
Pedro Paulo Novellino do Rosario
Alexandre Mendes

Metrology and 
Measurement 
Uncertainty
Concepts and Applications



Metrology and Measurement Uncertainty



Pedro Paulo Novellino do Rosario •

Alexandre Mendes 

Metrology and Measurement 
Uncertainty 

Concepts and Applications



Pedro Paulo Novellino do Rosario 
Fenix Analise & Metrica 
Niterói, Rio de Janeiro, Brazil 

Alexandre Mendes 
Metrology 
Federal Institute of Rio de Janeiro 
Rio de Janeiro, Rio de Janeiro, Brazil 

ISBN 978-3-031-82302-2 ISBN 978-3-031-82303-9 (eBook) 
https://doi.org/10.1007/978-3-031-82303-9 

Translation from the Portuguese language edition: “Metrologia e Incerteza de Medição - Conceitos e 
Aplicações” by Pedro Paulo Novellino do Rosario and Alexandre Mendes, © LTC - Livro Técnico 
Científico (Portuguese) 2020. Published by LTC - Livro Técnico Científico. All Rights Reserved. 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland 
AG 2025 

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of reprinting, reuse of illustrations, 
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission 
or information storage and retrieval, electronic adaptation, computer software, or by similar or 
dissimilar methodology now known or hereafter developed. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
The publisher, the authors and the editors are safe to assume that the advice and information in this 
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations. 

This Springer imprint is published by the registered company Springer Nature Switzerland AG 
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland 

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/978-3-031-82303-9


We dedicate this new book to our beloved 

wives, Mariza and Marta, who are by our side 

and often in front of us, always encouraging 

us to live.



Thanks 

We thank God for allowing us to be alive and healthy and for allowing us to have the 

proper resourcefulness to transfer our knowledge and experiences to readers of 

this work.

vii



Presentation 

Metrology is strategic for a nation’s development and fundamental for organiza-

tions’ technological and commercial growth. The specialist professional involved 

daily in measurement activities must know the mathematical foundations, statistical 

tools, techniques, practices, and operating procedures. 

The International Vocabulary of Metrology—Basic and General Concepts and 

Associated Terms (VIM) [2] defines Metrology as the “science of measurements and 

its applications.” The VIM complements this definition with a note: “Metrology 

includes all theoretical and practical aspects of measurements, whatever the mea-

surement uncertainty and field of application.” 

Analyzing the definition, we need theoretical knowledge about the concepts and 

measurement techniques, the perception of the magnitudes of influence, and obtain 

consistent, practical results. Since internal and external factors influence measure-

ment results for the measurement process, we need to estimate the measurement 

uncertainty associated with usage requirements. 

The book’s methodology for estimating measurement uncertainty follows the 

guidelines presented in the Guide for the Expression of Measurement Uncertainty 

(GUM) [4], recommended by the International Bureau of Weights and Measures 

(BIPM). 

Throughout this book, we incorporated the conceptual definitions found in VIM 

and complemented them with additional clarifications when deemed necessary. 

We also adopted the BIPM edition of the International System of Units (SI) [3] as 

an essential reference. It already incorporates the new definitions of the SI base units, 

which came into force on May 20, 2019. 

This material is a new edition of the book published in Brazil in 2020 by GEN— 

Grupo Editorial Nacional, entitled “Metrologia e incerteza de medição: conceitos e 

aplicações” [1]. This new edition, which maintains the same original name, was 

adapted to an international metrological context and expanded. We include an 

additional chapter highlighting measurement uncertainty in conformity assessment 

processes.
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x Presentation

In this book, we seek to present and discuss the concepts and tools in a very 

technical language but in a didactic, clear, and simple way. Several practical 

examples and solved exercises were incorporated, as well as several others to be 

worked on by the reader. Mid- and higher-level professionals can absorb and apply 

the knowledge immediately in the industry or their laboratory activities. 

The first chapter analyzes the history of measurements and units of measurement, 

ending with the presentation of the International System of Units (SI) and associated 

concepts. 

The second chapter addresses the basic concepts of metrology, discussing its 

importance and objectives. It presents the metrological structure at the international, 

regional, and national levels for metrology (legal and scientific) and ends with the 

interconnection of metrology with standardization. 

In the third chapter, we present the concept of significant digits, the rounding 

techniques, and how to apply them in a measurement result. We highlight the main 

ideas and statistical tools used in metrology, such as the mean, standard deviation, 

variance, and the most usual probability distributions adopted in the study of 

metrology (uniform, triangular, normal, and t-Student). 

Chapter 4 analyzes the critical metrological characteristics of measurement sys-

tems, presents the types and possible errors encountered in the measurement process, 

and reinforces the concepts of accuracy and precision. 

The fifth and sixth chapters explore the types of uncertainty and how to evaluate 

their values, considering the measurement carried out both directly and indirectly. 

As mentioned, the methodology for estimating measurement uncertainty follows the 

Guide for the Expression of Measurement Uncertainty (GUM) guidelines. 

We dedicate three chapters of this book to calibration and measurement uncer-

tainty in process conformity. 

We detail the metrological traceability chain and how to choose a measurement 

standard considering the process’s tolerance. We present calibration examples for 

different measuring instrument types. We adjust the calibration points using a 

function and check the influence of this adjustment on the final uncertainty. We 

also perform a detailed analysis and interpretation of the calibration certificates. 

However, knowing that knowledge is never too much, all criticism and sugges-

tions that improve this book will always be welcome. 

Good studies, and thank you very much. 

Pedro Paulo Novellino do Rosário – pedropaulonovellino@gmail.com 

Alexandre Mendes - al.mendes@gmail.com



Preface of the Brazilian Edition 

The book’s publication by Alexandre Mendes and Pedro Paulo Novellino do 

Rosário is more than opportune. Unfortunately, in Brazil, there is a significant 

shortage of didactic publications dedicated to metrology intended to train profes-

sionals, whether at the middle or higher level. You can count the books offering 

courses or disciplines in the area on your fingers. To compound this situation, some 

available material is outdated and still refers to outdated concepts or definitions. 

The future, getting closer every day, will require professionals with good techni-

cal and creative training. These professionals, not only those in the areas of Engi-

neering and Technology but also in the Natural Sciences and other areas, must have a 

complete conceptual basis to account for performance in environments where 

measurements are taken, use of standards and technical regulations, understanding 

of the measurement process, correct expression of results and associated 

uncertainties. 

The acronym STEAM (Science, Technology, Engineering, Arts, and Mathemat-

ics) describes the foundation of the new professions. Metrology and measurement 

have a key role as a transversal basis for this knowledge. 

As quoted by the authors, and never emphasized enough: 

When you can measure what you are talking about and express it in numbers, you know 

something about it. However, when you cannot measure it and cannot express it in numbers, 

your knowledge is limited and unsatisfactory: it may be the beginning of knowledge, but 

you, in your thinking, have advanced very little towards the stage of science. (LORD 

KELVIN) 

The Strategic Guidelines for Metrology in Brazil address and update this concern. 

However, fundamental metrology concepts are still clearly lacking in many areas of 

professional training. 

Professionals not affectionate to the metrological area (such as health and envi-

ronmental professionals, laboratory technicians, and industrial sectors, among 

others) increasingly need to deal with sophisticated and high-tech equipment and 

instruments in situations where measurement processes and measured quantities
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must be well-known, interpreted, analyzed, and treated to reflect reliable values, 

often with a significant impact on health, safety, and the environment. 

xii Preface of the Brazilian Edition

In this context, expanding and disseminating information on metrology princi-

ples, technical barriers, conformity assessment, and standardization for the general 

population can provide society with technical knowledge that helps citizens know 

their rights and improve their quality of life (BRAZIL, 2017, p.59). 

Written in direct and rigorous language but with a fluidity that facilitates reading 

and learning, this work is based on the discipline’s fundamental compendia in their 

latest editions: the International Vocabulary of Metrology, the International System 

of Units, and the Guide to the expression of measurement uncertainty. 

It is also based on the authors’ enormous experience in discussion, professional 

performance, and teaching practice in formal, middle, and higher-level or continuous 

training processes. The authors have already written a book on the subject, having 

published several technical, didactic, and scientific works in collaboration with 

numerous experts. 

However, in my humble opinion and to our happy surprise, the work that comes 

to us is a new book, with much content, updated, covering more topics, and written 

in a way that allows the student (at any level) to have an understanding most 

complete of the discipline. 

Américo Tristão Bernardes 

Associate Professor at the Federal University of Ouro Preto 

President of the Brazilian Society of Metrology
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Chapter 1 

The International System of Units (SI) 

1.1 Units of Measure: A Brief History 

Since the beginning of civilization, human beings have always had to perform 

measurements, even if this was done intuitively. When they began to live in a 

community, this need to measure and weigh increased. With the advent of commerce 

and the establishment of private property, measuring the land and the results of its 

work was necessary for sale or exchange. 

The first units of measure arose from their daily use and were based on parts of the 

human body. In principle, they could be considered “references,” that is, anyone else 

could verify a measure. Thus emerged measurement units such as the inch, the hand, 

the foot, the yard, and the step. It is obvious these “references” were not fixed, as the 

human body is not standardized, and measures vary from individual to individual. 

The Egyptians also used the size of the cubit, one of the forearm bones, as a 

standard of length measurement. Again, as the cubit varied from one person to 

another, Pharaoh Khufu established a granite standard based on the bone length of 

your arm during the construction of its pyramid (about 2900 BC). This pattern, 

whose reproduction we see in Fig. 1.1, was called the Egyptian royal cubit. 

Over time, wooden bars to facilitate transportation replaced the granite bars, but 

as wood was worn out, lengths equivalent to the royal cubit were recorded on the 

walls of the main temples. This way, people could periodically check their wooden 

bars or do others. 

In France, in the seventeenth century, a unit of linear measurement was standard-

ized in a two-pin iron bar at the extremes, forming a calibrator. The distance between 

these two pins was considered a “toise,” the bar was spoiled on the outer wall of the 

Grand Châtelet, the fortification that kept the head of one of the bridges of access to 

Paris. 

Thus, as in the case of the standard cubit, interested parties could check their 

measuring instruments (Fig. 1.2). 
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2 1 The International System of Units (SI)

Fig. 1.1 Reproduction of 

the Egyptian royal cubit. 

(Photo by the authors) 

Fig. 1.2 Le Grand Châtelet—one of the oldest fortifications in Paris. (https://www.pinterest.fr/ 

pin/319544536061326825/) 

These unit systems, based on the human body, were used until the end of the 

eighteenth century when a revolutionary movement arose in France. 

The French Revolution in 1789 resulted from the dissatisfaction of the bourgeois, 

composed of traders, artisans, and liberal professionals, who disagreed with King 

Louis XVI’s absolutist domain and its privileges. They considered that a set of 

measures based on the anatomy of kings did not have any scientific basis, so a new 

measurement system that valued science should be conceived and could be adopted, 

with the same accuracy, around the world, and in all business transactions. 

Members of the French Academy began to discuss the best way to elaborate a 

metric system. In 1790, Charles-Maurice de Talleyrand-Périgord presented a pro-

posal to the National Assembly saying that the wide variety of weights and measures 

generated confusion and obstructed trade (Fig. 1.3).

https://www.pinterest.fr/pin/319544536061326825/
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Fig. 1.3 Talleyrand. 

(https://media.gettyimages. 

com/id/2381529/pt/foto/ 

charles-maurice-de-

talleyrand-perigord) 

Knowing a Little More … 

Better known as Talleyrand, he was a French politician and diplomat. It 

demonstrated admirable political survival capacity by holding high positions 

in the French revolutionary government under Napoleon during the restoration 

of the Bourbon monarchy and under King Louis Filipe. After 100 days of 

Napoleonic, he assumed the position of Chairman of the State Council, but his 

revolutionary past led him to be fired in September of the same year. Allied to 

liberals, he actively participated in the rise to the throne of Louis Filipe of 

Orleans. The ambassador in London had a fundamental participation in the 

negotiations between France and the United Kingdom, as in the creation of the 

Kingdom of Belgium and the signing of the covenant between France, the 

United Kingdom, Spain, and Portugal—the quadruple alliance. Accused of a 

cynical and immoral life, he claimed to serve France, not political regimes. He 

was one of the most controversial figures in France. 

The academy wanted a standard and repelled arbitrary and uncovered definitions. 

The name meter is adopted for the basic unit of length, which came from the Greek 

word metron, which means measure. The meter was defined as a measure equivalent 

to one-tenth of the millionth of the distance between the North Pole and the Ecuador 

line throughout the meridian, which went from Dunkerque to Barcelona. 

A system with multiples and submultiples was sought, and volume units were 

created. These were then used to form cubes with length measurements and weight 

units filled with distilled water. 

Thus, the units of length, volume, and mass were interconnected, with the entire 

system deriving from a unique, universal, and invariable pattern: the meter. On 

March 30, 1791, the Assembly approved this measurement system. On April

https://media.gettyimages.com/id/2381529/pt/foto/charles-maurice-de-talleyrand-perigord
https://media.gettyimages.com/id/2381529/pt/foto/charles-maurice-de-talleyrand-perigord
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7, 1795, the National Convention forced the use of the metric system, adopting the 

names “meter,”  “liter,” and “gram,” with multiples and subm ultiples.

4 1 The International System of Units (SI)

Table 1.1 Measures used by 

England 
Unit SI equivalent 

1 inch 25.4 mm 

1 foot 304.8 mm 

1 yard 0.9144 m 

1 mile 1609 m 

1 grain 64.799 mg 

1 ounce 28.35 g 

1 pound 453.6 g 

1 ton 1016.05 kg 

The changes were not well seen by England, which claimed to be a country whose 

economy was based on industry, commerce, and finance, and that abrupt changes 

would damage its growth, forcing it to change the dimensions of most exports and 

units used in pieces of machinery. 

They claimed that moderate changes should be made since, with the decree of the 

imperial act of weights and measures, a measuring system elaborated based on 

Roman units was used throughout the British Empire. 

Table 1.1 presents the measures most commonly used by England. 

An international commission, instituted on August 8, 1870, and formed by 

delegates from 30 countries, proposed the establishment of an organization funded 

by the member countries. This commission would be tasked with defining and 

maintaining new standards, verifying countries' standards, and developing new 

instruments. 

On May 20, 1875, a date known as International Metrology Day, 17 countries 

(Argentina, Austria-Hungary, Belgium, Brazil, Denmark, France, Germany, Italy, 

Peru, Portugal, Russia, Spain, Sweden-Norway, Switzerland, Ottoman Empire, 

United States of America, and Venezuela) created the BIPM (International Bureau 

of Weights and Measures) during the last session of the Metre Diplomatic 

Conference. 

The French government made the headquarters of BIPM, 43,520 m2 , available. It 

is close to Paris, in the domains of the Breteuil Pavillon (Saint-Cloud Park). The 

members of the Meter Convention (currently 64 Member States and 36 associates) 

ensure that BIPM expenses are maintained (Fig. 1.4). 

Knowing a Little More… 

Even before the Meter Treaty (1875) definition, several scientists were already 

working on determining units of measure. In 1832, mathematician and scien-

tist Carl Friedrich Gauss elaborated a system to consolidate all units into three. 

The velocity unit, for example, would be the combination of the distance 

unit (meter) with the unit of time (second), giving the unit m/s. The force unit 

would be the combination of the mass unit (kg) with the acceleration unit 

(continued)



(m/s2 ), which would give rise to kg m/s2 , also known as Newton (N). In the 

1860s, James Clerk Maxwell and William Thomson (Lord Kelvin) established 

a basic unit system that, coupled with derived units, would compose a system 

of coherent units. 

1.1 Units of Measure: A Brief History 5

The first General Conference on Weights and Measures (CGPM), in 1889, 

adopted a materialized prototype standard in a 10% platinum–iridium bar, which 

is stored in BIPM to the present day. 

From the subscription of the Metre Treaty, metrology advanced rapidly, and in 

1921, the sixth CGPM amended the treaty. The metric system incorporated the 

second and ampere, being called MKSA (meter, kilogram, second, and ampere). 

The 11th CGPM revised the metric system, then known as the International 

System of Units (SI), on October 14, 1960. 

In 1983, the meter was defined as the “length of the path traveled by the light in 

vacuum for a time interval of 1/(299,792,458) of a second.” Finally, the standard of 

length is no longer represented by a platinum bar and is immaterialized; that is, it 

contained physical greatness to describe it, being in charge of metrologists to ensure 

technology everywhere in the world can reproduce it. 

The great discussion continued with the dematerialization of the kilogram unit, 

also defined as the mass of a platinum–iridium cylinder maintained at the headquar-

ters of BIPM. For many years, until 2019, it was the only SI unit still represented by 

a materialized object. 

Brazil is our native country, one of the 17 Meter Diplomatic Conference signatory 

countries. Allow us a brief history. During the reign of D. Pedro I, the units of 

measure followed the standards of Portugal. On June 26, 1862, D. Pedro II

Fig. 1.4 BIPM (International Bureau of Weights and Measures). (https://www.bipm.org/ 

documents/20126/43899263/pavillon-de-breteuil-garden-september-21-sized.jpg)

https://www.bipm.org/documents/20126/43899263/pavillon-de-breteuil-garden-september-21-sized.jpg
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promulgated Imperial Law Number 1157 and adopted the French decimal metric 

system throughout the country. As mentioned earlier, Brazil was one of the first 

nations to adopt the new system.

6 1 The International System of Units (SI)

In 1961, the National Institute of Weights and Measures (INPM) was created, and 

the International System of Units became the official system through Decree 52,243 

of August 30, 1963, later replaced by Decree 63,323, September 12, 1968. In 1973, 

the INPM was replaced by the National Institute of Metrology, Standardization and 

Industrial Quality (INMETRO), currently called the National Institute of Metrology, 

Quality and Technology. 

1.2 The International System of Units (SI) 

The International Vocabulary of Metrology (VIM) defines the International System 

of Units (SI) as follows: 

System of units, based on the International System of Quantities, their names and symbols, 

including a series of prefixes and their names and symbols, together with rules for their use, 

adopted by the General Conference on Weights and Measures (CGPM). [VIM—1.16] 

To complete the reasoning, we present the definition of the International System 

of Quantities: 

System of quantities based on the seven base quantities: length, mass, time, electric current, 

thermodynamic temperature, amount of substance, and luminous intensity.[VIM—1.6] 

Some characteristics of SI:

• Unique units which can be reproduced and performed anywhere in the world;

• Few base units, separate and independent;

• Coherent, the combination of existing units produces other units without 

constants. 

Knowing a Little More… 

Since 1970, the BIPM has published the International System of Units in SI 

Brochure or Brochure Sur Le SI (in French), printed and digital versions. 

(source: https://www.bipm.org/en/publications/si-brochure) 

The SI is the system of units in which:

• The unperturbed ground state hyperfine transition frequency of the cesium 133 atom 

ΔνCs is 9,192,631,770 Hz,

• The speed of light in vacuum c is 299,792,458 m/s,

• The Planck constant h is 6.626,070 15 × 10-34 J  s,

• The elementary charge e is 1.602,176 634 × 10-19 C,

• The Boltzmann constant k is 1.380,649 × 10-23 J/K,

• The Avogadro constant NA is 6.022,140 76 × 10
23 mol-1 ,

https://www.bipm.org/en/publications/si-brochure
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• The luminous efficacy of monochromatic radiation of frequency 540 × 1012 Hz, Kcd,  is  

683 lm/W,

where the hertz, joule, coulomb, lumen, and watt, with unit symbols Hz, J, C, lm, 

and W, respectively, are related to the units second, meter, kilogram, ampere, kelvin, 

mole, and candela, with unit symbols s, m, kg, A, K, mol, and cd, respectively, according 

to Hz = s–1 ,  J  = kg m2 s–2 ,  C  = A  s,  lm  = cd m2 m–2 
= cd sr, and W = kg m2 s–3.

The numerical values of the seven defining constants do not have uncertainty. (Source: SI 

brochure 9th edition) 

1.2.1 Quantity 

Property of a phenomenon, body, or substance, where the property has a magnitude that can 

be expressed as a number and a reference. 

A reference can be a measurement unit, procedure, reference material, or a combination. 

The concept of ‘quantity’ may be generically divided into, e.g., ‘physical quantity,’ 

‘chemical quantity,’ and ‘biological quantity,’ or base quantity and derived quantity. 

[VIM—1.1] 

Based on the information found in VIM, the nature of quantity is a common 

aspect of mutually comparable quantities. The division of “quantity” according to 

the “nature of a quantity” is somewhat arbitrary. 

Knowing a Little More… 

The quantities diameter, circumference, and wavelength are usually consid-

ered of the same nature, that is, of the quantity called length. 

Heat, kinetic energy, and potential energy are usually considered part of the 

same quantity called energy. 

Quantities of the exact nature in a given system of quantities have the same 

dimension. However, quantities of the same dimension are not necessarily similar. 

The momentum of strength and energy are not, by convention, considered of the 

exact nature, although they have the same dimension. The same occurs for thermal 

capacity and entropy, as well as for the number of entities, relative permeability, and 

mass fraction. 

A base quantity is the greatness of a chosen subset by convention of a given 

system of quantities, in which no greatness of the subgroup can be expressed as a 

function of others. The subset mentioned in the definition is called a set of base 

quantities. Base quantities are considered mutually independent, as a product of 

powers from other base quantities cannot express base quantities. 

A derived quantity is defined as a function of the base quantities of this system. 

In a system of quantities with the length and mass as its base quantities, the 

specific mass is a derived quantity defined by the quotient of a mass by a volume 

(length to the cube).
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1.2.2 Measurement Unit 

Real scalar quantity, defined and adopted by convention, with which any other quantity of 

the same kind can be compared to express the ratio of the two quantities as a number. 

NOTE 1 Measurement units are designated by conventionally assigned names and symbols. 

NOTE 2 Measurement units of quantities of the same quantity dimension may be designated 

by the same name and symbol even when the quantities are not of the same kind. For 

example, joule per kelvin and J/K are respectively the name and symbol of both a 

measurement unit of heat capacity and a measurement unit of entropy, which are 

generally not considered to be quantities of the same kind. However, in some cases, 

special measurement unit names are restricted to be used with quantities of a specific 

kind only. For example, the measurement unit ‘second to the power minus one’ (1/s) is 

called hertz (Hz) when used for frequencies and becquerel (Bq) when used for activities 

of radionuclides. 

NOTE 3 Measurement units of quantities of dimension one are numbers. In some cases, 

these measurement units are given special names, e.g., radian, steradian, and decibel, or 

are expressed by quotients such as millimole per mole equal to 10–3 and microgram per 

kilogram equal to 10–9 . 

NOTE 4 For a given quantity, the short-term “unit” is often combined with the quantity 

name, such as “mass unit” or “unit of mass.” [VIM—1.9] 

In SI, there are two classes of measurement units: the base and the derived units. 

1.2.3 Base Unit 

Measurement unit that is adopted by convention for a base quantity. [VIM—1.10] 

Base units are seven independent physical quantities. Table 1.2 presents the new 

definitions and symbols of the base units since May 20, 2019. 

Knowing a Little More … 

The General Conference on Weights and Measures (CGPM), in its 25th 

meeting in November 2014, adopted a resolution on the new revision of the 

International Unit System (SI), validated at the 26th meeting in 2018. In this 

review, the kilogram, ampere, kelvin, and mole were redefined based on the 

fixed numerical values of Planck constant (h), elementary load on a proton (e), 

Boltzmann constant (k), and Avogadro constant (NA), respectively. 

Subsequently, the seven basic SI units were defined based on seven refer-

ence constants, to be known as “SI defining constants”: the hyperfine transi-

tion frequency of the cesium—second; the speed of light in the vacuum— 

meter; the Planck constant—kilogram; the elementary load in a proton— 

ampere; Boltzmann’s constant—kelvin; the Avogadro constant—mol; and 

the luminous efficacy of a specified monochrome source—candela. This has 

resulted in a more straightforward and more fundamental definition of the 

(continued)



whole and dismissed the last of the definitions based on a material artifact— 

the international prototype of the kilogram maintained in BIPM. 

1.2 The International System of Units (SI) 9

The main disadvantage of the old definition of the kilogram was that it 

referred to the mass of the artifact, which, by nature, we know is not stable. 

Comparisons between the official copies and the international prototype 

showed some disagreement over time. The drift in the mass of the international 

prototype, since 1889 has yet to be demonstrated, but it should undoubtedly be 

present. The change rate of its mass could be determined only by insufficiently 

high absolute experiences. 

The new kilogram unit can measure with the “watt scale (or kibble scale),” 

an instrument that allows mechanical with electromagnetic energy to compare 

two separate experiences. Ampere can be measured using Ohm’s law (A = V/ 

Ω) and practical achievements of V and Ω, based on Josephson and Quantum 

Hall effects. Kelvin can be defined by the new system using acoustic ther-

mometry. The technique allows you to determine the speed of sound in a 

sphere full of gas at a fixed temperature. The mole can be performed as the 

accurate amount of atoms in a perfect sphere of pure-28 silicon. (Source: 

Adapted from https://www.bipm.org/en/publications/misses-en-pratique/) 

1.2.4 Derived Unit 

Measurement unit for a derived quantity. [VIM—1.11] 

They are units formed by combining base units according to mathematical 

relations that correlate the corresponding quantities. Table 1.3 presents some exam-

ples of derived units. 

1.2.5 Dimensional Analysis of the Quantities 

Dimensional analysis studies the quantities and relationships between the respective 

measurement units of these quantities. The study of dimensional analysis becomes a 

powerful ally that helps us write SI and obtain some equations involving physical 

quantities. 

The VIM provides the following definition for quantity dimension: 

Expression of the dependence of a quantity on the base quantities of a system of quantities as 

a product of powers of factors corresponding to the base quantities, omitting any numerical 

factor. [VIM—1.7] 

Table 1.4 presents the symbols corresponding to the dimensions of quantities. 

According to VIM—1.7, the size of a quantity Q is represented by:

https://www.bipm.org/en/publications/misses-en-pratique/
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Table 1.2 SI base units 

Quantity Unit Symbol Definition 

Length 

meter m It is defined by taking the fixed numerical value of the 

speed of light in vacuum c to be 299,792,458 when 

expressed in the unit m s-1 , where the second is 

defined in terms of the cesium frequency ΔνCs 

Electric current 

ampere A It is defined by taking the fixed numerical value of the 

elementary charge e to be 1.602,176 634 × 10-19 when 

expressed in the unit C, which is equal to A s, where 

the second is defined in terms of ΔνCs 

intensity 

Luminous 

candela cd It is defined by taking the fixed numerical value of the 

luminous efficacy of monochromatic radiation of fre-

quency 540 × 1012 Hz, Kcd, to be 683 when expressed 

in the unit lm W-1 , which is equal to cd sr W-1 ,  or  cd  

sr kg-1 m-2 s3 , where the kilogram, meter, and second 

are defined in terms of h, c, and ΔνCs

Mass 

kilogram kg It is defined by taking the fixed numerical value of the 

Planck constant h to be 6.626,070 15 × 10-34 when 

expressed in the unit J s, which is equal to kg m2 s-1 , 

where the meter and the second are defined in terms of 

c and ΔνCs 

substance 

Amount of 

mole mol One mole contains exactly 6.022,140 76 × 1023 ele-

mentary entities. This number is the fixed numerical 

value of the Avogadro constant, NA, when expressed in 

the unit mol-1 and is called the Avogadro number 

temperature 

Thermodynamic 

kelvin K It is defined by taking the fixed numerical value of the 

Boltzmann constant k to be 1.380,649 × 10-23 when 

expressed in the unit J K-1 , which is equal to kg m2 s-

2 K-1 , where the kilogram, meter, and second are 

defined in terms of h, c, and ΔνCs 

Time 

second s It is defined by taking the fixed numerical value of the 

cesium frequency ΔνCs, the unperturbed ground state 

hyperfine transition frequency of the cesium 133 atom, 

to be 9,192,631,770 when expressed in the unit Hz, 

which is equal to s-1 

Source: SI brochure 9th edition 

dim Qð  Þ=Lα Mβ Tγ IδΘε Nξ J 
η

Where the dimensional exponents α, β, γ, δ, ε, ξ, and η can be positive, negative, 

or zero. 

Solved Exercise 1.1 

In 1851, the English physicist and mathematician George Stokes deduced a formula 

for the frictional force that acts in a sphere of radius R immersed in a liquid of 

dynamic viscosity η, which moves at speed v. The formula deduced by stakes is F = 

6πRηv. Considering this formula, what is the dynamic viscosity unit in the Si?
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Table 1.3 Examples of derived units 

Quantity Unit Symbol Base unit 

Other SI 

units 

Plane angle Radian rad m/m 

Area Square meter A m2 

Electric field Volt per meter V/m m kg s-3 A-1 

Capacitance Farad F m-2 kg-

1 s4 A2 
C/V 

Electric charge Coulomb C s A 

Electric conductance Siemens S m-2 kg-

1 s3 A2 
A/V 

Electric potential 

difference 

Volt V m2 kg s-3 A-1 W/A 

Energy, work, amount of 

heat 

Joule J m2 kg s-2 N  m  

Luminous flux Lumen lm cd cd sr 

Force Newton N m kg s-2 

Frequency Hertz Hz s-1 

Inductance Henry H m2 kg s-2 A-2 Wb/A 

Density, mass density Kilogram per cubic 

meter 

ρ kg/m3 

Power, radiant flux Watt W m2 kg s-3 J/s 

Pressure Pascal Pa m-1 kg s-2 N/m2 

Electric resistance Ohm Ω m2 kg s-3 A-2 V/A 

Celsius temperature Degree Celsiusa ° K  

Magnetic flux density Tesla T kg s-2 A-1 Wb/m2 

Velocity, speed Meter per second v m/s 

Volume Cubic meter V m3 

Source: SI brochure 9th edition 
a The degree Celsius is used to express Celsius temperatures. The numerical value of a temperature 

difference or temperature interval is the same when expressed in degrees Celsius or kelvin 

Table 1.4 Dimensions of base quantities 

Base quantity Quantity symbol Symbol for dimension 

Length l, x, r L 

Mass m M 

Time t T 

Electric current I, i I 

Thermodynamic temperature T Θ 

Amount of substance n N 

Luminous intensity Iv J
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Solution: Let us write the equation as a function of η. Therefore, we have: 

η= 

F 

6πRv 

dim F
dim ð  ηÞ= 

ð  Þ  

dim ð ÞR ⋅dim ð Þv

dim ð ÞR = L 

dim ð Þv = LT -1 

The quantity force (newton) is expressed by the formula f = m·a, where a is the 

acceleration of the body with mass m. 

Then: 

a=m=s2 → dim að  Þ= LT -2 

dim Fð  Þ= dim mð  Þ⋅dim að  Þ  

dim Fð  Þ  =MLT -2

Substituting in the dim(η) equation, we have: 

dim ηð  Þ= 

MLT -2 

L⋅LT -1 
=ML-1 T -1 

Thus, the unit of η is kg m-1 s-1 . However, as the pascal unit (Pa) is kg m-1 s-2 , 

we can represent the dynamic viscosity unit in SI as pascal second (Pa s). 

Solved Exercise 1.2 

We have the equation P = v2 k, where v is velocity. Since P is pressure, k must be. 

(a) Mass 

(b) Density 

(c) Mass flow 

(d) Weight 

Solution: Let us write the equation as a function of k. 

k= 

P 

v2 

Doing a dimensional analysis of k: 

dim kð  Þ= 

dim Pð  Þ  

dim v2 ð Þ

As pressure is force/area, we have:
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dim Pð  Þ= 

dim forceð  Þ  

dim areað Þ

dim Pð  Þ= 

MLT -2 

L2 
=ML-1 T -2

The dimension of v2 is: 

dim v2 = L2 T -2 

Therefore, the dimension of k is: 

dim kð  Þ= 

dim Pð  Þ  

dim v2ð  Þ  
= 

ML-1T -2 

L2T -2 
= ML-3

In SI, this represents, Un kð  Þ= 
kg 

m3, the density unit. Therefore, the correct answer 

is (b).

1.2.6 Decimal Multiples and Submultiples 

Multiples and submultiples were defined in the SI, with the names and symbols 

given in Table 1.5. 

Except for the prefixes da (deca), h (hecto), and k (kilo), all multiple prefix 

symbols are written with capital letters, and all submultiple symbols are written 

with lowercase letters. All prefix names are written with lowercase letters, except at 

the beginning of a sentence. 

Table 1.5 Decimal multiples 

and submultiples 
Factor Prefix Symbol Factor Prefix Symbol 

1030 ronna R 10-1 deci d 

1027 quetta Q 10-2 centi c 

1024 yotta Y 10-3 milli m 

1021 zetta Z 10-6 micro μ 

1018 exa E 10-9 nano n 

1015 peta P 10-12 pico p 

1012 tera T 10-15 femto f 

109 giga G 10-18 atto a 

106 mega M 10-21 zepto z 

103 kilo k 10-24 yocto y 

102 hecto h 10-27 ronto r 

101 deca da 10-30 quecto q 

Source: SI brochure 9th edition
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Although the multiples da (deca) and h (hecto) and submultiple d (deci) are not 

foreseen, their use is not shared, and it is recommended to express in k (kilo), m 

(milli), or μ (micro). 

1.2.7 SI Units and Symbols Writing Rules 

The writing rules of symbols and units were initially proposed by the 9th CGPM in 

1948. They were then adopted by ISO/TC 12 (ISO 31, quantities and units). Some 

rules are presented below. 

1. The symbols are expressed with lowercase letters and in Roman characters. 

Example: meter (m) second (s) 

The exceptions are the Greek letter Ω (unit of electrical resistance) and the liter 

unit, which can also be written with L. 

Note: The liter is not an SI unit, but its use is accepted. 

2. If the unit’s name is a proper name, the first letter of the symbol is capitalized, 

but it is written with a lowercase letter. 

Example: pascal (Pa) kelvin (K) 

The spelling of °C is degree Celsius, as the degree unit begins with a lowercase 

letter. Celsius is an adjective that starts with a capital letter because it is a 

proper name. 

3. The symbols of the units have no plural and are not followed by points. 

Example: 10 kg 500 m 25 s 

4. When dividing one unit by another, use an inclined bar, horizontal trace, or 

negative power. 

Example: km=h km 
h 

km h-1 

5. To avoid ambiguities, use only one inclined bar, parentheses, or negative 

powers. 

Example: m/s2 or m s-2 and never m/s/s 

6. The multiplication of the symbols of the units must be indicated by a space or a 

point centered at half height (·). 

Example: newton meter → N m or N•m 

7. The tonic accent does not fall on the prefix but on the unit. 

Example: micrometer kilometer 

8. In writing a unit composed of the multiplication of unit names, a space or a 

hyphen should be used to separate the names from the units.



Example: Pa s→ pascal second or pascal-second.
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9. Time measurements: 

Correct: 5 h 14 min 3 h 30 min 15 s 2 h 

Wrong: 5:14 h 3 h 30′15′ 3:30:15 h 

Note: The hour (h) and the minute (min) are not SI units, but their use is 

accepted. 

10. The numerical value precedes the unit, and there is always a space between the 

number and the unit. Thus, since the value of a quantity is the product of a 

number by a unit, the space is considered a sign of multiplication. 

Example: 124.6 mm 45.9 °C  50  k  g

Exception for this rule is the symbols of the units of grade (°), minute (′), and 

second (″) of the flat angle (units outside of SI), for which there is no space 

between the numerical value and the symbol of the unit. Example: 45° 25′ 6″ 

11. When a multiple or submultiple prefix is used, it is part of the unit and precedes 

the symbol of unity without space between the prefix symbol and the unit 

symbol. 

Correct: 124.6 mm (numerical value/space/prefix of the unit/unit) 

Wrong: 124.6 m m 

12. Do not mix the name with the symbol. 

Correct: kilometer per hour or km/h 

Wrong: km/hour or kilometer/h 

1.2.8 Non-SI Units Accepted for Use with the SI 

BIPM recognizes the need to use widely used units, although they are not part of the 

SI. Table 1.6 presents some of these units. 

1.3 Proposed Exercises 

1.3.1 What is the symbol of the quantity length in SI? 

(a) mts 

(b) m 

(c) KM 

(d) km



1.3.2 What is the symbol of the quantity time in SI?
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Table 1.6 Non-SI units that are accepted 

Quantity Name Symbol Value in SI units 

Time Minute min 60 s 

Hour h 3600 s 

Day d 86,400 s 

Plane and 

phase angle 

Degree ° π/180 rad 

Minute ′ π/10,800 rad 

Second ″ π/648,000 rad 

Volume Liter l or L 1 dm3 
= 10-3 m3 

Mass Tonne T 1000 kg 

Dalton Da 1.660,539,040 (20) × 10-27 kg 

Energy Electronvolt eV The kinetic energy acquired by an electron in passing 

through a potential difference of one volt in a vacuum 

(1.602,176,634 × 10-19 J) 

Pressure Bar bar 0.1 MPa = 100 kPa 

Millimeter 

of mercury 

mmHg 133.322 Pa 

Area Hectare ha 104 m2 

Source: SI brochure 9th edition 

(a) s 

(b) sec 

(c) h 

(d) hs 

1.3.3 What is the symbol of the quantity of electric current in SI? 

(a) A 

(b) a 

(c) Amp 

(d) Ap 

1.3.4 What is the symbol of the quantity velocity in SI? 

(a) mts/s 

(b) m/sec 

(c) km/hr 

(d) m/s 

1.3.5 What is the symbol of the quantity voltage in SI? 

(a) T 

(b) VA 

(c) V 

(d) VT



1.3.6 What is the value of 1 μm in power of ten?
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(a) 103 m 

(b) 106 m 

(c) 10-6 m 

(d) 10-3 m 

1.3.7 The unit of force in SI is: 

(a) dyna 

(b) newton 

(c) kilogram-force 

(d) kilogram 

1.3.8 The unit of pressure in SI is: 

(a) pascal 

(b) psi 

(c) kilogram-force 

(d) bar 

1.3.9 The symbol of quantity temperature in SI is: 

(a) K 

(b) °F 

(c) °K 

(d) C 

1.3.10 Mark the correct writing. 

(a) 18 hrs 

(b) 3 mts 

(c) 10 hs 

(d) 9 L 

1.3.11 Mark the correct writing. 

(a) 18 h 

(b) 4 KM/H 

(c) 10 mts 

(d) 9 Kg 

1.3.12 What is the value of 1 MHz in power of ten? 

(a) 106 Hz 

(b) 10-6 Hz 

(c) 10-3 Hz 

(d) 10-9 Hz



1.3.13 What is the value of 1 ns in power of ten?
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(a) 103 s 

(b) 106 s 

(c) 10-9 s 

(d) 109 s 

1.3.14 Check the option that only has base units of the SI. 

(a) meter, second, degree Celsius 

(b) meter, hour, degree Celsius 

(c) kilometer, second, kelvin 

(d) meter, ampere, kelvin 

1.3.15 Check the option that only has derived units of the SI. 

(a) meter, second, degree Celsius 

(b) joule, hour, degree Celsius 

(c) joule, newton, volt 

(d) meter, ampere, kelvin 

1.3.16 The base units of the SI include: 

(a) second, meter, candela, newton 

(b) second, meter, candela, kelvin 

(c) second, meter, kelvin, joule 

(d) second, mole, joule, ampere 

(e) second, mole, ampere, pascal 

1.3.17 Check the option that contains a pressure value written adequately in units of 

the SI. 

(a) 200 MPA 

(b) 200 MPa 

(c) 200 Mpa 

(d) 200 mpa 

(e) 200 mPA 

1.3.18 What is the unit for pressure? 

(a) pascal 

(b) mol 

(c) candela 

(d) kelvin



1.3.19 What is the unit for volume?
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(a) kilogram 

(b) cubic meter 

(c) square meter 

(d) mol 

1.3.20 The symbol m3 /s represents: 

(a) density 

(b) volume 

(c) flow 

(d) velocity 

1.3.21 The symbol of electric resistance is: 

(a) Β 

(b) Ω 

(c) μ 

(d) Σ 

1.3.22 What is the unit for the electric charge? 

(a) joule 

(b) coulomb 

(c) volt 

(d) farad 

1.3.23 The base units of SI are: 

(a) sec, °C, PA, kg, A 

(b) km, kg, K, mol, A 

(c) m, K, s, A, kg 

(d) s, m, cd, bar, °C 

1.3.24 The time interval of 2.4 min is equivalent to the SI: 

(a) 24 seconds 

(b) 124 seconds 

(c) 144 seconds 

(d) 160 seconds 

(e) 240 seconds 

1.3.25 In equation x= k v
n 

a 

x represents a distance, v represents velocity, a represents acceleration, and 

k represents a dimensionless constant. What should be the value of exponent 

n so that the expression is physically correct?



1.3.26 In the SI, the units of electrical potential difference, electric eld, work, and
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fi

capacitance are, respectively: 

(a) W, N/C, F, J 

(b) V, N/C, J, C 

(c) V, V/m, J, F 

(d) W, V/m, F, J 

(e) W, V/m, J, F 

1.3.27 The physical intensity (I ) of sound is the ratio between the amount of energy 

(E) that crosses a unit of area (S) perpendicular to the direction of propagation of 

sound in the unit of time (t). In the SI, what is the unit of I? 

1.3.28 Mathematically, expressing any physical quantity according to other physical 

quantities through the dimensional formula is possible. Using the dimensional 

symbols of the fundamental quantities of SI, determine the dimensional formula 

of power quantity. 

(a) MLT–1 

(b) ML–2 T–3 

(c) M–1 L3 T–2 

(d) ML2 T–3 

(e) MLT–2 

1.3.29 In the analysis of specific movements, it is reasonable to suppose that the 

frictional force is proportional to the square of moving particle speed. Analyti-

cally, f = kv2 . What is the unit of the proportionality constant k in the SI?



Chapter 2 

Knowing Metrology and Its Structure 

2.1 Metrology: Introduction 

Metrology supports a universal agreement for units of measure, that is, the standard-

ization of values. For this to happen, there must be an international and national 

metrological structure to ensure that the measuring instruments are maintained and 

applied properly and correctly in daily operational and business transactions. This 

standardization of units of measure is of great commercial importance for nations 

and companies. 

For example, car manufacturing has several parts suppliers, each with its own 

production system and measurement instruments. However, all parts should fit 

perfectly into the car assembly. Imagine a wheeled supplier manufacturing and 

measuring the holes of the fixing screws with a slightly smaller diameter than 

those manufactured and measured by the screw supplier; the wheels could not 

be used. 

As we saw in the previous chapter, using different units of measurement for the 

same quantity conflicts with the standardization of language established in the 

International System of Units (SI). However, some British colonization countries 

still employ other units of measure, such as the inch, foot, pound, yard, and mile. 

This use can lead to severe misconceptions and disastrous consequences for 

society. Let us consider some real cases as examples. 

Case 2.1: Vasa, the Swedish Warship (Fig. 2.1) 

Swedish warship Vasa wrecked in 1628 on its inaugural trip, less than two 

kilometers from the coast, causing the death of 30 crew members. At the time, 

armed with 64 bronze cannons, it was considered the most powerful ship in the 

world. The archeologists who studied him after he was lifted from the bottom of the 

sea in 1961 said he was thicker to the stubborn than the stubby. One reason may be 

that the workers used different systems of measurements, as archeologists found four
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rulers used in the construction: two were marked in Swedish feet, which were 

12 inches. In contrast, the others were Amsterdam feet with 11 inches.
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Fig. 2.1 ‘Vasa ship’ can be visited today at the Vasa Museum in Stockholm, Sweden. (https:// 
schweden-tipp.de/wp-content/uploads/2016/08/Vasa-Museum-Gem%C3%A4lde-Francis-
Smitheman.jpg) 

Fig. 2.2 Air Canada: Boeing 767–200. (Photo @ Robert Pearson) 

(Text adapted from https://en.wikipedia.org/wiki/Vasa_(ship))

https://en.wikipedia.org/wiki/Vasa_(ship)
https://schweden-tipp.de/wp-content/uploads/2016/08/Vasa-Museum-Gem%C3%A4lde-Francis-Smitheman.jpg
https://schweden-tipp.de/wp-content/uploads/2016/08/Vasa-Museum-Gem%C3%A4lde-Francis-Smitheman.jpg
https://schweden-tipp.de/wp-content/uploads/2016/08/Vasa-Museum-Gem%C3%A4lde-Francis-Smitheman.jpg
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Fig. 2.3 Artist’s conception 
of the Mars Climate Orbiter. 
(Source: NASA/JPL/Corby 
Waste—Wikimedia 
Commons) 

Case 2.2: Boeing 767–200 from Air Canada, Known as Gimli Glider (Fig. 2.2) 

In 1983, Canada adapted its measurement system from English to the Interna-

tional Unit System. At a land stop, an Air Canada Boeing 767–200 had problems 

with the fuel control device. The maintenance team then used the manual measuring 

ruler to define and complete the volume of kerosene in the plane tanks. However, 

that aircraft was the first of the fleet that used fuel control in SI, but the track 

technicians based on the fuel density of 1.77 pounds per liter (English system), 

while in SI, this value was 0.80 kilogram per liter. Because of this confusion, the 

plane was fueled with less than half of the volume of kerosene necessary to make the 

route between the cities of Montreal and Edmonton (would need 22,300 kilograms 

of fuel and received 22,300 pounds, approximately 10,115 kilograms). The result of 

the “metrological failure” was a dry crash in the middle of the way and at an altitude 

of 12,500 m. The aircraft landed planning safely at the Gimli Industrial Aero Park in 

Manitoba. 

(Text adapted from https://en.wikipedia.org/wiki/Gimli_Glider) 

Case 2.3: Spaceship Mars Climate Orbiter (Fig. 2.3) 

In 1999, the spaceship Mars Climate Orbiter deviated from the original route 

when entering Mars’ atmosphere, because its trajectory was erroneously calculated 

using two measurement systems: SI and the English system. This caused NASA to 

lose US$ 300 million, as it caused the loss of spacecraft. The explanation is that the 

spaceship was not disintegrated but had a propeller destroyed as it entered the 

planet’s atmosphere. Attempts to replace it in the correct orbit and to prevent Mars 

from giving space were unsuccessful. NASA director Carl Pilcher told Science News

https://en.wikipedia.org/wiki/Gimli_Glider%3e


magazine that the fact they did not identify the “metrological failure” during the 

route was a grave mistake made by the mission officials. 
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Fig. 2.4 Laufenburg Bridge. (https://news.bbcimg.co.uk/media/images/75025000/jpg/_750251 
52_laufenburg_ap624.jpg) 

(Text adapted from http://goo.gl/tRfBeJ) 

Case 2.4: Laufenburg Bridge (Fig. 2.4) 

Sea level varies from place to place, and countries use different reference points. 

Britain, for example, measures the height from the sea level in Cornwall, and France 

does it from the sea level in Marseille. Germany measures concerning the North Sea, 

while Switzerland, like France, opts for the Mediterranean. In 2003, this generated a 

problem in Laufenburg. This village is on the border between Germany and Swit-

zerland, because, as the two halves of a bridge approached each other during the 

construction, instead of being “at the same height from sea level,” one side was 

54 centimeters above the other. The German side had to be relegated to complete the 

bridge. 

(Source: https://marine-digital.com/article_bridge_between_germany_and_ 

switzerland) 

The Laufenburg Bridge was not motivated by using different systems but by 

adopting a different “reference.” However, the situations experienced by Air Canada 

and NASA would not have happened, if there were no flaws in “metrological 

communication” because, in principle, there were no errors in the calibration of 

the measuring instruments. 

Calibrating is essential, but harmonizing the concepts and measurement units 

enables the correct interpretation of information and specific decision-making in a 

globalized market.

http://goo.gl/tRfBeJ%3e
https://marine-digital.com/article_bridge_between_germany_and_switzerland%3e
https://marine-digital.com/article_bridge_between_germany_and_switzerland%3e
https://news.bbcimg.co.uk/media/images/75025000/jpg/_75025152_laufenburg_ap624.jpg
https://news.bbcimg.co.uk/media/images/75025000/jpg/_75025152_laufenburg_ap624.jpg
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2.2 Importance of Measuring 

Measuring is part of our daily lives:

• When looking at the display of a clock, we see the result of the time measurement 

(hour, minute, and second);

• When buying a heavy product on a scale, we have the mass measurement 

(kilogram, gram);

• When supplying the car at the gas station, we noticed the (liter) volume mea-

surement of fuel;

• When we received the electricity bill from our residence, we could see the 

electricity consumption measured in that period (kW). 

Anyway, we are constantly witnessing and experiencing the results of 

measurements. 

Measuring is a process that involves the existence of:

• A phenomenon (either a quantity or a substance) we want to know;

• A measuring instrument (or a set of instruments) calibrated, preferably;

• A unit of measure (kg, m, °C, etc.);

• An individual trained to perform the act of measuring and correctly interpreting 

the result. 

Two great scientists highlighted the importance of measuring many years ago 

(Figs. 2.5 and 2.6). 

Measure what is measurable, and make measurable what is not. 
(https://mathshistory.st-andrews.ac.uk/Biographies/Galileo/quotations/) 

When you measure what you are speaking about and express it in numbers, you know 
something about it, but when you cannot, your knowledge about it is meager and 
unsatisfactory. 

(https://mathshistory.st-andrews.ac.uk/Biographies/Thomson/quotations/) 

Fig. 2.5 Galileo Galilei. 
(https://tse4.mm.bing.net/ 
th?id=OIP.5WKAICf1 
vtt9p2OtlS3wNQHaHa& 
pid=Api&P=0&h=180)

https://mathshistory.st-andrews.ac.uk/Biographies/Galileo/quotations/
https://mathshistory.st-andrews.ac.uk/Biographies/Thomson/quotations/
https://tse4.mm.bing.net/th?id=OIP.5WKAICf1vtt9p2OtlS3wNQHaHa&pid=Api&P=0&h=180
https://tse4.mm.bing.net/th?id=OIP.5WKAICf1vtt9p2OtlS3wNQHaHa&pid=Api&P=0&h=180
https://tse4.mm.bing.net/th?id=OIP.5WKAICf1vtt9p2OtlS3wNQHaHa&pid=Api&P=0&h=180
https://tse4.mm.bing.net/th?id=OIP.5WKAICf1vtt9p2OtlS3wNQHaHa&pid=Api&P=0&h=180
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Fig. 2.6 William Thomson 
(Lord Kelvin). (https://res. 
cloudinary.com/dk-find-out/ 
image/upload/q_80,w_1920 
,f_auto/A-Corbis-IH1 
90312_l5pagc.jpg) 

Fig. 2.7 Metrological agents 

2.3 Measurement Objective 

Decisions must be made based on information in any field of activity. In the 

scientific and technological area, such information is generally the result of mea-

surements directly or indirectly related to the object under study. 

Measurement is the “process of experimentally obtaining one or more quantity 

values that can reasonably be attributed to a quantity.” 

Measurements can be influenced by different metrological agents, such as (i) the 

measurement method, (ii) the sample, (iii) the analyst, (iv) the measurement instru-

ment, (v) the environmental conditions, and (vi) the traceability of the measurement 

instruments and standards. Thus, we understand the measure as the “result of the 

measurement process,” in this sense, its quality depends on how such a process is 

managed. 

Figure 2.7 presents the different metrological agents that influence the measure-

ment result. 

Let us discuss each metrological agent briefly.

https://res.cloudinary.com/dk-find-out/image/upload/q_80,w_1920,f_auto/A-Corbis-IH190312_l5pagc.jpg
https://res.cloudinary.com/dk-find-out/image/upload/q_80,w_1920,f_auto/A-Corbis-IH190312_l5pagc.jpg
https://res.cloudinary.com/dk-find-out/image/upload/q_80,w_1920,f_auto/A-Corbis-IH190312_l5pagc.jpg
https://res.cloudinary.com/dk-find-out/image/upload/q_80,w_1920,f_auto/A-Corbis-IH190312_l5pagc.jpg
https://res.cloudinary.com/dk-find-out/image/upload/q_80,w_1920,f_auto/A-Corbis-IH190312_l5pagc.jpg
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2.3.1 Measurement Method 

Here is a definition of measurement method: “generic description of a logical 

organization of operations used in a measurement” [VIM—2.5]. 

The measurement method should ideally be contained in a technical standard; 

however, it may also be present in an operational procedure, a work instruction, a 

flowchart, or any other internal organization document. 

It should be noted that the measurement method should be developed by experts 

in the subject and used by professionals with knowledge and training in the tech-

niques defined by the process. 

Example 2.1 

The standard CEN-EN 837-1 Pressure Gauges—Part 1: Bourdon Tube Pressure 

Gauges—Dimensions, Metrology, Requirements, and Testing determines the con-

ditions for calibrating the Bourdon-type gauge. Among the various requirements, it 

defines, for example, the minimum number of calibration points as a function of the 

accuracy class (Table 2.1). 

Accuracy class: Class of measuring instruments or measuring systems that 

meet stated metrological requirements that are intended to keep measurement 

errors or instrumental measurement uncertainties within specified limits under 

specified operating conditions. 

NOTE 1 An accuracy class is usually denoted by a number or symbol adopted 

by convention. 

NOTE 2 Accuracy class applies to material measures. [VIM—4.25]. 

Knowing a Little More... (Fig. 2.8) 

Eugène Bourdon was born in 1808 in Paris, France. He began his career as 

a watchmaker and later as an engineer. In 1849, Bourdon invented the meter 

that bears his name. This gauge can measure up to 6800 atmospheres. This 

invention also helped decrease the number of steam engines because, before 

Bourdon, measuring this amount of pressure was almost impossible. He died 

in 1884, but his Bourdon tube pressure gauge is still used today. 

Table 2.1 Number of cali-
bration points of a pressure 
gauge according to CEN-EN 
837-1 

Accuracy class Number of calibration points 

0.1; 0.25; 0.6 10 

1; 1.6; 2.5 5
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Fig. 2.8 Eugène Bourdon. 
(Photo: public domain) 

Fig. 2.9 Sample of screws 
to determine the thread step. 
(https://images.pexels.com/ 
photos/259988/) 

2.3.2 Sample 

A sample is a representative part of a whole that allows the results to be attributed to 

the original set once they have been evaluated, analyzed, and measured. 

Example 2.2 

Let us check the thread step of a lot of 10,000 screws (Fig. 2.9). 

One option would be to measure all 10,000 screws. However, it would be a time-

consuming and costly process. Thus, a viable alternative is to randomly choose a 

certain number of production parts as a sample, using criteria established in a 

technical standard, for example. The average step measurements of the selected 

pieces are considered a reasonable estimate for the total screws.

https://images.pexels.com/photos/259988/
https://images.pexels.com/photos/259988/
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We must be careful when selecting and using a sample to represent the set; 

otherwise, we can assign wrong values due to improper choice or handling of the 

sample. 

Some primary care should be observed in the choice and definition of the sample:

• Apply statistical methods to determine the sample size since it should represent 

the whole;

• Make the random selection of the sample and ensure that it belongs to the same 

manufacturing batch. For example, an excellent way to determine the ambient 

temperature of a laboratory is to measure temperature in various locations, not 

just one place;

• Ensure that measurements are performed under conditions defined in standards, 

methods, or technical procedures. Example: using CEN-EN 837-1 again, it 

represents that the temperature of the calibration site must be comprised between 

(20 ± 2) °C;

• Avoid contamination that may modify the physical or chemical characteristics of 

the sample;

• Check, where applicable, the validity of the sample. 

2.3.3 Analyst 

The analyst, human factor, and central element of the measurement process 

(Fig. 2.10) need:

• Know the measurement method;

• Know how to evaluate environmental conditions and decide on whether or not to 

measure measurements;

• Be able to select the sample to be evaluated adequately;

• Be trained for the correct use of the instruments that make up the measurement 

system;

• Register and correctly interpret the result of the measurements.
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Fig. 2.10 Ultrasonography 
examination measurement 
system. (https://images. 
pexels.com/photos/70 
89400/) 

2.3.4 Environmental Conditions 

Initially, we need to define influence quantity: 

Quantity that, in a direct measurement, does not affect the quantity that is measured, but 

affects the relation between the indication and the measurement result. 

Example: Temperature of a micrometer used for measuring the length of a rod, but not 

the temperature of the rod itself, which can enter into the definition of the measurand. 

[VIM—2.52]. 

Influence quantities can usually not be avoided but should be monitored and 

controlled to minimize their effects on the measurement result. 

Thus, what we call environmental conditions are the influences of these environ-

mental factors, such as temperature, humidity, dust, vibration, fluctuation in the 

power supply, electric or magnetic noise, lighting, or other factors in a place where 

measurements will be realized.

https://images.pexels.com/photos/7089400/
https://images.pexels.com/photos/7089400/
https://images.pexels.com/photos/7089400/


2.3 Measurement Objective 31

Fig. 2.11 Digital 
thermohygrometer 
(temperature and relative 
humidity). (https://pixabay. 
com/photos/time-clock-
humidity-air-hygrometer-23 
53382/) 

Example 2.3 

To measure the concentration of a particular active ingredient that enters a medi-

cine’s composition, the laboratory temperature must be maintained at (22.0 ± 0.5) ° 

C and relative humidity at (50 ± 5) %. 

Under ideal conditions, an air conditioner system should control temperature and 

moisture. 

A thermohygrometer (Fig. 2.11) must measure these conditions to enable the 

analyst to take action if these variables leave control. 

We must interrupt measurements or correct their results when any anomaly arises, 

either in temperature or moisture (Fig. 2.11). 

2.3.5 Measuring Instrument 

A measuring instrument is a “device used for making measurements, alone or in 

conjunction with one or more supplementary devices.” [VIM—3.1]. 

Examples 2.4 

Some measuring instruments (Figs. 2.12, 2.13, 2.14, 2.15, and 2.16). 

Measurement indicates or controls a process, monitors an alarm, or investigates a 

physical, chemical, or biological phenomenon. In simple monitoring, measurement

https://pixabay.com/photos/time-clock-humidity-air-hygrometer-2353382/
https://pixabay.com/photos/time-clock-humidity-air-hygrometer-2353382/
https://pixabay.com/photos/time-clock-humidity-air-hygrometer-2353382/
https://pixabay.com/photos/time-clock-humidity-air-hygrometer-2353382/
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Fig. 2.12 Vernier caliper. 
(https://pixabay.com/ 
photos/vernier-caliper-
measuring-instrument-452 
987/) 

Fig. 2.13 Micrometer. 
(https://pixabay.com/ 
photos/micrometer-
measure-measuring-tool-50 
5350/) 

Fig. 2.14 Multimeter. 
(https://pixabay.com/ 
photos/multimeter-ohm-
meter-voltmeter-523153/)

https://pixabay.com/photos/micrometer-measure-measuring-tool-505350/
https://pixabay.com/photos/micrometer-measure-measuring-tool-505350/
https://pixabay.com/photos/micrometer-measure-measuring-tool-505350/
https://pixabay.com/photos/micrometer-measure-measuring-tool-505350/
https://pixabay.com/photos/multimeter-ohm-meter-voltmeter-523153/
https://pixabay.com/photos/multimeter-ohm-meter-voltmeter-523153/
https://pixabay.com/photos/multimeter-ohm-meter-voltmeter-523153/
https://pixabay.com/photos/vernier-caliper-measuring-instrument-452987/
https://pixabay.com/photos/vernier-caliper-measuring-instrument-452987/
https://pixabay.com/photos/vernier-caliper-measuring-instrument-452987/
https://pixabay.com/photos/vernier-caliper-measuring-instrument-452987/


systems indicate the instant or accumulated value of the quantity to be measured. 

