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Physics

Physics: An Introduction to Physical Dynamics provides an accessible introduction 

to the fundamentals of physics for science and engineering undergraduates who are 

studying elementary physics.

This textbook contains 12 chapters with accompanying problem sets and explains 

the dynamical properties of a variety of physical systems. The first six chapters intro-

duce Newton’s laws of motion, followed by the concepts of mechanical work and 

mechanical energy, with illustrative applications to the translational and/ or rotational 

motion of inflexible objects such as particles and 3D objects of fixed shape. The next 

four chapters generalize the application of Newton’s laws and mechanical energy to 

flexible systems, including flowing fluids, waves on strings, and oscillating springs. 

The last two chapters elucidate the laws of thermodynamics, especially heat energy 

transfer between systems at different temperatures.

Some familiarity with topics in elementary mathematics, including calculus, is 

assumed. A wide variety of situations are explored, by means of which a student 

should acquire an enhanced understanding of the properties of physical systems from 

the astronomic scale to the microscopic.

Key Features

 • Covers the classical mechanics of both single particles and assemblies of 

particles subject to forces.

 • Contains wide- ranging sets of examples and worked problems.

 • Covers much of the material that a student might expect to encounter during the 

first year of a university physics course.
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Preface
Classical mechanics is an important branch of physics and finds many applications 

in both science and engineering. This book is aimed at beginning physics students 

at universities. The students will have completed, or will be attending, introductory 

mathematics courses.

Historically, great interest in the dynamics of moving objects followed Isaac 

Newton’s major contributions to the subject in the seventeenth century. Using his 

inverse square law of gravitation, Newton was able to successfully account for 

Kepler’s laws of planetary motion around the Sun. This achievement inspired many 

other applications of what were called Newton’s laws of motion.

This book, which contains twelve chapters with accompanying problem sets, deals 

with the dynamical properties of a variety of physical systems.

The first three chapters introduce the basic ideas of mechanics –  in particular mass, 

length, and time, with Chapter 3 exploring the concept of momentum as it relates to 

Newtonian mechanics.

The application of Newtonian mechanics is addressed in Chapters 4– 6. Chapter 4 

introduces the concepts of mechanical work and mechanical energy, with illustrative 

applications to the translational and/ or rotational motion of inflexible objects such 

as particles and 3D objects of fixed shape. Chapter 5 discusses the important special 

case of rotational motion, while Chapter 6 covers rigid body dynamics.

Chapters 7– 10 generalize the application of Newton’s laws and mechanical energy 

to flexible systems, including flowing fluids, waves on strings, and oscillating springs.

The final two chapters elucidate the laws of thermodynamics, especially heat 

energy transfer between systems at different temperatures.

The Système International (SI) units for length and time are introduced in 

Chapter 1, together with the recent fundamental definition of the mass unit. SI units 

are used throughout the book.
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1DOI: 10.1201/9781003485537-1

The Physical World

1.1  INTRODUCTION

Physics holds major importance in our scientific endeavours to gain a deeper 

understanding of the world in which we live. Many discoveries made by physicists, 

particularly in the past few centuries, have, over time, led to technological innovations 

that have transformed our present- day lives. The boundaries of physics are not rigid, 

and many important interdisciplinary activities have emerged involving collaborations 

between physicists and other scientists in various fields. Mathematics is essential for 

developing the theoretical insights needed to interpret experimental observations. The 

range of physics activities is vast involving phenomena on length scales from sub-

atomic to astronomically large. While this enormous range may appear daunting to an 

individual starting out in physics, the situation is helped by many unifying concepts 

and the establishment of fundamental laws of nature that underlie all physical phe-

nomena in the universe.

This book engages in a presentation of classical mechanics and related subjects. 

A central topic involves the motion of objects subject to applied forces. As shown in 

later chapters, Newton’s laws of motion are of fundamental importance in dealing 

with this dynamical behaviour of such objects. The introduction of the concepts of 

momentum and energy facilitate the discussion. In later chapters, the approach is 

generalized to rigid body motion, fluid properties, oscillations, and waves. The pre-

sent chapter introduces the fundamental physical properties of mass, length, and time, 

together with the units used in the measurement of these properties. The last part of 

this chapter briefly reviews what is known about the fundamental forces of nature and 

the length scales over which they operate.

The basic concepts of mass, length, and time are familiar to us all from everyday 

experience. Over time, the internationally accepted definitions of the units for meas-

uring these quantities have evolved and become increasingly precise particularly 

since the mid- twentieth century. Historically, the meter (m), kilogram (kg), second 

(s) system of units, abbreviated MKS, was established in France in the late eighteenth 

century and later adopted by many countries, particularly for scientific purposes. The 

standard kilogram was defined in terms of the mass of a cylinder of platinum– iridium 

1 
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alloy kept in a safe in a vault in Paris. Copies of this standard were made available to 

other countries. Iridium in the alloy hardened the surface of the cylinder and reduced 

possible surface wear. For length, the meter was defined as the distance between two 

marks on a platinum– iridium bar kept at a particular temperature in a Parisian vault. 

This length was based on the distance from the equator to the North Pole and was 

chosen as one ten- millionth of this distance. It later turned out that the measured 

quadrant distance was somewhat in error, but the marked distance on the bar was 

retained as the definition of the meter. The second was based on the length of a solar 

day taken as 24 hours corresponding to 86,400 seconds. Actually, the length of the 

solar day varies during the year because of the slightly elliptical nature of the Earth’s 

orbit around the Sun and the axial tilt, or obliquity, of the Earth’s axis of rotation with 

respect to the ecliptic, which is the plane of the Earth’s orbital motion. It is clear that 

the standards used in the original MKS system are not satisfactory because, firstly, 

they are based on macroscopic objects that are subject to possible change over time 

as the result of wear and, secondly, they can be measured with only limited preci-

sion. Starting in the mid- twentieth century, the basis for defining the MKS units has 

been altered from the macroscopic to the atomic scale where properties are stable 

over extremely long times. A fundamental physical constant, the speed of light in 

vacuum, is used, together with the new unit of time, in defining the new unit of length 

as described below.

The revised system as adopted by international agreement is known as the Système 

International d’unitès, abbreviated as the SI system. In addition to the speed of light 

in vacuum, c, there are other fundamental physical constants such as the charges  

and masses of the electron, −e and m
e
, the proton, e and m

p
, and the neutron, 0 and 

m
n
, plus a number of other fundamental quantities, including Planck’s constant h,  

Avogadro’s number N
A
, and Boltzmann’s constant k

B
. A table of values of the funda-

mental constants is given in Appendix 1 and the values indicate the extremely high 

precision that has been achieved in their determination. These constants play a crucial 

role in comparing theoretical predictions with experimental findings. It follows that 

they must be established with the necessary reliability and precision. Before intro-

ducing the SI units, it is instructive to review, briefly, the structure and properties 

of atoms, which are the building blocks of our world, and indeed the universe, from 

single- cell living organisms to galaxies. The spectral properties of certain atoms are 

used in defining the time unit, the second, to extremely high precision.

1.2  ATOMS AND ATOMIC CLOCKS

Atoms are made up of a central nucleus, which is positively charged, surrounded by 

negatively charged orbiting electrons. Most of the mass of an atom is located in the 

nucleus. In a neutral atom, the number of electrons is equal to the atomic number 

Z  of protons in the nucleus. The number of uncharged neutrons N  in the nucleus 

of an atom with a particular Z  can vary over a small range, giving rise to what are 

termed isotopes. The atomic mass number A is defined as A N Z= + , which is the 

number of nucleons (protons plus neutrons) in the nucleus. Since the proton and 

neutron masses are almost the same, and neglecting the very small electron mass 
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contribution, it follows that A is, to a good approximation, equal to the mass of an 

atom in nucleon mass units. Atoms are identified using an abbreviation of their chem-

ical name together with the mass number A as a superscript. For example, helium 

atoms with Z = 2 and N = 2 are identified as 4He.

The lightest atom, hydrogen, is designated as 1H since Z  and A are both equal to 

unity, with the atom consisting of a proton and an orbiting electron. It is interesting to 

note that hydrogen constitutes roughly 92% of the atoms in the universe. There are two 

isotopes of hydrogen called deuterium 2H (Z = 1 and A = 2) and tritium 3H (Z = 1 and 

A = 3). Tritium is unstable and undergoes radioactive decay into a helium isotope 3He 

(Z = 2 and A = 3). The next lightest atom is 4He (Z = 2 and A = 4) with two electrons 

in a neutral atom. Helium makes up close to 8% of the atoms in the universe. In terms 

of the mass- fraction of atoms, hydrogen contributes 74% while helium makes up 24% 

and heavy elements the remaining 2%. The most massive naturally occurring atom 

is the uranium isotope 238U (Z = 92 and N = 146), which is unstable and undergoes 

radioactive decay with a lifetime comparable to the age of the Earth (~4.5 billion 

years). The other main uranium isotopes 235U and 234U also undergo successive radio-

active decay to lighter elements, as do the more massive elements, which have been 

produced in experiments using charged particle accelerators. The periodic table of the 

elements is given in Appendix 2.

It is of interest to note that in recent decades compelling astronomical evidence 

for the existence of what is termed dark matter has been obtained. Dark matter has 

not been observed directly and its existence is inferred through gravitational effects 

on other observable astronomical objects. In addition, the rate of expansion of the 

universe that astrophysicists have detected suggests that it is necessary to introduce 

a further mysterious entity called dark energy, which is of dominant importance in 

determining the effective mass of the universe. Considerable research effort is being 

devoted to establishing the nature and properties of these intriguing and important 

constituents of the universe.

Atomic spectroscopy has shown that atoms can absorb or emit electromagnetic 

radiation at particular wavelengths with corresponding discrete frequencies, ran-

ging from the ultraviolet through the visible spectrum to the infrared  

and beyond. The sharp spectral features that are observed correspond to discrete  

changes in the electronic states of the particular atoms whose spectra are being  

examined. The development of quantum mechanics in the early part of the twen-

tieth century provided the theoretical basis for a deep understanding of atomic  

scale phenomena including atomic spectra. Since the frequency of electromag-

netic radiation can be measured with great precision, it became clear to scientists  

that atomic transitions could be used in a clock mechanism similar in concept to  

the use of the frequency of oscillations of a pendulum in a mechanical clock. The  

current time standard is based on the frequency of a particular transition between  

close- lying electronic states that occurs in the microwave range for caesium- 133  

(133Cs) atoms in their ground state. In Cs clocks, microwave radiation from a high  

precision source is matched to the frequency of the atomic transition which is  

9,192,631,770 oscillations per second, or hertz (Hz), the frequency unit named in  

honour of Heinrich Hertz. The time unit of 1 s is then defined as the time taken  
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for 9,192,631,770 oscillations. Several high- accuracy caesium clocks have been  

constructed and are located in countries around the world.

Caesium clocks have evolved over the decades since they were first developed and 

only the most recently developed and most accurate version will be described here. 

A sketch of the caesium fountain clock is given in Figure 1.1.

Beams from six orthogonally aligned lasers form a trap for a cluster of caesium 

atoms, which is suspended at low temperature in a vacuum chamber. By sequen-

tially turning off the laser beams, the caesium cluster is lobbed upwards through a 

microwave cavity where atomic transitions are induced by microwave radiation. After 

reaching a maximum height, the cluster falls back down through the cavity. Optical 

spectroscopy involving another laser and a fluorescence detector is used to determine 

the number of Cs atoms that have undergone microwave- induced transitions while 

passing through the cavity. The process is repeated regularly and, using feedback, the 

microwave clock frequency is kept matched to the Cs transition frequency with high 

accuracy. The instrument is complex and this brief outline of how it operates does not 

do it justice. Readers are encouraged to visit the U.S. National Institute for Standards 

and Technology (NIST) website for further details.

These caesium clocks are accurate to 1 s in 100 million years. Secondary standard 

caesium clocks are commercially available. International standard or atomic time is 

based on input from clocks of this kind around the world. Other atomic clocks, which 

involve 87Rb transitions, are also used for precision timekeeping and have the advan-

tage of being fairly compact. Developments of atomic clocks that operate at optical 

frequencies, using strontium ions for example, provide orders of magnitude higher 

precision than the caesium clock.

Atomic clocks in Earth orbiting satellites provide the basis for global positioning 

system (GPS) technology. Twenty- four satellites, each equipped with four atomic 

FIGURE 1.1 Schematic representation of the heart of the caesium fountain atomic clock. Six 

orthogonally aligned laser beams form a trap for a caesium atom cluster. By manipulating the 

laser beams, the cluster is lobbed upwards through a microwave cavity operating at a selected 

frequency, The cluster then falls back down through the cavity and is optically examined using 

a laser beam and a fluorescence detector (not shown) to determine how many of the atoms 

have undergone microwave- induced transitions. The process is repeated regularly to lock the 

frequency of the applied microwave clock radiation to that of the caesium atom microwave 

absorption frequency.
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clocks, circle the Earth twice per day in precise orbits that can be adjusted with 

rocket motors. GPS receivers for travel guidance purposes continuously pick up radio 

signals from the four satellites that are in view from the point of interest on the Earth’s 

surface. Precise time and position information permit the receiver to calculate its 

location coordinates to the required accuracy.

1.3  THE SPEED OF LIGHT AND THE UNIT OF LENGTH

The Danish astronomer Ole Rømer’s observation and study of the eclipses of the 

moons of Jupiter in 1676 showed that the speed of light is finite and measurable. 

Over the years since Rømer’s discovery, many increasingly accurate measurements 

of light’s speed have been made using various different experimental approaches. 

These include time- of- flight experiments, which determine the time taken for a light 

signal to travel a precisely known distance from a source to a mirror and back, as 

well as cavity resonators and laser interferometry. From the predictions of classical 

electromagnetism, derived by James Clerk Maxwell in 1865, together with Albert 

Einstein’s theory of special relativity, published in 1905, it became clear that the 

speed of light in vacuum, which is denoted by denoted by c, is a fundamental phys-

ical constant, which plays a special role in science. By the mid- 1970s, the value 

c .= ×2 99792458 108 m/s for light’s speed in vacuum was internationally accepted. 

In 1983, an international conference resolved that c should be fixed at the value given 

above. The meter is then defined using c = ×2 99792458 108. m/s and the caesium 

clock- based definition of the second. The meter is thus defined as the distance light 

travels in vacuum in 1 299792458 3 335640952 10 9/ s s = × −. .

Exercise 1.1: Calculate the time it takes for light to travel 1.0 km. As an 

approximation take c = 3 × 108 m/s.

The time t for light to travel d = 1 0.  km is given by

 t d c= = ×( ) ×( ) =/ /  microseconds1 10 3 10 3 333 8 . . 

An advantage of specifying the meter in terms of the defined value for the speed of 

light is that it will not require any change as the precision of measurements increases. 

In standard laboratories, length calibration is, for convenience, not carried out by 

measuring the distance light travels in the designated time. It is simpler to use precise 

laser interferometer techniques involving a stabilized helium– neon (He– Ne) laser 

beam, whose properties are determined by transitions between the atomic states of 

Ne atoms in the gas mixture. The laser light beam is in the red region of the visible 

spectrum and its wavelength λ can be determined with high precision. The value 

λ = 632 99121258.  nm has been internationally accepted. Thus, the wavelength of the 

He– Ne laser beam provides a high precision reference standard for length measure-

ment. Figure 1.2 shows a blow- up of a small portion of a laser beam.
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Exercise 1.2: Determine the number of wavelengths n of a stabilized He– Ne 

laser beam per meter in vacuum. Use λ = 632.99121258 nm.

The number of wavelengths per meter is n = 1/632.99121258 × 10–9 = 

157980076.20, with an uncertainty of parts in 1011.

1.4  THE UNIT OF MASS

The kilogram (kg) is no longer defined as the mass of a platinum– iridium cylinder 

kept in a vault in the Paris Archives. By international agreement, a new definition of 

the kg came into effect in May 2019 based on the extremely accurate value obtained 

for Planck’s constant h, which has units of kg m2 s− 1. Planck’s constant is of funda-

mental importance in quantum mechanics. The change in the definition of the kg 

followed years of effort, which steadily improved the precision of measurements 

made of h using a special instrument called the Kibble balance. Finally, in 2018, 

the Commission on Weights and Measures adopted the new definition. A schematic 

representation of the components at the heart of a modern Kibble balance is given in 

Figure 1.3.

Just as the speed of light c has an assigned value, Planck’s constant has been  

given a value based on extremely precise measurements. The value adopted is  

h = × −6 62607015 10 34. kg m /s2 . Using this fixed value for h, the Kibble balance  

has become an instrument for determining the mass of an object. An advantage of  

defining the unit of mass in terms of Planck’s constant is that the unit is now linked  

to the fundamental definitions of time and length. Note that while the Kibble balance  

is a complex instrument, the basic physics used in determining the mass of an object  

is not complicated. Firstly, in what is called the weighing mode, an electromagnetic  

force produced by an applied magnetic field acts on a current- carrying coil, with the  

current set to balance the gravitational force on the test mass. Secondly, in the velocity 

mode, the coil is moved in the applied magnetic field at a carefully controlled  

FIGURE 1.2 The upper part of the figure depicts a laser beam from a He– Ne laser, while 

the lower part shows a highly expanded portion of the beam covering several wavelengths λ.
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speed, resulting in an induced voltage in the coil. By combining the results of the two  

experiments, the mass is obtained. Planck’s constant comes into the experimental ana-

lysis through the extremely high precision electrical measurements made in the two  

modes. The measurements are carried out at low temperatures using quantum effects  

known as the Josephson effect for voltage (velocity mode) and the quantum Hall  

effect for current (weighing mode). In early experiments, the goal was to measure h  

with reproducible high precision. After fixing the value of h, the measurements now  

allow test masses to be determined with high precision.

While there are many other SI units that are important in science, the units of mass, 

length, and time discussed above are of primary importance in developing classical 

mechanics. Related units including the unit of force, the newton, are introduced later 

in the book when needed.

1.5  MASS, WEIGHT, AND NEWTON’S LAW OF UNIVERSAL 
GRAVITATION

It is important to distinguish between the concepts of mass and weight. Weight is a 

measure of the force exerted by the Earth’s gravitational attraction on a body, while 

mass is a measure of the nature and composition of a body, which at the micro-

scopic scale is made up of atoms. While the mass of an object can be regarded as 

fixed, provided Einstein’s velocity dependent relativistic effects are small and can 

be ignored, the weight of an object depends on its location in relation to the Earth’s 

surface. In the Kibble balance measurements, which are described in Section 1.4, it 

is the weight of a test object that is balanced by an electromagnetic force. Allowance 

must therefore be made for any variations in the gravitational force, and this is done 

by carrying out separate calibration measurements.

FIGURE 1.3 Schematic depiction of the main components of a modern Kibble balance. The 

downward gravitational force on the mass shown is balanced by an upward electromagnetic 

force exerted by the stable magnetic field on the current- carrying coil. The balance operates in 

high vacuum with high- precision electrical measurements made using special quantum effects 

that involve Planck’s constant.
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In dealing with gravitational effects, it is necessary to introduce the unit of force, 

the newton, denoted N, which in terms of mass, length and time is given by 1 N =  1 kg 

m s− 2. The force concept, and Newton’s laws of motion, are discussed in detail in later 

chapters. For the present purposes, it is convenient to simply regard a force as a push 

or a pull on an object as experienced in everyday life. In particular, the gravitational 

force F , which acts between two masses m and M separated by a distance r is given 

by Newton’s famous (1686) law of universal gravitation as

 F
G m M

r
=

  
2

 (1.1)

The constant G, which is called the gravitational constant, has been determined by 

experiment as G = × −6 67430 10 11.  N m /kg2 2 . Note that the attractive force between 

two masses falls off as the inverse square of their separation r. Equation (1.1), 

combined with Newton’s laws of motion, can explain the motion of objects near 

the Earth’s surface, including the orbits of artificial satellites and the Moon around 

the Earth, as well as the orbits of the planets around the Sun. Einstein’s 1917 theory 

of general relativity and subsequent developments, including the recent detection of 

gravitational waves, have shown that Newton’s gravitational law is not a general law 

applicable to all gravitational effects. Furthermore, the law offers no explanation of 

how its implied action at a distance operates. However, the law provides an excellent 

description of the motion of objects under gravitational forces for many situations as 

discussed later in this book.

Exercise 1.3: The mean radius of the Earth is R
E
 = 6.37 × 106 m. Find the 

gravitational force on a person of mass m = 75 kg standing on the Earth’s 

surface. Assume that the centre of mass of the Earth is effectively concentrated 

at its centre. (This is a good assumption for a symmetric spherical body.) Take 

the mass of the Earth as M
E
 = 5.97 × 1024 kg.

Newton’s gravitational law, given in Equation (1.1), leads to

 F = × × × ×( ) ×( ) =−6 67 10 5 97 10 75 6 37 10 73611 24 6
2

. . ./  N. 

Scales for measuring weight are calibrated using a known mass so that they give a 

reading of the mass of a body in kilograms (or pounds) and not the gravitational force 

in newtons. For objects at the Earth’s surface, Newton’s law of universal gravitation 

can be rewritten as

 F m g=   (1.2)

with the constant g defined as g G M R=
E E

/ 2. Using the values for the Earth’s mean 

radius R
E
 and mass M

E
 given in Exercise 1.3 leads to g = 9 820. N/kg  or, equiva-

lently, m/ s2. Note that the unit m/ s2 corresponds to an acceleration as introduced in 

Chapter 2. Thus, a mass in free fall near the Earth’s surface experiences an acceleration 
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g. . Variations in R
E
 occur from place to place on the Earth’s surface because the Earth 

is not exactly spherical, but spheroidal with a slightly larger radius equatorially than 

that along the polar axis. In addition, variations in altitude and the density of rock 

substrata near the surface produce variations in g of up to 0.7% around the globe. 

High- precision weight calibration should therefore be carried out at the site where 

accurate mass measurements are to be made using sensitive instruments. For simple 

calculations of the type considered on this book, it is generally sufficient to approxi-

mate g as 9.8 N/ kg.

1.6  SIZE AND MASS IN THE PHYSICAL WORLD

The ranges of sizes and masses found in nature spans many orders of magnitude 

as illustrated in Table 1.1 below. Representative values of the height and mass of a 

person, in SI units, are taken as height 1.7 m and mass 70 kg.

Because of the enormous ranges of sizes and masses of objects in the universe, it is 

necessary to introduce multiples of the units and subunits specified by the following 

prefixes: kilo, 103; milli, 10– 3; micro, 10– 6; nano, 10– 9; and pico, 10– 12. Nuclear and 

atomic size measurements use the femtometer, fm =  10– 15 m, and the angstrom, Å =  10− 10 m, respectively. Astronomical distances are often measured in light years, 

ly, with 1.0 ly =  9.46 × 1015 m, given by the distance light travels in a year.

1.7  MACROSCOPIC FORCES

There are four fundamental forces in nature called gravitational, electromagnetic,  

weak, and strong forces. The weak and strong forces are nuclear forces and will  

not be considered in this book, which focuses on macroscopic phenomena. Having  

already introduced the gravitational force for the interaction of objects with mass, it is  

appropriate to consider interactions involving electrically charged objects. The SI unit  

of charge is the coulomb denoted by C. The charge on an electron is – 1.602176634 ×  

10− 19 C, while the proton carries a positive charge + 1.602176634 × 10− 19 C, which is  

equal in magnitude but opposite in sign to that of the electron. Macroscopic objects  

can carry charge, which corresponds to that of many electrons. In dry atmospheric  

conditions, frictional effects can lead to a build- up of charge on a person’s body, and  

a slight shock will be felt when metal objects are touched.

TABLE 1.1
Ranges of Sizes and Masses Found in Nature

Object Diameter (m) Mass (kg)

Proton 1.7 × 10−15 1.67 × 10− 27

1H atom 1.06 × 10− 10 1.67 × 10− 27

Earth 1.27 × 107 5.97 × 1024

Sun 1.39 × 109 1.99 × 1030

Milky Way Galaxy 9 × 1020 ~1042
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For charged particles such as protons and electrons, and for larger charged objects, 

the electrostatic interaction is governed by Coulomb’s law in which the force between 

two charges q
1
 and q

2
 separated by a distance r is given by

 F k
q q

r
=







1 2

2

 
 (1.3)

Coulomb’s law is similar in form to Newton’s law of universal gravitation through the 

inverse square law dependence of the force on the charge separation. In free space, 

the constant k, which has units N m2 C- 2, is written as k = 1 4
0

/ πε . This form for k is 

chosen for convenience in developing relationships in electromagnetism. The con-

stant ε
0

128 85418782 10= × ( )−.  C / N m2 2  is called the permittivity of free space. The 

value of k in SI units is approximately k = ×8 99 109.  N m /C2 2. Unlike the gravita-

tional force, which is always attractive, the electrostatic force can be either attractive 

or repulsive. Like charges repel while unlike charges attract. Electrons and protons 

have equal and opposite charges, which give rise to attractive forces between these 

particles in atoms.

For practical reasons, the coulomb is not defined using Coulomb’s law. From a 

measurement point of view, it is convenient to define the unit of electric current, the 

ampere, which is the rate at which charge passes through an electrical conductor with 

1 A =  1 C/ s. The ampere is defined in terms of the magnetic force per unit length 

between two current- carrying conductors separated by a chosen distance. The small 

discrete charges on the electron and proton, which are given above, are regarded as 

nature’s units.

Exercise 1.4: Determine the attractive force F between an electron and a 

proton at a separation of 0.05 nm (0.5 Å) corresponding to the radius of the 
1H atom. Compare the Coulomb force with the gravitational force, taking the 

electron mass to be m
e
 = 9.1 × 10–31 kg and the proton mass to be m

p
 = 1.67 × 

10–27 kg
.

For the electrostatic force, Coulomb’s law gives

 F
C

/ N= × × ×( ) ×( ) = ×− − −8 99 10 1 60 10 0 5 10 9 2 109 19
2

10
2

8. . . . . 

The gravitational force, from Newton’s law, is

 F
G

/= × × × × × ×( ) = ×− − − − −6 67 10 9 1 10 1 67 10 0 5 10 4 05 1011 31 27 10
2

47. . . . .   N. 

The gravitational force is clearly very much weaker, by many orders of magni-

tude, than the Coulomb force in the hydrogen atom. Gravitational forces there-

fore play no detectable role in the interactions of particles at the atomic scale.
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1.8  FORCES IN THE MACROSCOPIC WORLD

Of the four fundamental forces in nature, it is only the weakest, the gravitational 

force, which is important on the macroscopic scale for objects with mass that are 

not in physical contact. The nuclear forces are of extremely short range and can be 

neglected when dealing with assemblies of atoms. Because atoms are electrically 

neutral, unless they are ionized, long- range Coulomb forces acting on assemblies of 

atoms are, in general, negligibly weak. Only the gravitational force associated with 

the Earth’s gravitational field produces observable effects that are familiar to all of us.

For objects that are in contact, gravitation will, in many cases, continue to be 

important but forces at the points of contact come into play. This raises the issue of 

how the contact forces in the macroscopic world are generated. As an illustrative 

example, consider two macroscopic objects in close proximity, such as a metal object 

on a tabletop situated near the Earth’s surface. The force of gravity acts on the metal 

object, causing it to press onto the table. The atoms in the metal try to squeeze into the 

space occupied by atoms in the table surface, which resist the intrusion. The result is 

a repulsive interaction between the tabletop and the metal object. Similarly, the table 

legs stand on the floor and again there is a repulsive interaction between the floor and 

the table legs. Electromagnetic forces play a role in the repulsive interaction but not 

in a simple way that is amenable to detailed calculation.

As a second illustration of the action of contact forces, consider a mass suspended 

on a wire attached to a beam near the Earth’s surface. The mass experiences a down-

ward gravitational pull, but the atoms in the wire want to stay together and resist 

being pulled apart. An upward force in the wire, which is extended by a small but 

measurable amount, balances the downward force of gravity. Many other examples, 

including human muscle contraction, can be found in which macroscopic forces are 

produced by molecular- level interactions.

Later in the book, a clear distinction will be drawn between what are called con-

servative forces and nonconservative forces. Examples of conservative forces are the 

gravitational and the Coulomb forces, both of which are associated with fields which 

permeate space and which can be described by field equations. Nonconservative 

forces, which include friction and air resistance to projectile motion, are not governed 

by field equations.

1.9  DIMENSIONAL ANALYSIS

This chapter gives the internationally accepted definitions of the three fundamental 

physical measurement units which are length [L] , time [T], and mass [M]. Other 

important physical units, called derived units, are expressed in terms of the funda-

mental units. Examples are the force unit the newton [M L T– 2] and the energy unit 

the joule [M L2 T– 2]. 

Dimensional analysis provides a simple and useful way of determining the form of 

relationships that describe physical phenomena. The approach requires that two phys-

ical quantities that are related to each other by an equation have the same dimensions. 

This balance is achieved in general by introducing symbols as exponents that are 
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determined by inspection. A straightforward application to a simple pendulum 

illustrates the approach.

Exercise 1.5: A simple pendulum consists of a string of length l attached 

to a support, with a bob of mass m attached to the lower end. The device is 

situated in the Earth’s gravitational field, which gives rise to a downward 

weight force m g acting on the bob. If the bob is displaced and then released, 

it will execute oscillations with a period t.

In order to obtain an expression for t, it is assumed as a starting point that t is 

related to the three quantities l, g, and m that need to be considered. To simplify 

the problem, it is assumed that the string is massless. Introducing exponents x, 

y, and z, the period is written in the form

 t l g mx y z=  (1.4)

In terms of dimensions, T L L T M2[ ] = [ ] [ ] [ ]−x y z
. Grouping units on the right 

side of the equation leads to the following values for the three exponents x = ½,    

y = −½, and z = 0. Inserting these exponent values in Equation (1.4) gives the 

following expression for the period:

 t
l

g
=  (1.5)

Note that the period is determined by the length of the string l and by the gravi-

tational acceleration g but does not depend on the mass of the bob.

While dimensional analysis is useful for providing guidance in describing a var-

iety of physical phenomena, it is necessary to carry out detailed calculations using the 

laws of physics in order to gain a deep understanding of the subject. The following 

chapters provide an introduction to the Newtonian mechanics of particles, rigid 

bodies and fluids, followed by vibrations and waves, and end with a discussion of 

thermal physics.
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Motion in Space 

and Time

2.1  INTRODUCTION

In describing the motion of objects, it is necessary to introduce the basic concepts 

of displacement, velocity, and acceleration. Any change in these motion variables 

as a function of time is of particular interest. It is useful to introduce a system 

of spatial coordinates, called a frame of reference, in which both distances and 

directions can be shown. An obvious choice in three- dimensional space is a set 

of Cartesian coordinates with axes x, y, and z chosen along orthogonal direction 

as shown in Figure 2.1. For certain purposes, and specifically in considering rota-

tional motion, it is preferable to choose spherical polar coordinates, but these will 

not be used in this chapter.

The displacement, velocity, and acceleration involve both magnitude and direction 

and are called vector quantities. In dealing with vectors, and specifically with vector 

addition and subtraction, it is necessary to introduce the elements of vector algebra, 

and this is done in Section 2.5. Vector multiplication is dealt with in later chapters.

2

FIGURE 2.1 Representation of Cartesian axes x, y, and z in 3D.

 

 

 

 

http://dx.doi.org/10.1201/9781003485537-2


14 Physics: An Introduction to Physical Dynamics

14

After introducing the variables associated with the motion of objects in space and 

time, it is instructive to consider motion with constant acceleration. In this special 

case, a set of equations, called the kinematic equations, are found to apply. These 

equations establish simple and extremely useful relationships between displacement, 

velocity, and acceleration. Importantly, the kinematic equations hold when the motion 

of an object is caused by a constant applied force, which produces constant acceler-

ation. The constant force– constant acceleration relationship follows from Newton’s 

laws of motion, which are introduced in Chapter 3. Provided velocities are sufficiently 

low compared to that of light, so that relativistic effects are unimportant, the kinematic 

equations satisfactorily describe the observed motion of objects near large astronom-

ical objects, as found in the gravitational field near the Earth’s surface. This finding 

follows from Newton’s law of universal gravitation, given in Equation (1.1), together 

with Newton’s second law of motion. In this chapter, the constant acceleration of a 

falling object in the Earth’s gravitational field is taken as an experimental observation.

2.2  MOTION IN ONE DIMENSION

In introducing the displacement, velocity, and acceleration of a moving object, it  

is convenient, firstly, to consider one- dimensional (1D) motion. Generalization of  

these results to 2D and 3D follows in a straightforward way using vector notation.  

Figure 2.2 depicts the position x, velocity v, and acceleration a as a function of time  

FIGURE 2.2 Graphical representation of the motion of an object with constant acceleration 

in 1D showing the displacement x in (a), the velocity v  in (b), and the acceleration a in (c). 

The straight line in (a) is drawn as a tangent to the curve and the slope gives the instantaneous 

speed at the selected time.
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t for an object moving with constant acceleration in 1D. The constant acceleration  

case used in Figure 2.2 facilitates a discussion of the kinematic equations later in this  

chapter.

Figure 2.2(a), which plots x versus t, shows movement from the initial position x
1
 

at t t=
1
 to final position x

2
 at t t=

2
. The displacement is defined as

 ∆ = −x x x
2 1

 (2.1)

in units of length (e.g. m or km). It is important to distinguish between displacement 

and distance travelled. If, for example, a runner were to travel to some distant point 

and then return to her starting point, then her displacement ∆x would be zero while 

the distance traveled would clearly not be zero.

The average velocity of the moving object is given by the rate of change of 

displacement with time. From Figure 2.2(a) it follows that if in a time interval 

∆ = −t t t
2 1

 the displacement is ∆ = −x x x
2 1

, then the ratio ∆ ∆x t/  gives the average 

velocity v
av

. It is often of interest to know the instantaneous velocity, for example, 

when travelling on a road where speed restrictions apply. Over short intervals ∆t ,  

centred at various times t as shown in Figure 2.2(a), it can be seen that the dis-

placement is a function of time written as ∆ ( )x t . The instantaneous velocity at 

time t is thus defined as

 v t
x t

t

x t

tt
( ) =

( )
∆

=
( )

∆ →
lim

0

∆ d

d
 (2.2)

Equation (2.2) shows that v t( ) is simply the first derivative of x t( ) with respect to t.   

Graphically v t( ) is the slope of the tangent to the displacement curve at a chosen time 

t as illustrated in Figure 2.2(a).

The acceleration of a moving object is defined as the rate of change of velocity 

with time. Just as for velocity, it is necessary to distinguish between the average 

acceleration a
av

 over a finite time interval ∆t  and the instantaneous acceleration a t( ) 
at time t. The instantaneous acceleration is defined as

 a t
v t

t

v t

tt
( ) =

∆ ( )
∆

=
( )

∆ →
lim

0

d

d
 (2.3)

From Equation (2.3), the acceleration a t( ) is the first derivative of v t( ) with respect 

to t. Graphically, a t( ) is given by the slope of the tangent to the velocity- time curve 

at a selected time t. Note that from the definitions of v t( ) in Equation (2.2) and a t( ) 
in Equation (2.3), it follows that the acceleration is given by the second derivative of 

x t( ) with respect to t:

 a t
x t

t
( ) =

( )d

d

2

2
 (2.4)
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The plot of v(t) versus t in Figure 2.2(b) reveals a straight line with a constant slope, 

which means that the acceleration is constant as shown in Figure 2.2(c). This par-

ticular behaviour is due to the form of the function chosen for the x versus t plot in 

Figure 2.2(a), whose function is given by x(t) =  x
0
 +  c t2, with x

0
 =  0 for convenience, 

and c a constant of motion. Differentiation of x(t) with respect to t gives v(t) =  2c t, 

corresponding to a linear behaviour of v with t, and further differentiation leads to the 

time- independent constant value for the acceleration given by a(t) =  2c.

In order to generalize the discussion of the motion of objects from 1D to higher 

dimensions, it is advantageous to introduce vector notation. Displacements in 3D, for 

example, can have components along the x- , y- , and z- axes in a Cartesian frame of 

reference. Vector notation and the rules for vector addition and the formation of scalar 

products are given in Section 2.3. Vector quantities are different from scalar quantities 

because they are specified by their magnitude and direction, whereas scalars, such as 

the mass of an object, involve just magnitude.

2.3  VECTORS

2.3.1  VECTOR REPRESENTATION

Vectors, such as the displacement of an object, can be represented in a chosen reference 

frame by an arrow of length proportional to the magnitude of the quantity and pointing 

in a direction that is related to the physical situation under consideration. Figure 2.3 

gives a representation of a displacement of magnitude r at an angle θ with respect to 

the x- axis in a 2D Cartesian frame. Symbols for vectors are distinguished from those 

for scalars either by using bold type (e.g. r) or by an arrow above the symbol (e.g. 

r ).

2.3.2 UNIT VECTORS

In order to specify the magnitude and direction of a vector in 2D or 3D, it is convenient 

to make use of unit vectors. In a 3D Cartesian frame, the unit vectors, which have 

FIGURE 2.3 Graphical representation of a displacement vector r  at an angle θ to the x- axis 

with magnitude r x y= +2 2  and tan /θ = y x.
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unit length, are directed along the x- , y- , and z- axes, with these vectors represented 

by the symbols i along x, j along y, and k along z, as given in Figure 2.4. Using unit 

vector notation, a vector r  in 3D is written as r = + +r r r
x y z
   i j k  where r

x
, r

y
, and r

z
 

are the magnitudes of the vector components along the x- , y- , and z- axes. Making use 

of Pythagoras’ theorem, the magnitude of r  is given by r r r r
x y z

= + +2 2 2 .

Exercise 2.1: In a 2D Cartesian frame of reference, an object is displaced 

by 8 units of length at an angle of 30° with respect to the x- axis. Express the 

displacement r in terms of unit vectors.

The Cartesian components of vector r  are given by r
x

= ° =8 30 6 93cos .  units 
and r

y
= ° =8 30 4 0sin .  units. Thus, in terms of unit vectors the displace-

ment is r i j= +6 93 4 0. .  .

2.3.3  VECTOR ADDITION

In a composite process, involving, for example, two distinct displacements, 

represented by vector a followed by vector b, it is necessary to use vector add-

ition to determine the resultant displacement c . The sum of the vectors is written as 

a + b = c . Vector c  can be obtained either by using a geometrical representation of 

the two vectors a and b as directed arrows in a coordinate system, or, alternatively, 

algebraically with the aid of unit vectors. The unit vector method is straightforward 

and is considered first and designated method 1, while the geometrical approach is 

method 2.

FIGURE 2.4 Unit vectors represented by i, j, and k in a 3D Cartesian frame of reference.

 

 

 

 



18 Physics: An Introduction to Physical Dynamics

18

In method 1, the two vectors a and b are written in terms of unit vectors 

as a i j k= + +a a a
x y z
    and b i j k= + +b b b

x y z
   . The vector sum becomes 

c i j k= +( ) + +( ) + +( )a b a b a b
x x y y z z

 with the Cartesian components of the 

vectors a and b along x, y, and z being added separately, and each sum multiplied 

by the corresponding unit vector. Finally, the resultant c  follows by summing these 

components. Vector subtraction is carried out in a similar way with a change of 

sign from plus to minus in combining the components of a and b. The resultant is 

given by c i j k= −( ) + −( ) + −( )a b a b a b
x x y y z z

.

Method 2, the geometrical method for vector addition, is illustrated in Figure 2.5(a) 

and 2.5(b), in which the arrow representation is used for vectors a and b. There are 

two equivalent geometrical addition procedures that can be followed. The first pro-

cedure involves the triangle rule and the second the parallelogram rule. The use of 

the triangle rule is depicted in Figure 2.5 (a) in which one of the vectors, vector b, 

is displaced parallel to itself until its tail coincides with the tip of vector a. Then the 

resultant vector c  is given by the arrow drawn from the tail of a to the tip of b. The 

magnitude and direction of c  can be obtained from measurements made on a scale 

drawing of the vectors or using trigonometry.

When adding two vectors the triangle rule is a natural choice if, for example, the  

vectors a and b represent successive displacements, but it is also applicable when  

summing vectors such as velocities or accelerations. The parallelogram rule pro-

cedure for vector addition is depicted in Figure 2.5(b) and involves displacing one  

of the vectors parallel to itself until the two tails coincide. The parallelogram is then  

completed by drawing sides parallel to a and b from the two arrow tips as shown.  

FIGURE 2.5 Addition of the vectors a and b using (a) the triangle rule and (b) the 

parallelogram rule.
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The resultant vector c  is given by the diagonal of the parallelogram. Inspection of  

Figure 2.5(a) and 2.5(b) shows that the triangle and parallelogram vector addition  

procedures are equivalent. Vector subtraction, given by a b c− = , is carried out by  

reversing the direction of arrow b and then applying the triangle or parallelogram rule  

to obtain c .

Exercise 2.2: An object undergoes two successive displacements in the xy- 

plane, firstly through a distance of 5.0 m in a direction making an angle of 45° 

with the x- axis, and secondly through 8.0 m at an angle of 75° with respect 

to the x- axis. Find the amplitude and direction of the resultant displacement 

of the object.

Method 1 (unit vectors): The final displacement r is given in terms of unit vectors   

 i and j by r i j i j= ° + °( ) + ° + °( ) = +5 45 8 75 5 45 8 75 5 61 11 26cos cos sin sin . .   .   

The distance travelled is obtained using Pythagoras’ theorem as r = 12 6.  m, and 

the direction, specified by the angle θ which the resultant displacement makes 

with the x- axis, is given by θ = ( ) = °arctan . . .11 26 5 61 63 5/ .

Method 2 (triangle rule): The two displacement vectors, designated a and b,   

are graphically represented in the 2D Cartesian frame in Figure 2.6 with 

the tail of b coinciding with the tip of a. The resultant vector r  is obtained 

using trigonometry. The cosine rule gives the square of the amplitude as 

r a b a b2 2 2 2= + −  cosφ with φ the angle subtended by a  and b. Simple geom-

etry gives φ = °150 . Substituting numbers in the cosine rule expression leads to 

r2 25 64 80 150 12 6= + − ° =cos .  m. The displacement direction θ ψ= ° +45  is 

FIGURE 2.6 Addition of vectors a and b using the triangle rule.
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obtained by determining the angle ψ in Figure 2.6 with the aid of the sine rule. 

This gives ψ = ×





=° °arcsin
.

sin .
8

12 6
150 18 5 , and hence θ = °63 5. .

2.3.4  VECTOR MULTIPLICATION: THE SCALAR PRODUCT

Having considered vector addition and subtraction, it is logical, and useful to intro-

duce vector multiplication. There are two types of products that are used in physics, 

called the scalar product and the vector product, respectively. The scalar product is 

introduced in this subsection, but the vector product is deferred until later in the book 

when dealing with torques and rigid body motion.

The scalar product (or dot product) of two vectors a and b is defined as 

a b⋅ = a b cosθ where θ is the angle that vector a makes with vector b . Note that the 

product yields a scalar outcome. The scalar product involves multiplying the amp-

litude of b by the projected amplitude of vector a on b. The scalar product is a max-

imum for θ = 0 and zero for θ π= /2. Scalar products of the unit vectors are readily 

obtained as i i j j k k⋅ = ⋅ = ⋅ = 1 while i j j k i k⋅ = ⋅ = ⋅ = 0 . As an important applica-

tion, scalar products are used in obtaining the work done by forces in moving their 

point of application through some distance. Details are given in Chapter 4.

2.4  THE KINEMATIC EQUATIONS

In considering the motion of an object on which a force acts, the important spe-

cial case of motion with constant acceleration arises when the force acting on the 

object is constant. This result follows from Newton’s second law of motion, which 

is introduced in Chapter 3. A classic example of motion with constant acceleration is 

provided by a mass falling in the Earth’s gravitational field. Using Newton’s law of 

universal gravitation, it is shown in Chapter 1 that around the globe the acceleration 

of a falling object near the Earth’s surface is roughly the same and, as an approxi-

mation, is given by g = 9 8.  m/s2. A simple set of equations, known as the kinematic 

equations, applies to motion with constant acceleration.

From Equation (2.3), the instantaneous acceleration of an object is given by the 

rate of change of velocity as a
v

t
=

d

d
. For constant a, it follows that v must be a linear 

function of time t. The instantaneous velocity given in Equation (2.2) is v
x

dt
=

d
.   

Integration of the linear equations for a and v leads directly to two of the kinematic 

equations, as shown below. To complete the set, the third equation is obtained by 

combining the first two.

Integration of Equation (2.3) expressed as ∫ = ∫dv a dt , gives v a t C= +  where C  

is a constant of integration. Introducing the initial velocity condition v v=
0
 at t = 0 

leads to the following expression for the velocity as a function of time,

 v v a t= +
0

  (2.5)
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This is the first kinematic equation. As required, the velocity increases linearly 

with time.

Integration of Equation (2.2), using Equation (2.5) to substitute for v, leads to

 x v t v a t t= ∫ = ∫ +( ) d  d
0

, which yields x v t a t K= + +
0

2
1

2
   with K  a constant of 

integration. Taking x x=
0
 at t = 0 gives the displacement as x x v t a t= + +

0 0
2

1

2
  .   

Introducing the net displacement as ∆ = −x x x
0
 leads to the second kinematic 

equation,

 ∆ = +x v t a t
0

2
1

2
   (2.6)

The plots in Figures 2.2(a), (b), and (c) correspond to the constant acceleration 

case showing respectively the displacement, velocity, and acceleration behaviour 

with time.

It is useful to combine Equations (2.5) and (2.6) in order to eliminate the time t.    

This is done by forming the square of both sides of Equation (2.5) and then sub-

stituting for terms in t and t2  using Equation (2.6). This algebraic procedure gives 

v v a v t a t v a v t a t2
0
2

0
2 2

0
2

0
22 2

1

2
= + + = + +





    , which simplifies to the third kine-

matic equation,

 v v a x2
0
2 2= + ∆  (2.7)

The three kinematic equations given in Equations (2.5), (2.6), and (2.7) are grouped 

together below for convenience:

 v v a t= +
0

  (2.5)

 ∆ = +x v t a t
0

2
1

2
   (2.6)

 v v a x2
0
2 2= + ∆  

(2.7)

If x
0

0= , then the displacement ∆x during the accelerated motion is simply x. In 

the limiting case, a = 0, the equations simplify, and the displacement is ∆ =x v t
0
  as 

expected when the velocity is constant.

In summary, Equation (2.5) is a relationship between velocity and the time elapsed 

since the start of the acceleration process, while Equation (2.7) connects velocity 

and displacement. Equation (2.6) gives the displacement as a function of time and 

provides the basis for determining the x- t trajectory of the accelerated motion. 

Illustrative examples of applications of the kinematic equations are given in the 

following section for both constant 1D and 2D accelerated motion.
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2.5  APPLICATIONS OF THE KINEMATIC EQUATIONS

The constant acceleration kinematic equations (2.5), (2.6), and (2.7) are extremely 

useful in considering the motion of an object subject to a constant force. Even though 

motion may occur in more than one dimension, it is often the case that acceleration 

is associated with one particular direction. For example, for objects moving in the 

Earth’s gravitational field, the downward force of gravity will produce downward 

acceleration. Since displacement, velocity, and acceleration are vector quantities, care 

must be taken with signs in writing down equations that describe the motion. If the 

upward direction is taken as positive, then the gravitational acceleration g is nega-

tive since it is directed downwards. When no horizontal forces act on an object, its 

horizontal component of velocity remains constant. For motion near the Earth’s sur-

face, the acceleration due to gravity is taken as g = 9 8 2.  m/s . The following examples 

provide illustrative applications of the kinematic equations to the motion of objects 

subject to constant acceleration in a fixed direction.

2.5.1  DYNAMICS IN 1D

The application of the kinematic equations to the uniformly accelerated motion of an 

object in 1D is straightforward because the motion is always parallel to the applied 

force. Exercises 2.3 and 2.4 are illustrative examples of this type of accelerated 

motion.

Exercise 2.3: A drag race car starts from rest and has an initial acceleration of 

8.5 m/ s2. Determine (a) the speed of the car after 3 s and (b) the distance travelled 

in this time.

(a) The speed is obtained using Equation (2.5) with v
0

0= . This gives the 

speed after 3 s as v = 25 5.  m/s. To convert the speed to km/ h, use is made 

of the conversion factor 1 m/ s =  (10 -3 × 3600) km/ hr =  3.6 km/ h, which 

leads to v = 91 8.  km/h.

(b) Using Equation (2.6), the distance travelled in 3 s is ∆ = =x a t
1

2
2 

8 5

2
9

.





× = 38.3 m
.

Exercise 2.4(a): A ball is released from rest at a height h = 2 m above the 

floor. How long will it take to reach the floor?
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Exercise 2.4(b): If the ball were thrown upwards with an initial speed of 4 

m/ s from the same initial position, determine how long it would take to reach 

the highest point of its trajectory. What is the maximum height above the floor 

reached by the ball, and how long will it take for the ball to reach the floor? 

Take g = 9.8 m/s2 .

(a) Equation (2.6) with v
0

0=  becomes h g t=
1

2
2 . The time t for the object to 

reach the floor is t
h

g
= =

×
=

2 2 2

9 8
0 64

.
.  s. (The negative time solution 

is unphysical.)

(b) When the ball is thrown upwards, it gradually slows and is instantaneously 

at rest with v = 0 at the highest point of its trajectory. Equation (2.5) for the 

upward motion becomes  0
0

= −v g t . Note that the upward direction is taken 

as positive. The time t to reach the highest point is t
v

g
= = =0 4

9 8
0 408

.
.  s.

The upward distance travelled can be obtained using Equation (2.6) in the 

form ′ = − = × − 





× ( ) =h v t g t
0

2 21

2
4 0 408

9 8

2
0 408 0 816.

.
. .  m. Since the   

initial  launch height is 2 m above the floor, the maximum height reached is    

h h+ = + =′ 2 0 816 2 816. .  m.

The time ′t  to reach the floor from the highest point in the trajectory is 

obtained in a similar way to that used in part (a) by replacing h by h h+ ′.   

This gives t
h

g

h
=

+( )
=

×
=

′2 2 2 816

9 8
0 758

.

.
.  s. The total time for the 

upward and downward motion is t t+ ′ = 1 166.  s.

2.5.2  DYNAMICS IN 2D AND 3D

In analysing projectile motion in 2D or 3D Cartesian reference frames, use is made of 

the kinematic equations by considering separately the dynamical contributions from 

the orthogonal spatial directions. Examples are given below. For simplicity, the dis-

cussion is limited to motion near the Earth’s surface where g is constant. The term 

projectile motion covers a wide variety of situations in which an object is launched 

with initial velocity v at an angle θ with respect to the horizontal. In many cases, the 

Earth’s surface can, as an approximation, be assumed to be flat. Note that the situ-

ations described as 1D in Exercise 2.4, given above, corresponds to projectile motion 

for the special case θ π= /2. The launch mechanism for projectiles can vary widely. 

