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Preface

The book is an introductory physics study book. The book offers students of science
and engineering the basic concepts and principles of introductory physics, presenting
problems and their solutions by analytical and computer calculations. It is for
introductory physics learning at early undergraduate university education.

The introductory physics topics are divided into two volumes:

Volume I Mechanics, properties of matter, and heat
Volume IT Waves, sound, electricity, magnetism, and optics—which is the present
volume.

Each chapter begins with the main points of the topic. These are summaries
of concepts, principles, definitions, and formulae of the topic. Then, problems are
posed and solved. Steps are detailed so that reasoning and understanding are built.
Many figures are drawn to help in visualizing the physics problems and solutions.
Calculations and solutions are also performed by computer using wxMaxima to
instill computational skills. An appendix Introduction to wxMaxima is included to get
students started with the software. Calculations by wxMaxima achieved the solutions
themselves or for rechecking the values obtained analytically.

Our belief is that success in solving physics problems by analysis or computer
calculation boosts confidence and motivation, a sense of victory, and a sense of “I
can do this, let me try the other”. In computer calculation, changing the values of a
few physical quantities and redoing the calculation might change the physical scene
into a new one or into a hard to comprehend situation. We are tempted to explore
and experiment with different physical scenes and be creative, albeit by computer.

Chapter 1 solves problems on traveling waves, wave equations, and harmonic
waves. Amplitude, angular frequency, propagation constant, speed, and direction of
travel of the wave are determined from its equation. Animations of traveling waves
are presented.

Chapter 2 solves problems on sound waves in air, their displacement, and pressure
waves. Speed of sound in various media, intensity, and intensity level of sound are
considered. Doppler’s effects due to the relative motion of the sound source and
observer are also discussed.

vii



viii Preface

Problems on the superposition of waves and stationary waves are solved in Chap. 3.
These include stationary waves in air column and string. Nodes and antinodes of the
stationary waves are identified. Animations of these stationary waves are presented
for insight into the physics.

Problems on electricity are solved in Chaps. 4-9. Chapter 4 discusses problems on
electric charge, electrostatic force, and electric field. Vector additions and methods
of calculus are used to calculate some of the electric fields.

Chapter 5 solves problems on Gauss’s law and its application. Gauss’s law states
that electric flux through a closed surface is equal to the electric charge enclosed
by the surface divided by the permittivity of free space. Using Gauss’s law, electric
fields of some symmetric charge distributions are calculated.

Chapter 6 solves problems on electric potential energy, electric potential differ-
ence, and electric potential. Every point in a region of an electric field is associated
with an electric potential which is electric potential energy per unit charge at the
point.

Chapter 7 discusses problems on capacitance, equivalent capacitance of capacitors
in series and parallel, and energy in charged capacitors. Also discussed is the effect
of inserting dielectric material between plates of capacitor.

Chapter 8 solves problems on electric current, current density, resistance, resis-
tivity, and Ohm’s law. Problems on increase in resistance due to rise in temperature,
resistance temperature coefficient, and dissipation of electrical power by resistors
are also solved.

Chapter 9 solves problems on direct current circuits by applying Kirchhoff’s rules.
The rules are (1) the sum of the currents into any junction is zero, and (2) the sum of
potential differences across each element around a closed loop is zero. Problems to
determine equivalent resistance of resistors in series and in parallel and to determine
current and charge in direct current RC circuits are also tackled.

Problems on magnetism are solved in Chaps. 10—14. Problems on magnetic forces
due to moving charged particles and current carrying conductors in magnetic fields
are solved in Chap. 10. The torque due to the magnetic moment of current carrying
loop in magnetic field is also discussed.

Chapter 11 solves problems on magnetic fields created by current carrying conduc-
tors and loops. The Biot—Savart law is applied to determine the magnetic fields.
Magnetic fields in a current carrying solenoid and toroid are determined by applying
Ampere’s law.

Problems related to magnetic materials and how magnetic induction, magnetic
field strength, and magnetization are affected when the materials are inserted in the
core of current carrying solenoid and toroid are solved in Chap. 12.

Chapter 13 solves problems related to emf induced by changing the magnetic flux.
Faraday’s law states that the emf induced is equal to the negative time rate of change
of the magnetic flux. Emf is induced in a moving conductor when the conductor cuts
through the magnetic field lines. Emf is also induced in a rotating conducting loop
when the loop cuts through the magnetic field lines.
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Chapter 14 solves problems on electric inductance—a measure of resistance of a
conducting coil to change in current or magnetic flux linkages per unit current of the
coil. Problems on self- and mutual inductance, energy in inductor, and direct current
RL circuit are solved.

Chapter 15 solves problems on series RLC alternating current circuits. Inductive
and capacitive reactance, impedance, phase angle, power factor, root mean square
current, and average power of the circuits are determined.

Chapter 16 solves problems on plane electromagnetic wave, associated Poynting
vector, and radiation pressure. These include the determination of electric and
magnetic field amplitudes and directions, intensity, energy density, and direction
of propagation of the electromagnetic waves. An animation of a traveling plane
electromagnetic wave is presented.

Problems on geometrical or ray optics are solved in Chaps. 17 and 18. Chapter 17
solves problems on light reflection, refraction, total internal reflection, dispersion,
and polarization.

Chapter 18 solves problems on image formation by mirrors, spherical surfaces,
and lenses using geometrical or ray optics. Calculations of image size, location, and
magnification are performed. Spherical mirror, refraction at a spherical surface, lens
maker, and thin lens equations are applied.

Problems on wave optics are solved in Chaps. 19 and 20. Chapter 19 solves
problems on interference of light, a phenomenon due to the superposition of coherent
lights. These include interference in Young’s double-slit experiment, thin film, lens
coating, air wedge, and Newton’s rings experiment.

Problems on diffraction of light are solved in Chap. 20, the last chapter. Diffraction
is the bending or spreading of light at an aperture or obstacle. Problems on diffraction
by a single slit and diffraction by a grating and its resolving power are discussed.

We wish to acknowledge the advice from several of our colleagues and under-
graduate students on the idea of the book. We are also grateful to the editorial staff
of Springer Nature for their support.

Johor Bahru, Malaysia Wan Muhamad Saridan Wan Hassan
2023 Abd Rahman Tamuri
Muhammad Zaki Yaacob

Roslinda Zainal



About This Book

The book offers students of science and engineering the basic concepts and principles
of introductory physics, presenting problems, and their solutions by analytical and
computer calculations. It is for introductory physics learning in the first undergraduate
year of university education. This volume covers topics of waves, sound, electricity,
magnetism, and optics. Each chapter begins with the main points of the topic. These
are summaries of concepts, principles, definitions, and formulae of the topic. Then,
problems are posed and solved. Steps are detailed so that reasoning and understanding
are built. There are 250 worked problems and 100 exercises in this volume. There are
280 figures drawn to help visualize the physics problem and solution. Calculation
and solution are also performed by computer using wxMaxima to provide insight
and instill computational skills. The knowledge and skills presented by the book are
important foundations for further studies in science or engineering. Physics teachers
would also find the book useful for their instruction.
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Chapter 1 )
Waves i

Abstract This chapter solves problems on traveling waves, wave equations, and
harmonic waves. Amplitude, angular frequency, propagation constant, speed, and
direction of travel of the wave are determined from its equation. Animations of
traveling waves are presented. Both solutions by analysis and computer calculation
via wxMaxima are presented.

1.1

o))

(@)

3)

Basic Concepts and Formulae

A transverse wave is a wave in which particles move or vibrate perpendicular to
the direction of the wave propagation. Examples of transverse waves are waves
of a stretched string and electromagnetic waves. The wave propagation along
a string is perpendicular to the vibrations of a particle of the string. In electro-
magnetic wave, the electric and magnetic field vibrations are perpendicular to
the direction of the wave propagation.

A longitudinal wave is a wave in which the particles move or vibrate in a
direction parallel to the wave. Sound wave is a longitudinal wave. In a sound
wave, the air molecules or the air layer vibrations are in the same direction as
the wave propagation direction.

A one-dimensional wave propagating with speed v in the positive x direction
is represented by

yx, 1) = f(x —vr). (1.1)

It is a function of x — vt where v is the speed of the wave, x is position,
and ¢ is time. y(x, f) represents the wave; it is the particle displacement of a
stretched string, the air pressure or air layer displacement in a sound wave, or
the electric or the magnetic field in an electromagnetic wave. A profile or a
snapshot of a wave is obtained if time #( is chosen and y(x, t = f;) is plotted.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 1
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Superposition principle states that the resultant wave is the addition of waves.
When two waves superpose, interference could occur. The interference could
be constructive or destructive.

The speed of transverse wave in a string with tension F and mass per unit
length p is

F
v= | = (1.2)
"

When a propagating pulse in a string hits a fixed end, the pulse is reflected and
over turned. If the pulse hits a free end, it will be reflected but not overturned.
Wave function of a one-dimensional harmonic wave moving to the right is

2
y(x, 1) = Asin T”(x — i) = Asin(kx — wi), (13)

where A is amplitude, A is wavelength, k£ is propagation constant or
wavenumber, and o is angular frequency. If T is the period (the time for
the wave to move a distance of one wavelength) and f is the frequency, then,

_roy (1.4)

v—T—f, .
2

__, 1.6

A propagating wave in the positive x direction is a function of x — vt, vt — x,
kx — wt, ot — kx, t — x/v or x/v — t, while the one propagating in the negative
x direction is a function of x 4+ vt, vt + x, kx 4+ wt, wt + kx, t + x/v or x/v +
t. Here, v, k, and w are speed, propagation constant, and angular frequency of
the wave, respectively.

Power transferred by a harmonic wave in a stretched string is

1
P= Eua)zsz. (1.7)

The wave function y(x, ) satisfies the linear wave equation,

Py _ Loy ¥y L%y (1.8)
ax2 2 912 at? ax2’ ’

where v is the speed of the wave.
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(11) Inverse square law: A scientific law states that a quantity is inversely propor-
tional to the square of the distance. For example, intensity of a wave I at a
distance d from the source of the wave,

1
I x yik (1.9)

Thus, at two distances, the law is written as

I, d?
—1 = —22 or I]d12 = Izdzz.
L d

1.2 Problems and Solutions

Problem 1.1 Which of the following is not a propagating wave?

(@) y(x,7) =0.7sin(2x — 3¢)

() y(x,t) =5 cos(3x) sin(5¢t)
() y(x,t) =3cos(2t + x)

@) y(x,1) = 4¢3

(e) y(x,1) =12 cos?(t + 5x)

) y(x,r) =2sin(3x + 107).

Solution

Item (b) is not a propagating wave. A propagating wave is represented by
yx, 1) = fx£vn),

where v is velocity of the wave, x is coordinate of position, and ¢ is time. The plus
sign is for a wave propagating in the negative x direction, while the negative sign is
for the one in the positive x direction. In general, any function of (Cx £ Dt) where
C and D are constants, is a propagating wave. Thus, all except (b) are propagating
waves. A way to see that a wave is propagating is by plotting the wave profiles at
increasing times. See Problems 1.8 and 1.9 as complete examples, in which we show
that (f) is a sinusoidal wave propagating in the negative x direction, while (d) is a
pulse propagating in the positive x direction.

Problem 1.2 Show that y(x, 1) = 3¢~®+7’ satisfies the linear wave equation.
Solution

The linear wave equation is
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where v is the speed of the wave. For this problem,

9
a—i = 2(x + TN B)e T = —42 (x + T)e T,
32)’ —(x+71)? 2 —(x+71)?
N [7e —2(x + 702 (De ]
— 294 [e-<x+7f>2 2+ 7t)2e_(x+7’)2].
dy —(x471)? —(x471)?
P =2 +7t)(3)e =—6 (x4 Tt)e ,
X

2
Iy _ -6 [e_(x”')z -2 (x+ 7t)ze_("+7”2].
dx2

This means that

9’y 0%y  —294

—/—— = ——— =49,
ot ax2 —6
and
32 92
Y 4%
at? 0x2

Therefore, y(x, t) = 3¢~ 70" satisfies the linear wave equation and the wave
velocity is +/49 = 7 units of velocity.

e wxMaxima codes:

1) y: 3*exp (- (x+7*t)"2);
3*%e” (- (x+7*t) *2)

(%1

(y)

(%$13) diff(y,t); diff(y, t, 2);

(%$02) -42* (x+7*t) *Se”™ (- (x+7*t) "2)

(%03) 588* (x+7*t) "2*%e” (= (x+7*t) "2)-294*%e” (- (x+7*t) "2)
(%$15) diff(y, x); diff(y, x, 2);

(%04) —-6* (x+7*t) *%e” (= (x+7*t) "2)

(%05) 12* (x+7*t) "2*%e” (= (x+7*t) "2) —6*%e” (- (x+7*t) *2)
(%i7) diff(y,t,2)/diff(y,x,2)$ radcan(%);

(%07) 49

(%$18) sqgrt (%)

(%08) 17

Comments on the codes:

(%i1) Assign the wave equation.
(%i13) Partial differentiation of the wave equation with respect to ¢ and twice partial
differentiation of the wave equation with respect to 7.
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(%i15) Partial differentiation of the wave equation with respect to x and twice partial
differentiation of the wave equation with respect to x.

(%i7) Division of second partial derivative with respect to ¢ by second partial
derivative with respect to x, followed by simplification by radcan(%).

(%i18) Calculate the square root of 49.

Problem 1.3 A harmonic wave in one dimension is given by
y = 0.3sin(4x + 8¢),

where y and x are in meters and ¢ in seconds. Determine

(a) wavelength

(b) frequency

(c) velocity

(d) direction of propagation of the wave.

Solution

(a) We compare general wave equations with the harmonic wave,

2
y = Asin(kx 4+ wt) = Asin(Tﬂx + 271ft>,
y = 0.3sin(4x + 8¢).

From the comparison, the wavelength A is calculated as follows:

2
k=" —40m",
py
2 2
=T _16m.
k 4.0 m—!

(b) The frequency of the wave f is calculated as follows:

w=2nf=80s"",

o 80 s7!

= — = 1.3 Hz.
f 2 2w g
(c) The velocity of the wave v is
A o 8.0s!
=\ =— 2nf=—=——=20 -1
VEM A = T dom ms

(d) The harmonic wave equation is in the form of f(x + vt). Hence, the wave is
propagating to the left, i.e. moving in the negative x direction.



e wxMaxima codes:

i1
fppri

i2

)

i

fpprintprec:5;

ntprec) 5

k:4;

4

lambda: 2*%pi/k$ float (%)

)

f: omega/ (2*%pi)$ float (%) ;
1.2732

v: lambda*f;

2

Comments on the codes:

(%il)

(%i2)
(%id)
(%iS)
(%iT)
(%i8)

e Animation of y = 0.3 sin(4x + 8¢) by wxMaxima:

(%$11)
(fppri
(%$12)

1

Waves

Set the floating point print precision to 5. With the fpprintprec: 5; command,

numerical output is set to 5 digits.

Assign propagation constant k the value 4.
Calculate A. Part (a).

Assign o the value 8.

Calculate f. Part (b).

Calculate v. Part (c).

fpprintprec:2;

ntprec) 2

with slider draw(
t, makelist(i,i,0,3,0.1),
title=concat ("t = ",t," s"),
explicit (0.3*sin(4*x + 8*t), x,0,5),
grid=true,
yrange=[-0.4,0.4],
xlabel="{/Helvetica-Italic x} (m)",
ylabel="{/Helvetica-Italic y} (m)");

t=0s

o 1 &, TR o

wff \
- -
o I 7 S

04 i | L

y (m)
(=]
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Comments on the codes:

To run the animation, copy the codes to the wxMaxima command window; press
<shift> and <enter> keys simultaneously to run the codes; right click the graphic
that appears and choose Start Animation.

Problem 1.4 A simple harmonic wave in one dimension is given by,
y = 1.5sin(47 — 8x),

where y and x are in centimeters, whereas ¢ is in seconds. Determine

(a) wavelength

(b) frequency

(c) speed

(d) propagation direction of the wave.

Solution

(a) We compare general wave equations with the simple harmonic wave,
. . 2
y = Asin(wt — kx) = Asin( 27 ft — Tx ,
y = 1.5sin(4r — 8x).

It follows that the propagation constant is

2
k= il =80cm .
A

The wavelength is

2 2
A= —nz—n=0.79cm.
k 8.0 cm~!
(b) The angular frequency and frequency are
w = 27‘[f = 40 S_l,
4.0 57!
=2 s
2 2
(c) The speed of the wave is
4.0s7!
v—g— > =0.50cms™!
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(d) The simple harmonic wave equation is in the form of f(wt — kx). The wave is
moving in the positive x direction.

e wxMaxima codes:

($11) fpprintprec:5;
(fpprintprec) 5

(%$12) k:8;

(k) 8

(%14) lambda: 2*%pi/k$ float (%);
(%04) 0.7854

(%$15) omega:4;

(omega) 4

(%$17) f: omega/ (2*%pi)$ float (%);
(%07) 0.63662

(%19) v: omega/k$ float (%);

(%09) 0.5

Comments on the codes:

(%il) Set the floating point print precision to 5.
(%i12) Assign k.

(%i4) Calculate .

(%15) Assign w.

(%i7) Calculate f.

(%19) Calculate v.

e Animation of y = 1.5sin(4¢ — 8x), by wxMaxima:

(%il) fpprintprec:2;

(fpprintprec) 2

(%$12) with slider draw(
t, makelist(i,i,0,3,0.1),
title=concat ("t =
explicit(l.5*sin(4*t - 8*x), x,0,5),
grid=true,
yrange=[-1.6,1.6],
xlabel="{/Helvetica-Italic x} (cm)",
ylabel="{/Helvetica-Italic y} (cm)");

t=0s

1? /\ ll,l'f\ll /\ f\H flf" \ |

¥y (em)
[=]

05 h /
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Comments on the codes:

To run the animation, copy the codes to the wxMaxima command window; press
<shift> and <enter> keys simultaneously to run the codes; right click the graphic
that appears and choose Start Animation.

Problem 1.5 A harmonic wave is given by,
y = 0.3 sin(4x + 8¢),

where y and x are in meters and ¢ in seconds. The wave is propagating in a medium.
What is

(a) the maximum speed of a particle in the medium?
(b) the maximum acceleration of a particle in the medium?

Solution

(a) The speed of the particle can be obtained by differentiating the given equation
with respect to time. We get

dy
— =24 4 81).
7 cos(4x + 8t)

This gives the speed of a particle at position x and time ¢. The maximum speed
of a particle is 2.4 m s~
(b) Acceleration of a particle is obtained by differentiating twice the given equation

with respect to time. The acceleration of a particle at position x and time 7 is

%y
i —19.2 sin(4x + 8¢).

The maximum acceleration of the particle is 19.2 m s72.

e wxMaxima codes:

4*x + 8*t);
4*x4+8*t)

;

1) y(x,t):=0.3*sin
1) y(x,t):=0.3*sin
2) diff(y(x,t),t,1
2) 2.4*cos (4*x+8*t
3)
3)

diff(y(x,t),t,2);
-19.2*sin (4*x+8*t)

Comments on the codes:

(%i1) Define the wave function.
(%i2) Differentiate the wave function with respect to ¢.
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(%13) Twice differentiation of the wave function with respect to 7.

Consider any point of the wave, say point x = 0. Then, the displacement and the
acceleration of the particle as time goes are

y = 0.3 sin(8¢),

d2
a= d_t;) = —19.2 sin(8t) = —64 x 0.3 sin(8¢) = —64y.

The acceleration is proportional to negative of the displacement. This means that
the particle at the point oscillates according to a simple harmonic motion. Thus, the
wave is called a harmonic wave.

e Animation of y = 0.3 sin(4x + 8¢), by wxMaxima:

(%1il) fpprintprec:2;

(fpprintprec) 2

(%¥12) with slider draw(
t, makelist(i,i,0,3,0.1),
title=concat ("t = ",t," s"),
explicit(0.3*sin(4*x + 8*t), x,0,5),
grid=true,
yrange=[-0.4,0.4],
xlabel="{/Helvetica-Italic x} (m)",
ylabel="{/Helvetica-Italic y} (m)");

t=0s

0.4

0.3 F l//'-..‘\ I/“\‘ ;
L/ [\ /
o2r/ \ i \ /

0.1 H

-0.1F \ / ) I“.\ . },l' : '\\I IIIIII-
-0.2 F \ \ / \ f

03k \u/ \J \;/

0.4 I I L L

m)

[
\
o
_—

4

Comments on the codes:

To run the animation, copy the codes to the wxMaxima command window; press
<shift> and <enter> keys simultaneously to run the codes; right click the graphic
that appears and choose Start Animation.

Problem 1.6 The solar intensity on Earth is 1340 W m™2. What is the solar intensity
on Mars? Distance from Earth to the Sun is 93 million miles and the distance from
Mars to the Sun is 142 million miles.
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Solution

Using the inverse square law, I oc 1/r? (Eq. 1.9), intensity is inversely proportional
to distance square, we write

2
TEarin _ TMars

’

2
IM‘”'S TEarth

where I, and Iy, are the solar intensities on Earth and Mars, while rg,; and
T'mars are the distances from the Sun to the Earth and Mars, respectively. The solar
radiation intensity on Mars is calculated as follows:

1340 W m—2 _ (142 million miles)?
Ivars (93 million miles)?
Itars = 575 W m™2

e wxMaxima codes:

%$15) fpprintprec:5; ratprint:false; IEarth:1340; rEarth:93; rMars:142;

fpprintprec) 5)
ratprint) false
IEarth) 1340
rMars 142

solve (IEarth/IMars=rMars”2/rEarth”2, IMars)$ float (%):;

(
(
(
(
(rEarth) 93
(
(%
(% ) [IMars=574.77]

Comments on the codes:

(%i5) Set the floating point precision to 5 and internal rational numbers print to
false, and assign values of Igath, 7Earth, and Fyars.

(%i7) Use the solve function to solve Igah/IMars = rl%/lars / r]%arth to find Ippars and
get the decimal value.

Problem 1.7 The intensity of light of a lamp at a distance of 10 m away is 2.0 W m~>
What is the intensity at a distance of 20 m away?

Solution

Using the inverse square law, I o 1/r2, we write

2
L _n

El

2
12 r

where [ is the intensity at 7| away and [, is at r, away. We have
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20Wm2 (20 m)?
I T (10 m)2’

The light intensity at 20 m from the lamp is

L = 0.50 Wm™>

e wxMaxima codes:

%$15) fpprintprec:5; ratprint:false; I1:2; rl:10; r2:20;
fpprintprec) 5

ratprint) false
I
r
r

(
(
(
(11) 2
(
(
(
(

1) 10

2) 20

%17) solve(I1l/I2=r272/r1”2, 1I2)$ float(%):;
%07) [I2=0.5]

Comments on the codes:

(%15) Set the floating point precision to 5 and internal rational number print to false,
and assign values of /1, r, and r».
(%i7) Solve I;/I, = r22 / rl2 for I, and get the decimal value.

Problem 1.8 Show graphically that the wave y(x, ) = 2 sin(3x + 10¢) is propagating
in the negative x direction. Calculate the wave speed.

Solution

A way to determine the direction of wave propagation is by plotting wave profiles at
increasing consecutive times. A wave profile is a snapshot of the wave at a specific
time. From the profiles, we can determine whether the wave is propagating to the
positive or negative x direction.

For this problem, we plot wave profiles at time ¢ = 0, 0.1, and 0.2 s and labeled
the profiles as y1, y2, and y3:

y(x,t) = 2sin(3x + 10¢),
yl = 2sin(3x),
y2 =2sin(3x + 1),
y3 = 2sin(3x + 2).
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e Plot by wxMaxima:

(%$11) y(x,t):= 2*sin(3*x+10*t);

(%01) y(x,t):=2 51n(3*x+10*t)

(%$14) yl y(x,0); y2: y(%x,0.1); y3: y(x,0.2);

(y1) 2*Sln( X)

(y2) 2*sin(3*x+1.0)

(y3) 2*sin(3*x+2.0)

(%15) wxplot2d(lyl,y2,y31, [x,0,10], [y,-3,3], gridad,

[xlabel, "{/Helvetica-Italic x} (m)"], [ylabel,"{/Helvetica-Italic y} (m)"]);

T T T

< L . 2'sin(3%)
1 ~~_ | Direction of wave propagation 2‘sm|';:1+1 E;
-« 2sin{3"x+2.0) i
Y2 =~ N\ /N
y3 T~ I|I \I / \ \

¥ (m)

x (m)

Comments on the codes:

(%il) Define y(x, t).
(%i14) Assign yl, y2, and y3.
(%i15) Plot yl, y2, and y3 for 0 < x < 10.

It can be seen that profiles y1, y2, and y3 move in the negative x direction.
The speed of the wave is determined as follows. By comparing the wave and the

general wave equation, wave propagation constant k and angular frequency w can be
determined:

y(x,t) =2sin(3x + 10z),
y(x,t) = Asin(kx + wt),

k=30m",
w=10s"
The speed of the wave is
10 57!
v—g— > =33ms .
kK 30m!

13
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® An animation of the wave y(x, 1) = 2 sin(3x + 10¢) propagating to the left by
wxMaxima:

($11) fpprintprec:2;

(fpprintprec) 2

(%12) with slider draw(
t, makelist(i,i,0,3,0.1),
title=concat ("t = ",t," s"),
explicit (2*sin(3*x +10*t), x,0,10),
grid=true,
yrange=[-2.1,2.17,
xlabel="{/Helvetica-Italic x}
ylabel="{/Helvetica-Italic y}

t=0s

0,5{ IIII'l, Illll \I |l||| Illl

-0.5 \

y (m)
(=]

Comments on the codes:

To run the animation, copy the codes to the wxMaxima command window; press
<shift> and <enter> keys simultaneously to run the codes; right click the graphic
that appears and choose Start Animation.

Problem 1.9

(a) Plot wave profiles of

y(x,t) = 4e 3027

att =0 and r = 1.0 s. In which direction is the wave moving?
(b) Show that y(x, ¢) satisfies the wave equation.
(c) Calculate the wave speed.
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Solution

(a) Wave profiles are obtained by substituting values for time into the equation. We
labeled the profiles as y1 and y2,

att=0s, yl=y(x,0)=de
atr=1.0s, y2=ykx,1)= 46—3(x_2)2

e Wave profile plots by wxMaxima:

($11) y(x,t) = 4*exp(-3*(x-2*t)"2);
(%01) y(x,t):=4%exp ((-3)*(x-2*t)"2)
(%13) yl y(x O), y2: y(x,1);
(y1) M (=3*x"2)
(y2) 4*°/eA( 3*(x-2)"2)
(514) wxplot2d([yl,y2], [x,-2,6], [y,-1,5], grid2d,
[xlabel,"{/Helvetica-Italic x}(m)"], [ylabel,"{/Helvetica-Italic y} (m)"]);
5 : - - : - ey
. . . 4% (352
Direction of wave propagation  sseapear) ——
4l 1
______ y
i [ i \e——"T"¥ d
-2
= K- %
Eql 4
-
WL il
0
2 1 0 1 2 3 4 5 5

Comments on the codes:

(%il) Define y(x, 1).
(%i3) Assign yl and y2.
(%i4) Plotyl and y2 for —4 <x <4 m.

It can be seen that the wave is moving in the positive x direction. The wave is a
propagating pulse in the positive x direction.
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e Ananimationofthe pulse y(x, 1) = de 3¢~ )2 moving to the rightby wxMaxima:

(%1il) fpprintprec:2;

(fpprintprec) 2

(%¥12) with slider draw(
t, makelist(i,1,0,3,0.1),
title=concat ("t = ",t," s"),
explicit (4*exp (-3*% (x-2*t)"2), x,-2,6),
grid=true,
yrange=[-1,5],
xlabel="{/Helvetica-Italic x}
ylabel="{/Helvetica-Italic y}

(m) ",

(m) ™) ;

t=0s
5
= /
/
3t /
= [ s 5
E.z- / \
N / \
1h / \
U__// \\
1 'l A l L 1 1. 'l
2 1 0 1 2 3 4 5 6

Comments on the codes:

To run the animation, copy the codes to the wxMaxima command window; press
<shift> and <enter> keys simultaneously to run the codes; right click the graphic

that appears and choose Start Animation.

(b) The wave equation is

It must be shown that the expression,

y(x,t) = 4e—3-207

(1.10)

(1.11)

satisfies the wave equation. That is, showing that Eq. (1.11) satisfies Eq. (1.10).

Calculate the second partial derivative of y with respect to x,

dy

oo =40 6 = 20)] = =24 (x — 20)e
X
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82y

oo =2 [e07207 _6(x — 20)e 73072 (x — 21)]
X

— 24 [6—3()6—21‘)2 _ 6(x _ 2t)26_3(x_2t)2].

Calculate the second derivative of y with respect to ¢,

d

a—f = 4e73072 [6(x — 21)(=2)] = 48 (x — 20)e 22,
82 2 2
a—tf =48 [—2 072" 4 12(x — 20)e 0T (x — 21)]

= —96 [e 2O — 6(x — 21)2e 27,
Using these results and Eq. (1.10), we have

Bzy 82y

a2
FTEE T A

This means that (1.11) satisfies Eq. (1.10) with v = 4.

e wxMaxima codes:

(%$11) y(x,t) := 4*exp(-3*(x-2*t)"2);

($01) y(x,t):=4%exp((-3)*(x-2*t)"2)

(%$13) diff(y(x,t),x,1)$ radcan(%);

(%03) —(24*x-48*t) *%e” (=3*x"2+12*t*x-12*t"2)

(%$15) diff(y(x,t),x,2)$ radcan(®);

(%505) (144*x"2-576*t*x+576*t"2-24) *%e” (-3*x"2+12*t*x-12*t"2)
(%$17) diff(y(x,t),t,1)$ radcan(%);

(%07) (48*x-96*t) *%e” (=3*x"2+12*t*x-12*t"2)

(%$19) diff(y(x,t),t,2)$ radcan(%);

(%09) (576*x72-2304*t*x+2304*t"2-96) *$e” (-3*x"2+12*t*x-12*t"2)
(%$111) diff(y(x,t),t,2)/diff(y(x,t),%x,2)$ radcan(®);

(%011) 4

Comments on the codes:

(%i1) Define y(x, 7).

(%i13), (%15) Differentiate y(x, ) once and twice with respect to x and simplify.
(%i7), (%19) Differentiate y(x, ) once and twice with respect to ¢ and simplify.
(%il1) Calculate g%v / g% and simplify.

(c) The speed of the wave is

v? =4,
1

v=20ms .
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Alternative method: Compare (kx — wt) with (x — 2¢) in Eq. (1.11). We get
the propagation constant and angular frequency of the wave. The speed of the
wave is calculated as follows,

k=10m™"", w=20s",

Problem 1.10 You will learn later in Modern Physics or Quantum Mechanics that
the wave function,

Ip_ — Aei(kxfwt)
represents a particle moving in the positive x direction. Show that i satisfies the
wave equation.
Solution

We differentiate v twice with respect to x and with respect to ¢ and see if i satisfies
the wave equation:

2
% = —ia)Aei(kxfwt) _a w — _wZAei(kxfa)t)
8[ ? at2 .
2
% — ik Aeikx—wt) M — _J2 Al kx—on)
0x Tgx2 .

This means that

3%y _ (w>2821ﬂ _ v2821ﬂ
a2  \k/ ax2  ax?’
Indeed, v satisfies the wave equation.

e wxMaxima codes:

1) psi(x,t):= A*exp (%$i* (k*x-omega*t));
%0l) psi(x,t):=A*exp (%i* (k*x-omega*t))

2) expressionl: diff (psi(x,t),t,2);
xpressionl) -A*omega’2*%$e” ($i* (k*x-omega*t))
%$13) expression2: diff (psi(x,t),x,2);
expression2) -A*k"2*%e” (%$1i* (k*x-omega*t))
%i4) expressionl/expression2;

%04) omega’2/k"2

PR TR TS
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Comments on the codes:

(%0il) Define ¥ (x, t).
(%i2), (%i3) Calculate 32v//31> and 32/ /9x>.
(%id) Calculate 8%v/3£2/32/3x>.

1.3 Summary

® A one-dimensional wave propagating with speed v in the positive x direction is
represented by

y(x,t) = f(x —vr).

e Wave function of a one-dimensional harmonic wave moving to the right is
. 2m .
y(x,t) = Asin T(x —vt) = Asin(kx — wt),

where A is amplitude, A is wavelength, & is propagation constant or wavenumber,
and w is angular frequency. If T is the period and f is the frequency, then,

A
:—:)\‘,

v T f.

2
k=",

A

2 onf
w=—=27f.

T

e The wave function y(x, ) satisfies the linear wave equation,

3%y 1 8%y
axz 02 9r2’

where v is the speed of the wave.
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1.4 Exercises

Exercise 1.1

(a) Show that wave function

y =3 cos(2t + x)

satisfies the wave equation,
3%y 1 9%y
0x2 0?92

(b) What is the speed of the wave?
(c) In which direction is the wave traveling?
(Answer: (b) v =2.0ms!; (c) negative x direction)

Exercise 1.2 A metal string of length 14 m and mass 0.30 kg is fixed between two
nails. The tension in the string is 40 N. What is the speed of a pulse on this string?
(Answer: 43 ms™!)

Exercise 1.3 A wave traveling in one dimension is given by
y(x t) — 36—2(x+0.5t)2.

(a) Sketch the wave profilesatt =0 and t = 1.0s.
(b) In which direction is the wave moving?
(c) Show that y(x, ¢) satisfies the wave equation.

(Answer: (b) the negative x direction)

Exercise 1.4 A traveling wave in the positive x direction is given by

y = f(x—vp).

Using partial differentiation and the chain rule of calculus, show that y satisfies
the one-dimensional wave equation,
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Exercise 1.5 A transverse harmonic wave on a stretched string has a wavelength of
0.080 m, a frequency of 160 Hz, and an amplitude of 6.0 x 10~3 m. The mass per
unit length of the string is 2.0 x 10~* kg m~!. Calculate

(a) speed of the wave
(b) power transferred by the wave
(Answer: (a) 13 ms™!; (b) 4.7 x 1072 W)



Chapter 2 ®)
Sound Wave ek

Abstract This chapter solves problems on sound waves in air, their displacement,
and pressure waves. Speed of sound in various media, intensity and intensity level
of sound are considered. Doppler’s effects due to the relative motion of the sound
source and observer are also discussed. Both solutions by analysis and computer
calculation via wxMaxima are presented.

2.1 Basic Concepts and Formulae

(1) Sound wave is a longitudinal mechanical wave, moving through a compressible
medium. The speed of the wave depends on the compressibility and density of
the medium. The speed of sound wave v in a medium of compressibility B and

density p is,
B
v=_|—. (2.1)
P

The speed of sound in an ideal gas is,

RT
we [YP _ [YRT 2.2)
0 M

where y is the ratio of molar specific heats (molar specific heat at constant
pressure C,, divided by molar specific heat at constant volume Cy, thatis, y =
C,/Cy), p is the pressure, p is the density, T is the absolute temperature, M is
the molar mass of the gas, and R = 8.31 J mol~! K~! is the molar gas constant.
The ratio of molar specific heats y is called the adiabatic constant of a gas.

For monatomic gas y = 1.67, and for diatomic gas y = 1.40. For air, y =
1.40 and M = 28.8 x 1073 kg mol~.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 23
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2 Sound Wave

Speed of a longitudinal wave in a fluid is

, (2.3)

B
v=_|—
0

where B is the bulk modulus of the fluid and p is its density.
Speed of a longitudinal wave in a solid rod is

Y
v= | =, (2.4)
P

where Y is the Young modulus of the solid rod and p is its density.
Speed of a transverse wave on a string is

) ﬁ @)
u

where T is tension in the string and p is mass per unit length of the string.
The Average power of a transverse sinusoidal wave on a string is,

1
P= E,//JLT W’ A%, (2.6)

where w is the angular frequency and A is the amplitude of the wave.
For a harmonic sound wave, change of pressure from its equilibrium value is,

Ap = Ap,, sin(kx — wt), 2.7
where Ap,, is the pressure amplitude, k is the propagation constant, and w is
angular frequency.

Displacement of the air layer is,
s = 8, cos(kx — wt), (2.8)
where s,, is the displacement amplitude. Thus, the pressure wave has a phase

difference of 90° with displacement wave.
The pressure amplitude is given by

2 2
Apm = pVW Sy, = kpvs,, = T'OU Sm = 2TPVf Sy (2.9)

where p is the density of air, v is the speed of sound, k is the propagation
constant, A is the wavelength, and f is the frequency of sound.
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The intensity of harmonic sound wave, i.e. the sound power per unit area is

1 Apm)?
I = L p(ws,)te = L) (2.10)
2 2pv

The intensity level B of a sound with intensity 7 is defined as

1 1

Unit of B is decibel (dB). The sound intensity Iy = 107'> W m~2 is the
threshold of a human hearing a sound, that is, the lowest intensity human could
hear.

Doppler effect is the change in frequency of sound heard by an observer due to
relative motion between the sound source and the observer.

If the observer moves with a speed of v, and the sound source is at rest, the
frequency heard f~ is

/ o + v,
£ = (1 + %)f = (v—”>f 2.12)

v

where f is the frequency of sound from the source and v is the speed of sound
in air. The (+) sign applies if the observer is moving toward the source and the
(—) applies if the observer is moving away from the source.

If the sound source is moving with speed v, and the observer is at rest, the

frequency heard f~ is
, 1 v
f = (1 1)v>f= ( )f. (2.13)
+ m U+ Vs

The (-) sign applies if the sound source is moving toward the observer, while
the (+) sign applies if the sound source is moving away from the observer.

If both observer and sound source are moving, the frequency heard by the
observer [ is

v F v

= (viv")f, (2.14)

where v, is the speed of the observer, vy is the speed of the sound source, v is
the speed of sound in air, and f is the frequency of the sound source. For the
numerator, use the (+) sign if the observer is moving toward or the (—) sign if
the observer is moving away from the sound source. For the denominator, use
the (—) sign if the sound source is moving toward or the (+) sign if the sound
source is moving away from the observer.
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2.2 Problems and Solutions

Problem 2.1 A wire of length 40 cm has a mass of 1.0 g. The wire is stretched
between two nails such that the tension in the wire is 2500 N. What is the speed of
a transverse wave of the wire?

Solution

The mass per unit length of the wire is

m 10X 1073 kg

w=—

=— =2 -25%x10 kgm.
l 40 x 102 m

The speed of waves on the wire is, Eq. (2.5),

T 2500 N
v= [= = = 1000 ms~'.
" 2.5 x 1073 kg m~!

4 wxMaxima codes:

4) fpprintprec:5; m:1le-3; 1:40e-2; T:2500;
printprec) 5
0.001

5

) 0.0025

6) v: sqrt(T/mu);
1000.0

Comments on the codes:

(%i14) Set the floating point print precision to 5, and assign values of mass m, length
[, and tension 7.

(%15) Calculate mass per unit length p.

(%i6) Calculate the speed of the wave v.

Problem 2.2

(a) Given the bulk modulus of water is 2.1 x 10° N m~2, calculate the speed of
sound in water.

(b) The speed of sound in steel is 5.9 x 10° m s™! and the density of steel is 7.9 x
10° kg m. Calculate the bulk modulus of steel.
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Solution

(a) The speed of sound in water is, Eq. (2.3),

Buarer 2.1 x 10° Nm™ i
V= = = 1450 msS .
Puwater 1000 kg m—3

(b) The speed of sound in a material is, Eq. (2.3),

B
v=_[—.
P

The bulk modulus of steel is calculated as follows:

lgsteel
Usteel = ‘[ -
Psteel
B ) _ 3 2 3 3
steel = Usppe1Psteel = (5.9 x 107 m/s)“(7.9 x 10” kg/m?)
=28 x 10" Nm2.

4 wxMaxima codes:

%13) fpprintprec:5; B water:2.l1e9; rho water:1000;
fpprintprec) 5
B water) 2.1*1079

%16) v steel:5.9e3; rho steel:7.9e3;
v_steel) 5900.0

rho_steel) 7900.0
%17) B_steel: v_steel”2*rho_steel;

(
(
(
(
(
(v water) 1449.1
(
(
(
(
(B_steel) 2.75*10711

Comments on the codes:

(%i3) Set the floating point print precision to 5 and assign values of B,,ue, and
pwater-

(%i4) Calculate vyygrer-

(%16)  AsSign Ve and pgreer-

(%i17) Calculate By,

Problem 2.3 The density of helium gas at standard temperature and pressure is
0.179 kg m=3. Determine the speed of sound in the gas at that temperature and
pressure. What is the speed of sound in helium at 20°C? Assume helium is an ideal
gas. The Adiabatic constant of helium gas is y = 1.67.
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Solution

Speed of sound wave in an ideal gas is (Eq. 2.2)

_ B Jyp
v = - = B
P o
where B = yp is the gas bulk modulus, p its density, p is pressure, and y is the
adiabatic constant of the gas. For monatomic gas, y = 1.67; for diatomic gas, y =
1.4.

Helium gas is monatomic, thus, the speed of sound wave in helium gas at standard
temperature (0°C) and pressure (1.013 x 10° Pa) is, Eq. (2.2),

1.67(1.013 x 105 P
vo= |2 = (1.013 x . D 972 ms ), (2.15)
p 0.179 kg/m

where the standard pressure is p = 1.013 x 10° Paand y = 1.67 for helium gas. For
an ideal gas, pV = uRT, where p is the pressure of the gas, V is its volume, T is its
temperature, u is number of moles, and R is the universal gas constant. We have

yp _ vy WRT _ yuRT _ yRT

0 p V m M

9

where m is mass of the gas and M is its molar mass. Therefore, the speed of sound
in an ideal gas is, Eq. (2.2),

B yp [YRT
V= _—= _—= —_—
e \Vop M
This means that the speed of sound in an ideal gas is proportional to the square
root of the gas temperature, v ﬁ . We thus write

V23K
oo vERPR (2.16)

v J/Q20+273) K’

where vy and vy are speeds of sound wave in helium gas at 0°C and 20°C,
respectively. The speed of a sound wave in helium gas at 20°C is

V20 +273)K J20 +273)K
Voo = UOL =972 m/s)L = 1007 ms™".
273 K V273 K

Here, the speed of sound at 0°C in Eq. (2.15) is substituted in Eq. (2.16) to arrive at
the answer.
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4 wxMaxima codes:

fpprintprec:5; ratprint:false; gamma:1.67; p:1.013e5; rho:0.179;

fpprlntprec) 5
ratprint) false
gamma) 1.67

) 1.013*10"5

ho) 0.179

i6) v0: sqgrt(gamma*p/rho);
v0) 972.16

i8) solve (v0/v20 = sqrt(273)/sqrt(204273), v20)$ float (%) ;
08) [v20=1007.1]

(%
(
(
(
(p
(r
(%
(
(%
(
Comments on the codes:

(%15) Set the floating point print precision to 5 and internal rational number print
to false, and assign values of y, p, and p.

(%i16) Calculate vy.

(%i8) Solve v/ vy = /273 /+/20 + 273 for va.

Problem 2.4 Hydrogen gas consists of diatomic molecules with a relative molecular
mass of 2. Calculate the speed of sound in hydrogen gas at 27°C. Given that the
adiabatic constant of hydrogen gas is y = 1.40 and the universal gas constant is R
=8.31Jmol™ K.

Solution

The speed of sound in hydrogen gas at 27°C is, Eq. (2.2),

Yp YRT 1.4(8.31 I mol™! K™1)(27 4+ 273)K .
V= [— = = =132 ms
0 M 2.00 x 1073 kg/mol

4 wxMaxima codes:

%$15) fpprintprec:5; gamma:1.4; R:8.31; T:27+273; M:2e-3;

(

(fpprintprec) 5

(gamma) 1.4

(R) 8.31

(T) 300

(M) 0.002

(%$16) v: sqrt(gamma*R*T/M) ;
(v)

v 1321.0
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Comments on the codes:

(%15) Set the floating point print precision to 5 and assign values of y, R, T, and M.
(%i16) Calculate v.

Problem 2.5 The speed of sound in air at 0°C is 331 m s~!. What is the speed of
sound in air at 37°C?

Solution

The relation between the speed of sound in a gas, v, and the gas temperature, 7, is
(Eq.2.2)

v o VT

V37 (37 +273)K
vo | (0O+273)K°

The speed of sound in air at 37°C is

310 K 310K 1
V37 = Vg = (331 m/s),/ —— =353 ms .
273 K 273 K

4 wxMaxima codes:

‘We thus write

%i3) fpprintprec:5; ratprint:false; v0:331;
fpprintprec) 5

ratprint) false

v0) 331

%$15) solve(v37/v0 = sqrt((37+273)/273), v37)$ float(%);

(
(
(
(
(%15

(%05) [v37=352.72]

Comments on the codes:
(%i13) Set the floating point print precision to 5 and internal rational number print
to false, and assign the value of vy.

. vy [37+4273
(%i15) Solve = 575~ for vss.

Problem 2.6 The temperature of air is 10.0°C. The temperature of air then increases,
and the velocity of sound increases by 1%. Calculate the increase in temperature.



2.2 Problems and Solutions 31

Solution

The relationship between the speed of sound in air, v, and the temperature of air, 7,
is (Eq. 2.2)

v VT,
or

v:kﬁ,

where k is a constant. We write

Uy — V10 _J;_
V10 - 100’

where v, and vy are the speeds of sound at increased temperature and at 10°C
(283 K), respectively. Thus,

k(283 +6)'/2 —k(283)1/2 1
k(283)1/2 © 100’

where 6 is the increase in temperature. This equation is solved for the increase in

teniperature,
6 \? 1
+—) —1=—
( +283> 100

0 \ /2
1+ — =1.01
< + 283)

6 =5.7°C.

The air temperature is 10.0°C + 5.7°C = 15.7°C.

4 wxMaxima codes:

(%$12) fpprintprec:5; ratprint:false;

(fpprintprec) 5

(ratprint) false

(%$14) solve(((283+theta)”~0.5 - 28370.5)/28370.5 = 1/100, theta)$ float (%) ;
(%04) [theta=5.6883]

Comments on the codes:

(%i2) Set the floating point print precision to 5 and internal rational number print
to false.
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. 283+6)%5 —(283)°3
(%i4) Solve % = 100 for 6.

Problem 2.7 The maximum pressure variation of a sound wave is 30.0 Pa. The speed
of sound in air is 330 m s™! and the density of air is 1.22 kg m~. Calculate

(a) maximum displacement of the air layer if the frequency of the sound is 500 Hz.
(b) intensity of the sound.

Solution

(a) The relation between maximum pressure variation of sound wave, Ap,, (also
called pressure amplitude) and maximum displacement of the air layer, s, (also
called displacement amplitude), is, Eq. (2.9),

2 2t
Apym = kpv=s, = T,ov Sm = 27PVf Sy,

where £ is the propagation constant, p is the air density, v is the speed of sound, X is
the wavelength, and f is the frequency of sound. The maximum displacement of the
air layer (the displacement amplitude) is calculated as follows:

30 Pa = 27(1.22 kg m*)(330 m s71)(500 s™)s,,,
Sm=2.4x107° m.

(b) The intensity of sound is, Eq. (2.10),

(Apm) (30 Pa)®

=1.1Wm>
2pv 2(1 22 kg m—3)(330 m s~1)

4 wxMaxima codes:

6) fpprintprec:5; ratprint:false; deltapm:30; v:330; rho:1.22; £:500;

(%

(fpprlntprec) 5

(ratprint) false

(deltapm) 30

(v) 330

(rho) 1.22

(f) 500

(%$18) solve (deltapm=2*%pi*rho*v*f*sm, sm)$ float (%);
(%$08) [sm=2.3719*10"-5]

(%19) I: deltapm”2/(2*rho*v);
(1)

1.1177

Comments on the codes:

(%i16) Set the floating point print precision to 5 and internal rational number print
to false, and assign values of Ap,,, v, p, and f.
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(%i8) Solve Ap,, = 2mpvfs,, for s,,.
(%19) Calculate 1.

Problem 2.8 The intensity of a sound wave is 1.00 x 102 W m™2 and its frequency
is 600 Hz. What are the pressure amplitude and the displacement amplitude? The
speed of sound is 330 m s~!, and density of air is 1.22 kg m™3

Solution
The relationship between the intensity of sound, /, and pressure amplitude, Ap,,, is,

Eq. (2.10),

_ (Apw)?
2pv

3

where p is the density of air and v is the speed of sound in air. The pressure amplitude
is calculated as follows:

_ (Apw)®
© 2(1.22kgm=3)(330 ms~1)’
Apy =284 Nm™>

1.00 x 1072 W m™

The displacement amplitude is, Eq. (2.9),

Apm 2.84 Pa —6
Sm = = =1.87 x 10 m,
2rfov 2w (600 s~1)(1.22 kg m—3)(330 m s~ 1)

where f is the frequency of sound.

4 wxMaxima codes:

6) fpprintprec:5; ratprint:false; I:1le-2; £:600; v:330; rho:1.22;

(%

(fpprlntprec) 5

(ratprint) false

(1) 0.01

(f) 600

(v) 330

(rho) 1.22

($18) solve (I=deltapm”2/ (2*rho*v), deltapm)$ float(%);
(%08) [deltapm=-2.8376,deltapm=2.8376]

($19) deltapm: rhs(%[2]);

(deltapm) 2.8376

(%$111) sm: deltapm/ (2*%$pi*f*rho*v)$ float (%);
($011) 1.8696*10%-6

Comments on the codes:

(%16)  Set the floating point print precision to 5 and internal rational number print
to false, and assign values of 1, f, v, and p.
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(%i8)  Solve I = 42 for Ap,.
(%19)  Assign Ap,,.
(%i11) Calculate s,,.

Problem 2.9 An audio speaker emits sound at an intensity level of 70 dB. A lecturer
talks at an intensity level of 40 dB. Compare the sound intensity of the speaker to
that of the lecturer.

Solution

The definition of the intensity level 8 of a sound source with intensity 7 is, Eq. (2.11),

1
p=10 lg<m>

For the speaker and the lecturer we can write these two equations,

Lpeater
70 =10 10g10(1()+{‘;\];1112)’

h cturer
40 = 10 10g10<m>.

The ratio of the sound intensity of the speaker to that of the lecturer is calculated
as follows:

I& eaker Il rer
70 —40 =10 loglo(m) - 10 IOglo(m>

I a T
= 1010g10<—5pe ke ),

lecturer

IS eaker
Dspeaker_ 1000.

I)ecturer

4 wxMaxima codes:

%i2) fpprintprec:5; ratprint:false;

[Ilecturer=1.0*10"-8]
ratio: $05/%07;
io) [Ispeaker/Ilecturer=1000.0]

(

(fpprintprec) 5

(ratprint) false

(%13) loglO(x) := log(x)/log(1l0);
(%0 10ogl0 (x) :=log(x) /log (10)
(%1 solve (70=10*10gl0 (Ispeaker/le-12), Ispeaker)$ float (%);
(%0 [Ispeaker=1.0*%10"-5]

(%1

(

(

(

3)
5)
5)
i7) solve(40=10*1ogl0 (Ilecturer/le-12), Ilecturer)$ float(%);
7)
8)
ti
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Comments on the codes:

(%i2) Set the floating point print precision to 5 and internal rational number
print to false.
(%i13) In wxMaxima, the built-in function of base e logarithm of x is log(x).

There is no built-in function for base 10 logarithm of x. We define
base 10 logarithm of x by log10(x): = log(x)/log(10) which means
log,y(x) = log,(x)/log,(10).

(%i5), (%i7) Solve 70 = 10  log,g(Lpeaker/10713) and 40 =
10 logl()(llecturer/lo_lz) for Ispeaker and Ilecturer’ l”eSPeCtiVely-
(%i18) Calculate ratio I geaker/I ecrurer-

Problem 2.10 A sound of intensity 1.20 W m™2 hurts the ears. What is the intensity
level?

Solution

The intensity level 8 of the sound in dB is, Eq. (2.11),

I 12Wm™
/3 =10 loglo W =10 loglo W =121 dB.

Sound with an intensity level of 121 dB hurts the ears.

4 wxMaxima codes:

%$i3) fpprintprec:5; loglO(x):=log(x)/log(1l0); I:1.2;

fpprintprec) 5
%02) logl0(x):=log(x)/log(10)

o

(

(

(

(I) 1.2
(%15) beta: 10*1logl0(I/le-12); float(%);
(
(

1
beta) 278.13/1og(10)
%$05) 120.79

Comments on the codes:

(%3) Set the floating point print precision to 5, define logo(x), and assign the value
of 1.
(%i15) Calculate B.

Problem 2.11 A source emits sound uniformly in all directions. At a distance of
4.0 m from the source, the sound intensity level is 90 dB.

(a) Calculate the sound intensity at the point.
(b) At which point is the intensity level 70 dB?
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r4=4.0m
<-->
A B
source

Fig. 2.1 Sound intensity and intensity level, Problem 2.11

Solution
(a) Fig. 2.1 shows the sound source and points in question.

Sound intensity level B (in dB) at a point with intensity / is defined as, Eq. (2.11),

I 1
g =10 10g10<1_0> =10 lo&D(W)’

where Iy = 10712 W m™2 is the reference intensity.
For point A, we write

Iy
90 =10 loglO W 5

where [ is the sound intensity at point A. The sound intensity at point A is

I, =10 x 10712 W m™?
=1.0x 107 Wm™2.

4 wxMaxima codes:

i3) fpprintprec:5; ratprint:false; loglO(x):=log(x)/log(10);
pprintprec) 5
atprint) false
03) logl0(x):=log(x)/log(10)
i5) solve(90=10*1logl0 (IA/le-12), IA)S$ float(%);
%05) [IA=0.001]

Comments on the codes:

(%i13) Set the floating point print precision to 5 and internal rational number print
to false, and define log;(x).
(%i5) Solve 90 = 10 log,o(14/107'2) for I,.
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(b) Sound intensity level at point A is

I P
90 =10 logIO I_O =10 loglo m N
A

where P is the power of the sound source and 4773 is the area of the surface of a
sphere of radius r4.
The sound intensity level at point B is

Ip P
70 =10 10g10 I_O =10 10g10 m s
B

where 4713 is the area of the surface of a sphere of radius r5. From the two equations,

2

r rp rp
90 —70 =10 1 21 =201 —=1=201 — ).
0g10<r§> 0g10<rA> 0g10<4'0 m)

Thus, the distance at which the sound intensity level is 70 dB is

rg =40m.
4 wxMaxima codes:

i3) fpprintprec:5; ratprint:false; 1loglO(x):=log(x)/log(10);
fpprintprec) 5

ratprint) false

03) logl0(x):=log(x)/log(10)

i5) rA:4; I0:1le-12;

A) 4

0) 10.0*107-13

i7) solve(90=10*1ogl0 (P/ (4*%pi*rA~2*I0)), P)$ float(%);
o7) [P=0.20106

18) P: rhs(%[1]1);

) 0.20106

110) solve(70=10*1ogl0 (P/ (4*%pi*rB~2*I0)), rB)$ float(%);
010) [rB=-40.0,rB=40.0]

Comments on the codes:

(%i13)  Set the floating point print precision to 5 and internal rational number print
to false, and define log;o(x).
(%15)  Assign values of r4 and I.

(%i7)  Solve 90 = 10 1og10(ﬁ) for P.
A

(%18)  Assign value of P.

(%i10) Solve 70 = 10 1oglo(ﬁ) for rz.
B
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Vyan observer

>~ f DR

Fig. 2.2 A van approaching and leaving an observer, Problem 2.12

Problem 2.12 A van sounds its siren as it approaches and leaves a stationary
observer. On approach, the observer hears a sound of frequency 219 Hz. On leaving,
the observer hears a sound of frequency 184 Hz. The speed of sound in airis 340 ms™".
Determine the speed of the van and the frequency of the siren.

Solution

Figure 2.2 shows the van approaching and leaving the observer. The speed of the van
18 Vyan.
The frequency of sound heard by the observer as the van approaches him is,

Eq. (2.13),
v
fapproach = (ﬁ) fy
van

where v,,,, v, and f are the speed of the van, speed of sound, and frequency of the
siren, respectively.
The frequency of sound heard by the observer as the van leaves him is, Eq. (2.13),

v
fleaue = (m) f

Substituting known values in both equations gives

340 -1
29Hz = (B8 )
340 m s~ — vy

184 H 340 m s~! f
z7=|———+ .
340 m s~! + vyan
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The speed of the van and frequency of the siren are obtained by solving both
equations for v,,, and f,

Vypan = 29.5 m s,

f =200 Hz.

4 wxMaxima codes:

2) fpprintprec:5; ratprint:false;

(%

( pprlntprec) 5

(ratprlnt) false

($14) solve([219=340/(340-vvan)*f,184=340/ (340+vvan)*f], [vvan,f])$
float( ) 8

(%04) [[vvan=29.529,£=199.98]]

Comments on the codes:

(%i2) Set the floating point print precision to 5 and internal rational number print
to false.

(%i4) Solve 219 = (5320 ) f and 184 = (522 ) f for v,y and .

Problem 2.13 A bird flies away from a boy toward a cliff at a speed of 15.0 m s~!
The bird emits sound of frequency 800 Hz, as illustrated in Fig. 2.3.

(a) What is the sound frequency heard by the boy for sound coming directly from
the bird?

(b) What is the sound frequency heard by the boy from the echo reflected by the
cliff to the boy? The speed of sound in air is 340 m s~/

boy bird cliff
vp=150ms"!

g

Fig. 2.3 A bird flying away from a boy toward a cliff, Problem 2.13
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Solution

(a) Frequency of sound heard by the boy for the sound coming directly from the
bird is, Eq. (2.13),

f L 340m st (800 Hz) = 766 H
ol = — 7) = z.
Pyt =\ V¥ vpira 340 m s—! + 15.0 m s—!

Here, v is speed of sound, vy;y is speed of the bird, and f is frequency of sound
emitted by the bird.

(b) Sound that hits the cliff is reflected without any frequency change, as such; the
boy will hear the same frequency as any person stationed at the cliff. Therefore,
for the sound reflected from the cliff, the boy will hear the sound of frequency,
Eq. (2.13),

v 340 m s}
Sroy2 = <—> f= ( s—‘) (800 Hz) = 837 Hz.

UV — Upird 340ms~! —15.0m

4 wxMaxima codes:

5) fpprintprec:5; ratprint:false; v:340; vbird:15; £:800;

fpprlntprec) 5
ratprint) false

) 340
vbird) 15

800

i7) fboyl: v/ (v+vbird)*f$ float (%);
7) 766.2
i9) fboy2: v/ (v-vbird)*f$ float (%)
9)

(%
(
(
(v
(
(£
(%
(%
(%
(% 836.92

Comments on the codes:

(%15) Set the floating point print precision to 5 and internal rational number
print to false, and assign values of v, v;4, and f.
(%i7), (%19) Calculate fpoy1 and fpoy0.

Problem 2.14 A train approaches, goes through, and leaves a tunnel of a hill at a
speed of 30.0 ms~!. It sounds its siren with a frequency of 1000 Hz when it approaches
and leaves the tunnel. Calculate

(a) the sound frequency heard by the train driver as the train approaches the tunnel,
for the sound reflected by the hill.

(b) the sound frequency heard by the train driver as the train leaves the tunnel, for
the sound reflected by the hill. The speed of sound in air is 330 m s~
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Vsource = 30.0 m 87l

—1
Vdriver =30.0 m s _
rver V'source =30.0 m's !

E— T “«— o
E train : tunnel apparent source
1

Fig. 2.4 A train approaching a tunnel in a hill, Problem 2.14

Solution
(a) Fig. 2.4 shows the train approaching the tunnel.

The speed of the observer (driver) v, and the sound source vy, is the speed
of the train. The sound emitted by the siren goes toward the cliff, gets reflected, and
goes back to the train. Thus, there is an apparent sound source moving at the speed
of v’ spurce = 30.0 m s~! toward the driver.

Therefore, the sound frequency heard by the driver is, Eq. (2.14),

v—/ 330 ms~! —30.0 m s™!

source

330m s~ +30.0m s
fr:<%)f:( ms_+0oms )(1000Hz):1200HZ.

where v is the speed of sound in air and f is the frequency of the siren.

4 wxMaxima codes:

(%$15) fpprintprec:5; v:330; vdriver:30; vsourceprime:30; £:1000;
(fpprintprec) 5

(v) 330

(vdriver) 30

(vsourceprime) 30

(f) 1000

(%16) fprime: (v+vdriver)/ (v-vsourceprime)*f;

(

fprime) 1200

Comments on the codes:

(%15) Set the floating point print precision to 5 and assign values of v, Vgyiver, V sources
and f.
(%i6) Calculate 1.

(b) Fig. 2.5 shows the train leaving the tunnel.

In this case, there is an apparent sound source moving at a speed of v’syyee =
30.0 m s~! away from the train. Thus, the sound frequency heard by the driver is,
Eq. (2.14),
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_ —1
Vsource =30.0 m s

—1
Vdriver = 30.0 m s
Visource =30.0 m s~ driver

“«—e T/ ,“ —_—
apparent source tunnel : train m
I

Fig. 2.5 A train leaving a tunnel in a hill, Problem 2.14

f/ VU — Udriver f 330 m S71 —300m S71 (1000 H ) 833 H.
_ — 7)) = Z.
v+ vaaurce 330 m S_l + 30.0m S_l

4 wxMaxima codes:

(%$15) fpprintprec:5; v:330; vdriver:30; vsourceprime:30; £:1000;
(fpprintprec) 5

(v) 330

(vdriver) 30

(vsourceprime) 30

(f) 1000

($17) fprime: (v-vdriver)/ (v+vsourceprime)*f$ float (%);

(%$07) 833.33

Comments on the codes:

(%15) Set the floating point print precision to 5 and assign values of v, Vgyiver, V sources
and f.
(%i16) Calculate 1.

2.3 Summary

e Sound waves are longitudinal waves, and the disturbances are the displacements
of air layer or variations in air pressure.
e The intensity level 8 of a sound with intensity / is defined as

1
ﬂ =10 10g10<w>.

Unit of B is decibel (dB). The sound intensity of 10~'> W m~? is the threshold

of a human hearing a sound, that is, the lowest intensity a human could hear.
e Doppler effect: When the observer and sound source are in relative motion in a
medium where the speed of sound is v, the frequency heard by the observer f’ is
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, vEv,
= /s
v F v
where v, is the speed of the observer and v; is the speed of the sound source. For
the numerator, use the (+) sign if the observer is moving toward or the (—) sign if
the observer is moving away from the sound source. For the denominator, use the

(—) sign if the sound source is moving toward or the (+) sign if the sound source
is moving away from the observer.

2.4 Exercises

Exercise 2.1 Calculate the speed of sound in oxygen gas at 27°C. Molecular weight
of oxygen molecules is 32 kg kmol~!. Molar gas constant is R = 8.31 J K~! mol~!.
(Answer: 330 ms™!)

Exercise 2.2 A car at a speed of 27 m s~! is moving toward a stationary siren, and

the driver hears a sound of frequency 400 Hz, as illustrated in Fig. 2.6. The speed of
sound in air is 330 m s~!. What is the frequency of sound emitted by the siren?
(Answer: 370 Hz)

Exercise 2.3 An ambulance with its siren on is speeding at 120 km h™!, as shown in
Fig. 2.7. A driver of a car moving at a speed of 90 km h™! in front of the ambulance
hears the siren sound of 600 Hz. The speed of sound in air is 330 m s~!. What is the
frequency of sound emitted by the siren?

(Answer: 580 Hz)

-1
27ms
o N “yp

Fig. 2.6 A car moving toward a stationary siren, Exercise 2.2

120kmh™" 90 km h!
—_— —_—

Fig. 2.7 An ambulance speeds toward a moving car, Exercise 2.3
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Exercise 2.4

(a) Calculate the intensity of a 50 dB sound of an electric speaker.
(b) The speaker has an area of 120 cm?. What is the acoustic power output of the
speaker?

(Answer: (a) 1.0 x 1077 Wm™2; (b) 1.2 x 1072 W)

Exercise 2.5 What is the displacement amplitude of the air layer of a 50 dB,
800 Hzsound wave? The speed of sound in air is 330 m s~! and the density of
air is 1.29 kg m=3.

(Answer: 4.3 x 10~ m)



Chapter 3 ®)
Superposition and Stationary Wave ez

Abstract Problems on superposition of waves and stationary waves are solved in
this chapter. These include stationary waves in air column and string. Nodes and
antinodes of the stationary waves are identified. Animations of these stationary waves
are presented for insight into the physics. Formation of sound beats is discussed. Both
analytical and computer solutions are presented.

3.1 Basic Concepts and Formulae

(1) The superposition of two waves with the same amplitude and frequency will
give aresultant wave that has the same frequency and the amplitude that depends
on phase difference ¢ of the two waves. If the waves are

y1 = Asin(kx — wt), (3.1)
y2 = Asin(kx — ot — @), (3.2)
then the resultant wave is
¢ . ¢
y=y1+y;=2A cosz sin(kx — wt — 5). (3.3)

The amplitude of the resultant wave is 2A cos(¢/2) that depends on phase
difference ¢. Constructive interference occurs if the two waves are in phase,
that is, when ¢ = 0, 27, 47, ... Destructive interference occurs if the two waves
differ in phase by 180° or & rad, that is, when ¢ = &, 37, 57, ...

(2) A stationary wave is formed from the superposition of two harmonic waves
having the same frequency, amplitude, and wavelength and moving in opposite
directions. For example, a stationary wave formed from a superposition of

y1 = Asin(kx — wt), 3.4)
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 45

W. M. S. Wan Hassan et al., Physics—Problems, Solutions, and Computer Calculations,
https://doi.org/10.1007/978-3-031-43165-4_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43165-4_3&domain=pdf
https://doi.org/10.1007/978-3-031-43165-4_3

46

3

“

&)

3 Superposition and Stationary Wave
v, = Asin(kx + wt), (3.5)

is,
y =y + y, =2A sinkx cos wt. (3.6)

The amplitude of the stationary wave is 2A sin kx. This means that the ampli-
tude varies with position x. Points at which the amplitudes are at maxima (called
niw

antinodes)arex = 5 =n % (n are odd numbers). Points at which the amplitudes
nmw

are zero (called nodes) are x = == n% (n are integers).

Stationary waves could be found in string, air column, metal rod, etc.

(a) Stretched string is of length L with the two ends fixed. Natural frequencies

are
n |F
fo=—.—, n=1,2,3,... (3.7)
ZLV;,L

where F is tension in the string and w is mass per unit length of the string.
Natural frequencies form harmonic series, that is, f1, 2 f1, 3 f1, ..
(b) Air column in a pipe with open ends. Natural frequencies are

fn:n%, n=1,23... (3.8)

where v is speed of sound in air and L is length of the pipe.
(c) Air column in a pipe with one end closed. Natural frequencies are

fn:n%, n=1,3,5,... (3.9)

where v is speed of sound in air and L is length of the pipe.

An oscillating system is resonant with a driving force when the frequency of
the driving force is the same as natural frequency of the oscillating system. At
resonance, the amplitude of the oscillating system is very big.

Beats are formed from the superposition of two waves with a small frequency
difference, moving in the same direction. For sound waves, they are periodic
loud and silent sound as time passes. This means that beats are wave interference
in time. If the waves are

y1 = A cos 27 fit, (3.10)
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Yo = A cos 21 fot, (3.11)

then the superposition of the waves is

y = y1 + y2 = 24 cos 2n<f1 ; fz)r cos 27r<f1 —;ﬁ)t. (3.12)

Frequency of the beat is

J1—= [, (3.13)

because Icos 2 ((f1 — f2)/2)l = 1 atarate of f| —f». When Icos 2 (( f1 — f2)/
2)I = 1 the sound is loud and when Icos 27 (( f1 — f2)/2)l = O there is silence.

(6) Any periodic wave can be represented by a combination of sinusoidal waves
forming a harmonic series. This is called Fourier synthesis.

3.2 Problems and Solutions

Problem 3.1 Two harmonic waves are given as

y1 = 5sin[w(4x — 1200¢)],

y2 = Ssin[m (4x — 1200 — 0.25)],

where x, y, and y, are in meters and 7 in seconds. The two waves are superposed.

(a) Calculate the amplitude and frequency of the resultant wave y.
(b) Atx =0m, ploty, y,, and y against ¢ for 0 < ¢ < 0.005 s.

Solution

(a) The resultant wave is obtained by adding the two waves,

y=yi+»m
= Ssin[zw(4x — 1200¢)] + 5 sin[w (4x — 12007 — 0.25)]
= S5sin(4nx — 12007t) + Ssin(dwx — 1200wt — 0.257)
= 5 [sin(4wx — 12007¢t) + sin(4mrx — 12007t — 0.257)]
=5[2sin(dwx — 1200t — 0.1257)c0s(0.1257)]
= 10 cos(0.1257) sin(4wrx — 12007t — 0.1257)
= 9.24sin(4rx — 1200t — 0.1257).
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Trigonometric identity sin6 + sin¢ = 2sin(“32) cos(%5%) is used in the
calculation, see Appendix D.
Comparing the resultant wave and a general wave, we have

9.24 sin(4wrx — 1200t — 0.1257) = Asin(kx — wt + ¢),
A =9.24,

Therefore, the amplitude of the resultant wave is 9.24 m.
Comparing the resultant wave and a general wave, we have

9.24 sin(4wx — 1200t — 0.1257) = Asin(kx — wt + ¢),

o =2rf =12007.
The frequency of the resultant wave is

w 12007
f = — =

= 600 Hz.
2 2

4 wxMaxima codes:

(%1i1) fpprintprec:5;

(fpprintprec) 5

($12) amplitude:float (10*cos (0.125*%pi)) ;
(amplitude) 9.2388

($13) omega:1200*%pi;

(

(

(

Hh
Py P

mega) 1200*%pi
4) solve (omega=2*%pi*f, f);
4) [£=600]

Comments on the codes:

(%il) Set the floating point print precision to 5.
(%i2) Calculate the amplitude.

(%i3) Assign w.

(%i4) Solve w= 2xf for f.

(b) To plot curves of y;, y,, and y against ¢, we set x = 0 m, define y; and y»,
calculate y, and plot the three curves against time.

4 wxMaxima codes:
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(%11) x:0;

(x) 0

($12) yl: 5*sin (%pi* (4*x-1200*t));

(y1l) -5*sin (1200*%pi*t)

($13) y2: 5*sin(%pi* (4*x-1200*t-0.25));

(y2) 5*sin ($pi* (-1200*t-0.25))

(%$14) y: yl+y2;

(y) 5*sin (%pi* (-1200*t-0.25))-5*sin (1200*%pi*t)

(%$15) wxplot2d([yl,y2,y], [t,0,0.005], grid2d,

[xlabel, "{/Helvetica-Italic t} (s)"], [ylabel,"{/Helvetica-Italic y} (m)"]);

10 T T T T T

-5*sin(1200"%pi"t) ~——
8k S*sin(%pi"((-1200"1)-0.25)) ———
5*sin{%p*{{-12007-0.25)}-5"sin{ 1200 %pm 1)

¥ (m)

10 1 | 1 1 1 L L L 1
0 00005 0.001 00015 0.002 0.0025 0.003 00035 0.004 00045 0005

tis)
Comments on the codes:
(%i1) Assign x = 0.
(%i2), (%i3) Assign y; and y;.
(%14) Calculate y.
(%i15) Plot y;, y,, and y for 0 < ¢ < 0.005 s.

Problem 3.2 A harmonic wave is described by,
y1 = 8sin(0.2rx—16071),

where y; and x are in meters and ¢ in seconds. Find an expression for wave y, having
the same frequency, amplitude, and wavelength as y; that will give a resultant wave
with an amplitude of 8+/3 m when added with y;.

Solution

Let the two waves be

y1 = Asin(kx — wt),
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v, = Asin(kx — wt — ¢).

The resultant wave is

y=yi+y»= <2A cos%) sin(kx — ot — %)

We have used the trigonometry identity sin o + sin 8 = 2 sin # cos(”%) to
arrive at the result; see Appendix D. The amplitude of the resultant wave is

2A cos% =16 cos% = 83.

This means that

¢ V3
COS— = —,
2 2
¢_n
26’
o=
=3

The expression for wave y, is
. i
yy = 851n(0.271x — 16071 — §),

because

y =y + y; = 8sin(kx — wt) +8sin<kx — wt — %)

= (16 cosf) sin(kx — wt — q_&)
2 2

. T
= 8«/§s1n(0.271x — 16071 — g)
= 13.95in(0.628x — 5037 — 0.524).

Problem 3.3 A stationary wave is formed from the superposition of two waves,

y1 = 4sin(3x—21),

v, = 4sin(3x + 2t),

where x and y are in centimeters and ¢ in seconds. Find,
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(a) maximum displacement at x = 2.3 cm
(b) locations of nodes and antinodes.

Solution

(a) By adding or superposing both waves, we get the resultant wave,

y=yir+»
=4 sin (3x — 2t) + 4 sin (3x + 2t)
= 8 sin3x cos 2t.

Here, the use of trigonometry identity sin 6 +sin ¢ = 2sin (52) cos (%52)
is made in the addition; see Appendix D. The wave is a stationary wave with
amplitude of 8.0 cm. Maximum displacement at x = 2.3 cm is calculated as
follows:

max =8 sin3
y S1n 5x Y =23
= 8 sin (6.9)

=4.6 cm.

Note that the maximum value of cos 2¢ is 1.

4 wxMaxima codes:

(%il) fpprintprec:5;

(fpprintprec) 5)

(%$13) yl: 4*sin(3*x-2*t); y2: 4*sin(3*x+2*t);
(yl) 4*sin(3*x-2*t)

(y2) 4*sin(3*x+2*t)

(%$16) y: yl+y2$ trigexpand($%$)$ trigsimp (%)
(%06) 8*cos (2*t) *sin (3*x)

(%17) x: 2.3;

(x) 2.3

(%$18) y: 8*sin(3*x);

(y) 4.6275

Comments on the codes:

(%il) Set the floating point print precision to 5.
(%13) Define y; and y».
(%16) Calculate y and simplify.

(%i17), (%18) Assign value of x and calculate y.