Examples are automobile speedometers and odometers, clinical thermometers, and 

pressure gauges.
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Fig. 2.15 Bourdon gauge. 
(https://pixabay.com/ 
photos/pressure-
manometer-measure-up-164 
6350/) 

Fig. 2.16 Analog scale. 
(https://pixabay.com/ 
photos/libra-kitchen-scale-1 
638996/)

https://pixabay.com/photos/pressure-manometer-measure-up-1646350/
https://pixabay.com/photos/pressure-manometer-measure-up-1646350/
https://pixabay.com/photos/pressure-manometer-measure-up-1646350/
https://pixabay.com/photos/pressure-manometer-measure-up-1646350/
https://pixabay.com/photos/libra-kitchen-scale-1638996/
https://pixabay.com/photos/libra-kitchen-scale-1638996/
https://pixabay.com/photos/libra-kitchen-scale-1638996/
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Fig. 2.17 Odometer 

Knowing a Little More... (Fig. 2.17) 

(https://pixabay.com/photos/speedometer-mileage-speed-car-498748/) 

The function of the odometer is to measure the distances traveled by the 

vehicle. The cars have a digital odometer, which works by electrical pulses a 

sensor generates on its axis. Each turn sends a pulse to the electronics center, 

generating a signal for the panel to scan the information. However, many 

vehicles in circulation still have a mechanical odometer. This system consists 

of a wire rope connected to the gearbox, the speedometer clock, and a gear 

game hidden behind the vehicle panel. In the gearbox, the cable is connected to 

a gear that moves according to the axle turns. Consequently, the wire rope also 

turns around, moving an endless gear installed near the panel. This piece 

triggers a gear game that pushes the marker. 

A control system uses a transducer and controller to maintain a quantity or 

process within specific values. According to the definition, a transducer is a “device 

used in measurement, which provides a quantity of output, which has a specified 

relationship with an input quantity.” 

In this situation, the quantity is measured, its value is compared to a reference 

value, and a correction action is taken to maintain the quantity close to the reference 

value.

https://pixabay.com/photos/speedometer-mileage-speed-car-498748/
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Fig. 2.18 Level control 
system 

SP LC LT 
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Fig. 2.19 Metrological traceability 

Knowing a Little More... 

See the Level control system of a reservoir, as shown in Fig. 2.18. 

The transducer (LT) sends to the controller (LC) an electrical signal 

proportional to the level (L) variation in the water tank. The controller 

compares this sign of the process variable (level) to a reference (set point) 

value (SP) and, depending on the magnitude of this difference, sends a 

correction signal to the control valve (LV), so that it reduces (or increases) 

the liquid flow rate to keep the level stable within the reservoir. 

An alarm system operates on warning, sound, or visual warning equipment after 

an unwanted or dangerous situation (e.g., a fire alarm). 

The alarm system can also operate with safety systems to maintain equipment 

integrity, especially for people. 

When investigating a phenomenon, an example is measuring the “hole in the ozone 

layer” in the earthly atmosphere to determine its consequences for life on the planet. 

2.3.6 Metrological Traceability 

The definition of metrological traceability is (Fig. 2.19): 

Property of a measurement result whereby the result can be related to a reference through a 

documented unbroken chain of calibrations, each contributing to the measurement uncer-

tainty. [VIM—2.41].
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The calibrated standards and instruments with guaranteed traceability transfer 

accuracy to measurements, enabling an adequate estimate of the final measurement 

uncertainty. Thus, before performing and using a measurement’s result as relevant 

information for any decision, it is necessary to analyze the measurement process to 

know all sources of influence associated with metrological agents. 

Once these sources of influence are identified, the measurement process must be 

active to yield quality measures, that is, metrological reliability. 

Thus, the uncertainty derived from each metrological agent influences the final 

uncertainty of the measurement process. In the measurement chapters (Chaps. 5 and 

6), we will address the concept of uncertainty and the methodology for its estimate, 

considering the variables of influence. 

2.4 Metrological Reliability 

Generically, reliability is the capacity or probability of a system to perform a 

function and maintain its operation under specific conditions, correctly, as provided 

in the project, during a predetermined period, under routine circumstances, as well as 

in hostile and unexpected circumstances. 

Thus, metrological reliability is the ability of a measurement system to convey 

certainty and confidence in the results obtained. Without metrological proof, there is 

no way to guarantee the reliability of control data of characteristics that determine 

the quality of the product. 

Analyzing the environment on the consumer side, the existing metrological 

system should enable users’ access to compliance verification mechanisms of the 

products offered. From the results of the measurements performed by manufacturers 

and verified by the controlling agencies, consumers may trust that industrialized 

products have been adequately measured (e.g., weight, volume, chemical composi-

tion, concentration, etc.) and released for commercialization. 

2.5 Metrology Areas of Expertise 

We can separate metrology into two significant areas of activity: Legal metrology 

and Scientific and industrial metrology. 

2.5.1 Legal Metrology 

It is the area of metrology closest to the ordinary citizen. Its primary function is to 

protect products and services that involve and need measurement.
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The International Organization of Legal Metrology (OIML) defines it as “the 

application of legal requirements for measures and measuring instruments.” 

Metrological regulations based on the OIML guidelines establish technical 

requirements, metrological control, use, and marking requirements, and the units 

of measure that measuring instrument manufacturers and users must meet. 

In addition to commercial activities, measuring instruments used in official 

activities, in the medical area, in the manufacture of medicines, and the fields of 

occupational, environmental, and radiation protection are subjected to metrological 

control. In these cases, control assumes particular importance in the face of the 

dangerous adverse effects of wrong results on human health. 

Table 2.2 shows the measuring instrument categories included in the OIML 

Certification System and the corresponding OIML Recommendations. 

The OIML Certification System (OIML-CS) is a system for issuing, registering, 

and using OIML certificates and their associated OIML-type evaluation/test reports 

for types of measuring instruments (including families of measuring instruments, 

modules, or families of modules) based on the requirements of OIML 

Recommendations. 

2.5.2 Scientific and Industrial Metrology 

Scientific metrology is linked to scientific research and methodologies of the highest 

metrological quality. It deals with measurement standards and laboratory 

instruments. 

As they unfold, these actions also include industry measurement systems (indus-

trial metrology), which control production processes and ensure the quality of 

products and services offered to the market. 

2.6 International Metrological Structure 

The international structure of each of the two significant areas of Metrology (legal 

and scientific) is very similar. 

2.6.1 Legal Metrology 

International Organization of Legal Metrology (OIML) 

It is an intergovernmental treaty that, among other activities, develops regulations, 

rules, and documents for use by the legal and industry authorities.
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Table 2.2 Measuring instrument category and OIML Recommendation 

Measuring instrument category 
Recommendation 
number 

Taximeters R 21 

Material measures of length R 35 

Active electrical energy meters R 46 

Water meters R 49 

Continuous totalizers R 50 

Automatic catchweighers R 51 

Sound level meters R 58 

Moisture meters for cereal grains and oilseeds R 59 

Load cells R 60 

Automatic gravimetric filling instruments R 61 

Heat meters R 75 

Non-automatic weighing instruments R 76 

Cryogenic liquids R 81 

Level gauges for stationary storage tanks R 85 

Integrating-averaging sound level meters R 88 

Focimeters R 93 

Vehicle exhaust emissions R 99 

Sound calibrators R 102 

Pure-tone audiometers R 104 

Automatic rail-weighbridges R 106 

Discontinuous totalizers R 107 

Pressure balances R 110 

Weights R 111 

Liquids other than water R 117 

Speech audiometry R 122 

Evidential breath analyzers R 126 

Ergometers for foot crank work R 128 

Multidimensional measuring instruments R 129 

Liquid-in-glass thermometers R 133 

Weighing road vehicles in motion R 134 

Areas of leather R 136 

Gas meters R 137 

Compressed gaseous fuel systems for vehicles R 139 

Continuous measurement of SO2 in stationary source emissions R 143 

Continuous measurement of CO, NOx in stationary source emissions R 144 

Ophthalmic instruments—Impression and applanation tonometers R 145 

Protein measuring instruments for cereal grains and oilseeds R 146 

Non-invasive non-automated sphygmomanometers R 148 

Non-invasive automated sphygmomanometers R 149 

Continuous totalizing automatic weighing instruments of the arched 
chute type 

R 150
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Fig. 2.20 OIML 

Knowing a Little More... (Fig. 2.20) 

Since 1955, OIML has launched the foundations for a world metrology 

system. 

The mission of the OIML is to enable economies to put in place effective legal 

metrology infrastructures that are mutually compatible and internationally recog-

nized, for all areas for which governments take responsibility, such as those which 

facilitate trade, establish confidence and harmonize the level of consumer protection 

worldwide. 

Available in: https://www.oiml.org/en 

International Conference of Legal Metrology 

OIML’s maximum decision-making body. The conference, which takes place every 

four years, comprises representatives of member countries, countries that come 

together as observers, and associations of international institutions. Its purpose is 

to define the general policy and promote the implementation of OIML metrological 

guidelines. 

International Committee on Legal Metrology (CIML) 

It is the organization’s functional decision body. Approve the annual BIML work 

plan and adopt OIML recommendations, documents, and publications. 

International Bureau of Legal Metrology 

It is OIML’s secretariat and headquarters. The bureau organizes conference and 

commission meetings, executes conference decisions and commissions, and dissem-

inates and distributes the organization’s publications (Fig. 2.21). 

2.6.2 Scientific Metrology 

General Conference of Weights and Measures (CGPM) 

The CGPM is made up of member state delegates and associate observers. Among 

its attributions is the discussion and analysis of the necessary provisions to ensure the 

propagation and improvement of the SI.

https://www.oiml.org/en%3e
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Fig. 2.21 BIML. (https:// 
www.oiml.org/en/ 
ressources/biml/sacre_ 
coeur.jpg) 

Fig. 2.22 BIPM 

International Committee on Weights and Measures (CIPM) 

Composed of 18 member countries, it acts as an international scientific authority, 

and its main task is to promote world uniformity in units of measure through direct 

action or the presentation of resolution projects to the CGPM. 

International Bureau of Weights and Measures (BIPM) (Fig. 2.22) 

An intergovernmental organization established by the Meter Convention in 1875 

aims to ensure and promote the global comparability of measurements, including the 

supply of an international unit system (SI) and the International Reference Time 

Scale (UTC) for scientific research and innovation. 

2.7 Regional Metrological Structure 

2.7.1 EURAMET—The European Association of National 

Institutes of Metrology 

The mission is to develop and disseminate an integrated, profitable, and competitive 

measurement infrastructure for Europe, always considering the needs of the industry, 

companies, and governments. With its services, EURAMET supports members in 

meeting national requirements and establishing a balanced European measurement

https://www.oiml.org/en/ressources/biml/sacre_coeur.jpg
https://www.oiml.org/en/ressources/biml/sacre_coeur.jpg
https://www.oiml.org/en/ressources/biml/sacre_coeur.jpg
https://www.oiml.org/en/ressources/biml/sacre_coeur.jpg


infrastructure. Improving the benefits of metrology for society is one of the highest 

priorities for EURAMET and its members. 
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The CIPM MRA is very important for achieving the objectives. The International 

Committee of Weights and Measures (CIPM) sponsored the creation of a mutual 

recognition scheme (CIPM MRA) to promote and formalize the technical compe-

tence of its national metrology institutes and designated signatories. 

Regional Metrology Organization 

EURAMET is the European Regional Metrology Organization (RMO). It coordi-

nates the cooperation of the European National Metrology Institutes (NMI) in fields 

such as Metrology Research, measurement traceability to SI units, international 

recognition of national measurement standards, and calibration and measurement 

capabilities (CMC). Through the transfer of knowledge and cooperation between the 

members, EURAMET facilitates the development of national metrology 

infrastructure. 

European Research Programs in Metrology 

EURAMET is responsible for the elaboration and execution of the European 

Metrology Research Program (EMRP) and the European Metrology Program for 

Innovation and Research (EMPIR), which is designed to promote collaboration 

between the National Institutes of Metrology (INM) European and the partners of 

the industry or the academic world. 

Goals 

Commitment of key stakeholders 

EURAMET must understand and prioritize investment in European measurement 

infrastructure to address companies’ and governments’ present and future priorities. 

To achieve this, EURAMET will strengthen your links and influence with key users 

of the measurement infrastructure. 

The objective is to develop critical associations, understand interested parties’ 

needs, increase the work’s impact, and anticipate market trends and needs based on 

prospective analysis. 

Increase influence with European political leaders and national governments 

EURAMET’s responsibilities include supporting policy formulation, mainly 

when measurement is essential in establishing and implementing the policy. Mea-

sures are an essential component of many European directives. EURAMET mem-

bers actively support the implementation of many CE directives through 

measurement and monitoring work. 

Further, develop cooperation in I&D 

In recent years, EURAMET has worked successfully with the European Com-

mission and many national governments of member countries to develop the 

European Metrology Research Program (EMPR) and the European Metrology 

Program for Innovation and Research (EMPIR). 

The programs have initiated more than 100 joint research projects, and many 

more are to come. The objective is to continue developing Europe’s metrology 

capacity to face world challenges.
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Give a high value to members and associates 

The objective is:

• Understand the actual needs and visions of the members and have an inclusive 

approach to all the needs of the members;

• Support all members and associates in achieving their objectives, taking into 

account the existing diversity but in balance with general European needs;

• Increase the scope of cooperation and exchange of resources/facilities for mutual 

benefit and convergent development;

• Stimulate the development of a stable national framework for metrology through 

the proper participation of the critical actors in metrology and support for 

excellence in metrology as a driving force. 

Support quality infrastructure in Europe and internationally 

The objective is:

• Improve the efficiency and efficacy of CIPM/MRA;

• Influence the Joint Committee of the Regional Metrology Organization in close 

cooperation with other RMOs to optimize CIPM/MRA processes and 

governance;

• Strengthen cooperation with European Cooperation for Accreditation (EA) in 

areas of common interest associated with accreditation;

• Work with the EA to implement technical aid projects in accession and outside 

European countries. 

European Metrology Networks 

Close collaboration in the science of measurement with a new sustainable structure 

EURAMET and its members envision a world-leading metrology capacity based 

on high-quality scientific research and an effective and inclusive infrastructure that 

meets the rapid needs and progress of the end users. The European Metrology 

Networks (EMN) help achieve this goal. 

There are currently 12 EMNs: Advanced Manufacturing, Clean Energy, Climate 

and Ocean Observation, Energy Gases, Laboratory Medicine, Mathematics and 

Statistics, Pollution Monitoring, Quantum Technologies, Radiation Protection, 

Safe and Sustainable Food, Smart Electricity Grids, and Smart Specializations in 

Northern Europe. 

The EMNs will analyze the needs of European and world metrologies and address 

them in a coordinated manner. Next, the members of the EMN will formulate 

common metrology strategies that include aspects such as research, infrastructure, 

knowledge transfer, and services. The members will commit to contributing to the 

EMN and helping to establish sustainable structures strategically planned from the 

beginning. 

By providing a single point of contact to obtain information, support regulation 

and standardization, promote best practices, and establish a longer-term integral 

infrastructure, the EMNs aim to create and disseminate knowledge, obtain



international leadership and recognition, and foster collaboration throughout the 

scientific community of the measurement. 
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(Text adapted from https://www.euramet.org) 

2.7.2 Inter-American Metrology System (SIM) 

The Inter-American Metrology System (SIM), instituted in 1979, resulted from a 

broad agreement between the national metrology organizations involving 34 nations. 

Its mission is to promote and support an integrated measurement infrastructure in the 

Americas, which allows each National Institute of Measurement to encourage 

innovation, competitiveness, trade, consumer security, and sustainable development, 

effectively participating in the international metrology community. 

Organized in five subregions (Noramet, Carimet, Camet, Andimet, and Suramet), 

it has a governor board structured by a coordinator of each subregion, a technical 

committee, a professional development committee, and an integrated representation 

that provides access to SIM in a worldwide agreement to compare standards at the 

highest metrology level. 

SIM is committed to implementing a global measurement system in the Americas 

that will ensure the confidence of all users. Working to establish a robust regional 

measuring system, SIM is essential to the development of a free trade area in the 

Americas. 

In the context of established cooperation, measures taken by the member coun-

tries will help to achieve:

• Establishment of national and regional measurement systems.

• Establishment of a hierarchy of the national standards of each country and 

binding on regional and international standards.

• Establishment of equivalence between national measurement standards and cal-

ibration certificates issued by national metrology laboratories.

• Comparability of the results obtained in measurement processes performed in 

laboratories within the system.

• Training of technical and scientific personnel.

• Distribution of technical and scientific documentation.

• Binding with international standards maintained by the International Bureau of 

Weights and Measures (BIPM).

• Straight cooperation with the BIPM, the OIML, and other international organi-

zations interested in laboratory accreditation (ILAC) and with technology and 

measurement patterns (IMEKO), research and development (universities and 

organizations P&D), oriented to promote competitiveness, promote more equita-

ble business transactions and support essential development in health, safety, 

sustainable industrial development, and environmental protection. 

(Text adapted from https://sim-metrologia.org/)

https://www.euramet.org
https://sim-metrologia.org/%3e
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2.7.3 Other Regional Metrological Structures 

The Asia Pacific Metrology Programme (APMP) 

The APMP is a grouping of national metrology institutes (NMIs) from the Asia-

Pacific region engaged in improving regional metrological capability by sharing 

expertise and exchanging technical services among Member laboratories. The 

APMP is one of the six Regional Metrology Organizations (RMOs) that implement 

the CIPM MRA for the worldwide mutual recognition of measurement standards 

and calibration and measurement certificates. It is also one of the Specialist Regional 

Bodies (SRBs) working with Asia-Pacific Economic Cooperation (APEC) to facil-

itate developing and implementing standards and conformance infrastructures that 

address APEC goals. 

(Text adapted from https://apmpweb.org/) 

Euro-Asian Cooperation of National Metrological Institutions (COOMET) 

COOMET is an organization for the Euro-Asian cooperation of National Metrology 

Institutions (from the countries of Central and Eastern Europe, Asia, and nearby 

countries). It is open to the National Metrology Institutions of countries from other 

regions to join it. Its mission is to raise the level of metrology development, support, 

and expansion of an integrated measurement infrastructure for countries in the Euro-

Asian region and other interested countries that makes it possible for every national 

metrological institute to promote innovation, competitiveness, trade, consumer 

safety, sustainability and ensuring international recognition. Main areas of cooper-

ation: Measurement standards of physical quantities; Legal metrology; Quality 

management systems; Information and training; Innovative research in metrology. 

(Text adapted from https://www.coomet.net/) 

Southern African Development Community Cooperation in Measurement 

Traceability (SADCMET) 

The SADC Cooperation in Measurement Traceability coordinates metrology activ-

ities and services in the region to provide regional calibration and testing services, 

including regulatory bodies, with readily available traceability to the SI units of 

measurement through legally defined and regionally and internationally recognized 

national measurement standards. Its primary objectives are to (i) Promote closer 

collaboration among its members in their work on measurement standards within the 

present decentralized regional metrology structure; (ii) Improve existing national 

measurement standards and facilities and make them accessible to all members; (iii) 

Ensure that new national measurement standards and facilities developed in the 

context of SADCMET collaborations are accessible to all members; (iv) Contribute 

to the formulation of and participate in intra- and interregional systems to maintain 

the continued traceability of the national measurement standards of the SADC 

member states to the SI units of measurement; (v) Encourage the harmonization of 

legislation relating to national measurement standards. 

(Text adapted from http://www.sadcmet.org/SitePages/Home.aspx)

https://apmpweb.org/%3e
https://www.coomet.net/%3e
http://www.sadcmet.org/SitePages/Home.aspx%3e
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2.8 Metrological Structure in Brazil 

2.8.1 National System of Metrology, Standardization, 

and Industrial Quality (SINMETRO) 

SINMETRO was instituted by Law Number 5966 of December 11, 1973, and is 

tasked with managing the technological services infrastructure in metrology (legal, 

scientific, and industrial), standardization, industrial quality, and conformity 

assessment. 

Compose the SINMETRO:

• National Council of Metrology, Standardization and Industrial Quality 

(CONMETRO) and its technical committees.

• National Institute of Metrology, Quality and Technology (INMETRO).

• Brazilian Association of Technical Standards (ABNT).

• Certification bodies for quality systems, environmental management, products, 

and personnel; Inspection organisms; Training bodies; Proficiency testing bodies.

• Accredited calibration and testing laboratories.

• State Institutes of Weights and Measures (IPEM) and.

• State metrological networks. 

SINMETRO Areas 

Legal Metrology 

The activities of Legal Metrology in Brazil are before the law that instituted the 

SINMETRO. In the 1930s, there was already a “Metrology Law,” and metrological 

control began, in fact, with the creation of the National Institute of Weights and 

Measures (INPM) in 1961, replaced in 1973 by INMETRO, which incorporated its 

activities. 

As stated earlier, legal metrology is one of the largest consumer protection 

systems. INMETRO coordinates the Brazilian Network of Legal Metrology and 

Quality (RBMLQ-I), which comprises the States’ Weight and Measures Institutes 

(IPEM). 

Scientific and Industrial Metrology 

Scientific and industrial metrology promotes competitiveness and stimulates an 

environment favorable to the country’s scientific and industrial development. It is 

also essential to technological innovation. INMETRO coordinates this process, is 

responsible for the fundamental metrological quantities with reliability equal to that 

of the countries of the first world, and transfers measurement standards to the 

society. 

Testing and Calibrations 

Responsibility for test activities (used for product certification) and calibrations 

(from standards and industrial instruments) within the SINMETRO are the labora-

tories that make up the Brazilian Testing Laboratories Network (RBLE) and the 

Brazilian Calibration Network (RBC). They are laboratories accredited by 

INMETRO and can be public, private, mixed, national, or foreign.
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Standardization and Technical Regulation 

The Brazilian Association of Technical Standards (ABNT) has this responsibility 

in the SINMETRO and the authority to accredit sectoral standardization bodies for 

performing these tasks. ABNT is a non-governmental organization that is 

maintained with the contribution of the federal government and its associates. It 

represents Brazil in international standardization forums (ISO and IEC) and regional 

forums (COPANT and MERCOSUR). Conformity assessment and accreditation 

activities are based on ISO/IEC standards and guides. 

Accreditation 

Accompanying the international trend in the sense that there is only one 

accrediting organism per country within the scope of the SINMETRO, the only 

accrediting body is INMETRO. ABNT Standards and Guides, COPANT, AMN 

(MERCOSUR), IAF, ILAC, and IAAC guidelines establish the accreditation criteria 

adopted in the SINMETRO. INMETRO, therefore, believes in certification organ-

isms (for quality systems, environmental management, products, and personnel), 

inspection, training, proficiency testing (which provides more excellent reliability to 

RBC and RBLE), calibration, and testing laboratories. 

Knowing a Little More... 

International institutions related to standardization, regulation, and accredita-

tion activities: 

International Organization for Standardization (ISO) (www.iso.org) 

It is an independent, non-governmental organization endorsed by 

171 national standardization bodies. Through its members, this entity gathers 

experts to share knowledge and, based on consensus, voluntarily develops 

relevant international standards that support innovation and provide solutions 

to global challenges. 

International Electrotechnical Commission (IEC) (www.iec.ch) 

It is the world leader organization that prepares and publishes international 

standards for all electrical, electronic, and related technologies. Industry, 

commerce, government, testing and research laboratory experts, universities, 

and consumer groups participate in IEC standardization work. 

Pan American Standards Commission (COPANT) (www.copant.org) 

It is a non-profit civil association composed of the national standardization 

bodies of the Americas. It is the reference for technical standardization and 

conformity assessment for the countries of the Americas, their members, and 

their international peers. 

Mercosur Standardization Association (AMN) (www.amn.org.br) 

It is a non-profit civil association and non-governmental organization and 

the only organism responsible for voluntary normalization within Mercosur. It 

is composed of the Argentine Institute of Standardization and Certification 

(IRAM), the Brazilian Association of Technical Standards (ABNT), the 

(continued)

http://www.iso.org
http://www.iec.ch
http://www.copant.org
http://www.amn.org.br


Uruguay Institute of Technical Standards (UNIT), and the National Institute of 

Technology, Standardization and Metrology (INTN—Paraguay). 
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International Accreditation Forum (IAF) (www.iaf.nu) 

The World Association of Accreditation Bodies and other bodies are 

interested in conformity assessment in management systems, products, ser-

vices, personnel, and similar conformity assessment programs. Its principal 

function is to develop a single worldwide conformity assessment program to 

reduce risk for companies and their customers and ensure that accredited 

certificates can be reliable. 

Inter-American Accreditation Cooperation (IAAC) (www.iaac.org.mx) 

It is an association whose mission is to promote cooperation between 

accreditation bodies and stakeholders of the Americas, aiming at developing 

conformity assessment structures to improve products, processes, and ser-

vices. It was created in 1996 in Uruguay and incorporated in 2001 as a civil 

association according to Mexican law. It is not for profit and works based on 

the cooperation of its members and stakeholders. It obtains adhesion fees, 

voluntary contributions from its members, and donations based on regional 

organizations projects, particularly the Organization of American States 

(OAS) and the Physikalisch Technische Bundesanstalt (PTB) from Germany. 

2.8.2 Brazilian Laboratory Structure 

National Institute of Metrology, Standardization and Technology (INMETRO) 

Their skills and attributions in the area of metrology are:

• Ensuring the standardization, maintenance, and dissemination of fundamental 

units of the international system (SI).

• Tracking the measurement units to international standards and spreading them to 

industries.

• Establishing the methodologies for the comparison of measurement standards, 

instruments, and materialized measures.

• Tracking the reference standards of the laboratories accredited to national 

standards.

• Acting in the area of legal metrology and supporting standardization and indus-

trial quality activities.

• Accrediting laboratories and establishing value ranges and measurement 

uncertainty. 

INMETRO’s laboratories are home to technical divisions in acoustics and vibra-

tions, electricity, mechanics, optics, thermal, and chemistry. They are 

responsible for:

http://www.iaf.nu
http://www.iaac.org.mx
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• Standardizing the units of the International System of Units.

• Ensuring the traceability of national standards to BIPM standards or comparing 

them to national standards of other countries by key comparisons coordinated by 

the BIPM.

• Ensuring the traceability of the reference standards of the accredited laboratories 

to national standards.

• Performing calibration of standards and measurement instruments as well as 

specific tests. 

Designated Laboratories by INMETRO

• National Ionizing Radiation Metrology Laboratory (LNMRI) of the Institute of 

Radioprotection and Dosimetry of the National Nuclear Energy Commission 

(IRD/CNEN) 

LNMRI, since 1989, has been designated by INMETRO to work in the area of 

ionizing radiation. Before that, in 1976, the laboratory joined the Secondary Stan-

dard Dosimetry Laboratory—SSDL network of the International Atomic Energy 

Agency (IAEA) to ensure the quality of radiotherapy measurements worldwide. 

LNMRI aims to develop, maintain, and disseminate national ionizing radiation 

and radioactivity standards. In addition, it provides calibration services and stan-

dards and develops necessary research in scientific metrology support for national 

nuclear technological development. It maintains radioactive standards and measure-

ment systems for calibrating monitors, dosimeters, and radioactive sources. It is 

responsible for the custody and maintenance of the Brazilian standard of neutron 

fluency and for developing metrological techniques to standardize new 

radionuclides. 

(Text adapted from http://www.ird.gov.br).

• Division Hour Service (DSHO) of the National Observatory (ON) 

DSHO, whose activities began at the Imperial Observatory of Rio de Janeiro, 

created on October 15, 1827, by Emperor Dom Pedro I, obeys the established 

international conventions and is in charge of generating, conserving, and dissemi-

nating the Brazilian legal time (HLB) to the entire national territory, with different 

levels of accuracy and reliability, according to Brazilian law, besides promoting 

research and development in the field of time and frequency metrology. 

Since 1983, INMETRO has accredited the time service to perform time and 

frequency calibrations, gaining the function of Time and Frequency Primary Labo-

ratory. Thus, DSHO is responsible for the national time and frequency standards that 

underlie Brazilian metrological traceability. Internationally, BIPM is the body that 

defines the traceability of national and HLB standards. 

All signs generated and transmitted are referenced to national time and frequency 

metrological standards, interreferenced by four cesium and one rubidium clock. The 

frequencies of these signals have an accuracy of 0.5 × 10-12 , equivalent to an error 

of 2.5 × 10-6 Hz at a frequency of 5 MHz. There is a permanent reference to the 

coordinated universal time generated by BIPM.

http://www.ird.gov.br
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(Text adapted from http://pcdsh01.on.br). 

Laboratories Accredited by INMETRO 

INMETRO grants accreditation based on the standard ISO/IEC 17025: 2017, 

according to the guidelines established by the International Laboratory Accreditation 

Cooperation (ILAC) and the Good Practices Codes (GPC) from the Organization for 

Economic Co-Operation and Development (OECD). 

Accreditation is allowed to any laboratory that provides calibration or testing 

service, independently or linked to an organization, public or private, national or 

foreign, despite its size or area of expertise. 

2.9 Technical Standards and Metrology 

A technical standard establishes quality, performance, and safety requirements for 

providing something, its use, or its final destination. It also stipulates procedures, 

standardizes shapes, dimensions, types, and uses, fixes classifications or terminolo-

gies and glossaries, and defines how to measure and determine characteristics, such 

as test methods. 

Technical standards apply to products, services, processes, and management 

systems in the most diverse fields. In general, the customer establishes the technical 

standard to supply the good or service he wants to acquire. This can be done 

explicitly when the customer clearly defines the applicable standard or expects that 

the rules in use will be followed in the market where it operates. 

Important 

We can say that there is no metrology without technical standards! 

2.9.1 The ISO 9001:2015 and the Metrology 

ISO 9001:2015—Quality Management Systems—Requirements [11] specifies 

requirements for a management system that can be used for internal application by 

organizations, certification, or contractual purposes. Focusing on the metrological 

issue, there is a specific technical requirement in the standard, 7.1.5.2 Measurement 

Traceability, which establishes the following: 

When measurement traceability is a requirement or is considered by the organization to be 

an essential part of providing confidence in the validity of measurement results, measuring 

equipment shall be: 

(a) calibrated or verified, or both, at specified intervals, or before use, against measurement 
standards traceable to international or national measurement standards; when no such

http://pcdsh01.on.br
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standards exist, the basis used for calibration or verification shall be retained as 

documented information; 

(b) identified to determine their status; 
(c) safeguarded from adjustments, damage or deterioration that would invalidate the 

calibration status and subsequent measurement results; 

The organization shall determine if the validity of previous measurement results has 

been adversely affected when measuring equipment is found unfit for its intended purpose 

and shall take appropriate action as necessary. 

Knowing a Little More... 

ISO 9001 requirement 7.1.5.2 requires the measuring instruments to be veri-

fied, calibrated, or both. According to VIM—2.44, verification means pro-

viding objective evidence that a given item fulfills specified requirements. 

EXAMPLE 1 Confirmation that a given reference material, as claimed, is 

homogeneous for the quantity value and measurement procedure concerned, 

down to a measurement portion having a mass of 10 mg. 

EXAMPLE 2 Confirmation that performance properties or legal require-

ments of a measuring system are achieved. 

EXAMPLE 3 Confirmation that a target measurement uncertainty can be 

met. 

NOTE 1 When applicable, measurement uncertainty should be taken into 

consideration. 

NOTE 2 The item may be, e.g. a process, measurement procedure, mate-

rial, compound, or measuring system. 

NOTE 3 The specified requirements may be, e.g. that a manufacturer's 

specifications are met. 

NOTE 4 Verification in legal metrology, as defined in VIML, and in 

conformity assessment in general, pertains to the examination and marking 

and/or issuing of a verification certificate for a measuring system. 

NOTE 5 Verification should not be confused with calibration. Not every 

verification is a validation. 

NOTE 6 In chemistry, verification of the identity of the entity involved, or of 

activity, requires a description of the structure or properties of that entity or 

activity. 

In addition to this requirement, we see the need for metrology in others, partic-

ularly in 7.1.4 Environment for the operation of processes, which defines that “the 

organization must determine, provide and maintain a necessary environment for the 

operation of its processes and to achieve the conformity of products and services.” 

The requirement also adds that an appropriate environment may include human 

and physical factors (e.g., temperature, heat, humidity, illumination, ventilation, and 

noise). 

Moreover, how do we measure these physical factors? Answer: Metrology.
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2.9.2 The ISO/IEC 17025:2017 and the Metrology 

The ISO/IEC 17025:2017 General requirements for the competence of testing and 

calibration laboratories [12] comprise testing and calibrations performed using 

standardized methods, non-normalized methods, and methods developed by the 

laboratory. Figure 2.23 summarizes the various normative requirements in which 

metrology is strongly present. 

Facilities and environmental conditions—req. 6.3

• Monitor, control, and register environmental conditions

• Facilities and environmental conditions cannot adversely affect the validity of the 

results 

Equipment—req. 6.4

• Laboratory must have all measuring instruments, standards, and reference mate-

rials required to perform their activities.

• Equipment capable of achieving the accuracy and measurement uncertainty 

required.

• Equipment must be calibrated.

• The laboratory must have a calibration program.

• Indicate calibration status.

• Ensure operation and calibration of an instrument that has come out of direct 

control of the laboratory.

• Intermediate checks performed according to procedure.

• Instruments protected against adjustments that invalidate results. 

METROLOGICAL 

TRACEABILITY 

SELECTION, VERIFICATION 

AND VALIDATION OF 

METHODS 

FACILITIES AND 

7.2 

6.5 

6.3 6.4 

6.8 

7.6 

7.7 

CONDITIONS 

EQUIPMENT 

TESTING AND 

CALIBRATION 

EVALUATION OF ENSURING THE 

VALIDITY OF 

RESULTS 

MEASUREMENT 

UNCERTAINTY 

ISO/IEC 17025 REQUIREMENTS 

Fig. 2.23 Metrology in the ISO/IEC 17025:2017 requirements
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Metrological traceability—req. 6.5

• Laboratory should establish and maintain metrological traceability of their mea-

surement results.

• Calibrations and measurements traceable to the SI.

• Program and procedure for calibrating reference patterns by traceable organisms; 

Used only for calibration; calibrated before and after adjustments.

• Reference materials: traceable to SI units or already certified reference materials. 

Selection, verification, and validation of methods—req. 7.2

• Use appropriate methods and procedures to evaluate the measurement 

uncertainty.

• Method validation includes, among other techniques, the calibration or evaluation 

of the trend and accuracy using standards or reference materials. 

Evaluation of measurement uncertainty—req. 7.6

• Identification of contribution sources for measurement uncertainties.

• Calibration: assessment of measurement uncertainty for all calibrations.

• Testing: assessment of measurement uncertainty or a method based on the 

method. 

Ensuring the validity of results—req. 7.7

• Use of certified reference materials.

• Interlaboratory comparison program or proficiency tests.

• Intermediate checks on measurement equipment.

• Replicated testing or calibrations.

• Retesting or recalibration of retained items. 

Reporting of results—req. 7.8 

We fully dedicate Chap. 9 of this book to discuss the importance of this requirement. 

2.9.3 Laboratory Accreditation 

Calibration Laboratories 

The authorized laboratories to perform calibration services gather technical skills 

and abilities linked to industries, universities, and technological institutes and adopt 

standards traceable to national or international metrological references, establishing 

a relationship with the units of the International System of Units (SI). 

Testing Laboratories 

Like calibration, these laboratories gather skills and technical capacities associated 

with industries, universities, and technological institutes. They are trained to carry



out tests and performance tests on products with mandatory or voluntary certifica-

tion. The traceability of the measures is guaranteed by calibration of standards in 

proven laboratories or directly in the laboratories of the National Metrology 

Laboratory. 
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2.9.4 ILAC—International Laboratory Accreditation 

Cooperation (www.ilac.org) 

ILAC is the global association for the accreditation of laboratories, inspection bodies, 

proficiency testing providers, and reference material producers, with a membership 

consisting of accreditation bodies and stakeholder organizations worldwide. It is a repre-

sentative organization that is involved with:

• the development of accreditation practices and procedures,

• the promotion of accreditation as a trade facilitation tool,

• supporting the provision of local and national services,

• the assistance in developing accreditation systems,

• the recognition of competent testing (including medical) and calibration laboratories, 

inspection bodies, proficiency testing providers, and reference material producers 

around the world. 

ILAC actively cooperates with other relevant international organizations to pursue these 

aims. ILAC facilitates trade and supports regulators by operating a worldwide mutual 

recognition arrangement—the ILAC Arrangement—among Accreditation Bodies (ABs). 

The data and test results issued by laboratories and inspection bodies, collectively known 

as Conformity Assessment Bodies (CABs), accredited by ILAC Accreditation Body members 

are accepted globally via this Arrangement. Thereby, technical barriers to trade, such as the 
re-testing of products each time they enter a new economy, are reduced to realize the free-

trade goal of “accredited once, accepted everywhere.” In addition, accreditation reduces 

risk for business and its customers by assuring accredited CABs are competent to carry out 

their work within their scope of accreditation. Further, the results from accredited facilities 

are used extensively by regulators for the public benefit in providing services that promote 

an unpolluted environment, safe food, clean water, energy, health, and social care services. 

(Text obtained from ILAC-P14:09/2020—ILAC Policy for Measurement Uncertainty in 
Calibration) 

ILAC first started as a conference, held on 24-28 October 1977 in Copenhagen, Denmark, to 

develop international cooperation for facilitating trade by promoting the acceptance of 

accredited test and calibration results. In 1996, ILAC became a formal cooperation with a 

charter to establish a network of mutual recognition agreements among accreditation 

bodies. In 2000, the 36 ILAC Full Members, consisting of laboratory accreditation bodies 

from 28 economies worldwide, signed the ILAC Mutual Recognition Arrangement (ILAC 

MRA) in Washington, DC, to promote the acceptance of technical test and calibration data 

for exported goods. The ILAC MRA for calibration and testing laboratories came into effect 

on 31 January 2001. The ILAC MRA was then extended in October 2012 to include the 

accreditation of inspection bodies. In May 2019, it was further extended to include the 

accreditation of proficiency testing providers and in May 2020 for the accreditation of 

reference material producers. (Text obtained from https://ilac.org/about-ilac/). 

The ILAC Mutual Recognition Arrangement (ILAC MRA) provides the significant technical 

underpinning to the calibration, testing, medical testing, and inspection results, provision of 

proficiency testing programs and production of the reference materials of the accredited

http://www.ilac.org
https://ilac.org/about-ilac/


•

54 2 Knowing Metrology and Its Structure

conformity assessment bodies that in turn delivers confidence in the acceptance of services 

and results. The ILAC MRA supports the provision of local or national services, such as 

providing safe food and clean drinking water, providing energy, delivering health and social 

care, or maintaining an unpolluted environment. In addition, the ILAC MRA enhances the 

acceptance of products across national borders. Technical trade barriers are reduced by 

removing the need for additional calibration, testing, medical testing, and inspection of 

imports and exports. In this way, the ILAC MRA promotes international trade, and the free-

trade goal of “accredited once, accepted everywhere” can be realized. (Text obtained from 
https://ilac.org/ilac-mra-and-signatories/). 

On the ILAC website, you can search (https://ilac.org/signatory-search/) for 

accreditation bodies of the various countries to verify the activities of calibration 

and testing (ISO/IEC 17025), medical testing (ISO 15189), inspection (ISO/IEC 

17020), proficiency testing providers (ISO/IEC 17043), and reference material pro-

ducers (ISO 17034). Use this directory to find an accreditation body in the economy 

where you require the calibrations, testing, or inspections to be carried out. 

2.9.5 The ISO 10012:2003 and the Metrology 

The ISO 10012:2003 Measurement management systems—Requirements for mea-

surement processes and measuring equipment1 [13]—provide guidelines for mea-

suring process management and metrological evidence of measuring instruments 

used to support and demonstrate conformity with metrological requirements. 

The standard declares that an effective management system ensures the instru-

ments and measurement processes are suitable for their intended use. It also points 

out that the management system should manage the risk that these measuring 

instruments and methods can produce incorrect results that affect the quality of an 

organization’s products. 

ISO 10012: 2003 is an “essentially metrological” standard, and all its require-

ments deal with important subjects. However, we will highlight requirement 7— 

metrological confirmation and realization of measurement processes—which pre-

sents a series of exciting guidelines, some of which we present to follow. 

Knowing a Little More... 

The following scheme represents a management model of a measurement 

process, and the numbers in Fig. 2.24 refer to ISO 10012: 2003 requirements. 

Recalibration of a measuring instrument is unnecessary if it is within a valid 

calibration situation. The metrological proof procedure may include mechanisms 

1 The ISO 10012: 2003 standard treats measuring instrument as a measurement equipment. As we 
did not find this term in VIM, we always replace for instrument.

https://ilac.org/ilac-mra-and-signatories/
https://ilac.org/signatory-search/%3e
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Fig. 2.24 Measurement process management. (Source: ISO 10012:2003) 

to verify that the uncertainties and measurement errors are within the permissible 

limits.

• Examples of metrological characteristics of instruments: range, trend, repeatabil-

ity, stability, hysteresis, effects of influence quantities, error, and reading 

resolution.

• Calibration history, technology, and knowledge advances can be used to deter-

mine metrological proof intervals. Statistical process control techniques may help 

analyze calibration intervals.

• The calibration results should be recorded, so that the traceability of all measure-

ments can be demonstrated and that calibration results can be reproduced under 

conditions close to the original conditions.

• A measurement process may require data correction, for example, due to envi-

ronmental conditions.

• When specifying the measurement process, it may be necessary to determine 

which measurements are required, what methods to use, what instruments should 

be employed, and which skills and qualifications of the team will perform the 

measurements.

• It is recommended that the impact of the quantities of influence on the measure-

ment process be quantified.

• The performance characteristics required for the intended use of the measurement 

process must be identified and quantified. These characteristics are measurement 

uncertainty, stability, repeatability, reproducibility, maximum permissible error, 

and user skill level.

• It is recommended that the measurement uncertainty consider the uncertainty of 

the calibration of the measurement instrument.

• Traceability is usually achieved through reliable calibration laboratories that can 

be traced to national measurement standards. A laboratory that meets the require-

ments of ISO/IEC 17025: 2017 can be considered trustworthy.
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Still, within requirement 7—Metrological confirmation and realization of mea-

surement processes, it is essential to highlight the issue of records of the metrological 

evidence process. These records should include:

• Single description and identification of the instrument: type, model, serial num-

ber, manufacturer, etc.

• Date that metrological evidence was performed.

• Evidence results.

• Interval of the following evidence.

• Identification of the procedure (or method, norm, instruction, etc.) of evidence.

• Maximum acceptable or permissible errors.

• Relevant environmental conditions and declaration on necessary corrections.

• Uncertainties involved in calibration.

• Provide details of any intervention (maintenance, adjustment, modification) in the 

measuring instrument.

• Limitations of use.

• Identification of those who performed the metrological evidence.

• Identification of those who are responsible for any correction of information 

recorded.

• Single identification of the report or calibration certificate.

• Traceability of measurement results.

• Metrological requirements for intended use.

• Result of calibration performed after, and where required, before any intervention 

in the measuring instrument. 

The standard states that the retention time of metrological evidence records 

depends on several factors, such as customer requirements, statutory or regulatory 

requirements, and the manufacturer’s civil liability. Records related to measurement 

standards may need to be kept indefinitely. 

2.9.6 Technical Standard and Technical Regulation 

2.9.6.1 Technical Standard 

ISO (International Organization for Standardization) defines a technical standard as 

“a document established by consensus and approved by a recognized organism, 

which provides minimum rules, guidelines or characteristics for activities or their 

results, aiming at obtaining a great degree of sorting in a given context.” 

It should be highlighted that technical standards are established by consensus 

among those interested and approved by a recognized organism. They are also 

developed for the benefit and cooperation of all interested parties and, in particular, 

to promote the optimal global economy, taking into account functional conditions 

and safety requirements.
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(a) Use of the Standards 

Standards are used as a reference for conformity evaluation, such as certification, 

calibration, or testing. 

In addition to intending that the product follow a particular standard, the customer 

often wants conformity with this standard to be demonstrated through conformity 

evaluation procedures. Sometimes, these procedures, particularly certification, are 

legally required for some markets (compulsory certification established by the 

government to commercialize products and services). In others, although there is 

no legal obligation, current practices in this market make it indispensable to use 

specific conformity procedures, usually certification. 

The legal order generally considers that the rules in force in the market should be 

followed unless the client explicitly establishes another rule. Thus, when a company 

intends to introduce its product or service into a particular market, it should seek to 

know the rules that apply there and fit. 

(b) Voluntarity of the Standards 

The standards are voluntary and not mandatory by law, and it is possible to provide a 

product or service that does not follow the applicable standard in the particular 

market. However, in several countries, they are mandatory, at least in some areas. 

On the other hand, providing a product that does not follow the applicable 

standard in the market implies additional efforts to introduce it to this market. 

These include convincingly demonstrating that the product meets customer needs 

and ensuring that issues like exchanging components and inputs will not represent an 

additional impediment or difficulty. From a legal point of view, when the applicable 

standard does not follow, the supplier has additional responsibilities for using the 

product. 

Frequently, a standard refers to other standards necessary for its application. 

Standards may also be required to comply with technical regulations or compulsory 

certification. 

(c) International, Regional, and National Standards 

International 

These are the technical standards established by an international standardization 

organism for application in all countries, for example, the rules published by ISO 

(International Organization for Standardization), IEC (International Electrotechnical 

Commission), or ITU (International Telecommunication Union). 

Regional 

These are the technical standards established by a regional standardization organ-

ism for application in countries that belong to this region, such as the rules published 

by CEN (European Committee for Standardization), CENELEC (European Com-

mittee for Electrotechnical Standardization), or COPANT (Pan American Standards 

Commission). 

National 

These are technical standards established by a national standardization organism 

for application in a given country. For example, in Brazil, Brazilian standards (NBR) 

are prepared by ABNT (Brazilian Association of Technical Standards), in Germany



by DIN (Deutsches Institut Für Normung), in England by BSI (British Standards 

Institute), and in the United States of America by ANSI (American National 

Standards Institute). 
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2.9.6.2 Technical Regulation 

A technical regulation is a document a legal authority adopts to do so. It contains 

mandatory rules and establishes technical requirements, either directly, by reference 

to technical standards, or by incorporating their content, in whole or in part. In 

general, technical regulations aim to ensure aspects related to health, safety, envi-

ronment, consumer protection, and fair competition. Compliance with a technical 

regulation is mandatory, and non-compliance is illegible and punishable by the 

corresponding punishment. 

Sometimes, a technical regulation establishes the technical rules and requirements 

for a product, process, or service and can also establish procedures for assessing 

compliance with regulation, including compulsory certification. 

Technical Regulations and International Trade 

All countries issue technical regulations. Thus, when it is intended to export a 

product for a particular market, it is essential to know if the product or service to 

be exported is subject to a technical regulation in that country in particular. 

The WTO Trade Technical Barriers Agreement establishes a series of principles 

to eliminate unnecessary obstacles to trade, particularly technical barriers related to 

standards, technical regulations, and compliance assessment procedures that can 

make it difficult to access products to markets. One of the essential points of the 

agreement is the understanding that the standards prepared by international stan-

dardization bodies (ISO or IEC) constitute the reference for global trade. The 

agreement stipulates that, whenever possible, governments must adopt technical 

regulations based on international standards, considering that technical barriers do 

not constitute those who follow these rules. 

Knowing a Little More... 

Whenever a government decides to adopt a technical regulation that does not 

follow an international standard, it should formally notify the other members 

of the WTO at least 60 days in advance, a justification presented. Other WTO 

members may request clarification and submit comments and suggestions to 

the proposed regulation. This information is conveyed by the so-called 

“Inquiry Points,” which are organizations designated by each of the WTO 

members responsible for notifications of the regulation to be adopted by that 

country and for receiving notifications made by other countries. Brazil’s 

Inquiry Point is INMETRO.
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Fig. 2.25 VIM 

2.10 International Vocabulary of Metrology (VIM) 

The following text reproduces the introduction of the Bilingual, English, and French 

editions issued by BIPM and highlights the document’s importance (Fig. 2.25). 

In general, a vocabulary is a “terminological dictionary which contains designations and 

definitions from one or more specific subject fields” (ISO 1087-1:2000, 3.7.2). The present 

Vocabulary pertains to metrology, the “science of measurement and its application.” It also 

covers the basic principles governing quantities and units. The field of quantities and units 

could be treated in many different ways. Clause 1 of this Vocabulary is one such treatment 

and is based on the principles laid down in the various parts of ISO 31, Quantities and units, 

currently being replaced by ISO 80000 and IEC 80000 series Quantities and units, and in 

the SI Brochure, The International System of Units (published by the BIPM). 

The second edition of the International vocabulary of basic and general terms in 

metrology (VIM) was published in 1993. The need to cover measurements in chemistry 

and laboratory medicine for the first time, as well as to incorporate concepts such as those 

that relate to metrological traceability, measurement uncertainty, and nominal properties, 

led to this third edition. Its title is now International vocabulary of metrology — Basic and 

general concepts and associated terms (VIM), to emphasize the primary role of concepts in 

developing a vocabulary.
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In this Vocabulary, it is taken for granted that there is no fundamental difference in the 

basic principles of measurement in physics, chemistry, laboratory medicine, biology, or 

engineering. Furthermore, an attempt has been made to meet the conceptual needs of 

measurement in fields such as biochemistry, food science, forensic science, and molecular 

biology. 

Several concepts that appeared in the second edition of the VIM do not appear in this 

third edition because they are no longer considered to be basic or general. For example, the 

concept ‘response time,’ used in describing the temporal behavior of a measuring system, is 

not included. For concepts related to measurement devices that are not covered by this third 

edition of the VIM, the reader should consult other vocabularies such as IEC 60050, 

International Electrotechnical Vocabulary, IEV. For concepts concerned with quality man-

agement, mutual recognition arrangements about metrology, or legal metrology, the reader 

is referred to documents given in the bibliography. 

The development of this third edition of the VIM has raised some fundamental questions 

about different current philosophies and descriptions of measurement, as will be summa-

rized below. These differences sometimes lead to difficulties in developing definitions that 

could be used across the different descriptions. No preference is given in this third edition to 

any of the particular approaches. 

The change in the treatment of measurement uncertainty from an Error Approach 

(sometimes called Traditional Approach or True Value Approach) to an Uncertainty 

Approach necessitated a reconsideration of some of the related concepts appearing in the 

second edition of the VIM. The objective of measurement in the Error Approach is to 

determine an estimate of the true value that is as close as possible to that single true 

value. The deviation from the true value is composed of random and systematic errors. The 

two kinds of errors, assumed to be always distinguishable, have to be treated differently. No 

rule can be derived on how they combine to form the total error of any given measurement 

result, usually taken as the estimate. Usually, only an upper limit of the absolute value of the 

total error is estimated, sometimes loosely named “uncertainty.” 

In the CIPM Recommendation INC-1 (1980) on the Statement of Uncertainties, it is 

suggested that the components of measurement uncertainty should be grouped into two 

categories, Type A and Type B, according to whether they were evaluated by statistical 

methods or otherwise, and that they be combined to yield a variance according to the rules 

of mathematical probability theory by also treating the Type B components in terms of 

variances. The resulting standard deviation is an expression of a measurement uncertainty. 

A view of the Uncertainty Approach was detailed in the Guide to the expression of 

uncertainty in measurement (GUM) (1993, corrected and reprinted in 1995), which focused 

on the mathematical treatment of measurement uncertainty through an explicit measurement 

model under the assumption that the measurand can be characterized by an essentially 

unique value. Moreover, in the GUM as well as in IEC documents, guidance is provided on 

the Uncertainty Approach in the case of a single reading of a calibrated instrument, a 

situation normally met in industrial metrology. 

The objective of measurement in the Uncertainty Approach is not to determine a true 

value as closely as possible. Rather, it is assumed that the information from measurement 

only permits the assignment of an interval of reasonable values to the measurand, based on 

the assumption that no mistakes have been made in performing the measurement. Additional 

relevant information may reduce the range of the interval of values that can reasonably be 

attributed to the measurand. However, even the most refined measurement cannot reduce 

the interval to a single value because of the finite amount of detail in the definition of a 

measurand. 

The definitional uncertainty, therefore, sets a minimum limit to any measurement 

uncertainty. The interval can be represented by one of its values, called a “measured 

quantity value.”
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In the GUM, the definitional uncertainty is considered to be negligible concerning the 

other components of measurement uncertainty. The objective of measurement is to establish 

a probability that this essentially unique value lies within an interval of measured quantity 

values based on the information available from measurement. 

The IEC scenario focuses on measurements with single readings, permitting the inves-

tigation of whether quantities vary in time by demonstrating whether measurement results 

are compatible. The IEC view also allows non-negligible definitional uncertainties. 

The validity of the measurement results is highly dependent on the metrological properties 

of the instrument, as demonstrated by its calibration. The interval of values offered to 

describe the measurand is the interval of values of measurement standards that would 

have given the same indications. 

In the GUM, the concept of true value is kept for describing the objective of measure-

ment, but the adjective “true” is considered to be redundant. The IEC does not use the 

concept to describe this objective. In this Vocabulary, the concept and term are retained 

because of common usage and the importance of the concept. 

[VIM—introduction]. 

2.11 Proposed Exercises 

2.11.1 Analyze the following statement: “It is not necessary to calibrate a brand-new 

instrument from a reputable and traditional manufacturer in the market because 

the manufacturer guarantees its traceability.” Do you agree or disagree? Justify 

your answer. 

2.11.2 What is metrology? 

2.11.3 Present some differences between scientific metrology and legal metrology. 

2.11.4 What is the function of legal metrology in our society? 

2.11.5 According to ISO 10012:2003, present five items should be included in the 

records of metrological evidence processes. 

2.11.6 What do you mean by “influence quantity”? 

2.11.7 What is the leading world organism of legal metrology? 

2.11.8 What does it mean for a laboratory to be accredited? 

2.11.9 What is the difference between technical standards and technical regulation? 

2.11.10 What is the importance of the international vocabulary of metrology (VIM)?



Chapter 3 

Statistics Applied to Metrology 

3.1 Significant Digits of a Measure 

The result of a calculation using all the calculator’s display digits implies that it is 

accurate for all digits, a fact that, in practice, is rarely possible (the number of digits 

can be increased considerably using computers). 

When we use the measurement results from calculations, we must consider that 

the numbers used have only a limited number of significant digits, because the 

concepts of uncertainty, accuracy, resolution, and conversion of units are involved. 

Suppose measurement 13.403 m indicates the most likely value of a quantity, and 

the maximum variation in the measurement series to calculate this value is 0.04 m. 

As this variation can be more or less, we must express the result of the measurement 

as follows: 

13:403± 0:04ð Þ  m 

Analyzing the result, we note that the second decimal digit of the most likely 

value is uncertain. Therefore, it is unnecessary to write the third decimal, since the 

previous one is already uncertain. 

The measurement result must be expressed as (13.40 ± 0.04) m. 

Of the considerations made, we can establish the concept of significant digits of a 

measure. 

Attention! 

The significant digits of a measure are the digits considered correct, from the 

first different from zero, plus the latter, which is regarded as the doubtful 

significant digit. 
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Fig. 3.1 Ruler graduated in 

centimeters 

In the case presented, measure 13.40 m has four significant digits: 1, 3, and 4 are 

considered correct significant digits, and zero is considered a doubtful significant 

digit. 

In every measurement, the last estimated digit will always be doubtful. This is 

either because we will always doubt this value—after all, we must exhibit it—or 

because the digital instrument “estimated” it for us. 

Let us look at the following figure (Fig. 3.1). 

The ruler is graduated in centimeters. If we look at the position of the arrow, the 

value is 6.5 cm. Note that the digit five would be doubtful of the measurement. This 

is because we cannot affirm that the arrow position is 6.5 cm. If the ruler had a lower 

division of 0.1 cm, we could read 6.4 cm, 6.5 cm, or 6.6 cm, or if it had subdivisions 

of 0.01 cm, we could read 6.48 cm, 6.49 cm, 6.50 cm, or 6.51 cm. Even so, the digits 

8, 9, 0, and 1 would be the doubtful. This is why a measurement will always have a 

doubtful digit. 

In the chapters on measurement uncertainty (Chaps. 5 and 6), we will see this 

question in more detail and study how this reading limitation will imply the 

appearance of a source of measurement uncertainty: the uncertainty of reading 

resolution. 

Example 3.1 Measurements and the Numbers of Significant Digits 

(a) 23.50 m: four significant digits 

(b) 0.0043 m: two significant digits 

(c) 67 °C: two significant digits 

(d) 127 V: three significant digits. 

We must be careful when zero numbers are at the end of the numbers. If the 

“zeros” are written correctly to correspond to significant numbers, 36.00 has four 

significant digits, and 36.0 has three. In these two cases, zeros are necessary to define 

the accuracy of the measurement. 

To decrease ambiguities, we must observe the following rules on “zeros”: 

Rule 1: Zeros are insignificant if situated to the left of the first significant digit. 

Example: 0.023 kg (two significant digits). 

The zeros on the left of digit two only express that the measurement result is less 

than the unit (1 kg). 

Rule 2: Right zeros should only be written when guaranteed significant. 

Example: 0.12300 mm (five significant digits). 

When a number ends in zeros on the right, these zeros may not necessarily be 

significant. For example, 50,600 calories may have three, four, or five significant
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notation. 
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If the number of significant digits is three, four, or five, we could write 50,600 

calories, such as: 5.06 × 104 calories (three significant digits) 

5.060 × 104 calories (four significant digits) 

5.0600 × 104 calories (five significant digits) 

When writing a number in scientific notation, the number of significant digits is 

indicated by the number of numerical digits in the term “digits,” as shown in the 

examples. 

Important 

The power of ten is not considered a significant digit. 

3.1.1 Number Rounding 

When the measure has more significant numerals than you need, we should keep 

only those necessary and abandon the others. 

For example, measurement 34.527 m has five significant digits. If we have to 

express it with only three, we should write 34.5 m. If we need four, we write 

34.53 m. 

In the latter case, we observed that the digit of the second decimal house went 

from 2 to 3. 

Here is the reason. If we had used 34.52 m, we would have made a mistake, for 

lack of it, equal to (34.527 - 34.52) m = 0.007 m. 

Using 34.53 m, we made a minor error, by excess, of: 

34:53–34:527ð Þ  m= 0:003 m: 

When we round a number, we must keep in mind the following rules: 

(a) The last digit of a number should always be added from a unit if the discarded 

digit is bigger than five. 

Examples of rounding to three significant digits: 

134:7  m= 135 m

0:03432 mm= 0:0343 mm 

(b) If the discarded digit is equal to five, if there are any other numerals different 

from zero after the discarded five, the last retained digit will be plus a unit. 

Examples of rounding to three significant digits:



34:25 °C= 34:2 °C
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14:751 °C= 14:8 ° C  0:0346501 km= 0:0347 km

(c) If the discarded digit is five, if there are only zero or no other digit after five, the 

last retained digit will be added to a unit only if it is odd. 

Examples of rounding to three significant digits: 

4:8350 N= 4:84 N 

3.1.2 Operations with Significant Digits 

We must act as follows in mathematical operations for the result of operations 

containing significant digits only. 

3.1.2.1 Addition and Subtraction 

We usually add or subtract, and the operation result must have the same number of 

decimal digits in the portion with the smallest number of decimal digits. 

Example: Give the result of the sum (85.45 m + 5.6 m + 98.523 m) with the 

correct number of significant digits. 

Solution: Add the numbers and provide the result with the decimal digits in the 

portion with the fewest digits. 

85:45 

5:6 

þ 98:523 
‐‐‐‐‐‐‐‐‐‐‐ 

189:573 

As the portion with fewer decimal digits is 5.6 (one decimal), adopting the sum 

and subtraction rule present will result in 189.6 m. 

3.1.2.2 Multiplication and Division 

We usually multiply or divide, and the result must have the same number of 

significant digits as the portion with the smallest number of significant digits. 

Example: Give the result of the division of 89.1 m2 by 5.4690 m, with the correct 

number of significant digits.



p

p
þ ð Þþ

p
25:5þ 4:81 km= ð Þ5:05þ 4:81 km= 9:86 km:
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Solution: Divide and provide the result with the number of significant digits of the 

portion with the smallest number of significant digits. 

89:1  m2 

5:4690 m 
= 16:29182 m 

Adopting the rule of multiplication and division, as 89.1 has only three significant 

digits, the result of the division will be 16.3 m. 

3.1.2.3 Square Root 

The square root of a number with n significant digits can have significant digits at 

most n and at least n - 1. 

