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Physics: An Introduction to Physical Dynamics provides an accessible introduction
to the fundamentals of physics for science and engineering undergraduates who are
studying elementary physics.

This textbook contains 12 chapters with accompanying problem sets and explains
the dynamical properties of a variety of physical systems. The first six chapters intro-
duce Newton’s laws of motion, followed by the concepts of mechanical work and
mechanical energy, with illustrative applications to the translational and/or rotational
motion of inflexible objects such as particles and 3D objects of fixed shape. The next
four chapters generalize the application of Newton’s laws and mechanical energy to
flexible systems, including flowing fluids, waves on strings, and oscillating springs.
The last two chapters elucidate the laws of thermodynamics, especially heat energy
transfer between systems at different temperatures.

Some familiarity with topics in elementary mathematics, including calculus, is
assumed. A wide variety of situations are explored, by means of which a student
should acquire an enhanced understanding of the properties of physical systems from
the astronomic scale to the microscopic.

Key Features

e Covers the classical mechanics of both single particles and assemblies of
particles subject to forces.

e Contains wide-ranging sets of examples and worked problems.

e Covers much of the material that a student might expect to encounter during the
first year of a university physics course.
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Preface

Classical mechanics is an important branch of physics and finds many applications
in both science and engineering. This book is aimed at beginning physics students
at universities. The students will have completed, or will be attending, introductory
mathematics courses.

Historically, great interest in the dynamics of moving objects followed Isaac
Newton’s major contributions to the subject in the seventeenth century. Using his
inverse square law of gravitation, Newton was able to successfully account for
Kepler’s laws of planetary motion around the Sun. This achievement inspired many
other applications of what were called Newton’s laws of motion.

This book, which contains twelve chapters with accompanying problem sets, deals
with the dynamical properties of a variety of physical systems.

The first three chapters introduce the basic ideas of mechanics — in particular mass,
length, and time, with Chapter 3 exploring the concept of momentum as it relates to
Newtonian mechanics.

The application of Newtonian mechanics is addressed in Chapters 4—6. Chapter 4
introduces the concepts of mechanical work and mechanical energy, with illustrative
applications to the translational and/or rotational motion of inflexible objects such
as particles and 3D objects of fixed shape. Chapter 5 discusses the important special
case of rotational motion, while Chapter 6 covers rigid body dynamics.

Chapters 7-10 generalize the application of Newton’s laws and mechanical energy
to flexible systems, including flowing fluids, waves on strings, and oscillating springs.

The final two chapters elucidate the laws of thermodynamics, especially heat
energy transfer between systems at different temperatures.

The Systeme International (SI) units for length and time are introduced in
Chapter 1, together with the recent fundamental definition of the mass unit. SI units
are used throughout the book.
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1 The Physical World

1.1 INTRODUCTION

Physics holds major importance in our scientific endeavours to gain a deeper
understanding of the world in which we live. Many discoveries made by physicists,
particularly in the past few centuries, have, over time, led to technological innovations
that have transformed our present-day lives. The boundaries of physics are not rigid,
and many important interdisciplinary activities have emerged involving collaborations
between physicists and other scientists in various fields. Mathematics is essential for
developing the theoretical insights needed to interpret experimental observations. The
range of physics activities is vast involving phenomena on length scales from sub-
atomic to astronomically large. While this enormous range may appear daunting to an
individual starting out in physics, the situation is helped by many unifying concepts
and the establishment of fundamental laws of nature that underlie all physical phe-
nomena in the universe.

This book engages in a presentation of classical mechanics and related subjects.
A central topic involves the motion of objects subject to applied forces. As shown in
later chapters, Newton’s laws of motion are of fundamental importance in dealing
with this dynamical behaviour of such objects. The introduction of the concepts of
momentum and energy facilitate the discussion. In later chapters, the approach is
generalized to rigid body motion, fluid properties, oscillations, and waves. The pre-
sent chapter introduces the fundamental physical properties of mass, length, and time,
together with the units used in the measurement of these properties. The last part of
this chapter briefly reviews what is known about the fundamental forces of nature and
the length scales over which they operate.

The basic concepts of mass, length, and time are familiar to us all from everyday
experience. Over time, the internationally accepted definitions of the units for meas-
uring these quantities have evolved and become increasingly precise particularly
since the mid-twentieth century. Historically, the meter (m), kilogram (kg), second
(s) system of units, abbreviated MKS, was established in France in the late eighteenth
century and later adopted by many countries, particularly for scientific purposes. The
standard kilogram was defined in terms of the mass of a cylinder of platinum—iridium
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alloy kept in a safe in a vault in Paris. Copies of this standard were made available to
other countries. Iridium in the alloy hardened the surface of the cylinder and reduced
possible surface wear. For length, the meter was defined as the distance between two
marks on a platinum—iridium bar kept at a particular temperature in a Parisian vault.
This length was based on the distance from the equator to the North Pole and was
chosen as one ten-millionth of this distance. It later turned out that the measured
quadrant distance was somewhat in error, but the marked distance on the bar was
retained as the definition of the meter. The second was based on the length of a solar
day taken as 24 hours corresponding to 86,400 seconds. Actually, the length of the
solar day varies during the year because of the slightly elliptical nature of the Earth’s
orbit around the Sun and the axial tilt, or obliquity, of the Earth’s axis of rotation with
respect to the ecliptic, which is the plane of the Earth’s orbital motion. It is clear that
the standards used in the original MKS system are not satisfactory because, firstly,
they are based on macroscopic objects that are subject to possible change over time
as the result of wear and, secondly, they can be measured with only limited preci-
sion. Starting in the mid-twentieth century, the basis for defining the MKS units has
been altered from the macroscopic to the atomic scale where properties are stable
over extremely long times. A fundamental physical constant, the speed of light in
vacuum, is used, together with the new unit of time, in defining the new unit of length
as described below.

The revised system as adopted by international agreement is known as the Systeme
International d’unites, abbreviated as the SI system. In addition to the speed of light
in vacuum, ¢, there are other fundamental physical constants such as the charges
and masses of the electron, —e and m, the proton, e and m, and the neutron, 0 and

m , plus a number of other fundamental quantities, including Planck’s constant A,
Avogadro’s number N, and Boltzmann’s constant ;. A table of values of the funda-
mental constants is given in Appendix 1 and the values indicate the extremely high
precision that has been achieved in their determination. These constants play a crucial
role in comparing theoretical predictions with experimental findings. It follows that
they must be established with the necessary reliability and precision. Before intro-
ducing the SI units, it is instructive to review, briefly, the structure and properties
of atoms, which are the building blocks of our world, and indeed the universe, from
single-cell living organisms to galaxies. The spectral properties of certain atoms are
used in defining the time unit, the second, to extremely high precision.

1.2 ATOMS AND ATOMIC CLOCKS

Atoms are made up of a central nucleus, which is positively charged, surrounded by
negatively charged orbiting electrons. Most of the mass of an atom is located in the
nucleus. In a neutral atom, the number of electrons is equal to the atomic number
Z of protons in the nucleus. The number of uncharged neutrons N in the nucleus
of an atom with a particular Z can vary over a small range, giving rise to what are
termed isotopes. The atomic mass number A is defined as A = N +Z, which is the
number of nucleons (protons plus neutrons) in the nucleus. Since the proton and
neutron masses are almost the same, and neglecting the very small electron mass
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contribution, it follows that A is, to a good approximation, equal to the mass of an
atom in nucleon mass units. Atoms are identified using an abbreviation of their chem-
ical name together with the mass number A as a superscript. For example, helium
atoms with Z =2 and N = 2 are identified as “He.

The lightest atom, hydrogen, is designated as 'H since Z and A are both equal to
unity, with the atom consisting of a proton and an orbiting electron. It is interesting to
note that hydrogen constitutes roughly 92% of the atoms in the universe. There are two
isotopes of hydrogen called deuterium ?H (Z =1 and A = 2) and tritium *H (Z =1 and
A =3). Tritium is unstable and undergoes radioactive decay into a helium isotope *He
(Z =2 and A = 3). The next lightest atom is *He (Z = 2 and A = 4) with two electrons
in a neutral atom. Helium makes up close to 8% of the atoms in the universe. In terms
of the mass-fraction of atoms, hydrogen contributes 74% while helium makes up 24%
and heavy elements the remaining 2%. The most massive naturally occurring atom
is the uranium isotope >*U (Z =92 and N = 146), which is unstable and undergoes
radioactive decay with a lifetime comparable to the age of the Earth (~4.5 billion
years). The other main uranium isotopes »*U and **U also undergo successive radio-
active decay to lighter elements, as do the more massive elements, which have been
produced in experiments using charged particle accelerators. The periodic table of the
elements is given in Appendix 2.

It is of interest to note that in recent decades compelling astronomical evidence
for the existence of what is termed dark matter has been obtained. Dark matter has
not been observed directly and its existence is inferred through gravitational effects
on other observable astronomical objects. In addition, the rate of expansion of the
universe that astrophysicists have detected suggests that it is necessary to introduce
a further mysterious entity called dark energy, which is of dominant importance in
determining the effective mass of the universe. Considerable research effort is being
devoted to establishing the nature and properties of these intriguing and important
constituents of the universe.

Atomic spectroscopy has shown that atoms can absorb or emit electromagnetic
radiation at particular wavelengths with corresponding discrete frequencies, ran-
ging from the ultraviolet through the visible spectrum to the infrared
and beyond. The sharp spectral features that are observed correspond to discrete
changes in the electronic states of the particular atoms whose spectra are being
examined. The development of quantum mechanics in the early part of the twen-
tieth century provided the theoretical basis for a deep understanding of atomic
scale phenomena including atomic spectra. Since the frequency of electromag-
netic radiation can be measured with great precision, it became clear to scientists
that atomic transitions could be used in a clock mechanism similar in concept to
the use of the frequency of oscillations of a pendulum in a mechanical clock. The
current time standard is based on the frequency of a particular transition between
close-lying electronic states that occurs in the microwave range for caesium-133
('33Cs) atoms in their ground state. In Cs clocks, microwave radiation from a high
precision source is matched to the frequency of the atomic transition which is
9,192,631,770 oscillations per second, or hertz (Hz), the frequency unit named in
honour of Heinrich Hertz. The time unit of 1 s is then defined as the time taken
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FIGURE 1.1 Schematic representation of the heart of the caesium fountain atomic clock. Six
orthogonally aligned laser beams form a trap for a caesium atom cluster. By manipulating the
laser beams, the cluster is lobbed upwards through a microwave cavity operating at a selected
frequency, The cluster then falls back down through the cavity and is optically examined using
a laser beam and a fluorescence detector (not shown) to determine how many of the atoms
have undergone microwave-induced transitions. The process is repeated regularly to lock the
frequency of the applied microwave clock radiation to that of the caesium atom microwave
absorption frequency.

for 9,192,631,770 oscillations. Several high-accuracy caesium clocks have been
constructed and are located in countries around the world.

Caesium clocks have evolved over the decades since they were first developed and
only the most recently developed and most accurate version will be described here.
A sketch of the caesium fountain clock is given in Figure 1.1.

Beams from six orthogonally aligned lasers form a trap for a cluster of caesium
atoms, which is suspended at low temperature in a vacuum chamber. By sequen-
tially turning off the laser beams, the caesium cluster is lobbed upwards through a
microwave cavity where atomic transitions are induced by microwave radiation. After
reaching a maximum height, the cluster falls back down through the cavity. Optical
spectroscopy involving another laser and a fluorescence detector is used to determine
the number of Cs atoms that have undergone microwave-induced transitions while
passing through the cavity. The process is repeated regularly and, using feedback, the
microwave clock frequency is kept matched to the Cs transition frequency with high
accuracy. The instrument is complex and this brief outline of how it operates does not
do it justice. Readers are encouraged to visit the U.S. National Institute for Standards
and Technology (NIST) website for further details.

These caesium clocks are accurate to 1 s in 100 million years. Secondary standard
caesium clocks are commercially available. International standard or atomic time is
based on input from clocks of this kind around the world. Other atomic clocks, which
involve ®’Rb transitions, are also used for precision timekeeping and have the advan-
tage of being fairly compact. Developments of atomic clocks that operate at optical
frequencies, using strontium ions for example, provide orders of magnitude higher
precision than the caesium clock.

Atomic clocks in Earth orbiting satellites provide the basis for global positioning
system (GPS) technology. Twenty-four satellites, each equipped with four atomic
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clocks, circle the Earth twice per day in precise orbits that can be adjusted with
rocket motors. GPS receivers for travel guidance purposes continuously pick up radio
signals from the four satellites that are in view from the point of interest on the Earth’s
surface. Precise time and position information permit the receiver to calculate its
location coordinates to the required accuracy.

1.3 THE SPEED OF LIGHT AND THE UNIT OF LENGTH

The Danish astronomer Ole Rgmer’s observation and study of the eclipses of the
moons of Jupiter in 1676 showed that the speed of light is finite and measurable.
Over the years since Rgmer’s discovery, many increasingly accurate measurements
of light’s speed have been made using various different experimental approaches.
These include time-of-flight experiments, which determine the time taken for a light
signal to travel a precisely known distance from a source to a mirror and back, as
well as cavity resonators and laser interferometry. From the predictions of classical
electromagnetism, derived by James Clerk Maxwell in 1865, together with Albert
Einstein’s theory of special relativity, published in 1905, it became clear that the
speed of light in vacuum, which is denoted by denoted by c, is a fundamental phys-
ical constant, which plays a special role in science. By the mid-1970s, the value
¢=2.99792458 x 103 m/s for light’s speed in vacuum was internationally accepted.
In 1983, an international conference resolved that ¢ should be fixed at the value given
above. The meter is then defined using ¢ = 2.99792458 x 108 m/s and the caesium
clock-based definition of the second. The meter is thus defined as the distance light
travels in vacuum in 1/299792458 s =3.335640952 %107 s ..

Exercise 1.1: Calculate the time it takes for light to travel 1.0 km. As an
approximation take ¢ = 3 x 10® m/s.
The time ¢ for light to travel d = 1.0 km is given by

t=dlc=(1x10*)/(3x10%)=3.33 microseconds.

An advantage of specifying the meter in terms of the defined value for the speed of
light is that it will not require any change as the precision of measurements increases.
In standard laboratories, length calibration is, for convenience, not carried out by
measuring the distance light travels in the designated time. It is simpler to use precise
laser interferometer techniques involving a stabilized helium—neon (He—Ne) laser
beam, whose properties are determined by transitions between the atomic states of
Ne atoms in the gas mixture. The laser light beam is in the red region of the visible
spectrum and its wavelength A can be determined with high precision. The value
A =632.99121258 nm has been internationally accepted. Thus, the wavelength of the
He—Ne laser beam provides a high precision reference standard for length measure-
ment. Figure 1.2 shows a blow-up of a small portion of a laser beam.
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He-Ne Laser
laser beam

FIGURE 1.2 The upper part of the figure depicts a laser beam from a He—Ne laser, while
the lower part shows a highly expanded portion of the beam covering several wavelengths A.

Exercise 1.2: Determine the number of wavelengths n of a stabilized He—-Ne
laser beam per meter in vacuum. Use A = 632.99121258 nm.

The number of wavelengths per meter is n = 1/632.99121258 x 10~° =
157980076.20, with an uncertainty of parts in 10",

1.4 THE UNIT OF MASS

The kilogram (kg) is no longer defined as the mass of a platinum—iridium cylinder
kept in a vault in the Paris Archives. By international agreement, a new definition of
the kg came into effect in May 2019 based on the extremely accurate value obtained
for Planck’s constant /2, which has units of kg m? s~'. Planck’s constant is of funda-
mental importance in quantum mechanics. The change in the definition of the kg
followed years of effort, which steadily improved the precision of measurements
made of & using a special instrument called the Kibble balance. Finally, in 2018,
the Commission on Weights and Measures adopted the new definition. A schematic
representation of the components at the heart of a modern Kibble balance is given in
Figure 1.3.

Just as the speed of light ¢ has an assigned value, Planck’s constant has been
given a value based on extremely precise measurements. The value adopted is
h=6.62607015x10"*kg m?/s. Using this fixed value for A, the Kibble balance
has become an instrument for determining the mass of an object. An advantage of
defining the unit of mass in terms of Planck’s constant is that the unit is now linked
to the fundamental definitions of time and length. Note that while the Kibble balance
is a complex instrument, the basic physics used in determining the mass of an object
is not complicated. Firstly, in what is called the weighing mode, an electromagnetic
force produced by an applied magnetic field acts on a current-carrying coil, with the
current set to balance the gravitational force on the test mass. Secondly, in the velocity
mode, the coil is moved in the applied magnetic field at a carefully controlled
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FIGURE 1.3 Schematic depiction of the main components of a modern Kibble balance. The
downward gravitational force on the mass shown is balanced by an upward electromagnetic
force exerted by the stable magnetic field on the current-carrying coil. The balance operates in
high vacuum with high-precision electrical measurements made using special quantum effects
that involve Planck’s constant.

speed, resulting in an induced voltage in the coil. By combining the results of the two
experiments, the mass is obtained. Planck’s constant comes into the experimental ana-
lysis through the extremely high precision electrical measurements made in the two
modes. The measurements are carried out at low temperatures using quantum effects
known as the Josephson effect for voltage (velocity mode) and the quantum Hall
effect for current (weighing mode). In early experiments, the goal was to measure h
with reproducible high precision. After fixing the value of 4, the measurements now
allow test masses to be determined with high precision.

While there are many other SI units that are important in science, the units of mass,
length, and time discussed above are of primary importance in developing classical
mechanics. Related units including the unit of force, the newton, are introduced later
in the book when needed.

1.5 MASS, WEIGHT, AND NEWTON’S LAW OF UNIVERSAL
GRAVITATION

It is important to distinguish between the concepts of mass and weight. Weight is a
measure of the force exerted by the Earth’s gravitational attraction on a body, while
mass is a measure of the nature and composition of a body, which at the micro-
scopic scale is made up of atoms. While the mass of an object can be regarded as
fixed, provided Einstein’s velocity dependent relativistic effects are small and can
be ignored, the weight of an object depends on its location in relation to the Earth’s
surface. In the Kibble balance measurements, which are described in Section 1.4, it
is the weight of a test object that is balanced by an electromagnetic force. Allowance
must therefore be made for any variations in the gravitational force, and this is done
by carrying out separate calibration measurements.
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In dealing with gravitational effects, it is necessary to introduce the unit of force,
the newton, denoted N, which in terms of mass, length and time is given by 1 N =1 kg
m s~2. The force concept, and Newton’s laws of motion, are discussed in detail in later
chapters. For the present purposes, it is convenient to simply regard a force as a push
or a pull on an object as experienced in everyday life. In particular, the gravitational
force F', which acts between two masses m and M separated by a distance r is given
by Newton’s famous (1686) law of universal gravitation as

_GmM

2

F

(1.1)

r

The constant G, which is called the gravitational constant, has been determined by
experiment as G = 6.67430x 107! N m?/kg?. Note that the attractive force between
two masses falls off as the inverse square of their separation r. Equation (1.1),
combined with Newton’s laws of motion, can explain the motion of objects near
the Earth’s surface, including the orbits of artificial satellites and the Moon around
the Earth, as well as the orbits of the planets around the Sun. Einstein’s 1917 theory
of general relativity and subsequent developments, including the recent detection of
gravitational waves, have shown that Newton’s gravitational law is not a general law
applicable to all gravitational effects. Furthermore, the law offers no explanation of
how its implied action at a distance operates. However, the law provides an excellent
description of the motion of objects under gravitational forces for many situations as
discussed later in this book.

Exercise 1.3: The mean radius of the Earth is R, = 6.37 x 10° m. Find the
gravitational force on a person of mass m = 75 kg standing on the Earth’s
surface. Assume that the centre of mass of the Earth is effectively concentrated
at its centre. (This is a good assumption for a symmetric spherical body.) Take
the mass of the Earth as M, = 5.97 x 10* kg.

Newton’s gravitational law, given in Equation (1.1), leads to

F=(6.67x1071x5.97x10* x75)/(6.37x10°)" = 736 N.

Scales for measuring weight are calibrated using a known mass so that they give a
reading of the mass of a body in kilograms (or pounds) and not the gravitational force
in newtons. For objects at the Earth’s surface, Newton’s law of universal gravitation
can be rewritten as

F=mg (1.2)

with the constant g defined as g = G M /R’. Using the values for the Earth’s mean
radius R, and mass M given in Exercise 1.3 leads to g =9.820 N/kg or, equiva-
lently, m/s*>. Note that the unit m/s? corresponds to an acceleration as introduced in
Chapter 2. Thus, a mass in free fall near the Earth’s surface experiences an acceleration
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g . Variations in R, occur from place to place on the Earth’s surface because the Earth
is not exactly spherical, but spheroidal with a slightly larger radius equatorially than
that along the polar axis. In addition, variations in altitude and the density of rock
substrata near the surface produce variations in g of up to 0.7% around the globe.
High-precision weight calibration should therefore be carried out at the site where
accurate mass measurements are to be made using sensitive instruments. For simple
calculations of the type considered on this book, it is generally sufficient to approxi-
mate g as 9.8 N/kg.

1.6 SIZE AND MASS IN THE PHYSICAL WORLD

The ranges of sizes and masses found in nature spans many orders of magnitude
as illustrated in Table 1.1 below. Representative values of the height and mass of a
person, in SI units, are taken as height 1.7 m and mass 70 kg.

Because of the enormous ranges of sizes and masses of objects in the universe, it is
necessary to introduce multiples of the units and subunits specified by the following
prefixes: kilo, 10% milli, 10-*; micro, 10-%; nano, 10~; and pico, 10-'2. Nuclear and
atomic size measurements use the femtometer, fm = 107'° m, and the angstrom,
A =101 m, respectively. Astronomical distances are often measured in light years,
ly, with 1.0 ly = 9.46 x 10> m, given by the distance light travels in a year.

1.7 MACROSCOPIC FORCES

There are four fundamental forces in nature called gravitational, electromagnetic,
weak, and strong forces. The weak and strong forces are nuclear forces and will
not be considered in this book, which focuses on macroscopic phenomena. Having
already introduced the gravitational force for the interaction of objects with mass, it is
appropriate to consider interactions involving electrically charged objects. The SI unit
of charge is the coulomb denoted by C. The charge on an electron is —1.602176634 x
107" C, while the proton carries a positive charge +1.602176634 x 10~ C, which is
equal in magnitude but opposite in sign to that of the electron. Macroscopic objects
can carry charge, which corresponds to that of many electrons. In dry atmospheric
conditions, frictional effects can lead to a build-up of charge on a person’s body, and
a slight shock will be felt when metal objects are touched.

TABLE 1.1

Ranges of Sizes and Masses Found in Nature

Object Diameter (m) Mass (kg)
Proton 1.7x 107 1.67 x 10777
'H atom 1.06 x 1071 1.67 x 107%7
Earth 1.27 x 107 5.97 x 10*
Sun 1.39 x 10° 1.99 x 10%

Milky Way Galaxy 9 x 10% ~10%
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For charged particles such as protons and electrons, and for larger charged objects,
the electrostatic interaction is governed by Coulomb’s law in which the force between
two charges g, and g, separated by a distance r is given by

F= k(%} (1.3)

r

Coulomb’s law is similar in form to Newton’s law of universal gravitation through the
inverse square law dependence of the force on the charge separation. In free space,
the constant k, which has units N m* C?, is written as k = 1/4 zre . This form for k is
chosen for convenience in developing relationships in electromagnetism. The con-
stant €, = 8.85418782x10~'2 C?/(N mz) is called the permittivity of free space. The
value of k in SI units is approximately k = 8.99x10° N m?/C? Unlike the gravita-
tional force, which is always attractive, the electrostatic force can be either attractive
or repulsive. Like charges repel while unlike charges attract. Electrons and protons
have equal and opposite charges, which give rise to attractive forces between these
particles in atoms.

For practical reasons, the coulomb is not defined using Coulomb’s law. From a
measurement point of view, it is convenient to define the unit of electric current, the
ampere, which is the rate at which charge passes through an electrical conductor with
1 A =1 C/s. The ampere is defined in terms of the magnetic force per unit length
between two current-carrying conductors separated by a chosen distance. The small
discrete charges on the electron and proton, which are given above, are regarded as
nature’s units.

Exercise 1.4: Determine the attractive force F between an electron and a
proton at a separation of 0.05 nm (0.5 A) corresponding to the radius of the
'"H atom. Compare the Coulomb force with the gravitational force, taking the
electron mass to be m_= 9.1 x 10" kg and the proton mass to be m = 1.67 x
10?7 kg’

For the electrostatic force, Coulomb’s law gives

F. =8.99x10° x(1.60x107?)" /(0.5x107°)* =9.2x 10 N.

The gravitational force, from Newton’s law, is

F, =6.67x107" x9.1x107 x1.67x1027/(0.5x107°)° = 4.05x 10" N.

The gravitational force is clearly very much weaker, by many orders of magni-
tude, than the Coulomb force in the hydrogen atom. Gravitational forces there-
fore play no detectable role in the interactions of particles at the atomic scale.
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1.8 FORCES IN THE MACROSCOPIC WORLD

Of the four fundamental forces in nature, it is only the weakest, the gravitational
force, which is important on the macroscopic scale for objects with mass that are
not in physical contact. The nuclear forces are of extremely short range and can be
neglected when dealing with assemblies of atoms. Because atoms are electrically
neutral, unless they are ionized, long-range Coulomb forces acting on assemblies of
atoms are, in general, negligibly weak. Only the gravitational force associated with
the Earth’s gravitational field produces observable effects that are familiar to all of us.

For objects that are in contact, gravitation will, in many cases, continue to be
important but forces at the points of contact come into play. This raises the issue of
how the contact forces in the macroscopic world are generated. As an illustrative
example, consider two macroscopic objects in close proximity, such as a metal object
on a tabletop situated near the Earth’s surface. The force of gravity acts on the metal
object, causing it to press onto the table. The atoms in the metal try to squeeze into the
space occupied by atoms in the table surface, which resist the intrusion. The result is
a repulsive interaction between the tabletop and the metal object. Similarly, the table
legs stand on the floor and again there is a repulsive interaction between the floor and
the table legs. Electromagnetic forces play a role in the repulsive interaction but not
in a simple way that is amenable to detailed calculation.

As a second illustration of the action of contact forces, consider a mass suspended
on a wire attached to a beam near the Earth’s surface. The mass experiences a down-
ward gravitational pull, but the atoms in the wire want to stay together and resist
being pulled apart. An upward force in the wire, which is extended by a small but
measurable amount, balances the downward force of gravity. Many other examples,
including human muscle contraction, can be found in which macroscopic forces are
produced by molecular-level interactions.

Later in the book, a clear distinction will be drawn between what are called con-
servative forces and nonconservative forces. Examples of conservative forces are the
gravitational and the Coulomb forces, both of which are associated with fields which
permeate space and which can be described by field equations. Nonconservative
forces, which include friction and air resistance to projectile motion, are not governed
by field equations.

1.9 DIMENSIONAL ANALYSIS

This chapter gives the internationally accepted definitions of the three fundamental
physical measurement units which are length [L], time [T], and mass [M]. Other
important physical units, called derived units, are expressed in terms of the funda-
mental units. Examples are the force unit the newton [M L T?] and the energy unit
the joule [M L2 T2].

Dimensional analysis provides a simple and useful way of determining the form of
relationships that describe physical phenomena. The approach requires that two phys-
ical quantities that are related to each other by an equation have the same dimensions.
This balance is achieved in general by introducing symbols as exponents that are
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determined by inspection. A straightforward application to a simple pendulum
illustrates the approach.

Exercise 1.5: A simple pendulum consists of a string of length / attached
to a support, with a bob of mass m attached to the lower end. The device is
situated in the Earth’s gravitational field, which gives rise to a downward
weight force m g acting on the bob. If the bob is displaced and then released,
it will execute oscillations with a period 7.

In order to obtain an expression for ¢, it is assumed as a starting point that 7 is
related to the three quantities /, g and m that need to be considered. To simplify
the problem, it is assumed that the string is massless. Introducing exponents x,
v, and z, the period is written in the form

t=10"g"m* (1.4)

In terms of dimensions, [T]=[L]'[L T-]' [M]". Grouping units on the right
side of the equation leads to the following values for the three exponents x = %2,
y=—%, and z = 0. Inserting these exponent values in Equation (1.4) gives the
following expression for the period:

t= |- (1.5)

Note that the period is determined by the length of the string / and by the gravi-
tational acceleration g but does not depend on the mass of the bob.

While dimensional analysis is useful for providing guidance in describing a var-
iety of physical phenomena, it is necessary to carry out detailed calculations using the
laws of physics in order to gain a deep understanding of the subject. The following
chapters provide an introduction to the Newtonian mechanics of particles, rigid
bodies and fluids, followed by vibrations and waves, and end with a discussion of
thermal physics.



2 Motion in Space
and Time

2.1 INTRODUCTION

In describing the motion of objects, it is necessary to introduce the basic concepts
of displacement, velocity, and acceleration. Any change in these motion variables
as a function of time is of particular interest. It is useful to introduce a system
of spatial coordinates, called a frame of reference, in which both distances and
directions can be shown. An obvious choice in three-dimensional space is a set
of Cartesian coordinates with axes x, y, and z chosen along orthogonal direction
as shown in Figure 2.1. For certain purposes, and specifically in considering rota-
tional motion, it is preferable to choose spherical polar coordinates, but these will
not be used in this chapter.

The displacement, velocity, and acceleration involve both magnitude and direction
and are called vector quantities. In dealing with vectors, and specifically with vector
addition and subtraction, it is necessary to introduce the elements of vector algebra,
and this is done in Section 2.5. Vector multiplication is dealt with in later chapters.

FIGURE 2.1 Representation of Cartesian axes x, y, and z in 3D.
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After introducing the variables associated with the motion of objects in space and
time, it is instructive to consider motion with constant acceleration. In this special
case, a set of equations, called the kinematic equations, are found to apply. These
equations establish simple and extremely useful relationships between displacement,
velocity, and acceleration. Importantly, the kinematic equations hold when the motion
of an object is caused by a constant applied force, which produces constant acceler-
ation. The constant force—constant acceleration relationship follows from Newton’s
laws of motion, which are introduced in Chapter 3. Provided velocities are sufficiently
low compared to that of light, so that relativistic effects are unimportant, the kinematic
equations satisfactorily describe the observed motion of objects near large astronom-
ical objects, as found in the gravitational field near the Earth’s surface. This finding
follows from Newton’s law of universal gravitation, given in Equation (1.1), together
with Newton’s second law of motion. In this chapter, the constant acceleration of a
falling object in the Earth’s gravitational field is taken as an experimental observation.

2.2 MOTION IN ONE DIMENSION

In introducing the displacement, velocity, and acceleration of a moving object, it
is convenient, firstly, to consider one-dimensional (1D) motion. Generalization of
these results to 2D and 3D follows in a straightforward way using vector notation.
Figure 2.2 depicts the position x, velocity v, and acceleration a as a function of time

(¢) a=2¢

FIGURE 2.2 Graphical representation of the motion of an object with constant acceleration
in 1D showing the displacement x in (a), the velocity v in (b), and the acceleration a in (c).
The straight line in (a) is drawn as a tangent to the curve and the slope gives the instantaneous
speed at the selected time.
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t for an object moving with constant acceleration in 1D. The constant acceleration
case used in Figure 2.2 facilitates a discussion of the kinematic equations later in this
chapter.

Figure 2.2(a), which plots x versus #, shows movement from the initial position x,
at? = ¢, to final position x, at ¢ = ¢,. The displacement is defined as

Ax=x, —x, 2.1

in units of length (e.g. m or km). It is important to distinguish between displacement
and distance travelled. If, for example, a runner were to travel to some distant point
and then return to her starting point, then her displacement Ax would be zero while
the distance traveled would clearly not be zero.

The average velocity of the moving object is given by the rate of change of
displacement with time. From Figure 2.2(a) it follows that if in a time interval
At =t, —t, the displacement is Ax = x, —x, then the ratio Ax/At gives the average
velocity v_. Itis often of interest to know the instantaneous velocity, for example,
when travelling on a road where speed restrictions apply. Over short intervals At,
centred at various times ¢ as shown in Figure 2.2(a), it can be seen that the dis-
placement is a function of time written as Ax(t) The instantaneous velocity at
time ¢ is thus defined as

v(t)=lim Ax—(t) = dx—(t) (2.2)
A—0 - At dt

Equation (2.2) shows that v(t) is simply the first derivative of x(t) with respect to 7.

Graphically v(t) is the slope of the tangent to the displacement curve at a chosen time

t as illustrated in Figure 2.2(a).

The acceleration of a moving object is defined as the rate of change of velocity
with time. Just as for velocity, it is necessary to distinguish between the average
acceleration a_ over a finite time interval As and the instantaneous acceleration a(l)
at time ¢. The instantaneous acceleration is defined as

o Av(t) dv(t
a(t) = i}g}) A(t ) = % 2.3)

From Equation (2.3), the acceleration a(t) is the first derivative of v(t) with respect
to ¢. Graphically, a(t) is given by the slope of the tangent to the velocity-time curve
at a selected time . Note that from the definitions of v(t) in Equation (2.2) and a(t)
in Equation (2.3), it follows that the acceleration is given by the second derivative of
x(t) with respect to ¢:

a(t)= (2.4)
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The plot of v(¢) versus ¢ in Figure 2.2(b) reveals a straight line with a constant slope,
which means that the acceleration is constant as shown in Figure 2.2(c). This par-
ticular behaviour is due to the form of the function chosen for the x versus ¢ plot in
Figure 2.2(a), whose function is given by x() = x, + ¢ £, with x = 0 for convenience,
and ¢ a constant of motion. Differentiation of x(¢) with respect to ¢ gives v(r) = 2c t,
corresponding to a linear behaviour of v with ¢, and further differentiation leads to the
time-independent constant value for the acceleration given by a(f) = 2c.

In order to generalize the discussion of the motion of objects from 1D to higher
dimensions, it is advantageous to introduce vector notation. Displacements in 3D, for
example, can have components along the x-, y-, and z-axes in a Cartesian frame of
reference. Vector notation and the rules for vector addition and the formation of scalar
products are given in Section 2.3. Vector quantities are different from scalar quantities
because they are specified by their magnitude and direction, whereas scalars, such as
the mass of an object, involve just magnitude.

2.3 VECTORS

2.3.1 VECTOR REPRESENTATION

Vectors, such as the displacement of an object, can be represented in a chosen reference
frame by an arrow of length proportional to the magnitude of the quantity and pointing
in a direction that is related to the physical situation under consideration. Figure 2.3
gives a representation of a displacement of magnitude r at an angle 6 with respect to
the x-axis in a 2D Cartesian frame. Symbols for vectors are distinguished from those
for scalars either by using bold type (e.g. r) or by an arrow above the symbol (e.g. 7).

2.3.2  UNIT VECTORS

In order to specify the magnitude and direction of a vector in 2D or 3D, it is convenient
to make use of unit vectors. In a 3D Cartesian frame, the unit vectors, which have

<\

FIGURE 2.3 Graphical representation of a displacement vector I' at an angle 6 to the x-axis
with magnitude r = \/x*> + y? and tan 6= y/x.

X
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|

FIGURE 2.4 Unit vectors represented by i, j, and k in a 3D Cartesian frame of reference.

unit length, are directed along the x-, y-, and z-axes, with these vectors represented
by the symbols i along x, j along y, and k along z, as given in Figure 2.4. Using unit
vector notation, a vector r in 3D is written as r = r. i+ r j+r. k wherer, r, and r.

are the magnitudes of the vector components along the x-, ¥-, and z-axes. Making use
of Pythagoras’ theorem, the magnitude of r is given by r = [r? + r)_2 +r2.

Exercise 2.1: In a 2D Cartesian frame of reference, an object is displaced
by 8 units of length at an angle of 30" with respect to the x-axis. Express the
displacement r in terms of unit vectors.

The Cartesian components of vector r are givenby s = 8co0s30° = 6.93 units
and r= 8sin30° = 4.0 units. Thus, in terms of unit vectors the displace-

mentisr=6.93i+4.0 j.

2.3.3 VECTOR ADDITION

In a composite process, involving, for example, two distinct displacements,
represented by vector a followed by vector b, it is necessary to use vector add-
ition to determine the resultant displacement ¢. The sum of the vectors is written as
a+b =c. Vector ¢ can be obtained either by using a geometrical representation of
the two vectors a and b as directed arrows in a coordinate system, or, alternatively,
algebraically with the aid of unit vectors. The unit vector method is straightforward
and is considered first and designated method 1, while the geometrical approach is
method 2.



18 Physics: An Introduction to Physical Dynamics

In method 1, the two vectors a and b are written in terms of unit vectors
as a=a_ i+ay jta k and b=b i+by j+b k. The vector sum becomes

c= (ax +b, )i + (ay + by) Jt (az +b, )k with the Cartesian components of the

vectors a and b along x, y, and z being added separately, and each sum multiplied
by the corresponding unit vector. Finally, the resultant ¢ follows by summing these
components. Vector subtraction is carried out in a similar way with a change of
sign from plus to minus in combining the components of a and b. The resultant is
given by ¢ = (a, —bx)i+(av —by)j+(az b )k

Method 2, the geometrical method for vector addition, is illustrated in Figure 2.5(a)
and 2.5(b), in which the arrow representation is used for vectors a and b. There are
two equivalent geometrical addition procedures that can be followed. The first pro-
cedure involves the triangle rule and the second the parallelogram rule. The use of
the triangle rule is depicted in Figure 2.5 (a) in which one of the vectors, vector b,
is displaced parallel to itself until its tail coincides with the tip of vector a. Then the
resultant vector ¢ is given by the arrow drawn from the tail of a to the #ip of b. The
magnitude and direction of ¢ can be obtained from measurements made on a scale
drawing of the vectors or using trigonometry.

When adding two vectors the triangle rule is a natural choice if, for example, the
vectors a and b represent successive displacements, but it is also applicable when
summing vectors such as velocities or accelerations. The parallelogram rule pro-
cedure for vector addition is depicted in Figure 2.5(b) and involves displacing one
of the vectors parallel to itself until the two fails coincide. The parallelogram is then
completed by drawing sides parallel to a and b from the two arrow tips as shown.

Triangle Rule é

vector addition

Parallelogram Rule
vector addition

FIGURE 2.5 Addition of the vectors a and b using (a) the triangle rule and (b) the
parallelogram rule.
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The resultant vector ¢ is given by the diagonal of the parallelogram. Inspection of
Figure 2.5(a) and 2.5(b) shows that the triangle and parallelogram vector addition
procedures are equivalent. Vector subtraction, given by a—b = ¢, is carried out by
reversing the direction of arrow b and then applying the triangle or parallelogram rule
to obtain c.

Exercise 2.2: An object undergoes two successive displacements in the xy-
plane, firstly through a distance of 5.0 m in a direction making an angle of 45°
with the x-axis, and secondly through 8.0 m at an angle of 75° with respect
to the x-axis. Find the amplitude and direction of the resultant displacement
of the object.

Method 1 (unit vectors): The final displacement r is given in terms of unit vectors

iand jbyr = (5c0s45°+8c0s75°)i+(5sin45°+8sin75°) j=5.61i+11.26 ).
The distance travelled is obtained using Pythagoras’ theorem as » = 12.6 m, and
the direction, specified by the angle 8 which the resultant displacement makes
with the x-axis, is given by 6= arctan (11.26/5.61) = 63.5°.

Method 2 (triangle rule): The two displacement vectors, designated a and b,
are graphically represented in the 2D Cartesian frame in Figure 2.6 with
the tail of b coinciding with the tip of a. The resultant vector r is obtained
using trigonometry. The cosine rule gives the square of the amplitude as
r? = a®> + b> —2a bcos ¢ with ¢ the angle subtended by a and b. Simple geom-
etry gives ¢ = 150°. Substituting numbers in the cosine rule expression leads to
r? =25+ 64 —80cos150° = 12.6 m. The displacement direction 0= 45°+ v is

FIGURE 2.6 Addition of vectors a and b using the triangle rule.
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obtained by determining the angle y in Figure 2.6 with the aid of the sine rule.

This gives = arcsin(% X sinlSO“) =18.5", and hence 6= 63.5°.

2.3.4 VECTOR MuLtirLICATION: THE ScALAR PrRODUCT

Having considered vector addition and subtraction, it is logical, and useful to intro-
duce vector multiplication. There are two types of products that are used in physics,
called the scalar product and the vector product, respectively. The scalar product is
introduced in this subsection, but the vector product is deferred until later in the book
when dealing with torques and rigid body motion.

The scalar product (or dot product) of two vectors a and b is defined as
a-b =a bcos 6 where 6 is the angle that vector a makes with vector b. Note that the
product yields a scalar outcome. The scalar product involves multiplying the amp-
litude of b by the projected amplitude of vector a on b. The scalar product is a max-
imum for 6= 0 and zero for 8= 7/2. Scalar products of the unit vectors are readily
obtained as i-i=j-j=k-k=1 while i- j= j-k=1i-k=0. As an important applica-
tion, scalar products are used in obtaining the work done by forces in moving their
point of application through some distance. Details are given in Chapter 4.

2.4 THE KINEMATIC EQUATIONS

In considering the motion of an object on which a force acts, the important spe-
cial case of motion with constant acceleration arises when the force acting on the
object is constant. This result follows from Newton’s second law of motion, which
is introduced in Chapter 3. A classic example of motion with constant acceleration is
provided by a mass falling in the Earth’s gravitational field. Using Newton’s law of
universal gravitation, it is shown in Chapter 1 that around the globe the acceleration
of a falling object near the Earth’s surface is roughly the same and, as an approxi-
mation, is given by g =9.8 m/s% A simple set of equations, known as the kinematic
equations, applies to motion with constant acceleration.

From Equation (2.3), the instantaneous acceleration of an object is given by the

. dv . .
rate of change of velocity as a = d_ For constant a, it follows that v must be a linear
t

function of time . The instantaneous velocity given in Equation (2.2) is v= Z
t

Integration of the linear equations for @ and v leads directly to two of the kinematic
equations, as shown below. To complete the set, the third equation is obtained by
combining the first two.

Integration of Equation (2.3) expressed as Jdv=1]a dr, gives v=a t+C where C
is a constant of integration. Introducing the initial velocity condition v=v atz=0
leads to the following expression for the velocity as a function of time,

v=vy,tat 2.5)
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This is the first kinematic equation. As required, the velocity increases linearly
with time.

Integration of Equation (2.2), using Equation (2.5) to substitute for v, leads to
1
x=[vdr= J(VO +a t)dt, which yields x=v, t+5a >+ K with K a constant of

. . . . . 1
integration. Taking x=x, at 1 =0 gives the displacement as x = x, +v, t+§a 2.
Introducing the net displacement as Ax = x—x leads to the second kinematic

equation,
1 2
Ax=v, t+§at (2.6)

The plots in Figures 2.2(a), (b), and (c) correspond to the constant acceleration
case showing respectively the displacement, velocity, and acceleration behaviour
with time.

It is useful to combine Equations (2.5) and (2.6) in order to eliminate the time ¢.
This is done by forming the square of both sides of Equation (2.5) and then sub-
stituting for terms in ¢ and #*> using Equation (2.6). This algebraic procedure gives

1 . . . . .
vE=vl+2av t+a’ t* =v + 2a(v0 t+5a 1? ), which simplifies to the third kine-
matic equation,

v: =v) +2a Ax 2.7

The three kinematic equations given in Equations (2.5), (2.6), and (2.7) are grouped
together below for convenience:

v=v,+at (2.5)

l 2
Ax=v, t+5at (2.6)
v =1l +2a Ax 2.7

If x, =0, then the displacement Ax during the accelerated motion is simply x. In
the limiting case, a = O, the equations simplify, and the displacement is Ax =v,  as
expected when the velocity is constant.

In summary, Equation (2.5) is a relationship between velocity and the time elapsed
since the start of the acceleration process, while Equation (2.7) connects velocity
and displacement. Equation (2.6) gives the displacement as a function of time and
provides the basis for determining the x-¢ trajectory of the accelerated motion.
Ilustrative examples of applications of the kinematic equations are given in the
following section for both constant 1D and 2D accelerated motion.
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2.5 APPLICATIONS OF THE KINEMATIC EQUATIONS

The constant acceleration kinematic equations (2.5), (2.6), and (2.7) are extremely
useful in considering the motion of an object subject to a constant force. Even though
motion may occur in more than one dimension, it is often the case that acceleration
is associated with one particular direction. For example, for objects moving in the
Earth’s gravitational field, the downward force of gravity will produce downward
acceleration. Since displacement, velocity, and acceleration are vector quantities, care
must be taken with signs in writing down equations that describe the motion. If the
upward direction is taken as positive, then the gravitational acceleration g is nega-
tive since it is directed downwards. When no horizontal forces act on an object, its
horizontal component of velocity remains constant. For motion near the Earth’s sur-
face, the acceleration due to gravity is taken as g = 9.8 m/s% The following examples
provide illustrative applications of the kinematic equations to the motion of objects
subject to constant acceleration in a fixed direction.

2.5.1 DyNnamics IN 1D

The application of the kinematic equations to the uniformly accelerated motion of an
object in 1D is straightforward because the motion is always parallel to the applied
force. Exercises 2.3 and 2.4 are illustrative examples of this type of accelerated
motion.

Exercise 2.3: A drag race car starts from rest and has an initial acceleration of
8.5 m/s2. Determine (a) the speed of the car after 3 s and (b) the distance travelled
in this time.

(a) The speed is obtained using Equation (2.5) with v, = 0. This gives the
speed after 3 s as v = 25.5 m/s. To convert the speed to km/h, use is made
of the conversion factor 1 m/s = (103 x 3600) km/hr = 3.6 km/h, which
leads to v =91.8 km/h.

1
(b) Using Equation (2.6), the distance travelled in 3 s is Ax=5a =

(ﬁ) x9=383m’
2

Exercise 2.4(a): A ball is released from rest at a height 4 = 2 m above the
floor. How long will it take to reach the floor?
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Exercise 2.4(b): If the ball were thrown upwards with an initial speed of 4
m/s from the same initial position, determine how long it would take to reach
the highest point of its trajectory. What is the maximum height above the floor
reached by the ball, and how long will it take for the ball to reach the floor?
Take g =9.8 m/s? .

1
(a) Equation (2.6) with v, = 0 becomes h=— g #. The time ¢ for the object to

/ /2
reach the floor is t = X2 = (0.64 s. (The negative time solution

is unphysical.)

(b) When the ball is thrown upwards, it gradually slows and is instantaneously
at rest with v = 0 at the highest point of its trajectory. Equation (2.5) for the
upward motion becomes 0 = v — g 7. Note that the upward direction is taken

% 4
as positive. The time 7 to reach the highest point is t = —% = 98 =0.408 s.

8
The upward distance travelled can be obtained using Equation (2.6) in the

form A" =v t—%g ? =4x0.408 — (928) (0.408)2 =0.816 m. Since the

initial launch height is 2 m above the floor, the maximum height reached is
h+h'=2+0.816=2.816 m.

The time ¢ to reach the floor from the highest point in the trajectory is
obtained in a similar way to that used in part (a) by replacing i by h+h’.

’2 h+h' /2 2.81
This gives t = ( ) = ng 6 =0.758 s. The total time for the
g .

upward and downward motion isz+¢" =1.166 s.