Examples include a kick applied to a soccer ball and the detonation of a charge in a 

cannon. The launch of rocket ships from Earth is a spectacular example of projectile 

motion. Allowance must, of course, be made for changes in the gravitational force 

with altitude if the trajectory takes the craft far from the Earth’s surface.
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As indicated above, when considering the motion of an object in 2D near the 

Earth’s surface it is convenient to introduce a Cartesian frame of reference with 

vertical axis y and horizontal axis x. The velocity components are correspondingly 

v
y
 and v

x
. The trajectory of the object is obtained by applying the second kinematic 

equation, Equation (2.6), separately to the x and y components of velocity and dis-

placement, making use of the fact that gravity- induced acceleration is limited to the 

y direction. For convenience, the starting point of the motion is taken as the origin 

in the reference frame. The constant velocity (zero acceleration) motion parallel to 

x is described by

 x v t= ( )0
cosθ  (2.8)

where θ is the angle that the initial velocity vector v
0
 makes with x at time t = 0. 

Motion parallel to y is governed by

 y v t g t= ( ) −
0

2
1

2
sinθ    (2.9)

with g the gravitational acceleration. Rearranging Equation (2.8) to give

t
x

v
= ( )0

cosθ
, and then substituting for t in Equation (2.9), leads to the following 

equation for y as a function of x,

 y x g
x

v
= −







tan

cos
θ

θ

1

2
0

2

 (2.10)

Equation (2.10) describes the object’s trajectory. The range of a projectile R is the 

horizontal distance travelled from launch until it reaches ground level with y = 0. 

Inserting y = 0 in Equation (2.10) leads to

 R
v

g
=

2
0
2

sin cosθ θ  (2.11)

The range is thus determined by two factors, the initial velocity, and the angle between 

the horizontal and the launch direction.

Exercise 2.5: At what angle to the horizontal should a projectile be launched 

from a site on a flat horizontal surface in order to achieve the maximum range 

for a given initial velocity?
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Using the trigonometric identity 2 2sin cos sinθ θ θ= , Equation (2.11)  

becomes R
v

g
= 0

2 2sin θ
. The maximum range R

max
 is reached when 

d

d

R v

gθ

θ
= =

2 2
00

2 cos
. It follows that R

max
 is attained when θ π= /4. The object 

should therefore be launched at an angle of 45° to the horizontal in order to 

achieve its maximum range. Figure 2.7 shows the paths followed by an 

object launched successively at angles of 20°, 30°, 45°, and 60° to the hori-

zontal with the same initial velocity of 10 m/ s. For launch angles less than 

45°, the travel time to impact with the surface is shorter than for the optimum 

angle case and this outweighs the higher horizontal velocity component. For 

angles greater than 45°, the travel time is longer than at 45° but the horizontal 

component of the object’s velocity is reduced compared to that at smaller 

angles. In the limit of a vertical launch the horizontal travel distance is zero.

FIGURE 2.7 Trajectories followed by an object launched at different angles to the 

horizontal with the same initial speed of 10 m/ s. The maximum range corresponds to a 

launch angle of 45°.

Exercise 2.6: A boy standing on a promontory overlooking a lake throws a 

pebble in a horizontal direction with initial speed 13 m/ s. If the boy’s throwing 

arm is at a height h = 6 m above the surface of the lake, determine the horizontal 

distance the pebble will travel before hitting the water. What is the velocity 

of the pebble just prior to entering the water? The trajectory of the stone is 

depicted in Figure 2.8.

The horizontal, x, and vertical, y, motions are independent of each 

other and are considered separately. Application of Equation (2.6) to the 

y motion gives − = −h g t
1

2
2 . The time taken to reach the water surface   
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is t h g= = × =2 2 6 9 8 1 107/ / . .  s. Using Equation (2.5), the horizontal   

distance travelled by the stone before hitting the water surface is   

x v t= = × =
0

13 1 107 14 4  m. . .

The downward velocity component just before reaching the water surface 

is, from Equation (2.5), v g t
y

= − = − × = −  m/s9 8 1 107 10 8. . . . The horizontal 

velocity v
x
 remains constant at 13 m/ s during the pebble’s fall. The magnitude 

of the velocity just before water entry is obtained using Pythagoras’s theorem 

as v = + =169 118 16 9. m/s. The angle θ that v makes with the horizontal is 

obtained using tan
.

.θ = =
−

= −
v

v

y

x

10 8

13
0 83 giving θ = − °40 . The minus sign 

indicates the downward direction of the velocity vector.

While the kinematic equations provide a satisfactory description of many situ-

ations involving the accelerated motion of objects, it is necessary to exercise caution 

when objects such as aircraft or rapid ground transport attain high speeds in the 

Earth’s atmosphere. For situations of this type, it is necessary to allow for air resist-

ance, which becomes increasingly important as the object’s velocity increases. For 

example, objects that fall from a considerable height can reach constant terminal 

velocities when the downward gravitational force is balanced by the upward air resist-

ance force. The constant acceleration kinematic equations are no longer applicable 

when the retarding force due to air resistance becomes significant in comparison with 

the force producing accelerated motion.

FIGURE 2.8 Trajectory of a stone thrown into a lake. The initial horizontal velocity is 

13 m/ s at an initial height of 6 m above the surface of the lake.
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Chapter 2 has introduced the concepts of displacement, velocity, and acceleration 

as vector quantities, which are used to describe the motion of objects through space 

and time. In Chapter 3 a quantity called the momentum of an object is defined in 

terms of its mass and its velocity. Momentum plays a central role in describing the 

dynamics of objects and in formulating the laws of motion called Newton’s laws.
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Momentum and 

the Laws of Motion

3.1  INTRODUCTION

The behaviour of an object in motion is found to depend on both its velocity and its 

mass. This conclusion is reached by anyone who has compared the painful experience 

of being struck by a baseball or cricket ball travelling at speed with the less painful 

experience of being struck by a tennis ball travelling at roughly the same speed. It 

is found necessary and useful to introduce the concept of momentum of a moving 

body in formulating the laws of motion. The momentum of an object is defined as 

the product of its mass and its velocity. Momentum is a vector quantity through its 

dependence on velocity. Along with the kinetic energy of a moving mass, which is 

introduced in Chapter 4, momentum is of fundamental importance in analysing the 

motion of objects.

The law of momentum conservation, which will be introduced in Section 3.2, 

is important in considering collision processes over a wide range of mass values 

from the subatomic, involving fundamental particles such as colliding protons, to 

the astronomical, such as a meteorite striking a planet. Newton’s laws of motion, 

which are introduced in this chapter, are formulated in terms of the momentum of a 

body in the presence or absence of external forces. In particular, Newton’s famous 

second law relates the rate of change of momentum of an object to the force acting 

on the object. Taken together with the law of universal gravitation, Newton’s second 

law provides a description of the motion of the planets and the trajectories of space 

vehicles exploring the solar system. Note that when dealing with astrophysical events 

involving very large masses in relatively close proximity, it is necessary to introduce 

Einstein’s general relativity theory, but the classical Newtonian methodology works 

well for the situations considered in this chapter.

3.2  MOMENTUM AND FRAMES OF REFERENCE

The linear momentum of an object of mass m which is moving with velocity v with 

respect to an observer is defined as

 p = m v  (3.1)

3
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The SI units of momentum are kg m/ s. Clearly p and v are parallel vectors since m 

is a scalar quantity. Consider a composite system consisting of N objects, labelled 

i, with individual masses represented by m
i
, each moving with velocity v

i
. The total 

momentum is

 p v= ∑ i i i
m   (3.2)

To determine p, the momenta of the individual objects are added using the rules for 

vector addition.

In specifying the velocity, and hence the momentum, of an object it is necessary 

to choose a frame of reference. In laboratory situations, it is generally convenient 

to choose a frame which is fixed with respect to the laboratory floor, which in turn 

is fixed to the Earth at a particular location. Measurements may, however, be made 

in a reference frame that is moving with respect to the Earth’s surface. Examples 

include the interiors of ships, aircraft, and orbiting space laboratories. In considering 

the motion of objects in a moving reference system, it turns out that there is a special 

class of these frames which are called inertial frames, as discussed below.

Consider two reference frames 1 and 2 that are in relative motion as shown in  

Figure 3.1. For convenience, the x- axis in frame 1 is chosen to coincide with that in  

frame 2, which is moving with velocity v in the x- direction with respect to frame 1.   

From Figure 3.1, it can be seen that the x-  and y- coordinates of an object observed  

in the two reference frames are related as follows: x x v t
2 1

= −   and y y
2 1

= . The  

time t is measured from the instant when the origins of the two frames coincide.  

The relationships between coordinates in the two reference frames constitute what  

is called the Galilean transformation. Note that times measured by observers in the  

two reference frames are assumed to be the same. This assumption is valid for v c ,   

where c is the speed of light, but breaks down when v approaches c. The Galilean  

FIGURE 3.1 Two reference frames 1 and 2 in relative motion along their common x- axis, 

with frame 2 travelling at speed v with respect to frame 1. The coordinates in the two frames 

are connected as a function of time t by the Galilean transformation provided v is much less 

than the speed of light.
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transformation must then be replaced by the Lorentz transformation used in special  

relativity theory.

Differentiating the two Galilean coordinate transformation equations with respect 

to t leads to the Galilean velocity transformation equations, with the x and y velocity 

components in the two frames related as follows:

 v v
y y1 2

=  (3.3a)

 v v v
x x1 2

= +  
(3.3b)

The y- components of the velocity are the same and equal in the two frames because 

there is no relative motion along y. The x- components differ by the velocity of frame 

2 with respect to frame 1. A particle at rest in frame 2 appears to an observer in frame 

1 to be moving with velocity v in the x- direction.

An important insight that is obtained from the Galilean transformation is that there 

is nothing special that fundamentally distinguishes one Galilean frame of reference 

from another. It is straightforward to transform velocities from one frame to another 

provided that the frames are not accelerating. This means that a convenient reference 

frame can be chosen when considering a particular situation. For example, a reference 

frame could be chosen in which the object of interest is at rest.

If, in Figure 3.1, the object in frame 2 is not stationary but moving with speed vʹ at 

an angle θ with respect to x
2
, then the Galilean transformation of velocity components 

becomes

 v v v
y y1 2

= + ′ sinθ (3.4a)

 
v v v v

x x1 2
= + + ′

´

cosθ
 

(3.4b)

It is interesting to note that Newton proposed an absolute frame of reference that was 

fixed in relation to what he called the fixed stars. Astronomical observations have, 

however, shown that the stars are not fixed in the expanding universe, Stars move in 

galaxies, which in turn move with respect to each other. There is no way to establish 

an absolute reference frame.

Exercise 3.1: A passenger in a car travelling at 60 km/ h along a straight 

stretch of road sees a person who is running in the opposite direction at 5 m/ 

s on the sidewalk. At what speed does the runner appear to be moving as seen 

by the passenger in the car?

Adopting the notation used in Figure 3.1, the car’s direction of travel on the 

straight road, alongside the sidewalk, is taken as the common direction of the x- 

axes for frames of reference attached to the road (frame 1) and to the car (frame 

2). No motion occurs along the y direction. In frame 1, the runner moves at speed 
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5 m/ s in the negative x direction. The velocity along x of frame 2 with respect to 

frame 1 is v = × =60 3600 16 710 /  m/s3 . . From Equation (3.3b), the passenger 

in frame 2 obtains the runner’s speed as v v v
x x2 1

5 16 7 21 7= − = − − = −. .  m/s. 

The minus sign shows that the runner is seen to be moving in the negative  

x- direction, that is, approaching the car.

In the simple exercise above, it is not made clear how the passenger in the car 

would measure the speed of the runner. Interestingly, it was the analysis of this type 

of situation for observers measuring the speed of light signals on a passing train that 

helped Einstein develop his special theory of relativity.

Exercise 3.2: An object of mass 0.65 kg slides along a smooth horizontal 

surface at a speed of 12 m/ s. What is the linear momentum of the object? 

What is the momentum in a frame of reference moving at 8 m/ s parallel to the 

direction of travel of the object?

The momentum of the object in the reference frame 1, which is fixed 

to the smooth surface with the x- axis chosen parallel to the object’s 

path, is p m v
x x1 1

0 65 12 7 8= = × =  kg m/s. . .

In the reference frame 2, which moves at a constant speed of 8 m/ s par-

allel to the path of the object, the speed is given by v v
x x2 1

8 4= − =  m/s. The 

transformed momentum in frame 2 is p
x2

0 65 4 2 6= × =. .  kg m/s.

3.3  INERTIAL REFERENCE FRAMES

An inertial frame of reference is one in which an object moving at a particular vel-

ocity at some instant continues to move with the same fixed velocity as time proceeds. 

The object could, of course, be stationary as a special case, A necessary condition for 

the establishment of an inertial frame is that zero net force acts on the object in the 

chosen frame. Reference frames attached to the Earth’s surface are clearly not inertial 

frames because of the force produced on an object by the Earth’s gravitational field. 

In addition, the Earth is spinning about its axis of rotation, and this results in effects 

linked to circular motion as discussed in Chapter 5. It is possible to imagine an iner-

tial frame in which an object is situated at a great distance from other masses so that 

the gravitational forces are vanishingly small. It is a measure of Newton’s genius that 

he could conceive of inertial frames of reference while living in a non- inertial frame. 

Satellites in orbit around the Earth provide a very good approximation to an inertial 

frame. These satellites effectively fall towards the Earth, as they move at high speed 

around the planet, giving rise to the phenomenon of weightlessness. It is important 

to appreciate that weightlessness does not mean that there is zero gravity. Instead, it 

means that the object of interest, such as a satellite, is effectively in free fall towards 
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the Earth’s centre as it circles the Earth. The object’s orbital velocity keeps the satel-

lite moving around the Earth as discussed in Chapter 5. Objects can float motionless 

if left undisturbed or can move across the spacecraft at constant speed following a 

slight push on the object by an astronaut. Inertial frames of reference are important in 

formulating Newton’s laws of motion, which are introduced in Section 3.5.

3.4  MOMENTUM CONSERVATION

For a collision involving two or more objects, it has been established that the total 

momentum of the colliding objects is conserved. This important result is called the 

law of momentum conservation, which is a fundamental law of physics. The law 

is expressed mathematically in terms of the changes in the individual momentum 

vectors for colliding objects i as

 ∆ = ∆ =∑p p
i i

0 (3.5)

where ∆p
i
 is the change in momentum of object i during the collision.

In words, the law of momentum conservation states that the vector sum of 

the changes in momentum for all the objects involved in the collision is zero. 

Equivalently, the law states that the total momentum of all the objects before the 

collision is equal to the total momentum after the collision, 
i i i i∑ ∑=p pbefore after. It is 

important to remember that it is the vector sum of the momenta of colliding objects 

that is conserved.

As an illustration of the use of momentum conservation, consider a collision 

involving two particles with masses m
1
 and m

2
, which travel towards each other with 

velocities v
1
 and v

2
, respectively, in an inertial frame as depicted in Figure 3.2.

After the collision, the particles move apart with velocities ′v
1
 and ′v

2
. The law of 

momentum conservation gives m m
1 1 1 2 2 2

′ −( ) = − ′ −( )v v v v . Note that if m m
2 1
 ,

   

then the change in velocity of particle 1 is much greater than that of particle 2. The 

inertial frame qualification is introduced so that no external forces act on the particles 

FIGURE 3.2 Collision of two objects of masses m
1
 and m

2
 which move towards each other 

with velocities v
1
 and v

2
 as shown. Momentum is conserved in the ensuing collision.
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during the collision. For collisions of high- energy beams of subatomic particles, 

gravitational effects are negligible and can be ignored in analysing data from collision 

events. For beams of charged particles, electromagnetic fields are of major import-

ance in determining particle trajectories in a collision event.

Good approximations to inertial frames are achieved in systems that are effectively 

2D, such as air tables or ice- skating rinks over which flat objects glide freely. The fric-

tional forces in these systems are very small, permitting momentum conservation to 

be demonstrated to fair precision in collision processes. These systems are of course 

3D, but no motion occurs along directions perpendicular to the supporting surface. 

The downward force exerted by gravity is exactly balanced by the upward reaction 

force, which exists between an object and the surface. The thin fluid (gas or liquid) 

layer at the interface allows the reaction force to be transmitted to the object, but with 

negligible friction in the surface plane.

Exercise 3.3: A spherical object of mass m
1
 travels with velocity  v

1
 on a low 

friction air table surface before colliding with a stationary object of mass m
2
. If 

the two objects stick together, determine the velocity v
3
 of the combined masses 

following the collision.

The law of momentum conservation gives ∆ = − +( ) =p v vm m m
1 1 1 2 3

0 .   

Since mass is a scalar, it follows that the two velocity vectors m
1 1
 v  and 

m m
1 2 3

+( ) v  must be parallel to ensure momentum conservation, with 

FIGURE 3.3 Inelastic collision of two spherical objects 1 and 2, of masses m
1
 and m

2
,   

which can move on a horizontal, low friction table as shown above. Object 2 is initially 

at rest, while object 1 approaches with velocity v
1.
 The objects then stick together to 

form mass M m m= +
1 2

, which moves with velocity v
3
. Momentum is conserved in the 

collision. The masses shown are in arbitrary mass units.
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v v
3

1

1 2

1
=

+

m

m m
. The final velocity v

3
 is reduced compared to the initial vel-

ocity v
1
 by the mass ratio 

m

m m

1

1 2
+

. Using the masses shown in Figure 3.3 

gives v v
3 1

3= / .

Exercise 3.3 provides an example of an inelastic collision. Collisions may be 

either elastic or inelastic, based on the changes in the kinetic energy accompanying 

a collision. While momentum is always conserved in collision events that occur 

in inertial frames, a scalar quantity called the kinetic energy is only conserved in 

elastic collisions. This distinction between elastic and inelastic collisions is ultim-

ately determined by the nature of the forces that act between the colliding objects as 

discussed in Chapter 4 in which the important concept of kinetic energy is introduced.

Exercise 3.4: Two ice pucks 1 and 2, with masses m
1
 and m

2
, respectively,  

move towards each other with equal speeds v on an ice- rink surface as shown  

in Figure 3.4. The pucks undergo a head- on collision, and then move apart with  

their final velocities parallel. If 2 m
1 

= m
2
, obtain expressions for the pucks’  

speeds v
1
 and v

2
 after the collision, and then determine the speeds for which the  

two pucks have the same momentum.

FIGURE 3.4 Two pucks, with masses m
1
 and m

2
 respectively, travelling towards each 

other with speeds v on a frictionless surface, undergo a collision as depicted. Momentum 

is conserved in the collision. The case m m
2 1

2=  is shown.
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Momentum conservation gives m m m m
1 2 1 1 2 2
    v v v v+ = + . If the velocities 

are taken as positive in the +x direction, then for the special head- on collision 

case shown with m m
1

=  and m m
2

2= , and accounting for the directions of the 

velocities before the collision, it follows that − = − +( )m v m v v
1 2

2 . By inspec-

tion, the resultant relationship of the speeds v v v= +
1 2

2  is satisfied by, among 

many others, the values v v
1

2= /  and v v
2

4= / . In this particular case, the final 

velocities are parallel and the final momentum in the −x direction is shared 

equally by the pucks.

Note that momentum conservation in two- body collisions leads to a single equation 

with two unknown final velocities, which in general will not be parallel. For elastic 

collisions, kinetic energy conservation can be used to obtain another equation relating 

the speeds of the objects. The simultaneous equations provided by momentum and 

kinetic energy conservation can then be solved to obtain the required final velocities 

in collision processes.

3.5  NEWTON’S LAWS OF MOTION

The fundamental laws governing the motion of objects are known as Newton’s laws. 

While certain of the ideas were considered by other scientists in the seventeenth cen-

tury, it was Newton who developed the powerful formalism used in describing the 

motion of objects. As a striking illustration of his formalism, Newton showed that 

the laws of motion together with his law of universal gravitation permitted the orbits 

of the planets about the Sun to be explained in detail. The development of relativity 

theory and quantum mechanics in the twentieth century has shown that Newton’s 

laws are valid only in the classical limit, but they are extremely useful in describing 

the motion of objects in a wide variety of situations.

Newton’s laws of motion involve the momentum of an object and inertial frames 

of reference as essential concepts which permit the laws to be stated in compact form 

as given below.

Newton’s first law: An object which is at rest or in uniform motion in an inertial ref-

erence frame, and which is not subject to any unbalanced forces, continues at rest or 

in uniform motion. This is also known as the law of inertia.

In symbols the law states that in an inertial frame v = constant if F = 0.

Newton’s second law: The rate of change of momentum of an object in an inertial 

reference frame is given by the total applied force acting on the object.

In symbols, the law is written as 
d

d

p

t
= F.

If the mass of the object remains constant, then the law becomes m
t

m
d

d
 

v
= =a F.
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Thus, the second law is conveniently expressed as force equals the mass times the  

acceleration, or F a= m  . This law is of central importance for a range of applications  

involving the motion of objects subject to applied forces. The SI unit of force, as  

given in Chapter 1, is the newton with 1 N =  1 kg m/ s2. Figure 3.5 illustrates the  

second law for an object of fixed mass.

Newton’s third law: For two interacting objects, which are either in contact or 

interacting via a force field, the force exerted by one object on the other is exactly 

matched by an equal and opposite reaction force.

In symbols the law states that F F
12 21

= −  where F
12

 denotes the force exerted on 

object 1 by object 2, and F
21

 is the force exerted on object 2 by object 1.

For two solid objects in contact, the microscopic details of the mechanisms 

involved in connecting applied forces and reaction forces can be quite complicated. 

The atoms in the two adjacent surfaces interact as described in Chapter 1. Surface 

deformation may occur when contact is first made, dependent on the mechanical 

strengths of the materials. It is only when a state of equilibrium has been reached that 

action and reaction forces will match as predicted by Newton’s third law.

If two objects are not in contact but interact via a force field, such as the gravita-

tional field, then Newton’s third law still applies. For example, the gravitational force 

exerted by the Earth on the Moon is matched by an equal and opposite force exerted 

by the Moon on the Earth. The orbital motion of the Moon around the Earth prevents 

the Moon and Earth from crashing into one another. The orbital motion of gravitation-

ally interacting large objects is discussed in Chapter 5.

For convenience, in this chapter the three laws will be referred to as Newton 1, 

Newton 2, and Newton 3. Note that Newton 1, the law of inertia, is a special case 

of Newton 2 corresponding to zero net force acting on an object. For a number of 

applications that are dealt with in this chapter Newton 3 is important when considering 

the motion of objects on supporting surfaces or hanging from cables.

Newton’s laws, together with the kinematic equations, which were introduced in 

Chapter 2, are very useful in analysing the motion of objects that are acted on by a 

constant force. Two simple examples are given below.

FIGURE 3.5 Newton’s second law shows that an applied force F acting on an object of mass 

m in an inertial reference frame produces an acceleration a in the direction of the force.
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Exercise 3.5:  An electric vehicle of mass 800 kg (including passengers) 

accelerates from zero to 100 km/ h in 6 s along a flat horizontal road. Assuming 

a constant acceleration, obtain the driving force acting on the vehicle? Ignore 

wind resistance.

From the first kinematic equation given in Equation (2.5), the speed v of 

the vehicle as a function of time is given by v v a t= +
0

 . Converting the speed 

to m/ s using 1 1000 3600 0 278 km/h /  m/s= = . , the constant acceleration is 

a v t= = × =/ /  m/s100 0 278 6 4 6 2. . . Newton 2 gives the average force produ-

cing the acceleration as F m a= = × =  N800 4 6 3680. .

Note that the acceleration is approximately g/2. Passengers in the vehicle 

will feel the push of the seats on their backs while the car is accelerating.

Exercise 3.6:  A puck of mass 0.2 kg rests on the horizontal surface of a 

frictionless air table. If a horizontal force of 0.5 N is applied to the puck, how 

far will it move in 1.0 s?

From Newton 2, the acceleration of the puck is a F m= = =/ /  m/s0 5 0 2 2 5 2. . . .   

The distance d travelled by the puck is given by the second kinematic equation 

(Equation (2.6)) as d a t= =
1

2
1 252  m. .

No motion occurs perpendicular to the air table. The upward reaction force, 

which balances the weight, is transmitted to the puck through the air cushion.

3.6  APPLICATION OF NEWTON’S LAWS

In applying Newton’s laws to the dynamics of an object of mass m located close to the 

Earth’s surface, it is necessary to allow for the downward weight force F m g=  . As 

discussed in Chapters 1 and 2, the gravitational acceleration is given by g G M R=  / 2.   

To a good approximation, g = 9 8 2.  m/s  (or N/ kg) using accepted values for G, M,   

and R.

If an object of interest is supported by a horizontal surface, then Newton 3 shows 

that the weight force will be matched by an equal and opposite reaction force. For 

objects that are free to fall under gravity, Newton 2 gives F m a m g= =  , and there-

fore a g= = 9 8 2.  m/s . The following exercises deal with a variety of situations in 

which the weight of an object plays a significant role in determining its motion.

An interesting example of the use of Newton 3 involves the apparent weight of a  

person travelling in an elevator when it is accelerating from rest. Let the passenger’s  

weight be W M g
s

 =  as measured on a bathroom scale in the elevator when it is sta-

tionary. When the elevator starts to accelerate upwards, the reading on the bathroom  

scale will increase. This is because the person is also accelerated upwards and the  

force producing this acceleration is transmitted from the floor of the lift through the  

scale to the person. In the various force transmission processes Newton 3 plays an  
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essential role by requiring action and reaction to match firstly between the floor of the  

elevator and the scale and secondly between the scale and the person’s feet. The scale  

reading, which is a measure of the upward reaction force, increases from W M g
s

 =   

to W M g a
a

= +( ) . When the lift accelerates downwards, the scale reading decreases  

to give W M g a
a

= −( ) . 
Further applications of Newton 3 arise in situations in which a mass is suspended 

by a cable or cord. The weight of the suspended object m g  is matched by an upward 

tension force T  in the cable, as illustrated in Figure 3.6. At the point of suspension of 

the cable, the downward tension force is matched by an upward reaction force exerted 

by the support.

The tension in a cable or cord can be used to transmit a force between two 

connected objects that are in motion. Figure 3.7 illustrates a situation of this kind 

in which a mass m is suspended on a cord, which passes around a frictionless pulley 

and is then joined to a mass M that rests on a frictionless horizontal surface. The 

assumption of negligible friction effects is made to simplify the analysis. Friction 

forces are discussed later in the book.

Application of Newton 2 separately to each of the two masses gives the equations 

of motion as

 mass :  
h

M T M a=  (3.6)

 mass :  
v

m m g T m a− =  (3.7)

The magnitudes of the two accelerations a
h
 (horizontal) and a

v
 (vertical) in Equations 

(3.6) and (3.7) must be equal (i.e. a a
h v

= ) because of the fixed length of the cord 

connecting them. Combining the two equations by adding them together gives 

m g M m a 
v

= +( ) , and hence a
m

M m
g

v
=

+
.

FIGURE 3.6 Mass m is suspended on a cord attached to a rigid support. For the mass m to be 

in equilibrium, the upward tension force T must be equal to the weight mg. The cord transmits 

the force to the rigid support, which exerts an equal and opposite reaction force on the cord.
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This result could have been written down directly using Newton 2, by taking the  

force producing the acceleration as m g  and the total mass moved as M m+ . The  

tension force Tcancels out in this simple scalar approach. Note that while the mass  

m is falling with acceleration a
v
, the tension in the cord is reduced to T m g a= −( )v

.

The motion of an object down a smooth frictionless plane inclined at an angle θ to  

the horizontal is of interest because the gravitational force on the object has a compo-

nent m g sin θ acting down the plane, while a reduced reaction force between the plane 

and the object F m g
R

=  cosθ acts perpendicular to the plane as shown in Figure.3.8.

Newton 2 gives the equation of motion for the sliding object as

 F m a m g= =  sin θ (3.8)

The acceleration a g= sinθ exhibits a minimum value for θ = 0 and a maximum for 

θ π= /2, as expected.

FIGURE 3.8 Accelerated motion of a mass m down a smooth frictionless plane, which is 

inclined at an angle θ to the horizontal. Geometry shows that the angle between the normal to 

the plane and the vertical is also θ.

FIGURE 3.7 Masses M and m are connected by an inextensible string, which passes over a 

frictionless pulley. The gravitational force on mass m produces motion of the coupled masses. 

The arrows represent the tension T in the string.

 

 

 

 



40 Physics: An Introduction to Physical Dynamics

40

Exercise 3.7:  A child, starting from rest, moves down a water slide of length 

L = 4 m. If the slide is inclined at an angle of 30° to the horizontal, what is the 

velocity of the child just before hitting the water in the pool at the bottom of the 

slide? Assume that frictional forces are negligible and the slide ends just above 

the water level.

From Equation (3.8) the child’s acceleration is a = g sin θ = 9.8 × sin 30º =    

4 9 2.  m/s . The speed is obtained using the third kinematic equation, given in 

Equation (2.7), which takes the form v a L2 2=  . Substituting values for a and 

L gives v = 6 3.  m/s with the velocity vector parallel to the surface of the slide. 

Note that, as an approximation, the child has been regarded as a compact entity 

with its mass located at the centre of mass.

3.7  IMPACT

For situations in which an object collides with a surface and then rebounds, it is con-

venient to introduce impulsive forces and the concept of impulse. Important examples 

occur in sports such as baseball, cricket, golf, and tennis. In impact collisions, the 

force that acts between an object (e.g., a ball) and a solid surface (e.g., a baseball bat) 

is not constant in time and is nonzero for just a short time. It is necessary to adapt 

Newton’s laws to events of this type. The law of momentum conservation does not 

hold in this inelastic type of collision as discussed below. Note that the change in 

momentum of a ball being struck by a sporting implement can be large as the change 

in the direction of the ball’s travel can reach 180°.

Consider the change in momentum ∆p of a moving object, such as a squash ball, 

which strikes a wall that is anchored to the ground. Figure 3.9 illustrates a collision 

event of this sort. For simplicity, it is assumed that the vertical motion is negligibly 

small, with the ball travelling at high speed close to horizontally both before and after 

impact with the wall. As a result of the collision, the velocity of the ball is changed 

from  v
i
 in the +x direction to  v

f
 in the –x direction. The collision lasts for a very 

short time, and the details of the process, which involves compression of the ball and 

slight local elastic deformation of the wall at the point of impact, are not known in any 

detail. In effect, the wall is considered to be an object of infinite mass.

While the law of momentum conservation cannot be applied to this type of 

collision, the momentum change ∆p of the moving object can be related to a quan-

tity called the impulse I, which is defined as the time integral of the time- dependent 

force F t( ) exerted by the wall on the object during the impact event. This procedure 

involves, firstly, the use of Newton 2 to determine the instantaneous rate of change 

of momentum in the collision as 
d

d

p

t
F t= ( ), and then, secondly, integrating to obtain 

∆ = = ( ) =∫ ∫p p F t t I
p

p t

i

f

d d
0

. The compact relationship,

 ∆ =p I (3.9)
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is useful in dealing with collision events of the type described above. While  

momentum is obviously not conserved, since I > 0, the process may be quasi- elastic  

with only a small change in the kinetic energy, which depends on the square of the  

speed of the moving object as discussed in Chapter 4. In general, some kinetic energy  

is transformed during the collision into other forms of energy, specifically sound  

and heat.

For impact collisions in which the horizontal motion approximation is not applic-

able, changes in both the vertical and horizontal velocities must be taken into account. 

Collisions can be investigated experimentally using high- speed photography to follow 

the motion of the objects and the deformation that occurs during impact.

Exercise 3.8:  In a racquetball game, the ball strikes a wall at normal incidence 

with a speed of 80 km/ h. If the ball is in contact with the wall for a time Δt = 20 

ms, and rebounds with a speed of 77 km/ h, what is the impulse experienced by 

the ball in the collision and what is the average force involved? The mass m of 

a racquetball is 0.04 kg (1.4 ounces).

From Equation (3.9) ∆ = − = −( ) =p p p m v v I
f i f i

. Choosing the out-

ward normal to the wall as the positive direction, and converting km/ h 

to m/ s using 1 km/ hr =  0.278 m/ s, gives the impulse I = Δp = m(v
f
 – v

i
) =    

0.04 × (21.4 + 22.2) = 1.74 kg m/s.

The average force is F
p

t

I

tav
N=

∆
∆

=
∆

= =
1 74

0 02
87

.

.
.

FIGURE 3.9 High- speed collision of a ball with a fixed vertical wall. A time- dependent force 

acts on the ball during the impact, causing the ball to rebound as shown. Momentum is clearly 

not conserved in this process.
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The impact concept, which is introduced above, is important in considering any 

collision process in which a large force acts on an object for a short time. In many 

sporting activities, a bat or other implement is swung at a ball, and the momentum 

of the ball is significantly altered. During the collision, a force may be transmitted to 

the hands of the holder of the bat. The force is found to depend on the position along 

the bat at which the ball makes impact. In particular, if the ball hits the bat at what 

is called its centre of percussion, also known informally as the sweet spot, the force 

transmitted to the hands gripping the bat is minimized. Further discussion of this 

point is given in Chapter 6 on rigid body dynamics.
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Work and Mechanical  

Energy

4.1  INTRODUCTION

When a force acts on a physical system and produces a change in its properties, the 

force is said to have done work on the system. As an example, consider a system 

consisting of an object of mass m situated near the Earth’s surface and which may 

be at rest or in motion in the local gravitational field. An applied force can change 

the velocity of the object and/ or its position in the gravitational field, resulting in a 

change in what is called its mechanical energy. The concept of mechanical energy is 

of central importance in classical mechanics. As shown below, work and mechanical 

energy are scalar quantities with SI units joules, abbreviated as J.

It is convenient to distinguish between kinetic energy, which is linked to the 

motion of an object, and potential energy, which depends on the position of an object 

in a field such as the gravitational field. Mechanical energy can be conserved in par-

ticular situations provided friction effects are negligible. In these circumstances, the 

sum of the kinetic energy and the potential energy remains constant during a process. 

An example of this type of process is provided by a falling mass in the Earth’s gravi-

tational field provided friction and air resistance effects are negligible. Mechanical 

energy conservation is a special case of the general law of energy conservation, or, 

more precisely, mass– energy conservation. This fundamental law covers all forms of 

energy including mechanical, thermal, chemical, electromagnetic, and nuclear forms.

4.2  MECHANICAL WORK

Consider a force F acting on an object, which is free to move subject to certain 

constraints provided by a support. Let the force displace the object through a distance 

∆s at an angle θ with respect to the force direction as shown in Figure 4.1.

The work W  done by the force F is defined in Equation (4.1) as the scalar product 

of F with the object’s displacement ∆s:

 W F s= ⋅ ∆ = ∆F s  cos θ (4.1)

The work done involves the component of the force parallel to the displacement. The  

direction of displacement depends upon the constraints on the motion of the object. For  

4
 

 

 

 

 

http://dx.doi.org/10.1201/9781003485537-4


44 Physics: An Introduction to Physical Dynamics

44

example, when an object is situated on a horizontal surface, no downward motion can  

occur even though the applied force has a downward component. Newton’s third law  

requires that the net vertical force is zero with upward reaction force equal in magni-

tude, but opposite in direction, to the sum of the downward forces. In the SI system, the  

force is measured in newtons, the displacement in meters, and the work done in joules.

For an object of mass m near the surface of the Earth, a downward gravitational 

force m g  acts on the object. In discussing the consequences of work done on a 

system of this type, it is convenient to consider the action of the vertical component 

of the applied force separately from that of the horizontal component. For a process 

involving a horizontal force acting on an object situated on a horizontal friction-

less surface, the momentum will change with time, corresponding to an increase in 

velocity in accordance with Newton’s second law. The kinetic energy of the object, 

which is defined below, increases because of the work done by the force. No change 

in the height of the object occurs, nor is there any change in the vertical component 

of velocity, which stays at zero in the laboratory frame. If the situation is altered so 

that the applied force acts vertically upwards, then the height of the object above a 

chosen reference level, such as the laboratory floor, will change due to the work done 

by the force. The change in height of the object results in a change in what is called 

its potential energy, which is introduced below. There may also be an accompanying 

change in the kinetic energy depending on the direction and strength of the vertical 

force. If an upward force, which opposes gravity, is only slightly larger than m g , then 

the change in kinetic energy will be very small while the height of the object changes, 

leading to a significant change in potential energy. Expressions for the kinetic energy 

and potential energy of a body in motion are introduced in the following section.

4.3  MECHANICAL ENERGY

4.3.1  KINETIC ENERGY

Consider a system that consists of an object of mass m that can move freely under the 

action of an applied force. For example, the object could be in an inertial frame of 

FIGURE 4.1 A force F acts at an angle θ to the horizontal on an object of mass m, which 

rests on a horizontal surface. The block is displaced by a distance ∆s along the surface. Work 

is done by the horizontal component of F.
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reference located in an orbiting spacecraft, or, alternatively, earthbound and supported 

by a frictionless horizontal surface with the applied force acting horizontally. If the 

force F is constant and displaces the object by ∆s , then Equation (4.1) gives the work 

done by the force as W = ⋅ ∆F s . To simplify the discussion, it is convenient to choose 

the angle θ between F and ∆s to be zero, so that W F s= ∆ . From Newton’s second 

law, the constant force produces a constant acceleration of the object, the magnitude 

of which is given by a F m= / .

It is straightforward to relate the work done to the change in the square of the vel-

ocity of the object by using the third kinematic equation, Equation (2.7), in the form 

v v a s2
0
2 2= + ∆ . Substituting F m/  for a gives m v m v F s2

0
2 2= + ∆ . Replacing F s ∆  by 

W leads to the following result:

 W m v v= −( )1

2
2

0
2  (4.2)

By adopting the general definition K m v=
1

2
2 , Equation (4.2) can be written in 

the form,

 W K K K m v v= − = ∆ = −( )f i f i

1

2
2 2  (4.3)

The quantity K is defined as the kinetic energy of the moving object. Equation (4.3) 

shows that the object’s kinetic energy is increased by an amount equal to the work 

done by the applied force. This is an important and useful result. The SI unit of K is 

joules.

Exercise 4.1: An object of mass 20 kg is free to move on a straight horizontal 

track and is accelerated from rest to a speed of 4 m/ s by an applied force acting 

parallel to the track. If the distance travelled in the acceleration process is 8 m, 

determine the change in kinetic energy of the object and the magnitude of the 

applied force. Ignore the effects of friction.

Since the initial velocity is zero, the change in kinetic energy is 

∆ = = × × =K m v
1

2

1

2
20 16 1602  J

f
. The relationship W F s K= ∆ = ∆ , with ∆s   

the distance travelled, gives F K s= ∆ ∆ = =/ /  N160 8 20 .

While physical situations that involve a mass undergoing constant acceleration can 

be analysed using the kinematic equations, the work– kinetic energy relationship 

provides the basis for dealing with situations involving the motion of objects subject 

to variable forces and correspondingly varying accelerations. It is therefore necessary, 

and also instructive, to obtain Equation (4.3) without making assumptions about the 
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nature of the applied force that leads to a change in the kinetic energy of an object. 

Details are given below.

It is convenient, initially, to consider motion in 1- D along the x- axis of a frame of 

reference. The treatment is readily extended to motion in two or three dimensions. 

The starting point is again Newton’s second law, F m a m
v

t
= =

∆
∆







 , which gives 

the rate of change of momentum of an object of mass m produced by a force F

acting for a time ∆t  during which the velocity increases by ∆v. In a small displace-

ment ∆x, the work done by the force is W F x= ∆ . Substituting for F from Newton’s   

second law leads to ∆ =
∆
∆







∆W m
v

t
x. Rearranging gives ∆ =

∆
∆







∆W m
x

t
v, and in 

the limit ∆ →t 0, this results in the equation d
d

d
d   dW m

x

t
v m v v= 





= . Integration 

of this differential equation gives the required result,

 W m v v m v v
v

v

= = −( )∫
i

f

d
f i

1

2
2 2

 (4.4)

with v
i
 and v

f
 the initial and final velocities along x over the time interval during 

which the force acts on the mass. Inserting K m v=
1

2
2  in Equation (4.4) results in 

the relationship,

 W m v v K K K= −( ) = − = ∆
1

2
2 2
f i f i

 (4.5)

This is the same result as that found using the kinematic equation approach. However, 

no assumption of a constant applied force is made in obtaining Equation (4.5), which 

shows that in an inertial frame of reference, the work done by an applied force is 

equal to the change of kinetic energy of the object to which the force is applied. The 

derivation of Equation (4.5) is a powerful generalization of the constant acceleration 

kinematic equation approach. Equation (4.5) thus provides the basis for describing 

the dynamics of objects subject to forces which vary with time. Defining the change 

in kinetic energy due to the acceleration of an object as

 ∆ = −( )K m v v
1

2
2 2
f i

 (4.6)

is an important step in developing what is called the work– energy relationship.

In order to lift the restriction that Equation (4.5) is limited to inertial frame situ-

ations, it is necessary to broaden the discussion by introducing the potential energy 

concept to complement that of kinetic energy. The work done by an applied force is, 

in general, no longer converted entirely into kinetic energy.
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4.3.2 POTENTIAL ENERGY

When introducing the concept of potential energy, it is instructive to deal with the 

special case of gravitational potential energy. Consider a frame of reference in an 

earthbound laboratory where the Earth’s gravitational field gives rise to a constant 

downward gravitational force m g  on an object of mass m, with g = 9 8.  N/kg (or   

m/ s2). The gravitational force is directed towards the Earth’s centre, where the planet’s 

considerable mass is effectively concentrated, when masses experiencing the force 

are located at, or above, the Earth’s surface.

For an object to be at rest in the laboratory frame, it is necessary that the net force 

on the object be zero. It follows that a vertical force equal in magnitude but opposite 

in direction to the gravitational force must act on the object. This force could, for 

example, be the reaction force from a fixed horizontal surface on which the object 

rests, or the tension in a cord, which is suspended from a fixed support with the free 

end attached to the object.

Consider an object that is initially at rest in the Earth’s gravitational field. If the 

upward force is increased slightly to m g F + δ , the object will gradually increase 

its height above the laboratory floor from h
i
 to h

f
. The additional force δFdoes 

work δ δW F h h= −( )f i
 and produces a small upward acceleration, and thus a 

small change δK  in the object’s kinetic energy. The total work done in increasing 

the height above the floor is W m g h h K= −( ) + 
f i

δ . In the limit δF → 0, it follows 

that δK → 0 and W m g h→ ∆   where ∆ = −( )h h h
f i

. In this limit of very small δF ,   

the work done by the upward force has been converted to a form of energy called the 

potential energy, denoted by U. The potential energy is associated with the height of 

the object above some reference level, such as the floor, in the non- inertial laboratory 

frame. The relationship between the work done in the lifting process and the change 

in potential energy is given by

 W m g h h U U U
f i

= −( ) = − = ∆ 
f i

 (4.7)

Note that while the object was considered to experience a vertical lifting process, it 

does not matter how the mass is raised from its initial height to its final height. The 

change in U is always given by ∆ = −( )U m g h h 
f i

. Any kinetic energy changes that 

may occur during the raising process simply increase W . The change in potential 

energy is therefore defined as

 ∆ = −( )U m g h h 
f i

 (4.8)

with U m g h
i i

=    and U m g h
f

=   
f
.

Potential energy is a stored energy that can be released either slowly by allowing 

the mass involved to descend gradually while driving some mechanism such as that 

of a mechanical clock, or rapidly by allowing the mass simply to fall to the floor. In 

the case of free fall under gravity, the potential energy is converted to kinetic energy 

in a continuous way. On impact, the object may rebound but will eventually settle on 
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the floor. In the impact process, the kinetic energy is converted into other forms of 

energy, particularly heat and sound.

Exercise 4.2:  Consider an object of mass m initially located at a height h 

above the floor of an Earth- based laboratory. If the object is allowed to fall, the 

kinetic energy increases as a function of the vertical distance Δh through which 

the object has fallen following release. Compare this increase in kinetic energy 

while the object is in motion with the corresponding decrease in potential 

energy.

The third kinematic equation, given in Equation (2.7), with initial velocity 

v
0

0=  gives the square of the downward velocity as a function of the distance 

∆h through which the object has fallen as v g h2 2= ∆ . Multiplying both sides of 

this equation by m/2 gives the following expression for the increase in kinetic 

energy ∆ = = ∆K m v m g h
1

2
2   .

Since the height of the object above the laboratory floor has decreased by 

∆h, the change in potential energy is given by ∆ = − ∆U m g h  . It follows that 

∆ = −∆K U, which shows that the increase in the kinetic energy of the falling 

object is exactly equal to the decrease in potential energy. The total energy 

therefore remains constant during the time that the object is falling in the gravi-

tational field, with potential energy being continuously converted into kinetic 

energy. This finding is consistent with mechanical energy being conserved 

during the free fall process.

In the impact with the laboratory floor, the kinetic energy is converted into 

other forms of energy, including sound waves and heat as mentioned above. 

The collision raises the temperatures of both the object and the floor locally. 

Mechanical energy is not conserved in the collision process, although more 

generally energy in all its forms is conserved.

4.3.3 MECHANICAL ENERGY CONSERVATION

The discussion in the preceding subsection shows that the total mechanical energy   

E  of a mass m in the Earth’s gravitational field is made up of a potential energy con-

tribution U, associated with its position in the field, and a kinetic energy contribution  K, 

associated with its motion. The total mechanical energy is given by the sum

 E K U= +  (4.9)

While Equation (4.9) has been arrived at by considering a specific situation involving 

a falling object in the Earth’s field, the equation is of fundamental importance in 

mechanics. If no other external forces are present, Equation (4.9) leads directly to the 

law of mechanical energy conservation, expressed as

 E K U= + = constant (4.10)
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Experiment has shown that the law holds in a wide variety of situations involving 

what are known as conservative forces. The distinction between conservative and 

non- conservative forces is explained in Section 4.4. It is shown that gravitational 

forces are conservative while frictional forces are not. Bearing in mind this limita-

tion on its validity, the law of mechanical energy conservation is extremely useful in 

solving problems that involve the motion of objects in gravitational fields or in other 

conservative fields, such as the electric field for charged particles. In the gravitational 

field case, the moving objects can range from projectiles close to the Earth’s surface, 

assuming air resistance can be neglected, to space vehicles and planets orbiting the 

Sun. For systems of this type, the total mechanical energy remains constant and there-

fore changes in K  and U sum to zero giving

 ∆ = ∆ + ∆ =E K U 0 (4.11)

While ∆K  and ∆U may vary, they do so in such a way that their sum remains zero.

Exercise 4.3:  An object of mass m slides down an inclined plane of length L 

which makes an angle θ with the horizontal as shown in Figure 4.2. If frictional 

forces between the sliding object and plane are negligible, find the velocity of 

the object when it reaches the bottom.

The reaction force between the object and the supporting plane surface acts per-

pendicular to the plane, and so does not affect the object’s sliding motion provided 

friction is neglected. Mechanical energy conservation, as given in Equation 

(4.10), is applicable because friction is negligible. The only force of importance 

is the component of gravitational force acting down the plane. Using energy 

conservation with ∆ = ∆ + ∆ =E K U 0 where ∆ = − = −U m g h m g L    sin θ 

and ∆ =K m v
1

2
2 , leads to v g L= 2  sin θ . The velocity is directed parallel 

to the plane.

FIGURE 4.2 An object of mass m slides down an inclined plane of length L. Friction 

forces are taken to be negligible and, to a good approximation, mechanical energy is 

conserved in the object’s descent.
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The previous result for the velocity can be obtained using the constant acceler-

ation kinematic equations as shown in Exercise 3.5. However, the next exercise deals 

with an object travelling down a curved slide along which the force, and therefore 

the object’s acceleration parallel to the surface, change continuously as the object 

descends. The kinematic equations no longer apply in this case.

Exercise 4.4: An object of mass m slides down a smooth curved surface as 

shown in Figure 4.3. The top of the slide is at a height h above ground level. 

Determine the velocity of the object at the bottom of the slide. Assume that 

friction forces are negligibly small.

Mechanical energy conservation with ∆ = −∆K U gives v g h= 2 , which 

is the same result as given in Exercise 4.3. This agreement in the values for 

the velocities at the bottom of the quite different slide geometries comes about 

because the change in potential energy is the same in the two cases.

Note that the force on the object in the direction of motion at some point  

in its descent is F m g=  sinθ where θ is the angle that the tangent to the slide  

makes with the horizontal at the point, as can be inferred from Figure 4.3. In  

the inclined plane case, θ is constant, and therefore F  is constant, while in  

the curved slide case, F  decreases as θ decreases. The kinematic equations  

cannot be used to describe the motion of an object travelling down a curved  

slide because the acceleration is continually changing.

For situations in which the frictional forces between a sliding object and the sur-

face on which it slides are not negligible, it is important to recognize that mechanical 

energy is no longer conserved. Any work done by frictional forces must be taken into 

FIGURE 4.3 An object of mass m slides down a smooth curved slide starting from 

a position h above floor level. Friction forces are assumed to be very small, and the 

law of mechanical energy conservation holds to a good approximation for the moving 

object.
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account in describing such a motion as shown later in this chapter. More generally, 

it is necessary when dealing with the motion of objects produced by various forces 

to distinguish between conservative forces, such as the gravitational force, and 

non- conservative forces, such as friction. This distinction is made in the following 

section.

4.4  CONSERVATIVE AND NON- CONSERVATIVE FORCES

4.4.1  CONSERVATIVE FORCES

Conservative forces are distinguished from non- conservative forces as follows. The 

work done by a conservative force in moving an object from one point to another is 

independent of the path followed. In contrast, for non- conservative forces, the work 

done in moving an object does depend on the path followed. Examples of conserva-

tive forces are the gravitational force on a mass, and the force on a charged object 

produced by an electric field. Non- conservative forces include friction forces, which 

are involved in the relative motion of two surfaces in contact, and viscous drag forces, 

which act on an object moving through a fluid.

For conservative forces, the work done in moving an object around a closed path is 

zero, while for non- conservative forces, the work around a similar path is not zero and 

depends on the path followed. As a simple example of a closed path mechanical work 

process that involves a conservative force, consider the work done by gravity when an 

object of mass m is raised in the Earth’s gravitational field from floor level to a height 

h and then returned to its initial position. The work done by the downward gravi-

tational force along the upward path is W m g h
1

= −   . The minus sign is introduced 

because in evaluating the scalar product for the work done by gravity, W = ⋅ ∆F s
g

,
   

the displacement and the gravitational force are anti- parallel. Along the downward 

return path, the work done by the gravitational force is W m g h
2

=  since the force 

and the displacement are now parallel. The total work done by the gravitational force 

in the complete up- down process is W W W= + =
1 2

0. Note that the focus is on the 

work done by gravity, and no attention has been paid to the mechanism, or person, 

supplying the force to raise the object.

Exercise 4.5: Show that the work done by the gravitational force in a process 

in which a mass m is moved from one position to another in the Earth’s 

gravitational field is independent of the path followed and depends only on the 

vertical height difference between the initial and final positions.

It is convenient to introduce Cartesian coordinates as shown in Figure 4.4.   

In terms  of unit vectors, the downward gravitational force on the mass 

m is F k= −m g , while an elementary displacement vector has the form 

d d d dr = + +i j kx y z . The work done by the gravitational force is obtained 

by evaluating the integral 
i

f

∫ ⋅F dr  from the initial position i  to the final pos-

ition f  as follows:
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 W m g x y z m g z m g h h
if i

f

f i
  d  d  d  d  = − ⋅ + +( ) = − = − −( )∫ ∫i

f

k i j k  

In the integral, the only scalar product that is nonzero involves the unit 

vector k . It is apparent that the work done depends only on the vertical 

height change h h
f i

− , with the sign of W  dependent on the sign of the height 

difference.