Example: 25:5km 

Since 25.5 km has three significant digits, we can represent the result as 5.05 or 

5.0. The amount of significance used will depend on the accuracy of the calculation. 

Example: 25:5 4:8 km= 5:0 4:8 km= 9:8  km  :

3.1.3 Mixed Operations 

When using a calculator, if you work all the long calculations without writing the 

intermediate results, you may be unable to tell if an error has been made. In addition, 

even if you realize there were any errors, you may be unable to say where it is. In an 

extensive calculation involving mixed operations, as many digits should be 

performed as possible in the entire set of calculations, and then the result should 

be appropriately rounded. 

For example: (5.00/1.235) m + 3.000m + (6.35/4.0) m= (4.04858 + 3.000 + 1.5875) 

m = 8.630829 m. 

The first division should result in three significant digits. The last division should 

result in two significant digits. The three added numbers should result in a number 

with one digit after the decimal home. Thus, the correct rounded result must be 

8.6 m. The last operation (division) limits this result’s accuracy. 

Important 

In an extensive calculation involving mixed operations, as many digits as 

possible should be performed in the entire set of calculations, and then the 

result should be appropriately rounded.
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Most modern calculators allow you to load the results of intermediate calculations 

on the display by performing complex calculations. In doing so, it is possible to 

maintain the results of each calculation step without inserting the intermediate results 

(a practice that perhaps encourages rounding too early). This way, you can altogether 

avoid truncation errors introduced by intermediate rounding. 

Using all digits in the result can be critical for many mathematical operations in 

statistics. Rounding intermediate results by calculating squares can seriously com-

promise their accuracy. 

3.2 Concepts of Statistics Applied to Metrology 

Here is a question: Why must we know the statistical tools to work in metrology? 

It is well known that every measure performed has an associated measurement 

uncertainty, which, depending on the type and quality of the instrument or system 

used, can be small or large compared to the measurement’s result. 

Thus, we can say that MR = X ± U, where. 

MR = measurement result. 

X = measurement value (or the mean measurement) performed and. 

U = uncertainty of the measurement. 

In VIM—2.26, we find the following definition for measurement uncertainty: 

“non-negative parameter characterizing the dispersion of the quantity values being 

attributed to a measurand, based on the information used.” The VIM also cites that 

“the parameter may be, for example, a standard deviation called standard mea-

surement uncertainty (or a specified multiple of it), or the half-width of an interval, 

having a stated coverage probability.” 

We realize, then, that measurement uncertainty is an evaluated parameter through 

some statistical tools. As the result of measurement will always have an associated 

doubt (called the uncertainty of measurement), what is sought is to estimate the 

values of measure and uncertainty in the best possible way. 

Measurement uncertainty will always exist and will never be eliminated, since the 

actual value of greatness is estimated (in practice, the value of the standard is used as 

a reference value). However, it is possible to define the limits within which the value 

of a measurement is found by considering a specific probability value using statis-

tical techniques and analyses. 

Experimental measurements are carried out based on random experiments, and 

random experiment means that which is influenced by non-controlled, random 

variables. Thus, measurements are random experiments and can be repeated indef-

initely, and once repeated, we will probably obtain different results. 

Random experiments are associated with a sample space or population. Popula-

tion N is defined as all elements available for evaluation. This population can be a 

finite number (e.g., the total residents of a building) or infinite (e.g., the set of natural 

numbers). A sample n represents a portion of the population, but it should be chosen 

to present the characteristics and properly represent this origin population.
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After this measurement process is completed, a specific value will represent an 

estimate of the measurement result. From the result of this sample and by attributing 

a certain degree of confidence, one can analyze the behavior of the measuring 

instrument as a whole. Conclusions obtained based on a sample or amount of data 

streamline the measurement process and reduce costs. 

Suppose we need to determine the density of a solid (ρ). It is known that the 

density is the relationship between the mass of the body (m) and its volume (V ), 

given by the expression: 

ρ= 
m 

V
ð3:1Þ 

Then, when measuring the mass of the body with the aid of a scale, we have the 

variable mass M as a random component since its value can be affected by the 

position in which we place the body on the scale plate, besides the characteristic of 

the scale itself not to reproduce the measured values repeatedly. 

The same is valid for measuring the part’s volume. It is affected by the temper-

ature variation where its measurement is performed and by the instability of the 

measurement instruments. 

This is why statistical analysis is fundamental to metrology. It enables data 

description from central trend measures, dispersal measures, and probability distri-

bution, followed by the analysis and interpretation of the obtained results. 

Before we discuss the concept of uncertainty of measurement and present its 

calculation methodology, it is necessary to introduce some basic statistics founda-

tions and tools. 

3.2.1 Random Variable, Random Experiment, and Sample 

Space 

When we experiment with a measurement, we are subject to results that can be 

influenced by variables we do not control. For example, the variation in ambient 

temperature can influence the length of a metal part (dilation), or the relative 

humidity of the air can affect the mass of a moisture-absorbing substance. Finally, 

random variables in every measurement process can interfere or may interfere with 

the measurement result. 

Thus, such experiments have random variables, regardless of being careful with 

the experiment, and we cannot avoid these influence variables. Our goal, then, will 

be to understand, quantify, and model these types of variations that we often find in 

measurements. 

We can define a random experiment as anyone who provides different results, 

even taking all the precautions to perform the measurement procedure similarly. The 

set of all possible results of a random experiment is called the sample space of the 

experiment. 

These random variables can be divided into two types: discreet and continuous.
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3.2.1.1 Discreet Random Variable (Fig. 3.2) 

One dice has x values (1, 2, 3, 4, 5, 6). The variable is discreet; it cannot assume 

intermediate values. When we launch a dice, we will not find, for example, values 

between 1 and 2 or between 4 and 5. A discreet random variable is a variable with a 

finite number of values. Other examples are the number of wrinkles in a car, the 

number of oranges in a basket, and the number of parts manufactured in one day. 

3.2.1.2 Continuous Random Variable 

For example, the room temperature of a laboratory (T ) measured over a week is 

considered a continuous random variable, because it can take any value throughout 

the day and week. Therefore, a continuous random variable assumes infinite values. 

Examples include temperature measurement, pressure measurement, and electric 

current measurement. 

Note that the typical variables of interest in metrology are continuous. The most 

commonly used continuous probability distributions in metrology are:

• Uniform or rectangular distribution.

• Triangular distribution.

• Normal or Gaussian distribution.

• Student’s t distribution. 

This chapter will study these probability distributions and their main 

characteristics. 

Fig. 3.2 A dice
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3.2.2 Distribution of Measured Data 

3.2.2.1 Not Grouped Data 

For example, the CEN-EN 837–1 standard states that the type Bourdon manometer’s 

calibration temperature should be between (20 ± 2) °C. Here, we have 80 measure-

ments performed over one day, and the results are found in Table 3.1. 

Question: Are all measurements within the tolerance range established by the 

standard? 

Answer: Yes! After analyzing all 80 data points, it is clear that the lowest value 

was 18 °C, and the largest was 22 ° C. 

Let us ask other questions:

• What was the value that prevailed in the measurement set?

• Did measurements vary a lot or little?

• Have you ever thought that instead of 80 measurements, we had 8000?

• Do you agree that there should be a more appropriate way to dispose of this data 

to facilitate answers? 

3.2.2.2 Grouped Data 

The immediate way is to group the data in a list. The list consists of grouping this 

data increasingly or decreasingly. For the temperature example, we will put it in 

ascending order of values (Table 3.2). 

The list makes it easy to answer if the results are within tolerance. Just look at the 

first (18 °C) and the last (22 °C), but it is not so immediate to answer the other 

questions! 

Table 3.1 Temperature measurements
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Table 3.2 List of temperature measurements 

18 18 18 18 18 18 18 18 

18 18 18 18 18 18 18 19 

19 19 19 19 19 19 19 19 

19 19 19 19 19 19 19 19 

19 20 20 20 20 20 20 20 

20 20 20 20 20 21 21 21 

21 21 21 21 21 21 21 21 

21 21 21 21 21 21 21 21 

21 21 21 22 22 22 22 22 

22 22 22 22 22 22 22 22 

Table 3.3 Simple absolute 

frequency (fa) 
Value °C fa 

18 15 

19 18 

20 12 

21 22 

22 13 

Σ (sum) 80 

Let us then group the data by value. This means ordering similar with similar, that 

is, grouping equal values into classes by providing them in a table called a frequency 

distribution. 

There are four types of frequencies:

• Simple absolute frequency (fa)—corresponds to the number of occurrences of a 

value within a class. 

Table 3.3 shows that the predominant value was 21 ° C, which appeared 22 times!

• Accumulated absolute frequency (Fa)—corresponds to the sum of the absolute 

frequencies of the current class with the sum of the frequencies immediately 

before it. 

By this table it is observed that more than half of the data (45 of 80) are between 

18 and 20 °C! (Table 3.4)

• Simple relative frequency (fr)—is the ratio between the absolute simple frequency 

of the class and the sample size (n).
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Table 3.4 Accumulated 

absolute frequency (Fa) 
Value °C fa Fa 

18 15 15 

19 18 33 

20 12 45 

21 22 67 

22 13 80 

Table 3.5 Simple relative 

frequency ( fr) 
Value °C fa fr 

18 15 18.75% 

19 18 22.5% 

20 12 15% 

21 22 27.5% 

22 13 16.25% 

Σ 80 100% 

Table 3.6 Accumulated rela-

tive frequency (Fr) 
Value °C fa fr Fr 

18 15 18.75% 18.75% 

19 18 22.5% 41.25% 

20 12 15% 56.25% 

21 22 27.5% 83.75% 

22 13 16.25% 100% 

f r = 
fa 

n 

Table 3.5 shows that the values of 19 and 21 °C together represent 50% of the 

values. The remaining 50% are distributed by 18, 20, and 22 °C.

• Accumulated relative frequency (Fr)—corresponds to the sum of the relative 

frequencies of the current class with the sum of the immediately preceding 

relative frequencies (Table 3.6). 

More than half of the data (56.25%) is between 18 and 20 °C! 

3.2.2.3 Histogram 

A histogram is a bar graph that shows a frequency distribution, that is, the table 

where we present the data collected due to the frequency of its occurrence. The base 

of a rectangle represents a class of the frequency table. The height of the bar is 

proportional to the frequency value contained in the class. The horizontal scale of the 

graph is quantitative. The vertical scale indicates the absolute or relative frequency. 

This data must be divided into class intervals. An efficient method for determin-

ing the number of class intervals consists of obtaining the square root of the number



of data collected. The number of class intervals will be approximately equal to the 

value of this root. Class intervals should be equal wide to increase graphic informa-

tion in frequency distribution. 
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Table 3.7 Oven temperature Temperature (°C) 

49.59 49.60 49.63 49.64 49.66 49.68 

49.59 49.61 49.63 49.65 49.67 49.68 

49.59 49.62 49.63 49.65 49.67 49.68 

49.59 49.62 49.64 49.65 49.67 49.69 

49.60 49.62 49.64 49.66 49.67 49.69 

49.60 49.62 49.64 49.66 49.67 49.69 

49.60 49.62 49.64 49.66 49.67 49.69 

49.60 49.62 49.64 49.66 49.67 49.70 

49.60 49.62 49.64 49.66 49.67 49.70 

49.60 49.63 49.64 49.66 49.68 49.70 

Solved Exercise 3.1 

Consider Table 3.7 with 60 temperature values of a stabilized thermometer calibra-

tion oven around 50.00 °C. 

When the variation in oven temperature reaches its stability, it generates uncer-

tainty in the thermometer calibration, called oven stability uncertainty. 

Based on these measurement results, make your histogram. 

Solution: Let us build the histogram using five steps. 

Step 1: Determination of the measurement interval’s range R. The range measures 

the dispersion between the minimum and maximum distribution values, not consid-

ering the intermediate values. 

R=Xmax ‐ Xmin ð3:2Þ 

One feature of the range is that even though the number of measurements 

increases, it does not decrease (may even increase). In this example, the range is 

determined by: 

R= 49:70–49:59ð Þ °C= 0:11 °C 

Step 2: Class number C. 

We determine the class C number by calculating the square root of the number of 

measurements performed n, therefore: 

C= n
p 

= 60 
p 

= 7:746 ð3:3Þ 

Thus, our histogram’s class number will be 7 or 8, depending on the size of each 

class.
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Step 3: Width of classes L. 

To determine the width of class L, we must divide the range R by the class number 

chosen, C. 

L= 
R 

C
ð3:4Þ 

Choosing C = 8: 

L= 
0:11 

8 
= 0:013 

Choosing C = 7: 

L= 
0:11 

7 
= 0:016 

Note that both L values do not provide numbers with the same decimal places as 

the measured data. It would be interesting if the width L provided us with values such 

as 0.01 °C or 0.02 °C. 

A proper technique in building histograms is to increase a small range R, so that 

we begin to count the frequency of incidence of our values just before and shortly 

after the beginning. 

For example: 

R= 49:71–49:58ð Þ  °C= 0:13 °C 

Thus, the new value of L will be: 

L= 
0:13 

8 
= 0:01625 °C 

L= 
0:13 

7 
= 0:01857 °C 

So let us round out to L = 0.02 °C. 

Step 4: Counting by class—frequency. 

This is the penultimate stage, where we build a table relating the classes and their 

frequency of occurrence. In this example, we have (Table 3.8): 

Note that each class interval is “closed” (≤) at the beginning and open (<) at the 

end. This is important so that the end value of the interval is not counted more 

than once. 

Step 5: Histogram graph. 

At this stage, we selected the class interval and their frequency and set up a bar 

chart, for example, using Microsoft® Excel software.



C 4

C 8

C 11

C 11

C 15

C 8

C 3
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Table 3.8 Class interval and 

the frequency 
Class interval Frequency 

49.58 °C ≤ x < 49.60 ° 

49.60 °C ≤ x < 49.62 ° 

49.62 °C ≤ x < 49.64 ° 

49.64 °C ≤ x < 49.66 ° 

49.66 °C ≤ x < 49.68 ° 

49.68 °C ≤ x < 49.70 ° 

49.70 °C ≤ x < 49.71 ° 

Histogram 

Temperature intervals (°C) 

F
re

q
u

en
cy

 

Graph 3.1 Stabilized oven temperature distribution histogram 

The same Excel also automatically makes the histogram by selecting the data and 

clicking on the histogram in the data tab within the data analysis icon (Graph 3.1). 

Note that the mean oven temperature is worth 49.64 °C and is in the middle of the 

frequency distribution in the histogram. 

This is a feature of most statistical distributions, as we will see later in this 

chapter. 

3.2.3 Probability Density Function (PDF) 

One probability density function f(x) describes the distribution of a random variable 

x. If a value x is very likely to occur within an interval [a, b], its PDF f(x) will be 

significant in this interval. The PDF f(x) then describes the probabilities associated 

with a random variable. 

The PDF f(x) may be discreet or continuous, depending on whether the variable 

x is discrete or continuous.
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Fig. 3.3 Standard caliber. 

(https://www.calibratools. 

com.br) 

3.2.3.1 Discrete Density Function 

A discrete PDF describes the behavior of the variables that provide integer and finite 

values. 

Example 1: It is very common to use measurement devices called calibers, which 

inform whether one piece conforms or not. Variable X then has only two values: 

pass/do not pass or go/do not go (Fig. 3.3). 

The discrete PDF that characterizes the example well is the Binomial 

Distribution. 

A binomial distribution is adequate when the results of a random variable are 

grouped into only two classes or categories. These categories must be mutually 

exclusive. For example, a manufactured product may be perfect or defective, an 

answer may be correct or wrong, and a telephone call is local or long distance. 

Even continuous variables can be divided into two categories. For example, a 

car’s speed may be below or above the legal limit on a road. These categories are 

usually called success or failure. 

Application conditions:

• They are made in independent repetitions of the experiment, that is, the result of 

repetition is not influenced by others.

• The probability of success p and failure (1- p) remain constant in all repetitions. 

The following expression gives the binomial model: 

P  xð  Þ= 
n! 

x! n- xð  Þ! p
x 1- pð  Þn-x 

x= 0, 1, …, n ð 3:5Þ

Mean→ μ= np 3:6 

Standard deviation → σ = np 1- p 3:7 

The binomial model is usually used in quality control when sampling a large 

population. In these applications, x represents the number of defective observations 

in a n-sample.

https://www.calibratools.com.br
https://www.calibratools.com.br
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Table 3.9 Discreet 

uniform PDF 
Value of X Probability p(X) 

1 1/6 

2 1/6 

3 1/6 

4 1/6 

5 1/6 

6 1/6 

Another interesting statistic is the defective fraction of a sample: 

p= 
x 

n
ð3:8Þ 

σ
2 

p 
= 

p 1- pð  Þ  
n

ð3:9 Þ

Example 2: Consider a dice whose values of X are (1, 2, 3, 4, 5, 6). When 

launching it, the probability of obtaining any of the values of X is p(X) = 1/6. 

Thus, the PDF p(x) of this discreet variable is (Table 3.9): 

The PDF that characterizes the example well is the Discreet Uniform. 

The following equations define the discreet uniform distribution: 

P  X  = xð  Þ= 
1 

k 
, x1, x2, …, xk ð3: 10Þ

Mean→ μ= 

k 
1xi 

k
ð3:11Þ 

Standard deviation → σ = 

k 
1 xi - μð  Þ2 

k
ð3:12 Þ

In the case of launching the dice, we will have: 

P  X  = xð  Þ= 
1 

6 
x= 1, 2, 3, 4, 5, 6

μ= 

k 
1xi 

k 
= 3:5 σ = 

k 
1 xi - μð  Þ2 

k 
= 

k 
1 xi - 3, 5ð Þ2 

6 
= 1:71
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Graph 3.2 Discreet 

uniform PDF 

3.2.3.2 Continuous Density Function 

For a continuous random variable x, a PDF f(x) is such a function that: 

f  xð  Þ  ≥ 0

f  xð  Þ= 

þ∞

-∞ 

f  xð  Þ  dx= 1

P  a≤X ≤ bð Þ= 

b 

a 

f  x  ð Þdx

In Graph 3.3, the area under f(x) represents the probability of x assuming a value 

between a and b (Graph 3.3). 

μ= 

k 
1xi 

k 
= 3, 5 σ = 

k 
1 xi - μð  Þ2 

k 
= 

k 
1 xi - 3, 5ð Þ2 

6 
= 1, 71

For a discrete random variable X, the sum of the discrete distribution P(x) values 

between the boundaries -∞ and +∞ always results in one. 

Remembering the example of the dice, the sum of P(x) will be: 

P -∞  ≤X ≤ þ ∞ð Þ=P 1≤X ≤ 6ð Þ= 
1 

6 
þ 1 
6
þ 1 
6
þ 1 
6
þ 1 
6
þ 1 
6 
= 1

3.2.4 Mean and Standard Deviation of a Probability 

Distribution 

Probability distributions are characterized by their mean value and their standard 

deviation. When the mean in question is the population’s mean, we designate the 

Greek letter μ. When it comes to the mean of a sample, we designate by x.
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Graph 3.3 Probability P (a ≤ X ≤ b) 

The mean (μ), or expected value E(X), is the best estimate of a measurement and 

is defined by the equation: 

μ=E  Xð  Þ= x:f  xð  Þdx ð 3:13Þ

where X is a random variable, and f(x) is a PDF. 

Although the mean sample or the mean population is valid, it is important to 

know how dispersed the data around the mean is. The variable that measures the 

dispersion of these data around the mean is called standard deviation, and its square 

is known as variance. 

The variance of X is denoted by σ2 or V(X) and defined by the expression: 

σ
2 
=V  Xð  Þ=E  x-E  xð  Þðð Þ2 = μ- xð  Þ2 f  x  ð Þdx ð3:14Þ

3.2.5 Distributions of Probabilities More Adopted 

in Metrology 

We mention, in Sect. 3.2.1, that the most commonly used probability distributions in 

metrology are uniform or rectangular, triangular, normal or Gaussian, and 

Student’s  t.
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Now, let us study the main features of these distributions and their applications in 

metrology. 

3.2.5.1 Rectangular or Uniform Distribution 

We will face a uniform or rectangular distribution when the probability distribution 

is constant in a defined interval (Graph 3.4). 

f  xð  Þ= 
1 

b- a 
; a≤ x≤ b ð3: 15Þ

f  x  = 0 x< a ou x> b :

The mean of a uniform continuous random variable x is defined by Eq. (3.13): 

μ = E(X) = x. f(x)dx. 

Integrating within the limits between a and b and adopting f  x  = 
1 , ðb- a 

we have:

b 

a 

x 

b- a 
dx= 

x2 

2 b- að  Þ  

b 

a

μ= x= 
aþ b 
2

ð3:16Þ 

Using the variance definition by Eq. (3.14), we have: 

σ
2 
= μ- xð  Þ2 f  x  ð Þdx

Graph 3.4 Uniform or rectangular distribution
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σ
2 
= 

b 

a 

x- aþb 
2 

2 

b- a 
dx 

σ
2 
= 

x- aþb 
2 

2 

3 b- að  Þ  

b 

a 

= 
b- að  Þ2 
12

ð3: 17Þ

Since standard deviation is the square root of variance, so we have: 

σ = s  xð  Þ= 
b- a 

12
p = 

b- a 

2 3
p ð3: 18Þ

We adopted the expression s(x) for the sample standard deviation and the 

expression σ(x) for the population standard deviation. In the case of a uniform 

distribution, the same equation gives the result. 

Solved Exercise 3.2 

Suppose the value of the mass of an object is 25.9 g and that the digital scale used for 

this measurement has a reading resolution of 0.1 g. This means that the scale reads 

increments of 0.1 g in 0.1 g. Considering the existing algorithm in the digital scale, 

responsible for digitizing the indicated values, the “true value” of the mass will be 

comprised between interval 25.85 g and 25.95 g. Values such as 25.96 g or larger 

shall be rounded by the instrument to 26.0 g, just as values such as 25.84 g or smaller 

to 25.8 g. 

Based on this information, the mean and standard deviation of this distribution 

will be determined. 

Solution 

Considering that the scale has a reading limitation of 0.1 g (resolution), we know that 

every time the instrument indicates 25.9 g, we will doubt the “true value” of the mass 

in question caused by its limitation of resolution. Considering that the probability 

that the “true value” is between 25.85 g and 25.95 g is the same within this interval, it 

is reasonable to adopt a statistical distribution that reflects this behavior, that is, 

rectangular or uniform distribution. In Graph 3.5, we have: 

Note the area under the graph is 1, as expected. Thus, the mean will be: 

x= 
a þ b 
2 

= 
25:85 þ 25:95 

2 
g= 25:9 g 

The standard deviation is calculated by Eq. (3.18): 

s  xð  Þ= 
b- a 

12
p = 

25:95- 25:85 

12
p g= 0:0288675 g
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Graph 3.5 Statistical distribution of Solved Exercise 3.2 

Graph 3.6 Statistical 

distribution of Solved 

Exercise 3.3 

We will see further that this result is considered the uncertainty of reading 

resolution of the instruments with rectangular distribution. 

Solved Exercise 3.3 (Source ISO GUM 2008) 

A manual provides the value of the linear thermal expansion coefficient of pure 

copper at 20 °C  [α20(Cu)] as 16.52 × 10
-6 

°C-1 and establishes that the error in this 

value should not exceed +0.40 × 10-6 
°C-1 .

Based on this limited information, it is not absurd to suppose that the value of 

α20(Cu) will be distributed with equal probability in the interval of 16.12 × 10
-6 

°C-

1 to 16.92 × 10-6 
°C-1 , and it is doubtful that α20(Cu) is out of it (Graph 3.6). 

The standard deviation of this symmetrical rectangular distribution of possible 

values of α20(Cu) is: 

s α20ð  Þ= 
16:92- 16:12ð Þx10-6 

°C-1 

2 3
p = 

0:80x10-6 
°C-1 

2 3
p = 0:23x10-6 

°C-1

Standard deviation from a uniform distribution, adopted as a dispersion measure 

for the copper thermal expansion coefficient variation, is a reasonable estimate of 

standard uncertainty.
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3.2.5.2 Symmetrical Triangular Distribution 

When the probability distribution is more prominent in the central part, at a defined 

interval, and decays linearly at the ends, we will face a triangular distribution. 

In many cases, it is more realistic to expect values near the boundaries to be less 

likely than those near the midpoint. Replacing the rectangular distribution with a 

symmetrical triangular distribution is reasonable (Graph 3.7). 

f  xð  Þ= 

0 para x< a 

4 x- að  Þ  
b- að  Þ2 

para a≤ x≤ 
aþ b 
2 

4 b- xð  Þ  
b- að  Þ2 

para 
aþ b 
2 

≤ x≤ b 

0 para x> b

ð3:19Þ

For triangular distribution with the mean x at the center of interval a, b, we have: 

μ= x= 
aþ b 
2

ð3:20Þ 

and the standard deviation is: 

σ xð  Þ= s  xð  Þ= 
b- a 

24
p = 

b- a 

2 6
p ð3 :21Þ

We adopted the expression s(x) for the sample standard deviation and the 

expression σ(x) for the population standard deviation. The same equation gives the 

standard deviation in a triangular distribution. 

Solved Exercise 3.4 

Suppose we calibrate a pressure gauge with a measurement interval (0 to 40) bar and 

a resolution of 1 bar using a comparative pump and fix the calibration points on the 

object gauge at 10 bar, 20 bar, 30 bar, and 40 bar (Fig. 3.4). 

Graph 3.7 Symmetrical 

triangular distribution
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Fig. 3.4 Pressure gauge 

calibration. (Photo by the 

authors) 

These values are fixed to present a greater probability of occurrence than any 

other. For example, for a point 30 bar, the “true value” of the pressure will be 

understood at 29.5 bar at 30.5 bar. Values such as 30.5 bar (or larger) will be rounded 

to 31 bar, just as values such as 29.4 bar (or smaller) to 29 bar. Consider the 

probability that the “true value” is higher at point 30 bar than at any other point, 

because we set this value. Based on this information, determine this distribution’s 

mean and standard deviation at point 30 bar. 

Solution 

Considering that the “true value” probability is higher at point 30 bar than at any 

other point because we fix this value, it is reasonable to adopt a statistical distribution 

that reflects this behavior, that is, the triangular distribution. 

In Graph 3.8, we have: 

Let us calculate the mean and the standard deviation: 

x= 
aþ b 

2 
= 

29:5þ 30:5 
2 

bar= 30:0 bar 

s  xð  Þ= 
b- a 

24
p = 

30:5- 29:5 

24
p bar= 0: 04167 bar

The standard deviation is considered the uncertainty of the reading resolution of 

the instruments with triangular distribution. 

Solved Exercise 3.5: Based on Eurachem Guide [5] (Fig. 3.5) 

A solution’s total volume (V) is measured by filling a 100 ml balloon. The 

balloon manufacturer informs that it has a volume of (100 ± 0.1) ml, measured at 

20 °C.
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Graph 3.8 Statistical distribution of Solved Exercise 3.4 

Fig. 3.5 100 ml balloon 

Considering the little information available, the Eurachem Guide considers it 

more realistic to expect the values close to the limits to be less likely than near the 

midpoint. 

Therefore, it recommends assuming a triangular distribution for this source of 

input, ranging from 99.9 ml to 100.1 ml, with an expected value of 100.0 ml. 

sV = 
100:1- 99:9 

24
p mL= 0:04 mL
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3.2.5.3 Asymmetrical Triangular Distribution 

In an asymmetrical triangular distribution, the value with the highest probability is 

the mode of the dataset, which is not equal to the average. So, when the probability 

distribution is higher in mode,  in  a  defined interval, and decays linearly at the ends, 

we will be facing an asymmetrical triangular distribution (Graph 3.9). 

f xð  Þ= 

2 x- að  Þ  
b- að  Þ  c- að  Þ a≤ x< c 

2 

b- a 
x= c= modeð  Þ  

2 b- xð  Þ  
b- að  Þ  b- cð  Þ c< x≤ b 

0 x< a e x> b

ð3:22Þ

The mean and standard deviation expressions for this distribution are: 

μ= 
aþ bþ c 

3
ð3:23Þ 

σ = 
a2 þ b2 þ c2 - ab- ac- bc 

18
ð3:24Þ 

The probabilities accumulated for this distribution are: 

Graph 3.9 Asymmetrical triangular distribution
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Graph 3.10 Asymmetrical 

triangular distribution of 

Solved Exercise 3.6. 

a = 10 °C. b = 30 °C. 

c = 25 °C 

P xð  Þ= 

x- að  Þ2 
b- cð  Þ  c- að  Þ a≤ x< c 

c- a 

b- a 
x= c 

1-
b- xð  Þ2 

b- að  Þ  b- cð  Þ c< x ≤ b

ð3:25Þ

Solved Exercise 3.6 

Consider that in a set of measurements, the lowest value found was 10 °C, the largest 

was 30 °C, and the mode was 25 °C. What is the probability that a new measurement 

is less than 20 °C? What is the probability of being greater than 26 °C? 

Solution (Graph 3.10) 

P  x< 20ð  Þ= 
x- að  Þ2 

b- að  Þ  c- að  Þ  = 
20- 10ð Þ2 

30- 10ð Þ  25- 10ð Þ  = 0 :33→ 33%

P  x> 26ð  Þ= 1-
b- xð  Þ2 

b- að  Þ  b- cð  Þ  = 1-
30- 26ð Þ2 

30- 10ð Þ  30- 25ð Þ  = 0 :84→ 84%

3.2.5.4 Normal or Gaussian Distribution 

Normal or Gaussian distribution is undoubtedly the most important PDF. Several 

variables behave according to a Gaussian distribution.
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Graph 3.11 Normal or 

Gaussian distribution 

Gauss based the errors theory on postulates. One concern is that “the most likely 

value of quantities, measured several times, is the arithmetic mean of the measures 

found, provided they deserve the same confidence.” 

Graph 3.11 represents a Gaussian or normal probability distribution. It has the 

classic form of a bell where the center is the mean μ, and the width of its base 

represents the dispersion of values σ around the average. 

The normal distribution has a PDF defined by: 

f  xð  Þ= 
1 

σ 2π
p e

- x-μð  Þ2 
2σ2 ; -∞ < x<∞ ð3 :24Þ

where σ corresponds to the population standard deviation and has the equation: 

σ = 

n 

1 

x- μð  Þ2 

n
ð3:25 Þ

μ is the population mean, and the equation is: 

μ= 

n 

1 

xi 

n
ð3:26Þ 

The mean and standard deviation are fundamental characteristics of any statistical 

distribution. The mean indicates the most likely value, and the standard deviation is 

the scattering of these values around the mean. 

Suppose you have to measure the length of an object with a simple ruler and write 

down the result. Ask others who repeat the measurement, without each one, to know 

about the results obtained by others, and write down all the results. You will observe 

that the measurements differ. Repeat the measurement ten times, and you will 

probably find some different results. This fact is called dispersion of measurement. 

As its name implies, the dispersion of the values found in a measurement 

statistically evaluates the degree of spreading these values around the mean. The 

higher the dispersion, the more away values around the mean distribution are found.
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Graph 3.12 Probabilities associated with standard deviations in a normal distribution 

In a normal distribution, 68.27% of the results will be dispersed around the mean 

for a standard deviation (1σ), 95.45% for two standard deviations (2σ), and 99.7% 

for three standard deviations (3σ). The intervals mentioned are shown in Graph 3.12. 

We rarely know the entire population in metrology, because we do not perform 

infinite measurements. In this case, the standard deviation of the sample (s)  i  s

adopted, calculated by the equation:

s= 

n 

1 

x- xð  Þ2 

n- 1
ð3:27 Þ

where x is the sample mean, and n is the sample size. 

For example, the measures deserve the same confidence if performed by the same 

observer using the same instrument and method. A question arises: What is the 

convenient number of measurements to realize? 

This number varies from case to case, but in practice, an interval of three to ten 

measurements is adopted. Below three measurements, errors may not be well 

represented, and above ten, the measurement process can become costly. 

The sample variance s2 is the square of the sample standard deviation, given by 

the expression: 

s2 = 

n 

1 

x- xð  Þ2 

n- 1
ð3:28Þ
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Graph 3.13 Probabilities associated with standard deviations in a standardized normal distribution 

The variance is used in calculating measurement uncertainty, because it is a 

variable that can be combined linearly, that is, we can add the variances of different 

distributions, not the standard deviations. 

Example: Considering the variance of a sample equal to 3 and another sample 

equal to 4, determine the variance resulting from this sum and its standard deviation. 

Solution: s2 = s2 1 s2 2 = 3 4= 7 

The resulting standard deviation will be: s= s2 = 7= 2:646 

which is different from the direct sum of the deviations. 

3 
p 

þ 4 
p 

= 1:73þ 2= 3:73≠ 7 
p 

A normal distribution’s mean and standard deviation can assume any values. A 

simplified mathematical model solves the complexity of the normal distribution, 

creating a standardized normal distribution. 

Any variable can be transformed into variable Z, whose value is the difference 

between variable x and the mean, divided by standard deviation. 

Z = 
xi - μ 

σ
ð3:29Þ 

In a standardized normal distribution, the average (μ) assumes zero value, and the 

standard deviation (σ) assumes a value of one. Thus, the probability distribution 

function assumes the following conformation, as shown in Graph 3.13. 

The total area under the curve corresponds to 100%. Each half has 50% of the 

total area. After transforming the normal curve into the standard normal curve, it 

assumes the same form as normal distribution, with average μ = 0 and standard 

deviation σ = 1. 

The probabilities of standardized normal distribution can be obtained in 

Table 3.10.
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Graph 3.14 Rectangular 

distribution 

Graph 3.15 Triangular 

distribution 

In statistics, there is a theorem that is applied in metrology. It is known as the 

Central Limit Theorem. [GUM—G2] 

It says: “The more random variables are combined, even though they have 

different statistical distributions, the closer to a normal distribution will be the 

result of this combination of variables.” 

Let us exemplify this theorem. 

Consider the launch of a dice. The probability distribution for this event is a 

rectangular distribution (Graph 3.14). 

Let us now consider the launch of two dice. The probability distribution of this 

event approaches a triangular distribution (Graph 3.15). 

Let us now consider the launch of three dice. The probability distribution of this 

event approaches a normal distribution (Graph 3.16). 

For this reason, in metrology, we treat the final result of combining the various 

sources of uncertainty as a normal distribution, even though these sources have 

different statistical distributions. The sum of these influences results in a normal 

distribution behavior. 

Consider the uncertainty calculation in the calibration of an analog pressure 

gauge. In it, we find several sources of uncertainty that will be estimated (the best



estimate of the various sources of measurement uncertainties is the standard devia-

tion of each source). Sources can come from multiple distributions, such as: 

3.2 Concepts of Statistics Applied to Metrology 95

Graph 3.16 Normal 

distribution

• Variation of pressure gauge reading and discharge (hysteresis)—uniform 

distribution.

• Variation of measurements performed by the pressure gauge (repeatability 

uncertainty)—Student’s t distribution.

• Influence of standard measurement uncertainty used in the calibration of the 

gauge—normal distribution.

• Influence of object gauge resolution when we “set” its value in the calibration at a 

defined point—triangular distribution. 

The final uncertainty, from the various sources of uncertainty mentioned above, 

according to the central limit theorem, will be a normal distribution. 

One consequence of the central limit theorem is the fact that if we remove several 

samples of size n and calculate their averages (x1, x2, …, xpÞ, where p is the number 

of samples and n the sample size, we will have for the standard deviation of the mean 

the expression given by the equation: 

s xð  Þ= 
s 

n
p ð3:30 Þ

where n is the number of measurements. 

The standard deviation of the mean is of great importance in metrology because 

without having to do infinite measurements, we can estimate the standard deviation 

between the means of various samples of the same population. ISO GUM considers 

the standard deviation of the mean to be Type A uncertainty, if the sample belongs to 

the same population. Otherwise, Type A uncertainty will be equal to the standard 

deviation of the sample (s).
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Fig. 3.6 Johann Carl 

Friedrich Gauss 

(1777–1855) 

The higher the number of measurements of the same measure, the closer their 

values will behave as a normal distribution. Infinite measurements will have a 

normal distribution. 

Important 

The standard deviation from the mean represents the dispersion between the 

averages of the samples belonging to the same population. 

Knowing a Little More... (Fig. 3.6) 

(https://cdn.britannica.com/27/190027-050-A9A35298/Carl-Friedrich-Gauss-

engraving.jpg) 

He was one of the biggest names in the contemporary era of mathematics, 

having made significant contributions to astronomy and physics. Coming from 

a humble peasant family with illiterate parents, Gauss had already shown ease 

with numbers from the early years of life, even before he was literate. At the 

age of seven, challenged by his teacher to sum up the digits of 1 to 100, he 

reached the response of 5050 in a few seconds, stating the hitherto unknown 

formula of arithmetic progression. Although with strong resistance from his 

father, Gauss followed his studies, which he had been encouraged and funded 

since his youth by Buttner, director of the school where he studied, and Carl 

Wilhelm Ferdinand, Duke of Braunschweig. Impressed with Gauss’s poten-

tial, the Duke funded his course at the University of Göttingen. 

He elaborated on the minimum square method and also worked on the 

theory of numbers, the theory of elliptical functions, electromagnetism, and 

gravitation, among other topics. He reached a remarkable reputation in Europe 

and became a university professor, having written several works. If it had not 

been for the influence of Buttner and Duque Ferdinand on Gauss’ trajectory, 

perhaps the genius theorems and laws of mathematics would not have come to 

light as they were stated. Gauss is known as the prince of mathematics.

https://cdn.britannica.com/27/190027-050-A9A35298/Carl-Friedrich-Gauss-engraving.jpg
https://cdn.britannica.com/27/190027-050-A9A35298/Carl-Friedrich-Gauss-engraving.jpg
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3.2.5.5 Student’s  T  Distribu tion

When we perform a small number of measurements, less than 30, we realize that 

even when the sample belongs to a normal distribution, its histogram does not take 

the shape of a bell, typical of this distribution. 

To visualize this feature, we randomly generate in Excel 1000 values belonging to 

a normal distribution of population average μ = 2.00 and standard deviation of the 

population σ = 0.40. 

From this population (let us consider that the data generated are large enough to 

be viewed as the population), we remove sample sizes n = 5, n = 20, n = 100, and 

n = 1000. Our goal is to build histograms of different samples and observe their 

behavior. 

3.2.5.6 Sample Analysis with N = 5 (Graph 3.17) 

The result found was x= 2:09 and s= 0:43 

Interval Frequency 

1.5 1 

1.8 0 

2.1 1 

2.4 1 

More 2 

Note that although the values are removed from a normal distribution with a mean 

of 2.00 and a standard deviation of 0.40, the mean of the five values is worth 2.09 

and a standard deviation of 0.43. This is because we only get a mean of 2.00 and a 

deviation of 0.40, when we have all the values that generated the normal curve 

(infinite values). 

Graph 3.17 Data and 

histogram to n = 5
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Graph 3.18 Data and 

histogram to n = 20 

Another essential feature is that the histogram containing the five values does not 

look like a normal distribution (bell form). This will only happen as the sample 

number approaches the population number. 

3.2.5.7 Sample Analysis with N = 20 (Graph 3.18) 

The result found was x= 1:97 and s= 0:44 

Interval Frequency 

1.1 1 

1.4 0 

1.7 5 

2.0 3 

2.3 7 

2.7 2 

More 2 

3.2.5.8 Sample Analysis with N = 100 (Graph 3.19) 

The result found was x= 2:05 and s= 0:36 

Interval Frequency 

1.1 1 

1.4 2 

1.6 8 

1.8 13 

2.1 32 

2.3 17

(continued)
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Graph 3.19 Data and 

histogram to n = 100 

Graph 3.20 Data and 

histogram to n = 1000 

Interval Frequency 

2.5 16 

2.7 8 

More 3 

3.2.5.9 Sample Analysis with N = 1000 (Graph 3.20) 

The result found was x= 2:00 and s= 0:40 

Interval Frequency 

0.6 1 

0.9 5 

1.2 23 

1.5 90 

1.8 200 

2.1 277

(continued)
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Interval Frequency 

2.4 258 

2.7 105 

3.0 36 

3.3 3 

3.6 2 

More 0 

We realize that the distribution tends to form a normal distribution as the number 

of measurements increases. In practice, if n is 30, we can consider the approximation 

with the normal curve. 

As demonstrated, many high measurements (n ≥ 30) are required to obtain a 

distribution close to normal. As it is not always feasible to perform 30 measurements 

of the same measurement, we must apply a correction factor, bringing the distribu-

tion of small values closer to normal. 

This factor, known as a Student’s t factor for statistics and coverage factor k for 

metrology, is a function of sample size n, or the number of degrees of freedom, and 

probability p. In metrology, it was normalized to consider the probability of 95.45% 

for calculating measurement uncertainty. 

The chemist and mathematician William Gosset, who signed his work with the 

pseudonym Student, developed the Student’s t factor, or coverage factor k. Around 

the late nineteenth century, William Gosset developed the Student’s t distribution. 

The basic idea was to correct the factors that would multiply standard deviations for 

small measurements. As we saw in Graph 3.13 for a standard deviation (±2σ), we 

have a probability of 95.45% to find the measurements scattered around the mean. 

This is true for infinite measurements. As in practice, we do three, four, and five 

measurements; it is necessary to multiply the standard deviation by a factor greater 

than two. 

Table 3.11 presents the coverage factor for various probabilities. This table can be 

built in Excel© using the function INV.T.BC. You must choose the degree of 

freedom you want and the probability coverage, remembering that the probability 

used should be 100% less than the desired probability (level of significance). For 

example, if we wish 95.45% probability, we must insert the value of 0.0455 (4.55%) 

in the probability field. 

Considering the previous example, where the mean population is μ = 2.00, and its 

standard deviation is σ = 0.40 for n = 1000 values, we can check, for various values 

of n (5; 20; 100 ...), which the mean population will always be understood in the 

interval: 

x± k ∙ s xð  Þ ð3:31Þ 

k is the coverage factor, and s x is the standard deviation of the mean. 

Analyzing Table 3.12 and Graph 3.21, we can see that the higher the number of 

measurements, the lower the interval where we will find, with a defined probability, 

the mean of the population.
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Table 3.12 Data interval to 

95.45% probability n x s s xð  Þ k 

x± ks xð  Þ  
95.45%

5 2.09 0.43 0.19 2.869 (2.09 ± 0.55) 

20 1.97 0.44 0.10 2.140 (1.97 ± 0.21) 

100 2.05 0.36 0.04 2.026 (2.05 ± 0.08) 

Graph 3.21 Dispersion around the mean with 95.45% probability 

Table 3.13 Resistance 

measurements 
R (Ω) 

1 199.8 

2 200.0 

3 200.1 

4 200.4 

5 199.5 

6 200.0 

7 200.5 

8 199.9 

Note: In measurements, we call the mean population its true value, which we 

cannot determine in practice, since we cannot measure infinite times. 

Solved Exercise 3.7 

Eight electrical resistance measurements were made in resistor R, and the following 

values were found (Table 3.13). 

Considering the distribution of this sample as belonging to a normal distribution, 

determine the following: 

(a) The mean. 

(b) The sample standard deviation. 

(c) The standard deviation of the mean.
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(d) The interval in which we have a 95.45% probability of finding the mean of the 

measurements. 

Solution 

(a) Mean 

μ= 

n 
1xi 

n 
= 200:0 Ω: 

(b) Standard deviation 

s= 

n 
1 x- xð  Þ2 
n- 1 

= 0:3196 Ω :

(c) Standard deviation of the mean 

s xð  Þ= 
s 

n
p = 

0:3196 

8
p = 0:112995 Ω

(d) To find the interval in which we have 95.45% of all measured values, we must 

determine the Student’s t distribution value, equivalent to the coverage factor k 

found in the calibration or testing certificates. 

To this, we must verify in Table 3.2 the corresponding value of k for the degree of 

freedom, ν = n - 1. In our case, ν = 8 - 1 = 7 → k will be 2.43 to 95.45% 

probability. 

Thus, the interval will be given by Eq. 3.31: 

x± ks xð  Þ  → 200:0± 2:43× 0:112995= 200:0± 0:281922 

200:0± 0:3ð Þ  Ω

This result informs that we have a 95.45% probability of making eight more 

measurements, and the new mean is between 199.7 and 200.3 Ω.
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Fig. 3.7 William Gosset. 

(Photo: public domain) 

Knowing a Little More... (Fig. 3.7) 

William Gosset (1876–1937). 

The older son of Agnes Sealy Vidal and Colonel Frederic Gosset, he was 

educated in Winchester. In the New College Oxford, where he studied chem-

istry and mathematics, he obtained a first-class diploma in both sciences, being 

graduated in mathematics (1897) and chemistry (1899). Gosset obtained a post 

as a chemist at the Guinness Brewery in Dublin (Ireland) in 1899. Working at 

the brewery, he did important work in statistics. In 1905, he studied at the 

University College laboratory in London. He developed works in Poisson 

limit, mean sample distribution, standard deviation, and correlation coeffi-

cient. Later, he published three critical works on his accomplishments during 

the year he was in the laboratory. 

Many people are familiar with the name Student but not with the Gosset. 

William Gosset signed with the pseudonym Student, which explains why his 

name can be less known than his significant statistics results. He invented the 

t-test to manipulate small samples for quality beer manufacturing control. 

Gosset discovered the form of t-distribution by combining mathematical and 

empirical work with random numbers, an initial application of the Monte 

Carlo method. 

From 1922, he slowly built a small statistics department at the brewery, 

directing it until 1934. In late 1935, Gosset left Ireland to take over the new 

Guinness brewery in London. Despite the hard work involved in this venture, 

he continued to publish statistics articles. He died in 1937.
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3.3 Proposed Exercises 

3.3.1 Round correctly to one decimal digit. 

(a) 34.450 m 

(b) 23.852 m 

(c) 8.351 m 

(d) 19.7489 m 

(e) 43.4501 m 

(f) 43.852 m 

(g) 52.3511 m 

(h) 66.7205 m. 

3.3.2 Check the number of significant digits in the following measurements: 

(a) 1.320 m 

(b) 0.050 kg 

(c) 0.0001 km 

(d) 9642 m2 . 

3.3.3 Round correctly to three significant digits. 

(a) 478.9 m 

(b) 642.5 kg 

(c) 123.4 L 

(d) 56.150 cm. 

3.3.4 Perform the following operations and present the result with the number of 

correct significant digits: 

(a) 52.69 m + 36.8 m 

(b) 68.487 m × 0.12 m 

47:8  m2 
p

- 1:36 m

3.3.5 Round for one significant digit. 

(a) 3682 

(b) 0.00245 

(c) 0.00058763 

(d) 0.000030456.
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Table 3.14 Voltage values Voltage (V) 

2.01 2.15 2.40 2.56 2.75 2.91 

2.01 2.17 2.42 2.59 2.76 2.91 

2.01 2.19 2.44 2.63 2.77 2.93 

2.05 2.20 2.44 2.63 2.80 2.93 

2.09 2.25 2.44 2.64 2.80 2.93 

2.10 2.26 2.45 2.65 2.80 2.94 

2.10 2.26 2.52 2.70 2.81 2.95 

2.11 2.27 2.53 2.71 2.84 2.96 

2.13 2.33 2.55 2.74 2.84 2.98 

2.14 2.34 2.55 2.74 2.86 2.99 

3.3.6 Perform the following operations and present the result with the number of 

correct significant digits: 

(a) 37.76 + 3.907 + 226.4 

(b) 319.15 - 32.614 

(c) 104.630 + 27.08362 + 0.61 

(d) 125 - 0.23 + 4.109 

(e) 2.02 × 2.5 

(f) 600.0 / 5.2302 

(g) 0.0032 × 273 

(h) (5.5)3 

(i) 0.556 × (40 - 32.5) 

(j) 45 × 3.00 

(k) What is the mean value of the five time measurements in seconds? 

0.1707 s 0.1713 s 0.1720 s 0.1704 s 0.1715 s 

(l) 3.00 × 105 - 1.5 × 102 . 

3.3.7 Consider the 60 Voltage (Table 3.14) values belonging to a uniform distribu-

tion, make the histogram, and determine the mean and standard deviation. 

3.3.8 Table 3.15 represents the temperature measurements, in Celsius degree, of a 

laboratory over a morning. Make the histogram of these values considering a 

normal distribution. Also, the mean and the standard deviation should be 

determined.



3.3.9 A standard block manufacturer manual for calibration of calipers and micro-
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Table 3.15 Temperature 

measurements 
Temperature (°C) 

23.6 23.8 24.0 24.0 24.1 24.2 

23.6 23.8 24.0 24.0 24.1 24.2 

23.7 23.8 24.0 24.0 24.1 24.2 

23.7 23.8 24.0 24.0 24.2 24.2 

23.7 23.8 24.0 24.1 24.2 24.3 

23.7 23.9 24.0 24.1 24.2 24.3 

23.7 23.9 24.0 24.1 24.2 24.3 

23.7 23.9 24.0 24.1 24.2 24.3 

23.8 23.9 24.0 24.1 24.2 24.5 

23.8 24.0 24.0 24.1 24.2 24.6 

Table 3.16 Voltage values Voltage (V) 

128.42 128.62 128.69 128.75 128.80 128.84 

128.49 128.63 128.69 128.76 128.80 128.87 

128.49 128.63 128.71 128.76 128.80 128.88 

128.56 128.65 128.72 128.77 128.81 128.89 

128.57 128.65 128.72 128.77 128.82 128.90 

128.58 128.66 128.73 128.77 128.83 128.91 

128.59 128.66 128.74 128.78 128.83 128.93 

128.59 128.66 128.74 128.79 128.83 128.94 

128.60 128.67 128.75 128.80 128.83 129.01 

128.61 128.69 128.75 128.80 128.83 129.11 

meters provides the value of the blocks’ linear thermal expansion coefficient (α) 

as 11.5 × 10-6 
°C-1 . It also informs that the maximum variation of the linear 

expansion coefficient is ±0.2 × 10-6 
°C-1 . Based on this information and 

considering that the linear thermal expansion coefficient (α) is distributed with 

equal probability, determine the standard deviation from the probability distribu-

tion of the linear thermal expansion coefficient (α). 

3.3.10 Table 3.16 presents 60 voltage values obtained from an electrical outlet of the 

metrology laboratory. Based on these values, do what you are asked. 

(a) A histogram of these values. Adopt seven classes to build it better. 

(b) Determine the sample standard deviation. 

(c) Determine the interval with a 95.45% probability of finding a measurement 

between the 60 measurements. 

(d) Check how many values are within the interval determined in item © and 

make sure these values correspond to 95.45% of the measured values. 

(e) Determine the interval with 95.45% probability where we can find the mean 

of 60 measurements.
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Table 3.17 Scales values 

Scale 1 (kg) 15.00 14.80 15.20 14.90 15.10 14.70 

Scale 2 (kg) 14.60 14.70 15.40 15.30 14.90 14.90 

Table 3.18 pH values pH 

7.24 7.20 7.23 7.25 

7.24 7.21 7.26 7.24 

7.24 7.24 7.24 7.24 

distinct scales: 

(a) Calculate the mean of the two samples. 

(b) Calculate the standard deviation of the two samples. 

(c) Based on previous items, which scale has the highest dispersion of 

measurements? 

(d) Determine, for each scale, the interval where we have a 95.45% probability of 

finding the mean of the measurements. 

3.3.12 Consider that the pH monitoring of a substance over one day has a triangular 

distribution. Based on the 12 values measured (Table 3.18) throughout this day, 

calculate: 

(a) the mean, 

(b) the standard deviation. 

3.3.13 A metrology technician measured the internal temperature of a greenhouse, 

finding that the mean of the eight measurements performed was 48.9 °C and the 

standard deviation equal to 0.6 °C. Considering the measured values belonging to 

a Student’s t distribution, determine the probability of the following measurement 

being between: 

(a) 48.3 and 49.5 °C 

(b) 47.4 and 50.4 °C 

(c) 46.2 and 51.6 °C.



Chapter 4 

Measuring Systems 

4.1 Measurement: Forms of Realization 

Measurements can be carried out in two ways: direct and indirect. In this section, we 

will address these two modalities and their particularities. 

4.1.1 Direct Measurement 

Direct measurement occurs when only a quantity is involved in the process, and the 

instrument is used directly to obtain the desired measurement result. 

Some examples of direct measurements:

• Diameter measurement of a cylinder with a Vernier caliper

• Weighing an object with a scale

• Measurement of the electric current of a circuit with an ammeter

• Pressure indication using a Bourdon-type pressure gauge. 

4.1.2 Indirect Measurement 

It occurs when measurements involve one or more related quantities through a 

mathematical equation. 

Examples:

• Determination of the area (A) of a rectangular terrain measuring the length of 

each of its sides L1 and L2. We adopted the expression: A = L1 × L2. 
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Fig. 4.1 Electric circuit

• Determination of the electric current (I) of a simple circuit, measuring resistance 

(R) and the electrical potential difference (V). We adopted the expression: I = V/R 

(Fig. 4.1). 

Each measurement method has different metrological characteristics. The proper 

choice of measurement (direct or indirect) enables the closest result to the desired. 

For example, we can measure the density (ρ) of a liquid using a float densimeter 

(direct method), or we can, by the indirect method, measure the mass (m) and the 

volume of the liquid (v) and apply the relationship ρ = m/v. 

Knowing a Little More... (Fig. 4.2) 

The float densimeter is an instrument to measure the density of liquids. 

Among its utilities is to determine the properties of liquids by inspecting their 

density, especially when liquids are mixtures of substances. Thus, we can see 

if the composition of the mix is expected or not from the expected value for the 

density of the mixture. There are several ways to set up this apparatus, but the 

most common is a long closed glass tube at both ends, broader at its bottom, 

and narrower at its top. We must immerse the whole instrument in a container 

filled with the liquid from which the density is desired until it fluctuates freely. 

The principle of buoyancy (which is the force that makes the bodies float), 

revealed by Archimedes, is the basis of the densimeter. 

In direct measurement, we use only one instrument, densimeter, whereas in 

indirect measurement, we need a balance and a glass of known volume. Regarding 

density value, both methods should have similar results, but the final uncertainty of 

each process may be significantly different. 

Thus, the choice of method should evaluate the existence of error and the 

uncertainty of measuring the result.



4.2 Metrological Characteristics of Measurement Systems 113

Fig. 4.2 Float densimeter. 

(https://http2.mlstatic.com) 

4.2 Metrological Characteristics of Measurement Systems 

Measurement systems have several metrological characteristics described in the 

International Vocabulary of Metrology. In this section, we will highlight the most 

usual. 

4.2.1 Indication Interval 

According to VIM—4.3, the indication interval is: 

Set of quantity values bounded by extreme possible indications. 

NOTE 1 An indication interval is usually stated in terms of its smallest and greatest 

quantity values, for example, “99 V to 201 V.” 

NOTE 2 In some fields, the term is “range of indications”

https://http2.mlstatic.com
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Fig. 4.3 Clinical 

thermometer. (https:// 

pixabay.com/vectors/ 

clinical-thermometer-

fever-153666) 

Fig. 4.4 Manometer. 

(https://pixabay.com/ 

photos/manometer-oil-

mine-extraction-863210/) 

(a) Clinical thermometer: indication interval (35 to 42) °C (Fig. 4.3). 

(b) Pressure gauge: indication interval (0 to 1) MPa (Fig. 4.4).

https://pixabay.com/vectors/clinical-thermometer-fever-153666
https://pixabay.com/vectors/clinical-thermometer-fever-153666
https://pixabay.com/vectors/clinical-thermometer-fever-153666
https://pixabay.com/vectors/clinical-thermometer-fever-153666
https://pixabay.com/photos/manometer-oil-mine-extraction-863210/
https://pixabay.com/photos/manometer-oil-mine-extraction-863210/
https://pixabay.com/photos/manometer-oil-mine-extraction-863210/
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Fig. 4.5 Digital 

multimeter. (https://pixabay. 

com/vectors/device-electric-

electronics-measure-129601 

7/) 

4.2.2 Measuring Interval (Working Interval) 

The VIM—4.7 is defined as: 

Set of values of quantities of the same kind that can be measured by a given measuring 

instrument or measuring system with specified instrumental measurement uncertainty under 

defined conditions. 

NOTE 1 In some fields, the term is “measuring range” or “measurement range” 

NOTE 2 The lower limit of a measuring interval should not be confused with the 

detection limit 

The measurement interval is lower or, at most, equal to the indication interval and 

can be obtained in manuals, technical standards, or calibration reports. 

Example 4.1 

The 3 ½ digit digital multimeter (Fig. 4.5) measures continuous electrical voltage 

with an indication interval of (0 to 1000) V. However, this interval is subdivided into 

the following measurement intervals: (0 to 200) mV; (0 to 2000) mV; (0 to 20) V; 

(0 to 200) V; and (0 to 1000) V.

https://pixabay.com/vectors/device-electric-electronics-measure-1296017/
https://pixabay.com/vectors/device-electric-electronics-measure-1296017/
https://pixabay.com/vectors/device-electric-electronics-measure-1296017/
https://pixabay.com/vectors/device-electric-electronics-measure-1296017/
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Fig. 4.6 Manometer: 

vacuum and positive 

pressure. (https://pixabay. 

com/photos/pressure-meter-

engineering-gauge-

2113401/) 

4.2.3 Range of a Nominal Indication Interval 

The VIM—4.5 defines the range as follows: 

Absolute value of the difference between the extreme quantity values of a nominal indication 

interval. 

EXAMPLE: For a nominal indication interval of -10 V to +10 V, the range of the 

nominal indication interval is 20 V. 

NOTE Range of a nominal indication interval is sometimes termed “span of a nominal 

interval.” 

Example 4.2 

Note that the working interval of the gauge shown in Fig. 4.6 is (-100 to 500) kPa, 

but its measurement range is: 

Range= 500- - 100ð  Þ½ � kPa= 600 kPa

4.2.4 Division of Scale (Not in VIM) 

It is the difference between the scale values corresponding to two successive marks. 

The unit scheduled on the scale expresses the value of a division, whatever the unit 

of the measurement (Fig. 4.7).

https://pixabay.com/photos/pressure-meter-engineering-gauge-2113401/
https://pixabay.com/photos/pressure-meter-engineering-gauge-2113401/
https://pixabay.com/photos/pressure-meter-engineering-gauge-2113401/
https://pixabay.com/photos/pressure-meter-engineering-gauge-2113401/
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Fig. 4.7 Clinical 

thermometer with division 

of scale equal to 0.1 °C. 

(https://pixabay.com/ 

vectors/clinical-

thermometer-fever-153666) 

Fig. 4.8 Manometer with 

division of scale equal to 

10 kPa and resolution of 

5 kPa. (https://pixabay.com/ 

photos/pressure-meter-

engineering-gauge-

2113401/) 

4.2.5 Resolution of a Displaying Device 

The VIM—4.15 defines it as the “smallest difference between displayed indications 

that can be meaningfully distinguished.” 

The operator should evaluate the reading resolution in systems with analog dials 

(Fig. 4.8).

https://pixabay.com/vectors/clinical-thermometer-fever-153666
https://pixabay.com/vectors/clinical-thermometer-fever-153666
https://pixabay.com/vectors/clinical-thermometer-fever-153666
https://pixabay.com/photos/pressure-meter-engineering-gauge-2113401/
https://pixabay.com/photos/pressure-meter-engineering-gauge-2113401/
https://pixabay.com/photos/pressure-meter-engineering-gauge-2113401/
https://pixabay.com/photos/pressure-meter-engineering-gauge-2113401/
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Fig. 4.9 Analog Vernier 

caliper with resolution of 

0.0125 inch. (https:// 

pixabay.com/photos/ 

vernier-caliper-measuring-

instrument-452987/ 

Figure 4.8 shows a gauge (vacuum and positive pressure) with a 10 kPa scale 

division. To determine the instrument resolution, we must answer the following 

question: What is the lowest reading value I can achieve? 

Answer: If the pointer is between two consecutive strokes and can read, we can 

consider a resolution of 5 kPa. Otherwise, we must consider the resolution equal to 

the value of the division, 10 kPa. In this example, we can admit a resolution of 5 kPa 

and the indicated value of -15 kPa. 

Defining this gauge’s reading resolution as 2.5 kPa would be difficult. This would 

only be possible if we could “with the naked eye” divide the value of a division into 

four parts! 

