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on either the orbital eccentricity or inclination. These general results apply to a
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supermassive black hole in the Galactic Centre to binary and triple pulsars, exo-
planets, and interplanetary probes. Readers will become acquainted with working
out a variety of orbital effects other than the time-honoured perihelion precession,
designing their own space-based tests, performing effective sensitivity analyses,
and assessing realistic error budgets.
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“This book provides a wonderful and very detailed guide for those interested in comparing
observations with Einstein’s theory and the many proposed alternatives. Written in a very
readable and accessible manner, it is an indispensable guide to comparing theoretical gravi-
tational predictions with the most recent data coming from celestial observations provided
by satellites, space probes, and telescopes. I highly recommend it to anyone interested in a
very practical handbook for comparing theory and observations.’

Jim Isenberg, Professor Emeritus, University of Oregon

“This scholarly book provides a comprehensive account of post-Newtonian orbital effects
in gravitational systems. It is an authoritative contribution to modern relativistic celes-
tial mechanics. Various gravitoelectric and gravitomagnetic effects of general relativity are
treated in detail at the post-Newtonian level, while the last chapter of the book is devoted
to modified gravity models. The presentation is clear and informative. This book is recom-
mended to scientists working in astronomy and relativistic orbital mechanics.’
Bahram Mashhoon, Professor Emeritus of Physics,
University of Missouri

‘This is a self-contained text dealing with the main issue of any classical theory of gravity:
orbital motion. The approach is very pedagogical. It is a precious toolkit to compare astro-
nomical phenomenology with theories of gravity at any scale of astrophysical interest. The
book is extremely useful for advanced undergraduate students as well as for PhD students
in physics, astronomy, and mathematical physics. Furthermore, senior researchers working
in the field can use it as a quick and comprehensive reference manual.’
Salvatore Capozziello, Full Professor, Universita degli
Studi di Napoli ‘Federico II’

‘Despite being mainly a theoretician, I find that this valuable book fills a gap in current lit-
erature since it sits at the interface between different fields which often do not communicate
with one another. The approach and the methods developed in it can be straightforwardly
extended from classical GR to alternative models of gravity, the orbital precessions of many
of which are explicitly calculated. Interestingly, it explains how to potentially calculate the
effect of any alternative gravity on several other observables such as astrometric angles,
characteristic timescales, radial velocity, etc. I definitely recommend it to any serious stu-
dent, researcher, and scholar involved in gravitational physics study.’
Sergei D. Odintsov, ICREA Research Professor, Institute of
Space Sciences — CSIC, Spain

‘An encyclopaedia of the 1pN and 2pN orbital effects, this book also explains approaches
to testing GR in the said approximations. It is these practical applications which prove the
great value of the post-Newtonian approximations, and which make this book an essential
addition to the libraries of not only experts on GR and its applications, but also of the
experts planning missions to giant planets. This excellent monograph provides a broad and
up-to-date picture of post-Newtonian GR, as well as possible schemes of testing GR. |
would recommend it to any graduate student or researcher working in the field of celestial
mechanics and relativity.’

Michael Efroimsky, Astronomer, US Naval Observatory
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Introduction

The feeblest of the four fundamental interactions governing the natural world is
gravitation.!

The General Theory of Relativity? (GTR) is the formulation of gravitation set
out by Albert Einstein in 1915 (Einstein, 1915¢,d,a) and completed one year later
(Einstein, 1916). It is the simplest possible gravitational theory compatible with his
Special Theory of Relativity (STR) (Einstein, 1905). For contemporary compre-
hensive expositions of GTR, see, for example, Fok (1959), Synge (1960), Weinberg
(1972), Hawking and Ellis (1973), Wald (1984), Stephani (1990), Cheng (2009),
Padnanabhan (2010), Ohanian and Ruffini (2013), Zee (2013), Misner et al. (2017),
Carroll (2019), Thorne and Blandford (2021), Schutz (2022), and Kenyon (2023).
Some recent review articles, which appeared in the literature on the occasion of its
last centenary, are, for example, Blandford (2015), Iorio (2015a), and Debono and
Smoot (2016).

The time-honoured Law of Universal Gravitation proposed by Isaac Newton
at the end of the seventeenth century in his immortal book Philosophice Natu-
ralis Principia Mathematica (Newton, 1687; Chandrasekhar, 1995) describes it by
means of a mysterious — remarkably, for Newton himself — force acting instantan-
eously between two or more material bodies, even if mutually separated in empty
space by distances » much larger than their characteristic sizes D; as such, it bene-
fits from the properties of the forces established by the three Newtonian laws of
dynamics.

Instead, GTR adopts a completely different conceptual framework. According to
it, gravitation is no longer best understood as a force, being, instead, a manifestation
of the curvature, in a very specific sense, of a four-dimensional pseudo-Riemannian

1 From the adjective gravis, e (‘heavy’) and the noun gravitas, atis, (‘weight, heaviness”).
2 From Allgemeine Relativititstheorie.
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Lorentzian manifold® known as spacetime (Oloff, 2023) with respect to the so-
called ‘flat” version of the spacetime employed by STR. Stated differently, the
Einsteinian picture replaced the Newtonian concept of gravitational force with the
notion of deformation of the chronogeometric* structure of spacetime (Damour,
2007) due to all forms of energy weighing it; as such, GTR can be defined as a
chronogeometrodynamic theory of gravitation (Torretti, 1991). Indeed, the weight
force on the Earth, which Newton unified with the agent determining the course of
the heavens in the framework of his Universal Gravitation, is just an illusion due to
the fact that we are born, live continuously, and die on the surface of our planet.’
Actually, what we perceive as weight is not due to gravitation, but to the reaction
force, of non-gravitational nature, exerted on our bodies by any physical surface
we rest on; a chair, a floor, a bed. What kills us when we fall from a building is not
gravity, but the non-gravitational reaction force by the ground. Indeed, if we are in
free fall, that is, if we move subjected only to gravity and no® forces act on us, all
the different parts of our body proceed with the same acceleration,” and we are not
torn apart as would occur if gravity acted differently on bodies of diverse compos-
ition. Thus, as long as the regime of free fall continues, we are weightless, and the
gravity seems to have been cancelled in our neighbourhood; for us, all things go as
predicted by STR, we would obtain always the value of ¢ in any experiment aimed
at measuring the speed of light, and the worldlines of non-interacting, electrically
neutral material objects appear as just straight in our freely falling experimental
setup. It can be said that we are in a local (in both the spatial and temporal sense)
inertial reference frame. It is one aspect of the so-called Equivalence Principle
(EP).2 In fact, such a removal of gravitation is not exact, being dictated by how

3 According to differential geometry, a differentiable manifold is said to be pseudo-Riemannian (Benn and
Tucker, 1987; Bishop and Goldberg, 1980) if it is endowed with a metric tensor that is everywhere
nondegenerate, thus relaxing the requirement of positive-definiteness characterizing the Riemannian
manifolds. A nq-dimensional Lorentzian manifold is a special case of a pseudo-Riemannian manifold whose
metric signature is (1, ng — 1).

From Xpovog, ‘Chronos’, the personification of Time, not to be confused with Kpdovog, ‘Kronos’, the Titan
father of Zeus, corresponding also to the Roman deity Saturn.

From mAaviiTng, -ov, 0, meaning ‘wanderer’, composed by the verb miavdw (‘I wander’) and the
masculine agent noun suffix -tng.

If gravity were a force, here one would have to prefix the adjective ‘other’ to the word ‘forces’.

The tale according to which Galilei experimentally proved it by dropping objects of different weights from
the Leaning Tower of Pisa (Drake, 1978) is, in all likelihood, apocryphal (Adler and Coulter, 1978; Segre,
1989; Crease, 2006).

So far, one has only talked about bodies whose self-gravity is negligible in holding their constituent parts
together, and whose free fall is not affected by their reciprocal gravitational interaction. Such a weak version
of the EP (Nobili and Anselmi, 2018) has been recently tested to a relative accuracy of ~ 10-15 (Touboul

et al., 2022a) in the spaceborne experiment Micro-Satellite a trainée Compensée pour I’Observation du
Principe d’Equivalence (MicroSCOPE) (Touboul et al., 2022b) with two objects made of platinum and
titanium alloys, respectively, kept in free fall around the Earth inside a spacecraft which shielded them from
any potentially disturbing non-gravitational influences. As shown by analyses of the motions of the Earth and
the Moon in the field of the Sun with the Lunar Laser Ranging (LLR) technique (Williams et al., 2012;
Miiller et al., 2019; Biskupek et al., 2021) and, more recently, of the binary pulsar-white dwarf PSR
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uniform the gravitational field is on the scale of our body and of the things that
free fall in our vicinity along with us. The more uniform the field is, or the smaller
our neighbourhood is, the more accurate the absence of gravity is. In any case, free
falling non-interacting objects left to themselves will sooner or later move, more
or less rapidly, towards or apart from each other because of the unavoidable non-
uniformity of the gravitational field in which they all fall together. That is not an
illusion, and there is no way of wholly removing such a state of affairs: it is the
true essence of gravitation for Einstein (Taylor and Wheeler, 1992). In Newtonian
language, one would explain the aforementioned pattern in terms of residual, or
differential, gravitational forces, commonly dubbed tidal since they are the ana-
logue of the lunar gravitational pulls which, varying from one end to the other over
the entire extension of the terrestrial globe, raise the tides on it. Instead, in the
language of spacetime, the worldlines of such objects ‘tidally’ driven towards or
apart from each other no longer appear straight, being curved. Since, as remarked
before, this is the key feature of gravity, in the Einsteinian framework it is said that
gravity is a manifestation of the curvature of spacetime and GTR relies upon the
EP. Thus, GTR is, at the same time, a theory of space and time, and of gravitation
as well; furthermore, light and free massive particles move along geodesics of a
curved spacetime, which are the generalization of straight lines taking place when
gravity is absent. Their equation is

d*x° » dx? dx'

2 Y dy

0 =0,1,2,3, (1.1)

where X is some affine’ parameter which, in the case of a massive body, coincides
with its proper time T, while
1 0gcv | 98 98w

e = —go% — =0,1,2,3 1.2

are the Christoffel symbols of the second kind (Weinberg, 1972; Bishop and Gold-
berg, 1980; Misner et al., 2017); g°* is the inverse of the spacetime metric tensor
g5 In terms of the temporal coordinate x° := ct, the equations of motion for a test
particle retrievable from Equation (1.1) for A — tand o = 1,2, 3, can be written
as follows (Weinberg, 1972; Brumberg, 1991):

J0337+1715 (Ransom et al., 2014; Shao, 2016) in the field of another distant white dwarf, searching for
violations of the EP in terms of the Nordtvedt effect (Nordtvedt, 1968b,a), the EP holds also in its stronger
version, according to which the mutual gravitational attraction among bodies along with their own
self-gravity is taken into account as well, to the ~ 10~* (Hofmann and Miiller, 2018) and ~ 10~
(Archibald et al., 2018; Voisin et al., 2020) levels, respectively. The challenges of testing the EP in different
regimes, including also the quantum realm in which it is not obvious that the former is valid, are reviewed in
Tino et al. (2020).

9 From affinis, e, ‘bordering on, adjacent, contiguous’.
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d?x o dxC dx* o dx’ dx* dx!

1

ax i dda A ax 1.3, 13
dx®? 7* dx0 dx0 0 dx® dx0 (13)

On the other hand, another crucial aspect of the EP consists of the fact that grav-
ity can also be emulated, to a certain extent, by adopting an accelerated reference
frame. Indeed, the motions of material objects referred to the latter are character-
ized by accelerations which depend neither on the mass nor on the composition
of the former ones, which is just the distinctive trait of the gravitational interaction
itself. Such a feature, together with STR, allows one to predict a number of peculiar
phenomena pertaining to the propagation of electromagnetic waves and the motion
of material objects which are unknown to the Newtonian gravitational picture. Suf-
fice it to think about the Coriolis acceleration affecting a moving particle with
respect to a rotating reference frame and the corresponding gravitomagnetic coun-
terpart arising in GTR since the latter has to fulfil the Lorentz symmetry (Jantzen
et al., 1992b; Schmid, 2023).

Since GTR is a relativistic theory of gravitation, and in STR all forms of energy
are equivalent to mass, for Einstein, the source of gravitation, that is, of the space-
time curvature, is made by several more entities than for Newton and his scalar
potential U alone. That is, a material body gravitates not only because it possesses
its own rest energy, but also because it is compressed or dilated, or because it is
distorted by internal stresses, and even if it moves. All that is encoded by the sym-
metric energy-momentum tensor T,;, 0,2 = 0, 1, 2, 3 (Provost, 2017; d’Inverno
and Vickers, 2022). Thus, there is no longer just a single gravitational potential
sourced only by the matter density p, as in the Newtonian scheme, but now there
are ten generally different quantities playing the role of gravitational potentials: the
independent components of the symmetric spacetime metric tensor. The way the
distribution of matter and energy actually deforms the spacetime ultimately deter-
mining the metric tensor is established by Einstein’s field equations (Fok, 1959;
Synge, 1960; Weinberg, 1972; Hawking and Ellis, 1973; Wald, 1984; Stephani,
1990; Cheng, 2009; Padnanabhan, 2010; Ohanian and Ruffini, 2013; Zee, 2013;
Misner et al., 2017; Carroll, 2019; Thorne and Blandford, 2021; Schutz, 2022;
Kenyon, 2023),

1
Rox — EgaxR =kglor, 0,4 =0,1,2,3, (14)

which represent a set of complicated nonlinear partial differential equations. In
Equation (1.4), R,, is the Ricci curvature tensor of the spacetime, defined by con-
tracting two indices of the Riemann tensor (Weinberg, 1972; Bishop and Goldberg,
1980; Parker and Christensen, 1994b; Misner et al., 2017; Schutz, 2022),

R¢ = = A% _ o
TV axv ax*

+ T, %, =T, T% . e,0,¥, A =0,1,2,3, (1.5)
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in the following way (Weinberg, 1972; Bishop and Goldberg, 1980; Parker and
Christensen, 1994a; Misner et al., 2017):

Rsi :=R%,, 0,A=0,1,2,3. (1.6)
Furthermore,
R:=g""R,, (1.7)

is the trace of the Ricci tensor, and k, is Einstein’s gravitational constant (Adler
et al., 1975). Nonetheless, if the characteristic motions of the system at hand are
quite slow, and the gravitational fields are weak and almost static, the general
relativistic field equations reduce to just the Poisson equation

VU = 4nGp (1.8)

for the potential U/ of the Newtonian theory. Such a correspondence fixes the value
of Einstein’s gravitational constant entering Equation (1.4) to!°

8nG
_, (1.9)

kg = —3
where G is Newton’s constant of gravitation. In view of its tensorial nature, if
REW 0 €,0,%,A =0,1,2,3 vanishes in a given coordinate system, it is zero in all
other coordinates as well; in this case, gravity is effectively absent even if the space-
time appears formally curved in some coordinates; they would refer to a merely
accelerated reference frame. Indeed, the geodesic deviation equation, known also
as Jacobi equation (Chicone and Mashhoon, 2002) in differential geometry, which
expresses the tidal forces, that is, the true manifestation of gravity, within the GTR
framework, is proportional just to the Riemann tensor (Wald, 1984; Ohanian and
Ruffini, 2013; Carroll, 2019).

Of course, GTR is not limited only to providing a different theoretical scheme
to frame and reproduce the same phenomena described by the Newtonian one. The
Einsteinian theory is much richer than Newton’s Universal Gravitation, predicting
a whole set of new phenomena. Indeed, GTR is able to treat motions occurring
in gravitational fields so intense — in the sense that their gravitational potentials
are close to the speed of light squared ¢® — that they accelerate bodies to speeds
close to ¢ itself and bend the path of electromagnetic waves in unparalleled ways
undergoing also exceptionally rapid variations in time and from a point in space to
another nearby one. The most spectacular — and expensive, as well as long-lasting —
tests of GTR, recently performed by large international teams after several decades,
undoubtedly come from such strong regimes. Suffice it to think about the gravi-
tational waves (Cervantes-Cota et al., 2016) emitted in the end-of-life stages of

10" With such a choice, each component of T has the dimensions of energy density, that is, energy per
volume, or, equivalently, pressure.
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binary black holes (BHs) (LIGO Scientific Collaboration and Virgo Collaboration,
2016) and neutron stars (LIGO Scientific Collaboration and Virgo Collaboration,
2017), detected so far by the Laser Interferometer Gravitational-wave Observa-
tory (LIGO) and Virgo facilities, or the shadows of the supermassive black holes
(SMBHs) at the centre of the supergiant elliptical galaxy Messier 87 (M87) (Event
Horizon Telescope Collaboration, 2019) and in Sgr A* at the Galactic Centre (GC)
(Event Horizon Telescope Collaboration, 2022) imaged by the Event Horizon Tele-
scope (EHT) collaboration (Doeleman et al., 2009). In such domains, Newton fails
miserably.

The first approximation of GTR to the next order to the purely Newtonian one,
in which new terms in the equations of motion appear, is named post-Newtonian
(pN); see, for example, Damour (1987), Asada and Futamase (1997), Blanchet
(2003), Blanchet (2006), Futamase and Itoh (2007), Will (2018), and references
therein. It is a computational scheme for solving the GTR field equations relying
upon the assumptions that the characteristic speeds of the bodies under consider-
ation are smaller than ¢ and that the gravitational fields inside and around them
are weak. Nonetheless, as pointed out by Will (2011b), such a framework turned
out to be notably effective in describing also certain strong field and fast motion
systems such as compact binaries made of at least one dense neutron star and inspi-
ralling pairs of BHs emitting gravitational waves; the reasons for that are largely
unknown (Will, 2011b). Thus, putting the pN approximation to the test in as many
different scenarios and at the highest order of approximation as possible is of para-
mount importance to gain ever increasing confidence in it and extrapolating the
validity of its effects to their counterparts in stronger regimes. In principle, such
pN tests have the benefit that, if, on the one hand, the expected signals of inter-
est have smaller magnitude with respect to the corresponding ones in the strong
field regime, on the other hand, the knowledge of the competing features of motion
of classical origin is relatively better, and the impact of their mismodelling can
be more accurately assessed with respect to less accessible astrophysical scen-
arios whose environments are, generally, less reliably known. Furthermore, the
measurement techniques routinely used, or under development, for tracking solar
system’s artificial or natural bodies like, for example, LLR, Satellite Laser Ran-
ging (SLR) (Coulot et al., 2011), and Planetary Laser Ranging (PLR) (Dirkx et al.,
2019) are becoming more and more accurate, allowing, in principle, one to detect
increasingly smaller features of motion. As if that weren’t enough, the techno-
logical efforts needed to measure such tiny effects could be useful one day in other,
unsuspected fields. Last but not least, a somewhat opportunistic approach may be
more easily followed by exploiting existing or planned missions directed to dif-
ferent goals, with a remarkable gain of time and money. In its technical realm of
validity, the pN approximation has been, or is currently being, tested only to the
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first post-Newtonian (1pN) order,!! since its 2pN effects are deemed too small to
be currently measurable. Moreover, the tests done or currently underway largely
refer to the mass monopole and, to a much lesser extent, the spin dipole moments
of the source, namely its mass M and angular momentum J. In particular, the peri-
helion'? precessions of Mercury (Shapiro et al., 1972; Shapiro, 1990), of other
inner planets of the solar system (Anderson et al., 1978, 1993), and of the aster-
oid Icarus (Shapiro et al., 1968, 1971) were measured long ago. More recently,
Earth’s geodetic satellites'> (Pearlman et al., 2019), tracked with the SLR tech-
nique, were used (Lucchesi and Peron, 2010, 2014). Finally, the perinigricon'# shift
of the S star S2 in the field of the SMBH in Sgr A* was recently measured as well
(GRAVITY Collaboration et al., 2020). Furthermore, the periastron!> advance of
a two-body system of comparable masses M, and Mp was measured with differ-
ent binary radiopulsars (Weisberg and Taylor, 1984; Stairs, 2003; Champion et al.,
2004; Weisberg and Taylor, 2005; Kramer et al., 2006). As far as the 1pN orbital'6
effects induced by the angular momentum J of the primary, known collectively as
the Lense—Thirring (LT) effect (Lense and Thirring, 1918; Mashhoon et al., 1984),
are concerned, tests have been underway with SLR geodetic satellites since 1996
(Ciufolini et al., 1996). Some aspects of them, like their realistic accuracy, are cur-
rently being debated; see, for example, Renzetti (2013b) and references therein. So
far, the only uncontroversial test of another 1pN feature due to the Earth’s angular
momentum is the one performed with the Gravity Probe B (Everitt, 1974) (GP-B)
mission which measured the Pugh—Schiff precessions (Pugh, 1959; Schiff, 1960)
of four spaceborne gyroscopes to a >~ 19% accuracy (Everitt et al., 2011, 2015),
despite the fact that for many decades it was assumed that the final accuracy would
be around 1% (Everitt, 1974; Everitt et al., 2001). Actually, to the 1pN level, other
dynamical effects arise induced by mass and spin multipole moments of higher
order (Soffel and Han, 2019).

In this book, extensive use is made of the Keplerian orbital elements (Brouwer
and Clemence, 1961; Soffel, 1989; Brumberg, 1991; Klioner and Kopeikin, 1994,
Bertotti et al., 2003; Roy, 2005; Kopeikin et al., 2011; Poisson and Will, 2014;
Soffel and Han, 2019). They are the semimajor axis a, the eccentricity e, the inclin-
ation /, the longitude of the ascending node €, the argument of pericentre!” , and

11 1t can be formulated to yield field equations for just two potentials (Soffel and Brumberg, 1991).

From mep( (+ accusative), meaning ‘around, near, about, from’, and “Hii0g, -ov, 0, ‘Hélios’, the god of the
Sun.

From satellés, itis, meaning ‘attendant upon a distinguished person’, ‘lifeguard’. For a discussion of the word
satellite, its origin and its use in astronomy, see Sparavigna (2016).

From mtepl (+ accusative), meaning ‘around, near, about, from’, and niger; gra, grum (‘black’).

From mep( (+ accusative), meaning ‘around, near, about, from’, and ¥otpov, -0v, 16 (‘celestial body, star’).
From orbis, is, ‘a ring, circle, re-entering way, circular path, hoop, orbit’.

From mep( (+ accusative), meaning ‘around, near, about, from’, and kévtpov, -ov, 10, meaning, among
other things, ‘stationary point of a pair of compasses’, ‘centre (of a circle)’.
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the mean anomaly at epoch!® 5. Such a choice, which, by no means, should be
deemed obligatory since other orbital parameterizations also exist (Bond and Janin,
1981; Gurfil, 2004; Efroimsky, 2005; Kopeikin et al., 2011; Gurfil and Efroimsky,
2022; Pogossian, 2022), is motivated by their immediately intuitive meaning which
greatly helps in visualizing the effects described with them. Furthermore, they are
easy to use in order to suitably design space-based experiments and preliminarily
assessing the impact of other competing dynamical effects of classical origin.
However, nowadays, actual tests of dynamical features of motion are usually
performed differently. Large datasets are reduced in the following way. Highly
detailed mathematical models of (a) the dynamics of the moving bodies, including
pN effects X,n to a certain degree of completeness (b) the propagation of the elec-
tromagnetic waves between the Earth’s stations and the (re)transmitting/reflecting
artificial or natural bodies of interest (c) the measurement devices, all contain-
ing several key parameters p characterizing the physical and orbital features of
the system’s components at hand (masses, initial positions and velocities, bias of
transponders, etc.), are fitted to huge amounts of data. The latter consist of meas-
urements of the directly observable quantities'® . In such grand fits (Nordtvedt,
2000), p are estimated in a least-square way?® along with their errors and recipro-
cal correlations, all stored in the covariance matrix. Finally, time series of post-fit
residuals®! are produced by subtracting the measured values of the observables O
from their analytical counterparts calculated with the previously estimated values
of p. In order to realistically assess the accuracy of the parameter(s) of interest,
different data sets and background reference models can be used, and the result-
ing values p are confronted with each other. In principle, such post-fit residuals
should account for, among other things, all the mismodelled — or even unmod-
elled — dynamics. Thus, if they are statistically compatible with zero, there is the
temptation to straightforwardly compare them to their analytically predicted coun-
terparts in order to infer upper bounds on X,y if the latter is not included in the
dynamical models fit to the observations. Furthermore, should the post-fit resid-
uals be considered different from zero at a statistically significant level, one would
be likely tempted to claim a measurement of the unmodelled effect X,y of interest.
This is a widely adopted practice in the literature. Actually, great care is needed

There is not a symbol commonly adopted for it in the literature. Suffice it to say that, for example, 7 is used
by Milani et al. (1987), while in the notation by Brumberg (1991) the mean anomaly at epoch is /.
Furthermore, Kopeikin et al. (2011) denote it as My, while Bertotti et al. (2003) adopt €.

The Keplerian orbital elements do not belong to them, being computed from observations through some
intermediate steps.

Recently, the Bayesian approach also has been gaining ground (Mariani et al., 2023).

It is possible to produce time-dependent ‘residuals’ of the Keplerian orbital elements (Lucchesi and Balmino,
2006; Lucchesi, 2007) only when the spacecraft motion proceeds steady and seamlessly, without interruptive
orbital manoeuvres needed for, for example, pointing an antenna towards the Earth.

20
21
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in proceeding as just outlined, especially when the expected size of the pN sig-
nal one is interested in is not much larger than the measurement errors®? (Fienga
and Minazzoli, 2024). Indeed, if X;x is not modelled, its possible signature may
be more or less absorbed in some of — or all — the parameters p estimated in the
fit, like, for example, the initial conditions. Thus, it would be partially or totally
removed from the post-fit residuals. In this case, one would infer artificially foo
tight constraints on (some of the parameters of) X;n, when, instead, the real impact
of the latter on the system’s dynamics actually is larger. Furthermore, if the post-
fit residuals produced without modelling X, are significantly different from zero,
it may be that their resulting anomalous pattern is not due to Xy at all, as one
would hope, being, instead, caused by some fortunate mutual partial cancellation
of completely different effects leaving a signature which, by chance, has just the
characteristics of X;n one is looking for. Then, the correct way to proceed consists
of explicitly modelling the pN feature of motion X,y one wants to test and sim-
ultaneously estimating the parameter(s) px,, characterizing it?3 along with all the
other ones. Then, one can compare the post-fit residuals produced in this way with,
say, those generated without modelling X,y at all to see if significant differences,
larger than the measurement error level, can be spotted. Finally, the errors of py
along with their correlations with the other simultaneously estimated parameters
in the covariance matrix obtained just by modelling X,y are to be inspected. See
Section K.3 for a discussion of a case in which this standard approach is, for some
reasons, disregarded.

A clarification is in order when one talks about fests of pN gravity. Let B be
the theoretical prediction of a certain pN effect, namely an analytical formula usu-
ally containing, among other things, one or more parameter(s) characterizing the
physical properties of the environment in which the former takes place; they could
be, for example, the masses and some other relevant physical quantities (angular
momenta, multipole moments) of, say, a two-body system. Let it be assumed that
there is an agreement, within the experimental errors, between 5 and a correspond-
ing measured or observed quantity. Then, one can correctly speak of a genuine test
of the effect under consideration only if the parameters entering B are known inde-
pendently from that very same effect; for example, they could have been previously
determined by exploiting different, even non-dynamical, features. Conversely, if
the theory at hand is widely accepted in the common knowledge at the time, ‘B

22 The scope of data reductions is to finally produce post-fit residuals as small as the measurement errors.

B A widely adopted set of parameters usually estimated in pN gravity tests are those belonging to the so-called
parametrized post-Newtonian (PPN) formalism (Will, 2018), among which Sppn and yppN, both equal to 1
in GTR, are those that attract the greatest interest. The PPN scheme can be applied to all metric gravitational
theories, namely, those relying upon the EP. The speed of light ¢ remains constant in it, and the metric tensor
8o 1s always assumed symmetric.
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and the corresponding measured value can be used just to measure or constrain the
parameter(s) entering the former.

The same considerations hold also for the plethora of long-range, or infra-
red, modified models of gravity (Brax et al., 2004; Nojiri and Odintsov, 2007;
De Felice and Tsujikawa, 2010; Maartens and Koyama, 2010; Capozziello and
de Laurentis, 2011; Skordis, 2011; Clifton et al., 2012; Ferraro, 2012; de Rham,
2014; Capozziello et al., 2015; Ruggiero and Radicella, 2015; Cai et al., 2016;
Joyce et al., 2016; Maggiore, 2017; Mashhoon, 2017; Kobayashi, 2019; Roshan
and Mashhoon, 2022) that have been continually churned out mainly since the
accelerated cosmic expansion was discovered in 1998 (Riess et al., 1998; Perl-
mutter et al., 1999; Riess, 2000; Astier and Pain, 2012; Schmidt, 2012) and, more
recently, since the issue of the Hubble tension gained prominence (Cervantes-Cota
et al., 2023; Hu and Wang, 2023; Vagnozzi, 2023; Capozziello et al., 2024). Also
the puzzle of nonbaryonic dark matter at galactic scales (Merrifield, 2005; Garrett
and Duda, 2011; Bullock and Boylan-Kolchin, 2017; Wechsler and Tinker, 2018;
de Martino et al., 2020) prompted the birth of several alternative theoretical frame-
works among which the most prominent one is, perhaps, the MOdified Newtonian
Dynamics (MOND) paradigm (Milgrom, 1983a,b,c; Sanders and McGaugh, 2002;
Bekenstein, 2009; Famaey and McGaugh, 2012; Milgrom, 2014; Bugg, 2015;
McGaugh, 2015; Banik and Zhao, 2022). For epistemological discussions about
the MOND/dark matter debate, see Duerr and Wolf (2023). Another model put
forth to cope with, among other things, the dark matter issue is the Scalar Ten-
sor Vector Gravity (STVG), or MOdified Gravity (MOG) (Brownstein and Moffat,
2006a,b; Moftat, 2006; Moftat and Toth, 2009; Harikumar, 2022). For a compari-
son between MOND and MOG and other less known theories trying the explain the
same phenomenology, see Pascoli (2024), and references therein. Recently, also
the Modified General Relativity (MGR) paradigm popped up (Nash, 2019; Das
and Sur, 2022; Nash, 2023). A further theoretical scenario arising in the frame-
work of the long-lasting attempts to find a consistent quantum theory of gravity is
the effective field theory called?* Standard Model Extension (SME) (Kostelecky,
2004; Kostelecky and Potting, 2005, 2009). Among other things, it encompasses
local Lorentz violations in the gravity sector which may manifest themselves to a
pN level with several phenomena including also orbital effects (Bailey and Kost-
elecky, 2006). For a recent review of modern tests of Lorentz invariance, see, for
example, Mattingly (2005), and references therein. Another theoretical scheme
encompassing violations of the Lorentz symmetry is the Einstein—Ather theory,
a generally covariant theory of gravity coupled to a dynamical, unit timelike vec-
tor field that breaks the aforementioned symmetry (Jacobson and Mattingly, 2004;

24 Here, the reference is to the Standard Model of elementary particles and fields (Gouttenoire, 2023).


https://doi.org/10.1017/9781009562911.001

Introduction 11

Eling et al., 2006; Jacobson, 2008). Reliably testing such proposed modifications of
the currently known laws of gravitation in local systems with, for example, orbital
motions is of paramount importance in order to gain knowledge on them independ-
ently of the very same effects for which they were introduced which, otherwise,
would remain their sole, ad hoc justification.

This book, in the wake of the meritoriously celebrated texts by?> Soffel (1989),
Brumberg (1991), and Soffel and Han (2019), treats the effect of pN and alternative
gravity on different quantities (Keplerian orbital elements, astrometric angles RA
and decl., radial velocity of spectroscopic binaries, variation of the times of arrival
in binary pulsars, characteristic timescales and sky-projected spin-orbit angles in
transiting exoplanets,?® two-body range and range rate) within a unified and uni-
form calculational scheme for arbitrary orbital geometries and generic orientations
of the spin axes of the sources of the gravitational field in space. It mainly adopts
the language of celestial mechanics, being aimed at the widest possible audience
of readers typically working on celestial mechanics, astronomy, and astrodynamics
in astronomical observatories, laser-ranging stations, and data centres. Spatially
isotropic or harmonic coordinates?’ are adopted (Soffel and Brumberg, 1991).
Furthermore, the coordinate time ¢ is used to calculate temporal intervals; they
coincide with those obtained by an observer comoving with the orbiting particle in
terms of its proper time?® T up to corrections of the order of O (1 / c4).

The book is organized as follows.

The general scheme needed to calculate the desired post-Keplerian? (pK) orbital
effects is outlined in Chapter2. In it, after an overview of the Keplerian picture
for a restricted two-body system in Section 2.1, the pK variations of the osculat-
ing Keplerian orbital elements are treated in Section 2.2; the first-order shifts in
the perturbing acceleration are worked out in Section 2.2.1, while the second-order
ones are dealt with in Section 2.2.2. The mixed effects arising when two pK acceler-
ations enter simultaneously the equations of motion are the subject of Section 2.2.3.
The methods for calculating the pK corrections to various characteristic orbital

25 To a different level, see also O’Leary (2021).

26 From é«- (¢%- before a vowel), meaning, among other things, ‘out of, forth from; outside of, beyond’, and the
adjectival form ¥£w (‘outer, external’, or ‘foreign’). With reference to our solar system, an exoplanet is,
then, a planet outside of it.

As explained by Brumberg (2010), in order to effectively cope with the problem of the coordinate-dependent
quantities in relativistic celestial mechanics and astrometry, in 1991 the International Astronomical Union
(IAU) recommended to adopt one specific type of coordinates once and forever: the harmonic coordinates,
determined by four specific non-tensorial differential relations to be added to the tensorial field equations of
GTR (Fok, 1959; Weinberg, 1972; Brumberg and Kopeikin, 1989b; Damour et al., 1991).

The coordinate and the proper times coincide, up to corrections of higher order in 1/¢, when the orbiter is
quite distant from the source of the gravitational field.

Here, by post-Keplerian (pK) I mean dynamical features arising from any acceleration, Newtonian or not,
different from the simple Newtonian inverse-square one. Then, in this sense of the term pK, the classical
acceleration due to, say, the primary’s oblateness is pK.

27

28

29
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temporal intervals are presented in Section?2.3: they are the anomalistic (Sec-
tion 2.3.1), draconitic (Section 2.3.2) and sidereal (Section 2.3.3) periods, which all
coincide with each other in the Keplerian case. Section 2.4 illustrates how to cal-
culate the pK shifts of a generic observable quantity for which an analytical model
can be given; the cases treated are (a) the radial velocity of a spectroscopic binary
in Section 2.4.1, (b) some characteristic timescales in transiting exoplanets in Sec-
tion 2.4.2, (c) the rate of change of the sky-projected spin-orbit angle for such kinds
of exoplanets, dealt with in Section 2.4.3, (d) the variation of the times of arrival
(TOAs) of binary pulsars in Section 2.4.4, and (e) the astrometric angles RA and
dec. in Section 2.4.5. Finally, the pK shifts of the two-body range and range-rate
are calculated in Section 2.5.

Chapter 3 is devoted to the calculation of various 1pN gravitoelectric features of
motion for a test particle (Section 3.1) and a binary system of bodies with com-
parable masses (Section 3.2): the Keplerian orbital elements in Section 3.1.1 (test
particle) and Section 3.2.1 (binary system), the anomalistic (Section 3.1.2 for a test
particle and Section 3.2.2 for a binary system), draconitic (Section 3.1.3 for a test
particle and Section 3.2.3 for a binary system), and sidereal (Section 3.1.4 for a
test particle and Section 3.2.4 for a binary system) orbital periods, RA and dec.
(Section 3.1.5), the two-body range and range rate (Section 3.1.6), the radial vel-
ocity (Section 3.2.5), the characteristic timescales of transiting exoplanets (Section
3.2.6), and the TOAs of binary pulsars (Section 3.2.7).

The 2pN gravitoelectric orbital precessions of a binary system are calculated in
Chapter 4.

The 1pN LT acceleration, sourced by the source’s spin dipole moment(s) and
dubbed also as ‘gravitomagnetic’, is treated in Chapter 5 along with several features
of motion induced by it: the Keplerian orbital elements (Section 5.1), the anomalis-
tic (Section 5.2), draconitic (Section 5.3), and sidereal (Section 5.4) orbital periods,
the gravitomagnetic clock effect (Section 5.5), the radial velocity (Section 5.6), the
characteristic timescales of transiting exoplanets (Section 5.7), the sky-projected
spin-orbit angle (Section 5.8), the TOAs of binary pulsars (Section 5.9), RA and
dec. (Section 5.10), and the two-body range and range rate (Section 5.11).

Other 1pN gravitomagnetic orbital precessions, due to the spin octupole moment
of the central body, are dealt with in Chapter 6.

Several Newtonian features of motion due to the quadrupole mass moment(s)
of the source are the subject of Chapter 7: the Keplerian orbital elements (Section
7.1), the anomalistic (Section 7.2), draconitic (Section 7.3), and sidereal (Section
7.4) orbital periods, the radial velocity (Section 7.5), the characteristic timescales
of transiting exoplanets (Section 7.6), the sky-projected spin-orbit angle (Section
7.7), the TOAs of binary pulsars (Section 7.8), RA and dec. (Section 7.9), and the
two-body range and range rate (Section 7.10).
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The 1pN orbital precessions of the order of O (Jz /cz) are calculated for a test
particle in Chapter 8.

Newtonian and pN tidal orbital precessions of a test particle orbiting a primary
induced by a distant third body are calculated in Chapter 9. In particular, in Section
9.1, the impact of the pN precessions of the axes of the reference frame comoving
with the two-body system in geodesic motion in the spacetime of the third body is
omitted, being, instead, treated in Section 9.2.

The orbital precessions induced by some categories of popular modified models
of gravity are treated in Chapter 10: they are due to power-law (Section 10.1),
Yukawa-like (Section 10.2), 1/7 (Section 10.3), empirical once-per-revolution
(Section 10.4), constant (Section 10.5), and tidal-like (Section 10.6) extra-
accelerations. The effects of some dark matter distributions are the subject of
Section 10.7. Models encompassing violations of the Lorentz symmetry in the
gravitational sector are treated as well (Section 10.8).

Appendix A collects a list of acronyms and abbreviations.

Notations and definitions are listed in Appendix B.

In Appendix C, it is shown how to calculate pK Lagrangians, to be used as
disturbing functions in the Lagrange equations for the variations of the Keplerian
orbital elements, from the spacetime metric tensor.

Appendix D presents some useful coefficients accounting for the various spin-
orbit configurations.

Appendix E contains the coefficients entering the LT instantaneous shifts of the
orbital elements.

The coefficients of the instantaneous orbital shifts due to the Newtonian J,
acceleration are listed in Appendix F.

Appendix G collects the coefficients of the total net mixed orbital shifts of the
order of O (J»/c?).

Appendix H displays the explicit expressions of the coefficients of the orbital
precessions of tidal origin.

The coefficients of the averaged disturbing functions of the power-law and
exponential dark matter density profiles along with those of the resulting orbital
precessions can be found in Appendix 1.

In Appendix J, numerical values for the relevant physical parameters of some
major bodies of the solar system (the Sun, the Earth, and Jupiter) are provided
along with those of the double pulsar.

Appendix K contains the numerical values of the several pK orbital effects calcu-
lated for various natural and artificial bodies in the solar system and outside it: the
Sun’s planets (Section K.1), the spacecraft Juno®® around Jupiter (Section K.2), the

30 From fino, onis, Roman deity, wife of Jupiter.
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Earth’s Laser GEOdynamics Satellite (LAGEOS) (Section K.3), the double pulsar
PSR J0737-3039 (Section K.4), the triple pulsars (Section K.5), and the star S4716
in the GC (Section K.6).

Appendix L reviews some space-based missions aimed at testing several pN
orbital effects recently proposed by the author: Highly Elliptical Relativity Orbiter
(HERO) (Section L.1), In-Orbit Relativity Iuppiter Observatory, or 1Ovis Rela-
tivity In-Orbit Observatory (IORIO) (Section L.2), Elliptical Uranian Relativity
Orbiter (EURO) (Section L.3), LEnse—Thirring Sun—Geo Orbiter (LETSGO) (Sec-
tion L.4), and ELXIS (Section L.5). Further missions proposed by other authors are
presented in Section L.6.
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2

General Calculational Scheme

2.1 The Keplerian Picture

Consider a gravitationally bound restricted two-body system S in which a test par-
ticle, that is, an uncharged and nonspinning object of negligible mass, moves in
the gravitational field generated by an isolated, massive body. It means that S is,
actually, freely falling in some external gravitational field whose action reduces
just to residual tidal effects, assumed negligible' throughout the extension of S;
thus, the latter defines, to a sufficiently high level of approximation, a local inertial
reference frame K with respect to which the course of the particle is studied. It
is assumed that /C is both kinematically and dynamically nonrotating (Brumberg
and Kopeikin, 1989a), that is, no Coriolis and centrifugal inertial forces appear
(dynamically nonrotating), and the general relativistic de Sitter—Fokker (de Sitter,
1916b; Schouten, 1918; Fokker, 1921) and Pugh—Schiff (Pugh, 1959; Schiff, 1960)
precessions, which would naturally alter the orientation of the reference axes sim-
ply because K moves being parallel transported (Fermi, 1922; Levi-Civita, 1926;
Synge, 1927) along the geodesic worldline of M in a deformed external spacetime,
are corrected for (kinematically nonrotating).?

Let the orbital motion of the satellite be affected by a pK acceleration 4 whose
magnitude is small with respect to the Newtonian monopole term given by

Ay =25 2.1)

2
,
In Equation (2.1), u := GM is the standard gravitational parameter of the primary,
defined as the product of its mass M by the Newtonian constant of gravitation G, r

1 When such an approximation is untenable and the external tidal field is due to a distant body, the orbital
dynamics within S is affected in various pK ways described in Chapter 9.

2 Alternatively, it can be assumed that the motion is studied over timescales much shorter than those
characterizing the aforementioned general relativistic precessions. When the tidal effects within S can no
longer be deemed as negligible, specific orbital effects arise if the external field is due to a massive body;
they are studied in Section 9.1. If, instead, /C is kinematically rotating, further orbital perturbations, solely of
pN origin, have an impact on the dynamics within S; see Section 9.2.

15
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is the instantaneous distance between the orbiter and the source, and 7 := r/r is the
unit vector of the position vector r of the particle with respect to the body acting
as centre of force. In what follows, A4 can be either Newtonian or pN. For example,
if the central body experiences departures from spherical symmetry, the first even
zonal harmonic coefficient ./, of the multipolar expansion of the Newtonian part
of its gravitational potential, accounting for its oblateness,® induces a pK acceler-
ation 4”2 of classical origin; its orbital effects are treated in Chapter 7. On the other
hand, to the 1pN level, pK accelerations of the order of O (1/c?) arise originat-
ing from the source’s mass and spin multipole moments. The 1pN gravitoelectric
orbital effects induced by the mass monopole and quadrupole moments are treated
in Chapter 3 and Chapter 8, respectively, while the 1pN gravitomagnetic ones due
to the spin dipole and octupole moments are worked out in Chapter 5 and Chap-
ter 6, respectively. In general, A can be due to some modified model of gravity as
well; the orbital effects due to some alternative theories of gravity are the subject of
Chapter 10. Furthermore, it does not necessarily have to be of gravitational origin,
as it could well also be caused by nonconservative forces. Be that as it may, it is
assumed that A4 can be explicitly modelled, that is, an analytical expression of it can
be given, as in the aforementioned examples.

If A were absent, the test particle would move along a Keplerian ellipse* of
constant shape and size, and whose orientation in space is fixed. It is parameterized
in terms of the Keplerian orbital elements.

The size of the ellipse is fixed by a; it determines also the mean motion ng =
VIu/a? related to the orbital period Tx := 27/nk needed for the test particle to
complete a full orbital revolution with respect to any fixed direction in space.

The shape of the orbit is determined by e in such a way that 0 < e < 1. The
value e = 0 corresponds to a circle, while e < 1 gives a highly eccentric ellipse.

The semilatus rectum is defined as p := a (1 — €?).

The inclination of the orbit to the fundamental plane {x, y} of the reference frame
adopted is given by /, with 0 < [ < 180°. The motion is called prograde if
0 < I < 90°, while it is dubbed retrograde if 90° < [ < 180°. About the ref-
erence plane, in the case of our solar system, it often coincides with the Earth’s
equatorial plane at some reference epoch, and the reference x axis points towards
the Vernal Equinox 7" at the same epoch (Ma et al., 1998; Charlot et al., 2020);
the ecliptic plane at some reference epoch may be used as well (Capitaine and
Soffel, 2015).> In studying astronomical binary systems like, for example, exo-
planets, the fundamental plane is assumed to be coincident with the plane of the

3 From oblatus, a, um, made of ob- (‘in front of”, ‘before’), and /atus, a, um (‘broad’, ‘wide”).

4 From ¥areuig, -8, n, meaning ‘a falling short’, ‘defect’, and éAie{ tw, meaning, among other things, ‘I
fall short of”, ‘T am in want of”, ‘I lack’. Such a conic section was first named so by Apollonius of Perga
because its cutting plane makes a smaller angle with the base of the cone than that made by the side of the
latter.

5 Another possible choice may be the solar system’s invariable plane (Souami and Souchay, 2012).
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sky, and the reference z axis is directed along the line of sight towards or away
from the observer depending on the conventions followed by the authors at hand
(Kaplan, 2015).

The angle €2, between 0 and 360°, is counted in the fundamental plane from the
reference x axis to the line of nodes, that is, the intersection between the orbital
and the {x, y} planes, towards the ascending node; the latter, marked as §7, is the
point on the line of nodes where the test particle crosses the fundamental plane
from below. The descending node is denoted as 7.

The angle w, between 0 and 360° in the orbital plane, is subtended by the arc of
trajectory from the ascending node to the pericentre.

The longitude of pericentre @ := Q2 + w, which, in general, is a broken angle,
provides the pericentre position with respect to the reference x axis when the orbital
plane lies in the fundamental one.

The three angles /, 2, w, corresponding to the Euler angles characterizing the
configuration of a rigid body with a fixed point, determine the orientation of the
orbital plane in space.

The angle 7, is the value of the mean anomaly® at a reference instant #, to which
the orbital elements are referred; ¢, does not necessarily coincide with the time of
passage at pericentre #,; for the relation connecting 1 and £, see Equation (2.3).

The instantaneous position of the test particle along its orbit is reckoned by
the true anomaly f (#), counted from the position of the pericentre on the line of

apsides.’
If the instantaneous location of the orbiter is reckoned relative to the line of
nodes or to the reference x axis, the argument of latitude u (#) := w + f (¢) and

the true longitude / (t) := @ + f (¢) are used, respectively. It should be noted that,
actually, / (¢) is a broken or dogleg angle since €2 and u (¢) lie in different planes;
it has a clear meaning only when the orbital plane coincides with the fundamental
one, that is, for / = 0, in which case it is just the real longitude of the test particle
as measured with respect to the x axis.

Another time-dependent fast variable used to locate the position of the orbiter
along its path is the mean anomaly M (¢) defined as

M @) ==ng (t—1t,) =n+ng (t—t9). (2.2)

From Equation (2.2), it turns out that the mean anomaly at epoch is proportional to
the time of passage at pericentre as per

6 From dvwpaiie, -ac, N, made of the privative prefix &- and Opardc, 7, Ov (‘average’, ‘regular’). In
astronomical contexts, the word ‘anomaly’ was used since ancient times to indicate irregularities in motions
of celestial objects. Geminus Astronomicus (Gem. 1.20; cf. Ptol. Alm. 3.3), deals with
avoparia thg kivhoewg (“irregularity of motion”). Plutarch, in his Lives (Plut. AEm. 17), mentions
avopariat skcietmtikal (‘irregularities of the Moon’s orbit”).

7 From i, 180, 1, meaning, among other things, “arch’, ‘vault’.
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n = n (fo — ). 2.3)

As f (1), also M (¢) is measured from the pericentre in such a way that it is equal to
0 when the test particle is at the point of closest approach, 180° at the apocentre®
and 360° after a full orbital revolution. Contrary to f, the mean anomaly does not
refer to any physical objects, except at pericentre or apocentre, or for a circular
orbit, being just a convenient uniform measure of how far around its orbit the par-
ticle has progressed since pericentre. Basically, it tracks the position of a fictitious
particle describing a full revolution along a putative circular orbit in the same tem-
poral interval Tk as the real particle on its true elliptical path. The explicit relation
between f (f) and the time ¢ is given through the mean anomaly by Brouwer and
Clemence (1961, p. 77, equation (74)):

[e¢) o
FO=M©+23 560+ Y [T 60 + Ty ] { sinsM ),
s=1 =1
' (2.4)
where 8 := (1 -1 - ez) /e, and J (se) is the Bessel function of the first kind
of order s. From a practical point of view, § < Smax, J < jmax WHere Smax, jmax are
set by the desired accuracy level.
A further fast angular variable which can be used to track the position of the test
particle along its orbit is the eccentric anomaly £ (), defined as

M (t) :=E () — esinE (1) 2.5)

Also E (f) does not refer to any physical moving objects, being just another con-
venient tool for tracking the progress of the test particle as it advances along its
orbit. Its connection with ¢ is given by Brouwer and Clemence (1961, p.76,
equation (70)) and Murray and Dermott (1999, p. 39, equation (2.80)):

Ey=M@+2) %js (se) sinsM (¢) . (2.6)

s=1

The time-dependent position and velocity vectors r and v can be conveniently
expressed in terms of the Keplerian orbital elements as

() = r (f) [i cos u () + fin sinu (z)] , .7)
v(t) = \/% {—i[e sinw + sinu ()] + m [ecos w + cosu (t)]} . (2.8)

In Equations (2.7)—(2.8),

8 From &6 (+ genitive), meaning ‘away from’, and kévtpov, -ov, 10, meaning, among other things,
‘stationary point of a pair of compasses’, ‘centre (of a circle)’.
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cos 2
I=1sinQ (2.9)
0

is a unit vector directed along the line of nodes towards the ascending node, while

— cos/sin 2
m = { cos/cos 2 (2.10)

sin/

is another unit vector lying in the orbital plane and directed perpendicularly to I
such that their cross product I x mis parallel to the unit vector h of the orbital
angular momentum, defined in Equation (2.25). Furthermore, the distance entering
Equation (2.7) is

a(l —62)
1 +ecosf(f)

Figure 2.1 shows the orbital configuration of a test particle going along a Kepler-
ian ellipse arbitrarily oriented in space around a primary with mass M and angular
momentum J directed along a generic direction.

r(f) = @2.11)

2.2 The pK Variations of the Keplerian Orbital Elements

A pK disturbing acceleration 4 causes the trajectory to change over time; since the
former is small with respect to Equation (2.1), its action can be treated with the
standard perturbative methods of celestial mechanics.

A very popular way of looking at how things go on is assuming that, at every
instant, the actual trajectory followed by the moving particle can be approximated
by an osculating ellipse,” whose Keplerian orbital elements are slightly different
with respect to those parameterizing the ellipse which ‘kissed’ the trajectory in
the previous instant, and so on. Thus, it can be admitted that, under the action of
A, the Keplerian orbital elements do vary slightly over time, producing a series
of osculating ellipses, which, from moment to moment, approximate the real path
traveled by the satellite.

In the following, pK perturbed trajectories due to secular rates of change of all
the Keplerian orbital elements taken individually one at a time are shown along
with their osculating Keplerian ellipses approximating them at the initial instant of
time fo.

9 From asculor dtus, ari (“to kiss’). Moreover, asciilum, T (‘little mouth’, ‘pretty mouth’, ‘sweet mouth”)
comes from s, oris (‘mouth’) and the diminutive suffix -culum, I.
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Fundamental plane

Figure 2.1 Keplerian ellipse followed by a test particle moving around a spinning
primary of mass M and angular momentum J arbitrarily oriented in space. As an
example, they are represented by an S star of spectral class B (Eckart and Genzel,
1996; Ali et al., 2020) and an SMBH like the one in Sgr A* at the GC (Eckart
et al., 2002; Ghez et al., 2008; Genzel et al., 2010), respectively. The generic
values e = 0.4, I = 30°, Q = 45°, w = 50° were adopted for the orbital config-
uration, while the satelhte isatf = 60° In thls particular example the orientation

of J, parameterized ast = cosay cosdy, Jy, = sinay cosdy, J = sindy, is set by
ay=150°, 55 =75°. The unit vectors, which should all be the same length, are
not drawn to scale purely for display reasons.

The impact of a decrease of the semimajor axis « is the subject of Figure 2.2.
Figure 2.3 shows the distortion induced by a (negative) rate of change of the eccen-
tricity e. The effect of a (positive) secular rate of change of the inclination / is
illustrated in Figure 2.4 for a circular, polar orbit.

Figure 2.5 is devoted to the impact of a (positive) secular precession of the node 2
on a circular, polar orbit as well.

Figure 2.6 depicts a perturbed path obtained by assuming that only the pericentre
experiences a (retrograde) secular precession.

A secular rate of the mean anomaly at epoch n does alter neither the shape nor
the orientation of the orbit, merely accelerating or decelerating the motion of the
test particle along its Keplerian ellipse. Thus, it is not worth dedicating a specific
figure to this effect. Figure 2.7 shows a pK trajectory overall influenced by secular
perturbations affecting all the Keplerian orbital elements.
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Osculating ellipse

Figure 2.2 Perturbed trajectory (continuous curve) and the osculating Keplerian
ellipse (dashed curve) at the initial instant of time #y characterized by e = 0.9,
I1=0,Q2=0,w=90° n = 180°. In this example, it is assumed that @ under-
goes a (negative) secular rate of change large enough for better visualizing its
effect. The motion takes place within the orbital plane during a time span equal to
three Keplerian orbital periods 7x.

Perturbed trajectory

Figure 2.3 Perturbed trajectory (continuous curve) and the osculating Keplerian
ellipse (dashed curve) at the initial instant of time #y characterized by e = 0.9,
I1=0,Q2=0,0=90°n = 180°. In this example, it is assumed that e under-
goes a (negative) secular rate of change large enough for better visualizing its
effect. The motion takes place within the orbital plane during a time span equal to
three Keplerian orbital periods 7x.

Also other parameterizations of the orbital motion can be used, employing, for
example, nonosculating elements (Bond and Janin, 1981; Gurfil, 2004; Efroimsky,
2005; Kopeikin et al., 2011; Gurfil and Efroimsky, 2022; Pogossian, 2022); they
will not be treated in the present book.

2.2.1 The First-Order Effects

If « is any of the six Keplerian orbital elements, its finite variation Ak (/) occurring
in the time interval corresponding to a change of the true anomaly from its initial
value fj to a generic one fy < f < fo 4+ 21 can be calculated, to the first order in
A, as
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Figure 2.4 Perturbed trajectory (continuous curve) and the osculating Keplerian
ellipse (dashed curve) at the initial instant of time #y characterized by e = 0,
I = 90°, Q2 = 45°, up = 230°. In this example, it is assumed that / undergoes
a (positive) secular precession amounting to a few percent of the Keplerian mean
motion for better visualizing its effect. The motion takes place during a time span
equal to three Keplerian orbital periods 7k .

T die T dic dt
A - Za = | T2, 2.12
K (f) A i If A T if (2.12)

where dk /dt are the right-hand sides of the equations for the variations of the Kep-
lerian osculating elements in the Euler—Gauss form (Brouwer and Clemence, 1961;

Soffel, 1989; Brumberg, 1991; Bertotti et al., 2003; Roy, 2005; Kopeikin et al.,
2011; Poisson and Will, 2014; Soffel and Han, 2019)

da 2

o e [edrsinf + (%) 4], (2.13)
%:E{A,sinf—l—A, [cosf+l(1—f)“, (2.14)
dt nga e a

% = mAh (2) cos u, (2.15)
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Osculating ellipse

Figure 2.5 Perturbed trajectory (continuous curve) and the osculating Keplerian
ellipse (dashed curve) at the initial instant of time #p characterized by e = 0,
I =90°, Q = 45° ug = 230°. In this example, it is assumed that 2 undergoes
a (positive) secular precession amounting to a few percent of the Keplerian mean
motion for better visualizing its effect. The motion takes place during a time span
equal to three Keplerian orbital periods 7x.

d V1 —e? dQ

w_y ¢ —A,cosf + A, 1—|—Z sinf | —cos/—, (2.17)

dt ngae p dt

d 2 1—¢

i (f) _(=9) |:—Arcosf+Ar <1 n f) sinf] . (218)

dt nga a ngae p

evaluated onto the Keplerian ellipse given by Equation (2.11), and
dt r?
— = . (2.19)
a  Jwp
In Equations (2.13)—(2.18),

A=A, (2.20)
A, :=A.1, 2.21)
A, =A.h (2.22)

are the projections of 4 onto the radial, transverse and out-of-plane (or normal)'°
unit vectors 7, T, h of a moving local orbital frame attached to the test particle.

10" From norma, -ae (‘a square, employed by carpenters, masons, etc., for making right angles’).
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.
.
7 Perturbed trajectory

Osculating ellipse

Figure 2.6 Perturbed pK trajectory (continuous curve) and the osculating
Keplerian ellipse (dashed curve) at the initial instant of time #y characterized by
e=091=02 =0, o =90°n = 180°. In this example, it is assumed
that only @ undergoes a (negative) secular precession amounting to a few percent
of the Keplerian mean motion for better visualizing its effect. The motion takes
place within the orbital plane during a time span equal to three Keplerian orbital
periods Tx.

The radial unit vector, lying in the orbital plane and directed from the primary to
the test particle, is

cos 2 cosu — cos/sin 2 sinu
F={ sinQcosu+ cos/cosQsinu . (2.23)

sin/ sinu
The transverse unit vector, lying in the orbital plane perpendicularly to 7, is

— cos 2sinu — cos/ sin 2 cosu
T =4 —sinQsinu+ cos/cos2cosu . (2.24)

sin/ cosu

The normal unit vector, directed perpendicularly to the orbital plane along the
orbital angular momentum, is
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Osculating ellipse

Figure 2.7 Perturbed trajectory (continuous curve) and its osculating Keplerian
ellipse (dashed curve) at the initial instant of time 7y characterized by e = 0.4,
I = 30°, Q2 = 45°, w = 50°, n = 60°. It is assumed that al/l the Keplerian
orbital elements undergo secular rates of change amounting to a few percent of
the Keplerian mean motion for a better visualization of their impact. The motion
covers three Keplerian orbital periods 7k.

sin / sin £2
h=1{ —sinlcosQ . (2.25)

cos/

For them, the relation T = h x #holds. Tt is important to note that, in the calculation
ofthe order of O (4), all the Keplerian orbital elements are kept fixed to their values
at fy in the integrand of Equation (2.12).

The instantaneous first-order shifts of the Keplerian orbital elements given by
Equation (2.12) are the building blocks for calculating the impact of 4 on other
quantities closely related to observables. Furthermore, they have relevance in them-
selves whenever the characteristic timescales of the system(s) under consideration
are much longer than any realistically conceivable observational time span; then,
only relatively short arcs are accessible to observation, since the average effects are
not available.

The net shift per orbit A« can straightforwardly be obtained by the replacement
f — fo + 27 in the expression resulting from Equation (2.12). Depending on the
resulting positive or negative sign, A« is an advance or a retardation, respectively.

To the first order in A4, the precession of « averaged over one orbital revolution
(dic/dt) can be obtained simply by taking the ratio of Ak to the Keplerian orbital
period Tx. As per the meaning of Equation (2.18), from Equation (2.3) it turns out


https://doi.org/10.1017/9781009562911.002

26 General Calculational Scheme

that, by assuming that neither M nor a vary so that ng stays constant, the rate of
change of the mean anomaly at epoch is proportional to the opposite of the pace of
variation of the time of passage at pericentre, that is,

dn _ dﬁ
N

Thus, if n increases after one revolution, the pericentre, which in the meantime has
generally moved, is reached earlier than in the Keplerian case, and vice versa; see
Section 2.3.1 for some consequences of such a feature.

An effective calculational scheme yielding straightforwardly (d« /dt) relies upon
the planetary equations in the form of Lagrange, which read!! (Brumberg, 1991, p.
11, Equation (1.144))

d 2 9{R
da\ _ 2 9% (2.27)
dt nga on
de 1—e29(R) V1—e2d(R)
) - , (2.28)
dt nga*e 0n nga*e Ow
<d[> B cot/ 9(R) cscl 9(R) (2.29)
t o nKa2«/1 —e2 w nKazv 1 —e? €2 , .
ds2 cscl d{*R)
el QU , 2.30
< t > nga’y/1 —e* 0l (230)
dw B cot/ d{*R) n V1 —e?d{R) 231)
dr [ nKa24/1 —e2 0/ nKaze de ’ .
dn 1 —e? 9(R) 2 9(R) 3
dn\ _ _ _ 29 V). 2.32
< dt> nga’e de nga o0a nga? v ) (2.32)

In Equations (2.27)—(2.32), R, known as disturbing function, is any pK correction
LPK (r, v, f) (Brumberg, 1991) to the pointlike Newtonian Lagrangian per unit mass

2
In=—+ 12, (2.33)
2 r

it is the opposite of any extra-pK potential energy per unit mass. Using Equa-
tions (2.27)—(2.32) to calculate (d« /dt) implies performing the average of only one
function,'? namely 2R, whose inspection can immediately give an insight of which

11" See also, for example, Brouwer and Clemence (1961); Kaula (2000); Murray and Dermott (1999); Bertotti
et al. (2003); Capderou (2005); Roy (2005); Xu (2008); Kopeikin et al. (2011); Gurfil and Seidelmann
(2016); and Soffel and Han (2019) where such a topic is treated at varying levels of completeness, especially
as far as 7 is concerned.

