directed along the normal n to the surface element d A and
its magnitude will be equal to the integral taken over a half of the total solid angle
from the projection of vector dF onto the surface normal n. Writing the projection
of radiant energy flux onto the normal as d Fn = n · dF = d F cosϑ where ϑ is the
angle between the normal to the surface and the direction of radiation7 and expressing
the flux d F = I d A in terms of radiant intensity I , we arrive at the luminosity of the
surface, as follows:

L = d F

d A
=
∫

d Fn

d A
d� =

π/2∫
0

sin ϑdθ

2π∫
0

dϕ I cosϑ = π I.

The relation L = π I expresses Lambert’s law for the sources of completely isotropic
radiation.

Using the relation between the black-body radiant intensity I and the radiant
energy density u(T ), we obtain the following formula for luminosity:

L = π
cu(T )

4π
= c

4
u(T ) = σ T 4,

σ = 5.67·10−5 erg·s−1·cm−2·K−4 being the Stefan–Boltzmann constant. The rela-
tionship L = σ T 4 between the luminosity of a black body and its temperature repre-
sents the Stefan–Boltzmann law. The total integral power of radiation over the entire
frequency spectrum of black-body radiation or the total luminosity of the sphere
surface area 4π R2 at temperature of T will be equal to W = 4π R2σ T 4.

Problems

1. Find the attractive force of a hydrogen atom in the ground state against the black-body sphere
of radius R at temperature T . The temperature T is small as compared with the excitation energy
in the atom. Neglect all the possible transitions of the atom to the excited state.

Solution. The thermal radiation of a black body produces the temperature-dependent electrical
field in its ambient space. Neglecting the possible transitions of the atom into an excited state due
to inequality T � Uexc ∼ 104 K, we can estimate the energy shift of the atom as a result of the
Stark effect with the aid of the static polarizability κ for the hydrogen atom as

�U = −κ

2
〈E2(r)〉.

Here 〈E2(r)〉 is the time-averaged square of electric field at point r ,κ = (9/2)a3
B is the polarizability

of hydrogen atom in the ground state, and aB = �
2/me2 is the Bohr radius. Using the relation

〈E2〉 = 4π3

15

T 4

(�c)3

7 The black body is a source of radiation obeying Lambert’s emission law. The energy flux emitted
with the surface element in the direction at angle ϑ to the normal is proportional to a product of
energy flux in the normal direction by the solid angle magnitude d� = sin ϑdϕ and cosine of angle
ϑ between the normal and radiant direction.
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Fig. 3.2 The diagram
explaining the geometry of
the incoming radiation

for the shift of the hydrogen atom ground state, we find

�U0 = − 2

15
κ

π3T 4

(�c)3
= −3π3

5

(aB

�c

)3
T 4 = −3π3

5α3

T 4

(mc2)3

where α = e2/�c is the fine-structure constant and m is the electron mass.
The thermal radiation of a heated sphere produces a spatial variation of the electromagnetic

field. The radiation of the sphere is isotropic and identical in all directions. As is seen from
Fig. 3.2, only a fraction of the total radiation, proportional to solid angle � under which the atom
sees the sphere, can reach the hydrogen atom. The solid angle � equals

� = 2π(1 − cosϑ) = 2π

(
1 −

√
r2 − R2

r

)
.

Involving the property of the whole isotropy of black-body radiation, we have the following expres-
sion for the mean square of the electric field strength at distance r from the center of the sphere:

〈E2(r)〉 = �

4π
〈E2(R)〉 = 1

2

(
1 −

√
r2 − R2

r

)
〈E2(R)〉.

Then we obtain the energy shift in the hydrogen atom

�U (r) = 1

2

(
1 −

√
r2 − R2

r

)
�U0 = −3π3

10

(
1 −

√
r2 − R2

r

)(
aB

�c

)3

T 4.

The magnitude of the shift decays as 1/r2 at distances r � R.
Due to negative sign �U (r) for the atom in the ground state, the force exerted to the atom from

the black-body radiation will be directed to the sphere center. In other words, the atom tends to be
in the region of larger electromagnetic radiation. The magnitude of the force, attracting the atom to
the heated body, is given by the relation

F(r) = − ∂ �U (r)

∂r
= R2

2r2
√

r2 − R2
�U0 = −3π3

20

(
aB

�c

)3 R2

r2
√

r2 − R2
T 4.

At large r � R distances the attraction force decays as R2/r3.
In spite of small magnitudes of the atom energy shift and attraction force, such a black-body

radiation effect is important as it concerns the problems of accuracy for the atomic frequency
standards.

2. The black hole is known to absorb the particles. Due to quantum effects, the black hole can
also evaporate the particles. The composition of evaporated particles depends on the black hole
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mass. These can be photons, gravitons, neutrinos, electrons, positrons, and other particles. The
thermodynamic equilibrium of the black hole can be described as a state of a black body heated to
the temperature as

T = �κ

2π�c
and κ = G M

R2
g

.

Hereκ is the free fall acceleration at the black hole surface, G is the gravitational constant, M is the
black hole mass, and Rg = 2G M/c2 is the black hole size or gravitational Schwarzschild radius.

Estimate the lifetime for the black hole of mass M , assuming that the black hole evaporation is
mainly associated with emitting the photons.

Solution. The total power of photon radiation from the black bodyof area 4π R2
g equals 4π R2

gσ T 4

where σ is the Stefan–Boltzmann constant. The loss of black hole mass in the evaporation process
is determined with the energy balance equation

− d

dt

(
Mc2

) = 4π R2
gσ T 4 = 1

210
1

15π

�c6

G2M2 .

Hence the lifetime of black hole proves to be finite and equal to

t = 15 · 210π G2

�c4

M∫
0

M2d M = 5 · 210π G2M3

�c4
= 320√

2π

(
M

Mp

)3

tp .

The latter equality is expressed in the terms of the Planck units of mass Mp = (�c/8πG
)1/2 and

time tp = (�G/c5
)1/2 = l p/c. The length l p is the Planck length or the size of photon when its

energy mc2 = �ω ∼ �c/ l p would be comparable with its own gravitational energy Gm2/ l p .

3.12 Thermal Properties of Solid Bodies: Phonons in a
Solid Body

Excitations in the elastic condensed medium correspond to the vibrations of atoms
near the equilibrium positions. In first approximation we assume that the vibrations
of atoms are small and, therefore, we will describe them as harmonic vibrations.
Such small elastic excitations in the medium are consistent with the sound waves.
The latter ones are treated as a set of quanta of elastic deformation field or phonons
whose energy is determined by the momentum and the type or branch of sound
wave. The concept about gas of phonons can be applied for describing the thermal
properties of a medium, resulting from the thermal vibrations around the equilibrium
positions of atoms or lattice sites.

The structure of sound waves is simplest in an isotropic liquid which has a single
longitudinal acoustic branch. In solids or crystals, the sound vibration spectrum is
more complicated. If there are 3ν types of normal vibrations in the crystal lattice with
dispersionω = ωs(k), k being thewave vector and s = 1, 2, . . . , 3ν, the phonon part
of free energy in a solid is given by the usual expression
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Fph = V T
3ν∑

s=1

d3k

(2π)3
ln

(
1 − e−�ωs (k)/T

)
= V T

∫
dω g(ω) ln

(
1 − e−�ω/T

)
.

Here we have introduced the spectral density of phonon vibrations g(ω)

g(ω) =
3ν∑

s=1

∫
d3k

(2π)3
δ
(
ω − ωs(k)

)
,

i.e. the density of phonon states per unit volume of a body. The spectral density of
phononvibrations is the essential characteristic that determines the thermal properties
of a solid body.

The general number of various normal vibrations or total number of phonon states
is determined with the number of vibrational degrees of freedom of a body after
subtracting all three degrees of translational motion and three degrees of rotational
motion of the body as a whole. So, the total number of phonon states equals 3N − 6
where N is the number of atoms or particles in the body. On the neglect of number 6
as compared with the number of atoms N � 1, we arrive at the following condition:

V
∫

g(ω) dω = 3N .

The phonon spectrum is limited in frequencies ω � ωmax from above. Since the
lattice of atoms is discrete, the wavelength of sound cannot be smaller than the
minimal spacing a between the atoms. In the low frequency ω → 0 limit, the sound
excitations represent the long-wave acoustic phonons with frequencies ω ∼ k. The
quadratic behavior of spectral density of states g(ω) ∼ ω2 corresponds to the acoustic
phonon spectrum.

Using relation E = F − T (∂ F/∂T ) between the energy and free energy, we can
find the phonon contribution to the energy of a solid body

E ph(T ) = V
∫

dω g(ω)
�ω

e�ω/T − 1
,

and then the phonon contribution to the specific heat at constant volume according
to C = (∂ E/∂T )V

C ph(T ) = V
∫

dω g(ω)
(�ω/2T )2

sinh2 �ω/2T
.

In the high-temperature limit T � �ωmax , using approximations ex − 1 ≈ x and
x/ sinh x ≈ 1 for small values x � 1, we arrive at the classical magnitudes of energy
and specific heat
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E ph = V
∫

dω g(ω)T = 3N T and C ph = V
∫

dω g(ω) = 3N .

Such a temperature-independent and universal behavior signify theDulong–Petit law
for the phonon specific heat at high temperatures.

3.13 Debye’s Interpolation Model

Since it is impossible to perform an accurate analytical calculation of phonon spec-
tral density g(ω), the simple Debye model is often used for approximating the spec-
tral density. In this model the low-frequency quadratic behavior of spectral density
g(ω) = αω2 extends over the whole frequency range to the maximum frequency
ωD called the Debye frequency. The order-of-magnitude estimate for the Debye fre-
quency can be given asωD ∼ u/a where u is the typical sound velocity in a solid and
a is the interatomic distance. The Debye frequency can be associated with the Debye
temperature equal to �D = �ωD . The proportionality coefficient α and Debye fre-
quency ωD must be consistent with each other through the normalization condition,
resulting in the interpolation formula for the spectral density in the Debye model

g(ω) = 9
N

V

ω2

ω3
D

ϑ(ωD − ω).

As a result, we arrive at the following energy and specific heat in theDebyemodel:

E ph = 9N

ω3
D

ωD∫
0

dω ω2 �ω

e�ω/T − 1
= 9N

T 4

�3
D

�D/T∫
0

dx
x3

ex − 1
= 3N T D3

(
�D

T

)
,

C ph = 9N

ω3
D

ωD∫
0

dω ω2

(
�ω/2T

)2
sinh2 �ω/2T

= 9N

4

T 3

�3
D

�D/T∫
0

dx
x4

sinh2 x/2

where D3(x) is the Debye function8 of the third kind.
For the low T � �D temperature region, the upper limit of integration can be

extended to infinity. Then,

E ph = 3π4

5
N

T 4

�3
D

and C ph = 12π4

5
N

(
T

�D

)3

.

In the high T � �D temperature limit, the classical Dulong–Petit result reproduces.

8 The Debye function of nth kind is defined by integral Dn(x) = n
xn

x∫
0

tn dt
et −1 .
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Solids with more than one atom in the unit cell have the optical phonon branches.
As a rule, the optical frequencies depend weakly on the vector, i.e. ω(k) ≈ const =
ω0. In this case, the Einstein model may be applicable if the dispersion of the optical
phonon branch is completely neglected. Accordingly, the optical mode contribution
to the spectral density of states g(ω) is approximated with the δ-shaped peak near the
frequency ω0 as g(ω) ∼ δ(ω − ω0). When combining the Debye and Einstein terms
in the spectral density of states, the Debye temperature will be lowered since sum-
ming over all the phonon states would give the same number of vibrational degrees
of freedom. For the temperatures T � �ω0, the contribution of the optical phonon
mode to the specific heat of a solid freezes exponentially and, thereby, does not affect
the low-temperature power-like asymptotic behavior of the specific heat.

Problem

1. Calculate the Grüneisen parameter γ = V
(
∂ P/∂ E)V in the Debye model.

Solution. Let us employ the following relation between the derivative of free energy Fph(T )

with respect to the Debye temperature�D and the energy E ph(T ), being valid in the Debye model:

(
∂ Fph(T )

∂�D

)
N ,T

= E ph(T )

�D
.

Determining the pressure P as usual, we obtain

P = −
(

∂ Fph(T )

∂V

)
N ,T

= − ∂ Fph

∂�D

∂�D

∂V
= −E ph

∂ ln�D

∂V

where V is the volume of a body. Then we find the Grüneisen parameter

γ = − ∂ ln�D

∂ ln V
.

In the Debye model, the Grüneisen parameter proves to be temperature-independent and character-
izes the effect of varying the body volume as a function of the Debye temperature. The magnitude
of parameter γ is usually about unity, i.e. γ ∼ 1.

Let us express theGrüneisenparameter via the coefficients of thermal expansionα = V −1∂V/∂T
and isothermal compressibility β = −V −1∂V/∂ P according to

γ = V

(
∂ P

∂T

)
V

1

CV
= −

(
∂V/∂T

)
P(

∂V/∂ P
)

T

V

CV
= αV

βCV

where CV = C ph(T ) is the specific heat of a body at constant volume V . Since in the Debye

model the coefficients γ and β are temperature-independent, we can draw a conclusion that the

thermal expansion coefficientα(T ) and specific heatCV (T ) have the identical temperature behavior

(Grüneisen law). As usual, in the solid dielectrics this law is fairly a good approximation.

3.14 The Phonon Spectrum of Crystalline Lattice

Let us consider inmore detail the physical properties of phonon spectrum in a crystal.
In order to determine the phonon spectrum in the crystalline lattice of atoms, it is
necessary to set the forces acting between the atoms and describe themotion of atoms.
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The spatial arrangement of atoms represents the crystalline lattice sites which can
be given by a set of vectors

l = l1a1 + l2a2 + l3a3

where l1, l2, and l3 are the integers. The arrangement of atoms in thewhole crystal can
be determined by specifying the single unit cell, e.g. by the parallelepiped constituted
with the primitive translational vectors a1, a2, a3. Thus, the crystal is a repeating
set of identical unit cells. In general, in each unit cell there may be a few of various
atoms. Let index s numerate the atoms in the unit cell (s = 1, 2, . . . , ν), ν being the
number of atoms in the unit cell.

Let us introduce notation usl for the displacement vector of sth atom with mass
Ms in the l = (l1, l2, l3) unit cell from the equilibrium position or crystal lattice site.
Then the kinetic energy of a crystal reads

Ekin = 1

2

∑
sl

Ms |u̇sl |2.

In order to determine the potential energy, it is necessary to specify the interatomic
forces which we will characterize with the aid of some function representing the
potential energy of atom vibrations U (usl) and depending on the coordinates of all
atoms or on their displacements usl from the crystal lattice sites. Next, we assume that
the potential energy U (usl) reaches its absolute minimumwhen all the displacement
vectors usl vanish. Thereby, the arrangement of atoms at the crystal lattice sites
corresponds to the stable equilibrium of the crystal.

Applying the methods of small vibration theory, we expand the potential energy
U (usl) in the powers of displacement vectors usl , restricting ourselves with the
harmonic approximation, i.e. with the terms of expansion not higher than second
order:

U (usl) = U (0) + 1

2

∑
sl, s ′ l ′

usl
∂2U (0)

∂usl∂us ′ l ′
us ′ l ′ + . . .

The linear term in the expansion over displacement vectors usl vanishes due to
assumption about the extremum of potential energy U (usl). The constant U (0) in
the expansion is unessential from now on. Let us introduce the force tensor

�sl, s ′ l ′ = ∂2U

∂usl∂us ′ l ′

∣∣∣∣
usl=us′ l ′=0

for brevity and consider its simplest properties. Firstly, the force tensor �sl, s ′ l ′

depends only on the difference between vectors l and l ′, i.e.

�sl, s ′ l ′ = �s s ′(l − l ′),
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since the forces interacting between atoms are only relatedwith their relative position
in the lattice. Secondly, the force tensor has the following property of symmetry:

�s s ′(l) = �s ′ s(−l).

And thirdly, the force tensor coefficients �s s ′(l) are also related with each other by
the relation expressing the following. The uniform displacement of the crystal as
a whole (usl = const) does not vary its energy, the crystalline lattice stays in the
equilibrium position, and there appear no additional forces acting on the atoms in
the lattice. In fact, from the lack of any additional forces

− ∂U

∂usl
= −

∑
s ′ l ′

�(l − l ′)us ′ l ′

∣∣∣∣
us′ l ′≡const

= 0,

we obtain the following relation:

∑
s ′ l

�s s ′(l) = 0.

From the Lagrange function for the crystal treated as a mechanical system

L = Ekin − U = 1

2

∑
sl

Ms |u̇sl |2 − U (0) − 1

2

∑
sl, s ′ l ′

usl
∂2U

∂usl∂us ′ l ′
us ′ l ′ ,

the following system for the equations of motion results in

Ms üsl = −
∑
s ′ l ′

�s s′(l − l ′)us ′ l ′ .

It is convenient to examine the system of linear equations with the right-hand side
representing a convolution by using the Fourier transformation, i.e. in the form of a
set of monochromatic plane waves:

usl(t) = es(k)eikl−iωk t .

Here es(k) is thepolarization vector, k is thewave vector, andωk is the corresponding
frequency of the wave. Then we have

Msω
2
kes(k) −

ν∑
s ′=1

�s s ′(k)es ′(k) = 0

wherewe have introduced the Fourier transformof the force tensor or dynamic matrix
as follows:
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�s s ′(k) =
∑
l

�s s ′(l)e−ikl .

The dynamic matrix has the following properties:

�s s ′(k) = �s ′ s(−k) = �∗
s ′ s(k)

which characterizes it as a Hermitian matrix.
As a result, involving three projections x , y, and z for the displacement vectors

usl and ν of polarization vectors es(k), we arrive at the uniform system of 3ν linear
equations. The nontrivial solutions for this system of equations are determined by
vanishing the characteristic polynomial P(ω2

k) equal to the 3ν×3ν determinant

P(ω2
k) = det

∥∥δs s ′ Ms ′ω2
k − �s s ′(k)

∥∥ = 0.

Thus we get the algebraic equation of degree 3ν with respect to ω2
k. In the general

case, analyzing the dispersion equation P(ω2
k) = 0, we should find 3ν independent

solutions for frequencies ω2
k which determine the dispersion or frequency spectrum

ω(k) of normal harmonic vibrations in the crystalline lattice as a function of wave
vector k. Each of the 3ν normal vibrations is referred to as the branch of phonon
spectrum.

Let us note a number of general properties for the phonon spectrum. They follow
from the properties for the Fourier transform of dynamic matrix �s s ′(k). Changing
the direction of wave vector k to the opposite one, we obtain for the matrix transpose

�s s ′(−k) = �T
s ′ s(k).

Since the transposition of the matrix keeps the magnitude of the determinant
unchanged, we can assert that the dispersion equation P(ω2

−k) = 0 remains the same
and, therefore, the phonon frequencies are the even functions of the wave vector

ω(k) = ω(−k).

From the physical point of view, this propertymeans the invariance of the Lagrangian
and equations of motion with respect to the time reversal. If the wave vibration
propagates in one direction, its propagation in the opposite direction is possible as
well. The change of wave propagation direction corresponds to varying the sign of
wave vector.

For describing the further properties of the phonon spectrum, we will need the
concept of reciprocal lattice closely related to the periodicity of direct or real crys-
talline lattice. The set of wave vectors b is called the reciprocal lattice if the plane
wave eibr has a periodicity of the direct crystalline lattice. In other words, for an
arbitrary radius vector r and an arbitrary vector of the direct lattice l , the following
equation is valid:

eib(r+l) = eibr .
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Thus the reciprocal lattice is a set of wave vectors k satisfying the condition

eibl = 1.

For the set a = (a1, a2, a3) of primitive vectors, the reciprocal lattice is generated
with the following set of three primitive vectors b = (b1, b2, b3) of reciprocal lattice:

b1 = 2π
a2 × a3

a1 · (a2 × a3)
, b2 = 2π

a3 × a3
a1 · (a2 × a3)

, b3 = 2π
a1 × a2

a1 · (a2 × a3)

such as ai · b j = 2πδi j . Setting an arbitrary vector of reciprocal lattice

b = p1b1 + p2b2 + p3b3

where p1, p2, p3 are arbitrary integers and an arbitrary direct lattice vector
l = l1a1 + l2a2 + l3b3, we can readily check the necessary relation

b·l = 2π(p1l1 + p2l2 + p3l3).

The product b · l must always be a multiple of 2π for any choice of integers l1, l2,
l3. This can only be satisfied for integers p1, p2, p3. The reciprocal lattice to the
reciprocal one is the original direct lattice.9

According to the definition of the Fourier transform for dynamic matrix �s s ′(k),
we have its periodicity with the reciprocal lattice vector b:

�s s ′(k + b) = �s s ′(k).

Such a translational property of dynamic matrix, as it follows from the dispersion
equation, results in the phonon spectrum periodicity with the period of reciprocal
lattice vector b

ω(k + b) = ω(k).

Due to periodicity of phonon spectrum, it is usual to consider a limited range
of varying the vectors k, corresponding only to one of the reciprocal lattice units.
Usually, the first Brillouin zone is chosen as a locus of points in the reciprocal space
that are closer to the origin k = 0 of the reciprocal lattice than they are to any other
reciprocal lattice point given by vector b = p1b1 + p2b2 + p3b3 inwhich at least one
of the integer coefficients pi is nonzero.10 When wave vector k takes all the values
from the first Brillouin zone, the phonon frequency ω(k) in each of 3ν spectrum
branches runs the values filling some frequency interval or band. The various bands,

9 The reciprocal lattice to the simple cubic one with the side a will be a simple cubic lattice with
2π/a.
10 For the simple cubic lattice with period a, the first Brillouin zone is the following region of
reciprocal space: −π/a � ki � π/a, where i = x , y, z.
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in general, can overlap each other. This depends on the specific crystalline lattice
symmetry to a great degree.

The condition of stability for the crystalline lattice at its small deformations
together with the absolute minimum of potential energy U (usl) at usl = 0 reguire
non-negativity of phonon frequencies ω2(k) � 0 for all wave vectors k. The value
ω2(k0) < 0 would mean an instability of crystalline lattice with respect to distorting
the lattice under wave vector k0.

For the crystalline lattice generatedwith the simple unit of one atom ν = 1 (index S
takes single value s = 1), it is possible to clarify the common features for the behavior
of the phonon frequency in the long-wave limit of small wave vectors k → 0. In this
case, the expansion of the dynamic matrix starts from the terms quadratic in k:

�(k) =
∑
l

�(l)e−ikl = −1

2

∑
l

�(l)
(
k · l)2 + . . .

Here we have taken the parity �(l) and relation
∑

l �(l) = 0 into account. Since
the dynamic matrix is characterized by three spatial indices in addition, we write the
detailed expression for it as

�ik(k) ≈ λiklmklkm (i, k, l, m = x, y, z).

The dispersion equation reads

det
∥∥Mω2

kδik − λiklmklkm

∥∥ = 0

and represents the equation of third degree with respect to ω2 which, in general, has
three various roots or three branches of phonon spectrum. The frequencies ω(k) are
the homogeneous functions of the first kind from components kx , ky , kz of wave
vector k and vanish at k = 0, i.e. at small k:

ω(k) = k f (k/k).

The waves of such a type are called acoustic. They are characterized with the finite
sound velocity c = ω/k depending on the wave propagation direction and type of
their polarization.

In the anisotropic crystals, unlike isotropic media,11 the wave propagation direc-
tion, in general, does not coincide with the direction of wave vector k.

In the complex crystalline latticeswithmore than one atom in the unit cell (ν > 1),
there exist 3(ν − 1) branches of phonon spectrum in addition to three acoustic ones.

11 In elastic isotropic media, the acoustic (sound) branches are represented by longitudinal wave
ω = cl k in which the displacement u is directed along the wave propagation and by two coincident
transverse waves ω = ct k with the different polarizations when displacement u takes place in the
plane normal to the propagation direction. As a rule, cl > ct . In the anisotropic crystals the acoustic
waves, in general, are neither longitudinal nor transverse. The corresponding waves have three
various sound velocities. The sound velocities are unambiguously related to the elastic constants.
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In these spectrum branches called optical,12 the frequency does not vanish at k = 0
but tends to some finite limit ω0 as k → 0. Due to parity of spectrum ω(k) near
k = 0, we can write the following expansion:

ω(k) = ω0 + αi j ki k j (i, j = x, y, z).

As concerns the optical vibrations at the limiting case k = 0, the atoms in the unit cell
oscillate relative to each other, the center of gravity of the unit cell being immobile.
In fact, summing the equation of motion over index s results in

ν∑
s=1

Msω
2
kes(k) =

ν∑
s=1

ν∑
s ′=1

�s s ′(k)es ′(k).

Employing the following property for zero Fourier transform of dynamic matrix:

ν∑
s=1

�s s ′(k = 0) =
ν∑

s=1

�s ′ s(k = 0) = 0,

we obtain for k = 0

ω2
0

ν∑
s=1

Mses(k = 0) = 0.

Accordingly, for ω0 
= 0 and relation es(0) = usl(t)eiω0t between the polarization
vector and the displacement vector, we arrive at the result

ν∑
s=1

Msusl(t) = 0

expected for the optical phonon branch at zero wave vector.
In conclusion, we emphasize once again that the consideration above has been

performed in the harmonic approximation when the decomposition for the potential
energy of crystalline lattice over the atom displacements is limited to the terms
not exceeding second order. In the harmonic approximation, the phonons propagate
freely over the crystalline lattice, do not interact with each other, and represent the
undamped elementary excitations in the crystalline lattice.

Beyond the framework of harmonic approximation, the involvement of anhar-
monic, third and fourth-order terms in decomposing the potential energy over the
atom displacements results in the phonon coupling and in such effects as scattering
the phonons, their decay, damping, and formation of bound states. The number of
phonons in these processes may not conserve. Here one discerns two types of phonon
scattering. The first is referred to as the normal process orN-scatteringwhen the total

12 The acoustic and optical modes can be comprehended as if we generalize three translational and
3(ν − 1) vibrational degrees of freedom of ν-atomic molecule to the case of a crystal.
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values for the initial and the final wave vectors of the phonons participating in the
collision are strictly equal to each other, thus conserving the total momentum. The
second is referred to as the Umklapp process or U-scattering when the total values
for the initial and final wave vectors of the phonons differ by nonzero vector of the
reciprocal lattice. The total phonon momentum changes in the Umklapp processes.

The scattering and damping of phonon can originate from the breaking of strict
periodicity in the crystalline lattice due to presence of impurity atoms, violation of
isotope atom composition, and other lattice defects. The presence of defects can
result in changing the phonon vibration spectrum, displaying them in the emergence
of new frequencies related to quasi-local vibrations of lattice atoms near the defect
as an impurity atom.

Problem

1. For a simple cubic crystal, determine the sound velocity of acoustic waves propagating in the
cubic facet plane (crystallographic (001) plane).

Solution. Let us direct axes x , y, and z along the cube edges and compose the dispersion equation

det

∥∥∥∥∥∥
Mω2 − λ1k2x − λ3k2y −2λ2kx ky 0

−2λ2kx ky Mω2 − λ1k2y − λ3k2x 0
0 0 Mω2 − λ3(k2x + k2y)

∥∥∥∥∥∥ = 0.

In a cubic crystal the dynamic matrix elements λxxxx = λ1, λxyxy = λ2, λxxyy = λ3 differ from
zero as well as the dynamic matrix elements λiklm of the same magnitude by replacing the indices
x , y with the others from the set x , y, z. (The matrix elements λ1, λ2, and λ3, divided by the unit
cell volume, represent all the three independent components of the elastic modulus tensor in the
case of cubic crystal.)

Solving the dispersion equation yields the frequencies of all three sound branches

Mω2
1,2 =(k2/2)

{
λ1 + λ3 ± [(λ1 − λ3)

2 − (λ1 − λ3 + 2λ2)(λ1 − λ3 − 2λ2) sin
2 2θ

]1/2}
,

Mω2
3 = λ3k2

where θ is the angle between axis x and wave vector k lying in the (x, y) plane. For θ = 0 (wave
vector k is along the x-axis), we have

Mω2
1 = λ1k2 and Mω2

2 = λ3k2.

At angle θ = π/4 when vector k is directed along the diagonal of the cube facet, we find

Mω2
1 = (λ1 + λ3 + 2λ2)k

2/2 and Mω2
2 = (λ1 + λ3 − 2λ2)k

2/2.

In the theory of elasticity the modulus λ̃2 is usually introduced according to λ̃2 = 2λ2 − λ3.

3.15 Spectral Density of Lattice Vibrations

In the course of studying the physical properties of crystals, as a rule, it is necessary to
know the number of oscillations d N (ω) for each oscillation branch in the frequency
range fromω toω + dω or the density of states g(ω) according to d N (ω) = g(ω)dω.
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The number of states per interval d3k = dkx dkydkz of wave vector components is
equal to dkx dkydkz/(2π)3.

Let us consider the surfaces of constant frequency or isofrequency surfaces
ω(k) = const in the wave vector space. In each point of k-space, the gradient
∇ω(k) = ∂ω/∂k is aligned along the normal passing through this point of isofre-
quency surface. Since dω = dk ·∇ω(k), the spacing along the normal between two
close isofrequency surfaces ω and ω + dω can be represented as dω/|∇ω(k)|. Mul-
tiplying this spacing by area d fk of isofrequency surface element and calculating
the surface integral over all the surface ω(k) = ω, we obtain the necessary portion
d3k of the k-space volume. Dividing this volume by (2π)3, we arrive at the follow-
ing expression for the spectral density of lattice oscillations in the form of surface
integral:

g(ω) = 1

(2π)3

∫
ω(k)=ω

d fk
|∇ω(k)| .

Here the space of wave vectors k belongs to the first Brillouin zone, and the denom-
inator is the group velocity of phonons ∂ω(k)/∂k = ∇ω(k).

This formula allows us to clarify the nature of singularities or Van Hove singu-
larities for the function g(ω) in the crystals. The singularities in the spectral density
should appear in the critical points of the Brillouin zone at which the group velocity
∂ω/∂k vanishes or at the frequency spectrum boundaries.

Let point k0 be critical and expand continuous function ω(k) into a series of
second order in the vicinity of this point

ω(k) = ω0 + αil(ki − ki0)(kl − kl0) + . . . (i, l = x, y, z).

The linear term of expansion is absent due to ∂ω(k)/∂k = 0. By choosing the coor-
dinate axes along the principal ones for this symmetrical quadratic form, we reduce
it to the canonical form

ω(k) = ω0 + α1ξ
2
1 + α2ξ

2
2 + α3ξ

2
3 + . . .

where variables ξi are the components of the vector departing from the critical point
in the principal axes chosen. The coefficients α1, α2, α3 are the principal values of
symmetrical tensor αil determined with the second-order derivatives of frequency
ω(k) with respect to the components of wave vector k.

Let all the coefficients α1, α2, α3 have the same sign, i.e. critical point corresponds
to themaximum orminimum of functionω(k), e.g. all α1, α2, α3 < 0 for definiteness.
Thus, the surfaces of constant frequency are ellipsoids. The volume confined with
the ellipsoid around the point k0 will equal

4π

3

(ω0 − ω)3/2

|α|1/2 (α = α1α2α3).
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Differentiating over frequency ω and dividing by (2π)3 yields a root singularity in
the spectral density near the critical point provided that ω < ω0. So, we have

δg(ω) = g(ω) − g(ω0) =
{

1
2π2

(ω0−ω)1/2

|α|1/2 , ω < ω0 ,

0, ω > ω0 ,

where we have also taken into account that for ω > ω0, the vicinity of point k0 gives
no contribution to g(ω).

The singular behavior for the spectral density in the case of the minimum of
function ω(k) (all α1, α2, α3 > 0) is analogous and has the same root singularity

δg(ω) = g(ω) − g(ω0) =
{

1
2π2

(ω−ω0)
1/2

|α|1/2 , ω > ω0 ,

0, ω < ω0 .

The derivative dg/dω at the critical point ω0 becomes infinite.
There are other possibilities for the coefficients α1, α2, α3 when one of them is

positive and the other two are negative and vice versa. In this case the saddle point
appears. A somewhat more complicated consideration results in a similar answer.
So, for α1, α2 > 0 and α3 < 0, there originates the same root singularity in the
saddle-point vicinity:

δg(ω) = g(ω) − g(ω0) =
{

− 1
2π2

|ω0−ω|1/2
|α|1/2 , ω < ω0 ,

0, ω > ω0 .

For the saddle pointwithα1,α2 < 0 andα3 > 0,wehave the same result bypermuting
the regions ω < ω0 and ω > ω0, i.e. the root singularity at ω > ω0.

In total, we can note the following. At the minimum and maximum points of
spectra ω(k), the variation reads δg(ω) > 0 and we have always δg(ω) < 0 for the
saddle points of spectrum.

In conclusion, let us remark about the Brillouin zone center, i.e. point k = 0.
Though the absoluteminimumof functionω(k) occurs for all three acoustic branches
at this point, no singular behavior appears since the group velocity ∂ω/∂k of acoustic
branch does not vanish. The singularities in the spectral density of states of crystalline
lattice oscillations do affect on the thermodynamic and kinetic properties of crystals.
The experimental investigation of the Van Hove singularities gives us information
on the elementary excitation spectrum in a crystal.

Problem

Determine the type of the Van Hove singularities for the spectral density g(ω) of lattice oscil-
lations in a two-dimensional crystal.

Solution. Let point k0 be critical one at which velocity ∂ω/∂k vanishes. Then we decompose
ω(k) in the vicinity of point k0 as

ω(k) − ω0 = αil (ki − ki0)(kl − kl0) + . . . (i, l = x, y)
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and reduce it to the canonical form by choosing the coordinate axes along the principal ones of
symmetrical quadratic form

ω(k) − ω0 = α1ξ
2
1 + α2ξ

2
2 + . . .

Here quantities ξi are the vector components departing from the critical point in the principal axes
chosen. The coefficients α1, α2 are the principal values of symmetrical tensor αil . These coefficients
mayhave the same sign (α1α2 > 0) in the case ofmaximumorminimumfor functionω(k)or various
signs in the saddle-point case (α1α2 < 0).

For definiteness, let this point be of minimum, i.e. both α1 and α2 > 0. Then the line of constant
frequency is the ellipse which can readily be parametrized as follows:

ξ1 = (ω − ω0)

|α1|1/2 cos t and ξ2 = (ω − ω0)

|α2|1/2 sin t,

the parameter t varying from −π to π . The variation of spectral density δg(ω) = g(ω) − g(ω0) is
given with the integral estimated along the line of constant frequency

δg(ω) = 1

(2π)2

∫
dlk

|∇ω(k)| = 1

(2π)2

π∫
−π

√
ξ ′2
1 (t) + ξ ′2

2 (t)√
(2α1ξ1)2 + (2α2ξ2)2

dt =

= 1

(2π)2

π∫
−π

dt

2(α1α2)1/2
= 1

4π(α1α2)1/2
.

Thus, the spectral density g(ω) demonstrates a discontinuity of finite magnitude at the minimum of
function ω(k). The same answer remains valid for the case when the critical point is a maximum
of function ω(k).

In the saddle-point case (α1α2 < 0), the lines of constant frequency are hyperbolas. Putting
α1 > 0, α2 < 0, and ω − ω0 > 0 for definiteness, we employ the natural parameterization

ξ1 = (ω − ω0)

|α1|1/2 cosh t and ξ2 = (ω − ω0)

|α2|1/2 sinh t.

For the region of integration, we take the region for the deviation of wave vectors ξ1m and ξ2m lying
sufficiently far from the saddle point but sufficiently close to be within the quadratic expansion, i.e.
ki0 � ξim � |ki − ki0|. (The value ξ1m will affect the type of singularity examined.) Denoting

ξ21m = �

|α1| = (ω − ω0)

|α1| cosh2 t0 , cosh2 t0 = �

(ω − ω0)
� 1,

and ξ22m = (� − (ω − ω0))/|α2| ∼ �/|α2|, we calculate the necessary integral

g(ω) = 1

(2π)2

∫
dlk

|∇ω(k)| = 1

(2π)2

t0∫
−t0

√
ξ ′2
1 (t) + ξ ′2

2 (t)√
(2α1ξ1)2 + (2α2ξ2)2

dt =

= 1

(2π)2

t0∫
−t0

dt

2(α1α2)1/2
= t0

4π2(|α1α2|)1/2 .

Taking into account that t0 � 1 and cosh2 t0 ≈ et0/4, we arrive at the logarithmic singularity in the
spectral density at the saddle point

g(ω) ≈ 1

4π2(|α1α2|)1/2 ln
4�

(ω − ω0)
.
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In the general form, this can be represented as a sum of some constant and logarithmically divergent
singularity at the saddle point

g(ω) = const + 1

4π2(|α1α2|)1/2 ln
ω0

|ω − ω0| .

In the one-dimensional case (chain of atoms), the saddle points are absent and the Van Hove

singularity is associatedwith the point of theminimumormaximumvalue in the frequency spectrum.

In the vicinity of such a point, the spectral density g(ω) ∼ 1/|ω − ω0|1/2 diverges in a root-like

manner.



Chapter 4
Phase Transitions and Critical
Phenomena

4.1 Fluctuations of Thermodynamic Variable

In thermodynamically equilibrium systems as a result of their openness and inter-
action with the environment, the thermal fluctuations represent random fluctuations
of physical variables from their average magnitudes. From the formal and mathe-
matical point of view the fluctuations of any physical variables can be explained
with the statistical nature of describing the system, when each possible state in
the system realizes at certain probability governed by the distribution function.
Usually, the thermal fluctuations grow as the temperature increases. In addition,
an anomalous growth of fluctuations takes place for a number of physical vari-
ables near the critical points and second-order phase transitions. At zero tempera-
ture, the fluctuations of physical variables are primarily due to quantum mechanical
phenomena.

In order to have the quantitative characteristic for the fluctuations of a randomvari-
able�, the variance 〈(��)2〉 is introduced as an expected value of the squared devi-
ation from the mean �̄ = 〈�〉 of random variable �, i.e. 〈(��)2〉 = 〈(� − 〈�〉)2〉.
The standard deviation is referred to as the square root of the variance. The mutual
influence of several fluctuating variables �i is characterized with their correlation
〈��i��k〉where��i,k = �i,k − 〈�i,k〉. For the statistically independent variables,
we have 〈�i�k〉 = 〈�i 〉〈�k〉 or their correlation vanishes, i.e. 〈��i��k〉 = 0. For
calculating the thermodynamic fluctuations, it is sufficient to write the corresponding
value of fluctuation and then to average it with the aid of corresponding distribution
function. In the thermodynamically equilibrium system, this function is the Gibbs
distribution. Below we turn to calculating the fluctuations.

Let us treat the thermodynamic system in which the energy levels ε� = ε(�)

as well as the corresponding state vectors |�〉 depend somehow on the fluctuating
physical variable � of our interest. Next, we introduce the thermodynamic param-
eter λ conjugated to thermodynamic variable �. On the analogy with the Legendre
transformation, we then determine an auxiliary variable of the dimension of energy
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ε̃� specified for all the states in the system and numerated with state vector |�〉, as
follows:

ε̃� = ε(�) + λ� .

And finally we write the corresponding expression1 for the partition function

Z(λ) =
∑

�

exp(−ε̃�/T )

which allows us to find the free energy according to definition F(λ) = −T ln Z(λ).
In order to find the mean value of thermodynamic variable �, we calculate the

first derivative of free energy F with respect to parameter λ

∂F

∂λ
= 1

Z

∑

�

e−ε̃�/T ∂ε̃�

∂λ
=

∑

�

�
e−ε̃�/T

Z
= �̄.

For brevity, we have here denoted the mean value � as �̄ = 〈�〉. On the account for
the temperature dependence of free energy, this means that the differential of free
energy F can be represented as

dF = −S dT + �̄ dλ.

Accordingly, the differential for the conjugate thermodynamic potential F̃(T, �̄) =
F − λ�̄, as a function of �̄, will be equal to

d F̃ = −S dT − λ d�̄.

In the final expressions one should put λ = 0. This is equivalent to the fact that
all the next derivatives must be calculated at the equilibrium values of the thermo-
dynamic variable �. So, we find the average required

�̄ =
(

∂F

∂λ

)

λ=0

,

being the derivative of free energy with respect to thermodynamic parameter λ.
In what follows, it is convenient to use the following formula:

〈�n〉 = (−T )n
1

Z

∂n Z

∂λn

1 As will be seen below, the partition function Z(λ) plays a role of the generating functional for
calculating various average quantities.
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for calculating themean values in power n. On the use of relation for second derivative
with respect to parameter λ as

∂2 ln Z

∂λ2
= 1

Z

∂2Z

∂λ2
−

(
1

Z

∂Z

∂λ

)2

,

it is readily to see the following expression for the variance of variable �:

〈(��)2〉 = T 2 ∂2 ln Z

∂λ2
= −T

∂2F

∂λ2
.

This answer can be expressed via derivatives of the conjugate thermodynamic poten-
tial F̃ = F̃(�̄)

〈(��)2〉 = T

(
∂2 F̃

∂�̄2

)−1

if one employs the following sequence of equalities:

∂2F

∂λ2
= ∂�̄

∂λ
= 1

∂λ/∂�̄
= − 1

∂2 F̃/∂�̄2
.

Let us pay attention for the relation

〈(��)2 = −T
∂�̄

∂λ

between the variance and the derivative of mean value �̄ with respect to external
parameter λ. Within the accuracy to the sign, this derivative can be treated as a
susceptibility ∂�̄/∂λ or linear response to perturbation of the system with external
impact given by quantity−λ. The positive definiteness of variance implies the fulfill-
ment of the following thermodynamic inequalities: ∂2F/∂λ2 < 0 or ∂2 F̃/∂�2 > 0.
The state of thermodynamic system is absolutely unstable if this condition is
violated.

Due to equivalence of conjugate variables λ and �, one can set the parameter λ
as an independent thermodynamic fluctuating variable and determine similarly the
variance of fluctuation 〈(�λ)2〉 for parameter λ. Of interest here is the correlation
〈���λ〉 of two conjugate variables. From the equality

∂2 ln Z

∂�∂λ
= 1

Z

∂2Z

∂�∂λ
−

(
1

Z

∂Z

∂�

)(
1

Z

∂Z

∂λ

)
=

=
∑

�

�λ

T 2

e−ε̃�/T

Z
−

(∑

�

−�

T

e−ε̃�/T

Z

)(∑

�

− λ

T

e−ε̃�/T

Z

)
,
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we get the following equality for the mean variables:

T 2 ∂2 ln Z

∂�∂λ
= 〈�λ〉 − 〈�〉〈λ〉 = 〈���λ〉.

Thus, we arrive at the expression

〈���λ〉 = −T
∂2F

∂�∂λ
.

Taking into account that � = ∂F/∂λ, we find the correlation for two conjugate
thermodynamic variables

〈���λ〉 = −T .

This relation has a universal answer. The result obtained means that the fluctuations
of conjugate thermodynamic variables are statistically dependent.

The method of the generating functional allows us to calculate higher powers of
mean deviations as well. Let us start from calculating the mean 〈(��)3〉 and write
the following equality:

∂3 ln Z

∂λ3
= 1

Z

∂3Z

∂λ3
− 3

(
1

Z

∂Z

∂λ

)(
1

Z

∂2Z

∂λ2

)
+ 2

(
1

Z

∂Z

∂λ

)3

.

Hence it is straightforwardly to see that

−T 3 ∂3 ln Z

∂λ3
= 〈�3〉 − 3〈�2〉〈�〉 + 2〈�〉3 = 〈(� − 〈�〉)3〉 = 〈(��)3〉.

As a result, we find the simple expression for the mean cube of fluctuations

〈(��)3〉 = T 2 ∂3F

∂λ3
= T 2 ∂2�̄

∂λ2
= −T

∂

∂λ
〈(��)2〉.

This answer can be expressed in terms of the derivatives of thermodynamic potential
F̃ = F̃(�̄), depending on variable �̄ conjugated to parameter λ:

〈(��)3〉 = −T 2 ∂3 F̃/∂�̄3

(
∂2 F̃/∂�̄2

)3 = T 2

∂2 F̃/∂�2

∂

∂�

(
1

∂2 F̃/∂�2

)
.

The next equality helps us to estimate the fluctuations of fourth power:

∂4 ln Z

∂λ4
= 1

Z

∂4Z

∂λ4
− 4

(
1

Z

∂3Z

∂λ3

)(
1

Z

∂Z

∂λ

)
+ 6

(
1

Z

∂2Z

∂λ2

)(
1

Z

∂Z

∂λ

)2

−

−3

(
1

Z

∂Z

∂λ

)4

− 3

[
1

Z

∂2Z

∂λ2
−

(
1

Z

∂Z

∂λ

)2]2

.
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In accordance with the definitions of the averages, we find that

T 4 ∂4 ln Z

∂λ4
=〈�4〉 − 4〈�3〉〈�〉 + 6〈�2〉〈�〉2 − 3〈�〉4 − 3

(〈�2〉 − 〈�〉2)2 =
=〈(��)4〉 − 3〈(��)2〉2.

Finally we arrive at the comprehensible formula for the fluctuations of fourth power

〈(��)4〉 =3T 2

(
∂2F

∂λ2

)2

− T 3 ∂4F

∂λ4
=

= 3T 2 1
(
∂2 F̃/∂�̄2

)2 + 3T 3

(
∂3 F̃/∂�̄3

)2
(
∂2 F̃/∂�̄2

)5 − T 3 ∂4 F̃/∂�̄4

(
∂2 F̃/∂�̄2

)4 =

= 3T 2

f
+ T 3

(
1

f 2
∂2(1/ f )

∂�2
+ 1

f

(
∂(1/ f )

∂�

)2)
where f = ∂2 F̃

∂�2
.

As an example, let us consider isothermal fluctuations of the total volume of the
system. The volume of the system V should be chosen as a fluctuating parameter
� and, correspondingly, we choose pressure P as a volume-conjugated variable λ.
Then the free energy F represents in itself the Gibbs free energy � = �(T, P) and
its differential reads d� = V dP . The potential F̃ conjugated to the latter one is the
Helmholtz free energy F̃ = F̃(T, V )with the differential d F̃ = −P dV . So, for the
fluctuations of volume under constant temperature, we have

〈(�V )2〉 = −T

(
∂V
∂P

)

T

= − T(
∂P/∂V

)
T

,

〈(�V )3〉 = T 2

(
∂2V
∂P2

)

T

= −T 2

(
∂2P/∂V 2

)
T(

∂P/∂V
)3

T

,

〈(�V )4〉 = 3T 2

(
∂V
∂P

)2

T

− T 3

(
∂3V
∂P3

)

T

=

= 3T 2(
∂P/∂V

)2

T

− 3T 3

(
∂2P/∂V 2

)2

T(
∂P/∂V

)5

T

+ T 3

(
∂3P/∂V 3

)
T(

∂P/∂V
)4

T

.

For the second way of illustration, we treat the fluctuations of particle num-
ber N in the thermodynamically equilibrium system. Here we choose the follow-
ing thermodynamic variables: chemical potential μ and the number of particles
N . Let us put � = N and λ = −μ so that ε̃(λ,μ) = ε(N ) − μN . Then the dif-
ferential of free energy F(λ) equals dF = N̄d(−μ) = −N̄dμ, and it can be identi-
fied with the thermodynamic grand potential � = �(T,μ). The conjugate potential
F̃ = F̃(N̄ ) will coincide with the Helmholtz free energy having the differential
dF = μ d N̄ .
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On completion, the mean number of particles is determined by the following
derivative:

〈N 〉 = N̄ = −∂�/∂μ ,

and the variance equals

〈(�N )2〉 = −T
∂2�

∂μ2
= T

∂N

∂μ
= T

∂μ/∂N
.

The fluctuations of third and fourth powers are, as follows:

〈(�N )3〉 = T 2 ∂2N

∂μ2
= −T 2 ∂2μ/∂N 2

(∂μ/∂N )3
,

〈(�N )4〉 = 3T 2

(
∂N

∂μ

)2

+ T 3 ∂3N

∂μ3
=

= 3T 2

(
∂μ/∂N

)2 +3T 3

(
∂2μ/∂N 2

)2
(
∂μ/∂N

)5 − T 3 ∂3μ/∂N 3

(
∂μ/∂N

)4 .

Problems

1. Find the isothermal fluctuations of volume V in an ideal gas and calculate the skewness S
and kurtosis κ.

Solution. Differentiating the equation V = NT/P yields

〈(�V )2〉 = V 2

N
, 〈(�V )3〉 = 2V 3

N 2 , 〈(�V )4〉 = 3(N + 2)

N 3 V 4.

The skewness S shows the measure of the distribution function asymmetry around the mean value
and equals

S = 〈(�V )3〉
〈(�V )2〉3/2 = 2√

N
.

The kurtosis κ characterizes the measure of the acuteness for the distribution function peak and
equals

κ = 〈(�V )4〉
〈(�V )2〉2 = 3 + 6

N
.

As the particle number N increases, the characteristics of distribution function approach the normal
or Gaussian distribution for which S = 0 and κ = 3.

2. Find the fluctuations of the particle number in an ideal gas and calculate the skewness S and
kurtosis κ.

Solution. Let us use relation for derivative ∂N/∂μ = N/T valid in an ideal gas. Then we find

〈(�N )2〉 = N , 〈(�N )3〉 = N , 〈(�N )4〉 = 3N 2 + N .

The skewness S equals

S = 〈(�N )3〉
〈(�N )2〉3/2 = 1√

N
.
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The kurtosis κ reads

κ = 〈(�N )4〉
〈(�N )2〉2 = 3 + 1

N
.

3.Let P(N ) be some discrete distribution function describing the fluctuations of particle number
N = 0, 1, 2, . . .

Find the characteristic or generating function for calculating the mean value for deviation
〈(�N )l 〉 of particle number from its mean value 〈N 〉 for an arbitrary power l > 1.

Solution. Characteristic (generating) function equals

K (μ) = ln
∞∑

N=0

eiμN P(N ) = iμκ1 + (iμ)2

2! κ2 + (iμ)3

3! κ3 + · · · =
∞∑

l=1

(iμ)l

l! κl

and the expansion coefficients (cumulants) κl in aMaclaurin series determine the averages required

〈(�N )l 〉 = κl = (−i)l
dl K (μ)

dμl

∣∣∣∣
μ=0

(l > 1).

Coefficient κ1 represents the mean value of distribution function, i.e. mean number of particles

〈N 〉 = −i
dK (μ)

dμ

∣∣∣∣
μ=0

=
∞∑

N=0

N P(N ).

4. Find the correlation between the fluctuations of chemical potential and particle number.
Solution. In the present case the free energy potential F is represented with thermodynamic

potential �(μ). The correlation of fluctuations is given by the formula

〈�μ�N 〉 = −T
∂2�

∂N∂μ
= T

∂N

∂N
= T .

5. Find the fluctuations of entropy and its correlation 〈�T�S〉 as a function of temperature.
Solution. We find using the general formulas dF = −S dT and d F̃ = T dS in which λ = T

and � = −S are to take

〈(�S)2〉 = −T
∂2F

∂T 2 = T
∂S

∂T
= C(T ),

〈(�S)3〉 = T 2 ∂3F

∂T 3 = −T
∂2S

∂T 2 = −T 2 ∂

∂T

(
C(T )

T

)
,

〈(�S)4〉 = 3C2(T ) + T 3 ∂2

∂T 2

(
C(T )

T

)

where C(T ) is the specific heat of thermodynamic system. Since temperature and entropy are the

conjugate variables, we have from the general formula: 〈�T�S〉 = T .

4.2 Fluctuations of Several Thermodynamic Variables

We have considered above the fluctuations of a single thermodynamic variable from
its mean value and have paid no attention to other variables. Let us turn now for
calculating the simultaneous fluctuations of several thermodynamic quantities and
their correlations.



120 4 Phase Transitions and Critical Phenomena

Let energy levels ε� = ε(�1 . . . �n) of physical states in the thermodynamic
system depend on a set of fluctuating variables� = �1, . . . , �n . Next, we introduce
the corresponding conjugate variables λ1, . . . ,λn so that

ε̃� = ε(�1 . . . �n) + λ1�1 + . . . + λn�n .

Then we consider the partition function or the generating functional corresponding
to the above set of energy states numerated with the state vector |�〉

Z(λ1 . . . λn) =
∑

�

exp
(−ε̃�/T

)

and define the corresponding free energy F(λ1 . . . λn) = −T ln Z .
Let us start first from calculating the mean deviations for two variables. For the

second derivative of ln Z , we find

∂2 ln Z

∂λiλk
=

∑

�

�i

T

�k

T

e−ε̃�/T

Z
−

∑

�,�′

(
�i

T

e−ε̃�/T

Z

)(
�′

k

T

e−ε̃�′ /T

Z

)
.

One can readily see from this equality that

〈�i�k〉 − 〈�i 〉〈�k〉 = T 2 ∂2 ln Z

∂λiλk
.

Finally, we arrive at the simple answer for the correlation between the fluctuations
of two thermodynamic variables

〈��i��k〉 = T 2 ∂2 ln Z

∂λiλk
= −T

∂2F

∂λiλk
= −T

∂�k

∂λi
.

This result can also be represented in the terms of conjugate thermodynamic potential
F̃ expressed in variables �i , �k as

〈��i��k〉 = T

(
∂2 F̃

∂�i∂�k

)−1

.

For the non-conjugate mutually independent thermodynamic variables λi and �k

(i �= k) and from equality

〈�λi��k〉 = −T
∂2F

∂�k∂λi
= −T

∂�i

∂�k
= 0 if i �= k,

one sees the mutual correlation of fluctuations is absent as it should be expectable.
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For the correlation between three thermodynamic variables �i , �k , and �l ,
expressing via the averages as follows:

〈��i��k��l〉 = 〈�i�k�l〉 − 〈�i 〉〈�k�l〉−
−〈�i�k〉〈�l〉 − 〈�i�l〉〈�k〉 + 2〈�i 〉〈�k〉〈�l〉,

we take into account that

〈�1 . . . �n〉 = (−T )n
1

Z

∂n Z

∂λ1 . . . ∂λn
,

and find after the simple calculation

〈��i��k��l〉 = T 2 ∂3F

∂λi∂λk∂λl
.

Let us express the same answer in terms of the conjugate thermodynamic potential
F̃ depending on the variables �. We denote F̃ik(�) as the following derivative of
second order:

F̃ik = ∂2 F̃

∂�i∂�k
.

Employing the following relations for derivatives:

∂λk

∂�l
= − ∂2 F̃

∂�k∂�l
= −F̃kl ,

∂2λk

∂λi∂�l
=

n∑

p=1

∂2λk

∂�p∂�l

∂�p

∂λi
=

n∑

p=1

∂ F̃kl

∂�p
F̃−1
pi ,

we get a simple formula for the triple correlations

〈��i��k��l〉 = −T 2 F̃−2
kl

n∑

p=1

∂ F̃kl

∂�p
F̃−1
pi = T 2

n∑

p=1

F̃−1
i p

∂ F̃−1
kl

∂�p
.

For the correlation of four variables, one can specify in a similar way that

〈��i��k��l��m〉 = −T 3 ∂4F

∂λi∂λk∂λl∂λm
+

+ T 2

(
∂2F

∂λi∂λk

∂2F

∂λl∂λm
+ ∂2F

∂λi∂λl

∂2F

∂λk∂λm
+ ∂2F

∂λi∂λm

∂2F

∂λk∂λl

)
=

= T 3
n∑

p, q=1

(
∂2 F̃−1

ik

∂�p∂�q
F̃−1
pl F̃−1

qm + ∂ F̃−1
ik

∂�p

∂ F̃−1
pl

∂�q
F̃−1
qm

)
+

+ T 2(F̃−1
ik F̃−1

lm + F̃−1
il F̃−1

km + F̃−1
im F̃−1

kl

)
.
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4.3 The Gaussian Approximation for the Fluctuations of
Thermodynamic Variables

As a rule with the exception of the immediate vicinity of critical points and lines of
continuous phase transitions, the average fluctuations of third and fourth powers are
small as compared with the mean square fluctuations. In this case, one can use the
Gaussian approximation to describe the mean square fluctuations. We consider such
an approximation on the example of energy fluctuations in the thermodynamically
equilibrium system.

Let us write the Gauss distribution for the energy fluctuation with the variance
equal to 〈(�E)2〉

W (E)dE = 1√
2π〈(�E)2〉 exp

(
− (E − Ē)2

2〈(�E)2〉
)
dE

so that ∞∫

−∞
(E − Ē)2W (E) dE = 〈(�E)2〉 and

∞∫

−∞
W (E) dE = 1.

The Gauss distribution2 has a drastic maximum at the mean value of energy E = Ē
and decays exponentially by increasing the energy E in the symmetrical way on
both sides from the mean value Ē . For this reason, we have extended the integration
region to all values from −∞ to +∞ in spite of the fact that this region may not
coincide with that for the possible variation of energy E .

Using the expression for the variance of energy fluctuation as a second derivative
of entropy S = S(E) of the system

1

〈(�E)2〉 = − ∂2S

∂E2
,

we represent the expression for the probability distribution as follows:

W (E) ∝ exp

(
1

2

∂2S

∂E2

(
E − Ē

)2
)

.

Then we note that the entropy in the thermodynamically equilibrium system reaches
the maximum value at the mean energy E = Ē . Thus, we have

∂S

∂E

∣∣∣∣
E=Ē

= 0.

2 Any distribution with a drastic narrow maximum can be chosen as an approximating one.



4.3 The Gaussian Approximation for the Fluctuations of Thermodynamic Variables 123

Provided that the fluctuations are small, in the expansion of entropy S(E) we can
limit ourselves only with the terms not higher than second order and write

S(E) ≈ S(Ē) + 1

2

∂2S

∂E2

∣∣∣∣
E=Ē

(E − Ē)2.

As a result, we arrive at the following approximate formula for the probability dis-
tribution in the system:

W (E) ≈ const · eS(E).

This formula will be applicable for studying the small fluctuations in the thermody-
namically equilibrium system. The formula can be rewritten as

W (�E) = A e�S(�E) where �S = S(E) − S(Ē) = 1

2

∂2S

∂E2
(�E)2.

The normalization constant A is determined with the condition
∫
W (�E)dE = 1.

This formula can also be represented in the form of the thermal activation Gibbs
distribution with some energy Umin of thermodynamic fluctuation

W ∝ exp

(
−Umin

T

)
.

Assuming the fluctuations in our approximation to be small as compared with the
mean values of the variables themselves and limiting ourselves with linear approxi-
mation, we will find in accordance with the following chain of equalities:

∂2S

∂E2
(�E)2 = �

(
∂S

∂E

)
�E = �

(
1

T

)
T�S =

= −�T �S

T
= − 1

T
�

(
∂E

∂S

)
�S = − 1

T

∂2E

∂S2
(�S)2

that the minimum energy3 of thermodynamic fluctuation Umin will be equal to

Umin = 1

2

∂2E

∂S2
(�S)2 = 1

2
�T �S.

The last expression for Umin is convenient since it is represented in the symmetrical
form over the conjugate fluctuating variables as temperature and entropy. The preex-
ponential factor in the Gibbs distribution can readily be found from the condition of

3 In a number of textbooks, the energy Umin of fluctuation is defined as a minimum work Rmin
necessary to produce the assigned variations of thermodynamic variables in the reversible way.
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normalizing the total probability to unity. The minimum energy of thermodynamic
fluctuation can also be written as follows:

Umin = �E − T �S.

This results immediately from the equality

�E − T �S = ∂E

∂S
�S + 1

2

∂2E

∂S2
(�S)2 − T �S = 1

2

∂2E

∂S2
(�S)2

which is valid in the linear approximation for sufficiently small fluctuations in the
thermodynamic system.

Problem

Find the expression for the minimum energyUmin of fluctuations in the case of two independent
thermodynamic variables as temperature T and variable �, using the Gauss approximation W ∝
exp

(
�S(E,�)

)
for the distribution function of fluctuations.

Solution. Let us define the thermodynamic potentials of energy E and free energy F according
to the differentials: dE(S,�) = T dS + λ d� and dF(T,�) = −S dT + λ d�. The change �S
of entropy within accuracy to the square terms in deviations is given by

�S(E,�) = 1

2

∂2S

∂E2 (�E)2 + ∂2S

∂E∂�
�E�� + 1

2

∂2S

∂�2 (��)2.

Here we have taken into account that the entropy in the state of thermodynamic equilibrium has the
extremum value and, correspondingly, first derivatives ∂S/∂E = 0 and ∂S/∂� = 0 vanish at the
equilibrium values E and �. Then,

�S = 1

2
�

(
∂S

∂E

)
�E + 1

2
�

(
∂S

∂�

)
�� = 1

2
�

(
1

T

)(
T �S + λ ��

) − 1

2
�

(
λ

T

)
�� =

= −�T �S + �λ ��

2T
= −Umin

T
.

The expression for the minimum energy Umin can also be rewritten in the following way:

Umin = 1

2
�

(
∂E

∂S

)
�S + 1

2
�

(
∂E

∂�

)
�� = �E − T �S − λ ��.

It is convenient to express the energy Umin with the aid of the derivatives of free energy F =
F(T,�). In fact, using

−(
�T �S + �λ ��

) = �T �

(
∂F

∂T

)
− �

(
∂F

∂�

)
�� =

= �T

(
∂2F

∂T 2 �T + ∂2F

∂T∂�
��

)
−

(
∂2F

∂�∂T
�T + ∂2F

∂�2 ��

)
��,

we obtain that

−Umin

T
= �S = 1

2T

∂2F

∂T 2

(
�T

)2 − 1

2T

∂2F

∂�2

(
��

)2
.

In the Gauss approximation, the expression W ∝ exp
(−Umin/T

)
for the distribution function

splits into two multipliers depending on �T and �� alone. As is expected, the fluctuations of
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temperature T and variable� prove to be statistically independent, i.e. 〈�T ��〉 = 0. Accordingly,
the variances of the temperature T and variable � will be equal to

〈(�T )2〉 = − T

∂2F/∂T 2 = T

∂S/∂T
= T 2

C�

,

〈(��)2〉 = T

∂2F/∂�2 = T

∂λ/∂�
= T

(
∂�

∂λ

)

T

where C� is the specific heat at constant parameter �.

4.4 Phase Equilibrium and Phase Transitions

The various states of substance that can simultaneously be in the thermodynamic
equilibrium with each others represent the different phases (or phase states) of the
same substance. Let us proceed to analyzing the necessary conditions for the coex-
istence of two phases. First of all, for the thermal equilibrium, it is necessary to have
an equality of temperatures of Phases 1 and 2

T1 = T2 .

The equality of pressures in both phases results from the mechanical equilibrium
at the interface between Phases 1 and 2

P1 = P2 .

This implies that the forces which the phases act on each other are equal and opposite
in direction.4

The condition of equilibrium with respect to the transfer of particles from one
phase to the other and vice versa is expressed by the equality in the chemical potentials
of Phases 1 and 2

μ1(P1, T1) = μ2(P2, T2) .

Denoting temperature T and pressure P common for both phases, we arrive at
the following equation:

μ1
(
P(T ), T

)= μ2
(
P(T ), T

)
.

This equation determines implicitly the phase equilibrium line or binodal P = P(T )

at which both phases can coexist. Let us differentiate this equation with respect to
temperature

∂μ1

∂P

dP

dT
+ ∂μ1

∂T
= ∂μ2

∂P

dP

dT
+ ∂μ2

∂T
or v1

dP

dT
− s1 = v2

dP

dT
− s2.

4 Strictly speaking, here we imply the flat interface and the phases at rest.
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Here v1, s1 and v2, s2 are the specific volumes and entropies, i.e. per one particle of
the phase. Introducing the notion of latent heat in the phase transition according to
L = T (s2 − s1), we arrive at the Clausius–Clapeyron equation

dP(T )

dT
= L

T (v2 − v1)
.

This equation specifies the pressure variation along the phase equilibrium line. The
latent heat L is positive if the heat is absorbed in the course of the transition from
phase 1 to phase 2, and L < 0 if the heat releases during this transition. Since
the entropy of thermodynamically equilibrium system at T → 0 should tend to a
constant limit, the latent heat of the phase transition is expected to vanish at zero
temperature.

If equation μ1 = μ2 has the solutions not for all temperatures, the phase equi-
librium line P = P(T ) has an end-point called the critical point. There exist no
two various phases beyond the critical point. The critical point is a singular point,
at least, for one of chemical potentials μ1 or μ2. The temperature and pressure at
the critical point are called, respectively, critical temperature Tc and critical pres-
surePc = P(Tc).

For the phase equilibriumof three various phases of the same substance, it is neces-
sary to satisfy the equalities of temperatures T1 = T2 = T3, pressures P1 = P2 = P3,
and chemical potentials μ1 = μ2 = μ3.5 This results in the following equations:

μ1(P, T ) = μ2(P, T ) = μ3(P, T )

with the two unknowns P and T having the fixed pair of values Pt and Tt as solutions
of the equation above. The point (Pt , Tt ), in which the three phases of the same
substance are in the thermodynamic equilibrium, is referred to as the triple point.
The triple point is the intersection one of phase equilibrium lines P = P(T ) for each
two from three possible phases. (See, for example, Fig. 4.1). If the first-order phase
transition line crosses over continuously to the two second-order phase transition
lines at the triple point, such a point is referred to as the tricritical one. The phase
equilibrium of four or more phases in the one-component system is impossible. In
the multi-component systems, for example in the solutions or alloys, coexistence of
four or more different phases becomes possible.

Thephase transition is classified asfirst-order phase transitionwhen thefirst-order
derivatives of chemical potential (∂μ/∂T )P = −s or (∂μ/∂P)T = v demonstrate
the jump-like behavior at the phase transition point, i.e. s1 �= s2 or v1 �= v2. As a
rule, first-order phase transition means simply the transition at nonzero latent heat
L �= 0.

When first derivatives of chemical potentials are identical for two phases at
the transition point, such a transition is usually referred to as second-order phase

5 In the complex and multi-component systems, the chemical potential may depend on other ther-
modynamic variables as well.
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Fig. 4.1 The example of
phase diagram for
one-component substance.
Here t is the triple point and
C is the critical one

transition or continuous phase transition.6 The specific anomalies, observed in the
second-order phase transitions and associated with the divergence of second deriva-
tives for chemical potentials at the phase transition point, are the subject of critical
phenomena. These phenomena are connected, first of all, with anomalous growth
of the thermodynamic fluctuations for a number of physical quantities in the phase
transition region.

The phase transition existing at absolute zero is called the quantum phase tran-
sition. Such transition results from varying some physical parameter in the system
or substance, which is different from temperature, e.g. pressure. The quantum phase
transition represents the transition from one ground state of the system to another
ground state. The value of parameter at which the phase transition occurs is called
the quantum critical point.

Beyond the phase equilibrium line or spinodal P = P(T ) the choice of one or
another phase of substance is governed with the energetic reasons alone. The abso-
lutely steady or stable phase will be the phase with the minimum value of chemical
potential. The phases with the larger values of chemical potential become unsteady or
unstable. For specifying the type of instability and kind of phase transition, an impor-
tant role plays the region for possible phase existence beyond the phase equilibrium
line P = P(T ) and the position of the boundary for the thermodynamic phase sta-
bility or spinodal P = Ps(T ) associated also with violating one of thermodynamic
inequalities (∂P/∂v)T < 0 or CP = T (∂s/∂T )P > 0. In the region where these
inequalities do not hold for, the corresponding phase becomes absolutely unstable
and ceases to exist.

Two variants are possible here. The first, when the spinodal line is separated from
the binodal, is typical for the first-order phase transitions. Then in the region of the
parameters lying between the binodal and spinodal, the phase with the larger value of
chemical potential may exist in themetastable state. Themetastable phase represents
the incomplete thermodynamic equilibrium and, therefore, has a finite lifetime by
decaying into the stable phase via phase transition. Though the metastable phase is

6 There are examples of continuous phase transitions of infinite order, e.g. Berezinskii–Kosterlitz–
Thouless transition in the two-dimensional XY model.



128 4 Phase Transitions and Critical Phenomena

unstable on the whole, it can remain stable against sufficiently small heterogeneous
fluctuations. The existence of metastable region makes it possible for the phenomena
of overheating or overcoolingwhen themetastable phasemay be in the homogeneous
state for a sufficiently long time on the scale of experimental realization. The maxi-
mum possible limits of overheating or overcooling are confined with the spinodal.

The second option is when the spinodal line coincides with the binodal. In this
case, the region of any existence for the phase with the smaller value of chemical
potential is completely absent on the other side of phase transition line. There will
be no phenomena of overheating or overcooling as well. Such a behavior is typical
for second-order phase transitions.

If the line of first-order phase transition P = P(T ) ends at the critical point, the
spinodal terminates at the same point as well.

4.5 Law of Corresponding States

The empirical Redlich–Kwong equation of state

P = NT

V − Nb
− N 2a√

T V (V + Nb)
,

as a rule, interpolates the equation of state for the real gasmore precisely as compared
with the traditional van der Waals equation of state at temperatures above the critical
temperature. The Redlich–Kwong equation of state can also be employed for the
qualitative comprehension of the gas–liquid phase transition. Like the van der Waals
equation, there are fitting parameters in the Redlich–Kwong one. The constant a
takes the attraction between gas particles into account. The constant b describes the
repulsion resulting in effective limitation of the gas volume accessible to the particles.

Let us determine free energy of a gas F(T, V ) by integrating the relation P =
−(

∂F/∂V
)
T . While integrating, we take into account that our result in the limit of

large volume V should go over into the answer for an ideal gas. Then,

F = Fid − NT ln
V − Nb

V
− Na

b
√
T
ln

V

V + Nb

where Fid is the free energy of an ideal gas. Hence we get the entropy of the gas

S = Sid + N ln
V − Nb

V
− Na

2bT 3/2
ln

V

V + Nb

and then its energy E = F + T S as

E = Eid − Na

2b
√
T
ln

V

V + Nb
.
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Unlike the van der Waals gas, the specific heat CV = (
∂E/∂T

)
V in this case does

not equal that of ideal gas and depends on the gas density as well:

CV = Cid(T ) + 1

4

Na

bT 3/2
ln

V

V + Nb
.

The critical temperature, pressure, and volume can be expressed via parameters
a and b. So, it is necessary to write the following equations:

(
∂P

∂V

)

T

= 0 and

(
∂2P

∂V 2

)

T

= 0.

Together with the equation of state P = P(T, V ), the above equations determine the
infection point at the isotherm. As a result, we arrive at the equation determining the
critical volume

x3 − 3x2 − 3x − 1 = 0 where x = V/(Nb).

Wefind the root x = 1/( 3
√
2 − 1)with the aid of substitution x = 1/(y − 1). Finally,

the critical values of volume, temperature, and pressure are equal to

Vc = Nb
3
√
2 − 1

, Tc =
(
3( 3

√
2 − 1)2

a

b

)2/3

,

Pc = (
3
√
2 − 1)Tc
3b

= (
3
√
2 − 1)7/3

31/3
a2/3

b5/3
.