The resolution of a display device will always be the slightest difference between 

indications that can be significantly perceived. That is the lowest value that can 

safely be read in a measurement. 

We should not assume that the reading resolution is lower than it is. We must 

recognize the instrument’s sensitivity for proper choice. 

Important 

1. Resolution will always be the slightest difference between indications that 

can be significantly perceived and will never be less than the instrument’s 

sensitivity. 

2. Resolution on a digital display device will be the lowest variation of this 

dial, that is, its digital increase. 

Example 4.3 

A caliper’s resolution is calculated as the ratio between the value of a division on the 

fixed scale and the number of nonius, or Vernier, divisions (Fig. 4.9).

https://pixabay.com/photos/vernier-caliper-measuring-instrument-452987/
https://pixabay.com/photos/vernier-caliper-measuring-instrument-452987/
https://pixabay.com/photos/vernier-caliper-measuring-instrument-452987/
https://pixabay.com/photos/vernier-caliper-measuring-instrument-452987/


Born in Ornans, France, this geometry and manufacturer of scientific

instruments learned mathematics and science from his father, a lawyer and

engineer of the Spain Government Chancellery. He acted as an engineer in the

fortifications of various cities. His work in cartography resulted in the creation

of numerous instruments, such as the Vernier caliper (1631), similar to the

nonius of João Pedro Nunes, to measure the length accurately, using two

graduated scales that slid in parallel, one of which provides exact subdivisions

of a division of the other scale. His most famous publication, La Construction,

l’usage, et les propriétés du quadrant nouveau de mathématiques (1631),
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Fig. 4.10 João Pedro 

Nunes. (http://ensina.rtp.pt/ 

site-uploads/2017/05/pedro-

nunes-667x376.jpg) 

A caliper with 0.1 division inches on a fixed scale and a nonius with eight 

divisions have a resolution of 0.0125 inches. Even using a magnifying glass and 

expanding the scale view, we continue with a resolution of 0.0125 inches. 

Knowing a Little More... (Fig. 4.10) 

Where does nonius come from? 

This measurement device was one of the inventions of this Portuguese, 

born in Alcácer do Sal. It has worked in numerous areas, such as moral, 

metaphysical, and logical philosophy, since its formation in medicine in 

1525. He became a cosmographer in 1529 by King D. João III and, in 1544, 

began to teach at the University of Coimbra. Nonius served to measure grade 

fractions in two nautical instruments at height, the astrolabe and the quadrant. 

Pierre Vernier perfected the base concept of this instrument, allowing its broad 

diffusion in the eighteenth century (Fig. 4.11)—Source: Adapted from pt. 

wikipedia.org.

(continued)

http://pt.wikipedia.org
http://pt.wikipedia.org
http://ensina.rtp.pt/site-uploads/2017/05/pedro-nunes-667x376.jpg%3e
http://ensina.rtp.pt/site-uploads/2017/05/pedro-nunes-667x376.jpg%3e
http://ensina.rtp.pt/site-uploads/2017/05/pedro-nunes-667x376.jpg%3e


describes his invention of a senior board and a method to determine the angles

of a triangle with its known sides.
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Fig. 4.11 Pierre Vernier 

(1580–1637). (https:// 

alchetron.com/cdn/pierre-

vernier-7b642191-a050-4c1 

7-8bd2-7dea18d3bb1-

resize-750.jpeg) 

Knowing a Little More... (Fig. 4.10) (continued)

Source: Adapted from https://www.biografias.es/famosos/pierre-vernier. 

html. 

4.2.6 Sensitivity of a Measuring System 

According to VIM—4.12, the sensitivity of a measuring system is: 

Quotient of the change in an indication of a measuring system and the corresponding 

change in a value of a quantity being measured. 

NOTE 1 Sensitivity of a measuring system can depend on the value of the quantity being 

measured 

NOTE 2 The change considered in the value of a quantity being measured must be large 

compared with the resolution 

Example 4.4 

(a) A Pt-100 type platinum resistance thermometer has a sensitivity of 0.38 Ω/°C, 

that is, each one °C stimulus in temperature causes a variation in the electrical 

resistance of the Pt-100 of 0.38 ohm. 

(b) An electrode’s sensitivity for pH measurement shall be 59.16 mV/pH, that is, 

one pH variation in the substance should generate 59.16 mV of electrode output 

variation. 

(c) A type K thermocouple must have a sensitivity of 39.5 mV/°C, and a type J 

thermocouple must have a 50.4 mV/°C.

https://www.biografias.es/famosos/pierre-vernier.html%3e
https://www.biografias.es/famosos/pierre-vernier.html%3e
https://alchetron.com/cdn/pierre-vernier-7b642191-a050-4c17-8bd2-7dea18d3bb1-resize-750.jpeg%3e
https://alchetron.com/cdn/pierre-vernier-7b642191-a050-4c17-8bd2-7dea18d3bb1-resize-750.jpeg%3e
https://alchetron.com/cdn/pierre-vernier-7b642191-a050-4c17-8bd2-7dea18d3bb1-resize-750.jpeg%3e
https://alchetron.com/cdn/pierre-vernier-7b642191-a050-4c17-8bd2-7dea18d3bb1-resize-750.jpeg%3e
https://alchetron.com/cdn/pierre-vernier-7b642191-a050-4c17-8bd2-7dea18d3bb1-resize-750.jpeg%3e
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4.2.7 Stability of a Measuring Instrument 

According to VIM—4.19, it is: 

Property of a measuring instrument, whereby its metrological properties remain constant in 

time 

NOTE: Stability may be quantified in several ways. 

EXAMPLE 1 In terms of the duration of a time interval over which a metrological 

property changes by a stated amount 

EXAMPLE 2 In terms of the change of a property over a stated time interval 

In Table 4.1, we present an example of the analysis of the stability of the temperature 

of a liquid calibration bath at a point close to 60 °C. This bath has a measurement 

range between 50 °C and 300 °C. 

The stability of a bath is the variation of its temperature at a given point after the 

bath goes into thermal equilibrium. Since no instrument is stable, this investigation 

will verify how much the calibration bath temperature oscillates after it is fixed at a 

given value. In this example, the desired value is 60 °C. 

Table 4.1 Calibration bath temperature values at point 60 °C 

Time 

(s) 

Temperature 

(°C) 

Time 

(s) 

Temperature 

(°C) 

Time 

(s) 

Temperature 

(°C) 

0 59.65 1201 59.67 2402 59.69 

60 59.68 1261 59.67 2462 59.62 

120 59.67 1321 59.68 2522 59.67 

180 59.68 1381 59.77 2582 59.68 

240 59.72 1441 59.69 2642 59.67 

300 59.64 1501 59.69 2702 59.68 

360 59.68 1561 59.71 2762 59.74 

420 59.67 1621 59.63 2822 59.72 

480 59.68 1681 59.72 2882 59.68 

540 59.67 1741 59.69 2942 59.70 

600 59.69 1801 59.73 3002 59.76 

661 59.63 1861 59.66 3062 59.69 

721 59.67 1921 59.66 3122 59.69 

781 59.68 1981 59.70 3182 59.70 

841 59.67 2042 59.72 3242 59.73 

901 59.67 2102 59.69 3303 59.68 

961 59.71 2162 59.71 3363 59.67 

1021 59.68 2222 59.71 3423 59.76 

1081 59.67 2282 59.67 3483 59.76 

1141 59.69 2342 59.66 3543 59.69
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Graph 4.1 Analysis of calibration bath stability at point 60 °C 

For this analysis, we collected the bath temperature values for one hour at time 

intervals of one minute. We use a resistance thermometer (Pt-100 four wires) 

connected to a 6 ½ digit multimeter. 

Note that after one hour of analysis, the highest temperature value is 59.77 °C, 

and the smallest is 59.62 °C. We can conclude that the stability (E) of the calibration 

bath, after the thermal equilibrium at point 60 °C, was: 

E= 59:77–59:62ð Þ  °C= 0:15 °C 

Graph 4.1 demonstrates the temperature variation of the calibration bath when it 

is stable at around 60 °C. 

4.3 Errors in Measurement Systems 

When we calibrate a measurement instrument, we set a comparison between 

the values obtained by the calibration instrument and the values provided by the 

standard. Some metrological characteristics obtained in this comparison are the 

errors and trends of the instruments. In this section, we will address these definitions 

and their applications.



ð Þ
ð Þ
ð Þ
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4.3.1 Measurement Error 

The VIM—2.16 defines measurement error as follows: 

Measured quantity value minus a reference quantity value. 

NOTE 1 The concept of ‘measurement error’ can be used in both 

(a) when there is a single reference quantity value to refer to, which occurs if a calibration 

is made by means of a measurement standard with a measured quantity value having a 

negligible measurement uncertainty or if a conventional quantity value is given, in 

which case the measurement error is known, and, 

(b) if a measurand is supposed to be represented by a unique true quantity value or a set of 

true quantity values of negligible range, in which case the measurement error is not 

known. 

NOTE 2 Measurement error should not be confused with production error or mistake 

Then, the error is: 

E=X–Rv ð4:1Þ 

where E = measurement error; X = measured value; and Rv = reference value. 

Usually, the reference value is attributed to the value of the standard. 

Mathematically, the measurement error can be positive or negative. A positive 

error denotes that the instrument measurement is greater than the reference value, 

and a negative error denotes that the measurement is less than the reference value. 

Important 

When we do more than one measurement at the same point and get different 

values for error, we adopt the largest of these values as the measurement error. 

Solved Exercise 4.1 

Four voltage measurements were performed using a voltmeter. The values found 

were 127.5 V, 127.6 V, 127.5 V, and 127.4 V. Knowing that the reference value is 

127.68 V, determine the voltmeter measurement error. 

Solution 

The measurement error is given by Eq. (4.1). Therefore, we will have: 

E1= 127:5–127:68ð Þ  V= -0:18 V 

E2= 127:6–127:68 V= -0:08 V 

E3= 127:5–127:68 V= -0:18 V 

E4= 127:4–127:68 V= -0:28 V
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Since the voltmeter has four error values, we will adopt the value of the most 

significant measurement error (in absolute terms). 

E= - 0:28 V= - 0:3  V  

Important 

The measurement error result will be -0.3 V, since we must round it to the 

same number of decimal digits as the instrument reading from which we are 

determining the measurement error. 

4.3.2 Instrumental Bias and Correction 

4.3.2.1 Instrumental Bias 

The definition of VIM—4.20 for instrumental bias is “average of replicate indica-

tions minus a reference quantity value.” 

We should not confuse instrumental bias with measurement error. The instru-

mental bias determines the instrument’s average measurement error. 

B=X-Rv ð4:2Þ 

B = instrumental bias; -X = mean of measurements; and Rv = reference value. 

Solved Exercise 4.2 

Determining the instrumental bias of Solved Exercise 4.1, we have (Table 4.2): 

B= 127:5- 127:68ð Þ  V= -0:18 V 

B= -0:2  V  

Important 

The result of the bias will be -0.2 V, since we must round the result to the 

same number of decimal digits as the instrument reading from which we are 

determining the instrumental bias. 

Table 4.2 Measurements 

and mean 
Measurements (V) Mean (V) Reference value (V) 

127.5 127.5 127.68 

127.6 

127.5 

127.4
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4.3.2.2 Correction 

According to VIM—2.53, we have the following definition for correction: 

Compensation for an estimated systematic effect. 

NOTE 1 See GUM:1995, 3.2.3, for an explanation of ‘systematic effect’ 

NOTE 2 The compensation can take different forms, such as an addend or a factor, or 

can be deduced from a table 

Correction is equal to the bias with a changed signal and must be added to the value 

of indications to compensate for the systematic effect. 

In Solved Exercise 4.2, the correction would be +0.2 V, and the value of the 

corrected voltmeter measurement would be (127.5 + 0.2) V = 127.7 V. 

4.3.3 Instrumental Drift 

The VIM—4.21 defines instrumental drift as: 

Continuous or incremental change over time in indication due to changes in metrological 

properties of a measuring instrument. 

NOTE: Instrumental drift is related neither to a change in a quantity being measured nor 

to a change of any recognized influence quantity. 

It is widespread for an instrument of measurement to vary its metrological properties, 

such as measurement uncertainty and measurement error, over time. For this reason, 

we must verify the periodicity of these variations and perform calibrations in the 

measuring instruments at smaller intervals than their instrumental drift. 

To verify the stability of a measurement instrument, we analyze your calibration 

certificate over two or more consecutive calibrations. We keep the calibration 

certificates from one period to another (usually from year to year) and compare 

their uncertainties, trends, and measurement errors. 

Solved Exercise 4.3 

An analytical scale, class I, with a resolution of 0.1 mg, was calibrated, and the table 

data for its calibration certificate were obtained (Table 4.3). 

Table 4.3 Calibration results 

Calibration results 

Indication (g) Standard (g) Object (g) Bias (mg) Uncertainty (mg) k 

20 20.000011 20.0000 0.0 0.2 2.01 

40 40.000028 40.0000 0.0 0.3 2.00 

70 70.000021 70.0003 0.3 0.3 2.02 

100 100.000010 100.0001 0.1 0.3 2.01 

120 120.000021 120.0001 0.1 0.4 2.01 

150 150.000020 150.0001 0.1 0.4 2.00 

220 220.000041 220.0003 0.3 0.5 2.00
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Table 4.4 Data from the certificate 

Indication (g) Standard (g) Object (g) Bias (mg) Uncertainty (mg) k 

20 20.000005 20.0000 0.0 0.2 2.00 

40 40.000022 40.0000 0.0 0.4 2.01 

70 70.000051 70.0005 0.4 0.4 2.01 

100 100.000006 100.0001 0.1 0.4 2.00 

120 120.000018 120.0001 0.1 0.5 2.02 

150 150.000014 150.0001 0.1 0.5 2.02 

220 220.000011 220.0004 0.4 0.5 2.02 

Table 4.5 Instrumental Drift 

Indication                

(g) 

Bias (mg) 

(year 1) 

Bias (mg) 

(year 2) 

Drift 

(mg) 

20 0.0 0.0 0.0 

40 0.0 0.0 0.0 

70 0.3 0.4 0.1 

100 0.1 0.1 0.0 

120 0.1 0.1 0.0 

150 0.1 0.1 0.0 

220 0.3 0.4 0.1 

A year later, it was calibrated again. Table 4.4 shows data from the certificate. 

Determine the instrumental drift from the scale one year to the next. 

Solution 

We must subtract the trend values between two consecutive years to determine the 

instrumental drift from the balance from one year to another. See Table 4.5. 

4.3.4 Maximum Permissible Measurement Error 

The VIM—4.26 definition is: 

Extreme value of measurement error, with respect to a known reference quantity value, 

permitted by specifications or regulations for a given measurement, measuring instrument, 

or measuring system. 

NOTE 1 Usually, the term “maximum permissible errors” or “limits of error” is used 

where there are two extreme values 

NOTE 2 The term “tolerance” should not be used to designate ‘maximum permissible 

error’
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Example 4.5 

The standard CEN EN 837-1 Pressure Gauges—Part 1: Bourdon Tube Pressure 

Gauges—Dimensions, Metrology, Requirements, and Testing defines the following 

maximum permissible errors for analog manometer concerning its measurement 

range, such as:

• Class 0.1—maximum error of 0.1 %.

• Class 0.25—maximum error of 0.25 %.

• Class 0.6—maximum error of 0.6 %.

• Class 1—maximum error of 1.0 %.

• Class 1.6—maximum error of 1.6 %.

• Class 2.5—maximum error of 2.5 %. 

4.3.5 Hysteresis (Not in VIM) 

Hysteresis (H ) is the most significant difference, in absolute value, of the charge (C) 

values (measurement made when applying an increasing signal in value) and (D) 

discharge (measurement made when applying a decreasing signal in value) of a 

measurement instrument. 

H = C -Dj j ð4:4Þ 

Hysteresis is a typical phenomenon in mechanical instruments, with a source of 

error, especially clearances and deformations associated with friction. Examples of 

instruments that may present hysteresis errors are scales, dynamometers, and analog 

gauges. 

Solved Exercise 4.4 

When calibrating a pressure gauge, we determine its hysteresis by charging (increas-

ing pressure) and discharging (decreasing pressure). Table 4.6 shows the result of 

one calibration cycle. Determine the gauge’s hysteresis at each point. 

Solution 

Table 4.7 shows how we can determine hysteresis at each point from the previous 

data by subtracting the charge and discharge values (in absolute value). 

The pressure gauge hysteresis will be at its highest value: 0.2 bar. 

Table 4.6 Result of one calibration cycle 

Value read in gauge (bar) Charge read in standard (bar) Discharge read in standard (bar) 

10 9.9 10.0 

20 19.9 20.1 

30 30.0 30.0 

40 40.2 40.1 

50 50.3 50.1
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Table 4.7 Hysteresis 

Value read in 

gauge (bar) 

Charge read in 

standard (bar) 

Discharge read in 

standard (bar) 

Hysteresis 

(bar) 

10 9.9 10.0 0.1 

20 19.9 20.1 0.2 

30 30.0 30.0 0.0 

40 40.2 40.1 0.1 

50 50.3 50.1 0.2 

4.3.6 Measurement Accuracy and Precision 

These concepts may be the metrological characteristics with the most application 

mistakes. It is common for people to change the definition of accuracy with that of 

precision. It became common sense to call a precise measurement when referring to 

an exact measurement. 

This section will define these terms and check their correct application. 

4.3.6.1 Measurement Accuracy 

The VIM—2.13 presents the following definition of measurement accuracy: 

Closeness of agreement between a measured quantity value and a true quantity value of a 

measurand. 

NOTE 1 The concept ‘measurement accuracy’ is not a quantity and is not given a 

numerical quantity value. A measurement is said to be more accurate when it offers a 

smaller measurement error 

NOTE 2 The term “measurement accuracy” should not be used for measurement 

trueness and the term “measurement precision” should not be used for ‘measurement 

accuracy’, which, however, is related to both these concepts 

NOTE 3 ‘Measurement accuracy’ is sometimes understood as the closeness of agree-

ment between measured quantity values that are being attributed to the measurand. 

The true value would be obtained by a perfect measurement (which does not exist), 

being, by nature, indeterminate. Since the true value is indeterminate, it is used the 

conventional quantity value [VIM—2.12]: 

Quantity value attributed by agreement to a quantity for a given purpose. 

EXAMPLE 1 Standard acceleration of free fall (formerly called “standard acceleration 

due to gravity”), gn = 9.806 65 m·s
2 

EXAMPLE 2 Conventional quantity value of the Josephson constant, KJ-90 = 

483,597.9 GHz V-1 

EXAMPLE 3 Conventional quantity value of a given mass standard, m = 100.003 47 g 

NOTE 1 The term “conventional true quantity value” is sometimes used for this concept, 

but its use is discouraged 

NOTE 2 Sometimes a conventional quantity value is an estimate of a true quantity value
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NOTE 3 A conventional quantity value is generally accepted as being associated with a 

suitably small measurement uncertainty, which might be zero 

Or the reference quantity value [VIM—5.18]: 

Quantity value used as a basis for comparison with values of quantities of the same kind. 

NOTE 1 A reference quantity value can be a true quantity value of a measurand, in 

which case it is unknown, or a conventional quantity value, in which case it is known 

NOTE 2 A reference quantity value with associated measurement uncertainty is usually 

provided with reference to 

(a) a material, e.g., a certified reference material, 

(b) a device, e.g., a stabilized laser, 

(c) a reference measurement procedure, 

(d) a comparison of measurement standards. 

Thus, considering the value of a measurement standard such as the “conventional 

value,” the instrument’s accuracy is related to its ability to present the measurement 

results as close as possible to the value of this standard. 

Measurement accuracy is not a quantity and is not given a numerical quantity value. A 

measurement is said to be more accurate when it offers a smaller measurement error. 

[VIM—2.13 NOTE 1] 

4.3.6.2 Measurement Precision 

The definition in VIM—2.15 for measurement precision is: 

Closeness of agreement between indications or measured quantity values obtained by 

replicate measurements on the same or similar objects under specified conditions. 

NOTE 1 Measurement precision is usually expressed numerically by measures of 

imprecision, such as standard deviation, variance, or coefficient of variation under the 

specified conditions of measurement 

NOTE 2 The ‘specified conditions’ can be, for example, repeatability conditions of 

measurement, intermediate precision conditions of measurement, or reproducibility condi-

tions of measurement (see ISO 5725-1:1994) 

NOTE 3 Measurement precision is used to define measurement repeatability, interme-

diate measurement precision, and measurement reproducibility 

NOTE 4 Sometimes “measurement precision” is erroneously used to mean measurement 

accuracy 

4.3.7 Measurement Precision × Measurement Accuracy 

The following example is a “classic of metrology,” but we consider it the simplest 

and fastest way to visually convey the concepts of precision and accuracy. 

Consider four people (A, B, C, and D) who shoot ten times at the same distance as 

the target. The results of the shots are shown in Fig. 4.12.
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Fig. 4.12 Precision × Accuracy 

Table 4.8 Precision × 

Accuracy 
Shooter Accuracy Precision 

A High High 

B Good Low 

C Low High 

D Low Low 

Shooter A hit almost every shot in the center of the target, demonstrating good 

accuracy (distance from the average shot from the center of the target) and reason-

able accuracy (low shot dispersal). 

Shooter B showed a very large spreading around the center of the target, but the 

shots are approximately equidistant in the center. The scattering of the shots stems 

directly from their low precision when analyzed individually. Still, when we observe 

the average position of the shots, which coincides approximately with the position of 

the center of the target, this reflects good accuracy. 

Shooter C’s shots are concentrated, with low dispersion, but away from the center 

of the target. This indicates low accuracy and high precision. 

Shooter D, besides presenting a vast spreading, failed to make the “center” of the 

shots near the center of the target. This shooter has low accuracy and precision. 

Table 4.8 presents a summary of this analysis: 

Shooter A is the ideal. Comparing B, C, and D, we can consider shooter C the best 

because although none of the shooter’s shots hit the center of the target, its spread is 

very small (high precision). If the shooter’s target C is corrected, he will get a 

condition close to that of A, which we can never get with B and D. 

Important 

Accuracy is not as critical as precision, since calibration can determine and 

correct it. Precision is also determined by calibration but cannot be corrected. 

It can be proved that its influence on the mean value is reduced in the 

proportion of 1= n
p , in which n is the number of repetitions of the measurement 

considered in the mean calculation.
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4.3.8 Accuracy Class 

The definition of accuracy class is as follows: 

Class of measuring instruments or measuring systems that meet stated metrological require-

ments that are intended to keep measurement errors or instrumental measurement uncer-

tainties within specified limits under specified operating conditions. 

NOTE 1 An accuracy class is usually denoted by a number or symbol adopted by 

convention 

NOTE 2 Accuracy class applies to material measures. [VIM—4.25] 

Example 4.6 

(a) According to Mercosur standard NM 215: 2000, a Class 1 standard block may 

have a variation in its length L (in mm) of ± (0.05 + 0.5 × 10-6 L) (m) /year). 

(b) According to the recommendations of OIML, the standard masses used in the 

calibration of scales are classified in the accuracy classes E1, E2, F1, F2, M1, 

and M2. A mass of 100 mg, for example, presents, by accuracy class, the 

following maximum permissible errors (Table 4.9): 

4.4 Repeatability and Reproducibility 

The measurement result is intrinsically linked to these definitions. We can only 

compare results that meet the conditions of repeatability or reproducibility. 

4.4.1 Repeatability Condition of Measurement 

According to VIM—2.20, the repeatability condition of measurement is: 

Condition of measurement, out of a set of conditions that includes the same measurement 

procedure, same operators, same measuring system, same operating conditions, and same 

location, and replicate measurements on the same or similar objects over a short period of 

time. 

NOTE 1 A condition of measurement is a repeatability condition only with respect to a 

specified set of repeatability conditions 

NOTE 2 In chemistry, the term “intra-serial precision condition of measurement” is 

sometimes used to designate this concept 

Table 4.9 Maximum per-

missible error values for the 

mass of 100 mg 

Accuracy class Maximum error 

Class E1 ±0.005 mg 

Class E2 ±0.015 mg 

Class F1 ±0.05 mg 

Class F2 ±0.15 mg 

Class M1 ±0.5 mg 

Class M2 ±1.5 mg
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4.4.2 Measurement Repeatability 

The VIM—2.21 presents the following definition of repeatability of measurement: 

“measurement precision under a set of repeatability conditions of measurement.” 

4.4.3 Reproducibility Condition of Measurement 

Again, the VIM—2.24 presents the following definition for the reproducibility 

condition of measurement: 

Condition of measurement, out of a set of conditions that includes different locations, 

operators, measuring systems, and replicate measurements on the same or similar objects. 

NOTE 1 The different measuring systems may use different measurement procedures 

NOTE 2 A specification should give the conditions changed and unchanged, to the extent 

practical 

Measurements in reproducibility conditions are very common in exports, as it is not 

possible for the same operator in the same place, following the same measurement 

system, to accompany the product. 

4.4.4 Measurement Reproducibility 

According to VIM—2.25, measurement reproducibility is “measurement precision 

under reproducibility conditions of measurement.” 

In the case of exports, measurement reproducibility will verify the variability of 

measurements between places or countries. This variability must be within criteria 

previously established in the contract. 

4.5 Proposed Exercises 

4.5.1 According to the pressure gauge shown in Fig. 4.13, answer: 

(a) What is the division of the scale? 

(b) Which reading resolution would you adopt? 

(c) How would you write the result of reading the gauge? 

4.5.2 According to the thermometer shown in Fig. 4.14, answer: 

(a) What is the division of the scale? 

(b) Which reading resolution would you adopt? 

(c) How would you write the result of reading the thermometer?
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Fig. 4.13 Pressure gauge. 

(https://pixabay.com/ 

vectors/manometer-

measure-pressure-40253/) 

Fig. 4.14 Thermometer. 

(https://pixabay.com/ 

photos/celsius-degree-

equipment-industrial-1604 

7/)

https://pixabay.com/vectors/manometer-measure-pressure-40253/
https://pixabay.com/vectors/manometer-measure-pressure-40253/
https://pixabay.com/vectors/manometer-measure-pressure-40253/
https://pixabay.com/photos/celsius-degree-equipment-industrial-16047/
https://pixabay.com/photos/celsius-degree-equipment-industrial-16047/
https://pixabay.com/photos/celsius-degree-equipment-industrial-16047/
https://pixabay.com/photos/celsius-degree-equipment-industrial-16047/


4.5.3 What is the gauge’s range from (-1 to 10) bar?
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4.5.4 What is reading resolution? 

(a) Lower division of an instrument. 

(b) Lower difference between indications of a dial device that can be significantly 

perceived. 

(c) Greater difference between indications of a dial device that can be signifi-

cantly perceived. 

(d) Lower difference between indications of a display device that cannot be 

significantly perceived. 

4.5.5 What is repeatability? 

(a) Aptitude of a measurement instrument to provide very close indications in 

repeated applications of the same measure under different conditions. 

(b) Aptitude of a measuring instrument to provide very close indications in 

repeated applications of the same measuring under the same measurement 

conditions. 

(c) Aptitude of a measuring instrument to provide very dispersed indications in 

repeated applications of the same measuring under the same measurement 

conditions. 

(d) Aptitude of a measuring instrument to provide very close uncertainties in 

repeated applications of the same measure under different measurement 

conditions. 

4.5.6 A pressure gauge, with measurement interval (0.0 to 200.0) bar, has the 

following characteristics:

• Resolution: 0.4 bar.

• Maximum error: 0.8 bar.

• Hysteresis error: 1.2 bar. 

(a) Determine, in relative terms, the maximum error and the hysteresis as a 

function of the measurement range of the gauge. 

(b) Determine, in relative terms, the maximum error and the hysteresis as a 

function of the value indicated when the measured value is 65.0 bar. 

4.5.7 A resistor was measured with a standard multimeter, and the value obtained 

was (15.977 ± 0.008) Ω. This resistor was used to calibrate another multimeter, 

and the following indications (Table 4.10) were obtained (all in Ω). 

Determine: 

(a) The value of the mean of the indications. 

(b) The bias of the instrument. 

(c) The measurement error.
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4.5.8 In the calibration of a mercury glass liquid thermometer, we found for the
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standard value (Vr) 20.0 °C, and for the thermometer, the values 20.0 °C, 21.0 °C, 

20.0 °C, 21.0 °C. 

Determine: 

(a) The bias of the thermometer. 

(b) The measuring error of the thermometer. 

4.5.9 A pressure gauge with a bias of 1 psi (psi is an English pressure unit and means 

pounds per square inch. 1 psi = 689,476 kPa) made a pressure measurement, 

finding 45 psi. What is your pressure value corrected? 

4.5.10 Figure 4.15 represents five shots fired by a shooter. Which of the alternatives 

best qualifies this shooter? 

(a) Low accuracy and low precision. 

(b) Low accuracy and high precision. 

(c) High accuracy and low precision. 

(d) High accuracy and high precision. 

4.5.11 Figure 4.16 represents three arrows thrown by one person. Which of the 

alternatives best qualifies this person? 

(a) Low accuracy and low precision. 

(b) Low accuracy and high precision. 

(c) High accuracy and low precision. 

(d) High accuracy and high precision. 

4.5.12 Figure 4.17 represents three arrows thrown by one person. Which of the 

alternatives best qualifies this person? 

(a) Low accuracy and low precision. 

(b) Low accuracy and high precision. 

(c) High accuracy and low precision. 

(d) High accuracy and high precision. 

4.5.13 What is measurement error? 

(a) Value of the indication of an instrument plus the reference value of the input 

quantity. 

(b) Reference value of the input quantity minus the value of the indication of an 

instrument. 

(c) Uncertainty of the indication of an instrument minus the reference value of 

the input quantity. 

(d) Indication value of an instrument minus the reference value of the input 

quantity.
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Fig. 4.15 Shots at a target 

(https://pixabay.com/ 

vectors/tiro-target-butt-shot-

gun-bullet-160574/) 

Fig. 4.16 Arrows at a target 

(https://pixabay.com/ 

photos/dart-sports-goal-

dart-board-arrow-3910686/) 

both scales (°C—left side and °F—right side). 

(a) The scale division. 

(b) The resolution. 

(c) Indication value.

https://pixabay.com/vectors/tiro-target-butt-shot-gun-bullet-160574/
https://pixabay.com/vectors/tiro-target-butt-shot-gun-bullet-160574/
https://pixabay.com/vectors/tiro-target-butt-shot-gun-bullet-160574/
https://pixabay.com/photos/dart-sports-goal-dart-board-arrow-3910686/
https://pixabay.com/photos/dart-sports-goal-dart-board-arrow-3910686/
https://pixabay.com/photos/dart-sports-goal-dart-board-arrow-3910686/


4.5.15. Observe Fig. 4.19 of the instrument and present the information requested.
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Fig. 4.17 Three arrows at a 

target (https://pixabay.com/ 

photos/darts-goal-target-

direct-hit-arrow-2349468/) 

(a) The scale division. 

(b) The resolution. 

(c) The measurement range. 

(d) Indication value when the red pointer is on number 5. 

(e) The value of the maximum permissible error. 

4.5.16 A standard resistor, whose value is (10,000 ± 0.005) Ω, was measured with 

two multimeters under the same repeatability conditions. The results are shown in 

Table 4.11. 

(a) What is the most precise multimeter? Justify your answer. 

(b) What is the most accurate multimeter? Justify your answer. 

4.5.17 A digital scale with 0.001 g resolution was calibrated using a set standard 

mass class E2. The result of calibration is in Table 4.12. Based on this informa-

tion, answer what is asked. 

(a) At what point is the scale most accurate? Justify. 

(b) At what point is the scale most inaccurate? Justify. 

(c) When we measured three times the value of a mass M, in this scale, we find 

the following: 5.003 g; 5.004 g; 5.005 g. Determine the corrected mean value 

of mass M.

https://pixabay.com/photos/darts-goal-target-direct-hit-arrow-2349468/
https://pixabay.com/photos/darts-goal-target-direct-hit-arrow-2349468/
https://pixabay.com/photos/darts-goal-target-direct-hit-arrow-2349468/
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Fig. 4.18 Thermometer 

with ºC and °F scales 

(https://pixabay.com/ 

photos/thermometer-pay-

scale-fluid-level-1176354/) 

Fig. 4.19 Analog voltmeter 

(https://pixabay.com/ 

photos/instrument-voltage-

volt-meter-217276/)

https://pixabay.com/photos/thermometer-pay-scale-fluid-level-1176354/
https://pixabay.com/photos/thermometer-pay-scale-fluid-level-1176354/
https://pixabay.com/photos/thermometer-pay-scale-fluid-level-1176354/
https://pixabay.com/photos/instrument-voltage-volt-meter-217276/
https://pixabay.com/photos/instrument-voltage-volt-meter-217276/
https://pixabay.com/photos/instrument-voltage-volt-meter-217276/


4.5.18 Consider a calibration of the thermometer of Exercise 4.5.2. A standard
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Table 4.11 Multimeters 

values 
Multimeter 1 (Ω) 10.02 10.03 10.04 

Multimeter 2 (Ω) 10.02 10.04 10.06 

Table 4.12 Scale calibration 

Point Nominal value (g) Standard (g) Object (g) Bias (g) 

1 1 1.000004 1.003 0.003 

2 2 2.000007 2.004 0.004 

3 5 5.000009 5.002 0.002 

4 10 10.000005 9.999 -0.001 

5 20 20.000017 20.000 0.000 

6 50 50.000010 49.998 -0.002 

thermometer was used to calibrate at point 50 °C, whose certificate correction 

to point 50 °C  is -0.3 °C. Three measurements of the standard were made, 

obtaining a mean of 50.2 °C and, for the thermometer, a mean of 50 °C. Based on 

this information, deter mine:

(a) The standard temperature value at point 50 °C. 

(b) The bias of the thermometer at point 50 °C. 

(c) The correction to be applied to the thermometer at point 50 °C.



Chapter 5 

Evaluation of Uncertainty in Direct 

Measurements 

5.1 Concept of Measurement Uncertainty 

Direct measurements are obtained by directly reading a measurement instrument that 

measures the same quantity. 

In a direct measurement, the result is obtained by comparing the value read by the 

measuring instrument with the desired quantity. The measurement is done directly, 

without the use of mathematical equations. 

Examples of direct measurements:

• Temperature measurement with a glass liquid thermometer (Fig. 5.1);

• Length measurement with a metric tape;

• Mass measurement with a scale;

• Pressure measurement with a gauge;

• Measurement of a thickness gear with a Vernier caliper (Fig. 5.2). 

A measurement’s result will always have a doubt associated with it, which we 

consider measurement uncertainty. What is sought in a measurement with metro-

logical reliability is to estimate the measurement’s results and associated uncertainty 

in the most reliable way possible. 

Measurement uncertainty will always exist and never be eliminated since, as we 

have previously presented, the true quantity value is also estimated. 

It is possible, however, to define the limits within which the value of a measure-

ment with a certain associated probability is found. 

The measurement uncertainty is defined by VIM—2.26 as:

• Non-negative parameter characterizing the dispersion of the quantity values 

being attributed to a measurand, based on the information used.

• NOTE 1 Measurement uncertainty includes components arising from systematic 

effects, such as components associated with corrections and the assigned quan-

tity values of measurement standards, as well as the definitional uncertainty. 
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Fig. 5.1 Measurement with 

thermometer. https:// 

pixabay.com/photos/ 

thermometer-temperature-

equipment-5947734/ 

Sometimes estimated systematic effects are not corrected for but, instead, asso-

ciated measurement uncertainty components are incorporated.

• NOTE 2 The parameter may be, for example, a standard deviation called 

standard measurement uncertainty (or a specified multiple of it), or the half-

width of an interval, having a stated coverage probability.

• NOTE 3 Measurement uncertainty comprises, in general, many components. 

Some of these may be evaluated by Type A evaluation of measurement uncertainty 

from the statistical distribution of the quantity values from a series of measure-

ments and can be characterized by standard deviations. The other components, 

which may be evaluated by Type B evaluation of measurement uncertainty, can 

also be characterized by standard deviations, evaluated from probability density 

functions based on experience or other information.

• NOTE 4 In general, for a given set of information, it is understood that the 

measurement uncertainty is associated with a stated quantity value attributed to

https://pixabay.com/photos/thermometer-temperature-equipment-5947734/
https://pixabay.com/photos/thermometer-temperature-equipment-5947734/
https://pixabay.com/photos/thermometer-temperature-equipment-5947734/
https://pixabay.com/photos/thermometer-temperature-equipment-5947734/
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Fig. 5.2 Measurement with 

Vernier caliper. https:// 

pixabay.com/illustrations/ 

caliper-gear-measurement-

1121746/ 

the measurand. A modification of this value results in a modification of the 

associated uncertainty. 

The result of a measurement is an estimate of the measurement value, and thus, 

the presentation of the result is only complete when accompanied by an amount 

declaring its uncertainty. 

As an example, we have read the room temperature in a laboratory. Suppose the 

value is Tlaboratory = 21.0 °C. The thermometer that made this measurement had a 

measurement uncertainty of 0.5 °C. Therefore, the result of the measurement will be: 

Tlaboratory = 21:0± 0:5ð Þ  °C: 

We note that the ambient temperature in the laboratory ranges between 20.5 °C 

and 21.5 °C. This means that the true value of room temperature in the laboratory is 

understood within this measurement interval with a given probability; that is, there is 

a probability of performing a new measurement of this temperature and finding the 

value understood in this measurement interval. 

Important 

Since measurement uncertainty is a probabilistic value and thus estimated, we 

can never be certain of a measurement’s result.

https://pixabay.com/illustrations/caliper-gear-measurement-1121746/
https://pixabay.com/illustrations/caliper-gear-measurement-1121746/
https://pixabay.com/illustrations/caliper-gear-measurement-1121746/
https://pixabay.com/illustrations/caliper-gear-measurement-1121746/
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In metrology, we usually adopt a confidence level of 95.45 % probability 

(remember that, in a normal distribution, 95.45 % probability represents two stan-

dard deviations). Therefore, when we say that the laboratory temperature is 

(21.0 ± 0.5) °C, we are saying that the true value of ambient temperature in the 

laboratory has a 95.45 % probability of being understood in this interval. 

The uncertainty of a measurement’s result is usually influenced by various 

components, which can be grouped into two categories according to the method 

characteristics used to estimate their numerical values: (1) uncertainties Type A and 

(2) uncertainties Type B, which will be detailed below. 

5.2 Types of Measurement Uncertainties 

Various sources of uncertainty exist in a measurement. Therefore, we should 

estimate these uncertainties and minimize their influences so that the measurement 

outcome is known in a smaller interval. 

5.2.1 Type A Evaluation of Measurement Uncertainty 

According to VIM—2.28, it consists of evaluating “a component of measurement 

uncertainty by a statistical analysis of measured quantity values obtained under 

defined measurement conditions.” 

Type A uncertainties can, therefore, be characterized by experimental standard 

deviations. In metrology, the best estimate of a quantity that varies randomly is the 

arithmetic mean x of n measurements made. The estimated variance (s2 ) or the 

estimated standard deviation (s) characterizes the variability of the measured values, 

that is, the dispersal around the mean value. 

The best estimate of the variance of the mean is the experimental mean-variance 

s2 x , whose expression is: 

s2 xð  Þ= 
s2 

n
ð5:1 Þ

The experimental standard deviation of the medium x serves to qualify how much 

the mean value x represents the quantity to be measured. The better this estimate, the 

greater the number of repetitions made in the measurement. 

Important 

The equation s xð  Þ= 
s 
n

p determines Type A uncertainty measurement or the 

repeatability measurement uncertainty.
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For several reasons, especially economic ones, the number of repetitions of a 

measurement is reduced, usually ranging from three to ten. 

5.2.2 Type B Evaluation of Measurement Uncertainty 

According to VIM—2.29: 

Evaluation of a component of measurement uncertainty determined by means other 

than a Type A evaluation of measurement uncertainty. 

EXAMPLES Evaluation based on information 

– associated with authoritative published quantity values, 

– associated with the quantity value of a certified reference material, 

– obtained from a calibration certificate, 

– about drift, 

– obtained from the accuracy class of a verified measuring instrument, 

– obtained from limits deduced through personal experience. 

Type B uncertainties can be characterized by standard deviations estimated by 

distributions of probabilities assumed or based on experience or other observations. 

Accessory and external information to the measurement process—obtained from 

previous measurements of similar measurements, experience or knowledge of mea-

suring instrument behavior, manufacturer data, data provided by calibration certif-

icates, and instruction manual references—allows you to determine the uncertainties 

of this type. 

Examples of Type B uncertainty:

• Temperature gradient during measurement;

• Difference of ambient temperature concerning the stipulated reference 

temperature;

• Indicator reading resolution;

• Stability of the power supply;

• Parallax error;

• Uncertainty of the measurement standard;

• Drift from the standard;

• Geometric errors;

• Mechanical deformations;

• Hysteresis error. 

In the evaluation of Type B uncertainty, it is necessary to consider and include, 

when pertinent, at least those originating from the following sources: 

(a) The uncertainty associated with the reference standard and any instability in its 

value or indication (standard subject to instrumental drift or temporal instability).
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(b) The instability associated with measurement equipment or calibration, for exam-

ple, aged connectors, and any instability in their value or indication (equipment 

subject to instrumental drift). 

(c) The uncertainty associated with the equipment (measurand) to be measured or 

calibrated, such as the value of its resolution or any instability during calibration. 

(d) The uncertainty associated with the calibration (or measurement) procedure. 

(e) The uncertainty associated with the effect of environmental conditions on one or 

more of the previous items. 

Comments: 

1. Whenever possible, measuring errors or instrumental bias should be corrected. 

2. A careful analysis should always be done when adding Type B uncertainties, so 

that there is no repetition and a given source of uncertainty is not considered more 

than once. 

The document Guide to the expression of uncertainty in measurement (GUM) 

regarding Type B uncertainties states that: 

The proper use of the pool of available information for a Type B evaluation of standard 

uncertainty calls for insight based on experience and general knowledge and is a skill that 

can be learned with practice. It should be recognized that a Type B evaluation of standard 

uncertainty can be as reliable as a Type A evaluation, especially in a measurement situation 

where a Type A evaluation is based on a comparatively small number of statistically 

independent observations. 

Knowing a Little More... 

JCGM 100:2008 GUM 1995 with minor corrections 

Evaluation of measurement data—Guide to the expression of uncer-

tainty in measurement 

The following text reproduces part of the original document’s Preliminary 

and Scope. 

“This Guide establishes general rules for evaluating and expressing uncer-

tainty in measurement that are intended to be applicable to a broad spectrum 

of measurements. The basis of the Guide is Recommendation 1 (CI-1981) of 

the Comité International des Poids et Mesures (CIPM) and Recommendation 

INC-1 (1980) of the Working Group on the Statement of Uncertainties. The 

Working Group was convened by the Bureau International des Poids et 

Mesures (BIPM) in response to a request of the CIPM. The ClPM Recommen-

dation is the only recommendation concerning the expression of uncertainty in 

measurement adopted by an intergovernmental organization. 

This Guide was prepared by a joint working group consisting of experts 

nominated by the BIPM, the International Electrotechnical Commission 

(IEC), the International Organization for Standardization (ISO), and the 

International Organization of Legal Metrology (OIML).

(continued)
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1 Scope 

1.1 This Guide establishes general rules for evaluating and expressing 

uncertainty in measurement that can be followed at various levels of accuracy 

and in many fields — from the shop floor to fundamental research. Therefore, 

the principles of this Guide are intended to apply to a broad spectrum of 

measurements, including those required for: 

– maintaining quality control and quality assurance in production; 

– complying with and enforcing laws and regulations; 

– conducting basic research and applied research and development in sci-

ence and engineering; 

– calibrating standards and instruments and performing tests throughout a 

national measurement system in order to achieve traceability to national 

standards; 

– developing, maintaining, and comparing international and national phys-

ical reference standards, including reference materials. 

1.2 This Guide is primarily concerned with the expression of uncertainty in 

the measurement of a well-defined physical quantity — the measurand — that 

can be characterized by an essentially unique value. If the phenomenon of 

interest can be represented only as a distribution of values or is dependent on 

one or more parameters, such as time, then the measurands required for its 

description are the set of quantities describing that distribution or that 

dependence. 

1.3 This Guide is also applicable to evaluating and expressing the uncer-

tainty associated with the conceptual design and theoretical analysis of 

experiments, methods of measurement, and complex components and systems. 

Because a measurement result and its uncertainty may be conceptual and 

based entirely on hypothetical data, the term “result of a measurement” as 

used in this Guide should be interpreted in this broader context. 

1.4 This Guide provides general rules for evaluating and expressing 

uncertainty in measurement rather than detailed, technology-specific instruc-

tions. Further, it does not discuss how the uncertainty of a particular mea-

surement result, once evaluated, may be used for different purposes, for 

example, to conclude the compatibility of that result with other similar results, 

to establish tolerance limits in a manufacturing process, or to decide if a 

certain course of action may be safely undertaken. It may therefore be 

necessary to develop particular standards based on this Guide that deal 

with the problems peculiar to specific fields of measurement or with the 

various uses of quantitative expressions of uncertainty. These standards may 

be simplified versions of this Guide but should include the detail that is 

appropriate to the level of accuracy and complexity of the measurements 

and uses addressed.” 

You can get the full document on the BIPM website: 

<https://www.bipm.org/en/committees/jc/jcgm/publications>.

https://www.bipm.org/en/committees/jc/jcgm/publications%3e
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5.3 Evaluations of More Frequent Type B Uncertainties 

As we have seen, the estimate of Type A uncertainty is obtained by calculating the 

standard deviation of the mean measurement. The estimate of Type B uncertainties 

already has several origins. Next, we present the primary sources of Type B 

uncertainty and how to calculate them. 

5.3.1 Estimation of the Uncertainty of Reading Resolution 

It is essential to evaluate the contribution of reading resolution in estimating mea-

surement uncertainty, as it is widespread to find a low dispersion of the values 

obtained in a measurement process, which characterizes Type A uncertainty as being 

“zero.” In this case, depending on the value of the resolution and the type of 

probability distribution adopted, this uncertainty may be one of the largest or the 

most significant contribution to final uncertainty. 

In a measurement process, we can come across two situations. 

Situation 1: Measurement where we “seek” the value of the desired quantity; 

that is, we do not know a priori what the value is. 

Example 5.1 Reading Obtained ON A Digital Scale 

Suppose the value of the mass of an object is 25.9 g and that the digital scale used for 

this measurement has a resolution of 0.1 g. This means that the lowest value read by 

the scale is 0.1 g. 

Considering the algorithm in the digital scale responsible for digitizing the values 

indicated, the “true value” of the mass will be comprised between the interval [25.85 

and 25.949 …] g. Values such as 25.95 g or larger should be rounded by the 

instrument to 26.0 g, just as values such as 25.84 g or smaller to 25.8 g. 

Therefore, every time the scale indicates 25.9 g, we will doubt the “true value” of 

the mass caused by its resolution limitation. Considering that the probability that the 

“true value” is understood between [25.85 and 25.949 …] g is the same within this 

interval, it is reasonable to adopt a statistical distribution that reflects this behavior, 

that is, rectangular or uniform distribution. Graph 5.1 shows: 

Note that the uncertainty of reading resolution will be the standard deviation of 

the rectangular distribution, that is: 

ures = 
R 

12
p ð5:2Þ 

Where R is the resolution adopted.
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Graph 5.1 Uncertainty of 

reading resolution (uniform 

distribution) 

ures = 
0:01 

12
p g= 0:029 g 

Example 5.2 Reading Obtained in a Bimetallic Thermometer 

Figure 5.3 presents the dial of a bimetallic thermometer with a scale of 0 to 120 °C, 

with a division of 2 °C. Observing the figure, we realize the possibility of dividing 

the division in half “with the naked eye.” Thus, we will adopt a reading resolution 

equal to ½ of the division of the bimetallic thermometer (1 °C). The value read will 

then be 20 °C, which may be understood in the interval 19.5 to 20.5 °C with the same 

probability (uniform distribution). 

(https://pixabay.com/photos/celsius-degree-equipment-industrial-16047/) 

The uncertainty of reading resolution will be the standard deviation of the 

rectangular distribution with R = 1 °C: 

ures = 
1 

12
p °C = 0:29 °C 

Situation 2: Measurement where we “fix” the desired value. 

When we set the desired value, we know a priori the most likely value of measuring, 

so it makes sense to attribute a greater probability to this value. In this case, we can 

consider that the triangular distribution best represents the probability distribution of 

reading resolution. 

Example 5.3 Pressure Gauge Calibration 

Suppose we calibrated a pressure gauge (Fig. 5.4) with a measurement interval 

0 to 40 bar and resolution of 1 bar when using a comparative pump and fixed the 

calibration points on the object at 10 bar, 20 bar, 30 bar, 40 bar, and 50 bar. 

These values were fixed primarily to present a greater probability of occurrence 

than any other did. 

For point 30 bar, for example, the “true value” of the pressure will be in the 

interval [29.5 to 30.49 …] bar. Values such as 30.6 bar or larger will be rounded to 

31 bar, just as values such as 29.4 bar or smaller will be rounded to 29 bar.

https://pixabay.com/photos/celsius-degree-equipment-industrial-16047/
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Fig. 5.3 Bimetallic 

thermometer 

Fig. 5.4 Calibration of a 

pressure gauge. (Photo by 

the authors)
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Graph 5.2 Uncertainty of 

pressure gauge resolution 

(triangular distribution) 

Considering that the probability of “true value” is higher at point 30 bar than at 

any other point, because we fix this value, it is reasonable to adopt a statistical 

distribution that reflects this behavior, that is, the triangular distribution. 

In Graph 5.2, we have: 

The uncertainty of reading resolution will be the standard deviation of the 

triangular distribution with R = 1 bar. 

ures = 
R 

24
p = 

1 

24
p bar = 0:20 bar ð5:3Þ 

Given the limitations of the digitization algorithm, the digital instrument will 

adopt a uniform probability in rounding readings regardless of whether or not we fix 

the desired value. 

For the analog instrument, the probability of the measurement may be triangular 

or uniform, depending on whether or not we fix the reading value. 

5.3.2 Reading Resolution Adopted by the Calibration 

Laboratory 

Let us look at the following situation: using a calibrated instrument to perform a 

measurement. 

Some questions 

1. Given that the laboratory that calibrated our instrument has incorporated the 

uncertainty of reading resolution in the estimate of final uncertainty, we must, 

in our measurements, consider the reading resolution of this calibrated standard as
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one of the components, as “it is considered” in the uncertainty declared on the 

certificate? 

2. When considering the resolution, are we not repeating the same source of 

uncertainty twice? 

3. In the case of a digital standard, the value of the resolution adopted by the 

calibration laboratory is known as it will be equal to the digital increase. 

4. In the case of an analog standard, a question arises: Was the value of reading 

resolution adopted by the laboratory the same as what we will adopt? 

5. Is it possible to place a magnifying glass on the analog instrument reading scale, 

thus reducing its measurement uncertainty, since we are reducing its reading 

resolution as long as it does not make it lower than the instrument sensitivity? 

This is a usual procedure in laboratories, but the end user of the instrument should 

be informed. 

Answering the questions. 

If the user can repeat, in reading with the instrument that came from calibration, the 

resolution adopted by the laboratory during calibration, the contribution of the 

standard resolution should not be considered in the final uncertainty of the measure-

ment. Otherwise, this portion should be considered in the final estimate. 

For this reason, the calibration laboratories must provide the instrument’s cali-

bration certificate with the resolution adopted in calibration. Thus, we will know the 

value of the resolution adopted and can repeat it at the time of measurement with this 

instrument. 

Using a magnifying glass to read analog instruments is allowed and healthy. 

However, we should not determine the resolution of a measuring instrument with a 

magnifying glass. It will lower the resolution than what can be discerned with the 

“naked eye,” and the user usually reads with the “naked eye.” 

5.3.3 Hysteresis Uncertainty Estimate 

In Chap. 4, we saw that hysteresis is the biggest difference between a measurement 

instrument’s charge and discharge values. Scales, comparator clocks, gauges, among 

others, most commonly present hysteresis errors. 

To estimate the uncertainty of hysteresis, we calculate the instrument’s hysteresis 

(H) at the point and adopt a uniform or rectangular probability distribution. 

uhysteresis = 
H 

12
p ð5:4Þ 

Solved Exercise 5.1. 

A Bourdon-type gauge, whose measurement range is 0 to 20 kgf/cm2 , was calibrated 

by comparison with a standard gauge. The values found are in Table 5.1.
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Table 5.1 Bourdon gauge calibration 

Object 

(kgf/cm2 ) 

Standard (kgf/cm2 ) 

Charge 1 Discharge 1 Charge 2 Discharge 2 

5 5.0 5.2 5.0 5.2 

12 12.2 11.9 11.6 11.8 

20 20.1 20.2 20.4 20.0 

Table 5.2 Hysteresis 

Object (kgf/cm2 ) Standard (kgf/cm2 ) 

H1 H2 H 

5 |5.0–5.2 | = 0.2 |5.0–5.2| = 0.2 0.2 

12 |12.2–11.9| = 0.3 |11.6–11.8| = 0.2 0.3 

20 |20.1–20.2| = 0.1 |20.4–20.0| = 0.4 0.4 

Table 5.3 Hysteresis 

uncertainty 
Object 

(kgf/cm2 ) 

Standard (kgf/cm2 ) 

H 

0.2 

Hysteresis uncertainty 

0:2 
12

p = 0:0585 

12 0.3 0:3 
12

p = 0:087 

20 0.4 0:4 
12

p = 0:12 

Calculate: 

(a) Hysteresis at each point. 

(b) The uncertainty of hysteresis at each point. 

(c) Hysteresis and uncertainty of gauge hysteresis. 

Solution: 

(a) Knowing that hysteresis is the most significant difference between charge and 

discharge, we can determine hysteresis at each point as follows (Table 5.2): 

(b) Adopting a uniform distribution for hysteresis uncertainty, we have (Table 5.3): 

(c) The gauge hysteresis will be the highest value: 

H = 0:4 kgf=cm2 

uhysteresis = 0:12 kgf=cm2
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Knowing a Little More… 

In calibrating the gauge, we fix the object’s pointer directly to the desired 

pressure and verify the variation of its pressure using the standard pressure 

gauge. Thus, when we fix the pressure at 5 kgf/cm2 , for example, we realize 

the variation of the object gauge in the standard. This is why, at point 5 kgf/ 

cm2 , we have the standard marking (5.0, 5.2, 5.0, and 5.2) kgf/cm2 . This 

variation is not caused by the standard but by the calibration object gauge. 

5.3.4 Evaluation of the Uncertainty of the Standard 

Instrument 

A source of Type B uncertainty always exists in the calibration of measurement 

instruments: the uncertainty from the standard instrument. In Chap. 2, when we 

define calibration, we highlight that calibrating confronts the values measured by the 

standard instrument with the calibration instrument (object). Therefore, the object 

instrument’s uncertainty inherits the standard instrument’s uncertainty. 

To determine the uncertainty of the standard instrument, check this value in the 

standard instrument calibration certificate. 

5.4 Standard Measurement Uncertainty 

According to VIM—2.30, we have: “measurement uncertainty expressed as a 

standard deviation.” 

We must express all components of uncertainty (ui) of Types A and B 

corresponding to a standard deviation. For this, we need to evaluate the probability 

distribution applied to the uncertainty: normal distribution, rectangular or uniform 

distribution, triangular distribution, etc. 

5.5 Combined Standard Measurement Uncertainty 

According to VIM—2.31, we have: “standard measurement uncertainty that is 

obtained using the individual standard measurement uncertainties associated with 

the input quantities in a measurement model.” 

The equation can briefly determine combined standard uncertainty (uc):
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uc = u2 A þ u2 B ð5:5Þ 

Where uA are all Type A uncertainties, and uB are all Type B uncertainties. 

5.6 Effective Degrees of Freedom 

The definition of ISO GUM says the following for the degree of freedom: “In 

general, the number of terms in a sum minus the number of constraints on the 

terms of the sum.” 

When more than 30 measurements of the same measurement are performed, we 

know, through statistics, that these results are very close to a normal distribution; if a 

smaller number of measurements is used, we must bring this distribution closer to a 

normal distribution by applying the t-distribution correction factor. However, to 

establish this correction factor, it is necessary to determine the number of effective 

degrees of freedom of the distribution. 

When various sources of uncertainty are considered to estimate combined stan-

dard uncertainty (uC), the number of effective degrees of freedom resulting from 

combined uncertainty has to be calculated from information from each source of 

uncertainty. Therefore, it is recommended to use the Welch-Satterthwaite equation 

to estimate the number of effective degrees of freedom: 

u4 c 
υeff 

= 

u4 1 
υ1 

þ u
4 
2 

υ2 
þ… þ u4 i 

υi 
ð5:6Þ 

Where uC is the combined standard measurement uncertainty; u1, u2, …, ui are the 

standard measurement uncertainties of each source of uncertainty (Type A and Type 

B uncertainty); ν1, ν2, ν3 …, υi are the degrees of freedom of each i source of 

uncertainty, and υeff is the number of effective degrees of freedom associated with 

combined standard uncertainty. 

Eq. (5.6) can be reordered and presented by: 

υeff = 
u4 c 

u4 
i 

υi 

ð5:7Þ 

Important 

The degree of freedom associated with the uncertainty of repeatability (Type 

A) equals n - 1, where n is the number of measurements.

(continued)
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In evaluating the degree of freedom of Type B standard uncertainty from a 

probability distribution a priori, for example, a uniform or triangular distribu-

tion, it is implicitly supposed that the value of uncertainty resulting from such 

evaluation is known precisely. This implies that the degree of freedom asso-

ciated with this uncertainty will be infinite. 

5.7 Coverage Factor 

VIM—2.38 defines it as the “number larger than one by which a combined standard 

measurement uncertainty is multiplied to obtain an expanded measurement 

uncertainty. NOTE: A coverage factor is usually symbolized k”. 

The coverage factor k should always be declared so that the standard uncertainty 

of quantity measurement can be recovered to calculate the combined standard 

uncertainty of other measurement results that eventually depend on this quantity. 

This factor k will be obtained from the determination of the number of effective 

degrees of freedom (νeff) and using the t-distribution, in which the value of t will be 

the coverage factor k. 

The value of νeff obtained by Eqs. (5.6)  o  r (5.7) is usually not an integer. From the 

effective degree of freedom, the coverage factor k can be obtained from Excel, using 

the INV.T.BC function, or in the Student’s t-table. 

When we use the calculated value of the νeff in the t-table, we should always 

approach it to the immediately lower integer. For example, if the computed value is 

νeff = 10.46, we must enter the table with νeff = 10 and obtain k = 2.28. This will be 

the value used for the coverage factor k. 

Important 

By using the calculated value of the effective degree of freedom (νeff) in the 

Student’s t-table, approach it to the immediately lower integer. This will 

ensure a more prominent coverage factor and, thus, more significant expanded 

uncertainty. 

5.8 Expanded Measurement Uncertainty 

According to VIM—2.35, expanded measurement uncertainty is defined as: 

Product of a combined standard measurement uncertainty and a factor larger than 

the number one. 

NOTE 1 The factor depends upon the type of probability distribution of the output 

quantity in a measurement model and on the selected coverage probability. 

NOTE 2 The term “factor” in this definition refers to a coverage factor.
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“ ” 

paragraph 5 of Recommendation INC-1 (1980) (see the GUM) and simply 

“uncertainty” in IEC documents. 

The expanded uncertainty U is the product of the combined standard uncertainty 

uC and the coverage factor k: 

U = k:uc ð5:8Þ 

Multiplication of combined standard uncertainty by a constant does not provide 

additional information. It is just a way of representing the final uncertainty associ-

ated with a coverage probability. In calibration and industrial measurements, it is 

expected to adopt the probability of 95.45 %, which would correspond, in a normal 

distribution, to a coverage factor equal to two. 

Important 

We must always combine standard uncertainties with one standard deviation. 

Therefore, when we use the uncertainty of measuring from a calibration 

certificate, we must divide it by the scope factor k since the uncertainties 

declared in a calibration certificate are expanded to 95.45 %. 