To plot the stationary wave y = 8 sin 3x cos 2¢, choose time | = 0, t, = 7/8,
t3 =ml4, 1ty =37m/8, ts = /2 s, and plot y against x for each 7. We labelled the
CUIVES a8 Yy, Vb, Ye» Yd» and y,.
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4 wxMaxima codes:

(%16) fpprintprec:5; t1:0; t2:float(%pi/8); t3:float(2*%pi/8);
td:float (3*%pi/8); t5:float(4*%pi/8);

(fpprintprec) 5

1) 0

2) 0.3927

3) 0.7854

4) 1.1781

5) 1.5708

i7) ya: 8*cos (2*tl)*sin(3*x);
a) 8*sin(3*x)

i8) yb: 8*cos (2*t2) *sin(3*x);
D) 5.6569*sin (3*x)
i9
c)
il
d)
il
e)
il

o\Oﬁ'ﬁ'ﬁ‘r'f

o i

o° =

) yc: 8%*cos (2*t3) *sin(3*x);
4.8986*10"-16*sin (3*x)
0) yd: 8*cos(2*t4d) *sin(3*x) ;
-5.6569*sin (3*x)
1) ye: 8*cos(2*t5) *sin(3*x) ;
-8.0*sin (3*x)
2) wxplot2d([ya,yb,yc,yd,vel, [x,0,%pi], grid2d, [xlabel,"{/Helvetica-
talic x} (cm) "], [ylabel,"{/Helvetica-Italic y} (cm)"]);

0\0 = 0\0 <

ot &g

(t
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
I

B T T T
8 gin{3"x
5 6569 sin{3"x)
ya-_——é' 4 8986e-16"sin{3% 1
-5 65p95in(3* K]\
4 ‘
Vb ——~
2
Ye _—--EJ:'.—D_
.
yio__ 2
4
Ye——n_’
&
-8

Comments on the codes:

(%16) Set the floating point print precision to 5 and
assign values of 7, 15, t3, 14, and ts.

(%17), (%18), (%19), (%110), Assign y,, Y, Ve, Ya, and ye.

(%il1)

(%i12) Plot y4, vb, Ve, Ya, and y, for 0 < x < 7 cm.



3.2 Problems and Solutions 53

4 Animation of the stationary wave, y = 8 sin 3x cos 2¢, by wxMaxima:

(%il) fpprintprec:2;

(fpprintprec) 2

(%¥12) with slider draw(
t, makelist(i,1i,0,3,0.1),
title=concat("t = ",t," s"),
explicit (8*sin(3*x)*cos(2*t),x,0,%pi),
grid=true,
yrange=[-9,9],
xlabel="{/Helvetica-Italic x} (cm)",
ylabel="{/Helvetica-Italic y} (cm)");

t=0s
8 7 —~
o N .
al \ / \
\
21/ i
Bl \ / \
So0f \ /
a A /
= \'\ /
i N\ /
6L /
'} \h_/
0 0.5 1 1.5 2 2.5 3
x (cm)

Comment on the codes:

To run the animation, copy the codes to the wxMaxima command window;
press <shift> and <enter> keys simultaneously to run the codes; right click the
graphic that appears and choose Start Animation.

(b) Nodes are formed at points that satisfy

sin3x =0,

or
3x=nm, n=0,1,2,3,...

This means that, to have sin 3x = 0, 3x must be zero or a multiple of 7. The
nodes are at

x= n(%) em=0,1.05,2.09,3.14cm, ... n=0,1,2,3,...
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Antinodes are formed at points that satisfy

sin3x =1,

or,
3x=m(%), m=135,...

This means that, to have sin 3x = 1, 3x must be an odd multiple of 7z/2. The
antinodes are at

x :m(%) em=052,1.57.2.62cm, ... m=1,3.5,...

Problem 3.4 An organ pipe 3.00 m long is closed at one end and opened at the other.
Air column in the pipe vibrates and forms stationary waves. Obtain the first three
harmonics. The speed of sound in air is 330 m s~

Solution

Figure 3.1a shows the stationary wave of fundamental frequency in the pipe.
The stationary wave is 1/4 of the complete wave occupying the pipe length L. We
write

A

=1L,

4
Fig. 3.1 a Fundamental (a)
frequency, b first overtone, <
and ¢ second overtone of
stationary sound wave ofa o __ _ _ _ _ _ A
pipe closed at one end, < L=2/4 >
Problem 3.4

D — L=34/4 ——=———~ >

O O >
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A=4L.

The fundamental frequency or frequency of the first harmonic is

_ v 3B0ms s

v
fo=5=a~ 4(3.00 m)

Next, the first overtone or the second harmonic is formed by 3/4 of the complete
wave occupying length L, as shown in Fig. 3.1b. We write

3A
_ = l”
4
4L
A= —.
3

The frequency of the first overtone or the second harmonic is

v 3v 3330 m/s)

fi=1=

= Y 8 5Hz=3f,.
A 4L 4(3.00 m)

Lastly, the second overtone or the third harmonic is formed by 5/4 of the complete
wave occupying pipe length L, as in Fig. 3.1c. We write

5h
4 - 9
AL
A= —.
5

The frequency of the second overtone or the third harmonic is

v Sv _ 5(330 m/s)

fr=1=

2V UMY 38 H = 5.
A 4L T 4(3.00m) 2= 35/

4 wxMaxima codes:

(%13) fpprintprec:5; v:330; L:3;
(fpprintprec) 5

(v) 330

(L) 3

(%1i4) £0: float(v/ (4*L));

(£0) 27.5

(%i5) fl: float (3*v/(4*L));

(f1) 82.5

(%$16) f2: float(5*v/(4*L));

(f2) 137.5
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Comments on the codes:

(%13) Set the floating point print precision to 5 and assign values of
vand L.
(%i4), (%15), (%16) Calculate fo, f1, and f.

4 Animation of the vibrating air column of fundamental frequency (first harmonic):

(%11) with _slider draw(
t, makelist(i,i,0,2*%pi,0.5),
explicit(sin(2*%pi*x/12) *cos(t),x,0,3),
grid=true,
yrange=[-4,4],
xlabel="{/Helvetica-Italic x} (m)",
ylabel="{/Helvetica-Italic y} (arbitrary)");

y (arbitrary)
: o
T
'\
]

x (m)

4 Animation of the vibrating air column of first overtone (second harmonic):

(%11) with_slider_draw(
t, makelist(i,i,0,2*%pi,0.5),
explicit(sin(2*%$pi*x/4) *cos(t),x,0,3),
grid=true,
yrange=[-4,4],
xlabel="{/Helvetica-Italic x} (m)",
ylabel="{/Helvetica-Italic y} (arbitrary)"):;
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y (arbitrary)
. o

4 Animation of the vibrating air column of second overtone (third harmonic):

(%11) with_slider draw(

x (m)

t, makelist(i,i,0,2*%pi,0.5),
explicit (sin(2*%pi*x/(12/5)) *cos(t),x,0,3),

grid=true,
yrange=[-4,4],

xlabel="{/Helvetica-Italic x} (m)",
ylabel="{/Helvetica-Italic y} (arbitrary)");

y (arbitrary)
(-
\'

Comment on the codes:

x (m)

57

To run any of the animations, copy the codes to the wxMaxima command window;
press <shift> and <enter> keys simultaneously to run the codes; right-click the
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graphic that appears and choose Start Animation. The y-axis represents the longi-
tudinal displacement of the air layer, while the x-axis is the distance along the

pipe.

Problem 3.5 Air column in an open end pipe 3.00 m long vibrates and forms
stationary sound waves. Determine the first three harmonics of the sound. The speed
of sound in air is 330 m s".

Solution

Figure 3.2a shows the stationary wave of the fundamental frequency in the pipe.
There are two antinodes and one node. This stationary wave is 1/2 of the complete
wave occupying length L. We write

> N>
I

L 9
2L.
The frequency of the first harmonic (fundamental frequency) is

v v 330 m/s

fo=7 =

— =" _550Hz
A 2L 2(3.00 m)

The second harmonic is shown in Fig. 3.2b. The full wave occupies the length L,
SO we write

A=L.
The frequency of the second harmonic (first overtone) is

Fig. 3.2 a Fundamental (a)
frequency, b first overtone, ><

and ¢ second overtone of

stationary sound wave of an <———————- L=AR ———————= >
opened end pipe, Problem
35

< ________ L = /1 ________ >
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v v 330m/s

f1:—=—_—=110HZ=2f0

AL 3.00 m

59

The third harmonic is shown in Fig. 3.2c. Here, 3/2 of the full wave occupies the

pipe length L. This means that

3
2_ ’
2L
A= —.
3

The frequency of the third harmonic (second overtone) is

v 3v 3330 m/s)

f2=—:—_—:]65HZ=3f()

A 2L 2(3.00m)

4 wxMaxima codes:

($13) fpprintprec:5; v:330; L:3;
(fpprintprec) 5

(v) 330

(L) 3

(%14) f0: float(v/(2*L));

(£0) 55.0

($15) fl: float(v/L);

(f1) 110.0

(%16) f2: float(3*v/(2*L));

(f2) 165.0

Comments on the codes:

(%13) Set the floating point print precision to 5 and assign values of

vand L.
(%i14), (%i5), (%16) Calculate fo, 1, and f>.

4 Animation of the vibrating air column of first harmonic (fundamental frequency):

(%11) with slider draw(
t, makelist(i,i,0,2*%pi,0.5),

explicit (cos (2*%pi*x/6)*cos(t),x,0,3),

grid=true,

yrange=[-4,4],
xlabel="{/Helvetica-Italic x}
ylabel="{/Helvetica-Italic y}

(arbitrary)");
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y (abitary)
(=] -
T

-
T

x (m)

4 Animation of the vibrating air column of second harmonic (first overtone):

(%$11) with slider draw(
t, makelist(i,i,0,2*%pi,0.5),
explicit (cos (2*%pi*x/3) *cos(t),x%,0,3),
grid=true,
yrange=[-4,4],
xlabel="{/Helvetica-Italic x} (m)",
ylabel="{/Helvetica-Italic y} (arbitrary)");

y (arbitrary)
~ o
T

x (m)

4 Animation of the vibrating air column of third harmonic (second overtone):
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(%11) with_slider draw(
t, makelist(i,i,0,2*%pi,0.5),
explicit (cos (2*%pi*x/2) *cos(t),x,0,3),
grid=true,
yrange=[-4,4],
xlabel="{/Helvetica-Italic x} (m)",
ylabel="{/Helvetica-Italic y} (arbitrary)");

y (artinra'v}
+

\
/ |

x (m)

Comment on the codes:

To run any of the animations, copy the codes to the wxMaxima command window;
press <shift> and <enter> keys simultaneously to run the codes; right-click the
graphic that appears and choose Start Animation. The y-axis represents the longi-
tudinal displacement of the air layer, while the x-axis is the distance along the

pipe.

Problem 6.6 Two sound waves interfere at a point. The wavelengths of the first and

second waves are 25.0 cm and 24.9 cm, respectively. What is the beat frequency?

The speed of sound in air is 330 m s~*.

Solution

The frequency of the first sound wave is

v 330 m/s
=—=———— =1320.0 Hz.
fi= 5 T 50x107m ‘
The frequency of the second sound wave is
v 330 m/s
= = 1325.3 Hz.

da 249 %102 m

The beat frequency is
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|fi—fl, = 5.3Hz.

4 wxMaxima codes:

4) fpprintprec:5; v:330; lambdal:25e-2; lambda2:24.9e-2;

7) beat: abs(fl1-£f2);
beat) 5.3012

(%

(fpprlntprec) 5
(v) 330

(lambdal) 0.25
(lambda2) 0.249
(%$15) fl: v/lambdal;
(f ) 1320.0

(%16) £f2: v/lambda2;
(f ) 1325.3

(%

(

Comments on the codes:

(%i4) Set the floating point print precision to 5 and assign values of
v, )»1, and )\2.
(%15), (%16), (%i7) Calculate {1, f>, and the beat frequency.

Problem 3.7 A wire 0.50 m long with a mass per unit length of 1.0 x 10~* kg m~!

is tied between two nails. The tension in the wire is 4.0 N. The wire is plucked
and sound can be heard. Calculate the fundamental frequency, and first and second
overtones.

Solution

Figure 3.3 shows the wire vibrating with stationary waves at (a) fundamental
frequency, (b) first overtone, and (c) second overtone.
The speed of transverse wave in the wire is (Eq. 2.5)

T 40N
v= [= = =200ms .
" 1.0 x 10~* kg m~!

From Fig. 3.3a, the wavelength is Ag = 2L = 2(0.50 m) = 1.0 m. This means that
the fundamental frequency is

F v 200ms! 00 H
= —_-—————- = Z.
7 % 1.0 m

From Fig. 3.3b, the wavelength is A; = L = 0.50 m. The frequency of the first
overtone is

v 200 m s~!
fi = — = ——— =400 Hz.
A 0.50 m
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Fig. 3.3 a Fundamental (a)
frequency, b first over tone,
and ¢ second overtone of a
vibrating wire, Problem 3.7

€——————— L=A02 —===== >
(b)

<————— L=4 ——=—==3 >
(©

<——m L=34R ——==2 >

From Fig. 3.3c, the wavelength is A, = 2L/3 = 0.33 m. The frequency of the
second overtone is

v 200m g1

— = ——— =600 Hz.
Xz 0.33m

=

4 wxMaxima codes:

%i4) fpprintprec:5; T:4; L:0.5; mu:le-4;
fpprintprec) 5
T) 4
L) 0.5
mu) 1.0%10"-4
%$15) v: sqrt(T/mu);
V) 200.0
i6) lambdaO: 2*L;

lambda0O) 1.0

i7) £0: v/lambda0;
0) 200.0

i8) lambdal: L;
lambdal) 0.5

i9) fl: v/lambdal;
1) 400.0

i10) lambda2: 2*L/3;
lambda2) 0.33333
%$i11) f2: v/lambdaZ2;
£2) 600.0
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Comments on the codes:

(%i4) Set the floating point print precision to 5 and
assign values of 7, L, and w.

(%15), (%16), (%i7), (%18), (%19), Calculate v, Ag, fo, A1,f1, A2, and f5.

(%110), (%il1)

4 Animation of the vibrating wire (fundamental frequency):

(%11) with slider draw(
t, makelist(i,i,0,2*%pi,0.5),
explicit(sin(2*%pi*x/1.0) *cos(t),x,0,0.5),
grid=true,
yrange=[-4,4],
xlabel="{/Helvetica-Italic x} (m)",
ylabel="{/Helvetica-Italic y} (arbitrary)"):;

y (arbitrary)
o
i
\\
|

0 0.1 0.2 03 0.4 0.5
x (m)

4 Animation of the vibrating wire (first overtone):

(%¥11) with slider draw(
t, makelist(i,i,0,2*%pi,0.5),
explicit (sin(2*%pi*x/0.5) *cos(t),x,0,0.5),
grid=true,
yrange=[-4,4],
xlabel="{/Helvetica-Italic x} (m)",
ylabel="{/Helvetica-Italic y} (arbitrary)"):;
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y (arbitrary)
o =
T )

x (m)

4 Animation of the vibrating wire (second overtone):

(%11) with slider draw(
t, makelist(i,i,0,2*%pi, 0.5),
explicit(sin(2*%$pi*x/0.333) *cos(t),x,0,0.5),
grid=true,
yrange=[-4,4],
xlabel="{/Helvetica-Italic x} (m)",
ylabel="{/Helvetica-Italic y} (arbitrary)");

r (abitary)

0 0.1 0.2 0.3 0.4 0.5
X (m)

Comment on the codes:

To run any of the animations, copy the codes to the wxMaxima command window;
press <shift> and <enter> keys simultaneously to run the codes; right-click the
graphic that appears and choose Start Animation. The y-axis represents the transverse
displacement of the string, while the x-axis is the distance along the string.
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Problem 3.8 Two sound waves superpose at a point. Variations of the air pressures
with time of the two waves at the point are

p1 = 30cos(2r fit),
p2 = 30cos(2m fot),

where f| = 55.0 Hz, f, = 50.0 Hz, and 30 Pa is the pressure amplitude of the sound
waves. Show that the beat frequency is f1 — f» = 55.0 Hz - 50.0 Hz = 5.0 Hz.
Solution

This is the superposition of two waves whose frequencies differ a bit at a point. We
calculate the superposition of the two pressure variations,

pP=pi+t D2
= 30cos2r fit) + 30 cos(2m f>1)

= 60cos(m(fi + f2)1) - cos(mw (f1 — f)1).

We have used trigonometric identity cos 6 + cos ¢ = 2 cos[(0 +¢)/2].cos[(0 —
@)/2] to get the result, see Appendix D. We write

p =[60cos(m(fi1 — f2)D)] - cos(m(fi + f2)1).

The expression in the square brackets is the amplitude. The amplitude is a
maximum if cos(w(f; — f2)t) is 1 or — 1, that is, twice in a cycle of the cosine
function. The frequency of the cosine function is ( f; — f»)/2. Thus, the frequency
of maximum amplitude (the beat frequency) is twice of (f; — f2)/2, that is, (f —
f2). The beat frequency is

fbeat = fl - f2 = 55.0 Hz — 50.0 Hz = 5.0 Hz.

Alternative argument: The intensity of sound is proportional to the amplitude
square. In our case, the intensity is proportional to [60 cos(m(f; — f2)t)]*>. The
intensity is a maximum if cos’>(w(f; — f2)t) = 1. This occurs f; — f, times a
second. Therefore, the beat frequency is f; — f>.

Problem 3.9 For Problem 3.8, show graphically that the beat frequency is f; — f»
=5.0Hz.

Solution
We separately plot pressure variation against the time of the two waves,

p1 = 30cos(2m fit) = 30cos(2m (55)1),
P2 = 30cos(2m fot) = 30 cos(2w (50)1).
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We then plot the sum of the two pressure variations against time,
p=rpi+p.

4 wxMaxima codes:

%i2) £f1:55; £2:50;
£f1) 55
£2) 50

%1i5) pl: 30*cos (2*%pi*fl*t); p2: 30*cos (2*%pi*f2*t); p: pl+p2;

pl) 30*cos(110*%pi*t)

p2) 30*cos (100*%pi*t)

(p) 30*cos (110*%pi*t)+30*cos (100*%pi*t)

(%16) wxplot2d(pl, [t,0,0.5], grid2d, [xlabel,"{/Helvetica-Italic t}
(s)"1], [ylabel,"{/Helvetica-Italic p} 1 (N m"{-2})"]);

2 (Nm?)
o

0 0.1 02 0.3 04 05
t(s)

(%17) wxplot2d(p2, [t,0,0.5], grid2d, [xlabel,"{/Helvetica-Italic t}
(s)"1, I[ylabel,"{/Helvetica-Italic pl_2 (N m*{=-2})"]);
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t(s)

(%18) wxplot2d(p, [t,0,0.5], grid2d, [xlabel,"{/Helvetica-Italic t} (s)"],
[ylabel, "{/Helvetica-Italic p} (N m*{-2})"1);

P (Nm?)

20 -

e i

t(s)

Comments on the codes:

(%i2) Assign values of ] and f>.
(%15) Define py, p», and p in terms of 7.
(%16), (%i7), (%i8) Plot pi, p,and p for0 <t <0.5s.

From the last graphic, time interval between beats is T = 0.4 s - 0.2 s = 0.2 s.
The beat frequency is
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Fig. 3.4 A tuning fork and
an air column at resonance, 256 Hz
Problem 3.10

031 m

<——m———>

1 1
=—=——=5.0Hz.
I=7=02s ’
Problem 3.10 A tuning fork vibrating at a frequency of 256 Hz produces a loud
sound when placed near a 0.31 m air column. Calculate the speed of sound in air.

Solution

Figure 3.4 shows the tuning fork, the air column, and the stationary wave when the
loud sound is heard.

The length of the air column corresponds to 1/4 wavelength of the sound wave.
The wavelength of the sound is

A
L R
4
A=4L

=4(0.31m) =1.24 m.
The speed of the sound is

v=Af =(1.24m)(256s™") =317 ms .
4 wxMaxima codes:

%i3) fpprintprec:5; L:0.31; £:256;
fpprintprec) 5

L) 0.31

f) 256

%i4) lambda: 4*L;

lambda) 1.24

%1i5) v: lambda*f;

V) 317.44
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Comments on the codes:

(%13) Set the floating point print precision to 5 and assign values of L and f.
(%i4), (%i5) Calculate A and v.

Problem 3.11 A tuning fork vibrating at a frequency of 320 Hz is placed near a
measuring cylinder filled with water. Consecutive loud sounds are heard when the
water levels are at 20 cm and 73 cm marks. Determine the speed of sound in air.

Solution

Figure 3.5 shows the stationary waves at both resonances. A loud sound is heard when
there is a resonance. When the water level is at the 73 cm mark, Y4 of a complete
wave resonates; when the water level is at the 20 cm mark, 3% of a complete wave
resonates.

From the figure, one-half of the wavelength of the stationary wave is

A
5:73cm—200m:53cm.

The wavelength of the sound wave is

A =2(53 cm) = 106 cm.

Fig. 3.5 A tuning fork and
an air column at two 320 Hz
resonances, Problem 3.11

73 cm

20 cm
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The speed of sound in air is

v=Af = (1.06m)(320s™") =340 ms~".

4 wxMaxima codes:

%$i12) fpprintprec:5; £:320;
fpprintprec) 5
f) 320

(/
(

(

(%$13) lambda: 2*(0.73-0.2);
(lambda) 1.06

($14) v: lambda*f;

(

v) 339.2

Comments on the codes:

(%i2) Set the floating point print precision to 5 and assign the value of f.
(%i13), (%i4) Calculate A and v.

Problem 3.12 Two waves represented by

yi(x,t) = 1.5cos(2t — 3x + 7/3),
ya(x,t) = 1.5cos(2t — 3x),

superpose and form a new resultant wave. Find the resultant wave.
Solution

Superposition of waves is obtained by summing the two waves,

y=yi(x, 1) + y(x, 1)
= 1.5cos(2t —3x + 7/3) + 1.5cos(2t — 3x)

= 3cos(2t —3x + %) COS(%)

=26 cos(Zt —3x 4+ %)

The trigonometric identity cos 8 + cos ¢ = 2 cos[(6 + ¢)/2].cos[(6 — ¢)/2] has
been used to get the result; see Appendix D. The resultant wave is a traveling sinu-
soidal wave and is not a stationary wave. The amplitude is 2.6 m and the wavelength
and frequency are the same as those of the summed waves.

4 wxMaxima codes:
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(%1il) fpprintprec:5;

(fpprintprec) 5

(%12) amplitude: float (3*cos(%pi/6)):;

(amplitude) 2.5981

(%14) yl(x,t):=1.5*cos(2*t-3*x+%pi/3); y2(x,t):=1.5*cos (2*t-3*x);
(%03) yl(x,t):=1.5*cos (2*t-3*x+%pi/3)

(%$04) y2(x,t):=1.5*cos (2*t-3*x)

($16) yls: yl(x,0); y2s: y2(x,0);

(yls) 1.5*cos (3*x-%pi/3)

(y2s) 1.5*cos (3*x)

($17) ys: yls+y2s;

(ys) 1.5*cos(3*x-%pi/3)+1.5*cos (3*x)

(%18) wxplot2d([yls, y2s, ys], [x,0,10], grid2d, [xlabel,"{/Helvetica-
Italic x} (m)"1, [ylabel,"{/Helvetica-Italic y} (m)"1);

T T
1.5%cos{3"x-Yepi/3) ——

1.5%cos(3M)
1.5%cos{3"x-%p3H+1 5%cos(T"x)

x (m)

Comments on the codes:

(%il) Set the floating point print precision to 5.

(%i2) Calculate the amplitude of the resultant wave.

(%14) Define y (x, t) and y,(x, t).

(%i6), (%17) Assign yi; = yi(x, 0), y23 = y2(x, 0), and y; = yi5 + y2s.
(%i18) Plot yi, y25, and y; for 0 < x < 10 m.

Problem 3.13 Two sources of waves are located at points A and B separated by
20 m, as shown in Fig. 3.6. The vibrations of the sources are

Ya vibration = 30 cos[2m (95)t],
YB vibration = 20 cos[2m (90)¢].

Waves of the two vibrations propagate along the positive x direction at a speed of
300 m s~!. Determine the vibrations at point C, 10 m to the right of B.
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Fig. 3.6 Two wave sources A

at points A and B, Problem . . .

3.13 o __ S __ >
20 m 10 m

Solution

Waves from A propagate to the right; the wave equation is,
ya = 30 cos[2n(95)(l _ f)]
v

=30 cos[2n(95)(l _ 3();—0)].

We get this from the general equation of wave moving to the right, by substituting
f =95 Hz and speed of the wave v =300 m s~!,

ya = Acos (ot — kx)

e o)
e rr (22
=30 cos [271(95)(; _ 3%)].

Vibrations at point C due to waves from A are obtained by inserting the value of
x=20m+ 10 m =30 m,

30
ya.c = 30 cos [271(95) (t — ﬁ)}

Waves from B travel to the right and the wave equation is
X
yg =20 cos [27[(90) (z - —)]
v
=20 cos [2700) (1 — - |
300
Vibrations at point C due to waves from B are obtained by inserting the value of

x=10m,
©0)( ¢ 10
’ 300

Thus, vibrations at point C are
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YC vibration = YA,c + YB,C
30 10
= 2 - —)|+2 2 -— )|
30 cos [ n(95)(t 300):| + 20 cos [ n(90)(t 300>1|

@ Plots of ya ¢, yp,c, and y¢ yiprarion against time by wxMaxima:

%11l) yAC: 30*cos (2*%$pi*95* (£-30/300)) ;

yAC) 30*cos (190*%pi* (t-1/10))

%$12) yBC: 20*cos (2*%$pi*90* (£-10/300)) ;

yBC) 20*cos (180*%pi* (t-1/30))

%$i3) yCvibration: yAC + yBC;

yCvibration) 20*cos (180*%pi* (t-1/30))+30*cos (190*%pi* (t-1/10))

%$14) wxplot2d(yAC, [t,0,0.4], grid2d, [xlabel,"{/Helvetica-Italic t}
s)"], l[ylabel,"{/Helvetica-Italic y} (m)"]);

30 T
20
UL ya,c
10 I
E H
=
-10
20} i
% A

] 0.05 01 015 02 0.25 03 0.35 0.4
tis)

(%$15) wxplot2d(yBC, [t,0,0.4], grid2d, [xlabel,"{/Helvetica-Italic t}
(s)"], [ylabel,"{/Helvetica-Italic y} (m)"]);
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20 T T T T
15

10
I -~ yee

¥ (m)
=

005 01 015 02 025 03 035
tis)

(%16) wxplot2d(yCvibration, [t,0,0.4], grid2d, [xlabel,"{/Helvetica-Italic
t} (s)"], [ylabel,"{/Helvetica-Italic y} (m)"]);

™ — YC vibration

0 005 01 015 02 025 03 035 04
tis)

Comments on the codes:

(%il), (%i2) Define y4 ¢ and yp c.
(%13) Calculate Y vibration-
(%i4), (%15), (%16) Plot ya.c, yB,c,> and Y¢ viprarion against ¢ for 0 <t <04 s.

The vibrations at C have beats in them, as shown in the plot. These vibrations
have a beat frequency of 95.0 Hz — 90.0 Hz = 5.0 Hz. From the plot, the period of
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the beatis T = 0.3 s — 0.1 s = 0.2 s, giving the beat frequency as 1/7 = 1/0.2 s =
5.0 Hz.

Problem 3.14 Two wave sources are located at points A and B a distance 20 m apart,
as shown in Fig. 3.7. The vibrations at A and B are

YA vibration = 0.06 sin (me),

VB vibration = 0.02 sin (7rt).

Waves originating from vibrations at A move in the positive x direction with a
speed of 3.0 m s~!, while waves originating from vibrations at B move in the negative
x direction with the same speed. Determine the vibrations at a point C, 8.0 m to the
left of B.

Solution

Vibrations at A generate waves that propagate to the right. The equation of the
traveling wave is

ya = 0.06 sin [n(t - %)]

=0.06 sin [z (r - %)]

We have used the fact that a wave traveling to the right is a function of ¢ — x/v,
so we replaced ¢ with ¢ — x/v in Y4 yiprasion tO g€t y4. We then substitute the speed of
wave v = 3.0 m s~ in the equation. Vibrations at point C due to waves coming from
A is obtained by substituting x = 12 m into the equation,

T 12
va.c = 0.06 sin n(t — ?>]

Waves from B move to the left to C. The wave is represented by,

ys = 0.02 sin :71 (z + %)]

= 0.02 sin :n (t + %C)]

Again, we have used the fact that a wave traveling to the left is a function of ¢
+ x/v, so we replaced ¢ with ¢ + x/v in Y yiprarion t0 get yp. We also substituted the

Fig. 3.7 Two wave sources A C B

at points A and B, Problem Y . .
.14

3 <————————————- ><<———————— >
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speed of wave v = 3.0 m s~! in the equation. Vibrations at C due to waves from B

are obtained by substituting x = — 8.0 m into the equation,

8
yg.c = 0.02 sin [n (t — 5):|

Therefore, vibrations at C due to vibrations of sources at A and B are,

YC vibration = YA,C + ¥B.C

006 s x(s - 2)] 02 [+ )]

= 0.05sin (1) — 0.017 cos (t).

@ Plots of ya ¢, y8,c, and Y¢ yiprarion against time by wxMaxima:

%$11) yAC: 0.06*sin (%pi* (t-12/3));
yAC) 0.06*sin ($pi* (t-4))
%i2) yBC: 0.02*sin($pi* (t-8/3));

(

(

(

(yBC) 0.02*sin (%pi* (t-8/3))
($13) yCvibration: yAC + yBC;
(

(

[

[

<

Cvibration) 0.02*sin (%pi* (t-8/3))+0.06*sin (%pi* (t-4))
%$i4) wxplot2d([yAC, yBC, yCvibration], [t,0,6], grid2d,
xlabel, "{/Helvetica-Italic t} (s)"1,

ylabel, "{/Helvetica-Italic y} (m)"]);

X 0.06' &prul.:p'. _
0.02*sig{%6pt{-8/3)) —

\
) e o 8/3)
702 s.\%a {t-8/3))40.06%Bin (%R (t4)} 4 - yac

'B,
;//y ¢

_~YCvibration

¥ (m)

Comments on the codes:

(%il), (%i2), (%i3) Define ya,c, ys.c, and yc vibrasion-
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(%14) PIOt YA,Cs YB,C» and YC vibration fOI' 0 <t =< 6 S.

The plots show that vibrations at point C are sinusoidal vibrations (simple
harmonic motion) with the same frequency as the frequency of sources at A and
B.

3.3 Summary

e Superposition is the combination of two or more waves at the same location.

e The wave that results from the superposition of two sine waves that differ only by
a phase shift is a wave with an amplitude that depends on the phase difference.

e A stationary wave is formed from the superposition of two sine waves having the
same frequency, amplitude, and wavelength and moving in opposite directions.
The wave varies in amplitude but does not propagate.

3.4 Exercises

Exercise 3.1 What is the wave obtained from the superposition of the following two
traveling waves,

y1 = Acos(wt — kx + ¢),
v, = Acos(wt — kx)?
(Answer: 2A cos(%) cos(wt — kx + %))

Exercise 3.2 A string is fixed between two nails. A transverse wave along the string
to one of the nails is represented by

y1 = Acos(kx — wt),
while the one reflected from the nail is represented by
v, = Acos(kx + wt).

What is the superposition of the two waves?
(Answer: 2A cos(kx) cos(wt))

Exercise 3.3 A 50.0 cm long wire with a mass per unit length of 1.00 x 10~* kg m™!
vibrates under a tension of 4.00 N as shown in Fig. 3.8. Find the fundamental
frequency of the vibrations.

(Answer: 200 Hz)
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Fig. 3.8 A vibrating wire,
Exercise 3.3 }<

Exercise 3.4 The equation for a stationary wave on a string is,
y =0.12 sin(5x) cos(200z).

where y and x are in meters and ¢ in seconds. Find

(a) amplitude of vibration at the antinodes,
(b) distance between antinodes,

(c) wavelength,

(d) frequency,

(e) speed of the wave.

(Answer: (a) 0.12 m; (b) 0.63 m; (c) 1.3 m; (d) 32 Hz; (e) 40 m s~ ')

Exercise 3.5 The second overtone produced by a vibrating string 2.0 m long is
900 Hz. Determine

(a) fundamental and first overtone frequencies,
(b) speed of the wave in the string.

(Answer: (a) 300 Hz, 600 Hz; (b) 1.2 x 10° ms™!)



Chapter 4 )
Electric Field gedes

Abstract This chapter discusses problems on electric charge, electrostatic force,
and electric field. Vector additions and methods of calculus are used to calculate
some of the electric fields. Both analytical and computer calculations are presented.

4.1

Basic Concepts and Formulae

(1) Electric charge has the following properties:

(a) Charge is conserved.

(b) Charges of different signs (+ and —) attract each other. Charges of the
same signs (+ and +, or — and —) repel each other.

(c) Charge is quantized; it exists as multiple of electronic charges. An elec-
tronic charge is the charge of an electron. An electron has an electric
charge of 1.6022 x 107! C. Thus, 1 C is the charge of 6.2415 x 108
electrons.

(d) The force between two charges varies with the inverse square of their
separation distance.

(2) A conductor is amaterial in which electrical charges can move freely. Examples
of conductors are copper, aluminum, and silver.
(3) An insulator is a material in which charges cannot move freely. Examples of
insulators are glass, rubber, and wood.
(4) Coulomb’s law states that the magnitude of electrostatic force F between two
charges ¢, and ¢, separated by a distance r, is,
1
F:kWh _ 611Q27 4.1
r2 dmey r?
where k is Coulomb’s constant,
1 9 2 -2 9 2 -2
k= =89876 x I Nm“"C “~9x 10" Nm”“ C™~,
dmeg
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4 Electric Field

and ¢ is the permittivity of free space,
g0 =8.8542 x 1072 C* N~ ' m™2.

The smallest unit of charge in the universe is the charge of an electron or a
proton. The magnitude of the charge is,

e=1.6022 x 107 C.

Charge on other entities is the multiple of this unit of charge. The charge is
quantized.

Electric field E at a point is the electric force F acting on test charge ¢ at the
point divided by the charge,

F
E=—. 4.2)
q
Electric field due to charge g at a point a distance r from the charge is
E=kL;, 4.3)

72

where 7 is the unit vector in the direction of the charge to the point. For positive
point charge, the electric field vector is directed in a radial way away from the
point charge.
Electric field at a point of observation due to many point charges is the vector
sum of electric fields of each charge at the point,

E=k f—;f,. (4.4)

i 1

Electric field of a continuous charge distribution at a point is,
dq .
E=k | —=r, 4.5)
r

where dgq is infinitesimal charge of the charge distribution and r is distance
from the infinitesimal charge to the point of observation. Table 4.1 shows the
electric fields of a few charge distribution configurations.

Electric field lines are used to indicate electric field in space. Electric field
vector E is tangent to electric field line. The number of electric field lines
per unit area through a surface perpendicular to the electric field lines is
proportional to the magnitude of the electric field.

A particle of mass m and charge ¢q in electric field E will move with acceleration,
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Table 4.1 Electric fields of a few charge configurations

Configuration Electric field

(a) A ring with charge O,
Q E = kQ gy
E
X
_________ X e
(b) A A long wire with charge per unit length A,
E=2 - 2
= =2
i E X TENX
X
___________ X e

v

(c) L A wire of length 2L with charge per unit length A,
_ _2kAL
A E = Wira
0 |[f————- SR x—>

-L

(d) A wide insulator plate with charge per unit area o,
E =2nko = 2070
E
________ X ——p

(e) An insulator circular disk with charge per unit area o,

E =2nko (1 —

y
/yZ_I_RZ)
_ oo
_250 /y2+R2

In a uniform electric field, the acceleration a is constant and the motion of the
particle is similar to the motion of a projectile in a uniform gravitational field.
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4.2 Problems and Solutions

Problem 4.1

(a) How many electrons are there in a charge of —1.0 C?
(b) Calculate the repulsive force between two particles, each with a —1.0 C charge,
separated by a distance of 1.0 m.

Solution

(a) Anelectron has a charge of —1.6 x 107! C. The number of electrons in —1.0 C
charge is

—-1.0C

— =62 x10"%.
—1.6x 1071 C
(b) Figure 4.1 shows the two particles and the repulsive force F on one of them.

The magnitude of repulsive force between the two particles is, Eq. (4.1),

q192

1. 1.
F =k—2 =9 x 10° N m2 C—Z)M
r

Qomp =20 10° N.
Um

4 wxMaxima codes:

9.0*10"9

($16) fpprintprec:5; e:-1.6e-19; k:9e9; gl:1; g2:1; r:1;
(fpprintprec) 5)
(e) =1,6*10*=19

(k) 9.0*10"9

(ql) 1

(gqz) 1

(r) 1

(%17) -1/e;

(%07) 6.25*10"18
(%18) F: k*gl*g2/r"2;
(F)

Comments on the codes:

(%16) Set the floating point print precision to 5 and assign values of e, k, g1, g2, and

r.
Fig. 4.1 Two particles with -1.0C -1.0C F
an equal electric charge on
each, Problem 4.1 @ @
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Fig. 4.2 Two spheres, each

has equal number of @ @

electrons, Problem 4.2 < -_———————— —>
r=4.0cm

(%i7) Calculate the number of electrons. Part (a).
(%18) Calculate the Coulomb force F between two particles. Part (b).

Problem 4.2 Two small spheres are separated by a distance of 4.0 cm. Each sphere
carries an equal number of electrons. How many electrons are there on each of them
so that the repulsive force is 1.0 x 107!° N?

Solution

Figure 4.2 shows the two spheres separated by a distance of 4.0 cm. Let us have n
electrons on each of them. The charge on each sphere is —ne where —e is the charge
of an electron.

Applying Eq. (4.1), the magnitude of the Coulomb force, that is, the repulsive
force between the spheres is

Fofi 00 cn
r r r

Substituting known values and solving for n give

(1.6 x 1071 C)%n?
(4.0 x102m)? ’

1.0x 107P N= (9 x 10° Nm? C?)

n = 833.
4 wxMaxima codes:

%i6) fpprintprec:5; ratprint:false; F:le-19; e:1.6e-19; k:9e9; r:4e-2;

(

(fpprintprec) 5
(ratprint) false
(F) 1.0*%107-19
(e) 1.6*107-19
(k) 9.0*10"9

(r) 0.04

(%1

(

%$18) solve (F=k*e”2*n”2/r”2, n)$ float(%);
8) [n=-833.33,n=833.33]

Comments on the codes:

(%i16) Set the floating point print precision to 5 and internal rational number print
to false, and assign values of F, e, k, and r.
(%i8) Solve F = ke’n?/r? for n.
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Problem 4.3

(a) Calculate the magnitude of electric force on a particle of charge g; = 2.0 x
107 C due to a second particle of charge g, = 3.0 x 10~ C. Both charges are
separated by a distance of 5.0 m.

(b) A third particle of charge g3 = —4.0 x 107 C is placed between both particles,
3.0 m from the first and 2.0 m from the second. What is the electric force on the
first particle?

Solution
(a) Figure 4.3a shows the first and second particles.
By Coulomb’s law, electric force on the first particle due to the second particle is,

Eq. (4.1),

(2.0 x 1076 C)(3.0 x 1076 C)
(5.0 m)2

Fo=kTL — 9x 10°Nm’> C?)
r

=2.2 x 1073 N to the left.

The electric force is toward the left as the same charges repel. Due to the same
charges, the second particle pushes the first toward the left.

(b) Figure 4.3b shows the three particles. From part (a), electric force on the first
particle due to the second particle is

Fi, = 2.2 x 107N toward the left.

Electric force on the first particle due to the third particle is,

(2.0x107°C)(4.0 x 1076 C)

q11q3] 9 2 A2
Fi3=k—> =9 x 10° Nm?> C
3 2 = Ox m” €7 (3.0m)?
= 8.0 x 107% Nto theright.
q1 q2
o “of 0.0
______5'_0_111 ______ <__:i‘91_n___><_2£)_n1_
) 2 M 3) (2)
@) (b)

Fig. 4.3 Determining electric force of cases a and b, Problem 4.3
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The absolute value of g3 is used because we want to calculate the magnitude F3.
The electric force is toward the right as opposite charges attract each other. Due to
their opposite charges, the third particle pulls the first toward the right.

The resultant electric force on the first particle is,

Fiz—F,=80x103N-22x107N
= 5.8 x 107 Nto the right.

4 wxMaxima codes:

($15) fpprintprec:5; k:9e9; gl:2e-6; g2:3e-6; g3:-4e-6;
(fpprintprec) 5

(k) 9.0*10"9

(gql) 2.0*10"-6

(q2) 3.0*10"-6

(q3) -4.0*10"-6

(%16) Fl2: k*ql*qg2/5"2;

(F12) 0.00216

(%$17) F13: k*gl*abs(g3)/3"2;
(F13) 0.008

(%$18) resultant force: F13-F12;
(resultant force) 0.00584

Comments on the codes:

(%15) Set the floating point print precision to 5 and assign values of k, g,
42, and g3.

(%16), (%i7) Calculate F', and F 3.

(%i18) Calculate resultant electric force F 3 — F 5.

Problem 4.4 Two charges ¢g; and ¢, each of 1.0 x 10~° C, are separated by a
distance of 8.0 cm. A third charge g3 = 5.0 x 10! C is placed 5.0 cm from both
of them. Calculate the electric force on the third charge.

Solution

Figure 4.4 shows the three charges and the forces on the third charge.

The magnitude of electric force on the third charge due to the first is

419 (1.0 x 107° C)(5.0 x 107! C)

Fy = k== = (9 x 10° Nm?> C2
n=kgm=0x mee (5.0 x 102 m)?
=18x 1077 N.

The force is expressed as a vector
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Fig. 4.4 Determining F32 Fs31
electric force on g3, Problem
4.4
Y
q3
s AN
50cm -7 | SN_5.0cm ¢
o : 3.0cm N
O LR I
q1 8.0 cm q?

4 3
F31 = F3 cos@i+ F3sinfj = [1.8 X 107<§> i+ 1.8 x 107<§> j} N

=(14x107i4+1.1x107"j) N.

The magnitude of electric force on the third charge due to the second F'3, is equal

to F3,

F; =18 x 1077 N.

In vector form, this force is

Fy = —F3 cosO i+ Fssinf j
=(—14%x107i+ 1.1 x 107" j) N.

Therefore, the resultant electrostatic force on the third charge is

F=Fy+F»=22x10"jN.

The force is in the positive y direction, that is, the j direction.

4 wxMaxima codes:

%110) Fvec: F3lvec + F32vec;
Fvec) [0.0,2.16*10"-7]

(%$15) fpprintprec:5; k:9e9; ql:1le-9;
(fpprintprec) 5

(k) 9.0*10"9

(gql) 1.0*10"-9

(gq2) 1.0*10"-9

(g3) 5.0*%107-11

(%16) F31: k*gl*g3/5e-272;

(F31) 1.8*107-7

(%17) F3lvec: [F31*(4/5),F31*(3/5)1;
(F3lvec) [1.44*%107-7,1.08%10"-7]
(%$18) F32: F31;

(F32) 1.8*10"-7

(%19) F32vec: [-F32*(4/5),F32*(3/5)
(F32vec) [-1.44*107-7,1.08*10"-7]

(

(

g2:1e-9; g3:5e-11;
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Comments on the codes:

(%15) Set the floating point print precision to 5 and assign values of &, g,
g2, and g3.

(%16), (%i17) Calculate F3; and assign vector F3;.

(%i8), (%19) Assign F'3; and vector F;.

(%110) Calculate vector F.

Problem 4.5 A particle of charge g; = 5.0 x 1073 C is located at the origin. A
second particle of charge ¢, = —3.0 x 1073 C is placed at coordinate (3, 4) m.
Calculate the electric force acting on the second particle.

Solution

Figure 4.5 shows the two particles and the electric force acting on the second particle.

In vector form, the electrostatic force acting on the second particle due to the first
particle is,

q192 . _kQLCIZ
5 T2 = 3 T2,

Y} ST

Fy =k

where

rpo=0Gi+4j)m,

rip =+324+42m =5m,
~ ri
rp=—.

rp2

Fig. 4.5 Determining
electric force on g, Problem
4.5
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This gives the electrostatic force acting on the second particle due to the first
particle as

(5.0 x 1073 C)(=3.0 x 1073 C)

Fy =9 x10°Nm’C
2= 0> 10" Nm=C) (5.0 m)?

Bi+4j)m
= (—32401i — 4320 j) N.

The magnitude of the electrostatic force is

= \/(—3240)2 + (—4320)2N = 5.4 x 10° N.
The angle is
—1 3 o
6 = tan 7 = 0.64 rad = 37°.

Alternative solution: This problem can be solved without resorting to vectors, as
well. The distance between the charges is 5.0 m and the magnitude of the electrostatic
force is, Eq. (4.1),

q192 0 s . (5.0x 1072 C)3.0 x 1073 C)
Fy =k =Ox10°Nm?>C
n =k =0x m" € (5.0 m)?
=54x10°N.

The force is attractive because the signs of charges are not the same. The direction
of the force is from the second to the first particle, along the line connecting the two
particles.

4 wxMaxima codes:

%i4) fpprintprec:5; gl:5e-3; g2:-3e-3; k:9e9;
fpprintprec) 5

gl) 0.005

g2) -0.003

k) 9.0*10"9

%$i6) rl2vector:[3,4]; rl2:5;
12vector) [3,4]

ol

[afa

(

(

(

(

(

(

(

(

($17) F2lvector: k*gl*g2/rl2”3*rl2vector;
(F2lvector) [-3240.0,-4320.0]

($18) F21: sgrt(F2lvector[l]”2 + F2lvector[2]"2);
(F21) 5400.0

($19) theta: float(atan(3/4));

(theta) 0.6435

($110) theta deg: float(theta*180/%pi);
(theta deg) 36.87

(%$111) F21: k*gl*abs(qg2)/rl2"2;

(F21) 5400.0
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Comments on the codes:

(%i4) Set the floating point print precision to 5 and assign values of g, g2,
and k.
(%i16) Assign vector ri, and its magnitude r ;.

(%i7), (%18)  Calculate force F»; and magnitude F;.
(%19), (%110) Calculate angle 6.
(%il1) Calculate magnitude F; directly.

Problem 4.6 Four charges are fixed on a plane as in Fig. 4.6a. What is the resultant
electric force on the first charge? The charges are g; = 5.0 x 1073 C, ¢ = —6.0 x
1073 C, gz = —3.0 x 1073 C, and qs =4.0 x 1073 C.

Solution
The resultant electric force on the first charge due to charges 2, 3, and 4 is

F=F;)+Fi3+ Fy

—k |:Q'236]1r21 i 9'33611"31 i Q4611r41:|

3
1 31 Ti

(—6.0 x 1073 C)(5.0 x 1073 ©)
(3.0 m)3

=9 x 10° Nm?C™?) [ (=3im)

(=3.0x 1073 C)(5.0 x 1073 C)

3§ 4
(5.0 m)? (731 —4)m
(4.0x 1073 C)(5.0 x 1072 ©) .
. (—4jm)
(4.0 m)
= (332401 — 6930 j) N.
The magnitude of the force is
Yy (m) ¥y (m)

1 2 3 x(m) 01 F2 3 x(m)
(@) (b)

Fig. 4.6 a Configuration of four charges; b determining electric force on g, Problem 4.6
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F = /(33240)2 4+ (—6930)2 N = 33955 N,

and the direction is

—6930
0 = tanfl (m) = —0.21 rad = —12°.

The resultant electric force F’ and its direction 6 are shown in Fig. 4.6b.

4 wxMaxima codes:

%$i6) fpprintprec:5; k:9e9; gl:5e-3; g2:-6e-3; g3:-3e-3; g4:4e-3;
fpprintprec) 5)

k) 9.0*10"9

gl) 0.005

g2) -0.006

g3) -0.003

g4) 0.004

%$112) r2lvec:[-3,0]; r21:3; r3lvec:[-3,-4]; r31:5; rd4lvec:[0,-4]; rd4l:4;
r2lvec) [-3,0]

r2l) 3

r3lvec) [-3,-4]

r3l) 5

r4lvec) [0,-4]

%$113) Fl2vec: k*g2*ql/r21”3*r2lvec;
Fl2vec) [3.0*1074,0]
%$114) Fl3vec: k*g3*ql/r3173*r3lvec;
Fl3vec) [3240.0,4320.0]
%$i115) Fldvec: k*gd*qgl/r4l”3*rdlvec;
Fld4vec) [0,-1.125*10%4]
%$116) Fvec: Fl2vec + Fl3vec + Fldvec;
Fvec) [3.324*1074,-6930.0]

117) F: sqgrt(Fvec[l]”2 + Fvec[2]"2);
) 3.3955%10"4

i18) theta: atan(Fvec([2]/Fvec[l]);
theta) -0.20554

i19) theta deg: float (theta*180/%pi);
theta_deg) -11.777

Comments on the codes:

(%16) Set the floating point print precision to 5 and assign values
of k, g1, q2, g3, and qy.
(%112) Assign vector r,; and its length r,|, vector r3; and its length

r31, and vector ry4; and its length ry4;.
(%113), (%i114), (%i15) Calculate vectors F,, F3, and F 4.
(%116), (%i17) Calculate vector F and its magnitude F.
(%118), (%119) Calculate 6 and convert the angle to degree.

Alternative solution: This problem can also be solved without using vectors.
Figure 4.7 shows the four charges and three electric forces acting on the first charge.



4.2 Problems and Solutions

93

Fig. 4.7 Determining

\ y (m)
electric force on g1, Problem q4
4.6 4(+

The magnitudes of all three electric forces on the first charge are

5.0 x 107 0)(6.0 x 10 C
Fio = k2020 _ (9.5 109 N m? 02 20X )00 x ) _ 30000 N,
i (3.0 m)

5.0 x 1073 0)(3.0 x 1073 C
Fi = k2180 _ (95 10 N ) 20 )00 x ) _ 5400 N,
3 (5.0 m)

5.0 x 1073 C)(4.0 x 102 C
Fia =k — (9 % 10° N m? o230 % it = ) — 11250 N,
T'i4 (4.0 m)

The resultant electric force in the x direction is

Fy = Fi» + Fi3cos¢ = [30000 + 5400 (3/5)] N = 33240 N.
The resultant electric force in the y direction is

Fy, = —Fy4 + Fi3sin¢ = [—11250 + 5400 (4/5)] N = —6930 N.

Therefore, the magnitude of resultant electric force is

F=F2+ Fy2 = /332402 + 6930> N = 33955 N,

and the angle between the resultant electric force and the x-axis is

R —6930 _ e
6 = tan = —0.21 rad = —12°.

33240
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The resultant electric force F and its direction 6 are shown in Fig. 4.6b.

4 wxMaxima codes:

$16) fpprintprec:5; k:9e9; gl:5e-3; g2:-6e-3; g3:-3e-3; gd:4e-3;

(%

(fpprintprec) 5

(k) 9.0%1079

(gl) 0.005

(g2) -0.006

(q3) -0.003

(g4) 0.004

(%17) F12: k*gl*abs(qg2)/3%2;
(F12) 3.0*10"4

(%i8) F13: k*gl*abs(g3)/5"2;
(F13) 5400.0

(%19) Fl4: k*gl*qg4/472;
(F14) 1.125*10"4

(%110) Fx: F12 + F13*3/5;
(Fx) 3.324*10"4

(%111) Fy: -Fl14 + F13*4/5;
(Fy) -6930.0

($112) F: sqgrt(Fx"2 + Fy"2);
(F) 3.3955*10"4

(%113) theta: atan(Fy/Fx);
(theta) -0.20554

($114) theta deg: float (theta*180/%pi);
(

theta deg) -11.777

Comments on the codes:

(%16) Set the floating point print precision to 5, and assign values of
k, q1, g2, g3, and gg.

(%i7), (%i8), (%19) Calculate F1,, F13, and F14.

(%110), (%il11) Calculate F', and F.

(%112) Calculate magnitude F.

(%113), (%i14) Calculate 6 and convert the angle to degree.

Problem 4.7 Two spheres having the same mass of 0.10 g and the same electric
charge are suspended by a 50 cm thread as shown in Fig. 4.8. The angle between the
thread and the vertical is 10° due to repulsion between the spheres. Calculate,

(a) charge on the sphere
(b) tension in the thread.

Solution

(a) Let the charge on the sphere be ¢. Figure 4.9 shows forces acting on one of the
spheres. The forces are the weight of the sphere mg, tension in the thread 7', and
electrostatic repulsive force F.
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Fig. 4.8 Two separated
charged spheres on threads,
Problem 4.7

50 cm

0.10 g

Fig. 4.9 Forces on one of
the spheres, Problem 4.7

The vector sum of the three forces is zero, because the sphere is in equilibrium.
Thus, the net force in the x and y directions are zero and we write

Y F,=Tsino— F =0, (1)
Y Fy=Tcost —mg=0. )

The two equations give
F =mgtan6. 3)

ByCoulomb’s law, the electrostatic force is,
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qu qu

T2 T (2sing)? ®

since the distance between the spheres is 2/ sin 8, where [ is the length of the thread.
The charge ¢ can be calculated from Egs. (3) and (4),

qu
(21 sin 9)?
,  41%mgsin® 6 tan 6
- k
_4(0.50 m)*(0.10 x 10~ kg)(9.8 m/s?) sin® 10° tan 10°
N 9 x 10° N m2 C2

=mgtand,

q

3

g=24x108cC.
(b) Tension in the thread is calculated from Eq. (4.2) as follows:

T cos§ —mg =0,
mg  (0.10 x 107% kg)(9.8 m/s?)

T cosO cos 10°
=1.0x 107> N.

4 wxMaxima codes:

($17) fpprintprec:5; ratprint:false; k:9e9; g:9.8; m:0.1le-3; 1:0.5;
theta:float (10/180*%pi) ;

(fpprintprec) 5)

ratprlnt) false

9.0%10"°9

eta) 0.17453
i9) solve (k*g”2/(2*1*sin(theta))”2 = m*g*tan(theta), q)$ float(%);
9) [g=-2.4061*10"-8,9=2.4061*10"-8]
10) T: m*g/cos (theta);
9.9512*10"-4

Comments on the codes:

(%i7)  Set the floating point print precision to 5 and internal rational number print
to false, and assign values of k, g, m, [, and 6.

(%i9)  Solve kq? /(21 sin§)> = mg tan @ for g. Part (a).

(%110) Calculate tension 7. Part (b).
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4 Alternative calculation:

($17) fpprintprec:5; ratprint:false; k:9e9; g:9.8; m:0.1le-3; 1:0.5;
theta:float (10/180*%pi) ;
(fpprintprec) 5
ratprint) false
9.0%10"°9
9.8
1.0*107-4
0.5
eta) 0.17453
9) solve([T*sin(theta)-F=0, T*cos (theta)-m*g=0,
*g~2/(2*1*sin (theta)) 2], [q,T,F1)$ float(%):;
9) [[g=2.4061*107-8,T=9.9512*10"-4,F=1.728*10%-4], [g=-2.4061*10"-8,T=
512*107-4,F=1.728*10"-4]]

ot — B Q &

I
© 0 K’ P D = =

oo

O~ 1~~~ o~~~

Comments on the codes:

(%i7) Set the floating point print precision to 5 and internal rational number print
to false, and assign values of k, g, m, [, and 6.

(%19) Solve Egs. (1), (2), and (4) for g, T, and F.

(%09) The solutions.

Problem 4.8 A particle of charge ¢ and a thin rod of length L that has charge Q are
arranged as in Fig. 4.10. Calculate the electric force on the particle.

Solution

The charged rod and the particle are redrawn in Fig. 4.11. We want to calculate
electric force on the particle due to the whole length of the charged rod. To do this,
we consider an infinitesimal element of the rod, calculate the force due to the element,
and do the integration for the whole rod.

For the infinitesimal length of the rod dx, the infinitesimal charge is

d
dQ:fo.

By Coulomb’s law, electric force on the particle due to this infinitesimal charge
is

Fig. 4.10 A charged particle and a charged rod, Problem 4.8
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L a
<€<—F—————————————————= >L—————————= >
0 q
( (C 0 @)
I I I
———— >l [—————————————————————— >
' X ' L+a—x '

Fig. 4.11 Determining electrical force on a charged particle due to a charged rod, Problem 4.8

kq dQ kQq dx

- (L+a—x)2 L(L+a—x)?

dF

This force is toward the right. The force is toward the right as charges of the same
sign repel. Due to the same signs, the infinitesimal charge pushes the particle toward
the right.

The force on the particle due to the whole length of the rod is

L
F=/dF=qu/ dx
L (L +a—x)?

0

The integral can be calculated by substitution,

1
H —m— —mm
L+a—x

du=(—1)(L+a—x)"2(=dx =

= (L+a _-x)_ls

dx
(L+a—x)?

Therefore, the electric force on the particle is

1/a

_ kQq _ kQq 1/a
F== / du=="luly 4 g
1/(L+a)

_kQq[1 1
_T[Z_ L+a}
_ kg

a(L + a)

The direction of the force is toward the right.

4 wxMaxima codes:
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Fig. 4.12 Two charged 3.0m 2.0m
particles, Problem 4.9 €————————e e S — — — >
P g1 92
(%$il) F: integrate(k*Q*q/L, u, 1/(L+a), 1/a);
(F) (Q0* (1/a-1/ (a+L)) *k*q) /L
(%$12) ratsimp(%);
(%02) (Q*k*q)/(a”2+L*a)

Comments on the codes:
1/a
(%il) Calculate the integration F = f %du.
1/(L+a)
(%i2) Simplify the result.

Problem 4.9 Two particles of charges ¢, = —2.0 x 107 Cand ¢, =5.0 x 1076 C
are arranged as in Fig. 4.12.

(a) Calculate the electric field at point P.
(b) A third particle of charge g3 = 1.0 x 107 C is placed at P. What is the electric
force acting on the particle?

Solution
(a) Figure 4.13 shows the two charges, point P, and electric fields at P.

The magnitude of the electric field due to g; at point P is, Eq. (4.3),

=2000N C~ L.

g1 o Nm*\ (2.0 x 107 C)
E=k——=(9x%x10
1=K ( e (3.0 m)

The direction is toward the right because ¢; is negative. This electric field is
written as

<___§9£n______><__2'_0_n2__>
E> P E1 qi q2

Fig. 4.13 Determining electric field at point P, Problem 4.9



100 4 Electric Field
E, =2000iNC~'.

The magnitude of the electric field due to ¢, at point P is, Eq. (4.3),

Nm?) (5.0 x 10 C
By =k = (9% 100200 ) B0 % ) _ 180N,
C (5.0 m)?

The direction is toward the left because ¢, is positive. This electric field is written
as,

E, = —1800iNC~.
Thus, the electric field at P due to both charges is,
E=E, +E,=(000—-1800)iNC!=200iNC.

The direction of the field is toward the right.

(b) Force on the third charged particle placed at point P is the charge multiplied by
the electric field there,

F=gGE=(10x10°C)200iNC ) =20x10"*

The force is toward the right.

4 wxMaxima codes:

4) fpprintprec:5; k:9e9; gl:-2e-6; g2:5e-6;

prlntprec) 5
9.0*10"9

) -2.0*10"-6
) 5.0*107-6
5) El: k*abs(ql)/3"2;
) 2000.0
i6) E2: -k*g2/5"2;
) -1800.0
%$17) E: E1+E2;
E 200.0
%$i8) g3:1le-6;
g3) 1.0*10"-6
%$i9) F: g3*E;
F 2.0*%10"-4

Comments on the codes:

(%i4) Set the floating point print precision to 5 and assign values of
k, g1 and q».
(%15), (%16), (%i7) Calculate E, E», and E. Part (a).
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<___§£)_Hl _____ > <_________5'_O_IE _________ >
& oo ©
q1 P q2

Fig. 4.14 Two charged particles’ configuration, Problem 4.10

<___2‘9in______><__________5£)_nl ________ >
Ottt ©
q1 E1 E» P q2

Fig. 4.15 Determining electric field at point P, Problem 4.10

(%i18) Assign g3.
(%19) Calculate F. Part (b).

Problem 4.10 Two particles of charges ¢; = —2.0 x 107° Cand g, = 5.0 x 107
C are arranged as in Fig. 4.14. Calculate the electric field at point P.

Solution

Figure 4.15 shows the two charged particles, point P, and electric fields due to the
charges at the point.

The magnitude of electric field due to charge ¢; at point P is, Eq. (4.3),

=2000 N C7 L.

2 -6
g1 9 109Nm (2.0 x 107° Q)
2 C? (3.0 m)?

The direction of the field is toward the left because ¢; is negative. The electric
field is written as

E, = —2000iNC~".

The magnitude of electric field due to charge ¢, at point P is, Eq. (4.3),

= 1800 N C L.

2 -6
9> oNm~\ (5.0 x 107 C)
E,=k==19x%x10

2 r? ( x C? ) (5.0 m)2

The direction of the field is toward the left because ¢ is positive. The electric
field is written as

E, = —1800iNC !
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Therefore, the electric field due to both charges at point P is
E=E,+ E, = (-2000—1800)i NC~! = —3800i N C!

The direction of the field is toward the left.

4 wxMaxima codes:

($14) fpprintprec:5; k:9e9; gl:-2e-6; g2:5e-6;
(fpprlntprec) 5

(k) 9.0*10"9

(ql) -2.0*10"-6

(q ) 5.0*10%-6

(%15) El: -k*abs(ql)/3"2;
(E ) -2000.0

(%16) E2: -k*q2/5"2;

(E2) -1800.0

($17) E: E1+E2;

( -3800.0

Comments on the codes:

(%i4) Set the floating point print precision to 5 and assign values of
k, q1, and q>.
(%15), (%i16), (%i7) Calculate E;, E;, and E.

Problem 4.11 Charges of 5.0 and —8.0 wC are placed on the x-axis at x = 0 and x
= 1.0 m, respectively. Where should a third charge be placed so that the electrical
force on it is zero?

Solution

Figure 4.16 shows the two charges on the x-axis. Any charged object will not be
acted by any electrical force if it is placed in zero electric field region, because F =
qE. Therefore, we need to find a point of zero electric field on the x-axis.

Let P be the point where the electric field is zero and / the distance from P to the
first charge. We assume / to be a positive number. At P, the electric fields due to 5.0
and —8.0 nC charges must be of the same magnitude but opposite in sign. So,

[ q1=50puC ¢g2=-8.0uC
€ >
e OO
P x=0 x=1 x (m)

Fig. 4.16 Determining point of zero electric field, Problem 4.11
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E| = |E|,
D lg21 _
12 +1)?
This gives
5 8
27 1+ DY

[=3.8mor —0.44 m.

From Fig. 4.16, the solution / = 3.8 m corresponds to the position of the arbitrary
third charge at x = —3.8 m. At this point, the electric field is zero. Any charged
particle placed at the point will not be acted by any electrical force. The —0.44 m
value is not accepted because we require / to be a positive number.

4 wxMaxima codes:

%i5) fpprintprec:5; ratprint:false; k:9e9; gl:5e-6; g2:-8e-6;
fpprintprec) 5

(

(

(ratprint) false

(k) 9.0*10"9

(ql) 5.0*10"-6

(gq2) -8.0*10"-6

(%17) solve(k*ql/172 = k*abs(g2)/(1+1)"2, 1)$ float(%);
(%07

%07) [1=-0.44152,1=3.7749]

Comments on the codes:

(%i5) Set the floating point print precision to 5 and internal rational number print
to false, and assign values of k, ¢y, and ¢,.
(%i7) Solve kqy /1> = k|qz|/(L + 1)? for L.

Problem 4.12 Figure 4.17 shows three charges g; = 4.0 nC, g, = —6.0 nC, and g3
= 8.0 nC, on a plane. Calculate the electric field at the origin.

Solution

Electric field due to the distribution of point charges can be calculated by the formula,
Eq. (4.4),

qi N
E = k’j{: ;3'} =k j{: ;zl},
i ! i !

where ¢; is the i th charge, r; is the displacement vector from the charge to the
observation point, and 7#; = Z is the unit vector. The electric field at the origin due
to the three charges is
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Fig. 4.17 Configuration of y (m)
three charges, Problem 4.12
4 -
q3 q2
3 (-mmmmmee O
|
2 + |
|
|
1 :
q1
)
0 1 2 3 4 5 x(m)
91 92 q3
E = k[grl + gi’z + E"{l
_ 9Nm2) “40x10°°C) .
_<9x10 < @.0 m)? (—4im)
(—6.0 x 1076 C) (—4i —3j)
(5.0 m)? Pooym
(8.0 x 1070 C) .
w3 |

= (=522i —6704j) NC .

The magnitude of the electric field is

E=+(—522)2+ (—67042NC ' = 6724 NC!,

and the angle of the electric field with the x-axis is

6 — tan—' [ 2072 Z 2660,
522

The electric field E and the angle 6 are shown in Fig. 4.18.

4 wxMaxima codes:
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Fig. 4.18 Determining y (m)
electric field at the origin due
to three charges, Problem 4 —+
4.12 g3 q
3 (s O,
/
s
// I
2 4 L I
2"50m !
E, - I
1 4 . !
|
0 f/ L q1
—NT (O
E; N
| 1 2 3 4 5 x(m)
lv
| B
Ev
($15) fpprintprec:5; k:9e9; gl:4e-6; g2:-6e-6; g3:8e-6;
(fpprintprec) 5
(k) 9.0%1079
(ql) 4.0*107-6
(q2) -6.0%10"-6
(q3) 8.0*107-6
($18) rlvec:[-4,0]; r2vec:[-4,-3]; r3vec:[0,-3];
(rlvec) [-4,0]
(r2vec) [-4,-3]
(r3vec) [0,-3]
($19) Evec: k*(gl/4"3*rlvec + g2/573*r2vec + g3/3”3*r3vec);
(Evec) [-522.0,-6704.0]
($110) E: sqgrt(Evec[l]”2 + Evec[2]"2);
(E) 6724.3
(%$111) theta: atan(Evec[2]/Evec[l]);
(theta) 1.4931
($112) theta deg: float (theta*180/%pi);
(theta deg) 85.548
(%$113) 180+theta_deg;
(%013) 265.55
Comments on the codes:
(%15) Set the floating point print precision to 5 and assign values
of k, q1, g2, and g3.
(%i18) Assign vectors ry, rp, and r3.
(%19) Calculate electric field vector E.
(%110) Calculate the magnitude of the electric field E.

(%i11), (%112), (%113) Calculate angle 6 between E and the x-axis.

Alternative solution: Another way to tackle the problem is shown in Fig. 4.18.
First, we calculate the magnitudes of electric fields due to the three charges at the
origin. Then, we add the x and y components of the fields.
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In the figure, E;, E,, and E5 are electric fields at the origin due to charges ¢, g2,
and g3, respectively. The magnitudes of the electric fields are

Nm*) 4.0x 1076 C
B =L = (9 100 M) 30X ) _msoNc,
; C 4.0 m)?
Nm*\ (6.0 x 10° C
Ey = k2l — (95100 M) 00 ) _ai0NC,
2 C (5.0 m)?
Nm*) (8.0x 1076 C
By = kL = (95100 M) B0 X ) _gooo N,
r3 C (3.0 m)2

The resultant electric field in the x direction at the origin is
E.=—E; + E, cos¢ =[—-2250 + 2160 (4/5)]NC ' = —522 N C".
The resultant electric field in the y direction at the origin is
E, = Eysing — E3 = [2160 (3/5) —8000] N C™' = —6704 N C™'.
Thus, the electric field at the origin is
E = (-522i —6704j) NC .

The electric field E is shown in Fig. 4.18.

4 wxMaxima codes:

($15) fpprintprec:5; k:9e9; gl:4e-6; g2:-6e-6; g3:8e-6;
(fpprintprec) 5

(k) 9.0%10"9

(ql) 4.0*10%-6

(q2) -6.0*10"-6

(q3) 8.0*10"-6

(%18) El:k*gl/472; E2:k*abs(g2)/5%2; E3:k*q3/3"2;
(E1) 2250.0

(E2) 2160.0

(E3) 8000.0

(%$110) Ex:-E1+E2*(4/5); Ey:E2*(3/5)-E3;

(Ex) -522.0

(Ey) -6704.0

Comments on the codes:

(%15)  Set the floating point print precision to 5 and assign values of k, g1, ¢», and
qs3.

(%18)  Calculate magnitudes of electric fields E, E», and E3.

(%i110) Calculate E, and E, the components of E.
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Problem 4.13 Figure 4.19 shows two charges, each of + ¢, separated by a distance
of 2a.

(a) Determine the electric field at point P a distance x away.
(b) What is the field when x > a?

Solution

(a) Figure 4.20 shows the two charges, point P, electric fields due to both charges
at P, i.e. E| and E;, and related distances and angle.

The magnitude of the electric field at P due to the first (top) charge is,

I
~< E>

' e E1

Fig. 4.20 Determining electric field at point P, Problem 4.13
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q q
E& ZZk;E ::k;ET;T;E'

This electric field expressed as a vector is

E1:E10059i—E15in9j
q X . q a .

=k . i—k .
A+ JEie @A Jaga)

The magnitude of the electric field at P due to the second (bottom) charge is

q q

Ey=k= =k——.
2= a? + x2

This electric field expressed as a vector is

E, =FE;cosfi+ E;siné j
SNy, SR, S G B S
a’>+x% a2+ x2 a?+x? a2+ x2

The electric field at point P is the vector sum of the two electric fields,

2kqx
E = 121 + 122 = E;;E—qji;53§7§ 1.

The magnitude of the electric field is (aﬂ‘% in the positive x direction.

4 wxMaxima codes:

(%$11) Elvec: [k*g*x/(a”2+x"2)/sqrt(a”2+x"2),

-k*g*x/ (a”2+x"2) /sqrt (a”2+x"2)1;
(Elvec) [(k*g*x)/(x"2+a”2)"(3/2),-(k*g*x)/ (x"2+a"2)"(3/2)]
(%$12) E2vec: [k*g*x/(a”2+x"2)/sqrt(a”2+x"2),

k*g*x/ (a”2+x"2) /sqgrt (a”2+x"2)];

(E2vec) [(k*g*x)/ (x"2+a”2)"(3/2), (k*g*x)/ (x"2+a”2)"(3/2)]
(%$13) Evec: Elvec + E2vec;
(Evec) [(2*k*g*x)/(x"2+a”2)"(3/2),0]

Comments on the codes:

(%il) Assign electric field vector E;.
(%i12) Assign electric field vector E,.
(%i13) Calculate electric field vector E.

(b) Whenx > a ~ xlz so the electric field is,

X
> @ x2)3 2
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Fig. 4.21 An electric dipole,
Problem 4.14

109

Problem 4.14 Figure 4.21 is an electric dipole, that is, two electric charges of the
same magnitude but opposite in signs, separated by a distance of 2a.

(a) Determine the electric field at point P a distance x away from the center of the

electric dipole.

(b) What is the electric field if x >> a?

Solution

(a) Figure 4.22 shows the electric dipole and electric fields at point P.

The magnitude of electric field at point P due to top charge is

q q
b=k =t

This electric field is written in vector form as

Fig. 4.22 Determining

electric field at point P of an
electric dipole, Problem 4.14

E,=E;cosfi— E;sinf j.

of
|
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The magnitude of electric field at point P due to bottom charge is the same,

q

o=

_ 194 _
E, = kr—2 =k
The electric field is written in vector form as
E,=—E cosfi— E;sinb j.

The electric field at point P is the vector sum of E| and E>,

kq a .
a2 + x2 ’ (az_ch)l/zJ

E=E,+E,=-2E;sinfj=-2x
2kqa
_(a2 + x2)3/2 J:

This is the electric field due to an electric dipole at a distance x away. The direction
of the electric field is to the negative y direction, that is, —j direction.

4 wxMaxima codes:

(%$11) El: k*g/(a"2+x"2);

(E1) (k*q) / (x"2+a”2)

($12) Elvec: [El*x/sqgrt(a”2+x”2), -El*a/sqrt(a”"2+x"2)1];
(Elvec) [(k*g*x)/ (x"2+a”2)"(3/2),-(a*k*q)/ (x"2+a”2)"(3/2)]
($13) E2: E1;

(E2) (k*q) / (x"2+a”2)

(%14) E2vec: [-E2*x/sqrt(a”2+x"2), -E2*a/sqrt(a”2+x"2)1;
(E2vec) [-(k*g*x)/(x"2+a”2)"(3/2),-(a*k*q)/ (x"2+a"2)"(3/2)]
($15) Evec: Elvec + E2vec;

(Evec) [0,-(2*a*k*q)/ (x"2+a”2)"(3/2)]

Comments on the codes:

(%il), (%i12) Assign E| and vector E|.
(%i13), (%14) Assign E, and vector E,.
(%i15) Calculate vector E.

(b) If x> a, then m
electric dipole is,

~ +5. The electric field at a point far away from the

2k
p_ 2kqa.  qa

PORE  2megx? )

This means that at a point far away from the electric dipole, the magnitude of the
electric field is inversely proportional to the cube of the distance.



4.2 Problems and Solutions 111

Problem 4.15

(a) Figure 4.23 shows a wire of length 2L with linear charge density A. Calculate
the electric field at point P, a distance y away from the wire.
(b) What is the electric field if the wire is very long?

Solution

Figure 4.24 shows the wire and other quantities needed to solve the problem. Consider
an element of the wire of length dx. Electric field at P due to this element is calculated.
The electric field due to the whole wire is then calculated by the integration of all
elements.

The electric charge of wire element dx is,

dg = A dx,
g
| P
X
I
|
Y
|
I
-
-———Q ————=
-L 0 L X

Fig. 4.23 Wire of length 2L and charge density A, Problem 4.15

E
dE
dEy
0
dEx | \P
y: \\\
| \
I NU
| \
| \
I N
| 0 A\
-—-———Q ) ) y—————-
—————— > <—— X
—L 0 x dx L

Fig. 4.24 Determining electric field at point P, Problem 4.15
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where A is the linear charge density. The charge produces the electric field dE at
point P. By Coulomb’s law, the magnitude of the field is

k dq kA dx
dE = — = ——.
72 X2+ y2

The electric field dE is resolved into the x component of dE, and the y compo-
nent of dE,. Considering the whole wire, the x component of the field vanishes by
symmetry.

The electric field at P is the integral of the y component of the field for the whole
wire,

L
kA dx y
E=/dEV=/dEsin9:/ > .
; x2 + y? 2 2
i Yo o xc+y

L

_ka /' y2 dx _ka X L
= y (x2+y2)3/2 - y (x2+y2)1/2 1

—-L
_ 2kAL
T

The electric field is in the positive y direction. This is entry (c) of Table 4.1.

(b) If the wire is very long, L — 00 Lz)l 7 — 1, and the electric field is,

Ty

2kA A
E=—= .
y 2regy

This is entry (b) of Table 4.1. This result can be obtained by applying Gauss’s law
as well, as shown in Problem 5.6.