2.5.2 DyNamics IN 2D anp 3D

In analysing projectile motion in 2D or 3D Cartesian reference frames, use is made of
the kinematic equations by considering separately the dynamical contributions from
the orthogonal spatial directions. Examples are given below. For simplicity, the dis-
cussion is limited to motion near the Earth’s surface where g is constant. The term
projectile motion covers a wide variety of situations in which an object is launched
with initial velocity v at an angle 8 with respect to the horizontal. In many cases, the
Earth’s surface can, as an approximation, be assumed to be flat. Note that the situ-
ations described as 1D in Exercise 2.4, given above, corresponds to projectile motion
for the special case 8= 7/2. The launch mechanism for projectiles can vary widely.
Examples include a kick applied to a soccer ball and the detonation of a charge in a
cannon. The launch of rocket ships from Earth is a spectacular example of projectile
motion. Allowance must, of course, be made for changes in the gravitational force
with altitude if the trajectory takes the craft far from the Earth’s surface.
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As indicated above, when considering the motion of an object in 2D near the
Earth’s surface it is convenient to introduce a Cartesian frame of reference with
vertical axis y and horizontal axis x. The velocity components are correspondingly
v and v . The trajectory of the object is obtained by applying the second kinematic
equation, Equation (2.6), separately to the x and y components of velocity and dis-
placement, making use of the fact that gravity-induced acceleration is limited to the
y direction. For convenience, the starting point of the motion is taken as the origin
in the reference frame. The constant velocity (zero acceleration) motion parallel to
x is described by

X = (vo cos 9) t (2.8)

where 6 is the angle that the initial velocity vector v, makes with x at time ¢ =0.
Motion parallel to y is governed by

y= (Vo sin 6) t—%g 2 (2.9)

with g the gravitational acceleration. Rearranging Equation (2.8) to give

t= (;, and then substituting for ¢ in Equation (2.9), leads to the following
v, cos 60

equation for y as a function of x,

2
y=xtan9—lg ol (2.10)
2\ v,cos6

Equation (2.10) describes the object’s trajectory. The range of a projectile R is the
horizontal distance travelled from launch until it reaches ground level with y = 0.
Inserting y = 0 in Equation (2.10) leads to

2ve
R=—=5in6 cos@ (2.11)
8

The range is thus determined by two factors, the initial velocity, and the angle between
the horizontal and the launch direction.

Exercise 2.5: At what angle to the horizontal should a projectile be launched
from a site on a flat horizontal surface in order to achieve the maximum range
for a given initial velocity?
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Using the trigonometric identity 2sin@cos6=sin20, Equation (2.11)
Vg sin26 . )
becomes R=———— The maximum range R__ is reached when
8

dR 2v;cos26
dée g

should therefore be launched at an angle of 45° to the horizontal in order to
achieve its maximum range. Figure 2.7 shows the paths followed by an
object launched successively at angles of 20°, 30", 45°, and 60" to the hori-
zontal with the same initial velocity of 10 m/s. For launch angles less than
45°, the travel time to impact with the surface is shorter than for the optimum
angle case and this outweighs the higher horizontal velocity component. For
angles greater than 45°, the travel time is longer than at 45° but the horizontal
component of the object’s velocity is reduced compared to that at smaller
angles. In the limit of a vertical launch the horizontal travel distance is zero.

= (. It follows that R is attained when 6= 7/4. The object
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FIGURE 2.7 Trajectories followed by an object launched at different angles to the
horizontal with the same initial speed of 10 m/s. The maximum range corresponds to a
launch angle of 45°.

Exercise 2.6: A boy standing on a promontory overlooking a lake throws a
pebble in a horizontal direction with initial speed 13 m/s. If the boy’s throwing
arm is at a height 42 = 6 m above the surface of the lake, determine the horizontal
distance the pebble will travel before hitting the water. What is the velocity
of the pebble just prior to entering the water? The trajectory of the stone is
depicted in Figure 2.8.

The horizontal, x, and vertical, y, motions are independent of each
other and are considered separately. Application of Equation (2.6) to the

. . 1 .
y motion gives —h = —Eg 2. The time taken to reach the water surface

25
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FIGURE 2.8 Trajectory of a stone thrown into a lake. The initial horizontal velocity is
13 m/s at an initial height of 6 m above the surface of the lake.

is 1=+/2h/g =\J2x6/9.8 =1.107 s. Using Equation (2.5), the horizontal
distance travelled by the stone before hitting the water surface is
x=v, t=13x1.107=14.4 m

The downward velocity component just before reaching the water surface

is, from Equation (2.5), v, =—g1= —9.8%1.107 = —-10.8 m/s. The horizontal

velocity v_remains constant at 13 m/s during the pebble’s fall. The magnitude
of the velocity just before water entry is obtained using Pythagoras’s theorem
as v=+169+118 =16.9m/s. The angle 6 that v makes with the horizontal is
vy -10.8
Y _

obtained using tan 0= — = 13 =—0.83 giving 0= —40". The minus sign

1%
x

indicates the downward direction of the velocity vector.

While the kinematic equations provide a satisfactory description of many situ-
ations involving the accelerated motion of objects, it is necessary to exercise caution
when objects such as aircraft or rapid ground transport attain high speeds in the
Earth’s atmosphere. For situations of this type, it is necessary to allow for air resist-
ance, which becomes increasingly important as the object’s velocity increases. For
example, objects that fall from a considerable height can reach constant terminal
velocities when the downward gravitational force is balanced by the upward air resist-
ance force. The constant acceleration kinematic equations are no longer applicable
when the retarding force due to air resistance becomes significant in comparison with
the force producing accelerated motion.



Motion in Space and Time 27

Chapter 2 has introduced the concepts of displacement, velocity, and acceleration
as vector quantities, which are used to describe the motion of objects through space
and time. In Chapter 3 a quantity called the momentum of an object is defined in
terms of its mass and its velocity. Momentum plays a central role in describing the
dynamics of objects and in formulating the laws of motion called Newton’s laws.



3 Momentum and
the Laws of Motion

3.1 INTRODUCTION

The behaviour of an object in motion is found to depend on both its velocity and its
mass. This conclusion is reached by anyone who has compared the painful experience
of being struck by a baseball or cricket ball travelling at speed with the less painful
experience of being struck by a tennis ball travelling at roughly the same speed. It
is found necessary and useful to introduce the concept of momentum of a moving
body in formulating the laws of motion. The momentum of an object is defined as
the product of its mass and its velocity. Momentum is a vector quantity through its
dependence on velocity. Along with the kinetic energy of a moving mass, which is
introduced in Chapter 4, momentum is of fundamental importance in analysing the
motion of objects.

The law of momentum conservation, which will be introduced in Section 3.2,
is important in considering collision processes over a wide range of mass values
from the subatomic, involving fundamental particles such as colliding protons, to
the astronomical, such as a meteorite striking a planet. Newton’s laws of motion,
which are introduced in this chapter, are formulated in terms of the momentum of a
body in the presence or absence of external forces. In particular, Newton’s famous
second law relates the rate of change of momentum of an object to the force acting
on the object. Taken together with the law of universal gravitation, Newton’s second
law provides a description of the motion of the planets and the trajectories of space
vehicles exploring the solar system. Note that when dealing with astrophysical events
involving very large masses in relatively close proximity, it is necessary to introduce
Einstein’s general relativity theory, but the classical Newtonian methodology works
well for the situations considered in this chapter.

3.2 MOMENTUM AND FRAMES OF REFERENCE

The linear momentum of an object of mass m which is moving with velocity v with
respect to an observer is defined as

p=mv 3.1

28 DOI: 10.1201/9781003485537-3
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The SI units of momentum are kg m/s. Clearly p and v are parallel vectors since m
is a scalar quantity. Consider a composite system consisting of N objects, labelled
i, with individual masses represented by m,, each moving with velocity v.. The total
momentum is

p= ziml. v, (3.2)

To determine p, the momenta of the individual objects are added using the rules for
vector addition.

In specifying the velocity, and hence the momentum, of an object it is necessary
to choose a frame of reference. In laboratory situations, it is generally convenient
to choose a frame which is fixed with respect to the laboratory floor, which in turn
is fixed to the Earth at a particular location. Measurements may, however, be made
in a reference frame that is moving with respect to the Earth’s surface. Examples
include the interiors of ships, aircraft, and orbiting space laboratories. In considering
the motion of objects in a moving reference system, it turns out that there is a special
class of these frames which are called inertial frames, as discussed below.

Consider two reference frames 1 and 2 that are in relative motion as shown in
Figure 3.1. For convenience, the x-axis in frame 1 is chosen to coincide with that in
frame 2, which is moving with velocity v in the x-direction with respect to frame 1.
From Figure 3.1, it can be seen that the x- and y-coordinates of an object observed
in the two reference frames are related as follows: x, =x —v ¢ and y, =y. The
time ¢ is measured from the instant when the origins of the two frames coincide.
The relationships between coordinates in the two reference frames constitute what
is called the Galilean transformation. Note that times measured by observers in the
two reference frames are assumed to be the same. This assumption is valid for v < ¢,
where c is the speed of light, but breaks down when v approaches c. The Galilean

Reference Frames
Frame 1 Frame 2

¥ Y3

Vv

—

» Particle at rest in frame 2

fe— WV —=

X 2

FIGURE 3.1 Two reference frames 1 and 2 in relative motion along their common x-axis,
with frame 2 travelling at speed v with respect to frame 1. The coordinates in the two frames
are connected as a function of time ¢ by the Galilean transformation provided v is much less
than the speed of light.
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transformation must then be replaced by the Lorentz transformation used in special
relativity theory.

Differentiating the two Galilean coordinate transformation equations with respect
to ¢ leads to the Galilean velocity transformation equations, with the x and y velocity
components in the two frames related as follows:

Vo=V (3.3a)

vl y2

o=V 4y (3.3b)

X

The y-components of the velocity are the same and equal in the two frames because
there is no relative motion along y. The x-components differ by the velocity of frame
2 with respect to frame 1. A particle at rest in frame 2 appears to an observer in frame
1 to be moving with velocity v in the x-direction.

An important insight that is obtained from the Galilean transformation is that there
is nothing special that fundamentally distinguishes one Galilean frame of reference
from another. It is straightforward to transform velocities from one frame to another
provided that the frames are not accelerating. This means that a convenient reference
frame can be chosen when considering a particular situation. For example, a reference
frame could be chosen in which the object of interest is at rest.

If, in Figure 3.1, the object in frame 2 is not stationary but moving with speed v’ at
an angle 0 with respect to x,, then the Galilean transformation of velocity components
becomes
V=V, Tt v’'sin 6 (3.4a)

y

v, =v,+v+v'coso (3.4b)
It is interesting to note that Newton proposed an absolute frame of reference that was
fixed in relation to what he called the fixed stars. Astronomical observations have,
however, shown that the stars are not fixed in the expanding universe, Stars move in
galaxies, which in turn move with respect to each other. There is no way to establish
an absolute reference frame.

Exercise 3.1: A passenger in a car travelling at 60 km/h along a straight
stretch of road sees a person who is running in the opposite direction at 5 m/
s on the sidewalk. At what speed does the runner appear to be moving as seen
by the passenger in the car?

Adopting the notation used in Figure 3.1, the car’s direction of travel on the
straight road, alongside the sidewalk, is taken as the common direction of the x-
axes for frames of reference attached to the road (frame 1) and to the car (frame
2). No motion occurs along the y direction. In frame 1, the runner moves at speed
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5 m/s in the negative x direction. The velocity along x of frame 2 with respect to
frame 1 is v =60x103/3600 = 16.7 m/s. From Equation (3.3b), the passenger
in frame 2 obtains the runner’s speed as v , =v —v=-5-16.7=-21.7 m/s.
The minus sign shows that the runner is seen to be moving in the negative
x-direction, that is, approaching the car.

In the simple exercise above, it is not made clear how the passenger in the car
would measure the speed of the runner. Interestingly, it was the analysis of this type
of situation for observers measuring the speed of light signals on a passing train that
helped Einstein develop his special theory of relativity.

Exercise 3.2: An object of mass 0.65 kg slides along a smooth horizontal
surface at a speed of 12 m/s. What is the linear momentum of the object?
What is the momentum in a frame of reference moving at 8 m/s parallel to the
direction of travel of the object?

The momentum of the object in the reference frame 1, which is fixed
to the smooth surface with the x-axis chosen parallel to the object’s
path,is p  =mv_ =0.65x12="7.8 kg m/s.

In the reference frame 2, which moves at a constant speed of 8 m/s par-
allel to the path of the object, the speed is given by v . =v  —8 =4 m/s. The
transformed momentum in frame 2 is p , = 0.65x4 = 2.6 kg m/s.

3.3 INERTIAL REFERENCE FRAMES

An inertial frame of reference is one in which an object moving at a particular vel-
ocity at some instant continues to move with the same fixed velocity as time proceeds.
The object could, of course, be stationary as a special case, A necessary condition for
the establishment of an inertial frame is that zero net force acts on the object in the
chosen frame. Reference frames attached to the Earth’s surface are clearly not inertial
frames because of the force produced on an object by the Earth’s gravitational field.
In addition, the Earth is spinning about its axis of rotation, and this results in effects
linked to circular motion as discussed in Chapter 5. It is possible to imagine an iner-
tial frame in which an object is situated at a great distance from other masses so that
the gravitational forces are vanishingly small. It is a measure of Newton’s genius that
he could conceive of inertial frames of reference while living in a non-inertial frame.
Satellites in orbit around the Earth provide a very good approximation to an inertial
frame. These satellites effectively fall towards the Earth, as they move at high speed
around the planet, giving rise to the phenomenon of weightlessness. It is important
to appreciate that weightlessness does not mean that there is zero gravity. Instead, it
means that the object of interest, such as a satellite, is effectively in free fall towards



32 Physics: An Introduction to Physical Dynamics

the Earth’s centre as it circles the Earth. The object’s orbital velocity keeps the satel-
lite moving around the Earth as discussed in Chapter 5. Objects can float motionless
if left undisturbed or can move across the spacecraft at constant speed following a
slight push on the object by an astronaut. Inertial frames of reference are important in
formulating Newton’s laws of motion, which are introduced in Section 3.5.

3.4 MOMENTUM CONSERVATION

For a collision involving two or more objects, it has been established that the total
momentum of the colliding objects is conserved. This important result is called the
law of momentum conservation, which is a fundamental law of physics. The law
is expressed mathematically in terms of the changes in the individual momentum
vectors for colliding objects i as

Ap = Z’Api =0 (3.5)

where Ap., is the change in momentum of object i during the collision.

In words, the law of momentum conservation states that the vector sum of
the changes in momentum for all the objects involved in the collision is zero.
Equivalently, the law states that the total momentum of all the objects before the
collision is equal to the total momentum after the collision, Zl_pl?’ef"re = z’_p;'.‘f‘er. It is

important to remember that it is the vector sum of the momenta of colliding objects
that is conserved.

As an illustration of the use of momentum conservation, consider a collision
involving two particles with masses m, and m,, which travel towards each other with
velocities v, and A respectively, in an inertial frame as depicted in Figure 3.2.

After the collision, the particles move apart with velocities v; and v,. The law of

momentum conservation gives m, (V]' -V, ) =-m, (V; —V2) . Note that if m, > m,,

then the change in velocity of particle 1 is much greater than that of particle 2. The
inertial frame qualification is introduced so that no external forces act on the particles

FIGURE 3.2 Collision of two objects of masses m, and m, which move towards each other
with velocities v, and v, as shown. Momentum is conserved in the ensuing collision.
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during the collision. For collisions of high-energy beams of subatomic particles,
gravitational effects are negligible and can be ignored in analysing data from collision
events. For beams of charged particles, electromagnetic fields are of major import-
ance in determining particle trajectories in a collision event.

Good approximations to inertial frames are achieved in systems that are effectively
2D, such as air tables or ice-skating rinks over which flat objects glide freely. The fric-
tional forces in these systems are very small, permitting momentum conservation to
be demonstrated to fair precision in collision processes. These systems are of course
3D, but no motion occurs along directions perpendicular to the supporting surface.
The downward force exerted by gravity is exactly balanced by the upward reaction
force, which exists between an object and the surface. The thin fluid (gas or liquid)
layer at the interface allows the reaction force to be transmitted to the object, but with
negligible friction in the surface plane.

Exercise 3.3: A spherical object of mass m, travels with velocity v, on a low
friction air table surface before colliding with a stationary object of mass mz,. If
the two objects stick together, determine the velocity v, of the combined masses
following the collision.

The law of momentum conservation gives Ap=m, Vv, —(m1 +m2)v3 =0.
Since mass is a scalar, it follows that the two velocity vectors m v, and

(ml +m2)v3 must be parallel to ensure momentum conservation, with

Inelastic Collision

m; =1 my =2

v L.
O—lb O Before collision
2

my=13

After collision O—D Vi

3

FIGURE 3.3 Inelastic collision of two spherical objects 1 and 2, of masses m and m,,
which can move on a horizontal, low friction table as shown above. Object 2 is initially
at rest, while object 1 approaches with velocity v, The objects then stick together to
form mass M = m +m,, which moves with velocity v,. Momentum is conserved in the
collision. The masses shown are in arbitrary mass units.
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m
v, = —]VI. The final velocity v, is reduced compared to the initial vel-
om t+m, :
. . ml . . .
ocity v, by the mass ratio ————. Using the masses shown in Figure 3.3
gives v, =v, /3. m, +m,

Exercise 3.3 provides an example of an inelastic collision. Collisions may be
either elastic or inelastic, based on the changes in the kinetic energy accompanying
a collision. While momentum is always conserved in collision events that occur
in inertial frames, a scalar quantity called the kinetic energy is only conserved in
elastic collisions. This distinction between elastic and inelastic collisions is ultim-
ately determined by the nature of the forces that act between the colliding objects as
discussed in Chapter 4 in which the important concept of kinetic energy is introduced.

Exercise 3.4: Two ice pucks 1 and 2, with masses m, and m,, respectively,
move towards each other with equal speeds v on an ice-rink surface as shown
in Figure 3.4. The pucks undergo a head-on collision, and then move apart with
their final velocities parallel. If 2 m, = m,, obtain expressions for the pucks’
speeds v, and v, after the collision, and then determine the speeds for which the
two pucks have the same momentum.

Inelastic Collision of Two Pucks

Before collision

s [

After collision with mz =2 m,

2040

y "y

FIGURE 3.4 Two pucks, with masses m, and m, respectively, travelling towards each
other with speeds v on a frictionless surface, undergo a collision as depicted. Momentum
is conserved in the collision. The case m, = 2m, is shown.
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Momentum conservation givesm, v+m, v=m, v +m, v,.If the velocities
are taken as positive in the +x direction, then for the special head-on collision
case shown with m =m and m, = 2m, and accounting for the directions of the
velocities before the collision, it follows that —mv = —m (v1 +2v, ) By inspec-

tion, the resultant relationship of the speeds v =v, +2v, is satisfied by, among
many others, the values v, = v/2 and v, = v/4. In this particular case, the final
velocities are parallel and the final momentum in the —x direction is shared
equally by the pucks.

Note that momentum conservation in two-body collisions leads to a single equation
with two unknown final velocities, which in general will not be parallel. For elastic
collisions, kinetic energy conservation can be used to obtain another equation relating
the speeds of the objects. The simultaneous equations provided by momentum and
kinetic energy conservation can then be solved to obtain the required final velocities
in collision processes.

3.5 NEWTON'’S LAWS OF MOTION

The fundamental laws governing the motion of objects are known as Newton’s laws.
While certain of the ideas were considered by other scientists in the seventeenth cen-
tury, it was Newton who developed the powerful formalism used in describing the
motion of objects. As a striking illustration of his formalism, Newton showed that
the laws of motion together with his law of universal gravitation permitted the orbits
of the planets about the Sun to be explained in detail. The development of relativity
theory and quantum mechanics in the twentieth century has shown that Newton’s
laws are valid only in the classical limit, but they are extremely useful in describing
the motion of objects in a wide variety of situations.

Newton’s laws of motion involve the momentum of an object and inertial frames
of reference as essential concepts which permit the laws to be stated in compact form
as given below.

Newton’s first law: An object which is at rest or in uniform motion in an inertial ref-
erence frame, and which is not subject to any unbalanced forces, continues at rest or
in uniform motion. This is also known as the law of inertia.

In symbols the law states that in an inertial frame v = constant if F = 0.

Newton’s second law: The rate of change of momentum of an object in an inertial
reference frame is given by the total applied force acting on the object.

In symbols, the law is written as d_p =F.

dr

. . dv
If the mass of the object remains constant, then the law becomes md— =ma=F.
t
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[llustration of Newton 2
a=F/m

m

in inertial reference frame

FIGURE 3.5 Newton’s second law shows that an applied force F acting on an object of mass
m in an inertial reference frame produces an acceleration a in the direction of the force.

Thus, the second law is conveniently expressed as force equals the mass times the
acceleration, or F = m a. This law is of central importance for a range of applications
involving the motion of objects subject to applied forces. The SI unit of force, as
given in Chapter 1, is the newton with 1 N = 1 kg m/s%. Figure 3.5 illustrates the
second law for an object of fixed mass.

Newton’s third law: For two interacting objects, which are either in contact or
interacting via a force field, the force exerted by one object on the other is exactly
matched by an equal and opposite reaction force.

In symbols the law states that F,, = —F, where F, denotes the force exerted on
object 1 by object 2, and F,, is the force exerted on object 2 by object 1.

For two solid objects in contact, the microscopic details of the mechanisms
involved in connecting applied forces and reaction forces can be quite complicated.
The atoms in the two adjacent surfaces interact as described in Chapter 1. Surface
deformation may occur when contact is first made, dependent on the mechanical
strengths of the materials. It is only when a state of equilibrium has been reached that
action and reaction forces will match as predicted by Newton’s third law.

If two objects are not in contact but interact via a force field, such as the gravita-
tional field, then Newton’s third law still applies. For example, the gravitational force
exerted by the Earth on the Moon is matched by an equal and opposite force exerted
by the Moon on the Earth. The orbital motion of the Moon around the Earth prevents
the Moon and Earth from crashing into one another. The orbital motion of gravitation-
ally interacting large objects is discussed in Chapter 5.

For convenience, in this chapter the three laws will be referred to as Newton 1,
Newton 2, and Newton 3. Note that Newton 1, the law of inertia, is a special case
of Newton 2 corresponding to zero net force acting on an object. For a number of
applications that are dealt with in this chapter Newton 3 is important when considering
the motion of objects on supporting surfaces or hanging from cables.

Newton’s laws, together with the kinematic equations, which were introduced in
Chapter 2, are very useful in analysing the motion of objects that are acted on by a
constant force. Two simple examples are given below.
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Exercise 3.5: An electric vehicle of mass 800 kg (including passengers)
accelerates from zero to 100 km/h in 6 s along a flat horizontal road. Assuming
a constant acceleration, obtain the driving force acting on the vehicle? Ignore
wind resistance.

From the first kinematic equation given in Equation (2.5), the speed v of
the vehicle as a function of time is given by v =v, +a t. Converting the speed
to m/s using 1 km/h =1000/3600 = 0.278 m/s, the constant acceleration is
a=v/t=100x0.278/6 = 4.6 m/s>. Newton 2 gives the average force produ-
cing the acceleration as F' = m a = 800x 4.6 = 3680 N.

Note that the acceleration is approximately g/2. Passengers in the vehicle
will feel the push of the seats on their backs while the car is accelerating.

Exercise 3.6: A puck of mass 0.2 kg rests on the horizontal surface of a
frictionless air table. If a horizontal force of 0.5 N is applied to the puck, how
far will it move in 1.0 s?

From Newton 2, the acceleration of the puckisa = F/m = 0.5/0.2 = 2.5 m/s>.
The distance d travelled by the puck is given by the second kinematic equation

(Equation (2.6)) as d = %a > =125m.

No motion occurs perpendicular to the air table. The upward reaction force,
which balances the weight, is transmitted to the puck through the air cushion.

3.6 APPLICATION OF NEWTON’S LAWS

In applying Newton’s laws to the dynamics of an object of mass m located close to the
Earth’s surface, it is necessary to allow for the downward weight force F =m g. As
discussed in Chapters 1 and 2, the gravitational acceleration is given by g = G M/R>.
To a good approximation, g =9.8 m/s? (or N/kg) using accepted values for G, M,
and R.

If an object of interest is supported by a horizontal surface, then Newton 3 shows
that the weight force will be matched by an equal and opposite reaction force. For
objects that are free to fall under gravity, Newton 2 gives F =m a =m g, and there-
fore a = g =9.8 m/s2. The following exercises deal with a variety of situations in
which the weight of an object plays a significant role in determining its motion.

An interesting example of the use of Newton 3 involves the apparent weight of a
person travelling in an elevator when it is accelerating from rest. Let the passenger’s
weight be W = M g as measured on a bathroom scale in the elevator when it is sta-
tionary. When the elevator starts to accelerate upwards, the reading on the bathroom
scale will increase. This is because the person is also accelerated upwards and the
force producing this acceleration is transmitted from the floor of the lift through the
scale to the person. In the various force transmission processes Newton 3 plays an



38 Physics: An Introduction to Physical Dynamics

Tension in a Cord or Cable

support

Suspended
mass |

FIGURE 3.6 Mass m is suspended on a cord attached to a rigid support. For the mass m to be
in equilibrium, the upward tension force 7" must be equal to the weight mg. The cord transmits
the force to the rigid support, which exerts an equal and opposite reaction force on the cord.

essential role by requiring action and reaction to match firstly between the floor of the
elevator and the scale and secondly between the scale and the person’s feet. The scale
reading, which is a measure of the upward reaction force, increases from W=Mg¢g
toW =M ( g+ a). When the lift accelerates downwards, the scale reading decreases
to give W, =M (g—a).

Further applications of Newton 3 arise in situations in which a mass is suspended
by a cable or cord. The weight of the suspended object m g is matched by an upward
tension force 7T in the cable, as illustrated in Figure 3.6. At the point of suspension of
the cable, the downward tension force is matched by an upward reaction force exerted
by the support.

The tension in a cable or cord can be used to transmit a force between two
connected objects that are in motion. Figure 3.7 illustrates a situation of this kind
in which a mass m is suspended on a cord, which passes around a frictionless pulley
and is then joined to a mass M that rests on a frictionless horizontal surface. The
assumption of negligible friction effects is made to simplify the analysis. Friction
forces are discussed later in the book.

Application of Newton 2 separately to each of the two masses gives the equations
of motion as

mass M: T=M a, (3.6)
mass m: mg-T=ma, 3.7
The magnitudes of the two accelerations g, (horizontal) and a_ (vertical) in Equations

(3.6) and (3.7) must be equal (i.e. a, =a ) because of the fixed length of the cord
connecting them. Combining the two equations by adding them together gives

m g =(M+m)a, and hence a, = M’ng.
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m |

mg

FIGURE 3.7 Masses M and m are connected by an inextensible string, which passes over a
frictionless pulley. The gravitational force on mass m produces motion of the coupled masses.
The arrows represent the tension 7 in the string.

FIGURE 3.8 Accelerated motion of a mass m down a smooth frictionless plane, which is
inclined at an angle 6 to the horizontal. Geometry shows that the angle between the normal to
the plane and the vertical is also 6.

This result could have been written down directly using Newton 2, by taking the
force producing the acceleration as m g and the total mass moved as M + m. The
tension force T'cancels out in this simple scalar approach. Note that while the mass
m is falling with acceleration a, the tension in the cord is reduced to T'=m ( g—a, )

The motion of an object down a smooth frictionless plane inclined at an angle 6 to
the horizontal is of interest because the gravitational force on the object has a compo-
nentm g sin 0 acting down the plane, while a reduced reaction force between the plane
and the object F, =m gcos 6 acts perpendicular to the plane as shown in Figure.3.8.

Newton 2 gives the equation of motion for the sliding object as

F=ma=mgsinf (3.8)

The acceleration a = g sin 8 exhibits a minimum value for 6= 0 and a maximum for
0= m/2, as expected.
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Exercise 3.7: A child, starting from rest, moves down a water slide of length
L =4 m. If the slide is inclined at an angle of 30° to the horizontal, what is the
velocity of the child just before hitting the water in the pool at the bottom of the
slide? Assume that frictional forces are negligible and the slide ends just above
the water level.

From Equation (3.8) the child’s acceleration is a = g sin 6 = 9.8 x sin 30° =
4.9 m/s> The speed is obtained using the third kinematic equation, given in
Equation (2.7), which takes the form v?> = 2a L Substituting values for a and
L gives v = 6.3 m/s with the velocity vector parallel to the surface of the slide.
Note that, as an approximation, the child has been regarded as a compact entity
with its mass located at the centre of mass.

3.7 IMPACT

For situations in which an object collides with a surface and then rebounds, it is con-
venient to introduce impulsive forces and the concept of impulse. Important examples
occur in sports such as baseball, cricket, golf, and tennis. In impact collisions, the
force that acts between an object (e.g., a ball) and a solid surface (e.g., a baseball bat)
is not constant in time and is nonzero for just a short time. It is necessary to adapt
Newton’s laws to events of this type. The law of momentum conservation does not
hold in this inelastic type of collision as discussed below. Note that the change in
momentum of a ball being struck by a sporting implement can be large as the change
in the direction of the ball’s travel can reach 180°.

Consider the change in momentum Ap of a moving object, such as a squash ball,
which strikes a wall that is anchored to the ground. Figure 3.9 illustrates a collision
event of this sort. For simplicity, it is assumed that the vertical motion is negligibly
small, with the ball travelling at high speed close to horizontally both before and after
impact with the wall. As a result of the collision, the velocity of the ball is changed
from v, in the +x direction to v, in the —x direction. The collision lasts for a very
short time, and the details of the process, which involves compression of the ball and
slight local elastic deformation of the wall at the point of impact, are not known in any
detail. In effect, the wall is considered to be an object of infinite mass.

While the law of momentum conservation cannot be applied to this type of
collision, the momentum change Ap of the moving object can be related to a quan-
tity called the impulse Z, which is defined as the time integral of the time-dependent
force F (t) exerted by the wall on the object during the impact event. This procedure
involves, firstly, the use of Newton 2 to determine the instantaneous rate of change

d . . .
of momentum in the collision as d—p =F (t) and then, secondly, integrating to obtain
t

Ap = j:dp = _[;F (t )dt = I. The compact relationship,

Ap=1 3.9)
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(a)
High-speed impact

: v

(b)

FIGURE 3.9 High-speed collision of a ball with a fixed vertical wall. A time-dependent force
acts on the ball during the impact, causing the ball to rebound as shown. Momentum is clearly
not conserved in this process.

is useful in dealing with collision events of the type described above. While
momentum is obviously not conserved, since / > ( the process may be qguasi-elastic
with only a small change in the kinetic energy, which depends on the square of the
speed of the moving object as discussed in Chapter 4. In general, some kinetic energy
is transformed during the collision into other forms of energy, specifically sound
and heat.

For impact collisions in which the horizontal motion approximation is not applic-
able, changes in both the vertical and horizontal velocities must be taken into account.
Collisions can be investigated experimentally using high-speed photography to follow
the motion of the objects and the deformation that occurs during impact.

Exercise 3.8: In aracquetball game, the ball strikes a wall at normal incidence
with a speed of 80 km/h. If the ball is in contact with the wall for a time At =20
ms, and rebounds with a speed of 77 km/h, what is the impulse experienced by
the ball in the collision and what is the average force involved? The mass m of
aracquetball is 0.04 kg (1.4 ounces).

From Equation (3.9) Ap=p, —p, = m(vf —vi)= I. Choosing the out-

ward normal to the wall as the positive direction, and converting km/h
to m/s using 1 km/hr = 0.278 m/s, gives the impulse / = Ap = m(v, - v) =
0.04 x (21.4 + 22.2) = 1.74 kg m/s.

Ap I 174

The average forceis F = —=—= =87N.
At Ar 0.02
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The impact concept, which is introduced above, is important in considering any
collision process in which a large force acts on an object for a short time. In many
sporting activities, a bat or other implement is swung at a ball, and the momentum
of the ball is significantly altered. During the collision, a force may be transmitted to
the hands of the holder of the bat. The force is found to depend on the position along
the bat at which the ball makes impact. In particular, if the ball hits the bat at what
is called its centre of percussion, also known informally as the sweet spot, the force
transmitted to the hands gripping the bat is minimized. Further discussion of this
point is given in Chapter 6 on rigid body dynamics.



4 Work and Mechanical
Energy

4.1 INTRODUCTION

When a force acts on a physical system and produces a change in its properties, the
force is said to have done work on the system. As an example, consider a system
consisting of an object of mass m situated near the Earth’s surface and which may
be at rest or in motion in the local gravitational field. An applied force can change
the velocity of the object and/or its position in the gravitational field, resulting in a
change in what is called its mechanical energy. The concept of mechanical energy is
of central importance in classical mechanics. As shown below, work and mechanical
energy are scalar quantities with SI units joules, abbreviated as J.

It is convenient to distinguish between kinetic energy, which is linked to the
motion of an object, and potential energy, which depends on the position of an object
in a field such as the gravitational field. Mechanical energy can be conserved in par-
ticular situations provided friction effects are negligible. In these circumstances, the
sum of the kinetic energy and the potential energy remains constant during a process.
An example of this type of process is provided by a falling mass in the Earth’s gravi-
tational field provided friction and air resistance effects are negligible. Mechanical
energy conservation is a special case of the general law of energy conservation, or,
more precisely, mass—energy conservation. This fundamental law covers all forms of
energy including mechanical, thermal, chemical, electromagnetic, and nuclear forms.

4.2 MECHANICAL WORK

Consider a force F acting on an object, which is free to move subject to certain
constraints provided by a support. Let the force displace the object through a distance
As at an angle 6 with respect to the force direction as shown in Figure 4.1.

The work W done by the force F is defined in Equation (4.1) as the scalar product
of F with the object’s displacement As:

W =F-As= FAs cos 6 “4.1)

The work done involves the component of the force parallel to the displacement. The
direction of displacement depends upon the constraints on the motion of the object. For
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F
..h m

FIGURE 4.1 A force F acts at an angle 0 to the horizontal on an object of mass m, which
rests on a horizontal surface. The block is displaced by a distance As along the surface. Work
is done by the horizontal component of F.

example, when an object is situated on a horizontal surface, no downward motion can
occur even though the applied force has a downward component. Newton’s third law
requires that the net vertical force is zero with upward reaction force equal in magni-
tude, but opposite in direction, to the sum of the downward forces. In the SI system, the
force is measured in newtons, the displacement in meters, and the work done in joules.
For an object of mass m near the surface of the Earth, a downward gravitational
force m g acts on the object. In discussing the consequences of work done on a
system of this type, it is convenient to consider the action of the vertical component
of the applied force separately from that of the horizontal component. For a process
involving a horizontal force acting on an object situated on a horizontal friction-
less surface, the momentum will change with time, corresponding to an increase in
velocity in accordance with Newton’s second law. The kinetic energy of the object,
which is defined below, increases because of the work done by the force. No change
in the height of the object occurs, nor is there any change in the vertical component
of velocity, which stays at zero in the laboratory frame. If the situation is altered so
that the applied force acts vertically upwards, then the height of the object above a
chosen reference level, such as the laboratory floor, will change due to the work done
by the force. The change in height of the object results in a change in what is called
its potential energy, which is introduced below. There may also be an accompanying
change in the kinetic energy depending on the direction and strength of the vertical
force. If an upward force, which opposes gravity, is only slightly larger than m g, then
the change in kinetic energy will be very small while the height of the object changes,
leading to a significant change in potential energy. Expressions for the kinetic energy
and potential energy of a body in motion are introduced in the following section.

4.3 MECHANICAL ENERGY

4.3.1 KINETIC ENERGY

Consider a system that consists of an object of mass m that can move freely under the
action of an applied force. For example, the object could be in an inertial frame of
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reference located in an orbiting spacecraft, or, alternatively, earthbound and supported
by a frictionless horizontal surface with the applied force acting horizontally. If the
force F is constant and displaces the object by As, then Equation (4.1) gives the work
done by the force as W = F - As. To simplify the discussion, it is convenient to choose
the angle 6 between F and As to be zero, so that W = F' As. From Newton’s second
law, the constant force produces a constant acceleration of the object, the magnitude
of which is given by a = F/m.

It is straightforward to relate the work done to the change in the square of the vel-
ocity of the object by using the third kinematic equation, Equation (2.7), in the form
v? =V +2a As Substituting F'/m for a gives mv* = mv; +2F As Replacing F' As by
W leads to the following result:

W=%m(v2 —vé) 4.2)

1
By adopting the general definition K :Em v2 Equation (4.2) can be written in

the f()rm,
= KF - K = AK = - 4.3
‘/‘/ = m(vF 1% ) ( )

The quantity K is defined as the kinetic energy of the moving object. Equation (4.3)
shows that the object’s kinetic energy is increased by an amount equal to the work
done by the applied force. This is an important and useful result. The SI unit of K is
joules.

Exercise 4.1: An object of mass 20 kg is free to move on a straight horizontal
track and is accelerated from rest to a speed of 4 m/s by an applied force acting
parallel to the track. If the distance travelled in the acceleration process is 8 m,
determine the change in kinetic energy of the object and the magnitude of the
applied force. Ignore the effects of friction.

Since the initial velocity is zero, the change in Kkinetic energy is

1 1
AK = Em v = 5><20><16 =160 J. The relationship W = F' As = AK, with As

the distance travelled, gives F = AK/As =160/8 = 20 N.

While physical situations that involve a mass undergoing constant acceleration can
be analysed using the kinematic equations, the work—kinetic energy relationship
provides the basis for dealing with situations involving the motion of objects subject
to variable forces and correspondingly varying accelerations. It is therefore necessary,
and also instructive, to obtain Equation (4.3) without making assumptions about the
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nature of the applied force that leads to a change in the kinetic energy of an object.
Details are given below.

It is convenient, initially, to consider motion in 1-D along the x-axis of a frame of
reference. The treatment is readily extended to motion in two or three dimensions.

A
The starting point is again Newton’s second law, F =m a = m(zv), which gives
t

the rate of change of momentum of an object of mass m produced by a force F
acting for a time Ar during which the velocity increases by Av. In a small displace-
ment Ax, the work done by the force is W = F' Ax. Substituting for F from Newton’s

A
second law leads to AW = m(i) Ax. Rearranging gives AW = m(%) Av, and in

. . . . dx .
the limit Az — 0, this results in the equation dW = m(d—J dv =m v dv. Integration
t

of this differential equation gives the required result,
Wzmjv'vdvzlm(vz—v?) (4.4)
v 2 :

with v, and v, the initial and final velocities along x over the time interval during
. . 1 . . .
which the force acts on the mass. Inserting K = Em v? in Equation (4.4) results in

the relationship,

W=%m(vz—vi2)=Kf—Ki=AK 4.5)

f

This is the same result as that found using the kinematic equation approach. However,
no assumption of a constant applied force is made in obtaining Equation (4.5), which
shows that in an inertial frame of reference, the work done by an applied force is
equal to the change of kinetic energy of the object to which the force is applied. The
derivation of Equation (4.5) is a powerful generalization of the constant acceleration
kinematic equation approach. Equation (4.5) thus provides the basis for describing
the dynamics of objects subject to forces which vary with time. Defining the change
in kinetic energy due to the acceleration of an object as

AK = %m(vf2 —v?) (4.6)

is an important step in developing what is called the work—energy relationship.

In order to lift the restriction that Equation (4.5) is limited to inertial frame situ-
ations, it is necessary to broaden the discussion by introducing the potential energy
concept to complement that of kinetic energy. The work done by an applied force is,
in general, no longer converted entirely into kinetic energy.
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4.3.2 PoteNTIAL ENERGY

When introducing the concept of potential energy, it is instructive to deal with the
special case of gravitational potential energy. Consider a frame of reference in an
earthbound laboratory where the Earth’s gravitational field gives rise to a constant
downward gravitational force m g on an object of mass m, with g =9.8 N/kg (or
m/s?). The gravitational force is directed towards the Earth’s centre, where the planet’s
considerable mass is effectively concentrated, when masses experiencing the force
are located at, or above, the Earth’s surface.

For an object to be at rest in the laboratory frame, it is necessary that the net force
on the object be zero. It follows that a vertical force equal in magnitude but opposite
in direction to the gravitational force must act on the object. This force could, for
example, be the reaction force from a fixed horizontal surface on which the object
rests, or the tension in a cord, which is suspended from a fixed support with the free
end attached to the object.

Consider an object that is initially at rest in the Earth’s gravitational field. If the
upward force is increased slightly to m g+ 0F, the object will gradually increase
its height above the laboratory floor from A to h. The additional force 6Fdoes
work OW = 6F (hf —hi) and produces a small upward acceleration, and thus a
small change 6K in the object’s kinetic energy. The total work done in increasing

the height above the floor is W = m g(hf —hi)+ OK. In the limit §F — 0, it follows

that 60K — 0 and W — m g Ah where Ah = (hf —h, ) In this limit of very small §F,
the work done by the upward force has been converted to a form of energy called the
potential energy, denoted by U. The potential energy is associated with the height of
the object above some reference level, such as the floor, in the non-inertial laboratory
frame. The relationship between the work done in the lifting process and the change
in potential energy is given by

W=mg(h—h)=U, -U =AU 4.7

Note that while the object was considered to experience a vertical lifting process, it
does not matter how the mass is raised from its initial height to its final height. The
change in U is always given by AU =m g(hf —h, ) Any kinetic energy changes that

may occur during the raising process simply increase W. The change in potential
energy is therefore defined as

AU =m g(h —h,) 4.8)

withU, =m g h, and U, =mgh,.

Potential energy is a stored energy that can be released either slowly by allowing
the mass involved to descend gradually while driving some mechanism such as that
of a mechanical clock, or rapidly by allowing the mass simply to fall to the floor. In
the case of free fall under gravity, the potential energy is converted to kinetic energy
in a continuous way. On impact, the object may rebound but will eventually settle on
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the floor. In the impact process, the kinetic energy is converted into other forms of
energy, particularly heat and sound.

Exercise 4.2: Consider an object of mass m initially located at a height &
above the floor of an Earth-based laboratory. If the object is allowed to fall, the
kinetic energy increases as a function of the vertical distance Ak through which
the object has fallen following release. Compare this increase in kinetic energy
while the object is in motion with the corresponding decrease in potential
energy.

The third kinematic equation, given in Equation (2.7), with initial velocity
v, = 0 gives the square of the downward velocity as a function of the distance
Ah through which the object has fallen as v> = 2g Ah. Multiplying both sides of
this equation by m/2 gives the following expression for the increase in kinetic

1
energy AK = Em v:=m g Ah.

Since the height of the object above the laboratory floor has decreased by
Ah, the change in potential energy is given by AU = —m g Ah. It follows that
AK = —AU, which shows that the increase in the kinetic energy of the falling
object is exactly equal to the decrease in potential energy. The total energy
therefore remains constant during the time that the object is falling in the gravi-
tational field, with potential energy being continuously converted into kinetic
energy. This finding is consistent with mechanical energy being conserved
during the free fall process.

In the impact with the laboratory floor, the kinetic energy is converted into
other forms of energy, including sound waves and heat as mentioned above.
The collision raises the temperatures of both the object and the floor locally.
Mechanical energy is not conserved in the collision process, although more
generally energy in all its forms is conserved.

4.3.3 MEecHANICAL ENERGY CONSERVATION

The discussion in the preceding subsection shows that the total mechanical energy
E of a mass m in the Earth’s gravitational field is made up of a potential energy con-
tribution U, associated with its position in the field, and a kinetic energy contribution K,
associated with its motion. The total mechanical energy is given by the sum

E=K+U 4.9)

While Equation (4.9) has been arrived at by considering a specific situation involving
a falling object in the Earth’s field, the equation is of fundamental importance in
mechanics. If no other external forces are present, Equation (4.9) leads directly to the
law of mechanical energy conservation, expressed as

E = K+ U = constant (4.10)
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Experiment has shown that the law holds in a wide variety of situations involving
what are known as conservative forces. The distinction between conservative and
non-conservative forces is explained in Section 4.4. It is shown that gravitational
forces are conservative while frictional forces are not. Bearing in mind this limita-
tion on its validity, the law of mechanical energy conservation is extremely useful in
solving problems that involve the motion of objects in gravitational fields or in other
conservative fields, such as the electric field for charged particles. In the gravitational
field case, the moving objects can range from projectiles close to the Earth’s surface,
assuming air resistance can be neglected, to space vehicles and planets orbiting the
Sun. For systems of this type, the total mechanical energy remains constant and there-
fore changes in K and U sum to zero giving

AE=AK+AU=0 .11)

While AK and AU may vary, they do so in such a way that their sum remains zero.

Exercise 4.3: An object of mass m slides down an inclined plane of length L
which makes an angle 8 with the horizontal as shown in Figure 4.2. If frictional
forces between the sliding object and plane are negligible, find the velocity of
the object when it reaches the bottom.

Thereaction force between the object and the supporting plane surface acts per-
pendicular to the plane, and so does not affect the object’s sliding motion provided
friction is neglected. Mechanical energy conservation, as given in Equation
(4.10), is applicable because friction is negligible. The only force of importance
is the component of gravitational force acting down the plane. Using energy
conservation with AE=AK+AU =0 where AU=-m gh=-m g Lsinf

1
and AK = Em v2, leads to v =+/2 g Lsin 6. The velocity is directed parallel

to the plane.

Mass Sliding Down a Frictionless
Inclined Plane

FIGURE 4.2 An object of mass m slides down an inclined plane of length L. Friction
forces are taken to be negligible and, to a good approximation, mechanical energy is
conserved in the object’s descent.
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The previous result for the velocity can be obtained using the constant acceler-
ation kinematic equations as shown in Exercise 3.5. However, the next exercise deals
with an object travelling down a curved slide along which the force, and therefore
the object’s acceleration parallel to the surface, change continuously as the object
descends. The kinematic equations no longer apply in this case.

Exercise 4.4: An object of mass m slides down a smooth curved surface as
shown in Figure 4.3. The top of the slide is at a height ~# above ground level.
Determine the velocity of the object at the bottom of the slide. Assume that
friction forces are negligibly small.

Mechanical energy conservation with AK = —AU gives v = \/Zg_h , which
is the same result as given in Exercise 4.3. This agreement in the values for
the velocities at the bottom of the quite different slide geometries comes about
because the change in potential energy is the same in the two cases.

Note that the force on the object in the direction of motion at some point
in its descent is F' = m gsin 6 where 6 is the angle that the tangent to the slide
makes with the horizontal at the point, as can be inferred from Figure 4.3. In
the inclined plane case, 6 is constant, and therefore F is constant, while in
the curved slide case, F' decreases as 6 decreases. The kinematic equations
cannot be used to describe the motion of an object travelling down a curved
slide because the acceleration is continually changing.

Object of Mass m Sliding Down a
Curved Frictionless Surface

ﬂ—m—pJ

FIGURE 4.3 An object of mass m slides down a smooth curved slide starting from
a position & above floor level. Friction forces are assumed to be very small, and the
law of mechanical energy conservation holds to a good approximation for the moving
object.

For situations in which the frictional forces between a sliding object and the sur-
face on which it slides are not negligible, it is important to recognize that mechanical
energy is no longer conserved. Any work done by frictional forces must be taken into
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account in describing such a motion as shown later in this chapter. More generally,
it is necessary when dealing with the motion of objects produced by various forces
to distinguish between conservative forces, such as the gravitational force, and
non-conservative forces, such as friction. This distinction is made in the following
section.

4.4 CONSERVATIVE AND NON-CONSERVATIVE FORCES

4.4.1 CoONSERVATIVE FORCES

Conservative forces are distinguished from non-conservative forces as follows. The
work done by a conservative force in moving an object from one point to another is
independent of the path followed. In contrast, for non-conservative forces, the work
done in moving an object does depend on the path followed. Examples of conserva-
tive forces are the gravitational force on a mass, and the force on a charged object
produced by an electric field. Non-conservative forces include friction forces, which
are involved in the relative motion of two surfaces in contact, and viscous drag forces,
which act on an object moving through a fluid.