5.9 Presentation of the Measurement Result 

According to the document ILAC-P14:09/2020—ILAC Policy for Measurement 

Uncertainty in Calibration, section 5.3: “The numerical value of the expanded 

uncertainty shall be given to, at most, two significant digits. Where the measurement 

result has been rounded, that rounding shall be applied when all calculations have 

been completed; resultant values may then be rounded for presentation. For the 

process of rounding, the usual rules for rounding of numbers shall be used, subject 

to the guidance on rounding provided, i.e., in Sect. 7 of the GUM.” 

5.10 Sources of Measurement Uncertainty 

Next, we will present some sources of frequent measurement uncertainties in various 

areas of metrology.
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5.10.1 Dimensional Metrology

• Measurement uncertainty of the standard: this information is in the standard 

calibration certificate.

• Temperature effect: the temperature difference between measuring, the standard, 

and the temperature of the calibration laboratory should be considered. As a rule, 

the ambient temperature of the calibration laboratory should be 20.0 °C. This 

effect is more significant for considerable lengths and in cases where the 

measurand is of a material different from the standard. Although it is possible 

to correct these errors, residual uncertainties of the uncertainty of the coefficients 

of dilation and uncertainty in the calibration of the thermometer will always 

remain.

• Elastic deformation at the point of contact: is critical in the most exact measure-

ments and in the cases involving different materials. Its magnitude is a function of 

the measurement force and the nature of the contact between driving and 

measurand. Although it is possible to correct the results of these errors, the 

uncertainty of this correction should be considered due to the uncertainty of the 

applied force and the physical properties of the components in contact.

• Cosine error: misalignment between the measurand or standard and the measure-

ment axis. Residual errors will often persist by the assumption that reference 

surfaces are exempt from geometric errors.

• Geometric error: planning or spherical errors, parallelism or perpendicularity of 

the support surface, measurand, or standard cylindrical error.

• Doubt in reading: uncertainty in the resolution of the instrument.

• Stability of the standard, or measurand, as a function of time. 

In this area, in general, the following instrument calibration intervals are used 

(Table 5.4): 

5.10.2 Thermal Metrology

• Measurement uncertainty of the standard: this information is in the standard 

calibration certificate.

• Electrical equipment/instruments used as support: standard resistors uncertainty, 

multimeters, power supplies, thermal baths, etc. 

Table 5.4 Calibration 

interval 
Instrument Calibration interval—months 

Measuring tape 6 

Vernier caliper 12 

Micrometer 12 

Planger dial gauge 12 

Slip gauges (standard block) 12
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Table 5.5 Calibration interval 

Instrument Calibration intervals—months 

Glass thermometer 6 a 12 

Resistance thermometer (Pt-100) 12 

Thermocouple 12 

Bimetallic thermometer 12

• Doubt in reading: uncertainty in the resolution of the instrument.

• Partial immersion in glass thermometers: the part of the column of the immersion 

thermometer outside the medium provides a difference in the temperature 

indication.

• Effect of resistance thermometers self-heating: the sensor is heated by the current 

circulating.

• Parasitic electrical uncertainties: uncertainties of electrical origin resulting from 

static electricity at contact terminals. We can estimate this 2μV 
3

p value primarily 

when we calibrate thermocouples.

• Drifts of standards and electrical instruments. 

In this area, in general, the following instrument calibration intervals are used 

(Table 5.5): 

5.10.3 Mass Metrology

• Measurement uncertainty of the mass standard: this information is in the standard 

calibration certificate.

• Drift of the masses as a function of time: change of standard mass measurement 

error as a function of time, depending on the surface finish and the quality of 

manufacture, material type, handling, atmospheric corrosion, etc. Without this 

information, we replace it with the maximum permissible error.

• Environmental conditions: temperature gradients, humidity, static electricity.

• Doubt in reading: uncertainty in the resolution of the instrument.

• Air buoyancy: the density of the air can be determined from the measurement of 

atmospheric pressure, temperature, and relative humidity. Even when the density 

is corrected, uncertainties of pressure, temperature, and humidity measurements 

will be present.

• Measurement process: the quality of the scale influences the result of the mea-

surement and, therefore, we must know its characteristics:

• Repeatability of measurements;

• Linearity;

• Eccentricity of the load, especially when more than one mass is placed on the 

plate;

• Influence of magnetic fields;
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Table 5.6 Calibration 

interval 
Instrument Calibration interval—months 

Standard mass 24 to 48 

Precision scales 12 to 36 

Analytical scales 12 

Table 5.7 Calibration 

interval 
Instrument Calibration interval—months 

Digital multimeter 12 

Oscilloscope 12 to 36 

Resistive decade 24 to 48

• Effects of temperature;

• Lever arm’s length. 

In this area, in general, a calibration interval of the instruments is used as follows 

(Table 5.6): 

5.10.4 Electric Metrology

• Uncertainty of electrical reference standards: this information is in the standard 

calibration certificate.

• Different environmental conditions from the recommended.

• Measurement system stability: as a function of time and conditions of use.

• Doubt in reading: uncertainty in the resolution of the instrument.

• Impedance of cables, terminals, and instruments: parasitic electrical uncertainties 

resulting from static electricity at contact terminals. Its value is estimated in 2μV .

• Layout of instruments and standards during calibration: current leaks, electro-

magnetic fields, grounding. 

In this area, in general, a calibration interval of the instruments is used as follows 

(Table 5.7): 

5.10.5 Pressure Metrology

• Measurement uncertainty of the standard: This information is in the standard 

calibration certificate.

• Drift of the masses as a function of time: change of standard mass measurement 

error as a function of time, depending on the surface finish and the quality of 

manufacture, material type, handling, atmospheric corrosion, etc. Without this 

information, we replace it with the maximum permissible error.

• Doubt in reading: uncertainty in the resolution of the instrument.
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• Hysteresis.

• Different environmental conditions from the recommended.

• Drifts of standards and electrical instruments.

• Impedance of cables, terminals, and instruments: parasitic electrical uncertainties 

resulting from static electricity at contact terminals. Its value is estimated in 2μV . 

5.10.6 Analytical Metrology

• Sampling: where in-house or field sampling forms part of the specified proce-

dure, and effects such as random variations between different samples and any 

potential for bias in the sampling procedure form components of uncertainty 

affecting the final result.

• Storage Conditions: where test items are stored for any period prior to analysis, 

the storage conditions may affect the results. The duration of storage, as well as 

conditions during storage, should, therefore, be considered uncertainty sources.

• Instrument effects: may include, for example, the limits of accuracy on the 

calibration of an analytical balance; a temperature controller that may maintain 

a mean temperature that differs (within specification) from its indicated set point; 

an auto-analyzer that could be subject to carryover effects.

• Reagent purity: the concentration of a volumetric solution will not be known 

precisely even if the parent material has been assayed, since some uncertainty 

related to the assaying procedure remains. Many organic dyestuffs, for instance, 

are not 100 % pure and can contain isomers and inorganic salts. The purity of 

such substances is usually stated by manufacturers as being not less than a 

specified level. Any assumptions about the degree of purity will introduce an 

element of uncertainty.

• Assumed stoichiometry: where an analytical process is assumed to follow a 

particular reaction stoichiometry, it may be necessary to allow for departures 

from the expected stoichiometry, or incomplete reaction or side reactions.

• Measurement conditions: for example, volumetric glassware may be used at an 

ambient temperature different from that at which it was calibrated. Gross 

temperature effects should be corrected, but any uncertainty in the temperature 

of liquid and glass should be considered. Similarly, humidity may be important 

where materials are sensitive to possible changes in humidity.

• Sample effects: the recovery of an analyte from a complex matrix, or an instru-

ment response, may be affected by composition of the matrix. Analyte speciation 

may further compound this effect. The stability of a sample/analyte may change 

during analysis because of a changing thermal regime or photolytic effect. When 

a ‘spike’ is used to estimate recovery, the recovery of the analyte from the sample 

may differ from the recovery of the spike, introducing an uncertainty that needs to 

be evaluated.
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Table 5.8 Voltage 

measurements 
Measurements Results (V) 

1 1.22 

2 1.22 

3 1.24 

4 1.22 

5 1.20

• Computational effects: selection of the calibration model, e.g. using a straight 

line calibration on a curved response, leads to poorer fit and higher uncertainty. 

Truncation and round-off can lead to inaccuracies in the final result. Since these 

are rarely predictable, an uncertainty allowance may be necessary.

• Blank Correction: there will be an uncertainty on both the value and the 

appropriateness of the blank correction. This is particularly important in trace 

analysis.

• Operator effects: possibility of reading a meter or scale consistently high or low. 

Possibility of making a slightly different interpretation of the method. 

Source: EURACHEM/CITAC Guide CG 4—Quantifying Uncertainty in Analytical 

Measurement. 

Solved Exercise 5.2: Three or more measurements with a calibrated 

instrument. 

With a digital multimeter, we performed five voltage measurements in a circuit. 

The results were (Table 5.8): 

Consider the uncertainty of the multimeter obtained in the calibration certificate is 

0.02 V, for a probability of 95.45 % and k = 2.23, with the instrumental bias of 

+0.02 V. 

Determine: 

(a) The Type A measurement uncertainty. 

Type A uncertainty is calculated by standard deviation from the mean of five 

measurements. 

s= 0:01412 V → uA = 
s 

n
p = 

0:01412 V 

5
p = 0:0063245 V 

Note: As the result of uncertainty is partial, it is not to round it up. We will leave 

to make the rounding when declaring expanded uncertainty. 

(b) The Type B multimeter uncertainty. 

We must divide the declared uncertainty in its Calibration Certificate by the 

coverage factor k. Thus, its measurement uncertainty after division will be standard-

ized uncertainty with a standard deviation.
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uB = 
Umult 

k 
= 

0:02 V 
2:23 

= 0:008969 V 

(c) Combined uncertainty of measurement 

uc = u2 A þ u2 B = 0:00632452 þ 0:0089692 = 0:010975 V 

(d) Expanded uncertainty for a probability of 95.45 %. 

Expanded uncertainty is determined by multiplying the combined uncertainty by 

the factor k. To determine k, it is necessary to calculate the effective degree of 

freedom of the combination of these uncertainties (Type A and Type B) and then 

consult the t-table. 

The degree of freedom of Type A uncertainty is: υA = n - 1 = 5 - 1 = 4. 

The degree of freedom to the Type B multimeter equals 12 (from the t-table for 

k = 2.23). 

Then υeff = 
u4 c 

u4 
i 

υi 

= 
0:0109754 

0:00632454 

4 
þ 0:0089694 

12 

= 15:44→ k= 2:18 

U= k:uc = 2:18 x 0:010975 V= 0:02393 V 

(e) The metrological correct result of the expanded uncertainty. 

In addition to being unable to declare uncertainty with more than two significant 

digits, in this particular case, the multimeter measurement uncertainty cannot go 

beyond the second decimal digit (one significant digit) since the multimeter can only 

read to the second decimal digit. 

Umult = 0:02 V k = 2:18, with a probability of 95:45 %: 

(f) The corrected voltage value. 

Mean = 1.22 V. 

Instrumental bias + 0.02 V. 

Corrected value = (1.22–0.02) V = 1.20 V. 

(g) Measurement result (MR) 

MR= 1:20± 0:02ð Þ  V 

Solved Exercise 5.3: Only one measurement with a calibrated instrument. 

Whenever possible, we must perform at least three measurements. This allows us 

to evaluate Type A uncertainty, that is, the repeatability of the measuring. If the



measurement is stable with very low or no variation in instrument resolution, we can 

proceed according to the following exercise. 
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Exercise: A glass liquid thermometer measures fuel oil temperature with a measure-

ment uncertainty of 0.1 °C (for k = 2 and 95.45 %) and instrumental bias of -

0.2 °C. The value found was 28.4 °C. Determine the measurement result. 

Solution: Corrected measurement = (28.4 + 0.2) °C = 28.6 °C 

MR= 28:6± 0:1ð Þ  °C 

Note that it was impossible to calculate the uncertainty of the repeatability of the 

measurement. Thus, the declared measurement instrument in its calibration certifi-

cate only inherited the final uncertainty. 

5.11 Proposed Exercises 

5.11.1 A car speedometer ranges from (0 to 200) km/h. The uncertainty at any point 

is 2 km/h 

(a) What is the uncertainty at 100 km/h? 

(b) What is the percentage uncertainty compared to 100 km/h? 

(c) What is the percentage uncertainty to 50 km/h? 

(d) What is the percentage uncertainty compared to 5 km/h? 

(e) At what point is the lowest percentage uncertainty? 

5.11.2 Mike measures his brother’s height and finds 176.35 cm, with an uncertainty 

of 0.21 cm. 

(a) Round out and write the height of Mike’s brother with one significant digit 

concerning his uncertainty. 

(b) Give the same answer in meters. 

5.11.3 Martha uses a timer to measure the period of a pendulum. The results are 

(Table 5.9): 

(a) What is the mean value of the period? 

(b) What is the standard deviation of the mean? 

Table 5.9 Period 

measurements 
Measurements Period (s) 

1 0.63 

2 0.64 

3 0.65 

4 0.63 

5 0.65
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Table 5.10 Time 

measurements 
Measurements Fall time (s) 

1 0.45 

2 0.42 

3 0.41 

4 0.48 

5 0.44 

Table 5.11 Diameter 

measurements 
Measurements Diameter (mm) 

1 256.90 

2 257.05 

3 256.95 

4 257.00 

(c) What is the best estimate of measurement uncertainty? 

(d) Express its result, considering only Type A uncertainty as the only source of 

measurement uncertainty. 

5.11.4 The results of five measures of the fall time of a body, performed by a digital 

timer, were (Table 5.10) 

Considering that the uncertainty of the timer is 0.02 s to k = 2 and 95.45 % of 

probability, calculate: 

(a) The number of observations n. 

(b) The mean of observations. 

(c) The standard deviation of the mean. 

(d) The expanded uncertainty of body fall measurement. 

(e) The expanded uncertainty despising the uncertainty of the timer. 

5.11.5 To determine the diameter of an axis, a mechanic used a Vernier caliper with 

an uncertainty of 0.05 mm (k = 2 and 95.45 %) and a resolution of 0.05 mm. Four 

measurements were performed, and the values found for the diameter were 

(Table 5.11) 

What is the diameter value and its measurement uncertainty? 

5.11.6 The length measurement of a piece with a “true value” of 10.1538 mm was 

performed by a micrometer with a resolution of 0.001 mm and measurement 

uncertainty equal to 0.002 mm, with k = 2.23 to 95.45 %. Determine 

(a) The bias of the micrometer. 

(b) The Type A uncertainty for the set of measurements. 

(c) The combined uncertainty and its degree of freedom. 

(d) The expanded uncertainty of measuring the length of the piece (Table 5.12). 

5.11.7 Using a digital scale with a resolution equal to 0.1 g, the mass of metal was 

measured four times, finding the following values (Table 5.13)
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Table 5.12 Length 

measurements 
Measurements Length (mm) 

1 10.158 

2 10.157 

3 10.159 

4 10.155 

5 10.153 

6 10.156 

7 10.154 

8 10.156 

9 10.155 

10 10.157 

Table 5.13 Mass 

measurements 
Measurements Mass (g) 

1 23.5 

2 23.5 

3 23.6 

4 23.8 

Table 5.14 Temperature 

measurements 
Measurements Temperature (°C) 

1 80.5 

2 80.5 

3 81.0 

4 81.0 

5 80.0 

Considering that scale measurement uncertainty is double its resolution 

(to k = 2.00 and 95.45 %): 

(a) What is the Type A uncertainty of this measurement? 

(b) What is the bias, knowing that the “true value” of the metal mass is 23.60 g? 

(c) What is the expanded uncertainty of this measurement? 

5.11.8 A metrology student declared the measuring uncertainty of the density as 

follows 

ρ= 1:003± 0:0235ð Þ  g=mL 

What is the error in the statement of this measurement? 

5.11.9 Consider a bimetallic thermometer with a resolution of 0.5 °C used to 

measure the temperature of mineral oil contained in a tank. Five measurements 

were made, obtaining the following values (Table 5.14) 

Knowing that the bimetallic thermometer used in this control has an uncertainty 

of 0.6 °C  (k  = 2.87; 95.45 %), calculate:



5.11 Proposed Exercises 167

Table 5.15 Mass 

measurements 
Measurements Mass (g) 

1 100.0034 

2 100.0038 

3 100.0032 

Table 5.16 Mass 

measurements 
Measurements Mass (g) 

1 12.0004 

2 12.0006 

3 12.0006 

(a) The mean of measurements. 

(b) The repeatability uncertainty. 

(c) The standardized uncertainty of the bimetallic thermometer. 

(d) The combined uncertainty of this measurement. 

(e) The effective degree of freedom of the measurement. 

(f) The coverage factor is 95.45 %. 

(g) The expanded uncertainty to 95.45 %. 

(h) What source of uncertainty has the most significant influence on the process? 

5.11.10 Consider measuring a mass, presented in Table 5.15, using an analytical 

scale performed in a laboratory at the point for 100 g. The scale bias at point 100 g 

is declared in the calibration certificate -0.0050 g. The uncertainty declared in 

the calibration certificate is 0.0008 g (k = 2.00; 95.45 %). 

Based on this information, determine: 

(a) The mean of measurements. 

(b) The repeatability uncertainty. 

(c) The expanded uncertainty to 95.45 %. 

5.11.11 Consider a mass measurement M on a scale. The scale measurement 

correction at this point is -1.5 mg, with an uncertainty of 0.3 mg (k = 2.11; 

95.45 %). Three mass measurements were made to obtain the values in 

Table 5.16. Based on this information, determine: 

(a) The mean of measurement. 

(b) The repeatability uncertainty. 

(c) The bias of the scale. 

(d) The expanded uncertainty to 95.45 % with its respective factor k and the degrees 

of freedom. 

5.11.12 What is the false alternative regarding the measurement uncertainty? 

(a) It is a non-negative parameter that characterizes the dispersion of the values 

assigned to the measurement.
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(b) Combined standard uncertainty is obtained using uncertainties in the form of an 

individual standard deviation associated with input quantities. 

(c) Expanded measurement uncertainty is the sum of all Type A and Type B 

uncertainty. 

(d) The probability of coverage refers to the chance that a proper set of measurement 

values is contained in a specified coverage interval.
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Chapter 6 

Evaluation of the Uncertainty in Indirect 

Measurements 

6.1 Uncertainty Propagation Law 

Consider a greatness W described by the function W = f (a, b, c ...), where a, b, c, ... 

are statistically independent1 variables. If the most likely values for these quantities 

are a, b, c, …, the most likely value for W will be W = f a, b, c, … . Expanding the 

W function in the Taylor series, we will have: 

W i≈W a, b, c… þ ∂W 

∂a 
ai - að Þ þ ∂W 

∂b 
bi - b þ ∂W 

∂c 
ci - cð Þ þ… 

þ 1 

2 

∂
2 
W 

∂a2 
ai - að Þ2 þþ 1 

2 

∂
2 
W 

∂b2 
bi - b 

2 þ 1 

2 

∂
2 
W 

∂c2 
ci - cð Þ2 þ… 

ð6:1Þ

We will make an approximation disregarding the quadratic terms when 

ai - að Þ, bi - b , ci - cð Þ… are of the order of greatness of the standard deviation 

σa, σb, σc, … Then, σa = ai - a and 1 
2 

∂
2 
W 

∂a2 
ai - a 

2 
≈ 0:

This condition applies to all other variables. 

Therefore, we have: 

W i -W a, b, c… =ΔW i = 
∂W 

∂a 
⋅σa þ

∂W 

∂b 
⋅σb þ

∂W 

∂c 
⋅σc þ… ð6:2Þ

The term ∂W 
∂a 

represents the partial derivative of W concerning the variable a, 

a= a, calculated in which all other variables were kept constant. 

1 The variables are considered statistically independent when the variation of one does not influence 

the variation of the other, that is, all behave in a detached manner. Statistically, these variables have 

a correlation coefficient equal to zero. 
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N
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W variance can be obtained by: 

1

- 1 

N 

i= 1 

ΔW2 
i = 

1 

N- 1 

N 

i= 1 

∂W 

∂a 
⋅Δai þ

∂W 

∂b 
⋅Δbi þ

∂W 

∂c 
⋅Δci þ :… 

2 

= 

s2 W = 
1 

N- 1 

N 

i= 1 

∂W 

∂a 
⋅Δai 

2 

þ ∂W 

∂b 
⋅Δbi 

2 

þ ∂W 

∂c 
⋅Δci 

þ…� þ 1 

N- 1 

N 

i= 1 

2 
∂W 

∂a 
⋅Δai⋅

∂W 

∂b 
⋅Δbi þ 2 

∂W 

∂a 
⋅Δai⋅

∂W 

∂c 
⋅Δci 

þ2 
∂W 

∂b 
⋅Δbi⋅

∂W 

∂c 
⋅Δci þ…�

As variables a, b, c, ... are statistically independent, there is no correlation 

between their deviations. Δai, Δbi, Δci… and, consequently, all types of greatness, 

as 

∂W 

∂a 
⋅Δai⋅

∂W 

∂b 
⋅Δbi 

has the same probability to be both positive and negative. Thus, for a large number 

N of measures, the second term of the sum is nullified, resulting in: 

s2 W = 
1 

N- 1 

N 

i= 1 

∂W 

∂a 

2 

Δaið Þ2 þ ∂W 

∂b 

2 

Δbið Þ2 þ ∂W 

∂c 

2 

Δcið Þ2 þ…

We can rewrite it as: 

s2 W = 
∂W 

∂a 

2 

⋅ 
1 

N - 1 

N 

i= 1 

Δaið Þ2 þ ∂W 

∂b 

2 

⋅ 
1 

N- 1 

N 

i= 1 

Δbið Þ2 þ ∂W 

∂c 

2 

⋅ 
1 

N - 1

�
N 

i= 1 

Δci ð Þ2

s2 W = 
∂W 

∂a 

2 

⋅σ2 a þ
∂W 

∂b 

2 

⋅σ2 b þ
∂W 

∂c 

2 

⋅σ2 c þ… 

Considering the uncertainties of variables a, b, c, ... as their standard deviations, 

we can rewrite the previous equation:
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Fig. 6.1 Brook Taylor 

(1685 - 1731, England) 

u2 W = 
∂W 

∂a 

2 

⋅u2 a þ
∂W 

∂b 

2 

⋅u2 b þ
∂W 

∂c 

2 

⋅u2 c þ… ð6:3Þ

Equation (6.3) is the uncertainties propagation equation of any function W (a, b, 

c,...), in which variables a, b, c ... are independent. 

Knowing a Little More ... (Fig. 6.1) 

https://images.fineartamerica.com/images-medium-large/1-brook-taylor-1 

685-1731-granger.jpg 

Brook Taylor (1685 - 1731, England) came from a relatively wealthy 

family: his father, John Taylor, although disciplining, was interested in paint-

ing and music and taught his son. Thus, Brook was later able to apply his 

mathematical knowledge in these two areas. Born in a family of possessions, it 

was possible to have private teachers. Brook was educated at home (having 

acquired a good base in classics and mathematics) before entering Cambridge 

in 1703. There, Taylor improved his mathematical knowledge, graduating in 

1709. However, a year earlier (1708), he had already written his first relevant 

mathematics work, although his publication occurred only in 1714. In 1712, 

Taylor was elected to the Royal Society and appointed to a commission 

created to decide who the inventor of the calculation was: Newton or Leibniz. 

Several personal tragedies marked his career, such as his marriage to 

Brydges of Wallington in 1721, which suffered opposition from John Taylor 

due to social class differences. Thus, the father-and-son relationship was 

broken until 1723, when Brook’s wife died in childbirth along with their 

(continued)
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Knowing a Little More ... (Fig. 6.1) (continued) 

son. After this loss, Brook returned to live with his father. In 1725, he married 

again, with his father’s approval. The chosen one was Sabetta Sawbridge of 

Olantigh. In 1729, after his father’s death, Brook inherited the property. 

However, personal tragedies continued to torment him when his second wife 

died in childbirth. The child, named Elizabeth, managed to survive. Taylor 

lived a few more years (died at age 46), but his mathematical deeds are 

surprising and probably not deepened due to personal factors (disappoint-

ments, fragile health). It gave rise to a new branch in mathematics called 

“Calculus of finite differences,” parts integration, and the series known as 

Taylor’s expansion. 
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6.2 When Variables Are Statistically Dependent 

Statistically, dependent variables behave in a linked manner; that is, the variation of 

one influences the variation of another. These variables have a different correlation 

coefficient from zero. 

In the presence of statistically dependent variables, measurement uncertainty 

should consider the correlation coefficient (r) between variables. The correlation 

coefficient may vary between [-1, +1], being zero when the variables are indepen-

dent, and their expression is given by: 

r= 
sab 
sasb 

ð6:4Þ

r  a, bð Þ= 

n 
i= 1 ai - að Þ bi - b 

ai - að Þ2 : bi - b 
2 

ð6:5Þ

Where sa and sb are the standard deviation of a and b variables, and sab is the 

standard deviation of the correlation between the variables given by Eq. (6.5). 

If the variables are dependent on each other, the uncertainty propagation equation 

will be: 

u2 W = 
∂W 

∂a 

2 

u2 a þ
∂W 

∂b 

2 

u2 b þ
∂W 

∂c 

2 

u2 c þ… þ 2 
∂W 

∂a

� ∂W 

∂b 
r  a, bð Þuaub þ 2 

∂W 

∂a 

∂W 

∂c 
r  a, cð Þuauc þ… ð6:6Þ

where r(a, b), r(a, c), r(b, c), ... are the correlation coefficients between the variables 

(a, b, c...).
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uF =F⋅
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þ
y

uF = F p
x

þ q
y
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Table 6.1 Relative uncer-

tainties of some functions 
Case 1 F = x ⋅ y

ux 2 uy 
2 

Case 2 F = 
x 
y ux 2 uy 

2 

Case 3 F = x
m 

uF =F  m ux 
x

Case 4 F = xP + yq 
ux 2 uy 

2 

Case 5 F = log x uF = 0, 43429⋅ ux 
x 

Case 6 F = ln x uF = 
ux 
x 

Case 7 F = e
x 

uF = F ⋅ ux 

Case 8 F = 10x uF = F ⋅ (2.3026 ⋅ ux) 

Note: uF is the combined uncertainty of the function F 

6.3 Method of Relative Uncertainties2 

If we do not want to calculate the partial derivative of a function or this knowledge 

has not yet been addressed by the reader, follow, in Table 6.1, a propagation 

relationship of uncertainty in which the relative uncertainties are used in some 

mathematical functions. 

The relationship between the measurement uncertainty of a variable x and the 

value of this variable determines relative measurement uncertainty. 

The variables must be statistically independent. 

urelative = 
ux 
x

ð6:7Þ

Solved Exercise 6.1 

Deduces the formula of relative uncertainty to case 1: F = x ⋅ y. 

Solution

• The partial derivative of function F concerning x: ∂F = y.

• The partial derivative of function F concerning y: ∂F = x. 

u2 F = 
∂F 

∂x 

2 

u2 x þ ∂F 

∂y 

2 

u2 y 

u2 F = y 
2 
u2 x x 

2 
u2 y 

2 This method can be employed when derivation techniques are not known. It can be applied 

to studies on the calculation of measurement uncertainties at the high school/technical level.
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u2 F = y2 u2 x x2 u2 y

• Raising to the square both members of the equation F = x ⋅ y 

Fð Þ2 = x⋅yð Þ2 =F2 
= x2⋅y2

• Dividing each member of the equation by F2 
= x2 ⋅ y2 

u2 F 
x2⋅y2 

= 
y2 

x2⋅y2 
u2 x þ x2 

x2⋅y2 
u2 y

• But: F2 
= x2 ⋅ y2 : 

u2 F 

F2 
= 

1 

x2 
u2 x þ

1 

y2 
u2 y 

uF 
F 

2 

= 
ux 
x 

2 

þ uy 

y 

2 

uF =F 
ux 
x 

2 

þ uy 

y 

2 

Solved Exercise 6.2 

Deduces the formula of relative uncertainty to case 2: F = 
x 
y
. 

Solution

• The partial derivative of function F concerning x: ∂F = 
1 
y
.

• The partial derivative of function F concerning y: ∂F = -
x 
y2
. 

u2 F = 
1 

y 

2 

u2 x þ -
x 

y2 

2 

u2 y 

u2 F = 
1 

y2 
u2 x þ

x2 

y4 
u2 y

• Raising to the square both members of the equation: F = 
x 
y 

F2 
= 

x2 

y2

• Dividing each member of the equation by F2 
= 

x2 

y2



y
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u2 F 
x2 

y2 

= 

1 
y2 

x2 

y2 

u2 x þ
x2 

y4 

x2 

y2 

u2 y 

But: F2 
= 

x2 
2 , 

u2 F 

F2 
= 

1 
y2 

x2 

y2 

u2 x þ
x2 

y4 

x2 

y2 

u2 y 
uF 
F 

2 

= 
ux 
x 

2 

þ uy 

y 

2 

uF =F 
ux 
x 

2 

þ uy 

y 

2 

Solved Exercise 6.3 

A circuit was assembled to determine the electrical resistance R, in which the value 

of the electric current (i) that passes through the resistor and its voltage (V ) were 

measured. The variables V and i are statistically independent (different instruments 

measured them). 

The following values were found with k = 2 and 95.45%: 

V = 15:0± 0:1ð Þ V 

i= 0:286± 0:003 A 

Determine: 

(a) The value of the electrical resistance R, with the correct number of significant 

digits. 

(b) The uncertainty of electrical resistance by the derivative method. 

(c) The uncertainty of electrical resistance by the relative uncertainties method. 

Solution 

(a) R = V/i = 15.0 / 0.286 = 52.44755 Ω → R = 52.4 Ω. 

(b) In this situation, we can use Eq. (6.3): 

u2 R = 
∂R 

∂V 
⋅uV 

2 

þ ∂R 

∂i 
⋅ui 

2 

∂R 

∂V 
= 

1 

i 

∂R 

∂i 
=

-V 

i2
uR = 

1 

i 
uV 

2 

þ -V 

i2 
ui 

2 

The standard uncertainty of V and i:
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uV = 
UV 

k 
= 

0:1 
2 

= 0:05 V 

ui = 
Ui 

k 
= 

0:003 
2 

= 0:0015 A 

Then: 

uR = 0:05=0:286ð Þ2 þ - 15 

0:2862 
0:0015 

2 

= 0:32593 Ω 

Since the coverage factors of both voltage (V ) and electric current (i) are equal to 

two, we will have an infinite degree of freedom and, consequently, a coverage factor 

for the electrical resistance (R) equal to two.3 Thus, expanded uncertainty will be: 

UR = k : uR = 2:00 × 0:32593= 0:6519 Ω 

Since we cannot declare uncertainties with more than two significant digits, we 

will have to round the result to one decimal digit, being compatible with the 

measured electrical resistance value of 52.4 Ω. The uncertainty of R will be: 

UR = 0:7 Ω 

The result will be: 

R= 52:4± 0:7ð Þ Ω 

(c) Relative uncertainties method. 

uR 
R 

2 

= 
uV 
V 

2 

þ ui 
i 

2 

uR 
52:4 

2 

= 
0:05 
15:0 

2 

þ 0:0015 
0:286 

2 

= 0:00003862 

uR = 52:4 0:00003862= 0:3256 

k= 2:00 

3 In the next section, we will study how to determine the coverage factor, when the components that 

contribute to uncertainty have a different degree of freedom from infinity.
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Fig. 6.2 Measurement 

circuit 

R 

V 

i 

UR = k:uR = 2:00 × 0:3256= 0:6513 Ω 

UR = 0:7 Ω 

The result will be: R = (52.4 ± 0.7) Ω 

6.4 Evaluation of the Effective Degree of Freedom 

for Relative Uncertainties 

In Chap. 5, we saw that we must use the Welch-Satterthwaite Eq. (5.6) or Eq. (5.7)  to  

determine the effective degree of freedo m.

In the case of indirect measurements, we must apply the uncertainties relative to 

Eq. (5.6), since the quantities involved have different units. In this way, the Welch-

Satterthwaite equation is like this: 

u4 Rc 
υeff 

= 
u4 R1 
υ1 

þ u4 R2 
υ2 

þ… þ u4 Ri 
υi 

ð6:8Þ

• uRc is the combined relative uncertainty of the quantity that we need to determine 

the degree of freedom.

• uR1, uR2, uR3, ..., uRi are the standard relative uncertainties of each i source (Type 

A and B uncertainties).

• υ1, υ2, υ3, υi … are the degrees of freedom of each i source of uncertainties;

• υeff is the effective degree of freedom associated with standard combined relative 

uncertainty. 

Solved Exercise 6.4 

A cylindrical metal bar (Fig. 6.3) has a diameter d = (2.50 ± 0.01) cm, k = 2.37, and 

95.45%; length L = (30.48 ± 0.01) cm, k = 2.28, and 95.45%; mass 

M = (1158.0 ± 0.1) g, k = 2.23, and 95.45%. Whereas the equation calculates the 

volume of a cylinder: 

Fig. 6.3 Cylindrical bar
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V = 
πd2 L 

4 
, 

Determine: 

(a) The density of the metal bar. 

(b) The expanded uncertainty of metal bar density to 95.45% metrological 

reliability. 

Solution 

(a) The density: 

ρ= 
M 

V 

ρ= 
M 

π d2 L 

4 

ρ= 
4M 

π d2 L 

ρ= 
4 x 1 158 

3:1416 x 2:502 x30:38 
= 7:7397→ ρ= 7:74 g=cm3 

(b) Considering the variables statistically independent, we can use Eq. (6.3): 

u2 ρ = 
∂ρ 

∂M 

2 

⋅u2 M þ
∂ρ 

∂d 

2 

⋅u2 d þ
∂ρ 

∂L 

2 

⋅u2 L 

∂ρ 

∂M 
= 

4 

πd2 L 
= 0:006684=cm3 

∂ρ 

∂d 
=

- 8M 

πd3 L 
= -6:19174 g=cm4 

∂ρ 

∂L 
=

- 4M 

πd2 L2 
= -0:25393 g=cm4 

u2 M = 
0:1 
2:23 

2 

= 0:002011 

u2 d = 
0:01 
2:37 

2 

= 0:0000178 

u2 L = 
0:01 
2:28 

2 

= 0:00001924
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uρ= 0:0066842 x0:002011þ -6:19174ð Þ2 x0:0000178þ -0:25393ð Þ2 x0:00001924 

uρ = 0:026151g=cm3 

Note: We could also have calculated density uncertainty using the relative 

uncertainties method. 

ρ= 
4M 

πd2 L 
= 

4 

π 
Md-2 L-1 

uρ = ρ 
uM 

M 

2 

þ - 2 
ud 
d 

2 

þ - uL 
L 

2 

= 0:026151 g=cm3 

Degree of freedom, using Eq. (6.8), and the coverage factor: 

u4 RC 
υef 

= 
u4 R1 
υ1 

þ u4 R2 
υ2 

þ… þ u4 Ri 
υi 

uρ 
ρ 

4 

υef 
= 

uM 

M 

4 

υM 
þ

ud 
d 

4 

υd 
þ

uL 
L 

4 

υL 

Student’s t-table 

M : k= 2:23 → υM = 12 

d : k= 2:37 → υd = 8 

L : k = 2:28 → υL = 10 

0:026151 
7, 74 

4 

veff 
= 

0:1=2:23 
1 158 

4 

12
þ

0:01=2:37 
2:50 

4 

8 
þ

0:01=2:28 
30:48 

4 

10 

υeff = 128:4717 

Using the Excel© function INV.T.BC (0.0455; 128.4717) → k = 2.02 

U = k : uρ = 2:02 x 0:026151= 0:0528 g=cm3 

U = 0:05 g=cm3 

The result will be: ρ = (7.74 ± 0.05) g/cm³ ; k = 2.02 and 95.45 %.
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6.5 Sensitivity Coefficient 

Considering a function W (a, b, c, …), in which a, b, c, … are its variables, as 

described in Sect. 6.1, we have Eq. (6.3) below. 

u2 W = 
∂W 

∂a 

2 

⋅u2 a þ
∂W 

∂b 

2 

⋅u2 b þ
∂W 

∂c 

2 

⋅u2 c þ… 

This equation describes the propagation of uncertainties of a function W. 

Partial derivatives ∂W 
∂a 

∂W 
∂b 

∂W 
∂c

… describe the variation of function 

W concerning each variable a, b, c, … 

Important 

In metrology, these partial derivatives are called sensitivity coefficient (SCi) 

and describe how each input a, b, c,... influences the output value W. 

Experimentally, if all variables remain constant and only one, for example, the 

variable a, changes, we can verify the variation of W. In Solved Exercise 6.4, we saw 

that the partial derivative method allows us to determine the function’s sensitivity 

coefficient concerning each variable. 

The sensitivity coefficient 

∂ρ 

∂M 
= 

4 

πd2 L 

indicates the variation of cylinder density as a function of the variation of its 

mass (M). 

The same happens with the expression 

∂ρ 

∂d 
=

- 8M 

πd3 L 

which indicates the change of cylinder density by variation of its diameter (d ), and 

the expression 

∂ρ 

∂L 
=

- 4M 

πd2 L2 

indicates the variation of cylinder density as a function of the variation of its length 

(L ). 

Knowledge of the sensitivity coefficient is essential to know how much a variable 

influences the result of an indirect measurement, minimizing its influence and, thus, 

its measurement uncertainty.
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In Solved Exercise 6.4, we saw that the largest sensitivity coefficient (in absolute 

value) of the three-cylinder variables in question—diameter (d ), mass (M ), and 

length (L )—is the sensitivity coefficient of cylinder density concerning its diameter: 

∂ρ 

∂M 
= 

4 

πd2 L 
= 0:006684=cm3 

∂ρ 

∂d 
=

- 8M 

πd3 L 
= -6:19174 g=cm4 

∂ρ 

∂L 
=

- 4M 

πd2 L2 
= -0:25393 g=cm4 

This fact indicates that we should be more concerned with diameter measurement 

uncertainty (higher absolute value of SCi), if we want to minimize its influence on 

the result of cylinder density. 

6.5.1 Sensitivity Coefficient Transforming Uncertainties 

The sensitivity coefficient is also applicable, when we want to transform a measure-

ment uncertainty that presents itself into a quantity to another quantity. This case is 

widespread when we want to measure a quantity, and the instrument used provides a 

sign in another quantity. We can cite sensors (thermoresistors and thermocouples) 

and pressure and temperature transducers. 

Take as an example the PT-100 platinum resistance thermometer (RTD), which is 

widely used in industry and thermometry laboratories, because it has low uncertainty 

and good accuracy. It measures temperature through the variation of its platinum 

resistance, which, at zero °C, has a value close to 100 ohms. 

The Callendar–Van Dusen equation describes the relationship between resistance 

(R) and temperature (T ) of platinum resistance thermometers. 

R  Tð Þ=R0 1þ AT þ BT2
- 100CT3 þ CT4 ð6: 9Þ

where R(T ) is the resistance value at the desired temperature T, and R0 is the value of 

platinum resistance at 0 °C. A, B, and C are the RTD coefficients, with typical values 

for an industrial platinum resistance thermometer such as: 

A= 3:9083× 10-3 = °C; B= -5:775× 10-7 = °C2 ; 

∘ ∘ ∘ 

C= 0 T ≤ 650 C ; C = -4:183 × 10-12 = C4 T > 650 C
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Table 6.2 PT-100 sensitivity 

coefficient as a function of its 

temperature 

Temperature (°C) SCT (Ω/°C) Uncertainty (°C) 

0 0.390830 3.8 × 10-3 

10 0.389675 3.8 × 10-3 

20 0.388520 3.9 × 10-3 

30 0.387365 3.9 × 10-3 

40 0.386210 3.9 × 10-3 

50 0.385055 3.9 × 10-3 

60 0.383900 3.9 × 10-3 

70 0.382745 3.9 × 10-3 

80 0.381590 3.9 × 10-3 

90 0.380435 3.9 × 10-3 

100 0.379280 4.0 × 10-3 

Solved Exercise 6.5 

Let us consider that we will use a multimeter with a measuring uncertainty of 

0.003 Ω to read the resistance R(T ). How will we transform this measurement 

uncertainty and the quantity of electrical resistance for the temperature quantity, ° 

C unit? 

Solution 

To solve this problem, we will determine the PT-100 sensitivity coefficient (SCT)  to  

obtain the relationship between the electrical resistance and the temperature 

quanti ties.

The PT-100 sensitivity coefficient is provided by deriving Eq. (6.9) in the 

function of T. Then: 

SCT = 
∂R  Tð Þ
∂T 

=R0 A þ 2BT - 300CT2 þ 4 CT3

For each temperature value, we will use an SCT value. Table 6.2 presents 

temperature and uncertainty values up to 100 °C considering: 

R0 = 100 Ω; A= 3:9083× 10-3 = °C; B= -5:775 × 10-7 = °C2 ; C = 0 

umult ° c = 
umult Ω 

SCT 

Knowing a Little More ... 

Platinum resistance thermometer 

This thermometer works based on ohmic resistance variation as a function 

of temperature. The sensor element is commonly made of platinum with a high 

(continued)



degree of purity and encapsulated in ceramic or glass bulbs (Fig. 6.4). Several 

types of resistance thermometers, from the standard thermometer to the more 

robust industrial thermometer, may have uncertainties in the tenth of the 

degree. The most common platinum types are those with a resistance of 

25 ohms, 100 ohms, 500 ohms, or 1000 ohms at the ice point (0 °C) (Fig. 6.4). 
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Fig. 6.4 Four-wire platinum resistance thermometer. (Photo by the authors) 

A two-, three-, or four-wire resistance bulb connection is used according to 

the type of instrument and the desired accuracy in the measurement. The four-

wire thermometers are the most exact and are called half standard. The PT-25 

is considered standard, being the most accurate and uncertain of 0.001 Ω. Its 

main constructive characteristics are: 

(i) The sensor element is made of platinum with a purity better than 

99.999 %; 

(ii) Great thermometer stability and measurement accuracy, with uncertainty 

values of (0.0006 to 0.01) °C. 

6.6 Proposed Exercises 

6.6.1 The expression gives the density of a sphere: 

ρ= 
M 

V 
= 

6M 

πD3 

Consider M = (1000 ± 1) g, D = (8.000 ± 0.002) cm, and k = 2.00 and 95.45 %. 

Determine the density and the measure uncertainty using:
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(a) The partial derivatives. 

(b) The relative uncertainties. 

6.6.2 Consider a square with side L and area A = L2 . The uncertainty of area A was 

calculated in two ways.

• Mode 1 

uA = 
∂A 

∂L 

2 

u2 Lð Þ

uA = 2L⋅ u  Lð Þ

• Mode 2. 

Consider that the square now has an L1 side and another L2. Thus, the area A = L1 · 

L2 

The area uncertainty can be calculated by: 

uA = 
∂A 

∂L1 
uL1 

2 

þ ∂A 

∂L2 
uL2 

2 

= L22 u2 L1 þ L12 u2 L2 

But if L1 = L2 = L → uL1 = uL2 = uL 

uA = 2L2u2 L = 2 
p

LuL 

Why was the result for mode one different from that of mode 2? Where is the error in 

the solution? 

6.6.3 A bearing factory tests the uniformity of the spheres’ diameter, weighing them. 

The percentage uncertainty of the mass is 1.00 %. If all spheres have the same 

density, with relative uncertainty equal to 1.20 %, what is the uncertainty in the 

diameter of a 1.000 cm sphere? 

6.6.4 The thickness of a 200-page book is (3.0 ± 0.1) cm. Determine: 

(a) The absolute uncertainty of the book’s thickness 

(b) The relative uncertainty of the book’s thickness 

(c) The percentage uncertainty of the book’s thickness 

(d) The thickness of a single sheet of the book 

(e) The percentage uncertainty of item (d) 

6.6.5 A rectangular block of wood has length L = (10.0 ± 0.1) cm, width 

W = (5.0 ± 0.1) cm, height H = (2.0 ± 0.1) cm, and mass M = (50.0 ± 0.1) 

g. All uncertainties are declared with k = 2.00 and 95.45 %.
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(a) The density of the rectangular wood block. 

(b) The uncertainty of the density with all sources of uncertainty considered. 

(c) The uncertainty of the density neglects all sources of uncertainty except that 

of more significant relative uncertainty. 

(d) Compare the results of items (b) and (c) and declare your conclusions. 

6.6.6 The expression determines the volume of a sphere: 

V = 
πd3 

6 

Considering its diameter as d = (1.00 ± 0.01) cm, with k = 2.00 and 95.45 %, 

determine: 

(a) The volume V. 

(b) The percentage uncertainty of d. 

(c) The uncertainty of volume by the derivative method. 

(d) The uncertainty of volume by the method of relative uncertainties. 

6.6.7 The expression determines the frequency of a circuit: 

f = 
1 

2π LC
p

where L is the inductance and C capacitance. If the percentage uncertainty of L is 

known at 5 % and the percentage uncertainty of C at 20 %, determine the value of 

the percentage uncertainty of frequency f. 

6.6.8 The free fall of a body obeys the equation: 

y= 
gt2 

2 

where g is the acceleration of local gravity, and y is the height of the fall. If 

y = (1.000 ± 0.001) m with k = 2.43 and 95.45 % and t = (0.45 ± 0.01) s with 

k = 2.23 and 95.45 %, calculate: 

(a) Relative uncertainty of y. 

(b) Relative uncertainty of t. 

(c) The value of g. 

(d) Gravity measurement uncertainty to 95.45 %. 

(e) Could you neglect any source of uncertainty, or is it necessary to complete an 

uncertainty analysis?
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Fig. 6.5 Power Dissipated 

by a resistor 

R 

V 

i 

Fig. 6.6 Mass 

measurement. (Made by the 

authors) 

6.6.9 Knowing that the electrical power (P) dissipated by a resistor can be calculated 

by the following expressions (Fig. 6.5). 

(a) P = V.I. 

(b) P = R.I2 . 

(c) P = V2 /R. 

Evaluate the best way to measure power P on resistor R, which has the lowest 

measurement uncertainty. 

Data: 

R = (10.0 ± 0.1) Ω, k = 2.43 and 95.45 % 

I = (10.0 ± 0.1) A, k = 2.23 and 95.45 % 

V = (100 ± 1) V, k = 2.21 and 95.45 % 

6.6.10 A chemist measured the mass (M4) of a product using the following scale 

(Fig. 6.6): 

Data: 

M1 = (128.0 ± 0.2) g 

M2 = (56.4 ± 0.4) g 

M3 = (39.7 ± 0.7) g 

Considering the scale in equilibrium, the uncertainties declared with k = 2.00 and 

95.45 %, calculate the value of mass M4 and its measurement uncertainty. 

6.6.11 To calculate a car’s consumption (C = km/L) on a trip, the car tank was filled, 

and the odometer was zeroed. In a particular stretch of the route, the car was



i
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Table 6.3 Blocks composition 

Number of blocks Composition 

112 One block: 1.0005 mm 

Nine blocks: (1.001 to 1.009) mm (step 0.001 mm) 

49 blocks: (1.01 to 1.49) mm (step 0.01 mm) 

49 blocks: (0.5 to 24.5) mm (step 0.5 mm) 

Four blocks: (25 to 100) mm (step 25 mm) 

Table 6.4 Blocks uncertainty Block size (mm) Uncertainty (μm) 

≤10 0.20 

>10 and ≤25 0.30 

>25 and ≤50 0.40 

>50 and ≤75 0.50 

>75 and ≤100 0.60 

replenished with (38.0 ± 0.2) L of gasoline, filling its tank. Arriving at the final 

destination, the automobile was again replenished with (42.8 ± 0.1) L, complet-

ing its tank. The total distance traveled indicated by the odometer was 

(834.5 ± 2.5) km. What was fuel consumption by km/L and its measurement 

uncertainty? 

Adopt k = 2.00 and 95.45 % for declared uncertainties. 

6.6.12 We have a set of standard blocks with the following characteristics 

(Table 6.3): 

Let us consider the uncertainty for the blocks, as shown in Table 6.4. All with 

k = 2.00 and 95.45 %: 

We need to calibrate a micrometer at point 72.467 mm. 

(a) Which blocks should be used as standard in this calibration to obtain the 

lowest measurement uncertainty? 

(b) What is the value of this uncertainty? 

6.6.13 A standard resistor, with a nominal value of 100, was measured by checking 

the voltage (V ) and the electric current (i) that passed through it. A voltmeter and 

a calibrated ammeter were used for this measurement. The voltage and current 

measurement sequence results, the mathematical model that defines the measure-

ment, and information related to the equipment used to measure the resistor are 

described in Table 6.5. 

The mathematical model that defines the measurand (R): R= 
V 

V is the mean voltage, and i is the mean electric current. 

Metrological characteristics of the voltmeter and ammeter used in the mea-

surement (Table 6.6). 

Based on this information, answer the following:
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Table 6.5 Voltage and cur-

rent measurements 
Measurement Voltage (V) Electric current (A) 

1 199.9 1.99 

2 200.2 2.02 

3 200.1 1.98 

4 199.9 1.99 

5 199.9 1.99 

6 200.0 2.00 

7 200.0 2.00 

8 199.9 1.99 

9 200.0 1.99 

Table 6.6 Voltmeter and ammeter characteristics 

Voltmeter Ammeter 

Bias (V ) +0.1 Bias (A) -0.04 

Uncertainty (V ) 

(k = 2.00 and 95.45 %) 

0.2 Uncertainty (A) 

(k = 2.00 and 95.45 %) 

0.02 

(a) The value of the resistor 

(b) The resistor bias 

(c) The correction of the value of the resistor 

(d) The expanded uncertainty



Chapter 7 

Industrial Calibration 

7.1 Calibration Concept 

According to VIM—2.39, calibration differs from adjustment and verification. See 

the calibration definition: 

Operation that, under specified conditions, in a first step, establishes a relation 

between the quantity values with measurement uncertainties provided by mea-

surement standards and corresponding indications with associated measurement 

uncertainties and, in a second step, uses this information to establish a relation 

for obtaining a measurement result from an indication. 

NOTE 1 A calibration may be expressed by a statement, calibration function, 

calibration diagram, calibration curve, or calibration table. In some cases, it 

may consist of an additive or multiplicative correction of the indication with 

associated measurement uncertainty. 

NOTE 2 Calibration should not be confused with adjustment of a measuring system, 

often mistakenly called “self-calibration,” nor with verification of calibration. 

NOTE 3 Often, the first step alone in the above definition is perceived as being 

calibration. 

Note that, according to VIM, calibrating is confronting the metrological behavior 

of a measuring instrument with a reference standard, which can be a standard 

measurement instrument, a standard measurement system, a materialized measure, 

or a certified reference material. 

Common sense considers calibrating how to fix equipment. For this reason, many 

professionals misunderstand that it is unnecessary to calibrate new equipment by 

thinking it is in perfect condition. The equipment may be in perfect condition, but we 

do not know its metrological characteristics, such as measurement error, measure-

ment uncertainty, instrumental bias, and hysteresis. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
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7.2 Calibration × Verification 

VIM—2.44 defines verification as the “provision of objective evidence that a given 

item fulfills specified requirements.” 

These specified requirements can be:

• The manufacturer’s specifications;

• The measurement instrument hysteresis or linearity;

• The instrument measuring error compared to its specification or technical 

standard. 

Example 7.1 Maximum Permissible Error for Resistance Thermometer 

The maximum permissible error for class A and class B resistance thermom-

eters, according to DIN-IEC 751/85 standard, is worth: 

Class A: (0.15 + 0.002 T ) °C. 

Class B: (0.30 + 0.005 T ) °C. 

Where T is the value of the measurement temperature. 

Example 7.2 Maximum Permissible Error for Materialized Measure 

The maximum permissible error for a materialized measure, for example, a 

standard mass, depending on its class, according to the International Recom-

mendation OIML R-111-1, is presented in Table 7.1. 

Attention! 

Do not confuse verification with calibration. In calibration, the measuring 

uncertainty of the object must be determined, but this is not necessary for 

verification. A calibration may cover a verification, but the opposite is not 

valid. In this sense, a calibration becomes a more complex procedure than a 

verification. 

7.3 Measurement Standard 

According to VIM—5.1, the measurement standard is the realization of the defini-

tion of a given quantity, with a stated quantity value and associated measurement 

uncertainty, used as a reference. 

EXAMPLE 1 1 kg mass measurement standard with an associated standard mea-

surement uncertainty of 3 μg. 

EXAMPLE 2 100 Ω measurement standard resistor with an associated standard 

measurement uncertainty of 1 μΩ. 

EXAMPLE 3 Caesium frequency standard with a relative standard measurement 

uncertainty of 2 × 10–15 .
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EXAMPLE 4 Standard buffer solution with a pH of 7.072 with an associated
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standard measurement uncertainty of 0.006. 

EXAMPLE 5 Set of reference solutions of cortisol in human serum having a certified 

quantity value with measurement uncertainty for each solution. 

EXAMPLE 6: Reference material providing quantity values with measurement 

uncertainties for the mass concentration of each of ten different proteins. 

NOTE 1 A “realization of the definition of a given quantity” can be provided by a 

measuring system, a material measure, or a reference material. 

NOTE 2 A measurement standard is frequently used as a reference in establishing 

measured quantity values and associated measurement uncertainties for other 

quantities of the same kind, thereby establishing metrological traceability 

through calibration of other measurement standards, measuring instruments, 

or measuring systems. 

NOTE 3 The term “realization” is used here in the most general meaning. It denotes 

three procedures of “realization.” The first one consists in the physical realiza-

tion of the measurement unit from its definition and is realization sensu stricto. 

The second, termed “reproduction,” consists not in realizing the measurement 

unit from its definition but in setting up a highly reproducible measurement 

standard based on a physical phenomenon, as it happens, e.g., in the case of 

the use of frequency-stabilized lasers to establish a measurement standard for the 

metre, of the Josephson effect for the volt or of the quantum Hall effect for the 

ohm. The third procedure consists of adopting a material measure as a measure-

ment standard. It occurs in the case of the measurement standard of 1 kg. 

NOTE 4 A standard measurement uncertainty associated with a measurement 

standard is always a component of the combined standard measurement uncer-

tainty (see GUM:1995, 2.3.4) in a measurement result obtained using the mea-

surement standard. 

Frequently, this component is small compared with other components of the com-

bined standard measurement uncertainty. 

NOTE 5 Quantity value and measurement uncertainty must be determined at the 

time when the measurement standard is used. 

NOTE 6 Several quantities of the same kind or different kinds may be realized in one 

device which is commonly also called a measurement standard. 

NOTE 7 The word “embodiment” is sometimes used in the English language instead 

of “realization.” 

NOTE 8 In science and technology, the English word “standard” is used with at 

least two different meanings: as a specification, technical recommendation, or 

similar normative document (in French “norme”) and as a measurement stan-

dard (in French “étalon”). This Vocabulary is concerned solely with the second 

meaning. 

NOTE 9 The term “measurement standard” is sometimes used to denote other 

metrological tools, e.g., ‘software measurement standard’ (see ISO 5436-2). 

A measurement standard is presented as a system, a materialized measure, or a 

certified reference material. Regardless of how they present themselves,



measurement standards often have a small measurement uncertainty, contributing 

little or almost nothing to the uncertainty after a calibration process. Their measure-

ment uncertainty should be combined with the other measurement uncertainties 

involved in the calibration process. 
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Fig. 7.1 Hierarchy of 

measurement standards 

International System 

of Units -SI 

International Standards 

National Standards 

Reference Standards 

Working Standards 

A measurement standard serves as a reference for calibrating other hierarchically 

inferior standards in terms of accuracy and measurement uncertainty. Figure 7.1 

presents the various types of measurement standards in the decreasing sense of their 

metrological hierarchy. 

The International System of Units (SI) was presented and discussed in Chap. 1. 

7.3.1 International Measurement Standard 

In the VIM—5.10, the definition of an international measurement standard is a 

measurement standard recognized by signatories to an international agreement and 

intended to serve worldwide. 

EXAMPLE 1 The international prototype of the kilogram. (Authors note: At the time 

of the 3rd edition of VIM, 2012, this was still the definition of the international 

mass standard—kilogram. From 2019, the new definition is: “It is defined by 

taking the fixed numerical value of the Planck constant h to be 6.626070 15 × 10-

34 when expressed in the unit J  s, which is equal to kg m2 s-1 , where the meter and 

the second are defined in terms of c and ΔνCs.” )

EXAMPLE 2 Chorionic gonadotrophin, World Health Organization (WHO) 4th 

international standard 1999, 75/589, 650 International Units per ampoule.



EXAMPLE 3 VSMOW2 (Vienna Standard Mean Ocean Water) distributed by the
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International Atomic Energy Agency (IAEA) for differential stable isotope 

amount-of-substance ratio measurements. 

Knowing a Little More ... 

The standard kilogram 

King Louis XVI of France summoned a group of sages to elaborate a new 

measurement system, establishing the foundations for the “decimal metric 

system,” which evolved into modern SI. The original idea of the King’s 

commission (which included remarkable, like Lavoisier) was to create a 

mass unit that, by definition, would be the mass of a liter of water at the ice 

point (i.e., essentially 1 kg). The definition should be incorporated into a 

standard mass prototype. Given that the masses being measured at that time 

were much lower than the kilo, they decided that the unit of mass would be the 

“gram.” However, since a gram standard is difficult to use as well as to handle 

(too small), the new definition should be incorporated into a prototype of a 

kilogram. The republican government’s decision probably had political moti-

vation, after all, these same people condemned Lavoisier to the guillotine. 

Anyway, it remains to regret that a base unit has a “prefix” in the name. The 

kilogram prototype has been conserved in the BIPM since 1889, when it was 

sanctioned by the First General Conference on Weights and Measures. It is 

cylindrically, with a diameter and height of about 39 mm, and made of a 90% 

platinum alloy and 10% iridium. In November 2018, at the General Confer-

ence on Weights and Measures, the highest revision of the International Unit 

System (SI) was made since 1960. In this conference, four basic units of 

measurement were redefined: kilogram, ampere, kelvin, and mol. The purpose 

of the change was to relate these units to fundamental, not arbitrary constants, 

as has been done so far. 

7.3.2 National Measurement Standard 

In the VIM—5.3, the definition of a national measurement standard is a mea-

surement standard recognized by national authority to serve in a state or 

economy as the basis for assigning quantity values to other measurement stan-

dards for the kind of quantity concerned. 

Therefore, these standards are devices maintained by organizations and national 

laboratories worldwide. They represent the fundamental and derived quantities and 

are calibrated independently through absolute measurements. 

INMETRO is responsible for maintaining national standards in Brazil both for 

those existing in their laboratories and those in the designated laboratories.
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7.3.3 Reference Measurement Standard 

In VIM—5.6, a reference measurement standard is a measurement standard 

designated for the calibration of other measurement standards for quantities of 

a given kind in a given organization or at a given location. 

These standards should not be employed for daily measurement work and, prefer-

ably, have to be kept under specific conditions of temperature and humidity. They 

are used for the calibration or verification of working standards. 

7.3.4 Working Measurement Standard 

The definition of a working measurement standard in VIM—5.7 is a standard that 

is routinely used to calibrate or verify measuring instruments or systems. 

NOTE 1 A working measurement standard is usually calibrated with respect to a 

reference measurement standard. 

NOTE 2 In relation to verification, the terms “check standard” or “control stan-

dard” are also sometimes used. 

7.4 Certified Reference Material (CRM) 

Certified reference material is a reference material, accompanied by documentation 

issued by an authoritative body and providing one or more specified property values 

with associated uncertainties and traceabilities, using valid procedures. 

EXAMPLE Human serum with assigned quantity value for the concentration of 

cholesterol and associated measurement uncertainty stated in an accompanying 

certificate, used as a calibrator or measurement trueness control material. 

NOTE 1 ‘Documentation’ is given in the form of a ‘certificate’ (see ISO Guide 31: 

2000). 

NOTE 2 Procedures for the production and certification of certified reference 

materials are given, e.g., in ISO Guide 34 (actually ISO 17034) and ISO Guide 

35. 

NOTE 3 In this definition, “uncertainty” covers both ‘measurement uncertainty’ and 

‘uncertainty associated with the value of a nominal property,’ such as for identity 

and sequence. “Traceability” covers both ‘metrological traceability of a quantity 

value’ and ‘traceability of a nominal property value.’ 