Note that g is taken as constant in obtaining expressions for the work done in 

moving the mass m from one position to another. This assumption assumes that the 

object is never far from the surface of the Earth. In this type of process, it is con-

venient to choose zero energy arbitrarily to correspond to a reference level such as 

the laboratory floor or a bench top. A fundamental definition of zero potential energy 

is necessary in dealing with large separations between the masses. In these cases, it is 

then convenient to choose zero potential energy to correspond to infinite separation 

of the masses.

Exercise 4.6: Obtain an expression for the work done by gravity in 

bringing an object of mass m from a great distance (effectively infinity) to 

the surface of the Earth. Determine the work done if the object has a mass 

of 1000 kg.

Using Newton’s law of universal gravitation, the attractive force on the mass 

m at a distance r from the centre of the Earth is F r=






G M m

r

E

2
, where M

E
 is 

the mass of the Earth, G is the gravitational constant, and r  is a unit vector along 

the inward radial direction. The work done by the gravitational force is given by

FIGURE 4.4 The sketch shows the 2D trajectory of an object of mass m on which 

work is done in moving the object from its initial position to its final position.
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W F r G M m
r

r

G M m
r

R R R

R

= ⋅ = =

= − 





=

∞ ∞ ∞

∞

∫ ∫ ∫E E E

E

d  d  
d

 

 

 

E

E

F r cosθ
2

1
−−G M m R / 

E E

 

In evaluating the integral, the angle between F and dr  is θ = 0. For the 1000 kg 

object, the work done by gravity is 

W = −
× × × ×

×
= − ×

−6 67 10 5 97 10 1000

6 37 10
6 25 10

11 24

6

10
. .

.
. J.

Note that negative work is done by the gravitational force. The potential 

energy therefore decreases as r decreases. It follows that a large amount of 

energy would be required to overcome the Earth’s gravitational attraction and 

transport the mass back to a remote location far from the Earth.

It is useful to introduce the concept of the gravitational potential U r( ) associated 

with the gravitational field produced by a massive object such as a planet or the Sun. 

This concept is particularly important in dealing with the motion of objects in space, 

where the law of mechanical energy conservation holds as a very good approximation 

if small dissipative effects such as ocean tides are neglected. The gravitational poten-

tial at a distance r from a massive object is defined as the work done in transporting a 

test object of mass 1 kg from infinity to the point of interest. The zero of gravitational 

potential corresponds to the test object being located at infinity. The gravitational 

potential at a distance r from a mass M is thus given by

 U r G M
r

r
G M

r

G M

r

r
r

( ) = = − 





= −
∞

∞
∫

d
2

1
 (4.12)

Figure 4.5 shows a plot of the gravitational potential U r( ) versus r for the Earth’s 

field. Also shown is the corresponding kinetic energy K  of a free- falling 1 kg mass, 

which, using mechanical energy conservation, is equal in magnitude but opposite in 

sign to the potential energy. For very large r (approaching infinity), both U and K  

tend to zero.

While orbiting the Sun, meteoroids and asteroids may encounter a planet such 

as the Earth. Observations show that many small meteors, with masses of the 

order of kilograms, burn up in the Earth’s atmosphere, producing what are known 

as shooting stars at night. Asteroids with masses of thousands of kilograms can 

reach the Earth’s surface, giving rise to impact craters. The largest meteor event 

in recorded history involved the Tunguska meteor, which exploded over Siberia in 

1908. The energy of a meteor of this size corresponds to tens of megatons of tri-

nitrotoluene (TNT).
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The gravitational potential is a scalar quantity, and contributions to it from several  

masses can be simply added together. This procedure is easier than adding the gravita-

tional field vectors for a system of several masses. In general, the spatial variation of  

the gravitational potential U x y z, ,( ) in 3D can be used to obtain the gravitational field  

in a given direction by differentiating U x y z, ,( ) with respect to the corresponding  

spatial coordinate. A minus sign has to be inserted since the attractive gravitational  

field increases as the spatial coordinate decreases. For the two- body, case depicted in  

Figure 4.5, the gravitational field is given by

 F r
G

d

d
= −

( )U r

r
ˆ  (4.13)

The gravitational field is a vector quantity and is defined as the force per unit mass 

exerted on a test mass at a point of interest.

Exercise 4.7: Determine the gravitational potential at a point midway between 

the Earth and the Moon. Use U(r) to obtain an expression for the gravitational 

field at that point. The Earth’s mass is M
E
 = 5.972 × 1024 kg  and that of the 

Moon is M
M

 = 7.35 × 1024 kg . The Earth– Moon distance is R = 3.84 × 108 and   

G = 6.67 × 10–11 N m2/kg2.

The gravitational potential of the Earth– Moon system at a distance r from   

the Earth’s centre is U r G
M

r

M

R r
( ) = +

−






E M . For r R= /2, this becomes   

U R
G

R
M M/

E M
2

2( ) = +( ).

FIGURE 4.5 The gravitational potential U  in units of 107 J is shown as a function of distance 

from the Earth’s surface in terms of r R/
E
 where R

E
 is the Earth’s radius. Also shown is the 

kinetic energy K  (= −U) of a 1 kg mass approaching Earth from outer space. Small gravitational 

effects due to other objects far from Earth in the solar system are ignored.
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Substituting values gives 

 U R/
10

3.84 10
10 J 2

2 6 67
6 05 10 2 1

11

8

24 6( ) =
× ×

×
×( ) = ×

−.
. . .

Using Equation (4.13), the magnitude of the gravitational field is obtained from

 F r
U r

r
G

r

M

r

M

R r

GM

r

GM

R r
G

E M E M
d

d

d

d
( ) = −

( )
= − +

−






= −
−( )2 2

 

At the midway point, r R= /2, this becomes F R
G

R
M M

G E M
/2

4
2

( ) = −( ). This 

expression is consistent with the result obtained directly using Newton’s law 

of gravitation for the resultant force on a 1 kg mass produced by two massive 

bodies.

Exercise 4.8: A meteorite of mass m from deep space approaches the 

Earth.  Estimate the velocity of the meteorite when it enters the Earth’s 

atmosphere.

From Equation (4.12), the gravitational potential is given by U r
G M

r
( ) = −

 
E .  

Inserting r R=
E
 as an approximation, and the values for G and M

E
 from 

above, gives U R
E

 J( ) = − ×6 25 107.  as can be seen in Figure 4.5. The kinetic   

energy per unit mass is thus K R m
E

/ J ( ) = ×6 25 107. . Using K m v=
1

2
2  it 

follows that v R K R m
E E

/ 10 m/s ( ) = ( ) = ×2 1 1 4. . This is a very high speed of 

4 × 104 km/ h, in conventional units.

4.4.2 NON- CONSERVATIVE FORCES

In marked contrast to the path independence of the work done by conservative forces, the  

work done by non- conservative forces does depend on the path followed when moving  

an object from an initial position to a final position. Friction provides an important  

example of a non- conservative force. Friction arises when the surfaces of two objects  

are in contact, and an applied force acts on one object in an effort to move it across the  

surface of the other object as shown in Figure 4.6. The magnitude of a friction force,  

which acts to oppose the motion, depends on the materials involved and the nature  

of their surfaces. Key surface factors are roughness and the presence or absence of a  
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lubricating fluid between the surfaces. In discussing the work done by friction forces,  

it is implied that relative motion of an object in contact with another, possibly fixed,  

surface is occurring and that it is the dynamic friction force which is involved. The dis-

tinction between static and dynamic friction is dealt with in Section 4.5.

Since friction forces always act to oppose motion, it is clear that the work done 

against friction depends on the length of the path followed regardless of whether the 

path is a closed loop or not. At the atomic or molecular level, the interactions that give 

rise to friction forces are electrical in origin. It is very difficult to make quantitative 

predictions of friction forces based on microscopic models. An experiment- based, 

empirical approach involving what are called the laws of friction is generally used in 

describing friction effects. Further details are given in Section 4.5.

Other non- conservative forces include the viscous drag forces that arise when an 

object moves through a fluid. In projectile motion, for example, the air resistance drag 

force always opposes the motion regardless of whether an object is moving up, down 

or sideways in its path. This is in contrast to the conservative gravitational force, 

which always acts towards the centre of mass of the object producing the force. It is 

worth noting for future reference that viscous drag forces depend on the velocity of an 

object moving through a fluid and become larger and larger as the velocity increases. 

Since non- conservative forces oppose the motion of a moving object, no part of the 

work done by the applied force in moving along a closed path is negative. This is 

different from the conservative force case where the work done in the initial part of a 

closed trajectory is recovered in a later part of the motion.

4.5  MOTION WITH RETARDING FORCES

The motion of an object produced by a force, such as that due to gravity, may be 

impeded by a non- conservative retarding force. As mentioned above, examples of 

FIGURE 4.6 (a) Friction prevents the upper block of mass m from sliding. The static friction 

force F m g
s s

= µ  exactly counteracts the applied force F. (b) For F m g> µ
k

 the upper block 

slides over the lower block and the retarding friction force F
k
 is determined by the kinetic 

friction coefficient with F m g
k k

= µ . The downward weight m g  matches the upward reaction 

force R.
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retarding forces include friction between solid surfaces in contact and viscous drag on 

objects moving through fluids. The work done by a retarding force affects the motion 

and spoils mechanical energy conservation. While the total energy is conserved 

during motion, it is necessary to allow for the conversion of some mechanical energy 

into other forms of energy, particularly heat. The macroscopic features of friction and 

viscous drag forces are discussed in this section.

4.5.1  FRICTION

Experimental measurements have established what are called the laws of friction. It 

should be borne in mind that these are empirical laws in contrast to fundamental laws 

such as Newton’s laws of motion. Nevertheless, the laws of friction are very useful 

in dealing with the mechanics of objects which are acted on by frictional forces. As 

emphasized in Section 4.4, friction always opposes the relative motion of two objects 

that are in contact. The two laws of friction are stated as follows:

 • First law: The friction force opposing the motion of an object across a surface 

of another object is proportional to the reaction force between the two objects.

 • Second law: The friction force between two objects is independent of the area 

of contact.

It is also necessary to distinguish between static and dynamic friction. In static 

situations, the friction force, denoted F
s
, increases to match an applied force F  that 

is attempting to slide one object over another. The objects are in static equilibrium 

under the combined action of the two forces. When the applied force exceeds the 

limiting maximum value of the static friction force, then sliding motion occurs and it 

is the kinetic friction force, denoted F
k
, that now opposes the motion. F

k
 is, in general, 

smaller than the maximum value of F
s
.

From the first law of friction, it follows that F R
s s

≤ µ  where µ
s
 is defined as the 

dimensionless static friction coefficient and R is the reaction force. If the two surfaces 

in contact are horizontal, then R m g=  . When F R> µ
s

 the situation is altered, and 

F
s
 is replaced by the constant kinetic friction force F

k
 given by F R

k k
= µ  with µ

k
 the 

kinetic friction coefficient. Both µ
s
 and µ

k
 are typically less than unity, with µ µ

k s
< .   

Representative values are µ
s

= 0 6.  for aluminium on steel, while µ
k

= 0 9.  for rubber 

sliding on dry asphalt. Surfaces coated with polymers such as Teflon have very low 

friction coefficients.

Static friction is depicted in Figure 4.6(a) and kinetic friction in Figure 4.6(b). The 

lower block shown in Figure 4.6(b) is fixed while the upper block of mass m can move 

across the lower block.

Exercise 4.9: An aluminium block of mass 12 kg rests on a horizontal 

steel surface. Determine the maximum horizontal force that can be applied 

to the block before it starts to move. Obtain a value for the kinetic friction 

coefficient if the block continues to move at a steady speed following a 20% 
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reduction in the applied force after the block starts to slide. Take the static 

friction coefficient for the aluminium steel interface as µ
s

= 0 6. .

The maximum horizontal force that can be applied before the block 

slides is F m g
max s

N= = × × =µ 0 6 12 9 8 70 6. . . .

When the block slides at a constant speed, the applied force F  is equal to 

the kinetic friction force F
k
. This condition gives F F R m g= = =

k k k
 µ µ .   

Putting F F
k max

= ×0 8. = 56.5 N, it follows that the kinetic friction coefficient is 

µ
k

/= ×( ) =56 5 12 9 8 0 48. . . . Note that the ratio µ µ
k s

/ = 0 8. .

Exercise 4.10: If the steel surface in Exercise 4.9 is tilted at an angle θ to 

the horizontal, find the maximum angle θ
max

 that can be reached before the 

aluminium block starts to slide.

The three forces acting on the block are the weight W m g=   vertically 

downwards, the reaction force F m g
R

 = cosθ perpendicular to the steel plate, 

and the static friction force F m g
f s

 = µ θcos  acting up the plane as illustrated 

in Figure 4.7.

The component of the gravitational force acting down the plane is m g sin θ.  

The maximum angle θ
max

 that can be reached before the block starts to slide corres-

ponds to the magnitude of the friction force up the plane being equal to the compo-

nent of the weight down the plane, giving m g m g   
max s

sin cosθ µ θ− =
max

0 .   

This relationship gives tan .θ µ
max s

= = 0 6 , and hence θ
max

= °31 . Note that the  

friction force which acts up the plane decreases with increasing θ while the compo-

nent of the block’s weight down the plane increases.

FIGURE  4.7 The aluminium block is positioned on the inclined steel plane, which 

is canted at an angle θ to the horizontal, and it experiences a frictional force that 

opposes its downward motion along the plane. For θ θ>
max

, the aluminium block 

slides down the plane, and when θ θ=
max

 the forces on the block just balance so that 

m g m g   
max s max

sin cosθ µ θ− = 0.
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4.5.2 VISCOUS DRAG

An object moving through a classical fluid experiences a velocity- dependent 

viscous drag force that impedes the motion. A familiar example is the air resistance 

experienced when cycling or driving a fast car. In discussing viscous effects in fluids, 

it is again convenient to adopt an empirical approach based on experiment similar to 

the approach used in describing friction forces. The representative case considered 

here deals with air resistance to the motion of an object that falls through the Earth’s 

atmosphere.

The work W
if

 done by the drag force on an object in motion from an initial position 

i  to a final position f  depends on the speed of travel and path followed. Experiment 

shows that the drag force F
d
 acting on an object that is moving through air near the 

Earth’s surface is proportional to its speed v.This observation leads to the relationship 

F C v
d

=  where C is a proportionality constant with SI units of kg/ s. If the object of 

mass m is moving vertically downwards the net force F  in the direction of motion 

is given by F m g F m g C v= − = −
d

. The falling mass will increase its speed up to 

a terminal constant value v
t
, which is reached when the upward drag force matches 

the downward gravitational force. This condition means that m g C v  
t

=  and hence 

C m g v=  /
t
. Putting F m a=  leads to m a m g

v

v
  

t

= −






1  giving a g

v

v
= −







1

t

. This 

expression for a shows that the acceleration decreases steadily towards zero as v tends 

to v
t
. The magnitude of the terminal velocity depends on several factors, including the 

size and shape of the particular object and the altitude at which the observations are 

made. These factors are taken into account through the proportionality constant C .

Exercise 4.11:  An object drops from a height of 1000 m towards the Earth’s 

surface and experiences a viscous drag force as it falls through the air. Obtain an 

expression for the ratio of the velocity v to the terminal velocity v
t
 as a function 

of time. If the terminal velocity v
t
 is 28 m/ s how long will it take for the object to 

reach 90% of v
t 
?

Using the equation for the acceleration a g
v

v
= −







1

t

 given above and 

inserting a
dv

dt
=  gives the differential equation 

dv

dt
g

v

v
= −







1

t

. Rearranging 

and integrating leads to 
0 0

1

v tdv

v

v

g dt∫ ∫
−

=

t

, and hence − −






=v

v

v
g t

t
ln 1

t

 .  

expressiong antilogarithms this becomes 
v

v

g

v
t

t t

= − −






1 exp  which is the 

required expression.
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This exponential growth form determines how the speed of the 

falling object tends to v
t
. Inserting the given value for v

t
 leads to 

0 9 1
9 8

28
1 0 35. exp

.
exp .= − −





= − −( )t t . Solving for t shows that the time to

reach 90 % of the terminal velocity is 6.6 s. Figure 4.8 gives a plot of v v/
t
 versus 

t for the falling object.

4.6  ENERGY CONSERVATION AND NON- CONSERVATIVE   
FORCES

As discussed in Section 4.4, the law of mechanical energy conservation given in 

Equation (4.10) holds for systems in which a conservative force, such as the gravita-

tional force, produces motion of an object. Mechanical energy is not conserved when 

friction or some other non- conservative force is involved. To illustrate this point, 

consider a block moving under gravity down an inclined plane of length L, which 

makes an angle θ with the horizontal as discussed in Exercise 4.10. The work done by 

the component of the gravitational force down the plane is W m g L m g h
g

    = =sinθ  

while the negative work done by the friction force acting up the plane is given by 

W m g L m g h
f k k

     = − = −µ θ µ θcos cot . The change in kinetic energy, or the net 

work done by the combination of gravitational and frictional forces in moving the 

block down the plane is ∆ = − = −( )K W W m g h
g f k

  1 µ θcot . The change in the gravi-

tational potential energy is simply ∆ = =U W m g h
g

  . It follows that ∆ < ∆K U  with 

a fraction of the gravitational potential energy being converted into heat and not into 

kinetic energy of the sliding block.

FIGURE 4.8 The plot shows the time dependence of the ratio of the velocity v of a 

falling object, which is subject to air resistance, to its terminal velocity v
t
 (=  28 m/ s). The 

exponential growth curve illustrates how a falling body approaches its terminal velocity 

following its release from rest in the atmosphere above the Earth’s surface.
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A striking example of non- conservation of mechanical energy involves the 

sliding motion of an object at constant velocity down an inclined plane, which 

makes a carefully selected angle with the horizontal. Under the combined action of 

the conservative gravitational force component down the plane and the equal and 

opposite non- conservative kinetic friction force, which acts up the plane, the object 

moves at a steady speed once motion is started with a small push. No change in the 

kinetic energy of the object occurs and all the work done by gravity is converted 

into other forms of energy such as heat. While energy in all its forms is conserved, 

the mechanical energy, which is made up of potential energy and kinetic energy, 

is not. The general law of energy conservation for this type of process then has 

the form,

 ∆ = −∆ −K U W
f

 (4.14)

The magnitude of W
f
 and the minus sign are used in Equation (4.14) to emphasize that 

retarding forces such as friction do negative work on a moving object.

As emphasized above, the great importance of the law of mechanical energy 

conservation is its general applicability to objects in motion under the action of 

conservative forces. For example, it is easy to analyse the motion of an object 

which moves on a curved path along which potential energy is converted to kinetic 

energy. This feature is lost when non- conservative forces are involved. To illus-

trate the point, it is instructive to consider the motion of an object down a curved 

slide firstly with zero friction and secondly allowing for friction. This is done in 

Exercise 4.12.

Exercise 4.12: A curved slide is shaped in the form of a quadrant of a circle 

of radius R as shown in Figure 4.9. If a small object, represented by a block, is 

released from rest at the top of the slide find the object’s velocity at the bottom 

of the slide, firstly by ignoring friction, and secondly by allowing for kinetic 

friction.

In the case of zero friction, mechanical energy of the sliding object 

is conserved. The condition ∆ = ∆ + ∆ =E K U 0 leads to the relationship 

1

2
02m v m g R   − = . The speed of the object at the bottom of the slide is given 

by v g R= 2   along the horizontal direction. The change in kinetic energy is 

given by ∆ = =K m v m g R
1

2
2   .

When the friction force is non- zero, mechanical energy conservation no 

longer holds. With allowance for W
f
, the work done by the varying friction 

force, Equation (4.14) applies with ∆ = −∆ −K U W
f

. The determination of W
f
 

involves summing infinitesimal contributions d  d
f k

W m g L= −µ θcos  from a 

succession of intervals dL  down the slide. The angle θ is the angle that a tangent 
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to the curved slide makes with the horizontal direction at a given point. Putting 

d  dL R= − θ, and converting the sum to an integral, leads to

 
W m g R m g R m g R

f k k k
 d  = = [ ] = −∫µ θ θ µ θ µ

π π/ /
cos sin

2

0

2

0

 

As expected, W
f
 is negative. The change in kinetic energy is therefore 

∆ = = −( )K m v m g R
1

2
12   

k
µ  and the speed at the bottom of the slide is 

v g R= −( )2 1 
k

µ . This result shows that the final speed is reduced by a factor 

1−( )µ
k

 compared to the case of zero friction.

Note that the choice of shape, the quadrant of a circle, for the slide is 

made to simplify the integral. The point of this exercise is to demonstrate that 

calculations based on Equation (4.14) are, in general, not simple to carry out. 

Numerical methods may be necessary in such cases.

FIGURE 4.9 A small object of mass m moves down a curved slide, made in the form of 

a quadrant of a circle, and effectively falls through a vertical height h R= . The velocity 

at the bottom depends on a position dependent kinetic friction force which opposes the 

motion. It is assumed that the flexible object always makes good contact with the curved 

surface.
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5 Circular Motion

5.1  INTRODUCTION

Circular motion is concerned with the motion of objects which are subject to a cen-

tral force constraint. Examples include planetary motion about the Sun and satellite 

motion about the Earth. In these cases, the orbits may not be exactly circular but 

rather elliptical as discussed below. The perfectly circular motion of a mass which is 

attached by a cord to a support on a flat horizontal frictionless table provides an easily 

visualized model system for analysing this type of motion.

In dealing with the dynamics of circular motion of an object, it is necessary to 

introduce angular variables including angular velocity and angular acceleration. It is 

then straightforward to obtain the modified kinematic equations for constant angular 

acceleration situations. The introduction of the concept of angular momentum 

and the generalization of Newton’s laws to angular motion provides the basis for 

understanding the properties of rotating systems. The results obtained are of import-

ance in many branches of science and engineering.

5.2  ANGULAR VARIABLES FOR ROTATIONAL MOTION

In order to describe rotational motion, it is natural to introduce angular coordinates. 

Consider an object undergoing circular motion about a fixed point which is taken as 

the origin of a set of Cartesian axes. The object’s position is specified by the angle 

θ between a reference direction, which is labelled as a coordinate axis, and the line 

drawn from the centre of the circular path to the position of the object as illustrated 

in Figure 5.1. Note that θ is chosen to be the polar angle that the radius r makes with 

the y- axis. The angle is measured in radians, with 1 radian corresponding to the angle 

subtended by an arc of length equal to the radius of the object’s circular path. In 

degrees, 1 radian is .r r/2 360 57 3π( ) × =° °. In Figure 5.1, the angle θ = 1 radian would 

correspond to the arc length PQ being equal to the radius r. It follows that in general 

θ = s r/ with s the arc length PQ. The angular displacement over a time interval ∆t is 

given by ∆ = −θ θ θ
f i

 where θ
i
 and θ

f
 are the initial and final orientations, respectively. 

The arc length s traversed by the moving object is s r= ∆θ.
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The instantaneous angular velocity of an object executing circular motion is 

defined as ω
θ θ

= =
→

lim
∆

∆
∆t t t0

d

d
 and is measured in radians/ s. Note that radians are 

dimensionless. The instantaneous velocity of the object is given by v r
t

r= 





=
d

d

θ
ω  

and is represented by an arrow drawn as a tangent to the circular path at the point of 

interest. Similarly, the instantaneous angular acceleration is α
ω

=
d

dt
. For constant 

α, the circular motion is described by the rotational kinematic equations given in 

Section 5.3.

Exercise 5.1: A cyclist speeds around a circular cycle track of radius 60 m 

covering 20 laps in 10 minutes. Determine the average angular velocity and 

the average speed of the cyclist.

The average angular velocity is ω
θ π

=
∆
∆

=
×

=
t

20 2

600
0 21. rad/s. Note that radians  

are abbreviated as rad. The average speed is v r= = × =ω 0 21 60 12 6. . m/s .

5.3  ROTATIONAL KINEMATICS

The derivation of the kinematic equations for circular motion with constant angular 

acceleration α follows similar mathematical steps to those used to obtain the linear 

kinematic equations discussed in Chapter 2. Integration of the angular acceleration 

equation α
ω

=
d

dt
 after it is rewritten as d dω α= t  gives the first rotational kinematic 

equation:

 ω ω α= +
0

t  (5.1)

FIGURE 5.1 Coordinates r  and θ that are used to describe circular motion of an object about 

a fixed point at the origin O. The arc length of the segment PQ is given by s r= θ with θ in 

radians.

 

 

 

 

 

 

 

 

 



65Circular Motion

65

where ω
0
 is the angular velocity at t = 0. Integration of Equation (5.1) leads to the 

second rotational kinematic equation,

 θ ω α= +
0

2
1

2
t t  (5.2)

The third equation is obtained by squaring both sides of Equation (5.1), and then 

using Equation (5.2) multiplied by 2α  to eliminate t. This procedure results in the 

third kinematic equation,

 ω ω α θ2
0
2 2= +   (5.3)

The forms of the three rotational kinematic equations are similar to the linear kine-

matic equations, with α, ω and θ replacing a, v and x respectively.

Exercise 5.2: If the cyclist of Exercise 5.1 accelerates uniformly for 5 s and 

increases the angular velocity of the cycle by 0.05 rad/ s, what is the angular 

acceleration? What is the angular displacement in this period? What distance 

on the track does the cyclist cover while accelerating?

Rearranging Equation (5.1) leads to the following expression for the angular  
 

acceleration α ω ω= −( ) = =
0

20 05 5 0 01/ / rad/st . . . Equation (5.2) then gives  
 

the angular displacement during the 5 s period as θ ω α= + = ×
0

2
1

2
0 21.t t

5
1

2
0 01 25 1 17+ × × =. . rad. The distance covered while accelerating is    

s r= = × =θ 60 1 17 70 2. . m .

5.4  CENTRIPETAL ACCELERATION

An object in circular motion with constant angular velocity ω about a fixed centre 

point experiences constant acceleration towards the centre. While the magnitude of 

the velocity remains constant the direction of the velocity vector is continually chan-

ging. The constant acceleration is produced by a constant central attractive force such 

as the gravitational attraction experienced by an Earth satellite or the tension in a cord 

attached to a whirling object. The acceleration is called the centripetal acceleration. 

As shown below, the acceleration depends on the square of the angular velocity of the 

object and on the radius of the circular path.

Figure 5.2(a) depicts an object moving with angular velocity ω in a counterclock-

wise circular orbit of radius r about fixed centre point O. The arrows labelled v
a

 and 

v
b

, which are drawn as tangents to the circle at points a  and b , represent velocity 

vectors, each with length proportional to v r= ω , at two instants separated in time 

by ∆t , which is chosen to be small compared to the time T  taken for a complete orbit. 

The angular displacement of v
a

 with respect to v
b

 is θ ω= ∆t . The vector diagram 
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in Figure 5.2(b) shows that over the short time ∆t the velocity v
a

 is altered by the 

addition of a vector of magnitude ∆v v≈ θ, which is directed along the radial direction 

towards O, giving v
b

. The corresponding radial acceleration, directed towards O, is   

the centripetal acceleration with magnitude lima
v

t
v

t
v

C t
=

∆
∆

= =
∆ →0

d

d

θ
ω. Using v r= ω  

leads to the following relationship between a
C
 and ω

 a r
C

= ω2   (5.4)

Equation (5.4) is an important result in describing circular motion. Note that the rela-

tionship can be written in terms of the speed as a v r= 2 / .

The application of Equation (5.4) to the motion of satellites around the Earth, or 

to the orbits of planets around the Sun, involves using the gravitational force F
G
 and 

centripetal acceleration. While planetary orbits are in general elliptical, some of those 

orbits, including that of the Earth, are close to circular. These cases can be modelled 

by considering a small mass m executing circular motion around a large mass M in 

an orbit of radius r. Newton’s second law together with the law of universal gravita-

tion leads to F
G M m

r
m r

G
  = =

2

2ω . This result gives the following expression for the 

angular velocity:

 ω =
G M

r

 
3

 (5.5)

The time for a complete circular orbit of the satellite or planet is T = 2π ω/ .

FIGURE 5.2 (a) The circular path depicts an object undergoing circular motion with angular 

velocity ω. Instantaneous velocities v
a

 and v
b

 at points a  and b  are shown for times t  and    

t t+ ∆ . (b) The plot shows that vector addition of v
a

 and the incremental velocity change ∆v 

gives v
b

. The centripetal acceleration a v
C

t= ∆ ∆/  for ∆ →t 0 is directed towards O at the 

centre of the circle.
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Exercise 5.3: A satellite orbits the Earth at a low altitude of 250 km. Determine 

the angular velocity and the speed of the satellite. Take M
E
 = 5.97 × 1024 kg and 

R
E
 = 6.37 × 103 km.

Using Equation (5.5), the angular velocity is given by ω = =
G M

R

E

E
3

6 67 10 5 97 10

6 37 10
1 24 10

11 24

6
3

3
. .

.
.

×( ) × ×( )
×( )

= ×
−

− rad/s. The speed is v = ω R = (1.24 ×   

10–3) × (6.37 × 106) = 7.9 ×103 m/s.

A further discussion of Earth satellites is provided in Section 5.10.

5.5  ANGULAR MOMENTUM

While linear momentum is clearly not conserved for an object undergoing circular 

motion, because the velocity is continuously changing direction under the influence of 

a central force, there is a quantity called the angular momentum, which is conserved 

in this situation. For a mass m undergoing circular motion with radius r and constant 

tangential speed v about a central point O, the magnitude of the angular momentum 

about O, denoted by l, is taken as l m vr m r= = ω 2. Note that the vectors r  and v 

are perpendicular to one another. For reasons that will become clear, the angular 

momentum is defined as a vector quantity. In contrast to the linear momentum vector, 

p v= m , which changes with time in circular motion as the velocity changes direction, 

the angular momentum vector l is a constant of motion as discussed in Section 5.6.

The SI units for angular momentum are kg m2 s– 1 or, more conveniently for many 

purposes, J s. In macroscopic rotating systems, the angular momentum can take on a 

continuous distribution of values. This is no longer the case at the atomic scale where 

angular momentum is quantized in terms of Planck’s constant h = × −6 63 10 34. J s , 

leading to a discrete set of quantum states. The famous Bohr model of the atom, 

which involves quantization of angular momentum, can explain the spectroscopic 

feature of light emitted by hydrogen gas in a discharge tube. While this simple model 

breaks down for heavier atoms, the quantization ideas played a key role in the subse-

quent development of quantum mechanics.

It is useful to consider a generalized definition of l, which allows for situations in 

which the vectors v and r are not mutually perpendicular but subtend an angle θ as 

shown in Figure 5.3. This situation arises, for example, when the angular momentum is 

required about a point that is not at the centre of rotational motion. Note that in Figure 5.3 

the vectors are drawn so that their tails coincide. In the generalized definition of angular 

momentum about some chosen point, it is the component of v perpendicular to r that is 

important, and the magnitude of the angular momentum takes the form l m vr= sin θ. It 

follows that l increases from zero for θ = 0 to a maximum value m vr for θ π= /2.

Angular momentum exhibits vector properties that are quite different from those of  

the linear momentum p v= m  of a mass m moving with velocity v  in a fixed direc-

tion. In the case of angular momentum, it is necessary to consider the product of two  
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vectors. This is done using vector product notation and rules, which are introduced in  

the following section.

5.6  THE VECTOR PRODUCT AND ANGULAR MOMENTUM

As introduced in Chapter 2, the scalar product of two vectors a and b that subtend 

an angle θ is defined as a b⋅ = =c a bcosθ. This form gives a scalar result, which 

involves the product of the magnitude of the component of vector a projected onto b 

with the magnitude of b. The same result is obtained using the magnitude of the com-

ponent of b projected onto a with the magnitude of a. The scalar product is useful, 

for example, in calculating the work done by a force that displaces an object along a 

direction that is not parallel to the force.

The vector product, or cross product, of vectors a and b is defined as c a b= ×  where 

c  is a vector of magnitude a b sin θ oriented perpendicular to the plane containing a 

and b as shown in Figure 5.4. The magnitude is given by the perpendicular compo-

nent of a with respect to b multiplied by the magnitude of b. The vector product is 

useful in many situations and, in particular, when discussing angular momentum. The 

following rule, known as the right- hand rule, is used in establishing the direction of 

vector c . If the fingers of the right hand are curled in the rotation sense (clockwise 

or counterclockwise) in turning from a to b, then the direction of c  is given by the 

direction of the thumb. For the vectors a and b depicted in Figure 5.4, the fingers will 

curl counterclockwise (as indicated by the curved arrow) in rotating from a to b with 

the thumb pointing upwards. The resultant vector c  is aligned along the +z direction. 

Interchanging the order of vectors in the vector product would change the sense in 

which the fingers of the right- hand curl, from counterclockwise to clockwise, with the 

thumb pointing downwards. It is convenient to introduce the cross- products of the unit 

vectors in 3D. Using the definition of the cross- product gives i i j j k k× = × = × = 0 

with i j k× = , j k i× = , and k i j× = . In Figure 5.4, the vectors can be written in terms 
of components as a i j= +a a

x y
, b = +b b

x y
i j , and c k= c

z
.

FIGURE 5.3 The angular momentum of mass m about point P is l m vr= sinθ and is 

represented by a vector directed perpendicular to the plane containing the position and 

momentum vectors r and p.
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Using vector product notation, the angular momentum of an object of mass m  

undergoing circular motion with speed v and radius r is given by

 l r v r p= × = × = ( ) = =m mr v m r v m rsinθ ωn n n       2  (5.6)

In Equation (5.6), n  is a unit vector normal to the rv- plane with direction given 

by the right- hand rule. The angle θ π= /2, since the vectors r  and v are orthogonal as 

shown in Figure 5.5. Equation (5.6) can be written as l = mr2 ω  with the angular 

momentum vector l and angular velocity vector ω aligned parallel to the axis of 

rotation and perpendicular to the plane of motion. The tails of l and ω coincide 

with the tail of r .

Equation (5.6) shows that the angular momentum l  is proportional to the 

angular velocity ω since v r= ω . In dealing with the rotational motion of objects, 

it is useful to introduce a quantity I  called the moment of inertia. For a system 

consisting of a mass m at radial distance r  from the axis of rotation I mr= 2. Like 

the mass of an object, the moment of inertia is a scalar quantity and is essential 

for discussing rigid body dynamics as will be shown in Chapter 6. For a system 

of several particles i  with masses m
i
 at positions r

i
 with respect to some reference 

point, such as the selected origin, the moment of inertia is defined as I m r
i i

= ∑ 2 .   

For continuous systems, the summation is replaced by an integral over volume 

elements in the object of interest. As shown in Section 5.7, the moment of inertia 

plays a crucial role in modifying Newton’s second law to apply to rotational 

dynamics.

With the introduction of I, Equation (5.6) for the angular momentum becomes 

l = =mr I2 ˆ ˆω ωn n . Just as the linear velocity v is a vector, so too is the angular 

velocity ω = ω n̂ , which, like the angular momentum l, is directed along the axis of 

rotation. The vector product relationship v r= ×ω  links v and ω.

FIGURE 5.4 The vector product of vectors a and b is defined as a b c× =  with resultant vector 

c  oriented perpendicular to the xy- plane containing a and b. Vector c is directed according to 

the right- hand rule as described in the text. The tails of the vectors are made to coincide.
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5.7  NEWTON’S SECOND LAW FOR ROTATIONAL MOTION

Newton’s second law F a= =
d

d

p

t
m  for linear motion of an object of mass m relates 

the rate of change of linear momentum p v= m  to an applied force F. A similar 

relationship holds for the angular momentum l with the second law expressed as 

Γ = = =
d

dt
I

d

dt
I

l ω
α where Γ is the torque producing the change in l, ω is the angular 

velocity, α is the angular acceleration, and I is the moment of inertia as defined in 

Section 5.6. Justification for this modified form of Newtons’ second law, Γ = I α, is 

given below.

Consider a simple system consisting of an object of mass m attached to a pivot 

by a very light rod, of length r and negligible mass. The object is caused to undergo 

circular motion about the pivot. In order to change the angular momentum of the 

rotating mass, it is necessary that a rotating force, called a torque, be applied to 

the mass itself or to a point on the rod or in some other way involving the pivot. 

Experience shows that a rotating force becomes most effective when, firstly, the 

point of application is moved outwards from the pivot towards the mass and, sec-

ondly, the force is kept perpendicular to the rod. This suggests that the torque vector 

be defined as Γ= × = ( )r F r F sin φ n  with φ the angle subtended by vectors r  and F.  

The torque is a maximum for φ π= /2 when r  is perpendicular to F. The right- hand 

rule then shows that the torque vector is aligned along the rotation axis. As indicated 

above, a convenient way to apply such a torque for this simple mass- rod system is 

to attach the radial light rod to a vertical drive shaft, which can be caused to rotate 

by a drive mechanism. Ideally, the drive mechanism should be capable of being 

decoupled when necessary to allow free rotation of the mass and rod with constant 

angular velocity.

The considerations given above for a system consisting of a mass attached by a 

light rod to a pivot suggest that for rotational motion Newton’s second law should be 

FIGURE 5.5 The angular momentum l of an object of mass m moving with constant speed v 

in a circular trajectory about a fixed point is given by the vector product l r p r v= × = ×m . If 

r and p are in the xy- plane, as illustrated, then the angular momentum vector is directed along 

z, which points upwards out of the page.
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modified by replacing the force F by the torque Γ = ×r F, and the linear momentum 

p by the angular momentum l r p= × . This procedure gives Newton’s second law for 

rotational motion as

 Γ
ω

= = =
d

d

d

d

l

t
I

t
I α  (5.7)

This generalization of Newton’s second law is of fundamental importance in 

considering the dynamics of rigid bodies, as discussed in Chapter 6.

Note that if opposing torques of equal magnitude are applied to a body that can 

undergo rotational motion, then no motion will occur. The system remains in static 

equilibrium.

Exercise 5.4: An object of mass 2 kg is attached by a rod of negligible mass 

and length 50 cm to a central pivot. The mass is supported by a low- friction 

horizontal air table and is caused to undergo circular motion. If the mass makes 

20 revolutions per minute, what is the central force exerted by the rod on the 

mass? If a torque of 10 N m is applied to the system via a vertical shaft aligned 

along the axis of rotation, how long will it take to double the angular velocity 

of the rotating mass?

Initially the time for one revolution is T = =60 20 3/ s and the angular vel-

ocity is ω π π= = =2 2 3 2 09/ / rad/sT . . The acceleration towards the centre of 

rotation is a r
C

= = × =ω2 2 22 09 0 5 2 18. . . m/s . The central force exerted by the 

light rod on the rotating mass is F m a
C

= = × =2 2 18 4 36. . N.

The moment of inertia of the rotating mass- rod system about the rota-

tion axis is I mr= = × =2 22 0 25 0 5. . kgm . The angular acceleration is 

α = = =Γ / / rad/sI 10 0 5 20 2. . From the first rotational kinematic equation, 

ω ω α= +
0

 t as given in Equation (5.1), it follows that the time taken for the 

angular velocity to double is t = −( ) = =ω ω α
0

2 09 20 0 1/ / s. . .

5.8  ROTATIONAL KINETIC ENERGY

By adapting the expression for the kinetic energy of a mass m undergoing linear 

motion, as given in Chapter 4, the kinetic energy of a mass m undergoing circular 

motion with angular velocity ω and radius r is written as

 K m v m r I= = =
1

2

1

2

1

2
2 2 2 2ω ω  (5.8)

with I mr= 2 the moment of inertia about the rotation axis as given in Section 5.4. The 

angular velocity of the object can be increased by applying a torque that does work 

on the system. If friction effects are negligible, the work done by the applied torque 
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in increasing the angular velocity from ω
i
 to ω

f
 is equal to the change in the kinetic 

energy, giving

 ∆ = = −( )K W I
1

2
2 2ω ω
f i

 (5.9)

It is now necessary to obtain an expression for W  in order to connect the applied 

torque to the corresponding change in K . In the case of a linear displacement, the 

work done by an applied force F  in moving its point of application through a dis-

tance δx parallel to the force is given by F xδ . The expression for the work done by 

a torque involves the angular displacement it produces. Consider the simple rotating 

system consisting of a mass undergoing circular motion, as dealt with previously in 

Section 5.7. The work δW  done by torque Γ in producing an angular displacement δθ 

of the mass is δ δθW = Γ . This result is obtained as follows. Consider a force F  acting 

on the mass at some point in its circular orbit. The tangential component of F  in the 

plane of motion, designated F⊥ since it acts perpendicular to the radius r, does work 

δ δθ δθ φ δθ δθW F r r F= = ×( ) ⋅ = ( ) =⊥ sinr F n Γ  where, as an approximation, it is 

assumed that for small δθ the orbital displacement r δθ is approximately linear. The 

angle φ π= /2 since r and F are perpendicular to one another. The total work W  done 

by a constant torque Γ in a large angular displacement is obtained by summing the 

elementary contributions δW . Converting the sum to an integral gives the required 

result,

 W = = −( ) = ∆∫ θ

θ

θ θ θ θ
i

f

d
f i

Γ Γ Γ  (5.10)

Taken together, the expressions for W  given in Equations (5.9) and (5.10) lead to the 

following relationship:

 W I= ∆ = −( )Γ θ ω ω
1

2
2 2
f i  (5.11)

For a mass undergoing circular motion, Equation (5.11) relates the work done by an 

applied torque to the change in kinetic energy ∆K  expressed in terms of the moment 

of inertia and the change in the square of the angular velocity.

Exercise 5.5: A mass of 8 kg, which is attached by a light rod of length 

60 cm to a central pivot, executes circular motion on a horizontal low friction 

air table at 45 revolutions per minute (rpm). If a braking torque of 0.4 N m is 

applied to stop the motion, how many revolutions will it take for the mass to 

come to rest?

From Equation (5.11), the angular displacement which occurs during the 

braking period is given by ∆ =
( )

θ
ωI

i
2

2Γ
. Note that a sign change has been 
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made because the applied torque slows the rotational motion. The moment 

of inertia is I mr= = × =. .2 2 28 0 6 2 88 kgm , and the initial angular vel-

ocity is ω
π

i
=

×( )
=

45 2

60
4 71. rad/s. Substitution of these values for I and   

ω
i
 into the previous expression for the angular displacement gives 

∆ =
×

×
=θ

2 88 7 34

2 0 4
26 4

. .

.
. rad , or 4.2 revolutions.

Many of the results obtained for a small object of mass m undergoing circular 

motion can be generalized to the rotation of large rigid bodies which are regarded as 

collections of elementary masses. The concepts of angular displacement, angular vel-

ocity, angular acceleration, torque, and moment of inertia are readily extended to the 

pivoted motion of large objects. Chapter 6 deals with rigid body dynamics.

5.9  PLANETARY MOTION AND KEPLER’S LAWS

The Earth orbits the Sun along a path that is close to circular but is actually slightly 

elliptical. The law of universal gravitation was used by Newton to explain the 

orbital motion of the Earth and the other planets about the Sun in mathematical 

terms following the establishment of details of the trajectories by Johannes Kepler 

in the seventeenth century. Kepler’s analysis of Tycho Brahe’s careful astronomical 

observations led him to summarize his findings on planetary orbits in three famous 

laws which are stated below.

 • Kepler’s first law: The planets follow elliptic orbits about the Sun with the 

Sun at a focal point.

 • Kepler’s second law: A line from the Sun to a planet sweeps out equal areas in 

equal times.

 • Kepler’s third law: The square of a planet’s orbital period is proportional to the 

cube of the semi- major axis of its elliptic path.

Figure 5.6 shows a representative elliptic orbit with two focal points, labelled F
1
 and 

F
2
, and the Sun located at F

1
.

The form of an elliptic orbit is determined by a quantity called the eccentricity, 

which is defined as ε = −a b a2 2 /  with a the length of the semi- major axis and b that 

of the semi- minor axis. If b a= , then ε = 0 and the orbit is circular. Otherwise, elliptic 

orbits have b a< , and ε > 0 with a maximum value of unity. The orbit in Figure 5.6 

has ε = 0 63. . Only two of the eight planets in the solar system, Mercury with ε = 0 2.  

and Mars with ε = 0 09. , have eccentricities greater than 0.06. Venus, ε = 0 01. , and 

Earth, ε = 0 02. , both have very low eccentricities. Interestingly, the almost circular 

orbits of the planets lie roughly in the same plane called the ecliptic plane. This fea-

ture suggests that the planets were formed from a disk of material that originally 

encircled the Sun.
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Kepler’s first and third laws are a direct result of the inverse square law of gravita-

tion. With regard to the first law, it can be shown that there are four different trajec-

tories which can arise when an object of mass m is in motion in the gravitational field  

produced by a very large mass M. These possible trajectories are circular, elliptic,  

parabolic, and hyperbolic. Only the circular and elliptic orbits are closed. Parabolic  

and hyperbolic trajectories correspond to the deflection of a high energy object which  

then heads off into deep space.

For circular orbits, it is straightforward to show that Kepler’s third law can be 

explained by using Newton’s second law of motion together with the law of uni-

versal gravitation. Although it is convenient to assume that the planet’s orbit is cir-

cular in order to simplify the analysis, Kepler’s third law applies quite generally to all 

closed orbits. From Equation (5.4), the centripetal acceleration for a circular motion 

of radius r is a r
T

r= − = 





ω
π

2

2
2

 where T is the orbital period. Newton’s second 

law gives 
G M m

r
m

T
r

2

2
2

= 





π
 and it follows that

 T
G M

r2
2

3
4

=
π

 (5.12)

This is the required result to justify Kepler’s third law.

The area of the triangle that is swept out in a time δt by a line of length r connecting 

an orbiting planet to the Sun at focal point F
1
, as shown in Figure 5.6, is given by 

δ θ δA r v t= ( )1

2
sin . Since the instantaneous linear momentum is p m v= , the rate at 

which area is swept out can be written as follows:

 
δ

δ

θA

t

r p

m m
= = ×

1

2

1

2

sin
r p  

FIGURE 5.6 A representative elliptical planetary orbit with the Sun located at the focal point   

F
1
. Apart from the planet Mercury, the orbits of the planets in the solar system are close to 

circular and only slightly elliptical.
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Using the expression for the angular momentum l  given in Equation (5.6) leads 

to the relationship

 
δ

δ

A

t

l

m
=

2
 (5.13)

Since the gravitational force acts along r towards the Sun, there is no torque to change 

the angular momentum of the planet about the Sun. The right- hand side of Equation 

(5.13) is therefore constant, showing that 
δ

δ

A

t
 is constant as required by Kepler’s 

second law. Newton’s explanation of Kepler’s laws of planetary motion using the 

gravitational inverse square law also applies to the orbital motion of both satellites 

and the Moon about the Earth. Newton could offer no explanation for the underlying 

mechanism, which gives rise to this inverse square law involving interaction at a dis-

tance between objects with mass. The law is introduced as a requirement to account 

for experimental observations. In the early twentieth century, Albert Einstein put for-

ward his general relativity theory, which provides a deeper insight into gravitational 

phenomena. For example, general relativity predicts the existence of gravitational 

waves, which travel at the speed of light and can arise from the interaction of massive 

bodies including neutron stars or black holes. These waves were first observed in 

2015 using extremely sensitive detectors. The detected waves had travelled a dis-

tance of 1.4 billion light years to reach the Earth and were attributed to the merging 

of two black holes with masses of around 30 and 35 solar masses. Gravitational wave 

detection has opened up a new field of astronomy. The law of universal gravitation 

used by Newton is obtained as a prediction of Einstein’s general relativity theory for 

applications involving interactions between well- separated massive objects such as 

those in the solar system. The amplitudes of the gravitational waves emitted by these 

interactions are much too small to be detected by the most sensitive detectors that 

have been constructed.

5.10  SATELLITE ORBITS

The gravitational interaction plays a central role in describing the structure of the 

universe. Each galaxy has a massive black hole at its centre, around which stars orbit. 

For example, the Sun in our Milky Way galaxy is 25 × 103 light years from the galaxy 

centre and takes 250 × 106 years to complete an orbit. On a more modest scale, the 

motion of the Sun’s planets, including the Earth plus its satellites, are well described 

by Newton’s law of universal gravitation. Important examples of the Earth’s satellites are 

the International Space Station, the Hubble Space Telescope, and navigation and wea-

ther satellites. The James Webb infrared telescope, which released its first images in 

2022, has opened up new opportunities for deep space astronomy. The trajectories of 

Earth- orbiting satellites are in many cases close to circular and have altitudes h above 

the Earth’s surface ranging from low- Earth orbit h <( )2000 km , through medium- 

Earth orbit 2000 36 000< <( )h , km , to high- Earth orbit h >( )36 000,  km . Illustrative 

examples are given below. While satellite orbits may not be circular, and some are 
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markedly elliptical, it will, for simplicity, be assumed that the orbits are to a good 

approximation circular.

Exercise 5.6: A geosynchronous weather satellite orbits the Earth once per 

day keeping its position directly above a chosen place on the Earth’s surface. 

What is the radius R of the satellites circular orbit? Determine the angular 

velocity of the satellite. Take G = 6.67 × 10–11 N m2/kg2 and M
E
 = 5.97 × 1024 kg.

The universal gravitation law, together with Newton’s second law for a mass 

m undergoing circular motion about the Earth, leads to the expression given 

in Equation (5.12), which here takes the form T
G M

R2
2

3
4

=
π

E

, where T is the 

orbital period and M
E
 is the Earth’s mass. Rearranging gives

 R
G M

T3

2

2
11 24

2

4

6 67 10 5 97 10

39 48
24 3600 7 5= =

× × ×





× × =
−

E

π

. .

.
( ) . ××1022 3m  

The radius measured to the centre of the Earth is thus R = ×4 22 4. 10 km. 

Allowing for the Earth’s radius R
E

km= 6370  gives the geosynchronous alti-

tude above the Earth’s surface as roughly 36 × 103 km. The angular velocity of 

the satellite is ω
π π

= = 





=
×

= × −v R
R

T
R/ / 10 rad/s

2 2

24 3600
7 27 5. .

Exercise 5.7: The International Space Station is in a low Earth orbit with a 

radius that can be approximated by the Earth’s radius. Determine the orbital 

period of the Space Station.

Inserting numbers into Kepler’s third law expression, T
G M

R2
2

3
4

=
π

E

, gives

T 2

11 24

6
3

7 2
39 48

6 67 10 5 97 10
6 37 10 2 56 10=

× × ×






× ×( ) = ×
−

.

. .
. .  s

The Space Station’s orbital period is T = =5060 84s minutes .

Note that for all the Earth’s satellites, the quantity 
4

9 90 10
2

14 2 3
π

G M
E

s /m= × −.  is a con-

stant whose value is determined by the mass of the Earth, M
E
, and the gravitational 

constant, G.

Most of the Earth’s satellites are in low-Earth orbit, while weather satellites and 

global position satellites are in medium-Earth orbit. The Moon, which is a natural 

high-Earth orbit satellite, with an average orbit radius R
M

km= ×3 85 105. , has a 
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period T
M

days= 28 . It should be noted that the Earth and a satellite orbit about their 

common centre of mass, which for comparatively low- mass artificial satellites is 

very close to the centre of mass of the Earth. This closeness no longer holds for the 

orbiting Moon, which has a mass roughly one- hundredth that of the Earth. For the 

Earth-Moon system, the centre of mass is about 4670 km (~ .0 73 R
E
) from the Earth’s 

centre. The centre of mass concept for extended objects is discussed in Chapter 6.
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Rigid Body Motion

6.1  INTRODUCTION

The development of a physical understanding of the rotational motion of extended 

objects such as wheels, rollers, and gears, is of considerable practical importance. 