For conservative forces, the work done in moving an object around a closed path is
zero, while for non-conservative forces, the work around a similar path is not zero and
depends on the path followed. As a simple example of a closed path mechanical work
process that involves a conservative force, consider the work done by gravity when an
object of mass m is raised in the Earth’s gravitational field from floor level to a height
h and then returned to its initial position. The work done by the downward gravi-
tational force along the upward path is W, = —m g h. The minus sign is introduced
because in evaluating the scalar product for the work done by gravity, W = Fg -As,
the displacement and the gravitational force are anti-parallel. Along the downward
return path, the work done by the gravitational force is W, = m g h since the force
and the displacement are now parallel. The total work done by the gravitational force
in the complete up-down process is W =W, + W, = 0. Note that the focus is on the
work done by gravity, and no attention has been paid to the mechanism, or person,
supplying the force to raise the object.

Exercise 4.5: Show that the work done by the gravitational force in a process
in which a mass m is moved from one position to another in the Earth’s
gravitational field is independent of the path followed and depends only on the
vertical height difference between the initial and final positions.

It is convenient to introduce Cartesian coordinates as shown in Figure 4.4.
In terms of unit vectors, the downward gravitational force on the mass
m is F=—-m gk, while an elementary displacement vector has the form
dr =idx+ jdy+kdz. The work done by the gravitational force is obtained

by evaluating the integral J‘.fF-dr from the initial position i to the final pos-
ition f as follows:
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initial position

\\t:a_icctory of object

unit vectors final position
k

'

bj

FIGURE 4.4 The sketch shows the 2D trajectory of an object of mass m on which
work is done in moving the object from its initial position to its final position.

W, =-m gjfk-(i dr+j dy+k dz)=—m gjfdz=—mg(hf ~h)

In the integral, the only scalar product that is nonzero involves the unit
vector k. It is apparent that the work done depends only on the vertical
height change i, — h, with the sign of W dependent on the sign of the height
difference.

Note that g is taken as constant in obtaining expressions for the work done in
moving the mass m from one position to another. This assumption assumes that the
object is never far from the surface of the Earth. In this type of process, it is con-
venient to choose zero energy arbitrarily to correspond to a reference level such as
the laboratory floor or a bench top. A fundamental definition of zero potential energy
is necessary in dealing with large separations between the masses. In these cases, it is
then convenient to choose zero potential energy to correspond to infinite separation
of the masses.

Exercise 4.6: Obtain an expression for the work done by gravity in
bringing an object of mass m from a great distance (effectively infinity) to
the surface of the Earth. Determine the work done if the object has a mass
of 1000 kg.

Using Newton’s law of universal gravitation, the attractive force on the mass
G M, m) )
— |t where M is

m at a distance r from the centre of the Earth is F = (
r

the mass of the Earth, G is the gravitational constant, and r is a unit vector along
the inward radial direction. The work done by the gravitational force is given by
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W= jiEF-dr = jiEF drcos6=G M, mJiEd—

r
72

R
1 E
=-G M m[;] =-G M, m/RE

In evaluating the integral, the angle between F and dr is 8= 0. For the 1000 kg
object, the work done by gravity is

a 6.67x107!" x5.97 x10%* x 1000

637 x10° =-6.25x10" J.

W:

Note that negative work is done by the gravitational force. The potential
energy therefore decreases as r decreases. It follows that a large amount of
energy would be required to overcome the Earth’s gravitational attraction and
transport the mass back to a remote location far from the Earth.

It is useful to introduce the concept of the gravitational potential U (r) associated
with the gravitational field produced by a massive object such as a planet or the Sun.
This concept is particularly important in dealing with the motion of objects in space,
where the law of mechanical energy conservation holds as a very good approximation
if small dissipative effects such as ocean tides are neglected. The gravitational poten-
tial at a distance r from a massive object is defined as the work done in transporting a
test object of mass 1 kg from infinity to the point of interest. The zero of gravitational
potential corresponds to the test object being located at infinity. The gravitational
potential at a distance r from a mass M is thus given by

U(r)=GM| d—: = —GM[l] =-
<r rl.

GM
r

(4.12)

Figure 4.5 shows a plot of the gravitational potential U (r) versus r for the Earth’s
field. Also shown is the corresponding kinetic energy K of a free-falling 1 kg mass,
which, using mechanical energy conservation, is equal in magnitude but opposite in
sign to the potential energy. For very large r (approaching infinity), both U and K
tend to zero.

While orbiting the Sun, meteoroids and asteroids may encounter a planet such
as the Earth. Observations show that many small meteors, with masses of the
order of kilograms, burn up in the Earth’s atmosphere, producing what are known
as shooting stars at night. Asteroids with masses of thousands of kilograms can
reach the Earth’s surface, giving rise to impact craters. The largest meteor event
in recorded history involved the Tunguska meteor, which exploded over Siberia in
1908. The energy of a meteor of this size corresponds to tens of megatons of tri-
nitrotoluene (TNT).
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FIGURE 4.5 The gravitational potential U in units of 107 J is shown as a function of distance
from the Earth’s surface in terms of r/R_, where R, is the Earth’s radius. Also shown is the
kinetic energy K (= —U) of a 1 kg mass approaching Earth from outer space. Small gravitational
effects due to other objects far from Earth in the solar system are ignored.

The gravitational potential is a scalar quantity, and contributions to it from several
masses can be simply added together. This procedure is easier than adding the gravita-
tional field vectors for a system of several masses. In general, the spatial variation of
the gravitational potential U (x, Vs z) in 3D can be used to obtain the gravitational field
in a given direction by differentiating U (x, y,z) with respect to the corresponding
spatial coordinate. A minus sign has to be inserted since the attractive gravitational
field increases as the spatial coordinate decreases. For the two-body, case depicted in
Figure 4.5, the gravitational field is given by

F, =- r (4.13)

The gravitational field is a vector quantity and is defined as the force per unit mass
exerted on a test mass at a point of interest.

Exercise 4.7: Determine the gravitational potential at a point midway between
the Earth and the Moon. Use U(r) to obtain an expression for the gravitational
field at that point. The Earth’s mass is M, = 5.972 x 10** kg and that of the
Moon is M,, = 7.35 x 10** kg . The Earth-Moon distance is R = 3.84 x 10° and
G =6.67 x 107" N m%/kg?.

The gravitational potential of the Earth—-Moon system at a distance r from

. E M .
the Earth’s centre is U(r)=G —+R For r= R/2 this becomes
r

U(R/Z)z%(ME +M,,).
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Substituting values gives

2X6.67x1071

U= s

(6.05x10%)=2.1x10° J-

Using Equation (4.13), the magnitude of the gravitational field is obtained from

k() du(r) 94 ( M, My )_GM, GM,
r)l=——=-G—| — = —
dr dr\ r R-r r? (R_,‘)2

4G

At the midway point, r = R/2, this becomes F, (R/2)= F(ME —MM). This

expression is consistent with the result obtained directly using Newton’s law
of gravitation for the resultant force on a 1 kg mass produced by two massive
bodies.

Exercise 4.8: A meteorite of mass m from deep space approaches the
Earth. Estimate the velocity of the meteorite when it enters the Earth’s
atmosphere.
GM
From Equation (4.12), the gravitational potential is given by U (r) =— E

Inserting r= R, as an approximation, and the values for G and M from

above, gives U (RE) =—6.25%107 J as can be seen in Figure 4.5. The kinetic

1
energy per unit mass is thus K(RE)/m= 6.25x107 J. Using K =5m v2 it

follows that v(RE) =,/2K (RE )/m =1.1x10* m/s. This is a very high speed of

4 x 10* km/h, in conventional units.

4.4.2 NON-CONSERVATIVE FORCES

In marked contrast to the path independence of the work done by conservative forces, the
work done by non-conservative forces does depend on the path followed when moving
an object from an initial position to a final position. Friction provides an important
example of a non-conservative force. Friction arises when the surfaces of two objects
are in contact, and an applied force acts on one object in an effort to move it across the
surface of the other object as shown in Figure 4.6. The magnitude of a friction force,
which acts to oppose the motion, depends on the materials involved and the nature
of their surfaces. Key surface factors are roughness and the presence or absence of a
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(a) (b)

T

mg mg

FIGURE 4.6 (a) Friction prevents the upper block of mass m from sliding. The static friction
force F, = u_m g exactly counteracts the applied force F. (b) For F'>u, m g the upper block
slides over the lower block and the retarding friction force F, is determined by the Kinetic
friction coefficient with F, = 1, m g. The downward weight m g matches the upward reaction
force R.

lubricating fluid between the surfaces. In discussing the work done by friction forces,
it is implied that relative motion of an object in contact with another, possibly fixed,
surface is occurring and that it is the dynamic friction force which is involved. The dis-
tinction between static and dynamic friction is dealt with in Section 4.5.

Since friction forces always act to oppose motion, it is clear that the work done
against friction depends on the length of the path followed regardless of whether the
path is a closed loop or not. At the atomic or molecular level, the interactions that give
rise to friction forces are electrical in origin. It is very difficult to make quantitative
predictions of friction forces based on microscopic models. An experiment-based,
empirical approach involving what are called the laws of friction is generally used in
describing friction effects. Further details are given in Section 4.5.

Other non-conservative forces include the viscous drag forces that arise when an
object moves through a fluid. In projectile motion, for example, the air resistance drag
force always opposes the motion regardless of whether an object is moving up, down
or sideways in its path. This is in contrast to the conservative gravitational force,
which always acts towards the centre of mass of the object producing the force. It is
worth noting for future reference that viscous drag forces depend on the velocity of an
object moving through a fluid and become larger and larger as the velocity increases.
Since non-conservative forces oppose the motion of a moving object, no part of the
work done by the applied force in moving along a closed path is negative. This is
different from the conservative force case where the work done in the initial part of a
closed trajectory is recovered in a later part of the motion.

4.5 MOTION WITH RETARDING FORCES

The motion of an object produced by a force, such as that due to gravity, may be
impeded by a non-conservative retarding force. As mentioned above, examples of
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retarding forces include friction between solid surfaces in contact and viscous drag on
objects moving through fluids. The work done by a retarding force affects the motion
and spoils mechanical energy conservation. While the total energy is conserved
during motion, it is necessary to allow for the conversion of some mechanical energy
into other forms of energy, particularly heat. The macroscopic features of friction and
viscous drag forces are discussed in this section.

4.5.1 FricTiON

Experimental measurements have established what are called the laws of friction. It
should be borne in mind that these are empirical laws in contrast to fundamental laws
such as Newton’s laws of motion. Nevertheless, the laws of friction are very useful
in dealing with the mechanics of objects which are acted on by frictional forces. As
emphasized in Section 4.4, friction always opposes the relative motion of two objects
that are in contact. The two laws of friction are stated as follows:

e First law: The friction force opposing the motion of an object across a surface
of another object is proportional to the reaction force between the two objects.

e Second law: The friction force between two objects is independent of the area
of contact.

It is also necessary to distinguish between static and dynamic friction. In static
situations, the friction force, denoted F, increases to match an applied force F that
is attempting to slide one object over another. The objects are in static equilibrium
under the combined action of the two forces. When the applied force exceeds the
limiting maximum value of the static friction force, then sliding motion occurs and it
is the kinetic friction force, denoted F, that now opposes the motion. F,_is, in general,
smaller than the maximum value of F

From the first law of friction, it follows that F < pu R where u_is defined as the
dimensionless static friction coefficient and R is the reaction force. If the two surfaces
in contact are horizontal, then R=m g When F > u R the situation is altered, and
F is replaced by the constant kinetic friction force F, given by F, = i, R with y, the
kinetic friction coefficient. Both u and u, are typlcally less than unity, with 1, <.
Representative values are ¢t = 0.6 for aluminium on steel, while ¢, = 0.9 for rubber
sliding on dry asphalt. Surfaces coated with polymers such as Teflon have very low
friction coefficients.

Static friction is depicted in Figure 4.6(a) and kinetic friction in Figure 4.6(b). The
lower block shown in Figure 4.6(b) is fixed while the upper block of mass m can move
across the lower block.

Exercise 4.9: An aluminium block of mass 12 kg rests on a horizontal
steel surface. Determine the maximum horizontal force that can be applied
to the block before it starts to move. Obtain a value for the kinetic friction
coefficient if the block continues to move at a steady speed following a 20%
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reduction in the applied force after the block starts to slide. Take the static
friction coefficient for the aluminium steel interface as p_=0.6 .

The maximum horizontal force that can be applied before the block
slidesis ' =pu m g=0.6x12%x9.8=70.6 N.

When the block slides at a constant speed, the applied force F is equal to
the kinetic friction force F,. This condition gives F=F =u, R=u mg.
Putting £, =0.8X F = 56. 5 N, it follows that the kinetic frlctlon coefficient is
u, = 56. 5/(12>< 9. 8511_ 0.48. Note that the ratio ¢, /u =0.8.

Exercise 4.10: If the steel surface in Exercise 4.9 is tilted at an angle 6 to
the horizontal, find the maximum angle 6 that can be reached before the
aluminium block starts to slide.

The three forces acting on the block are the weight W =m g vertically
downwards, the reaction force F, = m gcos 6 perpendicular to the steel plate,
and the static friction force F, = u_m gcos 6 acting up the plane as illustrated
in Figure 4.7.

The component of the gravitational force acting down the plane is m g sin 6.
The maximum angle 6 that can be reached before the block starts to slide corres-
ponds to the magnitude of the friction force up the plane being equal to the compo-
nent of the weight down the plane, giving m gsin@ —u mgcos6 =0,
This relationship gives tan® =u =0.6, and hence 6 = 31". Note that the
friction force which acts up the plane decreases with increasing 6 while the compo-
nent of the block’s weight down the plane increases.

FIGURE 4.7 The aluminium block is positioned on the inclined steel plane, which
is canted at an angle 6 to the horizontal, and it experiences a frictional force that
opposes its downward motion along the plane. For 6> 6 . the aluminium block
slides down the plane, and when 6= 6_  the forces on the block just balance so that
mgsin@ —u mgcosO =0.
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4.5.2 Viscous DrAG

An object moving through a classical fluid experiences a velocity-dependent
viscous drag force that impedes the motion. A familiar example is the air resistance
experienced when cycling or driving a fast car. In discussing viscous effects in fluids,
it is again convenient to adopt an empirical approach based on experiment similar to
the approach used in describing friction forces. The representative case considered
here deals with air resistance to the motion of an object that falls through the Earth’s
atmosphere.

The work W, done by the drag force on an object in motion from an initial position
i to a final position f depends on the speed of travel and path followed. Experiment
shows that the drag force F acting on an object that is moving through air near the
Earth’s surface is proportional to its speed v.This observation leads to the relationship
F, = Cv where C is a proportionality constant with SI units of kg/s. If the object of
mass m is moving vertically downwards the net force F in the direction of motion
is given by F=m g—F, =m g—C v. The falling mass will increase its speed up to
a terminal constant value v, which is reached when the upward drag force matches
the downward gravitational force. This condition means that m g = C v, and hence

C=mg/v.Putting F=ma leadstom a=m g(l —lJ giving a = g(l ~ 2 |. This
Vl t
expression for a shows that the acceleration decreases steadily towards zero as v tends
to v,. The magnitude of the terminal velocity depends on several factors, including the
size and shape of the particular object and the altitude at which the observations are

made. These factors are taken into account through the proportionality constant C.

Exercise 4.11: An object drops from a height of 1000 m towards the Earth’s
surface and experiences a viscous drag force as it falls through the air. Obtain an
expression for the ratio of the velocity v to the terminal velocity v, as a function
of time. If the terminal velocity v, is 28 m/s how long will it take for the object to
reach 90% of v, ?

Using the equation for the acceleration a = g(l—i] given above and
v
t

. . dv . . . . d .
inserting a = Zv gives the differential equation d_v = g(l—l} Rearranging
t t v

t

. . v d
and integrating leads to Jo—vv = gj;dt, and hence —v, ln(l—l) =gt.

%

vt
expressiong antilogarithms this becomes l=1—exp ~ 8¢ | which is the
% %

required expression. t i
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FIGURE 4.8 The plot shows the time dependence of the ratio of the velocity v of a
falling object, which is subject to air resistance, to its terminal velocity v (=28 m/s). The
exponential growth curve illustrates how a falling body approaches its terminal velocity
following its release from rest in the atmosphere above the Earth’s surface.

This exponential growth form determines how the speed of the
falling object tends to v. Inserting the given value for v leads to

09=1- exp(—%t) = 1—exp(—0.35¢). Solving for ¢ shows that the time to

reach 90 % of the terminal velocity is 6.6 s. Figure 4.8 gives a plot of v/v, versus
t for the falling object.

4.6 ENERGY CONSERVATION AND NON-CONSERVATIVE
FORCES

As discussed in Section 4.4, the law of mechanical energy conservation given in
Equation (4.10) holds for systems in which a conservative force, such as the gravita-
tional force, produces motion of an object. Mechanical energy is not conserved when
friction or some other non-conservative force is involved. To illustrate this point,
consider a block moving under gravity down an inclined plane of length L, which
makes an angle 8 with the horizontal as discussed in Exercise 4.10. The work done by

the component of the gravitational force down the plane is Wg =mgLsin@=mgh
while the negative work done by the friction force acting up the plane is given by

W.=-u,mgLcos@=—u, m g hcotd. The change in kinetic energy, or the net
work done by the combination of gravitational and frictional forces in moving the

block down the plane is AK = W, =W, =mg h (1 -, cot 9). The change in the gravi-
tational potential energy is simply AU = Wg =m g h. It follows that AK < AU with

a fraction of the gravitational potential energy being converted into heat and not into
kinetic energy of the sliding block.
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A striking example of non-conservation of mechanical energy involves the
sliding motion of an object at constant velocity down an inclined plane, which
makes a carefully selected angle with the horizontal. Under the combined action of
the conservative gravitational force component down the plane and the equal and
opposite non-conservative kinetic friction force, which acts up the plane, the object
moves at a steady speed once motion is started with a small push. No change in the
kinetic energy of the object occurs and all the work done by gravity is converted
into other forms of energy such as heat. While energy in all its forms is conserved,
the mechanical energy, which is made up of potential energy and kinetic energy,
is not. The general law of energy conservation for this type of process then has
the form,

AK =-AU -|W| (4.14)

The magnitude of W, and the minus sign are used in Equation (4.14) to emphasize that
retarding forces such as friction do negative work on a moving object.

As emphasized above, the great importance of the law of mechanical energy
conservation is its general applicability to objects in motion under the action of
conservative forces. For example, it is easy to analyse the motion of an object
which moves on a curved path along which potential energy is converted to kinetic
energy. This feature is lost when non-conservative forces are involved. To illus-
trate the point, it is instructive to consider the motion of an object down a curved
slide firstly with zero friction and secondly allowing for friction. This is done in
Exercise 4.12.

Exercise 4.12: A curved slide is shaped in the form of a quadrant of a circle
of radius R as shown in Figure 4.9. If a small object, represented by a block, is
released from rest at the top of the slide find the object’s velocity at the bottom
of the slide, firstly by ignoring friction, and secondly by allowing for kinetic
friction.

In the case of zero friction, mechanical energy of the sliding object
is conserved. The condition AE=AK+AU =0 leads to the relationship
%m v —m g R=0. The speed of the object at the bottom of the slide is given
by v = \/Zg—R along the horizontal direction. The change in kinetic energy is
given by AK = %m vi=mgR.

When the friction force is non-zero, mechanical energy conservation no
longer holds. With allowance for W,, the work done by the varying friction

force, Equation (4.14) applies with AK = -AU — |Wf| . The determination of W,

involves summing infinitesimal contributions dW, = —u, m gcos 0dL from a
succession of intervals dZ down the slide. The angle 6 is the angle that a tangent
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FIGURE 4.9 A small object of mass m moves down a curved slide, made in the form of
a quadrant of a circle, and effectively falls through a vertical height 2 = R. The velocity
at the bottom depends on a position dependent kinetic friction force which opposes the
motion. It is assumed that the flexible object always makes good contact with the curved
surface.

to the curved slide makes with the horizontal direction at a given point. Putting
dL = —R d6, and converting the sum to an integral, leads to

0 . 0
W =u, mgj-mcoseR d@=p, mgR[sin6|  =-u mgR

As expected, W, is negative. The change in kinetic energy is therefore

1
AK = Em vi=mg R(l— uk) and the speed at the bottom of the slide is

v=,2¢ R (1 —u, ) This result shows that the final speed is reduced by a factor

\ (1 - uk) compared to the case of zero friction.

Note that the choice of shape, the quadrant of a circle, for the slide is
made to simplify the integral. The point of this exercise is to demonstrate that
calculations based on Equation (4.14) are, in general, not simple to carry out.
Numerical methods may be necessary in such cases.



5 Circular Motion

5.1 INTRODUCTION

Circular motion is concerned with the motion of objects which are subject to a cen-
tral force constraint. Examples include planetary motion about the Sun and satellite
motion about the Earth. In these cases, the orbits may not be exactly circular but
rather elliptical as discussed below. The perfectly circular motion of a mass which is
attached by a cord to a support on a flat horizontal frictionless table provides an easily
visualized model system for analysing this type of motion.

In dealing with the dynamics of circular motion of an object, it is necessary to
introduce angular variables including angular velocity and angular acceleration. It is
then straightforward to obtain the modified kinematic equations for constant angular
acceleration situations. The introduction of the concept of angular momentum
and the generalization of Newton’s laws to angular motion provides the basis for
understanding the properties of rotating systems. The results obtained are of import-
ance in many branches of science and engineering.

5.2 ANGULAR VARIABLES FOR ROTATIONAL MOTION

In order to describe rotational motion, it is natural to introduce angular coordinates.
Consider an object undergoing circular motion about a fixed point which is taken as
the origin of a set of Cartesian axes. The object’s position is specified by the angle
6 between a reference direction, which is labelled as a coordinate axis, and the line
drawn from the centre of the circular path to the position of the object as illustrated
in Figure 5.1. Note that 6 is chosen to be the polar angle that the radius r makes with
the y-axis. The angle is measured in radians, with 1 radian corresponding to the angle
subtended by an arc of length equal to the radius of the object’s circular path. In
degrees, 1 radian is (r/27rr) %x360° = 57.3" In Figure 5.1, the angle 6 = 1 radian would
correspond to the arc length PQ being equal to the radius 7. It follows that in general
0= s/rwith s the arc length PQ. The angular displacement over a time interval Az is
givenby AB= 6, — 0. where 6. and 6, are the initial and final orientations, respectively.
The arc length s traversed by the moving object is s = r A6.
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-

FIGURE 5.1 Coordinates r and 6 that are used to describe circular motion of an object about
a fixed point at the origin O. The arc length of the segment PQ is given by s =6 with 6 in
radians.

The instantaneous angular velocity of an object executing circular motion is

. AO d6 . . . .
defined as w= ilrr%) I = d_ and is measured in radians/s. Note that radians are
= t t

0
dimensionless. The instantaneous velocity of the object is given by V=7 ( a J =or
and is represented by an arrow drawn as a tangent to the circular path at the point of

. o . oo dw
interest. Similarly, the instantaneous angular acceleration is o= . For constant
t

a, the circular motion is described by the rotational kinematic equations given in
Section 5.3.

Exercise 5.1: A cyclist speeds around a circular cycle track of radius 60 m
covering 20 laps in 10 minutes. Determine the average angular velocity and
the average speed of the cyclist.

AO  20x2rm

At 600
are abbreviated as rad. The average speedis v= @ r =0.21x60 =12.6m/s .

= (.21rad/s. Note that radians

The average angular velocity is @ =

5.3 ROTATIONAL KINEMATICS

The derivation of the kinematic equations for circular motion with constant angular
acceleration o follows similar mathematical steps to those used to obtain the linear
kinematic equations discussed in Chapter 2. Integration of the angular acceleration

. dw . . . . . .
equation or = m after it is rewritten as d@w = & dt gives the first rotational kinematic
t

equation:

w=0,+ot 5.1
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where @ is the angular velocity at 7 = 0. Integration of Equation (5.1) leads to the
second rotational kinematic equation,

1
9=a)0t+506t2 5.2)

The third equation is obtained by squaring both sides of Equation (5.1), and then
using Equation (5.2) multiplied by 2¢ to eliminate #. This procedure results in the
third kinematic equation,

@ = a2 +20 6 (5.3)

The forms of the three rotational kinematic equations are similar to the linear kine-
matic equations, with @, @ and 6 replacing a, v and x respectively.

Exercise 5.2: If the cyclist of Exercise 5.1 accelerates uniformly for 5 s and
increases the angular velocity of the cycle by 0.05 rad/s, what is the angular
acceleration? What is the angular displacement in this period? What distance
on the track does the cyclist cover while accelerating?

Rearranging Equation (5.1) leads to the following expression for the angular

acceleration ¢ = (a)— a)o) /t =0.05/5 = 0.01rad/s? . Equation (5.2) then gives

the angular displacement during the 5 s period as 6= t+%o¢ 2 =0.21x

1
5+ 5 x0.01x25=1.17rad. The distance covered while accelerating is
s=r 8=60x1.17=702m .

5.4 CENTRIPETAL ACCELERATION

An object in circular motion with constant angular velocity @ about a fixed centre
point experiences constant acceleration towards the centre. While the magnitude of
the velocity remains constant the direction of the velocity vector is continually chan-
ging. The constant acceleration is produced by a constant central attractive force such
as the gravitational attraction experienced by an Earth satellite or the tension in a cord
attached to a whirling object. The acceleration is called the centripetal acceleration.
As shown below, the acceleration depends on the square of the angular velocity of the
object and on the radius of the circular path.

Figure 5.2(a) depicts an object moving with angular velocity @ in a counterclock-
wise circular orbit of radius r about fixed centre point O. The arrows labelled v and
v, , which are drawn as tangents to the circle at points a and b, represent velocity
vectors, each with length proportional to v= @ r, at two instants separated in time
by At, which is chosen to be small compared to the time 7" taken for a complete orbit.
The angular displacement of v withrespectto v, is 8= @ At.The vector diagram
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(a) (b)

0= At addition of v, and Av
to give v,

FIGURE 5.2 (a) The circular path depicts an object undergoing circular motion with angular
velocity @. Instantaneous velocities v, and v, at points ¢ and b are shown for times 7 and
t+ At. (b) The plot shows that vector addition of v and the incremental velocity change Av
gives A\ The centripetal acceleration a = Av/At for At — 0 is directed towards O at the
centre of the circle.

in Figure 5.2(b) shows that over the short time Az the velocity v is altered by the
addition of a vector of magnitude Av = v 6, which is directed along the radial direction
towards O, giving v, . The corresponding radial acceleration, directed towards O, is

. . . . . Av .
the centripetal acceleration with magnitude a. = lim —=v—=v®. Using v=wr
At—0 At dr

leads to the following relationship between a. and ®

a.=wr (5.4)

Equation (5.4) is an important result in describing circular motion. Note that the rela-
tionship can be written in terms of the speed as a = v?/r.

The application of Equation (5.4) to the motion of satellites around the Earth, or
to the orbits of planets around the Sun, involves using the gravitational force F, and
centripetal acceleration. While planetary orbits are in general elliptical, some of those
orbits, including that of the Earth, are close to circular. These cases can be modelled
by considering a small mass m executing circular motion around a large mass M in
an orbit of radius . Newton’s second law together with the law of universal gravita-
tion leads to F, = Gr# =m ? r. This result gives the following expression for the

angular velocity:

GM

(5.5)

S
Il

The time for a complete circular orbit of the satellite or planet is 7 = 27/ @.
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Exercise 5.3: A satellite orbits the Earth at a low altitude of 250 km. Determine
the angular velocity and the speed of the satellite. Take M, = 5.97 x 10** kg and
R, =6.37 x 10° km.

,GM
Using Equation (5.5), the angular velocity is given by w= E =

R
(6.67x1071)%(5.97 x10*) , .
S =1.24 X107 rad/s. The speed is v= R = (1.24 x
(6.37x109)

10%) x (6.37 x 10 = 7.9 x10° m/s.

A further discussion of Earth satellites is provided in Section 5.10.

5.5 ANGULAR MOMENTUM

While linear momentum is clearly not conserved for an object undergoing circular
motion, because the velocity is continuously changing direction under the influence of
a central force, there is a quantity called the angular momentum, which is conserved
in this situation. For a mass m undergoing circular motion with radius » and constant
tangential speed v about a central point O, the magnitude of the angular momentum
about O, denoted by [, is taken as [ = mvr = m @r?. Note that the vectors r and v
are perpendicular to one another. For reasons that will become clear, the angular
momentum is defined as a vector quantity. In contrast to the linear momentum vector,
p = m v, which changes with time in circular motion as the velocity changes direction,
the angular momentum vector | is a constant of motion as discussed in Section 5.6.

The ST units for angular momentum are kg m? s' or, more conveniently for many
purposes, J s. In macroscopic rotating systems, the angular momentum can take on a
continuous distribution of values. This is no longer the case at the atomic scale where
angular momentum is quantized in terms of Planck’s constant /& =6.63x107*Js,
leading to a discrete set of quantum states. The famous Bohr model of the atom,
which involves quantization of angular momentum, can explain the spectroscopic
feature of light emitted by hydrogen gas in a discharge tube. While this simple model
breaks down for heavier atoms, the quantization ideas played a key role in the subse-
quent development of quantum mechanics.

It is useful to consider a generalized definition of 1, which allows for situations in
which the vectors v and r are not mutually perpendicular but subtend an angle 6 as
shown in Figure 5.3. This situation arises, for example, when the angular momentum is
required about a point that is not at the centre of rotational motion. Note that in Figure 5.3
the vectors are drawn so that their tails coincide. In the generalized definition of angular
momentum about some chosen point, it is the component of v perpendicular to r that is
important, and the magnitude of the angular momentum takes the form /= mvrsin 6. It
follows that [ increases from zero for 6 = 0 to a maximum value m v r for 6 = /2.

Angular momentum exhibits vector properties that are quite different from those of
the linear momentum p =mv of a mass m moving with velocity v in a fixed direc-
tion. In the case of angular momentum, it is necessary to consider the product of two
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FIGURE 5.3 The angular momentum of mass m about point P is /=mvrsinf and is
represented by a vector directed perpendicular to the plane containing the position and
momentum vectors r and p.

vectors. This is done using vector product notation and rules, which are introduced in
the following section.

5.6 THEVECTOR PRODUCT AND ANGULAR MOMENTUM

As introduced in Chapter 2, the scalar product of two vectors a and b that subtend
an angle 6 is defined as a-b=c=abcos6. This form gives a scalar result, which
involves the product of the magnitude of the component of vector a projected onto b
with the magnitude of b. The same result is obtained using the magnitude of the com-
ponent of b projected onto a with the magnitude of a. The scalar product is useful,
for example, in calculating the work done by a force that displaces an object along a
direction that is not parallel to the force.

The vector product, or cross product, of vectors a and b is defined as ¢ = a Xb where
¢ is a vector of magnitude a bsin 6 oriented perpendicular to the plane containing a
and b as shown in Figure 5.4. The magnitude is given by the perpendicular compo-
nent of a with respect to b multiplied by the magnitude of b. The vector product is
useful in many situations and, in particular, when discussing angular momentum. The
following rule, known as the right-hand rule, is used in establishing the direction of
vector ¢. If the fingers of the right hand are curled in the rotation sense (clockwise
or counterclockwise) in turning from a to b, then the direction of ¢ is given by the
direction of the thumb. For the vectors a and b depicted in Figure 5.4, the fingers will
curl counterclockwise (as indicated by the curved arrow) in rotating from a to b with
the thumb pointing upwards. The resultant vector ¢ is aligned along the +z direction.
Interchanging the order of vectors in the vector product would change the sense in
which the fingers of the right-hand curl, from counterclockwise to clockwise, with the
thumb pointing downwards. It is convenient to introduce the cross-products of the unit
vectors in 3D. Using the definition of the cross-product givesixi= jx j=kxk =0
withix j=Kk, jxk =1i,and k Xi = j. In Figure 5.4, the vectors can be written in terms
of components as a = a i+ay Jj b= b, i+by j.andc= c, k.
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Vector product
c=axh

FIGURE 5.4 The vector product of vectors a and b is defined as a X b = ¢ with resultant vector
¢ oriented perpendicular to the xy-plane containing a and b. Vector c is directed according to
the right-hand rule as described in the text. The tails of the vectors are made to coincide.

Using vector product notation, the angular momentum of an object of mass m
undergoing circular motion with speed v and radius r is given by

l=mr><v=r><p=(mrvsin9)ﬁ=mrvﬁzmr2 on (5.6)

In Equation (5.6), n is a unit vector normal to the rv-plane with direction given
by the right-hand rule. The angle 6 = 71/2, since the vectors r and v are orthogonal as
shown in Figure 5.5. Equation (5.6) can be written as 1=mr? @ with the angular
momentum vector 1 and angular velocity vector @ aligned parallel to the axis of
rotation and perpendicular to the plane of motion. The tails of I and @ coincide
with the tail of r.

Equation (5.6) shows that the angular momentum / is proportional to the
angular velocity @ since v = @ r . In dealing with the rotational motion of objects,
it is useful to introduce a quantity / called the moment of inertia. For a system
consisting of a mass m at radial distance r from the axis of rotation I = mr2. Like
the mass of an object, the moment of inertia is a scalar quantity and is essential
for discussing rigid body dynamics as will be shown in Chapter 6. For a system
of several particles i with masses m, at positions r. with respect to some reference
point, such as the selected origin, the moment of inertia is defined as [ = Zmi rf .
For continuous systems, the summation is replaced by an integral over volume
elements in the object of interest. As shown in Section 5.7, the moment of inertia
plays a crucial role in modifying Newton’s second law to apply to rotational
dynamics.

With the introduction of 7, Equation (5.6) for the angular momentum becomes
I=mr?>own=1on. Just as the linear velocity v is a vector, so too is the angular
velocity @ = wn, which, like the angular momentum 1, is directed along the axis of
rotation. The vector product relationship v =@ x r links v and @.
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FIGURE 5.5 The angular momentum 1 of an object of mass m moving with constant speed v
in a circular trajectory about a fixed point is given by the vector productl=r xp=mrxv. If
r and p are in the xy-plane, as illustrated, then the angular momentum vector is directed along
z, which points upwards out of the page.

5.7 NEWTON’S SECOND LAW FOR ROTATIONAL MOTION

Newton’s second law F = ;12 = ma for linear motion of an object of mass m relates
t

the rate of change of linear momentum p=mv to an applied force F. A similar
relationship holds for the angular momentum 1 with the second law expressed as

= % =1 Cii_(;) =] a where I is the torque producing the change in 1, @ is the angular

velocity, & is the angular acceleration, and [ is the moment of inertia as defined in
Section 5.6. Justification for this modified form of Newtons’ second law, I = [ e, is
given below.

Consider a simple system consisting of an object of mass m attached to a pivot
by a very light rod, of length r and negligible mass. The object is caused to undergo
circular motion about the pivot. In order to change the angular momentum of the
rotating mass, it is necessary that a rotating force, called a torque, be applied to
the mass itself or to a point on the rod or in some other way involving the pivot.
Experience shows that a rotating force becomes most effective when, firstly, the
point of application is moved outwards from the pivot towards the mass and, sec-
ondly, the force is kept perpendicular to the rod. This suggests that the torque vector
be defined as T'=r xF = (r Fsin¢)n with ¢ the angle subtended by vectors r and F.
The torque is a maximum for ¢ = /2 when r is perpendicular to F. The right-hand
rule then shows that the torque vector is aligned along the rotation axis. As indicated
above, a convenient way to apply such a torque for this simple mass-rod system is
to attach the radial light rod to a vertical drive shaft, which can be caused to rotate
by a drive mechanism. Ideally, the drive mechanism should be capable of being
decoupled when necessary to allow free rotation of the mass and rod with constant
angular velocity.

The considerations given above for a system consisting of a mass attached by a
light rod to a pivot suggest that for rotational motion Newton’s second law should be
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modified by replacing the force F by the torque I" = r X F, and the linear momentum
p by the angular momentum 1 = r X p. This procedure gives Newton’s second law for
rotational motion as

_dl_ do _

I'=—=1—=I«
dr dt .7

This generalization of Newton’s second law is of fundamental importance in
considering the dynamics of rigid bodies, as discussed in Chapter 6.

Note that if opposing torques of equal magnitude are applied to a body that can
undergo rotational motion, then no motion will occur. The system remains in static
equilibrium.

Exercise 5.4: An object of mass 2 kg is attached by a rod of negligible mass
and length 50 cm to a central pivot. The mass is supported by a low-friction
horizontal air table and is caused to undergo circular motion. If the mass makes
20 revolutions per minute, what is the central force exerted by the rod on the
mass? If a torque of 10 N m is applied to the system via a vertical shaft aligned
along the axis of rotation, how long will it take to double the angular velocity
of the rotating mass?

Initially the time for one revolution is 7 = 60/20 = 3s and the angular vel-
ocity is @=2n/T =2n/3 =2.09rad/s. The acceleration towards the centre of
rotation is a. = @* r = 2.09% X 0.5 = 2.18 m/s*. The central force exerted by the
light rod on the rotating mass is F =ma, =2x2.18 =4.36N.

The moment of inertia of the rotating mass-rod system about the rota-
tion axis is I=mr*=2x0.25=0.5kgm?>. The angular acceleration is
a=T/I=10/0.5=20rad/s>. From the first rotational kinematic equation,
®= o, +at as given in Equation (5.1), it follows that the time taken for the
angular velocity to double is 7 = (a)— wo)/a =2.09/20=0.1s.

5.8 ROTATIONAL KINETIC ENERGY

By adapting the expression for the kinetic energy of a mass m undergoing linear
motion, as given in Chapter 4, the kinetic energy of a mass m undergoing circular
motion with angular velocity @ and radius r is written as

K=lmvz=lmco2r2=llw2 (5.8)
2 2 2

with I = mr? the moment of inertia about the rotation axis as given in Section 5.4. The
angular velocity of the object can be increased by applying a torque that does work
on the system. If friction effects are negligible, the work done by the applied torque
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in increasing the angular velocity from @, to @ ’ is equal to the change in the kinetic

energy, gl\/lng

It is now necessary to obtain an expression for W in order to connect the applied
torque to the corresponding change in K. In the case of a linear displacement, the
work done by an applied force F in moving its point of application through a dis-
tance Ox parallel to the force is given by F dx. The expression for the work done by
a torque involves the angular displacement it produces. Consider the simple rotating
system consisting of a mass undergoing circular motion, as dealt with previously in
Section 5.7. The work oW done by torque I in producing an angular displacement 66
of the mass is SW = I" 6. This result is obtained as follows. Consider a force F acting
on the mass at some point in its circular orbit. The tangential component of F' in the
plane of motion, designated F' since it acts perpendicular to the radius r, does work
W =F r80=(rxF)-nd0=(rFsing)66=T 66 where, as an approximation, it is
assumed that for small 86 the orbital displacement r 86 is approximately linear. The
angle ¢ = 7/2 since r and F are perpendicular to one another. The total work W done
by a constant torque I" in a large angular displacement is obtained by summing the
elementary contributions W. Converting the sum to an integral gives the required
result,

W=[,rdo=r(6,-6)=Ta0 (5.10)

Taken together, the expressions for W given in Equations (5.9) and (5.10) lead to the
following relationship:

W:FAe):%I(a)ﬁ—wz) (5.11)

1

For a mass undergoing circular motion, Equation (5.11) relates the work done by an
applied torque to the change in kinetic energy AK expressed in terms of the moment
of inertia and the change in the square of the angular velocity.

Exercise 5.5: A mass of 8 kg, which is attached by a light rod of length
60 cm to a central pivot, executes circular motion on a horizontal low friction
air table at 45 revolutions per minute (rpm). If a braking torque of 0.4 N m is
applied to stop the motion, how many revolutions will it take for the mass to
come to rest?

From Equation (5.11), the angular displacement which occurs during the

1)

braking period is given by Af= T Note that a sign change has been
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made because the applied torque slows the rotational motion. The moment
of inertia is I=mr?>=8x0.6> =2.88kgm?, and the initial angular vel-

(45%27)

ocity is @, = =4.71rad/s. Substitution of these values for I/ and

o, into the previous expression for the angular displacement gives
AG= 2.88%x7.34
2x0.4

=26.4rad , or 4.2 revolutions.

Many of the results obtained for a small object of mass m undergoing circular
motion can be generalized to the rotation of large rigid bodies which are regarded as
collections of elementary masses. The concepts of angular displacement, angular vel-
ocity, angular acceleration, torque, and moment of inertia are readily extended to the
pivoted motion of large objects. Chapter 6 deals with rigid body dynamics.

5.9 PLANETARY MOTION AND KEPLER’S LAWS

The Earth orbits the Sun along a path that is close to circular but is actually slightly
elliptical. The law of universal gravitation was used by Newton to explain the
orbital motion of the Earth and the other planets about the Sun in mathematical
terms following the establishment of details of the trajectories by Johannes Kepler
in the seventeenth century. Kepler’s analysis of Tycho Brahe’s careful astronomical
observations led him to summarize his findings on planetary orbits in three famous
laws which are stated below.

* Kepler’s first law: The planets follow elliptic orbits about the Sun with the
Sun at a focal point.

* Kepler’s second law: A line from the Sun to a planet sweeps out equal areas in
equal times.

e Kepler’s third law: The square of a planet’s orbital period is proportional to the
cube of the semi-major axis of its elliptic path.

Figure 5.6 shows a representative elliptic orbit with two focal points, labelled F, and
F, and the Sun located at F.

The form of an elliptic orbit is determined by a quantity called the eccentricity,
which is defined as € = v a? — b? /a with a the length of the semi-major axis and b that
of the semi-minor axis. If b = a, then € = 0 and the orbit is circular. Otherwise, elliptic
orbits have b < a, and € > 0 with a maximum value of unity. The orbit in Figure 5.6
has £=0.63. Only two of the eight planets in the solar system, Mercury with €= 0.2
and Mars with €= 0.09, have eccentricities greater than 0.06. Venus, €= 0.01, and
Earth, €= 0.02, both have very low eccentricities. Interestingly, the almost circular
orbits of the planets lie roughly in the same plane called the ecliptic plane. This fea-
ture suggests that the planets were formed from a disk of material that originally
encircled the Sun.
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Elliptical Planetary Orbit

FIGURE 5.6 A representative elliptical planetary orbit with the Sun located at the focal point
F,. Apart from the planet Mercury, the orbits of the planets in the solar system are close to
circular and only slightly elliptical.

Kepler’s first and third laws are a direct result of the inverse square law of gravita-
tion. With regard to the first law, it can be shown that there are four different trajec-
tories which can arise when an object of mass m is in motion in the gravitational field
produced by a very large mass M. These possible trajectories are circular, elliptic,
parabolic, and hyperbolic. Only the circular and elliptic orbits are closed. Parabolic
and hyperbolic trajectories correspond to the deflection of a high energy object which
then heads off into deep space.

For circular orbits, it is straightforward to show that Kepler’s third law can be
explained by using Newton’s second law of motion together with the law of uni-
versal gravitation. Although it is convenient to assume that the planet’s orbit is cir-
cular in order to simplify the analysis, Kepler’s third law applies quite generally to all
closed orbits. From Equation (5.4), the centripetal acceleration for a circular motion

2
2r
of radius r is a=—r= (?) " where T is the orbital period. Newton’s second

2
law gives G]Vzlm = m(z?n) r and it follows that
r

47
GM

T2: 3

7

(5.12)

This is the required result to justify Kepler’s third law.
The area of the triangle that is swept out in a time ¢ by a line of length r connecting
an orbiting planet to the Sun at focal point F,, as shown in Figure 5.6, is given by

1 . . . . .
SA = E(r sin ©)v 8. Since the instantaneous linear momentum is p = mv, the rate at

which area is swept out can be written as follows:

6A 1rpsing 1
oA _lrpsin®_ 1.
o 2 m 2m
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Using the expression for the angular momentum 1 given in Equation (5.6) leads
to the relationship

A
oA - (5.13)
o 2m
Since the gravitational force acts along r towards the Sun, there is no torque to change
the angular momentum of the planet about the Sun. The right-hand side of Equation

OA . .
(5.13) is therefore constant, showing that 5 is constant as required by Kepler’s
!

second law. Newton’s explanation of Kepler’s laws of planetary motion using the
gravitational inverse square law also applies to the orbital motion of both satellites
and the Moon about the Earth. Newton could offer no explanation for the underlying
mechanism, which gives rise to this inverse square law involving interaction at a dis-
tance between objects with mass. The law is introduced as a requirement to account
for experimental observations. In the early twentieth century, Albert Einstein put for-
ward his general relativity theory, which provides a deeper insight into gravitational
phenomena. For example, general relativity predicts the existence of gravitational
waves, which travel at the speed of light and can arise from the interaction of massive
bodies including neutron stars or black holes. These waves were first observed in
2015 using extremely sensitive detectors. The detected waves had travelled a dis-
tance of 1.4 billion light years to reach the Earth and were attributed to the merging
of two black holes with masses of around 30 and 35 solar masses. Gravitational wave
detection has opened up a new field of astronomy. The law of universal gravitation
used by Newton is obtained as a prediction of Einstein’s general relativity theory for
applications involving interactions between well-separated massive objects such as
those in the solar system. The amplitudes of the gravitational waves emitted by these
interactions are much too small to be detected by the most sensitive detectors that
have been constructed.

5.10 SATELLITE ORBITS

The gravitational interaction plays a central role in describing the structure of the
universe. Each galaxy has a massive black hole at its centre, around which stars orbit.
For example, the Sun in our Milky Way galaxy is 25 x 10° light years from the galaxy
centre and takes 250 x 10° years to complete an orbit. On a more modest scale, the
motion of the Sun’s planets, including the Earth plus its satellites, are well described
by Newton’s law of universal gravitation. Important examples of the Earth’s satellites are
the International Space Station, the Hubble Space Telescope, and navigation and wea-
ther satellites. The James Webb infrared telescope, which released its first images in
2022, has opened up new opportunities for deep space astronomy. The trajectories of
Earth-orbiting satellites are in many cases close to circular and have altitudes / above
the Earth’s surface ranging from low-Earth orbit (h <2000 km), through medium-
Earth orbit (2000 < h<36,000 km), to high-Earth orbit (h > 36,000 km). Illustrative
examples are given below. While satellite orbits may not be circular, and some are
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markedly elliptical, it will, for simplicity, be assumed that the orbits are to a good
approximation circular.

Exercise 5.6: A geosynchronous weather satellite orbits the Earth once per
day keeping its position directly above a chosen place on the Earth’s surface.
What is the radius R of the satellites circular orbit? Determine the angular
velocity of the satellite. Take G = 6.67 x 10™"' N m*/kg” and M, = 5.97 x 10> kg.

The universal gravitation law, together with Newton’s second law for a mass
m undergoing circular motion about the Earth, leads to the expression given

47

in Equation (5.12), which here takes the form 72 = R3, where T is the

g
orbital period and M_ is the Earth’s mass. Rearranging gives

_GMy ., _ (6.67><10“ x5.97x10*

R} = % (24 %3600)> = 7.5x10%*> m?
42 39.48

The radius measured to the centre of the Earth is thus R =4.22x10* km.

Allowing for the Earth’s radius R, = 6370km gives the geosynchronous alti-

tude above the Earth’s surface as roughly 36 x 10° km. The angular velocity of

2

=———— =7.27x107 rad/s.
24 %3600

the satellite is = v/R = (MTR) /R

Exercise 5.7: The International Space Station is in a low Earth orbit with a
radius that can be approximated by the Earth’s radius. Determine the orbital

period of the Space Station.
2

Inserting numbers into Kepler’s third law expression, 7% = R3, gives

E

39.48 3
= (6.67 X107 x5.97 x10* )X (6'37X106) =200

The Space Station’s orbital period is 7 = 5060 s = 84 minutes .