TheBoyle temperature Tb is defined as the temperature for which the second virial
coefficient becomes zero in the decomposition of the equation of state in the powers
of gas density

P = NT

V

(
1 + N B2(T )

V
+ N 2B3(T )

V 2
+ · · ·

)
.

Decomposing the equation of state in N/V , we find the Boyle temperature

Tb =
(
a

b

)2/3

=
(
3( 3

√
2 − 1)2

)−2/3

Tc ≈ 2.90 Tc .

Approximating the equation of state with the Redlich–Kwong one is satisfactory in
the region of moderate pressures and high temperatures: P/Pc � T/2Tc.

Let us introduce the reduced temperature, pressure, and volume according to the
relations

t = T

Tc
p = P

Pc
, v = V

Vc
.
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The Redlich–Kwong equation, expressed in terms of these reduced quantities, takes
the form

p = 3t

v − c
− 1

c
√
t

1

v(v + c)
where c = 3

√
2 − 1.

This equation involves the reduced quantities alone and no other ones that character-
ize the given substance. The states of substances having the same reduced quantities
are called the corresponding states. The law of corresponding states implies that, if
two substances have the same two of three reduced quantities, these two substances
have the same third quantity as well. The isotherms in the reduced quantities will be
the same for all such substances. Note that the law of corresponding states results
from the equations of states containing the only two parameters (a and b). In the
reduced units the free energy f = F/NTc reads

f (t, v) = fid(t, v) − t ln
v − c

v
+ 1

3c2
1√
t
ln

v

v + c
.

The isotherms determined with the Redlich–Kwong equation of state are in the
qualitative correspondence with the isotherms of the interpolating van der Waals
equation and are represented in Fig. 4.2. At high T > Tc temperatures, the isotherms
pass over the critical point C and represent the monotonically decreasing func-
tions P = P(V ) as the gas volume increases. For the temperatures below the crit-

Fig. 4.2 The behavior of
isotherms at various
temperatures. Here P0 is the
phase transition pressure and
C is the critical point. The
segment S1S2 is absolutely
unstable. The shaded regions
are of equal area
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ical T < Tc one, each isotherm demonstrates the points of minimum and maxi-
mum. Between these points, we have a region of thermodynamic instability for the
homogeneous state of substance since inequality (∂P/∂V )T < 0 is violated. The
points of minimum and maximum at the isotherm line represent the points of the
spinodal.

The instability of the homogeneous state results in the appearing of the hetero-
geneous two-phase state of the system. We characterize such a two-phase state by
the phase transition pressure P = P0(T ). At the fixed temperature in Fig. 4.2, this
corresponds to the horizontal line segment whose position should satisfy the equality
of chemical potentials. The region of the isotherm between the transition pressure
(binodal) and the spinodal points is the region of the metastable state. The phase
diagram of thermodynamically stable, metastable, and absolutely unstable states is
schematically shown in Fig. 4.3.

Let us consider the integral within the limits between the intersection points of
the horizontal segment and the isotherm

V2∫

V1

P(T, V ) dV = −
V2∫

V1

∂F(T, V )

∂V
dV = −(F2 − F1)

where F1 and F2 are the free energy of phases. Involving the relation F1,2 =
�1,2 − P0(T )V1,2 between free energies and thermodynamic potentials and using
the equality of thermodynamic potentials �1 = �2 at the phase equilibrium line, we
arrive at the following equation:

V2∫

V1

P(T, V ) dV = P0(T )(V2 − V1).

The geometrical interpretation of this relation is called the Maxwell equal area
rule and means the equal areas of two shaded regions limited with the parts of the

Fig. 4.3 The diagram of
phase states. The dashed
region is the region of
metastable states for which
the phenomena like
overheating or overcooling
are possible. The region
under the spinodal line is
absolutely unstable
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Fig. 4.4 The free energy F
as a function of volume V .
The slope of common
tangent at points V1 and V2
yields the phase transition
pressure P0

isotherms lying on the different sides from the horizontal line of phase equilibrium.
These shaded regions are shown in Fig. 4.2.

There exists another graphical determination of phase transition point, which is
known asMaxwell common tangent construction. Let temperature T be lower than
the critical one Tc. Let us consider the behavior of free energy F(T, V ) as a function
of volume V , which is given in Fig. 4.4. Then we will show that the common double
tangent to the free energy line determines the phase volumes V1 and V2 corresponding
to the phase transition pressure P0(T ). The derivative

(
∂F

∂V

)

T

= −P

and the phase equilibrium condition P(T, V1) = P(T, V2) = P0(T ) imply that the
slope of line F(T, V ) at volume V = V1 is the same as for V = V2. The common
tangent at points V1 and V2 leads to the following relation:

F(T, V1) − F(T, V2)

V1 − V2
= −P0(T ),

entailing the necessary phase equilibrium condition as an equality of thermodynamic
potentials

F(T, V1) + P0V1 = F(T, V2) + P0V2 .

The inflection points at line F(T, V ), where
(
∂2F/∂V 2

)
T = 0, separate the

metastable states from absolutely unstable ones.
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Problems

1.The van derWaals gas in the thermal equilibrium and critical conditions is in the homogeneous
field of gravity. Find the distribution of gas density ρ over the altitude.

Solution. Let g be acceleration of force of gravity and z be vertical coordinate. The equation
of mechanical equilibrium dP/dz = −ρg for the gas at constant temperature, P = P(ρ) being the
gas pressure, can readily be integrated as

ρ∫

ρc

1

ρ

dP

dρ
dρ = −

z∫

0

g dz = −gz.

Here ρc = m/3b is the gas density at the critical point. The substitution of the van derWaals equation
of state

P = T

v − b
− a

v2
,

where v = m/ρ is the specific volume and m is the particle mass, will give the equation for deter-
mining v(z) as

bT

v − b
− bT

vc − b
− 2a

v
+ 2a

vc
− T ln

v − b

vc − b
= −mgz.

Putting the temperature T equal to the critical one Tc = 8a/27b and decomposing the left-hand
side of equation at small variations of specific volume in the vicinity of critical one vc = 3b, we
obtain

− 9

16
Tc

(
v − vc

vc

)3

+ · · · = −mgz.

This results in the specific barometric behavior of gas density under critical conditions

ρ(z) − ρc = −ρc

(
16

9

mgz

Tc

)1/3

for z <
Tc
mg

instead of usual linear behavior �ρ ∼ −ρ(mgz/Tc). For the region of large z � Tc/mg altitudes,
the effect of closeness to the critical point reduces, and the decrease of gas density approaches the
usual behavior described with the exponential barometric formula.

2. Find the latent heat L(T ) of gas–liquid transition for the van der Waals gas near the critical
point.

Solution. Let us go over to the reduced variables as temperature t = T/Tc, pressure p = P/Pc,
volume v = V/Vc, and chemical potential μ̃ = μ/Tc. The pressure of transition p = p(t), volumes
of gas vg , and liquid vl are determined with two equations

p(t, vg) = p(t, vl ) and μ̃(t, vg) = μ̃(t, vl ).

To find the phase transition line, it is convenient to introduce the following parametrization:

s(t, vg) − s(t, vl ) = ln
3vg − 1

3vl − 1
= 2x or 3vg − 1 = ex

f (x)
and 3vl − 1 = e−x

f (x)

where s(t, v) = S/N is the magnitude of entropy per one particle. Unknown function f (x) should
be specified from two equations determining the phase transition

8t

3vg − 1
− 3

v2g
= 8t

3vl − 1
− 3

v2l
,

−t ln(3vg − 1) + t

3vg − 1
− 9

4vg
= −t ln(3vl − 1) + t

3vl − 1
− 9

4vl
.



134 4 Phase Transitions and Critical Phenomena

We find from these two equations

t (x) = 27

4

[ f (x) + cosh x] f (x)
[ f 2(x) + 2 f (x) cosh x + 1]2 and f (x) = 2

x cosh x − sinh x

sinh 2x − 2x

which determine implicitly the following characteristics of phase transition with the aid of function
t = t (x):

p(t) = 27
[
1 − f 2(x)

]
f 2(x)

[ f 2(x) + 2 f (x) cosh x + 1]2 ,
dp

dt
= 16x(x coth x − 1)

sinh 2x − 2x
, vg(t) − vl (t) = 2 sinh x

3 f (x)
.

At the critical point t = 1, vg = vl = 1, and near, it we can employ the decomposition of the above
expressions for small x 
 1

f (x) ≈ 1

2

(
1 − x2

10

)
, t (x) ≈ 1 − x2

9
, vg − vl ≈ 4x

3
and

dp

dt
≈ 4.

Next, we find according to relation x(t) ≈ 3(1 − t)1/2 that

vg ≈ 1 + 2(1 − t)1/2, vl ≈ 1 − 2(1 − t)1/2, sg − sl ≈ 6(1 − t)1/2,

l(t) = t (vg − vl )
dp

dt
≈ 16(1 − t)1/2.

Returning to the dimensional quantities according to L(T ) = PcVcl(t) or L(T ) = NTct (sg − sl ),
we get the following behavior for the latent heat of phase transition near critical temperature Tc:

L(T ) = 6NTc

(
1 − T

Tc

)1/2

,

N being the particle number in the system. The latent heat of phase transition vanishes at the critical
point.

3. Find the isothermal fluctuations of the critical volume in the van der Waals gas.
Solution. At first, we calculate the following derivatives of pressure:

P = NT

V − Nb
− N 2a

V 2

with respect to the gas volume V at its critical magnitude Vc = 3Nb:

∂P

∂V
= 2N 2a

V 3 − NT

(V − Nb)2

∣∣∣∣
V=Vc

= 6Pc
Vc

Tc − T

Tc
,

∂2P

∂V 2 = 2NT

(V − Nb)3
− 6N 2a

V 4

∣∣∣∣
V=Vc

= 18Pc
V 2
c

T − Tc
Tc

,

∂3P

∂V 3 = 24N 2a

V 5
− 6NT

(V − Nb)4

∣∣∣∣
V=Vc

= −9Pc
V 3
c

9T − 8Tc
Tc

.

Here Tc is the critical temperature. These derivatives allow us to calculate the following fluctuations
�V = V − Vc of critical volume:

〈(�V )2〉
V 2
c

= 1

6

Tc
PcVc

T

T − Tc
= 4

9N

T

T − Tc
,

〈(�V )3〉
V 3
c

= 1

12

T 2
c

P2
c V

2
c

(
T

T − Tc

)2

= 16

27N 2

(
T

T − Tc

)2

,
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〈(�V )4〉
V 4
c

= 1

144

T 3
c

P3
c V

3
c

T 3(9T − 10Tc)

(T − Tc)4
+ 1

12

T 2
c

P2
c V

2
c

T 2

(T − Tc)2
=

= 32

243N 3

T 3(9T − 10Tc)

(T − Tc)4
+ 16

27N 2

T 2

(T − Tc)2
.

As the temperature approaches its critical magnitude, all the volume fluctuations enhance unlimit-

edly. Note that fluctuation 〈(�V )4〉 becomes negative in the immediate closeness (T − Tc)/Tc �
(3

√
N )−1 to the critical point. This indicates the limited application of the van der Waals equation

for describing the critical properties of a gas near the critical point.

4.6 Thermodynamics of Solutions

In physics, we keep in mind that a solution is a spatially homogeneous mixture com-
posed of two or more substances called the components. The homogeneity of the
solution means that its components constitute a single-phase system and such phys-
ical characteristics as temperature, pressure, density, and concentration do not vary
over the volume of the solution. In addition, diffusion and other possible energy dis-
sipation processes are completely absent. In other words, here we will study the solu-
tions in the complete thermodynamic equilibrium.A solute is a substance dissolved in
another substance of larger amount, the latter being usually known as a solvent. There
exist various aggregate states of solutions, e.g. gaseous, liquid, or solid mixtures.

The important parameter of solution is its concentration which is a measure of
the amount of solute in a given amount of solvent. Commonly, the concentration is
defined as a ratio of particle number of solute to the total number of particles in the
solution. The mass concentration implies a ratio of the solute mass to the total mass
of solution. The physical properties of a solution, e.g. points of melting, boiling,
solidification, or phase separation, become dependent on the concentration.

Let us consider two-component or binary solutionwith pressure P , temperature T ,
and particle numbers N1 and N2 for each of components.We canwrite the differential
of thermodynamic Gibbs potential � = �(P, T, N1, N2) as

d� = −S dT + VdP + μ1 dN1 + μ2 dN2.

The chemical potentials, introduced as

μ1,2 =
(

∂�

∂N1,2

)

P,T

,

depend on the pressure, temperature, and concentration. From an additivity of
entropy, i.e. from equality S(kE, kV, kN1, kN2) = kS(E, V, N1, N2), it follows the
relation between the thermodynamic Gibbs potential and the chemical potentials of
the components in the solution:

� = μ1N1 + μ2N2 .
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In fact, differentiating the entropy with respect to k and putting k = 1, we have

S = ∂S

∂E
E + ∂S

∂V
V + ∂S

∂N1
N1 + ∂S2

∂N2
N2 = E

T
+ P

T
V + μ1

T
N1 + μ2

T
N2 .

Hence, E − T S + PV = � = μ1N1 + μ2N2. Comparing two differentials

−S dT + VdP + μ1dN1 + μ2dN2 =
= d(μ1N1 + μ2N2) =μ1dN1 + μ2dN2 + N1dμ1 + N2dμ2

gives the Gibbs–Duhem equation for a solution

N1 dμ1 + N2 dμ2 = −S dT + VdP.

Let us call a ratio of the particle number N1 of dissolved substance to the total
number N = N1 + N2 of the particles in the solution as the molar concentration or
simply the concentration, i.e.

x = N1

N1 + N2
.

While studying the thermodynamics of solution, we should take into account that the
differentials determining different thermodynamic potentials, e.g. energy or entropy,
must involve an additional variable as concentration x . For convenience,we introduce
new thermodynamic potentials μ and Z . These potentials completely characterize
the thermodynamic properties of solution. So, we define

μ = xμ1 + (1 − x)μ2 and Z = μ1 − μ2.

The Gibbs–Duhem equation for solution, written in thermodynamic potentials μ and
Z , takes the simple and clear form

dμ = −sdT + vdP + Zdx .

Here s = S/N is the entropy per one particle of solution and the specific volume
v = V/N is the volume per one particle of solution. This equation is a differential
of chemical potential μ = μ(P, T, x). We should define potential Z = Z(P, T, x)
with the aid of derivative

Z =
(

∂μ

∂x

)

P,T

.

It is readily to check that the conjugate thermodynamic potential

φ = μ − x Z = xμ1 + (1 − x)μ2 − x
(
μ1 − μ2

) = μ2
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represents the chemical potentialμ2 of solvent. The corresponding differential equals

dφ = dμ − xdZ − Zdx = −sdT + vdP − xdZ

and, therefore,φ = φ(P, T, Z). Because of the type of differentials, one can conclude
that a pair of thermodynamic quantities x and −Z is the conjugate thermodynamic
variables and the pairs (x, T ) and (x, P) are independent. In other words, the fluctu-
ations of concentration and temperature as well as the fluctuations of concentration
and pressure are statistically independent. The fluctuations of concentration x and
potential Z prove to be statistically dependent. Correspondingly,7

〈�T�x〉 = 0, 〈�P�x〉 = 0 and 〈�Z�x〉 = T .

For the variance of concentration fluctuations, we obtain that

〈(�x)2〉 = T

∂Z/∂x
.

The positivity of inequality ∂Z/∂x > 0 is necessary for the thermodynamic stability
of solution with respect to the separation into two phases and determines the line of
absolute instability or spinodal in the space of parameters P , T , and x .

Let us calculate the differential of thermodynamic potential Z = Z(P, T, x). We
have

dZ =
(

∂Z

∂P

)

x,T

d P +
(

∂Z

∂T

)

x,P

dT +
(

∂Z

∂x

)

P,T

dx .

Using the thermodynamic identities for the derivatives

(
∂Z

∂P

)

x,T

= ∂2μ

∂P∂x
=

(
∂v

∂x

)

P,T

and

(
∂Z

∂T

)

x,P

= ∂2μ

∂T∂x
= −

(
∂s

∂x

)

P,T

,

we find straightforwardly that

dZ =
(

∂v

∂x

)

P,T

d P −
(

∂s

∂x

)

P,T

dT +
(

∂Z

∂x

)

P,T

dx .

On varying the concentration, temperature, and pressure, the one-phase state of
solution may prove to be unstable and the solution will separate into two phases with
various concentrations x(P, T ) and x ′(P, T ), in general, pressure- and temperature-
dependent. The conditions for the thermodynamic equilibrium between various
phases of solution are the equality of pressures, temperatures, and chemical potentials

7 Let us remind the correlations of conjugate variables 〈�v�P〉 = −T and 〈�s�T 〉 = T .
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φ′(P ′, T ′, Z ′) = φ(P, T, Z), P ′ = P,

Z ′(P ′, T ′, x ′) = Z(P, T, x), T ′ = T .

These equalities determine the phase equilibrium surface at the phase diagram in the
following variables: concentration, temperature, and pressure. We have on the phase
equilibrium surface

(v′ − v)dP − (s ′ − s)dT − (x ′ − x)dZ = 0 or[
v′ − v −(x ′−x)

∂v

∂x

]
dP −

[
s ′ − s −(x ′−x)

∂s

∂x

]
dT −(x ′−x)

∂Z

∂x
dx = 0

where v and v′ are the specific volumes for the various phases of solution. From the
last equation, we obtain the equations for the phase equilibrium lines P = P(x, T )

and T = T (x, P)

(
v′ − v − (x ′ − x)

∂v

∂x

)(
∂P

∂x

)

T

= (x ′ − x)
∂Z

∂x
,

(
v′ − v − (x ′ − x)

∂v

∂x

)(
∂P

∂T

)

x

= s ′ − s − (x ′ − x)
∂s

∂x
.

In general, due to presence of interaction between the solute and solvent particles,
it is a difficult problem to derive the analytical expressions for the chemical potentials
of solution. Classical ideal solution, using the expression for the chemical potential
of ideal gas

μ = x
[
μ10(P, T ) + T ln x

] + (1 − x)
[
μ20(P, T ) + T ln(1 − x)

]
,

Z = [
μ10(P, T ) + T ln x

] − [
μ20(P, T ) + T ln(1 − x)

]
.

We have for the density of entropy in such a solution

s = − ∂μ

∂T
= xs10 + (1 − x)s20 − x ln x − (1 − x) ln(1 − x).

The last two terms in the formula are called the entropy of mixing.
In order to demonstrate a few effects of interaction between various particles in the

solution, we employ the symmetrical model of regular solution8 with the following
chemical potential:

μ(P, T, x) = x
[
μ0(P, T ) + T ln x

]+
+(1 − x)

[
μ0(P, T ) + T ln(1 − x)

] + �x(1 − x).

8 For example, this model is applied for solid 3He-4He mixtures. The volume of solid mixture is
calculated as V34 = xV3 + (1 − x)V4 − V�x(1 − x)where V3 and V4 are the volumes of solid 3He
and 4He, volume V� being the magnitude of disturbance for additivity of volumes.
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The last term with � = �(P) > 0 describes the effects of interaction between the
particles and represents the excess energy of solution.

We start from constructing the phase diagram for the phase separation of the solu-
tion in the temperature-concentration variables. Its construction can be performed
similarly to the Maxwell double tangent construction for the gas–liquid transition,
using the analogies of potential μ(T, x) with free energy F(T, V ), potential Z with
the negative-sign pressure, and concentration x with volume V .

Let us analyze behaviorμ(T, x) as a function of concentration. The general double
tangent to line μ(T, x) will determine two concentrations x and x ′ corresponding to
potential Z0(T ) at which the phase transition can occur. The derivative

(
∂μ/∂x

)
T

=
Z and phase equilibrium condition Z(T, x) = Z(T, x ′) = Z0(T ) are independent of
concentrations x and x ′ and, accordingly, imply that the slope of line μ(T, x) at x is
the same as for x ′. The general tangent at points x and x ′ leads to the equation

μ(T, x) − μ(T, x ′)
x − x ′ = Z0(T ),

resulting in the necessary equilibrium condition

μ(T, x) − x Z0(T ) = μ(T, x ′) − x ′Z0(T ).

The derivative ∂μ/∂x as well as the potential Z are straightforwardly calculated
as

∂μ/∂x = Z(P, T, x) = �
(
1 − 2x

) − T ln
[
(1 − x)/x

]
.

Due to symmetry of potential with respect to replacement x → (1 − x), the general
tangent is possible only provided that ∂μ/∂x = 0, resulting in Z0(T ) = 0. The last
condition will give the temperature

Tc(x) = �
1 − 2x

ln(x−1 − 1)

of phase transition as separating the solution into two phases with different concen-
trations x = x(T ) and x ′ = x ′(T ). The concentrations should be found from solving
the equation T = Tc(x) (Fig. 4.5). The maximum temperature of phase separation
equals �/2. Above this temperature, the solution will no longer separate at any
concentration.

The inflection point at line μ(T, x), where ∂2μ/∂x2 = ∂Z/∂x = 0, separates the
metastable states of solution from the absolutely unstable ones and determines the
spinodal line

Ts(x) = 2�x(1 − x).

The maximum of temperature Ts equals �/2 as well. The point (T = �/2, x =
1/2) in the phase diagram is the critical one (Fig. 4.5). At T = 0 the minimum of



140 4 Phase Transitions and Critical Phenomena

Fig. 4.5 The phase diagram for the phase separation of regular solution. The solid line, binodal,
at which the phase separation takes place into two phases with the different concentrations x(T )

and x ′(T ). The dashed line is the spinodal. The states between the solid and dashed lines are
metastable. The region below the dashed line is absolutely unstable against the phase separation
into two phases. The point K is the critical one

interaction energy realizes at concentration x = 0 or x ′ = 1. For T � �, the energy
of interaction between the components of solution becomes insignificant.

Osmosis is one of the physical phenomena that can be used to determine the
chemical potential of a solvent as a function of the concentration of a solute. Let
us assume that there is a semipermeable membrane separating the solution and the
pure solvent into two parts since the solvent particles alone can pass through the
membrane. The pressure on both sides of the membrane proves to be different. The
pressure difference balancing the chemical potentials of the solution and pure solvent
is called the osmotic pressure.

The condition for equilibrium against an exchange of solvent particles across the
membrane will be an equality for the chemical potentials of solvent on both sides of
membrane. Denoting the pressure in the solution as P and the pressure in the pure
solvent as P − � where � = �(P, T, x) is the osmotic pressure, we can write the
equilibrium condition

μ2(P, T, x) = μ20(P − �(P, T, x), T )

or
φ20(P − �(P, T, x), T ) = φ2(P, T, x).

This equation allows us to determine the chemical potential of solvent as a function
of the solution concentration if we know the chemical potential of pure solvent and
measure the osmotic pressure � = �(P, T, x) as a function of P , T , and x .

Differentiating the last equation, respectively, over x , T , and P , one can obtain
the following three equalities. The first reads

(
∂�

∂x

)

P,T

= x

v20

(
∂Z

∂x

)

P,T

,
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v20 = v20(P − �, T ) being the specific volume of pure solvent at pressure P − �.
This equation is useful because it allows us to determine the derivative ∂Z/∂x . Its
value is essential for determining the condition for the phase separation of solution.
Vanishing of the derivative specifies the spinodal, i.e. line of absolute instability.

The second equality is given by

(
∂�

∂T

)

P,x

= s̄ − s20
v20

.

Here s20 = s20(P − �, T ) is the entropy of pure solvent per particle and s̄ = s −
x∂s/∂x is an “adjusted” entropy per particle. This equality allows us to estimate the
temperature behavior of osmotic pressure.

The third equality reduces to

(
∂�

∂P

)

T,x

= 1 − (1 − β)
v

v20
where β = x

v

∂v

∂x
= ∂ ln v

∂ ln x
.

As usual, derivative ∂�/∂P is small at low concentrations. Provided that v20(P −
�) ≈ v20(P) andmolar volumeof solution v(P, T, x) = v20(P, T )

(
1 + xα(P, T )

)
,

the derivative ∂�/∂P equals zero identically.

Problems

1. Estimate the osmotic pressure for an ideal mixture of two classical gases, using the expression
for the entropy of mixing.

Solution. Let us write the entropy density of ideal classical mixture with first-component con-
centration equal to x as

s = xs10 + (1 − x)s20 − x ln x − (1 − x) ln(1 − x).

Then we use that the temperature derivative of osmotic pressure equals

∂�/∂T = n20
[
(s − x∂s/∂x) − s20

] = −n20 ln(1 − x).

Assuming the density n20 for the main component of mixture to be constant, we find that

�(T ) = −n20T ln(1 − x) and for x 
 1 �(T ) ≈ xn20T = n1T,

n1 being the density of first component. Here we have taken into account that the pressure of ideal
gases vanishes at T = 0. The expression� = n1T derived at x 
 1 is called the van ’t Hoff formula
and has nominally the same form as the formula for the pressure of classical ideal gas.

2. The small amount of 3He atom impurities in superfluid 4He can be described as an ideal
Fermi gas of impuritons with dispersion ε p = −� + p2/2M . The dependence of the dissolution
energy � and effective mass M on the 4He density can be neglected in first approximation.

The capillary (so-called superleak) plays a role of membrane which passes the superfluid 4He
fraction of liquid mixtute though but prevents the 3He impurities (nornal fluid fraction) from the
penetration across the membrane. Determine the magnitude of osmotic pressure between pure
superfluid 4He and dilute liquid 3He–4He mixture at zero temperature.

Solution. Let us write chemical potential of 3He atoms with density n3

μ3 = −� + p2F/2M, pF = �(3π2n3)
1/3.
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Here pF is the Fermi momentum of 3He with density n3. For small concentration x 
 1 of 3He
atoms, their density equals n3 = xn40 where n40 is the density of pure 4He. As it concerns the
potential Z = μ3 − μ4, one can neglect a possible dependence μ4 upon concentration in the x 
 1
limit and put approximately μ4(x) ≈ μ4(0) = μ40. Then,

∂�

∂x
= x

v40

∂Z

∂x
= n40x

∂μ3(x)

∂x
= 2

3
n40

p2F (x)

2M
∼ x2/3

where specific volume v40 and superfluid 4He density n40 are related as n40 = 1/v40. Finally, we
find the osmotic pressure for x 
 1

�(x) = n40

x∫

0

x
∂μ3(x)

∂x
dx = 2

5

p2F
2M

xn40 = 2

5

p2F
2M

n3 = (3π2)2/3
�
2n5/340

5M
x5/3.

This magnitude is approximately equal to the pressure of ideal Fermi gas with density n3 = xn40.
3. Find the low temperature behavior of osmotic pressure under conditions of the previous

problem.
Solution. Let us employ the following relation:

∂�

∂T
= n40

(
s − x

∂s

∂x
− s40

)

where s is the entropy density of liquid mixture and s40 is the entropy density of superfluid 4He.
In the low x 
 1 concentration limit, we estimate the entropy of liquid mixture as a sum of pure
superfluid 4He and contribution from the ideal gas of impuritons, i.e. s ≈ s40 + s3(x). Next, from

∂�/∂T ≈ (2/3)n40s3(x) ∼ T x1/3, T 
 TF (x),

we have involved that x ∂s3/∂x = s3/3 and TF (x) is the degenerate temperature for the Fermi gas
with density n3 = xn40. Finally,

�(T ) = �0(x) + �1T
2 and �1(x) ∼ �0(x)/T

2
F (x).

4.7 Second-Order Phase Transitions

The second-order phase transitions are currently treated from the viewpoint of a
spontaneous symmetry breaking. An order parameter should be introduced for
the quantitative description of the degree of symmetry breaking. The order param-
eter normally vanishes in one phase (usually above the phase transition point) and
increases smoothly in the other phase by getting away from the phase transition point
(usually to lower temperatures). The physical properties and mathematical interpre-
tation of order parameter ϕ are determined by the specific physics of second-order
phase transition. From the mathematical point of view, the order parameter can be a
scalar, vector, tensor, real, or complex quantity.

Here we can mention the following examples of second-order phase transitions
as nonmagnetic-to-ferromagnetic transition at the Curie temperature, magnetization
(magnetic moment per unit volume) being the order parameter, i.e. three-component
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vector; antiferromagnetic transition at the Néel temperature below which the order
parameter (antiferromagnetic vector) is a difference between the magnetizations of
two magnetic sublattices; difference in the densities of liquid and gas phases near
the critical point. In ferroelectrics the order parameter represents the vector of spon-
taneous polarization arising from the mutual displacement of sublattices.

For the phase transition to superfluid or superconducting state, the order parameter
is a complex variable associated with the wave function of condensate or electron
pairs and, correspondingly, has a phase in addition to themodulus of order parameter.
In superfluid 3He neutral Fermi liquid with p-pairing, the order parameter becomes
more complicated and is described with the complex 3×3 matrix. In the liquid–
crystal phase transition, the order parameter represents an irreducible symmetrical
tensor with five independent components.

For the mathematical description of second-order phase transition, the notion for
the local magnitude of order parameter ϕ(r) at point r should be introduced. The
local order parameter is determined as a mean value taken over physically small
volume �V ∼ a3. The length a is a typical distance between particles and much
smaller as compared with length ξ at which the order parameter varies noticeably. In
this case one says about ϕ(r) as being the field of order parameter and the field ϕ(r)
is a macroscopic or classical variable. The typical spatial scale at which the order
parameter changes significantly must exceed the distance between the particles or
the lattice constant. The order parameter ϕ(r) can change or fluctuate from one point
to another.

One of main characteristics for the order parameter, along with its average mag-
nitude 〈ϕ(r)〉, is the correlation function or correlator

K(r, r ′) = 〈ϕ(r)ϕ(r ′)〉.

The symbol 〈�〉 implies the thermodynamic average for variable �. Usually, at the
temperatures above the phase transition one Tc in the disordered phase the average
magnitude of order parameter vanishes 〈ϕ〉 = 0. The correlator K (r, r ′) decays
exponentially at large distances for |r − r ′| → ∞:

K(r, r ′) ∼ exp
(−∣∣r − r ′∣∣/ξ

)
.

The correlation length ξ = ξ(T ) is temperature-dependent and increases unlimitedly
on approaching the phase transition temperature Tc. In the ordered phase below the
phase transition temperature, the correlator no longer decreases at large distances
and tends to the square of average magnitude of order parameter 〈ϕ〉2.

If the magnitude of order parameter ϕ(r) is set at each point r , we can rep-
resent the Helmholtz free energy F (at fixed volume) or thermodynamic Gibbs
potential � (at fixed pressure) as a functional of variable ϕ(r). As a rule, in the
general theory of critical phenomena the type of external conditions or thermody-
namic potentials is not specified, and the same generalized notion as an effective
Hamiltonian Heff is employed for calculating various thermodynamic potentials
and variables.
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The probability to find the system in the state with the given order parameter ϕ(r)
is governed with the Gibbs distribution

W [ϕ(r)] = Z−1 exp
(−E[ϕ(r)]/T )

.

Here E[ϕ(r)] is the energy of the system at the given distribution of order parameter
ϕ(r). The partition function Z is defined as a sum or integral over all the possible
configurations of field ϕ(r):

Z =
∑

ϕ(r)

exp
(−E[ϕ(r)]/T ) =

∫
Dϕ(r)e−E[ϕ(r)]/T = e−(Heff/T ).

In essence, this is a continual integral taken over all possible field configurations
ϕ(r). (In what follows, we will often include factor 1/T to the definition of effective
Hamiltonian).

From the physical point of view, the effective Hamiltonian Heff = Heff[ϕ(r)]
becomes temperature-dependent and represents the free energy9 related to some
distribution of order parameter in the system. From the mathematical point of view,
this is a functional determined on the total set of the values of order parameter ϕ(r).
The effective Hamiltonian, as a functional of order parameter ϕ(r), can be expanded
in an infinite integral–differential series in the powers of order parameterϕ(r) and its
derivatives∇ϕ(r). The involvement of lowest powers forϕ(r) and∇ϕ(r) represents
the Landau expansion and, as a rule, results in the effective Landau Hamiltonian

HL [ϕ(r)] =
∫ [

c

2
(∇ϕ)2 + a

2
ϕ2 + b

4
ϕ4 − h(r)ϕ

]
d r.

In other words, we approximate the energy for the concrete configuration of order
parameter with the Landau expansion, i.e. we put E[ϕ(r)] ≈ HL [ϕ(r)]. It is natural
that this may only be acceptable for the slow variations and small magnitudes of
order parameter.

The type and structure of such an expansion10 should involve the fact of phase
transition existence and correspond to a number of symmetrical properties of order
parameter. In general, the expansion coefficients can depend on temperature and other
parameters, e.g. pressure. In order to have the ordered phase of order parameter 〈ϕ〉 �=
0 below phase transition temperature Tc and the disordered 〈ϕ〉 = 0 phase above Tc, it
is sufficient to assume that coefficient a = a(T ) is essentially temperature-dependent
and changes its sign vanishing at the transition point

9 More exactly, thermodynamic potential divided with temperature.
10 For simplicity, we put the order parameter to be a scalar quantity with the number of components
equal to n = 1. If the component number of order parameter is n = 2, 3, . . ., notations ϕ2, ϕ4, and
(∇ϕ)2 imply the sumsϕ2

1 + . . . + ϕ2
n , (ϕ

2
1 + . . . + ϕ2

n)
2 and (∇ϕ1)

2 + . . . + (∇ϕn)
2, respectively.
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a(T ) = ατ , τ = T − Tc
Tc

, α > 0.

We call the variable τ closeness to the transition point or dimensionless temperature.
Coefficients c and b are the stiffness and coupling constant, respectively. The tem-
perature dependence of these coefficients is not so essential and can be neglected in
first approximation, treating them as constant ones. The termwithϕ4 is referred to as
the coupling of order parameter fluctuations. The parameter h(r) can be interpreted
as the generalized external field.

Depending on the type of phase transition and symmetry of order parameter, itmay
be possible to include the cubic term ϕ3 in the expansion of effective Hamiltonian.
Such a situation arises in the critical phenomena near the gas–liquid critical point.
The cubic term in the effective Hamiltonian leads to the first-order phase transition.
At the first-order phase transition point the continuity breaks down, entailing a jump
for the order parameter in the course of transition from one phase to another.

In some physical systems, for example, to describe the phase transitions in fer-
roelectrics, the expansion to sixth-order terms has often to be used, resulting from
the smallness and the possible simultaneous vanishing of coefficients b and a at the
tricritical point. The description of phase transitions under violating the translational
symmetry and appearing of the long-range periodic structures, e.g. charge density
waves in ferroelectrics, spin density waves, helicoidal structures in antiferromagnets,
or spatially inhomogeneous phases in superconductors, may require to augment the
expansion of effective Hamiltonian with the spatial derivatives of higher order than
second, e.g.∼ (∇2ϕ)2. Such a situation occurs at theLifshitz pointwhere the stiffness
coefficient c vanishes.

4.8 Self-Consistent Field Approximation

Let us turn now to considering the properties of phase transition in the framework of
the Landau approximation, assuming the expansion of the effective Hamiltonian in
a series over the powers of order parameter and slowness of its spatial variation. We
write the probabilityW [ϕ(r)] for the given field configuration of order parameter as

W [ϕ(r)] = Z−1 exp
(−HL [ϕ(r)]/T )

,

Z =
∫

Dϕ(r) exp
(−HL [ϕ(r)

]
/T

)
.

The calculation of partition function represents an evaluation of functional (con-
tinual) integral meaning a complicated mathematical problem due to presence of
non-quadratic ϕ(r) expansion terms in the exponent. The self-consistent or mean-
field approximation reduces to a choice of such a field configuration which provides
us with the maximum probability of its realization. The maximum probability has
the configuration for which the magnitude HL [ϕ(r)] is minimum. The necessary
condition is the following:
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δHL [ϕ(r)]
δϕ(r)

= 0.

In the self-consistent ormean-field approximation, thefluctuations of order parameter
ϕ are completely neglected, and the equilibrium of the system is determined with
the condition of minimum forHL [ϕ(r)].

Let us analyze the properties of second-order phase transition in the self-consistent
field approximation for the effective Landau Hamiltonian

HL =
∫ [

c

2
(∇ϕ)2 + a

2
ϕ2 + b

4
ϕ4 − h(r)ϕ

]
d r, a(τ ) = ατ (α > 0).

We start from the case of zero external field h(r) = 0. In this case the condition of
the minimum Hamiltonian reaches the homogeneous distribution of order parameter
〈ϕ(r)〉 = ϕ, satisfying the equation

(a + bϕ2)ϕ = 0.

Here, two states are possible such as a disordered phase ϕ = 0 available at all tem-
peratures and an ordered phase with ϕ2 = −a/b available only if T < Tc. For the
disordered phase, we have HL = 0 and for the ordered one: HL = −a2/4b < 0.
Thus, at low T < Tc temperature there will exist an ordered state energetically more
favorable as compared with the disordered one. As a result, we have for the equilib-
rium magnitude of order parameter ϕ = ϕ0

ϕ0(τ ) =
{
0 if τ > 0,
±(

α|τ |/b)1/2 ∼ |τ |1/2 if τ < 0.

Below Tc, as the temperature lowers, the order parameter magnitude increases and
reaches the saturation away from the phase transition point in the low temperature
limit.

For the specific heat C = −T∂2HL [φ0]/∂T 2, we find

C(τ ) =
{
0 if τ > 0,
T
Tc

α2

2bTc
if τ < 0.

The specific heat increases in the course of the disordered–ordered phase transition
and experiences a finite-magnitude jump directly at the phase transition point.

Let us consider the effect of external homogeneousfieldh(r) = h on theproperties
of phase transition. Most important characteristic for the behavior of the system in
external field is the generalized susceptibility defined asχ = ∂〈ϕ〉/∂h. The condition
for the minimum of effective Hamiltonian yields the equation for determining ϕ

aϕ + bϕ3 = h.
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For h �= 0, this equation has no solution with ϕ = 0 at any temperature and, strictly
speaking, the phase transition is absent. The solution with the maximum modulus of
order parameter corresponds to the energy minimum.

Differentiating over the field results in the equation for the susceptibility

χ = 1

a + 3bϕ2(h)
.

We analyze these two equations in the limits of weak h 
 hτ and high h � hτ

external field. The critical field hτ can be estimated from the condition 3bϕ2(hτ ) =
−a and equation for order parameter. This gives approximately

hτ ∼ 2α3/2

3
√
3b

|τ |3/2.

So, at the phase transition point the effect of external field is always strong, regardless
of its magnitude.

Let us start from the low field limit. In this case we can put ϕ ≈ ϕ0(τ ) and find
the temperature behavior divergent at the phase transition point and described by the
Curie law

χ(τ ) =
⎧
⎨

⎩

1
ατ

if τ > 0,
(h 
 hτ )

1
2α|τ | if τ < 0.

In the high h � hτ external field, the nonlinear term in ϕ becomes predominant
and the closeness to the phase transition has no essential effect on the behavior of
order parameter as a function of external field

ϕ =
(
h

b

)1/3

and χ = 1

3b1/3h2/3
for h � hτ .

Problem

1. In the ordered (τ < 0) phase, an emergence of the domain walls or plane defects becomes
possible as a result of degenerating the states with +ϕ0 and −ϕ0 in energy. Let ϕ(z) depend on
coordinate z normal to the domain wall plane and ϕ(±∞) = ±ϕ0 where ϕ0 is the equilibrium
magnitude of order parameter.

Find the behavior ϕ(z) and the domain wall energy E .
Solution.Minimizing the effectiveHamiltonian, according to δHL/δϕ = 0, leads to the equation

−cϕ′′(z) + aϕ(z) + bϕ(z) = 0.

This equation should be solved for the following boundary conditions: ϕ(±∞) = ±ϕ0 and
ϕ′(±∞) = 0. Multiplying the equation by ϕ′(z), we arrive at first integral
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− c

2
ϕ′2(z) + a

2
ϕ2(z) + b

4
ϕ4(z) = const = −b

4
ϕ4
0

and then at the equation

ξ2ϕ′2(z) = (ϕ2
0 − ϕ2)2

2ϕ2
0

where ξ =
(

c

|a|
)1/2

.

The solution of equation can be represented as

ϕ(z) = ϕ0 tanh
z − z0√

2 ξ

where z0 is an arbitrary constant determining the position of domain wall.
The energy of domain wall per unit area equals the integral

E =
∞∫

−∞
dz

(
c

2
ϕ′2(z) + a

2
ϕ2(z) + b

4
ϕ4(z) − b

4
ϕ4
0

)
=

∞∫

−∞
cϕ′2(z)dz = 8

√
2

3
ξ
bϕ4

0

4
.

4.9 Critical Exponents

The behavior of physical quantities near continuous phase transitions is usually
extrapolated with the power laws. These power-like properties are well supported
by experimental data. The critical exponent is defined as an exponent in the limiting
behavior at T → Tc and, if the physical quantity behaves as f (τ ) ∼ τλ, its exponent
reads

λ = lim
τ→0

ln | f (τ )|
ln |τ | .

The caseλ = 0means either finite jumpof quantity f (τ ) or logarithmic divergence at
τ = 0. The critical exponent shows only the limiting behavior at the phase transition
point. In general, there are less divergent corrections, e.g.

f (τ ) = A|τ |λ(1 + B|τ |ε + . . .) where ε > 0.

The proportionality coefficients A and B do not necessarily coincide on both sides
of the phase transition. Though the correction term vanishes in limit τ → 0, it may
be essential however and noticeable for small but finite values τ , imitating another
critical exponent at |τ | > |B|−1/ε.

The following conventional symbols are accepted for the critical exponents. For
specific heat, this is exponent α in accordance with the relation

C(τ ) ∼ |τ |−α.

The critical exponent β is introduced for describing the critical behavior of order
parameter in the ordered phase
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ϕ0(τ ) ∼ (−τ )β (τ � 0).

The critical exponents γ and δ are related with the behavior of order parameter as
a function of external field h. Exponent γ determines the temperature behavior of
susceptibility in the low field

χ ∼ |τ |−γ

and the exponent δ does the behavior of susceptibility in the high external field limit
or just at the phase transition point T = Tc

ϕ(h) ∼ h
1
δ and χ(h) ∼ h

1
δ −1.

In the mean-field approximation we have α = 0, β = 1/2, γ = 1, and δ = 3. Other
critical indices will be introduced below.

4.10 Fluctuations of Order Parameter

The physical quantities in the thermodynamic systems are subjected to thermal fluc-
tuations due to openness of the system. This is fully applicable to the order parameter
fluctuations which we have neglected so far, treating the order parameter unchange-
able from one point to another in the space.

Let us start to analyze the scalar order parameter fluctuations from the high tem-
perature region, treating the magnitude of order parameter ϕ to be sufficiently small
and neglecting the coupling termϕ4. Thus we study the following quadratic effective
Hamiltonian:

H0 =
∫ [

c

2
(∇ϕ)2 + a

2
ϕ2

]
d r.

This approximation is called the free-field model and plays a key role in the theory of
critical phenomena as an exactly solvable model. The free-field model is a specific
type of effective Landau Hamiltonian at b = 0 and, in particular, originates from
calculating the fluctuating corrections in the Landau expansion. Here we can treat
ϕ(r) as a deviation of order parameter from its mean value ϕ0 = 〈ϕ(r)〉.

Below we consider the spatial correlation of scalar order parameter ϕ, studying
the behavior of irreducible correlator K (r, r ′)

K (r, r ′) = 〈�ϕ(r)�ϕ(r ′)〉 = 〈ϕ(r) − 〈ϕ(r)〉 〉〈ϕ(r ′) − 〈ϕ(r ′)〉 〉.

The angular brackets mean the thermodynamic average. In what follows, for definite-
ness, we imply the temperature above the critical one T � Tc and, correspondingly,
we put 〈ϕ(r)〉 = 0. According to the definition of correlation function, we have
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K (r, r ′) = 〈ϕ(r)ϕ(r ′)〉 =
∑
ϕ(r)

ϕ(r)ϕ(r ′)e−H0/T

∑
ϕ(r)

e−H0/T
=

=
∫
Dϕ(r)ϕ(r)ϕ(r ′)e−H0/T

∫
Dϕ(r) e−H0/T

.

Here the sums (integrals) must be calculated over all the field configurations of order
parameter ϕ(r). For the calculation in the framework of the free-field model, we
reduce Hamiltonian H0 to the simple diagonal form

H0 = 1

2

∑

k

[(
ck2 + a)|ϕk|2

]

with the aid of transformation to the Fourier representation

ϕ(r) = 1√
V

∑

k

ϕke
ikr , ϕ∗(r) = 1√

V

∑

k

ϕ∗
ke

−ikr and ϕ−k = ϕ∗
k.

The expression for the correlation function K (r, r ′) reads

K (r, r ′) = 〈ϕ(r)ϕ(r ′)〉 =
∑

k,k′
〈ϕkϕk′ 〉eikr+ik′ r ′ =

∑

k

〈|ϕk|2〉eik(r−r ′)

where we have taken into account that the harmonics with different wave vectors k
fluctuate independently from each other, i.e. 〈ϕkϕk′ 〉 = 〈ϕkϕ

∗
k〉δk,−k′ .

To find the average, we employ the method of the generating functional Z

Z[hk] =
∫
Dϕk e

− ∑
k

(
1
2 ϕkK

−1
k ϕ−k−ϕkh−k

)

∫
Dϕk e

− 1
2

∑
k

ϕkK
−1
k ϕ−k

, Kk = T

ck2 + a
.

To calculate the generating functional, we perform the transformation of homoge-
neous shift for the field ϕk representing the variable for integrating

ϕk → ϕk + ξk and ϕ−k → ϕ−k + ξ−k .

Under such a replacement of variables, the value of integrals included in definition
Z remains unchanged since the integration over ϕk is performed in the infinite limits
and D(ϕk + ξk) = Dϕk. Next,

∫
D(ϕk + ξk) e

− ∑
k

[ 12 (ϕ−k+ξ−k)K
−1
k (ϕk+ξk)−h−k(ϕk+ξk)−(ϕ−k+ξ−k)hk] =

= e
1
2

∑
k
h−kKkhk

∫
Dϕk e

− 1
2

∑
k

ϕ−kK
−1
k ϕk
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wherewehave chosen themagnitudeof shift as ξk = Kkhk and ξ−k = Kkh−k in order
to get rid of linear termsoverϕk.Wehave also involved that

∑
k h−kϕk = ∑

k hkϕ−k.
Hence we obtain the following representation for the generating functional Z[hk]:

Z[hk] =
∫
Dϕk e

− ∑
k

(
1
2 ϕkK

−1
k ϕ−k−ϕkh−k)

∫
Dϕk e

− 1
2

∑
k

ϕkK
−1
k ϕ−k

= e
1
2

∑
k
hkKkh−k

.

Decomposing the left-hand and right-hand sides of equality to second order in hk,
we have

1 + 1

2

∑

k

hkKkh−k = 1 +
∑

k

〈ϕk〉h−k +
∑

k,k′

1

2
〈ϕkϕk′ 〉h−kh−k′ .

Since hk is arbitrary, the comparison of the expansion terms with the same powers
results in the obvious equality 〈ϕk〉 = 0 and the equality which we have sought for

〈ϕkϕk′ 〉 = Kkδk′,−k and 〈ϕ−kϕk〉 = 〈|ϕk|2〉 = T

ck2 + a
.

Eventually, the correlation function is expressed with the following integral gen-
eralized to an arbitrary spatial dimensionality d:

K (r, r ′) =
∫

ddk

(2π)d

T

ck2 + a
eik(r−r ′) =

= T

2πc

(
2π|r − r ′|ξ)1−d/2

K d−2
2

( |r − r ′|
ξ

)
.

Here Kν(x) is themodifiedBessel functionof the secondkind11 with indexν. The cor-
relation length ξ = (c/a)1/2 ∼ |τ |−1/2 is a typical size of region where a new phase
develops. In fact, for |r − r ′| � ξ, the correlation function decays exponentially

K (r − r ′) ∼ exp(−|r − r ′|/ξ).

In the phase transition point τ = 0, the correlation length diverges and a new phase
starts to occupy the whole volume of the system. For usual dimensionality d = 3,
the correlation function equals

K (r, r ′) = T

4πc|r − r ′|e
−|r−r ′|/ξ.

11 Rarely: Macdonald function.
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At the very phase transition point T = Tc, the typical and natural length scale
is absent since ξ = ∞ and correlation function K (r, r ′) behaves in the power-like
manner

K (r, r ′) ∼ |r − r ′|2−d .

In the two-dimensional case at |r − r ′| 
 ξ we have a logarithmic behavior
K (r, r ′) ≈ (T/2πc) ln(ξ/|r − r ′|).

In order to describe the anomalous behavior of correlation function in the immedi-
ate vicinity of phase transition point, two critical exponents are necessary to introduce
more. The exponent ν determines the degree of divergence for the correlation length
within the vicinity of phase transition point

ξ(τ ) ∼ |τ |−ν .

The critical Fisher exponent η characterizes the behavior of correlation function
K (r, r ′) at the very transition point according to

K (r, r ′) ∼ 1

|r − r ′|d−2+η
.

In the free-field model these critical exponents are as follows: ν = 1/2 and η = 0.
Let us analyze the external field effect on the properties of order parameter ϕ(r)

within the free-field model. In other words, we study the effective Hamiltonian

H0 =
∫ [

c

2
(∇ϕ)2 + a

2
ϕ2 − h(r)ϕ(r)

]
d r.

The equilibrium magnitude of order parameter is determined by the minimum of
effective Hamiltonian. Varying H0 yields

δH0

δϕ(r)
= −c∇2ϕ(r) + aϕ(r) − h(r) = 0.

The solution of this equation can conveniently be written with the aid of the Green
function or response function as

ϕ(r) =
∫

G0(r − r ′)h(r ′)d r ′,

the Green function being the solution of equation

(
−c

∂2

∂r2
+ a

)
G0(r, r ′) = δ(r − r ′).

Since G0(r, r ′) = G0(r − r ′), the solution can be found using the transformation to
the Fourier representation for the Green function G0(k). So, we have
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(ck2 + a)G0(k) = 1 and G−1
0 (k) = ck2 + a.

Hence we disclose the direct relation between the correlation and Green functions:
K (r) = TG0(r) and

G0(r) =
(
2πrξ

)1−d/2

2πc
K d−2

2

(
r/ξ

)
.

Thus, the Green function differs from the correlation function by a multiplier alone.

Problem

Find the relation between the generalized susceptibility χ and irreducible correlator K (r) for
the fluctuations of order parameter field ϕ(r).

Solution. Let us introduce external field h(r) by augmenting the effective Hamiltonian H0[ϕ]
with the following term:

δH [ϕ] = −
∫

d r h(r)ϕ(r) and H = H0[ϕ] + δH [ϕ].

Let external field be uniform: h(r) = const. Then we write down the general definition of partition
function Z and the relations for the averages:

Z =
∑

ϕ

e−H/T , 〈ϕ(r)〉 = 1

Z

∑

ϕ

ϕ(r)e−H/T ,

∫
d r〈ϕ(r)〉 = T

1

Z

∂Z

∂h
,

∫∫
d r d r ′〈ϕ(r)ϕ(r ′)〉 = T 2 1

Z

∂2Z

∂h2
.

Due to constancy of external field and homogeneity of system, the mean value of order parameter
〈ϕ(r)〉 is independent of coordinate r and the mean value 〈ϕ(r)ϕ(r ′)〉 depends on the coordinate
difference alone. Therefore, one of the integrations will give us the volume V of the system and, in
particular,

〈ϕ〉 = T

V

∂ ln Z

∂h
.

Then we obtain from the definition of susceptibility

χ = ∂〈ϕ〉
∂h

= T

V

∂2 ln Z

∂h2
.

The double differentiation of logarithm ln Z results in

1

T 2

1

Z

∂2Z

∂h2
=

∫∫
d r d r ′〈�ϕ(r)�ϕ(r ′)〉 =

∫∫
d r d r ′ K (r, r ′).

Then, involving the homogeneity of the system K (r, r ′) = K (r − r ′), we find the relation desired

χ = 1

T

∫
K (r)d r = 1

T

∫
〈�ϕ(r)�ϕ(0)〉 d r.

This formula represents the general relation between the irreducible correlator for the fluctuations

of order parameter ϕ and its response χ to the conjugate external field h.
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4.11 The Ginzburg–Levanyuk Criterion

So far we have neglected the effect of possible spatial order parameter fluctuations
associated directlywith the presence of gradient term in the effective free-fieldHamil-
tonian which the Fourier transform reads as

H0 = 1

2

∑

k

[(
ck2 + a)|ϕk|2 − h∗

kϕk − ϕ∗
khk

]
.

Let us start the calculation of partition function in the lack of external field, i.e. at
h = 0. The thermodynamic potential is F = −T ln Z where partition function Z
represents a sum over the infinite set of all possible spatial realizations for the order
parameter field ϕ(r). Running over all the possible Fourier transforms of field ϕk is
completely equivalent to that over all the possible realizations of field ϕ(r):

Z0 =
∑

Reϕk, Imϕk

e
− ∑

k

ck2+a
2T |ϕk |2 =

∏

k

∑

Reϕk, Imϕk

e− ck2+a
2T |ϕk |2 .

Then, in the infinite product we calculate the value for the sum with the fixed wave
vector k as

∑

Reϕk, Imϕk

e− ck2+a
2T |ϕk |2 = 1

2

∞∫

−∞
d(Reϕk)

∞∫

−∞
d(Imϕk) ×

× exp

(
−ck2 + a

2T

[
(Reϕk)

2 + (Imϕk)
2
]) = πT

ck2 + a
.

Here we have introduced factor 1/2. Otherwise, the states with wave vectors ±k
would be counted twice for the scalar real order parameter field due to relation
ϕ∗
k = ϕ−k. Finally, we arrive at the following expression12 for the partition function

at h = 0:

Z0 =
∏

k

πT

ck2 + a
.

Then the thermodynamic potential equals

F = −T
∑

k

ln
πT

ck2 + a
≈ −Tc

∑

k

ln
πTc

ck2 + a
.

12 For the real order parameter, its Fourier transforms are not independent and the integration should
be limited to the half-space of thewave vector k. As for the complex order parameter, the components
Reϕk and Imϕk are completely independent and factor 1/2 is superfluous. The numerator in Z0
will be 2πT instead of πT .
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Since, as we will see, the singular behavior of thermodynamic variables is related
with the region of small wave vectors k and smallness a = ατ , it is possible to
neglect the difference between T and Tc in the regular places in the expression
for thermodynamic potential F . Then, the singular correction to specific heat C =
−T∂2F/∂T 2 equals

δCsing(τ ) = −T−1
c

∂2F

∂τ 2
=

∑

k

α2

(ατ + ck2)2
=

∫
Vd ddk

(2π)d

(α/c)2

(k2 + ξ−2)2
,

resulting from the spatial order parameter fluctuations. Here Vd = Ld is the volume
of the system in the space of dimensionality d and ξ = (c/ατ )1/2 is the correlation
length. Calculating the integral gives the following answer:

δCsing(τ ) = Vd Sd
(2π)d

π(2 − d)

4 sin(πd/2)

(
α

c

)2

ξ4−d ∼ 1

τ (4−d)/2

where Sd is the surface area of unit d-dimensional sphere. The divergence originating
from ξ → ∞ is associated with the singular contribution to the integral from the
region of small wave vectors or from the long-wave fluctuations of order parameter.
The less the spatial dimensionality d, the stronger the order parameter fluctuations
will manifest by approaching the phase transition point.

In the usual dimensionality d = 3 one has

δCsing(τ ) = V

8π

(
α

c

)2

ξ ∼ 1

τ 1/2
.

For d = 4, the singularity of correction to the specific heat is logarithmic δCsing ∼
ln(1/τ ). No specific singular contribution to the specific heat behavior appears for
dimensions d > 4. The critical exponents, predicted by the self-consistent Landau
theory, remain unchanged. In this sense the space dimensionality d = 4 proves to
be boundary and is called the upper critical dimensionality in this case. In the
dimensions above the upper critical one, the critical exponents coincide with those
predicted by the mean-field theory.

If we compare the fluctuation correction δCsing with the specific heat jump �C
found in the Landau theory approximation, we arrive at the Ginzburg–Levanyuk
criterion of applicability for the Landau theory in which the spatial fluctuations of
order parameter are completely neglected. In the d = 3 case the fulfillment of the
following strong inequality is required:

α2

2bTc
� 1

8π

(
α

c

)3/2 1

|τ |1/2 ∼ 1

|τ |1/2 .
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Hence we find13 the criterion of applicability for the Landau theory (self-consistent
field theory):

1 � |τ | � Gi, Gi = b2T 2
c

αc3
.

The left-hand side of inequality expresses simply the closeness to the phase transition
point, which is necessary for the Landau expansion. The right-hand side of inequal-
ity ensures the smallness of order parameter fluctuations. The immediate vicinity
of phase transition point |τ | � Gi, where the strong spatial fluctuations of order
parameter develop, is called the fluctuation or critical region of phase transition. For
Gi � 1, no applicability region exists for the theory of self-consistent field (Landau
expansion).

We can also obtain the Ginzburg–Levanyuk criterion from the following specula-
tions. Themean-field theory is justified provided that the order parameter fluctuations
in volume Vξ ∼ ξd with linear size ∼ ξ are small as compared with the typical mag-
nitude of order parameter ϕ0 ∼ (α|τ |/b)1/2 in volume Vξ . In the opposite case, it is
necessary to take the order parameter fluctuations into account. For the conventional
spatial dimension d = 3 and from the condition

〈(�ϕ)2〉 = Tχ

Vξ
∼ Tcχ

Vξ
∼ Tc

ξ3α|τ | 
 ϕ2
0 ∼ α|τ |

b

whereχ ∼ 1/(α|τ |) is the generalized susceptibility,we arrive at the sameGinzburg–
Levanyuk criterion.

The dimensionless parameter Gi, temperature-independent and characterizing the
specific condensed matter, is referred to as the Ginzburg–Levanyuk number. To
clarify the physical meaning of this parameter, let us rewrite it as follows:

Gi = b2T 2
c

αc3
∼

(
Tc

εca3

)2( a

ξ0

)6

.

Here length ξ0 = (c/α)1/2 represents approximately the magnitude of correlation
length (coherence length) far from the transition point, roughly speaking, at zero
temperature when |τ | ∼ 1. Parameter εc = α2/b by the order of magnitude can be
identified with the condensation energy of the ordered phase far from the phase tran-
sition temperature as well. Since parameter a means the typical spacing between the
particles of medium, the quantity εca3 determines the typical scale of condensation
energy per particle or energy gain as compared with the disordered phase as a result
of emerging the low-temperature ordered phase. The main condition for the small-
ness of the Ginzburg–Levanyuk number is the large correlation length as compared
with the interatomic spacing, i.e. ξ � a.

13 We omit the small numerical factor 1/(4π)2.
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The condensed media with small numbers Gi 
 1, first of all, include super-
conductors14 and superfluid helium 3He for which Gi ∼ (a/ξ0)

4 or ∼ (Tc/εF )4. The
substances with relatively small numbers Gi ∼ 0.1 can be presented by ferromagnets
and ferroelectrics with the Curie temperature about several kilokelvins. The normal
liquid–superfluid transition in 4He serves as an example of phase transition which
has no temperature region for applicability of Landau expansion since Gi ∼ 1. The
coherence length ξ0 here has really one or two interatomic distances, i.e. ξ0 ∼ a.
The condensation energy per particle is of the same order of the magnitude as the
transition temperature Tc ∼ 2.17 K into the superfluid state.

Problems

1. Find the critical exponent μ and correlation radius ξ for the fluctuations of order parameter ϕ
in the external field h at the phase transition point τ = 0.

Solution. We expand the effective Landau Hamiltonian

HL [ϕ] = c

2
(∇ϕ)2 + bϕ4

4
− hϕ

at phase transition point τ = 0 over the deviations of order parameter from its equilibrium value
ϕ0(h) = (h/b)1/3 to quadratic terms

HL [ϕ] = HL [ϕ0] + c

2
(∇ϕ)2 + 3bϕ2

0

2
(ϕ − ϕ0)

2 + . . .

This Hamiltonian is analogous to that of free field treated above. Thus we write straightforwardly
the answer

ξ =
√

c

3b1/3
1

h1/3
, i.e. ξ(h) ∼ h−μ

and critical exponent μ equals 1/3.
2. Determine the singular correction to specific heat δCsing ∼ h−ε in the external field h at the

phase transition point τ = 0.
Solution. Let us expand the effective Landau Hamiltonian HL [ϕ] over the deviations of order

parameter ϕ from its equilibrium value ϕ0, satisfying the equation

a(τ )ϕ0 + bϕ3
0 = h, a(τ ) = ατ .

We restrict ourselves with the second-order terms in deviations. We have

HL [ϕ] = HL [ϕ0] + c

2
(∇ϕ)2 + a + 3bϕ2

0

2
(ϕ − ϕ0)

2 + . . .

The thermodynamic potential determining the singular contribution due to order parameter fluctu-
ations will be equal to

F = −Tc
∑

k

ln
πTc

ck2 + a + 3bϕ2
0

.

Next,

δCsing = −T−1
c

∂2F

∂τ2
=

∑

k

[
∂(a + 3bϕ2

0)/∂τ
]2

(ck2 + a + 3bϕ2
0)

2
−

∑

k

∂2(a + 3bϕ2
0)/∂τ2

ck2 + a + 3bϕ2
0

.

14 The condensation energy per particle is εca3 ∼ T 2
c /εF and coherence length is ξ0 ∼ aεF/Tc.
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Since the main contribution to the singular behavior of thermodynamic variables is connected
with the long-wave fluctuations of order parameter or small wave vectors k, we analyze the first
term alone as most divergent at h → 0. So,

δCsing =
∑

k

[
∂(a + 3bϕ2

0)/∂τ
]2

(ck2 + a + 3bϕ2
0)

2
=

∫
Vd3k

(2π)3

[
α + 6bϕ0∂ϕ0/∂τ

]2

(ck2 + a + 3bϕ2
0)

2
.

To calculate the numerator of a fraction at τ = 0, we differentiate the equation determining the
order parameter. We obtain

αϕ0 + (
ατ + 3bϕ2

0

)∂ϕ0

∂τ
= 0.

Hence for τ = 0 we have ∂ϕ0/∂τ = −α/(3bϕ0) where ϕ0 = (h/b)1/3. The result at τ = 0 reads

δCsing(h) =
∫

Vd3k

(2π)3

α2

(ck2 + 3bϕ2
0)

2
=

∫
Vd3k

(2π)3

(α/c)2

(k2 + ξ−2)2
and ξ =

√
c

3b1/3
1

h1/3
.

The analysis of integral leads to the following singular behavior of specific heat at phase transition
point τ = 0 as h → 0:

δCsing(h) = V

8π

(
α

c

)2

ξ = V

8π

α2

√
3c3b1/3

1

h1/3
, i.e. δCsing(h) ∼ h−ε,

the critical exponent being ε = 1/3.

4.12 Critical Point

A series of thermodynamic systems with the phase transitions can be described
by the effective Hamiltonian having the cubic term in the expansion over order
parameter ϕ

H(ϕ) = τ

2
ϕ2 + a

3
ϕ3 + b

4
ϕ4 − hϕ (b > 0).

The parameter h represents an external field. As an example of such a system, we can
indicate the vapor–liquid phase transition near the critical point. Here the deviation
of density from its value at the critical point plays a role of order parameter. Another
example is the phase transition between the isotropic and anisotropic nematic phases
in the liquid crystal nematic. Below for the definiteness, we put a � 0. (The case
a � 0 reduces to replacing ϕ → −ϕ).

Let external field at first be absent h = 0. The selected point τ = 0 and a = 0
represents the critical point. The magnitude H = 0 of effective Hamiltonian corre-
sponds to the disordered phase ϕ = 0. Accordingly, the condition H � 0 meets the
energy gain of the ordered phase. The phase transition line or binodal τ0 and the
value of order parameter ϕ0 at the binodal

τ0 = 2

9

a2

b
and ϕ0 = −2

3

a

b
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are found from the conditions

H = τ

2
ϕ2
0 + a

3
ϕ3
0 + b

4
ϕ4
0 = 0 and

∂H
∂ϕ

= τϕ0 + aϕ2
0 + bϕ3

0 = 0.

The finite magnitude of the order parameter discontinuity at the transition point
for a �= 0 means the first-order phase transition. For τ < τ0, the order parameter is
determined by the minimum of effective Hamiltonian

∂H/∂ϕ = (τ + aϕ + bϕ2)ϕ = 0.

The absolute minimum of effective Hamiltonian corresponds to the root with the
maximum value of order parameter ϕ. As a result, we have

ϕ(τ ) =
{
0 for τ > τ0,

−
(
a+√

a2−4bτ
)

2b for τ < τ0.

Since the phase transition is the first-order one for a �= 0, the latent heat of phase
transition acquires the finite magnitude proportional to the jump of first derivative of
effective Hamiltonian with respect to temperature

�
(
∂H/∂τ

) = −ϕ2
0/2 = −2a2/9b2.

The spinodal line or the line of absolute phase instability is found from breaking
down theminimum of effective Hamiltonian, i.e. when the second derivative changes
its sign from positive to negative.

∂2H
∂ϕ2

∣∣∣∣
ϕ=ϕ0

= 0.

Hencewe determine the spinodal line (maximumovercooling line) for the disordered
phase τs− = 0 and the spinodal line (maximumoverheating line) for the ordered phase
τs+ = a2/4b. It is obvious that τs− < τ0 < τs+ and the temperature regions τs− < τ <

τ0 and τ0 < τ < τs+ correspond to the metastable regions of phases (Fig. 4.6).
Let us turn to analyzing the behavior of susceptibility χ in the low external field.

First, we differentiate the equation

τϕ + aϕ2 + bϕ3 = h,

determining the order parameter ϕ, with respect to external field h, and substitute
the value ϕ ≈ ϕ(0) in the case of low external field. Then we find the inverse sus-
ceptibility

χ−1 = τ + 2aϕ(0) + 3bϕ2(0) =
{

τ , τ > τ0 ,

−2τ + a a+√
a2−4bτ
2b , τ < τ0 .
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Fig. 4.6 The diagram of
phase states. The solid line is
the binodal. The dashed lines
are the spinodals

The susceptibility exhibits the cusp-like maximum χ(τ0) = 9b/2a2 at the first-order
phase transition line τ = τ0. Its derivative ∂χ/∂τ has a discontinuity. At both spin-
odals τs− = 0 and τs+ = a2/4b, the magnitudes of susceptibility would be infinite.

The value of coefficient a = 0 is specific. At a = 0 the phase transition to the
disordered phase occurs at temperature τ = 0 with ϕ0 = 0 and becomes the second-
order phase transition. Thus, point a = 0 and τ = 0 is that where the phase transition
line terminates and thus critical. The binodal and the spinodal merge at the critical
point since the regions of metastable phases are absent for the second-order phase
transition.

4.13 Multicritical Point

In the thermodynamic systemhaving the second-order phase transitions, the region of
their existence may depend on a number of physical parameters such as temperature,
pressure, volume, concentration, and electric or magnetic field. The multicritical
point is usually understood as a specific point in the region of physical parameters
at which the phase transition takes place. As a rule, at the multicritical point we
have a coexistence of several ordered phases by intersecting, merging or branching
the phase transition lines under possible change in the type of phase transition.
The classification of multicritical point depends on the number of thermodynamic
parameters necessary for describing the state of the thermodynamic system.

For emerging the multicritical point,15 it is necessary to have, at least, one line of
second-order phase transition depending on two physical parameters at any rate, e.g.
temperature and pressure. The presence of multicritical point leads to appearing of a
number of crossover phenomena in the critical behavior of thermodynamic variables

15 The critical point of gas–liquid transition is not usually classified as a multicritical point since
the gas–liquid transition is a first-order one and the critical behavior takes place at the single point
alone.
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in the vicinity of this point, such as changing the critical exponents and the upper
critical dimension which determines the applicability of mean-field theory.

Let us consider the conditions for emerging the multicritical point within the
framework of themean-field approximation inwhich the effectiveHamiltonian (ther-
modynamic potential) is formulated as an expansion into a series over the powers of
order parameter

H(ϕ) = H0 + 1

2
Aϕ2 + 1

3
Bϕ3 + 1

4
Cϕ4 + 1

5
Dϕ5 + 1

6
Eϕ6 + . . .

In the general case the coefficients of expansion depend on the temperature and other
physical parameters, e.g. pressure, magnetic or electric field.

Let us start our consideration from the symmetrical case when the terms with the
odd powers are absent due to symmetry reasons resulting from invariance H(−ϕ) =
H(ϕ). Below we study the following effective Hamiltonian:

H(ϕ) = c

2
(∇ϕ)2 + 1

2
τϕ2 + 1

4
bϕ4 + 1

6
dϕ6 − hϕ (d > 0).

The expansion coefficients depend on temperature T and in addition, say, on pressure
P . Let coefficient τ (T, P) vanish at some line16 τ (T, P) = 0 of physical parameters.
Provided that coefficient b(T, P) > 0, the second-order phase transition occurs at
that line τ (T, P) = 0. If, otherwise, coefficient b(T, P) proves to be negative, the
phase transition becomes the first-order one. In general, in such a situation there
may exist a point where both coefficients τ and b vanish simultaneously at the phase
transition line τ (T, P) = 0

τ (Tt , Pt ) = 0 and b(Tt , Pt ) = 0, d(Pt , Tt ) > 0.

The point (Tt , Pt ) in the plane of parameters T and P is referred to as tricritical.
If the system along with two parameters is more characterized by additional ther-
modynamic variables, the set of tricritical points may compose the line of triple
points.

If the coefficients in the expansion of effective Hamiltonian depend on the three
parameters, the point where all the three coefficients τ , b, and d vanish at the same
time will represent the tetracritical point. In this case it is necessary to involve the
next term ϕ8 of expansion into consideration. Additional singularities will appear in
the behavior of thermodynamic variables near such points.

So, first of all, the transition to the ordered phase ϕ �= 0 at τ = 0 is the second-
order phase transition for b > 0 and h = 0. The role of term ϕ6 is inessential since
the type of phase transition and qualitative behavior of the thermodynamic system
remain unchanged within the immediate vicinity of second-order phase transition

16 As above, coefficient τ (T, P) means the relative closeness to the transition τ = 1 − T/Tc(P).
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line τc = 0. In fact, while |τ | 
 b2/d the term ϕ6 can simply be neglected due to
inequality dϕ6

0 
 bϕ4
0 since ϕ2

0 ∼ |τ |/b.
In the region of values b < 0, the behavior of thermodynamic variables changes

significantly and the first-order phase transition occurs at the line determined with
two equations

H(ϕ) =
(

τ

2
+ bϕ2

4
+ dϕ4

6

)
ϕ2 = 0 and

∂H

∂ϕ
= (τ + bϕ2 + dϕ4)ϕ = 0.