12 In fact, if LPK depends explicitly on the velocity v, also (v - V,9R) has to be computed for the rate of change
of mean anomaly at epoch, as per Equation (2.32).
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averaged orbital changes one can expect. This proves particularly useful for several
modified models of gravity, treated in Chapter 10, for which a spherically symmet-
ric extra-potential is usually inferred from the spacetime metric coefficient ggo.
Since, in view of Equation(2.11), ({R), in this case, can only contain at most «
and e, from Equations (2.27)—(2.32) it can straightforwardly be predicted that only
o and n may experience nonvanishing net shifts per orbit. In Appendix C, it is
explained how to obtain a pK correction LPX, relativistic or not, to Equation (2.33)
that can be used in Equations (2.27)—(2.32).

2.2.2 The Second-Order Effects
The Second-Order Orbital Shifts

In order to calculate the shift of « to the second order in 4, Equation (2.19) must
be replaced in Equation (2.12) with

dt 2 2 (d dQ

o s (2 os1 20 | (2.34)
af  J/wp Jp \ dt dt

indeed, it is (Egorov, 1958; Taratynova, 1959; Mioc and Radu, 1979; Brumberg,

1991; Bertotti et al., 2003; Poisson and Will, 2014)

d 2
G WPl (4o %2 (2.35)
dt r? Jp \ dt dt

Equations (2.34)—(2.35) account for the fact that, actually, the apsidal line does
instantaneously vary as the satellite goes along its perturbed trajectory. Thus, the
contribution of Equation (2.12) to the shift of « to the second order in 4 is

! de\ ¥ (do d2
(@) (G )
o

Indeed, dk /dt is of the order of O (4), being any of Equations (2.13)—(2.18), and
dw/dt+cos Id2 /dt, coming from Equations (2.16)—(2.17), is of the order of O (4)
as well. The subscript ¢ in Equation (2.36) and in the following means that the
content to which it is appended has to be calculated onto the unperturbed Keplerian

ellipse of Equation (2.11).
Furthermore, one has also to account for the fact that, actually, all the Keplerian

orbital elements instantaneously change during the time it takes the satellite to
complete a full orbital revolution. Thus, one has also to compute

ain 3 dK/df (f/)

dr’. (2.36)

df’, (2.37)

o
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where Ax (f) are the instantaneous variations of the order of O (4) calculated
according to Equation(2.12). In taking the partial derivatives entering Equa-
tion (2.37), the Keplerian expression of Equation (2.19) has to be used in dx /df =
(dkc/dt) (dt/df); thus, 0 (di /df’) |9k is of the order of O (4), like Ak (f), and their
product entering Equation (2.37) is just of the order of O (42).

As a result, the complete orbital shift of « to the second order in 4 Ax® (f)
consists of the sum of two terms: Equation (2.36) and Equation (2.37), that is,

;

4 ae,...n /
Ac® (f) = [2—:;—}) (d—w +cosld—i2) + Z %AK (f>i| daf .
K K

o

(2.38)

Also in this case, the net shift per orbit Ax? is obtained with the replacement
f — fo + 27 in the expression resulting from Equation (2.38).

The preceding scheme is used in Sections 4.2—4.3 to calculate the contributions
of the 1pN gravitoelectric acceleration itself to the total 2pN gravitoelectric orbital
shifts.

The Averaged Second-Order Orbital Precessions
Care is required in correctly calculating the full precession <d/c(2) /dt) of k to the

second order in A. The mere division of Ax by the Keplerian orbital period 7k is
not enough; indeed, one has also to expand to the second order in 4 the ratio of Ak
of the order of O (4) to the pK perturbed orbital period 7PX := Tx + ATPX. To this
aim, it should be noted that, according to Equation (2.34), the latter has to be meant
as the apsidal period, namely the temporal interval between two consecutive pas-
sages at the pericentre. See Section 2.3.1 for the details on how to calculate AT,,,.

The preceding considerations are used in Section 4.4 to calculate the total 2pN
gravitoelectric averaged orbital precessions.

2.2.3 The Mixed, or Indirect Effects
The Mixed, or Indirect Orbital Shifts

If the pK acceleration 4 perturbing the otherwise Keplerian motion of the test
particle is made of the sum of two pK accelerations A' and A", assuming that both
are small in such a way that their sum is still much smaller than Equation (2.1),
their simultaneous presence in the equations of motion induces mixed effects of
the order of O (4'4"). It is just the case of, for example, the features of motion of
the order of O (J»/c?), treated in Chapter 8 whose complete calculation requires
taking into account also the contributions of either the 1pN gravitoelectric or the
Newtonian quadrupolar accelerations (see Section 8.2).
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They can be calculated by considering the instantaneous variations of all the
Keplerian orbital elements occurring during the time interval needed to describe a
full orbital revolution due to both the accelerations. That is, the mixed variation of
« due to A" and A" can be worked out as

4
Arepi () =Y |, (2.39)
j=1
with
4 “e o ( dlc/df / /
[ - Z (f) dar, (2.40)
o K
mix “eb'“” a dK/df) / /
[ - Z Ak (f) dr’, (2.41)
/fo K
ﬁmix ! dk ! 7’4 dow 4 [dQ 1 df/ (2 42)
= — | — | = +cos/— .
3 dt ) wp \ dt dt ’
o K
amix ' dic\' r* [ do +cos 1 I df’ (2.43)
= —_— — | — COS [ — . .
4 dt ) pp \ dt dr ) |

0
The suffixes ! and ! in Equations (2.40)—(2.43) mean that the terms which they
are appended to have to be calculated with the accelerations 4' and 4", respect-
ively. Note that Equation (2.38) is equal just to half of Equation (2.39), along
with Equations (2.40)—(2.43), with 4'=A4"=A4. The net mixed shift per orbit
<A/<(l._ o > is obtained straightforwardly with the replacement f — fy + 27 in

mix

Equations (2.39)—(2.43).

The Averaged Mixed, or Indirect Orbital Precessions

The averaged mixed precession <ah<(l1 0 /dt) can be obtained by adding the
expansion to the required order of
Ac' Ak
R
to Ak / Tx. In Equation (2.44), Ak and Ak are the first-order net shifts per
orbit due to A" and A", respectively, while 7' and 7" are the apsidal periods cal-
culated with 4" and A", respectively; how to compute the latter is explained in
Section 2.3.1.

(2.44)
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2.3 The pK Corrections to the Keplerian Orbital Period

From a theoretical point of view, various time intervals 7" characterizing different
cyclic patterns of the orbital motion can be defined when a pK acceleration 4 acts
on a satellite. They are the amounts of time elapsed between two successive pas-
sages of the latter at some directions which, in the Keplerian case, are all fixed; in
this case, all such periods coincide with the Keplerian one 7. Instead, a perturbing
acceleration breaks such a degeneracy, and the aforementioned temporal intervals
generally differ one from each other.

2.3.1 The Anomalistic Period

The anomalistic period Ty, is defined as the time interval between two successive
instants when the real position of the test particle coincides with the pericentre
position on the corresponding orbit. Among other things, it is required to calculate
the averaged orbital precessions to the second order in 4 (Section 2.2.2), and when
two pK accelerations are present (Section2.2.3). It can be calculated as follows
(Zhongolovich, 1960; Mioc and Radu, 1979; lorio, 2016b):

21
dt
Tano = TK + ATano = f (_> df: (245)
0 df

where dt/df, when a pK acceleration A is present, is given by Equation (2.34).
The true anomaly f* enters Equation (2.45) as a fast variable of integration just
because the line of apsides is involved in the definition of anomalistic period. In
order to obtain the full correction ATy, of the order of A to the Keplerian orbital
period, the contribution of the second term of Equation (2.34) to Equation (2.45) is
not enough. Indeed, also the partial derivatives of Equation (2.19) with respect to a
and e, multiplied by the finite variations from f; to f* of the same orbital elements,
have to be taken; in this way, one fully accounts for the fact that the Keplerian
orbital elements vary instantaneously as the satellite goes along its trajectory. Thus,
it is finally obtained:

21
a(l—ez)3 Aa (f)
W (1+ecosf)2

3
ATano = 5

a® (1—€2) [3e+ (2+€?) cosf]
m (14-ecosf)?

* (dow 1749)
A — | — I— ¢ df.
e(f)+up (dt+cos dt) If

K
(2.46)
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In Iorio (2016b), a variant of the preceding calculation can be found; in
Equation (2.19), the semilatus rectum p is adopted as independent variable along
with the eccentricity e, and simpler expressions for the partial derivatives of Equa-
tion (2.19) are obtained. The resulting expressions for calculating AT, turn out

to be
(1+ecosf) w (14 ecosf)’
4
+ (d_a) + cosld—Q>] df. (2.47)
wp \ dt dt «

The first-order variation Ap (f) of the semilatus rectum can be calculated from
Taratynova (1959) and Mioc and Radu (1979):

dp 2134,
df o
In the end, both Equation (2.46) and Equation (2.47) give the same result.
The presence or not of the pK anomalistic correction ATy, to the orbital period
can be intuitively explained as follows. According to Equation (2.26), the rate of
change of the mean anomaly at epoch 7 is proportional to the opposite of the pace

of variation of the time of passage at pericentre #,. Thus, should 7 increase, the
crossing of the pericentre position would be anticipated with respect to the Kep-

(2.48)

lerian case since #, would decrease, and vice versa. In this case, the variation of 7
would result in an orbit-by-orbit advance or delay of the passages at the pericen-
tre. As will be shown, while the 1pN gravitoelectric acceleration due to the mass
monopole(s) does induce a negative rate of 1, the gravitomagnetic LT one leaves
the mean anomaly at epoch unchanged. Furthermore, several modified models of
gravity, inducing radial pK accelerations dependent only on r, secularly change
both @ and 7. Also the Newtonian acceleration raised by the primary’s oblateness
J, affects, among other things, also 1.

2.3.2 The Draconitic Period

For a perturbed trajectory, the draconitic'® period Ty, is defined as the time interval
between two successive instants when the real position of the test particle coincides
with the ascending node position on the corresponding osculating ellipse.

13 This adjective originally referred to the passage of the Moon at its ascending node, when an eclipse occurs.
Indeed, the ancient Greeks thought that, during an eclipse, our natural satellite was swallowed up by a dragon
(3épropat, meaning literally ‘I stare’, from which §pakwv, -ovTog, 0, ‘which stares’) hiding near the nodes
of the lunar orbit (Capderou, 2005).
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It can be calculated as follows (Mioc and Radu, 1977; Iorio, 2016b):

27
dt
Tdra = TK + ATdra = / (d_) du, (249)
b u

where dt/du, when A is present, can be obtained as follows. From the definition
of u and Equation (2.35), it straightforwardly turns out (Ochocimskij et al., 1959;
Mioc and Radu, 1977):

du . Jip 2 cos I dS2
awu _ WP [y meosiddiy (2.50)
dt r? Jup dt

Thus, it is
dt N P r*cosl dQ

— 0~ -
du  /ip wp dt
Note that d<2/dt is already expressed in terms of u, as per Equation (2.16).

By using the nonsingular orbital elements'* (Mioc and Radu, 1977; Mon-
tenbruck et al., 2006)

2.51)

k :=esinw, (2.52)
q = ecosw, (2.53)
Equation (2.11) can be rewritten as

V4
=
14+ gcosu+ ksinu

(2.54)

in which p, ¢, k enter as independent variables.
By proceeding as in Section2.3.1, it can be obtained (Mioc and Radu, 1977;
lorio, 2016b)

2n
3 Ap (1)
ATdra = _\/E : i 2
2V (14 gcosu + ksinu)
s p? cosulq (u) + sin u‘Ak (3“) + rfcosl dQ du. (2.55)
W (1 +gcosu+ ksinu) wp  dt
K

14 They are the components of the eccentricity vector (Taff, 1985), an alternative formulation of the
Laplace—Runge-Lenz vector (Goldstein, 1980). In the context of pulsar astronomy, they are also known as
first and second Laplace—Lagrange parameters €1, €p (Lorimer and Kramer, 2005).
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The first-order variations Ap (), Ag (u), and Ak (u) entering Equation (2.55) can
be obtained by integrating the following expressions (Mioc and Radu, 1977):

dp  2r'4

dp _ 2r : (2.56)
du V8

dg  Psinud, 2 A t 1k sinuAd

dq _ r"sinu +r [rq + (r + p) cosu] A, +co r’ksinu h, (2.57)
du (0 H WP

dk _ _r2 cosuA, n r [rk + (r + p) sinu] 4, B cot/rg sinud, (2.58)
du [ H WP

from wug to u.

As far as the actual measurability of the draconitic period in some astronomical
scenario of interest is concerned, it was demonstrated (Amelin, 1966; Kassimenko,
1966; Zhongolovich, 1966) that it is possible to measure it, for an artificial Earth’s
satellite,' as the ratio of the difference of the times of passages of the sub-satellite
point through a chosen parallel for two following epochs to the number of satellite
revolutions corresponding to this difference. The accuracy reached at that time
seems to be of the order of ~ 10~ s (Kassimenko, 1966); it is plausible that it could
be improved by orders of magnitude with the most recent techniques currently
available.

2.3.3 The Sidereal Period

In general, both the line of nodes and the line of apsides do vary over time because
of some pK acceleration(s). Thus, it may be useful to look at a characteristic orbital
timescale involving the crossing of some fixed reference direction in space; the
sidereal period Tq4,'® defined as the time interval between two successive instants
when the real position of the test particle lies on a given reference direction, is right
up our alley.

For an orbit arbitrarily inclined to the fundamental plane, the sidereal period can

be calculated as
27
dt
Tsqa = Tx + ATgq = — | d¢, (2.59)
0 d¢

where ¢ (¢) is the azimuthal angle reckoned from the reference x axis in the funda-
mental plane; when the latter is assumed to be coincident with the Earth’s equatorial

15 In their analyses, Amelin (1966), Kassimenko (1966), and Zhongolovich (1966) used the Soviet satellite
1960 ¢ 3.
16 From the adjective sidéralis, e, (‘of or belonging to the stars’).
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plane at some reference epoch, ¢ (¢) is the right ascension (RA) « (#) of the celestial
body of interest. From

x(t) = r () [cos 2cosu () — coslsin 2sinu (1)], (2.60)
y(t) =r () [sinQcosu(t) + coslcos 2sinu(1)], (2.61)

one obtains ¢ (¢) as

Y (t)] : (2.62)

1) = t —
¢ (t) = arctan [x )
it is a function of the generally varying 7 (¢), Q (¢), and u (t), namely ¢ () =
¢U®),L2®1),u®).

Since the ongoing calculation is to the first order in the pK acceleration, the
differential d¢ in Equation (2.59) can be written as

dp ~ (%) du. (2.63)
The integrand of Equation (2.59) can be obtained as
a1 e ! . (2.64)
T ) [ CYIEYy)

Thus, to the first order in the pK acceleration, the integral of Equation (2.59) can
be approximated as

21
dt ou (dpdl 03¢ dQ2
Taq = ay ot _¢__|__¢_ du
) du 0p \ 9 du 092 du

2n 2n
dt | (opdl  0pdQ\ [ dt
- DNau— | — (2L LPEN L)y 265
[ <du) ! [ g (81du+8§2 du)(du) ! (2:65)

The first term in Equation (2.65) is nothing but the draconitic period, and can
be calculated to the order O (4) as outlined in Section2.3.2. The second term in
Equation (2.65) is a correction to the former

27
1 (apdl 3¢ dQ\ [ di
ATgni=— | — (2L L 22TN (DY 4 2.66
a [%(8]du+89du)(du>Ku (2.66)

taking into account the fact that, in general, the orbital plane is displaced by the
pK acceleration; indeed, the rates of / and Q2 enter it. In Equation (2.66), dt/du is
intended to be calculated onto the unperturbed Keplerian ellipse in order to keep
the calculation to the first order in A.
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If the orbital plane coincides with the fundamental one, the previously outlined
calculational strategy may lead to analytical expressions for 74 which, for some
pK accelerations, are singular in / =0. In that case, the sidereal period can be
straightforwardly calculated by means of the true longitude / as follows (lorio,

2016b):
27
dt
Tsid = TK + ATsid = f (d_l) dl, (267)
0

in close analogy with Sections 2.3.1 to 2.3.2. It should be recalled that / is gener-
ally a dogleg angle since €2 and u lie in different planes; it is the true longitude
of the test particle actually moving along its real orbit only if / = 0. When a per-
turbing acceleration A enters the equations of motion, dt/dl can be obtained in the
following way. From the definition of / and Equation (2.34), it is

dl  Jwp 212 sin® (1/2) dS2
a _ JWp 1+L(/)_ - (2.68)
dt 72 Vp dt
Then, it can be written
dt r? 2r*sin? (1/2) dS2
~ _ Z7sin” (1/2) 2 (2.69)

dl ~ Jfip wp dt

The sine of the argument of latitude entering Equation (2.16) for d2/dt can be
written in terms of / as sin (I — 2).
By introducing the nonsingular equinoctial elements (Broucke and Cefola, 1972)

‘= ecosw, (2.70)
‘= esinw, (2.71)

RS

Equation (2.11) can be rewritten as

P

r= — — (2.72)
1+¢gcosl+ ksinl
in which p, g, ¥ enter as independent variables.
By proceeding as in Sections 2.3.1 to 2.3.2, one obtains (lorio, 2016b)
27
3 Ap ()
ATy = z \/E R A
2V (1 +gcosl+ ksinl)
) [P cos 1A (1) + siEIA% (31)  2sin’ (1/2) d2 4 @7
W (14+Gcos!+ ksinl) wp dt
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The first-order variations Ap (1), Ag (I) and Ak (1) entering Equation (2.73) can be
obtained by integrating the following expressions (lorio, 2016b):

d, 234,

@& _ (2.74)
dl L

dj _ r’sinld, N g+ (r+p)cosl]A,  tan(I/2) Pksin (I — Q) A4,

di B m wp
(2.75)

dk 1P cosld, . P [rk + (r + p) sin 1] 4, | tan(/2) Pgsin(l — Q) 4,

dl 1 1 wp
(2.76)

from /; to /. If the orbital plane is aligned with the fundamental one, Equation (2.73)
and Equations (2.75)—(2.76) have to be calculated with / = 0.

It is generally expected that if the orbital plane stays constant in space, that is,
if neither the nodes, when defined, nor the orbit’s projection onto the fundamental
plane change over time, the sidereal period coincides with the draconitic one since
the line of nodes is a fixed direction in space.

2.4 The pK Variations of a Generic Observable 9

Let © be some generally time-dependent observable quantity for the system at
hand like, for example, the radial velocity, one out of the two astrometric angles
RA and dec., a characteristic time scale of a transiting exoplanet, or the ratio of the
projection onto the line of sight of the barycentric orbit of an emitting pulsar in a
binary system to the speed of light c.

If the former can be analytically modelled in terms of some explicit function
Fa, e I, Q, w, n, ) of the Keplerian orbital elements, its instantaneous pK
change AF (f) due to A can be calculated, to the order of O (4), as

a.e,...,n

AF(N = Y 5o A (D) + 5081 (). @.77)

In Equation (2.77), the instantaneous pK variations of all the Keplerian orbital
elements, apart from the true anomaly f, are computed, to the first order in 4,
by means of Equations (2.12)—(2.19). The pK change Af (f) of the true anomaly
f encompasses the variation AM (f) of the mean anomaly M, whose calculation
requires care, as shown in the following equations. According to Equation (A.6) of
Casotto (1993), the variation of / can be written as
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A (f) = (g) [sinf (1 +£) Ae(f) +v1— & <§) AM (f)]. (2.78)

While Ae (f) can be straightforwardly worked out according to Equation (2.12)
calculated with Equation (2.14) and Equation (2.19), AM (f) is more complicated
to evaluate; see, for example, Brumberg (1991) and Sobel (1989). As shown in
lorio (2017), the instantaneous variation of the mean anomaly can be obtained, for
example, as

AM(f) =An(f)+2(f), (2.79)

where the contribution due to the change Ang of the mean motion ng induced by
the variation of the semimajor axis a is

t
® (f) = / Ang (z) L Y (f) e (280
t 2a Jg df

The shifts An (f) in Equation (2.79) and Aa (f) in Equation (2.80) can be calcu-
lated as per Equation (2.12) with Equation (2.13) and Equation (2.18), along with
Equation (2.19) for dt/df .

The net change per orbital revolution AF is obtained with the substitution /' —
fo + 27 in the final expression of Equation (2.77); it turns out that, in general, AF
may depend on fj.

2.4.1 The Radial Velocity of a Spectroscopic Binary

A very common observable in studies of binary systems made of two bodies A
and B with comparable masses M, and My is the radial velocity V' (Lindegren
and Dravins, 2003) of the member for which a spectroscopically determined light
curve is available (Struve and Huang, 1958). In this case, one speaks of a single-
lined spectroscopic binary (SB1); if both light curves are measured, the system
is named double-lined spectroscopic binary (SB2). In exoplanets (Mason, 2008;
Seager, 2011; Kitchin, 2012; Deeg and Belmonte, 2018; Perryman, 2018), which
have been attracting a growing interest for some years as possible tools to test
GTR and modified gravity (Adams and Laughlin, 2006c,a,b; lorio, 2006a; Jordan
and Bakos, 2008; P4l and Kocsis, 2008; Jordan and Bakos, 2009; Ragozzine and
Wolf, 2009; Iorio and Ruggiero, 2010; Damiani and Lanza, 2011; Fukui et al.,
2011; Iorio, 2011b,a; Eibe et al., 2012; Kane et al., 2012; Li, 2012; Zhao and Xie,
2013; Xie and Deng, 2014; Vargas dos Santos and Mota, 2017; Blanchet et al.,
2019; Marzari and Nagasawa, 2019; Ruggiero and lorio, 2020; Antoniciello et al.,
2021; Gou et al., 2021; Kozak and Wojnar, 2021), the only light curve accessible
to observations is that of the parent star (Lovis and Fischer, 2010; Hara and Ford,
2023). The same occurs for the S stars (Eckart and Genzel, 1996; Gezari et al.,
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2002; Gillessen et al., 2009, 2017; Nishiyama et al., 2018; PeiB3ker et al., 2020,
2022) revolving about the SMBH in Sgr A* at the GC (Eckart et al., 2002; Ghez
et al., 2008; Genzel et al., 2010, 2024) in the sense that the light curve accessible
to observations is, obviously, theirs.

The radial velocity!” V' is intended to be the projection onto the line of sight,
usually assumed coincident with the z axis of a reference frame whose funda-
mental plane is tangential to the Celestial Sphere at the position of the binary’s
barycentre,'® of the sum of the constant barycentre’s velocity, or systemtic vel-
ocity, ¥° and the barycentric velocity v of the visible binary’s member which, as
seen in the previous examples, is either a star hosting an exoplanet or a S star in
Sgr A*. Thus, it can be written

V=">4+:z (2.81)
From Equation (2.8), along with Equations (2.9)—(2.10), it turns out

y_ o me ngasin/ ( . ) (2.82)
— V] = ————=(cosu+ecosw), .
T M-

where m, is the mass of the unseen companion, namely either an exoplanet p or
the SMBH in Sgr A*, and M,, is the total mass of the system; the rest of the orbital
parameters refer to the relative motion of one about the other. The pK instantaneous
shifts of Equation (2.82) can be calculated according to Equation (2.77) by means
of the following partial derivatives'®

g I (ecosw + cosu) sin], (2.83)
da 2,/ o’ (l — ez)

g _ Me (cosw + ecosu) sinI’ (2.84)
de / 0\3

Wpa (1 —e )

8_V _ R (ecosw + cosu) cos[’ (2.85)
ol woa (1 — ez)

g __He (esinw + sinu) sinl’ (2.86)

do \/ pa (1 —ez)

17 See, for example, Chapter 18 of the online book Celestial Mechanics by J. B. Tatum, retrievable at
www.astro.uvic.ca/~tatum/celmechs.html, accessed on 20 January 2024.

18 From Bapvg, €ta, U, ‘heavy’.
19 10 obtaining Equation (2.83), the Keplerian mean motion ny is considered as an explicit function of a.
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B_V _ M sinu sin / (2.87)

f Wpd (1 —e?)

and Equation (2.78).
In Equation (2.82), the semiamplitude of the radial velocity curve is defined as
Ko me nga sinl.
My 1=

it is one of the directly estimated parameters in exoplanet studies (Eastman et al.,
2019). Its nonvanishing partial derivatives are

(2.88)

0K in/

e (2.89)
da 2./ mpa? (1 —e?)

% _ M ngae sin3]2’ (2.90)
de My (1 _ eZ) /

0K _ome ngacos/ 2.91)

A My JT—&

About the current and forthcoming accuracy in radial velocity measurements in
extrasolar planets, according to Crass et al. (2021), for nearly a decade, precision
instruments and surveys devoted to implementing the Extreme Precision Radial
Velocity (EPRV) technique®” have been unable to routinely reach accuracies of less
than roughly 1 m/s (Fischer et al., 2016; Dumusque et al., 2017). However, modern
spectrographs promise measurement precision of >~ 0.2—0.5 m/s for an ideal target
star (Gilbertson et al., 2020), or even down to the >~ 0.01 m/s level (Matsuo et al.,
2022). Furthermore, the next generation of EPRV instruments, which have been
designed to have instrumental accuracies approaching 0.1 m/s with a few cm/s
stability over many year, have recently been developed: the Echelle SPectrograph
for Rocky Exoplanets and Stable Spectroscopic Observations (ESPRESSO) (Pepe
et al., 2010), the EXtreme PREcision Spectrograph (EXPRES) (Jurgenson et al.,
2016), M dwarf Advanced Radial velocity Observer Of Neighbouring eXoplanets
(MAROON-X) (Seifahrt et al., 2018), and NEID (Schwab et al., 2016).

As far as the S stars are concerned, the uncertainty in the radial velocity of
the massive, young main sequence star S2 of spectral class B, also known as
S0-2 (Ghez et al., 2003; Martins et al., 2008; Habibi et al., 2017), was recently
pushed down to the >~ 7km/s level for the best data, with a median error of
12.3km/s (GRAVITY Collaboration, 2019), from measurements collected over

20 1ts main goal is to detect potentially habitable Earthlike rocky planets orbiting at about 1 au from solar-type
stars (Crass et al., 2021).
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several years?! with the SINgle Faint Object Near-IR Investigation (SINFONI)
instrument,?? now decommissioned.

2.4.2 The Characteristic Timescales in Transiting Exoplanets

Transiting exoplanets (Haswell, 2010) are discovered by monitoring the reduction
in the collected electromagnetic radiation as they pass in front of their parent star
in what is called a primary transit, or primary eclipse?®> (Winn, 2011). Most of them
are seen edge-on, namely, / >~ 90° (Mason, 2008). Since it is the combined flux
from both the star and the planet p which is actually measured, a further reduc-
tion of the former occurs also when the planet passes behind the star in what is
called a secondary transit, or secondary eclipse (Winn, 2011). In both cases, some
characteristic timescales are measured along with their variations as a powerful
tool to reveal transiting — and even non-transiting — planets (Kipping et al., 2011;
Nesvorny et al., 2012; Fabrycky et al., 2012; Steffen et al., 2012a,b; Nesvorny
etal., 2013): the total transit duration 87, the ingress/egress>* transit duration §t; Je>
the full width at half maximum primary transit duration ¢4, and also the times of
inferior and superior conjunctions25 t¢j (Eastman et al., 2019).

When the primary eclipse occurs, the transit starts at the first instant of contact
t;, when the planetary disk, moving towards the star, becomes externally tangent to
the stellar one. Then, at the second instant of contact #, the two disks are intern-
ally tangent with the planet’s disk superimposed on the stellar one. At the third
instant of contact fyy, the planet’s disk begins to leave the stellar one becoming
internally tangent to it. The transit ends at the fourth instant of contact #y when
the planetary disk, moving away from the stellar one, becomes externally tangent
to it.

The collected data records, spanning months or even years, usually cover a huge
number of transits N, since most of the detected transiting exoplanets are close
to their parent stars. As an example, K2—137b (Smith et al., 2018), discovered in
2017, is only 0.0058 au from its star and has an orbital period Tk as short as 4.3 hr;
in principle, more than N, = 10,000 transits are available nowadays for it. About
the actual level of uncertainty in measuring, say, §¢p, in a specific system, the case
of?® HD 286123b (Brahm et al., 2018; Yu et al., 2018), known also as K2-232b,

21 The orbital period of S2 is about 16 yr (Gillessen et al., 2009; Boehle et al., 2016).

22 It was an adaptive optics assisted near-infrared integral field spectrometer mounted to the Very Large
Telescope (VLT) run by the European Southern Observatory (ESO) (Eisenhauer et al., 2003).

From ¥KAeulig, -ewg, f], “disappearance, abandonment’, formed by ék- (‘out’) and Aelmw (‘to leave, depart,
disappear’).

From in-grédior, essus, ‘to go into, to enter’, and é-grédior, gressus, ‘to leave, exit’.

From conitinctio, onis, ‘a connecting, uniting, union, agreement’.

It is a sub-Jovian planet orbiting a Sunlike star in 11.6 d, corresponding to a a = 0.0991 au, along an
elliptical orbit with e = 0.2555.

23

24
25
26
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can be fruitfully analysed. The formal, statistical accuracy in measuring its total
transit duration amounts to (Yu et al., 2018)

51y ~ 0.0003d = 28s (2.92)

over NV, = 7 since its orbital period is 7x = 11.16d, and it was monitored dur-
ing 80 d (Yu et al., 2018). It should likely not be unrealistic to expect some future
improvements in oy,,,; indeed, it generally gets smaller with the number of transits
Ny as /Ny Thus, for Ny, = 100, o5, should reduce just by a factor of 10. If one
assumed a continuous monitoring over, say, 10 yr, corresponding to N, =~ 330,
05, would improve by a factor of 18 corresponding to a measurement uncertainty
as little as 1.6s. Furthermore, if it were possible to observe N, = 1,000 tran-
sits over about 30 yrs, the experimental accuracy would improve by a factor of 32
reaching the 0.8 s level. However, it must be remarked that the quoted errors are,
in fact, just the formal, statistical ones; they do not account for several sources of
systematics like, e.g., confusing time standards, neglecting star spots, and neg-
lecting clouds. According to the online NASA Exoplanet Archive available at
https://exoplanetarchive.ipac.caltech.edu,?’ the best current accuracy in measuring
the total transit duration of transiting exoplanets is of the order of

Oy 2= 0.0004 hr = 145, (2.93)

However, Equation (2.93) refers to planets moving along circular orbits. As far
as the other timescales of HD 286123b are concerned, the formal uncertainty in
measuring &t/ is (Yu et al., 2018)

051y, = 0.00020 — 0.00047d = 17 — 40ss, (2.94)
while it is (Yu et al., 2018)

05y, 22 0.0002d = 17s. (2.95)
The reported formal uncertainty in measuring f; is, for HD 286123b (Yu et al,,
2018),

o, = 0.00004d = 3.6s (2.96)
after N, =7 transits. After 3 yr and Ny, =100 transits, the measurement error
should be reduced down to ~ 0.3 s. If it were possible to observe Ny = 330 tran-
sits over 10 yr, the error should become as little as >~ 0.2s. About the realistic
obtainable accuracy, the same caveats pointed out for 575 hold also here.

In the following discussion, only the timescales characterizing the primary tran-

sits are treated since the ones corresponding to the secondary eclipses are, in
general, less accurately measured (Yu et al., 2018).

27 Accessed 12 February 2024.
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The Total Transit Duration 8tp

The transit is viewed in the plane of the sky, assumed as reference plane {x, y} of
an astrocentric coordinate system whose reference z axis is directed along the line
of sight. In order to obtain a manageable analytical expression for its total duration
8tp, defined as

Stp :=tv — 1 (2.97)

and dubbed 74 by Eastman et al. (2019), some reasonable assumptions are to be
made. (a) The distance between the planet and its parent star is assumed to be large
enough so that the orbital period 7k is much longer than §¢, (Carter et al., 2008;
Ford et al., 2008). Thus, the planetary disk moves across the stellar one along an
approximately rectilinear segment at an essentially constant speed which can be
assumed equal to that at midtransit; in general, the speed along an elliptical orbit
is variable, as per Equation (2.8). (b) The star—planet separation r, generally vari-
able according to Equation (2.11), remains substantially unchanged and equal to its
value at midtransit. (¢) The assumed rectilinear chord of the stellar disk traversed
during the transit is parallel to the line of the nodes. Thus, let the reference x axis
be aligned just along it, so that 2 = 0. (d) Since it is assumed that, during the tran-
sit, the planet moves rectilinearly in front of the star without changing their mutual
separation, as per (a), y, does not change during 7p, and it can be posed equal to
its value at midtransit occurring when x, = 0; from Equation (2.60), written for
Q = 0, the latter condition occurs for up,;qg = 90°, so that

Jmia = 90° — w. (2.98)
With such assumptions, it is possible to finally obtain (Iorio, 2023c¢)

2R 1 — é?

_ 2_2
= nga/1 + 2esinw + €2 (1+ )" =22, (2.99)
where
v (2.100)
R,

_a (1 — ez) cos/
TR, (1 +esinw)’
Equation (2.101) is usually dubbed impact parameter; in it, R, and R,, are the star’s
and planet’s radii, respectively. Its nonvanishing partial derivatives are
0oty _ .1 —< - [—3012 (1- e2)2 cos® [
da nkR,a?v/1 + 2esinw + €2 (1 + esinw)?

(2.101)

1

JA+ 02 —p

+ R+ )2 (1 +esina))2] (2.102)
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3tp 2[2e+ (14 €*) sinw]
de  praR, 1 — (1 +esinw)’ (1+e+2e sina))3/2

[—Ri (14 0)% (1 + esinw)’

1
+a (1= ) cos [ (2 + € 4 3esine) | ——, (2.103)
VI +9)? =1
06t a(l—é? 312 sin 2/
D - ( ) , (2.104)
o1 kR A1+ 2esinw + €2 (1 + esinw)? /(1 + 9)> — b2
adtp 2e/1 —e2cosw
00 pgaR, (1 + esinw)’ (14 € + 2esinw)’?
[—Ri (14 0)% (1 + esinw)’
1
+a* (1- 62)2 cos”I (2 +¢* + 3e sina))] —_——— . (2.109)
V(14 9)* — b2

The Ingress/Egress Transit Duration 8t; ).

The total ingress duration ¢ is the time interval required for the planetary disk
to pass from external to internal tangency to the stellar one in moving towards the
star; thus, it can be defined as

Sting =1t — 4. (2106)

By relying upon the same assumptions made in the previous section for the total
transit duration §7p, one finally obtains (lorio, 2023c)

R.A1 — €2
nxav'l + 2esinw + €2

Sting =

[\/(1 +9)° = b — \/(1 —9) - b2] . (2.107)

Its nonvanishing partial derivatives are

08ting Rl-e {\/(1—1—19)2—172—\/(1—19)2—172

da  2nga®J1+ e + 2esinw

1 1
+20° — , 2.108
{\/(1—19)2—132 \/(1+19)2—b2“ 2109
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00ting B [26 + (1 + ez) sina)]

de ngav'l — &R, (1 + esinw)? (1 +e2+Zesina))3/2

R2(1-9)" (1 +esinw)’ —d*(1 — e2)2 cos? I (2 + € 4 3esinw)
N

N —R2 (14 9)* (1 + esinw)® + a? (1 — e2)2 cos? [ (2 +ée® +3e sina))

Va+0)?-p ’

(2.109)
38 ting a(l— 62)5/2 sin 2/ 1
oI 2ngRT+ 2esine + € (1 + esinw)? | /(1 +9)% — b2
1
I —— (2.110)
N
Iting eR, 1 —e*cosw RS >
= R R AL AN (14+9) —b
dw nga (1 + 2esinw + €?)
_|_a2 (1 —e2)2 cos? I (1 + 2esinw + €?) 1
R2 (1 + esinw)® V(L + )2 — 2

1
—— |}, 2.111
\/(1—19)2—192“ @b

It turns out (lorio, 2023c¢) that the total egress duration &fg,, that is, the time
interval required to the planetary disk to pass from internal to external tangency to
the stellar one in moving away from the star and defined as

Otegr 1=ty — t, (2.112)

is equal to Equation (2.107) for &#,,. Thus, they will be commonly denoted as 6.,
dubbed as t by Eastman et al. (2019).

The Full Width at Half Maximum Primary Transit Duration Sty

Another measurable characteristic timescale of the primary transit is the full width
at half maximum primary transit duration (Eastman et al., 2019), which can be

defined as
tn + hv h+ty
ty = — ; 2.113
” ( ! ) (2 ) @113)
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Eastman et al. (2019) dub it Tryyy. It can be calculated with the same approxima-
tions adopted for the previous timescales, obtaining (lorio, 2023c)

Sty = Rvi-é& [\/(1—19)2—b2+\/(1+19)2—b2] (2.114)

ngav/'1 + 2esinw + €2

Its nonvanishing partial derivatives are

98t N
" _ ? — [3a2 (1- ez)2 cos? [
da nka@?R,\/1 + €2 + 2esinw (1 + esinw)
2 2 . 2 1
~R(1— )2 (1 + esinw) ]— (2.115)
V(A =9)? —b?
8ty [2¢ + (1 + &%) sinw)]

de ngav'1 — &R, (1 + esinw)? (1 +e2 4 2e sina))3/2
—R2(1 - 92 (1 + esinw)’ + d? (1 - ez)2 cos? [ (2 +e + 3esina))
V(=) —p?

. —R2(1+ ) (1 +esin)’ +a (1 — ) cos? I (2 + &2 + 3esin o)

V(1 +09)2 b2

b

(2.116)

00ty a (1 — 62)5/2 sin 2/ 1
I 2ngRA1+ 2esinw + & (1 +esinw)’ | /(1 +9)° — b2

1
e 52} , (2.117)

BEYS R.A/1—eecosw
= = 372 :_\/(l_ﬁ)z_bz_\/(1+’9)2_bz

dw nga (1 +2€sina)+e2)

+a2 (1 —ez)zcoszl(l +2€sina)+ez) 1
R2 (1 + esinw)® /(1 + 9)2 — b2

1
+m”_ (2.118)
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The Time of Inferior Conjunction t;

A further measurable quantity in transiting exoplanets is the time of inferior con-
junction®® 7;; (Eastman et al., 2019), named 7¢ by Eastman et al. (2019). Its explicit
expression can be obtained as follows.

By integrating Equation (2.19) with respect to the true anomaly from 0, which
occurs at the pericentre, to an arbitrary value f, one gets (Capderou, 2005)

l—et <f>:| _e«/l—ezsinf

1
t=t — {2 arctan an
p+nK{ |: 1+e 1+ ecosf

By calculating Equation (2.119) with the value of the true anomaly at midtransit,
given by Equation (2.98), yields 7. Thus, one finally has (Iorio, 2023c)

5 } (2.119)

1 1 — V1 —é?
i = t, + — | 2arctan etn(z—g) _ev_ meeosel s 0
nK +e 4 2 1+ esinw
Its nonvanishing partial derivatives are?’
8tcj 3 { .
G 1 Ji—&
5 anc (1 + esine) n(l +esinw)+ecosw e

g V1—e2cosw (2 +esinw)

= ; 2.122
de ng (1 + e sin w)? ( )
At 1 —e?)"?
= ( )' =, (2.123)
ow ng (1 + esinw)

At 1
L= (2.124)
an ng

Note that both Equation (2.120) and Equations (2.121)—(2.124) depend neither on
the radius of the star nor that of the planet.

2.4.3 The Sky-Projected Spin-Orbit Angle of Transiting Exoplanets

Another directly measurable quantity in transiting exoplanets is the angle A
between the projections of the system’s orbital angular momentum and the star’s

28 Tt occurs when the star, the planet and the Earth are aligned with the planet in between the former and the
latter.

29 In calculating Equation (2.121), #, = to — n/nK is used.
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angular momentum on the plane of the sky, known also as sky-projected spin-orbit
angle, counted clockwise from the former to the latter (Albrecht et al., 2022). It
is usually measured with the Rossiter—McLaughlin (McLaughlin, 1924; Rossiter,
1924) effect, widely used in exoplanetary research (Triaud, 2018).

By relying upon some of the same assumptions put forth in Section 2.4.2, it can
be inferred that

A= — ¢ +90°, (2.125)

where ¢, is the azimuthal angle of the projection of the stellar angular momen-
tum onto the plane of the sky reckoned from some fixed direction chosen as the
reference x axis; also the node 2 is counted from it.

By assuming that the star’s angular momentum does not undergo any secular
precession, so that ¢, can be considered constant, from Equation (2.125) it turns
out

dr  dQ

dr — dr
Thus, measuring the rate of change of the sky-projected spin-orbit angle allows, in
principle, to detect the combined effect of any pK acceleration displacing the node
as well.

To date, it seems that there are not very many measurements of dA/dt in the
literature. The case of XO-3b (Hébrard et al., 2008) seems to be spurious, being the
reported discrepancy in the measurements of A probably due to systematic errors
in one or both of them (Worku et al., 2022). The current best level of accuracy in
measuring A is of the order of o, ~ 2°. With repeated measurements over 10 yr,
it may be pushed to the o; =~ 1° level; then, an accuracy of o; =~ 0.1°/yr over
10 yr may be hypothesized.3® Nonetheless, there are a few systems for which the
accuracy in measuring A is currently at the sub-degree level; suffice it to say that,
according to Table A.1 of Albrecht et al. (2022), A = 59.2 &£ 0.1° for Kepler-13b,
A = 112.9 4+ 0.2° for WASP-33b, and A = 85.1 & 0.2° for Kelt-9b, corresponding
to a 0.2% relative accuracy. For Kelt-9b, a measurement of d\ /df accurate to o; =
0.08°/yr is reported in the literature (Stephan et al., 2022), while for WASP-33b,
the upper bound |dA /dt| < 0.07°/yr is quoted (Stephan et al., 2022).

(2.126)

2.4.4 The Variation of the Times of Arrival of Binary Pulsars

In a binary hosting at least one pulsar psr emitting electromagnetic radiation’!
(Lorimer, 2008), the TOAs 7psr of the emitted pulses change primarily because of

30 Winn, J. W., personal communication, February 2024.

31 Although the pulsars’ emission is usually in the radio portion of the electromagnetic spectrum (Beskin et al.,
1988; Lyutikov et al., 1999), neutron stars emitting also optical, X and gamma radiation are known (Torres
and Rea, 2011; Giraud and Pétri, 2021).


https://doi.org/10.1017/9781009562911.002

48 General Calculational Scheme

the orbital motion about the common centre of mass caused by the gravitational
tug of the companion ¢ which can be, in principle, either a main sequence star
(Wex, 1998) or an astrophysical compact object like, for example, another neutron
star which does not emit (Hulse and Taylor, 1975) or whose pulses, for some rea-
son, are no longer3? detectable, a white dwarf (Antoniadis et al., 2013; Ransom
et al., 2014; Venkatraman Krishnan et al., 2020) or, perhaps, even a BH (Wex and
Kopeikin, 1999). Such a periodic variation 87psr (f) can be modeled as the ratio
of the projection of the barycentric orbit of the pulsar onto the line of sight to the
speed of light ¢ (Damour and Schifer, 1991; Konacki et al., 2000). By assuming a
coordinate system centred in the binary’s centre of mass whose reference z axis is
along the line of sight in such a way that the reference plane {x, y} coincides with
the plane of the sky, we have

FpscSINIsinu  Gpgr (1 — ez) sin/ sinu
c - c(l 4+ ecosf)
me d (1 — ez) sin/ sinu
- ﬁb c (1 +ecosf)

~ Zpsr
(Stpsr () = 7 = (2.127)

(2.128)

In obtaining Equation (2.128), which is somewhat analogous to the range in Earth—
Moon or Earth—planets studies (Damour and Schifer, 1991), we used the fact that,
to the Keplerian level, the barycentric semimajor axis of the pulsar psr is
me
~ —a, 2.129

Apsr M, a ( )
where a is referred to the relative orbit of psr with respect to the companion c. In a
purely Keplerian scenario, there is no net variation 87psr over a full orbital cycle.

The nonvanishing partial derivatives of Equation (2.128) are

38t mea(l —é*)sinlsinu

_ 2.130
Ja My, ¢ (1 +ecosf) ( :
08ty mc a[2e+ (1+¢?) cosf]sinlsinu (2.131)
de M, c(1 +ecosf)? , '
347, a (1l —e*)coslsinu
b _ moa(l—¢) , (2.132)

ol My  c(1 4+ ecosf)

32 At least for some years (2003-2008), both the members of the double pulsar PSR J0737-3039 (Burgay et al.,
2003; Lyne et al., 2004) were simultaneously detectable as emitting radio pulsars. Later, the beam by PSR
J0737-3039B was displaced away from our line of sight by the geodetic precession (Damour and Ruffini,
1974; Barker and O’Connell, 1975) experienced by its spin, measured by Breton et al. (2008) to a >~ 13%
accuracy, due to the 1pN gravitoelectric field of PSR J0737-3039A. PSR J0737-3039B should become
visible again around 2024 at the latest (Noutsos et al., 2020).
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887psr me a (1 — ez) sin/ cosu

= — 2.133
ow My, ¢ (1+ecosf) ( )
941, a (1 —e*)sinl (ecosw + cosu
BBty _ me (1= €)sin ( ). (2.134)

f My c(1 +ecosf)?

The calculation of the pK instantaneous shifts A(S?psr is made according to
Equation (2.77) along with Equations (2.130)—(2.134).

2.4.5 The Astrometric Angles RA and dec.

Given a test particle revolving about a massive primary, the body-centric RA «
and dec. § are directly connected with the astrometric angular variables which are
actually measured in real astronomical observational campaigns. An example is
provided, in the case of an Earth’s satellite, by their relation with the spacecraft’s
topocentric or local tangent coordinates (Montenbruck and Gill, 2000; Moyer,
2003; Xu, 2008). Another important scenario characterized by the use, among other
things, of the RA and the dec. is the GC and the S stars. Suffice it to say that the
recent discovery of the star S4716 (Peil3ker et al., 2022) relied upon extensive col-
lections of measurements of RA and dec. accurate to >~ 5 — 0.5 milliarcseconds
(mas).

The RA can be calculated from Equations (2.60)—(2.61) and Equation (2.62) in
the case of a reference frame having the mean Earth’s equator at the reference epoch
J2000.0 as fundamental plane, so that ¢ — «. The dec. is obtained from

z(t) = r(t)sinl sinu (), (2.135)
as
t
8 (t) = arcsin Z(—) . (2.136)
r (1)
Thus, the nonvanishing partial derivatives of «, § turn out to be
oo 2sin/ sin2u
— = — , (2.137)
al 3+ cos2/ + 2sin I cos 2u
o _ (2.138)
FIo '
Ja 4cos/
— = — , (2.139)
dw 3+ cos2l + 2sin” I cos2u
do 4cosl
(2.140)

? - 3 4 cos2l + 2sin®Icos2u’
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% _ cos/sinu ’ (2.141)
o /1 —sin*I'sin*u
8_8 _ sin/ cosu ’ (2.142)
do /1 —sin’ I'sin’ u
a4 _ sin/ cosu (2.143)

/1 —sinIsin® u
The calculation of the pK instantaneous shifts A«, A§ is made according to
Equation (2.77) along with Equations (2.137)—(2.143).

2.5 The pK Variations of the Two-Body Range and Range Rate

Let A and B be two test particles orbiting the same primary whose position and
velocity vectors are ra (¢), g (f) and va (7), vg (), respectively. Typically, A and B
may be a major body of our solar system orbited by a probe and the Earth to which
electromagnetic signals are transmitted by the latter, or a pair of twin spacecraft
orbiting the same primary along identical orbits. Examples of the latter scenario
are the Gravity Recovery and Climate Experiment (GRACE) (Tapley et al., 2004b),
GRACE Follow-On (GRACE-FO) (Kornfeld et al., 2019) and Gravity Recovery
and Interior Laboratory (GRAIL) (Zuber et al., 2013) missions, the first two of
which orbit around the Earth and the third around the Moon. In such a tandem
configuration, whose idea dates back to Wolff (1969), one spacecraft follows the
other along the same orbit as both continually measure their reciprocal distance
by means of microwave (or, possibly, laser as well) ranging instruments. The first
mission concepts were proposed by Fischell and Pisacane (1978) (GRAVSAT) and
Reigber (1978) (SLALOM).

The two-body mutual range p () and range rate p (¢) are defined as (Cheng,
2002)

p = +/(ra —rp) « (ra — 1p), (2.144)
p = (va—vB).p, (2.145)
where
po="a" B, (2.146)
0

the range is the instantaneous distance between A and B, while the range rate is the
projection of their relative velocity v4 — vg onto the line joining them whose unit
vector is p. Both the range and the range rate vary over time as A and B go along
their orbits about the common primary.
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2.5.1 The Two-Body Range Shift
According to (Cheng, 2002), the time-dependent perturbation Ap (f) of Equa-
tion (2.144) induced by a pK disturbing acceleration is given by
Ap (f) = (Ary — Arg) . B, (2.147)
where

Ar =R, (Ni+R: (T +Ru()h (2.148)

denotes the perturbation experienced by the position vector r of any of the two
bodies A,B. In turn, R, (f), R. (f), R, (f) in Equation (2.148) are the radial,
transverse and normal components of the instantaneous shift Ar (/') of the position
vector given by the following (Casotto, 1993):

R (f) = Ar-7 = —Aa(f)—acosze(f)+ Js__fAM (f), (2.149)
R:(f) := Ar-7 =asinf (1 +];> Ae (f)
2

4 r[cosIAQ () + Ao ()] + 0’7\/1 —2AM(S), (2.150)

Ry (f) := Ar- h= rsinuAl (f) —sinl cosuAQ2(f)]. (2.151)

The target two-way accuracy for the probe BepiColombo (Balogh et al., 2007),
currently en route to Mercury, is >~ 20 — 30 cm for range at 1,000 s integration time
(Iess and Boscagli, 2001).

2.5.2 The Two-Body Range Rate Shift
The perturbation Ap (f) of the range rate can be written as (Cheng, 2002)

Ap (f) = (Ava — Avg) . p + (Ara — Arg) . p,, (2.152)
where
po = (va —vB) — /0)0’ (2.153)
P
and
Av=V.(NF+V. (NT+ V() h (2.154)

is the perturbation of the velocity vector v of either of the two bodies A, B. Fur-
thermore, V, (), V: (f), V) (f) in Equation (2.154) are the radial, transverse and
normal components of the instantaneous shift Av (/) of the velocity vector which
are (Casotto, 1993)
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Vo (f) = Av-i = %[ Aa () +2ae ()]
(2.155)
J1 — 22
vf(f):=Av-f=—%Aa(f)

nga (e 4 cosf) ngaesinf

[cos IAQ (f) + Aw ()],

(1_62)3/2 Ae(f) + —
(2.156)
Vh(f):zAv-it=%[(cosu—l—ecosw)A](f)
—e
+ (sinu + esinw) sin/AQ (f)]. (2.157)

The shifts of a, e, I, Q, @ in Equations(2.149)—(2.151) and in Equa-
tions (2.155)—~(2.157) are computed, to the first order in 4, according to Equa-
tion (2.12) calculated with Equations (2.13)—(2.17) and Equation (2.19), while the
variation of the order of O (4) of the mean anomaly AM (f) is calculated with
Equation (2.79). About the latter, the calculation of @ (/) as per Equation (2.80) is
often quite cumbersome.

The target two-way accuracy for the probe BepiColombo (Balogh et al., 2007),
currently en route to Mercury, is ~ 3 x 10~*cm/s for range rate at 10,000 s
integration time (Iess and Boscagli, 2001).

2.5.3 How to Produce Time-Dependent Time Series

Equation (2.147) and Equation (2.152) allow one to obtain analytically calculated
time series of the two-body range and range rate by means of Equation (2.4) or
Equation (2.6); to this aim, the following expressions may be computationally
useful as well (Murray and Dermott, 1999):

o>
cosf = —e+ M E J; (se) cos sM., (2.158)
e

s=1

sinf =21 — e Zldjs“e) sinsM, (2.159)
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and

cosE = — 22 ! djs (Se> cos sM, (2.160)

SinE = ;;;js(se) sin sM. (2.161)

From a practical point of view, s < S, Where sy s set by the desired accuracy
level.
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3
IpN Gravitoelectric Effects: Mass Monopole(s)

3.1 The 1pN Gravitoelectric Effects for a Test Particle

The 1pN gravitoelectric acceleration due to the mass monopole moment of the
source, namely, its mass M, is (see, e.g., Soffel, 1989, Equation (4.2.1),p. 89;
Brumberg, 1991, Equation (3.1.46), p. 82; Soffel and Han, 2019, p.332)

4
AN = B [(-” - vz) i’—|—4vrv:| , 3.1)

cr? r
where

Vei=VeF (3.2)

is the projection of the velocity vector v onto the direction of the position vector
r. It induces the largest out of all the pN orbital effects, and historically played a
landmark role in establishing the empirical basis of GTR since it allowed Einstein
(1915b) to correctly find the cause of the then anomalous perihelion precession of
Mercury (Roseveare, 1982) of 42.98 arcseconds per century (”/cty)' (Nobili and
Will, 1986; Pireaux and Rozelot, 2003) which puzzled astronomers since it was
discovered in the second half of the nineteenth century by Le Verrier (1859a,b).2
According to Brush (1989) and Weinberg (1992), the explanation by Einstein was
particularly important since it was a successful retrodiction of an effect which was
known for decades. The 1pN perihelion precession was later repeatedly meas-
ured with radar measurements of Mercury itself (Shapiro et al., 1972; Shapiro,
1990), of other inner planets (Anderson et al., 1978, 1993), and of the aster-
oid Icarus (Shapiro et al., 1968, 1971) as well. Also Earth’s geodetic satellites
(Lucchesi and Peron, 2010, 2014) and the star S2 around the SMBH in Sgr A*
1 Tlhge4 value predicted by Einstein (1915b) amounted to 43 /cty, later corrected to 43.03 " /cty by Clemence
2 El"he zz)iiue reported by Le Verrier (1859a,b) was 38.3 " /cty, later corrected to 41.2 & 2.1"” /cty by Newcomb

(1895). Modern determinations based on radar ranging led to 43.2 4 0.9 " /cty (Shapiro et al., 1972). The
latest determination, based on optical data, yields 42.8”/cty (Constantin, 2010).

54
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at the GC (GRAVITY Collaboration et al., 2020) were (or, possibly, laser as well)
used so far.

By projecting Equation (3.1) onto the unit vectors 7,7, h defined in Equa-
tions (2.23)—(2.25) and by using Equations (2.7)—(2.8) along with Equation (2.11),
its radial, transverse, and normal components are obtained; they turn out to be

42 (1 +ecosf)? [62 +3 +2€cosf—2(20052f— 1)]

A]pN — .

. 2o (1 - 62)3 ) (3.3)
N 4ep? (1 +ecosf)’sinf (3.4)
T ca’ (1 — 62)3 .
A,lfN =0. (3.5

Since A,lf’N vanishes, as per Equation (3.5), the orbital plane, whose orientation
is determined by / and €2, remains fixed in space. Indeed, according to Equa-
tions (2.15)—(2.16), their rates of change are caused just by the normal component
of'a pK acceleration. For eccentric orbits, Equation (3.3) is always positive, that is,
it is directed radially outward, while Equation (3.4) is positive from the pericentre
to the apocentre and negative from the apocentre back to the pericentre, vanishing
just at the apsides. Thus, the cosine of the angle between Ay and A'PN is always
negative; as a result, Equation (3.1) weakens the Newtonian attraction overall. Such
a feature is particularly evident for circular orbits, in which case Equation (3.4)
vanishes, leaving just Equation (3.3) directed outward.

3.1.1 The Orbital Shifts of the Keplerian Orbital Elements

The 1pN gravitoelectric instantaneous shifts Ak (f) of the Keplerian orbital
elements k =a, e, I, 2, w,n due to Equation (3.1) can be calculated as per Equa-
tion (2.12) by using Equations (3.3)—(3.5) in Equations (2.13)—(2.18). They turn out
to be

Aa(f)'PN = — 2l ~{(cosf — cosfy) [7+ 3e* + 5e (cosf + cosfo)]},
c? (1 — ez)
(3.6)
IpN _ K _ 2
Ae (H)'PN = o (=) {(cosf — cosfo) [3+ 7e* + Se(cosf + cosfo)]} .
3.7)
AL (NH'™N =0, (3.8)

AQ(/)'PN =0, (3.9)
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S
Aa (1 —e?)
+ (3 =€+ Secosf)sinf + (—3 + &> — Secosfy) sinfy}, (3.10)

pN _ M) 1 _
An ()P —cza{ 12A@(f)+em[15e( f+/0)

+ (3+7¢* + Secosf)sinf — (3 + 7e* + Secosfp) sinfo]} .
G.11)

Aw (f)'™ =— Be(—f +fo)

In Equation (3.11),

AO(f) = arctan|: 1 ;Ztan (%):| — arctan|: 1 ;Ztan (j;):| . (3.12)

By calculating Equations (3.6)—(3.11) with the replacement f — f; + 27 and
dividing the result by 7k, one obtains the averaged precessions

da\'"™™
— =0 3.13
T o
- =0 3.14
(%) =o G149
dr\'"™

<—t> —0, (3.15)
ds\"™

<_t> —0, (3.16)
do\"™ 3nk i

<_t> "~ a (1—¢?)’ G17
dn\™ _ Smap (S (3.18)
dt ey J1 =) '

Equations (3.13)—(3.18) coincide® with the definite integrals of (1/Tx) dk /df, k =
a,e, I, 2, w,n from fy to fo + 2.

31t may be worthwhile to further investigate the fact that Equation (3.17) was recently obtained by Stepanov
(2018) and Kubo (2022) with STR only.
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Using Equations (2.27)—(2.32) with*

(OR) PN = w58 (3.19)
T 8c2a? Ji—e2)’ '
2 16
cveontN = P (g , 3.20
eV 23a ( m) 3.20)

obtained from Equation (C.12) and Equation (C.14), respectively, yields just Equa-
tions (3.13)—(3.18).

The Contribution of ® to the Mean Anomaly

When Equation (3.1) enters the equations of motion, the analytical expression
of the term & entering the shift of the mean anomaly M, calculated with
Equation (2.80), turns out to be

@ (f)'"N =3—’“°2 (A® (/) [10 — & + 6e* + 2e (7 + 3¢€%) cos £y
cta (1 —ez)
/T = &2
+5€20082f()] + ﬁ {—5 (—1 +€2) (f —fo)

+e (24 3e* + Secosfy) (sinf + ecosfy sinf — sinfp)
+ecosf[=5(—1+€) (f —fo) —e (24 3€” + Secosfy) sinfy]}) .
3.21)

The net change per orbit of ® can be obtained with the replacement / — fy+ 27
in Equation (3.21), getting

_ 3
3" = -5 o[- (1- )] +ee*
Aa(l —é?)
+ 2¢(7+3€%) cosfy + € (—1 + 5 cos ZfO)} . (3.22)

3.1.2 The Anomalistic Period

When the 1pN gravitoelectric acceleration of Equation (3.1) is taken into account,
the anomalistic period can be calculated by means of Equations(3.3)—(3.5), as
explained in Section 2.3.1.

It turns out to be

TN — Ty + ATIPN (3.23)

ano ano ?

4 The scheme outlined in Appendix C is followed.
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with
ATPN — % [64+7¢*+2e" +2¢ (7T+3¢) cosfy+ 5e* cos2fp].
c —e
(3.24)

Figure 3.1, obtained for generic values of the Keplerian orbital parameters, con-
firms the analytical result of Equation (3.24); over, say, three orbital revolutions,
the test particle always reaches the precessing line of apsides affer a time interval
equal to T, N Tt s longer than T, in agreement with Equation (3.24), which is
always positive.

Furthermore, Figure 3.2 plots the final part of the time series of the cosine 7+ Cof
the angle between the position vector r and the Laplace-Runge—Lenz unit vector c
versus time ¢, in units of Tk, for a numerically integrated fictitious test particle with
and without Equation (3.1) starting in both cases from, say, the moving pericentre,
that is, for 7 - Cy = +1. It can be seen that the orbiter comes back to the same
position on the precessing line of apsides, namely it is 7 - C=+1 again, just after
TabN = Ty + AT.EY differing from T by a (positive) amount, in agreement with
Equation (3.24).