4 wxMaxima codes:

) assume (L>0); integrate(y"2/(x"2+y"2)~(3/2), %, -L, L);
) [L>0]
) (2FL*y"2%sqrt (yA2+L7°2)) / (YN 4+LA2%y 2)
) ratsimp (%) ;
) (2*L) /sqrt (y"2+L"2)
) E: k*lambda/y*%;
(2*L*k*lambda) / (y*sqrt (y*2+L~2))
) limit( E, L, inf);
) (2*k*lambda)/y

Comments on the codes:

L
(%i2) Calculate definite integral f u{%
—L .
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Fig. 4.25 Determining
electric field at center of
curvature of a semicircular
charged wire, Problem 4.16

dE cos@

—— ____0 -
dE sin@

dE
E

(%13) Simplify the result.
(%i4) Calculate E.
(%15) Calculate the limit of E as L goes to infinity.

Problem 4.16 Electric charge Q distributes uniformly on a semicircular wire. The
radius of the semicircle is a. Determine the electric field at the center of curvature of
the wire.

Solution

Figure 4.25 shows the semicircular wire and quantities to solve the problem. A wire
element of length ds is considered, and the electric field at the center of curvature
due to the element is calculated. The electric field is obtained by integration of the
whole length of the wire.

Linear charge density (charge per unit length) of the wire is

r=2
ma

The length element ds = a df is in the first quadrant. The charge of the length
element is

dg =Ads =Aadob.
Applying Coulomb’s law, the electric field dE due to the length element is

kd k kA
a a

dE
a

The electric field dE is resolved into dE cos € and dE sin 6. By symmetry, the
dE cos 6 vanishes when quadrants one and two are considered. Only the dE sin 0
component contributes to the field. By symmetry, the electric field at the center of
curvature is
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/2 /2

kX 2k 2k
E = 2/dEsin9 = 2/ —sinf do = —[—008913/2 =—
a
0

a
0

2kQ

a’m
_ Q0
2eom2a?’
The field is in the negative y direction.

4 wxMaxima codes:

(%$il) E: integrate(2*k*lambda/a*sin(theta), theta, 0, %$pi/2);
(E) (2*k*lambda) /a

Comment on the codes:

/2
(%il) Calculate the integral E = f 21% sinf df.
0

Problem 4.17 A wire is bent into an arc of a circle of radius a, Fig. 4.26. Charge on
the wire is Q. Determine the electric field at the center of curvature of the wire.

Solution

Figure 4.27 shows the charged wire, the electric fields, and other quantities to solve
the problem. A length element of the wire ds is considered and the electric field due
to the element is calculated. The effective electric field is calculated by integrating
the field due to the element for the whole wire.

Length of the wire is

Linear charge density (charge per unit length) is

Fig. 4.26 A charged arc, Q
Problem 4.17
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Fig. 4.27 Determining Q ds
electric field at center of = <
curvature of a charged arc,
Problem 4.17
: do /
AN —~
\\a I //k\ /
(/4 //
N | /// s
dE "\ | /AX 12
1%
dE
dE Y
F
L Q _20
wa/2 mwa’

For length element ds = a d6, the charge it carries is
dg =Ads = Aadb.
Applying Coulomb’s law, the electric field dE due to length element ds at the
center of curvature is

kdgq k)rxadd ki
2 2 a

dE

a a

The x component of the field is

kA
dE, = —dE cos § = ——cos 0 df.
a

The x component of the electric field due to the whole wire is

3m/4 L L
Py A
E, = /dEx = / A 050 do = — L isin 0174 Z o,
a a /2
/4

The y component of the field is

. kA
dE, = —dE sinf = ——sinf db.
a

The y component of the electric field due to the whole wire is
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3n/4 L .
A A
E, = /dEy = / ——sinf d6 = —|[cos 9]37T/4
’ a a /2
/4

kA
= 7[cos(375/4) —cos(r/2)]

a wa

a
232k Q

5 -

Ta

The direction of the field is in the negative y direction or the —j direction. This
means that the electric field at the center of curvature is

232k Q

ma?

E=E,+E,=— i

4 wxMaxima codes:

%il) Ex: integrate(-k*lambda/a*cos(theta), theta, %pi/4, 3*%pi/4);
Ex) O

%$i12) Ey: integrate(-k*lambda/a*sin(theta), theta, %pi/4, 3*%pi/4);
Ey) -(sqrt(2)*k*lambda)/a

Comments on the codes:
37 /4 3/4

(%il), (%i2) Calculate E, = [ —*cosf df and E, = [ —%sind d6.
/4 /4

Problem 4.18 A ring of radius R carries a charge of Q. Determine the electric field
along the axis of the ring.

Solution

Figure 4.28 shows the ring of charge Q and radius R. To solve the problem, a length
element of the ring ds is considered. The electric field due to the element at P is
calculated. Then, the effective electric field is calculated by integrating the field due
to the element for the whole ring.

Linear charge density of the ring is

Q2
27 R’

because the length (circumference) of the ring is 2w R. The charge of the length
element ds is
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Fig. 4.28 Determining E

electric field along the axis of

a charged ring, Problem 4.18 .
dE sin@

dg =\ ds.

Due to this charge, an electric field dE is present at point P,

_kdg _ khrds

dE = — >

The electric field dE is resolved into horizontal component dE cos 6 and vertical
component dE sin . When all elements are summed, the horizontal component
vanishes. This is by symmetry of the problem. The vertical component needs to be
summed. The electric field at point P is

27 R
kX sind kA kA
E:/dEsinQ:/ s ds:/—yds:_y.an
r2 r r3

0
_ 27mkARy
- (yz 4 R2)3/2
_ kQy
T O R

The direction of the field is upward. This is entry (a) of Table 4.1.

If point P is far away from the ring, y > R, and the electric field is E = kQ/y”.
This means that at a far distance, the electric field of a charged ring is just like the
field of a point charge.

4 wxMaxima codes:



i r: sqrt(y*"2 + R"2);

) rt (y"2+R"2)

i E: integrate(k*lambda*y/r"3, s, 0, 2*%pi*R);

) (2*%pi*R*k*y*lambda)/ (y"2+R"2) " (3/2)

%13) lambda: Q/ (2*%pi*R);

ambda) Q/ (2*%pi*R)
i4) E: integrate (k*lambda*y/r”3, s, 0, 2*%$pi*R);
) (Q*k*y) / (y"2+R"2) "~ (3/2)

Comments on the codes:
27 R
(%i1), (%i2) Assign r and calculate E = [ ]%ds.

0
27 R

(%13), (%i4) Assign A and calculate £ = f ]%ds.
0

4 Electric Field

Problem 4.19 A disk of radius R has a charge per unit area o, as shown in Fig. 4.29.

Determine the electric field at point P, a distance of y from the disk.

Solution

Figure 4.30 shows the disk and other quantities needed to solve the problem. The
disk is divided into rings. A ring of radius » with thickness dr is considered. The
electric field due to this ring is calculated and the electric field due to the disk is

calculated by summing the fields due to the rings.

A ring of radius r and thickness dr has a charge of,
dg =0 -2nrdr.

The electric field at P due to the ring is,

kydq — 2mkyordr

dE

Fig. 4.29 A charged disk,
Problem 4.19

BRGSO
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Fig. 4.30 Determining E
electric field at point P due to
a charged disk, Problem 4.19

This is obtained by using the result of Problem 4.18 or Table 4.1a that gives the
electric field along the axis of a charged ring. The electric field at P due to the disk
is obtained by integration of dE, that is,

R
rdr 1
E = /dE = 2nkya/W = |:—2nkya—:|
/2 2 2
) (y>+r?) VYt

—2nko [1— =2
/y2 + 1?2

I Y
2¢e9 V2 +R?)

where k = 1/(4mep). The direction of the electric field is vertically upward. This
result is the same as Table 4.1e.

If the disk is very wide, R > y, then the electric field becomes E = 2‘770 This is
the same as Table 4.1d.

4 wxMaxima codes:

($13) assume (R>0); assume (y>0); E: 2*%pi*k*y*sigma*
integrate (r/ (y*2+r~2)~(3/2), r, 0, R);

(%01) [R>0]

%02) [y>0]

(
(E) 2*$pi*k*sigma*y* (1/y-1/sqrt (y"2+R"2))
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Comment on the codes:
(%i13) Calculate the definite integral E = 2wkyo f 5

2+,2)3/2 .

4.3 Summary

e The electrostatic force between two charges of g; and ¢,, separated by a distance
of r, is

_ I qe
47'[80 r? '

e The electric field at a point is the force experienced by a unit positive test charge
placed at the point.
e The magnitude of electric field at a distance of r from a point charge of g is

_ 1 q
T Admegr?’

4.4 Exercises

Exercise 4.1 Two charges are separated by a certain distance. The magnitude of
their charges is halved and their separation is doubled. What happens to the electric
force between the charges?

(Answer: The electric force decreases by a factor of 16)

Exercise 4.2 Three charges, ¢; = 5.0 x 1073 C, ¢ = —3.0 x 1073 C, and g3 =
2.0 x 1073 C, are fixed at (0, 0), (3, 4) m, and (3, 0) m, respectively, as shown in
Fig. 4.31. Calculate the electric force on charge gs.

(Answer: F = 1.0 x 10*i 4+ 3.4 x 103jN, F=1.1x10*N, 8 = 19°)

Exercise 4.3 Two charges, g; = 5.0 x 107> C and ¢, = —3.0 x 107 C, are fixed
at (0, 0) and (3, 4) m, respectively, as shown in Fig. 4.32. Calculate the electric field
at point P.

(Answer: E= (5.0 x 101+ 1.7 x 10° j)NC1,E=53 x 10°°NC!,6 =19°)

Exercise 4.4 Figure 4.33 shows three equal point charges, ¢, fixed at corners of a
square of side /. Find the electric field at the center of the square.
(Answer: E = 2kq/I?, 0 = 45°)

Exercise 4.5 A proton is placed in a region of uniform electric field 400 N C~!.
What is the acceleration of the proton?
(Answer: 3.8 x 10" m s72)
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Fig. 4.31 Configuration of y (m)
three charges, Exercise 4.2 q2
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Fig. 4.32 Configuration of y (m)
two charges, Exercise 4.3 92
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Chapter 5 ®)
Gauss’s Law Creck fr

Abstract This chapter solves problems on Gauss’s law and its application. Gauss’s
law states that electric flux through a closed surface is equal to the electric charge
enclosed by the surface divided by permittivity of free space. Using Gauss’s law,
electric fields of some symmetric charge distributions are calculated. Solutions are
by analysis and computer calculation.

5.1 Basic Concepts and Formulae

ey

(©))

Electric flux is the number of electric field lines through a surface that is
perpendicular to the field lines. This is written as

& = / E -dA, (5.1)
surface

where E is electric field and dA is surface element vector. The surface element
vector is normal to the surface element and its magnitude is the area of the
surface element dA. For a surface of area A with its normal at an angle 6 with a
uniform electric field, the electric flux is,

@ =E-A=EAcosé. (5.2)

Gauss’s law states that net electric flux @ through a closed surface (Gauss’s
surface) is the net charge in the closed surface divided by ¢, that is,

<;b:y§E~dA:1, (5.3)
€0

where the constant,

g0 = 8.8542 x 107 2C2N~"'m~2,
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is the permittivity of free space and it is related to Coulomb’s constant k by

=8.9876 x 10° Nm?> C 2~ 9 x 10° Nm?> C2.

»
|

4 ey

(3) Using Gauss’s law, electric fields of symmetrical charge distributions can be
calculated. Table 5.1 lists a few electric fields that can be derived by application
of Gauss’s law.

(4) A conductor is in electrostatic equilibrium. The followings apply:

(a) Electric field is zero inside the conductor.

(b) For an isolated conductor, excess charge resides on the surface of the
conductor.

(c) Electric field outside the surface of a conductor is perpendicular to the
surface and the magnitude is o /ey where o is charge per unit area.

(d) The charge on a conductor accumulates at sharp points, that is, regions
where a radius of curvature of the surface is smallest.

5.2 Problems and Solutions

Problem 5.1 Figure 5.1 shows a wedge-shaped closed surface in a uniform electric
field of 50 N C~!. Calculate the electric flux across each surface and the flux through
the wedge.

Solution

Figure 5.2 shows the wedge-shaped closed surface, electric field, surface element
vectors, and related angles.

Electric flux is, Eq. (5.1),

cD:/E-dA.

For surfaces abe, befc, and dcf, the electric field E and surface element vector dA
are perpendicular to each other. Thus, E - dA = 0 and the electric fluxes across these
surfaces are zero,

(pube - (pbefc = ‘pdcf =0.

For rectangular surface abcd, the electric flux across it is,

qﬁabcd:/E~dA:/50dAcos180":—SO/dA:—SO(l x2)Nm? C~!

=—100Nm?> C~ L.
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Table 5.1 Electric fields of a few charge configurations derivable by Gauss’s law

Configuration Electric field
(a) A spherical insulator of radius R with
xE T T T~ uniform charge distribution and total charge
A Q
N\
\
\ —ko _ _0
// \ E_r2_47reor2’ r>R
\ ko, _ _0
| | E_Fr_4ﬂ£oR3r’ r=R
| | where r is distance of observation point to
\\ // center of the sphere
/
\\ ,
N 7
~ N~ —_— — - -
(b) P A spherical shell of radius R with charge O
T T~ _ ko _ [0}
&/ Q \\\ E_rT_4zrsor2’ rzR
/N \ E=0, r<R
/ \ where r is distance of observation point to
'/ \‘ center of the shell
\ |
\ /
\ //
\ ,
N 7
~ N~ —_— — - -
(c) A long rod with charge per unit length A
A E= 2k _
— r T 2meyr
A where r is perpendicular distance from the
r rod to observation point
__________ _.—>
Vv
(d) , A charged insulator plate, with a charge per
/ unit area of o
o E= 2‘770 outside the plate

(continued)
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Table 5.1 (continued)

5 Gauss’s Law

Configuration Electric field
(e) . A conducting plate with a charge per unit
area of o
o E = Z outside the plate
0
E E = 0 in the plate
————— —>p
) A parallel plate capacitor with a charge of O
Q E = 5% between the plates
L+ + + F+ + + 0
A
E
= - - - -
(€3] A solid conducting sphere of a radius R and
E//’—‘\\ a charge of O
N Q \\ E:%:—Qz, r>R
/ \ r 4megr
/ \ E=0 r<R
/ \ where r is the distance of observation point
{ } to the center of the sphere
\ /
\ //
\
\ il
h ~ ~ - -
(h) A cylindrical shell of radius R with a charge
&E//"Z\\\ per unit length of A
N 2k, 3
/\ \\ E:TZZﬂeor’ r=R
/ \ E=0, r<R
/ \ where r is distance of the observation point
{ } to the axis of the shell
\ /
\ //
\
\ il
> ~ ~ - -
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Fig. 5.1 A wedge-shaped y (m)
closed surface in a uniform o
electric field, Problem 5.1 E=50NC 115
> : e
I
a K4 S
//_ __________
s 3 x(m)
-~
dl ==
2
z (m)
Fig. 5.2 Determining y (m)
lectric fl Probl 1 -
electric fluxes, Problem 5 E=50NC 1 ‘ , *dA
| == €
a T ./-/_9 ______ 1
- E 3 x(m)
dAY _
a| =52 dA
2
z (m)

For rectangular surface aefd, the electric flux across it is,

@ue_fd=/E~dA=/50dA cosf =50 cos@/dA

2

=50 — - (1 xv/13) Nm?> C!
J13

=100 N m? C".

The electric flux across the wedge closed surface is zero because the sum of
electric fluxes of the five surfaces is zero.

Problem 5.2 Figure 5.3 shows imaginary surfaces of a cylinder of length L and radius
r in the region of uniform electric field Ey in the positive x direction. Calculate the
electric flux across,

(a) surface 1
(b) surface 2
(c) surface 3
(d) enclosed surface of the cylinder.

Solution

Figure 5.4 shows the cylinder surfaces, surface element vectors, and the electric field.



128 5 Gauss’s Law

Fig. 5.3 Imaginary surfaces 3
of a cylinder, Problem 5.2 i

Fig. 5.4 Determining 3 dA
electric fluxes, Problem 5.2 )

Electric flux is, Eq. (5.1),

D = / E -dA,
where dA is surface element vector and E is electric field. The electric field is,
E = Eyi.

(a) For surface 1, dA = —dAi. The electric flux across surface 1 is,
o =/E-dA:/Eoi-(—dAi)z—EO/dA=—E0nr2.
(b) For surface 2, dA = dAi. The electric flux across surface 2 is,
q>=/E-dA=fE0i-dAi=E0/dA=E0m2.

(c) For surface 3, dA is perpendicular to E. The electric flux is zero.
(d) From the three results, electric flux through the enclosed surface of the cylinder
is zero, that is,
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Fig. 5.5 A point charge and - ~
an imaginary Gauss’s i N
surface, Problem 5.3 / \

—Eonr? 4+ Egnr? +0=0.
Problem 5.3 Apply Coulomb’s law to determine the electric field around an isolated
point charge q.
Solution

Figure 5.5 shows the point charge, imaginary Gauss’s surface, and surface element
vector to solve the problem.

The imaginary Gauss’s surface is the surface of a sphere of radius r. Electric field
E due to the positive point charge is directed out in a radial way from the charge and
is normal to the sphere surface. This means that E is parallel to dA. Equation (5.3),

%E-dA:i,
)
fEdA:i.
&o

But by symmetry, E is constant at every point on the surface. Thus,

becomes,

%E-dA:EjédA:EA;TrZ:i’
£0

where 9§ dA = 47 r? is area of the spherical surface. Therefore, the electric field is,

1
4 _ .4

4reg r? r2
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Fig. 5.6 A point charge and e~ dA
an imaginary closed Gauss’s ;7 \\
surface, Problem 5.4 // - \P [
/ . E
/ q a0 ro\ \\
| \ "dA cosd
\ \
\ |
\\ |
N /
~ - _ -~

Problem 5.4 Derive Gauss’s law using electric field of a point charge g.
Solution

Figure 5.6 shows a point charge ¢ inside an arbitrary imaginary closed surface
(Gauss’s surface). The surface element vector is dA, position vector of point P on
the surface is r, solid angle subtended by dA is df2, angle between dA and r is 0, and
unit vectoris ¥ = r/r.

The electric field at point P due to the charge is, Eq. (1.3),

q . qg .
E=k=r= r.
r2 4 egr?
The electric flux across surface dA is,
dA 0
dd = E.dA=—9 _5.qa=_9 2207 _ 4 ,q
4 egr? 4eyg 12 4 eg

where dS2 is a solid angle element subtended by dA. The electric flux for the whole
closed surface is,

d):quﬁzygE-dA:f 1 40-=_1 fdszz 9 4p=4
4y 4mey 4 ey &0

Therefore, Gauss’s law has been derived, that is,

fE.dAzi
[20)

Problem 5.5 A solid non-conductor sphere of radius R has uniform charge density
of p.

(a) Using Gauss’s law, determine the electric field outside and inside the sphere.
(b) What is the electric field at the surface of the sphere?
(c) Sketch the variation of electric field versus radial distance.



5.2 Problems and Solutions 131

T~

- ~ ?
A AN
/
\
\

() (b) (©

Fig. 5.7 Gauss’s surface a out of and b in the charged sphere, and ¢ curve of E against r, Problem
5.5

Solution

(a) Figure 5.7a shows the charged sphere of radius R with charge density p enclosed
by imaginary spherical Gauss’s surface of radius r.

Electric field outside of the charged sphere is calculated as follows. Take a
Gauss’s surface in the form of a surface of a sphere of radius r. Apply Gauss’s

law, Eq. (5.3),
f E.da=1<,
€0

4_p3
TR
E -4gr? =3 p.

)
The electric field for the region outside the charged sphere is

3

R
P rsR (1)

E(r)=——
(V) 380r

Electric field in the charged sphere is calculated as follows. Take a Gauss’s
surface in the form of a surface of a sphere of radius r as shown in Fig. 5.7b.

Apply Gauss’s law,
?ﬁ E-da=2
€0

E -4y’ =

The electric field in the charged sphere is,

Ery ="+ r<R. )
380
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(b) Electric field at the surface of the charged sphere can be calculated using Eq. (1).
At the surface, r = R, and the electric field is,

pR* PR

E(R) = = .
( ) 380R2 380

The result is obtained by using Eq. (2) as well,

P
E(R) = 3—80R.

(c) Using results of parts (a) and (b), the curve of electric field versus radial distance
can be sketched and this is shown in Fig. 5.7c.
Let the total charge on the non-conductor sphere be Q. We have,

Q

P=7_13
§7TR

The electric field for the region outside the charged sphere becomes

R3
E(r) = p = L, r > R.
3gor?  4dmegr?

The electric field in the charged sphere becomes

E@r) = Lr = 0 r,
3g0 4 egR3

r <R.

These results are entries (a) of Table 5.1.

Problem 5.6 A wire a has charge per unit length of L. Determine the electric field
around the wire by Gauss’s law.
Solution

Figure 5.8 shows the wire with a charge per unit length of L. An imaginary closed
Gauss’s surface is in the form of curved cylindrical surface of length L and radius
r (surface 1) and two circular surfaces of radius r (surfaces 2 and 3). In the figure,
surface element vectors dA and electric fields E are indicated as well.

By symmetry, the electric field is radial and perpendicular to the wire. By Gauss’s

law, Eq. (5.3),
jﬁ E-da=12,
€0

AL
fE~dA+/E-dA+fE-dA=—,
)

1 2 3
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Fig. 5.8 A long charged 1 E AdA
wire and an imaginary closed E, ] T 3
Gauss’s surface, Problem 5.6 L

E-2nrL+04+0=—.
€0

The integral of surface 1 is E - 27 r L because the surface element vector is parallel
to the electric field, while those of surfaces 2 and 3 are zero because surface element

vectors are perpendicular to the electric fields. Therefore, the electric field around a
charged wire is

AL .2
g -2mrL  2megr 1

b

where r is the distance of the observation point from the long wire. This is the same
as entry (b) of Table 4.1 or Problem 4.15(b).

Problem 5.7 A solid spherical insulator of radius a having a uniform charge density
is shown in Fig. 5.9. The total charge on the sphere is Q. Concentric to the sphere is
a spherical shell conductor with inner and outer radii of b and ¢ (b < ¢). Determine

(a) the electric field for regions r <aanda<r<b

Fig. 5.9 A non-conducting
charged sphere and a
conducting spherical shell,
Problem 5.7

—_

insulator -

//

~
conductor ~

=N
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e \\\
0 ;0 N
/ \
/ a/ \
/ / \
E E | r / \l
< .\ |
\ /
\ /
\ //
N
\\\ ///
(@) (b)

Fig. 5.10 Gauss’s surface a in and b out of the non-conducting charged sphere, Problem 5.7

(b) surface charge densities of the inner and outer surfaces of the shell.

Solution

(a) Figure 5.10a shows the charged solid spherical insulator. Consider region r < a

in the sphere.
Charge density of the solid sphere is,

0

43"
37a

p:

Consider an imaginary closed Gauss’s surface in the form of a surface of a
sphere of radius r. Charge in the closed Gauss’s surface is

4 (0] 4 r’
q:p-gﬂr3=4—-§n’r3——3Q.

2 3
37'[61 a

By Gauss’s law, Eq. (5.3),

?ﬁE.dAzi,
[200)
l"3

E -4mxr? =

The electric field is

1 0 k0

==
a3 a3

7, (r <a).

4 e
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Fig. 5.11 Charges on the
inner and outer surfaces of
the spherical shell, Problem
5.7

Figure 5.10b considers the region outside the solid sphere but inside the
spherical shell. Take an imaginary closed Gauss’s surface as the surface of a
sphere of radius r. By Gauss’s law, Eq. (5.3),

fEdA:i
€0

E -4nr® = g
€0

This gives the electric field as

1 0 kO
=4n80r—2=r—2, (a<r<b).

(b) Figure 5.11 shows that charge Q on solid insulator sphere induces charge —Q
and +Q on the spherical conductor shell. The inner and outer surfaces of the
conductor shell have charges of —Q and +Q, respectively.

Therefore, the inner surface charge density o, and the outer surface charge
density o, are

-0 +0

T a2 T e

Op

Problem 5.8 A metal sphere of 0.50 cm radius has an 8.0 nC charge on it. Calculate
the electric field at the surface of the sphere.

Solution

Figure 5.12 shows the metal sphere of radius R with charge Q. An imaginary closed
Gauss’s surface in the form of a surface of a sphere very near the surface of the metal
sphere and the electric field are shown as well.

Applying Gauss’s law to the closed Gauss’s surface gives, Eq. (5.3),
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Fig. 5.12 A charged metal
sphere and an imaginary
Gauss’s surface, Problem 5.8

%E-dA 9
0

&
E-47R* = 2,
&o

__9Q _ko

4w R%¢y  R?’

Inserting known numerical values, the electric field at the surface of the metal
sphere is

_kQ (9% 10°Nm? C)(8.0 x 107 C)
T R2 T (0.50 x 102 m)?2
=29x10°NC™

E

4 wxMaxima codes:

i4) fpprintprec:5; k:9e9; Q:8e-9; R:0.5e-2;
pprintprec) 5

) 9.0*10"9

) 8.0*10"-9

) 0.005

i5) E: k*Q/R"2;

) 2.88*10%6

Comments on the codes:

(%i4) Set the floating point print precision to 5 and assign values of k, Q, and R.
(%i5) Calculate E = kQ/R>.

Problem 5.9 Dielectric strength of air is 3.0 x 10° N C~!. Calculate the maximum
charge on a metal sphere of radius 0.50 cm. The dielectric strength of a material is the
maximum electric field that the material can withstand without undergoing electrical
breakdown and becoming electrically conductive.

Solution

Dielectric strength of air equals 3.0 x 10° N C~! means if the electric field in air
exceeds the value, sparks will be produced. Using result of Problem 5.8, the maximum
amount of charge on a sphere before sparks are produced is,
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kQ
E=—,
R2
0 ER> (3.0 x 10° N C71)(0.50 x 1072 m)?
Tk (9 x 10° N m2 C™2)
=83x 107" C.
4 wxMaxima codes:
($14) fpprintprec:5; k:9e9; E:3e6; R:0.5e-2;
(fpprintprec) 5
(k) 9.0%1079
(E) 3.0%10"6
(R) 0.005
(%15) Q: E*R"2/k;
(Q) 8.3333*107-9

Comments on the codes:
(%i4) Set the floating point print precision to 5 and assign values of k, E, and R.
(%i5) Calculate Q = ER?/k.

Problem 5.10 The electric field between plates of a parallel plate capacitor is
300 kV m~!. The area of the plate is 600 cm?. What is the charge on the plate?

Solution

Figure 5.13 shows the parallel plate capacitor, electric field E, and charge Q. An
imaginary closed Gauss’s surface is the surface of a box around the upper plate of
the capacitor as shown. The area of the bottom surface of the box is A.

By Gauss’s law, the electric field can be calculated as follows

f E-da=12,
)
)
)
E=2.
SoA
Fig. 5.13 A parallel plate r-—————"7"7— é _________

capacitor and an imaginary

Gauss’s surface, Problem + +
5.10 ___k_i__ _J'[
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The charge on the plate is

Q = SoAE
= (8.8542 x 1072 C2 N~ m™2)(600 x 10™* m?)(300 x 10* Vm™)
=1.6x 107" C.

4 wxMaxima codes:

fpprintprec:5; epsilon0:8.8542e-12; A:600e-4; E:300e3;

pprlntprec) 5
psilon0) 8.8542*107-12
3.0*%10"5

(%

(f

(e

(A) 0.06
(E)

($15) Q: epsilonO*A*E;
(Q)

Q 1.5938*10"-7

Comments on the codes:

(%i4) Set the floating point print precision to 5 and assign values of &, A, and E.
(%i15) Calculate Q = gy AE.

5.3 Summary

e Gauss’s law says that if ¢ is the total charge enclosed in a closed surface, then the
total outward electric flux through the closed surface is g/¢y, that is,

f E-da="21,
)
surface

e The electric fields of some symmetrical charge distributions can be calculated by
applying Gauss’s law.

5.4 Exercises

Exercise 5.1 Figure 5.14 shows a 5.0 wC charge placed at the center of an imaginary
cube. What is the electric flux through the cube surfaces?
(Answer: @ =5.6 x 10° Nm>C™!)
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Fig. 5.14 A charge and an AT T T T T
imaginary cube surfaces, s et
. 4 | Vi
Exercise 5.1 / I Y
7/ a /
———t——— 1

5.0 uC
)—————————I—————l
/ | //
// | 7
/ | //
v 2/
Fig. 5.15 Curve of E E q
against r, Exercise 5.4
R | Adrmegr
47eoR? \
7Z'6'0R \
R 7

Exercise 5.2 Charge ¢ is distributed uniformly throughout a non-conducting sphere
of radius R. Using Gauss’s law, calculate the electric field at a point R/2 from the
center of the sphere.

L _ 4
(Answer: E = 8MORZ)

Exercise 5.3 Charge ¢ is distributed uniformly throughout a spherical insulating
shell with outer radius R. What is the electric flux through the outer surface of the
shell and the electric field at the outer surface?

(Answer: @ = 810, E = A#W)
Exercise 5.4 A solid conducting sphere of radius R has a charge of g. Show that
the electric field E as a function of distance » from the center of the sphere is as in
Fig. 5.15.

Exercise 5.5 The electric field 2.0 cm from a uniformly charged long wire is
30 N C~'. What is the electric field 6.0 cm from the wire?
(Answer: E=10NC™1)



Chapter 6 ®)
Electric Potential gedes

Abstract This chapter solves the problem of electric potential energy, electric poten-
tial difference, and electric potential. Every point in a region of electric field is asso-
ciated with an electric potential which is electric potential energy per unit charge
at the point. Potential difference is the difference in electric potential of two points
in the region of electric field. Solutions by analysis and computer calculation are
presented.

6.1

e))

2

Basic Concepts and Formulae

When a positive test charge g, is moved from point A to point B in an electric
field E, the change in electric potential energy is,

B
AU:UB—UAz—qO/E-ds, (6.1)

A

where U, and Up are potential energies at points A and B, respectively, and
ds is elementary displacement.

Potential difference AV between points A and B in the electric field E is the
change in potential energy divided by the test charge qo,

AU Uz U
AV:VB—VA:—:—B——A:—/E-ds, 6.2)
q0 q0 q0

where V4 = Ua/qo and Vg = Up/qy are potentials at points A and B,
respectively. The unit of electric potential is volt (V) or joule/coulomb (J C).
For uniform electric field E, potential difference between points A and B is
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3
“)

®)

(6)

6 Electric Potential

AV =—-E -d, (6.3)

where d is displacement along E. Thus, for two parallel plates at a potential
difference of AV separated by a distance of d, the magnitude of the uniform
magnetic field between the plates is E = AV/d.

Equipotential surface is a surface with the same electric potential. Equipotential
surface is perpendicular to electric field line.

Electric potential due to charge g at a distance r from the charge is

k 1
V:_C]: 2,
r drey r

(6.4)

where,

1
k= = 8.9876 x 10° Nm? C 2~ 9 x 10° Nm? C 2,

TTEY

is Coulomb’s constant, and

g = 8.8542 x 1072 C2 N~ m?,

is the permittivity of free space or the permittivity constant.
Electric potential due to a number of charges is the sum of electric potential
due to each charge,

qi
V=k —. 6.5
Electric potential energy U of charge g, and g, separated by a distance of r
is

U =12 (6.6)

I

U is the work done to bring the charges from infinite separation to separation
of r1,. Electric potential energy for the distribution of point charges is the sum
of the potential energy of every charge pair.

Electric potential due to continuous charge distribution is,

d
v=k | Y, (6.7)

r
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where dg is the charge element of the continuous charge distribution and 7 is
the distance of the element from the observation point.

(7) If electric potential as a function of coordinates is known, the electric field
component can be calculated from the derivative of the potential with respect
to the coordinate,

dv dv dv
Exz_ , E = ——, E,:——, 68
dx Y dy : dz ©8)

(8) Every point on the surface of a charged conductor in electrostatic equilibrium
has the same potential. The potential is constant at any point in the conductor
and it is the potential at the surface of the conductor.

(9) The work done to transport an electron through a potential difference of 1 V
is 1 electronvolt (eV). This means that

leV=e¢ AV = (1.602 x 107" C)(1 V) = 1.602 x 1077,

(10) Electric potentials due to four charge distributions are given in Table 6.1.

6.2 Problems and Solutions

Problem 6.1 Show that the electric potential at a distance r from a charge gis V =
kqlr.

Solution

Figure 6.1 shows charge ¢, point P at a distance of »’ away from the charge, and the
electric field E = kq/r’? due to the charge.
Electric potential at point r is defined by,

r

V—Vw=—/E~ds.

o0

This corresponds to the work done to bring a +1 C charge from oo to point 7. In
the equation, V, = 0, ds = —dr’, therefore,

[k k k
T PR )
r'2 r oo r

o0

We have shown that the electric potential at distance of r from a charge g is V =
kqlr.



144

6 Electric Potential

Table. 6.1 Electric potentials of a few charge configurations

Configuration Electric potential
(a) A ring of radius R uniformly charged, total charge Q,
0 — k2
, |V
X where x is the distance along the ring axis from the ring
________ ° center
(b) oV A uniformly charged disk of radius R, charge density per
I unit area o,
: V =2nko <Vx2+R2—x),
Xl where x is the distance along the disk axis from the disk
I center
() yooe—= A solid insulator sphere of radius R, uniformly charged,
</ N total charge Q, charge density p,
/ \ 3
_ 19 _ pR
/ \ V=k€=¢8r>R
| | _ ko 2\ 2_,2
| / v_ﬁ(—%)_%o(ye —r). r<R
\ /
\ /
AN s
~N o - -~
(d) g~ A solid conducting sphere of radius R, with charge Q,
e
< 2N V=kL r=R
/ \ V=40 R
| |
\ /
\ /
\ /
N s
~ ~ — -~
Fig. 6.1 Electric potential V q 14 ds P
at r away from a charge, ( )_ PR > /A — ——ep . o0
Problem 6.1 r E= kg
————————————————————— > -T2
r
rY

4 wxMaxima codes:

) assume (r>0) ;
) [r>0]
) V: integrate (-k*q/rprime”2, rprime, inf, r);

(k*q) /x
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Fig. 6.2 System of two q1 q2 displaced 7p)
charges, before and after one ~

.. EE— \
of them is displaced, @ @ \z
Problem 6.2 <___:_____>

r1=3.0m
€ >
rn=8.0m

Comment on the codes:
(%il) Assume r to be positive.
(%i2) Calculate the definite integral V = — Oro f%dr’.

Problem 6.2 Two charges ¢; = 4.0 x 10 C and ¢, = -8.0 x 10 C are separated
by a distance of 3.0 m. What is the electric potential energy of the two charges? One
of the charges is displaced so that the separation becomes 8.0 m. What is the change
in electric potential energy?

Solution

Figure 6.2 shows the charges in the initial and final instances.
The electric potential energy at the initial instance is, Eq. (6.6),

4.0 x 1074 C)(=8.0 x 104 C
Uinilial = kM = (9 X 109 N mZ C—Z)( X )( X )
' 30m
= -960 J.

The electric potential energy at the final instance is

4.0 x 1074 C)(=8.0 x 1074 C
Uit = K92 — 9 5 10° Nm2 2 E0X )(8.0 )
ry 8.0 m
= 360 1.

The change in electric potential energy is

Ufinal - U[nitial =-360J — (—960 J)
= 600 J.

This means that an increase in the separation of two oppositely signed charges
amounts to an increase in the electric potential energy.
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4 wxMaxima codes:

($16) fpprintprec:5; k:9e9; gl:4e-4; g2:-8e-4; rl:3; r2:8;
(fpprintprec) 5)

(k) 9.0*10"9

(ql) 4.0*10"-4

(q2) -8.0*10"-4

(rl) 3

(r2) 8

(%18) Uinitial:k*ql*g2/rl; Ufinal:k*ql*q2/r2;
(Uinitial) -960.0

(Ufinal) -360.0

($19) Ufinal-Uinitial;

(%09) 600.0

Comments on the codes:

(%16)
and r.

Calculate Ujpniriar = kq1q2/r1 and U yinar = kq192/72.
Calculate the change in electric potential energy.

(%18)
(%19)

6 Electric Potential

Set the floating point print precision to 5 and assign values of k, q1, g2, 71,

Problem 6.3 A charge of 5.0 nC is located at (0, 0) and a charge of —8.0 nC is
located at (1, 0) m. A third charge of 2.0 nC is moved from point A (0.5, 0) m to

point B (0, 1) m. What is the work done?

Solution

Figure 6.3 shows the two charges ¢; = 5.0 wC and ¢, = —8.0 wC, points A and B,

and the third charge g3 = 2.0 pC moved from A to B.

We calculate the electric potentials at points A and B due to charge 1 and 2. We

then calculate the work done to bring charge 3 from A to B.

Fig. 6.3 Configuration of y (m)
three charges, g3 is moved
from point A to point B, 1 T8
Problem 6.3 4;
\
\
\
\
\
N
05T ~
\
\
\
\
\
K&

x (m)

O
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The electric potential at point A due to charges 1 and 2 is, Eq. (6.5),

k k
y, = ko ke
1A A

Nm?\ /5.0x 107°C Nm?\/—-80x10°C
=(9x10° 9 x 10°
< e >( 0.50 m >+< e )( 0.50 m )

= —54000 V.

The electric potential at point B due to charges 1 and 2 is,

k k
VBZ—ql-i-ﬂ
B B
Nm?\ /5.0 x 107°C Nm?\/—-8.0x107°C
=(9x 10022 X +(9x 10022 X
C? 1.0m C? V2 m
= —5912 V.

The work to bring charge 3 from point A to B is,

Wag = q3(Vg — Vi) = (2.0 x 107% C)[—5912 — (—54000)] V
=96x 107217

The work done is the change in electric potential energy, g3Vp — g3V 4.

4 wxMaxima codes:

($19) fpprintprec:5; k:9e9; gl:5e-6; g2:-8e-6; g3:2e-6; rlA:0.5; r2A:0.5;
rlB:1; r2B:float(sqrt(2)):;

(fpprintprec) 5
k) 9.0*10"9
gl) 5.0*10"-6
g2) -8.0*10"-6
g3) 2.0*10"-6
rlA) 0.5
r2A) 0.5

) 1
r2B) 1.4142

%$i11) VA: k*gl/rlA + k*g2/r2A; VB: k*qgl/rlB + k*g2/r2B;
VA) -5.4*10"4

VB) -5911.7

%$112) WAB: g3* (VB-VA);

WAB) 0.096177

Comments on the codes:

(%19)  Set the floating point print precision to 5 and assign values of k, g1, g2, g3,
r14s 24, 1, and rap.

(%i11) Calculate electric potentials V4 = kq;/ria+kqg2/r24 and Vg = kq /115 +
kq>/r2p.
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Fig. 6.4 Configuration of 002m A 002m B 0.02m
three charges. Charge ’ -~ ) e @
g moves from A to B, ¢ and ®_ _____ UL

g are fixed, Problem 6.4
g1 q 92

(%i112) Calculate work Wap = q3(Vg — V).

Problem 6.4 Figure 6.4 shows two fixed particles of charges ¢; = 8.0 x 10~ C and
g2 =-8.0 x 107 C, separated by a distance of 0.06 m. A third particle of mass m =
0.002 kg with a charge of ¢ = 3.0 x 107 C is released from point A and moves to
point B. Determine

(a) electric potentials at A and B,
(b) velocity of the third particle at B, and
(c) work done by the electric field to move the third particle from A to B.

Solution
(a) The electric potential at point A due to charges 1 and 2 is, Eq. (6.5),

vk, 2 9 109Nm2 8.0x 107°C N —-8.0x107°C
= e _ = X
A iAo A C? 0.02 m 0.04 m

= 1800 V.

The electric potential at point B due to charges 1 and 2 is,

2 -9 —9
q1 q2 o N m 80x1077C —80x107C
Vp=k( L+ 22 )~ (9x10
B <r13+r23> (X C? )( 004m |+ 002m

= —1800 V.

The electric potential of point A is higher than that of B.
(b) When the third particle is at point A, it has electric potential energy. This energy
is converted to kinetic energy plus electric potential energy when it reaches
point B. We write,

Ky+Ujy=Kp+ Usp,
1
0+qVs = Emv2 +qVp,
where K is kinetic energy, U is electric potential energy, v is velocity of the

particle at point B, and g and m are charge and mass of the particle, respectively.
The velocity of the third particle at point B is,

2
v=/L(Vs = Vg)
m
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_ 2.0 x 1072 C)
B 0.002 kg

=0.10ms L.

[1800 V — (—1800 V)]

(c) Work done by the electric field to move the third particle is,

149

Wap = q(Va — Vi) = (3.0 x 1077 C)[1800 — (—1800)] V = 1.1 x 107> J.

4 wxMaxima codes:

ratprint:false;

k:9e9;

ql:8e-9;

rlA:0.02; r2A:0.04; rl1B:0.04; r2B:0.02; m:0.002;

(%1i11) fpprintprec:5;
(fpprintprec) 5
(ratprint) false

(k) 9.0*10"9

(ql) 8.0*10"-9

(gq2) -8.0*10"-9

(q) 3.0*%10"-9

(rla) 0.02

(r2a) 0.04

(rlB) 0.04

(r2B) 0.02

(m) 0.002

(%11

(vA) 1800.0

(VB) -1800.0

($115) solve (g*VA =
(%015) [v=-0.10392,v=0
($116) WAB: g* (VA-VB);
(WAB) 1.08*107-5

Comments on the codes:

(%ill)

3) VA: k*(gql/rlA + g2/r22d); VB:

.10392]

0.5*m*v~2 + g*VB, v)$ float(%);

g2:-8e-9;

k* (gl/rlB + g2/r2B);

q:3e-9;

Set the floating point print precision to 5 and internal rational number

print to false, and assign values of k, qi, q2, ¢, F14, '24, '1B, 2B, and

m.
(%113)

k(gi/rig + q2/728).

(%i15)
(%i16)

Problem 6.5

Solve gV4 = 0.5 x mv* + qVj for v.
Calculate work Wap = g(V4 — Vp).

Calculate electric potentials V4 = k(q1/r1a + q2/124) and Vg

(a) For a two-charge system shown in Fig. 6.5, determine the electric potential
energy and electric potential of the system. Determine also the electric field at

point A.

(b) Ifg,=-50x 107° C, determine all quantities in (a).



150 6 Electric Potential

Fig. 6.5 Configuration of 050m 4 0.50m
two charges, Problem 6.5 —_—

g1=50x10°C @2=50x10°C

Solution

(a) The electric potential energy of the two-charge system is, Eq. (6.6),

U:k =
C? 1.0 m

r2

=0.221J.

9192 <9 5 109N mz) (5.0 x 107 C)(5.0 x 107° C)

The electric potential at point A due to charges ¢, and g5 is, Eq. (6.5),

2 -6 -6
q1 7p) oNm 50x107°C 50x107°C
Va=kl—+—])=19%x10
A (rlA * F2A> < x C? )( 0.50 m + 0.50 m

=18x10° V.

The electric field at point A is, Eq. (1.4),

k k
Ei=-2i-"LEi=o
V) 7oA

(b) If g» = -5.0 x 107° C, the electric potential energy of the two-charge system
is, Eq. (6.6),

U=k

T2 1.0m

=—-0.221].

a9 _ <9 8 109Nr;12) (5.0 x 107 C)(=5.0 x 1076 C)

The electric potential at point A due to charges ¢g; and g5 is, Eq. (6.5),

2 -6 -6
q1 q oNm 50x107°C —=5.0x10""C
Va=kl—+—])=[9x%x10
A (rlA * r2A> ( * C? )( 0.50 m + 0.50 m

=0V.

The electric field at point A is, Eq. (1.4),
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q1 . q2 .
EA:kT l+le

A ToA
Nm?\50x107°C Nm2\ (=5,0 x 10°° C
:(9x109 T) i i—(9x109 "2“)( x19 794
C (0.50 m) C (0.50 m)

=36x10°NC'i.

4 wxMaxima codes:

($17) fpprintprec:5; k:9e9; gl:5e-6; g2:5e-6; rl2:1; rlA:0.5; r2A:0.5;
(fpprintprec) 5

(k) 9.0*10"9

(ql) 5.0*10"-6

(g2) 5.0*10"-6

(r1l2) 1

(rla) 0.5

(r2a) 0.5

(%$18) U: k*ql*g2/rl2;

(U) 0.225

(%19) VA: k*(gl/rlA + g2/r2R);

(VA) 1.8*10"5

(%110) EA: k*gl/rlA"2 - k*q2/r2A"2;
(EA) 0.0

(%$111) g2:-5e-6;

(g2) -5.0*10"-6

(%$112) U: k*gl*qg2/rl2;

(U) -0.225

(%$113) VA: k*(gl/rlA + g2/r23);
(va) 0.0

(%114) EA: k*ql/rlA*2 - k*q2/r2A2;
(EA) 3.6*10"5

Comments on the codes:

(%i7) Set the floating point print precision to 5 and assign
values of k, g1, g2, r12, 14, and r24.

(%18) Calculate electric potential energy U = kq1q2/712.

(%19) Calculate electric potential V4 = k(q1/ria+q2/724)-

(%10) Calculate electric field E4.

(%il1) Reassign ¢;.

(%112), (%113), (%i14) Recalculate U, V4, and E4.

Problem 6.6

(a) For a two-charge system consisting of g; and ¢, shown in Fig. 6.6, what is the
potential difference between points B and A, between points B and C?

(b) If a charge of 4.0 x 10~ C is placed at point A, what is the electric potential
energy of the charge?
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Fig. 6.6 A two-charge X C
system, Problem 6.6 // \\
/ \
/ \
// \
10 cm , \ 10 cm
/ \
/ \
/ \\
B 40cm / 60cm A4 40cm)\
o———G————-- ————
q1=12x10°C 2=-70x107C
Solution

(a) The electric potentials at points A, B, and C due to charges 1 and 2 are, Eq. (6.5),

; Nm?2\/12x10°C —7.0x107°C
VAZkZ{j—=<9XIO9 Cm>< x + x )

2 6.0x102m 40x102m

=225V,
v 9 100N m”\ /12 x 107°C L Z10x 10°°C
= X
? 2 J\40x102m ' 14x102m
=2250V,
Nm?\/12x10°C —-7.0x107°C
Ve =(9x10°
¢ < e )(10><102anr 10x102m>
=450 V.

The potential difference between points B and A is
Vea=Vp — V4 =2250V —225V =2025 V.
The potential difference between points B and C is
Vee = Vg — Ve =2250V —450 V = 1800 V.
(b) The electric potential energy of the charge g = 4.0 x 10~ C at point A is

Up=qVs=(40x10"72C)(225V) =9.0x 107" I.

4 wxMaxima codes:
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(%15) fpprintprec:5; k:9e9; gl:12e-9; g2:-7e-9; g:4e-9;
(fpprintprec) 5

(k) 9.0*10"9

(ql) 1.2*10"-8

(q2) =-7.0*10"-9

(q) 4.0%10"-9

(%$16) VA: k*(gl/6e-2 + g2/4e-2);
(VA) 225.0

(%17) VB: k*(gl/4e-2 + g2/1l4e-2);
(VB) 2250.0

(%$18) VC: k*(gl/10e-2 + g2/10e-2);
(VC) 450.0

($19) VBA: VB-VA;

(VBA) 2025.0

($110) VBC: VB-VC;

(VBC) 1800.0

($111) UA: g*VA;

(UA) 9.0*10"-7

Comments on the codes:

(%15) Set the floating point print precision to 5 and assign values
of k, g1, g2, and q.

(%16), (%i7), (%18) Calculate potentials V4, Vg, and V.

(%19), (%i110) Calculate potential differences Vg4 and V.

(%11) Calculate potential energy U ,.

Problem 6.7 Three charges, g, ¢, and g3 are arranged on the circumference of a
circle of radius 3.0 m as shown in Fig. 6.7. Calculate

(a) electric potential at points A and B and
(b) electric potential energy of the three charges.

Solution
(a) The electric potential of a system of discrete chargesis V =k ) £, Eq. (6.5).

The potential at point A is,

Fig. 6.7 A three-charge E q2=-6.0 uC
system, Problem 6.7 P @‘ ~~_
7 | N
/ | \
4 | \
/ I \
/ ' \
\
C Al D
_______ e
G:FD ' © =9.0 uC
q1:3.0uC\ | /I q3=9.0 u
\ I
\ | 3.0m /
N I /
AN | i
S~ L _-—~
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”‘(E*ﬁ*ﬁ)

oN 30x10°C 6.0x10°C 9.0x10°°C
=9 x10 C2 — +

3.0m 3.0m 3.0m
= 18000 V.

The potential at point B is,
L2 q_3)
(BC + + BD
9N m*) /3.0x10°C 60x10°C 9.0x10°C
=(9x10

- +
C? /18 m 6.0 m V18 m

Ve =k

= 16456 V.

(b) The electric potential energy of the three charges is, Eq. (6.6),

Zk(thélz + 9293 61143)
CE DE CD

_ oN mz)(S.O(—ﬁO) (—6.0)(9.0) 3.0(9.0)) 712C_2
—<9x10 & Nt + NGT + 6.0 x 10 -

=—-0.111J.

4 wxMaxima codes:

5) fpprintprec:5; k:9e9; gl:3e-6; g2:-6e-6; g3:9%e-6;
fpprlntprec) 5
9.0*10"9
) 3.0*%10"-6
g2) -6.0*10"-6
) 9.0*10"-6
8) AC: 3; AE:3; AD: 3;
) 3
) 3
) 3
VA: k*(gl/AC + g2/AE + g3/AD);
) 1.8*10%4
i12) BC: float(sqgrt(18)); BE: 6; BD: float(sqrt(1l8));
C) 4.2426
BE) 6
BD) 4.2426
i13) VB: k*(gl/BC + g2/BE + g3/BD);
VB) 1.6456*10"4

AE
AD

116) CE: float(sqrt(18)); DE: float(sqrt(l8)); CD: 6;
CE) 4.2426
E) 4.2426
D) 6

(%
(
(k
(g
(
(q
(%
(A
(
(
(%
(V.
(%
(B
(
(
(%
(
(%
(
(D
(c
(%
(

i17) U: k*(gl*g2/CE + g2*q3/DE + gl*g3/CD);
)

8) -0.11224
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Fig. 6.8 A charged wire and P (0]
point P, Problem 6.8 A - ]
€= > &= >
d /
Fig. 6.9 Determining X dx
electric potential at point»  ~ ————-—————-——————————— > 0
due to a charged wire, PY———— I - ]
Problem 6.8 €S >
d /

Comments on the codes:

(%15)  Set the floating point print precision to 5 and assign values of k, g;, g», and

q3.
(%18)  Assign distances AC, AE, and AD.
(%19) Calculate potential V4.
(%i112) Assign distances BC, BE, and BD.
(%113) Calculate potential V.
(%i116) Assign distances CE, DE, and CD.
(%i17) Calculate potential energy U.

Problem 6.8 A wire of length / has a charge of Q distributed uniformly along its
length as shown in Fig. 6.8.

(a) Determine the electric potential at point P .
(b) What is the electric potential at P if d >> [?

Solution

(a) Figure 6.9 shows the wire, element of the wire dx, and x the position of the
element with respect to P.
The linear charge density is,

a=2
[

Consider the wire element of length dx at coordinate x away from point P.
The amount of charge of the element is
dg = A dx.
The potential at point P due to the element is (Eq. 6.4)

_kdq  kidx
T ox 0 x

dv
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Therefore, the electric potential at point P due to the whole wire is

d+l
d d+1
szde=kA/—x=[kklnx]d+l — i 2L
X d d
kQ d+1
= —1Inl — ).
I d

4 wxMaxima codes:

%14) VP: k*lambda*integrate(l/x, x, d, d+l);
VP)  (Q*k*(log(1l+d)-log(d)))/1

(%$13) assume (1>0); assume (d>0); lambda: Q/1;
(%01) [1>0]

(%02) [d>0]

(lambda) Q/1

(/

(

Comments on the codes:

(%i3) Assume [ and d positive and assign A.
d+l

(%i4) Calculate Vp = kA [ 4.
d

(b) From part (a),

= () 2 (1 1Y

Ifd>>11n(1+ é) = ﬁ - %(5)2 +...& [17. See Appendix D for the series

expansion. Thus, the electric potential at P when d is much greater than [ is

ke L _ko

I d d

Problem 6.9 A long wire has a linear charge density of A. Determine the potential
difference at radial distances of r4 and rp from the wire.

Solution

Figure 6.10 shows a long wire with a linear charge density of A, and radial distances
of r4, r, and r of the problem.

From Table 4.1b of Chap. 4, the electric field at a radial distance of r from a long
wire is,

2k

r

E
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Fig. 6.10 Determining
potential difference between
two points, Problem 6.9

157

The direction of the electric field is radial and perpendicular to the wire. The

potential difference between points B and A is,

s
VBA=VB—VA=—/E~ds=—

—2kAlIn (

2k,
—dr = [-2kAlnr]?®
,
ra

Thus, the potential difference between points A and B is,

Vap =Va—Vp

— 2kAIn (r—3>
ra

The potential at point A is higher than that at point B because rp is greater than
74, that is, point A is nearer than point B to the charged wire.

Problem 6.10 Linear charge density of the ring shown in Fig. 6.11 is A. The radius
of the ring is R. Determine the electric potential at point P, a distance of x away from

the center of the ring.

Fig. 6.11 Electric potential
at point P due to a charged
ring, Problem 6.10
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158
Fig. 6.12 Determining ds
electric potential at point P 25T
due to a charged ring, _
Problem 6.10 ,,////
-7 A
P - -
-~
X

Solution

Figure 6.12 shows the ring and the ring element of length ds needed to solve the

problem.
The electrical charge of element ds is

dg = A ds.
The electric potential at P due to the element is (Eq. 6.4)

_kdq  krds

Therefore, the electric potential at point P due to the whole ring is

dv

2m R
v de kA fd 2w kAR
= = — S = —
VR? +x2 , VR? + x?

_ AR

B 260V RE+ 12

If the charge on the ring is O, the electric potential is

_ 2wkAR _ 2mkR 0
 JRT¥x? JRZ+x227R
kQ

NV
This is entry (a) of Table 6.1.

Problem 6.11 A solid non-conducting sphere of radius R has a uniform charge
density p. Determine,
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Fig. 6.13 Determining
electric potential in and out
of a charged non-conducting
sphere, Problemo6.11. [ O g e ——

(a) electric potential outside the sphere
(b) electric potential in the sphere.

Solution

(a) Figure 6.13 shows the insulator sphere, point A in the sphere, point B on the
surface of the sphere, and point C outside the sphere.
The total charge of the sphere is

0=2np
=-n .
3 p
The electric field out of the sphere is (Eq. 1.3)
Q

E,.= k—z, r > R.
r

The potential difference between point C and infinity is calculated as follows:

rc rc
k kQ1c  k
VC_sz_/Eout’dr=_fT?dr=|:7Qi| =r_Qa
00 oo * ¢

where r¢ is the distance from the center of the sphere to point C (Fig. 6.13).
Taking V, = 0, the potential beyond the sphere is

kO pR3

= , >R,
r 3egr

Ve
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where k = 1/(4eg) and Q = 47 R3p/3. On the surface of the sphere, r = R, so
the electric potential at point B is

R &k
vy =21 = _Q
380 R

where p = Q/(47R%/3) and &g = 1/(47k).

4 wxMaxima codes:

(%$12) assume (rC>0); VC:-integrate (k*Q/r"*2, r, inf, rC);
(%01) [rC>0]
(vC) (Q*k) /xC

Comments on the codes:

(%i2) Assume rc >0 and calculate Ve = — [ “2dr.
(VC) The result.

(b) From Problem 5.5, Chap. 5, the electric field within the sphere is

r
Ei,,:p—, r < R.
380

The potential difference between point A and a point at infinity is calculated
as follows:

rA

VA—Voo=(VA—V3)+(VB—Voo)=—/Ein'di’-l-VB

R
r'A
r R?
= — fl_dr4_fl__
380 380
R

Iy 2
=" (R?-
680( rA)-+

pR?

3807

where r,4 is the distance from the center of the sphere to point A (Fig. 6.13).
Setting Vo, = 0, the electric potential within the sphere is

L
680

k 2
=—Q 3—r—, r <R,
2R R?

Va BR*—r?)
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Fig. 6.14 A non-conducting
charged sphere, Problem
6.12

where p = Q/(4nR3/3) and g9 = 1/(4wk). At the center of the sphere, r = 0,
the electric potential there is

pR*  3kQ
Vo="75—=—5,
280 2R
where p = Q/(4wR%/3) and ¢y = 1/(47k). In Fig. 6.13, the curve of electric

potential V against r for the sphere is shown as well. These results are the same
as entry (c) of Table 6.1.

Problem 6.12 Show that the energy needed to construct a uniformly charged non-
conducting solid sphere of radius R and charge Q is

3kQ?
v=1%
5 R

Solution

Figure 6.14 shows the solid non-conducting sphere of radius R and charge Q. Also
shown is an imaginary sphere of radius r in the solid sphere.
The charge of the imaginary sphere is

a3 r3
3 Q0 =—
inR? R3

q= 0.

Differentiation of g with respect to r gives

30r?
dg = g dr.

The electric potential at the surface of the imaginary sphere is (Eq. 6.4)

kq kr3Q kQr?
V:—:——:—.
r r R3 R3

The energy to construct a sphere of charge Q and radius R is calculated as follows:



162 6 Electric Potential

R R

kOr? 30r? 3k Q2 3602 57"
U=/qu=/ o Qrdr= Q/r4dr= o
R3S R? RS RS 5 |,
0 0
_ 3kQ?
==

4 wxMaxima code:

(%$il) U: 3*k*Q"2/R"6*integrate(r*4, r, 0, R);
(%01) (3*k*Q"2)/(5*R)

Comment on the code:

R
(%i1) Calculate definite integration U = 3’;—%2 f ridr.

0
Problem 6.13 A small sphere of mass 1.0 x 10~ kg and charge +2.4 x 10 C is
suspended by a thread between two vertical parallel plates separated by a distance of
10 cm, as shown in Fig. 6.15. What is the angle between the thread and the vertical
if the potential difference between the plates is 10 kV?

Solution

Figure 6.16 shows the forces acting on the sphere, the parallel plates, and the quan-
tities needed to solve the problem. Here, d is the separation and AV is the potential
difference between the plates.

Fig. 6.15 A charged sphere T ]
suspended by a thread -
between two parallel plates,
Problem 6.13 T | -
|
+ I —
1+ : 0 -
I
+ | _
|
I
+ 19 =
|
|
+ | —
|
- 10kV -
<€————————————————- >
10 cm
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Fig. 6.16 Forces on the ]
charged sphere, Problem
6.13

-+
|

The forces are weight of the sphere mg, tension in the thread 7', and electrostatic
force F' due to the charged sphere in an electric field. The electrostatic force is (Egs. 4.
2 and 6.3),

F=qE=q——, (D

where ¢ is the charge of the sphere, AV is the potential difference between plates,
and d is the separation distance. The sphere is in equilibrium, so,

Y F,=F—Tsino =0, )
> Fy=Tcost —mg=0. 3)
From these equations,
ng - Fo_adV _ (@4x 102 C)(10 x 103 V) 024,

mg  dmg  (0.10 m)(1.0 x 10~* kg)(9.8 m/s?)

Therefore, the angle between the thread and the vertical is,

0 = 14°.

4 wxMaxima codes:


https://doi.org/10.1007/978-3-031-43165-4_4
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($16) fpprintprec:5; m:le-4; g:2.4e-9; g:9.8; d:10e-2; dv:10e3;
(fpprintprec) 5

(m) 1.0*10"-4

(q) 2.4*%107-9

(9) 9.8

(d) 0.1

(dv) 1.0*10"4

(%17) tantheta: g*dv/(d*m*g);
(tantheta) 0.2449

(

(

(

(

o

i8) theta: atan(tantheta);

heta) 0.24017

%$19) theta deg: float (theta*180/%pi);
theta_deg) 13.761

Comments on the codes:

(%16) Set the floating point print precision to 5 and assign values of
m, q, g, d,and AV.
(%i7), (%18), (%19) Calculate angle 6.

Further question: Calculate the tension in the string 7.

Solution: Solving Egs. (1), (2) and (3) for 6, T, and F, one obtains the angle, the
tension in the string, and the force as

6 = 0.24 rad = 14°,
T=1.0x 1073 N,
F=24x10"*N.

4 wxMaxima codes:

($12) fpprintprec:5; ratprint:false;

(fpprintprec) 5

(ratprint) false

(%15) eqgl: F=gq*dvV/d; eg2: F-T*sin(theta)=0; eqg3: T*cos (theta)-m*g=0;
(e F=(dv*q) /d

(e F-T*sin (theta)=0

(e

(

(

ql)

q2)

g3) T*cos (theta)-g*m=0

i6) solve([eql,eq2,eq3], [sin(theta), F, T]

06) [[sin(theta)=(dV*g*cos (theta))/ (d*g*m),
T=(g*m) /cos (theta) ]]

(%$17) subst([m=le-4, g=2.4e-9, g=9.8, d=10e-2, dv=10e3], %);

(%07) [[sin(theta)=0.2449*cos (theta),F=2.4*10%-4,T=(9.8*10"-4) /cos (theta)]]

(%110) tantheta: 0.2449; theta:atan(tantheta);

theta deg:float (theta*180/%pi);

(tantheta) 0.2449

(t

(t

(%

(

) 7
F=(dv*q) /d,

heta) 0.24017

heta _deg) 13.761

ill) T: 9.8*10%-4/cos (theta) ;
T) 0.001009
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Comments on the codes:

(%i2)  Set the floating point print precision to 5 and internal rational number print
to false.

(%15)  Assign Egs. (1), (2) and (3) as eql, eq2, and eq3.

(%i6)  Solve Egs. (1), (2) and (3) for sin 6, F, and T in symbols.

(%i7)  Substitute values of m, g, g, d, and AV into the solution.

(%i110) Calculate 6 in rad and degree.

(%i11) Calculate tension 7.

6.3 Summary

e FElectric potential is electric potential energy per unit charge. Electric potential
due to charge of ¢ at a distance of r from the charge is,

k 1
v=-»2_ 1,
r dmweg r

e FElectric potential energy U of charge ¢, and ¢, separated by a distance of r; is,

U quw]z‘

r2

e Potential difference between points A and B is the work done against electric
forces in carrying a unit positive test charge from A to B, thatis, Vg — V4 = AV.
The work W done against electric forces to carry a charge g from point A to B is
W=¢q(Vg—Va)=qAV.

6.4 Exercises

Exercise 6.1 Two charges, g; = 5.0 x 10 Cand g, =-3.0 x 107 C are fixed at (0,
0) and (3, 4) m, respectively, as in Fig. 6.17. Calculate the electric potential energy
of the two charges and the electric potential at point P.

(Answer: U = —2.7 x 10*J, Vp = 8.2 x 10° V)

Exercise 6.2 Two charges, g; = 5.0 x 107 C and g, = 3.0 x 107 C, are placed at
(0, 0) and (3, 4) m, respectively. Charge ¢, is then moved from (3, 4) m to (3, 0) m.
Calculate the change in electric potential energy.

(Answer: AU = —1.8 x 10*])

Exercise 6.3 Figure 6.18 shows three charges g, ¢», and g3 at the vertices of an
equilateral triangle with sides of length /. Calculate work needed to move charge g3
from point A to point B.

(Answer: W = (q1 + g2)q3k/ 1)
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Fig. 6.17 Configuration of
two charges, Exercise 6.1

Fig. 6.18 Configuration of
three charges, Exercise 6.3

6 Electric Potential

Yy (m) 0@
T O,
|
3T |
|
2T |
|
|
T |
O———iF
3

B,-~
S IO
q1 _\\,' q2

Exercise 6.4 Figure 6.19 shows a region of uniform electric field E = 2000 N C~!,
What is the potential difference between points A and B, A and C, and B and C?
(Answer: Va3 =0, V4c =800V, Vpc =800 V)

Exercise 6.5 Two conducting plates are separated by a distance of 30 cm in a vacuum
and are at a potential difference of 1.0 kV. An oxygen ion, with charge 42, starts

Fig. 6.19 Points A, B, and C
in a uniform electric field,
Exercise 6.4

B
NEEIE
A |
\ |

\\\ :40 cm|
|
N E=2000NC"

50 cm |
.
C
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from rest on the surface of the positive plate and accelerates to the negative plate.
What is the final kinetic energy of the oxygen ion? If the separation distance of the
plates is reduced to 10 cm and the potential difference is kept the same, will the final
kinetic energy of the oxygen ion change?

(Answer: 2.0 keV or 3.2 x 10-16J, no)



Chapter 7 ®)
Capacitance and Dielectric oo e

Abstract This chapter solves problems on capacitance, equivalent capacitance of
capacitors in series and parallel, and energy in charged capacitors. Also discussed
is the effect of inserting dielectric material between the plates of a capacitor. Both
analytical solutions and computer calculations by wxMaxima of the problems are
presented.

7.1 Basic Concepts and Formulae

(1) A capacitor consists of two conductors with the same charges but opposite in
signs, separated by a small gap. The two conductors have potential difference
of V. Capacitance C is the magnitude of charge Q of either conductor divided
by the magnitude of the potential difference V,

=1 (7.1)

SI unit for capacitance is coulomb per volt (C V') or farad (F):
IF=1CV~ (7.2)

(2) For conductors that are separated by vacuum or air, the capacitance is as follows:
(a) Parallel plate capacitor: Area of plate A and separation between plates d:

c = A (7.3)
= .
(b) Cylindrical capacitor: Length /, inner radius a, and outer radius b:
C— l _ 2ol (7.4)
~ 2kIn(2) (%)’ '
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(c) Spherical capacitor: Inner radius a and outer radius b:

ab 4 epab
C=ro—a " b—oa' (7.5)
(d) Isolated charged sphere of radius R:
C =4meyR. (7.6)
where
k= 471180 =8.9876 x 10° Nm? C> ~ 9 x 10° Nm* C?,

is Coulomb’s constant, and
g0 =8.8542 x 1072 C> N~ m~2,

is the is the permittivity of free space.

(3) For capacitors connected in parallel, the potential difference across each
capacitor is the same. Equivalent capacitance C, is

C,=Ci+C+C3+... 7.7

For For capacitors connected in series, the charge on each capacitor is the same.
Equivalent capacitance C, can be calculated by the following formula:

1 1 1 1
_— = — 4+ — 4+ — 4 ... 7.8
- otate” (7:8)

(4) Work is done in charging a capacitor because charge is moved from a conductor

at low potential to another conductor at high potential. The work done to charge
a capacitor C to charge Q is the electric potential energy U in the capacitor,

=_CV>2. (7.9)

(5) When a dielectric material is inserted between the plates of a capacitor, the
capacitance increases by a factor of K,

C =KC,, (7.10)

where Cy is the capacitance without the dielectric material, and K is dielectric
constant of the dielectric material.
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7.2 Problems and Solutions

Problem 7.1

(a) A capacitor is charged until its charge is 40 pC and the potential difference
across itis 100 V. What is the capacitance? What is the electric potential energy
stored?

(b) At other times the charge in the capacitor is 80 C. What is the capacitance?

Solution

(a) The capacitance is, Eq. (7.1),

Q0 40x10°C 5
% 100 V x H”

The electric potential energy in the capacitor is, Eq. (7.9),
1 1 6 3
U= EQV = 5(40 x 107 C)(100 V) =2.0 x 1077 J.
This energy is the same in value as the work done to charge the capacitor.

4 wxMaxima codes:

($13) fpprintprec:5; Q:40e-6; V:100;
(fpprintprec) 5

(Q) 4.0%10"-5

(V) 100

(%14) C: Q/V;

(C) 4.0%10"-7

(%$15) U: 1/2*Q*V;

(U) 0.002

Comments on the codes:

(%i3) Set the floating point print precision to 5, and assign charge Q =40 x 1076 C
and potential difference V = 100 V.

(%i4) Calculate capacitance C = Q/V.
(%15) Calculate electric energy U = Y2 QV.

(b) Capacitance of a capacitor is a fixed quantity. So the capacitance is 0.40 wF. If
the charge increases, the potential difference across the capacitor increases as
well,

_91_ D

= — = fixed value.

C =
Vi Vs
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If the charge is 80 C, the potential difference across the capacitor is 200 V, so
that the capacitance is fixed at 0.40 nF.

Problem 7.2 The space between plates of a parallel plate capacitor is filled with an
insulator with dielectric constant of 100. The area of the plate is 0.50 cm?.

(a) The capacitance is 40 pF. What is the thickness of the insulator?
(b) Dielectric strength of the insulator is 6.0 x 10° V m™'. What are the maximum
charge, energy, and energy density of the capacitor?

Solution

(a) The capacitance of a parallel plate capacitor filled with material of dielectric
constant K is, Eq. (7.3) and (7.10),

KegpA
c=—"=,
d
where A is the area of one of the plates and d is the distance between plates. Thus,
inserting given numerical values gives

40 x 10 F) (100)(8.85 x 10712 C2 N~ m~2)(0.50 x 10~* m?)
X = .
d

The thickness of the insulator is
d=1.1x10"m.

(b) Dielectric strength of an insulator is the maximum electric field the insulator
material is able to sustain before its insulating properties begin to fail. The
maximum charge of the capacitor is, (Egs. 7.1 and 6.3),

Amax = CVmax = CEmaxd
= (40 x 1072 F)(6.0 x 10° Vm~1)(1.1 x 1073 m)
=27x107"C.

Here, V,x = Enmaxd, that is, the maximum potential difference equals the maximum
electric field times the distance, as in Eq. (6.3), Chap. 6.
The maximum energy stored in the capacitor is, Eq. (7.9),

_ 1g2,, 127X 1077 C)? _

Umax - - =8.8 x 1074 J.
2 C 2 40 x 10-12 F
The maximum energy density of the capacitor is
Umax —
= 8 = 1.6 x 10* I m>,

volume =~ Ad
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4 wxMaxima codes:

(%16) fpprintprec:5; ratprint:false; K:100; epsilon0:8.85e-12; A:0.5e-4;
C:40e-12;

(fpprintprec) 5

ratprint) false

K) 100

epsilon0) 8.85*107-12

A) 5.0*%10"-5

C) 4.0*%10"-11

%i8) solve(C = K*epsilonO*A/d, d)$ float(%);

8
08) [d=0.0011062]
i9) d: rhs(%[1]);
) 0.0011062
il gmax: C*6e6*d;

o\°

Q.

0)
gmax) 2.655*107-7

%i11) Umax: 1/2*gmax”2/C;
Umax) 8.8113*10"-4

112) u: Umax/ (A*d);

)

o\°

u) 1.593*10"4

(
(
(
(
(
(2
(%
(
(
(3
(
(
(
(
(
Comments on the codes:

(%16) Set the floating point print precision to 5 and internal rational number print to
false, and assign values of K, ¢¢, A, and C.

(%i17) Solve C = KepAld for d.

(%19) Assign the value of the solution to d.

(%110) Calculate the maximum charge of the capacitor g,.
(%i11) Calculate the maximum energy of the capacitor U .

(%i112) Calculate energy density of the capacitor u.

Problem 7.3 A capacitor consists of two coaxial thin cylindrical shells of radii a
and b, (a < b). The length of both cylinders is [, and [ >> a, [ >> b.

(a) Determine the capacitance.
(b) The space between the shells is filled with a material with dielectric constant
K. What is the new capacitance?

Solution

(a) Fig. 7.1 shows the cross section of the capacitor. The inner and outer radii of
the thin cylindrical shells are a and b, respectively. The charge is Q and charge
per unit length is A = Q/I. An imaginary cylinder of radius r is also shown.
The electric field at the surface of this cylinder is E = 2kA/r; see Table 5.1(h),
Chap. 5.

The potential difference between outer and inner cylinders is, Eq. (6.2),
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Fig. 7.1 A two coaxial E
cylindrical shell capacitor,
Problem 7.3

=Y

b b 2k, b
Vp—Va=—| E-ds=—| “Sdr=[-2kilnr]}
a a T
a
. 2kx1n(z)

=2k%m(%).

The value of V}, — V, is negative. The capacitance is, Eq. (7.1),

0] l _ 2megl

C=- = = .
Vo—Va 2kIn(2) In(%)

This is as in Eq. (7.4).

4 wxMaxima codes:

(%$12) k: 1/(4*%pi*epsilon0); lambda: Q/1;
(k) 1/ (4*%pi*epsilon0)
(lambda) Q/1

(%16) assume(a>0); assume(b>0); assume((b-a)>0); potential difference: -
integrate (2*k*lambda/r,r,a,b);

(%03) [a>0]

($04) [b>0]

(505) [b>a]

(potential difference) -(Q* (log (b)-log(a)))/(2*%pi*epsilon0*1)

($17) C: -Q/potential difference;

( (2*%pi*epsilon0*1)/ (log(b)-log(a))

Comments on the codes:

(%12) Assign k = 1/(4mep) and A = Q/1.

(%i16) Calculate the potential difference — fu b 2’r‘—kdr.

(%i17) Calculate the capacitance C.

(b) When the space between the cylindrical shells is filled with the material of

dielectric constant K, the capacitance increases to, Eq. (7.10),

Kl _ 2w oK1

Cp=KC= _
P 2%kIn(2) ~ In(2)
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Ci 2 C3

Tl HHHF‘

14

<——=>

|

|

|
A\

(a) (b)

Fig. 7.2 Capacitors in parallel (a) and in series (b), Problem 7.4

Problem 7.4 Determine the equivalent capacitance for systems in Fig. 7.2.

Solution

(a) Fig. 7.2(a) is three capacitors connected in parallel. Potential difference across
each capacitor is the same, that is, V. The charges in the capacitors are

g1 = C,V incapacitor Cy,
q>» = C,V incapacitor C»,

q3 = C3V  incapacitor Cs.
The total charge in the system is
g=q1tq+q=V(C+C+C3).

The equivalent capacitance for the capacitors connected in parallel is

. B charge B V(Ci+ Cy+ C3)
equivalent = potential difference - 14
= C] + C2 + C3'

Figure 7.3 shows this equivalence.

(b) Fig.7.2(b)is three capacitors connected in series. The sum of potential difference
across each capacitor is the potential difference across all capacitors in series V,

V=Vi+V,+ V.

Ci Cequivalent =C1+C2+C3

<
<——">

T

L

Fig. 7.3 Equivalent capacitance of capacitors in parallel, Problem 7.4
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The charge in each capacitor is the same, let’s say g. So we write

9 , 4 4
V=t — 4 —.
aata

The equivalent capacitance for the capacitors connected in series is

Coguivatens = ——o2uge______4
potential difference & + & + c%
B 1
Catate
We can also write
1 1 1 1

Cequivalent Cl C2 C_3
Figure 7.4 shows this equivalence.

