


GENERAL POST-NEWTONIAN ORBITAL EFFECTS

Orbital motions have always been used to test gravitational theories which, from
time to time, have challenged the then-dominant paradigms. This book provides
a unified treatment for calculating a wide variety of orbital effects due to general
relativity and modified models of gravity, to its first and second post-Newtonian
orders, in full generality. It gives explicit results valid for arbitrary orbital con-
figurations and spin axes of the sources, without a priori simplifying assumptions
on either the orbital eccentricity or inclination. These general results apply to a
range of phenomena, from Earth’s artificial satellites to the S-stars orbiting the
supermassive black hole in the Galactic Centre to binary and triple pulsars, exo-
planets, and interplanetary probes. Readers will become acquainted with working
out a variety of orbital effects other than the time-honoured perihelion precession,
designing their own space-based tests, performing effective sensitivity analyses,
and assessing realistic error budgets.

L O R E N Z O I O R I O is qualified as Full Professor of Theoretical Physics and of
Astrophysics at the Italian Ministry of University and Research. He earned his PhD
from the University of Bari in 2001. His research focuses on gravitational physics,
in particular, experimental/observational tests of general relativity and modified
models of gravity. He is the author of more than 250 publications and is Editor-in-
Chief of the journal Universe.

Published online by Cambridge University Press



‘This book provides a wonderful and very detailed guide for those interested in comparing
observations with Einstein’s theory and the many proposed alternatives. Written in a very
readable and accessible manner, it is an indispensable guide to comparing theoretical gravi-
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1

Introduction

The feeblest of the four fundamental interactions governing the natural world is
gravitation.1

The General Theory of Relativity2 (GTR) is the formulation of gravitation set
out by Albert Einstein in 1915 (Einstein, 1915c,d,a) and completed one year later
(Einstein, 1916). It is the simplest possible gravitational theory compatible with his
Special Theory of Relativity (STR) (Einstein, 1905). For contemporary compre-
hensive expositions of GTR, see, for example, Fok (1959), Synge (1960), Weinberg
(1972), Hawking and Ellis (1973), Wald (1984), Stephani (1990), Cheng (2009),
Padnanabhan (2010), Ohanian and Ruffini (2013), Zee (2013), Misner et al. (2017),
Carroll (2019), Thorne and Blandford (2021), Schutz (2022), and Kenyon (2023).
Some recent review articles, which appeared in the literature on the occasion of its
last centenary, are, for example, Blandford (2015), Iorio (2015a), and Debono and
Smoot (2016).

The time-honoured Law of Universal Gravitation proposed by Isaac Newton
at the end of the seventeenth century in his immortal book Philosophiæ Natu-
ralis Principia Mathematica (Newton, 1687; Chandrasekhar, 1995) describes it by
means of a mysterious – remarkably, for Newton himself – force acting instantan-
eously between two or more material bodies, even if mutually separated in empty
space by distances r much larger than their characteristic sizes D; as such, it bene-
fits from the properties of the forces established by the three Newtonian laws of
dynamics.

Instead, GTR adopts a completely different conceptual framework. According to
it, gravitation is no longer best understood as a force, being, instead, a manifestation
of the curvature, in a very specific sense, of a four-dimensional pseudo-Riemannian

1 From the adjective grăvis, e (‘heavy’) and the noun grăvı̆tas, ātis, (‘weight, heaviness’).
2 From Allgemeine Relativitätstheorie.

1
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2 Introduction

Lorentzian manifold3 known as spacetime (Oloff, 2023) with respect to the so-
called ‘flat’ version of the spacetime employed by STR. Stated differently, the
Einsteinian picture replaced the Newtonian concept of gravitational force with the
notion of deformation of the chronogeometric4 structure of spacetime (Damour,
2007) due to all forms of energy weighing it; as such, GTR can be defined as a
chronogeometrodynamic theory of gravitation (Torretti, 1991). Indeed, the weight
force on the Earth, which Newton unified with the agent determining the course of
the heavens in the framework of his Universal Gravitation, is just an illusion due to
the fact that we are born, live continuously, and die on the surface of our planet.5

Actually, what we perceive as weight is not due to gravitation, but to the reaction
force, of non-gravitational nature, exerted on our bodies by any physical surface
we rest on; a chair, a floor, a bed. What kills us when we fall from a building is not
gravity, but the non-gravitational reaction force by the ground. Indeed, if we are in
free fall, that is, if we move subjected only to gravity and no6 forces act on us, all
the different parts of our body proceed with the same acceleration,7 and we are not
torn apart as would occur if gravity acted differently on bodies of diverse compos-
ition. Thus, as long as the regime of free fall continues, we are weightless, and the
gravity seems to have been cancelled in our neighbourhood; for us, all things go as
predicted by STR, we would obtain always the value of c in any experiment aimed
at measuring the speed of light, and the worldlines of non-interacting, electrically
neutral material objects appear as just straight in our freely falling experimental
setup. It can be said that we are in a local (in both the spatial and temporal sense)
inertial reference frame. It is one aspect of the so-called Equivalence Principle
(EP).8 In fact, such a removal of gravitation is not exact, being dictated by how

3 According to differential geometry, a differentiable manifold is said to be pseudo-Riemannian (Benn and
Tucker, 1987; Bishop and Goldberg, 1980) if it is endowed with a metric tensor that is everywhere
nondegenerate, thus relaxing the requirement of positive-definiteness characterizing the Riemannian
manifolds. A nd-dimensional Lorentzian manifold is a special case of a pseudo-Riemannian manifold whose
metric signature is (1, nd − 1).

4 From Xρόνος, ‘Chronos’, the personification of Time, not to be confused with Kρόνος, ‘Kronos’, the Titan
father of Zeus, corresponding also to the Roman deity Saturn.

5 From πλανήτης, -ου, ’ο, meaning ‘wanderer’, composed by the verb πλανάω (‘I wander’) and the
masculine agent noun suffix -της.

6 If gravity were a force, here one would have to prefix the adjective ‘other’ to the word ‘forces’.
7 The tale according to which Galilei experimentally proved it by dropping objects of different weights from

the Leaning Tower of Pisa (Drake, 1978) is, in all likelihood, apocryphal (Adler and Coulter, 1978; Segre,
1989; Crease, 2006).

8 So far, one has only talked about bodies whose self-gravity is negligible in holding their constituent parts
together, and whose free fall is not affected by their reciprocal gravitational interaction. Such a weak version
of the EP (Nobili and Anselmi, 2018) has been recently tested to a relative accuracy of ' 10−15 (Touboul
et al., 2022a) in the spaceborne experiment Micro-Satellite à traînée Compensée pour l’Observation du
Principe d’Equivalence (MicroSCOPE) (Touboul et al., 2022b) with two objects made of platinum and
titanium alloys, respectively, kept in free fall around the Earth inside a spacecraft which shielded them from
any potentially disturbing non-gravitational influences. As shown by analyses of the motions of the Earth and
the Moon in the field of the Sun with the Lunar Laser Ranging (LLR) technique (Williams et al., 2012;
Müller et al., 2019; Biskupek et al., 2021) and, more recently, of the binary pulsar-white dwarf PSR
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Introduction 3

uniform the gravitational field is on the scale of our body and of the things that
free fall in our vicinity along with us. The more uniform the field is, or the smaller
our neighbourhood is, the more accurate the absence of gravity is. In any case, free
falling non-interacting objects left to themselves will sooner or later move, more
or less rapidly, towards or apart from each other because of the unavoidable non-
uniformity of the gravitational field in which they all fall together. That is not an
illusion, and there is no way of wholly removing such a state of affairs: it is the
true essence of gravitation for Einstein (Taylor and Wheeler, 1992). In Newtonian
language, one would explain the aforementioned pattern in terms of residual, or
differential, gravitational forces, commonly dubbed tidal since they are the ana-
logue of the lunar gravitational pulls which, varying from one end to the other over
the entire extension of the terrestrial globe, raise the tides on it. Instead, in the
language of spacetime, the worldlines of such objects ‘tidally’ driven towards or
apart from each other no longer appear straight, being curved. Since, as remarked
before, this is the key feature of gravity, in the Einsteinian framework it is said that
gravity is a manifestation of the curvature of spacetime and GTR relies upon the
EP. Thus, GTR is, at the same time, a theory of space and time, and of gravitation
as well; furthermore, light and free massive particles move along geodesics of a
curved spacetime, which are the generalization of straight lines taking place when
gravity is absent. Their equation is

d2xσ

dλ2
= −0συι

dxυ

dλ

dxι

dλ
, σ = 0, 1, 2, 3, (1.1)

where λ is some affine9 parameter which, in the case of a massive body, coincides
with its proper time τ, while

0συι :=
1

2
gσκ

(
∂gκυ
∂xι
+
∂gκι
∂xυ
−
∂gυι
∂xκ

)
, σ , υ, ι = 0, 1, 2, 3 (1.2)

are the Christoffel symbols of the second kind (Weinberg, 1972; Bishop and Gold-
berg, 1980; Misner et al., 2017); gσλ is the inverse of the spacetime metric tensor
gσλ. In terms of the temporal coordinate x0 := ct, the equations of motion for a test
particle retrievable from Equation (1.1) for λ→ τ and σ = 1, 2, 3, can be written
as follows (Weinberg, 1972; Brumberg, 1991):

J0337+1715 (Ransom et al., 2014; Shao, 2016) in the field of another distant white dwarf, searching for
violations of the EP in terms of the Nordtvedt effect (Nordtvedt, 1968b,a), the EP holds also in its stronger
version, according to which the mutual gravitational attraction among bodies along with their own
self-gravity is taken into account as well, to the ' 10−4 (Hofmann and Müller, 2018) and ' 10−6

(Archibald et al., 2018; Voisin et al., 2020) levels, respectively. The challenges of testing the EP in different
regimes, including also the quantum realm in which it is not obvious that the former is valid, are reviewed in
Tino et al. (2020).

9 From affı̄nis, e, ‘bordering on, adjacent, contiguous’.
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d2xi

dx02 = −0
i
σλ

dxσ

dx0

dxλ

dx0
+ 00

σλ

dxσ

dx0

dxλ

dx0

dxi

dx0
, i = 1, 2, 3. (1.3)

On the other hand, another crucial aspect of the EP consists of the fact that grav-
ity can also be emulated, to a certain extent, by adopting an accelerated reference
frame. Indeed, the motions of material objects referred to the latter are character-
ized by accelerations which depend neither on the mass nor on the composition
of the former ones, which is just the distinctive trait of the gravitational interaction
itself. Such a feature, together with STR, allows one to predict a number of peculiar
phenomena pertaining to the propagation of electromagnetic waves and the motion
of material objects which are unknown to the Newtonian gravitational picture. Suf-
fice it to think about the Coriolis acceleration affecting a moving particle with
respect to a rotating reference frame and the corresponding gravitomagnetic coun-
terpart arising in GTR since the latter has to fulfil the Lorentz symmetry (Jantzen
et al., 1992b; Schmid, 2023).

Since GTR is a relativistic theory of gravitation, and in STR all forms of energy
are equivalent to mass, for Einstein, the source of gravitation, that is, of the space-
time curvature, is made by several more entities than for Newton and his scalar
potential U alone. That is, a material body gravitates not only because it possesses
its own rest energy, but also because it is compressed or dilated, or because it is
distorted by internal stresses, and even if it moves. All that is encoded by the sym-
metric energy-momentum tensor Tσλ, σ , λ = 0, 1, 2, 3 (Provost, 2017; d’Inverno
and Vickers, 2022). Thus, there is no longer just a single gravitational potential
sourced only by the matter density ρ, as in the Newtonian scheme, but now there
are ten generally different quantities playing the role of gravitational potentials: the
independent components of the symmetric spacetime metric tensor. The way the
distribution of matter and energy actually deforms the spacetime ultimately deter-
mining the metric tensor is established by Einstein’s field equations (Fok, 1959;
Synge, 1960; Weinberg, 1972; Hawking and Ellis, 1973; Wald, 1984; Stephani,
1990; Cheng, 2009; Padnanabhan, 2010; Ohanian and Ruffini, 2013; Zee, 2013;
Misner et al., 2017; Carroll, 2019; Thorne and Blandford, 2021; Schutz, 2022;
Kenyon, 2023),

Rσλ −
1

2
gσλR = κgTσλ, σ , λ = 0, 1, 2, 3, (1.4)

which represent a set of complicated nonlinear partial differential equations. In
Equation (1.4), Rσλ is the Ricci curvature tensor of the spacetime, defined by con-
tracting two indices of the Riemann tensor (Weinberg, 1972; Bishop and Goldberg,
1980; Parker and Christensen, 1994b; Misner et al., 2017; Schutz, 2022),

Rεσψλ :=
∂0ελσ

∂xψ
−
∂0εψσ

∂xλ
+ 0εψχ0

χ

λσ − 0
ε
λχ0

χ

ψσ , ε, σ ,ψ , λ = 0, 1, 2, 3, (1.5)
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Introduction 5

in the following way (Weinberg, 1972; Bishop and Goldberg, 1980; Parker and
Christensen, 1994a; Misner et al., 2017):

Rσλ := Rεσελ, σ , λ = 0, 1, 2, 3. (1.6)

Furthermore,

R := gµνRµν (1.7)

is the trace of the Ricci tensor, and κg is Einstein’s gravitational constant (Adler
et al., 1975). Nonetheless, if the characteristic motions of the system at hand are
quite slow, and the gravitational fields are weak and almost static, the general
relativistic field equations reduce to just the Poisson equation

∇
2U = 4πGρ (1.8)

for the potential U of the Newtonian theory. Such a correspondence fixes the value
of Einstein’s gravitational constant entering Equation (1.4) to10

κg :=
8πG

c4
, (1.9)

where G is Newton’s constant of gravitation. In view of its tensorial nature, if
Rεσψλ, ε, σ ,ψ , λ = 0, 1, 2, 3 vanishes in a given coordinate system, it is zero in all
other coordinates as well; in this case, gravity is effectively absent even if the space-
time appears formally curved in some coordinates; they would refer to a merely
accelerated reference frame. Indeed, the geodesic deviation equation, known also
as Jacobi equation (Chicone and Mashhoon, 2002) in differential geometry, which
expresses the tidal forces, that is, the true manifestation of gravity, within the GTR
framework, is proportional just to the Riemann tensor (Wald, 1984; Ohanian and
Ruffini, 2013; Carroll, 2019).

Of course, GTR is not limited only to providing a different theoretical scheme
to frame and reproduce the same phenomena described by the Newtonian one. The
Einsteinian theory is much richer than Newton’s Universal Gravitation, predicting
a whole set of new phenomena. Indeed, GTR is able to treat motions occurring
in gravitational fields so intense – in the sense that their gravitational potentials
are close to the speed of light squared c2 – that they accelerate bodies to speeds
close to c itself and bend the path of electromagnetic waves in unparalleled ways
undergoing also exceptionally rapid variations in time and from a point in space to
another nearby one. The most spectacular – and expensive, as well as long-lasting –
tests of GTR, recently performed by large international teams after several decades,
undoubtedly come from such strong regimes. Suffice it to think about the gravi-
tational waves (Cervantes-Cota et al., 2016) emitted in the end-of-life stages of
10 With such a choice, each component of Tσλ has the dimensions of energy density, that is, energy per

volume, or, equivalently, pressure.
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binary black holes (BHs) (LIGO Scientific Collaboration and Virgo Collaboration,
2016) and neutron stars (LIGO Scientific Collaboration and Virgo Collaboration,
2017), detected so far by the Laser Interferometer Gravitational-wave Observa-
tory (LIGO) and Virgo facilities, or the shadows of the supermassive black holes
(SMBHs) at the centre of the supergiant elliptical galaxy Messier 87 (M87) (Event
Horizon Telescope Collaboration, 2019) and in Sgr A∗ at the Galactic Centre (GC)
(Event Horizon Telescope Collaboration, 2022) imaged by the Event Horizon Tele-
scope (EHT) collaboration (Doeleman et al., 2009). In such domains, Newton fails
miserably.

The first approximation of GTR to the next order to the purely Newtonian one,
in which new terms in the equations of motion appear, is named post-Newtonian
(pN); see, for example, Damour (1987), Asada and Futamase (1997), Blanchet
(2003), Blanchet (2006), Futamase and Itoh (2007), Will (2018), and references
therein. It is a computational scheme for solving the GTR field equations relying
upon the assumptions that the characteristic speeds of the bodies under consider-
ation are smaller than c and that the gravitational fields inside and around them
are weak. Nonetheless, as pointed out by Will (2011b), such a framework turned
out to be notably effective in describing also certain strong field and fast motion
systems such as compact binaries made of at least one dense neutron star and inspi-
ralling pairs of BHs emitting gravitational waves; the reasons for that are largely
unknown (Will, 2011b). Thus, putting the pN approximation to the test in as many
different scenarios and at the highest order of approximation as possible is of para-
mount importance to gain ever increasing confidence in it and extrapolating the
validity of its effects to their counterparts in stronger regimes. In principle, such
pN tests have the benefit that, if, on the one hand, the expected signals of inter-
est have smaller magnitude with respect to the corresponding ones in the strong
field regime, on the other hand, the knowledge of the competing features of motion
of classical origin is relatively better, and the impact of their mismodelling can
be more accurately assessed with respect to less accessible astrophysical scen-
arios whose environments are, generally, less reliably known. Furthermore, the
measurement techniques routinely used, or under development, for tracking solar
system’s artificial or natural bodies like, for example, LLR, Satellite Laser Ran-
ging (SLR) (Coulot et al., 2011), and Planetary Laser Ranging (PLR) (Dirkx et al.,
2019) are becoming more and more accurate, allowing, in principle, one to detect
increasingly smaller features of motion. As if that weren’t enough, the techno-
logical efforts needed to measure such tiny effects could be useful one day in other,
unsuspected fields. Last but not least, a somewhat opportunistic approach may be
more easily followed by exploiting existing or planned missions directed to dif-
ferent goals, with a remarkable gain of time and money. In its technical realm of
validity, the pN approximation has been, or is currently being, tested only to the
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first post-Newtonian (1pN) order,11 since its 2pN effects are deemed too small to
be currently measurable. Moreover, the tests done or currently underway largely
refer to the mass monopole and, to a much lesser extent, the spin dipole moments
of the source, namely its mass M and angular momentum J . In particular, the peri-
helion12 precessions of Mercury (Shapiro et al., 1972; Shapiro, 1990), of other
inner planets of the solar system (Anderson et al., 1978, 1993), and of the aster-
oid Icarus (Shapiro et al., 1968, 1971) were measured long ago. More recently,
Earth’s geodetic satellites13 (Pearlman et al., 2019), tracked with the SLR tech-
nique, were used (Lucchesi and Peron, 2010, 2014). Finally, the perinigricon14 shift
of the S star S2 in the field of the SMBH in Sgr A∗ was recently measured as well
(GRAVITY Collaboration et al., 2020). Furthermore, the periastron15 advance of
a two-body system of comparable masses MA and MB was measured with differ-
ent binary radiopulsars (Weisberg and Taylor, 1984; Stairs, 2003; Champion et al.,
2004; Weisberg and Taylor, 2005; Kramer et al., 2006). As far as the 1pN orbital16

effects induced by the angular momentum J of the primary, known collectively as
the Lense–Thirring (LT) effect (Lense and Thirring, 1918; Mashhoon et al., 1984),
are concerned, tests have been underway with SLR geodetic satellites since 1996
(Ciufolini et al., 1996). Some aspects of them, like their realistic accuracy, are cur-
rently being debated; see, for example, Renzetti (2013b) and references therein. So
far, the only uncontroversial test of another 1pN feature due to the Earth’s angular
momentum is the one performed with the Gravity Probe B (Everitt, 1974) (GP-B)
mission which measured the Pugh–Schiff precessions (Pugh, 1959; Schiff, 1960)
of four spaceborne gyroscopes to a ' 19% accuracy (Everitt et al., 2011, 2015),
despite the fact that for many decades it was assumed that the final accuracy would
be around 1% (Everitt, 1974; Everitt et al., 2001). Actually, to the 1pN level, other
dynamical effects arise induced by mass and spin multipole moments of higher
order (Soffel and Han, 2019).

In this book, extensive use is made of the Keplerian orbital elements (Brouwer
and Clemence, 1961; Soffel, 1989; Brumberg, 1991; Klioner and Kopeikin, 1994;
Bertotti et al., 2003; Roy, 2005; Kopeikin et al., 2011; Poisson and Will, 2014;
Soffel and Han, 2019). They are the semimajor axis a, the eccentricity e, the inclin-
ation I , the longitude of the ascending node�, the argument of pericentre17 ω, and

11 It can be formulated to yield field equations for just two potentials (Soffel and Brumberg, 1991).
12 From περί (+ accusative), meaning ‘around, near, about, from’, and ’′Hλιος, -ου, ’ο, ‘H ´̄elios’, the god of the

Sun.
13 From sătellĕs, ı̆tis, meaning ‘attendant upon a distinguished person’, ‘lifeguard’. For a discussion of the word

satellite, its origin and its use in astronomy, see Sparavigna (2016).
14 From περί (+ accusative), meaning ‘around, near, about, from’, and nı̆ger, gra, grum (‘black’).
15 From περί (+ accusative), meaning ‘around, near, about, from’, and ’′αστρον, -ου, τό (‘celestial body, star’).
16 From orbis, is, ‘a ring, circle, re-entering way, circular path, hoop, orbit’.
17 From περί (+ accusative), meaning ‘around, near, about, from’, and κέντρον, -ου, τό, meaning, among

other things, ‘stationary point of a pair of compasses’, ‘centre (of a circle)’.
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the mean anomaly at epoch18 η. Such a choice, which, by no means, should be
deemed obligatory since other orbital parameterizations also exist (Bond and Janin,
1981; Gurfil, 2004; Efroimsky, 2005; Kopeikin et al., 2011; Gurfil and Efroimsky,
2022; Pogossian, 2022), is motivated by their immediately intuitive meaning which
greatly helps in visualizing the effects described with them. Furthermore, they are
easy to use in order to suitably design space-based experiments and preliminarily
assessing the impact of other competing dynamical effects of classical origin.

However, nowadays, actual tests of dynamical features of motion are usually
performed differently. Large datasets are reduced in the following way. Highly
detailed mathematical models of (a) the dynamics of the moving bodies, including
pN effects XpN to a certain degree of completeness (b) the propagation of the elec-
tromagnetic waves between the Earth’s stations and the (re)transmitting/reflecting
artificial or natural bodies of interest (c) the measurement devices, all contain-
ing several key parameters p characterizing the physical and orbital features of
the system’s components at hand (masses, initial positions and velocities, bias of
transponders, etc.), are fitted to huge amounts of data. The latter consist of meas-
urements of the directly observable quantities19 O. In such grand fits (Nordtvedt,
2000), p are estimated in a least-square way20 along with their errors and recipro-
cal correlations, all stored in the covariance matrix. Finally, time series of post-fit
residuals21 are produced by subtracting the measured values of the observables O
from their analytical counterparts calculated with the previously estimated values
of p. In order to realistically assess the accuracy of the parameter(s) of interest,
different data sets and background reference models can be used, and the result-
ing values p are confronted with each other. In principle, such post-fit residuals
should account for, among other things, all the mismodelled – or even unmod-
elled – dynamics. Thus, if they are statistically compatible with zero, there is the
temptation to straightforwardly compare them to their analytically predicted coun-
terparts in order to infer upper bounds on XpN if the latter is not included in the
dynamical models fit to the observations. Furthermore, should the post-fit resid-
uals be considered different from zero at a statistically significant level, one would
be likely tempted to claim a measurement of the unmodelled effect XpN of interest.
This is a widely adopted practice in the literature. Actually, great care is needed

18 There is not a symbol commonly adopted for it in the literature. Suffice it to say that, for example, η is used
by Milani et al. (1987), while in the notation by Brumberg (1991) the mean anomaly at epoch is l0.

Furthermore, Kopeikin et al. (2011) denote it as M0, while Bertotti et al. (2003) adopt ε
′
.

19 The Keplerian orbital elements do not belong to them, being computed from observations through some
intermediate steps.

20 Recently, the Bayesian approach also has been gaining ground (Mariani et al., 2023).
21 It is possible to produce time-dependent ‘residuals’ of the Keplerian orbital elements (Lucchesi and Balmino,

2006; Lucchesi, 2007) only when the spacecraft motion proceeds steady and seamlessly, without interruptive
orbital manoeuvres needed for, for example, pointing an antenna towards the Earth.
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in proceeding as just outlined, especially when the expected size of the pN sig-
nal one is interested in is not much larger than the measurement errors22 (Fienga
and Minazzoli, 2024). Indeed, if XpN is not modelled, its possible signature may
be more or less absorbed in some of – or all – the parameters p estimated in the
fit, like, for example, the initial conditions. Thus, it would be partially or totally
removed from the post-fit residuals. In this case, one would infer artificially too
tight constraints on (some of the parameters of) XpN, when, instead, the real impact
of the latter on the system’s dynamics actually is larger. Furthermore, if the post-
fit residuals produced without modelling XpN are significantly different from zero,
it may be that their resulting anomalous pattern is not due to XpN at all, as one
would hope, being, instead, caused by some fortunate mutual partial cancellation
of completely different effects leaving a signature which, by chance, has just the
characteristics of XpN one is looking for. Then, the correct way to proceed consists
of explicitly modelling the pN feature of motion XpN one wants to test and sim-
ultaneously estimating the parameter(s) pXpN characterizing it23 along with all the
other ones. Then, one can compare the post-fit residuals produced in this way with,
say, those generated without modelling XpN at all to see if significant differences,
larger than the measurement error level, can be spotted. Finally, the errors of pXpN

along with their correlations with the other simultaneously estimated parameters
in the covariance matrix obtained just by modelling XpN are to be inspected. See
Section K.3 for a discussion of a case in which this standard approach is, for some
reasons, disregarded.

A clarification is in order when one talks about tests of pN gravity. Let B be
the theoretical prediction of a certain pN effect, namely an analytical formula usu-
ally containing, among other things, one or more parameter(s) characterizing the
physical properties of the environment in which the former takes place; they could
be, for example, the masses and some other relevant physical quantities (angular
momenta, multipole moments) of, say, a two-body system. Let it be assumed that
there is an agreement, within the experimental errors, between B and a correspond-
ing measured or observed quantity. Then, one can correctly speak of a genuine test
of the effect under consideration only if the parameters entering B are known inde-
pendently from that very same effect; for example, they could have been previously
determined by exploiting different, even non-dynamical, features. Conversely, if
the theory at hand is widely accepted in the common knowledge at the time, B

22 The scope of data reductions is to finally produce post-fit residuals as small as the measurement errors.
23 A widely adopted set of parameters usually estimated in pN gravity tests are those belonging to the so-called

parametrized post-Newtonian (PPN) formalism (Will, 2018), among which βPPN and γPPN, both equal to 1
in GTR, are those that attract the greatest interest. The PPN scheme can be applied to all metric gravitational
theories, namely, those relying upon the EP. The speed of light c remains constant in it, and the metric tensor
gσλ is always assumed symmetric.
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and the corresponding measured value can be used just to measure or constrain the
parameter(s) entering the former.

The same considerations hold also for the plethora of long-range, or infra-
red, modified models of gravity (Brax et al., 2004; Nojiri and Odintsov, 2007;
De Felice and Tsujikawa, 2010; Maartens and Koyama, 2010; Capozziello and
de Laurentis, 2011; Skordis, 2011; Clifton et al., 2012; Ferraro, 2012; de Rham,
2014; Capozziello et al., 2015; Ruggiero and Radicella, 2015; Cai et al., 2016;
Joyce et al., 2016; Maggiore, 2017; Mashhoon, 2017; Kobayashi, 2019; Roshan
and Mashhoon, 2022) that have been continually churned out mainly since the
accelerated cosmic expansion was discovered in 1998 (Riess et al., 1998; Perl-
mutter et al., 1999; Riess, 2000; Astier and Pain, 2012; Schmidt, 2012) and, more
recently, since the issue of the Hubble tension gained prominence (Cervantes-Cota
et al., 2023; Hu and Wang, 2023; Vagnozzi, 2023; Capozziello et al., 2024). Also
the puzzle of nonbaryonic dark matter at galactic scales (Merrifield, 2005; Garrett
and Duda, 2011; Bullock and Boylan-Kolchin, 2017; Wechsler and Tinker, 2018;
de Martino et al., 2020) prompted the birth of several alternative theoretical frame-
works among which the most prominent one is, perhaps, the MOdified Newtonian
Dynamics (MOND) paradigm (Milgrom, 1983a,b,c; Sanders and McGaugh, 2002;
Bekenstein, 2009; Famaey and McGaugh, 2012; Milgrom, 2014; Bugg, 2015;
McGaugh, 2015; Banik and Zhao, 2022). For epistemological discussions about
the MOND/dark matter debate, see Duerr and Wolf (2023). Another model put
forth to cope with, among other things, the dark matter issue is the Scalar Ten-
sor Vector Gravity (STVG), or MOdified Gravity (MOG) (Brownstein and Moffat,
2006a,b; Moffat, 2006; Moffat and Toth, 2009; Harikumar, 2022). For a compari-
son between MOND and MOG and other less known theories trying the explain the
same phenomenology, see Pascoli (2024), and references therein. Recently, also
the Modified General Relativity (MGR) paradigm popped up (Nash, 2019; Das
and Sur, 2022; Nash, 2023). A further theoretical scenario arising in the frame-
work of the long-lasting attempts to find a consistent quantum theory of gravity is
the effective field theory called24 Standard Model Extension (SME) (Kostelecký,
2004; Kostelecký and Potting, 2005, 2009). Among other things, it encompasses
local Lorentz violations in the gravity sector which may manifest themselves to a
pN level with several phenomena including also orbital effects (Bailey and Kost-
elecký, 2006). For a recent review of modern tests of Lorentz invariance, see, for
example, Mattingly (2005), and references therein. Another theoretical scheme
encompassing violations of the Lorentz symmetry is the Einstein–Æther theory,
a generally covariant theory of gravity coupled to a dynamical, unit timelike vec-
tor field that breaks the aforementioned symmetry (Jacobson and Mattingly, 2004;

24 Here, the reference is to the Standard Model of elementary particles and fields (Gouttenoire, 2023).

https://doi.org/10.1017/9781009562911.001 Published online by Cambridge University Press

https://doi.org/10.1017/9781009562911.001


Introduction 11

Eling et al., 2006; Jacobson, 2008). Reliably testing such proposed modifications of
the currently known laws of gravitation in local systems with, for example, orbital
motions is of paramount importance in order to gain knowledge on them independ-
ently of the very same effects for which they were introduced which, otherwise,
would remain their sole, ad hoc justification.

This book, in the wake of the meritoriously celebrated texts by25 Soffel (1989),
Brumberg (1991), and Soffel and Han (2019), treats the effect of pN and alternative
gravity on different quantities (Keplerian orbital elements, astrometric angles RA
and decl., radial velocity of spectroscopic binaries, variation of the times of arrival
in binary pulsars, characteristic timescales and sky-projected spin-orbit angles in
transiting exoplanets,26 two-body range and range rate) within a unified and uni-
form calculational scheme for arbitrary orbital geometries and generic orientations
of the spin axes of the sources of the gravitational field in space. It mainly adopts
the language of celestial mechanics, being aimed at the widest possible audience
of readers typically working on celestial mechanics, astronomy, and astrodynamics
in astronomical observatories, laser-ranging stations, and data centres. Spatially
isotropic or harmonic coordinates27 are adopted (Soffel and Brumberg, 1991).
Furthermore, the coordinate time t is used to calculate temporal intervals; they
coincide with those obtained by an observer comoving with the orbiting particle in
terms of its proper time28 τ up to corrections of the order of O

(
1/c4

)
.

The book is organized as follows.
The general scheme needed to calculate the desired post-Keplerian29 (pK) orbital

effects is outlined in Chapter 2. In it, after an overview of the Keplerian picture
for a restricted two-body system in Section 2.1, the pK variations of the osculat-
ing Keplerian orbital elements are treated in Section 2.2; the first-order shifts in
the perturbing acceleration are worked out in Section 2.2.1, while the second-order
ones are dealt with in Section 2.2.2. The mixed effects arising when two pK acceler-
ations enter simultaneously the equations of motion are the subject of Section 2.2.3.
The methods for calculating the pK corrections to various characteristic orbital

25 To a different level, see also O’Leary (2021).
26 From ’εκ- (’εξ- before a vowel), meaning, among other things, ‘out of, forth from; outside of, beyond’, and the

adjectival form ’′εξω (‘outer, external’, or ‘foreign’). With reference to our solar system, an exoplanet is,
then, a planet outside of it.

27 As explained by Brumberg (2010), in order to effectively cope with the problem of the coordinate-dependent
quantities in relativistic celestial mechanics and astrometry, in 1991 the International Astronomical Union
(IAU) recommended to adopt one specific type of coordinates once and forever: the harmonic coordinates,
determined by four specific non-tensorial differential relations to be added to the tensorial field equations of
GTR (Fok, 1959; Weinberg, 1972; Brumberg and Kopeikin, 1989b; Damour et al., 1991).

28 The coordinate and the proper times coincide, up to corrections of higher order in 1/c, when the orbiter is
quite distant from the source of the gravitational field.

29 Here, by post-Keplerian (pK) I mean dynamical features arising from any acceleration, Newtonian or not,
different from the simple Newtonian inverse-square one. Then, in this sense of the term pK, the classical
acceleration due to, say, the primary’s oblateness is pK.
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temporal intervals are presented in Section 2.3: they are the anomalistic (Sec-
tion 2.3.1), draconitic (Section 2.3.2) and sidereal (Section 2.3.3) periods, which all
coincide with each other in the Keplerian case. Section 2.4 illustrates how to cal-
culate the pK shifts of a generic observable quantity for which an analytical model
can be given; the cases treated are (a) the radial velocity of a spectroscopic binary
in Section 2.4.1, (b) some characteristic timescales in transiting exoplanets in Sec-
tion 2.4.2, (c) the rate of change of the sky-projected spin-orbit angle for such kinds
of exoplanets, dealt with in Section 2.4.3, (d) the variation of the times of arrival
(TOAs) of binary pulsars in Section 2.4.4, and (e) the astrometric angles RA and
dec. in Section 2.4.5. Finally, the pK shifts of the two-body range and range-rate
are calculated in Section 2.5.

Chapter 3 is devoted to the calculation of various 1pN gravitoelectric features of
motion for a test particle (Section 3.1) and a binary system of bodies with com-
parable masses (Section 3.2): the Keplerian orbital elements in Section 3.1.1 (test
particle) and Section 3.2.1 (binary system), the anomalistic (Section 3.1.2 for a test
particle and Section 3.2.2 for a binary system), draconitic (Section 3.1.3 for a test
particle and Section 3.2.3 for a binary system), and sidereal (Section 3.1.4 for a
test particle and Section 3.2.4 for a binary system) orbital periods, RA and dec.
(Section 3.1.5), the two-body range and range rate (Section 3.1.6), the radial vel-
ocity (Section 3.2.5), the characteristic timescales of transiting exoplanets (Section
3.2.6), and the TOAs of binary pulsars (Section 3.2.7).

The 2pN gravitoelectric orbital precessions of a binary system are calculated in
Chapter 4.

The 1pN LT acceleration, sourced by the source’s spin dipole moment(s) and
dubbed also as ‘gravitomagnetic’, is treated in Chapter 5 along with several features
of motion induced by it: the Keplerian orbital elements (Section 5.1), the anomalis-
tic (Section 5.2), draconitic (Section 5.3), and sidereal (Section 5.4) orbital periods,
the gravitomagnetic clock effect (Section 5.5), the radial velocity (Section 5.6), the
characteristic timescales of transiting exoplanets (Section 5.7), the sky-projected
spin-orbit angle (Section 5.8), the TOAs of binary pulsars (Section 5.9), RA and
dec. (Section 5.10), and the two-body range and range rate (Section 5.11).

Other 1pN gravitomagnetic orbital precessions, due to the spin octupole moment
of the central body, are dealt with in Chapter 6.

Several Newtonian features of motion due to the quadrupole mass moment(s)
of the source are the subject of Chapter 7: the Keplerian orbital elements (Section
7.1), the anomalistic (Section 7.2), draconitic (Section 7.3), and sidereal (Section
7.4) orbital periods, the radial velocity (Section 7.5), the characteristic timescales
of transiting exoplanets (Section 7.6), the sky-projected spin-orbit angle (Section
7.7), the TOAs of binary pulsars (Section 7.8), RA and dec. (Section 7.9), and the
two-body range and range rate (Section 7.10).
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The 1pN orbital precessions of the order of O
(
J2/c2

)
are calculated for a test

particle in Chapter 8.
Newtonian and pN tidal orbital precessions of a test particle orbiting a primary

induced by a distant third body are calculated in Chapter 9. In particular, in Section
9.1, the impact of the pN precessions of the axes of the reference frame comoving
with the two-body system in geodesic motion in the spacetime of the third body is
omitted, being, instead, treated in Section 9.2.

The orbital precessions induced by some categories of popular modified models
of gravity are treated in Chapter 10: they are due to power-law (Section 10.1),
Yukawa-like (Section 10.2), 1/r (Section 10.3), empirical once-per-revolution
(Section 10.4), constant (Section 10.5), and tidal-like (Section 10.6) extra-
accelerations. The effects of some dark matter distributions are the subject of
Section 10.7. Models encompassing violations of the Lorentz symmetry in the
gravitational sector are treated as well (Section 10.8).

Appendix A collects a list of acronyms and abbreviations.
Notations and definitions are listed in Appendix B.
In Appendix C, it is shown how to calculate pK Lagrangians, to be used as

disturbing functions in the Lagrange equations for the variations of the Keplerian
orbital elements, from the spacetime metric tensor.

Appendix D presents some useful coefficients accounting for the various spin-
orbit configurations.

Appendix E contains the coefficients entering the LT instantaneous shifts of the
orbital elements.

The coefficients of the instantaneous orbital shifts due to the Newtonian J2

acceleration are listed in Appendix F.
Appendix G collects the coefficients of the total net mixed orbital shifts of the

order of O
(
J2/c2

)
.

Appendix H displays the explicit expressions of the coefficients of the orbital
precessions of tidal origin.

The coefficients of the averaged disturbing functions of the power-law and
exponential dark matter density profiles along with those of the resulting orbital
precessions can be found in Appendix I.

In Appendix J, numerical values for the relevant physical parameters of some
major bodies of the solar system (the Sun, the Earth, and Jupiter) are provided
along with those of the double pulsar.

Appendix K contains the numerical values of the several pK orbital effects calcu-
lated for various natural and artificial bodies in the solar system and outside it: the
Sun’s planets (Section K.1), the spacecraft Juno30 around Jupiter (Section K.2), the

30 From Iūnō, ōnis, Roman deity, wife of Jupiter.
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Earth’s Laser GEOdynamics Satellite (LAGEOS) (Section K.3), the double pulsar
PSR J0737–3039 (Section K.4), the triple pulsars (Section K.5), and the star S4716
in the GC (Section K.6).

Appendix L reviews some space-based missions aimed at testing several pN
orbital effects recently proposed by the author: Highly Elliptical Relativity Orbiter
(HERO) (Section L.1), In-Orbit Relativity Iuppiter Observatory, or IOvis Rela-
tivity In-Orbit Observatory (IORIO) (Section L.2), Elliptical Uranian Relativity
Orbiter (EURO) (Section L.3), LEnse–Thirring Sun–Geo Orbiter (LETSGO) (Sec-
tion L.4), and ELXIS (Section L.5). Further missions proposed by other authors are
presented in Section L.6.
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2

General Calculational Scheme

2.1 The Keplerian Picture

Consider a gravitationally bound restricted two-body system S in which a test par-
ticle, that is, an uncharged and nonspinning object of negligible mass, moves in
the gravitational field generated by an isolated, massive body. It means that S is,
actually, freely falling in some external gravitational field whose action reduces
just to residual tidal effects, assumed negligible1 throughout the extension of S;
thus, the latter defines, to a sufficiently high level of approximation, a local inertial
reference frame K with respect to which the course of the particle is studied. It
is assumed that K is both kinematically and dynamically nonrotating (Brumberg
and Kopeikin, 1989a), that is, no Coriolis and centrifugal inertial forces appear
(dynamically nonrotating), and the general relativistic de Sitter–Fokker (de Sitter,
1916b; Schouten, 1918; Fokker, 1921) and Pugh–Schiff (Pugh, 1959; Schiff, 1960)
precessions, which would naturally alter the orientation of the reference axes sim-
ply because K moves being parallel transported (Fermi, 1922; Levi-Civita, 1926;
Synge, 1927) along the geodesic worldline of M in a deformed external spacetime,
are corrected for (kinematically nonrotating).2

Let the orbital motion of the satellite be affected by a pK acceleration A whose
magnitude is small with respect to the Newtonian monopole term given by

AN = −
µ

r2
r̂. (2.1)

In Equation (2.1), µ := GM is the standard gravitational parameter of the primary,
defined as the product of its mass M by the Newtonian constant of gravitation G, r

1 When such an approximation is untenable and the external tidal field is due to a distant body, the orbital
dynamics within S is affected in various pK ways described in Chapter 9.

2 Alternatively, it can be assumed that the motion is studied over timescales much shorter than those
characterizing the aforementioned general relativistic precessions. When the tidal effects within S can no
longer be deemed as negligible, specific orbital effects arise if the external field is due to a massive body;
they are studied in Section 9.1. If, instead, K is kinematically rotating, further orbital perturbations, solely of
pN origin, have an impact on the dynamics within S; see Section 9.2.

15
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16 General Calculational Scheme

is the instantaneous distance between the orbiter and the source, and r̂ := r/r is the
unit vector of the position vector r of the particle with respect to the body acting
as centre of force. In what follows, A can be either Newtonian or pN. For example,
if the central body experiences departures from spherical symmetry, the first even
zonal harmonic coefficient J2 of the multipolar expansion of the Newtonian part
of its gravitational potential, accounting for its oblateness,3 induces a pK acceler-
ation AJ2 of classical origin; its orbital effects are treated in Chapter 7. On the other
hand, to the 1pN level, pK accelerations of the order of O

(
1/c2

)
arise originat-

ing from the source’s mass and spin multipole moments. The 1pN gravitoelectric
orbital effects induced by the mass monopole and quadrupole moments are treated
in Chapter 3 and Chapter 8, respectively, while the 1pN gravitomagnetic ones due
to the spin dipole and octupole moments are worked out in Chapter 5 and Chap-
ter 6, respectively. In general, A can be due to some modified model of gravity as
well; the orbital effects due to some alternative theories of gravity are the subject of
Chapter 10. Furthermore, it does not necessarily have to be of gravitational origin,
as it could well also be caused by nonconservative forces. Be that as it may, it is
assumed that A can be explicitly modelled, that is, an analytical expression of it can
be given, as in the aforementioned examples.

If A were absent, the test particle would move along a Keplerian ellipse4 of
constant shape and size, and whose orientation in space is fixed. It is parameterized
in terms of the Keplerian orbital elements.

The size of the ellipse is fixed by a; it determines also the mean motion nK :=√
µ/a3 related to the orbital period TK := 2π/nK needed for the test particle to

complete a full orbital revolution with respect to any fixed direction in space.
The shape of the orbit is determined by e in such a way that 0 ≤ e < 1. The

value e = 0 corresponds to a circle, while e . 1 gives a highly eccentric ellipse.
The semilatus rectum is defined as p := a

(
1− e2

)
.

The inclination of the orbit to the fundamental plane {x, y} of the reference frame
adopted is given by I , with 0 ≤ I < 180◦. The motion is called prograde if
0 ≤ I < 90◦, while it is dubbed retrograde if 90◦ < I < 180◦. About the ref-
erence plane, in the case of our solar system, it often coincides with the Earth’s
equatorial plane at some reference epoch, and the reference x axis points towards
the Vernal Equinox � at the same epoch (Ma et al., 1998; Charlot et al., 2020);
the ecliptic plane at some reference epoch may be used as well (Capitaine and
Soffel, 2015).5 In studying astronomical binary systems like, for example, exo-
planets, the fundamental plane is assumed to be coincident with the plane of the

3 From oblātus, a, um, made of ob- (‘in front of’, ‘before’), and lātus, a, um (‘broad’, ‘wide’).
4 From ’′ελλειψις, -εως, ’η, meaning ‘a falling short’, ‘defect’, and ’ελλε′ιπω, meaning, among other things, ‘I

fall short of’, ‘I am in want of’, ‘I lack’. Such a conic section was first named so by Apollonius of Perga
because its cutting plane makes a smaller angle with the base of the cone than that made by the side of the
latter.

5 Another possible choice may be the solar system’s invariable plane (Souami and Souchay, 2012).

https://doi.org/10.1017/9781009562911.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009562911.002


2.1 The Keplerian Picture 17

sky, and the reference z axis is directed along the line of sight towards or away
from the observer depending on the conventions followed by the authors at hand
(Kaplan, 2015).

The angle �, between 0 and 360◦, is counted in the fundamental plane from the
reference x axis to the line of nodes, that is, the intersection between the orbital
and the {x, y} planes, towards the ascending node; the latter, marked as �, is the
point on the line of nodes where the test particle crosses the fundamental plane
from below. The descending node is denoted as �.

The angle ω, between 0 and 360◦ in the orbital plane, is subtended by the arc of
trajectory from the ascending node to the pericentre.

The longitude of pericentre $ := � + ω, which, in general, is a broken angle,
provides the pericentre position with respect to the reference x axis when the orbital
plane lies in the fundamental one.

The three angles I , �, ω, corresponding to the Euler angles characterizing the
configuration of a rigid body with a fixed point, determine the orientation of the
orbital plane in space.

The angle η is the value of the mean anomaly6 at a reference instant t0 to which
the orbital elements are referred; t0 does not necessarily coincide with the time of
passage at pericentre tp; for the relation connecting η and tp, see Equation (2.3).

The instantaneous position of the test particle along its orbit is reckoned by
the true anomaly f (t), counted from the position of the pericentre on the line of
apsides.7

If the instantaneous location of the orbiter is reckoned relative to the line of
nodes or to the reference x axis, the argument of latitude u (t) := ω + f (t) and
the true longitude l (t) := $ + f (t) are used, respectively. It should be noted that,
actually, l (t) is a broken or dogleg angle since � and u (t) lie in different planes;
it has a clear meaning only when the orbital plane coincides with the fundamental
one, that is, for I = 0, in which case it is just the real longitude of the test particle
as measured with respect to the x axis.

Another time-dependent fast variable used to locate the position of the orbiter
along its path is the mean anomaly M (t) defined as

M (t) := nK
(
t − tp

)
= η + nK (t − t0) . (2.2)

From Equation (2.2), it turns out that the mean anomaly at epoch is proportional to
the time of passage at pericentre as per

6 From ’ανωµαλία, -ας, ’η, made of the privative prefix ’α- and ’οµαλός, ή, όν (‘average’, ‘regular’). In
astronomical contexts, the word ‘anomaly’ was used since ancient times to indicate irregularities in motions
of celestial objects. Geminus Astronomicus (Gem. 1.20; cf. Ptol. Alm. 3.3), deals with
’ανωµαλία τη̃ς κινήσεως (‘irregularity of motion’). Plutarch, in his Lives (Plut. AEm. 17), mentions
’ανωµαλίαι ’εκλειπτικαί (‘irregularities of the Moon’s orbit’).

7 From ’αψίς, -ι̃δος, ’η, meaning, among other things, ‘arch’, ‘vault’.
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18 General Calculational Scheme

η = nK
(
t0 − tp

)
. (2.3)

As f (t), also M (t) is measured from the pericentre in such a way that it is equal to
0 when the test particle is at the point of closest approach, 180◦ at the apocentre8

and 360◦ after a full orbital revolution. Contrary to f , the mean anomaly does not
refer to any physical objects, except at pericentre or apocentre, or for a circular
orbit, being just a convenient uniform measure of how far around its orbit the par-
ticle has progressed since pericentre. Basically, it tracks the position of a fictitious
particle describing a full revolution along a putative circular orbit in the same tem-
poral interval TK as the real particle on its true elliptical path. The explicit relation
between f (t) and the time t is given through the mean anomaly by Brouwer and
Clemence (1961, p. 77, equation (74)):

f (t) =M (t)+ 2
∞∑

s=1

1

s

Js (se)+
∞∑

j=1

β j
[
Js−j (se)+ Js+j (se)

] sin sM (t),

(2.4)
where β :=

(
1−
√

1− e2
)
/e, and Js (se) is the Bessel function of the first kind

of order s. From a practical point of view, s ≤ smax, j ≤ jmax where smax, jmax are
set by the desired accuracy level.

A further fast angular variable which can be used to track the position of the test
particle along its orbit is the eccentric anomaly E (t), defined as

M (t) := E (t)− e sin E (t) . (2.5)

Also E (t) does not refer to any physical moving objects, being just another con-
venient tool for tracking the progress of the test particle as it advances along its
orbit. Its connection with t is given by Brouwer and Clemence (1961, p. 76,
equation (70)) and Murray and Dermott (1999, p. 39, equation (2.80)):

E (t) =M (t)+ 2
∞∑

s=1

1

s
Js (se) sin sM (t) . (2.6)

The time-dependent position and velocity vectors r and v can be conveniently
expressed in terms of the Keplerian orbital elements as

r (t) = r (t)
[
l̂ cos u (t)+ m̂ sin u (t)

]
, (2.7)

v (t) =
√

µ

p

{
−l̂ [e sinω + sin u (t)]+ m̂ [e cosω + cos u (t)]

}
. (2.8)

In Equations (2.7)–(2.8),

8 From ’από (+ genitive), meaning ‘away from’, and κέντρον, -ου, τό, meaning, among other things,
‘stationary point of a pair of compasses’, ‘centre (of a circle)’.
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2.2 The pK Variations of the Keplerian Orbital Elements 19

l̂ =


cos�

sin�

0

(2.9)

is a unit vector directed along the line of nodes towards the ascending node, while

m̂ =


− cos I sin�

cos I cos�

sin I

(2.10)

is another unit vector lying in the orbital plane and directed perpendicularly to l̂
such that their cross product l̂ × m̂ is parallel to the unit vector ĥ of the orbital
angular momentum, defined in Equation (2.25). Furthermore, the distance entering
Equation (2.7) is

r (t) =
a
(
1− e2

)
1+ e cos f (t)

. (2.11)

Figure 2.1 shows the orbital configuration of a test particle going along a Kepler-
ian ellipse arbitrarily oriented in space around a primary with mass M and angular
momentum J directed along a generic direction.

2.2 The pK Variations of the Keplerian Orbital Elements

A pK disturbing acceleration A causes the trajectory to change over time; since the
former is small with respect to Equation (2.1), its action can be treated with the
standard perturbative methods of celestial mechanics.

A very popular way of looking at how things go on is assuming that, at every
instant, the actual trajectory followed by the moving particle can be approximated
by an osculating ellipse,9 whose Keplerian orbital elements are slightly different
with respect to those parameterizing the ellipse which ‘kissed’ the trajectory in
the previous instant, and so on. Thus, it can be admitted that, under the action of
A, the Keplerian orbital elements do vary slightly over time, producing a series
of osculating ellipses, which, from moment to moment, approximate the real path
traveled by the satellite.

In the following, pK perturbed trajectories due to secular rates of change of all
the Keplerian orbital elements taken individually one at a time are shown along
with their osculating Keplerian ellipses approximating them at the initial instant of
time t0.

9 From ōsculor ātus, ārı̄ (‘to kiss’). Moreover, ōscŭlum, ı̄ (‘little mouth’, ‘pretty mouth’, ‘sweet mouth’)
comes from ōs, ōris (‘mouth’) and the diminutive suffix -culum, ı̄.
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20 General Calculational Scheme

Figure 2.1 Keplerian ellipse followed by a test particle moving around a spinning
primary of mass M and angular momentum J arbitrarily oriented in space. As an
example, they are represented by an S star of spectral class B (Eckart and Genzel,
1996; Ali et al., 2020) and an SMBH like the one in Sgr A∗ at the GC (Eckart
et al., 2002; Ghez et al., 2008; Genzel et al., 2010), respectively. The generic
values e = 0.4, I = 30◦, � = 45◦, ω = 50◦ were adopted for the orbital config-
uration, while the satellite is at f = 60◦. In this particular example, the orientation
of J , parameterized as Ĵx= cosαJ cos δJ , Ĵy= sinαJ cos δJ , Ĵz= sin δJ , is set by
αJ = 150◦, δJ = 75◦. The unit vectors, which should all be the same length, are
not drawn to scale purely for display reasons.

The impact of a decrease of the semimajor axis a is the subject of Figure 2.2.
Figure 2.3 shows the distortion induced by a (negative) rate of change of the eccen-
tricity e. The effect of a (positive) secular rate of change of the inclination I is
illustrated in Figure 2.4 for a circular, polar orbit.
Figure 2.5 is devoted to the impact of a (positive) secular precession of the node �
on a circular, polar orbit as well.
Figure 2.6 depicts a perturbed path obtained by assuming that only the pericentre
experiences a (retrograde) secular precession.

A secular rate of the mean anomaly at epoch η does alter neither the shape nor
the orientation of the orbit, merely accelerating or decelerating the motion of the
test particle along its Keplerian ellipse. Thus, it is not worth dedicating a specific
figure to this effect. Figure 2.7 shows a pK trajectory overall influenced by secular
perturbations affecting all the Keplerian orbital elements.
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2.2 The pK Variations of the Keplerian Orbital Elements 21

Figure 2.2 Perturbed trajectory (continuous curve) and the osculating Keplerian
ellipse (dashed curve) at the initial instant of time t0 characterized by e = 0.9,
I = 0, � = 0, ω = 90◦, η = 180◦. In this example, it is assumed that a under-
goes a (negative) secular rate of change large enough for better visualizing its
effect. The motion takes place within the orbital plane during a time span equal to
three Keplerian orbital periods TK.

Figure 2.3 Perturbed trajectory (continuous curve) and the osculating Keplerian
ellipse (dashed curve) at the initial instant of time t0 characterized by e = 0.9,
I = 0, � = 0, ω = 90◦, η = 180◦. In this example, it is assumed that e under-
goes a (negative) secular rate of change large enough for better visualizing its
effect. The motion takes place within the orbital plane during a time span equal to
three Keplerian orbital periods TK.

Also other parameterizations of the orbital motion can be used, employing, for
example, nonosculating elements (Bond and Janin, 1981; Gurfil, 2004; Efroimsky,
2005; Kopeikin et al., 2011; Gurfil and Efroimsky, 2022; Pogossian, 2022); they
will not be treated in the present book.

2.2.1 The First-Order Effects

If κ is any of the six Keplerian orbital elements, its finite variation1κ ( f ) occurring
in the time interval corresponding to a change of the true anomaly from its initial
value f0 to a generic one f0 < f < f0 + 2π can be calculated, to the first order in
A, as
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22 General Calculational Scheme

Figure 2.4 Perturbed trajectory (continuous curve) and the osculating Keplerian
ellipse (dashed curve) at the initial instant of time t0 characterized by e = 0,
I = 90◦, � = 45◦, u0 = 230◦. In this example, it is assumed that I undergoes
a (positive) secular precession amounting to a few percent of the Keplerian mean
motion for better visualizing its effect. The motion takes place during a time span
equal to three Keplerian orbital periods TK.

1κ ( f ) =

∫ f

f0

dκ

df ′
df
′

=

∫ f

f0

dκ

dt

dt

df ′
df
′

, (2.12)

where dκ/dt are the right-hand sides of the equations for the variations of the Kep-
lerian osculating elements in the Euler–Gauss form (Brouwer and Clemence, 1961;
Soffel, 1989; Brumberg, 1991; Bertotti et al., 2003; Roy, 2005; Kopeikin et al.,
2011; Poisson and Will, 2014; Soffel and Han, 2019)

da

dt
=

2

nK

√
1− e2

[
eAr sin f +

(p

r

)
Aτ
]

, (2.13)

de

dt
=

√
1− e2

nKa

{
Ar sin f + Aτ

[
cos f +

1

e

(
1−

r

a

)]}
, (2.14)

dI

dt
=

1

nKa
√

1− e2
Ah

( r

a

)
cos u, (2.15)

d�

dt
=

1

nKa sin I
√

1− e2
Ah

( r

a

)
sin u, (2.16)
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Figure 2.5 Perturbed trajectory (continuous curve) and the osculating Keplerian
ellipse (dashed curve) at the initial instant of time t0 characterized by e = 0,
I = 90◦, � = 45◦, u0 = 230◦. In this example, it is assumed that � undergoes
a (positive) secular precession amounting to a few percent of the Keplerian mean
motion for better visualizing its effect. The motion takes place during a time span
equal to three Keplerian orbital periods TK.

dω

dt
=

√
1− e2

nKae

[
−Ar cos f + Aτ

(
1+

r

p

)
sin f

]
− cos I

d�

dt
, (2.17)

dη

dt
= −

2

nKa
Ar

( r

a

)
−

(
1− e2

)
nKae

[
−Ar cos f + Aτ

(
1+

r

p

)
sin f

]
, (2.18)

evaluated onto the Keplerian ellipse given by Equation (2.11), and

dt

df
=

r2

√
µp

. (2.19)

In Equations (2.13)–(2.18),

Ar := A � r̂, (2.20)

Aτ := A � τ̂ , (2.21)

Ah := A � ĥ (2.22)

are the projections of A onto the radial, transverse and out-of-plane (or normal)10

unit vectors r̂, τ̂ , ĥ of a moving local orbital frame attached to the test particle.

10 From norma, -ae (‘a square, employed by carpenters, masons, etc., for making right angles’).

https://doi.org/10.1017/9781009562911.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009562911.002


24 General Calculational Scheme

Figure 2.6 Perturbed pK trajectory (continuous curve) and the osculating
Keplerian ellipse (dashed curve) at the initial instant of time t0 characterized by
e = 0.9, I = 0, � = 0, ω = 90◦, η = 180◦. In this example, it is assumed
that only ω undergoes a (negative) secular precession amounting to a few percent
of the Keplerian mean motion for better visualizing its effect. The motion takes
place within the orbital plane during a time span equal to three Keplerian orbital
periods TK.

The radial unit vector, lying in the orbital plane and directed from the primary to
the test particle, is

r̂ =


cos� cos u− cos I sin� sin u

sin� cos u+ cos I cos� sin u

sin I sin u

. (2.23)

The transverse unit vector, lying in the orbital plane perpendicularly to r̂, is

τ̂ =


− cos� sin u− cos I sin� cos u

− sin� sin u+ cos I cos� cos u

sin I cos u

. (2.24)

The normal unit vector, directed perpendicularly to the orbital plane along the
orbital angular momentum, is
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Figure 2.7 Perturbed trajectory (continuous curve) and its osculating Keplerian
ellipse (dashed curve) at the initial instant of time t0 characterized by e = 0.4,
I = 30◦, � = 45◦, ω = 50◦, η = 60◦. It is assumed that all the Keplerian
orbital elements undergo secular rates of change amounting to a few percent of
the Keplerian mean motion for a better visualization of their impact. The motion
covers three Keplerian orbital periods TK.

ĥ =


sin I sin�

− sin I cos�

cos I

. (2.25)

For them, the relation τ̂ = ĥ× r̂ holds. It is important to note that, in the calculation
of the order of O (A), all the Keplerian orbital elements are kept fixed to their values
at t0 in the integrand of Equation (2.12).

The instantaneous first-order shifts of the Keplerian orbital elements given by
Equation (2.12) are the building blocks for calculating the impact of A on other
quantities closely related to observables. Furthermore, they have relevance in them-
selves whenever the characteristic timescales of the system(s) under consideration
are much longer than any realistically conceivable observational time span; then,
only relatively short arcs are accessible to observation, since the average effects are
not available.

The net shift per orbit 1κ can straightforwardly be obtained by the replacement
f → f0 + 2π in the expression resulting from Equation (2.12). Depending on the
resulting positive or negative sign, 1κ is an advance or a retardation, respectively.

To the first order in A, the precession of κ averaged over one orbital revolution
〈dκ/dt〉 can be obtained simply by taking the ratio of 1κ to the Keplerian orbital
period TK. As per the meaning of Equation (2.18), from Equation (2.3) it turns out
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that, by assuming that neither M nor a vary so that nK stays constant, the rate of
change of the mean anomaly at epoch is proportional to the opposite of the pace of
variation of the time of passage at pericentre, that is,〈

dη

dt

〉
= −nK

〈
dtp
dt

〉
. (2.26)

Thus, if η increases after one revolution, the pericentre, which in the meantime has
generally moved, is reached earlier than in the Keplerian case, and vice versa; see
Section 2.3.1 for some consequences of such a feature.

An effective calculational scheme yielding straightforwardly 〈dκ/dt〉 relies upon
the planetary equations in the form of Lagrange, which read11 (Brumberg, 1991, p.
11, Equation (1.144))〈

da

dt

〉
=

2

nKa

∂〈R〉

∂η
, (2.27)

〈
de

dt

〉
=

1− e2

nKa2e

∂〈R〉

∂η
−

√
1− e2

nKa2e

∂〈R〉

∂ω
, (2.28)

〈
dI

dt

〉
=

cot I

nKa2
√

1− e2

∂〈R〉

∂ω
−

csc I

nKa2
√

1− e2

∂〈R〉

∂�
, (2.29)

〈
d�

dt

〉
=

csc I

nKa2
√

1− e2

∂〈R〉

∂I
, (2.30)

〈
dω

dt

〉
= −

cot I

nKa2
√

1− e2

∂〈R〉

∂I
+

√
1− e2

nKa2e

∂〈R〉

∂e
, (2.31)

〈
dη

dt

〉
= −

1− e2

nKa2e

∂〈R〉

∂e
−

2

nKa

∂〈R〉

∂a
−

3

nKa2
〈v · ∇vR〉 . (2.32)

In Equations (2.27)–(2.32), R, known as disturbing function, is any pK correction
LpK (r, v, t) (Brumberg, 1991) to the pointlike Newtonian Lagrangian per unit mass

LN =
v2

2
+

µ

r
; (2.33)

it is the opposite of any extra-pK potential energy per unit mass. Using Equa-
tions (2.27)–(2.32) to calculate 〈dκ/dt〉 implies performing the average of only one
function,12 namely R, whose inspection can immediately give an insight of which
11 See also, for example, Brouwer and Clemence (1961); Kaula (2000); Murray and Dermott (1999); Bertotti

et al. (2003); Capderou (2005); Roy (2005); Xu (2008); Kopeikin et al. (2011); Gurfil and Seidelmann
(2016); and Soffel and Han (2019) where such a topic is treated at varying levels of completeness, especially
as far as η is concerned.

12 In fact, if LpK depends explicitly on the velocity v, also 〈v · ∇vR〉 has to be computed for the rate of change
of mean anomaly at epoch, as per Equation (2.32).
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averaged orbital changes one can expect. This proves particularly useful for several
modified models of gravity, treated in Chapter 10, for which a spherically symmet-
ric extra-potential is usually inferred from the spacetime metric coefficient g00.
Since, in view of Equation (2.11), 〈R〉, in this case, can only contain at most a
and e, from Equations (2.27)–(2.32) it can straightforwardly be predicted that only
ω and η may experience nonvanishing net shifts per orbit. In Appendix C, it is
explained how to obtain a pK correction LpK, relativistic or not, to Equation (2.33)
that can be used in Equations (2.27)–(2.32).

2.2.2 The Second-Order Effects

The Second-Order Orbital Shifts

In order to calculate the shift of κ to the second order in A, Equation (2.19) must
be replaced in Equation (2.12) with

dt

df
'

r2

√
µp

[
1+

r2

√
µp

(
dω

dt
+ cos I

d�

dt

)]
; (2.34)

indeed, it is (Egorov, 1958; Taratynova, 1959; Mioc and Radu, 1979; Brumberg,
1991; Bertotti et al., 2003; Poisson and Will, 2014)

df

dt
=

√
µp

r2

[
1−

r2

√
µp

(
dω

dt
+ cos I

d�

dt

)]
. (2.35)

Equations (2.34)–(2.35) account for the fact that, actually, the apsidal line does
instantaneously vary as the satellite goes along its perturbed trajectory. Thus, the
contribution of Equation (2.12) to the shift of κ to the second order in A is∫

f

f0

(
dκ

dt

)
r4

µp

(
dω

dt
+ cos I

d�

dt

)∣∣∣∣
K

df
′

. (2.36)

Indeed, dκ/dt is of the order of O (A), being any of Equations (2.13)–(2.18), and
dω/dt+cos Id�/dt, coming from Equations (2.16)–(2.17), is of the order of O (A)
as well. The subscript K in Equation (2.36) and in the following means that the
content to which it is appended has to be calculated onto the unperturbed Keplerian
ellipse of Equation (2.11).