Hence we find the line of phase transition which proves to be the first-order one

τc = 3

16

b2

d

and determines the finite magnitude of order parameter in the ordered phase, appear-
ing with the jump immediately below the phase transition line

ϕ2
c = −3

4

b

d
.

As a result, we obtain the full line of phase transition from the disordered phase
ϕ = 0 to the ordered one with nonzero order parameter ϕ �= 0 as a function of
coefficient b

τc(b) =
{
0 if b � 0,
3b2

16d if b � 0.

Thus, there is a change of the type for phase transition at the tricritical point deter-
minedwith condition τ = b = 0 (Fig. 4.7). The lines of first- and second-order phase

Fig. 4.7 The diagram for the
phase states. The solid line is
the second-order phase
transition. The dashed line is
the first-order phase
transition
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transitions will have the common tangent in the assumption of linear behavior for
coefficient b(T, P) as a function of deviations T and P from values Tt and Pt .

Within the whole region where the ordered phase exists, the order parameter is
determined by the relation

ϕ2
0(τ ) = −b + √

b2 − 4dτ

2d
.

(The negative sign in front of square root corresponds either to the lack of real
solutions for the order parameter or to the largermagnitude of effectiveHamiltonian).
The value of effective Hamiltonian H(ϕ0) in the disordered phase at h = 0 is given
by the formula

H(ϕ0) = b3 − 6bdτ − (b2 − 4dτ )3/2

24d2
.

We will mean the specific heat as C(τ ) = −∂2H(ϕ0)/∂τ 2, neglecting the factor
T−1
t insignificant for our purpose. The specific heat vanishes in the disordered phase

and equals

C(τ ) = 1

2
√
b2 − 4dτ

in the ordered phase. The specific heat is characterized by various behaviors in two
regions.One is close to the tricritical pointwhen b2 � |τ |d and the other, if b2 � |τ |d,
is distant. For the phase transition far from the tricritical point, the specific heat
experiences a finite jump of magnitude�C = 1/(2|b|) at the second-order transition
line and magnitude of �C = 1/|b| at the first-order transition line. In the region
b2 � |τ |d close to the tricritical region, we discover an enhancement of singularity
in the specific heat like �C ∼ |τ |−1/2 by approaching the tricritical point where the
specific heat tends simply to infinity. Thus, on crossing the crossover line |τ | ∼ b2/d,
we come across the transition from one critical behavior to another.

In the finite external field h �= 0 the picture of possible phase states becomes more
complicated. For b < 0, the second-order phase transition at the line determinedwith
the simultaneous fulfillments of the following conditions:

∂H

∂ϕ
= τϕ + bϕ3 + dϕ5 − h = 0,

∂2H

∂ϕ2
= τ + 3bϕ2 + 5dϕ4 = 0 and

∂3H

∂ϕ3
= 6bϕ + 20dϕ3 = 0.

The simple solution yields the following result determining the phase transition line
as a function of coefficient b < 0:

τc2 = 9

20

b2

d
, ϕ2

h = 3

10

|b|
d

, h = 6

25

b2

d
ϕh = 3

√
6

25
√
5

|b|5/2
d3/2

.



164 4 Phase Transitions and Critical Phenomena

In the temperature region τc(b) < τ < τc2(b) (b < 0), there remains a possibility for
the first-order phase transition as a function of external field.

Let us consider the behavior of susceptibility χ = ∂ϕ/∂h satisfying the equation

χ = (
τ + 3bϕ2 + 5dϕ4

)−1

where ϕ = ϕ(h). In the low field limit h → 0, we can put the order parameter equal
to its value ϕ0 in the lack of external field. As a result, we have

χ−1(τ , b) =
⎧
⎨

⎩

τ , the disordered phase (τ > 0),

−b+√
b2−4dτ
d

√
b2 − 4dτ , the ordered phase.

Similar to the behavior of specific heat, we can distinguish two vicinities separated
by the crossover line τ ∼ bϕ/d demonstrating the crossover exponent ϕ = 2 in the
behavior of susceptibility. The crossover line specifies the transient region from one
critical behavior to another. It is seen that for |τ | � b2/d, we disclose the typical
behavior corresponding to the Curie law χ ∼ |τ |−1. In the vicinity |τ | � b2/d, there
appears a stronger singular behavior χ ∼ d/b2 in the ordered phase as |b| → 0.

It is interesting to compare themagnitudes of susceptibility at the first-order phase
transition line τc = 3b2/(16d) from the sides of disordered and ordered phases. So,
we have

χ(τc) =
⎧
⎨

⎩

16
3

d
b2 (the disordered phase),

4
3

d
b2 (the ordered phase).

We see that there is a finite jump-like discontinuity of susceptibility at the first-
order phase transition line. The jump magnitude equals �χc = 4d/b2 and increases
unlimitedly on approaching the tricritical point b = 0 and τ = 0. As for the line of
second-order phase transition, the susceptibility turns always to be infinite regardless
of the external field magnitude.

In conclusion, wewill discuss the limits for applicability of themean-field approx-
imation in order to describe the critical behavior at the tricritical point. First of all, we
are interested in the upper critical dimension of the tricritical point where coefficient
b = 0. Let us employ the Ginzburg–Levanyuk criterion requiring the smallness of
order parameter fluctuations in volume Vξ ∼ ξD with the linear size of about the
correlation length ξ. Accordingly,

〈(�ϕ)2〉 = Ttχ

Vξ
∼ Ttχ

ξD

 ϕ2

0

where χ ∼ |τ |−1 is the susceptibility and D is the spatial dimensionality.
For estimating the correlation length, it is necessary to involve the inhomogene-

ity energy equal to c(∇ϕ)2/2 and compare it with energy |τ |ϕ2/2. Then this gives
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the correlation length ξ ∼ (c/|τ |)1/2. At the tricritical point b = 0, as we have seen
above, the equilibrium value of order parameter corresponds approximately to rela-
tion |τ |ϕ2

0 ∼ dϕ6
0. Hence we have ϕ2

0 ∼ (|τ/d)1/2 and we arrive at the inequality

Tt
1

|τ |
( |τ |

c

)D/2



( |τ |

d

)1/2

or
1

|τ |D−3
� dT 2

t

cD
= (Gi)3−D.

In the limit τ → 0, the last inequality is always satisfied for the space dimension-
ality D > 3 and breaks down for D < 3. Thus, for the tricritical point b = 0 and
interaction energy ∼ ϕ6, the upper critical dimension equals three. The predictions
of mean-field theory remain valid for the critical exponents at D > 3. For D = 3,
the consideration of the order parameter fluctuations can only result in the appear-
ing of the logarithmic corrections to the results of mean-field theory. Two crossover
lines τ ∼ ±bϕ/d with the exponent ϕ = 2 separate the regions of different critical
behavior.

Problem

Estimate the fluctuation correction to the specific heat δCsing at the tricritical point b = 0 on the
side of disordered phase τ < 0.

Solution. Let us decompose the effective Hamiltonian to the quadratic deviations�ϕ = ϕ − ϕ0
near the equilibrium value of order parameter ϕ0 = (|τ |/d)1/2:

H(ϕ) = H(ϕ0) + c

2
(∇ϕ)2 + |τ |(�ϕ)2 + . . .

Since this expression for the effective Hamiltonian is analogous to the ones considered in the
previous sections, we can readily write the answer

δCsing = V

8π

(
2

c

)2

ξ = V

8π

(
2

c

)2√ c

2|τ | ∼ 1

c3/2|τ |1/2 .

This result should be compared with that C = V (4Tt
√
d|τ |)−1 of mean-field approximation. The

equally divergent temperature dependences |τ |−1/2 of both contributions are evidence for a smaller

role of fluctuations of the order parameter field near the multicritical point.

4.14 Phases with the Incommensurate Periodicity: The
Lifshitz Point

There exists a vast number of condensed media in which the formation of spatially
inhomogeneous structures occurs as a result of the phase transition. From the general
point of view, such structures can be characterized by the spatial periodwhichmay be
commensurate or incommensurate with the original spatial structure. Accordingly,
such phases are referred to as commensurate or incommensurate. Below we analyze
the transitions by violating the translational symmetry and emerging the long-period
structures. The examples of such transitions are the formation of charge densitywaves
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in ferroelectrics, spin density waves or helicoidal structures in antiferromagnets,
and spatially inhomogeneous Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) phase in
superconductors.

In what follows, we study an existence of long-period modulated spatial struc-
tures within the framework of the mean-field (self-consistent) model. We imply that
the wave vectors associated with the spatial structure period are much smaller as
compared with the inverse interatomic distances. On the whole, the thermodynamics
of phase transitions with the formation of the modulated structures has a number of
specific features. One of most striking and instructive examples are the transitions
associated with an existence of the Lifshitz points.

The spatially modulated phases, as a solution of the problem on the minimum of
some effective Hamiltonian (thermodynamic potential), may appear when additional
terms with the spatial derivatives of order parameter augment the effective Hamilto-
nian. Next, we consider the simplest example of such an effective Hamiltonians:

H [ϕ(r)] =
∫

d r
(
d

4
(∇2ϕ)2 + c

2
(∇ϕ)2 + τ

2
ϕ2 + b

4
ϕ4

)
, (b, d > 0).

We naturally assume the coefficients b and d for higher powers of order parameter
to be positive. The sign of coefficient c can be arbitrary and change from positive to
negative under variation of thermodynamic variable additional to the temperature,
e.g. pressure or magnetic field. Coefficient τ is the relative closeness to the phase
transition temperature.

It is clear that for coefficient c > 0, the emergence of spatially inhomogeneous
state is energetically unfavorable. As for c < 0, the minimum of effective Hamilto-
nian can correspond to the state with the spatially varying order parameter ϕ(r). In
this case the point where coefficients c and τ vanish together, i.e. τ = 0 and c = 0,
is referred to as17 the Lifshitz point.

For analyzing the phase states of the given effective Hamiltonian, it is convenient
to represent the order parameter as an expansion into a Fourier series

ϕ(r) =
∑

k

ϕke
ikr .

Then the effective Hamiltonian reads

H [ϕ] =
∑

k

τ (k)

2
|ϕk|2 + b

4

∫
d r ϕ4(r)

where coefficient τ (k) is determined with the simple relation

τ (k) = τ + ck2 + d

2
k4.

17 To specify the type singular point, one may indicate the tricritical (in our case) or tetracritical
Lifshitz point, etc.
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The instability of disordered phase with order parameter ϕ(r) will be due to
appearanceof negative value τ (k) at some k. For c > 0, theminimum τ (k), depending
on wave vector k, realizes at k = 0 and, for the first time, coefficient τ (k) changes
the sign at τ = 0. As a consequence, in the region c > 0 at τ = 0 there occurs a
usual second-order phase transition to the homogeneous ordered phase with zero
wave vector k = 0 and order parameter ϕ(r) = ϕ0 = (|τ |/b)1/2 constant in space.
For this homogeneous ordered phase, the value of effective Hamiltonian will equal

H0 = H(ϕ0) = − τ 2

4b
.

In the region c < 0 the minimum τ (k) is achieved at the finite value of wave
vector

k0 = (|c|/d)1/2

and the sign τ (k) changes from positive to negative at the transition temperature

τm+ = c2

2d
.

For τ < τm+ , the spatially modulated and ordered phase becomes energetically more
favorable. The order parameter varies in the wave-like manner in space according to
equation

ϕ(r) = ϕm cos kr

with some amplitude ϕm and period L of spatial structure

L = 2π

k0
= 2π

(
d

|c|
)1/2

.

We find the value of effective Hamiltonian for the modulated ordered phase from
the relation

Hm = H(ϕm) = τ

2
〈ϕ2(r)〉 + ck2

2
〈ϕ2(r)〉 + dk4

4
〈ϕ2(r)〉 + b

4
〈ϕ4(r)〉.

Here notation 〈· · · 〉 implies averaging over the period of spatial structure. Taking
〈cos2 kr〉 = 1/2 and 〈cos4 kr〉 = 3/8 into account, we have

Hm = τ (k)

4
ϕ2
m + 3

32
bϕ4

m

where ϕm is the amplitude of order parameter modulations. The condition of mini-
mum Hm leads us to the amplitude of modulations and the value of effective Hamil-
tonian
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ϕ2
m = −4

3

τ − τm+

b
and Hm = − (τ − τm+)2

6b
if τ � τm+ .

The transition to the modulated ordered phase from homogeneous disordered
phase represents the second-order phase transition since the order parameter ϕm or
modulation amplitude changes continuously for such a transition.

Comparing the values Hm and H0, we see that value H0 becomes smaller as
compared with value Hm for sufficiently large negative values τ . The transition from
the modulated ordered phase to the homogeneous ordered one will take place at
equality Hm(τm−) = H0(τm−). Hence we arrive readily at the transition temperature
τm− equal to

τm− = −
√
2√

3 − √
2
τm+ .

The phase transition at temperature τm− proves to be first-order one. The mag-
nitude of the order parameter modulus and spatial structure period change in the
jump-like manner. The mean-field theory gives the jumps of finite magnitude for the
specific heat at all phase transition lines.

The specific point, where parameters are τ = 0 and c = 0 at the same time, rep-
resents the tricritical Lifshitz point and, in addition, is the point of phase states
where all the phase transition lines merge, two lines being second-order and one line
being first-order. For c < 0, the modulated ordered phase exists in the temperature
region τm− < τ < τm+ . The region for an existence of homogeneous ordered phase
is τ < τm− at c < 0 and τ < 0 at c > 0. The homogeneous disordered phase remains
in the region τ > τm+ at c < 0 and τ > 0 at c > 0. All three phases coexist at the
Lifshitz point (Fig. 4.8).

The tendency to the formation of spatially modulated structure can be seen by
studying the dispersion of susceptibility or linear response χ(r) to the inhomoge-
neous external field h(r). Let us write the definition of linear response

ϕ(r) =
∫

χ(r − r ′)h(r ′)d r ′

which reduces to the simple algebraic relation in the Fourier transform

Fig. 4.8 The diagram of
phase states. The solid line is
second-order phase
transition. The dashed line is
first-order phase transition
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ϕk = χ(k)hk .

Inwhat follows, we consider the sufficiently high temperatureswhen order parameter
ϕ is sufficiently small and we can neglect the fourth-order term bϕ4/4 as compared
with quadratic ones. Varying the effective Hamiltonian

H [ϕ(r)] =
∫

d r
(
d

4
(∇2ϕ)2 + c

2
(∇ϕ)2 + τ

2
ϕ2 − h(r)ϕ

)

results in equation determining the order parameter field

δH

δϕ(r)
= d

2
∇2

(∇2ϕ
) − c∇2ϕ + τϕ − h(r) = 0.

Due to linearity of this equation, we readily get susceptibility χ(k)

(
d

2
k4 + ck2 + τ

)
ϕk = hk or χ−1(k) = τ − τm+ + d

2

(
k2 + c

d

)2

.

Evidently, the most interesting situation arises for c < 0. In this case the linear
response as a function of wave vector k has the maximum at k = k0 = (|c|/d)1/2,
which enhances on approaching the transition point τ = τm+ . This indicates the
instability of homogeneous state for the order parameter field.

The correlation length ξ at c = 0 near transition can be estimated by comparing
the energy τϕ2/2 and energy of inhomogeneity d(∇2ϕ)2/4 on the neglect of term
bϕ4 due to its smallness. Putting τϕ2/2 ∼ d(∇2ϕ)2/4 and estimating d(∇2ϕ)2 ∼
dϕ2/ξ2, we have ξ ∼ (d/τ )1/4. This gives the critical exponent ν = 1/4 instead of
1/2 far away from the Lifshitz point.

The specific feature of Lifshitz point c = 0 is a trend to the infinite period
L ∼ τ−1/4 for the spatial structuremodulation of order parameter field. On thewhole,
this promotes for increasing the order parameter fluctuations and enlarging the region
of critical fluctuations near the Lifshitz point at c = 0. The upper critical dimension-
ality becomes equal to d = 8.

Problems

1. Find the fluctuation correction δCsing to the specific heat in the approximation of effective
free-field Hamiltonian with the Lifshitz point

HLi f [ϕ(r)] =
∫

d r
(
d

4
(∇2ϕ)2 + c

2
(∇ϕ)2 + τ

2
ϕ2

)
, (c < 0, d > 0)

in the vicinity of the second-order phase transition line τ = τm+ = c2/2d.
Solution. Let us write the effective Hamiltonian in the Fourier representation

HLi f = 1

2

∑

k

(
τ + ck2 + dk4/2

)|ϕk|2 = 1

2

∑

k

(
τ − τm+ + d(k2 − k0)

2/2
)|ϕk|2
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where k0 = (|c|/d)1/2 is the wave vector of the modulated ordered structure. On the analogy with
the previous considerations, we write the thermodynamic potential

F = −T
∑

k

ln
2πT

τ − τm+ + d(k2 − k20)
2/2

≈ −Tm+
∑

k

ln
2πTm+

τ − τm+ + d(k2 − k20)
2/2

.

Accordingly, resulting from the order parameter fluctuations, the singular correction to the specific
heat will be equal to

δCsing(τ ) = −T−1
m+

∂2F

∂τ2
=

∑

k

1

(τ − τm+ + d(k2 − k20)
2/2)2

=

=
∫

Vd3k

(2π)3

1

(τ − τm+ + d(k2 − k20)
2/2)2

= 2V

π2d2k50

∞∫

0

x2 dx
(

2(τ−τm+)

dk40
+ (x2 − 1)2

)2 .

After integration we obtain the correction

δCsing(τ ) = V

4π
√
2

1
(
c2 + 2d(τ − τm+ )

)1/2
d1/2

([
c2 + 2d(τ − τm+ )

]1/2 − |c|)3/2

and its limiting behavior

δCsing(τ ) = V

4π
√
2

⎧
⎨

⎩

|c|1/2
d1/2

1
(τ−τm+)3/2

, (τ − τm+ ) 
 c2/2d,
1

d1/4
1(

2(τ−τm+ )
)5/4 , (τ − τm+ ) � c2/2d.

The presence of Lifshitz point c = 0 within its vicinity results in the appearing of the crossover
phenomena separated by the crossover lines τ − τm+ ∼ c2/2d with the crossover exponent ϕ = 2.

2. Find the correlation function K (x) for the fluctuations of order parameter fieldϕ(x) described
with the effective Hamiltonian of the previous problem in the case of one-dimensional space d = 1.

Solution. The correlation function is determined with the relation

K (x) =
∑

k

〈|ϕk |2〉eikx =
∞∫

−∞

dk

2π

2T eikx

τ + ck2 + dk4/2
= T

π

∞∫

−∞

cos(kx) dk

τ − τm+ + d(k2 − k20)
2/2

.

As a above, we imply here c < 0, d > 0, k20 = |c|/d, and τ > τm+ . Calculating the integral, e.g.
with the aid of residue theorem, we obtain

K (x) = T√
c2 + 2d(τ − τm+ )

(
ξ cos

|x |
η

+ η sin
|x |
η

)
e−|x |/ξ

where

ξ =
(

2d√
c2 + 2d(τ − τm+) − |c|

)1/2

and η =
(

2d√
c2 + 2d(τ − τm+) + |c|

)1/2

.

First, according to the expressions obtained, we see that the correlation function decays expo-
nentially at the distances exceeding the correlation length ξ which becomes infinite at the phase
transition point τ = τm+ . Second, the existence of the Lifshitz point, inducing the transition to the
modulated phase, results in the oscillations of correlation function with the period equal to 2πη. The
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correlation function also reflects the crossover phenomena in the region of line τ − τm+ ∼ c2/2d.
In fact,

ξ ∼
( |c|

τ − τm+

)1/2

and η ∼
(

d

|c|
)1/2

at τ − τm+ 
 c2/2d,

ξ ∼
(

2d

τ − τm+

)1/4

and η ∼
(

2d

τ − τm+

)1/4

at τ − τm+ � c2/2d.

4.15 Fundamentals of Critical Phenomena

When approaching the point of second-order phase transition, the correlation radius ξ
for the fluctuations of order parameter field ϕ(r) increases unlimitedly and becomes
the single largest parameter of length in the system, exceeding by many times all
the other possible lengths such as interparticle distances (lattice constants) or radii
of interparticle interactions. In each region or cell with size ξ and volume Vξ ∼ ξd ,
the value of order parameter remains approximately the same and the total order
parameter

�ξ =
∑

r∈Vξ

ϕ(r)

grows directly proportional to Vξ as correlation radius ξ increases. Near the phase
transition, we can imagine the thermodynamic system as a set ofmacroscopic regions
or cells, the order parameter being ordered singly and independently in each of the
cells. However, as a whole, the system does not look as an ordered one since these
cells are disordered with respect to each other.

If all the linear sizes are measured in units of correlation radius ξ and the total
order parameter is done in units of�ξ , the change of closeness to transition τ will not
result in varying the thermodynamic quantities and functions. Within the framework
of such a scaling hypothesis or scaling invariance, the behavior of all thermodynamic
variables is expressed in terms of power laws as a function of τ as well as the behavior
of correlators as a function of distances.

As is noted above, in the theory of critical phenomena the singular behavior of
physical quantities in the immediate vicinity of phase transition is characterized with
the critical exponents. The latter ones describe the power-like behavior of physical
quantities as a function of their closeness τ to the transition point. The main critical
exponents α, β, γ, and δ are introduced for specific heat C , order parameter ϕ at
τ � 0, and susceptibility χ in the low and high external field h:

C ∼ |τ |−α, ϕ ∼ (−τ )β (τ � 0), χ ∼ |τ |−γ, χ ∼ h1/δ−1.

To specify the correlations of order parameter field ϕ in the disordered phase
for τ > 0 and at the very point of phase transition, two more critical exponents are
introduced such as exponent of correlation length ν according to
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〈ϕ(r)ϕ(r ′)〉|r−r ′|→∞ ∼ exp
( − |r − r ′|/ξ), ξ ∼ τ−ν (τ > 0)

and the exponent of anomalous dimensionality or Fisher exponent η according to

〈ϕ(r)ϕ(r ′)〉|r−r ′|→∞ ∼ |r − r ′|−(d−2+η) (τ = 0)

where d is the dimensionality of the space.
We first accept the fluctuation field of order parameter near the phase transition

point to be described with the single macroscopic length scale referred to as the
correlation length ξ. Since the correlation length becomes infinite at the very phase
transition point and thus the natural length unit or length scale vanishes, we may
assume an existence of scale invariance or scaling. A similar change of distances,
i.e. scaling, in the lack of typical size or scale

r → r ′ = λr

cannot change the state of thermodynamic system since this transformation reduces
to varying the length. For such a scaling transformation, the physical quantity A(r)
of thermodynamic system, e.g. order parameter ϕ, energy density ε, temperature τ ,
and external field h, should be multiplied by some power λ according to the law

A(r) → A′(r ′) = λ−�A A(r).

The exponent �A is called the scaling dimensionality.18 The hypothesis of scale
invariance or scaling hypothesis incorporates the statement that the scale change of
quantities A1, A2, . . . cannot affect the relations in the theory. In other words, the
factors λ should vanish from all relations after the scaling transform.

The scaling dimensionality of coordinate, say x , is obviously equal to �x = −1.
Accordingly, the scaling dimensionality for volume element dV = dx1dx2 . . . dxd
will equal �V = −d, d being the number of spatial dimensions for the thermody-
namic system. Accordingly, the dimensionality for effective Hamiltonian density is
�H = d. The dimensionality of the thermodynamically conjugated quantities equals
d in a sum. For example, requiring the invariance for contribution ϕh dV of exter-
nal field h to the effective Hamiltonian, we readily arrive at equality �ϕ + �h = d.
The important role is assigned to the quantity s(r) thermodynamically conjugate to
temperature τ . This quantity can be called the entropy density. Following the general
rule for the conjugate quantities, we have �s + �τ = d.

Assuming the validity of the scaling hypothesis, we can relate the scaling dimen-
sions with the critical exponents and derive a number of scaling relations between
the critical exponents. In fact, since�ξ = −1 for correlation length and ξ(τ ) ∼ τ−ν ,
we find straightforwardly that �τ = 1/ν. Then, because of ϕ(τ ) ∼ |τ |β , we have
�ϕ = β�τ = β/ν.

18 In general, the scaling dimensionality does not coincide with the usual dimensionality of physical
quantity.
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Let us determine the scaling relations for the critical exponents characterizing the
singular behavior of thermodynamic system near the critical point in the low external
field. According to the definition, the singular behavior of specific heatC(τ ) is given
by the second derivative of effective Hamiltonian density with respect to temperature

C(τ ) = −∂2H
∂τ 2

and C(τ ) ∼ τ−α.

Hence, employing the relations for dimensions

�C = �H − 2�τ = d − 2�τ and �C = −α�τ ,

and �τ = 1/ν, we obtain the first equality

2 − α = dν.

To determine the second relation, we write the following expressions for suscep-
tibility:

χ(τ ) = ∂ϕ

∂h
and χ(τ ) ∼ τ−γ .

Next, taking �ϕ + �h = d and �ϕ = β�τ , we find

�χ = �ϕ − �h = 2�ϕ − d = 2β�τ − d and �χ = −γ�τ .

As a result, we have 2β + γ = d/�τ = dν. Recalling the relation dν = 2 − α found
before, we arrive at the following important equality relating three critical exponents:

α + 2β + γ = 2.

In the spatially isotropic phases, the fluctuations of thermodynamic quantities
should also be isotropic. This means that the correlators of scalar quantities must
depend only on the mutual distance |r1 − r2| between the points. In the important
case of the pair correlator

KAB(r1, r2) = 〈A(r1)B(r2)〉

for two scalar quantities A and B, the symmetrical properties of isotropy, homogene-
ity, and scaling invariance yield the power law at the phase transition point τ = 0

KAB(r1, r2) = kAB
|r1 − r2|�A+�B

.

The constant kAB depends on the properties of quantities A, B, and microscopic
characteristics of the phases. In the free-field model, the pair correlator 〈ϕ(r1)ϕ(r2)〉
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for the order parameter fluctuations has the same power form with 2�ϕ = d − 2. In
the general case, the scaling dimension of order parameter field ϕ(r) is associated
with the anomalous dimension exponent or Fisher exponent η as

�ϕ = (
d − 2 + η

)
/2 or β = ν

(
d − 2 + η

)
/2.

Thus, the scaling hypothesis allows us to determine the structure of pair correlator
within the accuracy to numerical factor. Comparing the last expression and 2β + γ =
dν results in the equality

γ = ν(2 − η).

For the many-particle correlator, the scaling hypothesis gives the condition of homo-
geneity alone

〈A1(λr1) . . . An(λrn)〉 = λ−�A1−...−�An 〈A1(r1) . . . An(rn)〉.

Hence, in particular, �ϕn = n�ϕ, n being the positive integer.
Similar scaling relations can also be established for the critical exponents charac-

terizing the singular behavior at the critical point in the high external field h. If the
behavior of order parameter as a function of external field is described by the power
law ϕ(h) ∼ h1/δ with exponent δ, we have δ = �h/�ϕ = (d − �ϕ)/�ϕ. Then, tak-
ing �ϕ = (d − 2 + η)/2 into account, we arrive at the following scaling relation:

δ = d + 2 − η

d − 2 + η
.

Using this relation, we can represent relation β + γ = dν − β with the aid of expo-
nent δ as

β + γ = βδ.

On the whole, the scaling hypothesis orWidom scaling assumes that the density
of effective HamiltonianH(τ , h) or singular part of free energy can be written as the
following homogeneous function:

H(
λ�τ τ , λ�h h

) = λdH(
τ , h

)
where d = �τ + �h .

By means of two exponents, e.g. ν and η, the Widom scaling allows us to express all
the other critical exponents.

Similar scaling relations can be established for the critical exponents of parameter
order ϕ, specific heat C , and correlation length ξ in the high magnetic field

ϕ(h) ∼ h1/δ, C(h) ∼ h−ε and ξ(h) ∼ h−μ.

Correspondingly, we have �ϕ = �h/δ, �h = 1/μ, and �C = −ε�h . Recalling that
�ϕ = β/ν and �C = −α/ν as well, we arrive at the following equalities: βδμ = ν
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and αμ = εν. Using that βδ = β + γ, we rewrite them in the equivalent form

(β + γ)μ = ν and ε(β + γ) = α.

In the three-dimensional case the experimental data and numerical simulations
show that, as a rule, the Fisher exponent and critical exponent for specific heat have
relatively small magnitudes: α � 0.1 and η � 0.05. If we put approximately α = 0
and η = 0, the estimate for the other exponents givesβ = 1/3 ∼ 0.3, γ = 4/3 ∼ 1.3,
ν = 2/3 ∼ 0.7, and δ = 5 instead of those in the Landau theory of self-consistent
field as β = 1/2, γ = 1, ν = 1/2, and δ = 3. It can be readily seen that the Landau
theory of self-consistent field does not satisfy all the relations of scaling.

The magnitudes of critical exponents depend on the number of spatial variables
as well as on the symmetry and number of components for the order parameter field.
However, in spite of large variety of thermodynamic systems the critical phenomena
have the property of universality, meaning that the limiting and singular properties
for awide class of the thermodynamic systems are independent ofmicroscopic details
in these systems. Accordingly, the thermodynamic systems, demonstrating the same
critical behavior, are unified in the same universality class.

4.16 Approximate Calculation of Critical Exponents: The
Renormalization-Group Method

The most important problem in the theory of critical phenomena is to calculate
the critical exponents and determine the equation of state. The critical exponents
depend on the number of spatial variables d. In the space d � 4 the critical expo-
nents in the self-consistent field approximation satisfy the scaling relations but in
the dimensions d < 4 this is invalid. Therefore, the spatial dimension d = 4 is the
upper critical dimension and can be taken as initial zero approximation for con-
structing the perturbation theory or ε-expansion with the continuous mathematical
transition to the space of smaller dimension d = 4 − ε. Naturally, the physical sense
in such expansions has the integer values ε = 1, 2, 3 alone.

The typical scale for the fluctuations of order parameterϕ(r) grows unlimitedly by
approaching the phase transitionpoint. The long-wavefluctuations of order parameter
can be described with the aid of effective Landau Hamiltonian19

H = H [ϕq; q0] =
∫

d r
[
(∇ϕ)2

2
+ τ0ϕ

2

2
+ g0ϕ

4

]

in which the field of order parameter ϕ(r) is smoothed. The smoothnessmeans that,
in the Fourier expansion of order parameter field

19 Here we select the normalization of the order parameter with the stiffness coefficient equal to
unity.
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ϕ(r) =
∑

q<q0

ϕqe
iqr ,

the harmonics are absent for the large wave vectors q � q0. The choice for the
magnitude q0 is conditional to some extent. However, the linear scale 1/q0 is implied
to be macroscopic.

The solution for the problem on continuous phase transition reduces in essence
to analyzing the partition function

Z = tr e−H =
∫

e−H [ϕq ; q0] ∏

q<q0

dϕq

for the order parameter field ϕ described by the effective Landau Hamiltonian. The
partition function is the functional (infinite-dimensional) integral over all possible
configurations of order parameter fieldϕq . The direct calculation of such a functional
integral is a very complicated problem.

The effective Hamiltonian H [ϕ; q0] depends on the cutting parameter q0. In
order to comprehend this behavior, we integrate exp(−H) over the wave vectors
within interval λq0 < q < q0 (λ < 1) and determine a new effective Hamiltonian
Hλ = SλH . The result of such an action can be represented as an integral

e−SλH =
∫

e−H [ϕq ; q0] ∏

λq0<q<q0

dϕq .

The transform from Hamiltonian H [ϕq; q0] to a new one SλH = H [ϕq; λq0] is
referred to as the smoothing operation. The smoothing operation separates the field
ϕ(r) into the slow ϕ0(r) and rapid ϕ1(r) parts

ϕ(r) = ϕ0(r) + ϕ1(r),
ϕ0(r) =

∑

q<λq0

ϕqe
iqr and ϕ1(r) =

∑

λq0<q<q0

ϕqe
iqr .

The smoothing operation is nonlinear, and its successive application reads
Sλ1 Sλ2 = Sλ1λ2 .

According to the scaling hypothesis, the smoothed Hamiltonian SλH should have
the same structure as the initial one H and remain unvaried at the very phase transi-
tion point. To compare the smoothed Hamiltonian SλH with the initial one H , it is
necessary to perform the inverse transformation of spatial scale to the previous one

q → q ′ = λ−1q

and the simultaneous scale transformation or dilation Dλ of order parameter
field ϕ(r):

ϕq → ϕ′
q ′ = Z−1

λ ϕ′
λq ′ = Z−1

λ ϕq .
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The successive application of the smoothing Sλ and dilation Dλ is called the
renormalization of Hamiltonian and Rλ = DλSλ. The renormalized Hamiltonian

RλH [ϕq; q0] = H [Zλϕλ−1q; λ−1q0] = H ′[ϕ′
q; λ−1q0]

describes the fluctuations of a new field in the same region of wave vectors q < q0.
Provided that the thermodynamic system is at the critical point, the renormalized
Hamiltonian should remain unchanged and cease to depend on the choice of wave
vector. Otherwise, if the thermodynamic system does not reside at the critical point,
we come to sufficiently large scales after the multiple usage of renormalization. The
large scalesmean the smallλq0 and thus exceed the correlation length, corresponding
to the uncorrelated Gaussian fluctuations of order parameter field.

Let us start from renormalizing the effective Hamiltonian of free field H0 in the
space of dimension d

H0[ϕq; q0] = 1

2

∫

q<q0

(
q2 + τ0

)|ϕq |2 ddq

(2π)d
.

We turn first to the smoothing operation Sλ. Since the Fourier transformswith various
wave vectors q do not interact with each other, the smoothing of Hamiltonian leads to
the appearing of the constant term as a result of integration over the Fourier transform
ϕq for the wave vectors between λq0 and q0. This term has a sense of the simple
shift of energy reference point

SλH0 = 1

2

∫

q<λq0

(
q2 + τ0

)|ϕq |2 ddq

(2π)d
+ 1

2

∑

λq0<q<q0

ln
q2 + τ0

π
.

We omit this constant term as insignificant and independent of order parameter field
ϕq . Performing the operation dilation Dλ, we arrive at the renormalized Hamiltonian

RλH0[ϕq; q0] = λd Z2
λ

2

∫

q<q0

(
λ2q2 + τ0

)|ϕq |2 ddq

(2π)d
.

For the free-field Hamiltonian, the temperature point τ0 = 0 is the critical point of
phase transition. The renormalized Hamiltonian RλH0 does not change if we take
the scale

Zλ = λ−(d+2)/2.

In this case the temperature τ0 will be transformed according to the law

τ0 → τ ′
0 = λ−2τ0

corresponding to the scaling dimension �0
τ = 2.
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Let us turn to the analysis of effective Landau Hamiltonian H = H0 + Hi where
Hi is the interacting Hamiltonian

Hi = g0

∫
ϕ4(r) d r = g0

∫∫∫

q1,q2,q3

ϕq1ϕq2ϕq3ϕ−(q1+q2+q3)
ddq1
(2π)d

ddq2
(2π)d

ddq3
(2π)d

.

The direct integration of the Landau Hamiltonian is a mathematically difficult prob-
lemdue to presence of the coupling termwithϕ4(r). Thus,we perform the calculation
of functional integral using the free-field Hamiltonian H0 as zero approximation. Let
us employ the equality

e−SλH =

∫
e−Hi e−H0

∏
λq0<q<q0

dϕq

∫
e−H0

∏
λq0<q<q0

dϕq

∫
e−H0

∏

λq0<q<q0

dϕq =〈e−Hi 〉0 e−SλH0

where the brackets mean the thermodynamic average with respect to the free-field
Hamiltonian. Then we represent the smoothed Hamiltonian as

SλH = SλH0 − ln〈e−Hi 〉0.

The calculation of the last term will be performed as an expansion into a series over
the coupling constant g0, assuming it sufficiently small. So, we have

〈e−Hi 〉0 =
∞∑

0

(−1)n
gn0
n!

〈[∫ (
ϕ0(r) + ϕ1(r)

)4
d r

]n〉

0

.

The smoothing operation Sλ does not disturb the slow component ϕ0(r) of order
parameter field having the Fourier transforms with wave vectors q < λq0 alone. The
componentϕ0(r)will play a role of external parameter in calculations. As it concerns
the rapidly changing component ϕ1(r) with harmonics λq0 < q < q0, the average
〈· · · 〉 means the thermodynamic one with the free-field Hamiltonian H0.

Let us restrict ourselves only with first and second order in the coupling constant
g0. Then, we have

〈e−Hi 〉0 =1 − g0〈
∫

d r
[
ϕ0(r) + ϕ1(r)

]4〉0+

+g20
2

〈
∫∫

d r d r ′[ϕ0(r) + ϕ1(r)
]4[

ϕ0(r ′) + ϕ1(r ′)
]4〉0 + . . .

It is more convenient to perform the calculation of averages in the Fourier represen-
tation, e.g. for the real field of the order parameter ϕ(r)
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〈
∫

d rϕ2
1(r)〉0 = 〈ϕ2

1〉0 =
q0∫

λq0

ddq

(2π)d
〈|ϕ1(q)|2〉 where 〈|ϕ1(q)|2〉 = 1

q2 + τ0
,

and we take into account that ϕ1(−q) = ϕ∗
1(q) and the average is 〈ϕ1(q)ϕ1(q ′)〉0 =

〈|ϕ1(q)|2〉0δq, −q ′ . In what follows, we omit the integral signs for brevity.
Let us start from consideration of first-order corrections

〈[ϕ0 + ϕ1]4〉0 = ϕ4
0 + 4ϕ3

0〈ϕ1〉0 + 6ϕ2
0〈ϕ2

1〉0 + 4ϕ0〈ϕ3
1〉0 + 〈ϕ4

1〉0 =
= ϕ4

0 + 6ϕ2
0Gλ + G(2)

λ , where Gλ = 〈ϕ2
1〉0 and G(2)

λ = 〈ϕ4
1〉0.

Obviously, the terms with the odd number of ϕ1 vanish and we find for first-order
correction in the coupling constant

SλH = SλH0 − ln〈e−Hi 〉0 ≈ H0 + g0

∫ [
ϕ4
0(r) + 6ϕ2

0(r)Gλ + G(2)
λ

]
d r.

We have used here that ln(1 − x) ≈ −x at |x | 
 1. The last term independent of
slow component ϕ0(r), i.e. constant, represents the insignificant shift of energy level
reference and can be dismissed. The physical sense for the term with ϕ2

0(r) is a shift
of the critical temperature of phase transition

τ0 → Sλτ0 = τ0 + δτ0 = τ0 + 12g0Gλ + O(g20).

It is natural that relation τ ∗ = τ0 + δτ0 = 0 must be satisfied at the critical point of
phase transition.

Let us now pay attention to the coupling constant. It can be readily seen that
nothing takes place with the coupling constant g0 in first order. The coupling constant
remains the same

g0 → Sλg0 = g0 + O(g20).

Therefore, for determining the shift of the coupling constant, it is necessary to use the
second order of the perturbation theory and take all the terms proportional to g20ϕ

4
0

in SλH . Below we need the following approximation in expanding the logarithm
ln〈e−H0〉0

ln

(
1 − g0x + g20

2
y2

)
≈ −g0x + g20

2

(
y2 − x2

)

in limit g0 
 1. Then, selecting the terms proportional to g20ϕ
4
0 in the decomposition

of logarithm ln〈e−H0〉0, we find how the coupling constant transforms

g0 → Sλg0 = g0 − 36g20Kλ .
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The irreducible correlator Kλ is given by the relation

Kλ = 1

2

[〈ϕ2
1(r)ϕ

2
1(r

′)〉0 − 〈ϕ2
1(r)〉0〈ϕ2

1(r
′)〉0

]
.

Employing the operation of dilation Dλ yields the following transformations for
temperature τ0:

Dλτ0 = Z2
λλ

d = λ−2τ0

and for the coupling constant g0:

Dλg0 = Z4
λλ

3d = λd−4g0 = λ−εg0 (d = 4 − ε).

The appearance of factor λ3d can be seen by representing the coupling term as a
triple integral over wave vectors. Here it is also clear that the space dimension d = 4
is outlined in the sense Dλg0 = g0. So, we accept always ε 
 1.

Inwhat follows, we are interested in thewave vectors of the slowfield components
ϕ0 much smaller as comparedwith the rapid components (λ 
 1). For simplification,
we can treat thewave vectors of slowfield as zero ones, i.e. consider componentϕ0(r)
as a constant quantity. The following relation for the Gaussian integrals is used to
calculate correlator Kλ:

∫
d r d r ′ 〈ϕ2

1(r)ϕ
2
1(r

′)〉0 =
∫

d r d r ′ 〈ϕ2
1(r)〉0〈ϕ2

1(r
′)〉0+

+2
∫

d r d r ′ 〈ϕ1(r)ϕ1(r ′)〉0〈ϕ1(r ′)ϕ1(r)〉0.

This relation can straightforwardly be comprehended from the identities for themean
values of the Fourier harmonics

〈ϕqϕ−qϕq ′ϕ−q ′ 〉0 =
= 〈ϕqϕ−q〉0〈ϕq ′ϕ−q ′ 〉0 + 〈ϕqϕ−q〉20 δq ′,−q + 〈ϕqϕ−q〉20 δq ′,q

if we use an independence of Fourier harmonics

〈ϕqϕq ′ 〉0 = 〈|ϕq |2〉0 δq ′,−q (ϕ−q = ϕ∗
q)

and equality〈|ϕq |4〉0 = 3〈|ϕq |2〉20. Finally, we have for the irreducible correlator Kλ

Kλ =
∫

d r d r ′〈ϕ1(r)ϕ1(r ′)〉0〈ϕ1(r ′)ϕ1(r)〉0 =

=
q0∫

λq0

ddq

(2π)d
〈|ϕ1, q |2〉0〈|ϕ1, −q |2〉0.
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In order to return the thermodynamic system to the phase transition point, we
must choose τ0 so that the renormalized value τ0 vanishes. Accordingly, we have
〈|ϕ1(q)|2〉0 = 1/q2 and the correlator Kλ reads

Kλ =
q0∫

λq0

ddq

(2π)d
〈|ϕ1, q |2〉20 =

q0∫

λq0

1

q4

ddq

(2π)d
= Sd

(2π)d

q0∫

λq0

1

q1+ε
=

= Sd
(2π)d

q−ε
0

λ−ε − 1

ε
(ε = 4 − d).

Here Sd is the surface area of unit radius sphere in the d-dimensional space

Sd = 2πd/2/�(d/2).

In first lowest approximation it is sufficient to put ε = 0. Taking into account that
S4 = 2π4, we obtain in this limit

Kλ = − 1

8π2
ln λ and Sλg0 = g0 + 9

2π2
g20 ln λ + O(g30).

The small parameter that justifies our expansion equals g0 ln λ 
 1.
After dilation Dλ, the renormalized value for the coupling constant g(λ) = Rλg0

will equal

g(λ) ≈ λ−ε

(
g0 + 9g20

2π2
ln λ

)
or ln g(λ) ≈ ln g0 − ε ln λ + 9g0

2π2
ln λ.

Differentiating with respect to ln λ gives us the following:

d ln g

d ln λ
= −ε + 9

2π2
g0 + O(g20).

Staying within our initial approximation of small coupling constant g0 
 1, we
can replace the “bare” constant g0 with its renormalized value g and derive the
renormalization-group equation

d ln g

d ln λ
= f (g) and f (g) = −ε + 9

2π2
g + . . .

The function f (g) is called theGell-Mann–Low function. In the quantumfield theory,
instead of function f (g), it is usually adopted to define the beta function β(g) =
g f (g) in accordance with equation

dg

d ln λ
= β(g).
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The function f (g) has been determined in lowest order in expanding into a series over
the coupling constant g and, in general, it should be subjected to the further calcu-
lation and determination by analyzing the next expansion terms in the renormalized
Hamiltonian. The expansion in the powers of coupling constant g corresponds to that
in the ε-powers.

The fixed point Rg∗ = g∗ of our renormalization, i.e. the coupling constant
remains unchangeable, is found from the condition f (g∗) = 0

g∗ = 2π2

9
ε 
 1.

The smallness ε = 4 − d 
 1 agrees with the approximation of small magnitude for
the coupling constant.

The scaling dimension �τ of reduced temperature τ means that the quantity τ
with renormalization Rλ is governed by the scaling law

τ → τ (λ) = Rλτ = λ−�τ τ or
d ln τ (λ)

d ln λ
= −�τ .

Let us determine the scaling dimension of reduced temperature τ at the fixed point
g∗. For this purpose, it is necessary to calculate the renormalized quantity τ within
the accuracy of first order in ε. We start from the mean values Gλ

Gλ = 〈
∫

d r ϕ2
1r〉0 =

q0∫

λq0

ddq

(2π)d
〈|ϕ1(q)|2〉0 = Sd

(2π)d

q0∫

λq0

qd−1dq

q2 + τ0
.

For the calculations within first-order accuracy in ε, it is sufficient to put ε = 0
or d = 4. Then, new temperature of phase transition or critical point τ ∗ will be
determined from equation τ ∗ = 0

0 = τ ∗ + 3

2π2
g0

q0∫

λq0

q3dq

q2 + τ ∗ = τ ∗ + 3

2π2
g0

q0∫

λq0

q

(
1 − τ ∗

q2 + τ ∗

)
dq.

Renormalizing the quantity τ0 yields the following equation:

Rλτ0 = λ−2

[
τ ∗ + 3

2π2
g0

q0∫

λq0

q

(
1 − τ ∗

q2 + τ ∗

)
dq

]
.

Analyzing this equation, we should take into account that there appears a shift of
critical point or phase transition point from τ0 = 0 to new point τ0 = τ ∗ as a result
of interacting with the fluctuations of order parameter field. Therefore, we must
determine the temperature from new phase transition point τ ∗. In other words, it is
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necessary to analyze how quantity τ ′ = τ0 − τ ∗ renormalizes. As a result, we obtain
the following relations, using first-order approximation in the coupling constant g0

τ (λ) = Rλτ
′
0 = λ−2

(
τ ′
0 − 3g0

2π2
τ ′
0

q0∫

λq0

q dq

q2

)
= λ−2

(
1 + 3g0

2π2
ln λ

)
τ ′
0,

ln τ = ln τ0 − 2 ln λ + ln

(
1 + 3g0

2π2
ln λ

)
≈ ln τ0 −

(
2 − 3g0

2π2

)
ln λ.

Replacing the constant g0 with g, we arrive at the renormalization-group equation
for the variable τ

d ln τ

d ln λ
= −�τ (g) where �τ = 2 − 3

2π2
g + . . .

And finally, substituting g = g∗ = 2π2ε/9, we find the magnitude of scaling dimen-
sion for temperature τ at the fixed point, i.e. at the phase transition point

�τ = 2 − ε

3
+ O(ε2).

Correspondingly, critical exponent ν for the correlation length ξ ∼ |τ |−ν equals

ν = 1

�τ
= 1

2
+ ε

12
+ O(ε2).

For the physically interesting case ε = 1, this delivers the following approximate
value: ν = 7/12 ≈ 0.6.

To determine the exponent α in the behavior of specific heat C ∼ |τ |−α, one can
apply the scaling relation dν = 2 − α for the dimension d = 4 − ε. This entails the
following correction for α in the linear approximation in ε:

α = ε

6
.

The critical exponent β, describing the behavior of order parameter ϕ(τ < 0) ∼
(−τ )β , can be determined from relationβ = ν�ϕ. Aswehave seen above, theFourier
transform ϕq of order parameter should be multiplied by factor Z−1

λ = λ(d+2)/2 by
performing the scale transformation. Accordingly, the order parameter ϕ(r) crosses
over to Z−1

λ λ−dϕ(r) = λ−(d−2)/2ϕ(r) since obviously ϕ(r) = ∫
ϕqddq/(2π)d and

q → λ−1q. Thus, in the linear ε-approximation the scaling dimension of order param-
eter ϕ equals

�ϕ = d − 2

2
= 1 − ε

2
.
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Hence the critical exponent β is given by

β = �ϕν =
(
1 − ε

2

)(
1

2
+ ε

12

)
= 1

2
− ε

6
+ O(ε2)

and, for ε = 1, the approximate value is β = 1/3.
The critical exponent γ in the behavior of susceptibility χ ∼ |τ |−γ can be found

by using the scaling relation α + 2β + γ = 2. Hence the critical exponent γ equals
approximately

γ = 1 + ε

6
+ O(ε2).

For ε = 1, this leads to value γ = 7/6.
The critical exponent δ, specifying the order parameter behavior in the high exter-

nal field ϕ(h) ∼ h1/δ , can be found from the scaling relation βδ = β + γ. Appropri-
ately, critical exponent δ equals approximately

δ = 3 + ε + O(ε2).

For ε = 1, this entails the value δ = 4.
The critical Fisher exponent or anomalous dimension η in the linear

ε-pproximation proves to be zero, i.e. η = O(ε2). The point here is the following.
As we have seen above, the coefficient before q2|ϕq |2 after the smoothing operation
Sλ does not change within the linear approximation in the coupling constant g pro-
portional to ε. Along with that the scaling coefficient Zλ will be the same, i.e. Zλ.
As a result, the spatial behavior for correlator K (r, r ′) = 〈ϕ(r)ϕ(r ′〉 at the phase
transition point remains unvaried, i.e. K (r, r ′) ∼ |r − r ′|−(d−2) as for the case of
free-field Hamiltonian. Omitting the narrative of more complicated calculations in
the second-order ε-expansion, we will cite the result for the critical Fisher exponent

η = ε2

54
+ . . .

The critical exponents calculated with the aid of ε-expansion agree well with
experiment and numerical simulation data.

Problem

1. Show that the following relation: 〈|ϕq |4〉0 = 3〈|ϕq |2〉20 is valid for the mean values of order
parameter in the free-field model.

Solution. Let us employ the formula derived above for the generating functional of the free-field
Hamiltonian

e
1
2

∑
q
hqKqh−q =

∫
Dϕqe

− 1
2

∑
q

ϕqK−1
q ϕ−q

e

∑
q

ϕqh−q

∫
Dϕqe

− 1
2

∑
q

ϕqK
−1
q ϕ−q

.

Then we decompose the left-hand and right-hand sides of equality to fourth-order terms in hq
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1 + 1

2

∑

q

hqKqh−q + 1

2!
1

22
∑

q,q′
hqhq′ KqKq ′h−qh−q′ + . . . = 1 +

∑

q

〈ϕq〉0h−q +

+ 1

2!
∑

q,q′
〈ϕqϕq′ 〉0h−qh−q′ + 1

3!
∑

q,q′,q′′
〈ϕqϕq′ϕq′′ 〉0h−qh−q′h−q′′ +

+ 1

4!
∑

q,q′,q′′,q′′′
〈ϕqϕq′ϕq′′ϕq′′′ 〉0h−qh−q′h−q′′h−q′′′ + . . .

It is clear that the average 〈ϕqϕq′ · · ·ϕq′′ 〉0 = 0 vanishes if the number of elements ϕq is odd. The
comparison of second-order terms in h entails 〈ϕqϕq′ 〉0 = Kqδq′,−q .

The analogous comparison of fourth-order terms in h leads to the following answer:

〈ϕqϕq′ϕq′′ϕq′′′ 〉0 = KqKq ′′δq,−q′δq′′,−q′′′ +
+KqKq ′δq,−q′′δq′,−q′′′ + KqKq ′δq,−q′′′δq′,−q′′ .

In fact, the direct substitution into the last sum above yields

∑

q,q′,q′′,q′′′
〈ϕqϕq′ϕq′′ϕq′′′ 〉0 = 3

∑

q,q′
hqhq′ KqKq ′h−qh−q′

by identifying the terms on the left-hand and right-hand sides of expansion at arbitrary hq . Next,
we find that

〈ϕqϕ−qϕq′ϕ−q′ 〉0 = KqKq ′ + KqK−q
(
δq,q′ + δq,−q′

)
,

and finally
〈ϕqϕ−qϕqϕ−q〉0 = 〈|ϕq |4〉0 = 3K 2

q = 3〈|ϕq |2〉20
by taking ϕ−q = ϕ∗

q and K−q = Kq into account.
In the general case the average 〈ϕqϕq′ · · ·ϕq′′ 〉0 at the even number of elements ϕq can be

represented as a sum of possible pair averages 〈ϕqϕ−q〉0, and all the possible pairings of elements
ϕq should be summed. Each pairing gives the multiplier Kq = 〈ϕqϕ−q〉0. It can be shown that

〈ϕn
qϕ

n−q〉0 = 〈|ϕq |2n〉0 = (2n − 1)!!〈|ϕq |2〉n0 .

The multiplier (2n − 1)!! = (2n)!/(2n) is the total number of partitions of 2n-element set into 2n

pairs.

4.17 Two-Dimensional Degenerate System

The two-dimensional plane degenerate systems have a particular interest in the theory
of phase transitions. Unlike the three-dimensional systems, the mean value of order
parameter is zero in the degenerate two-dimensional system. The most interesting
case here iswhen the number of order parameter components equals two.We consider
below the classical XY -model as an example.

The classical XY-model represents the two-dimensional square lattice whose
sites are occupied with the two-component Sr = (Sx

r , Sy
r ) spins20 of unit magni-

20 The XY -model is a special case of n-vector model or O(n)-model. For the case of one-component
S ≡ Sz = ±1 spins, this is the Ising model (n=1). The case of three-component (n=3) spins S =
(Sx , Sy , Sz) is called the Heisenberg model.
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tude |Sr | = 1. The square lattice vector period equals a. Let each spin at the lattice
site interact with the spins at the closest neighbor sites alone. The Hamiltonian of
such a system can be written as follows:

H = −J
∑

〈r,a〉

(
Sx
r S

x
r+a + Sy

r S
y
r+a

)
.

The sign of exchange constant J > 0 corresponds to the ferromagnetic parallel order-
ing of two neighboring spins.

It is obvious that the interaction between the spins can completely be neglected in
the limit of very high T � J temperatures. In this limit the spin system, in essence,
will be an ideal paramagnet with the lack of any correlation in the mutual orientation
of spins. To comprehend what happens for the spin orientation by lowering the
temperature, we analyze the temperature behavior of correlation function K r,r ′ =
〈Sr Sr ′ 〉 between the spins at the lattice sites r and r ′.

It is convenient to treat the problem in the angular variables introduced accord-
ing to

Sx
r = cosϕr and Sy

r = sinϕr .

The Hamiltonian reads in these variables

H = −J
∑

〈r,a〉
cos(ϕr − ϕr+a).

The spin correlator will be represented in terms of the functional integral which
should be taken over the whole region of the possible variations of angle ϕr for each
spin in the lattice

〈Sr Sr ′ 〉 = 〈ei(ϕr−ϕr′ )〉 = 1

Z

2π∫

0

· · ·
2π∫

0

(∏

r

dϕr
)
ei(ϕr−ϕr′ )e

J
T

∑
r,a

cos(ϕr−ϕr+a)

.

Here Z is the partition function equal to the integral

Z =
2π∫

0

· · ·
2π∫

0

(∏

r

dϕr
)
e

J
T

∑
r,a

cos(ϕr−ϕr+a)

.

Let us start our consideration from the high T � J temperature region and deter-
mine the magnitude of correlator at the distance equal to the spacing between the
nearest neighbor spins at sites r and r + a. For T � J , in the above formulas we
expand the exponential function into a series over the powers of ratio J/T 
 1 and
restrict ourselves with terms not higher than linear ones. As a result of identities
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2π∫

0

dϕρ sinϕρ = 0 and

2π∫

0

dϕρ cosϕρ = 0,

from the total sum over the lattice sites the only term with ρ = r delivers nonzero
contribution to the correlator between the nearest neighbor spins at sites r and r + a.
Then we have

〈ei(ϕr−ϕr+a)〉 ≈ J

T

2π∫

0

dϕre
i(ϕr−ϕr+a) cos(ϕr − ϕr+a) = J

2T
.

For the high temperatures, it is natural to suppose a drastic decay of correlation
in the mutual orientation of spins as the spacing between the spins increases. In this
case in first approximation, we can neglect any correlation in the directions for the
initial spin and the spin following the nearest neighboring spin. Accordingly, we can
approximately write

〈ei(ϕr−ϕr+na)〉 ≈ 〈ei(ϕr−ϕr+a)〉〈ei(ϕr−ϕr+2a)〉 · · · 〈ei(ϕr−ϕr+na)〉.

Here we should take the shortest path from site r to site r + na, providing us the
maximum result since each transition from one site to the neighboring one gives an
additional factor J/2T 
 1. We have finally

〈Sr Sr+na〉 ≈ (J/2T )n = e−n ln(2T/J ) (T � J ).

Hence we see that the spin orientation correlator decays exponentially with the spac-
ing between the spins. The correlation radius, expressed in the lattice constant a,
equals approximately ξ/a ∼ 1/ ln(2T/J ) 
 1.

For the low temperature T 
 J region, it is energetically favorable to have the
maximum value cos(ϕr − ϕr+a) or, in other words, angleϕr would have a negligibly
small variation at the spacing between two neighboring sites. This means that the
correlation radius should significantly exceed the lattice constanta. In such a situation
one can employ the following estimate:

cos(ϕr − ϕr+a) ≈ 1 − (ϕr − ϕr+a)
2

2
.

We can omit the unit from our consideration since it entails the shift of energy level
reference. Next, the following approximation is used

∑

a

(ϕr − ϕr+a)
2 ≈ a2

(
∂ϕ

∂x

)2

+ a2
(

∂ϕ

∂y

)2
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where a is the lattice constant. The rule of crossover from the lattice site sum to the
integral over area

a2
∑

r

−→
∫

dx dy

completes our transition to the continual approximation with the equivalent effective
Hamiltonian governed with the continuous field ϕ(x, y)

H = J

2

∫ [(
∂ϕ

∂x

)2

+
(

∂ϕ

∂y

)2]
dx dy =

∫
d2r

J (∇ϕ)2

2
.

For the parametrizationnx = cosϕ andny = sinϕ,wehaven2 = 1and the following
representation:

H = J

2

∫
(∇n)2dx dy.

Here n(x, y) is the two-dimensional unit vector determined with the single angle
ϕ(x, y) and pointing the terminal position of vector at the unit circumference.

The Gibbs distribution, proportional to exp(−H/T ) with effective Hamiltonian
H , reproduces the Gaussian one. So, we can use the familiar relation for the mean
values under the Gaussian distribution of probabilities

〈ei[ϕ(r)−ϕ(r ′)]〉 = e−〈[ϕ(r)−ϕ(r ′)]2〉/2.

The mean value of the exponent

〈[ϕ(r) − ϕ(r ′)
]2〉/2 = 〈ϕ2(r)〉 − 〈ϕ(r)ϕ(r ′)〉

can be calculated with the aid of Fourier transformation

ϕ(r) =
∑

q

eiqrϕq (ϕ∗
q = ϕ−q)

in which the mean value required reads

〈ϕ(r)ϕ(r ′)〉 =
∑

q,q ′
〈ϕqϕq ′ 〉eiqr+iq ′ r ′

.

The effective Hamiltonian H in the Fourier transforms is already diagonal in ϕq

H = 1

2

∑

q

Jq2|ϕq |2.
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Themean values, similar to 〈ϕqϕq ′ 〉, have already been calculated for suchfluctuating
quantities in the previous sections. So, using the above-derived expressions

〈ϕqϕq ′ 〉 = 〈|ϕq |2〉δ−q,q ′ where 〈|ϕq |2〉 = T

Jq2
,

we obtained the final answer

1

2
〈[ϕ(r) − ϕ(r ′)

]2〉 =
∑

q

T

Jq2

(
1 − eiq(r−r ′)) =

= T

J

∞∫

0

q dq

2πq2

2π∫

0

dϑ

2π

(
1 − eiq|r−r ′| cosϑ

) = T

2πJ

∞∫

0

dq
1 − J0(q|r − r ′|)

q
.

Integrating over angle ϑ leads us to the Bessel function of the first kind J0(x).
Analyzing the last integrand, we see that the integral over q diverges logarithmically
at the large values of wave vector. The divergency results from inapplicability of
the continual approximation at the small distances of the order of lattice constant a
or at large wave vectors q ∼ 1/a. The latter vector magnitudes are associated with
the rapid variations of field ϕ at the scales about spin lattice constant a. For this
reason, in order to eliminate non-physical divergency at wave vectors q � 1/a, we
cut the upper limit of integration at wave vector q ∼ 1/a. Then, we get the following
estimate of the mean value within the logarithmic accuracy

1

2
〈[ϕ(r) − ϕ(r ′)

]2〉 ≈ T

2πJ
ln

|r − r ′|
a

.

As a result, in the low T 
 J temperature regionwe disclose the power-like behavior
for the spin correlation function

〈Sr Sr ′ 〉 = 〈ei(ϕr−ϕr′ )〉 =
(

a

|r − r ′|
)T/2πJ

with the infinite correlation radius.
In accordance with such a behavior of spin correlator we can conclude that,

strictly speaking, the spontaneous far-distant spin ordering is absent in the XY -
model. In fact, since the spin correlator decouples 〈Sr Sr ′ 〉 → 〈Sr〉〈Sr ′ 〉 and vanishes
at |r − r ′| → ∞, we have zero mean value 〈Sr〉 = 0. On the other hand, we see the
exponential decay of spin correlator at high T � J temperatures but for the low
T 
 J temperatures we find another power-like behavior different in kind. So, we
can expect some kind of phase transition in the region T ∼ J as the temperature
lowers.

According to the scaling hypothesis, the correlation function at the phase transi-
tion point should have a power-like behavior as a function of distance. For spatial
dimension d = 2, we expect
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〈Sr Sr ′ 〉 ∼ |r − r ′|−η.

This corresponds to the critical Fischer exponent η = T/2πJ , however, temperature-
dependent. The highest temperature TBKT ∼ J , when the exponential decay of the
correlator crosses over to the power-like behavior, proposes the specific phase tran-
sition referred to as the Berezinskii–Kosterlitz–Thouless transition.

Problems

1.The electrically neutral two-dimensional system of positive and neutral point charges occupies
the plane surface of area A. According to the Poisson equation in the two-dimensional space, two
point charges of magnitude ei and e j at the points r i and r j interact logarithmically as a function
of distance |r i − r j | between them

Ui j = −qiq j ln |r i − r j |, qi, j = √
2 ei, j .

In otherwords, the point charges in the two-dimensional space interact like the charged and infinitely
long parallel filaments. (An arbitrary constant is chosen in the interaction potential so that Ui j = 0
at |r i − r j | = 1). The total energy for the system of charges is given by the following sum:

U = −1

2

∑

i �= j

qi q j ln |r i − r j | = −
∑

i< j

qi q j ln |r i − r j |.

Find the equation of state for such a two-dimensional system and analyze its thermodynamic
stability in the low-temperature limit.

Solution. Let us write down the configurational part of the partition function for the system of
N charges occupying the area A

Z = 1

N+! N−!
∫

d2r1d
2r2 . . . d2rN e−U/T =

= 1

N+! N−!
∫

d2r1d
2r2 . . . d2rN exp

(∑

i< j

qi q j

T
ln |r i − r j |

)
=

= 1

N+! N−!
∫

d2r1d
2r2 . . . d2rN

∏

i< j

|r i − r j |
qi q j
T

where N+ and N− are the number of positive and negative charges, respectively. Here we mean the
integration performed over the whole area A for each charge.

The pressure P is given by differentiating the free energy F with respect to volume, i.e. to area
A occupied with the charges

P = −∂F

∂A
= T

∂ ln Z

∂A
.

Hence we see that the dependence Z versus A alone is significant for determining the pressure. For
this purpose, in the expression for Z we change the scale of length unit, introducing new variables
ξi according to r i = ξi A

1/2. Then we obtain

Z(A, T, N+, N−) = A(N+∑
i< j

qi q j
2T )z(T, N+, N−).

Here N = N+ + N− is the total number of charges and the z factor is A-independent. The pressure
is readily found and equal to
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P = T

A

(
N + 1

2T

∑

i< j

qi q j

)
= T

A

[
N + 1

4T

((∑

i

qi

)2

−
∑

i

q2i

)]
.

Taking electroneutrality of system
∑

i qi = 0 into account, we arrive at the following equation of
state:

PA = NT

[
1 − 1

4T

(
N+
N

q2+ + N−
N

q2−
)]

= NT

(
1 − q2

4T

)
.

The last equality is written for the symmetrical case when q+ = q and q− = −q.
The condition of thermodynamic stability requires that an expansion of volume or area in our

case should be accompanied by decreasing the pressure under constant temperature. So,
(

∂P

∂A

)

T
< 0.

This condition breaks down at the temperatures below critical temperature Tc = q2/4 and, therefore,
two-dimensional neutral system of charges cannot exist in the homogeneous state at T < Tc. Below
the critical temperature Tc the bound pairs (molecules) appear and consist of positive and negative
charges.

2. Estimate the energy for a single vortex excitation of circulation κ in the classical plane
XY -model.

Solution. The vortex excitation is governed with the following gradient of continuous field
ϕ(x, y):

∇ϕ = κ

2πr
eθ .

Here eθ is unit vector in the direction of rotation angle ϕ and radius vector is r = √
x2 + y2. The

corresponding circulation of field ϕ(x, y) equals
∮

C

d l · ∇ϕ = κ

where C is an arbitrary closed contour encircling the vortex center r = 0. The energy of vortex
excitation is given by the logarithmic integral

E =
∫

d2r
J (∇ϕ)2

2
= J

2

L∫

a

κ
2

4π2r2
2πr dr = κ

2

2π
ln

L

a
.

Here, we have put the lattice constant a as a lower limit since the continual approximation breaks
down on this scale. As it concerns the upper limit, we take the size of the plane L � a, being the
macroscopic size.

3. In the thin (quasi-two-dimensional) superfluid film, the interaction energy U (r) of vortex–
antivortex pair, i.e. two parallel vortex filaments with the opposite directed circulations of the same
magnitude κ, depends logarithmically on the distance r between the filaments

U (r) = U0 ln
r

a
, U0 = ρd

κ
2

2π
.

Here a is the minimally possible distance between the vortex filaments, ρ is the liquid density, and
d is the film thickness or filament length.

Find the mean squared distance 〈r2〉 between the filaments as a function of temperature.
Determine the Berezinskii–Kosterlitz–Thouless temperature TBKT above which the dissociation
of vortex–antivortex pair should occur.
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Solution: Since the probability for fluctuation is proportional to exp[−U (r)/T ], themean square
of distance between the vortex filaments can be calculated using the formula

〈r2〉 =

∞∫
a
2πrdr r2e−U (r)/T

∞∫
a
2πrdr e−U (r)/T

=

∞∫
a
dr r3 exp

(−U0
T ln r

a

)

∞∫
a
dr r exp

(−U0
T ln r

a

) = a2
U0 − 2T

U0 − 4T
.

For T = 0, the mean square of distance between the filaments is minimum 〈r2〉 = a2. As the
temperature increases, the mean square 〈r2〉 grows and at the temperature equal to

TBKT = U0

4
= ρdκ

2

8π

becomes infinite, entailing the destruction of bound state or dissociation of vortex–antivortex pair.
4. Find the free energy F(T ) of classical XY -model for the one-dimensional chain with the free

ends, N two-component spins of unit length being located at the chain sites. The spins interact with
the nearest neighbors alone. The exchange coupling constant J > 0 has the ferromagnetic sign.

Solution. The Hamiltonian of spin chain reads

H = −J
N−1∑

k=1

cos(ϕk+1 − ϕk) = −J
[
cos(ϕ1 − ϕ2) + · · · + cos(ϕN−1 − ϕN )

]

where ϕk is the rotation angle of kth spin. The corresponding partition function will equal the
N -dimensional integral

Z =
2π∫

0

dϕ1

2π∫

0

dϕ2 · · ·
2π∫

0

dϕN exp

(
−β J

N−1∑

k=1

cos(ϕk+1 − ϕk)

)
, β = T−1.

Performing the following replacement of variables ϕk = φk − ϕk−1 and involving that the integra-
tion should be fulfilled over the whole period, we obtain

Z =
2π∫

0

dϕ1

2π∫

0

dφ2 · · ·
2π∫

0

dφN exp

(
−β J

N−1∑

k=1

cosφk+1

)
= 2π

[ 2π∫

0

dφ e−β J cosφ

]N−1

.

The last integral can be expressed in terms of modified Bessel function of the first kind I0(x). Thus
we have for the partition function Z and free energy F

Z = 2π
[
2π I0(β J )

]N−1 and F = −NT ln(2π) − (N − 1)T ln I0(J/T ).

The specific heat, calculated according to C(T ) = −T∂2F/∂2T , is given by the formula

C(T ) = (N − 1)x2
[
I0(x) + I2(x)

2I0(x)
−

(
I1(x)

I0(x)

)2]
, x = J

T

where I0, I1, and I2 are the modified Bessel functions of the first kind. At T = 0 the specific heat

is finite and equals (N − 1)/2. As the temperature grows, the specific heat increases linearly as

�C(T ) ∼ T/4J , runs across the maximum at T ∼ 0.4J , and then decreases as (N − 1)J 2/2T 2 in

the region T � J .



Chapter 5
Normal Fermi Liquid

Unlike ideal gases where the energy of a gas is a simple sum of the energies of
individual particles, in the system of interacting particles the determination of energy
levels is very difficult and often impossible task. As a consequence, though the basic
ideas and methods for describing the condensed matter can be the same, nevertheless
the concrete implementation of these ideas and methods may differ in various cases
and types of condensed matter.

5.1 Creation and Annihilation Operators

The occupation number representation (or second quantization) is a convenient for-
malism for analyzing and describing the quantum many-particle systems with inter-
action. The description employs the basis of single-particle states as an occupation
of each single-particle state with certain number of identical particles. The formal-
ism is wholly based on the principle of indistinguishability of identical particles in
quantum mechanics.

The occupation number representation means the crossover from describing the
system of N particles with the aid of the orthogonal and complete set of wave
functions ϕ1(ξ), ϕ2(ξ), . . . of a particle, where ξ is a set of variables (coordinate,
momentum, spin) identifying the particle state, to the occupation numbers when the
number of particles Ni is given for each of possible states with wave function ϕi (ξ).

Let the first particle occupy the state with wave function ϕ1, second particle
occupy the state with wave function ϕ2, and so on. Then the total wave function for
the whole system of N particles can be written as a product of wave functions

�(ξ1, ξ2, . . . , ξN ) = ϕ1(ξ1)ϕ2(ξ2) . . . ϕN (ξN ).
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194 5 Normal Fermi Liquid

Such wave function, however, does not satisfy the symmetry principle with respect
to permutation for any pair of particles. In other words, if we want to describe the
interacting particle system in the terms of total wave function, the latter must satisfy
some definite symmetry conditions. For the case of the Fermi–Dirac statistics, the
total wave function �F should be antisymmetric with respect to permutation of any
two variables. It is usually convenient to represent this as the Slater determinant

�F (ξ1, ξ2, . . . , ξN ) = Ndet

∥
∥
∥
∥
∥
∥
∥

ϕ1(ξ1) ϕ1(ξ1) . . . ϕ1(ξN )
...