While it might seem that the variety of shapes and sizes of rigid bodies would lead to 

complexity in analysing their rotational dynamics, it is possible to give a generalized 

description in terms of the unifying concepts that are introduced in Chapter 5 for 

dealing with the circular motion of a localized mass subject to a central force. For 

example, the concepts of angular displacement and angular velocity of the many 

elementary pieces that make up a rigid body play a central role in the description of 

the rotational motion of such bodies.

In dealing with rigid body motion, it is instructive, as a starting point, to consider 

the conditions for these objects to be stationary in a particular frame of reference as 

discussed in Section 6.2. It is then necessary to define both the centre of mass and 

the moment of inertia for these bodies. Generalization of Newton’s second law to the 

translational and rotational motion of extended objects, together with the concepts of 

work and kinetic energy for rotating systems, provides the basis for dealing with a 

large variety of situations, including the spinning of disks and the rolling motion of 

cylinders.

6.2  EQUILIBRIUM CONDITIONS

Consider a rigid body that is acted on by a combination of external forces F
i
 and 

torques Γ
i
. If the object is at rest in a chosen frame of reference, the following two 

static equilibrium conditions must hold in that frame: 
i

i∑ =F 0 and 
i

i∑ =Γ 0, where 

the summations signify the vector sums of forces and torques, respectively. While 

internal forces, due to interactions between the constituent atoms, are present at 

the microscopic level in the material of the body, these forces obey Newton’s third 

law and cancel in pairs. Internal forces therefore play no role in the macroscopic 

translational or rotational motion of a rigid body. If one, or both, of the equilibrium 

conditions are not met, the body will execute translational and/ or rotational motion as 

given by Newton’s second law.

6
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As a simple illustrative example of static equilibrium, consider a uniform rod 

which is stationary on a horizontal surface situated near the Earth’s surface, with the 

downward gravitational weight force matched by an equal and opposite upward reac-

tion force from the tabletop. If a horizontal force F is applied at the midpoint of the 

rod, it will start to move unless an equal and opposite force is applied to match the 

force F. Alternatively, two opposing forces of magnitude F/2 could be applied near 

the two ends of the rod, which would also balance both the torques and the forces on 

the rod. Many other equilibrium arrangements could be considered, as discussed in 

detail in Section 6.7.

6.3  CENTRE OF MASS AND CENTRE OF GRAVITY

Tracking the motion of the centres of mass of rigid bodies in motion is important in 

developing an understanding of the dynamics of extended objects. For example, when 

considering the motion of a satellite in orbit around the Earth, it is necessary to grasp 

that the motion of the two bodies occurs about their common centre of mass. Because 

the Earth’s mass is so much larger than that of a satellite, the centre of mass is close to 

the centre of the Earth, but not exactly at its centre. This situation is discussed in Section 

6.3.1. A related concept to that of centre of mass is that of centre of gravity, which involves 

the torques on a rigid body situated, for example, in the Earth’s gravitational field. If the 

gravitational field is uniform, then the centre of mass and the centre of gravity coincide.

6.3.1 CENTRE OF MASS

In introducing the centre of mass, it is convenient to consider firstly a set of discrete 

masses m
i
, where i = 1,2,3,, with position vectors r

i
 in 3D space. Denoting the pos-

ition of the centre of mass in a chosen coordinate system by r
CM

, and requiring that 

the discrete masses be distributed about the centre of mass according to the condition 

i
i i

m∑ −( ) =r r 0
CM

, gives 
i

i i i
m m∑ − ∑ = 

CM
r r 0, and hence

 r r
CM

 = ∑1

M
m

i
i i

 (6.1)

where M m
i

i
= ∑  is the total mass of the system.

Consider two masses m
1
 and m

2
, with m m

2 1
>  and their centres separated by a 

distance L as illustrated in Figure 6.1. The vector r  joins the centre of mass 1 to the 

centre of mass 2.

By symmetry, the centre of mass lies on the direction of r . The origin is chosen to 

be at the midpoint, a distance L /2 from each mass, with the centre of mass at r
CM

. The 

use of Equation (6.1) gives the position of the centre of mass as

 r

m L m L

m m

m m

m m

L
CM

=
− +





+( ) =
−( )
+( )

1

2

1

2

2

1 2

1 2

2 1

1 2

 (6.2)
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If m m
1 2

= , then r
CM

= 0 and the centre of mass is at the origin, midway between the  

two masses. For m m
2 1
 , Equation (6.2) shows that r L

CM
/≈ 2 which is close to, or  

even inside, the large mass m
2
 as expected. In general, it follows that the centre of  

mass lies in the range given by 0 2≤ ≤r L
CM

/ . Note that the choice of origin position  

is arbitrary, and equivalent expressions to those given above for r
CM

 can be obtained  

using other origin locations.

For continuous mass distributions, it is necessary to replace the summation in 

Equation (6.1) by an integral over the volume of the rigid body involved. Equation 

(6.1) becomes

 r r r
CM

  d= ( )∫
1

M
V

V

ρ  (6.3)

where ρ r( ) dV  is a mass element at r  with volume dV  and local mass density ρ r( )
. For homogeneous materials, ρ ρr( ) = = M V/  is a constant characteristic of the 

material. Equation (6.3) then takes the form

 r r
CM

 d= ∫
1

V
V

V

 (6.4)

In 3D Cartesian coordinates, d d  d  dV x y z= , and the integral becomes a triple integral over 

x, y, and z. The position of the centre of mass is given by r i j k
CM CM CM CM

   = + +x y z .   

Use of Cartesian coordinates in Equation (6.4) leads to the integral for x
CM

 as

 x
V

x x y z
CM

 d  d  d= ∫∫∫
1

 (6.5)

Similar integrals are obtained for y
CM

 and z
CM

. The upper and lower limits in each 

integral are connected to the corresponding dimensions of the body.

FIGURE 6.1 The position of the centre of mass for the two masses m
1
 and m

2
 whose centres 

are separated by a distance L  is given by Equation (6.2).
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Exercise 6.1: Determine the position of the centre of mass of a solid cube of 

edge length L using Cartesian coordinates to specify the shape.

The volume of the cube is V L= 3. Equation (6.5), with 
0 0

2

L L

y z L∫∫ =d  d , 

gives x
L

V
x x

L

L

L L
L

CM
 d= = × 





=∫
2

0

2

3

2

2 2
.

This result shows that the centre of mass is at the midpoint along x. In similar 

fashion y z L
CM CM

/= = 2 and it follows that the centre of mass is located at the 

geometrical centre of the cube.

For symmetrical objects such as spheres, cylinders, and parallelepipeds, it is pos-

sible to use symmetry properties to determine the position of the centre of mass. 

For example, the centre of mass of a sphere is at the geometrical centre of the 

sphere.

6.3.2 CENTRE OF GRAVITY

As the name implies, the centre of gravity concept is concerned with a system of 

masses on which gravitational forces act. The total downward force acts through 

the centre of gravity of the system, as discussed below. In effect, the total mass 

is located at the centre of gravity. In equilibrium, the upward reaction force, 

provided by a support of some type, acts to match the downward gravitational 

force. It is necessary to allow for clockwise and counterclockwise torques about 

the centre of gravity, and in equilibrium these must also sum to zero. Note that 

if the gravitational field is uniform over the system of masses, then the centre of 

mass and the centre of gravity coincide. This result is readily obtained for a model 

system of two masses, and follows quite generally for larger systems, which are 

viewed as collections of pairs of masses.

Consider again the two masses m
1
 and m

2
, with m m

2 1
> , connected by a very light 

but rigid rod of length R and suspended on a movable support in the Earth’s gravita-

tional field as illustrated in Figure 6.2. It is convenient to choose the x- axis to lie along 

the line joining the two masses with the origin located at the midpoint. Mass m
1
 
is at 

−R/2 and mass m
2
 is at R/2. In equilibrium, the reaction force F m m g

R
= +( )1 2  

acts 

upwards through the pivot located at r
CG

. Balancing clockwise and counterclockwise 

torques gives − + − +( ) =
1

2

1

2
0

1 2 1 2
m g R m g R m m g r     

CG
 and it follows that

 r
m m

m m

R
CG

=
−( )
+( )

2 1

1 2
2

 (6.6)
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Note that for m m
2 1
 , the centre of gravity is found at r R

CG
/≈ 2, very close to m

2
.   

The expressions obtained for r
CG

 in Equation (6.6) and for r
CM

 in Equation (6.2)  

are identical, showing that the centre of mass and the centre of gravity coincide as  

expected since the Earth’s gravitational field is locally uniform.

The selected origin can be situated at any point in the vicinity of the two masses 

when determining the position of the centre of gravity. As an illustration of this point, 

the origin is shifted to coincide with mass m
1
 at −R/2. In this case, the sum of torques 

expression becomes m R g m m r g
2 1 2

0   
CG

− +( ) = , and this gives r
m

m m
R

CG
=

+( )
2

1 2

. 

For m m
1 2

=  the centre of gravity is at R/2, while in the limit m m
2 1
  the centre of 

gravity is close to m
2
 with r R

CG
≈ .

In order to determine the centre of gravity of an arbitrarily shaped rigid body, it is 

necessary to consider dimensions higher than 1D and to integrate over a distribution 

of volume elements each of which contributes a mass dm V= ρ d  to the total mass of 

the object. Assuming that the density ρ is constant over the volume of the object, the 

procedure is essentially similar to that used above for discrete masses. The location 

of a given volume element is specified by its position vector r referred to the origin of 

a 3D set of coordinates, with the centre of gravity given by

 r r
CG

 d= ∫
ρ

M
V

V

 (6.7)

Equation (6.7) is equivalent to Equation (6.4) for the centre of mass since the gravi-

tational field is assumed to be uniform over the volume of the rigid body and the two 

centres therefore coincide.

FIGURE 6.2 Equilibrium of two masses m
1
 and m

2
 connected by a light rod of length R 

which rests on a support. The support is located at the centre of gravity, a distance rCM from the 

rod midpoint at 0.
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6.4  TRANSLATIONAL AND ROTATIONAL MOTION

The equations governing the linear translational dynamics of a rigid body are essen-

tially the same as those for a single particle or a small object of mass m. As pointed 

out in Section 6.3, a solid object is viewed as a collection of elements of volume dV  

and mass ρ dV .The density ρ is assumed constant over the volume of a homogeneous 

material. The total mass M is given by the integral M V
V

= ∫ρ d  carried out over the 

volume of the object. For a body in linear motion, all the volume elements have the 

same velocity v, and the total momentum is given by p v= M  . Newton’s second law 

is expressed as F a= =
d

d
 

p

t
M , where F is the force acting on a body and a is the 

body’s acceleration. In collision processes involving the transfer of linear momentum 

between objects, the objects behave as point masses located at their centres of mass.

6.4.1 MOMENT OF INERTIA

The rotational motion of a rigid body involves several of the concepts introduced in 

Chapter 5 when describing the circular motion of a mass m subject to a central force. 

This correspondence of basic concepts can be understood by considering the motion 

of small volume elements in a rigid body, which is rotating about a fixed axis. All 

the volume elements, labelled i, execute a circular motion with radius r
i
 given by the 

distance of the element from the axis of rotation. The angular displacement ∆θ is 

the same for all the elements. Similarly, the angular velocity ω
θ

=
d

dt
 and the angular 

acceleration α
ω

=
d

dt
 have common values for all the elements. The concepts of 

moment of inertia I m r=  2, angular momentum L m v r I= =   ω, and kinetic energy 

of rotation K I=
1

2
2 ω , introduced in Chapter 5 for a single particle undergoing cir-

cular motion with radius r, are readily generalized to apply to the rotational motion 

of a solid body. This is done by extending the moment of inertia definition to an 

assembly of volume elements dV
i
. For a rigid body of uniform density ρ the moment 

of inertia is thus defined as I m r r V
i

i i
i

i i
= =∑ ∑  d2 2ρ . Converting the sum to an inte-

gral over the volume of the rigid body gives

 I r V
V

= ∫ρ 2  d  (6.8)

Expressions for the moments of inertia of rigid bodies with various shapes are 

calculated below.
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Exercise 6.2: (a) Determine the moment of inertia of a solid cylinder of 

density ρ, radius R, and length L about the long central axis as depicted in 

Figure 6.3. (b) Determine the moment of inertia for a narrow cylindrical rod, 

with a diameter much less than its length, about an axis through the centre 

perpendicular to the long axis.

(a) It is convenient to consider the cylinder to be made up of a stack of thin 

disks each of thickness ∆L. A representative disk of area A R= π 2 and 

thickness ∆L, centred at point O, which is also the centre of mass of the 

cylinder, is shown in Figure 6.3. Symmetry considerations suggest that 

volume elements dV  should be chosen in the form of concentric rings of 

radius r, and width dr. Substituting d   d  V r r L= ∆2π  in Equation (6.8) 

gives I r L r r L r r A L R M R

R R

disk
  d   d      = ∆( ) = ∆ = ∆ = ∆∫ ∫ρ π π ρ ρ

0

2

0

3 22 2
1

2

1

2
22.

The moment of inertia of the cylinder is then obtained by summing over 

the stack of disks. Converting the sum to an integral gives the required 

result I A R L A L R M R
L

L

cylinder
  d     = = =

−
∫

1

2

1

2

1

2
2

2

2

2 2ρ ρ
/

/

. Note that this form 

holds for both thin disks and cylinders.

(b) In this case, which is effectively 1D, use is again made of thin disk- shaped 

volume elements. A sketch of the rod with a representative volume element 

is shown in Figure. 6.4.

A representative disk has thickness dl, diameter R, and is positioned at a 

distance l, in the range from −L /2 to +L /2, along the axis through the centre 

of the rod. Equation (6.8) leads to the result I R l l M L

L

= =∫2
1

12
2

0

2

2 2π ρ  d   

/

. 

The same result would hold as a good approximation for a rectangular long 

thin rod with cross- sectional dimensions much less than its length.

FIGURE 6.3 The solid cylinder shown has mass M, length L, and radius R. The 

moment of inertia is determined about the cylinder axis by integrating over a stack of 

disk- shaped elements. The shaded ring represents a volume element in a representative 

disk. The centre of mass of the cylinder is at the origin O.
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In the general case, in which the width of the rod is not much less than its  

length, a different expression is obtained using the parallel axis theorem, which  

is introduced below.

Exercise 6.3: Determine the moment of inertia of a solid sphere of radius 

R and density ρ about an axis through the centre. The sphere is depicted in 

Figure 6.5.

The centre of mass of the uniform sphere is located at its centre, labelled O in 

Figure 6.5, with the rotation axis along z. It is convenient to view the sphere as a 

stack of thin circular disks oriented perpendicular to the z- axis, with the radius r of 

a particular disk, which has its centre at a distance z from O given by r R z= −2 2 .   

Exercise 6.2 (a) gives the moment of inertia of a disk of mass m, density ρ,
 

thickness dz, and radius r about an axis through the centre as I m r=
1

2
2  with 

m R z dz= −( )ρ π 2 2 . The moment of inertia of the sphere about z is obtained 

by summing the up contributions of the stacked disks, of varying radii, which 

make up the total volume. Converting the sum to an integral over z leads   

to the relationship I R z z R R z z z

R R

= × −( ) = − +( ) =∫ ∫2
1

2
2

0

2 2
2

0

4 2 2 4ρ π ρ π d  d

ρ π  R M R5 21
2

3

1

5

2

5
− +





= , with M R=
4

3
3ρ π . The required result is    

I M R
sphere

 =
2

5
2.

FIGURE 6.4 The long rod shown has length L, and radius R  much less than the 

length. The moment of inertia about an axis through the centre perpendicular to the rod 

is obtained by summing contributions from disk- shaped elements of length dl.
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6.4.2 THE PARALLEL AXIS THEOREM

The parallel axis theorem simplifies the calculation of the moment of inertia I of a 

solid object about an axis that does not pass through its centre of mass, by expressing 

I in terms of the moment of inertia I
CM

 about a parallel axis through the centre of 

mass. The proof of the theorem is straightforward.

Consider an object of mass M, volume V , and uniform density ρ with an attached  

set of Cartesian axes. The origin O is located at the centre of mass of the object, with  

the z- axis chosen parallel to the axis ′z  about which the moment of inertia is required,  

as shown in Figure 6.6. The ′z  axis intersects the xy- plane at point ′O  with coordinates  

x a=  and y b= .

FIGURE 6.5 The solid sphere of radius R is viewed as a stack of disks of radii r  

which fit inside the sphere. A representative disk is shown with radius r R z= −2 2  and 

thickness dz.

FIGURE 6.6 A solid object of mass M is depicted with centre of mass at the origin O in a 

Cartesian frame. The parallel axis theorem relates the moment of inertia about the z−axis,  

which passes through O, to the moment of inertia about axis ′z , which passes through ′O  in the 

xy- plane at x a=  and y b= .
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Using Equation (6.8), the moment of inertia about the z- axis involves an inte-

gral over the volume elements dV  making up the object. The volume integral for I 

is written as a triple integral, involving the three Cartesian coordinates, in the form 

I r V x y x y z
V

VCM
d d  d  d= = +( )∫ ∫∫∫ρ ρ2 2 2  where d d  d  dV x y z=  is a volume element at

a distance r from the z- axis, with coordinates x y z, ,( ), giving the square of the dis-

tance as r x y2 2 2= + .

The moment of inertia about the ′z - axis is similarly given by 

I x a y b x y z
v = −( ) + −( )



∫∫∫ρ

2 2
d  d  d . Expanding the squared terms and grouping 

gives I x y a b a x b y x y z
v = +( ) + +( ) − +( ) ∫∫∫ρ 2 2 2 2 2 2 d  d  d . The triple integrals 

ρ  d  d  d2a x x y z
v∫∫∫  and ρ  d  d  d2b y x y z

v∫∫∫ , which involve linear terms in x and y,  
 

give, apart from multiplying constants, the coordinates of the centre of mass, as can 

be seen from Equation (6.5). Both these integrals therefore vanish, because the centre 

of mass is at the origin O. With h a b2 2 2= + , the moment of inertia about ′z  becomes

 I I M h = +
CM

 2 (6.9)

The theorem states that the moment of inertia I of an object of mass M about an axis 

located at a distance h from a parallel axis through the centre of mass is equal to the 

moment of inertia I
CM

 about the centre of mass axis plus a quantity given by M h 2.

Exercise 6.4: Use the expression I M L
CM

=
1

12
2  for the moment of inertia of a 

solid narrow cylinder of length L and mass M about a perpendicular axis through 

the centre of mass, as determined in Exercise 6.2(b), to obtain the moment of 

inertia I about a parallel axis passing through one end of the cylinder.

The parallel axis theorem gives I M L M L M L= + =
1

12

1

4

1

3
2 2 2.

6.5  ROTATIONAL DYNAMICS

The basic concepts and relationships that are needed for analysing the rotational 

motion of a rigid body about a chosen axis can be summarized in three points as 

follows:

1. Newton’s second law for rotational motion is of central importance and takes 

the form Γ= I α, where Γ is the torque producing rotation, I the moment of 

inertia about the rotation axis, and α the angular acceleration.

2. If a torque Γ is constant, it follows that α is constant and the rotational kine-

matic equations apply.
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3. Accompanying any change in the angular velocity ω, there is a change in the 

angular momentum L = I ω.

The work– energy relationship is given by Γ  ∆ = ∆θ E, with ∆ = −( )E I
1

2
2 2 
f i

ω ω  

provided friction is negligible and there is no change in the potential energy accom-

panying the rotational motion, a condition which holds when the rotation axis passes 

through the centre of gravity of the rotating object. The moment of inertia I about the 

rotation axis plays an important role in determining the dynamics.

Exercise 6.5: Flywheel- based energy storage and release systems have been 

developed to improve the efficiency of vehicles. Consider a flywheel of this 

type, made of carbon fibre material with a mass of 6 kg and a diameter of 

20 cm, suspended in vacuum to permit angular velocities of 60,000 revolutions 

per minute (rpm) to be achieved. Energy is stored in the flywheel during 

braking periods and released via a drive mechanism when required. Calculate 

the moment of inertia of the flywheel about an axis through the centre of mass 

and perpendicular to the disk. Neglect energy contributions from the flywheel 

drive shaft. Determine the maximum energy that can be stored in the flywheel. 

If the angular velocity increases from 40,000 to 50,000 rpm over a braking time 

of 30 s, what is the average torque on the flywheel drive shaft?

The moment of inertia of the flywheel is I M R= = × ×
1

2
0 5 62 .  0.01 = 

0.03 kg m2. At 60,000 rpm, the maximum stored energy is E I= =
1

2
2 ω

0 5 0 03 2 10 5 92 10 1643
2

5. . .× × ×( ) = × =π  W-h.

The brake torque is given by Γ = I  α with α the deceleration of 

the vehicle. From the kinematic equations for rotational motion, 

α
π

= =
×

× =
δω

t

2 10

60

1

30
34 9

4

.  rad/s2
. The torque on the flywheel drive shaft 

is therefore Γ = = × =I   N mα 0 03 34 9 1 05. . . .

Exercise 6.6: Consider a rotating oval rigid body for which the axis of 

rotation does not pass through the centre of gravity. Obtain an expression for the 

variation in the potential energy U as a function of angular displacement after 

the body is set into steady rotational motion in the Earth’s gravitational field. 

Assuming that frictional effects can be neglected, use the law of mechanical 

energy conservation to determine the variation in the kinetic energy K with 

angular displacement.

The variation in the potential energy U of the body with orientation is  

obtained by considering the total mass of the object to be effectively located at  

the centre of mass, which coincides with the centre of gravity as discussed in  
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Section 6.3. Ignoring frictional effects, and using the law of mechanical energy  

conservation, it follows that the change in kinetic energy ∆K  will be equal and  

opposite to the change in potential energy ∆U in order to keep the rotational  

energy constant.

If the centre of mass O is situated at a distance l from the rotation axis 

at P, then O rotates around P. Both ∆K  and ∆U are functions of the angle 

θ shown in Figure 6.7. In considering changes in the potential energy, it is 

convenient to choose the reference level where U = 0 to correspond to 

θ π= /2 with OP horizontal. It follows that ∆ = −U M g l  cosθ and therefore 

∆ = −( ) =K I M g l
1

2
2

0
2ω ω θ  cos . The clockwise angular velocity ω has a max-

imum value when the centre of gravity is at its lowest point, with θ = 0, and a 

minimum value when the centre of gravity is at its highest point, where θ π=  

and ∆ =U M gl. If the moment of inertia about an axis parallel to the rotation 

axis and passing through O is known, then the moment of inertia about P can 

be obtained by making use of the parallel axis theorem. If the angular velocity 

is reduced to zero, the static equilibrium condition corresponds to a minimum 

in the potential energy for θ = 0 and the centre of mass is at its lowest point.

6.6  ROLLING MOTION

The rolling motion of cylindrical objects, such as wheels on vehicles, provides an  

interesting and important example of rotational motion in the Earth’s gravitational  

field. A rolling object is in contact with a supporting surface, which provides an upward  

reaction force equal in magnitude to the downward weight force. If the rotating object  

has constant velocity, with no slippage, then it follows that there is a static friction  

force acting at the point of contact of the cylinder with the supporting surface. This is  

because at all times the small contact region of the rotating cylinder has zero velocity  

FIGURE 6.7 An oval- shaped rigid plate rotates clockwise about an axis through P 

with the centre of mass at O, a distance l  from P. The angle θ specifies the orientation of 

OP with respect to the vertical direction. Friction effects are assumed to be negligible.
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with respect to the surface. Static friction prevents slippage and produces a torque  

on the cylindrical object, causing it to roll. Friction plays an important role when the  

angular velocity of the cylinder is either increasing or decreasing.

Figure 6.8 shows the velocity of various parts of the outer surface of a rolling 

cylinder of radius R at some instant. Viewed in a frame of reference attached to the 

Earth’s surface, the whole cylinder moves with constant velocity v in the – x direction 

with the speed given by v =  2πR/ T =  ω R where T is the time taken for one revolution 

of the cylinder. Note that the cylinder rotates in a counterclockwise sense.

If the centre point of the cylinder moves horizontally with constant speed v, as 

shown, then the instantaneous horizontal speed for a point on the cylinder’s surface is 

given by V =  v +  ω R sin θ =  v(1 +  sin θ) where θ is measured from the + x direction as 

shown in Figure 6.8. For θ =  π/ 2, at the cylinder’s top point, the horizontal speed is V 

=  2v, while at the bottom the speed is V =  0 for θ =  3π/ 2. Since V =  0 at the cylinders 

contact point with the surface, there is a static friction force acting at this interface as 

stated above. In accelerated motion of the cylinder, friction plays an important role 

as the angular velocity of the wheel changes. If slippage does not occur, the friction 

force depends on μ
s
, the static friction coefficient.

Exercise 6.7: A high- performance Formula One race car reaches a speed of 

220 km/ h along a straight length of track. If the wheels have a diameter of 

46 cm, determine their angular velocities. Determine the instantaneous speed 

of points at the top and bottom of a wheel. Compare the speed obtained for the 

top of the wheel with the speed of sound in air.

The angular velocity is obtained using the circular motion relationship, 

ω = =
×( )

=v R/
1000/

rad/s
220 3600

0 23
266

.
. The speed at the top of the wheel 

FIGURE 6.8 End view of a cylinder of radius R undergoing rolling motion, without slipping, 

on a horizontal surface. The centre of mass of the cylinder moves in the −x direction with 

speed v. Points on the surface of the cylinder have instantaneous horizontal velocities V  which 

depend on their orientation θ. The speed at the cylinder’s point of contact with the surface is 

zero.

 

 

 



91Rigid Body Motion

91

is v v R v
top

 m/s= + = =ω 2 532 . The speed at the bottom point, where the 

tyre meets the track, is v v R
bottom

  m/s= − =ω 0 . The speed of sound in air is 

approximately 346 m/ s. It follows that the speed of the top of the wheel exceeds 

the speed of sound in air.

Exercise 6.8: A solid cylinder of mass M and radius R rolls with a constant 

centre of mass velocity v on a flat horizontal surface as illustrated in Figure 6.9. 

Obtain an expression for the kinetic energy of the cylinder in terms of M and v. 

Next, if the surface of length L is tilted through an angle θ, what is the speed of 

the cylinder at the bottom of the incline after rolling without sliding down the 

slope starting from rest at the top?

The kinetic energy of the rolling cylinder involves both translational and rota-

tional contributions and has the form K M v I= +
1

2

1

2
2 2  ω , with I the moment 

of inertia about the axis of rotation and ω the angular velocity. Substituting 

I M R=
1

2
2  and using ω = v R/ , gives K M v M R

v

R
M v= + 











=
1

2

1

2

1

2

3

4
2 2

2

2   .   

The rotational kinetic energy, 
1

4
2M v , is equal to one third of the total kinetic 

energy of 
a rolling solid cylinder.

For the inclined surface case, it is convenient to make use of mechanical  

energy conservation ∆ + ∆ =K U 0, where ∆K  and ∆U are the changes in kinetic  

FIGURE 6.9 A cylinder of mass M and radius R rolls along a horizontal surface with 

angular velocity ω. The forces acting on the cylinder are the weight M g , the reaction F
R
,   

and the friction F
f
. For constant- speed rolling motion, the friction force at the point of 

contact with the surface is zero.
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energy and potential energy, respectively. The Earth’s gravitational field exerts  

a downward force on the cylinder, and the component of this force down the  

incline produces acceleration. Mechanical energy is conserved because the  

friction force is static at the point of contact of the cylinder with the ramp. No  

sliding motion of the cylinder occurs. The forces acting on the cylinder are  

shown in Figure 6.10. Note that the friction force acts up the incline and the  

torque it exerts about the axis of rotation produces the clockwise rolling motion.

The change in potential energy is ∆ = − = −U M g L M g hsin θ  where h is 

the vertical height through which the centre of mass of the cylinder effectively 

falls. Allowing for both translational and rotational energy using the expression 

for K  obtained above gives the change in total kinetic energy as ∆ =K M v
3

4
2. 

It follows that 
3

4
2M v M g h=  and v g h=

4

3
.

Further insight into rolling motion is obtained by using Newton’s second 

law for translational and rotational motions. In terms of the symbols shown in 

Figure 6.10, the second law gives for translational motion M g F M asinθ − =
f

 

and for rotational motion F R I
f

= α. Combining these two equations to elim-

inate F
f
, and using I M R=

1

2
2  for a uniform cylinder, together with a R= α ,   

gives g a asinθ = +





=
1

2
1

3

2
. The translational acceleration down the 

inclined plane is constant, and the final velocity squared at the bottom 

can be obtained using the third kinematic equation. This procedure gives 

v a L g L g h2 2 2
2

3

4

3
= = × 





× =sin θ , which agrees with the expression 

FIGURE 6.10 End view of a cylinder of radius R and mass M which rolls without 

slipping down an inclined plane. The weight M g  is resolved into components M g sinθ 

parallel to the plane and M g cosθ perpendicular to the plane. The reaction force F
R
 and 

the static friction force F
f
 act as shown. The torque produced by F

f
 about the rotation axis 

through O causes the cylinder to roll.
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obtained above using mechanical energy conservation. Note that, because 

of differences in the moment of inertia expressions of objects, the value of ν 

obtained for a uniform cylinder has a different numerical factor to those which 

would apply to a rolling hoop or a solid sphere.

6.7  STATIC EQUILIBRIUM

In Section 6.2, it is stated that the necessary conditions for equilibrium of a mechan-

ical system are that both the forces F
i
 and the torques Γ

i
 acting on the object of interest 

must sum to zero, i.e. 
i

i∑ =F 0 and 
i

i∑ =Γ 0. These conditions need to be extended   

to include the potential energy of the system in order to ensure stable equilibrium. 

Consider, for example, a situation in which a body has an axis of rotation that does not 

pass through the centre of gravity. It is possible, although difficult in practice, to achieve a 

situation of unstable equilibrium in which the centre of mass lies vertically above the axis 

of rotation. A slight movement of the object will result in rotation towards a new stable 

equilibrium situation, with the centre of gravity directly below the axis of rotation. The 

gravitational potential energy of the system decreases in this process. Stable equilibrium 

therefore requires that the system be in a configuration with minimum potential energy. 

Following a small displacement away from stable equilibrium, the system will return to 

the stable configuration much as a round object will settle in the bottom of a hemispher-

ical bowl. Note that if the axis of rotation for an object passes through its centre of gravity, 

then all orientations of the object are stable. In many cases, the minimum potential energy 

condition can readily be seen to be satisfied without the need for calculation.

In applying the static equilibrium conditions to particular situations, it is con-

venient to introduce two terms that are commonly used in dealing with static torques.  

These terms are firstly the lever arm and secondly the moment of a force about some  

chosen point. The significance of these terms is explained with the aid of Figure 6.11.

FIGURE 6.11 A light rod of length L is supported at P as shown. The gravitational force on 

mass M produces a counterclockwise moment of magnitude M g L l −( ) about the pivot point P. 

In equilibrium, the clockwise moment F l  produced by the force F  with lever arm l balances the 

system. The reaction force at the support at P produces no moment around this point.
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For a system in equilibrium, the sum of the moments around any point is zero. 

In applying this moment rule to a situation involving several forces, it may be 

convenient to calculate moments around a point through which an unknown force, 

such as a frictional force, acts in order to facilitate calculations as illustrated in 

Exercise 6.9.

Exercise 6.9: A solid steel beam of mass M = 50 kg and length 3 m rests on 

supports located 0.5 m from each end. Upward reaction forces F
1
 and F

2
 are 

exerted on the beam by the supports designated 1 and 2. An object of mass m = 

40 kg  is suspended 1.0 m from end 2. Determine the forces F
1
 and F

2
 using the 

static equilibrium conditions.

The supported beam arrangement is sketched in Figure 6.12. Taking 

moments around point 2, with clockwise moments as positive, leads to the rela-

tionship F M g m g
1

2 1 0 0 5 0× − × − × =. . . Substituting the values for M and 

m with g = 9 8 2. m/s  gives 2 9 8 50 1 0 40 0 5 686
1

F = × × + ×( ) =. . . kgm /s2 2, and 

hence F
1

343= N.

Next, balancing the vertical forces gives F F M m g
1 2

0+ − +( ) = , and using  

the value obtained for F
1
 gives F

2
539= N. Note that F F

2 1
>  because mass m is  

closer to end 2 than to end 1.

FIGURE 6.12 A beam of mass M = 50 kg and length L = 3 m is supported by trestles 

at 0.5 m from each end, and a mass m = 40 kg is suspended as shown. The reaction 

forces F
1
 and F

2
 are determined using the static equilibrium conditions.
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Exercise 6.10: If the 50 kg steel beam, together with its suspended object 

of mass 40 kg, as described in Exercise 6.9, is removed from its supports, and 

is allowed to lean against a smooth vertical wall, determine the forces on the 

beam produced by the wall at the end labelled 1, and by the horizontal surface 

on which end 2 rests. The beam makes an angle θ = °63  with the horizontal 

surface. Assume that the frictional force at the contact point with the wall is 

negligibly small.

Figure 6.13 shows the forces acting on the beam of length L = 3 m. In add-

ition to the two downward weight forces, shown as M g at the centre of gravity, 

located at a distance L /2 from end 2, and m g  at a distance l = 1 m from end 2,  

there are three unknown forces which are the reaction forces, F
1R

 normal to 

the wall and F
2R

 normal to the horizontal surface, plus the horizontal friction 

force F
2f

.

With three unknown forces to be determined, it is necessary to write down 

three equations, based on the static equilibrium conditions, which relate the 

forces. Firstly, balancing horizontal forces gives F F
1 2

0
R f

− = , while secondly, 

balancing vertical forces gives F M g m g
2

0
R

− − = , and thirdly, taking moments 

about end 2 leads to F L M g
L

m g l
1 2

0
R

 sin cos cosθ θ θ− 





− = . Inserting 

numerical values gives F
1

191
R

 N=  using the third equation and F
2

882
R

 N=  

from the second equation. The first equation, with the value obtained for F
1R

, 

leads to F
2

191
f

N= .

FIGURE 6.13 In addition to its known weight M g  and that of the suspended object 

m g , the canted beam experiences the reaction forces F
1R

 and F
2R

 together with a friction 

force F
2f

. The reaction and friction forces are determined using the static equilibrium 

conditions.
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6.8  THE LEVER

The use of the mechanical lever arm advantage provides a practical application of 

the zero- torque condition for equilibrium of an extended object. By making use of a 

long lever arm, a relatively small force F
1
 applied at one end of the lever can balance 

a much larger force F
2
 at the other end, provided a stable support, called a fulcrum, is 

positioned close to the end at which the large force acts as illustrated in Figure 6.14.

Consider the system shown in Figure 6.14 to be in a static equilibrium state with 

the mass M suspended just above the surface on which it previously rested. To sim-

plify matters, only the vertical components of the forces acting on the two ends of 

the lever are shown. In addition, the large vertical force exerted by the fulcrum on 

the lever is omitted. In equilibrium, the moments of the forces about the fulcrum are 

equal in magnitude but opposite in sign giving F L F L
1 1 2 2
  =  where L

1
 and L

2
 are the 

lever arms associated with the forces. The ratio L L
1 2
/  is referred to as the mechan-

ical advantage, which can be made much larger than unity by using a long lever on a 

robust fulcrum.

Levers can be used to move large objects with the application of relatively small  

forces. When raising the mass M through a small upward vertical distance h in the  

Earth’s gravitational field, the potential energy increases by ∆ =U M g h. Mechanical  

energy conservation requires that ∆ = ∆ =U W F l
1
 , with l the downward vertical  

distance moved by the other end of the lever. Using the properties of similar triangles  

gives that the mechanical advantage is the ratio l h L L/ /=
1 2

, as indicated above.

FIGURE 6.14 By applying a relatively small force F
1
, as shown, a large object of mass M 

can be raised using a long lever together with a fixed rigid fulcrum. The greater the ratio   

L L
1 2
/ , the greater the mechanical advantage.
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Fluids and Solids

7.1  INTRODUCTION

The properties of fluids and solids are important in a wide variety of technological 

applications. Solid materials are used in large mechanical structures, including 

bridges, buildings, and motor vehicles, as well as in small electronic devices such as 

computer chips. A deep understanding of a particular material requires microscopic 

measurements using special equipment, and complementary theoretical calculations. 

For many applications, much can be learnt about the mechanical properties of both 

solids and fluids using macroscopic measurements together with analysis based on 

classical mechanics. This approach is adopted in the present discussion.

As a starting point in this chapter, consider the phase diagram for a representa-

tive homogeneous substance plotted in terms of temperature and pressure as shown 

in Figure 7.1. The concepts of temperature and pressure are familiar from everyday 

experience. These quantities play key roles in determining the mechanical behav-

iour of materials. Pressure P  is defined as the force per unit area acting on a surface, 

which may be the surface of a solid or the boundary of a vessel containing a fluid. 

In the SI system, the unit of pressure is defined as 1 N/ m2, which is called the pascal 

abbreviated as Pa. In plotting phase diagrams, it is advantageous to use the absolute 

temperature T  scale, also known as the Kelvin scale, with kelvin units denoted by 

K. A related scale, called the Celsius scale, is used for many purposes in normal life. 

While the degree sizes are the same, with 1 K equivalent to 1°C on the Celsius scale, 

the zero on the Kelvin scale, known as absolute zero or 0 K, occurs at – 273.16°C. 

Temperatures in kelvins are of fundamental importance in examining the thermal 

properties of matter, as described in Chapters 11 and 12.

In Figure 7.1, the lines shown represent phase boundaries between the three  

phases, solid, liquid, and vapour, in which the system can be found. The physical  

characteristics in the three phases are quite different. In determining the mechanical  

properties, such as Young’s modulus or the compressibility of a solid substance, as  

discussed below, it is usually necessary to work at constant temperature and pressure  

conditions, which may, of course, be ambient conditions, since the properties are gen-

erally temperature-  and pressure- dependent. Details of phase diagrams for different  

materials can vary widely depending on the strength and nature of bonding at the  

atomic level. In particular, solids are broadly classified into four categories named  

7
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molecular (e.g. solid argon and polymers), ionic (e.g. NaCl), covalent (e.g. silicon),  

and metallic (e.g. copper and silver) solids. Differences in the electronic structure  

are responsible for the differences in the binding energies of the atomic constituents,  

and these differences are reflected in the mechanical and other properties. There are  

other types of solid, such as alloys, glassy materials, and liquid crystals, which are not  

covered by the above classification.

The bulk mechanical properties of solid materials are characterized by their 

response, called the strain, to various types of applied stress. A uniaxial case is 

illustrated in Figure 7.2, which shows a 2D side view of a solid object under longitu-

dinal stress. Equal and opposite forces F  are applied to the top and bottom surfaces 

of the object, producing a small change in its length. Note that the forces are arranged 

to act uniformly over the surfaces to which they are applied. In practice, a long rod or 

wire specimen is typically used in measuring the strain produced by an applied stress.

FIGURE 7.2 Side view of a solid rod subject to uniaxial stress produced by equal and 

opposite applied forces F. A small increase in the length occurs while the stress is applied.

FIGURE 7.1 Representative phase diagram for a substance showing the solid, liquid, and 

vapour regions as a function of temperature T and pressure P. Transitions between the phases 

occur at the phase boundaries represented by lines in the diagram. At the triple point, all three 

phases coexist, while at the critical point and above the liquid and vapour phases become 

indistinguishable.
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Two other types of stress, called shear stress and hydrostatic pressure, produce 

shear strains and compressive strains, respectively. Further details and definitions of 

the corresponding elastic moduli are given in Section 7.5. Over a limited range, it is 

found that strain is proportional to applied stress for many solids. Furthermore, the 

strain is elastic in nature, with no permanent deformation after the stress is removed. 

In this linear response range, measurements of a particular stress– strain response 

for a specimen yield the corresponding elastic modulus for the material as explained 

in Section 7.5. Uniaxial and shear stress measurements cannot be made on fluids 

because the fluids respond by flowing until equilibrium is attained in the vessels in 

which they are contained. It is, however, possible to measure what is termed the com-

pressibility by applying pressure to a fluid as shown in Section 7.2. The topic of fluid 

flow is dealt with in Section 7.4.

7.2  PRESSURE IN FLUIDS

7.2.1  PRESSURE AND DENSITY

When considering pressure effects in fluids, it becomes clear that the fluid density 

ρ is of particular importance. If a mass m of fluid occupies a volume V , then the 

density is ρ = m V/  with SI units of kg/ m3. The density depends on temperature 

and pressure, and it is therefore necessary to specify these conditions. For fluids, 

it is often convenient to quote ρ values measured at 0°C and 1 atmosphere (atm; 

1 atm equals 101.325 kPa in SI units). These conditions are known as standard 

temperature and pressure (STP). For liquids, the variation in density is generally 

small for limited changes in temperature and pressure. This is not the case for 

gases, for which ρ has a strong dependence on T and P. Table 7.1 lists the values 

of ρ for several fluids.

For a liquid such as water, ρ is, to a good approximation, independent of depth  

for modest depths of the order of meters, and the liquid behaves as though it were  

incompressible. In contrast, the density of a gas such as air is strongly dependent  

on altitude measured from the Earth’s surface. The drop in density with altitude is  

primarily responsible for the oxygen deficiency effects experienced by mountain  

climbers.

TABLE 7.1
Densities of Representative Fluids at STP

Substance Density (kg/ m3)

Water 1.000

Ethanol 0.80

Mercury 13.6

Air 1.29 × 10− 3

Helium 0.179 × 10−3
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The pressure at a particular depth in a fluid is independent of the orientation of the  

surface on which the pressure acts. This can be understood by considering a volume  

element of fluid in equilibrium. The forces on the surfaces of the element must sum to  

zero or the element would move until the forces did balance. In addition, the pressure  

is independent of the shape of the container as illustrated in Figure 7.3.

7.2.2 VARIATION OF PRESSURE WITH DEPTH IN AN INCOMPRESSIBLE LIQUID

Consider a cylindrical volume element of cross- sectional area A and thickness dh in 

a column of incompressible liquid as depicted in Figure 7.4. The liquid is situated 

in the Earth’s gravitational field, which produces a downward weight force on the 

element that leads to a pressure increase with depth in the fluid as shown below. 

FIGURE 7.4 A representative 3D volume element, shown shaded in a side- on view, is of 

thickness dh with top and bottom surfaces of area A. The element is in equilibrium under the 

action of its downward weight and the net upward force due to the pressure difference between 

its upper and lower surfaces.

FIGURE 7.3 Volume elements (shown in grey), which are in static equilibrium in containers 

of different shapes, experience identical forces on their surfaces if they are at the same depth 

in the liquid.
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It is convenient to choose the h- axis to point vertically downwards with the origin 

located at the liquid’s surface. Atmospheric pressure at the liquid’s surface is p
0
. If 

the pressure at the upper surface of the volume element is p, then the pressure at the 

lower surface is p p+ d , with the difference in pressure due to the need to support the 

weight of liquid w A g h= ρ   d  in the element.

Balancing forces on the volume element leads to the equation 

p p A p A A g h+( ) = +d     dρ , which gives d   dp g h= ρ . In order to determine the 

pressure at depth h in the liquid, this equation is integrated as follows: 
p

p h

p g h

0
0

∫ ∫=d dρ  

or p p g h− =
0

ρ . After rearrangement, the following result is obtained:

 p p g h= +
0

ρ  (7.1)

Equation (7.1) shows that the pressure in a liquid increases linearly with depth h 

below the liquid’s surface. The pressure p
0
 at the surface is typically atmospheric 

pressure.

Exercise 7.1: What is the pressure at the bottom of a freshwater lake of depth 

8 m? Take atmospheric pressure as 1 atm =  1.01 × 105 Pa and the density of the 

lake water as 103 kg/ m3.

Using Equation (7.1), the pressure at the bottom of the lake is given by 

p = × + × × = +( ) × = ×1 01 10 10 9 8 8 1 01 0 78 10 1 79 105 3 5 5. . . . . Pa. The pressure 

at the lake bottom is slightly less than 2 atm, with almost half contributed by the 

lake water and the remainder by the atmosphere above the lake.

7.2.3 VARIATION OF PRESSURE WITH ALTITUDE IN A COMPRESSIBLE GAS

Consider a finite column of air stretching from the Earth’s surface to an altitude of a 

few hundred meters, which is the height of fairly low cloud cover. The altitude limita-

tion is introduced to allow the following simplifying assumptions to be made: firstly, 

that the temperature of the gas is roughly the same throughout the column, and sec-

ondly, that any variation in g can be neglected. For a compressible gas, the density 

is not constant but varies with position in the column. To a good approximation, a 

volume element containing a constant number of molecules in the air column obeys 

the ideal gas equation of state PV n RT=  with P  the pressure, T  the absolute tem-

perature, n the number of gas molecules in volume V , and R the gas constant. Since T  

is assumed to be constant, it follows that P n V∝ / , and therefore P ∝ ρ with ρ = n V/  

being the molar density. Let the pressure at the bottom of the column be P
0
 while the 

density at this level is ρ
0
. It follows that ρ ρ/ /

0 0
= P P  where ρ and P  are, respectively, 

the density and pressure at height h.

Now consider a thin horizontally oriented slice of air of thickness dh at height h in 

the column. Taking the air density to be constant in the small slice leads to the 

following expression for the pressure difference between the top and bottom surfaces 
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of the slice d d dP g h
P

P
g h= − = −







ρ ρ

0

0

 where use has been made of the result  

ρ ρ/ /
0 0

= P P  for the pressure and density ratio as given above. The minus sign indicates 

that P decreases as h increases. Rearranging and forming integrals gives 
P

P h
P

P

g

P
h

0

0

0 0

∫ ∫= −
d

d
ρ

. 
 

Integration leads to the relationship ln
P

P

g h

P
0

0

0







= −

ρ
. Taking antilogarithms yields 

the required result:

 P P
g h

P
= −






0

0

0

exp
ρ

 (7.2)

Equation (7.2) shows that in the air column the pressure falls off exponentially with 

altitude for fairly low altitudes. The assumptions made start to break down as the alti-

tude increases.

Exercise 7.2: The air pressure on a mountain top is 0.9 atm. Estimate the 

height of the mountain top above sea level. Take the density of air at sea level 

and at ambient temperature as 1.21 kg/ m3. 1 atm =  1.01 × 105 Pa.

Assuming that Equation (7.2) holds over the altitude range, and taking 

logarithms of both sides gives h
P

g

P

P
=







=
×
×







=0

0

0
51 01

1 21 9 8

1

0 9
897

ρ

.

. . .
ln

10
ln m.

7.2.4 COMPRESSIBILITY OF FLUIDS

The isothermal compressibility of a material, denoted by κ , relates the fractional 

change in volume of the material to an increase in pressure as expressed in the rela-

tionship ∆ = − ∆V V P/  κ . The volume decreases with the increase in pressure, and the 

minus sign is therefore inserted to give positive values for κ . In terms of infinitesimal 

changes, the isothermal compressibility is defined as

 κ = −
1

V

V

P

d

d
 (7.3)

The units for κ  are Pa− 1. Typical gas compressibility values are much larger than those 

of liquids. That is because the molecules in a gas are on average well separated, while 

in liquids they are packed more closely together. For air and many other gases, which 

closely obey the ideal gas equation of state under normal conditions of temperature 

and pressure, the compressibility value is κ ≈ − −10 5 1Pa . Water at room temperature 
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has a κ  value roughly four orders of magnitude smaller than that of air, while solids 

have even smaller κ  values. In dealing with the mechanical properties of solids, it is 

usual to introduce the bulk modulus, which is the reciprocal of the compressibility, as 

discussed in Section 7.5.

Exercise 7.3: Obtain an expression for the isothermal compressibility of a gas 

that obeys the ideal gas equation of state PV = n R T.

From the ideal gas equation 
d

d

 V

P

n R T

P

V

P
= − = −

2
, and using Equation (7.3) 

this gives κ = 1/P .

Taking atmospheric pressure as 1.01 × 105 Pa at sea level, it follows that   

κ  ~ 10− 5 Pa− 1 as given above. The compressibility of air increases with altitude 

due to the decrease in its pressure.

7.3  FLUID STATICS

7.3.1  THE PRINCIPLES OF HYDROSTATICS

Using the expressions for the pressure in a fluid given in Section 7.2, and, in par-

ticular the variation of pressure with depth in a liquid, it is possible to explain a 

variety of phenomena and to develop simple but useful applications, including 

buoyancy devices, mercury barometers, liquid siphons, and the hydraulic press. 

Historically, two famous principles were put forward based on observations made 

of the behaviour of liquids. They are known as Archimedes’ principle and Pascal’s 

principle, respectively.

Archimedes’ principle states that a body wholly or partly immersed in a fluid 

experiences a buoyancy force equal to the weight of fluid displaced.

Pascal’s principle states that the pressure exerted on an incompressible fluid is 

transmitted evenly throughout the fluid.

These principles were implicitly assumed in deriving the relationship p p g h= +
0

ρ ,  

which is given in Equation (7.1), for the pressure variation as a function of depth  

in an incompressible liquid. At depth h below the surface, the pressure depends 

on, firstly, p
0
, the atmospheric pressure at the surface, and secondly, the weight of 

a fluid column of height h and unit cross- sectional area A. An increase in p
0
 leads 

to an increase in p at every point in the liquid in accordance with Pascal’s prin-

ciple. If the liquid column of height h were replaced by a solid object with precisely 

the same dimensions as those of the column, the object would experience the same 

upward force as that experienced by the liquid column. This buoyancy force acts 

in accordance with Archimedes’ principle. It follows that an object of any shape 

would experience an upward force equal to the weight of fluid displaced, with the 

force acting through the centre of gravity of the object. If the density of the object is 

greater than the density of the fluid, the object will sink to the bottom of the container. 

Conversely, if the density of the object is less than that of the liquid, the object will 

rise to the surface and float.
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Exercise 7.4: Determine the fraction of the volume of an iceberg that is 

submerged below the surface of the sea in which it floats. Take the density of 

ice as ρ
I
 = 0.92 × 103 kg/m3 and that of seawater as ρ

sw
 = 1.025 × 103 kg/m3.

From Archimedes’ principle, the buoyancy force on the floating iceberg of 

volume V  is given by ρ
sw sw

  V g where V
sw

 is the volume of seawater displaced 

by the submerged portion of the iceberg. In equilibrium, the buoyancy force 

is equal to the iceberg’s weight so that ρ ρ
sw sw I

    V g V g= . The submerged 

volume fraction of the iceberg is therefore V V
sw I sw

/ / /= = =ρ ρ 0 92 1 025 0 90. . . . 

Ninety percent of the iceberg’s volume is submerged in the sea.

7.3.2 PRESSURE MEASUREMENT

Pressure- measuring devices based on the relationship p p g h= +
0

ρ   given in Equation 

(7.1) include manometers and barometers. A simple manometer is as illustrated in 

Figure 7.5.