Furthermore, one has also to account for the fact that, actually, all the Keplerian
orbital elements instantaneously change during the time it takes the satellite to
complete a full orbital revolution. Thus, one has also to compute∫

f

f0

a,e,...η∑
κ

∂
(
dκ/df

′)
∂κ

1κ
(

f
′
)∣∣∣∣∣

K

df
′

, (2.37)

https://doi.org/10.1017/9781009562911.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009562911.002


28 General Calculational Scheme

where 1κ ( f ) are the instantaneous variations of the order of O (A) calculated
according to Equation (2.12). In taking the partial derivatives entering Equa-
tion (2.37), the Keplerian expression of Equation (2.19) has to be used in dκ/df =
(dκ/dt) (dt/df ); thus, ∂ (dκ/df ) /∂κ is of the order of O (A), like1κ ( f ), and their
product entering Equation (2.37) is just of the order of O

(
A2
)
.

As a result, the complete orbital shift of κ to the second order in A 1κ (2) ( f )
consists of the sum of two terms: Equation (2.36) and Equation (2.37), that is,

1κ (2) ( f ) =

∫
f

f0

[
dκ

dt

r4

µp

(
dω

dt
+ cos I

d�

dt

)
+

a,e,...η∑
κ

∂
(
dκ/df

′)
∂κ

1κ
(

f
′
)]

K

df
′

.

(2.38)

Also in this case, the net shift per orbit 1κ
(2)

is obtained with the replacement
f → f0 + 2π in the expression resulting from Equation (2.38).

The preceding scheme is used in Sections 4.2–4.3 to calculate the contributions
of the 1pN gravitoelectric acceleration itself to the total 2pN gravitoelectric orbital
shifts.

The Averaged Second-Order Orbital Precessions

Care is required in correctly calculating the full precession
〈
dκ (2)/dt

〉
of κ to the

second order in A. The mere division of1κ
(2)

by the Keplerian orbital period TK is
not enough; indeed, one has also to expand to the second order in A the ratio of1κ
of the order of O (A) to the pK perturbed orbital period TpK := TK+1TpK. To this
aim, it should be noted that, according to Equation (2.34), the latter has to be meant
as the apsidal period, namely the temporal interval between two consecutive pas-
sages at the pericentre. See Section 2.3.1 for the details on how to calculate 1Tano.

The preceding considerations are used in Section 4.4 to calculate the total 2pN
gravitoelectric averaged orbital precessions.

2.2.3 The Mixed, or Indirect Effects

The Mixed, or Indirect Orbital Shifts

If the pK acceleration A perturbing the otherwise Keplerian motion of the test
particle is made of the sum of two pK accelerations AI and AII, assuming that both
are small in such a way that their sum is still much smaller than Equation (2.1),
their simultaneous presence in the equations of motion induces mixed effects of
the order of O

(
AIAII

)
. It is just the case of, for example, the features of motion of

the order of O
(
J2/c2

)
, treated in Chapter 8 whose complete calculation requires

taking into account also the contributions of either the 1pN gravitoelectric or the
Newtonian quadrupolar accelerations (see Section 8.2).
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2.2 The pK Variations of the Keplerian Orbital Elements 29

They can be calculated by considering the instantaneous variations of all the
Keplerian orbital elements occurring during the time interval needed to describe a
full orbital revolution due to both the accelerations. That is, the mixed variation of
κ due to AI and AII can be worked out as

1κ
(I−II)
mix ( f ) =

4∑
j=1

Kmix
j , (2.39)

with

Kmix
1 :=

∫
f

f0

a,e,...η∑
κ

∂
(
dκ/df

′)I

∂κ
1κ II

(
f
′
)∣∣∣∣∣

K

df
′

, (2.40)

Kmix
2 :=

∫
f

f0

a,e,...η∑
κ

∂
(
dκ/df

′)II

∂κ
1κ I

(
f
′
)∣∣∣∣∣

K

df
′

, (2.41)

Kmix
3 :=

∫
f

f0

(
dκ

dt

)I r4

µp

(
dω

dt
+ cos I

d�

dt

)II
∣∣∣∣∣
K

df
′

, (2.42)

Kmix
4 :=

∫
f

f0

(
dκ

dt

)II r4

µp

(
dω

dt
+ cos I

d�

dt

)I
∣∣∣∣∣
K

df
′

. (2.43)

The suffixes I and II in Equations (2.40)–(2.43) mean that the terms which they
are appended to have to be calculated with the accelerations AI and AII, respect-
ively. Note that Equation (2.38) is equal just to half of Equation (2.39), along
with Equations (2.40)–(2.43), with AI

=AII
=A. The net mixed shift per orbit〈

1κ
(I−II)
mix

〉
is obtained straightforwardly with the replacement f → f0 + 2π in

Equations (2.39)–(2.43).

The Averaged Mixed, or Indirect Orbital Precessions

The averaged mixed precession
〈
dκ (I−II)

mix /dt
〉

can be obtained by adding the

expansion to the required order of

1κ
II

T I
+
1κ

I

T II
(2.44)

to 1κ
(I−II)
mix /TK. In Equation (2.44), 1κ

I
and 1κ

II
are the first-order net shifts per

orbit due to AI and AII, respectively, while T I and T II are the apsidal periods cal-
culated with AI and AII, respectively; how to compute the latter is explained in
Section 2.3.1.
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2.3 The pK Corrections to the Keplerian Orbital Period

From a theoretical point of view, various time intervals T characterizing different
cyclic patterns of the orbital motion can be defined when a pK acceleration A acts
on a satellite. They are the amounts of time elapsed between two successive pas-
sages of the latter at some directions which, in the Keplerian case, are all fixed; in
this case, all such periods coincide with the Keplerian one TK. Instead, a perturbing
acceleration breaks such a degeneracy, and the aforementioned temporal intervals
generally differ one from each other.

2.3.1 The Anomalistic Period

The anomalistic period Tano is defined as the time interval between two successive
instants when the real position of the test particle coincides with the pericentre
position on the corresponding orbit. Among other things, it is required to calculate
the averaged orbital precessions to the second order in A (Section 2.2.2), and when
two pK accelerations are present (Section 2.2.3). It can be calculated as follows
(Zhongolovich, 1960; Mioc and Radu, 1979; Iorio, 2016b):

Tano = TK +1Tano =

∫
2π

0

(
dt

df

)
df , (2.45)

where dt/df , when a pK acceleration A is present, is given by Equation (2.34).
The true anomaly f enters Equation (2.45) as a fast variable of integration just
because the line of apsides is involved in the definition of anomalistic period. In
order to obtain the full correction 1Tano of the order of A to the Keplerian orbital
period, the contribution of the second term of Equation (2.34) to Equation (2.45) is
not enough. Indeed, also the partial derivatives of Equation (2.19) with respect to a
and e, multiplied by the finite variations from f0 to f of the same orbital elements,
have to be taken; in this way, one fully accounts for the fact that the Keplerian
orbital elements vary instantaneously as the satellite goes along its trajectory. Thus,
it is finally obtained:

1Tano =

∫
2π

0

3

2

√
a
(
1− e2

)3

µ

1a ( f )

(1+ e cos f )2

−

√
a3
(
1−e2

)
µ

[
3e+

(
2+e2

)
cos f

]
(1+e cos f )3

1e ( f )+
r4

µp

(
dω

dt
+ cos I

d�

dt

)
K

df .

(2.46)
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In Iorio (2016b), a variant of the preceding calculation can be found; in
Equation (2.19), the semilatus rectum p is adopted as independent variable along
with the eccentricity e, and simpler expressions for the partial derivatives of Equa-
tion (2.19) are obtained. The resulting expressions for calculating 1Tano turn out
to be

1Tano =

∫
2π

0

3

2

√
p

µ

1p ( f )

(1+ e cos f )2
− 2

√
p3

µ

cos f1e ( f )

(1+ e cos f )3

+
r4

µp

(
dω

dt
+ cos I

d�

dt

)}
K

df . (2.47)

The first-order variation 1p ( f ) of the semilatus rectum can be calculated from
Taratynova (1959) and Mioc and Radu (1979):

dp

df
=

2r3Aτ
µ

. (2.48)

In the end, both Equation (2.46) and Equation (2.47) give the same result.
The presence or not of the pK anomalistic correction 1Tano to the orbital period

can be intuitively explained as follows. According to Equation (2.26), the rate of
change of the mean anomaly at epoch η is proportional to the opposite of the pace
of variation of the time of passage at pericentre tp. Thus, should η increase, the
crossing of the pericentre position would be anticipated with respect to the Kep-
lerian case since tp would decrease, and vice versa. In this case, the variation of η
would result in an orbit-by-orbit advance or delay of the passages at the pericen-
tre. As will be shown, while the 1pN gravitoelectric acceleration due to the mass
monopole(s) does induce a negative rate of η, the gravitomagnetic LT one leaves
the mean anomaly at epoch unchanged. Furthermore, several modified models of
gravity, inducing radial pK accelerations dependent only on r, secularly change
both ω and η. Also the Newtonian acceleration raised by the primary’s oblateness
J2 affects, among other things, also η.

2.3.2 The Draconitic Period

For a perturbed trajectory, the draconitic13 period Tdra is defined as the time interval
between two successive instants when the real position of the test particle coincides
with the ascending node position on the corresponding osculating ellipse.

13 This adjective originally referred to the passage of the Moon at its ascending node, when an eclipse occurs.
Indeed, the ancient Greeks thought that, during an eclipse, our natural satellite was swallowed up by a dragon
(δέρκοµαι, meaning literally ‘I stare’, from which δράκων, -οντος, ’ο, ‘which stares’) hiding near the nodes
of the lunar orbit (Capderou, 2005).
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It can be calculated as follows (Mioc and Radu, 1977; Iorio, 2016b):

Tdra = TK +1Tdra =

∫
2π

0

(
dt

du

)
du, (2.49)

where dt/du, when A is present, can be obtained as follows. From the definition
of u and Equation (2.35), it straightforwardly turns out (Ochocimskij et al., 1959;
Mioc and Radu, 1977):

du

dt
=

√
µp

r2

(
1−

r2 cos I
√

µp

d�

dt

)
. (2.50)

Thus, it is

dt

du
'

r2

√
µp
+

r4 cos I

µp

d�

dt
. (2.51)

Note that d�/dt is already expressed in terms of u, as per Equation (2.16).
By using the nonsingular orbital elements14 (Mioc and Radu, 1977; Mon-

tenbruck et al., 2006)

k := e sinω, (2.52)

q := e cosω, (2.53)

Equation (2.11) can be rewritten as

r =
p

1+ q cos u+ k sin u
(2.54)

in which p, q, k enter as independent variables.
By proceeding as in Section 2.3.1, it can be obtained (Mioc and Radu, 1977;

Iorio, 2016b)

1Tdra =

∫
2π

0

3

2

√
p

µ

1p (u)

(1+ q cos u+ k sin u)2

− 2

√
p3

µ

cos u1q (u)+ sin u1k (u)

(1+ q cos u+ k sin u)3
+

r4 cos I

µp

d�

dt


K

du. (2.55)

14 They are the components of the eccentricity vector (Taff, 1985), an alternative formulation of the
Laplace–Runge–Lenz vector (Goldstein, 1980). In the context of pulsar astronomy, they are also known as
first and second Laplace–Lagrange parameters ε1, ε2 (Lorimer and Kramer, 2005).
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The first-order variations 1p (u), 1q (u), and 1k (u) entering Equation (2.55) can
be obtained by integrating the following expressions (Mioc and Radu, 1977):

dp

du
=

2r3Aτ
µ

, (2.56)

dq

du
=

r2 sin uAr

µ
+

r2 [rq+ (r + p) cos u] Aτ
µ

+
cot Ir3k sin uAh

µp
, (2.57)

dk

du
= −

r2 cos uAr

µ
+

r2 [rk + (r + p) sin u] Aτ
µ

−
cot Ir3q sin uAh

µp
(2.58)

from u0 to u.
As far as the actual measurability of the draconitic period in some astronomical

scenario of interest is concerned, it was demonstrated (Amelin, 1966; Kassimenko,
1966; Zhongolovich, 1966) that it is possible to measure it, for an artificial Earth’s
satellite,15 as the ratio of the difference of the times of passages of the sub-satellite
point through a chosen parallel for two following epochs to the number of satellite
revolutions corresponding to this difference. The accuracy reached at that time
seems to be of the order of' 10−4 s (Kassimenko, 1966); it is plausible that it could
be improved by orders of magnitude with the most recent techniques currently
available.

2.3.3 The Sidereal Period

In general, both the line of nodes and the line of apsides do vary over time because
of some pK acceleration(s). Thus, it may be useful to look at a characteristic orbital
timescale involving the crossing of some fixed reference direction in space; the
sidereal period Tsid,16 defined as the time interval between two successive instants
when the real position of the test particle lies on a given reference direction, is right
up our alley.

For an orbit arbitrarily inclined to the fundamental plane, the sidereal period can
be calculated as

Tsid = TK +1Tsid =

∫
2π

0

(
dt

dφ

)
dφ, (2.59)

where φ (t) is the azimuthal angle reckoned from the reference x axis in the funda-
mental plane; when the latter is assumed to be coincident with the Earth’s equatorial

15 In their analyses, Amelin (1966), Kassimenko (1966), and Zhongolovich (1966) used the Soviet satellite
1960 ε 3.

16 From the adjective sı̄dĕralı̄s, e, (‘of or belonging to the stars’).

https://doi.org/10.1017/9781009562911.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009562911.002


34 General Calculational Scheme

plane at some reference epoch, φ (t) is the right ascension (RA) α (t) of the celestial
body of interest. From

x (t) = r (t) [cos� cos u (t)− cos I sin� sin u (t)] , (2.60)

y (t) = r (t) [sin� cos u (t)+ cos I cos� sin u (t)] , (2.61)

one obtains φ (t) as

φ (t) = arctan
[

y (t)

x (t)

]
; (2.62)

it is a function of the generally varying I (t), �(t), and u (t), namely φ (t) =
φ (I (t) ,�(t) , u (t)).

Since the ongoing calculation is to the first order in the pK acceleration, the
differential dφ in Equation (2.59) can be written as

dφ '

(
∂φ

∂u

)
du. (2.63)

The integrand of Equation (2.59) can be obtained as

dt

dφ
=

1
dφ
dt

=
1

∂φ

∂I
dI
dt +

∂φ

∂�
d�
dt +

∂φ

∂u
du
dt

=
1

du
dt
∂φ

∂u

[
1+ ∂u

∂φ

(
∂φ

∂I
dI
du +

∂φ

∂�
d�
du

)] . (2.64)

Thus, to the first order in the pK acceleration, the integral of Equation (2.59) can
be approximated as

Tsid '

∫
2π

0

dt

du

[
1−

∂u

∂φ

(
∂φ

∂I

dI

du
+
∂φ

∂�

d�

du

)]
du

=

∫
2π

0

(
dt

du

)
du−

∫
2π

0

1
∂φ

∂u

(
∂φ

∂I

dI

du
+
∂φ

∂�

d�

du

)(
dt

du

)
du. (2.65)

The first term in Equation (2.65) is nothing but the draconitic period, and can
be calculated to the order O (A) as outlined in Section 2.3.2. The second term in
Equation (2.65) is a correction to the former

1Tsid II := −

∫
2π

0

1
∂φ

∂u

(
∂φ

∂I

dI

du
+
∂φ

∂�

d�

du

)(
dt

du

)
K

du, (2.66)

taking into account the fact that, in general, the orbital plane is displaced by the
pK acceleration; indeed, the rates of I and � enter it. In Equation (2.66), dt/du is
intended to be calculated onto the unperturbed Keplerian ellipse in order to keep
the calculation to the first order in A.
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If the orbital plane coincides with the fundamental one, the previously outlined
calculational strategy may lead to analytical expressions for Tsid which, for some
pK accelerations, are singular in I = 0. In that case, the sidereal period can be
straightforwardly calculated by means of the true longitude l as follows (Iorio,
2016b):

Tsid = TK +1Tsid =

∫
2π

0

(
dt

dl

)
dl, (2.67)

in close analogy with Sections 2.3.1 to 2.3.2. It should be recalled that l is gener-
ally a dogleg angle since � and u lie in different planes; it is the true longitude
of the test particle actually moving along its real orbit only if I = 0. When a per-
turbing acceleration A enters the equations of motion, dt/dl can be obtained in the
following way. From the definition of l and Equation (2.34), it is

dl

dt
=

√
µp

r2

[
1+

2r2 sin2 (I/2)
√

µp

d�

dt

]
. (2.68)

Then, it can be written

dt

dl
'

r2

√
µp
−

2r4 sin2 (I/2)
µp

d�

dt
. (2.69)

The sine of the argument of latitude entering Equation (2.16) for d�/dt can be
written in terms of l as sin (l −�).

By introducing the nonsingular equinoctial elements (Broucke and Cefola, 1972)

q̃ := e cos$ , (2.70)

k̃ := e sin$ , (2.71)

Equation (2.11) can be rewritten as

r =
p

1+ q̃ cos l + k̃ sin l
(2.72)

in which p, q̃, k̃ enter as independent variables.
By proceeding as in Sections 2.3.1 to 2.3.2, one obtains (Iorio, 2016b)

1Tsid =

∫
2π

0

{
3

2

√
p

µ

1p (l)(
1+ q̃ cos l + k̃ sin l

)2

− 2

√
p3

µ

cos l1̃q (l)+ sin l1̃k (l)(
1+ q̃ cos l + k̃ sin l

)3 −
2r4 sin2 (I/2)

µp

d�

dt


K

dl. (2.73)
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The first-order variations1p (l), 1̃q (l) and 1̃k (l) entering Equation (2.73) can be
obtained by integrating the following expressions (Iorio, 2016b):

dp

dl
=

2r3Aτ
µ

, (2.74)

d q̃

dl
=

r2 sin lAr

µ
+

r2 [r̃q+ (r + p) cos l] Aτ
µ

−
tan (I/2) r3̃k sin (l −�)Ah

µp
,

(2.75)

d̃k

dl
= −

r2 cos lAr

µ
+

r2
[
r̃k + (r + p) sin l

]
Aτ

µ
+

tan (I/2) r3̃q sin (l −�)Ah

µp
(2.76)

from l0 to l. If the orbital plane is aligned with the fundamental one, Equation (2.73)
and Equations (2.75)–(2.76) have to be calculated with I = 0.

It is generally expected that if the orbital plane stays constant in space, that is,
if neither the nodes, when defined, nor the orbit’s projection onto the fundamental
plane change over time, the sidereal period coincides with the draconitic one since
the line of nodes is a fixed direction in space.

2.4 The pK Variations of a Generic Observable O

Let O be some generally time-dependent observable quantity for the system at
hand like, for example, the radial velocity, one out of the two astrometric angles
RA and dec., a characteristic time scale of a transiting exoplanet, or the ratio of the
projection onto the line of sight of the barycentric orbit of an emitting pulsar in a
binary system to the speed of light c.

If the former can be analytically modelled in terms of some explicit function
F (a, e, I , �, ω, η, f ) of the Keplerian orbital elements, its instantaneous pK
change 1F ( f ) due to A can be calculated, to the order of O (A), as

1F ( f ) =
a,e,...,η∑
κ

∂F

∂κ
1κ ( f )+

∂F

∂f
1f ( f ) . (2.77)

In Equation (2.77), the instantaneous pK variations of all the Keplerian orbital
elements, apart from the true anomaly f , are computed, to the first order in A,
by means of Equations (2.12)–(2.19). The pK change 1f ( f ) of the true anomaly
f encompasses the variation 1M ( f ) of the mean anomaly M, whose calculation
requires care, as shown in the following equations. According to Equation (A.6) of
Casotto (1993), the variation of f can be written as
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1f ( f ) =
(a

r

) [
sin f

(
1+

r

p

)
1e ( f )+

√
1− e2

(a

r

)
1M ( f )

]
. (2.78)

While 1e ( f ) can be straightforwardly worked out according to Equation (2.12)
calculated with Equation (2.14) and Equation (2.19),1M ( f ) is more complicated
to evaluate; see, for example, Brumberg (1991) and Sobel (1989). As shown in
Iorio (2017), the instantaneous variation of the mean anomaly can be obtained, for
example, as

1M ( f ) = 1η ( f )+8( f ) , (2.79)

where the contribution due to the change 1nK of the mean motion nK induced by
the variation of the semimajor axis a is

8( f ) :=
∫ t

t0

1nK

(
t
′
)

dt
′

= −
3

2

nK

a

∫ f

f0

1a
(

f
′
) dt

df ′
df
′

. (2.80)

The shifts 1η ( f ) in Equation (2.79) and 1a ( f ) in Equation (2.80) can be calcu-
lated as per Equation (2.12) with Equation (2.13) and Equation (2.18), along with
Equation (2.19) for dt/df .

The net change per orbital revolution 1F is obtained with the substitution f →
f0 + 2π in the final expression of Equation (2.77); it turns out that, in general, 1F
may depend on f0.

2.4.1 The Radial Velocity of a Spectroscopic Binary

A very common observable in studies of binary systems made of two bodies A
and B with comparable masses MA and MB is the radial velocity V (Lindegren
and Dravins, 2003) of the member for which a spectroscopically determined light
curve is available (Struve and Huang, 1958). In this case, one speaks of a single-
lined spectroscopic binary (SB1); if both light curves are measured, the system
is named double-lined spectroscopic binary (SB2). In exoplanets (Mason, 2008;
Seager, 2011; Kitchin, 2012; Deeg and Belmonte, 2018; Perryman, 2018), which
have been attracting a growing interest for some years as possible tools to test
GTR and modified gravity (Adams and Laughlin, 2006c,a,b; Iorio, 2006a; Jordán
and Bakos, 2008; Pál and Kocsis, 2008; Jordán and Bakos, 2009; Ragozzine and
Wolf, 2009; Iorio and Ruggiero, 2010; Damiani and Lanza, 2011; Fukui et al.,
2011; Iorio, 2011b,a; Eibe et al., 2012; Kane et al., 2012; Li, 2012; Zhao and Xie,
2013; Xie and Deng, 2014; Vargas dos Santos and Mota, 2017; Blanchet et al.,
2019; Marzari and Nagasawa, 2019; Ruggiero and Iorio, 2020; Antoniciello et al.,
2021; Gou et al., 2021; Kozak and Wojnar, 2021), the only light curve accessible
to observations is that of the parent star (Lovis and Fischer, 2010; Hara and Ford,
2023). The same occurs for the S stars (Eckart and Genzel, 1996; Gezari et al.,
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2002; Gillessen et al., 2009, 2017; Nishiyama et al., 2018; Peißker et al., 2020,
2022) revolving about the SMBH in Sgr A∗ at the GC (Eckart et al., 2002; Ghez
et al., 2008; Genzel et al., 2010, 2024) in the sense that the light curve accessible
to observations is, obviously, theirs.

The radial velocity17 V is intended to be the projection onto the line of sight,
usually assumed coincident with the z axis of a reference frame whose funda-
mental plane is tangential to the Celestial Sphere at the position of the binary’s
barycentre,18 of the sum of the constant barycentre’s velocity, or systemtic vel-
ocity, V 0 and the barycentric velocity v of the visible binary’s member which, as
seen in the previous examples, is either a star hosting an exoplanet or a S star in
Sgr A∗. Thus, it can be written

V = V 0
z + ż. (2.81)

From Equation (2.8), along with Equations (2.9)–(2.10), it turns out

V − V 0
z =

mc

Mb

nKa sin I
√

1− e2
(cos u+ e cosω) , (2.82)

where mc is the mass of the unseen companion, namely either an exoplanet p or
the SMBH in Sgr A∗, and Mb is the total mass of the system; the rest of the orbital
parameters refer to the relative motion of one about the other. The pK instantaneous
shifts of Equation (2.82) can be calculated according to Equation (2.77) by means
of the following partial derivatives19

∂V

∂a
= −

µc (e cosω + cos u) sin I

2
√

µba3
(
1− e2

) , (2.83)

∂V

∂e
=

µc (cosω + e cos u) sin I√
µba

(
1− e2

)3
, (2.84)

∂V

∂I
=

µc (e cosω + cos u) cos I√
µba

(
1− e2

) , (2.85)

∂V

∂ω
= −

µc (e sinω + sin u) sin I√
µba

(
1− e2

) , (2.86)

17 See, for example, Chapter 18 of the online book Celestial Mechanics by J. B. Tatum, retrievable at
www.astro.uvic.ca/~tatum/celmechs.html, accessed on 20 January 2024.

18 From βαρύς, ε̃ια, ύ, ‘heavy’.
19 In obtaining Equation (2.83), the Keplerian mean motion nK is considered as an explicit function of a.
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∂V

∂f
= −

µc sin u sin I√
µba

(
1− e2

) (2.87)

and Equation (2.78).
In Equation (2.82), the semiamplitude of the radial velocity curve is defined as

K :=
mc

Mb

nKa sin I
√

1− e2
; (2.88)

it is one of the directly estimated parameters in exoplanet studies (Eastman et al.,
2019). Its nonvanishing partial derivatives are

∂K

∂a
= −

µc sin I

2
√

µba3
(
1− e2

) , (2.89)

∂K

∂e
=

mc

Mb

nKae sin I(
1− e2

)3/2 , (2.90)

∂K

∂I
=

mc

Mb

nKa cos I
√

1− e2
. (2.91)

About the current and forthcoming accuracy in radial velocity measurements in
extrasolar planets, according to Crass et al. (2021), for nearly a decade, precision
instruments and surveys devoted to implementing the Extreme Precision Radial
Velocity (EPRV) technique20 have been unable to routinely reach accuracies of less
than roughly 1 m/s (Fischer et al., 2016; Dumusque et al., 2017). However, modern
spectrographs promise measurement precision of' 0.2−0.5 m/s for an ideal target
star (Gilbertson et al., 2020), or even down to the ' 0.01 m/s level (Matsuo et al.,
2022). Furthermore, the next generation of EPRV instruments, which have been
designed to have instrumental accuracies approaching 0.1 m/s with a few cm/s
stability over many year, have recently been developed: the Echelle SPectrograph
for Rocky Exoplanets and Stable Spectroscopic Observations (ESPRESSO) (Pepe
et al., 2010), the EXtreme PREcision Spectrograph (EXPRES) (Jurgenson et al.,
2016), M dwarf Advanced Radial velocity Observer Of Neighbouring eXoplanets
(MAROON-X) (Seifahrt et al., 2018), and NEID (Schwab et al., 2016).

As far as the S stars are concerned, the uncertainty in the radial velocity of
the massive, young main sequence star S2 of spectral class B, also known as
S0–2 (Ghez et al., 2003; Martins et al., 2008; Habibi et al., 2017), was recently
pushed down to the ' 7 km/s level for the best data, with a median error of
12.3 km/s (GRAVITY Collaboration, 2019), from measurements collected over

20 Its main goal is to detect potentially habitable Earthlike rocky planets orbiting at about 1 au from solar-type
stars (Crass et al., 2021).
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several years21 with the SINgle Faint Object Near-IR Investigation (SINFONI)
instrument,22 now decommissioned.

2.4.2 The Characteristic Timescales in Transiting Exoplanets

Transiting exoplanets (Haswell, 2010) are discovered by monitoring the reduction
in the collected electromagnetic radiation as they pass in front of their parent star
in what is called a primary transit, or primary eclipse23 (Winn, 2011). Most of them
are seen edge-on, namely, I ' 90◦ (Mason, 2008). Since it is the combined flux
from both the star and the planet p which is actually measured, a further reduc-
tion of the former occurs also when the planet passes behind the star in what is
called a secondary transit, or secondary eclipse (Winn, 2011). In both cases, some
characteristic timescales are measured along with their variations as a powerful
tool to reveal transiting – and even non-transiting – planets (Kipping et al., 2011;
Nesvorný et al., 2012; Fabrycky et al., 2012; Steffen et al., 2012a,b; Nesvorný
et al., 2013): the total transit duration δtD, the ingress/egress24 transit duration δti/e,
the full width at half maximum primary transit duration δtH , and also the times of
inferior and superior conjunctions25 tcj (Eastman et al., 2019).

When the primary eclipse occurs, the transit starts at the first instant of contact
tI, when the planetary disk, moving towards the star, becomes externally tangent to
the stellar one. Then, at the second instant of contact tII, the two disks are intern-
ally tangent with the planet’s disk superimposed on the stellar one. At the third
instant of contact tIII, the planet’s disk begins to leave the stellar one becoming
internally tangent to it. The transit ends at the fourth instant of contact tIV when
the planetary disk, moving away from the stellar one, becomes externally tangent
to it.

The collected data records, spanning months or even years, usually cover a huge
number of transits Ntr since most of the detected transiting exoplanets are close
to their parent stars. As an example, K2–137b (Smith et al., 2018), discovered in
2017, is only 0.0058 au from its star and has an orbital period TK as short as 4.3 hr;
in principle, more than Ntr = 10,000 transits are available nowadays for it. About
the actual level of uncertainty in measuring, say, δtD, in a specific system, the case
of26 HD 286123b (Brahm et al., 2018; Yu et al., 2018), known also as K2–232b,

21 The orbital period of S2 is about 16 yr (Gillessen et al., 2009; Boehle et al., 2016).
22 It was an adaptive optics assisted near-infrared integral field spectrometer mounted to the Very Large

Telescope (VLT) run by the European Southern Observatory (ESO) (Eisenhauer et al., 2003).
23 From ’′εκλειψις, -εως, ’η, ‘disappearance, abandonment’, formed by ’εκ- (‘out’) and λε′ιπω (‘to leave, depart,

disappear’).
24 From in-grĕdı̆or, essus, ‘to go into, to enter’, and ē-grĕdı̆or, gressus, ‘to leave, exit’.
25 From coniūnctiō, ōnis, ‘a connecting, uniting, union, agreement’.
26 It is a sub-Jovian planet orbiting a Sunlike star in 11.6 d, corresponding to a a = 0.0991 au, along an

elliptical orbit with e = 0.2555.
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can be fruitfully analysed. The formal, statistical accuracy in measuring its total
transit duration amounts to (Yu et al., 2018)

σδtD ' 0.0003 d = 28 s (2.92)

over Ntr = 7 since its orbital period is TK = 11.16 d, and it was monitored dur-
ing 80 d (Yu et al., 2018). It should likely not be unrealistic to expect some future
improvements in σδtD ; indeed, it generally gets smaller with the number of transits
Ntr as

√
Ntr. Thus, for Ntr = 100, σδtD should reduce just by a factor of 10. If one

assumed a continuous monitoring over, say, 10 yr, corresponding to Ntr ' 330,
σδtD would improve by a factor of 18 corresponding to a measurement uncertainty
as little as 1.6 s. Furthermore, if it were possible to observe Ntr = 1,000 tran-
sits over about 30 yrs, the experimental accuracy would improve by a factor of 32
reaching the 0.8 s level. However, it must be remarked that the quoted errors are,
in fact, just the formal, statistical ones; they do not account for several sources of
systematics like, e.g., confusing time standards, neglecting star spots, and neg-
lecting clouds. According to the online NASA Exoplanet Archive available at
https://exoplanetarchive.ipac.caltech.edu,27 the best current accuracy in measuring
the total transit duration of transiting exoplanets is of the order of

σδtD ' 0.0004 hr = 1.4 s. (2.93)

However, Equation (2.93) refers to planets moving along circular orbits. As far
as the other timescales of HD 286123b are concerned, the formal uncertainty in
measuring δti/e is (Yu et al., 2018)

σδti/e ' 0.00020− 0.00047 d = 17− 40 s, (2.94)

while it is (Yu et al., 2018)

σδtH ' 0.0002 d = 17 s. (2.95)

The reported formal uncertainty in measuring tcj is, for HD 286123b (Yu et al.,
2018),

σtcj ' 0.00004 d = 3.6 s (2.96)

after Ntr= 7 transits. After 3 yr and Ntr= 100 transits, the measurement error
should be reduced down to ' 0.3 s. If it were possible to observe Ntr= 330 tran-
sits over 10 yr, the error should become as little as ' 0.2 s. About the realistic
obtainable accuracy, the same caveats pointed out for δtD hold also here.

In the following discussion, only the timescales characterizing the primary tran-
sits are treated since the ones corresponding to the secondary eclipses are, in
general, less accurately measured (Yu et al., 2018).

27 Accessed 12 February 2024.
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The Total Transit Duration δtD

The transit is viewed in the plane of the sky, assumed as reference plane {x, y} of
an astrocentric coordinate system whose reference z axis is directed along the line
of sight. In order to obtain a manageable analytical expression for its total duration
δtD, defined as

δtD := tIV − tI (2.97)

and dubbed T14 by Eastman et al. (2019), some reasonable assumptions are to be
made. (a) The distance between the planet and its parent star is assumed to be large
enough so that the orbital period TK is much longer than δtD (Carter et al., 2008;
Ford et al., 2008). Thus, the planetary disk moves across the stellar one along an
approximately rectilinear segment at an essentially constant speed which can be
assumed equal to that at midtransit; in general, the speed along an elliptical orbit
is variable, as per Equation (2.8). (b) The star–planet separation r, generally vari-
able according to Equation (2.11), remains substantially unchanged and equal to its
value at midtransit. (c) The assumed rectilinear chord of the stellar disk traversed
during the transit is parallel to the line of the nodes. Thus, let the reference x axis
be aligned just along it, so that � = 0. (d) Since it is assumed that, during the tran-
sit, the planet moves rectilinearly in front of the star without changing their mutual
separation, as per (a), yp does not change during δtD, and it can be posed equal to
its value at midtransit occurring when xp = 0; from Equation (2.60), written for
� = 0, the latter condition occurs for umid = 90◦, so that

fmid = 90◦ − ω. (2.98)

With such assumptions, it is possible to finally obtain (Iorio, 2023c)

δtD =
2R?
√

1− e2

nKa
√

1+ 2e sinω + e2

√
(1+ ϑ)2 − b2, (2.99)

where

ϑ :=
Rp

R?
, (2.100)

b :=
a
(
1− e2

)
cos I

R? (1+ e sinω)
. (2.101)

Equation (2.101) is usually dubbed impact parameter; in it, R? and Rp are the star’s
and planet’s radii, respectively. Its nonvanishing partial derivatives are

∂δtD
∂a
=

√
1− e2

nKR?a2
√

1+ 2e sinω + e2 (1+ e sinω)2

[
−3a2 (1− e2)2

cos2 I

+ R2
? (1+ ϑ)

2 (1+ e sinω)2
] 1√

(1+ ϑ)2 − b2
, (2.102)
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∂δtD
∂e
=

2
[
2e+

(
1+ e2

)
sinω

]
nKaR?

√
1− e2 (1+ e sinω)3

(
1+ e2 + 2e sinω

)3/2

[
−R2

? (1+ ϑ)
2 (1+ e sinω)3

+ a2 (1− e2)2
cos2 I

(
2+ e2

+ 3e sinω
)] 1√

(1+ ϑ)2 − b2
, (2.103)

∂δtD
∂I
=

a
(
1− e2

)5/2
sin 2I

nKR?
√

1+ 2e sinω + e2 (1+ e sinω)2
√
(1+ ϑ)2 − b2

, (2.104)

∂δtD
∂ω
=

2e
√

1− e2 cosω

nKaR? (1+ e sinω)3
(
1+ e2 + 2e sinω

)3/2

[
−R2

? (1+ ϑ)
2 (1+ e sinω)3

+ a2 (1− e2)2
cos2 I

(
2+ e2

+ 3e sinω
)] 1√

(1+ ϑ)2 − b2
. (2.105)

The Ingress/Egress Transit Duration δti/e

The total ingress duration δti is the time interval required for the planetary disk
to pass from external to internal tangency to the stellar one in moving towards the
star; thus, it can be defined as

δting := tII − tI. (2.106)

By relying upon the same assumptions made in the previous section for the total
transit duration δtD, one finally obtains (Iorio, 2023c)

δting =
R?
√

1− e2

nKa
√

1+ 2e sinω + e2

[√
(1+ ϑ)2 − b2 −

√
(1− ϑ)2 − b2

]
. (2.107)

Its nonvanishing partial derivatives are

∂δting

∂a
=

R?
√

1− e2

2nKa2
√

1+ e2 + 2e sinω

{√
(1+ ϑ)2 − b2 −

√
(1− ϑ)2 − b2

+ 2b2

[
1√

(1− ϑ)2 − b2
−

1√
(1+ ϑ)2 − b2

]}
, (2.108)
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∂δting

∂e
=

[
2e+

(
1+ e2

)
sinω

]
nKa
√

1− e2R? (1+ e sinω)3
(
1+ e2 + 2e sinω

)3/2

{
R2
? (1− ϑ)

2 (1+ e sinω)3 − a2
(
1− e2

)2
cos2 I

(
2+ e2

+ 3e sinω
)√

(1− ϑ)2 − b2

+
−R2

? (1+ ϑ)
2 (1+ e sinω)3 + a2

(
1− e2

)2
cos2 I

(
2+ e2

+ 3e sinω
)√

(1+ ϑ)2 − b2

}
,

(2.109)

∂δting

∂I
=

a
(
1− e2

)5/2
sin 2I

2nKR?
√

1+ 2e sinω + e2 (1+ e sinω)2

[
1√

(1+ ϑ)2 − b2

−
1√

(1− ϑ)2 − b2

]
, (2.110)

∂δting

∂ω
=

eR?
√

1− e2 cosω

nKa
(
1+ 2e sinω + e2

)3/2

{√
(1− ϑ)2 − b2 −

√
(1+ ϑ)2 − b2

+
a2
(
1− e2

)2
cos2 I

(
1+ 2e sinω + e2

)
R2
? (1+ e sinω)3

[
1√

(1+ ϑ)2 − b2

−
1√

(1− ϑ)2 − b2

]}
. (2.111)

It turns out (Iorio, 2023c) that the total egress duration δtegr, that is, the time
interval required to the planetary disk to pass from internal to external tangency to
the stellar one in moving away from the star and defined as

δtegr := tIV − tIII, (2.112)

is equal to Equation (2.107) for δting. Thus, they will be commonly denoted as δti/e,
dubbed as τ by Eastman et al. (2019).

The Full Width at Half Maximum Primary Transit Duration δtH

Another measurable characteristic timescale of the primary transit is the full width
at half maximum primary transit duration (Eastman et al., 2019), which can be
defined as

tH :=
(

tIII + tIV
2

)
−

(
tI + tII

2

)
; (2.113)
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Eastman et al. (2019) dub it TFWHM . It can be calculated with the same approxima-
tions adopted for the previous timescales, obtaining (Iorio, 2023c)

δtH =
R?
√

1− e2

nKa
√

1+ 2e sinω + e2

[√
(1− ϑ)2 − b2 +

√
(1+ ϑ)2 − b2

]
. (2.114)

Its nonvanishing partial derivatives are

∂δtH
∂a
=

√
1− e2

nKa2R?
√

1+ e2 + 2e sinω (1+ e sinω)2

[
3a2 (1− e2)2

cos2 I

− R2
? (1− ϑ)

2 (1+ e sinω)2
] 1√

(1− ϑ)2 − b2
, (2.115)

∂δtH
∂e
=

[
2e+

(
1+ e2

)
sinω

]
nKa
√

1− e2R? (1+ e sinω)3
(
1+ e2 + 2e sinω

)3/2

{
−R2

? (1− ϑ)
2 (1+ e sinω)3 + a2

(
1− e2

)2
cos2 I

(
2+ e2

+ 3e sinω
)√

(1− ϑ)2 − b2

+
−R2

? (1+ ϑ)
2 (1+ e sinω)3 + a2

(
1− e2

)2
cos2 I

(
2+ e2

+ 3e sinω
)√

(1+ ϑ)2 − b2

}
,

(2.116)

∂δtH
∂I
=

a
(
1− e2

)5/2
sin 2I

2nKR?
√

1+ 2e sinω + e2 (1+ e sinω)2

[
1√

(1+ ϑ)2 − b2

+
1√

(1− ϑ)2 − b2

]
, (2.117)

∂δtH
∂ω
=

R?
√

1− e2e cosω

nKa
(
1+ 2e sinω + e2

)3/2

{
−

√
(1− ϑ)2 − b2 −

√
(1+ ϑ)2 − b2

+
a2
(
1− e2

)2
cos2 I

(
1+ 2e sinω + e2

)
R2
? (1+ e sinω)3

[
1√

(1+ ϑ)2 − b2

+
1√

(1− ϑ)2 − b2

]}
. (2.118)
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The Time of Inferior Conjunction tcj

A further measurable quantity in transiting exoplanets is the time of inferior con-
junction28 tcj (Eastman et al., 2019), named TC by Eastman et al. (2019). Its explicit
expression can be obtained as follows.

By integrating Equation (2.19) with respect to the true anomaly from 0, which
occurs at the pericentre, to an arbitrary value f , one gets (Capderou, 2005)

t = tp +
1

nK

{
2 arctan

[√
1− e

1+ e
tan

(
f

2

)]
−

e
√

1− e2 sin f

1+ e cos f

}
. (2.119)

By calculating Equation (2.119) with the value of the true anomaly at midtransit,
given by Equation (2.98), yields tcj. Thus, one finally has (Iorio, 2023c)

tcj = tp +
1

nK

{
2 arctan

[√
1− e

1+ e
tan

(π

4
−
ω

2

)]
−

e
√

1− e2 cosω

1+ e sinω

}
. (2.120)

Its nonvanishing partial derivatives are29

∂tcj

∂a
= −

3

2anK (1+ e sinω)

{
η (1+ e sinω)+ e cosω

√
1− e2

− 2 (1+ e sinω) arctan

[√
1− e

1+ e
cot

(π

4
−
ω

2

)]}
, (2.121)

∂tcj

∂e
= −

√
1− e2 cosω (2+ e sinω)

nK (1+ e sinω)2
, (2.122)

∂tcj

∂ω
= −

(
1− e2

)3/2

nK (1+ e sinω)2
, (2.123)

∂tcj

∂η
= −

1

nK
. (2.124)

Note that both Equation (2.120) and Equations (2.121)–(2.124) depend neither on
the radius of the star nor that of the planet.

2.4.3 The Sky-Projected Spin-Orbit Angle of Transiting Exoplanets

Another directly measurable quantity in transiting exoplanets is the angle λ

between the projections of the system’s orbital angular momentum and the star’s

28 It occurs when the star, the planet and the Earth are aligned with the planet in between the former and the
latter.

29 In calculating Equation (2.121), tp = t0 − η/nK is used.
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angular momentum on the plane of the sky, known also as sky-projected spin-orbit
angle, counted clockwise from the former to the latter (Albrecht et al., 2022). It
is usually measured with the Rossiter–McLaughlin (McLaughlin, 1924; Rossiter,
1924) effect, widely used in exoplanetary research (Triaud, 2018).

By relying upon some of the same assumptions put forth in Section 2.4.2, it can
be inferred that

λ = �− ζ? + 90◦, (2.125)

where ζ? is the azimuthal angle of the projection of the stellar angular momen-
tum onto the plane of the sky reckoned from some fixed direction chosen as the
reference x axis; also the node � is counted from it.

By assuming that the star’s angular momentum does not undergo any secular
precession, so that ζ? can be considered constant, from Equation (2.125) it turns
out

dλ

dt
=

d�

dt
. (2.126)

Thus, measuring the rate of change of the sky-projected spin-orbit angle allows, in
principle, to detect the combined effect of any pK acceleration displacing the node
as well.

To date, it seems that there are not very many measurements of dλ/dt in the
literature. The case of XO-3b (Hébrard et al., 2008) seems to be spurious, being the
reported discrepancy in the measurements of λ probably due to systematic errors
in one or both of them (Worku et al., 2022). The current best level of accuracy in
measuring λ is of the order of σλ ' 2◦. With repeated measurements over 10 yr,
it may be pushed to the σλ ' 1◦ level; then, an accuracy of σλ̇ ' 0.1◦/yr over
10 yr may be hypothesized.30 Nonetheless, there are a few systems for which the
accuracy in measuring λ is currently at the sub-degree level; suffice it to say that,
according to Table A.1 of Albrecht et al. (2022), λ = 59.2 ± 0.1◦ for Kepler-13b,
λ = 112.9± 0.2◦ for WASP-33b, and λ = 85.1± 0.2◦ for Kelt-9b, corresponding
to a 0.2% relative accuracy. For Kelt-9b, a measurement of dλ/dt accurate to σλ̇ =
0.08◦/yr is reported in the literature (Stephan et al., 2022), while for WASP-33b,
the upper bound |dλ/dt| ≤ 0.07◦/yr is quoted (Stephan et al., 2022).

2.4.4 The Variation of the Times of Arrival of Binary Pulsars

In a binary hosting at least one pulsar psr emitting electromagnetic radiation31

(Lorimer, 2008), the TOAs t̃psr of the emitted pulses change primarily because of

30 Winn, J. W., personal communication, February 2024.
31 Although the pulsars’ emission is usually in the radio portion of the electromagnetic spectrum (Beskin et al.,

1988; Lyutikov et al., 1999), neutron stars emitting also optical, X and gamma radiation are known (Torres
and Rea, 2011; Giraud and Pétri, 2021).
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the orbital motion about the common centre of mass caused by the gravitational
tug of the companion c which can be, in principle, either a main sequence star
(Wex, 1998) or an astrophysical compact object like, for example, another neutron
star which does not emit (Hulse and Taylor, 1975) or whose pulses, for some rea-
son, are no longer32 detectable, a white dwarf (Antoniadis et al., 2013; Ransom
et al., 2014; Venkatraman Krishnan et al., 2020) or, perhaps, even a BH (Wex and
Kopeikin, 1999). Such a periodic variation δ̃tpsr ( f ) can be modeled as the ratio
of the projection of the barycentric orbit of the pulsar onto the line of sight to the
speed of light c (Damour and Schäfer, 1991; Konacki et al., 2000). By assuming a
coordinate system centred in the binary’s centre of mass whose reference z axis is
along the line of sight in such a way that the reference plane {x, y} coincides with
the plane of the sky, we have

δ̃tpsr ( f ) =
zpsr

c
=

rpsr sin I sin u

c
=

apsr
(
1− e2

)
sin I sin u

c (1+ e cos f )
(2.127)

=
mc

Mb

a
(
1− e2

)
sin I sin u

c (1+ e cos f )
. (2.128)

In obtaining Equation (2.128), which is somewhat analogous to the range in Earth–
Moon or Earth–planets studies (Damour and Schäfer, 1991), we used the fact that,
to the Keplerian level, the barycentric semimajor axis of the pulsar psr is

apsr '
mc

Mb
a, (2.129)

where a is referred to the relative orbit of psr with respect to the companion c. In a
purely Keplerian scenario, there is no net variation δ̃tpsr over a full orbital cycle.

The nonvanishing partial derivatives of Equation (2.128) are

∂δ̃tpsr

∂a
=

mc

Mb

a
(
1− e2

)
sin I sin u

c (1+ e cos f )
, (2.130)

∂δ̃tpsr

∂e
= −

mc

Mb

a
[
2e+

(
1+ e2

)
cos f

]
sin I sin u

c (1+ e cos f )2
, (2.131)

∂δ̃tpsr

∂I
=

mc

Mb

a
(
1− e2

)
cos I sin u

c (1+ e cos f )
, (2.132)

32 At least for some years (2003–2008), both the members of the double pulsar PSR J0737–3039 (Burgay et al.,
2003; Lyne et al., 2004) were simultaneously detectable as emitting radio pulsars. Later, the beam by PSR
J0737–3039B was displaced away from our line of sight by the geodetic precession (Damour and Ruffini,
1974; Barker and O’Connell, 1975) experienced by its spin, measured by Breton et al. (2008) to a ' 13%
accuracy, due to the 1pN gravitoelectric field of PSR J0737–3039A. PSR J0737–3039B should become
visible again around 2024 at the latest (Noutsos et al., 2020).
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∂δ̃tpsr

∂ω
=

mc

Mb

a
(
1− e2

)
sin I cos u

c (1+ e cos f )
, (2.133)

∂δ̃tpsr

∂f
=

mc

Mb

a
(
1− e2

)
sin I (e cosω + cos u)

c (1+ e cos f )2
. (2.134)

The calculation of the pK instantaneous shifts 1δ̃tpsr is made according to
Equation (2.77) along with Equations (2.130)–(2.134).

2.4.5 The Astrometric Angles RA and dec.

Given a test particle revolving about a massive primary, the body-centric RA α

and dec. δ are directly connected with the astrometric angular variables which are
actually measured in real astronomical observational campaigns. An example is
provided, in the case of an Earth’s satellite, by their relation with the spacecraft’s
topocentric or local tangent coordinates (Montenbruck and Gill, 2000; Moyer,
2003; Xu, 2008). Another important scenario characterized by the use, among other
things, of the RA and the dec. is the GC and the S stars. Suffice it to say that the
recent discovery of the star S4716 (Peißker et al., 2022) relied upon extensive col-
lections of measurements of RA and dec. accurate to ' 5 − 0.5 milliarcseconds
(mas).

The RA can be calculated from Equations (2.60)–(2.61) and Equation (2.62) in
the case of a reference frame having the mean Earth’s equator at the reference epoch
J2000.0 as fundamental plane, so that φ→ α. The dec. is obtained from

z (t) = r (t) sin I sin u (t), (2.135)

as

δ (t) = arcsin
[

z (t)

r (t)

]
. (2.136)

Thus, the nonvanishing partial derivatives of α, δ turn out to be

∂α

∂I
= −

2 sin I sin 2u

3+ cos 2I + 2 sin2 I cos 2u
, (2.137)

∂α

∂�
= 1, (2.138)

∂α

∂ω
=

4 cos I

3+ cos 2I + 2 sin2 I cos 2u
, (2.139)

∂α

∂f
=

4 cos I

3+ cos 2I + 2 sin2 I cos 2u
, (2.140)
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∂δ

∂I
=

cos I sin u√
1− sin2 I sin2 u

, (2.141)

∂δ

∂ω
=

sin I cos u√
1− sin2 I sin2 u

, (2.142)

∂δ

∂f
=

sin I cos u√
1− sin2 I sin2 u

. (2.143)

The calculation of the pK instantaneous shifts 1α, 1δ is made according to
Equation (2.77) along with Equations (2.137)–(2.143).

2.5 The pK Variations of the Two-Body Range and Range Rate

Let A and B be two test particles orbiting the same primary whose position and
velocity vectors are rA (t) , rB (t) and vA (t) , vB (t), respectively. Typically, A and B
may be a major body of our solar system orbited by a probe and the Earth to which
electromagnetic signals are transmitted by the latter, or a pair of twin spacecraft
orbiting the same primary along identical orbits. Examples of the latter scenario
are the Gravity Recovery and Climate Experiment (GRACE) (Tapley et al., 2004b),
GRACE Follow-On (GRACE-FO) (Kornfeld et al., 2019) and Gravity Recovery
and Interior Laboratory (GRAIL) (Zuber et al., 2013) missions, the first two of
which orbit around the Earth and the third around the Moon. In such a tandem
configuration, whose idea dates back to Wolff (1969), one spacecraft follows the
other along the same orbit as both continually measure their reciprocal distance
by means of microwave (or, possibly, laser as well) ranging instruments. The first
mission concepts were proposed by Fischell and Pisacane (1978) (GRAVSAT) and
Reigber (1978) (SLALOM).

The two-body mutual range ρ (t) and range rate ρ̇ (t) are defined as (Cheng,
2002)

ρ :=
√
(rA − rB) � (rA − rB), (2.144)

ρ̇ := (vA − vB) � ρ̂, (2.145)

where

ρ̂ :=
rA − rB

ρ
; (2.146)

the range is the instantaneous distance between A and B, while the range rate is the
projection of their relative velocity vA − vB onto the line joining them whose unit
vector is ρ̂. Both the range and the range rate vary over time as A and B go along
their orbits about the common primary.
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2.5.1 The Two-Body Range Shift

According to (Cheng, 2002), the time-dependent perturbation 1ρ ( f ) of Equa-
tion (2.144) induced by a pK disturbing acceleration is given by

1ρ ( f ) = (1rA −1rB) � ρ̂, (2.147)

where

1r = Rr ( f ) r̂ +Rτ ( f ) τ̂ +Rh ( f ) ĥ (2.148)

denotes the perturbation experienced by the position vector r of any of the two
bodies A, B. In turn, Rr ( f ) , Rτ ( f ) , Rh ( f ) in Equation (2.148) are the radial,
transverse and normal components of the instantaneous shift1r ( f ) of the position
vector given by the following (Casotto, 1993):

Rr ( f ) := 1r · r̂ =
r

a
1a ( f )− a cos f1e ( f )+

ae sin f
√

1− e2
1M ( f ) , (2.149)

Rτ ( f ) := 1r · τ̂ = a sin f

(
1+

r

p

)
1e ( f )

+ r [cos I1�( f )+1ω ( f )]+
a2

r

√
1− e21M ( f ) , (2.150)

Rh ( f ) := 1r · ĥ = r [sin u1I ( f )− sin I cos u1�( f )] . (2.151)

The target two-way accuracy for the probe BepiColombo (Balogh et al., 2007),
currently en route to Mercury, is' 20−30 cm for range at 1,000 s integration time
(Iess and Boscagli, 2001).

2.5.2 The Two-Body Range Rate Shift

The perturbation 1ρ̇ ( f ) of the range rate can be written as (Cheng, 2002)

1ρ̇ ( f ) = (1vA −1vB) � ρ̂ + (1rA −1rB) � ρ̂v, (2.152)

where

ρ̂v :=
(vA − vB)− ρ̇ρ̂

ρ
, (2.153)

and

1v = Vr ( f ) r̂ + Vτ ( f ) τ̂ + Vh ( f ) ĥ (2.154)

is the perturbation of the velocity vector v of either of the two bodies A, B. Fur-
thermore, Vr ( f ) , Vτ ( f ) , Vh ( f ) in Equation (2.154) are the radial, transverse and
normal components of the instantaneous shift 1v ( f ) of the velocity vector which
are (Casotto, 1993)
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Vr ( f ) := 1v · r̂ = −
nKa sin f
√

1− e2

[ e

2a
1a ( f )+

a

r
1e ( f )

]
−

nKa2

r
[cos I1�( f )+1ω ( f )]−

nKa3

r2
1M ( f ) , (2.155)

Vτ ( f ) := 1v · τ̂ = −
nKa
√

1− e2

2r
1a ( f )

+
nKa (e+ cos f )(

1− e2
)3/2 1e ( f )+

nKae sin f
√

1− e2
[cos I1�( f )+1ω ( f )] ,

(2.156)

Vh ( f ) := 1v · ĥ =
nKa
√

1− e2
[(cos u+ e cosω)1I ( f )

+ (sin u+ e sinω) sin I1�( f )] . (2.157)

The shifts of a, e, I , �, ω in Equations (2.149)–(2.151) and in Equa-
tions (2.155)–(2.157) are computed, to the first order in A, according to Equa-
tion (2.12) calculated with Equations (2.13)–(2.17) and Equation (2.19), while the
variation of the order of O (A) of the mean anomaly 1M ( f ) is calculated with
Equation (2.79). About the latter, the calculation of 8( f ) as per Equation (2.80) is
often quite cumbersome.

The target two-way accuracy for the probe BepiColombo (Balogh et al., 2007),
currently en route to Mercury, is ' 3 × 10−4 cm/s for range rate at 10,000 s
integration time (Iess and Boscagli, 2001).

2.5.3 How to Produce Time-Dependent Time Series

Equation (2.147) and Equation (2.152) allow one to obtain analytically calculated
time series of the two-body range and range rate by means of Equation (2.4) or
Equation (2.6); to this aim, the following expressions may be computationally
useful as well (Murray and Dermott, 1999):

cos f = −e+
2(1− e2)

e

∞∑
s=1

Js (se) cos sM, (2.158)

sin f = 2
√

1− e2
∞∑

s=1

1

s

dJs (se)

de
sin sM, (2.159)
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and

cos E = −
e

2
+ 2

∞∑
s=1

1

s2

dJs (se)

de
cos sM, (2.160)

sin E =
2

e

∞∑
s=1

1

s
Js (se) sin sM. (2.161)

From a practical point of view, s ≤ smax where smax is set by the desired accuracy
level.
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3

1pN Gravitoelectric Effects: Mass Monopole(s)

3.1 The 1pN Gravitoelectric Effects for a Test Particle

The 1pN gravitoelectric acceleration due to the mass monopole moment of the
source, namely, its mass M , is (see, e.g., Soffel, 1989, Equation (4.2.1), p. 89;
Brumberg, 1991, Equation (3.1.46), p. 82; Soffel and Han, 2019, p. 332)

A1pN
=

µ

c2r2

[(
4µ

r
− v2

)
r̂ + 4vrv

]
, (3.1)

where

vr := v · r̂ (3.2)

is the projection of the velocity vector v onto the direction of the position vector
r. It induces the largest out of all the pN orbital effects, and historically played a
landmark role in establishing the empirical basis of GTR since it allowed Einstein
(1915b) to correctly find the cause of the then anomalous perihelion precession of
Mercury (Roseveare, 1982) of 42.98 arcseconds per century

(
′′/cty

)
1 (Nobili and

Will, 1986; Pireaux and Rozelot, 2003) which puzzled astronomers since it was
discovered in the second half of the nineteenth century by Le Verrier (1859a,b).2

According to Brush (1989) and Weinberg (1992), the explanation by Einstein was
particularly important since it was a successful retrodiction of an effect which was
known for decades. The 1pN perihelion precession was later repeatedly meas-
ured with radar measurements of Mercury itself (Shapiro et al., 1972; Shapiro,
1990), of other inner planets (Anderson et al., 1978, 1993), and of the aster-
oid Icarus (Shapiro et al., 1968, 1971) as well. Also Earth’s geodetic satellites
(Lucchesi and Peron, 2010, 2014) and the star S2 around the SMBH in Sgr A∗

1 The value predicted by Einstein (1915b) amounted to 43 ′′/cty, later corrected to 43.03 ′′/cty by Clemence
(1947).

2 The value reported by Le Verrier (1859a,b) was 38.3 ′′/cty, later corrected to 41.2± 2.1 ′′/cty by Newcomb
(1895). Modern determinations based on radar ranging led to 43.2± 0.9 ′′/cty (Shapiro et al., 1972). The
latest determination, based on optical data, yields 42.8 ′′/cty (Constantin, 2010).
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at the GC (GRAVITY Collaboration et al., 2020) were (or, possibly, laser as well)
used so far.

By projecting Equation (3.1) onto the unit vectors r̂, τ̂ , ĥ defined in Equa-
tions (2.23)–(2.25) and by using Equations (2.7)–(2.8) along with Equation (2.11),
its radial, transverse, and normal components are obtained; they turn out to be

A1pN
r =

4µ2 (1+ e cos f )2
[
e2
+ 3+ 2e cos f − 2

(
2 cos2 f − 1

)]
c2a3

(
1− e2

)3 , (3.3)

A1pN
τ =

4eµ2 (1+ e cos f )3 sin f

c2a3
(
1− e2

)3 , (3.4)

A1pN
h = 0. (3.5)

Since A1pN
h vanishes, as per Equation (3.5), the orbital plane, whose orientation

is determined by I and �, remains fixed in space. Indeed, according to Equa-
tions (2.15)–(2.16), their rates of change are caused just by the normal component
of a pK acceleration. For eccentric orbits, Equation (3.3) is always positive, that is,
it is directed radially outward, while Equation (3.4) is positive from the pericentre
to the apocentre and negative from the apocentre back to the pericentre, vanishing
just at the apsides. Thus, the cosine of the angle between AN and A1pN is always
negative; as a result, Equation (3.1) weakens the Newtonian attraction overall. Such
a feature is particularly evident for circular orbits, in which case Equation (3.4)
vanishes, leaving just Equation (3.3) directed outward.

3.1.1 The Orbital Shifts of the Keplerian Orbital Elements

The 1pN gravitoelectric instantaneous shifts 1κ ( f ) of the Keplerian orbital
elements κ = a, e, I ,�,ω, η due to Equation (3.1) can be calculated as per Equa-
tion (2.12) by using Equations (3.3)–(3.5) in Equations (2.13)–(2.18). They turn out
to be

1a ( f )1pN
=−

2eµ

c2
(
1− e2

)2

{
(cos f − cos f0)

[
7+ 3e2

+ 5e (cos f + cos f0)
]}

,

(3.6)

1e ( f )1pN
=−

µ

c2a
(
1− e2

) {(cos f − cos f0)
[
3+ 7e2

+ 5e (cos f + cos f0)
]}

,

(3.7)

1I ( f )1pN
= 0, (3.8)

1�( f )1pN
= 0, (3.9)
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1ω ( f )1pN
=−

µ

c2a
(
1− e2

) {3e (−f + f0)

+
(
3− e2

+ 5e cos f
)

sin f +
(
−3+ e2

− 5e cos f0
)

sin f0
}

, (3.10)

1η ( f )1pN
=

µ

c2a

{
−1212( f )+

1

e
√

1− e2
[15e (−f + f0)

+
(
3+ 7e2

+ 5e cos f
)

sin f −
(
3+ 7e2

+ 5e cos f0
)

sin f0

]}
.

(3.11)

In Equation (3.11),

12( f ) := arctan

[√
1− e

1+ e
tan

(
f0
2

)]
− arctan

[√
1− e

1+ e
tan

(
f

2

)]
. (3.12)

By calculating Equations (3.6)–(3.11) with the replacement f → f0 + 2π and
dividing the result by TK, one obtains the averaged precessions〈

da

dt

〉1pN

= 0, (3.13)

〈
de

dt

〉1pN

= 0, (3.14)

〈
dI

dt

〉1pN

= 0, (3.15)

〈
d�

dt

〉1pN

= 0, (3.16)

〈
dω

dt

〉1pN

=
3nKµ

c2a
(
1− e2

) , (3.17)

〈
dη

dt

〉1pN

=
3nKµ

c2a

(
2−

5
√

1− e2

)
. (3.18)

Equations (3.13)–(3.18) coincide3 with the definite integrals of (1/TK) dκ/df , κ =
a, e, I ,�,ω, η from f0 to f0 + 2π.

3 It may be worthwhile to further investigate the fact that Equation (3.17) was recently obtained by Stepanov
(2018) and Kubo (2022) with STR only.
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Using Equations (2.27)–(2.32) with4

〈R〉1pN
= −

3µ2

8c2a2

(
5−

8
√

1− e2

)
, (3.19)

〈v · ∇vR〉
1pN
= −

µ2

2c2a2

(
9−

16
√

1− e2

)
, (3.20)

obtained from Equation (C.12) and Equation (C.14), respectively, yields just Equa-
tions (3.13)–(3.18).

The Contribution of 8 to the Mean Anomaly

When Equation (3.1) enters the equations of motion, the analytical expression
of the term 8 entering the shift of the mean anomaly M, calculated with
Equation (2.80), turns out to be

8( f )1pN
=

3µ

c2a
(
1− e2

)2

(
12( f )

[
10− e2

+ 6e4
+ 2e

(
7+ 3e2) cos f0

+ 5e2 cos 2f0
]
+

√
1− e2

1+ e cos f

{
−5

(
−1+ e2) ( f − f0)

+ e
(
2+ 3e2

+ 5e cos f0
)
(sin f + e cos f0 sin f − sin f0)

+ e cos f
[
−5

(
−1+ e2) ( f − f0)− e

(
2+ 3e2

+ 5e cos f0
)

sin f0
]})

.
(3.21)

The net change per orbit of8 can be obtained with the replacement f → f0+2π

in Equation (3.21), getting

8
1pN
= −

3πµ

c2a
(
1− e2

)2

{
10
[
1−

(
1− e2)3/2

]
+ 6e4

+ 2e
(
7+ 3e2) cos f0 + e2 (−1+ 5 cos 2f0)

}
. (3.22)

3.1.2 The Anomalistic Period

When the 1pN gravitoelectric acceleration of Equation (3.1) is taken into account,
the anomalistic period can be calculated by means of Equations (3.3)–(3.5), as
explained in Section 2.3.1.