2

4
Note that for all the Earth’s satellites, the quantity T_ 9.90x107 s%/m?is a con-

E
stant whose value is determined by the mass of the Earth, M, and the gravitational
constant, G.
Most of the Earth’s satellites are in low-Earth orbit, while weather satellites and
global position satellites are in medium-Earth orbit. The Moon, which is a natural
high-Earth orbit satellite, with an average orbit radius R, =3.85x10° km, has a
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period 7, = 28days. It should be noted that the Earth and a satellite orbit about their
common centre of mass, which for comparatively low-mass artificial satellites is
very close to the centre of mass of the Earth. This closeness no longer holds for the
orbiting Moon, which has a mass roughly one-hundredth that of the Earth. For the
Earth-Moon system, the centre of mass is about 4670 km (~ 0.73 R,)) from the Earth’s
centre. The centre of mass concept for extended objects is discussed in Chapter 6.



6 Rigid Body Motion

6.1 INTRODUCTION

The development of a physical understanding of the rotational motion of extended
objects such as wheels, rollers, and gears, is of considerable practical importance.
While it might seem that the variety of shapes and sizes of rigid bodies would lead to
complexity in analysing their rotational dynamics, it is possible to give a generalized
description in terms of the unifying concepts that are introduced in Chapter 5 for
dealing with the circular motion of a localized mass subject to a central force. For
example, the concepts of angular displacement and angular velocity of the many
elementary pieces that make up a rigid body play a central role in the description of
the rotational motion of such bodies.

In dealing with rigid body motion, it is instructive, as a starting point, to consider
the conditions for these objects to be stationary in a particular frame of reference as
discussed in Section 6.2. It is then necessary to define both the centre of mass and
the moment of inertia for these bodies. Generalization of Newton’s second law to the
translational and rotational motion of extended objects, together with the concepts of
work and kinetic energy for rotating systems, provides the basis for dealing with a
large variety of situations, including the spinning of disks and the rolling motion of
cylinders.

6.2 EQUILIBRIUM CONDITIONS

Consider a rigid body that is acted on by a combination of external forces F, and
torques I',. If the object is at rest in a chosen frame of reference, the following two

static equilibrium conditions must hold in that frame: ZE =0 and ZFI. =0, where

the summations signify the vector sums of forces and torques, respectively. While
internal forces, due to interactions between the constituent atoms, are present at
the microscopic level in the material of the body, these forces obey Newton’s third
law and cancel in pairs. Internal forces therefore play no role in the macroscopic
translational or rotational motion of a rigid body. If one, or both, of the equilibrium
conditions are not met, the body will execute translational and/or rotational motion as
given by Newton’s second law.

78 DOI: 10.1201/9781003485537-6
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As a simple illustrative example of static equilibrium, consider a uniform rod
which is stationary on a horizontal surface situated near the Earth’s surface, with the
downward gravitational weight force matched by an equal and opposite upward reac-
tion force from the tabletop. If a horizontal force F is applied at the midpoint of the
rod, it will start to move unless an equal and opposite force is applied to match the
force F. Alternatively, two opposing forces of magnitude F/2 could be applied near
the two ends of the rod, which would also balance both the torques and the forces on
the rod. Many other equilibrium arrangements could be considered, as discussed in
detail in Section 6.7.

6.3 CENTRE OF MASS AND CENTRE OF GRAVITY

Tracking the motion of the centres of mass of rigid bodies in motion is important in
developing an understanding of the dynamics of extended objects. For example, when
considering the motion of a satellite in orbit around the Earth, it is necessary to grasp
that the motion of the two bodies occurs about their common centre of mass. Because
the Earth’s mass is so much larger than that of a satellite, the centre of mass is close to
the centre of the Earth, but not exactly at its centre. This situation is discussed in Section
6.3.1. A related concept to that of centre of mass is that of centre of gravity, which involves
the torques on a rigid body situated, for example, in the Earth’s gravitational field. If the
gravitational field is uniform, then the centre of mass and the centre of gravity coincide.

6.3.1 CENTRE OF Mass

In introducing the centre of mass, it is convenient to consider firstly a set of discrete
masses m, where i =1,2,3,..., with position vectors r in 3D space. Denoting the pos-
ition of the centre of mass in a chosen coordinate system by r,,, and requiring that
the discrete masses be distributed about the centre of mass according to the condition

Zmi (rl, —Ty ) =0, gives th r—T., Zml. =0, and hence
i i

Foy =2 3 ©1)

where M = Zml. is the total mass of the system.

Consider two masses m, and m,, with m, >m_and their centres separated by a
distance L as illustrated in Figure 6.1. The vector r joins the centre of mass 1 to the
centre of mass 2.

By symmetry, the centre of mass lies on the direction of r. The origin is chosen to
be at the midpoint, a distance L/2 from each mass, with the centre of mass at Ty The
use of Equation (6.1) gives the position of the centre of mass as

1 1
r _(—2m1L+2m2LJ_(m2—ml)£ 62)
o (ml+m2) _(ml+m2)2 '
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Masses m, and m, Separated by L

O L2 o L2
1 = - 2
midpoint r

m;
m,

FIGURE 6.1 The position of the centre of mass for the two masses m, and m, whose centres
are separated by a distance L is given by Equation (6.2).

If m; = m,, then r,,, =0 and the centre of mass is at the origin, midway between the
two masses. For m, > m,, Equation (6.2) shows that r,, = L/2 which is close to, or
even inside, the large mass m, as expected. In general, it follows that the centre of
mass lies in the range given by 0 <r_ < L/2. Note that the choice of origin position
is arbitrary, and equivalent expressions to those given above for r,, can be obtained
using other origin locations.

For continuous mass distributions, it is necessary to replace the summation in
Equation (6.1) by an integral over the volume of the rigid body involved. Equation
(6.1) becomes

1
r., = M_[p(r) rdv (6.3)
Vv

where p(r) dV is a mass element at r with volume dV and local mass density p(r)
. For homogeneous materials, p(r): p=M/V is a constant characteristic of the
material. Equation (6.3) then takes the form

r, = é jr av (6.4)
\4

In 3D Cartesian coordinates, dV = dx dy dz, and the integral becomes a triple integral over
x, y, and z. The position of the centre of mass is given by r,, = x.,, i+ Yy, J+ 2y K-
Use of Cartesian coordinates in Equation (6.4) leads to the integral for x,, as

Xy = &J‘”‘x dx dy dz (6.5)

Similar integrals are obtained for y,, and z,,. The upper and lower limits in each
integral are connected to the corresponding dimensions of the body.
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Exercise 6.1: Determine the position of the centre of mass of a solid cube of
edge length L using Cartesian coordinates to specify the shape.

L 1L,
The volume of the cube is V =I’. Equation (6.5), with ”dy dz =12
00

: L r () L
gives x,, = VJ.X dx = —X(;) = Bk
This result shows that the centre of mass is at the midpoint along x. In similar
fashion y., =z, = L/2 and it follows that the centre of mass is located at the
geometrical centre of the cube.

For symmetrical objects such as spheres, cylinders, and parallelepipeds, it is pos-
sible to use symmetry properties to determine the position of the centre of mass.
For example, the centre of mass of a sphere is at the geometrical centre of the
sphere.

6.3.2 CeNTRE OF GRAVITY

As the name implies, the centre of gravity concept is concerned with a system of
masses on which gravitational forces act. The total downward force acts through
the centre of gravity of the system, as discussed below. In effect, the total mass
is located at the centre of gravity. In equilibrium, the upward reaction force,
provided by a support of some type, acts to match the downward gravitational
force. It is necessary to allow for clockwise and counterclockwise torques about
the centre of gravity, and in equilibrium these must also sum to zero. Note that
if the gravitational field is uniform over the system of masses, then the centre of
mass and the centre of gravity coincide. This result is readily obtained for a model
system of two masses, and follows quite generally for larger systems, which are
viewed as collections of pairs of masses.

Consider again the two masses m, and m,, with m, > m,, connected by a very light
but rigid rod of length R and suspended on a movable support in the Earth’s gravita-
tional field as illustrated in Figure 6.2. It is convenient to choose the x-axis to lie alon
the line joining the two masses with the origin located at the midpoint. Mass m, 54
—R/2 and mass m, is at R/2. In equilibrium, the reaction force F;, = (m] +m, ) g acts

upwards through the pivot located at r,, .. Balancing clockwise and counterclockwise

1 1
torques gives —Eml g RJrEm2 gR —(ml + mz)g 1, = 0 and it follows that

(6.6)
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rod length R F
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FIGURE 6.2 Equilibrium of two masses m, and m, connected by a light rod of length R
which rests on a support. The support is located at the centre of gravity, a distance 7, from the
rod midpoint at 0.

Note that for m, > m,, the centre of gravity is found at r., = R/2, very close to m,.
The expressions obtained for r.. in Equation (6.6) and for r., in Equation (6.2)
are identical, showing that the centre of mass and the centre of gravity coincide as
expected since the Earth’s gravitational field is locally uniform.

The selected origin can be situated at any point in the vicinity of the two masses
when determining the position of the centre of gravity. As an illustration of this point,
the origin is shifted to coincide with mass m, at —R/2. In this case, the sum of torques

m
expression becomes m, R g—(ml +m2)rCG ¢ =0, and this gives r., = —2—R.
(m, +m,)

For m = m, the centre of gravity is at R/2, while in the limit m > m, the centre of

gravity is close to m, with 7, = R.

In order to determine the centre of gravity of an arbitrarily shaped rigid body, it is
necessary to consider dimensions higher than 1D and to integrate over a distribution
of volume elements each of which contributes a mass dm = p dV to the total mass of
the object. Assuming that the density p is constant over the volume of the object, the
procedure is essentially similar to that used above for discrete masses. The location
of a given volume element is specified by its position vector r referred to the origin of
a 3D set of coordinates, with the centre of gravity given by

r. = %J‘r v ©6.7)
\4

Equation (6.7) is equivalent to Equation (6.4) for the centre of mass since the gravi-
tational field is assumed to be uniform over the volume of the rigid body and the two
centres therefore coincide.
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6.4 TRANSLATIONAL AND ROTATIONAL MOTION

The equations governing the linear translational dynamics of a rigid body are essen-
tially the same as those for a single particle or a small object of mass m. As pointed
out in Section 6.3, a solid object is viewed as a collection of elements of volume dV
and mass p dV.The density p is assumed constant over the volume of a homogeneous

material. The total mass M is given by the integral M = Jp dV carried out over the

%4
volume of the object. For a body in linear motion, all the volume elements have the

same velocity v, and the total momentum is given by p= M v. Newton’s second law

is expressed as F = dp = M a, where F is the force acting on a body and a is the

dr
body’s acceleration. In collision processes involving the transfer of linear momentum

between objects, the objects behave as point masses located at their centres of mass.

6.4.1 MOMENT OF INERTIA

The rotational motion of a rigid body involves several of the concepts introduced in
Chapter 5 when describing the circular motion of a mass m subject to a central force.
This correspondence of basic concepts can be understood by considering the motion
of small volume elements in a rigid body, which is rotating about a fixed axis. All
the volume elements, labelled i, execute a circular motion with radius r given by the
distance of the element from the axis of rotation. The angular displacement A6 is

de
the same for all the elements. Similarly, the angular velocity @ = m and the angular
t

. dw
acceleration o= m have common values for all the elements. The concepts of
t
moment of inertia I = m r?, angular momentum L =m v r = I ®, and kinetic energy
of rotation K = EI @?, introduced in Chapter 5 for a single particle undergoing cir-

cular motion with radius r, are readily generalized to apply to the rotational motion
of a solid body. This is done by extending the moment of inertia definition to an
assembly of volume elements dV.. For a rigid body of uniform density p the moment

of inertia is thus defined as I = Emi rr= zf) r? dV. . Converting the sum to an inte-

gral over the volume of the rigid body gives

I=pr* dv (6.8)
Vv

Expressions for the moments of inertia of rigid bodies with various shapes are
calculated below.
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Exercise 6.2: (a) Determine the moment of inertia of a solid cylinder of
density p, radius R, and length L about the long central axis as depicted in
Figure 6.3. (b) Determine the moment of inertia for a narrow cylindrical rod,
with a diameter much less than its length, about an axis through the centre
perpendicular to the long axis.

(a) It is convenient to consider the cylinder to be made up of a stack of thin
disks each of thickness AL. A representative disk of area A= 7 R? and
thickness AL, centred at point O, which is also the centre of mass of the
cylinder, is shown in Figure 6.3. Symmetry considerations suggest that
volume elements dV should be chosen in the form of concentric rings of
radius r, and width dr. Substituting dV =27z r dr AL in Equation (6.8)

R R
1 1
gves I, =p[(2wr AL)r* dr =27 p AL[rdr = SPAALR =AM R
0 0

The moment of inertia of the cylinder is then obtained by summing over

the stack of disks. Converting the sum to an integral gives the required
1 L/2 1 1
result [, =—pA K [dL=-pALR = M R, Note that this form

cylinder
—L/2

holds for both thin disks and cylinders.

Cylinder axis

FIGURE 6.3 The solid cylinder shown has mass M, length L, and radius R. The
moment of inertia is determined about the cylinder axis by integrating over a stack of
disk-shaped elements. The shaded ring represents a volume element in a representative
disk. The centre of mass of the cylinder is at the origin O.

(b) In this case, which is effectively 1D, use is again made of thin disk-shaped
volume elements. A sketch of the rod with a representative volume element

is shown in Figure. 6.4.
A representative disk has thickness d/, diameter R, and is positioned at a

distance/, in the range from —L/2 to +L/2, along the axis through the centre
L/2

of the rod. Equation (6.8) leads to the result / =27 p R? le dl = éM I
0

The same result would hold as a good approximation for a rectangular long
thin rod with cross-sectional dimensions much less than its length.
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Long Thin Cylinder
length L, radius R

Perpendicular axis
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FIGURE 6.4 The long rod shown has length L, and radius R much less than the
length. The moment of inertia about an axis through the centre perpendicular to the rod
is obtained by summing contributions from disk-shaped elements of length d/.

In the general case, in which the width of the rod is not much less than its
length, a different expression is obtained using the parallel axis theorem, which
is introduced below.

Exercise 6.3: Determine the moment of inertia of a solid sphere of radius
R and density p about an axis through the centre. The sphere is depicted in
Figure 6.5.

The centre of mass of the uniform sphere is located at its centre, labelled O in
Figure 6.5, with the rotation axis along z. It is convenient to view the sphere as a
stack of thin circular disks oriented perpendicular to the z-axis, with the radius r of
aparticular disk, which has its centre at a distance z from O givenby r = \/R*> — 22
Exercise 6.2 (a) gives the moment of inertia of a disk of mass m, density p,

. . . 1 .
thickness dz, and radius r about an axis through the centre as I = Em r? with

m=p 77:(R2 —zz)dz. The moment of inertia of the sphere about z is obtained
by summing the up contributions of the stacked disks, of varying radii, which
make up the total volume. Converting the sum to an integral over z leads

R R
to the relationship I=2x%p¢ﬁR2—deZ=pnﬂR4—2H%2+f)&=
0 0

p TR® (1 —§+é) = %M R*, with M= %p nR®. The required result is

2
L =—MR
sphere 5
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Solid sphere radius R

FIGURE 6.5 The solid sphere of radius R is viewed as a stack of disks of radii
which fit inside the sphere. A representative disk is shown with radius r = \/R?> — z* and
thickness dz.

6.4.2 THE PARALLEL AXIS THEOREM

The parallel axis theorem simplifies the calculation of the moment of inertia I of a
solid object about an axis that does not pass through its centre of mass, by expressing
I in terms of the moment of inertia /., about a parallel axis through the centre of
mass. The proof of the theorem is straightforward.

Consider an object of mass M, volume V, and uniform density p with an attached
set of Cartesian axes. The origin O is located at the centre of mass of the object, with
the z-axis chosen parallel to the axis z” about which the moment of inertia is required,
as shown in Figure 6.6. The z” axis intersects the xy-plane at point O” with coordinates
x=aandy=b.

CMatO
Qatx=ay=5

FIGURE 6.6 A solid object of mass M is depicted with centre of mass at the origin O in a
Cartesian frame. The parallel axis theorem relates the moment of inertia about the z—axis,
which passes through O, to the moment of inertia about axis z’, which passes through O in the
xy-plane at x = a and y = b.
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Using Equation (6.8), the moment of inertia about the z-axis involves an inte-
gral over the volume elements dV making up the object. The volume integral for /
is written as a triple integral, involving the three Cartesian coordinates, in the form

= pjrde = pJ.”V (x? +y?)dx dy dz where dV = dx dy dz is a volume element at
\4

a distance r from the z-axis, with coordinates (x, y,z), giving the square of the dis-
tance asr? = x>+ y%
moment of inertia about the z’-axis is similarly given by

I = pj” [ x a y b) ]dx dy dz. Expanding the squared terms and grouping
gives I = pj“l: (x*+y?)+(a® +b?)—(2a x+2b y)]dx dy dz . The triple integrals
p ZaJ”/x dx dy dz and p Zb.[”, y dx dy dz, which involve linear terms in x and y,

give, apart from multiplying constants, the coordinates of the centre of mass, as can
be seen from Equation (6.5). Both these integrals therefore vanish, because the centre
of mass is at the origin O. With 4> = a? + b?, the moment of inertia about z” becomes

L=l +M R 6.9)

The theorem states that the moment of inertia 1 of an object of mass M about an axis

located at a distance & from a parallel axis through the centre of mass is equal to the
moment of inertia /_,, about the centre of mass axis plus a quantity given by M h’.

c . 1 L
Exercise 6.4: Use the expression /., = ) M I? for the moment of inertia of a

solid narrow cylinder of length L and mass M about a perpendicular axis through
the centre of mass, as determined in Exercise 6.2(b), to obtain the moment of
inertia / about a parallel axis passing through one end of the cylinder.

1 1

1
The parallel axis theorem gives I = EM >+ ZM IF = EM 12,

6.5 ROTATIONAL DYNAMICS

The basic concepts and relationships that are needed for analysing the rotational
motion of a rigid body about a chosen axis can be summarized in three points as
follows:

1. Newton’s second law for rotational motion is of central importance and takes
the form I'= 7 ¢, where I" is the torque producing rotation, / the moment of
inertia about the rotation axis, and o the angular acceleration.

2. If atorque I is constant, it follows that & is constant and the rotational kine-
matic equations apply.
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3. Accompanying any change in the angular velocity o, there is a change in the
angular momentum L = / @.

The work—energy relationship is given by I' AG@= AE, with AE = % 1 (cot2 — a)lz)

provided friction is negligible and there is no change in the potential energy accom-
panying the rotational motion, a condition which holds when the rotation axis passes
through the centre of gravity of the rotating object. The moment of inertia / about the
rotation axis plays an important role in determining the dynamics.

Exercise 6.5: Flywheel-based energy storage and release systems have been
developed to improve the efficiency of vehicles. Consider a flywheel of this
type, made of carbon fibre material with a mass of 6 kg and a diameter of
20 cm, suspended in vacuum to permit angular velocities of 60,000 revolutions
per minute (rpm) to be achieved. Energy is stored in the flywheel during
braking periods and released via a drive mechanism when required. Calculate
the moment of inertia of the flywheel about an axis through the centre of mass
and perpendicular to the disk. Neglect energy contributions from the flywheel
drive shaft. Determine the maximum energy that can be stored in the flywheel.
If the angular velocity increases from 40,000 to 50,000 rpm over a braking time
of 30 s, what is the average torque on the flywheel drive shaft?

1
The moment of inertia of the flywheel is I=5M R*=0.5%6% 0.01 =

1
0.03 kg m* At 60,000 rpm, the maximum stored energy is E = 51 o =

0.5%0.03%(2x10°)” =5.92x10° = 164 W-h.
The brake torque is given by I'=17 a with o the deceleration of
the vehicle. From the kinematic equations for rotational motion,

6w 2mx10* 1 5
e=—==—2n 30" 34.9 rad/s®  The torque on the flywheel drive shaft

is therefore ' =1 = 0.03x34.9=1.05 N m.

Exercise 6.6: Consider a rotating oval rigid body for which the axis of
rotation does not pass through the centre of gravity. Obtain an expression for the
variation in the potential energy U as a function of angular displacement after
the body is set into steady rotational motion in the Earth’s gravitational field.
Assuming that frictional effects can be neglected, use the law of mechanical
energy conservation to determine the variation in the kinetic energy K with
angular displacement.

The variation in the potential energy U of the body with orientation is
obtained by considering the total mass of the object to be effectively located at
the centre of mass, which coincides with the centre of gravity as discussed in
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Rotation of a Rigid Body about Axis through P

horizontal

opP=1/

Mg

FIGURE 6.7 An oval-shaped rigid plate rotates clockwise about an axis through P
with the centre of mass at O, a distance / from P. The angle 6 specifies the orientation of
OP with respect to the vertical direction. Friction effects are assumed to be negligible.

Section 6.3. Ignoring frictional effects, and using the law of mechanical energy
conservation, it follows that the change in kinetic energy AK will be equal and
opposite to the change in potential energy AU in order to keep the rotational
energy constant.

If the centre of mass O is situated at a distance / from the rotation axis
at P, then O rotates around P. Both AK and AU are functions of the angle
6 shown in Figure 6.7. In considering changes in the potential energy, it is
convenient to choose the reference level where U =0 to correspond to
0= /2 with OP horizontal. It follows that AU = —M g lcos 6 and therefore

1
AK = 51 (0)2 - a)g) = M g lcos 6. The clockwise angular velocity @ has a max-

imum value when the centre of gravity is at its lowest point, with 6= 0, and a
minimum value when the centre of gravity is at its highest point, where 0= 7
and AU = M gl. If the moment of inertia about an axis parallel to the rotation
axis and passing through O is known, then the moment of inertia about P can
be obtained by making use of the parallel axis theorem. If the angular velocity
is reduced to zero, the static equilibrium condition corresponds to a minimum
in the potential energy for 6 = 0 and the centre of mass is at its lowest point.

6.6 ROLLING MOTION

The rolling motion of cylindrical objects, such as wheels on vehicles, provides an
interesting and important example of rotational motion in the Earth’s gravitational
field. A rolling object is in contact with a supporting surface, which provides an upward
reaction force equal in magnitude to the downward weight force. If the rotating object
has constant velocity, with no slippage, then it follows that there is a static friction
force acting at the point of contact of the cylinder with the supporting surface. This is
because at all times the small contact region of the rotating cylinder has zero velocity
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-t

V=2v

FIGURE 6.8 End view of a cylinder of radius R undergoing rolling motion, without slipping,
on a horizontal surface. The centre of mass of the cylinder moves in the —x direction with
speed v. Points on the surface of the cylinder have instantaneous horizontal velocities V which
depend on their orientation 6. The speed at the cylinder’s point of contact with the surface is
zZero.

with respect to the surface. Static friction prevents slippage and produces a torque
on the cylindrical object, causing it to roll. Friction plays an important role when the
angular velocity of the cylinder is either increasing or decreasing.

Figure 6.8 shows the velocity of various parts of the outer surface of a rolling
cylinder of radius R at some instant. Viewed in a frame of reference attached to the
Earth’s surface, the whole cylinder moves with constant velocity v in the —x direction
with the speed given by v = 2nR/T = w R where T is the time taken for one revolution
of the cylinder. Note that the cylinder rotates in a counterclockwise sense.

If the centre point of the cylinder moves horizontally with constant speed v, as
shown, then the instantaneous horizontal speed for a point on the cylinder’s surface is
given by V=v+ w R sin 8 = v(1 + sin 0) where 6 is measured from the +x direction as
shown in Figure 6.8. For 6 = /2, at the cylinder’s top point, the horizontal speed is V
= 2v, while at the bottom the speed is V = 0 for 8 = 37/2. Since V = 0 at the cylinders
contact point with the surface, there is a static friction force acting at this interface as
stated above. In accelerated motion of the cylinder, friction plays an important role
as the angular velocity of the wheel changes. If slippage does not occur, the friction
force depends on u, the static friction coefficient.

Exercise 6.7: A high-performance Formula One race car reaches a speed of
220 km/h along a straight length of track. If the wheels have a diameter of
46 cm, determine their angular velocities. Determine the instantaneous speed
of points at the top and bottom of a wheel. Compare the speed obtained for the
top of the wheel with the speed of sound in air.

The angular velocity is obtained using the circular motion relationship,

(220 x1000/3600)
w=V/R = 023 =266rad/s. The speed at the top of the wheel
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is Vip = VTOR = 2v =532 m/s. The speed at the bottom point, where the
tyre meets the track, is Viowom =V~ O R= 0 m/s. The speed of sound in air is
approximately 346 m/s. It follows that the speed of the top of the wheel exceeds
the speed of sound in air.

Exercise 6.8: A solid cylinder of mass M and radius R rolls with a constant
centre of mass velocity v on a flat horizontal surface as illustrated in Figure 6.9.
Obtain an expression for the kinetic energy of the cylinder in terms of M and v.
Next, if the surface of length L is tilted through an angle 6, what is the speed of
the cylinder at the bottom of the incline after rolling without sliding down the
slope starting from rest at the top?

The kinetic energy of the rolling cylinder involves both translational and rota-

. o 1 1 .
tional contributions and has the form K = EM V2 + EI @?, with I the moment

of inertia about the axis of rotation and @ the angular velocity. Substituting

2
1 . . 1 11 3
I =—M R*andusing o= v/R,givesK = —M v? +—| =M R? 21 =2mH2
2 2 2\2 R 4
1
The rotational kinetic energy, ZM v2, is equal to one third of the total kinetic

energy of a rolling solid cylinder.

For the inclined surface case, it is convenient to make use of mechanical
energy conservation AK + AU = 0, where AK and AU are the changes in kinetic

FIGURE 6.9 A cylinder of mass M and radius R rolls along a horizontal surface with
angular velocity . The forces acting on the cylinder are the weight M g, the reaction F,
and the friction F,. For constant-speed rolling motion, the friction force at the point of
contact with the surface is zero.
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© =MgcosB

Mgsin

FIGURE 6.10 End view of a cylinder of radius R and mass M which rolls without
slipping down an inclined plane. The weight M g is resolved into components M gsin 6
parallel to the plane and M g cos 6 perpendicular to the plane. The reaction force £, and
the static friction force F; act as shown. The torque produced by F; about the rotation axis
through O causes the cylinder to roll.

energy and potential energy, respectively. The Earth’s gravitational field exerts
a downward force on the cylinder, and the component of this force down the
incline produces acceleration. Mechanical energy is conserved because the
friction force is static at the point of contact of the cylinder with the ramp. No
sliding motion of the cylinder occurs. The forces acting on the cylinder are
shown in Figure 6.10. Note that the friction force acts up the incline and the
torque it exerts about the axis of rotation produces the clockwise rolling motion.

The change in potential energy is AU = —-M g Lsin 0= —M gh where h is
the vertical height through which the centre of mass of the cylinder effectively
falls. Allowing for both translational and rotational energy using the expression

3
for K obtained above gives the change in total kinetic energy as AK = ZM V2

,4
It follows that%Mv2 =Mghandv= ggh.

Further insight into rolling motion is obtained by using Newton’s second
law for translational and rotational motions. In terms of the symbols shown in
Figure 6.10, the second law gives for translational motion M g sin6@—F, = M a
and for rotational motion F; R = I o. Combining these two equations to elim-

inate I and using J = % M R? for a uniform cylinder, together with a = &R,

1 3
gives gsinf= (E S l)a = Ea. The translational acceleration down the

inclined plane is constant, and the final velocity squared at the bottom
can be obtained using the third kinematic equation. This procedure gives

2 4
vi=2alL=2X (5 gsin 6) XL = 3 gh, which agrees with the expression
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obtained above using mechanical energy conservation. Note that, because
of differences in the moment of inertia expressions of objects, the value of v
obtained for a uniform cylinder has a different numerical factor to those which
would apply to a rolling hoop or a solid sphere.

6.7 STATIC EQUILIBRIUM

In Section 6.2, it is stated that the necessary conditions for equilibrium of a mechan-
ical system are that both the forces F, and the torques I, acting on the object of interest

must sum to zero, i.e. ZF,- =0 and 21",. = (. These conditions need to be extended

to include the potential energy of the system in order to ensure stable equilibrium.
Consider, for example, a situation in which a body has an axis of rotation that does not
pass through the centre of gravity. It is possible, although difficult in practice, to achieve a
situation of unstable equilibrium in which the centre of mass lies vertically above the axis
of rotation. A slight movement of the object will result in rotation towards a new stable
equilibrium situation, with the centre of gravity directly below the axis of rotation. The
gravitational potential energy of the system decreases in this process. Stable equilibrium
therefore requires that the system be in a configuration with minimum potential energy.
Following a small displacement away from stable equilibrium, the system will return to
the stable configuration much as a round object will settle in the bottom of a hemispher-
ical bowl. Note that if the axis of rotation for an object passes through its centre of gravity,
then all orientations of the object are stable. In many cases, the minimum potential energy
condition can readily be seen to be satisfied without the need for calculation.

In applying the static equilibrium conditions to particular situations, it is con-
venient to introduce two terms that are commonly used in dealing with static torques.
These terms are firstly the lever arm and secondly the moment of a force about some
chosen point. The significance of these terms is explained with the aid of Figure 6.11.

L—1 A\ i

FIGURE 6.11 A light rod of length L is supported at P as shown. The gravitational force on
mass M produces a counterclockwise moment of magnitude M g (L -1 ) about the pivot point P.
In equilibrium, the clockwise moment F' [ produced by the force F with lever arm [ balances the
system. The reaction force at the support at P produces no moment around this point.
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For a system in equilibrium, the sum of the moments around any point is zero.
In applying this moment rule to a situation involving several forces, it may be
convenient to calculate moments around a point through which an unknown force,
such as a frictional force, acts in order to facilitate calculations as illustrated in
Exercise 6.9.

Exercise 6.9: A solid steel beam of mass M = 50 kg and length 3 m rests on
supports located 0.5 m from each end. Upward reaction forces F, and F, are
exerted on the beam by the supports designated 1 and 2. An object of mass m =
40 kg is suspended 1.0 m from end 2. Determine the forces F, and F, using the
static equilibrium conditions.

The supported beam arrangement is sketched in Figure 6.12. Taking
moments around point 2, with clockwise moments as positive, leads to the rela-
tionship F X2 —M gXx1.0-mgx0.5=0. Substituting the values for M and
m with g =9.8m/s? gives 2F =9.8x(50x1.0+40x0.5) = 686 kgm?/s?, and
hence F, = 343N.

Next, balancing the vertical forces gives F, + F, —(M +m)g = 0, and using
the value obtained for F, gives F, = 539N. Note that F, > F, because mass m is
closer to end 2 than to end 1.

H ¢
—
& [.L A

Mg i

mg

FIGURE 6.12 A beam of mass M = 50 kg and length L =3 m is supported by trestles
at 0.5 m from each end, and a mass m =40 kg is suspended as shown. The reaction
forces F| and F, are determined using the static equilibrium conditions.
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Exercise 6.10: If the 50 kg steel beam, together with its suspended object
of mass 40 kg, as described in Exercise 6.9, is removed from its supports, and
is allowed to lean against a smooth vertical wall, determine the forces on the
beam produced by the wall at the end labelled 1, and by the horizontal surface
on which end 2 rests. The beam makes an angle 6= 63" with the horizontal
surface. Assume that the frictional force at the contact point with the wall is
negligibly small.

Figure 6.13 shows the forces acting on the beam of length L = 3 m. In add-
ition to the two downward weight forces, shown as M g at the centre of gravity,
located at a distance L/2 from end 2, and m g at a distance / = 1 m from end 2,
there are three unknown forces which are the reaction forces, F,, normal to
the wall and F. normal to the horizontal surface, plus the horizontal friction
force F,.

With three unknown forces to be determined, it is necessary to write down
three equations, based on the static equilibrium conditions, which relate the
forces. Firstly, balancing horizontal forces gives F,, — F,. = 0, while secondly,
balancing vertical forces gives F,, —M g —m g = 0, and thirdly, taking moments

L
about end 2 leads to F, Lsin6—M g(—)cos 60—mg lcosO=0. Inserting
2

numerical values gives £/, =191 N using the third equation and F,, =882 N
from the second equation. The first equation, with the value obtained for F|
leads to F,, = 191N.

R’

|

FIGURE 6.13 In addition to its known weight M g and that of the suspended object
m g, the canted beam experiences the reaction forces F,, and F,, together with a friction
force F).. The reaction and friction forces are determined using the static equilibrium
conditions.
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6.8 THE LEVER

The use of the mechanical lever arm advantage provides a practical application of
the zero-torque condition for equilibrium of an extended object. By making use of a
long lever arm, a relatively small force F, applied at one end of the lever can balance
a much larger force F, at the other end, provided a stable support, called a fulcrum, is
positioned close to the end at which the large force acts as illustrated in Figure 6.14.

Consider the system shown in Figure 6.14 to be in a static equilibrium state with
the mass M suspended just above the surface on which it previously rested. To sim-
plify matters, only the vertical components of the forces acting on the two ends of
the lever are shown. In addition, the large vertical force exerted by the fulcrum on
the lever is omitted. In equilibrium, the moments of the forces about the fulcrum are
equal in magnitude but opposite in sign giving F; L, = F, L, where L and L, are the
lever arms associated with the forces. The ratio L, /L, is referred to as the mechan-
ical advantage, which can be made much larger than unity by using a long lever on a
robust fulcrum.

Levers can be used to move large objects with the application of relatively small
forces. When raising the mass M through a small upward vertical distance 4 in the
Earth’s gravitational field, the potential energy increases by AU = M g h. Mechanical
energy conservation requires that AU =AW =F, [, with [ the downward vertical
distance moved by the other end of the lever. Using the properties of similar triangles
gives that the mechanical advantage is the ratio [/h = L, /L, as indicated above.

FIGURE 6.14 By applying a relatively small force F;, as shown, a large object of mass M
can be raised using a long lever together with a fixed rigid fulcrum. The greater the ratio
L,/L,, the greater the mechanical advantage.



7 Fluids and Solids

7.1 INTRODUCTION

The properties of fluids and solids are important in a wide variety of technological
applications. Solid materials are used in large mechanical structures, including
bridges, buildings, and motor vehicles, as well as in small electronic devices such as
computer chips. A deep understanding of a particular material requires microscopic
measurements using special equipment, and complementary theoretical calculations.
For many applications, much can be learnt about the mechanical properties of both
solids and fluids using macroscopic measurements together with analysis based on
classical mechanics. This approach is adopted in the present discussion.

As a starting point in this chapter, consider the phase diagram for a representa-
tive homogeneous substance plotted in terms of temperature and pressure as shown
in Figure 7.1. The concepts of temperature and pressure are familiar from everyday
experience. These quantities play key roles in determining the mechanical behav-
iour of materials. Pressure P is defined as the force per unit area acting on a surface,
which may be the surface of a solid or the boundary of a vessel containing a fluid.
In the SI system, the unit of pressure is defined as 1 N/m?, which is called the pascal
abbreviated as Pa. In plotting phase diagrams, it is advantageous to use the absolute
temperature 7 scale, also known as the Kelvin scale, with kelvin units denoted by
K. A related scale, called the Celsius scale, is used for many purposes in normal life.
While the degree sizes are the same, with 1 K equivalent to 1°C on the Celsius scale,
the zero on the Kelvin scale, known as absolute zero or 0 K, occurs at —273.16°C.
Temperatures in kelvins are of fundamental importance in examining the thermal
properties of matter, as described in Chapters 11 and 12.

In Figure 7.1, the lines shown represent phase boundaries between the three
phases, solid, liquid, and vapour, in which the system can be found. The physical
characteristics in the three phases are quite different. In determining the mechanical
properties, such as Young’s modulus or the compressibility of a solid substance, as
discussed below, it is usually necessary to work at constant temperature and pressure
conditions, which may, of course, be ambient conditions, since the properties are gen-
erally temperature- and pressure-dependent. Details of phase diagrams for different
materials can vary widely depending on the strength and nature of bonding at the
atomic level. In particular, solids are broadly classified into four categories named
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FIGURE 7.1 Representative phase diagram for a substance showing the solid, liquid, and
vapour regions as a function of temperature 7 and pressure P. Transitions between the phases
occur at the phase boundaries represented by lines in the diagram. At the triple point, all three
phases coexist, while at the critical point and above the liquid and vapour phases become
indistinguishable.

Tensile Stress
F

F

FIGURE 7.2 Side view of a solid rod subject to uniaxial stress produced by equal and
opposite applied forces F. A small increase in the length occurs while the stress is applied.

molecular (e.g. solid argon and polymers), ionic (e.g. NaCl), covalent (e.g. silicon),
and metallic (e.g. copper and silver) solids. Differences in the electronic structure
are responsible for the differences in the binding energies of the atomic constituents,
and these differences are reflected in the mechanical and other properties. There are
other types of solid, such as alloys, glassy materials, and liquid crystals, which are not
covered by the above classification.

The bulk mechanical properties of solid materials are characterized by their
response, called the strain, to various types of applied stress. A uniaxial case is
illustrated in Figure 7.2, which shows a 2D side view of a solid object under longitu-
dinal stress. Equal and opposite forces F are applied to the top and bottom surfaces
of the object, producing a small change in its length. Note that the forces are arranged
to act uniformly over the surfaces to which they are applied. In practice, a long rod or
wire specimen is typically used in measuring the strain produced by an applied stress.
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Two other types of stress, called shear stress and hydrostatic pressure, produce
shear strains and compressive strains, respectively. Further details and definitions of
the corresponding elastic moduli are given in Section 7.5. Over a limited range, it is
found that strain is proportional to applied stress for many solids. Furthermore, the
strain is elastic in nature, with no permanent deformation after the stress is removed.
In this linear response range, measurements of a particular stress—strain response
for a specimen yield the corresponding elastic modulus for the material as explained
in Section 7.5. Uniaxial and shear stress measurements cannot be made on fluids
because the fluids respond by flowing until equilibrium is attained in the vessels in
which they are contained. It is, however, possible to measure what is termed the com-
pressibility by applying pressure to a fluid as shown in Section 7.2. The topic of fluid
flow is dealt with in Section 7.4.

7.2 PRESSURE IN FLUIDS

7.2.1 PRESSURE AND DENSITY

When considering pressure effects in fluids, it becomes clear that the fluid density
p is of particular importance. If a mass m of fluid occupies a volume V, then the
density is p=m/V with SI units of kg/m*. The density depends on temperature
and pressure, and it is therefore necessary to specify these conditions. For fluids,
it is often convenient to quote p values measured at 0°C and 1 atmosphere (atm;
1 atm equals 101.325 kPa in SI units). These conditions are known as standard
temperature and pressure (STP). For liquids, the variation in density is generally
small for limited changes in temperature and pressure. This is not the case for
gases, for which p has a strong dependence on 7 and P. Table 7.1 lists the values
of p for several fluids.

For a liquid such as water, p is, to a good approximation, independent of depth
for modest depths of the order of meters, and the liquid behaves as though it were
incompressible. In contrast, the density of a gas such as air is strongly dependent
on altitude measured from the Earth’s surface. The drop in density with altitude is
primarily responsible for the oxygen deficiency effects experienced by mountain
climbers.

TABLE 7.1

Densities of Representative Fluids at STP
Substance Density (kg/m?®)
Water 1.000

Ethanol 0.80

Mercury 13.6

Air 1.29x 1073

Helium 0.179 x 1073




100 Physics: An Introduction to Physical Dynamics

FIGURE 7.3  Volume elements (shown in grey), which are in static equilibrium in containers
of different shapes, experience identical forces on their surfaces if they are at the same depth
in the liquid.

Liquid Element in Equilibrium

Liquid surface

p
dh"
i p+dp
mg

FIGURE 7.4 A representative 3D volume element, shown shaded in a side-on view, is of
thickness dh with top and bottom surfaces of area A. The element is in equilibrium under the
action of its downward weight and the net upward force due to the pressure difference between
its upper and lower surfaces.

The pressure at a particular depth in a fluid is independent of the orientation of the
surface on which the pressure acts. This can be understood by considering a volume
element of fluid in equilibrium. The forces on the surfaces of the element must sum to
zero or the element would move until the forces did balance. In addition, the pressure
is independent of the shape of the container as illustrated in Figure 7.3.

7.2.2  VARIATION OF PReSSURE WITH DEPTH IN AN INCOMPRESSIBLE LIQUID

Consider a cylindrical volume element of cross-sectional area A and thickness d/ in
a column of incompressible liquid as depicted in Figure 7.4. The liquid is situated
in the Earth’s gravitational field, which produces a downward weight force on the
element that leads to a pressure increase with depth in the fluid as shown below.
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It is convenient to choose the /-axis to point vertically downwards with the origin
located at the liquid’s surface. Atmospheric pressure at the liquid’s surface is p,. If
the pressure at the upper surface of the volume element is p, then the pressure at the
lower surface is p +dp, with the difference in pressure due to the need to support the
weight of liquid w=p A g dh in the element.

Balancing forces on the volume element leads to the equation
(p+dp)A=pA+pA gdh, which gives dp=p g dh. In order to determine the

P h
pressure at depth £ in the liquid, this equation is integrated as follows: Jdp = Jp gdh
Py 0
or p—p, = pgh. After rearrangement, the following result is obtained:

p=p,tpgh (7.1)

Equation (7.1) shows that the pressure in a liquid increases linearly with depth A
below the liquid’s surface. The pressure p, at the surface is typically atmospheric
pressure.

Exercise 7.1: What is the pressure at the bottom of a freshwater lake of depth
8 m? Take atmospheric pressure as 1 atm = 1.01 x 10° Pa and the density of the
lake water as 10° kg/m®.

Using Equation (7.1), the pressure at the bottom of the lake is given by
p=1.01x10°+10°x9.8x8 = (1.01+0.78) x 105 = 1.79 x 103 Pa. The pressure
at the lake bottom is slightly less than 2 atm, with almost half contributed by the
lake water and the remainder by the atmosphere above the lake.

7.2.3 VARIATION OF PRESSURE WITH ALTITUDE IN A COMPRESSIBLE GAS

Consider a finite column of air stretching from the Earth’s surface to an altitude of a
few hundred meters, which is the height of fairly low cloud cover. The altitude limita-
tion is introduced to allow the following simplifying assumptions to be made: firstly,
that the temperature of the gas is roughly the same throughout the column, and sec-
ondly, that any variation in g can be neglected. For a compressible gas, the density
is not constant but varies with position in the column. To a good approximation, a
volume element containing a constant number of molecules in the air column obeys
the ideal gas equation of state PV =nRT with P the pressure, T the absolute tem-
perature, n the number of gas molecules in volume V, and R the gas constant. Since T
is assumed to be constant, it follows that P o< n/V, and therefore P o< p with p=n/V
being the molar density. Let the pressure at the bottom of the column be P, while the
density at this level is p,. It follows that p/p, = P/F, where p and P are, respectively,
the density and pressure at height 4.

Now consider a thin horizontally oriented slice of air of thickness d/ at height /2 in
the column. Taking the air density to be constant in the small slice leads to the
following expression for the pressure difference between the top and bottom surfaces
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P
of the slice dP =—-pgdh= —(po F]gdh where use has been made of the result

0
p/p, = P/F, for the pressure and density ratio as given above. The minus sign indicates

P;)g j W

0 0

P
. . . . dpr
that P decreases as / increases. Rearranging and forming integrals gives J. 3 =-

_Pygh

B

. Taking antilogarithms yields

P
Integration leads to the relationship In [FJ =

0 0

the required result:

Py 8h
P=Poe>q{— > J (1.2)

0

Equation (7.2) shows that in the air column the pressure falls off exponentially with
altitude for fairly low altitudes. The assumptions made start to break down as the alti-
tude increases.

Exercise 7.2: The air pressure on a mountain top is 0.9 atm. Estimate the
height of the mountain top above sea level. Take the density of air at sea level
and at ambient temperature as 1.21 kg/m?. 1 atm = 1.01 x 10° Pa.

Assuming that Equation (7.2) holds over the altitude range, and taking

P P 1.01x10° 1
logarithms of both sides gives h = —>-In| -~ | = Mln(—) =897m.
pg L P) 121x98 (09

7.2.4 CoMPRESSIBILITY OF FLUIDS

The isothermal compressibility of a material, denoted by x, relates the fractional
change in volume of the material to an increase in pressure as expressed in the rela-
tionship AV/V = —x AP. The volume decreases with the increase in pressure, and the
minus sign is therefore inserted to give positive values for k. In terms of infinitesimal
changes, the isothermal compressibility is defined as

e=—L8Y (7.3)
Vv dp

The units for k are Pa~'. Typical gas compressibility values are much larger than those
of liquids. That is because the molecules in a gas are on average well separated, while
in liquids they are packed more closely together. For air and many other gases, which
closely obey the ideal gas equation of state under normal conditions of temperature
and pressure, the compressibility value is x = 107 Pa~!. Water at room temperature
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has a x value roughly four orders of magnitude smaller than that of air, while solids
have even smaller x values. In dealing with the mechanical properties of solids, it is
usual to introduce the bulk modulus, which is the reciprocal of the compressibility, as
discussed in Section 7.5.

Exercise 7.3: Obtain an expression for the isothermal compressibility of a gas

that obeys the ideal gas equation of state PV =n R T.

nRT
P

From the ideal gas equation 3—X =— —%, and using Equation (7.3)

this gives x = 1/P.

Taking atmospheric pressure as 1.01 x 10° Pa at sea level, it follows that
K ~ 10 Pa™! as given above. The compressibility of air increases with altitude
due to the decrease in its pressure.

7.3 FLUID STATICS

7.3.1 THE PriNcIPLES OF HYDROSTATICS

Using the expressions for the pressure in a fluid given in Section 7.2, and, in par-
ticular the variation of pressure with depth in a liquid, it is possible to explain a
variety of phenomena and to develop simple but useful applications, including
buoyancy devices, mercury barometers, liquid siphons, and the hydraulic press.
Historically, two famous principles were put forward based on observations made
of the behaviour of liquids. They are known as Archimedes’ principle and Pascal’s
principle, respectively.

Archimedes’ principle states that a body wholly or partly immersed in a fluid
experiences a buoyancy force equal to the weight of fluid displaced.

Pascal’s principle states that the pressure exerted on an incompressible fluid is
transmitted evenly throughout the fluid.

These principles were implicitly assumed in deriving the relationship p = p, + pgh,
which is given in Equation (7.1), for the pressure variation as a function of depth
in an incompressible liquid. At depth & below the surface, the pressure depends
on, firstly, p,, the atmospheric pressure at the surface, and secondly, the weight of
a fluid column of height /2 and unit cross-sectional area A. An increase in p, leads
to an increase in p at every point in the liquid in accordance with Pascal’s prin-
ciple. If the liquid column of height 4 were replaced by a solid object with precisely
the same dimensions as those of the column, the object would experience the same
upward force as that experienced by the liquid column. This buoyancy force acts
in accordance with Archimedes’ principle. It follows that an object of any shape
would experience an upward force equal to the weight of fluid displaced, with the
force acting through the centre of gravity of the object. If the density of the object is
greater than the density of the fluid, the object will sink to the bottom of the container.
Conversely, if the density of the object is less than that of the liquid, the object will
rise to the surface and float.
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Exercise 7.4: Determine the fraction of the volume of an iceberg that is
submerged below the surface of the sea in which it floats. Take the density of
ice as p, = 0.92 x 10° kg/m’ and that of seawater as p = 1.025 x 10° kg/m’.

From Archimedes’ principle, the buoyancy force on the floating iceberg of
volume V' is given by p V. g where V_ is the volume of seawater displaced
by the submerged portion of the iceberg. In equilibrium, the buoyancy force
is equal to the iceberg’s weight so that p_ V. g=p, V g. The submerged
volume fraction of the iceberg is therefore V. /V =p /p = 0.92/1.025 = 0.90.
Ninety percent of the iceberg’s volume is submerged in the sea.