Manometers are typically made of a transparent material, such as glass, shaped in  

the form of a U- tube, with one end connected to a vessel in which the gas pressure  

is to be measured and the other end open to the atmosphere. The U- tube contains an  

inert liquid, such as mineral oil or mercury, of known density ρ
0
. When the pressure  

in the vessel is equal to atmospheric pressure the two surface levels of the manometer  

liquid are at the same height above a chosen reference level. As the pressure in  

the vessel is varied, the liquid surface levels move up or down. The vertical height  

difference h between the levels in the two arms of the manometer gives a measure  

of the pressure difference ∆ = −p p p
0
 between the pressure of the gas in the vessel,  

designated p, and that of the local atmosphere, designated p
0
, via the relationship  

∆ =p g hρ  . Note that h may be positive or negative depending on whether the gas  

pressure in the vessel is larger or smaller than atmospheric pressure. Pressures  

measured using manometers, or other devices that measure pressure differences with  

respect to atmospheric pressure, are called gauge pressures. Gauge pressure can be  

FIGURE 7.5 Manometer for measuring gauge pressure ∆p, which may be above or below 

atmospheric pressure p
0
. Hydrostatics gives ∆ =p g hρ .
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converted to the actual pressure in Pa by adding or subtracting atmospheric pressure  

when required.

The pressure of the atmosphere near the Earth’s surface is measured using 

instruments called barometers. The mercury barometer is a classic example of 

this type of instrument and is again based on the relationship between pressures at 

different heights in a fluid as given in Equation (7.1). Mercury barometers make use 

of the high density of mercury, ρ
Hg

3kg/m= ×13 6 103. , to keep the device fairly com-

pact. A column of the liquid is contained in a long tube, the lower end of which dips 

into a container of mercury that is open to the atmosphere. The upper end of the tube 

is sealed, with the space above the liquid evacuated. A simple barometer is shown in 

Figure 7.6.

From Equation (7.1), the pressure of the mercury in the vertical tube is given 

by p p g h= +
0

ρ
Hg  with h the vertical height of the mercury meniscus above the 

level of the surface in the container. Since the space above the mercury in the tube 

is evacuated, the pressure p
0

0= . Also, p p=
atm

 because fluid pressures at the same 

level are equal. Atmospheric pressure is therefore given by p g h
atm Hg

  = ρ . A pressure 

of one atmosphere supports a mercury column of height 0.76 m.

In addition to the mercury barometer, a number of mechanical barometers for 

measuring air pressure without the use of fluids have been developed. A well- known 

device is the aneroid barometer, which involves an evacuated cell made of thin flex-

ible metal. Changes in pressure are detected by the force exerted on a spring attached 

to the cell. Very small microelectromechanical system (MEMS) devices have been 

incorporated into cell phones.

7.3.3 THE HYDRAULIC PRESS

The hydraulic press is an important practical device based on Pascal’s principle.  

Consider two cylinders, with cross- sectional areas A
1
 and A

2
 respectively, connected  

together by a pipe. The system is partially filled with a hydraulic liquid which is  

FIGURE 7.6 Mercury barometer for measuring atmospheric pressure p
atm

. In a practical 

instrument, the mercury bath would be enclosed to prevent mercury vapour from polluting the 

atmosphere.

 

 

 



106 Physics: An Introduction to Physical Dynamics

106

effectively incompressible. The cylinders are fitted with pistons to which weights can  

be added to achieve the desired initial static equilibrium state. The application of an  

additional downward force F
2
 to piston 2 produces an increase in the upward force F

1
  

on piston 1 as shown in Figure 7.7.

The downward force F
2
 on piston 2 causes it to move downwards through a distance 

d
2
. In order to keep the total volume of the incompressible liquid constant, the piston in 

cylinder 1 moves upwards through a distance d
A

A
d

1

2

1

2
=







. Using Pascal’s principle, 

the pressure increase ∆p in the system produced by F
2
 is transmitted throughout the 

fluid, and this leads to the relationship ∆ = =p F A F A
1 1 2 2
/ / , and hence F

A

A
F

1

1

2

2
=







.   

For A A
1 2

> , it follows that F F
1 2

> . Thus, a small downward force on piston 2 is 

converted to a much larger upward force on piston 1 through the action of the press, 

which serves as a hydraulic lever. It is illuminating to consider the work done by 

the forces. For F
1
, the work done is W F d

1 1 1
=  , and that done by F

2
 is W F d

2 2 2
=  .

. 

Substituting for F
1
 and d

1
 using the relationships F

A

A
F

1

1

2

2
=







 and d

A

A
d

1

2

1

2
=







 given 

above, shows that W W
1 2

= . The large upward force F
1
 acts through a much smaller 

distance than the downward F
2
 does, so that the work done by the two forces is the 

same, as required by mechanical energy conservation assuming friction forces are 

negligible.

7.4  FLUID FLOW

In dealing with the flow of fluids, it is important to distinguish between turbulent flow 

and non- turbulent flow. Turbulent flow involves time- varying flow patterns, while 

in non- turbulent flow the patterns are time- independent. Because of the complexity 

FIGURE 7.7 Hydraulic press with two connected piston- cylinder chambers. The chambers 

are filled with a hydraulic liquid which is effectively incompressible. Force F
1
 is larger than F

2
 

by the ratio of the piston areas A A
1 2
/ .
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of analysing turbulent flow, the present discussion will be limited to non- turbulent 

flow. Furthermore, only incompressible fluids will be considered. In discussing flow 

patterns, it is useful to consider the paths followed by small fluid elements. For steady 

non- turbulent flow, the paths are represented by what are called streamlines and the 

flow is called streamline flow. Experimental techniques involving the introduction of 

traces of dye into a flowing fluid have been developed in order to observe and photo-

graph streamline patterns. As an illustration, consider the flow of a liquid through a 

tube in which there is a constriction as shown in Figure 7.8. Note that in the region of 

the constriction the streamlines are brought closer together, and this corresponds to 

an increase in the fluid flow velocity as discussed below. It is additionally necessary 

to distinguish between viscous flow and non- viscous flow. This distinction involves 

the magnitude of the viscosity coefficient η, which is introduced in Section 7.4.3. It 

is convenient to start by considering non- viscous flow, especially as water has a low 

viscosity coefficient and therefore satisfies the requirements for this type of flow. 

Viscous flow is discussed separately.

7.4.1 THE CONTINUITY EQUATION

For an incompressible fluid undergoing a flow process, the density ρ is constant at all 

points in the fluid. In contrast, the velocity of fluid elements and the local pressure 

may vary with position, as shown below in Section 7.4.2, which introduces Bernoulli’s 

equation. The continuity equation, given in Equation (7.4) below, expresses the 

requirement that the mass of fluid per second entering a tube of flow is equal to the 

mass per second leaving the tube. Consider fluid flow through a section of a tube 

and let the cross- sectional areas be A
1
 at the entry to the section and A

2
 at the exit as 

illustrated in Figure 7.8.

In time interval ∆t , the volume of fluid entering the tube with speed v
1
 is  

∆ = ∆V v A t
1 1

, which has mass ∆ = ∆m v A tρ
1 1

. The mass leaving the tube is given  

by ∆ = ∆m v A tρ
2 2

. Equating the right- hand sides of these equations for the masses  

entering and leaving the tube gives the equation of continuity as

FIGURE 7.8 Non- turbulent fluid flow through a section of a pipe in which the cross- sectional 

area decreases from A
1
 to A

2
. The flow rates in the wide and narrow sections are related by the 

continuity equation.
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 A v A v
1 1 2 2

=  (7.4)

The smaller the cross- sectional area becomes along the tube of flow, the higher the 

fluid speed in that region for a given flow rate, and, conversely, the larger the area the 

lower the speed. Note that the element of fluid with volume ∆V  entering the tube of 

flow is effectively transmitted in time ∆t  from the entrance to the exit by the inter-

mediate fluid in the tube. This follows because all fluid elements of a given geom-

etry are identical to one another. In order to determine the variation of fluid pressure 

along a tube of flow it is necessary to use Bernoulli’s equation, which is based on the 

work– energy theorem.

7.4.2 BERNOULLI’S EQUATION

Bernoulli’s equation is derived for non- viscous, non- turbulent, incompressible fluid 

flow through a pipe. Referring to Figure 7.9, which shows a section of a pipe through 

which flow occurs, let the pressure acting on the area A
1
 at the entrance to the pipe be 

p
1
 and that on area A

2
 at the exit be p

2
. The corresponding forces are p A

1 1
 in the direc-

tion of flow and p A
2 2

 opposing the flow. The shaded regions in Figure 7.9 represent 

fluid elements entering and leaving the pipe during a time interval ∆t .

In time ∆t , the work done in transporting a small volume ∆ = ∆V A v t
1 1
   with 

mass ∆ = ∆m Vρ  into the pipe section of interest is W p A v t
1 1 1 1

= ∆   . In the same 

time interval, the work done by the force p A
2 2
  as the equivalent fluid element 

leaves the pipe is W p A v t
2 2 2 2

= − ∆  . The net work done in this process is 

W p A v t p A v t p p V= ∆ − ∆ = −( )∆
1 1 1 2 2 2 1 2
      . Because non- viscous flow is assumed, 

the work done is equal to the change in energy of the system associated with the 

effective transport of the mass ∆m from the input to the output of the tube of flow. The 

FIGURE 7.9 Fluid flow through a section of a pipe in which the cross- sectional area changes 

from A
1
 to A

2
. In addition, the fluid is transported upwards through height h in the Earth’s 

gravitational field. The shaded segments represent equal volume elements of fluid entering and 

leaving the pipe section in a time interval ∆t .
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energy change is given by the sum of the change in kinetic energy ∆ = ∆ −( )K m v v
1

2 2
2

1
2  

and the change in potential energy ∆ = ∆ −( )U m g h h
2 1

, where h
1
 and h

2
 are, respect-

ively, the initial and final heights above a reference level of the centre of mass of ∆m. 
 

Using W K U= ∆ + ∆  gives p p V m v v m g h h
1 2 2

2
1
2

2 1

1

2
−( )∆ = ∆ −( ) + ∆ −( ) . Dividing 

through by ∆V  and collecting terms leads to Bernoulli’s equation in the form

 p v g h p v g h
1 1

2
1 2 2

2
2

1

2

1

2
+ + = + +ρ ρ ρ ρ  (7.5)

It is important to recognize that the quantities p, 
1

2
2ρv , and ρg h which are involved 

in Bernoulli’s equation have units J/ m3 and correspond to distinct contributions to the 

total energy density in a flowing fluid. It follows from Equation (7.5) that the total energy 

density remains constant for incompressible fluids in non- turbulent flow processes. An 

increase in one of the terms is therefore accompanied by a corresponding decrease in one, 

or both, of the other terms. Bernoulli’s equation expresses the law of mechanical energy 

conservation in a convenient form. Together with the continuity equation, Bernoulli’s 

equation provides a quantitative description of the flow behaviour of liquids, such as 

water, which approximate an ideal, non- viscous, incompressible fluid.

Exercise 7.5: A horizontal water pipe has an initial diameter of 4 cm that 

tapers gradually over a central section to a final diameter of 2 cm. If the pressure 

and speed of flow through the wide portion of the tube are, respectively, 2 × 104 

Pa and 1 m/ s, determine the pressure and flow speed in the narrow portion. The 

density of water is 103 kg/ m3.

Let the radii of the wide and narrow portions of the pipe be R
1
 and R

2
 

respectively. The cross- sectional area of the wide portion of the pipe is then 

given by A R
1 1

2= π  and that of the narrow portion by A R
2 2

2= π . Taking the 

water velocity in the wide portion as v
1
 and that in the narrow portion as v

2
, 

the continuity equation gives v
A

A
v

2

1

2

1

4

1
1 4=







= 





× =  m/s.

Since the flow is horizontal, Bernoulli’s equation simplifies through can-

cellation of the ρg h terms to give p v p v
1 1

2
2 2

2
1

2

1

2
+ = +ρ ρ . Rearranging and 

substituting values gives p p v v
2 1 1

2
2
2 4 3

1

2
2 10

1

2
10 1 16= + −( ) = × + × × −( ) =ρ

 

1.25 × 104 Pa.
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Exercise 7.6: If the narrow portion of the pipe in Exercise 7.5 were bent 

upwards, and then bent back to the horizontal at a height of 50 cm above the 

original height, determine the water pressure in the raised horizontal section of 

the tube.

The flow velocity in the raised section of the narrow tube remains unchanged 

at 4 m/ s as required by the continuity equation for an incompressible fluid, while 

the pressure in this section does change in accordance with Bernoulli’s equation,   

which becomes ′ = + −( ) + −( )p p v v g h h
2 1 1

2
2
2

1 2

1

2
ρ ρ  where h h

2 1
0 5− = . m. 

Note that p
1
 and ′p

2
 are now the pressures in the lower and upper sections of the 

narrow tube. Substituting numbers, and making use of the result of Exercise 7.5, 

gives p
2

4 3 31 25 10 10 9 8 0 5 7 6 10
´

. . . .= × − × × = × Pa.

The pressure is lowered in the upper portion of the pipe. The kinetic energy 

of the flowing liquid does not change, since the flow velocity remains constant, 

but the potential energy does change with elevation in the gravitational field.

Many practical applications of Bernoulli’s equation make use of the pressure drop 

in a constricted region of a tube through which fluid flows. Examples are the Venturi 

meter for measuring fluid flow rates through pipes, and spray atomizers which draw 

liquid up from a reservoir when a bulb is squeezed to force air through the device. 

Other examples of effects accounted for by Bernoulli’s equation are the aerodynamic 

lift on the aerofoils of aircraft, and the swing in the trajectory of a spinning ball 

moving at speed through the air. In the latter examples, pressure differences arise on 

opposite sides of an object moving through a fluid when the fluid speed is higher on 

one side of the object than on the other.

7.4.3 VISCOUS FLUID FLOW

The discussion of fluid flow given above neglects viscous effects that dissipate 

energy in irreversible processes in a viscous fluid. While the continuity equation 

continues to hold, provided the fluid is incompressible, Bernoulli’s equation breaks 

down for these fluids because mechanical energy conservation does not hold. In 

contrast to ideal fluids, for which no pressure drop is predicted in streamline flow 

through a horizontal pipe, viscous fluid flow is characterized by a pressure drop 

with distance along a horizontal pipe. The smaller the radius of the pipe, the greater 

the pressure drop over a given length. Investigations of the fluid velocity variation 

across a pipe through which viscous fluid flows have revealed that the flow velocity 

approaches zero at the walls of the pipe and is largest along the central axis of the 

pipe as illustrated in Figure 7.10.

Viscous fluid flow through a pipe can be viewed as a set of thin- walled concentric 

cylindrical tubes of flow moving parallel to the flow direction, with a radial decrease 

in velocity from the centre of the pipe to the wall as depicted in Figure 7.10, which 

shows the velocity profile in 2D across the pipe mid- section.
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In order to describe the viscous properties of fluids, it is necessary to introduce a  

quantity called the viscosity coefficient denoted by η. Consider an arrangement in  

which a fluid is contained between two flat horizontal plates of area A separated by  

a distance d. The upper plate is acted on by a horizontal force F  which causes the  

plate to move at a constant velocity v with respect to the lower plate as illustrated in  

Figure 7.11.

Experiment shows that the force F  necessary to produce steady motion of the 

upper plate with respect to the fixed lower plate is proportional to the product Av  and 

inversely proportional to d. The (dynamic) viscosity coefficient η is introduced as a 

proportionality constant to give F
A v

d
= η

 
. The SI units of η are Pa s. Representative 

η values are approximately 1 mPa s for water at 20°C, and 100 mPa s for light oil at 

the same temperature.

For a viscous fluid flowing through a horizontal cylindrical pipe, there is a pressure 

drop in the fluid with distance along the pipe. Consider a pipe of length L and radius 

R through which a fluid with viscosity coefficient η flows at a volume flow rate Q.   

FIGURE 7.11 A viscous fluid (shown as the shaded region) is situated between a fixed lower 

plate and a moving upper plate, which experiences a drag force. There is a velocity gradient in 

the motion of successive fluid layers, as indicated by the arrow lengths.

FIGURE 7.10 Viscous flow through a portion of a pipe, showing the velocity profile for a 

2D cross- section of the pipe. In 3D, the flow pattern is visualized as concentric tubes of flow.
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The pressure drop ∆p along the pipe is expected to depend on η, L, Q, and on the 

inverse of the cross- sectional area A R= π 2. In order to obtain the required units of 

Pa for the pressure drop, dimensional analysis shows that it is necessary to include 

a further factor R2 in the denominator, so that ∆ =
∆

∝ ∝p
F

A

L v

A

L Q

A

η η
2

. A detailed 

calculation based on the flow pattern depicted in Figure 7.10 leads to what is called 

Poiseuille’s equation, as given in Equation (7.6), for the pressure drop in viscous fluid 

flow through a pipe:

 ∆ =P
L

R
Qη

π

8
4

 (7.6)

Poiseuille’s equation applies to the non- turbulent viscous flow of a fluid through a 

horizontal cylindrical pipe.

Exercise 7.7: A section of a horizontal oil pipeline with inside diameter 

20 cm has a pressure drop of 120 kPa over its length of 10 km. Calculate the 

flow rate in L/ s taking the viscosity coefficient of the oil as 200 mPa s. Assume 

that Poiseuille’s equation holds for this flow process.

From Equation (7.6), the flow rate is Q
R p

L
=

∆
=

× −1

8

1

0 2

10

8

4 4

η

π π

.
1 2 10

2 36 10
5

4

3 3
.

.
×

= × −

10
m /s . The predicted flow rate is 2.36 L/ s. The use of 

Poiseuille’s equation for a large pipeline of this sort is questionable, and the 

calculated flow rate is significantly higher than would be achieved in practice.

7.5  MECHANICAL PROPERTIES OF SOLIDS

While liquids and gases occupy the space available to them, with allowance for the 

influence of gravitational forces, most solids have shapes and dimensions that change 

only slightly when subjected to moderate applied stress. Furthermore, stresses can 

be applied to solids in 1D and 2D, in addition to 3D. In dealing with fluids, a single 

property, the compressibility given by κ = −
1

V

V

P

d

d
, is of key importance in deter-

mining the behaviour under stress. Gases are highly compressible, while liquids are 

not. Solids are, in general, even less compressible than liquids, and in the simplest 

case of a homogeneous isotropic material require two elastic constants to describe 

their mechanical properties. The elastic constants, or moduli, are called Young’s 

modulus Y , and the shear modulus σ. Other elastic constants, including the bulk 

modulus B, can be defined, although their values depend on Young’s modulus and 

the shear modulus. The bulk modulus and the compressibility are closely related as 

shown below.
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The material dependent moduli for solids are defined using the general relation:

 stress =  modulus × strain 

where strain is a dimensionless relative deformation and stress has units of N/ m2. It 

follows that the moduli have the latter units as well.

The bulk modulus is determined by increasing the hydrostatic pressure on a solid 

specimen by ∆p and measuring the resultant fractional volume change ∆V V/ . Thus, 

B is defined by the relationship

 ∆ = −
∆

p B
V

V
 (7.7)

From Equation (7.7), it follows that B V
p

V
= −

∆
∆

. Note that the bulk modulus B is the 

inverse of the compressibility κ .

Measurements of Young’s modulus of a solid involve applying opposing forces 

F  to each end of a specimen in the form of a long rod or wire of length L and cross- 

sectional area A. The tensile stress F A/  produces a strain ∆L L/  from which Y  is 

obtained using the relationship

 
F

A
Y

L

L
=

∆
 (7.8)

Shear modulus values are obtained by applying opposing forces F  to the parallel 

upper and lower faces of a specimen of thickness L, as shown in Figure 7.12, to 

produce a shear stress, which results in a shear deformation ∆X  as given in the 

following equation:

 
F

A

X

L
= σ

∆
 (7.9)

FIGURE 7.12 Representation in 2D of (a) shear stress and (b) hydrostatic pressure- induced 

strains for a solid specimen with a rectangular cross- section.
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Figure 7.12 gives a 2D representation of (a) shear stress and (b) hydrostatic pressure-  

induced strains in a rectangular solid. The case of uniaxial stress is illustrated in  

Figure 7.2.

The stress– strain curve for a metal wire typically shows a linear region as the 

stress is increased gradually from zero, with slope given by Young’s modulus Y  for 

the material as predicted by Equation (7.8). In the linear stress– strain region, the 

strain is reversible with the specimen returning to its original length when the applied 

stress is reduced back to zero. Stress– strain behaviour in the linear region is described 

by Hooke’s law, which is discussed in Chapter 8. As the stress is increased further, 

the strain behaviour changes. It is found that above what is called the yield point 

the strain increases non- linearly and is no longer reversible. Permanent deformation 

of the specimen occurs. At sufficiently high stress values the specimen ruptures as 

indicated in Figure 7.13.

Exercise 7.8 An aluminium rod of diameter 2 mm and length 80 cm is 

suspended from a rigid support. If a mass of 50 kg is attached to the lower end 

of the rod, by how much will the rod’s elastic length increase? Young’s modulus 

for aluminium is Y
A1

 = 70 × 109 N/m2.

From Equation (7.8),  ∆ = =
×

×
×

×
× =

−
L

Y

F

A
L

1 1

70 10

50 9 8

10
0 8 1 8

9 6

.
. .

π
mm. Steel,

which is important in engineering applications that require tensile or compressive  

strength, has a Young’s modulus of Y
Fe

 N/m= ×200 109 2, which is significantly 

higher than that of some other metals such as copper (Y
Cu

 N/m= ×110 109 2) or 

aluminium (Y
Al

, given above).

As an example of shear strain, consider the following situation for the aluminium 

rod described in Exercise 7.8. If a twisting torque, represented by a vector parallel 

FIGURE 7.13 Stress– strain curve obtained for a representative stretched metal wire. Hooke’s 

law is obeyed in the linear elastic region, where the slope of the line gives Young’s modulus 

for the wire. For stress values above the yield point, the specimen undergoes permanent 

elongation. As the stress is increased, the permanent deformation increases until a breaking 

point is reached where catastrophic failure occurs.
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to the rod axis, is applied to the end of the rod, then the rod will twist through an 

angle ∆θ. The twist is a measure of the shear strain produced by the torque- induced 

stress. In equilibrium, ∆θ is determined by matching the size of the applied torque 

to that of the opposing torque involving the shear modulus of aluminium, which is   

26 × 109 N/ m2. For small ∆θ the shear stress– strain curve is linear, and the twist behav-

iour is reversible. If the mass is twisted through a small angle and is then released, 

it will perform oscillatory motion and the system constitutes a torsional oscillator as 

discussed in Chapter 8.
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Oscillations

8.1  INTRODUCTION

Oscillatory behaviour is found in a wide variety of physical systems. Familiar 

examples include the to- and- fro motion of a child’s playground swing, the peri-

odic motion of the pendulum in a mechanical clock, and the oscillation of a mass 

suspended on a spring. For mechanical systems, this kind of motion can be described 

in detail using Newton’s second law. The time- dependent motion is characterized by 

a frequency, which may, if the oscillation is only weakly damped, remain approxi-

mately constant over a long period.

The important case of simple harmonic motion is central to any discussion of 

oscillatory motion. Simple harmonic motion is explained in general terms in Section 8.2,  

and specific examples are given in Sections 8.3 to 8.5. Section 8.6 elaborates on the 

kinetic and potential energy contributions to the total energy of a mass that is under-

going oscillatory motion. The final sections of this chapter are concerned with, firstly, 

damped oscillators and, secondly, the response of an oscillator which is driven by an 

external mechanism at frequencies other than its natural frequency.

8.2  SIMPLE HARMONIC MOTION

Consider a system consisting of a mass m subject to a time- varying force F t( ), which 

causes the mass to undergo oscillatory motion parallel to the x- axis of a Cartesian 

coordinate system. Let x t( ) be the displacement of the mass from the origin at time   

t. The necessary condition for simple harmonic motion (SHM) to occur is that x t( ) be 

a periodic function of time of the form

 x t x t
m

( ) = +( )cos ω φ  (8.1)

with x
m

 the amplitude of the motion, ω the angular frequency, and φ the phase angle 

determined by the initial conditions. Note that the sine function could be used instead 

of the cosine function by changing the value of φ. Analogous to the case of circular 

motion in Chapter 5, the angular frequency is related to the period T  for a complete 

8
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cycle of oscillatory motion by ω π= 2 /T . Newton’s second law gives the time- 

dependent force acting on m as

 F m a m
x

t
m x t m x

m
= = = − +( ) = −

d

d
 

2

2

2 2ω ω φ ωcos  (8.2)

Equation (8.2) shows that the force necessary to produce SHM of the mass m is 

proportional to the displacement, and, in view of the minus sign, acts towards the 

origin, that is in the opposite direction to the displacement. The classic example of a 

linear restoring force acting on a mass undergoing oscillatory motion is that of a mass 

attached to a spiral spring.

It is interesting and instructive to note the similarity of the expression describing 

SHM in 1D to the expressions for the x and y components in the rotating vector 

representation of circular motion in 2D given in Chapter 5. The angular displacement 

of a rotating vector, of length A, as a function of time is given by θ ω φ= + t , and 

it follows that the amplitude of the x component is x t A t( ) = +( )cos ω φ , which is 

identical in form to Equation (8.1). The y component is analogous to this, but with the 

cosine function replaced by the sine function. Thus, circular motion can be viewed 

as a combination of two SHM motions along orthogonal axes with a phase difference 

∆ =φ π/2 between the motions. If the tip of the x component of the rotating vector 

were to be viewed in the plane of motion, looking down the y- axis, the 1D motion 

seen would correspond to SHM.

8.3  MASS ON A SPRING

8.3.1  HOOKE’S LAW

If a spiral spring is attached to a rigid support and is extended by a force applied to 

the free end, then, in equilibrium, the spring exerts an equal and opposite force to 

match the applied force. This scenario is illustrated in Figure 8.1 for a light spiral 

spring hung vertically with a mass m suspended from its free end. The length of the 

spring is extended by the applied force. Provided the extension ∆l is not too large, 

the opposing force F  exerted by the spring is found to obey Hooke’s law, which 

states that F l∝ ∆ . Hooke’s law is an empirical law, but it is found to hold remarkably 

well provided the extension does not produce permanent deformation of the spring. 

The proportionality constant used in Hooke’s law is known as the spring constant k, 

giving the relationship

 F k l= − ∆  (8.3)

The SI units for k are N/ m. The minus sign shows that the force acts in the opposite 

direction to the extension. Equation (8.3) is the required condition for SHM, as shown 

in Section 8.2.

Hooke’s law follows from the elastic properties of solids as described in Chapter 7. 

The spring extensions discussed in this chapter are assumed to be in the elastic range, 

below the elastic limit.

 

 

 

 

 



118 Physics: An Introduction to Physical Dynamics

118

8.3.2 OSCILLATIONS OF A SPRING SYSTEM

To avoid having to consider gravitational effects when dealing with a mass on a 

spring, it is convenient to support the system on a horizontal surface, so that the 

downward gravitational force m g  on the attached mass m is matched by the upward 

reaction force produced by the surface. Coordinates are chosen with the horizontal 

x- axis along the longitudinal axis of the spring and the origin at the fixed end of 

the spring as illustrated in Figure 8.2. If the spring that is extended and released 

obeys Hooke’s law, it follows that the mass will execute SHM provided the fric-

tional damping forces are negligibly small. Comparing Equation (8.2) with Equation 

(8.3), it can be seen that k m= ω2 and the angular frequency of the SHM is therefore 

ω = k m/ . This result for SHM can be obtained directly using Newton’s second law 

together with Hooke’s law as shown below.

In applying Newton’s second law to the motion of the mass, and assuming that 

friction forces are negligible, it is necessary to consider just the horizontal force that 

FIGURE 8.2 Representation of a spiral spring oriented horizontally parallel to x  and subject 

to a force F which produces an extension ∆x.

FIGURE 8.1 Depiction of a spiral spring suspended vertically with a mass m attached to the 

free end. In equilibrium, the spring exerts an upward force equal to the weight m g .
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is given by Hooke’s law. Equation (8.1) gives the displacement of a mass undergoing 

SHM as x t A t( ) = +( )cos ω φ . The use of Newton’s second law together with Hooke’s 

law leads to the relationship

 F m
x

t
m x t m x k x

m
= = − +( ) = − = −

d

d
 

2

2

2 2ω ω φ ωcos  (8.4)

The angular frequency is ω = k m/ , as noted above, with oscillation 

period T
m

k
= =

2
2

π

ω
π .

In the case of the spring– mass system being oriented vertically along the y- axis, 

the weight m g extends the length of the spring by an amount ∆y, which is given by 

Hooke’s law as ∆ =y
m g

k
. In order to allow for this static extension due to the gravita-

tional force, the origin O along y is shifted downwards by ∆y. The spring constant k 

is unchanged and Hooke’s law becomes F k y= − . Apart from the change of axis from 

x to y, Newton’s second law retains the form used in the horizontal orientation case, 

with angular frequency again given by ω = k m/ .

Exercise 8.1: A light spiral spring, with a mass m = 0.05 kg  attached to one 

end, is located on a smooth horizontal surface with the other end clamped to 

a rigid support. If the oscillation period is 0.8 s, what is the spring constant? 

Determine the static extension of the spring when it is suspended vertically.

Using the result  T
m

k
= 2π  gives k

m

T
= =

×
=

4 39 5 0 05

2 56
3 08

2

2

π . .

.
. N/m. When   

the spring is suspended vertically, with its cylindrical axis parallel to y, the 

static extension is given by Hooke’s law as ∆ = =
×

=y
m g

k

0 05 9 82

3 08
0 16

. .

.
. m .

It is instructive to examine SHM for a spring oriented with its axis aligned vertically 

along the y- axis with a mass m attached to its free end as shown in Figure 8.1. The 

Earth’s gravitational field exerts a constant downward force F m g
G

=  on the mass 

leading to an extension of the spring. When set in vertical motion, the mass executes 

SHM about the extended length equilibrium position, taken as the origin. The Hooke’s 

law force F k y
H

= −  provided by extension and compression of the spring determines 

the motion of the mass. The frequency ω = k m/  of the SHM motion is precisely the 

same as that found when the spring axis lies along the x- axis. The gravitational force 

does play a role in determining the potential energy behaviour as a function of the 

position of the vertical oscillator, as is discussed in Section 8.6.
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8.4  SIMPLE PENDULUM

The classic simple pendulum consists of a bob of mass m suspended on a string 

attached to a fixed support. The gravitational field exerts a force F m g=  on the bob 

and this keeps the string taut. When the bob is pulled to one side and then released, 

the system undergoes oscillatory motion about the vertical direction as depicted in 

Figure 8.3. In its motion, the bob sweeps out an arc of radius equal to the string 

length l.

Consider the forces acting on the bob when the string makes an angle θ with the 

vertical direction. The tension T  in the cord acts perpendicular to the direction of 

motion of the bob as it swings along the arc to which its motion is constrained. The 

weight m g, which acts vertically downwards, can be resolved into two perpendicular 

components as follows. Firstly, F m g⊥ = cosθ is parallel to the string and perpen-

dicular to the direction of motion. Secondly, F m g = sinθ acts along the direction of 

motion as shown in Figure 8.3. It is convenient to describe the motion of the bob in 

terms of the arc length displacement s l= θ from the origin, which is chosen to lie at 

the bottom point of the arc of motion. Applying Newton’s second law to the oscilla-

tory motion gives

 − = =m g m
s

t
ml

t
sinθ

θd

d

d

d

2

2

2

2
 (8.5)

The minus sign is inserted because the force F acts in the opposite direction to the 

displacement. If the amplitude of the oscillating motion is sufficiently small, then to 

a good approximation sinθ θ , and Equation (8.5) becomes

 − =
g

l t
θ

θd

d

2

2
 (8.6)

FIGURE. 8.3 A simple pendulum consists of a bob of mass m suspended on a light string 

of length l . For small oscillation amplitude θ the pendulum executes motion approximating 

simple harmonic motion.
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The comparison of Equation (8.6) with Equation (8.2) shows that for small θ the bob 

executes SHM, with the angular displacement at time t given by θ θ ω φ= +( )
m

tcos . 

Inserting this expression for θ into Equation (8.6), and simplifying, gives the angular 

frequency as

 ω = g l/  (8.7)

The period is T
l

g
= 2π . The condition that sinθ θ  holds to within 1% for angles 

θ
π

<
12

 (or θ < °15 ). Equation (8.7) shows that the period of the pendulum does not 

depend on the mass of the bob, and it therefore applies universally for all pendulums 

of this type and length.

An alternative approach to the mechanics of the simple pendulum can be used if 

the pendulum string is replaced by a rigid rod of length l and negligible mass. The 

pendulum in this form is viewed as a rigid body, with moment of inertia about the 

suspension point given by I m l= 2, which is subject to a clockwise torque, of magni-

tude Γ = m g l sinθ, produced by the gravitational force acting on the bob as depicted  

in Figure 8.3. Newton’s second law for rigid body motion is Γ = I α, with α
θ

=
d

t

2

2d
, 

which gives − =m gl ml
d

dt
sinθ

θ
2

2

2
. Taking sinθ θ  for small θ, and simplifying, gives

 − =
g

l t
θ

θd

d

2

2
 (8.8)

Equation (8.8) is identical to Equation (8.6), and the angular frequency is therefore 

given by ω = g l/  as before.

Exercise 8.2: A simple pendulum consists of a light rod, of length 0.8 m, with 

a mass m attached to the lower end. The pendulum is set in motion by displacing 

the bob by a small amount from its static equilibrium position. Determine the 

period of this pendulum. By how much would the period change if the length 

of the rod were halved?

Using the expression T
l

g
= 2π  for the period gives T = =2

0 8

9 8
1 8π

.

.
. s .   

If the length of the rod is halved, the period would decrease by a factor   

0 5 0 7. .≈ .
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8.5  RIGID BODY OSCILLATIONS

If a rigid body is suspended on a pivot allowing rotational motion about an axis that 

does not pass through the centre of mass, it will execute SHM after being rotated 

through a small angle θ from its equilibrium orientation and then released. The situ-

ation is a generalization of the case of the simple pendulum consisting of a mass 

attached to one end of a light, but rigid, rod as discussed in Section 8.4.

Consider a solid slab of material chosen for convenience to be of rectangular 

shape, although the present analysis applies to arbitrarily shaped objects. The slab is 

suspended as shown in Figure 8.4, with the pivot axis at a distance L from the centre 

of mass. Using Newton’s second law Γ = I α for the oscillatory motion of the body 

subject to a torque Γ, with I the moment of inertia of the body about the pivot axis and 

α the angular acceleration, gives, for small θ, the equation of motion as

 − − =M g L M g L I
t

sinθ θ
θ d

d

2

2
  (8.9)

The magnitude of the torque produced by the gravitational force is given by 

Γ = M g L M g Lsin θ θ . As before, the approximation sinθ θ  holds for small amp-

litude oscillations. The minus sign shows that the acceleration occurs in the opposite 

direction to the displacement.

Equation (8.9) can be written in the form 
d

d

2

2

2
θ

ω θ
t

= − , with ω2 =
M g L

I
. This is the

 
now familiar expression for SHM. Use of the parallel axis theorem for the moment 

of inertia of a rigid body about an axis at a distance L from a parallel axis through the 

centre of mass gives I I M L= +
CM

2, with I
CM

 the moment of inertia about the centre 

of mass. The angular frequency becomes ω =
+

M g L

I M L
CM

2
. The moments of inertia 

of rigid bodies with various shapes about axes through their centres of mass are given 

FIGURE 8.4 A rectangular- shaped rigid body of finite thickness and mass M is pivoted about 

an axis at O a distance L  from its centre of mass. For small angular displacements θ the body 

executes SHM in the Earth’s gravitation field.
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in Chapter 6. Note that if the pivot axis passes through the centre of mass, then L = 0,   

and hence ω = 0 or, equivalently, the period T  goes to infinity.

Exercise 8.3: Determine the period of the oscillations of a solid disk of mass 

M and radius R about a perpendicular pivot axis near the edge of the disk.

Using the expression for the angular frequency of oscillation of a rigid 

body given by ω =
+

M g L

I M L
CM

2
, together with the observations that L R=  

and the moment of inertia about a perpendicular axis through the centre of 

mass is I M R
CM

=
1

2
2, leads to ω =

+
=

M g R

M R M R

g R
1

2

3

22 2

/ . The period 

T R g= 2
3

2
π /  increases as the square root of the radius.

8.6  ENERGY OF OSCILLATION

A system consisting of a mass undergoing SHM has mechanical energy E  made up 

of kinetic energy K  and potential energy U. If damping forces are negligible, mech-

anical energy is conserved. Both K  and U vary with time, but their sum E  remains 

constant. If damping is not small, mechanical energy will not be conserved and the 

amplitude of the SHM oscillations will steadily decrease. For large damping, the 

system will not exhibit SHM. This case is discussed in Section 8.7.

As an example, consider a mass m attached to one end of a spiral spring with the 

other end of the spring clamped to a fixed support. As an idealization, the spring– 

mass system is assumed to be located on a frictionless horizontal surface. In addition, 

it is assumed that the mass of the spring is small compared to that of the attached mass 

m, and can therefore be neglected. If the spring is extended and then released, the 

mass will undergo SHM as described in Section 8.3. Note that it is the kinetic energy 

K  of the mass m undergoing SHM that is considered, while the potential energy U is 

associated with extension or compression of the spring which provides the necessary 

time- varying force to move the mass. The displacement of the mass as a function of 

time is given by Equation (8.1) as x t x t
m

( ) = +( )cos ω φ . The angular frequency is 

ω = k m/ , with k the spring constant.

The maximum value of potential energy stored in the spring is determined from 

the work done by the applied force, F x k x( ) = , producing the initial extension which 

starts the oscillatory motion. It follows that U W k x x k x

x

= = =∫
0

2
1

2
d . When the mass 

is allowed to execute SHM, the potential energy oscillates in time between zero and 

1

2
2k x
m

 as given by the following equation:
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 U k x t
m

= +( )1

2
2 2 cos ω φ  (8.10)

In addition, Equation (8.10) shows that U has a parabolic dependence on x, and 

swings between the values 0, when x = 0, and 
1

2
2k x
m

, when x x
m

= .

The kinetic energy of the mass is given by K m v m
x

tx
= = 





1

2

1

2
2

2
d

d
, and so differ-

entiating the expression x t x t
m

( ) = +( )cos ω φ  gives

 K m x t k x t
m m

= +( ) = +( )1

2

1

2
2 2 2 2 2ω ω φ ω φsin sin   (8.11)

K and U oscillate between the same energy limits, but with a phase difference of π/2 

between them.

The total energy is given by

 E K U k x t k x t k x
m m m

= + = +( ) + +( ) =
1

2

1

2

1

2
2 2 2 2 2sin cosω φ ω φ  (8.12)

The variations of K , U, and E  with displacement x are shown in Figure 8.5.

The variations of E , K , and U with time are shown in Figure 8.6.

With the spring fully extended at x x
m

= , the mass m is momentarily at rest with  

U at a maximum and K  at a minimum. In contrast, K  is at a maximum and U is at a  

minimum when x = 0. The average potential energy U
av

 is equal to the average kinetic  

FIGURE 8.5 The kinetic energy K  and the potential energy U  as a function of displacement 

x  for a mass m on a spiral spring undergoing simple harmonic motion. A minimum in K  and 

a maximum in U  occur when the displacement is x x
m

= . For x = 0, the situation is reversed, 

with K  a maximum and U  a minimum. The total energy E K U= +  is constant for all x  values.
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energy K
av

, with U K E
av av

/= = 2, as can be seen by considering the intersection of  

the curves in Figures 8.5 and 8.6.

The above discussion of the energy of a harmonic oscillator has considered a hori-

zontally mounted spring with an attached mass moving on a frictionless surface. For 

a vertically mounted spring system, as shown in Figure 8.1, it is necessary to allow 

for the potential energy contribution of the attached mass as it undergoes vertical 

motion in the Earth’s gravitational field. The two important forces acting on the mass 

when it is displaced from its static equilibrium position, which is chosen to be the 

origin of the vertical y- axis, are, firstly, F k y
H

= −  due to the stretched spring and, sec-

ondly, F m g
G

=  due to gravity. As shown above, the potential energy is obtained as 

a function of y by calculating the work done in stretching the spring. The calculation   

gives the relationship, U W k y m g y k y m g y

y

= = +( ) = +∫
0

2
1

2
d . The maximum and 

minimum values of U are obtained with the appropriate choice of signs. Both U and 

K  involve gravitational contributions and vary between zero and the altered upper   

and lower energy bounds as a function of time, in a similar way to the behaviour of 

the horizontal spring case shown in Figure 8.6. Since the gravitational force on mass 

m is constant, there is no change in ω as discussed in Section 8.3.

Exercise 8.4: Obtain expressions for the kinetic energy and the potential 

energy of a simple pendulum undergoing small angle oscillations approximating   

SHM.

From Section 8.4, the angular displacement of a simple pendulum bob 

suspended on a string of length l is θ θ ω φ= +( )
m

tcos , with ω = g l/  as given 

FIGURE 8.6 The potential energy U  and the kinetic energy K  as a function of time t  for a 

simple harmonic oscillator. The total energy E U K= +  remains fixed, while U  and K  oscillate 

between 0 and E with a phase difference of π. T = 2π ω/  is the period for a complete oscillation.
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in Equation (8.7). The component of the gravitational force antiparallel to the 

displacement ds l d= θ is to a good approximation F m g= − θ, where we have 

assumed that sinθ θ .

The increase in the gravitational potential energy U with angular dis-

placement from the origin at θ = 0 is obtained from the work done 

W  by an applied force in changing the angle from 0 to θ. This gives 

U W F s m gl m g l= = − = =∫d d
0

2
1

2

θ

θ θ θ . Inserting the time- dependent expres-

sion for θ given above leads to U m gl t
m

= +( )1

2
2 2θ ω φcos .

The kinetic energy is K m v=
1

2
2, and using v l

t
=

d

d

θ
 gives K ml

dt
= 





=
1

2
2

2
dθ

1

2

1

2
2 2 2 2 2 2ml t m g l t

m m
ω θ ω φ θ ω φsin sin+( ) = +( )

.

The total energy is constant and is given by E U K m gl
m

= + =
1

2
2θ .

Note that in contrast to the horizontal spiral spring, where it is the elastic properties of 

the spring which determine the behaviour, in the case of a pendulum it is the Earth’s 

gravitational field that gives rise to the potential energy properties associated with the 

motion. It is straightforward to consider the SHM behaviour of a vertically mounted 

spring carrying a mass m, which is subject to both elastic and gravitational forces that 

play a role in determining the energy of the system. This is left as an exercise.

Exercise 8.5: A thin strip of wood of length 2L and mass M is pivoted about 

an axis located at one end and oriented perpendicular to the strip’s surface. To a 

good approximation, the strip executes SHM for small angular displacements θ 

from its static equilibrium orientation. Obtain expressions for the potential and 

kinetic energies of the strip as a function of time. Friction effects are negligible.

Newton’s second law for rigid body oscillations, given in Equation (8.9), has 

the SHM form 
d

d

2

2

2
θ

ω θ
t

= − , with θ θ ω φ= +( )
m

tcos  where ω =
M g L

I
. L is 

the distance from the pivot to the centre of mass of the object.

The kinetic energy is K I
d

dt
I t M

m
= 





= +( ) =
1

2

1

2

1

2

2

2 2 2
θ

ω θ ω φsin  g  

L t
m

sinθ ω φ2 2 +( ), while the potential energy is U M g L M g L= = =∫
0

2
1

2

θ

θ θ θd

1

2
2 2M g L t
m

cosθ ω φ+( ).
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The total energy E K U M g L
m

= + =
1

2
2θ  is constant, as expected.

Note that the moment of inertia does not appear in the expression for K  (due 

to the cancellation of terms), and the form of this expression is very similar to 

that obtained for the simple pendulum in Exercise 8.4, with the pivot to centre 

of mass distance L replacing the length of the simple pendulum string l. The 

compound pendulum expressions for U and K are widely applicable to SHM 

involving rigid bodies.

8.7  DAMPED SIMPLE HARMONIC MOTION

The discussion of SHM in this chapter has, until now, been concerned with ideal 

systems in which damping effects, due to friction or air resistance, are assumed to 

be negligibly small. In the limit of zero damping, SHM, once begun, persists indef-

initely. In order to allow for damping it is necessary to introduce a damping force 

into Newton’s second law. Consider a system comprised of a mass on a spring in 

the presence of a damping mechanism, which applies a velocity- dependent retarding 

force F bv b
x

tD

d

d
= − = −  to the mass. This particular form for the retarding force 

applies, for example, if the damping is provided by a viscous liquid via a paddle 

attached to the mass. The equation of motion, which is based on Newton’s second 

law, becomes

 m
x

t
k x b

x

t

d

d

d

d

2

2
= − −  (8.13)

Although this second order differential equation is not straightforward to 

solve, considerable insight is gained by using the exponential form x x e
m

t= −β  

as a trial solution of Equation (8.13), with β a parameter to be determined 

in terms of m, k, and b. Carrying out the differentiation of x and rearranging 

terms leads to the quadratic equation β β2 0− + =
b

m

k

m
, with solution given by 

β ω= ± 





− = ± 





−
b

m

b

m

k

m

b

m

b

m2 2 2 2

2 2

0
2  where ω

0
=

k

m
 is the angular fre-

quency of the undamped oscillator.

Three cases arise, referred to, respectively, as (1) underdamped with ω
0
2

2

2
> 





b

m
, 

(2) critically damped with ω
0
2

2

2
= 





b

m
, and (3) overdamped with ω

0
2

2

2
< 





b

m
.
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In the underdamped case, the solution involves the exponential of a complex  

function with real and imaginary parts, and can be shown to take the form

 x x t
m

t= +( )− cos/e
D

τ ω φ  (8.14)

with ω ω
D

= − 



0

2

2

2

b

m
 the frequency of the decaying oscillations, and τ = 2m b/  

the decay constant. Figure 8.7 depicts the form of decaying oscillations for the 

underdamped case.

The critically damped case corresponds to the solution

 x x C t
m

t= +( ) − /1 e τ (8.15)

which shows that the amplitude of displacement of the mass decreases with no oscil-

latory behaviour. The return to the equilibrium position at x = 0 occurs most rapidly 

for critical damping. Finally, for overdamped conditions, the solution is a sum of two 

decreasing exponentials. Again, any initial displacement of the mass dies away with 

no oscillation, and experiment shows that the return to equilibrium becomes more 

sluggish as the damping increases. This behaviour corresponds to a decrease in β, 

which means that the solution for β with the negative sign ahead of the square root 

applies. The return to equilibrium over time of a spring- mass system following an 

initial displacement of the mass is shown in Figure 8.8 for slightly underdamped and 

critically damped cases.

From a transport perspective, whether by road or rail, critical damping is important. 

Motor car suspensions, for example, are designed to be critically damped so that 

following the traverse of a major obstacle or bump in the road, vehicles return to 

stability smoothly without oscillations, thus reducing the risk of discomfort or even 

motion sickness in passengers.

FIGURE 8.7 Decay in the amplitude of oscillations with time for a lightly damped simple 

harmonic oscillator returning to static equilibrium.
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8.8  DRIVEN OSCILLATIONS

Consider a mechanical oscillator consisting of a mass m attached to a spring, with 

spring constant k, which executes SHM at a frequency ω
0

= k m/ . Experiment 

shows that when a variable-frequency driving mechanism is used to apply an alter-

nating force F t
A

cos( )ω  to the mass, the system responds by executing oscillations 

at the driving frequency ω with an amplitude dependent on both F
A
 and ω. If the 

frequency is varied over a wide range, with F
A
 kept constant, the amplitude of oscil-

lation reaches a maximum for ω ω=
0
, a condition known as mechanical resonance. 

A familiar example of mechanical resonance is provided by a child’s swing when it is 

pushed at its natural frequency.

For a mechanically driven horizontal spring plus mass oscillator, with allowance 

for damping, the equation of motion is obtained by adapting Equation (8.13) to give

 m
x

k x b
x

t
F t

d d

d A

2

2dt
= − − + ( )cos ω  (8.16)

The steady- state solution to Equation (8.16) has the familiar form x A= ( )ω   

cos(ω t + δ
ω
), but now both the amplitude and phase can be frequency dependent. The 

amplitude as a function of the driving frequency is found to be given by

 A

F

m

b

m

ω

ω ω ω

( ) =

−( ) + 





A

2
0
2

2
2

2

 (8.17)

This expression for the amplitude of oscillation as a function of the driving frequency  

is known as the damped oscillator form and is plotted in Figure 8.9 using ω
0

110= − s   

FIGURE 8.8 Gradual return to equilibrium over time for a simple harmonic oscillator which 

is (1) underdamped, and (2) critically damped. Overdamped behaviour (not shown) becomes 

more sluggish as the damping increases.
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and F m
A

/  N/kg= 10 . The damping constant, which is assumed to be much less than  

one (b m/  1), determines the half- height width of the frequency response curve.  

Note that the maxima for the curves shown occur at a frequency slightly below the  

undamped harmonic oscillator resonance frequency.

The complete solution of Equation (8.16) for a driven harmonic oscillator provides 

information on the behaviour of the phase angle δ as a function of frequency and 

damping constant.

Exercise 8.6: A system consisting of a horizontally mounted spiral spring with 

a mass of 0.1 kg attached to one end has its oscillations damped by a velocity 

dependent retarding force F
R
 = –b v with damping coefficient b = 0.2 kg/s. In 

the absence of external forces, the oscillation frequency is ω
0
 = 30 rad/s (i.e. the 

frequency is f = 4.8 Hz). If a variable-frequency oscillating driving force F = F
A
 

cos (ω t) with amplitude F
A
 = 1.2 N is applied to the mass parallel to the long axis 

of the spring, what will the amplitude of the oscillations be (a) for ω = ω
0
 and 

(b) for ω
0
 = 0.8 ω

0
?

Inserting ω = ω
0
 together with the values for F

A
 and b in Equation (8.17) gives 

the amplitude of the driven oscillations as A
F

b
ω

ω0

0

1 2

0 2 30
0 2( ) = =

×
=A

 
 m

.

.
. .

 Changing ω to 0.8 ω
0
 gives A

F m

b m

ω

ω ω ω
( ) =

−( ) + ( )
=A

/

/2
0
2

2 2 2

12

900 576 4

0 037
2−( ) +

=
×576

m. .

FIGURE 8.9 Amplitude response curves for a driven harmonic oscillator, obtained using 

Equation (8.17) and plotted versus the reduced frequency ω ω/
0
 with ω

0
 the resonance frequency 

of the undamped oscillator. As the damping factor b m/  is increased the curves broaden and the 

maximum amplitude decreases.
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As the damping constant is decreased, the response curve of a mechanical oscil-

lator becomes more and more sharply peaked near the undamped centre frequency   

ω
0
. The maximum amplitude response to the driving force then occurs for ω ω=

0
. 

This is known as the resonance condition.

Mechanical resonance effects occur in a wide variety of physical situations, 

including musical instruments involving strings, air columns, and drumheads. Going 

beyond mechanical systems, resonance phenomena are also important in electro-

magnetism. For example, electronic- tuned circuits have numerous applications 

in communications and in specialized fields such as magnetic resonance imaging. 

Resonance effects are particularly important in molecular and atomic spectroscopy, 

and in related areas which include lasers and atomic clocks. While a detailed descrip-

tion of atomic- scale resonance effects requires familiarity with quantum mechanics, 

the ideas and results presented in this chapter, particularly those concerning damped 

and driven oscillators, are useful at length scales ranging from the macroscopic to the 

microscopic.
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9 Waves in Low 

Dimensions

9.1  INTRODUCTION

Wave motion is encountered in a large variety of situations. Familiar examples 

include sound waves in the air and waves in the sea. There is an important distinc­

tion between mechanical waves, which require a medium in which to propagate, and 

electromagnetic waves, which propagate in a vacuum as discussed in Chapter 10. The 

subject is introduced by considering the properties of waves on a stretched string. 