It turns out to be

T1pN
ano = TK +1T1pN

ano , (3.23)

4 The scheme outlined in Appendix C is followed.
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with

1T1pN
ano =

3π
√

µa

c2
(
1− e2

)2

[
6+ 7 e2

+ 2 e4
+ 2 e

(
7+ 3 e2) cos f0 + 5 e2 cos 2f0

]
.

(3.24)
Figure 3.1, obtained for generic values of the Keplerian orbital parameters, con-

firms the analytical result of Equation (3.24); over, say, three orbital revolutions,
the test particle always reaches the precessing line of apsides after a time interval
equal to T1pN

ano . It is longer than TK, in agreement with Equation (3.24), which is
always positive.

Furthermore, Figure 3.2 plots the final part of the time series of the cosine r̂·Ĉ of
the angle between the position vector r and the Laplace–Runge–Lenz unit vector Ĉ
versus time t, in units of TK, for a numerically integrated fictitious test particle with
and without Equation (3.1) starting in both cases from, say, the moving pericentre,
that is, for r̂0 · Ĉ0 = +1. It can be seen that the orbiter comes back to the same
position on the precessing line of apsides, namely it is r̂ · Ĉ = +1 again, just after
T1pN

ano = TK + 1T1pN
ano differing from TK by a (positive) amount, in agreement with

Equation (3.24).

3.1.3 The Draconitic Period

The draconitic period, calculated when the 1pN gravitoelectric acceleration of
Equation (3.1) is taken into account as explained in Section 2.3.2, turns out to be

Figure 3.1 Perturbed 1pN trajectory (continuous curve) and its osculating Kep-
lerian ellipse (dashed curve) at the initial instant of time t0 characterized by
e = 0.95, I = 0, � = 0,ω = 90◦, f0 = 180◦ as seen from above the fixed
orbital plane. In this example, it is assumed that both ω and η undergo the 1pN
gravitoelectric secular precessions of Equations (3.17)–(3.18) due to the mass M
of the primary. For a better visualization of their effect, their sizes are suitably
rescaled. The positions on the perturbed trajectory after one, two and three Kep-
lerian periods TK are marked as well. At each orbit, the passages at the drifting
line of apsides occur always later than in the Keplerian case by the amount given
by Equation (3.24), which is always positive.
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Figure 3.2 Plot of the numerically produced time series of the cosine r̂ · Ĉ of
the angle between the position vector r and the Laplace–Runge–Lenz vector C
versus time t, in units of TK, obtained by integrating the equations of motion
of a fictitious test particle with and without the 1pN gravitoelectric acceleration
of Equation (3.1) for an elliptical (e = 0.665) orbit arbitrarily oriented in space
(I = 40◦, � = 45◦, ω = 50◦) starting from the periapsis (f0 = 0), that is,
r̂0 · Ĉ0 = +1; the semimajor axis is a = 6Re. The physical parameters of the
Earth are adopted. The 1pN acceleration is suitably rescaled in such a way that
1T1pN

ano /TK = 0.001. The time needed to come back to the initial position on the
(moving) line of apsides, so that r̂ · Ĉ = +1 again, is longer than in the Keplerian
case by the amount1T1pN

ano = +0.001TK, shown by the shaded area, in agreement
with Equation (3.24).

T1pN
dra = TK +1T1pN

dra , (3.25)

with

1T1pN
dra =

3π
√

µa

c2

[
6+ 7e2

+ 2e4
+ 2e

(
7+ 3e2

)
cos f0 + 5e2 cos 2f0(

1− e2
)2

−
2
√

1− e2

(1+ e cosω)2

]
'

12π
√

µa

c2

[
1+ e

(7 cos f0 + 2 cosω)
2

+ e2 (17+ 5 cos 2f0 − 3 cos 2ω)
4

+O
(
e3)] . (3.26)

It can be noted that Equation (3.26) is always positive for all values of e, f0 and ω;
this means that the node is reached later than in the Keplerian case.

Figure 3.3, obtained for generic values of the Keplerian orbital parameters, con-
firms the analytical result of Equation (3.26); over, say, three orbital revolutions,
the test particle reaches always the fixed line of nodes after a time interval equal to
T1pN

dra . It is longer than TK, in agreement with Equation (3.26).
Furthermore, Figure 3.4 plots the final part of the time series of the cosine r̂ · l̂

of the angle between the position vector r and the node unit vector l̂ versus time t,
in units of TK, for a numerically integrated fictitious test particle with and without
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Figure 3.3 Perturbed 1pN trajectory (continuous curve) and its osculating Kep-
lerian ellipse (dashed curve) at the initial instant of time t0 characterized by
e = 0.7, I = 30◦, � = 45◦,ω = 50◦, f0 = 180◦ − ω. In this example, it is
assumed that both ω and η undergo the 1pN gravitoelectric secular precessions of
Equations (3.17)–(3.18) due to the mass M of the primary. For a better visualiza-
tion of their effect, their sizes are suitably rescaled. The positions on the perturbed
trajectory after one, two and three Keplerian periods TK are marked as well. At
each orbit, the passages at the fixed line of nodes occurs always later than in the
Keplerian case by the amount given by Equation (3.26), which is always positive.

Figure 3.4 Plot of the numerically produced time series of the cosine r̂ · l̂ of the
angle between the position vector r and the node unit vector l̂ versus time t, in
units of TK, obtained by integrating the equations of motion of a fictitious test
particle with and without the 1pN gravitoelectric acceleration of Equation (3.1)
for an elliptical (e = 0.665) orbit arbitrarily oriented in space (I = 40◦, � =
45◦, ω = 50◦) starting from the ascending node � (f0 = −ω + 360◦), that is,
r̂0 · l̂0 = +1; the semimajor axis is a = 6Re. The physical parameters of the
Earth are adopted. The 1pN acceleration is suitably rescaled in such a way that
1T1pN

dra /TK = 0.001. The time needed to come back to the initial position on the
(fixed) line of nodes, so that r̂ · l̂ = +1 again, is longer than in the Keplerian case
by the amount1T1pN

dra = +0.001TK, shown by the shaded area, in agreement with
Equation (3.26).
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Equation (3.1) starting in both cases from, say, the fixed ascending node, namely,
for r̂0 · l̂0 = +1. It can be seen that it comes back to the same position on the
constant line of nodes, that is, it is r̂ · l̂ = +1 again, just after T1pN

dra = TK +1T1pN
dra

differing from TK by a (positive) amount, in agreement with Equation (3.26).

3.1.4 The Sidereal Period

As shown in Section 2.3.3, the sidereal period for a generic perturbed orbit is the
sum of the draconitic period, calculated as explained in Section 2.3.2, and the term
given by Equation (2.66). For Equation (3.1), Equation (2.66) turns out to be

1T1pN
sid II = 0. (3.27)

Thus, in this case, the sidereal period coincides with the draconitic one.
This is shown in Figure 3.5. It plots the final part of the time series of the cosine

of the angle φ, normalized to its initial value cosφ0, versus time t, in units of TK,
for a numerically integrated fictitious test particle with and without Equation (3.1)
starting from the same generic initial position. It can be seen that it comes back to
the same position on the fixed direction chosen in the reference plane, namely it is
cosφ/ cosφ0 = +1 again, just after T1pN

sid = T1pN
dra differing from TK by a positive

amount, in agreement with Equation (3.26).

Figure 3.5 Plot of the numerically produced time series of the cosine cosφ (t) of
the azimuthal angle φ (t) normalized to its initial value cosφ0 versus time t, in
units of TK, obtained by integrating the equations of motion of a fictitious test
particle with and without the 1pN gravitoelectric acceleration of Equation (3.1)
for an elliptical (e = 0.665) orbit arbitrarily oriented in space (I = 40◦, � =
45◦, ω = 50◦) starting from, say, the ascending node � (f0 = −ω + 360◦); the
semimajor axis is a = 6Re. The physical parameters of the Earth are adopted.
The 1pN acceleration is suitably rescaled in such a way that 1T1pN

sid /TK = 0.001.
The time needed to cosφ (t) to assume again its initial value cosφ0 is longer than
in the Keplerian case by the amount 1T1pN

sid = +0.001TK, shown by the shaded
area, in agreement with the sum of Equation (3.26).
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3.1.5 The Astrometric Angles RA and dec.

For a test particle and a massive primary, as in the case of the S stars and Sgr A∗, the
instantaneous shifts of the RA and dec. can be obtained from Equation (2.77) calcu-
lated with Equations (2.137)–(2.143), Equations (3.6)–(3.10), and Equation (3.11)
and Equation (3.21). By replacing f with f0 + 2π in the resulting expressions, the
net variations per orbit are inferred.

Figures 3.6 and 3.7 display the instantaneous shifts1α (t) ,1δ (t) of the RA and
the dec. of a fictitious S star obtained by varying TK and e in such a way that the
stellar perinigricon distance is kept fixed to rmin = 1250R• where R• := 2µ•/c2

is the BH’s Schwarzschild radius.

Figure 3.6 Plot of the 1pN gravitoelectric instantaneous shift 1α (t)1pN, in ◦, of
the RA of a fictitious S star for different values of TK and e in such a way that
rmin = 1250R•. The relevant stellar orbital parameters are I = 161.24◦, � =
151.54◦, ω = 0.073◦, η = 20◦. For the BH, the value M• = 4.1×106 M� is used
for its mass (Peißker et al., 2022).

Figure 3.7 Plot of the 1pN gravitoelectric instantaneous shift 1δ (t)1pN, in ◦, of
the dec. of a fictitious S star for different values of TK and e in such a way that
rmin = 1250R•. The relevant stellar orbital parameters are I = 161.24◦, � =
151.54◦, ω = 0.073◦, η = 20◦. For the BH, the value M• = 4.1×106 M� is used
(Peißker et al., 2022).
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It turns out that the 1pN gravitoelectric astrometric signatures can be as large as
. 5− 20◦, depending on the star’s orbital period and eccentricity.

3.1.6 The Two-Body Range and Range Rate

Here, Equations (3.6)–(3.10), along with Equation (3.11) and Equation (3.21) for
the shift of the mean anomaly, are used in Equation (2.147) and Equation (2.152)
to analytically calculate the time series of the range and range rate shifts for
A = Mercury and B = Earth, both moving in the 1pN gravitoelectric field of the
Sun induced by its mass M�.

Figures 3.8–3.9 plot the resulting signals, obtained introducing the dependence
on time t through the mean anomaly by means of Equation (2.4) and Equa-
tions (2.158)–(2.159), over 2 yr, which is the expected duration of the extended
phase of the BepiColombo mission (Benkhoff et al., 2010, 2021) from5 2026 to
2028. It turns out that the peak-to-peak nominal amplitudes of the range and range
rate shifts can reach the ' 2000 km and ' 1.5 m/s level, respectively.

An integration of the equations of motion with and without Equation (3.1) gen-
erated corresponding numerical time series differing from the aforementioned
analytical ones by . 0.02 km and . 8 mm/s level over 2 years, respectively.

Figure 3.8 Analytically produced time series, in km, of the two-body 1pN range
shift 1ρ (t) due to the Sun’s mass M� for A=Mercury and B=Earth plotted
over 2 yr. It was worked out by calculating Equations (2.149)–(2.151) enter-
ing Equations (2.147)–(2.148) with Equations (3.6)–(3.11), Equation (3.21) and
Equation (2.4). The initial values of the Keplerian orbital elements of both plan-
ets, referred to the International Celestial Reference Frame (ICRF), were retrieved
from the WEB interface Horizons System at https://ssd.jpl.nasa.gov/horizons/,
maintained by the Jet Propulsion Laboratory (JPL) of the National Aeronautics
and Space Administration (NASA), and accessed 12 February 2024. For the Sun’s
standard gravitational parameter, see Table J.1.

5 See www.esa.int/Science_Exploration/Space_Science/BepiColombo/BepiColombo_factsheet. Accessed
19th January 2024.
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Figure 3.9 Analytically produced time series, in m/s, of the two-body 1pN range
rate shift 1ρ̇ (t) due to the Sun’s mass M� for A=Mercury and B=Earth plotted
over 2 yr. It was worked out by calculating Equations (2.155)–(2.157) enter-
ing Equations (2.152)–(2.154) with Equations (3.6)–(3.11), Equation (3.21) and
Equation (2.4). The initial values of the Keplerian orbital elements of both plan-
ets, referred to the International Celestial Reference Frame (ICRF), were retrieved
from the WEB interface Horizons System at https://ssd.jpl.nasa.gov/horizons/,
maintained by the Jet Propulsion Laboratory (JPL) of the National Aeronautics
and Space Administration (NASA), and accessed 12 February 2024. For the Sun’s
standard gravitational parameter, see Table J.1.

3.2 The 1pN Gravitoelectric Effects for a Binary

The test particle limit treated in the previous sections is no longer applicable to the
case where the two mutually orbiting bodies have both comparable masses like, for
example, exoplanets and binary pulsars. To this aim, here the 1pN gravitoelectric
effects for a system made of a pair of objects A and B both with finite masses MA

and MB are treated.
In such a case, the 1pN gravitoelectric acceleration is (see, e.g., Damour

and Deruelle, 1985, Equation (2.5), p. 111; Soffel, 1989, Equation (A2.6), p. 166;
Brumberg, 1991, Equation (4.4.28), p. 154; Soffel and Han, 2019, Equa-
tion (10.3.7), p. 381; Poisson and Will, 2014, Equation (10.1), p. 482)

A1pN
=

µb

c2r2

{[
(4+ 2ν)

µb

r
+

3

2
νv2

r − (1− 3ν) v2

]
r̂ + (4− 2ν) vrv

}
. (3.28)

In Equation (3.28),

µb := GMb (3.29)

is the standard gravitational parameter of the binary whose total mass is

Mb := MA +MB. (3.30)
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Furthermore, the symmetric mass ratio ν is defined as

ν :=
MAMB

M2
b

, (3.31)

with 0 ≤ ν ≤ 1/4 = 0.25; the value 0 corresponds to the test particle limit, while
ν = 1/4 if both bodies have the same mass.

The radial, transverse, and normal components of Equation (3.28) turn out to be

A1pN
r =

µ2
b (1+ e cos f )2

4c2a3
(
1− e2

)3

[
e2 (4− 13ν)− 4 (−3+ ν)

+ 8e (1− 2ν) cos f + e2 (−8+ ν) cos 2f
]

, (3.32)

A1pN
τ =

2eµ2
b (1+ e cos f )3 (2− ν) sin f

c2a3
(
1− e2

)3 , (3.33)

A1pN
h = 0. (3.34)

They agree with Equations (A2.77a)–(A2.77c), calculated with GTR, by Sof-
fel (1989, p. 178). In the limit ν→ 0, Equations (3.32)–(3.34) reduce just to
Equations (3.3)–(3.5).

3.2.1 The Orbital Shifts of the Keplerian Orbital Elements

The instantaneous shifts of the Keplerian orbital elements, calculated according to
Equation (2.12) with Equations (3.32)–(3.34) in Equations (2.13)–(2.18), are

1a ( f )1pN
=

eµb (cos f − cos f0)

2c2
(
1− e2

)2

{
4
[
−7+ 3ν + e2 (−3+ 4ν)

]
+ e [eν cos 2f + 4 (−5+ 4ν) cos f0

+ 2 cos f (−10+ 8ν + eν cos f0)+ eν cos 2f0]} , (3.35)

1e ( f )1pN
=

µb (cos f − cos f0)

4c2a
(
1− e2

) {
4
[
−3+ ν + e2 (−7+ 6ν)

]
+ e [eν cos 2f + 4 (−5+ 4ν) cos f0

+ 2 cos f (−10+ 8ν + eν cos f0)+ eν cos 2f0]} , (3.36)

1I ( f )1pN
= 0, (3.37)

1�( f )1pN
= 0, (3.38)

1ω ( f )1pN
= −

µb

8c2ae
(
1− e2

) {−2
[
4 (−3+ ν)+ e2 (4+ 11ν)

+ 4e (−5+ 4ν) cos f + e2ν cos 2f
]

sin f

+
[
8 (−3+ ν)+ e2 (8+ 21ν)

]
sin f0

+ e [24 (−f + f0)+ 4 (−5+ 4ν) sin 2f0 + eν sin 3f0]} , (3.39)

https://doi.org/10.1017/9781009562911.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009562911.003


66 1pN Gravitoelectric Effects: Mass Monopole(s)

1η ( f )1pN
=

µb

8c2ae
√

1− e2

(
16e

√
1− e2 (−6+ 7ν)12 ( f )

− 2
[
4 (−3+ ν)+ e2 (−28+ 15ν)

+ 4e (−5+ 4ν) cos f + e2ν cos 2f
]

sin f

+ 8 {e [( f − f0) (−15+ 9ν)]

− 3 sin f0} +
[
8ν + e2 (−56+ 29ν)

]
sin f0

+ 4e (−5+ 4ν) sin 2f0 + e2ν sin 3f0
)

. (3.40)

The net shifts per orbit of the Keplerian osculating elements, calculated by
replacing f with f0 + 2π in Equations (3.35)–(3.40), are

1a
1pN
= 0, (3.41)

1e
1pN
= 0, (3.42)

1I
1pN
= 0, (3.43)

1�
1pN
= 0, (3.44)

1ω
1pN
=

6πµb

c2a
(
1− e2

) , (3.45)

1η
1pN
=

2πµb

[
−15+ 6

√
1− e2 + ν

(
9− 7

√
1− e2

)]
c2a
√

1− e2
. (3.46)

The pericentre advance of Equation (3.45) has been measured several times so
far by monitoring the motion of the periastron of various binary pulsars (Weis-
berg and Taylor, 1984; Stairs, 2003; Champion et al., 2004; Weisberg and Taylor,
2005; Kramer et al., 2006). In the limit ν → 0, Equations (3.41)–(3.46) reduce to
the shifts obtainable from Equations (3.13)–(3.18) by rescaling the latter ones by
2π/nK.

The Contribution of 8 to the Mean Anomaly

The analytical expression of the term8 entering the shift of the mean anomaly M,
calculated with Equation (2.80), turns out to be

8( f )1pN
=

3µb

8c2a
(
1− e2

)2
(1+ e cos f )

[−212( f ) (1+ e cos f ) {−40+ 24ν

+ 4e2 [1− 3ν + e2 (−6+ 7ν)
]
+ e [8 (−7+ 3ν)

+ e2 (−24+ 31ν)
]

cos f0 + 4e2 (−5+ 4ν) cos 2f0

+ e3ν cos 3f0
}
+

√
1− e2

(
8
(
−1+ e2) ( f − f0) (−5+ 3ν)
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+ e
{
4
[
4+ e2 (11− 10ν)

]
sin f + e

[
56+ e2 (24− 31ν)

− 24ν] cos f0 sin f + 4e2 (5− 4ν) cos 2f0 sin f

− e3ν cos 3f0 sin f + 4
(
−1+ e2) cos f [2 ( f − f0) (−5+ 3ν)

+ eν sin f ]+
[
−16+ e2 (−24+ 25ν)

]
(1+ e cos f ) sin f0

+ 2e (−10+ 7ν) (1+ e cos f ) sin 2f0 + e2ν (1+ e cos f ) sin 3f0
})]

.
(3.47)

By replacing f with f0 + 2π in Equation (3.47) yields

8
1pN
=

3πµb

2c2a
(
1− e2

)2

{
−4

(
−1+

√
1− e2

)
(−5+ 3ν)+ 2e4 (−6+ 7ν)

+ 2e2
[
1− 10

√
1− e2 +

(
−3+ 6

√
1− e2

)
ν
]
+ e [4 (−7+ 3ν)

+ 3e2 (−4+ 5ν)
]

cos f0 + e2 (−10+ 8ν + eν cos f0) cos 2f0

}
. (3.48)

In the limit ν → 0, Equations (3.47)–(3.48) reduce to Equations (3.21)–(3.22).

3.2.2 The Anomalistic Period

The anomalistic period calculated with Equations (3.32)–(3.34) as explained in
Section 2.3.1, turns out to be

T1pN
ano = TK +1T1pN

ano , (3.49)

with

1T1pN
ano =

π
√

µba

2c2
(
1− e2

)2

(
36+ e2 (42− 38ν)+ 2e4 (6− 7ν)− 8ν

+ 3e
{[

28+ 3e2 (4− 5ν)− 12ν
]

cos f0

− e (−10+ 8ν + eν cos f0) cos 2f0}) . (3.50)

In the limit ν → 0, Equation (3.50) reduces to Equation (3.24).

3.2.3 The Draconitic Period

The draconitic period, calculated with Equations (3.32)–(3.34) as explained in
Section 2.3.2, turns out to be

T1pN
dra = TK +1T1pN

dra , (3.51)
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with

1T1pN
dra =

π
√

µba

4c2

(
72+ e2 (84− 76ν)+ 4e4 (6− 7ν)− 16ν

− 3e
{[

8 (−7+ 3ν)+ e2 (−24+ 31ν)
]

cos f0

+ e [4 (−5+ 4ν) cos 2f0 + eν cos 3f0]} −
24
√

1− e2

(1+ e cosω)2

)
. (3.52)

In the limit ν → 0, Equation (3.52) reduces to Equation (3.26).

3.2.4 The Sidereal Period

The considerations presented in Section 3.1.4 hold also in this case: the sidereal
period coincides with the draconitic one.

3.2.5 The Radial Velocity of a Spectroscopic Binary

From Equation (2.88) and Equations (3.13)–(3.15), it straightforwardly turns out
that the semiamplitude of the radial velocity curve does not experience any 1pN
gravitoelectric net shift per orbit.

Nonetheless, the radial velocity curve exhibits a generally nonvanishing 1pN
gravitoelectric instantaneous shift 1V which can be analytically worked out
according to Equations (2.77)–(2.78) by using Equations (2.83)–(2.87) along with
Equations (3.35)–(3.40) and Equation (3.47). By replacing f with f0 + 2π in the
resulting expression allows one to obtain the net shift per orbit.

Figure 3.10 shows the plot of the analytically computed times series for a ficti-
tious tight exoplanetary system made of a main sequence star and a gaseous giant
planet with the same masses of the Sun and Jupiter, respectively. By varying the
orbital period TK and the eccentricity e in such a way that the star-planet minimum
distance, in units of R?+Rp, is 2, it turns out that the peak-to-peak amplitude of the
1pN gravitolectric shift can reach the level of about ' 0.02− 0.05 m/s over 1 day.

Figure 3.11 shows the plot of the analytically computed times series for a ficti-
tious S star. By varying the orbital period TK and the eccentricity e in such a way
that the perinigricon distance is rmin = 1250R•, it turns out that the peak-to-peak
amplitude of the 1pN gravitolectric shift can reach the level of about ' 800 km/s
over 5 yr.

3.2.6 The Characteristic Timescales of Transiting Exoplanets

Here, the 1pN gravitoelectric net shifts per orbit of the characteristic timescales of
transiting exoplanets are calculated in their full generality.
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Figure 3.10 Analytically produced time series, in m/s, of the 1pN gravitoelectric
shift 1V (t)1pN of the radial velocity curve of a fictitious detached exoplanetary
system made of a Sunlike star and a gaseous giant planet p with the same mass
and radius of Jupiter for different values of the e and the orbital period TK in
such a way that rmin = 2

(
R? + Rp

)
. The other relevant orbital parameters, chosen

arbitrarily, are I = 45◦,ω = 50◦, η = 20◦. Since p cannot be considered a test
particle, Equations (3.35)–(3.36) and Equations (3.39)–(3.47) are used along with
Equations (2.83)–(2.87) in Equation (2.77) and Equation (2.78).

Figure 3.11 Analytically produced time series, in km/s, of the 1pN gravitoelec-
tric shift 1V (t)1pN of the radial velocity curve of a fictitious S star for different
values of the e and the orbital period TK in such a way that rmin = 1250R•.
The other relevant orbital parameters, chosen arbitrarily, are I = 161.24◦,ω =
0.073◦, η = 20◦. Since the star can be considered a test particle with respect to
such a BH, Equations (3.6)–(3.7) and Equations (3.10)–(3.21) are used along with
Equations (2.83)–(2.87) in Equation (2.77) and Equation (2.78).

The Total Transit Duration δtD

From Equations (2.102)–(2.105) and Equations (3.41)–(3.46), it turns out

1δtD
1pN
=

12πµbe cosω

c2nKa2R?
√

1− e2 (1+ e sinω)3
(
1+ e2 + 2e sinω

)3/2
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− R2

? (1+ ϑ)
2 (1+ e sinω)3

+ a2 (1− e2)2
cos2 I

(
2+ e2

+ 3e sinω
) ] 1√

(1+ ϑ)2 − b2
. (3.53)

It should be noted that Equation (3.53), which falls as 1/
√

a, vanishes for circular
orbits, being its first nonvanishing term of the order of O (e).

The Ingress/Egress Transit Duration δti/e

From Equations (2.108)–(2.111) and Equations (3.41)–(3.46), it turns out

1δti/e
1pN
=

6πµbR?e cosω

c2nKa2
√

1− e2
(
1+ 2e sinω + e2

)3/2

{√
(1− ϑ)2 − b2

−

√
(1+ ϑ)2 − b2

+
a2
(
1− e2

)2
cos2 I

(
1+ 2e sinω + e2

)
R2
? (1+ e sinω)3

[
1√

(1+ ϑ)2 − b2

−
1√

(1− ϑ)2 − b2

]}
. (3.54)

It should be noted that Equation (3.54), which falls as 1/
√

a, vanishes for circular
orbits, being its first nonvanishing term of the order of O (e).

The Full Width at Half Maximum Primary Transit Duration δtH

From Equations (2.115)–(2.118) and Equations (3.41)–(3.46), it turns out

1δtH
1pN
=

6πµbR?e cosω

c2nKa2
√

1− e2
(
1+ 2e sinω + e2

)3/2

{
−

√
(1− ϑ)2 − b2

−

√
(1+ ϑ)2 − b2

+
a2
(
1− e2

)2
cos2 I

(
1+ 2e sinω + e2

)
R2
? (1+ e sinω)3

[
1√

(1+ ϑ)2 − b2

+
1√

(1− ϑ)2 − b2

]}
. (3.55)

It should be noted that Equation (3.55), which falls as 1/
√

a, vanishes for circular
orbits, being its first nonvanishing term of the order of O (e).
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The Time of Inferior Conjunction tcj

From Equations (2.121)–(2.124) and Equations (3.41)–(3.46), it turns out that

1tcj
1pN
=

6πµb
[
4+ e2

− 3ν − e (−5+ 3ν) sinω (2+ e sinω)
]

c2nKa
√

1− e2 (1+ e sinω)2
. (3.56)

To the zeroth order in e, Equation (3.56), which increases with the distance from
the star as

√
a, reduces to

1tcj
1pN
'

πµb (4− 3ν)
c2nKa

(3.57)

A Numerical Evaluation

Figure 3.12 displays the plots of Equations (3.53)–(3.56) for a Jovian-type exo-
planet transiting in front of its Sunlike host star, seen edge-on, as functions of the

Figure 3.12 Plots of the net shifts per orbit1δtD
1pN

,1δti/e
1pN

,1δtH
1pN

,1tcj
1pN

of a fictitious Sun-Jupiter exoplanetary system, seen edge-on, as functions of the
minimum star-planet distance rmin, in units of R? + Rp, for different values of the
eccentricity e according to Equations (3.53)–(3.56). The values I = 90◦,ω = 50◦

are used for the relevant orbital parameters. The units are s for the time of inferior
conjunction and ms for the other timescales.
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Figure 3.13 Plot of the 1pN gravitoelectric instantaneous shift 1δ̃tpsr (t)1pN, in
ms, of a binary pulsar with a white dwarf as companion for different values of TK
and e in such a way that rmin = 1.8 × 106 km. The relevant orbital parameters
are I = 75◦, ω = 42.457◦, η = 20◦. For the stellar corpses, the values Mpsr =

1.27 M�, Mwd = 1.02 M�, taken from those of PSR J1141–6545 (Antoniadis
et al., 2011), are used.

minimum distance rmin, ranging from 1.1 to 20 times the sum of the radii of the
star and the planet, for various values of the eccentricity e.

It can be noted that the largest effect occurs for the time of inferior conjunction
whose shift per orbit is at the s level. Instead, the variations of the other timescales
are of the order of ' 0.1− 10 ms.

3.2.7 The Variation of the Times of Arrival of Binary Pulsars

For a binary pulsar, the instantaneous shift of δ̃tpsr can be obtained from Equa-
tion (2.77) calculated with Equations (2.130)–(2.134), Equations (3.6)–(3.10), and
Equation (3.11) and Equation (3.21). By replacing f with f0 + 2π in the resulting
expression, the net variation per orbit is inferred.

Figure 3.13 displays the instantaneous shifts 1δ̃tpsr (t) of a fictitious binary pul-
sar whose companion is a white dwarf obtained by varying TK and e in such a way
that the minimum distance is kept fixed to,6 say, rmin = 1.8 × 106 km. It turns out
that the peak-to-peak amplitudes of the signals may be as large as ' 8 ms over 5 d.

6 It corresponds to actual minimum relative distance between the pulsar and the white dwarf of PSR
J1141–6545 (Antoniadis et al., 2011).

https://doi.org/10.1017/9781009562911.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009562911.003


4

2pN Gravitoelectric Effects: Mass Monopoles

To the second post-Newtonian (2pN) order, the gravitoelectric net shifts of the
osculating Keplerian orbital elements occurring in a binary system made of two
(non-rotating) spherical bodies A and B of comparable masses MA and MB can
be calculated as explained in Section 2.2.2; see also Iorio (2020b, 2021b,a) where
some mistakes, corrected from time to time, occurred. Among the several calcula-
tions dedicated solely to the pericentre advance existing in the literature that rely
upon different computational schemes and parameterizations like, for example,
Schäfer and Wex (1993), Kopeikin and Potapov (1994), Wex (1995), and Tucker
and Will (2019), see, in particular, the one by Damour and Schäfer (1988), based
on the Damour–Deruelle parametrization (Damour and Deruelle, 1985) and the
Hamilton–Jacobi equation, which became widely adopted in binary analyses of
pulsars.

The total 2pN net orbital shifts arise from two contributions.
The first one is due to the direct action of the 2pN gravitoelectric acceler-

ation (see, for example, Brumberg, 1991, Equation (4.4.29), p. 154; Kidder, 1995,
Equation (2.2d), p. 825; Gergely, 2010, Equation (B11), p. 10)

A2pN
=

µb

c4r2

{[
ν (−3+ 4ν) v4

+
15

8
ν (−1+ 3ν) v4

r

+ ν

(
9

2
− 6ν

)
v2v2

r + ν

(
13

2
− 2ν

)
µb

r
v2

+
(
2+ 25ν + 2ν2) µb

r
v2

r −

(
9+

87

4
ν

)
µ2

b

r2

]
r̂ +

[
ν

(
15

2
+ 2ν

)
v2

− ν

(
9

2
+ 3ν

)
v2

r −

(
2+

41

2
ν + 4ν2

)
µb

r

]
vrv

}
. (4.1)

The second one arises from the indirect effect of the 1pN acceleration of Equa-
tion (3.28) for a two-body system when the average is calculated by accounting for
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the 1pN instantaneous changes of either the line of apsides (Equation (2.36)) and
of the orbital elements themselves (Equation (2.37)) during the orbital revolution.

The 2pN contribution to the pericentre’s evolution has been investigated so far
especially in connection with binary pulsars, when the fractional1 periastron shift
per orbit wω := 1ω/2π (Damour and Schäfer, 1988) is estimated as one of the
solve-for parameters (Damour and Deruelle, 1986; Damour and Taylor, 1992), S
stars (Capuzzo-Dolcetta and Sadun-Bordoni, 2023), and BH binaries as that in the
blazar OJ 287 (Dey et al., 2018, 2019).

4.1 The Direct Net Orbital Shifts

By projecting Equation (4.1) on the unit vectors r̂, τ̂ , ĥ defined in Equations (2.23)–
(2.25) and by using Equations (2.7)–(2.8) along with Equation (2.11), its radial,
transverse, and normal components, evaluated onto the Keplerian ellipse, are
obtained; they turn out to be

A2pN
r =

µ3
b (1+ e cos f )2

64c4a4
(
1− e2

)4

(
e4ν (39+ 191ν)+ 16 [−36+ ν (−73+ 8ν)]

+ 8e2 [−36+ ν (−13+ 72ν)]+ 8e {−144

+ ν
[
−288+ 80ν + e2 (13+ 92ν)

]}
cos f

+ e2 (4 {−72+ ν
[
−298+ 144ν + e2 (−45+ 11ν)

]}
cos 2f

+ eν [8 (−57+ 20ν) cos 3f + 3e (−17+ 7ν) cos 4f ])) , (4.2)

A2pN
τ = −

eµ3
b (1+ e cos f )3 sin f

2c4a4
(
1− e2

)4

{
4+ ν

[
26+ 4ν − e2 (15+ 4ν)

]
+ e (4+ 11ν) cos f + 3e2ν (3+ 2ν) sin2 f

}
, (4.3)

A2pN
h = 0. (4.4)

By inserting Equations (4.2)–(4.4) in Equations (2.13)–(2.18) and integrating
their right-hand sides evaluated onto the unperturbed Keplerian ellipse from f0 to
f0+2π by means of Equation (2.11) and Equation (2.19), the direct net orbital shifts
per revolution of the order of O

(
1/c4

)
are obtained; they are

1a
2pN
dir = 0, (4.5)

1e
2pN
dir = 0, (4.6)

1I
2pN
dir = 0, (4.7)

1 Here, the symbol wω is used instead of k, adopted by Damour and Schäfer (1988), Damour and Deruelle
(1986), and Damour and Taylor (1992), in order to avoid confusion with the nonsingular orbital element
k := e sinω.
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1�
2pN
dir = 0, (4.8)

1ω
2pN
dir =

πµ2
b

4c4a2
(
1− e2

)2

{
e2 [−2+ 3 (7− 16ν) ν]+ 8 [7+ (5− 7ν) ν]

}
,

(4.9)

1η
2pN
dir =

πµ2
b

4c4a2
(
1− e2

)2

(
88
√

1− e2 − 42e4ν

+ 6ν
[
−7+ 49

√
1− e2 − 7

(
1− e2) ν + 11

√
1− e2ν

]
+ e2

{
2
√

1− e2 + ν
[
84− 200

√
1− e2 + 42

(
1− e2) ν

− 95
√

1− e2ν
]})

. (4.10)

4.2 The Mixed Net Orbital Shifts

4.2.1 I: The 1pN Instantaneous Change of the Apsidal Line

Here, the mixed net orbital shifts arising from Equation (2.36), marked conven-
tionally with the subscript I, are calculated by means of the radial, transverse, and
normal components of Equation (3.28) given by Equations (3.32)–(3.34).

One finally obtains

1a
2pN
I = 0, (4.11)

1e
2pN
I = 0, (4.12)

1I
2pN
I = 0, (4.13)

1�
2pN
I = 0, (4.14)

1ω
2pN
I =

πµ2
b

32c4a2e2
(
1− e2

)2

{
32 (−3+ ν)2

+ 8e2 [148+ 5ν (−43+ 17ν)]+ e4 [32+ 3ν (56+ 75ν)]
}

, (4.15)

1η
2pN
I = −

πµ2
b

32c4a2e2
(
1− e2

)3/2

(
e4 [160− ν (56+ 699ν)]

+ 32
{
−75+ 84

√
1− e2 + ν

[
158− 164

√
1− e2

+

(
−76+ 77

√
1− e2

)
ν
]}
− 8e2

{
−820+ 336

√
1− e2

+ ν
[
1183− 656

√
1− e2 +

(
−523+ 308

√
1− e2

)
ν
]})

. (4.16)
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4.2.2 II: The 1pN Instantaneous Orbital Shifts

Here, the mixed net orbital shifts arising from Equation (2.37) are calculated; they
are marked conventionally with the subscript II. To compute them, the expres-
sions for the 1pN instantaneous shifts of a and e for a two-body system, given
by Equations (3.35)–(3.36), are needed.

As a result, they turn out to be

1a
2pN
II = 0, (4.17)

1e
2pN
II = 0, (4.18)

1I
2pN
II = 0, (4.19)

1�
2pN
II = 0, (4.20)

1ω
2pN
II =

πµ2
b

32c4a2e2
(
1− e2

)2

{
−32 (−3+ ν)2

− 8e2 (−3+ ν) (−64+ 29ν)+ e4 [32+ 3ν (48+ 53ν)]

+ 768e3 (−2+ ν) cos f0
}

, (4.21)

1η
2pN
II = −

πµ2
b

32c4a2e2
(
1− e2

)5/2

(
e6 (960− 3136ν + 2458ν2)

+ e4
[
48
(

55+ 64
√

1− e2
)
− 8

(
467+ 976

√
1− e2

)
ν

+

(
−29+ 4928

√
1− e2

)
ν2
]
− 32

{
−75+ 168

√
1− e2

+ 2ν
[
79− 164

√
1− e2 +

(
−38+ 77

√
1− e2

)
ν
]}

+ 8e2
{

48
(
−25+ 36

√
1− e2

)
+ ν

[
2031− 2976

√
1− e2

+

(
−767+ 1120

√
1− e2

)
ν
]}
+ 16e3 [cos f0

(
e2
{60

+ 288
√

1− e2 + ν
[
69− 708

√
1− e2

+ 7
(
−9+ 62

√
1− e2

)
ν
]}
+ 4

{
3
(
−55+ 56

√
1− e2

)
+ ν

[
174− 268

√
1− e2 +

(
−45+ 84

√
1− e2

)
ν
]}

+ 3e2 (5− 3ν) ν cos 2f0
)
+ 2e

[
(−5+ 4ν)

(
15− 24

√
1− e2

− 9ν + 28
√

1− e2ν
)

cos 2f0 + e
√

1− e2ν (−6+ 7ν) cos 3f0
]])

.

(4.22)
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4.2.3 The Total Mixed Net Orbital Shifts

From the sum of Equations (4.11)–(4.16) and Equations (4.17)–(4.22), the total
2pN mixed net orbital shifts turn out to be

1a
2pN
mix = 0, (4.23)

1e
2pN
mix = 0, (4.24)

1I
2pN
mix = 0, (4.25)

1�
2pN
mix = 0, (4.26)

1ω
2pN
mix =

πµ2
b

4c4a2
(
1− e2

)2 [−44+ 8ν (−8+ 7ν)

+ e2 (8+ 39ν + 48ν2)
+ 96e (−2+ ν) cos f0

]
, (4.27)

1η
2pN
mix = −

πµ2
b

32c4a2e2
(
1− e2

)5/2

(
−32

√
1− e2 (−6+ 7ν) (−14+ 11ν)

+ e6 [800+ 77ν (−40+ 41ν)]+ 32e2
{

4
(
−5+ 66

√
1− e2

)
+ ν

[
54− 416

√
1− e2 + 3

(
5+ 42

√
1− e2

)
ν
]}

+ 8e4
{
−470+ 720

√
1− e2 + ν

[
709− 1632

√
1− e2

+

(
−614+ 924

√
1− e2

)
ν
]}
+ 16e3 [cos f0

(
e2
{60

+ 288
√

1− e2 + ν
[
69− 708

√
1− e2

+ 7
(
−9+ 62

√
1− e2

)
ν
]}
+ 4

{
3
(
−55+ 56

√
1− e2

)
+ ν

[
174− 268

√
1− e2 +

(
−45+ 84

√
1− e2

)
ν
]}

+ 3e2 (5− 3ν) ν cos 2f0
)
+ 2e [(−5+ 4ν) (15

− 24
√

1− e2 − 9ν + 28
√

1− e2ν
)

cos 2f0

+ e
√

1− e2ν (−6+ 7ν) cos 3f0
]])

. (4.28)

4.3 The Total Net Orbital Shifts

The total 2pN net shifts per orbit can be obtained by summing Equations (4.5)–
(4.10) and Equations (4.23)–(4.28). One finally gets

1a
2pN
= 0, (4.29)

1e
2pN
= 0, (4.30)
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1I
2pN
= 0, (4.31)

1�
2pN
= 0, (4.32)

1ω
2pN
=

3πµ2
b

[
2− 4ν + e2 (1+ 10ν)+ 16e (−2+ ν) cos f0

]
2c4a2

(
1− e2

)2 , (4.33)

1η
2pN
= −

πµ2
b

32c4a2e2
(
1− e2

)2

{
−32

√
1− e2 (−6+ 7ν) (−14+ 11ν)

+ 3e6
[
272+ ν

(
−1560+ 112

√
1− e2 + 799ν

+ 112
√

1− e2ν
)]
+ 16e2

[
−84+ 528

√
1− e2

+ ν
(
−39− 811

√
1− e2 + 273

√
1− e2ν

)]
+ 24e4

{
16
(
−8+ 15

√
1− e2

)
+ ν

[
401− 572

√
1− e2

+

(
−151+ 280

√
1− e2

)
ν
]}
+ 8e3 ({8 [3 (−55

+ 56
√

1− e2
)
+ ν

(
174− 268

√
1− e2 − 45ν

+ 84
√

1− e2ν
)]
+ e2

[
24
(

5+ 24
√

1− e2
)

+ ν
(

153− 1416
√

1− e2 − 135ν + 868
√

1− e2ν
)]}

cos f0

+ e
[
15− 24

√
1− e2 +

(
−9+ 28

√
1− e2

)
ν
]

[4 (−5+ 4ν) cos 2f0

+ eν cos 3f0])} . (4.34)

4.4 The Total Net Orbital Precessions

As remarked in Section 2.2.2, care is needed in correctly calculating the total
2pN orbital precessions since the mere division of Equations (4.29)–(4.34) by the
Keplerian orbital period TK is not enough to obtain them.

The correct procedure consists in expanding the ratios of the 1pN net shifts per
orbit to the 1pN apsidal period in powers of 1c, and adding the resulting terms of
the order O

(
1/c4

)
to the ratios of Equations (4.29)–(4.34) to TK.

By taking the ratios of the sum of Equations (4.29)–(4.34) and Equations (3.41)–
(3.46) to the anomalistic period of Equation (3.49), calculated with Equation (3.50),
and expanding the resulting expressions in powers of 1/c to the order O

(
1/c4

)
, one

finally gets the total 2pN precessions of the Keplerian orbital elements:〈
da

dt

〉2pN

= 0, (4.35)
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〈
de

dt

〉2pN

= 0, (4.36)〈
dI

dt

〉2pN

= 0, (4.37)〈
d�

dt

〉2pN

= 0, (4.38)〈
dω

dt

〉2pN

= −
3nKµ2

b

4c4a2
(
1− e2

)3

(
34+ e2 (43− 52ν)+ e4 (13− 4ν)− 4ν

+ e
{[

116+ e2 (4− 29ν)− 52ν
]

cos f0

− 3e [−10+ ν (8+ e cos f0)] cos 2f0}) , (4.39)〈
dη

dt

〉2pN

=
nKµ2

b

64c4a2e2
(
1− e2

)5/2

[
32
√

1− e2 (−6+ 7ν) (−14+ 11ν)

− 16e2
{
−624+ 744

√
1− e2 + ν

[
405− 1111

√
1− e2

+

(
−75+ 329

√
1− e2

)
ν
]}
− 8e4

{
−1644+ 1224

√
1− e2

+ ν
[
3099− 2760

√
1− e2 +

(
−1137+ 1372

√
1− e2

)
ν
]}

− e6
{

48
(
−43+ 24

√
1− e2

)
+ ν

[
408− 2352

√
1− e2

+

(
381+ 1904

√
1− e2

)
ν
]}
+ 8e3

(
cos f0

{
−7
√

1− e2 (−6

+ 7ν)
[
8 (−7+ 3ν)+ e2 (−24+ 31ν)

]
+ 24 (−5+ 3ν) [−32

+ ν
(
14+ e2 cos 2f0

)
+ e2 (−8+ 13ν)

]}
+ e

[
−4 (−5+ 4ν)

(
60− 42

√
1− e2 − 36ν

+ 49
√

1− e2ν
)

cos 2f0 + 7e
√

1− e2 (6− 7ν) ν cos 3f0
])]

. (4.40)

In the limit of small eccentricities, Equations (4.39)–(4.40) reduce to〈
dω

dt

〉2pN

'
3nKµ2

b [−17+ 2ν + 2e (−29+ 13ν) cos f0]

2c4a2
+O

(
e2) , (4.41)〈

dη

dt

〉2pN

'
nKµ2

b

2c4a2e2
{84+ ν (−164+ 77ν)

+ e2 [108+ ν (25+ 27ν)]− 2e3 [−186+ ν (29+ 21ν)] cos f0
}

+O
(
e2) . (4.42)

It can be noted that, while Equation (4.41) is regular for e→ 0, Equation (4.42) is
divergent.
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4.5 Confrontation with Other Approaches in the Literature

Here, it is shown that, as far as the pericentre is concerned, Equation (4.33) is in
agreement with other results which can be found in the literature: the derivation
by Damour and Schäfer (1988), based on the Hamilton–Jacobi method and the
Damour–Deruelle parametrization (Damour and Deruelle, 1985), and the calcu-
lation by Kopeikin and Potapov (1994) making use of the osculating Keplerian
orbital elements and the Gauss equations, although with a different computational
approach with respect to the present one.

4.5.1 The Damour–Deruelle Parameterization

The net shift per orbit of the pericentre of Equation (4.33) is in agreement with
the corresponding expression, written in terms of the osculating Keplerian orbital
elements, which can be extracted from the sum of the fractional 1pN and 2pN
pericentre advances of Damour and Schäfer (1988, Equation (5.18)):

w1pN
ω + w2pN

ω =
3 (µbnDD)

2/3

c2
(
1− e2

T

) [1+
(µbnDD)

2/3

c2
(
1− e2

T

) (39

4
x2

A +
27

4
x2

B + 15xAxB

)

−
(µbnDD)

2/3

c2

(
13

4
x2

A +
1

4
x2

B +
13

3
xAxB

)]
. (4.43)

In Equation (4.43),

xA :=
MA

Mb
, (4.44)

xB :=
MB

Mb
= 1− xA (4.45)

are the normalized masses of the bodies A and B, respectively, to the system’s
total mass, while eT and nDD are members of the Damour–Deruelle formalism
(Damour and Deruelle, 1985) which, in the limit c→∞, reduce to the Keplerian
eccentricity e and mean motion nK, as will be shown in what follows.

The so-called ‘proper time’ eccentricity eT reads (Damour and Deruelle, 1986,
pag. 272)

eT = et

(
1+ δ̃

)
+ eθ − er, (4.46)

where (Damour and Deruelle, 1985, Equation (3.8b))

et =
eR

1+ µb
c2aR

(
4− 3

2ν
) , (4.47)
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(Damour and Deruelle, 1985, Equation (4.13))

eθ = eR

(
1+

µb

2c2aR

)
, (4.48)

(Damour and Deruelle, 1985, Equation (6.3b))

er = eR

[
1−

µb

2c2aR

(
x2

A − ν
)]

, (4.49)

and (Damour and Deruelle, 1986, Equation (20))2

δ̃ =
µb

c2aR

(
xAxB + 2x2

B

)
. (4.50)

In Equations (4.47)–(4.50), aR is another member of the Damour–Deruelle param-
etrization. According to Equations (4.47)–(4.50), Equation (4.46) can be expressed
in terms of only aR, eR as

eT

eR
=

1+ µb
2c2aR

[4+ 3 (xA − 2) xA]+
µ2

b

4c4a2
R
(8− 3ν) x2

A

1+ µb
2c2aR

(8− 3ν)
. (4.51)

The Damour–Deruelle mean motion is (Damour and Deruelle, 1985, Equation
(3.7))

nDD :=
√

µb

a3
R

[
1+

µb

2c2aR
(−9+ ν)

]
. (4.52)

Equations (4.51)–(4.52) are both functions of aR, eR which, in turn, can be
expressed in terms of the osculating Keplerian a and e by means of (Klioner and
Kopeikin, 1994, Equations (28)–(29))

aR = a− da0 −
µb

c2
(
1− e2

)2

[
−3+ ν + e2 (

−13+ e2
+ 7ν + 2e2ν

)]
, (4.53)

eR = e− de0 −
eµb

2c2a
(
1− e2

) [−17+ 6ν + e2 (2+ 4ν)
]

, (4.54)

with (Klioner and Kopeikin, 1994, Equation (14))

da0 =
eµb

4c2
(
1− e2

)2

{[
8 (−7+ 3ν)+ e2 (−24+ 31ν)

]
cos f0

+ e [4 (−5+ 4ν) cos 2f0 + eν cos 3f0]} , (4.55)

and (Klioner and Kopeikin, 1994, Equation (16))

2 Here, the symbol δ̃ is used instead of δ as in Damour and Deruelle (1986) in order to avoid confusion with
the astrometric angle dec.
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de0 =
µb

8c2a
(
1− e2

) {[8 (−3+ ν)+ e2 (−56+ 47ν)
]

cos f0

+ e [4 (−5+ 4ν) cos 2f0 + eν cos 3f0]} . (4.56)

Note that Equations (4.53)–(4.56) are written for GTR; their general expressions
for a given class of alternative theories of gravitation can be found in Klioner and
Kopeikin (1994). The final expressions for aR, eR are

aR

a
= 1−

µb

c2a
(
1− e2

)2

[
−3+ ν + e4 (1+ 2ν)+ e2 (−13+ 7ν)

]
+ e

µb

4c2a
(
1− e2

)2

{[
56+ e2 (24− 31ν)− 24ν

]
cos f0

+ e [4 (5− 4ν) cos 2f0 − eν cos 3f0]} , (4.57)
eR

e
= 1−

µb

2c2a
(
1− e2

) [−17+ 6ν + e2 (2+ 4ν)
]

−
µb

8c2ae
(
1− e2

) {[8 (−3+ ν)+ e2 (−56+ 47ν)
]

cos f0

+ e [4 (−5+ 4ν) cos 2f0 + eν cos 3f0]} . (4.58)

By using Equations (4.57)–(4.58), Equations (4.51)–(4.52) can be finally expressed,
to the order of O

(
c−2
)
, as

8c2a (e− eT)
(
1− e2

)
µb

=
[
8 (−3+ ν)+ e2 (−56+ 47ν)

]
cos f0

+ e (4 {−13+ 3ν − 3 (−2+ xA) xA

+ e2 [−2+ 7ν + 3 (−2+ xA) xA]
}

+ 4 (−5+ 4ν) cos 2f0 + eν cos 3f0) , (4.59)(
nDD

nK
− 1

)
8c2a

(
1− e2

)2

µb
= 8 (−9+ 2ν)+ 4e4 (−6+ 7ν)+ e2 (−84+ 76ν)

+ 3e
{[

8 (−7+ 3ν)+ e2 (−24+ 31ν)
]

cos f0

+ e [4 (−5+ 4ν) cos 2f0 + eν cos 3f0]} . (4.60)

A power expansion to the order of O
(
1/c4

)
of Equation (4.43), calculated with

Equations (4.59)–(4.60), yields just the ratio of Equation (4.33) to 2π.

4.5.2 The Calculation by Kopeikin and Potapov

The calculation by Kopeikin and Potapov (1994) is, perhaps, the most similar to
the present one; it is based on the use of the osculating Keplerian orbital elements,
although the calculational approach is different.
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The sum of the fractional 1pN and 2pN pericentre shifts per orbit is3 (Kopeikin
and Potapov, 1994, Equation (5.2))

w1pN
ω + w2pN

ω =
3µb

c2ξ1
(
1− ξ 2

2

) [1+
µb

c2ξ1
(
1− ξ 2

2

) (3

2
ν +

3

4

)
−

µb

ξ1

(
5

2
ν +

1

4

)]
.

(4.61)

In Equation (4.61), ξ1 and ξ2 are the constants of integration of the solutions of the
Gauss equations for the semimajor axis and the eccentricity to the 1pN level to be
determined with the initial conditions at t = t0. They can be obtained, for example,
by evaluating Kopeikin and Potapov (1994, Equations (4.5)–(4.6)) at t = t0 by
replacing f , that is, V in the notation of Kopeikin and Potapov (1994), with f0, and
by recalling that, in the present notation, a0 → ξ1, e0 → ξ2. Moreover, a and e are,
in the present book, the osculating numerical values of the semimajor axis and the
eccentricity, respectively, at the same arbitrary instant t0; thus, a (t0) , e (t0) in the
left-hand side of Kopeikin and Potapov (1994, Equations (4.5)–(4.6)) are just a, e
here. Then, one gets

ξ1 ' a

{
1−

µb

c2a
(
1− e2

)2

[(
−14+ 6ν − 6e2

+
31

4
νe2

)
e cos f0

+ (−5+ 4ν) e2 cos 2f0 +
1

4
νe3 cos 3f0

]}
+O

(
1/c4) , (4.62)

ξ2 ' e

[
1−

µb

c2a
(
1− e2

)
e2

{(
−3+ ν − 7e2

+
47

8
νe2

)
e cos f0

+

(
−

5

2
+ 2ν

)
e2 cos 2f0 +

1

8
νe3 cos 3f0

}]
+O

(
1/c4) . (4.63)

By substituting Equations (4.62)–(4.63) in Equation (4.61) and expanding the
resulting expression in powers of 1/c to the order of O

(
1/c4

)
, one gets just the

ratio of Equation (4.33) to 2π .

3 Here, the notation ξ1, ξ2 is adopted instead of a0, e0 used by Kopeikin and Potapov (1994).
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5

1pN Gravitomagnetic Effects: Spin Dipole(s)

To the 1pN order, the gravitational field of an isolated, slowly rotating massive
object is characterized by a stationary, magnetlike component, dubbed as ‘gravito-
magnetic’, sourced by its angular momentum J .

For an ordinary material body of mass M and equatorial radius Re, it is

J = Iω, (5.1)

where

I := iMR2
e (5.2)

is the moment of inertia, i is the normalized moment of inertia (NMoI), and ω is
the angular speed.

For a fluid object in hydrostatic equilibrium like, for example, a main sequence
star or a gaseous giant planet, the Darwin–Radau approximate relation between
the NMoI and the dimensionless quadrupole mass moment J2 yields (Murray and
Dermott, 1999, Equation (4.112), p. 153)

i =
2

3

(
1−

2

5

√
5

2

qc

f̃
− 1

)
. (5.3)

In Equation (5.3), it is1

qc :=
ω2R3

e

µ
, (5.4)

f̃ :=
(

1+ k2

2

)
qc, (5.5)

1 Equation (5.4) comes from Murray and Dermott (1999, Equation (4.102), p. 150), while Equation (5.5) is
Murray and Dermott (1999, Equation (4.110), p. 152) rewritten by means of J2 ' (k2/3) qc (Ragozzine and
Wolf, 2009; Correia and Rodríguez, 2013) for the body’s first even zonal harmonic (see Chapter 7); in it, the
possible tidal effects raised by the second object in the binary system are a priori neglected because the latter
is assumed to be a test particle.
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where k2 is the Love number2 (Love, 1911; Sterne, 1939; Kopal, 1959; Ragozzine
and Wolf, 2009; Leconte et al., 2011). For a Jupiter-like planet, it lies in the range
0.1 . kp

2 . 0.6 (Ragozzine and Wolf, 2009), while for a main sequence star it is
of the order of3 k?2 ' 0.015 (Claret, 1995). In the stellar case, the angular speed
ω? can be inferred from the measured values, when available, of the inclination i?
of Ĵ ? to the line of sight and the projected stellar rotational velocity4

u? := v?e sin i?, (5.6)

where v?e is the star’s equatorial rotational velocity, as

ω? =
2πR?e sin i?

u?
. (5.7)

On the other hand, the stellar rotational period P? := 2π/ω? can also be esti-
mated, for example, from photometric time series or spectroscopic time series of
activity indices (Rainer et al., 2023); the star’s equatorial radius Re can be derived,
for example, from spectral energy distribution (SED) fitting (Rainer et al., 2023).
Helioseismology (Basu, 2016; Buldgen et al., 2019) yields for the Sun’s angular
momentum the value (Pijpers, 1998)

J� = 1.90× 1041 kg m2/s; (5.8)

for a collection of other values for it, see Iorio (2012a) and references therein.
As far as white dwarfs are concerned, the moment of inertia Iwd of the compan-

ion (Antoniadis et al., 2011) of the pulsar in the binary system PSR J1141–6545
(Kaspi et al., 2000) is of the order of (Boshkayev et al., 2017; Iorio, 2020a)

Iwd ' 1043 kg m2. (5.9)

By assuming for the white dwarf a rotational frequency (Boshkayev et al., 2017;
Iorio, 2020a)

ωwd =

√
µwd

R3
wd

, (5.10)

2 It measures the mass concentration towards the centre of a fluid body assumed in hydrostatic equilibrium
like, for example, a main sequence star. Its possible values range from 0 for the mass point approximation to
3/2 for a fully homogeneous fluid body (Kellermann et al., 2018; Hellard et al., 2019). It should be noted
that the Love number k2 entering Equation (7.4) is the one used by geophysicists; astronomers often adopt a
different definition of it, known as apsidal constant and equally denoted as k2, being half the previous one

(Poisson and Will, 2014, p. 115). Here, the apsidal constant is dubbed k
′

2, so that k
′

2 = k2/2; compare with

Poisson and Will (2014, Equation (2.249), p. 118) where k
′ max
2 = 3/4.

3 For example, Claret et al. (2021) obtained for the apsidal constants of the members of the binary star DI

Herculis (Hoffmeister, 1930) the values log k
′ A
2 = −2.146, log k

′ B
2 = −2.171, quoted also by Liang et al.

(2022), corresponding to kA
2 = 0.0142, kB

2 = 0.0135.
4 It can be measured from full-width at half-maximum (FWHM) of the cross-correlation function (CCF) of the

reduced spectra with a stellar mask (Rainer et al., 2023).
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where Mwd= 1.02 M�, Rwd= 5400 km (Antoniadis et al., 2011), its angular
momentum turns out to be of the order of

Jwd ' 2.2× 1043 kg m2/s. (5.11)

For a typical neutron star, the moment of inertia Ins is of the order of (Ravenhall
and Pethick, 1994; Lattimer and Prakash, 2001; Bejger and Haensel, 2002; Lat-
timer and Schutz, 2005; Worley et al., 2008; Breu and Rezzolla, 2016; Zhao, 2016;
Greif et al., 2020)

Ins ' 1× 1038 kg m2; (5.12)

for PSR J0737–3039A, recent estimates yield (Silva et al., 2021)

IA ' 1.6× 1038 kg m2. (5.13)

Since the spin period of such a pulsar is 22.699 ms (Kramer et al., 2006), its angular
momentum can be evaluated to be

JA ' 4.4× 1040 kg m2/s. (5.14)

Instead, since PSR J0737–3039B rotates about 100 times slower, with its spin
period amounting to just 2.77 s (Kramer et al., 2006), its angular momentum, calcu-
lated by assuming that its moment of inertia is equal to that of PSR J0737–3039A,
is

JB ' 3.6× 1038 kg m2/s. (5.15)

From a comparison of Equation (5.11) and Equations (5.14)–(5.15), it may be noted
that white dwarfs have angular momenta which are orders of magnitude larger than
neutron stars.

In the case of a rotating Kerr BH (Kerr, 1963; Teukolsky, 2015), its angular
momentum is (Shapiro and Teukolsky, 1986)

J• = χg
M2
•
G

c
,
∣∣χg

∣∣ ≤ 1. (5.16)

If
∣∣χg

∣∣ > 1, a naked singularity without a horizon would occur, along with the pos-
sibility of causality violations because of closed timelike curves (Chandrasekhar,
1983). Incidentally, we remark that, although not yet proven, the cosmic censorship
conjecture (Penrose, 2002) states that naked singularities cannot be formed via the
gravitational collapse of a body. J• is the BH’s spin dipole moment since, according
to the celebrated ‘no-hair theorems’ (Israel, 1967; Carter, 1971; Robinson, 1975),
the mass and the spin moments M`

•
and J`

•
of a Kerr BH (Geroch, 1970; Hansen,

1974) are connected by the relation

M`
•
+ iJ`

•
= M• (i J•/c M•)

` , (5.17)
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where i :=
√
−1 is the imaginary unit; the odd mass moments and even spin

moments are identically zero.
As far as main sequence stars are concerned, it is known that their dimensionless

spin parameter χg depends in a nonnegligible way on the stellar mass, and it can
well be χg � 1 (Kraft, 1969, 1970; Dicke, 1970; Gray, 1982; Grenier et al., 1999).
For example, from the analysis in Iorio (2016a), it can be inferred that χg ' 36 for
the star HD15082 (WASP–33) (Grenier et al., 1999). Instead, from Equation (5.8),
the value χ�g ' 0.216 is obtained for the Sun.

The gravitomagnetic field is encoded in the off-diagonal components g0i, i =
1, 2, 3 of the spacetime metric tensor accounting, in general, for the mass-energy
currents of the source (Einstein, 1955; Thirring, 1918, 1921; Lense and Thirring,
1918; Mashhoon et al., 1984). Actually, the previous denomination has nothing
to do with electric charges and currents; it is only due to the formal resem-
blance of the linearized equations of GTR, in its weak–field and slow-motion
approximation, with the Maxwell equations of electromagnetism. In this general
relativistic framework, the paradigm of ‘gravitoelectromagnetism’ arose (Cattaneo,
1958; White, 1958; Forward, 1961; Teyssandier, 1977, 1978; Thorne et al., 1986;
Thorne, 1986, 1988; Harris, 1991; Jantzen et al., 1992b; Maartens and Bassett,
1998; Clark and Tucker, 2000; Mashhoon, 2001; Rindler, 2001; Mashhoon, 2007;
Costa and Herdeiro, 2008; Costa and Natário, 2014; Costa et al., 2021; Costa and
Natário, 2021; Ruggiero, 2021; Bini et al., 2022; Schmid, 2023). For an histor-
ical overview, see Section IV of Jantzen et al. (1992a), and references therein. See
also the webpage5 www.phy.olemiss.edu/ luca/Topics/grav/gravitomagnetism.html
maintained by Luca Bombelli. Gravitoelectromagnetism encompasses a series
of entirely gravitational phenomena affecting orbiting test particles, precessing
gyroscopes, moving clocks and atoms, and propagating electromagnetic waves
(Braginsky et al., 1977; Dymnikova, 1986; Tartaglia, 2002; Ruggiero and Tartaglia,
2002; Schäfer, 2004, 2009). Gravitomagnetism should play a major role in several
complex processes which take place near spinning BHs and involve accretion disks
and relativistic jets (Bardeen and Petterson, 1975; Rees, 1978; MacDonald and
Thorne, 1982; Rees, 1984; Thorne, 1988; Armitage and Natarajan, 1999; Ingram
et al., 2009; Stella and Possenti, 2009; Veledina et al., 2013; Franchini et al., 2016).
Also various hypothesized effects like the Penrose process (Penrose, 2002; Penrose
and Floyd, 1971; Stuchlík et al., 2021), the Blandford–Znajek effect (Blandford and
Znajek, 1977), and superradiance (Zel’Dovich, 1971) are attributable to the grav-
itomagnetic field of a rotating BH; see Teukolsky (2015) and references therein.
Thus, it is important to experimentally check such a prediction of GTR in as many
different scenarios as possible in a reliable way in order to trustworthily extrapolate

5 Accessed 17 January 2024.
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its validity also to other realms in which testing it is much more difficult and
uncertain. Here, the orbital effects are treated.

The 1pN gravitomagnetic LT acceleration due to the angular momentum J of
the central body, is,6 for an arbitrary orientation of the latter (Soffel, 1989; Huang
et al., 1990; Damour et al., 1994; Petit and Luzum, 2010; Poisson and Will, 2014;
Soffel and Han, 2019),

ALT
=

2GJ

c2r3

(
3rJ r̂ × v+ v× Ĵ

)
, (5.18)

where

rJ := Ĵ · r̂ (5.19)

is the cosine of the angle between the primary’s spin axis Ĵ and the satellite’s pos-
ition vector r. Equation (5.18) is responsible for, among other things, perhaps the
most famous gravitomagnetic feature of motion: the so–called LT effect (Lense
and Thirring, 1918; Mashhoon et al., 1984), despite recent studies (Pfister, 2007,
2008, 2014) showing that it would be more appropriately renamed the Einstein–
Thirring–Lense effect. It consists of small secular precessions of (some of) the
Keplerian orbital elements, which are treated in detail in Section 5.1.