3.1.3 The Draconitic Period

The draconitic period, calculated when the 1pN gravitoelectric acceleration of
Equation (3.1) is taken into account as explained in Section 2.3.2, turns out to be

Perturbed trajectory

Figure 3.1 Perturbed 1pN trajectory (continuous curve) and its osculating Kep-
lerian ellipse (dashed curve) at the initial instant of time 7y characterized by
e =095171=0Q = 0,0 = 90° fy = 180° as seen from above the fixed
orbital plane. In this example, it is assumed that both @ and 7 undergo the 1pN
gravitoelectric secular precessions of Equations (3.17)—(3.18) due to the mass M
of the primary. For a better visualization of their effect, their sizes are suitably
rescaled. The positions on the perturbed trajectory after one, two and three Kep-
lerian periods 7k are marked as well. At each orbit, the passages at the drifting
line of apsides occur always /ater than in the Keplerian case by the amount given
by Equation (3.24), which is always positive.
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1.0000F S—
0.9995F .-~
0.9990F"
< 0.9985¢ 7 - Keplerian
< 0.9980} IpN
0.9975}
0.9970F

0.9965 L. . . . .
0.9990  0.9995 1.0000  1.0005 1.0010

t (T

Figure 3.2 Plot of the numerically produced time series of the cosine # - C of
the angle between the position vector r and the Laplace—Runge—Lenz vector C
versus time ¢, in units of 7k, obtained by integrating the equations of motion
of a fictitious test particle with and without the 1pN gravitoelectric acceleration
of Equation (3.1) for an elliptical (e = 0.665) orbit arbitrarily oriented in space
(I = 40°, Q = 45°, w = 50°) starting from the periapsis (fy = 0), that is,
o+ Co = +1; the semimajor axis is @ = 6R.. The physical parameters of the
Earth are adopted. The 1pN acceleration is suitably rescaled in such a way that

AT, §£§ /Tx = 0.001. The time needed to come back to the initial position on the

(moving) line of apsides, so that 7 - C=+1 again, is longer than in the Keplerian

case by the amount A7, ;53“ = +0.0017k, shown by the shaded area, in agreement

with Equation (3.24).

T, = Ty + AT, (3.25)
with
ATIN _ 3n./iva |:6 + 7¢* + 2¢* 4 2¢ (7 + 3€%) cos fy + 5¢? cos 2fy
dra — 2
C

(1-¢)
24/1 — €2 :| 127 /ia |:1 N (7 cosfy + 2 cosw)
~ e

(I +ecosw) |~ 2

17+5 2fo — 3 2
+e2( + COSZO oS a))+o(e3):|.

It can be noted that Equation (3.26) is always positive for all values of e, fy and w;
this means that the node is reached /afer than in the Keplerian case.

Figure 3.3, obtained for generic values of the Keplerian orbital parameters, con-
firms the analytical result of Equation (3.26); over, say, three orbital revolutions,
the test particle reaches always the fixed line of nodes after a time interval equal to
T égN. It is longer than Ty, in agreement with Equation (3.26).

Furthermore, Figure 3.4 plots the final part of the time series of the cosine 7 - I
of the angle between the position vector r and the node unit vector I versus time 1,

in units of 7, for a numerically integrated fictitious test particle with and without

2

(3.26)
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Osculating ellipse

Figure 3.3 Perturbed 1pN trajectory (continuous curve) and its osculating Kep-
lerian ellipse (dashed curve) at the initial instant of time #y characterized by
e =0.7,1=30°Q = 45°,w = 50°, fo = 180° — w. In this example, it is
assumed that both w and 1 undergo the 1pN gravitoelectric secular precessions of
Equations (3.17)—(3.18) due to the mass M of the primary. For a better visualiza-
tion of their effect, their sizes are suitably rescaled. The positions on the perturbed
trajectory after one, two and three Keplerian periods 7k are marked as well. At
each orbit, the passages at the fixed line of nodes occurs always /ater than in the
Keplerian case by the amount given by Equation (3.26), which is always positive.

1.0000f [ -
0,995 .
<~ T Keplerian
< 0.9990 IpN
0.9985+
0.9990 0.9995 1.0000 1.0005 1.0010
t (Tx)

Figure 3.4 Plot of the numerically produced time series of the cosine 7 - I of the

angle between the position vector r and the node unit vector I versus time 7, in
units of Tk, obtained by integrating the equations of motion of a fictitious test
particle with and without the 1pN gravitoelectric acceleration of Equation (3.1)
for an elliptical (e = 0.665) orbit arbitrarily oriented in space (/ = 40°, Q =
45°, w = 50°) starting from the ascending node ) (fp = —w + 360°), that is,
ro -+ le = +1; the semimajor axis is a = 6R.. The physical parameters of the
Earth are adopted. The 1pN acceleration is suitably rescaled in such a way that
A Tle

dra
(fixed) line of nodes, so that 7 - = +1 again, is longer than in the Keplerian case

by the amount AT érl;N = 40.001 7k, shown by the shaded area, in agreement with
Equation (3.26).

/Tx = 0.001. The time needed to come back to the initial position on the
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Equation (3.1) starting in both cases from, say, the fixed ascending node, namely,
for rg - le = 41. It can be seen that it comes back to the same position on the
constant line of nodes, that is, it is 7 - I=+1 again, just after 7' (}IiN =Tk + AT ;;N
differing from 7k by a (positive) amount, in agreement with Equation (3.26).

3.1.4 The Sidereal Period

As shown in Section 2.3.3, the sidereal period for a generic perturbed orbit is the
sum of the draconitic period, calculated as explained in Section 2.3.2, and the term
given by Equation (2.66). For Equation (3.1), Equation (2.66) turns out to be

AT =0. (3.27)

Thus, in this case, the sidereal period coincides with the draconitic one.

This is shown in Figure 3.5. It plots the final part of the time series of the cosine
of the angle ¢, normalized to its initial value cos ¢y, versus time ¢, in units of Tk,
for a numerically integrated fictitious test particle with and without Equation (3.1)
starting from the same generic initial position. It can be seen that it comes back to
the same position on the fixed direction chosen in the reference plane, namely it is
cos ¢/ cos ¢y = +1 again, just after T SliEN =T ;rr;N differing from Tk by a positive
amount, in agreement with Equation (3.26).

1.04
1.03}
1.02} ==~
1.01¢ S

1.00} ===

0.99F ==~

0.98F T

————— Keplerian
1pN

cosd(t)/cosdy

0.9990 0.9995 1.0000 1.0005 1.0010
t (Tx)

Figure 3.5 Plot of the numerically produced time series of the cosine cos ¢ (¢) of
the azimuthal angle ¢ (f) normalized to its initial value cos ¢ versus time ¢, in
units of Tk, obtained by integrating the equations of motion of a fictitious test
particle with and without the 1pN gravitoelectric acceleration of Equation (3.1)
for an elliptical (e = 0.665) orbit arbitrarily oriented in space (/ = 40°, Q =
45°, w = 50°) starting from, say, the ascending node §} (fo = —w + 360°); the
semimajor axis is a = 6R.. The physical parameters of the Earth are adopted.
The 1pN acceleration is suitably rescaled in such a way that AT, SligN /Tx = 0.001.
The time needed to cos ¢ (¢) to assume again its initial value cos ¢y is longer than
in the Keplerian case by the amount AT, SligN = +40.0017%, shown by the shaded
area, in agreement with the sum of Equation (3.26).
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3.1.5 The Astrometric Angles RA and dec.

For a test particle and a massive primary, as in the case of the S stars and Sgr A*, the
instantaneous shifts of the RA and dec. can be obtained from Equation (2.77) calcu-
lated with Equations (2.137)—(2.143), Equations (3.6)—(3.10), and Equation (3.11)
and Equation (3.21). By replacing f/ with fy + 27 in the resulting expressions, the
net variations per orbit are inferred.

Figures 3.6 and 3.7 display the instantaneous shifts A« (¢) , A (¢) of the RA and
the dec. of a fictitious S star obtained by varying Tk and e in such a way that the
stellar perinigricon distance is kept fixed to ryy, = 1250°R, where R, := 2,/ ?
is the BH’s Schwarzschild radius.

IpN RA shift

200 Tx=1yr, e=0.38
== Tx=2yr, e=0.61
= 15+ Tg=3 yr,e=0.7
~ Tx=4 yr, ¢=0.75
Ec::: 1oL —- Tx=5yr, e=0.79
I
<
5 L
0 7\ 1
0 1 2 3 4 5

£ (yr)

Figure 3.6 Plot of the 1pN gravitoelectric instantaneous shift Aa (£)'PN, in °, of

the RA of a fictitious S star for different values of Tk and e in such a way that
rmin = 1250R,. The relevant stellar orbital parameters are / = 161.24°, Q =
151.54°, w = 0.073°, n = 20°. For the BH, the value M, = 4.1 x 100 Mg is used
for its mass (Peifker et al., 2022).

1pN dec. shift

0 _/_—-4“‘ ,mg.u—— /‘;:\:\-’
1]
\/ h |
D) 1 |
-2 W | [
Z | \l
= 4 \'
S 4l \
‘Q
<
— Tg=1yr, e=0.38 Tx=4yr, e=0.75
—6F—— Tx=2yr,e=0.61 —- Tx=5yr, e=0.79
Tx=3yr, e=0.7
0 1 2 3 4 5
1(yr)

Figure 3.7 Plot of the 1pN gravitoelectric instantaneous shift A8 (£)'PN, in °, of

the dec. of a fictitious S star for different values of 7k and e in such a way that
rmin = 1250R,. The relevant stellar orbital parameters are / = 161.24°, Q =
151.54°, w = 0.073°, = 20°. For the BH, the value M, = 4.1 x 10° Mg is used
(PeiBker et al., 2022).
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It turns out that the 1pN gravitoelectric astrometric signatures can be as large as
< 5 —20°, depending on the star’s orbital period and eccentricity.

3.1.6 The Two-Body Range and Range Rate

Here, Equations (3.6)—(3.10), along with Equation (3.11) and Equation (3.21) for
the shift of the mean anomaly, are used in Equation (2.147) and Equation (2.152)
to analytically calculate the time series of the range and range rate shifts for
A = Mercury and B = Earth, both moving in the 1pN gravitoelectric field of the
Sun induced by its mass M.

Figures 3.8-3.9 plot the resulting signals, obtained introducing the dependence
on time ¢ through the mean anomaly by means of Equation(2.4) and Equa-
tions (2.158)—(2.159), over 2 yr, which is the expected duration of the extended
phase of the BepiColombo mission (Benkhoff et al., 2010, 2021) from® 2026 to
2028. It turns out that the peak-to-peak nominal amplitudes of the range and range
rate shifts can reach the >~ 2000 km and >~ 1.5 m/s level, respectively.

An integration of the equations of motion with and without Equation (3.1) gen-
erated corresponding numerical time series differing from the aforementioned
analytical ones by < 0.02 km and < 8 mm/s level over 2 years, respectively.

Earth—Mercury 1pN range shift

500+
g
) ok
}l -500+
—1000F
0.0 0.5 1.0 1.5 2.0

t (yr)

Figure 3.8 Analytically produced time series, in km, of the two-body 1pN range
shift Ap (#) due to the Sun’s mass My for A=Mercury and B=Earth plotted
over 2 yr. It was worked out by calculating Equations (2.149)—(2.151) enter-
ing Equations (2.147)—(2.148) with Equations (3.6)—(3.11), Equation (3.21) and
Equation (2.4). The initial values of the Keplerian orbital elements of both plan-
ets, referred to the International Celestial Reference Frame (ICRF), were retrieved
from the WEB interface Horizons System at https://ssd.jpl.nasa.gov/horizons/,
maintained by the Jet Propulsion Laboratory (JPL) of the National Aeronautics
and Space Administration (NASA), and accessed 12 February 2024. For the Sun’s
standard gravitational parameter, see Table J.1.

5 See www.esa.int/ Science_Exploration/Space_Science/BepiColombo/BepiColombo_factsheet. Accessed
19th January 2024.
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Earth—Mercury 1pN range rate shift

0.5

0.0

Ap(t) (m/s)

-1.0L : . . .
0.0 0.5 1.0 1.5 2.0

t (yr)

Figure 3.9 Analytically produced time series, in m/s, of the two-body 1pN range
rate shift Ap (¢) due to the Sun’s mass Mg for A=Mercury and B=Earth plotted
over 2 yr. It was worked out by calculating Equations (2.155)—(2.157) enter-
ing Equations (2.152)—(2.154) with Equations (3.6)—(3.11), Equation (3.21) and
Equation (2.4). The initial values of the Keplerian orbital elements of both plan-
ets, referred to the International Celestial Reference Frame (ICRF), were retrieved
from the WEB interface Horizons System at https://ssd.jpl.nasa.gov/horizons/,
maintained by the Jet Propulsion Laboratory (JPL) of the National Aeronautics
and Space Administration (NASA), and accessed 12 February 2024. For the Sun’s
standard gravitational parameter, see Table J.1.

3.2 The 1pN Gravitoelectric Effects for a Binary

The test particle limit treated in the previous sections is no longer applicable to the
case where the two mutually orbiting bodies have both comparable masses like, for
example, exoplanets and binary pulsars. To this aim, here the 1pN gravitoelectric
effects for a system made of a pair of objects A and B both with finite masses Ma
and Mp are treated.

In such a case, the 1pN gravitoelectric acceleration is (see, e.g., Damour
and Deruelle, 1985, Equation (2.5),p. 111; Soffel, 1989, Equation (A2.6), p. 166;
Brumberg, 1991, Equation(4.4.28),p.154; Soffel and Han, 2019, Equa-
tion (10.3.7), p. 381; Poisson and Will, 2014, Equation (10.1), p. 482)

AN = Lo {[(4 Foan e 32 2y vz] P44 —2v) v,v} . (3.28)
cr r 2
In Equation (3.28),
Wy = GMy (3.29)
is the standard gravitational parameter of the binary whose total mass is

My = M + Mg. (3.30)
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Furthermore, the symmetric mass ratio v is defined as

MaMg
V= 5
My

, (3.31)

with 0 < v < 1/4 = 0.25; the value 0 corresponds to the test particle limit, while
v = 1/4 if both bodies have the same mass.
The radial, transverse, and normal components of Equation (3.28) turn out to be

v _ Wh(L+ ecos))?

' 4cta3 (1 — 62)3

+8e (1 —2v)cosf + & (—8 + v) cos 2f ], (3.32)

i 2emg (1+ ecosf)® (2 — v)sinf
! a’ (1 — e2)3

4™ =0. (3.34)

They agree with Equations (A2.77a)—(A2.77c), calculated with GTR, by Sof-

fel (1989, p.178). In the limit v — 0, Equations(3.32)—(3.34) reduce just to
Equations (3.3)—(3.5).

[ (4—13v) —4(=3+)

A

: (3.33)

3.2.1 The Orbital Shifts of the Keplerian Orbital Elements

The instantaneous shifts of the Keplerian orbital elements, calculated according to
Equation (2.12) with Equations (3.32)—(3.34) in Equations (2.13)—(2.18), are

el (cosf — cosfy)

IpN _ _ 2 (—
Aa(f)P = 22 (1= ) [4[-7+3v+ & (=3 +4v)]
+elevcos2f +4(—544v)cosf
+2cosf (—10 4+ 8v + ev cosfy) + ev cos 2y}, (3.35)
1pN Wb (cosf — cos fo) B 2
Ae (f)PN = (1= {4[-3+v+e*(=T+6v)]
+elevcos2f +4(—544v)cosf
+2cosf (—10 + 8v + ev cos fy) + ev cos 2y}, (3.36)
AL ()N =0, (3.37)
AQ(f)IPN =0, (3.38)
Ao ()N =~ 2 [-2[4(=3+v)+ 4+ 11v)

802ae(1 — ez)
+4e (=54 4v) cosf + v cos Zf] sinf’

+ [8(=3 +v) +¢€* (84 21v)]sinfy

+e[24 (—f + /o) +4 (=5 +4v)sin2fy + evsin3fy]},  (3.39)
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An(H'"N =M (60T = (—6+Tv) A®
1N = P (1601 =€ =6+ T A0 (1)

—2[4(=3+v) + & (—28+ 15v)

+4e (=54 4v) cosf + v cos 2f] sinf’

+8{e[(f —/fo) (=15 +9v)]

—3sinfy} + [8v + & (=56 + 29v)] sin f

+4e (—5 + 4v) sin 2fy + €*v sin 3f;) . (3.40)

The net shifts per orbit of the Keplerian osculating elements, calculated by
replacing f with fy + 27 in Equations (3.35)—(3.40), are

Aa™ =0, (3.41)
Ae™ =0, (3.42)
AT =0, (3.43)
Aaa™=o, (3.44)
- 6

Ao = 2T (3.45)

cta (1 — ez)
L 2 |:—15+6«/1—62+v<9—7«/1—62)]
Aptt = . (3.46)
ctav'1 — e?

The pericentre advance of Equation (3.45) has been measured several times so
far by monitoring the motion of the periastron of various binary pulsars (Weis-
berg and Taylor, 1984; Stairs, 2003; Champion et al., 2004; Weisberg and Taylor,
2005; Kramer et al., 2006). In the limit v — 0, Equations (3.41)—(3.46) reduce to
the shifts obtainable from Equations (3.13)—(3.18) by rescaling the latter ones by
21 /ny.

The Contribution of ® to the Mean Anomaly
The analytical expression of the term @ entering the shift of the mean anomaly M,
calculated with Equation (2.80), turns out to be
3

3 [—2A0 (f) (1 + ecosf) {—40 + 24v
8c2a (1 —e?)” (1 +ecosf)

(NN =

+4¢*[1=3v+e* (—6+7v)| +e[8(—7+3v)
+e (=24 + 311))] cos fy + 4€* (=5 + 4v) cos 2f;

+eveos3fyl +v1— e (8(—1+€*) (f —fo) (=5 +3v)
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+efd4[4+€* (11— 10v)]sinf + e[56 + € (24 — 31v)
—24v]cosfysinf + 4e* (5 — 4v) cos 2fy sinf

—eveos3fysinf +4 (—1+e*)cosf[2(f — fo) (=5 +3v)
+evsinf]+[—16 + e* (—24 4 25v)]| (1 + ecos /) sinf;

+2e (=10 + 7v) (1 + ecos /) sin 2fy + €*v (1 + ecosf) sin3fp})] .
(3.47)

By replacing f with fy 4+ 27 in Equation (3.47) yields

51PN _ 3Ty

. {—4 (—1 V- e2> (=5 +3v) + 2¢* (=6 + Tv)
2c2a (1 - ez)

+2e2[1 _10/1—+ (—3—|—6\/1 —e2) v] te[4(=7+3v)

+3¢* (=4 + 5v) ] cosfy + €* (—10 + 8v + ev cos /) cos 2f0} . (3.48)
In the limit v — 0, Equations (3.47)—(3.48) reduce to Equations (3.21)—(3.22).

3.2.2 The Anomalistic Period

The anomalistic period calculated with Equations(3.32)—(3.34) as explained in
Section 2.3.1, turns out to be

TIPN = T + AT, (3.49)
with
AT = L"az (36 + €% (42 — 38v) +2¢* (6 — Tv) — 8v
2c? (1 — ez)
+3e{[28 + 3% (4 — 5v) — 12v] cos f
—e(—10+ 8v + evcosfy) cos2fp}) . (3.50)

In the limit v — 0, Equation (3.50) reduces to Equation (3.24).

3.2.3 The Draconitic Period

The draconitic period, calculated with Equations(3.32)—(3.34) as explained in
Section 2.3.2, turns out to be

TN = Ty + AT (3.51)

dra dra >
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with

AT = T 4” ;ba (72 + % (84 — 76v) + 4e* (6 — Tv) — 16v

—3e{[8(=7+3v) +€* (—24 + 31v)] cos f;

AVl '1_62) . (3.52)

+el[4 (=54 4v)cos2fy +evcos3 —
[4( ) cos 2fo o1} (1T ecosw)

In the limit v — 0, Equation (3.52) reduces to Equation (3.26).

3.2.4 The Sidereal Period

The considerations presented in Section 3.1.4 hold also in this case: the sidereal
period coincides with the draconitic one.

3.2.5 The Radial Velocity of a Spectroscopic Binary

From Equation (2.88) and Equations (3.13)—(3.15), it straightforwardly turns out
that the semiamplitude of the radial velocity curve does not experience any 1pN
gravitoelectric net shift per orbit.

Nonetheless, the radial velocity curve exhibits a generally nonvanishing 1pN
gravitoelectric instantaneous shift AV which can be analytically worked out
according to Equations (2.77)—(2.78) by using Equations (2.83)—(2.87) along with
Equations (3.35)—(3.40) and Equation (3.47). By replacing /" with f; 4+ 27 in the
resulting expression allows one to obtain the net shift per orbit.

Figure 3.10 shows the plot of the analytically computed times series for a ficti-
tious tight exoplanetary system made of a main sequence star and a gaseous giant
planet with the same masses of the Sun and Jupiter, respectively. By varying the
orbital period Tk and the eccentricity e in such a way that the star-planet minimum
distance, in units of R, + Ry, is 2, it turns out that the peak-to-peak amplitude of the
1pN gravitolectric shift can reach the level of about >~ 0.02 — 0.05 m/s over 1 day.

Figure 3.11 shows the plot of the analytically computed times series for a ficti-
tious S star. By varying the orbital period 7k and the eccentricity e in such a way
that the perinigricon distance is 7y, = 1250 R,, it turns out that the peak-to-peak
amplitude of the 1pN gravitolectric shift can reach the level of about ~ 800 km/s
over 5 yr.

3.2.6 The Characteristic Timescales of Transiting Exoplanets

Here, the 1pN gravitoelectric net shifts per orbit of the characteristic timescales of
transiting exoplanets are calculated in their full generality.
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1pN radial velocity shift
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Figure 3.10 Analytically produced time series, in m/s, of the 1pN gravitoelectric
shift AV (£)'PN of the radial velocity curve of a fictitious detached exoplanetary
system made of a Sunlike star and a gaseous giant planet p with the same mass
and radius of Jupiter for different values of the e and the orbital period 7k in
such a way that ryj, = 2 (R* + Rp). The other relevant orbital parameters, chosen
arbitrarily, are I = 45°,w = 50°,n = 20°. Since p cannot be considered a test

particle, Equations (3.35)—(3.36) and Equations (3.39)—(3.47) are used along with
Equations (2.83)—(2.87) in Equation (2.77) and Equation (2.78).

1pN radial velocity shift
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Figure 3.11 Analytically produced time series, in km/s, of the 1pN gravitoelec-
tric shift AV (£)'PN of the radial velocity curve of a fictitious S star for different
values of the e and the orbital period 7k in such a way that i, = 12507R,.

The other relevant orbital parameters, chosen arbitrarily, are / = 161.24°, w =
0.073°,n = 20°. Since the star can be considered a test particle with respect to

such a BH, Equations (3.6)—(3.7) and Equations (3.10)—(3.21) are used along with
Equations (2.83)—(2.87) in Equation (2.77) and Equation (2.78).

The Total Transit Duration 5tp

From Equations (2.102)—(2.105) and Equations (3.41)—(3.46), it turns out

12tppe cos w

AS[D]pN

Anga’R,N1— e (1 + esinw)? (1 + €2 + 2esin a))3/2


https://doi.org/10.1017/9781009562911.003

70 IpN Gravitoelectric Effects: Mass Monopole(s)

[—Ri (1+9)% (1 + esinw)’

1
JA+0)Y? =

It should be noted that Equation (3.53), which falls as 1/4/a, vanishes for circular
orbits, being its first nonvanishing term of the order of O (e).

+ o (1 — 82)2 cos? [ (2 + e’ +3e sinw) :| (3.53)

The Ingress/Egress Transit Duration §t;).
From Equations (2.108)—(2.111) and Equations (3.41)—(3.46), it turns out

_ 6T bR, /
A(Sti/ele _ T LpR.€ COS W )3/2 { (1—9)* —p?

cngal1 — e? (1 + 2esinw + €2

— (1 +9)* =P

a* (1 - 82)2 cos?/ (1 + 2esinw + %) |: 1

R2 (1 + esinw)® /(1 + 9)2 — b2

1
e bz” , (3.54)

It should be noted that Equation (3.54), which falls as 1/,/a, vanishes for circular
orbits, being its first nonvanishing term of the order of O (e).

The Full Width at Half Maximum Primary Transit Duration 5ty
From Equations (2.115)—(2.118) and Equations (3.41)—(3.46), it turns out

__ 6T Lp R, /
ASZHIPN _ TLp i€ COS W - {_ (1— 15‘)2 — 2

cngal1 — é? (1 + 2esinw + e2)

—y I+ ) =12

a? (1 —ez)zcos21(1+2esina)+ez) |: 1

R2 (1 4 esinw)? /(1 + 9)% — b2

1
a —0)2—b2“' o

It should be noted that Equation (3.55), which falls as 1/4/a, vanishes for circular
orbits, being its first nonvanishing term of the order of O (e).
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The Time of Inferior Conjunction t;
From Equations (2.121)—(2.124) and Equations (3.41)—(3.46), it turns out that
IpN 6Ty [4 +e2—3v—e(=5+3v)sinw (2 + esina))]

Al = . 3.56
“ Angav1 — € (1 + esinw)? (3.56)

To the zeroth order in e, Equation (3.56), which increases with the distance from
the star as /a, reduces to

IpN __ THb (4 —3v)

Alg " ~ (3.57)

c*nga

A Numerical Evaluation

Figure 3.12 displays the plots of Equations (3.53)—(3.56) for a Jovian-type exo-
planet transiting in front of its Sunlike host star, seen edge-on, as functions of the

1pN total transit duration shift 1pN total ingress/egress duration shift

—1071‘: — =075 1o »{: —- =075
- 12k | ‘ | ‘ . ‘ ‘ ‘
5 10 15 20 5 10 15 20
min/(Rx+Rp) Fmin/(Rx+Rp)
IpN FWHM primary transit duration shift IpN time of inferior conjunction shift
F— =015 — e=06 ////’//
-= e=03 —- =075 __—"

A di PN (ms)

rmin/(R*"'Rp) rmin/(R*+Rp)

N

Figure 3.12 Plots of the net shifts per orbit A(StDle, A(Sti/e]pN, AStHle, A_tcjlp
of a fictitious Sun-Jupiter exoplanetary system, seen edge-on, as functions of the
minimum star-planet distance rmi, in units of R, + Ry, for different values of the
eccentricity e according to Equations (3.53)—(3.56). The values / = 90°, w = 50°
are used for the relevant orbital parameters. The units are s for the time of inferior
conjunction and ms for the other timescales.
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IpN pulsar TOAs shift
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Figure 3.13 Plot of the 1pN gravitoelectric instantaneous shift A87psr ORANT
ms, of a binary pulsar with a white dwarf as companion for different values of T
and e in such a way that 7, = 1.8 x 10° km. The relevant orbital parameters
are [ = 75°, w = 42.457°, n = 20°. For the stellar corpses, the values M5, =
1.27Mg,Myg = 1.02 Mg, taken from those of PSR J1141-6545 (Antoniadis
etal., 2011), are used.

minimum distance 7, ranging from 1.1 to 20 times the sum of the radii of the
star and the planet, for various values of the eccentricity e.

It can be noted that the largest effect occurs for the time of inferior conjunction
whose shift per orbit is at the s level. Instead, the variations of the other timescales
are of the order of >~ 0.1 — 10 ms.

3.2.7 The Variation of the Times of Arrival of Binary Pulsars

For a binary pulsar, the instantaneous shift of 87psr can be obtained from Equa-
tion (2.77) calculated with Equations (2.130)—(2.134), Equations (3.6)—(3.10), and
Equation (3.11) and Equation (3.21). By replacing f* with fy 4+ 27 in the resulting
expression, the net variation per orbit is inferred.

Figure 3.13 displays the instantaneous shifts A7 (¢) of a fictitious binary pul-
sar whose companion is a white dwarf obtained by varying 7k and e in such a way
that the minimum distance is kept fixed to,° say, Fmin = 1.8 X 10° km. It turns out
that the peak-to-peak amplitudes of the signals may be as large as >~ 8 ms over 5 d.

6 1t corresponds to actual minimum relative distance between the pulsar and the white dwarf of PSR
J1141-6545 (Antoniadis et al., 2011).
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To the second post-Newtonian (2pN) order, the gravitoelectric net shifts of the
osculating Keplerian orbital elements occurring in a binary system made of two
(non-rotating) spherical bodies A and B of comparable masses M, and Mp can
be calculated as explained in Section 2.2.2; see also lorio (2020b, 2021b,a) where
some mistakes, corrected from time to time, occurred. Among the several calcula-
tions dedicated solely to the pericentre advance existing in the literature that rely
upon different computational schemes and parameterizations like, for example,
Schéfer and Wex (1993), Kopeikin and Potapov (1994), Wex (1995), and Tucker
and Will (2019), see, in particular, the one by Damour and Schifer (1988), based
on the Damour—Deruelle parametrization (Damour and Deruelle, 1985) and the
Hamilton—Jacobi equation, which became widely adopted in binary analyses of
pulsars.

The total 2pN net orbital shifts arise from two contributions.

The first one is due to the direct action of the 2pN gravitoelectric acceler-
ation (see, for example, Brumberg, 1991, Equation (4.4.29), p. 154; Kidder, 1995,
Equation (2.2d), p. 825; Gergely, 2010, Equation (B11), p. 10)

15
At = B[ s it P 1
r 8

9 13
+vl=z—6v )V +v | — —2v LI
2 2 r

87 \ my ] 15
+ (24250 +202) B2 (9+Zv) @]wr [v <?+2v> v
r

72

9 41
—v|<+3v vf— 24+ —v+ 47 Ho Ve 4.1)
2 2 r

The second one arises from the indirect effect of the 1pN acceleration of Equa-
tion (3.28) for a two-body system when the average is calculated by accounting for

73
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the 1pN instantaneous changes of either the line of apsides (Equation (2.36)) and
of the orbital elements themselves (Equation (2.37)) during the orbital revolution.

The 2pN contribution to the pericentre’s evolution has been investigated so far
especially in connection with binary pulsars, when the fractional' periastron shift
per orbit w, := Aw/2m (Damour and Schifer, 1988) is estimated as one of the
solve-for parameters (Damour and Deruelle, 1986; Damour and Taylor, 1992), S
stars (Capuzzo-Dolcetta and Sadun-Bordoni, 2023), and BH binaries as that in the
blazar OJ 287 (Dey et al., 2018, 2019).

4.1 The Direct Net Orbital Shifts

By projecting Equation (4.1) on the unit vectors 7, 7, h defined in Equations (2.23)-
(2.25) and by using Equations (2.7)—(2.8) along with Equation (2.11), its radial,
transverse, and normal components, evaluated onto the Keplerian ellipse, are
obtained; they turn out to be

N i (1 + ecosf)?
' 64cta* (l — 62)4

+ 862 [<36 + v (—13 + 72v)] + 8e {—144

+ v [—288 + 80v + €* (13 + 92v)]} cos f

+e&* (4{=72+v[-298 + 144v + &* (—45 + 11v)]} cos 2f

+ ev [8 (=57 + 20v) cos 3f + 3e (—17 4 7v) cos 4f 1)) , (4.2)
eui 1+ ecosf)3 sinf

- 2ctat (1 — 62)4

+e(4+ 11v)cosf +3e’v (3 +2v)sin’f}, 4.3)

AN = 0. (4.4)

(e*v (39 + 191v) + 16 [—36 + v (=73 + 8v)]

AN = {4+v[26+4v — & (15+4v)]

By inserting Equations (4.2)—(4.4) in Equations (2.13)—(2.18) and integrating
their right-hand sides evaluated onto the unperturbed Keplerian ellipse from f; to
fo+2m by means of Equation (2.11) and Equation (2.19), the direct net orbital shifts
per revolution of the order of O (1/¢*) are obtained; they are

Ao =0, (4.5)
Ael =0, (4.6)
AL =0, (4.7)

! Here, the symbol wy, is used instead of k, adopted by Damour and Schéfer (1988), Damour and Deruelle
(1986), and Damour and Taylor (1992), in order to avoid confusion with the nonsingular orbital element
k = esinw.
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AN =0, (4.8)
2
Aot = — W (2 [243(7— 16w v]+8[7+ (5 — Tw)vl},
4cta® (1 — ez)
(4.9)
2
A= — T (88\/1 — e - 42ety
4cta® (1 — 62)
+ov [T +40V 1= =7 (1= ) v+ 11V - ]
+ {21 = e [84 2001 =& +42(1 - &) v
— 95@4}) . (4.10)

4.2 The Mixed Net Orbital Shifts
4.2.1 I: The IpN Instantaneous Change of the Apsidal Line

Here, the mixed net orbital shifts arising from Equation (2.36), marked conven-
tionally with the subscript I, are calculated by means of the radial, transverse, and

normal components of Equation (3.28) given by Equations (3.32)—(3.34).
One finally obtains

—2pN .

Aa; =0,
A =0,
AN =0,
AN =0,
2
Ao = W (32(=34v)
32c%a%e? (l — ez)
+867 [148 + 5u (=43 + 17)] + €* [32 4 3v (56 + T5v)]},
2
AN = - Ty (€* [160 — v (56 + 699v)]

32ctae? (1 — e?)?
+32{—75+84 I—e+v [158— 164y/1— &

+ (-76+ 771 =) v]} — 8¢2 {—820 +336y/1—
tv [1183 — 656y/1 = ¢ + (=523 + 3081 - ¢2) v]}) .

(4.11)
(4.12)
(4.13)
(4.14)

(4.15)

(4.16)
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4.2.2 II: The IpN Instantaneous Orbital Shifts

Here, the mixed net orbital shifts arising from Equation (2.37) are calculated; they
are marked conventionally with the subscript II. To compute them, the expres-
sions for the 1pN instantaneous shifts of @ and e for a two-body system, given
by Equations (3.35)—(3.36), are needed.

As a result, they turn out to be

AN =, 4.17
11

Ae =0, (4.18)

AN =0, (4.19)

A =, (4.20)
11
2
Ao = T S {-32(=3+ )’
32c%q%e? (1 — ez)

—86? (=3 + 1) (—64 4+ 29v) + * [32 + 3v (48 + 53v)]

+768¢° (=2 + v) cosfy}, 4.21)
2
A 2PN Ty 6 2
Any =— —31 24
M ctare? (1 ~ 62)5/2 (e (960 3136v + 2458v )

+¢*[48 (55 + 64/T—e2) — 8 (467 + 976y =) v

+ (—29 +4928V/1—¢2) ﬂ ) {—75 +168V1— &

+2v [79 — 1641 — &2 + (—38 + 77\/@) v]}
+8¢2 {48 (—25 + 36VT = ) + v [2031 - 29761 — &2

+ (=767 + 1120V1 = &) w]} + 166 [cosfi (¢* (60

+288V1 =2 + v [69 - 708Y/1 — &2

+7(=9+62v1=¢) ]} +4{3 (=55 +s6v1 =)
+v[174 - 268V/1— ¢ 4 (—45 + 841 =) v]}

+36? (5 — 3v) vcos %) + 2e [(—5 + 4v) (15 —u/i—&
9y 4 28@0 c0s 2y + ev/1 — €2v (—6 + 7v) cos 3]@]]) .

(4.22)
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4.2.3 The Total Mixed Net Orbital Shifts

From the sum of Equations(4.11)—(4.16) and Equations (4.17)—(4.22), the total
2pN mixed net orbital shifts turn out to be

Aa =0, (4.23)
Ae = o, (4.24)
ALY = o, (4.25)
A =0, (4.26)
2

Rody = — B0 (44480 (=8 +7v)

4cta? (1 — e2)

+ e (8 4 39v + 481%) + 96e (—2 + v) cosfy ] , (4.27)

2

AN THp (—32\/1 — 2 (—64Tv) (=14 + 11v)

32cha2e? (1 — e2)
4 &S [800 + 77v (—40 + 41)] + 3262 {4 (—5 + 66\/@)
+u [54 —416y1— 2 +3 (5 +42m) v]}
+8¢* {—470 + 72071 — e + v [709 —1632V1— &

+ (—614+924V1= ) w]} + 166 [cosfi (¢* (60
+288v1 — e 4 v [69 —708y/1— &
+7(=9+62v1-¢?) v]} +4 {3 (55 +356v1—¢)
v [174 =268V — ¢+ (45 + 841 =) v] |

+3¢* (5 — 3v) v cos 2fy) + 2e [(—5 + 4v) (15

—u/1— 9+ 28mu) c0s 2/

+ey/1 — v (=6 + Tv) cos 3f0]]) . (4.28)

4.3 The Total Net Orbital Shifts

The total 2pN net shifts per orbit can be obtained by summing Equations (4.5)—
(4.10) and Equations (4.23)—(4.28). One finally gets

A =0, (4.29)

AN =0, (4.30)
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AN —o, (4.31)
Ao —o, (4.32)
N 3npg [2 — 4v + € (14 10v) + 16e (=2 + v) cos /o]

w =

2cta? (1 — 62)2

: (4.33)
. T S
32c*a?e? (1 — €?)
+3¢° [272 +v <—1560 +112y/1 — & + 799
+ 112@@] + 1662 [—84 +528/1— &
+v(-39-811VT—e + 273@@]
+24¢* {16 (—8 + 15@) v [401 _sV1-e&
n (—151 + 280\/@) v]} + 8% (83 (=55
+ 56@) + (174 2681 — & — 450
+ 84@0] +é [24 (s+24v1-¢)
+ (153 —1416V1 — &2 — 1350 + 868@1))“ cos /o

+e[15 —u/1—e+ (—9 +28V1— ez) u] [4 (=5 + 4v) cos 2/
+evcos3fy]}. (4.34)

{—32\/1 2 (—64+Tv) (=14 + 11v)

4.4 The Total Net Orbital Precessions

As remarked in Section 2.2.2, care is needed in correctly calculating the total
2pN orbital precessions since the mere division of Equations (4.29)—(4.34) by the
Keplerian orbital period 7k is not enough to obtain them.

The correct procedure consists in expanding the ratios of the 1pN net shifts per
orbit to the 1pN apsidal period in powers of 1¢, and adding the resulting terms of
the order O (1/c*) to the ratios of Equations (4.29)—(4.34) to Tx.

By taking the ratios of the sum of Equations (4.29)—(4.34) and Equations (3.41)—
(3.46) to the anomalistic period of Equation (3.49), calculated with Equation (3.50),
and expanding the resulting expressions in powers of 1/c to the order O (1 / 04), one
finally gets the total 2pN precessions of the Keplerian orbital elements:

- =0 4.35
[ o, ass
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d 2pN
<£> —0, (4.36)
d] 2pN
<E> —0, (4.37)
dQ 2pN
<E> —0, (4.38)
dow\*™ 3ngpl
<—“’> =—— b (344 & (43 — 520) + ¢* (13 — 4v) — 4v
dt 4cta? (1 — &)
+e{[116 + €* (4 — 29v) — 52v] cosfy
—3e[—10+ v (8 4+ ecosfy)]cos2fp}), (4.39)
dn 2PN "KMZ
<_> _ b [32\/1 — 2 (=6+7v) (—14+ 11v)
dt 64cta?e? (1 — ez)

—1662{—624+744 1—e2+v[405—1111m

+ (—75 ¥ 329\/@) u]} — 8¢t {—1644 112241 — &
+v[3099—2760 1—e2+(—1137+1372m> v]}

—e6{48 (—43+24m>+v[408—2352 | — e

+ (381 + 1904@) v]} + 8¢ (cosf0 {—7@(—6

+70) [8 (=74 3v) + €* (=24 4 31v)] 4 24 (=5 + 3v) [-32
+v (14 +é cosZﬁ)) + e (-8 + 131))]}

te [—4 (=5 + 4v) <60 —42V1- & — 36
491~ e2v) c0s 2fy + Tev/1 — € (6 — Tv) v cos 3f0])] . (4.40)

In the limit of small eccentricities, Equations (4.39)—(4.40) reduce to

do\™  3ngpd [<17 + 2v + 2e (=29 4 13v) cos fy]
—) =~ O (¢ 4.41
< dt > 2c*a? +0(e), (441)
dn 2PN nKM%
)~ 84 —164 477
< dt > 2c*a?e? Laind +77)
+ &> [108 + v (25 4 27v)] — 2¢° [—186 + v (29 + 21v)] cos fo}
+0 (). (4.42)

It can be noted that, while Equation (4.41) is regular for ¢ — 0, Equation (4.42) is
divergent.
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4.5 Confrontation with Other Approaches in the Literature

Here, it is shown that, as far as the pericentre is concerned, Equation (4.33) is in
agreement with other results which can be found in the literature: the derivation
by Damour and Schéifer (1988), based on the Hamilton—Jacobi method and the
Damour—Deruelle parametrization (Damour and Deruelle, 1985), and the calcu-
lation by Kopeikin and Potapov (1994) making use of the osculating Keplerian
orbital elements and the Gauss equations, although with a different computational
approach with respect to the present one.

4.5.1 The Damour—Deruelle Parameterization

The net shift per orbit of the pericentre of Equation (4.33) is in agreement with
the corresponding expression, written in terms of the osculating Keplerian orbital
elements, which can be extracted from the sum of the fractional 1pN and 2pN
pericentre advances of Damour and Schifer (1988, Equation (5.18)):

3 (onpp)*/? (Wonpp)*/? (39 27 )
IpN 2pN __ 2 2
w PR 4 PN = + —x4% + —x5 + 15xax
w w 6’2 (1—6—21-) 6‘2 (l_e_zr) 4 A 4 B AAB
(bnpp)®? (13 1 13
B — in + szB + ?xAxB . (4.43)
In Equation (4.43),
My
=—, 4.44
XA M, ( )
M,
Xp 1= V: =1 —xa (4.45)

are the normalized masses of the bodies A and B, respectively, to the system’s
total mass, while et and npp are members of the Damour—Deruelle formalism
(Damour and Deruelle, 1985) which, in the limit ¢ — oo, reduce to the Keplerian
eccentricity ¢ and mean motion ny, as will be shown in what follows.

The so-called ‘proper time’ eccentricity er reads (Damour and Deruelle, 1986,
pag. 272)

er = ¢ (1 + 5) + ey — e, (4.46)

where (Damour and Deruelle, 1985, Equation (3.8b))

€R
L+ 42 (4 —3v)

(4.47)

€ =
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(Damour and Deruelle, 1985, Equation (4.13))

= 1 4.48
€y = ep < + 2c2aR) (4.48)
(Damour and Deruelle, 1985, Equation (6.3b))
Mo
e, = ep [1 ~ 3oar (3 — v):| , (4.49)

and (Damour and Deruelle, 1986, Equation (20))?

§= Mo (xAxB + 2x]23) . (4.50)
ar
In Equations (4.47)—(4.50), ag is another member of the Damour—Deruelle param-
etrization. According to Equations (4.47)—(4.50), Equation (4.46) can be expressed
in terms of only ag, er as
er 1—{—262 [4—|—3(xA—2)xA]—|—442(8 3v) x4
= . (4.51)

€R

The Damour—Deruelle mean motion is (Damour and Deruelle, 1985, Equation

(3.7))
DD :=\/:R[1+22 (— 9+v):| (4.52)

Equations (4.51)—(4.52) are both functions of ag,egx which, in turn, can be
expressed in terms of the osculating Keplerian a and e by means of (Klioner and
Kopeikin, 1994, Equations (28)—(29))

ag = a — day — Lz [-3+v+e (—13+&+Tv+2eM)], (4.53)
c? (1 —ez)
€l
eR:e—deo—m[—17+6v+e2(2+4v)], (4.54)

with (Klioner and Kopeikin, 1994, Equation (14))

dag = —_{[8(=7 4 3v) + € (=24 + 31v)] cosfy
4c2 (1 —e?)
+e[4 (=54 4v) cos2fy + ev cos 3fpl}, (4.55)
and (Klioner and Kopeikin, 1994, Equation (16))

2 Here, the symbol § is used instead of § as in Damour and Deruelle (1986) in order to avoid confusion with
the astrometric angle dec.
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_ Wb _ 20
deoy = =) {[8 (=3 +v) + €& (=56 4 47v)] cosfy
+e[4 (—5 + 4v) cos 2fy + ev cos 3fp]} . (4.56)

Note that Equations (4.53)—(4.56) are written for GTR; their general expressions
for a given class of alternative theories of gravitation can be found in Klioner and
Kopeikin (1994). The final expressions for ag, eg are

B [t d+20) 4 (134 )]
a c?a (1 —62)
e—0 {[56+ € (24 — 31v) — 24v] cosfi
4cta (1 — €?)

+e[4 (5 —4v)cos2fy —evcos3fyl}, (4.57)
€Rr Kb 2
R —M 17464l 244
e 2¢%a (1 —€?) [ Ve U)]

Wb 2
_ m {[8 (=34 v) + € (=56 +47v)] cos [
+ e[4 (=54 4v)cos2fy + evcos3fl}. (4.58)

By using Equations (4.57)—(4.58), Equations (4.51)—(4.52) can be finally expressed,
to the order of O (¢?), as

8c%a (e — et) (1 — ez)
Wb

= [8 (=34 v) + €& (=56 + 47v)] cos fj

4+ e@{—134+3v =3 (=2 +xa)xa
+ & [—2+Tv+3(=2+xa)xal}
+ 4 (=5 + 4v) cos 2fy + evcos 3fp) , (4.59)

]’lDD 802(1 (1 - 62)2 4 2
— = 1) —————=8(-9+2v)+4e" (=6 +7v) +e" (—84 + T6v)
ng Mo

+ 3e{[8(=7+3v) + & (=24 + 31v)] cosfy
+ e[4 (=54 4v)cos2fy +evcos3fo]l}.  (4.60)

A power expansion to the order of O ( 1/ c4) of Equation (4.43), calculated with
Equations (4.59)—(4.60), yields just the ratio of Equation (4.33) to 2.

4.5.2 The Calculation by Kopeikin and Potapov

The calculation by Kopeikin and Potapov (1994) is, perhaps, the most similar to
the present one; it is based on the use of the osculating Keplerian orbital elements,
although the calculational approach is different.
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The sum of the fractional 1pN and 2pN pericentre shifts per orbit is® (Kopeikin
and Potapov, 1994, Equation (5.2))

3 Wb 3 3 Wy [ 5 1

1pN 2pN __ - |- =1 = —

o T g - 8)) {”czsl(l—s;) <z"+4) G (2”4)]
(4.61)

In Equation (4.61), &, and &, are the constants of integration of the solutions of the
Gauss equations for the semimajor axis and the eccentricity to the 1pN level to be
determined with the initial conditions at t = f;,. They can be obtained, for example,
by evaluating Kopeikin and Potapov (1994, Equations (4.5)—(4.6)) at ¢t = ¢y, by
replacing £, that is, ' in the notation of Kopeikin and Potapov (1994), with f;, and
by recalling that, in the present notation, ay — &;, ey — &,. Moreover, a and e are,
in the present book, the osculating numerical values of the semimajor axis and the
eccentricity, respectively, at the same arbitrary instant 7y; thus, a (¢) , e (fy) in the
left-hand side of Kopeikin and Potapov (1994, Equations (4.5)—(4.6)) are just a, e
here. Then, one gets

31
g~a{l— Lz |:<—14+ 6V — 66> + —vez) ecosfy
cta (1 —ez) 4
1
+ (=54 4v) e cos2fy + Zve3 cos 3f0]} +0(1/c%), (4.62)
N Wb > 47 2
52_6{1—m{<—3+1)—7e +§U€>€C05f(')
5 1
+ (—5 + 2v> e* cos2fy + gve3 cos %H +0(1/c¢"). (4.63)

By substituting Equations (4.62)—(4.63) in Equation(4.61) and expanding the
resulting expression in powers of 1/c to the order of O (1 /c4), one gets just the
ratio of Equation (4.33) to 2.

3 Here, the notation & 1, &> is adopted instead of aq, g used by Kopeikin and Potapov (1994).
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5
1pN Gravitomagnetic Effects: Spin Dipole(s)

To the 1pN order, the gravitational field of an isolated, slowly rotating massive
object is characterized by a stationary, magnetlike component, dubbed as ‘gravito-
magnetic’, sourced by its angular momentum J.

For an ordinary material body of mass M and equatorial radius R., it is

J =0, 5.1
where

~ c— 4 2

J:=1iMR; (5.2)
is the moment of inertia, i is the normalized moment of inertia (NMol), and w is
the angular speed.

For a fluid object in hydrostatic equilibrium like, for example, a main sequence

star or a gaseous giant planet, the Darwin—Radau approximate relation between

the NMol and the dimensionless quadrupole mass moment J, yields (Murray and
Dermott, 1999, Equation (4.112),p. 153)

i=%<1—% E@-1). (5.3)
3 527

In Equation (5.3), it is!

(,02R3
ge 1= —=, (5.4)
V8
~ 1 +k
f:=( 5 2>qc, (5.5)

1 Equation (5.4) comes from Murray and Dermott (1999, Equation (4.102), p. 150), while Equation (5.5) is
Murray and Dermott (1999, Equation (4.110), p. 152) rewritten by means of J, >~ (k2 /3) ¢c (Ragozzine and
Wolf, 2009; Correia and Rodriguez, 2013) for the body’s first even zonal harmonic (see Chapter 7); in it, the
possible tidal effects raised by the second object in the binary system are a priori neglected because the latter
is assumed to be a test particle.

84
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where k; is the Love number? (Love, 1911; Sterne, 1939; Kopal, 1959; Ragozzine
and Wolf, 2009; Leconte et al., 2011). For a Jupiter-like planet, it lies in the range
0.1 < k) < 0.6 (Ragozzine and Wolf, 2009), while for a main sequence star it is
of the order of® k5 ~ 0.015 (Claret, 1995). In the stellar case, the angular speed
w, can be inferred from the measured values, when available, of the inclination i,

of J, to the line of sight and the projected stellar rotational velocity*
u, 1= v;sini,, (5.6)
where V7 is the star’s equatorial rotational velocity, as

o, = 2mRY sin i*. 5.7)
U,

On the other hand, the stellar rotational period P, := 27m/w, can also be esti-
mated, for example, from photometric time series or spectroscopic time series of
activity indices (Rainer et al., 2023); the star’s equatorial radius R. can be derived,
for example, from spectral energy distribution (SED) fitting (Rainer et al., 2023).
Helioseismology (Basu, 2016; Buldgen et al., 2019) yields for the Sun’s angular
momentum the value (Pijpers, 1998)

Jo = 1.90 x 10* kgm?/s; (5.8)

for a collection of other values for it, see lorio (2012a) and references therein.

As far as white dwarfs are concerned, the moment of inertia Jy,4 of the compan-
ion (Antoniadis et al., 2011) of the pulsar in the binary system PSR J1141-6545
(Kaspi et al., 2000) is of the order of (Boshkayev et al., 2017; Iorio, 2020a)

Jwa =~ 10¥ kgm?. (5.9)

By assuming for the white dwarf a rotational frequency (Boshkayev et al., 2017;
lorio, 2020a)

P

, (5.10)
Ry

Wwd =

2 1t measures the mass concentration towards the centre of a fluid body assumed in hydrostatic equilibrium
like, for example, a main sequence star. Its possible values range from 0 for the mass point approximation to
3/2 for a fully homogeneous fluid body (Kellermann et al., 2018; Hellard et al., 2019). It should be noted
that the Love number &, entering Equation (7.4) is the one used by geophysicists; astronomers often adopt a
different definition of it, known as apsidal constant and equally denoted as ky, being half the previous one

(Poisson and Will, 2014, p. 115). Here, the apsidal constant is dubbed ky, so that k, = k»/2; compare with
Poisson and Will (2014, Equation (2.249), p. 118) where k;max =3/4.

For example, Claret et al. (2021) obtained for the apsidal constants of the members of the binary star DI
Herculis (Hoffmeister, 1930) the values log k;A = —2.146, log k;B = —2.171, quoted also by Liang et al.
(2022), corresponding to k2 = 0.0142, k2 = 0.0135.

It can be measured from full-width at half-maximum (FWHM) of the cross-correlation function (CCF) of the
reduced spectra with a stellar mask (Rainer et al., 2023).
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where Myq=1.02 My, Ryq=5400km (Antoniadis et al., 2011), its angular
momentum turns out to be of the order of

Jwa = 2.2 x 10¥ kgm?/s. (5.11)

For a typical neutron star, the moment of inertia J is of the order of (Ravenhall
and Pethick, 1994; Lattimer and Prakash, 2001; Bejger and Haensel, 2002; Lat-
timer and Schutz, 2005; Worley et al., 2008; Breu and Rezzolla, 2016; Zhao, 2016;
Greif et al., 2020)

Tns =~ 1 x 10 kgm?; (5.12)
for PSR J0737-3039A, recent estimates yield (Silva et al., 2021)
Ja >~ 1.6 x 103¥ kgm?. (5.13)

Since the spin period of such a pulsar is 22.699 ms (Kramer et al., 2006), its angular
momentum can be evaluated to be

Ja ~ 4.4 x 10¥ kgm?/s. (5.14)

Instead, since PSR J0737-3039B rotates about 100 times slower, with its spin
period amounting to just 2.77 s (Kramer et al., 2006), its angular momentum, calcu-
lated by assuming that its moment of inertia is equal to that of PSR J0737-3039A,
is

Jg >~ 3.6 x 10°® kgm?/s. (5.15)

From a comparison of Equation (5.11) and Equations (5.14)—(5.15), it may be noted
that white dwarfs have angular momenta which are orders of magnitude larger than
neutron stars.

In the case of a rotating Kerr BH (Kerr, 1963; Teukolsky, 2015), its angular
momentum is (Shapiro and Teukolsky, 1986)

MG
J' = XgT:

Xe| < 1. (5.16)

If ‘Xg‘ > 1, a naked singularity without a horizon would occur, along with the pos-
sibility of causality violations because of closed timelike curves (Chandrasekhar,
1983). Incidentally, we remark that, although not yet proven, the cosmic censorship
conjecture (Penrose, 2002) states that naked singularities cannot be formed via the
gravitational collapse of a body. J, is the BH’s spin dipole moment since, according
to the celebrated ‘no-hair theorems’ (Israel, 1967; Carter, 1971; Robinson, 1975),
the mass and the spin moments M and J¢ of a Kerr BH (Geroch, 1970; Hansen,
1974) are connected by the relation

M +iJE = M, (iJ,/cM,)", (5.17)
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where i := +/—1 is the imaginary unit; the odd mass moments and even spin
moments are identically zero.

As far as main sequence stars are concerned, it is known that their dimensionless
spin parameter y, depends in a nonnegligible way on the stellar mass, and it can
well be x, > 1 (Kraft, 1969, 1970; Dicke, 1970; Gray, 1982; Grenier et al., 1999).
For example, from the analysis in Iorio (2016a), it can be inferred that x, >~ 36 for
the star HD15082 (WASP-33) (Grenier et al., 1999). Instead, from Equation (5.8),
the value x > 0.216 is obtained for the Sun.

The gravitomagnetic field is encoded in the off-diagonal components gy;, i =
1,2,3 of the spacetime metric tensor accounting, in general, for the mass-energy
currents of the source (Einstein, 1955; Thirring, 1918, 1921; Lense and Thirring,
1918; Mashhoon et al., 1984). Actually, the previous denomination has nothing
to do with electric charges and currents; it is only due to the formal resem-
blance of the linearized equations of GTR, in its weak—field and slow-motion
approximation, with the Maxwell equations of electromagnetism. In this general
relativistic framework, the paradigm of ‘gravitoelectromagnetism’ arose (Cattaneo,
1958; White, 1958; Forward, 1961; Teyssandier, 1977, 1978; Thorne et al., 1986;
Thorne, 1986, 1988; Harris, 1991; Jantzen et al., 1992b; Maartens and Bassett,
1998; Clark and Tucker, 2000; Mashhoon, 2001; Rindler, 2001; Mashhoon, 2007;
Costa and Herdeiro, 2008; Costa and Natario, 2014; Costa et al., 2021; Costa and
Natario, 2021; Ruggiero, 2021; Bini et al., 2022; Schmid, 2023). For an histor-
ical overview, see Section IV of Jantzen et al. (1992a), and references therein. See
also the webpage® www.phy.olemiss.edu/ luca/Topics/grav/gravitomagnetism.html
maintained by Luca Bombelli. Gravitoelectromagnetism encompasses a series
of entirely gravitational phenomena affecting orbiting test particles, precessing
gyroscopes, moving clocks and atoms, and propagating electromagnetic waves
(Braginsky et al., 1977; Dymnikova, 1986; Tartaglia, 2002; Ruggiero and Tartaglia,
2002; Schafer, 2004, 2009). Gravitomagnetism should play a major role in several
complex processes which take place near spinning BHs and involve accretion disks
and relativistic jets (Bardeen and Petterson, 1975; Rees, 1978; MacDonald and
Thorne, 1982; Rees, 1984; Thorne, 1988; Armitage and Natarajan, 1999; Ingram
et al., 2009; Stella and Possenti, 2009; Veledina et al., 2013; Franchini et al., 2016).
Also various hypothesized effects like the Penrose process (Penrose, 2002; Penrose
and Floyd, 1971; Stuchlik et al., 2021), the Blandford—Znajek effect (Blandford and
Znajek, 1977), and superradiance (Zel’Dovich, 1971) are attributable to the grav-
itomagnetic field of a rotating BH; see Teukolsky (2015) and references therein.
Thus, it is important to experimentally check such a prediction of GTR in as many
different scenarios as possible in a reliable way in order to trustworthily extrapolate

5 Accessed 17 January 2024.
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its validity also to other realms in which testing it is much more difficult and
uncertain. Here, the orbital effects are treated.

The 1pN gravitomagnetic LT acceleration due to the angular momentum J of
the central body, is,% for an arbitrary orientation of the latter (Soffel, 1989; Huang
et al., 1990; Damour et al., 1994; Petit and Luzum, 2010; Poisson and Will, 2014;
Soffel and Han, 2019),

2GJ R
ALT=?(3rJ?’xv+va), (5.18)
cr
where
rp=JeF (5.19)

is the cosine of the angle between the primary’s spin axis J and the satellite’s pos-
ition vector r. Equation (5.18) is responsible for, among other things, perhaps the
most famous gravitomagnetic feature of motion: the so—called LT effect (Lense
and Thirring, 1918; Mashhoon et al., 1984), despite recent studies (Pfister, 2007,
2008, 2014) showing that it would be more appropriately renamed the Einstein—
Thirring—Lense effect. It consists of small secular precessions of (some of) the
Keplerian orbital elements, which are treated in detail in Section 5.1.

After initial proposals to use Earth’s satellites to measure them dating back to
the dawn of space era (Ginzburg, 1957; Bogorodskii, 1959; Ginzburg, 1959), they
are nowadays under experimental scrutiny in the field of Earth (Lucchesi et al.,
2019a, 2020; Ciufolini et al., 2023) since 1996 (Ciufolini et al., 1996) with some
SLR geodetic satellites, as earlier suggested by Cugusi and Proverbio (1978). Some
aspects of such tests are controversial (Renzetti, 2012a; lorio et al., 2013; Renzetti,
2013a, 2014, 2015; Iorio, 2023b). For comprehensive overviews, see, for example,
Iorio et al. (2011), Renzetti (2013b), and references therein. Proposals were made
to measure the LT effect around Jupiter with its Galilean moons (Iorio, 2023d),
following an earlier suggestion by Lense and Thirring (1918)7 themselves, who,
at that time, concluded that they were too small to be detected; the Juno space-
craft (Iorio, 2010b; Schérer et al., 2017), currently orbiting it (Bolton et al., 2017;
Bolton, 2018); and another hypothetical mission (Iorio, 2019g). Among the outer
planets of the solar system, also the gravitomagnetic fields of Saturn and Uranus
were recently taken into consideration to be probed by spacecraft (Schérer et al.,
2017; lorio et al., 2023). As far as the rocky planets are concerned, it was sug-
gested to measure the LT effect of a dedicated artificial satellite orbiting Mars
(Iorio, 2009a), after a criticized attempt to spot it in the data of the Mars Global

6 See, for example, Kidder (1995, Equation (2.2.c)) for a generalization of Equation (5.18) to a two-body
system with comparable masses and spins. See also Soffel (1989).