Problem 7.5
(a) A parallel plate capacitor has a plate area of A and separation distance of plates

of d. What is the capacitance?
(b) Two pieces of dielectric materials with dielectric constants K; and K», each

of area A and thickness d/2, are inserted in the capacitor. What is the new

capacitance?
Solution
(a) Fig. 7.5(a) shows the parallel plate capacitor.
The electric field in the region between the plates is, see Table 5.1(f), Chap. 5,

Vv
p-Y_o_¢
d &0 AEQ

where Q is charge in the capacitor and o is surface charge density. The capacitance

18

Ci 2 C3

| | | | 1
/1.\—| A | Cequivalent 1 1 1
“ 1 — 7 a G G

q i/__,_

Fig. 7.4 Equivalent capacitance of capacitors in series, Problem 7.4

Vo
I
\2
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Fig. 7.5 Parallel plate
capacitor (a), and parallel
plate capacitor with two
dielectric materials (b),

Problem 7.5

d
PELEEN
4
(a)
0 &A
C:—:—
\% d

dr2 di2
<S> <>

177

K1 K>

(b)

(b) When the two dielectric materials are inserted, Fig. 7.5(b), two capacitors
connected in series are created. For the first dielectric material, the capacitance

1S

For the second dielectric material, the capacitance is

Effective capacitance C is calculated as follows, Eq. (7.8),

d/

d/

1(180[4
1= .

2

KrepA
C, = 280

2

1 . 1 n 1

c C G
CiC KglzjozA : Kﬁj%A 2g9A

C = C _|_ C = KigpA KrepA = K + K :
1 2 a2t Tan 1 2

4 wxMaxima codes:

(2*A*Kl*epsilonO) /d

(%1l
(C1)
(%12
(C2) (2*A*K2*epsilon0) /d
(%13
(%03

Comments on the codes:

(%il), (%i2) Assign C; and C».

%m%m%:é+émc

il) Cl: Kl*epsilonO*A/(d/2);

i2) C2: K2*epsilonO*A/(d/2);

i3) solve(l/C = 1/Cl + 1/C2, C);
) [C=(2*A*K1*K2*epsilonO0)/ ((K2+K1l)*d)]
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Problem 7.6 Figure 7.6 shows two capacitors C; = 6.0 pF and C, = 2.0 pF in
parallel at potential difference of 120 V. Determine

(a) charge in each capacitor
(b) equivalent capacitance
(c) energy stored in both capacitors.

Solution

(a) The potential difference across each capacitor is the same, that is, V = 120 V.
The charges in the capacitors are

gi=CV=(60x10""2F)120V)=72x10""°C,

g =CV=020x 1072 F)(120V) =24 x 1071 C.
(b) The total charge in the system is

g=q+q =96x10""°C.
Therefore, the equivalent capacitance is

g 9.6x1070C

L = =80x 1072 F.
1% 120 V

Cequivalent =

Alternative solution: For capacitors connected in parallel, the equivalent capaci-
tance is, Eq. (7.7),

Cequivalent = Cl + C2 + ...
So we get

Ceguivatens = C1 + C2 = (6.0 +2.0) x 107" F=8.0 x 107"* F.

(c) Electrical energy stored in a capacitor is %qV = %C V?= %%, Eq. (7.9). For

the first capacitor, energy stored is

Fig. 7.6 Two capacitors in
parallel at 120 V, Problem

7.6 Ci (&)

120V

p<——————>4
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1 1
Ui =301V =302 % 10710 C)(120 V) =432 x 1078 J.

For the second capacitor, energy stored is

1 1
Uy=-qV = 5(2‘4 x 10719 C)(120 V) = 1.44 x 1078 J.

2

The total energy stored is

U=U+Uy;=432x108T+1.44x108T7=58x 1078 .

Alternative solution: Equivalent capacitance has been calculated in part (b). Thus,

the energy stored is, Eq. (7.9),

1

1
U = =Coguivatens V* = 580 x 1072 F)(120 V) = 5.8 x 1078 I.

2

4 wxMaxima codes:

($14) fpprintprec:5; Cl:6e-12; C2:2e-12; V:120;
(fpprintprec) 5

(Cl) 6.0*107-12

(C2) 2.0*107-12

(V) 120

($18) gl: C1l*V; g2: C2*V; g: gl+g2; Cequivalent:
(ql) 7.2*10"-10

(gq2) 2.4*107-10

(q) 9.6*107-10

(Cequivalent) 8.0*107-12

($111) Ul: 0.5*gl*V; U2: 0.5*g2*V; U: Ul+U2;
(Ul) 4.32*10"7-8

(U2) 1.44*%107-8

(U) 5.76*10"-8

($112) U: 0.5*Cequivalent*V"2;

(U) 5.76*10"-8

Comments on the codes:

q/V;

(%i4) Set the floating point precision to 5 and assign values of C;, C, and V.

(%i8) Calculate g1, g2, g, and Cequivalent~
(%i11) Calculate U, U,, and U.
(%112) Another calculation of U.

Problem 7.7 Three capacitors C; = 6.0 WF, C; = 12 pF, and C3 = 16 uF are
connected to a battery with emf e = 60 V as in Fig. 7.7. Determine
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Fig. 7.7 Three capacitors
connected to a battery, G
Problem 7.7 —1 ——

1

E=60V —_ I

)

(a) equivalent capacitance

(b) charge in equivalent capacitance
(c) charge in each capacitor

(d) voltage across each capacitor

(e) energy to charge each capacitor

(f) total energy in the three capacitors.

Solution

(a) From Fig. 7.7, capacitors C; and C; are in series. Let the equivalent capacitance
of both capacitors be Cguivaiens1- This gives, Eq. (7.8),

1 1 1 1 1 1

Cequivalentl Cl

C;  6uF " T2uF  4uF
Cequivalentl =4.0 MF

Next, capacitors C3 and Cguivaiens1 are in parallel. Let their equivalent capacitance
be Coguivatens- We have, Eq. (7.7),

Coequivatent = C3 + Cequivatens1 = 16 uF +4 uF =20 uF.
(b) The charge in the equivalent capacitor is
Qequivatent = Cequivatent € = (20 x 107 F)(60 V) = 1.2 x 107° C.
(c) The voltage across C3 is ¢ = 60 V. So, the charge in C3 is
03 =C3E = (16 x 10°F)(60 V) = 9.6 x 10* C.
The charges in C;| and C; are the same because C; and C; are in series, and the
charge equals the charge in equivalent capacitance of both capacitors. Because the

voltage across Ceguivaiens1 18 € = 60V, the charge is

Qequivalenzl = Ql = Q2 = Cequivalenll &= (40 X 1076 F)(60 V)
=24x107*C
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(d) The voltage across capacitor C; is

0; 24x10*C

Vi = = —F——=40V.
C 6.0 x 10°F
The voltage across capacitor C; is
24 x107*C
= &2 =20V.

TG 12x10°6F
The voltage across capacitor C3 is
V3=E=60V.
(e) The electric energy needed to charge capacitor C; is, Eq. (7.9),
1 1 4 3
U = EQIVI = 5(2.4 x 1077 C)(40 V) =48 x 1077 J.
The electric energy needed to charge capacitor Cj is
1 1 —4 -3
U, = 5Q2V2 = 5(2.4 x 1077 C)(20 V) =24 x 1077 J.
The electric energy needed to charge capacitor Cs is
1 1 —4 -2
Us = §Q3V3 = 5(9.6 x 1077 C)(60 V) =29 x 107~ J.
(f) The electric energy stored in the three capacitors is the sum of energies in (e),
U=U+U,+U;=3.6x10""1.

Alternative calculation: The energy obtained in part (f) is the energy stored in the
equivalent capacitor Ceguivaien: that has a charge of Qequivaten: Stored in it. Thus, using
part (b) we have, Eq. (7.9),

1 1
U= EQequ,-W,e,,, E= 5(1'2 x 1073 C)(60 V) = 3.6 x 1072 1.
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4 wxMaxima codes:

%$16) fpprintprec:5; ratprint:false; Epsilon:60; Cl:6e-6; C2:12e-6; C3:1l6e-
fpprintprec) 5

ratprint) false

Epsilon) 60

Cl) 6.0*10"-6

Cc2) 1.2*10"-5

C3) 1.6*10"-5

%$i8) solve(l/Cequivalentl = 1/Cl + 1/C2, Cequivalentl)$ float (%);
08) [Cequivalentl=4.0*10"-6]

19) Cequivalentl: rhs(%[1]);

equivalentl) 4.0*10%-6

110) Cequivalent: C3 + Cequivalentl;

equivalent) 2.0*10"-5

i11) Qequivalent: Cequivalent*Epsilon;

equivalent) 0.0012

il12) Q3: C3*Epsilon;

o\° o

Q

o\a

o\o 0 9 Q

(
6;
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

Q3) 9.6*10"-4

$115) Qequivalentl:Cequivalentl*Epsilon; Ql:Qequivalentl; Q2:Qequivalentl;
Qequlvalentl) 2.4*10"-4

Ql) 2.4*10"-4

Q2) 2.4*10"-4

%$118) V1:Q1/Cl; V2:Q2/C2; V3:Epsilon;

V1) 40.0

v2) 20.0

V3) 60

%$i22) Ul:1/2*Q1*V1; U2:1/2*Q2*V2; U3:1/2*Q3*V3; U:U1+U2+U3;
Ul) 0.0048

U2) 0.0024

U3) 0.0288

U) 0.036

%$i23) U:1/2*Qequivalent*Epsilon;

U) 0.036

Comments on the codes:

(%16) Set the floating point print precision to 5 and internal rational number print to
false, and assign values of ¢, Cy, C», and Cs.

(%i8) Solve - = & + 7 for Coquivaten1-
(%19) Assign value of Cquivatent! -

(%110), (%i11), (%i12) Calculate Ceguivaient> Qequivaient> and Q3.
(%115) Assign Qequivatenr1, @1, and Qo.

(%118) Calculate V4, V5, and V3.

(%i22) Calculate Uy, U,, U3, and U.

(%i123) Another calculation of U.
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Problem 7.8

(a) A parallel plate capacitor consists of two metal plates each of area 0.06 m”. The
separation distance between plates is 1.0 cm and the capacitor is connected to
a voltage source of 100 V dc. Determine the capacitance, charge on the plate,
electric field between plates, and energy in the capacitor.

(b) The DC voltage source is disconnected from the capacitor. A material with
dielectric constant 4.2 is inserted between the plates of the capacitor. Determine
the new voltage, capacitance, charge, electric field, and energy stored.

Solution

(a) Capacitance of the parallel plate capacitor is, Eq. (7.3),

A Cc? 0.06 m?
Co=22 _ (885 10712 S _53x 107 E.
d N m? 0.0l m

The charge in the capacitor is, Eq. (7.1),
Qo= CoVo = (5.3 x 107" F)(100 V) = 5.3 x 107° C.
The electric field between plates is, Eq. (3.3),

Vo 100 V
EO = — =
d 0.0l m

=1.0x10*Vm™'.
The electrical energy stored in the capacitor is, Eq. (7.9),
1 1 9 _7
Uy = EQOVO = 5(5.3 x 1077 C)(100 V) =2.7 x 107" J.

(b) When the voltage source is disconnected, the charge on a plate is still the same
as the charge calculated in (a), that is,

0=00=53x10"°C.
But the capacitance increases to, Eq. (7.10),
C=KCy=42)(53x100"F)=22x10"""F.
The voltage across the capacitor decreases to

53x 107 C
22XV C v,
C T 22xI109F

The electric field decreases to



184 7 Capacitance and Dielectric

vV 24V
E=—= =24x10°Vm.
d  00lm

The electric energy stored in the capacitor decreases to

1 1
U= 5QV = 5(5.3 x 1077 C)(24 V) = 6.3 x 1078 J.

4 wxMaxima codes:

%16) fpprintprec:5; epsilon0:8.85e-12; A:0.06; d:0.01; Vv0:100; K:4.2;

fpprintprec) 5
epsilon0) 8.85*10%-12
A) 0.06

d) 0.01

v0) 100

K) 4.2

(

(

(

(

(

(

(

(%$110) CO:epsilon0O*A/d; Q0:C0*V0; EO0:VO0/d; U0:0.5*Q0*V0;
(CO) 5.31*10"-11

(Q0) 5.31*10"-9

(EO) 1.0*10"4

(U0) 2.655*10"-7

($115) Q:Q0; C:K*CO; V:Q/C; E:V/d; U:0.5*%Q*V;

(
(
(
(
(

Q) 5,31=10*=8

C) 2.2302*107-10
V) 23.81

E) 2381.0

U) 6.3214*10"-8

Comments on the codes:

(%i16) Set the floating point print precision to 5 and assign values of ¢g, A, d, V, and
K.

(%110) Calculate Cy, Qq, Eg, and Uy.
(%115) Assign Q = Qp and calculate C, V, E, and U.

Problem 7.9 A capacitor C; = 6.0 wF is fully charged and the potential difference
across it is Vo = 80 V. The capacitor is then connected to an uncharged capacitor C;
= 12 uF. Determine the charge, voltage, and energy of the capacitors in the initial
and final situations.

Solution

Figure 7.8 shows the initial and final situations.
In the initial situation, the charge in capacitor C; is

Qo=C1Vy=(6.0x10°F)(80V)=4.8x107*C.

The voltage across capacitor C| is
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Fig. 7.8 Capacitor Cy in A A
initial, and capacitors C and ! I C, O C1, O1
C, in final situations, : Vo —El’ Qo V:
Problem 7.9 : T :

I I

\2 \2

initial final
Vo =80 V.

The electrical energy in capacitor C; is, Eq. (7.9),
1 1 _4 -2
Uy = EQOVO = 5(4.8 x 107" C)80V) =19 x 107 J.

In the final situation, the charge Q is distributed to capacitors C; and C,. This
means that

Qo= 01+ 0o,
and
CiVo=CV+GV.
The voltage is

C 6.0 uF

V = Vo =
Ci+C, "~ 6.0 uF+6.0 uF

80V =27V.

The voltage across C; and C is 27 V. The charges in C| and C; are

0,=CV=060x10°"F)Q7V)=1.6x10"*C,
0,=CV=(12x10"FH27V)=32x10"*C.

The energy stored in capacitors C; and C, are

1 1
U, = §Q1V = 5(1.6 x 1074 C)27V) =21 x 10737,

1 1
Uy = EQzV = 5(3'2 x 1074 C)(27V) =43 x 1073 J.

The total energy stored in the two capacitors is
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U=U+Uy=64x1071.

The total energy can also be calculated as follows

1 1
U=U+U,= EV(Q1+Q2)= §V~V(C1+C2)

ey, 2(c+c)—
=5 C1+C20 1 2) =

1 (6.0x10"°F)*@80V)?
T 2(6.0x 10 F+12 x 10-° F)
=64 x 107317

e
2(Ci+Cy)

4 wxMaxima codes:

%$i4) fpprintprec:5; Cl:6e-6; V0:80; C2:12e-6;

fpprintprec) 5

Cl) 6.0*10"-6

0) 80

) 1.2*107-5

6) Q0:C1*V0; U0:0.5*Q0*VO0;

) 4.8*107-4

) 0.0192

9) V:C1l*VO0/(Cl+C2); Q1l:Cl*V; Q2:C2*V;
26.667

)

) 3.2*107-4

12) U1:0.5*Q1*V; U2:0.5*Q2*V; U:U1+U2;

) 0.0021333

) 0.0042667
0.0064

0.0064

Comments on the codes:
(%i4) Set the floating point print precision to 5 and assign values of C;, V, and
Cs.

(%i16) Calculate Qp and W,.
(%19) Calculate V, Q, and Q5.
(%112) Calculate U4, U,, and U.
(%113) Another calculation of U.

Problem 7.10 A parallel plate capacitor has a charge of ¢ and a plate area of A.

(a) Show that force on one plate due to the charge on the other plate is
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Fig. 7.9 A parallel plate +q | ]
capacitor, Problem 7.10 /}\
 d
|
\%
-q | ]
2
F=-1_
280A

(b) Calculate F, for a 2.0 pF capacitor with a plate area of 3.0 cm? and a potential
difference of 100 V.

Solution

(a) Fig. 7.9 shows the parallel plate capacitor. Charge in the capacitor is ¢ and
separation between plates is d.

The electric energy in the parallel plate capacitor is, Eq. (7.9),

14° 1 ¢%d
ol _144
2C 280A

where we have used the fact that for parallel plate capacitor the capacitance is C =
eoAld, Eq. (7.3). The energy is the work to separate the plates from distance O to d.

The work is
d
U =/ F dx,
0

where F is the attractive electric force between the plates and dx is the elementary
displacement. The distance d is small and F does not vary much and is almost
constant. Thus, the work is

d
U=F/ dx = Fd.
0

We equate the work done and the electric energy,

_ 1 ¢g%d

Fd = —-—,
280A

and calculate the attractive electric force between the plates to be
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(b) From part (a) and the given numerical values, the force F is

F_ld _1cv: (2.0 x 10712 F)2(100 V)2

2e0d 2 oA 2 (585 x 10712:E) (3.0 x 10~ m?)

N m?

=75x%x 107°N.

4 wxMaxima codes:

$i6) F: 0.5*C"2*V"2/(epsilon0*A);
F) 7.533*10%-6

($15) fpprintprec:5; C:2e-12; V:100; epsilon0:8.85e-12; A:3e-4;
(fpprintprec) 5

(C) 2,0%10*=12

(V) 100

(epsilon0) 8.85*107-12

(A) 3.0*%10"-4

(%1

(

Comments on the codes:
(%15) Set the floating point print precision to 5 and assign values of C, V, g, and A.

(%i16) Calculate the force between the plates F.

Problem 7.11 Show that the energy of a conducting sphere of radius R and a charge
of Q in vacuum is

1 kQ?
U=t
2 R

Solution

Figure 7.10 shows the conducting sphere of radius R and a charge of Q.
The electric potential at the surface of the sphere is, Table 6.1(d),

k
y =2
R

Fig. 7.10 A conducting 0
charged sphere, Problem
7.11
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The capacitance of the sphere is, Eq. (7.1),

e__ ¢ _R

VvV  kQ/R k'

Thus, the electric energy of the sphere is, Eq. (7.9),

1 LR [k
U=-CV>=_-— —Q
2 2k

_ 1kQ?
=

7.3 Summary

e A capacitor stores electrical charge and electrical energy. The capacitance of a
capacitor is the amount of charge it stores per unit potential difference between
the plates, that is, C = Q/V. The SI unit of capacitance is farad (F), 1 F=1 C/V.

e The electric potential energy U in the capacitor is

e When a material with dielectric constant of K is inserted between plates of a
capacitor, the capacitance increases by a factor of K.

7.4 Exercises

Exercise 7.1 What is the equivalent capacitance of the capacitors in Fig. 7.11?

. _ (C1+Cy)Cs
(AHSWCI'. Cequivalenl - C11+C22+C:)

Fig. 7.11 Three capacitors,
Exercise 7.1 C1 s
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Fig. 7.12 Four charged
capacitors, Exercise 7.3

600 pF 600 uF

_|

600 uF 600 pF

Fig. 7.13 Four capacitors in switch
parallel connected to a <
2000 V source, Exercise 7.4 J_ *B | | l
2000 V
'|' 25uF [25uF |25 pF |25 uF
A

Exercise 7.2 A parallel plate capacitor has a plate area of 0.20 m? and a plate

separation of 0.10 mm. The charge on the capacitor is 4.1 x 10~ C. What are the

electric field between the plates and the potential difference across the plates?
(Answer: E =23 x 10° Vm™, V=230V)

Exercise 7.3 Figure 7.12 shows four charged 600 wF capacitors. The reading of the
voltmeter is 1200 V. Find the charge and the energy stored in each capacitor.
(Answer: 0.72 C, 430 1))

Exercise 7.4 Four 25 pF capacitors are connected to a 2000 V dc source and a
switch as in Fig. 7.13. How many coulombs of charge pass through points A and B
after the switch is closed?

(Answer: 0.20 C, 0.050 C)

Exercise 7.5 A mica sheet 0.10 mm thick and of dielectric constant 6.0 filled the
space of a parallel plate capacitor. The plate area is 0.20 m”. Calculate the capacitance.
(Answer: 1.1 x 1077 F)



Chapter 8 ®)
Current and Resistance Check for

Abstract This chapter solves problems on electric current, current density, resis-
tance, resistivity, and Ohm’s law. Problems with an increase in resistance due to arise
in temperature, resistance temperature coefficient, and dissipation of electrical power
by a resistor are also solved. Solutions are by analysis and computer calculation.

8.1 Basic Concepts and Formulae

(1) Electric current [ in a conductor is defined as

dQ
I=—, 8.1

7 (8.1)
where dQ is the charge that passes across the cross-section of the conductor in
time dt. SI unit for electric current is ampere (A).

IA=1Cs™". (8.2)
(2) Electric current in a conductor is the movement of charge carriers
I =nqu A, (8.3)

where n is the density of charge carriers (number of charge carriers per unit
volume), g is the charge of the carrier, v, is the drift velocity of the carrier, and
A is the cross-sectional area of the conductor.

(3) Current density J in a conductor is current per unit area,

1
J = % =nque (84)

(4) Current density in a conductor is proportional to the electric field
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&)

(6)

)

8 Current and Resistance
J=0E, (8.5)

where o is a constant called conductivity of the material. Reciprocal of
conductivity o is resistivity p

p=—= (8.6)

1 E
o J’

A material obeys Ohm’s law if its conductivity does not depend on the electric
field.
Resistance R of a conductor is the potential difference V across the conductor
divided by the current flow [ in it

R =

1%
7 (8.7)

If the resistance does not depend on the applied voltage, Ohm’s law is obeyed.
Ohm’s law is written as

V =IR. (8.8)

A conductor with a cross-sectional area of A and a length of [ has a resistance
of

I l
R=p—=—, 8.9
PL =7 8.9

where p is the resistivity and o is the conductivity of the conductor. SI unit for
resistance is ohm (2) or volt per ampere (V A™").

1Q=1VA~! (8.10)

Resistivity, p, of a conductor changes with temperature, 7, approximately
according to the equation,

p = poll +a(T — To)], (8.11)

where « is the resistance temperature coefficient and py is resistivity at temper-
ature T. Therefore, the resistance, R, of a conductor changes with temperature,
T, in the same way

R = Ro[1 + (T — Tp)], (8.12)

where « is the resistance temperature coefficient and Ry is the resistance at
temperature T'.
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(8) If the potential difference across a resistor is V and the current through the
resistor is 7, then the power or rate of energy given to the resistor is

‘/2
R

P=1V=1IR , (8.13)

where R is the resistance. The power is equal to the rate of electric energy
dissipated by the resistor as heat energy.

8.2 Problems and Solutions

Problem 8.1 An electric current of 5.0 A flows in a copper wire of a cross-sectional
area of 3.0 x 107 m?. The number of free electrons in copper is 8.5 x 10?8 electrons
per m?. Calculate the drift velocity of electron in copper wire.

Solution

The relationship between electric current /, number of charge carriers per unit volume
n, drift velocity of charge carrier v;, charge of the carrier g, and cross-sectional area
of the conductor A4, is given by, Eq. (8.3)

I = nqu A.

The drift velocity v, of an electron in copper is

I 50A
Vg = =
“T ngA T (85 x 108 m3)(1.6 x 10-1° C)(3.0 x 10-6 m?)
=12x10"%ms™ "

The conventional current flow is opposite in direction to the flow of electrons.

4 wxMaxima codes:

5) fpprintprec:5; A:3e-6; I:5; n:8.5e28; g:1.6e-19;
printprec) 5
3.0*%10"-6

8.5*%10728
1.6*107-19

6) vd: I/(n*g*d);
) 1.2255*10"-4
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Comments on the codes:

(%15) Set floating point print precision to 5 and assign values of A, I, n, and q.
(%i16) Calculate the drift velocity v,.

Problem 8.2

(a) The resistivity of copper at 25°C is 1.7 x 10® Q m. What is the electric field
in a copper wire so that the electric current density is 3.0 x 10’ A m™2?

(b) At 25°C, what is the resistance of a copper wire of length 2.0 m and a radius of
1.0 mm?

(c) What is the wire resistance at 65°C?

The Resistance temperature coefficient of copper is 3.9 x 1073 K,

Solution

(a) Resistivity p is defined as electric field £ in the conductor divided by current
density J, Eq. (8.6),

_E

p=

The electric field E in the copper wire is
E=pJ=(17%x10°Qm)@3.0x 10 Am?) =051 Vm'.

(b) Resistance of the copper wire at 25°C is, Eq. (8.9),

! 1.7 x 1078 Q@ m)(2.0
Ry = 2L _ 07 mEOM _ 102 g,
A 7(1.0 x 10~3 m)?2

where [ is the length and A is the cross sectional area of the copper wire.
(c) Resistance of the copper wire at 65°C is, Eq. (8.12),

R65 = R25[1 + O((65°C — 25°C)]
=1.1x102Q[14+3.9x107° K '(65—25)K]
=13x1072 Q.
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4 wxMaxima codes:

($16) fpprintprec:5; rho:1.7e-8; J:3e7; 1:2; r:le-3; alpha:3.9e-3;
(fpprintprec) 5

(rho) 1.7*107-8

(J) 3.0*1077

(1) 2

(r) 0.001

(alpha) 0.0039

($17) E: rho*J;

(E) 0.51

($18) R25: rho*1l/float (%$pi*r"2);
(R25) 0.010823

($19) R65: R25* (1+alpha* (65-25));
(R65) 0.012511

Comments on the codes:

(%i16) Set floating point print precision to 5 and assign values of p, J,
I, r,and .
(%i17), (%i18), (%19) Calculate E, R,s, and Rgs.

Problem 8.3 Figure 8.1 shows a dry cell with internal resistance r and a resistor
R in a circuit. There is a voltmeter V and an ammeter A to measure the potential
difference and current, and a switch S to open or close the circuit. When S is opened
the voltmeter reading is 1.6 V, and when S is closed the reading is 1.4 V. Determine,

(a) emf of the cell
(b) internal resistance of the cell r
(c) reading of the ammeter when S is closed.

Solution

(a) The emf of a cell is the open circuit voltage, that is, the voltage of the cell which
is not connected to any load in a circuit. So, the emf of the cell is

Fig. 8.1 A circuit consisting ()

of a dry cell with internal \Vj
resistance, a resistor, and a
switch. A voltmeter and an |———— - |

ammeter are also connected, | r & LL
Problem 8.3 ! !
X | ! Y
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E=16V.
(b) When the switch is closed, the potential difference across the cell is
Vyy =& — Ir,

where r is the internal resistance of the cell and / is the current. Current / is

£ €
" SR r+R’

The potential difference across the cell is

E
Vxy =& — ,
Xy (r—i—R)r

and the internal resistance of the cell is

£ 1.6V
r=R(—-1)=10Q(-———-1)=14Q.
Vyy 14V

(c) Current flow when the switch is closed is

-V 1.6V—14V
1:5 xr o _ =0.14 A.
r 1.4 Q

The current is measured by the ammeter, thus, the ammeter reading is 0.14
A.

4 wxMaxima codes:

%1i5) fpprintprec:5; ratprint:false; emf:1.6; VXY:1.4; R:10;

(

(fpprintprec) 5

(ratprint) false

(emf) 1.6

(VXY) 1.4

(R) 10

(%17 ) solve ([VXY=emf-I*r, I=emf/(r+R)], [r,I])$ float(%):;
(%07) [[r=1.4286,I=0.14]]

Comments on the codes:

(%15) Set floating point print precision to 5, internal rational number print to false,
assign values of £, Vy, and R
(%i7) Solve Vyy =& — Ir and I = =5 for r and I.
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Fig. 8.2 Determining 60V.1.0Q
electric current and potential -2l
difference, Problem%A : l : 120
————NVVWNV—
I C
_____ 1
8.0Q 0V,1.00
______ |
|
| /\/\/ —e W\/\/_—
Bl 1 iD100

Problem 8.4 For the circuit in Fig. 8.2, determine,

(a) current in the 8.0 2 resistor
(b) potential difference V5 and V4c.

Solution

(a) To get the current, calculate the total emf and resistance, and divide the two.
Counter clockwise from point C, the total emf is

E=60V+10V=16V.
Total resistance is,
YR=(10+4+80+104+10+12) 2 =32 Q.

The current in the circuit is

€ 16V
=—=——=—==050A.
YR 32Q

The direction of the current is counter clockwise. The current flow in the
circuit is the current in the 8.0 2 resistor, that is, 0.50 A.
(b) Counter clockwise from point A to B, we have

Vi — (0.50 A)(8.0 2) = Vp,
where V4 is the electric potential at point A, —(0.50 A)(8.0 2) is the potential
drop by the 8.0 2 resistor, and Vj is the potential at point B. The potential
difference between points A and B is

Vap =Va—Vp=(050A)8.02)=4.0V.

Counter clockwise from point A to C, we have
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Va4 — (0.50 A)(8.0 ) — (0.50 A)(1.0 Q) + 10 V
—(0.50 A)(10 ) — (0.50 A)(12 ) = V¢,

where V4 is the electric potential at point A, —(0.50 A)(8.0 2) is the potential
drop by the 8.0 €2 resistor, —(0.50 A)(1.0 €2) is the potential drop by the 1.0
resistor of the bottom cell, 10 V is the emf of the bottom cell, —(0.50 A)(10
2) is the potential drop by the 10 €2 resistor, —(0.50 A)(12 €2) is the potential
drop by the 12 2 resistor, and V¢ is the potential at point C. Thus, the potential
difference between points A and C is

Vac =Va— Ve
=(0.50 A)(8.02) + (0.50 A)(1.0Q2)—10V
+ (0.50 A)(10 €2) + (0.50 A)(12 2)
=55V.

4 wxMaxima codes:

2) fpprintprec:5; ratprint:false;
fpprlntprec) 5
ratprlnt) false
6) emfsum: 6+10; Rsum: 1+8+1+10+12; I: emfsum/Rsum; float (%);

(%

(

(

(%

(emfsum) 16

(Rsum) 32

(I) 1/2

(%06) 0.5

(%$18) solve ([VA-I*8=VB, VAB=VA-VB], [VAB,VA])S$ float(%);
(%08) [[VAB=4.0,VA=VB+4.0]]

($110) solve ([VA-I*8-I*1+10-I*10-I*12=VC, VAC=VA-VC], [VAC,VA])$ float(%):;
(%010) [[VAC=5.5,VA=0.5*(2.0*VC+11.0)]]

Comments on the codes:

(%i2)  Set floating point print precision to 5 and internal rational number print to
false.

(%i6) Calculate X £,X R, and 1.

(%i8) Solve V4, — I(8) = Vg and Vg = V4 — Vg for Vg and V4.

(%110) Solve V4 —I1(8) —1(1)+10—1(10) —1(12) = Ve and V4c = V4 — V¢
for V¢ and V4.

Alternative calculation: To calculate the potential difference V¢, it is easier to
move from point C to A counter clockwise. We get

Ve +6.0V —(0.50 A)(1.0 Q) = Vyu,
where V¢ is the potential of point C, 6.0 V is the emf of the top cell, —(0.50 A)(1.0 2)

is the potential drop by the 1.0 2 internal resistance, and V4 is the potential of point
A. This means that
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Vac=Va—Vec=55V.
4 wxMaxima codes:

($12) fpprintprec: 5; ratprint:false;

(fpprlntprec) 5

(ratprlnt) false

(% emfsum: 6+10; Rsum: 1+8+1+10+12; I: emfsum/Rsum; float (%) ;
(emfsum) 16

(Rsum) 32
(I
(%
(%
(%

) 1/2

06) 0.5

i8) solve([VC+6-I*1=VA, VAC=VA-VC], [VAC, VA])$ float(%);
08) [[VAC=5.5,VA=0.5*(2.0*VC+11.0)1]]

Comments on the codes:

(%i2) Set floating point print precision to 5 and internal rational number print to
false.

(%i6) Calculate ¥ £,X R, and I.

(%18) Solve VC +6— I(l) =Vyu and VAC =Vy— VC for VAC and Va.

Problem 8.5 The filament of a light bulb has a resistance of 10 € at 20°C. The
resistance temperature coefficient of the filament is 4.5 x 107> K~!. Calculate:

(a) resistance of the filament at 520°C.

(b) reduction of current through the filament at 520°C compared to at 20°C by
assuming that the potential difference across the filament is constant at 110 V.

(c) dissipated power by the filament at 520°C.

Solution
(a) The resistance of the filament at 520°C is, Eq. (8.12),
Rsp0 = Ryo[l + «(520°C — 20°C)]

=10 Q[144.5 x 107> K~'(520 — 20) K]
=32 Q.

(b) The electric current at 20°C is, Eq. (8.8),

vV 110V
Ly=— = —— =11A.
Ry 109

The electric current at 520°C is,

Vv 110V
Ispp = — = =34 A.
Rspo  325Q
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Reduction in currentis 11 A-3.4 A =7.6 A.
(c) The dissipated power by the filament at 520°C is, Eq. (8.13),

V2 (110 V)2
P=vig =~ = 1OV _ 355w,
R 320

4 wxMaxima codes:

%1i5) fpprintprec: 5; R20:10; alpha:4.5e-3; V:110;

(

(fpprintprec) 5

(ratprint) false

(R20) 10

(alpha) 0.0045

(V) 110

($16) R520: R20* (1+alpha* (520-20)) ;
(R520)32.5

($17) I20: V/R20;

(I20) 11

(%18 ) I1520: V/R520;

(I520)3.3846

(%19 ) current reduction: I20-I520;
(current reductlon) 7.6154

(% 0)P: V~2/R520;

(P 372 31

Comments on the codes:

(%15) Set floating point print precision to 5, assign values of Ry, o,
and V.

(%i16), (%i7), (%i8) Calculate Rsy, 179, and 5.

(%19) Calculate current reduction.

(%i110) Calculate dissipated power.

Problem 8.6 The resistance of a nichrome wire is R = 72 Q. What are the rates of
electric energy dissipated in these two situations?

(a) Potential difference of 120 V is set across the wire.
(b) The wire is cut into one half and a potential difference of 120 V is set across
each one half of the wire.

Solution

(a) Figure 8.3a shows the nichrome wire and the potential difference set across its
length
The rate of electrical energy dissipated by the wire is, Eq. (8.13),

V2 (120 V)?
Pp=—=——"" —200W.
R 72 Q
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V=120V
V=120V € ___ N
€ > Ry=36Q
: e
R=72Q Ry =360
(@) (b)

Fig. 8.3 Potential difference across a one piece and b two pieces of nichrome wire, Problem 8.6

(b) Figure 8.3b shows the two halves of the wire and the potential difference set on
them. The wire was cut into two equal parts, the resistance of each part is R, =
36 2. The rate of electric energy dissipated by one part is

VI (120 V)?

P=— =
Ry 36 Q

=400 W.

Therefore, the rate of energy dissipated by both parts is,
P, =2P =800 W.

4 wxMaxima codes:

($12) Vv: 120; R: 72
(V) 120

(R) 72

($13) Pa: V*2/R;
(Pa) 200

($14) Rb: 36
(Rb) 36

(%1i5) P: V~2/Rb;
(P) 400

(%16) Pb: 2*P;
(Pb) 800

Comments on the codes:

(%i2) Assign values of V and R.
(%i13,), (%i4), (%i5), (%i6) Calculate P,, Ry, P, and Py,

Problem 8.7 Resistance of a mercury column at 15°C is 10 2. What is the resis-

tance of the column at 30 and 0°C? Resistance temperature coefficient of mercury is
0.0072°C~! at 0°C.



202 8 Current and Resistance

Solution

Using Eq. (8.12), R = Ry[1 + a(T — Tp)],resistances of mercury column at 15 and
30°C are written as,

Ris =Ry (1+15a),

R3() = RO (1 + 300!),

where Ry is the resistance of the column at 0°C and « is the resistance temperature
coefficient. The two equations give

R3() N R()(l +300l)
Ris  Ry(1+15a)’

1430 1 +30°C (0.0072 °C™1)
Rsp = — " )=10Q —
1+ 15« 1+ 15°C (0.0072 °C~ 1)

=11 Q.

The resistance of mercury column at 30°C is 11 €. The resistance of mercury
column at 0°C is calculated as follows:

Ris=Ry(1+15a)
10 Q = Ro[1 + 15°C (0.0072 °C™1]
Ry =9.0 Q.

4 wxMaxima codes:

($14) fpprintprec: 5; ratprint: false; R15: 10; alpha: 0.0072;
(fpprlntprec) 5
(ratprint) false
(R15) 10
(alpha) 0.0072
(%$15) R30: R15* (1+30*alpha)/(1+15*alpha);

(R30) 10.975

($17) solve(R15=RO* (1+15*alpha), R0O)$ float(%):;
(%07) [R0=9.0253]

Comments on the codes:

(%i4) Set floating point print precision to 5 and internal rational number print to
false, assign values of R;s and «.

(%15) Calculate R53.

(%17) Solve R15 = RO (1 + 15 Ol) for Ro.
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Problem 8.8 A light bulb operates at 240 V, 100 W with the filament temperature at
2000°C. The resistance temperature coefficient of the filament is 5.00 x 1073 K~!
at 15.0°C. What is the current in the light bulb when it is switched on at 15.0°C?

Solution

Using P = VI = V?/R and V = IR, Eqgs. (8.13) and (8.8), respectively, the filament
resistance R,gpo and the current in the filament /5yyy at 2000°C are,

V2 (240 V)?
Rooop = — = ——2_ =576 Q,
2000 = "p 100 W
V240V
Iogy = —— = ——— = 0.417 A.
20007 R0 576

The filament resistance R;5 at 15.0°C is calculated as follows,

Roooo = Ri5 [1 + (6, — 6))]
576 2 = Rys[1 +5.00 x 1073 K~! (2000 — 15.0)K]
Ris = 52.7 Q.

Therefore, the current when the light bulb is switched on at 15.0°C is

Vo 240V
Ris 527 Q

Iis = =455 A.

4 wxMaxima codes:

i6) fpprintprec: 5; V: 240; P: 100; theta2: 2000; thetal: 15; alpha: 5e-

fpprintprec) 5
V) 240

P) 100

theta2) 2000
thetal) 15

7) R2000: float(V"~2/P);

RZOOO) 576.0
I2000: float (V/R2000) ;

IZOOO) 0.41667

9) R15: R2000/ (1 + alpha* (theta2-thetal));
Rl5) 52.723
i10) I15: V/R15;
I15) 4.5521

(%
3;
(
(
(
(
(
(alpha) 0.005
(%
(
(%
(
(%
(
(%
(
Comments on the codes:

(%16) Set floating point print precision to 5, assign values of
V, P, 92, 91, and «.
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r=1.0mm/ | 1=0.60 A

v ©

J

Fig. 8.4 Electron flow and electric current, Problem 8.9

(%i7), (%ig), (%19), (%110) Calculate R2000, 12()()(), R15, and 115.

Problem 8.9 A current of 0.60 A flows in a wire of radius 1.0 mm. Calculate the
number of electrons crossing a cross-section of the wire per second. What is the
current density?

Solution

Figure 8.4 shows electron flow and electric current in the wire. The Direction of
electric current is opposite to that of electron flow.

Current of / = 0.60 A means a flow of 0.60 coulombs of charge per second. The
number of electrons flowing per second is obtained by dividing the value by the
magnitude of electron charge

0.60 C/s

n=———""_ =37x 10" electrons per second.
1.6 x 10~ C

The current density J is current per cross-sectional area, Eq. (8.4),

1 1 0.60 A
J=S=—= —— =19x10°Am™.
A mr (1.0 x 1073 m)
4 wxMaxima codes:
($14) fpprintprec:5; I:0.6; r:le-3; e:l.6e-19;
(fpprintprec) 5
(I) 0.6
(r) 0.001
(e)  1.6%10~-19
(%$15) n: I/e;
(n)  3.75%*10718
($16) J: I/float (%pi*r”"2);
(J)  1.9099%10"5
Comments on the codes:
(%i4) Set floating point print precision to 5, assign values of /, r, and e.

(%i15), (%i6) Calculate n and J.
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Problem 8.10 Electric current of 5.0 A flows in a copper wire of a cross-sectional
area of 3.0 mm?. Calculate the drift velocity of the electrons in the wire. Atomic
mass of copper is 63.6 kg kmol~! and density of copper is 8920 kg m~>.

Solution

The current density J is, Eq. (8.4),

1 5.0A

= _17x10°Am™2.
A 3.0x107°m?

J =

Current density J and drift velocity v, of electron are related as follows, Eq. (8.4),
J =nevy,

where n is the number of electrons per unit volume of copper, e is the electron charge,
and v, is the drift velocity of electrons. The number of copper atoms per unit volume
is,

Nap (6.02 x 102 atom/kmol) (8920 kg/m3)

M 63.6 kg/kmol

8.4 x 10%® atoms m 3,

where Ny4 is the Avogadro number, p is the density of copper, and M is the molar
mass of copper. Assume that there is one free electron for each copper atom that
creates the current. Then, the value is the number of charge carriers per unit volume,
thatis, n = 8.4 x 10?8 free electrons per m?. Therefore, the drift velocity of electrons
in copper is

J 1.7 x 105 A m~2
Vg = — =
47 e (8.4 x 1028 electrons m=3)(1.6 x 10-1° C)
=12x10"*ms L

4 wxMaxima codes:

i7) fpprintprec:5; I:5; A:3e-6; M:63.6; rho:8920; NA: 6.02e26; e:1.6e-19;

pprintprec) 5

) 5

) 3.0*%10"-6

) 63.6

ho) 8920

) 6.02*10726
1.6*107-19

8) J: I/A;

1.6667*10"6

n: NA*rho/M;

8.4431*10728

10) vd: J/(n*e);

) 1.2337*10"-4
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Comments on the codes:

(%17) Set floating point print precision to 5, assign values of I, A,
M, p, N4, and e.
(%i18), (%19), (%110) Calculate J, n, and v,.

Problem 8.11 Calculate the resistance of 100 m of silver wire with a cross-sectional
area of 0.30 mm?. Resistivity of silveris 1.6 x 1078 Q m.

Solution

The resistance of the silver wire is, Eq. (8.9),

1. 1078 @ 1
R:’O_lz( 6 x 10 m)(OOm)=5.3Q'
A 0.30 x 10-% m?

4 wxMaxima codes:

($14) fpprintprec:5; 1:100; A:0.3e-6; rho:1.6e-8;
(fpprintprec) 5

(1) 100

(A) 3,0=1Q*=T

(rho) 1.6*10"-8

($15) R: rho*1/A;

(R) 5.3333

Comments on the codes:

(%i4) Set floating point print precision to 5, assign values of /, A, and p.
(%i15) Calculate R.

8.3 Summary

e FElectrical current is the rate at which charge flows

d
=4,
dt
e The unit for current is ampere (A)

1A=1Cs L
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e Resistance R of a cylinder of length / and cross-sectional area A and resistivity p
is

_
=2

R

e Temperature affects resistivity p and resistance R of a material

o = po(1 +a(T —Tp)),

R = Ro(1 + a(T — Typ)),

where pg, Ry, and T, are original resistivity, resistance, and temperature,
respectively, and « is the temperature coefficient of resistivity.

e Ohm’s law gives the relationship among current /, voltage V, and resistance R in
a simple circuit as

V =1IR.

e Electric power is the rate at which the electric energy is consumed by a load or
supplied to a load. Power dissipated by a resistor is

P=1V =I°R=V?/R.

8.4 Exercises

Exercise 8.1 A current of 6.0 A is maintained in a wire for 50 s. At this time, how
much charge and how many electrons flow through the wire?
(Answer: 300 C, 1.9 x 10?' electrons)

Exercise 8.2 A current of 2.5 A flows in a metal rod of diameter 0.20 cm and length
1.5 m when the potential difference between the rod ends is 40 V, Fig. 8.5. Calculate

€ OV >
ozocm@ —  y-25A )
<—————- 15m ———————>

Fig. 8.5 Electric current in a metal rod, Exercise 8.2
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Fig. 8.6 A circuit consisting r=05Q. &E=30V
. , .

of a dry cell with internal
resistance and a resistor, |—————= |

Exercise 8.4 | 1
o— I
A |

(a) current density
(b) electric field in the rod
(c) resistivity of the metal

(Answer: () J=8.0x I Am 2 (B E=27Vm ' (c)p=34x10"Qm)

Exercise 8.3 A copper wire is 10 m long and 0.25 mm in diameter. Resistivity of
copper is 1.7 x 107® © m. Calculate the resistance of the wire.
(Answer: 3.5 Q)

Exercise 8.4 A dry cell with an emf of 3.0 V and an internal resistance of 0.5 Q
is connected to a 5.0 €2 resistor, Fig. 8.6. What is the potential difference between
points A and B?

(Answer: 2.7 V)

Exercise 8.5 The resistance of a metal wire at 20°C is 1.64 Q2 and at 150°Cis 2.41 Q.
Find the resistance of the wire at 0°C and the temperature coefficient of resistance.
(Answer: Ry = 1.52 Q, o = 3.89 x 1073°C~1)



Chapter 9 ®)
Direct Current Circuit Check for

Abstract This chapter solves problems on direct current circuits by applying Kirch-
hoff’s rules. The rules are (1) the sum of the currents into any junction is zero and
(2) the sum of potential differences across each element around a closed loop is zero.
Problems to determine the equivalent resistance of resistors in series and in parallel
and to determine current and charge in direct current RC circuits are also tackled.
Solutions are by analytical means and computer calculation.

9.1 Basic Concepts and Formulae

(1) Electromotive force (emf) of a battery is the voltage across its terminals when
the current is zero. The emf is the open circuit voltage of a battery.
(2) Equivalent resistance Ry,.s of two or more resistors connected in series is

Rseries = Rl + R2 + R3 + ... (1)

Equivalent resistance Rqrqiie1 Of two or more resistors connected in parallel
is given by

1 1 1 1
— = — 4 —+ — .. )
Rparallel Rl R2 R3

(3) Electric circuits can be analyzed by Kirchhoff’s rules that say:

(a) the sum of currents into a junction is the sum of currents out of the junction.
(b) the sum of potential differences across every element of a closed loop is
ZEero.

(4) If aresistor is tracked in the direction of current, the change in potential across
the resistor is —IR, that is, there is a voltage drop. If a resistor is tracked in
the opposite direction to the current, the change in potential is IR, that is, there

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 209
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9 Direct Current Circuit

A A
T [
B¢ switch C e B ¥ switch C
(a) (b)

Fig. 9.1 A direct current RC circuit, a charging, b discharging

&)

is a voltage rise. If an emf source is tracked in the emf direction (negative to
positive), the change in potential is £. If an emf source is tracked in the opposite
direction to the emf direction (positive to negative), the change in potential is
-£.

A capacitor C is connected to a resistor R and a battery with emf &, as shown
in Figure 9.1a. This is called an RC circuit. The current [ in the circuit and the
charge Q in the capacitor vary with time as

& :
I(t) = E <€ R = Lpgy - eit/ta 3)

Q) =CE-(1—e ) = Qg - (1 — e/, €
where [,,,,, = /R is the maximum current, Q,,,, = C& is the maximum charge
of the capacitor, and T = RC is the time constant of the circuit.

(6) When the capacitor is discharged, Figure 9.1b, the charge in the capacitor
Q and current in the circuit / change with time as

Q(t) = QO . eiﬁ = Q() . gft/r’ 5)

where Iy = Qy/(RC) is the initial current in the circuit and Q the is initial
charge in the capacitor.
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9.2 Problems and Solutions

Problem 9.1 For the circuit in Fig. 9.2a, determine the current in each resistor.
Solution

There are two cells that drive the currents. We assumed two counter clockwise loops
A and B and currents [y, I, and /5 at junction C, Fig. 9.2b. Applying Kirchhoff’s
rule, at junction C

L =1+, (D

that is, current going in /, equals currents going out /| + /3.
For loop A, we have

Sl — R+ R:5=0,

10V €1=6.OVC E=10V

R]:4.0Q R2:12Q
() (b)
E =60V E=10V
C

| vl v4)

R;=8.0Q BC

1 C
AN AN
R =400 R, =120

(©

Fig. 9.2 Determining currents in a circuit, a the circuit, b setting currents and loops for Kirchhoff’s
rule analysis, ¢ alternative Kirchhoff’s rule analysis, Problem 9.1
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6.0V —(4.0Q) +(8.02)I; =0. 2)

Here, starting at the 6.0 V cell, we have a 6.0 V potential rise by the cell, —(4.0 )/,
potential drop by the 4.0 2 resistor, and +(8.0 €2)/3 potential rise by the 8.0 Q
resistor.

For loop B, we have

52 — R3I3 — R212 = 0,

10V =805 — (122 =0. 3)

That is, starting from the 10 V cell, we have a 10 V potential rise by
the cell, —(8.0 €2)I5 potential drop by the 8.0 €2 resistor, and another —(12 Q)I,
potential drop by the 12 €2 resistor.

Solving Egs. (1), (2), and (3), gives currents in resistors R, R, and Rz as

3 21 2
L=1=A=11A5L==—A=095A, and 5 = ——A = —0.18 A.
22 22 11

The solutions say that the directions of I, and I, are the same as the ones assumed
in Fig. 9.2(b), while the direction of /3 is the opposite, and hence the negative sign
in the current.

The current is 1.1 A from right to left in the 4.0 2 resistor, 0.95 A from left to
right in the 12 € resistor, and 0.18 A from bottom to top in the 8.0 € resistor.

4 wxMaxima codes:

%$12) fpprintprec:5; ratprint:false;

(

(fpprintprec) 5

(ratprint) false

(%$1i4) solve([I2=I1+I3, 6-4*I1+8*I3=0, 10-8*I3-12*I12=0], [I1,I2,I3])$
float (%) ;

(%04) [[I1=1.1364,I2=0.95455,13=-0.18182]]

Comments on the codes:

(%i2) Set floating point print precision to 5 and internal rational number print to
false.
(%i4) Solve Egs. (1), (2), and (3) for Iy, I, and I5.

What if you assume different current directions and loops? Will the currents be
the same? Fig. 9.2(c) shows an example. Applying Kirchhoff’s rules at junction C,

L=1+1. “)
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For loop A,
—R3I; — R\, — & =0,
—B0Q)—4.0QLH —-60V =0, 5)
For loop B,
& — R3lz — R, =0,
10V—-@B.025— (1221 =0. (6)
Solving Egs. (4), (5), and (6) gives currents in resistors R, Ry, and Rj3 as
L = —liA =—11A, L= gA =095A, and I = —EA = —0.18 A.
22 22 11

The solutions say that the direction of I, is the same as the one assumed in
Fig. 9.2c, while those of /| and /5 are the opposite. These results are in physics terms
the same as those of Fig. 9.2b.

4 wxMaxima codes:

($12) fpprintprec:5; ratprint:false;

(fpprintprec) 5

(ratprint) false

($14) solve([I3=I1+I2, -8*I3-4*I1-6=0, 10-8*I3-12*I12=0], [I1,I2,I3])$
float (%)

(%04) [[I1=-1.1364,I2=0.95455,1I3=-0.18182]]

Comments on the codes:

(%i2) Set floating point print precision to 5 and internal rational number print to
false.
(%i4) Solve Egs. (4), (5), and (6) for 1, I,, and I3.

Problem 9.2 For Fig. 9.3, determine,

(a) the equivalent resistance between points X and Y.
(b) the potential difference between points X and A if the current through 8.0 Q2
resistor is 0.50 A.

Solution

(a) We calculate equivalent resistances in stages, and at each stage, substitute the
equivalent resistance into the circuit until the final equivalent resistance R, is
obtained, Fig. 9.4.
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9 Direct Current Circuit

:
s

o)
@)

=
)
@)

6.0 Q

:

Fig. 9.3 A network of resistors, Problem 9.2

(©)

R.=8.0Q

Fig. 9.4 Determining equivalent resistance, Problem 9.2

(@

In Fig. 9.4a, the 8.0, 16, and 16 2 resistors are in parallel. Let their equivalent
resistance be R with value

1
R = T

1 1
soti6T 16

—_

Q=40¢Q.
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The 9.0 and 18 €2 resistors are in parallel. Let their equivalent resistance be
R,

Ry= ——Q=602.

1
o0t 18

In Fig. 9.4b, R, and the 20 Q2 resistors are in series. Let their equivalent
resistance be R3

Ri=40Q+20Q=24Q.

Similarly, R, and the 6.0 2 resistors are in series. Their equivalent resistance
is R4

Ry =60Q+60Q=12Q.

In Fig. 9.4c and d, the equivalent resistance between points X and Y is

Q=28.0%Q.

1
1 1 1 1
xtrm utn

(b) InFig. 9.4a, with the info that current through 8.0 €2 resistor is 0.50 A, using V
= IR, then

Vxp = (8.0 2)(0.50 A) =4.0V.

Therefore, the current through the three resistors in parallel is

40V 40V
Ixg=050A+ —— + 27" _10A,
X8 TTea 160

where we have used I = V/R to calculate the second and third currents. Because
Ipc =Ixp = 1.0 A, applying V = IR, we write

Ve = 20 Q)Igc = (20 2)(1.0 A) =20 V.
Thus, the voltage between points X and Y is

Vxy = Vxp+ Ve =40V +20V =24 V.
Because Vxy = Vxp =24V, applying I = V/R, we write

Vip 24V

— =—==2.0A,
Rxp 12 Q

Ixp =
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and I'xp = Iap = Ixa = 2.0 A as well. The potential difference between points
X and A is

Via = IxaRxa = IxaRo = (2.0 A)(6.0 Q) = 12 V.

4 wxMaxima codes:

(%11) R1: 1/(1/8 + 1/16 + 1/16);
(R1) 4

($12) R2: 1/(1/9 + 1/18);
(R2) 6

(%13) R3: 4 + 20;

(R3) 24

(%14) R4: 6 + 6;

(R4) 12

($15) Re: 1/(1/24 + 1/12);
(Re) 8

($16) VXB: 8*0.5;

(VXB) 4.0

($17) VBC: 20*1;

(VBC) 20

(%18) VXY: VXB + 20;

(VXY) 24.0

(%$19) IXD: 24/12;

(IXD) 2

(%110) VXA: 2%*6;

(VXR) 12

Comments on the codes:

(%il), (%i2), (%i3), (%id), (%i5) Calculate Ry, Ra, R3, R, and R,.
(%i6), (%i7), (%i8), (%9), (%i10) Calculate Vg, Ve, Vyy, Ixp, and Vyu.

Problem 9.3 Figure 9.5a and b show two configurations of resistors. Each resistor
is 3.0 © and has a maximum output power of 48 W. What are the maximum power
and voltage of terminals of each configuration?

Solution

(a) The maximum current that flows in the 3.0 2 resistor on the right of Fig. 9.5(a)
is, Eq. (8.13),

[Prax 48 W
Dpax = ] —22 = | —— =4.0A,
e R 3.0 Q

where application of P = I’R is made. The two 3.0 S resistors on the left are in
parallel, the current through each of them is 2.0 A, and the power of each is

P=1I’R=(2.0A)*3B.0Q) =12 W.
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300
—AMA—
3.00
W 300 —
300 [ YWV
AAAA 300
L AMA—

(@ (b)

Fig. 9.5 Power and voltage of configuration of resistors (a) and (b), Problem 9.3

Therefore, the maximum electrical power of the three resistors of Fig. 9.5a
is

Piota =48 W + 12W + 12W =72 W.
The voltage between the terminals is

V=030Q2)2.0A)+ (3.02)(4.0A) =18V.

4 wxMaxima codes:

(%$12) Pmax:48; R:3;
(Pmax) 48

(R) 3

(%$13) Imax: sqrt (Pmax/R);
(Imax) 4

(%$14) I: Imax/2;

(I) 2

(%$15) P: I"2*R;

(P) 12

($16) Ptotal: 48 + P + P;
(Pmax) 72

(%$17) V: 3*2 + 3*4;

(V) 18

Comments on the codes:
(%i2) Assign values of P, and R.

(%i3), (%id), (%i5), (%i6), (%i7) Calculate Inar, I, P, Proras, and V.

(b) For the configuration of Fig. 9.5b, the maximum current that flows in each of
the 3.0 €2 resistors in parallel is, Eq. (8.13),

P (4
Ipax = == _8 W =40A
R 3.0Q2
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The current through the configurationis 4.0 A +4.0A +40A =12 A.
The maximum electric power of the configuration is

Protar =48 W + 48 W + 48 W = 144 W.

The voltage between the terminals is, Eq. (5.13)

P 48 W
V=—=—=12V.
1 4.0 A
4 wxMaxima codes:
(%$12) Pmax:48; R:3;
(Pmax) 48
(R) 3
(%$13) Imax: sqrt(Pmax/R);
(Imax) 4
(3i4) Ptotal: 48 + 48 + 48;
(Ptotal) 144
(515) V: 48/4;
V) 12
Comments on the codes:
(%12) Assign values of P,,,, and R.

(%13), (%i4), (%15) Calculate 1,4y, Piorar, and V.

Problem 9.4 Three identical resistors are connected in series and a potential differ-
ence of V is applied, the dissipated power is 10 W. What is the dissipated power if the
three resistors are connected in parallel with the same potential difference applied?

Solution

Figure 9.6a shows the resistors in series, while Fig. 9.6b shows the resistors in parallel.
Each resistor has resistance R.

For resistors connected in series, Fig. 9.6(a), the equivalent resistance is, Eq. (1),
Ryeries = R+ R+ R =3R.
The dissipated power is, Eq. (8.13),

& V2 V2
Pseries = = =—=10W.
Requivalent Rseries 3R

This means that each resistor dissipates 10/3 W = 3.3 W of electrical power.
For resistors connected in parallel, Fig. 9.6b, the equivalent resistance is, Eq. (2),
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(a) (b)

Fig. 9.6 Three resistors in series (a), and in parallel (b), Problem 9.4

1
Rparallel =7 1 T = 5
rtetz 3
The dissipated power is, Eq. (8.13),
V2 V2 vz o 3v?

Pparatier = = ===
paralle .
Requivulenl Rparullel R/3 R

The ratio of dissipated powers for resistors in parallel to that in series is

Pparallel — (3V2/R) _
Pseries (V2/3R)

Thus, the power for resistors in parallel is
Pparallel = 9Pseries =9 (10 W) =90 W.

This means that each resistor dissipates 90/3 W = 30 W of electrical power.

4 wxMaxima codes:

%i2) fpprintprec:5; ratprint:false;

(

(fpprintprec) 5

(ratprint) false

(%i4) solve([Pseries = 10, V*2/(3*R)=10, Pparallel=3*V~2/R],
[Pparallel,Pseries,V])$ float(%);

(%04) [ [Pparallel=90.0,Pseries=10.0,V=5.4772*sqgrt (R) ]

’
[Pparallel=90.0,Pseries=10.0,V=-5.4772*sqrt (R) 1]
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200 40Q  40Q 200
A e AN

§6.0Q ?6.0(2 4.0 Q2

C

—NVVWN\V— VW
2.0Q 4.0Q 400 2.0Q

B

Fig. 9.7 A network of eleven resistors, Problem 9.5

Comments on the codes:

(%i2) Set floating point print precision to 5 and internal rational number print to
false.

. 2 2
(%i4) Solve Pyeries = 10»3‘,/_13 =10, and Pparallel = % for Pparallel» Pyeries, and V.

Another question: If the resistors are replaced by identical light bulbs, how does the
brightness of the bulbs in series compare with the bulbs in parallel?

Answer: The bulbs in series are less bright than the ones in parallel because the power
of bulbs in series is less than the ones in parallel.

Problem 9.5 Eleven resistors are arranged as in Fig. 9.7, determine:

(a) the resistance between points A and B.
(b) potential difference between points A and B that causes current of 1.0 A in point
C.

Solution

(a) Figure 9.8 shows a way to simplify the circuit in stages. Resistors in series and
resistors in parallel are replaced by their equivalent resistances, this is repeated
until a single equivalent resistance is obtained.

In Figs. 9.7 and 9.8a

Ri=40Q4+40Q+40Q2=12Q.
The two 2.0 2 resistors on the right of Fig. 9.7 are not included, because if

A and B are the terminals of emf, no current will flow in the two resistors. In
Figs. 9.8a and b, the 6.0 €2 resistor and R; are in parallel, thus

Ry, = = =4.0 Q.
+



9.2 Problems and Solutions 221

Ry
40Q 4.0Q
(a)
4 *—VWWV AVAYAYAY, "WW—e p
200 6.0 Q2 20Q

(b)
AW AW AW\

A° °B
200 6.0 Q2 20Q
R3
AYAAAY;
(©
4 VW NN NVW—e p
200 6.0Q 20Q
d 4 — N\ SAAAY MWN—e p
20Q Ry 20Q
e 4° AYAYAYAY, * B
Rs

Fig. 9.8 Simplifying the resistor network in stages, Problem 9.5

In Figs. 9.8b and c, the two 4.0 Q2 resistors and R, are in series, thus
R;=40Q+ R, +4.0Q2 =12 Q.

In Figs. 9.8c and d, the 6.0 €2 resistocr and Rj are in parallel, thus

1
R4: = I

1
1 1 1 =4.0Q.
% teoa mateoe
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Lastly, in Figs. 9.8d and 9.8e, the equivalent resistance between points A and
Bis

Rs =20Q+ R4 +2.0Q2 =280 L.

4 wxMaxima codes:

(%1i1) R1: 4+4+4;

(R1) 12

(%12) R2: 1/(1/R1 + 1/6);
(R2) 4

(%$13) R3: 4+R2+4;

(R3) 12

(%i4) R4: 1/(1/R3 + 1/6);
(R4) 4

(%$15) R5: 2+4R4+2;

(R5) 8

Comments on the codes:
(%i11), (%i12), (%13), (%i4) (%i5) Calculate R;, R», R3, R4, and Rs.
(b) InFigs. 9.7 and 9.8a,

current in C = current in R; = 1.0 A.

In Fig. 9.8aand b

potential difference across R, = potential difference across R
=(1.0AR, = (1.0 A)(12 Q)

=12 V.
In Fig. 9.8band c
. . 12V 12V
current in R; = current in Ry = =—=30A.
R, 4.0 Q

potential difference across R3 = (3.0 A)(12 ) =36 V.
In Fig. 9.8c and d

potential difference across R4 = potential difference across R3 =36 V.

36V 36V
Ry 4.0 Q

current in Ry =

In Fig. 9.8d and e
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Fig. 9.9 Circuit of Problem
9.6 C
6.0 Q g § 3.00
A o B T 36V
S
3.0Q 6.0 Q
D

current in Rs = current in Ry = 9.0 A.
Thus, the potential difference between points A and B is
(9.0 A)Rs = (9.0 A)(8.0 Q) =72 V.

Problem 9.6 For Fig. 9.9, determine:

(a) the potential difference between points A and B, V 45 when switch § is opened.
(b) the current in switch S when the switch is closed.

Solution
(a) When switch § is opened, using / = V/R, the current in point A or B is

36V

T _40A.
(3.0+6.0)

The voltage drop across CA, using V = IR, is
(4.0A)(6.0Q2) =24 V.
The potential at point A is
Va=36V-24V =12V.
The voltage drop across CB is

(4.0A)(3.0Q) = 12V.
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(b)

S
3.0Q § Q 6.0 Q 3.0Q § Q 6.0 Q

9 Direct Current Circuit
The potential at point B is
Vg =36V—-24V =24V.
Therefore, the potential difference between points A and B is
Vap =Va—Vp =12V-24V = —12V.

Figure 9.10a shows currents and resistors for the circuit in Fig. 9.9 when switch
S is closed. Directions of currents and circuit loops are assigned for application
of Kirchhoff’s rules.

For top and bottom loops, the Kirchhoff’s rules give

—B.0QL + (609U — 1) =0, (1)

—(6.0Q)L+ 3.0 —-15L)=0. 2)

Top loop, Eq. (1): In a clockwise direction, starting from point C, there is a
potential drop of —(3.0 )/, across the 3.0 Q2 resistor and potential rise of +
(6.0 Q)(I —1I,) across the 6.0 2 resistor.

Bottom loop, Eq. (2): In a clockwise direction, starting from point B, there
is a potential drop of —(6.0 2)I, across the 6.0 €2 resistor and potential rise of
+ (3.0 Q)({ —1,) across the 3.0 2 resistor.

Solving Egs. (1) and (2) gives / and I, in terms of /

v/
cl
-1
300 60Q 9 gs.og
L—1 36VL
B A | B ¢

L L

V]

(a) (b)

Fig. 9.10 a Analysis by Kirchhoff’s rule, b alternative analysis by Kirchhoft’s rule, Problem 9.6
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The equivalent resistance between points C and D is

1 1
R =~ — Q+ — 2=40Q.
30 T 60 50 T 30
The current in C or D is
\%
1=ﬂ=36_V=9.0A.
R 4.0 Q

Thus, the current through switch S is

1 1
L—5L==-1I=-(9.0A)=3.0A.
1—h=3 3( )

The direction of the current is from point B to A. The other currents are

2
Ii=31=300A)=60A

SRS

1 1
L=-1I=-090A)=30A.
2=31=3( )

4 wxMaxima codes:

solve ([-3*I1+6* (I-I1)=0, -6*I2+3*(I-I2)=0 ], [ I1, I2]);

[[I1=(2*1)/3,12=I/3]]

R: 1/(1/3 + 1/6) + 1/(1/6 + 1/3);
4

I: 36/R;

9

1/3%1ne

3

Comments on the codes:

(%il)

Solve Egs. (1) and (2) for /; and I,.

(%i12), (%i3) Calculate equivalent resistance R and current /.

(%14)

Calculate the current in switch S.

225

Alternative calculation: Fig. 9.10b shows the circuit with the 36 Vvoltage source

and a third loop. Using Kirchhoff’s rules in the three loops, we have
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~BO + 6.0 —1) =0, (1)
—(6.0Q)L+ 3.0 — ) =0, )
36V —(3.0Q)1 —(6.0Q)L =0. 3)

Top loop, Eq. (1): Inaclockwise direction, starting from point C, there is a potential
drop of —(3.0 2)I; across the 3.0 Q2 resistor and potential rise of 4 (6.0 Q)(I —I;)
across the 6.0 €2 resistor.

Bottom loop, Eq. (2): In a clockwise direction, starting from point B, there is a
potential drop of —(6.0 2)I, across the 6.0 Q2 resistor and potential rise of + (3.0 )(/
— I,) across the 3.0 2 resistor.

Right loop, Eq. (3): In counter clockwise direction, starting from the voltage
source, there is a potential rise of 4+ 36 V across the voltage source, a potential drop
of — (3.0 ©2)I; across the 3.0 2 resistor, and a potential drop of —(6.0 2)I, across
the 6.0 2 resistor.

Solving Egs. (1), (2), and (3) gives

I, =60A, L=30A, I=90A.

Therefore, the current in switch S is

L — 1L, =30A.

4 wxMaxima codes:

solve ([-3*I1+6*(I-I1)=0, -6*I2+3*(I-I2)=0,36-3*I1-6*I2=0 ],

[[I=9,I1=6,1I2=3]]
Il: 6 ; I2: 3;

Comments on the codes:

(%il) Solve Egs. (1), (2), and (3) for 1, I, and I,.
(%i4) Calculate the current in switch S.

Problem 9.7 Figure 9.11 is an RC series circuit withe = 12 V, R = 1.4 MQ, and

C=18uF.
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Fig. 9.11 An RC circuit,
Problem 9.7 |

E=12V

R=14MQ C=18uF
[
AN 1

(a) Calculate the time constant t.

(b) What is the maximum charge Q,,,, in the capacitor?

(c) Calculate the time to charge the capacitor to 16 nC.

(d) Plot curves of charge in the capacitor and current in the circuit against time for
0to 10s.

Solution

(a) The time constant is, Eq. (4),
7=RC = (1.4 x 10° Q)(1.8 x 107°F) =2.55s.
(b) The maximum charge in the capacitor is, Eq. (4),
Omax =CE=(18x10°F)(12V) =22 x 107> C =22 uC.
(c) The time to charge the capacitor to 16 wC is calculated as follows, Eq. (4),

Q = Qma)c . (1 - eit/r)9
e—t/‘r =1— Q ,
Omax

16 uC
r=—emf1— -2 )= —@255m(1- 2
Qmax 22 MC

=34s.
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4 wxMaxima codes:

%$i5) fpprintprec:5; ratprint:false; emf:12; R:1.4e6; C:1.8e-6;

(

(fpprintprec) 5
(ratprint) false
(emf) 12

(R) 1.4*%10"6

(C) 1.8*10"-6
(%$16) tau: R*C;
(tau) 2.52

(%$17) Qmax: C*emf;
(Qmax) 2.16*107-5
(%18) Q: 1l6e-6;

(Q) 1.6*10"-5
(%19) t: -tau*log(l- Q/Qmax) ;
(t) 3.4018

Comments on the codes:

(%15) Set floating point print precision to 5, internal rational number print
to false, and assign ¢, R, and C.

(%i16), (%17) Calculate T and Q-

(%18), (%19) Assign Q and calculate .

(d) The charge Q in the capacitor varies with time ¢ as, Eq. (4),
Q = Qmax : (1 - e—t/r).

4 Curve of charge in the capacitor against time by wxMaxima is as follows:

1
) 2.16*107-5* (1-%e” (-0.39683*t))

%$18) wxplot2d(Q, [t,0,10], grid2d, [xlabel,"{/Helvetica-Italic t} (s)"1,
ylabel, "{/Helvetica-Italic Q} (C)"1);

($14) fpprintprec:5; emf:12; R:1.4e6; C:1.8e-6;
(fpprintprec) 5

(emf) 12

(R) 1.4*%10"6

(C) 1.8*10"-6

(%$15) tau: R*C;

(tau) 2.52

($16) Qmax: C*emf;

(Qmax) 2.16*107-5

($17) Q: Qmax* (l-exp(-t/tau));
(

(

[
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25x10°% T T
26105 | ]
15x10°%
o
11075 |-
5x10°6 -
F . i
1] 2 4 ] 8 10
ris)
Comments on the codes:
(%i4) Set floating point print precision to 5, and assign values of ¢, R, and
C.
(%i15), (%i6) Calculate T and Q.
(%i17) Define Q.
(%18) Plot Q against f for 0 <t < 10s.

The current / in the RC circuit varies with time ¢ as, Eq. (3),

I = E ce7tT,

R

4 Curve of current in the circuit against time by wxMaxima is as follows:

1
) 8.5714*10"-6*%e” (-0.39683*t)

%$i7) wxplot2d(I, [t,0,10], grid2d, [xlabel,"{/Helvetica-Italic t} (s)"1,
ylabel,"{/Helvetica-Italic I} (A)"1);

(%1i4) fpprintprec:5; emf:12; R:1.4e6; C:1.8e-6;
(fpprintprec) 5

(emf) 12

(R) 1.4*10%6

(C) 1.8*10"-6

(%$15) tau: R*C;

(tau) 2.52

($16) I: emf/R*exp(-t/tau);
(

(

[
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Comments on the codes:

(%i14) Set floating point print precision to 5, and assign values of ¢, R, and C.
(%i15) Calculate 7.

(%16) Define I.

(%i7) Plot I against ¢ for 0 <t < 10s.

Alternative solution: For a series RC circuit of Fig. 9.11, the circuit equation is

0 ag 0
S_RI+C_Rdt +C,
where [ is the current in the circuit, Q is the charge in the capacitor, and € E is the
emf of the battery. Thus, R/ is the potential drop across the resistor and Q/C is the
potential drop across the capacitor. Electric current is the time rate of charge flow, /
= dQ/dt. The initial condition is, att =0s, Q =0C.

The equation is a first-order differential equation, where charge Q is the depen-
dent variable and ¢ is the independent variable. This can be solved using predefined
functions ode2 and icl of wxMaxima. See Solving first order ordinary differential
equation in Appendix A.



9.2 Problems and Solutions 231

4 wxMaxima codes:

%$15) fpprintprec:5; ratprint:false; emf:12; R:1.4e6; C:1.8e-6;
fpprintprec) 5

ratprint) false

emf) 12

R) 1.4*%10"6

C 1.8*10"-6

6) sol: ode2(emf=R*'diff(Q,t) + Q/C, Q, t);

1) Q=%e” (- (25*t)/63)* ((27*%e” ((25*t)/63))/1250000+%c)

%$17) icl(sol, t=0, Q=0);

7) Q=(%e” (- (25*t) /63)* (27*%e” ((25*t) /63)-27)) /1250000

i8) Q: rhs(%):

) (%e” (- (25*t) /63) * (27*%e” ((25*t) /63)-27)) /1250000

%$19) wxplot2d(Q, [t,0,10]1, grid2d, [xlabel,"{/Helvetica-Italic t} (s)"],
label, "{/Helvetica-Italic Q} (C)"] );

2 5x10°5 y y y :

2x105

1.5x10%

Q(C)

1x109

5x105

£(s)

($110) I: diff(Q,t):;

(I) 3/350000- (%e” (- (25*t) /63) * (27*%e” ((25*t) /63)-27)) /3150000

(%111) wxplot2d(I, [t,0,10], grid2d, [xlabel,"{/Helvetica-Italic t} (s)"],
[ylabel, "{/Helvetica-Italic I} (A)"] );
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9106 - T T T

8x10% |\ B
72105 | -
6x10% [ .
— 5x106 - -
<
=~ 4x105 | 4
32108 | .
2x10°6 .

1x106 L -

Comments on the codes:

(%15) Set floating point print precision to 5, internal rational number print
to false, and assign values of ¢, R, and C.

(%16) Solve ODE £ = R dQ/dt + Q/C, and get a general solution.

(%i7) Set the initial condition and get a particular solution.

(%i18), (%19) Assign the solution to Q and plot Q against ¢ for 0 <7 < 10s.

(%i110), (%i11) Calculate I and plot I against ¢ for 0 <t < 10s.

Problem 9.8 Figure 9.12 is an RC circuit with a capacitance of C = 1.02 wF and a
battery of emf ¢ = 20.0 V. The capacitor is fully charged to a charge of Qy = Ce. At
time ¢t = 0 s, the switch is moved from point A to B. The Current / decreases to half
of its initial value in 40 ps.

(a) What is the charge in the capacitor at t = 0?
(b) Calculate resistance R
(c) What is the charge in the capacitor at r = 60 s?

A

B switch

C =1.02 uF
£=200V —— —

Fig. 9.12 An RC circuit, Problem 9.8
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Solution

(a) Att =0, the charge is, Eq. (4),

0o =CE=(1.02x 1075 F)(20 V) = 2.04 x 1075 C = 20.4 uC.