After initial proposals to use Earth’s satellites to measure them dating back to
the dawn of space era (Ginzburg, 1957; Bogorodskii, 1959; Ginzburg, 1959), they
are nowadays under experimental scrutiny in the field of Earth (Lucchesi et al.,
2019a, 2020; Ciufolini et al., 2023) since 1996 (Ciufolini et al., 1996) with some
SLR geodetic satellites, as earlier suggested by Cugusi and Proverbio (1978). Some
aspects of such tests are controversial (Renzetti, 2012a; Iorio et al., 2013; Renzetti,
2013a, 2014, 2015; Iorio, 2023b). For comprehensive overviews, see, for example,
Iorio et al. (2011), Renzetti (2013b), and references therein. Proposals were made
to measure the LT effect around Jupiter with its Galilean moons (Iorio, 2023d),
following an earlier suggestion by Lense and Thirring (1918)7 themselves, who,
at that time, concluded that they were too small to be detected; the Juno space-
craft (Iorio, 2010b; Schärer et al., 2017), currently orbiting it (Bolton et al., 2017;
Bolton, 2018); and another hypothetical mission (Iorio, 2019g). Among the outer
planets of the solar system, also the gravitomagnetic fields of Saturn and Uranus
were recently taken into consideration to be probed by spacecraft (Schärer et al.,
2017; Iorio et al., 2023). As far as the rocky planets are concerned, it was sug-
gested to measure the LT effect of a dedicated artificial satellite orbiting Mars
(Iorio, 2009a), after a criticized attempt to spot it in the data of the Mars Global

6 See, for example, Kidder (1995, Equation (2.2.c)) for a generalization of Equation (5.18) to a two-body
system with comparable masses and spins. See also Soffel (1989).

7 In fact, Lense and Thirring (1918) looked also at the then known moons of the other planets, finding that
their gravitomagnetic precessions were all too small.
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Surveyor (MGS) spacecraft (Iorio, 2006b; Krogh, 2007). The LT effect induced by
the Sun’s angular momentum J� (Pijpers, 1998) on the Hermean8 orbital motion
has been long deemed too small to be detected since the pioneering work by9 de
Sitter (1916a); nowadays, the situation may become more favourable (Iorio, 2005,
2012a; Park et al., 2017; Iorio, 2018) in view of the expected improvement of the
planetary ephemerides from the analysis of the data collected by the past mission
MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSEN-
GER) and the ongoing one BepiColombo (Balogh et al., 2007). Going outside
the solar system, some exoplanets around main sequence stars were considered
in view of a possible detection of the LT effect (Iorio, 2011b, 2016a). Moving
to astrophysical compact objects, a successful detection of the gravitomagnetic
orbital precession of the inclination (see Section 5.1) of the binary system PSR
J1141–6545 (Kaspi et al., 2000), made of a white dwarf and a pulsar, was recently
claimed (Venkatraman Krishnan et al., 2020); later analysis by Iorio (2020a) raised
concerns about such a test. Attempts to measure the gravitomagnetic periastron
precession of the double pulsar PSR J0737-3039 (Burgay et al., 2003; Lyne et al.,
2004) and of other binary pulsars in the near future are underway (Kehl et al.,
2017; Hu et al., 2020; Iorio, 2021c; Hu and Freire, 2024). Also, some of the S stars
were proposed as probes to test, among other things, also the LT effect induced
by the spin of Sgr A∗, or, conversely, to assume the validity of GTR and use the
former as a tool to measure or constrain the latter (Jaroszynski, 1998; Kraniotis,
2007; Will, 2008; Preto and Saha, 2009; Angélil et al., 2010; Merritt et al., 2010;
Iorio, 2011c; Han, 2014; Zhang et al., 2015; Psaltis et al., 2016; Yu et al., 2016;
Zhang and Iorio, 2017; Waisberg et al., 2018; Fragione and Loeb, 2020; Iorio,
2020c; Peißker et al., 2020; Fragione and Loeb, 2022; Peißker et al., 2022; Iorio,
2023a). Evidence for manifestations of the gravitomagnetic field in the strong-field
regime was often claimed over the years. Gravitomagnetism could be responsible
for the10 quasi-periodic oscillations in X-ray binaries (Cui et al., 1998; Marković
and Lamb, 1998; Stella and Vietri, 1998). The LT precession induced by a slowly
rotating compact object could be compatible with the daily variations of the ejecta
angle observed in the microquasar LS I+61◦303 (Massi and Zimmermann, 2010).
It was recently reported that the observed quasi-periodic modulation of the iron

8 From ’Eρµη̃ς, -ου̃, ’ο, ‘Herm ´̄es’, a Greek god identified with the Roman deity Mercury.
9 Remarkably, de Sitter (1916a, p. 727) drew his pessimistic conclusion by obtaining a value of the Hermean

gravitomagnetic perihelion precession, later quoted also by Lense and Thirring (1918) themselves and Soffel
(1989, p. 111), which is about one order of magnitude larger than its currently accepted value, of the order of
a milliarcsecond per century (mas/cty) (Iorio, 2012a), because he used an incorrect value for the angular
momentum of the Sun, wrongly assumed homogeneous.

10 From the adverb quăsı̆, ‘somewhat like, about, nearly, almost, not far from’; univerbation of quăm ‘how, as’
+ sı̄ ‘if ’.
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line centroid energy in the microquasar H1743–322 (Kaluzienski and Holt, 1977)
may be produced by the LT effect (Ingram et al., 2016). Recently, the LT–driven
precession of the misaligned accretion disk around the SMBH in M87 may have
been observed (Cui et al., 2023). In general, the reliability and accuracy of such
tests are difficult to properly assess because of the relatively poor knowledge of the
astrophysical environments in which the phenomena of interest take place.

So far, the only unquestioned measurement of another consequence of the grav-
itomagnetic field of the Earth was performed with the quite expensive, dedicated
spaceborne mission GP-B (Everitt, 1974). Its timeframe, ranging from its early
conception to the release of its final results, lasted for about 40 years at a cost of
about 750 million (Will, 2011a). It measured the Pugh–Schiff precessions (Pugh,
1959; Schiff, 1960) of the axes of four gyroscopes carried onboard to an accur-
acy of the order of 19% (Everitt et al., 2011, 2015), despite its originally expected
level of about 1% (Everitt et al., 2001). Other proposals to measure the gravito-
magnetic Pugh–Schiff spin precessions with dedicated spacecraft orbiting the Sun
and Jupiter (Haas and Ross, 1975) were not followed up.

By projecting Equation (5.18) onto the unit vectors r̂, τ̂ , ĥ defined in Equa-
tions (2.23)–(2.25) and by using Equations (2.7)–(2.8) along with Equation (2.11),
its radial, transverse, and normal components are obtained; they turn out to be

ALT
r =

2nKGJ (1+ e cos f )4 Jh

c2a2
(
1− e2

)7/2 , (5.20)

ALT
τ = −

2enKGJ (1+ e cos f )3 sin f Jh

c2a2
(
1− e2

)7/2 , (5.21)

ALT
h = −

2nKGJ (1+ e cos f )3

c2a2
(
1− e2

)7/2

{
[e cosω − (2+ 3e cos f ) cos u]Jl

−
1

2
[e sinω + 4 sin u+ 3e sin (2f + ω)]Jm

}
, (5.22)

where Jl, Jm and Jh are defined in Equations (D.1)–(D.3) of Appendix D. For
an arbitrary orbital configuration and a generic direction of Ĵ , it is not possible
to spot any particular feature of Equations (5.20)–(5.22). For polar orbits, set by
Equations (D.26)–(D.28) of Appendix D, Equation (5.18) is entirely perpendicu-
lar to the orbital plane, as per Equations (D.26)–(D.28) of Appendix D. Instead,
for equatorial orbits characterized by Equations (D.17)–(D.19) of Appendix D, the
LT acceleration is entirely in-plane, becoming fully radial for circular orbits. For
prograde orbits (Jh = +1), namely when the test particle moves along its orbit
in the same direction as the rotation of the primary, the motion is slowed down
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because Equation (5.20) is directed outward, and vice versa for retrograde orbits
(Jh = -1), namely when the direction of the orbital motion is opposite that of
the rotation of the central body. This leads to a difference δTgvm in the times
required for two counter-revolving particles to come back to some fixed direction
in space, usually known as gravitomagnetic clock effect (Mitskevich and Pulido
Garcia, 1970; Vladimirov et al., 1987; Cohen and Mashhoon, 1993; Mashhoon,
1997; You, 1998; Mashhoon et al., 1999; Tartaglia, 2000b; Mashhoon and San-
tos, 2000; Mashhoon et al., 2001; Hackmann and Lämmerzahl, 2014; Scheumann
et al., 2023; Iorio, 2024b; Jiale Li et al., 2024); for a recent review, see Iorio and
Mashhoon (2024) and references therein. It turns out that δTgvm is proportional
to J/

(
M c2

)
through a numerical scaling coefficient that has been calculated in the

literature to be equal to 4π; as will be shown later in this chapter, it is, in fact, larger
by a factor of four (Iorio, 2024b; Jiale Li et al., 2024). Such an intriguing relativ-
istic feature of motion was the subject of several papers investigating its possible
detection as well; see Gronwald et al. (1997), Mashhoon et al. (1999), Lichtenegger
et al. (2000), Tartaglia (2000a,c), Iorio (2001a,b), Iorio and Lichtenegger (2005),
Lichtenegger et al. (2006), and Scheumann et al. (2023). It also has relevant con-
sequences in astrophysical contexts such as Kerr BH spacetime (de Felice, 1995;
Bonnor and Steadman, 1999; Bini and Jantzen, 2003; Faruque, 2004; Bini et al.,
2005). For other versions of the gravitomagnetic clock effect involving spinning
orbiters in the Kerr spacetime, see, for example, Bini et al. (2004) and Mashhoon
and Singh (2006).

Equations (5.20)–(5.22) allow one to calculate in full generality several gravito-
magnetic orbital effects, as shown in the next sections. Such a feature is particularly
important in scenarios characterized by poorly known or even completely uncon-
strained orientation of Ĵ in space, as in the case of the S stars. The spin axis of Sgr
A∗ can be parameterized as

Ĵ• =


sin i• cos ζ•
sin i• sin ζ•
cos i•

. (5.23)

In Equation (5.23), i• is the tilt of Ĵ• to the line of sight; if i• = 90◦, Ĵ• lies entirely
in the plane of the sky, while, if i• = 0, it is aligned with the line of sight. The
angle ζ• reckons the position of the projection of the spin axis in the plane of the
sky from the reference x axis within the latter. For performed attempts to some-
how constrain Ĵ• of Sgr A∗ with different non-dynamical approaches, see Falanga
et al. (2007); Meyer et al. (2007); Broderick et al. (2009, 2011); Shcherbakov et al.
(2012); Jørgensen et al. (2016); Yu et al. (2016), and references therein; it turns
out that i•, ζ• are, in fact, still poorly constrained. On the one hand, Ĵ• would be
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far from aligned with the line of sight. Indeed, according to, for example, Meyer
et al. (2007), who used polarimetric observations of the near-infrared emission of
Sgr A∗, it is i• ' 55◦. Falanga et al. (2007) obtained i• ' 77◦ on the basis of
their fit of a simulated Rossby wave-induced spiral pattern in the BH’s accretion
disk to the X-ray lightcurve detected with the mission X-ray Multi-Mirror–Newton
(XMM–Newton). Shcherbakov et al. (2012) yielded the range 42◦ . i• . 75◦ by
comparing polarized submillimetre infrared observations with spectra computed
using three-dimensional general relativistic magnetohydrodynamical simulations.
Methods based on gravitational lensing for determining the BH’s spin direction
independently of orbital dynamics were outlined, for example, in Saida (2017).
Takahashi (2004) investigated the possibility of measuring, among other things, i•
from the shape and position of the BH’s shadow under certain assumptions. On the
other hand, the first EHT observations (Event Horizon Telescope Collaboration,
2022) disfavour, among other things, scenarios where the BH is viewed at high
inclination (i• > 50◦).

Also the rotational axis of the main-sequence stars hosting exoplanets is, in gen-
eral, poorly constrained; as an example, the determined values of i? released in
table 5 by Rainer et al. (2023) exhibit remarkably large uncertainties, while in sev-
eral other cases, only lower bounds on such an important stellar parameter are
available.11 Also the spin axis’s azimuthal angle in the plane of the sky is some-
times measured with a variety of techniques, but always with modest accuracy.
As an example, Winn et al. (2005) by exploiting the Rossiter–McLaughlin effect
(McLaughlin, 1924; Rossiter, 1924; Triaud, 2018), determined the angle λ between
the projection of the spin axis of the transiting star HD 209458 (Charbonneau et al.,
2000; Henry et al., 2000) onto the plane of the sky, assumed as the {x, y} reference
plane in a coordinate system whose z axis is directed away from the observer and
the x axis is aligned with the line of nodes, and the y axis, which coincides with
the sky-projected orbital angular momentum in view of the previously mentioned
choice for the x axis, to a 32% accuracy level.

5.1 The Orbital Shifts of the Keplerian Orbital Elements

The LT instantaneous shifts 1κ ( f ) of the Keplerian orbital elements
κ = a, e, I ,�,ω, η due to Equation (5.18) can be calculated as per Equation (2.12)
by using Equations (5.20)–(5.22) in Equations (2.13)–(2.18). They turn out to be

11 As pointed out by Rainer et al. (2023), i? heavily affects exoplanets’ parameters (Hirano et al., 2014).
Furthermore, it is also important to compute the spin-orbit angle of exoplanetary systems, which, among
other things, is an important observational probe of the origin and evolution of the systems (Queloz et al.,
2000; Winn et al., 2005).
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1a ( f )LT
= 0, (5.24)

1e ( f )LT
=

2GJJh (− cos f + cos f0)

c2nKa3
√

1− e2
, (5.25)

1I ( f )LT
= −

GJ

2c2nKa3
(
1− e2

)3/2

(
ILT

1 Jl+ ILT
2 Jm

)
, (5.26)

1�( f )LT
= −

GJ csc I

2c2nKa3
(
1− e2

)3/2

(
N LT

1 Jl+N LT
2 Jm

)
, (5.27)

1ω ( f )LT
= −

GJ

2c2nKea3
(
1− e2

)3/2

(
GLT

1 Jl+ GLT
2 Jm

+GLT
3 Jh

)
, (5.28)

1η ( f )LT
=

2GJJh (sin f − sin f0)

c2nKa3e
, (5.29)

where the coefficients ILT
1 , . . .GLT

3 entering Equations (5.26)–(5.28) are displayed
in Appendix E.

By calculating Equations (5.24)–(5.29) with the replacement f → f0 + 2π and
dividing the result by TK, one obtains the LT averaged precessions〈

da

dt

〉LT

= 0, (5.30)〈
de

dt

〉LT

= 0, (5.31)〈
dI

dt

〉LT

=
2GJJl

c2a3
(
1− e2

)3/2 , (5.32)

〈
d�

dt

〉LT

=
2GJJm

c2 sin Ia3
(
1− e2

)3/2 , (5.33)

〈
dω

dt

〉LT

= −
2GJ (2Jh+ cot IJm)

c2a3
(
1− e2

)3/2 , (5.34)

〈
dη

dt

〉LT

= 0. (5.35)

Equations (5.30)–(5.35) represent the LT effect in the most general case with
respect to the earlier derivations,12 valid only for the particular case in which the z
axis is aligned with Ĵ (Lense and Thirring, 1918; Bogorodskii, 1959); also, more

12 Lense and Thirring (1918) calculated the LT precession of the longitude of pericentre $ .

https://doi.org/10.1017/9781009562911.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009562911.005


94 1pN Gravitomagnetic Effects: Spin Dipole(s)

recent calculation has made use of the same particular orbital configuration (Soffel,
1989; Ashby and Allison, 1993; Soffel and Han, 2019). For more general calcula-
tions based on different approaches and formalisms which take into account also
the masses and the spins of both bodies,13 see Kalitzin (1959), Michalska (1960),
Barker and O’Connell (1975), Damour and Schäfer (1988), Soffel (1989), Brum-
berg (1991), Damour and Taylor (1992), Wex (1995), Wex and Kopeikin (1999),
Königsdörffer and Gopakumar (2006), and Iorio (2017).

Using Equations (2.27)–(2.31) with

〈R〉LT
=

nKGJ

c2a
(
1− e2

) [(Ĵ × m̂
)
· l̂ −

(
Ĵ × l̂

)
· m̂
]

, (5.36)

obtained by averaging Equation (C.17) of Appendix C over one orbit, yields just
Equations (5.30)–(5.34) because of Equation (D.16). About the mean anomaly at
epoch, by noting that

v · ∇vR = R (5.37)

for Equation (C.15) since it is linear in v, and by treating nK as an explicit func-
tion of a when the partial derivative of Equation (5.36) with respect to the latter is
performed, Equation (2.32) yields just Equation (5.35).

For a binary system made of two extended bodies with comparable masses
MA and MB and angular momenta JA and JB, the gravitomagnetic precessions
of the relative orbit can be obtained from Equations (5.30)–(5.35) by replacing
J with (Damour and Schäfer, 1988, Equation (4.14), p. 150; Soffel, 1989, Equa-
tion (4.7.70), p. 134; Brumberg, 1991, Equations (4.4.32)–(4.4.33), p. 155)

S :=
(

1+
3

4

MB

MA

)
JA +

(
1+

3

4

MA

MB

)
JB. (5.38)

5.1.1 Some Special Orbital Configurations

Here, some peculiar orbital configurations, characterized in Appendix D, are
examined.

Let, first, the satellite’s orbital plane be assumed coincident with the body’s
equatorial one, irrespective of the orientation of the latter in the adopted reference
frame, namely for generic values of αJ , δJ . Then, according to Equations (D.17)–
(D.25) of Appendix D, Equations (5.30)–(5.35) reduce to〈

da

dt

〉LT

= 0, (5.39)

13 Kalitzin (1959) calculated the in-plane pericentre precession using the angle � cos I + ω.
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〈
de

dt

〉LT

= 0, (5.40)〈
dI

dt

〉LT

= 0, (5.41)〈
d�

dt

〉LT

= 0, (5.42)〈
dω

dt

〉LT

= ∓
4GJ

c2a3
(
1− e2

)3/2 , (5.43)

〈
dη

dt

〉LT

= 0. (5.44)

Equation (5.43) is a genuine secular trend; the minus sign corresponds to a pro-
grade motion, namely Jh= + 1, while the plus sign occurs if the motion is
retrograde, namely Jh= − 1.

Let, now, the body’s spin axis, irrespective of its orientation in the adopted
coordinate system, namely for generic values of αJ , δJ , lie somewhere in the satel-
lite’s orbital plane between l̂ and m̂. Then, according to Equations (D.26)–(D.34) of
Appendix D, Equations (5.30)–(5.35) can be written as

〈
da

dt

〉LT

= 0, (5.45)〈
de

dt

〉LT

= 0, (5.46)〈
dI

dt

〉LT

=
2GJ cos δJ

c2a3
(
1− e2

)3/2 , (5.47)

〈
d�

dt

〉LT

=
2GJ sin δJ

c2a3
(
1− e2

)3/2 , (5.48)

〈
dω

dt

〉LT

= 0, (5.49)〈
dη

dt

〉LT

= 0. (5.50)

Equations (5.47)–(5.48), which do not vanish for a generic orientation of Ĵ , are
genuine secular trends.
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5.1.2 The Contribution of 8 to the Mean Anomaly

Since the semimajor axis is left unaffected by Equation (5.18), as per Equa-
tion (5.24), it is

8(t)LT
= 8

LT
= 0. (5.51)

5.1.3 Gravitomagnetic Ring Currents in Triple Systems

So far, the angular momentum J of an isolated rotating massive body was assumed
as the source of the gravitomagnetic field inducing the LT effect encoded by the
precessions of Equations (5.30)–(5.35).

In principle, the inner binary S of a hierarchical triple system T in which
a distant companion orbits the former can also be thought as the source of a
gravitomagnetic field through its orbital angular momentum

Hb = Mred

√
µba

(
1− e2

)
ĥ. (5.52)

In Equation (5.52),

Mred :=
MAMB

Mb
(5.53)

is the reduced mass, respectively. Stated differently, the third body would see the
other two members of T closely orbiting one about each other as a rotating mat-
ter ring whose orbital angular momentum Hb generates its own gravitomagnetic
field (Ruggiero, 2016) which may be orders of magnitude larger than those due to
the individual spin angular momenta JA and JB of each body of S (Iorio, 2022).
Such a scenario corresponds, in principle, to the so-called circumbinary planets
(CBPs) (Haghighipour, 2010; Thebault and Haghighipour, 2015), where an exo-
planet revolves about a binary system typically made of two main sequence stars,
and to triple pulsars like, for example, PSR J0337+1715 (Ransom et al., 2014)
made of a millisecond pulsar–white dwarf pair in relative motion around each
other, and another white dwarf as a distant companion. Several CBPs have already
been discovered using different techniques: see Thorsett et al. (1993), Correia et al.
(2005), Lee et al. (2009), Qian et al. (2010), Beuermann et al. (2010), Doyle et al.
(2011), Orosz et al. (2012b,a), Qian et al. (2012b,a), Welsh et al. (2012), Schwamb
et al. (2013), Kraus et al. (2014), Kostov et al. (2014), Welsh et al. (2015), Ben-
nett et al. (2016), Kostov et al. (2016), Getley et al. (2017), Jain et al. (2017),
Asensio–Torres et al. (2018), and Kostov et al. (2021). About triple pulsars, so
far, PSR J0337+1715 is the sole relatively tight member so far discovered of the
class of hierarchical triple systems hosting stellar corpses, apart from B1620–26
whose pulsar has a white dwarf as inner companion and a roughly Jupiter–mass at
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35 au as outer orbiter (Thorsett et al., 1999). According to Ransom et al. (2014),
. 1% of the millisecond pulsars’ population resides in stellar triples, and . 100
such systems exist in the Galaxy. The possibility of measuring such ‘annular’
gravitomagnetic field is quantitatively investigated in Section K.5 of Appendix K.

5.2 The Anomalistic Period

The LT anomalistic period can be calculated by means of Equations (5.20)–(5.22)
as explained in Section 2.3.1. It turns out to be

1TLT
ano = 0; (5.54)

it is an exact result, valid to all orders in the eccentricity e.
Figure 5.1, obtained for generic values of the Keplerian orbital parameters,

shows just that; over three orbital revolutions, the test particle reaches always the
precessing line of apsides after a time interval equal to the Keplerian orbital period
after each orbit.

Furthermore, Figure 5.2 plots the final part of the time series of the cosine r̂ · Ĉ
of the angle between the position vector r and the Laplace–Runge–Lenz vector C

Figure 5.1 Perturbed LT trajectory (continuous curve) and its osculating Kep-
lerian ellipse (dashed curve) at the initial instant of time t0 characterized by
e= 0.7, I = 30◦, �= 72◦, ω= 50◦, f0 = 180◦. The orientation of the spin axis

Ĵ of the central body is set by αJ = 45◦, δJ = 60◦. In this example, I , �, and
ω undergo the LT precessions of Equations (5.32)–(5.34); their magnitudes are
suitably rescaled by enhancing them for a better visualization. The initial pos-
ition is chosen at the apocentre instead of the pericentre solely for the sake of
better visualization. The positions on the perturbed trajectory after one, two, and
three Keplerian periods are marked as well. At each orbit, the passage at the drift-
ing line of apsides occurs always as in the Keplerian case because, according to
Equation (5.54), 1TLT

ano = 0.
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Figure 5.2 Plot of the numerically produced time series of the cosine r̂ · Ĉ of
the angle between the position vector r and the Laplace–Runge–Lenz vector C
versus time t, in units of TK, obtained by integrating the equations of motion of
a fictitious test particle with and without the LT acceleration of Equation (5.18)
for an elliptical (e = 0.665) orbit arbitrarily oriented in space (I = 40◦, � =
45◦, ω = 50◦) starting from the periapsis (f0 = 0), that is, r̂0 · Ĉ0 = +1, and
the semimajor axis is a = 6Re. The physical parameters of the Earth are adopted,
apart from the spin-axis position set by αJ = 45◦, δJ = 60◦. The time needed to
come back to the initial position on the (moving) line of apsides, so that r̂·Ĉ = +1
again, is as in the Keplerian case.

versus time t, in units of TK, for a numerically integrated fictitious test particle
acted upon by Equation (5.18) starting from, say, the moving pericentre, namely
for r̂0 · Ĉ0 = +1. It can be seen that it comes back to the same position on the
precessing line of apsides, that is, it is r̂ · Ĉ = +1 again, just after one Keplerian
orbital period.

The fact that the gravitomagnetic apsidal period is identical to the Keplerian
one can be intuitively justified since there is no net shift per orbit of the mean
anomaly at epoch η, as per Equation (5.35). Indeed, from the definition of the mean
anomaly of Equation (2.2), Equation (2.3) follows; it tells us that the mean anomaly
at epoch is proportional to the time of passage at pericentre tp. Thus, since nK stays
constant because, according to Equation (5.30), the semimajor axis is not secularly
affected by the gravitomagnetic field, the rate of change of the mean anomaly at
epoch is proportional to the opposite of the pace of variation of the time of passage
at pericentre according to Equation (2.26). Should η increase, the crossing of the
pericentre would be anticipated with respect to the Keplerian case since tp would
decrease, and vice versa. In this case, the variation of η would result in an orbit-
by-orbit advance or delay of the passages at the pericentre, which does not occur
in the present case because, in fact, 〈dη/dt〉LT

= 0.

5.3 The Draconitic Period

The gravitomagnetic LT draconitic period, calculated as explained in Section 2.3.2,
turns out to be
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TLT
dra = TK +1TLT

dra, (5.55)

with

1TLT
dra =

4πJ (2Jh+ Jm cot I)

c2M (1+ e cosω)2
. (5.56)

The explicit form of the geometric coefficient in the numerator of Equation (5.56)
depending on the orientation in space of both the orbital plane and the primary’s
spin axis is

2Jh+ Jm cot I = 3 cos I sin δ + cos δ (csc I − 3 sin I) sin (αJ −�) . (5.57)

In general, it can be either positive and negative. For a polar orbit, namely for
� = αJ and I = 90◦, the gravitomagnetic correction to the draconitic period van-
ishes, as per Equation (5.57). For an equatorial orbit arbitrarily oriented in space,
however, corresponding to Equations (D.17)–(D.19) of Appendix D, it does not
vanish, amounting to

1TLT
dra = ±

8πJ

c2M (1+ e cosω)2
. (5.58)

Furthermore, for circular orbits, Equation (5.58) reduces to

1TLT
dra = ±

8πJ

c2M
. (5.59)

If the orbital plane lies in the reference plane, that is, for I = 0, Equation (5.56)
loses its meaning, as is expected since, in this case, the line of nodes is no longer
defined.

Figure 5.3, obtained for generic values of the Keplerian orbital parameters, con-
firms the analytical result of Equation (5.56); over three orbital revolutions, the
test particle always reaches the precessing line of nodes after a time interval equal
to TLT

dra after each orbit. For the particular choice of the values of the primary’s
spin and orbital parameters, it turns out to be longer than TK, in agreement with
Equation (5.56).

Furthermore, Figure 5.4 plots the final part of the time series of the cosine r̂ · l̂
of the angle between the position vector r and the node unit vector l̂ versus time
t, in units of TK, for a numerically integrated fictitious test particle with and with-
out Equation (5.18), starting in both cases from, say, the moving ascending node,
namely for r̂0 ·l̂0 = +1. It can be seen that it comes back to the same position on the
precessing line of nodes, that is, it is r̂ · l̂ = +1 again, just after TLT

dra = TK+1TLT
dra,

differing from TK by a (positive) amount, in agreement with Equation (5.56) for
the particular choice of the generic values of the spin and the orbital parameters
adopted in the numerical integrations.
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Figure 5.3 Perturbed LT trajectory (continuous curve) and its osculating Kep-
lerian ellipse (dashed curve) at the initial instant of time t0 characterized by
e = 0.7, I = 30◦, � = 72◦, ω = 50◦, f0 = 180◦ −ω. The orientation of the spin
axis Ĵ of the central body is set by αJ = 45◦, δJ = 60◦. In this example, I , �,
and ω undergo the LT precessions of Equations (5.32)–(5.34); their magnitudes
are suitably rescaled by enhancing them for a better visualization. The positions
on the perturbed trajectory after one, two, and three Keplerian periods TK are
marked as well. At each orbit, the passages at the precessing line of nodes occur
always later than in the Keplerian case by the amount given by Equation (5.56),
which is positive for the given values of the spin and orbital parameters.

5.4 The Sidereal Period

As shown in Section 2.3.3, the sidereal period for a generic perturbed orbit is the
sum of the draconitic period, calculated as explained in Section 2.3.2, and the term
given by Equation (2.66). For Equation (5.18), Equation (2.66) yields

1TLT
sid II =

4πJ cot I

c2Me2
√

1− e2
·

{
m̂
[
−e2
+ 2

(
2− e2

− 2
√

1− e2
)

cos 2ω
]

+ 2l̂
(
−2+ e2

+ 2
√

1− e2
)

sin 2ω
}
' −

4πJ cot I

c2M
Jm

+ O
(
e2) . (5.60)

In the equatorial case set by Equations (D.17)–(D.19) of Appendix D, assuring that
the orbital plane stays constant in space, Equation (5.60) vanishes, and the sidereal
period coincides with the draconitic one, as is expected since neither the line of
nodes nor the orbit’s projection onto the reference plane change. By taking the sum
of Equation (5.56) and Equation (5.60), the full expression of the gravitomagnetic
correction of the sidereal period1TLT

sid is obtained. It can be noted that, for a generic
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5.4 The Sidereal Period 101

Figure 5.4 Plot of the numerically produced time series of the cosine r̂ · l̂ of the
angle between the position vector r and the node unit vector l̂ versus time t, in
units of TK, obtained by integrating the equations of motion of a fictitious test
particle with and without the LT acceleration of Equation (5.18) for an elliptical
(e = 0.665) orbit arbitrarily oriented in space (I = 40◦, � = 45◦, ω = 50◦)
starting from the ascending node � ( f0 = −ω + 360◦), namely r̂0 · l̂0 = +1;
the semimajor axis is a = 6Re. The physical parameters of the Earth are adopted,
apart from the spin axis position set by αJ = 45◦, δJ = 60◦. The LT acceleration
is suitably rescaled in such a way that

∣∣1TLT
dra

∣∣ /TK = 0.001. The time needed to
come back to the initial position on the (moving) line of nodes, so that r̂ · l̂ = +1
again, is longer than in the Keplerian case by the amount 1TLT

dra = +0.001TK,
shown by the shaded area, in agreement with Equation (5.56).

eccentric orbit,1TLT
sid is not defined if the orbital plane lies in the fundamental one.

Nonetheless, for e = 0, it reduces to

1TLT
sid =

8πJ

c2M
[cos I sin δJ − cos δJ sin I sin (αJ −�)] , (5.61)

which is not singular in I = 0. By using the true longitude l in the case I = 0, it
turns out

1TLT
sid =

8πJ sin δJ

c2M (1+ e cos$)2
. (5.62)

In the limit e→ 0, it reduces to

1TLT
sid =

8πJ sin δJ

c2M
, (5.63)

which agrees with Equation (5.61) calculated with I = 0. In turn, if δJ = ±90◦,
corresponding to the case of an equatorial orbit whose orbital plane coincides with
the reference plane, Equation (5.63) becomes

1TLT
sid = ±

8πJ

c2M
, (5.64)

in agreement with Equation (5.59).
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Figure 5.5 Projections of the perturbed LT trajectory (continuous curve) and of
its osculating Keplerian ellipse (dashed curve) in the reference plane {x, y} at
the initial instant of time t0 characterized by the generic initial conditions e =
0.7, I = 30◦, � = 45◦, ω = 50◦, f0 = 285◦. The orientation of the spin axis Ĵ
of the central body, whose projection in the fundamental plane is depicted as well,
is set by αJ = 45◦, δJ = 60◦. In this example, I , �, and ω undergo the LT shifts
of Equations (5.32)–(5.34) due to the spin dipole moment J of the primary; their
sizes are suitably rescaled for better visualizing of their effect. The positions on
the perturbed trajectory after one, two, and three Keplerian periods TK are marked
as well. At each orbit, the passages at the generic fixed line characterized by φ0
occur always earlier than in the Keplerian case by the amount given by the sum
of Equation (5.56) and Equation (5.60). It is so because, for the given values of
the spin and orbital parameters, 1TLT

dra +1TLT
sid II < 0, as per Equation (5.56) and

Equation (5.60).

Figure 5.5 confirms the analytical results of Equation (5.56) and Equation (5.60).
Indeed, over three orbital revolutions, the projection of a generic LT perturbed orbit
in the fundamental plane {x, y} crosses a fixed direction in the latter set by a certain
value φ0 always after a time interval equal to TLT

sid = TLT
dra + 1TLT

sid II for each orbit.
With the particular choice of the primary’s spin and the orbital parameters used in
the picture, TLT

sid turns out to be shorter than TK, in agreement with Equation (5.56)
and Equation (5.60).

Furthermore, Figure 5.6 plots the final part of the time series of the cosine of
the angle φ, normalized to its initial value cosφ0, versus time t, in units of TK, for
a numerically integrated fictitious test particle with and without Equation (5.18)
starting from the same generic initial position. It can be seen that it comes back
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Figure 5.6 Plot of the numerically produced time series of the cosine cosφ (t) of
the azimuthal angle φ (t) normalized to its initial value cosφ0 versus time t, in
units of TK, obtained by integrating the equations of motion of a fictitious test
particle with and without the LT acceleration of Equation (5.18) for an elliptical
(e = 0.665) orbit arbitrarily oriented in space (I = 40◦, � = 45◦, ω = 310◦)
starting from, say, f0 = 50◦; the semimajor axis is a = 6Re. The physical
parameters of the Earth are adopted, apart from the spin axis position set by
αJ = 45◦, δJ = 60◦. The LT acceleration is suitably rescaled in such a way that∣∣1TLT

sid

∣∣ /TK = 0.001. The time needed to cosφ (t) to assume again its initial value
cosφ0 is longer than in the Keplerian case by the amount 1TLT

sid = +0.001TK,
shown by the shaded area, in agreement with the sum of Equation (5.56) and
Equation (5.60).

to the same position on the fixed direction chosen in the reference plane, that is,
it is cosφ/ cosφ0 = +1 again, just after TLT

sid = TLT
dra + 1TLT

sid II, differing from TK

by a ( positive) amount in agreement with Equation (5.56) and Equation (5.60) for
the particular choice of the generic values of the spin and the orbital parameters
adopted in the numerical integrations.

5.5 The Gravitomagnetic Clock Effect

According to Equation (5.59), the time difference characterizing the usual scen-
ario for the gravitomagnetic clock effect consisting of two counter-orbiting test
particles which move along identical circular orbits in their primary’s equatorial
plane, illustrated in Figures 5.7–5.8, amounts to (Iorio, 2024b)

δTgvm = 16π
J

Mc2
, (5.65)

which is four times larger than what is usually14 found in the literature15

(Vladimirov et al., 1987; Cohen and Mashhoon, 1993; Mashhoon, 1997; You, 1998;
Tartaglia, 2000b; Mashhoon et al., 1999; Mashhoon and Santos, 2000; Mashhoon
et al., 2001).
14 See section 4 of Lichtenegger et al. (2006) for an alternative clock effect in agreement with the present

treatment, although less general, and the analysis in Jiale Li et al. (2024).
15 Mitskevich and Pulido Garcia (1970), incorrectly, obtained the opposite sign.
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Figure 5.7 Prograde circular equatorial orbit arbitrarily oriented in space with,
say, I = 30◦, � = 45◦. The orbital plane is aligned with the equator of the central
body, and the test particle moves along the same sense of rotation of the latter, so
that Jh = +1.

The standard approach in deriving the aforementioned form of the gravitomag-
netic clock effect is to calculate the time interval required for a test particle to
come back to some fixed reference direction in the orbital plane from which it
began its motion, assumed circular throughout the overall variation of the azi-
muthal angle ϕ (t) reckoned from such a line and spanning an interval of 2π , when
Equation (5.18) is added to the Newtonian inverse-square one. Ĵ is assumed to be
known, so that one can align the reference z axis with it, and the reference {x, y}
plane coincides with the equatorial one of the source.16 The usual calculation starts
by equating the centripetal acceleration ϕ̇2 r0, where r0 is the common constant
radius of both the circular orbits followed by the counter-revolving test particles,
to the sum of the Newtonian monopole plus Equation (5.20). Indeed, from(

dϕ

dt

)2

r0 =
µ

r2
0

∓
2 nK G J

c2 r2
0

(5.66)

16 It should be noted that, even in such a case, Equation (5.64) leads to the same result as Equation (5.65).
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Figure 5.8 Retrograde circular equatorial orbit arbitrarily oriented in space with,
say, I = 150◦, � = 225◦. The orbital plane is aligned with the equator of the
central body, and the test particle moves along the opposite sense of rotation of
the latter, so that Jh = −1.

one gets

dϕ

dt
= ±nK

√
1∓

2 nK J

M c2
(5.67)

which yields

dt

dϕ
= ±

1

nK

√
1∓ 2 nK J

M c2

' ±
1

nK

(
1±

nK J

M c2

)
. (5.68)

By integrating Equation (5.68) with respect to ϕ from 0 to +2π for the prograde
motion and from 0 to −2π for the retrograde one, the LT orbital period

TLT
±
=

2π

nK
± 2π

J

M c2
(5.69)
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is obtained. Note that ϕ is a polar angle counted from some fixed reference polar
axis in the orbital plane aimed to instantaneously locate the test particle along its
circular orbit; thus, for a generally oriented equatorial orbit, it is straightforward
to identify the fixed line of the nodes, as per Equation (5.42), with the reference
direction and ϕ (t) with the argument of latitude u (t).

The explanation in the aforementioned discrepancy likely resides in the fact that
the more general calculation in Iorio (2016b) and Section 2.3.2, made by using the
nonsingular elements q and k, accounts for the fact that, during two consecutive
crossings of the line of the nodes, the orbital elements in terms of which dt/du
is parameterized, namely p, q, and k, do actually change instantaneously. In the
general case, also the line of the nodes does not stay fixed; such a feature is captured
by the calculation in Iorio (2016b) and Section 2.3.2 as well. It turns out that such
an effect does not vanish even in the limit q, k → 0 corresponding to a circular
orbit. Indeed, a step-by-step analysis of the calculation in Iorio (2016b) and Section
2.3.2 made with Equation (5.18) shows that Equation (5.59) comes from the sum of∫ 2π

0

∂(dt/du)

∂q
1q (u) du, (5.70)∫ 2π

0

∂(dt/du)

∂k
1k (u) du (5.71)

which, for q, k→ 0, do not vanish, yielding

4
J

M c2

∫ 2π

0
cos u (cos u− cos u0) du = +4π

J

M c2
, (5.72)

4
J

M c2

∫ 2π

0
sin u (sin u− sin u0) du = +4π

J

M c2
. (5.73)

Instead, it turns out that [∂ (dt/du) /∂p]1p (u) = 0 since, in the limit q, k→ 0, the
instantaneous variation 1p (u) of the semilatus rectum p vanishes. Also the term
due to the change of the line of nodes containing d�/dt is zero for an equatorial
orbit because of Equation (5.22) and Equations (D.17)–(D.19) of Appendix D. The
opposite sign in Equations (5.72)–(5.73) is obtained for the retrograde motion.

Instead, the integration based on Equation (5.66) is performed by considering
only ϕ as variable during an orbital revolution, all the rest being kept fixed.

5.6 The Radial Velocity of a Spectroscopic Binary

From Equation (2.88) and Equations (5.30)–(5.32), it turns out that the semiampli-
tude K of the radial velocity curve does experience a nonvanishing LT net shift per
orbit induced by the LT net shift of the inclination. From Equations (2.89)–(2.91),
one finally has
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1K
LT
= γA,B

4πGJ cos IJl

c2a2
(
1− e2

)2 , (5.74)

where it is meant that J should be replaced by Equation (5.38) for an ordinary bin-
ary like, for example, an exoplanet and its parent star. Indeed, for, say, a Sunlike
main sequence star and a Jupiter-type planet, by using the figures in Table J.1 and
Table J.3 one gets (

1+
3

4

MX
M�

)
J� = 1.9× 1041 kg m2/s, (5.75)(

1+
3

4

M�
MX

)
JX = 5.4× 1041 kg m2/s. (5.76)

However, caution is needed since several main sequence stars hosting exoplanets
are much faster rotators than the Sun, so that their spin angular momentum may be
up to' 2−3 orders of magnitude larger17 than the solar one. Moreover, tidal effects
often synchronize the rotational frequency of close exoplanets with the orbital one.
Instead, for a star with the same physical properties as the Sun and the SMBH
in Sgr A∗, whose angular momentum J• is calculated with18 Equation (5.16) and
M•= 4.1× 106 M�, χg= 0.5 (Peißker et al., 2022), one has(

1+
3

4

M•
M�

)
J� = 5.7× 1047 kg m2/s, (5.77)(

1+
3

4

M�
M•

)
J• ' 7× 1054 kg m2/s. (5.78)

Furthermore, γA,B is the ratio of the mass of what, out of A and B, is the unseen

companion to the system’s total mass Mb. Equation (5.74) holds for a pair of bodies
of comparable masses MA and MB and angular momenta JA and JB.

In typical tight exoplanetary systems characterized by fast orbits even covered
in a fraction of a day,19 tidal forces tend to either circularize them and align both
the system’s orbital angular momentum and the individual spins of the star and the
planet (Goldreich, 1966; Kasting et al., 1993; Murray and Dermott, 1999; Heller
et al., 2011). Thus, Equation (5.74), calculated with Equation (5.38), vanishes,20 as
per Equation (D.1).

Nonetheless, the radial velocity curve exhibits a generally nonvanishing LT
instantaneous shift which can be analytically worked out according to Equations
(2.77)–(2.78) by using Equations (2.83)–(2.87) along with Equations (5.24)–(5.29)
17 The case is exactly the same with, for example, WASP–33 and Kelt–9 (Stephan et al., 2022).
18 Recent estimates for its spin parameter point towards the larger value χg = 0.9 (Daly et al., 2024).
19 As an example, K2–137b (Smith et al., 2018) orbits its parent star in just 0.18 d = 4.3 hr.
20 It should be recalled that the unit vectors l̂, m̂, ĥ are mutually perpendicular, as per Equations (2.9)–(2.10)

and Equation (2.25).
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calculated with Equation (5.38). Replacing f with f0+2π in the resulting expression
allows one to obtain the net shift per orbit, which turns out to be

1V
LT
= γA,B

4πGJ

c2a2
(
1− e2

)2 [2Jh sin I (e sinω + sin u0)

+ cos I [Jl (e cosω + cos u0)+ Jm (e sinω + sin u0)]] , (5.79)

where it is intended that J is replaced with Equation (5.38). In the aforementioned
tidally induced star–planet scenario, Equation (5.79) reduces to

1V
LT
=

mc

Mb

8πG sin I sin u0

c2a2

[(
1+

3

4

mc

M?

)
J? +

(
1+

3

4

M?

mc

)
Jc

]
. (5.80)

Figure 5.9 shows the plot of the time-dependent analytical signature for a ficti-
tious tight exoplanetary system made of a Sunlike star and a gaseous giant planet
whose mass and radius are assumed to be those of Jupiter, and whose angular
momentum is calculated according to Equations (5.1)–(5.5) in the hypothesis that
tides have synchronized its orbital and diurnal rotations. Furthermore, all three
angular momenta of the system are aligned, although spin-orbit misalignments are

Figure 5.9 Analytically produced time series, in µm/s, of the LT shift 1V (t)LT

of the radial velocity curve of a fictitious tight exoplanetary system. It is made
of a main sequence star with the same mass, radius and angular momentum as
the Sun, and a gaseous giant planet p with the same mass and radius as Jupiter;
its angular momentum is calculated with Equations (5.1)–(5.5) by assuming that
its rotational frequency is synchronized with the orbital one due to tides. Indeed,
it is assumed that tidal effects have either circularized the orbit, so that e = 0,
and reciprocally aligned all the angular momenta of the system. Different values
of the orbital period TK are assumed, so that the star–planet relative distance, in
units of R? + Rp, ranges from 1.08 to 1.9. The other relevant orbital parameters,
chosen arbitrarily, are I = 45◦,�= 30◦,ω= 50◦, η= 20◦. Since p cannot be con-
sidered a test particle, Equation (5.38) is used in Equations (5.24)–(5.29) along
with Equations (2.83)–(2.87) in Equation (2.77) and Equation (2.78).
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Figure 5.10 LT net shift per orbit 1V
LT

, in µm/s, of the radial velocity of a ficti-
tious tight exoplanetary system as a function of the star–planet distance according
to Equation (5.80). The binary is made of a main sequence star with the same
mass, radius, and angular momentum as the Sun, and a gaseous giant planet p
with the same mass and radius as Jupiter; its angular momentum is calculated
with Equations (5.1)–(5.5) by assuming that its rotational frequency is synchron-
ized with the orbital one due to tides. The other relevant orbital parameters, chosen
arbitrarily, are I = 45◦,ω = 50◦, η = 20◦. It is assumed that tidal effects have
either circularized the orbit, so that e = 0, and reciprocally aligned all the angular
momenta of the system.

not infrequent in exoplanets (Schlaufman, 2010). By varying the orbital period TK

from 0.15 to 0.35 d in such a way that the star–planet relative distance, in units of
R?+Rp, ranges from 1.08 to 1.9, it turns out that the peak-to-peak amplitude of the
LT shift can reach the level of about ' 10 − 100 micrometres per second (µm/s)
over 1 day.

Figure 5.10 plots the net shift per orbit of Equation (5.80) as a function of
the star–planet distance. It turns out that the largest value, occurring for a =
1.1

(
R? + Rp

)
, is 20 µm/s, dropping to about ' 1 µm/s for a/

(
R? + Rp

)
= 3.

Figure 5.11 depicts the net shift per orbit1K
LT

of the radial velocity semiampli-
tude for the recently discovered S star S4716 (Peißker et al., 2022) orbiting Sgr A∗

in about 4 yr. It is plotted according to Equation (5.74) as a function of the angles
i• and ζ• determining the spatial orientation of the BH’s spin axis, as per Equa-

tion (5.23). It will be noted that
∣∣∣1K

LT
∣∣∣, which can also vanish for some values of

ζ•, i•, is. 0.1 km/s; it is' 2–3 orders of magnitude smaller than the uncertainties
quoted in Peißker et al. (2022).

5.7 The Characteristic Timescales of Transiting Exoplanets

Here, the 1pN LT net shifts per orbit of the characteristic timescales of transiting
exoplanets are calculated in their full generality. In the following sections, it is
intended that J has to be replaced with Equation (5.38).
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Figure 5.11 Plot of the LT net shift per orbit1K
LT

, in km/s, of the radial velocity
semiamplitude of the recently discovered S star S4716 (Peißker et al., 2022) as
a function of the angles i• and ζ• characterizing the orientation of the BH’s spin
axis Ĵ• in space, assumed to be completely unconstrained. The relevant orbital
parameters of S4716 are TK = 4.02 yr, e = 0.756, I = 161.24◦, � = 151.54◦

(Peißker et al., 2022). For the BH, the values M• = 4.1 × 106 M�, χg = 0.5 are
used for its mass and spin parameter (Peißker et al., 2022).

5.7.1 The Total Transit Duration δtD

From Equations (2.102)–(2.105) and the shifts obtainable from Equations (5.30)–
(5.35), it turns out that

1δtD
LT
=

4πJ

c2MbR?
(
1− e2

)√
(1+ ϑ)2 − b2 (1+ e sinω)3

(
1+ e2 + 2e sinω

)3/2{
a2 (1− e2)2

Jl sin 2I (1+ e sinω)
(
1+ e2

+ 2e sinω)+ 2e cosω (2Jh+ Jm cot I)
[
R2
? (1+ ϑ)

2 (1+ e sinω)3

− a2 (1− e2)2
cos2 I

(
2+ e2

+ 3e sinω
)]}

. (5.81)

It should be noted that Equation (5.81) does not vanish for circular orbits, since its
first nonvanishing term is just of zeroth order in e.

5.7.2 The Ingress/Egress Transit Duration δti/e

From Equations (2.108)–(2.111) and the shifts obtainable from Equations (5.30)–
(5.35), it turns out that

1δti/e
LT
=

2πJ

c2Mb

(
Jla

(
1− e2

)
sin 2I

R? (1+ e sinω)2
√

1+ e2 + 2e sinω

[
1√

(1+ ϑ)2 − b2

−
1√

(1− ϑ)2 − b2

]
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−
2R?e cosω (2Jh+ cot IJm)

a
(
1− e2

) (
1+ e2 + 2e sinω

)3/2

{√
(1− ϑ)2 − b2

−

√
(1+ ϑ)2 − b2

+
a2
(
1− e2

)2
cos2 I

(
1+ e2

+ 2e sinω
)

R2
? (1+ e sinω)3

[
1√

(1+ ϑ)2 − b2

−
1√

(1− ϑ)2 − b2

]})
. (5.82)

It should be noted that Equation (5.82) does not vanish for circular orbits, being its
first nonvanishing term just of zeroth order in e.

5.7.3 The Full Width at Half Maximum Primary Transit Duration δtH

From Equations (2.115)–(2.118) and the shifts obtainable from Equations (5.30)–
(5.35), it turns out that

1δtH
LT
=

2πJ

c2Mb

(
Jla

(
1− e2

)
sin 2I

R? (1+ e sinω)2
√

1+ e2 + 2e sinω

[
1√

(1+ ϑ)2 − b2

+
1√

(1− ϑ)2 − b2

]

−
2R?e cosω (2Jh+ cot IJm)

a
(
1− e2

) (
1+ e2 + 2e sinω

)3/2

{
−

√
(1− ϑ)2 − b2

−

√
(1+ ϑ)2 − b2

+
a2
(
1− e2

)2
cos2 I

(
1+ e2

+ 2e sinω
)

R2
? (1+ e sinω)3

[
1√

(1+ ϑ)2 − b2

+
1√

(1− ϑ)2 − b2

]})
. (5.83)

It should be noted that Equation (5.83) does not vanish for circular orbits, since its
first nonvanishing term is just of zeroth order in e.

5.7.4 The Time of Inferior Conjunction tcj

From Equations (2.121)–(2.124) and the shifts obtainable from Equations (5.30)–
(5.35), it turns out that
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1tcj
LT
=

4πJ (2Jh+ cot IJm)

c2Mb (1+ e sinω)2
. (5.84)

It can be noted that Equation (5.84) is independent of a.

5.7.5 A Numerical Evaluation

Figure 5.12 displays the plots of Equations (5.81)–(5.84) for a Jovian-type exo-
planet transiting in front of its Sun-like host star, seen edge-on, as functions of the
minimum distance rmin, ranging from 1.1 to 20 times the sum of the radii of the
star and the planet, for various values of e and by assuming that both the stellar and
planetary angular momenta are aligned with the orbital angular momentum. It will
be noted that the largest effect occurs for the time of inferior conjunction whose

Figure 5.12 Plots of the net shifts per orbit 1δtD
LT

, 1δti/e
LT

, 1δtH
LT

, 1tcj
LT

of a fictitious Sun-Jupiter exoplanetary system, seen edge-on, as functions of the
minimum star-planet distance rmin, in units of R? + Rp, for different values of the
eccentricity e according to Equations (5.81)–(5.84). The values I = 90◦,ω = 50◦

are used for the relevant orbital parameters; all the three angular momenta are
assumed to be aligned. The units are µs.
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shift per orbit, which is independent of rmin, is at the' 40–80µs level. Instead, the
variations of the other timescales are of the order of ' 1–10µs.

5.8 The Sky-Projected Spin-Orbit Angle of Transiting Exoplanets

According to Equation (2.126), the rate of change of the sky-projected spin-orbit
angle λ of a transiting exoplanet is equal to the node precession, provided that the
angular momentum of the host star can be considered as constant.

By expressing the stellar spin axis Ĵ ? in terms of its inclination i? to the line of
sight and its azimuth ζ? in the plane of the sky as

Ĵ ? =


sin i? cos ζ?
sin i? sin ζ?
cos i?

, (5.85)

it turns out, from Equation (5.33), Equation (5.85), and Equation (D.2), that the LT
precession of λ is 〈

dλ

dt

〉LT

=

〈
d�

dt

〉LT

=
2GJ? cos i?

c2a3
(
1− e2

)3/2 . (5.86)

In Equation (5.86), only the angular momentum of the host star appears since it
turns out that its contribution to Equation (5.38) is some orders of magnitude larger
than that of a typical Jovian-type exoplanet.

Figure 5.13 Plot of the LT averaged precession, in ◦/yr, of the sky-projected spin-
orbit angle of the transiting exoplanet Kelt–9b as a function of the tilt i? to the line
of sight of the spin axis of its host star according to Equation (5.86). The physical
parameters of the star and the planet are retrieved from Tables A.1 and A.2 of
Albrecht et al. (2022) as well as the range of values for i?. The stellar angular
momentum is calculated with Equations (5.1)–(5.7).
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In Figure 5.13, Equation (5.86) is plotted as a function of i? for the exoplanet
Kelt–9b. It can be noted that the LT secular rate of λ ranges from ' 0.001 to
' 0.002◦/yr within the allowed observational interval for i?.

5.9 The Variation of the Times of Arrival of Binary Pulsars

For a binary pulsar, the instantaneous shift of δ̃tpsr can be obtained from Equa-
tion (2.77) calculated with Equations (2.130)–(2.134), Equations (5.24)–(5.28), and
Equation (5.51). By replacing f with f0 + 2π in the resulting expression, the net
variation per orbit is inferred; it turns out to be (Iorio, 2017)

1δ̃tpsr
LT
=

mc

Mb

4πJ [− cos u0 (Jm cos I + 2Jh sin I)+ Jl cos I sin u0]

c3a2nK

√
1− e2 (1+ e cos f0)

, (5.87)

where it is intended that J has to be replaced by Equation (5.38) written for the
pulsar and its companion. It may happen that the angular momentum of the latter
is much larger than that of the pulsar itself, as for the PSR J1141–6545 system
(Antoniadis et al., 2011; Iorio, 2020a; Venkatraman Krishnan et al., 2020).

Figure 5.14 displays the instantaneous shifts 1δ̃tpsr (t) of a fictitious binary pul-
sar whose companion is a white dwarf obtained by varying TK and e in such a way

Figure 5.14 Plot of the LT instantaneous shift 1δ̃tpsr (t)1pN, in µs, of a bin-
ary pulsar with a white dwarf as companion for different values of TK and
e in such a way that rmin= 1.8 × 106 km. The relevant orbital parameters
are I = 75◦, �= 50◦, ω= 42.457◦, η= 20◦. For the stellar corpses, the val-
ues Mpsr= 1.27 M�, Mwd= 1.02 M�, Jpsr ' 4 × 1040 kg m2/s, Jwd ' 2.2 ×
1043 kg m2/s, taken from those of PSR J1141–6545 (Antoniadis et al., 2011;
Iorio, 2020a; Venkatraman Krishnan et al., 2020), are used. It is assumed that both
the individual angular momenta and the orbital angular momentum are aligned.
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that the periastron distance is kept fixed to, say, rmin = 1.8×106 km. For the masses
and the angular momenta, assumed aligned with the orbital angular momentum,
the values of PSR J1141–6545 (Antoniadis et al., 2011; Iorio, 2020a; Venkatraman
Krishnan et al., 2020) are taken. It turns out that the peak–to–peak amplitudes of
the signals may be as large as ' 20–30 µs over 5 d.

It may be noted that, when the three angular momenta of the system are mutually
aligned, Equation (5.87) reduces to

1δ̃tpsr
LT
=

mc

Mb

8πJ sin I

c3a2nK

√
1− e2 (1+ e cos f0)

, (5.88)

where the replacement

J →

(
1+

3

4

mc

mpsr

)
Jpsr +

(
1+

3

4

mpsr

mc

)
Jc (5.89)

has to be taken.

5.10 The Astrometric Angles RA and dec.

For a test particle and a massive primary, as in the case of the S stars and Sgr
A∗, the instantaneous shifts of the RA and dec. can be obtained from Equa-
tion (2.77) calculated with Equations (2.137)–(2.143), Equations (5.24)–(5.29), and
Equation (5.51). By replacing f with f0 + 2π in the resulting expressions, the net
variations per orbit are inferred; they turn out to be

1α
LT
= −

16πGJ [2Jh cos I + cos u0 sin I (−Jm cos u0 + Jl sin u0)]

c2nKa3
(
1− e2

)3/2 (
3+ cos 2I + 2 sin2 I cos 2u0

) , (5.90)

1δ
LT
= −

4πGJ [cos u0 (Jm cos I + 2Jh sin I)− Jl cos I sin u0]

c2nKa3
(
1− e2

)3/2√
1− sin2 I sin2 u0

. (5.91)

Figures 5.15 and 5.16 display the instantaneous shifts 1α (t) ,1δ (t) of the RA
and the dec. of a fictitious S star obtained by varying TK and e in such a way that the
stellar perinigricon distance is kept fixed to rmin = 1250R•. The SMBH’s angular
momentum J• is calculated with Equation (5.16), and the orientation of its spin
axis is set equal to, say, i• = 30◦, ζ• = 150◦. It turns out that the spin-induced
astrometric signatures can be as large as . 5–50

′′

, depending on the star’s orbital
period and eccentricity.
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5.11 The Two-Body Range and Range Rate

Here, Equations (5.24)–(5.29) are used in Equation (2.147) and Equation (2.152)
to analytically calculate the time series of the range and range rate shifts for A =
Mercury and B = Earth, both moving in the gravitomagnetic field of the Sun.

Figures 5.17–5.18 plot the resulting signals, obtained by introducing the depend-
ence on time t through the mean anomaly by means of Equation (2.4) and Equa-
tions (2.158)–(2.159), over 2 yr, which is the expected duration of the extended

Figure 5.15 Plot of the LT instantaneous shift 1α (t)LT, in ′′, of the RA of a fic-
titious S star for different values of TK and e in such a way that rmin = 1250R•.
The relevant stellar orbital parameters are I = 161.24◦, � = 151.54◦, ω =
0.073◦, η = 20◦. For the BH, the values M• = 4.1× 106 M�, χg = 0.5 are used
for its mass and spin parameter (Peißker et al., 2022). Furthermore, the orientation
of its spin axis is set by, say, i• = 30◦, ζ• = 150◦.

Figure 5.16 Plot of the LT instantaneous shift 1δ (t)LT, in ′′, of the dec. of a fic-
titious S star for different values of TK and e in such a way that rmin = 1250R•.
The relevant stellar orbital parameters are I = 161.24◦, � = 151.54◦, ω =
0.073◦, η = 20◦. For the BH, the values M• = 4.1× 106 M�, χg = 0.5 are used
for its mass and spin parameter (Peißker et al., 2022). Furthermore, the orientation
of its spin axis is set by, say, i• = 30◦, ζ• = 150◦.
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Figure 5.17 Analytically produced time series, in m, of the two-body LT
range shift 1ρ (t) due to the Sun’s angular momentum J� for A=Mercury
and B=Earth plotted over 2 yr. It was worked out by calculating Equa-
tions (2.149)–(2.151), entering Equations (2.147)–(2.148) with Equations (5.24)–
(5.29), Equation (5.51) and Equation (2.4). The initial values of the Keplerian
orbital elements of both planets, referred to the International Celestial Refer-
ence Frame (ICRF), were retrieved from the WEB interface Horizons System
at https://ssd.jpl.nasa.gov/horizons/, maintained by the Jet Propulsion Labora-
tory (JPL) of the National Aeronautics and Space Administration (NASA), and
accessed 12th February 2024. The values J� = 1.90 × 1041 kg m2/s (Pijpers,
1998) and αJ� = 286◦.13, δJ� = 63◦.87 (Seidelmann et al., 2007) were adopted
for the magnitude and the orientation of the Sun’s angular momentum; see
Table J.1.

Figure 5.18 Analytically produced time series, in µm/s, of the two-body LT
range rate shift 1ρ̇ (t) due to the Sun’s angular momentum J� for A=Mercury
and B=Earth plotted over 2 yr. It was worked out by calculating Equa-
tions (2.155)–(2.157), entering Equations (2.152)–(2.154) with Equations (5.24)–
(5.29), Equation (5.51), and Equation (2.4). The initial values of the Keplerian
orbital elements of both planets, referred to the International Celestial Refer-
ence Frame (ICRF), were retrieved from the WEB interface Horizons System
at https://ssd.jpl.nasa.gov/horizons/, maintained by the Jet Propulsion Labora-
tory (JPL) of the National Aeronautics and Space Administration (NASA), and
accessed 12th February 2024. The values J� = 1.90 × 1041 kg m2/s (Pijpers,
1998) and αJ� = 286◦.13, δJ� = 63◦.87 (Seidelmann et al., 2007) were adopted
for the magnitude and the orientation of the Sun’s angular momentum; see Table
J.1.
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phase of the BepiColombo mission (Benkhoff et al., 2010, 2021) from21 2026 to
2028. It turns out that the peak-to-peak nominal amplitudes of the range and range
rate shifts can reach the ' 20 m and ' 15 µm/s level, respectively.

An integration of the equations of motion with and without Equation (5.18)
generated corresponding numerical time series differing from the aforementioned
analytical ones by . 0.2 m and . 3 µm/s level over 2 years, respectively.

21 See www.esa.int/Science_Exploration/Space_Science/BepiColombo/BepiColombo_factsheet. Accessed
19th January 2024.
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6

1pN Gravitomagnetic Effects: Spin Octupole

To the 1pN order, the gravitomagnetic Panhans–Soffel (PS) spin octupole acceler-
ation APS felt by a test particle moving about an oblate spheroid of constant density
that is rigidly and uniformly rotating is (Panhans and Soffel, 2014)

APS
=

v

c2
× Boct, (6.1)

where the gravitomagnetic octupole field Boct can be calculated as (Panhans and
Soffel, 2014)

Boct
= −∇W oct, (6.2)

with the gravitomagnetic octupolar potential W oct given by (Panhans and Soffel,
2014)

W oct
=

6GJR2
eε

2

7r4
P3 (rJ ) . (6.3)

In Equation (6.3),

ε :=

√
1−

(
Rpo

Re

)2

(6.4)

is the body’s ellipticity written in terms of its polar and equatorial radius Rpo and
Re, respectively, and P3 (rJ ) is the Legendre polynomial of degree 3 in rJ which is
defined as in Equation (5.19).

From Equations (6.1)–(6.3), the PS 1pN gravitomagnetic spin octupole acceler-
ation can be expressed as

APS
=

3GJR2
eε

2

7c2r5
v×

[
5rJ

(
7r2

J − 3
)

r̂ + 3
(
1− 5r2

J

)
Ĵ
]

. (6.5)

It should be noted that the spin dipole moment in Panhans and Soffel (2014),
namely J , yields the usual LT acceleration of Equation (5.18). Other studies on
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relativistic multipoles can be found, for example, in Meichsner and Soffel (2015);
Schanner and Soffel (2018); Frutos-Alfaro and Soffel (2018).