...
. . .

...

ϕN (ξ1) ϕN (ξ2) . . . ϕN (ξN )

∥
∥
∥
∥
∥
∥
∥

where N is the normalization factor.
In the case of the Bose–Einstein statistics, the total wave function �B should be

symmetrical with respect to the permutations of all variables. This can briefly be
written with the aid of permanent1 square N × N matrix

�B = �(ξ1, ξ2, . . . , ξN ) = Nperm

∥
∥
∥
∥
∥
∥
∥

ϕ1(ξ1) ϕ1(ξ2) . . . ϕ1(ξN )
...

...
. . .

...

ϕN (ξ1) ϕN (ξ2) . . . ϕN (ξN )

∥
∥
∥
∥
∥
∥
∥

and N is the normalization factor.
As a rule, usage of such symmetrical (antisymmetrical) wave function is asso-

ciated with a number of computational disadvantages. To characterize the state of
many-particle system, instead the total wave function and due to principle of indis-
tinguishability between particles, we can simply indicate how many particles Ni

are in the state with wave function ϕi , i.e. specify the occupation of this state. The
wave function |N1, N2, . . .〉 denotes that there are N1 particles in the state with wave
function ϕ1 and so on. The states in which the number of particles is completely
determined are called the Fock states. The state |0, 0 . . .〉 which has no particles is
referred to as vacuum.

Since in the physical processes the number of particles in one state or another
can vary, we need to introduce the operators changing the particle number in the
given state, i.e. transforming the occupation numbers according to N � N ± 1.
An operator a+, increasing the number of particles in the given state with wave
function ϕ by one, is called the creation operator. An operator a, decreasing the
number of particles in the given state by one, is called the annihilation operator.
The successive application of several creation or annihilation operators allows us to
change the occupation numbers by several units.

1 Unlike the determinant, the definition for the permanent of square matrix implies that any
permutation of matrix elements does not change its sign. For example, perm

∥
∥
∥
∥

a1 b1
a2 b2

∥
∥
∥
∥

= a1b2 +

a2b1 and perm

∥
∥
∥
∥
∥

a1 b1 c1
a2 b2 c2
a3 b3 c3

∥
∥
∥
∥
∥

= a1b2c3 + a1c2b3 + b1c2a3 + b1a2c3 + c1a2b3 + c1b2a3 . Whereas, det

∥
∥
∥
∥

a1 b1
a2 b2

∥
∥
∥
∥

= a1b2 − a2b1 and

det

∥
∥
∥
∥
∥

a1 b1 c1
a2 b2 c2
a3 b3 c3

∥
∥
∥
∥
∥

= a1b2c3 − a1c2b3 + b1c2a3 − b1a2c3 + c1a2b3 − c1b2a3 .
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Let us start from determining the creation and annihilation operators for the Bose–
Einstein statistics, assuming a possibility for an arbitrary occupation of the same state
with bosons. So, we put

a|N 〉 = αN |N − 1〉 and a+|N 〉 = βN |N + 1〉.

It is convenient to determine as a+a|N 〉 = N |N 〉, i.e. particle number operator N̂ =
a+a and its action on the given state shows the number of particles in the given state.
Then, using the Hermitian property of the following matrix elements: 〈N |a+|N −
1〉 = 〈N − 1|a|N 〉∗, we have βN−1 = αN . Next from

〈N |a+a|N − 1〉 = βN−1αN = |αN |2 = N

we find2 αN = √
N and βN = √

1 + N . Finally, we arrive at the following relations
for the bosonic operators of creating and annihilating the particles

a+|N 〉 = √
1 + N |N + 1〉 and a|N 〉 = √

N |N − 1〉,
a+a|N 〉 = N |N 〉 and aa+|N 〉 = (1 + N )|N 〉.

The following commutation relations for the bosonic creation and annihilation oper-
ators can readily be obtained from the above equations:

[a+, a+] = 0, [a, a] = 0, [a, a+] = 1.

These commutation relations can be used as the initial ones to determine the bosonic
operators of creating and annihilating the particles. The state having N particles can
be written by the N -time application of creation operator a+ to the vacuum state

|N 〉 = 1√
N !

(

a+)N |0〉.

All the formulas above are generalized to an arbitrary number of the Fock states

a+
k | . . . Ni , Nk, Nl . . . 〉 = √

1 + Nk | . . . Ni , Nk + 1, Nl . . . 〉,
ak | . . . Ni , Nk, Nl . . . 〉 = √

Nk | . . . Ni , Nk − 1, Nl . . .〉.

The operators related to various states commute

[a+
i , a+

k ] = 0, [ai , ak] = 0, [ai , a+
k ] = δik .

In contrast to the Bose–Einstein statistics, the Fermi–Dirac statistics does not
allow more than one particle in the same state. The occupation numbers N take the

2 For the reasons of convenience,we chooseαN andβN to be realwithout complex phasemultipliers.
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values 0 or 1 alone. If state |1〉 is occupied, the further action of creation operator c+
must destroy this state or transfer it to the unoccupied state |0〉 in the full accordance
with the Pauli principle forbidding two identical fermions to be in the same state. A
fermion from the occupied state |1〉 is removed with the annihilation operator c. In
fact, it is necessary to determine only two relations for the creation and annihilation
operators

c|1〉 = α|0〉 and c+|1〉 = β|1〉

and we require the fulfillment of relation c+c|N 〉 = N |N 〉 which sets the particle
number operator N̂ = c+c. Hence, it follows that αβ = N = 0 or 1. Using that
〈1|c+|0〉 = 〈|c|〉∗, we have β = α∗ and, correspondingly, |α|2 = N . As a result,
coefficients α and β take values3 either 0 or 1. We give below all possible cases for
the action of operators

c+|0〉 = 1|1〉, c|0〉 = 0|1〉,
c+|1〉 = 0|0〉, c|1〉 = 1|0〉.

These relations can be written as follows:

c|N 〉 = √
N |1 − N 〉 and c+|N 〉 = √

1 − N |1 − N 〉.

Hence, one sees that c+c+|N 〉 = 0 and cc|N 〉 = 0. Since cc+|N 〉 = (1 − N )|N 〉,
the anticommutator {c, c+} = cc+ + c+c satisfies the equality

{c, c+} = 1.

In some applications it is convenient to introduce the so-called theMajorana fermion
operators:

χ = c + c+
√
2

and χ̄ = c − c+

i
√
2

with the anticommutative relations

{χ,χ} = 1, {χ̄, χ̄} = 1 and {χ, χ̄} = 0.

The results obtained above can be generalized to an arbitrary number of Fock
states, as follows:

ck | . . . Ni , Nk, Nl . . .〉 = (−1)L
√

1 − Nk | . . . Ni , 1 − Nk, Nl . . .〉,
c+
k | . . . Ni , Nk, Nl . . .〉 = (−1)L

√

Nk | . . . Ni , 1 − Nk, Nl . . .〉.

3 For the reasons of convenience, we put α and β to be real without any complex phase multipliers.
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Here factor (−1)L keeps in view the number of fermionic states preceding the kth
state. This reflects the fact that the fermionicmany-particle wave function changes its
sign with permutating two adjacent states, i.e. |Ni , Nk〉 = −|Nk, Ni 〉, and displays
in the anticommutative properties of fermionic operators

{c+
i , c+

k } = 0, {ci , ck} = 0, {ci , c+
k } = δik .

Let operators a+
i and ai be creation and annihilation ones for the single-particle

states with wave functionϕi (r). Then the corresponding operators of creationψ+(r)
and annihilation ψ(r) in the coordinate space are given by the formulas

ψ(r) =
∑

i

ϕi (r)ai and ψ+(r) =
∑

i

ϕ∗
i (r)a

+
i

with the summing all the possible states of the system. Since coefficients ϕi (r)
and ϕ∗

i (r) in the sum are the usual wave functions, the matrix operators for these
ψ-operators will coincide with the same matrix elements for the conventional wave
functions. The commutative and anticommutative rules conserve

[

ψ(r), ψ+(r ′)
] = δ(r − r ′) for bosons,

{

ψ(r), ψ+(r ′)
} = δ(r − r ′) for fermions.

If operators a+
p and a p are the creation and annihilation of a particle with momen-

tum p, the operators ψ+(r) and ψ(r) have the sense of creating and annihilating the
particle at the coordinate point r . The relation between these operators is achieved
with the aid of the conventional Fourier transformation

ψ(r) = 1

V 3/2

∫
Vd3 p

(2π�)3
a pe

i pr/� and ψ+(r) = 1

V 3/2

∫
Vd3 p

(2π�)3
a+
p e

−i pr/�

where V is the volume4 of the system. Then the particle number operator reads in
the coordinate representation

N̂ =
∫

ψ+(r)ψ(r)d3r.

Let total energy of the system be E = ∑

i εi Ni where εi is the energy of single-
particle with wave function ϕi . Since the particle number operator in the i th state is
N̂i = a+

i ai , the corresponding Hamiltonian operator equals Ĥ = ∑

i εi a
+
i ai . If the

states are classified by the momentum of a particle as, for example, in an ideal gas
ε( p) = p2/2m, the Hamiltonian is given by

4 To write the formulas more concise and less cumbersome, the volume V = 1 and Planck constant
� = 1 are usually supposed.
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Ĥ =
∑

p

p2

2m
a+
p a p.

In the coordinate representation, this expression corresponds to the integral deter-
mining the kinetic energy of the particles

Ĥ =
∫

�
2∇ψ+(r) · ∇ψ(r)

2m
d3r =

∫
�
2|∇ψ(r)|2

2m
d3r.

For the classical expressions of energy Eext of the system in the external potential
field V (r)

Eext =
∫

n(r)V (r)d3r

and for the energy5 of two-particle interaction Eint with the coupling potentialU (r −
r ′)

Eint = 1

2

∫∫

n(r)U (r − r ′)n(r ′)d3r d3r ′,

the corresponding terms in the Hamiltonian via ψ-operators6 are composed as fol-
lows:

Ĥext =
∫

ψ+(r)V (r)ψ(r)d3r,

Ĥint = 1

2

∫∫

ψ+(r)ψ+(r ′)U (r − r ′)ψ(r ′)ψ(r)d3r d3r ′.

Note here that operator n̂(r) = ψ+(r)ψ(r) plays a role of particle density operator
at point r .

The current density operator ĵ(r), expressed via creation ψ+(r) and annihilation
ψ(r) operators for the spinless particles

ĵ(r) = ie�

2m

(

∇ψ+(r)ψ(r) − ψ+(r)∇ψ(r)
)

− e2

mc
A(r)ψ+(r)ψ(r),

corresponds to the usual quantum mechanical expression.

5 The coefficient with the interaction term should be written as 1/2V but, for simplicity of the
formulas, volume V = 1 is usually put.
6 It is customary to place the creation operators on the left-hand side from the annihilation operators.
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5.2 Normal (Nonsuperfluid) Fermi-Liquid

The condensed system of interacting particles obeying the Fermi–Dirac statistics
is commonly referred to as a Fermi liquid. As most important examples, we note
electrons in most metals, liquid 3He being the helium isotope with two protons,
one neutron and two electrons in an atom, and nucleons (protons and neutrons)
composing the nuclear matter. So, below we always imply the Fermi particle spin
equal to 1/2. The temperatures that are of greatest interest here are sufficiently low
as compared with the typical degeneracy temperature of the Fermi system or when
the de Broglie wavelength corresponding to the thermal motion of particles becomes
larger than the interparticle distance. For such low temperatures, the quantum effects
begin essentially to affect the macroscopic properties of the Fermi liquid.

Since the fermions obey the Pauli principle which forbids two fermions to occupy
the same state, the concept of the Fermi surface can be introduced in the momentum
space, separating the occupied fermionic states from the unoccupied ones in the
ground state of Fermi liquid at zero temperature. The Fermi surface is a sphere in
isotropic 3He Fermi liquid.

In metals, as an example of anisotropic Fermi liquids, the shape of Fermi surface
is anisotropic and corresponds completely to the symmetry of crystal lattice and
its periodicity. The Fermi surface in the momentum space is governed by certain
equation E( p) = μwhere μ is the chemical potential at zero temperature. The Fermi
surfaces in metals may have very complicated geometrical shape and usually they
are divided into the closed and open Fermi surfaces. The Fermi surface is referred
to as the closed one if it nowhere reaches the boundary of the first Brillouin zone.
In other words, the magnitude of any vector lying inside the closed Fermi surface is
always less than the reciprocal lattice period.

In the case of open surface the Fermi one reaches the boundary of the first Brillouin
zone. The topology of the Fermi surface to great extent determines the dynamics of
electrons in electric and magnetic fields and, therefore, influences the galvanomag-
netic properties of metals.

In what follows, we consider thoroughly the normal liquid 3He representing neu-
tral isotropic Fermi liquid. The background for the phenomenological description of
normal (non-superconducting) Fermi liquid incorporates the concepts of the spec-
trum of elementary excitations or quasiparticles with momentum p and energy ε( p).
The structure of low energy excitations in Fermi liquid is completely similar to the
energy spectrum of ideal Fermi gas. At zero temperature corresponding to the ground
state of Fermi liquid, all quasiparticles in the momentum space fill entirely the region
of momenta | p| < pF or Fermi sphere limited with the Fermi momentum pF . The
magnitude of the Fermi momentum is independent of interaction between particles.7

The volume of momentum space limited with the Fermi surface is proportional to
the Fermi particle density and determined with the particle density n of Fermi liquid.
The magnitude of the Fermi momentum coincides with that for the ideal Fermi gas
of the same density n.

7 This statement is the essence of general Luttinger’s theorem.
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The number of quasiparticles equals that of particles of Fermi liquid. It is nec-
essary to distinguish the momentum distribution N ( p) of genuine particles in the
liquid from the similar distribution like the Fermi step n( p) = ϑ(pF − p). The mag-
nitude of distribution N ( p) at zero momentum p = 0 is somewhat smaller than
unity and decreases with increasing the momentum p from zero value to the Fermi
momentum pF . For the boundary value p = pF , the distribution N ( p) has a jump
Z = N (pF − 0) − N (pF + 0) of finite magnitude (0 < Z < 1) dependent on the
interaction between particles of the liquid. In the region p > pF the distribution
N ( p) continues to decrease down to zero as the momentum magnitude p increases.

The ground state energy of the Fermi liquid at zero temperature does not reduce
to a simple sum of energies ε( p) for all quasiparticles. The general statement can
only be formulated, meaning the fact that the ground state energy E for the Fermi
liquid at zero temperature is some functional depending on the distribution function
n(r, p) alone8

E = E[n(r, p] =
∫

E[n(r, p)](2s + 1)
d3 p

(2π�)3
d3r.

The ground state energy, i.e. energy minimum, realizes at the genuine distribution
function9 n(r, p). For spin s = 1/2, the number of spin states is 2s + 1 = 2. When
it is necessary to take the spin and magnetic field effects into account, distribution
function nσ(r, p) = nαβ(r, p)will be spin-dependent as well and represent the 2×2
matrix. In addition to integration, taking the matrix trace is also implied.

The equilibrium state at nonzero temperature and, in general, any excited state
in the Fermi liquid can be obtained by the successive transfer of one or several
quasiparticles from the space region inside the Fermi sphere to outside it. Every such
transfer is treated as a simultaneous creation of a quasiparticle outside the Fermi
sphere and a hole inside it. Thus, a hole means directly a non-occupied state inside
the Fermi sphere. The energy of single quasiparticle ε[n(r, p)] is determined as a
variational derivative of the total energy with respect to the distribution function
according to

δE = E[n + δn] − E[n] =
∫

δE[n(r, p)] 2d3 p

(2π�)3
d3r =

=
∫

ε[n(r, p)]δn(r, p)] 2d3 p

(2π�)3
d3r, i.e. ε[n(r, p)] = δE[n(r, p)]

δn(r, p)
.

8 Determining a specific type of the functional is a subject of microscopic Fermi-liquid theory. This
problem will be discussed on the example of a dipole Fermi gas.
9 The similar statement, representing the variational principle for the interacting electron system
in the external electric field, is called the Hohenberg–Kohn theorem. The latter provides us one
of arguments for applying the density functional theory as a method of computing the electronic
structure of molecules and metals.
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The sense of this definition is transparent. In fact, if a quasiparticle is created
with momentum p = Q at point r = R and the distribution function varies as
δn(r, p) = (1/2)(2π�)3δ( p − Q)δ(r − R), the energy of Fermi liquid increases by
the magnitude equal to ε[n(R, Q)]. In the spatially homogeneous isotropic Fermi
liquid the quasiparticle distribution function at zero temperature equals the step-like
function n0( p) = ϑ(pF − p), the quasiparticle excitation energy depending on the
momentummagnitude alone, i.e. ε

(

n0( p)
) = ε0(p). In the close vicinity of the Fermi

sphere, the quasiparticle energy can be expanded in the powers of difference p − pF

ξ(p) = ε0(p) − ε0(pF ) ≈ vF (p − pF ), |p − pF | 	 pF .

Coefficient vF is called the Fermi velocity. It can also be expressed in the terms of
effective quasiparticle mass m∗ according to definition

vF = pF
m∗ .

The magnitude of effective mass10 depends on the interaction between the particles
in the Fermi liquid and differs from the mass of the genuine particles composing the
Fermi liquid.

The dependence of quasiparticle energy on the distribution function is an impor-
tant and specific feature of the phenomenological approach for describing the Fermi
liquid with the aid of the functional for the distribution function. In fact, let us
expand the functional for the total energy of a homogeneous Fermi liquid into the
small deviations of distribution function δn = n − n0 from the equilibrium one n0

E = E[n0( p)] +
∫

ε0( p)δn( p)Vdτp+

+ 1

2

∫

f ( p, p′)δn( p) δn( p′)Vdτp dτp′ + . . .

Here V = ∫

d3r is the volume of Fermi liquid and dτp = 2d3 p/(2π�)3 is the volume
element of momentum space. Hence we see that the quasiparticle excitation energy
depends on the distribution function and equals

ε( p) = ε0( p) +
∫

f ( p, p′)δn( p′)dτp′ + . . . = ε0( p) + δε[n( p)].

The second variational derivative of energy functional with respect to the distribution
function, which appears here,

f ( p, p′) = δ2E
δn( p) δn( p′)

∣
∣
∣
∣
n=n′=n0( p)

10 The calculation of the effective mass can be performed within the framework of the microscopic
theory of Fermi liquid.
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is symmetrical due to its definition, i.e. f ( p, p′) = f ( p′, p), and referred to as the
Landau function. The Landau function f ( p, p′) governs the coupling of quasipar-
ticles and determines the most important low temperature properties of Fermi liquid
such as effective mass magnitude, specific heat, and sound velocity.

There is an integral relation connecting the effective mass m∗, parameters of the
Landau function f , and genuine mass m of the Fermi particles in a liquid. In what
follows, we use that themomentum per unit volumeP equals themass flow density j
and that the number of quasiparticles equals the number of genuine Fermi-particles of
massm. Since the velocity of a quasiparticle v is ∂ε/∂ p, the density of quasiparticle
flow is given by

i =
∫

∂ε

∂ p
n( p)dτp where dτp = 2

d3 p

(2π�)3
.

Accordingly, due to equality between the numbers of quasiparticles and genuine
particles, the quasiparticle number flow i is identical to the genuine particle flow
equal to the mass flow density j divided by the Fermi particle massm, i.e. i = j/m.
Since the momentum per unit volume of liquid equals the integral

P =
∫

pn dτp ,

we arrive at the following equality:

∫

pn dτp = m
∫

∂ε

∂ p
n( p) dτp .

Varying this equality with respect to the distribution function gives

∫

p δn dτp = m
∫

∂ε

∂ p
δn dτp + m

∫

n( p)
∂(δε)

∂ p
dτp =

= m
∫

∂ε

∂ p
δn dτp + m

∫

dτp n( p)
∂

∂ p

(∫

f ( p, p′) δn( p′) dτp′

)

=

= m
∫

∂ε

∂ p
δn dτp + m

∫

dτp δn( p)
∫

dτp′ n( p′)
∂

∂ p′ f ( p
′, p).

Due to arbitrariness of the variation δn and due to symmetry of the Landau function
f ( p, p′) = f ( p′, p), we obtain the equality

p
m

= ∂ε

∂ p
+

∫
∂ f ( p, p′)

∂ p′ n( p′) dτp′ .

The integration by parts and the vanishing of the integrand at the infinitely far surface
p′ = ∞ lead us to the integral relation desired
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p
m

= ∂ε

∂ p
−

∫

f ( p, p′)
∂n( p′)
∂ p′ dτp′ .

For the equilibrium distribution function at zero temperature, the derivative ∂n/∂ p
reads

∂n

∂ p
= ∂n

∂ε

∂ε

∂ p
= −vF

p
pF

δ(ε − εF ) = − p
pF

δ(p − pF ).

When finding the effective mass m∗ due to the last equality, we are interested in
the values of the momentum at the Fermi-sphere surface | p| = pF . So, let us choose
direction of vector p as a polar axis and introduce angle χ equal to that between
vectors p = pFn and p′ = pFn′

p
m

= ∂ε

∂ p

∣
∣
∣
∣
p=pF

+
∫

f (pFn, pFn′)δ(p′ − pF )
p′

pF

2p′2dp′ d�χ

(2π�)3
=

= vF
p
pF

+
∫

f (χ)n′ p2F
π2�3

d�χ

4π
= vF

p
pF

+ p2F
π2�3

n
∫

f (χ) cosχ
d�χ

4π
.

Hered�χ = 2π sinχ dχ is the solid angle element. Thenweuse relationvF = pF/m
and define the dimensionless Landau parameter F1 according to

F1 = 3
p2F

π2�3vF

∫

f (χ) cosχ
d�χ

4π
= 3

m∗ pF
π2�3

∫

f (χ) cosχ
d�χ

4π
.

The Landau parameter F1 characterizes the quasiparticle-quasiparticle interaction
averaged over the Fermi surface with the cosine of angle.11 Finally, we express the
effective mass via the Landau parameter F1

1

m
= 1

m∗

(

1 + F1

3

)

or m∗ = m

(

1 + F1

3

)

.

In liquid 3He the Landau parameter is F1 = 6.25 and, correspondingly, m∗ =
3.08m, m being the 3He atom mass. In metals or semiconductors, the effective mass
of electron excitations can be both larger or smaller than the electron one. In the
so-called heavy fermion metallic alloys based on cerium or uranium the effective
mass m∗ can exceed the electron mass by a factor of 100 or more.

The effective mass of quasiparticles determines entropy S and specific heat of a
Fermi liquid in the low temperature limit T 	 εF . The specific heat will be found
by differentiating the energy of a Fermi liquid with respect to the temperature at
the fixed particle number N . The variation of equilibrium distribution function δn =
n(T ) − n0 with temperature changes the energy of a liquid per unit volume according

11 From themathematical point of view the parameter F1 is a coefficient in the expansion of function

F(χ) =
∞∑
l=0

(2l + 1)Fl Pl (cosχ) over the Legendre polynomials Pl (cosχ).
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to

δE =
∫

ε δn dτp =
∫

ε0 δn dτp +
∫

δε δn dτp ≈
∫

ε0 δn dτp .

Note here the following important aspect. We can neglect the second term provided
that two conditions are satisfied. First, the contribution of the term retained is linear
in temperature T in the low temperature limit. Second, the contribution from the dis-
carded term, resulting from the interaction of quasiparticles, is of lower in magnitude
than the first power of temperature. So, we write the derivative

∂(δε)

∂T
=

∫

f
∂(δn′)
∂T

dτp′

and employ the following expansion valid as T → 0:

∂n

∂T
= ∂μ

∂T
δ(ε − μ) − π2

3
T

∂

∂ε
δ(ε − μ) + . . .

The derivative ∂μ/∂T equals the entropy which, like the specific heat, is linear in
temperature. Therefore, quantity δε will be of second order in temperature and the
approximation12 above is entirely correct. As a result, for the fixed particle number
N = const, we have

C(T ) ≈
∫

ε0( p)
∂n

∂T
dτp and

∫
∂n

∂T
dτp = 0.

In the lowest order in temperature, we can replace the exact values of energy ε with
the approximate ones ε0 in the derivative ∂n/∂T above. After these steps, the further
calculation becomes identical to that in the case of an ideal Fermi gas if we replace
the particle massm with the effective onem∗ in the density of states. Thus, we readily
obtain the following answer for the low temperature behavior of specific heat in a
normal Fermi liquid:

C(T ) = γT, γ = π2

3
g(εF ), g(εF ) = m∗ pF

π2�3
.

Here γ is the Sommerfeld constant and g(εF ) is the density of quasiparticle states at
the Fermi surface. Because of the linear temperature behavior the specific heat and the
entropy equal each other. The requirement of positiveness for the specific heat entails
one of the necessary conditions for the thermodynamic stability of a Fermi liquid
as an inequality F1 > −3 for the Landau parameter. Condition F1 = −3 and in the
general13 case Fl = −(2l + 1) are often referred to as the Pomeranchuk instability

12 The calculation of the next expansion term, proportional to T 3 ln(εF/T ), may be an inappropriate
problemwithin the framework of the energy functional depending on the distribution function alone.

13 Let us recall the expansion F(χ) =
∞∑
l=0

(2l + 1)Fl Pl(cosχ) over the Legendre polynomials.
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criterion. The point at which Fl = −(2l + 1) is of interest as it indicates a quantum
phase transition from a Fermi liquid to a different state of matter.

5.3 Paramagnetic Susceptibility of Normal Fermi Liquid

Liquid 3He displays magnetic properties because the 3He nucleus has spin 1/2 and,
therefore, magnetic moment. The magnitude of magnetic moment is determined by
the product of gyromagnetic ratio andmagnetic nuclearBohrmagneton.An existence
of magnetic moment in the particles results in paramagnetism of a Fermi liquid.

Since the Fermi particles have spin, the Landau function fσ,σ′( p, p′), in gen-
eral, should include the term corresponding to the exchange interaction between
quasiparticles

fσ,σ′( p, p′) = f ( p, p′) + ζ( p, p′)(σσ′).

In the external magnetic field H both the energy of quasiparticles in a Fermi liquid
and the distribution function δnσ = nσ − n0( p) vary simultaneously

δεσ( p) = −βσH + trσ′

∫

fσ,σ′( p, p′)δnσ′( p′) dτp′ , dτp = d3 p

(2π�)3
.

Here β is the effective Bohr magneton and matrices σ are the Pauli ones. The para-
magnetic susceptibility will be calculated from the relation

χ = ∂M
∂H

= ∂

∂H
trσ

∫

βσnσ( p) dτp = β
∂

∂H
trσ

∫

σδnσ( p) dτp

where M is the magnetic moment per unit volume. Here we take into account that
the magnetization of a liquid vanishes in the absence of magnetic field. Formally,
this follows from identity trσ = 0.

We can neglect the chemical potential variation in the linear approximation in
the magnetic field. The chemical potential, as a scalar quantity, changes only in
second order with respect to magnetic field being a vector quantity. Thus we write
approximately

χ ≈ β
∂

∂H
trσ

∫

σ
∂n0(ε)

∂ε
δεσ( p) dτp ,

δεσ( p) ≈ −βσH + trσ′

∫

fσ,σ′( p, p′)
∂n0(ε0(ε′)

∂ε′ δεσ′( p′) dτp′ .

Since derivative n′
0(ε) = −δ(ε − εF ) = −δ(p − pF )/vF , integration in the both

integrals is performed over the Fermi surface and the essential momenta are only
those which magnitudes equal to the Fermi momentum, i.e. | p| = | p′| = pF . Next,
assuming the structure of solution as δεσ( p) = −ξ( p)βσH , we obtain two equa-
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tions for determining the unknown ξ and χ

ξ( p) = 1 + 2
∫

ζ( p, p′)
∂n0(ε′)

∂ε′ ξ( p′) dτp′ ,

χ = −2β2
∫

ξ( p)
∂n0(ε)

∂ε
dτp = β2m

∗ pF
π2�3

ξ(pF ) = β2g(εF )ξ(pF ),

where g(εF ) is the density of quasiparticle states at the Fermi surface. We have
used here the following identities: trσ′(σσ′)σ′ = 2σ and trσ(σH)σ = 2H . The
spin-independent part of the Landau function, as expected, cancels from the final
result.

Let us choose direction of vector p as a polar axis z and introduce angle ϑ equal
to that between vectors p = pFn and p′ = pFn′. Then, we get

ξ(pF ) = 1 −
∫

ζ(ϑ)
m∗ pF
π2�3

ξ(pF )
d�ϑ

4π
, ζ(ϑ) = ζ(pFn, pFn′)

where the solid angle element equals d�ϑ = 2π sin ϑ dϑ. We find after calculation

ξ(pF ) = 1

1 + Z0
and Z0 = g(εF )

∫

ζ(ϑ)
d�ϑ

4π
.

Here we have introduced the dimensionless exchange Landau parameter Z0 equal to
the magnitude of the exchange interaction averaged over the whole the Fermi surface
andmultiplied by the density of states. Finally, the paramagnetic (spin) susceptibility
of a Fermi liquid is given by the formula

χ = β2g(εF )

1 + Z0
.

The stability condition for the paramagnetic state of a Fermi liquid is governed
by the relation Z0 > −1. If Z0 = −1, the paramagnetic susceptibility diverges. The
latter means the appearance of a ferromagnetic instability14 and inapplicability of
the Landau theory to a Fermi liquid. In liquid 3He the Landau parameter is Z0 ≈
−0.67. The palladium metal has Z0 ≈ −0.9 and, thus, is close to the ferromagnetic
instability.

5.4 Dilute Fermi Gas with the Dipolar Interaction

The experimental realization of laser traps has allowed us to study the physical
properties of rarified atom gases in the degenerate state at ultralow temperatures. As

14 The similar condition for originating the ferromagnetic ordering in the system of collective
electrons or in metals is called the Stoner criterion of instability.
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one of the interesting cases, we consider below a dilute (weakly non-ideal) Fermi
gas with the dipole interaction between the particles as an example of an anisotropic
Fermi system.

Let dipole Fermi gas be a gas of fermions with mass m, in which the fermion
spins are completely polarized, e.g. with magnetic field, in the z-axis direction. The
interaction U (r) between two particles is anisotropic and has the dipole-dipole type

U (r) = d2

r3

(

1 − 3
z2

r2

)

where d is the dipole electric or magnetic moment of a fermion.
First of all, we start from determining the Fermi surface shape and use the

Hartree–Fock approximation, assuming the dipole-dipole interaction to be small,
i.e. nd2/εF 	 1 where n is the particle number and εF is the Fermi energy. Let us
express the energy of a gas per unit volume in terms of the Fermi–Dirac distribution
function n p and Fourier transform U ( p) of interparticle interaction, employing the
Hartree–Fock approximation

E =
∑

p

p2

2m
n p + 1

2

∑

p

n p

∫

U (r) d3r
∑

p′
n p′ − 1

2

∑

p, p′
n pU ( p − p′)n p′ =

=
∑

p

ε0( p)n p + 1

2
n2U (0) − 1

2

∑

p, p′
n pU ( p − p′)n p′ .

Here the first term of a sum is the kinetic energy, the second is the energy of direct
dipole-dipole interaction of particles distributed homogeneously in the space, and
the third is the exchange interaction of fermions. In these expressions, there is no
summing over the fermion spin since we consider the direction of fermion spins to
be fixed. The gas density n is thus given by a sum over momentum alone

n =
∑

p

n p.

The Fourier transform U (r) can be found with the aid of the equalities for the
Coulomb potential derivatives

− ∂2

∂xα∂xβ

(
1

r

)

= r2δαβ − 3xαxβ

r5
+ 4π

3
δαβδ(r).
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Hence it is readily to see for the Fourier transform at α = β = z that

−(−i pz)
2 4π

p2
= (r2 − 3z2

r5
)

p+
4π

3
and

(r2 − 3z2

r5
)

p= −4π

3

(

1 − 3
p2z
p2

)

.

In conclusion, the Fourier transform of dipole-dipole interaction U (r) equals

U ( p) = −4πd2

3

(

1 − 3
p2z
p2

)

.

The Landau function f ( p, p′), defined as second variational derivative of energy
with respect to the distribution function, equals

f ( p, p′) = δ2E/δn pδn p′ = U (0) −U ( p − p′).

The quasiparticle energy ε( p) is given by the first variational derivative δE/δn p and
equal to

ε( p) = ε0( p) +
∑

p′
f p p′n p′ = ε0( p) −

∑

p′
U ( p − p′)n p′ = ε0( p) + δε( p).

Here we have taken into account that the Hartree contribution from the direct inter-
action U (0) vanishes as a result of integrating over the angles, i.e. U (0) = 0.

For calculating δε( p), we put� = 1 for amoment and use the following technique.
Since δε( p) is a convolution, the quasiparticle energy in the coordinate representation
can straightforwardly be obtained

ε(r) = ε0(r) + δε(r) = − ∇2

2m
−U (r)n(r),

n(r) being the Fourier transform of distribution function

n(r) =
∑

p

n( p)ei pr .

We put n( p) ≈ n0( p) = ϑ(pF − p) as a first approximation and then find

n(r) ≈ n0(r) =
∑

| p|�pF

ei pr = 3n
sin(pFr) − pFr cos(pFr)

(pFr)3
, n = p3F

6π2

where pF is the Fermi momentum in the gas without dipole interaction and n is the
gas density. Then, determining the variation δε( p) reduces to the integral
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δε( p) =
∫

d3rU (r)n0(r)e−i pr = d2
∫

d3r
(

1 − 3z2

r2
)n0(r)

r3
e−i pr .

Let us analyze the following integral:

Jik = d2
∫

d3r

(

δik − 3xi xk
r2

)
n0(r)

r3
e−i pr = A(p)δik +B(p)ei ek, ei = pi

p
.

The answer can be expressed via two possible tensors of second-rank. The first
is unit one δik . The second ei ek is composed of the projections of unit vector e,
directed along the momentum. It is obvious that convolution is Jii = 3A + B = 0
and, correspondingly,

Jik = A(p)

(

δik − 3
pi pk
p2

)

.

We are interested in the components i = k = z or Jzz = A(p)(1 − 3p2z /p
2). Let

us direct vector p along axis z, i.e. p = (0, 0, p). Then,

A(p) = −1

2
Jzz = −d2

2

∫

d3r

(

1 − 3z2

r2

)
n0(r)

r3
e−i pr =

= −3nd2

2

∞∫

0

2πr2 dr

r3
sin(pFr) − pFr cos(pFr)

(pFr)3

1∫

−1

dx(1 − 3x2)eiprx =

=12πnd2

∞∫

0

dr

r

sin(pFr) − pFr cos(pFr)

(pr)3
(p2r2 − 3) sin(pr) + 3pr cos(pr)

(pr)3
.

Using that

F(x) =
∫

dx

x

sin(bx) − bx cos(bx)

b3x3
(3 − x2) sin x − 3x cos x

x3
=

= 1

96b3x6

[

(b2 − 1)3x6
[

ci
(

x(b − 1)
) − ci

(

x(b + 1)
)]+

+4bx2
(−12 + (b2 − 1)x2

)

sin bx cos x+
+bx

(

24 − 2(3 + b2)x2 + (b2 − 1)x4
)

sin x cos bx−
−(

24 + 6(b2 − 1)x2 + (b4 − 1)x4
)

sin bx

]

where ci (x) = − ∫ ∞
x cos t dt/t is the cosine integral and that

F(0) = − 1

48

(
1

b2
+ 8

3
− b2 + (b2 − 1)3

2b3
ln

∣
∣
b + 1

b − 1

∣
∣

)

, F(∞) = 0,
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we arrive at the following answer:

A(p) = nd2 I
( p

pF

)

,

I (x) = π

4

(

x2 + 8

3
− 1

x2
+ (1 − x2)3

2x3
ln

∣
∣
1 + x

1 − x

∣
∣

)

≈
{

4πx2/5,x 	 1
4π/3, x � 1

.

Note that function I ′′′(x) has a logarithmic singularity at point x = 1. Finally, we
obtain the following quasiparticle spectrum in first approximation in smallness of
dipole-dipole interaction:

ε( p) = ε0(p) + nd2 I

(
p

pF

)(

1 − 3
p2z
p2

)

.

The spectrum has an anisotropic character in the momentum as a result of spatial
anisotropy for the interaction between particles. The behavior of function I (x) is
shown in Fig. 5.1.

The energy spectrumanisotropy leads to the anisotropic shape of the Fermi surface
governed by equation ε( p) = μ. Involving that the distortion of the Fermi sphere is
small and the momenta | p| ∼ pF close to the Fermi momentum are only essential,
we can approximately write the following:

p2x + p2y + p2z
2m

+ nd2 I (1)

(

1 − 3p2z
p2F

)

= μ,

p2x + p2y + p2z
(

1 − 2πnd2/εF
) = 2m(μ − 2πnd2/3)

where εF = p2F/2m is the Fermi energy in the non-interacting gas. The Fermi surface
acquires the shape of spheroid elongated in the direction of the dipole polarization
axis z with a ratio of axes as

Fig. 5.1 The behavior of
function I (x)
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(pz)max

(px )max
= (pz)max

(py)max
≈ 1 + πnd2

εF
.

The chemical potential μ ≈ p2F/2m remains unchanged in first order in interaction.
As the magnitude of the dipole-dipole interaction increases and approaches about
nd2 � εF , the homogeneous gas state becomes unstable and the spatially inhomo-
geneous structures appear.

Using the formula obtained above, we calculate the renormalization of chemi-
cal potential at zero temperature in second order in the smallness of dipole-dipole
interaction nd2/εF 	 1. In the thermal equilibrium the quasiparticle distribution
function np looks like the Fermi–Dirac distribution and is a step-like function
n p = n0(ε p) = ϑ(μ − ε p) at zero temperature T = 0. The constancy of particle
number N means that the variation δn p of distribution function satisfies the fol-
lowing condition:

δN =
∑

p

δn p = 0.

Expanding δn p = n0(ε0 + δε p − εF − δμ) − n0(ε0 − εF ) to secondorder in (δε p −
δμ)

δn p = n′
0(ε0 − εF )(δε p − δμ) + 1

2
n′′
0(ε0 − εF )(δε p − δμ)2 + . . . ,

we arrive at the following relation:

δμ
∑

p

n′
0 =

∑

p

n′
0δε p + 1

2

∑

p

n′′
0(δε p − δμ)2.

Next, we represent the quasiparticle energy variation δε p as a sum of corrections of
first δε(1)

p ∼ d2 and second δε(2)
p ∼ d4 orders in interaction

δε p = δε(1)
p + δε(2)

p .

The sum
∑

n′
0δε

(1)
p gives zero contribution due to integration over the angle sector

δε(1)
p . Thus, changing the chemical potential occurs only in second order in interac-

tion, i.e. δμ ∼ d4. As a result, we have in second order in interaction

δμ =
∑

p
n′
0δε

(2)
p + 1

2

∑

p
n′′
0

(

δε(1)
p

)2

∑

p
n′
0

.

The density of states g(εF ) of an ideal gas equals

g(εF ) = −
∑

p

n′
0 =

∫
d3 p

(2π)3
δ
(

ε0( p) − εF
) = mpF

2π2
= 3

2

n

εF
.
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To calculate the second term in the numerator

1

2

∑

p

n′′
0

(

δε(1)
p

)2 = − 1

2

∫
d3 p

(2π)3
δ′(ε0(p) − εF

)(

δε(1)
p

)2 =

= − (nd2)2

4π2

∫ ∞

0
dp p2 I 2(p/pF )δ′(ε0( p) − εF

)

)

∫
d�

4π
(1 − 3 cos2 θ)2 =

= (nd2)2

4π2

4

5
m

√
2m

∂

∂ε

[√
ε I 2(

√

ε/εF )
]
∣
∣
∣
∣
ε=εF

= 16π2

45

(nd2)2

εF
g(εF ),

we have used the previous results and took here into account that I (1) = 2π/3 and
I ′(1) = π.

It is more complicated to calculate the first term in the nominator and one requires
to determine δε(2)

p first of all. For this purpose, in order to solve the equation

ε p = ε0( p) −
∑

p′
U p− p′ n0(ε p′ − μ),

we will apply the method of successive approximations, taking into account that
the first correction δμ1 for the chemical potential vanishes. The energy of second
approximation in interaction U equals

ε(2)
p = ε0 −

∑

p′
U p− p′ n0

(

ε0( p′) + δε(1)
p′ − εF − δμ1

) ≈

≈ ε(1)
p −

∑

p′
U p− p′ n′

0

(

ε0( p′) − εF
)

δε(1)
p′ = ε(1)

p + δε(2)
p , δμ1 = 0.

The next calculation δε(2)
p is performed with two steps. This is analogous to calcu-

lating δε(1)
p above. First, we introduce δn2(r) according to

δn2(r) =
∑

p

n′
0

(

ε0( p) − εF
)

δε(1)
p ei pr =

= −nd2 I (1)
m

pF

∫
d3 p

(2π)3
δ(p − pF )

(

1 − 3
p2z
p2

)

ei pr =

= −nd2 I (1)
mpF
2π2

(p2Fr
2 − 3) sin pFr + 3pFr cos pFr

(pFr)3

(

1 − 3
z2

r2

)

.

Then, using the properties of convolution in the coordinate space, we find

δε(2)(r) = −U (r)δn2(r) =

= 2πnd2

3
g(εF )

(p2Fr
2 − 3) sin pFr + 3pFr cos pFr

(pFr)3
d2

r3

(

1 − 3
z2

r2

)2

.
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The sum
∑

p n
′
0δε

(2)
p is calculated with the aid of transformation to the coordinate

space
∑

p

n′
0δε

(2)
p =

∫

d3r n′
0(−r)δε(r)(2)

where n′
0(r) is the Fourier transform for the derivative of distribution function

n′
0(r) = −

∫
d3 p

(2π)3
δ
(

ε0( p) − εF
)

ei pr = −mpF
2π2

sin pFr

pFr
= −3

2

n

εF

sin pFr

pFr
.

So, we obtain the following result:

∑

p

n′
0δε

(2)
p = −π(nd2)2

εF
g(εF )×

×
∫

d3r
sin pFr

pFr

(p2Fr
2 − 3) sin pFr + 3pFr cos pFr

(pFr)3
1

r3

(

1 − 3
z2

r2

)2

=

= −π(nd2)2

εF
g(εF )

16π

5

∞∫

0

dx
sin x

x2
(x2 − 3) sin x + 3x cos x

x3
=

= 4π2

15

(nd2)2

εF
g(εF ).

Summing up two fractions 16/45 and 4/15 and then dividing the sum of two
contributions in the nominator by −g(εF ), we come to the final answer for the
change of chemical potential

μ = εF − 28π2

45

(nd2)2

εF
.

At temperature T = 0 the chemical potential depends on density n = N/V alone.
The ground state energy E0 of a gas can be determined using the relations μ =
∂E0/∂N and εF ∼ N 2/3:

E0 = 3

5
NεF

(

1 − 4π2

9

(nd2)2

ε2F

)

= V
3

5
nεF

(

1 − 4π2

9

(nd2)2

ε2F

)

.

Taking the previous results and that εF ∼ V−2/3, we can determine the pressure

P = −∂E0

∂V
= 2

5
nεF − 16π2

45
n
(nd2)2

εF
.

To find the density of states at the Fermi surface g(μ), we use that derivative
∂E/∂μ at T = 0 equals
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∂E

∂μ
=

∑

p

ε p δ(μ − ε p) = μ
∑

p

δ(μ − ε p) = μg(μ),

and that
∂E

∂μ
= ∂E/∂n

∂μ/∂n
≈ 3

2
n

[

1 − 28π2

45

(
nd2

εF

)2]

.

Hence it follows that the density of states at the Fermi surface does not change within
the accuracy of approximations made

g(μ) = 1

μ

∂E

∂μ
≈ 3

2

n

εF
= g(εF ).

To conclude this section, we find the variation of quasiparticle excitation spectrum
within the linear approximation in interaction and gas flow velocity u. In addition,
we show that the momentum P per gas volume unit coincides with the gas flow
density j = ρu where ρ is the mass density of a gas.

So, let dipole Fermi gas flow as a whole at small constant velocity u. Correspond-
ingly, the equilibrium Fermi–Dirac distribution function changes due to the Doppler
shift as n0(ε p) → n0(ε p − pu).

This result can also be derived from the condition of entropy maximum S under
constancy of energy E = ∑

p ε pn p, particle number N = ∑

p n p, and gas momen-
tumP = ∑

p pn p. In fact, let us first introduce the following Lagrange multipliers:
1/T , μ/T , and u/T . The requirement for the extremum of function

S̃ = −
∑

p

[n p ln n p + (1 − n p) ln(1 − n p)] − 1

T

∑

p

[ε p − μ − u p]n p

with respect to n p leads us to the quasiparticle distribution desired

n0 = [e(ε p−μ− pu)/T + 1]−1.

Let us denote energy of quasiparticles in the flowing Fermi gas as Hp. Then,
energy Hp satisfies the equation

Hp = ε0( p) − pu +
∑

p′
f ( p, p′)n0(Hp) = ε0( p) − pu −

∑

p′
U p− p′n0(Hp).

Here ε0( p) = p2/2m, f ( p, p′) is the Landau function equal to U0 −U p− p′ in the
Hartree–Fock approximation. Besides, we have already taken U0 = 0 into account.
Solving the equation in the linear approximation in interactionU and velocity u, we
find
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Hp ≈ ε0( p) − pu −
∑

p′
U p− p′n0

(

ε0( p′)
) +

∑

p′
U p− p′( p′u)n′

0

(

ε0( p′)
) =

= ε p − pu + mu ·
∫

d3 p′

(2π�)3
U p− p′

∂

∂ p′ n0
(

ε0( p′)
)

where ε p is the quasiparticle excitation spectrum in the gas at rest. We use below the
relation

U p− p′∇ p′n p′ = ∇ p′ [U p− p′n p′ ] + n p′∇ pU p− p′

for the transformation of the integrand function. Then, involving that the first
term with the complete derivative gives zero contribution after integration over the
infinitely distant surface, we arrive at the following relations:

Hp = ε p − pu + mu
∂

∂ p

∑

p′
U p− p′n0

(

ε0( p′)
) =

= ε p − pu + mu
∂

∂ p

(

ε0( p) − ε p
)

.

Finally, the approximate formula is obtained

Hp = ε p − mu
∂ε p

∂ p
= ε p − m(uv p).

The momentum per volume unit P is determined with the expression

P =
∫

pn0(Hp)
d3 p

(2π�)3
=

∫

pn0(ε p − muv p)
d3 p

(2π�)3
.

For zero flow velocity u = 0 due to parity ε p = ε− p, it is obvious that P = 0.
Expanding n0 in u entails nonzero contribution

P = −
∫

d3 p

(2π�)3
p
(

mu
∂ε p

∂ p

)
∂n0
∂ε p

= −m
∫

d3 p

(2π�)3
p(u∇ p)n0( p) =

= m
∫

d3 p

(2π�)3

[

un0 − (u∇ p) pn0
] = mu

∫
d3 p

(2π�)3
n0( p) = mnu.

The second term in the integrand results in nonzero contribution since it transforms
into integration over the infinitely distant surface. The integral from the first integrand
term coincides with the particle density n. Thus, we are convinced, at least, in first
order in interaction that themomentum per unit volumeP equals the gas flow density
j = ρu in spite of the Fermi surface anisotropy originating from the anisotropic
character of interaction between the Fermi gas particles.



Chapter 6
Phenomenon of Superconductivity.
The BCS Theory

The phenomenon when the electrical resistance of a conductor vanishes completely
with the simultaneous expulsion of an external magnetic field from the conduc-
tor bulk has been called the superconductivity phenomenon. The conductor hav-
ing such properties is called a superconductor. The expulsion of a magnetic field
from the superconductor bulk is referred to as the Meissner–Ochsenfeld effect. The
superconducting properties of a conductor appear when its temperature becomes
below the critical temperature at which the phase transition occurs from the nor-
mal state to the superconducting one. The transition to the superconducting state
is accompanied with changing the thermodynamic properties of a conductor. The
phenomenon of superconductivity should be attributed to the macroscopic quantum
phenomena.

The critical temperature of superconducting transition for pure chemical elements
changeswithin awide range. The highest critical temperature is recorded for niobium
Tc = 9.25 K and, for example, tungsten has a rather low temperature as Tc = 15.4
mK.The elements that do not exhibit the superconducting properties should primarily
include the transition (Cr, Fe, Co, Ni) and rare earth (Gd, Dy, Ho, Er, etc.) metals
with the unfilled d and f -shells, demonstrating spontaneous magnetic ordering.

The synthesis of various alloys and chemical compounds makes it possible to
increase the upper limit of the known critical temperatures. The critical tempera-
ture in such materials can significantly exceed that of their constituent components.
Superconductivity with the critical temperature Tc � 30 K is usually referred to as
high-temperature superconductivity. Examples of high-temperature superconductors
include the family of iron oxypnictides with the transition temperatures within the
30–55 K range and the family of cuprates with temperatures in the region 90 - 130
K. The external pressure is one more parameter which can change the superconduct-
ing transition temperature. A striking example is hydrogen sulfide transiting into the
metal state at the pressures of about 150GPawith the critical temperature Tc ∼200K.
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Concerning the behavior in the external magnetic field, the superconductors can
be divided into two main types, namely type-I and type-II. Type-I superconductors
have one thermodynamic critical field Hc above which the superconducting state
breaks completely down and below which the magnetic field is completely expelled
from the superconductor bulk, demonstrating the Meissner effect.

Type-II superconductors are characterized by two critical fields called the lower
critical field Hc1 and upper critical field Hc2. In the magnetic H < Hc1 fields the
type-II superconductors demonstrate the Meissner effect similar to that in the type-
I superconductors. In the intermediate Hc1 < H < Hc2 magnetic fields the type-II
superconductor is in the mixed state1 with the partial and gradual penetration of
magnetic field into the superconductor bulk as the magnetic field increases. When
achieving the upper critical field Hc2, there occurs a complete destruction of the super-
conducting state with the full penetration of magnetic field into the superconductor
bulk.

From the viewpoint of theoretical aspects, we may discern conventional and
unconventional superconductors.We imply that the properties of conventional super-
conductors can be described within the framework of the traditional BCS (Bardeen–
Cooper–Schrieffer) model or electron-phonon Eliashberg model. Theunconventional
superconductors are those which properties have no explanation within these two tra-
ditional models. As an example of superconductors with the unconventional prop-
erties, we can mention the so-called heavy-fermion metals, e.g. CeCu2Si2, UPt3,
UBe13, UCoGe. The latter compound is also interesting because it demonstrates
a coexistence of superconductivity and ferromagnetism in the temperature region
below 0.6 K.

The emergence of a superconducting state is associated with the presence of some
effective attraction between the electrons which energies lie within the sufficiently
close vicinity of the Fermi surface. In the traditional models such effective attraction
appears as a result of the electron–phonon interaction. For appearing the attraction
between the electrons which should repel each other due to the Coulomb interaction,
the electrons must interact with another system. In a metal the positive ion lattice
is such system. An electron in the lattice tends to attract the nearby positive ions
to itself and thus the density of positive charges becomes slightly higher than on
average. A small excess of positive charge, in turn, enables additionally to attract
another electron, thereby creating an effective attraction between the electrons. The
description of such electron–electron interaction looks like an exchange of the same
phonon between two electrons.

Let us consider the following two events shown schematically in Fig. 6.1. An
electron with momentum p and energy ε p emits a phonon with momentum k and
frequency ωk and transits to the state with momentum p − k and energy ε p−k. The
second electron with momentum p′ and energy ε p′ absorbs the phonon emitted and
crosses over to the state with momentum p′ + k and energy ε p′+k.

1 The mixed state is often said as a vortex state. The magnetic field flux passes through the
superconductor by means of quantized vortex lines composing the Abrikosov or flux line lattice.
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Fig. 6.1 The interaction between the electron with momentum p and the electron with momentum
p′ via emitting (left-hand figure) and absorbing a phonon (right-hand figure)

The second event is described as follows. The electron with momentum p and
energy ε p absorbs a phonon with momentum −k emitted with another electron
with momentum p′ and energy ε p′ . Absorbing the phonon, the electron acquires the
momentum p − k and energy ε p−k. Accordingly, the electron emitting a phonon
will transit to the state with momentum p′ + k and energy ε p′+k. In second order
of the perturbation theory, these two transitions are characterized with the following
amplitudes:

|Vp−k, p|2
ε p − ε p−k − �ωk

and
|Vp′+k, p′ |2

ε p′ − ε p′+k − �ω−k
.

Unifying these two processes and denoting Vp−k, p′ = Vk and Vp′+k, p′ = V−k for
brevity, we obtain in the total

|Vk|2
ε p − ε p−k − �ωk

+ |V−k|2
ε p′ − ε p′+k − �ω−k

= 2�ωk

(ε p − ε p−k)2 − (�ωk)2
|Vk|2 .

Here we have involved the conservation law for the total energy of electrons

ε p + ε p′ = ε p−k + ε p′+k

and invariance Vk and ωk against replacing k with −k.
Let us discuss this formula representing the Fröhlich interaction. For the small

difference |ε p − ε p−k| < �ωk, we have the negative magnitude which sign corre-
sponds to an effective attraction between electrons with the close energies. The
maximum typical frequencies of phonon spectrum are of the order of the Debye
frequency ωD corresponding to the maximum typical momentum �kD ∼ π�/a. For
|ε p − ε p−k| � �ωD , the electron–phonon interaction becomes only repulsive and
decreases rapidly as the difference in the electron energies grows. Since at low tem-
peratures the main contribution to the thermodynamic quantities is provided with
the electrons from the close vicinity of the Fermi surface, we can roughly say that
the effective electron-electron attraction realizes within the immediate vicinity of
the Fermi surface, the width being about �ωD . In other words, while the energies of
electrons are within the region |ε p − εF | � �ωD � εF .
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6.1 The BCS Model. The Thermodynamic Properties
of Superconductors

Based on the arguments above, we can use the simplest approximation, namely BCS
model. In this model, it is assumed that the interaction potential Vp, p′ between the
electrons with momenta p and p′ is isotropic and constant within the narrow energy
layer beside the Fermi surface �ωD � εF

Vp, p′ =
{
g, |ξ p| and |ξ p′ | � �ωD (g < 0)
0, |ξ p| or |ξ p′ | > �ωD

where ξ p = ε p − εF and ξ p′ = ε p′ − εF are the energy of electrons with momenta
p and p′, taken from the Fermi energy. We emphasize in advance that the ade-
quate description of the superconducting transition within the framework of the BCS
model assumes implicitly the magnitude of the electron–electron interaction to be
sufficiently small (weak coupling approximation). This means that the superconduct-
ing transition temperature Tc determined in the model would be much less than the
Debye temperature, i.e. Tc � �ωD .

Let us write Hamiltonian of the electron system2 with the two-particle interaction
U (r − r ′) independent of particle spins

Ĥ =
∫

d3rψ+
σ (r)

(−�
2∇2

2m

)
ψσ (r)+

+ 1

2

∫
d3r d3r ′ψ+

σ (r)ψ+
σ ′(r ′)U (r − r ′)ψσ ′(r ′)ψσ (r).

Indices σ and σ ′ mean the spin projections and we imply summing over the
pairs of identical spins. Next, in accordance with the model the electron–electron
interaction has a point-like character, i.e. U (r − r ′) = gδ(r − r ′). Therefore, in this
case the electrons of the same spin projections do not interact. In other words, the
Pauli principle forbids two identical Fermi particles at the same state to be at one
point. Thus, the electrons should necessarily have the spins directed in the opposite
directions.

As ismentioned above, it ismore reasonable to calculate the thermodynamic quan-
tities in the interacting systems without fixing the particle number N but by study-
ing the dependence of thermodynamic quantities as a function of chemical poten-
tial μ. Therefore, we will calculate the thermodynamic averages for the following
Hamiltonian:

2 The coefficient in the interaction term should bewritten as 1/2V . To simplify the view of formulas,
we put volume V = 1.
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Ĥ = Ĥ − μN̂ =
∫

d3r
∑

σ

ψ+
σ (r)

(
−�

2∇2

2m
− μ

)
ψσ (r)+

+ g

∫
d3r d3r ′ψ+

↑ (r)ψ+
↓ (r ′)ψ↓(r ′)ψ↑(r).

Let us turn from the coordinate representation to the momentum one. Then the
Hamiltonian reads

Ĥ = Ĥ − μN̂ =
∑
p,σ

ξ pa+
p,σ a p,σ + g

∑
p′+q′= p+q

a+
p′↑a+

q ′↓aq↓a p↑

where ξ p = ε p − μ = p2/2m − μ is the energy taken from the chemical poten-
tial level. We imply a sum over the momenta within the narrow intervals |ξ p|,
|ξq |, |ξ p′ | and |ξ ′

q | � �ωD near the Fermi surface. The further action should be
the calculation of thermodynamic averages, i.e. determination of grand potential

(μ) = 〈Ĥ〉 = tr (ρ̂Ĥ) where ρ̂ is the equilibrium density matrix corresponding to
the Gibbs distribution.

For the negative electron-phonon coupling constant g < 0, the ground state of
normal Fermi liquid becomes unstable and the qualitative change of ground state
structure takes place. In a superconductor, the excited state proves to be separated
with an energy gap from the ground state. The calculation of thermodynamic quan-
tities is most simple if the Hamiltonian has a diagonal form such as

∑
ε pa+

p,σ a p,σ

and, for example, thermodynamic average 〈a+
p,σ a p,σ 〉 is a usual Fermi distribution(

eε p,σ /T + 1
)−1

.
The variational metod is employed to find the energy of a superconductor and

its elementary excitation spectrum. In this method we introduce the auxiliary Fermi
operators α+

pσ for creation and α pσ for annihilation of quasiparticles playing a role
of elementary excitations in the superconducting state. For this purpose, we apply
the formulas of the Bogoliubov transformation

α p↑ = u pa p↑ − v pa+
− p↓, α+

p↑ = u pa+
p↑ − v pa− p↓;

α p↓ = u pa p↓ + v pa+
− p↑, α+

p↓ = u pa+
p↓ + v pα− p↑.

Hereu p and v p are the amplitudes3 of theuv-transform,which determine the fractions
of mixing the creation and annihilation operators of particles. In this case, one says
that two electrons with the opposite momenta and spins constitute the bound state or
Cooper pair.

The operators a+
p,σ and a p,σ , having a sense of particle creation and annihilation,

satisfy the anticommutative Fermi relations

{a p,σ , a+
p′,σ ′ } = δ p, p′δσ,σ ′ and {a+

p,σ , a+
p′,σ ′ } = {a p,σ , a p′,σ ′ } = 0.

3 In the general case the amplitudes are the complex quantities satisfying the relations u− p = u∗
p

and v− p = v∗
p.
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In order the quasiparticle operators α+
pσ and α pσ would have the same meaning

as usual creation and annihilation particle operators, it is necessary to require the
fulfillment of the same conditions

{α p,σ , α+
p′,σ ′ } = δ p, p′δσ,σ ′ and {α+

p,σ , α+
p′,σ ′ } = {α p,σ , α p′,σ ′ } = 0.

So, we write the following anticommutator for quasiparticles:

{α p↑ , α+
p↑} = u2

p{a p↑ , a+
p↑} − u pv p{a+

− p↓ , a+
p↑} +

+v2
p{a+

− p↓ , a− p↓} − u pv p{a p↑ , a+
− p↓} = u2

p + v2
p.

Thus we should require the following condition for the amplitude of uv-transform:

u2
p + v2

p = 1

and, in fact, we have one free parameter v p or u p which should be chosen from the
condition of thermodynamic grand potential 
 minimum.

We turn to calculating the thermodynamic average 〈Ĥ〉 for Hamiltonian Ĥ =
Ĥ − μN̂ , substituting the following inverted formulas into Hamiltonian:

a p↑ = u pα p↑ + v pα
+
− p↓, a+

p↑ = u pα
+
p↑ + v pα− p↓;

a p↓ = u pα p↓ − v pα
+
− p↑, a+

p↓ = u pα
+
p↓ − v pα− p↑.

Calculating the averages, we keep only nonzero terms 〈α+
p,σ α p,σ 〉 = n p,σ and

〈α p,σ α+
p,σ 〉 = 1 − n p,σ where n p,σ is the mean occupation number of quasiparti-

cle states or Fermi distribution for quasiparticles with energy ε p,σ which should be
determined from the condition of the minimum 〈Ĥ〉.

Most complicated thing is to average the term with interaction. For the system
of non-interacting electrons, the average for the product of four Fermi operators
would decouple into a sum of the averages for all possible products of the operator
pairs. In the BCSmodel implying the weak electron–electron interaction, we can use
the approximation of free electrons or that of self-consistent field.4 So we take an
advantage of the following approximation:

〈a+
p′↑a+

q ′↓aq↓a p↑〉 =〈a+
p′↑a+

q ′↓〉〈aq↓a p↑〉−
− 〈a+

p′↑aq↓〉〈a+
q ′↓a p↑〉 + 〈a+

p′↑a p↑〉〈a+
q ′↓aq↓〉,

in which the anomalous averages 〈a+
p↑a+

p↓〉 and 〈a p↓a p↑〉 appear in addition to the
normal average 〈a+

pσ a pσ 〉.

4 The latter approximation can be justified with the large correlation length ξ0 in superconductor,
exceeding significantly the interatomic distance a ∼ �/pF or, correspondingly, with the very small
Ginzburg–Levanyuk number Gi ∼ (a/ξ0)

4 � 1.
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Before continuing the calculation further, we will make the following remark.
The second term vanishes, and the last term’s contribution to the thermodynamic
potential

g
∑
p

〈a+
p↑a p↑〉

∑
q

〈a+
q↓aq↓〉

is of no interest since it has the free term structure and results in a small renormaliza-
tion of chemical potential to the extent of small electron-electron coupling constant g.

Performing the calculation for the contributions from the free and interaction
terms to the thermodynamic grand potential 
(μ), we find finally


(μ) =〈Ĥ − μN̂ 〉 =
∑
p

ξ p
[
u2
p(n p↑ + n p↓) + v2

p(2 − n− p↑ − n− p↓
]+

+ g
∑
p

u pv p(1 − n p↑ − n− p↓)
∑
q

uqvq(1 − n−q↑ − nq↓).

Here n p,σ is the occupation number of quasiparticle excitations and n pσ = n− pσ due
to even symmetry. For varying the potential 
(μ) in order to find its minimum, it is
convenient to parametrize the amplitudes u p and v p as

u2
p = 1 + z p

2
, v2

p = 1 − z p

2

and introduce new self-consistent parameter


 = −g
∑
q

uqvq(1 − nq↑ − nq↓) = −g

2

∑
q

√
1 − z2q(1 − nq↑ − nq↓).

This parameter
will be called the superconducting gap. So, we derive the equation
resulting from condition δ
/δz p = 0:

−ξ p(1 − n p↑ − n p↓) + z p√
1 − z2p

(1 − n p↑ − n p↓)
 = 0 or
z p√
1 − z2p

= ξ p



.

Hence we determine readily that

z p = ξ p/ε p where ε p =
√

ξ 2
p + 
2.

Accordingly, the self-consistent equation for determining the superconducting gap
takes the form


 = −g

2

∑
p

1 − n p↑ − n p↓√
ξ 2
p + 
2


.
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It is obvious that there is always a trivial solution 
 = 0 meaning the normal state.
Since n p↑ + n p↓ � 1, nontrivial solution 
 �= 0 is only possible for the attraction
interaction g < 0 and can be realized for sufficiently low temperatures as we will see
further.

The energy of elementary excitations or quasiparticles can be determined as a vari-
ational derivative of thermodynamic potential 
(μ) with respect to the distribution
function

δ
(μ) =
∑
p

ε p↑δn p↑ +
∑
p

ε p↓δn p↓ .

In this case the equilibrium distribution function n p,σ for elementary excitations
proves to be the ordinaryFermi–Dirac distributionwith ε p,σ as a energy of elementary
excitation

n p,σ = [
exp(ε p,σ /T ) + 1

]−1
.

Varying the potential 
(μ), e.g. with respect to n p↑, yields

ε p,σ = δ
(μ)/δn p↑ = ξ p(u
2
p − v2

p) + 2u pv p
 =
√

ξ 2
p + 
2 = ε p .

Thus, we can ascribe energy ε p = ±
√

ξ 2
p + 
2, where ξ p = ( p2/2m) − μ, to the

quasiparticle excitations in the superconducting state. The excitations related to the
minus sign are customary called the holes and those related to the positive sign are
referred to as quasiparticles or simply the particles. As we see in Fig. 6.2, there
appears an energy gap of magnitude 2
 in the elementary excitation spectrum.5

6.2 Temperature Behavior of the Superconducting Gap

We start our consideration of the thermodynamic properties in the superconduct-
ing state of a metal from studying the temperature behavior of superconducting gap

(T ). If there is no magnetic field or spin–orbit interaction, the distribution func-
tions coincide for various spin directions, i.e. n p↑ = n p↓ = n(ε p). Let us write the
self-consistent equation which implicitly determines the temperature behavior of
superconducting gap 
(T )

1 = |g|
2

∫
|ξ p|��ωD

d3 p

(2π�)3

1 − 2n(ε p)

ε p

5 The spectrum found is the simplest expression in order to describe an emergence of energy gap
at the Fermi surface.
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Fig. 6.2 The elementary
excitation spectrum in a
superconductor. The dashed
lines correspond to the
quasiparticle and hole
excitations in a normal
nonsuperconducting
conductor

where ε p =
√

ξ 2
p + 
2. Here we have taken explicitly into account that the inter-

action takes place at the energies |ξ p| � �ωD alone. Substituting the Fermi–Dirac

distribution n(ε p) = [
eε p/T + 1

]−1
, we go over to integration with respect to ξ p

1 = |g|
∫

|ξp |��ωD

p2dp

4π2�3

1 − 2n(ε)

ε
≈ |g| p2

F

4π2vF�3

�ωD∫
−�ωD

dξ
1 − 2n(

√
ξ 2 + 
2)√

ξ 2 + 
2
.

Here we have performed an approximate replacement p2dp with (p2
F/vF )dξ . The

point is that the integration region considered corresponds to the momentum region
|p − pF | � pF lying within the narrow band near the Fermi surface.

Let us introduce both the density of electron states N (0) at the Fermi surface with
the fixed spin projection and the dimensionless coupling constant λ according to

N (0) = p2
F

2π2vF�3
= mpF

2π2�3
and λ = |g|N (0).
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Then we obtain the equation

1

λ
=

�ωD∫
0

tanh
(√

ξ 2 + 
2/2T
)

√
ξ 2 + 
2

dξ.

For zero temperature T = 0, the integral can straightforwardly be estimated6 as
ln

(
2�ωD/
(0)

)
. This yields the exponential behavior as a function of coupling

constant λ

(0) = 2�ωDe−1/λ (λ � 1).

To find the critical superconducting transition Tc, it is necessary to put
(Tc) = 0.
Integrating by parts7 results in

1

λ
=

�ωD∫
0

tanh(ξ/2Tc)

ξ
dξ = ln

�ωD

2Tc
−

∞∫
0

ln x
cosh2 x

dx

= ln

(
γ

π
2�ωD

Tc

)

where ln γ = C = 0.577 . . . is Euler’s constant. Thus the superconducting transition
temperature equals

Tc = γ

π
2�ωDe−1/λ.

The next ratio
2
(0)

Tc
= 2π

γ
≈ 3.52

is universal in the BCS model or in the weak coupling limit λ � 1. In the general
case of strong (λ ∼ 1) coupling this ratio depends on the coupling constant λ.

The magnitude of isotopic effect

α = − d(ln Tc)

d(ln M)
,

where M is the ion mass, proves to be α = 1/2 in the BCS model. In fact, let
superconductors be composed of the isotopes with the same electronic properties but
different masses M . Such superconductors have different Debye frequencies varying
as ωD ∼ M−1/2. This entails the typical isotopic effect for the phonon mechanism
of superconductivity with Tc ∼ M−1/2.

6 Estimating the integrals, we keep always in mind the initial approximation of weak coupling, i.e.
smallness of coupling constant g and, therefore, 
 � �ωD .
7 Since the second integral is convergent, the upper limit �ωD/2Tc can be replaced with the infinity.
The integral equals − ln(2γ /π), ln γ = C = 0.577 . . . being Euler’s constant.
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Let us describe the superconducting gap in the vicinity T = 0 and T = Tc. Near
T = 0 the exponential temperature behavior is observed


(T ) = 
(0) − √
2πT 
(0) e−
(0)/T (T � Tc).

The exponential behavior is a direct consequence of creating the quasiparticles (ele-
mentary excitations) with the temperature growth. The number of quasiparticles
is proportional to exp(−
(0)/T ), resulting from the energy gap in the excitation
spectrum.

If T → Tc, we have 
(T ) → 0 and


(T ) = π

(
8

7ζ(3)

)1/2

Tc

(
Tc − T

Tc

)1/2

≈ 3.06Tc

(
Tc − T

Tc

)1/2

where ζ(3) ≈ 1.202 is the Riemann zeta-function.
If the superconducting gap 
(T ) is treated as an order parameter of the normal

metal-superconductor phase transition, i.e. 
(T > Tc) = 0 and 
(T < Tc) �= 0,
the critical exponent β = 1/2 of order parameter corresponds completely to the
mean-field approximation for the theory of second-order phase transitions. The
temperature behavior 
(T ) is shown in Fig. 6.3.

Problems

1. Estimate the behavior of the superconducting gap near zero temperature T = 0.
Solution. We have from the self-consistent equation for the superconducting gap

ln
2�ωD


(0)
= 1

λ
=

�ωD∫
0

dξ√
ξ2 + 
2

− 2

∞∫
0

dξ√
ξ2 + 
2

1

exp(
√

ξ2 + 
2/T ) + 1
.

We obtain expanding in the large exponential in the second integrand and transforming to the
integration over ε

ln




(0)
≈ −2

∞∫



dε
e−ε/T

√
ε2 − 
2

≈ − 2√
2


∞∫



dε
e−ε/T

√
ε − 


= −
√
2πT



e−
/T .

Fig. 6.3 The temperature
behavior of energy gap 
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Representing approximately the logarithm as
(

 − 
(0)

)
/
(0) and putting 
 ≈ 
(0) on the

right-hand side, we arrive at the answer desired


 ≈ 
(0) − √
2πT 
(0)e−
(0)/T .

2. Estimate the behavior of the superconducting gap near the transition temperature T = Tc.
Solution. Let us use the following values of integrals:

1

λ
=

�ωD∫
0

dξ
tanh(ξ/2Tc)

ξ
and

�ωD∫
0

dξ
tanh(ξ/2T )

ξ
= ln

(
γ

π

2�ωD

T

)

and transform the self-consistent equation for the superconducting gap to the form

ln
Tc

T
=

∞∫
0

dξ

[
tanh(ξ/2T )

ξ
− tanh(

√
ξ2 + 
2/2T )√
ξ2 + 
2

]
.