The results obtained for waves on strings are useful in considering other types of 

waves, including sound waves and light waves. This chapter focuses on waves in a 

low number of dimensions, specifically with waves on strings and sound waves in 

pipes. Chapter 10 is concerned with waves in higher numbers of dimensions, in par­

ticular sound waves in air.

There are two types of mechanical waves, which are known as transverse waves 

and longitudinal waves, respectively. In order to illustrate the distinction between 

these wave types, consider a linear system consisting of a long chain of beads with 

neighbours connected together by springs. If a periodic force is applied at one end 

of the chain parallel to its long axis, then springs near that end experience a slight 

compression, followed by recovery to their original length, and then slight extension. 

With the passage of time, compression– expansion effects are transmitted along the 

chain as a longitudinal wave. In order to generate a transverse wave in the chain, the 

periodic force would be applied perpendicular to the chain axis, leading to periodic 

transverse motion involving spring compression– expansion effects, which propagate 

down the chain. For both wave types, energy is transmitted down the chain without 

any long­ range displacement of the beads. By stacking the chains into 2D sheets 

or 3D blocks of coupled beads, it is possible to picture wave propagation in higher 

dimensional systems. As an example, wave motion in real solids can be simulated 

using a model in which the atoms or ions are coupled together by forces, which, for 

small displacements of the interacting particles, obey Hooke’s law.

9.2  WAVES ON A STRING

9.2.1  TRAVELLING PULSES ON STRINGS

A long tautly stretched string allows transverse travelling waves to be generated on  

it by moving one end of the string up and down in a systematic way. A single pulse  

that travels along the string can be generated by a flick of the end, while a sinusoidal 

travelling wave can be produced using a mechanical oscillator attached to the  
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string. As a starting point, it is convenient to consider a single pulse propagating  

along an infinitely long string. In order to specify the time­ dependent behaviour of  

the string due to a travelling pulse, a set of Cartesian coordinates are introduced with  

the x­ axis parallel to the stretched string and the y­ axis perpendicular to x and aligned  

along the direction of the transverse motion. Let the displacement y of the string  

as a function of position x and time t be given by y F x t= ( ),  where F  is a function  

yet to be determined. Figure 9.1 depicts the pulse location, firstly at time t = 0 and  

secondly at a later time t t= ∆ . For t = 0 let the peak amplitude of the pulse be y
0
 at  

position x
0
, while at the later time ∆t  the peak amplitude has propagated along the  

string and occurs at ′ = + ∆x x v t
0

 . Rearranging gives the relationship x x v t
0

= − ∆′ ,   

which shows that the amplitude at point ′x  is equal to the amplitude at x
0
 a time ∆t   

earlier. Generalizing this approach to an arbitrary point x on the string leads to the  

form y F x v t= −( ) for the amplitude at that point at time t.

It is clearly of interest to consider the factors which determine the speed v of trav­

elling waves on stretched strings. Observations and calculations given below show 

that two quantities are important, namely the string tension T  and the mass per unit 

length µ. Other possible factors, such as the length of the string, are not important in 

determining v. It is possible to obtain an expression for v using dimensional analysis. 

This is done in Exercise 9.1.

Exercise 9.1: Use dimensional analysis to obtain an expression for the speed 

v of waves on a string in terms of the string tension T and the mass per unit 

length µ.

Let v T= α βµ  where α and β are exponents to be determined. The SI units 

of T  are N, or kgm s−2, and those of µ are kg m−1. Inserting these units in the 

expression for v gives m s kgm s kgm− − −= ( ) × ( )1 2 1
α β

. Grouping the exponents 

for “kg”, “m”, and “s” separately leads to the following simultaneous equations 

FIGURE 9.1 A pulse travelling with velocity v  along a stretched string aligned parallel to 

the x­ axis shown at times (a) t = 0 and (b) t t= ∆ . During time ∆t  the pulse travels a distance 

∆ = ∆x v t .

 

 

 



134 Physics: An Introduction to Physical Dynamics

134

in α and β. For “kg”, 0 = +α β; while for “m”, 1 = −α β; and for “s”, − = −1 2α. 

Solving gives α = 1/2 and β = −1 2/ . These exponent values lead to the following 

simple form for the speed of waves on a string:

 v
T

=
µ

 (9.1)

The above expression for the speed of waves on a string can also be derived using 

a model that simulates the motion of a string segment close to the maximum dis­

placement position of a pulse travelling along the string. As a result of the travelling 

pulse, segments of the string exhibit curvature and are no longer straight. If a segment 

curves upwards, then the segment will experience a resultant force with an upward 

component along the y­ direction due to asymmetry in the tension forces acting on the 

segment as illustrated in Figure 9.2. Adding vector components, the net force in the 

y­ direction is T sin sinθ θ
2 1

−( ), where T  is the tension in the string while θ
1
 and θ

2
 are 

the angles the tension force at the lower and upper ends of the segment make with the 

x­ axis as given in Figure 9.2.

Next, the curved segment at the point of maximum displacement of the string  

in the y­ direction can, as an approximation, be viewed as the arc of a circle of  

radius R , which is chosen to give the best fit in the vicinity of the peak. Let the  

segment of length l  subtend an angle ∆θ so that l R= ∆θ. Because of symmetry in  

the downward curvature, the tension forces at each end of the segment act down­

wards along −y, with each force making an angle ∆θ/2 with the x­ direction as can  

be seen in Figure 9.3.

FIGURE 9.2 Tension forces acting on a string segment undergoing propagating wave motion. 

The inset shows the summation of the tension vectors T . The resultant has both vertical and 

horizontal components. Note that if a segment is straight, then θ θ
1 2

=  and the net force along 

y  is zero.
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If ∆θ is chosen to be sufficiently small, then to a good approximation  

sin ∆( ) ≈ ∆θ θ/ /2 2, and the net force on the segment is F T T= ∆( ) ≈ ∆2 2sin θ θ/ .  

Newton’s second law then gives F T m a R a= ∆ = = ∆θ µ θ , where a is the acceler­

ation of the segment in the –y direction. The instantaneous acceleration of the  

segment is obtained using the expression a v R= 2 /  for the centripetal acceleration  

of a mass in circular motion with speed v. Substituting for a in the Newton’s law  

expression given above, and simplifying, gives T v= µ 2. The resulting expression for  

the speed is v T= /µ , in agreement with the expression obtained by dimensional  

analysis in Exercise 9.1.

Exercise 9.2: A single pulse travels along a long string, of mass per unit 

length µ = 0.05 kg/m, which is kept under tension T = 4 N. How long will it take 

the pulse to travel a distance of 3 m?

The speed of the pulse is given by v T= = =/ /  m/sµ 4 0 05 8 94. . . The time 

taken to travel a distance of 3 m is ∆ = =t 3 8 94 0 34/  s. . .

9.2.2 HARMONIC WAVES ON STRINGS

Harmonic waves with wavelength λ are produced on a string by generating a periodic 

transverse displacement at one end of the string. This can be achieved by driving the 

transverse motion using a harmonic oscillator machine. The resultant waveform as 

a function of position along the string, in units of x /λ, shown at a fixed time t = 0,   

is a sine wave as given in Figure 9.4. The characteristic wavelength is the distance 

between wave crests. A similar plot is obtained for the vibrational amplitude at some 

fixed position as a function of time in units of t T/ , with t the time and T  the period for 

one transverse oscillation. Harmonic waves travel a distance λ in time T . If the speed 

of the wave along the string is v, then it follows that v T f= =λ λ/ , where f T= 1/  is 

the frequency of the wave.

FIGURE 9.3 The shape of the string segment of length l  through which the wave peak is 

moving can be well approximated by the arc of a circle of radius R , as shown, with l R= ∆ θ.
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The wave function F x t,( ) for harmonic waves in 1D is obtained by adapting the  

general form y F x v t= −( ), given in Section 9.2.1 for the transverse y displacement  

of a string as a function of x and t, into the specialized form y y k x v t
m

= −( )sin , with  

y
m
 the amplitude (replacing A) and k = 2π λ/ . Introduction of k converts the distance  

x along the string into an increasing angle in radians related to the wavelength by the  

variable x /λ as required. In addition, the term 2π λv t /  becomes ω t using the relation­

ship v f/λ =  and the familiar relationship 2π ωf = . Thus, for harmonic waves the  

wave function is F x t A k x t, sin( ) = −( )ω , with the displacement given by

 y x t y k x t
m

, sin( ) = −( )ω  (9.2)

Equation (9.2) is of central importance in developing a description of many wave­ 

related phenomena, including the superposition of waves and standing waves.

Exercise 9.3: Harmonic travelling waves are generated on a long string using 

a 30 Hz mechanical oscillator. Taking the string tension as 3 N, and the mass 

per unit length as 0.06 kg/ m, determine the wavelength.

From Equation (9.1), the wave velocity is given by 

v T= = =/ /  m/sµ 3 0 06 7 1. . . The relationship v f= λ   then gives    

λ = =7 1 30 0 24. ./  m.

9.3  THE WAVE EQUATION

The wave equation for waves on strings, which is based on Newton’s second law, is a 

second order partial differential equation with applications throughout wave physics. 

FIGURE 9.4 Harmonic wave on a string, whose amplitude as a function of x /λ is given by 

y x A x( ) = ( )sin 2π λ/  at a fixed time t = 0.
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In 1D, it will be shown that any wave function of the form F x v t−( )  involving the 

two variables x and t is a solution to the wave equation.

Consider a string of mass per unit length µ, under tension T , which is aligned 

along the x­ axis of a Cartesian coordinate system. Travelling waves are generated 

on the string and result in displacements parallel to the y­ axis. At some fixed time 

t, let a string element of length ∆x be displaced through a distance y by the travel­

ling wave. In Section 9.2, it is shown that the net force on a segment of a string that 

is undergoing a wave­ induced displacement is, to a good approximation, given by 

F T= θ, with θ θ θ= −
2 1

 the difference in the angles that the tension T  makes with 

x at the upper and lower ends of the segment. On a smaller scale, an element of the   

string experiences a net force in the y direction given by F T
y

x
x=

∂
∂







∆
2

2
, where 

∂
∂

2

2

y

x
 is a measure of the string curvature provided the wave function is not 

a rapidly changing function of x. (The curvature gives the rate of change of the 

direction per unit length of the string.) Note that 
∂
∂

2

2

y

x
 may be positive, zero, or 

negative depending on whether the string curves upwards, is straight, or curves 

downwards. The use of partial derivatives is necessary because the variable t is 

being held
 
constant. Taking the acceleration in the y­ direction as 

∂
∂

2

2

y

t
, Newton’s 

second law is written as T
y

x
x x

y

t

∂
∂







∆ = ∆
∂
∂







2

2

2

2
µ . Cancelling ∆x leads to the wave 

equation for waves on a string,

 ∂
∂

=
∂
∂

2

2

2

2

y

x T

y

t

µ  (9.3)

It has been shown previously that the speed of a wave on a string is v T= /µ , and 

substituting this expression in Equation (9.3) gives the relationship

 ∂
∂

=
∂
∂

2

2 2

2

2

1y

x v

y

t
 (9.4)

Equation (9.4) can be generalized to apply to sound waves in 2D or 3D.

Exercise 9.4: Show that for waves on strings the harmonic wave function 
y = y

m
 sin (kx – ωt) is a solution to the wave equation.

For the chosen function, the evaluation of the two partial derivatives in  
 

Equation (9.4) gives 
∂
∂

=
∂
∂

∂
∂







= − −( )
2

2

2
y

x x

y

x
y k k x t

m
sin ω  and ∂

∂
=

∂
∂

2

2

y

t t

∂
∂







= − −( )y

t
y k x t

m
ω ω2 sin . Substitution of these derivatives in Equation (9.4) 
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leads to − −( ) = − −( )y k k x t
v

y k x t
m m

2

2

2
1

sin sinω ω ω , which simplifies to
 

give v k f= =ω λ/  where use has been made of k = 2π λ/  and ω π= 2 f . This 

expression for the speed v agrees with the result obtained previously for travel­

ling harmonic waves on strings. This proves that the harmonic wave function is 

a solution of the wave equation.

9.4  ENERGY OF HARMONIC WAVES ON STRINGS

Travelling waves on a string transport mechanical energy away from the oscillator 

source that produces the waves. This energy flow results in time­ dependent kinetic 

and potential energies being associated with each string segment. The kinetic energy 

of a segment ∆l involves its transverse speed v
y

ty
=

∂
∂

, while the potential energy 

involves the slope of the segment 
∂
∂

y

x
. The use of the harmonic wave function in 

Equation (9.2) gives 
∂
∂

= − −( )y

t
y k x t

m
ω ωcos  for v

y
 and 

∂
∂

= −( )y

x
y k k x t

m
cos ω  

for the slope. Note the use of partial derivatives in which one of the two independent 

variables in the wave function, either x or t, is allowed to vary, while the other is kept 

constant.

As before, the string tension is taken as T  and the mass per unit length as µ. 

The kinetic energy of the string segment, K m v
y

= ∆
1

2
2, can be written down imme­

diately as

 K l
y

t
l y k x t K k x t

m
= ∆

∂
∂







= ∆ −( ) = −
1

2

1

2

2

2 2 2 2µ µ ω ω ω    
max

cos cos (( ) (9.5)

Equation (9.5) shows that K  varies between zero and K l y
mmax

= ∆
1

2
2 2µ ω , reaching its 

maximum value twice in each period T  as illustrated in the plot of K K/
max

 versus t T/  

in Figure 9.5. The plot is for a string element at a fixed position x in the string. Note 

that K
max

 depends on the mass of the string element multiplied by the product of the 

frequency squared and the wave amplitude squared.

The potential energy is obtained by calculating the work done by the propa­

gating wave when it stretches a string segment further. If the string is in equi­

librium, then 
∂
∂

=
y

x
0 and the potential energy is zero. In the presence of a wave, 

the length of a string segment increases from ∆x to ∆l, and the work done is 

U T l x T x y x T x
y

x
= ∆ − ∆( ) = ∆( ) + ∆( ) − ∆



 = ∆ +

∂
∂







−












2 2
2

1 1 . In order to 
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simplify the calculation, it is assumed that the wave’s amplitude is small and its wave­

length λ is long compared to the length ∆l of the segment. This implies that 
∂
∂

y

x
 1

,   

and therefore the square root term can be expanded using 1 1
1

2

2 2

+
∂
∂







≈ +
∂
∂







y

x

y

x
,   

which leads to U T x
y

x
= ∆

∂
∂







1

2

2

 . The potential energy expression is obtained by 

using T v
k

= = 





µ µ
ω

2
2

2
, which gives, finally,

 U T x
y

x
x y k x t U k x t

m
= ∆

∂
∂







= ∆ −( ) = −( )1

2

1

2

2

2 2 2 2  
max

µ ω ω ωcos cos  (9.6)

Comparing Equation (9.5) (after replacing ∆l by ∆x in the expression for K
max

) with 

Equation (9.6), it is seen that K U=  with maxima and minima coinciding. The plot 

for U as a function of time is the same as the plot of K  versus t given in Figure 9.5.

The total energy E  of the string segment is given by

 E K U x y k x t
m

= + = ∆ −( )µ ω ω2 2 2 cos  (9.7)

The average transmitted energy E
av

 is obtained using the value 
1

2
 for the average of 

cos2 k x t−( )ω  over a cycle. This gives E x y
mav

   = ∆
1

2
2 2µ ω .

FIGURE 9.5 The kinetic energy ratio K K/
max

 for a string element as a function of time 

plotted in units of the period T  of the harmonic waves which propagate along the string. The 

plot is based on Equation (9.5) with x = 0 to avoid a phase shift at t = 0.
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Exercise 9.5: Obtain an expression for the energy per unit time transmitted 

along a string by a travelling harmonic wave.

From Equation (9.7), it follows that the rate at which energy passes along 

a string is obtained by dividing the energy E  of a string segment by the time 

interval ∆t  for the wave to propagate a distance ∆x and is given by

 
E

t

x

t
y k x t v y k x t

m m∆
=

∆
∆







−( ) = −( )µ ω ω µ ω ω2 2 2 2 2 2cos cos  

Averaging cos2 k x t −( )ω  over a cycle at a fixed point on the string gives the 

average power propagating along the string as P v y
mav

   =
1

2
2 2µ ω .

9.5  WAVE INTERFERENCE ON STRINGS

It is possible to generate two or more travelling waves on strings held under tension. 

The waves may travel in the same direction or in opposite directions, and can have a 

variety of forms from single pulses to harmonic waves. In examining how the waves 

interfere and give rise to modified wave functions in regions in which the primary 

waves overlap, it is necessary to make use of an established principle called the prin-

ciple of superposition. The principle of superposition for interfering waves states that 

the amplitude of the resultant wave is given by the algebraic sum of the separate wave 

amplitudes. Symbolically the principle of superposition is expressed as

 y x t y x t
i

i
, ,( ) = ( )∑  (9.8)

where y x t,( ) is the amplitude of the resultant wave produced by the i interfering waves.

As a simple example, consider the interference of two harmonic waves of 

the same amplitude y
m
 and angular frequency ω, but with a phase difference 

φ between them. The waves travel in the +x direction. (Note that if the waves 

have the same frequency and speed, then they have the same wavelength.) Using 

the superposition principle, the wave function of the resultant wave is given by 

y x t y k x t y k x t
m mR

, sin sin( ) = − +( ) + −( )ω φ ω . It is possible to carry out the 

summation using the trigonometric identity sin sin sin cosα β
α β α β

+ =
+ −

2
2 2

. 

This gives

 y x t y k x t
mR

, sin cos( ) = − +











2
1

2

1

2
ω φ φ  (9.9)

The amplitude of the resultant wave function is 2 2y
m

cos φ/( ). It follows that the amp-

litude will vary between 2y
m

 and −2y
m
 as φ takes values from 0 to 2π, with total 
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cancellation occurring for φ π=  and higher odd multiples of π. The terms constructive 

and destructive interference are used, respectively, to describe the amplitude enhance-

ment and amplitude reduction of the resultant wave compared to the amplitudes of 

the two interfering waves. Figure 9.6 shows two waves of the same amplitude and 

wavelength with φ π= . Destructive interference leads to zero resultant amplitude for 

the superposition of these waves.

If the phase difference is taken as φ π= /2  instead of π, as used in  

Figure 9.6, then Equation (9.9) predicts a resultant harmonic wave with amplitude  

2 4 1 414y y
m m

cos .π/( ) =  and phase angle φ π= /4. Numerical calculations for this  

case, with y
m

= 1, are shown in Figure 9.7. The resultant wave matches the predictions.

FIGURE 9.7 Two harmonic waves, labelled 1 and 2, have equal amplitudes y
m

= 1 and 

wavelengths λ, with a phase difference of π/2. The resultant wave R, obtained by numerical 

superposition of waves 1 and 2, has amplitude 1.414 and phase angle π/4 as predicted by 

Equation (9.9).

FIGURE 9.6 Two harmonic waves, shown by the solid and dash lines respectively, have 

the same amplitude and wavelength with a phase difference φ π= . Wave crests coincide with 

troughs, and therefore superposition of the waves results in total destructive interference.
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The use of a trigonometric identity to find the sum of two harmonic waves works  

well only for the special case of equal amplitudes and frequencies of the two waves.  

If the amplitudes are not equal, while the frequencies are the same, then a geometrical  

approach can be used to find the sum. In this approach, the amplitudes and phases of  

the two interfering waves are represented by counterclockwise rotating vectors, called  

phasors, with angular velocity ω in a Cartesian frame as indicated in Figure 9.8.

The amplitude of each wave as a function of x and t is given by the y­ component 

of the corresponding rotating phasor in this geometrical representation of wave 

motion. In carrying out the vector summation, the orientations of the vectors are 

frozen corresponding to the situation at a particular position x at time t with due 

regard to any phase difference φ between the waves. An illustrative example is given 

in Exercise 9.6.

Exercise 9.6: Find the amplitude of the resultant of two interfering transverse 

waves 1 and 2, of unequal amplitudes, with wave functions given by y
1
(x, t) = 

y
1
 sin(k x – ω t)  and y

2
(x, t) = y

2
 sin(k x – ω t + ϕ).

Figure 9.9 gives a phasor representation of the amplitudes of the inter­

fering waves 1 and 2 at fixed x and t. The resultant wave function is 

y x t y k x t
R R R

, sin( ) = − +( )ω φ  with y
R
 and φ

R
 to be determined.

To simplify matters x and t have been chosen so that y x t
1

0,( ) = , with phasor 1  

parallel to the x­ axis. To avoid confusion with the y­ components of the phasors, 

the lengths are denoted by l
1
 and l

2
. Noting that θ φ= , the amplitude of the

resultant wave R is obtained using the cosine rule l l l l l
R

= + − −( )
1
2

2
2

1 2
2 cos π φ ,  

 

while the phase angle φ
R
 is given by tan

sin

cos
φ

φ

φR
=

+

l

l l

2

1 2

.

FIGURE 9.8 Representation of the variation of the amplitude y x t,( ) of a harmonic wave 

for given position x as a function of time t by a rotating phasor with angular frequency ω. The 

time­ varying amplitude is given by the projection of the phasor length component onto the 

y­ axis.
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The solutions for the resultant amplitude and phase angle apply in general to  

two interfering waves of equal or unequal amplitudes. For waves of equal amp­

litude, symmetry considerations show that φ φ
R

= /2, with the wave function  

taking the form given in Equation (9.9).

The wave interference effects described above involve waves with the same angular 

frequency ω. For harmonic waves with similar but different frequencies, interference 

effects give rise to what are known as beats as described in Chapter 10.

9.6  STANDING WAVES ON STRINGS

For waves propagating on a string of finite length, experiment shows that the boundary 

conditions at the ends of the string play a crucial role in determining how waves 

propagate on the string. Under certain conditions, as discussed below, standing waves 

are established. This development occurs when resonance conditions are achieved, 

with the string length an exact multiple of the wavelength, or of some fraction of the 

wavelength, for harmonic waves. String instruments make use of these standing wave 

effects in producing music.

Consider a wave propagating on a string, which reaches a boundary at which the 

wave is reflected back along the string. If the boundary is a rigid fixed support to 

which the string is attached, the reflected wave undergoes a phase change given by 

∆ =φ π. This change in phase can be understood using Newton’s third law concerning 

action and reaction forces. The incoming wave causes the string to exert a force on the 

rigid support, which in turn exerts an equal and opposite reaction force on the string. 

The reflection process is illustrated in Figure 9.10.

FIGURE 9.9 Addition of two harmonic waves with different amplitudes using a phasor 

diagram. The y­ component of the resultant phasor R is equal to that of phasor 2, because 

the y­ component of phasor 1 has been set to be zero, for convenience, at the time chosen 

for the phasor diagram representation. The resultant wave amplitude as a function of 

time is given by the y­ component of R when rotating with angular frequency ω.
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If instead of being fixed the boundary is flexible, the situation changes and there is  

no phase change in the reflection process so that ∆ =φ 0. A flexible boundary can be  

achieved by attaching the string to a ring that can slide on a fixed rod with negligible  

friction. The ring moves in response to the force produced by the string due to the  

incoming wave as shown in Figure 9.11. In this case, the reflected wave undergoes no  

phase change and ∆ =φ 0.

Generalizing the above results for travelling pulses on strings to all waves on 

strings, including harmonic waves, leads to the following reflection conditions: waves 

on a string that undergo reflection at a boundary experience phase changes ∆ =φ π at 

a fixed boundary, and ∆ =φ 0 at a flexible boundary.

Following reflection at a boundary, a wave on a string will travel back along  

the string. If it meets another wave, interference will occur as the waves pass each  

other. The present discussion focuses on harmonic waves produced by a mechanical  

FIGURE 9.11 Reflection of a travelling pulse on a stretched string by a flexible boundary, 

which consists of a ring that is free to move with negligible friction along a fixed rod. The pulse 

is reflected with no change of phase, that is,, ∆ =φ 0.

FIGURE 9.10 A transverse pulse travelling along a stretched string is reflected at a fixed 

boundary. The pulse is reflected with a phase change ∆ =φ π, corresponding to inversion of 

the pulse amplitude.
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oscillator to which the string is attached at one end. The string is kept under tension  

by fastening it to a support, which is either fixed or flexible. Experiment shows that  

when the conditions for standing waves are met, the amplitude of standing wave  

maxima is large compared to the amplitude of the mechanical oscillator vibrations.  

As illustrated in Figure 9.12, standing wave patterns are characterized by successive  

maxima and minima of vibrational amplitudes along the string. The maxima occur  

at positions called antinodes and the minima at nodes. The standing wave conditions  

in terms of string length in wavelength units are different for the fixed and flexible  

boundary cases. The fixed boundary case is dealt with first.

Consider a taut string of length L which is fixed at one end to a source of low amplitude 

harmonic waves and at the other end to a rigid support as shown in Figure 9.12 for the 

particular case L = λ. A harmonic wave from the source travels along the string until it 

reaches the fixed support where it undergoes a phase change ∆ =φ π
1

 and is reflected back 

towards the source. On reaching the source, which is treated as a rigid support, the wave 

is again reflected with a further phase change ∆φ π
2

= . In addition, the phase of the wave 

after reflection depends on x, the distance travelled as the wave makes the round trip from 

the source to the rigid support and back. If x n=  λ, where n takes integer values 1 2 3, , ,….,   

then ∆ =φ π
3

2  n. When the combined phase shifts (i.e. ∆ ∆ ∆φ φ φ
1 2 3

+ + ) are a multiple 

of 2π, the reflected wave is synchronized with the wave source. The wave amplitudes add 

up leading to large amplitude standing wave antinodes following multiple reflections. The 

distance travelled by a wave in a round trip along the string is x L= 2 , and it follows that 

the condition for standing waves is given by

 L n
L

n

n

n
= =,

λ
λ

2

2
  or  (9.10)

with n = …1 2 3, , , . This gives L as a multiple of half wavelengths λ
n
/2. A particular 

standing wave frequency f  is obtained in terms of the string length using f v
n n

= /λ .   

FIGURE 9.12 Representation of standing waves of wavelength λ on a string. The grey box 

depicts a mechanical wave generator, which produces harmonic waves that are reflected back 

and forth at the boundaries, leading to a buildup in the amplitude of oscillations. The bold 

lines represent the maximum amplitude of string oscillations, while fainter lines represent 

amplitudes at various times in an oscillation cycle.
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This gives f
n v

Ln
=

2
, with v the speed of waves on the string. The various standing 

wave modes are known as harmonics, with the first harmonic corresponding to n = 1, 

the second harmonic to n = 2, and so on. The standing wave patterns which are given 

by Equation (9.10) are shown in Figure 9.13.

The case of a taut string attached to a flexible support at one end and a small amp-

litude harmonic wave source (which effectively provides a fixed support) at the other 

end is similar to that of the string attached to rigid supports at both ends as discussed 

above. A major difference is that no phase change occurs in the wave reflection pro-

cess at the flexible end, so that ∆φ
1

0=  there. Back at the wave source, which is 

regarded as a fixed end because of the small oscillation amplitude, reflection still 

occurs with a phase change ∆φ π
2

= . For the reflected wave to be synchronized with 

the wave source, following reflection, the total phase change in a complete round trip 

must be 2π or a multiple thereof. It follows that the phase change associated just with 

wave travel from source to flexible support and back should be an odd multiple of π 

given by ∆φ π
3

= n , with n = …1 3 5, , , .. The standing wave condition in terms of L is

 L n n=
λ

4
 (9.11)

with n an odd integer as given above. Standing waves thus occur when L is an odd 

integer multiple of a quarter wavelength. The standing wave frequencies are given by 

f
n v

Ln
=

4
. Harmonics in this case are called the first harmonic for n = 1, the third har-

monic for n = 3, and on to the higher harmonics. Figure 9.14 shows the standing wave 

patterns up to the ninth harmonic.

FIGURE 9.13 Standing waves on a string of length L with fixed boundaries at both ends. 

The integer values shown are the number of half wavelengths n in each mode as given by 

Equation (9.10).
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A harmonic wave source at frequency f
n can be used to generate the nth harmonic  

standing wave on a stretched string. String elements execute SHM parallel to the  

y­ axis with frequency ω
n
 and amplitude dependent on the position x of the element  

along the string. For the nth harmonic, the standing wave amplitude at position x is  

given by y x A k x
n n n

( ) = ( )sin  , with k
n n

= 2π λ/  and A
n
 the amplitude maximum value  

for the nth harmonic. As stated above, the amplitude of string vibration is a maximum  

at an antinode and a minimum at a node. The wave function for the nth harmonic  

therefore has the form

 y x t A k x t
n n n n

, sin cos( ) = ( ) +( )ω ϕ  (9.12)

with the phase angle ϕ determined by the initial conditions. The amplitude A
n
 initially 

increases with time and then stabilizes when the energy loss per cycle is equal to the 

energy input to the vibrating string from the harmonic wave source.

Exercise 9.7: A string of length 1.8 m and mass per unit length 50 g/ m is 

attached to effectively rigid supports at both ends. (As already mentioned 

above, the source of harmonic waves is regarded as a rigid boundary.) The 

string is kept at a tension of 18 N. Find the frequency of the third harmonic. 

Give the form of the wave function for this harmonic.

The speed of waves on the string is v T= = =/ /  m/sµ 18 0 05 19. .   

From Equation (9.10), the wavelength of the third harmonic is 

λ
3

2 3 2 1 8 3 1 2= = × =L / /  m. . . Using v f=  λ gives the frequency of the third 

harmonic as f
3

19 1 2 15 8= =/ Hz. . .

FIGURE 9.14 Standing wave harmonic patterns are shown for a string of length L with 

a fixed boundary at one end and a flexible boundary at the other. The integer values are the 

number of quarter wavelengths in each mode as given by Equation (9.11).
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Using Equation (9.12), the third harmonic wave function is given by 

y x t A x f t A x t
3 3 3 3 3

2 2 5 24 99 3, sin cos sin . cos .( ) = ( ) +( ) = ( ) +( )π λ π ϕ ϕ/ . The 

amplitude A
3
 and the phase ϕ are not specified.

9.7  SOUND WAVES IN PIPES

9.7.1  HARMONIC SOUND WAVES IN PIPES

Sound waves are different to 1D waves on strings, firstly because they can propa-

gate in both fluids and solids in 3D, and secondly because they involve longitu-

dinal pressure variations rather than transverse oscillations of string segments. 

There are, however, underlying common features of quasi- 1D sound waves in 

pipes and waves on strings that lead to similarities in the physical descriptions of 

these wave phenomena. These similarities are brought out most clearly if a lon-

gitudinal displacement of mass elements description is used for sound waves in 

pipes. The present discussion focuses on sound waves in pipes containing a gas-

eous medium such as air. Both the pressure wave and mass element displacement 

descriptions are introduced.

As a starting point, harmonic sound waves travel along a pipe which encloses a  

gas that transmits the sound. The harmonic waves can be generated using a vibrating  

diaphragm as a source of plane waves of frequency f , which travel parallel to the x  

direction along the axis of the pipe. Figure 9.15 illustrates the situation, showing a  

cross- section of a pipe down which pressure waves are transmitted with a harmonic  

source at one end. Also shown is a representative disk- shaped gas element through  

which the waves pass.

FIGURE 9.15 Transmission of harmonic pressure waves down a cylindrical pipe aligned 

along the x- axis. A cross- sectional view of the pipe is shown, with a harmonic longitudinal 

wave source at one end. Pressure fluctuations occur in disk- shaped elements as the waves travel 

down the pipe.
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By analogy to harmonic waves on strings, the wave function for the harmonic 

sound waves is expressed in terms of gas pressure fluctuations ∆ ( )P x t,  in disk- shaped 

regions oriented perpendicular to the tube axis, and has the same form as that given 

in Equation (9.2):

 ∆ ( ) = ∆ −( )P x t P k x t
m

, sin ω  (9.13)

The amplitude of the sound wave, ∆P
m

, is given by the maximum pressure excur-

sion above ambient pressure that is experienced in a disk region, while k = 2π λ/  and 

ω π= 2  f  as before. Note that by considering a planar sound wave travelling along a 

pipe, the 3D features of sound waves travelling in free space have been suppressed, 

and the spatial description is reduced to quasi- 1D. The results that are obtained are 

generalized to 3D sound waves in Chapter 10.

An alternative form of the harmonic wave function, involving the displacement 

d x t,( ) of a mass element parallel to the x- axis, is given by

 d x t x k x t
m

, sin( ) = − −





ω
π

2
 (9.14)

where x
m

 is the amplitude of the oscillatory motion. It is important to note that the 

wave function expressed in terms of pressure variations is π/2 out of phase with the 

displacement wave function. This phase difference can be understood by appreciating 

that when the displacement of a fluid element along x is a maximum in its periodic 

motion, the pressure difference ∆P  between the two sides of the fluid element is 

momentarily zero. Comparison of Equations (9.13) and (9.14) shows that ∆P
m

 is pro-

portional to x
m

, and dimensional analysis gives ∆ =P v x
m m

   ρ ω , with v the speed of 

sound in the medium.

The similarity of the wave functions for harmonic waves on strings, as given in 

Equation (9.2), and 1D harmonic sound waves in pipes is clear. This feature in pipes 

provides the basis for unifying the discussion of these diverse types of 1D waves. 

For example, it is simple to adapt the expressions for standing waves on strings to 

standing sound waves in open or closed pipes as is shown below. These results are 

particularly useful in considering the design and operation of musical instruments.

An expression for the speed of sound waves in fluids can be obtained by applying 

Newton’s second law to the dynamics of a disk- shaped element in a fluid contained 

in a pipe of cross- sectional area A. The element, which is of length ∆x, has volume 

V A x= ∆  and is traversed in a time ∆t  by a pressure pulse travelling through the 

fluid at the velocity of sound v. If the pressure pulse has amplitude ∆P , the pressure 

difference across the length of the element during the time ∆t  leads to a small com-

pression of the element and a slight change in its velocity δv in the x direction 

along which the pulse travels. It is convenient to express the fractional change in the 

volume of the element δV V/  in terms of the bulk modulus B of the fluid using the 
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expression ∆ = −P B
V

V

δ
 from Chapter 7. The net force on the element during ∆t  is 

F A P A B
V

V
= ∆ = −  

δ
, while the rate of change of momentum is given by 

∆
∆

=
∆

p

t
m

v

t

δ
. 

Note that the volume of the element decreases slightly during passage of the pulse, 

and therefore δ δV A x= < 0. Writing the mass of the element in terms of the fluid 

density ρ as m A x= ∆ρ  , and then inserting the expressions for the force on the 

element, and for the rate of change of its momentum, into Newton’s second law, and 

lastly cancelling A gives

 − = ∆
∆

= =B
V

V
x

v

t
v v v

v

v

δ
ρ

δ
ρ δ ρ

δ
    2  (9.15)

The factor 
δv

v
 can be related to the fractional volume change as follows:

 δ δ δ δv

v

x

t

x

t

A x

A x

V

V
= −

∆






∆
∆







= −
∆

= −/
 

 
. 

Using this result in Equation (9.15) gives

 v
B

=
ρ

 (9.16)

This simple expression for the speed of sound in a fluid has a similar form to that of 

a wave on a stretched string, v T= /µ  as given in Equation (9.1) with T  the tension 

and µ the mass per unit length of the string.

Exercise 9.8: Obtain values for the speed of sound in air and water at 

ambient temperature using the values for their density ρ and bulk modulus 

B given below.

Water: ρ
w
=  1.0 × 103 kg/ m3 and B

w
 =  2.2 GPa

Air: ρ
a
 =  1.21 kg/ m3 and B

a
 =  142 kPa

Inserting the values for B and ρ in Equation (9.16) gives the speed of sound 

in water as v
w

/  m/s= × × =2 2 10 1 0 10 14809 3. . . Similarly, for air the speed is 

v
a

/  m/s= × =1 42 10 1 21 3435. . . The speed of sound in water is approximately 

four times higher than the speed in air.
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9.7.2  ENERGY OF HARMONIC SOUND WAVES IN PIPES

Making use of the wave function in Equation (9.14), although omitting its phase 

offset of π/2, the kinetic energy associated with the oscillatory motion of a fluid 

element with volume ∆ =V A x d  is given by

 K m v V
t

d x t V x k x t
m

= = ∆
∂
∂

( )





= ∆ −( )1

2

1

2

1

2
2

2

2 2 2    ρ ρ ω ω, cos  (9.17)

where ρ is the density of the fluid and A is the cross- sectional area of the pipe. 

Note the similarity of Equation (9.17) to Equation (9.5) for harmonic waves on 

strings.

Guided by the result obtained previously for string segments, the potential energy 

of a fluid segment traversed by sound waves is taken to be equal to the kinetic energy, 

and is thus given by

 U V x k x t
m

= ∆ −( )1

2
2 2 2ρ ω ω   cos  (9.18)

The total energy of the wave segment as a function of x and t follows as

 E K U V x k x t
m

= + = ∆ −( )ρ ω ω   2 2 2cos  (9.19)

Averaging over a complete wave cycle gives the average energy as

 E V x
mav

   = ∆
1

2
2 2ρ ω  (9.20)

Using ∆ = ∆V A x , it follows from Equation (9.20) that the average rate of energy 

transmission along the pipe is E t A v x
mav

/     ∆ =
1

2
2 2ρ ω .

9.7.3 STANDING SOUND WAVES IN PIPES

Harmonic sound waves in pipes can be described using either of the wave function 

forms for sound waves that are given in Equations (9.13) and (9.14). It is con-

venient to use Equation (9.14) as a starting point, because of the similarity of 

the analysis to that given in Section 9.6 for standing waves on strings. Consider 

standing waves that are produced in a pipe that is open at one end and closed at 

the other. The displacement description requires a node at the closed end and an 

antinode at the open end. However, in making a comparison with standing waves 

on strings, there are notable differences in the reflection processes. Firstly, for 

sound waves there is no 180° phase change at the closed end, but instead this 

phase change occurs at the open end. Secondly, it is necessary to introduce an 

end correction at the open end of the pipe. It is found experimentally that the 1D 
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sound waves are reflected back into the pipe by the 3D surrounding atmosphere 

at an effective distance ∆ ∼L D0 3.  beyond the pipe’s end, where D  is the pipe’s 

diameter. The effective length ′L
E
 of the pipe with one or both ends open is thus 

slightly longer than L. Standing wave conditions for sound waves in pipes are 

readily obtained using the approach applied to waves on strings.

The standing wave condition for harmonic sound waves in a pipe closed at both 

ends is identical to that for a string fixed at both ends as given in Equation (9.10), 

with L n
n

=  /λ 2 and n = …1 2 3, , , . The same standing wave condition applies to a pipe 

open at both ends provided L is replaced by ′L
E
. Finally, for a pipe open at one end 

and closed at the other, the standing wave condition is ′ =L n
nE

 /λ 4 with n = …1 3 5, , , .

Precisely the same stranding wave conditions are obtained using the fluctuating 

pressure form of the sound wave function given in Equation (9.13). In this descrip­

tion, nodes, at atmospheric pressure, occur at open ends of pipes and antinodes at 

closed ends. In addition, 180° phase shifts occur at antinodes but not at nodes.

Exercise 9.9: Determine the frequency of the third harmonic for standing 

waves in a pipe of length 1.2 m which is open at one end and closed at the other. 

What would the frequency be if the tube were open at both ends? Assume that 

the pipe’s diameter is much less than its length, so that the length correction at 

the open ends can be omitted. Take the speed of sound as 340 m/ s.

The standing wave condition for a pipe which has one end open and the other 

closed, is L n
n

=  /λ 4 with n = …1 3 5, , , . For the third harmonic n = 3, and this 

gives the wavelength of the corresponding standing wave as λ
3

4 3 1 6= =L /  m. .    

The frequency is obtained using the relation f v= /λ, which gives f = 212 5.  Hz.

If the pipe were open at both ends, the standing wave condition would 

become L n
n

=  /λ 2 with n = …1 2 3, , , . The wavelength of the third harmonic, 

with n = 3, becomes λ
3

2 3 0 8= =L /  m. , with frequency f = 425 Hz.

Note that that the wavelength halves and the frequency doubles when the 

open end of the pipe is closed, converting this boundary from an antinode to a 

node in the displacement of mass elements description.

9.7.4  MUSICAL INSTRUMENTS

Musical instruments, based on standing wave phenomena, are classified as string 

or wind or percussion devices, and operate over a wide range of frequencies. The 

size of the instrument determines the frequency range of the musical notes that 

are produced. The sound wave frequencies are, naturally, linked to the frequen­

cies that can be heard by the human ear. For a young person, this range extends 

from ~20 Hz to ~20,000 Hz. In middle age, the upper frequency limit starts to 

decrease, and the highest frequency notes can no longer be heard. Listening to 

very loud sounds for lengthy periods can accelerate this loss of hearing. The 

larger an instrument is, the lower the range of frequencies that it can cover. Large 

pipe organs can produce notes at frequencies as low as 10 Hz, while the lowest 
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note for a flute is near 220 Hz. The analysis of the sounds that can be produced 

by musical instruments is complicated, particularly for instruments with conical 

shapes such as saxophones and tubas. Sound spectrum analysers provide detailed 

information on the sound waves that are produced by the various instruments. 

Most instruments produce several harmonics simultaneously rather than just one 

note. Further details are given in specialist articles on this subject.
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Waves in Higher 

Dimensions

10.1  INTRODUCTION

As mentioned in Chapter 9, there are various types of waves in nature, including 

sound waves, water waves, seismic waves, electromagnetic waves, and the recently 

detected gravitational waves, which are produced during the acceleration of astronom-

ically large masses. An important distinction is made between waves which require 

a medium in which to propagate, such as sound waves and water waves, and waves 

which do not need a medium and propagate in free space, as exemplified by elec-

tromagnetic waves and gravitational waves. The wavelength ranges of the different 

types of waves vary considerably. In spite of this important difference, waves in gen-

eral share common features, with many of the properties described using the same 

basic formalism. This chapter is largely concerned with 3D sound waves in fluids, but 

includes a brief mention of the other types of waves.

10.2  ENERGY AND INTENSITY OF 3D SOUND WAVES

Consider a localized source of 3D sound waves situated in an isotropic medium such 

as air. When the source is activated, it generates waves with spherical wavefronts 

which travel away from the source at the speed of sound in the medium. The situation 

is depicted in Figure.10.1. For large transmission distances L the source is effectively 

a point source.

Sound waves transport energy through the transmitting medium, as shown in 

Chapter 9 for 1D harmonic sound waves in pipes. For 3D harmonic sound waves, 

there is again an outward flow of energy through the medium transmitting the waves. 

However, in contrast to the1D sound wave in a pipe case, the energy density of 3D 

waves decreases as the inverse square of the distance r from the source, as the areas 

of the expanding spherical wavefronts increase. An expression for the energy per unit 

volume at a large distance from a source can be obtained by extending the 1D har-

monic sound wave model used in Chapter 9. Details are given below.

At large distances from a harmonic sound wave source, the wave function  

expressed in terms of fluctuations in position of a small disk- shaped volume element  

∆V  is similar to that for a sound wave in a pipe as introduced in Chapter 9. Figure 10.1  

illustrates how a portion of a spherically symmetric wave that has passed through a  

10
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circular aperture in a screen at a large distance L from the source S approximates a  

1D sound wave in a limited volume region beyond the screen. Note the similarity of  

the cylindrical portion of the wave that has passed through the aperture in Figure 10.1  

and the wave segment shown in Figure 9.15.

Adapting the 1D form given in Equation (9.14), by replacing x with the wave 

induced displacement q, which is directed along the radial distance r from the source 

to the volume element ∆V , gives the required wave function at large r as

 ϕ ωq t q k q t
m

, sin( ) = −( ) (10.1)

(The phase angle π/2 is omitted here, since the phase is arbitrary in the present discus-

sion, which focuses on the time dependence of the displacement of the fluid volume 

element ∆V .) The kinetic energy of the element is

 K m v V
d

dt
V q k x t

m
= = ∆ 





= ∆ −( )1

2

1

2

1

2
2

2

2 2 2     ρ
ϕ

ρ ω ωcos  (10.2)

where ρ is the density of the fluid. Following the procedure used for 1D harmonic 

waves in Chapter 9, it is assumed that the potential energy U is equal to the kinetic 

energy K , giving

 U V q k x t
m

= ∆ −( )1

2
2 2 2ρ ω ω   cos  (10.3)

FIGURE 10.1 2D representation of spherical wavefronts propagating outwards from a 

point source S. If a screen containing a small circular aperture of width d is placed in 

the path of the wavefronts at a distance L from the source, as shown, then a beam will 

propagate beyond the screen, and for large L and d  λ  will approximate plane waves 

over a short distance. A representative disk- shaped volume element in this small quasi- 1D 

region is used in determining the energy per unit volume and the rate at which energy flows 

through the volume element.
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The total sound wave induced energy of the fluid element is

 E K U V q k x t
m

= + = ∆ −( )ρ ω ω   2 2 2cos  (10.4)

Averaging over a complete wave cycle leads to the following result,

 E V q
mav

   = ∆
1

2
2 2ρ ω  (10.5)

(The time average of the cos2 function is 1 2/ .)

The energy density of the propagating sound waves ε ρω= ∆ =E V q
mav

/  
1

2
2 2  thus 

depends firstly on the mass density ρ of the transmitting medium, secondly on ω2 the 

angular frequency squared, and thirdly on the square of the maximum displacement q
m
2 , 

which in turn depends on the distance r from the sound source. For spherical wavefronts, 

the total volume involved, which corresponds to the sum of all the volume elements in 

a shell of radius r and thickness ∆r , is 4 2πr r∆ . Since the total energy associated with 

a propagating spherical wavefront is constant, assuming energy loss mechanisms are 

negligible, it follows that the energy density, and hence q
m
2 , falls off as 1 2/r .

It is useful to introduce the sound wave intensity I, which is the average trans-

mitted power per unit area perpendicular to the direction of wave propagation at 

some point a distance r from the sound source. The average power P
av

 is the rate at 

which sound energy leaves the source averaged over time. For spherical wavefronts 

I
P

r
= av

 4 2π
 which shows that the intensity falls off with distance as 1 2/r . In Equation (10.5), 

the volume of the element considered can be taken as ∆ = ∆V A v t
s

  , where A is the 

cross- sectional area, v
s
 is the speed of sound waves in the medium, and ∆t  is the time 

taken for a wave to travel the distance ∆r , which is the width of a volume element. 

Replacing ∆V  by A v t
s

  ∆  in Equation (10.5) gives E A v t q
s mav

     = ∆
1

2
2 2ρ ω , and hence 

the average power is

 P A v q
s mav

    =
1

2
2 2ρ ω  (10.6)

The intensity then follows as

 I v q
s m

=
1

2
2 2ρ ω    (10.7)

The SI units of intensity are J s−1 m− 2, or W m−2.

Sound intensity varies over an exceptionally large range and depends on both the 

source power and the distance from the source at which the sound waves are detected. 

The human ear can detect sound waves with an intensity in the range from 10− 12 W/ m2 
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to above 1 W/ m2. It is therefore convenient to use a logarithmic intensity scale, and 

the following expression for comparing intensities has been introduced:

 β = ×10
10

0

log
I

I
 (10.8)

Values of β are quoted in decibels (dB). The reference intensity I
0
 is taken as 10– 12 W/ m2,  

to coincide roughly with the human detection limit. An intensity I = −10 12 2 W/m  

corresponds to β = 0 dB, while I = 1 2W/m  gives β = 120 dB. Using the relation 

∆ =p v q
m s m

ρω  from Section 9.7, together with Equation (10.7), leads to I
p

v

m

s

=
∆( )2

2ρ 
 

which shows that the intensity of sound is proportional to the square of the amplitude 

of pressure fluctuations. The minimum amplitude of pressure fluctuations that can 

be detected by the human ear is ∆ = × −p
0

52 10  Pa, which is ten orders of magnitude 

smaller than standard atmospheric pressure. In terms of ∆p
m
 and ∆p

0
 values, Equation 

(10.8) is rewritten as

 β = ×
∆

∆
= ×

∆

∆
10 20

10

2

0
2 10

0

log log
p

p

p

p

m m  (10.9)

Exercise 10.1: At loud music concerts, the sound level can exceed 100 dB  

near the stage. What is the intensity of sound corresponding to 100 dB? 

Calculate the pressure fluctuations amplitude produced in air by this sound. 

What is the displacement amplitude at 500 Hz? The density of air is ρ
a
 = 1.21 kg/m3 

and the speed of sound in air is v
a
 = 340 m/s.

Taking β = 100 in Equation (10.8) gives I = × =− −10 10 1012 10 2 2W/m . The 

amplitude of pressure fluctuations for 100 dB sound is obtained from Equation (10.9) 

which gives ∆ = × ×( ) =−p
m

10 2 10 25 5  Pa. The displacement amplitude is 
 

given by q
p

vm

m

a a

=
∆

=
× × ×( ) = × −

ρ ω π

2

340 1 21 2 500
1 55 10 6

.
.  m. This means 

that the amplitude of the displacement of air elements for 500 Hz sound waves 

with β = 100 dB is approximately one micron.

10.3  INTERFERENCE EFFECTS

10.3.1  INTERFERENCE IN 1D

Wave interference effects are observed when two or more waves from different sound 

sources, with fixed phase relationships, are superposed. A fixed phase relationship 

between two or more wave sources with the same frequency is expressed compactly 

by stating that the outgoing waves are coherent. The special case of two harmonic 
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waves with the same amplitude and frequency travelling parallel to the x- axis will 

be considered first, but the approach is readily extended to other similar situations. 

The basic ideas are much the same as those used in the description of standing waves 

in pipes, involving a single source of harmonic waves with reflections of the waves 

at the two ends of a pipe as described in Section 9.7. Consider two waves which 

have equal amplitudes and frequencies with wave functions given in terms of the 

pressure variation by ∆ = ∆ − +( )p p k x t
m1

sin ω θ  and ∆ = ∆ −( )p p k x t
m2

sin ω . The 

phase difference θ is constant. If the waves interfere, the superposition principle gives 

the resultant wave function as

 ∆ = ∆ + ∆ = ∆ − +( ) + −( ) p p p p k x t k x t
m1 2

sin sinω θ ω  (10.10)

Making use of the trigonometric identity sin sin cos sinα β
α β α β

+ =
− +

2
2 2

 gives

 ∆ = ∆ 





− +





p p k x t
m

2
2 2

cos sin
θ

ω
θ  (10.11)

The amplitude of the resultant wave depends on the phase difference θ and is given 

by 2 2∆ ( )p
m

cos θ/ . Constructive interference occurs for cos θ/2 1( ) =  corresponding 

to θ π π π= …0 2 4 6, , , ,  (zero and even multiples of π), while destructive interference 

occurs for cos θ/2 0( ) =  when θ π π π π= …, , , ,3 5 7  (odd multiples of π).

If the sources of the interfering waves are initially in phase, with θ = 0, but the 

waves travel different distances x
1
 and x

2
, with ∆ = −x x x

2 1
, then the phase difference 

becomes θ π λ= ∆ = ∆k x x  /2 , which is just like the travelling waves on a string that 

are discussed in Chapter 9. For example, when ∆ =x λ  it follows that θ π= 2 .