NOTE 4 Specified quantity values of certified reference materials require metrolog-

ical traceability with associated measurement uncertainty.



NOTE 5 ISO/REMCO has an analogous de nition, but uses the modi ers metro-

7.5 Selection of the Measurement Sstandard 197

fi fi “ 

logical” and “metrologically” to refer to both quantity and nominal property. 

[VIM—5.14]. 

A reference material can be a pure substance or a gas, liquid, or solid mixture. 

Examples of reference materials are water used in viscometer calibration, sapphire 

used in calorimetry heat capacity calibration, and solutions used in chemical 

analysis. 

A certificate of analysis with one or more property or physical characteristic 

values always accompanies a certified reference material. These materials are certi-

fied by procedures that establish the traceability for the exact obtaining of the unit in 

which the property values are expressed. Each certified value is accompanied by 

uncertainty to an established confidence level. 

The following text, related to the preparation of a CRM, was obtained from the 

website <https://en.wikipedia.org/wiki/Certified_reference_materials>. 

Sample preparation. 

Detailed sample preparation depends on the type of material. Pure standards are 

most likely prepared by chemical synthesis and purification and characterized by 

determining remaining impurities. 

Natural matrix CRMs contain an analyte or analytes in a natural sample (for 

example, lead in fish tissue). They are typically produced by homogenizing a 

naturally occurring material and measuring each analyte. Due to the difficulty in 

production and value assignment, they are usually made by national or transna-

tional metrology institutes like NIST (USA), BAM (Germany), KRISS (Korea), and 

EC JRC (European Commission Joint Research Centre). 

Natural materials are rarely homogeneous on the scale of grams so production of 

a solid natural matrix reference material typically involves processing to a fine 

powder or paste. Homogenization can have adverse effects, for example on proteins, 

so producers must take care not to over-process materials. 

The stability of a certified reference material is also essential, so a range of 

strategies may be used to prepare a reference material that is more stable than the 

natural material it is prepared from. For example, stabilizing agents such as 

antioxidants or antimicrobial agents may be added to prevent degradation, liquids 

containing certified concentrations of trace metals may have their pH adjusted to 

keep metals in solution, and clinical reference materials may be freeze-dried for 

long-term storage if they can be reconstituted successfully. 

7.5 Selection of the Measurement Sstandard 

For the value of a measurement standard or standard measurement system to be 

accepted as a reference value, its measurement accuracy and uncertainty must be 

lower than those of the measurement system to be calibrated. Therefore, it is possible

https://en.wikipedia.org/wiki/Certified_reference_materials%3e


to imagine that the smaller your measurement uncertainty, technically, the better the 

standard, but the more expensive it will be as well. 
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We must always seek a technical and economic balance, keeping in mind that the 

final uncertainty (UF) will be the combination of the uncertainty of the measurement 

system that we want to calibrate (UCMS) with the uncertainty of the standard 

measurement system (USMS), that is, 

UF = U2 
CMS þ U2 

SMS ð7:1Þ 

The lower the uncertainty of the SMS compared to CMS, the lower its influence 

on the final result. Let us evaluate UF for some USMS values compared to UCMS.  If  

SMS uncertainty were infinitely inferior to CMS uncertainty, we would have the 

uncertainty UF equal to CMS uncertainty; the influence of SMS measurement 

uncertainty would tend to be zero. Let us look at the following simulations :

(a) Considering USMS = UCMS, we have: 

UF = U2 
CMS þ U2 

SMS = 2:U2 
CMS = 1:41 UCMS 

We observe that the influence of SMS uncertainty is approximately 41% of the 

final uncertainty, UF. 

(b) Considering USMS = 1/2 UCMS, we have: 

UF = U2 
CMS þ U2 

SMS = 1þ 1=4ð Þ U2 
CMS = 1:12 UCMS 

We observe that the influence of SMS uncertainty is approximately 12% of the 

final uncertainty, UF. 

(c) Considering USMS = 1/3 UCMS, we have: 

UF = U2 
CMS þ U2 

SMS = 1þ 1=9ð Þ U2 
CMS = 1:054 UCMS 

We observe that the influence of SMS uncertainty is approximately 5.4% of the 

final uncertainty, UF. 

(d) Considering USMS = 1/4 UCMS, we have: 

UF = U2 
CMS þ U2 

SMS = 1þ 1=16ð Þ  U2 
CMS = 1:032 UCMS
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We observe that the influence of SMS uncertainty is approximately 3.2% of the 

final uncertainty, UF. 

(e) Considering USMS = 1/5 UCMS, we have: 

UF = U2 
CMS þ U2 

SMS = 1 þ 1=25ð Þ  U2 
CMS = 1:02 UCMS 

We observe that the influence of SMS uncertainty is approximately 2% of the final 

uncertainty, UF. 

(f) Considering USMS = 1/10 UCMS, we have: 

UF = U2 
CMS þ U2 

SMS = 1 þ 1=100ð Þ  U2 
CMS = 1:005 UCMS 

We observe that the influence of SMS uncertainty is approximately 0.5 % of the 

final uncertainty, UF. 

Suppose we adopt a standard with measurement uncertainty equal to or less than 

one-tenth of the expected uncertainty for the CMS. In that case, SMS will not 

contribute to the uncertainty, with SMS passing unnoticed by the CMS. 

Important 

In practice, if we adopt SMS with measurement uncertainty equal to or less 

than ¼ of the CMS, we will have an excellent condition. 

7.6 Solved Exercises of Measurement Instrument 

Calibration 

We can use a technical standard or even an orientation guide whenever we want to 

calibrate a measurement instrument. For example, if we wish to calibrate thermo-

couples, we can use the guide Calibration of Thermocouples—EURAMET cg-8. 

If we wish to calibrate manometers, we can use the Guidelines on the Calibration 

of Electromechanical and Mechanical Manometers—EURAMET Calibration Guide 

No. 17. 

Thus, we are led to believe that the entire calibration process, including the choice 

of standards, the assembly of the experiment, and the calculation of the measurement 

uncertainty, will be found in all technical standards. Deceit! The part of the mea-

surement uncertainty calculation is not usually provided in the technical calibration 

standards, so we are at a “dead end.”



(c)
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Important 

Calibration technical standards usually do not contain information on calcu-

lating measurement uncertainty. Therefore, you are responsible for 

performing them! 

To solve this problem, interested parties must take courses in measurement and 

calibration uncertainty in their field of interest (temperature, pressure, electricity, 

etc.). 

Here are some examples of measuring uncertainty calculation. 

Solved Exercise 7.1: Glass Liquid Thermometer (GLT) Calibration. 

A GLT, with 0.5 °C resolution, is calibrated against a 0.1 °C resolution standard. 

The calibration bath has ±0.04 °C stability.1 The standard thermometer calibration 

certificate is shown in Fig. 7.2. Determine the thermometer uncertainty and its bias to 

20 °C, 40 °C, and 100 °C (Table 7.2). 

Solution: 

I. Point 20 °C 

(a) Standard and object mean value 

xstd = 20:0 °C→ bias correction→ xstd = 20:0- 0:2ð Þ °C= 19:8 °C 

Note that the standard indication has been corrected because, as seen in the 

certificate, it has a bias of 0.2 °C at point 20 °C. 

xobj = 20:5 °C 

(b) Object bias 

B= 20:5- 19:8ð Þ °C= 0:7 °C 

Type A uncertainty—object repeatability 

uA-obj = 
s 

n
p = 0 

(d) Standard uncertainty from the calibration certificate. 

This data is extracted from the standard thermometer calibration certificate. As 

the certificate always informs the expanded measurement uncertainty (95.45 %) and

1 Stability is defined as fluctuation of calibration bath temperature after reaching the thermal 

equilibrium.



we need to combine it with the other uncertainties in standard form (a standard 

deviation), we must divide it by the k factor, informed in the instrument’s calibration 

certificate standard.
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PP&AM 
Calibration 

Laboratory 

METROLOGY & UNCERTAINTY OF MEASUREMENT 
Address: 10012 Uncertainty Propagation Street 

E-mail: m&um@uncertainty.com 

Phone: 00 11 22 33 44 55 

CALIBRATION CERTIFICATE Ner 1234 / 2024 

Customer Information 

Company: 

Address: 

E-mail: 

Phone: 

PPN&AM Metrology 

17025, Measurement Error Street 

ppn&am@ppn&am.com  

00 34 91 01 02 03 

Calibrated object information  

Manufacturer: High Temperature                                                       Class: NA 

Description: Glass thermometer                                                          Resolution: 0.1 °C 

Model: Partial immersion                                                                      Range: (0 – 100) °C 

Serial number: 123321123321 

Method and procedure used 

Calibration made by direct comparison, as described in the SOP 001 procedure - Standard Operating 

Procedure for glass thermometers. 

Traceability 

Description TAG Model Manufacturer Certificate Serial 

Standard thermometer Pt – 107 Pt-100 

Four wires 

Ohms 107/24 ABC123 

Calibration results 

Indication 

°C 

Standard 

°C 

Object 

°C 

Bias 

°C 

Uncertainty 

°C 

k Degree of 

freedom 

0 0.00 0,1 0,1 0.2 2.37 8 

10 10.00 10.0 0.0 0.2 2.05 47 

20 20.00 20.2 0.2 0.2 2.00 Infinite 

30 30.00 30.0 0.0 0.3 2.05 47 

40 40.00 40.0 0.0 0.3 2.02 102 

50 50.00 50.1 0.1 0.3 2.11 23 

60 60.00 60.1 0.1 0.4 2.06 40 

70 70.00 70.2 0.2 0.5 2.07 35 

80 80.00 80.0 0.0 0.5 2.06 40 

90 90.00 90.1 0.1 0.5 2.02 102 

100 100.00 100.2 0.2 0.6 2.00 Infinite 

 

Environmental 

data 

Temperature 

°C 

(20.6 + 0.5) 

 

Humidity 

% 

(56 + 5)  Pressure 

hPa 

(1 018 + 1)  

Environment:        ( x ) Stable        (    ) Unstable        ( x ) Acclimatized 

These results refer exclusively to the object described in this document in the specified conditions, not 

extending to any other, even if it is similar. The partial reproduction of this document is not allowed. 

Expanded uncertainty (U) reported corresponds to a coverage probability of 95.45%. 

Calibration date: 3/6/2024 

Emission date:     3/6/2024 

 

                                                Galileo Galilei                                                 Lord Kelvin 

Metrologist technician                                    Authorized firmer 

Page 1/1 

Fig. 7.2 Standard thermometer calibration certificate
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Table 7.2 Result of GLT 

calibration 
Nominal value (°C) Standard (°C) Object (°C) 

20 20.0 20.5 

20.0 20.5 

20.0 20.5 

20.0 20.5 

40 40.1 40.5 

40.1 40.5 

40.1 40.5 

40.1 40.5 

100 99.8 100.5 

99.8 100.5 

99.8 100.5 

99.8 100.0 

ucertif = 
0:2 
2 

= 0:1 °C 

(e) Bath stability uncertainty. 

After stabilization, the variation in bath temperature follows a uniform probability 

distribution. In this case, as stability is provided as ±0.04 °C, the interval of bathing 

temperature variation has already been divided by two, and thus, applying the 

uniform distribution, divide by 3
p 

. 

ustability = 
0:04 

3
p = 0:0231 °C 

(f) GLT resolution uncertainty. 

We will adopt a uniform probability distribution, since the probability of finding a 

reading value varies evenly. 

uGLT res = 
0:5 

12
p = 0:14434 °C 

(g) Standard resolution uncertainty. 

We will adopt a uniform probability distribution, since the probability of finding a 

reading value varies evenly. 

ustd res = 
0:1 

12
p = 0:0289 °C
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Table 7.3 Metrological 

characteristics 
Metrological characteristics (°C) 

Object mean 40.5 

Corrected standard mean 40.1 

Bias 0.4 

Type A uncertainty—Repeatability 0.0 

Standard uncertainty from certificate 0.1485 

Stability uncertainty 0.0231 

GLT resolution uncertainty 0.1443376 

Standard resolution 0.0289 

Combined uncertainty 0.2104 

Effective degree of freedom 120 

Coverage factor, k 2.02 

Expanded uncertainty, 95.45 % 0.4 

(h) Combined uncertainty 

uc = u2 A þ u2 cert þ u2 stab þ u2 GLT res þ u2 std res = 0:1795 °C 

(i) Effective degree of freedom 

veff = 
u4 c 

u4 
A 

4- 1
þ u4 cert 

v 
þ u4 

stab 

1 þ
u4 
GLT res 

1 þ u4 
std res 

1 

=1 

(j) Coverage factor, k 

υeff =1 → k = 2:00 

(k) Expanded uncertainty 95.45% 

U = k:uc = 0:359 °C 

We must round the expanded uncertainty to a decimal digit, since the object’s 

GLT has a resolution of 0.5 °C. Thus, the result will be: U = 0.4 °C. 

For the other calibration points, the calculation methodology is the same. Let us 

present only the tables with the final results. 

II. Point 40 °C (Table 7.3) 

III. Point 100 °C (Tables 7.4 and 7.5) 

Solved Exercise 7.2: Bourdon Gauge Calibration
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Table 7.4 Metrological 

characteristics 
Metrological characteristics (°C) 

Object mean 100.5a 

Corrected standard mean 99.6 

Bias 0.9 

Type A uncertainty—Repeatability 0.125 

Standard uncertainty from certificate 0.3 

Stability uncertainty 0.0231 

GLT resolution uncertainty 0.1443376 

Standard resolution 0.0289 

Combined uncertainty 0.3575 

Effective degree of freedom 168 

Coverage factor, k 2.01 

Expanded uncertainty, 95.45 % 0.7 

a Since the GLT object only reads from 0.5 to 0.5 °C, we should 

round the result to 100.5 °C. 

Table 7.5 Result of GLT calibration 

Standard (°C) Object (°C) Bias (°C) Uncertainty (°C) k υ 

19.8 20.5 + 0.7 0.4 2.00 

40.1 40.5 + 0.4 0.4 2.02 120 

99.6 100.5 + 0.9 0.7 2.01 168 

Table 7.6 Bourdon gauge calibration result 

Object 

(kgf/cm2 ) 

Standard (kgf/cm2 ) 

Charge 1 Discharge 1 Charge 2 Discharge 2 

5.0 5.50 5.50 5.50 5.25 

15.0 16.25 15.75 15.50 15.50 

25.0 26.00 25.50 25.50 26.00 

35.0 36.25 36.00 35.50 36.00 

40.0 41.00 41.00 41.00 41.00 

A Bourdon gauge (object), class 2.5 %, with a measurement range 0 to 40 kgf/ 

cm2 , was calibrated against a standard gauge class 0.6 %. Consider the resolution of 

the calibration gauge of 0.5 kgf/cm2 . The standard gauge resolution is 0.05 kgf/cm2 

(Table 7.6). 

Calibration Instructions The pressure value on the object gauge is fixed, and the 

reading of charge and discharge pressure is performed on the standard gauge (see the 

standard certificate in Fig. 7.3) for hysteresis, error, and bias. 

Solution Before we start the uncertainty calculations of this exercise, we will 

correct the standard gauge measurement values (Table 7.4). Correction implies 

eliminating the error or measurement bias at each point measured by the standard
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PP&AM 
Calibration Laboratory 

METROLOGY & UNCERTAINTY OF MEASUREMENT 
Address: 10012 Uncertainty Propagation Street 

E-mail: m&um@uncertainty.com 

Phone: 00 11 22 33 44 55 

CALIBRATION CERTIFICATE Ner 4321 / 2024 

Customer Information 

Company: 

Address: 

E-mail: 

Phone: 

PPN&AM Metrology 

17025, Measurement Error Street 

ppn&am@ppn&am.com  

00 34 91 01 02 03 

Calibrated object information 

Manufacturer: Bourdon Pressure Co.                                                 Class: 0.6 

Description: analog pressure gauge                                                    Resolution: 0.05 kgf/cm² 

Model: BouP 12                                                                                       Range: (0 – 60) kgf/cm² 

Serial number: 123321123321 

Method and procedure used 

Calibration made by direct comparison, as described in the POE 002 procedure - Standard Operating 

Procedure for Pressure Gauge. 

Traceability 

Description TAG Model Manufacturer Certificat 

e 

Serial 

Thermohygrometer TH – 10 Digital THMetro 207/24 ABC123 

Barometer BA-20 Analog BA 215/24 XYZ00 

Standard pressure gauge MP-99 Digital MPM 789/24 GFD873 

Calibration results 

Indication 

kPa 

Indication 

kgf/cm² 

Standard 

kgf/cm² 

Object 

kgf/cm² 

Bias 

kgf/cm² 

Uncertainty 

kgf/cm² 

K Degree of 

freedom 

0 0 0.000 0.00 0.00 0.05 2.00 Infinite 

588 6 6.100 6.00 -0.10 0.05 2.00 Infinite 

1 177 12 12.000 12.00 0.00 0.05 2.00 Infinite 

2 354 24 24.005 24.00 0.00 0.06 2.10 27 

2 942 30 30.005 30.00 0.00 0.06 2.10 27 

3 530 36 36.100 36.00 -0.10 0.06 2.15 18 

4 119 42 42.100 42.00 -0.10 0.07 2.15 18 

4 707 48 48.150 48.00 -0.15 0.07 2.15 18 

5296 54 54.250 54.00 -0.25 0.08 2.20 14 

5 884 60 59.700 60.00 0.30 0.08 2.20 102 

 

Environmental 

data 

Temperature 

°C 

(20.6 + 0.5) 

 

Humidity 

% 

(56 + 5)  Pressure 

hPa 

(1 018 + 1)  

Environment:        ( x ) Stable        (    ) Unstable        ( x ) Acclimatized 

These results refer exclusively to the object described in this document in the specified conditions, not 

extending to any other, even if it is similar. The partial reproduction of this document is not allowed. 

Expanded uncertainty (U) reported corresponds to a coverage probability of 95.45%. 

Calibration date: 6/3/2024 

Emission date:     6/3/2024 

 

                                                Galileo Galilei                                                  Lord Kelvin 

Metrologist technician                                    Authorized firmer 

Page 1/1 

Fig. 7.3 Standard Bourdon gauge calibration certificate



(e)

instrument. To do so, consult the error or bias in the standard instrument calibration 

certificate (Fig. 7.3) (Table 7.7).
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Table 7.7 Corrected values of the standard 

Object 

(kgf/cm2 ) 

Standard (kgf/cm2 ) 

Charge 1 Discharge 1 Charge 2 Discharge 2 

5.0 5.60 5.60 5.60 5.35 

15.0 16.25 15.75 15.50 15.50 

25.0 26.00 25.50 25.50 26.00 

35.0 36.35 36.10 35.60 36.10 

40.0 41.10 41.10 41.10 41.10 

Point 5 kgf/cm2 

(a) Measurement error. 

E=X-Vr= 5:0- 5:60= -0:6 kgf=cm2 

To determine the gauge measurement error, we must subtract from the value read 

by the calibration gauge (object) the standard’s value farther from the object’s value. 

That is, the standard value will generate the most significant measurement error. 

(b) Type A uncertainty 

uA = 
s 

n
p = 

0:125 

4
p = 0:0625 kgf=cm2 

Note that once we fix the value in the object, the standard will feel its 

repeatability. 

(c) Uncertainty from certificate 

ucert = 0:05=2= 0:025 kgf=cm2 

(d) Hysteresis uncertainty 

uhys = 
H 

12
p = 

5:60- 5:35 

12
p = 0:0722 kgf=cm2 

Object resolution uncertainty. 

We will adopt a triangular probability distribution, since the probability of finding 

a reading value at the center point of the distribution is greater than at the ends.
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uobj res = 
0:5 

24
p = 0:10206 kgf=cm2 

(f) Standard resolution uncertainty 

ustd res = 
0:05 

12
p = 0:0144 kgf=cm2 

(g) Combined uncertainty 

uc = 0:06252 þ 0:0252 þ 0:07222 þ 0:10262 þ 0:01442 = 0:143 kgf=cm2 

(h) Effective degree of freedom 

veff = 
u4 c 

u4 
A 

4- 1
þ u4 cert 

v 
þ u4 

hyst 

1 þ
u4 
obj res 

1 þ u4 
std res 

1 

= 82 

(i) Coverage factor, k 

Excelå : INV:T:BC 0:0455; 82ð Þ  → k= 2:03 

(j) Expanded uncertainty 

U = 2:03× 0:143= 0:3 kgf=cm2 

II. Point 15 kgf/cm2 (Table 7.8). 

III. Point 25 kgf/cm2 (Table 7.9) 

IV. Point 35 kgf/cm2 (Table 7.10) 

V. Point 40 kgf/cm2 (Table 7.11) 

Object accuracy class: 2.5 % (Table 7.12) 

At points 15, 25, and 40, the object error exceeded the class limit error (2.5 %). 

This shows that this gauge needs to be adjusted (Table 7.13).



208 7 Industrial Calibration

Table 7.8 Metrological 

characteristics 
Metrological characteristics (kgf/cm2 ) 

Object 15.0 

Error -1.2 

Type A uncertainty—Repeatability 0.1768 

Standard uncertainty from certificate 0.0286a 

Hysteresis uncertainty 0.14434 

Object resolution uncertainty 0.10206 

Standard resolution 0.0144 

Combined uncertainty 0.2523 

Effective degree of freedom 12 

Coverage factor, k 2.23 

Expanded uncertainty, 95.45 % 0.6 

a As the point is between (12 and 24) kgf/cm2 and the respective 

uncertainties between (0.05 and 0.06) kgf/cm2 , we must adopt the 

more significant measurement uncertainty, in this case, 0.06 kgf/ 

cm2 . The reason is to make the most conservative decision possi-

ble, adopting the most significant uncertainty in the interval. 

Table 7.9 Metrological 

characteristics 
Metrological characteristics (kgf/cm2 ) 

Object 25.0 

Error -1.0 

Type A uncertainty—Repeatability 0.14434 

Standard uncertainty from certificate 0.0286 

Hysteresis uncertainty 0.14434 

Object resolution uncertainty 0.10206 

Standard resolution 0.0144 

Combined uncertainty 0.2307 

Effective degree of freedom 19.6 

Coverage factor, k 2.14 

Expanded uncertainty, 95.45 % 0.5 

Table 7.10 Metrological 

characteristics 
Metrological characteristics (kgf/cm2 ) 

Object 35.0 

Error -1.4 

Type A uncertainty—Repeatability 0.1573 

Standard uncertainty from certificate 0.0279 

Hysteresis uncertainty 0.14434 

Object resolution uncertainty 0.10206 

Standard resolution 0.0144 

Combined uncertainty 0.2389 

Effective degree of freedom 16 

Coverage factor, k 2.19 

Expanded uncertainty, 95.45 % 0.5



p
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Table 7.11 Metrological 

characteristics 
Metrological characteristics (kgf/cm2 ) 

Object 40.0 

Error -1.1 

Type A uncertainty—Repeatability 0.0 

Standard uncertainty from certificate 0.03256 

Hysteresis uncertainty 0.0 

Object resolution uncertainty 0.10206 

Standard resolution 0.0144 

Combined uncertainty 0.1086 

Effective degree of freedom 2200 

Coverage factor, k 2.00 

Expanded uncertainty, 95.45 % 0.2 

Table 7.12 Error Point (kgf/cm2 ) Error (kgf/cm2 ) Error (%) 

5.0 -0.6 1.5 

15.0 -1.2 3.0 

25.0 -1.0 2.5 

35.0 -1.4 3.2 

40.0 -1.1 2.8 

Table 7.13 Result of 

Bourdon gauge calibration 
Object 

kgf/cm2 Error kgf/cm2 
Uncertainty 

kgf/cm2 k υ 

5.0 -0.6 0.3 2.03 82 

15.0 -1.2 0.6 2.23 12 

25.0 -1.0 0.5 2.14 19 

35.0 -1.4 0.5 2.19 16 

40.0 -1.1 0.2 2.00 2200 

Solved Exercise 7.3: Digital Voltmeter Calibration 

Calibration conditions:

• Object: digital voltmeter

• Resolution: 0.01 mV

• Range: (0 to 200) mV 

Parasite uncertainty2 = 
2μV 

. 

Calibration Instructions using a voltage source, fix the value in the voltmeter in 

calibration (object) and read the standard voltmeter (Table 7.14). 

Before we start the uncertainty calculations of this exercise, we will correct the 

standard voltmeter measurement values Table 7.5). Correction implies eliminating 

the error or measurement bias at each point measured by the standard instrument. 

Therefore, consult the error or bias in the standard instrument calibration certificate 

(Fig. 7.4) (Table 7.15). 

2 Uncertainty from static electricity at voltmeter connection terminals.
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1 2 3 4
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Table 7.14 Calibration 

results 
Object (mV) 

Standard (mV) 

40.110 40.150 40.160 40.12040.00 

80.00 80.120 80.160 80.140 80.130 

120.00 120.150 120.170 120.190 120.190 

160.00 160.230 160.180 160.170 160.180 

200.00 200.210 200.230 200.260 200.270 

Point 40.00 mV 

(a) Error 

E= x-Vr= 40:00- 40:160= -0:16 mV 

(b) Type A uncertainty 

uA = 
s 

n
p = 

0:0238 

4
p = 0:0119 mV 

Note that once we fix the value in the object, the standard will feel its 

repeatability. 

(c) Uncertainty from certificate 

ucert = 0:002=2= 0:001 mV 

(d) Parasite uncertainty 

upar = 
2μV 

3
p = 0:0011547 mV 

(e) Object resolution 

uobj res = 
0:01 

12
p = 0:002887 mV 

We will adopt a uniform probability distribution even when setting the reading in 

the object, since the voltmeter is digital. The probability of finding a reading value 

varies evenly.
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PP&AM 
Calibration 

Laboratory 

METROLOGY & UNCERTAINTY OF MEASUREMENT 
Address: 10012 Uncertainty Propagation Street 

E-mail: m&um@uncertainty.com 

Phone: 00 11 22 33 44 55 

CALIBRATION CERTIFICATE Ner 1324 / 2024 

Customer Information 

Company: 

Address: 

E-mail: 

Phone: 

PPN&AM Metrology 

17025, Measurement Error Street 

ppn&am@ppn&am.com  

00 34 91 01 02 03 

Calibrated object information 

Manufacturer: Voltmeters Co.                                                            Class: NA 

Description: digital voltmeter                                                              Resolution: 0.001 mV 

Model: VTVM-1                                                                                      Range: (0 – 200) mV 

Serial number: 123321123321 

Method and procedure used 

Calibration made by direct comparison, as described in the POE 003 procedure - Standard Operating 

Procedure for Voltmeters. 

Traceability 

Description TAG Model Manufacturer Certificate Serial 

Thermohygrometer TH – 10 Digital THMetro 207/24 ABC123 

Barometer BA-20 Analog BA 215/24 XYZ00 

Standard voltmeter VP-99 Digital VPM 089/24 FKL777 

Calibration results 

Indication 

mV 

Standard 

mV 

Object 

mV 

Bias 

mV 

Uncertainty 

mV 

k Degree of 

freedom 

0 0.0000 0.000 0.000 0.002 2.00 Infinite 

40 40.0005 40.001 0.000 0.002 2.00 Infinite 

80 80.0000 80.003 0.003 0.002 2.00 Infinite 

120 120.0005 120.005 0.004 0.002 2.00 Infinite 

160 159.9995 160.005 0.005 0.002 2.00 Infinite 

200 199.9995 200.005 0.005 0.002 2.00 Infinite 

 

Environmental 

data 

Temperature 

°C 

(20.6 + 0.5) 

 

Humidity 

% 

(56 + 5) Pressure 

hPa 

(1 018 + 1)  

Environment:        ( x ) Stable        (    ) Unstable        ( x ) Acclimatized 

These results refer exclusively to the object described in this document in the specified conditions, not 

extending to any other, even if it is similar. The partial reproduction of this document is not allowed. 

Expanded uncertainty (U) reported corresponds to a coverage probability of 95.45%. 

Calibration date: 6/8/2024 

Emission date:     6/8/2024 

 

                                                Galileo Galilei                                                  Lord Kelvin 

Metrologist technician                                    Authorized firmer 

Page 1/1 

Fig. 7.4 Standard voltmeter calibration certificate 

(f) Standard resolution 

ustd res = 
0:001 

12
p = 0:0002887 mV 

(g) Combined uncertainty



1 2 3 4

212 7 Industrial Calibration

Table 7.15 Corrected values 

of the standard 
Object (mV) 

Standard (mV) 

40.110 40.150 40.160 40.12040.00 

80.00 80.120 80.160 80.140 80.130 

120.00 120.147 120.167 120.187 120.187 

160.00 160.226 160.176 160.166 160.176 

200.00 200.205 200.225 200.255 200.265 

Table 7.16 Metrological 

characteristics 
Metrological characteristics (mV) 

Object 80.00 

Error -0.16 

Type A uncertainty—Repeatability 0.0085 

Standard uncertainty from certificate 0.001 

Parasite uncertainty 0.0011547 

Object resolution uncertainty 0.002887 

Standard resolution 0.0002887 

Combined uncertainty 0.009111 

Effective degree of freedom 4 

Coverage factor, k 3.31 

Expanded uncertainty, 95.45 % 0.03 

uc = 0:01192 þ 0:0012 þ 0:00115472 þ 0:0028872 þ 0:00028872 = 0:0123 mV 

(h) Effective degree of freedom 

veff = 
u4 c 

u4 
A 

4- 1
þ u4 cert 

v 
þ u4 par 

1 þ
u4 
obj res 

1 þ u4 
std res 

1 

= 3:5 

(i) Coverage factor, k 

Excelå : INV:T:BC 0:0455; 3:5ð Þ  → k = 3:31 

(j) Expanded uncertainty 

U = 3:31× 0:0123= 0:04 mV 

We will round the uncertainty for two decimal digits (object voltmeter 

resolution). 

II. Point 80.00 mV (Table 7.16)



III. Point 120.00 mV (Table 7.17)
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Table 7.17 Metrological 

characteristics 
Metrological characteristics (mV) 

Object 120.00 

Error -0.19 

Type A uncertainty—Repeatability 0.0096 

Standard uncertainty from certificate 0.001 

Parasite uncertainty 0.0011547 

Object resolution uncertainty 0.002887 

Standard resolution 0.0002887 

Combined uncertainty 0.010145 

Effective degree of freedom 3.7 

Coverage factor, k 3.31 

Expanded uncertainty, 95.45 % 0.03 

Table 7.18 Metrological 

characteristics 
Metrological characteristics (mV) 

Object 160.00 

Error -0.18 

Type A uncertainty—Repeatability 0.0135 

Standard uncertainty from certificate 0.001 

Parasite uncertainty 0.0011547 

Object resolution uncertainty 0.002887 

Standard resolution 0.0002887 

Combined uncertainty 0.0139 

Effective degree of freedom 3.4 

Coverage factor, k 3.31 

Expanded uncertainty, 95.45 % 0.05 

IV. Point 160.00 m V (Table 7.18) 

V. Point 200.00 mV (Table 7.19) 

Relative Error: Voltmeters are also classified by their relative error so that, so we 

can calculate their accuracy class (Tables 7.20 and 7.21).
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Table 7.19 Metrological 

characteristics 
Metrological characteristics (mV) 

Object 200.00 

Error -0.26 

Type A uncertainty—Repeatability 0.0138 

Standard uncertainty from certificate 0.001 

Parasite uncertainty 0.0011547 

Object resolution uncertainty 0.002887 

Standard resolution 0.0002887 

Combined uncertainty 0.0142 

Effective degree of freedom 3.4 

Coverage factor, k 3.31 

Expanded uncertainty, 95.45 % 0.05 

Table 7.20 Relative error Point (mV) Error (mV) Error (%) 

40.00 -0.16 0.08 

80.00 -0.16 0.08 

120.00 -0.19 0.10 

160.00 -0.18 0.09 

200.00 -0.26 0.13 

Table 7.21 Result of 

calibration 
Object 

mV 

Error 

mV 

Uncertainty 

mV k υ 

40.00 -0.16 0.04 3.31 3.5 

80.00 -0.16 0.03 3.31 4 

120.00 -0.19 0.03 3.31 3.7 

160.00 -0.18 0.05 3.31 3.4 

200.00 -0.26 0.05 3.31 3.4 

7.7 Measurement Uncertainty in Fitting a Function 

Most of the time, a phenomenon or a physical, chemical, or mechanical process is 

represented by an experimental dataset. In these cases, it can be extremely interesting 

to “represent” this dataset by a defined mathematical function. This approach 

procedure is known as fitting or a function regression, and one of the techniques 

used is the Least-Squares Method (LSM). 

The literature widely discusses the fitting of experimental points by the LSM, and 

we usually adopt software that makes these adjustments, such as Microsoft Excel©. 

For this reason, we do not intend to address the demonstrations of the equations that 

allow the determination of both the fitting function and its uncertainties. 

We are interested in presenting the technique for calculating the measure uncer-

tainty of a function by the LSM. We apply this method whenever we want to 

describe experimental data behavior—for example, the results in a calibration 

certificate—through a mathematical equation.
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Graph 7.1 The adjustment of experimental points 

This method consists of adjusting the dataset to a function that minimizes the 

experimental variance of the set, that is, we must reduce the difference: 

f  xið  Þ- yi

Where f(xi) is the value of the fitted function for point xi, and yi is the experimental 

value obtained for point XI, as shown in Graph 7.1. 

As the method minimizes the difference but does not eliminate it, we will always 

have to fit a function, whether it is the first (linear), of the second degree (parable), or 

any other order, to obtain a measurement uncertainty related to both coefficients of 

this function as those of its value on the y axis. 

7.7.1 Measurement Uncertainty of Y 

When we fit an experimental curve, for example, when we make a calibration curve 

relating to the y-axis, the value of the standard, and the x-axis, the value of the 

calibrated object, we generate a function f(xi) with measurement uncertainty associ-

ated with fitting, since no adjustment is perfect. 

According to GUM 2008—Guide to the expression of uncertainty in measure-

ment (Annex H.3.2 Least-Squares Fitting), the variance s2 is a measure of the overall 

uncertainty, and the equation that determines the fitting uncertainty of the values 

found on the axis y is as follows: 

ufitting = s2 
p 

= 
1 

n- p 

n 

1 
f  xið  Þ- yi½ �2 ð7:2Þ
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Where f(xi) is the value of the fitting function for point xi; yi is the experimental 

value obtained for point xi; p is the number of parameters to be fitted; n is the number 

of experimental points; and (n - p) is the fitting degree of freedom. 

7.7.2 Fitting Uncertainty 

Considering the experimental points (x, y) obtained through calibration and using a 

standard instrument, the total uncertainty of variable y will be the combination of the 

uncertainty of the calibrated object (uobject) and the fitting uncertainty (ufitting) 

through the equation: 

uy = u2 fitting þ u2 object ð7:3Þ 

Fitting uncertainty and the calibrated object uncertainty should always be com-

bined in a standardized form. 

Solved Exercise 7.4: Calibration Graph—Fitting the Experimental Data. 

It should be a digital scale with a measurement range of 0 to 50.00 kg and a 

resolution of 0.01 kg. Table 7.22 shows the calibration result. 

We know the uncertainties at each point of the scale. Suppose we now want to 

obtain an equation that describes the behavior of the scale at any point within the 

calibration interval 0 to 50 kg. Make the calibration curve of this scale and determine 

the final uncertainty considering the fitting made by a first-degree function. 

Solution Adjusting the scale calibration points by a line of type y(x) = ax + b,  we  

will have Gra ph 7.2: 

Table 7.22 Calibration result 

Standard (kg) 

Object 

(kg) 

Bias 

(kg) 

Uncertainty 

(kg) k 

0.000 0.02 0.02 0.01 2.00 

5.000 4.97 - 0.03 0.01 2.04 

10.000 10.02 0.02 0.01 2.04 

15.000 14.96 - 0.04 0.01 2.08 

20.000 20.02 0.02 0.01 2.09 

25.000 24.98 - 0.02 0.01 2.09 

30.000 30.05 0.05 0.02 2.09 

35.000 35.01 0.01 0.02 2.05 

40.000 39.99 - 0.01 0.02 2.06 

45.000 45.02 0.02 0.03 2.09 

50.000 49.99 - 0.01 0.03 2.09
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Graph 7.2 Scale calibration curve of Solved Exercise 7.4 

Table 7.23 Solved Exercise 

7.4: y and f(xi) values 
Object (xi) kg Standard (yi)  kg f(xi)  kg [f(xi) - yi]

2 

0.02 0.000 0.021396 0.000457789 

4.97 5.000 4.970406 0.000875805 

10.02 10.000 10.0194 0.000376205 

14.96 15.000 14.95841 0.001729894 

20.02 20.000 20.0174 0.000302621 

24.98 25.000 24.9764 0.000556771 

30.05 30.000 30.04539 0.002060252 

35.01 35.000 35.0044 1.93424E-05 

39.99 40.000 39.9834 0.000275494 

45.02 45.000 45.0124 0.000153661 

49.99 50.000 49.9814 0.000345886 

Σ 0.007153719 

ufitting 0.028193221 

The calibration curve in Graph 7.2 shows the fitting equation and the value of R2 

(correlation coefficient). This coefficient demonstrates the quality of the adjustment 

(the closer to one, the better the function adjustment) (Table 7.23). 

(a) Fitting uncertainty. 

Using Eq. 7.2: 

ufit = 
0:007153719 

11- 2 
= 0:028193221 

n = 11 and p = 2 (coefficients a and b of the fitted equation).



Solved Exercise 7.5: Temperature Transmitter Calibration.

(b) Combined uncertainty (Eq. 7.3). 
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uc = u2 obj þ u2 fit = 
0:03 
2:09 

2 

þ 0:0281932212 = 0:031637 kg 

The combined uncertainty was calculated by adding the certificate’s most signif-

icant uncertainty (0.03 kg), divided by the respective coverage factor (k = 2.09), to 

the fitting uncertainty (0.028193221 kg). 

(c) Expanded uncertainty 

k= 2:09→ vobj = 29 

veff = 
u4 c 

u4 
fit 

n- p
þ u4 

obj 

vobj 

= 
0:0316374 

0:0281934 

9 
þ 0:0143544 

29 

= 14→ k = 2:21 

U = 2:21 × 0:031637 kg 

U = 0:07 kg 

Note that uncertainty after fitting increased, but it gave us the convenience of not 

having to correct the scale bias at each point or calibrate at more points (besides the 

11 presented). Just use equation y = 0.9998 x + 0.0014 and adopt the uncertainty of 

0.07 kg for all points. 

Attention! 

1. we can only perform interpolations, never extrapolations. That is, we can 

only adopt the fitted equation for points within the calibration range 

performed. In solved exercise 7.4, this represents values between 0 and 

50 kg. 

2. it is necessary to format the fitted equation with many decimal places for a 

lower fitting uncertainty value. This way, the value of f(xi) will be closer to 

the value of yi. 

A temperature transmitter with a nominal range of (0 to 100) °C/ (4.00 to 20.00) 

mA is calibrated with a standard mercury thermometer with measurement uncer-

tainty equal to 0.05 °C  (k = 2.00 and 95.45 %). In calibration were used a thermal



bath, a power supply, and a 3½ digit multimeter with measurement uncertainty equal 

to 0.8 % of the value read +0.01 mA, k = 2.00, and 95.45 %. 

7.7 Measurement Uncertainty in Fitting a Function 219

Table 7.24 Temperature transmitter calibration 

Points Transmitter electric current (mA) Standard temperature (°C) 

1 4.00 0.00 

4.00 0.00 

4.00 0.00 

2 8.82 30.30 

8.83 30.30 

8.83 30.30 

3 12.12 50.70 

12.12 50.70 

12.12 50.70 

4 15.22 70.30 

15.22 70.30 

15.22 70.30 

5 18.30 90.00 

18.30 90.00 

18.30 90.00 

6 20.00 100.00 

20.00 100.00 

20.00 100.00 

Table 7.9 shows the temperature transmitter calibration. Knowing that the ther-

mal bath used has a stability of ±0.05 °C, determine the transmitter measurement 

uncertainty (Table 7.24). 

Solution: 

I—Point 0 °C 

(a) Standard and object mean 

xstandard = 0, 00 °C 

xtransmitter = 4:00 mA 

(b) Type A uncertainty 

uA-object = 0 

uA-standard = 0 

(c) Type B uncertainty (standard certificate).
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y = 6.26721950x - 25.07797060 

R² = 0.999964
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Graph 7.3 Temperature transmitter calibration curve 

ustandard = 
0:05 
2:00 

= 0:025 °C 

(d) Multimeter uncertainty (Type B). 

umultimeter = 
0:008 x 4:00þ 0:01 

2:00 
= 

0:042 
2:00 

= 0:021 mA 

(e) Bath stability uncertainty 

ubath = 
0:05 

3
p = 0:0288675 °C 

As we can see, we have uncertainties in °C and mA units from different 

quantities: temperature and electric current, respectively. How can we transform 

the uncertainties from mA to °C? 

We want the transmitter to measure temperature, so we should have the uncer-

tainty in °C. 

The solution to this problem is to discover a function related to °C and then find 

the transmitter sensitivity coefficient. Graph 7.3, temperature versus electric current, 

generated in Excel© software, will give us the desired function. 

t= 6:26721950 i � 25:07797060 ð7:4Þ 

t is the temperature (°C), and i is the transmitter electric current (mA). 

Derivating Eq. (7.4), we have the sensitivity coefficient of the temperature 

transmitter:



(f)

)
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Table 7.25 Fitting uncertainty 

Mean electric current xi (mA) Mean temperature yi (°C) f(xi [f(xi) - yi]
2 

4.00 0.00 -0.00909 8.26754E-05 

8.83 30.30 30.24069 0.003518049 

12.12 50.70 50.88073 0.032663239 

15.22 70.30 70.30911 8.29956E-05 

18.30 90.00 89.61215 0.150430531 

20.00 100.00 100.2664 0.070979297 

Σ 0.257756787 

ufit 0.253848768 

∂t 

∂i 
= 6:26721950 

°C 

mA 

Important 

Using the sensitivity coefficient, we can transform mA uncertainty values into 

°C Measurement results in mA can only be converted into °C using the 

equation t = 6.26721950 i - 25.07797060. 

Multimeter uncertainty (°C). 

umult = 0:021 mA 

umult = 0:021 mA × 6:26721950 °C=mA 

umult = 0:131611609 °C 

(g) Fitting uncertainty. 

We need to use Eq. 7.2. The fitting uncertainty will be the same for all calibrated 

points (Table 7.25). 

ufit = 0:253848768 °C 

(h) Combined uncertainty. 

uc = 0:0252 þ 0:1316116092 þ 0:02886752 þ 0:2538487682



u = 0 28847287 °C
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Table 7.26 Point 0.0 °C 

Metrological characteristics Results 

Mean electric current (mA) 4.00 

Mean temperature standard (°C) 0.00 

Object temperature (°C) 0.00 

Sensitivity coefficient (°C/mA) 6.26721950 

Type A uncertainty—Object repeatability (°C) 0.00 

Uncertainty from the standard certificate (°C) 0.025 

Multimeter uncertainty (°C) 0.131611609 

Bath stability uncertainty (°C) 0.0288675 

Fitting uncertainty (°C) 0.253848768 

Combined uncertainty (°C) 0.28847287 

Effective degree of freedom, υeff 6 

Coverage factor, k 2.52 

Expanded uncertainty, 95.45 % (°C) 0.7 

c : 

(i) Effective degree of freedom. 

u4 c 
νeff 

= 
u4 std 
1 þ u

4 
mult 

1 þ ufit 
4 

n- p
þ ubath 

4 

1 
0:288472874 

νeff 
= 

0:2538487684 

6- 2 

νeff = 
0:288472874 

0:2538487684 

4 

νeff = 6 

(j) Coverage factor k. 

t-Student table, for 95.45% and νeff = 6 k = 2.52 

(k) Expanded uncertainty. 

U = k × uc = 2:52 × 0:28847287 

U = 0:726951632 °C 

U = 0:7 °C 

(l) Instrumental bias. 

We are using Eq. 7.4, the instrumental bias will be the difference between the 

transmitter and standard values (Table 7.26).
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Table 7.27 Point 30.0 °C 

Metrological characteristics Results 

Mean electric current (mA) 8.83 

Mean temperature standard (°C) 30.30 

Object temperature (°C) 30.2 

Sensitivity coefficient (°C/mA) 6.26721950 

Type A uncertainty—Object repeatability (°C) 0.208886425 

Uncertainty from the standard certificate (°C) 0.025 

Multimeter uncertainty (°C) 0.252612816 

Bath stability uncertainty (°C) 0.0288675 

Fitting uncertainty (°C) 0.253848768 

Combined uncertainty (°C) 0.416346373 

Effective degree of freedom, υeff 15 

Coverage factor, k 2.18 

Expanded uncertainty, 95.45 % (°C) 0.9 

Table 7.28 Point 50.0 °C 

Metrological characteristics Results 

Mean electric current (mA) 12.12 

Mean temperature standard (°C) 50.70 

Object temperature (°C) 50.9 

Sensitivity coefficient (°C/mA) 6.26721950 

Type A uncertainty—Object repeatability (°C) 0.00 

Uncertainty from the standard certificate (°C) 0.025 

Multimeter uncertainty (°C) 0.335170898 

Bath stability uncertainty (°C) 0.0288675 

Fitting uncertainty (°C) 0.253848768 

Combined uncertainty (°C) 0.422181313 

Effective degree of freedom, υeff 30 

Coverage factor, k 2.09 

Expanded uncertainty, 95.45 % (°C) 0.9 

B= xobj - xstd 

B= 6:26721950 · 4:00- 25:07797060 - 0:00 

B= -0:00909- 0:00 

B= 0:0 °C 

II. Point 30.0 °C (Table 7.27) 

III. Point 50.0 °C (Table 7.28)



IV. Point 70.0 °C (Table 7.29)
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Table 7.29 Point 70.0 °C 

Metrological characteristics Results 

Mean electric current (mA) 15.22 

Mean temperature standard (°C) 70.30 

Object temperature (°C) 70.3 

Sensitivity coefficient (°C/mA) 6.26721950 

Type A uncertainty—Object repeatability (°C) 0.00 

Uncertainty from the standard certificate (°C) 0.025 

Multimeter uncertainty (°C) 0.41288442 

Bath stability uncertainty (°C) 0.0288675 

Fitting uncertainty (°C) 0.253848768 

Combined uncertainty (°C) 0.486180084 

Effective degree of freedom, υeff 53 

Coverage factor, k 2.05 

Expanded uncertainty, 95.45 % (°C) 1.0 

Table 7.30 Point 90.0 °C 

Metrological characteristics Results 

Mean electric current (mA) 18.30 

Mean temperature standard (°C) 90.00 

Object temperature (°C) 89.6 

Sensitivity coefficient (°C/mA) 6.26721950 

Type A uncertainty—Object repeatability (°C) 0.00 

Uncertainty from the standard certificate (°C) 0.025 

Multimeter uncertainty (°C) 0.490096564 

Bath stability uncertainty (°C) 0.0288675 

Fitting uncertainty (°C) 0.253848768 

Combined uncertainty (°C) 0.553255973 

Effective degree of freedom, υeff 90 

Coverage factor, k 2.03 

Expanded uncertainty, 95.45 % (°C) 1.1 

V. Point 90.0 °C (Table 7.30) 

VI. Point 100.0 °C (Tables 7.31 and 7.32) 

7.8 Proposed Exercises 

7.8.1 The calibration of a temperature sensor (PT-100 to 3 wires) against a temper-

ature standard presented the values contained in Table 7.33
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Table 7.31 Point 100.0 °C 

Metrological characteristics Results 

Mean electric current (mA) 20.00 

Mean temperature standard (°C) 100.00 

Object temperature (°C) 100.3 

Sensitivity coefficient (°C/mA) 6.26721950 

Type A uncertainty—Object repeatability (°C) 0.00 

Uncertainty from the standard certificate (°C) 0.025 

Multimeter uncertainty (°C) 0.532713657 

Bath stability uncertainty (°C) 0.0288675 

Fitting uncertainty (°C) 0.253848768 

Combined uncertainty (°C) 0.591338625 

Effective degree of freedom, υeff 118 

Coverage factor, k 2.02 

Expanded uncertainty, 95.45 % (°C) 1.2 

Table 7.32 Temperature transmitter calibration 

Mean electric 

current (mA) 

Mean temperature 

standard (°C) 

Object 

temperature (° 

C) 

Bias 

(°C) 

Uncertainty 

(°C) k υeff 

4.00 0.00 0.0 0.0 0.7 2.52 6 

8.83 30.30 30.2 -0.1 0.9 2.18 15 

12.12 50.70 50.9 -0.2 0.9 2.09 30 

15.22 70.30 70.3 0.0 1.0 2.05 53 

18.30 90.00 89.6 -0.4 1.1 2.03 90 

20.00 100.00 100.3 0.3 1.2 2.02 118 

Table 7.33 Temperature 

sensor calibration 
Temperature 

Resistance R(t) ΩStandard (°C) 

0.00 99.99 

25.00 109.74 

50.00 119.40 

75.00 128.99 

100.00 138.50 

125.00 147.95 

150.00 157.32 

175.00 166.63 

200.00 175.86 

Considering the multimeter uncertainty is 0.02 Ω (k = 2.00 and 95.45 %), the 

stability of the calibration bath is ±0.02 °C, the repeatability uncertainty (Type A 

uncertainty) is equal to zero, and the standard thermometer uncertainty is 0.02 °C 

(k = 2.00 and 95.45 %), determine:
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Table 7.34 Scale calibration Standard mass (kg) Scale lectures (kg) 

0.00 0.2; 0.3; 0.3 

10.00 10.2; 10.4; 10.4 

15.00 14.9; 14.9; 14.7 

20.00 20.2; 20.0; 20.3 

Table 7.35 GLT calibration Measurements Standard (°C) Object (°C) 

1 10.1 10.5 

10.1 10.5 

10.1 10.0 

2 20.0 19.5 

20.0 19.5 

20.0 19.5 

3 50.2 50.0 

50.2 50.0 

50.2 50.0 

(a) The fitting equation, knowing that a platinum resistance thermometer behaves 

second to eq. R(t) = R(0) [1 + At + B  t2 ], where R(0) is the resistance of the 

Pt-100 to 0 °C, t is the temperature, R(t) is the electrical resistance at the desired 

temperature, and A and B its coefficient s.

(b) The fitting uncertainty. 

(c) The Pt-100 expanded uncertainty. 

7.8.2 A digital scale with a resolution of 0.1 kg was calibrated against a standard 

mass set. The calibration result is in Table 7.34 (three measurements were 

performed at each point). 

Considering the standard masses uncertainty is 0.02 kg (for 95.45 % and 

k = 2.09), answer: 

(a) What is the Type A uncertainty for each scale calibration point? 

(b) What is the expanded uncertainty for each scale calibration point, considering 

reading resolution, repeatability of measurements, and the standard mass as the 

uncertainty sources? 

(c) Build the graph “standard mass value × scale reading.” Find the fitting equation 

y = ax + b and determine the fitting uncertainty. 

(d) Build a table with expanded uncertainty values and bias for points of 0 to 20 kg 

in intervals of 1 kg. 

7.8.3 A glass liquid thermometer (GLT) has an uncertainty of 0.2 °C. What is the 

highest value of standard uncertainty so that its influence on final uncertainty is 

not greater than 2.5 %? 

7.8.4 A GLT with a resolution of 0.5 °C is calibrated against a standard with a 

resolution of 0.1 °C (Table 7.35).
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Table 7.36 Pressure gauge 

calibration 
Object Standard (bar) 

bar 

6.0 

Charge 1 

6.4 

Discharge 1 

6.5 

Charge 2 

6.4 

Discharge 2 

6.5 

10.0 10.5 10.4 10.5 10.4 

24.0 24.3 24.2 24.3 24.2 

30.0 30.3 30.4 30.3 30.4 

40.0 40.5 40.4 40.5 40.4 

Table 7.37 Voltmeter 

calibration 
Object (mV) 

Standard (mV) 

V1 

40.110 

V2 

40.150 

V3 

40.160 

V4 

40.12040.00 

80.00 80.120 80.160 80.140 80.130 

120.00 120.150 120.170 120.190 120.190 

160.00 160.230 160.180 160.170 160.180 

200.00 200.210 200.230 200.260 200.270 

The calibration bath stability is ±0.08 °C. The standard thermometer certificate is 

in Solved Exercise 7.1 (Fig. 7.2). 

Determine: 

(a) The Type A uncertainty. 

(b) The bath stability uncertainty. 

(c) The object resolution uncertainty. 

(d) The bias at each point. 

(e) The linear calibration curve of the object thermometer and the equation that 

relates the standard values (y) and the object (x) thermometer values. 

(f) The uncertainty of the linear fitting of this thermometer. 

(g) The thermometer uncertainty considering the fitting. 

7.8.5 A Bourdon-type pressure gauge (object), with measurement range 0 to 40 bar 

and 0.5 bar resolution, was calibrated against a standard gauge that has a 

measurement uncertainty of 0.1 bar (k = 2.00% and 95.45 %) and resolution of 

0.1 bar. Table 7.36 presents the result of the object gauge calibration. 

Determine: 

(a) The object gauge hysteresis at each point. 

(b) The gauge relative error at each point. 

(c) The gauge uncertainty at each point. 

(d) The linear calibration curve of the object gauge and the equation that relates the 

standard values ( y) and the values of the object (x) pressure gauge. 

(e) The uncertainty of the linear fitting of this gauge. 

(f) The uncertainty of the gauge considering the fitting. 

7.8.6 A digital voltmeter, with a resolution of 0.01 mV, was calibrated at an interval 

of 0 to 200 mV against a standard voltmeter. Table 7.37 presents the result of the
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object voltmeter calibration. Consider the parasite voltage uncertainty equal 

to 2μV/√3. 

See the standard voltmeter certificate in Solved Exercise 7.3 (Fig. 7.4). 

Determine: 

(a) The object error at each point. 

(b) The voltmeter relative error at each point. 

(c) The voltmeter uncertainty at each point. 

(d) The linear calibration curve of the voltmeter and the equation that relates the 

standard values ( y) and the values of the object (x). 

(e) The uncertainty of the linear fitting of this voltmeter. 

(f) The uncertainty of the voltmeter considering the fitting.



Chapter 8 

Measurement Uncertainty in Conformity 

Assessment 

8.1 Statement of Conformity and Decision Rules 

Statements of conformity and decision rules are important issues to discuss, espe-

cially after the last edition of ISO/IEC 17025: 2017, which made the requirements 

more rigorous for these issues. 

Based on document ILAC-G8:09/2019—Guidelines on Decision Rules and 

Statements of Conformity, we can establish the following definitions: 

Statement of conformity: is an expression that describes the state of conformity or 

non-conformity with a specification, standard, or requirement. 

Decision rule: a rule that describes how measurement uncertainty will be accounted 

for when stating conformity with a specified requirement. (ISO/IEC 17025:2017 

clause 3.7) 

As we can see, we need to adopt a decision rule to declare a product, process, or 

measurement standard “conforming.” 

The ISO/IEC 17025 standard was first published in 1999. Since then, statements 

of conformity based on specifications or standards have become increasingly 

required, following the evolution of documentation on the concept of rule decisions 

used for such statements. 

The current standard cites various requirements for the statement of conformity; 

however, no “unique” rule can address all conformity statements throughout the 

scope of testing or calibration. 

Additionally, professionals (auditors and audited) have doubts about understand-

ing and writing. How do we obey, that is, what laboratories need to apply to meet the 

customer’s requirements and the ISO/IEC 17025 standard? 
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8.2 Conformity Assessment 

Conformity assessment1 is performed in tests, inspections, and calibrations to ensure 

the compliance of products, materials, services, and systems regarding requirements 

defined by standards, regulations, and legal frameworks, being adopted to establish 

confidence for consumers and safety and quality of life. 

Evaluating conformity is essential in the global economy, because it implies 

accepting or rejecting items that impact risk analysis, business decisions, financial 

costs, and sometimes reputation costs. 

The result of a measurement can be used to decide whether a variable of interest 

complies with a specific requirement, and this variable may be, for example: 

(a) The value of a standard 200 g mass of class E2. 

According to the OIML R 111-1 Edition 2004 recommendation, a standard mass 

of 200 g of class E2 should have a maximum permissible error of 0.3 mg. This is to 

say that the mass in question must have a value between [199.9997 to 200.0003] g. 

(b) The indication error of a digital voltmeter. 

The value indicated in the standard 999 V. 

The value indicated in the voltmeter 1000 V. 

Error = 1  V  .

(c) The pH value of a solution. 

Example: pH = 7.474. 

These variables of interest have values usually within tolerance limits, called 

tolerance intervals. If the variable’s actual value is within the tolerance range, it is 

considered “conforming”; otherwise, it is considered “non-conforming.” 

In practical situations, to perform conformity assessment (e.g., conformity with 

geometric tolerances), are necessary objective criteria called “decision rules” (which 

consider a probability of occurrence), which define a “conformity zone” and an 

“acceptance zone” (which are the results plus measurement uncertainty). 

A traditional approach to a decision rule involves comparing a single limit 

(or limit interval) with the result of a single measurement. 

Currently, the probabilistic approach to measurement, which introduces uncer-

tainty as a parameter that expresses measurement variability, significantly affects the 

decision-making process. See Fig. 8.1 for example. 

Figure 8.1 presents four possible measurement results and their uncertainties 

within a tolerance interval to which we must apply a decision rule. We can undoubt-

edly say that case (a) is “conforming” and case (d) is “non-conforming”; however, in

1 According to ISO/IEC 17000: 2004, conformity assessment is any activity performed to deter-

mine, directly or indirectly, whether a product, process, system, person, or body meets relevant 

standards and complies with the specified requirements.



cases (b) and (c), we have an indefinite situation that needs a formal criterion based 

on an expected confidence interval, to be used to decide on your compliance.
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Fig. 8.1 Representation of four different measurement results within a tolerance interval. (Source: 

the authors) 

A decision rule always carries a “risk,” and the declarants of conformity are 

responsible for and directly control this risk, as they establish both the decision-

making criteria and the rules to be applied. 

Together with you, we will develop the general concepts and procedures for 

assessing conformity based on measurement results, recognizing the central role of 

decision-making uncertainty in approving or disapproving the product or measure-

ment process. 

Therefore, to better understand the content, it is essential to know some terms and 

definitions widely used in the area, described in the JCGM 106:2012—Evaluation of 

measurement data—The role of measurement uncertainty in conformity assessment. 

(a) Tolerance Limit (TL) (Specification Limit): specified upper or lower bound of 

permissible values of a property. 

Example: The temperature of a laboratory should be maintained between 

(20 ± 2) °C. The lower TL is 18 °C and the upper TL is 22 °C 

(b) Tolerance Interval: interval of permissible values of a property. 

NOTE 1 Unless otherwise stated in a specification, the tolerance limits belong to the 

tolerance interval. 

NOTE 2 The term “tolerance interval” as used in conformity assessment has a 

different meaning from the same term as it is used in statistics. 

NOTE 3 A tolerance interval is called a “specification zone” in ASME B89.7.3.1: 

2001. 

Example: The temperature of a laboratory should be kept within a tolerance 

interval (20 ± 2) °C. 

(c) Tolerance: specified tolerance difference between upper and lower tolerance 

limits. 

Example: The temperature of a laboratory should be maintained between 20 ± 2 ° 

C. The tolerance is 4 °C (18 °C - 22 °C).
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Fig. 8.2 Measurement decision risk. (Source: ILAC-G8:09/2019) 

8.3 Uncertainty of Measurement and Risk of Decision 

When performing a measurement, there are two situations when stating conformity: 

inside or outside tolerance regarding the manufacturer’s specifications, approved or 

disapproved in a specific requirement. 

In real life, as much as the instrument is used, however accurate and precise, we 

know that all measured value has an associated measurement uncertainty (U). 

Figure 8.2 shows two measurements of the same measurand, but with different 

measurement uncertainties (the central point is the measurement value, and the 

horizontal bar shows the measurement uncertainty). 