(Due to convergence of the integral the upper limit �ωD of the integral is replaced with the infinity).
Next, we apply the formula

tanh
z

2T
= 4T

∞∑
n=0

z

ω2
n + z2

, ωn = πT (2n + 1)

and obtain

ln
Tc

T
= 4T

∞∑
n=0

∞∫
0

dξ

[
1

ω2
n + ξ2

− 1

ω2
n + ξ2 + 
2

]
.

Expanding in 
 and integrating over ξ , we find

ln
Tc

T
= 4T

∞∑
n=0

[
π

4


2

ω3
n

− 3π

16


4

ω5
n

+ . . .

]
= 
2

(πT )2

7

8
ζ(3) − 3

4


4

(πT )4

31

32
ζ(5) + . . .

Here we have used the sum series formula

∞∑
n=0

1

(2n + 1)z
=

(
1 − 1

2z

)(
1 + 1

2z
+ 1

3z
+ 1

4z
+ . . .

)
=

(
1 − 1

2z

)
ζ(z)

where ζ(z) is the Riemann zeta-function: ζ(3) ≈ 1.202 and ζ(5) ≈ 1.037. To get the answer, it is
sufficient to involve the first term of expansion alone


(T ) ≈ π

√
8

7ζ(3)

√
Tc(Tc − T ).

6.3 Thermodynamic Functions of a Superconductor

In the previous section we have studied the solutions of the self-consistent equation
for the superconducting gap and found that, in addition to trivial solution 
 = 0,
there appears a nontrivial solution 
 �= 0 below some temperature. The nontrivial
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solution will describe new physical state of a conductor provided only that the super-
conducting state with 
 �= 0 is energetically more favorable than the normal state

 = 0. Below, first of all, we should compare the thermodynamic potentials in the
normal and superconducting states.

The grand thermodynamic potential 
(μ) is expressed via grand partition
function Z as


(μ) = −T lnZ and Z = tr e−Ĥ/T

where Ĥ = Ĥ − μN̂ is the BCS Hamiltonian. Let us differentiate potential 
(μ)

with respect to the coupling constant g

∂


∂g
= − T

Z
∂Z
∂g

= 1

g

tr
(
Ĥinte−Ĥ/T

)
tr

(
e−Ĥ/T

) = 1

g
〈Ĥint〉

where Ĥint is the term responsible for the interaction of electrons. Then, in
the thermodynamic average 〈Ĥint〉 we retain the product of anomalous averages∑

p〈a+
p↑a+

− p↓〉∑
q〈aq↓a−q↑〉 different from zero only in the superconducting state.

Accordingly, we can write the following:

∂


∂g
= 
2

g2
.

The relation between g and
 is already known for the temperature given. Therefore,
the difference between the magnitudes of potential 
 in the superconducting and
normal states will be equal to


s − 
n =
g∫

0


2

g2
dg = −


∫
0


2 d

d


(
1

g

)
d


after transition from variable g to variable 
.
Let us give asymptotic values of difference
s − 
n per unit volume at low T → 0

temperatures and near the transition T → Tc. We recall first the value of potential

 in the normal state at low temperatures 
n = −π2N (0)T 2/3. For T = 0, the
potential is 
n = 0 and, correspondingly, in the superconducting state the potential

s equals


s(T = 0) = −N (0)

2(0)

2
.

The qualitative interpretation of the formula above is the following. The elec-
trons within the energy band ∼ 
(0) near the Fermi surface, whose number is
∼ N (0)
(0), are bound into the Cooper pairs with an energy gain about 
(0).
For the finite but low temperature, this results in the exponential behavior


s(T ) − 
s(0) ≈ N (0)
[
8πT 3
(0)

]1/2
e−
(0)/T .
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Such behavior leads to the exponential freezing of entropy and specific heat due to
existence of energy gap for the elementary excitation spectrum in the superconductor

Ss = −∂
s/∂T ≈ N (0)
[
8π
3(0)/T

]1/2
e−
(0)/T ,

Cs = T ∂Ss/∂T ≈ N (0)
[
8π
5(0)/T 3]1/2e−
(0)/T .

To derive the asymptotic formula near the transition temperature Tc, we start from
the expansion obtained above in Problem 2:

ln
Tc

T
= 
2

(πT )2

7

8
ζ(3) + . . .

Hence we find for the differential dTc

dTc

Tc
= 2


(πT )2

7

8
ζ(3)d
 + . . .

On the other hand, we have from Tc ∼ exp(−1/λ)

dTc

Tc
= dλ

λ2
= −d

(
1

λ

)
= 1

N (0)
d

(
1

g

)
.

The comparison gives

d

d


(
1

g

)
= 7

4
ζ(3)N (0)




(πT )2
+ . . .

and we find involving the first term alone


s − 
n = −

∫

0


2d

(
1

g

)
d
 =

= −7ζ(3)

4

N (0)

(πT )2


∫
0


3 d
 = −7ζ(3)

16
N (0)


4

(πT )2
.

Substituting the value 
 at T → Tc, we have


s − 
n = − 4π2

7ζ(3)
N (0)(Tc − T )2.
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Fig. 6.4 The temperature
behavior of specific heat
C(T )

Hence we readily find the difference for the entropies in the superconducting and
normal states8

Ss − Sn = − 8π2

7ζ(3)
N (0)(Tc − T ).

After differentiating with respect to temperature once more and retaining the main
terms, we arrive at the following specific heat for a superconductor at the transition
point

Cs(Tc) = Cn(Tc) + 8π2

7ζ(3)
N (0)Tc .

Thus, the specific heat of a conductor is subjected to the finite-magnitude jump at
the transition to the superconducting state. Reminding that the specific heat in the
normal state equals Cn(T ) = (2π2/3)N (0)T , we obtain the following ratio of the
specific heats at the transition point

Cs(Tc)

Cn(Tc)
= 1 + 12

7ζ(3)
≈ 2.43.

In the BCS model, this ratio is independent of the coupling constant and represents
a universal quantity. The temperature behavior of specific heat is shown in Fig. 6.4.

The continuity of thermodynamic potentials 
n and 
s , as well as their first
derivatives at T = Tc, indicate that the normal-superconducting state transition is
second-order phase transition.

Problems

1. Estimate the temperature behavior of specific heat in the superconducting state near zero
temperature T = 0.

Solution. We use the relation

1

g
= −N (0)

(
ln

2�ωD



− 2

∞∫
0

dξ√
ξ2 + 
2

1

exp
(√

ξ2 + 
2/T
) + 1

)

8 The superconducting state proves to be more ordered than the normal one if entropy is interpreted
as a measure of disorder.
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in which we expand the integrand in a series in the exponential and go over to integration over ε. A
series of integrals can be expressed via modified Bessel function K0(x) (Macdonald function)9

1

g
= −N (0)

[
ln

2�ωD



+ 2

∞∑
n=1

(−1)n K0

(
n


T

)]
.

Differentiating this formula with respect to 
 yields

d

d


(
1

g

)
= N (0)

[
1



+ 2

∞∑
n=1

(−1)n n

T
K1

(
n


T

)]
.

Then we find for the difference 
s − 
n in the thermodynamic potentials


s−
n = −N (0)


∫
0

d


[

 + 2

∞∑
n=1

(−1)n n
2

T
K1

(
n


T

)]
=

= −N (0)

[

2

2
+ 2

∞∑
n=1

(−1)n T 2

n2

n
/T∫
0

dx x2K1(x)

]
=

= − N (0)

[

2

2
+ 2

∞∑
n=1

(−1)n T 2

n2

[
2 −

(
n


T

)2

K2

(
n


T

) )]
.

The sum

4T 2
∞∑

n=1

(−1)n

n2 = −π2

3
T 2

is analytically exact, leading to the term (π2/3)N (0)T 2 equal to the opposite-sign potential 
n =
−(π2/3)N (0)T 2 in the normal state. As a result, we arrive at the following expansion for the
thermodynamic potential in the superconducting state:


s = −N (0)

[

2

2
− 2
2

∞∑
n=1

(−1)n K2

(
n


T

)]
.

For T → 0, we involve the temperature correction to
(0) and the term n = 1 in a sum. Eventually,
we have


s(T ) − 
n(0) ≈ N (0)
√
8πT 3
(0) e−
(0)/T .

Hence we have the entropy and specific heat as T → 0

Ss(T ) = −∂
s/∂T ≈ N (0)
√
8π
3(0)/T e−
(0)/T ,

Cs(T ) = T ∂Ss/∂T ≈ N (0)
√
8π
5(0)/T 3 e−
(0)/T .

2. The Ginzburg–Landau theory interprets the normal-superconducting phase transition within
the framework of self-consistent field with the superconducting gap 
 as an order parameter and

9 Let us remind the definition of function Kν(x) and a number of useful iden-

tities as Kν(x) =
∞∫
0

e−x cosh t cosh(νt) dt , Kν(x → ∞) ≈ (π/2x)1/2e−x , K ′
0(x) = −K1(x),

(
x2K2(x)

)′ = −x2K1(x) and
∞∫
0

x2K1(x) dx = 2.
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represents the thermodynamic potential difference 
s − 
n as an expansion in the powers of gap

 near T = Tc


s − 
n = a(T )|
|2 + b

2
|
|4, a(T ) = a0(T − Tc) (a0 > 0).

Find the expansion coefficients a and b, using the known behavior for 
(T ).
Solution. For T < Tc, we have

|
|2 = −a(T )

b
and 
s − 
n = −a2(T )

2b
.

Hence we find the expansion coefficients

b = −2

s − 
n

|
|4 = 7ζ(3)

8

N (0)

(πTc)2
and a(T ) = 2


s − 
n

|
|2 = N (0)

Tc
(T − Tc).

In the Ginzburg–Landau theory, it is customary to introduce a superconducting order parameter ψ

differing by the multiplier C1/2 from the superconducting gap according to

|
|2 = C |ψ |2 where C = 6(πTc)
2

7ζ(3)

1

μN (0)
= 8π2T 2

c

7ζ(3)n
.

Heren is the electrondensity.Accordingly, the expansion for the thermodynamic potential difference
can be written as


s − 
n = α(T )|ψ |2 + β

2
|ψ |4,

α(T ) = Ca(T ) = 6π2

7ζ(3)

Tc

μ
(T − Tc) and β = C2b = 9π2

14ζ(3)

T 2
c

μ2N (0)
.

6.4 Method of Self-Consistent Field. The Bogoliubov–de
Gennes Equations

We have considered the superconducting properties of Fermi particles with attraction
in the spatially homogeneous state in the lack of any external field. In the general
case, the electrons in a superconductor can be in the external magnetic field B(r).
Let us turn to constructing the description of superconducting state in the external
magnetic field.

As we have seen above, the description of the superconducting state reduces in
essence to the self-consistent decoupling of the electron–electron interaction

Uint = g

∫
d3r ψ(r)+↑ ψ(r)+↓ ψ(r)↓ψ(r)↑

with the aid of introducing the pairing potential 
(r) = g〈ψ(r)↓ψ(r)↑〉 and

∗(r) = g〈ψ(r)+↑ ψ(r)+↓ 〉. The pairing potential is nonzero in the superconducting
state and should be determined from the condition of the thermodynamic potential
minimum. In the homogeneous state it is obvious that 
(r) = 
∗(r) = const.
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We start from the usual Hamiltonian for an electron in the external magnetic
field. The term responsible for the electron–electron interaction Uint will be written
in accordance with the self-consistent decoupling. Then the effective Hamiltonian
reads

Ĥeff = Ĥ − μN̂ =

=
∫

d3r
∑

σ

ψ+
σ (r)

[
1

2m

(
−i�∇ − e

c
A(r)

)2

− μ

]
ψσ (r)+

+
∫

d3r
[

(r)ψ+

↑ (r)ψ+
↓ (r) + 
∗(r)ψ↓(r)ψ↑(r)

]

where A(r) is the vector potential determining the magnetic field B = ∇ × A.
To find the eigenvalues of effective Hamiltonian Ĥeff and the eigenfunctions, we

diagonalize it with the aid of the Bogoliubov transformation

ψ↑(r) =
∑
p

[
u p(r)α p↑ − v∗

p(r)α
+
− p↓

]
,

ψ+
↑ (r) =

∑
p

[
u∗
p(r)α

+
p↑ − v p(r)α− p↓

]
.

And the analogous transformation is given for the spin down

ψ↓(r) =
∑
p

[
u p(r)α p↓ + v∗

p(r)α
+
− p↑

]
,

ψ+
↓ (r) =

∑
p

[
u∗
p(r)α

+
p↓ + v p(r)α− p↑

]
.

Here α+
pσ and α pσ are auxiliary creation and annihilation operators of elemen-

tary excitations (quasiparticles) in the state | pσ 〉 obeying the conventional Fermi
anticommutative relations

α pσα p′σ ′ + α p′σ ′α pσ = 0, α+
pσα+

p′σ ′ + α+
p′σ ′α

+
pσ = 0,

α pσα+
p′σ ′ + α+

p′σ ′α pσ = δ p p′δσσ ′ .

In addition, the amplitudes u p(r) and v p(r) should satisfy the relations of
completeness and orthogonality

∑
p

u∗
p(r)u p(r ′) + v∗

p(r)v p(r ′) = δ(r − r ′),

∑
p

u∗
p(r)v p(r ′) + v p(r)u∗

p(r
′) = 0.
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The aim of such transformation is to determine the amplitudes u p(r) and v p(r)
which could transfer Hamiltonian Ĥeff to the diagonal form

Ĥeff = 
0(μ) +
∑
pσ

ε pσα+
pσα pσ .

Here
0(μ) is the thermodynamic potential in the ground state and ε pσ has the sense
of elementary excitation energy in the state | pσ 〉. It is possible to check directly for
the diagonal Hamiltonian that its commutators with the creation α+

pσ and annihilation
α pσ operators will be equal to

[
α pσ , Ĥeff

] = α pσ Ĥeff − Ĥeffα pσ = ε pσα pσ ,[
α+
pσ , Ĥeff

] = α+
pσ Ĥeff − Ĥeffα

+
pσ = −ε pσα+

pσ .

It is more convenient to find the necessary conditions by choosing the amplitudes
u p(r) and v p(r) via preliminary calculations10 of commutating Hamiltonian Ĥeff

with ψσ (r) and ψ+
σ (r)

[
ψ↑(r), Ĥeff

] = Ĥe(r)ψ↑(r) + 
(r)ψ+
↓ (r),[

ψ↓(r), Ĥeff
] = Ĥe(r)ψ↓(r) − 
(r)ψ+

↑ (r)

and

[
ψ+

↑ (r), Ĥeff
] = −Ĥe(r)ψ

+
↑ (r) − 
∗(r)ψ↓(r),[

ψ+
↓ (r), Ĥeff

] = −Ĥe(r)ψ
+
↓ (r) + 
∗(r)ψ↑(r).

For brevity, we have denoted

Ĥe = 1

2m

(
−i�∇ − e

c
A(r)

)2

− μ.

Expressing ψ+
σ (r) and ψσ (r) via α+

pσ and α pσ and using the commutators found
above,we arrive at the equalitieswhich should identically be satisfiedwith coinciding
the coefficients before α+

pσ and α pσ on the left- and right-hand side of the resulting
equalities. In fact, from one side

[
ψ↑(r), Ĥeff

] = Ĥe(r)ψ↑(r) + 
(r)ψ+
↓ (r) =

= Ĥe(r)
∑
p

(
u pα p↑ − v∗

pα
+
− p↓

) + 
(r)
∑
p

(
u∗
pα

+
p↓ + v pα− p↑

)
,

10 We use the anticommutation rules for the Fermi operators asψσ (r)ψσ ′ (r ′) + ψσ ′ (r ′)ψσ (r) = 0,
ψ+

σ (r)ψ+
σ ′ (r ′) + ψ+

σ ′ (r ′)ψ ′
σ (r) = 0, and ψσ (r)ψ+

σ ′ (r ′) + ψ+
σ ′ (r ′)ψσ (r) = δσσ ′δ(r − r ′).
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and on the other side

[
ψ↑(r), Ĥeff

] =
∑
p

[(
u pα p↑ − v∗

pα
+
− p↓

)
, Ĥeff

] =

=
∑
p

(
u pε pα p↑ + v∗

pε− pα
+
− p↓

)
.

Comparing11 the coefficients before α p↑ and α+
p↓, we derive the Bogoliubov-de

Gennes (BdG) equations for determining the amplitudes u p(r) and v p(r)

ε pu p(r) = Ĥeu p(r) + 
(r)v p(r),

ε pv p(r) = − Ĥ∗
e v p(r) + 
∗(r)u p(r).

The equations above are customary to write in the matrix form as well

(
Ĥe(r) 
(r)

∗(r) −Ĥ∗

e (r)

) (
u p

v p

)
= ε p

(
u p

v p

)
.

Eventually, the amplitudes u p(r) and v p(r) satisfy a set of linear homogeneous
differential equations.

For the spatially homogeneous case under zero magnetic field when A(r) = 0
and 
(r) = const, the Bogoliubov–de Gennes equations can be solved with the aid
of substitution

u p(r) = u pei pr/� and v p(r) = v pei pr/�,

resulting in the following equations:

ξ pu p + 
v p = ε pu p ,


∗u p − ξ pv p = ε pv p ,where ξ p = p2

2m
− μ.

Nontrivial solution of this system takes place for the eigenvalue ε p = ±
√

ξ 2
p + |
|2.

Taking the condition for amplitudes u2
p + v2

p = 1 into account, we have

u2
p = 1

2

(
1 + ξ p√

ξ 2
p + |
|2

)
,

v2
p = 1

2

(
1 − ξ p√

ξ 2
p + |
|2

)
.

11 For simplicity and clarity, we do not consider a possible dependence of the elementary excitation
energy ε p upon the spin projection σ =↑ or ↓.
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6.5 Superconducting Current

In this section, we turn to investigating the Bogoliubov–de Gennes equations when
the pairing potential 
(r) varies slowly in the space. Such situation may appear in
the presence of magnetic field strength h = curl A(r)where A is the vector potential
in the presence of the current states. Let the pairing potentials 
(r) = 
 eiϕ(r) and

∗(r) = 
 e−iϕ(r) have the phase ϕ(r) varying slowly in the space. Nonzero phase
of the pairing potential will result in the current state.

The solution of the Bogoluibov-de Gennes equations will be sought as

u(r) = u pe
i pr
�

+ iϕ(r)
2 ,

v(r) = v pe
i pr
�

− iϕ(r)
2 .

A possible dependence of preexponential factors u p and v p on the coordinates will
be neglected. In the first approximation, substituting the amplitudes u(r) and v(r)
into the Bogoluibov-de Gennes equations, we neglect also the derivatives of vector
potential A(r) and second derivatives of phase ϕ(r) due to assumption about suffi-
ciently slow variation of these quantities in the space. Under these assumptions, it is
easy to check that

Ĥeu(r) =
[(−i�∇ − eA(r)

c

)2
2m

−μ

]
u(r) =

[(
p + �∇ϕ

2 − eA(r)
c

)2
2m

− μ

]
u(r),

Ĥ∗
e v(r) =

[(
i�∇ − e

c A(r)
)2

2m
−μ

]
v(r) =

[(
p − �∇ϕ

2 + eA(r)
c

)2
2m

− μ

]
v(r).

As a result, we arrive at the following system of equations:

(
ε − ξP+

)
u(r) − 
(r)v(r) = 0, ξP± = P2

±
2m

− μ,

−
∗(r)u(r) + (
ε + ξP−

)
u(r) = 0, P± = p ± �∇ϕ

2
∓ e

c
A.

The compatibility condition for this system of equations, i.e. zero determinant,

(
ε p − ξP+

)(
ε p + ξP−

) − 
2 = 0

gives us the energy spectrum of elementary excitations in the superconducting state

ε p = 1

2

[(
ξP+ − ξP−

) ±
√(

ξP+ + ξP−
)2 + 4
2

]
.

In what follows, we consider the phase gradient ∇ϕ and magnitude of vector
potential A to be small as compared with the typical electron momentum of about
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Fermi one. Next, we can write the following expansions restricted with the lowest
terms alone:

ξP+ − ξP− ≈ p
m

(
�∇ϕ − 2e

c
A
)

and ξP+ + ξP− ≈ p2

m
− 2μ = 2ξ p .

Then we come to the following elementary excitation spectrum in the presence of
small gradient phase and magnetic field:

ε p ≈ ±
√

ξ 2
p + 
2 + 1

m
p·

(
�∇ϕ

2
− e

c
A(r)

)
.

Thus, as we see in the presence of magnetic field and phase gradient, the elementary
excitation energy is shifted by the quantity pvs where

vs = �

2m

(
∇ϕ − 2e

�c
A(r)

)
= �

2m
∇�

is called the superfluid velocity and the phase� is referred to as the gauge phase. The
magnitude vcr = 
/pF , where pF = (2mμ)1/2 is the Fermi momentum, serves as
a critical magnitude of superfluid velocity. For the magnitudes of velocity vs larger
than the critical one vs > vcr , the energy gap in the elementary excitation spectrum
will vanish.

This criterion allows us to estimate what spatial variations of gauge phase � can
be considered as sufficiently slow. Let phase � vary at the typical distance δ so that
∇� ∼ 1/δ. Requiring small variation for the energy spectrum of excitations, i.e.
vs � vcr , we have

�

m
∇� ∼ �

mδ
� vcr ∼ 


pF
= 


mvF
or δ � �vF



= ξ

where vF is the Fermi velocity. The length ξ(T ) = �vF/
(T ) will be called the
correlation length of a superconductor, which12 is temperature-dependent together
with the energy gap 
 = 
(T ).

Returning to the Bogoluibov-de Gennes equations, we can see that the amplitudes
u p and v p in our approximation depend on ∇ϕ and A by means of a sum ξP+ −
ξP− = 2ξ p. In fact, it is readily to see that ε p − ξP± ≈ ε p ∓ ξ p. Thus, in our initial
approximation the assumption about coordinate independence of amplitudes u p and
v p is completely justified. The amplitudes remain the same as in the case of the
spatially independent potential of pairing 
(r).

Now let us turn to calculating the current in a superconductor. The magnitude of
current density j(r) at the given point r is the thermodynamic average of the familiar
quantum mechanical expression for the current density operator ĵ(r)

12 The notation ξ is common. It should not be confused with the energy of electrons ξ p = p2/2m −
μ taken from chemical potential μ.
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ĵ(r) = ie�

2m

∑
σ

(
∇ψ+

σ (r)ψσ (r) − ψ+
σ (r)∇ψσ (r)

)

− e2

mc

∑
σ

A(r)ψ+
σ (r)ψσ (r)

stated in terms of creation ψ+(r) and annihilation ψ(r) operators. Thus, we should
be able to calculate the following thermodynamic averages: 〈∇ψ+ψ〉, 〈ψ+∇ψ〉, and
〈ψ+ψ〉.

To find the averages, we employ the Bogoluibov transformation formulas express-
ing the operators ψ+ and ψ via elementary excitation operators α+ and α. For
calculating the derivatives ∇ψ+ and ∇ψ , it is sufficient only to differentiate the
exponential factors ei pr/�±iϕ(r)/2 in the amplitudes u p(r) and v p(r), i.e.

∇u p ≈ i( p/� + ∇ϕ/2)u p , ∇u∗
p ≈ −i( p/� + ∇ϕ/2)u∗

p ,

∇v p ≈ i( p/� − ∇ϕ/2)v p , ∇v∗
p ≈ −i( p/� − ∇ϕ/2)v∗

p .

We calculate the current j(r) = 〈 ĵ(r)〉 as a thermodynamic average for the current
density operator ĵ

j(r) = e

m

∑
pσ

[
i�

2

(
u p∇u∗

p − u∗
p∇u p

) − e

c
Au pu∗

p

]
〈α+

pσα pσ 〉+

+ e

m

∑
pσ

[
i�

2

(
v∗
p∇v p − v p∇v∗

p

) − e

c
Av pv

∗
p

]
〈α− pσα+

− pσ 〉 =

= e

m

∑
pσ

(
p + �∇�/2

)[|u p|2〈α+
pσα pσ 〉 + |v p|2〈α− pσα+

− pσ 〉
]
.

Here the thermodynamic average 〈α+
pσα pσ 〉 = n pσ represents the occupation num-

bers of elementary quasiparticle excitations with energy ε p, i.e. Fermi distribution

n pσ = [
exp

(
ε pσ /T

) + 1
]−1

.

Accordingly,13 we have 〈α pσα+
pσ 〉 = 1 − n pσ resulting from the anticommutation

relations for the Fermi operators. In our case we will not take a possible dependence

13 If we perform the Bogoliubov transformation for the electron density operator

n̂e(r) =
∑
pσ

ψ+
σ (r)ψσ (r)

and then accomplish the thermodynamic averaging for the operators of quasiparticle excitations
α+
pσ and α pσ , we find the following relations for the electron density:

ne(r) =
∑
pσ

[
|u p(r)|2〈α+

pσ α pσ 〉 + |v p(r)|2〈α pσ α+
pσ 〉

]
.
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of excitation energy on the spin into account, i.e.

ε pσ = ε p = ±
√

ξ 2
p + |
|2 + � p∇�/2m = ε p0 + pvs .

Thus, the current density reads

j(r) = 2e

m

∑
p

(
p + �∇�/2

)[|u p|2n(ε p) + |v p|2
(
1 − n(ε− p)

)]
.

Factor 2 in front of the sum appears after summing over the spin projections.
We obtain in the linear approximation in smallness ∇� or vs with involving the

dependence ε p upon ∇� and the parity ε− p0 = ε p0

j(r) = e�

m

∑
p

∇�

[
|u p|2n(ε p0) + |v p|2

(
1 − n(ε p0)

)]+

+e�

m

∑
p

1

m
p( p∇�)

[
|u p|2 + |v p|2

]
∂n(ε p0)

∂ε
=

=e�

m
∇�

[
ne

2
+

∑
p

p2

3m

∂n(ε p0)

∂ε

]
=

= e�

2m
∇�

[
ne − 4

3

∑
p

p2

2m

(
−∂n(ε p0)

∂ε

)]
=

= e(ne − nn)
�

2m
∇� = ensvs .

The terms with the odd powers on momentum p vanish in the sum due to symmetry.
The quantity

nn = 4

3

∑
p

p2

2m

(
−∂n(ε p)

∂ε p

)
= 4

3

∫
d3 p

(2π�)3

p2

2m

(
−∂n(ε p)

∂ε p

)
,

where ε p = (ξ 2
p + 
2)1/2, is called the normal electron density in a superconductor

and quantity ns = ne − nn is referred to as the superconducting electron density. The
both quantities are temperature-dependent. The superconducting electron density
vanishes in the normal state at T � Tc, i.e. ns(
 = 0) = 0. At zero temperature, it
equals the total electron density ns(T = 0) = ne. In fact,

nn(T ) = 1

3π2�3

∞∫
−μ

dξ
p3(ξ)

4T cosh2
√

ξ 2+
2

2T

≈ p3
F

3π2�3

∞∫
−∞

dξ

4T cosh2
√

ξ 2+
2

2T

,

where we have extended the lower integration limit to −∞ due to presence of strong
inequalities T � μ,
 � μ. The contribution to the integration is given by the region
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of the momenta near the Fermi surface |ξ | � μ. For the same reasons we can put
approximately p(ξ) ≈ p(0) = (2mμ)1/2 = pF . Involving the relation of the Fermi
momentum pF with the total electron density n, we obtain the following expression
for the fraction of normal electrons in terms of the Yosida function Y (T ):

nn(T )

n
= Y (T ) where Y (T ) =

∞∫
−∞

dξ

(
−∂n

∂ε

)
=

∞∫
−∞

dξ

4T cosh2
√

ξ 2+
2(T )

2T

.

Let us give the limiting expressions for the Yosida function

Y (T ) =
{(

2π

T

)1/2
e−
/T ∼ e−
/T , 
 � T → 0,

1 − 7ζ(3)
4π2


2

T 2
c

= 1 − 2 Tc−T
Tc

, T ∼ Tc � 
.

Lastly, we have the following expression for the current in a superconductor in
the magnetic field:

j(r) = e

2m
ns

(
�∇ϕ − 2e

c
A(r)

)
.

This expression leads us to the F. and H. London equation on the account of
curl (∇ϕ) = 0 and h = curl A

curl j = −e2ns

mc
h.

This equation is quite sufficient to explain the specific physical property of a super-
conductor, namely Meissner effect or expulsion of magnetic field from the supercon-
ductor volume. In fact, the magnetic field strength h and the current density j are
connected with the Maxwell equation

curl h = 4π

c
j .

This equation together with another one div h = 0 results in

∇2h = 4πe2ns

mc2
h = h

δ2

where

δ =
(

mc2

4πe2ns

)1/2

.

The length δ is called the London penetration depth of magnetic field into the
superconductor.
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Fig. 6.5 The magnetic field
penetration into a
superconductor. The field at
the surface is h0

Let superconductor occupy the half-space x > 0. The magnetic field is parallel
to the plane surface of the superconductor in the z-axis direction. Then we disclose
immediately the exponential decay into the depth of the superconductor

h(x) = h0e−x/δ.

The vector h0 is the magnetic field strength at the superconductor surface and the x-
axis, directed into the superconductor, is normal to the surface (Fig. 6.5). To conclude,
the superconducting state of a metal results in expelling the magnetic field from the
metal bulk. The magnetic induction B, determined as a magnetic field average over
the superconductor volume V

B = 1

V

∫
V

h dV = 〈h〉V ,

will vanish. The screening superconducting current flows only in the near-surface
superconductor layer of the thickness about penetration depth δ:

jy(x) = ch0

4πδ
e−x/δ.

From the expression for current j(r) it follows a remarkable property of super-
conducting state, namely magnetic flux quantization. In the superconductor bulk the
current density vanishes and, therefore, we have

∇ϕ = 2e

�c
A(r).

Integration around the closed contour C lying completely inside the superconductor
bulk and application of the Stokes theorem for vector h = curl A will deliver us the
following equation for the magnetic field flux φ across the surface enclosed within
the contour:

φ =
∮

A · d l = �c

2e

∮
∇ϕ · d l = �c

2e
[ϕ].
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Here [ϕ] is the phase increment of superconducting order parameter
(r) after a full
passage of contour C . Since the superconducting order parameter must be single-
valued, its magnitude must be the same after a full passage of contour C . In other
words, phase ϕ of order parameter can only be changed by an integer multiple of
2π . Then we arrive at the result

φ = nφ0 , φ0 = π�c

e
= 2.07 · 10−7G · cm2

where n is any integer. The quantity φ0 is called the magnetic flux quantum. (The
inverse of the flux quantum K J = 1/φ0 is the Josephson constant).

As an example of magnetic flux quantization, we can indicate a massive hollow
cylinder with the wall thickness much larger as compared with the magnetic field
penetration depth.When the hollow cylinder is placed into the magnetic field parallel
to the cylinder axis, the magnitude of the magnetic flux threading the cylinder hole
will be an integer multiple of flux quantum.

6.6 The Ginzburg–Landau Functional

To describe the behavior of superconductor in the magnetic field, we can use the
Bogoliubov–de Gennes equations. However, this is not a simple problem from the
mathematical point of view. On the other hand, in the vicinity of the superconducting
transition point it is possible to find the simplified description for the behavior of
superconductor in the magnetic field. Such description is referred to as the theory of
the Ginzburg–Landau functional.

Let us use expression for the superconducting electron density near the transition
temperature

ns = n
7ζ(3)

4π2

|
|2
T 2

c

= 2n
Tc − T

Tc

which allows us to rewrite the expression for the superconducting current as

j(r) = e

2m
n
7ζ(3)|
|2
4π2T 2

c

(
�∇ϕ − 2e

c
A
)

= e

m

(
�∇ϕ − 2e

c
A
)

=

= − ie�

2m

(
ψ∗∇ψ − ψ∇ψ∗) − 2e2

mc
|ψ |2A .

Here, instead of superconducting order parameter 
(r) according to

ψ(r) =
√
7ζ(3)n

8π2T 2
c


(r) =
√
7ζ(3)n

8π2T 2
c

|
(r)|eiϕ(r),
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we have introduced the complex quantity ψ(r) called the wave function of Cooper
pairs condensate in the Ginzburg–Landau functional theory. The formula, obtained
for the current density j(r), coincides formallywith the quantum-mechanical expres-
sion for the current density at the motion of a particle with the wave function ψ(r),
mass 2m, and charge 2e in the magnetic field.

The formula for current density j(r) allows us to determine the expression for the
spatially inhomogeneous terms in the free energy functional F(ψ∗, ψ, A), depend-
ing on magnetic field h = curl A in the superconducting transition region. For the
variation of free energy with respect to the vector potential, we have

δF = −1

c

∫
j δA d3r +

∫
h δh
4π

d3r = −1

c

∫
j δA d3r +

∫
h curl(δA)

4π
d3r.

Hence we can restore the expression for the spatially inhomogeneous terms F∇ in
the free energy functional of superconductor

F∇ =
∫ [

1

4m

∣∣∣∣
(

−i�∇ − 2e

c
A
)

ψ

∣∣∣∣
2

+
(
curl A

)2
8π

]
d3r.

In fact, the variation of this expression with respect to vector potential A leads us to
the starting variation δF . Herewith, we do not consider the surface terms that may
appear since, so far, we restrict ourselves only with the bulk contribution to variation
δF∇ . The total expression for the free energy functional of superconductor F can
be achieved by augmenting the spatially homogeneous terms to F∇ . Thus, we have
finally

F[ψ(r), ψ∗(r), A(r)] =
∫

F[ψ(r), ψ∗(r), A(r)]d3r

where the density of free energy F equals

F = γ

2

∣∣∣∣
(

−i�∇ − 2e

c
A
)

ψ

∣∣∣∣
2

+ α(T )|ψ |2 + β

2
|ψ |4 +

(
rot A

)2
8π

.

The expansion coefficients α, β, and γ are as follows:

α(T ) = 6π2

7ζ(3)

Tc

μ
(T − Tc), β = 9π2

14ζ(3)

T 2
c

μ2N (0)
and γ = 1

2m
.

The first three terms are associated with manifesting the superconducting state. The
last term is the energy of magnetic field h = curl A.

The Ginzburg–Landau functional, in essence, represents the first terms in expand-
ing the thermodynamic potential difference into a series in the smallness and slowness
of spatial variation of the superconducting order parameter. We would like to men-
tion the following aspects inherent in the phenomenological Landau theory of phase
transitions based on the expansion in the powers and gradients of order parameter.



6.6 The Ginzburg–Landau Functional 245

Due to interaction of a superconductor with the magnetic field, the free energy func-
tional must be invariant with regard to the gauge transformation of vector potential
A → A + ∇ f . This can be achieved by putting the order parameter as a complex
variable. The invariance of functional can be realized with gaining an additional
phase of wave function

ψ → ψ exp

(
ie∗

�c
f

)
.

Here, e∗ is the parameter characterizing the magnetic field effect and having the
dimension of electric charge. The real magnitude of the free energy functional and its
gauge invariance can be achieved by introducing terms like |ψ |2 and |ψ |4 independent
of the order parameter phase. As a result, the phenomenological Ginzburg–Landau
functional gets a general form

F =
∫

d3r

[
γ

2

∣∣∣∣
(

−i�∇ − e∗

c
A
)

ψ

∣∣∣∣
2

+ α(T )|ψ |2 + β

2
|ψ |4 +

(
curl A

)2
8π

]
.

Coefficient α(T ) = α0(T − Tc) vanishes at T = Tc and α(T > Tc) > 0. The other
two ones β and γ are positive and their possible temperature dependence can be
neglected near T = Tc.

The normalization or units of measurement for the wave function have elements
of variability and can be chosen within the framework of the Ginzburg–Landau func-
tional from the convenience arguments. The magnitude of the proportionality coef-
ficient in relation ψ(r) ∼ 
(r) can vary by redefining or selecting the units of mea-
surement for coefficients α, β, and γ . The microscopic theory of superconductivity
allows us to set the magnitudes for α, β, γ , and effective charge e∗ = 2e.

The Ginzburg–Landau equations are derived by minimizing the free energy
functional and equating the variational derivatives to zero. So,

δFs =
∫

d3r

[
αψ δψ∗ + β|ψ |2ψ δψ∗+

+γ

2

(
i�∇δψ∗ − 2e

c
A δψ∗

)(
−i�∇ψ − 2e

c
Aψ

)]
.

To put δψ∗ beyond the brackets, we use the identity below

div (b δψ∗) = δψ∗ div b + b · ∇δψ∗

where b = −i�∇ψ∗ − (2e/c)Aψ . Let us represent the integral as follows:

∫
d3r (b · ∇δψ∗) = −

∫
d3r δψ∗ div b +

∫
d3r div (bδψ∗).
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The last integral transforms into the surface one. Then,

δFs =
∫

d3r

[
αψ + β|ψ |2ψ + γ

2

(
−i�∇ψ − 2e

c
A
)2

ψ

]
δψ∗+

+ γ

2

∮
S

δψ∗
(

−i�∇ψ − 2e

c
A
)

dS.

The requirement δF/δψ∗ = 0 gives under condition of vanishing the surface integral

γ

2

(
−i�∇ − 2e

c
A(r)

)2

ψ(r) + αψ(r) + β|ψ(r)|2ψ(r) = 0.

Varying with respect to ψ(r) results in the complex conjugate equation. As is
expected, the variation by vector potential and δF/δA(r) = 0 lead us to theMaxwell
equation with superconducting current density j(r)

curl curl A =curl h = 4π

c
j(r), j = γ

(
−ie�

(
ψ∗∇ψ − ψ∇ψ∗) − 4e2

c
|ψ |2A

)
.

For the superconductor-vacuum or superconductor-isolator boundary, the so-
called natural boundary condition can be used with the cancelation of the surface
integral originating from varying the functional over ψ∗

iγ

2

∮
d S δψ∗n·

(
−i�∇ψ − 2e

c
Aψ

)
.

Accordingly, the boundary condition reads

n·
(

−i�∇ − 2e

c
A(r)

)
ψ(r)

∣∣∣∣
S

= 0.

Here n is the outer normal to the superconductor surface S. This boundary condition
means the lack of superconducting current across the boundary of superconductor, i.e.

jn = (n · j)|S = 0.

The boundary condition for the magnetic field h(r) is the continuity of the field at
the boundary.

Ifwe require the fulfillment of condition (n j) = 0 at the superconductor boundary
or non-penetration of superconducting current to the adjacent matter, we obtain a
weaker boundary condition

n·
(

−i�∇ − 2e

c
A(r)

)
ψ(r)

∣∣∣∣
S

= i
�

b
ψ(r)

∣∣∣∣
S
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where b is a real constant having the dimension of length. Such type of boundary
condition describes better the superconductor-normal metal junction. The Ginzburg–
Landau equations togetherwith theMaxwell one and boundary conditions represent a
complete set of equations governing the behavior of a superconductor in themagnetic
field near the superconducting transition temperature.

Let us consider homogeneous state of superconductor ∇ψ = 0 in zero magnetic
field A = 0. Two solutions of the Ginzburg–Landau are possible. One corresponds
to the normal state ψ = 0 and is possible at all temperatures. The second, ψ = ψ0

with ψ2
0 = −α(T )/β, exists only at T � Tc and corresponds to the superconducting

state. The behavior of functional Fs as a function of order parameter is shown in
Fig. 6.6. Nonzero value of order parameter ψ = ψ0 at T � Tc corresponds to the
minimum of the functional per unit volume

Fs = αψ2
0 + βψ4

0 /2 = −α2(T )/(2β).

The transition to the superconducting state is second-order one since ψ = 0 and
ψ ∼ (Tc − T )1/2 at the transition point.

The quantity having the sense of the condensation energy α2(T )/(2β) is
customary to express in the units of magnetic field energy according to

H 2
c

8π
= α2(T )

2β
where H 2

c (T ) = 4π
α2(T )

β
.

The magnetic field Hc(T ) is called the thermodynamic critical field and Hc(T ) ∼
(Tc − T ) near Tc. The physical meaning of the thermodynamic critical field becomes
clear with comparing the energies of superconducting and normal state in the
magnetic field.

Fig. 6.6 The behavior of the
energy free functional as a
function of order parameter
at various temperatures
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In the external magnetic field induced with the constant currents in magnetic
coils, it is necessary to handle with the thermodynamic potentials dependent on the
magnetic field strength H rather than the potentials dependent onmagnetic induction
B determined as an averaged magnetic field. The relationship between the Gibbs
F̃(H) and Helmholtz F(B) free energy potentials is governed with the Legendre
transformation and we have for their specific densities

F̃(T, H) = F(T, B) − HB
4π

.

In the normal state one has ψ = 0 and B = H . Thus,

F̃n(T, H) = − HB
4π

= − H 2

4π
.

For the superconducting state, we find provided that the magnetic field is completely
expelled from the superconductor volume

F̃s(T, H) = −α2(T )

2β
− 0 = − H 2

c (T )

8π
.

Next, we must compare two values of the potentials and choose the smallest one.
Therefore, if H < Hc(T ), the superconducting Meissner state with ψ = ψ0 and
B = 0 is energetically more favorable.14 On the contrary, if H > Hc(T ), the normal
state withψ = 0 and B = H is energetically more favorable. The phase transition at
H = Hc(T ) should be first-order one since the order parameter changes jump-like.

The occurrence of superconductivity, as the magnetic field decreases, can be
imagined in a different way without jump-like expulsion of magnetic field when the
superconducting phase nuclei appear spontaneously at some magnetic field. Since
in this case the order parameter ψ should be small, we may restrict ourselves with
the linearized Ginzburg–Landau equation

γ

2

(
−i�∇ − 2e

c
A(r)

)2

ψ(r) + αψ(r) = 0.

Let magnetic field of strength H be directed along the z-axis and we take the Landau
gauge A = (0, H x, 0). Then we rewrite the Ginzburg–Landau equation as follows:

γ

2

(
−i�∇ − 2e

c
A(r)

)2

ψ(r) = −αψ(r).

14 In other words, the magnetic field expulsion occurs because the superconducting state has the
smaller energy as compared with the normal state at the same temperature. If the superconducting
state of a metal would have the same energy as the normal one, the magnetic field expulsion would
be unfavorable.
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This equation looks like the Schrödinger equation for the motion of charged particle
with mass m∗ = 1/γ and charge e∗ = 2e. The quantity −α plays a role of particle
energy E . The properties of this equation are well known from the quantummechan-
ics. The solutions which vanish at the infinity take place at the discrete energy levels
or Landau levels equal to

E = �ω
(
n + 1/2

)
, ω = e∗ H

m∗c
= 2eγ

c
H, n = 0, 1 , 2, . . .

The energy levels degenerate in the orbit center position of an electron. The energy
minimum corresponds to the lowest level n = 0. Then,

�

2

2eγ

c
Hc2 = −α(T ).

The magnetic field

Hc2(T ) = |α(T )| c

�eγ
, Hc2(T ) ∼ Tc − T,

at which the spontaneous nucleation of superconducting phase becomes possible, is
referred to as the upper critical field. Due to homogeneity of a superconductor, the
nucleus of superconducting phase may appear at any point of the superconductor.

It is interesting to compare the upper critical field Hc2 with the thermodynamic
critical field Hc. For this purpose, we consider a ratio of these two fields

Hc2(T )

Hc(T )
= |α|c

�eγ

√
β√

4π |α| = c
√

β

�eγ
√
8π

√
2 = κ

√
2.

The dimensionless parameter κ introduced above is called the Ginzburg–Landau
parameter. Since this parameter is temperature-independent, it can serve as a
characteristic for superconductors with respect to its behavior in the magnetic field.

Since the Ginzburg–Landau parameter is dimensionless, it can be represented as a
ratio of two lengths. The magnetic field penetration depth δ(T ) into superconductor
can be selected as one of the lengths.As for the second one,wewill take the coherence
length ξ(T )describing the typical length at which the superconducting parameter
changes in the lack of magnetic field. In fact, we have

γ

2

(−i�∇)2ψ + αψ = 0 or ξ 2∇2ψ + ψ = 0

where the coherence length is defined according to

ξ(T ) =
(

�
2γ

2|α(T )|
)1/2

∼ (
Tc − T

)−1/2
.
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One can readily see that κ = δ/ξ as well

δ

ξ
=

(
c2

16πγ e2ψ2
0

)1/2 √
2|α|

�γ 1/2
= c

e
√
16πγ

√
β√|α|

√
2|α|

�γ 1/2
= c

√
β

�eγ
√
8π

= κ.

The upper critical field Hc2 can be expressed in terms of coherence length ξ(T ) and
magnetic flux quantum φ0 = πce/�

Hc2 = |α(T )| c

�eγ
= 1

2π

2|α(T )|
�2γ

πc�

e
= φ0

2πξ 2
.

This formula means that the magnetic flux equal to the quantum one φ0 passes
through the region of area 2πξ 2, the length ξ being the typical size of superconducting
nucleus.

As is noted above, a superconducting nucleus can appear at any place in the
superconductor. For the superconducting nucleus emerging at an arbitrary15 point
x0, we can take the solution of the linearized Ginzburg–Landau equation in the
Landau gauge A = (0, H x, 0) as

ψ ∼ exp
( i x0

ξ 2
y
)
exp

(− (x − x0)2

2ξ 2

)
.

This solution corresponds to the lowest energy level n = 0 at H = Hc2. Due to
spatial homogeneity of a superconductor we can assume that the general solution for
the order parameter is some regular periodical structure (vortex lattice), i.e. linear
combination of the solutions centered at the regular intervals

ψ(x, y) =
∞∑

k=−∞
Cke

ik x0
ξ2

y
e
− (x−kx0)2

2ξ2 (k is an integer).

To determine the spatial structure ψ(r) emerging in the magnetic fields somewhat
lower than Hc2, it is necessary to involve nonlinear term |ψ |2ψ in the Ginzburg–
Landau equation. The full analysis gives energeticallymost favorable solution having
the symmetry of triangular vortex lattice with the spatial period of about ξ .

Depending on the magnitude of the Ginzburg–Landau parameter κ, larger or
smaller than 1/

√
2 ( Hc2 > Hc or Hc2 < Hc), we should expect two various behaviors

different in kind for a superconductor in the magnetic field. Accordingly, we can
separate the superconductors into two types, namely type-I superconductors with
Hc2 < Hc and type-II ones with Hc2 > Hc.

Thus, the normal-superconducting state transition in the type-I superconductors
is jump-like at field H = Hc with the complete expulsion of magnetic field from the

15 Usually, describing the electronmotion in themagnetic field, point x0 is referred to as the electron
orbit center and the quantity py = �ky = �x0/ξ2 is said as a y-component of electron momentum.
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Fig. 6.7 The system of
coordinates

superconductor bulk. In the type-II superconductor, the transition to the supercon-
ducting state occurs via gradual expulsion of normal phase with the superconducting
nuclei appearing in the various regions of the superconductor. Therefore, we can
expect that the Meissner effect will be incomplete and the magnetic field expulsion
from the bulk will be smooth within some interval of magnetic field.

As we have seen above, the normal state of superconductor becomes absolutely
unstable with respect to appearing the superconducting phase nuclei as the magnetic
field decreases to the magnitude of upper critical field Hc2(T ). For the type-I super-
conductors, this means that the intermediate range of magnetic fields Hc2 < H < Hc

alone can exhibit the metastable states16 in the normal state.
The similar question can be raised here. What is the magnitude of magnetic field

when the superconducting state becomes unstable against spontaneous nucleation of
the normal phase in theMeissner state with the full magnetic field expulsion from the
superconductor bulk? We start to clarify this question by analyzing the state of the
superconductor in which the order parameter phase changes by an integer multiple
of 2π along some closed path

ψ(r) = |ψ |eiϕ(r), ϕ(r) = n arctan(y/x) where n is an integer.

Here arctan(y/x) = ϑ is the azimuthal angle in the cylindrical frame (ρ, ϑ, z) (Fig.
6.7). The z-axis, corresponding to radius ρ = 0, is a singular line called the vortex
line17 or vortex filament. The phase gradient, equal to

∇ϕ =
(

−n
y

ρ2
, n

x

ρ2
, 0

)
, |∇ϕ| = n

ρ
and ρ =

√
x2 + y2,

16 Herewe can trace the similar analogywith an existence of themetastable state region and spinodal
in other first-order phase transitions, e.g. gas-liquid transition.
17 For brevity, vortex as well.
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results in emerging the circulating superconducting current around the vortex line

j = c

4πδ2

�c

2e

n

ρ

where δ is the magnetic field penetration depth. Since the superconducting current
vanishes on the contour infinitely far away from the vortex line, the total magnetic
flux carried by a single vortex is quantized

∫
h dx dy =

∮
A d l =

∮
�c

2e
∇ϕ d l = �c

2e
2πn = nφ0 .

Let us consider vortex line from the hydrodynamic point of view as a singular
line in the velocity distribution under potential flow of liquid. Using the relation of
current j = ensvs with the superconducting velocity vs and the penetration depth
δ−2 = 4πe2ns/mc2 with the density of superconducting electrons ns , we have

vs = �

2m

n

ρ
, also vs = �

2m
∇ϕ.

Hence it is seen that the vortex line is characterized with the definite value of veloc-
ity circulation � around the closed contour L encircling the vortex filament. The
circulation of velocity vs equals

� =
∮
L

vs d l = 2πκ where κ = n�/m.

This value is independent of choosing the integration contour. If we multiply the
velocity circulation � by two electron masses 2m, we get the quantity to be sub-
jected to quantization in quantum mechanics. One may say that the vortex line in
the superconductor is an analog of vortex filaments known in the hydrodynamics of
fluids. The velocity vs has a singularity at the vortex line. Since the superconducting
current j s and velocity vs increase unlimitedly near the vortex line, the description
given above for the immediate region within the vicinity of vortex line requires more
detailed approach.

To satisfy the unambiguity condition directly at the vortex line ρ = 0, the order
parameter must exactly be zero ψ(ρ = 0) = 0, corresponding to the value of order
parameter in the normal state. The quantized vortex is an example of topological
defect.

In the general case, the quantitative description of vortex line is a complicated
mathematical problem. However, such description simplifies essentially for the type-
II superconductors with the large Ginzburg–Landau parameter κ � 1. In this case
the central region of vortex or vortex core represents approximately the normal
phase region, the order parameter changing from zero value in the core center to
the equilibrium value ψ0 outside the core (Fig. 6.8). The typical scale of the core
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Fig. 6.8 The behavior of
order parameter ψ(ρ) and
magnetic field h(ρ). The
vortex core size ξ is much
smaller than the distance δ at
which the magnetic field
decays

radius is about the coherence length ξ . The magnetic field of vortex h(ρ) (Fig. 6.8)
changes on the typical scale of about penetration depth δ much larger as compared
with ξ in our case. Therefore, in first approximation we believe that the magnetic
flux passes mainly across the region outside the core where |ψ | ≈ ψ0. In this case
we can employ the following equations:

rot h = 4π

c
j and j = c

4πδ2

(
φ0

2π
∇ϕ − A

)
.

Here δ is the penetration depth corresponding to the order parameter magnitude |ψ0|.
Applying curl to the both sides of the first equation, we obtain the equation for the
magnetic field h(ρ) induced with the vortex

h + δ2 curl curl h = h − δ2∇2h = nφ0ezδ2(ρ) (ρ � ξ).

Here ez is unit vector specifying the direction of vortex line and n is the number of
magnetic flux quanta φ0. The solution of this equation is expressed in terms of the
modified Bessel function of the second kind K0(x)

h(ρ) = ez
nφ0

2πδ2
K0(ρ/δ) = ez

nφ0

2πδ2

{
ln δ/ρ, δ � ρ � ξ,√

πδ
2ρ exp

(−ρ/δ
)
, ρ � δ.

The magnetic field h(0) in the vortex center remains finite, achieving the maximum
magnitude about

h(0) ≈ n
φ0

2πδ2
ln

δ

ξ
.

The magnetic field decays exponentially rapid for the distances exceeding the
penetration depth δ.

The nucleation of a vortex is associated with an additional energy. Calculating
the energy of a vortex at κ � 1, we can neglect the condensation energy of super-
conducting phase in the vortex core. Then the main contribution to the vortex energy
comes from the region outside the vortex core ρ � ξ and represents a sum of energies
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of magnetic field and superconducting current. The vortex line energy per unit line,
i.e. line tension, is approximately given by the formula

εn =
∫

ρ�ξ

d2ρ

{
h2

8π
+ δ2

8π

(
4π

c
j
)2

}
≈ n2 φ2

0

(4πδ)2
ln

δ

ξ
, δ � ξ.

The contribution from the core region ρ � ξ to the vortex energy is about
(H 2

c /8π)πξ 2 ∼ φ2
0/(4πδ2), i.e. it is approximately by a factor lnκ � 1 as less.

Accordingly, this contribution is insignificant within the logarithmic accuracy. Since
εn ∼ n2 and n2 � |n|, the state of |n| vortices each with the flux quantum φ0 is ener-
getically more favorable than the state with the single vortex having |n| quanta of
magnetic flux.

In the external magnetic field the formation of a vortex, i.e. normal phase nucleus,
can be energetically more favorable.18 In fact, in this case we should deal with the
Gibbs free energy thermodynamic potential:

F̃(T, h) = F(T, B) −
∫
V

hB
4π

dV

where the magnetic field strength h is an independent quantity unlike magnetic
induction B. HereV is the volumeof the superconductorwith the vortex line of length
L . The presence of vortex line gives the contribution to the energy equal to Lεn . Thus,
as compared with theMeissner state characterized by the magnetic induction B = 0,
we find the following variation of Gibbs free energy thermodynamic potential

δF̃(T, h) = Lεn −
∫
V

hB
4π

dV .

We have according to definition of the magnetic induction as a mean quantity of
magnetic field strength h averaged over the volume of the superconductor

BV =
∫
V

h dV = L
∫

h d2ρ = nφ0L .

18 In the presence of magnetic field it is necessary to take into account the energy for the magneti-
zation of the vortex in the magnetic field. The energy equals −Mh where M is the total magnetic
moment of the vortex. Using relation j = c curlm where m is the magnetic moment density and
employing the Maxwell equation curl (h − 4πm) = 0, we find the following formula for the total
magnetic moment per unit length of vortex

4π M = 4π
∫∫

m d2ρ =
∫∫

hd2ρ = nφ0.

The magnetic field when the vortex nucleation becomes energetically favorable should be found
from the condition εn − Mh < 0. The threshold field equals h = 4πεn/(nφ0) is minimal at n = 1.



6.6 The Ginzburg–Landau Functional 255

Then

δF̃ = L

(
εn − h

4π
nφ0

)

and the formation of vortex or normal phase nucleus becomes favorable if the mag-
netic field exceeds the threshold magnitude Hn = 4πεn/(nφ0). This magnitude is
minimal for the vortex with one flux quantum n = 1. The corresponding critical
field equal to

Hc1 = 4πε1

φ0

is called the lower critical field and determines the upper boundary for the Meissner
state in the superconductor. For κ � 1, we have the following estimate within the
logarithmic accuracy:

Hc1 ≈ φ0

4πδ2
lnκ.

To relate the field Hc1 with the thermodynamic critical field Hc and upper critical
field Hc2, we have the formulas

Hc1 = Hc
lnκ

κ
√
2

= Hc2
lnκ

2κ2
(κ � 1).

As the temperature approaches the critical one, the lower critical field decreases
according to Hc1(T ) ∼ (Tc − T ).

In type-II superconductors one has Hc1 < Hc < Hc2 (Fig. 6.9). As the external
magnetic field exceeds the critical magnitude Hc1 and grows further, the number
of vortices grows and the magnetic field penetration into the superconductor bulk
increases as well. TheMeissner effect becomes incomplete and the state of the super-
conductor proves to bemixed or vortex one in the intermediate Hc1 < H < Hc2 range
of magnetic fields. The thermodynamic critical field Hc turns out to be unremarkable
for the physical properties in type-II superconductors. The density of vortex line
number N is connected with the magnetic induction by the formula B = Nφ0. The
mean distance between vortex line depends on the magnetic field approximately as

Fig. 6.9 The temperature
behavior of critical fields in
the type-II superconductor
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Fig. 6.10 The temperature
behavior of critical fields in
the type-I superconductor.
The dashed lines show the
boundaries of possible
metastability for the
Meissner and normal states

(φ0/B)1/2. The vanishing of superconductivity at Hc2 is a second-order phase tran-
sition. The mean distance between the vortex lines becomes about the core size ξ(T )

and the cores representing the normal phase regions merge practically with each
other. In the mixed state, the vortices arrange the regular periodical structure called
the Abrikosov vortex lattice or flux line lattice.This is usually a triangular lattice.

In Fig. 6.10, the diagram is given for a type-I superconductor in themagnetic field-
temperature variables. Since the superconducting-normal phase transition in field Hc

is a first-order one, the range between the fields Hc2 and Hc1 can be considered as
a region of metastable phases, respectively, normal and superconducting states. In
other words, it is possible to overcool the normal phase below the curve Hc at least
to the field Hc2 being the line of absolute instability for the normal line. Also, it is
impossible, in principle, to overheat the superconducting phase in the Meissner state
above the magnitude Hc1.

In conclusion, we derive the Maxwell equal area rule in its application to the
normal-superconducting phase transition. Let we have two phases, normal and super-
conducting, in the same magnetic field of strength H . The corresponding magnetic
inductions Bn and Bs are determined with the derivatives of the Gibbs free energy
potentials F̃n(H) and F̃s(H) with respect to the magnetic field H

Bn

4π
= −∂ F̃n(H)

∂H
and

Bs

4π
= −∂ F̃s(H)

∂H
.

Next, we note that themagnetic induction Bn in the normal phase equals themagnetic
field strength H provided that the normal phase has no magnetic properties. For the
superconducting phase, we have relation Bs = H + 4πMs(H) where Ms is the
magnetization of the superconductor. In other words,

Bs − H
4π

= Ms(H) = ∂

∂H

[
F̃n(H) − F̃s(H)

]
.

Integrating this equation in the limits between zero and infinite magnetic fields, we
obtain ∫ ∞

0
Ms(H) · dH = [

F̃n(H) − F̃s(H)
]∞
0 = F̃s(0) − F̃n(0).
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Here we have involved that the superconducting state breaks down in sufficiently
large magnetic field and, therefore, the Gibbs free energy potentials F̃s and F̃n are
the same. In zero magnetic field, according to the definition of the thermodynamic
critical field Hc, we have F̃s(0) − F̃n(0) = −H 2

c /8π . So, we arrive at the simple
integral equality for the magnetization in the superconducting phase

∫ ∞

0
Ms(H)·dH = − H 2

c

8π
. (6.1)

For type-II and type-I superconductors, the graphic examples of the Maxwell equal
area rule are given in Figs. 6.11 and 6.12. An elementary straight-line approximation
of the magnetization curve within the magnetic field interval Hc1 and Hc2 can readily
give us a simple estimate for the relation between the magnitudes Hc1 and Hc2

as Hc1Hc2 = H 2
c . Obviously, this relation supposes the location of thermodynamic

critical field Hc between Hc1 and Hc2.

Fig. 6.11 The schematic of
magnetization M versus
magnetic field H for a
type-II superconductor. The
shaded segments 1 and 2
have the equal areas. The
Meissner state is described
with line M = −H/4π and
magnetic susceptibility
χ = −1/4π or permeability
μ = 0

Fig. 6.12 The schematic of
magnetization M versus
magnetic field H for a type-I
superconductor. The shaded
segments 1 and 2 have the
equal areas. The Meissner
state is described with the
line M = −H/4π . The
dashed line, connecting the
fields Hc1 and Hc2,
corresponds to the
thermodynamically unstable
state associated with
magnetic susceptibility
χ < −1/4π or permeability
μ < 0
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Problems

1. Write the Ginzburg–Landau functional and corresponding equations in the dimensionless
units.

Solution. Let us denote F as a density of the functional according to F = ∫
F d3r and go over

to new units

ψ ′ = ψ

ψ0
, h′ = h

Hc
√
2
, r ′ = r

δ
, and A′ = A

Hc
√
2 δ

.

The density of functional F and Ginzburg–Landau equations read (we omit the dashes in new
variables)

F = H2
c

4π

∫
d3r

[
1

2

∣∣∣∣
(−i∇

κ
− A

)
ψ

∣∣∣∣
2

− |ψ |2 + |ψ |4
2

+ (
rot A

)2]
,

(
−i

∇
κ

− A
)2

ψ − ψ + |ψ |2ψ = 0,

curl curl A = − i

κ

(
ψ∗∇ψ − ψ∇ψ∗) − A|ψ |2.

Hence it is seen that the physical properties of a superconductor in the Ginzburg–Landau theory
are completely determined with the single temperature-independent parameter κ.

2. Write the analog of the Clausius–Clapeyron equation for the superconductor-normal metal
phase transition in the magnetic field in the case of type-I superconductor.

Solution. A role of transition pressure is played with the critical field Hc(T ) at which the first-
order phase transition takes place. Instead of volume the magnetization M is a variable conjugated
to the magnetic field. The magnetization changes jump-like at the transition point from magnitude
Ms = −Hc/4π in the superconducting state (since magnetic induction B = H + 4π M = 0 and
M = −H/4π ) to magnitude Mn = 0 in the normal state. Accordingly we arrive at the relation

d Hc

dT
= L(T )

T (Ms − Mn)
= −4π

L(T )

T Hc(T )
,

L(T ) being the latent heat of transition. We find for the latent heat

L(T ) = − T

4π
Hc

d Hc

dT
= −T

d

dT

(
H2

c (T )

8π

)
.

Since L > 0, the heat absorbs at the transition from the superconducting to the normal state.Writing
L(T ) as T (Sn − Ss), we find the difference in the entropies for the phases in equilibrium

Sn(T ) − Ss(T ) = − 1

4π
Hc

d Hc

dT
.

If the transition occurs in zeromagnetic field, latent heat will be L = 0 since the critical field Hc = 0
at T = Tc and derivative d Hc/dT remains finite. Therefore, the superconducting transition is of
second-order one in zero magnetic field. As a result, the specific heat has a discontinuity at the
transition point (Rutger’s formula):

Cn − Cs = T
d

dT
(Sn − Sc)

∣∣
T =Tc

= − T

4π

(
d Hc

dT

)2∣∣∣∣
T =Tc

.
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Fig. 6.13 The hollow
superconducting cylinder of
radius R and wall thickness
d in the magnetic field H

6.7 The Little–Parks Effect

Let us consider superconducting hollow thin-wall cylinder of radius R and thickness
of wall d � R (Fig. 6.13). The homogeneous magnetic field H is directed along
the cylinder axis. Below we study the behavior of the superconducting transition
temperature as a function of magnetic field.

To simplify our description, we put the wall thickness d to be small as compared
with the coherence length ξ and magnetic field penetration depth δ. This inequality
allows us in first approximation to treat the modulus of order parameter as constant 19

inside the superconductor, i.e. |ψ | = const. For δ � R and d � R, it is also possible
to neglect any variation of vector potential A between the cylinder walls and make
no distinction in the strength of magnetic field inside and outside the cylinder.

Let us choose vector potential A in the gauge having only the azimuthal coordinate
Aϑ in the cylindrical coordinates (ρ, ϑ, z). Then we substitute the order parameter as

ψ = |ψ |eiϕ(r)

into the expression for the thermodynamic potential density of superconductor

Fs = γ

2

∣∣∣∣
(

− i�∇ − 2e

c
A
)

ψ

∣∣∣∣
2

+ α|ψ |2 + β

2
|ψ |4 + h2

8π
.

19 This approximation satisfies the boundary condition at the superconductor surface n
(−i�∇ −

2eA/c
)
ψ = 0 as well.
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Analyzing the gradient term yields

Fs = γ �
2

2

(
∇ϕ − 2π

φ0
A
)2

|ψ |2 + α|ψ |2 + β

2
|ψ |4 + h2

8π
.

Then, using that∇ϕ and A are constant over the cross-section of the cylinder, we can
represent ∇ϕ − (2π/φ0)A as an average for the integral along the circumference
normal to the cylinder axis

∇ϕ − 2π

φ0
A = 1

2π R

∮ (
∇ϕ − 2π

φ0
A
)

d l =

= 1

2π R

(
[
ϕ] − 2π

φ0
�

)
= 1

R

(
n − �

φ0

)
.

Here [
ϕ] = 2πn is a phase increment of order parameter along the circle round
the cylinder axis and n is an arbitrary integer providing us an unambiguity of the
order parameter at the same point in the space. The magnetic flux across the cylinder
cross-section equals� = π R2H andφ0 is themagnetic flux quantum.Wefindfinally

Fs = γ �
2

2R2

(
n − �

φ0

)2

|ψ |2 + α|ψ |2 + β

2
|ψ |4 + h2

8π
.

The requirement for the minimum of thermodynamic potential gives the condition
for choosing the integer n from the following inequality:

n − 1

2
<

�

φ0
< n + 1

2
.

The following equation determines the critical temperature Tc of superconducting
transition as a function of magnetic flux �:

α(Tc) + γ �
2

2R2

(
n − �

φ0

)2

= 0, α(Tc) = α0(Tc − Tc0).

The relative variation of critical temperature equals

Tc − Tc0

Tc0
= − γ �

2

2R2α0Tc0

(
n − �

φ0

)2

∼ −ξ 2(T = 0)

R2

(
n − �

φ0

)2

.

The behavior 
Tc/Tc0 as a function of flux � consists of the periodically reiterated
parabolic arcs (Fig. 6.14) with period φ0 and maximum ratio:

Tc − Tc0

Tc0
= − γ �

2

8R2α0Tc0
∼ −ξ 2(T = 0)

4R2
.
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Fig. 6.14 The critical
temperature Tc versus
magnetic flux �

To conclude, the Little–Parks effect is a periodical variation of superconducting
transition temperature as a function of the magnetic flux threading across the hollow
cylinder. Note that, due to small wall thickness d � δ of cylinder, the superconduc-
tor cannot seize the magnetic flux, entailing no quantization of magnetic flux. The
experimental observation of the Little–Parks effect has demonstrated the validness of
the BCS theory conclusions on the Cooper pairing of electrons and the requirement
of the gauge invariance for the vector potential.

6.8 Critical Current in a Thin Plate

Within the framework of the Ginzburg–Landau functional we study below the behav-
ior of critical current in the thin plate of thickness d � ξ and δ, the thickness being
smaller than both coherence length ξ and magnetic field penetration depth δ. Let
the current of density j s flow along the plate and be directed along the z-axis, as is
shown in Fig. 6.15. The x-axis is normal to the plate.

In a first approximation the condition d � ξ provides us the constancy of super-
conducting order parameter ψ over the cross-section of the plate. This condition
also agrees with the boundary condition dψ/dx = 0 on the both sides of the plate.
Otherwise, we have dψ/dx ∼ ψ/d and contribution of gradient term (∇ψ)2 to the
Ginzburg–Landau functional becomes too large and energetically unfavorable.

Fig. 6.15 The plate
geometry
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The second condition d � δ allows us to neglect a possible variation of magnetic
field h and vector potential A over the cross-section of the plate. The relative mag-
nitude of the corrections has a smallness of about (d/δ)2 � 1. In our approximation
the vector-potential equals

A = c j s

4γ e2|ψ |2 .

The magnetic field proves to be negligibly small: h = curl A ≈ 0.
Correspondingly, we get for the density of the Ginzburg–Landau free energy

Fs[ψ] = 1

8γ e2
j2s

|ψ |2 + α|ψ |2 + β

2
|ψ |4.

Minimizing the free energy density Fs with respect to |ψ |2 results in the following
equation:

− 1

8γ e2
j2s

|ψ |4 + α + β|ψ |2 = 0.

Putting |ψ | = ψ0 f where ψ2
0 = −α/β is the equilibrium magnitude of the super-

conducting order parameter, we obtain

js = jc
3
√
3

2
f 2(1 − f 2)1/2, jc = 4

3
√
3

eγ �

ξ(T )
∼ (Tc − T )3/2.

Here the quantity jc means the critical density of superconducting current. Let us
analyze behavior of current js as a function of parameter f 2 (Fig. 6.16). We see that,
as the current density js increases from zero value, the parameter f 2 decreases from
value f 2 = 1 to f 2 = 2/3 at which the superconducting current density reaches the
maximum magnitude jc. For js > jc, there are no nonzero values f 2 and the plate
will be in the normal and nonsuperconducting state. Therefore, the quantity jc is the
maximum magnitude of the current density compatible with the superconducting
state. At the transition to the normal state when js = jc, the superconducting order
parameter jumps from

√
2/3ψ0 to zero value.

The physical meaning of critical density of superconducting current can be
comprehended from the relation below

jc = 1

3
√
6

cHc(T )

πδ0(T )
= ens(T )vc(T ).

Here Hc(T ) is the thermodynamic critical field, δ0(T ) is the penetration depth at
the order parameter ψ0, and ns(T ) is the density of superconducting electrons. The
quantity with the dimension of velocity

vc(T ) = 1

3
√
3

�vF

pFξ(T )
,
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Fig. 6.16 The square of
superconducting order
parameter versus the current
density (the variables are
normalized). At js > jc the
order parameter jumps to
zero value. The dashed line
shows the region of
non-physical behavior

where vF and pF are the Fermi velocity andmomentum, has a meaning of the critical
velocity for elementary excitations or quasiparticles when the breakdown of Cooper
pairs occurs.

In this sense, the critical velocity is proportional to the superconducting gap
(T )

and vc ∼ 
(T )/pF .



Chapter 7
Weakly Non-ideal Bose Gas

7.1 The Gross–Pitaevskii Equation

The laser cooling technique exploiting the Doppler effect1 and manipulation with
the alkali gases of Rb, Na, Li in magneto-optical traps after evaporative cooling
stage allow one to achieve extremely low temperatures as hundreds of nanokelvin.
In spite of the limited number of atoms in a trap2 and low particle density, the realiza-
tion of ultralow temperatures in the traps delivers a possibility for the experimental
observation and study of the Bose–Einstein condensation phenomenon. From the
theoretical point of view, the low particle density in the traps makes it possible to
describe the properties of the Bose–Einstein condensate within the framework of
weakly non-ideal Bose gas model. Below we consider the properties of weakly non-
ideal condensed Bose gas of zero spin particles, i.e. the gas with small energy of
interparticle interaction.