7 In fact, Lense and Thirring (1918) looked also at the then known moons of the other planets, finding that
their gravitomagnetic precessions were all too small.
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Surveyor (MGS) spacecraft (Iorio, 2006b; Krogh, 2007). The LT effect induced by
the Sun’s angular momentum J, (Pijpers, 1998) on the Hermean® orbital motion
has been long deemed too small to be detected since the pioneering work by’ de
Sitter (1916a); nowadays, the situation may become more favourable (lorio, 2005,
2012a; Park et al., 2017; lorio, 2018) in view of the expected improvement of the
planetary ephemerides from the analysis of the data collected by the past mission
MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSEN-
GER) and the ongoing one BepiColombo (Balogh et al., 2007). Going outside
the solar system, some exoplanets around main sequence stars were considered
in view of a possible detection of the LT effect (Iorio, 2011b, 2016a). Moving
to astrophysical compact objects, a successful detection of the gravitomagnetic
orbital precession of the inclination (see Section 5.1) of the binary system PSR
J1141-6545 (Kaspi et al., 2000), made of a white dwarf and a pulsar, was recently
claimed (Venkatraman Krishnan et al., 2020); later analysis by lorio (2020a) raised
concerns about such a test. Attempts to measure the gravitomagnetic periastron
precession of the double pulsar PSR J0737-3039 (Burgay et al., 2003; Lyne et al.,
2004) and of other binary pulsars in the near future are underway (Kehl et al.,
2017; Hu et al., 2020; Iorio, 2021c; Hu and Freire, 2024). Also, some of the S stars
were proposed as probes to test, among other things, also the LT effect induced
by the spin of Sgr A*, or, conversely, to assume the validity of GTR and use the
former as a tool to measure or constrain the latter (Jaroszynski, 1998; Kraniotis,
2007; Will, 2008; Preto and Saha, 2009; Angélil et al., 2010; Merritt et al., 2010;
lorio, 2011¢c; Han, 2014; Zhang et al., 2015; Psaltis et al., 2016; Yu et al., 2016;
Zhang and lorio, 2017; Waisberg et al., 2018; Fragione and Loeb, 2020; Iorio,
2020c; PeiBBker et al., 2020; Fragione and Loeb, 2022; Peiker et al., 2022; Iorio,
2023a). Evidence for manifestations of the gravitomagnetic field in the strong-field
regime was often claimed over the years. Gravitomagnetism could be responsible
for the'® quasi-periodic oscillations in X-ray binaries (Cui et al., 1998; Markovi¢
and Lamb, 1998; Stella and Vietri, 1998). The LT precession induced by a slowly
rotating compact object could be compatible with the daily variations of the ejecta
angle observed in the microquasar LS I+ 61°303 (Massi and Zimmermann, 2010).
It was recently reported that the observed quasi-periodic modulation of the iron

8 From ‘Eppig, -o0, 0, ‘Hermés’, a Greek god identified with the Roman deity Mercury.

9 Remarkably, de Sitter (1916a, p. 727) drew his pessimistic conclusion by obtaining a value of the Hermean
gravitomagnetic perihelion precession, later quoted also by Lense and Thirring (1918) themselves and Soffel
(1989, p. 111), which is about one order of magnitude larger than its currently accepted value, of the order of
a milliarcsecond per century (mas/cty) (lorio, 2012a), because he used an incorrect value for the angular
momentum of the Sun, wrongly assumed homogeneous.

From the adverb qudst, ‘somewhat like, about, nearly, almost, not far from’; univerbation of qudm ‘how, as’
+ 7 “if”.
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line centroid energy in the microquasar H1743-322 (Kaluzienski and Holt, 1977)
may be produced by the LT effect (Ingram et al., 2016). Recently, the LT-driven
precession of the misaligned accretion disk around the SMBH in M87 may have
been observed (Cui et al., 2023). In general, the reliability and accuracy of such
tests are difficult to properly assess because of the relatively poor knowledge of the
astrophysical environments in which the phenomena of interest take place.

So far, the only unquestioned measurement of another consequence of the grav-
itomagnetic field of the Earth was performed with the quite expensive, dedicated
spaceborne mission GP-B (Everitt, 1974). Its timeframe, ranging from its early
conception to the release of its final results, lasted for about 40 years at a cost of
about 750 million (Will, 2011a). It measured the Pugh—Schiff precessions (Pugh,
1959; Schift, 1960) of the axes of four gyroscopes carried onboard to an accur-
acy of the order of 19% (Everitt et al., 2011, 2015), despite its originally expected
level of about 1% (Everitt et al., 2001). Other proposals to measure the gravito-
magnetic Pugh—Schiff spin precessions with dedicated spacecraft orbiting the Sun
and Jupiter (Haas and Ross, 1975) were not followed up.

By projecting Equation (5.18) onto the unit vectors 7,7, h defined in Equa-
tions (2.23)—(2.25) and by using Equations (2.7)—(2.8) along with Equation (2.11),
its radial, transverse, and normal components are obtained; they turn out to be

ST 2ngGJ (1 4+ ecosf)* Th

) 5.20
' c2a? (1 - e2)7/2 420
2engGJ (1 4+ ecosf)’ sinfJh
AT = 7 , (5.21)
a? (1 —e?)
2ngGJ (1 ’
AT =~ kG ( +€C(;S{) {[ecosa) — (2+3ecosf)cosu] J1
a? (1 —e?) /
1
—5[esina)+4sinu+3esin(2f—|—a))] Jm} , (5.22)

where J1, Jm and Jh are defined in Equations (D.1)—(D.3) of Appendix D. For
an arbitrary orbital configuration and a generic direction of J, it is not possible
to spot any particular feature of Equations (5.20)—(5.22). For polar orbits, set by
Equations (D.26)—(D.28) of Appendix D, Equation (5.18) is entirely perpendicu-
lar to the orbital plane, as per Equations (D.26)—~(D.28) of Appendix D. Instead,
for equatorial orbits characterized by Equations (D.17)—(D.19) of Appendix D, the
LT acceleration is entirely in-plane, becoming fully radial for circular orbits. For
prograde orbits (Jh = +1), namely when the test particle moves along its orbit
in the same direction as the rotation of the primary, the motion is slowed down
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because Equation (5.20) is directed outward, and vice versa for retrograde orbits
(Jh = -1), namely when the direction of the orbital motion is opposite that of
the rotation of the central body. This leads to a difference 875y, in the times
required for two counter-revolving particles to come back to some fixed direction
in space, usually known as gravitomagnetic clock effect (Mitskevich and Pulido
Garcia, 1970; Vladimirov et al., 1987; Cohen and Mashhoon, 1993; Mashhoon,
1997; You, 1998; Mashhoon et al., 1999; Tartaglia, 2000b; Mashhoon and San-
tos, 2000; Mashhoon et al., 2001; Hackmann and Ldmmerzahl, 2014; Scheumann
et al., 2023; lorio, 2024b; Jiale Li et al., 2024); for a recent review, see lorio and
Mashhoon (2024) and references therein. It turns out that 674y, is proportional
toJ/ (M cz) through a numerical scaling coefficient that has been calculated in the
literature to be equal to 4; as will be shown later in this chapter, it is, in fact, larger
by a factor of four (lorio, 2024b; Jiale Li et al., 2024). Such an intriguing relativ-
istic feature of motion was the subject of several papers investigating its possible
detection as well; see Gronwald et al. (1997), Mashhoon et al. (1999), Lichtenegger
et al. (2000), Tartaglia (2000a,c), Iorio (2001a,b), lorio and Lichtenegger (2005),
Lichtenegger et al. (2006), and Scheumann et al. (2023). It also has relevant con-
sequences in astrophysical contexts such as Kerr BH spacetime (de Felice, 1995;
Bonnor and Steadman, 1999; Bini and Jantzen, 2003; Faruque, 2004; Bini et al.,
2005). For other versions of the gravitomagnetic clock effect involving spinning
orbiters in the Kerr spacetime, see, for example, Bini et al. (2004) and Mashhoon
and Singh (2006).

Equations (5.20)—(5.22) allow one to calculate in full generality several gravito-
magnetic orbital effects, as shown in the next sections. Such a feature is particularly
important in scenarios characterized by poorly known or even completely uncon-
strained orientation of J in space, as in the case of the S stars. The spin axis of Sgr
A* can be parameterized as

sin i, cos ¢,
Jo={ sini,sin¢, . (5.23)

COS I,

In Equation (5.23), i, is the tilt of J, to the line of sight; if i, = 90°, J, lies entirely
in the plane of the sky, while, if i, = 0, it is aligned with the line of sight. The
angle ¢, reckons the position of the projection of the spin axis in the plane of the
sky from the reference x axis within the latter. For performed attempts to some-
how constrain J, of S gr A* with different non-dynamical approaches, see Falanga
et al. (2007); Meyer et al. (2007); Broderick et al. (2009, 2011); Shcherbakov et al.
(2012); Jorgensen et al. (2016); Yu et al. (2016), and references therein; it turns
out that i,, ¢, are, in fact, still poorly constrained. On the one hand, J. would be
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far from aligned with the line of sight. Indeed, according to, for example, Meyer
et al. (2007), who used polarimetric observations of the near-infrared emission of
Sgr A*, it is i, ~ 55°. Falanga et al. (2007) obtained i, ~ 77° on the basis of
their fit of a simulated Rossby wave-induced spiral pattern in the BH’s accretion
disk to the X-ray lightcurve detected with the mission X-ray Multi-Mirror—Newton
(XMM-—Newton). Shcherbakov et al. (2012) yielded the range 42° < i, < 75° by
comparing polarized submillimetre infrared observations with spectra computed
using three-dimensional general relativistic magnetohydrodynamical simulations.
Methods based on gravitational lensing for determining the BH’s spin direction
independently of orbital dynamics were outlined, for example, in Saida (2017).
Takahashi (2004) investigated the possibility of measuring, among other things, i,
from the shape and position of the BH’s shadow under certain assumptions. On the
other hand, the first EHT observations (Event Horizon Telescope Collaboration,
2022) disfavour, among other things, scenarios where the BH is viewed at high
inclination (i, > 50°).

Also the rotational axis of the main-sequence stars hosting exoplanets is, in gen-
eral, poorly constrained; as an example, the determined values of i, released in
table 5 by Rainer et al. (2023) exhibit remarkably large uncertainties, while in sev-
eral other cases, only lower bounds on such an important stellar parameter are
available.!! Also the spin axis’s azimuthal angle in the plane of the sky is some-
times measured with a variety of techniques, but always with modest accuracy.
As an example, Winn et al. (2005) by exploiting the Rossiter—McLaughlin effect
(McLaughlin, 1924; Rossiter, 1924; Triaud, 2018), determined the angle A between
the projection of the spin axis of the transiting star HD 209458 (Charbonneau et al.,
2000; Henry et al., 2000) onto the plane of the sky, assumed as the {x, y} reference
plane in a coordinate system whose z axis is directed away from the observer and
the x axis is aligned with the line of nodes, and the y axis, which coincides with
the sky-projected orbital angular momentum in view of the previously mentioned
choice for the x axis, to a 32% accuracy level.

5.1 The Orbital Shifts of the Keplerian Orbital Elements

The LT instantaneous shifts Ax (f) of the Keplerian orbital elements
Kk =a,e 1,2, w,n due to Equation (5.18) can be calculated as per Equation (2.12)
by using Equations (5.20)—(5.22) in Equations (2.13)—(2.18). They turn out to be

I Ag pointed out by Rainer et al. (2023), i, heavily affects exoplanets’ parameters (Hirano et al., 2014).
Furthermore, it is also important to compute the spin-orbit angle of exoplanetary systems, which, among
other things, is an important observational probe of the origin and evolution of the systems (Queloz et al.,
2000; Winn et al., 2005).
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Aa (f)LT — 0’ (524)
2GJJh (—cosf + cos fy)
LT _
Ae(f)~ = a1 — & ’ (5-25)
GJ
Al (f)LT - _202}1 a’ (1 62)3/2 (IlLTJl + IZLTJm) > (5:26)
< _
GJ cscl
AR = e M AT ), 62D
< _
GJ
A T LT 51 LT
 (f) 2 nged (1 _ 62)3/2 (gl J1 4Gy, dm
4 g§TJh) ) (5.28)
2GJJh (sinf — si
An (O = (sinf — sinfo) , (5.29)
cngale

where the coefficients Z[", ... G}T entering Equations (5.26)—(5.28) are displayed
in Appendix E.

By calculating Equations (5.24)—(5.29) with the replacement /' — fy 4+ 27 and
dividing the result by 7k, one obtains the LT averaged precessions

da LT
—) =0 5.30
(), 5
de LT
—) =0 531
(%) =o (531)
di\"" _ 2GJJ1 532)
dt| 25 (1—e)” '
<dsz >LT 3 2GJJm (533)
t  2sinlad (1 —62)3/2’ .
de o _ 2GJ (23h + cot/Im) (5:34)
a| 2ad (1 - 62)3/2 ’ '
d77 LT
—) =0. 535
() (5.35)

Equations (5.30)—(5.35) represent the LT effect in the most general case with
respect to the earlier derivations,'? valid only for the particular case in which the z
axis is aligned with J (Lense and Thirring, 1918; Bogorodskii, 1959); also, more

12 1 ense and Thirring (1918) calculated the LT precession of the longitude of pericentre .
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recent calculation has made use of the same particular orbital configuration (Soffel,
1989; Ashby and Allison, 1993; Soffel and Han, 2019). For more general calcula-
tions based on different approaches and formalisms which take into account also
the masses and the spins of both bodies,'? see Kalitzin (1959), Michalska (1960),
Barker and O’Connell (1975), Damour and Schifer (1988), Soffel (1989), Brum-
berg (1991), Damour and Taylor (1992), Wex (1995), Wex and Kopeikin (1999),
Konigsdorffer and Gopakumar (2006), and lorio (2017).
Using Equations (2.27)—(2.31) with

GJ n R AR

(R = nK—[(Jxﬁc) -l—(Jxl)-ﬁz], (5.36)
Aa(l —e?)

obtained by averaging Equation (C.17) of Appendix C over one orbit, yields just

Equations (5.30)—(5.34) because of Equation (D.16). About the mean anomaly at

epoch, by noting that

vV, 5% =0 (5.37)

for Equation (C.15) since it is /inear in v, and by treating nk as an explicit func-
tion of @ when the partial derivative of Equation (5.36) with respect to the latter is
performed, Equation (2.32) yields just Equation (5.35).

For a binary system made of two extended bodies with comparable masses
My and My and angular momenta J, and Jg, the gravitomagnetic precessions
of the relative orbit can be obtained from Equations (5.30)—(5.35) by replacing
J with (Damour and Schifer, 1988, Equation (4.14), p. 150; Soffel, 1989, Equa-
tion (4.7.70), p. 134; Brumberg, 1991, Equations (4.4.32)—(4.4.33),p. 155)

se (1422 5, 4 (14200, (5.38)
'_ aM, )t aMg )Y '

5.1.1 Some Special Orbital Configurations

Here, some peculiar orbital configurations, characterized in Appendix D, are
examined.

Let, first, the satellite’s orbital plane be assumed coincident with the body’s
equatorial one, irrespective of the orientation of the latter in the adopted reference
frame, namely for generic values of «,, §,. Then, according to Equations (D.17)—
(D.25) of Appendix D, Equations (5.30)—(5.35) reduce to

da LT
<Z> =0, (5.39)

13 Kalitzin (1959) calculated the in-plane pericentre precession using the angle €2 cos/ + w.
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de LT
—) =o,
()
dl LT
- =0
(&) =
do\"
e =0,
()
do\"" 4GJ
a| :Fcza3 (1-e)

dn\LT
Y =0
(4]
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(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

Equation (5.43) is a genuine secular trend; the minus sign corresponds to a pro-
grade motion, namely Jh= + 1, while the plus sign occurs if the motion is

retrograde, namely Jh = — 1.

Let, now, the body’s spin axis, irrespective of its orientation in the adopted
coordinate system, namely for generic values of «;, §,, lie somewhere in the satel-
lite’s orbital plane between 7and 7. Then, according to Equations (D.26)—(D.34) of
Appendix D, Equations (5.30)—(5.35) can be written as

da\LT
=Y —o
(a] =
de\LT
(a) =
dr\" B 2GJ cos d;
dt| 24 (1—e)
dQ\""  2GJsing,
dt | o243 (1—e)
do\LT
-

(5.45)

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)

Equations (5.47)—(5.48), which do not vanish for a generic orientation of J, are

genuine secular trends.


https://doi.org/10.1017/9781009562911.005

96 IpN Gravitomagnetic Effects: Spin Dipole(s)

5.1.2 The Contribution of ® to the Mean Anomaly

Since the semimajor axis is left unaffected by Equation(5.18), as per Equa-
tion (5.24), it is

> =" =0. (5.51)

5.1.3 Gravitomagnetic Ring Currents in Triple Systems

So far, the angular momentum J of an isolated rotating massive body was assumed
as the source of the gravitomagnetic field inducing the LT effect encoded by the
precessions of Equations (5.30)—(5.35).

In principle, the inner binary S of a hierarchical triple system 7 in which
a distant companion orbits the former can also be thought as the source of a
gravitomagnetic field through its orbital angular momentum

Hyy = Mieqy/ioa (1 — €2) . (5.52)

MyMpg
M,

In Equation (5.52),

Mred =

(5.53)

is the reduced mass, respectively. Stated differently, the third body would see the
other two members of T closely orbiting one about each other as a rotating mat-
ter ring whose orbital angular momentum H\, generates its own gravitomagnetic
field (Ruggiero, 2016) which may be orders of magnitude larger than those due to
the individual spin angular momenta J 5 and Jg of each body of S (lorio, 2022).
Such a scenario corresponds, in principle, to the so-called circumbinary planets
(CBPs) (Haghighipour, 2010; Thebault and Haghighipour, 2015), where an exo-
planet revolves about a binary system typically made of two main sequence stars,
and to triple pulsars like, for example, PSR J0337+1715 (Ransom et al., 2014)
made of a millisecond pulsar—white dwarf pair in relative motion around each
other, and another white dwarf as a distant companion. Several CBPs have already
been discovered using different techniques: see Thorsett et al. (1993), Correia et al.
(2005), Lee et al. (2009), Qian et al. (2010), Beuermann et al. (2010), Doyle et al.
(2011), Orosz et al. (2012b,a), Qian et al. (2012b,a), Welsh et al. (2012), Schwamb
et al. (2013), Kraus et al. (2014), Kostov et al. (2014), Welsh et al. (2015), Ben-
nett et al. (2016), Kostov et al. (2016), Getley et al. (2017), Jain et al. (2017),
Asensio—Torres et al. (2018), and Kostov et al. (2021). About triple pulsars, so
far, PSR J0337+1715 is the sole relatively tight member so far discovered of the
class of hierarchical triple systems hosting stellar corpses, apart from B1620-26
whose pulsar has a white dwarf as inner companion and a roughly Jupiter—mass at
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35 au as outer orbiter (Thorsett et al., 1999). According to Ransom et al. (2014),
< 1% of the millisecond pulsars’ population resides in stellar triples, and < 100
such systems exist in the Galaxy. The possibility of measuring such ‘annular’
gravitomagnetic field is quantitatively investigated in Section K.5 of Appendix K.

5.2 The Anomalistic Period

The LT anomalistic period can be calculated by means of Equations (5.20)—(5.22)
as explained in Section 2.3.1. It turns out to be

ATH = 0; (5.54)

ano

it is an exact result, valid to all orders in the eccentricity e.

Figure 5.1, obtained for generic values of the Keplerian orbital parameters,
shows just that; over three orbital revolutions, the test particle reaches always the
precessing line of apsides after a time interval equal to the Keplerian orbital period
after each orbit.

Furthermore, Figure 5.2 plots the final part of the time series of the cosine 7 - C
of the angle between the position vector r and the Laplace—Runge—Lenz vector C

Perturbed trajectory

Figure 5.1 Perturbed LT trajectory (continuous curve) and its osculating Kep-
lerian ellipse (dashed curve) at the initial instant of time f#y characterized by
e=0.7, 1 =30°, 2=72°, w=50° fy = 180°. The orientation of the spin axis
J of the central body is set by oy = 45°, §; = 60°. In this example, /, 2, and
o undergo the LT precessions of Equations (5.32)—(5.34); their magnitudes are
suitably rescaled by enhancing them for a better visualization. The initial pos-
ition is chosen at the apocentre instead of the pericentre solely for the sake of
better visualization. The positions on the perturbed trajectory after one, two, and
three Keplerian periods are marked as well. At each orbit, the passage at the drift-
ing line of apsides occurs always as in the Keplerian case because, according to
Equation (5.54), ATLL = 0.

ano
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Figure 5.2 Plot of the numerically produced time series of the cosine # - C of
the angle between the position vector r and the Laplace—Runge—Lenz vector C
versus time ¢, in units of 7k, obtained by integrating the equations of motion of

a fictitious test particle with and without the LT acceleration of Equation (5.18)
for an elliptical (e = 0.665) orbit arbitrarily oriented in space (I = 40°, Q =
45°, w = 50°) starting from the periapsis (fo = 0), that is, 7o - Co = +1, and
the semimajor axis is @ = 6R.. The physical parameters of the Earth are adopted,
apart from the spin-axis position set by oy = 45°, §; = 60°. The time needed to

come back to the initial position on the (moving) line of apsides, so that 7« C=+1
again, is as in the Keplerian case.

versus time ¢, in units of 7k, for a numerically integrated fictitious test particle
acted upon by Equation (5.18) starting from, say, the moving pericentre, namely
for rg - é’o = +1. It can be seen that it comes back to the same position on the
precessing line of apsides, that is, it is 7 - C=+1 again, just after one Keplerian
orbital period.

The fact that the gravitomagnetic apsidal period is identical to the Keplerian
one can be intuitively justified since there is no net shift per orbit of the mean
anomaly at epoch 7, as per Equation (5.35). Indeed, from the definition of the mean
anomaly of Equation (2.2), Equation (2.3) follows; it tells us that the mean anomaly
at epoch is proportional to the time of passage at pericentre #,. Thus, since nk stays
constant because, according to Equation (5.30), the semimajor axis is not secularly
affected by the gravitomagnetic field, the rate of change of the mean anomaly at
epoch is proportional to the opposite of the pace of variation of the time of passage
at pericentre according to Equation (2.26). Should 7 increase, the crossing of the
pericentre would be anticipated with respect to the Keplerian case since #, would
decrease, and vice versa. In this case, the variation of n would result in an orbit-
by-orbit advance or delay of the passages at the pericentre, which does not occur
in the present case because, in fact, (dn/df)*! = 0.

5.3 The Draconitic Period

The gravitomagnetic LT draconitic period, calculated as explained in Section2.3.2,
turns out to be
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TH = Ty + AT (5.55)

dra dra>
with
4nJ (2Jh 4 Jmcot])

AT = .
c2M (1 + e cos w)?

dra

(5.56)

The explicit form of the geometric coefficient in the numerator of Equation (5.56)
depending on the orientation in space of both the orbital plane and the primary’s
spin axis is

2Jh + Jmcot! = 3cos/sind + cosd (csc/ — 3sinl)sin(oy — 2).  (5.57)

In general, it can be either positive and negative. For a polar orbit, namely for
Q = oy and I = 90°, the gravitomagnetic correction to the draconitic period van-
ishes, as per Equation (5.57). For an equatorial orbit arbitrarily oriented in space,
however, corresponding to Equations (D.17)—(D.19) of Appendix D, it does not
vanish, amounting to

8nJ
ATYT = T . (5.58)
c2M (1 + ecos w)
Furthermore, for circular orbits, Equation (5.58) reduces to
8mJ
LT _
ATy, = iﬁ' (5.59)

If the orbital plane lies in the reference plane, that is, for / = 0, Equation (5.56)
loses its meaning, as is expected since, in this case, the line of nodes is no longer
defined.

Figure 5.3, obtained for generic values of the Keplerian orbital parameters, con-
firms the analytical result of Equation (5.56); over three orbital revolutions, the
test particle always reaches the precessing line of nodes after a time interval equal
to 75! after each orbit. For the particular choice of the values of the primary’s
spin and orbital parameters, it turns out to be longer than Tk, in agreement with
Equation (5.56).

Furthermore, Figure 5.4 plots the final part of the time series of the cosine 7 - I
of the angle between the position vector r and the node unit vector I versus time
t, in units of Tk, for a numerically integrated fictitious test particle with and with-
out Equation (5.18), starting in both cases from, say, the moving ascending node,
namely for 7 -Iy = +1. It can be seen that it comes back to the same position on the
precessing line of nodes, that is, it is 7 - I=+1 again, just after 71 = Tx + ATH
differing from Tk by a (positive) amount, in agreement with Equation (5.56) for
the particular choice of the generic values of the spin and the orbital parameters
adopted in the numerical integrations.
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Perturbed trajectory

Figure 5.3 Perturbed LT trajectory (continuous curve) and its osculating Kep-
lerian ellipse (dashed curve) at the initial instant of time f#y characterized by
e=0.7,1=30° Q=72° w=50° fo = 180° — w. The orientation of the spin
axis J of the central body is set by oy = 45°, §; = 60°. In this example, /, €2,
and w undergo the LT precessions of Equations (5.32)—(5.34); their magnitudes
are suitably rescaled by enhancing them for a better visualization. The positions
on the perturbed trajectory after one, two, and three Keplerian periods Tk are
marked as well. At each orbit, the passages at the precessing line of nodes occur
always later than in the Keplerian case by the amount given by Equation (5.56),
which is positive for the given values of the spin and orbital parameters.

5.4 The Sidereal Period

As shown in Section 2.3.3, the sidereal period for a generic perturbed orbit is the
sum of the draconitic period, calculated as explained in Section 2.3.2, and the term
given by Equation (2.66). For Equation (5.18), Equation (2.66) yields

4mJ cotl
LT _ . ~ _ 2 _ 2 _ 2
ATGin = R YENG {m[ e"+2 (2 e 2V 1 —e >cos2w]

R 47J cot]
420 (—2 +42V1— e2) sin2a)} ~ —%Jm
C
+ 0O (). (5.60)

In the equatorial case set by Equations (D.17)—(D.19) of Appendix D, assuring that
the orbital plane stays constant in space, Equation (5.60) vanishes, and the sidereal
period coincides with the draconitic one, as is expected since neither the line of
nodes nor the orbit’s projection onto the reference plane change. By taking the sum
of Equation (5.56) and Equation (5.60), the full expression of the gravitomagnetic
correction of the sidereal period AT, sng is obtained. It can be noted that, for a generic
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Figure 5.4 Plot of the numerically produced time series of the cosine 7 -/ of the
angle between the position vector » and the node unit vector I versus time ¢, in
units of Tk, obtained by integrating the equations of motion of a fictitious test
particle with and without the LT acceleration of Equation (5.18) for an elliptical
(e = 0.665) orbit arbitrarily oriented in space (I = 40°, Q = 45°, w = 50°)
starting from the ascending node § (fo = —w + 360°), namely 7o - Iy = +1;
the semimajor axis is @ = 6R.. The physical parameters of the Earth are adopted,
apart from the spin axis position set by oy = 45°, §; = 60°. The LT acceleration
is suitably rescaled in such a way that |AT LT| /Tx = 0.001. The time needed to

dra
come back to the initial position on the (moving) line of nodes, so that 7 -/ = +1
again, is longer than in the Keplerian case by the amount AT (Ii‘rg = 40.0017x,
shown by the shaded area, in agreement with Equation (5.56).

eccentric orbit, ATLY is not defined if the orbital plane lies in the fundamental one.
Nonetheless, for e = 0, it reduces to

v 8J . I
ATgy = 2 [cos/sind; — cosdysini sin (oy — 2)], (5.61)

which is not singular in / = 0. By using the true longitude / in the case / = 0, it
turns out

87/ sin §
T L. (5.62)
M (14 ecosw)
In the limit e — 0, it reduces to
8mJ sindy
ATy = —F (5.63)

which agrees with Equation (5.61) calculated with / = 0. In turn, if §; = £90°,
corresponding to the case of an equatorial orbit whose orbital plane coincides with
the reference plane, Equation (5.63) becomes

8mJ

LT
ATSld = :i:cz_M,

(5.64)

in agreement with Equation (5.59).
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Osculating ellipse

LT LT
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Figure 5.5 Projections of the perturbed LT trajectory (continuous curve) and of
its osculating Keplerian ellipse (dashed curve) in the reference plane {x, y} at
the initial instant of time 7y characterized by the generic initial conditions e =
0.7, I = 30°, Q = 45°, w = 50°, fy = 285°. The orientation of the spin axis J
of the central body, whose projection in the fundamental plane is depicted as well,
is set by oy = 45°, §; = 60°. In this example, /, 2, and » undergo the LT shifts
of Equations (5.32)—(5.34) due to the spin dipole moment J of the primary; their
sizes are suitably rescaled for better visualizing of their effect. The positions on
the perturbed trajectory after one, two, and three Keplerian periods 7k are marked
as well. At each orbit, the passages at the generic fixed line characterized by ¢
occur always earlier than in the Keplerian case by the amount given by the sum
of Equation (5.56) and Equation (5.60). It is so because, for the given values of
the sp.in and orbital parameters, AT’ (Ii‘rz + AT, SLiEH < 0, as per Equation (5.56) and
Equation (5.60).

Figure 5.5 confirms the analytical results of Equation (5.56) and Equation (5.60).
Indeed, over three orbital revolutions, the projection of a generic LT perturbed orbit
in the fundamental plane {x, y} crosses a fixed direction in the latter set by a certain
value ¢ always after a time interval equal to 751 = 75T + ATLY, for each orbit.
With the particular choice of the primary’s spin and the orbital parameters used in
the picture, 7% turns out to be shorter than Tk, in agreement with Equation (5.56)
and Equation (5.60).

Furthermore, Figure 5.6 plots the final part of the time series of the cosine of
the angle ¢, normalized to its initial value cos ¢, versus time ¢, in units of 7k, for
a numerically integrated fictitious test particle with and without Equation (5.18)

starting from the same generic initial position. It can be seen that it comes back
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Figure 5.6 Plot of the numerically produced time series of the cosine cos ¢ (¢) of
the azimuthal angle ¢ () normalized to its initial value cos ¢g versus time ¢, in
units of Tk, obtained by integrating the equations of motion of a fictitious test
particle with and without the LT acceleration of Equation (5.18) for an elliptical
(e = 0.665) orbit arbitrarily oriented in space (/ = 40°, Q = 45°, v = 310°)
starting from, say, fo = 50°; the semimajor axis is @ = 6R.. The physical
parameters of the Earth are adopted, apart from the spin axis position set by
oy = 45°, 65 = 60°. The LT acceleration is suitably rescaled in such a way that

|AT S%g‘ /Tx = 0.001. The time needed to cos ¢ () to assume again its initial value

cos ¢ is longer than in the Keplerian case by the amount AT, sng = 40.0017x,

shown by the shaded area, in agreement with the sum of Equation (5.56) and
Equation (5.60).

to the same position on the fixed direction chosen in the reference plane, that is,
it is cos ¢/ cos py = +1 again, just after 751 = Thl + AT differing from Tk
by a (positive) amount in agreement with Equation (5.56) and Equation (5.60) for
the particular choice of the generic values of the spin and the orbital parameters
adopted in the numerical integrations.

5.5 The Gravitomagnetic Clock Effect

According to Equation (5.59), the time difference characterizing the usual scen-
ario for the gravitomagnetic clock effect consisting of two counter-orbiting test
particles which move along identical circular orbits in their primary’s equatorial
plane, illustrated in Figures 5.7-5.8, amounts to (lorio, 2024b)

J
8 Tgem = 1617 . (5.65)

which is four times larger than what is usually’* found in the literature'
(Vladimirov et al., 1987; Cohen and Mashhoon, 1993; Mashhoon, 1997; You, 1998;
Tartaglia, 2000b; Mashhoon et al., 1999; Mashhoon and Santos, 2000; Mashhoon
etal., 2001).

14 See section 4 of Lichtenegger et al. (2006) for an alternative clock effect in agreement with the present
treatment, although less general, and the analysis in Jiale Li et al. (2024).
15 Mitskevich and Pulido Garcia (1970), incorrectly, obtained the opposite sign.
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Fundamental plane

Figure 5.7 Prograde circular equatorial orbit arbitrarily oriented in space with,
say, [ = 30°, Q = 45°. The orbital plane is aligned with the equator of the central
body, and the test particle moves along the same sense of rotation of the latter, so
that Jh = +1.

The standard approach in deriving the aforementioned form of the gravitomag-
netic clock effect is to calculate the time interval required for a test particle to
come back to some fixed reference direction in the orbital plane from which it
began its motion, assumed circular throughout the overall variation of the azi-
muthal angle ¢ (¢) reckoned from such a line and spanning an interval of 277, when
Equation (5.18) is added to the Newtonian inverse-square one. J is assumed to be
known, so that one can align the reference z axis with it, and the reference {x, y}
plane coincides with the equatorial one of the source.!® The usual calculation starts
by equating the centripetal acceleration ¢? ry, where 7 is the common constant
radius of both the circular orbits followed by the counter-revolving test particles,
to the sum of the Newtonian monopole plus Equation (5.20). Indeed, from

de\’ 2ng GJ
<—“’> o= o KT (5.66)

2 )
dt rs ccrg

16 1t should be noted that, even in such a case, Equation (5.64) leads to the same result as Equation (5.65).
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Fundamental plane

Figure 5.8 Retrograde circular equatorial orbit arbitrarily oriented in space with,
say, [ = 150°, Q@ = 225°. The orbital plane is aligned with the equator of the
central body, and the test particle moves along the opposite sense of rotation of
the latter, so that Jh = —1.

one gets
d 21’1](.]
— ==+ 1 5.67
d ng + M2 ( )
which yields
dt 1 1 J
>t — (1 £ S . (5.68)
M c?

¢ ng/1F —2,\;'22] K

By integrating Equation (5.68) with respect to ¢ from 0 to +27 for the prograde
motion and from 0 to —2m for the retrograde one, the LT orbital period
2 J

T =— %42
+ nK T[Mcz

(5.69)
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is obtained. Note that ¢ is a polar angle counted from some fixed reference polar
axis in the orbital plane aimed to instantaneously locate the test particle along its
circular orbit; thus, for a generally oriented equatorial orbit, it is straightforward
to identify the fixed line of the nodes, as per Equation (5.42), with the reference
direction and ¢ (7) with the argument of latitude u ().

The explanation in the aforementioned discrepancy likely resides in the fact that
the more general calculation in Iorio (2016b) and Section 2.3.2, made by using the
nonsingular elements g and k, accounts for the fact that, during two consecutive
crossings of the line of the nodes, the orbital elements in terms of which dr/du
is parameterized, namely p, ¢, and k, do actually change instantaneously. In the
general case, also the line of the nodes does not stay fixed; such a feature is captured
by the calculation in lorio (2016b) and Section 2.3.2 as well. It turns out that such
an effect does not vanish even in the limit g, & — 0 corresponding to a circular
orbit. Indeed, a step-by-step analysis of the calculation in Iorio (2016b) and Section
2.3.2 made with Equation (5.18) shows that Equation (5.59) comes from the sum of

2 3(dt/d

/ /) L\ oy d (5.70)
0 dq

27 3(de/d
f YA g wy du (5.71)

0 ok

which, for ¢, £k — 0, do not vanish, yielding
2 J

U2 /o cosu (cosu — cosug) du = +4m Ve (5.72)

2
/ sinu (sinu — sinuy) du = +4m (5.73)
0

M c? Mc*
Instead, it turns out that [0 (d¢/du) /dp] Ap (u) = 0 since, in the limit ¢, k£ — 0, the
instantaneous variation Ap (u) of the semilatus rectum p vanishes. Also the term
due to the change of the line of nodes containing d€2/d¢ is zero for an equatorial
orbit because of Equation (5.22) and Equations (D.17)—(D.19) of Appendix D. The
opposite sign in Equations (5.72)—(5.73) is obtained for the retrograde motion.
Instead, the integration based on Equation (5.66) is performed by considering
only ¢ as variable during an orbital revolution, all the rest being kept fixed.

5.6 The Radial Velocity of a Spectroscopic Binary

From Equation (2.88) and Equations (5.30)—(5.32), it turns out that the semiampli-
tude K of the radial velocity curve does experience a nonvanishing LT net shift per
orbit induced by the LT net shift of the inclination. From Equations (2.89)—(2.91),
one finally has
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N b 4nGJ cosIJi , (5.74)
a? (1 —e?)
where it is meant that J should be replaced by Equation (5.38) for an ordinary bin-
ary like, for example, an exoplanet and its parent star. Indeed, for, say, a Sunlike
main sequence star and a Jupiter-type planet, by using the figures in Table J.1 and
Table J.3 one gets

3

(1 n ZM_D Jo = 1.9 x 10" kgm?/s, (5.75)
3 Mg

<1+ZJW—QF>J"L'__54X 1041kgm /s. (5.76)

However, caution is needed since several main sequence stars hosting exoplanets
are much faster rotators than the Sun, so that their spin angular momentum may be
up to ~ 2—3 orders of magnitude larger!” than the solar one. Moreover, tidal effects
often synchronize the rotational frequency of close exoplanets with the orbital one.
Instead, for a star with the same physical properties as the Sun and the SMBH
in Sgr A*, whose angular momentum J, is calculated with!® Equation (5.16) and
M,=4.1 x 10° Mg, x, =0.5 (PeiBker et al., 2022), one has

3 M,
(1 17 >J@ =57 x 10¥ kgm?/s, (5.77)
©

3 Mg
( e )J ~ 7 x 10%*kgm?/s. (5.78)

Furthermore, ya g is the ratio of the mass of what, out of A and B, is the unseen

companion to the system’s total mass M. Equation (5.74) holds for a pair of bodies
of comparable masses M, and Mg and angular momenta J, and Jg.

In typical tight exoplanetary systems characterized by fast orbits even covered
in a fraction of a day,'® tidal forces tend to either circularize them and align both
the system’s orbital angular momentum and the individual spins of the star and the
planet (Goldreich, 1966; Kasting et al., 1993; Murray and Dermott, 1999; Heller
etal., 2011). Thus, Equation (5.74), calculated with Equation (5.38), vanishes,?° as
per Equation (D.1).

Nonetheless, the radial velocity curve exhibits a generally nonvanishing LT
instantaneous shift which can be analytically worked out according to Equations
(2.77)—~(2.78) by using Equations (2.83)—(2.87) along with Equations (5.24)—(5.29)
17 The case is exactly the same with, for example, WASP-33 and Kelt-9 (Stephan et al., 2022).

18 Recent estimates for its spin parameter point towards the larger value xg = 0.9 (Daly et al., 2024).

19 Asan example, K2—137b (Smith et al., 2018) orbits its parent star in just 0.18 d = 4.3 hr.

20 1t should be recalled that the unit vectors Z, i, i are mutually perpendicular, as per Equations (2.9)—(2.10)
and Equation (2.25).
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calculated with Equation (5.38). Replacing f* with fy+2 1 in the resulting expression
allows one to obtain the net shift per orbit, which turns out to be

_ 4nGJ
AVLT = yA,Bn— [20h sin/ (e sin w + sin ug)

c2a? (1 - 62)2
+ cos/[J1 (ecosw + cosuy) + Jm (esinw + sinug)]], (5.79)

where it is intended that J is replaced with Equation (5.38). In the aforementioned
tidally induced star—planet scenario, Equation (5.79) reduces to

WLT_ me 81G sin [ sin uy 1+3mc J4 1+3M* 7 (5.80)
M, cta? 4aM, )" 4m, )" | '

Figure 5.9 shows the plot of the time-dependent analytical signature for a ficti-
tious tight exoplanetary system made of a Sunlike star and a gaseous giant planet
whose mass and radius are assumed to be those of Jupiter, and whose angular
momentum is calculated according to Equations (5.1)—(5.5) in the hypothesis that
tides have synchronized its orbital and diurnal rotations. Furthermore, all three
angular momenta of the system are aligned, although spin-orbit misalignments are

Lense—Thirring radial velocity shift
150

5 .
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Figure 5.9 Analytically produced time series, in wm/s, of the LT shift AV ()T
of the radial velocity curve of a fictitious tight exoplanetary system. It is made
of a main sequence star with the same mass, radius and angular momentum as
the Sun, and a gaseous giant planet p with the same mass and radius as Jupiter;
its angular momentum is calculated with Equations (5.1)—(5.5) by assuming that
its rotational frequency is synchronized with the orbital one due to tides. Indeed,
it is assumed that tidal effects have either circularized the orbit, so that e = 0,
and reciprocally aligned all the angular momenta of the system. Different values
of the orbital period Tk are assumed, so that the star—planet relative distance, in
units of R, + Ry, ranges from 1.08 to 1.9. The other relevant orbital parameters,
chosen arbitrarily, are / =45°, Q2 =30°, w =50°, 7 =20°. Since p cannot be con-
sidered a test particle, Equation (5.38) is used in Equations (5.24)—(5.29) along
with Equations (2.83)—(2.87) in Equation (2.77) and Equation (2.78).
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Lense—Thirring radial velocity net shift per orbit
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Figure 5.10 LT net shift per orbit A_VLT, in pm/s, of the radial velocity of a ficti-
tious tight exoplanetary system as a function of the star—planet distance according
to Equation (5.80). The binary is made of a main sequence star with the same
mass, radius, and angular momentum as the Sun, and a gaseous giant planet p
with the same mass and radius as Jupiter; its angular momentum is calculated
with Equations (5.1)—(5.5) by assuming that its rotational frequency is synchron-
ized with the orbital one due to tides. The other relevant orbital parameters, chosen
arbitrarily, are [ = 45°,w = 50°,n = 20°. It is assumed that tidal effects have
either circularized the orbit, so that e = 0, and reciprocally aligned all the angular
momenta of the system.

not infrequent in exoplanets (Schlaufman, 2010). By varying the orbital period T
from 0.15 to 0.35 d in such a way that the star—planet relative distance, in units of
R, + Ry, ranges from 1.08 to 1.9, it turns out that the peak-to-peak amplitude of the
LT shift can reach the level of about >~ 10 — 100 micrometres per second (j1m/s)
over 1 day.

Figure 5.10 plots the net shift per orbit of Equation (5.80) as a function of
the star—planet distance. It turns out that the largest value, occurring for a =
1.1 (R. + Ry), is 20 um/s, dropping to about ~ 1 wm/s for a/ (R, + R,) = 3.

Figure 5.11 depicts the net shift per orbit AK"" of the radial velocity semiampli-
tude for the recently discovered S star S4716 (Peilker et al., 2022) orbiting Sgr A*
in about 4 yr. It is plotted according to Equation (5.74) as a function of the angles
i, and ¢, determining the spatial orientation of the BH’s spin axis, as per Equa-
tion (5.23). It will be noted that ’RLT ‘, which can also vanish for some values of

Loy e, 18 < 0.1 km/s; it is >~ 2-3 orders of magnitude smaller than the uncertainties
quoted in PeiBker et al. (2022).

5.7 The Characteristic Timescales of Transiting Exoplanets

Here, the 1pN LT net shifts per orbit of the characteristic timescales of transiting
exoplanets are calculated in their full generality. In the following sections, it is
intended that J has to be replaced with Equation (5.38).
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Figure 5.11 Plot of the LT net shift per orbit AK -, in km/s, of the radial velocity
semiamplitude of the recently discovered S star S4716 (Peiflker et al., 2022) as
a function of the angles i, and ¢, characterizing the orientation of the BH’s spin

axis J, in space, assumed to be completely unconstrained. The relevant orbital
parameters of S4716 are Tx = 4.02yr, e = 0.756, I = 161.24°, Q = 151.54°
(PeiBker et al., 2022). For the BH, the values M, = 4.1 x 10° M, Xg = 0.5 are
used for its mass and spin parameter (Pei3ker et al., 2022).

5.7.1 The Total Transit Duration §tp

From Equations (2.102)—(2.105) and the shifts obtainable from Equations (5.30)—
(5.35), it turns out that

——IT 4]

Adtp = ; 3 5 > : 3 N . 32
EMyR, (1 — ) V(1 +9)* = b (1 +esinw)’ (1 + €* + 2esinw)
[ (1= )’ 1sin21 (1 + esino) (1 + ¢

+2esinw) + 2ecos w (23h + Jmeot]) [R2 (1 4+ 9)* (1 + esinw)’
—a* (1 —ez)2 coszl(2+e2+3esina))]}. (5.81)

It should be noted that Equation (5.81) does not vanish for circular orbits, since its
first nonvanishing term is just of zeroth order in e.

5.7.2 The Ingress/Egress Transit Duration dt;/.

From Equations (2.108)—(2.111) and the shifts obtainable from Equations (5.30)—
(5.35), it turns out that

LT 21tJ ( Jla (1 — ez) sin 2/ |: 1

A(Sl‘i/e

~ My \R, (1 + esinw)> V1 + & + 2esine | /(1 + 9)2 — b2

I
Ja-vy —bz}
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B 2R*ecosa)(2Jh—|—cot1Jm)3 { (1— 9y — b2

a(l —ez) (1 +e2+26sinw) 2

—y (I +9) -1

a* (1 - e2)2 cos? I (1 + €* + 2esinw) |: 1

R2 (1 + esinw)® /(1 4+ 9)2 — b2

1
Ja-oy —b2“>' .

It should be noted that Equation (5.82) does not vanish for circular orbits, being its
first nonvanishing term just of zeroth order in e.

5.7.3 The Full Width at Half Maximum Primary Transit Duration &ty

From Equations (2.115)—(2.118) and the shifts obtainable from Equations (5.30)—
(5.35), it turns out that

LT 21t ( Jla (1 — ez) sin 2/ |: 1
\/

Aty =
T My \R, (1 +esinw) VI+ e 1 2esinw | /(1 +0) B2

1
+ -
U—ﬁf—ﬁ}
B 2R,ecosw (20h —i—cotlJm)}/2 {_ (1—9) — B2
)

a(l —ez) (1 + e 4 2esinw

— (A + ) — b2

a* (1 - ez)2 cos? (1 + €* + 2esinw) |: 1

R2 (1 + esinw)® /(1 + )% — b2

+

1
N —b2“>’ o

It should be noted that Equation (5.83) does not vanish for circular orbits, since its
first nonvanishing term is just of zeroth order in e.

5.7.4 The Time of Inferior Conjunction f;

From Equations (2.121)—(2.124) and the shifts obtainable from Equations (5.30)—
(5.35), it turns out that
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LT 4mJ (2Jh 4+ cot/Jm)

(5.84)

Atcj

My (1 + esinw)?

It can be noted that Equation (5.84) is independent of a.

5.7.5 A Numerical Evaluation

Figure 5.12 displays the plots of Equations (5.81)—(5.84) for a Jovian-type exo-
planet transiting in front of its Sun-like host star, seen edge-on, as functions of the
minimum distance 7y, ranging from 1.1 to 20 times the sum of the radii of the
star and the planet, for various values of e and by assuming that both the stellar and
planetary angular momenta are aligned with the orbital angular momentum. It will
be noted that the largest effect occurs for the time of inferior conjunction whose

AT (us)

LT total transit duration shift

LT total ingress/egress duration shift
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Figure 5.12 Plots of the net shifts per orbit A(StD”T, ASti/ehT, A(SIHLT, AthLT
of a fictitious Sun-Jupiter exoplanetary system, seen edge-on, as functions of the
minimum star-planet distance 7, in units of R, + Ry, for different values of the
eccentricity e according to Equations (5.81)—(5.84). The values / = 90°, w = 50°
are used for the relevant orbital parameters; all the three angular momenta are

assumed to be aligned. The units are Ls.
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shift per orbit, which is independent of 7y, is at the >~ 40-80 s level. Instead, the
variations of the other timescales are of the order of >~ 1-10 us.

5.8 The Sky-Projected Spin-Orbit Angle of Transiting Exoplanets

According to Equation (2.126), the rate of change of the sky-projected spin-orbit
angle X of a transiting exoplanet is equal to the node precession, provided that the
angular momentum of the host star can be considered as constant.

By expressing the stellar spin axis J, in terms of its inclination i, to the line of
sight and its azimuth ¢, in the plane of the sky as

sin i, cos ¢,
J, =1 sini,sing, , (5.85)
COS I,

it turns out, from Equation (5.33), Equation (5.85), and Equation (D.2), that the LT
precession of X is

DN\ Jde\P 2GJ, cosi,
G- - o

dt dr| T 2p (1— 62)3/2'

In Equation (5.86), only the angular momentum of the host star appears since it
turns out that its contribution to Equation (5.38) is some orders of magnitude larger
than that of a typical Jovian-type exoplanet.

Kelt—9b
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0.0022 ¢
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i (%)
Figure 5.13 Plot of the LT averaged precession, in °/yr, of the sky-projected spin-
orbit angle of the transiting exoplanet Kelt—9b as a function of the tilt i, to the line
of sight of the spin axis of its host star according to Equation (5.86). The physical
parameters of the star and the planet are retrieved from Tables A.1 and A.2 of

Albrecht et al. (2022) as well as the range of values for i,. The stellar angular
momentum is calculated with Equations (5.1)—(5.7).
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In Figure 5.13, Equation (5.86) is plotted as a function of i, for the exoplanet
Kelt-9b. It can be noted that the LT secular rate of A ranges from ~ 0.001 to
=~ (.002°/yr within the allowed observational interval for i,.

5.9 The Variation of the Times of Arrival of Binary Pulsars

For a binary pulsar, the instantaneous shift of 87Psr can be obtained from Equa-
tion (2.77) calculated with Equations (2.130)—(2.134), Equations (5.24)—(5.28), and
Equation (5.51). By replacing f* with fy + 27 in the resulting expression, the net
variation per orbit is inferred; it turns out to be (Iorio, 2017)

~IT  mg 47J [—cosug (Jmcos/ +2Thsin/) + J1 cos/ sinu
Aoy = = [ o (Jm ) o (s87)

M, Aatng/1 — e (1 + ecosfy)

where it is intended that J has to be replaced by Equation (5.38) written for the
pulsar and its companion. It may happen that the angular momentum of the latter
is much larger than that of the pulsar itself, as for the PSR J1141-6545 system
(Antoniadis et al., 2011; Iorio, 2020a; Venkatraman Krishnan et al., 2020).

Figure 5.14 displays the instantaneous shifts A87psr () of a fictitious binary pul-
sar whose companion is a white dwarf obtained by varying 7k and e in such a way

LT pulsar TOAs shift
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Figure 5.14 Plot of the LT instantaneous shift A(S?psr ('™ in ps, of a bin-
ary pulsar with a white dwarf as companion for different values of 7x and
e in such a way that rpj, =1.8 x 10° km. The relevant orbital parameters
are [=75° Q=50° w=42.457°, n=20°. For the stellar corpses, the val-
ues Mps = 1.27 Mo, Myd = 1.02 Mo, Josr =~ 4 x 10¥0kgm?/s, Jyq =~ 2.2 x
10 kgm? /s, taken from those of PSR J1141-6545 (Antoniadis et al., 2011;
Torio, 2020a; Venkatraman Krishnan et al., 2020), are used. It is assumed that both
the individual angular momenta and the orbital angular momentum are aligned.
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that the periastron distance is kept fixed to, say, #min = 1.8 x 10° km. For the masses
and the angular momenta, assumed aligned with the orbital angular momentum,
the values of PSR J1141-6545 (Antoniadis et al., 2011; Iorio, 2020a; Venkatraman
Krishnan et al., 2020) are taken. It turns out that the peak—to—peak amplitudes of
the signals may be as large as >~ 20-30 s over 5 d.

It may be noted that, when the three angular momenta of the system are mutually
aligned, Equation (5.87) reduces to

WLT _me 81/ sin/ (5.88)
P My Ba?ng/1T =€ (1 + ecosfy) .
where the replacement
3 3
J = (1 +_&) o+ (1 +—m‘°“>JC (5.89)
4 My, 4 m,

has to be taken.

5.10 The Astrometric Angles RA and dec.

For a test particle and a massive primary, as in the case of the S stars and Sgr
A*, the instantaneous shifts of the RA and dec. can be obtained from Equa-
tion (2.77) calculated with Equations (2.137)—(2.143), Equations (5.24)—(5.29), and
Equation (5.51). By replacing f with fy 4+ 27 in the resulting expressions, the net
variations per orbit are inferred; they turn out to be

— 16tGJ [2Jh cos ] in/ (—J J1si
AaLT:_ nnGJ [ cos! + cosugysin (—JImcos uy + smuo)]’ (5.90)

cnga’ (1 — e2)3/2 (3 + cos 2] + 2sin® I cos 2u0)

5T _ _4T[GJ [cosuy (Jmcos] 4+ 2Thsinl) — J1 cos/ sinuo]' (5.91)

cnga’ (1 — e2)3/2 V1 — sin? I sin? g

Figures 5.15 and 5.16 display the instantaneous shifts A« (¢), AS (¢) of the RA
and the dec. of a fictitious S star obtained by varying Tk and e in such a way that the
stellar perinigricon distance is kept fixed to 7, = 1250 R,. The SMBH’s angular
momentum .J, is calculated with Equation (5.16), and the orientation of its spin
axis is set equal to, say, i, = 30°,¢, = 150°. It turns out that the spin-induced
astrometric signatures can be as large as < 5-50", depending on the star’s orbital
period and eccentricity.
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5.11 The Two-Body Range and Range Rate

Here, Equations (5.24)—(5.29) are used in Equation (2.147) and Equation (2.152)
to analytically calculate the time series of the range and range rate shifts for A =
Mercury and B = Earth, both moving in the gravitomagnetic field of the Sun.
Figures 5.17-5.18 plot the resulting signals, obtained by introducing the depend-
ence on time ¢ through the mean anomaly by means of Equation (2.4) and Equa-
tions (2.158)—(2.159), over 2 yr, which is the expected duration of the extended

LT RA shift
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Figure 5.15 Plot of the LT instantaneous shift A« (/)'T, in 7, of the RA of a fic-
titious S star for different values of 7k and e in such a way that ryj, = 1250R,.
The relevant stellar orbital parameters are / = 161.24°, Q = 151.54°, v =
0.073°, 5 = 20°. For the BH, the values M, = 4.1 x 10° M, Xg = 0.5 are used
for its mass and spin parameter (Peiflker et al., 2022). Furthermore, the orientation
of'its spin axis is set by, say, i, = 30°, ¢, = 150°.

LT dec. shift
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Figure 5.16 Plot of the LT instantaneous shift A (O, in ", of the dec. of a fic-
titious S star for different values of Tk and e in such a way that 7, = 1250 R,.
The relevant stellar orbital parameters are / = 161.24°, Q = 151.54°, w =
0.073°, 5 = 20°. For the BH, the values M, = 4.1 x 10% M, Xg = 0.5 are used
for its mass and spin parameter (Peilker et al., 2022). Furthermore, the orientation
of its spin axis is set by, say, ie = 30°,¢, = 150°.
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Figure 5.17 Analytically produced time series, in m, of the two-body LT
range shift Ap () due to the Sun’s angular momentum Jo for A=Mercury
and B=Earth plotted over 2 yr. It was worked out by calculating Equa-
tions (2.149)—(2.151), entering Equations (2.147)—(2.148) with Equations (5.24)—
(5.29), Equation(5.51) and Equation (2.4). The initial values of the Keplerian
orbital elements of both planets, referred to the International Celestial Refer-
ence Frame (ICRF), were retrieved from the WEB interface Horizons System
at https://ssd.jpl.nasa.gov/horizons/, maintained by the Jet Propulsion Labora-
tory (JPL) of the National Aeronautics and Space Administration (NASA), and
accessed 12th February 2024. The values Jo = 1.90 x 10*' kgm?/s (Pijpers,
1998) and s, = 286°.13,8,, = 63°.87 (Seidelmann et al., 2007) were adopted
for the magnitude and the orientation of the Sun’s angular momentum; see
Table J.1.

Earth—Mercury Lense—Thirring range rate shift
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Figure 5.18 Analytically produced time series, in pwm/s, of the two-body LT
range rate shift Ap () due to the Sun’s angular momentum J for A=Mercury
and B=Earth plotted over 2 yr. It was worked out by calculating Equa-
tions (2.155)—(2.157), entering Equations (2.152)—(2.154) with Equations (5.24)—
(5.29), Equation (5.51), and Equation (2.4). The initial values of the Keplerian
orbital elements of both planets, referred to the International Celestial Refer-
ence Frame (ICRF), were retrieved from the WEB interface Horizons System
at https://ssd.jpl.nasa.gov/horizons/, maintained by the Jet Propulsion Labora-
tory (JPL) of the National Aeronautics and Space Administration (NASA), and
accessed 12th February 2024. The values Jo = 1.90 x 10*! kgm?/s (Pijpers,
1998) and a;, = 286°.13,8,, = 63°.87 (Seidelmann et al., 2007) were adopted
for the magnitude and the orientation of the Sun’s angular momentum; see Table
J1.
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phase of the BepiColombo mission (Benkhoff et al., 2010, 2021) from?! 2026 to
2028. It turns out that the peak-to-peak nominal amplitudes of the range and range
rate shifts can reach the >~ 20 m and >~ 15 pm/s level, respectively.

An integration of the equations of motion with and without Equation (5.18)
generated corresponding numerical time series differing from the aforementioned
analytical ones by < 0.2 m and < 3 pm/s level over 2 years, respectively.

21 See www.esa.int/ Science_Exploration/Space_Science/BepiColombo/BepiColombo_factsheet. Accessed
19th January 2024.
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6
1pN Gravitomagnetic Effects: Spin Octupole

To the 1pN order, the gravitomagnetic Panhans—Soffel (PS) spin octupole acceler-
ation A" felt by a test particle moving about an oblate spheroid of constant density
that is rigidly and uniformly rotating is (Panhans and Soffel, 2014)

A" = 2 x B, 6.1)
C

where the gravitomagnetic octupole field B°®* can be calculated as (Panhans and
Soffel, 2014)

Boct - _V WOCt, (62)

with the gravitomagnetic octupolar potential W° given by (Panhans and Soffel,
2014)

6GJR2e?
ot — T;g% ). (6.3)
In Equation (6.3),
R 2
e:=/1— (R—P) (6.4)
€

is the body’s ellipticity written in terms of its polar and equatorial radius Ry, and
R., respectively, and P; (7)) is the Legendre polynomial of degree 3 in »; which is
defined as in Equation (5.19).

From Equations (6.1)—(6.3), the PS 1pN gravitomagnetic spin octupole acceler-
ation can be expressed as

475 — 3GJR%&?

7c2r?
It should be noted that the spin dipole moment in Panhans and Soffel (2014),
namely J, yields the usual LT acceleration of Equation (5.18). Other studies on

vx 51 (13 = 3)k 43 (1= 53) J . (6.5)
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relativistic multipoles can be found, for example, in Meichsner and Soffel (2015);
Schanner and Soffel (2018); Frutos-Alfaro and Soffel (2018).

By projecting Equation (6.5) onto the unit vectors 7,7, h defined in Equa-
tions (2.23)—(2.25) and by using Equations (2.7)—(2.8) along with Equation (2.11),
its radial, transverse, and normal components are obtained; they turn out to be

9GnKR§J82Jh (1+ ecosf)6 [1 —5(Jlcosu+ Jm sinu)z]

AP = . (6.6
7ctat (1 — 62)11/2
4P 9eGngR:Je?Jn (1 + ecosf)’sinf [1 —5(J1lcosu—+ Jm sinu)Z]
T Tcta* (1 - ez)ll/2 ’
(6.7)
3GnkRLJe* (1 °
A7 = nxReJe” (1 + elclozsf) {15(1 + ecosf) (J1 cosu + Jmsin u)
7ctat (1 - ez) /
—35(1 +ecosf) (J1 cosu + Jmsinu)’
—3[J1(ecosw + cosu) + Jm (esinw + sinu)]
+15(J1 cosu + Jmsinu)? [J1 (ecosw + cosu)
4+ Jm (esinw + sinu)]}. (6.8)

The quantities J1, Jm, and Jh entering Equations (6.6)—(6.8) are defined in
Equations (D.1)—~(D.3) of Appendix D.

6.1 The Averaged Orbital Precessions

Inserting Equations (6.6)—(6.8) in the machinery of Equations (2.13)—(2.18) yields
the averaged precessions of the orbital elements. They turn out to be

da PS
<E> =0, (6.9)

<de>Ps 45eGJR2e*Th (T sin 2w — 2T cos 2w)
dt 28c%a° (1 — 62)5/2

, (6.10)

- _ 2 _AT T
= Seca (1) {2(2+43¢°) 31 (4T, + 5T3)

dr\™ 9GJR2s>
dt

+5¢* [31 (=27} + 3917 + Jm’) cos 20

+23m (=71 + 2312 + Jn?) sin 20]} (6.11)


https://doi.org/10.1017/9781009562911.006

6.1 The Averaged Orbital Precessions 121

do\™ 9GJR e csc 1 5 ~
<E> = (1—o)" {2(243¢*) am (—4T, +57»)
+ 5¢° [—Jm (—2?1 +J1%+ 3Jm2) cos2w

+ 231 (=T + 317 + 2Jm?) sin20] } , (6.12)

PS
<”;_‘:> _ 560225(;(?2_8;)7 {46 +28) on (27, + 5T5)
+2 (2 4+ 3¢%) am (—4T, + 5T cot 1)
+5[2(1 +2¢%) InTs
— &’ Jm (=2 + J1% + 3Jm”) cot /] cos 2w
+1071[2 (1426 Ts

+&* (=1 + J1% 4+ 2Jm*) cot /] sin 20} , (6.13)

{ 573 cos 2w

<dn >"S _ 9GJR’.e*Jh
dt 28c2a5 (1 — ez)2

+2[-2T, +5(T> + Tssin2w)]} . (6.14)

The coefficients ?}, j = 1,2,...6 in Equations (6.9)—(6.14), characterizing the
orientation of the orbital plane with respect to the primary’s symmetry axis J, are
explicitly shown in Equations (D.4)—(D.9) of Appendix D.