(b) From the question, at time t = 40 s, I = 0.5]y, thus, Eq. (6),

L
[:Io.e RL7

__40x1075s
0.5Ip = Iy - e r102x10°H
40 10-°
In2 = X S
R(1.02 x 107°F)
40 10°°
R x ° 57 Q.

T (.02 x 10°F)In2

(c) Att =60 ws, the charge in the capacitor is, Eq. (5),

601070 s

0=20- e*RLC =204 uC- e GTunxi0n =772 uC.

4 wxMaxima codes:

%i4) fpprintprec:5; emf:20; C:1.02e-6; t:40e-6;

(

(fpprintprec) 5

(emf) 20

(C) 1.02*10"-6

(t) 4.0*%10"-5

(%$15) QO0: C*emf;

(Q0) 2.04*107-5

(%17) R: t/(C*log(2)); float(%);
(R) 39.216/1og(2)

(%07) 56.576

(%$18) t: 60e-6;

(t) 6.0*107-5

(%$110) Q: QO0*exp(-t/(R*C)); float(%);
(Q) 2.04*10%-5*%e” (-1.5*1log(2))
(%$010) 7.2125*10"-6

Comments on the codes:

(%14)

Set floating point print precision to 5, and assign values of ¢, C, and
t

(%i15), (%i7)  Calculate Qg and R.
(%i8), (%110) Assign t and calculate Q.

Problem 9.9 Figure 9.13 shows a circuit consisting of a resistance R = 1.70 M2
and a capacitance C = 2.30 pF, and a switch. The capacitor has a charge of 50 nC.
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Fig. 9.13 Discharging an

RC circuit, Problem 9.9 R=1.70 MQ
— o

switch

C=2.30uF

Qo =50 uC

The switch is closed at ¢ = 0 s, so that the circuit is completed. Plot curves of charge
in the capacitor versus time and current in the circuit versus time for the discharging

process.

Solution

For the discharging process of an RC circuit, charge and current vary with time as,

Eq. (5) and (6),
Q=Qp-e i =0y e,

Qo _:
— .e '[.
RC

[=1y-e 7 =
The time constant of the RC circuit is
7=RC = (1.70 x 10° £)(2.30 x 107° F) =3.91 s.

The initial current is

00 50 x 107° C
" RC "~ (1.70 x 105 ©)(2.30 x 10~¢ F)

0

The curves to be plotted are

0 =(50x107°C). e 5,
I=(1.28x 107 A)-e 515,

4 Plot of curve (3) i.e. curve of Q against time ¢ for 0 < ¢ < 10 s by
as follows:

(D

@)

=128 x 107 A.

3)

4)

wxMaxima is
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i4) fpprintprec:5; R:1.7e6; C:2.3e-6; Q0:50e-6;
pprintprec) 5

) 1.7*10"6
)
0
1

)
5
tau) 3.91
16) Q: QO0*exp (-t/tau);
) 5.0%10"-5*%e” (-0.25575*t)
i7) wxplot2d(Q, [t,0,10], grid2d, [xlabel,"{/Helvetica-Italic t} (s)"],
ylabel, "{/Helvetica-Italic Q} (C)"1):

5x10°5 . T : T
45%105 | .
4x10° R
35210 |- 1
3105 | R

25x10°° - 1

Q©

2105 |- 1
1.5=10°5 F E
110 - g

5=106 L R

t(s)

Comments on the codes:

(%i4) Set floating point print precision to 5, and assign values of R, C, and Q.
(%i5) Calculate 7.

(%16) Assign Q.

(%i17) Plot Q against ¢ for0 <7 < 10s.

4 Plot of curve (4) i.e. curve of I against time ¢ for 0 < ¢ < 10 s by wxMaxima is as
follows:

14) fpprintprec:5; R:1.7e6; C:2.3e-6; Q0:50e-6;
pprintprec) 5

) 1.7*10"6
)
0
1

)

5
tau) 3.91
i6) Q: QO0*exp(-t/tau);
) 5.0*107-5*%e” (-0.25575*t)
%$17) wxplot2d(Q, [t,0,10], grid2d, [xlabel,"{/Helvetica-Italic t} (®) ™1,
ylabel, "{/Helvetica-Italic Q} (C)"]);
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1.4x105 T T T

122105

1108

1A

62105

4108

2108

t(s)

Comments on the codes:

(%i4) Set floating point print precision to 5, and assign values of R, C, and
Qo.

(%i5), (%i6) Calculate T and 1.

(%i7) Assign .

(%18) Plot I againstt for 0 <t < 10 s.

Alternative solution: The circuit equation of the problem is,

0
RI+—==0,

+C
g 0
R—4+==0
dt+C

This is a first-order ordinary differential equation with Q and ¢ as its dependent
and independent variables, respectively. The initial condition is, att =0s, Q = Qg
=50x107°C.

The first-order ordinary differential equation can be solved via predefined func-
tions ode2 and icl of wxMaxima. See Solving first order ordinary differential
equation in Appendix A.
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4 wxMaxima codes:

15) fpprintprec:5; ratprint:false; R:1.7e6; C:2.3e-6; Q0:50e-6;
pprintprec) 5
atprint) false
) 1.7*10"6
2. 3¥L0*=6
5. 0*10*=H
) sol: ode2 (R*'diff (Q,t) + Q/C = 0, Q, t)$ expand(%);
) Q=%c*%e” (- (100*t)/391)
) icl(sol, t=0, 0Q=00)$ expand(%);
) Q=%e” (- (100*t)/391) /20000
0) Q: rhs(%);
%e” (- (100*t) /391) /20000
11) wxplot2d(Q, [t,0,10], grid2d, [xlabel,"{/Helvetica-Italic t}
ylabel, "{/Helvetica-Italic Q} (C)"] );

5x105
4.5x10°5
4x105
3.5x10°%
3%105
2.5%10°%
2x105
1.5x105
1x10°5
5x10%
0 : : : )

Qic)

i12) I: abs(diff(Q,t)):

) %e” (- (100*t) /391) /78200

%i13) wxplot2d(I, [t,0,10], grid2d, [xlabel,"{/Helvetica-Italic t}
ylabel, " {/Helvetica-Italic I} (A)"] );

H oe

(
(
(
l

237

(s)"1,

(s)"1,
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1.4x105 : T T
1.2x10°5 1 -
1x105 -
. 8x10% .
<
T ex10% | -
4=105 | \ -
2x10°% | \“R 5
0 ; :
0 2 4 8 10
t(s)
Comments on the codes:
(%15) Set floating point print precision to 5, internal rational number print
to false, and assign values of R, C, and Q.
(%17) Solve ODE R dQ/dt + Q/C = 0 and get a general solution.
(%19) Set the initial condition and get a particular solution.

(%110), (%i11) Assign the solution to Q and plot Q against ¢ for 0 <t < 10 s.
(%i112), (%113) Calculate I and plot I against  for 0 <t < 10s.

Problem 9.10 Show that the resistance of an infinite network shown in Fig. 9.14 is

(1 4+ /3)R.

Solution

Figure 9.15 shows the infinite resistor network. Additional observation points C and

D are also marked.

Resistance between A and B is the sum of R (top left), parallel resistors consisting
of R and effective resistance between C and D (R¢p), and R (bottom left). We write

Fig. 9.14 An infinite R R R
network of resistors,
Prablern 9.10 A e— MM AMA—T MWW
R R R
— A\
B
R R R
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Fig. 9.15 Determining
equivalent resistance,
Problem 9.10

3

Rcp

RRcp

=2R+

R+ Rcp

_ 2R>+3RRcp

R+ Rcp

)

RRip + RagRcp = 2R + 3RRcp.

1
T, TR
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The network is infinite, so R4 = Rcp, and let us call them R,. The resistance
can be calculated by the quadratic formula

RRw + R2, = 2R* 4+ 3RR,
R% —2RR, —2R* =0,

—b +/b% —4ac 2R+ V4R? + 8R?

0o =

Ry =

2a
(14++3)R =2.73R.

2

We have shown that for an infinite network of resistors of Fig. 9.15 the resistance

Rag = RCD =Ry = (1+ \/S)R

4 wxMaxima codes:

false;

2*R”2 + 3*R*Rinf,

($12) fpprintprec:5; ratprint:

(fpprintprec) 5

(ratprint) false

(%$i14) solve (R*Rinf + Rinf”2 =

($03) [Rinf=(1l-sqgrt(3))*R,Rinf=(sqrt (3)+1) *R]
(%$04) [Rinf=-0.73205*R,Rinf=2.

7321*R]

Rinf) ;

float (%) ;
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Elg. ?.16 Charging an RC switch
circuit, Problem 9.11 R

N —

Comments on the codes:

(%i2) Set floating point print precision to 5 and internal rational number print to
false.
(%i4) Solve RRx + R2, = 2R* + 3R R for Rw.

Problem 9.11 Figure 9.16 shows an RC circuit. The circuit consists of a resistance
R, a capacitance C, and a cell with emf &. At time ¢ = O s, the switch is closed. Show
that the charge ¢ in the capacitor and the current i in the circuit are given by

g=CE-(1-eic),

Solution

When the switch is closed, the equation of the circuit is

.9
E=Ri+ —,
C
where i is the current in the circuit, g is the charge in the capacitor, and ¢ E is the
emf of the battery. Here, Ri is the potential drop across the resistor and ¢/C is the
potential drop across the capacitor. As electric current is the time rate of charge flow,
i = dql/dt, the equation is written as

dg g
g=p% 1
dt+C
d
dg . q £ _, (1)
dt RC R
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Equation (1) is a first-order ordinary differential equation, with time ¢ as the
independent variable and g as the dependent variable.

Let us guess a solution of the form
g =CE— Ke /RO, 2)

where K is a constant and Ce is the charge in a fully charged capacitor. Equation (2)
says that g increases with ¢, and as ¢ is very big ¢ becomes Ce. The time derivative
of g is

d K
449 _ 2 t/RO),

dt  RC )

If we substitute (2) and (3) into (1), we get

— —1/(RC)
dg g & _ K _ge CE- KO
dt RC R RC RC

&
- —==0.
R

This shows that (2) is a solution of (1).
The initial condition says that at time # = 0 s, the charge ¢ = 0 C. Substituting
these values into Eq. (2) gives,

0=C&—-K,
K=CE¢.

Thus, Eq. (2) becomes

g=CE— Ke /RO
=CE—CEeERO
=CE-(1—e /RO,

Electric current is obtained by differentiating the charge with respect to time

d &
=4 & e,
dt R

We have shown that that the charge ¢ in the capacitor and the current i in the
circuit are given by

gq=CE-(1—e ),
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This is the same as note (5) at the beginning of this chapter.
These results can also be obtained using predefined functions ode2 and icl of

wxMaxima. See Solving first order ordinary differential equation in Appendix A.

. . . . - d E _
The first order ordinary differential equation to be solved is ! + Z= — & = 0 and

the initial condition is t = 0's, ¢ = 0 C. Charge ¢ is the dependent variable and time
t is the independent variable.

4 wxMaxima codes:

i
fpprintprec) 5

ratprint) false

i3) sol: ode2('diff(q,t) + g/(RC)-emf/R = 0, q, t);
ol) g=%e” (-t/RC)* ((RC*emf*%e” (t/RC)) /R+3c)

i icl(sol, t=0, g=0)$ expand(%);
g=(RC*emf) /R- (RC*emf*%e” (-t /RC) ) /R

g: rhs(%):;

(RC*emf) /R- (RC*emf*%e” (-t/RC)) /R

) i: diff(g,t)$ expand(%);

(emf*%e” (-t/RC)) /R

Comments on the codes:

(%i2) Set floating point print precision to 5 and internal rational number print to
false.

(%i3) Get a general solution of ODE ‘;—? + % — % =0.

(%15) Set the initial condition and get a particular solution.

(%16) Assign the solution to g.

(%i8) Calculate i.

The codes show that the charge is, (%05),

—t/(RC)
quCS_RCEe’ _CE- (1 — e t/RO)
R R ’

and the current is, (%08),
E e /RO &
= = — . /RO,
R R
Problem 9.12 Figure 9.17 shows a circuit consisting of a resistance R and a capaci-
tance C, and a switch. The capacitor has an initial charge of Q. The switch is closed

at t = 0 s so that the circuit is completed. Show that the charge Q in the capacitor
and current / in the circuit change with time ¢ as

Q1) = Q- e e,
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Fig. 9.17 Discharging an
RC circuit, Problem 9.12 \ R
e N—AAAM—
switch
C
Qo
Qo _..
I(t) = = - ¢ &C,
@) RC
Solution

The circuit equation of the problem is,

0
RI+= =0,
e

Qo 0
R—=+ 5 =0. (1)

This is a first-order ordinary differential equation with Q and ¢ as its dependent
and independent variables, respectively. The initial condition is, att = 0's, Q = Qy.

Let us guess a solution of the form
0 = Ke™!/(RO), @)

where K is a constant. Equation (2) says that Q decreases with ¢, and as ¢ is very big
Q becomes 0 C. The time derivative of Q is

40 _ K o),

dt RC )

Substituting (2) and (3) into (1) gives

dQ 0 K _ Ke /(RO
REE L E _j(-2urar) B¢ T
a T c ( rRC® Tt

This shows that (2) is a general solution of the ordinary differential equation (1).
Substituting initial condition at t = 0's, Q = Qy into (2) gives
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0 = Ke!/(RO),
0o =K,

and the particular solution becomes
Q= Qe

This is the variation of the charge in the capacitor with time. The current in the
circuit is

=92 _ Q0 uwke
dt RC

and its magnitude is

_ Q0 oy
RC '

These results are in note (6) at the beginning of the chapter.

The first-order ordinary differential equation can be solved via predefined func-
tions ode2 and icl of wxMaxima. See Solving first order ordinary differential
equation in Appendix A.

4 wxMaxima codes:

%$12) fpprintprec:5; ratprint:false;
fpprintprec) 5

ratprint) false

%$13) sol: ode2 (R*'diff(Q,t) + Q/C = 0, Q, t);
sol) Q=%c*%e” (-t/(C*R))

i4) icl(sol, t=0, Q=Q0);

%04) Q=00*%e” (-t/ (C*R))

i5) Q: rhs(%);

Q) Q0*%e” (-t/ (C*R))

i6) I: abs(diff(Q,

) (abs (Q0) *se” (

t£));
-t/ (C*R)))/ (abs (C) *abs (R) )

Comments on the codes:

(%i2) Set floating point print precision to 5 and internal rational number print to
false.

(%i13) Get a general solution of ODE R dQ/dt + Q/C = 0.

(%i4) Set the initial condition and get a particular solution.

(%15) Assign the solution to Q.

(%i16) Calculate 1.
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9.3 Summary

e Potential difference across a conductor of resistance R carrying current [/ is V =
IR.
® Resistors Ry, R;, R3, ... connected in series have an equivalent resistance R, of

Reqv=R1+R2+R3+...

® Resistors Ry, Ry, R3, ... connected in parallel have an equivalent resistance R,,,
that can be obtained from

1_1+1+1+
Ryv R Ry Ry 7

e Kirchoff’s rules can be used to solve direct current circuit. The rules are (1) the sum
of the currents into any junction is zero and (2) the sum of potential differences
across each element around a closed loop is zero.

e In an RC circuit, the current / in the circuit and the charge Q in the capacitor vary
with time as:

E .
I(I):E'e RC:Imax'e s

QW) =CE-(1—e ) = Q- (1=,

where [,,,,, = €/R is the maximum current, Q,,,, = Ce¢ is the maximum charge of
the capacitor, and T = RC is the time constant of the circuit.

9.4 Exercises

Exercise 9.1 Calculate electric currents through points A, B, C, and D of Fig. 9.18.
(Answer: [, =25A, I =17A, Ic=52A,Ip =10A)

Exercise 9.2 What is the equivalent resistance between points A and B of resistors
in Fig. 9.19.
(Answer: 0.85 2)

Exercise 9.3 Calculate the current in the 3.0, 6.0, and 12 2 resistors in the circuit
shown in Fig. 9.20.
(Answer: 1.5A,1.0A,05A)
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Fig. 9.18 Circuit of

Exercise 9.1 20 Q

A FO—’VVV\/—
B 3.0Q C
—A——1

5.0Q

Fig. 9.19 Network of 1.0Q 1.0Q

resistors, Exercise 9.2
?1.0 Q ?4.0 Q ?5.0 Q

Be ANA—ANMA—
20 20Q

Fig. 9.20 Circuit of —\\\N—
Exercise 9.3 6.0 Q

AW
120 40Q

:

:
:

3.0Q 50Q
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E =20V E=10V

—_

R1=4.0Q Ry=12Q

Fig. 9.21 Circuit of Exercise 9.4

Exercise 9.4 Determine currents in each resistor of the circuit in Fig. 9.21. Use
Kirchhoff’s rule.

(Answer: Current in R, is 0.68 A to the right, current in R, is 0.77 A to the right,
current in R3 is 0.09 A from top to bottom)

Exercise 9.5 Figure 9.22 shows an RC circuit during charging and discharging. The
emfis e = 6.0 V, resistance is R = 5.0 x 10° €, and the capacitance is C = 8.0 x
10°%F.

(a) Calculate the time constant of the circuit.
(b) What are the maximum current in the circuit and the maximum charge of the

capacitor?
(c) Get equations of current against time and charge against time for charging and
discharging.
A A
N [
el B¢ switch C e B¢ switch C
charging discharging

Fig. 9.22 Charging and discharging of an RC circuit, Exercise 9.5
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(Answer: (a) time constantis 4.0's, (b) Iyge = 1.2 X 107 A, Qpar = 4.8 x 107 C,
(c) charging: I = 1.2 x 1075 exp(—0.25¢), Q = 4.8 x 1073 [1 — exp(—0.251)],
discharging: I = 1.2 x 107 exp(—0.25¢), Q = 4.8 x 1073 exp(—0.251))



Chapter 10 ®)
Magnetic Field st

Abstract Problems with magnetic forces due to moving charged particles and
current carrying conductors in magnetic fields are solved in this chapter. The torque
due to the magnetic moment of the current carrying loop in the magnetic field is also
discussed. Both analytical solutions and computer calculations by wxMaxima are
presented.

10.1 Basic Concepts and Formulae

(1) Magnetic force that acts on a charge ¢ moving with velocity v in a magnetic
field B is

F =qv x B. (10.1)
The magnitude of the force is,
F = quvBsin6, (10.2)

where 0 is the small angle between v and B. SI unit for B is weber per meter square
(Wb m™2) or tesla (T),

IT=1Wbm2?>=1INA"'m™". (10.3)

(2) Magnetic force that acts on a straight conductor of length / carrying a current /
in a uniform magnetic field B is

F =11 x B, (10.4)

where vector [ is in the same direction as the current.
The magnitude of the force is

F = 1IBsin6, (10.5)
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where 6 is the small angle between I and B.
(3) For any wire carrying current / in a uniform external magnetic field B, the

magnetic field dF on a small segment ds of the wire is

dF =1ds x B. (10.6)

(4) Magnetic force acting on any current carrying closed loop in a uniform external
magnetic field is zero.
(5) Magnetic moment g of a loop carrying current / is

p=1IA, pn=IA, (10.7)

where A is the area vector normal to the plane of the loop and A is the area of the
loop. The area vector is defined as

A=An, (10.8)

where n is the unit vector normal to the plane of the loop.

(6) Torque t on a loop in a uniform magnetic field B is
T=uxB=IAxB. (10.9)

(7) When a charged particle moves in a magnetic field, the work done by the
magnetic force on the particle is zero because displacement is always perpen-
dicular to the magnetic force. Magnetic force changes the direction of velocity,
but the speed remains the same. If velocity v of the particle is perpendicular
to magnetic field B, the particle will move in a circular path whose plane is
perpendicular to the magnetic field. The radius of the circular path is

F=— (10.10)

where m and g are the mass and charge of the particle, respectively. The angular
frequency (cyclotron frequency) of the rotating particle is

_48

w .
m

(10.11)

(8) A particle of charge ¢ moving at a velocity of v in the region of magnetic field
B and electric field E is acted by Lorentz force which is given by,

F =gE +qv x B. (10.12)
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Table 10.1 Directions of vector cross products

Directions of vectors Note
(@) " v F=qvxB
Bal 0 v — velocity of particle of charge ¢
B — magnetic field
S F F — magnetic force acting on the charged particle
(b) F=IlxB

I
! B 8
B
£
F
F

I — direction of [ is the direction of current /
B — magnetic field
F — magnetic force acting on the conductor

(©

3\

t=puxB=IAXxB

[ — magnetic moment

B — magnetic field

T — torque acting on the magnetic moment

(9) Table 10.1 shows how to determine the direction of the magnetic force on a
charged particle moving in a magnetic field, the direction of the magnetic force
on a current carrying conductor in a magnetic field, and the direction of the
torque on a magnetic moment (a current carrying loop) in a magnetic field. All

by the right-hand rule.

10.2 Problems and Solutions

Problem 10.1 A positron moves with a velocity of v =3.0 x 10’ m s~

in a uniform

magnetic field of B = 2.0 x 10 Gauss as shown in Fig. 10.1. Calculate the magnetic

force on the positron.

Fig. 10.1 A positron
moving in a uniform
magnetic field, Problem 10.1

* \ 4

A
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Solution

A positron has the charge of an electron but of a positive sign, that is, +1.6 x 107!
C. There is a magnetic force acting on a charged particle moving in a magnetic field.
The magnitude of the magnetic force is, Eq. (10.2),

F =quBsin6
= (1.6 x 1072 ©)(3.0 x 10° m/s)

1T
x (2.0 x 10° gauss x ————)sin(180° — 30°)
10 gauss

=48 x 10" N.

Conversion of unit 1 T = 10* gauss is used, see Appendix C. The direction of
the force is out of the plane of the paper. This is determined by the right-hand rule,
Table 10.1(a).

4 wxMaxima codes:

(%15) fpprintprec:5; qg:1.6e-19; v:3e5; B:2e3/le4;
theta: (180-30) /180*float (%pi);

(fpprintprec) 5

(q) 1.6*107-19

(v) 3.0*%10"5

(B) 0.2

(theta) 2.618

($16) F: g*v*B*sin(theta);

(F) 4.8*107-15

Comments on the codes:

(%i5) Set floating point print precision to 5, assign values of charge g, its speed v,
magnetic field B, and angle 6 in radian.
(%i6) Calculate the magnitude of magnetic force F.

Alternative calculation: Express velocity of the positron and magnetic field as
vectors, and do the vector cross product, Eq. (10.1),

v =23.0x10°cos30° i + 3.0 x 10°sin30° j,

B =-0201i,

i j k
F=qvxB=16x10"3.0x10%cos 30° 3.0 x 10%sin 30° 0
—0.20 0 0

=48 x 107 k N.
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The magnetic force on the proton is 4.8 x 10~'> N in the positive z direction (out
of the plane of the paper).
¢ wxMaxima codes:

($12) fpprintprec:5; load("vect");

(fpprintprec) 5

(%02) "C:/maxima-5.43.0/share/maxima/5.43.0/share/vector/vect.mac"
(%14) q:1.6e-19; angle:30/180*%pi;

(gq) 1.6*107-19

(angle) %pi/6

($15) v: [3e5*cos(angle), 3e5*sin(angle), 0];

(v) [1.5%10"5*sqrt(3),1.5*10"5,0]

(%i6) B: [-0.2, 0, 0];

(B) [-0.2,0,0]

($18) F: g*v~B; express(%);

(F) -1.6*107-19*[-0.2,0,0]~[1.5*10"5*sqrt (3),1.5*10"5,0]
(%08) [0,0,4.8*%10"-15]

Comments on the codes:

(%i2) Set floating point print precision to 5 and load the “vect” vector
package.

(%i4) Assign values of charge of positron ¢ and angle in radian.

(%15) (%16) Assign velocity v and magnetic field B.

(%18) Calculate the vector cross product F = gv x B.

Problem 10.2 Calculate the force on a 8.0 x 10~'® C charged particle moving with
a velocity of 3.0 x 10°i m s~! in a uniform magnetic field of 3.0 j T.

Solution

The magnetic force on the charged particle is, Eq. (10.1),

i ik
F=quxB=80x10"%30x10° 0 0
0 300

=72x 1072k N.

The magnetic force on the charged particle is 7.2 x 107! N in the positive z
direction (out of the plane of the paper).



254 10 Magnetic Field

4 wxMaxima codes:

($12) fpprintprec:5; load("vect");

(fpprintprec) 5

(%02) "C:/maxima-5.43.0/share/maxima/5.43.0/share/vector/vect.mac"
($i5) g:8e-18; wv: [3e5, 0, 0]; B: [0, 3, 01;

(a) 8.0*%10"-18

(v) [3.0%10"5,0,0]

(B) [0,3,0]

($17) F: g*v~B; express(%);

(F) -8.0*10"-18*[0,3,0]~[3.0%*10"5,0,0]

(%07) [0,0,7.2*%10"-12]

Comments on the codes:

(%i2) Set floating point print precision to 5 and load the “vect” vector package.
(%15) Assign values of g, v, and B.
(%i7) Calculate F = qv x B.

Problem 10.3 An electron is moving with a velocity of v =4.0 x 10°ims~'ina
uniform magnetic field of B = 3.0 k Wb m~2. Calculate

(a) acceleration of the electron
(b) radius of the circular path traced by the electron.

Solution

(a) Force on the electron is, Eq. (10.1),

i jk
F=qvxB=-16x10"40x1050 0
0 030

=19x 107 N.

Acceleration of the electron is

F19x107"7

a:——W]ms_2=2.lx1017jms_2.
m, A X -

where m, is the mass of the electron. This is the centripetal acceleration of the
electron.

(b) The magnitude of centripetal acceleration is a = v?/r, where v is the speed of
the electron and r is the radius of the circular path. The radius of the circular
path of the electron is

V(4.0 x 105 m/s)? ~
e T —76x107m.
a 2.1 x 1017 m/s
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4 wxMaxima codes:

1
1

a mag) 2.1099*10"17
12) r: 4e5"2/a mag;
7.5833*%10"-7

($13) fpprintprec:5; me:9.1le-31; load("vect");
(fpprintprec) 5

(me) 9.1*%107-31

(%03) "C:/maxima-5.43.0/share/maxima/5.43.0/share/vector/vect.mac"
(%1i6) g:-1.6e-19; wv:[4e5, 0, 0]; B:[0, O, 31;
(a) =i, BFLO*=19

(v) [4.0%1075,0,0]

(B) [0,0,3]

(%18) F: g*v~B; express(%);

(F) 1.6*107-19*[0,0,3]~[4.0*10"5,0,0]

(%$08) [0,1.92*%107-13,0]

(%$110) a: F/me; express(%);

(a) 1.7582*10711*[0,0,31~[4.0*10"5,0,0]
(%$010) [0,2.1099*10717,0]

(%$111) a mag: 2.1099*10717;

(

(

(

Comments on the codes:

(%13) Set floating point print precision to 5, assign m,, and load “vect”
vector package.

(%i16) Assign values of ¢, v, and B.

(%i8), (%110) Calculate F = gv x B and a = F/m,.

(%il1) Assign magnitude of acceleration a.

(%112) Calculate r.

Further question: What difference will it be, if you have a proton instead of an
electron?
Answer: We redo the calculations. Force on the proton is

i j ok
F=quxB=16x10"40x1050 0
0 030

=—19x 1078 N.

The magnetic force on the proton is the same in magnitude but opposite in direction
to that of the electron.
The centripetal acceleration of the proton is

F  —19x1073

_ _ -2 _ 14 - -2
a = ;ﬁ;; = -iiz;?—;z—iz;:§7'j msS =—-1.1x10 Jjms .

where m,, is the mass of the proton. The magnitude of proton centripetal acceleration
is smaller than that of the electron.
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The magnitude of centripetal acceleration is a = v?/r, where v is the speed of the
proton and r is the radius of the circular path. The radius of the circular path of the
proton is

V2 (4 x 10° m/s)? .
r=— = _14x107m.
a 1.1 x 1014 m/s

The radius of the circular path of the proton is bigger than that of the electron.
4 wxMaxima codes:

%112) r: 4e5%2/a_mag;
r) 0.0013917

($13) fpprintprec:5; mp:1.67e-27; load("vect"):;
(fpprintprec) 5

(mp) 1.67*10"-27

(%03) "C:/maxima-5.43.0/share/maxima/5.43.0/share/vector/vect.mac"
($16) g:1.6e-19; v:[4e5, 0, 0]; B:[0, O, 31;
(q) 1.6*107-19

(v) [4.0%1075,0,0]

(B) [0,0,3]

($18) F: g*v~B; express(%);

(F) -1.6*10~-19*[0,0,3]~[4.0*1075,0,0]

(%08) [0,-1.92*107-13,0]

($110) a: F/mp; express(%);

(a) -9.5808*10~7*[0,0,3]~[4.0%10"5,0,0]

($010) [0,-1.1497*10714,0]

(%i11) a mag: 1.1497*10714;

(a mag) 1.1497*10"14

(

(

Comments on the codes:

(%i13) Set floating point print precision to 5, assign m,, and load “vect”
vector package.

(%i16) Assign values of ¢, v, and B.

(%i8), (%110) Calculate F = gv x B and a = F/my,,.

(%il1) Assign magnitude of acceleration a.

(%112) Calculate r.

Problem 10.4 He?* ion is moving at a velocity of 1.0 x 10> m s~! perpendicular to
a magnetic field of 1.0 T. Calculate the magnitude of the magnetic force on the ion.

Solution

The magnitude of the magnetic force on the helium ion is
F =quBsin6

=2 x 1.6 x 107 C)(1.0 x 10°> m/s)(1.0 T) sin 90°
=32x 107" N.
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4 wxMaxima codes:

($15) fpprintprec:5; g:2*1.6e-19; v:1e5; B:1; theta:float(%pi/2);
(fpprintprec) 5

(q) 3.2*107-19

(v) 1.0*10"5

(B) 1

(theta) 1.5708

($16) F: g*v*B*sin(theta);

(F) 3.2*107-14

Comments on the codes:

(%15) Set floating point print precision to 5, assign values of g, v, B, and 6.
(%16) Calculate the magnitude of magnetic force, F.

Problem 10.5 A particle of mass 1.0 g and charge of 2.5 x 1078 C moves with a
horizontal velocity of 6.0 x 10* m s™! in a region that has both gravitational and
magnetic fields. What is the magnitude and direction of the magnetic field so that
the particle stays moving in a horizontal path?

Solution

Figure 10.2(a) shows the particle moving horizontally with a velocity of v to the
right. The particle will stay in the horizontal path if the weight of the particle, mg,
is balanced by the magnetic force, F,,. The gravitational field and the weight of
the particle are in the downward direction. To get a magnetic force in the upward
direction, the magnetic field B must be into the plane of the paper as indicated by
crosses in Fig. 10.2(a). This can be deduced by the right-hand rule, Fig. 10.2(b).

If there is no magnetic field, the particle will move to the right and downward in a
parabolic path due to gravitational force, mg. To balance this force, magnetic force,
F,,, is needed,

F, =qvuB.

The weight of the particle must be equal in magnitude to the magnetic force,

mg = quB,

and the magnetic field is,

mg _ (1.0x 107 k)O8m/s) .

B="2— -
qu (2.5 x 108 C)(6.0 x 10* m/s)

The direction of the magnetic field is into the plane of the paper and this can be
deduced by the right-hand rule, Fig. 10.2(b).
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X X X .
B B a
.
X X X
X X X X
(a) (b)

Fig. 10.2 (a) A charged particle moving in a region of magnetic and gravitational fields, (b)
directions of v, B, and magnetic force, Problem 10.5

4 wxMaxima codes:

%$15) fpprintprec:5; m:1le-3; 39.8¢ g:2.5e-8; v:6ed;
fpprintprec) 5

0.001

9.8
2 9% =F
6.0%10"4
B
6

o\<@@

6) B: m*g/(gq*v);

(%
(
(m
(
(
(
(%
(B - 5333

)
)
)
)
i
)

Comments on the codes:

(%i5) Set floating point print precision to 5 and assign values of m, g, g, and v.
(%16) Calculate the magnitude of the magnetic field, B.

Problem 10.6 An electron is moving with a velocity of v = 1.0 x 10’ m s~! at point
P, Fig. 10.3. Calculate

(a) the magnitude and direction of the magnetic field that causes the electron to
follow a semicircular path.
(b) the time taken for the electron to travel from point P to Q in a semicircular path.

Solution

(a) When the electron moves in a circular path, the magnetic force on the electron
is the centripetal force. This means that
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Fig. 10.3 An electron semicircular path in a region of uniform magnetic field, Problem 10.6

Bml

VB =m—,

1 R

where ¢, v, and m are the magnitude of charge, speed, and mass of the electron,
respectively, B is the magnetic field, and R is the radius of the semicircle. The
magnetic field is

mv (9.1 x 107" kg)(1.0 x 107 m/s)

= = =11x1073T.
gR ~— (1.6 x 10-19 C)(5.0 x 10-2 m) x

The direction of the magnetic field is in the plane of the paper. This can be deduced
by the right-hand rule.

(b) The time of travel is

distance 7R 7(5.0x 1072m)

time = = = =1.6x 107" s.
speed speed 1.0 x 107 m/s

4 wxMaxima codes:

i5) fpprintprec:5; m:9.1le-31; v:le7; g:1.6e-19; R:5e-2;
pprintprec) 5

) 9, 1=10%=31,

) 1.0%1077

) 1.6*10"-19

) 0.05

i6) B: m*v/(g*R);
) 0.0011375

i8) time: %pi*R/v; float(%);
time) 5.0*10"-9*%pi

%08) 1.5708*107-8



260 10 Magnetic Field
Comments on the codes:

(%i5) Set floating point print precision to 5, and assign values of m, v, ¢, and R.
(%16) Calculate the magnitude of magnetic field B.

(%i8) Calculate the time of travel.

Problem 10.7 An electron is accelerated from rest by a potential difference of
3750 V. The electron enters a region with magnetic field B = 4.0 x 1073 T that
is perpendicular to the velocity of the electron. Calculate the radius of the circular
path of the electron.

Solution

Figure 10.4 shows the electron being accelerated by a potential difference of 3750 V,
enters a region of uniform magnetic field, and moves in a circular path. The direction
of magnetic field B is into the plane of the paper. The radius of the circular path is R.

The velocity of the electron when it enters the region of uniform magnetic field is

2eV
V=, —,
m

where m and e are the mass and magnitude of charge of the electron, respectively,
and V is the potential difference. This is obtained by equating the potential energy
of the electron with its kinetic energy

1 2
eV = —mv”.
2
Fig. 10.4 An electron 3750 V1 X % % % %
accelerated by a potential
difference and its path in a
region of uniform magnetic X X
field, Problem 10.7
X X
X X
X X
X X
X X X X X
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The magnetic force that acts on the electron in the region of the magnetic field is
the centripetal force

U2

F=evB=m—.
R

Therefore, the radius of the circular path of the electron is

R— mv __m [2eV _ 2mV
" eB  eBV m ~ V B2
B \/ 2(9.1 x 10-31 kg) (3750 V)

(4.0 x 103 T)2(1.6 x 10-1° C)
=52x10"2m.

4 wxMaxima codes:

3.6314*10"7
i9) solve (e*v*B=m*v"2/R, R)$ float (%);
9) [R=0.051633]

(%16) fpprintprec:5; ratprint:false; m:9.le-31; V:3750; B:4e-3; e:1.6e-19;
(fpprintprec) 5
(ratprint) false
(m) 9,1*10*=31

(v 3750

(B 0.004

(e 1.6*10"-19

(%

(

(

(

)
)
)
i7) v: sqgrt(2*e*v/m);
)
1
o

Comments on the codes:
(%16) Set floating point print precision to 5, internal rational number print to false,

and assign values of m, V, B, and e.
(%i7) Calculate speed, v.

(%i9) Solve evB = mv?*/R for R.

Problem 10.8 Derive an expression for the cyclotron frequency of a particle of mass
m and a charge of g, moving with a speed of v in a plane perpendicular to a uniform
magnetic field of B.

Solution

Figure 10.5 shows the particle of charge 4+ and mass m moving with a speed of v in
a magnetic field of B in a cyclotron. The magnetic field is in the plane of the paper.
The radius of the circular path of the particle is R.
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X X X X X
B
X X
X X
X X X
v
m, +q
X X X X X

Fig. 10.5 Circular path of a charged particle in a cyclotron, Problem 10.8

Magnetic force on the particle is

F =quB.

Magnetic Field

X

The direction of the force is toward the center of the circle. This is the centripetal
force acting on the particle. The source of the force is the charged particle motion in

a magnetic field. Centripetal acceleration of the particle is

F  qvB
a=—=—.
m m

Radius of the circular path is calculated as follows

2

v
a=—,

R

Uz Uz mv
R=—=

@  quB/m  gB
Therefore, the cyclotron frequency is

v vgB qB
f = -

T 2tR  2mmv  2mm’
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4 wxMaxima codes:

(%$11) R: m*v/(g*B);
(R) (m*v) / (B*q)
(%$12) f: v/ (2*%$pi*R);
(£) (B*q) / (2*%pi*m)

Comments on the codes:
(%il) Assign R.

(%i2) Calculate cyclotron frequencys, f.

Problem 10.9 A particle of charge ¢ and mass m is accelerated from rest by a
potential difference of V. The particle then enters a region of uniform magnetic field
of B that is perpendicular to the direction of particle motion. The particle enters the
magnetic field region along the x-axis at x = 0. Show that the y coordinate of the
particle position after time 7 is

y= sz(—q )1/2
8mV '

Solution

Figure 10.6 shows the particle of charge +¢ and mass m accelerated by a potential
difference of V. It enters into the region of magnetic field B with speed v and gets
deflected. The magnetic field is into the plane of the paper, R is the radius of the
circular path of the particle, and C is the center of the circle. The magnetic force
acting on the particle is toward point C as can be deduced by the right-hand rule.

The speed of the particle, v, on entering the region of the magnetic field is
calculated as follows

1% Lo
= —mv°~,
v =3

2qV
V=, —.
m

That is, the electric potential energy of the particle, gV, is converted to kinetic
energy, mv?/2. When the particle is in the region of the magnetic field, the magnetic
force is the centripetal force. Thus, we can calculate the radius of the circular segment

2

R k]

R_mv_m 2V [2mV
T gB  gBY m \ ¢gB?’

quB =
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X X
X X
B
X X
X X
+q, m v X
X X X X
X X X X

Fig. 10.6 Path of a charged particle accelerated by a potential difference and in a region of uniform
magnetic field, Problem 10.9

From Figure 10.6 and Pythagoras theorem, we write

R*=(R—y) +x°
= R*—2Ry +y*+x2,
2Ry = y* + x?
2

X,

The last expression is obtained because x> >> y?. Therefore, the y coordinate is

x2 x2
r= 2R 7 [2mv
qB?
12
—3x2(—‘1 )
8mV
4 wxMaxima codes:
($11) solve ([R=sgrt (2*m*V/(q*B"2)), 2*R*y=x"21, [y,R]);
($01) [[y=(abs(B)*x"2)/(2"(3/2)*sqrt ((V*m)/q)),

R=(sqrt (2) *sqrt ((V*m) /q)) /abs (B) 1]
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B=020T
_
i=50A
a 10 cm b d 10 cm e
5.0 cm 5.0cm
c

Fig. 10.7 A current carrying wire in a region of uniform magnetic field, Problem 10.10

Comments on the codes:
. _ 2mV — 42
(%il) Solve R = q"? and 2Ry = x* for y and R.

(%01) The solutions.

Problem 10.10 Figure 10.7 shows a wire carrying a current of i = 5.0 A in a magnetic
field of B = 0.20 T in the x direction. Calculate the magnetic force on each segment
of the wire.

Solution

Magnetic force on a current-carrying conductor in the region with magnetic field is,
Eq. (10.4) and (10.5)

F =il x B, F =ilBsin6.
For wire segment ab, the force acting on it is
F,, =ilBsin0 =0,

because the current and the magnetic field are parallel to each other.
The force acting on wire segment de is zero as well,

Fy. = 0.
For wire segment bc, the force acting on it is
Fpe = ilBsinf = (5.0 A)(5.0 x 1072 m)(0.20 T) sin45° = 3.5 x 1072 N,

The direction of the force is out of the plane of the paper. This can be deduced by
the right-hand rule.

Lastly, for wire segment cd, the force acting on it is
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F.g = ilBsind = (5.0 A)(5.0 x 1072 m)(0.20 T) sin45° = 3.5 x 1072 N.

The direction of the force is into the plane of the paper, determined by the right-

hand rule.

4 wxMaxima codes:

15) fpprintprec:5; 1i:5; 1l:5e-2; B:0.2; theta:float (45/180*%pi);

(%

(fpprintprec) 5

(i) 5

(1) 0.05

(B) 0.2

(theta) 0.7854

($16) Fbc: i*1*B*sin(theta);
(Fbc) 0.035355

Comments on the codes:
(%i5) Set floating point print precision to 5, assign values of i, /, B, and 6.

(%i16) Calculate F'p,.

Problem 10.11 Figure 10.8 shows a current of i = 5.0 A in wire abcde. The wire is
in a uniform magnetic field of B = 0.15 T pointing to the right. Calculate the force

on each segment of the wire.

Solution

The magnetic force on a wire segment / carrying a current of i in a magnetic field of

B is, Eq. (10.4) and (10.5),
F =il xB, F =ilBsinf.

For wire segment ab, the magnetic force acting on it is

c
B=015T
_—
60°
10 cm 4 20 cm
i=50A
a 12 cm b d 15 cm

Fig. 10.8 A current carrying wire in a region of uniform magnetic field, Problem 10.11
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F, =ilBsinf = (5.0 A)(0.12 m)(0.15 T) sin 0° = 0,
because 6 = 0. The same goes to wire segment de
Fqe = 0.

For wire segment bc, the magnetic force acting on it is

Fye = il Bsinf = (5.0 A)(0.10 m)(0.15 T) sin90° = 7.5 x 1072 N.

pointing into the plane of the paper as determined by the right-hand rule.
Lastly, for wire segment cd, the magnetic force acting on it is

F.q = ilBsin6 = (5.0 A)(0.20 m)(0.15 T) sin 30° = 7.5 x 102 N.

pointing out of the plane of the paper as determined by the right-hand rule.

4 wxMaxima codes:

%$il) fpprintprec:5;

fpprintprec) 5

%$12) Fbc: 5*0.1*0.15*sin(90/180*%pi) ;
Fbc) 0.075

%$i3) Fcd: 5*0.2*0.15*sin(30/180*%pi) ;
Fcd) 0.075

o
o

(
(
(
(
(
(

Comments on the codes:
(%il) Set floating point print precision to 5.
(%i2), (%i3) Calculate Fj. and F 4.

267

Problem 10.12 An imaginary cube of side 1.0 m is in a uniform magnetic field of
B = 2.0 T pointing in the positive of x direction, as shown in Fig. 10.9. A current of

i = 3.0 A flows in the wire loop abcdefa as shown. Calculate:

(a) the magnitude and direction of magnetic force acting on each segment of the

wire.
(b) the resultant magnetic force on the wire loop.

Solution

(a) The magnetic force acting on a wire segment / carrying current i in magnetic

field B is, Eq. (10.4) and (10.5),
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B=20T
—
b
i=3.0A 1
X
a

Fig. 10.9 A current carrying loop in a uniform magnetic field, Problem 10.12

F =il x B, F =ilBsin6.

For wire segment ab,

F, =il x B=3.0A)(1.0jm)x 2.0iT)=-6.0kN.
For wire segment bc,

Fp,,=ilxB=030A)(1.0im—10km)x (20iT)=-6.0,N.

For wire segment cd,
Fu=ilxB=0B0A)(-10jm+10km)x 20iT)=(60k+6.0j)N.
For wire segment de,

Fjo=ilxB=3.0A)(—1.0km)x (2.0i T) =—-6.0 j N.
For wire segment ef,

F,=ilxB=03B0A)(-1.0im) x (2.0iT)=0.
Lastly, for wire segment fa,

Fro=il x B=(3.0A)(1.0km)x (2.0i T) =6.0 j N.
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(b) The resultant magnetic force on the loop is

Fap+ Foe+ Feg+ Fao+ Fop + F 5y = (—6.0 + 6.0k N
+(=6.0+6.0—6.0+6.0)j N
—0.

This shows that the resultant force on a current carrying a closed loop in a uniform
magnetic field is zero.

4 wxMaxima codes:

load ("vect") ;
"C:\maxima-5.43.0\share\maxima\5.43.0\share\vector\vect.mac"
Fab: 3*[0,1,0]~[2,0,0]; express(%);
3*[0,1,0]~[2,0,0]

[0,0,-6]

Fbc: 3*[1,0,-1]1~[2,0,0]; express(%);
3*[1,0,-11~[2,0,0]

[0,-6,0]

Fed: 3*[0,-1,1]1~[2,0,0]1; express(s);
3*[0,-1,1]1~[2,0,0]

[0,6,6]

Fde: 3*[0,0,-1]1~[2,0,0]; express(%);
3*10,0,-11~[2,0,0]

[0,-6,0]

ill) Fef: 3*[-1,0,0]~[2,0,0]; express(%);

s

oe

WD WJQ JUQ WD WP

o

o°

Fef) 3*[-1,0,01~[2,0,0]

%0l11) [0,0,0]

%$i113) Ffa: 3*[0,0,1]1~[2,0,0]; express(%);
Ffa) 3*[0,0,1]1~[2,0,0]

%013) [0,6,0]

%$115) Fab+Fbc+Fcd+Fde+Fef+Ffa; express(%);

14) 3*[1,0,-1]1~[2,0,0]+3*[0,1,0]~[2,0,0]+3*[0,0,1]1~[2,0,0]
t0,0,-11~12,0,01+3*[0,-1,1]1~(2,0,0]+3*[-1,0,0]~[2,0,0]
%015) [0,0,0]

o
* O

~F ~ N~ N~ N~ e~~~ —~
()
B O Q F- O

Comments on the codes:

(%il) Load “vect” package.

(%13), (%15), (%iT), (%19), Calculate Fp, Fpc, Feq, Fae, Fop, and F g,.

E%H%%’ (%i13) Calculate vector sum Fyp + Fpec + Foy+ Fge + Fop +
Fy,.

Problem 10.13 Figure 10.10 shows a metal conductor of mass m and length L that is
free to slide on wires connected to a battery. Current / flows in the wire. The system is
in a region of uniform magnetic field B pointing vertically downward. There is a very
small friction f between the metal conductor and the wires. What is the acceleration
of the metal conductor?
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Fig. 10.10 A current carrying metal conductor in a region of uniform magnetic field, Problem
10.13

Solution
Force acting on the metal conductor is, Equation (10.5),
F =1IBsin6 = ILBsin90° = ILB,

pointing to the right, obtained by applying the right-hand rule. The resultant force
on the metal conductor is

F—f=ILB-f

pointing to the right, where f is friction pointing to the left. The acceleration of the
metal conductor is

_ force ILB—f

mass m
to the right. The metal conductor will move to the right.

Problem 10.14 Figure 10.11 shows a conducting rod of mass M and length L,
suspended by two identical springs, connected to a battery and a switch. The force
constant of the spring is k. The system is in a uniform magnetic field B pointing out
of the plane of the paper.

(a) What will happen when the switch is closed?
(b) Calculate the tension in each spring when the switch is closed.

Solution

(a) When the switch is closed, a counter clockwise current / flows in the system. As
the rod is in a magnetic field region, a magnetic force in a downward direction
acts on the rod. This can be deduced by the right-hand rule. The magnitude of
the magnetic force is, Eq. (10.5),
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Fig. 10.11 A conducting LT T T TITTITITITITTITITTFITITTFITIT]
rod suspended by springs and
connected to a battery and a / |
o : . |
switch in a uniform magnetic ) I
field, Problem 10.14 switch |
e B
k k
M
Q )
€———————— >
L

F =1IBsinf =ILBsin90° = ILB.

The magnetic force is balanced by the elastic forces of the two springs. The elastic
force in each spring is one half of the magnetic force i.e. ILB/2. The extension of
each spring is then

force ILB/2 ILB
kK k0 2k

extension =

So, when the switch is closed, a magnetic force IBL acts on the rod in the downward
direction and each supporting spring stretches by ILB/(2k).

(b) When the switch is opened, that is, when there is no current, tension in each
spring is

Mg

2
When the switch is closed, the tension in each spring increases by

ILB ILB

force constant x extension = k X —— = ——.
2k 2

Therefore, the tension in each spring when the switch is closed is the sum of the
two
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Fig. 10.12 A current D
carrying frame in a uniform I A
magnetic field, Problem :
10.15 | | B
I |
I |
| |
I
16 I
| y C
: | |
| B !
|
Mg ILB
— 4
2 2

Problem 10.15 Figure 10.12 shows a conducting frame ABCD pivoted at AD. Each
segment of the frame is of the same length and its linear density is A = 0.10 kg m™".
The frame is in a region of uniform magnetic field B = 1.0 x 10~% T pointing
vertically upward. What is the slant angle 6 of the frame from the vertical when
current / = 10 A flows in the frame?

Solution

Magnetic forces acting on segments AB and CD do not deflect the frame. This is
because the forces are the same in magnitudes but opposite in directions, and they
cancel each other. Right-hand rule shows that the magnetic force on segment AB
points to the left, while the one on segment CD points to the right. Magnetic force
acting on segment BC does deflect the frame. Let AB = BC = CD = L. Force acting
on segment BC is, Eq. (10.5),

Fagnet = ILB.
This force points to the right as determined by the right-hand rule, Fig. 10.13. The
figure shows a side view of the frame and the forces acting on it.
Another forces that acts on the segments is their weight. The weight of segment
BC is
Fy=XLg.
The weight of segments AB and CD is
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Fig. 10.13 Side view of the

frame and the forces acting
on it, Problem 10.15

F magnet

In equilibrium, the torque about AD is zero. We write
Ly . .
Fagner L cos8 — F2<5> sinf — FiLsin6 =0,
that is

L
(ILB)L cos — (2ALg) (E) sinf — (ALg)Lsin6 = 0.

This gives

1B (10A)1.0x102T) 0.051
2hg  2(0.10 kg/m)(9.8 m/s?)

tanf =

Thus, the slant angle is,

6 = tan~'(0.051) = 2.9°.
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4 wxMaxima codes:

($16) fpprintprec:5; ratprint:false; I:10; B:10e-3; lambda:0.1; g:9.8;
(fpprintprec) 5

(ratprint) false

(I) 10

(B) 0.01

(lambda) 0.1

(9) 9.8

(%$18) solve (I*L*B*L*cos (theta)-2*lambda*L*g*L/2*sin (theta) -
1

(

(

(

(

(

Q W H B Hh oS

ambda*L*g*L*sin (theta)=0, sin(theta))$ float(%);
%08) [sin(theta)=0.05102*cos (theta)]

%$19) theta rad: atan(0.05102);

theta_rad) 0.050976

%110) theta degree: float(theta rad/%$pi*180);
theta_degree) 2.9207

Comments on the codes:

(%16) Set floating point print precision to 5, internal rational number print
to false, and assign values of /, B, A, and g.

(%i8) Solve (ILB)Lcos® — (2ALg) (%)sin6 — (ALg)Lsin® = 0 for
sin 6.

(%19), (%110) Calculate € and convert the angle to degree.

Problem 10.16 The plane of 5.0 x 8.0 cm rectangular wire loop is parallel to a
magnetic field of 0.15 T. If the loop carries a current of 10 A, what is the torque?
Solution

Figure 10.14 shows the current carrying loop in the magnetic field. Positive x direction
(i) is to the right, positive y (j) is upward and positive z (k) is out of the plane of the
paper.

Torque is calculated as follows, Equation (10.9),

T=puxB=IAXB,

v

NVV

v

5.0 cm

v

<~--t>

v

Fig. 10.14 A current carrying loop in a region of uniform magnetic field, Problem 10.16
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7 =1AB sinf = (10 A)(0.050 m x 0.080 m)(0.15 T) sin 90°
=6.0x 107> Nm.

The direction of the torque is the negative y direction. Here, u is into the plane of
the paper, B to the right, thus, torque to the negative y direction. See the right-hand
rule, Table 10.1(c).

4 wxMaxima codes:

5) fpprintprec:5; I:10; A:0.05*0.08; B:0.15; theta:float(90/180*%pi) ;

(%1

(fpprintprec) 5

(1) 10

(A) 0.004

(B) 0.15

(theta) 1.5708

(%16) tau: I*A*B*sin(theta);
(tau)

au) 0.006

Comments on the codes:
(%i15) Assign values of I, A, B, and 6.
(%i6) Calculate t = I AB sinf.

Alternative calculation: Express the magnetic moment and magnetic field in terms
of unit vectors and do the vector cross product.

p=1I1A=—(10 A)(0.050 m x 0.080 m)k
= —0.040 k A m?,
B=0.15iT,

T=puxB=—-0040kAm*>x0.15i T
=—-6.0x10"% j Nm.

where we have used the fact that k x i = j. The direction of the torque is to the
negative y direction.

4 wxMaxima codes:

4)

4) "C:\maxima-5.43.0\share\maxima\5.43.0\share\vector\vect.mac"
%$16) tau: mu~B; express(%);

u) [0,0,-0.04]~[0.15,0,0]

6) [0,-0.006,0]

(%$i1) IA: 10*0.05*0.08;
(Ia) 0.04

(%$12) mu: [0,0,-IA];
(mu) [0,0,-0.04]
(%$i3) B: [0.15,0,0];
(B) [0.15,0,0]

(%1 load("vect");
(2

(

(

(
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Comments on the codes:

(%i1) Assign IA.

(%i2), (%13) Assign vectors g and B.
(%i4) Load "vect” package.
(%i16) Calculate T = u x B.

Problem 10.17 A wire is shaped into the letter “M” and it carries a current of I =
15 A. The wire is placed in a region of uniform magnetic field of B = 2.5 T, as in
Fig. 10.15(a). Calculate the magnitude and direction of the net magnetic force that
acts on the wire.

Solution
For a wire of arbitrary shape carrying a current of / in a magnetic field of B, the
magnetic force acting on the wire is

F =11y x B,

where [ is the vector from one end of the wire to the other.
For this problem, [ is shown in Fig. 10.15(b). Thus, the force acting on the wire
is

a - 4.0 cm b
I=15A 45° 0 .
| B=25T
|
B=25T | /iw
I —_— —_—
/§‘5° |
——== 6.0 cm :
|
|
|
| ly
|
. |
P v eV
e 4.0 cm d
(a) (b)

Fig. 10.15 a An “M” shaped current carrying wire in a region of uniform magnetic field, b a current
carrying vector from a to e in a region of uniform magnetic field, Problem 10.17
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F = IlyBsin 135° = (15 A)(0.060 m)(2.5 T) sin 135° = 1.6 N.

pointing out of the plane of the paper.

4 wxMaxima codes:

%$14) fpprintprec:5; I:15; 10:0.06; B:2.5;

(

(fpprintprec) 5

(1) 15

(10) 0.06

(B) 2.5

($15) F: I*10*B*sin(135*float (%pi)/180);
(F) 1.591

Comments on the codes:
(%i4) Set floating point print precision to 5, assign values of /, [y, and B.
(%i5) Calculate F.
Alternative calculation: The force can also be obtained by summing the magnetic
forces of all segments of the wire.
For wire segment ab, the magnetic force is

Fu, = I1Bsin@ = (15 A)(0.040 m)(2.5 T) sin45° = 1.1 N.

pointing out of the plane of the paper.
For wire segment bc, the magnetic force is

F,. =0.
For wire segment cd, the magnetic force is
F.g = IIBsin6 = (15 A)(¥/18 x 1072 m)(2.5 T) sin 90° = 1.6 N.

pointing out of the plane of the paper.
For wire segment de, the magnetic force is

Fy, = I1Bsin® = (15 A)(0.040 m)(2.5 T) sin 135° = 1.1 N.

pointing into the plane of the paper.
The sum or resultant of these magnetic forces is 1.6 N pointing out of the plane
of the paper.
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4 wxMaxima codes:

($17) fpprintprec:5; I:15; B:2.5; ab:4e-2; bc:float(sqrt(1l8))*le-2;
cd:float (sqrt(18)) *le-2; de:de-2;

(fpprintprec) 5)
I) 15

B) 2.9

ab) 0.04

bc) 0.042426

cd) 0.042426

de) 0.04

%$i8) Fab: I*ab*B*sin(45/180*float (%pi));
Fab) 1.0607

%$19) Fbc: I*bc*B*sin(%pi);

Fbc) O

%110) Fcd: I*cd*B*sin(90/180*float (%pi));
Fcd) 1.591

%$i11l) Fde: I*de*B*sin(225/180*float (%pi)):;
Fde) -1.0607

il2) Fab + Fbc + Fcd + Fde;

%012) 1.591

Comments on the codes:

(%iT) Set floating point print precision to 5, assign values

of I, B, lengths ab, bc, cd, and de.
(%i18), (%19), (%i10), (%il1) Calculate Fy, Fpe, F oy, and F,.

(%112) Calculate Fop, + Fpe + Feqg + Foge.

10.3 Summary

— Magnetic force on a charge ¢ moving with a velocity v in a magnetic field B is
F =qv x B.

— Magnetic force on a conductor of length / carrying a current / in a magnetic field
Bis

F =11 x B.
— Magnetic moment g of a loop carrying current / is
nw=IA pn=IA,

where A is the area vector normal to the plane of the loop and A is the area of the
loop. The area vector is defined as
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Fig. 10.16 A proton moving >
in a region of uniform \ %
magnetic field, Exercise 10.1 /
30°
B
>
A=An,

where n is the unit vector normal to the plane of the loop.
— Torque T on a loop in a uniform magnetic field B is

T=uxB=1AXxB.

10.4 Exercises

Exercise 10.1 A proton moves with velocity v = 5.0 x 10® m s~! in magnetic field

B =2.0T as shown in Fig. 10.16. Calculate the magnetic force on the proton.
(Answer: 8.0 x 10~'3 N into the plane of the paper)

Exercise 10.2 A proton moves in a circular orbit of radius 6.0 cm in a uniform
magnetic field of 0.50 T, as shown in Fig. 10.17. What are the speed, angular
frequency, and period of revolution of the proton?

(Answer: 2.9 x 10°m s, 4.8 x 107 rads~!, 1.3 x 1077 s)

Exercise 10.3 A wire of length / = 2.0 m carries a current of / = 5.0 A in a uniform
magnetic field of B = 0.030 T, Fig. 10.18. What is the magnetic force acting on the
wire?

(Answer: 0.26 N out of the plane of the paper)

Exercise 10.4 A 2.0 keV alpha particle enters a region of uniform magnetic field
of 0.15 T. The direction of the magnetic field is perpendicular to the alpha direction
of motion. An alpha particle has a charge of + 2e¢ and a mass of 6.68 x 107%7 kg.
Calculate the radius of the alpha particle path in the magnetic field.

(Answer: 43 mm)

Exercise 10.5 A coil of 40 turns of area 800 mm? has a current flow of 0.5 A. The
coil is a region of uniform magnetic field of 0.30 T with the coil plane parallel to the
direction of the field. What is the torque on the coil?

(Answer: 4.8 x 1073 N m)
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Fig. 10.17 Circular path of X X X X X X
a proton in a uniform
magnetic field, Exercise 10.2

B=050T

X X X X

X X X

X X X X

%
proton, +e

X X X X X X
Fig. 10.18 A current < -#
carrying wire in a region of /
uniform magnetic field, / [
Exercise 10.3 < v

1/ 60°

A
N

A



Chapter 11 ®)
Sources of Magnetic Field oo e

Abstract This chapter solves problems on magnetic fields created by current-
carrying conductors and loops. The Biot—Savart law is applied to determine the
magnetic fields. Magnetic fields in a current-carrying solenoid and toroid are deter-
mined by applying Ampere’s law. Solutions are obtained by analysis and computer
calculation.

11.1 Basic Concepts and Formulae

(1) Biot—Savart law states that magnetic field dB at point P due to infinitesimal
element ds of a conductor carrying current / shown in Fig. 11.1 is

Idsxr lds x?  poldsxr?

dB =k, —k, —
r? 47 r?

5 , (11.1)

where r is a vector from element ds to point P, r =l r |, ¥ = r/r.
Magnetic constant k,, = jo/(47) =107 Wb A~ m~!.
Permeability of free space po = 47k, = 4w x 1077 Wb A~ m~".
Magnetic field B due to the whole length of the conductor is the integration
of dB,

Bzdezka/dsfrz“—"I ds xr. (11.2)

r 47 r2

(2) Table 11.1 gives magnetic fields of common current-carrying conductor
configurations obtained by application of the Biot—Savart law.

(3) Force per unit length between two parallel long wires, separated by a distance
of a, and carrying currents of /, and I,

F 2k, I I I I
r_ m12=M012. (11.3)
[ a 2ra
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Fig. 11.1 The magnetic
field dB at point P due to
element ds carrying a current ds
I is given by the Biot—Savart

aw I "
| v 0
r
\

\
\
o
\
\
\ dB
»
P
Table 11.1 Magnetic fields of a few configurations of current-carrying conductors
Configuration Magnetic field
1
@) ®_B B = 1o (cos B — cos6r)
e : S~ 4w R
7 S~
o < B 6 = —“01( « L _° )
| R ~ ATR\ Va2 +R2 b2+ R2
€——><———————= >
a
L 2kl
(b) ®B B = ;nLR = "R
]
| R
| 1
—0o0 [ : —— 1 oo
Ikl
© ®B B = % =R
]
| R
! 1
=
_ ol R?
@ B =5 amym
1
At the center of the ring, B = ’5—‘}{
RS °—B> In terms of magnetic dipole moment,
X
/ ,u:lA:InRz,B:’Z‘—gm
At a point far away from the magnetic dipole
moment, x >> R, B = £ )%
©) = solb?
27 [x24(b/2)2 1/ x2+2(h/2)?
At the center of the square loop, B = 2+/2 ‘7‘1—0}]1
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The force is attractive if the currents are in the same direction, but repulsive
if the currents are in opposite directions.
(4) Ampere’s law states that the line integral B.ds along a closed path is o/, that is

7§B~ds=uol, (11.4)

where [ is the current through a surface bounded by the closed path.

(5) Application of Ampere’s law gives the magnetic fields inside a solenoid as

N
Bsolenoid - MOTI == //LOnIa (115)

where N is the number of turns of the wire, [ is the length of the solenoid, and
n is the number of turns per unit length.
Application of Ampere’s law gives the magnetic field inside a toroid as

woNI
2ar

Bioroia = (116)

where N is the number of turns of the wire and r is the radius of the toroid.
(6) Magnetic flux @,, through a surface is defined by the surface integration

q)m=/B~dA. (11.7)

(7) Gauss’s magnetic law states that the net magnetic flux through any closed surface
is zero.

(8) Direction of the magnetic field of a current-carrying loop or wire can be
determined by the right-hand rule, as shown in Fig. 11.2a or b.

B 1

I/ B
W A

(a) (b)

Fig. 11.2 The right-hand rule determines the direction of the magnetic field of a current-carrying
loop or wire. a For a loop or coil carrying current in the direction of the four fingers, the magnetic
field is in the direction of the thumb. b For wire or conductor carrying current in the direction of
the thumb, the magnetic field around the wire is in the direction of the four fingers
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11.2 Problems and Solutions

Problem 11.1 Figure 11.3a shows a long wire carrying a current of 10 A. What is
the magnetic field at point P, 2.0 m from the wire?

Solution

The magnetic field at point P due to a current-carrying wire is, Table 11.1(b),

2knl  2(1077 Tm A™")(10 A)
ro 2.0m

B — =1.0x107°T.

The magnetic field points out of the plane of the paper as determined by the
right-hand rule, Fig. 11.3b.

4 wxMaxima codes:

i4) fpprintprec:5; km:le-7; I:10; r:2;
pprintprec) 5
m) 1.0%107-7
)
)
1
)

i5) B: 2*km*I/r;
1.0*%10%-6

Comments on the codes:

(%i4) Set floating point print precision to 5, assign values of k,,, I, and .
(%i5) Calculate B.

Problem 11.2 A long wire carries a current of / = 10 A along the negative y-axis
as shown in Fig. 11.4. The wire is in a region of uniform magnetic field By = 1.0
x 107 T in the positive x direction. Determine the resultant magnetic field at the
point:

(a) P(0,0,2.0m).
(b) 0 ((2.0m,0,0).
(¢c) R(0,0,—1.0m).

Fig. 113 a A 10 A

current-carrying wire, | -—

b directions of current and :

magnetic field, Problem 11.1 ! 2.0m G
| 1
I
lp

()

—_
0
~



285
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Fig. 114 A
current-carrying wire in a
region of uniform magnetic
field, Problem 11.2

Solution

(a) Figure 11.5 shows the current-carrying wire and the related magnetic fields.
The magnetic field at a distance of r from a long wire carrying a current of /

is, Table 11.1(b),

1 1
B=2 (ﬂ)— — 2k, -
da /) r r

At point P (0, 0, 2.0 m), the magnetic field due to the current is

=10x107°T,

I 10 A
By =2ky— =2 (107" Wb A™! m*l)( )
r (2.0 m)

pointing to the negative x direction. The magnetic field of the region is
By=10x10"°T,

pointing to the positive x direction. Thus, the magnetic field at point P is

Fig. 11.5 Magnetic fields at
points P, Q, and R, Problem
11.2
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Bp=By—B; =10x10°T-1.0x10°T=0.

4 wxMaxima codes:

($14) fpprintprec:5; km:le-7; I:10; r:2;
(fpprintprec) 5

(km) 1.0*10"-7

(1) 10

(r) 2

($17) Bl: 2*km*I/r; BO: le-6; BP: BO-Bl;
(B1) 10.0*10~-7

(BO) 10.0*107-7

(BP) 0.0

Comments on the codes:

(%i4) Set floating point print precision to 5, assign values of k,,, I, and r.
(%i7) Calculate By, assign By, and calculate Bp.

(b) Atpoint Q (2.0 m, 0, 0), the magnetic field due to the current is

(10A)

=10x107°T,
(2.0 m)

B,=210"7WbA 'm™
pointing to the positive z direction. The region’s magnetic field is
By=1.0x10"°T,
pointing to the positive x direction. Thus, the magnetic field at point Q is
By =Bji+Bk=(10x10°i+1.0x10°k) T.

The magnitude of the magnetic field is

By =+(1.0x 1072 + (1.0 x 106)2T = 1.4 x 10°° T.

This means that the angle between By and the x-axis is 45°.

4 wxMaxima codes:

%14) fpprintprec:5; km:le-7; I:10; r:2;

fpprintprec) 5
km) 1.0*10"-7
r) 2

%17) B2: 2*km*I/r; BO: le-6; BQ: sqgrt (B0"2+B2"2);
B2) 10.0*10"-7

(BO) 10.0*%107~-7

(BQ) 1.4142*10"-6

(
(
(
(I) 10
(
(
(
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Comments on the codes:

(%i4) Set floating point print precision to 5, and assign values of k,,, I, and r.
(%i17) Calculate B,, assign By, and calculate By.

(c) Atpoint R (0, 0, —1.0 m), the magnetic field due to the current is

(10 A)
(1.0 m)

B;=210"7WbA !'m™ =20x107°T,

pointing to the positive x direction. The magnetic field of the region is
By=1.0x107°T,
pointing to the positive x direction. Thus, the magnetic field at point R is
BR=Bo+B3=10x10°T+20x10°T=3.0x10"°T,
pointing to the positive x direction. This means that
Br=30x10"°iT.

4 wxMaxima codes:

(%i4) fpprintprec:5; km:le-7; I:10; r:1;

(fpprintprec) 5
(km) 1.0*10"-7

I) 10

r) 1

%$17) B3: 2*km*I/r; BO: le-6; BR: BO+B3;
3) 2.0*10"-6
0) 10.0*%107~-7
R) 3.0*10"-6

Comments on the codes:

(%i14) Set floating point print precision to 5, and assign values of k,,, I, and r.
(%i7) Calculate B3, assign By, and calculate Bg.

Problem 11.3 Two parallel long wires separated by a distance of 20 cm have currents
of 5.0 and 7.0 A flowing in the same direction, which are shown in Fig. 11.6.
Determine:

(a) the magnetic field at point P,
(b) the point where the magnetic field is zero.
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Fig. 11.6 T™wo il S
current-carrying parallel P |
wires, Problem 11.3 I
. v
50A |
|
|
|
|
|
. v
7.0 A

Solution

(a) Magnetic field at point P due to wire with 5.0 A current is, Table 11.1(b),

1 5.0A
B = HoZ = (4 x 1077 Wb A™! ‘1)¥ =1.0x107°T,
277 2(0.10 m)
pointing out of the page. The magnetic field at point P due to wire with 7.0 A
current is,
1 7.0 A
B, = MO = (4 x 10 Wb A_ _])¥ =47 x 10_6 T,
27r 27(0.30 m)

10 cm

[\)
S
[}
3

pointing out of the page. Thus, the magnetic field at point P due to currents in

both wires is
Bp=B +B=10x10°T+47x10°T=15x 10T,

pointing out of the page.

4 wxMaxima codes:

($12) fpprintprec:5; mulO:4*%pi*le-7;
(fpprintprec) 5

(mu0) 4.0*%107-7*%pi

(%13) Bl: muO*5/(2*%pi*0.1);

(B1) 1.0*10~-5

(%1i4) B2: mu0*7/(2*%$pi*0.3);

(B2) 4.6667*10"-6

($15) BP: B1+B2;

(BP) 1.4667*%107-5

Comments on the codes:

(%i12) Set floating point print precision to 5 and assign the value of

Ho-
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Fig. 11.7 Determining point —> ~ A

of zero magnetic field, S0A | x |

Problem 11.3 \7 |
—_———— e *— — — — — — — -I —_——
0 | 20 cm

|

|

_— \2

7.0 A

(%13), (%i4), (%5) Calculate By, B, and Bp.

(b) The magnetic field is zero somewhere at point Q, a distance of x from the top

wire, Fig. 11.7. At this point, the magnetic field due to the top wire is into the
page, while the field due to the bottom wire is out of the page. Adding the two
fields gives zero magnetic field.

The magnetic field at point Q due to wire with 5.0 A current is

I
Bi=" — 4r x 107 Wb A ' m))
2r

5.0A)
2w x

)

pointing into the page. The magnetic field at point Q due to wire with 7.0 A
current is

(7.0 A)

ol
27020 m —x)’

By=>"" =@ x10"WbA 'm™)
2r

pointing out of the page. At point Q, B; = B, because the field is zero, therefore

B =B,

50A 7.0 A

2rx 27020 m — x)
x = 0.083 m.

The magnetic field is zero at point Q where x = 0.083 m.

4 wxMaxima codes:

(
(
(
(

%$i2) fpprintprec:5; ratprint:false;
fpprintprec) 5

ratprint) false

%i4) solve(5/x = 7/(0.2-x), x)$ float(%);

(%04) [x=0.083333]
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S
270N
8.0 N
Ocm -~
P N 6.0 cm
e \
- \
11 =60A_-~ N b
Q e————————— ®/ ————————————————————————————— - P
—————— S>> —
5.0 cm 10 cm 5.0cm

Fig. 11.8 Two current carrying wires, Problem 11.4

Comments on the codes:

(%i2) Set floating point print precision to 5 and internal rational number print to
false.
(%i4) Solve 5/x =7/(0.2 — x) for x.

Problem 11.4 Electric currents flowing in two long parallel wires separated by a
distance of 10 cm are illustrated in Fig. 11.8. The wire on the left carries a current
of I = 6.0 A into the plane of the paper. The magnetic field at point P is zero.
Determine:

(a) the direction and magnitude of the current in the wire on the right, I,
(b) the magnetic field at point Q
(c) the magnetic field at point S.

Solution

(a) Figure 11.9 shows the two current-carrying wires, point P, and the relevant
magnetic fields.
The magnetic field due to current /; at point P is

2k 1
1= ,

r

where r| is the distance from the left wire to point P. The field points downward.
To get a zero magnetic field at point P, the magnetic field due to current /, must
point upward and this means that current /, must flow out of the plane of the
paper. The magnitude of the magnetic field due to I, must be the same as B.
Thus

Fig. 11.9 Determining /5, B
Problem 11.4
I =60A )43
® - @-----—--- P
10 cm 5.0 cm
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Fig. 11.10 Determining L =60A L=20A
magnetic field at point Q, QO e————————— ®-————— - ®
Problem 11.4 5.0 cm 10 cm
2k I
B, ===,
ra

where r; is the distance from the right wire to point P, and

B, = B,
2Unly 2kl
rno o
1 5.0 6.0 A
,zzﬂzwzz_%_
r (15 cm)

The direction of I, is out of the plane of the paper.
(b) Figure 11.10 shows the two current-carrying wires and point Q.
The magnetic field at Q due to current /, points upward while the one due to
I, points downward. Thus, the magnetic field at point Q due to currents /; and
IziS

2Dy 2kl Lo
By =2 2=2k,,,(—‘——2>

ry rn r r

6.0 A 20A >

=2(100" Wb A™'m™) —
0.050m 0.15m

=21x10"T.

pointing upward. Here, r; is the distance from the left wire to point Q and r; is
the distance of the right wire to point Q.

4 wxMaxima codes:

i6) fpprintprec:5; km:le-7; Il:6; I2:2; rl:0.05; r2:0.15;

(%

(fpprintprec) 5

(km) 1.0*10"-7

(I1) 6

(I2) 2

(rl) 0.05

(r2) 0.15

(%17) BQ: 2*km*(I1/rl-I2/r2);
(BQ) 2.1333*10"-5

Comments on the codes:

(%16) Set floating point print precision to 5, assign values of k,, I, I, r1, and r».
(%i7) Calculate By.
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Fig. 11.11 Determining
magnetic field at point S,
Problem 11.4

8.0 cm

-

L=60A -7,
®,_/_137

(c) Figure 11.11 shows the two current-carrying wires, point S, and the relevant
magnetic fields.
At point S, the magnetic field due to current /; is

2k, I 6.0 A
B, = =2(107"WbA ' m™)[ —— ) =15x 107 T.
r 0.080 m
and the field due to current /5 is
2k, 1 2.0A
B, = =210 WbA ' m™ ) =—— ) =67 x 107°T.
r2 0.060 m

Thus, the magnitude of the magnetic field at point S is

Bs=/B*+ B}=/(15x105T)2+ (6.7 x 106T)2=1.6x 107 T.

Angle 6 is calculated as follows:

Bi _15x107°T

— = =225 #=tan"'(2.25) = 1.2 rad = 66°.
B, 67x10°T

tanf =

The direction of By is not vertically downward, but at 66° — 53° = 13° from
the vertical.