10.3.2 INTERFERENCE IN 3D

The interference conditions given above for waves travelling parallel to the x- axis 

are readily extended to 3D waves. Consider two coherent sources 1 and 2 separated 

by a distance d as represented in 2D cross- section in Figure 10.2. An absorbing bar-

rier is placed behind the sources. Hemispherical waves of wavelength λ propagate 

as shown.

As shown in Figure10.2, constructive interference occurs when wave crests from 

the two sources coincide. The interference pattern has a central maximum, with sec-

ondary maxima radiating outwards above and below the central maximum. The con-

dition for interference maxima to occur is given in terms of the path difference ∆r  

as ∆ =r nλ  with n = …0 1 2, , , . With increasing radii of the wavefronts, the maxima 

become aligned along the directions indicated by the dash lines.

At sufficiently large distances from two harmonic wave sources, the condition for  

interference maxima to occur has a simple compact form. Let interference of waves  

from two wave sources, S
1
 and S

2
 separated by d, occur at a point P which is at a large  

distance r d  from the sources. The angle θ specifies the orientation with respect to  
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the x- axis of a line drawn from the midpoint between S
1
 and S

2
 to point P as shown  

in Figure 10.3.

At sufficiently large distances from the two sources, compared to their separation 

d, the radius vectors r
1

 and r
2

 of the two wavefronts at P are travelling close to 

parallel. As can be seen in Figure 10.3, waves from S
1
 travel a distance ∆ =r d sin θ 

further than do waves from S
2
 in reaching P. The phase difference between the waves 

is therefore φ π λ π θ λ= ∆ =2 2 /  /r d sin . The set of phase values φ π π π= …0 2 4 6, , , ,  

required for constructive interference leads to the relationship:

FIGURE 10.3 Spherical waves of wavelength λ are generated by two coherent harmonic 

sources S
1
 and S

2
, which are separated by a distance d. Interference effects are detected at a 

point P situated at a distance r
1
 from S

1
 and r

2
 from S

2
. If d and λ are much less than both r

1
 and r

2
,  

then trigonometry gives r r d
2 1

− ≈ sinθ . In this limit, the condition for constructive interference 

becomes, to a good approximation, d nsinθ λ=   with n = …0 1 2 3, , , , .

FIGURE 10.2 Two harmonic wave sources separated by a distance d generate coherent 3D 

waves of wavelength λ. The two sets of travelling waves are depicted in 2D at a fixed time t.    

Constructive interference occurs in directions along which wave crests from the two sources 

reinforce. The dash lines show the trend in interference maxima locations with increasing 

radii of wave crests. Destructive interference occurs in directions for which crests and troughs 

overlap (not shown). The interference pattern consists of a central maximum flanked by 

secondary maxima. The path difference ∆r  for the identified maxima to occur is given by 

∆ =r n λ  with n = 0 1 2, ,  and .
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 d n nsin θ λ= = …( )0 1 2 3, , , ,  (10.12)

Similarly, the condition φ π π π π= …, , , ,3 5 7  for destructive interference gives

 d n nsinθ λ= +





= …( )1

2
0 1 2 3, , , ,  (10.13)

The condition θ = 0 corresponds to a central maximum in sound intensity, with alter-

nating maxima and minima detected as θ is steadily increased. Note that d must be 

significantly larger than λ in order to give rise to a large set of n values.

Exercise 10.2: Two loudspeakers, mounted 1.5 m above ground level and 

separated by a horizontal distance of 3.0 m, send out coherent harmonic sound 

waves at a fixed frequency. A sensor, which is used to detect the resultant sound 

wave amplitude as a function of position in a horizontal plane, moves along 

an arc of radius 30 m centred on the loudspeaker pair midpoint. If the third 

maximum from the centre of the interference pattern is found to be at an angle 

of 30° away from the central maximum direction, what is the wavelength of 

the sound?

Using Equation (10.12) with n = 3 gives λ θ= = × =( sin ) . .d / /  m3 3 0 5 3 0 5 .   

Taking the speed of sound in air as v
a

 m/s= 340  gives the frequency   

as f v= =
a
/  Hzλ 680 .

10.4  BEATS

Consider the interference of two sound waves of equal amplitude, but slightly different 

angular frequencies ω
1
 and ω

2
, with ω ω

2 1
> . Instead of observing time- independent 

interference effects, as discussed in Section 10.3, the resultant amplitude exhibits 

time- dependent oscillations. Adapting Equation (10.10) gives the amplitude of the 

interfering waves as ∆ = ∆ + ∆ = ∆ − +( ) + −( ) p p p p k x t k x t
R m1 2 1 1 2 2

sin sin   ω θ ω .   

In order to simplify the equations, it is convenient to choose x = 0 as the pos-

ition at which the resultant wave is examined by a listener. The two waves are 

taken to be in phase at t = 0 with θ = 0. Making use of the trigonometric identity 

sin sin cos sinα β
α β α β

+ =
− +

2
2 2

 in order to carry out the summation, leads to

 ∆ = ∆ −( )





+( )





p p t t
R m

2
1

2

1

22 1 1 2
cos sinω ω ω ω  (10.14)
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Defining the frequency difference as ∆ = −( )ω ω ω
2 1

 and the average frequency as 

ω ω ω
av

= +( )1

2 1 2
, and substituting in Equation (10.14) gives

 ∆ = ∆
∆



 ( )p p

t
t

R m
2

2
cos sin

ω
ω

 
 

av
 (10.15)

A plot depicting the variation of ∆ ∆p p
R m

/  with time is shown in Figure 10.4. As can 

be seen from Equation (10.15), the resultant is an amplitude modulated sine wave of 

angular frequency ω
av

 and time- dependent amplitude 2 2∆ ∆( )p t
m

cos ω / . The inter-

fering waves alternate between constructive and destructive interference with the 

passage of time.

A listener hears an alternating sound intensity, which is proportional to the square 

of the amplitude of the beat frequency. The beat frequency heard by a listener is 

given by f
B

 = ∆2π ω, which is twice the amplitude modulation frequency because the 

intensity increases to a maximum twice per modulation cycle. Musical instruments 

can be tuned using the beat phenomenon as the basis for comparing a note on an 

instrument with that of a frequency standard such as a tuning fork.

10.5  FOURIER ANALYSIS

An interesting application of the superposition of waves of different frequencies 

is known as Fourier analysis. The procedure involves adding together harmonic 

waves of selected frequencies and amplitudes in order to generate a periodic wave 

of a particular form, such as a triangular wave or a square wave. The harmonic wave 

components are known as Fourier components. As an illustrative example consider 

the case of a square wave of period T  with the form shown in Figure 10.5.

FIGURE 10.4 A representative beat pattern is produced by the superposition of two 

harmonic waves of equal amplitude, but with slightly different frequencies, as given by 

Equation (10.15).
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Equation (10.16) gives the first four components of the Fourier series for a square  

wave as a function of x t T= 2π / :

 f x
x x x x( ) = + + + +…





4

1

3

3

5

5

7

7π

sin sin sin sin  (10.16)

The sum of the components is also shown in Figure 10.5. A large number of terms 

with steadily increasing frequencies are required in order to obtain a close approxi­

mation to the square wave. Fourier analysis provides an instructive way of examining 

all periodic waveforms in terms of their constituent harmonics.

10.6  DOPPLER SHIFTS

Doppler frequency shifts of mechanical harmonic waves travelling through a medium 

are observed when the wave source and/ or the wave detector are in motion with 

respect to the medium. This phenomenon is known as the Doppler effect. The pre­

sent discussion focuses on sound waves that travel at a fixed speed in the transmit­

ting medium, such as air near the Earth’s surface. Doppler shifts also occur with 

electromagnetic waves and, for example, are important in interpreting spectroscopic 

measurements in astrophysics. Earthbound applications include radar speed guns for 

measuring the speed of motor vehicles on highways. It is important to note that the 

Doppler effect expressions for sound waves are similar to those for electromagnetic 

waves, but are not the same. In contrast to sound waves, electromagnetic waves do not 

require a medium for their transmission and travel at the speed of light in vacuum as 

manifested in the special theory of relativity.

FIGURE 10.5 The dash line in the figure shows the amplitude variation over one cycle 

for a square wave of period T . The light curves are the first four Fourier components in the 

Fourier series for this waveform. The heavy line, which is the sum of the Fourier components, 

approximates the required shape. The inclusion of additional higher order components would 

improve the agreement.
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10.6.1 MOVING SOURCE

Consider a source of 3D harmonic sound waves, with frequency f , which is initially 

at rest in a transmitting medium such as air. Taking the speed of sound in the medium 

as v, the corresponding wavelength is λ = v f/ . If the source S is moved at speed v
S
 

towards the detector, labelled D
1
 in Figure 10.6, then the frequency ′f  measured at 

the detector is greater than f . This Doppler frequency shift is due to the bunching up 

of wavefronts ahead of the moving source as shown in Figure 10.6.

Bunching up of wave crests leads to an effective wavelength ′ = −( )λ v v T
S

 where 

T f= 1/  is the oscillation period at the source. It follows that v v T−( )S
 is the peak­ to­ 

peak separation of wave crests moving away from S. Also, the effective wavelength is 

given by ′ ′=λ v f/ , because the actual wave speed v in the medium does not change. 

Using the two expressions for ′λ  gives v v f v f−( ) = ′
S

/ / , and rearranging leads to the 

following expression for the Doppler shifted frequency at D
1

 ′ =
−

f
v

v v
f

S

 (10.17)

For the detector labelled D
2
, from which the source S is moving away, the minus sign 

in the denominator of Equation (10.17) changes to a plus sign.

10.6.2 MOVING DETECTOR

If a detector D
1
 is moved towards a stationary sound source S at speed v

D
, then there 

is no change in the sound wavelength λ  because there is no wave bunching effect. 

However, the moving detector encounters an increased number of wave crests in 

FIGURE 10.6 A moving source S generates spherical harmonic sound waves as it travels 

towards a fixed detector D
1
 along the path indicated by the dotted line, as shown in this 2D 

representation of successive wave crests. The wave crests ahead of the moving source are 

bunched up, leading to an increase in the frequency detected at D
1
. In contrast, the detector D

2
 

behind the moving source detects a decrease in frequency.
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a given time interval than it would have if stationary, and this results in a shift 

in detected frequency from f  to ′f . The wavelength is written as λ = +( ) ′v v f
D

/  

where v v+( )D
 is the effective speed of the waves in the detector’s frame of refer-

ence. In the source’s frame of reference λ = v f/ . Equating the two expressions for 

λ , and rearranging, gives the shifted frequency as

 ′ =
+

f
v v

v
fD  (10.18)

If D moves away from the source, then the plus sign in the numerator of Equation (10.18) 

becomes a minus sign.

When both S and D are in motion, it is necessary to combine Equation (10.17) with 

Equation (10.18) to obtain the general Doppler shift expression:

 ′ =
±

f
v v

v v
fD

S


 (10.19)

The choice of signs in the numerator and denominator is determined by the direc-

tion of motion of the source and detector with respect to one another. Movement 

towards each other leads to an increase in frequency, while movement apart leads to 

a decrease.

Equations (10.17) and (10.18) apply to situations in which the speed of the source 

or the detector is much lower than the speed of sound in the transmitting medium. As 

discussed below, interesting effects arise when an object, like a jet plane, travels at 

supersonic speeds.

Exercise 10.3: A police car travelling at 120 km/ h is equipped with a siren 

which generates sound that alternates between two frequencies, 635 and 912 Hz 

in the police car’s frame of reference. What range of frequencies will be heard 

by a stationary pedestrian at the side of the road who watches the approach of 

the police car? How will the frequency range change as the police car moves 

down the road beyond the observer?

At some instant, the police siren emits sound waves of frequency f  as it 

moves at speed v
S
 towards the observer who hears the siren sound at frequency 

′ =
−

f
v

v v
f

S

 as given by Equation (10.17). Taking the speed of sound in air as 

v = 340 m/s, and converting the car’s speed units from km/ h to m/ s, gives for 

the low end of the frequency range ′ =
−

× =f
L

340
 Hz

340 33 3
635 704

.
. The upper 

end of the Doppler shifted frequency range is obtained in a similar fashion 
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as ′ =
−

× =f
U

340
 Hz

340 33 3
912 1011

.
. As the police car moves away from the 

observer, the frequencies heard are given by ′ =
+

f
v

v v
f

S

, with the minus 

sign in the denominator changed to a plus sign. Substituting numbers gives 

′ =f
L

578Hz and ′ =f
U

831Hz.

10.6.3 SHOCK WAVES

If the speed of a wave source is increased until it exceeds the speed of sound in 

the transmitting medium, then sound waves cannot propagate ahead of the source. 

A shock wave develops behind the source, as depicted in Figure 10.7, with a cone- 

shaped boundary known as the Mach cone forming behind the fast- moving wave 

source.

The cone shape of the shock wave is determined by the ratio of the distances trav-

elled by the supersonic source and that covered by sound waves as a function of time.  

If, in Figure 10.7, O is taken as the starting point for sound waves travelling from O  

to Q in a certain time interval t, then, in the same time interval, the source travels a  

distance OP
S

= v t  which is greater than the distance OQ = v t. As a result, a shock  

wave is generated by the overlapping of wave crests along the Mach cone boundary.  

The sonic boom produced by supersonic aircraft is an example of this effect. The half-  

angle of the Mach cone is thus given by sinθ = v v/
S
.

FIGURE 10.7 A wave source, travelling at a speed v
S
, which exceeds the speed of 

sound v in air, generates a trailing shock wave. The loci of the overlapping wave crests 

form a cone, which is known as a Mach cone. An observer in the path of the Mach cone 

experiences an upward surge in pressure as the shock wave passes, followed by a drop in 

pressure, before the pressure levels return to normal. The half angle θ of the Mach cone is 

given by sinθ = v v/
S
.
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Exercise 10.4: Determine the predicted Doppler effect behaviour as a wave 

source increases its speed towards the speed of sound in the transmitting 

medium.

From Equation (10.17), the ratio of the Doppler shifted frequency to the 

source frequency is given by ′ = −( )f f v v v/ /
S

. As v v
S

→ , the ratio ′f f/  becomes   

exceptionally large, tending to infinity. Detection of Doppler shifts is no longer 

possible in this limit. For v v
S

= , the waves from the source travel at the same speed 

as the source leading to a buildup of pressure as the wavelets overlap each other.

10.7  WATER WAVES

Familiar characteristic behaviours of water waves include the spread of ripples on the 

surface of a pond into which a pebble has been thrown, and the breaking of wind- 

generated ocean waves on the shore. Harmonic water waves can be generated in a 

controlled way using devices called ripple tanks, in which vibrating sources dip into 

the water surface. By selecting the wave source geometry to be either extended or 

point like, it is possible to generate either plane waves or circular waves. In addition, a 

single source or multiple sources can be used, allowing a variety of overlapping wave 

patterns to be formed. As an example, two point- like sources produce an interference 

pattern similar to the pattern shown in Figure 10.2. The speed at which water waves 

propagate depends on the depth of water in the container across which the waves 

travel. This feature is of particular importance in understanding wave behaviour on 

lake and ocean surfaces.

In contrast to the longitudinal nature of sound waves in air, the surface waves 

in water involve both longitudinal and transverse displacements of water molecules 

with respect to the direction of wave travel. Molecules in volume elements near the 

surface execute circular or elliptical motions. The gravitational force acting on the 

water elements plays a key role in the propagation of surface waves. Both the speed 

and the form of molecular motion depend on water depth. In dealing with this type 

of wave motion, it is important to distinguish between deep water waves and shallow 

water waves.

Consider a train of plane waves of wavelength λ travelling at speed v over a water 

surface. Deep water waves occur when the depth d is comparable to, or larger than, 

the wavelength, with the condition expressed as d > λ /2. Taking g = 9 8 2.  m/s , the 

wave speed in this case is given by the relationship

 v
g

= ≈
 λ

π
λ

2
1 25.  (10.20)

In contrast, shallow waves require that the depth be much less than the wavelength, 

and the necessary condition is taken as d < λ /20. In this limit, the speed expression is

 v g d d= = 3 13.  (10.21)
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While the derivations of Equations (10.20) and (10.21) are not given here, it is readily 

seen that the expressions are dimensionally correct.

The values of λ for wind­ driven, deep water waves lie in the range 50– 150 m, 

corresponding to wave speeds of 9– 15 m/ s. As deep water waves approach the shore, 

they transition into shallow water waves. Consequently, as the speed decreases, the 

wavelength decreases, while the wave amplitude increases and the shape changes. 

The kinetic energy transported by a wave approaching the shore does not decrease 

significantly, and this causes the buildup in amplitude as the speed drops. Because of 

the variation in d between the bottom and top of the wave, the top travels more rapidly 

than the bottom leading to the well­ known breaking behaviour of sea waves.

Seismic waves, known as tsunamis, are particularly dangerous and can cause 

immense damage when they strike coastal regions. Earthquakes deep below the ocean 

floor cause these waves, which have exceptionally long wavelengths λ > 100 km, with 

long periods T ~ 20 min. Tsunami waves are always a shallow water wave because of 

their large wavelengths.

Exercise 10.5: Estimate the speed of a tsunami in the Pacific Ocean, which 

has an average depth of 4000 m.

Equation (10.21) for shallow water waves gives v = =3 13 4000 198.  m/ s.  

This speed, v ~ 710 km/h, is comparable to that of a passenger jet aircraft.

10.8  ELECTROMAGNETIC WAVES

Electromagnetic waves were predicted in 1865 by James Clerk Maxwell. Maxwell 

based his prediction on his set of equations, which describe electromagnetic phe­

nomena. Roughly two decades later, Heinrich Hertz provided experimental verifica­

tion of Maxwell’s prediction. Rapid progress in determining the properties of these 

waves followed. The present brief introduction to classical electromagnetic waves 

simply points out common features that electromagnetic waves share with other types 

of waves, together with important differences in behaviour.

Electromagnetic waves do not require a medium in which to propagate and travel 

at the speed of light c = ×2 99792458 108.  m/s in vacuum. The electromagnetic spec­

trum spans a wide range of wavelengths from gamma rays (10– 15 m) and X­ rays, 

through visible light, to microwaves and very long wavelength radio waves (108 m). 

Wave frequencies f , which are related to the wavelengths λ by the equation c f=  λ,   

correspondingly have values ranging from 1024 Hz to Hz. A variety of electronic 

devices have been developed that make use of this wide spectral range.

Based on Maxwell’s contributions and the work of others, a plane­ polarized har­

monic electromagnetic wave propagating parallel to the x­ axis in a Cartesian frame 

involves time­ varying electric field, E , and magnetic field, B, components aligned 

orthogonally to x. If E  is directed along y, then B is directed along z. The harmonic 
wave functions are written as E E k x t

y m
= −( )sin ω  and B B k x t

y m
= −( )sin ω , with 

k = 2π λ/  and ω π π= =2 2/  T f . In addition, the two amplitudes E
m
 and B

m
 are closely 

 

 

 



168 Physics: An Introduction to Physical Dynamics

168

related, with E B c
m m

/ =  and the two components in phase. The harmonic wave 

functions for each component are similar to the wave function of a harmonic wave on 

a string as discussed in Chapter 9. Note that the chosen forms correspond to polarized 

waves, with the electric field confined to the xy plane and the magnetic field in the xz 

plane. Interestingly, it is the electric component which is responsible for many of the 

observable physical effects that are detected using electromagnetic radiation.

Using the forms given above for the electric and magnetic field wave functions, it 

follows that the phenomena which are found with mechanical waves on strings, and 

with sound waves in air, have their counterparts in electromagnetic wave phenomena. 

For example, the superposition of two light waves of the same frequency give rise to 

interference effects. A major difference between mechanical waves and electromag-

netic waves is the difference in the observed transmission speeds. Electromagnetic 

waves travel at the speed of light, which is invariant for observers in different iner-

tial reference frames that are in relative motion. In contrast, sound waves are seen to 

travel at different speeds for observers in relative motion with respect to the transmit-

ting medium.

While the classical wave description is successful for describing many of the 

observed properties of electromagnetic radiation, it is necessary to extend the descrip-

tion in order to account for quantum transitions involving the interaction of radiation 

with matter at the atomic level. This major alteration to the wave picture is made by 

introducing the photon. Photons are fundamental particles that travel at the speed of 

light and carry momentum and energy. A collection of these particles constitutes the 

wave of classical physics. In the quantum physics description, the wave function is 

linked to the probability density of photons, which make up the wave, expressed in 

terms of space and time coordinates. Further details are given in books on quantum 

mechanics.
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Basics of Thermal Physics

11.1  INTRODUCTION

Thermal physics began to be established as an important subject in the nineteenth 

century, in large part due to the technological advances that accompanied the indus-

trial revolution. In particular, it was the design and construction of heat engines that 

provided a major stimulus for the investigation of thermal processes. The concepts 

of work and energy from classical mechanics feature in a natural way in the descrip-

tion of thermal phenomena. A related concept, that of heat energy, became essential 

during the development of the subject. This chapter provides an introduction to the 

subject called thermodynamics.

Thermodynamics provides a description of the processes that occur in macroscopic 

systems consisting of very large numbers of particles. No attempt is made to connect 

the macroscopic behaviour that is observed to the unseen microscopic constituents. 

A related subject, called kinetic theory, does provide a semi- classical connection to 

the microscopic description based on classical models. Quantum mechanics is used in 

developing statistical physics, which provides a deeper connection to thermodynamics.

In introducing the subject, it is convenient to consider what is called the ideal 

gas as a simple but important system of interest. The equation of state for an ideal 

gas connects pressure, volume, and temperature in a compact way. Other systems 

are introduced, where appropriate, to broaden the discussion. While the pressure and 

volume of fluids are familiar concepts from the discussion given in Chapter 7, the 

scientific role of temperature is less familiar and is therefore dealt with in detail in 

Section 11.2. In addition to the Celsius and Fahrenheit temperature scales, which are 

well known, the absolute or Kelvin scale is defined.

The internal energy of a system together with the work done on or by the system 

are important in formulating the laws of thermodynamics. As mentioned above, it is 

also necessary to introduce heat energy, which can be transferred in thermal inter-

action processes. Heat flow across the boundary of a system involves the transfer of 

energy at the microscopic scale. While thermodynamics does not consider the micro-

scopic nature of heat transfer processes, it is instructive to consider basic kinetic 

theory in order to gain insight into these processes. An overview of the kinetic theory 

of gases is given in Section 11.3.

11
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11.2  TEMPERATURE AND THE IDEAL GAS LAW

Thermometers that make use of the thermal expansion properties of liquids typically 

consist of a reservoir of liquid attached to a capillary tube. The length of the liquid 

column gives a measure of the temperature of the liquid in the reservoir. Devices 

of this type are generally calibrated using Celsius or Fahrenheit temperature scales, 

which are familiar from everyday life. Both scales fix two calibration points, one for 

melting ice called the ice point, and the other for the boiling point of water in con­

tact with steam at a pressure of one atmosphere called the steam point. In the Celsius 

scale, the ice point is fixed as 0°C and the steam point at 100°C with linearly marked 

degree subdivisions. The Fahrenheit scale uses 32°F for the ice point and 212°F for 

the steam point. The liquids used in thermometers are mercury for common purposes 

and alcohol for temperatures below the ice point.

Liquid in glass thermometers use the thermal expansion of a liquid in establishing 

temperature scales. Many other types of thermometers exist including gas 

thermometers, electrical resistance thermometers, and magnetic thermometers. These 

devices are all based on changes in the physical properties with temperature of the 

system used and require calibration. For scientific purposes, it is convenient to use 

the Kelvin scale, also known as the absolute temperature scale, which is introduced 

below. In introducing the Kelvin scale, it is instructive to consider the physical prop­

erties of gases as a starting point.

The pressure of a gas in a container depends on the container volume, the 

quantity of gas in the container, as measured in moles, and finally the tempera­

ture. Experiments carried out by many workers, beginning in the seventeenth 

century, established these dependences. These investigations led to concepts and 

laws associated with the names of Boyle, Charles, Gay­ Lussac, and Avogadro. It 

became clear that the basic laws could be unified in what is called the ideal gas 

law, which has the following form:

 P V n R T   =  (11.1)

In Equation (11.1), P  is the pressure, V  the volume, n the number of moles of gas, T  

the absolute temperature, and R a constant called the gas constant with approximate 

value R =  8.314 J mol– 1 K– 1. The term ideal gas refers to a gas in which there are negli­

gibly small interactions between the constituent particles (atoms or molecules) making 

up the gas. Examples of gases which are good approximations to an ideal gas are the 

noble gases helium and argon. Many other gases, including hydrogen and nitrogen, 

also approximate ideal gases over a wide range of pressures and temperatures. While 

P  and V  are familiar quantities, with units Pa and m3 respectively in SI units, it is 

necessary to introduce the quantities n and T . 

The number of moles of a gas is given by n M M= /
A
 where M is the mass of gas  

in a container and M
A

 is the molar mass. In terms of Avogadro’s number N
A
, the  

mole number is n N N= /
A
, where N is the number of atoms or molecules, collectively  

referred to as particles, in the container. Avogadro’s number has the approximate value  

N
A

 particles/mol= ×6 022 1023. . The molar mass is M N m
A A

 = , with m the particle  
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mass in atomic mass units (AMU), denoted u, where 1 1 1 660 10 24 u / g 
A

= = × −N . .  

The carbon­ 12 atom is defined to have a mass of 12 u. Note that for gases it is conven­

tional to express the molar mass M
A

 in units of g rather than kg. Avogadro’s number  

is then the number of particles per g­ mol.

In order to introduce the absolute temperature T , it is helpful to consider the 

pressure variation with temperature of a fixed quantity of an ideal gas in a container 

of fixed volume. Figure 11.1 shows a representative plot of P  (atm) versus T  (°C).

The pressure of the ideal gas tends to zero at −273°C. This point is a natural choice 

for absolute zero temperature, T = 0 kelvin (K). For the absolute temperature scale, 

or kelvin scale, degrees are chosen to be equal to those in the Celsius scale. High pre­

cision measurements give 0 K as – 273.15°C. The ice point, which is fixed as the triple 

point for solid ice, liquid water, and water vapour to coexist is thus 273.15 K.

The ideal gas law (which is also known as the ideal gas equation of state) as given 

in Equation (11.1) is extremely useful in thermal physics because it provides a simple 

and precise description of the behaviour of an ideal gas as a function of the P , V , and 

T  conditions.

Exercise 11.1: Determine the molar volume of an ideal gas for T = 273.15 K 

and P = 1 atm. 1 atm =  1.01325 × 105 Pa.

From  Equation (1.1), V n R T P= = × × =  / /  m1 8 314 273 15 101325 0 0224 3. . . .   

The molar volume, in litres, is 22.4 L.

FIGURE 11.1 Representative pressure P (atm) versus temperature (°C) plot for an 

ideal gas. The volume is V = 2 L and n = 0 1.  mol. Below the liquid nitrogen point, at   

– 190°C, the straight line is extrapolated to zero pressure using the dash line. This occurs at   

– 273.15°C.
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11.3  KINETIC THEORY OF GASES

11.3.1  INTERNAL ENERGY AND THE IDEAL GAS LAW

In contrast to thermodynamics, which is not concerned with the microscopic nature 

of macroscopic systems (i.e. systems that contain large numbers of particles compar­

able to Avogadro’s number), kinetic theory relates the macro and micro properties 

of such systems. The ideal gas provides a simple and useful example of the kinetic 

theory approach. 

The ideal gas is modelled as a collection of particles moving about inside a con­

tainer and undergoing collisions with the walls. While the particles are assumed to 

be noninteracting when they are separated by distances larger than the sum of their 

effective radii r, they do undergo collisions and exchange momentum when their 

centres are 2r apart. The particles may not be spherical, but if they are not then they 

rotate rapidly about their centres of mass so that they approximate spheres.

The internal energy E  of a physical system is of central importance in the thermo­

dynamic description of processes in which the system is involved. For an ideal gas, 

the kinetic theory classical model relates the average kinetic energy of a particle ε
k
 

to the absolute temperature. This is done by deriving the ideal gas equation using 

the ideal gas microscopic model, as shown below. The total energy of the gas is then 

given by E N
k

=  ε  where N  is the total number of particles in the gas. Note that there 

is no potential energy contribution for an ideal gas because of the vanishingly weak 

interactions between particles. Variations in gravitational potential energy are also 

assumed to be unimportant if the gas container is kept at a fixed position in relation to 

the Earth’s surface. Collisions between molecules are ignored although this point is 

taken up later. Note that the term particle has now been replaced by molecule, which 

is used, collectively, to describe both atoms such as helium (He) and molecules such 

as nitrogen (N
2
).

Figure 11.2 illustrates in 2D the collision of a gas molecule with the wall of a  

container.

FIGURE 11.2 A molecule in an ideal gas makes an elastic collision with a wall of the gas 

container. The momentum along x  changes by 2m v
x

 . During an interval of time ∆t , many 

molecules collide with the wall and exert a force on it.
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In order to obtain an expression for the pressure of the gas, it is instructive to 

start by considering a subset of molecules moving with speed v
x
 in the +x direction. It 

is assumed that the container wall is smooth and that collisions with it are elastic. The 

momentum change of a molecule along x is ∆ =p m v
x

2  . Over a time ∆t , the fraction 

of the molecules that strike the wall of area A is given by f A v t V
x

=
1

2
 /∆ . This 

is because the maximum distance that these molecules will travel is v t
x
 ∆ , so all 

the molecules inside the volume A v t
x

 ∆  could strike the surface. The factor 
1

2
 is 

introduced to allow for molecules travelling in either the +x or –x directions. The 

change in momentum for a molecule colliding with the boundary wall is therefore

 ∆ =






× ( ) =






p

A v t

V
m v A

m v

V
tx

x

x
 

 
 ∆

∆
2

2
2

. 

From Newton’s second law, the force F
s
 produced by a single molecule hitting 

the boundary wall is obtained as the rate of change of momentum of the molecule 

considered. This gives F
p

t

A

V
m v

xs
 = =

∆
∆

2. The total force on the wall produced by 

all the molecules, labelled i = 1 to N, is F
A

V
m v

i

N

i
=

=
∑

1

2. Introducing the mean square 

speed component along x as v
N

v
x

i

N

i
2

1

2
1

=
=
∑ , and substituting in the expression for F  

gives F
A

V
N m v

x
=   2. Since the x, y and z components of the mean square speed v2 

are equal in 3D, as a consequence of symmetry, it follows that v v v v v
x y z x

2 2 2 2 23= + + = .  
 

The pressure P
F

A
=  of the gas in terms of the mean translational kinetic energy 

ε
k

mv=
1

2
2 is given by

 P N
m v

V
N

V

k= =
1

3

2

3

2 ε
 (11.2)

Equation (11.2) connects the microscopic (N
k

,ε ) and macroscopic (P V, ) descriptions 

of an ideal gas.

A comparison of the ideal gas law in Equation (11.1) with the kinetic theory form 

in Equation (11.2) shows that n RT N
k

 =
2

3
ε , which, using N n N=  

A
 and introducing 

k R N
B A

/= , becomes

 ε
k

k T=
3

2 B
 (11.3)
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The new constant k
B
 is called Boltzmann’s constant with approximate value 

1 381 23. × −10 J/K .  Equation (11.3) relates the mean translational kinetic energy of a  

single ideal gas
 
molecule to the absolute temperature. Since ε

k x
m v m v= =

1

2

3

2
2 2  , 

the factor of three halves arises because there are three contributions to the kinetic 

energy of a molecule in 3D space. For a monatomic ideal gas of N  molecules at 

temperature T  the total energy E  is simply the total translational kinetic energy of 

all the molecules. There is no contribution from the potential energy for an ideal 

gas. The energy is therefore given by

 E N N k T n R T
k

= = =    
B

ε
3

2

3

2
 (11.4)

with R the gas constant and n the number of moles. This is an important result in 

considering the thermodynamic properties of a monatomic ideal gas. Note that for 

polyatomic molecules there are other contributions to the energy from intramolecular 

rotational and vibrational motions. Collectively, the various energy contributions are 

associated with what are called degrees of freedom.

Exercise 11.2: Determine the internal energy of 0.2 moles of helium gas 

at 20°C.

From Equation (11.4), the energy is given in terms of the gas constant by   
 

E n RT= = × × × =
3

2

3

2
0 2 8 314 293 731  J. . .

From Equation (11.3), it is possible to obtain an expression for the root mean 

square speed v v
rms

= 2  of the molecules in an ideal gas. Equation (11.3) is written as 

ε
k

m v k T= =
1

2

3

2
2  

B
, and, with m in u, this gives

 v
k T

m

T

mrms

B  m/s= = ×
3

158  (11.5)

Figure 11.3 is a plot of v
rms

 for helium (m = 4 0.  u) and neon (m = 20 2.  u) versus T  (K).

In an ideal gas at pressures which are not very low, the molecules make frequent 

collisions with one another and travel small distances between collisions. It is useful 

to introduce a quantity called the mean free path l, which is a measure of this mean 

collision distance. Consider a gas of N  molecules in a container of volume V . For 

molecules of effective diameter a, two of the molecules undergo collision when their 

centres are a distance a apart. Collision processes are treated by expanding a selected 

molecule to twice its size, with radius a, and shrinking all the other molecules to 

geometrical points. The enlarged selected molecule travels at an average speed v 
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between collisions and sweeps out a volume V a v
s

  = π τ2  in a time τ . The number of 

molecules encountered by the expanded molecule is given by N
V

V
N

s

s= . For a single 

collision N
s

= 1, and the corresponding collision time is τ
π

=






× 





1
2a v

V

N 
. This 

simple approach gives the mean free path as l v
a

V

N
= = 





× 





τ
π

1
2 

. Using the ideal 

gas law in the form P V N k T   
B

= , and substituting for V N/  in the expression for τ ,  

gives τ
π

=






×






1
2a v

k T

P

B . Introducing a correction factor 1 2/ , which allows for 

the motion of the other molecules, the mean free path becomes

 l v
a

k T

P
= = 

 
Bτ

π

1

2 2

 (11.6)

Figure 11.4 shows a semi­ logarithmic plot of the mean free path of molecules 

in helium at 295 K as a function of pressure in the range 0 to 10 atm. The kinetic 

diameter of He molecules is 0.26 nm. The path length increases dramatically as the 

pressure drops towards 0 atm.

Note that the mean free path length is inversely proportional to the pressure. In a 

high vacuum system, at a pressure of 10– 5 Pa, the mean free path becomes very long, 

in excess of 100 m, which typically exceeds the dimensions of the vacuum chamber 

by a large amount.

11.3.2 THE EQUIPARTITION OF ENERGY THEOREM

In the discussion leading up Equation (11.4), it is established that the average trans­

lational kinetic energy of a molecule in an ideal gas is given by ε
k

k T=
3

2 B
 . In a 3D 

FIGURE 11.3 Root mean square molecular speed versus T  (K) for helium and neon ideal 

gases.
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Cartesian frame of reference, there is an energy component associated with each of the 

three orthogonal directions. Since the axes are equivalent from symmetry consider­

ations, it follows that ε ε ε
kx ky kz

k T= = =
1

2 B
 . The three energy contributions 

1

2
k T

B
  

are associated with what are called the translational degrees of freedom. It is natural 

to ask whether polyatomic molecules have other internal energy contributions 
1

2
k T

B
  

associated with their rotational and vibrational degrees of freedom. Experimental 

results and theoretical calculations have confirmed that this is the case provided the 

associated energy expression involves a quadratic dependence on an internal spatial 

coordinate. This, on average, equal sharing of energy among the various molecular 

degrees of freedom is known as the equipartition of energy theorem; it states that for 

a system in thermal equilibrium at temperature T , in the classical limit, each quadratic 

degree of freedom has a mean energy 
1

2
k T

B
 .

As an example, consider a diatomic molecule such as oxygen. In addition to the 

three translational degrees of freedom, the molecule has two rotational degrees of 

freedom, and, in principle, two vibrational degrees of freedom corresponding to the 

potential and kinetic energies of vibration along the bond, giving a total of seven. 

However, the vibrational motion is generally non­ classical at the temperatures of 

interest, and therefore the energy associated with this motion can be neglected. The 

two rotational degrees of freedom correspond to molecular rotations about orthogonal 

axes through the centre of mass, with energies of the form ε ω
rot

 =
1

2
2I . Rotational 

motion about the axis connecting the two atoms in a diatomic molecule does not con­

tribute to the energy at the temperatures of interest, because of the extremely small 

moment of inertia about this axis. Figure 11.5 illustrates the two rotational degrees 

of freedom.

FIGURE 11.4 The pressure dependence of the mean free path l  for helium at 295 K with 

pressures in the range 0 to 10 atm.
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For an ideal gas of diatomic molecules, each with five degrees of freedom, the 

equipartition theorem predicts that, in equilibrium, the mean energy of a mol­

ecule is ε =
5

2
k T

B
 .

11.4  THERMODYNAMIC PROCESSES: WORK AND HEAT

The internal energy E  of a system can be changed in two distinct ways. Firstly, mech­

anical work can be done on the system by an external force. For example, the volume 

of a gas can be changed by moving a piston in a cylinder containing the gas, as 

depicted in Figure 11.6. This type of process is macroscopic in nature.

The mechanical work done by the force F  in moving the piston through a small 

distance dx  is F x d . As shown in Chapter 7, the gas which is being compressed exerts 

an opposing force ′ =F P A  on the piston. If the system is kept close to equilibrium 

during the compression, then F  and ′F  are almost equal. The magnitude of the infini­

tesimal work done on the gas in moving the piston is d  d   d  dW F x P A x P V= = = .  

It is convenient to take the work dW  done in compressing the gas, by decreasing 

FIGURE 11.5 Rotational degrees of freedom for a diatomic molecule in a gas. Classical 

rotation occurs about the x and z axes as indicated.

FIGURE 11.6 Compression of a gas using a piston­ cylinder arrangement. Work is done on 

the gas as the piston of area A advances into the cylinder.
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its volume, as positive. This is achieved by introducing a minus sign as follows: 

d  dW P V= − . Applying the law of mechanical energy conservation, the accom­

panying change in internal energy of the gas due to compression is given by

 d d  dE W P V= = −  (11.7)

If the piston were to move out in an expansion process, with dW < 0, then the internal 

energy of the gas would decrease.

A second way of changing E involves heat transfer between the system and its 

surroundings. Heat flow is a microscopic process in which kinetic energy at the atomic 

level is transferred across a boundary wall of a system. The energy transfer process involves 

collisions of gas molecules with a wall of a container as depicted in Figure 11.2. Atoms in 

the wall acquire energy from an external source and transmit it to the neighbouring atoms, 

and eventually to other gas molecules in the system of interest.

Thermodynamics does not enquire into the nanoscale details of heat transfer 

processes, but simply considers the macroscopic effects produced by heat flow, and 

specifically the change in temperature of a system produced by the absorption of heat. 

The heat capacity of a system is of central importance in this approach. The rise in 

temperature ∆T  of a system produced by the absorption of heat ∆Q from a source is 

written as ∆ = ∆Q C T , with C the average heat capacity over the temperature range 

involved. In the infinitesimal limit, when ∆ →T 0, the heat capacity is defined as

 C
Q

T
=

d

d
 (11.8)

For gases, in contrast to liquids and solids, the heat capacity of a gas depends on 

whether the measurements are made at constant volume or constant pressure. Further 

details are given below.

In discussing heat transfer, it is often convenient to introduce the concept of what are 

termed heat baths. A heat bath is a very large physical system that can give up or receive 

heat without a detectable change in its temperature. Heat baths have extremely large   

heat capacities. The change in the internal energy dE of a system due to heat dQ 

entering or leaving it, is given by the law of energy conservation as

 d dE Q=  (11.9)

Heat added to a system is taken to be positive, while heat extracted from a system is 

negative.

11.5  THE FIRST LAW OF THERMODYNAMICS

From Equations (11.7) and (11.9), the following relationship is obtained for the 

infinitesimal change in the internal energy of a system to which heat dQ is added and 

on which work d dW P V= −  is done,

 d d d d dE Q W Q P V= + = −  (11.10)
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This is the mathematical statement of the first law of thermodynamics, which is an 

expression of the law of energy conservation. The first law can be adapted to apply to 

a wide variety of systems. As a starting point, the discussion below focuses on gases, 

and in particular the ideal gas.

11.5.1 THE FIRST LAW FOR AN IDEAL GAS

From the equipartition theorem, the internal energy of an ideal monatomic gas   

with three molecular degrees of freedom is given by Equation (11.4) as E n RT=
3

2
.   

This result is readily extended to diatomic molecules, with two additional rotational 

degrees of freedom. For a process carried out at constant volume, the first law becomes 

d dE Q= . The heat capacity at constant volume is obtained using Equation (11.8),  

with the addition of a subscript to indicate the constant volume constraint, as

 C
Q

T

E

T
n R

V

V V

= 





= 





=
d

d

d

d

3

2
 (11.11)

Replacing dE by C T
V

d , the first law for an ideal gas becomes

 C T dQ P V
V

d d= −  (11.12)

Equation (11.12) has been obtained for a monatomic ideal gas, but it is readily adapted 

to a gas of polyatomic molecules with f  degrees of freedom.

Exercise 11.3: Obtain an expression for the work done and the heat transferred 

to a heat bath at temperature T in the isothermal compression of an ideal gas 

from an initial volume V
i
 to a final volume V

f
. Figure 11.7 depicts the work done  

on the gas and the heat transferred in the isothermal process.

For an isothermal process C T
V

d = 0, and Equation (11.12) becomes 

0 = −d dQ P V . Making use of the ideal gas law PV n RT=   to replace P , and 

FIGURE 11.7 The work done on an ideal gas during isothermal compression is 

matched by the heat rejected to a heat bath (not shown).
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then integrating over the volume change, gives the heat transferred to the heat 

bath as ∆ = =





∫Q n RT
V

V
n RT

V

V
 

d
 

i

f

f

i

ln . The first law then gives

 ∆ = −∆ = −






W Q n RT

V

V
ln f

i

 (11.13)

Since the volume has decreased, it follows that ∆W > 0 while ∆Q < 0, showing 

that heat is emitted to the heat bath at temperature T  during the compression 

process in order to keep the gas’s temperature constant.

11.5.2 GENERALIZED FORM OF THE FIRST LAW

For systems other than gases, it is necessary to express the work done on or by a 

system in terms of the mechanical variables which apply to the particular system. For 

example, consider a wire subject to a stretching force F  which produces an increase 

in length dl. The work done in the process is d dW F l= . In general, the infinitesimal 

work done is written as d dW Y X= , with Y  a generalized force and X a generalized 

displacement. The first law then has the form d d dE Q Y X= + . This modified first law 

is useful in a wide variety of applications from soap films to magnetic materials.

11.5.3 STATE VARIABLES AND STATE FUNCTIONS

In an ideal gas system, the variables which specify the state of the system are pressure 

P , volume V , and absolute temperature T . Since the state variables are connected by 

the ideal gas law, which is an equation of state, it follows that any two variables fix 

the value of the third variable, and thus are sufficient to specify the state of the system.

A state function can be expressed in terms of state variables. The internal energy of 

an ideal gas is a state function of the absolute temperature, as shown in Equation (11.4), 

and as used above in the discussion of the first law. For a monatomic gas E T n RT( ) =
3

2 ,   

while for a gas of polyatomic molecules the factor three is replaced by the number of 

degrees of freedom f .

In contrast, heat and work are not state functions. Mathematically, dE is an exact 

differential, while dQ and dW  are not. In a process in which a system goes from an 

initial state to a final state, the energy change is independent of the path followed in 

the process. The work and heat inputs, however, do depend on the path followed, and 

it is only the sum ∆ + ∆Q W  that is fixed, as required by the first law.

11.5.4 THE HEAT CAPACITY RELATIONSHIP

Equation (11.11) gives the heat capacity of a monatomic ideal gas as
 
C n R

V
=

3

2
 .  

Using the first law, a relationship between C
V
 and the heat capacity at constant 

 

 

 

 

 



181Basics of Thermal Physics

181

pressure C
P
 is established as follows. From Equation (11.12), the first law is written 

as d d  dQ C T P V
V

= + . The heat capacity at constant pressure is then given by 

C
Q

T
C P

V

TP

P

V

P

= 





= +
∂
∂







d

d
. Using the ideal gas law gives P

V

T
n R

P

∂
∂







= . The 

difference of the heat capacities is thus given by

 C C n R
P V

− =  (11.14)

For a monatomic gas, C nR
V

=
3

2
 and Equation (11.14) gives C nR

P
=

5

2
. The 

physical reason for C
P
 being larger than C

V
 is that in a constant pressure (“iso-

baric”) process, work is done to keep P  constant as the system expands or 

contracts, while in a constant volume (“isochoric”) process, no work is involved 

since V  does not change.

The specific heat of a system c is defined as the heat capacity per unit quan-

tity of the substance. The quantity is often taken to be per mole with c C n= / , 

or, alternatively, per unit mass with c C m= / . For gases, it is always necessary 

to distinguish between c
V
 and c

P
. In contrast, this distinction is less important 

for liquids and solids, which are much less compressible than gases. For ref-

erence purposes, the specific heat per mole of a monatomic gas at constant 

volume is c
C

n
R

V

V= = = − −3

2
12 47 1 1.  J mol K .

11.6  P– V DIAGRAMS

For gas systems, it is instructive to represent thermodynamic processes using P– V 

diagrams. As is noted above, just two state variables are sufficient to specify the 

state of a gas that obeys the ideal gas law. Figure 11.8 shows a representative P– V 

diagram for a gas undergoing an isobaric (constant pressure) process between ini-

tial and final volumes. Isochoric (constant volume) processes (not shown) would 

be represented by vertical lines, while the isobaric process is shown as the hori-

zontal line. The work done on the gas in the isobaric process is ∆ = −∫W P V
i

f

 d , 

and, with attention to units, this is given by the area under the horizontal line. No 

work is done in isochoric processes, which involve temperature changes produced 

by heat flow.
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Exercise 11.4: The P– V diagram in Figure 11.8 represents the isobaric  

expansion of 0.1 mol of an ideal monatomic gas from an initial volume of 2 L  

to a final volume of 4 L with the pressure kept at 1 atm. Calculate the temperature  

change of the gas, the heat absorbed, and the work done by the system.

The temperature change is obtained using the ideal gas law as follows:  
 

∆ = 





∆ = × × × =−T
P

n R
V

 
 K1 219 10 2 10 2445 3. . The heat absorbed by the 

gas is ∆ = ∆ = ∆ = × =Q C T n R T
P

    J
5

2
2 079 244 507. . The work done by the 

gas is ∆ = ∆ = × × =−W P V 10  J101325 2 2033 .

Note that the work done is given by the shaded area in Figure 11.8 expressed 

in SI units. The heat absorbed by the gas in the isobaric expansion process is 

largely converted into internal energy and the balance into work done by the 

system.

Exercise 11.5: Construct a P– V diagram to depict an isothermal compression 

process for an ideal gas. Take T = 295 K, n = 0.1 mol, and the initial and final 

volumes as 8 L and 1 L, respectively.

The P– V diagram for the isothermal process is readily obtained using the 

ideal gas law in the form P n R T V V= = ×  / /  Pa2 45 105. , with volumes given 

in L, as shown in Figure 11.9.

The work done on the gas is obtained using Equation (11.13), which 

gives ∆ =






= × × × ( ) =W n RT

V

V
 8.314 295 ln  Ji

f

ln .0 1 8 510 .

FIGURE 11.8 P– V diagram for a gas undergoing an isobaric expansion process. The work 

done in the process is given by the shaded area shown.
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11.7  ADIABATIC PROCESSES

In addition to isothermal, isobaric, and isochoric processes, there is a fourth important 

thermodynamic process known as the adiabatic process. In an adiabatic process, no 

heat is transferred to or from the system concerned, so that ∆ =Q 0. In contrast to 

what is known as Boyle’s law, with P V constant=  for an ideal gas undergoing an 

isothermal process, it is found that for an adiabatic process, PV γ = constant with the 

exponent γ  taking values determined by the number of degrees of freedom of the gas 

molecules. This form is discussed in detail below. In an adiabatic process carried out 

on an ideal gas, the state variables P , V , and T  all change subject to the constraint that 

the ideal gas law connecting these variables always holds.

From Equation (11.12), the first law of thermodynamics can be written as 

d d  dQ C T P V
V

= + . Introducing the differential d d d dPV P V V P n R T( ) = + = , 

based on the ideal gas law, gives P V V P n R Td d d= − + . Substituting in the first law 

equation leads to the relationship d d d d d  dQ C T V P n R T C T V P
V P

= − + = − , where 

use has been made of the identity C C n R
P V

− =  given in Equation (11.14).

For an adiabatic process dQ = 0, and two alternative forms of the first law are, 

firstly,

 P V C T
V

d d= −  (11.15a)

and, secondly,

 V P C T
P

d d=  (11.15b)

FIGURE 11.9 P– V diagram for the isothermal compression of 0.1 mol of an ideal gas 

from 8 L to 1 L at T = 295 K. The shaded area, with attention to units, is a measure of 

the work done on the gas.
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Dividing Equation (11.15b) by Equation (11.15a), and then rearranging, results 

in the differential equation 
d dP

P

c

c

V

V

P

V

= − . Integration of this equation yields 

ln ln lnP
c

c
VP

V

= − + ( )constant , and taking antilogs results in the form

 P V constantγ =  (11.16)

with γ = c c
P V

/ . For a monatomic ideal gas c R
V

=
3

2
 and c R

P
=

5

2
, giving γ = 5 3/ .

   

Using the ideal gas law, Equation (11.16) can also be written in the alternative 

form T V γ − =1 constant.

Figure 11.10 gives a P– V diagram for 0.16 moles of an ideal gas, showing both 

an adiabatic process with PV γ = "constant 1" and an isothermal process at 295 K 

with PV = "constant 2". The constants were chosen to make the pressures equal for 

V = 4 L. Note that the pressure rises more rapidly with decreasing volume in the 

adiabatic process than in the isothermal case. Work done on the gas in the adiabatic 

compression increases the internal energy, as required by the first law for ∆Q = 0. 

The temperature of the gas thus increases, since E n RT=
3

2
, and this enhances the 

pressure increase. No increase in temperature occurs in the isothermal process, which 

involves a heat bath to absorb heat from the system.

A combination of adiabatic and isothermal processes can be used to generate a 

heat– work cycle in which an ideal gas absorbs heat from a heat source, converts a 

portion into work output, and discards the remainder to a heat sink. A cycle of this 

type provides a model for a heat engine as discussed in Chapter 12.

FIGURE 11.10 P– V diagram for an ideal gas undergoing adiabatic and isothermal 

compression processes from a volume of 4 L to 1 L. The internal energy of the gas increases in 

the adiabatic process, but not in the isothermal compression.
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11.8  THE SPECIFIC HEAT OF SOLIDS

The present chapter has introduced the first law of thermodynamics and has illustrated 

its use by considering processes involving an ideal gas. Expressions have been 

obtained for the specific heats at constant volume and constant pressure. In the nine-

teenth century, Dulong and Petit found that the molar- specific heats of most solids 

at standard temperature and pressure obeyed what has been called the Dulong– Petit 

law, in the form

 c R
P

= 3  (11.17)

For solids, there is in general little difference between c
P
 and c

V
 because of the small 

thermal expansion coefficients for these materials.