7.3.2 PRESSURE MEASUREMENT

Pressure-measuring devices based on the relationship p = p, + p g h given in Equation
(7.1) include manometers and barometers. A simple manometer is as illustrated in
Figure 7.5.

Manometers are typically made of a transparent material, such as glass, shaped in
the form of a U-tube, with one end connected to a vessel in which the gas pressure
is to be measured and the other end open to the atmosphere. The U-tube contains an
inert liquid, such as mineral oil or mercury, of known density p,. When the pressure
in the vessel is equal to atmospheric pressure the two surface levels of the manometer
liquid are at the same height above a chosen reference level. As the pressure in
the vessel is varied, the liquid surface levels move up or down. The vertical height
difference i between the levels in the two arms of the manometer gives a measure
of the pressure difference Ap = p — p, between the pressure of the gas in the vessel,
designated p, and that of the local atmosphere, designated p, via the relationship
Ap = p g h. Note that 2 may be positive or negative depending on whether the gas
pressure in the vessel is larger or smaller than atmospheric pressure. Pressures
measured using manometers, or other devices that measure pressure differences with
respect to atmospheric pressure, are called gauge pressures. Gauge pressure can be

Manometer
Py Pt Ap

Liquid
density p,

FIGURE 7.5 Manometer for measuring gauge pressure Ap, which may be above or below
atmospheric pressure p,. Hydrostatics gives Ap = pgh.



Fluids and Solids 105

~ Vacuum

Barometer st
p, =0

Mercury column
height A

FIGURE 7.6 Mercury barometer for measuring atmospheric pressure p_ . In a practical
instrument, the mercury bath would be enclosed to prevent mercury vapour from polluting the
atmosphere.

converted to the actual pressure in Pa by adding or subtracting atmospheric pressure
when required.

The pressure of the atmosphere near the Earth’s surface is measured using
instruments called barometers. The mercury barometer is a classic example of
this type of instrument and is again based on the relationship between pressures at
different heights in a fluid as given in Equation (7.1). Mercury barometers make use
of the high density of mercury, Pyg = 13.6 X103 kg/m?, to keep the device fairly com-
pact. A column of the liquid is contained in a long tube, the lower end of which dips
into a container of mercury that is open to the atmosphere. The upper end of the tube
is sealed, with the space above the liquid evacuated. A simple barometer is shown in
Figure 7.6.

From Equation (7.1), the pressure of the mercury in the vertical tube is given

by P =Py TPy, gh with h the vertical height of the mercury meniscus above the
level of the surface in the container. Since the space above the mercury in the tube
is evacuated, the pressure p, = 0. Also, p = p,  because fluid pressures at the same
level are equal. Atmospheric pressure is therefore givenby p = Py, & h. A pressure

atm
of one atmosphere supports a mercury column of height 0.76 m.

In addition to the mercury barometer, a number of mechanical barometers for
measuring air pressure without the use of fluids have been developed. A well-known
device is the aneroid barometer, which involves an evacuated cell made of thin flex-
ible metal. Changes in pressure are detected by the force exerted on a spring attached
to the cell. Very small microelectromechanical system (MEMS) devices have been
incorporated into cell phones.

7.3.3 THe HyDprAuLIC PRESS

The hydraulic press is an important practical device based on Pascal’s principle.
Consider two cylinders, with cross-sectional areas A, and A, respectively, connected
together by a pipe. The system is partially filled with a hydraulic liquid which is
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F Hydraulic Press

F

Area A, é Area A,

Cylinder 1 Cylinder 2

FIGURE 7.7 Hydraulic press with two connected piston-cylinder chambers. The chambers
are filled with a hydraulic liquid which is effectively incompressible. Force F| is larger than F,
by the ratio of the piston areas A, /A,.

effectively incompressible. The cylinders are fitted with pistons to which weights can
be added to achieve the desired initial static equilibrium state. The application of an
additional downward force F, to piston 2 produces an increase in the upward force £
on piston 1 as shown in Figure 7.7.

The downward force F, on piston 2 causes it to move downwards through a distance
d,. In order to keep the total volume of the incompressible liquid constant, the piston in
A
XZJ d,. Using Pascal’s principle,

1
the pressure increase Ap in the system produced by F, is transmitted throughout the

cylinder 1 moves upwards through a distance d, = [

A
fluid, and this leads to the relationship Ap = K /AI =F, /Az, and hence F= (A—‘JF

)y
2
For A > A, it follows that F, > F,. Thus, a small downward force on piston 2 is

converted to a much larger upward force on piston 1 through the action of the press,
which serves as a hydraulic lever. It is illuminating to consider the work done by

the forces. For F,, the work done is W, = F, d, and that done by F, is W, = F, d,.

Substituting for F, and d, using the relationships F, = (%j F,andd, = (%J d, given
2 1

above, shows that W = W,. The large upward force F, acts through a much smaller

distance than the downward F, does, so that the work done by the two forces is the

same, as required by mechanical energy conservation assuming friction forces are

negligible.

7.4 FLUID FLOW

In dealing with the flow of fluids, it is important to distinguish between turbulent flow
and non-turbulent flow. Turbulent flow involves time-varying flow patterns, while
in non-turbulent flow the patterns are time-independent. Because of the complexity
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of analysing turbulent flow, the present discussion will be limited to non-turbulent
flow. Furthermore, only incompressible fluids will be considered. In discussing flow
patterns, it is useful to consider the paths followed by small fluid elements. For steady
non-turbulent flow, the paths are represented by what are called streamlines and the
flow is called streamline flow. Experimental techniques involving the introduction of
traces of dye into a flowing fluid have been developed in order to observe and photo-
graph streamline patterns. As an illustration, consider the flow of a liquid through a
tube in which there is a constriction as shown in Figure 7.8. Note that in the region of
the constriction the streamlines are brought closer together, and this corresponds to
an increase in the fluid flow velocity as discussed below. It is additionally necessary
to distinguish between viscous flow and non-viscous flow. This distinction involves
the magnitude of the viscosity coefficient 1, which is introduced in Section 7.4.3. It
is convenient to start by considering non-viscous flow, especially as water has a low
viscosity coefficient and therefore satisfies the requirements for this type of flow.
Viscous flow is discussed separately.

7.4.1 THe CoNTINUITY EQUATION

For an incompressible fluid undergoing a flow process, the density p is constant at all
points in the fluid. In contrast, the velocity of fluid elements and the local pressure
may vary with position, as shown below in Section 7.4.2, which introduces Bernoulli’s
equation. The continuity equation, given in Equation (7.4) below, expresses the
requirement that the mass of fluid per second entering a tube of flow is equal to the
mass per second leaving the tube. Consider fluid flow through a section of a tube
and let the cross-sectional areas be A, at the entry to the section and A, at the exit as
illustrated in Figure 7.8.

In time interval Ar, the volume of fluid entering the tube with speed v, is
AV =v A At, which has mass Am = pv A Ar. The mass leaving the tube is given
by Am = pv, A, At. Equating the right-hand sides of these equations for the masses
entering and leaving the tube gives the equation of continuity as

Continuity of Flow through a Constriction

N\

Area 4,

FIGURE 7.8 Non-turbulent fluid flow through a section of a pipe in which the cross-sectional
area decreases from A, to A,. The flow rates in the wide and narrow sections are related by the
continuity equation.
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Av, =Av, (7.4)

The smaller the cross-sectional area becomes along the tube of flow, the higher the
fluid speed in that region for a given flow rate, and, conversely, the larger the area the
lower the speed. Note that the element of fluid with volume AV entering the tube of
flow is effectively transmitted in time At from the entrance to the exit by the inter-
mediate fluid in the tube. This follows because all fluid elements of a given geom-
etry are identical to one another. In order to determine the variation of fluid pressure
along a tube of flow it is necessary to use Bernoulli’s equation, which is based on the
work—energy theorem.

7.4.2 BerNouLLl’s EQUATION

Bernoulli’s equation is derived for non-viscous, non-turbulent, incompressible fluid
flow through a pipe. Referring to Figure 7.9, which shows a section of a pipe through
which flow occurs, let the pressure acting on the area A, at the entrance to the pipe be
p, and that on area A, at the exit be p,. The corresponding forces are p, A, in the direc-
tion of flow and p, A, opposing the flow. The shaded regions in Figure 7.9 represent
fluid elements entering and leaving the pipe during a time interval At.

In time Az, the work done in transporting a small volume AV = A v, Ar with
mass Am = p AV into the pipe section of interest is W, = p, A, v, Ar. In the same
time interval, the work done by the force p, A, as the equivalent fluid element
leaves the pipe is W, =—p, A, v, At. The net work done in this process is
W=p A v At—p, A, v, At = (Z P, - pz)AV. Because non-viscous flow is assumed,

the work done is equal to the change in energy of the system associated with the
effective transport of the mass Am from the input to the output of the tube of flow. The

area A,

FIGURE 7.9 Fluid flow through a section of a pipe in which the cross-sectional area changes
from A, to A,. In addition, the fluid is transported upwards through height 4 in the Earth’s
gravitational field. The shaded segments represent equal volume elements of fluid entering and
leaving the pipe section in a time interval Ar.



Fluids and Solids 109

1
energy change is given by the sum of the change in kinetic energy AK = 5 Am (v§ -V )
and the change in potential energy AU = Am g (h2 —h ), where i, and h, are, respect-

ively, the initial and final heights above a reference level of the centre of mass of Am.
1
Using W = AK + AU gives (p, — p,)AV = 5Am(v; —v?)+Am g(h, —h,). Dividing

through by AV and collecting terms leads to Bernoulli’s equation in the form

1 1
pl+§pv12+pghl=p2+5pv§+pgh2 (7.5)

It is important to recognize that the quantities p, ) pv?, and pgh which are involved

in Bernoulli’s equation have units J/m* and correspond to distinct contributions to the
total energy density in a flowing fluid. It follows from Equation (7.5) that the total energy
density remains constant for incompressible fluids in non-turbulent flow processes. An
increase in one of the terms is therefore accompanied by a corresponding decrease in one,
or both, of the other terms. Bernoulli’s equation expresses the law of mechanical energy
conservation in a convenient form. Together with the continuity equation, Bernoulli’s
equation provides a quantitative description of the flow behaviour of liquids, such as
water, which approximate an ideal, non-viscous, incompressible fluid.

Exercise 7.5: A horizontal water pipe has an initial diameter of 4 cm that
tapers gradually over a central section to a final diameter of 2 cm. If the pressure
and speed of flow through the wide portion of the tube are, respectively, 2 x 10*
Pa and 1 m/s, determine the pressure and flow speed in the narrow portion. The
density of water is 10 kg/m?.

Let the radii of the wide and narrow portions of the pipe be R, and R,
respectively. The cross-sectional area of the wide portion of the pipe is then
given by A = 7R’ and that of the narrow portion by A, = nR}. Taking the
water velocity in the wide portion as v, and that in the narrow portion as v,,

4
the continuity equation gives v, = (%J v, = (T) x1=4 m/s.
2
Since the flow is horizontal, Bernoulli’s equation simplifies through can-

1 1
cellation of the pgh terms to give p, +5 pv; =p, +§ p v;. Rearranging and

substituting values gives p, = p + lp(vl2 - vg) =2x10* + 1 X103 x(1-16) =
1.25 x 10* Pa. 2 2
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Exercise 7.6: If the narrow portion of the pipe in Exercise 7.5 were bent
upwards, and then bent back to the horizontal at a height of 50 cm above the
original height, determine the water pressure in the raised horizontal section of
the tube.

The flow velocity in the raised section of the narrow tube remains unchanged
at4 m/s as required by the continuity equation for an incompressible fluid, while
the pressure in this section does change in accordance with Bernoulli’s equation,

which becomes p; = p, +%p(vl2 —v%)+pg(h1 —h2) where h, —h =0.5m.

Note that p, and p; are now the pressures in the lower and upper sections of the
narrow. tube. Substituting numbers, and making use of the result of Exercise 7.5,
gives p, =1.25x10* —10° x9.8x0.5="7.6 x10° Pa.

The pressure is lowered in the upper portion of the pipe. The kinetic energy
of the flowing liquid does not change, since the flow velocity remains constant,
but the potential energy does change with elevation in the gravitational field.

Many practical applications of Bernoulli’s equation make use of the pressure drop
in a constricted region of a tube through which fluid flows. Examples are the Venturi
meter for measuring fluid flow rates through pipes, and spray atomizers which draw
liquid up from a reservoir when a bulb is squeezed to force air through the device.
Other examples of effects accounted for by Bernoulli’s equation are the aerodynamic
lift on the aerofoils of aircraft, and the swing in the trajectory of a spinning ball
moving at speed through the air. In the latter examples, pressure differences arise on
opposite sides of an object moving through a fluid when the fluid speed is higher on
one side of the object than on the other.

7.4.3 Viscous FLuip FLow

The discussion of fluid flow given above neglects viscous effects that dissipate
energy in irreversible processes in a viscous fluid. While the continuity equation
continues to hold, provided the fluid is incompressible, Bernoulli’s equation breaks
down for these fluids because mechanical energy conservation does not hold. In
contrast to ideal fluids, for which no pressure drop is predicted in streamline flow
through a horizontal pipe, viscous fluid flow is characterized by a pressure drop
with distance along a horizontal pipe. The smaller the radius of the pipe, the greater
the pressure drop over a given length. Investigations of the fluid velocity variation
across a pipe through which viscous fluid flows have revealed that the flow velocity
approaches zero at the walls of the pipe and is largest along the central axis of the
pipe as illustrated in Figure 7.10.

Viscous fluid flow through a pipe can be viewed as a set of thin-walled concentric
cylindrical tubes of flow moving parallel to the flow direction, with a radial decrease
in velocity from the centre of the pipe to the wall as depicted in Figure 7.10, which
shows the velocity profile in 2D across the pipe mid-section.
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Viscous Flow through a Pipe Showing
Velocity Profile across a Mid-section

FIGURE 7.10 Viscous flow through a portion of a pipe, showing the velocity profile for a
2D cross-section of the pipe. In 3D, the flow pattern is visualized as concentric tubes of flow.

Viscous Drag Force

Moving upper plate ———

—
——
—
—re

Viscous fluid

Fixed lower plate

FIGURE 7.11 A viscous fluid (shown as the shaded region) is situated between a fixed lower
plate and a moving upper plate, which experiences a drag force. There is a velocity gradient in
the motion of successive fluid layers, as indicated by the arrow lengths.

In order to describe the viscous properties of fluids, it is necessary to introduce a
quantity called the viscosity coefficient denoted by 1. Consider an arrangement in
which a fluid is contained between two flat horizontal plates of area A separated by
a distance d. The upper plate is acted on by a horizontal force F which causes the
plate to move at a constant velocity v with respect to the lower plate as illustrated in
Figure 7.11.

Experiment shows that the force F necessary to produce steady motion of the
upper plate with respect to the fixed lower plate is proportional to the product Av and
inversely proportional to d. The (dynamic) viscosity coefficient 1 is introduced as a

A
proportionality constant to give F = n7v. The SI units of 1 are Pa s. Representative

7 values are approximately 1 mPa s for water at 20°C, and 100 mPa s for light oil at
the same temperature.

For a viscous fluid flowing through a horizontal cylindrical pipe, there is a pressure
drop in the fluid with distance along the pipe. Consider a pipe of length L and radius
R through which a fluid with viscosity coefficient 1 flows at a volume flow rate Q.
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The pressure drop Ap along the pipe is expected to depend on 7, L, Q, and on the
inverse of the cross-sectional area A = 7R”. In order to obtain the required units of
Pa for the pressure drop, dimensional analysis shows that it is necessary to include
AF o nLv o nLQ

A A
calculation based on the flow pattern depicted in Figure 7.10 leads to what is called
Poiseuille’s equation, as given in Equation (7.6), for the pressure drop in viscous fluid
flow through a pipe:

a further factor R* in the denominator, so that Ap = A detailed

8L

AP:
nnR“

0 (7.6)

Poiseuille’s equation applies to the non-turbulent viscous flow of a fluid through a
horizontal cylindrical pipe.

Exercise 7.7: A section of a horizontal oil pipeline with inside diameter
20 cm has a pressure drop of 120 kPa over its length of 10 km. Calculate the
flow rate in L/s taking the viscosity coefficient of the oil as 200 mPa s. Assume
that Poiseuille’s equation holds for this flow process.
4 4
From Equation (7.6), the flow rate is Q= l 7R Q = Lﬂ
8 L 02 8

1.2x103
%40 =2.36x1072 m3/s. The predicted flow rate is 2.36 L/s. The use of

Poiseuille’s equation for a large pipeline of this sort is questionable, and the
calculated flow rate is significantly higher than would be achieved in practice.

7.5 MECHANICAL PROPERTIES OF SOLIDS

While liquids and gases occupy the space available to them, with allowance for the
influence of gravitational forces, most solids have shapes and dimensions that change
only slightly when subjected to moderate applied stress. Furthermore, stresses can
be applied to solids in 1D and 2D, in addition to 3D. In dealing with fluids, a single

o 1dv . . .
property, the compressibility given by x = TFTE is of key importance in deter-

mining the behaviour under stress. Gases are highly compressible, while liquids are
not. Solids are, in general, even less compressible than liquids, and in the simplest
case of a homogeneous isotropic material require two elastic constants to describe
their mechanical properties. The elastic constants, or moduli, are called Young’s
modulus Y, and the shear modulus o. Other elastic constants, including the bulk
modulus B, can be defined, although their values depend on Young’s modulus and
the shear modulus. The bulk modulus and the compressibility are closely related as
shown below.
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The material dependent moduli for solids are defined using the general relation:
stress = modulus X strain

where strain is a dimensionless relative deformation and stress has units of N/m? It
follows that the moduli have the latter units as well.

The bulk modulus is determined by increasing the hydrostatic pressure on a solid
specimen by Ap and measuring the resultant fractional volume change AV/V. Thus,
B is defined by the relationship

AV
Ap=-B— 7.7
P v (7.7)

A
From Equation (7.7), it follows that B = -V ﬁ Note that the bulk modulus B is the

inverse of the compressibility x.

Measurements of Young’s modulus of a solid involve applying opposing forces
F to each end of a specimen in the form of a long rod or wire of length L and cross-
sectional area A. The tensile stress F'/A produces a strain AL/L from which Y is
obtained using the relationship

F
g 7
A

~|&

(7.8)

Shear modulus values are obtained by applying opposing forces F to the parallel
upper and lower faces of a specimen of thickness L, as shown in Figure 7.12, to
produce a shear stress, which results in a shear deformation AX as given in the
following equation:

~|&

%z o (7.9)

Shear stress Hydrostatic pressure
F

o

FIGURE 7.12 Representation in 2D of (a) shear stress and (b) hydrostatic pressure-induced
strains for a solid specimen with a rectangular cross-section.
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Stress Strain Curve for a Metal

Brl:zikiﬁg point

Yield point

strain

Elastic region

stress

FIGURE 7.13  Stress—strain curve obtained for a representative stretched metal wire. Hooke’s
law is obeyed in the linear elastic region, where the slope of the line gives Young’s modulus
for the wire. For stress values above the yield point, the specimen undergoes permanent
elongation. As the stress is increased, the permanent deformation increases until a breaking
point is reached where catastrophic failure occurs.

Figure 7.12 gives a 2D representation of (a) shear stress and (b) hydrostatic pressure-
induced strains in a rectangular solid. The case of uniaxial stress is illustrated in
Figure 7.2.

The stress—strain curve for a metal wire typically shows a linear region as the
stress is increased gradually from zero, with slope given by Young’s modulus Y for
the material as predicted by Equation (7.8). In the linear stress—strain region, the
strain is reversible with the specimen returning to its original length when the applied
stress is reduced back to zero. Stress—strain behaviour in the linear region is described
by Hooke’s law, which is discussed in Chapter 8. As the stress is increased further,
the strain behaviour changes. It is found that above what is called the yield point
the strain increases non-linearly and is no longer reversible. Permanent deformation
of the specimen occurs. At sufficiently high stress values the specimen ruptures as
indicated in Figure 7.13.

Exercise 7.8 An aluminium rod of diameter 2 mm and length 80 cm is
suspended from a rigid support. If a mass of 50 kg is attached to the lower end
of the rod, by how much will the rod’s elastic length increase? Young’s modulus
for aluminium is ¥, = 70 x 10° N/m?.
From Equation (7.8), AL = lEL = ! X 20%9.8
Y A 70x10°  mx1076
which is important in engineering applications that require tensile or compressive
strength, has a Young’s modulus of ¥, =200x10° N/m?, which is significantly
higher than that of some other metals such as copper (¥, =110x10° N/m?) or
aluminium (Y, , given above).

% 0.8 =1.8mm. Steel,

1°

As an example of shear strain, consider the following situation for the aluminium
rod described in Exercise 7.8. If a twisting torque, represented by a vector parallel
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to the rod axis, is applied to the end of the rod, then the rod will twist through an
angle A6. The twist is a measure of the shear strain produced by the torque-induced
stress. In equilibrium, A6 is determined by matching the size of the applied torque
to that of the opposing torque involving the shear modulus of aluminium, which is
26 x 10° N/m?. For small A6 the shear stress—strain curve is linear, and the twist behav-
iour is reversible. If the mass is twisted through a small angle and is then released,
it will perform oscillatory motion and the system constitutes a torsional oscillator as
discussed in Chapter 8.



8 Oscillations

8.1 INTRODUCTION

Oscillatory behaviour is found in a wide variety of physical systems. Familiar
examples include the to-and-fro motion of a child’s playground swing, the peri-
odic motion of the pendulum in a mechanical clock, and the oscillation of a mass
suspended on a spring. For mechanical systems, this kind of motion can be described
in detail using Newton’s second law. The time-dependent motion is characterized by
a frequency, which may, if the oscillation is only weakly damped, remain approxi-
mately constant over a long period.

The important case of simple harmonic motion is central to any discussion of
oscillatory motion. Simple harmonic motion is explained in general terms in Section 8.2,
and specific examples are given in Sections 8.3 to 8.5. Section 8.6 elaborates on the
kinetic and potential energy contributions to the total energy of a mass that is under-
going oscillatory motion. The final sections of this chapter are concerned with, firstly,
damped oscillators and, secondly, the response of an oscillator which is driven by an
external mechanism at frequencies other than its natural frequency.

8.2 SIMPLE HARMONIC MOTION

Consider a system consisting of a mass m subject to a time-varying force F' (t), which
causes the mass to undergo oscillatory motion parallel to the x-axis of a Cartesian
coordinate system. Let x(t) be the displacement of the mass from the origin at time
t. The necessary condition for simple harmonic motion (SHM) to occur is that x(t) be
a periodic function of time of the form

x(1)=x, cos(wt +¢) 8.1

with x  the amplitude of the motion, @ the angular frequency, and ¢ the phase angle
determined by the initial conditions. Note that the sine function could be used instead
of the cosine function by changing the value of ¢. Analogous to the case of circular
motion in Chapter 5, the angular frequency is related to the period 7 for a complete

116 DOI: 10.1201/9781003485537-8
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cycle of oscillatory motion by @w=27z/T. Newton’s second law gives the time-
dependent force acting on m as

dx

F=ma=md—2=—ma)2xmcos(a)t+¢)=—ma)2x (8.2)
t

Equation (8.2) shows that the force necessary to produce SHM of the mass m is
proportional to the displacement, and, in view of the minus sign, acts towards the
origin, that is in the opposite direction to the displacement. The classic example of a
linear restoring force acting on a mass undergoing oscillatory motion is that of a mass
attached to a spiral spring.

It is interesting and instructive to note the similarity of the expression describing
SHM in 1D to the expressions for the x and y components in the rotating vector
representation of circular motion in 2D given in Chapter 5. The angular displacement
of a rotating vector, of length A, as a function of time is given by 6= wr+ ¢, and
it follows that the amplitude of the x component is x(¢) = A cos(®?+ ¢), which is
identical in form to Equation (8.1). The y component is analogous to this, but with the
cosine function replaced by the sine function. Thus, circular motion can be viewed
as a combination of two SHM motions along orthogonal axes with a phase difference
A¢ = m/2 between the motions. If the tip of the x component of the rotating vector
were to be viewed in the plane of motion, looking down the y-axis, the 1D motion
seen would correspond to SHM.

8.3 MASS ON A SPRING

8.3.1 HookF’s Law

If a spiral spring is attached to a rigid support and is extended by a force applied to
the free end, then, in equilibrium, the spring exerts an equal and opposite force to
match the applied force. This scenario is illustrated in Figure 8.1 for a light spiral
spring hung vertically with a mass m suspended from its free end. The length of the
spring is extended by the applied force. Provided the extension Al is not too large,
the opposing force F' exerted by the spring is found to obey Hooke’s law, which
states that F' o< Al. Hooke’s law is an empirical law, but it is found to hold remarkably
well provided the extension does not produce permanent deformation of the spring.
The proportionality constant used in Hooke’s law is known as the spring constant k,
giving the relationship

F=-kAl (8.3)

The SI units for £ are N/m. The minus sign shows that the force acts in the opposite
direction to the extension. Equation (8.3) is the required condition for SHM, as shown
in Section 8.2.

Hooke’s law follows from the elastic properties of solids as described in Chapter 7.
The spring extensions discussed in this chapter are assumed to be in the elastic range,
below the elastic limit.
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Suspended Spiral Spring

Spring constant &

Mass m

meg

FIGURE 8.1 Depiction of a spiral spring suspended vertically with a mass m attached to the
free end. In equilibrium, the spring exerts an upward force equal to the weight m g.

Horizontal Spiral Spring
on a Tow Friction Surlace

FIGURE 8.2 Representation of a spiral spring oriented horizontally parallel to x and subject
to a force F' which produces an extension Ax.

8.3.2 OSCILLATIONS OF A SPRING SYSTEM

To avoid having to consider gravitational effects when dealing with a mass on a
spring, it is convenient to support the system on a horizontal surface, so that the
downward gravitational force m g on the attached mass m is matched by the upward
reaction force produced by the surface. Coordinates are chosen with the horizontal
x-axis along the longitudinal axis of the spring and the origin at the fixed end of
the spring as illustrated in Figure 8.2. If the spring that is extended and released
obeys Hooke’s law, it follows that the mass will execute SHM provided the fric-
tional damping forces are negligibly small. Comparing Equation (8.2) with Equation
(8.3), it can be seen that k = m @? and the angular frequency of the SHM is therefore
@ = k/m. This result for SHM can be obtained directly using Newton’s second law
together with Hooke’s law as shown below.

In applying Newton’s second law to the motion of the mass, and assuming that
friction forces are negligible, it is necessary to consider just the horizontal force that
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is given by Hooke’s law. Equation (8.1) gives the displacement of a mass undergoing
SHM as x() = Acos(wt + ¢). The use of Newton’s second law together with Hooke’s
law leads to the relationship

d?x

F=m¥=—ma)2 x cos(wt+¢)=-ma’ x=—kx (8.4)

The angular frequency is w=+k/m, as noted above, with oscillation

2 /
period T =T 2 |2
0} k

In the case of the spring—mass system being oriented vertically along the y-axis,
the weight m g extends the length of the spring by an amount Ay, which is given by

Hooke’s law as Ay = Tg In order to allow for this static extension due to the gravita-

tional force, the origin O along y is shifted downwards by Ay. The spring constant k
is unchanged and Hooke’s law becomes F' = —k y. Apart from the change of axis from
x to y, Newton’s second law retains the form used in the horizontal orientation case,
with angular frequency again given by @ = Jiim.

Exercise 8.1: A light spiral spring, with a mass m = 0.05 kg attached to one

end, is located on a smooth horizontal surface with the other end clamped to

a rigid support. If the oscillation period is 0.8 s, what is the spring constant?

Determine the static extension of the spring when it is suspended vertically.

4 m _ 39.5x0.05
T? 2.56

the spring is suspended vertically, with its cylindrical axis parallel to y, the

mg 0.05x9.82

static extension is given by Hooke’s law as Ay = % 308 =0.16m -

= 3.08 N/m. When

Usingtheresult 7" = 271'\/% givesk =

It is instructive to examine SHM for a spring oriented with its axis aligned vertically
along the y-axis with a mass m attached to its free end as shown in Figure 8.1. The
Earth’s gravitational field exerts a constant downward force F, =mg on the mass
leading to an extension of the spring. When set in vertical motion, the mass executes
SHM about the extended length equilibrium position, taken as the origin. The Hooke’s
law force F, = —k y provided by extension and compression of the spring determines
the motion of the mass. The frequency w = Jk/m of the SHM motion is precisely the
same as that found when the spring axis lies along the x-axis. The gravitational force
does play a role in determining the potential energy behaviour as a function of the
position of the vertical oscillator, as is discussed in Section 8.6.
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8.4 SIMPLE PENDULUM

The classic simple pendulum consists of a bob of mass m suspended on a string
attached to a fixed support. The gravitational field exerts a force F'= m g on the bob
and this keeps the string taut. When the bob is pulled to one side and then released,
the system undergoes oscillatory motion about the vertical direction as depicted in
Figure 8.3. In its motion, the bob sweeps out an arc of radius equal to the string
length .

Consider the forces acting on the bob when the string makes an angle 8 with the
vertical direction. The tension T in the cord acts perpendicular to the direction of
motion of the bob as it swings along the arc to which its motion is constrained. The
weight m g, which acts vertically downwards, can be resolved into two perpendicular
components as follows. Firstly, F| =mgcos @ is parallel to the string and perpen-
dicular to the direction of motion. Secondly, F| = m gsin 6 acts along the direction of
motion as shown in Figure 8.3. It is convenient to describe the motion of the bob in
terms of the arc length displacement s =/ 8 from the origin, which is chosen to lie at
the bottom point of the arc of motion. Applying Newton’s second law to the oscilla-
tory motion gives

d2s d2e

—mgsin@=m——=ml 8.5
mgsi mdﬁ mdt2 (8.5)

The minus sign is inserted because the force F acts in the opposite direction to the

displacement. If the amplitude of the oscillating motion is sufficiently small, then to
a good approximation sin 8 = 6, and Equation (8.5) becomes

a6

0=—"
dr?

NIOQ

(8.6)

Simple Pendulum

mgsin@

mg

FIGURE. 8.3 A simple pendulum consists of a bob of mass m suspended on a light string
of length /. For small oscillation amplitude 6 the pendulum executes motion approximating
simple harmonic motion.
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The comparison of Equation (8.6) with Equation (8.2) shows that for small 6 the bob
executes SHM, with the angular displacement at time ¢ given by 6= 6 cos(a)t + q)).
Inserting this expression for 6 into Equation (8.6), and simplifying, gives the angular
frequency as

w=1Jgll (8.7)

The period is T = 27':\/z . The condition that sin 8 = 6 holds to within 1% for angles
8

6< % (or 6<15%). Equation (8.7) shows that the period of the pendulum does not

depend on the mass of the bob, and it therefore applies universally for all pendulums
of this type and length.

An alternative approach to the mechanics of the simple pendulum can be used if
the pendulum string is replaced by a rigid rod of length / and negligible mass. The
pendulum in this form is viewed as a rigid body, with moment of inertia about the
suspension point given by I = m[?, which is subject to a clockwise torque, of magni-
tude I' = m glsin 6, produced by the gravitational force acting on the bob as depicted

2
in Figure 8.3. Newton’s second law for rigid body motion is I' = I a, with o= (;Tze’

2
which gives —m glsin 0= m[? fsze Taking sin 8 = 6 for small 6, and simplifying, gives

&6

0=—
dr?

(8.8)

NIOQ

Equation (8.8) is identical to Equation (8.6), and the angular frequency is therefore
given by o= 4/g/l as before.

Exercise 8.2: A simple pendulum consists of a light rod, of length 0.8 m, with
amass m attached to the lower end. The pendulum is set in motion by displacing
the bob by a small amount from its static equilibrium position. Determine the
period of this pendulum. By how much would the period change if the length
of the rod were halved?

Using the expression 7' =27 L for the period gives T =21, /% =1.8s.
g .
If the length of the rod is halved, the period would decrease by a factor

V0.5 =0.7.
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8.5 RIGID BODY OSCILLATIONS

If a rigid body is suspended on a pivot allowing rotational motion about an axis that
does not pass through the centre of mass, it will execute SHM after being rotated
through a small angle 6 from its equilibrium orientation and then released. The situ-
ation is a generalization of the case of the simple pendulum consisting of a mass
attached to one end of a light, but rigid, rod as discussed in Section 8.4.

Consider a solid slab of material chosen for convenience to be of rectangular
shape, although the present analysis applies to arbitrarily shaped objects. The slab is
suspended as shown in Figure 8.4, with the pivot axis at a distance L from the centre
of mass. Using Newton’s second law I" = / o for the oscillatory motion of the body
subject to a torque I', with / the moment of inertia of the body about the pivot axis and
o the angular acceleration, gives, for small 6, the equation of motion as

. d=e
—MgLst:—MgLGzI? 8.9

The magnitude of the torque produced by the gravitational force is given by
I'=MgLsinO= M gL 6. As before, the approximation sin @ = 6 holds for small amp-
litude oscillations. The minus sign shows that the acceleration occurs in the opposite

direction to the displacement.

d? MgL
Equation (8.9) can be written in the form d—ze = —-w*6, with @* = Tg This is the
t

now familiar expression for SHM. Use of the parallel axis theorem for the moment
of inertia of a rigid body about an axis at a distance L from a parallel axis through the
centre of mass gives / = I, +M [*, with I, the moment of inertia about the centre

MgL
I, +ML

of rigid bodies with various shapes about axes through their centres of mass are given

of mass. The angular frequency becomes @ = . The moments of inertia

Compound Pendulum

Pivot

Mass M

-—

Mg

FIGURE 8.4 A rectangular-shaped rigid body of finite thickness and mass M is pivoted about
an axis at O a distance L from its centre of mass. For small angular displacements 6 the body
executes SHM in the Earth’s gravitation field.
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in Chapter 6. Note that if the pivot axis passes through the centre of mass, then L =0,
and hence @ = 0 or, equivalently, the period 7 goes to infinity.

Exercise 8.3: Determine the period of the oscillations of a solid disk of mass
M and radius R about a perpendicular pivot axis near the edge of the disk.

Using the expression for the angular frequency of oscillation of a rigid

) MgL . .
body given by w= —g’ together with the observations that L = R
I, +MI

and the moment of inertia about a perpendicular axis through the centre of
MgR

1
mass is I = EMRZ, leads to w = = \/g/%R. The period

%MR2+MR2

f3 . .
T=2r ER/g increases as the square root of the radius.

8.6 ENERGY OF OSCILLATION

A system consisting of a mass undergoing SHM has mechanical energy E made up
of kinetic energy K and potential energy U. If damping forces are negligible, mech-
anical energy is conserved. Both K and U vary with time, but their sum E remains
constant. If damping is not small, mechanical energy will not be conserved and the
amplitude of the SHM oscillations will steadily decrease. For large damping, the
system will not exhibit SHM. This case is discussed in Section 8.7.

As an example, consider a mass m attached to one end of a spiral spring with the
other end of the spring clamped to a fixed support. As an idealization, the spring—
mass system is assumed to be located on a frictionless horizontal surface. In addition,
it is assumed that the mass of the spring is small compared to that of the attached mass
m, and can therefore be neglected. If the spring is extended and then released, the
mass will undergo SHM as described in Section 8.3. Note that it is the kinetic energy
K of the mass m undergoing SHM that is considered, while the potential energy U is
associated with extension or compression of the spring which provides the necessary
time-varying force to move the mass. The displacement of the mass as a function of
time\}s_&iven by Equation (8.1) as x(¢)=x_cos(w?+ ¢). The angular frequency is
o =~ k/m, with k the spring constant.

The maximum value of potential energy stored in the spring is determined from
the work done by the applied force, F (x) = k x, producing the initial extension which

T 1
starts the oscillatory motion. It follows thatU = W = Jk xdx = B k x*. When the mass
0

is allowed to execute SHM, the potential energy oscillates in time between zero and

%k x2 as given by the following equation:



124 Physics: An Introduction to Physical Dynamics

U=%k x2 cos? (@t + ¢) (8.10)

In addition, Equation (8.10) shows that U has a parabolic dependence on x, and

. 1
swings between the values 0, when x =0, and Ek xfn, when x = X .

1 1 (dxY
The kinetic energy of the mass is given by K = Em vi= Em(d—) , and so differ-
* t

entiating the expression x(z) = x_ cos(w?+ ¢) gives
K:%mxi w2sin2(wt+¢)=%kx; sin? (@ ¢ + ¢) (8.11)

Kand U oscillate between the same energy limits, but with a phase difference of /2
between them.
The total energy is given by

1 1 1
E= K+U:§kxfn sin? (wt+¢)+5kxfn cos? (o1 +¢) = Ekxfn (8.12)

The variations of K, U, and E with displacement x are shown in Figure 8.5.

The variations of E, K, and U with time are shown in Figure 8.6.

With the spring fully extended at x = x_, the mass m is momentarily at rest with
U at a maximum and K at a minimum. In contrast, K is at a maximum and U is at a
minimum when x = 0. The average potential energy U, is equal to the average kinetic

E=K+U

Energy

P 0 X
Displacement x

FIGURE 8.5 The kinetic energy K and the potential energy U as a function of displacement
x for a mass m on a spiral spring undergoing simple harmonic motion. A minimum in K and
a maximum in U occur when the displacement is x = x . Forx= 0, the situation is reversed,
with K a maximum and U a minimum. The total energy E = K + U is constant for all x values.
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E=K+U
U
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FIGURE 8.6 The potential energy U and the kinetic energy K as a function of time ¢ for a
simple harmonic oscillator. The total energy E = U + K remains fixed, while U and K oscillate
between 0 and E with a phase difference of 7. T = 27/ @ is the period for a complete oscillation.

energy K, withU =K _ = E/2, as can be seen by considering the intersection of
the curves in Figures 8.5 and 8.6.

The above discussion of the energy of a harmonic oscillator has considered a hori-
zontally mounted spring with an attached mass moving on a frictionless surface. For
a vertically mounted spring system, as shown in Figure 8.1, it is necessary to allow
for the potential energy contribution of the attached mass as it undergoes vertical
motion in the Earth’s gravitational field. The two important forces acting on the mass
when it is displaced from its static equilibrium position, which is chosen to be the
origin of the vertical y-axis, are, firstly, F;, = —k y due to the stretched spring and, sec-
ondly, F; = mg due to gravity. As shown above, the potential energy is obtained as
a function of y by calculating the work done in stretching the spring. The calculation

T 1
gives the relationship, U =W = j(k y+m g)dy = Ek y?>+mgy. The maximum and
0

minimum values of U are obtained with the appropriate choice of signs. Both U and
K involve gravitational contributions and vary between zero and the altered upper
and lower energy bounds as a function of time, in a similar way to the behaviour of
the horizontal spring case shown in Figure 8.6. Since the gravitational force on mass
m is constant, there is no change in @ as discussed in Section 8.3.

Exercise 8.4: Obtain expressions for the kinetic energy and the potential
energy of asimple pendulum undergoing small angle oscillations approximating
SHM.

From Section 8.4, the angular displacement of a simple pendulum bob
suspended on a string of length / is 6= 6 cos(a)t 4 ¢), with @ = @ as given
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in Equation (8.7). The component of the gravitational force antiparallel to the
displacement ds = [ d0 is to a good approximation F' = —m g 6, where we have
assumed that sin 6 = 6.

The increase in the gravitational potential energy U with angular dis-
placement from the origin at 6=0 is obtained from the work done
W by an applied force in changing the angle from O to 6. This gives

0
1
U=W=-Fds=mg lJOd 0= Emg 16 Inserting the time-dependent expres-
0
1
sion for 6 given above leads to U = Emgl &’ cos? (o1 +¢).

1 de 1 doy
The kineti isK = —mv? andusingv = [ — givesK =—ml?| — | =
€ Kine 1cenergyls 2mv an llSll'lgV dt glVCS 2 (dt)

%mz2 @ & sin’ (w1 +¢)= %mgl@fn sin” (w1 +¢)

1
The total energy is constant and is given by E=U+ K = Em gle.

Note that in contrast to the horizontal spiral spring, where it is the elastic properties of
the spring which determine the behaviour, in the case of a pendulum it is the Earth’s
gravitational field that gives rise to the potential energy properties associated with the
motion. It is straightforward to consider the SHM behaviour of a vertically mounted
spring carrying a mass m, which is subject to both elastic and gravitational forces that
play a role in determining the energy of the system. This is left as an exercise.

Exercise 8.5: A thin strip of wood of length 2/ and mass M is pivoted about
an axis located at one end and oriented perpendicular to the strip’s surface. To a
good approximation, the strip executes SHM for small angular displacements 0
from its static equilibrium orientation. Obtain expressions for the potential and
kinetic energies of the strip as a function of time. Friction effects are negligible.

Newton’s second law for rigid body oscillations, given in Equation (8.9), has

d?ée . /M L .
the SHM form d_2 =—@? 6, with 0= Gm cos(a)t+ q)) where @ = Tg L is
t

the distance from the pivot to the centre of mass of the object.

o : 1 (do) 1 : 1
The kinetic energy is K = 51 =) = 51 @ & sin® (o1 +¢)= EM g
t

]
L& sin? (ot + ¢), while the potential energy is U = MgLJO do= %MgL @ =
0

%MgLan cos? (@t + ¢).
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1
The total energy E =K +U = EM gL @ is constant, as expected.

Note that the moment of inertia does not appear in the expression for K (due
to the cancellation of terms), and the form of this expression is very similar to
that obtained for the simple pendulum in Exercise 8.4, with the pivot to centre
of mass distance L replacing the length of the simple pendulum string /. The
compound pendulum expressions for U and K are widely applicable to SHM
involving rigid bodies.

8.7 DAMPED SIMPLE HARMONIC MOTION

The discussion of SHM in this chapter has, until now, been concerned with ideal
systems in which damping effects, due to friction or air resistance, are assumed to
be negligibly small. In the limit of zero damping, SHM, once begun, persists indef-
initely. In order to allow for damping it is necessary to introduce a damping force
into Newton’s second law. Consider a system comprised of a mass on a spring in
the presence of a damping mechanism, which applies a velocity-dependent retarding

dx . . .
force F, =-bv= —bd— to the mass. This particular form for the retarding force
t

applies, for example, if the damping is provided by a viscous liquid via a paddle
attached to the mass. The equation of motion, which is based on Newton’s second
law, becomes

2
mEF (8.13)
dr? dr

Although this second order differential equation is not straightforward to
solve, considerable insight is gained by using the exponential form x=x e’
as a trial solution of Equation (8.13), with  a parameter to be determined
in terms of m, k, and b. Carrying out the differentiation of x and rearranging

b k
terms leads to the quadratic equation [ ——[3+——0 with solution given by

k
[3__+ - —w; where @, =,/— is the angular fre-
2m m 2m m

quency of the undamped oscﬂlator

2
b
Three cases arise, referred to, respectively, as (1) underdamped with a)zo > (2—) s
m

2

2
b b
(2) critically damped with @] = (2—) , and (3) overdamped with @ < (2—) .
m m
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Damped SHM
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FIGURE 8.7 Decay in the amplitude of oscillations with time for a lightly damped simple
harmonic oscillator returning to static equilibrium.

In the underdamped case, the solution involves the exponential of a complex
function with real and imaginary parts, and can be shown to take the form

x=x, e cos(wyt+9) (8.14)

b 2
with o =, | &} —(2—) the frequency of the decaying oscillations, and 7= 2m/b
m

the decay constant. Figure 8.7 depicts the form of decaying oscillations for the
underdamped case.
The critically damped case corresponds to the solution

x=x (1+Cr)e'" (8.15)

which shows that the amplitude of displacement of the mass decreases with no oscil-
latory behaviour. The return to the equilibrium position at x = 0 occurs most rapidly
for critical damping. Finally, for overdamped conditions, the solution is a sum of two
decreasing exponentials. Again, any initial displacement of the mass dies away with
no oscillation, and experiment shows that the return to equilibrium becomes more
sluggish as the damping increases. This behaviour corresponds to a decrease in f3,
which means that the solution for § with the negative sign ahead of the square root
applies. The return to equilibrium over time of a spring-mass system following an
initial displacement of the mass is shown in Figure 8.8 for slightly underdamped and
critically damped cases.

From a transport perspective, whether by road or rail, critical damping is important.
Motor car suspensions, for example, are designed to be critically damped so that
following the traverse of a major obstacle or bump in the road, vehicles return to
stability smoothly without oscillations, thus reducing the risk of discomfort or even
motion sickness in passengers.
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1 Underdamped
2 Critically damped
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FIGURE 8.8 Gradual return to equilibrium over time for a simple harmonic oscillator which
is (1) underdamped, and (2) critically damped. Overdamped behaviour (not shown) becomes
more sluggish as the damping increases.

8.8 DRIVEN OSCILLATIONS

Consider a mechanical oscillator consisting of a mass m attached to a spring, with
spring constant k, which executes SHM at a frequency @, = Jkim. Experiment
shows that when a variable-frequency driving mechanism is used to apply an alter-
nating force F, cos(ar) to the mass, the system responds by executing oscillations
at the driving frequency @ with an amplitude dependent on both F, and w. If the
frequency is varied over a wide range, with F, kept constant, the amplitude of oscil-
lation reaches a maximum for @ = ,, & condition known as mechanical resonance.
A familiar example of mechanical resonance is provided by a child’s swing when it is
pushed at its natural frequency.
For a mechanically driven horizontal spring plus mass oscillator, with allowance
for damping, the equation of motion is obtained by adapting Equation (8.13) to give
d%x dx
mF=—kx—bE+FA cos(wt) (8.16)

The steady-state solution to Equation (8.16) has the familiar form x = A(a))
cos(wt +6,), but now both the amplitude and phase can be frequency dependent. The
amplitude as a function of the driving frequency is found to be given by

(8.17)

This expression for the amplitude of oscillation as a function of the driving frequency
is known as the damped oscillator form and is plotted in Figure 8.9 using @) =10 s



130 Physics: An Introduction to Physical Dynamics

Damped Harmonic Oscillator

1

Damping factor:
b/m (1)
< b/m (2)
<b/m (3)
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FIGURE 8.9 Amplitude response curves for a driven harmonic oscillator, obtained using
Equation (8.17) and plotted versus the reduced frequency @/@, with @, the resonance frequency
of the undamped oscillator. As the damping factor b/m is increased the curves broaden and the
maximum amplitude decreases.

and F R /m =10 N/kg. The damping constant, which is assumed to be much less than
one (b/m < 1), determines the half-height width of the frequency response curve.
Note that the maxima for the curves shown occur at a frequency slightly below the
undamped harmonic oscillator resonance frequency.

The complete solution of Equation (8.16) for a driven harmonic oscillator provides
information on the behaviour of the phase angle ¢ as a function of frequency and
damping constant.

Exercise 8.6: A system consisting of a horizontally mounted spiral spring with
a mass of 0.1 kg attached to one end has its oscillations damped by a velocity
dependent retarding force F, = —b v with damping coefficient 5 = 0.2 kg/s. In
the absence of external forces, the oscillation frequency is @) = 30 rad/s (i.. the
frequency is f'= 4.8 Hz). If a variable-frequency oscillating driving force F = F,
cos (w ¢) with amplitude F', = 1.2 N is applied to the mass parallel to the long axis
of the spring, what will the amplitude of the oscillations be (a) for ® = @, and
(b) for ,=0.8 ®,?

Inserting ® = o, together with the values for F, and b in Equation (8.17) gives
_ F, __ 12

baw, 02x30
F, /m B

Changing o to 0.8 o, gives A(®) = =
’ J@ =@ +(bm) o

2m.

the amplitude of the driven oscillations as A(a)o)

12

— 0.037m.
J(900-576)" +4x576
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As the damping constant is decreased, the response curve of a mechanical oscil-
lator becomes more and more sharply peaked near the undamped centre frequency
o, The maximum amplitude response to the driving force then occurs for 0= @,.
This is known as the resonance condition.