By projecting Equation (6.5) onto the unit vectors r̂, τ̂ , ĥ defined in Equa-
tions (2.23)–(2.25) and by using Equations (2.7)–(2.8) along with Equation (2.11),
its radial, transverse, and normal components are obtained; they turn out to be

APS
r =

9GnKR2
eJε2Jh (1+ e cos f )6

[
1− 5 (Jl cos u+ Jm sin u)2

]
7c2a4

(
1− e2

)11/2 , (6.6)

APS
τ = −

9eGnKR2
eJε2Jh (1+ e cos f )5 sin f

[
1− 5 (Jl cos u+ Jm sin u)2

]
7c2a4

(
1− e2

)11/2 ,

(6.7)

APS
h =

3GnKR2
eJε2 (1+ e cos f )5

7c2a4
(
1− e2

)11/2
{15 (1+ e cos f ) (Jl cos u+ Jm sin u)

− 35 (1+ e cos f ) (Jl cos u+ Jm sin u)3

− 3 [Jl (e cosω + cos u)+ Jm (e sinω + sin u)]

+ 15 (Jl cos u+ Jm sin u)2 [Jl (e cosω + cos u)

+Jm (e sinω + sin u)]} . (6.8)

The quantities Jl, Jm, and Jh entering Equations (6.6)–(6.8) are defined in
Equations (D.1)–(D.3) of Appendix D.

6.1 The Averaged Orbital Precessions

Inserting Equations (6.6)–(6.8) in the machinery of Equations (2.13)–(2.18) yields
the averaged precessions of the orbital elements. They turn out to be〈

da

dt

〉PS

= 0, (6.9)

〈
de

dt

〉PS

=
45eGJR2

eε
2Jh

(
T̂3 sin 2ω − 2T̂6 cos 2ω

)
28c2a5

(
1− e2

)5/2 , (6.10)

〈
dI

dt

〉PS

= −
9GJR2

eε
2

56c2a5
(
1− e2

)7/2

{
2
(
2+ 3e2)Jl (−4T̂1 + 5T̂2

)
+ 5e2 [Jl (−2T̂1 + 3Jl2

+ Jm2) cos 2ω

+ 2Jm
(
−T̂1 + 2Jl2

+ Jm2) sin 2ω
]}

, (6.11)
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〈
d�

dt

〉PS

= −
9GJR2

eε
2 csc I

56c2a5
(
1− e2

)7/2

{
2
(
2+ 3e2)Jm (−4T̂1 + 5T̂2

)
+ 5e2 [

−Jm
(
−2T̂1 + Jl

2
+ 3Jm2) cos 2ω

+ 2Jl
(
−T̂1 + Jl

2
+ 2Jm2) sin 2ω

]}
, (6.12)〈

dω

dt

〉PS

=
9GJR2

eε
2

56c2a5
(
1− e2

)7/2

{
4
(
3+ 2e2)Jh (−2T̂1 + 5T̂2

)
+ 2

(
2+ 3e2)Jm (−4T̂1 + 5T̂2 cot I

)
+ 5

[
2
(
1+ 2e2)JhT̂3

− e2Jm
(
−2+ Jl2

+ 3Jm2) cot I
]

cos 2ω

+ 10Jl
[
2
(
1+ 2e2) T̂5

+ e2 (
−1+ Jl2

+ 2Jm2) cot I
]

sin 2ω
}

, (6.13)〈
dη

dt

〉PS

= −
9GJR2

eε
2Jh

28c2a5
(
1− e2

)2

{
5T̂3 cos 2ω

+ 2
[
−2T̂1 + 5

(
T̂2 + T̂6 sin 2ω

)]}
. (6.14)

The coefficients T̂j, j = 1, 2, . . . 6 in Equations (6.9)–(6.14), characterizing the
orientation of the orbital plane with respect to the primary’s symmetry axis Ĵ , are
explicitly shown in Equations (D.4)–(D.9) of Appendix D.

6.1.1 Some Special Orbital Configurations

Here, some peculiar orbital configurations, characterized in Appendix D, are
examined.

Let, first, the satellite’s orbital plane be assumed coincident with the body’s equa-
torial one, irrespectively of the orientation of the latter in the adopted reference
frame, namely, for generic values of αJ , δJ . Then, according to Equations (D.17)–
(D.25) of Appendix D, Equations (6.9)–(6.14) reduce to〈

da

dt

〉PS

= 0, (6.15)〈
de

dt

〉PS

= 0, (6.16)
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〈
dI

dt

〉PS

= 0, (6.17)〈
d�

dt

〉PS

= 0, (6.18)〈
dω

dt

〉PS

= ∓
9GJR2

eε
2
(
3+ 2e2

)
7c2a5

(
1− e2

)7/2 , (6.19)

〈
dη

dt

〉PS

= ±
9GJR2

eε
2

7c2a5
(
1− e2

)2 . (6.20)

Equations (6.19)–(6.20) are genuine secular trends; the upper signs in them refer
to the prograde motion (Jh = +1), while the lower signs are for the retrograde
motion (Jh = −1).

Let, now, the body’s spin axis, irrespective of its orientation in the adopted
coordinate system, namely, for generic values of αJ , δJ , lie somewhere in the sat-
ellite’s orbital plane between l̂ and m̂. Then, according to Equations (D.26)–(D.34)
of Appendix D, Equations (6.9)–(6.14) can be written as〈

da

dt

〉PS

= 0, (6.21)〈
de

dt

〉PS

= 0, (6.22)〈
dI

dt

〉PS

= −
9GJR2

eε
2 cos δJ

{
4+ 6e2

+ 5e2 cos [2 (δJ − ω)]
}

56c2a5
(
1− e2

)7/2 , (6.23)

〈
d�

dt

〉PS

= −
9GJR2

eε
2 sin δJ

{
4+ 6e2

+ 5e2 cos [2 (δJ − ω)]
}

56c2a5
(
1− e2

)7/2 , (6.24)

〈
dω

dt

〉PS

= 0, (6.25)〈
dη

dt

〉PS

= 0. (6.26)

Equations (6.23)–(6.24), in addition to secular trends, include also long-period sig-
natures due to the evolution of pericentre which is mainly driven by the zonal
harmonics of the Newtonian component of the multipolar field of the central body
(See Section 7.1).
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7

Newtonian Effects: Mass Quadrupole(s)

The pK acceleration due to the first even zonal harmonic coefficient J2 of the multi-
polar expansion of the exterior Newtonian gravitational potential of a massive body
endowed with axial symmetry is

AJ2 =
3µJ2R2

e

2r4

[(
5r2

J − 1
)

r̂ − 2rJ Ĵ
]

, (7.1)

where rJ is defined as in Equation (5.19). In most cases, its orbital effects repre-
sent a major source of systematic bias for the pN features of motion one may be
interested in since the former often have the same temporal patterns as the lat-
ter ones along with usually much larger nominal magnitudes. The knowledge of
J2 and/or of the orientation of the primary’s symmetry axis Ĵ is often imperfect
to such a level that it leaves relevant mismodelled signatures. Thus, the perturba-
tions induced by Equation (7.1) have to be carefully investigated in order to devise
strategies to circumvent them or, at least, reduce their impact as much as possible.

Equation (7.1) is obtained as1

AJ2 = −∇1U2 (r) , (7.2)

where 1U2 is the term of degree2 ` = 2 of the expansion in multipoles of the
Newtonian gravitational potential of an axisymmetric body (Montenbruck and Gill,
2000; Murray and Dermott, 1999; Bertotti et al., 2003; Capderou, 2005; Roy, 2005;
Kopeikin et al., 2011; Poisson and Will, 2014)

U (r) = UN (r)+
∞∑
`=2

1U` (r) = −
µ

r

[
1−

∞∑
`=2

(
Re

r

)`
P` (rJ )

]
, (7.3)

where P` (rJ ) is the Legendre polynomial of degree ` in rJ (Olver et al., 2010).
1 In some textbooks, the Newtonian potential UN is conventionally defined as positive; in this case, the

acceleration is the gradient of 1U2.
2 If the axisymmetric primary exhibits ‘north–south symmetry’, only the even zonal harmonics

J`, ` = 2, 4, 6, . . . enter Equation (7.3).
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For a material body in hydrostatic equilibrium like, for example, a main sequence
star or a planet, it is, in general (Ragozzine and Wolf, 2009; Correia and Rodríguez,
2013),

J2 =
k2

3

(
qc −

qt

2

)
, (7.4)

where qc is defined as in Equation (5.4), and

qt := −3
(

Re

a′

)3 M
′

M
. (7.5)

In Equation (7.5), M
′

is the finite mass of a nearby tide-raising companion about
which the former one revolves in an orbit whose relative semimajor axis is a

′

. It
should be remarked that Equation (7.4) is used also for white dwarfs (Boshkayev
et al., 2017; Mathew and Nandy, 2017), with, say (Iorio, 2020a),

kwd
2 ' 0.228 (7.6)

for the pulsar’s companion (Antoniadis et al., 2011) in the binary system PSR
J1141–6545 (Kaspi et al., 2000).

In dealing with astrophysical compact objects like white dwarfs, neutron stars,
and BHs, it is convenient to express Equation (7.1) in terms of the negative definite
dimensional quadrupole mass moment Q2 with the replacement (Laarakkers and
Poisson, 1999; Will, 2014)

J2 →−
Q2

MR2
e

. (7.7)

According to Laarakkers and Poisson (1999), for a neutron star it is

Qns
2 = ξns

M3
nsG

2

c4
, (7.8)

where |ξns| ranges from 0.074 to 3.507 for a variety of equations of state (EOSs)
and Mns = 1.4M�; compare table 4 of Laarakkers and Poisson (1999). Then, for a
typical neutron star, Equation (7.8) yields

9× 1035 .
∣∣Qns

2

∣∣ . 4× 1037 kg m2. (7.9)

As a comparison, Equation (7.4), calculated for an isolated white dwarf with Mwd =

1.02 M�, Rwd
e = 5400 km (Antoniadis et al., 2011) and Equation (7.6), yields3∣∣Qwd

2

∣∣ ' 4.5× 1042 kg m2. (7.10)

Thus, the quadrupole mass moment of a white dwarf may be several orders of
magnitude larger than that of a neutron star.

3 It is computed by setting qt = 0 qc = 1 in Equation (7.4) (Iorio, 2020a).
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For a Kerr BH, from Equation (5.17) calculated with ` = 2, it turns out (Carter,
1971; Robinson, 1975)

M2
•

:= Q•2 = −
J2
•

c2M•
, (7.11)

where J• is given by Equation (5.16). Then, for a rotating Kerr BH, the quadrupole
mass moment is of the order of O

(
1/c4

)
.

For a binary system made of bodies with comparable masses MA and MB and
quadrupole mass moments QA

2 and QB
2 , Equation (7.1) can be written, by means of

Equation (7.7), as (Barker and O’Connell, 1975)

AQ2 =
3G

2r4

(
1+

MB

MA

)
QA

2

[(
1− 5r2

JA

)
r̂ + 2rJA ĴA

]
+

3G

2r4

(
1+

MA

MB

)
QB

2

[(
1− 5r2

JB

)
r̂ + 2rJB ĴB

]
, (7.12)

where r and r̂ refer to the relative orbital motion.
By projecting Equation (7.1) onto the unit vectors r̂, τ̂ , ĥ defined in Equa-

tions (2.23)–(2.25) and by using Equations (2.7)–(2.8) along with Equation (2.11),
its radial, transverse, and normal components are obtained; they turn out to be

AJ2
r =

3µJ2R2
e (1+ e cos f )4

2a4
(
1− e2

)4

[
−T̂1 + 3

(
T̂2

2
+

T̂3 cos 2u

2
+ T̂6 sin 2u

)]
, (7.13)

AJ2
τ =

3µJ2R2
e (1+ e cos f )4

a4
(
1− e2

)4

(
T̂3 sin 2u

2
− T̂6 cos 2u

)
, (7.14)

AJ2
h = −

3µJ2R2
e (1+ e cos f )4

a4
(
1− e2

)4

(
T̂4 cos u+ T̂5 sin u

)
, (7.15)

where the coefficients T̂j, j = 1, 2, . . . 6 are defined in Equations (D.4)–(D.9) of
Appendix D. For an arbitrary orbital configuration and a generic direction of Ĵ ,
it is not possible to spot any particular feature of Equations (7.13)–(7.15), apart
from a radial part of AJ2 directed inward which is always present. For an equatorial
orbit, the latter, which is proportional to Equation (D.4) of Appendix D, is the only
nonvanishing component of the J2-driven acceleration, as per Equations (D.20)–
(D.25) of Appendix D; it enhances Equation (2.1). In the case of a polar
orbit, AJ2 lies entirely in the orbital plane since, according to Equations (D.29)–
(D.34) of Appendix D, only T̂3 and T̂6 are generally non-zero, apart from T̂1. In the
particular case in which Ĵ is known and oriented along, say, the reference z-axis,
all the three r, τ , h components of AJ2 are, in general, non-zero.

https://doi.org/10.1017/9781009562911.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009562911.007


126 Newtonian Effects: Mass Quadrupole(s)

7.1 The Orbital Shifts of the Keplerian Orbital Elements

The J2-driven instantaneous shifts 1κ ( f ) of the Keplerian orbital elements κ =
a, e, I ,�,ω, η due to Equation (7.1) can be calculated as per Equation (2.12) by
using Equations (7.13)–(7.15) in Equations (2.13)–(2.18). They turn out to be

1a ( f )J2 = −
J2R2

e

16a
(
1− e2

)3 AJ2 , (7.16)

1e ( f )J2 =
J2R2

e

32a2
(
1− e2

)2 EJ2 , (7.17)

1I ( f )J2 = −
J2R2

e

4a2
(
1− e2

)2 IJ2 , (7.18)

1�( f )J2 = −
J2R2

e csc I

4a2
(
1− e2

)2N
J2 , (7.19)

1ω ( f )J2 =
J2R2

e

32a2e
(
1− e2

)2G
J2 , (7.20)

1η ( f )J2 =
J2R2

e

32a2e
(
1− e2

)3/2H
J2 , (7.21)

where

AJ2 :=
6∑

j=1

AJ2
j T̂j, (7.22)

EJ2 :=
6∑

j=1

EJ2
j T̂j, (7.23)

IJ2 :=
6∑

j=1

IJ2
j T̂j, (7.24)

N J2 :=
6∑

j=1

N J2
j T̂j, (7.25)

GJ2 :=
6∑

j=1

GJ2
j T̂j, (7.26)

HJ2 :=
6∑

j=1

HJ2
j T̂j. (7.27)
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The coefficients AJ2
1 , . . .HJ2

6 entering Equations (7.22)–(7.27) are explicitly shown
in Appendix F.

By calculating Equations (7.16)–(7.21) with the replacement f → f0 + 2π and
dividing the result by TK, one obtains the averaged precessions〈

da

dt

〉J2

= 0, (7.28)〈
de

dt

〉J2

= 0, (7.29)〈
dI

dt

〉J2

= −
3nKJ2R2

e T̂4

2a2
(
1− e2

)2 , (7.30)

〈
d�

dt

〉J2

= −
3nKJ2R2

e T̂5

2a2
(
1− e2

)2
sin I

, (7.31)

〈
dω

dt

〉J2

=
3nKJ2R2

e

(
2T̂1 − 3T̂2 + 2T̂5 cot I

)
4a2

(
1− e2

)2 , (7.32)

〈
dη

dt

〉J2

=
3nKJ2R2

e

(
2T̂1 − 3T̂2

)
4a2

(
1− e2

)3/2 . (7.33)

Equations (7.28)–(7.33) coincide with the definite integrals of (1/TK) dκ/df from
f0 to f0 + 2π.

Using Equations (2.27)–(2.32) with4

〈R〉J2 =
µJ2R2

e

(
2T̂1 − 3T̂2

)
4a3

(
1− e2

)3/2 , (7.34)

obtained by averaging Equation (C.21) of Appendix C over one orbit, yields just
Equations (7.28)–(7.33).

7.1.1 Some Special Orbital Configurations

Here, some peculiar orbital configurations, characterized in Appendix D, are
examined.

Let, first, the satellite’s orbital plane be assumed coincident with the body’s
equatorial one, irrespective of the orientation of the latter in the adopted reference

4 The scheme outlined in Appendix C is followed.
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frame, that is, for generic values of αJ , δJ . Then, according to Equations (D.17)–
(D.25) of Appendix D, Equations (7.28)–(7.33) reduce to〈

da

dt

〉J2

= 0, (7.35)〈
de

dt

〉J2

= 0, (7.36)〈
dI

dt

〉J2

= 0, (7.37)〈
d�

dt

〉J2

= 0, (7.38)〈
dω

dt

〉J2

=
3nKJ2R2

e

2a2
(
1− e2

)2 , (7.39)

〈
dη

dt

〉J2

=
3nKJ2R2

e

2a2
(
1− e2

)3/2 . (7.40)

Equations (7.39)–(7.40) are genuine secular trends.
Let, now, the body’s spin axis, irrespective of its orientation in the adopted

coordinate system, that is, for generic values of αJ , δJ , lie somewhere in the satel-
lite’s orbital plane between l̂ and m̂. Then, according to Equations (D.26)–(D.34) of
Appendix D, Equations (7.28)–(7.33) can be written as〈

da

dt

〉J2

= 0, (7.41)〈
de

dt

〉J2

= 0, (7.42)〈
dI

dt

〉J2

= 0, (7.43)〈
d�

dt

〉J2

= 0, (7.44)〈
dω

dt

〉J2

= −
3nKJ2R2

e

4a2
(
1− e2

)2 , (7.45)

〈
dη

dt

〉J2

= −
3nKJ2R2

e

4a2
(
1− e2

)3/2 . (7.46)

Equations (7.45)–(7.46) are genuine secular trends.
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7.1.2 The Contribution of 8 to the Mean Anomaly

When Equation (7.1) enters the equations of motion, the analytical expression of
the term8 entering the shift of the mean anomaly, calculated with Equation (2.80),
turns out to be

8( f )J2 =
3J2R2

e

2a2
(
1− e2

)3F
J2 , (7.47)

with

F J2 =

6∑
j=1

F J2
j T̂j. (7.48)

The coefficients F J2
j , j = 1, 2, . . . 6 entering Equation (7.48) are explicitly shown

in Appendix F.
The net change per orbit of8 can be obtained with the replacement f → f0+2π

in Equation (7.47), getting

8
J2
= −

3πJ2R2
e

2a2
(
1− e2

)3

{(
2T̂1 − 3T̂2

) [(
1− e2)3/2

− (1+ e cos f0)
3
]

+ (1+ e cos f0)
3 (3T̂3 cos 2u0 + 6T̂6 sin 2u0

)}
. (7.49)

7.2 The Anomalistic Period

When the perturbation due to J2 is taken into account, the anomalistic period can
be calculated by means of Equations (7.13)–(7.15) as explained in Section 2.3.1. It
turns out to be

1T J2
ano =

3πJ2R2
e (1+ e cos f0)

3

2
(
1− e2

)3√
µa

(
−2T̂1 + 3T̂2 + 3T̂3 cos 2u0 + 6T̂6 sin 2u0

)
.

(7.50)

Figure 7.1, obtained for generic values of the Keplerian orbital parameters, con-
firms the analytical result of Equation (7.50); over three orbital revolutions, the test
particle always reaches the precessing line of apsides after a time interval equal
to T J2

ano for each orbit. For the particular choice of the values of the primary’s
spin and orbital parameters, it turns out to be longer than TK, in agreement with
Equation (7.50).

Furthermore, Figure 7.2 plots the final part of the time series of the cosine r̂·Ĉ of
the angle between the position vector r and the Laplace–Runge–Lenz unit vector Ĉ
versus time t, in units of TK, for a numerically integrated fictitious test particle with
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Figure 7.1 Perturbed J2 trajectory (continuous curve) and its osculating Kep-
lerian ellipse (dashed curve) at the initial instant of time t0 characterized by
e = 0.7, I = 30◦, � = 45◦, ω = 50◦, f0 = 180◦ as seen from the z-axis. The
orientation of the spin axis Ĵ of the central body is set by αJ = 45◦, δJ = 60◦.
In this example, I ,�, ω, and η undergo the Newtonian shifts of Equations (7.30)–
(7.33) due to the quadrupole mass moment J2 of the primary; their magnitudes
are suitably rescaled by enhancing them for a better visualization. The positions
on the perturbed trajectory after one, two, and three Keplerian periods TK are
marked as well. At each orbit, the passages at the drifting line of apsides always
occur later than in the Keplerian case by the amount given by Equation (7.50),
which is positive for the given values of the spin and orbital parameters.

and without Equation (7.1) starting in both cases from, say, the moving pericentre,
namely, for r̂0 · Ĉ0 = +1. It can be seen that it comes back to the same position on
the precessing line of apsides, that is, it is r̂ · Ĉ = +1 again, just after T J2

ano = TK+

1T J2
ano differing from TK by a ( positive) amount in agreement with Equation (7.50)

for the particular choice of the generic values of the spin and the orbital parameters
adopted in the numerical integrations.

7.3 The Draconitic Period

The draconitic period, calculated when the perturbation due to J2 is taken into
account as explained in Section 2.3.2, turns out to be

1T J2
dra =

3πJ2R2
e

2
√

µa
(
1− e2

) [ 1

(1+ e cosω)2
(
−2T̂1 + 3T̂2 − 2T̂5 cot I

)

+
(1+ e cos f0)

3(
1− e2

)5/2

(
−2T̂1 + 3T̂2 + 3T̂3 cos 2u0 + 6T̂6 sin 2u0

)]
. (7.51)
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Figure 7.2 Plot of the numerically produced time series of the cosine r̂ · Ĉ of the
angle between the position vector r and the Laplace–Runge–Lenz vector C versus
time t, in units of TK, obtained by integrating the equations of motion of a fictitious
test particle with and without the J2 acceleration of Equation (7.1) for an elliptical
(e = 0.665) orbit arbitrarily oriented in space (I = 40◦, � = 45◦, ω = 50◦)
starting from the periapsis (f0 = 0), that is, r̂0 · Ĉ0 = +1; the semimajor axis
is a = 6Re. The physical parameters of the Earth are adopted, apart from the
spin axis position set by αJ = 45◦, δJ = 60◦. The J2 acceleration is suitably

rescaled in such a way that
∣∣∣1TJ2

ano

∣∣∣ /TK = 0.001. The time needed to come back

to the initial position on the (moving) line of apsides, so that r̂ · Ĉ = +1 again, is
longer than in the Keplerian case by the amount 1TJ2

ano = +0.001TK, shown by
the shaded area, in agreement with Equation (7.50).

It can be noted that Equation (7.51) is not defined for I → 0 because of the term

T̂5 cot I = cot I [sin I sin δJ + cos I cos δJ sin (αJ −�)]

× [cos I sin δJ − cos δJ sin I sin (αJ −�)] , (7.52)

as is expected since, in this case, the line of nodes is no longer defined.
Figure 7.3, obtained for generic values of the Keplerian orbital parameters, con-

firms the analytical result of Equation (7.51); over three orbital revolutions, the test
particle reaches always the precessing line of nodes after a time interval equal to
T J2

dra after each orbit. For the particular choice of the values of the primary’s spin
and orbital parameters, it is shorter than TK, in agreement with Equation (7.51).

Furthermore, Figure 7.4 plots the final part of the time series of the cosine r̂ · l̂
of the angle between the position vector r and the node unit vector l̂ versus time
t, in units of TK, for a numerically integrated fictitious test particle with and with-
out Equation (7.1), starting in both cases from, say, the moving ascending node,
namely, for r̂0·l̂0 = +1. It can be seen that it comes back to the same position on the
precessing line of nodes, that is, it is r̂ · l̂ = +1 again, just after T J2

dra = TK +1T J2
dra

differing from TK by a ( positive) amount in agreement with Equation (7.51) for
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Figure 7.3 Perturbed J2 trajectory (continuous curve) and its osculating Kep-
lerian ellipse (dashed curve) at the initial instant of time t0 characterized by
e = 0.7, I = 30◦, � = 45◦, ω = 50◦, f0 = 180◦−ω as seen from the z-axis. The
orientation of the spin axis Ĵ of the central body is set by αJ = 45◦, δJ = 60◦.
In this example, I ,�, ω, and η undergo the Newtonian shifts of Equations (7.30)–
(7.33) due to the quadrupole mass moment J2 of the primary; their magnitudes are
suitably rescaled for better visualizing their effect. The positions on the perturbed
trajectory after one, two, and three Keplerian periods TK are marked as well. At
each orbit, the passages at the precessing line of nodes always occur earlier than
in the Keplerian case by the amount given by Equation (7.51), which is negative
for the given values of the spin and orbital parameters.

the particular choice of the generic values of the spin and the orbital parameters
adopted in the numerical integrations.

7.4 The Sidereal Period

As shown in Section 2.3.3, the sidereal period for a generic perturbed orbit is the
sum of the draconitic period, calculated as explained in Section 2.3.2, and the term
given by Equation (2.66). For Equation (7.1), Equation (2.66) turns out to be

1T J2
sid II =

3πJ2R2
e cot I

e2
√

µa
(
1− e2

) {T̂5

[
e2
+ 2

(
−2+ e2

+ 2
√

1− e2
)

cos 2ω
]

− 2T̂4

(
−2+ e2

+ 2
√

1− e2
)

sin 2ω
}
'

3πJ2R2
e T̂5 cot I
√

µa
+O

(
e2) .

(7.53)
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Figure 7.4 Plot of the numerically produced time series of the cosine r̂ · l̂ of the
angle between the position vector r and the node unit vector l̂ versus time t, in
units of TK, obtained by integrating the equations of motion of a fictitious test
particle with and without the J2 acceleration of Equation (7.1) for an elliptical
(e = 0.665) orbit arbitrarily oriented in space (I = 40◦, � = 45◦, ω = 50◦)
starting from the ascending node � ( f0 = −ω + 360◦), i.e., r̂0 · l̂0 = +1; the
semimajor axis is a = 6Re. The physical parameters of the Earth are adopted,
apart from the spin axis position set by αJ = 45◦, δJ = 60◦. The J2 acceleration

is suitably rescaled in such a way that
∣∣∣1TJ2

dra

∣∣∣ /TK = 0.001. The time needed to

come back to the initial position on the (moving) line of nodes, so that r̂ · l̂ = +1
again, is longer than in the Keplerian case by the amount 1TJ2

dra = +0.001TK,
shown by the shaded area, in agreement with Equation (7.51).

For equatorial orbits, Equation (7.53) vanishes because of Equations (D.17)–(D.19)
of Appendix D, and the sidereal period reduces to the draconitic one. The oblate-
ness-induced correction of the sidereal period 1T J2

sid can be obtained by summing
Equation (7.51) and Equation (7.53); for an elliptic orbit, it turns out to be singular
in I = 0. Instead, in the limit e→ 0, it reduces to

1T J2
sid =

3πJ2R2
e

2
√

µa

{
−4+ 6 cos2 δJ cos2 (αJ −�)

+ 6 cos δJ cos (αJ −�) sin 2u0 [sin I sin δJ

+ cos I cos δJ sin (αJ −�)]

+ 6 [sin I sin δJ + cos I cos δJ sin (αJ −�)]
2

+ 3 cos 2u0 [cos δJ cos (αJ −�)

− sin I sin δJ − cos I cos δJ sin (αJ −�)]

× [cos δJ cos (αJ −�)+ sin I sin δJ

+ cos I cos δJ sin (αJ −�)]} , (7.54)

which is defined also for that value of the inclination. In such a case, using the true
longitude l yields
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Figure 7.5 Projections of the perturbed J2 trajectory (continuous curve) and of
its osculating Keplerian ellipse (dashed curve) in the reference plane {x, y} at
the initial instant of time t0 characterized by the generic initial conditions e =
0.7, I = 30◦, � = 45◦, ω = 50◦, f0 = 285◦. The orientation of the spin axis

Ĵ of the central body, whose projection in the fundamental plane is depicted as
well, is set by αJ = 45◦, δJ = 60◦. In this example, I , �, ω and η undergo the
Newtonian shifts of Equations (7.30)–(7.33) due to the quadrupole mass moment
J2 of the primary; their magnitudes are suitably rescaled for better visualizing
their effect. The positions on the perturbed trajectory after one, two and three
Keplerian periods TK are marked as well. At each orbit, the passages at the generic
fixed line characterized by φ0 occur always earlier than in the Keplerian case
by the amount given by the sum of Equation (7.51) and Equation (7.53). It is so
because, for the given values of the spin and orbital parameters,1TJ2

dra+1TJ2
sid II <

0, as per Equation (7.51) and Equation (7.53).

1T J2
sid = −

3πJ2R2
e

4
(
1− e2

)2√
µa

[(
−2+ 3 cos2 δJ

)
(1+ e cos$)2

[
2+ e2

− 2
(
1− e2)3/2

+ 4e cos$ + e2 cos 2$
]
+

1

2
(
1− e2

) ((4+ e2) (1− 3 cos 2δJ )

− e
[
−1+ 6 cos2 (l0 − αJ ) cos 2δJ

]
×
[
3e cos (2l0 − 2$)+ 6 cos (l0 −$)

+ 2e2 cos3 (l0 −$)
]
− 3 cos (2l0 − 2αJ )

{(
2+ 3e2) cos 2δJ

+ 2 [1+ e cos (l0 −$)]
3})] . (7.55)

In the limit e→ 0, Equation (7.55) agrees with Equation (7.54) calculated for I = 0.
Figure 7.5 confirms the analytical results of Equation (7.51) and Equation (7.53).

Indeed, over three orbital revolutions, the projection of a generic J2-perturbed orbit
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Figure 7.6 Plot of the numerically produced time series of the cosine cosφ (t) of
the azimuthal angle φ (t) normalized to its initial value cosφ0 versus time t, in
units of TK, obtained by integrating the equations of motion of a fictitious test
particle with and without the J2 acceleration of Equation (7.1) for an elliptical
(e = 0.665) orbit arbitrarily oriented in space (I = 40◦, � = 45◦, ω = 50◦)
starting from, say, the ascending node � (f0 = −ω + 360◦); the semimajor axis
is a = 6Re. The physical parameters of the Earth are adopted, apart from the spin
axis position set by αJ = 45◦, δJ = 60◦. The J2 acceleration is suitably rescaled

in such a way that
∣∣∣1TJ2

sid

∣∣∣ /TK = 0.001. The time needed to cosφ (t) to assume

again its initial value cosφ0 is longer than in the Keplerian case by the amount
1TJ2

sid = +0.001TK, shown by the shaded area, in agreement with the sum of
Equation (7.51) and Equation (7.53).

in the fundamental plane {x, y} crosses a fixed direction in the latter set by a certain
value φ0 always after a time interval equal to T J2

sid = T J2
dra +1T J2

sid II after each orbit.
For the particular choice of the primary’s spin and the orbital parameters used in
the picture, T J2

sid turns out to be shorter than TK, in agreement with Equation (7.51)
and Equation (7.53).

Furthermore, Figure 7.6 plots the final part of the time series of the cosine
of the angle φ, normalized to its initial value cosφ0, versus time t, in units of
TK, for a numerically integrated fictitious test particle with and without Equa-
tion (7.1) starting from the same generic initial position. It can be seen that it comes
back to the same position on the fixed direction chosen in the reference plane, that
is, it is cosφ/ cosφ0 = +1 again, just after T J2

sid = T J2
dra + 1T J2

sid II, differing from
TK by a ( positive) amount in agreement with Equation (7.51) and Equation (7.53)
for the particular choice of the generic values of the spin and the orbital parameters
adopted in the numerical integrations.

7.5 The Radial Velocity of a Spectroscopic Binary

From Equation (2.88) and the net orbital shifts obtainable from Equations (7.28)–
(7.30), it turns out that the semiamplitude K of the radial velocity curve does
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experience a nonvanishing J2-driven net shift per orbit induced by the quadrupolar
net shift of the inclination. From Equations (2.89)–(2.91), one finally has

1K
J2
= −γA,B

3πnK
(
JA

2 R2
AT̂A

4 + JB
2 R2

BT̂B
4

)
cos I

a
(
1− e2

)5/2 , (7.56)

where γA,B is the ratio of the mass of what, out of A and B, is the unseen
companion to the system’s total mass Mb. Equation (7.56) holds for a pair of bodies
of comparable masses MA and MB and quadrupole mass moments QA

2 and QB
2 .

In typical tight exoplanetary systems characterized by fast orbits, sometimes
covered in a fraction of a day,5 tidal forces tend often to either circularize them
and align both the system’s orbital angular momentum and the spins of the star
and the planet (Goldreich, 1966; Kasting et al., 1993; Murray and Dermott, 1999;
Heller et al., 2011). Thus, Equation (7.56) vanishes,6 as per Equation (D.7) of
Appendix D.

Nonetheless, the radial velocity curve exhibits a generally nonvanishing
oblateness-driven instantaneous shift which can be analytically worked out accord-
ing to Equations (2.77)–(2.78) by using Equations (2.83)–(2.87) along with Equa-
tions (7.16)–(7.21) and Equation (7.47) calculated for both bodies. By replacing f
with f0 + 2π in the resulting expression allows one to obtain the net shift per orbit.

In general, the products J ?2 R2
? and Jp

2 R2
p might be of comparable magnitude for an

exoplanet and its Sunlike parent star; for the Sun and Jupiter, they amount to 9.6×
1010 m2 and 7.5 × 1013 m2, respectively, as per Table J.1 and Table J.3. However,
the same caveat about faster rotators than the Sun and the tidally synchronized
diurnal rotation of the hosted exoplanet raised in Section 5.6 holds also in this
case. Instead, for the SMBH in Sgr A∗, whose quadrupole mass moment Q•2 is
calculated according to Equation (5.16) and Equation (7.11) along with M• = 4.1×
106 M�, χg = 0.5 (Peißker et al., 2022), and a Sunlike star, the BH’s term turns out
to be up to eight orders of magnitude larger than the stellar one.

Figure 7.7 shows the plot of the resulting signature for a fictitious tight exoplan-
etary system made of a Sunlike star and a gaseous giant planet p whose mass and
radius are assumed to be those of Jupiter, and whose first even zonal harmonic Jp

2 is
calculated according to Equations (7.4)–(7.5) and Equation (5.4) in the hypothesis
that tides have synchronized its orbital and diurnal rotations. Furthermore, all the
three angular momenta of the system are aligned. By varying the orbital period TK

from 0.15 to 0.35 d in such a way that the star–planet relative distance, in units of
R?+Rp, ranges from 1.08 to 1.9, it turns out that the peak-to-peak amplitude of the
J2 nominal shift can reach the level of about ' 10− 200 m/s over 1 day.

5 As an example, K2–137b (Smith et al., 2018) orbits its parent star in just 0.18 d = 4.3 hr.
6 It should be recalled that the unit vectors l̂, m̂, ĥ are mutually perpendicular, as per Equations (2.9)–(2.10)

and Equation (2.25).

https://doi.org/10.1017/9781009562911.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009562911.007


7.6 The Characteristic Timescales of Transiting Exoplanets 137

Figure 7.7 Analytically produced time series, in m/s, of the oblateness–driven
shift1V (t)J2 of the radial velocity curve of a fictitious tight exoplanetary system.
It is made of a main sequence star with the same mass, radius and quadrupole
mass moment of the Sun, and a gaseous giant planet p with the same mass and
radius of Jupiter; Jp

2 is calculated with Equations (7.4)–(7.5) and Equation (5.4) by
assuming that its rotational frequency is synchronized with the orbital one due to
tides. Different values of the orbital period TK are assumed, so that the star–planet
relative distance, in units of R? + Rp, ranges from 1.08 to 1.9. The other relevant
orbital parameters, chosen arbitrarily, are I = 45◦,� = 30◦,ω = 50◦, η = 20◦.
It is assumed that tidal effects have either circularized the orbit, so that e = 0,
and reciprocally aligned all the angular momenta of the system. Since p cannot be
considered a test particle, J2R2

e in Equations (7.16)–(7.21) and Equation (7.47) is
replaced with J?2 R2

? + Jp
2 R2

p, in agreement with Equation (7.12), to be used along
with Equations (2.83)–(2.87) in Equation (2.77) and Equation (2.78).

Figure 7.8 depicts the net shift per orbit 1K
Q2 of the radial velocity semi-

amplitude for the S star S4716 (Peißker et al., 2022). It is plotted according to
Equation (7.56), calculated with Equation (7.7) and Equation (7.11), as a function
of the angles i• and ζ• of the BH’s spin axis assumed as independent variables. It

turns out that
∣∣∣1K

Q2
∣∣∣, which can also vanish for some values of ζ•, i•, is . 0.0002

km/s; it is several orders of magnitude smaller than the uncertainties quoted in
Peißker et al. (2022).

7.6 The Characteristic Timescales of Transiting Exoplanets

Here, the oblateness-driven net shifts per orbit of the characteristic timescales
of transiting exoplanets are calculated in their full generality. In the following
expressions, it is intended that J2R2

e T̂j, j = 1, 2, . . . 5 is a shorthand for

J ?2 R2
?T̂

?
j + Jp

2 R2
pT̂p

j , j = 1, 2, . . . 5. (7.57)

https://doi.org/10.1017/9781009562911.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009562911.007


138 Newtonian Effects: Mass Quadrupole(s)

Figure 7.8 Plot of the oblateness-driven net shift per orbit 1K
Q2 , in km/s, of the

radial velocity semiamplitude of the recently discovered S star S4716 (Peißker
et al., 2022) as a function of the angles i• and ζ• characterizing the orientation of
the BH’s spin axis Ĵ• in space, assumed completely unconstrained. The relevant
orbital parameters of S4716 are TK = 4.02 yr, e = 0.756, I = 161.24◦, � =
151.54◦ (Peißker et al., 2022). For the BH, the values M• = 4.1× 106 M�, χg =

0.5 are used for its mass and spin parameter (Peißker et al., 2022).

7.6.1 The Total Transit Duration δtD

From Equations (2.102)–(2.105) and the shifts obtainable from Equations (7.28)–
(7.33), it turns out

1δtD
J2
=

3πJ2R2
e

nKa2R?
(
1− e2

)3/2√
(1+ ϑ)2 − b2

(
1+ e2 + 2e sinω

)3/2
(1+ e sinω)3{

−a2 (1− e2)2
T̂4 sin 2I (1+ e sinω)

(
1+ e2

+ 2e sinω
)

+ e cosω
(
2T̂1 − 3T̂2 + 2T̂5 cot I

) [
−R2

? (1+ ϑ)
2 (1+ e sinω)3

+ a2 (1− e2)2
cos2 I

(
2+ e2

+ 3e sinω
)]}

. (7.58)

It should be noted that Equation (7.58) does not vanish for circular orbits, being its
first nonvanishing term just of zeroth order in e.

7.6.2 The Ingress/Egress Transit Duration δti/e

From Equations (2.108)–(2.111) and the shifts obtainable from Equations (7.28)–
(7.33), it turns out
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1δti/e
J2
=

3πJ2R2
e

2nKR?a3
(
1− e2

)3/2 (
1+ e2 + 2e sinω

)3/2(
−

a2
(
1− e2

)2
T̂4 sin 2I

(
1+ e2

+ 2e sinω
)

(1+ e sinω)2

[
1√

(1+ ϑ)2 − b2

−
1√

(1− ϑ)2 − b2

]

+R2
?e cosω

(
2T̂1 − 3T̂2 + 2T̂5 cot I

) {√
(1− ϑ)2 − b2

−

√
(1+ ϑ)2 − b2 +

a2
(
1− e2

)2
cos2 I

(
1+ e2

+ 2e sinω
)

R2
? (1+ e sinω)3[

1√
(1+ ϑ)2 − b2

−
1√

(1− ϑ)2 − b2

]})
. (7.59)

It should be noted that Equation (7.59) does not vanish for circular orbits, being its
first nonvanishing term just of zeroth order in e.

7.6.3 The Full Width at Half Maximum Primary Transit Duration δtH

From Equations (2.115)–(2.118) and the shifts obtainable from Equations (7.28)–
(7.33), it turns out that

1δtH
J2
=

3πJ2R2
e

2nKR?a3
(
1− e2

)3/2 (
1+ e2 + 2e sinω

)3/2(
−

a2
(
1− e2

)2
T̂4 sin 2I

(
1+ e2

+ 2e sinω
)

(1+ e sinω)2

[
1√

(1+ ϑ)2 − b2

+
1√

(1− ϑ)2 − b2

]

+R2
?e cosω

(
2T̂1 − 3T̂2 + 2T̂5 cot I

) {
−

√
(1− ϑ)2 − b2

−

√
(1+ ϑ)2 − b2 +

a2
(
1− e2

)2
cos2 I

(
1+ e2

+ 2e sinω
)

R2
? (1+ e sinω)3[

1√
(1+ ϑ)2 − b2

+
1√

(1− ϑ)2 − b2

]})
. (7.60)
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It should be noted that Equation (7.60) does not vanish for circular orbits, since its
first nonvanishing term is only of zeroth order in e.

7.6.4 The Time of Inferior Conjunction tcj

From Equations (2.121)–(2.124) and the shifts obtainable from Equations (7.28)–
(7.33), it turns out

1tcj
J2
= −

3πJ2R2
e

2nKa2
(
1− e2

)3/2
(1+ e sinω)2

{
−2

(
1− e2) T̂5 cot I

+
(
2T̂1 − 3T̂2

) [
2− e2

+ e sinω (2+ e sinω)
]}

. (7.61)

7.6.5 A Numerical Evaluation

Figure 7.9 displays the plots of Equations (7.58)–(7.61) for a Jovian-type exo-
planet transiting in front of its Sunlike host star, seen edge-on, as functions of

Figure 7.9 Plots of the net shifts per orbit 1δtD
J2 , 1δti/e

J2 , 1δtH
J2 , 1tcj

J2 of
a fictitious Sun–Jupiter exoplanetary system, seen edge-on, as functions of the
minimum star–planet distance rmin, in units of R?+Rp, for different values of the
e according to Equations (7.58)–(7.61). The values I = 90◦,ω = 50◦ are used for
the relevant orbital parameters; all the three angular momenta are assumed to be
aligned. The units are s.
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the minimum distance rmin, ranging from 1.1 to 20 R? + Rp, for various values of
e and by assuming that both the stellar and planetary angular momenta are aligned
with the orbital angular momentum. It can be noted that the largest effect occurs
for the time of inferior conjunction whose shift per orbit is at the ' 1 − 4 s level.
Instead, the variations of the other timescales are of the order of ' 0.01− 0.1 s.

7.7 The Sky-Projected Spin-Orbit Angle of Transiting Exoplanets

According to Equation (2.126), the rate of change of the sky-projected spin-orbit
angle λ of a transiting exoplanet is equal to the node precession, provided that the
angular momentum of the host star can be considered as constant.

By expressing the stellar spin axis as in Equation (5.85), it turns out, from
Equation (7.31), Equation (5.85), Equations (D.2)–(D.3), and Equation (D.8) of
Appendix D, that the J2-driven precession of λ is〈

dλ

dt

〉J2

=

〈
d�

dt

〉J2

=
3nKJ ?2 R2

? cos λ sin 2i?

4a2
(
1− e2

)2 . (7.62)

In Equation (7.62), only the quadrupole mass moment of the host star, assumed to
be as fast rotating as Kelt–9, appears since it turns out that its product by the stellar
radius squared is some orders of magnitude larger than that of a typical close–in,
tidally synchronized Jovian-type exoplanet.

In Figure 7.10, Equation (7.62) is plotted as a function of i? for the exoplanet
Kelt–9b. It can be noted that the J2-induced secular rate of λ ranges from ' 0.3 to
' 0.5◦/yr within the allowed observational interval for i?.

7.8 The Variation of the Times of Arrival of Binary Pulsars

For a binary pulsar, the instantaneous shift of δ̃tpsr can be obtained from Equa-
tion (2.77) calculated with Equations (2.130)–(2.134), Equations (7.16)–(7.21), and
Equation (7.47). By replacing f with f0 + 2π in the resulting expression, the net
variation per orbit is inferred.

Figure 7.11 displays the instantaneous shifts 1δ̃tpsr (t)
Q2 of a fictitious binary

pulsar whose companion is a white dwarf obtained by varying TK and e in such a
way that the periastron distance is kept fixed to, say, rmin = 1.8 × 106 km. For the
masses and the quadrupole mass moments, the values of PSR J1141–6545 (Anto-
niadis et al., 2011; Iorio, 2020a; Venkatraman Krishnan et al., 2020) are taken. It is
assumed that both the rotational axes of the pulsar and the white dwarf are aligned
with the orbital angular momentum. It turns out that the peak-to-peak amplitudes
of the signals may be as large as ' 0.4− 0.8 ms over 5 d.
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Figure 7.10 Plot of the J2–induced averaged precession, in ◦/yr, of the sky-
projected spin-orbit angle λ of the transiting exoplanet Kelt–9b as a function
of the tilt i? to the line of sight of the spin axis of its host star according to
Equation (7.62). The physical parameters of the star and the planet are retrieved
from Tables A.1 and A.2 of Albrecht et al. (2022) as well as the range of the
admitted values for i?. The stellar quadrupole mass moment J?2 is calculated with
Equation (7.4).

Figure 7.11 Plot of the quadrupole-induced instantaneous shift 1δ̃tpsr (t)Q2 , in
ms, of a binary pulsar with a white dwarf as companion for different values of TK
and e in such a way that rmin = 1.8 × 106 km. The relevant orbital parameters
are I = 75◦, ω = 42.457◦, � = 50◦, η = 20◦. For the stellar corpses, the
values Mpsr = 1.27 M�, Mwd = 1.02 M�,

∣∣Qpsr
2

∣∣ ' 3 × 1037 kg m2,
∣∣Qwd

2

∣∣ '
4.5× 1042 kg m2, taken from those of PSR J1141–6545 (Antoniadis et al., 2011;
Iorio, 2020a; Venkatraman Krishnan et al., 2020), are used. It is assumed that both
the individual angular momenta and the orbital angular momentum are aligned.

7.9 The Astrometric Angles RA and dec.

For a test particle and a massive primary, as in the case of the S stars and Sgr
A∗, the instantaneous shifts of the RA and dec. can be obtained from Equa-
tion (2.77) calculated with Equations (2.137)–(2.143), Equations (7.16)–(7.21), and
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Figure 7.12 Plot of the oblateness-driven instantaneous shift 1α (t)Q2 , in ′′, of
the RA of a fictitious S star for different values of TK and e in such a way that
rmin = 1250R•. The relevant stellar orbital parameters are I = 161.24◦, � =
151.54◦, ω = 0.073◦, η = 20◦. For the BH, the values M• = 4.1×106 M�, χg =

0.5 are used for its mass and spin parameter (Peißker et al., 2022). Furthermore,
the orientation of its spin axis is set by, say, i• = 30◦, ζ• = 150◦.

Figure 7.13 Plot of the oblateness-driven instantaneous shift 1δ (t)Q2 , in ′′, of
the dec. of a fictitious S star for different values of TK and e in such a way that
rmin = 1250R•. The relevant stellar orbital parameters are I = 161.24◦, � =
151.54◦, ω = 0.073◦, η = 20◦. For the BH, the values M• = 4.1×106 M�, χg =

0.5 are used for its mass and spin parameter (Peißker et al., 2022). Furthermore,
the orientation of its spin axis is set by, say, i• = 30◦, ζ• = 150◦.

Equation (7.47). By replacing f with f0 + 2π in the resulting expressions, the net
variations per orbit are inferred.

Figures 7.12 and 7.13 display the instantaneous shifts 1α (t) ,1δ (t) of the RA
and the dec. of a fictitious S star obtained by varying TK and e in such a way that the
stellar perinigricon distance is kept fixed to rmin = 1250R•. The SMBH’s quadru-
pole mass moment Q•2 is calculated with Equation (5.16) and Equation (7.11), and
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Figure 7.14 Analytically produced time series, in m, of the two-body range
shift 1ρ (t) due to the Sun’s quadrupole mass moment J�2 for A=Mercury
and B=Earth plotted over 2 yr. It was worked out by calculating Equa-
tions (2.149)–(2.151) entering Equations (2.147)–(2.148) with Equations (7.16)–
(7.21), Equation (7.47), and Equation (2.4). The initial values of the Keplerian
orbital elements of both planets, referred to as the International Celestial Refer-
ence Frame (ICRF), were retrieved from the WEB interface Horizons System
at https://ssd.jpl.nasa.gov/horizons/, maintained by the Jet Propulsion Labora-
tory (JPL) of the National Aeronautics and Space Administration (NASA), and
accessed 12 February 2024. The values J�2 = 2.2 × 10−7 (Park et al., 2017;
Mecheri and Meftah, 2021) and αJ� = 286◦.13, δJ� = 63◦.87 (Seidelmann et al.,
2007) were adopted for the Sun’s oblateness and the orientation of its spin axis.
For the solar standard gravitational parameter and equatorial radius, see Table J.1.

the orientation of its spin axis is set equal to, say, i• = 30◦, ζ• = 150◦. It turns
out that the Q2-induced astrometric signatures can be as large as . 0.01 − 0.1

′′

,
depending on the star’s orbital period and eccentricity.

7.10 The Two-Body Range and Range Rate

Here, Equations (7.16)–(7.20), along with Equation (7.21) and Equation (7.47) for
the shift of the mean anomaly, are used in Equation (2.147) and Equation (2.152)
to analytically calculate the time series of the range and range rate shifts for A =
Mercury and B = Earth due to the Sun’s oblateness J�2 .

Figures 7.14–7.15 plot the resulting signals, obtained by introducing the depend-
ence on time t through the mean anomaly by means of Equation (2.4) and Equa-
tions (2.158)–(2.159), over 2 yr, which is the expected duration of the extended
phase of the BepiColombo mission (Benkhoff et al., 2010, 2021) from 2026 to
2028.7 It turns out that the peak-to-peak nominal amplitudes of the range and range
rate shifts can reach the ' 800 m and ' 700 µm/s level, respectively.

7 See www.esa.int/Science_Exploration/Space_Science/BepiColombo/BepiColombo_factsheet. Accessed 19
January 2024.
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Figure 7.15 Analytically produced time series, in µm/s, of the two-body range
rate shift 1ρ̇ (t) due to the Sun’s quadrupole mass moment J�2 for A=Mercury
and B=Earth plotted over 2 yr. It was worked out by calculating Equa-
tions (2.155)–(2.157) entering Equations (2.152)–(2.154) with Equations (7.16)–
(7.21), Equation (7.47), and Equation (2.4). The initial values of the Keplerian
orbital elements of both planets, referred to as the International Celestial Refer-
ence Frame (ICRF), were retrieved from the WEB interface Horizons System
at https://ssd.jpl.nasa.gov/horizons/, maintained by the Jet Propulsion Labora-
tory (JPL) of the National Aeronautics and Space Administration (NASA), and
accessed 12 February 2024. The values J�2 = 2.2 × 10−7 (Park et al., 2017;
Mecheri and Meftah, 2021) and αJ� = 286◦.13, δJ� = 63◦.87 (Seidelmann et al.,
2007) were adopted for the Sun’s oblateness and the orientation of its spin axis.
For the solar standard gravitational parameter and equatorial radius, see Table J.1.

An integration of the equations of motion with and without Equation (7.1) gen-
erated corresponding numerical time series differing from the aforementioned
analytical ones by . 3 m and . 6 µm/s level over 2 years, respectively.
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1pN Gravitoelectric Effects: Mass Quadrupole

The oblateness of the primary impacts the orbital motion of a test particle not
only at the Newtonian level, as shown in Chapter 7, but also to the 1pN order
(Soffel et al., 1987; Soffel, 1989; Heimberger et al., 1989; Brumberg, 1991; Huang
and Liu, 1992; Will, 2014; Iorio, 2015b, 2023e, 2024a). It occurs both directly
because of a specific pK acceleration AJ2/c2

of the order of O
(
J2/c2

)
entering

the equations of motion, and indirectly due to the interplay between the 1pN
monopole acceleration of Equation (3.1) and the Newtonian quadrupolar one of
Equation (7.1).

In view of their generally small sizes, such effects have not yet been studied in
detail nor have they been put to the test in any astronomical scenarios.

Proposals for spacecraft-based missions in the field of Earth and Jupiter recently
appeared in the literature (Iorio, 2013a, 2019a,g, 2024a); in Iorio et al. (2019), it
was suggested to look at binary pulsars whose companion is a fast rotating main
sequence star as well.

To this aim, it should be remarked that the mixed signatures, which nonetheless
contribute to the overall orbital evolution to the order of O

(
J2/c2

)
, may not be

measurable independently of other dynamical features of motion. Indeed, they do
not come from any new pK acceleration, still unmodelled in the softwares used
worldwide to process data. If it were so, it could be possible, at least in prin-
ciple, to include it in the dynamical models and estimate some dedicated solve-for
parameters in the usual least-square approach. On the other hand, the standard pK
accelerations of Equation (3.1) and Equation (7.1) are accurately modelled; thus,
just very tiny signatures, due to the current level of mismodelling in the latter ones,
would impact the post-fit residuals produced in data analyses.

146
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8.1 The Direct Effects

By inserting the Newtonian potential of Equation (7.3) up to degree ` = 2 in the
1pN Lagrangian of Equation (C.10) in Appendix C, a new acceleration of the order
of O

(
J2/c2

)
arises from the Lagrange equations of motion

d∇vLJ2/c2

dt
= ∇LJ2/c2

. (8.1)

It can be cast into the form (Will, 2014)

AJ2/c2
=

µJ2R2
e

c2r4

{
3

2

[(
5r2

J − 1
)

r̂ − 2rJ Ĵ
](

v2
−

4µ

r

)
− 6

[(
5r2

J − 1
)

vr − 2rJ vJ
]

v−
2µ

r

(
3r2

J − 1
)

r̂

}
, (8.2)

where rJ is defined as in Equation (5.19), and

vJ := v · Ĵ (8.3)

is the projection of the velocity v on the direction of J ; for previous derivations in
a reference frame whose z-axis is aligned with J , see Soffel et al. (1987), Soffel
(1989), Brumberg (1991), and Huang and Liu (1992). Here, it is proposed to dub
Equation (8.2) as Brumberg–Soffel (BS) acceleration.

By projecting Equation (8.2) onto the unit vectors r̂, τ̂ , ĥ defined in Equa-
tions (2.23)–(2.25) and by using Equations (2.7)–(2.8) along with Equation (2.11),
its radial, transverse, and normal components are obtained; they turn out to be

AJ2/c2

r =−
µ2J2R2

e (1+ e cos f )4

4c2a5
(
1− e2

)5

((
−2T̂1 + 3T̂2

) (
−13− 3e2

− 10e cos f + 6e2 cos 2f
)
+ 3T̂3

{
e2 cos 2ω −

(
13+ 3e2) cos 2u

+ e [5e cos (4f + 2ω)− 9 cos (f + 2ω)− cos (3f + 2ω)]}

+ 6T̂6
{
e2 sin 2ω −

(
13+ 3e2) sin 2u+ e [5e sin (4f + 2ω)

− 9 sin (f + 2ω)− sin (3f + 2ω)]}) , (8.4)

AJ2/c2

τ =−
3µ2J2R2

e (1+ e cos f )4

2c2a5
(
1− e2

)5

[(
−3+ e2

− 2e cos f
) (

2T̂6 cos 2u

− T̂3 sin 2u
)
+ (1+ e cos f )

(
−8T̂6 cos 2u+ 4T̂3 sin 2u

+ e
{
2T̂6

[
cos ( f + 2ω)− 5T̂1 cos (3f + 2ω)

]
+
(
−4T̂1 + 6T̂2

)
sin f − T̂3 sin (f + 2ω)

+ 5T̂3 sin (3f + 2ω)
})]

, (8.5)
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AJ2/c2

h =−
3µ2J2R2

e (1+ e cos f )4
(
−3+ e2

− 2e cos f
)

c2a5
(
1− e2

)5

(
T̂4 cos u+ T̂5 sin u

)
.

(8.6)

The coefficients T̂j, j = 1, 2, . . . 6 entering Equations (8.4)–(8.6) are listed in
Equations (D.4)–(D.9) of Appendix D.

The orbital effects of the order of O
(
J2/c2

)
induced by Equation (8.2) are

dubbed as direct.

8.1.1 The Net Orbital Precessions

The averaged orbital precessions induced by Equation (8.2) were calculated in their
full generality in Iorio (2015b) and, in a more compact form, in Iorio (2024a). For
other derivations obtained by orienting Ĵ along the z-axis of the reference frame
chosen, see Soffel et al. (1987), Brumberg (1991), and Huang and Liu (1992).

By inserting Equations (8.4)–(8.6) in the machinery of Equations (2.13)–(2.18)
yields the averaged precessions of the orbital elements for an arbitrary orientation
of Ĵ . They turn out to be

〈
da

dt

〉J2/c2

= −
9e2

(
6+ e2

)
nKµJ2R2

e

(
T̂3 sin 2ω − 2T̂6 cos 2ω

)
8c2a2

(
1− e2

)4 , (8.7)

〈
de

dt

〉J2/c2

= −
21e

(
2+ e2

)
nKµJ2R2

e

(
T̂3 sin 2ω − 2T̂6 cos 2ω

)
16c2a3

(
1− e2

)3 , (8.8)

〈
dI

dt

〉J2/c2

=
3nKµJ2R2

e

[
T̂4
(
6+ e2 cos 2ω

)
+ e2T̂5 sin 2ω

]
4c2a3

(
1− e2

)3 , (8.9)

〈
d�

dt

〉J2/c2

= −
3nKµJ2R2

e csc I
[
−e2T̂4 sin 2ω + T̂5

(
−6+ e2 cos 2ω

)]
4c2a3

(
1− e2

)3 , (8.10)

〈
dω

dt

〉J2/c2

= −
3nKµJ2R2

e

16c2a3
(
1− e2

)3

{(
−8+ 3e2) (

−2T̂1 + 3T̂2
)

+ 14T̂3 cos 2ω + 4
[
e2T̂4 cot I sin 2ω

+ T̂5 cot I
(
6− e2 cos 2ω

)
+ 7T̂6 sin 2ω

]}
, (8.11)〈

dη

dt

〉J2/c2

=
nKµJ2R2

e

16c2a3
(
1− e2

)5/2

[(
80+ 73e2) (

−2T̂1 + 3T̂2
)

+ 42
(
1+ 2e2) (T̂3 cos 2ω + 2T̂6 sin 2ω

)]
. (8.12)
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Some Special Orbital Configurations

Here, some peculiar orbital configurations, characterized in Appendix D, are
examined (Iorio, 2024a).

Let, first, the satellite’s orbital plane be assumed coincident with the body’s
equatorial one, irrespective of the orientation of the latter in the adopted reference
frame, namely for generic values of αJ , δJ . Then, according to Equations (D.17)–
(D.25) of Appendix D, Equations (8.7)–(8.12) reduce to

〈
da

dt

〉J2/c2

= 0, (8.13)〈
de

dt

〉J2/c2

= 0, (8.14)〈
dI

dt

〉J2/c2

= 0, (8.15)〈
d�

dt

〉J2/c2

= 0, (8.16)〈
dω

dt

〉J2/c2

= −
3nKµJ2R2

e

(
8− 3e2

)
8c2a3

(
1− e2

)3 , (8.17)

〈
dη

dt

〉J2/c2

= −
nKµJ2R2

e

(
80+ 73e2

)
8c2a3

(
1− e2

)5/2 . (8.18)

Equations (8.17)–(8.18) are genuine secular trends.
Let, now, the body’s spin axis, irrespective of its orientation in the adopted

coordinate system, namely for generic values of αJ , δJ , lie somewhere in the sat-
ellite’s orbital plane between l̂ and m̂. Then, according to Equations (D.26)–(D.34)
of Appendix D, Equations (8.7)–(8.12) can be written as

〈
da

dt

〉J2/c2

=
9e2

(
6+ e2

)
nKµJ2R2

e sin [2 (δJ − ω)]

8c2a2
(
1− e2

)4 , (8.19)

〈
de

dt

〉J2/c2

=
21e

(
2+ e2

)
nKµJ2R2

e sin [2 (δJ − ω)]

16c2a3
(
1− e2

)3 , (8.20)

〈
dI

dt

〉J2/c2

= 0, (8.21)〈
d�

dt

〉J2/c2

= 0, (8.22)
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〈
dω

dt

〉J2/c2

= −
3nKµJ2R2

e

{
−8+ 3e2

+ 14 cos [2 (δJ − ω)]
}

16c2a3
(
1− e2

)3 , (8.23)

〈
dη

dt

〉J2/c2

=
nKµJ2R2

e

{
80+ 73e2

+ 42
(
1+ 2e2

)
cos [2 (δJ − ω)]

}
16c2a3

(
1− e2

)5/2 . (8.24)

Equations (8.19)–(8.20) and Equations (8.23)–(8.24), in addition to secular trends,
also include long-period signatures due to the evolution of pericentre which is
dominated by the Newtonian perturbation due to J2 (see Section 7.1).

8.2 The Mixed Effects

If both Equation (3.1) and Equation (7.1) are simultaneously taken into account,
indirect, or mixed, effects of the order of O

(
J2/c2

)
arise as well. Their net

shifts per orbit and their averaged precessions can be calculated as explained in
Section 2.2.3.

8.2.1 The Net Orbital Shifts

Equation (2.39), applied to Equation (3.1) and Equation (7.1) and calculated with
Equations (3.6)–(3.10) and Equations (7.16)–(7.20), allows one to obtain the total
mixed shifts per orbit of order O

(
J2/c2

)
with the replacement f → f0 + 2π in the

resulting expressions. For previous derivations with another orbital parametrization
and with the z-axis aligned with Ĵ , see Heimberger et al. (1989). The Keplerian
orbital elements and the same reference frame were used by Will (2014). The mixed
orbital effects were computed in their full generality in Iorio (2015b), and, in a more
compact form, in Iorio (2023e). They are (Iorio, 2023e)

1a
J2/c2

mix =
9πJ2R2

eµ

4c2a2
(
1− e2

)4 Ã
J2/c2

, (8.25)

1e
J2/c2

mix = −
3πJ2R2

eµ

8c2a3
(
1− e2

)3 Ẽ
J2/c2

, (8.26)

1I
J2/c2

mix = −
3πJ2R2

eµ

c2a3
(
1− e2

)3 Ĩ
J2/c2

, (8.27)

1�
J2/c2

mix = −
3πJ2R2

eµ csc I

c2a3
(
1− e2

)3 Ñ
J2/c2

, (8.28)

1ω
J2/c2

mix = −
3πJ2R2

eµ csc I

16c2a3e
(
1− e2

)3 P̃
J2/c2

, (8.29)
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1η
J2/c2

mix = −
3πJ2R2µ

16c2a3e
(
1− e2

)7/2 H̃
J2/c2

, (8.30)

where

ÃJ2/c2
:=

6∑
j=1

ÃJ2/c2

j T̂j, (8.31)

ẼJ2/c2
:=

6∑
j=1

ẼJ2/c2

j T̂j, (8.32)

ĨJ2/c2
:=

6∑
j=1

ĨJ2/c2

j T̂j, (8.33)

Ñ J2/c2
:=

6∑
j=1

Ñ J2/c2

j T̂j, (8.34)

P̃J2/c2
:=

6∑
j=1

P̃J2/c2

j T̂j, (8.35)

H̃J2/c2
:=

6∑
j=1

H̃J2/c2

j T̂j. (8.36)

The explicit forms of the coefficients ÃJ2/c2

1 , . . . H̃J2/c2

6 entering Equations (8.31)–
(8.36) are displayed in Appendix G.

As explained in Section 2.2.3, the ratios of Equations (8.25)–(8.30) to TK do not
yield the total mixed averaged orbital precessions of the order of O

(
J2/c2

)
; see

Section 8.2.2 for the calculation of the required additional contributions.

Some Special Orbital Configurations

Here, some peculiar orbital configurations, characterized in Appendix D, are
examined (Iorio, 2023e).