Equation (11.17) is strikingly similar to the molar- specific heat of a monatomic 

ideal gas, c R
V

=
3

2
. The equipartition theorem provides an explanation for the high- 

temperature specific heats of solids using a model in which the atoms are connected 

to neighbours by springs. As the atoms in the solid vibrate about their equilibrium 

positions, they possess both kinetic and potential energy. The number of degrees of 

freedom is thus six, and not three as in a gas.

Further experimental measurements showed that the specific heats of solids 

decreased smoothly towards zero at low temperatures. It became clear that the law of 

Dulong and Petit no longer held at low temperatures, and the specific heat behaviour of 

a particular solid with temperature depends on its mechanical properties. In the early 

twentieth century, simple models, known as the Einstein and Debye models, together 

with quantum physics developments, provided an explanation for the observed low- 

temperature specific heat behaviour.
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12 Entropy and the   

Second Law

12.1  INTRODUCTION

The internal energy of a system is of fundamental importance in considering its 

physical properties. As discussed in Chapter 11, the first law of thermodynamics, 

which is based on the law of energy conservation, relates the change in internal 

energy of a system to the heat and work it exchanges with its surroundings. From 

the heat capacity properties, it is shown that the internal energy E  of an ideal gas 

is a state function of the state variable T . It is natural to ask if there are other state 

functions or state variables. In this chapter, it is shown that a quantity called the 

entropy is a state function of fundamental importance in thermal physics. The 

second law of thermodynamics relates the entropy changes of a system under-

going a thermodynamic process to the reversible or irreversible nature of the 

process. At a fundamental level, an increase in the entropy of a system is related 

to an increase in its disorder.

The entropy concept emerged over a period of many years following the theoretical 

analysis of heat engine operation in the early part of the nineteenth century. A deeper 

understanding of entropy came with the development of statistical mechanics later in 

the century. This chapter uses the operation of heat engines as the basis for introdu-

cing the entropy concept and the second law of thermodynamics.

12.2  HEAT ENGINES

Heat engines are mechanical devices, which, operating in a cycle, convert a fraction 

of the heat absorbed from a high- temperature source into useful work, and reject 

waste heat to a low- temperature sink. In analysing an engine, it is necessary to cal-

culate the work done and the heat transferred per cycle. The following application 

illustrates the general approach.
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Application 12.1: Consider a simple heat engine using a monatomic 

ideal gas as its working substance. The gas is contained in a cylinder, with a 

movable piston that can be clamped for isochoric processes and unclamped for 

isobaric processes. Heat baths, which can be placed in thermal contact with the 

cylinder, provide fixed temperatures at the four points shown in Figure 12.1. 

Find the work done per cycle, when operated in a clockwise sense, and the heat 

transferred in each process. Note the use of practical units (“atm L”) below, 

rather than SI units (1 atm L =  101.325 J).

The work done on the ideal gas per cycle is given by W P V= − =∫
cycle

d

− −( ) − −( ) = − × + × = −P V V P V V
b a d c2 1

2 1 1 1 1 atm L. Converting the units 

using 1 atm L =  101 J gives W = −101 J. The sign convention used measures 

work output as negative. Note that the work output per cycle, in units “atm L”, 

is given by the area of the shaded region in Figure 12.1.

The heat transfer in each process is given by ∆ = ∆Q C T , with the heat cap-

acity given by either C R
P

=
5

2
 (isobaric) or C R

V
=

3

2
 (isochoric) as derived 

for an ideal gas in Chapter 11. Heat is added to the system along paths a → b 

and d → a, while heat is removed along paths b → c and c → d. It is neces-

sary to determine the temperature change along each path. This is done using 

the ideal gas law in the form T
PV

n R
= . The calculations are simplified by 

choosing n = 0 120.  mol, which gives n R = 1J/K. The following temperatures 

are obtained: T
a

K= 606 , T
b

K= 808 , T
c

K= 404 , and T
d

 K= 303 . Heat added 

along isobaric path a → b is given by Q n R T
ab ab

   J= ∆ = × =
5

2

5

2
202 505 .   

FIGURE 12.1 P– V diagram for a cyclic process consisting of two isobaric and two 

isochoric processes. Pressures are given in atm and volumes in L. The cycle operates in 

the clockwise sense, a → b → c → d.
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Similar calculations give Q
bc

 J= −606 , Q
cd

 J= −252 5. , and Q
da

 J= 454 5. . 

Note that the net heat input per cycle is Q
cycle

 J= 101 , which is equal to the 

work done per cycle given above.

12.3  HEAT ENGINE EFFICIENCY

Consider a heat engine operating in a cycle, with heat input Q
1
, work output W , and 

discarded waste heat Q
2
 in each cycle. If a heat engine can be run backwards, it becomes 

a heat pump or refrigerator with the inputs and outputs switching signs. An important 

measure of the performance of a heat engine is its efficiency η, which is defined as

 η =
W

Q
1

 (12.1)

The use of the first law of thermodynamics gives ∆ = ∆ −E Q W
cycle

. Signs are chosen 

positive for inputs and negative for outputs, as used in Chapter 11. Since E  is a state 

function, it follows that ∆ =E
cycle

0, because in a complete cycle the system returns to 

its initial state. Over a cycle, the first law expression gives W Q Q Q= ∆ = +
1 2

 with the 

signs of Q
1
 and Q

2
 determined by calculation as shown in Application 12.1. The heat 

engine efficiency, defined in Equation (12.1), becomes

 η =
+

= +
Q Q

Q

Q

Q

1 2

1

2

1

1  (12.2)

Equation (12.2) has an important role in considering the operation of heat engines. 

Application 12.2 considers the efficiency of the classic Otto cycle as an illustrative 

example.

Application 12.2: The Otto cycle is a model for the operation of gasoline 

powered heat engines. The basic clockwise cycle involves four processes, two 

adiabatics (paths1 → 2 and 3 → 4) and two isochorics (paths 2 → 3 and 4 → 1)  

as shown in Figure 12.2. Air intake at the start of each cycle and exhaust gas 

emission at the end both occur at atmospheric pressure. These two processes 

can be ignored.

In each cycle heat input Q
1
 occurs along path 2 → 3 (V

2
 isochore) followed  

by heat output Q
2
 along 4 → 1 (V

1
 isochore). The temperatures at points 1 to  

4 in Figure 12.2 are designated T
1
 to T

4
, with T T

3 2
>  and T T

4 1
> . Obtain an  
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expression for the efficiency η of the cycle in terms of the volumes V
1
 and V

2
.  

Express the efficiency in terms of the compression ratio R V V=
1 2
/ .

Equation (12.2) gives the efficiency as η = +1
2 1

Q Q/ . The two heat exchanges 

occur along the isochoric paths 2 → 3 and 4 → 1. Taking initial and final 

temperatures around a cycle gives Q C T T
V1 3 2

0= −( ) >  and Q C T T
V2 1 4

0= −( ) < ,   

where C
V
 is the heat capacity at constant volume for the gas used in the Otto 

cycle. Substituting the expressions for Q
1
 and Q

2
 into the equation for η gives,

 η = −
−

−
1 4 1

3 2

T T

T T
 (12.3)

Note the sign switches that have been made, to emphasize that η ≤ 1. Later in 

this chapter, it is shown that it is impossible for a heat engine to achieve .η = 1

Expressions for the positive temperature differences in Equation (12.3) 

are obtained by adapting the adiabatic relationship P V constantγ =  given in 

Equation (11.16). Using the ideal gas law in the form P n RT V=  / , the adia-

batic relationship is rewritten as

 T V γ − =1 constant (12.4)

Applying Equation (12.4) to the two adiabatic processes gives T V T V
1 1

1
2 2

1γ γ− −=  

along 1 → 2 and T V T V
3 2

1
4 1

1γ γ− −=  along 3 → 4. Subtracting the first of these 

equations from the second, and grouping terms in V
1
 and V

2
, leads to

FIGURE 12.2 P– V diagram for the Otto heat engine cycle, which involves two 

adiabatics and two isochorics. Heat input Q
1
 occurs along path 2 → 3 at volume V

2
, 

while heat output Q
2
 occurs along path 4 → 1 at volume V

1
. Adiabatic compression 

happens along 1 → 2, while adiabatic expansion, producing work output, takes place 

along 3 → 4, which is the power stroke. Gas intake and exhaust processes take place at 

pressures close to atmospheric.
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 T T V T T V
4 1 1

1
3 2 2

1−( ) = −( )− −γ γ  (12.5)

Combining Equations (12.3) and (12.5) gives the Otto cycle efficiency as

 η

γ

= −







−

1 2

1

1

V

V
 (12.6)

In terms of the compression ratio R V V=
1 2
/ , the efficiency is η γ= − −1 1 1/R . The 

higher the compression ratio, the higher the efficiency of the heat engine, which 

reaches 60% for a compression ratio R = 10, assuming γ = =c c
P V

/ 1 4. , which 

approximates the ratio of specific heats for air. In a practical gasoline engine, 

there are limitations on how high the compression ratio can be made without 

encountering problems due to preignition of the air– fuel mixture.

12.4  CARNOT CYCLE

12.4.1  CARNOT HEAT ENGINE

The Carnot cycle, which is named after Sadi Carnot who proposed it early in the  

nineteenth century, involves two adiabatic and two isothermal processes carried out  

reversibly on an ideal gas. All processes are quasi- static to ensure that the system  

is always close to equilibrium. The cycle depicted in the P– V diagram given in  

Figure 12.3 is reversible, and can operate either as a heat engine, taking in heat and  

performing work, or in reverse, as a refrigerator or a heat pump in an air conditioner.

FIGURE 12.3 P– V diagram for the Carnot heat engine. Each cycle involves two isothermal 

and two adiabatic processes. Heat transfer takes place in the isothermal stages, and temperature 

changes occur along the adiabatics.
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The efficiency of a Carnot heat engine is obtained using Equation (12.2) which 

involves the heat Q
1
 absorbed in the expansion stroke 1 → 2, in which work is done 

by the system, and Q
2
, the heat ejected in the compression 3 → 4 during which work 

is done on the system. As shown in Chapter 11, the heat Q
if
 transferred in the constant 

temperature expansion of an ideal gas from volume V
i
 to V

f
 is obtained using the first 

law with ∆ =E 0. This procedure gives

 Q W P V n RT
V

V
i

if if

i

f

fd  = = =





∫ ln  (12.7)

Inserting the volume limits for processes 1 → 2 and 3 → 4 in a clockwise cycle, and 

then forming the ratio Q Q
2 1
/ , results in

 
Q

Q

T V V

T V V

2

1

2 4 3

1 2 1

=
( )
( )

ln

ln

/

/
 (12.8)

It is straightforward to relate the volume ratios in Equation (12.7) to each other 

using the adiabatic relationship given in Equation (12.4). For the adiabatic process 2 → 3,  

T V T V
1 2

1
2 3

1  γ γ− −= . Similarly for the adiabatic process 4 → 1, T V T V
2 4

1
1 1

1γ γ− −= ,   

and dividing the first equation by the second, so that the temperatures cancel, 

gives V V V V
2 1

1

3 4

1

/ /( ) = ( )− −γ γ

. Taking natural logarithms of both sides leads to 

ln lnV V V V
2 1 4 3
/ /( ) = − ( ), and comparison of this result with Equation (12.8) shows that 

Q Q T T
2 1 2 1
/ /= − . Using Equation (12.2), the efficiency of a Carnot engine is obtained as

 η = −1 2

1

T

T
 (12.9)

Note that the smaller the ratio T T
2 1
/ , the higher the efficiency. In the limit T

2
0→  K, the 

efficiency η → 1. Achieving very low temperatures in a heat engine is impractical. In 

addition, experiment has shown that while very low temperatures can be attained using 

special equipment, it is impossible to reach 0 K as discussed below in Section 12.9.  

It is therefore impossible to achieve η = 1.

12.4.2 CARNOT HEAT PUMP

If a Carnot heat engine is run in reverse, it functions as a heat pump that extracts 

heat Q
2
 from a low- temperature heat bath and rejects heat Q

1
 at a high tempera-

ture. Work input W  per cycle drives the heat pump. For a complete cycle, the first 

law, with ∆ =E 0, gives W Q Q= − +( )1 2
. The coefficient of performance of the heat 

pump is defined as

 κ =
Q

W

2  (12.10)
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The two heat transfers in a cycle are given by Q n RT V V
1 1 1 2

= ( ) /ln  and 

Q n RT V V
2 2 3 4

= ( ) /ln . Introducing the adiabatic equalities T V T V
2 3

1
1 2

1  γ γ− −=  and 

T V T V
1 1

1
2 4

1  γ γ− −= , and then dividing the first equation by the second with due regard 

for the signs of the logarithms gives Q Q T T
2 1 2 1
/ /= − . The coefficient of performance 

becomes

 κ =
− −

=
−

Q

Q Q

T

T T

2

1 2

2

1 2

 (12.11)

The value of κ  exceeds unity and becomes very large when T T T
1 2 2

−  . 

Reversible air- conditioners, which can operate as heat pumps, transfer heat 

from the cold outdoors to the warm interiors of buildings in winter. These 

devices provide a considerable saving in cost when compared with direct 

indoor electrical heating.

Application 12.3: Obtain an expression for the work done per cycle by a 

Carnot engine operating between heat baths at temperatures T
1
 and T

2
.

From the first law with ∆ =E 0 it follows that the work done per cycle 

is W Q Q= +
1 2

. Based on Equation (12.7), the heat absorbed in the iso-

thermal expansion process 1 → 2 is given by Q P V n R T V V
1

1

2

1 2 1
= = ( )∫  d   /ln .   

The heat rejected in the isothermal compression 3 → 4 is obtained as
   

Q n R T V V
2 2 4 3

= ( )  /ln .  In addition, ln lnV V V V
2 1 4 3
/ /( ) = − ( ) follows by applying 

the adiabatic relationship given in Equation (12.4) to the two adiabatics, as 

shown above for the Carnot heat engine. Substituting the expressions for Q
1
 and 

Q
2
 into the equation for W , with due regard for the signs, gives

 W n R T T
V

V
= −( ) 




1 2

2

1

ln  (12.12)

Equation (12.12) shows that the work output per cycle depends on the tem-

perature difference between the heat baths and on the natural logarithm of the 

volume expansion ratio V V
2 1
/  in the isothermal expansion process.

12.5  ENTROPY AS A STATE FUNCTION

The energy of a thermodynamic system is a state function of the state variables as 

discussed in Chapter 11. For example, the energy of an ideal gas is a function of 

absolute temperature. The results obtained in the analysis of the Carnot cycle point 

the way to the introduction of another important state function called entropy. In a 

microscopic description, the entropy of a system is determined by the disorder in the 
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system. The greater the disorder, the higher the entropy. It follows that the entropy of 

a material is higher in its gas phase than in its liquid or solid phases. Thermodynamics 

provides a macroscopic description of processes involving work and heat. The entropy 

changes that accompany thermodynamic processes are of primary interest in the pre-

sent discussion.

In determining the efficiency of a Carnot heat engine, the following result 

is obtained: η = + = −1 1
2 1 2 1

Q Q T T/ / , with Q
1

0>  and Q
2

0< . It follows that 

Q T Q T
1 1 2 2
/ /= − , and in compact form this relationship becomes

 

i

i

i

Q

T=
∑ =

1

2

0 (12.13)

Equation (12.13) can be generalized to other closed cycle reversible heat engines 

by using a set of Carnot cycles, which, when added together, produce a P– V dia-

gram which is a close approximation to that of the cycle considered. This procedure 

assumes that hot and cold baths are available for the isothermal expansion and com-

pression processes in each Carnot cycle of the set. Adiabatic processes effectively 

cancel one another in adjoining paths. Summing over the set of N Carnot cycles 

involving 2N  heat baths, leads to

 

i

N
i

i

Q

T=
∑ =

1

2

0 (12.14)

Note that Equation (12.14) applies quite generally to any reversible cycle, 

including a single Carnot cycle, in which heat transfer processes take place in 

discrete small steps.

In order to simplify the notation, it is convenient to put Q T Si i i/ = ∆  in Equation 

(12.14) to give

 

i

N

i
S

=
∑∆ =

1

2

0 (12.15)

In the large N  limit, the sum in Equation (12.15) can be converted to an integral over 

a complete reversible cycle (denoted by the circle in the integral symbol below), with 

the form

 d
d

cycle

S
Q

T
= =∫∫ 0  (12.16)

Equation (12.16) is of fundamental importance in thermodynamics and, in honour 

of the nineteenth- century physicist who established the result, it is known as 

Clausius’s theorem. As noted in Chapter 11, dQ  is not an exact differential. The 

relationship
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 d
d

S
Q

T
=  (12.17)

gives dS as an exact differential, with 1/T  the integrating factor for dQ. The quantity 

denoted by the symbol S is termed the entropy.

The internal energy E  of an ideal gas is a state function of the absolute tempera-

ture, as shown in Chapter 11. For a reversible Carnot cycle, dE =∫ 0 . The result 

dS =∫ 0  given in Equation (12.16) for a reversible cycle provides compelling evi-

dence that S is also a state function of the state variables.

The entropy concept that is introduced above is linked to the change in the state 

of a system. Equation (12.17) provides the basic relationship for calculating entropy 

changes accompanying a heat transfer process. Using the first law, the approach can 

be generalized to volume changes as described below. A general relationship for the 

entropy of a large system in terms of its huge number of accessible microstates Ω was 

obtained by Ludwig Boltzmann in the nineteenth century. The famous Boltzmann 

entropy equation is given by S k=
B

ln Ω. Using a microscopic approach to obtain an 

expression for Ω E V N, ,( ) leads to the Sackur– Tetrode equation for the entropy of 

an ideal gas of N  molecules in a container of volume V . Further details are given in 

books on statistical physics. The present discussion deals with the entropy changes 

that occur in various thermodynamic processes.

12.6  ENTROPY CHANGES

Consider a system which makes a transition from an initial state i to a final state f with 

the states specified by state variables. While the process from i to f  may be carried out 

in various ways, along paths which may be reversible or irreversible, the entropy change 

∆S
if
 is independent of the path followed since entropy is a state function. It follows that an 

irreversible path can be replaced by a reversible path in calculating ∆S
if
.

12.6.1 REVERSIBLE PROCESSES

In general, for a system with a temperature dependent heat capacity C T( ), the entropy 

change in a process from state i  to state f  is given by

 ∆ = =
( )

∫ ∫S
Q

T

C T T

Tif

i

f

i

f
d d

 (12.18)

For many gases, and in particular the monatomic ideal gas, the heat capacity is tem-

perature independent over a large temperature range as shown in Chapter 11. This 

feature simplifies the integral in Equation (12.18), giving the following result

 ∆ = =





∫S C
T

T
C

T

Tif

i

f

f

i

d
ln  (12.19)
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Equation (12.19) can be applied to isochoric and isobaric processes for a monatomic 

ideal gas, using the expressions for C  from Chapter 11, C n R
V

=
3

2
 and C n R

P
=

5

2
  

respectively.

Equation (12.19) does not apply to isothermal processes, in which a gas 

expands from volume V
i
 to V

f
 at constant T . In this case, Equation (12.7) gives 

Q n R T V V
if f i

  /= ( )ln , and hence

 ∆ =






S n R

V

Vif

f

i

 ln  (12.20)

There is an accompanying change in the entropy of a heat bath, or reservoir, from which 

heat flows into (or out of) a gas system, as happens along the Carnot cycle path 1 → 2 shown 

in Figure 12.3. Because the heat capacity of the heat bath is taken to be extremely large,   

its temperature remains effectively constant at T . Since Q Q
bath gas

= − , the entropy 

change of the heat bath is equal in magnitude and opposite in sign to that of the gas.

Note that the entropy of a system depends on its size, as specified by its mass or by 

its number of moles of gas or some other material. Entropy is an extensive quantity 

with SI units J/ K.

Application 12.4: Show that the total entropy change of a Carnot heat engine 

together with its heat baths is zero per cycle.

The total entropy change of the ideal gas and the two heat baths is given 

by ∆ = − + − + =S
Q

T

Q

T

Q

T

Q

T

1

1

1

1

2

2

2

2

0 . The first term is the entropy loss −Q T
1 1
/

   

of the hot bath, the second term the entropy gain Q T
1 1
/  of the gas in the expan-

sion stroke, the third term the entropy loss −Q T
2 2
/  of the gas in the compres-

sion stroke, and the final term the entropy gain Q T
2 2
/  of the cold bath. The four 

entropy changes sum to zero.

12.6.2 IRREVERSIBLE PROCESSES

An example of an irreversible process is the free expansion of an ideal gas from an 

initial volume V
i
 to a final volume V

f
. A free expansion process can be carried out 

using the arrangement shown in Figure 12.4. No piston is involved, and the gas is 

initially in the container on the left, with the container on the right evacuated. Free 

expansion occurs when a seal covering an opening in the central partition is removed. 

No work is done in the expansion, and no heat is transferred. For an ideal gas, the 

temperature remains constant.

The entropy change of the gas in the isothermal expansion process is given by 

Equation (12.20) as ∆ = ( )S n R V V
if f i

/ln . This follows because entropy is a state 
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function, and the change in entropy depends only on the initial and final states of a 

system, and not on the path followed from state i to state f . Since V V
f i

> , it follows 

that ∆ >S 0.

To summarize, in a free expansion process, there is no work done and no heat 

is exchanged with a heat bath. The entropy increase of the gas is the only entropy 

change in the free expansion process. The entropy of the universe S
U

 has increased 

slightly by ∆ = ∆S S
U irr

, because of the entropy increases ∆S
irr

 during the irreversible 

expansion process. This finding of an entropy increase, ∆ >S
U

0, in a free expansion 

process applies to all irreversible processes.

Application 12.5: A system initially consists of the ideal gases helium 

(He) and argon (Ar) in two containers separated by a partition, similar to 

the arrangement shown in Figure 12.4. The two containers are at the same 

temperature, with 0.2 moles of He in the left container and 0.2 moles of Ar 

in the right container. What is the change in entropy of the system produced 

by the removal of a seal covering an opening in the central partition, allowing 

the gases to mix? The pressures P of the gases in the two containers are equal 

before mixing takes place.

From the ideal gas law PV n R T=    it follows that the container volumes 

must be equal, since n, P, and T are initially the same for both He and Ar. 

Because the volumes of the two containers are equal, they are designated 

by V
i
. After the mixing process each gas occupies the combined volume 

V V
f i

= 2 . From Equation (12.20) the entropy of each gas increases by an 

amount ∆ = ( ) = =S n R V V n R
if f i

 /   J/Kln ln .2 1 15 .

FIGURE 12.4 Free expansion of an ideal gas from an initial state (a) in which all the gas is 

in the container on the left while the container on the right is evacuated, to a final state (b) in 

which the gas fills both containers. Sudden expansion of the gas occurs after a seal in the 

central partition is removed. No work is done by the gas and no heat transfer occurs during the 

expansion process.
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The entropy change of the system is obtained by adding the entropy 

changes for each  of the two gases, which together occupy both containers, 

leading to ∆ = ∆ + ∆ =S S S
mix He Ar

 J/K2 3. .

Note that the mixed final state is disordered compared to the unmixed state. 

The loss of order produced by mixing is reflected in the entropy increase. The 

helium and argon atoms are intermingled and cannot be separated without con-

siderable effort involving special equipment. The probability of ever finding 

the helium and argon atoms spontaneously restored to their original separate 

containers is vanishingly small.

Thermodynamic results similar to those obtained for the mixing of gases apply 

in the case of the free expansion of a gas. As shown above, the entropy increase   

is ∆ = ( )S n R V V
if f i

 /ln , consistent with a loss of order like the two- gases 

system. The probability of ever finding the gas in the state it was in prior to its 

free expansion is again vanishingly small.

Application 12.6: Two thermally insulated objects, 1 and 2, are initially at 

absolute temperatures  T
1
 and T

2
, with T

1
 > T

2
. The objects are brought into 

thermal contact using a thermal link and allowed to reach equilibrium at 

final temperature T
f
. Determine an expression for the entropy change in this 

irreversible process. Obtain the entropy change for T
1
 = 400 K and T

2
 = 300 K. 

Take the heat capacity of each bath as C = 104 J/K  with negligible temperature 

dependence. Neglect heat losses to the surroundings.

The situation is depicted in Figure 12.5. In coming to equilibrium, the heat lost 

by object 1 is equal to the heat gained by object 2, giving C T T C T T
1 2

−( ) = −( )f f
.  

The equilibrium temperature is T T T
f

= +( )1

2 1 2
.

The entropy change of object 1 is ∆ = = ( )∫S C
T

T
C T T

T

T

1 1

1

ln
f d

/
f

. Similarly, 

for object 2 ∆ = = ( )∫S C
T

T
C T T

T

T

2 2

2

f d
/ln

f
. The entropy change of the system 

of two objects is ∆ = ∆ + ∆ = ( ) + ( ) =






S S S C T T C T T C

T

T T1 2 1 2

2

1 2

ln ln ln
f f

f/ /
 

.   

For ∆ >S 0, the necessary condition is 
T

T T

T T

T T

f

  

2

1 2

1 2

2

1 2
4

1=
+( )

> . This condition 

reduces to T T
1 2

2

0−( ) > , which is clearly satisfied.
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Using the initial temperatures of the objects, the entropy change which occurs 

in reaching thermal equilibrium is given by ∆ = ×
×







=S 10
350

300 400
2064

2

ln  J/K.

12.6.3 LOSS OF OPPORTUNITY IN IRREVERSIBLE PROCESSES

In addition to the increase in entropy which always accompanies an irreversible pro-

cess, the opportunity to use the system to do useful work may be lost.

For example, in the situation involving two heat baths dealt with in Application 12.6, 

the opportunity to operate a heat engine between the two baths is lost once the two 

baths reach the final equilibrium temperature. While the two objects can be restored 

to their initial conditions, the increases in entropy cannot be reversed. The increase is 

just passed on to other systems involved in the restoration process.

12.6.4 THE LOCAL UNIVERSE

In considering the entropy changes that accompany a thermodynamic process, it is 

necessary to include changes that occur in the surroundings. For example, in dealing 

with a heat engine or heat pump, it is necessary to include heat baths. In order to 

ensure that all entropy changes are included, it is customary to specify the system 

together with its surroundings as the local universe. The total entropy change which 

occurs in a process is then called the entropy change of the local universe.

In processes such as photosynthesis, which involve energy reaching the Earth 

from the Sun, it is necessary, for completeness, to regard the Sun as part of the local 

universe. The nuclear fusion reactions in the solar interior are irreversible, and in 

five billion years, when its hydrogen fuel is exhausted, the Sun will become a white 

dwarf star.

FIGURE 12.5 Irreversible heat flow occurs from hot object 1, initially at temperature 

T
1
, to a cooler object 2, initially at temperature T

2
. The entropy of the two- object system 

increases in this process. The heat capacities C of the two objects are assumed to be equal.
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12.7  THE SECOND LAW OF THERMODYNAMICS

Based on entropy considerations, the second law of thermodynamics is stated com-

pactly as follows:

 ∆S
U

≥ 0 (12.21)

This statement asserts that the change in entropy of the local universe associated 

with a system undergoing a thermodynamic process is either positive or zero. No 

decrease in entropy can occur in the local universe. Like other natural laws, this 

law is based on experiment and has never been found to be violated. The law is 

of fundamental importance in accounting for the behaviour of systems in many 

branches of science.

There are two historic statements of the second law, called the Clausius 

statement and the Kelvin– Planck statement, respectively. These alternative 

statements are based on heat engine considerations and are equivalent to the 

modern statement given above.

Since all irreversible processes lead to an entropy increase, it follows that the 

entropy of the universe is steadily increasing. The vast majority of natural processes 

are irreversible and are accompanied by growing disorder on length scales from the 

size of microscopic organisms to that of galaxies. While order can be restored locally, 

disorder continues its widespread increase. This endless increase in entropy is linked 

to the flow of time and provides what has been called time’s arrow.

12.8  TEMPERATURE– ENTROPY DIAGRAMS

P– V diagrams, which were introduced in Chapter 11, provide instructive 

representations of thermodynamic processes in gases. The diagrams are used in 

this chapter to represent various cyclic processes, including the Carnot cycle. T– S 

diagrams provide an alternative graphical representation of thermal processes and are 

particularly well suited to showing adiabatics and isothermals.

The T– S diagram for a Carnot cycle given in Figure 12.6 has a rectangular shape 

made up of two isothermals and two adiabatics, with transitions between these 

processes occurring at the points labelled a to d. Note that in this representation, the 

heat engine cycle proceeds in an anticlockwise sense. The entropy scale is chosen 

to suit the situation that is being represented, with arbitrary zero entropy, since it is 

entropy changes that are of interest.

The efficiency of the Carnot engine is given by Equation (12.2) as η = +1
2 1

Q Q/ ,   

where Q
1
 is the heat absorbed at temperature T

1
 along a → b, and Q

2
 is the heat 

discarded at temperature T
2
 along c → d.

For an isothermal process, from an initial state i to a final state f , integration of 

Equation (12.17) gives

 ∆ = = ∆∫Q T S T S
if

i

f

if
 d   (12.22)
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In the case of the Carnot cycle, Equation (12.22) gives Q T S T S S
1 1 1 1 2

= ∆ = −( )ab
 and 

Q T S T S S
2 2 2 2 1

= ∆ = −( )cd
. It follows that η = −1

2 1
T T/  in agreement with Equation (12.9). 

 

Note that the heat input and heat output along the isothermals can be read off from 

the T– S diagram.

Application 12.7: Adapt the T– S diagram given in Figure 12.6 to the 

operation of a Carnot heat pump. Determine the coefficient of performance of 

the heat pump for T
1

296= K and T
2

276= K.

The T– S diagram for a Carnot heat pump has the same form as that 

shown in Figure 12.6, just with all the processes run in reverse. With the use 

of Equations (12.10) and (12.11), the coefficient of performance is given 

as κ = =
− −

=
−

Q

W

Q

Q Q

T

T T

2 2

1 2

2

1 2

. Inserting the temperature values gives 

κ = =
276

20
13 8. . For every unit of work input to the heat pump, 13.8 units of 

heat are extracted from the cold bath.

12.9  THE THERMODYNAMIC LAWS

In addition to the first and second laws of thermodynamics, which have been 

introduced earlier, there are two other laws that play a role. The first of these is the 

zeroth law, also called the law of thermometry.

Law 0: If two separated systems are in thermal equilibrium with a third system, then 

they are in thermal equilibrium with each other.

FIGURE 12.6 Carnot cycle T- S diagram showing two isothermal and two adiabatic processes. 

Heat Q
1
 is absorbed along path a → b at temperature T

1
, and heat Q

2
 is discarded along path   

c → d at temperature T
2
.
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As an illustrative example, consider a liquid- in- glass thermometer. If the liquid 

(e.g., mercury or alcohol) is in thermal equilibrium with the inner surface of the 

thermometer bulb, and the outer wall of the bulb is in thermal equilibrium with an 

object whose temperature is being measured, then the object and the liquid are in 

thermal equilibrium. The glass wall acts as an intermediate object, in thermal equi-

librium with both the thermometer liquid and the system whose temperature is being 

measured. The thermometer is calibrated at fixed reference temperature points.

The third law of thermodynamics is concerned with the unattainability of absolute 

zero temperature, which is linked to the behaviour of a system’s entropy at very low 

temperatures.

Law 3: The entropy of a system tends to zero as the temperature approaches zero 

kelvin.

Decreasing the entropy of a system corresponds to increasing its order. As the tem-

perature of a system is lowered, the entropy continuously decreases, and squeezing 

the remaining entropy from the system becomes increasingly difficult. The third law 

implies that it is impossible to reach absolute zero in a finite number of steps using 

a succession of entropy- reducing processes. Ingenious experimental techniques have 

been developed in order to reach very low temperatures, well below 1 K. In a classic 

experiment, a gas of alkali atoms trapped by laser beams has been cooled to below 

10− 9 K.

The third law must be modified slightly when applied to inhomogeneous systems 

with intrinsic disorder. The generalized third law states that the entropy of a system 

tends to zero, or to a constant value, as the temperature approaches zero.

Compact statements of the four laws governing thermodynamic processes are 

given below.

Law 0: For 3 thermally interacting systems in equilibrium, if T T
1 3

=  and T T
2 3

= ,   

then T T
1 2

= .

Law 1: The energy E  of the local universe (LU) is constant, ∆ =E
LU

0.

Law 2: The entropy S of the LU is either constant or increasing, ∆ ≥S
LU

0.

Law 3: The entropy of a system tends to 0 as the temperature tends to 0 K, 

S → 0 as T → 0K.

Note that a decrease in entropy governed by “law 3” is not inconsistent with “law 2”. 

That is because the decrease in entropy of a particular system, which relies on the use 

of special techniques, is more than offset by an increase in entropy of the associated 

laboratory equipment, which is referred to as the local universe.

12.10  CONCLUSION

With the development of the laws of thermodynamics, this book has covered many 

of the physics topics of interest up until the mid- nineteenth century. At that time, 

 

 



202 Physics: An Introduction to Physical Dynamics

202

experimental work was clarifying the phenomena of electricity and magnetism. This 

work culminated in Maxwell’s equations of electromagnetism, which were developed 

in a set of papers published during the 1860s. A key implication of this work was that 

the speed of light should be the same in all inertial reference frames, which appears 

to be incompatible with Newton’s conceptual framework that singles out an absolute 

reference frame determined by the fixed stars. Einstein resolved the incompatibility 

when he published the special theory of relativity for reference frames in uniform 

motion, a theory that was subsequently extended in the general theory of relativity to 

encompass reference frames undergoing acceleration. Einstein’s theories generalize 

Newton’s ideas to handle situations where a particle is travelling close to the speed of 

light or is in the vicinity of a very massive object.

At approximately the same time, another experimental issue, that of black body 

radiation, became known. Black body radiation is the electromagnetic radiation that 

is emitted by an opaque, non- reflective material which is in thermodynamic equilib-

rium with its surroundings. Classical physics could not explain the spectrum of the 

emitted radiation. The resolution of this issue eventually led to the development of 

quantum mechanics.

The theories of special and general relativity, and quantum mechanics, became the 

focus of much of physics research after the nineteenth century.
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Appendices
APPENDIX 1: FUNDAMENTAL PHYSICAL CONSTANTS

Constant Symbol Value

Avogadro constant N
A

6.02214076 × 1023 mol−1

Boltzmann constant k
B

1.380649 × 10−23 J ⋅ K−1

Electron charge e 1.602176634 × 10−19 C

Electron mass m
e

9.1093837139(28) × 10−31 kg

Molar gas constant R 8.31446261815324 J mol−1 K− 1

Gravitational constant G 6.67430(15) × 10− 11 m3 kg− 1 s−2

Planck constant h 6.62607015 × 10− 34 J s

Proton mass m
p

1.67262192595(52) × 10− 27 kg

Speed of light in vacuum c 299792458 m s−1

APPENDIX 2: PERIODIC TABLE OF THE ELEMENTS
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Index

A 

Acceleration, 13

angular, 63– 64, 73

centripetal, 65– 67

constant, see Constant acceleration

Newton’s laws, 39– 40

one- dimensional (1D) motion, 15– 16,  

22

zero, 24

Adiabatic process, 183– 184

Air resistance, 26

damping, 127

viscous drag, 59

Alloys, 98

Altitude 

density, 99

pressure, 101– 102

Ambient conditions, 97

Amplitude 

harmonic waves on strings, 142, 145– 146

interference, 157– 160

sound waves, 149

Angular variables, 63– 64

Archimedes’ principle, 103– 104

Astronomy, field of, 75

Atomic clocks, 2– 5

caesium fountain, 3– 4

resonance, 131

Atoms, 2– 5

Bohr’s model, 67

spectroscopy, 3, 131

wave motion, 132

Avogadro’s constant, 2, 170– 171, 203

Axis of rotation, 69, 83, 93; Earth’s, 2, 31

B 

Barometers, 105

Beats, 160– 161

Bernoulli’s equation, 108– 110

practical application, 110

Black body radiation, 202

Black holes, 75

Bohr’s model of atom, 67

Boltzmann’s constant, 2, 203

Boyle’s law, 170, 183

Brahe, T., 73

C 

Carnot cycle, 190– 192

heat engine, 190– 191

heat pump, 191– 192

Carnot, S., 190

Cartesian coordinates, 13

projectile motion, 23– 27

rotational motion, 63

vectors, 16– 20

Centre of gravity, 81– 82

axis of rotation, 93

weight of fluids, 103

Centre of mass, 79– 81

Circular motion, see also Rotational motion

elliptical, 63

oscillatory motion, and, 117

Circular trajectory, 74

Classical electromagnetism, 5

Classical mechanics, 1, 7, 43, 97, 169, 203

Clausius statement, 199

Collisions, 28, 32– 35

elastic, 35

impact, 40– 42

inelastic, 34

Compressibility 

fluids, 102– 103

isothermal, 102

substances, 97

Conservative forces, 51– 55

example, 11, 51

law of mechanical energy conservation, 49, 

60– 62

Constant acceleration 

constant force, 65– 66

kinematic equations, 20– 22, 26

kinetic energy, 45– 46

motion, 13– 14

Coulomb’s law, 10

Covalent solids, 98

Cylinders 

moment of inertia, 84– 86

rolling motion, 89– 93
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D 

Dark matter, 3

Density 

fluids, 99– 100

gases, 101– 102

objects, 103

Disks, 84– 86

Displacement, 13

angular, 73, 78

one- dimensional (1D) motion, 14

Doppler shifts, 162– 163

examples, 162

moving detector, 163– 165

moving source, 163

shock waves, 165– 166

Dulong– Petit law, 185

E 

Einstein, A., 5

Electromagnetic forces, 9– 10

physical contact, 11

Electromagnetic radiation 

measuring, 3

waves, 168

Electromagnetic waves, 132, 154, 167– 168

Doppler shifts, 162

Electron 

atom, 2

charge, 2, 9– 10, 203

macroscopic objects, 9

mass, 2, 10, 203

Elliptic trajectory, 63, 73– 74

Empirical laws, 57, 199

Energy, 1

conservation law, 43

kinetic, 28; see also Kinetic energy

mechanical, 43; see also Mechanical energy

potential, 43

stable equilibrium, 83

units of measurement, 44

Entropy, 186

changes, 194– 198

irreversible processes, 195– 198

local universe, 198

loss of opportunity in irreversible processes, 198

reversible processes, 194– 195

state function, as, 192– 194

temperature- entropy diagrams, 199– 200

F 

First law of thermodynamics, 178– 181

generalized form, 180

heat capacity relationship, 180– 181

state functions, 180

state variables, 180

Fluid flow 

Bernoulli’s equation, 108– 110

continuity equation, 107– 108

non- turbulent, 106– 107

Poiseuille’s equation, 112

pressure drop, 111– 112

turbulent flow of fluids, 106– 107

Venturi meter, 110

viscous, 110– 112

Fluids, 97– 98

Bernoulli’s equation, 108– 110

compressibility, 102– 103

continuity equation, 107– 108

density, 99– 100

depth, 100– 101

flow, 106– 112

incompressible liquid, 100– 101

phase boundary, 97– 98

pressure, 99– 100

properties, 1

sound waves, 148, 154

statics, 103– 106

viscous, 110– 112

Force, 1, 8

change velocity, 43

constant applied, 13

horizontal, 44

lever, 96

mechanical work, 43– 44

moment of, 93

oscillatory motion, 117, 120

vertical, 44

Fourier analysis, 161– 162

Frames of reference 

absolute, 30

Galilean transformation, 29– 30

inertial, 31– 32

momentum, 28– 31

motion, 13, 16, 24

rigid body motion, 78– 79

Frequency 

angular, 116, 119

driving, 129– 131

harmonic waves on strings, 136, 142

interference, 157– 160

resonance, 131

sound waves, 148

Friction, 56– 58

damping, 127

mechanical energy conservation,  

50– 51

mechanical work, 44

non- conservative force, 55– 56
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Fundamental laws of physics, 32, 35, 43

Fundamental physical constants, 2, 203

G 

Gases, see Vapours

Glassy materials, 98

Global positioning system (GPS) technology, 4– 5

Gravitational constant, 8, 52, 76, 203

Gravitational forces, 9– 10

centre of gravity, 81– 82

mechanical work, 44

physical contact, 11

springs, 118– 119

Gravitational waves, 154

detection, 75

H 

Harmonic waves, 135– 136

Fourier analysis, 161– 162

energy in pipes, 151

energy in strings, 138– 140

interference effects, 138– 140, 157– 160

sound, 148– 150

time, 135

trigonometric identity, 142, 158

Heat energy, 169

collisions, 41

flow, 169

importance, 186

Heat engines, 169, 184, 186– 188

Carnot, 190– 191

efficiency, 188– 190

Heat pumps, 191– 192, 198, 200

Hertz, H., 167

Hooke’s law, 117– 118, 132

Hubble Space Telescope, 76

Hydraulic press, 105– 106

Hydrogen, 3

Hydrostatics 

pressure, 99, 113– 114

principles, 103– 104

Hyperbolic trajectory, 74

I 

Ideal gas law, 170– 171

adiabatic process, 183– 184

internal energy, 172– 175, 186

isobaric process, 181– 182

isochoric process, 181– 182

isothermal process, 183– 184

P– V diagrams, 181– 183

Impact, 40– 42

Industrial revolution, 169

Interference 

one- dimensional (1D), 157– 158

string, 138– 140

three- dimensional (3D), 158– 160

International Space Station, 76

Ionic solids, 98

Ions, 132

Isobaric process, 181– 182

Isochoric process, 181– 182

Isothermal process 

fluids, 102– 103

gases, 183– 184

J 

James Webb infrared telescope, 76

Joules, 44

K 

Kelvin– Planck statement, 199

Kelvin scale, 97

Kepler, J., 73

Kepler’s Laws, 73– 75

Kibble balance, 6, 7

Kilogram (kg), 1, 6

Kinematic equations, 13, 20– 21

air resistance, 26

applications, 22– 27

rotational, 64– 65

Kinetic energy, 44– 46

collisions, 34– 35, 41

harmonic waves, 138, 151

mass, and, 28, 45– 46

oscillatory motion, 116, 123– 127

potential, and, 43

rigid body motion, 78, 88– 89, 91– 93

rotational, 71– 73

water waves, 167

Kinetic theory of gases, 169

equipartition of energy theorem, 175– 177

ideal gas law, 172– 175

internal energy, 172– 175

L 

Law of energy conservation, 43, 61

Law of mass– energy conservation, 43

Law of mechanical energy conservation, 48– 51, 

60– 62, 93

importance, 61

Law of momentum conservation, 28, 32– 35, 40

Law of universal gravitation, 73

Length, 1– 2, 5– 6

Liquid crystals, 98

Longitudinal waves, 132, 148, 166
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M 

Macroscopic forces, 9– 11

Magnitude, 13

Newton’s laws, 38– 39

viscous drag, 59

Manometers, 104

Mass 

mechanical energy, 43

momentum, 28– 29

object behaviour, 28

physical world, in, 9

rigid body motion, 79– 81

spring, on, 117– 120

units of measurement, 1– 2, 6– 7

weight, and, 7– 9

Maxwell, J. C., 5, 167, 202

Mechanical energy, 44– 48

conservation, 48– 51

importance, 43

Mechanical lever arm, 96

Mechanical waves, 132

Doppler effect, 162

Mercury, 104– 105, 170

Metallic solids, 98

Meter (m), 1, 5, 44

Microscopic measurements, 97

Molar gas constant, 203

Molecular solids, 98

Moment of inertia, 73

rigid body motion, 78, 83– 86

Momentum (kg m/ s) 

angular, 63, 67– 68, 87

change in, 32, 40

conservation, 32– 35

frames of reference, 28– 31

mass, and, 28

motion, and, 28

role, 1, 27– 28

two- dimensional (2D) systems, 33

units of measurement, 29

vectors, 29, 68– 70

velocity, and, 28– 30

Motion 

circular, see Circular motion

dynamics in one- dimensional (1D), 22– 23

dynamics in three- dimensional (3D), 23– 27

dynamics in two- dimensional (2D), 23– 27

frame of reference, 13, 16, 24

momentum, and, 28

Newton’s laws, 35– 37, 70– 71

object behaviour, 28

objects in space, 14, 28

one dimension (1D), 14– 16

oscillatory, see Oscillations

projectile, 23– 24

retarding forces, 56– 60

rigid body, 1; see also Rigid body motion

rotational, 13; see also Rotational motion

time, 13

waves, see Wave motion

Musical instruments, 152– 153

N 

Nature 

forces in, 9– 10

mass, 9

physical contact, 11

size, 9

Neutron, 2

macroscopic objects, 10

stars, 75

Newton’s first law of motion, 35

Newton’s law of universal gravitation, 14, 28, 37

Newton’s laws of motion, 7– 9, 14, 35– 37

application, 37– 40

importance, 1

Kepler’s laws, and, 75

Newton’s second law of motion, 14, 22, 28, 35– 36

oscillatory motion, 116, 118– 120

rigid body motion, 78, 87

rotational motion, 70– 71

Newton’s third law of motion, 36– 37

force, 44

internal forces, 78

Newtons, 44

Non- conservative forces, 55– 56

examples, 11, 51

law of mechanical energy conservation, 49, 60– 62

Nuclear fusion, 198

O 

Objects in space 

motion, 13

reference frames, 28, 31– 32

Oscillations, 1

caesium clocks, 3– 4

circular motion, and, 117

damped, 116, 127– 129

driven, 129– 131

energy, 123– 127

examples, 116

Hooke’s law, 117– 118

mass, 117– 120

pendulum, 116, 120– 121

response, 116, 127– 129

rigid body, 122– 123

spring system, 118– 119

time, 116
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P 

Parabolic trajectory, 74

Parallel axis theorem, 86– 87

Pascal’s principle, 103– 104

Pendulum, 116, 120– 121

Periodic table of elements, 203

Photons, 168

Pipes 

energy of harmonic waves, 151

harmonic sound waves, 148– 150

standing, 151– 152, 158

Planck’s constant, 2, 6– 7, 67, 203

Planetary motion, 28, 63, 73– 75

Poiseuille’s equation, 112

Potential energy, 46– 48

harmonic waves, 139

kinetic energy, and, 43

mass, and, 47– 48

oscillatory motion, 116, 123– 127

zero, 52

Pressure, 97

altitude, 101– 102

depth, 100– 101

fluids, 99– 100

measurement, 104– 105

units of measurement, 97

variation, 100– 102

Principle of superposition, 140

Proton, 2– 3

charge, 9– 10

colliding, 28

macroscopic objects, 9

mass, 2, 10

Pythagoras’ theorem, 17

Q 

Quantum mechanics, 3, 6, 35, 67, 169, 203

R

Retarding forces, 56– 60

Rigid body motion 

centre of gravity, 81– 82

centre of mass, 79– 81

equilibrium conditions, 78– 79

oscillations, 122– 123

shapes, 78

stable equilibrium, 93– 96

Rolling motion, 89– 93

Rømer, O., 5

Rotational motion 

angular momentum, 68– 70

angular variables, 63– 64

kinetic energy, 71– 73

Newton’s second law, 70– 71

planets, 73– 75

rigid body, 83– 89

satellite orbits, 75– 77

vector product, 68– 70

S 

Satellites, 4– 5, 8

motion, 63

orbits, 75– 77

reference frames, 28, 31– 32

Scalar quantities, 16

angular momentum, 68

gravitational potential, 54

momentum, 29

vector multiplication, 20

Second(s), 1– 2, 5– 6

Second law of thermodynamics, 186, 199

Seismic waves, 154, 167

Shapes, see also Rigid body motion

density of liquids, 103– 104

Shear stress, 99, 113– 115

Shock waves, 165– 166

Simple harmonic motion, 116– 117

damped, 127– 129

Size 

physical world, in, 9

Solar day, 2

Solids, 97– 98

heat, 185

mechanical properties, 98– 99, 112– 115

phase boundary, 97– 98

sound waves, 148

strain, 98– 99

stress, 98– 99

use, 97

Young’s modulus, 97, 112– 114

Sound waves, 132, 154

beats, 160– 161

collisions, 41

energy in pipes, 151

energy of 3D waves, 154– 157

harmonic waves in pipes, 148– 150

intensity of 3D waves, 154– 157

medium, 154

standing, 151– 152

Speed of light, 5– 6

electromagnetic waves, 167– 168

gravitational waves, 75

theory of relativity, 31, 75, 202

vacuum, 2, 162

Springs 

constant, 129

horizontal, 123– 125
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motion, 118– 119

potential energy, 123– 124

vertical, 125– 127

State functions, 180, 186, 188

entropy, 192– 194

State variables, 180, 186, 192

Statistical physics, 169, 194

Stress, 98– 99

uniaxial, 98– 99

Strings 

energy of harmonic waves, 138– 140

harmonic waves, 135– 136

standing waves, 143– 148

tension, 133– 134, 140, 145

travelling pulses, 132– 135

wave interference, 138– 40

waves, 132– 136

Strong forces, 9– 10

T 

Temperature, 97

thermal physics, see thermodynamics

units of measurement, 97

Theory of relativity, 35, 202

general, 8, 28, 75

special, 5, 30– 31, 162

Thermodynamics 

development, 169, 201

entropy, 186– 198; see also Entropy

first law, 178– 181; see also First law of 

thermodynamics

heat, 177– 178, 185

ideal gas law, 170– 171

kelvins, 97

laws, 200– 201

processes, 177– 178

P– V diagrams, 181– 183

second law, 186, 199

solids, 184

temperature, 170– 171

temperature- entropy diagrams, 199– 200

work, 177– 178

Thermometers, 170

Time 

kinematic equations, 20– 21

units of measurement, 1– 2, 5– 6

Torque, 73

rotational dynamics, 87

shear strain, 114– 115

Translational motion, 83– 87

Transverse waves, 132, 135, 166

U 

Units of measurement 

angular momentum, 67

development, 1– 2

dimensional analysis, 11– 12

energy, 44

MKS system, 1– 2

pressure, 97

SI system, 2

Temperature, 97

V 

Vacuum 

electromagnetic waves, 132, 162, 167

speed of light, 2, 5, 162

Vapours, 97– 98

compressible, 101– 102

density, 99

phase boundary, 97– 98

Vectors, 16– 20

addition, 17– 20

angular momentum, 68– 70

gravitational field, 54

momentum, 29

multiplication, 20

notation, 16

quantities, 13

representation, 16

unit, 16– 17

Velocity, 13

angular, 63– 67, 70– 73, 78, 87

change in, 43

constant, 24, 61, 89– 90, 111

constant acceleration, 20– 21

dynamics in two- dimensional (2D), 23– 27

mechanical energy conservation, 50

momentum, 29– 30

object behaviour, 28

one- dimensional (1D) motion, 14– 15

terminal, 26, 59– 60

Viscous 

drag, 59– 60

fluid flow, 110– 112

W 

Water waves, 154, 166– 167

Waves, 1

electromagnetic, 132

energy of harmonic waves, 138– 140,  

151

equation, 136– 138

harmonic, 135– 136

interference effects, 138– 140, 157– 160

mechanical, 132

pipes, 148– 153

reflection process, 143– 114

sound, 132, 148– 153

speed, 134– 135
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standing waves, 143– 148, 151– 152, 158

string, 132– 136

travelling pulses on a string, 132– 135

Weak forces, 9– 10

Weight, 7

mass, and, 7– 9

measuring, 8

motion, 37– 38

Work 

energy relationship, 88

mechanical, 43– 44

thermodynamics, 177– 178

Y 

Young’s modulus of a solid, 97, 112– 114
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