4 wxMaxima codes:

(%1i2) fpprintprec:5; km:le-7;
(fpprintprec) 5

(km) 1.0%10"-7

($13) Bl: 2*km*6/0.08;

(Bl) 1.5*10"-5

($1i4) B2: 2*km*2/0.06;

(B2) 6.6667*10"-6

(%1i5) BS: sqrt (B1"2+B2"2);
(BS) 1.6415*107-5

($16) theta rad: atan(B1/B2);
(theta rad) 1.1526

($17) theta deg: float(theta rad*180/%pi);
(theta_deg) 66.038
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Fig. 11.12 Two long

I
current-carrying wires, 7 :
Problem 11.5
D
A @
I
d | !
::e——————i ——————— >
v o o
/}\ : P X
d 1|
| |
I
|
\'%
® E
Comments on the codes:
(%i2) Set floating point print precision to 5 and assign k.
(%i13), (%i4), (%i5) Calculate By, B>, and Bg.
(%i16), (%i7) Calculate 6 and convert the angle to degree.

Problem 11.5 Figure 11.12 shows a cross-section of two long wires D and E
separated by a distance of 2d. Each wire carries current / out of the plane of the

paper.

(a) Find the magnetic field at point P. At what point along the x-axis the magnetic
field is zero?

(b) If the direction of current in wire E is into the plane of the paper, what is
the magnetic field at point P? Where along the x-axis the magnetic field is a
maximum? What is the magnetic field?

Solution

(a) Figure 11.13 shows the two wires, point P, and magnetic fields at P.
The magnetic fields due to currents in wires D and E at point P are,
Table 11.1(b),

ol ol

Bp=_ Mt p M
P v+ T it a2

respectively. Both B and B are resolved into x and y components and added.
The x components vanished. The y components give the resultant magnetic field
at point P,

tol X molx

Bp =2Bpcos 6 =2 = 5 s
2n/d? + x2Vd?r + x2 w(d* +x?)
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Fig. 11.13 Magnetic fields

|
at point P due to current Y :
carrying wires, ' Bp
part (a) Problem 11.5 D (T)\\\
| T~a
| N - BE BD
d | S~ 6|
| T~s
I T~<
) IS /X Gl /A
X P

pointing to the positive y direction (upward direction).

The magnetic field is zero at x = 0. The magnetic fields due to currents in

wires D and E at x = 0 are

g, = Mol _ Mol
b= ona " T 2md

Bp points to the positive x direction while Bg to the negative. Thus, the

magnetic field is zero at x = 0.
(b) Figure 11.14 shows the two wires, point P, and the relevant magnetic fields.
The magnetic fields due to currents in wires D and E at point P are

tol ol

Bp=—10 =10
P 2w/ d? + x? £ 2w A/d? + x2

Fig. 11.14 Magnetic fields

at point P due to current Y :
carrying wires, |
part (b) Problem 11.5 D @\\
: \\\\\ BD
d | TS~
| ~~_ |
: ~~ 16
():_ _______________ CAG I,
X 7 B
| AP
d | -
| -
| -7 BE
|
E®~
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respectively. Both Bp and B are resolved into x and y components and added.
The y components vanished. The x components give the resultant magnetic field
at point P. The resultant magnetic field at point P is

ol d mold

2 = ,
2n/d? + X2 A2+ 32 w(d*+x?)

BP = 2BDSiIl9 =

pointing to the positive x direction (to the right).
At x = 0, the magnetic fields due to currents in wires D and E are

B — ol _ k!
P77 omd’ TP T 2nd
Both fields point to the positive x direction. Thus, the magnetic field is a

maximum at x = 0, with the value B,,,, = ‘:r—"; in the positive x direction.

Problem 11.6 Currents of 10 A flowing in wires of various configurations are
illustrated in Fig. 11.15. Calculate the magnetic field at point P in each configuration.

Fig. 11.15 Three

E Z10A H
configurations of current \ /

carrying wires, Problem 11.6 EN 2 0em | 7.0 cm G
\ -

-

\
(2) A
\

AY
A

.
-

p
5.0 cm P
>

-
-
o
-
-
-

AY
b
Ay

I
I
|
|
I
I
:
If
PQ’

G 30cm 7.0 em H
I i
]
™) 5.0 cm i 5.0 em
10A |
_____ B i i —
E F P J K
& 3.0em : 7.0 em H
]
1
]
50cm : 5.0cm
]
(©) 10A i
e —— — e — — — A J
E F P
K
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Solution

(a) In Fig. 11.15a, wire segments EF and GH do not give any magnetic field at
point P because the currents are toward or away from point P. This is because
ds x ris zero for both segments and according to Biot—Savart law will give no
magnetic field, Eq. (11.1). The magnetic field at point P is from wire segment
FG, that is, Table 11.1(a),

kol a n b
P R\ V2 +RZ VP 1 R?
_ ol
47 (0.050 m)

0.030 m N 0.070 m
X
/(0.030 m)2 + (0.050 m)2 ~ ,/(0.070 m)2 + (0.050 m)2
=27x 107 T.

In the calculation, o =47 x 1077 Wb A~! m~! and I = 10 A.

4 wxMaxima codes:

($13) fpprintprec:5; mul:float (4*%$pi*le-7); I:10;

(fpprintprec) 5

(mu0) 1.2566*10"-6

(I) 10

(%i4) BP: muO*I/(4*float (%$pi)*0.05)*(0.03/sqrt(0.0372+0.05"2)
+ 0.07/s9rt(0.0772+0.05"2)) ;

(BP) 2.6565*10"-5

Comments on the codes:

(%i13) Set floating point print precision to 5, and assign values of pg and /.
(%i4) Calculate magnetic field Bp.

(b) InFig. 11.15b, wire segments EF and JK do not contribute to the magnetic field
at point P because the currents are toward or away from point P. The magnetic
field at point P is

Bp = Brg + Bgu + Bny
ol 0.050 m
~ 47(0.030 m) ,/(0.050 m)2 + (0.030 m)?
iy 0.030 m
47(0.050 m) [\/(0.030 m) + (0.050 m)?

0.070 m
+
V/(0.070 m)2 + (0.050 m)?

+
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P 0.050 m
47(0.070 m) ,/(0.050 m)? + (0.070 m)?
=63x107°T.

4 wxMaxima codes:

($13) fpprintprec:5; mul:float (4*%pi*le-7); I:10;

(fpprintprec) 5
(mu0) 1.2566*10%-6
(I) 10

($14) BP: muO*I/ (4*float(%pi)*0.03)*0.05/sqrt(0.05%2+0.03"2)
+mu0*I/ (4*float (%pi) *0.05) * (0.03/sqrt (0.0372+0.05"2)
+0.07/sqrt (0.0772+0.05"2)
+mu0*I/ (4*float (%pi) *0.07)*0.05/sqgrt (0.05%2+0.07"2) ;

(BP) 6.3451*10"-5

Comments on the code:

(%i13) Set floating point print precision to 5, and assign values of pg and /.
(%i4) Calculate magnetic field Bp.

(c) In Fig. 11.15¢, wire segment EF does not contribute to the magnetic field at
point P because the current is toward point P. The magnetic field at point P is

Bp = BrG + BGH + Bk

ol 0.050 m
7 4w(0.030 m) \/(0.050 m)2 + (0.030 m)2
I
+ m
5 [ 0.030 m . 0.070 m }
V(0.030 m)2 + (0.050 m)2  /(0.070 m)2 + (0.050 m)2
uol
47(0.070 m)

0.050 m
X +1
v/(0.050 m)2 + (0.070 m)?2

=78x107°T.

4 wxMaxima codes:

%13) fpprintprec:5; muO:float (4*%pi*le-7); I:10;

(

(fpprintprec) 5

(mu0) 1.2566*10"-6

(1) 10

(%14) BP: muO*I/ (4*float (%pi)*0.03)*0.05/sqrt(0.05%2+0.03"2)

+mu0*I/ (4*float (%pi) *0.05) *(0.03/sqrt (0.0372+0.05"2)

+0.07/sqrt (0.07°2+0.05"2))

+mu0*I/ (4*float ($pi)*0.07)*(0.05/sqrt (0.05°2+0.07"2)+1) ;
(BP) 7.7737*107-5
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Comments on the codes:

(%13) Set floating point print precision to 5, and assign values of wg and I.
(%i4) Calculate magnetic field Bp.

Alternative calculation for part (c): The magnetic field can also be calculated as
follows:

Bp = BrGg + Bgn + Buy + By
= magnetic field of part (b) + Bk

ol

=63x10° T4 —u
47(0.070 m)

=78x 107 T.

The magnetic field B,k is obtained using Table 11.1(c), that is, the magnetic field
due to the current in wire segment JK is one half of the field due to the current in a
long wire.

4 wxMaxima codes:

%$i3) fpprintprec:5; muO:float (4*%pi*le-7); I:10;
fpprintprec) 5

mu0) 1.2566*10"-6

I) 10

%$i4) BP: 6.3451*10"-5 + muO*I/(4*float (%pi)*0.07);

(
(
(
(
(
(BP) 7.7737*10"-5

Comments on the codes:

(%i3) Set floating point print precision to 5, and assign values of o and 1.
(%i4) Calculate magnetic field Bp.

Problem 11.7 A current / flows in a square shaped wire loop of side b. What is the
magnetic field at the center of the loop? What is the magnetic field if / = 10 A and
b=4.0cm?

Solution

Figure 11.16 shows the current carrying square wire loop, point P, and relevant
magnetic field Bp. We want to calculate the magnetic field at point P. Using the
right-hand rule, the magnetic field is in the plane of the paper. The field is contributed
by four wire segments EF, FG, GH, and HE.

The magnetic field at point P due to current / in wire segment EF is, Table 11.1(a),

ol b/2 n b/2 ol
A/ | B2 + B)2)F B2+ b/2)2 | 2ab

Ber
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Fig. 11.16 A square wire G > | H
loop carrying electric current 7 | A
I, Problem 11.7 | :
|
| I
| \
t I P I
———————— L
I Bp I
! I
I I
[ I
! |
F - EY
€ >

pointing into the plane of the paper. Magnetic fields due to currents in wire segments
FG, GH, and HE are the same as this. Therefore, the magnetic field at point P is

1
l?P = 4135;‘22 2\/§££9—,
b

pointing into the plane of the paper.
If I =10 A and b = 4.0 cm, the magnetic field is

1 4 1077Wb A~ m~H(10 A
BP:%/—LLO _2f(nx m™)( )

=28x107*T,
7(0.040 m)

pointing into the plane of the paper.

4 wxMaxima codes:

($14) fpprintprec:5; mulO:float (4*%pi*le-7); I:10; b:0.04;
(fpprintprec) 5

(mu0) 1.2566*10"-6

(I) 10

(b) 0.04

(%16) BP:2*sqgrt (2) *mul0*I/ (%$pi*b); float(%);

(BP) (1.5708*10%-4*2~(5/2))/%pi

(%06) 2.8284*10"-4

Comments on the codes:

(%i4) Set floating point print precision to 5, and assign values of g, I, and b.
(%i16) Calculate magnetic field Bp.

Problem 11.8 Figure 11.17 shows a square wire loop of side b carrying current 1.
What is the magnetic field at point P a distance x away from the loop?
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Fig. 11.17 A square wire |
loop carrying electric current Y I F
I

I, Problem 11.8
|
G : 4]
|
b O I— —————————————— [
2 4 X P
E
b
H

Solution

Figure 11.18 shows a cross-section of the loop across segments F'G and HE. Current
directions in wire segments F'G and HE are out of and into the plane of the paper,
respectively.

The magnitude of the magnetic field at point P due to current flow in wire segment
FGis, Table 11.1(a),

P 2(b/2)
T an 2+ 022 | VB2 + 2 + ()20

_ ol b
T An /X2 + (b/2)2 /X2 +2(b)2)7

Fig. 11.18 Magnetic fields FG @\
at P due to currents in wire ! T~ m
segments FG and HE, | S VF +(b/2) 3 p
Problem 11.8 b2 | S~ FG COS
. : \\\ BFG
[ S~ 0
“ ———————————————— 0C> = Brgsin@
X " p
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The x component of Bpg is

BFG,x = BFG sin 0
_ pol b b/2
47 /x2 + (b/2)? /x2 4+ 2(b/2)? \/x2 + (b/2)?
polb?

" 87l + (0221 + 2(6/2°

The y component of Bpg is

Brg,y = Brg cost
_ ol b X
4t /x4 (b/2)2 /x2 +2(b/2)2 /x2 + (b/2)?
wolbx

T 4l + (b/22YAE 1 262

The magnitude of the magnetic field at point P due to current flow in wire segment
HE is

By = Brg.
The x component of By is

Byex = Brg,x-

The y component of By is the same in magnitude but opposite in direction to the
y component of Brg. The y components cancel each other and do not contribute to
the magnetic field at point P. The same argument is for wire segments EF and GH.
Thus, the magnetic field at point P due to the current flow in the square loop is

ol b

B = 4B x — ’
O T e + (b)2)21X £ 2()2)2

pointing to the positive x direction.
As a check, the magnetic field at the center of the loop is obtained by substituting
x = 0 in the equation, that is

1ol b? ) 2#01

Bp o= - .
" T anl(b/2)21V2(02) b

This is the same as the one discussed in Problem 11.7.
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4 wxMaxima codes:

($12) BFGx:muO*I*b"2/ (8*%pi)/ (x"2+(b/2)"2)/sqrt (x*2+2* (b/2)"2); BP:4*BFGx;
(BFGx) (I*b"2*mu0)/ (8*%pi* (x"2+b"2/4) *sqrt (x"2+b"2/2)

(BP) (I*b*2*mu0) / (2*%pi* (x*2+b"2/4) *sqrt (x"2+b"2/2))
(%13) x: 0;
(x) 0

(%15) BFGx:muO*I*b"2/(8*%pi)/ (x"2+(b/2)"2)/sqrt (x"2+2* (b/2)"2); BP:4*BFGx;
(BFGx) (I*mu0)/ (sqrt(2)*%pi*abs (b))
(BP) (27 (3/2) *I*mu0) / ($pi*abs (b))

Comments on the codes:

(%i2) Assign Brg, and calculate Bp.
(%13) Assign x = 0.
(%i15) Calculate Bgg, and Bp.

Problem 11.9 A wire is shaped into a regular polygon of » sides. The edges of the
polygon touch an imaginary circle of radius R. A current / flows in the wire.

(a) Calculate the magnetic field at the center of the polygon.
(b) What is the magnetic field at the center of the polygon when 7 is very large?
(c) What is the magnetic field at the center of a square wire loop with side b?

Solution

(a) Figure 11.19 shows one of the sides of the polygon, other sides are not shown.
The length of the side is 2b, the perpendicular distance of the side to the center
is a, and the angle subtending the side is 6.

The angle is
2
0=—.
n
Fig. 11.19 One of the sides T T T T T~
of the polygon carrying /// AN
current /, Problem 11.9 //\\ \\
/ \\ \\
/ N \
/ AN \
) N \\
| a G-\ ]
l\ 2b m———— - P |
/
[N e /
\\ // //
N\ R /
NI J
< -
~ P
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because the polygon has n sides. The perpendicular distance of the side to the

center of the polygon is
a = Rcos| = =Rcos<—).
2 n

The length of the side is

2b = 2R sin(%) — 2R sin(%).

The magnetic field at point P due to current on this side is, using Table 11.1(a),

side = 4ra\ (@ +b)12 " (a2 + b)12

ol Rsin(%)

C2n Rcos(Z)(R?sin*(%) + R cos?(Z))!/?
mol 7T

= —tan(—>.
27 R n

There are n sides, thus, the magnetic field at the center of the polygon due to
the current is

1 T
Bp = Hor tan(—),
2R n

pointing into the plane of the paper.

(b) When n is very large, that is n — oo, n tan (w/n) — m. This is because as n
— 00, tan (7/n) — m/n. Thus, the magnetic field at the center of the polygon,
when 7 is very large, is

tol
Bp = —.
Y
When 7 is very large, the polygon becomes a ring. This result is the same
as the magnetic field at the center of a current-carrying ring, Table 11.1(d). The
limits can be calculated by the L’Hospital’s rule that you learn in calculus

. T . tan(Z o —Zsec?(Z
lim ntan(—) = lim (”) = lim ”2—(”)
n—00 n n—00 ]/n n—00 —1/n2

b4

Iim ——
n—o0 cos2(m/n)

=T.
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4 wxMaxima codes:

1) limit (n*tan(%pi/n), n, inf);

1) %$pi

2) BP: muO*n*I/(2*%pi*R)*tan (%pi/n);
) (I*mu0*tan (%pi/n)*n)/ (2*%$pi*R)

3) 1limit (BP, n, inf);

3) (I*mu0)/ (2*R)

Comments on the codes:

(%il) Calculate lim ntan (7/n).
n—00

(%i2) Assign Bp.

(%i3) Calculate lim Bp.

n—oo

(c) For a square loop of side b, we have

2
R:%b, n=4,

and the magnetic field at the center of a square wire loop is

_pond m\  po@IQ) oy @)
Bp = xR tan(n)_ T tan<4>_ ) @))
_2\/§M_OI
- wh’

This is the same result as in Problem 11.7.

Problem 11.10

(a) A circular loop of radius R carrying a current of / is shown in Fig. 11.20a. What
is the magnetic field B at the center of the loop?

(b) A circular coil of radius 0.20 m has a current of 5.0 A. What is the magnetic
field at the center of the coil?

(c) Calculate the magnetic field at the center of the coil, if the coil contains 50
windings.

Solution

(a) Figure 11.20b shows the current carrying loop, a length element ds of the loop,
and unit vector 7 from ds to the center of the loop. Using the Biot-Savart law,
the magnetic field at the center of the loop due to the length element is

o lds xF

dB = ,
47 12
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1 1
k ds f ; k
B dB
/ /
/ /
y R y R

(@ (b)

Fig. 11.20 a Current carrying circular loop, b determining magnetic field at the center of the
circular loop, Problem 11.10

o Isin90° ds o I ds
47 R2 47 R2

Here, | ds x F | = sin90°ds = ds because ds is perpendicular to 7 and r = R.
The magnetic field at the center of the loop due to the whole loop is obtained
by integrating the dB

o 1 Mo
ag="22" 1[4 o
/ amr) C T an R2( R)

_ ol
2R

This is the same as Table 11.1(d).
(b) The magnetic field at the center of the coil is

pol _ 2whnl _ 27107 TmA™)(5.0 A)

=207 _ =16x107T.
2R R 0.20 m 6>10

4 wxMaxima codes:

i4) fpprintprec:5; km:le-7; I:5; R:0.2;

fpprintprec) 5
m) 1.0*10"-7

I 5)

R 0.2

(%
(
(ki
(1)
(R)
(%15) B: 2*float (%pi)*km*I/R;
(B)

B 1.5708*10"-5

Comments on the codes:

(%i4) Set floating point print precision to 5, assign values of k,,, I, and R.
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(%i15) Calculate magnetic field B.

(c) If the number of windings is N = 50, the magnetic field at the center of the coil
is

_ woNI _ 27k,NI _ 27(107 Tm A ")(50)(5.0 A)
~ 2R R 0.20 m -

B 7.9 x 1074 T.

4 wxMaxima codes:

%i5) fpprintprec:5; km:le-7; I:5; R:0.2; N:50;

$16) B: 2*float (%$pi) *km*N*I/R;
B) 7.854*%10"-4

(

(fpprintprec) 5
(km) 1.0*10"-7

(I) 5

(R) 0.2

(N) 50

(

(

Comments on the codes:

(%15) Set floating point print precision to 5, and assign values of k,,, I, R, and N.
(%i6) Calculate magnetic field B.

Problem 11.11

(a) A circular loop of radius R carrying a current of / is shown in Fig. 11.21a. What
is the magnetic field at point P a distance x on the central axis of the loop?

(b) A circular loop of radius 0.20 m carrying a current of 3.0 A is shown in
Fig. 11.21b. What is the magnetic field at a point 0.50 m on the central axis
of the loop?

Solution

(a) Figure 11.21c shows the cross-section of the current loop, length element ds,
and the magnetic field dB. The direction of the current is out of the page in
the length element and into the page on the opposite side of the loop. By the
Biot—Savart law, the magnetic field due to length element ds is

4B — Mo 1 ds x f"
i S
o Isin90° ds wo Ids
dB= ———r— = — ———,
47 r2 47 R? + x?

dB is resolved into dB cos 8 and dB sin 6. By symmetry, the dB sin & component
will sum up to zero when the whole loop is considered. Thus, the magnetic field
at point P a distance x on the central axis of the loop is
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1
A I=3.0A
X B
A T — R=020m x=050m B
/1/3 P 0 e —
/ P
K /
/A
(a) (b)
ds
®)\\ r=\/R2+x2 .
9 S~ dB sin 0
R TN dB I 5
\\ ﬁ
2> dB cos 0 U‘%
X \\
: PN
® 1
(c) (d)

Fig. 11.21 a Magnetic field at point P, b magnetic field at x = 0.50 m, ¢ determining magnetic
field at point P, d direction of the magnetic field, Problem 11.11

B:/dB:/dBcosG

_/Mo Ids R oI 27R) R
T m R Rie RO JR I
pol R?

T 2R+ )

The direction of the magnetic field is to the positive x direction (to the right).
This result is the same as Table 11.1(d).
(b) Using the result of part (a) and Fig. 11.21b the magnetic field at point P is

_ wolR* (47 x 1077 Tm A™")(3.0 A)(0.20 m)?
TO2(R24x2)32 2[(0.20 m)2 + (0.50 m)2]3/2
=48x 1077 T.

The direction of the magnetic field is determined by the right-hand rule,
Fig. 11.21d. The curled fingers are the direction of the current and the thumb is
the direction of the magnetic field. Thus, the magnetic field points to the right.
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Fig. 11.22 A current
carrying circular coil,

Problem 11.12 R/
Bo Bx
71.—»----.—»
) €——d———— >
/ X
v R

4 wxMaxima codes:

5) fpprintprec:5; muO:float (4*%pi*le-7); I:3; R:0.2; x:0.5;
fpprlntprec) 5
mu0) 1.2566*10"-6
) 3
) 0.2
) 0.5
i6) B: muO*I*R"2/ (2* (R"2+x7°2)"(3/2)
) 4.

(5
(
(
(1
(R
(x
(%
( 828*10"-7

B

Comments on the codes:

(%i5) Set floating point print precision to 5, assign values of g, I, R, and x.
(%i16) Calculate magnetic field B.

Problem 11.12 A circular coil of radius R has a current of / flowing in it. Where
along its axis the magnetic field is one half of the magnetic field at the center?

Solution

Figure 11.22 shows the coil carrying a current of /, a magnetic field at the center of
the coil, By, and a magnetic field at a distance x from the coil, B,.
The magnetic field along the central axis of the coil is, Table 11.1(d),

pol R?
2R + 122

x =

Letting x = 0, the magnetic field at the center of the coil is

1
By = 22
2R
We require that
B, uolR? 2R R’ 1

By  2(RZ+x232 el (RR+xD2 2
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Solving the equation for x gives
2R = (R* +x%)2,
x=+2%3—-1R=0.7IR.

This means that, at a distance of 0.77R from the coil, the magnetic field is one
half of the one at the center.

4 wxMaxima codes:

(%1i4) fpprintprec:5; assume (R>0); solve (2*R"3=(R"2+x"2)"(3/2), x)$ float(%);
(fpprintprec) 5

(%02) [R>0]

(%04) [x=-0.62996*(0.76642-2.2599*%1)*R,x=0.62996* (0.76642-2.2599*%1) *R,

x=-0.62996* (2.2599%%1+0.76642) *R, x=0.62996* (2.2599*%1+0.76642) *R,
x=-0.76642*R, x=0.76642*R]

Comments on the codes:

(%i4)  Set floating point print precision to 5, and solve 2R3 = (R? + x?)3/? for x.
(%04) The solutions.

Problem 11.13 Two rings of radii 0.10 and 0.20 m, separated by a distance of 1.0 m
have currents of 3.0 and 5.0 A, respectively, in opposite directions, as illustrated in
Fig. 11.23. Determine the magnetic fields at points P, Q, and R along the axis of the
rings.

Solution

The magnetic field along the central axis of a current-carrying ring is, Table 11.1(d),

LS
- 2(R2 +x2)3/2'

0.30 m 1.0m 0.50 m
DA O 4 >g——n
0.40 m A
ST 1\ 020

. m
MNo.1om |
e ANV ———__ v ! S
P A 0 R
3.0A
50A%

Fig. 11.23 Two current-carrying rings, Problem 11.13
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The magnetic fields are added by vector addition. We will use these two facts
to calculate magnetic fields due to two current-carrying rings. Let the left be the
negative x direction and the right the positive one.

The magnetic field at point P due to currents in the small and big rings is

_ @r x107)(B.0A)0.10m)>  (dr x 1077)(5.0 A)(0.20 m)>
© 2[(0.10 m)? + (0.30 m)2]3/2 2[(0.20 m)? + (1.3 m)*]3/2
=-54x%x107"T,

pointing to the left.
The magnetic field at point Q due to currents in the small and big rings is

(@ x107)(3.0 A)(0.10 m)* | (4x x 1077)(5.0 A)(0.20 m)>
2[(0.10 m)* + (0.40 m)*]3/2 2[(0.20 m)* + (0.60 m)*]3/2
=23x107"T,

By =

pointing to the right.
The magnetic field at point R due to currents in the small and big rings is

_(4r x 107)(3.0 A)(0.10 m)> (47 x 1077)(5.0 A)(0.20 m)?
2[(0.10 m)* + (1.5 m)*]3/2 2[(0.20 m)* + (0.50 m)>]3/2
=80x107"T,

Bp =

pointing to the right.

4 wxMaxima codes:

$i2) fpprintprec:5; muO:float (4*%$pi*le-7);

fpprintprec) 5

mu0) 1.2566*10"-6

%13) BP: -mu0*3*0.172/(2*(0.17°2+0.372)"(3/2))
+mu0*5*0.272/(2*(0.272+1.3%2)"~(3/2)) ;

(BP) -5.4085*10"-7

(%$14) BQ:-mu0*3*0.172/(2*(0.172+0.472)"(3/2))
+mu0*5*0.272/(2* (0.272+0.67%2) "~ (3/2)) ;

(BQ) 2.2781*107-7

(%$15) BR: -mu0*3*0.172/(2*(0.172+1.5%2)"(3/2))
+mu0*5*0.272/(2*(0.272+0.5%2) ~(3/2)) ;

(BR) 7.9911*107-7

(
(
(
(

Comments on the codes:

(%i2) Set floating point print precision to 5, assign value of 1.
(%i3), (%i4), (%i5) Calculate Bp, By, and Bg.

Additional question: What are the magnetic fields if the direction of the 5.0 A
current is reversed?
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Answer: We redo the calculations. The magnetic field at point P due to currents
in the small and big rings is

o _ 4 x 107)(3.0 A)(0.10m? (47 x 1077)(5.0 A)(0.20 m)?
P T200.10 m)? + (0.30 m)2 /2 2[(0.20 m)? + (1.3 m)>]3/2
=—-65x107"T,

pointing to the left.
The magnetic field at point Q due to currents in the small and big rings is

(47 x 1077)(3.0 A)(0.10 m)? _ (4m x 1077)(5.0 A)(0.2)2
2[(0.10 m)*> + (0.40 m)*]3/2  2[(0.20 m)? + (0.60 m)>]3/2
=-77x107"T,

By

pointing to the left.
The magnetic field at point R due to currents in the small and big rings is,

_(@4r x107)(3.0 A)(0.10m)>  (4x x 1077)(5.0 A)(0.2)?
2[(0.10 m)? + (1.5 m)?]3/2 2[(0.20 m)? + (0.50 m)*]3/2
=-81x107"T,

R =

pointing to the left.

4 wxMaxima codes:

($12) fpprintprec:5; mul:float (4*%pi*le-7);

(fpprintprec) 5

(mu0) 1.2566*10"-6

(%13) BP: -mu0*3*0.172/(2*(0.17°2+0.372)"(3/2))
-mu0*5*0.2%2/ (2* (0.272+1.3%2)"~(3/2)) ;

(BP) -6.513*10"-7

($14) BQ: -mu0*3*0.172/(2*(0.172+0.472)"(3/2))
-mu0*5*0.272/(2* (0.272+0.6"2) " (3/2)) ;

(BQ) -7.6565*10"-7

($15) BR: -mu0*3*0.172/(2*(0.172+1.5%2)"(3/2))
-mu0*5*0.2%2/(2* (0.272+0.5%2) " (3/2)) ;

(BR) -8.1021*107-7

Comments on the codes:

(%i2) Set floating point print precision to 5, assign value of .
(%i13), (%14), (%i5) Calculate Bp, By, and B.

Problem 11.14 A solenoid of length 20 cm has 500 turns of wire. The current of
5.0 A flows in the solenoid. What is the magnetic field in the solenoid?
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Fig. 11.24 a Magnetic field 20 cm, 500 turns

of a solenoid, b direction of <

the magnetic field,

Problem 11.14 1 B
A F{E
u

(@) (b)

Solution

Figure 11.24a shows the solenoid with current /.
The magnetic field in the solenoid is, Eq. (11.5),

500
0.20 m

B =ponl = @n x 1077 T mA—‘)< )(5.0 A)=16x1072T,

pointing to the right. The direction is determined by the right-hand rule, as illustrated
by Fig. 11.24b.

4 wxMaxima codes:

(%16) fpprintprec:5; muO:float (4*%pi*le-7); N:500; 1:0.2; n: N/1; I:5;

(fpprintprec) 5
(mu0) 1.2566*10"-6
(N) 500

(1) 0.2

(n) 2500.0

(I) 5

(%17) B: muO*n*I;
(B) 0.015708

Comments on the codes:

(%16) Set floating point print precision to 5, and assign the value of (o, N, [, n, and
I.
(%i17) Calculate the magnetic field of a solenoid B.

Problem 11.15 Current of 3.0 A flows in a solenoid of length 60 cm, radius 2.0 cm,
and 1000 turns of winding. On the axis of the solenoid, there is a long wire carrying
a current of 50 A. Determine the magnetic field at a point 1.0 cm from the wire.

Solution

Figure 11.25 shows the solenoid, the wire, and the relevant magnetic fields. The
magnetic field due to the current carrying solenoid is B;, the magnetic field due to
the current carrying long wire is B,,, and the resultant magnetic field is B.
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solenoid, 3.0 A
OOEOOOOEOEOOOEOOOEEOOO®EOEO®

f BWI :B

12.0 cm i )

v o {’A | By wire
50 A Y / 1.0 cm

egeseeesfsseaiaiaieaieedededededey

Fig. 11.25 A current-carrying wire in a solenoid, Problem 11.15

The magnetic field in the solenoid due to the current flow in it is

1000
0.60 m

By = ponly = (4w x 1077 T mA—1)< )(3.0 A)=63x107°T.

The magnetic field due to the current carrying long wire at a distance of 1.0 cm
from the wire is
poly  (4n x 1077 TmA)(50A)
2mr 27(0.010 m) B

B, = 1.0x 1073 T.

Both By and B,, are perpendicular to each other. The resultant magnetic field is

B=,/B2+B2=(63x103T)2+(1.0x103T)2=64x107T.

4 wxMaxima codes:

%i6) fpprintprec:5; mulO:float (4*%$pi*le-7); n:1000/0.6; Is:3; Iw:50; r:0.01;

(

(fpprintprec) 5

(mu0) 1.2566*10"-6

(n) 1666.7

(Is) 3

(Iw 50

(r) 0.01

(%17) Bs: muO*n*Is;

(Bs) 0.0062832

(%$18) Bw: muO*Iw/ (2*float (%pi) *r);
(Bw) 0.001

($19) B: sqrt(Bs"2+Bw"2);
(B) 0.0063623

Comments on the codes:

(%i16) Set floating point print precision to 5, assign values of wo, n, I, I,
and r.
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Fig. 11.26 Two current carrying wires, Problem 11.16

(%i7), (%18) Calculate the magnetic field of the solenoid and the wire B, and B,,.
(%19) Calculate the resultant magnetic field B.

Problem 11.16 Figure 11.26 shows two long wires separated by a distance of 1.0 m
with current I flowing in each. Each wire is attracted toward the other by 2.0 x 107’
N per meter. What is the current?

Solution

Force per unit length between two parallel current-carrying wires is, Eq. (11.3),

F 2kl

l a

where /| and I, are the currents in the wires and a is the separation distance between
the wires. For this problem, the currents are the same, so

F o 2kl
I~ a

‘We can calculate the current,

2(1007 Tm A~ HI?
1.0m

2.0x 107" N/m =
I=10A

In fact, these values had been used to define a current of 1.0 A. That is, 1.0 A is
current in two parallel long wires separated by a distance of 1.0 m that gives rise to
an attractive force of 2.0 x 1077 N per meter between them.

4 wxMaxima codes:

%$il) ratprint:false;
ratprint) false
%$12) solve(2e-7 = 2*1le-7*1"2, I);
$02) [I=-1,I=1]

(
(
(%1
(%0
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E F G H

Fig. 11.27 Four parallel current carrying wires, Problem 11.17

Comments on the codes:

(%il) Set internal rational number print to false.
(%i2) Solve 2.0 x 1077 =2 x 1077 x I*for 1.

Problem 11.17 Four long parallel wires E, F, G, and H carrying different currents
are shown in Fig. 11.27. Calculate the force on the 10 cm of wire E.

Solution

The magnetic field along wire E, due to currents in wires F', G, and H is, Table 11.1(b),

. u()( 4.0A 6.0 A 10 A

Bp = — - - =-17x10°T.
27\0.030m 0.080m 0.15m

into the plane of the paper. The magnitude of the magnetic force on the 10 cm of

wire E is

F=1ILBg = (2.0A)0.10m)(1.7 x 10°°T) =3.3 x 107" N,

pointing to the left.

4 wxMaxima codes:

(%1i2) fpprintprec:5; muO:float (4*%pi*le-7);
(fpprintprec) 5

(mu0) 1.2566*10"-6

(%1i3) BE: muO/float (2*%pi)*(4/0.03-6/0.08-10/0.15);
(BE) -1.6667*10%-6

(%14) F: 2*0.1*abs(BE);

(F) 3.3333*10"-7

Comments on the codes:

(%i2) Set floating point print precision to 5, and assign the value of pg.
(%i13) Calculate magnetic field, Bg.
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Fig. 11.28 A current carrying wire, Problem 11.18

(%i4) Calculate F.
Problem 11.18

(a) A wire shown in Fig. 11.28 carries a current of /. The lengths of straight
wire segments are / and 2/ while the radius of the semicircular segment is
R. Determine the magnetic field at point P.

(b) What is the magnitude of the magnetic field at point P if = 5.0 A, [ = 10 cm,
and R = 15 cm?

Solution

(a) Currents in the straight wire segments of lengths / and 2/ do not contribute to
the magnetic field at point P because the directions of the currents are toward
and away from P. Such directions will give ds x r = 0 for the segments and zero
magnetic field at point P according to Biot—Savart law. The magnetic field due
to the current in the semicircular segment at point P is calculated by Biot—Savart
law, as illustrated in Fig. 11.29.

The current in wire element ds produces elementary magnetic field dB at
point P, Eq. (11.1),

_ moldsxr  polds xFt

dB = =
4o 3 47 r?

For this wire segment,

Fig. 11.29 Determining ds
magnetic field due to current

in the semicircular segment,

Problem 11.18
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(b)

_ ol ds

ap =11 Y
47 R?

because ds and r are perpendicular to each other and r = R. The magnetic field
at point P due to the semicircular segment is

1 1 I
B:/dB: Ho /ds: Mo~ Ry = K02
47 R? 47 R? 4R

The direction of the field is into the plane of the paper as indicated by the
right-hand rule.
Substituting the given numerical values, the magnitude of the magnetic field at
point P is

B pmol (4w x 1077 Tm/A)(5.0 A)

= = 1.0x 107 T.
4R 4(0.15 m)

4 wxMaxima codes:

o
S

o
S

i4) fpprintprec:5; muO:float (4*%pi*le-7); I:5; R:0.15;

(

(fpprintprec) 5
(mu0) 1.2566*10"-6

(I
(
(
(

) 5

R) 0.15

i5) B: muO*I/ (4*R);

B) 1.0472*10"-5

Comments on the codes:

(%i4) Set floating point print precision to 5, and assign values of g, I, and R.
(%15) Calculate B.

Problem 11.19 Show that the magnetic field inside a solenoid is B = ponl, where
n is the number of turns of the winding per unit length and 7 is the current in the
solenoid. Use the Ampere’s law.

Solution

Figure 11.30 shows part of a solenoid that has » turns of winding per meter with a
current of / in it. We consider an imaginary rectangular Amperian closed loop abcda
of length / and width w.

Using the Ampere’s law (Eq. 11.4), we have

% B.ds = Holenciosed
abcda
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a [ ds d .
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Fig. 11.30 A solenoid and an Amperian closed loop abcda, Problem 11.19

c d a

b
/B~ds+/‘B-ds+/.B-ds+/B'ds=uonll,

b c d
04+ Bl 4+0+0 = puonll.

Here, the current enclosed in the Amperian loop is nll because there are nl wires
each with current /. The line integrals along ab and cd are zero because B is zero
or B is perpendicular to ds, and the line integral along da is zero because B is zero
outside the solenoid. The line integral along bc is Bl because B and ds are in the
same direction and parallel to each other. Therefore, the magnetic field of a solenoid
is

B = uonl.

This is Eq. (11.5) given in point (5) at the beginning of this chapter.
Problem 11.20

(a) Use Biot—Savart law to find the magnetic field at point P of Fig. 11.31a. The
wire has a current of 1, its length is @ + b, and its perpendicular distance from
point P is R.

(b) What is the magnetic field at point Q of Fig. 11.31b? The wire has a current of
1, its length is 2a, and its perpendicular distance from point Q is R.

(c) What is the magnetic field at point Q of Fig. 11.31b if a is very large?

(d) What is the magnetic field at point S of Fig. 11.31c?

Solution

(a) We redraw Fig. 11.31a as Fig. 11.31d to do calculation according to the Bio—
Savart law. Figure 11.31d shows the current / in a wire of length a + b, length
element ds, and vector r from ds to point P. By Biot-Savart law, the magnetic
field dB due to length element ds is,
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Fig. 11.31 Magnetic fields of four current-carrying wires using the Biot—Savart law, Problem 11.20

_ moldsxr  polds xt

dB = = ,
4z 13 4 r?
ol sinf ds ol Rds ol R ds

dB = = — e .
4 r? 4 3 4 (R? + 52)3/2

The magnetic field at point P in Fig. 11.31a or Fig. 11.31d is

b

5 _/dB_udR/ ds ol s b
" T ar ) R+s2 T R (R,

—a

kol a n b
" 4nR (Rz ~|—a2)1/2 (Rz +b2)l/2
mol

= ——(cosf; —cosHy).
471R( 1 2)

This is the same as Table 11.1(a).
(b) Using the result of part (a), the magnetic field at point Q in Fig. 11.31b is

B — ,uol( a 4 a )
T 4R\ (R2+a®)'2 " (R?+a?)1?
ol a
2R (R*+a2)'/%

(c) Using the result of part (b), the magnetic field at point Q becomes
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ol
¢~ 2R’
as a — oo. This is because a/(R? + a®)"* — 1 as a — oo. This is the magnetic

field around a long straight wire, Table 11.1(b).
(d) By symmetry and using the result of part (c), the magnetic field at point S in
Fig. 11.31c is one half of that at point Q,

1 1
B, = HoL

By = —By = .
ST 2797 4xR

This is the magnetic field of semi-infinite straight wire, Table 11.1(c).

11.3 Summary

e Biot-Savart’s law states that the magnetic field dB due to a segment ds of a
conductor carrying a current of / is given by

Ids xr Ids xr puogldsxF
dB =k, 3 =k 3 =———
r r 4 r

e Force per unit length between two parallel long wires, separated by a distance of
a, and carrying currents of 7, and I is

F 2k, pohl
I~ a = 2ma’

® Ampere’s law states that the line integral of B around a closed path is o/, that is

%B'dS:/_L()],

where [ is the current through a surface bounded by the closed path.
e The magnetic fields inside a solenoid is

N
Bsotenoia = MOTI = MO”I’

where N is the number of turns of the wire, [ is the length of the solenoid, and n
is the number of turns per unit length.
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Fig. 11.32 Two parallel 8.0A P 12 A

current carrying wires,

Exercise 11.1 ®———0 ________________ ®

11.4 Exercises

Exercise 11.1 Figure 11.32 shows two long wires 18 cm apart carrying currents of
8.0 and 12 A into the plane of the paper.

(a) Calculate the magnetic field at point P
(b) At what point on the line joining the wires is the magnetic field zero?

(Answer: (a) Bp = 3.7 x 107> T in the negative y direction,
(b) 7.2 cm from the wire with 8.0 A current)

Exercise 11.2 Figure 11.33 shows a coil of radius R = 20 cm carrying a current of /
= 0.25 A in counter clockwise direction. How many turns must there be in the coil
so that the magnetic field B at the center of the coil is 4.0 x 107> T?

(Answer: 51 turns)

Exercise 11.3 Figure 11.34 shows a coil of radius 2.0 cm concentric with a coil of
radius 7.0 cm. Each coil has 100 turns and the electric current in the larger coil is
5.0 A in counterclockwise direction. What is the current in the smaller coil so that
the magnetic field B at the center of the coils is 2.0 x 107> T?

(Answer: 0.79 A, clockwise)

Exercise 11.4 The wire shown in Fig. 11.35 carries an electric current of 15 A.
Calculate the magnetic field at point P.
(Answer: 3.5 x 10~* T into the plane of the paper)

Fig. 11.33 A

current-carrying coil,

Exercise 11.2 \ I
B
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'\5.0A

v

Fig. 11.34 Two concentric current carrying coils, Exercise 11.3

Fig. 11.35 Current carrying wire of Exercise 11.4

Fig. 11.36 Cross section of
a current carrying conductor,
Exercise 11.5
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Exercise 11.5 Figure 11.36 shows the cross-section of a long conductor of radius

3.0 cm carrying a current of 5.0 x 10? A into the plane of the paper. Use Ampere’s

law to calculate the magnetic field Bp at point P and magnetic field By at the surface.
(Answer: Bp =2.2 x 1073 T, Bp =3.3 x 107 T)



Chapter 12 ®)
Magnetic Properties of Matter st

Abstract Problems related to magnetic materials and how magnetic induction,
magnetic field strength, and magnetization are affected when the materials are
inserted in the core of the current carrying solenoid and toroid are solved in this
chapter. Both analytical solutions and computer calculations are presented.

12.1 Basic Concepts and Formulae

(1) The fundamental source of all magnetic fields is the magnetic dipole moment
in atoms of materials. There are two types of magnetic dipole moments: spin
magnetic dipole moment and orbital magnetic dipole moment.

There are three types of magnetism in materials.

@

(a)

(b)

Diamagnetism: Diamagnetic material shows its magnetic properties only
when placed in an external magnetic field B,,,. In an external magnetic
field, the material produces magnetic dipoles in the opposite direction to
that of the external magnetic field. As a result, the material is pushed from
the region of higher magnetic field. Examples of diamagnetic materials are
gold, bismuth, mercury, water, glass, and helium.

Paramagnetism: In a paramagnetic material, atoms have permanent
magnetic dipole moments randomly oriented so that the net effect is no
magnetic field. External magnetic field B,,; can align some of the atomic
magnetic dipole moments to produce net magnetic dipole moments in the
B, direction. The paramagnetic material is attracted to a region of higher
magnetic field.

The alignment of atomic magnetic dipole moments increases with an
increase in By and decreases with an increase in temperature 7. The extent
a volume V of material has magnetic properties is given by magnetization
M

tic dipol t
M= magnetic 1p§)/e momen m. (12.1)
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If all N atomic magnetic dipoles of a sample are aligned with B,,;, the
sample is saturated and the maximum magnetization is

Nm,
%

Mmax = , (122)

where m, is the atomic magnetic dipole moment.
For small B,,,/T, where T is the absolute temperature of the material
and B,,; is the external magnetic field, the magnetization is

M=C ﬁ (12.3)
T
This is called Curie’s law and the constant C is the Curie constant.
Examples of paramagnetic materials are aluminum, magnesium,
oxygen, transition elements, and rare earth elements.

(c) Ferromagnetism: In a ferromagnetic material, most of the magnetic dipole
moments of the atoms are self aligned in small regions called domains.
Magnetic dipole moments are mainly from the spin magnetic dipole
moments. Each domain behaves as a permanent magnet and the domains
are randomly oriented if no external magnetic field is applied. The domains
are partially aligned when the external magnetic field is applied so that the
internal magnetic field becomes stronger. Ferromagnetic materials are used
in magnetic devices. Examples are iron, nickel, and cobalt.

The magnetic field of a material with relative permeability K, is
B = K,, By, (12.4)

where By is the magnetic field without the material. Permeability u of the
material is

= K ito, (12.5)

where 119 = 4w x 1077 Hm™! is permeability of free space.
In a material medium, the relationship between magnetic induction B, magnetic
field strength H, and magnetization M is

B = po(H + M). (12.6)

is called magnetic induction or magnetic flux density.

is called magnetic field strength, magnetic intensity, or magnetizing field.
is called magnetization, magnetic polarization, or magnetic dipole moment
per unit volume.

o is the permeability of free space.

SR®
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(5) In an isotropic medium, B, H, and M are in the same direction. We have

B = puo(H + M) = po(H + xuH) = po(l + xm)H = nH, (12.7)

= po(l + xm), (12.8)
Ky = L Kom- (12.9)
Mo

w  is the permeability of the medium,

o is the permeability of free space,

K, is the relative permeability of the medium,
Xm 1S the magnetic susceptibility of the medium.

(6) Ampere’s law for magnetic field intensity is
%Hwis =1 (12.10)

The line integral H - ds. along a closed path is the current /, where [ is the
current through a surface bounded by the closed path.
(7) For an air core solenoid

N

Bo = uonl = po 1. (12.11)
B N

H="=nl=—1I, (12.12)
Mo l

where By is the magnetic induction, H is the magnetic field strength, wg is
permeability of free space, N and [/ are the number of wire turns and length of
the solenoid, respectively, and » is the number of wire turns per unit length.

12.2 Problems and Solutions

Problem 12.1 A permanent magnet made of ferromagnetic material has magne-
tization M = 8.0 x 10°A m~'. The magnet is in cube form with sides of
2.0 cm.

(a) Calculate the magnetic dipole moment
(b) Estimate the magnetic field of the permanent magnet at a point 10 cm away.
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Solution

(a) Magnetic dipole moment m is magnetization M multiplied by volume V,
Eq. (12.1),

m=MV = (8.0 x 10° A/m)(2.0 x 1072 m)® = 6.4 A m>.

(b) The magnetic field of a magnetic dipole moment u at a point far away from the
dipole is, entry (d) of Table 11.1,

_ lon
2 x3’

where x is the distance of the dipole to the observation point. Substituting
magnetic dipole moment m from part (a), we get an estimate of the magnetic
field of the permanent magnet

Hom
2 x3
(47 % 1077 T m/A) (6.4 A m?)

27(0.10 m)3
1.3x 1072 T.

B =

4 wxMaxima codes:

(%$15) fpprintprec:5; M:8eb5; V: (2e-2)"3; x:0.1; muO:float (4*%pi*le-7);
(fpprintprec) 5

(M) 8.0*10"5

(V) 8.0*10%-6

(x) 0.1

(mu0) 1.2566*10"-6

(%$16) m: M*V;

(m) 6.4

(%$17) B: muO*m/ (2*float ($pi) *0.173);

(B) 0.00128
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Fig. 12.1 An iron bar in a
region of uniform magnetic
field, Problem 12.2 _

B=080T

v

—
3
v

v

v

Comments on the codes:

(%15) Set floating point print precision to 5, and assign values of M, V, x,
and .
(%16), (%17) Calculate m and B.

Problem 12.2 Aniron atom has a magnetic dipole moment m, of 1.83 x 10723 A m?.

(a) Determine the magnetic dipole moment m of a 9.0 x 1.2 x 1.0 cm iron bar if
the bar is 100% saturated magnetically.

(b) Calculate the torque T on the iron bar if it is placed in a region of magnetic field
B =0.80 T as illustrated in Fig. 12.1. The density of iron is 7.8 g cm™ and the
molar mass of iron is 55.845 g mol~'.

Solution

(a) If the iron bar is fully magnetized, all dipoles are aligned. Total dipole moment
m is the number of atoms N multiplied by the dipole moment of an atom m,

NapV
= A

(6.02 x 10?* atom/mol)(7.8 g/cm3)(9.0 cm)(1.2 cm)(1.0 cm)
- 55.845 g/mol

x (1.83 x 1072* A m?/atom)

=17 A m>.

m= Nm, my

Here, the number of iron atoms N = N,pV/M,,, where p, V, and M,, are
the density, volume, and molar mass of iron, respectively, and Ny = 6.02 x
10?* atom/mol is the Avogadro number.

(b) Torque t ontheironbarifitis placed in the magnetic field of 0.80 T is, Eq. (11.9),

T =mBsinf = (17 A m2)(0.80 T)(sin90°) = 13 N m.
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4 wxMaxima codes:

($17) fpprintprec:5; NA:6.02e23; rho:7.8; V:9*1.2*1; Mm:55.845;
m a:1.83e-23; B:0.8;
(fpprintprec) 5

(NA) 6.02*10723

(rho) 7.8

(V) 10.8

(Mm) 55.845

(m a) 1.83*10"-23

(B) 0.8

($18) m: NA*rho*V*m_a/Mm;

(m) 16.618

(%$19) tau: m*B*sin(90*%pi/180) ;
(tau) 13.294

Comment on the codes:

(%17) Set floating point print precision to 5, and assign values of Ny,
o, V,M,,m,, and B.
(%i18), (%19) Calculate m and t.

Problem 12.3 A thin toroid has 285 turns per meter of wire wound around an iron
core. The current of 3.0 A flows in it. If the relative permeability of iron is K, = p/
Ko = 2200, what is the magnetic field in the toroid?

Solution

The magnetic field of a thin and long toroid is the same as that of a solenoid. The

magnetic field of the iron core toroid is, Egs. (11.5), (12.4), and (12.5),
7Tm -1
B = unl = K,,uonl = (2200)(4mw x 10 T)(ZSS m )(3.0A)=24T.

where u is the permeability of iron and 7 is the number of turns per unit length of
wire.

4 wxMaxima codes:

%15) fpprintprec:5; Km:2200; muO:float (4*%pi*le-7); n:285; I:3;

(

(fpprintprec) 5
(Km) 2200

(mu0) 1.2566*107-6
(n) 285

(I 3

(%

(

)
i6) B: Km*muO*n*I;
) 2.3637
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Comment on the codes:

(%15) Set floating point print precision to 5, and assign values of K,,, (o, n, and I.
(%i16) Calculate B.

Problem 12.4 An iron core solenoid of length 38 cm and diameter 1.8 cm has 640
turns of wire. The magnetic field in the solenoid is 2.2 T when the current is 48 A.
What is the permeability of iron at the field strength?

Solution
The magnetic field in an iron core solenoid is

N
B = unl = MTI,

where w is the permeability of iron, N is the number of turns of wire, [ is the length
of the solenoid, and 7 is current in the solenoid. The permeability of iron is

Bl (2.2 T)(0.38 m) _s 1
U=—=—-"———"=27x10"TmA .
NI 640 (48 A)

4 wxMaxima codes:

5) fpprintprec:5; 1:0.38; N:640; B:2.2; I:48;
pprintprec) 5
0.38
640

6) mu: (B*1l)/(N*I);
) 2.7214*107-5

Comments on the codes:

(%15) Set floating point print precision to 5, assign values of [, N, B, and 1.
(%i16) Calculate .

Problem 12.5

(a) A 1.0 m long solenoid has 10* turns of copper wire. A current of 10 A flows in
the solenoid. The cross section of the solenoid is 10 cm?2. Calculate:

(i) magnetic field strength of the solenoid
(i) torque on the solenoid when it is placed perpendicular to an external
magnetic field of B.,; = 1.0 x 1072 T.

(b) The core of the solenoid is then filled with a magnetic material and the flux
density in the material is B = 1.5 T. Calculate:
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@
(i)

Solution
(@)
()

(ii)

(b)
@

(ii)
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magnetization in the material.

torque on the solenoid and the magnetic material when they are placed in
the external magnetic field of B,,, = 1.0 x 1072 T. Axis of the solenoid
and external magnetic field are perpendicular to each other.

Magnetic field strength of the air core solenoid is, Eq. (12.12),

10* turns

1.0 m

/

)(IOA) =10x10° Am™.

Magnetic moment of a loop is IA Eq. (10.7), where [ is the current in the
loop and A is the area of the loop. Thus, the magnetic moment of a turn of
the solenoid is /A, and the magnetic moment of the solenoid is

mo = NIA = (10* turns)(10 A)(10 x 10~* m?) = 100 A m°.
Torque on the solenoid in an external magnetic field is Eq. (10.9)

T = mgBex sin 90°
= (100 A m*)(1.0 x 1072T)
=1.0Nm.

For a solenoid filled with a magnetic material Eq. (12.7), we have

B = po(H + M),

B
M=——-H.

Ho

where M is the magnetization of the material, B is the magnetic induction,
and H is the magnetic field strength. The magnetization of the material is

B " 1.5x 1072 T
o T 47 x 1077 T m/A
=11x10°Am™".

M = ~1.0x10°Am™!
Magnetic moment of magnetic material m,, is Eq. (12.1)

My =MV = MIA = (1.1 x 10° A m™")(1.0 m)(10 x 10~* m?)
=1.1 x 10> A m?.
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Magnetic moment m of the solenoid with the magnetic material core is
m=my+m,=100Am?+1.1 x 10° Am? =12 x 10° A m®.
Torque on the magnetic material cored solenoid is Eq. (10.9)

T7 = M Bex 5in 90
= (1.2 x 10> Am?)(1.0 x 107%T)
=12Nm. (12.1)

4 wxMaxima codes:

($18) fpprintprec:5; 1:1; N:1led4; I:10; A:10e-4; Bext:le-2; B:1.5;
mu0:float (4*%pi*le-7);

%$115) torqueT: m*Bext;
torqueT) 11.937

(fpprintprec) 5
(1) 1

(N) 1.0*1074

(I) 10

(A) 0.001

(Bext) 0.01

(B) 1.5

(mu0) 1.2566*10"-6
(%$19) H: (N/1)*I

(H) 1.0*10"5
(%$110) mO: N*I*A;
(m0) 100.0

($111) torque: mO*Bext;
(torque) 1.0

(%$112) M: B/mu0 - H;
(M) 1.0937*10%6
($113) mm: M*1*A;
(mm) 1093.7

(%114) m: mO + mm;
(m) 1193 7

(

(

Comments on the codes:

(%i8) Set floating point print precision to 5, and
assign values of [, N, I, A, B.;, B, and 1.

(%19), (%i110), (%il 1), (%il2), Calculate H, mg, t, M, m,,, m, and 7.

(%i13), (%i14), (%il5)

Problem 12.6 A toroid is made of an iron core of length 60 cm, a cross section of
4.0 cm?, and an air gap of 1.0 cm.

(a) If the toroid has 500 turns of wire and the current is 20 A, what is the magnetic
flux density B, in the gap? The relative permeability of iron is 3000.
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(a) (b)

Fig. 12.2 a An iron core toroid with an air gap, b an iron core toroid, Problem 12.6

(b) If there is no air gap, what is the magnetic flux density B; in the iron core?
Solution

(a) Fig. 12.2a shows the iron core toroid and the air gap. Let the magnetic flux
density and the magnetic field intensity of iron be B; and H;, respectively, while
the magnetic flux density and the magnetic field intensity of air gap be B, and
H,, respectively. The lengths of iron and air gap are /; and [, respectively.

Ampere’s law for magnetic field intensity is, Eq. (12.10),

%H~ds=l.

The line integral H.ds along a closed path is the current /, where [ is the
current enclosed by the closed path.

For this problem, the imaginary closed path in the dashed circle of the toroid,
Fig. 12.2a. The magnetic field intensity H is parallel to line element ds and H .ds
is H x length. The magnetic field intensity is the magnetic flux density divided
by the permeability of the material, H = B/u. The current enclosed in the closed
path is NI, where N is the number of turns of the wire. We have

% H.ds = Lencioseds

Hl; + Hyl, = N1,
Bil; Bl
AL 8°8

—= =NI,
w H“o
Bl Be _ .
Koo Mo

Assuming B; ~ B, we have



12.2 Problems and Solutions 335

Bdi | Be _ .,
Ko o

Thus, the magnetic flux density B, of the air gap is

NI 50020 A)
By = . L\ ( 0.60 m + oo )
(m + %) 3000x47 x10 7 Hm | ' 47x10-7 Hm!
=12T.

(b) If there is no air gap, the magnetic flux density B; in the iron core toroid is,
Fig. 12.2b,

%H -ds = Lenciosed;

Hl=NI,
B;l
— = NI,
I(mlLO
B — NIK,po 500020 A)(3000) (47 x 107 Hm™)
T ] h (0.60 +0.01) m
=62T.

4 wxMaxima codes:

(%$17) fpprintprec:5; N:500; I:20; 11:0.6; 1g:0.01; Km:3000;
mul:float (4*%pi*le-7);

(fpprintprec) 5

(N) 500

(I) 20

(1i) 0.6

(lg) 0.01

(Km) 3000

(mu0) 1.2566*10"-6

(%$18) Bg: N*I/(li/ (Km*mu0O) + 1lg/mu0) ;
(Bg) 1.232

(%$19) Bi: N*I*Km*muO/ (li+lg);
(Bi) 61.802

Comments on the codes:

(%i17) Set floating point print precision to 5, and assign values of N, I,
li7 lg7 Km, and /1’0'
(%18), (%19) Calculate B, and B;.
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Problem 12.7 An electric power cable carries a current of 95 A to the west, 8.5 m
above the ground.

(a) What is the magnitude and direction of the magnetic field due to the cable at
the surface of the earth? Compare the field with the earth’s magnetic field By,
=0.50 x 10~* T. The earth’s magnetic field points to the north.

(b) At what height above the ground the magnetic field is zero?

Solution

(a) Assume the cable is straight and long, from east to west, carrying a current from
east to west, at a height of 8.5 m above the ground. The magnetic field due to
the current in the cable is (Table 11.1b)

pol ol (4w x 107 Tm/A)(95 A)

= 22 x107°T.
2xr  27mh 27 (8.5 m)

Beaple =

pointing to the south as determined by the right-hand rule. Assume the earth’s
magnetic field points to the north with magnitude B.,;, = 0.50 x 1074 T. At
the earth’s surface, the ratio of the magnetic field due to current in the cable to
the magnetic field of the earth is

B.avie . 22x10°°T
Bearn ~ 0.50 x 1074 T

= 0.045.

Magnetic field due to the current in the cable is 4% of the earth’s magnetic
field.
(b) To get zero magnetic field, Bogpre = Bearsn» and the two magnetic fields are in
opposite directions. Thus

ol
erth = Bcable = L’
2rr
1ol (47 x 1077 T m/A)(95 A)
27 Bearin 27(0.50 x 104 T)

The magnetic field is zero at a distance of 0.38 m below the cable or at a
height of 8.5 — 0.38 = 8.1 m from the ground.
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4 wxMaxima codes:

i5) fpprintprec:5; I:95; h:8.5; mulO:float (4*%pi*le-7); Bearth:0.5e-4;
pprintprec) 5
) 95

07) 0.044706

i8) r: muO*I/(2*float (%pi)*Bearth) ;
) 0.38

19) height: h-r;

eight) 8.12

Comments on the codes:

(%i5) Set floating point print precision to 5, and assign values of I, A,
Ko, and Beurth'

(%i16), (%17) Calculate B.gpe and Begpie!Bearih-

(%i18), (%19) Calculate r and i —r.

Problem 12.8 Internal and external radii of an air core solenoid in the form of a
toroid are 15 and 18 cm, respectively, as shown in Fig. 12.3. The toroid has 250 turns
of wire and it carries a current of 8.5 A. What are the magnetic fields at points (a)
12 cm, (b) 16 cm, and (c) 20 cm from the center of the toroid.

Solution

(a) Atr =0.12 m, the magnetic field is zero.
(b) Atr = 0.16 m, the magnetic field is

Fig. 12.3 Air core solenoid
in the form of a toroid,
Problem 12.8
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moNI — poNI  poNI (4w x 1077 H/m)(250)(8.5 A)
I 2ar  2ar 27(0.16 m)
=27x107°T.

B =

4 wxMaxima codes:

%$15) fpprintprec:5; mulO:float (4*%pi*le-7); N:250; I:8.5; r:0.16;

(

(fpprintprec) 5

(mu0) 1.2566*10"-6

(N) 250

(I) 8.5

(r) 0.16

(%$16) B: muO*N*I/ (2*float (%pi) *r);
(B) 0.0026562

Comments on the codes:

(%15) Set floating point print precision to 5, and assign values of wg, N, I, and r.
(%i16) Calculate B.

() Atr =0.20 m, the magnetic field is zero.

Problem 12.9 A current of 2.4 A flows in a magnetic metal core solenoid in the
form of a toroid, as shown in Fig. 12.4. The number of wire turns is 500 and the
radius of the toroid is 25 cm. The magnetic field of the solenoid is 1.9 T. Calculate:

(a) relative permeability
(b) susceptibility of the metal.

Fig. 12.4 A magnetic
material core toroid,
Problem 12.9
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Solution

(a) The magnetic field of a magnetic metal cored solenoid or toroid is, (Eqs. 12.4
and 8.5),

KnpuoNI — KypuoNI

B=K,By=
m0 l 2r

Here, K, is the relative permeability of the magnetic metal, By is the magnetic
field of air core solenoid or toroid, N and / are the number of turns of wire and
length of the toroid, respectively, and i is the permeability of free space. The
relative permeability of the magnetic metal is calculated as follows:

B KnuoNI
2mr
10T = K., (4 x 1077 H/m)(500)(2.4 A)
27(0.25 m)
K, = 1979.

(b) Magnetic susceptibility y, of the metal is, Eq. (12.9),

4 wxMaxima codes:

%09) [Km=1979.2]
110) Km: 1979.2;
Km) 1979.2

i11l) Xm: Km-1;
Xm) 1978.2

(%17) fpprintprec:5; ratprint:false; B:1.9; muO:float (4*%pi*le-7); N:500;
I:2.4; r:0.25;

(fpprintprec) 5

(ratprint) false

(B) 1.9

(mu0) 1.2566*10"-6

(N) 500

(I) 2.4

(r) 0.25

(%$19) solve (B=Km*muO*N*I/(2*%pi*r), Km)$ float (%):;
(

(

(

(

(

Comments on the codes:

(%i7) Set floating point print precision to 5, internal rational number
print to false, and assign values of B, ug, N, I, and r.
(%19) Solve B = Xulell for k.

(%i110), (%i11) Assign K, and calculate y .
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Problem 12.10 A solenoid with a silicon iron core has 60 turns of wire per cm. A
current of 0.15 A flows in the solenoid. The relative permeability of silicon iron is
5200. Calculate:

(a) magnetic field of the solenoid without silicon iron core
(b) magnetic field of the solenoid with silicon iron core
(c) magnetization of silicon iron.

Solution

(a) The magnetic field of the solenoid without silicon iron core is, Eq. (8.5),

By = uonl = (4 x 1077 H/m) ( ) (0.15 A)

0.010 m
=11x107°T.

(b) The magnetic field of the solenoid with silicon iron core is, Eq. (12.4),

B = KBy = Kpponl = (5200)(47 x 10”7 H/m) ( ) 0.15 A)

0.010 m
=59T.

(c) The magnetization M is calculated as follows (Eq. 12.7),

B = po(H + M)

= woH + poM
= By + noM,
BB _S9T-L1x107T
Lo 47 x 10~7 H/m

=47x10° Am™".

4 wxMaxima codes:

5) fpprintprec:5; n:60/0.01; I:0.15; Km:5200; muO:float (4*%pi*le-7);

(/

(fpprintprec) 5
(n) 6000.0

(I) 0.15

(Km) 5200

(mu0) 1.2566*10"-6
(%$16) BO: muO*n*I;
(BO) 0.001131
($17) B: Km*BO;

(B) 5.8811

(%18) M: (B-B0)/mu0;
(M) 4.6791*10"6
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Comments on the codes:

(%15) Set floating point print precision to 5, and assign values
ofn, I, K,,, and 1.
(%i16), (%i17), (%i8) Calculate By, B, and M.

12.3 Summary

e Materials are classified as paramagnetic, diamagnetic, or ferromagnetic.
e Magnetic field of a material with relative permeability K, is

B = K, By,

where By is the magnetic field without the material. Permeability of the material
is

u = Knpo,

where o = 4w x 1077 Hm™' is permeability of free space.
¢ In a material medium, the relationship between magnetic induction B, magneti-
zation M, and magnetic field strength H is

B = jio(M + H).

12.4 Exercises

Exercise 12.1 Calculate magnetizing field H and magnetic flux density B at the
center of a 20 turns per cm solenoid carrying a current of 0.15 A.
(Answer: H=3.0x 1 Am~',B=38 x 107*T)

Exercise 12.2 An iron core of magnetic permeability 6.0 x 107> H m~! is inserted

in a 20 turns per cm solenoid carrying a current of 0.15 A of Exercise 12.1. Calculate

magnetizing field H, magnetic flux density B, and magnetization M in the iron core.
(Answer: H = 3.0 x 1AM L,B=18T,M=14x 10°A m’l)

Exercise 12.3 A 0.6 m long solenoid has 1800 turns of copper wire. An iron rod
with a relative permeability of 500 is inserted into the solenoid and a current of 1.0 A
flows in the wire. What are magnetizing field H, magnetic flux density B, magnetic
dipole moment per unit volume M, and average magnetic dipole moment per atom
m,? The number density of iron is 8.48 x 10 atoms per m?.

(Answer: H = 3.0 x 1AM, B=19T M =15x10°Am~, m, =18 x
1072 Am?)
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Fig. 12.5 An iron core
toroid, Exercise 12.4

Exercise 12.4 An iron ring of radius 12 cm is wound with 900 turns of copper wire,
as shown in Fig. 12.5. The relative permeability of the iron core is 250 and a current
of 4.0 A flows in the wire. What are the magnetizing field H and the magnetic flux
density B in the iron core?

(Answer: H =48 x 100 Am~!,B=15T)

Exercise 12.5 A piece of iron of length of 1.0 cm is sawed out from the iron ring of
Exercise 12.4, such that there is an air gap of length 1.0 cm in the ring. What is the
magnetic flux density in the air gap?

(Answer: B=0.35T)



Chapter 13 ®)
Faraday’s Law st

Abstract This chapter solves problems related to emf induced by changing magnetic
flux. Faraday’s law states that the emf induced is equal to the negative time rate
of change of the magnetic flux. Emf is induced in a moving conductor when the
conductor cuts through the magnetic field lines. Emf is also induced in a rotating
conducting loop when the loop cuts through the magnetic field lines. Solutions are
obtained by analysis and computer calculation of wxMaxima.

13.1 Basic Concepts and Formulae

(1) Faraday’s law of induction states that the induced electromotive force (emf) £
in a loop is proportional to the rate of change of the magnetic flux of the loop.
This is written as

do,,
E=——, 13.1
7 (13.1)

where @, is the magnetic flux that can be calculated by
D, :/B -dA. (13.2)

Here, B is the magnetic field and dA is the surface element vector. The surface
element vector is normal to the surface element and its magnitude is the area of
the surface element dA. The magnetic flux for a given area is equal to the area
times the component of the magnetic field perpendicular to the area.

If the loop is a coil of N turns, the induced emf is

do,
E=—-N . 13.3
7 (13.3)
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(2) When a conductor of length / moves with velocity v in a uniform magnetic field
B, an emf is induced in the rod

& = —Blv, (13.4)

where B, v, and the rod are perpendicular to each other.
(3) Lenz’s law states that the directions of induced current and emf in a conductor
are opposite to the change that produced them.

13.2 Problems and Solutions

Problem 13.1 Figure 13.1 shows a conducting rod moving to the right at a speed
of v=4.0 m s~! in a region of uniform magnetic field B = 0.50 T pointing into the
plane of the paper. The length of the rod is / = 1.5 m.

(a) Determine the equivalent non-electrostatic electric field E,,, in the rod.

(b) Calculate the electrostatic electric field E, in the rod.

(c) What is the motional emf in the rod?

(d) Determine the potential difference between the rod’s ends. Which end has a
higher electric potential?

Solution

(a) Asthe rod is moved to the right at a velocity of v, a charge ¢ in the rod is acted
by a magnetic force gv x B in the upward direction. This is a non-electrostatic
force. Thus, the charge is in a non-electrostatic electric field of

X X X X X
B
X X X X X
e
/ %
X X X X X
X X X X X

Fig. 13.1 A conducting rod moving in a region of uniform magnetic field, Problem 13.1
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force  gqv x B

ne

- charge ¢

in the upward direction.

e wxMaxima codes:

($12) fpprintprec:5; load("vect"):;

(fpprintprec) 5

(%$02) "C:/maxima-5.43.0/share/maxima/5.43.0/share/vector/vect.mac"
($1i4) v:[4,0,0]; B:[0,0.5,0];

(v) [4,0,0]

B) [0,0.5,0]

(
($16) Ene: v~B; express(%);
(Ene) -[0,0.5,01~[4,0,0]
(%06) [0,0,2.0]

Comments on the codes:

(%i2) Set floating point print precision to 5 and load “vect” package.
(%i4) Assign vectors v and B.
(%16) Calculate non-electrostatic electric field, E,,,.

(b) The electrostatic electric field in the rod is,

E,=—-20kVm',

=vxB=40ims' x050jT=20kVm.

345

in the downward direction. As the rod moves, the E,, field causes the positive
charges to be accumulated at the top end of the rod, while the electrons at the
bottom end. The accumulation creates the electrostatic electric field E., until

the resultant force on each charge is zero. Eventually, E, = — E,, .
(c) The motional emf is,

&= / E, -ds=vBl=(40ms ")(0.50 T)(1.5m) =3.0V.

(d) The potential difference between the ends of the rod is 3.0 V. The top end is of
higher electric potential than the bottom because the positive charges accumulate

there.

Problem 13.2 Fig. 13.2 shows a conducting rod ab moving at speed v =4.0 m s~

1

to the right while touching conductor cdef in a region of uniform magnetic field B

= 0.50 T into the plane of the paper. The length of rod ab is I = 0.50 m.
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X X X X X X
X x B ax X X X
dr Q3 C
X X X X X X
——»
l v
X X X X X X
e\~ f
b
X X X X X X

Fig. 13.2 A conducting rod moving in a region of uniform magnetic field. The rod touches a
conductor while in motion, Problem 13.2

(a)
(b)

(©)

Determine the magnitude and direction of induced emf in the rod.

If the circuit resistance is R = 0.20 €2 and friction is negligible, calculate the
force needed to sustain the motion of the rod.

Determine the rate of mechanical work done and compare it with the rate of
electrical energy dissipation.

Solution

(a)

(b)

The magnitude of induced emf in the rod is

E=I1E,, =I1vB = (0.50m)(4.0ms ")(0.50T) =10V,

and the direction is from b to a. Here, E,, = vB is the non-electrostatic electric
field in the rod due to its motion in a magnetic field
When there is induced emf, the counter clockwise current in the circuit is,

& 10V

R 020

=5.0A.

Current / flows in the loop bade. Due to current / flowing in the rod, there
exists magnetic force of

F =1IIB = (5.0 A)(0.50 m)(0.50 T) = 1.25 N,

to the left acting on the rod. To sustain the motion of the rod, the force of 1.25
N to the right must be applied to the rod.
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(c¢) The rate of mechanical work done is

Fv=(125N)4.0ms ") =50W.

The rate of electrical energy dissipation is
I’R = (5.0 A)*(0.20 Q) = 5.0 W.

Both rates are equal in value.

e wxMaxima codes:

($15) fpprintprec:5; v:4; B:0.5; 1:0.5; R:0.2;
(fpprintprec) 5
(v) 4

(B) 0.5

(1) 0.5

(R) 0.2

(%16) emf: 1*v*B;
(emf) 1.0

($17) I: emf/R;

(1) 5.0

(%1i8) F: I*1*B;

(F) 1,25

(%19) F*v

(%09) 5.0

(%110) I"2*R;

(%010) 5.0

Comments on the codes:

(%15)

(%i6), (%i7), (%i8), (%i9), Calculate emf, I, F, F x v, and I> x R.
(%i110)

347

Set floating point print precision to 5, assign values of

v, B, [, and R.

Problem 13.3 A coil of 100 turns and a cross-sectional area of 20 cm? is rotated in
and earth magnetic field of 6.0 x 10~ T in 0.020 s. Initially, the plane of the coil
is perpendicular to the earth’s magnetic field and finally, the plane is parallel to the
field. What is the average induced emf in the coil?
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Fig. 13.3 A coil in initial and final situations, Problem 13.3

Solution

Figure 13.3 shows the coil in the initial and final situations. The earth magnetic field
is indicated as B.

Induced emf is calculated by the rate of change of the magnetic flux through the
coil. Initially, the magnetic flux through the coil is

®inir = BAN = (6.0 x 107> T)(20 x 107* m?)(100) = 1.2 x 10™> Wb,

because the plane of the coil is perpendicular to the magnetic field. Finally, the flux
through the coil is zero because the plane of the coil is parallel to the magnetic field

¢ﬁnal =0.
Using Faraday’s law, the average induced emf in the coil is, Eq. (13.1),

P AP, (Ppna — Pini)  (0—1.2x 107> Wb)
A At B 0.020 s

=6.0x107*V.
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e wxMaxima codes:

(%15) fpprintprec:5; N:100; A:20e-4; B:6e-5; delta t:0.02;

(fpprintprec) 5
N) 100
A) 0.002

(

(

(B) 6.0%10"-5

(delta_t) 0.02

(%16) phi init: B*A*N;

(phi init) 1.2*107-5

(%17) phi final: 0;

(phi final) 0

(%18) emf: -(phi final - phi init)/delta t;
(emf) 6.0*10"-4

Comments on the codes:

(%15) Set floating point print precision to 5, and assign values of N, A, B, and At.
(%i16) Calculate @;,;;.

(%17) Assign @

(%i8) Calculate emf.

Problem 13.4 A coil of radius 0.10 m consists of 50 turns of wire. The resistance
of the coil is 3.0 2. A Magnetic field perpendicular to the plane of the coil is created
such that its magnitude varies from zero to 0.50 Wb m~2 in 0.20 s.