6.1.1 Some Special Orbital Configurations

Here, some peculiar orbital configurations, characterized in Appendix D, are
examined.

Let, first, the satellite’s orbital plane be assumed coincident with the body’s equa-
torial one, irrespectively of the orientation of the latter in the adopted reference
frame, namely, for generic values of s, §;. Then, according to Equations (D.17)—
(D.25) of Appendix D, Equations (6.9)—(6.14) reduce to

da PS
<E> =0, (6.15)

de PS
<E> =0, (6.16)
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dl PS
—) =0 6.17
()~ o
dQ PS
29 2o, 6.18
(%) (6.18)
dw\™ 9GJR?e? (3 + 262
—) =7F ( 5 2), (6.19)
dt 7245 (1 _ 62) /
<dn >PS _ . 9GJRE 6.20)
dt| 7024 (1—¢)> '

Equations (6.19)—(6.20) are genuine secular trends; the upper signs in them refer
to the prograde motion (Jh = +1), while the lower signs are for the retrograde
motion (Jh = —1).

Let, now, the body’s spin axis, irrespective of its orientation in the adopted
coordinate system, namely, for generic values of o, §;, lie somewhere in the sat-
ellite’s orbital plane between 1and . Then, according to Equations (D.26)—(D.34)
of Appendix D, Equations (6.9)—(6.14) can be written as

da\PS
da\"* _ 6.21
<dt> (6.21)
de\PS
de\" _ 6.22
<dt> (6.22)
£>PS B _9GJR6282 CcOoS 8] {4 + 662 + 5@2 COS [2 (8-] - a))]} (6 23)
7 56245 (1 _ e2)7/2 5 .
< s >PS B _9GJR582 sind; {4 + 6¢* + 5¢% cos[2 (8, — w)]} (6.24)
g 5602(15 (1 _ 62)7/2 5 .
do\PS
do\* _ 6.25
< g > (6.25)
dn PS
an\"T . 020
<dt> (6.26)

Equations (6.23)—(6.24), in addition to secular trends, include also long-period sig-
natures due to the evolution of pericentre which is mainly driven by the zonal
harmonics of the Newtonian component of the multipolar field of the central body
(See Section 7.1).
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Newtonian Effects: Mass Quadrupole(s)

The pK acceleration due to the first even zonal harmonic coefficient J, of the multi-
polar expansion of the exterior Newtonian gravitational potential of a massive body
endowed with axial symmetry is

2
- 3”2‘11& (573 = 1) 7 =23 ] (7.1)
where r; is defined as in Equation (5.19). In most cases, its orbital effects repre-
sent a major source of systematic bias for the pN features of motion one may be
interested in since the former often have the same temporal patterns as the lat-
ter ones along with usually much larger nominal magnitudes. The knowledge of
J, and/or of the orientation of the primary’s symmetry axis J is often imperfect
to such a level that it leaves relevant mismodelled signatures. Thus, the perturba-
tions induced by Equation (7.1) have to be carefully investigated in order to devise
strategies to circumvent them or, at least, reduce their impact as much as possible.

Equation (7.1) is obtained as'

A"

A" = —VAU, (r), (7.2)

where AU, is the term of degree’ £ = 2 of the expansion in multipoles of the
Newtonian gravitational potential of an axisymmetric body (Montenbruck and Gill,
2000; Murray and Dermott, 1999; Bertotti et al., 2003; Capderou, 2005; Roy, 2005;
Kopeikin et al., 2011; Poisson and Will, 2014)

o0 o Re L
UF) = Un () + ; AU (1) = = [1 = (7> P, <m} . (13)

=2
where Py (r)) is the Legendre polynomial of degree £ in »; (Olver et al., 2010).

' In some textbooks, the Newtonian potential Uy is conventionally defined as positive; in this case, the
acceleration is the gradient of AU,.

2 Ifthe axisymmetric primary exhibits ‘north—south symmetry’, only the even zonal harmonics
Jy, £ =2,4,6,. .. enter Equation (7.3).

123
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For a material body in hydrostatic equilibrium like, for example, a main sequence
star or a planet, it is, in general (Ragozzine and Wolf, 2009; Correia and Rodriguez,
2013),

ka qt
== < — —) , 7.4
2 3 dc B ( )
where ¢, is defined as in Equation (5.4), and
R\’ M
=-3=) —. 7.5
qt ( a/ ) M ( )

In Equation (7.5), M’ is the finite mass of a nearby tide-raising companion about
which the former one revolves in an orbit whose relative semimajor axis is a . It
should be remarked that Equation (7.4) is used also for white dwarfs (Boshkayev
et al., 2017; Mathew and Nandy, 2017), with, say (Iorio, 2020a),

kY~ 0.228 (7.6)

for the pulsar’s companion (Antoniadis et al., 2011) in the binary system PSR
J1141-6545 (Kaspi et al., 2000).

In dealing with astrophysical compact objects like white dwarfs, neutron stars,
and BHs, it is convenient to express Equation (7.1) in terms of the negative definite
dimensional quadrupole mass moment Q, with the replacement (Laarakkers and
Poisson, 1999; Will, 2014)

0>
J - 7.7
2 —> MR% (7.7)

According to Laarakkers and Poisson (1999), for a neutron star it is

M3 G?
Qrzls: ns I;S4 5 (7.8)

where |&,5| ranges from 0.074 to 3.507 for a variety of equations of state (EOSs)
and M, = 1.4M; compare table 4 of Laarakkers and Poisson (1999). Then, for a
typical neutron star, Equation (7.8) yields

9x 10 <05 <4 x 107 kgm®. (7.9)

As a comparison, Equation (7.4), calculated for an isolated white dwarf with Mg =
1.02 Mg, RY = 5400 km (Antoniadis et al., 2011) and Equation (7.6), yields

|0y9| ~ 4.5 x 10” kgm®. (7.10)

Thus, the quadrupole mass moment of a white dwarf may be several orders of
magnitude larger than that of a neutron star.

3 1tis computed by setting gt = 0 gc = 1 in Equation (7.4) (Iorio, 2020a).
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For a Kerr BH, from Equation (5.17) calculated with ¢ = 2, it turns out (Carter,
1971; Robinson, 1975)

JZ
= - 7.11
=03 =0 (7.11)
where J, is given by Equation (5.16). Then, for a rotating Kerr BH, the quadrupole
mass moment is of the order of O (1/c*).
For a binary system made of bodies with comparable masses M and Mg and
quadrupole mass moments Q% and Q%, Equation (7.1) can be written, by means of

Equation (7.7), as (Barker and O’Connell, 1975)

3G . .
A9 — o ( )Q2 [(1 — 5r§A)r+ ZVJAJA]
3G . .
+ 3 (1 + M—‘;) o) [(1 — 52 )i+ erBJB] , (7.12)

where r and 7 refer to the relative orbital motion.

By projecting Equation (7.1) onto the unit vectors 7, #,h defined in Equa-
tions (2.23)—(2.25) and by using Equations (2.7)—(2.8) along with Equation (2.11),
its radial, transverse, and normal components are obtained; they turn out to be

3R (1 T Tycos2u -~
4 = IR +ec‘ff) |:—T1+3(—2+M+T6sin2u>], (7.13)
2a4(1_ez) 2 2
3nhHR2 (1 4 Tysin2u -
e = MR (Lt ecosf) < 320 ”—T6cos2u> (7.14)
4 2 2
a (l—e)
3R (1
A‘f: WSk, ( +ec:)sf) (T4cosu+T5smu) (7.15)
a4(1—ez)

where the coefficients ’7\}, j = 1,2,...6 are defined in Equations (D.4)—(D.9) of
Appendix D. For an arbitrary orbital configuration and a generic direction of J,
it is not possible to spot any particular feature of Equations (7.13)—(7.15), apart
from a radial part of 4”2 directed inward which is always present. For an equatorial
orbit, the latter, which is proportional to Equation (D.4) of Appendix D, is the only
nonvanishing component of the J,-driven acceleration, as per Equations (D.20)—
(D.25) of Appendix D; it enhances Equation(2.1). In the case of a polar
orbit, 4” lies entirely in the orbital plane since, according to Equatlons (D.29)-
(D.34) of Appendix D, only T and T are generally non-zero, apart from 7). In the
particular case in which J is known and oriented along, say, the reference z-axis,
all the three r, t, A components of A" are, in general, non-zero.
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7.1 The Orbital Shifts of the Keplerian Orbital Elements

The J,-driven instantaneous shifts Ak (f) of the Keplerian orbital elements k =
a,e, 1,2, w,n due to Equation(7.1) can be calculated as per Equation (2.12) by
using Equations (7.13)—(7.15) in Equations (2.13)—(2.18). They turn out to be

JLLR?
Aa(f)? = ——22— A", (7.16)
16a (1 — €?)
JLR?
Ae(fyr = —2= __¢”, (7.17)
32a* (1 —¢€?)
JLR?
AL (Y = —— T, (7.18)
4q? (1 — 62)
2
aQ(fy: = — 2ol (7.19)
4a? (1 — ez)
JR?
Aw (f)? = — 5 ~G", (7.20)
32ace (l —e )
JLR? ;
An (f)”? = e 2, (7.21)
32a%e (l — e2)3/2
where
6
AP =" AR, (7.22)
Jj=1
6
g =) "&"T, (7.23)
j=1
6
T2 =) "T"T, (7.24)
j=1
6
N2 =3 "N"T, (7.25)
j=1
6
¢" =Y G"T, (7.26)
Jj=1
6
Hr =Y "HIT, (7.27)

-
Il
-
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The coefficients A‘fz, . ’Héz entering Equations (7.22)—(7.27) are explicitly shown
in Appendix F.

By calculating Equations (7.16)—(7.21) with the replacement /' — fy 4+ 27 and
dividing the result by Tk, one obtains the averaged precessions

da\”
<z‘;> — 0, (7.28)
de\”
<£> — 0, (7.29)
dr\” 3nkJoR2T.
_> S S (7.30)
t 2a? (1 — ez)
ao\” 3ngJoR2T:
<_> = KBRS (7.31)
t 242 (1 —e?)"sin/
<dw >J2 _ 37’ZKJ2R£ (2/]:1 — 3/7\12 + 2/7:5 COt[) (7.32)
dt 4a> (1 —e?)’ ’ '
<d77 >J2 . 37[](.]2R§ (2/7:] — 3?2) (7 33)
dt 4a? (1 —&2)*? '

Equations (7.28)—(7.33) coincide with the definite integrals of (1/7k) dk/df from
fotofo+ 2m.

Using Equations (2.27)—(2.32) with*
WhHR2 (2T, — 3T5)

(R)”
4a3 (1 — 62)3/2

(7.34)

obtained by averaging Equation (C.21) of Appendix C over one orbit, yields just
Equations (7.28)—(7.33).

7.1.1 Some Special Orbital Configurations

Here, some peculiar orbital configurations, characterized in Appendix D, are
examined.

Let, first, the satellite’s orbital plane be assumed coincident with the body’s
equatorial one, irrespective of the orientation of the latter in the adopted reference

4 The scheme outlined in Appendix C is followed.
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frame, that is, for generic values of o, §;. Then, according to Equations (D.17)—

(D.25) of Appendix D, Equations (7.28)—(7.33) reduce to

da\”
Y 2o
(%) =°

de\”

(@) =°

dr\”

(@) =°

aQ\”
(@) =®

dw\” B 3nKJ2R§
<E> B 2a? (1 — 62)2,
<dn >’2 _ 3mg R

dt 2a2 (1 =)

Equations (7.39)—(7.40) are genuine secular trends.

(7.35)

(7.36)

(7.37)

(7.38)

(7.39)

(7.40)

Let, now, the body’s spin axis, irrespective of its orientation in the adopted

coordinate system, that is, for generic values of «;, §,, lie somewhere in the satel-
lite’s orbital plane between / and m. Then, according to Equations (D.26)—(D.34) of

Appendix D, Equations (7.28)—(7.33) can be written as

<dw 2 3ngJo R
4a> (1 — &2)”
<d77 >J2 37’1KJ2R§

Equations (7.45)—(7.46) are genuine secular trends.

4q? (1 — 62)3/2'

(7.41)

(7.42)

(7.43)

(7.44)

(7.45)

(7.46)
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7.1.2 The Contribution of ® to the Mean Anomaly

When Equation (7.1) enters the equations of motion, the analytical expression of
the term ® entering the shift of the mean anomaly, calculated with Equation (2.80),
turns out to be

3LR?
O ()= — _F (7.47)
2a? (1 — ez)
with
6
Fh=3"F"T. (7.48)

j=1

The coefficients ]-'jjz, j = 1,2,...6 entering Equation (7.48) are explicitly shown
in Appendix F.

The net change per orbit of ® can be obtained with the replacement f — f,+2x
in Equation (7.47), getting

— 3nJ,R? ~ A
" = -2 {07 = 3T) [(1- ) = (1 + ecosfp)']
2a? (1 — 62)
+ (1 + ecos o)’ (375 cos 2ug + 67 sin 2uo)} . (7.49)

7.2 The Anomalistic Period

When the perturbation due to J; is taken into account, the anomalistic period can
be calculated by means of Equations (7.13)—(7.15) as explained in Section 2.3.1. It
turns out to be

3nhR? (1 + ecosfp)’
2(1- ez)3 Ja

AT =

ano

(—2T; + 3T + 3T cos 2ug + 6T sin 2uy) .

(7.50)

Figure 7.1, obtained for generic values of the Keplerian orbital parameters, con-
firms the analytical result of Equation (7.50); over three orbital revolutions, the test
particle always reaches the precessing line of apsides after a time interval equal
to 772 for each orbit. For the particular choice of the values of the primary’s
spin and orbital parameters, it turns out to be longer than T, in agreement with
Equation (7.50).

Furthermore, Figure 7.2 plots the final part of the time series of the cosine 7+ Cof
the angle between the position vector r and the Laplace—Runge—Lenz unit vector C

versus time ¢, in units of Tk, for a numerically integrated fictitious test particle with
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Figure 7.1 Perturbed J; trajectory (continuous curve) and its osculating Kep-
lerian ellipse (dashed curve) at the initial instant of time f#y characterized by
e=07,1=30°Q =45°, o = 50° fo = 180° as seen from the z-axis. The
orientation of the spin axis J of the central body is set by ay = 45°, §; = 60°.
In this example, /, 2, w, and 1 undergo the Newtonian shifts of Equations (7.30)—
(7.33) due to the quadrupole mass moment J, of the primary; their magnitudes
are suitably rescaled by enhancing them for a better visualization. The positions
on the perturbed trajectory after one, two, and three Keplerian periods Tk are
marked as well. At each orbit, the passages at the drifting line of apsides always
occur /ater than in the Keplerian case by the amount given by Equation (7.50),
which is positive for the given values of the spin and orbital parameters.

and without Equation (7.1) starting in both cases from, say, the moving pericentre,
namely, for 7y - Cyp = +1. Tt can be seen that it comes back to the same position on
the precessing line of apsides, that is, it is 7 - C = +1 again, just after 792, = Tx +

AT’ differing from Tk by a ( positive) amount in agreement with Equation (7.50)

ano
for the particular choice of the generic values of the spin and the orbital parameters

adopted in the numerical integrations.

7.3 The Draconitic Period

The draconitic period, calculated when the perturbation due to J, is taken into
account as explained in Section 2.3.2, turns out to be

Ak _ _ 3ThRS

" 2./na (1 - ez)

n (1+ ecossf/oz)3
(1-¢)

1 P
[(1 sy (=27 + 3T, — 2T cotl)

(=27 + 375 + 375 cos 2ug + 67 sin 2u0)i| . (7.51)
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Figure 7.2 Plot of the numerically produced time series of the cosine # - C of the
angle between the position vector r and the Laplace—Runge—Lenz vector C versus
time ¢, in units of 7k, obtained by integrating the equations of motion of a fictitious
test particle with and without the J, acceleration of Equation (7.1) for an elliptical
(e = 0.665) orbit arbitrarily oriented in space (I = 40°, Q = 45°, w = 50°)
starting from the periapsis (fo = 0), that is, 7o - Co = +1; the semimajor axis
is a = 6R.. The physical parameters of the Earth are adopted, apart from the
spin axis position set by oy = 45°, §; = 60°. The J, acceleration is suitably

/Tx = 0.001. The time needed to come back

rescaled in such a way that )ATa]ﬁO

to the initial position on the (moving) line of apsides, so that 7 - C=+1 again, is
longer than in the Keplerian case by the amount ATa]ﬁo = 40.0017x, shown by
the shaded area, in agreement with Equation (7.50).

It can be noted that Equation (7.51) is not defined for / — 0 because of the term

?5 cot/ = cot/ [sin/sin§; 4 cos/ cos §; sin (ay — 2)]

X [cos/sind; — cos§ysin/ sin (o — )], (7.52)

as is expected since, in this case, the line of nodes is no longer defined.

Figure 7.3, obtained for generic values of the Keplerian orbital parameters, con-
firms the analytical result of Equation (7.51); over three orbital revolutions, the test
particle reaches always the precessing line of nodes after a time interval equal to
T({fa after each orbit. For the particular choice of the values of the primary’s spin
and orbital parameters, it is shorter than Tk, in agreement with Equation (7.51).

Furthermore, Figure 7.4 plots the final part of the time series of the cosine 7 - I
of the angle between the position vector r and the node unit vector / versus time
t, in units of Tk, for a numerically integrated fictitious test particle with and with-
out Equation (7.1), starting in both cases from, say, the moving ascending node,
namely, for F -le = +1. It can be seen that it comes back to the same position on the
precessing line of nodes, that is, it is 7 - I=+1 again, just after T[{fa =Tx + ATgfa
differing from Tk by a (positive) amount in agreement with Equation (7.51) for
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Osculating ellipse

Perturbed trajectory

Figure 7.3 Perturbed J, trajectory (continuous curve) and its osculating Kep-
lerian ellipse (dashed curve) at the initial instant of time f#y characterized by
e=0.7,1=30° Q=45° w = 50°, fo = 180° — w as seen from the z-axis. The
orientation of the spin axis J of the central body is set by ooy = 45°, §; = 60°.
In this example, /, 2, w, and 1 undergo the Newtonian shifts of Equations (7.30)—
(7.33) due to the quadrupole mass moment J; of the primary; their magnitudes are
suitably rescaled for better visualizing their effect. The positions on the perturbed
trajectory after one, two, and three Keplerian periods 7k are marked as well. At
each orbit, the passages at the precessing line of nodes always occur earlier than
in the Keplerian case by the amount given by Equation (7.51), which is negative
for the given values of the spin and orbital parameters.

the particular choice of the generic values of the spin and the orbital parameters
adopted in the numerical integrations.

7.4 The Sidereal Period

As shown in Section 2.3.3, the sidereal period for a generic perturbed orbit is the
sum of the draconitic period, calculated as explained in Section 2.3.2, and the term
given by Equation (2.66). For Equation (7.1), Equation (2.66) turns out to be

3nR2cot! (A
Aﬁﬁllz%{ [6‘ +2< —24é +2\/1—e2>c052a)]
e /na(l —e?

- 312R2Ts cot
—2Ty (<24 @ 2/ T ) sin2o) = TS L o).
Jwa
(7.53)
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Figure 7.4 Plot of the numerically produced time series of the cosine 7 - I of the
angle between the position vector r and the node unit vector I versus time ¢, in
units of Tk, obtained by integrating the equations of motion of a fictitious test
particle with and without the J, acceleration of Equation (7.1) for an elliptical
(e = 0.665) orbit arbitrarily oriented in space (I = 40°, Q = 45°, w = 50°)
starting from the ascending node ) (fo = —w + 360°), i.e., #o - o = +1; the
semimajor axis is a = 6R.. The physical parameters of the Earth are adopted,
apart from the spin axis position set by oy = 45°, §; = 60°. The J, acceleration

/Tx = 0.001. The time needed to

is suitably rescaled in such a way that ’AT(frza

come back to the initial position on the (moving) line of nodes, so that 7 - I=+1

again, is longer than in the Keplerian case by the amount AT(‘j/rza = +0.0017x,
shown by the shaded area, in agreement with Equation (7.51).

For equatorial orbits, Equation (7.53) vanishes because of Equations (D.17)—(D.19)
of Appendix D, and the sidereal period reduces to the draconitic one. The oblate-
ness-induced correction of the sidereal period AT‘S]fd can be obtained by summing
Equation (7.51) and Equation (7.53); for an elliptic orbit, it turns out to be singular
in / = 0. Instead, in the limit e — 0, it reduces to

AT’

_ 3nhR}
sid = 2 /_Ma

2

{—4+ 6 cos? 8, cos” (ay — 2)

4+ 6 cos &, cos (o — ) sin 2uq [sin ] sin §,

4+ cos/cosdysin (ay — )]

+ 6 [sin/ sin§; + cos/ cos §, sin (a; — Q)]2

4+ 3 cos2ug [cos §; cos (o — €2)

— sin/sind; — cos/ cosdy sin (oy — 2)]

X [cos &y cos (ay — ) + sin/sindy

+ cosZcosdy sin (o — )]}

>

(7.54)

which is defined also for that value of the inclination. In such a case, using the true

longitude / yields
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Figure 7.5 Projections of the perturbed J; trajectory (continuous curve) and of
its osculating Keplerian ellipse (dashed curve) in the reference plane {x, y} at
the initial instant of time 7o characterized by the generic initial conditions e =
0.7, I = 30°, Q = 45°, w = 50°, fo = 285°. The orientation of the spin axis
J of the central body, whose projection in the fundamental plane is depicted as
well, is set by oy = 45°, §; = 60°. In this example, /, 2, w and n undergo the
Newtonian shifts of Equations (7.30)—(7.33) due to the quadrupole mass moment
J> of the primary; their magnitudes are suitably rescaled for better visualizing
their effect. The positions on the perturbed trajectory after one, two and three
Keplerian periods Tk are marked as well. At each orbit, the passages at the generic
fixed line characterized by ¢ occur always earlier than in the Keplerian case
by the amount given by the sum of Equation (7.51) and Equation (7.53). It is so

because, for the given values of the spin and orbital parameters, A Ta]fa—i— A Tsllfi o<
0, as per Equation (7.51) and Equation (7.53).

ATE = —

3nhR2 |:(—2+3cos2 87) [2—|—e2 Ca(1-e)”

4(1 _ ez)zm (1 +ecosw)?

+ decosw +620052w] + ((4+ez) (I —3cos28y)

1
2(1-¢)
—e[—14 6cos® (Ip — ) cos 28]

X [3e cos 2y — 2w) + 6 ¢cos (lp — @)
+2¢% cos® (Ip — )] — 3 cos 21y — 20y) {(2 + 3€%) cos 28,

+2[1 +ecos(ly — w)]3}):|. (7.55)
In the limit e — 0, Equation (7.55) agrees with Equation (7.54) calculated for / = 0.

Figure 7.5 confirms the analytical results of Equation (7.51) and Equation (7.53).
Indeed, over three orbital revolutions, the projection of a generic J,-perturbed orbit
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Figure 7.6 Plot of the numerically produced time series of the cosine cos ¢ (¢) of
the azimuthal angle ¢ (f) normalized to its initial value cos ¢ versus time ¢, in
units of 7k, obtained by integrating the equations of motion of a fictitious test
particle with and without the J, acceleration of Equation (7.1) for an elliptical
(e = 0.665) orbit arbitrarily oriented in space (I = 40°, Q = 45°, w = 50°)
starting from, say, the ascending node §} (fp = —w + 360°); the semimajor axis
is a = 6R.. The physical parameters of the Earth are adopted, apart from the spin
axis position set by «y = 45°, §; = 60°. The J, acceleration is suitably rescaled

in such a way that ’AT:@’ /Tx = 0.001. The time needed to cos ¢ (7) to assume
again its initial value cos ¢yg is longer than in the Keplerian case by the amount

AT‘SE1 = 40.0017k, shown by the shaded area, in agreement with the sum of
Equation (7.51) and Equation (7.53).

in the fundamental plane {x, y} crosses a fixed direction in the latter set by a certain
value ¢ always after a time interval equal to T‘s]j] = Ta]fa + ATSJ]-fi ;1 after each orbit.
For the particular choice of the primary’s spin and the orbital parameters used in
the picture, Tﬁi turns out to be shorter than Ty, in agreement with Equation (7.51)
and Equation (7.53).

Furthermore, Figure 7.6 plots the final part of the time series of the cosine
of the angle ¢, normalized to its initial value cos ¢y, versus time ¢, in units of
Tk, for a numerically integrated fictitious test particle with and without Equa-
tion (7.1) starting from the same generic initial position. It can be seen that it comes
back to the same position on the fixed direction chosen in the reference plane, that
is, it is cos ¢/ cos p9 = +1 again, just after TSJIE = T:i’fa + ATSJifm, differing from
Tk by a (positive) amount in agreement with Equation (7.51) and Equation (7.53)
for the particular choice of the generic values of the spin and the orbital parameters

adopted in the numerical integrations.

7.5 The Radial Velocity of a Spectroscopic Binary

From Equation (2.88) and the net orbital shifts obtainable from Equations (7.28)—
(7.30), it turns out that the semiamplitude K of the radial velocity curve does
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experience a nonvanishing J,-driven net shift per orbit induced by the quadrupolar
net shift of the inclination. From Equations (2.89)—(2.91), one finally has
N 3rng (JRRATP + JPRATP) cos 1

= —YAB 52 >
)

(i—e (7.56)
a — e

where yap is the ratio of the mass of what, out of A and B, is the unseen
companion to the system’s total mass M,,. Equation (7.56) holds for a pair of bodies
of comparable masses M, and Mp and quadrupole mass moments 0% and Q5.

In typical tight exoplanetary systems characterized by fast orbits, sometimes
covered in a fraction of a day,’ tidal forces tend often to either circularize them
and align both the system’s orbital angular momentum and the spins of the star
and the planet (Goldreich, 1966; Kasting et al., 1993; Murray and Dermott, 1999;
Heller et al., 2011). Thus, Equation (7.56) vanishes,® as per Equation (D.7) of
Appendix D.

Nonetheless, the radial velocity curve exhibits a generally nonvanishing
oblateness-driven instantaneous shift which can be analytically worked out accord-
ing to Equations (2.77)—(2.78) by using Equations (2.83)—(2.87) along with Equa-
tions (7.16)—(7.21) and Equation (7.47) calculated for both bodies. By replacing f
with fo + 2 in the resulting expression allows one to obtain the net shift per orbit.

In general, the products J3 R} and J R> might be of comparable magnitude for an
exoplanet and its Sunlike parent star; for the Sun and Jupiter, they amount to 9.6 x
10'm? and 7.5 x 103 m?, respectively, as per Table J.1 and Table J.3. However,
the same caveat about faster rotators than the Sun and the tidally synchronized
diurnal rotation of the hosted exoplanet raised in Section 5.6 holds also in this
case. Instead, for the SMBH in Sgr A*, whose quadrupole mass moment Q5 is
calculated according to Equation (5.16) and Equation (7.11) along with M, = 4.1 x
10° Mo, Xxg = 0.5 (PeiBker et al., 2022), and a Sunlike star, the BH’s term turns out
to be up to eight orders of magnitude larger than the stellar one.

Figure 7.7 shows the plot of the resulting signature for a fictitious tight exoplan-
etary system made of a Sunlike star and a gaseous giant planet p whose mass and
radius are assumed to be those of Jupiter, and whose first even zonal harmonic J; is
calculated according to Equations (7.4)—(7.5) and Equation (5.4) in the hypothesis
that tides have synchronized its orbital and diurnal rotations. Furthermore, all the
three angular momenta of the system are aligned. By varying the orbital period 7T
from 0.15 to 0.35 d in such a way that the star—planet relative distance, in units of
R, +R,, ranges from 1.08 to 1.9, it turns out that the peak-to-peak amplitude of the
J> nominal shift can reach the level of about >~ 10 — 200 m/s over 1 day.

5 Asan example, K2—137b (Smith et al., 2018) orbits its parent star in just 0.18 d = 4.3 hr.

6 1t should be recalled that the unit vectors 7, 7ir, i are mutually perpendicular, as per Equations (2.9)—(2.10)
and Equation (2.25).
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Figure 7.7 Analytically produced time series, in m/s, of the oblateness—driven
shift AV (£)”2 of the radial velocity curve of a fictitious tight exoplanetary system.
It is made of a main sequence star with the same mass, radius and quadrupole
mass moment of the Sun, and a gaseous giant planet p with the same mass and
radius of Jupiter; Jg is calculated with Equations (7.4)—(7.5) and Equation (5.4) by
assuming that its rotational frequency is synchronized with the orbital one due to
tides. Different values of the orbital period Tk are assumed, so that the star—planet
relative distance, in units of R, + R, ranges from 1.08 to 1.9. The other relevant
orbital parameters, chosen arbitrarily, are / = 45°, Q2 = 30°,w = 50°,n = 20°.
It is assumed that tidal effects have either circularized the orbit, so that e = 0,
and reciprocally aligned all the angular momenta of the system. Since p cannot be
considered a test particle, JzRg in Equations (7.16)—(7.21) and Equation (7.47) is
replaced with JERE + Jg Rf,, in agreement with Equation (7.12), to be used along
with Equations (2.83)—(2.87) in Equation (2.77) and Equation (2.78).

Figure 7.8 depicts the net shift per orbit AK? of the radial velocity semi-
amplitude for the S star S4716 (Peiker et al., 2022). It is plotted according to
Equation (7.56), calculated with Equation (7.7) and Equation (7.11), as a function
of the angles i, and ¢, of the BH’s spin axis assumed as independent variables. It
turns out that ‘RQZ i, is < 0.0002
km/s; it is several orders of magnitude smaller than the uncertainties quoted in
PeiB3ker et al. (2022).

7.6 The Characteristic Timescales of Transiting Exoplanets

Here, the oblateness-driven net shifts per orbit of the characteristic timescales
of transiting exoplanets are calculated in their full generality. In the following
expressions, it is intended that J2Re 7 Jj=1,2,...51s ashorthand for

JRT +ARTY, j=1,2,...5. (7.57)
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Figure 7.8 Plot of the oblateness-driven net shift per orbit U{QZ , in km/s, of the
radial velocity semiamplitude of the recently discovered S star S4716 (Peifker
et al., 2022) as a function of the angles i, and ¢, characterizing the orientation of

the BH’s spin axis J, in space, assumed completely unconstrained. The relevant
orbital parameters of S4716 are Tx = 4.02yr, e = 0.756, 1 = 161.24°, Q =
151.54° (PeiBker et al., 2022). For the BH, the values M, = 4.1 x 10° M, Xg =
0.5 are used for its mass and spin parameter (Pei3ker et al., 2022).

7.6.1 The Total Transit Duration §tp

From Equations (2.102)—(2.105) and the shifts obtainable from Equations (7.28)—
(7.33), it turns out

3T[J2Rg
2 2)3/2 2 5 5 . 3/2 ; 3
nk@®R, (1 — )"V (1 +9)* = b* (1 + & + 2esinw)” (1 + esinw)

{—a2 (1- 62)2'7':4 sin2/ (1 + esinw) (1 + €* + 2esinw)

ASZDh =

+ecosw (27, — 3T, + 275 cot ) [—Ri (14 0)% (1 + esinw)’

+d’ (1 — e2)2 cos? I (2 4 e +3e sina))]} . (7.58)

It should be noted that Equation (7.58) does not vanish for circular orbits, being its
first nonvanishing term just of zeroth order in e.

7.6.2 The Ingress/Egress Transit Duration 3t

From Equations (2.108)—(2.111) and the shifts obtainable from Equations (7.28)—
(7.33), it turns out
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— 3nJ,R?
Adtiye = 3 N\3/2 - N . 3/2
2ngR,a (1 —e ) (1 + e + Zesmw)
a? (1 — ez)zﬁ sin 2/ (1 + e+ 2e sina)) 1
(1 + esinw)? V(A4 09)? — b2

1
N
+ R%ecosw (2?1 — 3T, + 2T cot[) {\/ (1 —9) = b2

—\/m+ a* (1 - 62)2 cos?I (1 + €* + 2esinw)

R2 (1 + esinw)®

1 1
- . 7.59
[\/(1+z9)2—b2 \/(1—19)2—192“> (7.39)

It should be noted that Equation (7.59) does not vanish for circular orbits, being its
first nonvanishing term just of zeroth order in e.

7.6.3 The Full Width at Half Maximum Primary Transit Duration Sty

From Equations (2.115)—(2.118) and the shifts obtainable from Equations (7.28)—
(7.33), it turns out that

-5 3n,R?
Adty ~ = 3 372 : > . 32
2ngR.a® (1 —€?)”" (1 + & + 2esinw)
a? (1 _62)2’]1‘4 sin 2/ (1 +e2+265ina)) 1
(1 + esin w)? V(1 +09)2 =2

1
+ S —
V(1 —9) —p?
+R%ecos w (2T} — 3T + 2Ts cot ) {—,/(1 —9)* — b2

e (e (RS )

R2 (1 + esinw)®

1 1
: 7.60
[¢(1+ﬁ>2—b2+\/(1—19)2—172}}) (760
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It should be noted that Equation (7.60) does not vanish for circular orbits, since its

first nonvanishing term is only of zeroth order in e.

7.6.4 The Time of Inferior Conjunction f;
From Equations (2.121)—(2.124) and the shifts obtainable from Equations (7.28)—

(7.33), it turns out
3n/LR?
2nga? (1 - 62)3/2 (1 + esinw)?

+ (2?1 — 3?2) [2—¢ +esinw(2+esinw)]}.

. -2 (1 — ez) T5 cot/

Atcj
(7.61)

7.6.5 A Numerical Evaluation

Figure 7.9 displays the plots of Equations(7.58)—(7.61) for a Jovian-type exo-
planet transiting in front of its Sunlike host star, seen edge-on, as functions of

J, total ingress/egress duration shift

J, total transit duration shift
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Figure 7.9 Plots of the net shifts per orbit Asip 2, AcSti/eJ2 N A_thJz of
a fictitious Sun—Jupiter exoplanetary system, seen edge-on, as functions of the
minimum star—planet distance 7min, in units of R, + R, for different values of the
e according to Equations (7.58)—(7.61). The values I = 90°, w = 50° are used for
the relevant orbital parameters; all the three angular momenta are assumed to be

aligned. The units are s.
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the minimum distance 7y, ranging from 1.1 to 20 R, + R, for various values of
e and by assuming that both the stellar and planetary angular momenta are aligned
with the orbital angular momentum. It can be noted that the largest effect occurs
for the time of inferior conjunction whose shift per orbit is at the >~ 1 — 4 s level.
Instead, the variations of the other timescales are of the order of >~ 0.01 — 0.1 s.

7.7 The Sky-Projected Spin-Orbit Angle of Transiting Exoplanets

According to Equation (2.126), the rate of change of the sky-projected spin-orbit
angle X of a transiting exoplanet is equal to the node precession, provided that the
angular momentum of the host star can be considered as constant.

By expressing the stellar spin axis as in Equation (5.85), it turns out, from
Equation (7.31), Equation (5.85), Equations(D.2)—(D.3), and Equation(D.8) of
Appendix D, that the J,-driven precession of A is

d\"  [dQ\”  3ngJ;R? cos Asin2i,
dat| \dt| — 4p (1- 62)2 ’

In Equation (7.62), only the quadrupole mass moment of the host star, assumed to
be as fast rotating as Kelt-9, appears since it turns out that its product by the stellar
radius squared is some orders of magnitude larger than that of a typical close—in,
tidally synchronized Jovian-type exoplanet.

In Figure 7.10, Equation (7.62) is plotted as a function of i, for the exoplanet
Kelt-9b. It can be noted that the J,-induced secular rate of A ranges from =~ 0.3 to
=~ 0.5°/yr within the allowed observational interval for i,.

(7.62)

7.8 The Variation of the Times of Arrival of Binary Pulsars

For a binary pulsar, the instantaneous shift of 87psr can be obtained from Equa-
tion (2.77) calculated with Equations (2.130)—(2.134), Equations (7.16)—(7.21), and
Equation (7.47). By replacing f with f; + 27 in the resulting expression, the net
variation per orbit is inferred.

Figure 7.11 displays the instantaneous shifts Aéﬁsr ()22 of a fictitious binary
pulsar whose companion is a white dwarf obtained by varying 7x and e in such a
way that the periastron distance is kept fixed to, say, 7min = 1.8 x 10° km. For the
masses and the quadrupole mass moments, the values of PSR J1141-6545 (Anto-
niadis et al., 2011; Iorio, 2020a; Venkatraman Krishnan et al., 2020) are taken. It is
assumed that both the rotational axes of the pulsar and the white dwarf are aligned
with the orbital angular momentum. It turns out that the peak-to-peak amplitudes
of the signals may be as large as >~ 0.4 — 0.8 ms over 5 d.
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Figure 7.10 Plot of the Jy—induced averaged precession, in °/yr, of the sky-
projected spin-orbit angle A of the transiting exoplanet Kelt-9b as a function
of the tilt 7, to the line of sight of the spin axis of its host star according to
Equation (7.62). The physical parameters of the star and the planet are retrieved
from Tables A.1 and A.2 of Albrecht et al. (2022) as well as the range of the

admitted values for i,. The stellar quadrupole mass moment J5 is calculated with
Equation (7.4).
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Figure 7.11 Plot of the quadrupole-induced instantaneous shift A87psr 02, in
ms, of a binary pulsar with a white dwarf as companion for different values of Tk
and e in such a way that 7y, = 1.8 x 10° km. The relevant orbital parameters
are I = 75°, w = 42.457°, 2 = 50°, n = 20°. For the stellar corpses, the
values Mpg = 1.27 Mo, Myg = 1.02 Mo, |O5| ~ 3 x 107 kgm?, |05Y| ~
4.5 x 10*? kgm?, taken from those of PSR J1141-6545 (Antoniadis et al., 2011;
Torio, 2020a; Venkatraman Krishnan et al., 2020), are used. It is assumed that both
the individual angular momenta and the orbital angular momentum are aligned.

7.9 The Astrometric Angles RA and dec.

For a test particle and a massive primary, as in the case of the S stars and Sgr
A*, the instantaneous shifts of the RA and dec. can be obtained from Equa-
tion (2.77) calculated with Equations (2.137)—(2.143), Equations (7.16)—(7.21), and
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Figure 7.12 Plot of the oblateness-driven instantaneous shift A« 092, in ", of
the RA of a fictitious S star for different values of Tk and e in such a way that
rmin = 1250R,. The relevant stellar orbital parameters are / = 161.24°, Q =
151.54°, w = 0.073°, n = 20°. For the BH, the values M, = 4.1 x 100 Mo, xg =
0.5 are used for its mass and spin parameter (Peilker et al., 2022). Furthermore,
the orientation of its spin axis is set by, say, i, = 30°, ¢, = 150°.
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Figure 7.13 Plot of the oblateness-driven instantaneous shift A§ H92, in ", of
the dec. of a fictitious S star for different values of Tk and e in such a way that
rmin = 1250R,. The relevant stellar orbital parameters are / = 161.24°, Q =
151.54°, w = 0.073°, n = 20°. For the BH, the values M, = 4.1 x 100 Mo, xg =
0.5 are used for its mass and spin parameter (Pei3ker et al., 2022). Furthermore,
the orientation of its spin axis is set by, say, i, = 30°, ¢, = 150°.

Equation (7.47). By replacing f/ with fy 4+ 27 in the resulting expressions, the net
variations per orbit are inferred.

Figures 7.12 and 7.13 display the instantaneous shifts A« (7) , AS (¢) of the RA
and the dec. of a fictitious S star obtained by varying Tk and e in such a way that the
stellar perinigricon distance is kept fixed to 7yin = 1250 R,. The SMBH’s quadru-
pole mass moment Qj is calculated with Equation (5.16) and Equation (7.11), and
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Figure 7.14 Analytically produced time series, in m, of the two-body range
shift Ap (f) due to the Sun’s quadrupole mass moment chD for A=Mercury
and B=Earth plotted over 2 yr. It was worked out by calculating Equa-
tions (2.149)—(2.151) entering Equations (2.147)—(2.148) with Equations (7.16)—
(7.21), Equation (7.47), and Equation (2.4). The initial values of the Keplerian
orbital elements of both planets, referred to as the International Celestial Refer-
ence Frame (ICRF), were retrieved from the WEB interface Horizons System
at https://ssd.jpl.nasa.gov/horizons/, maintained by the Jet Propulsion Labora-
tory (JPL) of the National Aeronautics and Space Administration (NASA), and
accessed 12 February 2024. The values Jz(D = 2.2 x 1077 (Park et al., 2017;
Mecheri and Meftah, 2021) and o, = 286°.13, 6, = 63°.87 (Seidelmann et al.,
2007) were adopted for the Sun’s oblateness and the orientation of its spin axis.
For the solar standard gravitational parameter and equatorial radius, see Table J.1.

the orientation of its spin axis is set equal to, say, i, = 30°,¢, = 150°. It turns
out that the 0>-induced astrometric signatures can be as large as < 0.01 — 0.1",
depending on the star’s orbital period and eccentricity.

7.10 The Two-Body Range and Range Rate

Here, Equations (7.16)—(7.20), along with Equation (7.21) and Equation (7.47) for
the shift of the mean anomaly, are used in Equation (2.147) and Equation (2.152)
to analytically calculate the time series of the range and range rate shifts for A =
Mercury and B = Earth due to the Sun’s oblateness J;’.

Figures 7.14-7.15 plot the resulting signals, obtained by introducing the depend-
ence on time ¢ through the mean anomaly by means of Equation (2.4) and Equa-
tions (2.158)—(2.159), over 2 yr, which is the expected duration of the extended
phase of the BepiColombo mission (Benkhoff et al., 2010, 2021) from 2026 to
2028.7 It turns out that the peak-to-peak nominal amplitudes of the range and range
rate shifts can reach the ~ 800 m and >~ 700 pm/s level, respectively.

7 See www.esa.int/Science_Exploration/Space_Science/BepiColombo/BepiColombo_factsheet. Accessed 19
January 2024.
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Earth—Mercury J, range rate shift
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Figure 7.15 Analytically produced time series, in wm/s, of the two-body range
rate shift Ap () due to the Sun’s quadrupole mass moment JzO for A=Mercury
and B=Earth plotted over 2 yr. It was worked out by calculating Equa-
tions (2.155)—(2.157) entering Equations (2.152)—(2.154) with Equations (7.16)—
(7.21), Equation (7.47), and Equation (2.4). The initial values of the Keplerian
orbital elements of both planets, referred to as the International Celestial Refer-
ence Frame (ICRF), were retrieved from the WEB interface Horizons System
at https://ssd.jpl.nasa.gov/horizons/, maintained by the Jet Propulsion Labora-
tory (JPL) of the National Aeronautics and Space Administration (NASA), and
accessed 12 February 2024. The values Jz(D = 2.2 x 1077 (Park et al., 2017;
Mecheri and Meftah, 2021) and oy, = 286°.13,6,, = 63°.87 (Seidelmann et al.,
2007) were adopted for the Sun’s oblateness and the orientation of its spin axis.
For the solar standard gravitational parameter and equatorial radius, see Table J.1.

An integration of the equations of motion with and without Equation (7.1) gen-
erated corresponding numerical time series differing from the aforementioned
analytical ones by < 3 m and < 6 um/s level over 2 years, respectively.
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8
1pN Gravitoelectric Effects: Mass Quadrupole

The oblateness of the primary impacts the orbital motion of a test particle not
only at the Newtonian level, as shown in Chapter 7, but also to the 1pN order
(Soffel et al., 1987; Soffel, 1989; Heimberger et al., 1989; Brumberg, 1991; Huang
and Liu, 1992; Will, 2014; lorio, 2015b, 2023e, 2024a). It occurs both directly
because of a specific pK acceleration 4”2/ ¢ of the order of O (Jz /cz) entering
the equations of motion, and indirectly due to the interplay between the 1pN
monopole acceleration of Equation (3.1) and the Newtonian quadrupolar one of
Equation (7.1).

In view of their generally small sizes, such effects have not yet been studied in
detail nor have they been put to the test in any astronomical scenarios.

Proposals for spacecraft-based missions in the field of Earth and Jupiter recently
appeared in the literature (Iorio, 2013a, 2019a,g, 2024a); in lorio et al. (2019), it
was suggested to look at binary pulsars whose companion is a fast rotating main
sequence star as well.

To this aim, it should be remarked that the mixed signatures, which nonetheless
contribute to the overall orbital evolution to the order of O (J2 / cz), may not be
measurable independently of other dynamical features of motion. Indeed, they do
not come from any new pK acceleration, still unmodelled in the softwares used
worldwide to process data. If it were so, it could be possible, at least in prin-
ciple, to include it in the dynamical models and estimate some dedicated solve-for
parameters in the usual least-square approach. On the other hand, the standard pK
accelerations of Equation (3.1) and Equation (7.1) are accurately modelled; thus,
just very tiny signatures, due to the current level of mismodelling in the latter ones,
would impact the post-fit residuals produced in data analyses.

146
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8.1 The Direct Effects

By inserting the Newtonian potential of Equation (7.3) up to degree ¢ = 2 in the
IpN Lagrangian of Equation (C.10) in Appendix C, a new acceleration of the order
of O (Jz / cz) arises from the Lagrange equations of motion

A

= VI (8.1)

It can be cast into the form (Will, 2014)

e WAR (3T, . (., 4
APl = B2 a2 (5 = )i —2nd | (v - =

2
—6[(52 = 1) v, — 2wy ]v— = (32 — 1)9}, (8.2)
r
where 7, is defined as in Equation (5.19), and
vyi=ved (8.3)

is the projection of the velocity v on the direction of J; for previous derivations in
a reference frame whose z-axis is aligned with J, see Soffel et al. (1987), Soffel
(1989), Brumberg (1991), and Huang and Liu (1992). Here, it is proposed to dub
Equation (8.2) as Brumberg—Soffel (BS) acceleration.

By projecting Equation (8.2) onto the unit vectors 7,7,k defined in Equa-
tions (2.23)—(2.25) and by using Equations (2.7)—(2.8) along with Equation (2.11),
its radial, transverse, and normal components are obtained; they turn out to be

, 2LR2 (1 4 ~ A

arte — WIRA T eeos)) (o | a7y (C13 - 32

4c2a® (1 — &)

— 10ecosf + 6€* cos 2f) + 373 {e? cos 2w — (13 + 3¢?) cos 2u

+ e[Secos (4f 4+ 2w) — 9 cos (f + 2w) — cos (3f + 2w)]}

+ 67% {€*sin2w — (13 + 3¢%) sin 2u + e [Se sin (4f + 2w)

— 9sin (f + 2w) — sin 3f + 2w)]}), (8.4)

3u2LR2 (1 4 ~
__ Wk d+ ecossf) [(—3 + &> — 2ecosf) (2T cos 2u
2¢%a (1 — €2)

— Tysin 2u) + (1 4 ecos/f) (—8?6 cos 2u + 475 sin 2u

+ e {2?6 [cos (f +2w) — 57, cos Gf + 2a))]

+ (—47“\1 + 6?2) sinf" — T; sin (f + 2w)

+ 5Tssin 3f +20)})], (8.5)

J- 2
ArZ/L
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3UALRE (1 4+ ecosf)* (=3 + €2 —2ecosf) ~ -
A‘,?/Cz:— W2k ( 2N /) (T4 cosu+ Tssinu).
c2a’ (1—62)5

(8.6)

The coefficients /fj, j = 1,2,...6 entering Equations(8.4)—(8.6) are listed in
Equations (D.4)—(D.9) of Appendix D.

The orbital effects of the order of O (J2 /02) induced by Equation(8.2) are
dubbed as direct.

8.1.1 The Net Orbital Precessions

The averaged orbital precessions induced by Equation (8.2) were calculated in their
full generality in Iorio (2015b) and, in a more compact form, in lorio (2024a). For
other derivations obtained by orienting J along the z-axis of the reference frame
chosen, see Soffel et al. (1987), Brumberg (1991), and Huang and Liu (1992).

By inserting Equations (8.4)—(8.6) in the machinery of Equations (2.13)—(2.18)
yields the averaged precessions of the orbital elements for an arbitrary orientation
of J. They turn out to be

>J2/c2 9¢? (6 + e2) ngJoR2 (T3 sin 2w — 27 cos Za)) 87)

8c2a? (1 — 62)4

&

>

<@>"2/C _21e(2+ &) ngpoR (75 sin 2w — 275 cos 20) &5
dt 16c2a® (1 — 62)3 ,
<d_]>‘]2/c2 _ 3nKuJ2Re2 [ﬁ (6 + €2 cos 2a)) + esz sin Zw] 8.9)
dt 4c2a® (1 — 62)3 ’ .
<d_§2>‘]2/cz _ 3ngkuoR2 csc 1 [—ez/ﬁ sin2w + Ts (=6 + €* cos 2w) | (8.10)
dt 4cta® (1 — ez)3 T
S/ 2
() o (- 30) (27 37
+ 14?3 cos2w + 4 [62?4 cot/sin2w
+ ?5 cot/ (6 — ¢é?cos 2a)) + 7?6 sin Za)]} , (8.11)
S/ 2
- e o

+ 42 (1 4 2¢%) (T; cos 2w + 2T sin 20) ] . (8.12)
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Some Special Orbital Configurations

Here, some peculiar orbital configurations, characterized in Appendix D, are
examined (lorio, 2024a).

Let, first, the satellite’s orbital plane be assumed coincident with the body’s
equatorial one, irrespective of the orientation of the latter in the adopted reference
frame, namely for generic values of «,, §,. Then, according to Equations (D.17)—
(D.25) of Appendix D, Equations (8.7)—(8.12) reduce to

d JZ/CZ

<_> o, (8.13)
Jh/c

< > o, (8.14)
Ja/c

< > o, (8.15)
e\

s —o 8.16
< dt > ’ o
dw\"/* _ 3nkhRE (8 —3€) 8.17
E - 802613 (1 _ 62)3 H ( . )
d S/ B }'ZKH,JZRg (80 + 7362) 8.18
% B (1—e)”? (8.18)

Equations (8.17)—(8.18) are genuine secular trends.

Let, now, the body’s spin axis, irrespective of its orientation in the adopted
coordinate system, namely for generic values of «, §;, lie somewhere in the sat-
ellite’s orbital plane between 7 and . Then, according to Equations (D.26)—(D.34)
of Appendix D, Equations (8.7)—(8.12) can be written as

< da >J2/cz _ 9¢* (6 + €*) ng L JoR2 sin[2 (8, — w)], 8.19)

8c2a? (1 — 62)4
Jz/c2 _ 21e (2 + 62) nKH,,JzRg Sin [2 (8J - Cl))]
N 16c2a’ (1 — 62)3

Jr/c*
<£> =0, (8.21)

: (8.20)

=0, (8.22)


https://doi.org/10.1017/9781009562911.008

150 IpN Gravitoelectric Effects: Mass Quadrupole

<dw>J2/“2 3ncaR2 {—8 + 3¢ + 14 cos [2 (8; — w)]}
o N

) , (8.23)
16c2a3 (1 - 92)3
<d77 >J2/62 — nKMJzRg {80 +73e? + 42 (1 + 282) cos[2 (6 — a))]} (8.24)
7 16¢2a3 (1 o 62)5/2 . .

Equations (8.19)—(8.20) and Equations (8.23)—(8.24), in addition to secular trends,
also include long-period signatures due to the evolution of pericentre which is
dominated by the Newtonian perturbation due to J, (see Section 7.1).

8.2 The Mixed Effects

If both Equation (3.1) and Equation (7.1) are simultaneously taken into account,
indirect, or mixed, effects of the order of O (Jz/cz) arise as well. Their net
shifts per orbit and their averaged precessions can be calculated as explained in
Section 2.2.3.

8.2.1 The Net Orbital Shifts

Equation (2.39), applied to Equation (3.1) and Equation (7.1) and calculated with
Equations (3.6)—(3.10) and Equations (7.16)—(7.20), allows one to obtain the total
mixed shifts per orbit of order O (J,/c?) with the replacement f — f; + 27 in the
resulting expressions. For previous derivations with another orbital parametrization
and with the z-axis aligned with J, see Heimberger et al. (1989). The Keplerian
orbital elements and the same reference frame were used by Will (2014). The mixed
orbital effects were computed in their full generality in lorio (2015b), and, in a more
compact form, in lorio (2023e). They are (lorio, 2023¢)

G M;{MCZ (8.25)
mix 4 ’ '
4c2a? (1 — €2)
V5.2 (8.26)
mix 8c2a3 (1 _ 62)3 ’
2
A7 = TR 0 (8.27)
mix 02613 (1 . 62)3
2
Aqr/ o 3mhRawese] g e (8.28)
a’ (1 — e2)3
2
Mﬁl/xcz _ 3naR;escl 73]2/62’ (8.29)

16c2ae (1 — 62)3
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e 3n/LR? ~
= e, (8.30)
16c2ale (1 - ez)
where
6 2
~ 2 ~ c P
AL = ZA}M 7, (8.31)
gl = 25’2/6“ (8.32)
e = Zfﬁ/"z’fj, (8.33)
6 2
~ 2 ~ 2~
NI = Z NPT, (8.34)
P = ZPJZ/‘ZA (8.35)
HE = Zﬁjﬂé’r}. (8.36)

The explicit forms of the coefficients .Z{Z/ cz, .. .ﬁf/ ¢ entering Equations (8.31)—
(8.36) are displayed in Appendix G.

As explained in Section 2.2.3, the ratios of Equations (8.25)—(8.30) to 7k do not
yield the total mixed averaged orbital precessions of the order of O (J2 /cz); see
Section 8.2.2 for the calculation of the required additional contributions.

Some Special Orbital Configurations

Here, some peculiar orbital configurations, characterized in Appendix D, are
examined (lorio, 2023e).

Let, first, the satellite’s orbital plane be assumed coincident with the body’s
equatorial one, irrespective of the orientation of the latter in the adopted reference
frame, namely for generic values of «;, §;. Then, according to Equations (D.17)—
(D.25) of Appendix D, Equations (8.25)—(8.30) reduce to

—J /2
AalS =0, (8.37)
— )2
AelS =, (8.38)
AT = (8.39)
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— /P

ALy =0, (8.40)
A—J2 /2 37[J2R§u (44 + 17¢2 — 64ecos fo)

mix 4c2a3 (1 — e2)3 ’

2 3n/,R?
Al = 22Tk (g8 4 16y/1— e2
mix 2.3 2\7/2
4cta (1 —e )

+é [63 —5¢2 4 24\/@]

+e{3e2 [7 +4m] +8 [—17 v 6@]} cosf

+8¢2[ =5 +3V1 = & cos 2%

+é [—5 + 4\/@} cos 3fo> . (8.42)

Let, now, the body’s spin axis, irrespective of its orientation in the adopted
coordinate system, namely for generic values of o, §,, lie somewhere in the sat-
ellite’s orbital plane between ] and . Then, according to Equations (D.26)—(D.34)
of Appendix D, Equations (8.25)—(8.30) can be written as

(8.41)

e 97/, R? .
Aaﬁl/X = —Leu“ {63 sin (fo + 28y — 2w)
4c2a? (1 — ez)
+¢* (12 + €%) sin (28; — 2w)

— 2[4+ 6€” + 3e (4 + &%) cosfy ] sin (2fy — 28, + 2w)

— 6€” sin (4fy — 28, + 20) — € sin (3fp — 28, +2w)},  (8.43)
R 3n,R?
Al = PR 43 sin () — 265 + 20)
8c2a3 (l — ez)
+ 7sin (3fy — 28; + 2w)]
+e[—3esin (fy + 28, — 20) — (20 + 19¢%) sin (28, — 2w)
+ 60 sin (2f) — 28, + 2w)
+ 18 sin (4fy — 28, + 2w) + 33esin (fy — 285 + 2w)
+ 17esin (3fy — 28, + 2w) + 3esin (5fy — 28, + 2w)]},  (8.44)
— ]/
AL =, (8.45)
02
AGE =0, (8.46)
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B 3nLHR2p
8c2ale (1 — 62)3

+ (28 + 19¢%) cos (3fy — 28, + 2w)

+e{2 (=104 9¢%) cos (28, — 2w) + 60 cos (2fy — 28, + 2w)

+ 18 cos (4fy — 28, + 2w) + 3ecos (5fo — 25, + 2w)

+44 4 17¢> — e[64 cosfy + 3 cos (fo + 28, — 20)1}), (8.47)
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((—12 +45¢%) cos (fo — 28, + 2w)
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+2e [—20 + 136 + ¢ (7 - 36@)] sin 20

+12¢ [14 —8/1—er e (11— 12\/@)] sin 240

+18e [2 e (3 - 4@)] sin (4fy + 20)

+ |24 438 [ra—as/i-@

+é (9— 121 —e2>]}sin(fo+2a))
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& (31 _ 36@)]} sin (3fp + 20)

+ 3¢ [2 +é (3 - 4\/@)] sin (5f + 2a))>] . (8.48)
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8.2.2 The Net Orbital Precessions

As explained in Section 2.2.3, the calculation of the total mixed orbital preces-
sions is not limited just to the ratios of Equations(8.25)—(8.30) to Tk; further
contributions are needed (lorio, 2023¢), which are calculated as follows.

By using the 1pN gravitoelectric anomalistic period of Equation (3.24) with the
J> net shifts per orbit obtainable from Equations (7.28)—(7.33) and the J, anom-
alistic period of Equation (7.50) with the 1pN gravitoelectric net shifts per orbit
obtainable from Equations (3.13)—(3.18), one finally gets

da\"'"
<_> — o, (8.49)
dt mix
2
de>J2/c
e\ o, (8.50)
<dt mix
dI\?' g, R2uT.
<_> _ ImlRenTs o g 46t
dt [ ix 4c2a3 (1 — e2)
+2e (7 4 3¢€%) cosfy + Se” cos 2fy | , (8.51)
A\ g, R2pTs escl
<—> = RIS O (64 7€ + 26
dt [ i 4c2a3 (1 — ez)
+2e (7 + 3€%) cosfy + 5e* cos 2fy | , (8.52)
do\™'" ol R
<_a)> :nK—zeu“{[6+7e2—|—2e4+2e(7+3ez)cosfo
dt [ mix 8cta’ (1 - ez)
+5¢* cos 2fp ]| (—2T; + 3T — 2Ts cot 1)
+2(1+ ecosfo)3 [2?1 -3 (?2 + T3 cos 2u0)
— 6T sin 2up]} , (8.53)
dn\"¢ IngJoR2 -
<_’7> = R (2T - 3T) [6+ 7€ + 26"
dt [ mix 8c2a3 (1 - ez)

+2e (7 + 362) cos fy + 5e? cos Zfo]
+2(5=2V/1=¢) (1 + ecosfo)’ [T
—3(T> + T5 cos 2ug) — 6T sin2u| } . (8.54)

Equations (8.49)—(8.54) add to the ratios of Equations (8.25)—(8.30) to the Kepler-
ian orbital period Tk in order to give the total mixed orbital precessions of the order
of O (J»/c?), as pointed out in Section 2.2.3.
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9
pK Tidal Effects: Distant 3rd Body

If a gravitationally bound two-body (restricted) system S, made of a primary of
mass M and a test particle orbiting it, freely moves in the exterior, generally non-
uniform gravitational field of a distant, external massive object! of mass M "S> M,
tidal effects affect the internal dynamics of the former to the Newtonian and the
pN levels (Iorio, 2014b). It is assumed that

ng > g, 9.1)

that is, the orbital period 7y of the motion of S about M is much longer than the
time 7k needed for the test particle to make a full revolution around M.

Here, the primed quantities refer to the orbit of S around M, while the unprimed
ones describe the motion of the test particle about M within S.

For full treatments of orbital effects within hierarchical triple systems made of
bodies of comparable masses, including also those exerted by the inner binary on
the distant companion, to the Newtonian and the 1pN orders, see, for example,
Will (2014), Lim and Rodriguez (2020), Kuntz et al. (2021), and Kuntz (2022),
and references therein.

9.1 Tidal Orbital Effects in a Kinematically Non-rotating Frame

It should be pointed out that, in the following, the quasi-inertial® local reference
frame KC attached to S is considered both dynamically and kinematically non-
rotating (Brumberg and Kopeikin, 1989a; Damour et al., 1994; Kopeikin et al.,
2011) over the characteristic timescales of the system under consideration. It
means that the frequencies of the unavoidable de Sitter—Fokker (de Sitter, 1916b;
Schouten, 1918; Fokker, 1921) and Pugh—Schiff precessions (Pugh, 1959; Schiff,

' In principle, it may have its own Newtonian and pN mass and spin multipole moments; here, apart from M ,
. N .
only its angular momentum J is taken into account to the pN level.

2 Here, the use of ‘quasi’ refers just to the fact that tidal effects occur in such a reference frame which, thus,
cannot be considered as exactly inertial.
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1960) experienced by its axes due to the fact that they are parallel transported
(Fermi, 1922; Levi-Civita, 1926; Synge, 1927) along the geodesic worldline of M
through the deformed spacetime of M ' are much smaller than both ng and n;(, or
that the former ones are corrected for.