Let, first, the satellite’s orbital plane be assumed coincident with the body’s
equatorial one, irrespective of the orientation of the latter in the adopted reference
frame, namely for generic values of αJ , δJ . Then, according to Equations (D.17)–
(D.25) of Appendix D, Equations (8.25)–(8.30) reduce to

1a
J2/c2

mix = 0, (8.37)

1e
J2/c2

mix = 0, (8.38)

1I
J2/c2

mix = 0, (8.39)
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1�
J2/c2

mix = 0, (8.40)

1ω
J2/c2

mix =
3πJ2R2

eµ
(
44+ 17e2

− 64e cos f0
)

4c2a3
(
1− e2

)3 , (8.41)

1η
J2/c2

mix =
3πJ2R2

eµ

4c2a3
(
1− e2

)7/2

(
−88+ 16

√
1− e2

+ e2
[
63− 5e2

+ 24
√

1− e2
]

+ e
{

3e2
[
7+ 4

√
1− e2

]
+ 8

[
−17+ 6

√
1− e2

]}
cos f0

+ 8e2
[
−5+ 3

√
1− e2

]
cos 2f0

+ e3
[
−5+ 4

√
1− e2

]
cos 3f0

)
. (8.42)

Let, now, the body’s spin axis, irrespective of its orientation in the adopted
coordinate system, namely for generic values of αJ , δJ , lie somewhere in the sat-
ellite’s orbital plane between l̂ and m̂. Then, according to Equations (D.26)–(D.34)
of Appendix D, Equations (8.25)–(8.30) can be written as

1a
J2/c2

mix = −
9πJ2R2

eµ

4c2a2
(
1− e2

)4

{
e3 sin (f0 + 2δJ − 2ω)

+ e2 (12+ e2) sin (2δJ − 2ω)

− 2
[
4+ 6e2

+ 3e
(
4+ e2) cos f0

]
sin (2f0 − 2δJ + 2ω)

− 6e2 sin (4f0 − 2δJ + 2ω)− e3 sin (5f0 − 2δJ + 2ω)
}

, (8.43)

1e
J2/c2

mix =
3πJ2R2

eµ

8c2a3
(
1− e2

)3
{4 [3 sin (f0 − 2δJ + 2ω)

+ 7 sin (3f0 − 2δJ + 2ω)]

+ e
[
−3e sin (f0 + 2δJ − 2ω)−

(
20+ 19e2) sin (2δJ − 2ω)

+ 60 sin (2f0 − 2δJ + 2ω)

+ 18 sin (4f0 − 2δJ + 2ω)+ 33e sin (f0 − 2δJ + 2ω)

+ 17e sin (3f0 − 2δJ + 2ω)+ 3e sin (5f0 − 2δJ + 2ω)]} , (8.44)

1I
J2/c2

mix = 0, (8.45)

1�
J2/c2

mix = 0, (8.46)
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1ω
J2/c2

mix = −
3πJ2R2

eµ

8c2a3e
(
1− e2

)3

((
−12+ 45e2) cos ( f0 − 2δJ + 2ω)

+
(
28+ 19e2) cos (3f0 − 2δJ + 2ω)

+ e
{
2
(
−10+ 9e2) cos (2δJ − 2ω)+ 60 cos (2f0 − 2δJ + 2ω)

+ 18 cos (4f0 − 2δJ + 2ω)+ 3e cos (5f0 − 2δJ + 2ω)

+ 44+ 17e2
− e [64 cos f0 + 3 cos ( f0 + 2δJ − 2ω)]

})
, (8.47)

1η
J2/c2

mix = −
3πJ2R2

eµ

16c2a3e
(
1− e2

)7/2

[
−2e

{
88+ 5e4

− 16
√

1− e2

− 3e2
(

21+ 8
√

1− e2
)

− e
[
3e2

(
7+ 4

√
1− e2

)
+ 8

(
−17+ 6

√
1− e2

)]
cos f0

+ e2
[
8
(

5− 3
√

1− e2
)

cos 2f0

+ e
(

5− 4
√

1− e2
)

cos 3f0
]}

+ cos 2δJ
{
3e2 (2− 7e2) cos ( f0 − 2ω)

− 2e
(
−20+ 7e2

+ 13e4) cos 2ω + 12e
[
−14− 11e2

+ 8
√

1− e2 (1+ e cos f0)
3
]

cos 2u0

− 18e
(
2+ 3e2) cos (4f0 + 2ω)

− 3
(
−8+ 74e2

+ 9e4) cos (f0 + 2ω)

−
(
4+ e2) (14+ 31e2) cos (3f0 + 2ω)

− 3e2 (2+ 3e2) cos (5f0 + 2ω)
}

− sin 2δJ

(
3e2

[
2+ e2

(
−7+ 4

√
1− e2

)]
sin (f0 − 2ω)

+ 2e
[
−20+ 13e4

+ e2
(

7− 36
√

1− e2
)]

sin 2ω

+ 12e
[
14− 8

√
1− e2 + e2

(
11− 12

√
1− e2

)]
sin 2u0

+ 18e
[
2+ e2

(
3− 4

√
1− e2

)]
sin (4f0 + 2ω)

+

{
−24+ 3e2

[
74− 48

√
1− e2

+ e2
(

9− 12
√

1− e2
)]}

sin (f0 + 2ω)

+

{
56+ e2

[
138− 144

√
1− e2

+ e2
(

31− 36
√

1− e2
)]}

sin (3f0 + 2ω)

+ 3e2
[
2+ e2

(
3− 4

√
1− e2

)]
sin (5f0 + 2ω)

)]
. (8.48)
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8.2.2 The Net Orbital Precessions

As explained in Section 2.2.3, the calculation of the total mixed orbital preces-
sions is not limited just to the ratios of Equations (8.25)–(8.30) to TK; further
contributions are needed (Iorio, 2023e), which are calculated as follows.

By using the 1pN gravitoelectric anomalistic period of Equation (3.24) with the
J2 net shifts per orbit obtainable from Equations (7.28)–(7.33) and the J2 anom-
alistic period of Equation (7.50) with the 1pN gravitoelectric net shifts per orbit
obtainable from Equations (3.13)–(3.18), one finally gets〈

da

dt

〉J2/c2

mix

= 0, (8.49)〈
de

dt

〉J2/c2

mix

= 0, (8.50)〈
dI

dt

〉J2/c2

mix

=
9nKJ2R2

eµT̂4

4c2a3
(
1− e2

)4

[
6+ 7e2

+ 2e4

+ 2e
(
7+ 3e2) cos f0 + 5e2 cos 2f0

]
, (8.51)〈

d�

dt

〉J2/c2

mix

=
9nKJ2R2

eµT̂5 csc I

4c2a3
(
1− e2

)4

[
6+ 7e2

+ 2e4

+ 2e
(
7+ 3e2) cos f0 + 5e2 cos 2f0

]
, (8.52)〈

dω

dt

〉J2/c2

mix

=
9nKJ2R2

eµ

8c2a3
(
1− e2

)4

{[
6+ 7e2

+ 2e4
+ 2e

(
7+ 3e2) cos f0

+ 5e2 cos 2f0
] (
−2T̂1 + 3T̂2 − 2T̂5 cot I

)
+ 2 (1+ e cos f0)

3 [2T̂1 − 3
(
T̂2 + T̂3 cos 2u0

)
− 6T̂6 sin 2u0

]}
, (8.53)〈

dη

dt

〉J2/c2

mix

= −
9nKJ2R2

eµ

8c2a3
(
1− e2

)7/2

{(
2T̂1 − 3T̂2

) [
6+ 7e2

+ 2e4

+ 2e
(
7+ 3e2) cos f0 + 5e2 cos 2f0

]
+ 2

(
5− 2

√
1− e2

)
(1+ e cos f0)

3 [2T̂1

− 3
(
T̂2 + T̂3 cos 2u0

)
− 6T̂6 sin 2u0

]}
. (8.54)

Equations (8.49)–(8.54) add to the ratios of Equations (8.25)–(8.30) to the Kepler-
ian orbital period TK in order to give the total mixed orbital precessions of the order
of O

(
J2/c2

)
, as pointed out in Section 2.2.3.
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9

pK Tidal Effects: Distant 3rd Body

If a gravitationally bound two-body (restricted) system S, made of a primary of
mass M and a test particle orbiting it, freely moves in the exterior, generally non-
uniform gravitational field of a distant, external massive object1 of mass M

′

�M ,
tidal effects affect the internal dynamics of the former to the Newtonian and the
pN levels (Iorio, 2014b). It is assumed that

nK � n
′

K, (9.1)

that is, the orbital period T
′

K of the motion of S about M
′

is much longer than the
time TK needed for the test particle to make a full revolution around M .

Here, the primed quantities refer to the orbit of S around M
′

, while the unprimed
ones describe the motion of the test particle about M within S.

For full treatments of orbital effects within hierarchical triple systems made of
bodies of comparable masses, including also those exerted by the inner binary on
the distant companion, to the Newtonian and the 1pN orders, see, for example,
Will (2014), Lim and Rodriguez (2020), Kuntz et al. (2021), and Kuntz (2022),
and references therein.

9.1 Tidal Orbital Effects in a Kinematically Non-rotating Frame

It should be pointed out that, in the following, the quasi-inertial2 local reference
frame K attached to S is considered both dynamically and kinematically non-
rotating (Brumberg and Kopeikin, 1989a; Damour et al., 1994; Kopeikin et al.,
2011) over the characteristic timescales of the system under consideration. It
means that the frequencies of the unavoidable de Sitter–Fokker (de Sitter, 1916b;
Schouten, 1918; Fokker, 1921) and Pugh–Schiff precessions (Pugh, 1959; Schiff,

1 In principle, it may have its own Newtonian and pN mass and spin multipole moments; here, apart from M
′
,

only its angular momentum J
′

is taken into account to the pN level.
2 Here, the use of ‘quasi’ refers just to the fact that tidal effects occur in such a reference frame which, thus,

cannot be considered as exactly inertial.
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1960) experienced by its axes due to the fact that they are parallel transported
(Fermi, 1922; Levi-Civita, 1926; Synge, 1927) along the geodesic worldline of M
through the deformed spacetime of M

′

, are much smaller than both nK and n
′

K, or
that the former ones are corrected for.

The pK tidal acceleration due to the field of M
′

experienced by the test particle
in its motion around M is of the form (Mashhoon et al., 1989)

Atid
i = −

3∑
j=1

Tijxj, i = 1, 2, 3, (9.2)

where x1 := x, x2 := y, x3 := z. The elements of the tidal matrix Tij, i, j = 1, 2, 3

Tij = R0i0j, i, j = 1, 2, 3 (9.3)

are the ‘electric’ tetrad components of the curvature Riemann tensor evaluated
onto the geodesic of the observer comoving with S, and dimensionally are the
reciprocal of a time squared. Equation (9.3) is the sum of the Newtonian and pN
tidal matrices, which are all traceless and symmetric (Mashhoon et al., 1989).
In general, a tidal acceleration experienced by a slowly moving test particle due
to an external curved spacetime metric can be written as Equation (9.2) (Misner
et al., 2017). In particular, in the linearized weak-field and slow-motion approxi-
mation of GTR, it is worth noticing that Equation (9.2) holds also in the case of
a plane gravitational wave which, propagating along an arbitrary spatial direction,
encounters a gravitationally bound two-body system.3 For the orbital effects of a
low-frequency gravitational wave on a two-body system, see, for example, Bertotti
(1973), Rudenko (1975), Mashhoon (1978), Mashhoon (1979), Futamase and Mat-
suda (1979), Turner (1979), Grishchuk and Polnarev (1980), Mashhoon et al.
(1981), Linet (1982a,b), Nelson and Chau (1982), Ivashchenko (1987), Kochkin
and Sbytov (1987), Chicone et al. (1996a,b), and Iorio (2014a).

The radial, transverse, and normal components of Equation (9.2) turn out to be
(Iorio, 2014b)

Atid
r

r
= (cos I sin u sin�− cos u cos�)

{sin f [T21 cos I cosω cos�+ (T22 + T33) sinω cos�+ T31 cosω sin I]

+ cos f [T11 cosω cos�+ (T21 cos I cos�+ T31 sin I) sinω]

+ [T21 cos u+ (T22 + T33) cos I sin u] sin�}

+ (cos I cos� sin u+ cos u sin�) {cos u (T21 cos�+ T22 sin�)

+ sin u [T32 sin I + cos I (T22 cos�− T21 sin�)]}

+ sin I sin u {cos u (T31 cos�+ T32 sin�)

+ sin u [T33 sin I + cos I (T32 cos�− T31 sin�)]} , (9.4)

3 See the discussion in, for example, section 2 of Iorio (2014a).
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−
4Atid

τ

r
= [−T33 + (2T22 + T33) cos 2�

− 2T21 sin 2�] cos2 I sin 2u+ 2 {2 sin I (T32 cos�− T31 sin�) sin 2u

+ [2T21 cos 2�+ (2T22 + T33) sin 2�]} cos I cos 2u

+ 4 sin I (T31 cos�+ T32 sin�) cos 2u+ [(2− cos 2I)T33

+ (2T22 + T33) cos 2�− 2T21 sin 2�] sin 2u, (9.5)

−
Atid

h

r
= 4 cos I (T31 cos�+ T32 sin�) cos u

+ 2 sin I [−2T21 cos 2�− (2T22 + T33) sin 2�] cos u

+ 4 cos 2I (T32 cos�− T31 sin�) sin u

+ sin 2I [3T33 − (2T22 + T33) cos 2�+ 2T21 sin 2�] sin u, (9.6)

where r is given by Equation (2.11), and the coefficients Tij, i, j = 1, 2, 3 depend
only on the orbital parameters of the motion about M

′

, on and on the orientation of

the spin axis Ĵ
′

of the latter.
In view of the hypothesis of Equation (9.1), it can be assumed that the coeffi-

cients Tlo, l, o = 1, 2, 3 are constant during TK. Thus, calculating Equations (2.13)–
(2.18) with Equations (9.4)–(9.6) and using the eccentric anomaly E as a fast
variable of integration for computational purposes straightforwardly yields (Iorio,
2014b) 〈

da

dt

〉tid

= 0, (9.7)〈
de

dt

〉tid

=
5e
√

1− e2

8nK
E tid, (9.8)〈

dI

dt

〉tid

= −
1

8nK

√
1− e2

I tid, (9.9)〈
d�

dt

〉tid

= −
csc I

16nK

√
1− e2

N tid, (9.10)〈
dω

dt

〉tid

=
1

4nK

√
1− e2

2∑
i=1

ktid
i P tid

i , (9.11)

〈
dη

dt

〉tid

=
1

16nK
Htid. (9.12)

The explicit expressions of the coefficients E tid, . . .Htid entering Equations (9.8)–
(9.12) can be found in Equations (H.1)–(H.8) of Appendix H. Equations (9.7)–
(9.12) hold also when the tidal field is due to a passing plane gravitational wave
whose frequency is much lower than the orbital one.
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9.1.1 The Newtonian Effects

The Newtonian tidal matrix is (Mashhoon et al., 1989)

TN
ij =

µ
′

r′3

(
δij − 3r̂

′

ir̂
′

j

)
, (9.13)

where µ
′

:=GM
′

is the standard gravitational parameter of the body of mass M
′

,
r̂
′

:= r
′

/r
′

is the versor of the position vector r
′

from M
′

to M , and δij is the
Kronecker delta (Olver et al., 2010).

Its average with respect to T
′

K, to the zero order in J
′

2, is (Iorio, 2014b)

〈T11〉
′

N = −
µ
′ (

1+ 3 cos 2I
′

+ 6 sin2 I
′

cos 2�
′)

8a′3
(

1− e′2
)3/2 , (9.14)

〈T22〉
′

N = −
µ
′ (

1+ 3 cos 2I
′

− 6 sin2 I
′

cos 2�
′)

8a′3
(

1− e′2
)3/2 , (9.15)

〈T33〉
′

N =
µ
′ (

1+ 3 cos 2I
′)

4a′3
(

1− e′2
)3/2 , (9.16)

〈T12〉
′

N = −
3µ
′

sin2 I
′

sin 2�
′

4a′3
(

1− e′2
)3/2 , (9.17)

〈T13〉
′

N =
3µ
′

sin 2I
′

sin�
′

4a′3
(

1− e′2
)3/2 , (9.18)

〈T23〉
′

N = −
3µ
′

sin 2I
′

cos�
′

4a′3
(

1− e′2
)3/2 . (9.19)

9.1.2 The 1pN Gravitoelectric Effects

The 1pN gravitoelectric tidal matrix is (Mashhoon et al., 1989)

T
1pN
ij = −

µ
′2

c2r′4

(
3δij − 9r̂

′

ir̂
′

j

)
+

µ
′

c2r′3

{
3
[
v
′2
δij − v

′

iv
′

j + 3
(

v
′

· r̂
′
)

r̂
′

(iv
′

j)

]
− 3

(
v
′

· r̂
′
)2
δij − 6r̂

′

ir̂
′

jv
′2
}

, i, j = 1, 2, 3. (9.20)
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In Equation (9.20), v
′

is the velocity vector of M with respect to M
′

, and parentheses
around indices denote symmetrization.

Its average with respect to T
′

K is (Iorio, 2014b)

〈T11〉
′

1pN = −
3µ
′2

e
′2

32c2a′4
(

1− e′2
)5/2T

1pN
11 , (9.21)

〈T22〉
′

1pN =
3µ
′2

e
′2

32c2a′4
(

1− e′2
)5/2T

1pN
22 , (9.22)

〈T33〉
′

1pN =
3µ
′2

e
′2

4c2a′4
(

1− e′2
)5/2T

1pN
33 , (9.23)

〈T12〉
′

1pN = −
3µ
′2

e
′2

16c2a′4
(

1− e′2
)5/2T

1pN
12 , (9.24)

〈T13〉
′

1pN = −
3µ
′2

e
′2

4c2a′4
(

1− e′2
)5/2T

1pN
13 , (9.25)

〈T23〉
′

1pN =
3µ
′2

e
′2

4c2a′4
(

1− e′2
)5/2T

1pN
23 , (9.26)

where the explicit expressions of the coefficients T 1pN
ij , i, j = 1, 2, 3 are displayed

in Equations (H.9)–(H.14) of Appendix H. It should be noted that, if the motion of
S about M

′

is circular, that is, for e
′

= 0, Equations (9.21)–(9.26) vanish.

9.1.3 The 1pN Gravitomagnetic Effects

The gravitomagnetic tidal matrix is (Mashhoon et al., 1989)

T
gvm
ij = −

6GJ
′

c2r′4

[
3
(

v
′

× Ĵ
′)

(i
r̂
′

j) +

(
r̂
′

× Ĵ
′)

(i
v
′

j)

+ r̂
′

·

(
v
′

× Ĵ
′) (

δij − 5r̂
′

ir̂
′

j

)
− 5

(
r̂
′

· v
′
) (

r̂
′

× Ĵ
′)

(i
r̂
′

j)

]
, i, j = 1, 2, 3. (9.27)

In Equation (9.27), Ĵ
′

is the spin unit vector of the body of mass M
′

, and
parentheses around indices denote symmetrization.
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Its average with respect to T
′

K is (Iorio, 2014b)

〈T11〉
′

gvm = −
3GJ

′

n
′

K

64c2a′3
(

1− e′2
)3T

gvm
11 , (9.28)

〈T22〉
′

gvm = −
3GJ

′

n
′

K

64c2a′3
(

1− e′2
)3T

gvm
22 , (9.29)

〈T33〉
′

gvm = −
3GJ

′

n
′

K

16c2a′3
(

1− e′2
)3T

gvm
33 , (9.30)

〈T12〉
′

gvm = −
3GJ

′

n
′

K

64c2a′3
(

1− e′2
)3T

gvm
12 , (9.31)

〈T13〉
′

gvm =
3GJ

′

n
′

K

32c2a′3
(

1− e′2
)3T

gvm
13 , (9.32)

〈T23〉
′

gvm = −
3GJ

′

n
′

K

64c2a′3
(

1− e′2
)3T

gvm
23 , (9.33)

where the explicit expressions of the coefficients T gvm
ij , i, j = 1, 2, 3 are displayed

in Equations (H.15)–(H.20) of Appendix H.

9.2 Tidal Orbital Effects in a Kinematically Rotating Frame

Here, the reference frame K attached to S and moving geodesically in the deformed
spacetime of M

′

is considered dynamically non-rotating, but kinematically rotat-
ing. It implies that the de Sitter–Fokker and Pugh–Schiff precessions of its axes are
not corrected for, thus impacting the orbital dynamics within S.

9.2.1 The Impact of the de Sitter–Fokker Precession

The averaged rates of change of the Keplerian orbital elements of the test particle
in its motion about M due to the de Sitter–Fokker precession (Renzetti, 2012b) can
be computed with Equations (2.27)–(2.32) starting from the disturbing function

RdS = −
3µ
′

h
′

· h

2c2r′3
, (9.34)

where h
′

= n
′

Ka
′2
√

1− e′2 ĥ
′

and h= nKa2
√

1− e2 ĥ are the orbital angular
momenta per unit mass characterizing the motions of S about M

′

and of the test
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particle around M , respectively. Equation (9.34), up to the minus sign and the test
particle’s mass,4 can be inferred, for example, from Barker and O’Connell (1979,
Equation (2.17), p. 155) for the potential energy

VS1 =
G

c2r3

(
2+

3m2

2m1

)
S(1)
· (r × P) (9.35)

of two bodies of masses m2 and m1, one of which carries the angular momentum
S(1), separated by a distance r and moving with relative velocity v in the limit
m2 � m1, with the identification m2 → M

′

, m1 → M . Furthermore, it is assumed
that S(1) is the orbital angular momentum of the test particle’s motion about M .
Thus, r in Barker and O’Connell (1979, Equation (2.17), p. 155) has to be identified
with r

′

, and r × P is the orbital angular momentum r
′

× Mv
′

of the motion of S
around M

′

. See also Ohanian and Ruffini (2013). It can be noted that

v · ∇vRdS = RdS. (9.36)

The average of Equation (9.34) over T
′

K returns (Renzetti, 2012b)

〈R〉
′

dS = −
3µ
′

n
′

Ka2nK

√
1− e2ĥ

′

· ĥ

2c2a′
(

1− e′2
) . (9.37)

By calculating Equations (2.27)–(2.32) with Equation (9.37) yields5 (Renzetti,
2012b) 〈

da

dt

〉′
dS

= 0, (9.38)〈
de

dt

〉′
dS

= 0, (9.39)

〈
dI

dt

〉′
dS

=
3µ
′

n
′

Kĥ
′

· l̂

2c2a′
(

1− e′2
) , (9.40)

〈
d�

dt

〉′
dS

=
3µ
′

n
′

K csc Iĥ
′

· m̂

2c2a′
(

1− e′2
) , (9.41)

〈
dω

dt

〉′
dS

=

3µ
′

n
′

Kĥ
′

·

(
ĥ− cot Im̂

)
2c2a′

(
1− e′2

) , (9.42)

4 Recall that the disturbing function is the opposite of the potential energy per unit mass of the pK effect of
interest.

5 Equation (9.43) comes from Equation (9.36) and the last term in Equation (2.32), being the sum of the first
two equal to zero.

https://doi.org/10.1017/9781009562911.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009562911.009


162 pK Tidal Effects: Distant 3rd Body

〈
dη

dt

〉′
dS

=
9µ
′

n
′

K

√
1− e2ĥ

′

· ĥ

2c2a′
(

1− e′2
) . (9.43)

It should be noted that Equations (9.38)–(9.43) are completely general since they
hold for any orbital configurations for the motions around both M and M

′

.
The de Sitter precession of the perigee of the lunar orbit in the external field

of the Sun was accurately measured with increasing accuracy over the years by
means of the LLR technique (Bertotti et al., 1987; Shapiro et al., 1988; Williams
et al., 1996; Nordtvedt, 1999; Williams et al., 2004; Merkowitz, 2010; Hofmann
and Müller, 2018).

9.2.2 The Impact of the Spin of the Distant Body

The disturbing function Rgvm arising from the gravitomagnetic three-body poten-
tial induced by the angular momentum J

′

of the distant body of mass M
′

on the
internal dynamics of S is

Rgvm = −
GJ

′

c2r′3

[
−

(
Ĵ
′

· h
)
+ 3

(
h · r̂

′
) (

Ĵ
′

· r̂
′
)]

. (9.44)

It turns out that

v · ∇vRgvm = Rgvm. (9.45)

Equation (9.44), up to the minus sign and the test particle’s mass,6 can be inferred,
for example, from Barker and O’Connell (1979, Equation (2.19), p. 155) for the
interaction potential energy

VS1,S2 =
G

c2r3

[
3
(
S(1)
· r
) (

S(2)
· r
)

r2
− S(1)

· S(2)

]
(9.46)

of two spins S(1), S(2) separated by a distance r by assuming that the spin S(1) is the
orbital angular momentum of the test particle’s motion about M , while S(2) is the
spin angular momentum J

′

of the distant third body of mass M
′

. Thus, r in Barker
and O’Connell (1979, Equation (2.19), p. 155) has to be identified with r

′

.
The orbit average of Equation (9.44) over T

′

K yields (Iorio, 2019b)

〈R〉
′

gvm =
GJ

′

nKa2
√

1− e2

8c2a′3
(

1− e′2
)3/2

(
2 cos I

[
Ĵ
′

z

(
1+ 3 cos 2I

′
)

+ 3 sin 2I
′
(
−Ĵ

′

y cos�
′

+ Ĵ
′

x sin�
′
)]

6 Recall that the disturbing function is the opposite of the potential energy per unit mass of the pK effect of
interest.
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+ sin I
{
Ĵ
′

y

[
cos�− 3 cos

(
�− 2�

′
)]

− Ĵ
′

x

[
sin�+ 3 sin

(
�− 2�

′
)]
+ 6 cos

(
�−�

′
) [

Ĵ
′

z sin 2I
′

+ cos 2I
′
(
Ĵ
′

y cos�
′

− Ĵ
′

x sin�
′
)]})

. (9.47)

Inserting Equation (9.47) in Equations (2.27)–(2.32) allows one to calculate the
mean orbital precessions which are7 (Iorio, 2019b)〈

da

dt

〉′
gvm

= 0, (9.48)〈
de

dt

〉′
gvm

= 0, (9.49)〈
dI

dt

〉′
gvm

= −
GJ

′

8c2a′3
(

1− e′2
)3/2

{
−Ĵ

′

x

[
cos�+ 3 cos

(
�− 2�

′
)]

− Ĵ
′

y

[
sin�− 3 sin

(
�− 2�

′
)]
− 6 sin

(
�−�

′
) [

Ĵ
′

z sin 2I
′

+ cos 2I
′
(
Ĵ
′

y cos�
′

− Ĵ
′

x sin�
′
)]}

, (9.50)〈
d�

dt

〉′
gvm

=
GJ

′

csc I

8c2a′3
(

1− e′2
)3/2

(
−2 sin I

[
Ĵ
′

z

(
1+ 3 cos 2I

′
)

+ 3 sin 2I
′
(
−Ĵ

′

y cos�
′

+ Ĵ
′

x sin�
′
)]

+ cos I
{
Ĵ
′

y

[
cos�− 3 cos

(
�− 2�

′
)]

− Ĵ
′

x

[
sin�+ 3 sin

(
�− 2�

′
)]
+ 6 cos

(
�−�

′
) [

Ĵ
′

z sin 2I
′

+ cos 2I
′
(
Ĵ
′

y cos�
′

− Ĵ
′

x sin�
′
)]})

, (9.51)〈
dω

dt

〉′
gvm

= −
GJ

′

csc I

8c2a′3
(

1− e′2
)3/2

{
Ĵ
′

y

[
cos�− 3 cos

(
�− 2�

′
)]

− Ĵ
′

x

[
sin�+ 3 sin

(
�− 2�

′
)]
+ 6 cos

(
�−�

′
) [

Ĵ
′

z sin 2I
′

+ cos 2I
′
(
Ĵ
′

y cos�
′

− Ĵ
′

x sin�
′
)]}

, (9.52)

7 Equation (9.53) comes from Equation (9.45) and the last term in Equation (2.32), being the sum of the first
two equal to zero.
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〈
dη

dt

〉′
gvm

= −
3GJ

′
√

1− e2

8c2a′3
(

1− e′2
)3/2

(
2 cos I

[
Ĵ
′

z

(
1+ 3 cos 2I

′
)

+ 3 sin 2I
′
(
−Ĵ

′

y cos�
′

+ Ĵ
′

x sin�
′
)]

+ sin I
{
Ĵ
′

y

[
cos�− 3 cos

(
�− 2�

′
)]

− Ĵ
′

x

[
sin�+ 3 sin

(
�− 2�

′
)]
+ 6 cos

(
�−�

′
) [

Ĵ
′

z sin 2I
′

+ cos 2I
′
(
Ĵ
′

y cos�
′

− Ĵ
′

x sin�
′
)]})

. (9.53)

For a previous, approximate calculation restricted to the orbital angular momentum
of the Moon orbiting the Earth in the gravitomagnetic field of the rotating Sun, see
Gill et al. (1992, Section (3.3.3)).
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10

Modified Models of Gravity: Orbital Precessions

In the following sections, some modifications of the Newtonian inverse-square law
are taken into account; those that arise from power-law and Yukawa-like additional
potentials, logarithmic-type potential, some dark matter density profiles, once-
per-revolution and constant accelerations, and gravitomagnetic violations of the
Lorentz invariance in the gravitational sector.

The resulting secular orbital precessions are analytically worked out in their
full generality, extending and generalizing an earlier calculation by Adkins and
McDonnell (2007) for some of the aforementioned extra-potentials.

10.1 Power-Law Modified Potentials

Power-law modifications of the usual inverse-square law (Fischbach et al., 2001;
Adelberger et al., 2003) arise in the most disparate theoretical frameworks; they
are far too numerous to be exhaustively mentioned here. For r−2 and r−3-type
extra-potentials, see, for example, Iorio (2012b,d); Iorio and Ruggiero (2018), and
references therein. It should be noted that, in fact, not all the power-law modified
potentials are necessarily to be ascribed to alternative models of gravity; suffice
it to say that the general relativistic Reissner-Nordström spacetime metric (Reiss-
ner, 1916; Weyl, 1917; Nordström, 1918) encompasses just a 1/r2 correction to the
standard 1/r Newtonian potential. The quadrupolar term of the Newtonian multi-
polar expansion of the potential of a matter ring1 (Ciftja et al., 2009), calculated
in a point in the plane of the annulus at great distance r from it, goes just as 1/r3

(Demetrian, 2006). Furthermore, the cosmological constant2 3 (O’Raifeartaigh
et al., 2018), fully accommodated within GTR (Ashtekar, 2017), gives rise to an

1 It is an adequate model for a fast revolving, tight inner binary in a hierarchical triple system with a distant
companion.

2 It is the simplest possible explanation for dark energy driving the observed cosmological accelerated
expansion (Peebles and Ratra, 2003; Harvey, 2009). But see also Lahav (2020).
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166 Modified Models of Gravity: Orbital Precessions

additional potential quadratic in r (Rindler, 2001). Also the quadrupolar term of
the Newtonian multipolar expansion of the potential of a matter ring (Ciftja et al.,
2009), calculated in a point in the plane of the annulus at distance r smaller than
its radius, is directly proportional to r2 (Demetrian, 2006).

Here, the disturbing function R of such kinds of modified models gravity is
generally written as

Rpl
=

K

rn
, (10.1)

where K is a dimensional quantity containing some numerical factors, and the free
parameter(s) characterizing the model under consideration, to be determined or
constrained by observations, and, possibly, the specific binary system at hand as
well as its masses, and so on. The latter case does not necessarily occur; suffice it
to say that, for n = −2, one has (Rindler, 2001; Kerr et al., 2003)

K =
3c2

6
, (10.2)

arising from the Schwarzschild–de Sitter (Stuchlík and Hledík, 1999) or Kottler
(Kottler, 1918) spacetime. In Equation (10.2), 3 is dimensionally the reciprocal of
an area, and plays the role of the cosmological constant (Rindler, 2001).

The average of Equation (10.1) over one orbital revolution, performed by using
the eccentric anomaly E as a fast variable of integration to simplify the calculation,
turns out to be

〈R〉pl
=
K

4
a−2n

(
1− e2)n

[
3an (1− e) (1+ e)n 2F1

(
−

1

2
, n; 2;

2e

e− 1

)
+ 3an (1+ e) (1− e)n 2F1

(
−

1

2
, n; 2;

2e

1+ e

)
− an (1+ e)n (1− 3e+ 4e n) 2F1

(
1

2
, n; 2;

2e

e− 1

)
+ an (1− e)n (−1− 3e+ 4e n) 2F1

(
1

2
, n; 2;

2e

1+ e

)]
, (10.3)

where 2F1 (a, b; c; x) is the Gauss hypergeometric function (Barnes, 1908; Olver
et al., 2010). It should be remarked that Equation (10.3) retains its validity for any
integer n, either positive or negative; furthermore, it holds for arbitrarily eccentric
orbits, being an exact result in e.

From Equation (10.3) and Equations (2.27)–(2.32), it can be straightforwardly
inferred that the only generally nonvanishing orbital precessions are those of ω and
η. They are
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〈
dω

dt

〉pl

= −
(−1+ n)K

√
1− e2

[
a2
(
1− e2

)]−1−n

4enK{
−3 (−1+ e) an (1+ e)n 2F1

(
−

1

2
, n; 2;

2e

e− 1

)
− 3 (1+ e)2 an (1− e)n 2F1

(
−

1

2
, n; 2;

2e

1− e

)
+ (−1+ e) an (1+ e)n (3− 3e+ 4en) 2F1

(
1

2
, n; 2;

2e

e− 1

)
− (1+ e) an (1− e)n (−3− 3e+ 4en) 2F1

(
1

2
, n; 2;

2e

1− e

)}
, (10.4)〈

dη

dt

〉pl

=
K
[
a2
(
1− e2

)]−n

4a2nKe(
−3 (−1+ e) an (1+ e)n (−1+ e+ n+ en) 2F1

(
−

1

2
, n; 2;

2e

e− 1

)
+ 3 (1+ e) an (1− e)n [1+ e+ (−1+ e) n] 2F1

(
−

1

2
, n; 2;

2e

1− e

)
+ an (1+ e)n

{
−3 (−1+ e)2 + [3+ (−8+ e) e] n

+ 4e (1+ e) n2}
2F1

(
1

2
, n; 2;

2e

e− 1

)
+ an (1− e)n

{
−3 (1+ e)2 + [3+ e (8+ e)] n

+ 4 (−1+ e) en2}
2F1

(
1

2
, n; 2;

2e

1− e

))
. (10.5)

For n= 2, corresponding to a 1/r2 extra-potential (Adelberger et al., 2007;
Maeda and Dadhich, 2007; Iorio and Saridakis, 2012; Ruggiero and Radi-
cella, 2015; Ali and Khalil, 2016; Bhattacharya and Chakraborty, 2017), Equa-
tions (10.4)–(10.5) yield 〈

dω

dt

〉pl

=
K

nKa4
(
1− e2

) , (10.6)〈
dη

dt

〉pl

=
3K

nKa4
√

1− e2
. (10.7)

For n = 3, corresponding to a 1/r3 extra-potential3 (Bonanno and Reuter, 2000;
Sotiriou and Zhou, 2014; Chakraborty and SenGupta, 2017), Equations (10.4)–
(10.5) yield

3 As pointed out by Iorio and Ruggiero (2018), some of these models may not be constrained by observations
since they do not contain free parameters. Furthermore, some of them may describe only black holes or
wormholes, while some others are valid for material bodies such as a star. There are also other 1/r3 models
which, however, are valid only at particle physics scales; thus, they cannot be constrained by orbital motions.
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〈
dω

dt

〉pl

=
3K

nKa5
(
1− e2

)2 , (10.8)

〈
dη

dt

〉pl

=
3K

nKa5
(
1− e2

)3/2 . (10.9)

For n= − 2, corresponding to a cosmological constant–type extra-potential
quadratic in r (Rindler, 2001; Kerr et al., 2003; Iorio and Saridakis, 2012),
Equations (10.4)–(10.5) yield〈

dω

dt

〉pl

=
3K
√

1− e2

nK
, (10.10)〈

dη

dt

〉pl

= −

(
7+ 3e2K

)
nK

. (10.11)

10.2 Yukawa Modified Potential

Another very popular modification of the Newtonian inverse-square law is
expressed as a Yukawa-like additional potential (Yukawa, 1935); see, for example,
Nieto and Goldman (1991), Bertolami and Páramos (2005), Reynaud and Jaekel
(2005), Moffat (2006), Bertolami et al. (2007), and references therein.

The resulting disturbing function RY is customarily modelled as

RY
=
KY

r
exp

(
−

r

λY

)
, (10.12)

where λY is a characteristic scale distance, and KY is usually proportional to
the product of the mass M of the primary by a dimensionless parameter αY

characterizing the intensity of the putative Yukawa interaction.
The average of Equation (10.12) over one orbital period, performed by adopt-

ing the eccentric anomaly E as a fast variable of integration to facilitate the
calculation, is

〈R〉Y =
KY

a
exp

(
−

a

λY

)
I0

(
ae

λY

)
, (10.13)

where I0 (. . .) is the modified Bessel function of the first kind of order s = 0
(Olver et al., 2010). It should be noted that Equation (10.13) holds for any value
of λY; furthermore, it is an exact result in e being, thus, valid for highly eccentric
orbits as well.

From Equation (10.13) and Equations (2.27)–(2.32), it can be inferred that only
ω and η experience nonvanishing secular precessions. They are〈

dω

dt

〉Y

=
KY

√
1− e2

a2enKλY
exp

(
−

a

λY

)
I1

(
ae

λY

)
, (10.14)
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〈
dη

dt

〉Y

=
KY

a3nKλY
exp

(
−

a

λY

)[
2 (a+ λY) I0

(
ae

λY

)
−

a
(
1+ e2

)
e

I1

(
ae

λY

)]
, (10.15)

where I1 (. . .) is the modified Bessel function of the first kind of order s = 1 (Olver
et al., 2010). For previous derivations of Equation (10.14), see Burgess and Cloutier
(1988); Iorio (2012c).

10.3 Logarithmic Potential

The logarithmic potential, giving rise to the disturbing function

Rlog
= K ln

( r

L

)
, (10.16)

where L is some characteristic length scale of the scenario at hand, is often used
for explaining the action of dark matter at galactic scales in terms of alternative
models of gravity (Das and Sur, 2022; Nash, 2023). It yields a 1/r pK acceleration.

The average over one orbital period of Equation (10.16), calculated with the
eccentric anomaly E as a fast variable of integration, turns out to be

〈R〉log
= K

{
1−

√
1− e2 + ln

[ a

2L

(
1+

√
1− e2

)]}
. (10.17)

From Equation (10.17) and Equations (2.27)–(2.32), it can be inferred that only
ω and η experience nonvanishing secular precessions. They are

〈
dω

dt

〉log

=

K
(
−1+ e2

+
√

1− e2
)

nKa2e2
, (10.18)

〈
dη

dt

〉log

=

K
(
−3+ e2

− 2
√

1− e2
)

nKa2
(

1+
√

1− e2
) . (10.19)

It can be noted that the limits of Equations (10.18)–(10.19) for e→ 0 are finite.

10.4 Once-Per-Revolution (1-cpr) Accelerations

Once-per-revolution empirical accelerations (1-cpr) are often modeled in satel-
lite data reductions in order to account for any possible unknown, time-dependent
accelerations, of whatever physical origin, affecting the orbital motions just at the
orbital frequency (Tapley et al., 2004a).
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When precise orbit determination (POD) is the desired outcome of data reduc-
tions to achieve some specific tasks,4 the only goal is to obtain the smallest possible
post-fit residuals in any way; in such circumstances, empirical 1-cpr accelerations
are modeled and estimated. Instead, when a data reduction is specifically aimed
to test, say, some pN features of motion, the 1-cpr accelerations should not be
estimated because, otherwise, the effect(s) one is interested in would be partly or
totally removed from the signal, being likely absorbed in the estimated values of
the former ones.

In the following, the orbital precessions due to a generic 1-cpr acceleration are
explicitly worked out.

In the most general case, the radial, transverse, and normal components can be
written as

A1cpr
r = C1cpr

r cos f + S1cpr
r sin f , (10.20)

A1cpr
τ = C1cpr

τ cos f + S1cpr
τ sin f , (10.21)

A1cpr
h = C1cpr

h cos f + S1cpr
h sin f , (10.22)

where the coefficients C1cpr
r . . . S1cpr

h are constants.
By inserting Equations (10.20)–(10.22) in Equations (2.13)–(2.18), one gets〈

da

dt

〉1cpr

=

2
(
−1+ e2

+
√

1− e2
) (

S1cpr
r − C1cpr

τ

)
nKe

, (10.23)〈
de

dt

〉1cpr

=
1

2nKae2

{
2
(
−1+ e2)2

(
−1+ 1/

√
1− e2

)
S1cpr

r

+

[
2+ 2e4

− 2
√

1− e2 + e2
(
−4+ 5

√
1− e2

)]
C1cpr
τ

}
, (10.24)〈

dI

dt

〉1cpr

=

(
1+ 2e2

)
C1cpr

h cosω +
(
−1+ e2

)
S1cpr

h sinω

2nKa
√

1− e2
, (10.25)

〈
d�

dt

〉1cpr

=

csc I
[
−
(
−1+ e2

)
S1cpr

h cosω +
(
1+ 2e2

)
C1cpr

h sinω
]

2nKa
√

1− e2
, (10.26)〈

dω

dt

〉1cpr

=
1

2nKae3
√

1− e2

(
−
(
−1+ e2) {2

[
1−

√
1− e2

+ e2
(
−2+

√
1− e2

)]
C1cpr

r +

[
2− 2

√
1− e2

+ e2
(
−1+ 2

√
1− e2

)]
S1cpr
τ

}
+ e3 cot I

[(
−1+ e2) S1cpr

h cosω −
(
1+ 2e2)C1cpr

h sinω
])

, (10.27)

4 It is the case of, for example, remote sensing, altimetry and gravity field mapping.
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〈
dη

dt

〉1cpr

=
1

2nKae3

{
2
[
−1+

√
1− e2 + e2

(
3− 2

√
1− e2

)
+ e4

(
1+

√
1− e2

)]
C1cpr

r +
(
−1+ e2)[

2− 2
√

1− e2 + e2
(
−1+ 2

√
1− e2

)]
S1cpr
τ

}
(10.28)

10.5 Constant and Uniform Acceleration

Here, a constant pK acceleration is treated, irrespectively of its possible physical
origin. In the most general case, it can be decomposed as

Acst
r = Ccst

r , (10.29)

Acst
τ = Ccst

τ , (10.30)

Acst
h = Ccst

h , (10.31)

where the coefficients Ccst
r , Ccst

τ , Ccst
h are constants.

It may be recalled that a constant, radial acceleration directed towards the Sun
was adopted as one of the most popular models of the so-called Pioneer anom-
aly (Turyshev and Toth, 2010) for as long as it was believed to be an anomalous
gravitational effect before it was ultimately explained in terms of standard non-
gravitational effects (Scheffer, 2003; Bertolami et al., 2008; Rievers et al., 2009,
2010; Rievers and Lämmerzahl, 2011; Francisco et al., 2012; Turyshev et al.,
2012; Modenini and Tortora, 2014). Furthermore, a radial and constant acceler-
ation enters the equations of motion in the framework of the Modified General
Relativity (MGR) (Nash, 2023) aimed to explain the dark matter phenomenology
at galactic scales.

By inserting Equations (10.29)–(10.31) in Equations (2.13)–(2.18), one gets the
following orbital precessions〈

da

dt

〉cst

=
2
√

1− e2Ccst
τ

nK
, (10.32)

〈
de

dt

〉cst

= −
3e
√

1− e2Ccst
τ

2nKa
, (10.33)

〈
dI

dt

〉cst

= −
3eCcst

h cosω

2nKa
√

1− e2
, (10.34)

〈
d�

dt

〉cst

= −
3eCcst

h csc I sinω

2nKa
√

1− e2
, (10.35)
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dω

dt

〉cst

=
−2

(
−1+ e2

)
Ccst

r + 3eCcst
h cot I sinω

2nKa
√

1− e2
, (10.36)〈

dη

dt

〉cst

= −
3Ccst

r

nKa
. (10.37)

10.6 Tidal-Type Matrix Acceleration

For any extra-acceleration of the form

Ai =

3∑
j=1

Mijxj, i, j = 1, 2, 3, (10.38)

where Mij, i, j = 1, 2, 3 is a traceless and symmetric matrix, Equations (9.7)–(9.12)
hold provided that the matrix elements can be considered constant over a full orbital
revolution of the test particle around its primary.

10.7 Dark Matter Distributions

So far, several authors have put dynamical constraints on the dark matter distri-
bution within our solar system and in the GC from orbital motions (Anderson
et al., 1989, 1995; Grøn and Soleng, 1996; Iorio, 2006c; Sereno and Jetzer, 2006;
Khriplovich and Pitjeva, 2006; Khriplovich, 2007; Zakharov et al., 2007; Frère
et al., 2008; Adler, 2009; Iorio, 2010a; Saadat et al., 2010; Zakharov et al., 2010;
De Risi et al., 2012; Pitjev and Pitjeva, 2013; Iorio, 2013b).

In many cases, more or less approximate expressions for the anomalous perihe-
lion precession induced by certain spherically symmetric dark matter distributions
were used, in particular by considering nearly circular orbits. Here, such a
restriction is overcome by calculating exact expressions, which can, thus, yield
more accurate constraints – with the caveat exposed in Chapter 1 – in view of the
increasing level of accuracy in determining the orbits of some of the major bodies
of the solar system. Moreover, the present results can be used also with systems
characterized by highly eccentric orbits such as, for example, the S stars in the GC.

10.7.1 Exponential Mass Density Profile

By adopting an exponentially decaying mass density profile5 (Pitjev and Pitjeva,
2013),

ρdm
exp = ρ0 exp

(
−

r

λdm

)
, (10.39)

5 The density profile of Equation (10.39) is a particular case of the Einasto profile (Einasto, 1965), often
adopted to describe dark matter halos in galaxies (Merritt et al., 2006).
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where λdm is a characteristic scale length, the Poisson equation yields the following
disturbing function:

Rdm
exp =

4πGρ0

r
λ3

dm

[
2−

(
2+

r

λdm

)
exp

(
−

r

λdm

)]
. (10.40)

By averaging Equation (10.40) over one orbital period with the eccentric anom-
aly E as a fast variable of integration, one gets (Iorio, 2013b)

〈R〉dm
exp =

4πGρ0λ
2
dm

a

{
2λdm + exp

(
−

r

λdm

)[
aeI1

(
ae

λdm

)
− (a+ 2λdm) I0

(
ae

λdm

)]}
. (10.41)

The resulting nonvanishing orbital precessions, calculated with Equa-
tions (2.27)–(2.32), turn out to be (Iorio, 2013b)〈

dω

dt

〉dm

exp

=
4π
√

1− e2Gρ0λdm

nKae
exp

(
−

r

λdm

){
eI0

(
ae

λdm

)
−

(
1+

2λdm

a

)
I1

(
ae

λdm

)}
, (10.42)〈

dη

dt

〉dm

exp

=
4πGρ0λdm

nKa3e
exp

(
−

r

λdm

){
4eλ2

dm exp
(

r

λdm

)
− e

[
a2 (3+ e2)

+ 4aλ+ 4λ2] I0

(
ae

λdm

)
+ a

[
a
(
1+ 3e2)

+ 2λ
(
1+ 2e2)] I1

(
ae

λdm

)}
. (10.43)

10.7.2 Power-Law Mass Density Profile

By adopting a power-law mass density profile

ρdm
pl = ρ0

(
r

λdm

)−γ
, γ > 0, (10.44)

generally adopted for the galactic halos and in several dark matter–related stud-
ies (Merritt et al., 2006; Gillessen et al., 2009), the Poisson equation yields the
following disturbing function:

Rdm
pl =

4πGρ0

(3− γ ) (2− γ ) λ−γdm

r2−γ . (10.45)

By averaging Equation (10.45) over one orbital period with the eccentric anom-
aly E as a fast variable of integration, one gets
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〈R〉dm
pl =

πGa2−γ
(
1− e2

)−γ
λ
γ

dmρ0

(−1+ γ )
(
6− 5γ + γ 2

)2

[
Udm

1 2F1

(
−

1

2
, γ ; 1;

2e

−1+ e

)

+Udm
2 2F1

(
−

1

2
, γ ; 1;

2e

1+ e

)
+Udm

3 2F1

(
1

2
, γ ; 1;

2e

−1+ e

)
+Udm

4 2F1

(
1

2
, γ ; 1;

2e

1+ e

)]
, (10.46)

where 2F1 (a, b; c; x) is the generalized hypergeometric function 2F1 (Olver et al.,
2010), and the coefficients Udm

j , j = 1, 2, 3, 4 are explicitly displayed in Equa-
tions (I.1)–(I.4) of Appendix I.

The resulting nonvanishing orbital precessions, calculated with Equa-
tions (2.27)–(2.32), turn out to be6 (Iorio, 2013b)〈

dω

dt

〉dm

pl

=
πGa−γ

(
1− e2

)−1/2−γ
λ
γ

dmρ0

2e2nK (−3+ γ )2 (−2+ γ )2 (−1+ γ )[
Pdm

1 2F1

(
−

1

2
, γ ; 1;

2e

−1+ e

)
+Pdm

2 2F1

(
−

1

2
, γ ; 1;

2e

1+ e

)
+P3

dm
2 F1

(
1

2
, γ ; 1;

2e

−1+ e

)
+Pdm

4 2F1

(
1

2
, γ ; 1;

2e

1+ e

)]
, (10.47)〈

dη

dt

〉dm

pl

=
πGa−γ

(
1− e2

)−γ
λ
γ

dmρ0

2e2nK (−3+ γ )2 (−2+ γ )2 (−1+ γ )[
Hdm

1 2F1

(
−

1

2
, γ ; 1;

2e

−1+ e

)
+Hdm

2 2F1

(
−

1

2
, γ ; 1;

2e

1+ e

)
+Hdm

3 2F1

(
1

2
, γ ; 1;

2e

−1+ e

)
+Hdm

4 2F1

(
1

2
, γ ; 1;

2e

1+ e

)]
. (10.48)

6 The orbital effects of Equation (10.46) have been computed more or less explicitly and at various levels of
approximations in Khriplovich (2007), Frère et al. (2008), Saadat et al. (2010), De Risi et al. (2012), and
Zakharov et al. (2007, 2010).
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The coefficients Pdm
j , j = 1, 2, 3, 4 and Hdm

j , j = 1, 2, 3, 4 are explicitly displayed
in Equations (I.5)–(I.12) of Appendix I.

10.8 Lorentz-Violating Gravitomagnetic Acceleration

The Standard Model Extension (SME) is a theoretical framework encompassing
generic violations of the Lorentz symmetry for both gravity and electromagnetism
(Kostelecký and Potting, 1995; Colladay and Kostelecký, 1997, 1998; Kostelecký,
2004). In general, there are 20 coefficients for Lorentz violation in the gravitational
sector; by assuming spontaneous Lorentz-symmetry breaking, the main effects
in the weak-field approximation are accounted for by the traceless coefficients
s̄σλ, σ , λ = 0, 1, 2, 3 (Bailey and Kostelecký, 2006) containing nine independent
quantities

According to Bailey (2010), in the weak-field and slow-motion approximation,
a test particle moving with velocity v at distance r from a central, static body of
mass M experiences a Lorentz-violating gravitomagnetic acceleration

ALgvm
=

v

c
× BLgvm, (10.49)

with

BLgvm :=
2µ

cr3
(s× r) , (10.50)

where

s := −s̄0j, j = 1, 2, 3 (10.51)

is a vector made of the off-diagonal SME Lorentz-violating coefficients.
The radial, transverse, and normal components of Equation (10.49) are

ALgvm
r = −

2nKµ (1+ e cos f )3 (sm cos u− sl sin u)

ca
(
1− e2

)5/2 , (10.52)

ALgvm
τ =

2enKµ (1+ e cos f )2 sin f (shl cos u+ shm sin u)

ca
(
1− e2

)5/2 , (10.53)

ALgvm
h =

2enKµ (1+ e cos f )2 sin f sh

ca
(
1− e2

)5/2 . (10.54)

The coefficients sl, sm, sh, shl, and shm entering Equations (10.52)–(10.54) are
defined in Equations (D.44)–(D.48) in Appendix D.
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Inserting Equations (10.52)–(10.54) in Equations (2.13)–(2.18) yields (Iorio,
2012e)〈

da

dt

〉Lgvm

= 0, (10.55)

〈
de

dt

〉Lgvm

=

2µ
(
−1+ e2

+
√

1− e2
)
(sl cosω + sm sinω)

ca2e2
, (10.56)

〈
dI

dt

〉Lgvm

=

2µ
(√

1− e2 − 1
)
sh sinω

ca2e
√

1− e2
, (10.57)

〈
d�

dt

〉Lgvm

= −

2µ
(√

1− e2 − 1
)

csc Ish cosω

ca2e
√

1− e2
, (10.58)〈

dω

dt

〉Lgvm

=
µ

ca2e3
(
1− e2

) {−2
(
−1+ e2) (

−1+
√

1− e2
)
sl sinω

+

[
−2e2

(
−1+ e2

+

√
1− e2

)
cot Ish

+ 2
(
−1+ e2) (

−1+
√

1− e2
)
sm
]

cosω
}

, (10.59)〈
dη

dt

〉Lgvm

= −

2µ
(
−1+ e2

+
√

1− e2
)
(sm cosω − sl sinω)

ca2e3
. (10.60)

It can be noted that, while Equations (10.56)–(10.58) are well-defined in the limit
for e→ 0, it is not so for Equations (10.59)–(10.60).
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Appendix A

List of Acronyms and Abbreviations

ano anomalistic
′′ arcsecond
BH black hole
CCF cross-correlation function
cpr cycle-per-revolution
cst constant
cty century
d day
DD Damour–Deruelle
dec. declination
dm dark matter
dra draconitic
dS de Sitter
e equatorial
ECOs exotic compact objects
EHT Event Horizon Telescope
EOS equation of state
EP equivalence principle
EPM Ephemeris of Planets and the Moon
EPRV Extreme Precision Radial Velocity
ESA European Space Agency
ESO European Southern Observatory
ESPRESSO Echelle SPectrograph for Rocky Exoplanets

and Stable Spectroscopic Observations
EURO Elliptical Uranian Relativity Orbiter
exp exponential
EXPRES EXtreme PREcision Spectrograph
FWHM full-width at half-maximum
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178 List of Acronyms and Abbreviations

GC Galactic Centre
GP-B Gravity Probe B
GRACE Gravity Recovery and Climate Experiment
GRACE-FO GRACE Follow-On
GRAIL Gravity Recovery and Interior Laboratory
GTR general theory of relativity
gvm gravitomagnetic
hr hour
HERO Highly Elliptical Relativity Orbiter
IAU International Astronomical Union
ICRF International Celestial Reference Frame
IORIO In-Orbit Relativity Iuppiter Observatory,

or IOvis Relativity In–orbit Observatory
JPL Jet Propulsion Laboratory
K Keplerian
kg kilogram
km kilometre
LAGEOS LAser GEOdynamic Satellite
LARES LAser RElativity Satellite
LETSGO LEnse-Thirring Sun-Geo Orbiter
LIGO Laser Interferometer Gravitational-wave Observatory
Lgvm Lorentz-violating gravitomagnetic
LISA Laser Interferometer Space Antenna
LLR Lunar Laser Ranging
log logarithmic
LT Lense–Thirring
m metre
MAROON-X M dwarf Advanced Radial velocity Observer

Of Neighbouring eXoplanets
mas milliarcosecond
MESSENGER MErcury Surface, Space ENvironment,

GEochemistry, and Ranging
MGR Modified General Relativity
MGS Mars Global Surveyor
MicroSCOPE Micro-Satellite à traînée Compensée pour l’Observation

du Principe d’Equivalence
µas microarcsecond
mm millimetre
MOG MOdified Gravity
MOND MOdified Newtonian Dynamics
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N Newtonian
NASA National Aeronautics and Space Administration
NMoI normalized moment of inertia
ns neutron star
p planet
pK post-Keplerian
pl power-law
PLR Planetary Laser Ranging
pN post-Newtonian
po polar
POD Precise Orbit Determination
PPN parameterized post-Newtonian
PS Panhans–Soffel
psr pulsar
RA right ascension
s second
◦ sexagesimal degree
SED spectral energy distribution
Sgr A∗ Sagittarius A∗

sid sidereal
SINFONI SINgle Faint Object Near-IR Investigation
SLR Satellite Laser Ranging
SMBH supermassive black hole
SME Standard Model Extension
STR Special Theory of Relativity
STVG Scalar Tensor Vector Gravity
tid tidal
TOAs times of arrival
VLT Very Large Telescope
wd white dwarf
XMM X-ray Multi-Mirror
Y Yukawa
yr year
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Appendix B

Notations and Definitions

Here, some basic notations and definitions used throughout the text are presented
(Soffel, 1989; Brumberg, 1991; Bertotti et al., 2003; Kopeikin et al., 2011; Poisson
and Will, 2014; Soffel and Han, 2019). Indexes denoted with Greek letters run from
0 to 3, while those dubbed with Latin ones run from 1 to 3.