Mechanical resonance effects occur in a wide variety of physical situations,
including musical instruments involving strings, air columns, and drumheads. Going
beyond mechanical systems, resonance phenomena are also important in electro-
magnetism. For example, electronic-tuned circuits have numerous applications
in communications and in specialized fields such as magnetic resonance imaging.
Resonance effects are particularly important in molecular and atomic spectroscopy,
and in related areas which include lasers and atomic clocks. While a detailed descrip-
tion of atomic-scale resonance effects requires familiarity with quantum mechanics,
the ideas and results presented in this chapter, particularly those concerning damped
and driven oscillators, are useful at length scales ranging from the macroscopic to the
microscopic.



9 Waves in Low
Dimensions

9.1 INTRODUCTION

Wave motion is encountered in a large variety of situations. Familiar examples
include sound waves in the air and waves in the sea. There is an important distinc-
tion between mechanical waves, which require a medium in which to propagate, and
electromagnetic waves, which propagate in a vacuum as discussed in Chapter 10. The
subject is introduced by considering the properties of waves on a stretched string.
The results obtained for waves on strings are useful in considering other types of
waves, including sound waves and light waves. This chapter focuses on waves in a
low number of dimensions, specifically with waves on strings and sound waves in
pipes. Chapter 10 is concerned with waves in higher numbers of dimensions, in par-
ticular sound waves in air.

There are two types of mechanical waves, which are known as transverse waves
and longitudinal waves, respectively. In order to illustrate the distinction between
these wave types, consider a linear system consisting of a long chain of beads with
neighbours connected together by springs. If a periodic force is applied at one end
of the chain parallel to its long axis, then springs near that end experience a slight
compression, followed by recovery to their original length, and then slight extension.
With the passage of time, compression—expansion effects are transmitted along the
chain as a longitudinal wave. In order to generate a transverse wave in the chain, the
periodic force would be applied perpendicular to the chain axis, leading to periodic
transverse motion involving spring compression—expansion effects, which propagate
down the chain. For both wave types, energy is transmitted down the chain without
any long-range displacement of the beads. By stacking the chains into 2D sheets
or 3D blocks of coupled beads, it is possible to picture wave propagation in higher
dimensional systems. As an example, wave motion in real solids can be simulated
using a model in which the atoms or ions are coupled together by forces, which, for
small displacements of the interacting particles, obey Hooke’s law.

9.2 WAVES ON A STRING

9.2.1 TRAVELLING PULSES ON STRINGS

A long tautly stretched string allows transverse travelling waves to be generated on
it by moving one end of the string up and down in a systematic way. A single pulse
that travels along the string can be generated by a flick of the end, while a sinusoidal
travelling wave can be produced using a mechanical oscillator attached to the
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(a) =10

(b) t=At

X =x

x'=x,+vAt

FIGURE 9.1 A pulse travelling with velocity v along a stretched string aligned parallel to
the x-axis shown at times (a) ¢ = 0 and (b) = At. During time At the pulse travels a distance

Ax=v At.

string. As a starting point, it is convenient to consider a single pulse propagating
along an infinitely long string. In order to specify the time-dependent behaviour of
the string due to a travelling pulse, a set of Cartesian coordinates are introduced with
the x-axis parallel to the stretched string and the y-axis perpendicular to x and aligned
along the direction of the transverse motion. Let the displacement y of the string
as a function of position x and time ¢ be given by y=F (x,t) where F is a function
yet to be determined. Figure 9.1 depicts the pulse location, firstly at time # =0 and
secondly at a later time ¢ = Az. For 1 = 0 let the peak amplitude of the pulse be y, at
position x;, while at the later time A the peak amplitude has propagated along the
string and occurs at x’= x, +v At. Rearranging gives the relationship x, = x"—v At,
which shows that the amplitude at point x” is equal to the amplitude at x, a time Az
earlier. Generalizing this approach to an arbitrary point x on the string leads to the
formy=F (x —v t) for the amplitude at that point at time ¢.

It is clearly of interest to consider the factors which determine the speed v of trav-
elling waves on stretched strings. Observations and calculations given below show
that two quantities are important, namely the string tension 7" and the mass per unit
length p. Other possible factors, such as the length of the string, are not important in
determining v. It is possible to obtain an expression for v using dimensional analysis.
This is done in Exercise 9.1.

Exercise 9.1: Use dimensional analysis to obtain an expression for the speed
v of waves on a string in terms of the string tension 7" and the mass per unit
length p.

Let v =T%uP where o and 3 are exponents to be determined. The SI units
of T are N, or kgm s72, and those of u are kg m~!. Inserting these units in the
expression for v gives ms™' = (kgms=)" x (kgm™ )ﬁ . Grouping the exponents
for “kg”, “m”, and “s” separately leads to the following simultaneous equations
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in o and f. For “kg”, 0 = o+ ff; while for “m”, 1 = o¢— f3; and for “s”, -1 = —2¢.
Solving gives o = 1/2 and 8 = —1/2. These exponent values lead to the following
simple form for the speed of waves on a string:

v= £ ©.1)
u

The above expression for the speed of waves on a string can also be derived using
a model that simulates the motion of a string segment close to the maximum dis-
placement position of a pulse travelling along the string. As a result of the travelling
pulse, segments of the string exhibit curvature and are no longer straight. If a segment
curves upwards, then the segment will experience a resultant force with an upward
component along the y-direction due to asymmetry in the tension forces acting on the
segment as illustrated in Figure 9.2. Adding vector components, the net force in the
y-direction is T (sin 02 —sin 01 ), where T is the tension in the string while 0, and 0, are
the angles the tension force at the lower and upper ends of the segment make with the
x-axis as given in Figure 9.2.

Next, the curved segment at the point of maximum displacement of the string
in the y-direction can, as an approximation, be viewed as the arc of a circle of
radius R, which is chosen to give the best fit in the vicinity of the peak. Let the
segment of length / subtend an angle A6 so that / = R A6. Because of symmetry in
the downward curvature, the tension forces at each end of the segment act down-
wards along —y, with each force making an angle A6/2 with the x-direction as can
be seen in Figure 9.3.

Vector summation

: /T

T

FIGURE 9.2 Tension forces acting on a string segment undergoing propagating wave motion.
The inset shows the summation of the tension vectors 7. The resultant has both vertical and
horizontal components. Note that if a segment is straight, then 6, = 6, and the net force along
Y is zero.
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FIGURE 9.3 The shape of the string segment of length / through which the wave peak is
moving can be well approximated by the arc of a circle of radius R, as shown, with [/ = R A6.

If A6 is chosen to be sufficiently small, then to a good approximation
sin(AO/Z)z AO/2, and the net force on the segment is F = 2Tsin(A9/2)z T AS6.
Newton’s second law then gives FF =T A@=ma = [LRAB a, where a is the acceler-
ation of the segment in the —y direction. The instantaneous acceleration of the
segment is obtained using the expression a = v*>/R for the centripetal acceleration
of a mass in circular motion with speed v. Substituting for a in the Newton’s law
expression given above, and simplifying, gives T = v The resulting expression for
the speed is v =/T/u, in agreement with the expression obtained by dimensional
analysis in Exercise 9.1.

Exercise 9.2: A single pulse travels along a long string, of mass per unit
length x« = 0.05 kg/m, which is kept under tension 7=4 N. How long will it take
the pulse to travel a distance of 3 m?

The speed of the pulse is given by v = \/m =+/4/0.05 = 8.94 m/s. The time
taken to travel a distance of 3 mis Az =3/8.94 =0.34 s.

9.2.2 HArRMONIC WAVES ON STRINGS

Harmonic waves with wavelength A are produced on a string by generating a periodic
transverse displacement at one end of the string. This can be achieved by driving the
transverse motion using a harmonic oscillator machine. The resultant waveform as
a function of position along the string, in units of x/A, shown at a fixed time ¢ =0,
is a sine wave as given in Figure 9.4. The characteristic wavelength is the distance
between wave crests. A similar plot is obtained for the vibrational amplitude at some
fixed position as a function of time in units of #/7', with ¢ the time and 7 the period for
one transverse oscillation. Harmonic waves travel a distance A in time 7'. If the speed
of the wave along the string is v, then it follows that v = A/T = A f, where f = /T is
the frequency of the wave.
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Amplitude

x/k

FIGURE 9.4 Harmonic wave on a string, whose amplitude as a function of x/A is given by
y(x)= Asin(27x/A) at a fixed time ¢ = 0.

The wave function F (x,t) for harmonic waves in 1D is obtained by adapting the
general form y=F (x - vt), given in Section 9.2.1 for the transverse y displacement
of a string as a function of x and ¢, into the specialized form y =y sink (x -V t), with
y, the amplitude (replacing A) and k = 27/A. Introduction of k converts the distance
x along the string into an increasing angle in radians related to the wavelength by the
variable x/A as required. In addition, the term 27v¢/A becomes wt using the relation-
ship v/A = f and the familiar relationship 27 f = @. Thus, for harmonic waves the
wave function is F (x, t) = Asin (kx — a)t), with the displacement given by

y(x,t) =y, sin(kx— wt) 9.2)

Equation (9.2) is of central importance in developing a description of many wave-
related phenomena, including the superposition of waves and standing waves.

Exercise 9.3: Harmonic travelling waves are generated on a long string using
a 30 Hz mechanical oscillator. Taking the string tension as 3 N, and the mass
per unit length as 0.06 kg/m, determine the wavelength.

From  Equation (9.1), the wave velocity is given by
v=\T/u=~/3/006=7.1m/s. The relationship v=Af then gives
A=7.1/30=0.24 m.

9.3 THE WAVE EQUATION

The wave equation for waves on strings, which is based on Newton’s second law, is a
second order partial differential equation with applications throughout wave physics.
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In 1D, it will be shown that any wave function of the form F (x—v t) involving the
two variables x and ¢ is a solution to the wave equation.

Consider a string of mass per unit length u, under tension 7', which is aligned
along the x-axis of a Cartesian coordinate system. Travelling waves are generated
on the string and result in displacements parallel to the y-axis. At some fixed time
t, let a string element of length Ax be displaced through a distance y by the travel-
ling wave. In Section 9.2, it is shown that the net force on a segment of a string that
is undergoing a wave-induced displacement is, to a good approximation, given by
F=T6, with 0= 92 — 91 the difference in the angles that the tension 7 makes with
x at the upper and lower ends of the segment. On a smaller scale, an element of the

. . . o . 22
string experiences a net force in the y direction given by F = T(a—f Ax, where
X
0%y . ) ) ..
) is a measure of the string curvature provided the wave function is not
X

a rapidly changing function of x. (The curvature gives the rate of change of the
N . . 0? .

direction per unit length of the string.) Note that a—f may be positive, zero, or

X

negative depending on whether the string curves upwards, is straight, or curves

downwards. The use of partial derivatives is necessary because the variable ¢ is
. . o o 9’

being held constant. Taking the acceleration in the y-direction as 8_2} Newton’s

t

2 2
second law is written as T(g—);) Ax = ,qu(ng) Cancelling Ax leads to the wave
X
equation for waves on a string,
oy _Hoy 9.3)
ox? T or?

It has been shown previously that the speed of a wave on a string is v =4/T/u, and
substituting this expression in Equation (9.3) gives the relationship

Py _19%y 9.4)
ox2  v? or?

Equation (9.4) can be generalized to apply to sound waves in 2D or 3D.

Exercise 9.4: Show that for waves on strings the harmonic wave function

y =y, sin (kx — o) is a solution to the wave equation.
For the chosen function, the evaluation of the two partial derivatives in
2’y d (dy 9

. . . 0?
Equation (9.4) gives ——=—|—=|=—y k?sin(kx—c?) and 2 _ 2
a G & ox? 3x(ax) e ( ) a2 or

(g—y) =-y @ sin(k F= a)t) . Substitution of these derivatives in Equation (9.4)
t
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leads to —y k*sin(kx—wt)= _%ym @ sin(kx— @t), which simplifies to
v

give v= w/k = A f where use has been made of k =27/A and w=2x f. This
expression for the speed v agrees with the result obtained previously for travel-
ling harmonic waves on strings. This proves that the harmonic wave function is
a solution of the wave equation.

9.4 ENERGY OF HARMONIC WAVES ON STRINGS

Travelling waves on a string transport mechanical energy away from the oscillator
source that produces the waves. This energy flow results in time-dependent kinetic
and potential energies being associated with each string segment. The kinetic energy

. . &) . .
of a segment Al involves its transverse speed v = a—y, while the potential energy
; t

. ) . Lo
involves the slope of the segment a—y The use of the harmonic wave function in
X

Equation (9.2) gives (3—)) =-y wcos(kx—cwr) for v and g—y =y kcos(kx—wt)
t m y X

m

for the slope. Note the use of partial derivatives in which one of the two independent
variables in the wave function, either x or 7, is allowed to vary, while the other is kept
constant.

As before, the string tension is taken as 7 and the mass per unit length as .

L . 1 . .
The kinetic energy of the string segment, K = EAm v)%, can be written down imme-

diately as

2
K= %,u Al(%) = %y Al @ y? cos? (kx—ot)=K,__ cos® (kx—awt) (9-5)

. . 1 -
Equation (9.5) shows that K varies between zeroand K = 5 uAl @ y?, reaching its

maximum value rwice in each period T as illustrated in the plot of K/K _ versus t/T
in Figure 9.5. The plot is for a string element at a fixed position x in the string. Note
that K depends on the mass of the string element multiplied by the product of the
frequency squared and the wave amplitude squared.

The potential energy is obtained by calculating the work done by the propa-
gating wave when it stretches a string segment further. If the string is in equi-

I ) . .
librium, then a—y =0 and the potential energy is zero. In the presence of a wave,
by

the length of a string segment increases from Ax to Al, and the work done is

U=T(Al—Ax)=T(,/(Ax)2+(Ay)2—m):mx 1+(§—yJ2—1. In order to

X
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FIGURE 9.5 The kinetic energy ratio K/K__ for a string element as a function of time
plotted in units of the period T of the harmonic waves which propagate along the string. The
plot is based on Equation (9.5) with x = O to avoid a phase shift at# = 0.

simplify the calculation, it is assumed that the wave’s amplitude is small and its wave-

d
length A is long compared to the length Al of the segment. This implies that a—y <V
X

dy : 1(dy :
and therefore the square root term can be expanded using 1+ i =1+ 2lox )

1 Y
which leads to U = ET Ax(a—y) . The potential energy expression is obtained by
X

using T = puv? = ,u(fz—z), which gives, finally,
1 Y 1
U= ET Ax(a—y] =JH Ax@? y? cos? (kx—wt)=U__cos®(kx—wt) (9.6)
X

Comparing Equation (9.5) (after replacing Al by Ax in the expression for K ) with

Equation (9.6), it is seen that K = U with maxima and minima coinciding. The plot

for U as a function of time is the same as the plot of K versus 7 given in Figure 9.5.
The total energy E of the string segment is given by

E=K+U=uAx @ y? cos® (kx - wt) 9.7)

. . . . 1
The average transmitted energy E_ is obtained using the value > for the average of

. 1
cos? (kx - a)t) over a cycle. This gives E_ = E,u Ax @ y? .
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Exercise 9.5: Obtain an expression for the energy per unit time transmitted
along a string by a travelling harmonic wave.

From Equation (9.7), it follows that the rate at which energy passes along
a string is obtained by dividing the energy E of a string segment by the time
interval Ar for the wave to propagate a distance Ax and is given by

E: g 2 2 _ _ 2 2 B
A (AtJaﬂymcos (kx—t)=pva? y? cos® (kx - wt)

Averaging cos? (k X — a)t) over a cycle at a fixed point on the string gives the

average power propagating along the string as P = % uv oy,

9.5 WAVE INTERFERENCE ON STRINGS

It is possible to generate two or more travelling waves on strings held under tension.
The waves may travel in the same direction or in opposite directions, and can have a
variety of forms from single pulses to harmonic waves. In examining how the waves
interfere and give rise to modified wave functions in regions in which the primary
waves overlap, it is necessary to make use of an established principle called the prin-
ciple of superposition. The principle of superposition for interfering waves states that
the amplitude of the resultant wave is given by the algebraic sum of the separate wave
amplitudes. Symbolically the principle of superposition is expressed as

y(x,t) = zyl. (x,t) 9.8)

where y (x, t) is the amplitude of the resultant wave produced by the i interfering waves.

As a simple example, consider the interference of two harmonic waves of
the same amplitude y and angular frequency @, but with a phase difference
¢ between them. The waves travel in the +x direction. (Note that if the waves
have the same frequency and speed, then they have the same wavelength.) Using
the superposition principle, the wave function of the resultant wave is given by
ye (x.t) =y sin(kx—wr+¢)+y sin(kx—wr). It is possible to carry out the

summation using the trigonometric identity sin o+ sinf3=2sin > B cos : /3
This gives
. 1 1 99
yR(x,t):Zymsm kx—a)t+§¢ cos 5(]) 9.9)

The amplitude of the resultant wave function is 2y cos((b/ 2). It follows that the amp-
litude will vary between 2y and -2y as ¢ takes values from O to 27, with total
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cancellation occurring for ¢ = 7 and higher odd multiples of 7. The terms constructive
and destructive interference are used, respectively, to describe the amplitude enhance-
ment and amplitude reduction of the resultant wave compared to the amplitudes of
the two interfering waves. Figure 9.6 shows two waves of the same amplitude and
wavelength with ¢ = 7. Destructive interference leads to zero resultant amplitude for
the superposition of these waves.

If the phase difference is taken as ¢=m/2 instead of s, as used in
Figure 9.6, then Equation (9.9) predicts a resultant harmonic wave with amplitude
2y cos(n’/4): 1.414y and phase angle ¢= /4. Numerical calculations for this
case, with y,, =1, are shown in Figure 9.7. The resultant wave matches the predictions.

Amplitude

FIGURE 9.6 Two harmonic waves, shown by the solid and dash lines respectively, have
the same amplitude and wavelength with a phase difference ¢ = 71. Wave crests coincide with
troughs, and therefore superposition of the waves results in total destructive interference.

Amplitude

x/h

FIGURE 9.7 Two harmonic waves, labelled 1 and 2, have equal amplitudes y =1 and
wavelengths A, with a phase difference of 7/2. The resultant wave R, obtained by numerical
superposition of waves 1 and 2, has amplitude 1.414 and phase angle 7/4 as predicted by
Equation (9.9).
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FIGURE 9.8 Representation of the variation of the amplitude y(x,t) of a harmonic wave
for given position x as a function of time # by a rotating phasor with angular frequency @. The
time-varying amplitude is given by the projection of the phasor length component onto the
y-axis.

The use of a trigonometric identity to find the sum of two harmonic waves works
well only for the special case of equal amplitudes and frequencies of the two waves.
If the amplitudes are not equal, while the frequencies are the same, then a geometrical
approach can be used to find the sum. In this approach, the amplitudes and phases of
the two interfering waves are represented by counterclockwise rotating vectors, called
phasors, with angular velocity w in a Cartesian frame as indicated in Figure 9.8.

The amplitude of each wave as a function of x and 7 is given by the y-component
of the corresponding rotating phasor in this geometrical representation of wave
motion. In carrying out the vector summation, the orientations of the vectors are
frozen corresponding to the situation at a particular position x at time ¢ with due
regard to any phase difference ¢ between the waves. An illustrative example is given
in Exercise 9.6.

Exercise 9.6: Find the amplitude of the resultant of two interfering transverse
waves 1 and 2, of unequal amplitudes, with wave functions given by y (x, 1) =
y, sin(kx—w 1) and y,(x, 1) =y, sin(k x — @ t + ¢).

Figure 9.9 gives a phasor representation of the amplitudes of the inter-
fering waves 1 and 2 at fixed x and f. The resultant wave function is
e (x,1) =y, sin (kx —wr+ ¢R) with y, and ¢, to be determined.

To simplify matters x and # have been chosen so that y, (x, t) = 0, with phasor 1
parallel to the x-axis. To avoid confusion with the y-components of the phasors,
the lengths are denoted by /, and /,. Noting that 6= ¢, the amplitude of the

resultant wave R is obtained using the cosine rule /, = \/ P+2-211 cos(n— d)),
L, sin¢
2

while the phase angle ¢, is given by tan ¢, = m
+1, cos
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FIGURE 9.9 Addition of two harmonic waves with different amplitudes using a phasor
diagram. The y-component of the resultant phasor R is equal to that of phasor 2, because
the y-component of phasor 1 has been set to be zero, for convenience, at the time chosen
for the phasor diagram representation. The resultant wave amplitude as a function of
time is given by the y-component of R when rotating with angular frequency @.

The solutions for the resultant amplitude and phase angle apply in general to
two interfering waves of equal or unequal amplitudes. For waves of equal amp-
litude, symmetry considerations show that ¢, = ¢/2, with the wave function
taking the form given in Equation (9.9).

The wave interference effects described above involve waves with the same angular
frequency . For harmonic waves with similar but different frequencies, interference
effects give rise to what are known as beats as described in Chapter 10.

9.6 STANDING WAVES ON STRINGS

For waves propagating on a string of finite length, experiment shows that the boundary
conditions at the ends of the string play a crucial role in determining how waves
propagate on the string. Under certain conditions, as discussed below, standing waves
are established. This development occurs when resonance conditions are achieved,
with the string length an exact multiple of the wavelength, or of some fraction of the
wavelength, for harmonic waves. String instruments make use of these standing wave
effects in producing music.

Consider a wave propagating on a string, which reaches a boundary at which the
wave is reflected back along the string. If the boundary is a rigid fixed support to
which the string is attached, the reflected wave undergoes a phase change given by
A¢ = n. This change in phase can be understood using Newton’s third law concerning
action and reaction forces. The incoming wave causes the string to exert a force on the
rigid support, which in turn exerts an equal and opposite reaction force on the string.
The reflection process is illustrated in Figure 9.10.
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(b)

FIGURE 9.10 A transverse pulse travelling along a stretched string is reflected at a fixed
boundary. The pulse is reflected with a phase change A¢ = 7, corresponding to inversion of
the pulse amplitude.

(a)

(b)

FIGURE 9.11 Reflection of a travelling pulse on a stretched string by a flexible boundary,
which consists of a ring that is free to move with negligible friction along a fixed rod. The pulse
is reflected with no change of phase, that is,, A¢ = 0.

If instead of being fixed the boundary is flexible, the situation changes and there is
no phase change in the reflection process so that A¢ = 0. A flexible boundary can be
achieved by attaching the string to a ring that can slide on a fixed rod with negligible
friction. The ring moves in response to the force produced by the string due to the
incoming wave as shown in Figure 9.11. In this case, the reflected wave undergoes no
phase change and A¢ = 0.

Generalizing the above results for travelling pulses on strings to all waves on
strings, including harmonic waves, leads to the following reflection conditions: waves
on a string that undergo reflection at a boundary experience phase changes A¢ = r at
a fixed boundary, and A¢ = 0 at a flexible boundary.

Following reflection at a boundary, a wave on a string will travel back along
the string. If it meets another wave, interference will occur as the waves pass each
other. The present discussion focuses on harmonic waves produced by a mechanical



Waves in Low Dimensions 145

FIGURE 9.12 Representation of standing waves of wavelength A on a string. The grey box
depicts a mechanical wave generator, which produces harmonic waves that are reflected back
and forth at the boundaries, leading to a buildup in the amplitude of oscillations. The bold
lines represent the maximum amplitude of string oscillations, while fainter lines represent
amplitudes at various times in an oscillation cycle.

oscillator to which the string is attached at one end. The string is kept under tension
by fastening it to a support, which is either fixed or flexible. Experiment shows that
when the conditions for standing waves are met, the amplitude of standing wave
maxima is large compared to the amplitude of the mechanical oscillator vibrations.
As illustrated in Figure 9.12, standing wave patterns are characterized by successive
maxima and minima of vibrational amplitudes along the string. The maxima occur
at positions called antinodes and the minima at nodes. The standing wave conditions
in terms of string length in wavelength units are different for the fixed and flexible
boundary cases. The fixed boundary case is dealt with first.

Consider a taut string of length L which is fixed at one end to a source of low amplitude
harmonic waves and at the other end to a rigid support as shown in Figure 9.12 for the
particular case L = A. A harmonic wave from the source travels along the string until it
reaches the fixed support where it undergoes a phase change A¢, = mand is reflected back
towards the source. On reaching the source, which is treated as a rigid support, the wave
is again reflected with a further phase change A¢, = 7. In addition, the phase of the wave
after reflection depends on x, the distance travelled as the wave makes the round trip from
the source to the rigid support and back. If x = n A, where n takes integer values 1,2,3,....,
then A¢, =27 n. When the combined phase shifts (i.e. Ag, + Ag, + Ag,) are a multiple
of 27, the reflected wave is synchronized with the wave source. The wave amplitudes add
up leading to large amplitude standing wave antinodes following multiple reflections. The
distance travelled by a wave in a round trip along the string is x = 2L, and it follows that
the condition for standing waves is given by

n

L:n%, or A =— (9.10)

with n=1,2,3,.... This gives L as a multiple of half wavelengths 4 /2. A particular
standing wave frequency f is obtained in terms of the string length using f =v/4 .
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FIGURE 9.13 Standing waves on a string of length L with fixed boundaries at both ends.
The integer values shown are the number of half wavelengths 7 in each mode as given by
Equation (9.10).

This gives f, = %, with v the speed of waves on the string. The various standing

wave modes are known as harmonics, with the first harmonic corresponding to n =1,
the second harmonic to n = 2, and so on. The standing wave patterns which are given
by Equation (9.10) are shown in Figure 9.13.

The case of a taut string attached to a flexible support at one end and a small amp-
litude harmonic wave source (which effectively provides a fixed support) at the other
end is similar to that of the string attached to rigid supports at both ends as discussed
above. A major difference is that no phase change occurs in the wave reflection pro-
cess at the flexible end, so that A¢1 =0 there. Back at the wave source, which is
regarded as a fixed end because of the small oscillation amplitude, reflection still
occurs with a phase change A@, = 7. For the reflected wave to be synchronized with
the wave source, following reflection, the total phase change in a complete round trip
must be 27 or a multiple thereof. It follows that the phase change associated just with
wave travel from source to flexible support and back should be an odd multiple of
given by A¢3 =n n, withn =1,3,5,..... The standing wave condition in terms of L is

L:n/l" (9.11)
4

with n an odd integer as given above. Standing waves thus occur when L is an odd
integer multiple of a quarter wavelength. The standing wave frequencies are given by

f= % Harmonics in this case are called the first harmonic for n = 1, the third har-

monic for n = 3, and on to the higher harmonics. Figure 9.14 shows the standing wave
patterns up to the ninth harmonic.
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FIGURE 9.14 Standing wave harmonic patterns are shown for a string of length L with
a fixed boundary at one end and a flexible boundary at the other. The integer values are the
number of quarter wavelengths in each mode as given by Equation (9.11).

A harmonic wave source at frequency f, can be used to generate the n™ harmonic
standing wave on a stretched string. String elements execute SHM parallel to the
y-axis with frequency @ and amplitude dependent on the position x of the element
along the string. For the n™ harmonic, the standing wave amplitude at position x is
givenby y, (x) =A, sin(kn x), withk =27/A and A the amplitude maximum value
for the n™ harmonic. As stated above, the amplitude of string vibration is a maximum
at an antinode and a minimum at a node. The wave function for the n™ harmonic
therefore has the form

v, (x,t) = An sin (kn x) cos(a)” t+ (p) (9.12)

with the phase angle ¢ determined by the initial conditions. The amplitude A initially
increases with time and then stabilizes when the energy loss per cycle is equal to the
energy input to the vibrating string from the harmonic wave source.

Exercise 9.7: A string of length 1.8 m and mass per unit length 50 g/m is
attached to effectively rigid supports at both ends. (As already mentioned
above, the source of harmonic waves is regarded as a rigid boundary.) The
string is kept at a tension of 18 N. Find the frequency of the third harmonic.
Give the form of the wave function for this harmonic.

The speed of waves on the string is v= \/m =+/18/0.05 =19 m/s.
From Equation (9.10), the wavelength of the third harmonic is
A, =2L/3=2x1.8/3=12m. Using v= f A gives the frequency of the third
harmonic as f, =19/1.2 =15.8Hz.
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Using Equation (9.12), the third harmonic wave function is given by
v, (x.1) = A, sin(27x/A, )cos (27 £, 1 + @) = A, sin(5.24x)cos(99.3t + ¢). The

amplitude A, and the phase ¢ are not specified.

9.7 SOUND WAVES IN PIPES

9.7.1 HArRMONIC SOUND WAVES IN PIPES

Sound waves are different to 1D waves on strings, firstly because they can propa-
gate in both fluids and solids in 3D, and secondly because they involve longitu-
dinal pressure variations rather than transverse oscillations of string segments.
There are, however, underlying common features of quasi-1D sound waves in
pipes and waves on strings that lead to similarities in the physical descriptions of
these wave phenomena. These similarities are brought out most clearly if a lon-
gitudinal displacement of mass elements description is used for sound waves in
pipes. The present discussion focuses on sound waves in pipes containing a gas-
eous medium such as air. Both the pressure wave and mass element displacement
descriptions are introduced.

As a starting point, harmonic sound waves travel along a pipe which encloses a
gas that transmits the sound. The harmonic waves can be generated using a vibrating
diaphragm as a source of plane waves of frequency f, which travel parallel to the x
direction along the axis of the pipe. Figure 9.15 illustrates the situation, showing a
cross-section of a pipe down which pressure waves are transmitted with a harmonic
source at one end. Also shown is a representative disk-shaped gas element through
which the waves pass.

Cross-section of a Cylindrical Pipe

source

I =

Gas element

FIGURE 9.15 Transmission of harmonic pressure waves down a cylindrical pipe aligned
along the x-axis. A cross-sectional view of the pipe is shown, with a harmonic longitudinal
wave source at one end. Pressure fluctuations occur in disk-shaped elements as the waves travel
down the pipe.
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By analogy to harmonic waves on strings, the wave function for the harmonic
sound waves is expressed in terms of gas pressure fluctuations AP(x,t) in disk-shaped
regions oriented perpendicular to the tube axis, and has the same form as that given
in Equation (9.2):

AP(x,t)= AP, sin(kx— wt) (9.13)

The amplitude of the sound wave, AP , is given by the maximum pressure excur-
sion above ambient pressure that is experienced in a disk region, while k = 27/4 and
w=2nf as before. Note that by considering a planar sound wave travelling along a
pipe, the 3D features of sound waves travelling in free space have been suppressed,
and the spatial description is reduced to quasi-1D. The results that are obtained are
generalized to 3D sound waves in Chapter 10.

An alternative form of the harmonic wave function, involving the displacement
d (x,t) of a mass element parallel to the x-axis, is given by

d(x.t)=x, sin(kx—a)t—g) 9.14)

where x is the amplitude of the oscillatory motion. It is important to note that the
wave function expressed in terms of pressure variations is 7z/2 out of phase with the
displacement wave function. This phase difference can be understood by appreciating
that when the displacement of a fluid element along x is a maximum in its periodic
motion, the pressure difference AP between the two sides of the fluid element is
momentarily zero. Comparison of Equations (9.13) and (9.14) shows that AP, is pro-
portional to x , and dimensional analysis gives AP =v p @ x_, with v the speed of
sound in the medium.

The similarity of the wave functions for harmonic waves on strings, as given in
Equation (9.2), and 1D harmonic sound waves in pipes is clear. This feature in pipes
provides the basis for unifying the discussion of these diverse types of 1D waves.
For example, it is simple to adapt the expressions for standing waves on strings to
standing sound waves in open or closed pipes as is shown below. These results are
particularly useful in considering the design and operation of musical instruments.

An expression for the speed of sound waves in fluids can be obtained by applying
Newton’s second law to the dynamics of a disk-shaped element in a fluid contained
in a pipe of cross-sectional area A. The element, which is of length Ax, has volume
V =A Ax and is traversed in a time Ar by a pressure pulse travelling through the
fluid at the velocity of sound v. If the pressure pulse has amplitude AP, the pressure
difference across the length of the element during the time Ar leads to a small com-
pression of the element and a slight change in its velocity év in the x direction
along which the pulse travels. It is convenient to express the fractional change in the
volume of the element 8V/V in terms of the bulk modulus B of the fluid using the
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. oV . .
expression AP = —87 from Chapter 7. The net force on the element during Af is

% . . A 1)
F=AAP=-AB v while the rate of change of momentum is given by Ip = mA—v
t t

Note that the volume of the element decreases slightly during passage of the pulse,
and therefore 6V = A 6x < 0. Writing the mass of the element in terms of the fluid
density p as m=p A Ax, and then inserting the expressions for the force on the
element, and for the rate of change of its momentum, into Newton’s second law, and
lastly cancelling A gives

oV ov ov
BY oL =prsr=pr 9.15)
=P AT =pydv=pyi—

The factor @ can be related to the fractional volume change as follows:

A%
)t
v At )\ At A Ax v’

Using this result in Equation (9.15) gives

v=|— (9.16)

This simple expression for the speed of sound in a fluid has a similar form to that of
a wave on a stretched string, v = /T/u as given in Equation (9.1) with T the tension
and u the mass per unit length of the string.

Exercise 9.8: Obtain values for the speed of sound in air and water at
ambient temperature using the values for their density p and bulk modulus
B given below.

Water: p, = 1.0 x 10° kg/m’ and B, =2.2 GPa
Air: p = 1.21 kg/m* and B, = 142 kPa

Inserting the values for B and p in Equation (9.16) gives the speed of sound
in water as v = J2.2x10°/1.0%10° = 1480 m/s. Similarly, for air the speed is

v, =+1.42x10°/1.21 = 343 m/s. The speed of sound in water is approximately
four times higher than the speed in air.
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9.7.2 ENErRGY oF HARMONIC SOUND WAVES IN PIPES

Making use of the wave function in Equation (9.14), although omitting its phase
offset of /2, the kinetic energy associated with the oscillatory motion of a fluid
element with volume AV = A dx is given by

2
K=tmesly AV(%d(x,t)) Lpaver veos (ke-or) 017

where p is the density of the fluid and A is the cross-sectional area of the pipe.
Note the similarity of Equation (9.17) to Equation (9.5) for harmonic waves on
strings.

Guided by the result obtained previously for string segments, the potential energy
of a fluid segment traversed by sound waves is taken to be equal to the kinetic energy,
and is thus given by

U=3pAV @ 3 cos* (kx- o) 9.18)

The total energy of the wave segment as a function of x and ¢ follows as

E=K+U=pAV & x? cos® (kx - wt) 9.19)

Averaging over a complete wave cycle gives the average energy as

av

1
E = Ep AV @ x2 (9.20)

Using AV = A Ax, it follows from Equation (9.20) that the average rate of energy

transmission along the pipe is E /At = % pPAV @ x.

9.7.3 STANDING SOUND WAVES IN PIPES

Harmonic sound waves in pipes can be described using either of the wave function
forms for sound waves that are given in Equations (9.13) and (9.14). It is con-
venient to use Equation (9.14) as a starting point, because of the similarity of
the analysis to that given in Section 9.6 for standing waves on strings. Consider
standing waves that are produced in a pipe that is open at one end and closed at
the other. The displacement description requires a node at the closed end and an
antinode at the open end. However, in making a comparison with standing waves
on strings, there are notable differences in the reflection processes. Firstly, for
sound waves there is no 180° phase change at the closed end, but instead this
phase change occurs at the open end. Secondly, it is necessary to introduce an
end correction at the open end of the pipe. It is found experimentally that the 1D
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sound waves are reflected back into the pipe by the 3D surrounding atmosphere
at an effective distance AL ~ 0.3D beyond the pipe’s end, where D is the pipe’s
diameter. The effective length L/ of the pipe with one or both ends open is thus
slightly longer than L. Standing wave conditions for sound waves in pipes are
readily obtained using the approach applied to waves on strings.

The standing wave condition for harmonic sound waves in a pipe closed at both
ends is identical to that for a string fixed at both ends as given in Equation (9.10),
withL=n A /2andn=1,2,3,.... The same standing wave condition applies to a pipe
open at both ends provided L is replaced by L/. Finally, for a pipe open at one end
and closed at the other, the standing wave condition is L] =n A /4 withn=1,3,5,....

Precisely the same stranding wave conditions are obtained using the fluctuating
pressure form of the sound wave function given in Equation (9.13). In this descrip-
tion, nodes, at atmospheric pressure, occur at open ends of pipes and antinodes at
closed ends. In addition, 180" phase shifts occur at antinodes but not at nodes.

Exercise 9.9: Determine the frequency of the third harmonic for standing
waves in a pipe of length 1.2 m which is open at one end and closed at the other.
What would the frequency be if the tube were open at both ends? Assume that
the pipe’s diameter is much less than its length, so that the length correction at
the open ends can be omitted. Take the speed of sound as 340 m/s.

The standing wave condition for a pipe which has one end open and the other
closed, is L =n ln /4 with n=1,3,5,.... For the third harmonic n = 3, and this
gives the wavelength of the corresponding standing wave as A, = 4L/3=1.6 m.
The frequency is obtained using the relation f = v/A, which gives f = 212.5 Hz.

If the pipe were open at both ends, the standing wave condition would
become L =n ln /2 with n =1,2,3,.... The wavelength of the third harmonic,
with n = 3, becomes ),3 =2L/3 = 0.8 m, with frequency f =425 Hz.

Note that that the wavelength halves and the frequency doubles when the
open end of the pipe is closed, converting this boundary from an antinode to a
node in the displacement of mass elements description.

9.7.4 MusicAL INSTRUMENTS

Musical instruments, based on standing wave phenomena, are classified as string
or wind or percussion devices, and operate over a wide range of frequencies. The
size of the instrument determines the frequency range of the musical notes that
are produced. The sound wave frequencies are, naturally, linked to the frequen-
cies that can be heard by the human ear. For a young person, this range extends
from ~20 Hz to ~20,000 Hz. In middle age, the upper frequency limit starts to
decrease, and the highest frequency notes can no longer be heard. Listening to
very loud sounds for lengthy periods can accelerate this loss of hearing. The
larger an instrument is, the lower the range of frequencies that it can cover. Large
pipe organs can produce notes at frequencies as low as 10 Hz, while the lowest
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note for a flute is near 220 Hz. The analysis of the sounds that can be produced
by musical instruments is complicated, particularly for instruments with conical
shapes such as saxophones and tubas. Sound spectrum analysers provide detailed
information on the sound waves that are produced by the various instruments.
Most instruments produce several harmonics simultaneously rather than just one
note. Further details are given in specialist articles on this subject.



O Waves in Higher
Dimensions

10.1 INTRODUCTION

As mentioned in Chapter 9, there are various types of waves in nature, including
sound waves, water waves, seismic waves, electromagnetic waves, and the recently
detected gravitational waves, which are produced during the acceleration of astronom-
ically large masses. An important distinction is made between waves which require
a medium in which to propagate, such as sound waves and water waves, and waves
which do not need a medium and propagate in free space, as exemplified by elec-
tromagnetic waves and gravitational waves. The wavelength ranges of the different
types of waves vary considerably. In spite of this important difference, waves in gen-
eral share common features, with many of the properties described using the same
basic formalism. This chapter is largely concerned with 3D sound waves in fluids, but
includes a brief mention of the other types of waves.

10.2 ENERGY AND INTENSITY OF 3D SOUND WAVES

Consider a localized source of 3D sound waves situated in an isotropic medium such
as air. When the source is activated, it generates waves with spherical wavefronts
which travel away from the source at the speed of sound in the medium. The situation
is depicted in Figure.10.1. For large transmission distances L the source is effectively
a point source.

Sound waves transport energy through the transmitting medium, as shown in
Chapter 9 for 1D harmonic sound waves in pipes. For 3D harmonic sound waves,
there is again an outward flow of energy through the medium transmitting the waves.
However, in contrast to thelD sound wave in a pipe case, the energy density of 3D
waves decreases as the inverse square of the distance r from the source, as the areas
of the expanding spherical wavefronts increase. An expression for the energy per unit
volume at a large distance from a source can be obtained by extending the 1D har-
monic sound wave model used in Chapter 9. Details are given below.

At large distances from a harmonic sound wave source, the wave function
expressed in terms of fluctuations in position of a small disk-shaped volume element
AV is similar to that for a sound wave in a pipe as introduced in Chapter 9. Figure 10.1
illustrates how a portion of a spherically symmetric wave that has passed through a
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Spherical wavefronts

Screen

Screen

FIGURE 10.1 2D representation of spherical wavefronts propagating outwards from a
point source S. If a screen containing a small circular aperture of width d is placed in
the path of the wavefronts at a distance L from the source, as shown, then a beam will
propagate beyond the screen, and for large L and d > A will approximate plane waves
over a short distance. A representative disk-shaped volume element in this small quasi-1D
region is used in determining the energy per unit volume and the rate at which energy flows
through the volume element.

circular aperture in a screen at a large distance L from the source S approximates a
1D sound wave in a limited volume region beyond the screen. Note the similarity of
the cylindrical portion of the wave that has passed through the aperture in Figure 10.1
and the wave segment shown in Figure 9.15.

Adapting the 1D form given in Equation (9.14), by replacing x with the wave
induced displacement g, which is directed along the radial distance r from the source
to the volume element AV, gives the required wave function at large r as

0(q.1)=q, sin(kq—- 1) (10.1)

(The phase angle /2 is omitted here, since the phase is arbitrary in the present discus-
sion, which focuses on the time dependence of the displacement of the fluid volume
element AV.) The kinetic energy of the element is

1

Kzém V2 =—pAV(d—§D

dt

2
. ) ~lpav e geos(kr-wr) (102

where p is the density of the fluid. Following the procedure used for 1D harmonic
waves in Chapter 9, it is assumed that the potential energy U is equal to the kinetic
energy K, giving

U=%p AV @ @2 cos® (kx— o) (10.3)
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The total sound wave induced energy of the fluid element is

E=K+U=pAV @ ¢’ cos? (kx—ot) (10.4)
Averaging over a complete wave cycle leads to the following result,

1
E = Ep AV @ ¢* (10.5)

av m

(The time average of the cos? function is 1/2.)

. . 1
The energy density of the propagating sound waves e=E_/AV = ) pw’ g thus

depends firstly on the mass density p of the transmitting medium, secondly on @* the
angular frequency squared, and thirdly on the square of the maximum displacement g2,
which in turn depends on the distance  from the sound source. For spherical wavefronts,
the total volume involved, which corresponds to the sum of all the volume elements in
a shell of radius r and thickness Ar, is 471> Ar. Since the total energy associated with
a propagating spherical wavefront is constant, assuming energy loss mechanisms are
negligible, it follows that the energy density, and hence ¢, falls off as 1/r°.

It is useful to introduce the sound wave intensity /, which is the average trans-
mitted power per unit area perpendicular to the direction of wave propagation at
some point a distance r from the sound source. The average power P,_ is the rate at
which sound energy leaves the source averaged over time. For spherical wavefronts

P

I= 2 = - Which shows that the intensity falls off with distance as 1/ r2. In Equation (10.5),
Tr

the volume of the element considered can be taken as AV = A v, At where A is the

cross-sectional area, v, is the speed of sound waves in the medium, and At is the time

taken for a wave to travel the distance Ar, which is the width of a volume element.

1
Replacing AV by A v At in Equation (10.5) givesE, = —pAv_At @ g7, and hence
the average power is’ 2 :

P, =%pA v (10.6)

The intensity then follows as
1 > 2 10
1= A (10.7)

The SI units of intensity are J s™' m™, or W m™.

Sound intensity varies over an exceptionally large range and depends on both the
source power and the distance from the source at which the sound waves are detected.
The human ear can detect sound waves with an intensity in the range from 10~ W/m?
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to above 1 W/m?2. It is therefore convenient to use a logarithmic intensity scale, and
the following expression for comparing intensities has been introduced:

1
ﬁ=10><10g101— (10.8)

0

Values of 3 are quoted in decibels (dB). The reference intensity / is taken as 10> W/m?,
to coincide roughly with the human detection limit. An intensity 7 =107 W/m?
corresponds to f=0 dB, while 7/ =1W/m? gives =120 dB. Using the relation

(4r.)"

pv

Ap =v poq, from Section 9.7, together with Equation (10.7), leads to I =

s
which shows that the intensity of sound is proportional to the square of the amplitude
of pressure fluctuations. The minimum amplitude of pressure fluctuations that can
be detected by the human ear is Ap, =2x10~ Pa, which is ten orders of magnitude
smaller than standard atmospheric pressure. In terms of Ap and Ap, values, Equation
(10.8) is rewritten as

2

Ap,, Ap,
B=10xlog,, ™ 2()><10g10A— (10.9)

=
0 0

Exercise 10.1: At loud music concerts, the sound level can exceed 100 dB
near the stage. What is the intensity of sound corresponding to 100 dB?
Calculate the pressure fluctuations amplitude produced in air by this sound.
What is the displacement amplitude at 500 Hz? The density of air is p, = 1.21 kg/m’
and the speed of sound in air is v = 340 m/s.

Taking =100 in Equation (10.8) gives I =107"? x10' =102 W/m?. The
amplitude of pressure fluctuations for 100 dB sound is obtained from Equation (10.9)
which gives Ap =105x(2x10-°)=2 Pa. The displacement amplitude is

Ap, . 2
v.p o 340x1.21x(27x500)
that the amplitude of the displacement of air elements for 500 Hz sound waves
with =100 dB is approximately one micron.

=1.55x10° m. This means

given by g =

10.3 INTERFERENCE EFFECTS

10.3.1 INTERFERENCE IN 1D

Wave interference effects are observed when two or more waves from different sound
sources, with fixed phase relationships, are superposed. A fixed phase relationship
between two or more wave sources with the same frequency is expressed compactly
by stating that the outgoing waves are coherent. The special case of two harmonic
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waves with the same amplitude and frequency travelling parallel to the x-axis will
be considered first, but the approach is readily extended to other similar situations.
The basic ideas are much the same as those used in the description of standing waves
in pipes, involving a single source of harmonic waves with reflections of the waves
at the two ends of a pipe as described in Section 9.7. Consider two waves which
have equal amplitudes and frequencies with wave functions given in terms of the
pressure variation by Ap, = Ap_sin(kx—wt+6) and Ap, = Ap_sin(kx— wt). The
phase difference 6 is constant. If the waves interfere, the superposition principle gives
the resultant wave function as

Ap = Ap, +Ap, = Ap, [sin(kx — ot +6)+sin(kx - o1) (10.10)

Making use of the trigonometric identity sin ot+ sin 8= 2 cos sin gives

a-p
2
o) . 0
Ap=2Ap  cos 3 sin kx—a)t+§ (10.11)

The amplitude of the resultant wave depends on the phase difference 6 and is given
by 2Ap cos(9/2). Constructive interference occurs for cos(9/2) =1 corresponding
to 6=0,2m,4m,6m,... (zero and even multiples of 7), while destructive interference
occurs for cos(0/2) =0 when 8= 7,375, 7r,... (odd multiples of 7).

If the sources of the interfering waves are initially in phase, with 8= 0, but the
waves travel different distances X, and X,, with Ax = X, =X, then the phase difference
becomes 6=k Ax =21 Ax/A, which is just like the travelling waves on a string that
are discussed in Chapter 9. For example, when Ax = A it follows that 6= 27.

10.3.2 INTERFERENCE IN 3D

The interference conditions given above for waves travelling parallel to the x-axis
are readily extended to 3D waves. Consider two coherent sources 1 and 2 separated
by a distance d as represented in 2D cross-section in Figure 10.2. An absorbing bar-
rier is placed behind the sources. Hemispherical waves of wavelength A propagate
as shown.