The pK tidal acceleration due to the field of M experienced by the test particle
in its motion around M is of the form (Mashhoon et al., 1989)

3
AN == "Tyx, i= 1,23, 9.2)
j=1
where x| := x, x, :=y, x3 := z. The elements of the tidal matrix T;, i,j =1,2,3
T = Roipy, 1,7 = 1,2,3 (9.3)
are the ‘electric’ tetrad components of the curvature Riemann tensor evaluated
onto the geodesic of the observer comoving with S, and dimensionally are the
reciprocal of a time squared. Equation (9.3) is the sum of the Newtonian and pN
tidal matrices, which are all traceless and symmetric (Mashhoon et al., 1989).
In general, a tidal acceleration experienced by a slowly moving test particle due
to an external curved spacetime metric can be written as Equation (9.2) (Misner
et al., 2017). In particular, in the linearized weak-field and slow-motion approxi-
mation of GTR, it is worth noticing that Equation (9.2) holds also in the case of
a plane gravitational wave which, propagating along an arbitrary spatial direction,
encounters a gravitationally bound two-body system.? For the orbital effects of a
low-frequency gravitational wave on a two-body system, see, for example, Bertotti
(1973), Rudenko (1975), Mashhoon (1978), Mashhoon (1979), Futamase and Mat-
suda (1979), Turner (1979), Grishchuk and Polnarev (1980), Mashhoon et al.
(1981), Linet (1982a,b), Nelson and Chau (1982), Ivashchenko (1987), Kochkin
and Sbytov (1987), Chicone et al. (1996a,b), and lorio (2014a).
The radial, transverse, and normal components of Equation (9.2) turn out to be
(Iorio, 2014b)
tid

— = (cos [ sinusin  — cosucos )

-
{sinf [T, cosIcoswcos 2+ (T + Tz3)sinwcos Q2+ Tz coswsin/]

4+ cosf [Ty coswcos 2+ (T, coslcos 2+ T3y sin/)sinw]

4+ [T21 cosu + (T + T33) cos ! sinu] sin 2}

+ (cos/ cos 2sinu + cosusin 2) {cosu (T,; cos 2 + T, sin 2)

4+ sinu[T3;sinf 4 cos (T cos 2 — Ty sin )]}

+ sin/ sinu {cosu (T3; cos 2 + T3, sin 2)

+ sinu[T33sin/ 4 cos/ (T3, cos 2 — T3 sinQ)]}, (9.4)

3 See the discussion in, for example, section 2 of lorio (2014a).
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4Atid

=[—Ts + (2T + T33) cos 2Q2

— 2T, 8in2Q] cos® I'sin2u + 2 {2sin7 (Tx; cos  — T3 sin ) sin 2u

4 [2T21c082Q + (2T 4+ Ts33) sin2Q2]} cos/ cos 2u

+ 4sin/l (T3;cos 2 + T3, 8in 2) cos2u + [(2 — cos2]) Ts3

4+ (2T + T33) cos2Q — 2T, sin 2Q2] sin 2u, 9.5)
tid

——h — 4cosT (T3 cos Q4+ T3, sin ) cosu
r

4+ 2sin/ [—2T,; c0s22 — (2T + T33) sin2Q] cosu
+4cos2l (Tzpcos 2 — T3y8in Q) sinu
+sin2/[3T33 — (2T + T33) cos2Q + 2T, sin 2Q2] sin u, (9.6)

where 7 is given by Equation (2.11), and the coefficients T, i,j = 1,2,3 depend
only on the orbital parameters of the motion about M, on and on the orientation of

the spin axis J of the latter.

In view of the hypothesis of Equation (9.1), it can be assumed that the coeffi-
cients T, [,0 = 1,2, 3 are constant during Tk. Thus, calculating Equations (2.13)—
(2.18) with Equations (9.4)—(9.6) and using the eccentric anomaly £ as a fast
variable of integration for computational purposes straightforwardly yields (Iorio,
2014b)

da tid
=) =0 9.7
(%) =o ©.7)
id
<§>t _evlze Vgl — ¢ pia (9.8)
ng
— = ——I“d, 9.9
<dl‘> g1 — e? ©-9)
d\ csc/ .
— = ——/\f“d, 9.10
< dt > 16ng/1 — €2 ©-10)
dow\™ 1 2 idmtid
- t1 tl
<E> = ;k,. P, (9.11)
d77 tid 1 i
<E> = Mﬂtd. 9.12)

The explicit expressions of the coefficients £19, ... #' entering Equations (9.8)—
(9.12) can be found in Equations (H.1)-(H.8) of Appendix H. Equations (9.7)-
(9.12) hold also when the tidal field is due to a passing plane gravitational wave
whose frequency is much lower than the orbital one.
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9.1.1 The Newtonian Effects
The Newtonian tidal matrix is (Mashhoon et al., 1989)

/

W A AT
=5 (85— 377). 9.13)

where u':= GM' is the standard gravitational parameter of the body of mass M ,

7 :=r/r is the versor of the position vector r from M to M, and d;; is the
Kronecker delta (Olver et al., 2010).
Its average with respect to T}, to the zero order in Jé, is (Iorio, 2014Db)

" (1 +3cos2l + 6sin’I cos ZQ/)
3/2
84 (1 - e'2>
i (1+3cos2l — 6sin® I cos2<Y)
3/2
84> <1 _ e/z)
, " (1 —I—3cosZI’)
(Ts3)n = R (9.16)
3 2\*/?
4a (l —e )
/ 3 sin® 7' sin 292’
<T12>N = - 3/2° (917)
4q° (1 - e’z)
r 3 sin2/ sin Q'
3/2°
4d° (1 — e’z)
/ 3 sin2/ cos Q'
(T =— 75
/3 /2
4a (1 —e )

Ty = —

, (9.14)

(Toa)y = — : (9.15)

(9.18)

(9.19)

9.1.2 The IpN Gravitoelectric Effects
The 1pN gravitoelectric tidal matrix is (Mashhoon et al., 1989)

2

IpN _ W N
cr

’

2 ro / AN\ A7
+ ”‘/3 {3 |:V 8,/—VIVJ+3<V 'r)r(iv‘,-)]

c2r

/ ’ 2 1N /
—3(v-) 81_-,-—6Al.17jv2},i,j=1,2,3. (9.20)
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In Equation (9.20), v’ is the velocity vector of M with respect to M, and parentheses
around indices denote symmetrization.
Its average with respect to 7, 1,< is (Iorio, 2014b)

2 /2

’ 3[L e 1pN
= _32 244 (1 ,2>5/2 T ©.21)
c*a —e
3“,/26/2
1 1pN
<T22>1PN = 1 5 /4 (1 /2)5/275213 > (922)
c*a —e
3M,2e,2
(T33)pn = T (9.23)
4c2q* (1 — e'2>
3M/2€/2
/ 1pN
<T12>1PN = 16 5 /4 <1 ,2>5/27-12p ] (924)
c%a —e
3u’2e,2
1 1pN
Ty ©0.29
cta —e
3M/Ze/2
(Tos)pn = Ha (9.26)

572 /23
4c2q'* (1 — e’2>

where the explicit expressions of the coefficients 7;.IPN, i,j = 1,2,3 are displayed
in Equations (H.9)—(H.14) of Appendix H. It should be noted that, if the motion of
S about M is circular, that is, for ¢ = 0, Equations (9.21)—~(9.26) vanish.

9.1.3 The IpN Gravitomagnetic Effects
The gravitomagnetic tidal matrix is (Mashhoon et al., 1989)

6GJ/ / A A A N ’
T?m:_ 3 |:3(v xJ)irj)+<r xJ)(ivj)

Cc°r
+7 - (v xJ)(a,j siif)
—5<# rxJ ] ij=1,2,3. (9.27)

In Equation (9.27), J is the spin unit vector of the body of mass M , and
parentheses around indices denote symmetrization.
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Its average with respect to 7| 1/4 is (Iorio, 2014b)

, 3GJ n,
(Tit) g = — T T, (9.28)
64c2d <l —¢ )
, 3GJ n,
(Tos) iy = — Z T, (9.29)
64c2d <l —¢ )
, 3GJ n,
(T3} = — T T, (9.30)
16¢2d <l —¢ )
, 3GJ n,
(i) = — Z T, (9.31)
64c2d <l —¢ )
, 3GJ n,
(1) = T T, (9.32)
32¢2d (1 —¢ )
, 3GJ n,
(T23) gum = — £ - (9.33)

3 /23
64c2a”’ <1 — e'z)

where the explicit expressions of the coefficients 7;ngm, i,j = 1,2,3 are displayed
in Equations (H.15)—(H.20) of Appendix H.

9.2 Tidal Orbital Effects in a Kinematically Rotating Frame

Here, the reference frame K attached to S and moving geodesically in the deformed
spacetime of M is considered dynamically non-rotating, but kinematically rotat-
ing. It implies that the de Sitter—Fokker and Pugh—Schiff precessions of its axes are
not corrected for, thus impacting the orbital dynamics within S.

9.2.1 The Impact of the de Sitter—Fokker Precession

The averaged rates of change of the Keplerian orbital elements of the test particle
in its motion about M due to the de Sitter—Fokker precession (Renzetti, 2012b) can
be computed with Equations (2.27)—(2.32) starting from the disturbing function

3Wh - h

Ras = —
® 2023

(9.34)

’ ro2 Y A .
where h =nga V1 —e *h and h=nga*VT—&h are the orbital angular
momenta per unit mass characterizing the motions of S about M  and of the test
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particle around M, respectively. Equation (9.34), up to the minus sign and the test
particle’s mass,* can be inferred, for example, from Barker and O’Connell (1979,
Equation (2.17), p. 155) for the potential energy

G 3
Vs =5 (2 + ﬂ) SV r x P) (9.35)
c’r 2my

of two bodies of masses m, and m, one of which carries the angular momentum
S separated by a distance » and moving with relative velocity v in the limit
my > m;, with the identification m, — M/, m; — M. Furthermore, it is assumed
that SV is the orbital angular momentum of the test particle’s motion about M.
Thus, r in Barker and O’Connell (1979, Equation (2.17), p. 155) has to be identified
with 7, and r x P is the orbital angular momentum r x Mv of the motion of S
around M . See also Ohanian and Ruffini (2013). It can be noted that

Ve V‘,mds = mds. (936)
The average of Equation (9.34) over T, 1/< returns (Renzetti, 2012b)
/ 3w ngdng 1 —eh - h
{R)gs = — 3 :
2¢%d <1 —é )

By calculating Equations (2.27)—(2.32) with Equation (9.37) yields® (Renzetti,
2012b)

(9.37)

da

— =0, 9.38
<dt >dS ©3%)

de /

— =0 9.39
<df >dS ’ 039
<ﬂ>/ _Swngh -1 (9.40)

dtles 2024 <l — e/2>
<d_§2> _ 3w ny csclh - m 9.41)

s 2¢2d (1 — e’z)

do\’ 3w ngh - (il - cotIﬁz)
<_> _ , (9.42)

dt [4s 2¢2d (1 — e’z)

4 Recall that the disturbing function is the opposite of the potential energy per unit mass of the pK effect of
interest.

3 Equation (9.43) comes from Equation (9.36) and the last term in Equation (2.32), being the sum of the first
two equal to zero.
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<dn>/ B O /1 — e2h « h

= 9.43
dt [4s 2¢2d (1 — e’z) 049

It should be noted that Equations (9.38)—(9.43) are completely general since they
hold for any orbital configurations for the motions around both M and M .

The de Sitter precession of the perigee of the lunar orbit in the external field
of the Sun was accurately measured with increasing accuracy over the years by
means of the LLR technique (Bertotti et al., 1987; Shapiro et al., 1988; Williams
et al., 1996; Nordtvedt, 1999; Williams et al., 2004; Merkowitz, 2010; Hofmann
and Miller, 2018).

9.2.2 The Impact of the Spin of the Distant Body

The disturbing function Rg,,, arising from the gravitomagnetic three-body poten-
tial induced by the angular momentum J  of the distant body of mass M on the
internal dynamics of S is

/

Rgum = — 2 (= (7 -m)+3(0-7) (5 -7)]. (9.44)

cr

It turns out that
Ve V,R0m = Reym. (9.45)
Equation (9.44), up to the minus sign and the test particle’s mass,® can be inferred,

for example, from Barker and O’Connell (1979, Equation (2.19),p. 155) for the
interaction potential energy

G [3 (SO r) (S@ . r)

Vs,5, =
1,92 c2r3 }"2

—sW. sai (9.46)

of two spins SV, §? separated by a distance » by assuming that the spin S is the
orbital angular momentum of the test particle’s motion about M, while $@ is the
spin angular momentum J " of the distant third body of mass M " Thus, r in Barker
and O’Connell (1979, Equation (2.19), p. 155) has to be identified with .

The orbit average of Equation (9.44) over T, 1/4 yields (Iorio, 2019b)

: GJ nxa*/1 — é2 J ,
= kd i <200sI[J (1+3cos21>
3 232 s
8c2a <1 —e

(R) g

+3sin2/ (—jy cosQ +.J,sin Q,>]

6 Recall that the disturbing function is the opposite of the potential energy per unit mass of the pK effect of
interest.
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+ sin/ {J [cos € —3cos (Q - 252/)]
—J, [sin Q2+ 3sin (Q — 2Q/>] + 6 cos (Q — Q,> [J; sin 2/
+ cos2/ (Jy cos 2 —J sin Q2 )]}) . (9.47)

Inserting Equation (9.47) in Equations (2.27)—(2.32) allows one to calculate the
mean orbital precessions which are’ (Iorio, 2019b)

da
— =0 9.48
<dt>, ’ ©-48)
gvm
d !/
<—e> —0, (9.49)
dt | gm
dr\ GJ K :
< > = — 32{—J)C[cos§2—|—3cos(9—29)]
dt [ yom 5 13 2\
g 8c*a (1 —e )
—fy[sinQ—3sin(Q—2Q>]—6s1n< /) [jzsinﬂ/
+ cos2/ (JAy/ cos Q —J:; sin 2 )]} (9.50)

as\ GJ cscl y ,
<7> _ cse — (—2 sin/ [JZ (1 + 3 cos 21)
t gvm 8c2a'3 (1 _ 6,2)

—|—3sin21, (—f cos +f sinQ/)]
+ cos/ {J [COSQ — 3 cos (Q — ZQ/)]

- fx [sinQ + 3sin <Q - 29/)] + 6cos <Q - Q/> [J; sin 2/

+ cos2/ (fy cos —fx sin Q/)]}) , (9.51)
do\ GJ cscl ' ,
’n = — 3 {J [cosQ—Scos(Q—ZQ)]
gvm 8c2d” (1 —¢ )

—J, [sinQ + 3sin (Q - 252)] + 6cos (SZ - Q) [fz sin 2/

+ cos2/ (JAy cos Q —JAx sin Q/)] } , (9.52)

7 Equation (9.53) comes from Equation (9.45) and the last term in Equation (2.32), being the sum of the first
two equal to zero.
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<62_,Z> - 3iJ J?m (2087 [ (1+3cos27 )
gvm 8c%a (1 —e )
+3sin2/ (—.]Ay/ cos Q —i—jx sin Q/>]
+ sin/ {JAy, [cos Q —3cos (Q — 29)]
—J [sin© + 35in (2 — 20') | + 6005 (2 - ) [J sin2/
+ cos2/ <JAy/ cos —JA): sin Q,>] }) . (9.53)

For a previous, approximate calculation restricted to the orbital angular momentum
of the Moon orbiting the Earth in the gravitomagnetic field of the rotating Sun, see
Gill et al. (1992, Section (3.3.3)).
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Modified Models of Gravity: Orbital Precessions

In the following sections, some modifications of the Newtonian inverse-square law
are taken into account; those that arise from power-law and Yukawa-like additional
potentials, logarithmic-type potential, some dark matter density profiles, once-
per-revolution and constant accelerations, and gravitomagnetic violations of the
Lorentz invariance in the gravitational sector.

The resulting secular orbital precessions are analytically worked out in their
full generality, extending and generalizing an earlier calculation by Adkins and
McDonnell (2007) for some of the aforementioned extra-potentials.

10.1 Power-Law Modified Potentials

Power-law modifications of the usual inverse-square law (Fischbach et al., 2001;
Adelberger et al., 2003) arise in the most disparate theoretical frameworks; they
are far too numerous to be exhaustively mentioned here. For 2 and r3-type
extra-potentials, see, for example, lorio (2012b,d); lorio and Ruggiero (2018), and
references therein. It should be noted that, in fact, not all the power-law modified
potentials are necessarily to be ascribed to alternative models of gravity; suffice
it to say that the general relativistic Reissner-Nordstrom spacetime metric (Reiss-
ner, 1916; Weyl, 1917; Nordstrom, 1918) encompasses just a 1 /7> correction to the
standard 1/ Newtonian potential. The quadrupolar term of the Newtonian multi-
polar expansion of the potential of a matter ring' (Ciftja et al., 2009), calculated
in a point in the plane of the annulus at great distance  from it, goes just as 1/7°
(Demetrian, 2006). Furthermore, the cosmological constant> A (O’Raifeartaigh
et al., 2018), fully accommodated within GTR (Ashtekar, 2017), gives rise to an

I Itisan adequate model for a fast revolving, tight inner binary in a hierarchical triple system with a distant
companion.

2 Ttis the simplest possible explanation for dark energy driving the observed cosmological accelerated
expansion (Peebles and Ratra, 2003; Harvey, 2009). But see also Lahav (2020).
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additional potential quadratic in » (Rindler, 2001). Also the quadrupolar term of
the Newtonian multipolar expansion of the potential of a matter ring (Ciftja et al.,
2009), calculated in a point in the plane of the annulus at distance » smaller than
its radius, is directly proportional to > (Demetrian, 2006).

Here, the disturbing function R of such kinds of modified models gravity is
generally written as

K
R = — (10.1)
rn

where K is a dimensional quantity containing some numerical factors, and the free
parameter(s) characterizing the model under consideration, to be determined or
constrained by observations, and, possibly, the specific binary system at hand as
well as its masses, and so on. The latter case does not necessarily occur; suffice it
to say that, for n = —2, one has (Rindler, 2001; Kerr et al., 2003)

Ac?
=< (10.2)
arising from the Schwarzschild—de Sitter (Stuchlik and Hledik, 1999) or Kottler
(Kottler, 1918) spacetime. In Equation (10.2), A is dimensionally the reciprocal of
an area, and plays the role of the cosmological constant (Rindler, 2001).

The average of Equation (10.1) over one orbital revolution, performed by using
the eccentric anomaly E as a fast variable of integration to simplify the calculation,
turns out to be

K n 1 2
(R = Za_zn (1-¢%) |:3a" (I—e(1+e)2F <—§,n;2; e——el)

F3d (14 e) (1 — ey oFy (=t m2s —2¢
a e)(l —e —— 2 —
SR ) lte

1 2e
—d"(14+e)" (1 —3e+4den),F (—,n;Z; )

2 e—1
Fa" (1 — e (=1 — 3e+ den) oF, [ 2,m2; —2% (10.3)
a e e en) F 2,n, Tre) |’ .

where ,F (a,b; ¢;1) is the Gauss hypergeometric function (Barnes, 1908; Olver
et al., 2010). It should be remarked that Equation (10.3) retains its validity for any
integer n, either positive or negative; furthermore, it holds for arbitrarily eccentric
orbits, being an exact result in e.

From Equation (10.3) and Equations (2.27)—(2.32), it can be straightforwardly
inferred that the only generally nonvanishing orbital precessions are those of @ and
n. They are
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<da)>pl (=l +mKRV1— e? [a2 (1 - ez)]flfn
| —

deng

1 2e
{—3(—1+e)a”(1+e)”2F1 (——,”l;2§ )
2 e—1

1 2
3 +ed" (1 —e) 2F =z 2; ——
2 1—e

1 2
+ (—1+e)a" (1 +e)" (3 —3e+ 4en),F, <§,n;2; el)
e—
1 2e
—(14+e)d" (1 —e)" (=3 —3e+4en),F, <§,n;2; 1—)}, (10.4)
—e

<d_;7>pl _k[@(-)]"

dt 4a’nge

1 2e
=3 (-1+ed" (1+e)"(—1+e+n+en),F —E,n;2; ;
e_

1 2e
+30+e)a" (1 —-e)"[l+e+ (—1+e)n]F, (—E,n;2; I——e)

+a"(1+e)"{-3(-14+e)’+[3+ (-8+e)eln

1 2
+4e(1 —|—e)n2}2F1 (—,n;2' ¢ )

2 Te—1
+a"(1—e)"{-30+e*+[B3+e@+e)n
5 (1 2e ))
+4(=1+e)en’}Fi | zom2;— ) ). (10.5)
2 l1—e

For n=2, corresponding to a 1/7% extra-potential (Adelberger et al., 2007;
Maeda and Dadhich, 2007; lorio and Saridakis, 2012; Ruggiero and Radi-
cella, 2015; Ali and Khalil, 2016; Bhattacharya and Chakraborty, 2017), Equa-
tions (10.4)—(10.5) yield

dw\" K

do\®_ K 10.6
< dt > nga* (1 — e2) (10.6)
<dn >pl B 3K 107

dt|  nga*V1T—e .

For n = 3, corresponding to a 1/ extra-potential® (Bonanno and Reuter, 2000;
Sotiriou and Zhou, 2014; Chakraborty and SenGupta, 2017), Equations (10.4)—
(10.5) yield

3 As pointed out by lorio and Ruggiero (2018), some of these models may not be constrained by observations
since they do not contain free parameters. Furthermore, some of them may describe only black holes or
wormholes, while some others are valid for material bodies such as a star. There are also other 1 /r3 models
which, however, are valid only at particle physics scales; thus, they cannot be constrained by orbital motions.
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dw\" 3K
<—‘”> = (10.8)
dt nga® (1 — e?)

dn >pl 3K

any - (10.9)
< dt nga’ (1 — 62)3/2

For n= — 2, corresponding to a cosmological constant-type extra-potential
quadratic in r (Rindler, 2001; Kerr et al., 2003; Iorio and Saridakis, 2012),
Equations (10.4)—(10.5) yield

do\P"'  3KJ/1— &

<_“’> i (10.10)
dt ng

dn\” 7+ 3K

<—”> __(7+37K) (10.11)
dt ng

10.2 Yukawa Modified Potential

Another very popular modification of the Newtonian inverse-square law is
expressed as a Yukawa-like additional potential (Yukawa, 1935); see, for example,
Nieto and Goldman (1991), Bertolami and Paramos (2005), Reynaud and Jaekel
(2005), Moffat (2006), Bertolami et al. (2007), and references therein.

The resulting disturbing function RY is customarily modelled as

K
R = Y exp (—i) , (10.12)
r A

where Ay is a characteristic scale distance, and Ky is usually proportional to
the product of the mass M of the primary by a dimensionless parameter oy
characterizing the intensity of the putative Yukawa interaction.

The average of Equation (10.12) over one orbital period, performed by adopt-
ing the eccentric anomaly £ as a fast variable of integration to facilitate the

calculation, is
K
R)Y = XY exp (—Ai) o (%) , (10.13)
a

where 7 (...) is the modified Bessel function of the first kind of order s = 0
(Olver et al., 2010). It should be noted that Equation (10.13) holds for any value
of Ay; furthermore, it is an exact result in e being, thus, valid for highly eccentric
orbits as well.

From Equation (10.13) and Equations (2.27)—(2.32), it can be inferred that only
 and 7 experience nonvanishing secular precessions. They are

Y
<dw> _kwil-e exp (— a )L (“e), (10.14)

dr a’eng Ay Ay Ay
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() = () oo (3)
dt _a3l’l]()\.y cxp _)\'Y (a+ Y) 0 )\.Y
2
_al+e) (“_e)} , (10.15)
e )\Y

where Z; (...) is the modified Bessel function of the first kind of order s = 1 (Olver
et al., 2010). For previous derivations of Equation (10.14), see Burgess and Cloutier
(1988); lorio (2012c¢).

10.3 Logarithmic Potential

The logarithmic potential, giving rise to the disturbing function
K¢ — K In (%) , (10.16)

where £ is some characteristic length scale of the scenario at hand, is often used
for explaining the action of dark matter at galactic scales in terms of alternative
models of gravity (Das and Sur, 2022; Nash, 2023). It yields a 1/ pK acceleration.

The average over one orbital period of Equation (10.16), calculated with the
eccentric anomaly E as a fast variable of integration, turns out to be

<m>‘°g=K{1—\/1—eZ+1n[% (1+\/1—e2)]}. (10.17)

From Equation (10.17) and Equations (2.27)—(2.32), it can be inferred that only
w and 1 experience nonvanishing secular precessions. They are

de\ 1% K<—1+e2+\/1—ez>
<E> = P , (10.18)
<d77>10g K<—3—|—ez—2\/1 —62)
an\™ _ . (10.19)
dt nga* (1 + 41— ez>

It can be noted that the limits of Equations (10.18)—(10.19) for ¢ — 0 are finite.

10.4 Once-Per-Revolution (1-cpr) Accelerations

Once-per-revolution empirical accelerations (1-cpr) are often modeled in satel-
lite data reductions in order to account for any possible unknown, time-dependent
accelerations, of whatever physical origin, affecting the orbital motions just at the
orbital frequency (Tapley et al., 2004a).
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When precise orbit determination (POD) is the desired outcome of data reduc-
tions to achieve some specific tasks,* the only goal is to obtain the smallest possible
post-fit residuals in any way; in such circumstances, empirical 1-cpr accelerations
are modeled and estimated. Instead, when a data reduction is specifically aimed
to test, say, some pN features of motion, the 1-cpr accelerations should not be
estimated because, otherwise, the effect(s) one is interested in would be partly or
totally removed from the signal, being likely absorbed in the estimated values of
the former ones.

In the following, the orbital precessions due to a generic 1-cpr acceleration are
explicitly worked out.

In the most general case, the radial, transverse, and normal components can be
written as

AL = C1Pr cos £+ S1PT sin f, (10.20)
Aicpr — Cicpr cosf + Sicm sinf, (10.21)
A}ller _ C}llcpr cosf + S}ller sinf, (10.22)

where the coefficients C!P" .. .S ;,Cpr are constants.
By inserting Equations (10.20)—(10.22) in Equations (2.13)—(2.18), one gets

<%>]Cpr - tees JT;) (517 - Cicpr>’ (10.23)

<de>lcpr 1 {2 (—1+¢)° (_1 + 1/\/@) st

dt  2ngae?

n [2 1ot 21—+ & (—4 51— ez)] Ckpf} . (10.24)

<d_] Lepr _ (142¢%) G, cosw + (—1 4 €%) 8, sinw (10.25)
dt 2ngav1 — &2 ’ .
do\ler  cscl [— (—1+¢%) Sh1Cpr cosw + (1 +2¢?) C,iCpr sin a)]

()" - v Rl
+(2+V1=a) |+ [2-2/T=
+¢ (—1+2v/1-¢) | s

e ootl [(~1+€) 5 cosw — (142¢) G sinw]), (1027)

4 It is the case of, for example, remote sensing, altimetry and gravity field mapping.
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<@>lcpr L {2 [—1 V-t é (3 —2@)

dt 2ngae’
¢t (1 +vI1- e2>] ClP + (=1 +¢%)
[2—2 e+ (—1 +2/1 —e2)]sgcpf} (10.28)

10.5 Constant and Uniform Acceleration

Here, a constant pK acceleration is treated, irrespectively of its possible physical
origin. In the most general case, it can be decomposed as

A = o, (10.29)
At = (10.30)
A = s, (10.31)

where the coefficients C&, C, C™ are constants.

It may be recalled that a constant, radial acceleration directed towards the Sun
was adopted as one of the most popular models of the so-called Pioneer anom-
aly (Turyshev and Toth, 2010) for as long as it was believed to be an anomalous
gravitational effect before it was ultimately explained in terms of standard non-
gravitational effects (Scheffer, 2003; Bertolami et al., 2008; Rievers et al., 2009,
2010; Rievers and Lammerzahl, 2011; Francisco et al., 2012; Turyshev et al.,
2012; Modenini and Tortora, 2014). Furthermore, a radial and constant acceler-
ation enters the equations of motion in the framework of the Modified General
Relativity (MGR) (Nash, 2023) aimed to explain the dark matter phenomenology
at galactic scales.

By inserting Equations (10.29)—(10.31) in Equations (2.13)—(2.18), one gets the
following orbital precessions

da\*" 21 —eC3 chst
< a> —¢ (10.32)
ng
ZeV1-écs
< > 2nKa , (10.33)
dl st 3eC cosw 1034
2nKa l—e2 (1034)
cst cst
3eC csc/ sinw
< > el =2 (10.35)


https://doi.org/10.1017/9781009562911.010

172 Modlified Models of Gravity: Orbital Precessions

do\®™  —2(—=1+¢*) C 4 3eC* cot ] sinw
<_“’> _ )G h , (10.36)
dt 2ngav/'1 — é?
dn cst 3Ccst
—) =—-—— 10.37
< dt > nga ( )
10.6 Tidal-Type Matrix Acceleration
For any extra-acceleration of the form
3
A=) Myx;, ij =123, (10.38)

J=1
where My;, i,j = 1,2, 3 is a traceless and symmetric matrix, Equations (9.7)—(9.12)
hold provided that the matrix elements can be considered constant over a full orbital
revolution of the test particle around its primary.

10.7 Dark Matter Distributions

So far, several authors have put dynamical constraints on the dark matter distri-
bution within our solar system and in the GC from orbital motions (Anderson
et al., 1989, 1995; Gren and Soleng, 1996; lorio, 2006c; Sereno and Jetzer, 2006;
Khriplovich and Pitjeva, 2006; Khriplovich, 2007; Zakharov et al., 2007; Frére
et al., 2008; Adler, 2009; Iorio, 2010a; Saadat et al., 2010; Zakharov et al., 2010;
De Risi et al., 2012; Pitjev and Pitjeva, 2013; Iorio, 2013b).

In many cases, more or less approximate expressions for the anomalous perihe-
lion precession induced by certain spherically symmetric dark matter distributions
were used, in particular by considering nearly circular orbits. Here, such a
restriction is overcome by calculating exact expressions, which can, thus, yield
more accurate constraints — with the caveat exposed in Chapter 1 — in view of the
increasing level of accuracy in determining the orbits of some of the major bodies
of the solar system. Moreover, the present results can be used also with systems
characterized by highly eccentric orbits such as, for example, the S stars in the GC.

10.7.1 Exponential Mass Density Profile

By adopting an exponentially decaying mass density profile® (Pitjev and Pitjeva,
2013),

an r
Pexp = PO EXP (—m) , (10.39)

5 The density profile of Equation (10.39) is a particular case of the Einasto profile (Einasto, 1965), often
adopted to describe dark matter halos in galaxies (Merritt et al., 2006).
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where A4 18 a characteristic scale length, the Poisson equation yields the following
disturbing function:

47tGpg r r
pdm — — 3 (12— (24 — — . 10.40
P r am |: ( * Kdm) P ( )»dm)] ( )

By averaging Equation (10.40) over one orbital period with the eccentric anom-
aly E as a fast variable of integration, one gets (lorio, 2013b)

AT GpoA> r ae
dm __ dm
(Rexp = — 2Xdm + exp __)»dm ael, _)»dm

— (@ + 2k o (/\a—eﬂ} (10.41)

dm
The resulting nonvanishing orbital precessions, calculated with Equa-
tions (2.27)—(2.32), turn out to be (lorio, 2013b)

<dw>dm 47/1 — 2Gporgm ( r ) { ( ae )
= eXp —r eI() —

dt ngae

exp
2Xdm
_ (1 4 Pam )L (5= )} (10.42)
a Adm

dn\*™  4nGpordm r 5 r

—) =————exp|—— ) {4erjexp| —

dt exp I’lK(l3€ )"dm )\dm
ae

—e [a2 (3 + ez) + 4ar + 4)3] Ty (A_>

dm

+ala(l+3¢%) +21 (1+26)]T, (;’—e>} (10.43)
dm

10.7.2 Power-Law Mass Density Profile

By adopting a power-law mass density profile

-V

.

por = po <—A ) ¥ >0, (10.44)
dm

generally adopted for the galactic halos and in several dark matter—related stud-
ies (Merritt et al., 2006; Gillessen et al., 2009), the Poisson equation yields the
following disturbing function:

4G
Rim — e, (10.45)
G=v)2=¥) ry
By averaging Equation (10.45) over one orbital period with the eccentric anom-
aly E as a fast variable of integration, one gets
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<%>dm _

pl
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7Ga®V (1 =) " A po 1 2e
( ) i U™ F, (-5,)/; L; 1 —I—e)

(—1+y) (6 =5y +y2)

+Ugm2F1(

+ U™, F ly'
’ 227 —1+e

N (10.46)
4 2471 25)/9 ’1+€ s .

where 1 (a, b; ¢; 1) is the generalized hypergeometric function /7 (Olver et al.,
2010), and the coefficients U]‘-im, j = 1,2,3,4 are explicitly displayed in Equa-
tions (I.1)—(1.4) of Appendix I.

The resulting nonvanishing orbital precessions, calculated with Equa-
tions (2.27)—(2.32), turn out to be® (Iorio, 2013b)

"G
dt [ 2 (=3+ ) (=2+y) (=1+y)

1 2e
dm
P F -, ,1,
|:121( 2]/ 1 e)

1 2e
+PI™F (——,y; L; )

2 1+e
1 2e
+P39"F) (E,V;l; — +e>
1 2e
dm
Py LF =y, ——— )|, 10.47
+Ps 2 1(2 14 1+e):| ( )
<dn>dm nGa? (1—¢€*)" Al oo
dt [ 2e2ng (=34 ) (=24 ) (=1 +7y)

Hde 1 - 1: 2e
1 2471 233/, ,—1+€

1 2e
+ HI™F) <——>V;1; )

2 1+e
1 2e
dm
H™F | =, v 1;
+ 3 2 1(233’9 ’—1—}—@)
1 2
prdmE (=) . (10.48)
4 2 1+e

6 The orbital effects of Equation (10.46) have been computed more or less explicitly and at various levels of

approximations in Khriplovich (2007), Frére et al. (2008), Saadat et al. (2010), De Risi et al. (2012), and
Zakharov et al. (2007, 2010).
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The coefficients P_fm, j=1,2,3,4and H_fm, j = 1,2,3,4 are explicitly displayed
in Equations (I.5)—(1.12) of Appendix 1.

10.8 Lorentz-Violating Gravitomagnetic Acceleration

The Standard Model Extension (SME) is a theoretical framework encompassing
generic violations of the Lorentz symmetry for both gravity and electromagnetism
(Kostelecky and Potting, 1995; Colladay and Kostelecky, 1997, 1998; Kostelecky,
2004). In general, there are 20 coefficients for Lorentz violation in the gravitational
sector; by assuming spontaneous Lorentz-symmetry breaking, the main effects
in the weak-field approximation are accounted for by the traceless coefficients
57*, 0,1 = 0,1,2,3 (Bailey and Kostelecky, 2006) containing nine independent
quantities

According to Bailey (2010), in the weak-field and slow-motion approximation,
a test particle moving with velocity v at distance » from a central, static body of
mass M experiences a Lorentz-violating gravitomagnetic acceleration

Alem — Z x B (10.49)
with

BleM .= 57% (sxr), (10.50)
where

si=—-5Y =123 (10.51)

is a vector made of the off-diagonal SME Lorentz-violating coefficients.
The radial, transverse, and normal components of Equation (10.49) are

Afg"m _ _ZnKpL (14 ecosf)® (smcosu — sl sinu)’ (10.52)

ca (1 — 62)5/2
2 1 2 hl hm si
A&g"m _ engiL (1 + ecosf)”sinf (s 5/zcosu + s msmu)’ (10.53)
ca (1 — ez)
2 1 sinfsh
Aigv‘“ _ Zemkp 1+ ecosf5)/2s1nfs ' (10.54)
ca (1 — ez)

The coefficients s1, sm, sh, shl, and shm entering Equations (10.52)—(10.54) are
defined in Equations (D.44)—(D.48) in Appendix D.
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Inserting Equations (10.52)—(10.54) in Equations (2.13)—(2.18) yields (lorio,
2012e)

da Lgvm
<?> (10.55)
de\bevm —1+é +v1—ez> (slcosw + smsinw)
— 10.56
<d > ca’e? ’ ( )
4y \Levm \/1 —e? — 1) shsinw
— R 10.57
<df> cazev ( )
4\ Levm V1= — 1) cscIshcosw
<—> , (10.58)
dt ca’er/1 — 2
dow Lgvm
do) = _ 14 (—1+V1- 2) 1si
<dt> ca2e3 l—ez){ ( —i—e)( + e ) slsinw
+ [—26 (—1 +ée*++/1—¢e?)cotlsh
+2(=1+¢) (=14 VI =€) sn] cos ], (10.59)
dn\e™ 21 <—1+€2+\/1—€2) (smcosw — sl sinw)
<E> — - (10.60)
ca’e

It can be noted that, while Equations (10.56)—(10.58) are well-defined in the limit
for e — 0, it is not so for Equations (10.59)—(10.60).
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CCF
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Appendix A

List of Acronyms and Abbreviations

anomalistic

arcsecond

black hole

cross-correlation function
cycle-per-revolution

constant

century

day

Damour—Deruelle

declination

dark matter

draconitic

de Sitter

equatorial

exotic compact objects

Event Horizon Telescope

equation of state

equivalence principle

Ephemeris of Planets and the Moon
Extreme Precision Radial Velocity
European Space Agency

European Southern Observatory
Echelle SPectrograph for Rocky Exoplanets
and Stable Spectroscopic Observations
Elliptical Uranian Relativity Orbiter
exponential

EXtreme PREcision Spectrograph
full-width at half-maximum
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GC
GP-B
GRACE
GRACE-FO
GRAIL
GTR
gvm

hr
HERO
IAU
ICRF
IORIO

JPL

K

kg

km
LAGEOS
LARES
LETSGO
LIGO
Lgvm
LISA
LLR

log

LT

m
MAROON-X

mas
MESSENGER

MGR
MGS
MicroSCOPE

jLas
mm

MOG
MOND

List of Acronyms and Abbreviations

Galactic Centre

Gravity Probe B

Gravity Recovery and Climate Experiment
GRACE Follow-On

Gravity Recovery and Interior Laboratory
general theory of relativity
gravitomagnetic

hour

Highly Elliptical Relativity Orbiter
International Astronomical Union
International Celestial Reference Frame
In-Orbit Relativity Tuppiter Observatory,
or [Ovis Relativity In—orbit Observatory
Jet Propulsion Laboratory

Keplerian

kilogram

kilometre

LAser GEOdynamic Satellite

LAser RElativity Satellite

LEnse-Thirring Sun-Geo Orbiter

Laser Interferometer Gravitational-wave Observatory
Lorentz-violating gravitomagnetic

Laser Interferometer Space Antenna
Lunar Laser Ranging

logarithmic

Lense—Thirring

metre

M dwarf Advanced Radial velocity Observer
Of Neighbouring eXoplanets
milliarcosecond

MErcury Surface, Space ENvironment,
GEochemistry, and Ranging

Modified General Relativity

Mars Global Surveyor

Micro-Satellite a trainée Compensée pour I’Observation
du Principe d’Equivalence
microarcsecond

millimetre

MOdified Gravity

MOdified Newtonian Dynamics
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NASA
NMol
ns

pl
PLR

po
POD
PPN
PS
psr
RA

]

o

SED
Sgr A*
sid
SINFONI
SLR
SMBH
SME
STR
STVG
tid
TOAs
VLT
wd
XMM
Y

yr
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Newtonian

National Aeronautics and Space Administration
normalized moment of inertia
neutron star

planet

post-Keplerian

power-law

Planetary Laser Ranging
post-Newtonian

polar

Precise Orbit Determination
parameterized post-Newtonian
Panhans—Soffel

pulsar

right ascension

second

sexagesimal degree

spectral energy distribution
Sagittarius A*

sidereal

SINgle Faint Object Near-IR Investigation
Satellite Laser Ranging
supermassive black hole
Standard Model Extension
Special Theory of Relativity
Scalar Tensor Vector Gravity
tidal

times of arrival

Very Large Telescope

white dwarf

X-ray Multi-Mirror

Yukawa

year
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Appendix B

Notations and Definitions

Here, some basic notations and definitions used throughout the text are presented
(Soffel, 1989; Brumberg, 1991; Bertotti et al., 2003; Kopeikin et al., 2011; Poisson
and Will, 2014; Soffel and Han, 2019). Indexes denoted with Greek letters run from
0 to 3, while those dubbed with Latin ones run from 1 to 3.

B.1 Some Constants of Nature and Astronomical Quantities

c Speed of light in vacuum

G Newtonian constant of gravitation

T Vernal Equinox at some reference epoch

Mg Sun’s mass

Mo := GMg Sun’s standard gravitational parameter

R® Sun’s equatorial radius

RS, Sun’s polar radius

Jy Sun’s dimensionless quadrupole mass moment
Jo Sun’s angular momentum

Jo Magnitude of the Sun’s angular momentum

J o Sun’s spin axis

ay, RA of the Sun’s north pole of rotation

87, dec. of the Sun’s north pole of rotation

Mg Earth’s mass

Wg := GMg Earth’s standard gravitational parameter

R® Earth’s equatorial radius

RS, Earth’s polar radius

Jy Earth’s dimensionless quadrupole mass moment
Jo Earth’s angular momentum

Jo Magnitude of the Earth’s angular momentum

180
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Jo Earth’s spin axis

Mo, Jupiter’s mass

Woy = GMq, Jupiter’s standard gravitational parameter

RZF Jupiter’s equatorial radius

RQZ Jupiter’s polar radius

J} Jupiter’s dimensionless quadrupole mass moment

Jo, Jupiter’s angular momentum

Jo, Magnitude of the Jupiter’s angular momentum

J % Jupiter’s spin axis

o, RA of the Jupiter’s north pole of rotation

3 o, dec. of the Jupiter’s north pole of rotation

M, Black hole’s mass

Mo := GM, Black hole’s standard gravitational parameter

Re 1= 2./ Black hole’s Schwarzschild radius

M Mass moment of degree ¢ of a Kerr black hole

J¢ Spin moment of degree ¢ of a Kerr black hole

J, Angular momentum of a Kerr black hole

' Azimuth of the spin axis of a Kerr black hole in the plane
of the sky

ie Inclination of the spin axis of a Kerr black hole to the line
of sight

J, = {sini, cos¢,, Spin axis of a Kerr black hole
Sin i, Sin ,, COS iy}

Xe Dimensionless spin parameter of a Kerr black hole; Xg| <1
Jo = XM, 2G/c Magnitude of the angular momentum of a Kerr black hole
05 = —J?/(¢*M.) Quadrupole mass moment of a Kerr black hole

&Ens Dimensionless quadrupole parameter of a neutron star

B.2 Parameters of a Mass-Energy Source and Spacetime Variables

ng Number of dimensions of a Lorentzian manifold

Kg Einstein’s gravitational constant

T* o, =0,1,2,3 Stress-energy tensor

U Exterior gravitational potential of an arbitrary
mass distribution

1% Interaction potential energy due to some pK effect

0 Density of an arbitrary mass distribution

0o Scaling parameter of the mass density profile

Adm Characteristic length scale of a dark matter

density profile
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y Exponent of dark matter power-law density profile
€5, 0,A=0,1,2,3 Spacetime metric tensor
g’ o,,=0,1,2,3 Inverse of the spacetime metric tensor
re,o,v,0=0,1,2,3 Christoffel symbols of the second kind
A Affine parameter of geodesics
T Proper time of a moving material object
t Coordinate time
X0 = ct Temporal coordinate
REUW, €,0,¥,A=0,1,2,3 Riemann curvature tensor of the spacetime
Ry, 0,4 =0,1,2,3 Ricci curvature tensor of the spacetime
R Trace of the Ricci tensor
hgs, 0, =0,1,2,3 Post-Newtonian corrections to the Minkowskian
components of the spacetime metric tensor
BrpN A parameter of the PPN formalism
VPPN A parameter of the PPN formalism
B.3 Relevant Mathematical Functions and Notations
€ijws L, w=1,2,3 3-dimensional Levi-Civita symbol
8, 1,j=1,2,3 Kronecker delta
Pe(---) Legendre polynomial of degree ¢
Js () Bessel function of the first kind of order s
s (... Modified Bessel function of the first kind of
order s
2Fy (a,6;¢;1) Generalized hypergeometric function

V,:=1{0/9q1, 3/3q,, 9/dq3, } Gradient with respect to the components of the
generic vector ¢ = {¢g1, ¢2, ¢3}

B.4 Relevant Physical Parameters of the Central Body

Characteristic size

Mass

Standard gravitational parameter

Newtonian exterior gravitational potential

(arbitrarily shaped body)

Lagrangian per unit mass

N Newtonian exterior gravitational potential
(spherically symmetric body)

R := — (U — Uy) Disturbing function

R Equatorial radius

RE X0
i
2

o~
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g -=
Jz :

B.4 Relevant Physical Parameters of the Central Body

k)2

R/

—3(Re/a')’ (M'/M)
(k2/3) [ge — (q/2)]

T 10 + k) /2] g

0 =

AU,

ay
&y

—JLMR?

J = {cosa,cosdy,
sin oy cos §y, sind;}

R,
b:

(1 - ez) cosl/

=a
R, (1 4+ esinw)

Ly

Cu

Uy

Vs sini,

183

Polar radius

Ellipticity

Moment of inertia

Normalized moment of inertia (NMol)

Love number

Apsidal constant

Angular speed

Rotational period

Centrifugal quadrupole parameter

Mass of a nearby tide-raising body

Semimajor axis of the relative orbit of M with
respect to M’

Tidal quadrupole parameter

Zonal harmonic coefficient of degree ¢ = 2 of a
body in hydrostatic equilibrium

Dimensionless parameter entering the
Darwin—Radau approximate relation between NMol
and J, for a body in hydrostatic equilibrium
Dimensional quadrupole mass moment

Term of degree £ = 2,3,4,. .. of the Newtonian
gravitational potential of an axisymmetric body
Angular momentum

Magnitude of the angular momentum

RA of the north pole of rotation

Dec. of the north pole of rotation

Spin unit vector

Equatorial radius of an exoplanet’s host star
Impact parameter of an exoplanet

Inclination of the spin axis of an exoplanet’s

host star to the line of sight

Azimuthal angle of the spin axis of an exoplanet’s
host star in the plane of the sky

sky-projected spin-orbit angle of a transiting exoplanet
Equatorial rotational velocity of an exoplanet’s

host star

Projected rotational velocity of an exoplanet’s

host star


https://doi.org/10.1017/9781009562911.012

184

Ay
Ky
oy
K

L
Woct
Boct = _V Woct

§ = {_3,01’ _3,02, _503}

BLgvm

Notations and Definitions

Yukawa potential scale distance

Yukawa potential dimensional strength intensity
Yukawa potential dimensionless strength intensity
Dimensional strength parameter of power-law
extra-potentials

Characteristic length scale of a logarithmic potential
Spin-octupole gravitomagnetic potential

Spin octupole gravitomagnetic field

Vector of the off-diagonal SME Lorentz-violating
coefficients —s¥,j = 1,2,3

Lorentz-violating gravitomagnetic field

B.5 Relevant Physical Parameters of a Binary System

Ma

My

Mb = MA + MB
xXp = Mp /My,

XB .= MB/Mb =1 — XA
Ry := GM,

Mieq := MaAMg /M
Hy,

Hy = Mieay/1upa (1 — €2)

Mass of the body A

Mass of the body B

Total mass

Normalized mass of the body A to the system’s
total mass

Normalized mass of the body B to the system’s
total mass

Standard gravitational parameter

Reduced mass

Orbital angular momentum

Magnitude of the orbital angular momentum

V= Med/ My = MAMB/Mg Symmetric mass ratio (0 < v < 1/4)

me
e
YAB ‘= MaorB/My

Ja
JB

S = (1 + 3MB/4MA) JA
+ (1 4+ 3Mp/4Mp) JB

Mass of the unseen companion of the emitting
body in a binary

Standard gravitational parameter of the unseen
companion of the emitting body in a binary

Ratio of the visible to the total mass

Angular momentum of the body A

Angular momentum of the body B

Magnitude of the angular momentum of the body A
magnitude of the angular momentum of the body B
Spin axis unit vector of the body A

Spin axis unit vector of the body B

Weighted sum of the spins of both bodies
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9 :=R,/R,

8tp
Sti/e

Sty

I

p = /(ra —rg) + (ra — rp)
p:=(ra—rs)/p
Ap = (Ary — Arg) - p
pi=(va—vg):p
P, :=[va—ve)—pp]/p
Ap = (Ava — Avp) -

P+ (Ara — Arg) - p,
7psr

57psr = mesin/ sinu/
Myc (1 + ecosf)

Dimensional quadrupole mass moment

of the body A

Dimensional quadrupole mass moment

of the body B

Dimensionless quadrupole mass moment
of the body A

Dimensionless quadrupole mass moment
of the body B

Equatorial radius of the body A

Equatorial radius of the body B

Ratio of the radius of an exoplanet to that of
its parent star

Total transit duration of transiting exoplanets
Ingress/egress transit duration of transiting
exoplanets

Full width at half maximum primary transit
duration of transiting exoplanets

Time of inferior conjunction of transiting
exoplanets

Two-body range

Range unit vector

Two-body range shift

Two-body range rate

185

Unit vector needed to construct the range rate shift

Two-body range rate shift

Time of arrivals (TOAs) of the radio pulses
emitted by a pulsar

Variation of the TOAs due to the barycentric
orbital motion of the pulsar

B.6 Relevant Physical and Orbital Parameters of a Test Particle

A pK Perturbing acceleration

AN Newtonian inverse-square acceleration
o (1) RA

X0 Dec.

a Semimajor axis

ng = +/pn/a?

Tk =271 /ng

Keplerian mean motion
Keplerian orbital period
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e
pi=(1-vVT=2&)/e
pi= a(l —ez)

1

2

U

Q

w

k:=esinw
q:=ecosw

o =Q+w

g :=ecosw

% :=esinw

/(@

fo

Jo

Ak = [T (dx/df) df

We 1= Ak /27

(dic/dt) = Ak Tk = (ng/27)

JIT (i fdpy df

A@ (f) = arctan[ }—jétan(

l—e f
— arctan [ Tre tan <3>]

u@):=w+f©@

uy = w~+fo
[(t) ;= +f ()
ly =@ +fy

M (1)

n

Notations and Definitions

pK j-type (anomalistic, draconitic, sidereal)
orbital period

pK j-type correction to the Keplerian
orbital period

eccentricity

Auxiliary quantity depending on e

Semilatus rectum

Inclination of the orbital plane to the
reference plane {x, y}

Ascending node

Descending node

Longitude of the ascending node
Argument of pericentre

First Laplace—Lagrange parameter
Second Laplace—Lagrange parameter
Longitude of the pericentre
Nonsingular equinoctial element
Nonsingular equinoctial element

True anomaly

Arbitrary moment of time chosen as
initial instant

True anomaly at some arbitrary moment
of time ¢,

Net shift per orbit of the (perturbed) orbital
element kf

Fractional net shift per orbit of the orbital
element «

Average rate of change of the orbital
element k (f)

Function of the true anomaly used in

some calculation

Argument of latitude
Argument of latitude at £y
True longitude

True longitude at ¢,
Mean anomaly

Mean anomaly at epoch
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® (1) := [y Ang (1) dr

= —3% i aa () g dr

E (1)
r (1)
Ar (1)
r (1)
ro
Fi=r/r={cosQcosu/t)
—cos/sinQsinu(t),
sin Q2 cos u (1)
+cos/cosQsinu(t),
sin/ sinu (1)}
ry = j o F
x (t) = r () [cos 2cosu (r)
—cos/sin 2 sinu (7)]
y(t) =r(t)[sin2cosu ()
+ cos/ cos Q2sinu (t)]
z(t) = r(¢) [sin/ sinu (1)]
¢ (t) := arctan [y (¢) /x (¢)]
¢ ()

v (1)

Av (1)

v (1)

Ve, =V F
vy = V'j
%

VO

K := mengasinl/

Mb\/ 1 - 62
1:= {cos 2, sin 2, 0}

m = {—cos/sin £,
cos/ cos 2, sin/
h=rxv

h = nga*v/1 — 2

One of the two terms entering the
instantaneous shift of the mean anomaly
Eccentric anomaly

Position vector with respect to the central body
Instantaneous shift of the position vector
Time-dependent distance from the central body
Constant radius of a circular orbit

Radial unit vector

Cosine of the angle between Jand r
Keplerian x coordinate

Keplerian y coordinate

Keplerian z coordinate

Azimuthal angle in the reference plane {x, y}
Azimuthal angle in the equatorial plane

of the primary

Velocity vector

Instantaneous shift of the velocity vector
Magnitude of the velocity vector

Projection of v onto the direction of r
Projection of v onto the direction of J
Radial velocity of a spectroscopic binary
Radial velocity of the barycentre of a
spectroscopic binary

Semiamplitude of the radial velocity

curve of a spectroscopic binary

Unit vector directed along the line of the nodes
towards the ascending node

Unit vector directed transversely

to the line of the nodes in the orbital plane
Orbital angular momentum per unit mass
Magnitude of the orbital angular momentum
per unit mass
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h:= {sin / sin €2,

—sin/ cos 2, cos/}

C

C=

t=hxt
= {—sinu (f) cos Q
—cos/sinQcosu (1),
—sin Qsinu (¢)
+ cos/cos2cosu (1),
sin/ cosu ()}

A =A-r

A=A 7T

Ah =A 'il

Clcpr

Slcpr

lepr

T

Slcpr

C}llcpr

Slcpr

h

R, (f) :=Ar-F

R.(f):=Ar-1

R (f):= Ar-h

V. (f) =Av.F

V.(f) =Av-1T

Vi (f) == Av-h

npp

Notations and Definitions

Unit vector of the orbital angular momentum
such that 7 x it = h

Laplace—Runge—Lenz vector per unit mass
Laplace—Runge—Lenz unit vector per unit mass
Transverse unit vector

Radial component of 4

Transverse component of A

Normal component of 4

Cosine coefficient of the radial component of a
1-cpr acceleration

Sine coefficient of the radial component of a
1-cpr acceleration

Cosine coefficient of the transverse component
of'a 1-cpr acceleration

Sine coefficient of the transverse component
of'a 1-cpr acceleration

Cosine coefficient of the normal component
of'a 1-cpr acceleration

Sine coefficient of the normal component

of'a 1-cpr acceleration

Radial component of the instantaneous shift

of the position vector

Transverse component of the instantaneous shift
of the position vector

Normal component of the instantaneous shift
of the position vector

Radial component of the instantaneous shift

of the velocity vector

Transverse component of the instantaneous shift
of the velocity vector

Normal component of the instantaneous shift
of the velocity vector

Damour—Deruelle mean motion

(Damour and Deruelle, 1985, Equation (3.7))
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er Damour—Deruelle proper time eccentricity
(Damour and Deruelle, 1986, p.272)

e A member of the Damour—Deruelle parametrization
(Damour and Deruelle, 1985, Equation (3.8b))

ey A member of the Damour—Deruelle parametrization
(Damour and Deruelle, 1985, Equation (4.13))

e, A member of the Damour—Deruelle parametrization

(Damour and Deruelle, 1985, Equation (6.3b))

8 A member of the Damour—Deruelle parametrization
(Damour and Deruelle, 1986, Equation (20))
dag A function of the osculating Keplerian semimajor axis, eccentricity
and true anomaly at epoch (Klioner and Kopeikin, 1994, Equation (14))
deg A function of the osculating Keplerian semimajor axis, eccentricity
and true anomaly at epoch (Klioner and Kopeikin, 1994, Equation (14))
ag A function of the osculating Keplerian semimajor axis
and eccentricity (Klioner and Kopeikin, 1994, Equation (28))
er A function of the osculating Keplerian semimajor axis
and eccentricity (Klioner and Kopeikin, 1994, Equation (29))
& A constant of integration (Kopeikin and Potapov, 1994, Equation (4.5))
& A constant of integration (Kopeikin and Potapov, 1994, Equation (4.6))

B.7 Relevant Parameters of a Hierarchical Triple System

B.7.1 Physical and Orbital Parameters of the Third Body

M Mass
J’ Angular momentum

J = {f;, f;, f;} Unit vector of the angular momentum

r Distance

a Semimajor axis

ny Keplerian mean motion

Ty Orbital period

e Eccentricity

n Orbital angular momentum per unit mass

i Unit vector of the orbital angular momentum
I Inclination

94 Longitude of the ascending node

' Argument of pericentre

f True anomaly
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Appendix C

pK Disturbing Functions from the Spacetime Metric

In GTR, the disturbing function R for a given mass-energy distribution to be used
in Equations (2.27)—(2.32) can be obtained from the pK part of the Lagrangian per
unit mass L (Brumberg, 1991; Soffel and Brumberg, 1991) in the following way.

For a stationary distribution of mass-energy, the spacetime metric tensor com-
ponents are, in spatially isotropic or harmonic coordinates to the pN order!
(Brumberg, 1991),

U 2U?

g0 = 1+ho =14+ = +— +0(1/), (C.1)
(& C

goi >~ hoy =0 (1/c%),i=1,2,3, (C2)

2U
gi~—1+h;=— (1 - —2> s;+0(1/cY),ij=1,23,  (C3)
C

where hyg, @, 8 = 0,1,2,3 are the pN corrections to the Minkowskian values
of the spacetime metric tensor, hy;, i = 1,2,3 are connected to the mass-energy
currents of the source, I/ is the exterior gravitational potential, and

1fori =
8= i,j=1,2,3, (C4)
0fori # J,

is the Kronecker delta (Olver et al., 2010). For an isolated, rotating body of mass
M and angular momentum J, assumed spherically symmetric, one has

L

U=Ux)=-", (€5)
r
2Gej J'x"
hOi = 3.3 1= 1129 3> (C6)
cr

I The terms h wvs 1,0 = 0,1,2,3 are the pN corrections to the Minkowskian components of the spacetime
metric tensor.

190
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where

+1 if (@ j,wyis(1, 2,3),2,3,1),0or(3, 1, 2)
€jw == —1 if (G, j, w)is (3,2, 1),(1, 3, 2),0r (2, 1, 3) (C.7)
0 ifi=j,orj=w,orw=1i

is the 3—dimensional Levi-Civita symbol (Olver et al., 2010), and x*, k = 1,2,3
are the Cartesian coordinates x,y,z; in Equation (C.6), the Einstein summation
convention (Olver et al., 2010) is applied to the dummy summation indexes j and w.

To the 1pN level, the Lagrangian per unit mass is given by (Brumberg, 1991,
p. 56, Equation (2.2.53))

L=Lx+L", (C.8)
where?
1 1 1/
In=3v - Ec2h§0 ), (C.9)
1 A a 1 2 1 . .
LN = _Eczhgg/ ) 4 5 = gho? + Shd, = Shyh —chopd,(C.10)

(,’2 64 .
where h(g(l)/ ) and hgé/ ) denote the 1pN and 2pN parts of hyg, respectively; both of
them are needed to keep the Lagrangian to the 1pN level. To this aim, it is intended

C2 . .
that only hg(l)/ ) enters the third and fourth terms of Equation (C.10).

C.1 The 1pN Gravitoelectric Lagrangian per Unit Mass

As an example, from Equation (C.5) and by assuming hy;= 0, i=1, 2,3, Equa-
tion (C.10) yields the 1pN gravitoelectric Lagrangian per unit mass of a static,
spherically symmetric body. It turns out to be

PV 12mPp — 4
8c2r?

LN = (C.11)

Calculated onto the unperturbed Keplerian ellipse with Equations (2.7)—(2.8) and
Equation (2.11), Equation (C.11) becomes

W2 {9 +26¢* + e* +4e[4 (2 + ) cosf + 3ecos 2f |}

8a%c? (1 — 62)2

LN (f) = (C.12)

2 Here, the velocity components Vi, i =1,2,3 are calculated with respect to the coordinate time ¢ (Brumberg,
1991).
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Furthermore, it is

4 6 2
y.V,LPN = w (C.13)
2¢%r
which, evaluated onto the Keplerian ellipse, yields
2 (1 4 e* +2ecosf) (7 + * + 8ecos
vV, LN () = & ( /) /), (C.14)

2c2aq? (1 — 62)2

The averages of Equation (C.12) and Equation (C.14) are calculated in Equa-
tions (3.19)—(3.20) to obtain Equations(3.13)—(3.17) to obtain Equations (3.13)—
(3.18).