(a) Calculate the average induced emf in the coil.
(b) What is the induced current in the coil?
Solution

(a) Figure 13.4 shows the coil and the magnetic field.
Induced emf is given by Faraday’s law as, Eq. (13.3),

do,,
E=-—N .
dt
For this problem,
[0} B Bnal — Bini
5=—Nd z =—NAd—=—NA Zfinal — Zinit

dt dt At
. —507(0.10 m)%(0.50 Wb/m? — 0)
N 0.20's

=-39V.



350 13 Faraday’s Law

Fig. 13.4 A coil in a varying >
magnetic field, Problem 13.4 B var 1 es
with time
>
>
>

(b) The induced current in the coil is

—3.
I=£=—9V=—1.3A.
R 3.0 Q@

e wxMaxima codes:

($18) fpprintprec:5; r:0.1; A:float (%$pi*r”2); N:50; R:3; Binit:0;
Bfinal:0.5; delta t:0.2;

(fpprintprec) 5
(r) 0.1

(A) 0.031416

(N) 50

(R) 3

(Binit) 0
Bfinal) 0.5

(
(delta t) 0.2

(%19) emf: —N*A*(Bfinal—Binit)/deltait;
(
(
(

emf) -3.927
%$i10) I: emf/R;
I) -1.309

Comments on the codes:

(%i8) Set floating point print precision to 5, and assign values of 7, A, N,
R, Binit> Bfina1, and At.
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(%19), (%i10) Calculate emf and L

Problem 13.5 A coil of cross-sectional area A is placed in a region of magnetic field
that is perpendicular to the plane of the coil. The magnetic field varies with time
according to,

B = Bye 7,

where B and t are constants and ¢ is time. Determine the induced emf in the coil as
a function of time.

Solution

The magnetic flux is
@, = AB = ABye '/".

Using Faraday’s law, the induced emf in the coil is, Eq. (13.1),

5:— =
dt dt T

dd,, d(ABye /"y AB
_ — e

—t/t
e wxMaxima codes:

(%$11) phi m: A*BO*exp(-t/tau);
(phi m) A*BO*%e” (-t/tau)

(%12) emf: -diff(phi m,t,1);
(emf) (A*BO*S%e”(-t/tau))/tau

Comments on the codes:

(%il) Define @,,.
(%i2) Calculate emf.

Problem 13.6 A metal rod of length / = 0.30 m is pivoted at one of its ends and
rotated at angular speed @ = 3.0 rad s~!, as illustrated in Fig. 13.5a. The rod is in
the region of uniform magnetic field B = 1.0 x 1073 T out of the plane of the paper.
Calculate the potential difference between the ends of the rod. Which end has higher
electric potential?

Solution

Using Faraday’s law, induced emf in the metal rod is, Eq. (13.1),
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Fig. 13.5 a A metal rod rotating in a region of uniform magnetic field, b the force on a moving
positive charge, Problem 13.6

d®,  d(AB) dA

dr dt  dt’

where dA/dt is the rate of area swept by the rotating rod. Let the time interval be dt
and the rod rotates by d6. The area swept by the rod in time interval df is,

1 1
dA = =) do) = =1%do
2()( ) 517de,

because the area swept is a sector or a triangle with a base length of / and height / d6.
This means that

dA 1,d6 1

— =-I— = lo.

a2 dar 2 °

Another way to get dA/dt is as follows. The number of revolutions of the rod in

a second is w/(27) and the area swept in one revolution is 7/>. Therefore, the area
swept in a second is

1
L (zl?) = ~ow.
2 2

The induced emf in the metal rod is

do, _ L dA _ 1.,
dr dar 2ot

The potential difference between the rod ends is
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1 1
€] = 5Blzw = 5(1.0x 1072 T)(0.30 m)?(3.0 rad/s)
=13x107*V.

The rotating end has a higher electric potential than the pivoted end. The rotation
causes the positive charges to be accumulated at the rotating end and electrons to
the pivoted end. You can verify this from FF = gv x B. For a positive charge, v is
north-westerly and B is out of the plane of the paper, hence the force on the positive
charge is north-easterly, Fig. 13.5b.

e wxMaxima codes:

%$1i4) fpprintprec:5; 1:0.3; omega:3; B:le-3;

(
(fpprintprec) 5
(1) 0.3

(omega) 3

(B) 0.001

(%15) emf: B*1"2*omega/2;

(emf) 1.35*10"-4

Comments on the codes:

(%i4) Set floating point print precision to 5, assign values of [, , and B.
(%i5) Calculate emf.

Problem 13.7 A long rectangular conducting loop is pulled from rest by a constant
force F from a region of uniform magnetic field B, as shown in Fig. 13.6. The width
of the loop is /, mass m, and resistance R.

(a) Calculate the terminal velocity of the loop.

(b) Determine an equation of the velocity of the loop as a function of time.

(¢) Let F=0.00lN,B=1.0T,[=0.20m, m = 0.03 kg, R = 0.50 Q. Calculate
the terminal velocity of the loop and draw velocity against the time curve.

Solution

(a) When the loop is pulled to the right, current of magnitude

D, IB B
E d de(x )/de—xlB/sz—,
dt dt R

(D

is induced on the left side of the loop. The velocity of the loop is v = dx/dt and
the induced emf on the left side of the loop is £ = vIB. The direction of the
current is bottom-up on the left side of the loop or clockwise in the loop. You
can check this by F = gv x B. For a positive charge on the left side of the loop,
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Fig. 13.6 A rectangular conducting loop is pulled out of a magnetic field region, Problem 13.7

v is to the right and B is into the plane of the paper. Therefore, the force on the
positive charge is upward. Due to this electrical current, the left side of the loop
is acted by magnetic force of magnitude

vIB vI2B?
F,=IIB= —IB =
R R

) (@)

to the left. Here, the current in Eq. (1) is inserted in Eq. (2) to get the magnetic
force.

Terminal velocity is attained when the magnitudes of F and F, are the same.
The terminal velocity of the loop vy is calculated as follows

UTZZB2
F=bn="%"
FR
U= g 3
(b) Net force acting on the loop is
F—F,,

to the right. There is no electrical or magnetic force acting on the top and bottom
sides of the loop. Using the Newton’s second law, we write

F — F, = ma,
1?B? dv
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To get velocity v as a function of time ¢, we do the integration as follows

dv F I*B?
—_— = — - —V,
dt m mR
v d t
v
/ F_ B Z/dt’
o m _ mRY Y

mR F I?B2\7’
————|In(—— v|| =1,
12B2 m mR 0

mR F I?B? F
———[In{————v ) —In| — =1,
[2B? m mR m

FR 1?B?
V= _1282 1 —exp __mR t 4

I>B?
= UT|:1 — exp (—mt)il (5)

Thus, the velocity of the loop increases with time and attains terminal velocity

FR
UT = ppa-

(¢) With F =0.001 N,B=1.0T,/=0.20m, m = 0.03 kg, R = 0.50 €2, the velocity
against time curve is

FR | 1232t
= -_— _— e [
U= R PATIR

(0.001 N)(0.50 2) [ ( (0.20 m)%(1.0 T)? )i|
= l—exp|— t
(0.20 m)2(1.0 T)? (0.03 kg)(0.50 2)

=0.0125 m/s - [1 — exp (—2.6667¢)].

where the terminal velocity is

_ FR_ (0.001 N)(0.50 )
T I2B2 7 (0.20 m)2(1.0 T)?

vr =0.0125ms".
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e Curve of v against ¢ is drawn by wxMaxima:

($16) fpprintprec:5; F:0.001; B:1; 1:0.2; m:0.03; R:0.5;

(fpprintprec) 5

(F) 0.001

(B) i

(1) 0.2

(m) 0.03

(R) 0.5

($17) v: F*R/(17"2*B"2)* (1 - exp(-1"2*B"2*t/ (m*R))) ;

(v) 0.0125* (1-%e”(-2.6667*t))
(%$18) wxplot2d(v, [t, 0, 5], grid2d, [xlabel,"{/Helvetica-Italic t} (s)"1],
[ylabel,"{/Helvetica-Italic v} (m s™{-1})"1);

0.014 T T T T

0.012

¥ (m 5'1)

0.006

0.004

0.002

t (s)

Comments on the codes:

(%i16) Set floating point print precision to 5, and assign values of F, B, I, m, and R.
(%i7) Define v as in Eq. (4).
(%i18) Plot v againstf for 0 <r <S5s.

Alternative solution: Parts (b) and (c) can be solved by predefined functions

ode2 and icl of wxMaxima. See Solving first order ordinary differential equa-
tion in Appendix A. The first-order ordinary differential equation to be solved is
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‘é—'; = % - % v, where v is the dependent variable and ¢ independent variable, while
the initial conditionist =0s, v =0 m/s.

e wxMaxima codes:

($12) fpprintprec:5; ratprint:false;

(fpprintprec) 5

(ratprint) false

($13) sol: ode2('diff(v,t)=F/m - 1"2*B"2*v/(m*R), v, t);

(sol) v=%e” (-

(BA2%172%t) / (R*m) ) * ((F*R*%e” ((BA2*1°2%t) / (R*m))) / (BA2*1"2) +%c)

($1i5) icl(sol, t=0, v=0); expand(%);

(%04) v=(%e” (- (B"2*1"2*t)/ (R*m)) * (F*R*%e” ((B"2*1"2*t)/ (R*m)) -
F*R) )/ (B"2*1"2)

(%05) v=(F*R)/(B"2*172) - (F*R*%e” (- (B"2*1"2*t) / (R*m)))/ (B"2*1"2)
(%$16) rhs(%);

(%06) (F*R)/ (B"2*1"2) - (F*R*%e” (- (B"2*172*t)/(R*m)))/ (B"2*1"2)
($17) v: subst([F=0.001, B=1, 1=0.2, m=0.03, R=0.5], %);

(v) 0.0125-0.0125*%e" (-2.6667*t)
(%$18) wxplot2d(v, [t, 0, 5], grid2d, [xlabel,"{/Helvetica-Italic t} (s)"],
[ylabel,"{/Helvetica-Italic v} (m s™{-1})"1);

0.014 T T T T

0.012

t(s)
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Fig. 13.7 A square conducting loop is pulled into a region of uniform magnetic field, Problem 13.8

Comments on the codes:

(%i2) Set floating point print precision to 5 and internal rational number print to
false,
(%i3) Solve the ordinary differential equation Z—;’ = % — l:n—BI:v for a general
solution, the dependent variable is v and the independent variable is .
(%15) Set the initial condition and get a particular solution.
B21%;
(%05) The solution is v = 4% — FR*(IZR'") = %[1 —exp (—Z;f;: t)]
(%i7) Substitute values of F, B, I, m, and R into the solution.
(%19) Plotv againstzfor0 <t <35s.

Problem 13.8 Figure 13.7 shows a square conducting loop of side /, resistance R,
and a uniform magnetic field region B of width 2/. The direction of the magnetic
field is in the plane of the paper. The loop is pulled with constant velocity v by an
external force F to the right as shown. Sketch

(a) acurve of external force F against x for 0 < x < 5L
(b) acurve of current i in the loop as a function of x for 0 <x < 5/.

Solution

(a) When the loop is outside the region of the uniform magnetic field, the external
force is zero. When the right side of the loop enters the magnetic field region,
the external force is, Eqs. (10.5) and (13.4),

& viB vI®?B?
F=IIB=-IB=—IB = )
R R R

When the whole loop is in the magnetic field region, the current in the loop is
zero and the external force is zero as well. When the right side of the loop exits
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Fig. 13.8 Curve of F against x, Problem 13.8
the region of magnetic field and the left side is still in the region, the external
force is,

vI’B?
T

When the whole loop is outside the region of magnetic field, the external
force is zero. The curve of F against x is shown in Fig. 13.8.
(b) When the loop is outside the region of the magnetic field, the current is zero.
When the right side of the loop enters the magnetic field region, the current in
the counter clockwise directions is

. & vIB . ..
i = — = —, counter-clockwise, positive.
R R
When the whole loop is in the magnetic field region, the current is zero. When
the right side of the loop exits the region of the magnetic field while the left side
is still in the region, the current flowing in the loop in clockwise direction is

. & viB . .
i = — = —, clockwise, negative.
R R
When the whole loop is outside the region of the magnetic field, the current
is zero. The curve of current i against x is shown in Fig. 13.9.

Problem 13.9 A rectangular metal coil of size 10 x 15 cm has 20 turns. The coil is
rotated about the x-axis in a uniform magnetic field of 0.05 T. The maximum induced
emf in the coil is 20 mV. What is the angular speed of rotation?

Solution

Figure 13.10 shows the coil rotating in uniform magnetic field B at angular speed w
about the x-axis.
The magnetic flux through the coil at this instance is
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51 X

Fig. 13.9 Curve of i against x, Problem 13.8

Fig. 13.10 A rectangular =z
coil rotating in a region of y
uniform magnetic field, A

Problem 13.9 B \
a

Fig. 13.11 A rectangular _—
wire loop rotating in a region

of uniform magnetic field, z B Y
Problem 13.10
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®,, = NB-A = NBabcosf = NBab cos wt,

where a, b, and N are the width, length, and number of turns of the coil, respectively.
The rate of change of magnetic flux is

do,,
dt

= —wabNB sin wt.

Using Faraday’s law, the induced emf in the coil is, Eq. (13.1),

dd, .
E=— = wabNB sin wt.
dt
The maximum emf is
Emax = wabNB.

The angular speed of rotation of the coil is

gmax _ 20 x 1073 \Y%

- - =13rads™!,
= WbNB ~ (0.10 m x 0.15 m)(20)(0.050 T) rads

or,

f= 22 = 0.21 revolution per second.
14

e wxMaxima codes:

($16) fpprintprec:5; emf:20e-3; a:0.1; b:0.15; N:20; B:0.05;

(fpprintprec) 5
(emf) 0.02

(a) 0.1

(b) 0.15

(N) 20

B) 0.05

(

(%$17) omega: emf/ (a*b*N*B) ;
(omega) 1.3333

(%$18) f: omega/ (2*float (%pi));
(f) 0.21221
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Comments on the codes:

(%16) Set floating point print precision to 5, and assign values of £ , a,
b, N, and B.
(%i7) and (%i8) Calculate w and f.

Problem 13.10

(a) A rectangular wire loop of area A and resistance R rotates at constant angular
speed w about the y-axis, as illustrated in Fig. 13.11. The loop is in a uniform
magnetic field B in the x direction. Determine expressions for

(i) magnetic flux @,, through the loop as a function of time. At time ¢t = 0,
the position of the loop is as shown in the figure.
(i) rate of change of the magnetic flux d®,,/dz.
(iii) induced emf in the loop.
(iv) torque T such that the loop rotates at a constant angular speed.
(v) induced emf in the loop if the angular speed is twice a much.

(b) IfA=400cm?,R=2.0Q,w=10rads~! and B=10.50 T, determine maximum:

(i) flux through the loop.
(ii) induced emf
(iii) torque.

Show that in one revolution of the loop, the work done by the torque is equal to
the electrical energy dissipated by the loop.

(c) What is the maximum induced emf if the angular speed of the loop is still
10 rad s~! but the loop is rotated about

(i) z axis?
(i) x axis?

(d) Plot all quantities in part (a) using wxMaxima.

Solution

(a) (i) Magnetic flux is defined as

b, =B-A=BAcos0,

where 6 is the angle between vectors A and B. The magnetic flux is
&®,, = BAcos wt,

because 6 = wt.

(i) The rate of change of the magnetic flux is obtained by differentiating the
flux with respect to time
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do,, .
= —BAcoswt = —wBAsinwt.
dt dt

(iii)) The induced emf in the loop is obtained by Faraday’s law

dd, .
= — = wBAsinwt.
dt

(iv) The electric current flowing in the loop is

£ wBA .
I = — = ——sinwt.
R R
The torque needed such that the loop rotates with a constant angular
speed is
. . wAB .
T =|IA x B =1IABsinwt = (AB sinwt) R sin wt
wA?B? 2
= ———sin” wt.
R

(v) If the angular speed of the loop is @' = 2w, the induced emf becomes,

&' = w'BAsin 't = 2wBA sin 2wt.
e wxMaxima codes:

($1il1l) phim: B*A*cos (omega*t);

(phim) A*B*cos (omega*t)

(%12) dphim over dt: diff(phim, t);
(dphim over dt) -A*B*omega*sin (omega*t)
(%13) emf: -dphim over dt;

(emf) A*B*omega*sin (omega*t)

(%14) I: emf/R;

(I) (A*B*omega*sin (omega*t)) /R

($15) tau: I*A*B*sin(omega*t);

(tau) (A"2*B"2*omega*sin (omega*t)”~2)/R
($16) omegaprime: 2*omega;

(omegaprime) 2*omega

($17) emfprime: omegaprime*B*A*sin (omegaprime*t);

(emfprime) 2*A*B*omega*sin(2*omega*t)
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Comments on the codes:

(%il)~(%i3) Assign @,,, L8 €.

ms gy o

(%i4)—(%i7) Assignl, t, o', &’
(b) (i) The maximum magnetic flux across the loop is
@ ymax = BA = (0.50 T)(400 x 107* m?) = 2.0 x 1072 Wb.

(i) The maximum induced emf is

Emax = @BA = (10 s71)(0.50 T)(400 x 107* m?) = 2.0 x 107! V.
(i) The maximum torque is
wB?A? (10 57)(0.50 T)2(400 x 10~* m?)?

R 209
=2.0x 107> Nm.

Tmax =

Work done by the torque in a revolution is

2 2
A2B? A2B?
W=/td0=/w sin?0 do = P22
0 0

R R

_ m(10s71)(400 x 1074 m?)?(0.50 T)>
- 200 -

6.3 x 1073 7.

The electrical energy dissipated by the loop in a revolution is

21 /w 21 /w 2 212 2o
A2B A2B
We=/R12dt= / @ sinor dr = 2222
R R
0 0
10 s~1)(400 x 10~ m2)2(0.50 T)2
_ #(1057)(400 x m7)( ) o 63x 107 ],

2.0 Q

The numerical values of work and energy are the same.
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e wxMaxima codes:

($16) fpprintprec:5; ratprint:false; A:400e-4; R:2; omega:10; B:0.5;
(fpprintprec) 5

(ratprint) false

(A) 0.04

(R) 2

(omega) 10

(B) 0.5

($17) phim: B*A*cos (omega*t);

(phim) 0.02*cos (10*t)

(%$18) dphimdt: diff (phim, t);

(dphimdt) -0.2*sin (10*t)

($19) emf: -dphimdt;

(emf) 0.2*sin(10*t)

(%110) I: emf/R;

(I) 0.1*sin(10*t)

($111) torque: I*A*B*sin (omega*t);

(torque) 0.002*sin(10*t) "2

($112) phimmax: B*A;

(phimmax) 0.02

($113) emfmax: omega*B*A;

(emfmax) 0.2

($114) torquemax: omega*B"2*A"2/R;

(torquemax) 0.002

($115) W: integrate (omega*A”2*B"2/R* (sin(theta))~2, theta, 0,
float (2*%pi));

(W) 0.0062832

($116) We: integrate (omega”2*A”2*B"2/R* (sin (omega*t))"~2, t, O,
float (2*%pi) /omega) ;

(We) 0.0062832

Comments on the codes:

(%16) Set floating point print precision to 5, internal rational number
print to false, and assign values of A, R, w, and B.

(%i7)—(%i11) Assign @,,, d®,,/dt, £, I, and T .

(%112)—~(%i114) Calculate D@, max> Emax> and Ty

(%i15) and (%i16) Calculate W = [ @B §in29 4o and W,

R
21 /w 2 A2B2 .
Jo / % sin? wr dt.
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(c) (i) If the loop is rotated about the z-axis, £,qy is 2.0 x 107! V still because the
rate of magnetic flux change is still the same.

(i) If the loop is rotated about the x axis, there is no flux change, thus, the emf
is zero.

(d) We set the values of A, R, w, and B as in part (b), i.e. A = 400 cm?, R=2.0%,
w=10rads™!, B=0.50T, and plot the curves by wxMaxima.

e wxMaxima codes:

($15) fpprintprec:5; A:400e-4; R:2; omega:10; B:0.5;

(fpprintprec) 5
(A) 0.04
R) 2

(

(omega) 10

(B) 0.5

($16) phim: B*A*cos (omega*t);

(phim) 0.02*cos (10*t)

(%17) dphim over dt: diff(phim, t);

(dphim over dt) -0.2*sin(10*t)

(%18) emf: -dphim over dt;

(emf) 0.2*sin(10*t)

(%19) I: emf/R;

(I) 0.1*sin (10*t)

($110) tau: I*A*B*sin (omega*t);

(tau) 0.002*sin(10*t) "2

($111) omegaprime: 2*omega;

(omegaprime) 20

($112) emfprime: omegaprime*B*A*sin (omegaprime*t);

(emfprime) 0.4*sin (20*t)

(%$113) wxplot2d(phim, [t,0,2*%pi/omegal, grid2d, [xlabel,"{/Helvetica-
Italic t} (s)"], [ylabel,"{/Symbol-Italic F} {/Helvetica-Italic m}
(Wb) " 1) ;
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0.02

0.015

0.01

0.005

@y (Wh)
(=1

-0.005

-0.01

-0.015

-0.02 i i i i i
0 01 02 03 04 05 06
t(s)
(%$114) wxplot2d(dphim over dt, [t,0,2*%pi/omegal, grid2d,
[xlabel,"{/Helvetica-Italic t} (s)"], [ylabel,"{/Symbol-Italic
F}_{/Helvetica-Italic m}/{/Helvetica-Italic dt} (Wb/s)"1);

@dt (Whis)

005

01

-0.15 |

0.2 ;
0 0.1 0.2 03 04 05 06

t(s)
(%$115) wxplot2d(emf, [t,0,2*%pi/omegal, grid2d, [xlabel,"{/Helvetica-Italic
t} (s)"], [ylabel,"{/Symbol-Italic e} (V)"1):;

0.2 T T T T T T

0.15
0.1
0.05
0

£ (V)

-0.05
-0.1

-0.15

-02 1 i 1 A
0 0.1 02 03 04 0.5 06
t(s)
(%116) wxplot2d(tau, [t,0,2*%pi/omegal, grid2d, [xlabel,"{/Helvetica-Italic
t} (s)"], [ylabel,"{/Symbol-Italic t} (N m)"]);
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1

0.002 T T T T T T
0.0018
0.0016 -
0.0014 .
0.0012 |- 4
0.001 - -
0.0008 / 4
03 04 05 06

0.0006
0.0004 -
0.0002
0 i
0 0.1 02

T (N m)

t (s)

(%$117) wxplot2d(emfprime, [t,0,2*%pi/omegal, grid2d, [xlabel,"{/Helvetica-

Italic t} (s)"

1, [ylabel,"{/Symbol-Italic e} ' (V)y"1);
04

03

0.2

0.1

v)

o

-0.1

-0.2

-03

-0.4

Comments on the codes:

(%15)

(%i6)—(%i10)
(Bill)
(%i12)
(%i13)
(Bild)
(%il15)
(%i16)
(%il7)

Set floating point print precision to 5, and assign values of A, R, w,
and B.

Assign @, d®,,/dt, €, I, and t.

Assign o’.

Calculate &’.

Plot @, against 7 for 0 < ¢t < 2n/w.

Plot d®,,/dt against ¢ for 0 <t < 2m/w.

Plot £ against ¢ for 0 <t < 2n/w.

Plot 7 against # for 0 < ¢t < 27 /w.

Plot £ against ¢ for 0 <t < 27/w.

Problem 13.11 A deformable conducting loop of 20 cm radius is in a uniform
magnetic field of 2.0 T and connected to a resistor of 1.2 €2, as shown in Fig. 13.12.
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Fig. 13.12 A deformable r—""F"—"""="""/”"7"/”"7”/"7”/"¥7/ "7/ 7/~ |
conducting loop in a uniform
magnetic field, Problem
13.11

The direction of the magnetic field is out of the page. The loop is pulled at two points
as shown so that its area becomes zero in 0.20 s.

(a) Calculate the average induced emf.
(b) What is the electrical current through the resistor? Determine the direction of
the current.

Solution

(a) When the loop is pulled and deformed, the magnetic flux through the loop
changes, and the emf is induced. Initial magnetic flux is

@iy = BA = Brr? = (2.0 T)w(0.20 m?) = 2.5 x 10~ Wb.
The final magnetic flux is zero because the area is zero
D a1 = 0.
By Faraday’s law, average induced emf is, Eq. (13.1),

AP D hipat — Pini —2.5x%x 107!
= _ m:_( final ll):_(o 5x10 Wb):]3v
At At 0.20 s

(b) The induced current through the resistor R is

£ 1.3V
I=—=——==10A.
R 12Q
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The direction of the current is determined as follows. When the loop is pulled,
the magnetic flux through it decreases because the area decreases. By Lenz’s
law, induced current is such that it increases the flux. To increase the flux, the
direction of current is counter clockwise. Thus, the current flows through the
resistor from bottom to top.

e wxMaxima codes:

(%15) fpprintprec:5; r:0.2; B:2; R:1.2; delta t:0.2;
(fpprintprec) 5

(r) 0.2

(B) 2

(R) 1.2

(delta t) 0.2

($17) phiinit: B*float (%pi)*r"2; phifinal:0;
(phiinit) 0.25133

(phifinal) O

(%18) emf: -(phifinal-phiinit)/delta t;
(emf) 1.2566

(%19) I: emf/R;

(I) 1.0472

Comments on the codes:

(%15) Set floating point print precision to 5, and assign values of r, B, R,
and At.
(%i7) Assign values of @, and @ g

(%i18) and (%19) Calculate emf and /.

Problem 13.12 Figure 13.13 shows the cross-section of a long and straight solenoid
of radius R. The magnetic field of the solenoid is increasing at a rate of dB/dt.

(a) What is the rate of change of magnetic flux through the circle of radius r; in
the solenoid? What is the induced electric field at ;? Determine the direction
of the induced electric field.

(b) What is the induced electric field at r,?

(c) Sketch a curve of the induced electric field against distance from the axis of the
solenoid r for 0 < r < 2R.

(d) Determine induced emf in circular paths of radii R/2, R, and 2R.

Solution

(a) For the circle of radius ry, the rate of change of magnetic flux is

dd, dB ,dB
— =A— =7ar;—.

dt dt U dt
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Fig. 13.13 Cross section of
a solenoid, Problem 13.12

Induced electric field E,, (induced non-electrostatic electric field) at r; is
obtained by line integral of the electric field along the circular path of radius ry,
as illustrated in Fig. 13.14, and

56 E,.-ds=E, -2mr.

The integration is equal in magnitude to the induced emf

do,, ,dB
= =7r;—.
dt Vdr
This means that
dB

Ene '27'[7'1 =71r125,

The induced electric field is

iy dB
Ene = = 5
2mr; 2 dt

The direction of the electric field is shown in Fig. 13.14.
(b) For circle of radius r,, the induced electric field at distance r, is calculated the
same way. The rate of change of magnetic flux in a circular path of radius r; is
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Fig. 13.14 Determining
induced electric fields in and
out of the solenoid, Problem
13.12

do,, dB ,dB
=A—=mR"—.
dt dt dt

The line integral of the electric field along the circular path of radius r; is

ngne -ds = E,, - 2mr,.

This means that

’

d®"‘l
£ = % E,. -ds =

dt
giving
dB
E,.-2mr, = TR>—,
dt
and
_ R*dB
T 2y dt

(c) From the results of (a) and (b), the curve of induced electric field E,, against
distance r from the solenoid axis is shown in Fig. 13.15.
(d) Induced emf is calculated using
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Ene rdB
27 2 dt
//
RdB | ___1____ R? dB
2 dt \ | e 55
\ | /
\ I /
|
|
|
l
R r

Fig. 13.15 Curve of the induced electric field against distance from the center of the solenoid,
Problem 13.12

Eszne~ds=En~2nr,

where E,, and r follow the chosen path. For » = R/2,
Forr =R,

or can also be calculated as follows

R* dB R* dB ,dB
E=(——=)@ar)= —— -27R=nR*—.
2r dt 2R dt d
For r = 2R,
R* dB R?> dB ,dB
E=——)Cnr)= — - 27(2R) = mR"—.
2r dt 2(2R) dt dt

Problem 13.13 A long solenoid with a cross-section of 6.0 cm? and 10 turns of wire
per cm, carries a current of 0.25 A. Ten turns of insulated wire is wound around the
solenoid. What is the induced emf in the insulated wire if the current of the solenoid
drops to zero in 0.05 s?
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Solution
The initial magnetic field of the solenoid is

10
0.01

Bini = ponl = (47 x 1077 Wb A™' m 5( )wzsm

=31x107*T.

After 0.05 s, the current and the magnetic field were zero. The induced emf in the
insulated wire is

At(-zjm ZXB B nal — Bmi
E=— = _NA—— = _NAM
At At At
0—31x104T
— 106.0 x 10-4 m?)" x ) 3810 V.
0.05 5

e wxMaxima codes:

(%17) fpprintprec:5; mulO:float (4*%$pi*le-7); n:10/0.01; I:0.25;
delta t:0.05; N:10; A:6e-4;

(fpprintprec) 5

mu0) 1.2566*10"-6
) 1000.0

I) 0.25

delta_t) 0.05

N) 10

A) 6.0*10"-4

%$i8) Binit: muO*n*I;

init) 3.1416*10"-4

$19) emf: -N*A* (0-Binit)/delta t;
emf) 3.7699*10"-5

(
(n
(
(
(
(
(
(B
(
(
Comments on the codes:

(%i7) Set floating point print precision to 5, and assign values of g, n,
I, At, N, and A.
(%i18) and (%i19) Calculate B;,;;and emf.

13.3 Summary

e Faraday’s law states that the induced electromotive force (emf) £ in a loop is
proportional to the rate of change of the magnetic flux of the loop

d¢l‘ﬂ
dt
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Fig. 13.16 A conductor ° ° * i . . . ° . o
moving in a region of
uniform magnetic field, B=30x 10—3 T
Exercise 13.3 . . . . . . . . . .
L] L] L] L] L] L] L] L] L] L]
12ms™
020m | |—>
L] L] L] L] L] L] L] L] L] L]
L] L] L] L] L] °® L] L] L] L] L]
L] L] L] L] L] L] L] L] L] L]

e Motional emf & is induced in a conductor when the conductor of length / moves
with velocity v in a uniform magnetic field B

& = —Blv.

13.4 Exercises

Exercise 13.1 The magnetic field of aregionis B=0.0040i — 0.0055j+ 0.0075k T.
A loop of area 0.024 m? lies flat on the xy plane. What is the magnetic flux that passes
through the loop?

(Answer: 1.8 x 10~* Wb)

Exercise 13.2 A coil with a radius of 1.0 cm has 50 loops of wire on it. It is placed in
amagnetic field B = 0.30 T such that the magnetic flux through the coil is maximum.
The coil is then rotated so that the flux is zero in 0.020 s. Calculate the average emf
induced between the terminals of the coil.

(Answer: 0.24 V)

Exercise 13.3 A conductor of length 0.20 m is moving at a velocity of 12 m s~!

perpendicular to a magnetic field of 3.0 x 10~° T, as shown in Fig. 13.16. The
magnetic field is out of the plane of the paper. Determine the induced emf and its
direction.

(Answer: 7.2 x 1073 V, from top to bottom of the conductor)
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Fig. 13.17 A conductor moving parallel to a current-carrying wire, Exercise 13.4

B=030T

Y

0.80 m

5.0 revolutions per
seconds

Fig. 13.18 A conductor rotating in a region of uniform magnetic field, Exercise 13.5

Exercise 13.4 Conductor AB moves with speed v near a wire carrying current /, as
illustrated in Fig. 13.17. Motional emf is induced in the conductor. Show that the
potential difference between points A and B is

Va—Vp =

wolv (
In
2

rn

ri
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Exercise 13.5 A conductor of length 0.80 m is pivoted at one of its ends and rotated
at 5.0 revolutions per second, as shown in Fig. 13.18. The conductor is in the region
of the uniform magnetic field of 0.30 T out of the plane of the paper. Calculate
the potential difference between the ends of the rod. Which end has higher electric
potential?

(Answer: 3.0V, the pivoted end)



Chapter 14 ®)
Inductance G

Abstract This chapter solves problems on electric inductance—a measure of resis-
tance of a conducting coil to change in current or magnetic flux linkages per unit
current of the coil. Problems on self and mutual inductance, energy in inductor, and
direct current RL circuit are solved. Solutions by analysis and computer calculation
are presented.

14.1 Basic Concepts and Formulae

ey

@

When electric current in a coil changes with time, emf is induced in the coil and
is given by

E=—-L—, 14.1
T (14.1)

where L is inductance of the coil. Inductance is a measure of resistance of a
device to change in current. SI unit for inductance is henry (H).

IH=1VsA™L (14.2)
Inductance of a coil is
N,
L= T (14.3)

where @, is the magnetic flux through the coil, N is the number of turns, and 7
is the current in the coil. This means that inductance is magnetic flux linkages
per unit current.

For an air core solenoid, the self-inductance is

N2A
= ket 2 (14.4)
[
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where N is the number of turns, A is the cross-sectional area, [ is the length of
the solenoid, and o = 47 x 10~ H m~! is the free space permeability.

For a solenoid with core of material with permeability u, the self-inductance
is

_ MNZA _ KmMONzA

L = , 14.5
; ] (14.5)

where K, = u/ is the relative permeability of the core material.
Direct current RL circuit: For resistance R and inductance L connected in series
to a battery of emf &, the current of the circuit increases with time as

I(t) = %(1 — ey, (14.6)

where T = L/R is the time constant of the RL circuit. If the battery is taken out
and the circuit is completed, the current will decrease as

1(t) = %e*’/f. (14.7)

The energy stored in the magnetic field of an inductor carrying current / is

1 2
Un = SLI". (14.8)

The energy density (that is, the energy per unit volume) at a point with magnetic
field B is
BZ

Uy = —. (14.9)
2o

When two coils are near to each other, changing current in the first coil will
induce emf in the second coil. The emf induced in the second coil is

dl;
Ery=—-—M—, 14.10
2 R ( )

where dI | /dt is the rate of change of current in the first coil and M is the mutual
inductance.

When a charged capacitor is connected to an inductor and the circuit is
completed, the charge of the capacitor and the current in the circuit oscillate
with time as follows:

0 = Q,, cos(wt + ¢), (14.11)
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®)

I = i—? = —w Q,, sin(wt + @), (14.12)

where Q,, is the maximum charge of the capacitor, ¢ is phase constant, and

1
0=—, (14.13)
JLC

is the frequency of oscillation. These equations are obtained by solving,

dl 0
L—+ ==0, 14.14
7 + o ( )
or,
142 +2_ (14.15)
dr2 = Cc ‘

The energy in an LC circuit is mutually exchanged from the capacitor to the
inductor and vice versa, but the total energy is constant and it is

1 0% 1
U=Ur+U; = =-= + —LJ>
c+UL 2C+2
L2, 2(r+¢>)+1u2 in(wt + ¢)
=—-—— = n
2Ccos [0) > o SIN (@

10
T 2C
1

=-LI,

, 14.16
2 m ( )

where U¢ and U}, are energies in the capacitor and the inductor, respectively,
and /,,, and Q,, are the maximum current in the circuit and maximum charge in
the capacitor, respectively.

When the charge in the capacitor is Q,,, the current is zero momentarily, and

the total energy is %% All the energy is in the capacitor. When the charge in

the capacitor is zero, the current is a maximum /,,, and the total energy is %Lln%,
All the energy is in the inductor.

For an RLC circuit, charge in the capacitor and current in the circuit decrease
with time similar to a damped harmonic motion.
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14.2 Problems and Solutions

Problem 14.1 A solenoid has cross-sectional area of A, number of turns N, and
length I.

(a) Calculate the self-inductance of the solenoid
(b) Determine the self-inductance if the core of the solenoid is filled with a material
of permeability L.

Solution

(a) The relation between induced emf £ and the rate of change of current dI/dt is,
Eq. (14.1),

dl
E=—-L—,
dt
where L is inductance. By Faraday’s law, the induced emf is the rate of magnetic
flux change,
do,,
E=—
dt
So we write
do,,
L=N|—-I|.
dl

That is, inductance is change of magnetic flux per unit current.
For a solenoid, let the current changes from zero to I and magnetic flux from
zero to @,,. Then, the self-inductance is

®, NBA  N(umnDA N;LMA(N) _ uoN?A
= = C)==7"

L=N =
1 1 1 1 l

(b) If the core of the solenoid is a material with permeability u, the self-inductance
is

_ uN2A

=—

L

Problem 14.2 A 30 cm long solenoid is built by winding 2000 turns of insulated
wire to an iron rod of cross-sectional area 1.5 cm?.

(a) The relative permeability of iron is 600. Calculate the self-inductance of the
solenoid.
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A=1.5cm?
}{m =600

/=30 cm, N=2000 turns

Fig. 14.1 An iron core solenoid, Problem 14.2

(b) If an electric current through the solenoid decreases from 0.60 A to 0.10 A in
0.03 s, what is the emf induced in the solenoid?

Solution

(a) Figure 14.1 shows the iron core solenoid.
Self-inductance of a solenoid is, Eq. (14.4),

_ lesz‘ _ KﬁnltofV2f4

L - b
l l

where N, A, and [ are number of turns, cross-sectional area, and length of the
solenoid, while © and K,, are permeability and relative permeability of iron,
respectively. The self-inductance of the iron core solenoid is

| _ 600@ x 10~7 H/m)(2000)2(1.5 x 10~* m?)

=15H.
0.30 m

4 wxMaxima codes:

i6) fpprintprec:5; 1:0.3; N:2000; A:1.5e-4; Km:600; muO:float (%pi*de-7);
pprintprec) 5
) 0.3

) 2000

) 1.5*10"-4
m) 600

u0) 1.2566*10"-6

17) L: Km*muO*N"*2*A/1;
) 1.508
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Comment on the codes:

(%16) Set floating point print precision to 5, assign values of [, N, A, K,,,, and pg.
(%i7) Calculate self-inductance L.

(b) Average emf induced in the solenoid is, Eq. (14.1),

dI
=L~ =—(15H
£ =05 )<

0.10 A — 0.60 A
e TRV
0.03s )

4 wxMaxima code:

(%12) fpprintprec:5; emf:-1.5*(0.1-0.6)/0.03;
(fpprintprec) 5
(emf) 25.0

Comment on the code:

(%i2) Set floating point print precision to 5 and calculate emf.

Problem 14.3 A coil with resistance of 15 € and inductance of 0.60 H is connected
to a 120 V DC voltage source and a switch. Determine the rate of increase of the
current in the coil,

(a) immediately after the switch is closed.
(b) when the current is 90% of its maximum.
Solution

(a) Figure 14.2 shows the coil, the DC voltage source, and the circuit.
The loop equation of the circuit is

E—L— —iR=0,
dt

Fig. 14.2 A coil (\.Jvith coil
inductance and resistance) [T~~~ ————————————= 1
connected to a voltage source | |
and a switch, Problem 14.3 _m J\/\/\/ :

. I L=0.60H R=15Q 1|

1 A Lo e e 1
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where £ is the emf of the voltage source, L di/dt and iR are potential drops
across L and R, respectively. Both L and R are physical properties of the coil.
Thus, we write

di
E=L— +iR.
dt+l

Immediately after the switch is closed, i is zero. The equation becomes

di
E=L—.
dt

Therefore, the rate of change of electric current in the coil at the instance is

di & 120V .
a_c_ =200A 5.
dt — L 0.60H

(b) Maximum current flows in the circuit some time after the switch is closed. At
the instance, current does not change, that is, di/dt = 0. The equation gives the
maximum current as

imax = — = ——= = 8.0 A.

The rate of increase of current when the current is 90% of its maximum is
calculated as follows:

di
=1L iR
i +i
i
120 V = 0.6 H x é +(0.9 x 8.0 A)(15 Q)
di 20As7!
— = S .
dt

4 wxMaxima codes:

(%¥12) ratprint:false; solve(120=0.6*di dt + 0.9*8*15, di dt);
(ratprint) false
(%02) [di dt=20]

Comments on the codes:

(%i12) Set internal rational number print to false and solve 120 = 0.6 x di/dt + (0.9
x 8 x 15) for di/dt.
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| }
. N =100 turns

Fig. 14.3 An air core toroid, Problem 14.4

Problem 14.4 An air core toroid has 100 turns of wire, cross-sectional area of 10 cm?,
and average length of 0.50 m.

(a) Calculate the self-inductance of the toroid.
(b) If current in the toroid increases from zero to 1.0 A in 0.10 s, what is the
self-induced emf?

Solution

(a) Figure 14.3 shows the air core toroid.
The self-inductance of the toroid is, Eq. (14.4),

_ woN?A (47 x 1077 Hm')(100)2(10 x 10~ m?)
o 0.50 m
=25x 107 H.

L

(b) The self-induced emf is, Eq. (14.1),

dI 1.0A
= L—=-025x107°H)| —)=-25x10"*V.
& - (2.5 x 10 )<0.108> 5% 10

4 wxMaxima codes:

($17) fpprintprec:5; muO:float (4e-7*%pi); N:100; A:10e-4; 1:0.5; dI:1;
dt:0.1;

(fpprintprec) 5
(mu0) 1.2566*10"-6
(N) 100

(A) 0.001

(1) 0.5

(d1) 1

(dt) 0.1

(%$i8) L: muO*N"2*A/1;
(L) 2.5133*107-5
($19) emf: -L*dI/dt;
(

9
emf) -2.5133*10"-4
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Fig. 14.4 A solenoid and
two turns of coil, Problem

14.5 Ni=1000| M>=2

<--=[=10cm -—>

Comments on the codes:

(%iT) Set floating point print precision to 5, assign values of wg, N, A, [, dI,
and dr.
(%i8), (%19) Calculate L and emf.

Problem 14.5 A solenoid of length 10 cm and a radius of 3.0 cm has 1000 turns
of wire. Two turns of coil are wound around the solenoid, as shown in Fig. 14.4.
Calculate

(a) self-inductance of the solenoid.
(b) mutual inductance of the solenoid and the coil.
Solution

(a) Consider a solenoid of length / with N; turns of wire and cross-sectional area
A = 7r?, Fig. 14.4. The magnetic field of the solenoid is

Nii
B— HoiV] ’
l
when current i flows in the solenoid. The magnetic flux of the solenoid is

/LoN]Ai

®, = BA =
/
The magnetic flux linkage of the solenoid with itself is

poN2Ai

Ni®,, =
l

Thus, the self-inductance L of the solenoid is
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magnetic flux linkage MoleA
i L

as in Eq. (14.4). Substituting the numerical values, the self-inductance L of the
solenoid is

_ woN}A (4w x 1077 H m™")(1000)*7(0.030 m)>

I 0.10 m
=3.6 x 1072 H.

L

(b) Now consider a coil of N, turns wound around the solenoid in part (a), as shown
in Fig. 14.4. When current i flows in the solenoid, the magnetic flux linkage of
the coil is

[LQFV1IV214i

Ny, = 1

Thus, the mutual inductance M of the solenoid and the coil is

magnetic flux linkage _ HoN1N, A
i N 1

Substituting the numerical values, the mutual inductance M of the solenoid
and the coil is

v _poNiN2 A (4 x 1077 H m™")(1000)(2)7 (0.030 m)?
- ] - 0.10 m
=7.1x 107 H.

4 wxMaxima codes:

($16) fpprintprec:5; muO:float (4de-7*%pi); 1:0.1; A:float (%$pi*0.03%2);

N1:1000; N2:2;

(fpprintprec) 5

mul) 1.2566*10"-6

) 0.1
0.0028274

) 1000

) 2

7) L: muO*N1"2*A/1;
0.035531

8) M: muO*N1*N2*A/1;
7.1061*10"-5

Comments on the codes:

(%16) Set floating point print precision to 5, assign values of ug, [, A, Ny,
and N,.
(%i7), (%i8) Calculate L and M.
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Problem 14.6 The current in the solenoid in Problem 14.5 increases from zero to
4.0 A in 0.10 s. Calculate

(a) self-induced emf in the solenoid
(b) induced emf in the two-turn coil.

Solution

(a) The self-induced emf in the solenoid is

& LdI (3.6 x 1072 H) 4.0 A 1.4V
= —L—=—(10.0X —_— ] = —1. .
! dt 0.10 s
(b) The induced emf in the two-turn coil is
dl 4.0 A
Ey=-M—=—T1x10°H|— ) =-28x10"V.
dt 0.10 s

4 wxMaxima codes:

($16) fpprintprec:5; mulO:float (4e-7*%pi); 1:0.1; A:float (%pi*0.03"2);
N1:1000; N2:2;

(fpprintprec) 5
(mu0) 1.2566*107°-6

(1) 0.1

(A) 0.0028274

(N1) 1000

(N2) 2

(%$17) L: muO*N1"2*A/1;
(L) 0.035531

(%$18) M: muO*N1*N2*A/1;
(M) 7.1061%107-5
(%110) dI:4; dt:0.1;
(d1) 4

(dt) 0.1

($111) emf 1: -L*dI/dt;
(emf 1) -1.4212

($112) emf 2: -M*dI/dt;
(emf_2) -0.0028424

Comments on the codes:

(%16) Set floating point print precision to 5, assign values of ug, [, A, N1,
N,.

(%i17), (%i8) Calculate L and M.

(%110) Assign dI and dt.

(%il1), (%i12) Calculate £; and &,.

Problem 14.7 Inductance and resistance of a coil are 0.20 H and 3.0 €2, respectively.
The coil is connected to a dc source of 90 V.



390 14 Inductance

Fig. 14.5 A coil (with coil
inductance and resistance) [T ——————————= 1
connected to a voltage source | |
and a switch, Problem 14.7 —:—m\ J\/\/\/_:—
;1 1 L=020H R=3.0Q |
| | .
| E=90V switch

(a) Calculate the rate of current increase in the coil, immediately after the switch
is closed.
(b) What is the current in the coil when the rate of current increase is 100 A s~!?

Solution
The coil, voltage source, and the circuit are shown in Fig. 14.5.

(a) The loop equation of the circuit is

di
E-LE —iR=0,
dt

where £is the emf, L di/dt is the potential drop across L, and iR is the potential
drop across R. This gives

di

E=L—+iR.
dt
Immediately after the switch is closed, that is immediately as the circuit is
completed, the current i is zero. The equation becomes
di

E=L—.
dt

Thus, the rate of current increase in the coil at the moment is

di €& MV
g _c_ =450 As
dt L 020H
(b) The circuit equation is
di
E=L— +iR.
s +1

If the rate of change of electric current is known, current in the circuit can be
calculated. For the problem, the current through the coil is calculated as follows:
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di
E=L—+iR
dt+l

391

90 V = (0.20 H)(100 A s™") +i(3.0 Q)

i =23A.

4 wxMaxima codes:

pprintprec) 5
atprint) false

mf) 90

0.2

3

%$16) di_over dt: emf/L;
i over dt) 450.0

i7) di_over dt: 100;

i over_dt) 100

O O e R

o k-
0 V|

) [1=23.333]

Comments on the codes:

%$15) fpprintprec:5; ratprint:false; emf:90; L:0.2;

) solve(emf = L*di over dt + i*R, 1)$ float(%);

R:3;

(%15) Set floating point print precision to 5, internal rational number print to false,

assign values of £, L, and R.
(%i6) Calculate di/dr.
(%17) Assign di/dt.
(%i9) Solve & = L4 + iR for i.

Problem 14.8 A coil with inductance of 0.60 H carries a current of 5.0 A. Calculate

the energy in the coil.

Solution

The coil is assumed to be a pure inductor and has negligible resistance. Energy in

the magnetic field of the inductor is, Eq. (14.8),

1

1
U, =-LI*= 5(0.60 H)(5.0 A)?> =7.51.

2

4 wxMaxima codes:

($13) fpprintprec:5; L:0.6; I:5;
(fpprintprec) 5

(L) 0.6

(I) 5

($14) Um: 0.5*L*I"2;

(Um) 7.5
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Comments on the codes:

(%13) Set floating point print precision to 5, assign values of L and [.
(%i4) Calculate U,,.

Problem 14.9

(a) A coil has a self-inductance of 0.009 H. Calculate the back emf induced in the
coil when the current in the coil is increasing at a rate of 110 A s~!,
(b) What is the energy in the coil when the current is 6.0 A?

Solution

(a) Induced back emf is
di 1
&= _LZ = —(0.009 H)(110 As™) = —-0.99 V.

(b) Energy in the coil is

1 1
U, = 5L12 = 5(0'009 H)(6.0 A)> = 0.16 .

4 wxMaxima codes:

%13) fpprintprec:5; L:0.009; di over dt:110;

(

(fpprintprec) 5

(L) 0.009

(di_over_dt) 110

(%14) emf: -L*di over dt;
(emf) -0.99

(%15) I:6;

(1) 6

(%$16) Um: O0.5*L*I"2;

(Um) 0.162

Comments on the codes:

(%13) Set floating point print precision to 5, assign values of L and di/dt.
(%i4) Calculate back emf.
(%15), (%16) Assign I and calculate U,,.

Problem 14.10

(a) Show that for an RL circuit of Fig. 14.6, the current and the rate of change of
current as the switch is closed are

&
P — 1— —Rt/L ,
i —R( e )
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Fig. 14.6 An RL circuit, A AN ( U 6 6 \
Problem 14.10

.\ R L
| } -~
| & switch

ﬂ _ ée—Rt/L
dt L ’

In the figure, £ is the emf, R the resistance, L the inductance, and i the electric
current.

(b) For £ =100V,R=5.0€,and L =0.20 H, plot curves of current against time
and rate of change of current against time.
Solution

(a) At any time as the switch is closed, the potential difference across the resistor
is iR and across the inductor is L di/dt. Thus, for the circuit,

di
E=IiR+L—.
IR+ ar
The rate of change of current is
di & R,
— == ——i
dt L L
The equation is written as
di R
—l_ = —dt.
(E/R) —i L

Att =0, i =0, so integration gives

/iL_/’Edt
o E/R)—i Jo L

. R
[-In(E/R-D)]y = [—t] ,
l 0 7 .

—In(E/R —i)+1In(E/R) = %t,
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. R
InE/R —i) —In(€/R) = ——1,

R
In(l — Ri/€) = ~ 1.

R
1— P — —R[/L’
g =e

&
i=—d —e Ry,

This is the equation for current i against time z. Initially the current is zero,
and it increases to a steady value of £/R.
Differentiating the equation with respect to time gives the rate of change of

current di/dt,

di

£
= E(‘fm) (—R/L)
E

L

e~ RIL.

(b) For £ =100V,R =15.0, and L = 0.20 H, the curve of current against time is

i= %(1 — e Rty

100
— ?(1 _ 6—51/0.2)

=20(1—e ) A.

The curve of rate of change of current against time is

ﬂ — Ee—Rt/L
dt L
100
— T 5t/02
0.2
=500 As7L.

Curves of current against time and rate of current change against time are
plotted by wxMaxima.

4 wxMaxima codes:
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i

di_over dt) 500.0%%e” (-25.0%t)

%$i7) wxplot2d(i, [t,0,0.3], grid2d, [xlabel,"{/Helvetica-Italic t} (s)"1,
ylabel,"{/Helvetica-Italic i} (A)"]);

(%14) fpprintprec:5; emf:100; R:5; L:0.2;
(fpprintprec) 5

(emf) 100

(R) 5

(L) 0.2

(%15) i: emf/R* (l-exp (-R*t/L));

(1) 20* (1-%e” (-25.0*t))

($16) di_over dt: emf/L*exp (-R*t/L);
(

(

[

1

1] 0.05 01 0.15 02 025 03
t(s)

(%18) wxplot2d(di_ over dt, [t,0,0.3], gridad, [xlabel,"{/Helvetica-Italic
t} (s)"], [ylabel,"{/Helvetica-Italic di/dt} (A s*{-1})"1);
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500

450 l

400 —\
350 - \

30\

250 - \

dyd (A s

200 -

150 |-

100

50

0 0.05 0.1 0.15 02 0.25 03
t (s)

Comments on the codes:

(%i4) Set floating point print precision to 5, assign values of £, R, and L.
(%i15), (%16) Define i and di/dt.

(%i17) Plot curve of i against f for 0 < < 0.3 s.

(%i8) Plot curve of di/dt against t for 0 <t < 0.3 s.

Alternative solution: For an RL circuit of Fig. 14.6, when the switch is closed, the
circuit equation is

di
8_1R+Ldt' (14.17)
Here, iR is the potential difference across the resistor, L di/dt is the potential difference
across the inductor, and £ is the emf of the cell. The initial condition is, att =0, i
= 0 A. Equation (14.17) is a first-order ordinary differential equation (ODE), with i
as dependent variable and ¢ as independent variable.
To solve the ODE, predefined functions ode2 and ic1 of wxMaxima can be used.
See Solving first-order ordinary differential equation in Appendix A.

4 wxMaxima codes:
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% fpprintprec:5;
fpprintprec) 5
ratprint) false
i4) sol: ode2(emf=i*R + L*'diff (i,
i=%c*%e” (- (R*t) /L) +emf /R
icl(sol, t=0, i=0)$ expand(%);
i=emf/R- (emf*%e” (- (R*t) /L)) /R
i: rhs(%);
emf/R- (emf*%e” (-
di over dt: dlff
overidt) (emf* ~(
emf: 100; R:5
100

ratprint:false;

R
i
(

o o~

(
(
L:

0.2
wxplot2d(i, [t,0,0.31,

abel, "{/Helvetica-Italic i} (A)"])

t),

grid2d, [xlabel, "{/Helvetica-Italic t}

397

i,t)$ expand(%);

(s)"1,

01

(%113)
t} (s

wxplot2d(di_over dt,
)"l

[t,0,0.3],
[ylabel,"{/Helvetica-Italic di/dt}

0.15
t(s)

02

gridad,

025 03

[x1label,
(A s~{-1})

"{/Helvetica-Italic
"])
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500 T T T T T

400 |- .

300 - A

250 |- 7

dyat (As™t)

200 5

150 [ 7

100 |- =}

0 0.05 0.1 0.15 02 0.25 03
t (s)

Comments on the codes:

(%i2)  Set floating point print precision to 5 and internal rational number print to
false.

(%i4) Solve £ =iR + L% and get a general solution.

(%i16)  Set the initial condition and get a particular solution.

(%i7)  Assign the solution to i.

(%i8) Calculate di/dt.

(%il1) Assign values of £, R, and L.

(%i112) Ploti against ¢ for 0 <t <0.3s.

(%i113) Plot di/dt against t for 0 < <0.3s.

Problem 14.11 After the RL circuit of Problem 14.10 attains steady current, the
voltage source is removed and the circuit is completed. Obtain an expression for the
current decay against time and draw the curve.

Solution

When the voltage source is removed and the circuit is completed, £ = 0, and we have

di
E=IiR+L—,
IR+ a7

0 'R—l—Ldi
=1 —.
dt

The equation is written as
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di R
fl = ——dt.
I L

Att =0, i = &/R, and integration gives

[ di R
2 =/——dz,
i L

E/R 0

. R
[nil% = [—Zt] ,
0

i
1n<£/_R> = —RI/L,

&
i = S RIL
R

The expression is an exponential decay of current with time, with an initial current

of £/R. Using numerical values of Problem 14.10, thatis, £ = 100 V, R = 5.0 2, and
L = 0.20 H, one gets

&
_ S RiyL
R
100
Y -st/02

5
=202 A.

A curve of electric current against time is obtained by wxMaxima.

4 wxMaxima codes:

i4) fpprintprec:5; emf:100; R:5; L:0.2;
pprintprec) 5

mf) 100

) 5

) 0.2

i5) 1i: emf/R*exp (-R*t/L);

) 20*%e” (-25.0*t)
i
1

o\UL—'W(Dr—hO\O

-

0\0

6) wxplot2d(i, [t,0,0.3], grid2d, [xlabel,"{/Helvetica-Italic t} (s)"1,

(
(
(
(
(
(
(i
(
[ylabel, "{/Helvetica-Italic i} (B)"]) s
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st 4
B. -
4k -
2F —
0 L 1 — .
0 0.05 0.1 0.15 02 025 03
t {s)

Comments on the codes:

(%i4) Set floating point print precision to 5, assign values of £, R, and L.
(%15), (%16) Assign i and plot i against ¢ for 0 <t < 0.3 s.

Alternative solution: The circuit equation is

di

0=iR+L—,
l+dt

and the initial condition is f = 0's, i = £/R. Here, iR is the potential difference across
the resistor and L di/dt is the potential difference across the inductor. The equation is
a first-order ordinary differential equation (ODE), with i as dependent variable and
t as independent variable.

To solve the ODE, predefined functions ode2 and ic1 of wxMaxima can be used.
See Solving first-order ordinary differential equation in Appendix A.

4 wxMaxima codes:

2) fpprintprec:5; ratprint:false;
printprec) 5

tprint) false

) sol: ode2(0=i*R + L*'diff(i,t), 1i,t)$ expand(%):;
i=%c*%e” (- (R*t) /L)

icl(sol, t=0, i=emf/R)$ expand(%);
i=(emf*%e” (- (R*t) /L)) /R

i: rhs(%);

(emf*%e” (- (R*t) /L)) /R

0) emf: 100; R:5; L:0.2;

) 100

-0 g b

0.2
1) wxplot2d(i, [t,0,0.3], grid2d, [xlabel,"{/Helvetica-Italic t}
"], [ylabel,"{/Helvetica-Italic i} (A)"])
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0 0.05 0.1 0.15 0.2 0.25 03
t (s}

Comments on the codes:

(%i12)  Set floating point print precision to 5 and internal rational number print to
false.

(%i4) Solve 0 =iR + L di/dt and get a general solution.

(%i6)  Set the initial condition and get a particular solution.

(%i7)  Assign the solution to i.

(%i110) Assign values of £, R, and L.

(%i11) Ploti againstsfor0 <t < 0.3s.

14.3 Summary
e Electric current changes in a coil induce an emf £ in the coil itself,

E=—-L—,
dt
where L is the self-inductance of the inductor (coil) and dI/dt is the rate of change
of current through it. By Faraday’s law, the induced emf is also the time rate of
magnetic flux change,

do,,
E=-N——-.
dt
Thus,
L= N|Lm
= 7|

This means that inductance is change of magnetic flux per unit current.
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e For a solenoid, the self-inductance is

/

L=N =
l

®, NBA N(uonl)A _ N;LOIA<N> _ joN?A
I I I T N '

e A change in current dI,/dt in circuit 1 induces an emf &, in circuit 2,

dl
Ery=—M—.
: dt

where M is the mutual inductance between the two circuits.
e The energy U stored in an inductor is

1
U=-LI
2

14.4 Exercises

Exercise 14.1 A solenoid of length 10 cm and cross-sectional area 1.0 cm? has 1000
turns of wire per meter. Calculate the inductance of the solenoid.
(Answer: L = 1.3 x 107 H)

Exercise 14.2 Figure 14.7 shows an RL circuit with resistor R = 5.0 €2, inductor L
=3.0 x 1072 H, and battery of emf £ = 60 V. The switch is closed at r = 0 s, find

(a) the time constant of the circuit
(b) the current in the circuit at r = 3.0 x 1073 s.
(c) the energy stored in the inductor at r = 3.0 x 1073 s.

(Answer: (a) 6.0 x 1073 s; (b) 4.7 A; (c) 0.33J)

Exercise 14.3 An emf of 10 V is induced in a coil when the current in it changes at
the rate of 32 A s~'. What is the inductance of the coil?
(Answer: L =0.31 H)

Fig. 14.7 An RL circuit, [m'\
Exercise 14.2 /\/\/\ﬁ

R=50Q L=30x1072%H

7 - -

E=60V switch
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Exercise 14.4 A current of 3.0 A creates a magnetic flux of 1.4 x 10~* Wb in a coil
of 500 turns. What is the inductance of the coil?
(Answer: L = 0.023 H)

Exercise 14.5 The average emf induced in a circuit is 250 V when the current in the
circuit changes from 24 A to zero in 3.0 x 1073 s. Calculate the self-inductance of
the circuit and the energy stored in the magnetic field.

(Answer: L=0.031H,U =9.0J)



Chapter 15 ®)
Alternating Current Circuit st

Abstract This chapter solves problems on series RLC alternating current circuits.
Inductive and capacitive reactance, impedance, phase angle, power factor, root mean
square current, and average power of the circuits are determined. Solutions by
analysis and computer calculation are presented.

15.1 Basic Concepts and Formulae

ey

(@)

3

In an alternating current (AC) circuit having a voltage generator and a resistor,
electric current is in phase with the voltage. The voltage and the current attain
peak values at the same time. The root mean square current /s and the root
mean square voltage Vs of sinusoidal current and voltage are

Imax

Lms = = 0.707 Inax, (15.1)
V2
Vmax

Vins = = 0.707 Vinax» (15.2)

V2

where I« and V.« are peak (maximum) current and peak (maximum) voltage,
respectively. In.x and Vi, are also called current amplitude and voltage
amplitude, respectively.
In an AC circuit having a voltage generator and an inductor, the current lags
the voltage by 90°. The voltage attains a maximum value a quarter of a period
earlier than the current.
In an AC circuit having a voltage generator and a capacitor, the current leads
the voltage by 90°. The current attains a maximum value a quarter of a period
earlier than the voltage.

(4) 1Inan AC circuit having an inductor and a capacitor, inductive reactance X; and
capacitive reactance X ¢ are defined as,

X, =wL =2nfL, (15.3)
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Fig. 15.1 Alternating R L C
current series RLC circuit | |
O
ac voltage source
1 1
Xe=—=——, (15.4)
wC 2nfC

where f and w are frequency and angular frequency of the AC voltage source,
respectively.

(5) Inan AC series RLC circuit, as shown in Fig. 15.1, a circuit that has a resistor,
an inductor, and a capacitor in series connected to an AC voltage source, the
impedance Z is,

Z =R+ (X, — X¢). (15.5)

The voltage and the current in the circuit differ in phase by phase angle ¢,
where,

tan ¢ = X— (156)

This means that ¢ is the phase angle between the voltage and the current.
Average power of the circuit is,

Paverage = limsVimscOs ¢ = Z Ism cos¢p = IR

rms
1

= ElmemaX cos ¢. (15.7)

This is the power output of the resistor in the series RLC circuit. There is no
loss of energy by the pure inductor and capacitor.
The quantity cos ¢ is called the power factor,

R
Power factor = cos¢p = — = .
Z  JR+(X.—Xc)

(15.8)

The root mean square current is
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X1 —Xc VL —Ve

Y

R VR
(a) (b)

Fig. 15.2 alInan AC series RLC circuit, impedance Z, resistance R, inductive reactance X, capac-
itive reactance X ¢, and phase angle ¢ can be represented by vectors, so do b voltages across the
circuit V, across the resistor Vg, across the inductor V1, and across the capacitor V¢

_ Vrms _ Vrms
Z R+ (X. - Xc)?

(15.9)

(6) Inan AC series RLC circuit, impedance Z, resistance R, inductive reactance X,
capacitive reactance X ¢, and phase angle ¢ can be represented by vectors as
shown in Fig. 15.2a. Similarly, voltages across the circuit V, across the resistor
Vg, across the inductor V, and across the capacitor V¢ can be represented by
vectors as shown in Fig. 15.2b.

(7) An AC series RLC circuit is in resonance when inductive reactance is equal to
capacitive reactance. The current is /s = Vims/R, X1 = X, and the resonant
frequency of the circuit is,

1
wy) = ——. 15.10
"= Jic (15.10)

The current of an AC series RLC circuit is a maximum when angular
frequency of the AC generator is equal to wy, that is, when the angular frequency
of the generator is the same as the resonant frequency.

15.2 Problems and Solutions

Problem 15.1 When an AC voltmeter is connected across the terminals of an AC
source of frequency 50 Hz, the reading is 160 V. Write an equation for the voltage
of the AC source.

Solution

General equation for an AC voltage source is,

V = Vpsin(wt + ¢),



408 15 Alternating Current Circuit

where V| is voltage amplitude, w is angular frequency, and ¢ is phase angle. The
angular frequency is,

w=2rf=2n(50s"")=314rads".

The AC voltmeter measures effective voltage or the root mean square voltage Vs
of the voltage source. The relation between V ;¢ with the voltage amplitude V) is,

Vo = V2 Vims.
This means that,
Vo=+2x 160V =226 V.
The equation for the AC voltage source is

V = 2265sin(314¢ + ¢).

4 wxMaxima codes:

@ &
S

(%1i1) fpprintprec:5;
(fpprintprec) 5

($12) omega: float (2*%pi*50);
(omega) 314.16

($13) VO0: float (sgrt(2)*160) ;
(V0) 226.27

Comments on the codes:

(%il) Set floating point print precision to 5.
(%i12), (%13) Calculate w and V.

Problem 15.2 A 30 2 resistor is connected in series with an AC ammeter A and a
voltage source V = 60 sin(100rr¢). What is the reading of the ammeter?

Solution
The relevant circuit is shown in Fig. 15.3.
The AC voltage source is

V = Vysin(wt) = 60sin(1007¢).

The voltage amplitude or the peak voltage is Vy = 60 V. The rms voltage across
the resistor is,
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Fig. 15.3 A resistor R=300Q
connected to an ammeter and

a voltage source, Problem O W
15.2 u

Vo 60 V
Vims = —= = —— =42 V.
V22
Using Ohm’s law, the rms current is,
Vims 42V
Lims = =——=14A.
R 30 @
This is the reading of the AC ammeter.
4 wxMaxima codes:
($13) fpprintprec:5; V0:60; R:30;
(fpprintprec) 5
(V0) 60
(R) 30
(%14) Vrms: float (V0/sqrt(2));
(Vrms) 42.426
(%$15) Irms: float (Vrms/R);
(Irms) 1.4142
Comments on the codes:
(%i3) Set floating point print precision to 5, assign values of V and R.

(%14), (%15) Calculate Vg and [ ppg.

Problem 15.3 A 50 2 resistor is connected to a 15 V variable frequency voltage
generator. Calculate the current in the resistor when the frequency of the voltage
generator is

(a) 100 Hz.
(b) 100 kHz.

Solution

Figure 15.4 shows the resistor, the voltage generator, and the complete circuit.

(a) For apure resistor, Ohm’s law is obeyed, V = IR. The voltage across the resistor
and the current in it do not depend on frequency of the source. When the
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Fig. 15.4 A resistor
connecter to an AC variable
frequency voltage generator,

15 Alternating Current Circuit

R =500

Problem 15.3

AN
()
-/

Vims = 15 V, variable f

frequency of the voltage generator is f = 100 Hz, the I, of the resistor or

the I, in the circuit is

Iins =

R

s 15V
Vi —5—=O.30A.

(b) When the frequency of the voltage generator is f = 100 kHz, the I, is the

same,

%$id4) Irms: float(Vrms/R);
Irms) 0.3

(%$13) fpprintprec:5; Vrms:15; R:50;
(fpprintprec) 5

(Vrms) 15

(R) 50

(

(

Comments on the codes:

(%i13) Set floating point print precision to 5, assign values of Vs and R.

(%i14) Calculate I ,;.

Problem 15.4 A 2.0 mH inductor is connected to a 15 V variable frequency voltage
generator. Calculate the current in the circuit when the frequency of the voltage

generator is

(a) 100 Hz.
(b) 100 kHz.
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Fig. 15.5 An inductor L =20mH

connector to an AC variable

frequency voltage source, W
Problem 15.4
@

Solution

Figure 15.5 shows the inductor, the variable frequency voltage source, and the
complete circuit.

(a) The inductive reactance of the inductor at f = 100 Hz is
X, =wL =2nfL =27(100s71)(2.0 x 1073 H) = 1.3 Q.

Therefore, the current in the circuit is

rms 1 V
Iims = Vo =5—:12A.
Xr 1.3 Q

4 wxMaxima codes:

4) fpprintprec:5; £:100; L:2e-3; Vrms:15;
printprec) 5)
100

5) XL: float (2*%pi*f*L);
) 1.2566
6) Irms: float (Vrms/XL);
ms) 11.937

Comments on the codes:

(%i4) Set floating point print precision to 5, assign values of f, L, and V .
(%i15), (%i16) Calculate X; and Ips.

(b) Inductive reactance of the inductor at f = 100 kHz is,

X, =wL =2nfL=27(100 x 10° s7)(2.0 x 107 H) = 1.3 x 10° Q.
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The current in the circuit is,

Irms -

4 wxMaxima codes:

X, 13x103Q

£:100e3; L:2e-3;

Vins _ 15V

=12x 1072 A.

Vrms:15;

(%$14) fpprintprec:5;
(fpprintprec) 5

(£) 1.0*%10"5

(L) 0.002

(Vrms) 15

(%$15) XL: float(2*%pi*f*L);
(XL) 1256.6

($16) Irms: float(Vrms/XL);
(Irms) 0.011937

Comments on the codes:

(%14)

Set floating point print precision to 5, assign values of f, L, and V .

(%15), (%16) Calculate X; and [ ;.

Problem 15.5 A 0.30 F capacitor is connected to a 15 V variable frequency voltage
generator. Calculate the current in the circuit when the frequency of the voltage

generator is

(a) 100 Hz.
(b) 100 kHz.

Solution

Figure 15.6 shows the capacitor, the voltage generator, and the complete circuit.

(a) The capacitive reactance of the capacitor at f = 100 Hz is

Fig. 15.6 A capacitor
connected to an AC variable
frequency voltage generator,
Problem 15.5

C=030x10°F
| |
[

(=)
—/

Vims =15V, variable f
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1 1 1

Xe=— = - =53x10° Q.
wC  2nfC  2m(100s71)(0.30 x 10=¢ F)
Thus, the current in the circuit is
V 15V
Irms = 2 __ - = 2.8 x 10_3 A.
Xc 53 x 103 Q
4 wxMaxima codes:
($14) fpprintprec:5; £:100; C:0.3e-6; Vrms:15;
(fpprintprec) 5
(£) 100
(C)  3.0%10~-7
(Vrms) 15
($i5) XC: 1/float (2*%pi*£*C);
(XC) 5305.2
($16) Irms: float (Vrms/XC);
(Irms) 0.0028274
Comments on the codes:
(%i4) Set floating point print precision to 5, assign values of f, C, and V .

(%i15), (%i6) Calculate X ¢ and 1 .

(b) The capacitive reactance of the capacitor at f = 100 kHz is

1 1 1
Xe=— = - =53Q.
wC ~ 27fC ~ 27(100 x 103 s~1)(0.30 x 105 F)

The current in the circuit is,

Viuns 15V
Lims = S — N
Xc 53 x105Q

4 wxMaxima codes:

4) fpprintprec:5; £:100e3; C:0.3e-6; Vrms:15;
printprec) 5
1.0%1075

5) XC: 1/float (2*%pi*f*C);
) 5.3052

6) Irms: float (Vrms/XC) ;
ms) 2.8274
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Fig. 15.7 Alternating R=30Q Xi=20Q Xc=60Q

current series RLC circuit,

Problem 15.6 w { 6 6 6 \ I I

I rms — 2.0 A
©
ac generator
Comments on the codes:
(%i4) Set floating point print precision to 5, assign values of f, C, and V .

(%i15), (%i6) Calculate X ¢ and /.

Problem 15.6 Resistance, inductive reactance, capacitive reactance, and effective
current of an ac series RLC circuit are 30, 20, 60 €2, and 2.0 A, respectively. For the
circuit calculate

(a) impedance.

(b) power factor.

(c) power dissipated by the resistor.

(d) maximum voltages across the resistor, inductor, and capacitor.

Solution

Figure 15.7 is the circuit meant by the question.

(a) The impedance of the circuit is

Z=vVR+ (X, — Xc)2=v/30 Q)2+ (20 2 — 60 2)2 = 50 Q.

(b) The power factor is obtained by calculation of phase angle ¢ followed by
calculation of cosine of the angle,

X, - Xe  20Q-60Q :
ang =~ === =—4/3, ¢=-53

Power factor = cos ¢ = cos(—53°) = 0.6.

The power factor can also be calculated as follows:
R _ 309

Power factor = cos ¢ = 7 = 555 = 0.6.

(c) The power dissipated by the resistor is

P=1>R=(20A)>%30Q) =120 W.

rms
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It can also be calculated as follows:

P =2Z1I> cos¢ = (50 2)(2.0 A)*(0.6) = 120 W.

rms

(d) The maximum voltage across the resistor is calculated as follows:

Vems = ImsR = (2.0 A)(30 Q) =60V,
VR,max = \/EVR.rms = \/5(60 V) =85V.

The maximum voltage across the inductor is calculated as follows:

Vims = Ims X1 = (2.0 A)(20 Q) =40V,
VL,max = ﬁv],rms = \/5(40 V) = 57 V.

The maximum voltage across the capacitor is calculated as follows:

Verms = ImsXc = (2.0 A)(60 ) = 120 V,
VC,max = \/EVC,rms = \/5(120 V) =170 V.

4 wxMaxima codes:

%$114) VRmax: float (sqrt(2)*VRrms) ;
VRmax) 84.853

%$115) VLrms: float (Irms*XL);
VLrms) 40.0

%$116) VLmax: float (sqrt(2)*VLrms) ;
VLmax) 56.569

%117) VCrms: float (Irms*XC);
VCrms) 120.0

%$118) VCmax: float (sqrt (2)*VCrms) ;
VCmax) 169.71

($15) fpprintprec:5; R:30; XL:20; XC:60; Irms:2;
(fpprintprec) 5

(R) 30

(XL) 20

(XC) 60

(Irms) 2

($16) Z: sqgrt(R"2 + (XL-XC)"2);

(Z) 50

($i8) phi: float(atan((XL-XC)/R)); phi_deg: float (phi*180/%pi) ;
(phi) -0.9273

(phi_deq) -53.13

(%¥19) power_ factor: float (cos(phi));
(power factor) 0.6

(%$110) power factorl: float (R/Z);
(power factorl) 0.6

($111) P: float(Irms”2*R);

(P) 120.0

($112) P1l: float(Z*Irms”2*cos(phi));
(P1) 120.0

($113) VRrms: float (Irms*R);

(VRrms) 60.0

(

(

(

(

(

(

(

(

(

(
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Fig. 15.8 Alternating ~ coil

current series RL circuit, R=12Q L=0.14H e
Problem 15.7 -

@

220V, 50 Hz ac generator

Comments on the codes:

(%15) Set floating point print precision to 5, assign values of
R9 XLs XC’ and 1rms~
(%16), (%18), (%19), (%i10) Calculate Z, ¢, and power factors.

(%i11), (%112) Calculate power dissipated.
(%113), (%i14) Calculate Vg s and Vg max.
(%115), (%116) Calculate Vi ims and Vi max.
(%117), (%118) Calculate V¢ s and V¢ max.

Problem 15.7 A coil with 0.14 H inductance and 12 2 resistance is connected to a
220V, 50 Hz AC source. Calculate

(a) current in the coil.