As shown in Figure10.2, constructive interference occurs when wave crests from
the two sources coincide. The interference pattern has a central maximum, with sec-
ondary maxima radiating outwards above and below the central maximum. The con-
dition for interference maxima to occur is given in terms of the path difference Ar
as Ar=nA with n=0,1,2,.... With increasing radii of the wavefronts, the maxima
become aligned along the directions indicated by the dash lines.

At sufficiently large distances from two harmonic wave sources, the condition for
interference maxima to occur has a simple compact form. Let interference of waves
from two wave sources, S, and S, separated by d, occur at a point P which is at a large
distance r > d from the sources. The angle 6 specifies the orientation with respect to
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FIGURE 10.2 Two harmonic wave sources separated by a distance d generate coherent 3D
waves of wavelength A. The two sets of travelling waves are depicted in 2D at a fixed time 7.
Constructive interference occurs in directions along which wave crests from the two sources
reinforce. The dash lines show the trend in interference maxima locations with increasing
radii of wave crests. Destructive interference occurs in directions for which crests and troughs
overlap (not shown). The interference pattern consists of a central maximum flanked by
secondary maxima. The path difference Ar for the identified maxima to occur is given by
Ar=n A with n=0, 1, and 2 .

Interference of Waves from Two Sources
l}

¥, =, ~dsinB

X

FIGURE 10.3 Spherical waves of wavelength A are generated by two coherent harmonic
sources S, and S,, which are separated by a distance d. Interference effects are detected at a
point P situated at a distance 7, from S, and 7, from S,. If d and A are much less than both 7, and 7,,
then trigonometry gives r, —r, = d sin8. In this limit, the condition for constructive interference
becomes, to a good approximation, dsin@=n A withn=0,1,2,3,....

the x-axis of a line drawn from the midpoint between S and S, to point P as shown
in Figure 10.3.

At sufficiently large distances from the two sources, compared to their separation
d, the radius vectors r, and r, of the two wavefronts at P are travelling close to
parallel. As can be seen in Figure 10.3, waves from S, travel a distance Ar = dsin 6
further than do waves from S, in reaching P. The phase difference between the waves
is therefore ¢ =271 Ar/A =27 dsin 6/A. The set of phase values ¢=0,27,47,67,...
required for constructive interference leads to the relationship:
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dsinf=niA (n=0,123,... (10.12)

Similarly, the condition ¢ = m,37,57,7r,... for destructive interference gives
dsin@z(n+%)), (n=0,1,2,3,...) (10.13)

The condition 8= 0 corresponds to a central maximum in sound intensity, with alter-
nating maxima and minima detected as 6 is steadily increased. Note that d must be
significantly larger than A in order to give rise to a large set of n values.

Exercise 10.2: Two loudspeakers, mounted 1.5 m above ground level and
separated by a horizontal distance of 3.0 m, send out coherent harmonic sound
waves at a fixed frequency. A sensor, which is used to detect the resultant sound
wave amplitude as a function of position in a horizontal plane, moves along
an arc of radius 30 m centred on the loudspeaker pair midpoint. If the third
maximum from the centre of the interference pattern is found to be at an angle
of 30° away from the central maximum direction, what is the wavelength of
the sound?

Using Equation (10.12) with n = 3 gives A= (dsin0)/3=3x0.5/3=0.5m.
Taking the speed of sound in air as v =340 m/s gives the frequency
as f=v /A=680 Hz.

10.4 BEATS

Consider the interference of two sound waves of equal amplitude, but slightly different
angular frequencies o, and @,, with @, > o, . Instead of observing time-independent
interference effects, as discussed in Section 10.3, the resultant amplitude exhibits
time-dependent oscillations. Adapting Equation (10.10) gives the amplitude of the
interfering waves as Ap, = Ap, +Ap, = Ap, | sin (kl X-o t+ 0)+ sin(k2 x—, t) .
In order to simplify the equations, it is convenient to choose x =0 as the pos-
ition at which the resultant wave is examined by a listener. The two waves are
taken to be in phase at =0 with 6= 0. Making use of the trigonometric identity

o-p
2

. o+
sin

sin o+ sin B =2 cos in order to carry out the summation, leads to

Ap =20p. cos(%(a)z —w )t)sin(%(wl ; wz);) (10.14)
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time ¢

FIGURE 10.4 A representative beat pattern is produced by the superposition of two
harmonic waves of equal amplitude, but with slightly different frequencies, as given by
Equation (10.15).

Defining the frequency difference as Aw = (a)2 - wl) and the average frequency as

1 S . .
o, = —(a)l + a)z) , and substituting in Equation (10.14) gives

A
Ap, =2Ap cos( L t)sin(a)av t) (10.15)

A plot depicting the variation of Ap,/Ap with time is shown in Figure 10.4. As can
be seen from Equation (10.15), the resultant is an amplitude modulated sine wave of
angular frequency @  and time-dependent amplitude 2Ap cos(Aa) t/2). The inter-
fering waves alternate between constructive and destructive interference with the
passage of time.

A listener hears an alternating sound intensity, which is proportional to the square
of the amplitude of the beat frequency. The beat frequency heard by a listener is
givenby f. =27 Aw, which is twice the amplitude modulation frequency because the
intensity increases to a maximum twice per modulation cycle. Musical instruments
can be tuned using the beat phenomenon as the basis for comparing a note on an
instrument with that of a frequency standard such as a tuning fork.

10.5 FOURIER ANALYSIS

An interesting application of the superposition of waves of different frequencies
is known as Fourier analysis. The procedure involves adding together harmonic
waves of selected frequencies and amplitudes in order to generate a periodic wave
of a particular form, such as a triangular wave or a square wave. The harmonic wave
components are known as Fourier components. As an illustrative example consider
the case of a square wave of period 7" with the form shown in Figure 10.5.
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amplitude

FIGURE 10.5 The dash line in the figure shows the amplitude variation over one cycle
for a square wave of period 7. The light curves are the first four Fourier components in the
Fourier series for this waveform. The heavy line, which is the sum of the Fourier components,
approximates the required shape. The inclusion of additional higher order components would
improve the agreement.

Equation (10.16) gives the first four components of the Fourier series for a square
wave as a function of x =27 ¢/T":

f(x) _ i(snllx N sm33x + sm55x N s1n77x +) (10.16)

The sum of the components is also shown in Figure 10.5. A large number of terms
with steadily increasing frequencies are required in order to obtain a close approxi-
mation to the square wave. Fourier analysis provides an instructive way of examining
all periodic waveforms in terms of their constituent harmonics.

10.6 DOPPLER SHIFTS

Doppler frequency shifts of mechanical harmonic waves travelling through a medium
are observed when the wave source and/or the wave detector are in motion with
respect to the medium. This phenomenon is known as the Doppler effect. The pre-
sent discussion focuses on sound waves that travel at a fixed speed in the transmit-
ting medium, such as air near the Earth’s surface. Doppler shifts also occur with
electromagnetic waves and, for example, are important in interpreting spectroscopic
measurements in astrophysics. Earthbound applications include radar speed guns for
measuring the speed of motor vehicles on highways. It is important to note that the
Doppler effect expressions for sound waves are similar to those for electromagnetic
waves, but are not the same. In contrast to sound waves, electromagnetic waves do not
require a medium for their transmission and travel at the speed of light in vacuum as
manifested in the special theory of relativity.
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10.6.1 MoVING SOURCE

Consider a source of 3D harmonic sound waves, with frequency f, which is initially
at rest in a transmitting medium such as air. Taking the speed of sound in the medium
as v, the corresponding wavelength is A = v/f. If the source S is moved at speed v,
towards the detector, labelled D, in Figure 10.6, then the frequency f” measured at
the detector is greater than f. This Doppler frequency shift is due to the bunching up
of wavefronts ahead of the moving source as shown in Figure 10.6.

Bunching up of wave crests leads to an effective wavelength A" = (v - vS)T where

T =1/f is the oscillation period at the source. It follows that (v =V )T is the peak-to-

peak separation of wave crests moving away from S. Also, the effective wavelength is
given by A’ = v/f’, because the actual wave speed v in the medium does not change.
Using the two expressions for 1 gives (v - vs)/f =v/f’, and rearranging leads to the

following expression for the Doppler shifted frequency at D,

f/: 4 f (1017)

For the detector labelled D, from which the source S is moving away, the minus sign
in the denominator of Equation (10.17) changes to a plus sign.

10.6.2 MovVING DEeTECTOR

If a detector D, is moved towards a stationary sound source S at speed v, then there
is no change in the sound wavelength A because there is no wave bunching effect.
However, the moving detector encounters an increased number of wave crests in

Doppler Effect: Moving Wave Source

D, @ D,

FIGURE 10.6 A moving source S generates spherical harmonic sound waves as it travels
towards a fixed detector D, along the path indicated by the dotted line, as shown in this 2D
representation of successive wave crests. The wave crests ahead of the moving source are
bunched up, leading to an increase in the frequency detected at D,. In contrast, the detector D,
behind the moving source detects a decrease in frequency.
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a given time interval than it would have if stationary, and this results in a shift
in detected frequency from f to f’. The wavelength is written as A = (v+ vD)/f !

where (v+ vD) is the effective speed of the waves in the detector’s frame of refer-
ence. In the source’s frame of reference A = v/f. Equating the two expressions for

A, and rearranging, gives the shifted frequency as

=l g (10.18)

v

If D moves away from the source, then the plus sign in the numerator of Equation (10.18)
becomes a minus sign.

When both S and D are in motion, it is necessary to combine Equation (10.17) with
Equation (10.18) to obtain the general Doppler shift expression:

ot (10.19)

VF Vg

The choice of signs in the numerator and denominator is determined by the direc-
tion of motion of the source and detector with respect to one another. Movement
towards each other leads to an increase in frequency, while movement apart leads to
a decrease.

Equations (10.17) and (10.18) apply to situations in which the speed of the source
or the detector is much lower than the speed of sound in the transmitting medium. As
discussed below, interesting effects arise when an object, like a jet plane, travels at
supersonic speeds.

Exercise 10.3: A police car travelling at 120 km/h is equipped with a siren
which generates sound that alternates between two frequencies, 635 and 912 Hz
in the police car’s frame of reference. What range of frequencies will be heard
by a stationary pedestrian at the side of the road who watches the approach of
the police car? How will the frequency range change as the police car moves
down the road beyond the observer?

At some instant, the police siren emits sound waves of frequency f as it
moves at speed v, towards the observer who hears the siren sound at frequency

fr==

v =340 m/s, and converting the car’s speed units from km/h to m/s, gives for

the low end of the frequency range f; = % X635 =704 Hz. The upper

end of the Doppler shifted frequency range is obtained in a similar fashion

f as given by Equation (10.17). Taking the speed of sound in air as
V—v
S
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340
340-33.3

observer, the frequencies heard are given by [’ =

x912=1011Hz . As the police car moves away from the

as f;

f, with the minus
v+ Vg
sign in the denominator changed to a plus sign. Substituting numbers gives

f/ =578Hz and f; = 831Hz.

L

10.6.3 SHock WAVES

If the speed of a wave source is increased until it exceeds the speed of sound in
the transmitting medium, then sound waves cannot propagate ahead of the source.
A shock wave develops behind the source, as depicted in Figure 10.7, with a cone-
shaped boundary known as the Mach cone forming behind the fast-moving wave
source.

The cone shape of the shock wave is determined by the ratio of the distances trav-
elled by the supersonic source and that covered by sound waves as a function of time.
If, in Figure 10.7, O is taken as the starting point for sound waves travelling from O
to Q in a certain time interval ¢, then, in the same time interval, the source travels a
distance OP = vt which is greater than the distance OQ = v¢. As a result, a shock
wave is generated by the overlapping of wave crests along the Mach cone boundary.
The sonic boom produced by supersonic aircraft is an example of this effect. The half-
angle of the Mach cone is thus given by sin 6= v/v,.

Supersonic Wave Source

sin@=0Q/0P=v/y,

Mach cone

FIGURE 10.7 A wave source, travelling at a speed vy, which exceeds the speed of
sound v in air, generates a trailing shock wave. The loci of the overlapping wave crests
form a cone, which is known as a Mach cone. An observer in the path of the Mach cone
experiences an upward surge in pressure as the shock wave passes, followed by a drop in
pressure, before the pressure levels return to normal. The half angle 6 of the Mach cone is
given by sin0=v/v,.
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Exercise 10.4: Determine the predicted Doppler effect behaviour as a wave
source increases its speed towards the speed of sound in the transmitting
medium.

From Equation (10.17), the ratio of the Doppler shifted frequency to the
source frequency is given by f’/f = v/ (v — Vg ) Asvg — v, the ratio f’/f becomes
exceptionally large, tending to infinity. Detection of Doppler shifts is no longer

possible in this limit. For v, = v, the waves from the source travel at the same speed
as the source leading to a buildup of pressure as the wavelets overlap each other.

10.7 WATER WAVES

Familiar characteristic behaviours of water waves include the spread of ripples on the
surface of a pond into which a pebble has been thrown, and the breaking of wind-
generated ocean waves on the shore. Harmonic water waves can be generated in a
controlled way using devices called ripple tanks, in which vibrating sources dip into
the water surface. By selecting the wave source geometry to be either extended or
point like, it is possible to generate either plane waves or circular waves. In addition, a
single source or multiple sources can be used, allowing a variety of overlapping wave
patterns to be formed. As an example, two point-like sources produce an interference
pattern similar to the pattern shown in Figure 10.2. The speed at which water waves
propagate depends on the depth of water in the container across which the waves
travel. This feature is of particular importance in understanding wave behaviour on
lake and ocean surfaces.

In contrast to the longitudinal nature of sound waves in air, the surface waves
in water involve both longitudinal and transverse displacements of water molecules
with respect to the direction of wave travel. Molecules in volume elements near the
surface execute circular or elliptical motions. The gravitational force acting on the
water elements plays a key role in the propagation of surface waves. Both the speed
and the form of molecular motion depend on water depth. In dealing with this type
of wave motion, it is important to distinguish between deep water waves and shallow
water waves.

Consider a train of plane waves of wavelength A travelling at speed v over a water
surface. Deep water waves occur when the depth d is comparable to, or larger than,
the wavelength, with the condition expressed as d > A/2. Taking g = 9.8 m/s?, the
wave speed in this case is given by the relationship

ve 82 10507 (10.20)
2r

In contrast, shallow waves require that the depth be much less than the wavelength,
and the necessary condition is taken as d < A/20. In this limit, the speed expression is

v=yJgd=3.13Jd (10.21)
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While the derivations of Equations (10.20) and (10.21) are not given here, it is readily
seen that the expressions are dimensionally correct.

The values of A for wind-driven, deep water waves lie in the range 50150 m,
corresponding to wave speeds of 9-15 m/s. As deep water waves approach the shore,
they transition into shallow water waves. Consequently, as the speed decreases, the
wavelength decreases, while the wave amplitude increases and the shape changes.
The kinetic energy transported by a wave approaching the shore does not decrease
significantly, and this causes the buildup in amplitude as the speed drops. Because of
the variation in d between the bottom and top of the wave, the top travels more rapidly
than the bottom leading to the well-known breaking behaviour of sea waves.

Seismic waves, known as tsunamis, are particularly dangerous and can cause
immense damage when they strike coastal regions. Earthquakes deep below the ocean
floor cause these waves, which have exceptionally long wavelengths A > 100 km, with
long periods 7' ~ 20 min. Tsunami waves are always a shallow water wave because of
their large wavelengths.

Exercise 10.5: Estimate the speed of a tsunami in the Pacific Ocean, which
has an average depth of 4000 m.

Equation (10.21) for shallow water waves gives v = 3.13v/4000 =198 m/s.
This speed, v ~ 710 km/h, is comparable to that of a passenger jet aircraft.

10.8 ELECTROMAGNETIC WAVES

Electromagnetic waves were predicted in 1865 by James Clerk Maxwell. Maxwell
based his prediction on his set of equations, which describe electromagnetic phe-
nomena. Roughly two decades later, Heinrich Hertz provided experimental verifica-
tion of Maxwell’s prediction. Rapid progress in determining the properties of these
waves followed. The present brief introduction to classical electromagnetic waves
simply points out common features that electromagnetic waves share with other types
of waves, together with important differences in behaviour.

Electromagnetic waves do not require a medium in which to propagate and travel
at the speed of light ¢ = 2.99792458 x 108 m/s in vacuum. The electromagnetic spec-
trum spans a wide range of wavelengths from gamma rays (10" m) and X-rays,
through visible light, to microwaves and very long wavelength radio waves (10% m).
Wave frequencies f, which are related to the wavelengths A by the equation ¢ = f A,
correspondingly have values ranging from 10** Hz to Hz. A variety of electronic
devices have been developed that make use of this wide spectral range.

Based on Maxwell’s contributions and the work of others, a plane-polarized har-
monic electromagnetic wave propagating parallel to the x-axis in a Cartesian frame
involves time-varying electric field, E, and magnetic field, B, components aligned
orthogonally to x. If E is directed along y, then B is directed along z. The harmonic
wave functions are written as E = E, sin(kx—ot) and B, = B, sin(kx— ot), with
k=2mr/Aand @=27/T =27 f. In addition, the two amplitudes E_and B, are closely
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related, with E /B =c and the two components in phase. The harmonic wave
functions for each component are similar to the wave function of a harmonic wave on
a string as discussed in Chapter 9. Note that the chosen forms correspond to polarized
waves, with the electric field confined to the xy plane and the magnetic field in the xz
plane. Interestingly, it is the electric component which is responsible for many of the
observable physical effects that are detected using electromagnetic radiation.

Using the forms given above for the electric and magnetic field wave functions, it
follows that the phenomena which are found with mechanical waves on strings, and
with sound waves in air, have their counterparts in electromagnetic wave phenomena.
For example, the superposition of two light waves of the same frequency give rise to
interference effects. A major difference between mechanical waves and electromag-
netic waves is the difference in the observed transmission speeds. Electromagnetic
waves travel at the speed of light, which is invariant for observers in different iner-
tial reference frames that are in relative motion. In contrast, sound waves are seen to
travel at different speeds for observers in relative motion with respect to the transmit-
ting medium.

While the classical wave description is successful for describing many of the
observed properties of electromagnetic radiation, it is necessary to extend the descrip-
tion in order to account for quantum transitions involving the interaction of radiation
with matter at the atomic level. This major alteration to the wave picture is made by
introducing the photon. Photons are fundamental particles that travel at the speed of
light and carry momentum and energy. A collection of these particles constitutes the
wave of classical physics. In the quantum physics description, the wave function is
linked to the probability density of photons, which make up the wave, expressed in
terms of space and time coordinates. Further details are given in books on quantum
mechanics.
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11.1 INTRODUCTION

Thermal physics began to be established as an important subject in the nineteenth
century, in large part due to the technological advances that accompanied the indus-
trial revolution. In particular, it was the design and construction of heat engines that
provided a major stimulus for the investigation of thermal processes. The concepts
of work and energy from classical mechanics feature in a natural way in the descrip-
tion of thermal phenomena. A related concept, that of heat energy, became essential
during the development of the subject. This chapter provides an introduction to the
subject called thermodynamics.

Thermodynamics provides a description of the processes that occur in macroscopic
systems consisting of very large numbers of particles. No attempt is made to connect
the macroscopic behaviour that is observed to the unseen microscopic constituents.
A related subject, called kinetic theory, does provide a semi-classical connection to
the microscopic description based on classical models. Quantum mechanics is used in
developing statistical physics, which provides a deeper connection to thermodynamics.

In introducing the subject, it is convenient to consider what is called the ideal
gas as a simple but important system of interest. The equation of state for an ideal
gas connects pressure, volume, and temperature in a compact way. Other systems
are introduced, where appropriate, to broaden the discussion. While the pressure and
volume of fluids are familiar concepts from the discussion given in Chapter 7, the
scientific role of temperature is less familiar and is therefore dealt with in detail in
Section 11.2. In addition to the Celsius and Fahrenheit temperature scales, which are
well known, the absolute or Kelvin scale is defined.

The internal energy of a system together with the work done on or by the system
are important in formulating the laws of thermodynamics. As mentioned above, it is
also necessary to introduce heat energy, which can be transferred in thermal inter-
action processes. Heat flow across the boundary of a system involves the transfer of
energy at the microscopic scale. While thermodynamics does not consider the micro-
scopic nature of heat transfer processes, it is instructive to consider basic kinetic
theory in order to gain insight into these processes. An overview of the kinetic theory
of gases is given in Section 11.3.
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11.2 TEMPERATURE AND THE IDEAL GAS LAW

Thermometers that make use of the thermal expansion properties of liquids typically
consist of a reservoir of liquid attached to a capillary tube. The length of the liquid
column gives a measure of the temperature of the liquid in the reservoir. Devices
of this type are generally calibrated using Celsius or Fahrenheit temperature scales,
which are familiar from everyday life. Both scales fix two calibration points, one for
melting ice called the ice point, and the other for the boiling point of water in con-
tact with steam at a pressure of one atmosphere called the steam point. In the Celsius
scale, the ice point is fixed as 0°C and the steam point at 100°C with linearly marked
degree subdivisions. The Fahrenheit scale uses 32°F for the ice point and 212°F for
the steam point. The liquids used in thermometers are mercury for common purposes
and alcohol for temperatures below the ice point.

Liquid in glass thermometers use the thermal expansion of a liquid in establishing
temperature scales. Many other types of thermometers exist including gas
thermometers, electrical resistance thermometers, and magnetic thermometers. These
devices are all based on changes in the physical properties with temperature of the
system used and require calibration. For scientific purposes, it is convenient to use
the Kelvin scale, also known as the absolute temperature scale, which is introduced
below. In introducing the Kelvin scale, it is instructive to consider the physical prop-
erties of gases as a starting point.

The pressure of a gas in a container depends on the container volume, the
quantity of gas in the container, as measured in moles, and finally the tempera-
ture. Experiments carried out by many workers, beginning in the seventeenth
century, established these dependences. These investigations led to concepts and
laws associated with the names of Boyle, Charles, Gay-Lussac, and Avogadro. It
became clear that the basic laws could be unified in what is called the ideal gas
law, which has the following form:

PV=nRT (1L.1)

In Equation (11.1), P is the pressure, V the volume, n the number of moles of gas, T’
the absolute temperature, and R a constant called the gas constant with approximate
value R = 8.314 J mol~! K-'. The term ideal gas refers to a gas in which there are negli-
gibly small interactions between the constituent particles (atoms or molecules) making
up the gas. Examples of gases which are good approximations to an ideal gas are the
noble gases helium and argon. Many other gases, including hydrogen and nitrogen,
also approximate ideal gases over a wide range of pressures and temperatures. While
P and V are familiar quantities, with units Pa and m? respectively in SI units, it is
necessary to introduce the quantities n and 7.

The number of moles of a gas is given by n= M/M, where M is the mass of gas
in a container and M . is the molar mass. In terms of Avogadro’s number N e the
mole number is n = N/N +» Where N is the number of atoms or molecules, collectively
referred to as particles, in the container. Avogadro’s number has the approximate value
N, =6.022x10% particles/mol. The molar mass is M, = N, m, with m the particle
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FIGURE 11.1 Representative pressure P (atm) versus temperature ('C) plot for an

ideal gas. The volume is V=2L and n=0.1 mol. Below the liquid nitrogen point, at

—190°C, the straight line is extrapolated to zero pressure using the dash line. This occurs at

-273.15°C.

mass in atomic mass units (AMU), denoted u, where 1 u=1/N, =1.660 X 1072 g.
The carbon-12 atom is defined to have a mass of 12 u. Note that for gases it is conven-
tional to express the molar mass M, in units of g rather than kg. Avogadro’s number
is then the number of particles per g-mol.

In order to introduce the absolute temperature 7, it is helpful to consider the
pressure variation with temperature of a fixed quantity of an ideal gas in a container
of fixed volume. Figure 11.1 shows a representative plot of P (atm) versus 7 (C).

The pressure of the ideal gas tends to zero at —273°C. This point is a natural choice
for absolute zero temperature, 7 = 0 kelvin (K). For the absolute temperature scale,
or kelvin scale, degrees are chosen to be equal to those in the Celsius scale. High pre-
cision measurements give 0 K as —273.15°C. The ice point, which is fixed as the triple
point for solid ice, liquid water, and water vapour to coexist is thus 273.15 K.

The ideal gas law (which is also known as the ideal gas equation of state) as given
in Equation (11.1) is extremely useful in thermal physics because it provides a simple
and precise description of the behaviour of an ideal gas as a function of the P, V, and
T conditions.

Exercise 11.1: Determine the molar volume of an ideal gas for T = 273.15 K
and P =1 atm. 1 atm = 1.01325 x 10° Pa.

From Equation (1.1),V=n R T/P =1x8.314x273.15/101325 = 0.0224 m>.
The molar volume, in litres, is 22.4 L.
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11.3 KINETIC THEORY OF GASES

11.3.1 INTERNAL ENERGY AND THE IDEAL GAS Law

In contrast to thermodynamics, which is not concerned with the microscopic nature
of macroscopic systems (i.e. systems that contain large numbers of particles compar-
able to Avogadro’s number), kinetic theory relates the macro and micro properties
of such systems. The ideal gas provides a simple and useful example of the kinetic
theory approach.

The ideal gas is modelled as a collection of particles moving about inside a con-
tainer and undergoing collisions with the walls. While the particles are assumed to
be noninteracting when they are separated by distances larger than the sum of their
effective radii r, they do undergo collisions and exchange momentum when their
centres are 2r apart. The particles may not be spherical, but if they are not then they
rotate rapidly about their centres of mass so that they approximate spheres.

The internal energy E of a physical system is of central importance in the thermo-
dynamic description of processes in which the system is involved. For an ideal gas,
the kinetic theory classical model relates the average kinetic energy of a particle g,
to the absolute temperature. This is done by deriving the ideal gas equation using
the ideal gas microscopic model, as shown below. The total energy of the gas is then
givenby E = N g _where N is the total number of particles in the gas. Note that there
is no potential energy contribution for an ideal gas because of the vanishingly weak
interactions between particles. Variations in gravitational potential energy are also
assumed to be unimportant if the gas container is kept at a fixed position in relation to
the Earth’s surface. Collisions between molecules are ignored although this point is
taken up later. Note that the term particle has now been replaced by molecule, which
is used, collectively, to describe both atoms such as helium (He) and molecules such
as nitrogen (N,).

Figure 11.2 illustrates in 2D the collision of a gas molecule with the wall of a
container.

Elastic Collision of Ideal Gas Particle
with a Container Wall

— v A —

FIGURE 11.2 A molecule in an ideal gas makes an elastic collision with a wall of the gas
container. The momentum along x changes by 2m v . During an interval of time Af, many
molecules collide with the wall and exert a force on it.
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In order to obtain an expression for the pressure of the gas, it is instructive to
start by considering a subset of molecules moving with speed v _in the +.x direction. It
is assumed that the container wall is smooth and that collisions with it are elastic. The
momentum change of a molecule along x is Ap =2m v . Over a time At, the fraction

1
of the molecules that strike the wall of area A is given by f = EA v_At/V. This
is because the maximum distance that these molecules will travel is v, At, so all
the molecules inside the volume A v At could strike the surface. The factor % is

introduced to allow for molecules travelling in either the +x or —x directions. The
change in momentum for a molecule colliding with the boundary wall is therefore

Av At mv?
Ap = - ><(2mv)=A = |At.
A% * \%4

From Newton’s second law, the force F, produced by a single molecule hitting
the boundary wall is obtained as the rate of change of momentum of the molecule

Ap A
considered. This gives F, = Ip = Vm v2. The total force on the wall produced by
t

A N
all the molecules, labelledi=1to N, is F = —mZviZ. Introducing the mean square

i=1

1 s .
speed component along x as v? = —ZVf, and substituting in the expression for F

i=1
. A .
gives I = VN m v?. Since the x, y and z components of the mean square speed v*
are equal in 3D, as a consequence of symmetry, it follows that v? = v? +v? +v? =3v2.

The pressure P = 2 of the gas in terms of the mean translational kinetic energy

1 L
g = Emv2 is given by

™

polymv _2yE& (11.2)
3 30V

Equation (11.2) connects the microscopic (N, €,) and macroscopic (P,V') descriptions
of an ideal gas.
A comparison of the ideal gas law in Equation (11.1) with the kinetic theory form

2
in Equation (11.2) shows thatn RT = EN €, which, using N = n N, and introducing
k, = R/N, becomes

€ ==k T (11.3)
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The new constant k, is called Boltzmann’s constant with approximate value
1.381x1072 J/K . Equation (11.3) relates the mean translational kinetic energy of a

. . . 1 3
single ideal gas molecule to the absolute temperature. Since €, = Em v:= Em V2,

the factor of three halves arises because there are three contributions to the kinetic
energy of a molecule in 3D space. For a monatomic ideal gas of N molecules at
temperature 7 the total energy E is simply the total translational kinetic energy of
all the molecules. There is no contribution from the potential energy for an ideal
gas. The energy is therefore given by

E=Ne = NkT=>nRT (11.4)
2 2

with R the gas constant and n the number of moles. This is an important result in
considering the thermodynamic properties of a monatomic ideal gas. Note that for
polyatomic molecules there are other contributions to the energy from intramolecular
rotational and vibrational motions. Collectively, the various energy contributions are
associated with what are called degrees of freedom.

Exercise 11.2: Determine the internal energy of 0.2 moles of helium gas
at 20°C.
From Equation (11.4), the energy is given in terms of the gas constant by

E:%n RT:%XO.2X8.314X293=731J.

From Equation (11.3), it is possible to obtain an expression for the root mean
square speed v = Jv? of the molecules in an ideal gas. Equation (11.3) is written as

1 3 . . ..
g =—mv>=—k, T,and, with m in u, this gives
2

ko2
3k. T
b= 20 isg [T s (11.5)
) m m

Figure 11.3isaplotofv_forhelium (m = 4.0 u) and neon (m = 20.2 u) versus T (K).

In an ideal gas at pressures which are not very low, the molecules make frequent
collisions with one another and travel small distances between collisions. It is useful
to introduce a quantity called the mean free path /, which is a measure of this mean
collision distance. Consider a gas of N molecules in a container of volume V. For
molecules of effective diameter a, two of the molecules undergo collision when their
centres are a distance a apart. Collision processes are treated by expanding a selected
molecule to twice its size, with radius a, and shrinking all the other molecules to
geometrical points. The enlarged selected molecule travels at an average speed v
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Root Mean Square Speed vs. T'(K)
1500 4 Tor Helium (He) and Neon (Ne)
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FIGURE 11.3 Root mean square molecular speed versus 7' (K) for helium and neon ideal
gases.

between collisions and sweeps out a volume V. = 7 a* v 7 in a time 7. The number of

14
molecules encountered by the expanded molecule is given by N_ = 7‘ N. For a single

.. . P 1 Vv .
collision N_ =1, and the corresponding collision time is 7= X| — |. This
’ ma* v N

Vv . .
x| — |. Using the ideal
T a’ N

gas law in the form P V = N k, T, and substituting for V/N in the expression for 7,

simple approach gives the mean free pathas/=v 7= (

. 1 k,T . . .
gives 7= | | Introducing a correction factor 132 , which allows for
ma*v

the motion of the other molecules, the mean free path becomes

| kT (11.6)

2ma* P

l=v7T=

Figure 11.4 shows a semi-logarithmic plot of the mean free path of molecules
in helium at 295 K as a function of pressure in the range 0 to 10 atm. The kinetic
diameter of He molecules is 0.26 nm. The path length increases dramatically as the
pressure drops towards 0 atm.

Note that the mean free path length is inversely proportional to the pressure. In a
high vacuum system, at a pressure of 10~ Pa, the mean free path becomes very long,
in excess of 100 m, which typically exceeds the dimensions of the vacuum chamber
by a large amount.

11.3.2 THE EQUIPARTITION OF ENERGY THEOREM
In the discussion leading up Equation (11.4), it is established that the average trans-

lational kinetic energy of a molecule in an ideal gas is given by € = EkB T.Ina3D
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Mean Free Path vs. Pressure P
Helium at 295 K

14

Mean free path (nm)

fr IIU
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o

FIGURE 11.4 The pressure dependence of the mean free path [ for helium at 295 K with
pressures in the range O to 10 atm.

Cartesian frame of reference, there is an energy component associated with each of the
three orthogonal directions. Since the axes are equivalent from symmetry consider-

1 1
ations, it follows that £, = £, =€ = EkB T. The three energy contributions EkB T

are associated with what are called the translational degrees of freedom. It is natural
. . oo
to ask whether polyatomic molecules have other internal energy contributions EkB T

associated with their rotational and vibrational degrees of freedom. Experimental
results and theoretical calculations have confirmed that this is the case provided the
associated energy expression involves a quadratic dependence on an internal spatial
coordinate. This, on average, equal sharing of energy among the various molecular
degrees of freedom is known as the equipartition of energy theorem,; it states that for
a system in thermal equilibrium at temperature 7', in the classical limit, each quadratic

1
degree of freedom has a mean energy EkB T.

As an example, consider a diatomic molecule such as oxygen. In addition to the
three translational degrees of freedom, the molecule has two rotational degrees of
freedom, and, in principle, two vibrational degrees of freedom corresponding to the
potential and kinetic energies of vibration along the bond, giving a total of seven.
However, the vibrational motion is generally non-classical at the temperatures of
interest, and therefore the energy associated with this motion can be neglected. The
two rotational degrees of freedom correspond to molecular rotations about orthogonal

. . 1 .
axes through the centre of mass, with energies of the form ¢ = EI @’. Rotational

motion about the axis connecting the two atoms in a diatomic molecule does not con-
tribute to the energy at the temperatures of interest, because of the extremely small
moment of inertia about this axis. Figure 11.5 illustrates the two rotational degrees
of freedom.
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Rotational Motion of a Diatomic Molecule

P

FIGURE 11.5 Rotational degrees of freedom for a diatomic molecule in a gas. Classical
rotation occurs about the x and z axes as indicated.

Compression of a Gas

FIGURE 11.6 Compression of a gas using a piston-cylinder arrangement. Work is done on
the gas as the piston of area A advances into the cylinder.

For an ideal gas of diatomic molecules, each with five degrees of freedom, the
equipartition theorem predicts that, in equilibrium, the mean energy of a mol-

ecule is €= ékB T.
2

11.4 THERMODYNAMIC PROCESSES: WORK AND HEAT

The internal energy E of a system can be changed in two distinct ways. Firstly, mech-
anical work can be done on the system by an external force. For example, the volume
of a gas can be changed by moving a piston in a cylinder containing the gas, as
depicted in Figure 11.6. This type of process is macroscopic in nature.

The mechanical work done by the force F in moving the piston through a small
distance dx is F dx. As shown in Chapter 7, the gas which is being compressed exerts
an opposing force F’ = P A on the piston. If the system is kept close to equilibrium
during the compression, then F and F” are almost equal. The magnitude of the infini-
tesimal work done on the gas in moving the piston is dW = F dx=P A dx=P dV.
It is convenient to take the work dW done in compressing the gas, by decreasing
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its volume, as positive. This is achieved by introducing a minus sign as follows:
dW =—-P dV. Applying the law of mechanical energy conservation, the accom-
panying change in internal energy of the gas due to compression is given by

dE=dW =-P dV (1L.7)

If the piston were to move out in an expansion process, with dW < 0, then the internal
energy of the gas would decrease.

A second way of changing E involves heat transfer between the system and its
surroundings. Heat flow is a microscopic process in which kinetic energy at the atomic
level is transferred across a boundary wall of a system. The energy transfer process involves
collisions of gas molecules with a wall of a container as depicted in Figure 11.2. Atoms in
the wall acquire energy from an external source and transmit it to the neighbouring atoms,
and eventually to other gas molecules in the system of interest.

Thermodynamics does not enquire into the nanoscale details of heat transfer
processes, but simply considers the macroscopic effects produced by heat flow, and
specifically the change in temperature of a system produced by the absorption of heat.
The heat capacity of a system is of central importance in this approach. The rise in
temperature AT of a system produced by the absorption of heat AQ from a source is
written as AQ = C AT, with C the average heat capacity over the temperature range
involved. In the infinitesimal limit, when AT — 0, the heat capacity is defined as

C= a0 (11.8)

dar
For gases, in contrast to liquids and solids, the heat capacity of a gas depends on
whether the measurements are made at constant volume or constant pressure. Further
details are given below.

In discussing heat transfer, it is often convenient to introduce the concept of what are
termed heat baths. A heat bath is a very large physical system that can give up or receive
heat without a detectable change in its temperature. Heat baths have extremely large
heat capacities. The change in the internal energy dE of a system due to heat dQ
entering or leaving it, is given by the law of energy conservation as

dE =dQ (11.9)

Heat added to a system is taken to be positive, while heat extracted from a system is
negative.

11.5 THE FIRST LAW OF THERMODYNAMICS

From Equations (11.7) and (11.9), the following relationship is obtained for the
infinitesimal change in the internal energy of a system to which heat dQ is added and
on which work dW = —PdV is done,

dE=dQ+dW =dQ - PdV (11.10)
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This is the mathematical statement of the first law of thermodynamics, which is an
expression of the law of energy conservation. The first law can be adapted to apply to
a wide variety of systems. As a starting point, the discussion below focuses on gases,
and in particular the ideal gas.

11.5.1 THe First LAW FOR AN IDEAL GAS

From the equipartition theorem, the internal energy of an ideal monatomic gas
3
with three molecular degrees of freedom is given by Equation (11.4) as E = EnRT.

This result is readily extended to diatomic molecules, with two additional rotational
degrees of freedom. For a process carried out at constant volume, the first law becomes
dE =dQ. The heat capacity at constant volume is obtained using Equation (11.8),
with the addition of a subscript to indicate the constant volume constraint, as

cvz(@) =(d—E) " (11.11)
ar ), \dr ), 2

Replacing dE' by C,, dT, the first law for an ideal gas becomes
C,dT = dQ—PdV (11.12)

Equation (11.12) has been obtained for a monatomic ideal gas, but it is readily adapted
to a gas of polyatomic molecules with f degrees of freedom.

Exercise 11.3: Obtain an expression for the work done and the heat transferred
to a heat bath at temperature 7 in the isothermal compression of an ideal gas
from an initial volume V; to a final volume V. Figure 11.7 depicts the work done
on the gas and the heat transferred in the isothermal process.

For an isothermal process C,d7T =0, and Equation (I11.12) becomes
0=dQ - PdV. Making use of the ideal gas law PV =n RT to replace P, and

Isothermal Compression of an Ideal Gas

AFE=10 ‘&

laQ

FIGURE 11.7 The work done on an ideal gas during isothermal compression is
matched by the heat rejected to a heat bath (not shown).
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then integrating over the volume change, gives the heat transferred to the heat

cdv v, ,
bath as AQ =n RTJV =nRTIn = | The first law then gives

i

V.
AW:—AQ=—nRT1n[7fJ (11.13)

i

Since the volume has decreased, it follows that AW > 0 while AQ < 0, showing
that heat is emitted to the heat bath at temperature 7" during the compression
process in order to keep the gas’s temperature constant.

11.5.2 GEeNERALIZED FORM OF THE FIRST LAw

For systems other than gases, it is necessary to express the work done on or by a
system in terms of the mechanical variables which apply to the particular system. For
example, consider a wire subject to a stretching force F* which produces an increase
in length d/. The work done in the process is dW = F d/. In general, the infinitesimal
work done is written as dW =Y dX, with Y a generalized force and X a generalized
displacement. The first law then has the form dE = dQ +Y dX. This modified first law
is useful in a wide variety of applications from soap films to magnetic materials.

11.5.3  STATE VARIABLES AND STATE FUNCTIONS

In an ideal gas system, the variables which specify the state of the system are pressure
P, volume V, and absolute temperature 7. Since the state variables are connected by
the ideal gas law, which is an equation of state, it follows that any two variables fix
the value of the third variable, and thus are sufficient to specify the state of the system.

A state function can be expressed in terms of state variables. The internal energy of
anideal gas is a state function of the absolute temperature, as shown in Equation (11.4),

and as used above in the discussion of the first law. For amonatomic gas £ (T) = %n RT

while for a gas of polyatomic molecules the factor three is replaced by the number of
degrees of freedom f.

In contrast, heat and work are not state functions. Mathematically, dE is an exact
differential, while dQ and dW are not. In a process in which a system goes from an
initial state to a final state, the energy change is independent of the path followed in
the process. The work and heat inputs, however, do depend on the path followed, and
it is only the sum AQ + AW that is fixed, as required by the first law.

11.5.4 THe Heat CapaciTy RELATIONSHIP 3
Equation (11.11) gives the heat capacity of a monatomic ideal gas as C, =—n R.
Using the first law, a relationship between C, and the heat capacity at constant
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pressure C,, is established as follows. From Equation (11.12), the first law is written

as dQ=C,dT +P dV. The heat capacity at constant pressure is then given by
d vV . . . A%

C,= 49 =C,+P| - | . Using the ideal gas law gives P| — | =nR. The
dT ), aT ), aT ),

difference of the heat capacities is thus given by

C,-C, =nR (11.14)

For a monatomic gas, C, :%nR and Equation (11.14) gives C, =§nR. The

physical reason for C, being larger than C, is that in a constant pressure (*“iso-
baric”) process, work is done to keep P constant as the system expands or
contracts, while in a constant volume (“isochoric”) process, no work is involved
since V does not change.

The specific heat of a system c is defined as the heat capacity per unit quan-
tity of the substance. The quantity is often taken to be per mole with ¢ =C/n,
or, alternatively, per unit mass with ¢ = C/m. For gases, it is always necessary
to distinguish between ¢, and c,. In contrast, this distinction is less important
for liquids and solids, which are much less compressible than gases. For ref-
erence purposes, the specific heat per mole of a monatomic gas at constant

volume is ¢, = &— gR— 12.47 J mol~' K-!
voon 20 T '

11.6 P-V DIAGRAMS

For gas systems, it is instructive to represent thermodynamic processes using P—V
diagrams. As is noted above, just two state variables are sufficient to specify the
state of a gas that obeys the ideal gas law. Figure 11.8 shows a representative P—V
diagram for a gas undergoing an isobaric (constant pressure) process between ini-
tial and final volumes. Isochoric (constant volume) processes (not shown) would
be represented by vertical lines, while the isobaric process is shown as the hori-

f
zontal line. The work done on the gas in the isobaric process is AW = —jP dv,

and, with attention to units, this is given by the area under the horizontal line. No
work is done in isochoric processes, which involve temperature changes produced
by heat flow.



182 Physics: An Introduction to Physical Dynamics

1107 Isobaric Expansion

(L)

FIGURE 11.8 P-V diagram for a gas undergoing an isobaric expansion process. The work
done in the process is given by the shaded area shown.

Exercise 11.4: The P-V diagram in Figure 11.8 represents the isobaric
expansion of 0.1 mol of an ideal monatomic gas from an initial volume of 2 L
to a final volume of 4 L with the pressure kept at 1 atm. Calculate the temperature
change of the gas, the heat absorbed, and the work done by the system.

The temperature change is obtained using the ideal gas law as follows:

P
AT = (_R) AV =1.219%x10° x2x1073 =244 K. The heat absorbed by the
n

gasis AQ=C, AT = %n R AT =2.079%x244 =507 J. The work done by the

gasis AW =P AV =101325x2 %107 =203 J.

Note that the work done is given by the shaded area in Figure 11.8 expressed
in SI units. The heat absorbed by the gas in the isobaric expansion process is
largely converted into internal energy and the balance into work done by the
system.

Exercise 11.5: Construct a P-V diagram to depict an isothermal compression
process for an ideal gas. Take T = 295 K, n = 0.1 mol, and the initial and final
volumes as 8 L and 1 L, respectively.

The P-V diagram for the isothermal process is readily obtained using the
ideal gas law in the form P =n R T/V = 2.45x10°/V Pa, with volumes given
in L, as shown in Figure 11.9.

The work done on the gas is obtained using Equation (11.13), which

v
gives AW =n RTIH(VIJ =0.1x8.314x295%In(8) =510 J.

f
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Isothermal Compression
of an Ideal Gas

P (Pa)

110" 4

0 2 i 6 8 10
VL)

FIGURE 11.9 P-V diagram for the isothermal compression of 0.1 mol of an ideal gas

from 8 Lto 1 L at T =295 K. The shaded area, with attention to units, is a measure of

the work done on the gas.

11.7 ADIABATIC PROCESSES

In addition to isothermal, isobaric, and isochoric processes, there is a fourth important
thermodynamic process known as the adiabatic process. In an adiabatic process, no
heat is transferred to or from the system concerned, so that AQ = 0. In contrast to
what is known as Boyle’s law, with P V = constant for an ideal gas undergoing an
isothermal process, it is found that for an adiabatic process, PV7 = constant with the
exponent ¥ taking values determined by the number of degrees of freedom of the gas
molecules. This form is discussed in detail below. In an adiabatic process carried out
on an ideal gas, the state variables P,V , and T all change subject to the constraint that
the ideal gas law connecting these variables always holds.

From Equation (11.12), the first law of thermodynamics can be written as
dQ=C,dT+P dV. Introducing the differential d(PV)=PdV+VdP=nRdT,
based on the ideal gas law, gives PdV = —V dP +n RdT. Substituting in the first law
equation leads to the relationshipdQ = C,, dT =V dP+nRdT = C,dT -V dP, where
use has been made of the identity C, —C,, = n R given in Equation (11.14).

For an adiabatic process dQ =0, and two alternative forms of the first law are,
firstly,

PdV =-C,dT (11.15a)

and, secondly,

VdP=C,dT (11.15b)
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P-V Diagram: Adiabatic and
Isothermal Processes
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FIGURE 11.10 P-V diagram for an ideal gas undergoing adiabatic and isothermal
compression processes from a volume of 4 L to 1 L. The internal energy of the gas increases in
the adiabatic process, but not in the isothermal compression.

Dividing Equation (11.15b) by Equation (11.15a), and then rearranging, results
. . . . dpP cp dV . . . .
in the differential equation ?:——7. Integration of this equation yields

Cy

c
InP=-—+InV+In (constant), and taking antilogs results in the form

Sy

P V7 = constant (11.16)

with y=c,/c,,. For a monatomic ideal gas c, = %R and ¢, = %R, giving y=15/3.

Using the ideal gas law, Equation (11.16) can also be written in the alternative
form T V7! = constant.

Figure 11.10 gives a P-V diagram for 0.16 moles of an ideal gas, showing both
an adiabatic process with PV7 ="constant 1" and an isothermal process at 295 K
with PV ="constant 2". The constants were chosen to make the pressures equal for
V =4L. Note that the pressure rises more rapidly with decreasing volume in the
adiabatic process than in the isothermal case. Work done on the gas in the adiabatic
compression increases the internal energy, as required by the first law for AQ = 0.

. . 3 .
The temperature of the gas thus increases, since E = EnRT, and this enhances the

pressure increase. No increase in temperature occurs in the isothermal process, which
involves a heat bath to absorb heat from the system.

A combination of adiabatic and isothermal processes can be used to generate a
heat-work cycle in which an ideal gas absorbs heat from a heat source, converts a
portion into work output, and discards the remainder to a heat sink. A cycle of this
type provides a model for a heat engine as discussed in Chapter 12.
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11.8 THE SPECIFIC HEAT OF SOLIDS

The present chapter has introduced the first law of thermodynamics and has illustrated
its use by considering processes involving an ideal gas. Expressions have been
obtained for the specific heats at constant volume and constant pressure. In the nine-
teenth century, Dulong and Petit found that the molar-specific heats of most solids
at standard temperature and pressure obeyed what has been called the Dulong—Petit
law, in the form

¢, =3R (11.17)

P

For solids, there is in general little difference between ¢, and ¢, because of the small
thermal expansion coefficients for these materials.
Equation (11.17) is strikingly similar to the molar-specific heat of a monatomic

ideal gas, ¢, = ER' The equipartition theorem provides an explanation for the high-

temperature specific heats of solids using a model in which the atoms are connected
to neighbours by springs. As the atoms in the solid vibrate about their equilibrium
positions, they possess both kinetic and potential energy. The number of degrees of
freedom is thus six, and not three as in a gas.