B.1 Some Constants of Nature and Astronomical Quantities

c Speed of light in vacuum
G Newtonian constant of gravitation
� Vernal Equinox at some reference epoch
M� Sun’s mass
µ� := GM� Sun’s standard gravitational parameter
R�e Sun’s equatorial radius
R�po Sun’s polar radius
J�2 Sun’s dimensionless quadrupole mass moment
J� Sun’s angular momentum
J� Magnitude of the Sun’s angular momentum
Ĵ� Sun’s spin axis
αJ� RA of the Sun’s north pole of rotation
δJ� dec. of the Sun’s north pole of rotation
M⊕ Earth’s mass
µ⊕ := GM⊕ Earth’s standard gravitational parameter
R⊕e Earth’s equatorial radius
R⊕po Earth’s polar radius
J⊕2 Earth’s dimensionless quadrupole mass moment
J⊕ Earth’s angular momentum
J⊕ Magnitude of the Earth’s angular momentum

180
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B.2 Parameters of a Mass-Energy Source and Spacetime Variables 181

Ĵ⊕ Earth’s spin axis
MX Jupiter’s mass
µX := GMX Jupiter’s standard gravitational parameter

RXe Jupiter’s equatorial radius

RXpo Jupiter’s polar radius

JX2 Jupiter’s dimensionless quadrupole mass moment
JX Jupiter’s angular momentum
JX Magnitude of the Jupiter’s angular momentum
ĴX Jupiter’s spin axis
αJX RA of the Jupiter’s north pole of rotation

δJX dec. of the Jupiter’s north pole of rotation

M• Black hole’s mass
µ• := GM• Black hole’s standard gravitational parameter
R• := 2µ•/c2 Black hole’s Schwarzschild radius
M`
•

Mass moment of degree ` of a Kerr black hole
J`
•

Spin moment of degree ` of a Kerr black hole
J• Angular momentum of a Kerr black hole
ζ• Azimuth of the spin axis of a Kerr black hole in the plane

of the sky
i• Inclination of the spin axis of a Kerr black hole to the line

of sight
Ĵ• = {sin i• cos ζ•, Spin axis of a Kerr black hole
sin i• sin ζ•, cos i•}
χg Dimensionless spin parameter of a Kerr black hole;

∣∣χg

∣∣ ≤ 1
J• = χgM2

•
G/c Magnitude of the angular momentum of a Kerr black hole

Q•2 = −J2
•
/
(
c2M•

)
Quadrupole mass moment of a Kerr black hole

ξns Dimensionless quadrupole parameter of a neutron star

B.2 Parameters of a Mass-Energy Source and Spacetime Variables

nd Number of dimensions of a Lorentzian manifold
κg Einstein’s gravitational constant
Tσλ, σ , λ = 0, 1, 2, 3 Stress-energy tensor
U Exterior gravitational potential of an arbitrary

mass distribution
V Interaction potential energy due to some pK effect
ρ Density of an arbitrary mass distribution
ρ0 Scaling parameter of the mass density profile
λdm Characteristic length scale of a dark matter

density profile
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182 Notations and Definitions

γ Exponent of dark matter power-law density profile
gσλ, σ , λ = 0, 1, 2, 3 Spacetime metric tensor
gσλ, σ , λ = 0, 1, 2, 3 Inverse of the spacetime metric tensor
0συι, σ , υ, ι = 0, 1, 2, 3 Christoffel symbols of the second kind
λ Affine parameter of geodesics
τ Proper time of a moving material object
t Coordinate time
x0 := ct Temporal coordinate
Rεσψλ, ε, σ ,ψ , λ = 0, 1, 2, 3 Riemann curvature tensor of the spacetime
Rσλ, σ , λ = 0, 1, 2, 3 Ricci curvature tensor of the spacetime
R Trace of the Ricci tensor
hσλ, σ , λ = 0, 1, 2, 3 Post-Newtonian corrections to the Minkowskian

components of the spacetime metric tensor
βPPN A parameter of the PPN formalism
γPPN A parameter of the PPN formalism

B.3 Relevant Mathematical Functions and Notations

εijw, i, j, w = 1, 2, 3 3-dimensional Levi-Civita symbol
δij, i, j = 1, 2, 3 Kronecker delta
P` (· · · ) Legendre polynomial of degree `
Js (. . .) Bessel function of the first kind of order s
Is (. . .) Modified Bessel function of the first kind of

order s

2F1 (a, b; c; x) Generalized hypergeometric function
∇q := {∂/∂q1, ∂/∂q2, ∂/∂q3, } Gradient with respect to the components of the

generic vector q = {q1, q2, q3}

B.4 Relevant Physical Parameters of the Central Body

D Characteristic size
M Mass
µ := GM Standard gravitational parameter
U Newtonian exterior gravitational potential

(arbitrarily shaped body)
L Lagrangian per unit mass
UN Newtonian exterior gravitational potential

(spherically symmetric body)
R := − (U − UN) Disturbing function
Re Equatorial radius
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Rpo Polar radius

ε :=

√
1−

(
Rpo

Re

)2
Ellipticity

I Moment of inertia
i Normalized moment of inertia (NMoI)
k2 Love number
k′2 := k2/2 Apsidal constant
ω Angular speed
P Rotational period
qc := ω2R3

e/µ Centrifugal quadrupole parameter
M ′ Mass of a nearby tide-raising body
a′ Semimajor axis of the relative orbit of M with

respect to M ′

qt := −3
(
Re/a′

)3 (
M ′/M

)
Tidal quadrupole parameter

J2 := (k2/3) [qc − (qt/2)] Zonal harmonic coefficient of degree ` = 2 of a
body in hydrostatic equilibrium

f̃ : [(1+ k2) /2] qc Dimensionless parameter entering the
Darwin–Radau approximate relation between NMoI
and J2 for a body in hydrostatic equilibrium

Q2 := −J2MR2
e Dimensional quadrupole mass moment

1U` Term of degree ` = 2, 3, 4, . . . of the Newtonian
gravitational potential of an axisymmetric body

J Angular momentum
J Magnitude of the angular momentum
αJ RA of the north pole of rotation
δJ Dec. of the north pole of rotation
Ĵ = {cosαJ cos δJ , Spin unit vector

sinαJ cos δJ , sin δJ }

R? Equatorial radius of an exoplanet’s host star
b := a

(
1− e2

)
cos I/ Impact parameter of an exoplanet

R? (1+ e sinω)
i? Inclination of the spin axis of an exoplanet’s

host star to the line of sight
ζ? Azimuthal angle of the spin axis of an exoplanet’s

host star in the plane of the sky
λ sky-projected spin-orbit angle of a transiting exoplanet
v?e Equatorial rotational velocity of an exoplanet’s

host star
u? := v?e sin i? Projected rotational velocity of an exoplanet’s

host star
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λY Yukawa potential scale distance
KY Yukawa potential dimensional strength intensity
αY Yukawa potential dimensionless strength intensity
K Dimensional strength parameter of power-law

extra-potentials
L Characteristic length scale of a logarithmic potential
W oct Spin-octupole gravitomagnetic potential
Boct := −∇W oct Spin octupole gravitomagnetic field
s :=

{
−s̄01,−s̄02,−s̄03

}
Vector of the off-diagonal SME Lorentz-violating
coefficients −s̄0j, j = 1, 2, 3

BLgvm Lorentz-violating gravitomagnetic field

B.5 Relevant Physical Parameters of a Binary System

MA Mass of the body A
MB Mass of the body B
Mb := MA +MB Total mass
xA := MA/Mb Normalized mass of the body A to the system’s

total mass
xB := MB/Mb = 1− xA Normalized mass of the body B to the system’s

total mass
µb := GMb Standard gravitational parameter
Mred := MAMB/Mb Reduced mass
Hb Orbital angular momentum

Hb = Mred

√
µba

(
1− e2

)
Magnitude of the orbital angular momentum

ν := Mred/Mb = MAMB/M2
b Symmetric mass ratio (0 ≤ ν ≤ 1/4)

mc Mass of the unseen companion of the emitting
body in a binary

µc Standard gravitational parameter of the unseen
companion of the emitting body in a binary

γA,B := MA or B/Mb Ratio of the visible to the total mass
JA Angular momentum of the body A
JB Angular momentum of the body B
JA Magnitude of the angular momentum of the body A
JB magnitude of the angular momentum of the body B
ĴA Spin axis unit vector of the body A
ĴB Spin axis unit vector of the body B
S := (1+ 3MB/4MA) JA Weighted sum of the spins of both bodies
+ (1+ 3MA/4MB) JB
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QA
2 Dimensional quadrupole mass moment

of the body A
QB

2 Dimensional quadrupole mass moment
of the body B

JA
2 Dimensionless quadrupole mass moment

of the body A
JB

2 Dimensionless quadrupole mass moment
of the body B

RA Equatorial radius of the body A
RB Equatorial radius of the body B
ϑ := Rp/R? Ratio of the radius of an exoplanet to that of

its parent star
δtD Total transit duration of transiting exoplanets
δti/e Ingress/egress transit duration of transiting

exoplanets
δtH Full width at half maximum primary transit

duration of transiting exoplanets
tcj Time of inferior conjunction of transiting

exoplanets
ρ :=

√
(rA − rB) · (rA − rB) Two-body range

ρ̂ := (rA − rB) /ρ Range unit vector
1ρ = (1rA −1rB) · ρ̂ Two-body range shift
ρ̇ := (vA − vB) · ρ̂ Two-body range rate
ρ̂v :=

[
(vA − vB)− ρ̇ρ̂

]
/ρ Unit vector needed to construct the range rate shift

1ρ̇ = (1vA −1vB) · Two-body range rate shift
ρ̂ + (1rA −1rB) · ρ̂v

t̃psr Time of arrivals (TOAs) of the radio pulses
emitted by a pulsar

δ̃tpsr = mc sin I sin u/ Variation of the TOAs due to the barycentric
Mbc (1+ e cos f ) orbital motion of the pulsar

B.6 Relevant Physical and Orbital Parameters of a Test Particle

A pK Perturbing acceleration
AN Newtonian inverse-square acceleration
α (t) RA
δ (t) Dec.
a Semimajor axis
nK :=

√
µ/a3 Keplerian mean motion

TK := 2π/nK Keplerian orbital period
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TpK
j pK j-type (anomalistic, draconitic, sidereal)

orbital period
1TpK

j := TpK
j − TK pK j-type correction to the Keplerian

orbital period
e eccentricity

β :=
(

1−
√

1− e2
)
/e Auxiliary quantity depending on e

p := a
(
1− e2

)
Semilatus rectum

I Inclination of the orbital plane to the
reference plane {x, y}

� Ascending node
� Descending node
� Longitude of the ascending node
ω Argument of pericentre
k := e sinω First Laplace–Lagrange parameter
q := e cosω Second Laplace–Lagrange parameter
$ := �+ ω Longitude of the pericentre
q̃ := e cos$ Nonsingular equinoctial element
k̃ := e sin$ Nonsingular equinoctial element
f (t) True anomaly
t0 Arbitrary moment of time chosen as

initial instant
f0 True anomaly at some arbitrary moment

of time t0
1κ :=

∫ f0+2π

f0
(dκ/df ) df Net shift per orbit of the (perturbed) orbital

element κf
wκ := 1κ/2π Fractional net shift per orbit of the orbital

element κ
〈dκ/dt〉 := 1κ/TK = (nK/2π) Average rate of change of the orbital∫ f0+2π

f0
(dκ/df ) df element κ ( f )

12 ( f ) := arctan
[√

1−e
1+e tan

(
f0
2

)]
Function of the true anomaly used in

− arctan
[√

1−e
1+e tan

(
f
2

)]
some calculation

u (t) := ω + f (t) Argument of latitude
u0 := ω + f0 Argument of latitude at t0
l (t) := $ + f (t) True longitude
l0 := $ + f0 True longitude at t0
M (t) Mean anomaly
η Mean anomaly at epoch
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8(t) :=
∫ t

t0
1nK

(
t′
)

dt′ One of the two terms entering the

= −
3
2

nK
a

∫ f
f0
1a

(
f ′
)

dt
df ′ df ′ instantaneous shift of the mean anomaly

E (t) Eccentric anomaly
r (t) Position vector with respect to the central body
1r (t) Instantaneous shift of the position vector
r (t) Time-dependent distance from the central body
r0 Constant radius of a circular orbit
r̂ := r/r = {cos� cos u (t) Radial unit vector
− cos I sin� sin u (t) ,
sin� cos u (t)
+ cos I cos� sin u (t) ,
sin I sin u (t)}

rJ := Ĵ · r̂ Cosine of the angle between Ĵ and r
x (t) = r (t) [cos� cos u (t) Keplerian x coordinate
− cos I sin� sin u (t)]

y (t) = r (t) [sin� cos u (t) Keplerian y coordinate
+ cos I cos� sin u (t)]

z (t) = r (t) [sin I sin u (t)] Keplerian z coordinate
φ (t) := arctan [y (t) /x (t)] Azimuthal angle in the reference plane {x, y}
ϕ (t) Azimuthal angle in the equatorial plane

of the primary
v (t) Velocity vector
1v (t) Instantaneous shift of the velocity vector
v (t) Magnitude of the velocity vector
vr, := v · r̂ Projection of v onto the direction of r
vJ := v·Ĵ Projection of v onto the direction of Ĵ
V Radial velocity of a spectroscopic binary
V 0 Radial velocity of the barycentre of a

spectroscopic binary
K := mcnKa sin I/ Semiamplitude of the radial velocity

Mb

√
1− e2 curve of a spectroscopic binary

l̂ := {cos�, sin�, 0} Unit vector directed along the line of the nodes
towards the ascending node

m̂ := {− cos I sin�, Unit vector directed transversely
cos I cos�, sin I to the line of the nodes in the orbital plane

h = r × v Orbital angular momentum per unit mass
h = nKa2

√
1− e2 Magnitude of the orbital angular momentum

per unit mass
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ĥ := {sin I sin�, Unit vector of the orbital angular momentum
− sin I cos�, cos I} such that l̂ × m̂ = ĥ

C Laplace–Runge–Lenz vector per unit mass
Ĉ = Laplace–Runge–Lenz unit vector per unit mass
τ̂ := ĥ× r̂ Transverse unit vector
= {− sin u (t) cos�
− cos I sin� cos u (t) ,
− sin� sin u (t)
+ cos I cos� cos u (t) ,
sin I cos u (t)}

Ar := A · r̂ Radial component of A
Aτ := A · τ̂ Transverse component of A
Ah := A · ĥ Normal component of A
C1cpr

r Cosine coefficient of the radial component of a
1-cpr acceleration

S1cpr
r Sine coefficient of the radial component of a

1-cpr acceleration
C1cpr
τ Cosine coefficient of the transverse component

of a 1-cpr acceleration
S1cpr
τ Sine coefficient of the transverse component

of a 1-cpr acceleration
C1cpr

h Cosine coefficient of the normal component
of a 1-cpr acceleration

S1cpr
h Sine coefficient of the normal component

of a 1-cpr acceleration
Rr ( f ) := 1r · r̂ Radial component of the instantaneous shift

of the position vector
Rτ ( f ) := 1r · τ̂ Transverse component of the instantaneous shift

of the position vector
Rh ( f ) := 1r · ĥ Normal component of the instantaneous shift

of the position vector
Vr ( f ) := 1v · r̂ Radial component of the instantaneous shift

of the velocity vector
Vτ ( f ) := 1v · τ̂ Transverse component of the instantaneous shift

of the velocity vector
Vh ( f ) := 1v · ĥ Normal component of the instantaneous shift

of the velocity vector
nDD Damour–Deruelle mean motion

(Damour and Deruelle, 1985, Equation (3.7))
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eT Damour–Deruelle proper time eccentricity
(Damour and Deruelle, 1986, p. 272)

et A member of the Damour–Deruelle parametrization
(Damour and Deruelle, 1985, Equation (3.8b))

eθ A member of the Damour–Deruelle parametrization
(Damour and Deruelle, 1985, Equation (4.13))

er A member of the Damour–Deruelle parametrization
(Damour and Deruelle, 1985, Equation (6.3b))

δ̃ A member of the Damour–Deruelle parametrization
(Damour and Deruelle, 1986, Equation (20))

da0 A function of the osculating Keplerian semimajor axis, eccentricity
and true anomaly at epoch (Klioner and Kopeikin, 1994, Equation (14))

de0 A function of the osculating Keplerian semimajor axis, eccentricity
and true anomaly at epoch (Klioner and Kopeikin, 1994, Equation (14))

aR A function of the osculating Keplerian semimajor axis
and eccentricity (Klioner and Kopeikin, 1994, Equation (28))

eR A function of the osculating Keplerian semimajor axis
and eccentricity (Klioner and Kopeikin, 1994, Equation (29))

ξ1 A constant of integration (Kopeikin and Potapov, 1994, Equation (4.5))
ξ2 A constant of integration (Kopeikin and Potapov, 1994, Equation (4.6))

B.7 Relevant Parameters of a Hierarchical Triple System

B.7.1 Physical and Orbital Parameters of the Third Body

M ′ Mass
J ′ Angular momentum

J ′ =
{
Ĵ
′

x, Ĵ
′

y, Ĵ
′

z

}
Unit vector of the angular momentum

r′ Distance
a′ Semimajor axis
n′K Keplerian mean motion
T ′K Orbital period
e′ Eccentricity
h′ Orbital angular momentum per unit mass

ĥ
′

Unit vector of the orbital angular momentum
I ′ Inclination
�′ Longitude of the ascending node
ω′ Argument of pericentre
f ′ True anomaly
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Appendix C

pK Disturbing Functions from the Spacetime Metric

In GTR, the disturbing function R for a given mass-energy distribution to be used
in Equations (2.27)–(2.32) can be obtained from the pK part of the Lagrangian per
unit mass L (Brumberg, 1991; Soffel and Brumberg, 1991) in the following way.

For a stationary distribution of mass-energy, the spacetime metric tensor com-
ponents are, in spatially isotropic or harmonic coordinates to the pN order1

(Brumberg, 1991),

g00 ' 1+ h00 = 1+
2U
c2
+

2U2

c4
+O

(
1/c6) , (C.1)

g0i ' h0i = O
(
1/c3) , i = 1, 2, 3, (C.2)

gij ' −1+ hij = −

(
1−

2U
c2

)
δij +O

(
1/c4) , i, j = 1, 2, 3, (C.3)

where hαβ , α,β = 0, 1, 2, 3 are the pN corrections to the Minkowskian values
of the spacetime metric tensor, h0i, i = 1, 2, 3 are connected to the mass-energy
currents of the source, U is the exterior gravitational potential, and

δij :=

{
1 for i = j

0 for i 6= j,
i, j = 1, 2, 3, (C.4)

is the Kronecker delta (Olver et al., 2010). For an isolated, rotating body of mass
M and angular momentum J , assumed spherically symmetric, one has

U = UN (r) = −
µ

r
, (C.5)

h0i =
2GεijwJ jxw

c3r3
, i = 1, 2, 3, (C.6)

1 The terms hµν , µ, ν = 0, 1, 2, 3 are the pN corrections to the Minkowskian components of the spacetime
metric tensor.
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where

εijw :==


+1 if (i, j, w) is (1, 2, 3), (2, 3, 1), or (3, 1, 2)
−1 if (i, j, w) is (3, 2, 1), (1, 3, 2), or (2, 1, 3)
0 if i = j, or j = w, or w = i

(C.7)

is the 3–dimensional Levi-Civita symbol (Olver et al., 2010), and xk , k = 1, 2, 3
are the Cartesian coordinates x, y, z; in Equation (C.6), the Einstein summation
convention (Olver et al., 2010) is applied to the dummy summation indexes j and w.

To the 1pN level, the Lagrangian per unit mass is given by (Brumberg, 1991,
p. 56, Equation (2.2.53))

L = LN + L1pN, (C.8)

where2

LN =
1

2
v2
−

1

2
c2h
(1/c2)
00 , (C.9)

L1pN
= −

1

2
c2h
(1/c4)
00 +

v4

8c2
−

1

4
h00v2

+
c2

8
h2

00 −
1

2
hijv

iv j
− ch0jv

j, (C.10)

where h(
1/c2)

00 and h
(1/c4)
00 denote the 1pN and 2pN parts of h00, respectively; both of

them are needed to keep the Lagrangian to the 1pN level. To this aim, it is intended

that only h
(1/c2)
00 enters the third and fourth terms of Equation (C.10).

C.1 The 1pN Gravitoelectric Lagrangian per Unit Mass

As an example, from Equation (C.5) and by assuming h0i= 0, i= 1, 2, 3, Equa-
tion (C.10) yields the 1pN gravitoelectric Lagrangian per unit mass of a static,
spherically symmetric body. It turns out to be

L1pN
=

r2v4
+ 12rv2µ− 4µ2

8c2r2
. (C.11)

Calculated onto the unperturbed Keplerian ellipse with Equations (2.7)–(2.8) and
Equation (2.11), Equation (C.11) becomes

L1pN ( f ) =
µ2
{
9+ 26e2

+ e4
+ 4e

[
4
(
2+ e2

)
cos f + 3e cos 2f

]}
8a2c2

(
1− e2

)2 . (C.12)

2 Here, the velocity components vi, i = 1, 2, 3 are calculated with respect to the coordinate time t (Brumberg,
1991).
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Furthermore, it is

v · ∇vL
1pN
=

rv4
+ 6v2µ

2c2r
, (C.13)

which, evaluated onto the Keplerian ellipse, yields

v · ∇vL
1pN ( f ) =

µ2
(
1+ e2

+ 2e cos f
) (

7+ e2
+ 8e cos f

)
2c2a2

(
1− e2

)2 . (C.14)

The averages of Equation (C.12) and Equation (C.14) are calculated in Equa-
tions (3.19)–(3.20) to obtain Equations (3.13)–(3.17) to obtain Equations (3.13)–
(3.18).

C.2 The 1pN Lense–Thirring Lagrangian per Unit Mass

From the last term in Equation (C.10) containing the off-diagonal metric tensor
components related to the body’s angular momentum, one has

LLT
= −

2GJ

c2r3

(
Ĵ × r

)
· v. (C.15)

Equation (C.15), up to the minus sign and the test particle’s mass,3 can be inferred,
for example, from Barker and O’Connell (1979, Equation (2.18), p. 155) for the
potential energy

VS2 =
G

c2r3

(
2+

3m1

2m2

)
S(2)
· (r × P) (C.16)

of two bodies of masses m2 and m1, one of which carries the angular momen-
tum S(2), separated by a distance r and moving with relative velocity v in the limit
m2 � m1, with the identification m2 → M , m1 → m, where m is the test par-
ticle’s mass. Furthermore, it is assumed that S(2) is the spin angular momentum
of the massive body M . Thus, r × P in Barker and O’Connell (1979, Equa-
tion (2.18), p. 155) is the orbital angular momentum r × mv of the motion of the
test particle around M . Calculated onto the unperturbed Keplerian ellipse with
Equations (2.7)–(2.8) and Equation (2.11), Equation (C.15) becomes

LLT ( f ) =
2nKGJ (1+ e cos f )2

c2a
(
1− e2

)5/2

{[(
Ĵ × m̂

)
· l̂
]

sin u (e sinω + sin u)

−

[(
Ĵ × l̂

)
· m̂
]

cos u (e cosω + cos u)
}

. (C.17)

3 Recall that the disturbing function is the opposite of the potential energy per unit mass of the pK effect of
interest.
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C.3 The Newtonian J2 Lagrangian per Unit Mass 193

Note that, since Equation (C.15) is linear in v, it is

v · ∇vL
LT
= LLT. (C.18)

The average of Equation (C.17) is calculated in Equation (5.36) to obtain
Equations (5.30)–(5.35).

C.3 The Newtonian J2 Lagrangian per Unit Mass

It should be noted that Equation (C.9) is able to provide a pK Lagrangian of New-
tonian origin if deviations from Equation (C.5) in the external potential of the
source are present. It is just the case when the oblateness J2 of the central body
is taken into account. Indeed, from

U = UN +1U2 = −
µ

r

[
1−

(
Re

r

)2

J2P2 (rJ )

]
(C.19)

and the second term of Equation (C.9), it turns out that the pK Lagrangian due to
J2 is

LJ2 = −
µJ2R2

e

(
−1+ 3r2

J

)
2r3

. (C.20)

By evaluating Equation (C.20) onto the Keplerian ellipse, one gets

LJ2 ( f ) = −
µJ2R2

e (1+ e cos f )3

2a3
(
1− e2

)3

[
−1+ 3 (Jl cos u+ Jm sin u)2

]
, (C.21)

where Jl and Jm are given by Equations (D.1)–(D.2).
The average of Equation (C.21) is calculated in Equation (7.34) to obtain

Equations (7.28)–(7.33).
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Appendix D

Spin-Orbit Orientation and Lorentz-Violating
Coefficients

Let the cosines of the angles between Ĵ and the unit vectors l̂, m̂, ĥ be defined as
follows:

Jl := Ĵ · l̂ (D.1)

Jm := Ĵ · m̂ (D.2)

Jh := Ĵ · ĥ (D.3)

Here, the coefficients T̂j, j = 1, 2, . . . 6, characterizing the mutual spin-orbit
orientation to the second order in Ĵ , are displayed. They are

T̂1 := 1, (D.4)

T̂2 := Jl2
+ Jm2, (D.5)

T̂3 := Jl2
− Jm2, (D.6)

T̂4 := JhJl, (D.7)

T̂5 := JhJm, (D.8)

T̂6 := JlJm. (D.9)

The introduction of T̂1 is motivated just by consistency reasons in writing down
expressions like, for example, Equations (7.22)–(7.27).

By parameterizing Ĵ as, for example,

Ĵx = cos δJ cosαJ , (D.10)

Ĵy = cos δJ sinαJ , (D.11)

Ĵz = sin δJ , (D.12)

the building blocks of T̂j, j = 1, 2, . . . 6, namely Equations (D.1)–(D.3), can be
written as

Jl = cos δJ cos (αJ −�) , (D.13)
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D.2 Polar Orbits: General Spin Orientation 195

Jm = sin I sin δJ + cos I cos δJ sin (αJ −�) , (D.14)

Jh = cos I sin δJ − cos δJ sin I sin (αJ −�) . (D.15)

Furthermore, it is(
Ĵ × m̂

)
· l̂ −

(
Ĵ × l̂

)
· m̂ = 2 cos I sin δJ − 2 cos δJ sin I sin (αJ −�) . (D.16)

D.1 Equatorial Orbits: General Spin Orientation

Equatorial orbits are characterized by the common direction of the orbital angular
momentum h and the spin angular momentum J of the primary. Furthermore, since
both l̂ and m̂ lie in the equatorial plane, they are orthogonal to Ĵ . Thus,

Jl = 0, (D.17)

Jm = 0, (D.18)

Jh = ±1, (D.19)

and Equations (D.4)–(D.9) reduce to

T̂1 = 1, (D.20)

T̂2 = 0, (D.21)

T̂3 = 0, (D.22)

T̂4 = 0, (D.23)

T̂5 = 0, (D.24)

T̂6 = 0. (D.25)

D.2 Polar Orbits: General Spin Orientation

In polar orbits, the spin angular momentum J of the central body, assumed arbitrar-
ily oriented in space, lies somewhere in the orbital plane between l̂ and m̂, so that
it is orthogonal to the orbital angular momentum h; this condition is accomplished
with I = 90◦ and � = α. According to Equations (D.13)–(D.15), one has

Jl = cos δJ , (D.26)

Jm = sin δJ , (D.27)

Jh = 0, (D.28)

so that Equations (D.4)–(D.9) become

T̂1 = 1, (D.29)

T̂2 = 1, (D.30)
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196 Spin-Orbit Orientation and Lorentz-Violating Coefficients

T̂3 = cos 2δJ , (D.31)

T̂4 = 0, (D.32)

T̂5 = 0, (D.33)

T̂6 = cos δJ sin δJ . (D.34)

D.3 Known Spin Orientation

If, as in the case of the Earth, the direction of J is known with sufficient accuracy,
it can be assumed as, say, the z direction of an equatorial reference frame. Thus, for
a generic orbital configuration referred to the latter and δJ = 90◦, it is

Jl = 0, (D.35)

Jm = sin I , (D.36)

Jh = cos I , (D.37)

as per Equations (D.13)–(D.15); Equations (D.4)–(D.9) become

T̂1 = 1, (D.38)

T̂2 = sin2 I , (D.39)

T̂3 = − sin2 I , (D.40)

T̂4 = 0, (D.41)

T̂5 = cos I sin I , (D.42)

T̂6 = 0. (D.43)

D.4 Lorentz-Violating Gravitomagnetic Coefficients

The coefficients entering Equations (10.52)–(10.54) are defined as

sl := s · l̂, (D.44)

sm := s · m̂, (D.45)

sh := s · ĥ, (D.46)

shl := s ·
(

ĥ× l̂
)

, (D.47)

shm := s ·
(

ĥ× m̂
)

. (D.48)
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Appendix E

Coefficients of the Lense–Thirring Orbital Shifts

The coefficients entering the instantaneous LT shifts of the Keplerian orbital
elements of Equations (5.26)–(5.28) are listed here. They are

E.1 The Inclination

ILT
1 = −4 ( f − f0)+ 2 (sin 2u0 − sin 2u)+ e [sin (3f0 + 2ω)

− sin (3f + 2ω)− 4 (sin f − sin f0)+ sin ( f0 + 2ω)

− sin ( f + 2ω)] , (E.1)

ILT
2 = −2 (cos 2u0 + cos 2u)+ e {−3 [cos (3f0 + 2ω)

− cos (3f + 2ω)]+ 2 (cos f − cos f0)− cos ( f0 + 2ω)

+ cos ( f + 2ω)} . (E.2)

E.2 The Longitude of the Ascending Node

N LT
1 = −2 (cos 2u0 − cos 2u)+ e {−3 [cos (3f0 + 2ω)

− cos (3f + 2ω)]− 2 cos f + 2 cos f0 − cos ( f0 + 2ω)

+ cos ( f + 2ω)} , (E.3)

N LT
2 = 2 [−2 ( f − f0)− sin 2u0 + sin 2u]+ e [− sin (3f0 + 2ω)

+ sin (3f + 2ω)− 4 (sin f − sin f0)− sin ( f0 + 2ω)

+ sin ( f + 2ω)] . (E.4)
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198 Coefficients of the Lense–Thirring Orbital Shifts

E.3 The Argument of Pericentre

GLT
1 = e cot I {2 (cos 2u0 − cos 2u)+ e [cos (3f0 + 2ω)− cos (3f + 2ω)

+ 2 (cos f − cos f0)+ cos ( f0 + 2ω)− cos ( f + 2ω)]} , (E.5)

GLT
2 = e cot I {2 [2 ( f − f0)+ sin 2u0 − sin 2u]+ e [sin (3f0 + 2ω)

− sin (3f + 2ω)+ 4 (sin f − sin f0)+ sin ( f0 + 2ω)

− sin ( f + 2ω)]} , (E.6)

GLT
3 = 4 {sin f − sin f0 + e [2 ( f − f0)+ e (sin f − sin f0)]} . (E.7)
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Appendix F

Coefficients of the Newtonian J2 Orbital Shifts

Here, the coefficients AJ2
1 , . . .HJ2

6 entering Equations (7.22)–(7.27) of the New-
tonian J2-driven instantaneous variations of the Keplerian orbital elements are
explicitly displayed. In the following, [ f → f0] denotes the same preceding
expression in which f is replaced with f0.

F.1 The Semimajor Axis

AJ2
1 := 4 e

[
−3

(
4+ e2) cos f + e (−6 cos 2f − e cos 3f )

]
− [ f → f0] , (F.1)

AJ2
2 := 6 e

[
3
(
4+ e2) cos f + e (6 cos 2f + e cos 3f )

]
− [ f → f0] , (F.2)

AJ2
3 := 3

(
e3 cos ( f − 2ω)+ 6 e

{[
2 e +

(
4+ e2) cos f

]
cos 2u

+ e cos (4f + 2ω)} + e3 cos (5f + 2ω)

− 16 sin f sin ( f + 2ω))− [ f → f0] , (F.3)

AJ2
4 := 0, (F.4)

AJ2
5 := 0, (F.5)

AJ2
6 := 6

(
16 cos ( f + 2ω) sin f + e

{
−e2 sin ( f − 2ω)

+ 6
[
2 e +

(
4+ e2) cos f

]
sin 2u

+ 6 e sin (4f + 2ω)+ e2 sin (5f + 2ω)
})
− [ f → f0] . (F.6)

F.2 The Eccentricity

EJ2
1 := 4

[
3
(
4+ e2) cos f + e (6 cos 2f + e cos 3f )

]
− [ f → f0] , (F.7)

EJ2
2 := −6

[
3
(
4+ e2) cos f + e (6 cos 2f + e cos 3f )

]
− [ f → f0] , (F.8)

199

https://doi.org/10.1017/9781009562911.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009562911.016


200 Coefficients of the Newtonian J2 Orbital Shifts

EJ2
3 := −4 [3 cos ( f + 2ω)+ 7 cos (3f + 2ω)]+ e {−e [3 cos ( f − 2ω)

+ 33 cos ( f + 2ω)+ 17 cos (3f + 2ω)+ 3 cos (5f + 2ω)]

+ 36 sin 2f sin 2u+ 120 sin f sin ( f + 2ω)} − [ f → f0] , (F.9)

EJ2
4 := 0, (F.10)

EJ2
5 := 0, (F.11)

EJ2
6 := 6 e2 sin ( f − 2ω)− 8 [3 sin ( f + 2ω)+ 7 sin (3f + 2ω)]

− 2 e {24 [3 cos f cos 2u+ 5 cos ( f + 2ω)] sin f

+ e [33 sin ( f + 2ω)+ 17 sin (3f + 2ω)+ 3 sin (5f + 2ω)]}

− [ f → f0] . (F.12)

F.3 The Inclination

IJ2
1 := 0, (F.13)

IJ2
2 := 0, (F.14)

IJ2
3 := 0, (F.15)

IJ2
4 := 6f + 6 e sin f + 3 sin 2u+ 3 e sin ( f + 2ω)

+ e sin (3f + 2ω)− [ f → f0] , (F.16)

IJ2
5 := −{3 cos 2u+ e [3 cos ( f + 2ω)+ cos (3f + 2ω)]}

− [ f → f0] , (F.17)

IJ2
6 := 0. (F.18)

F.4 The Longitude of the Ascending Node

N J2
1 := 0, (F.19)

N J2
2 := 0, (F.20)

N J2
3 := 0, (F.21)

N J2
4 := −{3 cos 2u+ e [3 cos ( f + 2ω)+ cos (3f + 2ω)]}

− [ f → f0] , (F.22)

N J2
5 := 6f + 6 e sin f − 3 sin 2u

− e [3 sin ( f + 2ω)+ sin (3f + 2ω)]− [ f → f0] , (F.23)

N J2
6 := 0. (F.24)
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F.5 The Argument of Pericentre

GJ2
1 := 48 e f + 8

(
6+ 5 e2

+ 6 e cos f + e2 cos 2f
)

sin f − [ f → f0] , (F.25)

GJ2
2 := 6

[
−12 e f−2

(
6+5 e2

+ 6 e cos f+e2 cos 2f
)

sin f
]
− [ f → f0] , (F.26)

GJ2
3 := 4 [3 sin ( f + 2ω)− 7 sin (3f + 2ω)]

− e {36 [3 cos ( f + 2ω)+ cos (3f + 2ω)] sin f

+ e [3 sin ( f − 2ω)+ 21 sin ( f + 2ω)

+ 11 sin (3f + 2ω)+ 3 sin (5f + 2ω)]} − [ f → f0] , (F.27)

GJ2
4 := −8 e {3 cos 2u+ e [3 cos ( f + 2ω)+ cos (3f + 2ω)]} cot I

− [ f → f0] , (F.28)

GJ2
5 := −8 e cot I {−6f + 3 sin 2u

+ e [−6 sin f + 3 sin ( f + 2ω)+ sin (3f + 2ω)]} − [ f → f0] , (F.29)

GJ2
6 := −6 e2 cos ( f − 2ω)+ 6(−4+ 7 e2) cos ( f + 2ω)

+ 56 cos (3f + 2ω)+ 2 e {11 e cos (3f + 2ω)

+ 3 e cos (5f + 2ω)− 36 sin f [3 sin ( f + 2ω)

+ sin (3f + 2ω)]} − [ f → f0] . (F.30)

F.6 The Mean Anomaly at Epoch

HJ2
1 := −4

[
3
(
4− 5e2) sin f − 12ef + e (6 sin 2f + e sin 3f )

]
− [ f → f0] , (F.31)

HJ2
2 := 12

[
−6ef +

(
6− 7e2

+ 6e cos f + e2 cos 2f
)

sin f
]

− [ f → f0] , (F.32)

HJ2
3 := −4 [3 sin ( f + 2ω)− 7 sin (3f + 2ω)]

− e {36 sin 2u− 18 sin (4f + 2ω)+ e [−3 sin ( f − 2ω)

+ 51 sin ( f + 2ω)+ 13 sin (3f + 2ω)− 3 sin (5f + 2ω)]}

− [ f → f0] , (F.33)

HJ2
4 := 0, (F.34)

HJ2
5 := 0, (F.35)

HJ2
6 := 8 [3 cos ( f + 2ω)− 7 cos (3f + 2ω)]

+ 2e {36 cos 2u− 18 cos (4f + 2ω)+ e [3 cos ( f − 2ω)

+ 51 cos ( f + 2ω)+ 13 cos (3f + 2ω)− 3 cos (5f + 2ω)]}

− [ f → f0] . (F.36)
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F.7 8(t)
Here, the coefficients F J2

j , j = 1, 2, . . . 6 entering Equation (7.48) for the Newton-
ian J2-induced contribution to the instantaneous variation of the mean anomaly due
to 8( f ) are displayed.

F J2
1 = −212( f ) (1+ e cos f0)

3

−

√
1− e2

2 (1+ e cos f ) (1+ e cos f0)

[
−2

(
−1+ e2) ( f − f0)

+ e
(
cos f0

[
−2

(
−1+ e2) ( f − f0)

+ e
(
4+ e2) sin f

]
+
(
4+ e2) (sin f − sin f0)

+ cos f
{
−2

(
−1+ e2) (1+ e cos f0) ( f − f0 + e sin f )

+ e
[
−4− e2

+ 2e
(
−1+ e2) cos f0

]
sin f0

}
+ e

(
−1+ e2) sin 2f0

)]
, (F.37)

F J2
2 = 312( f ) (1+ e cos f0)

3

−
3
√

1− e2

4 (1+ e cos f ) (1+ e cos f0)

(
(1+ e cos f0)

{
2
(
−1+ e2) ( f

− f0) (1+ e cos f )+ e
[
−4− e2

+ 2e
(
−1+ e2) cos f

]
sin f

}
− e (1+ e cos f )

[
−4− e2

+ 2e
(
−1+ e2) cos f0

]
sin f0

)
, (F.38)

F J2
3 = 312( f ) (1+ e cos f0)

3 sin 2u0

+

√
1− e2

16 (1+ e cos f ) (1+ e cos f0)
[2 (1+ e cos f ) cos 2ω (−21e sin f0

+
(
−1+ e2) [(6+ 4e2) sin 2f0 + e (5 sin 3f0 + e sin 4f0)

])
+ 2 (1+ e cos f0)

(
cos 2ω

{
21e sin f −

(
−1+ e2) [(6+ 4e2) sin 2f

+ e (5 sin 3f + e sin 4f )]} − 4
(
−1+ e2) (1+ e cos f ) (cos f

− cos f0) [e (2+ cos 2f )+ 3 cos f0 + cos f (3+ 2e cos f0)

+ e cos 2f0] sin 2ω)] , (F.39)

F J2
4 = 0, (F.40)

F J2
5 = 0, (F.41)

F J2
6 = 612( f ) (1+ e cos f0)

3 sin 2u0

−

(
1− e2

)3/2 (
4e cos3 f + 3 cos 2f − 4e cos3 f0 − 3 cos 2f0

)
cos 2ω

2
.

(F.42)
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Appendix G

Coefficients of the Total Mixed Net Orbital Shifts
of the Order of J2/c2

Here, the total mixed net shifts per orbit of the order of O
(
J2/c2

)
, calculated

in Section 8.2.1, are treated. The coefficients ÃJ2/c2

1 , . . . H̃J2/c2

6 entering Equa-
tions (8.31)–(8.36) are as follows.

G.1 The Semimajor Axis

ÃJ2/c2

1 := 0, (G.1)

ÃJ2/c2

2 := 0, (G.2)

ÃJ2/c2

3 := 8 (1+ e cos f0)
3 cos 2ω sin 2f0 +

{
4e
(
3+ e2) cos f0

+ 4
(
2+ 3e2) cos 2f0 + e

[
3
(
4+ e2) cos 3f0

+ e
(
12+ e2

+ 6 cos 4f0 + e cos 5f0
)]}

sin 2ω, (G.3)

ÃJ2/c2

4 := 0, (G.4)

ÃJ2/c2

5 := 0, (G.5)

ÃJ2/c2

6 := −2
{
4e
(
3+ e2) cos f0 + 4

(
2+ 3e2) cos 2f0

+ e
[
3
(
4+ e2) cos 3f0 + e

(
12+ e2

+ 6 cos 4f0

+ e cos 5f0)]} cos 2ω + 16 (1+ e cos f0)
3 sin 2f0 sin 2ω. (G.6)

G.2 The Eccentricity

ẼJ2/c2

1 := 0, (G.7)

ẼJ2/c2

2 := 0, (G.8)

203

https://doi.org/10.1017/9781009562911.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009562911.017
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ẼJ2/c2

3 := −{4 [3 sin (f0 + 2ω)+ 7 sin (3f0 + 2ω)]

+ e
[
−3e sin (f0 − 2ω)+

(
20+ 19e2) sin 2ω

+ 60 sin u0 + 18 sin (4f0 + 2ω)

+ 33e sin (f0 + 2ω)+ 17e sin (3f0 + 2ω)

+ 3e sin (5f0 + 2ω)]} , (G.9)

ẼJ2/c2

4 := 0, (G.10)

ẼJ2/c2

5 := 0, (G.11)

ẼJ2/c2

6 := 8 [3 cos (f0 + 2ω)+ 7 cos (3f0 + 2ω)]

+ 2e
[
3e cos (f0 − 2ω)+

(
20+ 19e2) cos 2ω

+ 60 cos u0 + 18 cos (4f0 + 2ω)

+ 33e cos (f0 + 2ω)+ 17e cos (3f0 + 2ω)

+ 3e cos (5f0 + 2ω)] . (G.12)

G.3 The Inclination

ĨJ2/c2

1 := 0, (G.13)

ĨJ2/c2

2 := 0, (G.14)

ĨJ2/c2

3 := 0, (G.15)

ĨJ2/c2

4 := 5e2
+ 3 cos u0 + e [−16 cos f0 + 2e cos 2ω

+ 3 cos (f0 + 2ω)+ cos (3f0 + 2ω)] , (G.16)

ĨJ2/c2

5 := 3 sin u0 + e [2e sin 2ω + 3 sin (f0 + 2ω)+ sin (3f0 + 2ω)] , (G.17)

ĨJ2/c2

6 := 0. (G.18)

G.4 The Longitude of the Ascending Node

Ñ J2/c2

1 := 0, (G.19)

Ñ J2/c2

2 := 0, (G.20)

Ñ J2/c2

3 := 0, (G.21)

Ñ J2/c2

4 := 3 sin u0 + e [2e sin 2ω + 3 sin (f0 + 2ω)+ sin (3f0 + 2ω)] , (G.22)
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Ñ J2/c2

5 := 5e2
− 3 cos u0 − e [16 cos f0 + 2e cos 2ω

+ 3 cos (f0 + 2ω)+ cos (3f0 + 2ω)] , (G.23)

Ñ J2/c2

6 := 0. (G.24)

G.5 The Argument of Pericentre

G̃J2/c2

1 := −4e
(
44+ 17e2

− 64e cos f0
)

sin I , (G.25)

G̃J2/c2

2 := 6e
(
44+ 17e2

− 64e cos f0
)

sin I , (G.26)

G̃J2/c2

3 := 2 {4 [−3 cos (f0 + 2ω)+ 7 cos (3f0 + 2ω)]

+ e
[
−3e cos (f0 − 2ω)+ 2

(
−10+ 9e2) cos 2ω + 60 cos u0

+ 18 cos (4f0 + 2ω)+ 45e cos (f0 + 2ω)

+ 19e cos (3f0 + 2ω)+ 3e cos (5f0 + 2ω)]} sin I , (G.27)

G̃J2/c2

4 := −16e cos I {3 sin u0 + e [2e sin 2ω + 3 sin (f0 + 2ω)

+ sin (3f0 + 2ω)]} , (G.28)

G̃J2/c2

5 := 16e cos I
{
−5e2

+ 3 cos u0 + e [16 cos f0 + 2e cos 2ω

+ 3 cos (f0 + 2ω)+ cos (3f0 + 2ω)]} , (G.29)

G̃J2/c2

6 := 4 sin I {4 [−3 sin (f0 + 2ω)+ 7 sin (3f0 + 2ω)]

+ e
[
3e sin (f0 − 2ω)+ 2

(
−10+ 9e2) sin 2ω + 60 sin u0

+ 18 sin (4f0 + 2ω)+ 45e sin (f0 + 2ω)

+ 19e sin (3f0 + 2ω)+ 3e sin (5f0 + 2ω)]} . (G.30)

G.6 The Mean Anomaly at Epoch

H̃J2/c2

1 := 4e
{

88+ 5e4
− 16

√
1− e2 − 3e2

(
21+ 8

√
1− e2

)
− e

[
3e2

(
7+ 4

√
1− e2

)
+ 8

(
−17+ 6

√
1− e2

)]
cos f0

+ e2
[
8
(

5− 3
√

1− e2
)

cos 2f0 + e
(

5− 4
√

1− e2
)

cos 3f0
]}

, (G.31)

H̃J2/c2

2 := 6e
{
−88− 5e4

+ 16
√

1− e2 + 3e2
(

21+ 8
√

1− e2
)

+ e
[
3e2

(
7+ 4

√
1− e2

)
+ 8

(
−17+ 6

√
1− e2

)]
cos f0

+ 4e2
√

1− e2 (6 cos 2f0 + e cos 3f0)− 5e2 (8 cos 2f0 + e cos 3f0)
}

,

(G.32)
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H̃J2/c2

3 := 3e2 (2− 7e2) cos (f0 − 2ω)

+ 96e
√

1− e2 (1+ e cos f0)
3 cos u0

+ 8 [3 cos (f0 + 2ω)− 7 cos (3f0 + 2ω)]

+ e
[
−2

(
−20+ 7e2

+ 13e4) cos 2ω

− 12
(
14+ 11e2) cos u0 − 18

(
2+ 3e2) cos (4f0 + 2ω)

− 3e
(
74+ 9e2) cos (f0 + 2ω)− e

(
138+ 31e2) cos (3f0 + 2ω)

− 3e
(
2+ 3e2) cos (5f0 + 2ω)

]
, (G.33)

H̃J2/c2

4 := 0, (G.34)

H̃J2/c2

5 := 0, (G.35)

H̃J2/c2

6 := −2
[
3e2

[
2+ e2

(
−7+ 4

√
1− e2

)]
sin (f0 − 2ω)

+ 2e
[
−20+ 13e4

+ e2
(

7− 36
√

1− e2
)]

sin 2ω

+ 8 [−3 sin (f0 + 2ω)+ 7 sin (3f0 + 2ω)]

+ e
(

12
[
14− 8

√
1− e2 + e2

(
11− 12

√
1− e2

)]
sin u0

+ 18
[
2+ e2

(
3− 4

√
1− e2

)]
sin (4f0 + 2ω)

+ e
{

3
[
74− 48

√
1− e2 + e2

(
9− 12

√
1− e2

)]
sin (f0 + 2ω)

+

[
138− 144

√
1− e2 + e2

(
31− 36

√
1− e2

)]
sin (3f0 + 2ω)

+ 3
[
2+ e2

(
3− 4

√
1− e2

)]
sin (5f0 + 2ω)

})]
. (G.36)
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Appendix H

The Coefficients of the Tidal Orbital Precessions

H.1 The General Expressions of the Net Orbital Precessions
Here, the coefficients entering Equations (9.8)–(9.12) are explicitly displayed.

H.1.1 The Eccentricity

The coefficient E tid entering Equation (9.8) is

E tid
= −2 sin 2ω sin�(2T21 cos�+ T33 sin�) cos2 I

+ 2 {2 sin I sin 2ω (T32 cos�− T31 sin�)

+ cos 2ω [2T21 cos 2�+ (2T22 + T33) sin 2�]} cos I

+ 4 cos 2ω sin I (T31 cos�+ T32 sin�)

+ sin 2ω [T22 (cos 2I + 3) cos 2�

+T33 (− cos 2I + cos 2�+ 2)− 2T21 sin 2�] . (H.1)

H.1.2 The Inclination

The coefficient I tid entering Equation (9.9) is

I tid
= 10e2 cos 2I sin 2ω (T32 cos�− T31 sin�)

−
5

2
e2 sin 2I sin 2ω [−3T33 + (2T22 + T33) cos 2�− 2T21 sin 2�]

+ 2 cos I
(
5e2 cos 2ω + 3e2

+ 2
)
(T31 cos�+ T32 sin�)

−
(
5e2 cos 2ω + 3e2

+ 2
)

sin I [2T21 cos 2�

+ (2T22 + T33) sin 2�] . (H.2)
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H.1.3 The Longitude of the Ascending Node

The coefficient N tid entering Equation (9.10) is

N tid
= 20e2 sin 2ω {cos I (T31 cos�+ T32 sin�)

− sin I [T21 cos 2�+ (2T22 + T33) cos� sin�]}

+ 4 cos 2I
(
5e2 cos 2ω − 3e2

− 2
)
(T31 sin�− T32 cos�)

+
(
5e2 cos 2ω − 3e2

− 2
)

sin 2I [−3T33

+ (2T22 + T33) cos 2�− 2T21 sin 2�] (H.3)

H.1.4 The Argument of Pericentre

The numerical coefficients ktid
i , i = 1, 2 entering Equation (9.11) are

ktid
1 = 1, (H.4)

ktid
2 =

1

2
, (H.5)

while P tid
i , i = 1, 2 are

P tid
1 = −2

(
−1+ e2) cos2 ω [3T33

+ 2 (2T22 + T33) cos 2�+ T32 cos� cot I

− (8T21 cos�+ T31 cot I) sin�] , (H.6)

P tid
2 = sin2 ω

[
3T33

(
−1+ 6e2

+ 5 cos 2I
)

+ (2T22 + T33)
(
−7+ 2e2

− 5 cos 2I
)

cos 2�

+ 4T32
(
−4+ 4e2

+ 5 cos 2I
)

cos� cot I

− 4T31
(
−4+ 4e2

+ 5 cos 2I
)

cot I sin�

+ 2T21
(
7− 2e2

+ 5 cos 2I
)

sin 2�
]
− 5

[
2− 3e2

+
(
−2+ e2) cos 2I

]
sin 2ω csc I (T31 cos�+ T32 sin�)

+ 2 sin 2ω cos I
{
5
(
−2+ e2)T21 cos 2�

+
[(
−8+ 3e2)T22 − 3T33

]
sin 2�

}
+
[
−4

(
−1+ e2)T11 + e2T33

]
cos I sin 2ω sin 2�. (H.7)

H.1.5 The Mean Anomaly at Epoch

The coefficient Htid entering Equation (9.12) is

Htid
= −5

(
1+ e2) cos 2ω [(2T22 + T33) (3+ cos 2I) cos 2�

+ 6T33 sin2 I + 4 sin 2I (T32 cos�− T31 sin�)
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− 2T21 (3+ cos 2I) sin 2�]−
(
7+ 3e2)

{T33 (1+ 3 cos 2I)

+ 4 sin 2I (−T32 cos�+ T31 sin�)

+ 2 sin2 I [(2T22 + T33) cos 2�− 2T21 sin 2�]
}

+ 20
(
1+ e2) sin 2ω {2 sin I (T31 cos�+ T32 sin�)

+ cos I [2T21 cos 2�+ (2T22 + T33) sin 2�]} . (H.8)

H.2 The Net 1pN Gravitoelectric Tidal Coefficients

The 1pN gravitoelectric tidal coefficients of Equations (9.21)–(9.26), averaged over
T
′

K, turn out to be

T 1pN
11 = 12 cos 2I

′

+ 2 cos 2ω
′
(

1− cos 2I
′
)

+ cos 2�
′
[
24 sin2 I

′

+ 2
(

cos 2I
′

+ 3
)

cos 2ω
′
]

− 8 cos I
′

sin 2�
′

sin 2ω
′

+ 4, (H.9)

T 1pN
22 = −12 cos 2I

′

− 2 cos 2ω
′
(

1− cos 2I
′
)

+ cos 2�
′
[
24 sin2 I

′

+ 2
(

cos 2I
′

+ 3
)

cos 2ω
′
]

− 8 cos I
′

sin 2�
′

sin 2ω
′

− 4, (H.10)

T 1pN
33 = sin2 I

′

cos 2ω
′

+ 3 cos 2I
′

+ 1, (H.11)

T 1pN
12 = 4 cos I

′

cos 2�
′

sin 2ω
′

+

[
12 sin2 I

′

+

(
cos 2I

′

+ 3
)

cos 2ω
′
]

sin 2�
′

, (H.12)

T 1pN
13 = sin I

′
[
cos�

′

sin 2ω
′

+ cos I
′
(

cos 2ω
′

− 6
)

sin�
′
]

, (H.13)

T 1pN
23 = sin I

′
[
cos I

′
(

cos 2ω
′

− 6
)

cos�
′

− sin 2ω
′

sin�
′
]

. (H.14)

H.3 The Net Gravitomagnetic Tidal Coefficients

The gravitomagnetic tidal coefficients of Equations (9.28)–(9.33), averaged over
T
′

K, turn out to be

T gvm
11 = 40e

′2
sin 2ω

′
(

2 Ĵ
′

z cos 2I
′

+ 3 Ĵ
′

x sin 2I
′

sin�
′
)

sin 2�
′

+ 5 cos 2ω
′
{

12 sin 3I
′
(
Ĵ
′

x sin�
′

− Ĵ
′

y cos�
′
)

sin2�
′

+ sin I
′
[
Ĵ
′

y

(
cos�

′

+ 15 cos 3�
′
)
− 3 Ĵ

′

x

(
sin�

′

+ 5 sin 3�
′
)]}

e
′2
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− 20
(

3e
′2
+ 2

)
Ĵ
′

z cos 3I
′

− 4 cos I
′
{

5 Ĵ
′

z cos 2ω
′
[
6 sin2 I

′

+

(
3 cos 2I

′

+ 1
)

cos 2�
′
]

e
′2
− 10 Ĵ

′

y sin I
′

sin 2ω
′
(

sin�
′

− 3 sin 3�
′
)

e
′2

+

(
3e
′2
+ 2

)
Ĵ
′

z

(
20 cos 2�

′

sin2 I
′

+ 3
)}

+ 2
(

3e
′2
+ 2

) {
20 sin 3I

′
(
Ĵ
′

y cos�
′

− Ĵ
′

x sin�
′
)

sin2�
′

+ sin I
′
[
Ĵ
′

y

(
cos�

′

+ 15 cos 3�
′
)
− 3 Ĵ

′

x

(
sin�

′

+ 5 sin 3�
′
)]}

,

(H.15)

T gvm
22 = 20e

′2
Ĵ
′

x

(
cos�

′

+ 3 cos 3�
′
)

sin 2I
′

sin 2ω
′

− 80e
′2

Ĵ
′

z cos 2I
′

sin 2ω
′

sin 2�
′

− 20
(

3e
′2
+ 2

)
Ĵ
′

z cos 3I
′

+ 20
(

3e
′2

cos 2ω
′

− 6e
′2
− 4

)
cos2�

′

sin 3I
′
(
Ĵ
′

x sin�
′

− Ĵ
′

y cos�
′
)

+ 4e
′2

cos I
′
{

5 Ĵ
′

z cos 2ω
′
[(

3 cos 2I
′

+ 1
)

cos 2�
′

− 6 sin2 I
′
]

+ 120e
′2

Ĵ
′

y cos2�
′

sin I
′

sin 2ω
′

sin�
′

+

(
3e
′2
+ 2

)
Ĵ
′

z

(
20 cos 2�

′

sin2 I
′

− 3
)}

+

(
5e
′2

cos 2ω
′

+ 6e
′2
+ 4

)
sin I

′
[
3 Ĵ
′

y

(
cos�

′

− 5 cos 3�
′
)
− Ĵ

′

x

(
sin�

′

+ 15 sin 3�
′
)]

, (H.16)

T gvm
33 = −20e

′2
sin 2I

′

sin 2�
′
(
Ĵ
′

x cos�
′

+ Ĵ
′

y sin�
′
)

+ 5e
′2

cos 2�
′
[
12 Ĵ

′

z cos I
′

sin2 I
′

+ Ĵ
′

y cos�
′
(

3 sin 3I
′

− sin I
′
)

+ Ĵ
′

x

(
sin I

′

− 3 sin 3I
′
)

sin�
′
]
+ 2

(
3e
′2
+ 2

) [
3 Ĵ
′

z cos I
′

+ 5 Ĵ
′

z cos 3I
′

−

(
sin I

′

+ 5 sin 3I
′
) (

Ĵ
′

y cos�
′

− Ĵ
′

x sin�
′
)]

, (H.17)

T gvm
12 = −80e

′2
Ĵ
′

z cos 2I
′

cos 2�
′

sin 2ω
′

+ 20e
′2

sin 2I
′

sin 2ω
′
[
Ĵ
′

y

(
cos�

′

+ 3 cos 3�
′
)

+ Ĵ
′

x

(
sin�

′

− 3 sin 3�
′
)]

− 10 Ĵ
′

z cos 3I
′
(

3e
′2

cos 2ω
′

− 6e
′2
− 4

)
sin 2�

′

− 10 Ĵ
′

z cos I
′
(

5e
′2

cos 2ω
′

+ 6e
′2
+ 4

)
sin 2�

′
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+ 10
(

3e
′2

cos 2ω
′

− 6e
′2
− 4

)
sin 3I

′
(
Ĵ
′

y cos�
′

− Ĵ
′

x sin�
′
)

sin 2�
′

+

(
5e
′2

cos 2ω
′

+ 6e
′2
+ 4

)
sin I

′
[
Ĵ
′

x

(
cos�

′

+ 15 cos 3�
′
)

− Ĵ
′

y

(
sin�

′

− 15 sin 3�
′
)]

, (H.18)

T gvm
13 = −10e

′2
Ĵ
′

z cos 2ω
′
(

sin I
′

− 3 sin 3I
′
)

sin�
′

+ 40e
′2

sin 2ω
′
[
Ĵ
′

z cos�
′

sin 2I
′

+ cos 2I
′
(
Ĵ
′

y cos 2�
′

− Ĵ
′

x sin 2�
′
)]

− 4
(

3e
′2
+ 2

)
Ĵ
′

z

(
sin I

′

+ 5 sin 3I
′
)

sin�
′

+ 5e
′2

cos 3I
′
[
3 cos 2ω

′
(
Ĵ
′

x cos 2�
′

+ Ĵ
′

y sin 2�
′
)
+ 2

(
3e
′2
+ 2

)
Ĵ
′

x

]
+ e

′2
cos I

′
{

5 cos 2ω
′
[
Ĵ
′

x

(
12 sin2 I

′

+ 5 cos 2�
′
)
+ 5 Ĵ

′

y sin 2�
′
]

+ 2
(

3e
′2
+ 2

) [
20
(
Ĵ
′

x cos 2�
′

+ Ĵ
′

y sin 2�
′
)

sin2 I
′

+ 3 Ĵ
′

x

]}
, (H.19)

T gvm
23 = 10e

′2
cos 2ω

′
{
Ĵ
′

y

[
−12 cos I

′

sin2 I
′

+

(
5 cos I

′

+ 3 cos 3I
′
)

cos 2�
′
]

− 2 Ĵ
′

z cos�
′
(

sin I
′

− 3 sin 3I
′
)
− Ĵ

′

x

(
5 cos I

′

+ 3 cos 3I
′
)

sin 2�
′
}

− 80e
′2

sin 2ω
′
[
Ĵ
′

z sin 2I
′

sin�
′

+ cos 2I
′
(
Ĵ
′

x cos 2�
′

+ Ĵ
′

y sin 2�
′
)]

+ 4
(

3e
′2
+ 2

) {
−5 Ĵ

′

y cos 3I
′

− 2 Ĵ
′

z cos�
′
(

sin I
′

+ 5 sin 3I
′
)

+ cos I
′
[
20 sin2 I

′
(
Ĵ
′

y cos 2�
′

− Ĵ
′

x sin 2�
′
)
− 3 Ĵ

′

y

]}
. (H.20)
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Appendix I

Coefficients of the Power-Law Mass Density Profile
Orbital Precessions

Here, the coefficients of the averaged disturbing function and of the resulting pre-
cessions of the pericentre and the mean anomaly at epoch of Section 10.7.2 are
explicitly displayed.

I.1 The Disturbing Function

The coefficients Udm
j , j = 1, 2, 3, 4 of the averaged disturbing function of Equa-

tion (10.46) turn out to be

Udm
1 = (−1+ e) (1+ e)γ

[
11+ e2 (−2+ γ )2 + 3 (−4+ γ ) γ

]
, (I.1)

Udm
2 = − (1+ e) (1− e)γ

[
11+ e2 (−2+ γ )2 + 3 (−4+ γ ) γ

]
, (I.2)

Udm
3 = (1+ e)1+γ [−1− 2e (5+ 2e)+ 10γ + 12e (2+ e) γ

− 9 (1+ e)2 γ 2
+ 2 (1+ e)2 γ 3] , (I.3)

Udm
4 = − (−1+ e) (1− e)γ

[
−1− 2e (−1+ γ )2 (−5+ 2γ )

+ (−2+ γ ) γ (−5+ 2γ )+ e2 (−2+ γ )2 (−1+ 2γ )
]

. (I.4)

I.2 The Argument of Pericentre

The coefficients Pdm
j , j = 1, 2, 3, 4 of the precession of the pericentre of Equa-

tion (10.47) turn out to be

Pdm
1 =

(
−1+ e2) (1+ e)γ

{
1+ 10e+ 4e2

− 2 [5+ 6e (2+ e)] γ

+ 9 (1+ e)2 γ 2
− 2 (1+ e)2 γ 3

+ 11+ 5e2 (−2+ γ )2

+ 2e3 (−3+ γ ) (−2+ γ )2 + 3 (−4+ γ ) γ

+ 2e (−1+ γ ) [11+ 3 (−4+ γ ) γ ]} , (I.5)
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Pdm
2 = − (−1+ e) (1+ e) {2 (1+ e) (1− e)γ (−3+ γ ) (−2+ γ )[

−1+ e2 (−2+ γ )+ γ
]}

, (I.6)

Pdm
3 = − (−1+ e) (1+ e) (1+ e)γ

{
11+ e2 (−2+ γ )2

+ 3 (−4+ γ ) γ + 1− (−2+ γ ) γ (−5+ 2γ )

− 2e3 (−3+ γ ) (−2+ γ )2 (−1+ 2γ )

− 2e (−3+ γ ) (−2+ γ ) (−1+ γ ) (−1+ 2γ )

− e2 (−2+ γ )
[
−26+ γ

(
63− 42γ + 8γ 2)]} , (I.7)

Pdm
4 = − (−1+ e) (1+ e) {2 (−1+ e) (1− e)γ (−3+ γ ) (−2+ γ )[

−1− 2e (−1+ γ )2 + γ + e2 (−2+ γ ) (−1+ 2γ )
]}

. (I.8)

I.3 The Mean Anomaly at Epoch

The coefficients Hdm
j , j = 1, 2, 3, 4 of the precession of the mean anomaly at epoch

of Equation (10.48) turn out to be

Hdm
1 = (−1+ e)

[
(1+ e)1+γ [−1− 2e (5+ 2e)+ 10γ + 12e (2+ e) γ

− 9 (1+ e)2 γ 2
+ 2 (1+ e)2 γ 3]

+ (1+ e)γ
(
−11+ 2e4 (−2+ γ )2 (−1+ γ )− 3 (−4+ γ ) γ

− e3 (−2+ γ )2 (−1+ 2γ )+ e {11+ γ [−34+ 3 (9− 2γ ) γ ]}

+ e2
{−86+ γ [114+ γ (−47+ 6γ )]}

)]
, (I.9)

Hdm
2 = −2 (1+ e) (1− e)γ (−2+ γ )

[
3+ e4 (−2+ γ ) (−1+ γ )

− 4γ + γ 2
+ e2 (−5+ 2γ ) (−5+ 3γ )

]
, (I.10)

Hdm
3 = (1+ e) (1+ e)γ

(
(−1+ e)

[
11+ e2 (−2+ γ )2 + 3 (−4+ γ ) γ

]
− 1+ e {13+ 4e [12+ e (13+ 2e)]} + 10γ

− 2e {28+ e [95+ 16e (5+ e)]} γ

+ (1+ e) {−9+ e [74+ 3e (43+ 14e)]} γ 2

− 2 (1+ e)2 [−1+ e (16+ 11e)] γ 3
+ 4e (1+ e)3 γ 4) , (I.11)

Hdm
4 = − 2 (−1+ e) (1− e)γ (−2+ γ )

(
3− 2e (−3+ γ ) (−1+ γ )2

− 4γ + γ 2
+ e4 (−2+ γ ) (−1+ γ ) (−1+ 2γ )

− 2e3 (−1+ γ )2 (−7+ 3γ )+ e2
{−11+ γ [41+ 6 (−5+ γ ) γ ]}

)
.

(I.12)
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Appendix J

Numerical Values of Relevant Astronomical Parameters

In Tables J.1–J.4, the numerical values of the physical parameters of interest are
reported for some selected bodies of the solar system and for the double pulsar.

Table J.1 Relevant physical parameters of the Sun (Pijpers, 1998; Seidelmann
et al., 2007; Rozelot, 2009; Emilio et al., 2012; Park et al., 2017; Mecheri and
Meftah, 2021; Park et al., 2021). RA and dec. of the north pole of rotation are
ICRF equatorial coordinates at epoch J2000.0. The value for the ellipticity ε� is
calculated from Equation (6.4) with the figures quoted for R�e and R�po.

Parameter Units Numerical Value

µ� ×1020 m3/s2 1.32712440041279419 (Park et al., 2021)

J�2 ×10−7 2.2 (Park et al., 2017; Mecheri and Meftah, 2021)

J� ×1041 kg m2/s 1.90 (Pijpers, 1998)

αJ�
◦ 286.13 (Seidelmann et al., 2007)

δJ�
◦ 63.87 (Seidelmann et al., 2007)

R�e km 696342 (Emilio et al., 2012)

R�po km R�e − 7.370 (Rozelot, 2009)

ε� − 0.0046
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Table J.2 Relevant physical parameters of the Earth (Petit and Luzum, 2010;
Seidelmann et al., 2007). RA and dec. of the north pole of rotation are ICRF
equatorial coordinates at epoch J2000.0. The value of the angular momentum is
inferred from that of the angular momentum per unit mass J⊕/M⊕ ' 9×108 m2/s
reported in Petit and Luzum (2010, p. 156). The value for the ellipticity ε⊕ is
calculated from Equation (6.4) with the figures quoted for R⊕e and R⊕po.

Parameter Units Numerical Value

µ⊕ ×1014 m3/s2 3.986004418 (Petit and Luzum, 2010)

J⊕2 ×10−3 1.0826359 (Petit and Luzum, 2010)

J⊕ ×1033 kg m2/s ' 5.85 (Petit and Luzum, 2010)

αJ⊕
◦ 0.0 (Seidelmann et al., 2007)

δJ⊕
◦ 90.0 (Seidelmann et al., 2007)

R⊕e km 6378.14 (Seidelmann et al., 2007)

R⊕po km 6356.75 (Seidelmann et al., 2007)

ε⊕ − 0.082

Table J.3 Relevant physical parameters of Jupiter (Soffel et al., 2003; Seidelmann
et al., 2007; Petit and Luzum, 2010; Iess et al., 2018). RA and dec. of the north
pole of rotation are ICRF equatorial coordinates at epoch J2000.0. The value for
the ellipticity εX is calculated from Equation (6.4) with the figures quoted for RXe
and RXpo.

Parameter Units Numerical Value

µX ×1017 m3/s2 1.26713 (Petit and Luzum, 2010)

JX2 ×10−6 14696.572 (Iess et al., 2018)

JX ×1038 kg m2/s 6.9 (Soffel et al., 2003)

αJX
◦ 268.057132 (Iess et al., 2018)

δJX
◦ 64.497159 (Iess et al., 2018)

RXe km 71492 (Seidelmann et al., 2007)

RXpo km 66854 (Seidelmann et al., 2007)

εX − 0.354
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Table J.4 Relevant physical and orbital parameters of the double pulsar PSR
J0737–3039 retrieved from Kramer et al. (2006), Kramer and Wex (2009), Iorio
(2021c), and Silva et al. (2021). As far as the moment of inertia of B IB is con-
cerned, it is assumed equal to that of A (Iorio, 2021c). The quadrupole mass
moment of B QB

2 , calculated according to Iorio (2021c) and Silva et al. (2021),
is several orders of magnitude smaller than QA

2 . The semimajor axis a can be
obtained from the third Kepler law.

Parameter Units Numerical Value

MA M� 1.3381 (Kramer et al., 2006; Kramer and Wex, 2009)

MB M� 1.2489 (Kramer et al., 2006; Kramer and Wex, 2009)

PA s 0.022 (Kramer et al., 2006; Kramer and Wex, 2009)

PB s 2.773 (Kramer et al., 2006; Kramer and Wex, 2009)

IA ×1038 kg m2 1.6 (Silva et al., 2021)

QA
2 ×1034 kg m2

−4.8 (Iorio, 2021c; Silva et al., 2021)

TK d 0.10225156248 (Kramer et al., 2006),
(Kramer and Wex, 2009)

I ◦ 88.69 (Kramer et al., 2006)

e − 0.0877775 (Kramer et al., 2006),
(Kramer and Wex, 2009)
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Appendix K

Post-Keplerian Orbital Effects: Numerical Values

Here, numerical values of the main pK orbital effects treated in the book are given
for a variety of natural and artificial bodies in the solar system and elsewhere. In
particular, the orbital precessions of the Sun’s planets are listed in Section K.1.
The net shifts per orbit of the spacecraft Juno, currently orbiting Jupiter, are col-
lected in Section K.2, while the orbital precessions of the Earth’s geodetic satellite
LAGEOS are displayed in Section K.3. Section K.4 is devoted to the double pulsar
PSR J0737–3039, while the possibility of using triple pulsars to measure the gravit-
omagnetic field due to the orbital angular momentum of the inner binary as source
of a pN gravitomagnetic field is investigated in Section K.5. Various features of
motion of the S star S4716 in the GC can be found in Section K.6.

In the following, ′′/cty stands for arcseconds per century, and mas is a short-
hand for milliarcseconds, so that mas/cty and mas/yr refer to milliarcseconds per
century and milliarcseconds per year, respectively. Finally, µas denotes microarc-
seconds, so that µas/cty are microarcseconds per century.

K.1 Solar System’s Planets

The main pK orbital precessions (1pN gravitoelectric and Lense–Thirring, and
Newtonian Sun’s oblateness) of the planets of the solar system, referred to the
ICRF, are numerically computed and listed in Tables K.1–K.4. The values of the
relevant physical parameters of the Sun needed to compute them are retrieved from
Table J.1.