The basis for the theory of weakly non-ideal condensed Bose gas is an assumption
that almost all the particles are in the condensate, i.e. in the ground state with zero
momentum. The number of excited overcondensate particles is small, N p �=0 = N −
N p � N . Under conditions of dilute and condensed Bose gas, the pair collisions
between particles of small momenta play a key role in the interparticle interaction.
In first approximation due to low velocities of colliding particles we can restrict
ourselves onlywith the contribution from the s-scattering3 of particles. The diluteness
of a gas and involvement of pair particle collisions alone suppose the fulfillment of
inequality na3 � 1 where n is the particle concentration. In other words, the mean

1 The Doppler cooling process relies on absorbing a photon by an atom with the next spontaneous
re-emission of a photon with the frequency larger than that of the initially absorbed photon, thereby
lowering the average kinetic energy of atoms in the trap.
2 Usually, within 104– 106 particles.
3 If the s-scattering amplitude of slow particles is a, the p-scattering amplitude will be by a factor
(pa/�)2 � 1 as smaller, magnitude p being the typical momentum of the particles. The typical
scattering lengths of alkali atoms are about 100 aB where aB is the Bohr radius.
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spacing between particles is much larger as compared with the scattering length, i.e.
n−1/3 � a. Under such approximations, the matrix element of two-particle coupling
g p p′ canbe replacedwith its value at zeromomentag00 = g = const. In the coordinate
representation this corresponds to the point-like interaction between particles as
U (r − r ′) = gδ(r − r ′).

The coupling constant g is related with the s-scattering length a by means of
g = 4π�

2a/m. The coupling between the Bose particles is assumed to be repulsive,
i.e. g > 0. For the interparticle attraction g < 0, the state of weakly non-ideal gas
proves to be thermodynamically unstable4 with producing a denser state than the gas
one. The temperature of the gas is always supposed to be much lower as compared
with the Bose–Einstein condensation temperature.

So, we write down the effective Hamiltonian for the system of N spinless bosons
of mass m in the external potential V (r) of a trap

Ĥ =
N∑

i=1

(
p̂2i
2m

+ V (r i )

)
+ 1

2

N∑

i �= j

U (r i − r j )

where pi is the momentum operator for i th particle and U (r i − r j ) = gδ(r i − r j )

is the interaction operator for two particles i and j . In first approximation5 the many-
particle wave function �(r1, r2, . . . , rN ) in the system of weakly interacting N
spinless bosons can be represented as a symmetrized product of one-particle wave
functions. In the Bose–Einstein condensed state, all the bosons are supposed in the
same statewith certain one-particlewave functionφ(r). Therefore, thewave function
�(r1, r2, . . . , rN ) can approximately be written as

�(r1, r2, . . . , rN ) ≈
N∏

i=1

φ(r i )

where one-particle function φ(r) is normalized as usual
∫

d r |φ(r)|2 = 1. Let us
substitute wave function �(r1, r2, . . . , rN ) into the integral

E =
∫

�∗(r1, r2, . . . , rN )Ĥ�(r1, r2, . . . , rN )d r1 d r2 . . . d rN

and calculate the energy of the system with wave function �

4 The similar condensed picture in the gas with attraction can be realized only for the metastable
long-living state provided that the gas is spatially confinedwith a trap and the number of gas particles
does not exceed some critical value.
5 This is also the Hartree–Fock approximation or self-consistent field approximation.
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E[�] =
N∑

i=1

∫
d r i

(
�
2

2m
|∇φ(r i )|2 + φ∗(r i )V (r i )φ(r i )

)
+

+1

2

N∑

i �= j

∫
φ∗(r i )φ

∗(r j )U (r i − r j )φ(r j )φ(r i )d r i d r j =

=
∫

d r
[

N

(
�
2

2m
|∇φ(r)|2 + V (r)|φ(r)|2

)
+ N (N − 1)

2
g|φ(r)|4

]
.

For the physical clarity, it is convenient to change the normalization of function φ(r)
and, instead, introduce function ψ(r) according to ψ(r) = √

Nφ(r). The function
ψ(r) will be called the condensate wave function. We should not ascribe the literal
meaning to such terminology commonly used. The condensate wave function in its
strict meaning plays a role of order parameter and it should not also be confused with
the genuine many-particle wave function of the bosonic system.

So, using the inequality N � 1 and putting N (N − 1) ≈ N 2, we rewrite the
expression for the energy of the system as the following functional:

E[ψ(r),ψ∗(r)] =
∫

d r
[

�
2

2m
|∇ψ(r)|2 + V (r)|ψ(r)|2 + g

2
|ψ(r)|4

]
,

∫
d r |ψ(r)|2 = N .

As we can see from the last formula, the quantity |ψ(r)|2 = n(r) can be treated as a
condensate density.

To find the optimum behavior of condensate wave function ψ(r), we must mini-
mize the energy functional6 under conserving the total number of particles N . After
introducing the Lagrange multiplier μ as a chemical potential of the gas, it is nec-
essary to minimize the functional E − μN with respect to ψ and ψ∗. The condition
δ(E − μN )/δψ∗ = 0 yields7 the stationary Gross–Pitaevskii equation

− �
2

2m
∇2ψ(r) + V (r)ψ(r) + g|ψ(r)|2ψ(r) = μψ(r),

governing the spatial behavior of condensate wave function. The Gross–Pitaevskii
equation resembles the nonlinear Schrödinger one.

The Gross–Pitaevskii equation gives the following magnitude of chemical
potential:

μ = g|ψ(r)|2 = gn

6 Note that, on substituting −i�∇ → −i�∇ − (2e/c)A, the functional goes over to the Ginzburg–
Landau one.
7 The conjugate condition (δE − μN )/δψ = 0 entails the conjugate equation.
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for the homogeneous state of condensedBose gas occupying volumeV in the absence
of external field V (r) = 0. This corresponds completely to relation μ = ∂E/∂N
where

E = N (N − 1)

2
gV ≈ g

N 2

2V
.

The pressure of condensed gas equals

P = −∂E

∂V
= gn2

2
= gρ2

2m2

where ρ = mn is the mass density of a gas. The sound velocity, determined by
derivative c = (∂P/∂ρ)1/2, reads

c =
√

gρ

m
=

√
gn

m
.

For the thermodynamic stability of homogeneous state, it is necessary c2 > 0, i.e.
repulsion g > 0.

The healing length8 ξ describes the spatial scale over which the condensate wave
function varies and equals

ξ = �

2
√

mgn
= �

2
√

mμ
.

This estimate results from comparing the interaction energy gn with the kinetic
energy of about �

2/(2mξ2) per one particle.
The approximation neglecting the kinetic term in the Gross–Pitaevskii equation is

referred to as the Thomas–Fermi approximation. Then the distribution of condensate
density is described with the simple equation

n(r) = |ψ(r)|2 = μ − V (r)
g

.

The spatial boundaries of the condensate are determined from condition V (r) = μ.
The condition of smallness for the typical energy gn of interparticle interaction

as compared with the Bose–Einstein condensate temperature Tc ∼ �
2n2/3/m can

be interpreted in terms of small gas density by introducing the gas parameter na3.
The smallness of gas parameter na3 � 1 means that the particle-particle scattering
length a is significantly smaller than the mean distance between the particles n−1/3.
The volume which radius is about the healing length ξ contains a large number of
particles or nξ3 � 1.

8 The coherence length in the condensed matter literature.
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Problems

1. Find the spatial behavior of the condensate near an impenetrable wall.
Solution. Let the wall be at the plane x = 0 and the condensate occupy the half-space x > 0.

The condensate wave function ψ(x) can be taken as real and it satisfies the equation

− �
2

2m
ψ′′(x) + gψ3(x) = μψ(x)

with the boundary conditionsψ(x = 0) = 0 andψ(x = ∞) = ψ0 = (μ/g)1/2.Multiplying the both
sides of the equation by ψ′(x), we find the first integral

− �
2

2m
ψ′2(x) + g

2
ψ4(x) − μψ2(x) = −μ

2
ψ2
0 .

The solution of the equation results in the wave function

ψ(x) = ψ0 tanh(x/2ξ), ξ = �/(2
√

mμ )

which approaches its bulk value over the distance about the healing length ξ.
2.Using the Thomas–Fermi approximation, find the condensate cloud size R, chemical potential

μ, and energy E for the gas of N bosons with mass m in the symmetrical harmonic trap with
frequency ω.

Solution. Neglecting the gradient term in the Gross–Pitaevskii equation, we have for the
condensate density n(r) = |ψ(r)|2

n(r) = 1

g

(
μ − mω2r2

2

)
= mω2

2g

(
R2 − r2

)
, μ = mω2R2

2
.

Here R is the size of condensate cloud. The total particle number N in the trap equals

N =
∫

n(r)4πr2dr = mω2

2g
4π

R∫

0

(R2 − r2)r2dr = 4π

15

mω2

g
R5.

Hence we find the cloud radius and chemical potential

R =
(

15gN

4πmω2

)1/5

= l

(
15aN

l

)1/5

, g = 4π�
2a

m
;

μ = mω2

2

(
15gN

4πmω2

)2/5

= �ω

2

(
15aN

l

)2/5

, l =
(

�

mω

)1/2

.

Here a is the scattering length of particles and l is the oscillatory length of the trap. Using that
μ = ∂E/∂N and μ ∼ N 2/5, we obtain the total energy of the gas

E = 5

7
μN ∼ N 7/5.

The validity of the Thomas–Fermi approximation implies the fulfillment of the inequality

�
2

2m

ψ

R2 � μψ

leading to the following inequality for the total particle number N � l/a in the trap. The inequality
does not contradict the necessary requirement N � 1.
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3. The Bose star, consisting of ultralight bosons of mass m, is considered as an array of self-
gravitating Bose–Einstein condensate. Assuming the validity of the Gross–Pitaevskii equation and
the description of the condensate with the aid of single wave function ψ(r), estimate the radius for
the star of mass M , using the following spherically symmetrical variation9 function:

ψ(r) = A exp

(
− r2

2R2

)
, A =

(
M

π3/2R3m

)1/2

with variational parameter R.
Solution. Let us write the total star energy with condensate wave function ψ as a sum of kinetic

energy Ekin, interparticle interaction energy Eint, energy of the condensate in the gravitational field
Egr, and the gravitational field energy Ef:

E = Ekin + Eint + Egr + Ef =
∫

d3r

(
�
2

2m
|∇ψ|2 + g

2
|ψ|4 + ρ(r)�(r) + (∇�)2

8πG

)
.

Here g is the coupling constant between particles, ρ(r) = m|ψ(r)|2 is the mass density of conden-
sate,�(r) is the gravitational potential, and G is the gravitational constant. The search of the energy
minimum by varying over ψ(r) and �(r) under constancy of total number of particles results in
the Gross–Pitaevskii equation

[
− �

2

2m
∇2 + g|ψ(r)|2 + m�(r)

]
ψ(r) = μψ(r)

and in the Poisson equation determining the gravitational field

∇2� = 4πGρ(r).

The straightforward calculation for the kinetic and interaction energies gives the following
answers:

Ekin = 3

4π

�
2

m R2

M

m
and Eint =

√
2

8π3/2

g

R3

M2

m2 .

The calculation of gravitational energy Egr is readily performed by means of the Fourier
transformation. In fact,

∫
d3r ρ(r)�(r) =

∫
d3k1
(2π)3

d3k2
(2π)3

ρ(k1)�(k2)ei(k1+k2)r =
∫

d3k

(2π)3
ρ(−k)�(k),

and we use the simple relation between the Fourier transforms for the gravitational potential �(k)
and condensate density ρ(k)

�(k) = −4πG

k2
ρ(k).

This relation is a consequence from the Poisson equation. Then the simple calculation gives

Egr = −4πG
∫

d3k

(2π)3

ρ(k)ρ(−k)
k2

= −
√

2

π

G M2

R
at ρ(k) = Me−k2R2/4.

The energy of gravitational field is calculated in the analogous manner. As is expected, we have

Ef = −1

2
Egr.

9 The spherically symmetrical localized distribution is often called the axionic solution.
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Finally, we find the total energy

E(R) = 3

4π

�
2

m R2

M

m
+

√
2

8π3/2

g

R3

M2

m2 −
√

1

2π

G M2

R
.

The energy minimum is delivered with the radius R0 equal to

R0 = 3

4

√
2

π

�
2

Gm2M

(
1 +

√

1 + π

3
g

Gm2M2

�4

)
.

For clarity, we rewrite the answer in terms of boson Compton length λ = �/mc, Planck mass
Mp = (�c/G)1/2 where c is the light velocity and a is the scattering length according to g =
4π�

2a/m

R0 = 3

4

√
2

π
λ

M2
p

mM

(
1 +

√
1 + 4π2

3

a

λ

M2

M2
p

)
.

For M � Mp , we reach the limiting behavior independent of the star mass

R0 ≈
√
3π

2

√
aλ

Mp

m
.

4. Find the stability condition for a dilute gas mixture of bosons and spin-polarized fermions
of spin 1/2 and mass m f at zero temperature. The constants of boson-boson and fermion-boson
coupling are equal to g and λ, respectively.

Solution. Since the fermions are completely spin-polarized, the s-scattering of fermions with the
same spin directions vanishes and the coupling between the fermions with small momenta can be
neglected in first approximation. For the gas approximation at T = 0, we can put that all bosons are
in the ground state with zero momentum. The total energy for the gas mixture of volume V is a sum
of kinetic energy of fermions Ekin and energy Eint of boson-boson and boson-fermion interactions

E = Ekin + Eint =
∫

d r E =
∫

d r
(
3

5
ε f n f + 1

2
gnbnb + λnbn f

)
.

Here εF = p2F/2m f is the Fermi energy, pF = �(6π2n f )
1/3 is the Fermi momentum, n f and nb

are the fermion and boson densities, respectively. The chemical potentials of fermions and bosons
will be equal to the derivatives of total energy E with respect to the particle numbers N f = ∫

d r n f
and Nb = ∫

d r nb

μ f = ∂E/∂N f = ε f + λnb and μb = ∂E/∂Nb = gnb + λn f .

The necessary condition for the stability of mixture against fluctuations of densities n f →
n f + δn f and nb → nb + δnb under the fixed particle numbers N f and Nb requires the positiveness
of second-order energy variation with respect to the density fluctuations

δ2E =
∫

d r
(
1

2

∂2E

∂n2
b

(δnb)
2 + ∂2E

∂nb∂n f
(δnb)(δn f ) + 1

2

∂2E

∂n2
f

(δn f )
2
)

> 0.

The energy variation over the density fluctuations vanishes since the number of bosons and fermions
is fixed.

In order to have the quadratic form positive definite, we must put the following conditions for
its coefficients: ∣∣∣∣

∂2E/∂n2
b ∂2E/∂nb∂n f

∂2E/∂n f ∂nb ∂2E/∂n2
f

∣∣∣∣ > 0 and ∂2E/∂n2
b > 0.
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Hence, g > 0 and g(10εF/9n f ) − λ2 > 0. The density of fermions should not exceed the critical
value

n f < n f, cr = 4π2

3

(
�
2g

λ2m f

)3

.

If the inverse inequality is valid, the homogeneous state of the Fermi-Bose gas mixture becomes
unstable and the mixture separates into two phases.

5. Find the stability condition for the binary gas mixture of spin-polarized fermions of masses
m1 and m2 at zero temperature. The coupling constant between the different fermions equals g.

Solution. Since the fermions are completely polarized, the s-scattering between identical
fermions vanishes and the coupling between the same fermions can be neglected. The total energy
for the binary mixture of fermions is a sum of kinetic energies of fermions and interaction energy

E =
∫

E d r =
∫

d r
(
3

5
n1εF1 + 3

5
n2εF2 + gn1n2

)
.

Here n1 and n2 are the densities of mixture components and εF1, εF2 are the corresponding Fermi
energies.

The necessary condition for the mixture to be stable against the density fluctuations n1 →
n1 + δn1 and n2 → n2 + δn2 under fixed particle numbers N1 and N2 is a positive energy variation
in second order with respect to density fluctuations

δ2E =
∫

d r
(
1

2

∂2E

∂n2
1

(δn1)
2 + ∂2E

∂n1∂n2
(δn1)(δn2) + 1

2

∂2E

∂n2
2

(δn2)
2
)

> 0.

The first-order energy variation over the density fluctuations vanishes since the number of fermions
of each kind is fixed. The derivative ∂2E/∂n2

i is connected with the density of states at the Fermi
surface

N (εFi ) = mi pFi

2π2�3
, εFi = p2Fi

2mi
(i = 1, 2)

according to ∂2E/∂ni = 1/N (εFi ).
The quadratic form of two variables is positive definite if its coefficients satisfy the following

condition: ∣∣∣∣
N−1(εF1) g

g N−1(εF2)

∣∣∣∣ > 0 or g2N (εF1)N (εF2) < 1.

Note that the condition, obtained for the stability of binary fermion mixture against its separation,

is independent of the sign of coupling constant g, i.e. it is the same both for attraction and repulsion

between different fermions.

7.2 Dynamics of the Bose–Einstein Condensate

To study the dynamics of the Bose–Einstein condensate, it is necessary to generalize
the Gross–Pitaevskii equation for the non-stationary case. For this purpose, let us
write the equation for the time evolution of annihilation operator �̂(r, t) in the
Heisenberg representation

i�
∂

∂t
�̂(r, t) =[

Ĥ , �̂(r, t)
]=

[
−�

2∇2

2m
+ V (r) + g�̂+(r, t)�̂(r, t)

]
�̂(r, t)
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where Ĥ is the effective Hamiltonian of weakly non-ideal Bose gas. First, we take
the following arguments into account. The gas is sufficiently rarified, effective inter-
particle interaction is small enough, and almost all the particles are in the condensate.
Thus, we replace operator �̂(r, t) with the condensate wave function ψ(r, t) and
arrive at the non-stationary Gross–Pitaevskii equation

i�
∂

∂t
ψ(r, t) =

[
−�

2∇2

2m
+ V (r) + gψ∗(r, t)ψ(r, t)

]
ψ(r, t).

As an additional reason for justifying the non-stationary Gross–Pitaevskii
equation, we can apply the principle of least action as

δ

t f∫

ti

L dt = 0,

considering the following Lagrangian L[ψ∗,ψ]:

L[ψ∗),ψ] =
∫

i�ψ∗(r, t)
∂ψ(r, t)

∂t
d r − E[ψ,ψ∗].

Varying over δψ∗(r, t) yields the same equation

i�
∂ψ(r, t)

∂t
= δE

δψ∗(r, t)
=

[
−�

2∇2

2m
+ V (r) + g|ψ(r, t)|2

]
ψ(r, t).

To have the non-stationary equation consistent with the time-independent one,
the condensate wave function ψ(r, t) must evolve in time as exp(−iμt/�) where μ
is the chemical potential. The resulting phase multiplier can be explained as follows.
In fact, the wave function represents the matrix element of operator �̂(r, t) between
the ground states with N particles and N − 1 particles

ψ(r, t) = 〈N − 1|�̂|N 〉 ∼ e−i(EN −EN−1)t/�

since the time evolution of states |N − 1〉 and |N 〉 is proportional to e−i EN−1t/� and
e−i EN t/�, respectively. The difference EN − EN−1 is just the chemical potential μ.

Let us derive several hydrodynamic consequences from the non-stationary Gross–
Pitaevskii equation. We have for ψ and ψ∗ in the time-independent external potential
V (r)

i�
∂ψ

∂t
= − �

2

2m
∇ψ + V (r)ψ + g|ψ|2ψ,

−i�
∂ψ∗

∂t
= − �

2

2m
∇ψ∗ + V (r)ψ∗ + g|ψ|2ψ∗.
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Then we multiply the both sides of equations by ψ∗ and ψ, respectively, and subtract
one equation from the other

i�
∂|ψ|2
∂t

= − �
2

2m

(
ψ∗∇2ψ − ψ∇2ψ∗).

Using the identity

div (ψ∇ψ∗ − ψ∗∇ψ) = ψ∇2ψ∗ − ψ∗∇2ψ,

we arrive at the continuity equation for the gas density ρ = m|ψ|2

∂ρ

∂t
+ div j = 0,

meaning the mass conservation law. Here j is the mass density flux determined by
the following formula:

j = − i�

2

(
ψ∗∇ψ − ψ∇ψ∗) = �|ψ|2∇ϕ.

In the last equality, the quantity ϕ is the phase of condensate wave function ψ(r, t)
in the agreement with the usual relation

ψ(r, t) = |ψ(r, t)|eiϕ(r,t) = √
n(r, t)eiϕ(r,t).

Writing the vector of mass density flux as j = ρvs (ρ = mn) and putting the relation

vs(r, t) = �

m
∇ϕ(r, t),

we determine the vector vs which should be called the velocity of condensate flow.
The velocity of condensate flow has a property of potential flow or irrotational flow

curl vs = �

m
curl∇ϕ = 0.

This property is a distinctive attribute of superfluid liquids.
The non-stationary Gross–Pitaevskii equation allows us to obtain the momentum

conservation law in the following form:

∂ ji
∂t

+ ∂�ik

∂xk
= −n

∂V (r)
∂xi
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where the momentum flux density tensor �ik is given by the formula

�ik = Pδik +
(

�

2m

)2(∂ψ∗

∂xi

∂ψ

∂xk
− ψ∗ ∂2ψ

∂xi∂xk
+ ∂ψ

∂xi

∂ψ∗

∂xk
− ψ

∂2ψ∗

∂xi∂xk

)
.

Here P = gn2/2 is the pressure in the condensate and this term with pressure
expresses Pascal’s law.

The equation for phase ϕ(r, t) of condensate wave function can be derived from
the non-stationary Gross–Pitaevskii equation, using ψ = √

n exp(iϕ) and continuity
equation ∂n/∂t + div (nvs) = 0 for the particle density n(r, t). So, we find for the
gas in the external potential V (r)

−�
∂ϕ

∂t
=

(
1

2
mv2s + V (r) + gn − �

2∇2√n

2m
√

n

)
, vs = �

m
∇ϕ.

The density gradient term proportional to �
2/2m is referred to as the quantum pres-

sure and is responsible for the quantum effects in inhomogeneous Bose condensate.
Both phase and continuity equations constitute a closed set of equations equivalent
to the non-stationary Gross–Pitaevskii one. Note that the neglect of the quantum
pressure term corresponds to the Thomas–Fermi approximation. For the spherically
symmetric trap of frequency ω, this approximation is well applicable provided that
the particle number N exceeds significantly a ratio of oscillatory length l = √

�/mω
to the scattering length a, i.e. N � l/a.

7.3 Quantized Vortex in a Weakly Non-ideal Bose Gas

Aswe have seen above, the velocity of theBose condensate flow is a gradient of scalar
vs = (�/m)∇ϕ and, respectively, curl vs = 0, until the phase ϕ(r) of wave function
ψ(r) has no singularities. Let us imagine some closed contour C and consider the
phase increment �ϕ around the contour. Should we require the single-valued wave
function, the phase increment �ϕ must be a multiple of 2π on the return to the same
point, i.e.

�ϕ =
∮

C

(∇ϕ) · d l = 2πl

where l = 0, ±1, ±2, . . . is an integer. Hence we have the quantized circulation for
the velocity of the condensate flow

∮

C

vsd l = 2π�

m
l = lκ, κ = 2π�

m
,

and the quantity κ is called the circulation quantum.
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A simple example of the l �= 0 state is given by the following behavior of the
condensate wave function

ψ(r) = |ψ|eiθ(r), θ(r) = l arctan(y/x).

Here θ is the azimuthal angle in the cylindrical frame (ρ, θ, z). The phase gradient
equals

∇θ =
(

−l
y

ρ2
, l

x

ρ2
, 0

)
, |∇θ| = l

ρ
and ρ =

√
x2 + y2.

The z-axis, corresponding to ρ = 0, is a singular line called the vortex line.
Accordingly, we have for curl vs

curl vs = lκ δ(ρ)ez,

ez being a unit vector in the z-axis direction.
The phase increment around any contour encircling the vortex line remains the

same and equals 2πl. The magnitude of wave function vanishes at the vortex line
ρ = 0, i.e.ψ(ρ = 0) = 0, in order to satisfy the single-valued condition of condensate
wave function. The quantized vortex is an example of a topological10 defect.

Let us study the behavior of condensate wave function ψ(r) in the vicinity of
vortex line. We write the wave function in the cylindrical frame (ρ,ϕ, z) as

ψ(r) = f (ρ)eilϕ

and substitute it into the stationary Gross–Pitaevskii equation. This entails the
following equation:

− �
2

2m

(
f ′′(ρ) + f ′(ρ)

ρ
− l2

ρ2
f (ρ)

)
+ g f 3(ρ) = μ f (ρ).

Then we go over to the dimensionless variables according to

f = f0y(x) = √
ny(x), x = ρ/ξ and ξ = �/

√
2mμ, μ = gn

10 From the mathematical point of view this is a continuous mapping of the spatial points of closed
path C onto the unit-radius circle (1-sphere). The mapping is performed with phase ϕ(r) of wave
function ψ. Each homotopy class of such mapping consists of all loops that wind around the circle
l times with a positive or negative sign depending on the direction of winding. The vortex line is
assigned to the element of fundamental 1-sphere group π1(S1) isomorphic to the additive group of
integers Z. The topological characteristic or topological charge of vortex line is an integer winding
number l and remains unchanged until the path C with its deformation does not cross the vortex
line.
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Fig. 7.1 The behavior of
condensate wave function
versus distance from the
vortex line axis. The solid
line is l = 1 and the dashed
one is l = 2

where ξ is the healing length and n is the gas density far away from the vortex line.
As a result, function y(x) satisfies the equation

y′′ + y′

x
+

(
1 − l2

x2

)
y − y3 = 0

with conditions y(∞) = 1 and y(0) = 0. This equation is subject to the numerical
solution. For x → 0, we have y ∼ x |l| and y ∼ 1 − l2/(2x2) at x → ∞. The region
beside the vortex line, where the condensate density is highly depleted, has the size of
the order of the healing length ξ and is referred to as the vortex core. In Fig. 7.1 the
qualitative behavior for the ratio y(x) = |ψ(x)|/ψ0 is shown as a function of the
distance from the vortex line for l = 1 and l = 2.

Let us turn to calculating the linear tensionof rectilinear quantizedvortex or energy
per unit length. To find the energy of vortex, we should determine the difference
between the total energy of the gaswith the vortex and the energy of the homogeneous
vortex-free gas with the same particle number N . In this case, the gas density far
away from the vortex will differ from the density n0 of homogeneous vortex-free gas.
This leads to a number of mathematical inconveniences as comparing the energy Ev

in the vortex state and energy E0 in the vortex-free state.
In such situation, it ismore preferably to analyze the energy of the gas as a function

of chemical potential μ, i.e. the following thermodynamic potential:

Ẽ(μ) = E(N ) − μN =
∫

dρ

(
�
2

2m
|∇ψ|2 + 1

2
g|ψ|4 − μ|ψ|2

)
,

and to compare the energies if the gas with and without vortex at the fixed chemical
potential. For the gas with the vortex, this trick provides us the same physical param-
eters far away from the vortex as in the homogeneous vortex-free state, in particular,
the same density n0 due to simple relation μ = gn0.
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The energy of the vortex per unit length reads

�E = Ẽv − Ẽ0 =
∫

d2ρ

[
�
2

2m
|ψ|2 + 1

2
g|ψ|4 − μ|ψ|2 −

(
1

2
ψ4
0 − μψ2

0

)]
=

=
∫

d2ρ

(
�
2

2m
|ψ|2 + g

2

(
ψ2
0 − |ψ|2)2

)
.

Writing the condensate wave function ψ with the vortex line at axis ρ = 0 in the
cylindrical coordinates ρ and ϕ according to ψ(ρ,ϕ) = √

n(ρ) exp(ilϕ), we arrive
at the following expression:

�El =
∫

2πρ dρ

[
�
2

2m

(
∂
√

n

∂ρ

)2

+ �
2l2

2m

n

ρ2
+ g

2

(
n0 − n

)2
]

or in the dimensionless variables

�El = π�
2n0

m

R/ξ∫

0

[(
dy

dx

)2

+ l2
y2

x2
+ 1

2

(
1 − y2

)2
]

x dx .

Here R is the size of the system and we imply below that R � ξ.
The main contribution to �El is gained from the centrifugal term l2/x2 due to

slow ∼ 1/x decay of the condensate flow velocity. As a result, there appears a large
logarithmic integral and we have within the logarithmic accuracy

�El = πn0�
2l2

m
ln

(
Cl

R

ξ

)
, R � ξ.

Here Cl is the number of about unity, depending on the number of circulation num-
ber. The vortex energy increases with the size of the system as ln R. The result for
�El indicates that the vortex with several circulation quanta has the larger energy
than several vortices of one-quantum circulation but with the same total circulation.
Accordingly, the vortex with |l| > 1 should be unstable against its transition into the
vortices of one-quantum circulation.

Problem

Estimate the linear tension of rectilinear vortex with unit circulation, using the following
variational function for the condensate density:

n(ρ) = n0
ρ2

ρ2 + a2ξ2

with variational parameter a.
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Solution. Substituting y(x) = x/
√

a2 + x2 (x = ρ/ξ) into the expression for vortex energy�E1
and calculating several integrals, we find

�E1 = π�
2n0

m

(
1

4
+ ln

R

aξ
+ a2

4

)
.

Here we have taken the inequality R � ξ into account and put the upper limit equal to the infinity in
the convergent integrals. Minimizing �E1(a) over the variational parameter a entails the optimum
value a = √

2. As a result, we have

�E1 = π�
2n0

m
ln

(
C1

R

ξ

)
where C1 = e3/4√

2
= 1.49 . . .

7.4 Elementary Excitations in aWeakly Non-ideal Bose Gas

Let us turn to studying the dynamical properties of homogeneous weakly non-ideal
Bose gas. For this purpose, we use the non-stationary Gross–Pitaevskii equation

i�
∂

∂t
ψ(r, t) =

(
−�

2∇2

2m
+ g|ψ(r, t)|2

)
ψ(r, t)

and analyze the small perturbations for the wave function ψ(r, t) of the condensate
from its equilibrium state described by the following wave function:

ψ0(t) = √
ne−iμt/� and ψ∗

0(t) = √
neiμt/�.

Here μ = gn is the chemical potential and n = |ψ0|2 is the condensate density. Let
wave function be ψ = ψ0 + δψ and ψ∗ = ψ∗

0 + δψ∗. Next, we linearize the Gross–
Pitaevskii equation for function ψ and conjugate one ψ∗ over small perturbations δψ
and δψ∗. Finally, we have

i�
∂ δψ

∂t
= − �

2

2m
∇2δψ + 2gn δψ + gψ2

0 δψ∗,

−i�
∂ δψ∗

∂t
= − �

2

2m
∇2δψ∗ + 2gn δψ∗ + gψ∗2

0 δψ.

The solution for a set of two linear equations is sought as a sum of independent
Fourier harmonics classified by wave vector k and amplitudes uk and vk

δψ(r, t) = e−iμt/�
∑

k

[
ukeikr−iωk t + v∗

ke−ikr+iωk t
]
,

δψ∗(r, t) = eiμt/�
∑

k

[
vkeikr−iωk t + u∗

ke−ikr+iωk t
]
.



280 7 Weakly Non-ideal Bose Gas

As a result, we have a pair of interrelated equations for determining uk and vk. In
our simple case the amplitudes11 can be chosen as real quantities

�ωkuk =
(

�
2k2

2m
+ 2gn − μ

)
uk + gnvk,

−�ωkvk =
(

�
2k2

2m
+ 2gn − μ

)
vk + gnuk.

The condition for existing the nontrivial solutions is zero determinant composed
of the coefficients in front of unknown variables uk and vk. Then we arrive at the
following equation relating the frequency ωk and wave vector k:

�
2ω2

k =
(

�
2k2

2m
+ 2gn − μ

)2

− (gn)2 =
(

�
2k2

2m
+ gn

)2

− (gn)2.

Hence we obtain the dispersion relation

εk = �ωk =
√(

�2k2

2m

)2

+ �2k2

m
gn

called the Bogoliubov excitation spectrum. Note that the spectrum is sound-like in
the region of small wave vectors k � 1/ξ, ξ being the healing length

εk = �ωk = �ck where c =
√

gn

m
=

√
∂P

∂ρ
.

Emphasize also that the magnitude of velocity c coincides with the thermodynamic
determinationof soundvelocity. In the regionof largewavevectors k � 1/ξ, the exci-
tation spectrum has a usual particle-like εk = �

2k2/2m behavior since the interaction
between the bosons can be neglected.

A ratio of amplitudes uk and vk equals

Lk = vk

uk
= 1

gn

(
�ωk − �

2k2

2m
− gn

)
= − gn

εk +
√

ε2k + (gn)2
.

In general, the normalization of amplitudes uk and vk here remains still indefinite. As
it concerns both the physical interpretation and the quantummechanical applications,
the choice u2

k − v2
k = 1 or

11 The algebraic relations for uk and vk are analogous to those for amplitudes uk and vk in the BCS
theory.
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uk = 1√
1 − L2

k

and vk = Lk√
1 − L2

k

.

is very desirable and convenient.
In fact, let us consider how the energy of a gas varies at small oscillations of

condensate wave function near the equilibrium state. For this purpose, again it is
more convenient to analyze the energy of the gas as a function of chemical poten-
tial μ, i.e. to study thermodynamic potential Ẽ(μ) = E − μN . The choice of such
thermodynamic potential Ẽ is mathematically preferable. The point is that, for the
states under fixed chemical potential μ, the stationary equilibrium state is described
with the wave function ψ0(t) = exp(−iμt/�). Let us find variation of the energy

Ẽ(μ) =
∫

d r
[

�
2

2m
|∇ψ|2 + g

2
|ψ|4 − μ|ψ|2

]

at small perturbations from equilibriumψ = ψ0 + δψ andψ∗ = ψ∗
0 + δψ∗ to second

order in perturbations δψ and δψ∗. So,

�Ẽ = Ẽ(ψ∗,ψ) − Ẽ(ψ∗
0 ,ψ0) =

= δ Ẽ

δψ
δψ + δ Ẽ

δψ∗ δψ∗ + 1

2

δ2 Ẽ

δψ2
δψ∗2 + δ2 Ẽ

δψ∗δψ
δψδψ∗ + 1

2

δ2 Ẽ

δψ∗2 δψ2 + · · ·

As is expected, the linear terms in δψ∗ and δψ vanish due to μ = g|ψ0|2 at
equilibrium. For second order in perturbation, we find

�Ẽ =
∫

d r
[

�
2|∇δψ|2
2m

+ g

2

(
ψ∗2
0 δψ2 +4|ψ0|2δψ∗δψ + ψ2

0δψ
∗2
)

−μδψ∗δψ
]
.

The substitution δψ and δψ∗ after calculation with using the formulas

∑

k,k′

∫
αkβk′ei(k−k′)rd r =

∑

k

αkβk and ukvk
�
2k2

2m
+ gn

2

(
uk + vk

) = 0

leads us to the following relation for the perturbation of energy:

�Ẽ =
∑

k

(
�
2k2

2m
+ gn

)(
u2
k + v2

k

) + 2gnukvk =
∑

k

�ωk
(
u2
k − v2

k

)
.

From the viewpoint of stability for the ground unexcited state of a gas the quantity
�ωk(u2

k − v2
k) must be strictly positive for each mode with wave vector k. Provided

that normalization u2
k − v2

k = 1 is chosen for amplitudes uk and vk, the quantity �ωk

can be interpreted as an energy of elementary excitation from the ground state. Since
the number of elementary excitations in the same state is unlimited due to spinless
Bose–Einstein statistics, the energy for the excited state of a gas can be represented as



282 7 Weakly Non-ideal Bose Gas

�Ẽ =
∑

k

�ωkNk

where Nk is the number of elementary excitation with the given wave vector k. Such
choice of normalization u2

k − v2
k = 1 allows us to interpret the elastic excitations in

the Bose–Einstein condensed gas as a set of quanta of elastic strain field or phonons
with the corresponding dispersion.

Problems

1. Derive the equation determining the small density oscillations of a Bose–Einstein condensed
gas in the external potential V (r) within the framework of the Thomas–Fermi approximation.

Solution. We linearize the corresponding equations written in the Thomas–Fermi approximation

∂n

∂t
+ div (nvs) = 0 and m

∂vs

∂t
+ ∇

(
1

2
mv2s + V (r) + gn

)
= 0,

assuming the small density variation δn(r, t) = n(r, t) − n0(r). The linearized equations read

∂δn

∂t
+ div (n0vs) = 0 and m

∂vs

∂t
+ g∇δn = 0

where the unperturbed stationary density profile n0(r) satisfies condition gn0(r) − V (r) = μ.
Eliminating the condensate velocity vs , we obtain the equation desired

∂2δn

∂t2
= div

[
c2(r)∇ δn

]

where mc2(r) = μ − V (r) = gn0(r). The quantity c(r) can be thought as a local sound velocity.
2. Using the Thomas–Fermi approximation for the gas cloud in the spherically symmetrical

harmonic trap V (r) = mω2r2/2, find the frequency � of the radial breathing mode in which the
radial velocity does not change the sign.

Solution. Let the gas cloud radius be R. This radius corresponds to the chemical potential
μ = mω2R2/2 and the square of local sound velocity c2 = ω2(R2 − r2)/2. Taking the spherical
symmetry oscillations of gas density δn into account, we need to solve the following equation:

∂2δn

∂t2
= 1

r2
∂

∂r

(
r2c2(r)

∂ δn

∂r

)
.

Let us seek for the solution as δn(r, t) = e−i�t f (r). Then, we have

�2

ω2 f (r) = r f ′(r) − R2 − r2

2

(
f ′′(r) + 2

r
f ′(r)

)
.

The solution, which has no oscillations in the radial direction and satisfies the particle conservation
condition

∫
f (r)r2dr = 0, looks like f (r) ∼ (3R2 − 5r2). The substitution f (r) into the last

equation gives the breathing mode frequency

� = √
5ω.

Emphasize that this frequency
√
5ω proves to be higher than frequency 2ω for the similar oscillating

mode of non-interacting ideal condensed gas in the same trap.
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7.5 Depletion of the Bose–Einstein Condensate

Below we discuss such phenomenon as a depletion of condensate in the non-ideal
Bose system on the example of weakly non-ideal spinless Bose gas. For the dilute
gas with the particle concentration n, it is usually assumed that the radius for the
forces of interparticle interaction is small as compared with the mean interparticle
spacing about n−1/3. This allows us to be restricted with the binary interactions alone
and to neglect the ternary collisions in first approximation.

Let us write the corresponding Hamiltonian of weakly non-ideal Bose gas with
the particles of mass m in the field operator representation

Ĥ =
∫

�
2

2m
∇ψ+(r)ψ(r)d r + 1

2

∫
ψ+(r ′)ψ+(r)U (r ′ − r)ψ(r)ψ(r ′)d r ′d r.

Then we go over from the coordinate representation to the momentum one in
accordance with

ψ(r) =
∑

p

b p
ei pr/�

√
V

and ψ+(r) =
∑

p

b+
p

e−i pr/�

√
V

where b+
p and b p are the creation and annihilation operators with momentum p in

volume V . As a result, we have

Ĥ =
∑

p

p2

2m
b+
p b p + 1

2V

∑

q, p, p′
Uqb+

p+qb+
p′−qb pb p′

and Uq = ∫
U (r)e−iqr/�d r is the Fourier-transform of interaction potential U (r).

(The origin of factor 1/V is associated with summation over momentum.) Next,
since in the condensed state and at low temperatures the small momenta play a key
role, we neglect the dependence of Fourier-transform Uq on the momentum and take
its value g = U0 at q = 0. The coupling constant g can be related to12 the s-scattering
length a with formula g = 4π�

2a/m.
So, we analyze the Hamiltonian below

Ĥ =
∑

p

p2

2m
b+
p b p + g

2V

∑

q, p, p′
b+
p+qb+

p′−qb pb p′ .

Let usmake the following approximations resulting from the sufficiently low temper-
atures as compared with the condensation temperature. First, the occupation number
of particle states with zero p = 0 momentum is much larger than the occupation

12 The cross-section is dσs = (m/4π�
2)2(2|U0|)2d� for the s-scattering of two identical particles

in the Born approximation. On the other hand, the s-scattering amplitude is connected with the
cross-section as dσs = (2a)2d�.
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numbers for the particle states with nonzero p �= 0 momenta, i.e. Np=0 = N0 ∼ N
and Np �=0 = N − N0 � N0. Second, using both b+

0 b0 = N0, b0b+
0 = 1 + N0 and

macroscopic condition N0 � 1, we do not discern b+
0 b0 and b0b+

0 , treating b+
0 and

b0 as ordinary commutative numbers equal to b+
0 = b0 = √

N0. Third, in the Hamil-
tonian we retain only the terms a+

p �=0 and a p �=0 not higher than quadratic. A simple
calculation leads us to the Hamiltonian

Ĥ =
∑

p

p2

2m
b+
p b p + g

2V
b+
0 b+

0 b0b0+

+ g

2V

∑

p �=0

(
4b+

0 b+
p b0b p + b+

p b+
− pb0b0 + b+

0 b+
0 b pb− p

)
.

The terms having only one operator b+
p or b p vanish due to momentum conservation

for the interaction between particles. Then, replacing the operators b+
0 and b0 with√

N0, we have

Ĥ =
∑

p

p2

2m
b+
p b p + g

2V
N 2
0 + g

2V
N0

∑

p �=0

(
4b pb p + b+

p b+
− p + b pb− p

)
.

The number of particles N0 in the condensate is unknown. On the other hand, the
total number of particles N can be represented as follows:

N = N0 +
∑

p �=0

b+
p b p = N0 + 1

2

∑

p �=0

(
b+
p b p + b+

− pb− p
)
.

Accordingly,

Ĥ =
∑

p �=0

p2

2m
b+
p b p + g

2V

(
N −

∑

p

b+
p b p

)2

+

+ g

2V
N 2
0

∑

p �=0

(
4b+

p b p + b+
p b+

− p + b pb− p
)
.

Again, retaining only the quadratic terms in b+
0 and b0 and replacing N0 with N in

the same approximation, we finally arrive at the following Hamiltonian:

Ĥ = E0 + 1

2

∑

p �=0

[(
p2

2m
+ gn

)(
b+
p b p + b+

− pb− p
) + gn

(
b+
p b+

− p + b pb− p
)]

.

Here n = N/V is the gas density and E0 = gN 2/2V is the energy of ground state.
The corresponding chemical potential μ = ∂E0/∂N equals μ = gn.

Aswe can see, the last term in the brackets is non-diagonal. The problem is to trans-
form to the form as

∑
p ε pβ

+
p β p where operators β+

p and β p satisfy the commutation
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rules [β p,β
+
p ] = 1 for the creation and annihilation operators of bosons. In this

case the quantity ε p acquires a sense of the energy for elementary excitation with
momentum p.

The necessary diagonalization of Hamiltonian will be reached with the aid of the
Bogoliubov uv-transformation

(
b p b− p

b+
− p b+

p

)
=

(
u p v p

v p u p

) (
β p β− p

β+
− p β+

p

)
and

∣∣∣∣
u p v p

v p u p

∣∣∣∣ = 1.

The choice of normalization u2
p − v2

p = 1 or

u p = 1√
1 − L2

p

and v p = L p√
1 − L2

p

keeps the commutation condition for the creation and annihilation operators β+
p and

β p of elementary excitations. Substituting the operators b+
p and b p expressed via β+

p
and β p, we have

Ĥ = E0 +
∑

p �=0

1

1 − L2
p

[(
p2

2m
+ gn

)
L2

p + gnL p

]
+

+ 1

2

∑

p �=0

1

1 − L2
p

[(
p2

2m
+ gn

)
(1 + L2

p) + 2gnL p

](
β+
p β p + β+

− pβ− p
)+

+ 1

2

∑

p �=0

1

1 − L2
p

[(
p2

2m
+ gn

)
L p + gn(1 + L2

p)

](
β+
p β+

p + β− pβ− p
)
.

The operator-independent termmeans the renormalization of the ground state energy.
To have the Hamiltonian diagonal, the factor in the front of non-diagonal term should
be put zero by choosing L p, i.e.

2L p

(
p2

2m
+ gn

)
+ gn

(
1 + L2

p

) = 0.

Solving the quadratic equation yields

L p = 1

gn

⎡

⎣− p2

2m
− gn +

√(
p2

2m
+ gn

)2

− (gn)2

⎤

⎦ .

The sign before the square root is taken positive in order to have the positive energy
of excitations as well. The excitation energy will be determined below. So, we have
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Ĥ = E0 − 1

2

∑

p �=0

(
p2

2m
+ gn − εp

)
+ 1

2

∑

p �=0

εp
(
β+
p β p + β+

− pβ− p
)
.

The energy of elementary excitation with momentum p is given by the formula of
the Bogoluibov spectrum

εp =
√(

p2

2m
+ gn

)2

− (gn)2 =
√(

p2

2m

)2

+ p2

m
gn .

The spectrum proves to be sound-like in the region of small p � √
mgn momenta.

The sound velocity equals c = √
gn/m. The excitations are thewaves of compression

and rarefaction in the density of a gas. For the largemomentum region, the interaction
between the particles plays no significant role and the spectrum acquires the character
typical for free particles.

As we have seen above, the energy for the excited state of a gas can be written as∑
p �=0 εpn pwheren p = β+

p β p are the occupation numbers of elementary excitations.
To calculate the equilibrium distribution N p �=0 for the genuine particles of a gas in
the overcondensate states, it is necessary to average the particle number operator
N̂ p = b+

p b p with the Gibbs distribution. As usual, the average of some variable A
means the following:

〈A〉 = tr (Ae−H/T )

tr e−H/T
.

Then, making the Bogoliubov transformation, we find

N p(T ) = 〈b+
p b p〉 =

= 1

1 − L2
p

[〈β+
p β p〉 + L p〈β+

− pβ
+
p 〉 + L p〈β pβ− p〉 + L2

p〈β− pβ
+
− p〉

]
,

the expression being valid for momenta p �= 0. Since the creation and annihilation
operators β+

p and β p have the same properties as operators b+
p and b p for the gen-

uine particles, the first and last terms alone from the whole sum remain nonzero.
Accordingly,

N p(T ) = 1

1 − L2
p

[〈β+
p β p〉 + L2

p〈β− pβ
+
− p〉

] = L2
p

1 − L2
p

+ 1 + L2
p

1 − L2
p
〈β+

p β p〉.

The calculation of thermodynamic average 〈β+
p β p〉, which should be performed

with the elementary excitation Hamiltonian
∑

p �=0 ε pβ
+
p β p, leads us to the ordinary

Bose–Einstein distribution

n p(T ) = 〈β+
p β p〉 = (

eε p/T − 1
)−1
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and, therefore,

N p(T ) = L2
p

1 − L2
p

+ 1 + L2
p

1 − L2
p

n p(T ) = v2
p + u2

p + v2
p

eεp/T − 1
.

The number of particles in the condensate reads

N0 = N −
∑

p �=0

N p(T ) = N − V
∫

d3 p

(2π�)3
N p �=0(T ).

Let us start first from the case of zero temperature T = 0. Then the number of
overcondensate particles equals

N − N0(T = 0) = V
∫

d3 p

(2π�)3

L2
p

1 − L2
p

=

= V
∫

d3 p

(2π�)3

1

2

(gn)2

εp
(
εp +

√
ε2p + (gn)2

.

The integration is straightforwardly to perform with the aid of substitution y(x) =
x + 1 + √

(x + 1)2 − 1 where x = p2/(2mgn). So, we have

N0 = N − V
(mgn)3/2

4π2�3

∞∫

1

dy
y − 1

y5/2
= N − V

(mgn)3/2

3π2�3
=

= N

(
1 − (mg)3/2n1/2

3π2�3

)
.

Non-ideality of bosonic gas and interaction between particles result in such phe-
nomenon as a depletion of the condensate even at zero temperature. Let us express the
answer for the relative condensate depletion in terms of the s-scattering amplitude a

N − N0

N
= 8

3
√

π

(
na3)1/2.

In the experiments on alkali metal atoms in traps the condensate depletion is usu-
ally about several percents. The validity of the calculations performed implies the
inequality na3 � 1.

The finite temperature entails the thermal depletion of the condensate as well.
The change of the condensate particle number due to temperature is given by the
following formula:
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�N0(T ) = N0(T ) − N0(T = 0) = −
∑

p �=0

1 + L2
p

1 − L2
p

n p(T ) =

= −V
∫

d3 p

(2π�)3

√
ε2p + (gn)2

εp

1

eεp /T − 1
=

= −V

√
2m3/2

2π2�3

∞∫

0

dε

[(
ε2 + g2n2

)1/2 − gn
]1/2

eε/T − 1
.

For the sufficiently low T � gn temperature region, the main contribution to the
integral comes from the energy ε � T region. We have approximately

�N0(T ) = −V

√
2m3/2

2π2�3

1√
2gn

∞∫

0

ε dε

eε/T − 1
= −V

mT 2

12c�3

where c = √
gn/m is the sound velocity. Note that the temperature behavior T 2

differs from that T 3/2 for the ideal Bose gas. In conclusion, we emphasize that the
ratio chemical potential μ = gn to the critical temperature Tc is small in units of gas
parameter, i.e. gn/Tc ∼ an1/3 � 1.

7.6 Mixture of Two Bose–Einstein Condensed Gases

The usage of magneto-optical traps for confining the alkali metal atomsmakes it pos-
sible to study themixtures of several Bose–Einstein condensates. In what follows, we
consider the binary Bose-condensed gas mixture composed of two various Bose par-
ticles. The numbers of particles are N1, N2 and their masses are m1, m2, respectively.
The wave function for the condensed mixture in the Hartree–Fock approximation
can be written as a product of one-particle wave functions φ1 and φ2

�(r1, . . . , rN1; r ′
1, . . . , r

′
N2

) ≈
N1∏

i=1

φ1(r i )

N2∏

k=1

φ2(r ′
k).

Here r i corresponds to the type-1 particles and r ′
k does to the type-2 particles. The

interaction between the particles depends on their type.We denote the corresponding
coupling constants13 as g11, g12 = g21, and g22. The following formula gives the
energy for the mixture of volume V in the homogeneous state

13 The coupling constants are gik = 2π�
2aik/mik where aik are the corresponding scattering lengths

and mik = mi mk/(mi + mk) are the reduced masses (i, k = 1, 2).
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E = g11
N1(N1 − 1)

V
+ g12

N1N2

V
+ g22

N2(N2 − 1)

V
.

On the analogy with the single-component case, we introduce two wave functions
ψ1 = √

N1φ1 and ψ2 = √
N2φ2 for each of the condensates and write the following

energy functional of gas mixture:

E[ψ1(r),ψ2(r)] =
∫

d r
[

�
2

2m1
|∇ψ1|2 + �

2

2m2
|∇ψ2|2 +

+1

2
g11|ψ1|4 + g12|ψ1|2|ψ2|2 + 1

2
g22|ψ2|4

]
.

Here, as above, we have neglected the corrections 1/N1 and 1/N2 as compared with
unity.

The variation of energy functional over ψ1 and ψ2 under constancy of particle
number for each component results in introducing the chemical potentials μ1 and μ2

and finallywe get theGross–Pitaevskii equations for each of themixture components

− �
2

2m1
∇2ψ1 + g11|ψ1|2ψ1 + g12|ψ2|2ψ1 = μ1ψ1,

− �
2

2m2
∇2ψ2 + g22|ψ2|2ψ1 + g12|ψ1|2ψ2 = μ1ψ2.

For the spatially homogeneous mixture with the component densities n1 = |ψ1|2 and
n2 = |ψ2|2, the Gross–Pitaevskii equations give the following relationship between
the chemical potentials and the densities:

μ1 = g11n1 + g12n2 and μ2 = g12n1 + g22n2.

It is of fundamental interest to study the stability of homogeneous state of amixture
against its phase separation into two separate fractions or phases. For this purpose,
we should analyze how the energy of a mixture changes at small density fluctuations
δn1 and δn2 of each condensate component. Due to conserving the particle numbers,
i.e.

∫
d r δn1,2 = 0, the energy variation δE vanishes in first order in δn1 and δn2. In

second order we obtain a simple formula

δ2E =
∫

d r
(
g11δn2

1 + 2g12δn1δn2 + g22δn2
2

)
.

For the stability of spatially homogeneous state of a mixture, it is required to have
the positive quadratic form composed of coefficients g11, g12, and g22. Accordingly,
this entails the following condition:

g11 > 0 and g11g22 > g212.
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Provided this condition breaks down, the binary mixture of Bose condensates sep-
arates into two spatially divided fractions or phases, each of them being the Bose
condensate composed of particles of the same type.

The Gross–Pitaevskii equations allows us to calculate the surface tension σ for
the interface between two condensates. Let the interface be plane. The condensate
of type-1 particles is on the left-hand side of the interface and its density equals
n1 = ψ2

10 (x → −∞) far away from the interface. Accordingly, on the right-hand
side from the interface there is a condensate of type-2 particle with density n2 = ψ2

20
(x → +∞) at the right-hand infinity. Let us write the Gross–Pitaevskii equation for
the wave functions ψ1(x) and ψ2(x) each of the two condensates

− �
2

2m1

d2ψ1

dx2
+ (

g11ψ
2
1 + g12ψ

2
2

)
ψ1 = μ1ψ1 (μ1 = g11n1),

− �
2

2m2

d2ψ2

dx2
+ (

g12ψ
2
1 + g22ψ

2
2

)
ψ2 = μ2ψ2 (μ2 = g22n2)

where μ1 and μ2 denote the chemical potentials constant over the space. We can take
the condensate wave functions to be real.

In the limit g12 � g11, g22 the terms with g12ψ
2
2ψ1 and g12ψ

2
1ψ2 in each equations

are predominant at g12 → ∞. Then in first approximation we can put ψ2
2ψ1 = 0 and

ψ2
1ψ2 = 0 in each of equations in order to compensate the divergence at g12 → ∞.

In first approximation we can expect that ψ2(x) = 0 at x < 0 and ψ1(x) = 0 at
x > 0. This means physically that the penetration of particles of one type to the
region occupied with the other type particles is energetically unfavorable due to
large values g12.

So, in this approximation we have for the wave functions

− �
2

2m1
ψ′′
1 + g11ψ

3
1 = μ1ψ1, x < 0,

− �
2

2m2
ψ′′
2 + g22ψ

3
2 = μ2ψ2, x > 0,

with the boundary conditions ψ′
1,2(±∞) = 0 and ψ2

1(−∞) = μ1/g11, ψ2
2(∞) =

μ2/g22. Each of the equations can be solved with multiplying the equation by ψ′
1,2,

respectively, and obtaining the first integral with its next integration. As a result of
first approximation of wave functions perturbed by the interface, we have

ψ1(x) ≈ ψ10 tanh
|x |
2ξ1

ϑ(−x), ξ1 = �

2
√

m1μ1
, μ1 = g11n1,

ψ2(x) ≈ ψ20 tanh
x

2ξ2
ϑ(x), ξ2 = �

2
√

m2μ2
, μ2 = g22n2

where ξ1,2 is the healing length for the corresponding condensate.
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It is convenient to analyze the energy of thewhole system as a function of chemical
potentials μ1 and μ2

Ẽ(μ1,μ2) = E(N1, N2) − μ1N1 − μ2N2 =
∫

d3r

(
�
2|∇ψ1|2
2m1

+ �
2|∇ψ2|2
2m2

+

+g11

2
|ψ1|4 + g12|ψ1|2|ψ2|2 + g22

2
|ψ2|4 − μ1|ψ1|2 − μ2|ψ2|2

)
.

Due to simple relations μ1 = g11n1 and μ2 = g22n2 such choice of variables will
provide us directly the values of condensate densities n1 and n2 far away from the
interface as if the interface is absent.

The transient layer between two phases results in an additional energy which
magnitude per unit interface area is called the surface tension coefficient σ. The
latter will be determined by the following expression

σ =
∞∫

−∞
dx

(
�
2ψ′ 2

1

2m1
+ �

2ψ′ 2
2

2m2
+ g11

2
ψ4
1 + g12ψ

2
1ψ

2
2 + g22

2
ψ4
2−

−μ1ψ
2
1 − μ2ψ

2
2

)
−

0∫

−∞
dx

(
g11

2
ψ4
10 − μ1ψ

2
10

)
−

∞∫

0

dx

(
g22

2
ψ4
20 − μ2ψ

2
20

)
.

This expression can be simplified. Let usmultiply each equation of two initial Gross–
Pitaevskii ones for ψ1 and ψ2 by ψ′

1 and ψ′
2, respectively. After their summing, we

arrive at the first integral

−�
2ψ′ 2

1

2m1
− �

2ψ′ 2
2

2m2
+ g11

2
ψ4
1 + g12ψ

2
1ψ

2
2 + g22

2
ψ4
2 − μ1ψ

2
1 − μ2ψ

2
2 = const.

Substituting the boundary values for the wave functions at x →±∞, we find the
following magnitudes for the constant

const|x=−∞ = −1

2
g11n2

1 and const|x=∞ = −1

2
g22n2

2.

To match the boundary conditions, we must require the fulfilment of the equality

P1 = 1

2
g11n2

1 = 1

2
g22n2

2 = P2.

From the physical point of view this means the equality of pressures P1 and P2 for the
adjacent condensates. The equality of the pressures is one of the necessary conditions
for the thermodynamic equilibrium between two condensates.
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Using the first integral and condition of pressure equality, we obtain the final
expression for the surface tension coefficient

σ = 2
∫ ∞

−∞
dx

(
�
2ψ′ 2

1

2m1
+ �

2ψ′ 2
2

2m2

)
.

We see that the surface tension is wholly due to spatial variation of wave functions
in the near-interface region. Substituting the approximate expressions found for the
wave functions, we have

σ ≈ 8

3

g11n2
1

2
ξ1 + 8

3

g22n2
2

2
ξ2 = 8

3
P(ξ1 + ξ2),

P = P1 = P2 being the pressure in the both condensates. The equality condition for
the pressures determines a ratio of condensate volumes V1/V2 after separating the
mixture. The ratio equals

√
g11N1/

√
g22N2 where N1,2 is the number of particles of

each type.
For g212 → g11g22, the surface tension σ vanishes, demonstrating behavior

proportional to (g212 − g11g22)
1/2.

In conclusion, let us turn to studying the dynamical properties of binary condensate
mixture. The generalization of the non-stationary Gross–Pitaevskii equation lead us
to the following system of two equations:

i�
∂ψ1

∂t
= − �

2

2m1
∇2ψ1 + g11|ψ1|2ψ1 + g12|ψ2|2ψ1 = ∂E

δψ∗
1

,

i�
∂ψ2

∂t
= − �

2

2m2
∇2ψ2 + g12|ψ1|2ψ2 + g22|ψ2|2ψ2 = ∂E

δψ∗
2

.

The stationary equilibrium solution like

ψ1(t) = √
n1e−iμ1t/� and ψ2(t) = √

n2e−iμ2t/�

gives us the values of the chemical potentials familiar already

μ1 = g11n1 + g12n2 and μ2 = g12n1 + g22n2.

To determine the elementary excitation spectrum in the binary mixture, we con-
sider the small perturbations of the condensate wave functions as ψi → ψi + δψi

and ψ∗
i → ψ∗

i + δψ∗
i . Then, we find the linearized equations which the perturbation

of the first component obeys

i�
∂ψ1

∂t
= − �

2

2m1
∇δψ1 + (

2g11n1 + g12n2
)
δψ1 + g11ψ

2
1δψ

∗
1+

+g12ψ1ψ
∗
2δψ2 + g12ψ1ψ2δψ

∗
2 ,
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i�
∂ψ∗

1

∂t
= − �

2

2m1
∇δψ∗

1 + (
2g11n1 + g12n2

)
δψ∗

1 + g11ψ
∗2
1 δψ1+

+g12ψ
∗
1ψ2δψ

∗
2 + g12ψ

∗
1ψ

∗
2δψ2,

and the second component perturbation does

i�
∂ψ2

∂t
= − �

2

2m2
∇δψ2 + (

2g22n2 + g12n1
)
δψ2 + g22ψ

2
2δψ

∗
2+

+g12ψ2ψ
∗
1δψ1 + g12ψ2ψ1δψ

∗
1 ,

i�
∂ψ∗

2

∂t
= − �

2

2m2
∇δψ∗

2 + (
2g22n2 + g12n2

)
δψ∗

2 + g22ψ
∗2
2 δψ2+

+g12ψ
∗
2ψ1δψ

∗
1 + g12ψ

∗
2ψ

∗
1δψ1.

The solution of a set of linear equations is commonly sought in terms of the
decomposition over the Fourier harmonics with amplitudes uik and vik (i = 1, 2)
depending on wave vectors k

δψ1(r, t) = e−iμ1t/�
∑

k

[
u1keikr−iωk t + v∗

1ke−ikr+iωk t
]
,

δψ2(r, t) = e−iμ2t/�
∑

k

[
u2keikr−iωk t + v∗

2ke−ikr+iωk t
]
.

The similar relations must be written for the conjugate variables δψ1(r, t)∗ and
δψ∗

2(r, t) aswell. The substitution of these expansions into the non-stationaryGross–
Pitaevskii equations results in the four equations for determining the four amplitudes
uik and vik (i = 1, 2)

�ωku1k = (
η1 + g11n1 + g12n2 − μ1

)
u1k + �11v1k + �12u2k + �12v2k,

−�ωkv1k = (
η1 + g11n2 + g12n2 − μ1

)
v1k + �11u1k + �12v2k + �12u2k,

�ωku2k = (
η2 + g22n2 + g12n1 − μ2

)
u2k + �22v2k + �12u1k + �12v1k,

−�ωkv2k = (
η2 + g22n2 + g12n1 − μ2

)
v2k + �22u2k + �12v1k + �12u1k.

In our simple case the amplitudes uik and vik (i = 1, 2) prove to be real. For brevity,
we have introduced the following notations:

η1 = �
2k2

2m1
+ �11, η2 = �

2k2

2m2
+ �22,

�11 = g11n1, �12 = g12
√

n1n2, �22 = g22n2.

Nontrivial solution for a set of linear equations exists if the determinant, composed
of the coefficients before unknown amplitudes, is zero
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∣∣∣∣∣∣∣∣

η1 − �ωk �11 �12 �12

�11 η1 + �ωk �12 �12

�12 �12 η2 − �ωk �22

�12 �12 �22 η2 + �ωk

∣∣∣∣∣∣∣∣
= 0.

The frequency of elementary excitations in the binary condensate mixture can be
determined from the following biquadratic equation:

(�ωk)
4 − (

ε21 + ε22
)
(�ωk)

2 + ε21ε
2
2 − 4�2

12

(
η1 − �11

)(
η2 − �22

) = 0.

Here εi = (η2
i − �2

i i )
1/2 is the Bogoluibov spectrum of elementary excitations in

each mixture component separately. As is seen from the dispersion equation, the
binary mixture of condensates has already two branches ω1k and ω2k for elementary
excitations. The square of the frequency for each branch is given by

ω2
1,2(k) = 1

2�2

(
ε21 + ε22 ±

√(
ε21 − ε22

)2 + 16�2
12

(
η1 − �11

)(
η2 − �22

) )
.

The coupling constant g12 between the particles of different type results in
hybridization for the Bogoliubov spectra of separate condensates.

Most interesting range of spectra is long wave one k → 0. Here we discover two
sound branches ω1,2(k) = u1,2k with the following sound velocities determined by
the relations:

u2
1,2 = 1

2

(
u2
1 + u2

2 ±
√

(
u2
1 − u2

2

)2 + 4g212
g11g22

u2
1u2

2

)

where u1 = √
g11n1/m1 and u2 = √

g22n2/m2 are the sound velocities in each sepa-
rate condensate. The requirement of positive square for the sound velocity, necessary
for the phase stability of the mixture against its separation, returns us to the familiar
condition g11g22 > g212 for the interparticle coupling constants.



Chapter 8
Theory of Superfluidity

8.1 Thermodynamics of Superfluid Helium

Two stable helium isotopes,1 3He and 4He, are known. The 3He atoms obey the
Fermi–Dirac statistics but the 4He atoms do the Bose–Einstein one. In liquid2 4He
at temperature 2.17 K, called λ-point, there occurs a second-order phase transition
from the normal He I state to the superfluid He II state. The superfluid state of a
liquid, first of all, is characterized with its ability to flow through the thin capillaries
without any friction, displaying no viscous effects typical for viscid normal liquid.

At absolute zero temperature the liquid is in the energetically lowest or ground
state. At nonzero temperature the liquid goes over to an excited state. For sufficiently
low temperatures, this will be a weakly excited state which can be described as a
set of elementary excitations or quasi-particles having a definite momentum p and
corresponding energy ε( p).

In liquid 4He the elementary excitation dispersion law ε( p), obtained from the
neutron scattering experiments, has a non-monotonic behavior (Fig. 8.1). After the
initial linear growth at sufficiently small momenta the excitation energy ε( p) reaches
the maximum, then decreases and passes across the minimum � = ε(p0) at certain
momentum p0 with the further growth of excitation energy as the momentum con-
tinues to grow. As the energy becomes of the order of 2�, the further dependence
ε( p) upon momentum becomes almost horizontal. The latter region of spectrum is
often referred to as the Pitaevskii plateau.

The initial linear segment ε( p) = up is called the sound or phonon spectrum. The
elementary excitations are phonons or sound longitudinal oscillations propagating
in the liquid with the sound velocity, u = 240 m/s.

The energy spectrum in the vicinity of the minimum at p = p0 is well approxi-
mated with the parabolic function

1 The other isotopes are unstable. For example, the half-life of 6He isotope is about 0.8 s.
2 The 4He solidification pressure is about 25 bar.
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Fig. 8.1 The excitation
spectrum in liquid 4He. The
dashed line shows the
tangent which slope
determines the critical
velocity

εr ( p) = � + (p − p0)2

2m
.

The elementary excitations in the momentum range p ∼ p0 are commonly called
rotons and the magnitude � is the roton gap. The roton gap �, momentum p0,
effective mass m as well as sound velocity are pressure-dependent and equal to

� = 8.7K, p0/� = 1.9 · 108 s−1, m = 0.16M (� � p20/2m),

at zero pressure. Here M is the mass of 4He atom.
The thermodynamically equilibrium distribution of elementary excitations in 4He

obeys the Bose distribution function with zero chemical potential

n( p) = 1

eε( p)/T − 1
.

Zero magnitude of chemical potential results from the fact that the number of ele-
mentary excitations is not fixed but determined by the thermodynamic equilibrium
condition. The latter means that wemust have a minimum of free energy with respect
to the number of excitations, i.e.

(
∂F

∂N

)
V,T

= μ = 0.

For μ = 0, the grand thermodynamic potential � coincides with free energy F .
Thus, to find the thermodynamic functions3, it is sufficient to calculate the following
integral:

F = � = −T
∫

Vd3 p

(2π�)3
ln

(
1 − e−ε p/T

)

3 More precisely, we imply the difference in their magnitudes at the given temperature T and, in
particular, at zero temperature T = 0.
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or after the single integration by parts

F = −1

3

∫
p ∂ε/∂ p

eεp/T − 1

Vd3 p

(2π�)3
.

For the analytical estimate of the above integral, it is a very good approximation
to represent it as a sum of two contributions, namely phonon Fph and roton Fr , i.e.
F ≈ Fph + Fr , with the exception of the narrow region near the λ-point of superfluid
transition.

Calculating the phonon contribution with dispersion εph = up yields the follow-
ing thermodynamic functions per unit volume. The free energy reads

Fph = �ph = −1

3

∫
pu

eup/T − 1

d3 p

(2π�)3
= −4π5T

45

(
T

2π�u

)3

.

Accordingly, energy, entropy, and specific heat of phonon gas will equal

Eph = −3Fph = 4π5T

15

(
T

2π�u

)3

,

Sph = −∂Fph

∂T
= 16π5

45

(
T

2π�u

)3

,

Cph = T
∂Sph

∂T
= 16π5

15

(
T

2π�u

)3

.

Calculating the roton contribution, we take into account that the rotonmomenta lie
within the region close to momentum p0 and inequality � � T is valid. In this case
the Bose distribution, in essence, crosses over to the Boltzmann one. The integral
below determines the contribution of the roton spectrum segment into the free energy
per unit volume:

Fr = �r ≈ −T
∫

e−εr /T
d3 p

2π�)3
= −T e−�/T

∫
e

(p−p0)2

2mT
4π p2dp

8π3�
≈

≈ −T
p20e

−�/T

2π2�3

∞∫
−∞

e
(p−p0)2

2mT dp = −T
2p20

√
mT

(2π�2)3/2
e−�/T = −T Nr ,

Nr = 2p20
√
mT

(2π�2)3/2
e−�/T

where Nr (T ) is the number of rotons in unit volume of helium. Estimating the
integral, we have kept inequality p20/2m � T in mind. In addition, the last integral
is gained within the narrow region |p − p0| � T .

Differentiating the free energy, we find the roton contribution to the entropy and
specific heat of helium II
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Sr = −∂Fr
∂T

= Nr

(
�

T
+ 3

2

)
,

Cr = T
∂Sr
∂T

= Nr

(
�2

T 2
+ �

T
+ 3

4

)
.

In the low temperature region, T � 0.8 K the phonon contribution to the thermo-
dynamic functions is predominant. On the contrary, for the high temperature region
T � 0.8 K the thermodynamic behavior of superfluid helium is mainly governed by
the roton contribution.

8.2 The Euler Equation of Ideal Fluid

Before proceeding to studying the properties of the superfluid flow, we consider the
thermodynamic derivation of the Euler equation for ideal (inviscid) isotropic liquid.
Deriving the equation, we use only the thermodynamic identities and the laws of con-
serving the mass, momentum, energy, and entropy. The entropy conserves only due
to our assumption on the ideality of the fluid and absence of any dissipative effects.

Consider the energy of unit liquid volume E = E(S, ρ, j) as a function of the
following thermodynamic variables: entropy S, liquid density ρ, and mass density
flux or momentum per unit volume j . The energy differential

dE(S, ρ, j) = T dS + μ dρ + v · d j

determines the conjugate thermodynamic variables as temperature T , chemical
potential per unit mass μ, and fluid velocity v. The conjugate thermodynamic poten-
tial A(T,μ, v) and its differential will equal

A(T,μ, v) = E − T S − μρ − v · j ,
d A(T,μ, v) = −S dT − ρ dμ − j · dv.

The quantity P = −A = −E + T S + μρ + v · j should be referred to as pressure
if we determine the pressure P = −∂(EV )/∂V as a minus-sign derivative of total
energy EV of a liquid with respect volume V under constant total mass ρV , total
entropy SV , and total momentum jV .

Then we write down the conservation laws for mass, momentum, energy, and
entropy in the differential form

∂ρ
∂t + div j = 0, ∂ ji

∂t + ∂�ik
∂xk

= 0,
∂E
∂t + div Q = 0, ∂S

∂t + div F = 0,

wherewe should specifymass density flux (momentumdensity) j , energy flux density
Q, entropy flux density F, momentum flux density tensor �ik .
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Then, we sum all four equations, in advance multiplying each of them by the
corresponding factor T , ρ or v, and involving that

∂E

∂t
= T

∂S

∂t
+ μ

∂ρ

∂t
+ v · ∂ j

∂t
.