C.2 The 1pN Lense-Thirring Lagrangian per Unit Mass

From the last term in Equation (C.10) containing the off-diagonal metric tensor
components related to the body’s angular momentum, one has

M= (Jxr) Cv. (C.15)

Equation (C.15), up to the minus sign and the test particle’s mass,> can be inferred,
for example, from Barker and O’Connell (1979, Equation (2.18), p. 155) for the
potential energy

Vs, = % (2 + ﬂ) S? . (rxP) (C.16)
c’r 2my

of two bodies of masses m;, and m;, one of which carries the angular momen-
tum S, separated by a distance » and moving with relative velocity v in the limit
my > my, with the identification m, — M, m; — m, where m is the test par-
ticle’s mass. Furthermore, it is assumed that S is the spin angular momentum
of the massive body M. Thus, r x P in Barker and O’Connell (1979, Equa-
tion (2.18), p. 155) is the orbital angular momentum r x mvy of the motion of the
test particle around M. Calculated onto the unperturbed Keplerian ellipse with
Equations (2.7)—(2.8) and Equation (2.11), Equation (C.15) becomes

2ng GJ (1 4 ecosf)?
cta (1 — 6‘2)5/2

—[(fxi)-ﬁz]cosu(ecosw+cosu)}. (C.17)

LY (f) = {[(jxrh)-i]sinu(esina)—i—sinu)

3 Recall that the disturbing function is the opposite of the potential energy per unit mass of the pK effect of
interest.
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Note that, since Equation (C.15) is linear in v, it is
vV, [ =M (C.18)

The average of Equation(C.17) is calculated in Equation(5.36) to obtain
Equations (5.30)—(5.35).

C.3 The Newtonian J, Lagrangian per Unit Mass

It should be noted that Equation (C.9) is able to provide a pK Lagrangian of New-
tonian origin if deviations from Equation (C.5) in the external potential of the
source are present. It is just the case when the oblateness ./, of the central body
is taken into account. Indeed, from

W R. ?
U=Ux+ AU, = - {1 — (7) J2Ps (w)} (C.19)

and the second term of Equation (C.9), it turns out that the pK Lagrangian due to
Jz is
LR (—1 +372)
213
By evaluating Equation (C.20) onto the Keplerian ellipse, one gets
LR (1 + ecosf)?
243 (1 — 62)3
where J1 and Jm are given by Equations (D.1)—(D.2).

The average of Equation(C.21) is calculated in Equation(7.34) to obtain
Equations (7.28)—(7.33).

L” =

. (C.20)

L ()=

[-1+3(Jlcosu+ Jmsinu)’],  (C.21)
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Appendix D

Spin-Orbit Orientation and Lorentz-Violating
Coefficients

Let the cosines of the angles between J and the unit vectors A, m, h be defined as
follows:

Jl:=J-1 (D.1)

Jm = J - in (D.2)

Jh:=J-h (D.3)

Here, the coefficients T/" j = }’2’ ... 6, characterizing the mutual spin-orbit
orientation to the second order in J, are displayed. They are

T =1, (D.4)

Ty = J1% + Jn?, (D.5)

Ty = J1% — g, (D.6)

Ty := Jh J1, (D.7)

Ts := Jh Jm, (D.8)

To := J1 Jm. (D.9)

The introduction of 7} is motivated just by consistency reasons in writing down
expressions like, for example, Equations (7.22)—(7.27).
By parameterizing J as, for example,

J; = cosdy cosay, (D.10)
;:coséjsinaj, (D.11)
J. =sinéy, (D.12)

the building blocks of T,-, j = 1,2,...6, namely Equations (D.1)—(D.3), can be
written as

J1l = cosdycos (ay — 2), (D.13)

194
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Jm = sin/ sind; + cos/ cos §; sin (c; — 2), (D.14)
Jh = cos/sind; — cosdysin/ sin (c; — 2) . (D.15)

Furthermore, it is

(j X ﬁz) - (.i xi) «im =2coslsind; —2cosdysinlsin(ay; — Q). (D.16)

D.1 Equatorial Orbits: General Spin Orientation

Equatorial orbits are characterized by the common direction of the orbital angular
momentum /4 and the spin angular momentum J of the primary. Furthermore, since
both / and m lie in the equatorial plane, they are orthogonal to J. Thus,

J1=0, (D.17)
Jm = 0, (D.18)
Jh = %1, (D.19)

and Equations (D.4)—~(D.9) reduce to

T =1, (D.20)
T, =0, (D.21)
T;=0, (D.22)
Ty =0, (D.23)
Ts =0, (D.24)
T = 0. (D.25)

D.2 Polar Orbits: General Spin Orientation

In polar orbits, the spin angular momentum J of the central body, assumed arbitrar-
ily oriented in space, lies somewhere in the orbital plane between [ and 7, so that
it is orthogonal to the orbital angular momentum #; this condition is accomplished
with I = 90° and 2 = «. According to Equations (D.13)—(D.15), one has

J1l = cosdy, (D.26)
Jm = sin§y, (D.27)
Jh =0, (D.28)

so that Equations (D.4)—(D.9) become

T =1, (D.29)
T =1, (D.30)
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T5 = cos 25y, (D.31)
Ty =0, (D.32)
Ts =0, (D.33)
/7:6 = cosdysind;. (D.34)

D.3 Known Spin Orientation

If, as in the case of the Earth, the direction of J is known with sufficient accuracy,
it can be assumed as, say, the z direction of an equatorial reference frame. Thus, for
a generic orbital configuration referred to the latter and 6, = 90°, it is

J1 =0, (D.35)
Jm = sin/, (D.36)
Jh = cos/, (D.37)

as per Equations (D.13)—(D.15); Equations (D.4)—(D.9) become

T =1, (D.38)
T, = sin’1, (D.39)
Ty = —sin’1, (D.40)
Ty =0, (D.41)
Ts = cosIsinl, (D.42)
Ty = 0. (D.43)

D.4 Lorentz-Violating Gravitomagnetic Coefficients

The coefficients entering Equations (10.52)—(10.54) are defined as

A

sl:=s-1, (D.44)
sm:=s-im, (D.45)
sh:=s-h, (D.46)
shl:=s- (iz x i) , (D.47)
shm:=s- (ﬁ X ﬁ1> ) (D.48)
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Appendix E
Coefficients of the Lense—Thirring Orbital Shifts

The coefficients entering the instantaneous LT shifts of the Keplerian orbital
elements of Equations (5.26)—(5.28) are listed here. They are

E.1 The Inclination

I{J = —4(f — fo) + 2 (sin 2uy — sin 2u) + e [sin (3fy + 2w)

— sin 3f + 2w) — 4 (sinf — sinf) + sin (fo + 2w)

— sin(f + 2w)], (E.1)
" = =2 (cos2ug + cos 2u) + e {—3 [cos (3fy + 2w)

— cos 3f + 2w)] + 2 (cosf — cos fo) — cos (fo + 2w)

+ cos (f +2w)}. (E-2)

E.2 The Longitude of the Ascending Node

NI = =2 (cos 2ug — cos 2u) + e {—3 [cos (3fy + 2w)

—cos 3f + 2w)] — 2 cosf + 2 cosfy — cos (fo + 2w)

+ cos (f +2w)}, (E3)
NyT =2[=2(f —fo) — sin2uy + sin 2u] + e[ sin (3fy + 2w)

+ sin Bf + 2w) — 4 (sinf — sin fy) — sin (fy + 2w)

+ sin (f 4+ 2w)]. (E4)

197


https://doi.org/10.1017/9781009562911.015

198 Coefficients of the Lense—Thirring Orbital Shifts

E.3 The Argument of Pericentre

ILT = ecot/ {2 (cos2uy — cos2u) + e[cos (3fy + 2w) — cos 3f + 2w)
+ 2 (cosf — cosfy) + cos (fo + 2w) —cos (f + 2w)]}, (E.5)
T =ecotl {2[2 (f —fo) + sin2ug — sin 2u] + e[sin (3fy + 2w)
— sin 3f 4+ 2w) + 4 (sinf — sinfy) + sin (fy + 2w)
— sin (f 4+ 2w)]}, (E.6)
Gi" = 4{sinf —sinfy + e[2(f — fo) + e (sinf — sinfy)]} . (E.7)
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Appendix F
Coefficients of the Newtonian J, Orbital Shifts

Here, the coefficients A{z, . H‘éz entering Equations (7.22)—(7.27) of the New-
tonian J,-driven instantaneous variations of the Keplerian orbital elements are
explicitly displayed. In the following, [/ — fo] denotes the same preceding
expression in which 1" is replaced with f;.

F.1 The Semimajor Axis

A{z =4e[-3 (4+ez) cosf + e (=6 cos2f — e cos 3f)]

—1f > fol, (E1)
A7 :=6e[3 (4+¢) cosf +e (6 cos2f +ecos3f)] —[f = fol, (E2)
Agz =3 (e'3 cos(f —2w) +6e {[26 + (4+€2) cosf] cos 2u

+e cos (4f +2w)} + € cos (5f + 2w)

— 16 sinf sin (f + 2w)) — [f — fol, (E3)
.Af =0, (F4)
AL =0, (F5)

AP =6 (16 cos (f +2w) sinf + e {—¢€ sin(f — 2w)
+6[2e + (4 +¢*) cosf] sin2u
+6e sin (4f 4 20) + € sin (5 + 20)}) — [f — fl. (F.6)

F.2 The Eccentricity

5{2 =43 (4+ez) cosf +e (6 cos2f +e cos3f)| — [f — fol, (E7)
& == —6[3 (4+¢*) cosf +e (6 cos2f +ecos3f)]—[f = fol, (ES)
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J2
53

J2
&

J2
85

J2
86

Coefficients of the Newtonian J, Orbital Shifts

436 sin 2f sin2u + 120 sinf sin (f + 2w)} — [f — fol,

=0,
=0,

=6

sin(f —2w) — 8 [3 sin(f + 2w) 4+ 7 sin 3f + 2w)]

— 2e {24 [3 cosf cos2u+5 cos (f + 2w)] sinf

+e [33 sin(f 4+ 2w) + 17 sin 3f + 2w) + 3 sin (5 + 2w)]}

—[f = fol.
F.3 The Inclination
TP =0,
Iy =0,
I3Jz =0,
T :=6f + 6e sinf + 3 sin2u + 3 e sin (f + 20)
+ e sin(3f +2w) — [f — fol,
ISJZ = —{3 cos2u—+e [3 cos (f + 2w) + cos (3f + 2w)]}
— [/ = fol,
TP = 0.
F.4 The Longitude of the Ascending Node
N =0,
Ny =0,
/\/'3J2 =0,
N4Jz = —{3 cos2u+e [3 cos (f + 2w) + cos (3f + 2w)]}
— [/ = fol,
N = 6f + 6e sinf — 3 sin2u

J2
N

—e [3sin(f 4 2w) +sin (3f + 2w)] — [f — fol,
= 0.

=—4[3cos(f+2w)+7cos3f +2w)]+e{—e [3 cos(f —2w)
433 cos (f 4+ 2w) + 17 cos Bf + 2w) + 3 cos (5f + 2w)]

(F.9)
(F.10)
(F11)

(F.12)

(F.13)
(F.14)
(F.15)

(F.16)

(F.17)
(F.18)

(F.19)
(F.20)
(F21)

(F.22)

(F23)
(F.24)


https://doi.org/10.1017/9781009562911.016

J2
1

J
gy
J:
g5’

J.
gy

5

J2
6

E6 The Mean Anomaly at Epoch

FE.5 The Argument of Pericentre

=48ef +8 (6+5¢ +6e cosf + e cos2f) sinf — [f — fol,
=6 [—126f—2 (6—|—5€2+6e cos f+e? cos2f) sinf]—[f — fol], (F26)
=4 [3sin(f +2w) — 7 sin(3f 4+ 2w)]
— e{36 [3 cos (f 4+ 2w) + cos (3f + 2w)] sinf
+e [3 sin(f —2w) + 21 sin (f + 2w)
+ 11 sin 3f + 2w) + 3 sin (5F + 2w)1} — [f — fol,
= —8e {3 cos2u+ e [3 cos (f + 2w) + cos (3f + 2w)]} cot/
—[f = fol,
= —8e cot/ {—6f + 3 sin2u
+e [—6 sinf + 3 sin (f 4+ 2w) + sin 3f + 2w)1} — [/ — fol,

= —6¢?

cos (f — 2w) + 6(—4 + 7 ¢€%) cos (f + 2w)

+ 56 cos (3f +2w) +2e {11 e cos (3f + 2w)
+3e cos(5f + 2w) — 36 sinf [3 sin (f + 2w)
+ sin 3f +20)1} — [f — fol.

Jo o
WP =
Jo
W =

Jr o
WP =

Jo
MW =
Jo o __
HE =
Jo o
HE =

F.6 The Mean Anomaly at Epoch

—4[3 (4 — 5¢°) sinf — 12¢f + e (6sin2f + esin3f)]

— [/ = fol,

12 [—6ef+ (6 —7¢* 4 6ecosf + & cost) sinf]

—[f = fl,

—4[3sin (f + 2w) — 7sin 3f + 2w)]

— e{36sin2u — 18sin (4f + 2w) + e[—3 sin (f — 2w)
4+ 51sin (f 4 2w) + 13 sin (3f + 2w) — 3 sin (5 + 2w)]}
—Lf = fl,

0,

0,

8[3cos(f 4+ 2w) — 7cos Bf + 2w)]

+ 2e{36 cos2u — 18 cos (4f + 2w) + e[3 cos (f — 2w)
+51cos(f + 2w) 4+ 13 cos (3f + 2w) — 3 cos (5f + 2w)]}
—Lf = /ol
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(F.25)

(F27)

(F28)

(F.29)

(F.30)

(E31)

(F32)

(F.33)
(F.34)
(F.35)

(F.36)
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F7 @ (7
Here, the coefficients ]—"sz, j=1,2,...6 entering Equation (7.48) for the Newton-
ian J,-induced contribution to the instantaneous variation of the mean anomaly due
to @ (f) are displayed.

FP = 2A0 (f) (1 + ecosfp)?
NI
B 2 (1 4+ ecosf) (1 + ecosfy) [_2 (_1 +€2) U=
+e(cosfo [—2(—1+ez) f — /o)
+e(4+ %) sinf] + (4 + &%) (sinf — sinfy)
+cosf {—2(=1+¢€") (1 +ecosfy) (f —fo + esinf)
+e[—4— e +2e(—1+¢*) cosfy]sinfy}
+e(—1+¢")sin2fy)], (E37)
.7-"‘2]2 =3A0 (f) (1 +ecosfy)’
3V1-é?
B 4(1+ecosf) (1 +ecosfy) ((1 T ecosfo) {2 (_1 +€2) o)
—fo) (1+ecosf)—|—e[—4—ez+26(—1+ez)cosf]sinf}
—e(l+ecosf) [—4 — & +2e(—1+ &%) cosfo] sinfy), (F.38)
.7-"‘3]2 =3A0 (f) (1 + ecosfy)* sin 2uy
N Vi=é&
16 (1 +ecosf) (1 + ecosfy)
+ (—1 + ez) [(6 + 462) sin 2fy + e (5sin 3f) + esin4ﬁ))])
+2 (1 4+ ecosfy) (cos2w {2lesinf — (—1 + &%) [(6 + 4¢*) sin2f
+ e (5sin3f + esin4f)]} —4(—1 +ez) (1 + ecosf) (cosf
—cosfy) [e (2 4 cos2f) + 3 cosfy + cosf (3 + 2ecosfy)

[2(1 4 ecosf)cos2w (—21esin fy

+ ecos2fy] sin2w)], (F.39)
"Tf =0, (F.40)
FP=o, (F41)

fgz =6A0 (f) (1 + ecos f;)* sin 2uy

(1 — 62)3/2 (4e cos’ f + 3 cos2f — decos® fy — 3 cos 2fo) cos2w
— 5 )

(F42)
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Appendix G

Coefficients of the Total Mixed Net Orbital Shifts

of the Order of J, /c?

Here, the total mixed net shifts per orbit of the order of O (J2 / cz), calculated

~ 2 ~ 2
in Section8.2.1, are treated. The coefficients A{Z/ ¢ ,...H?/ “ entering Equa-

tions (8.31)—(8.36) are as follows.

G.1 The Semimajor Axis

~ 2

A{Z/C =0,
~J /C2 L
AP =0,

~

A‘;Z/Cz := 8 (1 + ecosfy)’ cos 2w sin2fy + {4e (3 + €*) cosfy
+4(2+3¢*) cos2fy +e[3 (4 + €%) cos 3y
+e (12 4 € + 6 cos 4fy + e cos 5fy) ]} sin 20,

~ 2
AP =0,
~ 2
AP =0,

2(?/02 = —2{4e (3 + &) cosfo + 4 (2 + 3¢”) cos 2f;
+e[3(4+€*)cos3fy +e (12 + € + 6 cos 4fy

+ecos 5fy)]} cos 2w + 16 (1 + ecosfo)3 sin 2fj sin 2w.

G.2 The Eccentricity

(G.1)
(G.2)

(G.3)
(G.4)
(G.5)

(G.6)

(G.7)
(G.8)
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'IVJZ /c*
sz /c?

sz /c*

sz /c?

sz /2

~

Jz/c2
M
)2
N

NI
3

e
4

Coefficients of the Total Mixed Net Orbital Shifts of the Order of J» /c*

SR/ = _(4[3sin (o + 20) + Tsin (3fy + 20)]
+e [—36 sin (fo — 2w) + (20 + 19e2) sin 2w
+ 60 sinuy + 18 sin (4fy) + 2w)
+ 33esin (fy + 2w) + 17esin 3fy + 2w)
+ 3esin (5f) + 2w)]},
5’4{2/02 =0,
gsjz/cz =0,
§6J2/c2 = 8[3cos (f + 2w) + 7 cos (3fy + 2w)]
+ 2e[3ecos (fy — 2w) + (20 + 19¢%) cos 2w
4+ 60 cosuy + 18 cos (4fy + 2w)

+33ecos (fy + 2w) + 17ecos (3fy + 2w)
4 3ecos (5fp + 2w)] .

G.3 The Inclination

=0,
=0,
=0,
= 5¢* + 3 cosuy + e[—16cosfy + 2ecos 2w
+ 3 cos (fo + 2w) + cos (3fy + 2w)],
= 3sinug + e[2esin 2w + 3 sin (fy + 2w) + sin (3fy + 2w)],
= 0.

G.4 The Longitude of the Ascending Node

=0,
=0,
=0,
= 3sinug + e[2esin 2w + 3 sin (fy + 2w) + sin (3fy + 2w)],

(G.9)
(G.10)
(G.11)

(G.12)

(G.13)
(G.14)
(G.15)

(G.16)
(G.17)
(G.18)

(G.19)
(G.20)
(G.21)
(G.22)
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G.6 The Mean Anomaly at Epoch

,/V'SJZ/CZ = 5¢> — 3cosuy — e [16 cosfo + 2ecos 2w

4+ 3 cos (fy + 2w) + cos (3fy + 2w)],
A2 = 0
o =0.

G.5 The Argument of Pericentre

~1J2/Cz ‘— _de (44 + 17¢* — 64e cosfo) sin/,
G2I° = 6e (44 + 17¢> — 64ecosfy) sin 1,
'g“sz/cz :=2{4[-3cos (fy + 2w) + 7 cos 3fy + 2w)]

+e[—3ecos (fy — 2w) + 2 (—10 + 9¢) cos 2w + 60 cos ug

+ 18 cos (4fy + 2w) + 45ecos (fy + 2w)
4+ 19¢e cos (3fy + 2w) + 3ecos (5fy) + 2w)]} sin/,
Cﬁ/’f/"2 ;= —16ecos ! {3sinuy + e[2esin2w + 3 sin (fy + 2w)
+ sin 3fy 4+ 2w)]},
~g2/62 := 16ecos/ {—Se2 4+ 3cosuy + e[16cos fy + 2ecos 2w
+ 3 cos (fo + 2w) + cos 3fy + 2w)]},
G2/ = 4sin T {4[—3sin (fy + 20) + 7sin (3fp + 20)]
+e[3esin (fy — 2w) + 2 (—10 + 9¢) sin 2w + 60 sin g
+ 18 sin (4fy + 2w) + 45¢esin (fy + 2w)
+ 19esin (3fy + 2w) + 3esin (5fy + 2w)]} .

G.6 The Mean Anomaly at Epoch

P = de ]88+ 5¢ — 16VT—¢2 =3¢ (21 + 81— &)
—el3e (7+4\/1 - eZ) +3 (—17 +6v1 - eZ)] cosf

35

+e
HE = 6o |-88 — 5t + 16V/1 =& + 3¢ (21 + 8V/1 - ¢2)
tel3e? (7 141 - e2> +3 (—17 +6v1— ez)] cosf

205

(G.23)
(G.24)

(G.25)
(G.26)

(G.27)

(G.28)

(G.29)

(G.30)

[8 (5 —3/1— e2) c0s 2y + ¢ (5 —4/1- e2) cos 3f0]} . (G31)

+4e*y/1 — €2 (6 cos 2fy + ecos 3fy) — 5¢* (8 cos 2fy + ecos 3fo)} ,

(G.32)
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~J/c?
H32/

7:2‘/2 /c?

Coefficients of the Total Mixed Net Orbital Shifts of the Order of J» /c*

= 3e? (2 — 7€) cos (fy — 20)

+ 96ey/1 — €2 (1 + ecos f)* cos ug

+ 8[3 cos (fp + 2w) — 7 cos (3fp + 2w)]

+ e [—2 (=20 + 7e* + 1364) cos 2w

— 12 (14 + 11€%) cosug — 18 (2 + 3¢%) cos (4fy + 2w)

—3e (74 + 9¢%) cos (fy + 20) — e (138 + 31¢%) cos (3/) + 2w)

—3e (2 +3¢%) cos (5/y + 20)], (G.33)
=0, (G.34)
=0, (G.35)

=-2 [362 [2 + & (—7 +4v1 — ez)] sin (fy — 2w)

+2e [—20 +13¢" + & (7 - 36@)] sin 2

+8[—3sin (fy + 20) + 7sin (3f + 20)]

e(12[14—8 1—e2+e2(11—12 l—ez>]sinuo
+18[2+e2(3—4 1—e2)]sin(4ﬁ)+2w)

+e{3[74—48 1—e2+e2(9—12 1—e2>]sin(fo+2a))

+ [138 1441 -2+ & (31 - 36@)] sin (3fy + 20)
+3[2+e2<3—4 1—62>]sin(5f0+2a))}>]. (G.36)
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Appendix H
The Coefficients of the Tidal Orbital Precessions

H.1 The General Expressions of the Net Orbital Precessions
Here, the coefficients entering Equations (9.8)—(9.12) are explicitly displayed.

H.1.1 The Eccentricity
The coefficient £%¢ entering Equation (9.8) is
W = _25in2wsin Q (2T, cos 2 + T3 sin ) cos® 7
+ 2{2sin/sin2w (T3, cos 2 — T3 sin )
+ cos2w 2T co0s2Q2 + (2To, + Ts3) sin282]} cos 1
+ 4cos2wsin/ (T3; cos 2 + T3, 8in 2)
4+ sin2w [Ty (cos 2] + 3) cos2Q2
4+ T33 (—cos2/ + cos2Q + 2) — 2T, sin2L2] . (H.1)

H.1.2 The Inclination
The coefficient ZU¢ entering Equation (9.9) is

744 = 10e? cos 21 sin 2w (T3, cos 2 — Ts; sin )
5 .
— Eez sin2/sin2w [—3T33 + 2T + T33) cos2Q2 — 2T,; sin2Q2]

+ 2cos/ (Se2 cos 2w + 3é + 2) (T31cos 2 + T3, sin Q)
— (Se2 cos2w + 3¢* + 2) sin/ [2T,; cos2Q2
4+ 2Ty + T33)sin2Q]. (H.2)
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H.1.3 The Longitude of the Ascending Node
The coefficient N entering Equation (9.10) is
N = 20¢? sin 2w {cos I (T3; cos 2 + T3, sin 2)
— sin/ [Ty cos2Q 4+ (2T, + T33) cos 2 sin 2]}
+ 4cos2/ (Se2 cos2w — 3¢e* — 2) (T318in 2 — T3, cos )
+ (5¢% cos2w — 3e* — 2) sin 27 [—3T3;
4+ (2T + T33) cos2Q2 — 2T,; sin2Q2]

H.1.4 The Argument of Pericentre

The numerical coefficients k}id, i = 1,2 entering Equation (9.11) are

tid _
kl -_

—

b

tid _
k2 -_

B

N —

while P14, i = 1,2 are

P}id =-2 (—1 + ez) cos’ w[3T33
+2 2Ty 4+ T33)cos2Q + T3, cos 2cot/
— (8T cos 2 + Ty cotl) sin 2],
Py = sin® 0 [3Ts3 (—1 + 6€° 4 5 cos 27)
+ (2T2 + T33) (=7 + 2¢* — 5cos 21) cos 22
+4T3; (—4 + 4€* + 5cos 21) cos Q cot ]
— 4T3, (—4 +4€® + 5cos 2I) cot I sin
+2T2; (7 — 2¢° + Scos2l) sin2Q] — 5[2 — 3¢
+ (=2 + %) cos 2I] sin 2w esc I (T3; cos 2 + T3, sin )
+ 2sin2wcos/ {5 (—2 + ez) T, cos2Q2
+[(—8 4 3€%) Tor — 3T33] sin 22}
+[-4 (=1 + &) T11 + € T33] cos ! sin 2w sin 2€2.

H.1.5 The Mean Anomaly at Epoch
The coefficient 7' entering Equation (9.12) is

H = —5 (1 + ¢?) cos 2w [(2T2 + T33) (3 + cos 27) cos 2€2
+6Ts3sin’ I 4+ 4sin 2] (T3, cos 2 — T3;8in 2)

(H.3)

(H.4)

(H.5)

(H.6)

(H.7)
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— 2T (3 +cos2l) sin2Q] — (7 + 3¢*) {Ts3 (1 + 3 cos 27)
+4sin2/ (— T3, cos 2 + T3, sin 2)

+2sin® I [(2Tx, + T33) cos 22 — 2T sin 2Q]}

+ 20 (1 + €%) sin2w {2 sin7 (T3; cos © + T3, sin Q)

4+ cos/[2T,1 cos2Q + (2T + T33) sin2Q2]}. (H.8)

H.2 The Net 1pN Gravitoelectric Tidal Coefficients

The 1pN gravitoelectric tidal coefficients of Equations (9.21)—(9.26), averaged over
Ty, turn out to be

TN = 12cos 21 + 2 cos 2w (1 — cos21,>
+ cos2Q [24 sin®/ +2 (cos 2f + 3) cos 2a)/]
— 8cos/ sin2Q sin2w + 4, (H.9)

TN = —12cos 2 — 2 cos 2w’ (1 - cos2]/)

+ cos 2Q [24 sin® [’ +2 (cos 2/ + 3) cos Za)/]

— 8cos/ sin2Q sin2w — 4, (H.10)
TN = sin? I cos2w +3cos2l + 1, (H.11)
TN = 4cos I cos2Q sin2w’

n [12 sin? I + (cos 21 + 3) cos 2&} sin 22, (H.12)
7—113pN =sinl [cos Q' sin2w + cos/l <cos 20 — 6) sin Q/] , (H.13)
TN =sinl [cos ! (cos 20 — 6) cos Q — sin2w sin Q/] . (H.14)

H.3 The Net Gravitomagnetic Tidal Coefficients

The gravitomagnetic tidal coefficients of Equations (9.28)—(9.33), averaged over
Ty, turn out to be

T = 40¢” sin 20 (2JAZ cos2l + 3.fx sin 2/ sin Q/> sin 262
+5c0s 2w { 125in 37 (JAX sin Q' —fy cos Q) sin® Q'

+ sin/ [fy (cos Q +15 cos3§2/) —3J, (sin Q+5 sin3Q,)]} ¢
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—20 (3é2 + 2>f cos3l —4cosl {Sj 082w’ [6 sin® I’
+ (3 cos2l + 1) cos 282 ] e — 10J sin/ sin 2w’ (sin Q — 3sin3Q/) éz
+ (3¢ +2) (20c0s20sin? 7 +3))|
+2 (3é2 + 2) {20 sin3/ (f cos —fx sin Q/> sin” Q'
+ sin/ [J (cos Q + 15cos 3&2) — 3Ji (sin Q+5 sin3Q/>]} s
(H.15)

T = 2Oe,2f; (cos Q +3cos 3Q,> sin 2/ sin 20’

— 806", cos 21 sin 20 sin2@ — 20 (3¢ +2), cos 31

+ 20 (Séz cos2w — 66 — 4) cos® Q' sin 3/ <JA; sin —f; cos Q,)

+ 4é2 cosl {Sf; cos 2w [(3 cos2l + 1) cos2Q — 6sin’ [/]

+ 120é2j cos? Q' sin/ sin2w sin Q'

+ (3" +2), (20c0s 20 sin’ I — 3)}

+ (Se/2 cos2w + 66 + 4) sin /' [ (cos Q

— 5cos 352’) _J (st + 155in3Q )] (H.16)
T3 = —20¢” sin2/ sin 2 <J; cos +Jy sin )

+5¢° cos 29 [12j; cos I’ sin I+, cos @ (3 sin3/ — sin 1’)

+ Ji <sin1, — 3sin 31,> sin Q] +2 <3é2 + 2) [3f; cosl

+ SJA/Z cos3l — (sinl/ + Ssin 3]l) (JA; cos —JA; sin SZ/)] , (H.17)
TS = —SOézf; cos 2/ cos 28 sin 2w

+ 206 sin2/ sin 20’ [Ji (cos Q' + 3 cos 39/)

+J, (sin @ = 3sin32)|

— IOf; cos3/ (3é2 cos2w — 6é2 — 4) sin 2’

—10J,cos /' (5¢ cos 20 + 6¢” + 4) sin 20
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+ 10 (3é2 c0s2w — 66 — 4) sin 3/ (f/y cos —f; sin Q) sin 2

+ (5é2 cos 2w + 66 + 4) sin/’ [Ji (cos Q' + 15cos 39/)

~J, (sin Q- 15 sinssz’)], (H.18)
T3 = —lOéz.f; cos 2w (sinl/ — 3sin 31/) sin Q'

+40¢” sin 20 [f; cos Q2 sin2/ + cos 2l (f/v cos 28 —f; sin 252/)]

—4(3¢" +2)J, (sinf +5sin30 ) sin @

+ 5¢° cos 3/ [3 cos 20’ (JA; cos 2Q +ny sin29/> +2 (3é2 + 2>j;]

+ ¢’ cos! {5 cos 2w’ [J; (12 sin? I 4 5 cos 252/) + 5JA,y sin ZQ/]

) (3e’2 +2)[20 <J cos 29 +J, sin 292 ) sin 7 + 3.1]} . (H19)
T3 = 106 cos 2 {f/y [—12 cos/ sin’ I + (5 cos! + 3 cos 31/> cos ZQ/]

— ij cos Q (sin[, — 3sin 31,> —JA; (5 cosI +3cos 31/> sin2§2/}

— 80¢” sin 200 [f; sin2/ sin Q' + cos 2/’ (JA; cos 2 —i—JA/y sin 29/)]

+4 <3é2 + 2) {—S.f,y cos3I — 2.;2 cos Q' (sinl/ +35 sin31,)

+ cos [20sin? /' (J, cos 262 —J,sin29) — 34, ]} (H.20)
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Appendix I

Coefficients of the Power-Law Mass Density Profile
Orbital Precessions

Here, the coefficients of the averaged disturbing function and of the resulting pre-
cessions of the pericentre and the mean anomaly at epoch of Section 10.7.2 are
explicitly displayed.

I.1 The Disturbing Function

The coefficients U}im, j = 1,2,3,4 of the averaged disturbing function of Equa-
tion (10.46) turn out to be

U= (—l+e(l+e) [I1+ (24 +3(=4+y)y]. (@D
U= —(+e(l-o’ [I1+ (=24 +3(=4+y)y], (12
UM = (1 +e)'™ [~1 —2e(5+2e) + 10y +12¢ 2 +e) y

—9(1+e’y*+2(1+ey’], (1.3)
UM = —(=14+e) (1 —e) [-1 = 2e (=1 +y)* (=5 +2y)
(24 )y (5420 + (=2 + ) (-1 +2p)]. (L4)

1.2 The Argument of Pericentre

The coefficients P]‘.‘m, j = 1,2,3,4 of the precession of the pericentre of Equa-
tion (10.47) turn out to be

PI™ = (—1+4¢") (14e)” {1+ 10e+4e* — 2[5+ 6e (2 +€)]y
+9(1+e)’y> =21 +e)’y> + 1145 (=2 +y)?
+28 (34 y) (=2+ ) +3(—4+7)y
+2e(=1+ ) [11+3(=4+1)v]}, )
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PI"= —(—14+e)(I+e)2(1+e)(1—e) (=34+y)(—2+y)
[-1+e& =2+ +7r]}. (1.6)
"= —(-14+o(l+o 1+ I+ (=2+y)
F3(A+Y)y 1= (2+y)y (=5+2y)
=28 (=34 ) (-2+ )’ (=1 +2y)
—2e(=34+y)(=2+y)(=1+y)(=1+4+2y)

—& (=2+y)[-26+y (63 —42y +8y?)]}, (1.7)
PI"= —(—14+e)(I+e)2(=1+e)(1—e) (=3+y)(=2+y)
[-1—=2e(=1+p) +y+(—2+y)(-1+2p)]}. (1.8)

I.3 The Mean Anomaly at Epoch

The coefficients Hj‘.im, j = 1,2,3,4 of the precession of the mean anomaly at epoch
of Equation (10.48) turn out to be

H" = (—1+e) |14+ [-1—-2e(5+2¢) + 10y + 122 +e) ¥
—9(1+e’y*+2(1+e)’y’]
+1+e)? (11426 (=24 ) (=1 +y) =3 (-4+ ¥y
—E (=24 V) (=1 42y)+e{ll +y[-34+309—-2y)y])

+e* {—86+y [114+y (—47+6)]})], (1.9)
H" = -2(1+e(1—e) (=2+ )3+ (—2+y)(~=1+y)
—dy +y?+E(=5+2y) (=5+3p)], (1.10)

B = (1+e)(1+e) (1 4+ 11+ (—2+ )2 +3(—4+1)v]
—1+e{l3+4e[12+e(13+2e)]} + 10y
— 2e{28 +e[95+ 16e(5+e)]}y
+ (1 +e) (=9 +e[74+3e (43 + 140)]}
—2(1+e)’[—1+e(l6+1le)]y’ +4e(l+e)’y?), (L.11)
H"=-2(-1+e)(1 - (=2+7)(3—=2e(=3+y) (=1 +y)*
—dy +y e (2+y) (1) (-1 +2y)

=28 (=1 + ) (=T +3) +E{=11+y[41 +6 (=5 + ) v]}).
(1.12)
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Appendix J

Numerical Values of Relevant Astronomical Parameters

In Tables J.1-J.4, the numerical values of the physical parameters of interest are
reported for some selected bodies of the solar system and for the double pulsar.

Table J.1 Relevant physical parameters of the Sun (Pijpers, 1998, Seidelmann
et al., 2007; Rozelot, 2009, Emilio et al., 2012, Park et al., 2017; Mecheri and
Meftah, 2021, Park et al.,, 2021). RA and dec. of the north pole of rotation are
ICRF equatorial coordinates at epoch J2000.0. The value for the ellipticity e is
calculated from Equation (6.4) with the figures quoted for RS and R;?o

Parameter  Units Numerical Value

Mo x 102 m3/s? 1.32712440041279419 (Park et al., 2021)

JZQ x 1077 2.2 (Park et al., 2017; Mecheri and Meftah, 2021)
Jo x10* kgm?/s  1.90 (Pijpers, 1998)

ay, ° 286.13 (Seidelmann et al., 2007)

87, ° 63.87 (Seidelmann et al., 2007)

R® km 696342 (Emilio et al., 2012)

RS, km R® —7.370 (Rozelot, 2009)

£o — 0.0046
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Table J.2 Relevant physical parameters of the Earth (Petit and Luzum, 2010;
Seidelmann et al., 2007). RA and dec. of the north pole of rotation are ICRF
equatorial coordinates at epoch J2000.0. The value of the angular momentum is
inferred from that of the angular momentum per unit mass Jg /Mg ~ 9 x 108 m? /s
reported in Petit and Luzum (2010, p. 156). The value for the ellipticity eq, is
calculated from Equation (6.4) with the figures quoted for R® and RSBO.

Parameter Units Numerical Value

We x 10" m3/s? 3.986004418 (Petit and Luzum, 2010)
JP x1073 1.0826359 (Petit and Luzum, 2010)
Jo x 103 kgm?/s ~ 5.85 (Petit and Luzum, 2010)

oy, ° 0.0 (Seidelmann et al., 2007)

A ° 90.0 (Seidelmann et al., 2007)

R® km 6378.14 (Seidelmann et al., 2007)

RE km 6356.75 (Seidelmann et al., 2007)

7S — 0.082

Table J.3 Relevant physical parameters of Jupiter (Soffel et al., 2003; Seidelmann
et al.,, 2007; Petit and Luzum, 2010; less et al., 2018). RA and dec. of the north
pole of rotation are ICRF equatorial coordinates at epoch J2000.0. The value for
the ellipticity q, is calculated from Equation (6.4) with the figures quoted for RZF

%
and Ry,

Parameter Units Numerical Value

Wy x 10" m?/s? 1.26713 (Petit and Luzum, 2010)
qu* x1076 14696.572 (Iess et al., 2018)

Joy x10* kg m?/s 6.9 (Soffel et al., 2003)

oy, ° 268.057132 (Iess et al., 2018)
8‘;,4 ° 64.497159 (Iess et al., 2018)

RY km 71492 (Seidelmann et al., 2007)
R* km 66854 (Seidelmann et al., 2007)

£9, - 0.354
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Table J.4 Relevant physical and orbital parameters of the double pulsar PSR
J0737-3039 retrieved from Kramer et al. (2006), Kramer and Wex (2009), lorio
(2021c), and Silva et al. (2021). As far as the moment of inertia of B Jg is con-
cerned, it is assumed equal to that of A (lorio, 2021c). The quadrupole mass
moment of B QZB, calculated according to lorio (2021c) and Silva et al. (2021),
is several orders of magnitude smaller than Q? The semimajor axis a can be
obtained from the third Kepler law.

Parameter  Units Numerical Value
My Mg 1.3381 (Kramer et al., 2006; Kramer and Wex, 2009)
Mp Mg 1.2489 (Kramer et al., 2006; Kramer and Wex, 2009)
Pa S 0.022 (Kramer et al., 2006; Kramer and Wex, 2009)
Py S 2.773 (Kramer et al., 2006; Kramer and Wex, 2009)
Ja x10¥kgm? 1.6 (Silva et al., 2021)

> x10*kgm?  —4.8 (lorio, 2021c; Silva et al., 2021)
Tx d 0.10225156248 (Kramer et al., 2006),

(Kramer and Wex, 2009)

1 ° 88.69 (Kramer et al., 2006)
e — 0.0877775 (Kramer et al., 2006),

(Kramer and Wex, 2009)
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Appendix K
Post-Keplerian Orbital Effects: Numerical Values

Here, numerical values of the main pK orbital effects treated in the book are given
for a variety of natural and artificial bodies in the solar system and elsewhere. In
particular, the orbital precessions of the Sun’s planets are listed in Section K.1.
The net shifts per orbit of the spacecraft Juno, currently orbiting Jupiter, are col-
lected in Section K.2, while the orbital precessions of the Earth’s geodetic satellite
LAGEOS are displayed in Section K.3. Section K.4 is devoted to the double pulsar
PSR J0737-3039, while the possibility of using triple pulsars to measure the gravit-
omagnetic field due to the orbital angular momentum of the inner binary as source
of a pN gravitomagnetic field is investigated in Section K.5. Various features of
motion of the S star S4716 in the GC can be found in Section K.6.

In the following, ”/cty stands for arcseconds per century, and mas is a short-
hand for milliarcseconds, so that mas/cty and mas/yr refer to milliarcseconds per
century and milliarcseconds per year, respectively. Finally, jias denotes microarc-
seconds, so that puas/cty are microarcseconds per century.

K.1 Solar System’s Planets

The main pK orbital precessions (1pN gravitoelectric and Lense—Thirring, and
Newtonian Sun’s oblateness) of the planets of the solar system, referred to the
ICRF, are numerically computed and listed in Tables K.1-K.4. The values of the
relevant physical parameters of the Sun needed to compute them are retrieved from
Table J.1.

K.1.1 The Inclination

While the 1pN gravitoelectric field of the Sun does not affect the inclinations
of the orbital planes of the planets of the solar system, its 1pN gravitomagnetic
and classical quadrupolar fields displace them by tiny amounts. For Mercury, the
LT precession amounts to i = 0.06 mas/cty = 60 pas/cty, while the Sun’s

217
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Table K.1 Nominal values of the main pK precessions (IpN gravitoelectric,
Lense—Thirring and Sun's oblateness) of the inclinations of the planets of the
solar system referred to the mean Celestial Equator at J2000.0. The values of the
relevant physical parameters of the Sun are retrieved from Table J.1.

Planet "™ ("/cty) i (mas/cty) i (mas/cty)
Mercury 0 0.06 —1.73
Venus 0 0.009 —0.178
Earth 0 0.006 —0.112
Mars 0 0.001 —0.021
Jupiter 0 4 %1073 -39 x107*
Saturn 0 5x107° —2.6 x 107
Uranus 0 8 x 1077 —3.1x107°
Neptune 0 2 x 1077 —6 x 1077

Table K.2 Nominal values of the main pK precessions (IpN gravitoelectric,
Lense—Thirring and Sun's oblateness) of the nodes of the planets of the solar sys-
tem referred to the mean Celestial Equator at J2000.0. The values of the relevant
physical parameters of the Sun are retrieved from Table J.1.

Planet QN (”/cty) QLT (mas/cty) Q2 (mas/cty)
Mercury 0 0.09 —2.69
Venus 0 —0.008 0.177
Earth 0 —0.004 0.071
Mars 0 —5x10~* 0.008
Jupiter 0 -4 x 1073 3x107*
Saturn 0 -9 x10°° 5x 107
Uranus 0 —6 x 1077 2x107°
Neptune 0 -3 x 1077 9 x 1077
oblateness affects it to the/” = —1.73 mas /cty level. For Mars, the LT precession

is at the ~~ pas/cty level.

K.1.2 The Longitude of the Ascending Node

While the 1pN gravitoelectric field of the Sun does not affect the nodes of the
orbital planes of the planets of the solar system, its 1pN gravitomagnetic and
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Table K.3 Nominal values of the main pK precessions (IpN gravitoelectric,
Lense—Thirring and Sun'’s oblateness) of the perihelia of the planets of the solar
system referred to the mean Celestial Equator at J2000.0. The values of the
relevant physical parameters of the Sun are retrieved from Table J.1.

Planet '™ (" /cty) @7 (mas/cty) @” (mas/cty)
Mercury 42.980 -2 30
Venus 8.624 —-0.3 2.7
Earth 3.843 —0.1 0.8
Mars 1.350 —0.03 0.20
Jupiter 0.062 —7 x 1074 0.0025
Saturn 0.013 —1x107* 3x 107
Uranus 0.002 —1x 107 2 x 107
Neptune 7 x 1074 —3x107° 5x107°

Table K.4 Nominal values of the main pK precessions (IpN gravitoelectric,
Lense—Thirring and Sun's oblateness) of the mean anomalies at epoch of the plan-
ets of the solar system referred to the mean Celestial Equator at J2000.0. The
values of the relevant physical parameters of the Sun are retrieved from Table J.1.

Planet PN (7 /cty) 7T (mas/cty) 7’2 (mas/cty)
Mercury —127.984 0 27
Venus —25.873 0 3
Earth —11.528 0 0.9
Mars —4.046 0 0.2
Jupiter —0.187 0 0.003
Saturn —0.040 0 3x 107
Uranus —0.007 0 3x 1073
Neptune —0.002 0 6 x 1076

classical quadrupolar fields displace them by tiny amounts. For Mercury, the LT
precession amounts to QT = 0.09 mas/cty = 90 pas/cty, while the Sun’s oblate-
ness affects it with a retrograde precession 22 = —2.69 mas/cty. For the Earth,
the LT precession is at the ~ jas/cty level.

K.1.3 The Argument of Perihelion

The 1pN gravitoelectric field of the Sun affects the perihelia of the planets of the
solar system with relatively large precessions, while its 1pN gravitomagnetic and
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pK quadrupolar fields displace them by much smaller amounts. For Mercury, the
1pN gravitoelectric precession has the time-honoured value of ®'PN = 42.98" /cty.
On the other hand, the Hermean retrograde LT precession amounts to just o' =
—2mas/cty, while the Sun’s oblateness affects it with a prograde rate as large as
@” = 30mas/cty. For Mars, the retrograde LT precession is at the 30 as/cty
level, while the prograde quadrupolar one is about ten times larger. For the ice
giants of the solar system, the 1pN gravitoelectric precessions are at the >~ 1 —
10 mas/cty level, or even smaller, while the LT ones are quite negligible.

About the 2pN perihelion precession of Mercury, from Equation (4.41) it turns
out that its value ranges from about —2 to —15 pas/cty, depending on fj.

K.1.4 The Mean Anomaly at Epoch

The 1pN gravitoelectric field of the Sun affects the mean anomalies at epoch of the
planets of the solar system with relatively large precessions, while its Newtonian
quadrupolar field displaces them by much smaller amounts. The 1pN gravitomag-
netic field does not shift them. For Mercury, the retrograde 1pN gravitoelectric
precession is as large as n'PN = —127.984"/cty. On the other hand, the Sun’s
oblateness affects it with a prograde rate as little as 7> = 27 mas/cty. For Mars, the
retrograde 1pN gravitoelectric precession is at the 4" /cty level, while the prograde
quadrupolar one is as little as 0.2 mas/cty.

About the 2pN precession of the mean anomaly at epoch of Mercury, from
Equation (4.42) it turns out that its value ranges from about 0.35 to 0.38 mas/cty,
depending on fj.

K.1.5 The Current Level of Accuracy in Determining the Orbital Precessions

Table 1 of Iorio (2019c¢) reports an evaluation of the present-day precision level in
determining the planetary orbital precessions based on the EPM2017 ephemerides
(Pitjeva and Pitjev, 2018). It should be stressed that the quoted figures are just
representative of the mere formal, statistical errors; the actual accuracies may be
up to one order of magnitude larger.

As far as Mercury is concerned, its inclination and node rates may be deter-
mined with a formal precision of ¢ = 0.003 mas/cty and o, = 0.024 mas/cty,
respectively (lorio, 2019c¢). Instead, the formal uncertainty in the precession of its
longitude of perihelion @ is of the order of o, = 0.008 mas/cty (lorio, 2019c).
Similar figures hold for Mars as well (Iorio, 2019c).

K.2 The Spacecraft Juno around Jupiter

Here, the net shifts per orbit due to some pK effects on the orbit of the Juno
spacecraft currently orbiting Jupiter are calculated with respect to a planetocen-
tric reference frame aligned with the ICRF. The timeframe considered ranges from
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February 2024, when the orbital period of the probe was reduced to 32 days, to the
scheduled end of the second extended mission in September 2025, covering the last
18 orbits.! The values of the orbital parameters of Juno are retrieved from the WEB
interface Horizons System at https://ssd.jpl.nasa.gov/horizons/, maintained by the
Jet Propulsion Laboratory (JPL) of the National Aeronautics and Space Admin-
istration (NASA), and accessed 7 March 2024. The relevant physical parameters
of Jupiter needed to compute Juno’s orbital shifts are taken from Table J.3. The
pK features of motion considered are the classical ones due to the Jovian quad-
rupole mass moment, and the 1pN gravitoelectromagnetic effects induced by the
mass monopole and quadrupole and the spin dipole and octupole moments of Jupi-
ter. The Juno’s node and perijove describe a full cycle in 132.3 yr and —37.05 yr,
respectively, mainly due to the Jovian J,. Thus, they are taken as fixed in calculat-
ing the shifts in Table K.5 since they can be considered as approximately constant
during the year and a half or so taken into consideration.

From Table K.5, it turns out that, apart from the classical shifts due to J,, the lar-
gest effects are due to the 1pN gravitoelectric monopole field of Jupiter, amounting
to about 38 mas per revolution. The LT shifts are at the >~ mas level, while the other
pN features of motion affect the Juno’s orbital elements with signatures smaller by

Table K.5 PK net shifts per orbit of the spacecraft Juno currently orbit-
ing Jupiter calculated with respect to the ICRE The adopted values of the
probe’s orbital parameters, retrieved from the WEB interface Horizons System
at https://ssd jpl.nasa.gov/horizons/, maintained by the Jet Propulsion Labora-
tory (JPL) of the National Aeronautics and Space Administration (NASA), and
accessed 7 March 2024, refer to the last scheduled 18 orbits from February 2024
to September 2025, as per www.missionjuno.swri.edu/mission-perijoves. The rele-
vant physical parameters of Jupiter are taken from Table J.3. The figures listed for
the J,/c? effects refer to the direct ones, as per Equations (8.7)—(8.12).

Orbital element J IpN LT Jr/c? Je?

Aa (m) 0 0 0 —91.4 0

Ae (—) 0 0 0 —8x 10710 —1.6x 1071
AT (mas) 3.85 x 10° 0 0.89 —0.007 —0.021
AQ (mas) 8.56 x 10° 0 1.98 —0.027 —0.045
Aw (mas) —3.06 x 10° 378  1.07 0.018 —0.054
An (mas) —-73x10° —384 0 0.098 1x1074

I See www.missionjuno.swri.edu/mission-perijoves, accessed March 2024.
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about two orders of magnitude. It is worth noticing that the semimajor axis of the
probe is shifted by the 1pN oblateness field of Jupiter by almost 100 m. The total
shifts nominally occurring until the scheduled end of the mission can be approxi-
mately? obtained by rescaling the figures in Table K.5 by 18, which is the number
of full orbits to be completed with the current orbital configuration.

It should be noted that, since its inception in orbit in August 2016 to June 2021,
Juno completed 33 orbits in a different orbital configuration corresponding to an
orbital period of 7x = 53 d; the relative net shifts per orbit are essentially equal to
those quoted in Table K.5.

K.3 The Earth’s Geodetic Satellite LAGEOS

The LAGEOS satellite (Cohen and Smith, 1985), launched in 1976, is one of the
Earth’s geodetic probes (Pearlman et al., 2019) currently tracked with the SLR tech-
nique used in tests of pN gravity (Cugusi and Proverbio, 1978; Ashby and Bertotti,
1984; Martin et al., 1985; Lucchesi et al., 2015, 2019a). It is a completely passive
and dense object of spherical shape, entirely covered with retroreflectors (Lucchesi,
2004) which bounce back the laser pulses sent to it from SLR ground stations. Such
features make relatively easy and accurate modelling the several non-gravitational
perturbing accelerations (Milani et al., 1987) affecting its orbital motion (Farinella
etal., 1996; Métris et al., 1997; Rubincam et al., 1997; Vokrouhlicky and Farinella,
1997; Métris et al., 1999; Lucchesi, 2001, 2002, 2004; Andrés et al., 2006; Visco
and Lucchesi, 2018).

Table K.6 displays the values of the rates of change of the same pK effects dealt
with in Section K.2 calculated with respect to the ICRF. For LAGEOS, the orbital
period is as short as Tx = 0.156d = 3.7 hr, while its node and perigee® describe
a full cycle in just 2.8 yr and —4.7 yr, respectively. As far as the J,/c? and Je?
effects are concerned, they include also harmonic signatures varying with twice
the frequency of the perigee. Their amplitudes are not included in Table K.6 since
their time series average out over just half the perigee period.

From Table K.6, it turns out that, apart from the classical precessions due
to J,, the largest effects are due to the Earth’s 1pN gravitoelectric monopole
field, amounting to several thousands of mas/yr. The LT precessions are at the
~ 30 mas/yr level, while the other pN features of motion affect the orbital elements
of LAGEOS with signatures smaller by about two to four orders of magnitude.

About the currently ongoing tests of the LT effect in the Earth’s field with the
geodetic satellites of the LAGEOS family, that is, LAGEOS itself, LAGEOS-2
(Ibba et al., 1989), LARES (Paolozzi et al., 2011), and LARES-2 (Paolozzi et al.,

2 1t is assumed that the perijove does not change too much due to J, over such a time span.
3 From me p{ (+ accusative), meaning ‘around, near, about, from’, and y7, -1g, 1, ‘earth’.
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Table K.6 PK orbital precessions of the Earth's geodetic satellite LAGEOS, cur-
rently tracked with the SLR technique, calculated with respect to the ICRF The
relevant physical parameters of the Earth are taken from Table J.2, while the orbital
ones of LAGEOS are taken from Ciufolini et al. (2023). Only the secular parts of
the rates of change of the J, /¢ (the direct ones as per Equations (8.7)—(8.12)) and
Je? effects are displayed because the harmonic ones, varying with a frequency
double that of the perigee, average out over just a couple of years.

Orbital element Jo IpN LT Jr/c? Je?
(@) (m/yr) 0 0 0 — 0

(e) (1/yr) 0 0 0 - -

f) (mas/yr) 0 0 0 — —

(Q) (mas/yr) 4.50 x 108 0 30.66  —0.48 —0.007
(@) (mas/yr) —2.81 x 108 3278.76 31.22 0.14 —1x107°
(n) (mas/yr) —4.34 x 108 —9836.25 0 1.04 0.014

2019), mainly performed by Ciufolini and coworkers, the following remarks are in
order (Iorio, 2023b).

For unknown reasons, the Earth’s gravitomagnetic field has never been mod-
eled so far, and no dedicated parameter(s) have ever been estimated, producing
just time series of post-fit residuals of the satellites’ nodes,* allegedly accounting
in full for the unmodeled dynamics which includes the LT acceleration as well.
Another puzzling issue is that there are several SLR stations scattered around the
globe (Pearlman et al., 2002) where skilled teams of space geodesists routinely
process laser ranging data from so many geodetic satellites with several dedicated
softwares (Ebauer, 2017); yet, despite this, no one has ever tried to (correctly) per-
form LT tests independently of Ciufolini, or, if anyone has done so, they have not
made their results public in the peer-reviewed literature. There are just some con-
ference proceedings (Ries et al., 2003a,b; Ries et al., 2009) whose authors did not
model and estimate the LT acceleration either. The same holds also for a few inde-
pendent studies recently published in peer-reviewed journals by former coworkers
of Ciufolini (Lucchesi et al., 2019b, 2020). In principle, there should be nothing
easier for so many competent and expert people worldwide than adding one more
acceleration in the data reduction softwares and estimating one more parameter.

4 Some linear combinations of the time series of such node “residuals”, suitably designed to cancel out the
impact of the mismodelling of the first even zonal harmonics of the geopotential, have been used so far. For

recent overviews, see, for example, lorio et al. (2011), Ciufolini et al. (2013), Renzetti (2013b), and
references therein.
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Indeed, as explained in Chapter 1, the common practice in satellite geodesy,
astrodynamics and astronomy is that, if one wants to put to the test a certain dynam-
ical feature X they are interested in, they must do nothing more than explicitly
model it along with the rest of the known dynamics and other pieces of the measure-
ment process, and simultaneously estimate one or more parameters, characterizing
it along with many other ones, taking into account other accelerations and so on,
and inspecting the resulting covariance matrix to look at their mutual correlations.
Looking at some sort of ‘spurious’ residuals constructed without including X in
the models fit to a given set of observations is not a correct procedure since a pos-
sible signature with almost the same features of the expected one may be due just
to some fortunate partial mutual cancellation of other effects having nothing to do
with X itself. Furthermore, X may partly or totally be absorbed in the estimated
values of other parameters solved for in the data reduction. In other words, the
gravitomagnetic field of the Earth should be simultaneously estimated along with
all the other coefficients characterizing the geopotential by using the same data sets
which may be varied from time to time by their extension, starting date, and type
of observations.

K.4 The Double Pulsar

The relevant pK orbital precessions of the double pulsar PSR J0737-3039, whose
physical and orbital parameters can be found in Table J.4, are listed in Table K.7.

Extracting the LT contribution from the experimentally measured total periastron
precession, a possibility first envisaged by Lyne et al. (2004), Lattimer and Schutz
(2005), and Kramer et al. (2006), would allow one to get important insights on
the equation of state (EOS) of the dense matter inside neutron stars. Indeed, by
assuming the validity of GTR, the knowledge of the gravitomagnetic rate of change
could be used to constrain the EOS through the determination of the moment of
inertia J5 of PSR J0737-3039A. Conversely, if the former could be independently
determined by other means, a test of the LT effect could be performed to some
level of accuracy that Hu et al. (2020) quantified at >~ 7-11%. In principle, the
quadrupole-induced orbital precessions may also serve the same purpose, but they
are completely negligible (Hu et al., 2020; Iorio, 2021¢).

From Table K.7, it turns out that the 1pN gravitoelectric two-body precessions
are the largest ones, amounting to tens of degrees per year. The 2pN and the LT
rates are about five orders of magnitude smaller; furthermore, the LT and the 2pN
periastron precessions have almost the same magnitude. In order to extract ()T
from the total periastron precession, the 1pN and 2pN gravitoelectric precessions
must be known with sufficiently high accuracy to be reliably subtracted; see lorio
(2009b), and the general discussion by Damour and Schifer (1988) before the
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Table K.7 Relevant pK orbital precessions of the double pulsar PSR J0737-3039,
whose physical and orbital parameters are retrieved from Table J.4. The column
for the 2pN precessions, which depend on the true anomaly at epoch fy according
to Equations (4.39)—(4.40), show their ranges of values for fo spanning from 0 to
360°. The LT precessions of the inclination and the node are completely negligible,
amounting to a maximum of ~ 1073 °/yr (lorio, 2021c). The effects due to the

quadrupole mass moment are even smaller, being of the order of ~ 1078°/yr
(lorio, 2021c).

Orbital element 1pN 2pN LT
(@) (°/yr) 16.89 [—0.00079, —0.00045] —0.0006
(m (°/yr) —47.78 [0.076, 0.077] 0

discovery of the double pulsar. For a recent review on measuring the LT effect
with binary pulsars, see Hu and Freire (2024), and references therein.

K.5 Triple Pulsars

PSR J0337+1715 (Ransom et al., 2014) is a hierarchical triple system made of
one neutron star and two white dwarfs: an inner, tight binary & composed of a 2.7
ms pulsar A and a white dwarf B revolving one around each other in a circular
relative orbit with orbital period 7x = 1.6d, and another white dwarf C moving
about S along a wider circular path with orbital period 7, ]/< = 327d and coplanar
with that of S itself, both inclined by 7/ = I' = 39.2° to the plane of the sky,
assumed as reference {x, y} plane. Their masses are Mp = 1.44My, Mg = 0.2M,
and M¢ = 0.4M, respectively.

On the one hand, PSR J0337+1715 proved unsuitable, at least until now, to per-
form the usual tests of GTR done with some tight binary pulsars (Kramer et al.,
2006; Wex and Kramer, 2020; Kramer et al., 2021) like, for example, the Hulse—
Taylor pulsar PSR B1913+16 (Hulse and Taylor, 1975) and the double pulsar PSR
J0737-3039 (Burgay et al., 2003; Lyne et al., 2004) because of its orbital config-
uration. Indeed, the argument of periastron @’ is not well defined because of the
almost vanishing eccentricity e of the orbit of the outer white dwarf. Furthermore,
My is far too small for the gravitational redshift of the pulsar signal to be measur-
able. Finally, the Shapiro delay is negligible; the radio waves travelling along the
line of sight towards the Earth pass very distant from its companion because the
orbital plane is not seen edge-on. On the other hand, PSR J0337+1715 was success-
fully used to put the tightest constraints so far on the (absence of the) Nordtvedt
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effect (Nordtvedt, 1968b,a). It is an orbital consequence of a possible violation of
the strong EP which would occur should bodies with different amounts of gravi-
tational self-energy, just like a neutron star and a white dwarf, fell with different
accelerations in an external gravitational field. Then, if the falling objects orbit
one around the other while moving altogether about a third body, their barycentric
orbits should experience a differential elongation towards the source of the exter-
nal field. Actually, no Nordtvedt effect was found in PSR J0337+1715 to a relative
accuracy of two parts per million at 95% confidence level (Archibald et al., 2018;
Voisin et al., 2020).

Triple pulsars offer, in principle, the possibility of testing the gravitomagnetic
field due to the matter ring discussed in Section 5.1.3, provided that suitable
systems, characterized by a not-too-large ratio T 1,</ Tk, eccentric and, hopefully,
non-coplanar orbits as well of the outer companions, will be discovered.