Further experimental measurements showed that the specific heats of solids
decreased smoothly towards zero at low temperatures. It became clear that the law of
Dulong and Petit no longer held at low temperatures, and the specific heat behaviour of
a particular solid with temperature depends on its mechanical properties. In the early
twentieth century, simple models, known as the Einstein and Debye models, together
with quantum physics developments, provided an explanation for the observed low-
temperature specific heat behaviour.



1 2 Entropy and the
Second Law

12.1 INTRODUCTION

The internal energy of a system is of fundamental importance in considering its
physical properties. As discussed in Chapter 11, the first law of thermodynamics,
which is based on the law of energy conservation, relates the change in internal
energy of a system to the heat and work it exchanges with its surroundings. From
the heat capacity properties, it is shown that the internal energy E of an ideal gas
is a state function of the state variable T'. It is natural to ask if there are other state
functions or state variables. In this chapter, it is shown that a quantity called the
entropy is a state function of fundamental importance in thermal physics. The
second law of thermodynamics relates the entropy changes of a system under-
going a thermodynamic process to the reversible or irreversible nature of the
process. At a fundamental level, an increase in the entropy of a system is related
to an increase in its disorder.

The entropy concept emerged over a period of many years following the theoretical
analysis of heat engine operation in the early part of the nineteenth century. A deeper
understanding of entropy came with the development of statistical mechanics later in
the century. This chapter uses the operation of heat engines as the basis for introdu-
cing the entropy concept and the second law of thermodynamics.

12.2 HEAT ENGINES

Heat engines are mechanical devices, which, operating in a cycle, convert a fraction
of the heat absorbed from a high-temperature source into useful work, and reject
waste heat to a low-temperature sink. In analysing an engine, it is necessary to cal-
culate the work done and the heat transferred per cycle. The following application
illustrates the general approach.

186 DOI: 10.1201/9781003485537-12
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Application 12.1: Consider a simple heat engine using a monatomic
ideal gas as its working substance. The gas is contained in a cylinder, with a
movable piston that can be clamped for isochoric processes and unclamped for
isobaric processes. Heat baths, which can be placed in thermal contact with the
cylinder, provide fixed temperatures at the four points shown in Figure 12.1.
Find the work done per cycle, when operated in a clockwise sense, and the heat
transferred in each process. Note the use of practical units (“atm L”) below,
rather than SI units (1 atm L = 101.325 J).

The work done on the ideal gas per cycle is given by W = — j PdV =
cycle
—P, (Vb -V ) =/ (Vd = VC) =-2Xx1+1xl=—-1latm L. Converting t)ilé units
using 1 atm L = 101 J gives W = —101 J. The sign convention used measures
work output as negative. Note that the work output per cycle, in units “atm L”,
is given by the area of the shaded region in Figure 12.1.
The heat transfer in each process is given by AQ = C AT, with the heat cap-

acity given by either C, = %R (isobaric) or C|, = %R (isochoric) as derived

for an ideal gas in Chapter 11. Heat is added to the system along paths a — b
and d — a, while heat is removed along paths b — ¢ and ¢ — d. It is neces-
sary to determine the temperature change along each path. This is done using

. . PV . L
the ideal gas law in the form 7' = ——. The calculations are simplified by
n
choosing n = 0.120 mol, which gives n R = 1J/K. The following temperatures

are obtained: T, = 606K, T, =808K, T, = 404K, and T, =303 K. Heat added

5 5
along isobaric path a — b is given by O = En RAT, = §x202 =50517.

Cyclic Process
two isobarics and two isochorics

a b

P (atm)

V(L)

FIGURE 12.1 P-V diagram for a cyclic process consisting of two isobaric and two
isochoric processes. Pressures are given in atm and volumes in L. The cycle operates in
the clockwise sense,a — b — ¢ — d.
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Similar calculations give Q, =-606J, O  =-252.5J, and O, =454.5].
Note that the net heat input per cycle is QCycle =1011J, which is equal to the

work done per cycle given above.

12.3 HEAT ENGINE EFFICIENCY

Consider a heat engine operating in a cycle, with heat input Q,, work output W, and
discarded waste heat Q, in each cycle. If a heat engine can be run backwards, it becomes
a heat pump or refrigerator with the inputs and outputs switching signs. An important
measure of the performance of a heat engine is its efficiency 77, which is defined as

n= (12.1)

ISE

The use of the first law of thermodynamics gives AECycle

= AQ — W . Signs are chosen

positive for inputs and negative for outputs, as used in Chapter 11. Since E is a state

function, it follows that AECycle = 0, because in a complete cycle the system returns to
its initial state. Over a cycle, the first law expression gives W = AQ = Q, + Q, with the
signs of O, and Q, determined by calculation as shown in Application 12.1. The heat

engine efficiency, defined in Equation (12.1), becomes

n=2te 2% (12.2)
9, 9

Equation (12.2) has an important role in considering the operation of heat engines.
Application 12.2 considers the efficiency of the classic Otto cycle as an illustrative
example.

Application 12.2: The Otto cycle is a model for the operation of gasoline
powered heat engines. The basic clockwise cycle involves four processes, two
adiabatics (paths] — 2 and 3 — 4) and two isochorics (paths 2 — 3 and 4 — 1)
as shown in Figure 12.2. Air intake at the start of each cycle and exhaust gas
emission at the end both occur at atmospheric pressure. These two processes
can be ignored.

In each cycle heat input Q, occurs along path 2 — 3 (V, isochore) followed
by heat output Q, along 4 — 1 (V, isochore). The temperatures at points 1 to
4 in Figure 12.2 are designated T, to 7, with T, >T, and T, > 7. Obtain an
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Otto Cyele

isochore

adiabatic

adiabatic

P

anm

[ v v

FIGURE 12.2 P-V diagram for the Otto heat engine cycle, which involves two
adiabatics and two isochorics. Heat input Q, occurs along path 2 — 3 at volume V,,
while heat output O, occurs along path 4 — 1 at volume V. Adiabatic compression
happens along 1 — 2, while adiabatic expansion, producing work output, takes place
along 3 — 4, which is the power stroke. Gas intake and exhaust processes take place at
pressures close to atmospheric.

expression for the efficiency 7 of the cycle in terms of the volumes V, and V.
Express the efficiency in terms of the compression ratio R =V, /V,.

Equation (12.2) gives the efficiency as 7= 1+ Q,/Q,. The two heat exchanges
occur along the isochoric paths 2 — 3 and 4 — 1. Taking initial and final
temperatures around a cycle gives O, = C,, (T3 = Tz) >0andQ, =C, (T1 = T4) <0,
where C, is the heat capacity at constant volume for the gas used in the Otto

cycle. Substituting the expressions for O, and Q, into the equation for 7 gives,

Lot (12.3)
’r’: — c
T, -T,

Note the sign switches that have been made, to emphasize that n< 1. Later in
this chapter, it is shown that it is impossible for a heat engine to achieven=1.

Expressions for the positive temperature differences in Equation (12.3)
are obtained by adapting the adiabatic relationship P V7 = constant given in
Equation (11.16). Using the ideal gas law in the form P =n RT/V, the adia-
batic relationship is rewritten as

T V7! = constant (12.4)
Applying Equation (12.4) to the two adiabatic processes gives 7, V,'™' =T, V!

along 1 — 2 and T, V"' =T, V""" along 3 — 4. Subtracting the first of these
equations from the second, and grouping terms in V, and V,, leads to
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(r,-1)v7 =(1,-1,) v, (12.5)

Combining Equations (12.3) and (12.5) gives the Otto cycle efficiency as

v. )"
—1—| 2
n=1 (V) (12.6)

1

In terms of the compression ratio R =V, /V,, the efficiency is n=1-1/R7"". The
higher the compression ratio, the higher the efficiency of the heat engine, which
reaches 60% for a compression ratio R = 10, assuming y = c,/c, = 1.4, which
approximates the ratio of specific heats for air. In a practical gasoline engine,
there are limitations on how high the compression ratio can be made without
encountering problems due to preignition of the air—fuel mixture.

12.4 CARNOT CYCLE

12.4.1 CArRNOT HEeAT ENGINE

The Carnot cycle, which is named after Sadi Carnot who proposed it early in the
nineteenth century, involves two adiabatic and two isothermal processes carried out
reversibly on an ideal gas. All processes are quasi-static to ensure that the system
is always close to equilibrium. The cycle depicted in the P-V diagram given in
Figure 12.3 is reversible, and can operate either as a heat engine, taking in heat and
performing work, or in reverse, as a refrigerator or a heat pump in an air conditioner.

Carnot Cycle

isothermal T}

adiabatic
adiabatic

isothermal T,

V

FIGURE 12.3 P-V diagram for the Carnot heat engine. Each cycle involves two isothermal
and two adiabatic processes. Heat transfer takes place in the isothermal stages, and temperature
changes occur along the adiabatics.
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The efficiency of a Carnot heat engine is obtained using Equation (12.2) which
involves the heat 0, absorbed in the expansion stroke 1 — 2, in which work is done
by the system, and Q,, the heat ejected in the compression 3 — 4 during which work
is done on the system. As shown in Chapter 11, the heat Q. transferred in the constant
temperature expansion of an ideal gas from volume V, to V, is obtained using the first
law with AE = 0. This procedure gives

£ V.
0, =W, =dev=nRT1n[7f) (12.7)

i

Inserting the volume limits for processes 1 — 2 and 3 — 4 in a clockwise cycle, and
then forming the ratio Q,/Q,, results in
0, _TLin(V,/v,) (12.8)
0 TIn(V,/v))
It is straightforward to relate the volume ratios in Equation (12.7) to each other
using the adiabatic relationship given in Equation (12.4). For the adiabatic process 2 — 3,
T, V' =T, V)°'. Similarly for the adiabatic process 4 — 1, T, Vitt=T Vi,
and dividing the first equation by the second, so that the temperatures cancel,
-1 -1
gives (VZ/VI)Y =(V3/V4)y . Taking natural logarithms of both sides leads to

In (V2 1V, ) =—In (V4 1V, ) and comparison of this result with Equation (12.8) shows that
Q,/0, =-T,/T,. Using Equation (12.2), the efficiency of a Carnot engine is obtained as

n=1- (12.9)

TN

Note that the smaller the ratio T,/T,, the higher the efficiency. In the limit T,—>0K, the
efficiency 11— 1. Achieving very low temperatures in a heat engine is impractical. In
addition, experiment has shown that while very low temperatures can be attained using
special equipment, it is impossible to reach 0 K as discussed below in Section 12.9.
It is therefore impossible to achieve n=1.

12.4.2 CArNoT HEeat Pumpe

If a Carnot heat engine is run in reverse, it functions as a heat pump that extracts
heat Q, from a low-temperature heat bath and rejects heat Q, at a high tempera-
ture. Work input W per cycle drives the heat pump. For a complete cycle, the first

law, with AE =0, gives W = —(Ql +0, ) The coefficient of performance of the heat
pump is defined as

K=% (12.10)
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The two heat transfers in a cycle are given by Q =n RT, ln(V1 / Vz) and
Q, =nRT, ln(V3/V4). Introducing the adiabatic equalities 7, V"' =T, V™' and
T, V7' =T, V', and then dividing the first equation by the second with due regard

for the signs of the logarithms gives Q,/Q, = —T,/T,. The coefficient of performance
becomes

e 2 T (12.11)
_Ql_Qz TI_TZ

The value of x exceeds unity and becomes very large when 7, -7, <T,.
Reversible air-conditioners, which can operate as heat pumps, transfer heat
from the cold outdoors to the warm interiors of buildings in winter. These
devices provide a considerable saving in cost when compared with direct

indoor electrical heating.

Application 12.3: Obtain an expression for the work done per cycle by a
Carnot engine operating between heat baths at temperatures 7', and 7,.

From the first law with AE =0 it follows that the work done per cycle
is W=0, +Q,. Based on Equation (12.7), the heat absorbed in the iso-

2
thermal expansion process 1 — 2 is given by Q, = J.P dV=nRT, ln(V2 /Vl)

1
The heat rejected in the isothermal compression 3 — 4 is obtained as
Q, =n R T, 1n(V,/V,). Inaddition, In(V,/V,) = ~In(V,/V, ) follows by applying

the adiabatic relationship given in Equation (12.4) to the two adiabatics, as
shown above for the Carnot heat engine. Substituting the expressions for O, and
O, into the equation for W, with due regard for the signs, gives

V2
W =nR(T,~T,)n m (12.12)

1

Equation (12.12) shows that the work output per cycle depends on the tem-
perature difference between the heat baths and on the natural logarithm of the
volume expansion ratio V, /V, in the isothermal expansion process.

12.5 ENTROPY AS A STATE FUNCTION

The energy of a thermodynamic system is a state function of the state variables as
discussed in Chapter 11. For example, the energy of an ideal gas is a function of
absolute temperature. The results obtained in the analysis of the Carnot cycle point
the way to the introduction of another important state function called entropy. In a
microscopic description, the entropy of a system is determined by the disorder in the
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system. The greater the disorder, the higher the entropy. It follows that the entropy of
a material is higher in its gas phase than in its liquid or solid phases. Thermodynamics
provides a macroscopic description of processes involving work and heat. The entropy
changes that accompany thermodynamic processes are of primary interest in the pre-
sent discussion.

In determining the efficiency of a Carnot heat engine, the following result
is obtained: n=1+0Q,/Q, =1-T,/T, with Q >0 and Q, <0. It follows that
Q,/T, =—Q,/T,, and in compact form this relationship becomes

2
i (12.13)
3y

Equation (12.13) can be generalized to other closed cycle reversible heat engines
by using a set of Carnot cycles, which, when added together, produce a P-V dia-
gram which is a close approximation to that of the cycle considered. This procedure
assumes that hot and cold baths are available for the isothermal expansion and com-
pression processes in each Carnot cycle of the set. Adiabatic processes effectively
cancel one another in adjoining paths. Summing over the set of N Carnot cycles
involving 2N heat baths, leads to

v2_, (12.14)
i=1 T,

Note that Equation (12.14) applies quite generally to any reversible cycle,
including a single Carnot cycle, in which heat transfer processes take place in
discrete small steps.

In order to simplify the notation, it is convenient to put Q,/7, = AS, in Equation
(12.14) to give

2N
ZASi =0 (12.15)

In the large N limit, the sum in Equation (12.15) can be converted to an integral over
a complete reversible cycle (denoted by the circle in the integral symbol below), with
the form

9Sds— J _0 (12.16)

cycle

Equation (12.16) is of fundamental importance in thermodynamics and, in honour
of the nineteenth-century physicist who established the result, it is known as
Clausius’s theorem. As noted in Chapter 11, dQ is not an exact differential. The
relationship
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45 = 9@ (12.17)
T

gives dS as an exact differential, with 1/7 the integrating factor for dQ. The quantity
denoted by the symbol S is termed the entropy.

The internal energy E of an ideal gas is a state function of the absolute tempera-
ture, as shown in Chapter 11. For a reversible Carnot cycle, Sf)dE =0. The result

gﬁdS =0 given in Equation (12.16) for a reversible cycle provides compelling evi-

dence that S is also a state function of the state variables.

The entropy concept that is introduced above is linked to the change in the state
of a system. Equation (12.17) provides the basic relationship for calculating entropy
changes accompanying a heat transfer process. Using the first law, the approach can
be generalized to volume changes as described below. A general relationship for the
entropy of a large system in terms of its huge number of accessible microstates €2 was
obtained by Ludwig Boltzmann in the nineteenth century. The famous Boltzmann
entropy equation is given by § = k, In€2. Using a microscopic approach to obtain an
expression for Q(E, V.N ) leads to the Sackur—Tetrode equation for the entropy of
an ideal gas of N molecules in a container of volume V. Further details are given in
books on statistical physics. The present discussion deals with the entropy changes
that occur in various thermodynamic processes.

12.6 ENTROPY CHANGES

Consider a system which makes a transition from an initial state i to a final state f with
the states specified by state variables. While the process from i to f may be carried out
in various ways, along paths which may be reversible or irreversible, the entropy change
AS, is independent of the path followed since entropy is a state function. It follows that an
irreversible path can be replaced by a reversible path in calculating AS, ..

12.6.1 REVERSIBLE PROCESSES

In general, for a system with a temperature dependent heat capacity C (T), the entropy
change in a process from state i to state f is given by

j?Q:jC () a7 (12.18)

For many gases, and in particular the monatomic ideal gas, the heat capacity is tem-
perature independent over a large temperature range as shown in Chapter 11. This
feature simplifies the integral in Equation (12.18), giving the following result

i T,
AS“,:CJ.d?T:C]n(Ff] (12.19)

i
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Equation (12.19) can be applied to isochoric and isobaric processes for a monatomic

3 5
ideal gas, using the expressions for C from Chapter 11,C, =—nRand C, =—n R
respectively. 2 2

Equation (12.19) does not apply to isothermal processes, in which a gas
expands from volume V, to V. at constant 7. In this case, Equation (12.7) gives
Q,=nR Tln(Vf/Vi ) and hence

AS. =nRIn| (12.20)
if V

i

There is an accompanying change in the entropy of a heat bath, or reservoir, from which
heat flows into (or out of) a gas system, as happens along the Carnot cycle path 1 — 2 shown
in Figure 12.3. Because the heat capacity of the heat bath is taken to be extremely large,
its temperature remains effectively constant at 7. Since O, , = —ans, the entropy
change of the heat bath is equal in magnitude and opposite in sign to that of the gas.
Note that the entropy of a system depends on its size, as specified by its mass or by
its number of moles of gas or some other material. Entropy is an extensive quantity

with SI units J/K.

Application 12.4: Show that the total entropy change of a Carnot heat engine
together with its heat baths is zero per cycle.
The total entropy change of the ideal gas and the two heat baths is given

9 9 9 9
. T T, T,

1 1 2 2

of the hot bath, the second term the entropy gain Q, /7, of the gas in the expan-
sion stroke, the third term the entropy loss —Q, /T, of the gas in the compres-
sion stroke, and the final term the entropy gain Q, /T, of the cold bath. The four
entropy changes sum to zero.

by AS =- =0 The first term is the entropy loss -0,/T,

12.6.2 IRREVERSIBLE PROCESSES

An example of an irreversible process is the free expansion of an ideal gas from an
initial volume V, to a final volume V. A free expansion process can be carried out
using the arrangement shown in Figure 12.4. No piston is involved, and the gas is
initially in the container on the left, with the container on the right evacuated. Free
expansion occurs when a seal covering an opening in the central partition is removed.
No work is done in the expansion, and no heat is transferred. For an ideal gas, the
temperature remains constant.

The entropy change of the gas in the isothermal expansion process is given by
Equation (12.20) as AS, = ann(Vf/Vi). This follows because entropy is a state
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(a)

(b)

FIGURE 12.4 Free expansion of an ideal gas from an initial state (a) in which all the gas is
in the container on the left while the container on the right is evacuated, to a final state (b) in
which the gas fills both containers. Sudden expansion of the gas occurs after a seal in the
central partition is removed. No work is done by the gas and no heat transfer occurs during the
expansion process.

function, and the change in entropy depends only on the initial and final states of a

system, and not on the path followed from state 1 to state f. Since V. >V, it follows
that AS > 0.

To summarize, in a free expansion process, there is no work done and no heat
is exchanged with a heat bath. The entropy increase of the gas is the only entropy
change in the free expansion process. The entropy of the universe SU has increased
slightly by ASU = ASiH, because of the entropy increases AS, _during the irreversible
expansion process. This finding of an entropy increase, AS; > 0, in a free expansion
process applies to all irreversible processes.

Application 12.5: A system initially consists of the ideal gases helium
(He) and argon (Ar) in two containers separated by a partition, similar to
the arrangement shown in Figure 12.4. The two containers are at the same
temperature, with 0.2 moles of He in the left container and 0.2 moles of Ar
in the right container. What is the change in entropy of the system produced
by the removal of a seal covering an opening in the central partition, allowing
the gases to mix? The pressures P of the gases in the two containers are equal
before mixing takes place.

From the ideal gas law PV =n R T it follows that the container volumes
must be equal, since n, P, and T are initially the same for both He and Ar.
Because the volumes of the two containers are equal, they are designated
by V. After the mixing process each gas occupies the combined volume
V. =2V, From Equation (12.20) the entropy of each gas increases by an
amount AS, =n RIn(V,/V,)=n RIn2=1.15 J/K.
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The entropy change of the system is obtained by adding the entropy
changes for each of the two gases, which together occupy both containers,
leading to AS . =AS, +AS, =2.3J/K.

Note that the mixed final state is disordered compared to the unmixed state.
The loss of order produced by mixing is reflected in the entropy increase. The
helium and argon atoms are intermingled and cannot be separated without con-
siderable effort involving special equipment. The probability of ever finding
the helium and argon atoms spontaneously restored to their original separate
containers is vanishingly small.

Thermodynamic results similar to those obtained for the mixing of gases apply
in the case of the free expansion of a gas. As shown above, the entropy increase
is ASif =n Rln(Vf /Vi ), consistent with a loss of order like the two-gases

system. The probability of ever finding the gas in the state it was in prior to its
free expansion is again vanishingly small.

Application 12.6: Two thermally insulated objects, 1 and 2, are initially at
absolute temperatures T, and T,, with T, > T,. The objects are brought into
thermal contact using a thermal link and allowed to reach equilibrium at
final temperature 7,. Determine an expression for the entropy change in this
irreversible process. Obtain the entropy change for 7, = 400 K and 7, = 300 K.
Take the heat capacity of each bath as C = 10* J/K with negligible temperature
dependence. Neglect heat losses to the surroundings.

The situation is depicted in Figure 12.5. In coming to equilibrium, the heat lost
by object 1 is equal to the heat gained by object 2, giving C (T1 - Tf) =C (Tf =TI, )

1
The equilibrium temperature is 7, = > (Tl I )

1,
¢ dT

The entropy change of object 1 is AS, = deT =Cln (Tf /Tl) . Similarly,
1

1

1,
- dT

for object 2 AS, =C de =Cln (Tf /Tz). The entropy change of the system
1

2

TZ
of two objects is AS = AS, +AS, =Cln(Tf/Tl)+Cln(Tf/T2)=Cln(T L ]
1 2
1 (r+1) . »
For AS >0, the necessary condition is f 21 2/ > 1. This condition
1 2 47"1 T2

2
reduces to (T1 - Tz) >0, which is clearly satisfied.
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Irreversible Heat Flow

Objectl
initial "= 7]

\

Ohbject 2
initial 7= T,

FIGURE 12.5 Trreversible heat flow occurs from hot object 1, initially at temperature
T,, to a cooler object 2, initially at temperature 7,. The entropy of the two-object system
increases in this process. The heat capacities C of the two objects are assumed to be equal.

Using the initial temperatures of the objects, the entropy change which occurs
3502

—— [ =206 J/K.
300 x 400

in reaching thermal equilibrium is given by AS = 10* x ln(

12.6.3 Loss oF OpPPORTUNITY IN IRREVERSIBLE PROCESSES

In addition to the increase in entropy which always accompanies an irreversible pro-
cess, the opportunity to use the system to do useful work may be lost.

For example, in the situation involving two heat baths dealt with in Application 12.6,
the opportunity to operate a heat engine between the two baths is lost once the two
baths reach the final equilibrium temperature. While the two objects can be restored
to their initial conditions, the increases in entropy cannot be reversed. The increase is
just passed on to other systems involved in the restoration process.

12.6.4 THEe LocAL UNIVERSE

In considering the entropy changes that accompany a thermodynamic process, it is
necessary to include changes that occur in the surroundings. For example, in dealing
with a heat engine or heat pump, it is necessary to include heat baths. In order to
ensure that all entropy changes are included, it is customary to specify the system
together with its surroundings as the local universe. The total entropy change which
occurs in a process is then called the entropy change of the local universe.

In processes such as photosynthesis, which involve energy reaching the Earth
from the Sun, it is necessary, for completeness, to regard the Sun as part of the local
universe. The nuclear fusion reactions in the solar interior are irreversible, and in
five billion years, when its hydrogen fuel is exhausted, the Sun will become a white
dwarf star.
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12.7 THE SECOND LAW OF THERMODYNAMICS
Based on entropy considerations, the second law of thermodynamics is stated com-
pactly as follows:

AS, 20 (12.21)

U

This statement asserts that the change in entropy of the local universe associated
with a system undergoing a thermodynamic process is either positive or zero. No
decrease in entropy can occur in the local universe. Like other natural laws, this
law is based on experiment and has never been found to be violated. The law is
of fundamental importance in accounting for the behaviour of systems in many
branches of science.

There are two historic statements of the second law, called the Clausius
statement and the Kelvin—Planck statement, respectively. These alternative
statements are based on heat engine considerations and are equivalent to the
modern statement given above.

Since all irreversible processes lead to an entropy increase, it follows that the
entropy of the universe is steadily increasing. The vast majority of natural processes
are irreversible and are accompanied by growing disorder on length scales from the
size of microscopic organisms to that of galaxies. While order can be restored locally,
disorder continues its widespread increase. This endless increase in entropy is linked
to the flow of time and provides what has been called time’s arrow.

12.8 TEMPERATURE-ENTROPY DIAGRAMS

P-V diagrams, which were introduced in Chapter 11, provide instructive
representations of thermodynamic processes in gases. The diagrams are used in
this chapter to represent various cyclic processes, including the Carnot cycle. 7-S
diagrams provide an alternative graphical representation of thermal processes and are
particularly well suited to showing adiabatics and isothermals.

The T-S diagram for a Carnot cycle given in Figure 12.6 has a rectangular shape
made up of two isothermals and two adiabatics, with transitions between these
processes occurring at the points labelled a to d. Note that in this representation, the
heat engine cycle proceeds in an anticlockwise sense. The entropy scale is chosen
to suit the situation that is being represented, with arbitrary zero entropy, since it is
entropy changes that are of interest.

The efficiency of the Carnot engine is given by Equation (12.2) as n=1+0,/0,,
where Q, is the heat absorbed at temperature 7, along a — b, and O, is the heat
discarded at temperature 7, along ¢ — d.

For an isothermal process, from an initial state i to a final state f, integration of
Equation (12.17) gives

f
AQ, = JT dS=T AS, (12.22)
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Carnot Cycle

T-§ diagram

S, e adiabatic b
S isothermal isothermal

S, - d — a

adiabatic

7, /i
T

FIGURE 12.6 Carnotcycle 7-S diagram showing two isothermal and two adiabatic processes.
Heat Q, is absorbed along path a — b at temperature 7, and heat Q, is discarded along path
¢ — d at temperature 7.

In the case of the Carnot cycle, Equation (12.22) gives Q, =T, AS | =T, (Sl - Sz) and
Q,=T,AS =T, (S2 -5, ) Itfollows that n =1-T, /T, in agreement with Equation (12.9).

Note that the heat input and heat output along the isothermals can be read off from
the 7-S diagram.

Application 12.7: Adapt the 7-S diagram given in Figure 12.6 to the
operation of a Carnot heat pump. Determine the coefficient of performance of
the heat pump for 7, = 296K and 7, = 276 K.

The 7-S diagram for a Carnot heat pump has the same form as that
shown in Figure 12.6, just with all the processes run in reverse. With the use
of Equations (12.10) and (12.11), the coefficient of performance is given

Q2 Q2 T2 . .
as K=—= = . Inserting the temperature values gives
W -0-0 T-T,
276 . . .
K= 20 =13.8. For every unit of work input to the heat pump, 13.8 units of

heat are extracted from the cold bath.

12.9 THETHERMODYNAMIC LAWS

In addition to the first and second laws of thermodynamics, which have been
introduced earlier, there are two other laws that play a role. The first of these is the
zeroth law, also called the law of thermometry.

Law 0: If two separated systems are in thermal equilibrium with a third system, then
they are in thermal equilibrium with each other.
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As an illustrative example, consider a liquid-in-glass thermometer. If the liquid
(e.g., mercury or alcohol) is in thermal equilibrium with the inner surface of the
thermometer bulb, and the outer wall of the bulb is in thermal equilibrium with an
object whose temperature is being measured, then the object and the liquid are in
thermal equilibrium. The glass wall acts as an intermediate object, in thermal equi-
librium with both the thermometer liquid and the system whose temperature is being
measured. The thermometer is calibrated at fixed reference temperature points.

The third law of thermodynamics is concerned with the unattainability of absolute
zero temperature, which is linked to the behaviour of a system’s entropy at very low
temperatures.

Law 3: The entropy of a system tends to zero as the temperature approaches zero
kelvin.

Decreasing the entropy of a system corresponds to increasing its order. As the tem-
perature of a system is lowered, the entropy continuously decreases, and squeezing
the remaining entropy from the system becomes increasingly difficult. The third law
implies that it is impossible to reach absolute zero in a finite number of steps using
a succession of entropy-reducing processes. Ingenious experimental techniques have
been developed in order to reach very low temperatures, well below 1 K. In a classic
experiment, a gas of alkali atoms trapped by laser beams has been cooled to below
10° K.

The third law must be modified slightly when applied to inhomogeneous systems
with intrinsic disorder. The generalized third law states that the entropy of a system
tends to zero, or to a constant value, as the temperature approaches zero.

Compact statements of the four laws governing thermodynamic processes are
given below.

Law 0: For 3 thermally interacting systems in equilibrium, if 7, =7, and T, =T,
thenT =T,

Law 1: The energy E of the local universe (LU) is constant, AE, , = 0.

Law 2: The entropy S of the LU is either constant or increasing, AS, ; = 0.
Law 3: The entropy of a system tends to O as the temperature tends to 0 K,
S—0asT —0K.

Note that a decrease in entropy governed by “law 3” is not inconsistent with “law 2.
That is because the decrease in entropy of a particular system, which relies on the use
of special techniques, is more than offset by an increase in entropy of the associated
laboratory equipment, which is referred to as the local universe.

12.10 CONCLUSION

With the development of the laws of thermodynamics, this book has covered many
of the physics topics of interest up until the mid-nineteenth century. At that time,
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experimental work was clarifying the phenomena of electricity and magnetism. This
work culminated in Maxwell’s equations of electromagnetism, which were developed
in a set of papers published during the 1860s. A key implication of this work was that
the speed of light should be the same in all inertial reference frames, which appears
to be incompatible with Newton’s conceptual framework that singles out an absolute
reference frame determined by the fixed stars. Einstein resolved the incompatibility
when he published the special theory of relativity for reference frames in uniform
motion, a theory that was subsequently extended in the general theory of relativity to
encompass reference frames undergoing acceleration. Einstein’s theories generalize
Newton’s ideas to handle situations where a particle is travelling close to the speed of
light or is in the vicinity of a very massive object.

At approximately the same time, another experimental issue, that of black body
radiation, became known. Black body radiation is the electromagnetic radiation that
is emitted by an opaque, non-reflective material which is in thermodynamic equilib-
rium with its surroundings. Classical physics could not explain the spectrum of the
emitted radiation. The resolution of this issue eventually led to the development of
quantum mechanics.

The theories of special and general relativity, and quantum mechanics, became the
focus of much of physics research after the nineteenth century.
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APPENDIX 1: FUNDAMENTAL PHYSICAL CONSTANTS

Value

Constant

Avogadro constant
Boltzmann constant
Electron charge
Electron mass
Molar gas constant
Gravitational constant
Planck constant
Proton mass
Speed of light in vacuum

AN

)

=

S I STQXI O

<
>
3
=3
=2

6.02214076 x 10* mol™!
1.380649 x 102 J - K™!
1.602176634 x 107" C
9.1093837139(28) x 10" kg
8.31446261815324 J mol™' K™!
6.67430(15) x 10" m* kg™ s~

6.62607015 x 107 s

1.67262192595(52) x 10" kg
299792458 m s~
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Index

A

Acceleration, 13
angular, 63-64, 73
centripetal, 65-67
constant, see Constant acceleration
Newton’s laws, 39-40
one-dimensional (1D) motion, 15-16,
22
zero, 24
Adiabatic process, 183-184
Air resistance, 26
damping, 127
viscous drag, 59
Alloys, 98
Altitude
density, 99
pressure, 101-102
Ambient conditions, 97
Amplitude
harmonic waves on strings, 142, 145-146
interference, 157-160
sound waves, 149
Angular variables, 63-64
Archimedes’ principle, 103-104
Astronomy, field of, 75
Atomic clocks, 2-5
caesium fountain, 3—4
resonance, 131
Atoms, 2-5
Bohr’s model, 67
spectroscopy, 3, 131
wave motion, 132
Avogadro’s constant, 2, 170-171, 203
Axis of rotation, 69, 83, 93; Earth’s, 2, 31

B

Barometers, 105

Beats, 160-161

Bernoulli’s equation, 108-110
practical application, 110

Black body radiation, 202

Black holes, 75

Bohr’s model of atom, 67

Boltzmann’s constant, 2, 203

Boyle’s law, 170, 183
Brahe, T., 73

C

Carnot cycle, 190-192
heat engine, 190-191
heat pump, 191-192
Carnot, S., 190
Cartesian coordinates, 13
projectile motion, 23-27
rotational motion, 63
vectors, 16-20
Centre of gravity, 81-82
axis of rotation, 93
weight of fluids, 103
Centre of mass, 79-81
Circular motion, see also Rotational motion
elliptical, 63
oscillatory motion, and, 117
Circular trajectory, 74
Classical electromagnetism, 5
Classical mechanics, 1, 7, 43, 97, 169, 203
Clausius statement, 199
Collisions, 28, 32-35
elastic, 35
impact, 4042
inelastic, 34
Compressibility
fluids, 102-103
isothermal, 102
substances, 97
Conservative forces, 51-55
example, 11, 51
law of mechanical energy conservation, 49,
60-62
Constant acceleration
constant force, 65-66
kinematic equations, 20-22, 26
kinetic energy, 45-46
motion, 13-14
Coulomb’s law, 10
Covalent solids, 98
Cylinders
moment of inertia, 84-86
rolling motion, 89-93

205



206

D

Dark matter, 3
Density
fluids, 99-100
gases, 101-102
objects, 103
Disks, 84-86
Displacement, 13
angular, 73, 78
one-dimensional (1D) motion, 14
Doppler shifts, 162—-163
examples, 162
moving detector, 163—165
moving source, 163
shock waves, 165-166
Dulong—Petit law, 185

E

Einstein, A., 5
Electromagnetic forces, 9-10
physical contact, 11
Electromagnetic radiation
measuring, 3
waves, 168
Electromagnetic waves, 132, 154, 167-168
Doppler shifts, 162
Electron
atom, 2
charge, 2, 9-10, 203
macroscopic objects, 9
mass, 2, 10, 203
Elliptic trajectory, 63, 73-74
Empirical laws, 57, 199
Energy, 1
conservation law, 43
kinetic, 28; see also Kinetic energy
mechanical, 43; see also Mechanical energy
potential, 43
stable equilibrium, 83
units of measurement, 44
Entropy, 186
changes, 194-198
irreversible processes, 195-198
local universe, 198
loss of opportunity in irreversible processes, 198
reversible processes, 194-195
state function, as, 192-194
temperature-entropy diagrams, 199-200

F

First law of thermodynamics, 178—181
generalized form, 180
heat capacity relationship, 180-181

state functions, 180
state variables, 180

Fluid flow

Bernoulli’s equation, 108—110
continuity equation, 107-108
non-turbulent, 106—-107
Poiseuille’s equation, 112
pressure drop, 111-112
turbulent flow of fluids, 106-107
Venturi meter, 110

viscous, 110-112

Fluids, 97-98

Bernoulli’s equation, 108—110
compressibility, 102—-103
continuity equation, 107-108
density, 99-100

depth, 100-101

flow, 106-112

incompressible liquid, 100-101
phase boundary, 97-98
pressure, 99-100

properties, 1

sound waves, 148, 154
statics, 103—106

viscous, 110-112

Force, 1, 8

change velocity, 43
constant applied, 13
horizontal, 44

lever, 96

mechanical work, 43—-44
moment of, 93

oscillatory motion, 117, 120
vertical, 44

Fourier analysis, 161-162
Frames of reference

absolute, 30

Galilean transformation, 29-30
inertial, 31-32

momentum, 28-31

motion, 13, 16, 24

rigid body motion, 78-79

Frequency

angular, 116, 119

driving, 129-131

harmonic waves on strings, 136, 142
interference, 157-160

resonance, 131

sound waves, 148

Friction, 56-58

damping, 127

mechanical energy conservation,
50-51

mechanical work, 44

non-conservative force, 55-56
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Fundamental laws of physics, 32, 35, 43
Fundamental physical constants, 2, 203

G

Gases, see Vapours
Glassy materials, 98

Global positioning system (GPS) technology, 4-5

Gravitational constant, 8, 52, 76, 203
Gravitational forces, 9-10
centre of gravity, 81-82
mechanical work, 44
physical contact, 11
springs, 118-119
Gravitational waves, 154
detection, 75

H

Harmonic waves, 135-136
Fourier analysis, 161-162
energy in pipes, 151
energy in strings, 138-140
interference effects, 138—140, 157-160
sound, 148-150
time, 135
trigonometric identity, 142, 158

Heat energy, 169
collisions, 41
flow, 169
importance, 186

Heat engines, 169, 184, 186188
Carnot, 190-191
efficiency, 188—190

Heat pumps, 191-192, 198, 200

Hertz, H., 167

Hooke’s law, 117118, 132

Hubble Space Telescope, 76

Hydraulic press, 105-106

Hydrogen, 3

Hydrostatics
pressure, 99, 113-114
principles, 103—-104

Hyperbolic trajectory, 74

Ideal gas law, 170-171
adiabatic process, 183-184
internal energy, 172-175, 186
isobaric process, 181-182
isochoric process, 181-182
isothermal process, 183—184
P-V diagrams, 181-183

Impact, 4042

Industrial revolution, 169

Interference
one-dimensional (1D), 157-158
string, 138—140
three-dimensional (3D), 158-160
International Space Station, 76
Tonic solids, 98
Tons, 132
Isobaric process, 181-182
Isochoric process, 181-182
Isothermal process
fluids, 102-103
gases, 183-184

J

James Webb infrared telescope, 76
Joules, 44

K

Kelvin—Planck statement, 199
Kelvin scale, 97
Kepler, J., 73
Kepler’s Laws, 73-75
Kibble balance, 6, 7
Kilogram (kg), 1, 6
Kinematic equations, 13, 20-21
air resistance, 26
applications, 22-27
rotational, 64-65
Kinetic energy, 44-46
collisions, 34-35, 41
harmonic waves, 138, 151
mass, and, 28, 45-46
oscillatory motion, 116, 123-127
potential, and, 43
rigid body motion, 78, 88-89, 91-93
rotational, 71-73
water waves, 167
Kinetic theory of gases, 169
equipartition of energy theorem, 175-177
ideal gas law, 172-175
internal energy, 172-175

L

Law of energy conservation, 43, 61
Law of mass—energy conservation, 43
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Law of mechanical energy conservation, 48-51,

60-62, 93
importance, 61

Law of momentum conservation, 28, 32-35, 40

Law of universal gravitation, 73
Length, 1-2, 5-6

Liquid crystals, 98

Longitudinal waves, 132, 148, 166
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M projectile, 23-24
retarding forces, 5660
rigid body, 1; see also Rigid body motion
rotational, 13; see also Rotational motion
time, 13
waves, see Wave motion

Musical instruments, 152-153

Macroscopic forces, 9-11
Magnitude, 13
Newton’s laws, 38-39
viscous drag, 59
Manometers, 104

Mass

mechanical energy, 43 N

momentum, 28-29

object behaviour, 28 Nature

physical world, in, 9 forces in, 9-10

rigid body motion, 79-81 mass, 9

spring, on, 117-120 physical contact, 11

units of measurement, 1-2, 67 size, 9

weight, and, 7-9 Neutron, 2
Maxwell, J. C., 5, 167, 202 macroscopic objects, 10
Mechanical energy, 44—48 stars, 75

conservation, 48-51 Newton’s first law of motion, 35

importance, 43 Newton’s law of universal gravitation, 14, 28, 37
Mechanical lever arm, 96 Newton’s laws of motion, 7-9, 14, 35-37
Mechanical waves, 132 application, 37-40

Doppler effect, 162 importance, 1
Mercury, 104-105, 170 Kepler’s laws, and, 75
Metallic solids, 98 Newton’s second law of motion, 14, 22, 28, 35-36
Meter (m), 1, 5, 44 oscillatory motion, 116, 118-120
Microscopic measurements, 97 rigid body motion, 78, 87
Molar gas constant, 203 rotational motion, 70-71
Molecular solids, 98 Newton’s third law of motion, 36-37
Moment of inertia, 73 force, 44

rigid body motion, 78, 83-86 internal forces, 78
Momentum (kg m/s) Newtons, 44

angular, 63, 67-68, 87 Non-conservative forces, 55-56

change in, 32, 40 examples, 11, 51

conservation, 32-35 law of mechanical energy conservation, 49, 60-62

frames of reference, 28-31 Nuclear fusion, 198

mass, and, 28

motion, and, 28 o

role, 1,27-28 Objects in space

two-dimensional (2D) systems, 33 motion, 13

units of measurement, 29 reference frames, 28, 31-32

vectors, 29, 6870 Oscillations, 1

velocity, and, 28-30 caesium clocks, 3—4
Motion circular motion, and, 117

circular, see Circular motion damped, 116, 127-129

dynamics in one-dimensional (1D), 22-23 driven, 129-131

dynamics in three-dimensional (3D), 23-27 energy, 123-127

dynamics in two-dimensional (2D), 23-27 examples, 116

frame of reference, 13, 16, 24 Hooke’s law, 117—118

momentum, and, 28 mass, 117120

Newton’s laws, 35-37, 70-71 pendulum, 116, 120-121

object behaviour, 28 response, 116, 127-129

objects in space, 14, 28 rigid body, 122-123

one dimension (1D), 14-16 spring system, 118-119

oscillatory, see Oscillations time, 116
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P

Parabolic trajectory, 74
Parallel axis theorem, 86—87
Pascal’s principle, 103—104
Pendulum, 116, 120-121
Periodic table of elements, 203
Photons, 168
Pipes

energy of harmonic waves, 151

harmonic sound waves, 148-150

standing, 151-152, 158
Planck’s constant, 2, 67, 67, 203
Planetary motion, 28, 63, 73-75
Poiseuille’s equation, 112
Potential energy, 4648

harmonic waves, 139

kinetic energy, and, 43

mass, and, 4748

oscillatory motion, 116, 123-127

zero, 52
Pressure, 97

altitude, 101-102

depth, 100-101

fluids, 99-100

measurement, 104—105

units of measurement, 97

variation, 100-102
Principle of superposition, 140
Proton, 2-3

charge, 9-10

colliding, 28

macroscopic objects, 9

mass, 2, 10
Pythagoras’ theorem, 17

Q

Quantum mechanics, 3, 6, 35, 67, 169, 203

R

Retarding forces, 56-60
Rigid body motion
centre of gravity, 81-82
centre of mass, 79-81
equilibrium conditions, 78-79
oscillations, 122—-123
shapes, 78
stable equilibrium, 93-96
Rolling motion, 89-93
R¢gmer, O., 5
Rotational motion
angular momentum, 68-70
angular variables, 63—-64
kinetic energy, 71-73

Newton’s second law, 70-71
planets, 73-75

rigid body, 83-89

satellite orbits, 75-77
vector product, 68—70

S

Satellites, 4-5, 8
motion, 63
orbits, 75-77
reference frames, 28, 31-32
Scalar quantities, 16
angular momentum, 68
gravitational potential, 54
momentum, 29
vector multiplication, 20
Second(s), 1-2, 5-6
Second law of thermodynamics, 186, 199
Seismic waves, 154, 167
Shapes, see also Rigid body motion
density of liquids, 103-104
Shear stress, 99, 113-115
Shock waves, 165-166
Simple harmonic motion, 116-117
damped, 127-129
Size
physical world, in, 9
Solar day, 2
Solids, 97-98
heat, 185
mechanical properties, 98-99, 112—115
phase boundary, 97-98
sound waves, 148
strain, 98-99
stress, 98-99
use, 97
Young’s modulus, 97, 112-114
Sound waves, 132, 154
beats, 160-161
collisions, 41
energy in pipes, 151
energy of 3D waves, 154-157
harmonic waves in pipes, 148—150
intensity of 3D waves, 154-157
medium, 154
standing, 151-152
Speed of light, 5-6
electromagnetic waves, 167-168
gravitational waves, 75
theory of relativity, 31, 75, 202
vacuum, 2, 162
Springs
constant, 129
horizontal, 123-125
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motion, 118-119
potential energy, 123—-124
vertical, 125-127

State functions, 180, 186, 188
entropy, 192-194

State variables, 180, 186, 192

Statistical physics, 169, 194

Stress, 98-99
uniaxial, 98-99

Strings
energy of harmonic waves, 138-140
harmonic waves, 135-136
standing waves, 143148
tension, 133—134, 140, 145
travelling pulses, 132-135
wave interference, 138—40
waves, 132-136

Strong forces, 9-10

T

Temperature, 97
thermal physics, see thermodynamics
units of measurement, 97
Theory of relativity, 35, 202
general, 8, 28, 75
special, 5, 30-31, 162
Thermodynamics
development, 169, 201
entropy, 186—198; see also Entropy
first law, 178-181; see also First law of
thermodynamics
heat, 177-178, 185
ideal gas law, 170-171
kelvins, 97
laws, 200-201
processes, 177-178
P-V diagrams, 181-183
second law, 186, 199
solids, 184
temperature, 170-171
temperature-entropy diagrams, 199-200
work, 177-178
Thermometers, 170
Time
kinematic equations, 20-21
units of measurement, 1-2, 5-6
Torque, 73
rotational dynamics, 87
shear strain, 114-115
Translational motion, 83-87
Transverse waves, 132, 135, 166

U

Units of measurement
angular momentum, 67

Index

development, 1-2
dimensional analysis, 11-12
energy, 44

MKS system, 1-2

pressure, 97

SI system, 2

Temperature, 97

\%

Vacuum
electromagnetic waves, 132, 162, 167
speed of light, 2, 5, 162

Vapours, 97-98
compressible, 101-102
density, 99
phase boundary, 97-98

Vectors, 16-20
addition, 17-20
angular momentum, 68-70
gravitational field, 54
momentum, 29
multiplication, 20
notation, 16
quantities, 13
representation, 16
unit, 16-17

Velocity, 13
angular, 63-67, 70-73, 78, 87
change in, 43
constant, 24, 61, 89-90, 111
constant acceleration, 20-21
dynamics in two-dimensional (2D), 23-27
mechanical energy conservation, 50
momentum, 29-30
object behaviour, 28
one-dimensional (1D) motion, 14-15
terminal, 26, 59-60

Viscous
drag, 59-60
fluid flow, 110-112

w

Water waves, 154, 166—-167
Waves, 1
electromagnetic, 132
energy of harmonic waves, 138-140,
151
equation, 136-138
harmonic, 135-136
interference effects, 138—140, 157-160
mechanical, 132
pipes, 148-153
reflection process, 143-114
sound, 132, 148-153
speed, 134-135
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standing waves, 143-148, 151-152, 158

string, 132-136

travelling pulses on a string, 132-135
Weak forces, 9-10
Weight, 7

mass, and, 7-9

measuring, 8

motion, 37-38

Work
energy relationship, 88
mechanical, 4344
thermodynamics, 177-178

Y
Young’s modulus of a solid, 97, 112-114
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