We find after identical transformations

div Q = ∂

∂xi

[
T Fi + μ ji + vk(�ik + Aδik)

]−
− (Fi − Svi )

∂T

∂xi
− ( ji − ρvi )

∂μ

∂xi
− (�ik + Aδik − jkvi )

∂vk

∂xi
.

Provided that any energy dissipation in the liquid is absent, the magnitudes of fluxes
Q, F, j , and �ik must be the functions of thermodynamic variables alone, e.g. T , ρ,
and j , and be independent of their derivatives with respect to coordinates xi and time
t . In addition, the right-hand side of the above equation should be an expression in
the form of total derivative or divergence. Thus, it is necessary to put the following
for the dissipationless fluxes:

ji = ρvi , Fi = Svi ,

�ik = −Aδik + jkvi = Pδik + ρvivk ,

Qi = T Fi + μ ji + vk(�ik + Aδik) = T Fi + μ ji + (v · j)vi .

For clearness, we rewrite the first two and the last equalities in the vector form

j = ρv, F = Sv and Q = T F + μ j + (v · j)v.

The term Pδik in the momentum flux density tensor means that the pressure in a fluid
at rest is isotropic, i.e. pressure is transmitted equally in all directions (Pascal’s law).

The substitution of tensor �ik into the momentum conservation equation and the
subsequent use of mass conservation law lead us to the Euler equation of ideal fluid

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇P.

This equation is one of the main equations describing the hydrodynamics of fluids.
Underline that, deriving the equation, we have completely neglected any possible
energy dissipation processes due to viscosity and heat conduction.

Problem

1.A self-gravitational gaseous cloud can be described with the aid of continuity equation, Euler
equation for an ideal fluid (gas), and Poisson equation for the gravitational potential φ. Assuming
the self-gravitational gaseous cloud to be homogeneous and equilibrium, find its density oscillation
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spectrum and estimate its radius when the cloud becomes unstable against the collapse under the
influence of self-gravitational forces (the Jeans collapse criterion).

Solution. Let us write down the corresponding equations

∂ρ

∂t
+ div (ρv) = 0,

∂v

∂t
+ (v∇)v = −∇P

ρ
− ∇φ and ∇2φ = 4πGρ.

Here ρ is the density, v is the velocity of a gas, P is the pressure, and G is the gravitational constant.
The equilibrium state satisfies two equations

∇P = −ρ∇φ and ∇2φ = 4πGρ.

Let us introduce small perturbations of density, pressure, and gravitational potential

ρ′(r, t) = ρ + δρ(r, t), P ′(r, t) = P + δP(r, t) and φ′(r, t) = φ + δφ(r, t).

Then we linearize the equations above in the perturbations from the equilibrium values ρ, P , and
φ. So, we find

∂ δρ

∂t
+ ρ div v = 0,

∂v

∂t
= −∇δP

ρ
− ∇δφ = −u2

ρ
δρ − ∇δφ and ∇2δφ = 4πG δρ,

u2 = (∂P/∂ρ)s being the square of adiabatic sound velocity. Next, we eliminate velocity v with
the aid of differentiating the continuity equation with respect to time and find

∂2δρ

∂t2
− u2∇2δρ − 4πρG δρ = 0.

Hence we obtain the density oscillation spectrum of a gaseous cloud

ω2(k) = u2k2 − 4πρG.

The homogeneous state of a gaseous cloud is possible if the wave vector k for the cloud density
perturbations satisfies the condition ω2(k) > 0. Accordingly,

k > kJ =
√
4πρG

u
.

For the cloud of radius R, the possible minimum wave vector will be of the order of km ∼ π/R.
Accordingly, from the condition km > kJ , we arrive at the following estimate for the cloud radius
when the internal gas pressure in the cloud can still counteract the gravitational forces of attraction

R � λJ = u√
ρG

.

The length scale λJ is known as the Jeans length. The Jeans instability is considered as one of the

reasons for the formation of inhomogeneities in the Universe.
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8.3 Superfluid and Normal Flows. The Hydrodynamics of
Superfluid Liquid

Most fascinating property of helium II is its ability to flow without friction and
viscous effects through the thin capillaries. However, such ability of superfluid flow
in He II will be restricted with some critical velocity vc of the fluid flow.

Let liquid 4He be in the ground state at zero temperature and flow at uniform con-
stant velocity v. If the liquid is subjected to friction against the capillary walls, a frac-
tion of its kinetic energy converts into heat energy. This results in heating the liquid
and its transition into an excited state. The excited state of the liquid is characterized
by the presence of elementary excitations and, therefore, friction or viscosity of the
liquid should appear as a generation of elementary excitations. The finite lifetime
or damping of the generated elementary excitations will result in relaxing the liquid
into the ground state and slowing down the fluid flow with corresponding energy
dissipation. Thus, the necessary condition for the dissipationless and superfluid flow
of a liquid is an exclusion of spontaneous generation of elementary excitations.

Let us consider the reference frame in which the liquid is at rest and let ε( p) be
the energy of the elementary excitation generated with momentum p. According to
the Galilean principle of relativity for the inertial reference frames, the energy of the
liquid in the laboratory reference frame, in which the liquid flows at constant and
uniform velocity v, proves to be equal to

ε( p) + pv + Mv2/2.

Here M is the total liquid mass and Mv2/2 is the total kinetic energy of the liquid
as a whole. Thus, the emergence of elementary excitation in the liquid flowing at
velocity v changes the energy of the liquid4 by quantity ε( p) + pv. The sponta-
neous generation of elementary excitation becomes energetically favorable provided
ε( p) + pv < 0. The generation of excitations is most favorable if momentum p and
flow velocity v are antiparallel. So, the necessary condition for the dissipationless
fluid flow

v < vc = min
ε(p)

p

will determine the maximum allowable or critical velocity of the liquid flow and is
called the Landau criterion of superfluidity.

Theminimumof ratio ε(p)/p is given by the extremumcondition d(ε/p)/dp = 0
resulting in

dε

dp
= ε

p
.

Geometrically, this condition corresponds to the point at which the curve ε(p) is tan-
gent to a straight line starting from the coordinate origin (Fig. 8.1). For the excitation

4 One may say the elementary excitation energy is subjected to the Doppler shift.
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spectrum5 in liquid 4He, this point lies somewhat on the right-hand side of the roton
minimum point p0 and the critical velocity

vc =
√
p20 + 2m� − p0

m
≈ �

p0

equals approximately 58 m/s. In a weakly non-ideal Bose gas with the Bogoliubov
excitation spectrum the critical velocity equals the sound velocity. For the ideal con-
densed Bose gas with the particle-like excitation spectrum ε = p2/2M , the critical
velocity vc proves to be zero and the phenomenon of superfluidity is absent in spite
of the presence of condensate.

The experimental study of the liquid He II flow through the ultrathin capillaries
and ultra-narrow slits (superleaks)6 shows that not all the helium mass7 but only
its fraction does flow through the capillaries. This fraction is naturally called the
superfluid component and its flow is specified with some superfluid density ρs and
superfluid velocity vs . The remaining helium fraction, stopped with the capillary, is
called the normal component on the analogy with the behavior of viscid normal fluid.
The normal component is characterized with some normal density ρn and normal
velocity vn .

Such behavior of liquid He II indicates that two independent flows, superfluid
and normal, realize simultaneously in the liquid at the finite temperature. Since the
total mass of the liquid remains unchangeable, a sum of the superfluid and normal
component masses should be equal to the total mass of the liquid. Accordingly, a
sum of superfluid and normal densities equals the total density of the liquid ρ

ρn + ρs = ρ.

The fraction of the flowing superfluid component ρs/ρ reduces as the temperature
increases and vanishes completely at the λ-point of the superfluid transition.

An existence of normal component in liquid He II is self-consistently to asso-
ciate with the thermal elementary excitations. The latter ones are always present in
the thermally equilibrium concentration at T > 0 and increase their number as the
temperature grows. However, a possibility to change the number of elementary exci-
tations due to additional spontaneous generation is absent for small flow velocities
v < vc. The fluid will stay in the same state with the same energy and, therefore, can
maintain the dissipationless flow of the liquid fraction decoupled with the transport
of elementary excitations.

5 Along with the above-considered type of elementary excitations, the quantized vortex-like exci-
tations are possible and observed in a rotating superfluid He II. The critical velocity for the vortex
generation is determined by vcr R ∼ �/M4He where R is the typical linear size of a vessel or mag-
nitude of roughness at the vessel walls.
6 E.g., nano-dispersed silver powder or nano-porous glass (vycor) is usually applied as an obstacle
for the helium-II flow.
7 This property is used to purify the superfluid 4He from the 3He isotope impurities.



8.3 Superfluid and Normal Flows. The Hydrodynamics of Superfluid Liquid 303

In what follows, we will employ the above-described thermodynamic approach
for determining the equations for the two-fluid hydrodynamics of isotropic super-
fluid liquid on the neglect of possible energy dissipation effects. To derive, we use
the conservation laws of mass, momentum, energy, entropy, and the Galilean trans-
formation in addition. Similarly to an ideal fluid the superfluid component flow is
potential or irrotational, i.e.

curl vs = 0,

in the whole space occupied with the superfluid component. The vector curl vs is
called vorticity. The irrotational condition should not be disturbed while the flow
velocities do not reach the critical magnitudes and no coupling between the normal
and superfluid components appears.

From the physical point of view an existence of two independent flows in the fluid
instead of one flow will require to augment the number of variables to describe the
state of the fluid. Thus, the thermodynamic variables inherent in usual normal fluid
will be augmented with the superfluid velocity vs and conjugate variable called the
mass flux j s of superfluid component. So, the energy density of superfluid liquid
E = E(S, ρ, j , vs) should depend on the four variables such as: entropy S, density
ρ, mass flux density or momentum density j , and superfluid velocity vs .

As a first step, let us write down the conservation laws for mass, momentum,
energy, and entropy in the differential form

∂ρ
∂t + div j = 0, ∂ ji

∂t + ∂�ik
∂xk

= 0,
∂E
∂t + div Q = 0, ∂S

∂t + div F = 0.

The elimination of the energy dissipation effects from our consideration means the
conservation of the total entropy.

In the two-fluid hydrodynamics these four equations should be augmented with
one more equation describing the dynamics of superfluid velocity vs . On the analogy
with an ordinary fluid this should be an equation for the time derivative with respect
to superfluid velocity vs . To satisfy the condition of irrotational flow curl vs = 0, we
can expect the equation analogous to the Euler equation for an ideal liquid

∂vs

∂t
+ ∇ψ = 0.

Hereψ = ψ(S, ρ, j , vs) is a scalar function to be determined together with the fluxes
of energy Q, entropy F, mass j , and the momentum flux density tensor �ik .

To find the expressions for the flows, as a first step it is convenient to choose the
reference frame K0 in which the superfluid component is at rest, i.e. vs = 0, but the
normal component alone streams with the counterflow velocity w = vn − vs . Since
the superfluid component is at rest in this reference frame and does not participate in
the liquid flow, we can expect that the properties of the liquid in the reference frame
K0 will be the same as those of ordinary normal fluid. This conjecture allows us to
determine the corresponding fluxes j0, Q0, F0, and �0 ik .
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To find the fluxes in the laboratory reference frame K in which the superfluid
component flows at velocity vs , we use the Galilean transformation connecting the
corresponding physical quantities in the different reference frames.

For the energy density E0 = E0(S, ρ, j0) = E(S, ρ, j , vs = 0) in the reference
frame K0, we write down a usual differential

dE0 = T dS + μ dρ + w ·d j0.

Here, the temperature T , chemical potentialμ, and counterflowvelocityw are defined
as thermodynamic variables conjugated to variables S, ρ, and j0. The flux vector j0
as a vector in isotropic liquid can only be directed along the counterflow one w, i.e.

j0 = ρnw.

The scalarρn = ρn(S, ρ,w2)determines themagnitude of normal component density
and, in general, depends on entropy (temperature), total density of a liquid ρ, and the
square of counterflow velocity w.

Accordingly, we can write down the following expressions for the other fluxes in
the reference frame K0:

�0 ik = Pδik + ρnwiwk,

Q0 = T F0 + μ j0 + (w · j0)w and F0 = Sw.

The pressure P and its differential dP are related to the conjugate thermodynamic
potential A = E0 − T S − μρ − w · j in accordance with

P = −A = −E0 + T S + μρ + w · j0,
dP = −d A = S dT + ρ dμ + j0 ·dw.

In the reference frames K and K0, the quantities of our interest can be related
with the aid of the Galilean transformations

E = E0 + j0 ·vs + ρv2
s

2
,

j = j0 + ρvs, F = F0 + Svs,

�ik = �0 ik + ρvsivsk + vsi j0k + j0ivsk,

Qi = Q0 i + (
E0 + j0 ·vs + ρv2

s

2

)
vsi + v2

s

2
j0 i + �0 ikvsk .

Substituting the values of fluxes in reference frame K0, after the algebraic calculations
we find the values of the fluxes expressed via normal vn and superfluid vs velocities
in the laboratory reference frame K
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j = ρnw + ρvs = ρn(vn − vs) + (ρn + ρs)vs = ρnvn + ρsvs,

F = Sw + Svs = S(vn − vs) + Svs = Svn,

�ik = Pδik + ρnvnivnk + (ρ − ρn)vsivsk = Pδik + ρnvnivnk + ρsvsivsk,

Q = (
μ + v2

s

2

)
j + T Svn + ρnvn(vn − vs)·vn.

As we see, the mass flux density j and momentum flux density tensor�ik include
the terms associated with the both normal and superfluid component flows. Empha-
size that this property does not concern the entropy transfer. In fact, according to the
formula for the entropy flux F = Svn , we see that the entropy flux is connected with
the normal component flow alone. The superfluid component does not contribute to
the entropy transfer. The transfer of entropy is convective-like. Note also that, for
an equality between normal and superfluid velocities vn = vs = v, the expressions
of the fluxes resemble those for the corresponding ones in a normal non-superfluid
liquid.

Now it remains to determine the scalar functionψ which gradient governs the time
derivative of the superfluid velocity. This can be done, e.g. using the energy conser-
vation law and above-derived expressions for the energy density and fluxes in the
laboratory reference frame K . Calculating yields a simple answer after considerable
reductions

∂E

∂t
+ div Q = −ρs(vn − vs) ·

(
∂vs

∂t
+ ∇(

μ + v2
s

2

)) + ρvn · (vs × curl vs) = 0.

The requirement of zero right-hand side of equation togetherwith the irrotational flow
condition curl vs = 0 for the superfluid component will give us the scalar function
ψ = μ + v2

s/2 and equation of motion for the superfluid component velocity

∂vs

∂t
+ ∇(

μ + v2
s

2

) = 0.

Let us write down the other hydrodynamic equations of superfluid liquid

∂ρ

∂t
+ div j = 0, j = ρnvn + ρsvs,

∂ j
∂t

+ vsdiv j + ( j · ∇)vs + j0div vn + (vn · ∇) j0 = −∇P,

∂S

∂t
+ div (Svn) = 0, j0 = ρn(vn − vs).

The complete equations of two-fluid hydrodynamics are rather complicated since
the scalar variables μ, ρ, S, and P in the above equations are also the functions of
counterflow velocity vn − vs and the separate calculation and determination for them
are required as well.
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8.4 Normal and Superfluid Densities

In what follows, we consider the question about calculating and determining the
normal component density ρn . Any elementary excitation has some momentum p
and thus contributes to the total momentum of a liquid. The following integral deter-
mines the momentum per unit volume or momentum density corresponding to the
equilibrium distribution function n( p)

j =
∫

pn( p)
d3 p

(2π�)3
.

Obviously, momentum density vector vanishes due to symmetry n( p) = n(− p). If
there is some relative velocity between the liquid and elementary excitations, the
momentum per unit volume is no longer to be zero. Nonzero momentum means that
the motion of excitations relative to the liquid will be accompanied with the transfer
of some liquid mass.

Let all elementary excitations move as a whole at certain velocity v relative to
the liquid at rest. In the reference frame in which the excitations are immobile,
the liquid flows at velocity (−v). Due to the Doppler shift the energy of elementary
excitations in such reference frame becomes equal to ε( p) + p(−v). The distribution
function of excitations takes the form n(ε p − pv) and the following integral gives
the momentum density resulted from the motion of elementary excitations:

j =
∫

pn(ε p − pv)
d3 p

(2π�)3
.

Decomposing in small velocities v, we have the answer

j ≈ −
∫

p( pv)
∂n

∂εp

d3 p

(2π�)3
= −v

1

3

∫
p2

∂n

∂εp

d3 p

(2π�)3
.

Deriving the last equality, we have averaged over the whole directions of vector p.
Rewriting this relation as j = ρexv, we see that nonzero flux of elementary exci-
tations is inevitably accompanied with transferring some fraction of the liquid and
characterized by some effective density ρex. The latter, in general, depends on veloc-
ity v and distribution function n(ε). The fraction of the liquid mass transferred equals
ρex/ρ, ρ being the total mass of the liquid.

Let us suppose that in He II there are two homogeneous flows, namely normal at
velocity vn and superfluid at velocity vs . In the reference frame comoving together
with the superfluid component themomentum density or momentum per unit volume
will be equal to the following flux of normal component:

jn = j − ρvs = ρn(vn − vs) = ρnw.
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On the other hand, we can express the momentum of the normal component flowing
at the counterflow velocity w = vn − vs by means of the integral

jn =
∫

pn(εp − pw)
d3 p

(2π�)3
.

The integral sums themomenta of all elementary excitations.Comparing both expres-
sions above, we arrive at the equation determining the magnitude of normal density
ρn = ρn(w

2)

ρnw =
∫

pn(εp − pw)
d3 p

(2π�)3
.

For the small values of counterflow velocityw, the expansion of the integrand results
in the following magnitude of normal density in superfluid He II:

ρn = 1

3

∫
p2

(
−∂n(εp)

∂ p

)
d3 p

(2π�)3
.

Let us calculate first the contribution to the normal density from the phonon
segment of excitation spectrum with dispersion εp = up

ρn,ph(w)w =
∫

p
[
exp

(
up − pw

T

)
− 1

]−1 d3 p

(2π�)3
.

Choosing the z axis in the direction of the counterflow vector w, we have

ρn,ph(w)w = 2π

8π3�3

∞∫
0

p2dp

π∫
0

sin θdθ
p cos θ

e(up−pw cos θ)/T − 1
=

= T 4

4π2�3u4

1∫
−1

x dx

(1 − xw/u)4

∞∫
0

ε3dε

eε − 1
= T 4

4π2�3u4
8

3

w/u

(1 − w2/u2)3
π4

15
.

Hence the phonon contribution to the normal component density equals

ρn,ph(w) = ρn,ph(0)

(1 − w2/u2)3
, ρn,ph(0) = 2π2T 4

45u5�3
= 4

3

Eph(T )

u2
.

As the counterflow velocity increases, the normal component density grows and
diverges at w = u. This indicates a principal impossibility of superfluid motion at
velocities w > u and limitations of the theory at the flow velocities comparable with
the sound one.

As concerns the similar calculation for the contribution of the roton dispersion
segment, we can use the Boltzmann distribution instead of the Planck one due to
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strong inequality � � T

ρn,r (w)w =
∫

p exp
(

−εp − pw
T

)
d3 p

(2π�)3
, εp = � + (p − p0)2

2m
,

ρn,r (w) = 3ρn,r (0)
w̃ cosh w̃ − sinh w̃

w̃3
, w̃ = wp0

T

and ρn,r (0)ρn,r (w = 0) = p20
3T

Nr (T ).

Here Nr (T ) is the number of rotons in unit volume of helium. The superfluid com-
ponent density ρn in He II as well as the thermodynamic functions is adequately
described by a sum of phonon and roton contributions, i.e. ρn = ρn,ph + ρn,r . As a
rule, for most of problems it is possible to ignore the dependence of thermodynamic
variables on the counterflow velocity w. The point is that the ratios w/u and wT/p0
are noticeably small in the flow velocity region where superfluid He properties are
observed and used.

Problem

1. Find the flux density i in the gas of thermodynamically equilibrium phonons for its flow as a
whole at velocity w relative to the liquid. The phonon dispersion is ε = up.

Solution. The phonon flux density is determined with the integral

i =
∫

vn( p)
d3 p

(2π�)3
,

v = ∂ε/∂ p being the velocity of excitations. For the flow of elementary excitations as a whole in
the liquid at velocity w, the distribution function changes according to n(ε p) → n(ε p − pw) as a
result of the Doppler shift of excitation energy. So, we have

i =
∫

vn(εp − pw)
d3 p

(2π�)3
.

Let z axis be taken in the direction of vector w. Then we have for the density of the flux directed
along the z axis

i = 2π

8π3�3

∞∫
0

p2dp

π∫
0

sin θdθ
u cos θ

e(up−pw cos θ)/T − 1
=

= u

2π2�3

(
T

u

)3 ∞∫
0

ε2dε

eε − 1

1∫
−1

x dx

(1 − xw/u)3
= u

2π2�3

(
T

u

)3

2ζ(3)
2w/u

(1 − w2/u2)2
=

= 2w

(1 − w2/u2)2
Nph(T ) where Nph(T ) = T 3

π2�3u3
ζ(3).

Here Nph(T ) is the number of phonons in the unitHe II volume.We can relate the normal component
flux density jn to the phonon number flux density of the phonon number i as

jn = π4

45ζ(3)

T

u2
i

1 − w2/u2
.
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2. The same for the gas of rotons.
Solution. Let us write down the expression of the roton flux density, involving the roton velocity

v = ∂εp/∂ p

i =
∫

v exp

(
−� + (p−p0)2

2m − pw

T

)
d3 p

(2π�)3
, v = p − p0

mp
p.

The z axis is taken in the direction of vector w. We have for the density of the flux directed along
the z axis

i = 2π

8π3�3
e−�/T

∞∫
0

p2dp

π∫
0

sin θdθ

(
p − p0
m

cos θ

)
e− (p−p0)2

2mT e
pw cos θ

T =

= e−�/T

4π2�3

∞∫
0

dp
p2(p − p0)

m
e− (p−p0)2

2mT

1∫
−1

xe
pwx
T dx ≈

≈ w
e−�/T

4π2�3

∞∫
0

dp
2

3

p3(p − p0)

mT
e− (p−p0)2

2mT .

Here we have restricted ourselves with the approximation of small counterflow velocityw � T/p0.
The estimate of the last integral yields a simple relation in the p20 � 2mT approximation

i = Nrw and Nr = 2p20(mT )1/2

(2π�2)3/2
e−�/T ,

Nr being the number of rotons per unit volume. Relating the normal component flux density jn
and the density of the roton number flux, we get the formula

jn = p20
3T

i .

3. The 3He atoms diluted in small concentration in superfluid 4He can be described as an ideal
gas of Fermi excitations (impuritons) with momentum p and energy εp = −ε0 + p2/2m∗ where
ε0 is the dilution energy of a 3He atom and m∗ is the effective 3He mass. At low velocities the
3He impurities do not interact with the superfluid component of liquid 3He-4He mixture and are
completely dragged along with the normal component flow.

Find the impurity contribution to the normal component density in a dilute liquid 3He-4He
mixture with concentration N3 of 3He atoms.

Solution. At low velocities of flow the normal component density is determined by the integral

ρn,i = 1

3

∫
p2

(
−∂ni

∂ε

)
2d3 p

(2π�)3
.

Here ni (ε) is the Fermi–Dirac distribution function of impurities. The factor 2 takes the nuclear spin
1/2 of 3He atoms into account. While calculating, it is convenient to include the dilution energy ε0
into the chemical potential. Then, we have

ρn,i = 2m∗

3

∫
ε

(
−∂ni

∂ε

)
2d3 p

(2π�)3
.

Integrating by parts yields

ρn,i = m∗
∫

ni (ε)
2d3 p

(2π�)3
= m∗N3.
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The superfluid d-phase of liquid 3He-4He mixture is an example of superfluid system in which the

normal component density remains finite8 as T → 0.

8.5 The First and Second Sounds in Superfluid Liquids

Let us apply the above-derived hydrodynamical equations of superfluid liquid for
studying the sound propagation in a superfluid liquid. As usual, the liquid flow
velocity in sound oscillations is assumed to be sufficiently low and such thermody-
namic variables as pressure and temperature are close to the equilibriummagnitudes.
Then, we linearize a set of hydrodynamical equations, neglecting all possible second
and higher order terms. A set of the linearized equations reduces to

∂ρ

∂t
+ div j = 0,

∂ j
∂t

= −∇P; j = ρnvn + ρsvs and ρ = ρn + ρs,

∂(σρ)

∂t
+ σρ div vn = 0,

∂vs

∂t
+ ∇μ = 0;

σ = S

ρ
and

∇P

ρ
= σ∇T + ∇μ.

For further convenience, we have introduced the specific entropy σ instead of entropy
density S according to σ = S/ρ.

Eliminating the momentum density j from the first two equations, we have the
equation for the relation between the oscillations of pressure P and density ρ. This
equation is similar to that known for the normal fluid

∂2ρ

∂t2
= ∇2P.

Using the thermodynamic relation dμ = −σ dT + dP/ρ, we find from the second
and fourth equations

ρn
∂

∂t
(vn − vs) = −σρ∇T .

Using the first and third equation yields

ρsdiv (vn − vs) = − ρ

σ

∂σ

∂t
.

Eliminating the counterflow (vn − vs) from the last two equations, we arrive at the
equations relating the oscillations of specific entropy σ and temperature T

8 It is expected that the impurity 3He component transmits to the superfluid state at ultralow tem-
peratures. Such phase transition is not observed down to 100 µK.
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∂2σ

∂t2
= σ2ρs

ρn
∇2T .

Let us introduce the deviations of pressure δP and temperature δT from their equi-
librium values. The deviations of density δρ and entropy δσ from their equilibrium
values can be represented as

δρ = ∂ρ

∂P
δP + ∂ρ

∂T
δT and δσ = ∂σ

∂P
δP + ∂σ

∂T
δT .

Substituting them into the equations for the time derivatives of density and entropy
gives a set of two equations

∂ρ

∂P

∂2 δP

∂t2
− ∇2 δP = − ∂ρ

∂T

∂2 δT

∂t2
,

∂σ

∂T

∂2 δT

∂t2
− σ2ρs

ρn
∇2 δT = ∂σ

∂P

∂2 δP

∂t2
.

As usual, we seek the solution of equations as a plane wave propagating in the
x axis direction at frequency ω and velocity u. In other words, the oscillations of
pressure δP(x, t) and temperature δT (x, t) are proportional to the general factor
exp[−iω(t − x/u)]. Then,

(
u2

∂ρ

∂P
− 1

)
δP + u2

∂ρ

∂T
δT = 0,

u2
∂σ

∂P
δP +

(
u2

∂σ

∂T
− σ2ρs

ρn

)
δT = 0.

Equating the determinant of this system to zero yields the equation which determines
the sound velocity u

u4
(

∂ρ

∂P

∂σ

∂T
− ∂ρ

∂T

∂σ

∂P

)
− u2

(
∂σ

∂T
+ σ2ρs

ρn

∂ρ

∂P

)
+ σ2ρs

ρn
= 0.

The equation can be rewritten in more obvious form if we use the thermo-
dynamic relation between the specific heat at constant volume (constant density)
cV = T (∂σ/∂T )V and constant pressure cP = T (∂σ/∂T )P

cV = T

(
∂σ

∂T

)
P

− T

(
∂σ
∂P

)
T

(
∂ρ
∂T

)
P(

∂ρ
∂P

)
T

.

As a result, we get (
u2

u21
− 1

)(
u2

u22
− 1

)
= 1 − cV

cP
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where we denote

1

u21
= cV

cP

(
∂ρ

∂P

)
T

=
(

∂ρ

∂P

)
S

,

1

u22
= cV

cP

ρn(∂σ/∂T )P

σ2ρs
= ρn(∂σ/∂T )V

σ2ρs
.

The biquadratic equation derived determines two possible sound velocities. The
difference cP − cV in the specific heats is proportional to the square of thermal
expansion coefficient αV = −ρ−1(∂ρ/∂T )P . At low temperatures in superfluid 4He
the magnitude αV is negligible and we can make no difference between the specific
heats cV and cP , putting them practically equal to each other with the exception of
close vicinity of λ-point of superfluid transition. This circumstance simplifies the
solution of the equation and we have for the roots

u1 =
√(

∂P

∂ρ

)
σ

and u2 =
√

σ2ρs

ρn (∂σ/∂T )ρ
.

The first root u1 determines the velocity of first sound or ordinary sound existing
above the superfluid transition temperature. The oscillations of pressure or density
propagate at such velocity. In the first sound wave the normal and superfluid compo-
nent velocities coincide vn = vs if the thermal expansion coefficient is neglected, i.e.
αV = 0. This means that the normal and superfluid components oscillate in-phase.
In this sense the first sound is similar to the usual sound in normal fluid.

The second root u2 determines the velocity of second sound. The undamped oscil-
lations of temperature propagate at this velocity. The wave of second sound9 is a spe-
cific attribute of superfluids. At the λ-point of superfluid transition the second sound
velocity vanishes togetherwith the superfluid density. For the low temperatureT → 0
limit when elementary excitations in 4He are phonons, the second sound velocity is
u2 = u1/

√
3. In the αV = 0 approximation, the density and pressure in the second

sound wave do not oscillate and the total mass flow is absent j = ρnvn + ρsvs = 0.
This means that the superfluid and normal components oscillate in antiphase and
compensate mutually the mass flows of the both components. The second sound
can be interpreted as undamped waves of compression and rarefaction in the gas
of elementary excitations (phonons) since the temperature oscillations induce the
oscillations in the number and density of elementary oscillations (phonons). Unlike
superfluid liquid where the heat transfer has a convective nature, in normal fluid the
heat transfer and temperature oscillations are diffusive and thus damping due to finite
heat conduction.

9 The third sound refers usually to the wave processes in the thin helium films absorbed on the
substrate. The fourth sound is a propagation of sound in the thin capillaries when the normal
component motion is completely retarded, i.e. vn = 0 but vs �= 0.
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Fig. 8.2 The temperature
behavior of second sound
velocity u2 in He II. Velocity
u2 = 0 at λ-point of
superfluid transition
(ρs = 0). In the low
temperature region below
about 0.5 K the velocity u2 is
governed by the phonon
excitations and equal to
u1/

√
3

Nonzero thermal expansion coefficient results in the effect of coupling10 between
first and second sounds. To the extent αV �= 0 in first sound there also arise tem-
perature oscillations along with the pressure and density oscillations and, strictly
speaking vn �= vs . In its turn, in the second sound there appear the pressure and
density oscillations in addition to the temperature oscillations. The total mass flow
in the second sound wave does not vanish rigorously, i.e. j �= 0. The temperature
behavior of second sound velocity u2(T ) is shown in Fig. 8.2.

8.6 Quantized Vortices in a Rotating Superfluid Liquid

If we rotate a bucket with He II and assume the irrotational curl vs = 0 motion of
the superfluid component, the normal component alone should start to rotate with
the bucket but the superfluid component will stay immobile. The normal excitations,
colliding and interacting with the bucket walls, are dragged with the rotation like an
ordinary viscid fluid. The superfluid component, which does not interact with the
walls, remains at rest and immobile. Such situation conserves while the velocity of
the bucket walls is sufficiently small and the walls create no elementary excitations
which could involve the superfluid component into rotation. The quantized vortices
or singular vortex lines in the superfluid velocity distribution have been found as
elementary excitations violating the irrotational motion and dragging the superfluid
component into rotation.

Let us write down the condition of irrotational motion curl vs = 0 with the aid of
the Stokes theorem in the equivalent integral form

κ =
∮
C

vsd l = 0

10 The effect in degree is characterized with the Landau–Placzek ratio (cP − cV )/cV .
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as zero circulation κ of superfluid velocity round some closed contour C . Next, we
examine the quantity Mκ/2π, where M is the 4He atom mass, from the viewpoint
of an adiabatic invariant. According to the principles of quantum mechanics this
quantity should be subjected to quantization as

1

2π
M

∮
C

vsd l = n� where n is an integer

and, correspondingly, we have for the circulation

∮
C

vsd l = κn = nκ, κ = 2π�

M
.

The quantity κ is the circulation quantum.
It follows immediately from this relation that two essentially different situations

arise in a superfluid at n = 0 and n �= 0. If n = 0, the vorticity is curl vs = 0 and
in any simply connected region the superfluid component remains at rest (vs ≡ 0)
regardless of rotation of the liquid. For nonzero circulation, there appears a motion
of the superfluid component around some singular vortex lines.

Let us consider the simplest example of rectilinear vortex line parallel to the z
axis with nonzero κn circulation around any closed contour encircling the vortex
line. The superfluid velocity has the azimuthal component alone

vs(r) = κn

2πr
= n

κ

2πr
, κ = 2π�

M

and r is the distance from the vortex line. The flow lines are the circles whose planes
are normal to the vortex line and the centers are at the vortex line. As we see, the
superfluid velocity magnitude grows unlimitedly on approaching to the vortex line
center. At the same time, the superfluid component density decreases but the normal
component density increases. The superfluid component density strictly vanishes at
the vortex line. The vortex core means the region around the vortex line where the
superfluid density is negligibly small and no superfluidmotion. The core size is about
correlation length ξ being a few interatomic distance with the exception of the close
vicinity of λ-point.

The kinetic energy of rectilinear quantized vortex per its unit length (or linear
tension) is given by

En =
∫

ρsv
2
s

2
d2r = ρs

2

R∫
ξ

(
nκ

2πr

)2

2πr dr = n2
ρsκ

2

4π
ln

R

ξ
.

Estimating the large integral within the logarithmic accuracy, we have chosen the
length ξ as a vortex core radius of about interatomic spacing and length R � ξ as
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some external radius of the vortex. The latter can be the bucket radius or the mean
distance between vortices. The creation of vortex-like excitation is associatedwith an
additional energy. Since En ∼ n2 and n2 � |n|, the state of |n| vortices with the one-
quantum circulation κ is energetically more favorable as compared with the state of
one vortex but carrying the |n| circulation quanta at once. The total excitation energy
for a vortex ring of radius R can be estimated as 2πRE1.

To find the critical angular velocity �cr , at which the first quantized vortex will
appear in a rotating bucket, it is necessary to deal with the thermodynamic potential
Ẽ(�) = E − L� as a function of angular velocity, L being the angularmomentumof
the total liquid. The spontaneous creation of a vortex becomes energetically favorable
if the inequality Ẽ(�) < 0 is achieved with the growth of angular velocity �.

We can clarify the necessity to analyze the thermodynamic potential Ẽ(�) as
follows. In the reference frame in which the liquid flows at velocity v, the elementary
excitation energy experiences the Doppler shift ε → ε + pv and the condition ε +
pv < 0 permits a spontaneous creation of an excitation. In our case, if we consider
an excitation at distance r from the bucket axis z, the superfluid component flows at
velocity v = −� × r and

ε + pv = ε − p·(� × r) = ε − l(r) · �

where l(r) = r × p is the angular momentum. Integrating the last relation over the
whole liquid volume, we arrive at E(�) − L� where E = ∫

ε dV and L = ∫
l dV .

Prompting the symmetrical hints, we expect that the minimum magnitude of the
thermodynamic potential Ẽ(�) realizes for location of a vortex line at the center of
the bucket and parallel to its symmetry axis. The angular momentum of vortex line
is parallel to the rotation z axis. Its magnitude per unit length of rectilinear line is

L =
∫

r�R

d2r [r × ρsvs]z = ρs

∫
d2r rvs = n

2
κρs R

2,

ρs being the superfluid component density. We have taken here into account that the
superfluid velocity vector has no z component of the velocity in the direction of the
bucket axis. From condition Ẽ(�) = E − L� = 0 we find the minimummagnitude
of the critical angular velocity of rotation when the creation of the first vortex
becomes favorable

�cr = κ

2πR2
ln

R

ξ
.

Of course, this angular velocity corresponds to one quantum circulation κ. The
critical angular velocity �cr matches the critical linear velocity

vcr = �cr R = �

2MR
ln

R

ξ
.
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Fig. 8.3 Vortices in the rotating bucket with helium. At the lhs: top view. At the rhs: side view

By the order of the magnitude, this estimate remains correct for the critical flow
velocity at which quantized vortices are generated in the capillaries and orifices with
the typical diameter 2R.

The presence of quantized vortices will imitate the rotation of the superfluid
component as a whole. The density of vortices N , i.e. the number of vortices per unit
area, can be related with vorticity curl vs , using the Stokes theorem as N = |curl vs |

κ
.

Since |curl (� × r)| = 2�, the angular velocity-dependent density of vortices in the
bucket can be estimated as N = 2�/κ. Thus,when the bucketwith superfluid helium
rotates, the emergence of quantized vortices produces a vortex-like motion with
|curl vs | = 2� as it takes place for rotation of normal viscid fluid.Herewith, as before,
the magnitude of vorticity |curl vs | = 0 vanishes in the vortex-free regions. As the
rotation velocity enhances, the vortices start to occupy practically the whole bucket
volume. However, a small region beside the bucket walls still remains completely
vortex-free. The resulting picture is schematically shown in Fig. 8.3.



Chapter 9
Magnetism

9.1 Types of Magnetic Structures

The carriers of magnetism in a condensed matter are usually the atoms of transition
elements with non-zero magnetic moments or spins. The magnetic moment in an
atom appears due to existence of unfilled electronic d- or f -shells. These are 3d
elements of the iron group, rare earth 4 f elements, and 5 f actinides. As a rule, the
atoms of these elements are responsible for the manifestation of magnetism.

The spontaneous magnetic ordering at sufficiently low temperatures is observed
in the huge number of wide variety of substances. For the magnetic ordering, it is
unnecessary to have the spatially ordered crystalline structure in a substance. The
magnetic ordering exists in amorphous disordered systems as well.

Let us mention the most common types of magnetic ordering as a few examples.
The simplest structure is ferromagnetic when all magnetic moments or spins are
directed parallel to each other, realizing non-zero value of magnetization 〈M〉 �= 0
(Fig. 9.1a). As simple examples of ferromagnets, we note the following chemical
elements: Fe, Co, Ni, Gd or compounds EuO, MnS, USe.

The antiferromagnetic ordering is primarily specified with the lack of the mean
magnetization 〈M〉 = 0. The simplest antiferromagnetic structure is collinear, com-
posed of two equivalent ferromagnetic sublattices M1 and M2 with the oppositely
directed magnetic moments or spins, resulting in 〈M1 − M2〉 �= 0 (Fig. 9.1b). The
typicalexamplesofantiferromagnetsareas follows:Mn,Cr,Sm,Eu,CoO,MnO,UO2.

The ferrimagnetic ordering has also the collinear structure. The magnetic
moments in two magnetic sublattices M1 and M2 are antiparallel but the magnetic
moments in the various sublattices differ in their magnitudes. Accordingly, there
appears nonzero resultant magnetization 〈M1 + M2〉 �= 0. The various sublattices
here consist of different atoms or ions (Fig. 9.2c). Often these are double oxides, e.g.
NiOFe2O3, Gd3Fe5O12, FeOFe2O3, MnGe2.

The non-collinear magnetic ordering can be imagined as twomagnetic sublattices
ordered initially in the opposite directions and then canted in the same direction
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Fig. 9.1 a The
ferromagnetic ordering; b
The antiferromagnetic
ordering

Fig. 9.2 c Ferrimagnetism;
d Canted antiferromagnetism
(M is the resultant weak
magnetization)

(Fig. 9.2d). As a rule, at small angle of inclination this type of magnetic ordering
is referred to as canted antiferromagnetism or, infrequently, weak ferromagnetism
since 〈|M1 + M2|〉 � 〈|M1 − M2|〉. The examples of such compounds are hematite
α-Fe2O3, SmFeO3, CoCO3.

There exist spiral or helical magnetic structures as well. For instance, we can
indicate the structure of antiferromagnetic helicoid (Fig. 9.3) in rare earth terbium

Fig. 9.3 The magnetization
vector in the
antiferromagnetic helicoid
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Fig. 9.4 The ferromagnetic
helicoid

between 219 and 230 K or dysprosium between 85 and 174 K. At lower temper-
atures these substances experience the magnetic transition to the state of collinear
ferromagnetic.

Erbium below 19 K has a structure of ferromagnetic helicoid (Fig. 9.4) and in
the temperature region 19–53 K the structure is more complicated, namely cycloidal
antiferromagnetic (Fig. 9.5).

In the temperature region close to the magnetic ordering temperature there can
arise sinusoidal ordering (Fig. 9.6) when it still remains energetically favorable to
change the magnitude of the magnetic moment with maintaining its direction along
some selected axis z according to 〈Mz〉 ∼ sin qz.

Unlike the ferromagnetic ordering, the antiferromagnetic-type interaction
between the spins can lead to the effects of multiple degeneration of the ground state
with the minimum energy. A typical example of such situation can be illustrated with
putting three spins at the corners of an equilateral triangle with antiferromagnetic
coupling between them (Fig. 9.7a). The total number of possible states is 23 = 8.
Two of them when all three spins are oriented in the same direction do not meet the
ground state. For the other six states, two spins are directed to reduce the coupling
energy but the third one has to be oriented in the unfavaroble direction from the
energetic viewpoint. The energy of all these six states proves to be the same, i.e. the
ground state is sixfold degenerate. This simple example illustrates the phenomenon
of geometrical frustration when the spatial position of particles conflicts with the
interparticle interaction and results in the macroscopic number of the ground states
in the system.

The frustration effects are typical for the triangular, hexagonal, or kagome lattices.
The latter ones consist of equilateral triangles and regular hexagons, arranged so that
each hexagon is surrounded with the triangles and vice versa. The examples of such
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Fig. 9.5 The cycloidal
structure of magnetization

Fig. 9.6 The sinusoidal
ordering
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Fig. 9.7 a The triangular lattice. The both directions of the spin at the right-hand spin are
unfavorable from the viewpoint of minimizing the nearest neighbor interaction. b The square lattice

spatial structures can be found in the jarosite KFe3(SO4)2 (OH)6 and herbertsmithite
ZnCu3(OH)6Cl2 minerals. In the square1 lattice, on the contrary, the ground state is
not degenerate if we disregard the direction of the spin ordering axis. The ground state
will be a simple collinear antiferromagnetic ordering consisting of two ferromagnetic
sublattices and proves to be the most energetically favorable (Fig. 9.7b).

The magnetic structure can experimentally be determined by observing the
diffraction patterns of neutron scattering.

9.2 The Ferromagnetic Ordering

An existence of magnetic structure in the condensed media leads to emerging addi-
tional elementary excitations and specific magnetic branches in the energy spectrum
of excitations. In its turn, this results in changing the thermodynamicmedium as com-
pared with its nonmagnetic state. As a rule, the main type of magnetic interaction is
an exchange interaction which can be represented as the Heisenberg Hamiltonian

Ĥ = −1

2

∑

a �=b

J (Rab)Ŝa Ŝb , Rab = Ra − Rb .

The sum is taken over all atom spins Sa located at points Ra . It is convenient to
augment the exchange integral J with J (Rab = 0) = 0 and then write the exchange
Hamiltonian, as follows:

Ĥ = −1

2

∑

ab

J (Rab)Ŝa · Ŝb , Rab = Ra − Rb .

Along with the exchange interaction, there exist both dipole interaction between
the magnetic moments of atoms and spin–orbit interaction between the magnetic
moment and the electric field induced by the particles in the medium.

1 The frustration effects are also possible if there is an interaction not only between the nearest
neighboring spins but the interaction exists between the next neighboring spins and has a long-range
character.



322 9 Magnetism

Let us introduce operator of magnetic moment density

M̂(r) = μ
∑

a

Ŝaδ(r − Ra)

where μ is the effective Bohr magneton. Then we represent the Heisenberg
Hamiltonian in the following form:

Ĥ = − 1

2μ2

∑

ab

∫
d3r d3r ′ J (r − r ′)δ(r − Ra)δ(r − Rb) =

= − 1

2μ2

∫
d3r d3r ′ J (r − r ′)

∑

a

Ŝaδ(r − Ra)
∑

b

Ŝbδ(r − Rb) =

= − 1

2μ2

∫
d3r d3r ′ J (r − r ′)M̂(r)M̂(r ′).

This Hamiltonian conforms to the free energy Fex which should be calculated
with the aid of the equilibrium density matrix ρ̂ = exp[(F − Ĥ)/T ], as follows:

Fex = tr (ρ̂ Ĥ) = 〈Ĥ〉 = − 1

2μ2

∫
d3r d3r ′ J (r − r ′)〈M̂(r)M̂(r ′)〉 ≈

≈ − 1

2μ2

∫
d3r d3r ′ J (r − r ′)〈M̂(r)〉〈M̂(r ′)〉.

Here we have used the mean-field approximation or self-consistent approximation,
replacing the average for the product of operators with the product of the averages of
operators. This approximation is usually justified well below the Curie temperature.
Taking into account that the average for operator M̂(r) equals the magnetization
vector M(r), we get

Fex = − 1

2μ2

∫
d3r d3r ′ J (r − r ′)M(r)M(r ′).

If the magnetization is constant in the space M(r) = const, we have

Fex = − 1

2μ2

∫
d3r J (0)M2, J (0) =

∫
d3r J (r)

and J (0) is zero Fourier-transform of the exchange integral.When the magnetization
varies slowly in the space,we can take into account that exchange integral J (r)decays
rapidly with the distance. Let us expand M(r) to second-order terms

Mi (r ′)=Mi (r) + (x ′
k − xk)

∂Mi (r)
∂xk

+ 1

2
(x ′

k − xk)(x
′
l − xl)

∂2Mi (r)
∂xk∂xl

+. . .
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and substitute this expansion into the expression for the free energy. Then,

Fex = − 1

2μ2

∫
d3r M2

i (r)
∫

d3r ′ J (r ′)−

− 1

2μ2

∫
d3r Mi

∂Mi

∂xk

∫
d3r ′ x ′

k J (r ′)−

− 1

2μ2

∫
d3r Mi

∂2Mi

∂xk∂xl
· 1
2

∫
d3r ′ J (r ′)xkxl + · · ·

For simplicity, we restrict ourselves with the rather general case of centrally
symmetrical lattice of the spin sites, i.e.

∫
d3r r J (r) = 0,

and introduce the coefficient of magnetic stiffness according to

αik = 1

2μ2

∫
d3r J (r)xi xk .

Thus, the second term in the expansion vanishes and the third one plays a role of
energy of inhomogeneity

Finh = −1

2

∫
d3r αkl Mi (r)

∂2Mi

∂xk∂xl
=

= −αkl

2

∫
d3r

∂

∂xk

(
Mi

∂Mi

∂xl

)
+ αkl

2

∫
d3r

∂Mi

∂xk

∂Mi

∂xl
.

The integrand with the brackets corresponds to the surface integral which can be
disregarded if we are interested only in the bulk contribution, i.e. free energy density.
The second possibility is to choose the natural boundary condition at the surface of
a ferromagnet in order to nullify this surface contribution. Accordingly, we can put
the following condition2 at the ferromagnet surface S:

(ν ·∇M)
∣∣
S = 0,

ν being the normal to the surface.
So, we have for free energy Fex and its density wex

Fex =
∫

d3r wex where wex = − 1

2μ2
J (0)M2 + 1

2
αkl

∂Mi

∂xk

∂Mi

∂xl
.

2 The continuity condition is also used for the normal component of the energy flux density.



324 9 Magnetism

For the spin lattice of cubic symmetry, the coefficient is αkl = αδkl and the
inhomogeneity energy density can be written as follows:

winh = α

2

∂Mi

∂xk

∂Mi

∂xk
≡ α

2
(∇M)2.

Let us estimate the magnitude of the magnetic stiffness coefficient α, supposing
that exchange integral J decays rapidly at the interatomic distancea about the spacing
between the neighboring spins. Then, α is of the order of

α ∼ J

μ2
a3 · a2 ∼ �a3

μ2
a2.

Here we have introduced the Curie temperature � equal approximately to the mag-
nitude of exchange integral J between the neighboring spins. Taking into account
that the saturation magnetization in a ferromagnet is about Ms ∼ μ/a3, we obtain

α ∼ �

μMs
a2.

Usually, for the ferromagnets with the Curie temperatures large as compared with
several kelvins, the inequality �/(μMs) � 1 is valid and, therefore,

√
α � a.

The exchange interaction does not specify the magnetization direction in the ordi-
nary space. The alignment of magnetization in the space is connected with the
relativistic interactions whose energy depends on the orientation of the magnetic
moments with respect to the crystallographic axes. The magnitude of the relativis-
tic interactions is usually much less than the exchange one to degree v/c � 1 and
reaches approximately (v/c)2wex, where v is the velocity of electrons in an atom
and c is the light velocity. Here, first of all, we mention the dipole-dipole interaction
between two magnetic moments. Another known type of relativistic interaction is
the spin-orbit couplingwhich can be described as an interaction of an atom spin with
the electric field of ion lattice.

The spin-orbit and dipole-dipole interactions contain both the terms having the
same symmetry like the exchange interaction and the terms depending on the direc-
tion of the spins relative to the spatial axes. The sum of first terms can be included
into the exchange interaction Hamiltonian but the second ones can be represented in
the following form:

Ĥan = 1

2
μ2

∑

a �=b

∑

i,k

βik(Rab)Ŝa,i Ŝb,k (i, k = x, y, z).

Introducing the magnetization operator and calculating the free energy with the
anisotropic Hamiltonian Ĥan like in the case of the exchange interaction, we obtain
the anisotropic part of the free energy expressed in terms of the magnetization vector
M(r) in the general form
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Wan = 1

2

∫
d3r d3r ′ βik(r − r ′)Mi (r)Mk(r ′).

Since function βik(r − r ′) decays rather rapidly with the distance, we can take the
local approximation βik(r − r ′) ≈ βikδ(r − r ′) as a first one. Then,

Wan =
∫

d3r wan and wan = 1

2
βikMi (r)Mk(r)

where wan is the density of anisotropy energy. It is natural that its expression
should be time-reversal invariant M → −M and represent a scalar. The symmetry
of anisotropy coefficient βik reflects the spatial symmetry of a ferromagnet.

For a uniaxial ferromagnet, we write down

wan = β1

2
(M2

x + M2
y ) + β2

2
M2

z .

Since M2
x + M2

y + M2
z = M2, the part of the anisotropy energy can be included into

the exchange one depending on M2 alone. The following representation is more
convenient:

wan = β

2
M2

z = β

2
(nM)2,

n being unit vector in the direction of the anisotropy axis. In a uniaxial ferromagnet
with, the easy axis of magnetization β < 0 the spontaneous magnetization direction
will coincide with that of anisotropy axis z. For the case of easy plane β < 0, the
magnetic moment will be aligned in the plane normal to the anisotropy axis.

In a crystal of cubic symmetry βik = βδik and in the energy of anisotropy it is
necessary to involve the terms of higher order in magnetization

wan = β(M2
x M

2
y + M2

x M
2
z + M2

y M
2
z ) ⇔ −β

2
(M4

x + M4
y + M4

z ).

For β > 0, the magnetic moment aligns in the direction of spatial axes x , y, z. For
β < 0, the alignment is along the diagonals of a cube. On the whole, the free energy
must be scalar invariant to replacing as M → −M and correspond to the spatial
symmetry of a magnet.

9.3 Total Energy of a Ferromagnet

In zero magnetic field H = 0 the free energy F[M(r),∇M(r)] of a ferromagnet
can be represented as

F =
∫

d3r w(M,∇M), w(M,∇M) = αik

2

∂M
∂xi

∂M
∂xk

+ wan + f (M2)
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where f (M2) has mainly the exchange origin. To find the behavior of free energy as
a function of magnetic field strength H , we employ the thermodynamic definition
for the derivative of the Gibbs free energy F̃ = F̃(M, H) with respect to magnetic
field (

∂ F̃

∂H

)

M
= − B

4π
= − H + 4πM

4π
= − H

4π
− M.

Hence, taking F̃(M, 0) = F(M, 0) into account, we have

F̃(M, H) = F(M, 0) − MH − H2

8π
.

It is straightforwardly to find the expression for the Helmholtz free energy F
dependent on the magnetic induction B

F(M, B)= F̃ + HB
4π

=F(M, 0) − MH − H2

4π
− H2

8π
=F(M, 0) + H2

8π
.

Expressing H in terms of the magnetic induction vector B, we arrive at the final
expression for the Helmholtz free energy of a ferromagnet

F(M, B) = F(M, 0) + (B − 4πM)2

8π
.

In conclusion, we emphasize that, depending on the experimental and external
conditions, it is necessary to pay attention3 which of two thermodynamic potentials
F̃(H) or F(B) should be chosen for determining the thermodynamic state of a
condensed matter in the magnetic field.

Problem

1. There is a ferromagnet with the easy-axis anisotropy. Find the direction of magnetization
M in magnetic field H normal to the easy axis. At the temperatures noticeably below the Curie
temperature, the magnitude of magnetization can be put to be constant.

Solution. Let us take anisotropy axis n in the z-axis direction. The angle ϑ is that between
magnetization M and z-axis. We write down the free Gibbs energy of a ferromagnet in the magnetic
field H

F̃(M, H) = F0(M
2) + β

2
M2 sin2 ϑ − MH sin ϑ − H2

8π
.

Here β > 0 in accordance with the easy axis anisotropy. The equilibrium state means the minimum
condition ∂ F̃/∂ϑ = 0 for the free energy, i.e.

βM sin ϑ cos θ − H cosϑ = 0.

3 For condensed media in the electric field, the same problem takes place for the choice between
thermodynamic potential F(D) dependent on electric induction D and thermodynamic potential
F̃(E) dependent on electric field strength E.
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Hence we find the following two solutions:

cosϑ = 0, F̃1 = F0 + βM2

2
− MH,

sin ϑ = H

βM
, F̃2 = F0 + H2

2β
− H2

β
= F0 − H2

2β
.

Comparing the free energies, we see that

F̃1 − F̃2 = βM2

2
− MH + H2

2β
= β

2

(
M − H

β

)2

� 0.

Therefore, the state with the magnetization direction rotated at angle sin ϑ = H/βM will be ener-

getically favorable. In the field H > βM the magnetization is aligned in themagnetic field direction

and lies in the plane normal to the easy axis.

9.4 Ferromagnet Near the Curie Point

In accordance with the Landau phenomenological theory of second-order phase
transitions, we should decompose the free energy of a ferromagnet into a series
in powers of order parameter. For the particular case of a ferromagnet, this is a
decomposition in powers of spontaneous magnetization

F(M) = F0 + A(T )M2 + b

2
M4 + · · ·

The Curie temperature � is determined with condition A(T = �) = 0. Near the
Curie temperature we put A(T ) = a0(T − �) with a0 > 0. The latter inequality
assumes that the ferromagnetic state realizes at low T < � temperatures.

We have in the magnetic field H

�F̃(H) = F̃(H) − F0 = A(T )M2 + b

2
M4 − MH − H2

8π
.

Then we find from the extremum ∂ F̃/∂M = 0

2M(A + bM2) = H .

In zero field H = 0 two states are possible. The first is nonmagnetic M = 0 and
possible at all temperatures. The second is magnetic with M2 = M2

0 = −A/b and
possible only if T < �. For the nonmagnetic state, �F = 0. For the magnetic state,
�F = −A2/b < 0. For the low T < � temperatures, there appears a magnetic state
more favorable than the nonmagnetic one.

Near the Curie temperature (T < �) we have the behavior of magnetization
M(T ) ∼ (� − T )β with the critical exponent β = 1/2 typical in the Landau the-
ory. At the temperatures well below the Curie temperature the magnetization tends
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to the saturation M → Ms. Differentiating the equation for the magnetization with
respect to magnetic field, we find the magnetic susceptibility χ = ∂M/∂H

2χ(A + bM2) + 4bM2χ = 1 or χ = 1

2(A + 3bM2)
.

In the lowfield themagnetization isM ≈ M0(T ) andwe disclose the critical behavior
χ ∼ (|T − �|)−γ with critical exponent γ = 1

χ(T ) =
⎧
⎨

⎩

1
2A(T )

= 1
2a0(T−�)

, T > �,

− 1
4A(T )

= 1
4a0(�−T )

, T < �.

The behavior with critical exponent γ = 1 corresponds to theCurie law. Such behav-
ior takes place under the low field condition H < Ht . The magnitude Ht can be
estimated with condition |A(T )| � 3bM2 = 3bχ2H 2. Hence, we have the estimate
Ht ∼ |A(T )|/(bχ2) ∼ |A3(T )|/b ∼ a30 |T − �|3/b.

In the high magnetic field limit, the critical behavior of magnetization is governed
by the critical exponent δ according to M ∼ H 1/δ . For the fields H � Ht , we find
approximately 2bM3 ≈ H , correspondingly,M = (H/2b)1/3 and susceptibilityχ ∼
H−2/3. Thus, the critical exponent is δ = 3 in the region of high magnetic field.

To conclude, we concern the applicability of the Landau phenomenological theory
within the framework of self-consistent field for describing the critical behavior near
the phase transition temperature. As we have seen above, we should require that the
closeness to the phase transition temperature would be larger than the Ginzburg–
Levanyuk number, i.e. |τ | � Gi. For the typical ferromagnets, this number is about
a few hundredths.

9.5 Dynamics of Magnetization. The Landau–Lifshitz
Equation

The motion of an isolated magnetic moment m in the external magnetic field H is a
precession around the magnetic field direction and is described with the equation

∂m
∂t

= γm × H .

Here γ is the gyromagnetic ratio, i.e. ratio of magnetic moment to the mechanical
angular moment of a particle, γ = gμB/�where g is the g-factor or Landé g-factor,
and μB = e�/2mc is the Bohr magneton.

In a ferromagnet, if its temperature is well below the Curie temperature, due to
strong exchange spin-spin interaction we can approximately put that the magneti-
zation vector conserves its magnitude, changing the magnetization direction alone.
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Thus, we may expect the time evolution magnetization M(r, t) in a ferromagnet
looks like a precession in some effective magnetic field

∂M(r, t)
∂t

= γ M(r, t) × Heff.

Let us try to estimate Heff. We start from the equation for the time derivative of
magnetic moment density operator M̂(r, t)

−i�
∂ M̂
∂t

= [Ĥ, M̂
]
.

The right-hand side of equation is a commutator of the Hamiltonian Ĥwith the mag-
netic moment density operator. The Hamiltonian can be represented as an expansion
of general form in powers of operator M̂

Ĥ[
M̂

] =
∑

n

∫
d r1d r2 . . . d rn fi1i2...in (r1, r2, . . . rn)×

×M̂ i1(r1, t)M̂ i2(r2, t) . . . M̂ in (rn, t)

where fi1i2...in (r1, r2, . . . rn) are the coordinate functions symmetrical with respect
to any permutation of a pair of variables (ik rk) and (il r l).

Then we calculate the commutator

[Ĥ, M̂α(r, t)
] =

∑

n

∫
d r1d r2 . . . d rn fi1i2...in (r1, r2, . . . rn)×

×
n∑

k=1

M̂ i1 . . . M̂ ik−1

[
M̂ ik (rk, t), M̂ iα (r, t)

]
M̂ ik+1 . . . M̂ in ,

using the following value of commutator:

[
M̂β(r, t), M̂α(r ′, t)

] = i�γ eβαγ M̂γ (r, t)δ(r − r ′)

where eβαγ is the unit antisymmetric tensor. As a result of integrating over coordinate
rk , we get

∂ M̂(r, t)
∂t

= −γ
∑

n

n∑

k=1

∫
d r1 . . . d rk−1d rk+1 . . . d rn×

× fi1i2...in (r1, . . . rk−1, r, rk+1, . . . rn)×
×M̂ i1(r1, t) . . . M̂ ik−1(rk−1, t)M̂ ik+1(rk+1, t) . . . M̂ in (rn, t)eikαγ M̂γ (r, t).

The macroscopic description implies the transfer from the operators to its mean
values. The latter ones are calculated with the aid of density matrix ρ̂, in general,
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non-equilibrium. Accordingly, the magnetization is determined as an average of
magnetic moment density operator

M(r, t) = tr
(
ρ̂ M̂(r, t)

) = 〈M̂(r, t)〉.

In what follows, we assume sufficiently slow variations of magnetization in time so
that the quasi-local equilibrium has time to be established and the self-consistent
field approximation is valid as well. In other words, the average for the product of
operators equals the product of the averages of the operator values

〈M̂1(r1, t) . . . M̂n(rn, t)〉 = 〈M̂1(r1, t)〉 . . . 〈M̂n(rn, t)〉 =
= M1(r1, t) . . . Mn(rn, t).

Averaging the equation of evolution for the magnetic moment density under such
assumptions, we arrive at the following equation for the magnetization M(r, t)
dynamics:

∂Mα(r, t)
∂t

= −γ
∑

n

n∑

k=1

∫
d r1 . . . d rk−1d rk+1 . . . d rn×

× fi1i2...in (r1, . . . rk−1, r, rk+1, . . . rn)×
×M i1(r1, t) . . . M ik−1(rk−1, t)M ik+1(rk+1, t) . . . M in (rn, t)εikαγ Mγ (r, t).

Herewewill take into account that the quantities obtained are already the ordinary
variables, but the operators, and their order is insignificant for us. This gives a factor
n instead of a sum over k. Then, changing the order of the indexes in antisymmetric
tensor eikαγ , we get

∂Mα(r, t)
∂t

= −γ
∑

n

n
∫

d r2 . . . d rn fi1...in (r, r2 . . . rn)×

×Mi2(r2, t) . . . Min (rn, t)eαγ i1Mγ (r, t) = −γ
δW

δMi1(r, t)
eαγ i1Mγ (r, t)

where we have introduced the variational derivative δW/δMi1 for the quantity

W [M] =
∑

n

∫
d r1 . . . d rn fi1...in (r1, . . . rn)Mi1(r1, t) . . . Min (rn, t).

It is readily to see that under our assumptions, the quantity W [M] is the free
energy functional, i.e. the mean value of Hamiltonian W [M] = 〈H[M̂]〉. This can
be checked from the relation

〈M̂(r1, t) . . . M̂(rn, t)〉 = 〈M(r1, t)〉 . . . 〈M(rn, t)〉.
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Finally, we arrive at the phenomenological expression called the Landau–Lifshitz
equation describing the dynamics of magnetization in a ferromagnet. This equation
describes the precession of magnetization vector in the effective magnetic field Heff

∂M(r, t)
∂t

= γ M(r, t) × Heff(r, t).

The effective magnetic field is the minus-signed variational derivative of free energy
W taken with respect to magnetization

Heff(r, t) = − δW

δM(r, t)
or δW = −

∫
Heff(r, t)δM(r, t) d3r.

Emphasize that the Landau–Lifshitz equation does not involve the possible pro-
cesses of the longitudinal and transverse relaxation of magnetization and the energy
dissipation processes as well.

Zero effective magnetic field Heff = 0 is the condition that determines the equi-
librium magnitudes of magnetization and corresponds to the free energy minimum.
As an example, we consider a uniaxial ferromagnet, namely easy axis. Its free energy
reads

W =
∫

d3r

(
αi j

2

∂M
∂xi

∂M
∂x j

+ f (M2) − β

2
(Mn)2 − H 2

8π
− MH

)

where n is unit vector directed along the anisotropy axis and the anisotropy constant
is positive β > 0. Then the effective magnetic field Heff equals

Heff = H + αi j
∂2M

∂xi∂x j
− 2M f ′(M2) + βn(Mn).

For the homogeneous external field and constant magnetization M(r) = const =
M0, we get the following equation for equilibrium:

H − 2M0 f
′(M2

0) + βn(M0n) = 0.

In zero external field H = 0 the magnetization vector M0 will be parallel to the
easy axis, i.e. anisotropy axis n. In the high magnetic field limit the magnetization
is oriented in the direction of the external magnetic field.

9.6 Spin Waves in a Ferromagnet

Let us turn to studying the small oscillations of magnetization M(r, t) in a ferro-
magnet near the equilibrium value M0. Along with the magnetization oscillations,
there appear magnetic field oscillations around the equilibrium value H0. Below, for
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definiteness, we consider the easy-axis ferromagnet in which magnetization M0 and
magnetic field H0 are parallel to the anisotropy axis n, i.e. M0 ‖ n ‖ H0.

We put

H(r, t) = H0 + h(r, t) and M(r, t) = M0 + m(r, t)

wherem(r, t) and h(r, t) are small quantities. Thenwe linearize theLandau–Lifshitz
equation

∂M(r, t)
∂t

= γ M(r, t) × Heff(r, t)

with respect small perturbation h and small response m, involving that H (0)
eff = 0,

∂M0/∂t = 0 and ∇iM0 = 0 in equilibrium. So, we have

Heff = H (0)
eff + heff = h + αi j

∂2m
∂xi∂x j

− 2m f ′(M2
0)−

−4M0(mM0) f
′′(M2

0) − 2m f ′(M2
0) + βn(mn) = h + αi j

∂2m
∂xi∂x j

−

−M0H0 + β(nM0)
2

M2
0

m + βn(mn) − 4M0(mM0) f
′′(M2

0).

Herewehave used the relation 2M2
0 f

′(M2
0 ) = M0H0 + β(nM0)

2, resulting from
the obvious equality M0 · Heff = 0. As a result, we get the following linearized
equation:

∂m
∂t

=γ M0 × heff =

= γ M0 ×
(
h + αi j

∂2m
∂xi∂x j

− M0H0 + β(nM0)
2

M2
0

m + βn(mn)

)
.

Since this equation is linear, the response of magnetization m(r, t) to the
disturbing alternating magnetic field h(r, t) can be written as a convolution

mi (r, t) =
∫

χi j (r − r ′, t − t ′)h j (r ′, t ′) d3r ′ dt ′.

Hence, for harmonic perturbation h(r, t) = h(k, ω)eikr−iωt with wave vector k and
frequency ω, we get for the Fourier transform

mi (k, ω) = χi j (k, ω)h j (k, ω).

The tensor χi j (k, ω), representing the linear response function, is referred to as the
tensor of high-frequency magnetic susceptibility.

Using the following relations
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m(r, t) = m(k, ω)eikr−iωt and h(r, t) = h(k, ω)eikr−iωt ,

we arrive at the algebraic equation for the Fourier transforms m(k, ω) and h(k, ω)

−iωm = γ M0 ×
(
h − αi j ki k jm − M0H0 + β(nM0)

2

M2
0

m + βn(mn)

)
.

Let us direct the z-axis parallel to both the anisotropy axis n and the magnetization
vector M0. Then, the x and y axes are in the perpendicular plane. We rewrite the last
equation from the vector form to the coordinate one

−iωmx = �kmy − γ M0hy , −iωmz = 0,

−iωmy = �kmx + γ M0hx , �k = γ M0

(
αi j ki k j + β + H0

M0

)
.

Solving this system of equations gives us the high-frequency susceptibility tensor

χi j (k, ω) =
⎛

⎝
χxx χxy 0
χyx χyy 0
0 0 0

⎞

⎠ .

The tensor has the both spatial and temporal dispersion with the following
components:

χxx = γ M0�k

�2
k − ω2

, χyy = γ M0�k

�2
k − ω2

, χxy = −χyx = iωγ M0

�2
k − ω2

.

Note that frequencyω = �k is a resonance one for the response to themagnetic field.
The spin waves are the low frequency oscillations ofmagnetization. Therefore, for

determining their oscillation spectrum, we can use the magnetostatic approximation
and disregard the electric field. Accordingly, magnetic induction b, magnetic field
strength h = b − 4πm, and magnetization m satisfy the equations

div b = div (h + 4πm) = 0, curl h = 0.

Turning to the Fourier transforms, we have

k × h(k, ω) = 0, k·(h(k, ω) + 4πm(k, ω)
) = 0.

The first equation assumes that h = kφ. Substituting it into the second equation
yields with mi = χi j h j

k2φ + 4πkiχi j k jφ = ki k j (δi j + 4πχi j )φ = ki k jμi jφ = 0.

Here μi j = δi j + 4πχi j is the magnetic permeability.
For existing non-trivial solution φ �= 0, it is necessary to vanish the following

convolution with susceptibility μi j :
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kiμi j (k, ω)k j = 0.

This relation, in essence, is the dispersion equation which will determine the spin
wave spectrum ω = ω(k) or magnetization oscillation frequencies. So, we get

ω(k) =
√

�2
k + 4πγ M0�k sin2 ϑk

where ϑk is the angle between wave vector k and anisotropy axis n. For k = 0, in
the spin wave spectrum there appears an energy gap equal to

ω(0) = γ M0(β + H0/M0)

and resulting from the magnetic anisotropy and external magnetic field. In the region
of sufficiently large wave vectors αi j ki k j � max{4π, β, H0/M0}, the dispersion
law simplifies remarkably

ω(k) = γ M0αi j ki k j .

The spinwave frequency in a ferromagnet becomes directly proportional to the square
of wave vector. In the isotropic case αi j ∼ αδi j and ω(k) = γ M0αk2. We recall the
order-of-magnitude estimate of magnetic stiffness coefficient α as α ∼ a2(�/μM0),
where μ = gμB is the effective magneton and γ = μ/� is the gyromagnetic ratio.
To conclude, we obtain

�ω(k) ∼ �(ka)2.

Here � is the Curie temperature and a is the interatomic distance.

Problem

An excitation of uniform oscillations of magnetization is used for studying the spin waves in
magnets.

Determine the frequency of uniform ferromagnetic resonance for the easy axis-type ferromagnet
in the shape of a ball. The uniform constant external magnetic field H0 is parallel to the easy
magnetization axis.

Solution. On the account of the demagnetization coefficients for the ball, the magnetic field H in
inside the ball is related to the external uniform field H0 and magnetization M0, as follows:

H in + 4π

3
M0 = H0 or H in = H0 − 4π

3
M0.

The alternating components of magnetizationm(t), internal magnetic field hin(t), and external field
hout(t), varying in time as ∼ e−iωt , are connected with the same relation

hin + 4π

3
m = hout.

Since the magnetic field varies according to hin(t) ∼ e−iωt , we havem = χ̂ (ω)hin, χ̂ (ω) = χ̂ (k =
0, ω) being the high-frequency magnetic susceptibility tensor. Correspondingly, we get
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(
1 + 4π

3
χ̂ (ω)

)
hin = hout.

The frequency of uniform ferromagnetic resonance in a ball is determined by the roots of the
equation below

det

(
1 + 4π

3
χ̂ (ω)

)
= det

(
δik + 4π

3
χik(ω)

)
= 0 (i, k = x, y, z).

The high-frequency susceptibility equals

χ̂(ω) =
⎛

⎝
χxx χxy 0
χyx χyy 0
0 0 0

⎞

⎠ , χxx = χyy = γ M0�0

�2
0 − ω2

, χxy = −χyx = iωγ M0

�2
0 − ω2

.