In the case of PSR J0337+1715, the orbital angular momenta of the inner binary
and of the outer companion are aligned (Ransom et al., 2014); thus, according to
Equations (5.30)—(5.35), calculated by substituting® J with Equation (5.52), only
the pericentre is shifted by the gravitomagnetic annular field. It turns out

Hy = 3.5 x 10 kgm?/s, (K.1)
so that
ALT
<a)> — —1.2mas/yr. (K.2)
while the uncertainty in measuring its periastron over 1.38 yr, during which
Ny = 26280 (K.3)
TOAs were collected, can be calculated from table 1 of Ransom et al. (2014) to be

of the order of
o, =~ 63.9mas. (K.4)

By tentatively assuming that about the same number of TOAs as given by Equa-
tion (K.3) will be collected in 1.38 yr over, say, the next 10 years, the resulting
accuracy would be improved by a factor of® ~ 640 with respect to the figure quoted
in Equation (K.4), while the total gravitomagnetic shift would amount to

Aw;; ~ —12mas. (K.5)

Among the competing effects of classical and pN origin, the largest one is due
to the quadrupolar term (Demetrian, 2006) of the expansion in multipoles of the
5 In Equations (5.30)—(5.35), the orbital elements to be used are the primed ones referring to the motion of the

outer companion about S.
6 Such an estimate is obtained by dividing Equation (K.4) by /N, where N = (10/1.38) x Ng = 190435.
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Newtonian gravitational potential of a massive ring (Ciftja et al., 2009; Deme-
trian, 2006) which, in this case, represents the inner binary. It induces a periastron
precession glven by Equatlon(IO 8), where K = (1/4)ppai (Demetrian, 2006)
anda — d,e - e,ng — nK, whose mismodelling may reduce down to the
~ 0.5mas/yr level in the next 10 years.

The situation would be more favourable for a hypothetical triple system, yet to
be discovered, whose outer companion’s orbit had a smaller size and was more
eccen:tric, a scenario that should not be deemed as unrealistic. Furthermore, if h

and h were misaligned, the inclination and the node precessions also would come
into play, as per Equations (5.32)—(5.33).

K.6 The Star S4716 around Sgr A*

Here, the S star S4716, orbiting the SMBH in Sgr A* at the GC is taken into
account. The upper bounds of the absolute values of the pK shifts of some orbital
features of motion and the corresponding values of the hole’s spin axis angles and
the argument of latitude at epoch are found.

About the role of the LT orbital effects, it should be recalled that a measurement
of the BH’s spin parameter x, by means of the former ones is important for two
reasons (Will and Yunes, 2020). First, it would allow one to check if naked singu-
larities, corresponding to x, > 1, exist or not. Second, important insights about the
formation of the BH would be gained. Indeed, if it were formed from the merger
of, say, two pre-existing smaller rotating BHs, a relatively large value of x, may be
expected, just as when two ice skaters pulling together at the end of a dance finally
rotate faster. On the other hand, if the hole were the result of the steady accre-
tion of stars and gases from arbitrary directions, a rather small value of x, should
occur because of a mutual cancellation, on average, of the spin contributions of the
randomly infalling matter.

Furthermore, measuring the quadrupole-driven precessions would allow to put
to the test the ‘no—hair’ theorems, treated in Chapter 5, which are a key prediction
of GTR (Will and Yunes, 2020). Indeed, in studying the Kerr metric, it was realized
that it is the only possible solution of the Einstein equations for an isolated, station-
ary BH; all the details of its external gravitational field, encoded by its multipole
moments, depend only on its mass M, and angular momentum J,, as per Equa-
tion (5.17). Various types of exotic compact objects (ECOs) have been proposed so
far as a possible alternative to general relativistic BHs (Cardoso and Pani, 2019;
Psaltis, 2023): ‘boson stars’, made of concentrations of heavy, dark matter bosons
or fermions (Torres et al., 2000), ‘fermion balls’ (Viollier et al., 1993; Tsiklauri
and Viollier, 1998; Becerra—Vergara et al., 2020), ‘grava—stars’, which would be
alleged stars supported by negative vacuum pressure (Mazur and Mottola, 2004;
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Cardoso and Pani, 2019), or ‘wormholes’ (Morris and Thorne, 1988; Cardoso and
Pani, 2019).

K.6.1 The Net Shifts per Orbit of the Orbital Elements

Tables K.8—K.11 refer to the net shifts per orbit of the inclination, the node, the
periastron, and the mean anomaly at epoch.

Table K.8 Largest absolute values of the LT and Q) net shifts per orbit of the
inclination of S4716 and corresponding values of the BH's spin axis angles. For
the hole’s mass, the value My = 4.1 x 10° Mg is used (Peifiker et al., 2022), while
the spin parameter xq is left as a free parameter.

’ELT (,/) ‘HQZ 1
max max
Spin axis angles Xg 10.14 Xz 0.06
e (©) 90 47.9
é-.max (o) 151.5 169.37

Table K.9 Largest absolute values of the LT and Q; net shifts per orbit of the node
of S4716 and corresponding values of the BH'S spin axis angles. For the hole’s
mass, the value M, = 4.1 x 10° Mg is used (Peifiker et al., 2022), while the spin
parameter xg is left as a free parameter.

‘mLT (,,) ‘sz %
max max
Spin axis angles Xg31.5 ng 0.18
i () 108.76 26.24
gmax (©) 241.54 61.54

Table K.10 Largest absolute values of the 1pN gravitoelectric, LT and Q» net shifts
per orbit of the perinigricon of S4716 and corresponding values of the BH'S spin
axis angles. For the hole’s mass, the value M, = 4.1 x 10% My, is used (Peifker
et al., 2022), while the spin parameter X, is left as a free parameter.

_IPN i ’_LT ” }_QZ //

‘ max max ( ) max
Spin axis angles 965.65 Xg 36.1 Xg 0.22
i () - 142.9 12.7

gmax (©) - 241.54 61.54
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Table K.11 Largest absolute values of the IpN gravitoelectric and Qo net shifts
per orbit of the mean anomaly at epoch of S4716 and corresponding values of the
BH's spin axis angles. For the hole’s mass, the value My = 4.1 x 10° M, is used
(Peifsker et al., 2022), while the spin parameter xg is left as a free parameter.

‘_le (//) ‘_LT (//) |_Q2 //
Spin axis angles —2332.24 0 Xg 0.069
l-r.nax (0) — —_ 170.8
é-.max (O) j— —_ 360

Table K.12 Largest absolute values of the LT and Q» net shifts per orbit of the
radial velocity semiamplitude K of S4716 and corresponding values of the BH's
spin axis angles. For the hole's mass, the value My = 4.1 x 10° M, is used (PeifSker
etal., 2022), while the spin parameter X is left as a free parameter.

‘AK]pN (km/s) ‘R”‘ (km/s) ‘RQZ (km/s)
max max max

Spin axis angles 0 Xg0.22 ng 0.001

i (°) — 90 47.96

Lma () — 151.54 169.36

It turns out that the largest effects occur for the 1pN gravitoelectric shifts of the
periastron and the mean anomaly at epoch, being of the order of >~ 1,000 — 2,000 ”
= 0.3 — 0.5° per revolution. The maximum values of the magnitude of the LT net
shifts per orbit, to be scaled by x,, amount to a few tens of arcseconds. The upper
bounds on the sizes of the quadrupole-driven effects, to be scaled by ng, are as
little as >~ 0.1 — 0.01”. Tt should be noted that they do not hold simultaneously,
occurring for different pairs of values of the angles of the hole’s spin axis.

K.6.2 The Net Shift per Orbit of the Radial Velocity Semiamplitude

Table K.12 displays the upper bounds on the magnitude of the non-vanishing LT
and quadrupole-driven net shifts per orbit of the radial velocity semiamplitude.
While for the LT effect the maximum value, to be scaled by xg, is 0.22km/s, the
upper limit of the magnitude of the Q5 shift, to be scaled by X; is as little as 1 m/s.
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Appendix L

A Cursory Overview on Some Proposed
Spacecraft-Based Missions

Here, some recently proposed spacecraft-based missions aimed to measure some
pN orbital effects in various astronomical scenarios in the solar system are cursor-
ily reviewed: Highly Elliptical Relativity Orbiter (HERO) in Section L.1, In-Orbit
Relativity Iuppiter Observatory, or IOvis Relativity In-Orbit Observatory (IORIO)
in Section L.2, Elliptical Uranian Relativity Orbiter (EURO) in Section L.3,
LEnse—Thirring Sun—Geo Orbiter (LETSGO) in Section L.4, and ELXIS in Section
L.5. Further past and recent space-based proposals' by other authors to measure,
among other things, pN orbital effects are briefly reviewed in Section L.6.

L.1 HERO

The space-based mission concept Highly Elliptical Relativity Orbiter (HERO)
(Iorio, 2019a) is aimed to perform several tests of pN gravity around the Earth
with a preferably drag-free spacecraft moving along a highly elliptical orbit fixed
within its plane which undergoes a relatively fast secular precession. Two pos-
sible scenarios are considered: (a) a fast, 4-h orbit with high perigee height of
1047 km, and (b) a slow, 21-h path with a low perigee height of 642 km. In both
cases, the orbital plane is inclined to the Earth’s equator by an amount known as
critical inclination since it allows one to cancel out the main competing classical
perturbation on the perigee due to .J,. Thus, the J,/c? signatures, which generally
depend on the perigee’s frequency, resemble linear trends. HERO may detect, for
the first time, the pN orbital effects induced by the mass quadrupole moment .J,
of the Earth which, among other things, affects the semimajor axis a via a secu-
lar trend of >~ 4—12 cm/yr. Recently, the secular decay of the semimajor axis of
the passive satellite LARES was measured with an error as little as 0.7 cm/yr
(Lucchesi et al., 2019a).

1 Only missions exploiting orbital motions are mentioned.
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L.2 IORIO

In view of its characteristics, Jupiter, whose relevant physical parameters are listed
in Table J.3, seems to be the ideal candidate, at least in principle, to try to measure
several pN orbital effects. Suffice it to say that it has often been considered for
testing various aspects of gravitomagnetism over the years; see, for example, Haas
and Ross (1975), Mashhoon (2000), Tartaglia (2000c,a), lorio (2010b), Schirer
et al. (2017), and lorio (2019g, 2024a). The mission concept IORIO, acronym of
In-Orbit Relativity Tuppiter? Observatory, or, equally well, of IOvis® Relativity In-
orbit Observatory (lorio, 2019g,d, 2024a), relies upon a dedicated Juno-like space-
craft circling Jupiter along a highly elliptical, polar orbit to measure, among other
things, the 1pN mass quadrupole and spin octupole effects. Although more diffi-
cult to be practically implemented, the case of a less elliptical orbit* also is being
considered since it yields much larger figures for the relativistic effects of interest.

L.3 EURO

Elliptical Uranian Relativity Orbiter (EURO) (Iorio et al., 2023) is a preliminary
mission concept investigating the possibility of dynamically measuring the angu-
lar momentum of Uranus by means of the LT effect affecting a putative planet’s
orbiter. It is possible, at least in principle, to separate the relativistic precessions of
the orbital inclination to the Celestial Equator and of the longitude of the ascend-
ing node of the spacecraft from its classical rates of the pericentre induced by the
multipoles of the planet’s gravity field by adopting an appropriate orbital config-
uration. For a wide and elliptical 2,000 x 100,000 km orbit, the gravitomagnetic
signatures amount to tens of mas/yr, while, for a suitable choice of the initial con-
ditions, the peak-to-peak amplitude of the range rate shift can reach the level of
~ 1.5 x 1073 mm/s in a single pericentre passage of a few hours. By lowering the
apocentre height to 10,000 km, the LT precessions are enhanced to the level of hun-
dreds of mas/yr. The uncertainties in the orientation of the planetary spin axis and
in the inclination are major sources of systematic bias; it turns out that they should
be determined with accuracies as good as >~ 0.1-1 and >~ 1-10 mas, respectively.

L.4 LETSGO

LEnse—Thirring Sun-Geo Orbiter (LETSGO) (lorio, 2013c¢) is a proposed space-
based mission involving the use of a spacecraft moving along a highly eccentric
heliocentric orbit perpendicular to the ecliptic. It aims to accurately measure some
2 Luppiteér is one of the forms of the Latin noun of the god Jupiter.

3 In Latin, Iovis means ‘of Jupiter’.

4 Inserting a spacecraft into a moderately elliptical orbit around Jupiter is a very daunting task because of the
exceedingly large amount of fuel required.
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important physical properties of the Sun and to test some pN features of its
gravitational field by continuously monitoring the Earth—probe range. Prelimin-
ary sensitivity analyses show that, by assuming a cm-level accuracy in ranging to
the spacecraft, it would be possible to test, in principle, the LT effect at a ~ 1072
level over a timescale of 2 years, while the larger 1pN gravitoelectric component of
the solar gravitational field may be sensed with a relative accuracy of about 108~
10~ during the same temporal interval. The competing range perturbation due to
the Sun’s oblateness would be a source of systematic error, but it turns out that all
the three dynamical features of motion examined affect the Earth—probe range in
different ways, allowing for separating them in real data analyses. The high eccen-
tricity would help in reducing the impact of the non-gravitational perturbations
whose disturbance effect would certainly be severe when LETSGO approaches the
Sun at just a few solar radii. It can be preliminarily argued that a drag-free apparatus
should perform at a 10-8~10~% m/s?/+/Hz level for frequencies of about 10~7 Hz.
Further studies should be devoted to investigate both the consequences of the non-
conservative forces and the actual measurability of the effects of interest by means
of extensive numerical data simulations, parameter estimations, and covariance
analyses. Also an alternative, fly-by configuration is worthy of consideration.

L.5 ELXIS

ELXIS® (Iorio, 2019f,e) is a hypothetical new terrestrial artificial satellite, to be
placed in a circular path in an orbital plane displaced by €2 = 90° with respect to the
reference direction of the Vernal Equinox 1" perpendicularly to the Earth’s equator,
aimed at measuring the de Sitter precession of the orbital inclination to the terres-
trial equator with a possible relative accuracy level of 107>, A rather strict polar
orbital configuration, with departures as little as ~ 1073-107 °, would be required
to reduce the impact of the aliasing perturbations due to the solid and ocean com-
ponents of the K; tide, which would be one of the major sources of systematic
errors, especially if not-too-high altitudes were to be adopted. The long-term rates
of change of / due to the even and odd zonal harmonics of the geopotential van-
ish for the orbital geometry proposed. It is assumed that the data analysis would
be performed in a geocentric kinematically rotating and dynamically non—rotating
reference frame.

L.6 Other Proposed Space-Based Missions

As far as further space-based proposals by other authors are concerned, see Ander-
son et al. (1997) and Clark et al. (2003) for mission concepts to Mercury aimed

5 From ¢AELG, -€nG, n, meaning ‘dragging’, ‘trailing’.
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at testing also some orbital effects due to the 1pN gravitoelectric field of the
Sun. OPTIS was a proposed spaceborne mission to accurately measure, among
other things, the Lense—Thirring effect in the field of the Earth with a drag-free,
laser-ranged satellite (Iorio et al., 2004). The Laser Astrometric Test Of Rela-
tivity (LATOR) was a space-based mission concept to probe several aspects of
relativistic gravity in the solar system by means of laser interferometry between
two microspacecraft whose lines of sight pass close by the Sun (Turyshev et al.,
2004). A close concept was the Astrodynamical Space Test of Relativity using
Optical Devices (ASTROD) mission series aiming at high-precision measure-
ments in interplanetary space by means of optical devices and drag-free control
of some spacecraft in the areas of fundamental physics, GTR as well as Sun
and solar system research (Selig et al., 2013). Buscaino et al. (2015) suggested
to test long—distance modifications of gravity to 100 au with a drag-free cruis-
ing spacecraft. A recent proposal by Turyshev et al. (2024) to test new physics
in the solar system envisages the use of tetrahedral® formations of drag-free space-
craft in heliocentric, eccentric orbits. In January 2024, the European Space Agency
(ESA) formally approved’ the Laser Interferometer Space Antenna (LISA) mission
(Amaro—Seoane et al., 2012) aimed at detecting low-frequency gravitational waves
in space with a constellation of three drag-free spacecraft in heliocentric orbits
mutually exchanging laser beams on a continuous basis. A similar mission concept
is TianQuin (Luo et al., 2016).

For a review of testing fundamental physics with space missions, see, for
example, Limmerzahl and Dittus (2008), and references therein.

6 From tetpbedpov (“triangle-based pyramid’); it comes from tetpdg (‘four’), and ¢5pa, -ag, n, meaning,
among other things, ‘face of a regular solid’.

7 www.esa.int/Science_Exploration/Space_Science/Capturing_the_ripples_of_spacetime_LISA_gets_go-

ahead. Accessed 4 April 2024.
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feature of motion, 12, 88 orbital angular momentum per unit mass, 160, 189
orbital effects, 16, 91, 227 orbital angular momentum unit vector, 189
orbital precessions, 88, 94 orbital period, 155, 161, 162, 189, 225
1pN gravitomagnetic spin octupole semimajor axis, 189
acceleration, 119 true anomaly, 189
acceleration, normal component, 120
acceleration, radial component, 120 acceleration, centripetal, 104
acceleration, transverse component, 120 accretion, disk, 87, 90
orbital precessions, equatorial orbit, 121 activity indices
orbital precessions, general case, 120 photometric time series, 85
orbital precessions, polar orbit, 122 spectroscopic time series, 85
1pN quadrupole affine, parameter, 3, 182
acceleration, 147 altimetry, 170
acceleration, normal component, 147 angle, broken, see angle, dogleg
acceleration, radial component, 147 angle, dogleg, 17, 35
acceleration, transverse component, 147 anomalistic period, see orbital period, anomalistic
direct orbital precessions, 148 anomaly
direct orbital precessions, equatorial orbit, 149 eccentric, 18, 157, 166, 168, 169, 173, 187
direct orbital precessions, general case, 148 mean, 17, 18, 63, 98, 116, 144, 186
direct orbital precessions, polar orbit, 149 mean, at epoch, 8, 17, 26, 31, 94, 98, 186, 220,
mixed net orbital shifts, total, equatorial orbit, 151 229
mixed net orbital shifts, total, general case, 13, 150, mean, at epoch, net shift per orbit, 228
203 mean, at epoch, precession, 26, 31
mixed net orbital shifts, total, polar orbit, 152 mean, instantaneous shift, 36, 37, 52
mixed orbital precessions, total, 151, 154 true, 17, 18, 21, 30, 36, 46, 186
orbital precessions, total, 154 true, at epoch, 21, 25, 28-30, 37, 56, 74, 83, 127,
2pN 186, 189, 225
acceleration, 73 true, at midtransit, 46

acceleration, normal component, 74 true, instantaneous shift, 36
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apocentre
height, 231
position of, 18, 55, 97
approximation, weak-field and slow-motion, 5, 87,
156, 175
apsidal, constant, 85, 183
apsidal period, see orbital period, anomalistic
apsides
line of, 17, 27, 30, 33, 58, 59, 97, 98, 129-131
position of, 55

Astrodynamical Space Test of Relativity using Optical

Devices (ASTROD) (interplanetary probe), 233
astrodynamics, 11
astrometry, relativistic, 11
astronomy, 11
atoms, 87
attraction, gravitational, 3

B1620-26, triple system, 96
barycentric, radial velocity, see radial velocity,
spectroscopic binary, systemic
Bayesian, approach, 8
BepiColombo (interplanetary probe), 51, 52, 63, 89,
118, 144
Bessel
function of the first kind of order s, 18, 182
modified function of the first kind of order s, 182
modified function of the first kind of order s = 0,
168
modified function of the first kind of order s = 1,
169

binary, 6, 7, 64, 73, 84, 94, 96, 107, 109, 125, 136, 166

angular momenta, 94, 107, 115
angular momentum, body A, 94, 96, 107, 184
angular momentum, body B, 94, 107, 184

companion, 38, 48, 72, 85, 96, 107, 114, 124, 136,

141, 142, 184, 225

companion, mass, 38, 107, 136, 184

companion, standard gravitational parameter, 184

equatorial radius, body A, 185

equatorial radius, body B, 185

magnitude of the angular momentum, body A, 184

magnitude of the angular momentum, body B, 184

mass, body A, 7, 37, 64, 73, 94, 107, 125, 136, 184

mass, body B, 7, 37, 64, 73, 94, 107, 125, 136, 184

masses, 7,37, 64, 73,94, 107, 115, 125, 136, 141,
161, 166

normalized mass, body A, 80, 184

normalized mass, body B, 80, 184

pulsar-white dwarf, minimum distance, 72, 115

quadrupole mass moment (dimensional), body A,
125, 136, 185

quadrupole mass moment (dimensional), body B,
125, 136, 185

quadrupole mass moment (dimensionless), body A,
185

quadrupole mass moment (dimensionless), body B,
185

quadrupole mass moments, 125, 136, 141
reduced mass, 96, 184
spectroscopic, 37
spectroscopic, double-lined (SB2), 37
spectroscopic, light curve, 37
spectroscopic, single-lined (SB1), 37
spin axes, 11, 141
spin axis, body A, 184
spin axis, body B, 184
standard gravitational parameter, 64, 184
symmetric mass ratio, 65, 184
total mass, 38, 64, 80, 107, 184
black hole, 6, 48, 62, 68, 69, 74, 87, 124, 227
accretion disk, 92
horizon, 86
mass, 181
Schwarzschild radius, 68, 181
singularity, naked, 86, 227
standard gravitational parameter, 181
Blandford-Znajek effect, 87
blazar, 74
body
characteristic size, 182
fluid, 85
fluid, centre, 85
fluid, homogeneous, 85
fluid, mass concentration, 85
hydrostatic equilibrium, 84, 85, 124, 183
massive, 3, 13, 84, 190, 192
massive, spherically symmetric, 191
boson stars, 227
bosons, 227

causality violations, 86
Celestial
Equator, 218, 219, 231
Sphere, 38
celestial mechanics, 11
perturbative methods, 19
relativistic, 11
censorship, cosmic conjecture, 86
centrifugal quadrupole parameter, 124, 183
Christoffel, symbols of the second kind, 3, 182
Chronos, personification of time in pre-Socratic
philosophy, 2
clock, 87
gravitomagnetic effect, 91, 103, 104
clouds, 41
collapse, gravitational, 86
conditions, initial, 9, 83
coordinate, system, 5
coordinates, 5
harmonic, 11, 190
coordinates, spatially isotropic, see coordinates,
harmonic
correlations, matrix, 8
cosmic expansion, accelerated, 10
cosmological constant, 165, 166, 168
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counter orbiting particles, 91, 103, 104
covariance matrix, 8
curvature of spacetime, see spacetime, curvature of

Damour-Deruelle
mean motion, 81, 188
parametrization, 73, 80, 81, 189
proper time eccentricity, 80, 189
dark matter, 10, 165, 172, 173
density profile, 165
density profile, exponential, 13, 172
density profile, power-law, 13, 173
density profile, scale length, 181
density profile, scaling parameter, 181
exponential density profile, orbital precessions, 173
power-law density profile, exponent, 182
power-law density profile, mean anomaly at epoch
precession, 213
power-law density profile, orbital precessions, 13,
174,212
power-law density profile, pericentre precession,
212
dark matter, nonbaryonic, 171
Darwin-Radau, relation, 84, 183
dimensionless parameter, 84, 183
data centres, 11
data reduction, 170
data reduction software, 223
de Sitter—Fokker perigee precession, 162
de Sitter—Fokker spin precession, 15, 48, 155, 160
dec., of the north pole of rotation, 94, 95, 121, 122,
128, 149, 151, 183
declination (dec.), 11, 12, 36, 49, 185, 229
DI Herculis (binary star), 85
differential geometry, see geometry, differential
disturbing function, 26, 182, 190
dark matter, exponential density profile:, 173
dark matter, power-law, density profile, 173, 212
logarithmic, 169
draconitic period, see orbital period, draconitic
drag-free, spacecraft, 230, 232, 233
dragon, 31

Earth, 2, 7, 8, 13, 16, 33, 39, 46, 48-50, 54, 59-61,
63, 64, 88,90, 98, 101, 103, 116, 131, 135, 144,
146, 164, 196, 219, 223, 225, 230, 233

angular momentum, 7, 180

angular momentum per unit mass, magnitude, 215

angular momentum, magnitude, 180, 215

dec. of the north pole of rotation, 215

ellipticity, 215

equatorial plane, 230, 232

geopotential, 223, 224, 232

geopotential, even zonal harmonics, 223, 224, 232

geopotential, odd zonal harmonics, 232

mass, 180

physical parameters, numerical values, 215, 223

quadrupole mass moment (dimensionless), 180,
230

273

RA of the north pole of rotation, 215
radius, equatorial, 180, 215
radius, polar, 215
satellites, 33, 49, 88, 232
satellites, geodetic, 7, 54, 88, 217, 222, 223
spin axis, 181
standard gravitational parameter, 180
eccentricity, 7, 16, 20, 31, 63, 68, 69, 72, 80, 81, 83,
97, 115, 140, 144, 186, 189
instantaneous shift, 37
rate of change, 21
Echelle SPectrograph for Rocky Exoplanets and
Stable Spectroscopic Observations
(ESPRESSO), 39
eclipse, 31
primary, 40
secondary, 40
ecliptic, plane of, 16, 231
Einasto, mass density profile, 172
Einstein, field equations, 4-6, 11, 227
Einstein, gravitational constant, 5, 181
Einstein, summation convention, 191
ejecta, angle, 89
electric
charges, 87
currents, 87
electromagnetic waves, see waves, electromagnetic
electromagnetism, 87
Elliptical Uranian Relativity Orbiter (EURO)
(interplanetary probe), 14, 230, 231
ellipticity, 119, 183
ELXIS (Earth satellite), 14, 230, 232
energy, 4
density, 5
potential, of interaction, 192
rest, 4
energy-momentum, tensor, 4, 181
Ephemeris of Planets and the Moon (EPM), 220
equation of geodesics, 3
equations of motion, 3, 6, 11, 35
equator, 104, 105
Equivalence Principle (EP), 2—4
strong, 3, 226
weak, 2
Euler angles, 17
European Southern Observatory (ESO), 40
European Space Agency (ESA), 233
even zonal harmonic, degree ¢ = 2, see quadrupole
mass moment (dimensionless)
Event Horizon Telescope (EHT), 6, 92
exoplanets, 16, 37-39, 64, 68, 69, 89, 92, 107-109,
112,136
angular momentum, 108, 109, 141
circumbinary, 96
eccentricity, 68, 69, 71, 112, 141
mass, 69, 108, 109, 136, 137
orbital angular momentum, 141
orbital frequency, 108, 109, 136, 137
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exoplanets (cont.)
orbital period, 68, 69, 108, 109, 136
quadrupole mass moment (dimensionless), 136,
137
radius, 42, 46, 69, 108, 109, 136, 137
rotational frequency, 108, 109, 136, 137
sky—projected spin—orbit angle, precession, 47, 113,
141, 142
sky-projected orbital angular momentum, 46, 92
sky-projected spin-orbit angle, 92
spin axis azimuth in the plane of the sky, 92
spin-orbit, misalignment, 108
star—planet, distance, 108, 109, 136, 137
star—planet, minimum distance, 68, 71, 72, 112,
140, 141
exoplanets, habitable, 39
exoplanets, host star, 71, 92, 107, 112, 113, 140-142
angular momentum, 47, 108, 109, 113, 141
azimuthal angle of the spin axis in the plane of the
sky, 47
equatorial radius, 42, 46, 141
mass, 108, 109, 137
quadrupole mass moment (dimensional), 142
quadrupole mass moment (dimensionless), 137,
141
radius, 108, 109, 137
sky-projected angular momentum, 47, 92
spin axis, 92, 113, 141, 142
spin axis azimuth in the plane of the sky, 113
spin axis tilt to the line of sight, 92, 113, 142
exoplanets, transiting, 11, 12, 36, 40, 41, 46, 68, 71,
72,92, 109, 112, 113, 137, 140-142
characteristic timescales, 11, 12, 40, 71, 72, 113,
141
disk, 40
impact parameter, 42, 183
planet to star radius ratio, 42, 185
sky-projected spin-obit angle, 12, 46
sky-projected spin-orbit angle, 113, 141
exotic compact objects (ECOs), 227
explanets
longitude of the ascending node, 47
Extreme Precision Radial Velocity (EPRV), 39
EXtreme PREcision Spectrograph (EXPRES), 39

fermion balls, 227
fermions, 227
field
1pN gravitoelectric, 48, 63, 217-220, 232, 233
1pN gravitomagnetic, 84, 87-90, 96, 98, 116, 164,
217-220, 223,224
1pN gravitomagnetic, Lorentz-violating, 175,
184
1pN gravitomagnetic, matter ring, 96, 217, 226
IpN gravitomagnetic, spin octupole, 119, 184
gravitational, 2, 3, 5-7, 11, 15, 84, 88, 155
gravitational, external, 3, 226
pK quadrupolar, 217, 219, 220

Subject Index

field effective theory, 10

free fall, 2, 3, see fall, free

full-width at half-maximum (FWHM),
cross-correlation function (CCF), 85

Galactic Centre, 6, 14, 20, 38, 49, 55, 172,217, 227
galaxies, 10, 171
halos, 172, 173
Galaxy (Milky Way), 97
Gauss
equations for the variations of the orbital elements,
22, 80, 83
general theory of relativity (GTR), 1-6, 9, 11, 37, 54,
65, 82, 87, 89, 156, 165, 190, 224, 225, 227,
233
generalized hypergeometric function, 174, 182
geodesic deviation equation, 5
geodesics, equation of, see equation, of geodesics
geodetic precession, spin, see de Sitter—Fokker,
precession, spin
geometry, differential, 2
GRACE Follow—On (GRACE-FO) (Earth satellite),
50
grava-stars, 227
gravitation, 1-5, 11
gravitational attraction, see attraction, gravitational
gravitational field, see field, gravitational
gravitational potentials, see potentials, gravitational
gravitational waves, see waves, gravitational
gravitoelectromagnetism, paradigm, 87
gravitomagnetic field, see field, 1pN gravitomagnetic
gravitomagnetic precessions, see 1pN
Lense—Thirring, orbital precessions, general case
gravitomagnetism, 4, 87, 89
gravity
absence of, 3
field, mapping, 170
models of, modified, 10, 13, 16, 31, 37, 82, 169
Gravity Probe B (GP-B) (Earth satellite), 7, 90
Gravity Recovery and Climate Experiment (GRACE)
(Earth satellite), 50
Gravity Recovery and Interior Laboratory (GRAIL)
(Moon satellite), 50
GRAVSAT (Earth satellite), 50
Greeks, ancient, 31
gyroscopes, 7, 87, 90

Hélios, Greek deity of Sun, 54

H1743-322 (microquasar), 90

Hamilton—Jacobi method, 73, 80

HD 209458 (star), 92

HD 286123 (star), 40, 41

helioseismology, 85

hierarchical triple system, 96, 155, 165, 225
distant companion, 96, 97, 155, 165, 225, 227
inner binary, 155, 165, 217, 225, 226

Highly Elliptical Relativity Orbiter (HERO) (Earth

satellite), 14, 230
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Horizons System, NASA JPL, 63, 64, 117, 144, 145,
221
Hubble parameter tension, 10

Itino, Roman deity, 13
Icarus (asteroid), 7, 54
imaginary unit, 87
in-plane acceleration, 90
inclination
of the orbital plane, 7, 16, 20, 106, 133, 186, 217,
228,231,232
of the orbital plane, critical, 230
inclination, net shift per orbit, 228
inclination, precession, 22, 218
inertial forces, 15
centrifugal, 15
Coriolis, 4, 15
inner planets of the solar system, see solar system,
planets, inner
interactions, fundamental, 1
International Astronomical Union (IAU), 11
International Celestial Reference Frame (ICRF), 63,
64, 117, 144, 145, 214, 215, 217, 220, 221, 223
inverse-square, law, see Newton, inverse-square law,
acceleration
IORIO (interplanetary probe), 14, 230, 231
iron line, 90

J2000.0, reference epoch, 49, 214, 215, 218, 219
Jacobi equation, see geodesic, deviation, equation
Jet Propulsion Laboratory (JPL), 63, 64, 117, 144,
145,221
Juno (interplanetary probe), 13, 88, 217, 220222
node period, 221
orbital parameters, 221
perijove period, 221
Jupiter, 13, 40, 68, 69, 71, 85, 88, 90, 96, 107-109,

112,113, 136, 137, 140, 141, 146, 217, 220, 221,

231
angular momentum, 181
angular momentum, magnitude, 181
dec. of the north pole of rotation, 181, 215
ellipticity, 215
mass, 181
physical parameters, numerical values, 215, 221
quadrupole mass moment (dimensionless), 181,
221
RA of the north pole of rotation, 181, 215
radius, equatorial, 181, 215
radius, polar, 215
spin axis, 181
standard gravitational parameter, 181

K2-137 (star), 40, 107, 136
Kelt—9 (star), 47, 107, 113, 114, 141, 142
Kepler
mean motion, 185
orbital elements, 7, 8, 11, 13, 16, 18-22, 25, 27, 29,
30, 36, 58, 59, 63, 64, 73, 78, 80, 82, 88, 117,

275

120, 126, 129, 131, 144, 145, 148, 150, 160,
197, 199
Kepler mean motion, see mean motion, Keplerian
Kepler orbital period, see orbital period, Keplerian
Kepler third law, 216
Kepler, ellipse, 16, 19, 20, 26-28, 30, 31, 34, 74,
191-193
osculating, 19-25, 31, 58, 60, 97, 100, 102, 130,
132,134
Kepler—13 (star), 47
Kerr black hole, 86, 87, 91, 125, 227
angular momentum, 86, 89, 115, 181, 227
angular momentum, magnitude, 86, 181
even spin moments, 87
mass, 227
mass multipole moments, 86, 181
multipole moments, 227
odd mass moments, 87
quadrupole mass moment (dimensional), 125, 143,
181
shadow, 6, 92
spacetime, 91
spin axis, 181
spin axis azimuth in the plane of the sky, 115, 181
spin axis tilt to the line of sight, 181
spin dipole moment, 86
spin multipole moments, 86, 181
spin parameter, 86, 181
Kronecker delta, 158, 182, 190
Kronos (Greek pre-Olympian deity), 2

LAGEOS (Earth satellite), 14, 217, 222, 223
node period, 222
orbital period, 222
perigee period, 222
retroreflectors, 222
LAGEOS-2 (Earth satellite), 222
Lagrange equations of motion, 147
Lagrange planetary equations, 13, 26
Lagrangian per unit mass, 182
1pN Lense—Thirring, 192
1pN gravitoelectric test particle, 147, 191
1pN gravitoelectric, test particle, 191
Newtonian, quadrupole mass moment
(dimensionless), 193
Newtonian, spherical body, 26, 191
pK, 13, 26,27, 190, 193
Laplace-Lagrange, first parameter, 32, 186
Laplace—Lagrange, second parameter, 32, 186
Laplace—Runge—Lenz
unit vector, 58, 129, 188
vector, 32, 59, 97, 98, 188
LARES (Earth satellite), 222, 230
LARES-2 (Earth satellite), 222
Laser Astrometric Test Of Relativity (LATOR)
(interplanetary probe), 233
Laser Interferometer Gravitational-wave Observatory
(LIGO), 6
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laser, pulses, 222
laser-ranging stations, 11
latitude, argument of, 17, 35, 106, 186
latitude, argument of
at epoch, 186, 227, 229
latitude, argument of
at epoch, 229
least-square approach, 8, 146
Legendre
polynomial of degree ¢, 123, 182
polynomial of degree £ = 3, 119
LEnse—Thirring Sun-Geo Orbiter (LETSGO)
(interplanetary probe), 14, 230, 231
lensing, gravitational, 92
Levi-Civita 3-dimensional symbol, 182, 191
line
of sight, 113, 142
straight, 3
line of sight, see sight, line of
logarithmic potential, 169
characteristic length scale, 169, 184
mean anomaly at epoch, precession, 169
orbital precessions, 169
pericentre, precession, 169
longitude, true, 17, 35, 101, 133, 186
at epoch, 186
Lorentz invariance, see Lorentz, symmetry
Lorentz, symmetry, 4, 10
spontaneous breaking, 175
violations, 10, 13, 165, 175
Lorentz-violating coefficients, 175
vector, 184
Lorentz-violating gravitomagnetic
acceleration, 175
acceleration, normal component, 175
acceleration, radial component, 175
acceleration, transverse component, 175
Lorentz-violating off-diagonal coefficients
vector, 175
Love, number, 85, 183
LS 14+-61°303 (microquasar), 89
Lunar Laser Ranging (LLR), 2, 6, 162

M dwarf Advanced Radial velocity Observer Of
Neighbouring eXoplanets (MAROON-X),
39
magnetohydrodynamical general relativistic
simulations, 92
manifold
differentiable, 2
Lorentzian, 1, 2, 181
pseudo-Riemannian, 2
Riemannian, 2
number of dimensions, 181
Mars, 88, 218, 220
Mars Global Surveyor (MGS) (interplanetary probe),
89

mass
central body, 7, 9, 15, 19, 20, 54, 58, 60, 182, 190,
192
density, 4, 119, 181
profile, 172
monopole moment, 7, 16, 54, 155, 156, 160-162,
168, 175, 221
multipole moments, 7, 16
point approximation, 85
quadrupole moment, 16, 221
mass-energy
currents, 87, 190
distribution, 190
material bodies
composition, 4
mass, 4
matter, 4
Maxwell equations, 87
mean anomaly at epoch, precession, 20, 98,
219
mean motion
instantaneous shift, 37
Keplerian, 16, 22-25, 38, 80, 156
Mercury (planet), 7, 51, 52, 54, 63, 64, 116, 117,
144, 145,217, 219, 220, 232
Mercury (Roman deity), 89
MESSENGER (interplanetary probe), 89
Messier M87 (galaxy), 6, 90
metric tensor signature, 2
MicroSCOPE (Earth satellite), 2
midtransit, 42
Modified General Relativity (MGR), 10
MOdified Gravity (MOG), 10
MOdified Newtonian Dynamics (MOND), 10
modulation, quasi-periodic, 89
moment of inertia, 84, 183
Moon, 2, 3, 17, 31, 48, 50, 162, 164
orbital angular momentum, 164

NASA Exoplanet Archive, 41
National Aeronautics and Space Administration
(NASA), 63, 64, 117, 144, 145, 221
near-infrared emission, 92
NEID, 39
net shifts per orbit
1st order, 25, 28
2nd order, 27, 28
mixed, 29
neutron star, 6, 47, 48, 86, 124, 224-226
angular momentum, 86
equation of state (EOS), 224
moment of inertia, 86, 216, 224
quadrupole mass moment (dimensional), 124,
216
Newton
dynamics, laws of, 1
gravitational constant, 5, 15, 180
gravitational force, 1-3
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inverse-square law, 165
acceleration, 11, 15, 104, 165, 185
Universal Gravitation, theory of, 1, 2, 5
Newton potential, see potential, Newtonian, arbitrary
mass distribution
no-hair theorems, 86, 227
node
ascending, longitude of, 7, 17, 19, 31, 61, 99, 131,
186, 218, 223, 228, 231
ascending, position of, 59-61, 101, 133, 135
descending, longitude of, 17, 186
node, net shift per orbit, 228
node, precession, 20, 23, 113, 141, 218

nodes
line of, 17, 19, 33, 36, 42, 59-61, 92, 99-101, 106,
131-133
line of, unit vector, 18, 59, 60, 99, 101, 131, 133,
187

of the orbit, 31, 36
non-gravitational forces, 2, 16, 171, 222, 232
nonconservative forces, see non-gravitational forces
Nordtvedt, effect, 3, 226
normal unit vector, see orbital angular momentum,
unit vector
normalized moment of inertia (NMol), 84, 183

oblateness, 16, 133, 136138, 146
observables, 8, 12, 25, 36, 37
calculated values, 8
instantaneous shifts, 1st order, 36
measured values, 8
net shifts per orbit, st order, 37
observatories, astronomical, 11
off-diagonal gravitomagnetic metric tensor
components, 87, 190, 192
0J 287 (blazar), 74
once-per-revolution
acceleration, 169
acceleration, cosine coefficient of the normal
component, 170, 188
acceleration, cosine coefficient of the radial
component, 170, 188
acceleration, cosine coefficient of the transverse
component, 170, 188
acceleration, normal component, 170
acceleration, orbital precessions, 170
acceleration, radial component, 170
acceleration, sine coefficient of the normal
component, 170, 188
acceleration, sine coefficient of the radial
component, 170, 188
acceleration, sine coefficient of the transverse
component, 170, 188
acceleration, transverse component, 170
OPTIS (Earth satellite), 233
orbit, circular, 18, 20, 41, 55, 70, 90, 99, 103—111,
136-140, 172, 187, 232
polar angle, 104-106

orbit, equatorial, 90, 99-101, 104-106, 125, 133
orbit, polar, 20, 90, 99, 125, 231, 232
orbit, prograde, 90, 95, 104, 105
orbit, retrograde, 91, 95, 105, 106
orbit, rotational sense, 90, 91, 104, 105
orbital angular momentum, 19, 24, 96, 107, 112, 114,
115, 136, 141, 142, 161, 162, 187, 192, 195
unit vector, 24, 55, 74, 90, 120, 125, 136, 147, 188
orbital effects, mixed, 28
orbital effects, post-Keplerian (pK), 11, 217-219,
227
orbital effects, post-Newtonian (pN), 14, 230
orbital element, non-singular
k, 35,186
q, 35,186
k, 106
q, 106
orbital elements, non-osculating, 8, 21
orbital frequency, see mean motion, Keplerian
orbital motions, 172
orbital period, anomalistic, 12, 28-30, 186
IpN Lense—Thirring, 97, 98
IpN gravitoelectric test particle, 57, 58, 154
1pN gravitoelectric two-body, 67, 78
quadrupole mass moment (dimensionless), 129,
154
orbital period, Keplerian, 16, 18, 21-25, 28, 30, 40,
42,48, 58-60, 63, 68, 69, 78,97, 100, 102, 115,
135, 137, 144, 154, 155, 168, 173, 185, 221, 222,
225
orbital period, sidereal, 12, 33, 35, 36, 100, 133, 186
orbital period, draconitic, 12, 31, 33, 34, 36, 99, 100,
186
IpN Lense—Thirring, 98, 100
IpN gravitoelectric test particle, 58, 61
IpN gravitoelectric two-body, 67, 68
quadrupole mass moment (dimensionless), 130,
132, 133
orbital precessions, see precessions, orbital
1st order, 25
mixed, 29
orbital shifts, instantaneous
Ist order, 11, 25, 28, 29, 36
2nd order, 11, 27, 28
oscillations, quasi-periodic, 89
out-of-plane acceleration, component of, see
post-Keplerian (pK) acceleration, normal
component
out-of-plane unit vector, see orbital angular
momentum, unit vector

parallel (Earth line of latitude), 33

parallel transport, 15, 156

parameters, solving for, 8, 74, 146

parametrized post-Newtonian (PPN) formalism, 9
BppN parameter, 9, 182
Y PPN parameter, 9, 182

Penrose process, 87
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periastron
advance, 7, 66
advance, fractional, 74
distance, 141
net shift per orbit, 228
pericentre
advance, 66, 122, 150
argument of, 7, 17, 31, 80, 186, 219, 228, 231
longitude of, 17, 93, 186, 220
passage at, 28, 31, 98
position, 31
position of, 17, 18, 26, 30, 46, 55, 58, 97, 98, 130
precession, 20, 24
precession, in plane, 94
time of passage at, 17, 26, 31, 98
perigee
argument of, 162, 230
height, 230
perihelion, precession, 172,219
perijove, 222
perinigricon
advance, 7
distance, 62, 68, 115, 143
perturbations, orbital secular, 20
Pioneer, anomaly, 171
Pisa, Leaning Tower of, 2
plane
equatorial, 16, 34, 94, 103, 104, 121, 127, 149, 151,
187, 195, 196
fundamental, of the reference frame, 16, 17, 33, 35,
36, 38, 42, 48,49, 61, 92, 99-104, 134, 135,
225
of the orbit, 17, 19, 21, 24, 34-36, 55, 58, 90, 94,
95, 99-101, 104-106, 121, 122, 125, 127, 128,
149, 151, 152, 195, 225, 230, 232
of the sky, 17, 42, 47, 48,91, 92, 113, 181, 225
planet
gaseous giant, 68, 69, 84, 108, 109, 113, 136, 137,
141
gravity field, multipoles, 231
Planetary Laser Ranging (PLR), 6
planets, rocky, see solar system, planets, inner
platinum, 2
Poisson, equation, 5, 173
polarimetric observations, 92
polarized submillimetre infrared observations,
92
position unit vector, see radial unit vector
position, vector, 16, 18, 50, 51, 54, 58-60, 88, 97-99,
101, 129, 131, 133, 187
projection onto the primary’s spin angular
momentum, 88, 147, 187
shift, 51, 187
shift, normal component, 51, 188
shift, radial component, 51, 188
shift, transverse component, 51, 188
post-fit residuals, see residuals, post-fit

Subject Index

post-Keplerian (pK)
anomalistic correction to the Keplerian orbital
period, 186
draconitic correction to the Keplerian orbital
period, 186
perturbed orbital period, 28
perturbed trajectory, 19, 20, 27, 31
potential, 26
potential, spherically symmetric, 27
radial velocity, instantaneous shift, 38
sidereal correction to the Keplerian orbital period,
186
post-Keplerian (pK) acceleration, 11, 15, 16, 19, 25,
28, 30, 32-35, 47, 51, 123, 146, 185
1,169
constant, 171
constant, normal component, 171
constant, orbital precessions, 171
constant, radial component, 171
constant, transverse component, 171
normal component, 23, 188
radial component, 23, 31, 188
transverse component, 23, 188
post-Keplerian (pK) orbital effects, see orbital effects,
post-Keplerian (pK)
post-Newtonian (pN)
corrections to the Minkowski metric tensor, 182,
190
spin precessions, 13, 15
post-Newtonian (pN), approximation, 6, 190
1pN order, 7, 83, 84, 119, 146, 191
2pN order, 7, 73, 191
potential, energy
interaction, 181
spin-spin, 162
two-body, 161
potential, gravitomagnetic, spin octupole, 119, 184
potential, Newtonian
arbitrary mass distribution, 4, 5, 181, 182, 190
axisymmetric body, 16, 122, 123, 147, 183
spherical body, 123, 182
potentials, gravitational, 5
potentials, metric tensor components, 4
power-law potential n = —2
mean anomaly at epoch, precession, 168
pericentre, precession, 168
power-law potential n = 2
mean anomaly at epoch, precession, 167
pericentre, precession, 167
power-law potential n = 3
mean anomaly at epoch, precession, 167
pericentre, precession, 167
power-law potential n generic
mean anomaly at epoch, precession, 166
pericentre, precession, 166
power-law, potential, 165
dimensional strength parameter, 166, 184
disturbing function, 166
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precession of the inclination, see inclination,
precession
precession of the node, see node, precession
precession of the pericentre, see pericentre,
precession
precessions, orbital, 13
1st order, 26
2nd order, 28, 30
precise orbit determination (POD), 170
pressure, 5
probe, 146, 221,222,232
PSR B1913+16 (binary pulsar), 225
PSR J0337+1715 (triple pulsar), 2, 96, 225, 226
PSR J0337+1715 (triple pulsar), inner binary, 3, 96
PSR J0737-3039 (binary pulsar), 13, 14, 48, 89, 216,
217,225
physical parameters, numerical values, 225
PSR J0737-3039A (pulsar), 48, 86
angular momentum, 86
rotational period, 86
PSR J0737-3039B (pulsar), 48, 86
angular momentum, 48, 86
rotational period, 86
PSR J0737-3039 (binary pulsar), 214
PSR J1141-6545 (binary pulsar), 72, 85, 89, 114,
115, 124, 141, 142
Pugh—Schiff spin precession, 7, 15, 90, 155, 160
pulsar
emission, 47
millisecond, 96
triple, 14, 96, 97, 217, 226, 227
pulsar, binary, 2, 7, 11, 12, 36, 47, 48, 64, 66, 72-74,
85,89, 96, 114, 124, 141, 142, 146, 225
barycentre, 48
barycentric orbit, 48, 226
barycentric semimajor axis, 48
radio pulses, 47, 48
semimajor axis, 216
times of arrival (TOAs), 47
variation of the times of arrival, 11, 48

quadrupole mass moment (dimensional), 124, 183,
225

acceleration, 125

dec., instantaneous shift, 143

dec., net shift per orbit, 229

inclination, net shift per orbit, 228, 229

mean anomaly at epoch, net shift per orbit,
229

node, net shift per orbit, 228, 229

orbital precessions, 227

pericentre, net shift per orbit, 228

perinigricon, net shift per orbit, 229

RA, instantaneous shift, 143

RA, net shift per orbit, 229

radial velocity semiamplitude, net shift per orbit,
137,229

variation of the times of arrival, instantaneous shift,
141, 142
variation of the times of arrival, net shift per orbit,
141
quadrupole mass moment (dimensionless), 11, 12, 16,
31, 84, 123, 124, 129, 130, 132, 134, 137, 150,
183, 193
acceleration, 13, 123, 146
acceleration, normal component, 125
acceleration, radial component, 125
acceleration, transverse component, 125
correction to the sidereal period, 133
dec., net shift per orbit, 143
dec., instantaneous shift, 142
equations of motion, numerical integrations,
129-131, 133, 135, 145
full width at half maximum transit duration, net
shift per orbit, 139
inclination, net shift per orbit, 136
inclination, precession, 218
ingress/egress transit duration, net shift per orbit,
138
instantaneous orbital shifts, 13, 126, 199
mean anomaly at epoch, precession, 220
mean anomaly, instantaneous shift, 129, 144
net orbital shifts, equatorial orbit case, 128
net orbital shifts, general case, 127, 154
net orbital shifts, polar orbit case, 128
node, precession, 219
pericentre, precession, 220
RA, instantaneous shift, 142
RA, net shift per orbit, 143
radial velocity curve, instantaneous shift, 136,
137
radial velocity semiamplitude, net shift per orbit,
136
range rate, instantaneous shift, 144, 145
range, instantaneous shift, 144
sky-projected spin-orbit angle, precession,
141
time of inferior conjunction, net shift per orbit, 140,
141
total transit duration, net shift per orbit, 138
transit characteristic timescales, net shifts per orbit,
137, 140
quantum gravity, theory of, 10
quantum regime, 3

RA of the north pole of rotation, 94, 95, 121, 122,
128, 149, 151, 183
radar ranging, 54
radial unit vector, 24, 55, 74, 90, 120, 125, 136, 147
radial velocity, spectroscopic binary, 11, 12, 36-39,
187
accuracy, 39
curve, 37, 68, 106, 135
semiamplitude, 39, 68, 106, 135, 187, 229
systemic, 38, 187
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radiation
gamma, 47
optical, 47
radio, 47, 225
X, 47
radius, circular orbit, 104, 187
radius, equatorial, 119, 182
radius, polar, 119, 183
rate of change of the eccentricity, see eccentricity, rate
of change
rate of change of the semimajor axis, see semimajor
axis, rate of change
redshift, gravitational, 225
reference
x axis, 16, 17, 33, 42,47,91, 92
v axis, 92
zaxis, 17, 38,42, 48,92, 93, 104, 125, 147, 148,
150
direction, 16, 33, 36, 47, 102, 104, 106, 135
reference frame, 13, 16, 38, 94, 121, 128, 147-151,
155, 160, 196
accelerated, 4, 5
dynamically non-rotating, 15, 155, 160, 232
inertial, 2, 15
kinematically non-rotating, 15, 155
kinematically rotating, 160, 232
rotating, 4
relativistic
jets, 87
multipoles, 120
remote sensing, 170
residuals, post-fit, 8, 9, 146, 170, 223
Ricci
spacetime curvature tensor, 4, 182
tensor trace, 5, 182
Riemann, spacetime curvature tensor, 4, 5, 156, 182
right ascension (RA), 11, 12, 34, 36, 49, 185, 229
ring, massive, 96, 165, 226, 227
potential expansion, 165, 166, 226
quadrupole, 165, 166, 226
Rossby wave-induced spiral pattern, 92
Rossiter-McLaughlin effect, 47, 92
rotation, rigid, 119
rotational
frequency, 85, 107, 183
period, 86, 183

S star, 20, 37-39, 49, 62, 68, 69, 74, 89, 91, 115, 116,
143,172
S2 (star), 7, 39, 54
S4716 (star), 14, 49, 109, 110, 137, 138, 217, 227-229
satellite, 15, 19, 20, 27, 30, 88, 94, 95, 121, 122, 127,
128, 149, 151, 152
data reductions, 169
Satellite Laser Ranging (SLR), 6, 7, 88, 222, 223
stations, 223
Saturn, 88
Saturn (Roman deity), 2

Subject Index

Scalar Tensor Vector Gravity (STVG), 10
self-energy, gravitational, 226
self-gravity, 2, 3
semilatus rectum, 16, 31, 106, 186
semimajor axis, 7, 16, 20, 37, 38, 40, 48, 5961, 81,
83,96, 98, 101, 103, 131, 133, 135, 185, 189,
222,230
instantaneous shift, 37
rate of change, 21, 230
Sgr A*, 6,7, 20, 38, 54, 62,91, 92, 107, 109, 115,
136, 142, 227
Shapiro, delay, 225
sidereal period, see orbital period, sidereal
sight, line of, 17, 36, 38, 42, 48, 85, 91, 92, 181, 225
SINgle Faint Object Near—IR Investigation
(SINFONI), 40
sky-projected spin-orbit angle, 11, 183
SLALOM (Earth satellite), 50
solar system, 6, 7, 11, 13, 16, 50, 88, 89, 172, 214,
217,230, 233
ice giants, 220
moons, 88
planets, 13, 88, 217-220
planets, inner, 7, 54, 88
planets, outer, 88
spacecraft, see probe
spacetime, 2-5, 13, 15, 156, 160, 166
curvature of, 1, 3, 4
geodesic, 3
metric inverse tensor, 3, 182
metric tensor, 3, 4, 13, 27, 87, 165, 182, 190
Special Theory of Relativity (STR), 1, 2, 4
spectral energy distribution (SED), 85
spectrum, electromagnetic, 47
speed of light in vacuum, 2, 5, 6, 48, 180
spheroid, oblate, 119
spin
dipole moment, 7, 12, 16, 119, 221
multipole moments, 7, 16
octupole moment, 12, 16, 221
spin angular momentum, 7, 19, 20, 84, 88, 94, 96, 99,
102, 107-109, 112, 114, 129, 131, 135, 136, 142,
147, 183, 190, 192, 195, 196, 231
magnitude, 183
unit vector, 88, 90, 91, 93, 95, 97, 99, 100, 102,
104, 122, 125, 148-150, 183
spin axis, see spin angular momentum, unit vector
spin-orbit coefficients
equatorial orbit, 195
general case, 194
polar orbit, 195
spin aligned with the z axis, 196
spin-orbit coefficients are defined in Appendix D, 13
standard gravitational parameter, 15, 182
Standard Model Extension (SME), 10, 175
Standard Model of elementary particles and fields, 10
star, main sequence, 3740, 48, 68, 69, 72, 84, 85, 87,
89, 96, 107-109, 124, 136, 137, 146
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activity indices, 85
disk, 40
equatorial rotational velocity, 85, 183
mask, 85
projected rotational velocity, 85, 183
quadrupole mass moment, 107
radius, equatorial, 85
reduced spectrum, 85
rotational period, 85
spin axis, 85
spin axis azimuth in the plane of the sky, 183
spin axis tilt to the line of sight, 85, 183
spots, 41
stress-energy tensor, see energy-momentum, tensor
stresses, internal, 4
strong, gravitational regime, 5, 6, 89
sub-satellite, point, 33
time of passage of, 33
Sun, 2, 7, 13, 40, 63, 68, 69, 71, 90, 107-109, 112,
116, 136, 137, 140, 162, 164, 217-220, 232, 233
angular momentum, 89, 117, 180
angular momentum, magnitude, 85, 117, 180
dec. of the north pole of rotation, 117, 144, 145,
180,214
ellipticity, 214
mass, 63, 64, 180
physical parameters, numerical values, 214,
217-219
quadrupole mass moment (dimensionless), 107,
144, 145, 180, 217-220, 232
RA of the north pole of rotation, 117, 144, 145,
180, 214
radius, equatorial, 180, 214, 232
radius, polar, 214
spin axis, 144, 145, 180
standard gravitational parameter, 180
supermassive black hole in M87, 6, 90
supermassive black hole in Sgr A*, 6, 7, 20, 38, 54,
89,107, 110, 115, 116, 136, 138, 143, 227-229
angular momentum, 107
mass, 107, 110, 116, 136, 138, 143, 228, 229
quadrupole mass moment (dimensional), 136
spin axis, 91, 92, 109, 110, 115, 116, 137, 138, 143,
144,227-229
spin axis azimuth in the plane of the sky, 91, 109,
110, 116, 137, 138, 143, 144
spin axis tilt to the line of sight, 91, 92, 109, 110,
115,116, 137, 138, 143
spin parameter, 107, 110, 116, 136, 138, 143,
227-229
supermassive black hole in Sgr A*, 229
mass, 229
spin axis, 229
spin parameter, 229
superradiance, 87
symmetry
axial, 123
spherical, departures from, 16

281

symmetry axis, 121, 123
systematic errors, 41

temporal coordinate, 182
test particle, 3, 4, 11, 13, 15-20, 24, 28, 30, 31, 33,
35,49, 58,59, 61, 62, 64, 65, 69, 84, 90, 97-99,
102, 104-106, 108, 115, 119, 129, 131, 135, 137,
142, 155, 156, 161, 175, 192
tetrad components, 156
TianQuin (interplanetary probe), 233
tidal
angular momenta alignment, 108, 109, 137
effects, 15, 107, 155
forces, 3, 107, 136
matrix, 156
matrix, IpN gravitoelectric, 158
matrix, IpN gravitomagnetic, 159
matrix, Newtonian, 49, 158
orbit circularization, 108, 109, 137
orbital effects, 13
spin-orbit synchronization, 108, 109, 136,
137
tidal acceleration, 156, 172
normal component, 156
radial component, 156
transverse component, 156
tidal effects, 84, 108, 109, 137
tidal quadrupole parameter, 124, 183
tide, K7, 232
tide-raising companion, 124
mass, 124, 183
semimajor axis, 124, 183
tides, 3, 108, 109, 136, 137
Time, see Chronos
time
coordinate, 11, 182, 191
inferior conjunction of, 40, 46, 71, 72, 112, 141,
185
initial instant, 17, 25, 58, 60, 83, 97, 100, 102, 127,
130, 132, 134, 186
proper, 3, 11, 182
standards, 41
timelike curves, closed, 86
times of arrival (TOAs), 12, 226
titanium, 2
Titans (Greek pre-Olympian gods), 2
transit
egress duration, 44
flux, 40
ingress duration, 43
ingress/egress duration, 40, 44, 185
primary, 40, 44
primary, full width at half maximum duration, 40,
44, 185
secondary, 40
total duration, 40-43, 185
transverse unit vector, 24, 55, 74, 90, 120, 125, 136,
147
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two-body
distance, 1, 16, 19, 31, 109, 125, 161, 162, 175,
187, 192
range, 12, 50, 52, 185, 232
range rate, 12, 50, 52, 185
range rate shift, 51, 185, 231
range shift, 51, 185, 232
two-body system, 88
restricted, 9, 11, 13, 15, 155, 156, 160-162
restricted, primary, 7, 13, 15, 19, 20, 24, 31, 49, 50,

58, 60, 62, 88, 90, 99, 102, 103, 115, 121, 123,

129-132, 134, 135, 142, 146, 155, 168, 172,
187, 193
restricted, primary, 11, 102, 123

unit vector

in the orbital plane normal to the line of nodes, 19,
187

in the orbital plane along the line of nodes, see
node, ascending, unit vector

perpendicular to the orbital plane, see angular
momentum, orbital, unit vector

range rate shift, auxiliary, 51, 185

Uranus, 88, 231

velocity, vector, 18, 50, 51, 147, 175, 187, 191-193
magnitude, 187
projection onto the position vector, 54, 187
projection onto the primary’s spin angular
momentum, 187
shift, 51, 187
shift, normal component, 51, 188
shift, radial component, 51, 188
shift, transverse component, 51, 188
Vernal Equinox
at some reference epoch, 16, 180, 232
Very Large Telescope (VLT), 40
Virgo (laser interferometer), 6

Subject Index

WASP-33 (star), 47, 107
waves
electromagnetic, 3-5, 87
gravitational, 5, 6, 156, 157, 233
gravitational, frequency, 157, 233
weak-field and slow-motion approximation, see
approximation, weak-field and slow-motion
weight force, 2
white dwarf, 3, 48, 85, 124, 225, 226
angular momentum, 86
binary, 2, 72, 89, 96, 114, 141, 142, 225
mass, 86
moment of inertia, 85
quadrupole mass moment (dimensional), 124,
142
radius, 86
rotational frequency, 85
triple, 96
worldline, 2, 3
geodesic, 15, 156, 160
wormbholes, 228

X-ray

binaries, 89

lightcurve, 92
XMM-Newton (spaceborne mission), 92
XO-3 (star), 47

Yukawa potential, 165, 168
dimensional strength intensity, 168, 184
dimensionless strength intensity, 168, 184
disturbing function, 168
mean anomaly at epoch, precession, 168
orbital precessions, 168
pericentre, precession, 168
scale distance, 168, 184

Zeus (Greek deity), 2
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