Note that the measurement result (measurement value + measurement uncer-

tainty) in case A is entirely within the tolerance limit. In case B, which has 

significantly greater measurement uncertainty, the risk of accepting a false result 

exists. What is the risk level of a false result? 

Further, we will discuss the types of errors, risks, and possible decision rules in 

detail, but now we will anticipate some considerations. 

A binary decision rule exists when the result is limited to two options (approved/ 

disapproved, right/wrong, passes/does not pass), and a non-binary decision rule 

exists when, of course, we have several alternatives to express the result (approved, 

disapproved, conditional approval, conditional failure). 

Analyzing Fig. 8.1, where measurements (a) and (b) are considered approved, and 

the values (c) and (d) failed in a binary statement with a simple acceptance rule, 

statements of conformity may be reported as:

• Pass (a) and (b): The measured value (central point) is within the specification 

limits.

• Fail (c) and (d): The measured value is outside the specification limits. 

In this case, the expanded uncertainty of measurement U was ignored, and the 

decision was made only based on the measurement value. 

Note that even cases (a) and (b), considered approved, have a percentage risk of 

providing values outside tolerance limits. This percentage is much lower in case



(a) than in case (b), but it exists. Remember that measurement uncertainty is 

calculated for a probability of 95.45 % and that we have a 4.55 % probability that 

the declared value is outside the measurement interval. 
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Thus, it is necessary to study the decision errors assumed when accepting or 

rejecting a measurement result against specification limits (tolerance intervals). 

Next, we will analyze these mistakes. 

8.4 False Positive and False Negative 

When performing a conformity assessment, there are probabilities related to two 

types of incorrect decisions: 

(a) Accept an incorrect result—false positive. 

(b) Reject a correct result—false negative. 

Figure 8.3 has four measurement results with their respective uncertainties. 

Accepting or rejecting an item when the measured value of your property is close 

to the tolerance limit may result in an incorrect decision and undesirable 

consequences. 

Analyzing situation (b) in Fig. 8.3, we see that the measured value is below the 

tolerance limit, but the true value is above, configuring a false positive situation. 

That is, a situation where we believe the product is within the specification, but it is 

not. The situation (c) is opposite. We have the value measured above the tolerance 

limit but below the true value. In this case, we have a false negative situation. That is, 

we believe that the measurement does not meet the specifications but meets. 

Fig. 8.3 TU is the upper tolerance limit, and AU is the upper acceptance limit. There were four 

measurement results, with their respective uncertainties at 95%. (Source: JCGM 106:2012)
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We have consumer risk in the case of a false positive (type II error or β error). In 

the case of a false negative, we already have producer/supplier risk (type I error or α 

error). 

For measurements, the probability of not accepting an item as shown in Fig. 8.3, 

(b) or rejecting an item as shown in Fig. 8.3, (c) can reach 50 %. This would happen, 

for example, if the value measurement of a property were very close to the tolerance 

limit. In this case, about 50 % of the probability of the measurement result would be 

on both sides of the tolerance limit, so whether the item was accepted or rejected, 

there would be a 50 % chance of an incorrect decision. 

Any of these odds can be reduced, but at the cost of increasing the other, choosing 

acceptance limits, which removes the result from tolerance limits. 

This is a compliance decision strategy called Guard Band. 

8.5 Decision Rules and Guard Band 

When measurement is very close to tolerance limits or when uncertainty is signif-

icant, an acceptance criterion only considering the upper and lower tolerance limits 

(simple acceptance) can lead to a high risk of an incorrect decision. Often, more 

confidence is necessary in accepting or rejecting an analyzed item. For these 

situations, we can use a guard band. 

The guard band is a protection created to remove (reject) values near tolerance 

limits. Acceptance and rejection zones can be determined, as shown in Fig. 8.4. 

(a) High confidence in correct rejection. 

Only measurements that exceed the guard band placed after the tolerance limit 

will be rejected in this case. 

(b) High confidence in correct acceptance. 

Only measurements inferior to the guard band placed before the tolerance limit 

will be accepted in this case. 

The region between the upper tolerance limit and the higher acceptance limit is 

called the guard band, reducing the risk of an incorrect decision. 

The use of guard bands provides a straightforward way to define decision rules; 

choosing the size of the guard band defines an acceptance zone that can be used for 

decision-making. The guard band is generally defined as the expanded uncertainty of 

measurement (U). It can also be described as zero. This is called simple acceptance 

or “shared risk.” 

Figure 8.5 shows the acceptance and rejection zones. The guard band has been 

chosen so that, for a sample that is in accordance, there is a high probability that the 

measurement is within the specification limits; this is high confidence in correct 

acceptance. 

Figure 8.5 shows the relative positions of specification limits and acceptance and 

rejection zones for high acceptance confidence.
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Fig. 8.4 The relative positions of the acceptance and rejection zones for (a) high confidence in 

correct rejection and (b) high confidence in correct acceptance. The interval w is called the guard 

band. The upper end of the acceptance zone is the acceptance limit. (Source: EURACHEM/CITAC 

Guide—Use of uncertainty information in compliance assessment—Second Edition 2021) 

Fig. 8.5 Relative positions 

of the specification limits 

and the acceptance and 

rejection zones, allowing for 

high confidence in correct 

acceptance. (Source: 

EURACHEM/CITAC 

Guide—Use of Uncertainty 

Information in Compliance 

Assessment—Second 

Edition 2021)
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The decision to accept an item as in accordance or reject it as not as, according to 

the specification, is based on a measured value of a property of the item about a 

declared decision rule that specifies the role of measurement uncertainty in the 

formulation of acceptance criteria. An interval of measured property values that 

results in acceptance of the item is called the acceptance zone (see Fig. 8.5), defined 

by one or two acceptance limits (see Fig. 8.4). 

The limits of acceptance and the corresponding decision rules are chosen to 

manage the undesirable consequences of incorrect decisions. Several widely used 

decision rules are simple to implement. They can be applied when knowledge of a 

property of interest is summarized in terms of a better estimate and corresponding 

coverage interval. Two of these decision rules are described below. 

8.5.1 Decision Ruler Based on Simple Acceptance 

An important and widely used decision rule is simple acceptance or shared risk. In 

this rule, the producer and user (consumer) agree, implicitly or explicitly, to accept 

as (and reject otherwise) an item whose property has a value measured within the 

tolerance range. With the alternative name of “shared risk,” the producer and the user 

share the consequences of incorrect decisions. 

In practice, to maintain the chances of incorrect decisions at acceptable levels for 

both the producer and the user, there is usually a requirement that measurement 

uncertainty is considered sufficient for the intended purpose. 

One approach to such consideration is to require, given an estimated measured 

quantity, which expanded uncertainty U for a probability of scope, for example, of 

95.45 %, must satisfy: 

U ≤Umax 

Where Umax is a mutually agreed expanded uncertainty, this approach is 

explained by the following situation. 

Legal Metrology’s decision rule based on simple acceptance has been used to 

verify instrument measurement. 

Consider an instrument that must have an indication error in the interval [-

Emax;  +  Emax]. The instrument is accepted under the specified requirement, if it meets 

the following criteria :

(a) Analyzing the measuring instrument calibration certificate, its measurement 

error E will be accepted if it satisfies the condition: E ≤ Emax. 

(b) Expanded uncertainty will be accepted if it is less than 1/3 of the maximum error. 

U ≤Umax =Emax=3
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8.5.2 Decision Rules Based on Guard Bands 

The difference between a tolerance limit (TU) and a corresponding acceptance limit 

(AU)  defines the width of a guard band (w ).

w= TU�AU : ð8:1Þ 

When we consider that a decision rule is protected, that is, it has a small 

probability of generating false positives or false negatives, we adopt w > 0. 

(Fig. 8.6). 

8.6 Unilateral Tolerance Interval with the Normal Curve 

The probability of a measurement (product, component, etc.) being in compliance 

depends on the knowledge of the measuring X and its respective probability density 

function (PDF) P(X). In most cases, it is reasonable to characterize the knowledge X 

by a normal distribution, and thus, we can calculate its probability. 

If the production distribution is normal and a normal distribution also character-

izes the measurement system, then the distribution function P(X) will also be normal. 

More generally, if the probability function is characterized by a normal distribu-

tion and the previous information is insufficient, then the posterior PDF (post-

measured) will be approximately normal. In this case, P(X) may be adequately 

approached by a normal distribution with the mean x and the standard deviation 

by standard uncertainty u(x), calculated according to ISO Gum criteria. 

Assuming, then, that the PDF P(X) for the measurement X is (i.e., well approx-

imated by) a normal distribution specified by a mean x and a standard uncertainty 

u(x), we will have: 

Fig. 8.6 Guard band-based decision rule. An upper AU acceptance limit within an upper TU 
tolerance limit defines an acceptance range that reduces the probability of false acceptance of a 

non-conforming item (consumer risk). By convention, the length parameter w associated with a 

guard band is considered positive: w = TU – AU > 0. (Source: JGCM 106:2012)
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Fig. 8.7 Standard normal 

accumulated probability 

p  xð  Þ= 
1 

u 2π
p e-

1 
2 

x-x 
uð  Þ2 

=φ x; x; u2 ð8 :2Þ

The probability of X being in the interval [a, b], with a normal PDF P(X), will be: 

P a≤X ≤ bð Þ=φ 
b- x 

u
-φ 

a- x 

u
ð8:3Þ 

The probability P(X) can be found in a standard normal accumulated table or 

through MS EXCEL© software, function DIST.NORM.N (x, mean, standard devi-

ation, cumulative). 

Figure 8.7 and Table 8.1 show the standard normal accumulated probability of 

z from 0.00 to 3.99. 

Next, we will apply Eq. (8.3) to estimate the probability of obtaining a value 

accepted as valid for a given specification from a measurement result. 

8.6.1 Examples of Probability Estimation in Simple 

Acceptance 

(a) Single upper tolerance limit—TU. 

As we saw at the beginning of this chapter, a measurement process’s tolerance is the 

maximum variation admitted by the process variables. This tolerance range is the 

limit within which the parameters of interest must be located. 

In some situations, we do not work with a tolerance range but with a single 

tolerance value. Given a single upper tolerance limit (TU) and an estimated y 

measurement with standard measurement uncertainty u( y), a decision rule must 

define a probability of compliance (Pc) assuming a false negative (products in 

compliance are incorrectly rejected). 

The expression to be tested is: 

Pc=P  y≤ TUð Þ=φ 
TU - y 

u
ð8:4Þ
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Example 8.1: Upper Tolerance Limit—TU. Consider a measurement estimate 

y = 2.7 mm with an uncertainty u ( y) = 0.4 mm (for k = 2.00 and 95.45% 

metrological reliability). A single upper limit of tolerance TU = 3.0 mm and a 

probability for 95% compliance was established, thus assuming a false negative 

(supplier risk—type I) of 5%. 

Based on this experimental result (2.7 mm), on the defined tolerance limit 

(3.0 mm), on standardized uncertainty u = 0.2 mm (U/K), and assuming a Gaussian 

PDF, the decision rule will be to accept that the hypothesis of the measured value 

y ≤ 3.0 mm is equal to or greater than 95% (0.95). In statistical language, we have: 

H0 : P  y≤ 3:0  mmð Þ≥ 0:95 is true:

To estimate the probability related to the given example, the probability of 

compliance (Pc) needs to be calculated using the general expression for the Gaussian 

probability density (PDF) function. 

Pc=P  y≤ TUð Þ=φ 
TU - y 

u 
=φ 

3:0- 2:7 
0:2 

=φ 1, 5ð  Þ≈ 0:933 93:3%ð Þ< 0: 95

Therefore, hypothesis H0 is false, and the decision is non-conforming. 

Conclusion If the measurement is 2.7 mm with standard uncertainty u = 0.2 mm, 

the probability that the accepted value is 93.3 %. As we want a probability greater 

than or equal to 95 %, the result of 2.7 mm will be rejected. 

Now, Let Us Look at Another Question! 

Keeping the initial conditions, that is, tolerance limit defined at 3.0 mm, standardized 

uncertainty u = 0.2 mm, decision rule H0: P (y ≤ 3.0 mm) ≥ 0.95, we ask: 

What should be the highest value of y to have conformity? 

We need to identify the value of Y that meets the equation: 

Pc =P  y≤ TUð Þ=φ 
TU - y 

u 
=φ 

3:0- y 

0:2 
≥ 0: 95

In Table 8.1, we see that for z = 1.65, we have p = 0.9505 > 0.95. Then: 

z= 1:65= 
3:0- y 

→ y= 2:67 mm 

Conclusion we will have a conforming when y ≤ 2.67 mm. 

Note that in this example, we need to use a measuring instrument with expanded 

uncertainty equal to 0.4 mm, and the measurement error is corrected at the time of 

reading. What should be the instrument’s resolution that will meet these 

characteristics? 

To detect the upper limit value of 2.67 mm, it must have a resolution of 0.01 mm. 

This instrument can be a digital caliper with 0.01 mm resolution and measurement



error added to measurement uncertainty of 0.4 mm, both are read in the caliper’s 

calibration certificate. 
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In industrial processes, it is usual to add the measuring error of the instrument 

with its uncertainty stated in the calibration certificate. This sum, error (or bias) 

(in absolute value) more measurement uncertainty is a way for industries not having 

to correct the measurement. On the other hand, it increases measurement uncertainty. 

We must, whenever possible, correct measurement and eliminate the error of 

measuring or instrumental bias. However, for various reasons, we find industrial 

processes where measurement error (E) or instrumental bias (B) is added to uncer-

tainty, thus generating what is usually called maximum uncertainty (Umax) and, in 

some cases, maximum permissible error (MPE). 

Umax = E  or  Bj j  þ U

Analyze, now, this new provocation! 

If we want to increase the cutting value from 2.67 mm to 2.99 mm, what 

measurement uncertainty should we adopt for this measurement, maintaining the 

probability of acceptance of 95%? 

z= 1:65= 
3:0- 2:99 

u 
→ u= 0:006 mm 

Note that in this case, we must have an expanded measurement uncertainty of 

0.012 mm and use a micrometer with a resolution of 0.001 mm. 

(b) Single lower tolerance limit—TL 

Similarly, given a single lower tolerance limit (TL) and an estimated y measure-

ment with standard measurement uncertainty u( y), a decision rule should define a 

probability of compliance (Pc) assuming a false positive (supplier error—type I 

error). 

Expression for test: 

Pc =P  y≥TLð  Þ= 1-P  y≤TLð  Þ= 1-φ 
T L - y

u

P  y≥ TLð  Þ=φ 
y- TL 

u
ð8: 5Þ

Example 8.2: Single Lower Tolerance Limit—TL Consider a measurement esti-

mate y = 0.012 g with an uncertainty U( y) = 0.002 g (for k = 2.00 and 95.45 % 

metrological probability). A single lower tolerance limit TL = 0.010 g was defined, 

and a probability for conformity was 0.99 (99 %), thus assuming a risk of false 

positive (supplier error) of 0.01 (1%). 

With the experimental result (0.012 g), the tolerance limit (0.010 g), and assum-

ing a Gaussian PDF, the decision rule will be to accept that the hypothesis
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H0: P (y ≥ 0.010 g) ≥ 0.99 is true. 

To estimate the probability related to the given example, the probability of 

compliance (Pc) needs to be calculated using the overall expression for 

Gaussian PDF: 

Pc =φ 
y- TL 

u 
=φ 

0:012- 0:010 
0:001 

=φ 2:0ð  Þ≈ 0:977 97:7%ð Þ< 0: 99

Then, H0 is false, and the decision is non-conforming. 

Conclusion If the measurement is 0.012 g with standard uncertainty u = 0.001 g, 

the probability that the accepted value is 97.7 %. As we want a probability greater 

than or equal to 99 %, the result of 0.012 g will be rejected. 

If the conformity probability were redefined to 95 %, the decision rule would be 

to accept hypothesis H0: P (y ≥ 0.010 g) ≥ 0.95 as true. 

Using the results obtained: 

Pc =φ 
y- TL 

u 
=φ 

0:012- 0:010 
0:001 

=φ 2:0ð  Þ≈ 0:977 97:7%ð Þ> 0: 95

Then, H0 is true, and the decision is confirmed. 

Conclusion If the measurement is 0.012 g with standard uncertainty u = 0.001 g, 

the probability that the accepted value is 97.7 %. As we want a probability greater 

than or equal to 95 %, the result of 0.012 g will be accepted. 

(c) General approach with unique tolerance limits 

As we have seen earlier, for both the probability of compliance (Pc) for an upper 

tolerance limit (TU) and for a lower tolerance limit (TL), we must define a decision 

rule for a probability of compliance (Pc) for type I error (α error). 

Type I error occurs when we reject a product in accordance, that is, we adopt a 

safety margin. This is why we say that type I error is the wrong decision for the 

supplier, as it rejects a conforming product. 

Remembering: 

z= 
y- TLð Þ  

u 
, lower limit ð8:6Þ 

And 

z= 
TU - yð Þ  

u 
, upper limit ð8:7Þ 

where



y—is the value of the measured quantity and we want to analyze.

0:05
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Table 8.2 z values for Pc 

values (probability) 
Pc z 

0.80 0.84 

0.90 1.28 

0.95 1.65 

0.99 2.33 

0.999 3.09 

u—is the value of standardized uncertainty of measurement. 

Pc—is the probability that the product, specification, or variable analyzed follows 

the specification (Table 8.2). 

Note that if z ≥ 1.64, we will have the probability of 95 % or more of having an 

approved specification. 

Example 8.3 (Source: JGCM 106:2012) 

The rupture Vb voltage of a Zener diode is measured by producing a better estimate 

vb =-5.47 V with standard uncertainty u = 0.05 V. The diode specification requires 

Vb ≤ -5.40 V, which is an upper limit of the voltage. What is the probability of this 

diode conforming to the specification? 

Using the Eq. (8.7): z=
- 5:40- - 5:47ð  Þ  ½ �

z= 1:40 

Pc = Φ (1.40) = 0.9192. There is a 92% probability that the diode conforms to 

the specification. 

Example 8.4 (Source: JGCM 106:2012) 

A metal container is tested destructively using pressurized water to measure its 

resistance to rupture B. The measurement produces a better estimate 

b = 509.7 kPa, with standard uncertainty associated u = 8.6 kPa. The container’s 

specification requires B ≥ 490 kPa, the lower limit of the rupture pressure. 

Using the Eq. (8.6): 

z= 
509:7- 490ð Þ  

8:6 
= 2:29 

Pc = Φ (2.29) = 0.989. There is a 98.9 % probability of the container 

conforming. 

(d) Bilateral tolerance interval with the normal curve 

As seen earlier, measuring Y obeys a normal distribution. The estimate y is in the 

interval of tolerance. Using Eqs. 8.6 and 8.7, we have:



ð Þ ð Þ
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Pc =Φ 
TU - y 

u
-Φ 

TL - y 

u
ð8:8Þ 

Knowing the upper and lower tolerance limits TU and TL of a measurement 

process, how do we know if a measurement result has a certain probability of 

being within the tolerance limits? 

Equation 8.8 allows us to answer this question. Let us look at the following 

example. 

Example 8.5 (Source: JGCM 106:2012) 

A SAE Grade 40 engine oil needs to have a kinematic viscosity Y to 100 °C not less 

than 12.5 mm2 /s and not greater than 16.3 mm2 /s. The kinematic viscosity of the 

sample at 100 °C has a value of y = 13.6 mm2 /s and a standard uncertainty of 

u = 1.8 mm2 /s. What is the probability that the engine oil conforms to the 

specification? 

Solution: Adopting Eq. 8.8, we have: 

Pc =Φ 
16:3- 13:6 

1:8
-Φ 

12:5- 13:6 
1:8 

Pc =Φ 
2:7 
1:8

-Φ
- 1:1 
1:8 

Pc =Φ 1:5 -Φ - 0:6 

Pc = 0:9332- 0:2743 

Pc = 0:9332- 0:2743 

Pc = 0:6589 

The probability of the engine oil sample as specified is 65.89 %. We obtain the 

probability of φ (1.5) by associating the value of z = 1.5 with its respective 

probability value (see Table 8.1), which gives us a value of 0.9332. Already the 

value φ (-0.6), we get the complement of φ (0.6), which is (1–0.7257 = 0.2743) 

(Fig. 8.8). 

Example 8.6 

Consider a measurement estimate y = 23.5 kN with a standard uncertainty u-

( y) = 0.5 kN, a tolerance range of [22 kN, 25 kN], and a 95 % conformity 

specification, thus assuming a type I error of 5 %. 

With the experimental result and the interval of tolerance, assuming a Gaussian, 

the decision rule will be accepted if hypothesis H0: Pc (22 ≤ Y ≤ 25) ≥ 0.95 is true. 

To estimate probabilities related to the given example, the probability of compli-

ance (Pc) needs to be calculated using Eq. 8.8.



ð Þ ð Þ
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Fig. 8.8 Normal distribution refers to the kinematic viscosity measurement in example 8.5. Note 

that the hatched area comprises a 65.89 % probability that the measurement (13.6 ± 1.8) mm2 /s 

complies with the product specifications 

Table 8.3 Probabilities cal-

culated at some points y of 

Example 8.6 

y (kN) Φ1 TU - y 

u
Φ2 TL - y 

u
Pc1 Pc2 Pc 

22.0 6.00 0.00 1.00 0.50 50% 

22.5 5.00 -1.00 1.00 0.16 84% 

22.8 4.40 -1.60 1.00 0.05 95% 

23.0 4.00 -2.00 1.00 0.02 98% 

23.5 3.00 -3.00 1.00 0.00 100% 

24.0 2.00 -4.00 0.98 0.00 98% 

24.2 1.60 -4.40 0.95 0.00 95% 

24.5 1.00 -5.00 0.84 0.00 84% 

25.0 0.00 -6.00 0.50 0.00 50% 

Pc =Φ 
TU - y 

u
-Φ 

TL - y 

u 

Pc =Φ 
25- 23:5 

0:5
-Φ 

22- 23:5 
0:5 

Pc =Φ 3 -Φ - 3 

Pc = 0:9987- 0:0013 

Pc = 0:9974= 99:7% 

As 99.7 % > 95 %, H0 is true, and the decision conforms. 

Table 8.3 represents the probabilities found for some y values measured. The Pc 

column is likely to see the measurement result within tolerance limits. 

Analyzing the values obtained in Table 8.3,  we  find that if the acceptance 

criterion adopted is Pc = 95 %, the values equal to or less than 22.8 kN and equal 

to or higher than 24.2 kN would fail.
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The question is: Is it possible to determine minimum and maximum values within 

the tolerance range, where all values found will comply with the criterion adopted? 

To answer this question, the concept of a guard band was created. 

8.6.2 Examples of Probability Estimate Using Guard Bands 

Example 8.7 

Suppose that in a line of rubber sandals production, we must control the mass of the 

essential raw material: rubber. Consider that the specification of the rubber mass 

required for a sandal is (8.0 ± 0.5) g. The scale used to control rubber weighing has 

an acceptance criterion (error + expanded uncertainty of the scale calibration certif-

icate) less than or equal to 0.1 g and a resolution of 0.01 g. Based on this information, 

determine the lower and higher values where we have a probability of 95 % 

acceptance (risk to the 5 % producer). 

Consider:

• TU = 8.5 g.

• TL = 7.5 g.

• u = 0.05 g (U/2 = 0.1/2).2 

(a) Determining the upper acceptance limit to 95 % 

ZU = 
TU - y 

u
ð8:9Þ 

For 95 %, consulting Table 8.1, we have z = 1.65, replacing Eq. 8.9. 

8:5- y 

0:05 
= 1:65→ y= 8:42 g 

(b) Determining the lower acceptance limit to 95 % 

ZL = 
y- TL 

u
ð8:10Þ 

1:65= 
y- 7:5 
0:05 

y= 7:58 g 

2 Consider the coverage factor k = 2; 95.45 % of probability.
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Table 8.4 Probabilities cal-

culated in some possible 

values of the mass m of 

Example 8.7 The Pc column is 

likely to find the measurement 

result within tolerance limits 

m(g) Φ1 TU - y 

u
Φ2 TL - y 

u
Pc1 Pc2 Pc 

7.50 20.00 0.00 1.00 0.50 50% 

7.58 18.40 -1.60 1.00 0.05 95% 

7.60 18.00 -2.00 1.00 0.02 98% 

7.70 16.00 -4.00 1.00 0.00 100% 

7.80 14.00 -6.00 1.00 0.00 100% 

7.90 12.00 -8.00 1.00 0.00 100% 

8.00 10.00 -10.00 1.00 0.00 100% 

8.10 8.00 -12.00 1.00 0.00 100% 

8.20 6.00 -14.00 1.00 0.00 100% 

8.30 4.00 -16.00 1.00 0.00 100% 

8.40 2.00 -18.00 0.98 0.00 98% 

8.42 1.60 -18.40 0.95 0.00 95% 

8.50 0.00 -20.00 0.50 0.00 50% 

Fig. 8.9 Acceptance interval of Example 8.7 with guard band w = 0.1 g 

Table 8.4 presents some possible mass (m) values of the rubber in question and its 

respective probabilities to be between the tolerance limits. 

The values above 7.58 g and below 8.42 g are, respectively, called the lower 

acceptance limit (AL) and higher acceptance limit (AU) for a probability of 95 % 

(decision rule). Thus, we can establish: 

AL = 7.58 g; AU = 8.42 g; Guard band (w) = 0.1 g (95 %)3 

If we adopt the values 7.60 g and 8.40 g for acceptance limits, we could even 

consider a 98% decision rule for values accepted within the tolerance range. How-

ever, this value is not usual, and we maintain the criterion of 95 % (Fig. 8.9). 

3 This guard band can be adopted as a criterion for accepting the scales used in the control of rubber 

mass measuring used in the production of sandals. The error added to the uncertainty of the scale, 

obtained in its calibration certificate, cannot be greater than 0.1 g.
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8.7 Risks Inherent in Decision-Making 

In many cases, decision-making may have severe and harmful consequences and 

may lead to legal, criminal, accusatory, and even health damage. 

Next, we will examine how to manage the risks inherent in making decisions 

based on safe and reliable measurements. 

8.7.1 Protected Rejection—Categorical Decision 

Protected rejection occurs when the measurement’s result will result in a categorical 

decision, often with legal consequences, causing legal or high risk in decision-

making. Let us look at the following example. 

Example 8.8 (Source: JGCM 106:2012) 

In the application of road law, the road police use devices such as radars to measure 

car velocity. A decision to issue a speed fine must be made with a high degree of 

confidence that the speed limit has been exceeded. 

Using a radar, speed measurements in the field can be performed with a relative 

standard uncertainty of 2% within the interval of (50 to 150) km/h. In this interval, 

the measured velocity v is characterized by a normal distribution with a standard 

deviation of 0.02 v. 

Under these conditions, one may ask: For a limit speed of 100 km/h (the 

maximum speed at which the driver does not take a fine), what should be the 

measured velocity by the radar to ensure, with a 99.9 % probability, that the driver 

exceeded the limit speed of 100 km/h? 

This mathematical problem is equivalent to calculating a probability of confor-

mity for a higher unilateral tolerance interval. 

Note that z is given by Eq. (8.9) and that the probability of desired trust is 99.9 %, 

z = 3.09 (Table 8.1). Then we have: 

z= 
TU - yð Þ  

u 

3:08= 
TU - 100ð Þ  

2 

TU = 106:16 km=h 

The interval [100 km/h ≤ v ≤ 107 km/h] is a guard band that ensures a probability 

of at least 99.9 %. If the measured speed is over 107 km/h, the police will have 

99.98 % confidence that the driver was above 100 km/h, and he will fine the violator.
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Table 8.5 TUR = 5, without 

guard band 
m(g) Φ1 TU - y 

u
Φ2 TL - y 

u
Pc1 Pc2 Pc 

7.50 20.00 0.00 1.00 0.50 50% 

7.58 18.40 -1.60 1.00 0.05 95% 

7.60 18.00 -2.00 1.00 0.02 98% 

7.70 16.00 -4.00 1.00 0.00 100% 

7.80 14.00 -6.00 1.00 0.00 100% 

7.90 12.00 -8.00 1.00 0.00 100% 

8.00 10.00 -10.00 1.00 0.00 100% 

8.10 8.00 -12.00 1.00 0.00 100% 

8.20 6.00 -14.00 1.00 0.00 100% 

8.30 4.00 -16.00 1.00 0.00 100% 

8.40 2.00 -18.00 0.98 0.00 98% 

8.42 1.60 -18.40 0.95 0.00 95% 

8.50 0.00 -20.00 0.50 0.00 50% 

8.7.2 Binary Decision Rule Applied to the Conformity 

Assessment Without Guard Band 

Remembering, a binary decision rule exists when the result is limited to two options 

(approved or disapproved) and a non-binary decision rule when various terms can 

express the result (approved, conditional approval, conditional disapproval, 

disapproved). 

We will start this theme by analyzing the situation in which we have a binary 

decision without using the guard band. In a binary statement where the simple 

acceptance rule is adopted (w = 0), we have the situations:

• Approved—the measured value is between the tolerance limits.

• Disapproved—the measured value is outside the tolerance limits. 

Let us look at the following example. 

Example 8.9 

Analyzing the rubber mass specification of Example 8.7, we present the following 

questions: 

1. What should be the uncertainty of the scale that will measure the value of the 

rubber used in the production of sandals? 

2. Should this uncertainty be related to the tolerance of the process? 

To answer these two questions, we must adopt a decision rule. Initially, we will 

adopt a decision rule without a guard band; that is, we are sharing the risk with the 

consumer of sandals. Knowing that the specification of the mass of rubber used in 

the production is (8.0 ± 0.5) g, we have TL = 7.5 g and TU = 8.5 g. If we adopt an 

expanded uncertainty of the scale according to Example 8.7, that is, U = 0.1 g (for 

95.45 %), we will have (Table 8.5):
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Table 8.6 TUR = 2, without 

guard band 
m(g) Φ1 TU - y 

u
Φ2 TL - y 

u
Pc1 Pc2 Pc 

7.50 8.00 0.00 1.00 0.50 50% 

7.58 7.36 -0.64 1.00 0.26 74% 

7.60 7.20 -0.80 1.00 0.21 79% 

7.70 6.40 -1.60 1.00 0.05 95% 

7.80 5.60 -2.40 1.00 0.01 99% 

7.90 4.80 -3.20 1.00 0.00 100% 

8.00 4.00 -4.00 1.00 0.00 100% 

8.10 3.20 -4.80 1.00 0.00 100% 

8.20 2.40 -5.60 0.99 0.00 99% 

8.30 1.60 -6.40 0.95 0.00 95% 

8.40 0.80 -7.20 0.79 0.00 79% 

8.42 0.64 -7.36 0.74 0.00 74% 

8.50 0.00 -8.00 0.50 0.00 50%

• Standardized uncertainty u = 0.1/2 = 0.05 g.

• Relationship between tolerance and expanded measurement uncertainty (TUR— 

Test Uncertainty Ratio)4 

TUR= 
TL 

U 
= 

0:5 
0:1 

= 5 

Note that if we accept the measurement of m = 8.50 g, we will have the shared 

decision with the customer since 8.50 g gives a probability of acceptance of 50 %. 

Even adopting a TUR equal to 5, as we do not have a guard band, we can have a low 

acceptance probability in some values within the tolerance range. 

Adopting a TUR equal to 5 implies a scale with Umax or PME (U + E) equal to 

0.1 g, for k = 2.00 and 95.45 %, 

What if we adopt a TUR equal to 2? This would allow a balance with 

PME = 0.25 g. Let us look at the results (Table 8.6). 

TUR= 
TL 

U 

U = 
T 

TUR 
= 

0:5 
2 

= 0:25 

With TUR equal to 2, we have the same mass value; for example, m = 8.42 g, a 

probability of 74% acceptance, and with TUR equal to 5, this probability becomes 

95%. If we want a probability of 95 %, this value for a TUR equal to 5 is equal to 

m = 8.42 g, and for a TUR equal to 2, it is equal to or less than m = 8.30 g. 

4 
TL = tolerance limit = ½ tolerance
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Fig. 8.10 TUR = 2, and point with 95% of acceptance (8.30 g) 

Fig. 8.11 TUR = 5, and point with 95 % of acceptance (8.42 g) 

Fig. 8.12 TUR = 10, and point with 95% of acceptance (8.46 g) 

Conclusion When the larger TUR will be the acceptance range, more measured 

values will be accepted in this interval. 

Note Figs. 8.10 and 8.11, and notice that the acceptance range increased by 

increasing TUR for the same probability of acceptance. 

The price of a larger TUR is to invest in the measuring instrument, in this case, the 

scale. For a TUR equal to 2, we have U = 0.25 g, and for a TUR equal to 

5, U = 0.1 g. 

TUR values range from 3 to 10, since TUR equal to 1 is to have an acceptance 

probability only for the central value, in our example, 8.00 g. TUR equal to 2 leaves a 

minimal acceptance range (Fig. 8.12) (Table 8.7).
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Table 8.7 TUR = 10. Values 

for acceptance limit at 95 % 

equal to 7.54 g and 8.46 g 

m(g) Φ1 TU - y 

u
Φ2 TL - y 

u
Pc1 Pc2 Pc 

7.50 40.00 0.00 1.00 0.50 50% 

7.54 38.40 -1.60 1.00 0.05 95% 

7.60 36.00 -4.00 1.00 0.00 100% 

7.70 32.00 -8.00 1.00 0.00 100% 

7.80 28.00 -12.00 1.00 0.00 100% 

7.90 24.00 -16.00 1.00 0.00 100% 

8.00 20.00 -20.00 1.00 0.00 100% 

8.10 16.00 -24.00 1.00 0.00 100% 

8.20 12.00 -28.00 1.00 0.00 100% 

8.30 8.00 -32.00 1.00 0.00 100% 

8.40 4.00 -36.00 1.00 0.00 100% 

8.46 1.60 -38.40 0.95 0.00 95% 

8.50 0.00 -40.00 0.50 0.00 50% 

Note how the guard band reduces and consequently increases the acceptance 

interval when the TUR increases to 10. This increases the chances of product 

acceptance but dramatically reduces the acceptance criterion and, consequently, 

the uncertainty of the measuring instrument. 

8.8 Binary Decision Rule Applied to the Conformity 

Assessment with a Guard Band 

When we adopt a binary decision rule in the conformity assessment, the measure-

ment result is accepted if the measured value is within the acceptance interval. A 

value measured outside the acceptance interval leads to the item’s rejection. 

Using guard bands provides a way to limit the probability of making a decision 

incorrectly based on measurement information summarized by a probability interval. 

The probabilities evaluated depend on two factors: (i) the measurement system 

and (ii) the production process. 

If the measurement system were perfectly accurate, all decision-making would be 

correct, and the risks would be null. An increase in measurement uncertainty means 

an increase in the probability of an incorrect decision, and the probability is higher 

when the measured values are close to the tolerance limits. 

Risks also depend on the nature of the production process. If the process rarely 

produces an item whose properties of interest are close to tolerance limits,5 there is 

less opportunity to make incorrect decisions. On the other hand, if a process

5 Process under control.



produces items with properties that are probably close to tolerance6 limits, the 

uncertainties associated with measurements are placed in the game.
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Fig. 8.13 Graphical representation of a binary statement with a guard band. (Source: ILAC G8:09/ 

2019) 

An out-of-control process, with a significant dispersion of measured values, 

produces values near tolerance limits, significantly increasing the probability of 

wrong decision-making. 

The guard band’s boundaries for a confidence level of (1 - α) can be obtained, 

considering a symmetrical error of α/2 on each PDF tail. 

Statements of conformity are reported as:

• Pass—acceptance is based on the acceptance range; the measurement result is 

between the acceptance limits.

• Fail—rejection based on the guard band if the measurement result exceeds 

acceptance limits (Fig. 8.13). 

The adoption of a guard band gives protection to risk, according to the size of the 

band. We adopted the relationship w = r·U, where r is the multiplicative factor to the 

guard band. Let us look at some typical guard bands and their respective r. 

8.8.1 Guard Band with r = 1  (w  = U)—ILAC G8:2009 Rule 

Decision

In this case, the guard band has the same value as expanded uncertainty. Applying 

the guard band in the example of sandal production, for a TUR equal to five, we have 

(Table 8.8): 

6 Process out of control.
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Table 8.8 TUR = 5, guard 

band w = U 
m(g) Φ1 TU - y 

u
Φ2 TL - y 

u
Pc1 Pc2 Pc 

7.50 20.00 0.00 1.00 0.50 50.00% 

7.54 19.20 -0.80 1.00 0.21 78.81% 

7.60 18.00 -2.00 1.00 0.02 97.72% 

7.70 16.00 -4.00 1.00 0.00 100.00% 

7.80 14.00 -6.00 1.00 0.00 100.00% 

7.90 12.00 -8.00 1.00 0.00 100.00% 

8.00 10.00 -10.00 1.00 0.00 100.00% 

8.10 8.00 -12.00 1.00 0.00 100.00% 

8.20 6.00 -14.00 1.00 0.00 100.00% 

8.30 4.00 -16.00 1.00 0.00 100.00% 

8.40 2.00 -18.00 0.98 0.00 97.72% 

8.46 0.80 -19.20 0.79 0.00 78.81% 

8.50 0.00 -20.00 0.50 0.00 50.00% 

Adopting r = 1, we will always have the acceptance limits with a probability of 

97.72 % acceptance at risk of false positives less than 2.5 %. 

Thus, for example, at 8.7, we will have a lower acceptance limit equal to 7.60 g 

and an upper acceptance limit of 8.40 g with a probability of false positive (consumer 

risk) below 2.5 %. 

8.8.2 Guard Band with r = 0.83 (w = 0.83 U)—ISO 

14253-1:2017 Rule Decision 

In this case, the protection band has a value of 0.83 of expanded uncertainty. We will 

apply the guard band to the sandal production example for a TUR equal to five. With 

the guard band w = 0.83 U, the risk of false positives is less than 5 % for any value of 

TUR > 1 adopted. 

Note that the r × U relationship is independent of the adopted TUR since when we 

change the TUR, we must change the uncertainty of measurement U and, with that, 

the size of the guard band w. 

Thus, for example, at 8.7, we will have a lower acceptance limit equal to 7.58 g 

and an upper acceptance limit of 8.42 g, with a probability of false positive 

(consumer risk) below 5 %. The guard band will be equal to 

w = 0.83 × 0.1 = 0.083 g (Table 8.9). 

AU = 8:50–0:083= 8:471= 8:42 g 

AL = 7:50 0:083= 7:583= 7:58 g
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Table 8.9 TUR = 5, guard 

band w = 0.83 U 
m(g) Φ1 TU - y 

u
Φ2 TL - y 

u
Pc1 Pc2 Pc 

7.50 20.00 0.00 1.00 0.50 50.00% 

7.58 18.34 -1.66 1.00 0.05 95.15% 

7.60 18.00 -2.00 1.00 0.02 97.72% 

7.70 16.00 -4.00 1.00 0.00 100.00% 

7.80 14.00 -6.00 1.00 0.00 100.00% 

7.90 12.00 -8.00 1.00 0.00 100.00% 

8.00 10.00 -10.00 1.00 0.00 100.00% 

8.10 8.00 -12.00 1.00 0.00 100.00% 

8.20 6.00 -14.00 1.00 0.00 100.00% 

8.30 4.00 -16.00 1.00 0.00 100.00% 

8.40 2.00 -18.00 0.98 0.00 97.72% 

8.42 1.66 -18.34 0.95 0.00 95.15% 

8.50 0.00 -20.00 0.50 0.00 50.00% 

But if we consider, for example, a TUR equal to two, we will have U = 0.25 and 

w = 0.25 × 0.83 = 0.23. 

AU = 8:50 � 0:23= 8:27 g 

AL = 7:50 0:23= 7:73 g 

With the reduction of TUR, measurement uncertainty increases. This generates a 

lower acceptance interval, which may imply more rejected measurements. 

8.8.3 Guard Band with r = 1.5 (w = 1.5 U)—Three Sigma 

Rule Decision 

In this case, the protection band is 1.5 times expanded uncertainty. Applying the 

guard band in the example of sandal production, for a TUR equal to five, we have 

(Table 8.10): 

With the guard band w = 1.5 U, we have, for any value of TUR > 1 adopted, a 

risk of false positive less than 0.16 % (100 % - 99.87 % = 0.13 %). 

Thus, for example, at 8.7, we will have a lower acceptance limit equal to 7.65 g 

and an upper acceptance limit of 8.35 g, with a probability of false positives 

(consumer risk) below 0.16 %. The guard band will be equal to 

w = 1.5 × 0.1 = 0.15 g.
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Table 8.10 TUR = 5, guard 

band w = 1.5 U 
m(g) Φ1 TU - y 

u
Φ2 TL - y 

u
Pc1 Pc2 Pc 

7.50 20.00 0.00 1.00 0.50 50.00% 

7.60 18.00 -2.00 1.00 0.02 97.72% 

7.65 17.00 -3.00 1.00 0.00 99.87% 

7.70 16.00 -4.00 1.00 0.00 100.00% 

7.80 14.00 -6.00 1.00 0.00 100.00% 

7.90 12.00 -8.00 1.00 0.00 100.00% 

8.00 10.00 -10.00 1.00 0.00 100.00% 

8.10 8.00 -12.00 1.00 0.00 100.00% 

8.20 6.00 -14.00 1.00 0.00 100.00% 

8.30 4.00 -16.00 1.00 0.00 100.00% 

8.35 3.00 -17.00 1.00 0.00 99.87% 

8.40 2.00 -18.00 0.98 0.00 97.72% 

8.50 0.00 -20.00 0.50 0.00 50.00% 

Table 8.11 Probability of false positive (FP) for any TUR > 1 

Decision rule 

Guard band 

w Risk 

Six Sigma 3 U <1 ppm FP 

Three Sigma 1.5 U <0.16 % FP 

ILAC G8:2009 U <2.5 % FP 

ISO 14253-1:2017 0.83 U <5  %  F  P

Simple acceptance 0 <50 % FP 

Defined by the 

customer 

r × U Customers can define r multiple arbitraries to apply as a 

guard band 

8.8.4 Guard Band with r = 3  (w  = 3 U)—Six Sigma Rule 

Decision

In this case, the protection band is three times expanded uncertainty. With the guard 

band w = 3 U, we have, for any value of TUR > 1 adopted, a risk of false positive 

less than 1 ppm (0.0001 %). 

Thus, at 8.7, we will have a lower acceptance limit equal to 7.80 g (7.50 + 0.3) 

and an upper acceptance limit of 8.20 g (8.50 - 0.3). 

Table 8.11, copied from ILAC G8:09/2019 Guidelines on Decision Rules and 

Statements of Conformity, summarizes some of the guard band values presented in 

this chapter. 

As we can observe in Graphs 8.1, 8.2, 8.3, 8.4 and 8.5, mass values between the 

tolerance limits increase with the highest probability when the TUR increases. This 

entails greater security in the results obtained. 

Note that when TUR equals 1, a few values are approved for a given probability, 

for example, 95 %. For this reason, we should not adopt TUR equal to 1. When TUR 

equals 2, the values with the highest probability of occurrence within tolerance limits



increase slightly. However, when TUR is equal to or greater than 3, we have a 

significant improvement, being its point of excellence when it approaches TUR equal 

to 10. 
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Graph 8.1 Probability × measured mass, for example 8.7 with TUR equal to one 

Graph 8.2 Probability × measured mass, for example 8.7 with TUR equal to two
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Graph 8.3 probability × measured mass, for example 8.7 with TUR equal to three 

Graph 8.4 Probability × measured mass, for example 8.7 with TUR equal to five
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Graph 8.5 Probability × measured mass, for example 8.7 with TUR equal to 10 

8.9 Proposed Exercises 

8.9.1 A “specific risk” is a probability that an accepted item is not in compliance or a 

rejected item is in accordance. Considering this definition, tick the correct 

alternative. 

(a) The “specific consumer risk” is the probability of accepting an item according 

to, and the “specific risk of the producer” is the probability of rejecting an 

item not according to. 

(b) The “specific consumer risk” is the probability of accepting an item not 

according to, and the “specific risk of the producer” is the probability of 

rejecting an item according to. 

(c) The “specific risk of the producer” is the probability of accepting an item not 

according to, and the “specific consumer risk” is the probability of rejecting 

an item according to. 

(d) The “specific consumer risk” and the “specific risk of the producer” will 

always be the same. 

8.9.2. Check the alternative that best defines a binary decision rule. 

(a) The result is limited to two options: approved/disapproved. 

(b) We have two options; however, a guard band will always exist. 

(c) When there is no possibility of using a non-binary decision rule.
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(d) When the result has two options: approved/disapproved and conditional 

approved/conditional disapproved. 

8.9.3. A gas container cylinder has a rupture pressure of 900 bar (lower tolerance 

limit). In a destructive test, the cylinder rupture pressure was 910 bar. What is the 

probability that the cylinder will meet the specifications? Consider the expanded 

measurement uncertainty U of the test equal to 10 bar (k = 2.00 and 95.45 %). 

8.9.4. Consider the temperature measurement of an industrial process, with standard 

measurement uncertainty u( y) = 0.5 °C. The process temperature tolerance 

interval is 30.0 to 34.0 °C. Within this tolerance interval, determine the proba-

bility of finding the values of 34.0 °C, 32.0 °C, and 33.0 °C. 

8.9.5. Check the alternative below that best defines the guard band and its use. 

(a) Guard bands provide a straightforward way to define decision rules; by 

choosing the size of the guard band, we will have 100% product approval. 

(b) The use of guard bands provides a particularly simple way to define decision 

rules; by choosing the size of the guard band, an acceptance zone with 

95.45 % of the final product is defined. 

(c) Guard bands provide a particularly simple way to define decision rules; by 

choosing the size of the guard band, an acceptance zone can be defined. 

(d) Guard bands provide a particularly simple way to define decision rules; by 

choosing the size of the guard band, a rejection zone can be defined. 

8.9.6. AS500 diesel oil should be a fuel with a maximum sulfur content of 500 mg/ 

kg. What should be the maximum sulfur content found in an AS500 diesel sample 

so we have a 99 % probability of being out of the specification? Consider the 

expanded measurement uncertainty of the test U = 4 mg/kg (k = 2.00 and 

95.45 %). 

8.9.7. Check the alternative that best defines TUR and its application. 

(a) TUR is the relationship between process tolerance and measurement uncer-

tainty associated with the instrument that measures the quantity being eval-

uated in the process. For a given tolerance, increasing TUR means choosing 

instruments with more significant measurement uncertainty and, conse-

quently, a higher acceptance interval. 

(b) TUR is the relationship between process measurement uncertainty and toler-

ance associated with the instrument that measures the quantity being evalu-

ated in the process. For a given tolerance, increasing TUR means choosing 

instruments with minor measurement uncertainty and, consequently, a minor 

acceptance interval. 

(c) TUR is the relationship between process tolerance and measurement uncer-

tainty associated with the instrument that measures the quantity being eval-

uated in the process. For a given tolerance, increasing TUR means choosing 

instruments with more significant measurement uncertainty and, conse-

quently, a minor acceptance interval.
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(d) TUR is the relationship between process tolerance and measurement uncer-

tainty associated with the instrument that measures the quantity being eval-

uated in the process. For a given tolerance, increasing TUR means choosing 

instruments with minor measurement uncertainty and, consequently, a greater 

acceptance interval. 

8.9.8. Consider the minimum value of the gasoline density at 20 °C as 715 kg/m3 . 

What should be the density value collected at a gas station so that we have a 

99.9 % probability that it is adulterated (density below specification—a new 

lower tolerance limit)? Consider the expanded uncertainty of the analysis as 

5 kg/m3 to k = 2.0 and 95.45 %. 

8.9.9. Consider a food industry that needs to monitor the temperature of a cooking 

process. The process temperature should be between 80 °C and 86 °C, not pass 

this interval. Based on this information, answer: 

(a) What is the tolerance interval of this process? 

(b) What should be the expanded uncertainty of the thermometer used in the 

temperature measurement if we adopt a TUR = 3? 

8.9.10. Consider a honey processing industry that needs to transport honey in ducts 

to automate the flood. As we know, honey is a viscous product that is difficult to 

flow at ambient temperature. To facilitate the flow of the product, the piping is 

heated from 44.0 °C to 50.0 °C and should not pass this interval. Based on this 

information, answer: 

(a) What are this process’s upper and lower limits of tolerance? 

(b) Adopting a TUR equal to 5 will define lower and higher acceptance limits for 

this process. Adopt a binary decision rule 3 sigma (w = 1.5 u).



Chapter 9 

Critical Analysis of Calibration Certificate 

9.1 Introduction 

Sometimes, a result may fall within or outside the limit of a specification, but 

uncertainty can overlap with the limit, as shown in Fig. 9.1. 

In Fig. 9.1, we see four cases of how a measurement result and its uncertainty may 

be within the limits of a specification or tolerance. 

In case (a), both the result and uncertainty fall within the specified limits. This is 

classified as a “compliance.” 

In case (d), neither the result nor any part of the uncertainty range falls into the 

tolerance range. This is classified as “non-compliance.” 

In cases (b) and (c), measurements and their respective uncertainties are neither 

entirely within nor outside the boundaries. For this reason, these results are incon-

clusive and are in the range of doubt. 

When conclusions are extracted from measurement results, measurement uncer-

tainty should not be neglected. This is particularly important when measurements are 

used to verify that the result is within process tolerance or specification. Thus, we 

need to define an acceptance criterion for the instrument used. 

This is the central theme of this chapter. 

9.2 Calibration Certificate 

In the International Vocabulary of Metrology (VIM—2.39), we found in Note 1 of 

the calibration definition: “A calibration may be expressed by a statement, calibra-

tion function, calibration diagram, calibration curve, or calibration table. In some 

cases, it may consist of an additive or multiplicative correction of the indication with 

associated measurement uncertainty.” 
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Fig. 9.1 Representation of four different measurement results within a tolerance interval. (Source: 

the authors) 

We can consider that the document called Calibration Certificate, issued by the 

laboratory that performed the service, encompasses some or all expressions of 

calibration (declaration, function, diagram, curve, or table). 

The certificate is an essential technical record and contains important information 

on the instrument calibration process. Through this reported information, it is 

possible to evaluate the conformity1 of the measuring instrument. 

The standard ISO/IEC 17025: 2017—General Requirements for the Competence 

of Test and Calibration Laboratories determines that the calibration results contained 

in a certificate must be presented clearly, objectively, and accurately, following the 

specific instructions of the calibration method. The certificate should also include all 

the information necessary for the correct interpretation of the results. 

9.3 Calibration Certificate and ISO/IEC 17025 

In Chap. 2, we present some management standards (ISO 9001, ISO/IEC 17025, and 

ISO 10012) that all highlight the importance of calibration of measurement instru-

ments. However, none of them have a model or pattern for elaborating and 

presenting a calibration certificate. 

ISO/IEC 17025, although it does not define the model, establishes in requirement 

7.8—Results Report—what minimum information required should be included in a 

calibration certificate, namely: 

(a) Title (e.g., calibration certificate). 

(b) Name and address of the laboratory. 

(c) Place of activities, including when carried out at the client’s facilities or outside 

the laboratory’s permanent facilities. 

1 According to ISO/IEC 17000: 2004, conformity assessment is any activity performed to deter-

mine, directly or indirectly, whether a product, process, system, person, or body meets relevant 

standards and complies with the specified requirements.
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(d) Univocal identification that all components are recognized as part of a complete 

report and an identification of the end of the document. 

(e) Client identification. 

(f) Presentation of the method used in calibration. 

(g) Identification of the calibrated instrument. 

(h) Date of calibration. 

(i) Date of issuance of the certificate. 

(j) Declaration that the results apply only to the calibrated instrument. 

(k) Presentation of calibration results, with their respective units of measure. 

(l) Name, function, and identification of the authorized person to issue the 

certificate. 

(m) Declaration that the certificate should only be reproduced entirely. 

(n) Environmental conditions from which calibration was performed. 

(o) The uncertainties of measurement. 

(p) Traceability of measurements. 

(q) If there is any adjustment to the instrument, the results must be reported before 

and after the adjustments. 

(r) There should be no recommendation on the next calibration date unless the 

customer has previously agreed. 

In Fig. 9.2, we present an example of a fictitious glass liquid thermometer 

calibration certificate, issued by the PP & AM Calibration Laboratory. The letters 

highlighted signal the necessary minimum information, as established by ISO/IEC 

17025. We have not included in the certificate the information related to the letters 

“q” (adjustment) and “r” (new calibration recommendation). 

9.4 Interpretation of Metrological Requirements 

in Calibration Certificates 

We reiterate that every measurement instrument important to the production process 

should be calibrated. This allows us to know the associated errors and uncertainties. 

The calibration certificate provides this information. 

However, a certificate does not guarantee that the instrument meets the intended 

requirements for its application in the measurement process, that is, a calibrated 

instrument is not necessarily fit for use. 

From the information found in the certificate, it is necessary to evaluate this 

content to validate the use of the instrument. 

Solved Exercise 9.1: Analytical Scale 

Consider the analytical scale calibration certificate (Fig. 9.3). What should be 

analyzed in this certificate to evaluate the scale conformity?
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Fig. 9.2 Example of a calibration certificate with the minimum information required by ISO/IEC 

17025: 2017
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Fig. 9.3 Analytical scale calibration certificate 

Solution: 

First: Maximum Permissible Error (MPE). 

The OIML R 76–1 Edition 2006 document—Non-Automatic Weighing Instru-

ments, Part 1: Metrological and Technical Requirements—Tests, establishes for 

scales the value of the maximum permissible error on initial and in-service verifica-

tion, applying increasing and decreasing loads according to the instrument accuracy 

class, as given in Table 9.1. The MPE in-service shall be twice the MPE on initial 

verification.
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± 1.0 mg ± 2.0 mg
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Table 9.2 Maximum permissible error for scale 

Measurement range 

0 ≤ m ≤ 50 g 

(0 ≤ m ≤ 50,000 × 0.001 g) 

50 g < m ≤ 200 g 

(50 < m ≤ 200,000 × 0.001 g) 

Maximum permissible errors 

(initial verification) ± 0.5 mg 

(0.5 × 0.001) 

± 1.0 mg 

(1 × 0.001) 

Maximum permissible errors 

(in-service) 

In the case of the scale under analysis, we can observe in the calibration certificate 

that the instrument is class I and the reading resolution is 0.0001 g and e = 0.001 g. 

According Table 9.2 the maximum permissible error (initial and in-service) per 

measuring range will be:. 

In the calibration certificate, we find the scale measurement bias. Comparing the 

measurement bias values indicated on the certificate with the maximum allowable 

error table by range, we can conclude that:

• m ≤ 50 g: scale bias (0.8 mg) is lower than MPE in-service (1.0 mg) ⇨ 

APPROVED.

• 50 g < m ≤ 150 g: scale bias (0.9 mg) is lower than MPE in-service (2.0 mg) ⇨ 

APPROVED.

• 150 g < m ≤ 200 g: scale bias (3.3 mg) is higher than MPE in-service (2.0 mg) ⇨ 

DISAPPROVED! 

Conclusion The scale needs to be adjusted to reduce its bias at the end of the range, 

but if the adjustment is not performed, it should only be used in measurements 

between 0 and 150 g. 

Second: Final Uncertainty 

We consider whether to weigh a particular substance in the laboratory using our 

calibrated scale. We also think that the mass value of this product must be under-

stood in the interval of (50.0000 ± 0.0100) g, that is, it must be between 49.9900 g 

(TL—the lower limit of tolerance) and 50.0100 g (TU—the upper tolerance limit). 

The decision rule to be adopted is to consider a false positive of 2.5 % or less. 

According to Table 8.11 (Chap. 8), if we use a guard band equal to expanded 

uncertainty, we will have an acceptance interval where the probability of a value is 

not equal to or less than 2.5%. The scale sheet certificate states that the measurement 

uncertainty value (U ) of 50 g is 0.9 mg (Fig. 9.4). 

So, TL = 49.9900 g and TU = 50.0100 g. The control limits (AL and AU) are: 

AL = TL þ U = 49:9900þ 0:0009= 49:9909 g 

AU = TU -U = 50:0100- 0:0009= 50:0091 g 

According to the decision rule adopted, the mass result will always be acceptable 

if it falls within the acceptance interval of 49.9909 g to 50.0091 g.
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Fig. 9.4 Acceptance interval—Solved Exercise 9.1 

Attention 

We must correct the mass reading value by eliminating its bias. 

Note that the acceptance interval was large, showing that we have many possible 

mass values . This is because the TUR adopted for this scale is high. Let us see: 

TUR= 
Tolerance=2 
Uncertainty 

TUR= 
0:01 

0:0009 
= 11:1 

Knowing a Little More ... 

Scale verification 

Among the calibration intervals, the instrument’s user should verify the 

balance. The OIML R 76-1 (3.7.1 weights) document defines that the maxi-

mum permissible error of the default mass used in the scale verification or 

calibration shall be 1/3 of the scale maximum permissible error at the point 

considered. “In principle, the standard weights or standard masses used for 

the type examination or verification of an instrument shall meet the metrolog-

ical requirements of OIML R 111. They shall not have an error greater than 

1/3 of the maximum permissible error of the instrument for the applied load. If 

they belong to class E2 or better, their uncertainty (rather than their error) is 

allowed to be not greater than 1/3 of the maximum permissible error of the 

instrument for the applied load, provided that the actual conventional mass 

and the estimated long-term stability are taken into account.” 

The choice of mass classes for scale calibration or verification should be 

compatible with the scale’s maximum permissible error. 

Table 9.2 Shows the maximum permissible error by measurement range for 

our scale of solved exercise 9.1. 

Then, up to 50 g:

(continued)



MPE
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MPEmass ≤
balance 

3 

MPEmass ≤ 
1 mg 

3 
= 0:333 mg 

Over 50 g: 

MPEmass ≤ 
2 mg 

3 
= 0:666 mg 

Referring to Table 7.1 (Chap. 7):

• Up to 50 g—Class F1 mass.

• Between 50 g and 200 g—Class E2 mass. 

Suppose the bias presented in the mass calibration certificate to be used in 

the scale verification is greater than the maximum permissible error of the 

class. In that case, the mass changes to a lower class. 

9.5 Acceptance Criterion (AC) of a Measurement 

Instrument 

To date, we have discussed the analysis of a calibration certificate by verifying if it is 

fit for use and meets the requirements of technical regulation, as well as calculating 

the upper (AU) and lower (AL) control limits. 

In this section, we will analyze a calibration certificate by verifying whether the 

measurement instrument is approved for use in an industrial measurement process. 

The first step is to know the acceptance criterion adopted by the industry. The 

acceptance criterion considers the maximum uncertainty of the instrument used to 

verify the product’s conformity with its specification. Since the acceptance criterion 

is a fraction of tolerance, it will always be less than the process tolerance. 

To determine the AC, we must adopt the following relationship: 

AC= 
TL 

TUR
ð9:1Þ 

TUR ranges from 3 to 10, and TL is the process tolerance interval. 

In Solved Exercise 9.1, the tolerance interval (TL) is equal to 0.01 g for measure-

ment at point 50 g. 

If we adopt: 

(a) TUR = 10 →AC = 0.001 g → AL = 49.9900 + 0.001 = 49.9910 g and. 

AU = 50.0100–0.001 = 50.0090 g.
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Acceptance interval = [49.9910 to 50.0090] g. 

(b) TUR = 5 →AC = 0.002 g → AL = 49.9900 + 0.002 = 49.9920 g and. 

AU = 50.0100–0.002 = 50.0080 g. 

Acceptance interval = [49.9920 to 50.0080] g. 

(c) TUR = 3 → AC = 0.0033 g → AL = 49.9900 + 0.0033 = 49.9933 g and. 

AU = 50.0100–0.0033 = 50.0067 g. 

Acceptance interval = [49.9933 to 50.0067] g. 

We can observe that the larger the TUR, the closer the acceptance limits will be to 

the limits of specification or tolerance, which is very good but can also cause 

problems. Let us see. 

In item (a), AC for 50 g was 0.001 g. Is this scale approved or disapproved 

for use? 

If we perform the bias correction for 50 g when we measure, we will compare the 

AC with the uncertainty of point measurement, which is worth 0.0009 g (see 

certificate Fig. 9.3). 