The frequency �0 is given by

�0 = γ M0
(
β + Hin/M0

) = γ M0
(
β + H0/M0 − 4π/3

)

where we have involved that the magnetic field inside the magnetized ball equals H in = H0 −
(4π/3)M0. The solution of equation (1 + 4πχxx/3)2 − (4πχxy/3)2 = 0 delivers us the resonance
frequency

ωres = �0 + 4πγ M0/3 = γ M0
(
β + H0/M0

)
.

Themagnitude of resonance frequencydepends both on the external field strength andon the shape of

a ferromagnet bymeans of demagnetization coefficients. The inhomogeneous resonance frequencies

refer to the proper oscillations of magnetization when the magnetic field and magnetization are

coordinate-dependent.

9.7 Thermodynamics of Ferromagnets

The excitations in a magnetic material represent oscillations of magnetic moment
(spin) around its equilibrium direction. As long as the energy of the state in the
magnetic material is sufficiently small, the oscillations ofmagnetization are expected
to be small as well. In first approximation the oscillations can be represented as a
superposition of independent harmonic ones, each of them being a monochromatic
plane spin wave propagating in the magnetic medium. The spin wave is specified
with wave vector k and corresponding frequency ω(k).

Using the analogywith quantization of soundwaves and quantummechanical cor-
respondence, we can interpret the small oscillations of magnetization representing
the spin waves as a set quanta of elementary magnetic excitations or magnons. Cor-
respondingly, the energy ε( p) of a magnon with momentum4 p = �k is determined
with frequency ω(k) and wave vector k of spin wave according to ε( p) = �ω(k).
On the analogy with quantum mechanics the energy for a set of such elementary
excitations or magnons can be given by the sum

4 In the crystalline periodic spin lattice the vector p is determined within the accuracy of the
reciprocal lattice vector and is a quasi momentum.
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E =
∑

k

�ωk
(
Nk + 1/2

)

where Nk is either zero or any positive integer. The numbers Nk can be interpreted
as a number of magnons in the state with wave vector k. Since numbers Nk can get
any values, we can draw a conclusion that magnons obey the Bose statistics even if
the particles composing the magnetic matter have a half-integer5 spin.

Specifying the statistics of magnons and the law of their dispersion, we can pro-
ceed to studying the thermodynamic properties of a ferromagnet. We employ the
relation

� = −T ln tr e−Ĥ/T

connecting the thermodynamic potential � with Hamiltonian Ĥ of the magnetic
subsystem. The Hamiltonian can be written as Ĥ = Ĥ0 + Ĥint where Ĥ0 is the
Hamiltonian of ideal magnon gas and Ĥint is the Hamiltonian of interaction between
magnons.

In the region of sufficiently low temperatures we can assume in first approxi-
mation that the magnons compose an ideal gas of Bose particles and the effects of
magnon-magnon interaction are negligible. Tomeet these conditions, the temperature
should satisfy the inequality T � �,� being the Curie temperature. The low energy
magnons with �ωk � T and, correspondingly, small wave vectors ka � 1 play the
most essential role in the thermodynamic properties of a ferromagnet at the low tem-
peratures. The wave vector ka � 1 region agrees with the estimate �ωk ∼ �(ka)2,
a being the interatomic distance.

Inwhat follows,we disregard the interaction betweenmagnons andwrite down the
magnetic contribution to the thermodynamic potential for a ferromagnet of volume
V in the external magnetic field H

�m(T, H) = E0(H) + ��m(T, H) =
=

∫
Vd3k

(2π)3

�ωk

2
+ T

∫
Vd3k

(2π)3
ln

(
1 − e�ωk/T

)
.

Here the first term E0(H) = �m(0, H) is zero energy of magnons, giving no con-
tribution to the temperature behavior of the thermodynamic variables. Within the
framework of the macroscopic ωk ∼ (ka)2 description of magnon dispersion, this
integral diverges at large values of wave vector ka � 1, i.e. it is determined by the
short wave asymptotic and, in general, requires of involving the microscopic theory.
The second term, in essence, is the thermodynamic potential of an ideal Bose-gas
with zero chemical potential.

The equilibrium magnetization density M(T, H) and magnetic contribution to
the specific heat Cm(T, H) are given by expressions

5 Under oscillations of spin direction the change of the spin projection on some axis is always an
integer regardless of whether a half-integer or integer spin. The strict consideration requires the
determination of the commutation relations for the magnon creation and annihilation operators.
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M = − 1

V

∂�m

∂H
and Cm = − T

V

∂2�m

∂T 2
.

For an ideal magnon gas, these derivatives reduce to

M = − 1

V

∂E0

∂H
−

∫
d3k

(2π)3

�∂ωk/∂H
e�ωk/T − 1

,

Cm = 1

V

∂E

∂T
where E(T, H) =

∫
Vd3k

(2π)3

�ωk

e�ωk/T − 1
.

The quantity E(T, H) can be called the temperature contributions of magnons to the
internal energy of a ferromagnet.

As an example, we consider below a uniaxial ferromagnet of the easy axis type.
For definiteness, we suppose that the external field and magnetization are parallel to
the easy axis. Accordingly, the spin wave or magnon dispersion reads

ωk =
√

�2
k + 4πγ M0�k sin2 θk, �k = γ M0(αk

2 + β + H/M0)

where θk is the angle between the anisotropy axis and wave vector k. To simplify the
final formulas, we neglect also a possible anisotropy ofmagnetic stiffness coefficient,
putting αi j = αδi j , (i, j = x, y, z). Using this formula and replacing the integration
variables k with x = �ω/T and angle θ , we express the difference �M(T, H) =
M(T, H) − M(0, H) in terms of the following integral:

�M(T, H) = − γ

(2π)2

(
T

�γ M0α

)3/2
π/2∫

0

sin θ dθ×

×
∞∫

√
η(η+2ξ sin2 θ)

[√
x2 + ξ 2 sin4 θ − (η + ξ sin2 θ)

]1/2

ex − 1
dx

where

ξ = 2π�γ M0

T
and η = �γ (βM0 + H)

T
.

In the same notations as ξ and η the spin wave contribution to the specific heat is
given by the integral

Cm(T, H) = 1

(2π)2

(
T

�γ M0α

)3/2
π/2∫

0

sin θ dθ×
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×
∞∫

√
η(η+2ξ sin2 θ)

x

[√
x2 + ξ 2 sin4 θ − ξ sin2 θ

x2 + ξ 2 sin4 θ

]1/2( x

2 sinh x/2

)2

dx .

For transparency and simplification, we demonstrate the expressions for �M(T )

andCm(T ) in the most interesting case of sufficiently high temperature when we can
approximately put ξ = 0 and η = 0 in the integrand:

�M(T, H) = −ζ(3/2)

8π3/2

γ

�

(
T

�γ M0α

)3/2

∼ M0

(
T

�

)3/2

at 2π�γ M0, �γ (βM0 + H) � T .

Here � is the Curie temperature. In the case of extremely low temperatures, we
have

�M(T, H) ∼ − exp

(
−�γ (βM0 + H)

T

)

at 2π�γ M0, �γ (βM0 + H) � T .

The temperature behavior �M/M0 ∼ −T 3/2 at T � 2πγ M0 and γ (βM0 + H)

means the Bloch T3/2 law typical for an isotropic ferromagnet in zero magnetic field.
In the low temperature limit, the finite magnitude of energy gap in the spin wave
spectrum results in the appearance of thermally activated and exponentially small
behavior. The magnitude in the exponent is the minimum magnitude of energy gap
at θ = 0 and θ = π .

In the same limiting cases, we have for the spin wave contribution to the specific
heat of a ferromagnet at high temperatures

Cm(T, H) = 15ζ(3/2)

32π3/2

(
T

�γ M0α

)3/2

∼
(
T

�

)3/2

when 2π�γ M0, �γ (βM0 + H) � T,

� being the Curie temperature. Correspondingly, we get the exponentially small
correction in the low temperature limit

Cm(T, H) ∼ exp

(
−�γ (βM0 + H)

T

)

when T � 2π�γ M0, �γ (βM0 + H).

The spin wave contribution to the specific heat of a ferromagnet demonstrates the
temperature behavior similar to that of magnetization. For sufficiently high temper-
atures, we get the Bloch T3/2 law and there is an exponentially small correction in
the low temperature limit.
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Calculating the spin wave effect on the thermodynamic functions of a ferro-
magnet, we have omitted the temperature-independent contribution to the energy of
ferromagnet due to zero oscillations of magnons.

E0(H) = 1

2

∑

k

�ωk = 1

2

∫
�ω(k)

Vd3k

(2π)3
.

Accordingly, we have for the zero temperature magnetization

M(0, H) = − 1

V

∂E0(H)

∂H
= −1

2

∫
� ∂ω(k)

∂H

d3k

(2π)3
.

This integral diverges at the large values of wave vector k and is governed with the
behavior of the short wave magnon spectrum ka � 1 which cannot be determined
within the framework of macroscopic description ka � 1. Note only that the contri-
bution of magnon zero oscillations decreases the magnetization M0 by the relatively
small magnitude of about (μM0/�)3/2 � 1. Unlike the three-dimensional case, the
effect of long wave magnon fluctuations in a two-dimensional isotropic ferromagnet
proves to be so strong that results in breaking the state of spontaneous magnetization
down.

Problems

1. Find the spin wave contribution to the thermodynamic variables in the low temperature limit
T � �ω(0) and 2π�γ M0.

Solution. The main contribution is associated with the spin waves propagating in the direction
of the minimum energy gap in the spectrum, i.e. ϑk = 0 and ϑk = π . These both values entail the
same contribution. For small ϑk � 1, we get

ωk ≈ �k + 2πγ M0ϑ
2
k , �k = γ M0(αk

2 + β + H/M0).

For such low temperatures and nonzero energy gap, we can take the magnon distribution as the
Boltzmann one, neglecting the unity in the denominator of the Bose distribution and replacing ω(k)
with ω(0) in the preexponential factors. Integration over k and over ϑk can be extended to the
infinity. Then we find the low temperature correction to the magnetization

�M(T, H) ≈ −
∫

d3k

(2π)3

�∂ω(0)

∂H
e−�ωk/T = −2

�γ

(2π)2
e−�γ (βM0+H)/T

×
∞∫

0

k2dk

∞∫

0

θdθe− �γ M0αk2

T e− 2π�γ M0θ2

T = �γα

(
T

4π�γ M0α

)5/2
e− �γ (βM0+H)

T

and to the specific heat in accordance with Cm(T, H) = V−1∂E(T, H)/∂T where

E(T, H) ≈
∫

Vd3k

(2π)3
�ω(0)e−�ωk/T = −2

�γ (βM0 + H)

(2π)2
e−�γ (βM0+H)/T

×
∞∫

0

k2dk

∞∫

0

θdθe− �γ M0αk2

T e− 2π�γ M0θ2

T =
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= V

32π5/2

βM0 + H

M0

T 5/2

(�γ M0α)3/2
e− �γ (βM0+H)

T .

Calculating the specific heat, it is sufficient to be restricted with differentiating the exponential
function

Cm(T, H) = (β + H/M0)
2

32π5/2 α

(
T

�γ M0α

)1/2

e− �γ (βM0+H)

T .

2. The magnetocaloric effect is a change in the temperature of a magnetic material under its
adiabatic magnetization (demagnetization) in the external magnetic field. Find the magnitude of the
effect as a ratio of temperature change to the magnetic field variation.

Solution. The adiabatic process means that the magnetic material is under heat-insulated condi-
tions and its entropy remains constant. Considering entropy S(T, H) as a function of temperature
and magnetic field, we can derive the following equation for the entropy change:

dS =
(

∂S

∂T

)

H
dT +

(
∂S

∂H

)

T
dH = 0.

The magnitude of the magnetocaloric effect equals

dT

dH
= −

(
∂S/∂H

)
T(

∂S/∂T
)
H

.

The derivative in the denominator is
(
∂S/∂T

)
H = CH /T where CH is the specific heat of the

magnetic material in the constant magnetic field. The derivative in the nominator transforms as
(
∂S/∂H

)
T = ∂2F/∂H∂T = ∂2F/∂T ∂H = (

∂M/∂T
)
H ,

M being the magnetization of a magnetic material. Finally, we get

dT

dH
= − T

CH

(
∂M

∂T

)

H
.

3. There is an isotropic ferromagnet. Determine the second sound velocity in a magnon gas,
assuming it ideal and neglecting completely the effects of magnon-magnon and magnon-phonon
scattering.

Solution. First, wewrite the equations for the energy andmomentum conservation in themagnon
gas

∂E

∂t
+ div Q = 0 and

∂Pi
∂t

+ ∂�i j

∂x j
= 0.

Here E is the energy density, Q is the energy flux density, Pi is i th component ofmomentumdensity,
and �i j are the components of momentum flux density tensor. These variables are determined with
the following relations in terms of distribution function n p = n p(r, t):

E =
∑

p

ε pn p, Q =
∑

p

v pε pn p and Pi =
∑

p

pi n p, �i j =
∑

p

vi p j n p

where ε p is the energy and v p = ∂ε p/∂ p is the velocity of magnons with momentum p.
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We seek for the general solution of these equations as

n p(r, t) = n

(
ε p − up

T

)
=

[
exp

(
ε p − up

T

)
− 1

]−1

.

The temperature T = T (r, t) and u = u(r, t) are some slow functions of coordinate and time and
we can restrict ourselves with a linear approximation in velocity u and temperature derivatives,
assuming them small. After calculating, we find

C
∂T

∂t
+ T S div u = 0,

ρn
∂u
∂t

+ S∇T = 0.

On the analogy with the case of superfluid helium the coefficients found

C = −
∑

p

ε2p

T 2 n
′
p

(
ε p

T

)
, S = −1

3

∑

p

ε p pv p

T 2 n′
p

(
ε p

T

)
, ρn = −1

3

∑

p

p2

T
n′
p

(
ε p

T

)

represent specific heat C(T ), entropy S(T ), and normal density ρn(T ) in the gas of magnon
excitations.

Then, from the equations above we eliminate velocity u with the aid of divergence operator and
time differentiation and, finally, obtain the equation determining the temperature oscillations in a
second sound wave

ρnC
∂2T

∂t2
− T S2∇2T = 0.

Let temperature oscillate in thiswave according to the law exp[−i(ωt − kx)]. (The x-axis is directed
along the wave propagation, ω is the frequency, and k is wave vector.) The velocity of oscillations
is given by

u2 = ω

k
=

√
T S2

ρnC
.

Next, we have after calculating the integrals for the magnon spectrum εp = �(pa/�)2 where � is
the Curie temperature and a is the interatomic spacing

u2 =
√
10ζ(5/2)

3ζ(3/2)

a

�

√
T� ∼ a

�

√
T�.

For the phonon spectrum ε = cp, we see the familiar answer u2 = c/
√
3.

The second sound in a ferromagnet has a curious specific feature. The magnon density oscil-

lations are accompanied by the magnetic moment oscillations and, therefore, result in emerging

the magnetic field of small strength. Usually, the observations of second sound in a ferromagnet

are hindered by the dissipative magnon scattering processes entailing a noticeable attenuation of

temperature wave oscillations and diffusive nature of sound propagation.

9.8 Antiferromagnetic Ordering

The types of antiferromagnetic ordering found in nature are very numerous and
diverse in their magnetic structure. The simplest antiferromagnetic structure is a
collinear two-lattice antiferromagnet with the opposite magnetizations M1 and M2
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each of two equivalent sublattices. In the lack of magnetic field the net magneti-
zation is M = M1 + M2 = 0. Let us define additional order parameter, called the
antiferromagnetic vector L = M1 − M2 which becomes nonzero below the Néel
temperature �N with the simultaneous appearance of antiferromagnetic ordering.

For the case of two magnetic sublattices, the simplest expression for the exchange
interaction has the following structure:

wex = f (M2
1, M

2
2, M1M2) = f (M2

1) + f (M2
2) + IM1M2 .

For the antiferromagnetic ordering, it is necessary to have a positive exchange cou-
pling constant I > 0 to provide us the energetically favorable relation M1 = −M2.
In the opposite I < 0 case there appears a trivial ferromagnetic ordering.

The density of inhomogeneity energy can be written as follows:

winh = 1

2
αik

(
∂M1

∂xi

∂M1

∂xk
+ ∂M2

∂xi

∂M2

∂xk

)
+ α′

ik

∂M1

∂xi

∂M2

∂xk
.

Then, we introduce the density of magnetic anisotropy energy in an uniaxial
antiferromagnet with the anisotropy axis n according to

wan = −β

2

[
(M1n)2 + (M2n)2

] − β ′(M1n)(M2n),

β and β ′ being the anisotropy constants.
If β > β ′, the anisotropy energy minimum of wan = −β + β ′ < 0 realizes when

the magnetizations of sublattices are oriented in the direction of anisotropy axis n
and M10 = −M20. This case of anisotropy will be called the easy axis type. In the
opposite caseβ < β ′ the anisotropy energyminimumwan = 0will be achievedwhen
the sublattice magnetizations are normal to the anisotropy axis n and M10 = −M20

as well. This type of anisotropy will be referred to as easy plane.
Within the framework of self-consistent field theory, we can represent the free

energydensity of an antiferromagnet near theNéel temperature�N as an expansion in
powers ofmagnetizationvectors since antiferromagnetic vector L is sufficiently small

F = aM2
1 + b

2
M4

1 + aM2
2 + b

2
M4

2 + 2IM1M2 (I > 0).

On the use of the following relations for magnetization M and antiferromagnetic
vector L

M1 = (M + L)/2 and M2 = (M − L)/2,

it is convenient to rewrite the free energy density as

F = a − I

2
L2 + b

16
L4 + a + I

2
M2 + b

16
M4 + b

8
M2L2 + b

4
(ML)2.

One should put a(T ) = I + a0(T − �N ) near the Néel temperature.
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In zero external magnetic field the net magnetization is absent, i.e. M = 0. The
free energy of an antiferromagnet reduces to the expression similar to that of a
ferromagnet. Correspondingly, the behavior of antiferromagnetic vector near the
Néel temperature at T � �N will be qualified with the critical exponent β = 1/2
typical for the self-consistent field

L(T ) ∼ (�N − T )β, β = 1/2.

In the external field, the Gibbs free energy F̃(M, L, H) takes the form

F̃(M, L, H) = a − I

2
L2 + b

16
L4 + a + I

2
M2 + b

16
M4 +

+b

8
M2L2 + b

4
(ML)2 − MH − H2

8π
.

Let us study behavior ofmagnetic susceptibilityχ in the lowmagnetic field. The equi-
librium values of the antiferromagnetic andmagnetization vectors will be determined
from a set of equations

∂ F̃

∂M
= (a + I )M + bM2

4
M + bL2

4
M + b

2
(ML)L − H = 0,

∂ F̃

∂L
= (a − I )L + bL2

4
L + bM2

4
L + b

2
(ML)M = 0.

In the low magnetic field, the magnetization is M ∼ H and the corrections to the
antiferromagnetic vector L are of the order of H2. These corrections are neglected
below. So, we can approximately put L = L0(T ), i.e.

(
(a − I ) + bL2

0/4
)
L0 = 0,

and get
M

(
a + I + bL2

0/4
) + bL0(ML0)/2 = H .

Above the Néel temperature T > �N the antiferromagnetic vector vanishes L0 =
0 and magnetization is M = χH where magnetic susceptibility χ is given by the
formula

χ = 1

a + I
= 1

2I + a0(T − �N )
.

Emphasize that, unlike ferromagnetic phase transition when the magnetic suscepti-
bility diverges at the transition point, the susceptibility of an antiferromagnet remains
finite within the approximation of the self-consistent theory of phase transitions.

Below the Néel temperature there appears a selected direction in the space, result-
ing in the anisotropy of magnetic susceptibility. If the external magnetic field is
parallel to the antiferromagnetic vector, we have
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χ‖ = 1

a + I + 3bL2
0/4

= 1

4I − 2a
=

= 1

2I + 2a0(�N − T )
(H ‖ L0).

When the external field is normal to the antiferromagnetic vector L0, themagnetic
susceptibility, equal to

χ⊥ = 1

a + I + bL2
0/4

= 1

a + I + I − a
= 1

2I
(H ⊥ L0),

is temperature-independent. For polycrystals, since all the three spatial directions of
vector L0 are equiprobable, the magnetic susceptibility has the averaged magnitude

χav = χ‖
3

+ 2χ⊥
3

.

The temperature behavior of magnetic susceptibility is illustrated in Fig. 9.8. In
the limit of high magnetic field, the magnetic moments of the both sublattices will
align in the magnetic field direction so that L = 0 and M1 = M2.

Problem

There is a collinear antiferromagnet with the easy axis anisotropy. Find magnetization M of
the antiferromagnet in magnetic field H in the direction of easy axis n. Treat the magnitudes of
sublattice magnetizations M1 and M2 as constant, assuming the temperature much lower than the
Néel one.

Solution. In the free energy expression we select only the terms depending on the orientation of
magnetic sublattices with respect to anisotropy axis n and magnetic field H

w = IM1M2 − β

2

[
(M1n)2 + (M2n)2

] − β ′(M1n)(M2n) − H(M1 + M2).

Let magnetizations M1 and M2 have angle ϑ relative to the anisotropy axis n and magnetic field
H . Then the necessary part of free energy equals

w(ϑ) = (
I cos 2ϑ − β cos2 ϑ − β ′ cos2 ϑ

)
M2

0 − 2HM0 cosϑ

where M0 is the magnetization magnitude for each of the sublattices.

Fig. 9.8 The temperature
behavior of magnetic
susceptibility in an
antiferromagnet. The
susceptibility demonstrates
an anisotropy in the behavior
below the Néel temperature
�N
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Fig. 9.9 The magnetization of the easy axis antiferromagnet as a function of external magnetic
field parallel to the anisotropy axis. a The exchange interaction is large. b The exchange interaction
is small

The qualitative behavior of magnetization is governed by the proportion between the exchange
constant I and the anisotropy constants β and β ′.
(a) For the predominant magnitude of exchange interaction 2I > β + β ′, we find two critical fields
H1 and H2

H1 = M0
√

(2I − β − β ′)(β − β ′) and H2 = 2I − β − β ′.
Between these critical fields, the magnetization increases smoothly to the maximum magnitude
(Fig. 9.9a).
(b) For the small magnitude of exchange interaction 2I < β + β ′, we disclose the metamag-
netic transition at the critical field Hm = I − β ′. The metamagnetic transition is specified with
a drastic transition from the antiferromagnetic to ferromagnetic state with the maximum possible
magnetization 2M0 (Fig. 9.9b).

9.9 Spin Waves in an Antiferromagnet

Let us consider small oscillations of magnetizations M1(r, t) and M2(r, t) for the
both magnetic sublattices in an antiferromagnet. If the possible energy dissipation
effects due to the magnetization oscillations are neglected, the equation of motion for
each sublattice magnetization M1 and M2 will have the form of the Landau–Lifshitz
equation for the magnetization precession in a ferromagnet

∂M1(r, t)
∂t

= γ M1(r, t) × H1,eff(r, t),

∂M2(r, t)
∂t

= γ M2(r, t) × H2,eff(r, t).

Here γ = μ/� is the gyromagnetic ratio, H1,eff and H2,eff are the effective magnetic
fields acting on M1 and M2. These fields are the variational derivatives of energy W̃
of antiferromagnet with respect to magnetization

H i,eff(r, t) = − δW̃

δM i (r, t)
(i = 1, 2) and W̃ =

∫
F̃ d3r.
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Involving the expression for energy W̃ of antiferromagnet, we find

H i,eff = H − ∂ F̃

∂M i
+ ∇k

(
∂ F̃

∂(∇kM i )

)
(i = 1, 2)

where H is the magnetic field inside the antiferromagnet and a sum over index
k = x, y, z is kept in mind. Next, we can determine the high-frequency suscep-
tibility tensor of the antiferromagnetic, using the equations for the precession of
magnetizations and knowing their equilibrium magnitudes. For this purpose, we put
the magnetizations and magnetic field in both the equations of precession and the
equations determining the magnetizations of sublattice (i = 1, 2), as follows:

M i (r, t) = M i0 + mi (r, t), H(r, t) = H0 + h(r, t).

Here m1, m2 and h are the small deviations from the equilibrium values and propor-
tional to exp(ikr − iωt). Then, it is necessary to linearize the equations and obtain
a set of two linear differential equations for determining the small deviations m1

and m2. As usual, the linear system of equations is solved by means of the Fourier
transformation. Expressing the Fourier transforms for deviations m1 and m2 via the
Fourier transform of the alternating and perturbing magnetic field h, we determine
the total induced magnetization

m(k, ω) = m1(k, ω) + m2(k, ω) = χ̂ (k, ω)h(k, ω),

χ̂(k, ω) being the high-frequency susceptibility tensor of the antiferromagnet.
To simplify mathematics and clarify physics, we analyze below the easy axis-type

antiferromagnet in the external magnetic field H0 parallel to the anisotropy axis. The
linearized equations on m1(k, ω) and m2(k, ω) are as follows:

−iωm1(k, ω) = γ
(
M10 × [

h(k, ω) − A+m1(k, ω) − Bm2(k, ω)
]
,

−iωm2(k, ω) = γ
(
M20 × [

h(k, ω) − A−m2(k, ω) − Bm1(k, ω)
]
,

A+ = I + H0

M0
+ β − β ′ + αi j ki k j , A− = I − H0

M0
+ β − β ′ + αi j ki k j ,

and B = I + α′
i j ki k j .

Here i, j = x, y, z and a sum over these indexes is implied. The alternating com-
ponent of external field is h(k, ω). Taking the z-axis parallel to the anisotropy axis,
we represent the solution of the above system as

χ̂(k, ω) =
⎛

⎝
χxx χxy 0
χyx χyy 0
0 0 0

⎞

⎠ .

In zero external magnetic field H0 = 0, the expressions for the tensor components
simplify significantly



9.9 Spin Waves in an Antiferromagnet 347

χxx = χyy = 2

A + B

�2

�2 − ω2
, χxy = −χyx = 0,

A = A+ = A− = I + β − β ′ + αi j ki k j , � = γ M0

√
A2 − B2.

In the finite external magnetic field H0 �= 0, the χxy and χyx components of the
susceptibility tensor will be nonzero.

The functional dependence of resonant frequency � as a function of wave vector
k is noticeably simplified since the exchange interaction, as a rule, exceeds signif-
icantly the relativistic ones, i.e. I � |β|, |β ′|. Then keeping the long wave limit
αi j ki k j , α′

i j ki k j � 1 in mind and putting A + B ≈ 2I , we get

χxx = χyy ≈ χ0
�2

�2 − ω2
, � = γ M0

√
2I

√
β − β ′ + (αi j − α′

i j )ki k j

where χ0 = I−1.
Often, for clarity and experimental description, it is common to represent the

resonant frequency in a simplified form, neglecting a possible anisotropy in the
magnetic stiffness coefficientsαi j andα′

i j (for simplicity,α j i = αδi j andα′
i j = α′δi j ):

� =
√

γ 2H 2
a + (�/�)2(ak)2,

Ha = M0

√
2I (β − β ′), � = μM0

√
2I (α − α′) /a

where a is the interatomic distance and μ = �γ is the effective Bohr magneton. In
essence, this is the definition for two quantities Ha and �. The field Ha has the
meaning of external magnetic field, which if applied along the anisotropy axis, will
result in an instability of the antiferromagnetic ordering. The temperature � is of
the order of the Néel one �N since α, α′ ∼ a2�N/μM0. The difference α − α′ of
the magnetic stiffness coefficients is supposed to be positive, otherwise the initial
ground state of the antiferromagnet is qualified with a finite value of wave vector and
would be inhomogeneous.

For greater clarity, in the approximation of large A + B ≈ 2I exchange interac-
tion we give nonzero components of high-frequency susceptibility in the external
magnetic field H0 parallel to the anisotropy axis

χxx = χyy = χ0

2
�

(
�+

�2+ − ω2
+ �−

�2− − ω2

)
,

χxy = −χyx = iω
χ0

2

(
�

�2+ − ω2
− �

�2− − ω2

)
,

�± = � ± γ H0 where χ0 = 2

A + B
≈ I−1.
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The knowledge of high-frequency susceptibility allows us to find the spin wave
spectrum. For this purpose, we employ the general dispersion equation used already
for determining the spin wave spectrum in ferromagnets

k2 + ki k jχi j (k, ω) = 0 (i, j = x, y, z).

Taking into account that the components of tensor χ̂ (k, ω) are proportional to small
parameter χ0 ∼ I−1 � 1, we see that the spin wave frequencies coincide with the
poles of tensor χ̂ (k, ω) within accuracy to the terms of the order of γ M0χ0. Hence
we find the spin wave frequencies in the easy axis-type antiferromagnet

ω1,2(k) = �± =
√

γ 2H 2
a + (�/�)2(ak)2 ± γ H0 (H0 < Ha).

In the external magnetic field the spin wave spectrum splits into two independent
branches. The appearance of two branches is a direct consequence of the larger num-
ber of degrees of freedom, namely twomagnetic sublattices or two order parameters6

instead of single one as in a ferromagnet. In the high external field H0 > Ha one of
spin wave frequencies becomes negative, evidencing for the instability of the initial
antiferromagnetic state with zero magnitization M = M10 + M20 = 0.

As it concerns the uniform oscillations of magnetic moments in antiferromag-
nets of the limited sizes, we have seen that the components of tensor χ̂ (k, ω) are
proportional to the small parameter χ0 = I−1. Thus, the frequencies of uniform
antiferromagnetic resonance at zero wave vector coincide approximately with the
poles of susceptibility χ̂ (k, ω), i.e. with the spin wave frequencies at k = 0, and are
practically independent of the shape of a magnet. This is in contrast to the frequen-
cies of uniform ferromagnetic resonance dependent significantly on the shape of a
ferromagnet. To conclude, the resonance frequencies will equal

ω1,res = γ (Ha + H0) and ω2,res = γ (Ha − H0)

for the easy axis antiferromagnet in the magnetic field parallel to the anisotropy axis.
Underline that the measurement of resonance frequencies allows us to determine the
magnitude of the anisotropy field Ha .

Let us turn now to studying the spin excitation effect on the thermodynamic
functions of an antiferromagnet and calculating the spin wave contribution to the
specific heat on the example of the easy axis antiferromagnet. So, we have for the
specific heat

Cm(T ) = ∂

∂T

∑

j=1,2

∫
�ω j (k)

e�ω j (k)/T − 1

d3k

(2π)3
.

6 The total number of spin wave branches or modes is determined with the number of magnetic
sublattices, i.e. with the number of magnetic atoms in the magnetic unit cell. Here we mention the
same analogy between the number of atoms in the unit cell of a crystal and the number of branches
in the phonon spectrum.
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To simplify the calculation, we analyze the case of zero external magnetic field
H0 = 0. The spin wave energy εk = �ωk has a gap equal to μHa . Unlike the case of
ferromagnets, this energy is linear as a function of large wave vectors

εk =
√

(μHa)2 + �2(ka)2 =
{

μHa + (�2/2μHa)(ka)2, ka � μHa/�,

�(ka), ka � μHa/�.

Substituting �ωk into the formula for the specific heat and taking an existence of two
branches into account, we find the magnetic contribution to the specific heat of an
antiferromagnetic

Cm(T ) = 1

π2a3

(
T

�

)3
∞∫

ξ

dx

ex − 1

x2(4x2 − 3ξ 2)√
x2 − ξ 2

, ξ = μHa

T
.

We specify here two limiting cases

Cm(T ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
(2π)3/2a3

(
μHa

�

)3(
μHa

T

)1/2

exp
(−μHa

T

)
, T � μHa � �,

4π2

15a3

(
T
�

)3

, μHa � T � �.

So, in the temperature � ∼ �N � T � μHa region the magnetic contribution to
the specific heat of an antiferromagnet is proportional to T 3 and similar to that
resulting from the phonon excitations. The condition �N � μHa is only satisfied in
the antiferromagnets with the sufficiently high Néel temperature. For antiferromag-
nets with the Néel temperature of several tens of kelvins, the magnitudes �N and
μHa become comparable. On the whole, this makes it difficult to observe the strict
Cm ∼ T 3 behavior.

As well as in ferromagnets, the spin wave excitations are responsible for the
temperature-dependent contributions to the longitudinal χ‖ and transverse χ⊥ mag-
netic susceptibilities of antiferromagnets.

Problem

Determine the low temperature behavior of longitudinal static magnetic susceptibility χ‖ in the
easy axis antiferromagnet due to spin wave effect.

Solution. Let the z-axis as well as magnetic field be parallel to the anisotropy axis. The
corresponding component χzz or χ‖ of susceptibility tensor is determined with the derivative
χzz = ∂Mz/∂Hz . Using the relation of magnetization Mz with the thermodynamic potential
�(T, H), we determine the temperature behavior of magnetic susceptibility with the aid of the
following formula:
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�χzz(T ) = χzz(T ) − χzz(0) = ∂Mz

∂Hz

∣∣
Hz=0 = − ∂2�

∂Hz∂Hz

∣∣
Hz=0

= ∂2

∂Hz∂Hz
T

∑

j=1,2

∫
d3k

(2π)3
ln

(
1 − e−�ω j (k)/T

)∣∣
Hz=0 =

= − ∂

∂Hz

∑

j=1,2

∫
d3k

(2π)3

�∂ω j (k)/∂Hz

e�ω j (k)/T − 1

∣∣
Hz=0.

Substituting the spectrum of spin waves in the magnetic field parallel to the anisotropy z-axis

�ω1,2(k) =
√

(μHa)2 + �2(ka)2 ± μHz = �ω0(k) ± μHz,

we get

�χ‖ = �χzz(T ) = 2μ2
∫

d3k

(2π)3

1

4T sinh2(�ω0(k)/2T )
=

=

⎧
⎪⎨

⎪⎩

2
(2π)3/2

μ2

a3�

(
μHa
�

)3/2( T
�

)1/2 exp
(−μHa

T

)
, T � μHa,

1
3

μ2

a3
T 2

�3 , μHa � T � �.

The similar temperature behavior takes place for the transverse susceptibility �χ⊥(T ).

9.10 Weak Ferromagnetism. The Dzyaloshinskii-Moriya
Interaction

There is an antiferromagnet composed of two magnetic sublattices whose magnetic
moments lie in the plane normal to the spatial symmetry axis n of the antiferromag-
net. Let us imagine that one magnetic sublattice does not cross over into the other
under rotations around the symmetry axis n. In such situation, the free energy of the
antiferromagnet admits the presence of the following term:

wd = d[M1 × M2] · n = d

[
L + M

2
× M − L

2

]
· n = 2dn · [M × L].

This term is invariant with respect to the transformation below. Along with swapping
the sublattices M1 → M2 the inversion n → −n is also performed relative to the
center between two magnetic moments. Usually, this symmetry property takes place
if the unit cell in a crystal has at least two different magnetic ions. The term of such
symmetry in the free energy of amagnet is known as theDzyaloshinskii-Moriya inter-
action or antisymmetric exchange interaction as well. The Dzyaloshinskii–Moriya
interaction has a relativistic origin and, as a rule, its magnitude is small as compared
with that of ordinary exchange interaction. The vector dn is called theDzyaloshinskii
vector.
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Let us write down the free energy density of such antiferromagnet

F = 2dn · [M × L] + a − I

2
L2 + b

16
L4+

+ a + I

2
M2 + b

4
M4 + b

8
M2L2 + b

4
(ML)2.

Here the z-axis is parallel to the symmetry axis n and the x-axis is directed
along the antiferromagnetic vector L so that Lx = L0. Due to smallness of the
Dzyaloshinskii–Moriya interaction as compared with the exchange one, i.e. d � I ,
we retain only the quadratic terms with magnetization M in the free energy density.
As a result, the free energy density reads

F = −2dMyLx + a − I

2
L2
x + b

16
L4
x + a + I

2
M2 + b

8
M2L2

x + b

4
M2

x L
2
x .

Minimizing the free energy with respect to magnetization M yields

∂F

∂My
= −2dLx + (a + I + bL2

x/4)My = 0,

∂F

∂Mx
= (a + I + 3bL2

x/4)Mx = 0,
∂F

∂Mz
= (a + I + bL2

x/4)Mz = 0.

Hence we find the magnetization

My = (d/I )Lx = (d/I )L0(T ) and Mx = Mz = 0.

Thus, in a two-sublattice antiferromagnet the Dzyaloshinskii-Moriya interaction
results in appearing the magnetization M �= 0 small to the extent of d/I � 1. The
magnetization M is normal both to the symmetry axis and to themagnetization direc-
tion of the magnetic sublattices, i.e. perpendicular to the antiferromagnetic vector
L0. Such type of magnetic ordering is referred to as weak ferromagnetism or canted
antiferromagnet. For example, it is observed in carbonates CoCO3, MnCO3, and in
hematite α-Fe2O3.

Due to inequality d/I � 1we neglect the small quadratic terms inmagnetization.
Then the free energy can be approximated as

F ≈
(

−2d2

I
+ (a − I )

)
L2
x

2
+ b

16
L4
x .

Accordingly, the expressions for the temperature behavior Lx and My below the
Néel temperature take the usual form typical for the self-consistent Landau theory
of phase transitions

Lx (T ) = 2

(−a + I + 2d2/I

b

)1/2

= (
4a0/b

)1/2(
�N − T

)1/2
,

My(T ) = (d/I )Lx (T ) ∼ (
�N − T

)1/2
and a = a(T ) = I + a0(T − �0).
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Note that the involvement of the Dzyaloshinskii–Moriya interaction shifts
somewhat the initial Néel temperature �0 as

�N = �0 + 2d2

I a0
.

The presence of the Dzyaloshinskii–Moriya interaction in the thermodynamic
potential results in a number of specific features for the behavior of canted antiferro-
magnet in the external magnetic field near the Néel temperature �N . In the external
magnetic field H we must deal with the Gibbs free energy potential

F̃(H) = F − MH − H2/8π.

Varying over both magnetization and antiferromagnetic vectors yields two equations

∂ F̃

∂M
=−2d(n× L) + (a + I )M + bM2

4
M + bL2

4
M + b

2
(ML)L − H = 0,

∂ F̃

∂L
= 2d(n× M) + (a − I )L + bL2

4
L + bM2

4
L + b

2
(ML)M = 0.

AssumingtheweaknessofexternalfieldH , smallnessd � I of theDzyaloshinskii–
Moriya interaction and, accordingly, smallness of magnetization, we retain only the
first-order terms over dL, M, and H in the equations above. Then we have

− 2d(n× L) + (a + I + bL2/4)M + (b/2)(ML)L = H .

2d(n× M) + (a − I + bL2/4)L = 0.

From the second equation it follows that nL = 0 and ML = 0. Hence, antifer-
romagnetic vector L is in the plane normal to the symmetry axis n and, in its turn,
the magnetization vector M is perpendicular to the antiferromagnetic vector. As a
result, we obtain the following solution of equations:

M = 2d(n× L) + H
a + I + bL2/4

.

The antiferromagnetic vector is determined by

(
a − I − 4d2

a + I + bL2/4
+ bL2

4

)
L = − 2d(n× H)

a + I + bL2/4
.

Taking the large magnitude of exchange constant I into account, we finally have

M = 2d(n× L) + H
2I

and

(
a − I − 4d2

2I
+ bL2

4

)
L = −(d/I )(n× H).
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Recalling the relation between the thermodynamic potential parameters and the Néel
temperature, we represent the last equation in the apparent form

[
a0(T − �N ) + bL2/4

]
L = −(d/I )(n× H).

First of all, we see that, unlike a usual antiferromagnet, the magnetic field H
normal to the symmetry axis n is able to induce the antiferromagnetism in the para-
magnetic state above the Néel temperature at T > �N . The antiferromagnetic vector
L of finite magnitude proves to be normal to the both anisotropy axis and magnetic
field. Thus, strictly speaking, in the magnetic field the antiferromagnet with the
Dzyaloshinskii–Moriya effect has no distinction in the magnetic symmetry above
and below the Néel temperature �N .

Let us write the approximate solution of the cubic equation for the magnitude
L(T ) in the various limits

LH (T ) ≈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(d/I )H
a0(T−�N )

, T > �N ,
(

4(d/I )H
b

)1/3

, T = �N ,

L0(T ) + (d/I )H
2a0(�N−T )

, T < �N .

Indeed, the relatively low external magnetic field induces a noticeable antiferromag-
netic ordering (Fig. 9.10). The substitution of the last formulas into the expression
for the susceptibility shows that the magnetic susceptibility χ⊥ = ∂M/∂H exhibits
a drastic maximum near the Néel temperature (Fig. 9.11). In fact,

χ⊥
χ0

=
{
1 + 2d2

a0 I
1

T−�N
, T > �N ,

1 + 2d2

a0 I
1

2(�N−T )
, T < �N ,

where χ0 = 1/(2I ) is the susceptibility in the lack of the Dzyaloshinskii–Moriya
interaction. As it concerns the magnetic response χ‖ to the magnetic field in the
direction of the anisotropy axis, the effect of the Dzyaloshinskii–Moriya interaction

Fig. 9.10 The behavior of
antiferromagnetic vector L
in the magnetic field H
normal to the symmetry axis
n. Vector is L ⊥ (n, H). The
dashed line corresponds to
zero field H = 0
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Fig. 9.11 The temperature
behavior for the transverse
magnetic susceptibility χ⊥
of weak ferromagnet in the
close vicinity of the Néel
temperature �N . The dashed
line shows the behavior χ⊥ if
there is no
Dzyloshinskii–Moriya
interaction

proves to be insignificant and the magnetic susceptibility remains unchanged, i.e.
χ‖ = χ0 = 1/(2I ).

In conclusion, we note that, in addition to the combinations of ferromag-
netic structures with the antiferromagnetic ones, the similar aggregations of the
antiferromagnetic structures are also possible.

9.11 Helical Structures

The emergence of helical structures in a magnet is usually associated with the long-
range nature of the exchange interaction between the spins. Here we examine some
conditions for appearing such structures, using a simple example of amagnet with the
uniaxial anisotropy which compels the magnetic moments to lie entirely in the basic
planes normal to the anisotropy axis (Fig. 9.12). Let us imagine strong exchange
interaction between the magnetic moments belonging to the same plane so that this

Fig. 9.12 On the emergence
of antiferromagnetic helical
structure. The coupling
constants between the planes
are J1 and J2
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exchange interaction is responsible for the ferromagnetic ordering of the magnetic
moments in each plane. The interaction of the magnetic moments from the different
planes has also an exchange character but oscillates from one plane to another. So, we
put the exchange coupling constant equal to J1 > 0 between the magnetic moments
from the nearest-neighbor basic planes and the exchange constant equal to J2 < 0
between the magnetic moments from the next-nearest-neighbor planes. As a result,
there may appear a helical antiferromagnetic structure due to competition between
the coupling constants of ferromagnetic and antiferromagnetic signs.

Let us suppose that the direction of magnetic moments in each basic plane rotates
by some angle α with the changeover to the neighbor plane. Then we write the
exchange interaction energy per an atom between the magnetic moment layers as a
function of the magnetic moment rotation angle α

Wex (α) = −(J1 cosα + J2 cos 2α).

Here α is the rotation angle of magnetic moment with the changeover to the neighbor
plane and 2α is the rotation angle with the changeover to the next-nearest-neighbor
plane.

The equilibrium value of angle is determined with condition ∂Wex/∂α = 0
yielding the equation

J1 sin α + 2J2 sin 2α = 0.

This equation has two solutions

sin α = 0 and cosα = − J1
4J2

.

The first solution exists for any relation between the exchange constants. For
J1 > 0, the energy minimum realizes at angle α = 0 corresponding to the ordinary
ferromagnetic ordering.

The second solution at α0 = arccos(−J1/4J2) corresponds to the helical antifer-
romagnetic ordering. It is possible only for the sufficiently slow decay |J2| � J1/4 of
the interaction across the basic planes. Comparing the energies of the ferromagnetic
and helical orderings

Wex (α0) − Wex (0) = (J1 + 4J2)2

8J2
< 0,

we see that the helical structurewill be energeticallymore favorable as comparedwith
the ferromagnetic ordering. The helical period across the planes is L = 2πd/α0, d
being the interplane spacing, proves to be incommensuratewith the distance between
the neighbor planes.

The appearance of the helical structure can be described with the aid of the
following phenomenological expression for the inhomogeneity density term:
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Winh = γ M · curlM + α

2
(∇M)2.

If γ �= 0, the condition α > 0 cannot provide us any stability of the homoge-
neous state with ∇M = 0. In fact, let we have simple spiral structure M =
{M cos qz, M sin qz, 0} and its curlM = {−qM cos qz,−qM sin qz, 0}. Then, the
inhomogeneity energy depends on the spiral vector q and equals

Winh = −γ qM2 + α

2
q2M2.

Hence the inhomogeneous state with nonzero spiral vector q = γ /α is energetically
more favorable.

Problems

1. Find the magnetic susceptibility χ of antiferromagnetic helix in the low magnetic field H
lying in the plane normal to the helix axis. The exchange constants between closest ferromagnetic
layers are J1 and J2.

Solution. If the external magnetic field is applied in the direction normal to the anisotropy axis,
the angle α0 between the directions of magnetic moment in the nearest neighboring layers changes
and depends now on the magnetic field strength. The energy of the helix in the magnetic field reads

W (H) = −
∑

n

[
J1 cos(αn − αn−1) + J2 cos(αn − αn−2)

] − μH
∑

n

cosαn

where μ is the magnitude of magnetic moment and αn is the angle between the directions of the
magnetic field and magnetic moment in nth layer. In the lowmagnetic field the helical structure will
be distorted and the magnetic moments deviate from the ideal spiral position, rotating additionally
by some angle in the magnetic field direction. Let us write the rotation angle αn in nth layer as

αn = nα0 + βn

where α0 is the rotation angle in zero field H = 0 and |βn | � 1.
We start from minimizing the energy W (H) with respect to angle αn . This yields the equation

J1
[
sin(αn − αn−1) − sin(αn+1−αn)

]+
+ J2

[
sin(αn − αn−2) − sin(αn+2 − αn)

] = −μH sin αn .

Expanding the left-hand side of equation over small correction βn and taking the smallness of
magnetic field H on the right side of the equation, we obtain

J1(2βn − βn−1 − βn+1) cosα0 + J2(2βn − βn+2 − βn−2) cos 2α0 ≈ −μH sin(nα0).

We seek for the solution as

βn = A sin(nα0) where A ∼ μH,

and arrive at the equation

A = −1

4

μH

J1 sin2(
α0
2 ) cosα0 + J2 sin2 α0 cos 2α0

.

Next, we calculate the mean value of the magnetic moment projection onto the direction of
magnetic field H
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〈μ〉 = μ〈cos(nα0 + βn)〉 ≈ −μ〈βn sin(nα0)〉 = −μA〈sin2(nα0)〉 = −1

2
μA.

The magnetic susceptibility χ per one magnetic particle is given by

χ = ∂〈μ〉
∂H

= μ2

8

1

J1 sin2(
α0
2 ) cosα0 + J2 sin2 α0 cos 2α0

and βn = −2χ

μ
H sin(nα0).

2.Under conditions of the previous problem, find the criticalmagnetic field Hc when allmagnetic
moments in the layers are aligned in the direction of the magnetic field.

Solution. Near the critical magnetic field the magnetic moments will slightly be deviated from
the magnetic field direction. Let αn be angle of the magnetic moment in nth layer with respect to the
magnetic field direction. All the angles αn are extremely small near Hc, i.e. |αn | � 1. Linearizing
the equation

J1
[
sin(αn − αn−1) − sin(αn+1−αn)

]+
+ J2

[
sin(αn − αn−2) − sin(αn+2 − αn)

] = −μH sin αn

obtained in the previous problem over small αn → 0, we have the following linear equation:

J1(2αn − αn−1 − αn+1) + J2(αn − αn+2 − αn−2 = −μHαn .

Then, we seek for the solution as

αn = ζ sin(nϕ), implying |ζ | � 1.

And finally we have the relation

μH = μH(ϕ) = −2(J1 + J2) + 2J1 cosϕ + 2J2 cos 2ϕ = −2(J1 + J2) − W0(ϕ)

where W0(ϕ) = −2J1 cosϕ − 2J2 cos 2ϕ is the energy of the system when ϕ is the angle between
the magnetic moments of two nearest neighbor layers. The value μH(ϕ) is maximum if energy
W0(ϕ) is minimum, i.e. at the optimum angle ϕ = ϕ0 determined by condition cosϕ0 = −J1/4J2.
So, in the magnetic fields exceeding the critical magnitude

Hc = −16J2
μ

sin4
ϕ0

2
= (J1 + 4J2)2

4μ|J2| ,

any deviation of magnetic moments from the magnetic field direction is suppressed and the

homogeneous ferromagntic ordering is established.

9.12 Quantum Theory of Spin Waves

To calculate the magnon dispersion law within the entire range of wave vectors
beyond the longwave limit and to study both the thermodynamic and the kinetic prop-
erties ofmagnets, it is necessary to develop amicroscopic theory for the physical pro-
cesses in magnets. This requires more complicated and sophisticated mathematical
methods.

If the magnetic moment of any particle in a magnet is disturbed from the equi-
librium direction corresponding to the minimum energy, the relaxation process will
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represent the spin wave propagation as a rule. The energy of the wave equals that of
magnet excitation. The energy of such elementary excitation can be connected with
the frequency and wave vector of the wave as usual εs( p) = �ωs(k) where p = �k
is the momentum of elementary excitation. The elementary excitations in a magnet
are called magnons. The types and properties of magnons depend essentially on the
magnetic interactions and dimensionality of the magnetic system.

To study the magnon effect on the physical properties of magnets and describe the
magnon-magnon coupling, we employ the method based on introducing themagnon
creation and annihilation operators denoted as b+

p and b p, respectively. Since the
magnons obey the Bose statistics, the operators b+

p and b p should be determined on
the analogy with the phonon ones. In other words, the operators should obey the
Bose commutation relations

[b p, b
+
p′ ] = δ p, p′ , [b p, b p′ ] = 0 and [b+

p , b+
p′ ] = 0.

As we have seen above, it follows from these relations that operator n p = b+
p b p has

non-negative integer eigenvalues

b+
p b pψ |..., n p, ...〉 = n pψ |..., n p, ...〉.

Here the eigenvector ψ |..., n p, ...〉 corresponds to the state having n p magnons with
momentum p. The creation operator b+

p acting on the state vector ψ |..., n p, ...〉
increases the number of magnons with momentum p by unity. The annihilation
operator b p decreases their number by unity according to

b+
pψ |..., n p, ...〉 = √

n p + 1ψ |..., (n p + 1), ...〉
b pψ |..., n p, ...〉 = √

n p ψ |..., (n p − 1), ...〉.

The next step is to express the magnetic Hamiltonian given in terms of spin or
magnetic moment operators via the creation and annihilationmagnon ones. As usual,
the Hamiltonian of the magnetic system is written by means of the spin operators for
the particles composing the magnetic material. Therefore, it is necessary to connect
the spin operators Ŝ = (Ŝx , Ŝ y, Ŝz) with the creation and annihilation magnon oper-
ators. Below we keep in mind a simplest Hamiltonian of exchange type to describe
the isotropic ferromagnet7 in the external magnetic field H parallel to the z-axis

Ĥ = −1

2

∑

l �=l ′

[
Jll ′(Ŝ

x
l Ŝ

x
l ′ + Ŝ y

l Ŝ
y
l ′ + Ŝzl Ŝ

z
l ′
] − μH

∑

l

Ŝzl .

Here Jll ′ = J (Rl − Rl ′) is the exchange integral between the spins at sites Rl , Rl ′ ,
and μ is the magnetic moment of the spin S particle. For independent summation

7 In general, the exchange constants as well as their signs may be different for the various spin
components: Ĥ = − 1

2

∑(
J x Ŝx Ŝx + J y Ŝy Ŝy + J z Ŝz Ŝz

)
, i.e. J x �= J y �= J z .
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over l and l ′, each pair of the spins occurs twice and, of course, Jll ′ = Jl ′l . The
ferromagnetic state implies the inequality Jll ′ > 0.

Before solving this problem, we recall the following properties of the circular
Ŝ± = Ŝx ± i Ŝ y , and z-projection Ŝz operators of spin operator Ŝ:

Ŝ±|Sz >= √
S(S + 1) − Sz(Sz ± 1) |Sz ± 1 > and Ŝz|Sz >= Sz|Sz > .

Let n = S − Sz be spin projection deviation from the maximum value S. Then we
have for the above circular and z-projection operators

Ŝ+|n >= √
2S

√
1 − n − 1

2S

√
n |n − 1 >,

Ŝ−|n >= √
2S

√
n + 1

√
1 − n

2S
|n + 1 >, Ŝz|n >= (S − n)|n > .

Introducing the Bose creation b+ and annihilation b operators with the ordinary
properties

b+|n >= √
n + 1 |n + 1 >, b|n >= √

n |n − 1 > and b+b|n >= n |n >,

we finally arrive at the following realization8 of the Holstein–Primakoff transforma-
tion for operators Ŝ± and Ŝz :

Ŝ+ = √
2S

√
1 − b+b

2S
b, Ŝ− = √

2Sb+
√
1 − b+b

2S
, Ŝz = S − b+b.

Let us return to the initial Hamiltonian and perform the Holstein–Primakoff trans-
formation for each spin at the corresponding site of the spin lattice. As a result, we
arrive at the complicated form of the Hamiltonian

Ĥ = −1

2

∑

l �=l ′
Jll ′

[
2Sb+

l

(
1 − b+

l bl
2S

)1/2(
1 − b+

l ′ bl ′

2S

)1/2

bl ′+

+S2 − Sb+
l bl − Sb+

l ′ bl ′ + b+
l blb

+
l ′ bl ′

] − μH
∑

l

(
S − b+

l bl
)
.

If we start to expand the square roots in powers b+
l bl , the Hamiltonian will

represent the expansion as

Ĥ = Ĥ(0) + Ĥ(2) + Ĥ(3) + Ĥ(4) + . . .

8 From the formal viewpoint the eigenvalues n = b+b can run the values from 0 to ∞ and not only
between 0 and 2S. The difference is illusory since the transitions from states n � 2S to those with
n > 2S have no place.
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where

Ĥ(0) = −1

2

∑

l �=l ′
Jll ′ S

2 − μH
∑

l

S

has no operators b+
l , bl and corresponds to the energy of a magnet in the ground state,

the spins being treated as classical variables. Then, Ĥ(2) is some quadratic form of
these operators

Ĥ(2) = −1

2

∑

l �=l ′
Jll ′ S

(
2b+

l bl ′ − b+
l bl − b+

l ′ bl ′
) + μH

∑

l

b+
l bl ,

and represents the Hamiltonian of non-interacting magnons. In our simplest case the
third-order form Ĥ(3) vanishes identically. The fourth-order form Ĥ(4), equal to

Ĥ(4) = −1

2

∑

l �=l ′
Jll ′

(
b+
l blb

+
l ′ bl ′ − 1

2
b+
l b

+
l blbl ′ − 1

2
b+
l b

+
l ′ bl ′bl ′

) =

= −1

2

∑

l �=l ′
Jll ′

(
b+
l blb

+
l ′ bl ′ − b+

l b
+
l blbl ′

)
,

will be responsible for themagnon-magnon interaction. For validity of our expansion,
it is necessary to assume that the mean values of operator b+

l bl at the site are small
as compared with 2S, i.e. occupation numbers are nl = 〈b+

l bl〉 � 2S. As a rule, this
assumes the sufficiently low T � J temperatures or large S � 1 spin limit.

In the expression for Ĥ(2) we go over from operators b+
l and bl to their Fourier

transforms in accordance with

bl = 1√
N

∑

k

bke
−ikRl and b+

l = 1√
N

∑

k

b+
k e

ikRl

where Rl is the coordinate of the spin site and N is the number of sites. Then, we
obtain

Ĥ(2) =
∑

k

[
μH + S

(
J (0) − J (k)

)]
b+
k bk =

∑

k

εkb
+
k bk.

We have used the following relations for the transformation:

∑

l

ei(k−q)Rl = Nδk,q and Jll ′ = J (Rl − Rl ′) =
∑

q

J (q)eiq(Rl−Rl′ ).

Let us discuss the result obtained. For the quantity

εk = μH + S
(
J (0) − J (k)

)
,
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we must attribute the meaning of excitation energy for a magnon with wave vector k
and frequency ωk = εk/�. The operators b+

k and bk will have a sense of the magnon
creation and annihilation ones. The following excitation energy of a ferromagnet

E =
∑

k

εknk where nk = 0, 1, 2, . . .

corresponds to Hamiltonian Ĥ(2).
Putting for simplicity that the spin positions correspond to the simple cubic lattice,

we can use the following long wave expansion of the exchange integral:

J (k) =
∫

J (r)eikrd3r =
∫

J (r)d3r −
∫

(kr)2 J (r)d3r + · · · =

= J (0) − J0(ka)2 + · · · where J0a
2 = 1

3

∫
r2 J (r)d3r.

Here J0 is the magnitude of the order of the exchange integral between the nearest
neighbor spins separated with the distance equal to a. Accordingly, we have the
quadratic dispersion for the magnon energy in the long wave approximation

εk ≈ μH + SJ0(ka)2.

The presence of third-order expansion terms in Hamiltonian Ĥ(3) would describe
the processes of merging two magnons and decaying a magnon into two other
magnons. These processes would mean an existence of the magnon damping. The
magnon-magnon interaction, resulted from the fourth-order terms in Ĥ(4), gives
rise to the two-magnon scattering and, depending on a number of conditions, can
result in emerging a two-magnon bound state. These effects can contribute to the
thermodynamic variables of a magnet.

So far, studying the thermodynamic properties of magnets, we have believed that
spin waves or magnons compose an ideal gas of non-interacting elementary excita-
tions. To clarify the magnon-magnon interaction effect on the thermodynamics of a
ferromagnet, we determine the correction to the thermodynamic potential, resulting
from interaction energy Ĥ(4) in its first approximation. This correction is given by

δF = −T ln(Z0 + δZ) − (−T ln Z0) ≈ −T
δZ

Z0
= tr (Ĥ1e− Ĥ0

T )

tr e− Ĥ0
T

= 〈Ĥ1〉0.

Here the trace is taken over all the states of unperturbed Hamiltonian Ĥ0 and,
therefore, the correction to the thermodynamic potential is simply the mean value of
the perturbing Hamiltonian Ĥ1. So, we obtain the correction to the thermodynamic
potential due to magnon-magnon interaction
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δFint = tr
(Ĥ(4)e− Ĥ(0)+Ĥ(2)

T

)

tr e− Ĥ(0)+Ĥ(2)
T

= tr
(Ĥ(4)e− Ĥ(2)

T

)

tr e− Ĥ(2)
T

= 〈Ĥ(4)〉.

Since Ĥ(0) is a constant and thus it cancels. In essence, the thermodynamic averaging
of Hamiltonian Ĥ(4) is performed with the Hamiltonian of magnons Ĥ(2). For the
convenience of calculating themean value 〈Ĥ(4)〉, we rewrite it in terms of the Fourier
transforms of creation and annihilation operators

〈Ĥ(4)〉 = −1

2

∑

q,k,k′
J (q)

[〈b+
k−qbkb

+
k′+qbk′ 〉 − 〈b+

k b
+
k′bk+k′+qb−q〉

]
.

The determination of the mean value 〈Ĥ(4)〉 is the calculation of the trace. The
necessary contribution is provided only by the diagonal matrix elements of opera-
tor Ĥ(4)exp(−Ĥ(2)/T ). Nonzero contribution can only be delivered with the terms
having the same number of creation and annihilation operators so that the magnon
occupation numbers would remain the same after action of these operators. Thus,
we have 〈b+

k b
+
k′ 〉 = 〈bkbk′ 〉 = 0. The mean value 〈b+

k bk′ 〉 is nonzero only if the wave
vectors k and k′ are equal to each other. It is obvious that the mean value

〈b+
k bk〉 = nk = 1

eεk/T − 1
,

is the equilibrium number of magnons in the state with wave vector k and energy εk
at temperature T . Thus, the mean value is the Bose distribution n(εk).

For the first term in Ĥ(4), such conditions can be fulfilled in two cases, namely at
q = 0 and at q = k − k′. For the second term, these conditions are satisfied in two
cases as well, namely at q = −k and at q = −k′. As a result, we arrive at the mean
value desired

〈Ĥ(4)〉 = −1

2

∑

k,k′

[
J (0)nknk′ + J (k − k′)nknk′−

−J (−k)nknk′ − J (−k′)nknk′
]
.

Thus, we obtain the correction to the thermodynamic potential due to magnon-
magnon interaction

δFint = 1

2

∫
d3k

(2π)3

d3k ′

(2π)3
nkUint(k, k

′)nk′ .

The sign of sum is replaced with the equivalent integration over wave vectors. Taking
this symmetry J (k) = J (−k) of exchange integral into account, we represent the
potential of magnon-magnon interaction Uint(k, k

′) in the final form
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Uint(k, k
′) = J (k) + J (k′) − J (k − k′) − J (0).

Let us turn to estimating the integral in the low temperature region where, in
essence, our correction is valid. At low temperatures the integral is gained by the
region of small magnitudes of vectors k and k′. Correspondingly, we can limit our-
selves with expanding the energy εk and J (k) over the powers of wave vector k.
Then the energy εk is approximated by the quadratic expression

εk ≈ μH + SJ0(ka)2.

The exchange integral J (k) is an even function of vector k. As we will see below,
in expanding the exchange integral, it is necessary to involve fourth-order terms
since the quadratic ones give zero contribution. We also, as above, assume the cubic
symmetry in the spin arrangement. Then we have

J (k) = J (0) − J0a
2(k2x + k2y + k2z ) + J0

b4

12
(k4x + k4y + k4z ) + · · ·

(For the cube lattice symmetry of spin arrangement, we have b = a where a is the
size of the edge in the unit cell.) Accordingly, we arrive at the following expansion
for the interaction energy:

Uint(k, k
′) = 2J0a

2
∑

i=x,y,z

ki k
′
i + J0b4

6

∑

i=x,y,z

(
2ki k

′3
i − 3k2i k

′2
i + 2ki k

′3
i

) + · · ·

On the substitution of this expression for the correction to thermodynamic potential
δFint, the odd terms in k or in k′ give zero contribution due to averaging over the
directions of vectors k and k′. After averaging the last remaining term with k2i k

′2
i

over the directions, we should calculate the following integral expression:

δFint(T, H) = − J0b4

6

∫
d3k

(2π)3

d3k ′

(2π)3
nkk

2k ′2nk′ =

= − J0b4

6

(∫
d3k

(2π)3
k2nk

)2

= − J0b4

6

( ∞∫

0

k2dk

2π2

k2

exp
(

μH+SJ0(ka)2

T

) − 1

)2

.

For zero external magnetic field H = 0, the integration results in the following
correction:

δFint(T ) = − J0b4

6

9ζ 2(5/2)

256π3

(
T

SJ0a2

)5

.

Using relation C = −T ∂2F/∂T 2 yields the magnon interaction contribution to the
specific heat of a ferromagnet
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δCint = 2b4

Sa2
15πζ 2(5/2)

(
T

4π SJ0a2

)4

∼
(
T

�

)4

,

� being the Curie temperature.
The correction to the magnetization in the low μH � T magnetic field is given

by the formula δMint = −∂Fint/∂H where

δFint(T, H) = − J0b4

6

[
3

16π3

(
T

SJ0a2

)5/2(
ζ(5/2) − ζ(3/2)

μH

T
+ · · ·

)]2

.

We see that the magnon-magnon interaction leads to some additional decrease of
magnetization with the temperature growth

δMint = −μ
b4

Sa2
3πζ(5/2)ζ(3/2)

(
T

4π SJ0a2

)4

∼ −μ

(
T

�

)4

,

following the same T 4 law as for the specific heat. The relations are valid while
T � �.

In the high μH � T magnetic field the corrections have an exponentially small
character

δFint(T, H) = − J0b4

6

9

256π3

(
T

SJ0a2

)5

e−2μH/T ,

δCint = b4

Sa2
6π

(μHT )2

(4π SJ0a2)4
e−2μH/T ,

δMint = −μ
3πb4

Sa2

(
T

4π SJ0a2

)4

e−2μH/T .

In conclusion, the interaction of magnons delivers the corrections to the thermo-
dynamic variables in higher T/� approximation. The main terms in the magnon
contribution to the specific heat and magnetization follow the Bloch T 3/2 behavior
law.

Problems

1.Express the circular operators Ŝ+ and Ŝ− via theBose creation b+ and annihilation b operators
if the z-projection operator Ŝz is defined as an increment to the minimum value of projection, i.e.
Ŝz = −S + b+b.

Solution. Solution is analogous to that discussed above

Ŝ+ = √
2S b+

√
1 − b+b

2S
, Ŝ− = √

2S

√
1 − b+b

2S
b.

2. Using the anticommutation relation {σ+, σ−} = 1 and property (σ+)2 = 0, (σ−)2 = 0 for
the raising σ+ = (σ x + iσ y)/2 and lowering σ− = (σ x − iσ y)/2 operators of the Pauli spin-1/2
matrices, find the transformation converting the spin operators into the fermionic creation c+ and
annihilation c operators in the case of one-dimensional chain of spin-1/2 particles.
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Solution. We can think about two spin projections as if it is empty and occupied fermionic states.
For the spin at the same site l, we can engage the operators σ+

l and σ−
l (σ z

l = 2σ+
l σ−

l − 1) as initial
Fermi operators since they obey the fermionic anticommutation relations

{σ+
l , σ−

l } = 1, {σ+
l , σ+

l } = {σ−
l , σ−

l } = 0.

However, this is not the case for the spins at the different l �= l ′ sites because they commute

[σ+
l , σ−

l ′ ] = [σ+
l , σ+

l ′ ] = [σ−
l , σ−

l ′ ] = 0.

To satisfy the necessary condition of anticommutating the operators at the different sites of the
chain, we follow the Jordan–Wigner transformation and introduce the following operators for the
site with the number l:

c+
l = σ+

l eiϕl and cl = e−iϕl σ−
l where phase ϕl equals ϕl = π

l−1∑

k=1

σ+
k σ−

k ,

i.e. this sum is taken over all the sites preceding the site l. Since σ+σ− = (σ z + 1)/2, i.e. zero or
unity, the exponential eiϕl can also be represented as9

e±iϕl = e
±iπ

l−1∑
k=1

σ+
k σ−

k =
l−1∏

k=1

e±iπσ+
k σ−

k =
l−1∏

k=1

(
1 − 2σ+

k σ−
k

) =
l−1∏

k=1

(−σ z
k

)
.

It remains to check the necessary anticommutation relations {c+
l , cl ′ } = δll ′ and {c+

l , c+
l ′ } =

{cl , cl ′ } = 0.
These relations can readily be checked if we point out that operator exp(±iπσ+

l σ−
l ), equal to

−σ z
l , anticommutes with operators σ+

l and σ−
l at the same site of the chain but any two operators

referred to different sites commute always with each other, i.e. [σ±
l , σ±

l ′ ] = 0 at l �= l ′.
3. Find themagnon or spinwave spectrum in the one-dimensional HeisenbergXYmodel of spin-

1/2 chain, using the Jordan–Wigner transformation. The chain is described with the Hamiltonian

H = J
∑

l

(
Sxl S

x
l+1 + Syl S

y
l+1

)
,

J being the exchange integral for the neighboring spins.
Solution. Let us rewrite the Hamiltonian in terms of operators σ+

l and σ−
l

H = J

2

∑

l

(
σ+
l σ−

l+1 + σ−
l σ+

l+1

)
.

Next, we transform the Hamiltionan, using the identity c+
l cl = σ+

l σ−
l and the Jordan–Wigner

transformation

σ+
l = e

−iπ
l−1∑
k=1

c+
k ck

c+
l , σ−

l = e
iπ

l−1∑
k=1

c+
k ck

cl

for which the following identities are valid:

σ+
l σ−

l+1 = c+
l e

iπc+
l cl cl+1 = c+

l cl+1,

σ−
l σ+

l+1 = cle
−iπc+

l cl c+
l+1 = cle

−iπ+cl c
+
l = −clc

+
l+1 = c+

l+1cl ,

σ+
l σ+

l+1 = c+
l c

+
l+1, σ−

l σ−
l+1 = −clcl+1.

9 Use the expansion e(iπσ+σ−) = 1 + iπσ+σ− + 1
2! (iπ)2(σ+σ−)2 + · · · and (σ+σ−)n = σ+σ−.
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Finally, we have the equivalent Hamiltonian

Ĥ = J

2

∑

l

(
c+
l cl+1 + c+

l+1cl
)

which reduces the initial spin problem to that for the spinless non-interacting fermions with hopping
between the nearest sites.

For the further, we go over to the Fourier representation with introducing the creation c+
q and

annihilation cq operators for the fermions with wave vector q

cl = 1√
N

∑

q

cqe
iqxl and c+

l = 1√
N

∑

q

c+
q e

−iqxl

where N is the number of sites and xl = la is the coordinate for the site of the chain with period a.
As a result, we arrive at the Hamiltonian of spinless non-interacting fermions

Ĥ =
∑

q

εqc
+
q cq , εq = J cos qa.

Thus, relation εq = J cos qa determines the fermionic states10 and, correspondingly, the magnon
energy spectrum is a periodic function of wave vector q with the reciprocal lattice period 2π/a.
Due to interaction the discrete levels of isolated spins broaden into the band of width |J |.

4. Estimate the temperature behavior of specific heat for the one-dimensional spin-1/2 chain.
Solution. Since the creation and annihilation operators of elementary excitations obey the

fermionic commutation relations, the Fermi distribution function must be chosen as a distribu-
tion function of excitations. In addition, since the number of spin excitations is not fixed and may
change, the chemical potential of excitations must be put equal to zero. Accordingly, at zero tem-
perature in the ground state the fermionic states of negative energy εq < 0 are occupied but the
positive energy states εq > 0 are free. In the ground state the magnon band proves to be exactly
half-filled.

So, the specific heat of a free fermion gas is given by the formula

C(T ) = 1

T 2

∑

q

ε2qnq (1 − nq ), nq = [
eεq/T + 1

]−1

where nq is the occupation number for the state with energy εq . Next, we have

C(T ) =
π/a∫

−π/a

a dq

2π

(J/T )2 cos2 qa

4 cosh2
( J cos qa

2T

) = K 2

π

π∫

0

dx
cos2 x

cosh2(K cos x)
, K = J

2T
.

For low T � |J | temperatures, the specific heat C(T ) ≈ πT/(3|J |) is a linear function of tem-
perature. Such low temperature behavior is typical for fermions. As the temperature grows, the
specific heat crosses the maximum at T ∼ |J | and then decays as J 2/(8T 2) in the high T � |J |
temperature region.

In conclusion, we remind that the systems of one-dimensional acoustic phonons (bosons) and

one-dimensional fermions with a fixed spin projection have also the same linear temperature behav-

ior of specific heat in the low temperature region. In this sense these systems are isomorphic to each

other.

10 In the case of antiferromagnetic sign J > 0 the excited state are often called spinons.
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