K.1.1 The Inclination

While the 1pN gravitoelectric field of the Sun does not affect the inclinations
of the orbital planes of the planets of the solar system, its 1pN gravitomagnetic
and classical quadrupolar fields displace them by tiny amounts. For Mercury, the
LT precession amounts to İ

LT
= 0.06 mas/cty = 60 µas/cty, while the Sun’s
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Table K.1 Nominal values of the main pK precessions (1pN gravitoelectric,
Lense–Thirring and Sun’s oblateness) of the inclinations of the planets of the
solar system referred to the mean Celestial Equator at J2000.0. The values of the
relevant physical parameters of the Sun are retrieved from Table J.1.

Planet İ
1pN (′′/cty

)
İ

LT
(mas/cty) İ

J2
(mas/cty)

Mercury 0 0.06 −1.73
Venus 0 0.009 −0.178
Earth 0 0.006 −0.112
Mars 0 0.001 −0.021
Jupiter 0 4× 10−5

−3.9× 10−4

Saturn 0 5× 10−6
−2.6× 10−5

Uranus 0 8× 10−7
−3.1× 10−6

Neptune 0 2× 10−7
−6× 10−7

Table K.2 Nominal values of the main pK precessions (1pN gravitoelectric,
Lense–Thirring and Sun’s oblateness) of the nodes of the planets of the solar sys-
tem referred to the mean Celestial Equator at J2000.0. The values of the relevant
physical parameters of the Sun are retrieved from Table J.1.

Planet �̇1pN
(
′′/cty

)
�̇LT (mas/cty) �̇J2 (mas/cty)

Mercury 0 0.09 −2.69
Venus 0 −0.008 0.177
Earth 0 −0.004 0.071
Mars 0 −5× 10−4 0.008
Jupiter 0 −4× 10−5 3× 10−4

Saturn 0 −9× 10−6 5× 10−5

Uranus 0 −6× 10−7 2× 10−6

Neptune 0 −3× 10−7 9× 10−7

oblateness affects it to the İ
J2
= −1.73 mas/cty level. For Mars, the LT precession

is at the ' µas/cty level.

K.1.2 The Longitude of the Ascending Node

While the 1pN gravitoelectric field of the Sun does not affect the nodes of the
orbital planes of the planets of the solar system, its 1pN gravitomagnetic and
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Table K.3 Nominal values of the main pK precessions (1pN gravitoelectric,
Lense–Thirring and Sun’s oblateness) of the perihelia of the planets of the solar
system referred to the mean Celestial Equator at J2000.0. The values of the
relevant physical parameters of the Sun are retrieved from Table J.1.

Planet ω̇1pN
(
′′/cty

)
ω̇LT (mas/cty) ω̇J2 (mas/cty)

Mercury 42.980 −2 30
Venus 8.624 −0.3 2.7
Earth 3.843 −0.1 0.8
Mars 1.350 −0.03 0.20
Jupiter 0.062 −7× 10−4 0.0025
Saturn 0.013 −1× 10−4 3× 10−4

Uranus 0.002 −1× 10−5 2× 10−5

Neptune 7× 10−4
−3× 10−6 5× 10−6

Table K.4 Nominal values of the main pK precessions (1pN gravitoelectric,
Lense–Thirring and Sun’s oblateness) of the mean anomalies at epoch of the plan-
ets of the solar system referred to the mean Celestial Equator at J2000.0. The
values of the relevant physical parameters of the Sun are retrieved from Table J.1.

Planet η̇1pN
(
′′/cty

)
η̇LT (mas/cty) η̇J2 (mas/cty)

Mercury −127.984 0 27
Venus −25.873 0 3
Earth −11.528 0 0.9
Mars −4.046 0 0.2
Jupiter −0.187 0 0.003
Saturn −0.040 0 3× 10−4

Uranus −0.007 0 3× 10−5

Neptune −0.002 0 6× 10−6

classical quadrupolar fields displace them by tiny amounts. For Mercury, the LT
precession amounts to �̇LT

= 0.09 mas/cty = 90 µas/cty, while the Sun’s oblate-
ness affects it with a retrograde precession �̇J2 = −2.69 mas/cty. For the Earth,
the LT precession is at the ' µas/cty level.

K.1.3 The Argument of Perihelion

The 1pN gravitoelectric field of the Sun affects the perihelia of the planets of the
solar system with relatively large precessions, while its 1pN gravitomagnetic and
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pK quadrupolar fields displace them by much smaller amounts. For Mercury, the
1pN gravitoelectric precession has the time-honoured value of ω̇1pN

= 42.98 ′′/cty.
On the other hand, the Hermean retrograde LT precession amounts to just ω̇LT

=

−2 mas/cty, while the Sun’s oblateness affects it with a prograde rate as large as
ω̇J2 = 30 mas/cty. For Mars, the retrograde LT precession is at the 30 µas/cty
level, while the prograde quadrupolar one is about ten times larger. For the ice
giants of the solar system, the 1pN gravitoelectric precessions are at the ' 1 −
10 mas/cty level, or even smaller, while the LT ones are quite negligible.

About the 2pN perihelion precession of Mercury, from Equation (4.41) it turns
out that its value ranges from about −2 to −15 µas/cty, depending on f0.

K.1.4 The Mean Anomaly at Epoch

The 1pN gravitoelectric field of the Sun affects the mean anomalies at epoch of the
planets of the solar system with relatively large precessions, while its Newtonian
quadrupolar field displaces them by much smaller amounts. The 1pN gravitomag-
netic field does not shift them. For Mercury, the retrograde 1pN gravitoelectric
precession is as large as η̇1pN

= −127.984 ′′/cty. On the other hand, the Sun’s
oblateness affects it with a prograde rate as little as η̇J2 = 27 mas/cty. For Mars, the
retrograde 1pN gravitoelectric precession is at the 4 ′′/cty level, while the prograde
quadrupolar one is as little as 0.2 mas/cty.

About the 2pN precession of the mean anomaly at epoch of Mercury, from
Equation (4.42) it turns out that its value ranges from about 0.35 to 0.38 mas/cty,
depending on f0.

K.1.5 The Current Level of Accuracy in Determining the Orbital Precessions

Table 1 of Iorio (2019c) reports an evaluation of the present-day precision level in
determining the planetary orbital precessions based on the EPM2017 ephemerides
(Pitjeva and Pitjev, 2018). It should be stressed that the quoted figures are just
representative of the mere formal, statistical errors; the actual accuracies may be
up to one order of magnitude larger.

As far as Mercury is concerned, its inclination and node rates may be deter-
mined with a formal precision of σİ = 0.003 mas/cty and σ�̇ = 0.024 mas/cty,
respectively (Iorio, 2019c). Instead, the formal uncertainty in the precession of its
longitude of perihelion $ is of the order of σ$̇ = 0.008 mas/cty (Iorio, 2019c).
Similar figures hold for Mars as well (Iorio, 2019c).

K.2 The Spacecraft Juno around Jupiter

Here, the net shifts per orbit due to some pK effects on the orbit of the Juno
spacecraft currently orbiting Jupiter are calculated with respect to a planetocen-
tric reference frame aligned with the ICRF. The timeframe considered ranges from
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February 2024, when the orbital period of the probe was reduced to 32 days, to the
scheduled end of the second extended mission in September 2025, covering the last
18 orbits.1 The values of the orbital parameters of Juno are retrieved from the WEB
interface Horizons System at https://ssd.jpl.nasa.gov/horizons/, maintained by the
Jet Propulsion Laboratory (JPL) of the National Aeronautics and Space Admin-
istration (NASA), and accessed 7 March 2024. The relevant physical parameters
of Jupiter needed to compute Juno’s orbital shifts are taken from Table J.3. The
pK features of motion considered are the classical ones due to the Jovian quad-
rupole mass moment, and the 1pN gravitoelectromagnetic effects induced by the
mass monopole and quadrupole and the spin dipole and octupole moments of Jupi-
ter. The Juno’s node and perijove describe a full cycle in 132.3 yr and −37.05 yr,
respectively, mainly due to the Jovian J2. Thus, they are taken as fixed in calculat-
ing the shifts in Table K.5 since they can be considered as approximately constant
during the year and a half or so taken into consideration.

From Table K.5, it turns out that, apart from the classical shifts due to J2, the lar-
gest effects are due to the 1pN gravitoelectric monopole field of Jupiter, amounting
to about 38 mas per revolution. The LT shifts are at the' mas level, while the other
pN features of motion affect the Juno’s orbital elements with signatures smaller by

Table K.5 PK net shifts per orbit of the spacecraft Juno currently orbit-
ing Jupiter calculated with respect to the ICRF. The adopted values of the
probe’s orbital parameters, retrieved from the WEB interface Horizons System
at https://ssd.jpl.nasa.gov/horizons/, maintained by the Jet Propulsion Labora-
tory (JPL) of the National Aeronautics and Space Administration (NASA), and
accessed 7 March 2024, refer to the last scheduled 18 orbits from February 2024
to September 2025, as per www.missionjuno.swri.edu/mission-perijoves. The rele-
vant physical parameters of Jupiter are taken from Table J.3. The figures listed for
the J2/c2 effects refer to the direct ones, as per Equations (8.7)–(8.12).

Orbital element J2 1pN LT J2/c2 Jε2

1a (m) 0 0 0 −91.4 0

1e (−) 0 0 0 −8× 10−10
−1.6× 10−12

1I (mas) 3.85× 105 0 0.89 −0.007 −0.021

1� (mas) 8.56× 105 0 1.98 −0.027 −0.045

1ω (mas) −3.06× 106 37.8 1.07 0.018 −0.054

1η (mas) −7.3× 105
−38.4 0 0.098 1× 10−4

1 See www.missionjuno.swri.edu/mission-perijoves, accessed March 2024.
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about two orders of magnitude. It is worth noticing that the semimajor axis of the
probe is shifted by the 1pN oblateness field of Jupiter by almost 100 m. The total
shifts nominally occurring until the scheduled end of the mission can be approxi-
mately2 obtained by rescaling the figures in Table K.5 by 18, which is the number
of full orbits to be completed with the current orbital configuration.

It should be noted that, since its inception in orbit in August 2016 to June 2021,
Juno completed 33 orbits in a different orbital configuration corresponding to an
orbital period of TK = 53 d; the relative net shifts per orbit are essentially equal to
those quoted in Table K.5.

K.3 The Earth’s Geodetic Satellite LAGEOS

The LAGEOS satellite (Cohen and Smith, 1985), launched in 1976, is one of the
Earth’s geodetic probes (Pearlman et al., 2019) currently tracked with the SLR tech-
nique used in tests of pN gravity (Cugusi and Proverbio, 1978; Ashby and Bertotti,
1984; Martin et al., 1985; Lucchesi et al., 2015, 2019a). It is a completely passive
and dense object of spherical shape, entirely covered with retroreflectors (Lucchesi,
2004) which bounce back the laser pulses sent to it from SLR ground stations. Such
features make relatively easy and accurate modelling the several non-gravitational
perturbing accelerations (Milani et al., 1987) affecting its orbital motion (Farinella
et al., 1996; Métris et al., 1997; Rubincam et al., 1997; Vokrouhlický and Farinella,
1997; Métris et al., 1999; Lucchesi, 2001, 2002, 2004; Andrés et al., 2006; Visco
and Lucchesi, 2018).

Table K.6 displays the values of the rates of change of the same pK effects dealt
with in Section K.2 calculated with respect to the ICRF. For LAGEOS, the orbital
period is as short as TK = 0.156 d = 3.7 hr, while its node and perigee3 describe
a full cycle in just 2.8 yr and −4.7 yr, respectively. As far as the J2/c2 and Jε2

effects are concerned, they include also harmonic signatures varying with twice
the frequency of the perigee. Their amplitudes are not included in Table K.6 since
their time series average out over just half the perigee period.

From Table K.6, it turns out that, apart from the classical precessions due
to J2, the largest effects are due to the Earth’s 1pN gravitoelectric monopole
field, amounting to several thousands of mas/yr. The LT precessions are at the
' 30 mas/yr level, while the other pN features of motion affect the orbital elements
of LAGEOS with signatures smaller by about two to four orders of magnitude.

About the currently ongoing tests of the LT effect in the Earth’s field with the
geodetic satellites of the LAGEOS family, that is, LAGEOS itself, LAGEOS–2
(Ibba et al., 1989), LARES (Paolozzi et al., 2011), and LARES–2 (Paolozzi et al.,

2 It is assumed that the perijove does not change too much due to J2 over such a time span.
3 From περί (+ accusative), meaning ‘around, near, about, from’, and γ̃η, -̃ης, ’η, ‘earth’.
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Table K.6 PK orbital precessions of the Earth’s geodetic satellite LAGEOS, cur-
rently tracked with the SLR technique, calculated with respect to the ICRF. The
relevant physical parameters of the Earth are taken from Table J.2, while the orbital
ones of LAGEOS are taken from Ciufolini et al. (2023). Only the secular parts of
the rates of change of the J2/c2 (the direct ones as per Equations (8.7)–(8.12)) and
Jε2 effects are displayed because the harmonic ones, varying with a frequency
double that of the perigee, average out over just a couple of years.

Orbital element J2 1pN LT J2/c2 Jε2

〈ȧ〉 (m/yr) 0 0 0 − 0

〈ė〉 (1/yr) 0 0 0 − −〈̇
I
〉
(mas/yr) 0 0 0 − −〈

�̇
〉
(mas/yr) 4.50× 108 0 30.66 −0.48 −0.007

〈ω̇〉 (mas/yr) −2.81× 108 3278.76 31.22 0.14 −1× 10−9

〈η̇〉 (mas/yr) −4.34× 108
−9836.25 0 1.04 0.014

2019), mainly performed by Ciufolini and coworkers, the following remarks are in
order (Iorio, 2023b).

For unknown reasons, the Earth’s gravitomagnetic field has never been mod-
eled so far, and no dedicated parameter(s) have ever been estimated, producing
just time series of post-fit residuals of the satellites’ nodes,4 allegedly accounting
in full for the unmodeled dynamics which includes the LT acceleration as well.
Another puzzling issue is that there are several SLR stations scattered around the
globe (Pearlman et al., 2002) where skilled teams of space geodesists routinely
process laser ranging data from so many geodetic satellites with several dedicated
softwares (Ebauer, 2017); yet, despite this, no one has ever tried to (correctly) per-
form LT tests independently of Ciufolini, or, if anyone has done so, they have not
made their results public in the peer-reviewed literature. There are just some con-
ference proceedings (Ries et al., 2003a,b; Ries et al., 2009) whose authors did not
model and estimate the LT acceleration either. The same holds also for a few inde-
pendent studies recently published in peer-reviewed journals by former coworkers
of Ciufolini (Lucchesi et al., 2019b, 2020). In principle, there should be nothing
easier for so many competent and expert people worldwide than adding one more
acceleration in the data reduction softwares and estimating one more parameter.

4 Some linear combinations of the time series of such node “residuals”, suitably designed to cancel out the
impact of the mismodelling of the first even zonal harmonics of the geopotential, have been used so far. For
recent overviews, see, for example, Iorio et al. (2011), Ciufolini et al. (2013), Renzetti (2013b), and
references therein.
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Indeed, as explained in Chapter 1, the common practice in satellite geodesy,
astrodynamics and astronomy is that, if one wants to put to the test a certain dynam-
ical feature X they are interested in, they must do nothing more than explicitly
model it along with the rest of the known dynamics and other pieces of the measure-
ment process, and simultaneously estimate one or more parameters, characterizing
it along with many other ones, taking into account other accelerations and so on,
and inspecting the resulting covariance matrix to look at their mutual correlations.
Looking at some sort of ‘spurious’ residuals constructed without including X in
the models fit to a given set of observations is not a correct procedure since a pos-
sible signature with almost the same features of the expected one may be due just
to some fortunate partial mutual cancellation of other effects having nothing to do
with X itself. Furthermore, X may partly or totally be absorbed in the estimated
values of other parameters solved for in the data reduction. In other words, the
gravitomagnetic field of the Earth should be simultaneously estimated along with
all the other coefficients characterizing the geopotential by using the same data sets
which may be varied from time to time by their extension, starting date, and type
of observations.

K.4 The Double Pulsar

The relevant pK orbital precessions of the double pulsar PSR J0737–3039, whose
physical and orbital parameters can be found in Table J.4, are listed in Table K.7.

Extracting the LT contribution from the experimentally measured total periastron
precession, a possibility first envisaged by Lyne et al. (2004), Lattimer and Schutz
(2005), and Kramer et al. (2006), would allow one to get important insights on
the equation of state (EOS) of the dense matter inside neutron stars. Indeed, by
assuming the validity of GTR, the knowledge of the gravitomagnetic rate of change
could be used to constrain the EOS through the determination of the moment of
inertia IA of PSR J0737–3039A. Conversely, if the former could be independently
determined by other means, a test of the LT effect could be performed to some
level of accuracy that Hu et al. (2020) quantified at ' 7–11%. In principle, the
quadrupole-induced orbital precessions may also serve the same purpose, but they
are completely negligible (Hu et al., 2020; Iorio, 2021c).

From Table K.7, it turns out that the 1pN gravitoelectric two-body precessions
are the largest ones, amounting to tens of degrees per year. The 2pN and the LT
rates are about five orders of magnitude smaller; furthermore, the LT and the 2pN
periastron precessions have almost the same magnitude. In order to extract 〈ω̇〉LT

from the total periastron precession, the 1pN and 2pN gravitoelectric precessions
must be known with sufficiently high accuracy to be reliably subtracted; see Iorio
(2009b), and the general discussion by Damour and Schäfer (1988) before the

https://doi.org/10.1017/9781009562911.021 Published online by Cambridge University Press

https://doi.org/10.1017/9781009562911.021


K.5 Triple Pulsars 225

Table K.7 Relevant pK orbital precessions of the double pulsar PSR J0737–3039,
whose physical and orbital parameters are retrieved from Table J.4. The column
for the 2pN precessions, which depend on the true anomaly at epoch f0 according
to Equations (4.39)–(4.40), show their ranges of values for f0 spanning from 0 to
360◦. The LT precessions of the inclination and the node are completely negligible,
amounting to a maximum of ' 10−5 ◦/yr (Iorio, 2021c). The effects due to the
quadrupole mass moment are even smaller, being of the order of ' 10−8 ◦/yr
(Iorio, 2021c).

Orbital element 1pN 2pN LT

〈ω̇〉 (◦/yr) 16.89 [−0.00079, −0.00045] −0.0006
〈η̇〉 (◦/yr) −47.78 [0.076, 0.077] 0

discovery of the double pulsar. For a recent review on measuring the LT effect
with binary pulsars, see Hu and Freire (2024), and references therein.

K.5 Triple Pulsars

PSR J0337+1715 (Ransom et al., 2014) is a hierarchical triple system made of
one neutron star and two white dwarfs: an inner, tight binary S composed of a 2.7
ms pulsar A and a white dwarf B revolving one around each other in a circular
relative orbit with orbital period TK = 1.6 d, and another white dwarf C moving
about S along a wider circular path with orbital period T

′

K = 327 d and coplanar
with that of S itself, both inclined by I = I

′

= 39.2◦ to the plane of the sky,
assumed as reference {x, y} plane. Their masses are MA = 1.44M�, MB = 0.2M�
and MC = 0.4M�, respectively.

On the one hand, PSR J0337+1715 proved unsuitable, at least until now, to per-
form the usual tests of GTR done with some tight binary pulsars (Kramer et al.,
2006; Wex and Kramer, 2020; Kramer et al., 2021) like, for example, the Hulse–
Taylor pulsar PSR B1913+16 (Hulse and Taylor, 1975) and the double pulsar PSR
J0737–3039 (Burgay et al., 2003; Lyne et al., 2004) because of its orbital config-
uration. Indeed, the argument of periastron ω

′

is not well defined because of the
almost vanishing eccentricity e

′

of the orbit of the outer white dwarf. Furthermore,
MB is far too small for the gravitational redshift of the pulsar signal to be measur-
able. Finally, the Shapiro delay is negligible; the radio waves travelling along the
line of sight towards the Earth pass very distant from its companion because the
orbital plane is not seen edge-on. On the other hand, PSR J0337+1715 was success-
fully used to put the tightest constraints so far on the (absence of the) Nordtvedt
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effect (Nordtvedt, 1968b,a). It is an orbital consequence of a possible violation of
the strong EP which would occur should bodies with different amounts of gravi-
tational self-energy, just like a neutron star and a white dwarf, fell with different
accelerations in an external gravitational field. Then, if the falling objects orbit
one around the other while moving altogether about a third body, their barycentric
orbits should experience a differential elongation towards the source of the exter-
nal field. Actually, no Nordtvedt effect was found in PSR J0337+1715 to a relative
accuracy of two parts per million at 95% confidence level (Archibald et al., 2018;
Voisin et al., 2020).

Triple pulsars offer, in principle, the possibility of testing the gravitomagnetic
field due to the matter ring discussed in Section 5.1.3, provided that suitable
systems, characterized by a not-too-large ratio T

′

K/TK, eccentric and, hopefully,
non-coplanar orbits as well of the outer companions, will be discovered.

In the case of PSR J0337+1715, the orbital angular momenta of the inner binary
and of the outer companion are aligned (Ransom et al., 2014); thus, according to
Equations (5.30)–(5.35), calculated by substituting5 J with Equation (5.52), only
the pericentre is shifted by the gravitomagnetic annular field. It turns out

Hb = 3.5× 1044 kg m2/s, (K.1)

so that 〈
ω̇
′
〉LT
= −1.2 mas/yr. (K.2)

while the uncertainty in measuring its periastron over 1.38 yr, during which

N0 = 26280 (K.3)

TOAs were collected, can be calculated from table 1 of Ransom et al. (2014) to be
of the order of

σω′ ' 63.9 mas. (K.4)

By tentatively assuming that about the same number of TOAs as given by Equa-
tion (K.3) will be collected in 1.38 yr over, say, the next 10 years, the resulting
accuracy would be improved by a factor of6

' 640 with respect to the figure quoted
in Equation (K.4), while the total gravitomagnetic shift would amount to

1ω
′

LT ' −12 mas. (K.5)

Among the competing effects of classical and pN origin, the largest one is due
to the quadrupolar term (Demetrian, 2006) of the expansion in multipoles of the

5 In Equations (5.30)–(5.35), the orbital elements to be used are the primed ones referring to the motion of the
outer companion about S.

6 Such an estimate is obtained by dividing Equation (K.4) by
√

N , where N = (10/1.38)× N0 = 190435.
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Newtonian gravitational potential of a massive ring (Ciftja et al., 2009; Deme-
trian, 2006) which, in this case, represents the inner binary. It induces a periastron
precession given by Equation (10.8), where K = (1/4)µba2

b (Demetrian, 2006)
and a → a

′

, e → e
′

, nK → n
′

K, whose mismodelling may reduce down to the
' 0.5 mas/yr level in the next 10 years.

The situation would be more favourable for a hypothetical triple system, yet to
be discovered, whose outer companion’s orbit had a smaller size and was more
eccentric, a scenario that should not be deemed as unrealistic. Furthermore, if ĥ

and ĥ
′

were misaligned, the inclination and the node precessions also would come
into play, as per Equations (5.32)–(5.33).

K.6 The Star S4716 around Sgr A∗

Here, the S star S4716, orbiting the SMBH in Sgr A∗ at the GC is taken into
account. The upper bounds of the absolute values of the pK shifts of some orbital
features of motion and the corresponding values of the hole’s spin axis angles and
the argument of latitude at epoch are found.

About the role of the LT orbital effects, it should be recalled that a measurement
of the BH’s spin parameter χg by means of the former ones is important for two
reasons (Will and Yunes, 2020). First, it would allow one to check if naked singu-
larities, corresponding to χg > 1, exist or not. Second, important insights about the
formation of the BH would be gained. Indeed, if it were formed from the merger
of, say, two pre-existing smaller rotating BHs, a relatively large value of χg may be
expected, just as when two ice skaters pulling together at the end of a dance finally
rotate faster. On the other hand, if the hole were the result of the steady accre-
tion of stars and gases from arbitrary directions, a rather small value of χg should
occur because of a mutual cancellation, on average, of the spin contributions of the
randomly infalling matter.

Furthermore, measuring the quadrupole-driven precessions would allow to put
to the test the ‘no–hair’ theorems, treated in Chapter 5, which are a key prediction
of GTR (Will and Yunes, 2020). Indeed, in studying the Kerr metric, it was realized
that it is the only possible solution of the Einstein equations for an isolated, station-
ary BH; all the details of its external gravitational field, encoded by its multipole
moments, depend only on its mass M• and angular momentum J•, as per Equa-
tion (5.17). Various types of exotic compact objects (ECOs) have been proposed so
far as a possible alternative to general relativistic BHs (Cardoso and Pani, 2019;
Psaltis, 2023): ‘boson stars’, made of concentrations of heavy, dark matter bosons
or fermions (Torres et al., 2000), ‘fermion balls’ (Viollier et al., 1993; Tsiklauri
and Viollier, 1998; Becerra–Vergara et al., 2020), ‘grava–stars’, which would be
alleged stars supported by negative vacuum pressure (Mazur and Mottola, 2004;
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Cardoso and Pani, 2019), or ‘wormholes’ (Morris and Thorne, 1988; Cardoso and
Pani, 2019).

K.6.1 The Net Shifts per Orbit of the Orbital Elements

Tables K.8–K.11 refer to the net shifts per orbit of the inclination, the node, the
periastron, and the mean anomaly at epoch.

Table K.8 Largest absolute values of the LT and Q2 net shifts per orbit of the
inclination of S4716 and corresponding values of the BH’s spin axis angles. For
the hole’s mass, the value M• = 4.1× 106 M� is used (Peißker et al., 2022), while
the spin parameter χg is left as a free parameter.∣∣∣1I

LT
∣∣∣
max

(
′′
) ∣∣∣1I

Q2
∣∣∣
max

(
′′
)

Spin axis angles χg 10.14 χ2
g 0.06

imax
•

(◦) 90 47.9
ζmax
•

(◦) 151.5 169.37

Table K.9 Largest absolute values of the LT and Q2 net shifts per orbit of the node
of S4716 and corresponding values of the BH’s spin axis angles. For the hole’s
mass, the value M• = 4.1 × 106 M� is used (Peißker et al., 2022), while the spin
parameter χg is left as a free parameter.∣∣∣1�LT

∣∣∣
max

(
′′
) ∣∣∣1�Q2

∣∣∣
max

(
′′
)

Spin axis angles χg 31.5 χ2
g 0.18

imax
•

(◦) 108.76 26.24
ζmax
•

(◦) 241.54 61.54

Table K.10 Largest absolute values of the 1pN gravitoelectric, LT and Q2 net shifts
per orbit of the perinigricon of S4716 and corresponding values of the BH’s spin
axis angles. For the hole’s mass, the value M• = 4.1 × 106 M� is used (Peißker
et al., 2022), while the spin parameter χg is left as a free parameter.∣∣∣1ω1pN

∣∣∣
max

(
′′
) ∣∣∣1ωLT

∣∣∣
max

(
′′
) ∣∣∣1ωQ2

∣∣∣
max

(
′′
)

Spin axis angles 965.65 χg 36.1 χ2
g 0.22

imax
•

(◦) − 142.9 12.7
ζmax
•

(◦) − 241.54 61.54
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Table K.11 Largest absolute values of the 1pN gravitoelectric and Q2 net shifts
per orbit of the mean anomaly at epoch of S4716 and corresponding values of the
BH’s spin axis angles. For the hole’s mass, the value M• = 4.1 × 106 M� is used
(Peißker et al., 2022), while the spin parameter χg is left as a free parameter.∣∣∣1η1pN

∣∣∣
max

(
′′
) ∣∣∣1ηLT

∣∣∣
max

(
′′
) ∣∣∣1ηQ2

∣∣∣
max

(
′′
)

Spin axis angles −2332.24 0 χ2
g 0.069

imax
•

(◦) − − 170.8
ζmax
•

(◦) − − 360

Table K.12 Largest absolute values of the LT and Q2 net shifts per orbit of the
radial velocity semiamplitude K of S4716 and corresponding values of the BH’s
spin axis angles. For the hole’s mass, the value M• = 4.1×106 M� is used (Peißker
et al., 2022), while the spin parameter χg is left as a free parameter.∣∣∣1K

1pN
∣∣∣
max

(km/s)
∣∣∣1K

LT
∣∣∣
max

(km/s)
∣∣∣1K

Q2
∣∣∣
max

(km/s)

Spin axis angles 0 χg 0.22 χ2
g 0.001

imax
•

(◦) − 90 47.96
ζmax
•

(◦) − 151.54 169.36

It turns out that the largest effects occur for the 1pN gravitoelectric shifts of the
periastron and the mean anomaly at epoch, being of the order of' 1,000− 2,000 ′′

= 0.3 − 0.5◦ per revolution. The maximum values of the magnitude of the LT net
shifts per orbit, to be scaled by χg, amount to a few tens of arcseconds. The upper
bounds on the sizes of the quadrupole-driven effects, to be scaled by χ2

g , are as
little as ' 0.1 − 0.01 ′′. It should be noted that they do not hold simultaneously,
occurring for different pairs of values of the angles of the hole’s spin axis.

K.6.2 The Net Shift per Orbit of the Radial Velocity Semiamplitude

Table K.12 displays the upper bounds on the magnitude of the non-vanishing LT
and quadrupole-driven net shifts per orbit of the radial velocity semiamplitude.
While for the LT effect the maximum value, to be scaled by χg, is 0.22 km/s, the
upper limit of the magnitude of the Q•2 shift, to be scaled by χ2

g is as little as 1 m/s.
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Appendix L

A Cursory Overview on Some Proposed
Spacecraft-Based Missions

Here, some recently proposed spacecraft-based missions aimed to measure some
pN orbital effects in various astronomical scenarios in the solar system are cursor-
ily reviewed: Highly Elliptical Relativity Orbiter (HERO) in Section L.1, In-Orbit
Relativity Iuppiter Observatory, or IOvis Relativity In-Orbit Observatory (IORIO)
in Section L.2, Elliptical Uranian Relativity Orbiter (EURO) in Section L.3,
LEnse–Thirring Sun–Geo Orbiter (LETSGO) in Section L.4, and ELXIS in Section
L.5. Further past and recent space-based proposals1 by other authors to measure,
among other things, pN orbital effects are briefly reviewed in Section L.6.

L.1 HERO

The space-based mission concept Highly Elliptical Relativity Orbiter (HERO)
(Iorio, 2019a) is aimed to perform several tests of pN gravity around the Earth
with a preferably drag-free spacecraft moving along a highly elliptical orbit fixed
within its plane which undergoes a relatively fast secular precession. Two pos-
sible scenarios are considered: (a) a fast, 4-h orbit with high perigee height of
1047 km, and (b) a slow, 21-h path with a low perigee height of 642 km. In both
cases, the orbital plane is inclined to the Earth’s equator by an amount known as
critical inclination since it allows one to cancel out the main competing classical
perturbation on the perigee due to J2. Thus, the J2/c2 signatures, which generally
depend on the perigee’s frequency, resemble linear trends. HERO may detect, for
the first time, the pN orbital effects induced by the mass quadrupole moment J2

of the Earth which, among other things, affects the semimajor axis a via a secu-
lar trend of ' 4–12 cm/yr. Recently, the secular decay of the semimajor axis of
the passive satellite LARES was measured with an error as little as 0.7 cm/yr
(Lucchesi et al., 2019a).

1 Only missions exploiting orbital motions are mentioned.
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L.2 IORIO

In view of its characteristics, Jupiter, whose relevant physical parameters are listed
in Table J.3, seems to be the ideal candidate, at least in principle, to try to measure
several pN orbital effects. Suffice it to say that it has often been considered for
testing various aspects of gravitomagnetism over the years; see, for example, Haas
and Ross (1975), Mashhoon (2000), Tartaglia (2000c,a), Iorio (2010b), Schärer
et al. (2017), and Iorio (2019g, 2024a). The mission concept IORIO, acronym of
In-Orbit Relativity Iuppiter2 Observatory, or, equally well, of IOvis3 Relativity In-
orbit Observatory (Iorio, 2019g,d, 2024a), relies upon a dedicated Juno-like space-
craft circling Jupiter along a highly elliptical, polar orbit to measure, among other
things, the 1pN mass quadrupole and spin octupole effects. Although more diffi-
cult to be practically implemented, the case of a less elliptical orbit4 also is being
considered since it yields much larger figures for the relativistic effects of interest.

L.3 EURO

Elliptical Uranian Relativity Orbiter (EURO) (Iorio et al., 2023) is a preliminary
mission concept investigating the possibility of dynamically measuring the angu-
lar momentum of Uranus by means of the LT effect affecting a putative planet’s
orbiter. It is possible, at least in principle, to separate the relativistic precessions of
the orbital inclination to the Celestial Equator and of the longitude of the ascend-
ing node of the spacecraft from its classical rates of the pericentre induced by the
multipoles of the planet’s gravity field by adopting an appropriate orbital config-
uration. For a wide and elliptical 2,000 × 100,000 km orbit, the gravitomagnetic
signatures amount to tens of mas/yr, while, for a suitable choice of the initial con-
ditions, the peak-to-peak amplitude of the range rate shift can reach the level of
' 1.5× 10−3 mm/s in a single pericentre passage of a few hours. By lowering the
apocentre height to 10,000 km, the LT precessions are enhanced to the level of hun-
dreds of mas/yr. The uncertainties in the orientation of the planetary spin axis and
in the inclination are major sources of systematic bias; it turns out that they should
be determined with accuracies as good as ' 0.1–1 and ' 1–10 mas, respectively.

L.4 LETSGO

LEnse–Thirring Sun-Geo Orbiter (LETSGO) (Iorio, 2013c) is a proposed space-
based mission involving the use of a spacecraft moving along a highly eccentric
heliocentric orbit perpendicular to the ecliptic. It aims to accurately measure some

2 Iuppı̆tĕr is one of the forms of the Latin noun of the god Jupiter.
3 In Latin, Iŏvis means ‘of Jupiter’.
4 Inserting a spacecraft into a moderately elliptical orbit around Jupiter is a very daunting task because of the

exceedingly large amount of fuel required.
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important physical properties of the Sun and to test some pN features of its
gravitational field by continuously monitoring the Earth–probe range. Prelimin-
ary sensitivity analyses show that, by assuming a cm-level accuracy in ranging to
the spacecraft, it would be possible to test, in principle, the LT effect at a ' 10−2

level over a timescale of 2 years, while the larger 1pN gravitoelectric component of
the solar gravitational field may be sensed with a relative accuracy of about 10−8–
10−9 during the same temporal interval. The competing range perturbation due to
the Sun’s oblateness would be a source of systematic error, but it turns out that all
the three dynamical features of motion examined affect the Earth–probe range in
different ways, allowing for separating them in real data analyses. The high eccen-
tricity would help in reducing the impact of the non-gravitational perturbations
whose disturbance effect would certainly be severe when LETSGO approaches the
Sun at just a few solar radii. It can be preliminarily argued that a drag-free apparatus
should perform at a 10−8–10−9 m/s2/

√
Hz level for frequencies of about 10−7 Hz.

Further studies should be devoted to investigate both the consequences of the non-
conservative forces and the actual measurability of the effects of interest by means
of extensive numerical data simulations, parameter estimations, and covariance
analyses. Also an alternative, fly-by configuration is worthy of consideration.

L.5 ELXIS

ELXIS5 (Iorio, 2019f,e) is a hypothetical new terrestrial artificial satellite, to be
placed in a circular path in an orbital plane displaced by� = 90◦ with respect to the
reference direction of the Vernal Equinox� perpendicularly to the Earth’s equator,
aimed at measuring the de Sitter precession of the orbital inclination to the terres-
trial equator with a possible relative accuracy level of 10−5. A rather strict polar
orbital configuration, with departures as little as' 10−3–10−5 ◦, would be required
to reduce the impact of the aliasing perturbations due to the solid and ocean com-
ponents of the K1 tide, which would be one of the major sources of systematic
errors, especially if not-too-high altitudes were to be adopted. The long-term rates
of change of I due to the even and odd zonal harmonics of the geopotential van-
ish for the orbital geometry proposed. It is assumed that the data analysis would
be performed in a geocentric kinematically rotating and dynamically non–rotating
reference frame.

L.6 Other Proposed Space-Based Missions

As far as further space-based proposals by other authors are concerned, see Ander-
son et al. (1997) and Clark et al. (2003) for mission concepts to Mercury aimed

5 From ’′ελξις, -εως, ’η, meaning ‘dragging’, ‘trailing’.
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at testing also some orbital effects due to the 1pN gravitoelectric field of the
Sun. OPTIS was a proposed spaceborne mission to accurately measure, among
other things, the Lense–Thirring effect in the field of the Earth with a drag-free,
laser-ranged satellite (Iorio et al., 2004). The Laser Astrometric Test Of Rela-
tivity (LATOR) was a space-based mission concept to probe several aspects of
relativistic gravity in the solar system by means of laser interferometry between
two microspacecraft whose lines of sight pass close by the Sun (Turyshev et al.,
2004). A close concept was the Astrodynamical Space Test of Relativity using
Optical Devices (ASTROD) mission series aiming at high-precision measure-
ments in interplanetary space by means of optical devices and drag-free control
of some spacecraft in the areas of fundamental physics, GTR as well as Sun
and solar system research (Selig et al., 2013). Buscaino et al. (2015) suggested
to test long–distance modifications of gravity to 100 au with a drag-free cruis-
ing spacecraft. A recent proposal by Turyshev et al. (2024) to test new physics
in the solar system envisages the use of tetrahedral6 formations of drag-free space-
craft in heliocentric, eccentric orbits. In January 2024, the European Space Agency
(ESA) formally approved7 the Laser Interferometer Space Antenna (LISA) mission
(Amaro–Seoane et al., 2012) aimed at detecting low-frequency gravitational waves
in space with a constellation of three drag-free spacecraft in heliocentric orbits
mutually exchanging laser beams on a continuous basis. A similar mission concept
is TianQuin (Luo et al., 2016).

For a review of testing fundamental physics with space missions, see, for
example, Lämmerzahl and Dittus (2008), and references therein.

6 From τετρ ′αεδρον (‘triangle-based pyramid’); it comes from τετρ ′ας (‘four’), and ’′εδρα, -ας, ’η, meaning,
among other things, ‘face of a regular solid’.

7 www.esa.int/Science_Exploration/Space_Science/Capturing_the_ripples_of_spacetime_LISA_gets_go-
ahead. Accessed 4 April 2024.
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(interplanetary probe), 14, 230, 231

lensing, gravitational, 92
Levi-Civita 3-dimensional symbol, 182, 191
line

of sight, 113, 142
straight, 3

line of sight, see sight, line of
logarithmic potential, 169

characteristic length scale, 169, 184
mean anomaly at epoch, precession, 169
orbital precessions, 169
pericentre, precession, 169

longitude, true, 17, 35, 101, 133, 186
at epoch, 186

Lorentz invariance, see Lorentz, symmetry
Lorentz, symmetry, 4, 10

spontaneous breaking, 175
violations, 10, 13, 165, 175

Lorentz-violating coefficients, 175
vector, 184

Lorentz-violating gravitomagnetic
acceleration, 175
acceleration, normal component, 175
acceleration, radial component, 175
acceleration, transverse component, 175

Lorentz-violating off-diagonal coefficients
vector, 175

Love, number, 85, 183
LS I+61◦303 (microquasar), 89
Lunar Laser Ranging (LLR), 2, 6, 162

M dwarf Advanced Radial velocity Observer Of
Neighbouring eXoplanets (MAROON–X),
39

magnetohydrodynamical general relativistic
simulations, 92

manifold
differentiable, 2

Lorentzian, 1, 2, 181
pseudo-Riemannian, 2
Riemannian, 2

number of dimensions, 181
Mars, 88, 218, 220
Mars Global Surveyor (MGS) (interplanetary probe),

89

mass
central body, 7, 9, 15, 19, 20, 54, 58, 60, 182, 190,

192
density, 4, 119, 181

profile, 172
monopole moment, 7, 16, 54, 155, 156, 160–162,

168, 175, 221
multipole moments, 7, 16
point approximation, 85
quadrupole moment, 16, 221

mass-energy
currents, 87, 190
distribution, 190

material bodies
composition, 4
mass, 4

matter, 4
Maxwell equations, 87
mean anomaly at epoch, precession, 20, 98,

219
mean motion

instantaneous shift, 37
Keplerian, 16, 22–25, 38, 80, 156

Mercury (planet), 7, 51, 52, 54, 63, 64, 116, 117,
144, 145, 217, 219, 220, 232

Mercury (Roman deity), 89
MESSENGER (interplanetary probe), 89
Messier M87 (galaxy), 6, 90
metric tensor signature, 2
MicroSCOPE (Earth satellite), 2
midtransit, 42
Modified General Relativity (MGR), 10
MOdified Gravity (MOG), 10
MOdified Newtonian Dynamics (MOND), 10
modulation, quasi-periodic, 89
moment of inertia, 84, 183
Moon, 2, 3, 17, 31, 48, 50, 162, 164

orbital angular momentum, 164

NASA Exoplanet Archive, 41
National Aeronautics and Space Administration

(NASA), 63, 64, 117, 144, 145, 221
near-infrared emission, 92
NEID, 39
net shifts per orbit

1st order, 25, 28
2nd order, 27, 28
mixed, 29

neutron star, 6, 47, 48, 86, 124, 224–226
angular momentum, 86
equation of state (EOS), 224
moment of inertia, 86, 216, 224
quadrupole mass moment (dimensional), 124,

216
Newton

dynamics, laws of, 1
gravitational constant, 5, 15, 180
gravitational force, 1–3
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inverse-square law, 165
acceleration, 11, 15, 104, 165, 185

Universal Gravitation, theory of, 1, 2, 5
Newton potential, see potential, Newtonian, arbitrary

mass distribution
no-hair theorems, 86, 227
node

ascending, longitude of, 7, 17, 19, 31, 61, 99, 131,
186, 218, 223, 228, 231

ascending, position of, 59–61, 101, 133, 135
descending, longitude of, 17, 186

node, net shift per orbit, 228
node, precession, 20, 23, 113, 141, 218
nodes

line of, 17, 19, 33, 36, 42, 59–61, 92, 99–101, 106,
131–133

line of, unit vector, 18, 59, 60, 99, 101, 131, 133,
187

of the orbit, 31, 36
non-gravitational forces, 2, 16, 171, 222, 232
nonconservative forces, see non-gravitational forces
Nordtvedt, effect, 3, 226
normal unit vector, see orbital angular momentum,

unit vector
normalized moment of inertia (NMoI), 84, 183

oblateness, 16, 133, 136–138, 146
observables, 8, 12, 25, 36, 37

calculated values, 8
instantaneous shifts, 1st order, 36
measured values, 8
net shifts per orbit, 1st order, 37

observatories, astronomical, 11
off-diagonal gravitomagnetic metric tensor

components, 87, 190, 192
OJ 287 (blazar), 74
once-per-revolution

acceleration, 169
acceleration, cosine coefficient of the normal

component, 170, 188
acceleration, cosine coefficient of the radial

component, 170, 188
acceleration, cosine coefficient of the transverse

component, 170, 188
acceleration, normal component, 170
acceleration, orbital precessions, 170
acceleration, radial component, 170
acceleration, sine coefficient of the normal

component, 170, 188
acceleration, sine coefficient of the radial

component, 170, 188
acceleration, sine coefficient of the transverse

component, 170, 188
acceleration, transverse component, 170

OPTIS (Earth satellite), 233
orbit, circular, 18, 20, 41, 55, 70, 90, 99, 103–111,

136–140, 172, 187, 232
polar angle, 104–106

orbit, equatorial, 90, 99–101, 104–106, 125, 133
orbit, polar, 20, 90, 99, 125, 231, 232
orbit, prograde, 90, 95, 104, 105
orbit, retrograde, 91, 95, 105, 106
orbit, rotational sense, 90, 91, 104, 105
orbital angular momentum, 19, 24, 96, 107, 112, 114,

115, 136, 141, 142, 161, 162, 187, 192, 195
unit vector, 24, 55, 74, 90, 120, 125, 136, 147, 188

orbital effects, mixed, 28
orbital effects, post-Keplerian (pK), 11, 217–219,

227
orbital effects, post-Newtonian (pN), 14, 230
orbital element, non-singular

k̃, 35, 186
q̃, 35, 186
k, 106
q, 106

orbital elements, non-osculating, 8, 21
orbital frequency, see mean motion, Keplerian
orbital motions, 172
orbital period, anomalistic, 12, 28–30, 186

1pN Lense–Thirring, 97, 98
1pN gravitoelectric test particle, 57, 58, 154
1pN gravitoelectric two-body, 67, 78
quadrupole mass moment (dimensionless), 129,

154
orbital period, Keplerian, 16, 18, 21–25, 28, 30, 40,

42, 48, 58–60, 63, 68, 69, 78, 97, 100, 102, 115,
135, 137, 144, 154, 155, 168, 173, 185, 221, 222,
225

orbital period, sidereal, 12, 33, 35, 36, 100, 133, 186
orbital period, draconitic, 12, 31, 33, 34, 36, 99, 100,

186
1pN Lense–Thirring, 98, 100
1pN gravitoelectric test particle, 58, 61
1pN gravitoelectric two-body, 67, 68
quadrupole mass moment (dimensionless), 130,

132, 133
orbital precessions, see precessions, orbital

1st order, 25
mixed, 29

orbital shifts, instantaneous
1st order, 11, 25, 28, 29, 36
2nd order, 11, 27, 28

oscillations, quasi-periodic, 89
out-of-plane acceleration, component of, see

post-Keplerian (pK) acceleration, normal
component

out-of-plane unit vector, see orbital angular
momentum, unit vector

parallel (Earth line of latitude), 33
parallel transport, 15, 156
parameters, solving for, 8, 74, 146
parametrized post-Newtonian (PPN) formalism, 9
βPPN parameter, 9, 182
γ PPN parameter, 9, 182

Penrose process, 87
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periastron
advance, 7, 66
advance, fractional, 74
distance, 141
net shift per orbit, 228

pericentre
advance, 66, 122, 150
argument of, 7, 17, 31, 80, 186, 219, 228, 231
longitude of, 17, 93, 186, 220
passage at, 28, 31, 98
position, 31
position of, 17, 18, 26, 30, 46, 55, 58, 97, 98, 130
precession, 20, 24
precession, in plane, 94
time of passage at, 17, 26, 31, 98

perigee
argument of, 162, 230
height, 230

perihelion, precession, 172, 219
perijove, 222
perinigricon

advance, 7
distance, 62, 68, 115, 143

perturbations, orbital secular, 20
Pioneer, anomaly, 171
Pisa, Leaning Tower of, 2
plane

equatorial, 16, 34, 94, 103, 104, 121, 127, 149, 151,
187, 195, 196

fundamental, of the reference frame, 16, 17, 33, 35,
36, 38, 42, 48, 49, 61, 92, 99–104, 134, 135,
225

of the orbit, 17, 19, 21, 24, 34–36, 55, 58, 90, 94,
95, 99–101, 104–106, 121, 122, 125, 127, 128,
149, 151, 152, 195, 225, 230, 232

of the sky, 17, 42, 47, 48, 91, 92, 113, 181, 225
planet

gaseous giant, 68, 69, 84, 108, 109, 113, 136, 137,
141

gravity field, multipoles, 231
Planetary Laser Ranging (PLR), 6
planets, rocky, see solar system, planets, inner
platinum, 2
Poisson, equation, 5, 173
polarimetric observations, 92
polarized submillimetre infrared observations,

92
position unit vector, see radial unit vector
position, vector, 16, 18, 50, 51, 54, 58–60, 88, 97–99,

101, 129, 131, 133, 187
projection onto the primary’s spin angular

momentum, 88, 147, 187
shift, 51, 187
shift, normal component, 51, 188
shift, radial component, 51, 188
shift, transverse component, 51, 188

post-fit residuals, see residuals, post-fit

post-Keplerian (pK)
anomalistic correction to the Keplerian orbital

period, 186
draconitic correction to the Keplerian orbital

period, 186
perturbed orbital period, 28
perturbed trajectory, 19, 20, 27, 31
potential, 26
potential, spherically symmetric, 27
radial velocity, instantaneous shift, 38
sidereal correction to the Keplerian orbital period,

186
post-Keplerian (pK) acceleration, 11, 15, 16, 19, 25,

28, 30, 32–35, 47, 51, 123, 146, 185
r−1, 169
constant, 171
constant, normal component, 171
constant, orbital precessions, 171
constant, radial component, 171
constant, transverse component, 171
normal component, 23, 188
radial component, 23, 31, 188
transverse component, 23, 188

post-Keplerian (pK) orbital effects, see orbital effects,
post-Keplerian (pK)

post-Newtonian (pN)
corrections to the Minkowski metric tensor, 182,

190
spin precessions, 13, 15

post-Newtonian (pN), approximation, 6, 190
1pN order, 7, 83, 84, 119, 146, 191
2pN order, 7, 73, 191

potential, energy
interaction, 181
spin-spin, 162
two-body, 161

potential, gravitomagnetic, spin octupole, 119, 184
potential, Newtonian

arbitrary mass distribution, 4, 5, 181, 182, 190
axisymmetric body, 16, 122, 123, 147, 183
spherical body, 123, 182

potentials, gravitational, 5
potentials, metric tensor components, 4
power-law potential n = −2

mean anomaly at epoch, precession, 168
pericentre, precession, 168

power-law potential n = 2
mean anomaly at epoch, precession, 167
pericentre, precession, 167

power-law potential n = 3
mean anomaly at epoch, precession, 167
pericentre, precession, 167

power-law potential n generic
mean anomaly at epoch, precession, 166
pericentre, precession, 166

power-law, potential, 165
dimensional strength parameter, 166, 184
disturbing function, 166
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precession of the inclination, see inclination,
precession

precession of the node, see node, precession
precession of the pericentre, see pericentre,

precession
precessions, orbital, 13

1st order, 26
2nd order, 28, 30

precise orbit determination (POD), 170
pressure, 5
probe, 146, 221, 222, 232
PSR B1913+16 (binary pulsar), 225
PSR J0337+1715 (triple pulsar), 2, 96, 225, 226
PSR J0337+1715 (triple pulsar), inner binary, 3, 96
PSR J0737–3039 (binary pulsar), 13, 14, 48, 89, 216,

217, 225
physical parameters, numerical values, 225

PSR J0737–3039A (pulsar), 48, 86
angular momentum, 86
rotational period, 86

PSR J0737–3039B (pulsar), 48, 86
angular momentum, 48, 86
rotational period, 86

PSR J0737–3039 (binary pulsar), 214
PSR J1141–6545 (binary pulsar), 72, 85, 89, 114,

115, 124, 141, 142
Pugh–Schiff spin precession, 7, 15, 90, 155, 160
pulsar

emission, 47
millisecond, 96
triple, 14, 96, 97, 217, 226, 227

pulsar, binary, 2, 7, 11, 12, 36, 47, 48, 64, 66, 72–74,
85, 89, 96, 114, 124, 141, 142, 146, 225

barycentre, 48
barycentric orbit, 48, 226
barycentric semimajor axis, 48
radio pulses, 47, 48
semimajor axis, 216
times of arrival (TOAs), 47
variation of the times of arrival, 11, 48

quadrupole mass moment (dimensional), 124, 183,
225

acceleration, 125
dec., instantaneous shift, 143
dec., net shift per orbit, 229
inclination, net shift per orbit, 228, 229
mean anomaly at epoch, net shift per orbit,

229
node, net shift per orbit, 228, 229
orbital precessions, 227
pericentre, net shift per orbit, 228
perinigricon, net shift per orbit, 229
RA, instantaneous shift, 143
RA, net shift per orbit, 229
radial velocity semiamplitude, net shift per orbit,

137, 229

variation of the times of arrival, instantaneous shift,
141, 142

variation of the times of arrival, net shift per orbit,
141

quadrupole mass moment (dimensionless), 11, 12, 16,
31, 84, 123, 124, 129, 130, 132, 134, 137, 150,
183, 193

acceleration, 13, 123, 146
acceleration, normal component, 125
acceleration, radial component, 125
acceleration, transverse component, 125
correction to the sidereal period, 133
dec., net shift per orbit, 143
dec., instantaneous shift, 142
equations of motion, numerical integrations,

129–131, 133, 135, 145
full width at half maximum transit duration, net

shift per orbit, 139
inclination, net shift per orbit, 136
inclination, precession, 218
ingress/egress transit duration, net shift per orbit,

138
instantaneous orbital shifts, 13, 126, 199
mean anomaly at epoch, precession, 220
mean anomaly, instantaneous shift, 129, 144
net orbital shifts, equatorial orbit case, 128
net orbital shifts, general case, 127, 154
net orbital shifts, polar orbit case, 128
node, precession, 219
pericentre, precession, 220
RA, instantaneous shift, 142
RA, net shift per orbit, 143
radial velocity curve, instantaneous shift, 136,

137
radial velocity semiamplitude, net shift per orbit,

136
range rate, instantaneous shift, 144, 145
range, instantaneous shift, 144
sky-projected spin-orbit angle, precession,

141
time of inferior conjunction, net shift per orbit, 140,

141
total transit duration, net shift per orbit, 138
transit characteristic timescales, net shifts per orbit,

137, 140
quantum gravity, theory of, 10
quantum regime, 3

RA of the north pole of rotation, 94, 95, 121, 122,
128, 149, 151, 183

radar ranging, 54
radial unit vector, 24, 55, 74, 90, 120, 125, 136, 147
radial velocity, spectroscopic binary, 11, 12, 36–39,

187
accuracy, 39
curve, 37, 68, 106, 135
semiamplitude, 39, 68, 106, 135, 187, 229
systemic, 38, 187
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radiation
gamma, 47
optical, 47
radio, 47, 225
X, 47

radius, circular orbit, 104, 187
radius, equatorial, 119, 182
radius, polar, 119, 183
rate of change of the eccentricity, see eccentricity, rate

of change
rate of change of the semimajor axis, see semimajor

axis, rate of change
redshift, gravitational, 225
reference

x axis, 16, 17, 33, 42, 47, 91, 92
y axis, 92
z axis, 17, 38, 42, 48, 92, 93, 104, 125, 147, 148,

150
direction, 16, 33, 36, 47, 102, 104, 106, 135

reference frame, 13, 16, 38, 94, 121, 128, 147–151,
155, 160, 196

accelerated, 4, 5
dynamically non-rotating, 15, 155, 160, 232
inertial, 2, 15
kinematically non-rotating, 15, 155
kinematically rotating, 160, 232
rotating, 4

relativistic
jets, 87
multipoles, 120

remote sensing, 170
residuals, post-fit, 8, 9, 146, 170, 223
Ricci

spacetime curvature tensor, 4, 182
tensor trace, 5, 182

Riemann, spacetime curvature tensor, 4, 5, 156, 182
right ascension (RA), 11, 12, 34, 36, 49, 185, 229
ring, massive, 96, 165, 226, 227

potential expansion, 165, 166, 226
quadrupole, 165, 166, 226

Rossby wave-induced spiral pattern, 92
Rossiter–McLaughlin effect, 47, 92
rotation, rigid, 119
rotational

frequency, 85, 107, 183
period, 86, 183

S star, 20, 37–39, 49, 62, 68, 69, 74, 89, 91, 115, 116,
143, 172

S2 (star), 7, 39, 54
S4716 (star), 14, 49, 109, 110, 137, 138, 217, 227–229
satellite, 15, 19, 20, 27, 30, 88, 94, 95, 121, 122, 127,

128, 149, 151, 152
data reductions, 169

Satellite Laser Ranging (SLR), 6, 7, 88, 222, 223
stations, 223

Saturn, 88
Saturn (Roman deity), 2

Scalar Tensor Vector Gravity (STVG), 10
self-energy, gravitational, 226
self-gravity, 2, 3
semilatus rectum, 16, 31, 106, 186
semimajor axis, 7, 16, 20, 37, 38, 40, 48, 59–61, 81,

83, 96, 98, 101, 103, 131, 133, 135, 185, 189,
222, 230

instantaneous shift, 37
rate of change, 21, 230

Sgr A∗, 6, 7, 20, 38, 54, 62, 91, 92, 107, 109, 115,
136, 142, 227

Shapiro, delay, 225
sidereal period, see orbital period, sidereal
sight, line of, 17, 36, 38, 42, 48, 85, 91, 92, 181, 225
SINgle Faint Object Near–IR Investigation

(SINFONI), 40
sky-projected spin-orbit angle, 11, 183
SLALOM (Earth satellite), 50
solar system, 6, 7, 11, 13, 16, 50, 88, 89, 172, 214,

217, 230, 233
ice giants, 220
moons, 88
planets, 13, 88, 217–220
planets, inner, 7, 54, 88
planets, outer, 88

spacecraft, see probe
spacetime, 2–5, 13, 15, 156, 160, 166

curvature of, 1, 3, 4
geodesic, 3
metric inverse tensor, 3, 182
metric tensor, 3, 4, 13, 27, 87, 165, 182, 190

Special Theory of Relativity (STR), 1, 2, 4
spectral energy distribution (SED), 85
spectrum, electromagnetic, 47
speed of light in vacuum, 2, 5, 6, 48, 180
spheroid, oblate, 119
spin

dipole moment, 7, 12, 16, 119, 221
multipole moments, 7, 16
octupole moment, 12, 16, 221

spin angular momentum, 7, 19, 20, 84, 88, 94, 96, 99,
102, 107–109, 112, 114, 129, 131, 135, 136, 142,
147, 183, 190, 192, 195, 196, 231

magnitude, 183
unit vector, 88, 90, 91, 93, 95, 97, 99, 100, 102,

104, 122, 125, 148–150, 183
spin axis, see spin angular momentum, unit vector
spin-orbit coefficients

equatorial orbit, 195
general case, 194
polar orbit, 195
spin aligned with the z axis, 196

spin-orbit coefficients are defined in Appendix D, 13
standard gravitational parameter, 15, 182
Standard Model Extension (SME), 10, 175
Standard Model of elementary particles and fields, 10
star, main sequence, 37–40, 48, 68, 69, 72, 84, 85, 87,

89, 96, 107–109, 124, 136, 137, 146
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activity indices, 85
disk, 40
equatorial rotational velocity, 85, 183
mask, 85
projected rotational velocity, 85, 183
quadrupole mass moment, 107
radius, equatorial, 85
reduced spectrum, 85
rotational period, 85
spin axis, 85
spin axis azimuth in the plane of the sky, 183
spin axis tilt to the line of sight, 85, 183
spots, 41

stress-energy tensor, see energy-momentum, tensor
stresses, internal, 4
strong, gravitational regime, 5, 6, 89
sub-satellite, point, 33

time of passage of, 33
Sun, 2, 7, 13, 40, 63, 68, 69, 71, 90, 107–109, 112,

116, 136, 137, 140, 162, 164, 217–220, 232, 233
angular momentum, 89, 117, 180
angular momentum, magnitude, 85, 117, 180
dec. of the north pole of rotation, 117, 144, 145,

180, 214
ellipticity, 214
mass, 63, 64, 180
physical parameters, numerical values, 214,

217–219
quadrupole mass moment (dimensionless), 107,

144, 145, 180, 217–220, 232
RA of the north pole of rotation, 117, 144, 145,

180, 214
radius, equatorial, 180, 214, 232
radius, polar, 214
spin axis, 144, 145, 180
standard gravitational parameter, 180

supermassive black hole in M87, 6, 90
supermassive black hole in Sgr A∗, 6, 7, 20, 38, 54,

89, 107, 110, 115, 116, 136, 138, 143, 227–229
angular momentum, 107
mass, 107, 110, 116, 136, 138, 143, 228, 229
quadrupole mass moment (dimensional), 136
spin axis, 91, 92, 109, 110, 115, 116, 137, 138, 143,

144, 227–229
spin axis azimuth in the plane of the sky, 91, 109,

110, 116, 137, 138, 143, 144
spin axis tilt to the line of sight, 91, 92, 109, 110,

115, 116, 137, 138, 143
spin parameter, 107, 110, 116, 136, 138, 143,

227–229
supermassive black hole in Sgr A∗, 229

mass, 229
spin axis, 229
spin parameter, 229

superradiance, 87
symmetry

axial, 123
spherical, departures from, 16

symmetry axis, 121, 123
systematic errors, 41

temporal coordinate, 182
test particle, 3, 4, 11, 13, 15–20, 24, 28, 30, 31, 33,

35, 49, 58, 59, 61, 62, 64, 65, 69, 84, 90, 97–99,
102, 104–106, 108, 115, 119, 129, 131, 135, 137,
142, 155, 156, 161, 175, 192

tetrad components, 156
TianQuin (interplanetary probe), 233
tidal

angular momenta alignment, 108, 109, 137
effects, 15, 107, 155
forces, 3, 107, 136
matrix, 156
matrix, 1pN gravitoelectric, 158
matrix, 1pN gravitomagnetic, 159
matrix, Newtonian, 49, 158
orbit circularization, 108, 109, 137
orbital effects, 13
spin-orbit synchronization, 108, 109, 136,

137
tidal acceleration, 156, 172

normal component, 156
radial component, 156
transverse component, 156

tidal effects, 84, 108, 109, 137
tidal quadrupole parameter, 124, 183
tide, K1, 232
tide-raising companion, 124

mass, 124, 183
semimajor axis, 124, 183

tides, 3, 108, 109, 136, 137
Time, see Chronos
time

coordinate, 11, 182, 191
inferior conjunction of, 40, 46, 71, 72, 112, 141,

185
initial instant, 17, 25, 58, 60, 83, 97, 100, 102, 127,

130, 132, 134, 186
proper, 3, 11, 182
standards, 41

timelike curves, closed, 86
times of arrival (TOAs), 12, 226
titanium, 2
Titans (Greek pre-Olympian gods), 2
transit

egress duration, 44
flux, 40
ingress duration, 43
ingress/egress duration, 40, 44, 185
primary, 40, 44
primary, full width at half maximum duration, 40,

44, 185
secondary, 40
total duration, 40–43, 185

transverse unit vector, 24, 55, 74, 90, 120, 125, 136,
147
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two-body
distance, 1, 16, 19, 31, 109, 125, 161, 162, 175,

187, 192
range, 12, 50, 52, 185, 232
range rate, 12, 50, 52, 185
range rate shift, 51, 185, 231
range shift, 51, 185, 232

two-body system, 88
restricted, 9, 11, 13, 15, 155, 156, 160–162
restricted, primary, 7, 13, 15, 19, 20, 24, 31, 49, 50,

58, 60, 62, 88, 90, 99, 102, 103, 115, 121, 123,
129–132, 134, 135, 142, 146, 155, 168, 172,
187, 193

restricted, primary, 11, 102, 123

unit vector
in the orbital plane normal to the line of nodes, 19,

187
in the orbital plane along the line of nodes, see

node, ascending, unit vector
perpendicular to the orbital plane, see angular

momentum, orbital, unit vector
range rate shift, auxiliary, 51, 185
Uranus, 88, 231

velocity, vector, 18, 50, 51, 147, 175, 187, 191–193
magnitude, 187
projection onto the position vector, 54, 187
projection onto the primary’s spin angular

momentum, 187
shift, 51, 187
shift, normal component, 51, 188
shift, radial component, 51, 188
shift, transverse component, 51, 188

Vernal Equinox
at some reference epoch, 16, 180, 232

Very Large Telescope (VLT), 40
Virgo (laser interferometer), 6

WASP–33 (star), 47, 107
waves

electromagnetic, 3–5, 87
gravitational, 5, 6, 156, 157, 233
gravitational, frequency, 157, 233

weak-field and slow-motion approximation, see
approximation, weak-field and slow-motion

weight force, 2
white dwarf, 3, 48, 85, 124, 225, 226

angular momentum, 86
binary, 2, 72, 89, 96, 114, 141, 142, 225
mass, 86
moment of inertia, 85
quadrupole mass moment (dimensional), 124,

142
radius, 86
rotational frequency, 85
triple, 96

worldline, 2, 3
geodesic, 15, 156, 160

wormholes, 228

X-ray
binaries, 89
lightcurve, 92

XMM–Newton (spaceborne mission), 92
XO-3 (star), 47

Yukawa potential, 165, 168
dimensional strength intensity, 168, 184
dimensionless strength intensity, 168, 184
disturbing function, 168
mean anomaly at epoch, precession, 168
orbital precessions, 168
pericentre, precession, 168
scale distance, 168, 184

Zeus (Greek deity), 2
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