U (0.0009 g) ≤ A.C (0.001 g)—Approved! 

However, if we do not perform the bias correction, we must add the bias module 

with expanded uncertainty at the desired point, in this case, 50 g. This we call 

maximum uncertainty. 

Umaximum = Bj  jou Ej  j þ U ð9: 2Þ

Umaximum = 0:0006 0:0009= 0:0015 g 

In this case, the scale is Disapproved! 

Umaximum 0:0015 gð Þ≥AC 0:001 gð Þ  

Attention 

We must correct the error or bias at the measurement point whenever possible. 

Thus, we eliminate systematic error and only have random error, the measure-

ment uncertainty. 

Now, analyzing item (c), the AC for point 50 g was 0.0033 g. Is the scale 

approved for this use? 

If, when we measure, we perform the bias for point 50 g, we will compare the AC 

with the uncertainty of point measurement, which is worth 0.0009 g (see certificate 

Fig. 9.3). 

U (0.0009 g) ≤ AC (0.0033 g) — Approved! 

But, if we do not perform the bias correction, we will have:



9.5 Acceptance Criterion (AC) of a Measurement Instrument 273

Umaximum = 0:0006þ 0:0009= 0:0015 g 

And the scale will remain approved. 

Umaximum 0:0015 gð Þ≤AC 0:0033 gð Þ  

The advantage of TUR being large and, consequently, the small AC is that we will 

be close to the specification limit and thus reject a few parts (products). The 

significant disadvantage is that we will disapprove of many measuring instruments 

or cannot find one that satisfies this requirement. 

So far, we have analyzed the criterion of accepting an instrument for a desired 

point. Still, the usual is to explore the instrument as a whole for a particular 

measurement process. 

Let us continue with the example of the Solved Exercise 9.1; however, now, no 

longer for a single point, but analyzing the scale as a whole. 

We want to adopt an acceptance criterion for the scale, whose certificate is 

presented in Fig. 9.3. Let us consider that the tolerance interval of the mass 

measurement process is ±0.01 g. What acceptance criteria will we adopt for this 

process? 

To answer this question, we must analyze the measurement process performed 

and verify that the measured values of the mass, for any point in your measurement 

range, are under control if we do not have significant variability in the results 

obtained from mass measurement. 

Processes with high variability and large dispersions generate high uncertainties, 

which can easily lead to values outside or close to tolerance limits, which should be 

avoided. 

To decide how many parts we will divide the tolerance interval (TL) of our 

process, we must take into account some factors: 

(a) Is the process under control? That is, the values of the variables under measure-

ment have little or no variation. If so, we can divide by a small TUR, for example, 

3 or 4. If not, we should divide by a large TUR, for example, 8 or 10. 

(b) Can the instrument we choose to control the process meet our AC? Is your error 

or bias added to your measurement uncertainty inferior or equal to the AC?  A  

good choice is associated with the resolution of the instrument. It is known, from 

experience, that the uncertainty of measuring an instrument in perfect condition 

usually has its value guided by its resolution. We must always choose an 

instrument that has better resolution than process tolerance. Typically, resolution 

is ten times less than process tole rance.

(c) Often, an instrument of measurement has its maximum permissible error (MPE) 

defined by standard or technical regulation. We cannot choose an instrument 

whose AC is greater than the MPE. 

Consider that the scale measurement of the Solved Exercise 9.1 is under control, 

with little or no variability. So, let us divide the process tolerance interval by four.
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Table 9.3 Calibration results 

AC= 
0:01 
4 

= 0:0025 g 

If we adopt this acceptance criterion, will the balance of Solved Exercise 9.1 be 

approved for use in this measurement process? How will we analyze the balance for 

the entire measurement range we have? (Table 9.3) 

The highest uncertainty of scale measurement is 1.6 mg (0.0016 g). If we correct 

the bias, this measurement uncertainty will be enough to compare with the adopted 

AC. 

U 0:0016 gð Þ≤AC 0:0025 gð Þ  ‐ Approved! 

But if we do not perform the reading correction, we will have: 

Umaximum 0:0016 gþ 0:0033 gð Þ≥AC 0:0025 gð Þ  ‐Disapproved! 

In addition to defining an acceptance criterion, we must define a decision rule. 

Attention! 

Evaluating the results of a calibration without defining acceptance criteria is 

not very useful. The acceptance criterion determines whether a measurement 

instrument is approved for the required use. 

To define the acceptance criteria, we must take into account at least the 

following factors:

• Measurement variability—We want processes under control;

• Maximum permissible error by the method—We do not wish to AC 

superior to the MPE;

• Accuracy required by the method;

• Maximum uncertainty accepted for measurements.
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Table 9.4 Calibration certificate 

Calibration certificate—Class A 

Nominal value 

mL 

Measured value 

mL 

Error 

mL 

Uncertainty 

mL 

Coverage factor 

(95.45 %) Degree of freedom 

500 500.145 0.145 0.008 2.00 ∞ 

Table 9.5 MPE for volumet-

ric balloon 
Capacity 

(mL) 

MPE (mL) 

Class A 

0.02 

Class B 

0.045 

10 0.02 0.04 

25 0.03 0.06 

50 0.05 0.10 

100 0.08 0.16 

250 0.10 0.20 

500 0.12 0.24 

1000 0.20 0.40 

2000 0.30 0.60 

4000 0.50 1.00 

Solved Exercise 9.2: Volumetric Balloon (Laboratory Glassware). 

Analyze the data from the volumetric calibration certificate comparing with ASTM E 

288, and consider the volumetric balloon AC as 0.05 mL (Table 9.4). 

Solution 

(a) MPE. 

According to ASTM E 288, we have the following MPEs for volumetric balloons 

(Table 9.5): 

In Table 9.5, the maximum error for a volume of 500 mL and class A is 0.12 mL. 

As the error presented in the calibration was 0.145 mL, the volumetric balloon can 

no longer be considered class A and moves to class B (maximum error of 0.24 mL). 

(b) Maximum uncertainty. 

Umaximum = Ej  j þ U j j

Umaximum = 0:145þ 0:008ð Þ  mL= 0:153 mL 

Umaximum = 0:15 mL>AC= 0:05 mL → Disapproved
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Knowing a Little More ... 

Laboratory glassware calibration 

Glassware used in laboratories is classified according to the maximum 

acceptable errors in class A and class B. Class B is calibrated with errors 

that usually comprise twice the error allowed for class A. Beyond this classi-

fication, they are also known as:

• TD (to deliver) glassware—Indicate the volume raised or transferred by 

glassware (e.g., pipette and burette).

• TC (to contain) glassware—Indicate the volume contained by glassware 

(e.g., volumetric balloon). 

According to the ASTM E542 standard, glassware may remain indefinitely 

calibrated if it is not subjected to extreme conditions, such as temperatures 

above 150 °C or contact with fluoride acid, heated phosphoric acid, or heated 

strong bases. 

Practical recommendation: Calibrate every 5 years of use or when the 

surface indicates wear. 

Equipment required for the calibration of laboratory glassware (Table 9.6): 

Glassware verification 

Among the calibration intervals, the glassware verification is performed at 

least once a year at the reference temperature of 20 °C (water and laboratory 

environment) and using distilled water. Table 9.7 relates the glassware capac-

ity to the scale used in the verification. 

Volumetric calibration is performed using distilled water, with its density 

taken into account. The equation used is: 

V20 °C = 

m 

ρ 

The mass m is the difference between the mass of full and empty glassware. 

The water density can be corrected, as per Table 9.8, if the water temper-

ature is not 20 ° C. 

Glassware MPE (Tables 9.9, 9.10, 9.11,  an  d 9.12) 

Table 9.6 Instruments used in the glassware calibration 

Quantity Equipment Measurement range Minimum resolution 

Ambient and water temperature Thermometer (15 ± 5) °C 0.1 °C 

Pipette and burette flow time Timer 15 min 1 s 

Relative humidity Hygrometer (50 ± 30) % 1 % 

Atmospheric pressure Barometer (1000 ± 100) hPa 1 hPa
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Table 9.7 Glassware capac-

ity × scale resolution 
Capacity Resolution (mg) 

1 μL ≤ V20 °C ≤ 10 μL 0.001 

10 μL ≤ V20 °C ≤ 100 μL 0.01 

100 μL ≤ V20 °C ≤ 1000 μL 0.1 

1  mL  ≤ V20 °C ≤ 10 mL 0.1 

10 mL ≤ V20 °C ≤ 200 mL 1 

200 mL ≤ V20 °C ≤ 1000 mL 10 

Table 9.8 Water density × 

temperature 
Temperature 

(°C) 

Density 

(g/cm3 ) 

18 0.99860 

19 0.99840 

20 0.99820 

21 0.99799 

22 0.99777 

Table 9.9 Pipettes with pis-

ton (ISO 8655-2:2002) 
Capacity (μL) MPE (μL) 

1 0.05 

10 0.12 

100 0.8 

1000 8 

10,000 60 

Table 9.10 Burettes (ASTM 

E287) 
Capacity 

(mL) 

MPE (mL) ± 

Class A 

0.02 

Class B 

0.0410 

25 0.03 0.06 

50 0.05 0.10 

100 0.10 0.20



Solved Exercise 9.3: Elaboration of the Acceptance Criterion and Analysis of

278 9 Critical Analysis of Calibration Certificate

Table 9.11 Volumetric 

pipettes (ASTM E969) 
Capacity 

(mL) 

MPE (mL) ± 

Class A 

0.006 

Class B 

0.0120.5 

1 0.006 0.012 

2 0.006 0.012 

3 0.01 0.02 

4 0.01 0.02 

5 0.01 0.02 

6 0.01 0.03 

7 0.01 0.03 

8 0.02 0.04 

9 0.02 0.04 

10 0.02 0.04 

15 0.03 0.06 

20 0.03 0.06 

25 0.03 0.06 

30 0.03 0.06 

Table 9.12 Cylinders and 

beakers (ASTM E1272) 
Capacity (mL) 

MPE (mL) ± 

Class A 

0.05 

Class B 

0.105 

10 0.10 0.20 

25 0.17 0.34 

50 0.25 0.50 

100 0.50 1.00 

250 1.00 2.00 

500 2.00 4.00 

1000 3.00 6.00 

2000 6.00 12.00 

4000 14.50 29.00 

the Thermometer Calibration Certificate Used in the Process. 

Consider a honey processing industry that needs to transport honey in ducts to 

automate the flood. As we know, honey is a viscous product that is difficult to flow at 

ambient temperature. To facilitate the flow of the product, the piping is heated 

between 44 ° C and 50 ° C and should not pass this interval. Adopt, as a decision 

rule, a false positive less than 2.5 %. Reply: 

(a) What should be the mean process control temperature? 

(b) What is the tolerance interval of this process? 

(c) Considering the process is under control, what should the AC for the thermom-

eters used to control this temperature be?
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(d) In the market, is there a thermometer to serve the established AC? Which one? 

What should its resolution be? 

(e) How should this process be controlled for the statement decision rule? 

(f) How should this process be controlled if we consider simple acceptance? 

(g) Considering the calibration certificate of one of the thermometers adopted in the 

measurement process, such as shown in Fig. 9.6, answer if the thermometer is 

approved concerning the AC adopted in item c. 

Solution: 

(a) Mean temperature = 47 °C. 

(b) Tolerance interval—TL = ± 3 °C. 

(c) Considering the process under control, we can use a TUR = 3. 

AC= 

50- 44ð Þ  
2 

3 
= 

3 

3 
= 1 °C 

(d) Yes. Resistance thermometer (PT-100 3 wires) or type K thermocouple, both 

with resolution 0.1 ° C. Ensuring that the instrument’s resolution is ten times 

lower than AC is always essential. 

(e) In Table 8.11, we have that the guard band used for a probability of false positive 

2.5 % is equal to the AC (Fig. 9.5). 

As the acceptance limit is between (45 and 49) °C, we must inform the temper-

ature controller coupled to the thermometers that when the temperature reaches close 

to 45 °C, the thermal blanket that surrounds the metallic ducts should be turned 

on. When the temperature reaches 49 °C, it should be turned off. We will always 

have a safety margin, the 1 °C guard band, at risk of measurement outside the 

specification [44–50] °C less than 2.5 %. 

(f) If we adopt a simple acceptance as a decision rule, we will have: 

In this case, acceptance limits will equal tolerance limits, and we risk a false 

positive of less than 50%, especially when we approach tolerance limits. 

Fig. 9.5 Acceptance zone



B= 0:1 °C;U= 0:3 °C
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Fig. 9.6 Acceptance zone 

(g) Note that the thermometer calibration certificate of Fig. 9.6 has its maximum 

uncertainty (Umaximum) in the use range (44–50) °C of 0.4 °C (Fig. 9.7). 

0:1þ 0:3= 0:4 °C 

Umaximum 0:4 °C <AC 1 °C 

Thermometer approved for use in the process! 

9.6 Proposed Exercises 

9.5.1 Regarding the Calibration Certificate, check (R) for the correct statements and 

(W ) for the wrong ones (Table 9.13). 

9.5.2 Table 9.14 shows the calibration result of a Bourdon-type gauge, class 1.0, 

with a measurement range between 0 and 60 bar and 0.5 bar resolution. 

Based Table 9.14, ensure the object gauge can continue to be used as class 1.0. 

9.5.3 Consider the calibration certificate presented. According to ISO/IEC 17025: 

2017, what information is needed and missing? (Fig. 9.8) 

9.5.4 A 25 mL burette, class B, was calibrated, and the data obtained were: measured 

volume = 25.05 mL; uncertainty = 0.01 mL. Based on this information, ensure 

the burette can continue to be used as class B and meets an AC of 0.1 mL. 

9.5.5 The pulley of an engine must have a width of (25.000 ± 0.012) mm and a 

diameter of (960.0 ± 1.5) mm. To measure the width, a micrometer with a 

maximum uncertainty of 0.002 mm and a digital tape with a maximum uncer-

tainty of 0.5 mm for the diameter. What should be the control limits of the 

manufacture of this pulley considering these measuring instruments? Adopt a 

95 % decision rule.
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Fig. 9.7 Thermometer calibration certificate for Solved Exercise 9.3



9.5.6 A micrometer was adopted for quality control in serial production of a length

part (15.00 ± 0.05) mm. Considering the acceptance criterion (AC) as 0.017 mm 

(1/3 of tolerance), determine the upper control limits (AU) and the lower control 

limit (AL) of the part. Adopt the false positive decision rule of less than 2.5 %. 
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Table 9.13 Calibration certificate 

( ) The calibration certificate is a technical record that enables the user to measure instrument 

conformity assessment. 

( ) The laboratory that performs the measuring instrument calibration will never make any 

recommendation on the periodicity of calibration. 

( ) The calibration laboratory does not usually adjust the measurement instrument; however, 

results should be reported before and after adjustment if this is done. 

( ) The certificate must present calibration results in the units of measure used and declare the 

measurement uncertainty, scope factor, and confidence level used. 

( ) The environmental conditions of the calibration site only need to be declared if they affect 

the calibration result. 

Table 9.14 Gauge calibra-

tion result 
Object 

(bar) 

Standard (bar) 

Charge 1 

5.00 

Discharge 

1 

5.20 

Charge 2 

5.25 

Discharge 

2 

5.255.0 

15.0 15.25 15.55 15.00 15.50 

25.0 25.00 25.55 25.50 25.55 

35.0 35.25 35.00 35.50 35.25 

45.0 44.55 45.05 45.00 45.50 

55.0 56.00 56.00 55.55 55.50 

60.0 60.00 60.00 60.00 60.00 

9.5.7 How can we prove whether a measurement instrument meets the desired 

acceptance criterion? 

(a) Buying the instrument indicated by the manufacturer. 

(b) Calibrating the instrument in a competent laboratory and analyzing its 

certificate. 

(c) Performing checks with a standard in the company itself. 

(d) Authorizing its use only by qualified personnel. 

9.5.8 What is the main objective of calibrating a measurement instrument? 

(a) Know the errors and uncertainty of measurement at each calibrated point and 

correct, if necessary, the instrument’s readings. 

(b) Meet management standards applied to measurement instruments. 

(c) Obtain the calibration certificate to guarantee the measurement instrument is 

in perfect condition. 

(d) Make adjustments by minimizing their measurement errors.



9.5.9 If the calibration certificate of a measurement instrument has a measurement

error above expected, however, the instrument is not with its functionality 

affected, which CANNOT be done: 
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Fig. 9.8 Thermometer calibration certificate for solved exercise 

(a) Ask the laboratory to adjust to reduce its measurement error, and then make a 

new calibration. 

(b) Use the instrument without any caveat, remembering to calibrate again in the 

defined period. 

(c) Create mathematical corrections for errors and apply them to their use. 

(d) Remove the measuring instrument.



9.5.10 To know if a measuring instrument is adapting to the intended use:
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(a) The measuring instrument should be appropriately functioning and calibrated 

periodically. 

(b) Periodic checks must be performed. 

(c) Acceptance criteria should be established and sent to calibration, and the 

results should be evaluated. 

(d) Acceptance criteria must be established, and the equipment must be sent for 

calibration. 

9.5.11 What does a calibration of a measurement instrument consist of? 

(a) In comparing the values obtained by it in the face of standards, a certificate 

with the values of their errors and measurement uncertainty is obtained. 

(b) In comparing the values obtained by it in the face of standards by obtaining a 

certificate with only the values of their measurement errors. 

(c) In the maintenance of the measuring instrument. 

(d) In its periodic adjustment. 

9.5.12 To evaluate a calibration certificate, it must be established primarily before: 

(a) The periodicity of the calibration of the measurement instruments. 

(b) The acceptance criteria for the results. 

(c) The laboratory that will calibrate. 

(d) The purchase of a new measurement instrument. 

9.5.13 Must any measurement instrument be calibrated? 

(a) Yes, measurement instruments cannot be used without being calibrated. 

(b) Yes, otherwise, it leads to non-conformities in audits. 

(c) No, the need for its measurements in the face of the process requirements 

should be evaluated. 

(d) No, we need to calibrate after some failure is found. 

9.5.14 When analyzing a calibration certificate, what alternative represents the 

primary information we should evaluate? 

(a) If the laboratory that calibrated the measuring instrument is accredited. 

(b) If the error results and measurement uncertainty are presented. 

(c) If the authorized signatory signed the Calibration Certificate. 

(d) The traceability of the standards used is contained in the certificate. 

9.5.15 The calibration results of a measurement instrument did not meet the accep-

tance criteria. What should be done? 

(a) Discard the measuring instrument. 

(b) Evaluate whether error adjustment or the use of the measuring instrument in 

other bands is possible. 

(c) Perform a new calibration until the expected value is obtained. 

(d) Modify the acceptance criteria, so that it can be accepted.
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Chapter 1

1.3.1 (b) 1.3.2 (a)

1.3.3 (a) 1.3.4 (d)

1.3.5 (c) 1.3.6 (c)

1.3.7 (b) 1.3.8 (a)

1.3.9 (a) 1.3.10 (d)

1.3.11 (a) 1.3.12 (a)

1.3.13 (c) 1.3.14 (d)

1.3.15 (c) 1.3.16 (b)

1.3.17 (b) 1.3.18 (a)

1.3.19 (b) 1.3.20 (c)

1.3.21 (b) 1.3.22 (b)

1.3.23 (c) 1.3.24 (c)

1.3.25 n = 2

dim xð Þ= dim vnð Þ
dim að Þ

dim xð Þ= L

dim vð Þ= LT -1
∴dim vnð Þ= LT -1 n

dim að Þ= LT -2

L=
LT -1 n

LT -2

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2025
P. P. Novellino do Rosario, A. Mendes, Metrology and Measurement Uncertainty,
https://doi.org/10.1007/978-3-031-82303-9
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1.3.26 (c)
31.3.27 kg s-

I=
E

S⋅t

Unit of E: m2 kg s-2

Unit of S: m2

Unit of t: s

Unit of I: m
2 kg s-2

m2 s = kg s-3

1.3.28 (d)
1.3.29 kg m-1

k=
f

v2

Unit of f: m kg s-2

Unit of v2: m2 s-2

Unit of k: mkg s-2

m2 s-2 = kgm-1

Chapter 2

2.11.1 I’m afraid I have to disagree. Traceability is only guaranteed when the
instrument, even new, is calibrated with recognized standards and accepted
nationally or internationally.

2.11.2 Metrology is the science of measurement and its applications and includes all
theoretical and practical aspects of measurement, whatever the uncertainty of
measurement and the field of application.

2.11.3

Legal Metrology

It is the area of metrology closest to the ordinary citizen, whose primary function is
to protect products and services that involve and need some measurement. It is
defined by the International Organization of Legal Metrology (OIML) as: “the
application of legal requirements for measurement and instruments.” Metrological
regulations based on the OIML guidelines establish the technical requirements,
metrological control, use, and marking requirements, as well as the requirements
of the units of measure that must be met by manufacturers and by users of the
measuring instruments.

In addition to commercial activities, measuring instruments used in official
activities, medical areas, medicine manufacture, occupational, environmental



protection, and radiation are subject to metrological control. In these cases, control
assumes special importance in the face of the dangerous negative effects that wrong
results can cause human health.
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Scientific Metrology

Scientific and industrial metrology promotes competitiveness and provides an envi-
ronment favorable to the country’s scientific and industrial development. It is also
essential to technological innovation. BIPM coordinates the process, is responsible
for the basic metrological quantities with reliability equal to that of the countries of
the first world, and transfers measurement standards to the society.

2.11.4 This is the area of metrology closest to the common citizen, whose primary
function is to ensure the protection of products and services that involve and
require some measurement. It is defined by the International Organization of
Legal Metrology (OIML) as: “the application of legal requirements for measure-
ment and instruments”. Metrological regulations based on OIML guidelines
establish the technical, metrological control, usage and marking requirements,
as well as the requirements for units of measurement that must be met by
manufacturers and users of measuring instruments.

2.11.5

• Single description and identification of the instrument: type, model, serial
number, manufacturer, etc.

• The date that metrological evidence was performed.
• Evidence results.
• Interval of the next evidence.
• Identification of the procedure (or method, norm, instruction, etc.) of evidence.
• Maximum acceptable or permissible errors.
• Relevant environmental conditions and declaration on necessary corrections.
• Uncertainties involved in calibration.
• Provide details of any intervention (maintenance, adjustment, modification) in

the measuring instrument.
• Use limitations.
• Identification of those who performed the metrological evidence.
• Identification of those responsible for any corrections of information recorded.
• Single identification of the report or calibration certificate.
• Traceability of measurement results.
• Metrological requirements for intended use.
• The calibration result was performed after, and where required, before any

intervention in the measuring instrument.

2.11.6 Quantity that does not affect the quantity effectively measured, but affects the
relationship between the indication and the result of the measurement.

2.11.7 The International Organization of Legal Metrology (OIML)
2.11.8 It means that the laboratory’s competence to perform calibrations or tests was

recognized by an accrediting organism based on the ISO/IEC 17025:2017
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standard, according to the guidelines established by the International Laboratory
Accreditation Cooperation (ILAC) and the Good Practices Codes (GPC) from the
Organization for Economic Co-Operation and Development (OECD).

2.11.9
A technical standard is a document established by consensus and approved by a

recognized organism that provides minimum rules, guidelines, or characteristics
for activities or their results, aiming to obtain a great degree of sorting in a given
context. The technical standard is voluntary, that is, not mandatory by law.

A technical regulation is a document adopted by an authority with legal power that
contains mandatory rules and establishes technical requirements, either directly
by reference to technical standards or by incorporating their content, in whole or
in part. In general, technical regulations aim to ensure aspects related to health,
safety, environment, consumer protection, and fair competition. Compliance with
a technical regulation is mandatory, and non-compliance with the corresponding
punishment is illegal.

2.11.10 VIM is a document that seeks international harmonization of the terminol-
ogies and definitions used in metrology and instrumentation.

Chapter 3

3.3.1

(a) 34.4 m (b) 23.9 m

(c) 8.4 m (d) 19.7 m

(e) 43.5 m (f) 43.9 m

(g) 52.4 m (h) 66.7 m

3.3.2

(a) 4 (b) 2

(c) 1 (d) 4

3.3.3

(a) 479 m (b) 642 kg

(c) 123 L (d) 56.2 cm

3.3.4

(a) 89.5 m
(b) 8.2 m2

(c) 5.55 m
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3.3.5

(a) 4 × 103 (b) 0.002

(c) 0.0006 (d) 0.00003

3.3.6

3.3.7

(a) 268.1 (b) 286.54

(c) 132.32 (d) 129

(e) 5.0 (f) 114.7

(g) 0.87 (h) 1.7 × 102

(i) 4.2 (j) 1.4 × 102

(k) 0.1712 s

(l) 3.0 × 105 - 1.5 × 102 = 3.0 × 105 (the result must have the same number of decimal digits of
the portion that has the smallest number of decimal digits)

0

2

4

6

8

10

12

14

16

18

F
R

E
Q

U
E

N
C

Y

CLASS

HISTOGRAM

2.00 – 2.20   2.20 – 2.40      2.40 – 2.60      2.60 – 2.80       2.80 – 3.00

x=
aþ b

2
=

2:99þ 2:01ð ÞV
2

= 2:5 V

s=
b- a

12
p =

2:99- 2:01ð ÞV
12

p = 0:283 V

3.3.8
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0

5

10

15

20

25

F
R

E
Q

U
E

N
C

Y

CLASS

HISTOGRAM

23.5 – 23.7     23.7 – 23.9 23.9 – 24.1 24.1 – 24.3    24.3 – 24.5    24.5 – 24.7

μ=

n
i= 1xi

n
= 24:0 °C

s=

n
i= 1 x- xið Þ
n- 1

2

= 0:212 °C

3.3.9 α = (11.5 × 10-6
± 0.2 × 10-6) °C-1

Uniform distribution

a= 11:3× 10-6
°C-1

b= 11:7× 10-6
°C-1

s=
b- a

12
p = 0:1× 10-6

°C-1

3.3.10



�Interval= 128:74± 0:26ð Þ V 128:48 V; 129:00 V½
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0

2

4

6

8

10

12

14

16

18

Histogram

128.4 – 128.5 128.5 – 128.6 128.6 – 128.7 128.7 – 128.8 128.8 – 128.9 128.9 – 129.0  129.0 - more

(b) The histogram shows a distribution that tends to be normal.

s=

n
i= 1 x- xið Þ
n- 1

2

= 0:1282885 V

(c) To determine the probability interval of 95.45%, we must calculate the degree of
freedom and the factor k. With 60 measurements, we have a degree of freedom of
59 (n-1). Consulting the t-Student table, we have k = 2.043. Therefore, to
95.45%, we have 2.042 × 0.1282885 = 0.262096 V. Note that here, we do not
calculate the standard deviation of the mean, since we want to determine the
interval in which we have the probability of 95.45% of finding a measurement
within the 60 performed.

μ=

n
i= 1xi

n
= 128:74 V

(d) Within the interval, we have 57 measurements totaling 95.00% of the measured
values.

(e) As we now wish for the interval where we will find the mean of measurements,
we will work with the concept of standard deviation from the mean.

sx =
s

n
p =

0:1282885 V

60
p = 0:016562 V
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For n = 60, we have the degree of freedom = 59, and k = 2.043. The interval
will be:

k sx = 2:043 x 0:016562 V= 0:033836 V

Then, with 95.45% probability, we will find the mean of 60 measurements in the
interval (128.74 ± 0.03) V.

3.3.11

(a) Scale 1: μ=
n

i= 1
xi

n
= 14:95 kg

Scale 2: μ=
n

i= 1
xi

n
= 14:97 kg

(b) Scale 1: s=
n

i= 1
x- xið Þ

n- 1

2

= 0:187083 kg

Scale 2: s=
n

i= 1
x- xið Þ

n- 1

2

= 0:320416 kg

(c) Scale 2: s=
n

i= 1
x- xið Þ

n- 1

2

= 0, 320416 kg

(d) Interval with 95.45%: x± k sð Þx
t-Student table→ n = 6, k = 2.649
Scale 1: s xð Þ= 0:187083 kg

6
p = 0:076376 kg

Scale 2: s xð Þ= 0:320416 kg
6

p = 0:130809 kg

Scale 1: (14.95 ± 0.20) kg
Scale 2: (14.97 ± 0.35) kg

3.3.12

(a) 7.23 pH
(b) 0.012247

3.3.13

(a) Considering that eight measurements imply a degree of freedom equal to
7 and consulting the t-Student table, we find that for the degree of freedom
7, we have k = 1.077, and we will have U = k ∙ s = 0.642 °C, so the interval
will be (48.3 to 49.5) °C—68.27 %.

(b) To 95.45 %, we have k= 2.429, implying to k ∙ s= 1.4574 °C, so the interval
will be (47.4 to 50.4) °C.

(c) To 99.7 %, we have k = 4.442, implying to k ∙ s = 2.6652 °C, so the interval
will be (46.2 to 51.6) °C.
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Chapter 4

4.5.1

(a) 0.1 bar
(b) 0.05 bar
(c) 0.30 bar

4.5.2

(a) 2 °C
(b) 1 °C
(c) 20 °C

4.5.3 11 bar
4.5.4 (b)
4.5.5 (b)
4.5.6

(a) Maximum error = 0.8/200 = 0.4%; Hysteresis = 1.2/200 = 0.6 %
(b) Maximum error = 0.8/65 = 1.23%; Hysteresis = 1.2/65 = 1.85 %

4.5.7

(a) x=
xi

10 = 15:97 Ω

(b) B = 15.97 – 15.977 = - 0.007 Ω = - 0.01 Ω

(c) E = (15.95 - 15.977) Ω = - 0.027 Ω = - 0.03 Ω

4.5.8

(a) B = (20.5 – 20.0) °C = 0.5 °C
(b) E = (21.0 – 20.0) °C = 1 °C

4.5.9 C = (45 – 1) psi = 44 psi
4.5.10 (a)
4.5.11 (b)
4.5.12 (d)
4.5.13 (d)
4.5.14

(a) 1 °C; 2 °F
(b) 1 °C; 2 °F
(c) 21 °C; 70 °F

4.5.15
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(a) 0.5 V
(b) 0.25 V
(c) (0 a 15) V
(d) 2% × 15 V = 0.3 V

4.5.16

(a) The precision of an instrument is related to little or no dispersion of the
measured values. This can be found in the standard deviation of measure-
ments. The standard deviation of multimeter one is 0.01 Ω, and multimeter
two is 0.02 Ω. Therefore, multimeter 1 is more precise.

(b) The accuracy of a measurement instrument is related to its lower error;
multimeter one is more accurate since its error is 0.03 Ω, and the multimeter
two error equals 0.04 Ω.

4.5.17

(a) Point 5, the bias is zero.
(b) Point 2, the highest bias, 0.004 g.
(c) Mean = 5.004 g

Bias in this point = 0.002 g
Correct value = (5.004 – 0.002) g = 5.002 g

4.5.18

(a) Correction of the standard = (50.2 + 0.3) °C = 50.5 °C
(b) Mean of the object = 50 °C

Bias of the object = (50 – 50.5) °C = - 0.5 °C = 0 °C (the resolution of
the object is 1 °C)

(c) Correction = 0 °C.

Chapter 5

5.11.1

(a) 2 km/h
(b) 2 %
(c) 4 %
(d) 40 %
(e) The point of 200 km/h = 1 %.



þ
veff =

0:0158114

0:0122474

4
0:014

∞

= 11→ k= 2:26
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5.11.2

(a) (176.4 + 0.2) cm
(b) (1.764 + 0.002) m

5.11.3

(a) 0.64 s
(b) sx = s

5
p = 0:004472 s

(c) The standard deviation of the mean.
(d) veff = 5 - 1 = 4→ k = 2.869

U= uA : k= 0:004472 × 2:869= 0:0128 s= 0:01 s

5.11.4

(a) 5
(b) 0.44 s
(c) sx = s

5
p = 0:012247 s

(d)

uc = u2A þ u2timer = 0:0122472 þ 0:012 = 0:015811 s

U= 2:26× 0:015811 s= 0:04 s

(e) uc = uA = 0.012247 s

veff = n- 1= 4→ k= 2:87 U= 2:87 × 0:012247 s= 0:04 s

5.11.5

The mean of the measurements is 256.98 mm, but as the resolution is 0.05 mm,
we have to round to 257.00 mm.

Uncertainty of repeatability: uA = s
n

p =
0:06455

2 = 0:032275 mm

Combined uncertainty:

uc = u2A þ u2inst = 0:00322752 þ 0:0252 = 0:040825 mm

Degree of freedom and expanded uncertainty:
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veff =
u4c
u4
A

3

= 7:68→ k= 2:43→U= 2:43× 0:040825 mm= 0:10 mm

d= 257:00± 0:10ð Þ mm

5.11.6

(a) x= 10:156 mm→B= x- TV = ð Þ10:156- 10:1538 mm= 0:002 mm
(b) uA = s

10
p =

0:001826
10

p = 0:000577 mm

(c) uc = u2A þ u2micro = 0:0005772 þ 0:002=2:23ð Þ2 = 0:001067 mm

veff =
u4c

u4
A

9 þ u4micro
12

= 19:53

(d) k = 2.14 → U = 2.14 × 0.001067mm = 0.00228 mm = 0.002mm

5.11.7

(a) 0.070711 g
(b) 0 g
(c) 0.3 g, k = 2.10 for 95.45 %

5.11.8 The expanded uncertainty was declared with more than two significant digits,
and this is not allowed according to ILAC-P14:09/2020. Uncertainty should have
been declared as 0.024 g/ml.

5.11.9

(a) Mean = 80.6 °C = 80.5 °C (the thermometer resolution is 0.5 °C)
(b) urepeat = s

n
p =

0:41833
5

p = 0:1871 °C

(c) uthermo =
U
k
=

0:6
2:87 = 0:2091 °C

(d) uc = u2repeat þ u2thermo = 0:2805 °C

(e) Degree of freedom
(f) k factor

veff =
0:28054

0:18714

4 þ 0:20914

4

= 7:9→ k= 2:43

(g) U = 2.43 × 0.2805 ° C = 0.7 °C
(h) The greatest source of uncertainty is the uncertainty of bimetallic thermom-

eter measurement.



ð Þxcorrected = x-B= 100:0035- - 0:0050 = 100:0085 g
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5.11.10

(a)
(b) urepeat = 0.000176383 g

(c) uc = u2repeat þ u2scale = 0:0001763832 þ 0:00042 = 0:000437163 g

veff =
u4c
u4
A

2

= 75, 5→ k= 2:03→U= 2:03× 0:000437163 g= 0:0009 g

5.11.11

(a) xcorrected = x-B= 12:005- 0:0015= 11:9990 g
(b) urepeat = 0.00006667 g
(c) (c) B = 0.0015 g

(d) uc = u2repeat þ u2scale = 0:000066672 þ 0:000142182 = 0:000157034 g

veff =
u4c

u4
A

2 þ u4scale
25

= 17, 93→ k= 2:16→U= 2:16× 0:000157034 g= 0:0003 g

5.11.12 (c)

Chapter 6

6.6.1

M= 1 000± 1ð Þ g k= 2:00 and 95:45 %: uM = 1g=2= 0:5 g

D= 8:000± 0:002ð Þ cm k= 2:00 and 95:45%: uD = 0:002 cm=2= 0:001 cm

ρ=
M

V
=

6M
πD3 =

6× 1 000
3:1416× 83

= 3:730 g=cm3

(a)

uρ =
∂ρ

∂M
uM

2

þ ∂ρ

∂D
uD

2
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uρ =
6

πD3 uM

2

þ - 18M
πD4 uD

2

= 0:00233 g=cm3

U= k: uρ = 2× 0:00233
g

cm3 = 0:005 g=cm3

(b)

uρ = ρ
uM
M

2
þ 3uD

D

2

uρ = 3:730
0:5
1 000

2

þ 3 × 0:001
8

2

= 0:00233 g=cm3

U= k: uρ = 2× 0:00233
g

cm3 = 0:005 g=cm3

6.6.2 The result of mode 2 was different, because the L1 and L2 variables are
statistically dependent. Thus, measurement uncertainty should consider the cor-
relation coefficient (r) between the variables.

u2A =
∂A

∂L1

2

u2L1 þ
∂A

∂L2

2

u2L2 þ 2
∂A

∂L1
∂A

∂L2
r L1, L2ð ÞuL1uL2

r L1, L2ð Þ= 1; L1= L2= L → uL1 = uL2 = uL

uA = L22u2L1 þ L12u2L2 þ 2:L1:L2uL1uL2

uA = 4L2u2L = 2LuL

6.6.3

uρ

ρ

2

=
um
m

2
þ 3ud

d

2
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urel density
2
= urel massð Þ2 þ 3ud

d

2

0:012ð Þ2 = 0:01ð Þ2 þ 3ud
1:000

2

ud = 0:002 cm= 0:2%

6.6.4

(a) 0.1 cm
(b) 0.1/3 = 0.033
(c) 3.33 %
(d) 3/200 = 0.015 cm
(e) 3.33%, the same as the book

6.6.5

(a) L = (10.0 ± 0.1) cm, W = (5.0 ± 0.1) cm, H = (2.0 ± 0.1) cm,
M= (50.0 ± 0.1) g. All uncertainties are declared with k= 2.00 and 95.45 %.

ρ=
m

V
=

m

LWH
=

50
10:5:2

= 0:50 g=cm3

(b)

uρ = ρ
um
m

2
þ uL

L

2
þ uW

W

2
þ uH

H

2

uρ = 0:50
0:05
50

2

þ 0:05
10

2

þ 0:05
5

2

þ 0:05
2

2

= 0:0137 g=cm3

U= 2× 0:0137= 0:03g=cm3

(c) The variable that has the highest relative uncertainty is the height variable of
block H.

uρ = 0:50
0:05
2

2

= 0:0125 g=cm3

U= 2× 0:0125= 0:02g=cm3

Note that variable H preponderantly influences the wooden block density mea-
surement uncertainty. Thus, to reduce the final uncertainty of the specific mass, we
must improve the measurement of this H variable.



þð Þt= 0:45 0:01 s; k= 2:23 and 95:45%
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6.6.6
d = (1.00 ± 0.01) cm, with k = 2.00 and 95.45 %

(a) V =
πd3

6 = 0:524 cm3

(b) 0.01/1 × 100 % = 1 %
(c)

uV =
∂V

∂d
ud =

πd2

2
ud = 0:0079 cm3

→U= 2 × 0:0079= 0:016 g=cm3

uV =V :
3ud
d

= 0:524 ×
0:015
1

= 0:0079→U= 0:016 g=cm3

6.6.7

f =
1

2π LC
p =

LCð Þ-1=2

2π

uf

f

2

=
- uL:1=2

L

2

þ - uC:1=2
C

2

uf

f

2

= -
1
2
× 0:05

2

þ -
1
2
× 0:2

2

= 0:010625

uf

f
= 0:0103→ u%f = 10:3%

6.6.8

y= 1:000± 0:001ð Þm; k= 2:43 and 95:45%

(a) Uy

y
=

0:001
1 = 0:1%

(b) Ut

t
=

0:01
0:45 = 2:2%

(c) g= 2y
t2
= 9:9 m=s2

(d) g= 2y
t2
= 2yt-2

ug = g
uy

y

2

þ - 2ut
t

2



þ
veff =

uP
P

4

uV
V

4
=13 uI

I

4
=12

= 24:98→ k= 2:11
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ug = 9:9
0:001=2:43

1

2

þ - 2× 0:01=2:23
0:45

2

= 0:197 m=s2

y : k= 2:43 → υ= 7 uy = 0:001=2:43= 0:000411m

t : k= 2:23 → υ= 12 ut = 0:01=2:23= 0:0045s

veff =
0:197=9:9Þ4

0:000411=1Þ4
7 þ 0:0045=0:45Þ4

12 = 190,35→ k= 2:01

U= 2:01× 0:197= 0:4 m=s2

(e) It is possible to neglect the uncertainty of height y (0.1%), since its relative
uncertainty is minimal compared to the relative uncertainty of time t (2.2%).

ug = 9:9
- 2× 0:01=2:23

0:45

2

= 0:197 m=s2

6.6.9

R= 10:0± 0:1ð Þ Ω, k= 2:43 and 95:45%

I= 10:0± 0:1ð Þ A, k= 2:23and 95:45%

V = 100± 1ð Þ V, k= 2:21and 95:45%

uR= 0:1=2:43= 0:04115 υ= 7

uI= 0:1=2:23= 0:04484 υ= 12

uV = 1=2:21= 0:4525 υ= 13

(a) P = V.I = 1 000 W = 1.00 kW

uP =P
uV
V

2
þ uI

I

2
= 6:3705 W

U= 2:11× 6:3705= 13:44W= 0:01kW

(b) P = R.I2 = 1 000 W = 1.00 kW



þ
V ef =

uP
P

4

uR
R

4
=7 uI

I

4
=12

= 126:98 → k= 2:02

þ
V ef =

uP
P

4

uR
R

4
=7 uV

V

4
=13

= 133:41 → k= 2:02

þM4=M1 M2–M3= 144:7g
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uP =P
uR
R

2
þ 2

uI
I

2
= 9:868W

U= 2:02× 9:868= 19:99W= 0:02kW

(c) P = V2/R = 1 000 W = 1.00 kW

uP =P
uR
R

2
þ 2

uV
V

2
= 9:942W

U= 2:02× 9:942= 20:07W= 0:02kW

Conclusion: The letter (a) is the measurement method that provides the lowest
uncertainty for electric power. Its value is half of the uncertainty provided by
alternatives (b) and (c).

6.6.10

M1 = 128:0± 0:2ð Þ g

M2 = 56:4± 0:4ð Þ g

M3 = 39:7± 0:7ð Þ g

uM1 =U=k= 0:2=2= 0:1g

uM2 =U=k= 0:4=2= 0:2g

uM3 =U=k= 0:7=2= 0:35g

uM4 = u2M1
þ u2M2

þ u2M3
= 0:12 þ 0:22 þ 0:352 = 0:42g

U= 2× 0:42= 0:8g

6.6.11
Liters = V = 80.8 L
Distance = S = 834.5 km
C = S/V = 10.3 km/L
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uC =C
uS
S

2
þ uV

V

2
uV = u2V1 þ u2V2

uC =C
uS
S

2
þ uV

V

2
=D

uS
S

2
þ u2V1 þ u2V2

V2 = 0:02106km=L

U= 2 × 0:02106= 0:042km=L

C= 10:3± 4:2 × 10-2 km=L

6.6.12
(a) 72.467 mm = 50 mm + 20 mm + 1.46 mm + 1.007 mm
(b)

U72:467 mm = U2
50 mm þ U2

20 mm þ U2
1:46 mm þ U2

1:007 mm

u V1 = 0,1 L

u V2 = 0,05 L

u S = 1,25 km

U72:467 mm = 0:00042 þ 0:00032 þ 0:00022 þ 0:00022 = 0:0006 mm= 0:6 μm

6.6.13
(a) V = 200:0 V i= 1:99 A

Voltmeter Ammeter

Bias (V) +0.1 Bias (A) -0.04

Uncertainty (V) 0.2 Uncertainty (A) 0.02

(k = 2.00; 95.45%) (k = 2.00; 95.45%)

Vcor = 199:9 V icor = 2:03 A

R=
Vcor

icor
= 98:3 Ω

(b) B = R - Rnom = 98.3 – 100 = - 1.7 Ω

(c) C = - B = 1.7 Ω

(d)

uR =R
uV
V

2
þ ui

i

2
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u2V = u2AV þ u2BV u2i = u2Ai þ u2Bi

uR =R
u2AV þ u2BV

V2 þ u2Ai þ u2Bi

i2
= 98:3

0:0352 þ 0:12

199:92
þ 0:00382 þ 0:012

2:032

= 0:52 Ω

uV = 0:0352 þ 0:12 = 0:106 V

ui = 0:00382 þ 0:012 = 0:0107 A

veff =

uR
R

4

uV
Vð Þ4
vV

þ
ui
ið Þ4
vi

vV =
u4V
uA4

V

8

=
0:1064

0:0354

8

= 673

vi =
u4i
uA4

i

8

=
0:01074

0:00384

8

= 503

veff =

uR
R

4

uV
Vð Þ4
vV

þ
ui
ið Þ4
vi

=

0:52
98:3

4

0:106
199:9ð Þ4
673 þ

0:0107
2:03ð Þ4
503

= 510→ k= 2:00

U= 2:00 × 0:52= 1:04 Ω

R= 98:3± 1:0ð Þ Ω k= 2:00

Voltage (V) Electric current (A)

199.9 1.99

200.2 2.02

200.1 1.98

199.9 1.99

199.9 1.99

200.0 2.00

200.0 2.00

199.9 1.99

200.0 1.99

s(V ); s(i) 0.105 0.0011

uA(V ); uA(i) 0.105/3 = 0.035 0.0011/3 = 0.0038
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Chapter 7

7.8.1
(a)

y = -5.7749E-05x2 + 3.9085E-01x + 9.9998E+01

R² = 1.0000E+00

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250

R tð Þ=R 0ð Þ 1þ At þ B t2 = 99:998 1þ 3:91E‐3 t–5:78E‐7 t2

(b)

(x) Temp. Std. (°C) ( y) Ω R(t) Ω [y-R(t)]2

0.00 99.99 99.9980 6.4E-05

25.00 109.74 109.7332 4.6828E-05

50.00 119.40 119.3961 1.4996E-05

75.00 128.99 128.9869 9.5365E-06

100.00 138.50 138.5055 3.036E-05

125.00 147.95 147.9519 3.6936E-06

150.00 157.32 157.3261 3.7792E-05

175.00 166.63 166.6282 3.2874E-06

200.00 175.86 175.8580 3.8416E-06

Σ 0.000214336

ufit 0.005977

(c) ∂R
=R0 ð ÞAþ 2Bt Ω

= 99:998 3:91 × 10-3
∂t °C - 2 × 5:78 × 10-7t Ω

°C
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t= 200 °C→
∂R

∂t
= 99:998 3:91 × 10-3

- 2× 5:78 × 10-7
× 200

Ω

°C

= 0:36775
Ω

°C

umult °C =
umult Ω

∂R=∂t
=

0:01
0:36775

°C= 0:02719 °C

ubath =
0:02 °C

3
p = 0:0155 °C

ustd = 0:01 °C

ucomb = 0:0059772 þ 0:027192 þ 0:01552 þ 0:012 °C= 0:0318 °C

U= k ucomb = 2 × 0:0318 °C= 0:06 °C

7.8.2
(a)

Scale (kg) utype A = ps
n

0.2 0.3 0.3 0.0333

10.2 10.4 10.4 0.0667

14.9 14.9 14.7 0.0667

20.2 20.0 20.3 0.0882

(b)

utype A uresol umass ucomb veff

0.0333333 0.028868 0.009569 0.045122 6.7 2.5 0.1

0.0666667 0.028868 0.009569 0.073276 2.9 4.5 0.3

0.0666667 0.028868 0.009569 0.073276 2.9 4.5 0.3

0.0881917 0.028868 0.009569 0.093288 2.5 4.5 0.4



[y-f(x)]2

k U (kg)
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(c)

y = 1.011395x - 0.279908

R² = 0.999451

-5

0

5

10

15

20

25

0 5 10 15 20 25

)
g

k( ssa
m 

dra
d

nat
S

Scale lecture (kg)

Scale calibration graph 

Scale (mean) Std mass f(x)

0.3 0 -0.0101933 0.000104

10.3 10 10.1712333 0.029321

14.8 15 14.7225333 0.076988

20.2 20 20.1166667 0.013611

Σ 0.120024

ufit 0.244973

ufitt = 0:244973kg

(d)

Scale (kg) Fitting eq. (kg) Bias (kg) ucomb (kg) υeff

1.0 0.7 0.3 0.2621 2.84 4.5 1.2

2.0 1.7 0.3

3.0 2.8 0.2

4.0 3.8 0.2

5.0 4.8 0.2

6.0 5.8 0.2

7.0 6.8 0.2

8.0 7.8 0.2

9.0 8.8 0.2

10.0 9.8 0.2

11.0 10.8 0.2

12.0 11.9 0.1

13.0 12.9 0.1

(continued)
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(continued)

Scale (kg) Fitting eq. (kg) Bias (kg) ucomb (kg) υeff

14.0 13.9 0.1

15.0 14.9 0.1

16.0 15.9 0.1

17.0 16.9 0.1

18.0 17.9 0.1

19.0 18.9 0.1

20.0 19.9 0.1

7.8.3

UGLT = 0:2 °C

UF = U2
GLT þ U2

SMS ≤ 1:025 UGLT

U2
GLT þ U2

SMS ≤ 1:050625 U2
GLT→U2

SMS ≤ 0:050625 U2
GLT ≤ 0:002025 °C

USMS ≤ 0:045 °C

7.8.4

Measurements Standard (°C)a Object (°C)

1 10.1 10.5

10.1 10.5

10.1 10.0

2 19.8 19.5

19.8 19.5

19.8 19.5

3 50.1 50.0

50.1 50.0

50.1 50.0
aValues are corrected by the bias found in the calibration certificate

(a)

Measurements u Type A std (°C) u Type A object (°C)

1 0 0.1667

(b) ubath = 0:08 °C
3

p = 0:04619 °C

(c) ures = 0:5 °C
12

p = 0:14434 °C

(d)
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Standard (°C) Object (°C) Bias (°C)

10.1 10.5a 0.4

19.8 19.5 -0.3

50.1 50.0 -0.1
aThe mean object is 10.33 °C, but its resolution is 0.5 °C. We should round to 10.5 °C

(e)

Object (x) Standard ( y)

10.5 10.1

10.5 10.1

10.0 10.1

19.5 19.8

19.5 19.8

19.5 19.8

50.0 50.1

50.0 50.1

50.0 50.1

y = 1.0046 x - 0.0662

R² = 0.9997

0

10

20

30

40

50

60

0 20 40 60

(
er

utare
p

me
T

dra
d

nat
S

Object Temperature (°C)

(f)

Object Std f(x y-f(x)]2

10.5 10.1 10.4821 0.14600041

10.5 10.1 10.4821 0.14600041

10.0 10.1 9.9798 0.01444804

19.5 19.8 19.5235 0.07645225

19.5 19.8 19.5235 0.07645225

19.5 19.8 19.5235 0.07645225

50.0 50.1 50.1638 0.00407044

50.0 50.1 50.1638 0.00407044

50.0 50.1 50.1638 0.00407044

Σ 0.54801693

ufit 0.279800166

(g)
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O
bj
ec
t
(m

ea
n)

(°
C
)

St
d
(m

ea
n)

(°
C
)

u
A

u
fi
tt

u
o
b
j
re
s

u
st
d
re
s

u
b
at
h

u
st
d

u
co
m
b

v e
ff

(°
C
)

10
.5

10
.1

0.
16

67
0.
27

98
0.
14

43
4

0.
02

88
7

0.
04

61
9

0.
09

75
6

0.
37

33
15

.4
2.
18

0.
8

19
.5

19
.8

0
0.
27

98
0.
14

43
4

0.
02

88
7

0.
04

61
9

0.
1

0.
33

48
14

.3
2.
20

0.
7

50
.0

50
.1

0
0.
27

98
0.
14

43
4

0.
02

88
7

0.
04

61
9

0.
14

21
8

0.
34

97
16

.8
2.
17

0.
8



Proposed Exercises—Answers and Solutions 311

7.8.5
(a)

Object Standard (bar) Hysteresis

bar Charge 1 Discharge 1 Charge 2 Discharge 2 bar

6.0 6.4 6.5 6.4 6.5 0.10

10.0 10.5 10.4 10.5 10.4 0.10

24.0 24.3 24.2 24.3 24.2 0.10

30.0 30.3 30.4 30.3 30.4 0.10

40.0 40.5 40.4 40.5 40.4 0.10

(b)

Object Standard (bar)

Error (bar) Error (%)bar Charge 1 Discharge 1 Charge 2 Discharge 2

6.0 6.4 6.5 6.4 6.5 -0.5 1.25%

10.0 10.5 10.4 10.5 10.4 -0.5 1.25%

24.0 24.3 24.2 24.3 24.2 -0.3 0.75%

30.0 30.3 30.4 30.3 30.4 -0.4 1.00%

40.0 40.5 40.4 40.5 40.4 -0.5 1.25%

(c)
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y = 0.998485x + 0.423333

R² = 0.999946
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Obj Std f(x y-f(x)2]

6.0 6.45 6.414243 0.001279

10.0 10.45 10.40818 0.001749

24.0 24.25 24.38697 0.018762

30.0 30.35 30.37788 0.000777

40.0 40.45 40.36273 0.007616

Σ 0.030182

ufit 0.100303 bar

(f)

7.8.6
(a) (b)

Object Standarda (mV)

Error (mV) Error (%)(mV) V1 V2 V3 V4

40.00 40.110 40.150 40.160 40.120 -0.16 0.08

80.00 80.117 80.157 80.137 80.127 -0.16 0.08

120.00 120.146 120.166 120.186 120.186 -0.19 0.09

160.00 160.225 160.175 160.165 160.175 -0.22 0.11

200.00 200.205 200.225 200.255 200.265 -0.27 0.13
aValues are corrected by the bias found in the calibration certificate
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Object Standard (mV) u u u

υ

eff U

(mV) V1 V2 V3 V4
Type
A

Obj
resol std parasite comb mV

40.00 40.110 40.150 40.160 40.120 0.0119 0.00289 0.001 0.00115 0.01234 3.5 3.31 0.04

80.00 80.117 80.157 80.137 80.127 0.0085 0.00289 0.001 0.00115 0.00914 3.9 3.31 0.03

120.00 120.146 120.166 120.186 120.186 0.0096 0.00289 0.001 0.00115 0.01012 3.7 3.31 0.03

160.00 160.225 160.175 160.165 160.175 0.0135 0.00289 0.001 0.00115 0.01393 3.4 3.31 0.05

200.00 200.205 200.225 200.255 200.265 0.0138 0.00289 0.001 0.00115 0.01415 3.3 3.31 0.05

y = 1.000639x + 0.095950

R² = 1.000000

0

50
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200

250

0 50 100 150 200 250

S
ta

n
d

a
rd

 (
m

V
)

Object (mV)

(e)

Object Standard f(x y-f(x)]2

40.00 40.135 40.11990 0.00023

80.00 80.135 80.14390 8.8E-05

120.00 120.171 120.16790 9.6E-06

160.00 160.185 160.19190 4.8E-05

200.00 200.238 200.21590 0.00047

Σ 0.00084

u fitting 0.01673 mV
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(f)

Object Std u u

bar bar Type A Obj. resol Std. resol std fitting comb veff k bar

6.0 6.45 0.0289 0.102 0.0289 0.05 0.1003 0.157 18 2.16 0.3

10.0 10.45 0.0289 0.102 0.0289 0.05 0.1003 0.157 18 2.16 0.3

24.0 24.25 0.0289 0.102 0.0289 0.05 0.1003 0.157 18 2.16 0.3

30.0 30.35 0.0289 0.102 0.0289 0.05 0.1003 0.157 18 2.16 0.3

40.0 40.45 0.0289 0.102 0.0289 0.05 0.1003 0.157 18 2.16 0.3
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Chapter 8

8.9.1. (b)
8.9.2. (a)
8.9.3. y = 910 bar

TL = 900 bar U= 10 bar → u= 5 bar

Pc =φ
y- TL

u
=φ

910- 900
5

=φ 2ð Þ= 0:9772→ 97:72%

8.9.4. Pc =φ ,
TU - y

u
-φ ,

TL - y

u

TU = 34:0 °C TL = 30 °C u yð Þ= 0:5 °C

y= 34 °C Pc =φ
34- 34
0:5

-φ
30- 34
0:5

=φ 0ð Þ-φ - 16ð Þ= 0:5- 0

= 0:5 50%ð Þ

y= 32 °C Pc =φ
34- 32
0:5

-φ
30- 32
0:5

=φ 4ð Þ-φ - 4ð Þ= 1- 0

= 1 100%ð Þ

y= 33 °C Pc =φ
34- 33
0:5

-φ
30- 33
0:5

=φ 2ð Þ-φ - 6ð Þ= 0:9772- 0

= 0:9772 97:72%ð Þ

8.9.5. (c)
8.9.6. TU = 500 mg/kg U = 4 mg → u = 2 mg P = 0.99

P=φ
y- TU

u
=φ

y- 500
2

= z = 0:99→ z= 2:33

2:33=
y- 500

2
→ y= 504,66≅ 505 mg=kg



318 Proposed Exercises—Answers and Solutions

8.9.7. (d)
8.9.8.

P=φ
TL - y

u
=φ

715- y

2:5
= z = 0:999→ z= 3:08

3:08=
715- y

2:5
→ y= 707 kg=m3

8.9.9.

(a) (83 ± 3) ° C
(b) TUR = TL/U → U = TL/TUR = 3 ° C/3 = 1 ° C

8.9.10.

(a) TL = 44.0 ° C and TU = 50.0 ° C
(b) TUR = TL/U = 5 → U = TL/TUR = 3 ° C/5 = 0.6 ° C

w= 1:5 U= 0:9 °C → AL = TL þ w= 44:9 °C and AU = TU -w

= 49:1 °C

Chapter 9

9.5.1

(R) The calibration certificate is a technical record that enables the user to measure instrument
conformity assessment

(W) The laboratory that performs the measuring instrument calibration will never make any
recommendation on the periodicity of calibration

(R) The calibration laboratory does not usually adjust the measurement instrument; however,
results should be reported before and after adjustment if this is done

(R) The certificate must present calibration results in the units of measure used and declare the
measurement uncertainty, scope factor, and confidence level used

(W) The environmental conditions of the calibration site only need to be declared, if they affect
the calibration result
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9.5.2

Object (bar)

Standard (bar)

Error (bar) Error (%)Charge 1 Discharge 1 Charge 2 Discharge 2

5.0 5.00 5.20 5.25 5.25 0.25 0.42

15.0 15.25 15.55 15.00 15.50 0.55 0.92

25.0 25.00 25.55 25.50 25.55 0.55 0.92

35.0 35.25 35.00 35.50 35.25 0.50 0.83

45.0 44.55 45.05 45.00 45.50 0.55 0.92

55.0 56.00 56.00 55.55 55.50 1.00 1.67

60.0 60.00 60.00 60.00 60.00 0.00 0

Class 1.0 → MPE = 1.0 %. The 55.0 bar error was 1.67 %, higher than the MPE.
Therefore, the gauge does not meet class 1.0.

9.5.3

• Unique identification that all components are recognized as part of a complete
report and an identification to the end of the document.

• Presentation of the method used in calibration.
• Date of calibration.
• Declaration that the results apply only to the calibrated instrument.
• Declaration that the certificate should only be reproduced completely.

9.5.4
Table 9.9 Burettes (ASTM E287)

Capacity (mL)

MPE (mL) ±

Class A Class B

10 0.02 0.04

25 0.03 0.06

50 0.05 0.10

100 0.10 0.20

V = 25:05 mL → Error= 25:05–25ð Þ mL= 0:05 mL<Class B error
= 0:10 OKð Þ

U= 0:01 mL

Umaximum =E þ U= 0:05þ 0:01ð Þ mL= 0:06 mL<AC= 0:1 mL OKð Þ

9.5.5 We know that for a 95 % decision rule (ISO 14253-1:2017), we must use a
guard band w = 0.83 Umaximum

Width: AL = TL + Umaximum = (24.988 + 0.00166) mm = 24.990 mm

AU = TU -Umaximum = 25:012- 0:00166ð Þ mm= 25:010 mm

Diameter: AL = TL + Umaximum = (958.5 + 0.415) mm = 958.9 mm
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AU = TU -Umaximum = 961:5- 0:415ð Þ mm= 961:1 mm

9.5.6 According to Table 8.11, for a false positive of less than 2.5%, we must adopt a
w guard band equal to AC.

AL = TL þ Umaximum = 14:95þ 0:017ð Þ mm= 14:97 mm

AU = TU -Umaximum = 15:05- 0:017ð Þ mm= 15:03 mm

9.5.7 (b)
9.5.8 (a)
9.5.9 (b)
9.5.10 (c)
9.5.11 (a)
9.5.12 (b)
9.5.13 (c)
9.5.14 (b)
9.5.15 (b)
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