(b) phase angle between voltage and current.
(c) power factor.

(d) loss of electrical power of the coil.

Solution

Figure 15.8 shows the coil connected to the AC source. The coil has both resistance
and inductance.

(a) The inductive reactance of the coil is
X, =L =2nfL =27(50s"1)(0.14 Q) = 44 Q.

The impedance of the circuit is

Z=vVR+ (X1 — Xc)2 =V (12 Q)2+ (44 Q — 0)2 = 46 Q.
Thus, the current in the coil is

Vims 220V
Ims = —= — 22~ —48A.
s Z 46 Q
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(b) The phase angle between voltage and current is

X, —X 4Q-0
¢ = tan~! (LTC> =tan! (W) = 1.3 rad = 75°.

(c) The power factor is
power factor = cos ¢ = cos 75° = 0.26.
(d) The loss of electrical power is

P=1> R=(48A)2%Q)=280W.

rms

4 wxMaxima codes:

p
power factor) 0.26322
%$113) P: float (Irms”2*R);

(%$16) fpprintprec:5; L:0.14; R:12; Vrms:220; £:50; XC:0;
(fpprintprec) 5

(L) 0.14

(R) 12

(Vrms) 220

(f) 50

(XC) 0

(%$17) XL: float (2*%pi*f*L);

(XL) 43.982

(%$18) Z: float(sgrt(R"2 + (XL-XC)"2));
(Z) 45.59

($19) Irms: float (Vrms/Z);

(Irms) 4.8256

(%110) phi: float (atan((XL-XC)/R));
(phi) 1.3044

(%¥111) phi_deg: float (phi*180/%pi) ;
(phi deg) 74.739

(%112) power factor: float(cos(phi));
(

(

(

Comments on the codes:

(%16) Set floating point print precision to 5, assign values of L, R,
Vrisf’ and Xc.

(%i17), (%i18), (%19) Calculate X;, Z, and [ s.

(%110), (%il11) Calculate ¢ and convert the angle to degree.

(%112), (%113) Calculate power factor and loss of electrical power P.

Problem 15.8 An RLC series circuit consists of a 100 2 resistor, a 0.10 H inductor,
a 20 WF capacitor, and a 220 V, 50 Hz AC source. Calculate

(a) current.
(b) power loss.
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Fig. 15.9 Alternating =100 Q L=010H C=20 p.F

current series RLC circuit,
Problem 15.8 /\/W ( 6 6 6 \ | I_

(~)
—/

220V, 50 Hz ac generator

(c) phase angle.
(d) voltages across the resistor, inductor, and capacitor.

Solution

Figure 15.9 shows the RLC circuit with the AC generator.

(a) The inductive and capacitive reactances are
X, =wL =27fL=27(50s"")(0.10 H) =31 ,

1 1 1

— = = =159 Q.
wC 2rnfC 2w (50s71)(20 x 10~ F)

Xc =

The impedance of the circuit is

Z=vVR>+ (X1 — Xc)2 = /(100 Q)2 + 31 Q — 159 Q)2 = 162 Q.

Thus, the current in the circuit is

Vins 220V
Ims = — — 22 © _ 136 A.
Z 1629

(b) The power loss is the one lost by the resistor,

P =12 R = (136 A)*(100 ) = 184 W.

rms

(c) The phase angle is,

X, —Xe 31Q-159Q
an ¢ R 100 @

¢ = —52°.

(d) The voltages across the resistor, inductor, and capacitor are,
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Ve = ImsR = (1.36 A)(100 ) = 136 V.

Vi = ImXr = (1.36 A)31 Q) =43 V.

Ve = ImsXc = (1.36 A)(159 Q) = 216 V.

4 wxMaxima codes:

%$16) fpprintprec:5; R:100; L:0.1; C:20e-6; Vrms:220; £:50;
fpprintprec) 5
R) 100
L) 0.1
C) 2,0=1Q*=5
Vrms) 220
f) 50
%17) XL: float (2*%pi*f*L);
XL) 31.416
%$i8) XC: float(l/(2*%pi*£f*C));
XC) 159.15
%$19) Z: float(sgrt(R"2 + (XL-XC)"2));
Z) 162.23
i10) Irms: float (Vrms/Z);
rms) 1.3561
%$111) P: float (Irms”2*R);

) 183.91
i12) phi: float (atan((XL-XC)/R));
hi) -0.9066

i13) phi deg: float (phi*180/%pi);
hi deg) -51.945

i14) VR: float (Irms*R);

R) 135.61
il5) VL: float (Irms*XL);
L) 42.604

il16) VC: float (Irms*XC);
C) 215.84

Comments on the codes:

(%16) Set floating point print precision to 5, assign values of R,
L,C, Vs, and f.

(%i7), (%18), (%19) Calculate X, X, and Z.

(%110), (%il1) Calculate /s and P.

(%12), (%i13) Calculate ¢ and convert the angle to degree.

(%i14), (%115), (%i116) Calculate Vg, Vy, and V.

Problem 15.9 Calculate the resonant frequency of a circuit consisting of a 40 mH
inductor and a 600 pF capacitor. The resistance of the circuit is negligible.
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Solution

Resonance of an AC circuit that consists of a resistor, an inductor, and a capacitor is
attained when the impedance is a minimum. The impedance is

Z =R+ (X, — Xc)™

The impedance is a minimum when inductive reactance is equal to capacitive
reactance, that is,

X, = Xc¢
1
27Tf0L = W
1
fo=

27JLC '

Thus, the resonant frequency of the circuit is,

1 1

_ — =32x10*s7,
275/LC  27/(40 x 10~3 H)(600 x 10-12 F)

Jo

4 wxMaxima codes:

%$i4) fpprintprec:5; ratprint:false; L:40e-3; C:600e-12;

(

(fpprintprec) 5

(ratprint) false

(L) 0.04

(C) 6.0*10"-10

(%$16) XL: 2*%pi*fO0*L; XC: 1/ (2*%pi*f0*C);
(XL) 0.08*%pi*f0

(XC) (8.3333*1078) / (%pi*£0)

(%$18) solve (XL=XC, f0)$ float (%);
(%08) [f0=-3.2487*10"4,£0=3.2487*10"4]
(%$19) £0: float(l/(2*%pi*sqrt(L*C)));
(£0) 3.2487*10"4

Comments on the codes:

(%i4) Set floating point print precision to 5, internal rational number print to false,
assign values of L and C.

(%16) Calculate X; and X¢.

(%18) Solve XL = XC fOI‘fQ.

(%19) Direct calculation of resonant frequency, f.
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Problem 15.10 The impedance of an RLC series circuit at resonant frequency of
60 Hz is 8.0 2. The impedance of the circuit at frequency 80 Hz is 10 2. Calculate
the inductance and capacitance of the circuit.

Solution

When the circuit is in resonance at f, = 60 Hz, the inductive reactance is equal to
the capacitive reactance. We have

1
X =Xc=2nfol = ,
L c 7 fo 2 foC
1
2 __
fo = 4m2LC’
60s )2 = , 1
(00s)" = e W
and the impedance is the resistance,
Z=vVR*+ (X, —Xc)?=R=80%.
At frequency 80 Hz,
Z=VR+ (X, — Xc)? = 2% = R* + (X, — X¢)%,
1
7> =R+ Q2nfL — ——)*,
+ Qnf 27ch)
(10 )% = 8.0 ) + [27(80 s HL — ;]2 )
' 27(80s~H)C "’

Solving Egs. (1) and (2) for L and C, gives inductance and capacitance as,

L =0.027 H,
C=26x10"*F.

4 wxMaxima codes:

(

(fpprintprec) 5

(ratprint) false

(%$14) solve([6072=1/(4*%pi”2*L*C), 1072=8"2+(2*%pi*80*L-1/(2*%pi*80*C)) 2],
[L,C]1)$ float(%):;

(%04) [[L=-0.027284,C=-2.5789*10"-4], [L=0.027284,C=2.5789*10"-4]]

%$12) fpprintprec:5; ratprint:false;
4
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Comments on the codes:

(%i2) Set floating point print precision to 5 and internal rational number print to
false.
(%i4) Solve Egs. (1) and (2) for L and C.

15.3 Summary

e The voltage amplitude in an AC circuit is
Vinax = Imax Z,

where Z is the impedance of the circuit.
e For a series RLC circuit, the impedance is

Z =R+ (X, — X¢)?,

where X; = wL is inductive reactance and X¢ = 1/(wC) is capacitive reactance.
The phase angle ¢ between the voltage and current is given by

The average power of the circuit is
2 2
Paverage = LinsVimsCOs ¢ = Z Irms cos ¢ = IrmsR
1

= Elmax Vinax COS ¢

The quantity cos ¢ is called the power factor,

R R
power factor = cos¢p = — = .
Z R+ (X, — Xc)?

The root mean square current is

Vrms _ Vrms
Z  JR¥(X.—-Xo)?

Irms -

e The natural angular frequency wy of oscillation of an LC circuit is

1
W) = —.

JvLC
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Fig. 15.10 ‘Alternating R=2000Q L=3.0H C=20x10"F

current series RLC circuit,

Exercise 15.3 /\/\/\/ fmp___' |_

(=)
\ZJ

Vinax = 80V, 210 Hz ac generator

15.4 Exercises

Exercise 15.1 An alternating current of effective value 5.0 A passes through a 25 Q
resistor. Find

(a) the maximum potential difference across the resistor.
(b) the power dissipated by the resistor.

(Answer: (a) Vi = 180 V; (b) P = 620 W)

Exercise 15.2 A series circuit consisting of a 100 €2 resistor, a 0.10 H inductor, and
a 20 pF capacitor is connected across a 220 V rms, 50 Hz power source. Calculate
current in the circuit and the average power loss by the circuit.

(Answer: 1.4 A, 180 W)

Exercise 15.3 Figure 15.10 shows an RLC AC circuit with a 2000 2 resistor, a 3.0 H
inductor, and a 2.0 x 107 F capacitor. The voltage source is of amplitude 80 V and
the frequency is 210 Hz. Determine

(a) phase angle between the voltage and the current.
(b) voltage amplitudes across the resistor, inductor, and capacitor.
(c) average power dissipated by the circuit.

(Answer: (a) 4.8°,(b) Vg =80V, V, =158V, V=151 V;(c) 1.6 W)

Exercise 15.4 A series RLC circuit has a 100 2 resistor, a 2.00 x 10~3 H inductor,
and a 4.00 x 10° F capacitor connected to a 120 V rms AC source at 300 Hz, as
shown in Fig. 15.11. Calculate

(a) impedance of the circuit..

(b) power factor of the circuit.

(c) root mean square current.

(d) average power dissipated by the circuit.

(Answer: (a) 163 ©2; (b) 0.613; (¢) 0.736 A; (d) 54.1 W)



424 15 Alternating Current Circuit

Fig. 15.11 Alternating R=100Q C =4.00 x 10—6 F

current series RLC circuit,
Exercise 15.4 /\/W W |—

L=200x10">H

(=)
N

120 V rms, 300 Hz ac generator

Exercise 15.5 What is the resonant frequency of the RLC circuit of Fig. 15.11 in
Exercise 47 If the AC generator operates at the resonant frequency with the same
120 V rms voltage what are the root mean square current and the average power
dissipated by the circuit?

(Answer: 1780 Hz, 1.20 A, 144 W)



Chapter 16 ®)
Electromagnetic Wave oo e

Abstract This chapter solves problems on plane electromagnetic wave, associated
Poynting vector, and radiation pressure. These include determination of electric and
magnetic field amplitudes and directions, intensity, energy density, and direction of
propagation of the electromagnetic waves. Both solutions by analysis and computer
calculation are presented. An animation of traveling plane electromagnetic wave is
presented.

16.1 Basic Concepts and Formulae

(1) Laws of electromagnetism can be summarized as four equations called
Maxwell’s equations. Table 16.1 lists the four Maxwell’s equations in integral
and differential forms and their meanings.

g0 = 8.85 x 10712 Fm~! is permittivity of free space.

o = 4m x 1077 Hm™! is permeability of free space.

Lorentz force: A particle of charge ¢ moving with a velocity of v in an electric
field E and a magnetic field B experiences a force of

F =gE +qv x B.

(2) Electromagnetic waves have the following properties:

(a) Electric field £ and magnetic field B satisfy the following wave equations,

I’E 9’E 16.)
_— E0o——, .
PP
3*B 3*B
— = W00 16.2
52 = Mofo—s (16.2)
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Table 16.1 Four Maxwell’s equations and their meanings

Integral equation Differential | Meaning
form equation
form
$E-dA=L V-E =L | Gauss’ law for electricity. Electric flux from a volume is
proportional to the charge in the volume
5ﬁ B-dA=0 V-B=0 Gauss’ law for magnetism. Magnetic flux through a closed
surface is zero. There is no magnetic monopole
§B-ds= V xB= Ampere’s circuit law. Magnetic field induced in a closed
ol + 1080 % wod —3_ lqop is proportional to the elect'rlc current and
pogo 2E displacement current enclosed in the loop
$E-ds= —% VxE= Maxwell-Faraday equation. Emf induced in a closed loop
_ szlt? is proportional to the rate of change of magnetic flux
enclosed in the loop

(b) Electromagnetic waves move in vacuum with the speed of light c,

1
/ M0€0

(c) Electric and magnetic fields of an electromagnetic wave are perpendicular
to each other and the fields are perpendicular to the direction of wave
propagation. Electromagnetic waves are transverse waves. Instantaneous
magnitudes of the electric and magnetic fields satisfy

=3x108ms™ !

(16.3)

C =

(16.4)

(d) Electromagnetic waves carry energy. The rate of energy across unit area is
given by Poynting vector S,

1
S=—E x B.
H“o

(16.5)

Direction of S can be determined if directions of E and B are known.
If an electromagnetic wave with average Poynting vector value of
Saverage 18 incident on an area A, the the power received by the area is,

power = Sgyerage X A.

Average Poynting vector value S is the intensity I of the electro-
magnetic wave.
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(e) The energy density of electromagnetic waves is

+ soE* + LB
Uu=u up = — -
E B=3 0 2 1o
B2
= 80E2 = —
Mo
= |2 EB. (16.6)
Ho

(f) Electromagnetic waves carry momentum and exert pressure on incident
surface. For electromagnetic waves with Poynting vector of magnitude
S incident normally to a surface and fully absorbed by the surface, the
radiation pressure p is

(16.7)

S
p=-.
C

(3) Electric and magnetic fields of a plane sinusoidal electromagnetic wave
propagating in the positive x direction (i direction) are written as

E = Eppux cos(kx — o) j, (16.8)
B = By cos(kx — wt) k, (16.9)

where w and k are angular frequency and propagation constant, respectively.
Frequency f, period T, wavelength A, and speed ¢ of the wave are related as,

L=l 16.10
Z=if=z=c (16.10)

(4) Intensity of a plane sinusoidal electromagnetic wave is average value of the
Poynting vector,

Emameax
I = S = -
average 2“0
— Erznax — CBr%mx
2poc 20
E? cB?
= Zrms _ Z7rms (16.11)

[oc o
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(5) The main origin of electromagnetic waves is acceleration or oscillation of
electric charges. For example, radio waves emitted by an antenna are due to
continuous oscillations of electrons (negatively charged particles) in the antenna.

(6) Electromagnetic spectrum consists of waves with wide ranges of frequencies
or wavelengths. These include radio waves, microwaves, infrared, visible light,
ultraviolet, X-rays, and gamma rays. Frequency f and wavelength X of the waves
are related by

c= fh. (16.12)

16.2 Problems and Solutions

Problem 16.1 The frequency of a sinusoidal plane electromagnetic wave is 80 MHz.
The wave travels in the positive x direction. At a point on the x-axis, at an instance,
the maximum value of electric field is 750 N C~! in the y direction.

(a) Calculate the wavelength and period of the wave.
(b) Determine the magnitude and direction of the magnetic field.
(c) Get expressions for the electric and magnetic fields of the wave.

Solution

(a) The wavelength of the electromagnetic wave is, Eq. (16.10),

c 3 x 10 m/s

A=—=—"—""—""-=37m.
7 T80 x 1065 m
The period of the wave is
1 1 _3

(b) The magnitude of the magnetic field is, Eq. (16.4),

Eax 750 N/C 6
Bmax = = =2.5x%x10 T.
c 3 x 108 m/s
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The magnetic field B is in the positive z direction.

(c) The propagation constant k is

The angular frequency w is
w=2rf=27(80x 10%~") =5.0x 103 s7".
The expression for electric field is

E = E, . cos(kx — wt)
=750 cos(1.7x — 5.0 x 10%7).

The expression for magnetic field is

B = B, cos(kx — wt)
=2.5x 107%cos(1.7x — 5.0 x 10%7).

4 wxMaxima codes:

%14) fpprintprec:5; c:3e8; f:80e6; Emax:750;
fpprintprec) 5

c) 3.0*%10"8

£) 8.0%10"7

Emax) 750

m
i5) lambda: c/f;
lambda) 3.75

>i6) T: 1/f;

) 1.25*%10"-8

i7) Bmax: Emax/c;
Bmax) 2.5*10%-6

i8) k: float (2*%pi/lambda);
k) 1.6755
%$19) omega: float (2*%pi*f);
omega) 5.0265*1078

Comments on the codes:

(%i4) Set floating point print precision to 5, assign
values of ¢, f, and E 4.
(%15), (%i6), (%iT), (%i8), (%i9) Calculate A, T, By, k, and w.

Problem 16.2 A radio station emits radio waves of frequency 104.1 MHz. Calculate
the wavelength and the number of wave peaks per second passing through a point
5.0 km away from the station.
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Solution

The wavelength of the radio wave is, Eq. (16.10),

Lo 3x10mfs o
f 104.1 x 106s—1

Number of wave peaks per second passing through a point is the frequency of the
wave that is 104.1 x 10° Hz.

4 wxMaxima codes:

i3) fpprintprec:5; c:3e8; f£:104.1le6;
pprintprec) 5
) 3.0*%10"8

) 1.041*10"8

i4) lambda: c/f;

(%1
(f
(c
(f
(%1
(lambda) 2.8818

Comments on the codes:

(%i3) Set floating point print precision to 5, assign values of ¢ and f.
(%i4) Calculate A.

Problem 16.3 Average power output of an electromagnetic radiation point source
18 Pyverage = 900 W. At a point 3.5 m from the source, calculate

(a) the maximum electric and magnetic fields
(b) the energy density.

Solution

(a) The intensity of an electromagnetic radiation at a distance r from the point
source of power Py, erqge 18

_ Paverage
4mr?

The electromagnetic point wave radiates equally in all directions, and on the
surface of a sphere of radius r the power per unit area is Py crqge/ (47 r?).
The intensity in terms of electric field amplitude of the electromagnetic wave
is (Eq. 16.11),
E2

I __max

2p0c”

The maximum electric field (the electric field amplitude) is calculated as
follows:
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2
Paverage . Emax

4r? T 2uec’
b = (1258 2
e 2mr?
(47 x 1077 N/A2)(3 x 10% m/s)(900 W)\ "/
- < 27(3.5 m)2 )
=66V m™'

The maximum magnetic field (the magnetic field amplitude) is, Eq. (16.4),

Epnax 66 Vm!
Bpax = - m  _22x107T.
c 3 x 108 m/s

(b) The energy density of the electromagnetic wave 3.5 m from the source is,
Eq. (16.6),

_ Bl _ (22x107T)

max

no 4w x 10~7 N/A?

=39x10%Im™3

4 wxMaxima codes:

5) fpprintprec:5; c:3e8; mul:float (4*%pi*le-7); Paverage:900; r:3.5;
fpprlntprec) 5
) 3.0*%10"8
mu0) 1.2566*10"-6
Paverage) 900
3.9
Emax: float (sqrt (muO*c*Paverage/ (2*%pi*r"2)));
Emax) 66.394
7) Bmax: Emax/c;
Bmax) 2.2131%10"-7
8) u: Bmax”"2/mu0;
u) 3.8977*10"-8

(%
(
(c
(
(
(r
(%
(
(%
(
(%
(
Comments on the codes:

(%i15) Set print point precision to 5, assign values of ¢, o,
Paverage, and r.
(%16), (%i17), (%18) Calculate E,,,,x, Biax, and u.

Problem 16.4 The wavelength range of visible light is 390 nm (violet) to 780 nm
(red). Determine the frequency range of visible light.

Solution

Frequencies of violet and red lights are calculated as follows, Eq. (16.12),
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c=Af,
f‘—— C
=
c 3 x 108 m/s
iolet = = =7.7 x 10" Hz,
Foioter = T = % 109 m x z
3 x 108
fag= S 3XAOMS e 0%

Med 780 x 1072 m

Thus, the frequency range of visible light is 3.8 x 10'* Hz to 7.7 x 10'* Hz.

4 wxMaxima codes:

(%12) fpprintprec:5; c:3e8;
(fpprintprec) 5

(c) 3.0%10"8

($13) fviolet: ¢/390e-9;
(fviolet) 7.6923*10714
(%14) fred: c/780e-9;
(fred) 3.8462*10"714

Comments on the codes:

(%i2) Set floating point print precision to 5 and assign value of c.
(%i13), (%i4) Calculate f ;s and f 4.

Problem 16.5 A car moves at a speed of v toward an observer. An electromagnetic
wave of frequency f is incident on the car, reflected from it, and is received by the
observer. The frequency of the wave received is

2v
freceiued = (1 + ?)f

Use the information to solve the following problem.

A 1000 MHzelectromagnetic wave is sent by a stationary observer to a car which
moves toward him. The frequency received by the observer increased by 150 Hz.
Calculate the speed of the car.

Solution

The speed of the car is calculated as follows:

2v
freceived =1+ ? f7

2v

1000 x 10° +150)Hz = (1 + —————
(1000 107 +150) Hz (+3x108m/s

)(1000 x 10° Hz),
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v=225ms"!
=22.5/1000 x 3600 km h™!
=8l kmh™".

4 wxMaxima codes:

o
S

i2) fpprintprec:5; ratprint: false;

fpprintprec) 5

ratprint) false

%$14) solve (1000e6+150=(1+2*v/3e8)*1000e6, v)$ float(%);
%04) [v=22.5]

%i5) km per h: 22.5/1000*3600;

(
(
(
T
It

T

(km_per h) 81.0

Comments on the codes:

(%i2) Set floating point print precision to 5 and internal rational number print to
false.

(%i4) Solve (1000 x 10° + 150) = (1 + 3255)(1000 x 10°) for v.

(%15) Convert speed to km/h.

Problem 16.6 Sunlight with intensity 1000 W m~2 falls on a 10 x 20 m roof.
Calculate,

(a) power received by the roof.

(b) radiation pressure on the roof by assuming the light is completely absorbed by
the roof.

(c) energy received by the roof in one hour.

Solution

(a) The intensity, /, or the average value of Poynting vector, Sqyerage, Of the sunlight
is 1000 W m~2. The power received by the roof is

pOWer = Syyerage X A = (1000 W/m*)(10 x 20) m* = 2.0 x 10° W.

(b) The radiation pressure on the roof is, Eq. (16.7),

Saverage 1000 W/m? e
p= - =33x 10 Nm™
c 3 x 108 m/s

(c) The energy received by the roof in one hour,

energy = power X time = (2.0 x 10° W)(3600s) = 7.2 x 103 J.
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4 wxMaxima codes:

(%14) fpprintprec:5; S:1000; A:10*20; c:3e8;

(fpprintprec) 5
(s) 1000
(n) 200

(c) 3.0*%10"8

(%15) Power: S*A;

(Power) 200000

($16) P: S/c;

(P) 3.3333*10"-6

(%17) Energy: Power*3600;
(Energy) 720000000

Comments on the codes:

(%i4) Set floating point print precision to 5, assign values of S,
A, and c.
(%15), (%i6), (%i7) Calculate power, radiation pressure P, and energy.

Problem 16.7 The average solar energy falling on a surface in unit time and area is
1000 W m~2.

(a) Calculate the energy that falls on a 5.0 m x 5.0 m surface in one hour.

(b) What is the momentum transferred to the surface in one hour?

(c) Ifall the energy is converted to electrical energy, how many bulbs of 100 W can
be lighted?

Solution

(a) The energy U falling on the surface in one hour is

U = intensity x area x time

= (1000 W/m?)(5.0 m x 5.0 m)(3600 s) = 9.0 x 107 J.

(b) The momentum transferred to the surface in one hour is

U 9.0 x 107 J

momentum = — = —————— =0.30kgm s~
¢ 3x10¥m/s
(c) The number of bulbs that can be lighted is
power __ intensity x area _ (1000 W/m?)(5.0 m x 5.0 m) _ 50
power of abulb  power of abulb 100 W N '

4 wxMaxima codes:
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%il) U: 1000*5*5*3600;
U 90000000

2) momentum: U/3e8;
mentum) 0.3

3) 1000*5*5/100;

3) 250

(51
(U)
(%1
(mo
(%1
(%0

o
©

Comment on the codes:

(%il), (%i2), (%i3) Calculate energy U, momentum, and number of bulbs.

Problem 16.8 A 6.0 x 107 Hz plane sinusoidal electromagnetic wave propagates in
free space in the positive x direction. The magnetic field of the wave is in the z-axis
and its amplitude is 5.0 x 10~7 Wb m~2,

(a) Calculate the wavelength.

(b) Determine the electric field of the wave.

(c) Write expressions for the electric and magnetic fields of the wave.
(d) Calculate the Poynting vector and its average value.

Solution
(a) The wavelength of the electromagnetic wave is, Eq. (16.10),

¢ 3x10°m/s

A==
f 6.0x107s7!

=5.0m.

(b) The amplitude of the electric field is, Eq. (16.4),
Ey=cBy=3x10m/s x 5.0 x 1077 Wb/m? = 150 V. m~".

The electric field is in the positive y direction.

(c) General forms of the electric and magnetic fields of a plane sinusoidal
electromagnetic wave are

E = Eycos(kx — wt),
B = Bycos(kx — wt),

where Eq and By are amplitudes of the electric and magnetic fields, while k
and w are propagation constant and angular frequency of the wave, respectively.
The propagation constant and angular frequency are

_271_ 2
A 50m
w=2nf=27x60x10"s' =3.8x10%s7.

=13m',
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The electric and magnetic fields of the electromagnetic wave are

E = Eycos(kx — wt) j = 150cos(1.3x — 3.8 x 10%) j Vm™',
B = Bycos(kx —wt) k =5.0 x 1077 cos(1.3x — 3.8 x 10%) k Wb m 2.

(d) The Poynting vector is, Eq. (16.5),

The

E x B
o
150 cos(1.3x — 3.8 x 1087) j x 5.0 x 10~7 cos(1.3x — 3.8 x 10%1) k
47 x 10~7
= 60cos>(1.3x —3.8 x 10%) i W m™2.

average value of Poynting vector is, Eq. (16.11),

EyBy 150 x 5.0 x 1077 5
Savemge = = =30Wm™~.
2140 47 x 1077

4 wxMaxima codes:

omega) 3.7699*10"8
%110)

%$010)
%$111)

float (E0*BO/mu0) ;
59.683
Saverage: EO0*B0/ (2*mu0) ;

(%$15) fpprintprec:5; c:3e8; f:6e7; B0:5e-7; mul:float (4*%pi*le-7);
(fpprintprec) 5

(c) 3.0*%10"8

(f) 6.0*10"7

(BO) 5.0*10"-7

(mu0) 1.2566*10"-6

($16) lambda: c/f;

(lambda) 5.0

($17) EO: c*BO;

(E0) 150.0

(%18) k: float (2*%pi/lambda) ;
(k) 1.2566

(%19) omega: float (2*%pi*f);
(

(

(

(

(

Saverage) 29.842

Comments on the codes:

(%i5)

Set floating point print precision to 5, assign values
of ¢, f, By, and .

(%i16), (%17), (%i8), (%19), Calculate A, Eg, k, @, and S4erage-

(%ill)

Problem 16.9 The electric fields of a plane electromagnetic wave propagating in
free space are
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E,=E, =0,

E. = 100 sin[87 x 10" (s — ).

X
3 x 108

(a) Calculate the flux density of the wave.

(b) Determine the direction of propagation of the wave.
(c) Write the wave electric field in vector form.

(d) Write the wave magnetic field in vector form.

(e) Calculate Poynting vector of the wave.

Solution
(a) Flux density / of the wave is the average of Poynting vector Sqyerage, Egs. (16.11)
and (16.3),

1 2
I = Saverage = EC8OE0

1
73 x 108 m/s)(8.85 x 10712 F/m) x (100 V/m)?
13Wm™2.

(b) From the expression of E. it is deduced that the wave is propagating in the
positive x direction, that is, the i direction. This is the direction of Poynting
vector S.

(c) The electric field of the wave is

X

T 103)] kVm'.

E = 100 sin[87 x 10" —

(d) The amplitude By of the magnetic field is, Eq. (16.4),

E 100 V/
Bo=0— T 33,107 Wom2.
c 3 x 108 m/s

From the formula S = (1/uo) E x B and the right hand rule for cross
product of two vectors, it is deduced that the direction of B is the negative y
direction or —j direction. We write

:BZIO’

B,
B, = —3.3x 1077 sin|87 x 104(7 — —* Wb m2,
) 3 x 108

B=-33x10" sin|87 x 10™(r — —= jWbm2.
3 x 108
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(e) The Poynting vector is, Eq. (16.5),

_ExB
Ho

_ x 100 sin| 87 x 10"( ¢ s K
T 4x x 1077 3 x 108
% (=33 x 1077) sin| 87 x 107 — —*
3 x 10°

— 27 sin?|87 x 10™{r— —* ) |iwm2
3 x 108

S

e

4 wxMaxima codes:

(%15)
E0:100
fppri

epsil
mu0)

fpprintprec:5; c:3e8; epsilon0:8.85e-12; mul:float (4*%Spi*le-7);
ntprec) 5
3.0%10"8
on0) 8.85*10"-12
1.2566*10%-6
100
I: 0.5*c*epsilon0*E0"2;
13.275
BO: EO/c;
3.3333*107-7
EO0*BO/mu0;
26.526
load ("vect");
"C:/maxima-5.43.0/share/maxima/5.43.0/share/vector/vect.mac"
Evec: [0,0,E0*sin(8*%pi*leld* (t-x/3e8))1;
[0,0,100*sin (8.0*10"14*%pi* (t-3.3333*10"-9*x)) ]
Bvec: [0, -BO*sin(8*%pi*leld* (t-x/3e8)), 0];
[0,-3.3333*10"-7*sin(8.0*10"14*%pi* (t-3.3333*10"-9*x)),0]
Svec: Evec~Bvec/mu0; express(%);
7.9577*1075*%[0,0,100*sin(8.0*%10714*%pi* (t-3.3333*10"-9*x)) ]
.3333*10"-7*sin(8.0*10714*%pi* (t-3.3333*10"-9*x)),0]
[26.526*sin(8.0%10714*%pi* (£t-3.3333*10"-9*x))"2,0,0]

Comments on the codes:

(%15)

Set floating point print precision to 5, assign values of c,
£0, Mo, and Ey.

(%i6), (%i7), (%i8) Calculate I, By, and EyBg/ 1.

(%i9)
(%i10,
(%il3)

Load “vect” package.
(%il1) Assign vectors E and B.
Calculate Poynting vector, S.
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Problem 16.10

(a) Determine the equation for electric field of a 104.1 MHz radio wave of propa-
gating in the positive x direction. Root mean square value of the electric field is
3.0mVm!.

(b) What is the equation of magnetic field of the radio wave?

Solution

(a) Assume the equations for the electric fields are,

The electric field amplitude E( and angular frequency w are,

Eo=2E;m; =+v/23.0mV/m) =42mV/m=42x 10 Vm™',
w=27f =2m(104.1 x 10°) = 6.5 x 108 s7.

The equations for the electric field of the radio wave are

E, =42 %107 cos|6.5x 105( 71— —— )| v,
3 x 108

E=42x103 cos|6.5 x 105(r — — jvm.
3% 10°

(b) The amplitude of the magnetic field of the radio wave is, Eq. (16.4),

Ey  42x107 V/m

= = =14x 10 Wbm™2.
c 3 x 108 m/s

By =
The equations of the magnetic field of the radio wave are,

By = By =0,

b= oot 2]

—14x108cos|65x 108(1 — ——— )| Wb m~2,
3 x 108

B=14x108cos|65x 108(r — —> k Wb m—2.
3 x 108

4 wxMaxima codes:
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omega) 6.5408*10"8
%i7) BO: EO/c;
BO) 1.4142*10~-8

(%14) fpprintprec:5; £:104.1e6; c:3e8; Erms:3;
(fpprintprec) 5

(f) 1.041%1078

(c) 3.0*%10"8

(Erms) 3

($15) EO: float (sqrt(2)*Erms);
(E0) 4.2426

($16) omega: float (2*%pi*f);

(

(

(

Comments on the codes:

(%i4) Set floating point print precision to 5, assign values of f, ¢, and
Ermx-
(%i15), (%i16), (%i7) Calculate Ey, w, and By.

Problem 16.11 A plane sinusoidal electromagnetic wave propagates in the positive
x direction. The electric and magnetic fields of the wave are

E =E,.. costkx —wt),
B = B4 cos(kx — wt),

where w and k are angular frequency and propagation constant, respectively.
Frequency f, wavelength X, and speed c of the wave are related as

w—kf—
= =c.

Sketch the wave at time ¢ = 0.
Solution

Figure 16.1 shows the sketch of the wave. This is a snap shot of the wave at time ¢
=0.

Fig. 16.1 Problem 16.11
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The wave moves in the positive x direction with speed c. The electric field E is in
the y-axis and the magnetic field B is in the z-axis. Directions of the fields satisfy

1
S=—ExB
H“o

and the right hand rule of cross product of two vectors.
The electric field is

E =E,, costkx —wt) j
The magnetic field is,

B = B, . costkx —wt) k
The Poynting vector is

1 Emax Bmax

S=—E x B="22""" o8’ (kx — wt) i.
Mo o

4 The following wxMaxima codes give an animation of a travelling electromagnetic
wave:

(%11) with slider draw3d(

d, makelist(i,i,0,5,0.5),

axis 3d=false,

zrange=[-1,1.3],

yrange=[-1.3,1],

color=blue,nticks=50,parametric(x,0,cos (x-d),x

color=red,nticks=50,parametric( y, -cos(y-d),0,

color=black,parametric(0,y,0,y,-1,1),

color=black,head length=0.5,head angle=15,vector([0,0,0], [0,-1,0]),

color=grey,parametric (5*%pi,vy,0,y,-1,1),

color=black,parametric(0,0,z,z,-1,1),

color=black,head_length=0.5,head_angle=15,vector([0,0,0], [0,0,17]),

color=grey,parametric(5*%pi,0,2z,2,-1,1),

color=black,head length=0.5,head angle=15,vector([0,0,0], [19,0,0]),

color=black,

label (["{/Helvetica-Italic y}", -0.9 ,0,1.2])

label (["{/Helvetica-Italic-Bold E}", -1.8 ,0,

label (["{/Helvetica-Italic z}", 1.5 ,-1,-0.1]
7

( 0.81),

( )
label (["{/Helvetica-Italic-Bold B}",-1.5,-0.

(

(

,0.11),

label (["{/Helvetica-Italic x}", 20, 0, 0]),
label (["{/Helvetica-Italic-Bold S}", 18,0,-0.21) );:

Comments on the codes:

To run the animation, copy the codes to the wxMaxima command window; press
<shift> and <enter> keys simultaneously to run the codes; right click the graphic
that appears and choose Start Animation.
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16.3 Summary

e The four Maxwell’s equations and the Lorentz force law encompass the major
laws of electricity and magnetism.

e The origin of electromagnetic waves is acceleration, deceleration, or oscillation
of electric charges.

e For plane electromagnetic waves, the directions of the electric and magnetic fields
of the wave, and the direction of the wave propagation, are all mutually perpen-
dicular. The electromagnetic wave is a transverse wave of oscillating electric and
magnetic fields.

e The speed of the electromagnetic wave c is related to the electric field E and
magnetic field B as

1
v/ H0€0 '

e The wavelength A, frequency f, and speed ¢ of an electromagnetic wave is related
as

E
C = — =
B

c=Af.

e The rate that electromagnetic energy passes through a unit area is given by
Poynting’s vector S

1
S=—E x B.
o

¢ Intensity of a plane sinusoidal electromagnetic wave is the average value of the
Poynting vector

Emax Bmax
I = Saverage - Z—MO
Er%mx — CB;%mx
2upc 2u0
Erzms _ CBEmA
Hoc Mo

e For electromagnetic waves with Poynting vector § incident normally to a surface
and fully absorbed by the surface, the radiation pressure p is

S
p=-.
C
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16.4 Exercises

Exercise 16.1 A 60.0 W light bulb radiates light uniformly in all direction. Calculate
the average intensity, rms value of the electric field, and rms value of magnetic field
at a distance 0.400 m from the bulb.

(Answer: I =298 Wm™2, E,,; = 106 Vm~!, B,,,, =3.54 x 1077 T)

Exercise 16.2 The amplitude of electric field of a plane electromagnetic wave is
100 V m~!. What is the intensity of the wave?
(Answer: 13 W m~?)

Exercise 16.3 Write the equations for the electric and magnetic fields of a plane
radio wave from a 88.9 MHz radio station. The wave is traveling in the positive x

direction and the rms electric field is 3.0 x 107> Vm~'.
(Answer: E =42 x 1072 sin (1.9x — 5.6 x 10%)j Vm™',

B=14x10"" sin(1.9x — 5.6 x 103)k T)

Exercise 16.4 The electric field component E of a plane electromagnetic wave
travelling in the positive z direction is given by

E =100 sin (9.4 x 10°%2 —2.8 x 10°)i Vm™.

(a) Determine the speed, frequency, wavelength, period, electric field amplitude.
(b) Write an expression for the magnetic field component B of the electromagnetic
wave.

(Answer: (a) 3.0 x 108ms™', 4.5 x 10" Hz, 6.7 x 107" m,
22 x 1075, 100 Vm™;
(b) B=3.3x 1077 sin (9.4 x 10%2 — 2.8 x 10°)j T)

Exercise 16.5 Sunlight with energy flux of 1000 W m~2 incidents normally on a
mirror of area 0.30 m?.

(a) What is the energy delivered in one minute?
(b) Calculate the radiation pressure on the mirror.

(Answer: (a) 1.8 x 10*J (b) 6.7 x 107* N m™?)



Chapter 17 ®)
Light Phenomena i

Abstract This chapter solves problems on geometrical optics. These include
problems on light reflection, refraction, total internal reflection, dispersion, and
polarization. Problems are solved analytically and by computer calculation.

17.1 Basic Concepts and Formulae

ey

(@)

3)

Lights are electromagnetic waves. Speed of light, ¢, in vacuum is,

1
A/ M0EQ

where g9 = 8.85 x 107! Fm~! is permittivity of free space and o = 41 x
107 H m~! is permeability of free space. Electric and magnetic fields of a
light wave are perpendicular to each other and the fields are perpendicular to
direction of light propagation. Light waves are transverse waves.

The frequency of light is in the range of 4.0 x 10'* Hz (red) to 7.5 x 10'* Hz
(violet). This corresponds to wavelength in the range of 7.5 x 10~7 m (red) to
4.0 x 1077 m (violet).

In geometrical optics, light travels in a medium in a straight line called ray.
The ray model of light describes the path of light as straight lines. Geometrical
optics deals with the ray aspect of light.

Law of reflection states that angle of incident 6; is equal to angle of reflection
0,. Incident ray, reflected ray, and normal to the reflecting surface lie in the
same plane, as shown in Figure 17.1.

c= =3x 108 ms™!,

(4) Law of refraction or Snell’s law states that
ni sin0; = n, sin 6, (17.1)
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Fig. 17.1 Law of reflection,
angle of incident is equal to G 1 6.
angle of reflection |

Fig. 17.2 Snell’s law or law
of refraction, ny sin 01 = ny 91 I

sin 6,

®)

(6)

(7

where 0, and 6, are angles of incidence and refraction, while n; and n, are
indices of refraction of first and second media, respectively. Incident ray,
refracted ray, and normal to the refracting surface lie in the same plane, as
shown in Figure 17.2.

Index of refraction (refractive index) of a medium is

n=2<, (17.2)
v

where c is speed of light in vacuum and v is speed of light in the medium.
Also, index of refraction is

n=—, (17.3)

n

where A is wavelength of light in vacuum and A, is wavelength of light in the
medium.

Huygen’s principle states that every point on the wave front is a point wave
source producing a wavelet. At a later time, the wave front is a surface tangent
to the wavelets.

Total internal reflection can occur when light travels from a medium with
higher index of refraction to another with a lower one. The minimum incident
angle, 6., for the total internal reflection is given by

sinf, = 2. (n, > ny) (17.4)
nj



17.1

Fig. 17.3 Total internal
reflection occurs when angle
of incident 6, is larger than
critical angle 6.. Angle of
incident 0; is equal to angle
of reflection 6,

®)

&)

(10)

an

12)
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where n; and n; are indices of refraction of light in medium 1 and 2, respec-
tively, as shown in Figure 17.3. The incident and reflected lights are both in
medium 1. The angle of incident is larger than 6, for the total internal reflection
to occur.

Dispersion is spreading of white light into spectrum of wavelengths. Rainbows
are produced by a refraction, reflection, and dispersion of sunlight into colors
by water droplets in the air.

Polarization is the attribute that wave oscillations have a definite direction rela-
tive to the direction of propagation of the wave. The direction of polarization
is defined as the direction parallel to the electric field of the electromagnetic
wave.

Un-polarized light can be polarized by four processes: (a) selective absorption,
(b) reflection, (c) double refraction, and (d) dispersion.

When a polarized light of intensity /y is incident to a polarizer film, the intensity
of light, 7, that passes the film is

I = Iycos® 6, (17.5)

where 6 is the angle between the polarizer transmission axis and the electric
field vector of incident light.

A light reflected from a dielectric material, for example glass, is partially
polarized. However, the reflected light is completely polarized if the incident
angle is such that the angle between the reflected and the refracted lights is
90°. The incident angle is called the polarizing angle, 6p, and,

n =tan6bp, (17.6)

where n is the index of refraction of the medium. The equation represents the
Brewster’s law. In other words, Brewster’s law states that reflected light is
completely polarized at the angle of reflection, 6 p, known as Brewster’s angle,
as illustrated in Figure 17.4.
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Fig. 17.4 Brewster’s law, incident Completely polarized
n=tan0p unpolarized light reflected light

17.2 Problems and Solutions

Problem 17.1 A yellow light beam of wavelength 5890 A travels in air, water, glass,
and air, as shown in Fig. 17.5.

(a) Calculate angles 65, 03, and 64 if the incident angle is 40° and refractive indices
of air, water, and glass are 1.00, 1.33, and 1.52, respectively.
(b) What are wavelength and speed of the yellow light in water and glass?

Solution

(a) UsingSnell’s law (Eq. 17.1) at the air—water interface,
Ngir SIN40° = nygrer SN 65, 17.7)
giving,

Fig. 17.5 A beam of light
undergoing multiple 40°
refractions, Problem 17.1

air

water

glass

()
air
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1.00 x sin40° = 1.33 x sin 6,
0, = 28.9°.

At the water—glass interface,

Ruater SIN 0y = Nglass sin 63,
1.33 x sin28.9° = 1.52 x sin 6
03 = 25.0°. (17.8)

At the glass—air interface,

Nglass sin 03 = Ngijr sin 94,
1.52 x sin25° = 1.00 x sin 0,
6, = 40.0°. (17.9)

4 wxMaxima codes:

(%15) fpprintprec:5; ratprint:false; n_air:1; n_water:1.33; n_glass:1.52;

(fpprintprec) 5)
(ratprint) false
(n_air) 1
(n_water) 1.33
(n_glass) 1.52

%$i7) solve(niair*sin(40*%pi/180):niwater*sin(thetaZ), theta2)$ float(%):;
solve: using arc-trig functions to get a solution.
Some solutions will be lost.

(%07) [theta2=0.50442]

%i8) theta2: rhs(%[1]);

(theta2) 0.50442

%19) theta2 deg: float(theta2*180/%pi);

(theta2 deg) 28.901

%i1l) solve(n_water*sin(theta2)=n_glass*sin(theta3), theta3)$ float (%):;
solve: using arc-trig functions to get a solution.
Some solutions will be lost.

(%011) [theta3=0.43663]

%$112) theta3: rhs(%[1]);

(theta3) 0.43663

($113) theta3_deg: float (theta3*180/%pi);

(theta3_deg) 25.017

(%$115) solve(n_glass*sin(theta3)=n_air*sin(thetad), thetad)$ float(%);
solve: using arc-trig functions to get a solution.
Some solutions will be lost.

(%$015) [theta4=0.69813]

%i116) thetad: rhs(%[11):;

(theta4) 0.69813

%117) theta4d_deg: float (thetad4*180/%pi);

(thetad4_deg) 40.0
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Comments on the codes:

(%15) Set floating point print precision to 5, internal rational
number print to false, assign values of 14, Nyarer, aNd Ngjggs.

(%i17), (%i8) (%19) Solve Eq. (17.7) for 6,, assign value of 6,, convert 6, to
degree.

(%il1), (%112) (%i13) Solve Eq. (17.8) for 03, assign value of 63, convert 03 to
degree.

(%115), (%i116) (%il7) Solve Eq. (17.9) for 64, assign value of 84, convert 6, to
degree.

(b) The wavelength and speed of yellow light in water are (Egs. 17.3 and 17.2),

A 5890 A o
)\water = = = 4429 A,
Nyater 1.33
c 3 x 103 m/s g .
Vwater = = =226 x10°ms .
Nwater 1.33

The wavelength and speed of yellow light in glass are,

Aetass = — —5890A—3875A
glass — Mglass = 152 = N
3 x 108
Uglass = < = X m/s =197 x 103 ms~.
Nglass 1.52

4 wxMaxima codes:

(%15) fpprintprec:5; lambda:5890; n_water:1.33; n_glass:1.52; c:3e8;

(fpprintprec) 5)
(lambda) 5890
(n_water) 1.33
(n_glass) 1.52

(c) 3.0%10"8

(%17) lambda water: lambda/n_water; v_water: c/n_water;
(lambda_water) 4428.6

(v_water) 2.2556*10"8

(%19) lambda_glass: lambda/n_glass; v_glass: c/n_glass;
(lambda_glass) 3875.0

(v_glass) 1.9737*10"8
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Comments on the codes:

(%i15) Set floating point print precision to 5, assign values of A, Myarer, Mgiass, and c.
(%i17) Calculate Ao and vygper-
(%19) Calculate Agjaer and Vg

Problem 17.2 A fish swims at a depth of 1.0 m in water. What is the apparent depth
as seen from above? Refractive index of water is 1.33.

Solution
Figure 17.6 shows a refracted ray from the fish to the observer.
Using the law of refraction or Snell’s law (Eq. 17.1), we write,
Nyater SIN O] = gy SiN 0y,
The angles 6, and 0, are small so that sin 81 &~ 6 = x/d and sin 6, ~ 6, ~ x/I.
We write,

X X

Nwater d = nair7~
The apparent depth is

i 1.00
1=l g 2 1.0m=0.75m.
Nwater 1.33

This also means that

Fig. 17.6 Refraction of light
ray, Problem 17.2




452 17 Light Phenomena

Nuater depth
ngir  apparent depth’

4 wxMaxima codes:

(%15) fpprintprec:5; ratprint:false; n water:1.33; n_air:1; d:1;
(fpprintprec) 5

(ratprint) false
(n_water) 1.33
(n_air) 1

(d) 1

($17) solve(n _water/d = n_air/1l, 1)s$ float(%);
($07) [1=0.75188]

Comments on the codes:

(%15) Set floating point print precision to 5, internal rational number print to false,
assign values of ny,4zer, Hair, and d.
(%i7) Solve nyurer/d = ngy;r /1 for L.

Problem 17.3 Calculate the critical angle of diamond. Indices of refraction of
diamond and air are 2.42 and 1.00, respectively.

Solution

Figure 17.7 shows the critical angle of diamond.
UsingSnell’s law (Eq. 17.1),

Ndiamond sin ediamond = Nair sin eair-
At critical angle,

Niamond SN Ocritical = Nair SIN90°,
2.42 x $inOpisicqr = 1.00 x 8in 90°,
o
ecritical =24.4°.

Fig. 17.7 Critical angle, |
Problem 17.3 |
i_| air

I
L

| diamond
!
|

|
Ocritical
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Total internal reflection occurs if angle of incident is greater than 24.4°.

4 wxMaxima codes:

(%¥14) fpprintprec:5; ratprint:false; n_diamond:2.42; n_air:1;
(fpprintprec) 5

(ratprint) false
(n_diamond) 2.42
(n_air) 1

(%16) solve(n_diamond*sin(theta critical)=n_air*sin(90/180*%pi),
theta_critical)$ float(%);

solve: using arc-trig functions to get a solution.

Some solutions will be lost.

(%06) [theta critical=0.42599]

(%17) theta_critical: rhs(%[1]);

(theta_ critical) 0.42599

(%18) theta_critical_deg: float(theta_critical*lSO/%pi);
(theta_critical_deg) 24.407

Comments on the codes:

(%i4) Set floating point print precision to 5, internal rational number print
to false, assign values of ngiumong and ng;,.
(%16) Solve Ndiamond X sin chitical = Nair X sin 90° for chitical'

(%i17), (%18) Assign value of 6., and convert the angle to degree.

Problem 17.4 Figure 17.8 shows an observer seeing the bottom edge of a cylindrical
tumbler. The diameter of the tumbler is 5.0 cm. When water with refraction index
of 1.33 completely fills the tumbler, the observer can see the center of bottom of the
tumbler P. Calculate the height of the tumbler 4.

Solution

Figure 17.9 shows a light ray from the center of the bottom of the tumbler P being

refracted in water and air to the observer. A ray from the bottom edge of the tumbler

straight to the observer when there is no water in the tumbler is shown as well.
Using Snell’s law (Eq. 17.1),

Nwater SN Oyqarer = Ngjr SIN O,
1.33 x sin Oy4rer = 1.00 X sin6,;,,

2. .
133 x 5 cm _ 5.0 cm

V2 +25em?  Vh?+ (5.0 cm)?
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Fig. 17.8 Seeing the bottom
edge of a cylindrical tumbler,
Problem 17.4

/

A
|
|
|

hl
|
|
|
V.
Fig. 17.9 Seeing the center
of bottom of the tumbler P,
Problem 17.4
A
|
|
|
hl
|
|
|
\I/

Squaring the last equation and solving for & give the height of the glass,

) (2.5 cm)? (5.0 cm)?
1.33% x = ,
h2+(25cm)? k24 (5.0 cm)?
h =2.9cm.

4 wxMaxima codes:

(%12) fpprintprec:5; ratprint:false;

(fpprintprec) 5

(ratprint) false

(%1i4) solve(1.3372%2.5"2/(h%2 + 2.5%2) = 5%2/(h"2 + 572), h)$ float(%);
(%04) [h=-2.9353,h=2.9353]
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Fig. 17.10 Seeing a coin in
water, Problem 17.5

<————=—>

|
I
I
|
|
|
4
|
|
|
|
|

Comments on the codes:

(%i2) Set floating point print precision to 5 and internal rational number print to

false.
(%i4) Solve 1.33% x 2.5%/(h?> 4 2.5%) = 5% /(h*> + 5?) for h.

Problem 17.5 A coin is at the bottom of a water pool of 2.0 m deep. Calculate the
apparent depth of the coin as seen from above. Index of refraction of water is 1.33.

Solution

Figure 17.10 shows the coin at the bottom of the pool and the refracted ray from the
coin to the observer.
Using Snell’s law (Eq. 17.1), we have,

Nyater SIN O = Ngj SiN 0.

Angles 6 and 0, are small so that sin 6, ~ 6 ~ x/d and sin 0, ~ 6, ~ x/d spparen: -
Here, d and dpparen: are the depth and apparent depth of the coin, respectively. The
equation becomes

X X
Nwater 5 = Nair
d dapparent

Therefore, the apparent depth of the coin is

Nair 1
dypparens = ——d = —— (2. =1. .
apparent = A= T BOm =15m
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4 wxMaxima codes:

(%¥i4) fpprintprec:5; n_air:1; n_water:1.33; d:2;

(fpprintprec) 5)
(n_air) 1
(n_water) 1.33

(d) 2

($15) d_apparent: n_air/n_water*d;
(d_apparent) 1.5038

Comments on the codes:

(%i4) Set floating point print precision to 5, assign values of 1y, f,aer, and d.
(%i15) Calculate dgpparen: -

Problem 17.6 The wavelength of a red laser light in air is 632.8 nm.

(a) Calculate the frequency of the laser light.
(b) Determine the wavelength of the laser light in glass of refractive index 1.50.
(c) What is the speed of the laser light in the glass?

Solution

(a) The frequency of the laser light is

c 3 x 10® m/s
= =_"" " "7 _474x10%s.
fo= T 6328 x 10 m s

(b) The wavelength of the laser light in glass is calculated as follows (Eq. 17.3),

Ao
Nglass = s
¢ )Lglass
A 632.8 x 10" m
)‘glass = l’l 0 = 150 =422 x 107° m.
glass .

(c) The speed of the laser light in glass is calculated as follows (Eq. 17.2),

C
Ngy, =
glass s
Vglass
c 3 x 108 m/s g 4
Vglass = = =2.00x10°ms .

Mglass 1.50
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4 wxMaxima codes:

(%14) fpprintprec:5; c:3e8; lambda0:632.8e-9; n_glass:1.5;

(fpprintprec) 5)

(c) 3.0*10"8
(lambda0) 6.328*10"-7
(n_glass) 1.5

(%15) f0: c/lambdaO;

(£0) 4.7408*10"14

($16) lambda_glass: lambdaO/n_glass;
(lambda_glass) 4.2187*10"-7

(%17) v_glass: c/n_glass;

(v_glass) 2.0*1078

Comments on the codes:

(%i4) Set floating point print precision to 5, assign values of c, Ao,

and 7y
(%15), (%16), (%i7) Calculate fo, Agiass, and Vgjqgs.

Problem 17.7 A light beam of wavelength 550 nm is incident at 40° to glass and is
refracted by 25°. Calculate the index of refraction of the glass and the wavelength of
light in it.

Solution

Figure 17.11 shows the light beam traveling the air and the glass.
Using Snell’s law (Eq. 17.1), the index of refraction of the glass is calculated as
follows:

Ngjr SIN eair = Nglass SM Ggla‘ma

Ngir SIN Oy, 1.00 x sin40°
Nglass = . = N =1.52.
Sin Ogjqss sin 25°

The wavelength of light in the glass is (Eq. 17.3),

hair 550 nm

Aglass = = —— =362 nm.
Rglass 1.52

Fig. 17.11 Refraction of
light, Problem 17.7 40°

air

D\, 25° glass



458 17

4 wxMaxima codes:

($15) fpprintprec:5; theta air:float (40*%pi/180);
theta_glass:float (25*%pi/180); n_air:1; lambda_air:550;
(fpprintprec) 5)

(theta_air) 0.69813

(theta_glass) 0.43633

(n_air) 1

(lambda_air) 550

(%¥16) n_glass: niair*sin(thetaiair)/sin(thetaiglass);
(n_glass) 1.521

($17) lambda_glass: lambda_air/n_glass;
(lambda_glass) 361.61

Comments on the codes:

Light Phenomena

(%i15) Set floating point print precision to 5, assign values of 04, 0 giass, Nair

and A,
(%16), (%7) Calculate ngae and Agrgs;.

Problem 17.8 A beam of light of wavelength 590 nm is incident at 30° to water.

The index of refraction of water is 1.33. Calculate

(a) the angle of refraction in water,
(b) the speed and wavelength of the light in water.

Solution

(a) Fig. 17.12 shows the ray of light traveling from air to water.

Using Snell’s law (Eq. 17.1), the angle of refraction in water is calculated as

follows,

Nair SN Ogir = Ryarer SN Oyarer

Ngir SIN B4, 1.00 x sin 30°

SIN Oy arer = = =1.52,

Nyater 1.33
Oparer = sin "' 1.52 = 0.39 rad = 22°.

Fig. 17.12 Refraction of
light, Problem 17.8 30°

air

ewater water



17.2 Problems and Solutions 459
(b) The speed of light in water is (Eq. 17.2),

¢ 3x10%m/s
Nwater B 1.33

=226x 103 ms™".

Vwater =

The wavelength of the light in water is (Eq. 17.3),

hair 590 nm

Nparer 133

= 444 nm.

Awater =

4 wxMaxima codes:

(%16) fpprintprec:5; theta air:float(30*%pi/180); n_air:1; n water:1.33;
lambda_air: 590; c: 3e8;

(fpprintprec) 5

(theta_air) 0.5236

(n_air) 1

(n_water) 1.33

(lambda_air) 590

(c) 3.0*10"8

($17) theta water: asin(n_air*sin(theta air)/n_water);
(theta water) 0.38541

(%18) theta water_deg: float(thetaiwater*180/%pi);
(theta_water deg) 22.082

($19) v_water: c/n_water;

(v_water) 2.2556*10"8

(%110) lambda_water: lambda_air/n_water;
(lambda_water) 443.61

Comments on the codes:

(%i6) Set floating point print precision to 5, assign values of 6., ng,
Nyaters )\air’ and c.

(%i7), (%18)  Calculate 6,4, and convert the angle to degree.

(%19), (%110) Calculate v,,4ze, and Aygzer-

Problem 17.9 Figure 17.13 shows a light beam is refracted by a glass prism of 60°.
Angle of incident is 30° and index of refraction of glass is 1.52. Calculate,

(a) the angle the light beam exits the prism 64,
(b) the angle of deviation of the light beam 6.
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Fig. 17.13 Refraction of _ °
light by a glass prism, 4 =160
Problem 17.9

Solution

(a) Using Snell’s law (Eq. 17.1) at the left surface of the prism,

Ngir SIN0) = nsin 6,,
(1.00) sin 30° = (1.52) sin 65,
6, = 19°.

where 0 is angle of incident, 6, is angle of refraction, and » is refraction index
of the glass. Also, from Fig. 17.13, we have,

0, + 05 + 120° = 180°,
0y = 180° — 120° — 6,
— 180° — 120° — 19°
— 41°.

Using Snell’s law at the right surface of the prism,

nsin b3 = ng;, sin 4,
(1.52) sin41° = (1.00) sin 6y,
64 = 83°.

where 63 in angle of incident and 64 is angle of refraction.
(b) Deviation at the left surface of the prism is 81 — 6, and deviation at the right
one is 64 — 63. Thus, the deviation of the beam is

Op =01 — 0, + 04 — 03
=01+ 04— (62 + 03)
=0,+6,— A
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=30° + 83° — 60°
= 53°.

because A = 6, + 05.

4 wxMaxima codes:

(%$i4) fpprintprec:5; n:1.52; thetal:float (30*%pi/180); A:60;
(fpprintprec) 5

(n) 1.52

(thetal) 0.5236

(A) 60

(%¥16) theta2: asin(sin(thetal)/n); theta2 deg: float (theta2*180/%pi);
(theta2) 0.33519

(theta2 deg) 19.205

(%18) theta3_deg: 180-120-theta2_deg; theta3: float(theta3_deg/180*%pi);
(theta3_deg) 40.795

(theta3) 0.71201

($110) thetad: asin(n*sin(theta3)); theta4 deg: float (theta4*180/%pi);
(thetad4) 1.4533

(thetad4_deg) 83.266

(%¥111) thetaD _deg: 30 + thetad_deg - A;

(thetaD_deg) 53.266

Comments on the codes:

(%i4)  Set floating point print precision to 5, assign values of n, 6 in radian, and
A in degree.

(%i6) Calculate 8, and convert the angle to degree.

(%i8)  Calculate 85 in degree and convert the angle to radian.

(%110) Calculate 64 and convert the angle to degree.

(%i11) Calculate 6 in degree.

Problem 17.10 Figure 17.14 shows a light beam being refracted symmetrically by a
prism of angle A and refractive index n. The incident beam and the beam coming out
of the prism are symmetric. The deviation of the beam is a minimum 6p,;,. Show
that the refractive index of the prism is

. A+ 0D,min . A
n = sin| ———— |} /sin{ — |.
2 2

Figure 17.15 shows the beam, the prism, and the related angles when the deviation
of the beam is at minimum.

Solution
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Fig. 17.14 Refraction of
light by a glass prism,
Problem 17.10

Fig. 17.15 Minimum
deviation of the light beam,
Problem 17.10

At the left side of the prism, angle of incident is # and angle of refraction is ¢. At
the right side of the prism, angle of incident is ¢ and angle of refraction is 6. From
trigonometry, we have

Il
=

29
¢

(SN

Beam deviation at the left side of the prism is & — ¢ while beam deviation at the
right side of the prism is 6 — ¢, giving total beam deviation as

GD,min = (9 - ¢) + (9 — ¢) =20 — 2¢
We calculate the angle 6,

9D,min =20 — 2¢ =20 — A,
A 0 min
g = A1 Opmin.
2
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Applying Snell’s law (Eq. 17.1) at the right side of the prism, we obtain the
refractive index of the prism,

n sing = ng;, sin 0,
n sing = 1.00 x sin@,

. A . A+ 0D,min
nsm|—-|)=sm{ ———|,
2 2
. A + 9D.min A
n=sm|—— / — .
2 2

4 wxMaxima codes:

($i1) theta: (A+theta Dmin)/2;
(theta) (theta_Dmin+A)/2
(3i2) phi: A/2;

(phi) A/2
($13) n: sin(theta)/sin(phi);
(n) sin((theta Dmin+A)/2)/sin(A/2)

Comments on the codes:

(%il), (%i2) Define 0 and ¢.
(%i13) Calculate n.

Problem 17.11 The minimum beam deviation of a 60° prism is 37°. What is the
refractive index of the prism?

Solution

Using result of Problem 17.10, the refractive index of the prism is

. A+ eD,min . A
n =sin | ————— | /sin| —
2 2
. [ 60°+37° . [ 60°
sin [ ———— ] /sin
2 2

=1.5.

4 wxMaxima codes:

($13) fpprintprec:5; A:float(60*%pi/180); thetaDmin:float (37*%pi/180);
(fpprintprec) 5

(2) 1.0472

(thetaDmin) 0.64577

($14) n: sin((A+thetaDmin) /2)/sin(A/2);

(n) 1.4979
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Fig. 17.16 A plane
polarized light reflected from

water, Problem 17.12

air

water

Comments on the codes:

(%13) Set floating point print precision to 5, assign values of A and 0p iy,
(%i14) Calculate n.

Problem 17.12 Figure 17.16 shows a completely plane polarized light reflected from
the surface of water. The index of reflection of water is 1.33. Calculate angle S.

Solution

Figure 17.17 shows the situation when a completely plane polarized light is obtained.
Brewster’s law (Eq. 17.6) is satisfied. The polarizing angle 6p can be calculated
as follows:

warer  1.33
tanOp = Mwater = —)
Nair 1.00

Op = 53°.

The angle B is

B =90°—6p =90° —53° =37°.

Fig. 17.17 The polarizing Y
angle 6 p, Problem 17.12

Op opr

water
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Fig. 17.18 Brewster’s law, |
Problem 17.13 |

Op | Op .
air

dielectric
material

4 wxMaxima codes:

(%13) fpprintprec:5; n_water:1.33; n_air:1;

(fpprintprec) 5)

(n_water) 1.33

(n_air) 1

(%15) thetaP: atan(n_water/n_air); thetaP deg: float (thetaP*180/%pi);
(thetaP) 0.92609

(thetaP_deg) 53.061

(%16) beta: 90-thetaP_deg;

(beta) 36.939

Comments on the codes:

(%i3) Set floating point print precision to 5, assign values of 7,4, and ng;;.
(%15) Calculate 6p and convert the angle to degree.
(%i16) Calculate g.

Problem 17.13 The polarizing angle for reflected rays of a dielectric material is 58°.
What is the index of refraction of the material?

Solution

Using Brewster’s law (Eq. 17.6), the index of refraction of the material is, Fig. 17.18,

n =tanOp = tan 58° = 1.60.
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4 wxMaxima codes:

($12) fpprintprec:5; thetaP:58;
(fpprintprec) 5)

(thetaP) 58

(%1i4) n: tan(thetaP*%pi/180); float(%);
(n) tan ((29*%pi) /90)

(%04) 1.6003

Comment on the codes:

(%i2) Set floating point print precision to 5 and assign value of 6p.

(%i4) Calculate n.

17.3 Summary

Light Phenomena

Light is an electromagnetic wave propagating in vacuum with a speed of 3 x
108 ms™!.

When a light ray strikes a smooth surface, the angle of reflection equals the angle
of incident.

The law of refraction or Snell’s law relates the indices of refraction for two media
with the angles of incident and refraction of a light ray in them,

ni sin 91 =np sin 92.

Total internal reflection occurs at the boundary between two media if the incident
angle in the first medium is greater than the critical angle, 6.

.12
6. = sin ln—, (ny > ny).

1

Polarization is the attribute that wave oscillations have a definite direction relative
to the direction of propagation of the wave.

Brewster’s law states that reflected light is completely polarized at the angle of
reflection, 6p,

Op = tan~! n,

where the light is incident from air and reflected from a medium with index of
refraction, n.
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Fig. 17.19 Refraction of

light, Exercise 17.1 40.0°
I water

glass

17.4 Exercises

Exercise 17.1 A beam of light in water enters a glass slab at an angle of incident of
40.0°, Fig. 17.19. Index of refraction of water is 1.33 and that of glass is 1.50. What
is the angle of refraction, 67

(Answer: 6 = 34.7°)

Exercise 17.2 Index of refraction of benzene is 1.50. What is the speed of light in
benzene?
(Answer: 2.00 x 108 ms™!)

Exercise 17.3 A person looks into a swimming pool at the 1.52 m deep level. How
deep does it look to the person? Index of refraction of water is 1.33.
(Answer: 1.14 m)

Exercise 17.4 A vertically polarized light of intensity 100 W m~2 passes through a
polarizer with its transmission axis at 35.0° to the vertical. What is the transmitted
intensity of the light?

(Answer: 67.1 W m2)

Exercise 17.5 Calculate Brewster’s angle for light reflected from the top of a water
surface. Index of refraction of water is 1.33.
(Answer: 8p = 53.1°)



Chapter 18 ®)
Mirror and Lens Geci

Abstract This chapter solves problems on image formation by mirrors, spherical
surfaces, and lenses using geometrical or ray optics. Calculations of image size,
location, and magnification are performed. Spherical mirror, refraction at a spherical
surface, lens maker, and thin lens equations are applied. Solutions are by analysis
and computer calculation of wxMaxima.

18.1 Basic Concepts and Formulae

(1) Magnification M of a mirror or lens is defined as ratio of image height 4’ to
object height / or ratio of image distance s’ to object distance s,

M=—=-". (18.1)

Magnification of less than 1 is a minification while magnification of 1 means
object and image are of the same size.

Figure 18.1 shows examples of magnification by (a) concave mirror, (b)
convex mirror, (c) convex lens, and (d) concave lens. Here, f is focal length, F
is focus point, and C is center of the curvature.

(2) For a spherical mirror of radius, R, the object distance, s, and image distance,
s’, obey the mirror equation,

Sy =Z—— (18.2)

where f = R/2 is focal length of the mirror. Sign convention for spherical mirror
is as follows:

(a) sis + if the object is in front of the mirror (real object).
(b) sis — if the object is behind the mirror (virtual object).
(c) s’ is + if the image is in front of the mirror (real image).
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(@)

(b)

(©

(d)

Fig. 18.1 Magnifications by concave and convex mirrors, convex and concave lenses
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3

(d) s’ is — if the image is behind the mirror (virtual image).

(e) f and R are + if the center of curvature is in front of the mirror (concave
mirror).

(f) f and R are — if the center of curvature is behind the mirror (convex mirror).

(g) M is + means upright image.

(h) M is — means inverted image.

Figure 18.2 shows ray diagrams for image formation in (a) concave and
(b) convex spherical mirrors. Here, f is focal length, F is focus point, C is
center of curvature, and R is radius of curvature.

For refraction at a spherical surface,

iy _mmm (18.3)
s s’ R

where n; and n, are refractive indices of medium 1 and 2, and R is the radius
of the spherical surface. Sign convention for spherical surface refraction,

(a) sis + if the object is in front of the surface (real object).

(a)

(b) “
A \\\\image
h —=_x
\}/ <————————- X S -
vl LNy _TT== .
object <z F C
<—— >
f
<>

Fig. 18.2 Image formations by a concave and b convex mirrors
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Fig. 18.3 Refraction at a
spherical surface

(b) sis — if the object is behind the surface (virtual object).

(c) s’ is + if the object is behind the surface (real image).

(d) s’ is — if the object is in front of the surface (virtual image).
(e) R is + if the center of curvature is behind the surface.

(f) R is — if the center of curvature is in front of the surface.

Figure 18.3 shows the object and image locations in a refraction at a spherical
surface of radius of curvature, R.

(4) Lens maker equation for thin lens,

l—m—n<i—i> (18.4)
f R R ’

The equation is for thin lens in air. Here, f is the focal length, n is index of
refraction of the lens material, R; and R, are the radii of curvature of the first
and second surfaces of the lens, respectively. The object is on the left of the lens.
Radius of curvature is positive if the object faces convex surface and negative
if it faces concave surface.

If the lens is in a medium with index of refraction 7,,.4im, i.€. not in air, 7 is
replaced with n/neqgium-

Figure 18.4 shows the quantities that affect the focal length according to the
lens maker equation.

Thin lens equation: the object distance, s, image distance, s’, and focal length
of the lens, f, satisfy

11 1
7:§+;. (18.5)

Sign convention for thin lens,

(a) sis + if the object is in front of the lens.

(b) sis — if the object is behind the lens

(c) s’1is 4 if the image is behind the lens.

(d) s’ is — if the image is in front of the lens.

(e) R, and R, are + if the center of curvature is behind the lens
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Fig. 18.4 Parameters of lens
maker equation

Nmedium n
R - S
R T3

(f) Ry and R, are — if the center of curvature is in front of the lens.

Figure 18.5 shows ray diagrams for image formation in converging and diverging
lenses.

(@

(b) 7

Fig. 18.5 Image formations by a convex and b concave lenses
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18.2 Problems and Solutions

Problem 18.1 An object is placed 4.0 m in front of a concave mirror with radius of
curvature 40 cm. Determine location of the image and the magnification.

Solution

The relation between object distance, s, image distance, s’, and radius of curvature,
R, of a concave mirror is (Eq. 18.2),

2 1 1

R s s
For this problem, the image distance, s’, is calculated as follows:

21 N 1
040m 40m s
s =0.21 m.

’

The image is real, inverted, 0.21 m in front of the concave mirror.
The magnification is,

= —0.05.

Negative magnification means the image is inverted. The absolute value of magni-
fication is less than 1.00 means the image is minified, that is, the image is smaller
than the object.

4 wxMaxima codes:

%$i4) fpprintprec:5; ratprint:false; R:0.4; s:4;

fpprintprec) S|
ratprint) false
R) 0.4
s) 4
%i solve (2/R = 1/s + 1/s prime, s prime)$ float(%);
%o [s_prime=0.21053]
i

ime) 0.21053
M: -s_prime/s;
-0.052632

6)
6)
7) s_prime: rhs(%[1]1);
pr
8)

Comments on the codes:

(%i4) Set floating point print precision to 5, internal rational number print
to false, assign values of R and s.
(%i16) Solve % = % + Sl for s’.
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(%i7), (%18) Assign s’ and calculate M.

Problem 18.2 The focal length of a concave mirror is 10 cm. Determine image
distance and magnification if the object distance is (a) 25 cm, (b) 20 cm, (c) 10 cm,
and (d) 5.0 cm.

Solution

(a) Using the concave mirror equation (Eq. 18.2), the image distance is calculated

as follows:
11 . 1
f s s
1 n 1
10ecm ~ 25cm = s’
s’ =17 cm.
The magnification is
M= s _ 17em 0.67
T~ s 25c¢m 7

The image is smaller than the object as the magnitude of M is less than 1.0,
inverted as M is negative, real, and in front of the concave mirror.

4 wxMaxima codes:

ime) 16.667
M: -s_prime/s;
-0.66668

6)
6)
7) s_prime: rhs(%[1]1);
pr
8)

($14) fpprintprec: 5; ratprint: false; f: 10; s: 25;
(fpprintprec) 5

(ratprint) false

(f) 10

(s) 25

(%1 solve(1/f = 1/s + 1/s prime, s prime)$ float(%);
(%0 [s_prime=16.667]

(%1

(

(

(

Comments on the codes:

(%i4) Set floating point print precision to 5, internal rational number print
to false, assign values of f and s.
(%i6) Solve + = { 4§ fors”.

(%iT), (%i8) Assign s’ and calculate M.

(b) Repeat the calculation for object distance, s = 20 cm, and we obtained the image
distance, s’, as
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1 _ 1 + 1
f s s
1 _ 1 1
10cm  20cm = s
s’ =20 cm.
The magnification is,
M=o 20m_ gy
K 20 cm

The image is the same size as the object as the magnitude of M is 1.0, inverted
as M is negative, real, in the front of the concave mirror.

4 wxMaxima codes:

%$14) fpprintprec:5; ratprint:false; £:10; s:20;

ime) 20.0
M: -s_prime/s;
=10

6)
6)
7) s_prime: rhs(%[1]);
pr
8)

(%
(fpprintprec) 5
(ratprint) false

(f) 10

(s) 20

(%1 solve(1/f = 1/s + 1/s prime, s prime)$ float(%);
(%0 [s_prime=20.0]
(%1

(

(

(

Comments on the codes:

(%i4) Set floating point print precision to 5, internal rational number print
to false, assign values of f and s.
(%i16) Solve % = % + Sl for s’.

(%i7), (%i8) Assign s’ and calculate M.

(c) Repeat the calculation for object distance, s = 10 cm, and we obtained,

1 1 1
7=;+;,
1 1 1
10cm  10cm s
s’ = oo.

Rays from an object at the focal point reflect off the concave mirror and
neither converge nor diverge. After the reflection, the rays travel parallel to each
other to infinity and do not result in formation of an image.
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(d) Repeat the calculation for object distance, s = 5.0 cm, and we obtained the
image distance, s’, as

11 N 1
f s s
1 1
10cm  5cm s’
s'=—10 cm.
The magnification is,
M:_s_/:_—l()—cmzz'o‘
s 5.0 cm

The image is bigger than the object as the magnitude of M is greater than
1.0, upright as M is positive, virtual, behind the concave mirror.

4 wxMaxima codes:

4) fpprintprec:5; ratprint:false; £:10; s:5;
pprlntprec) 5
atprint) false
) 10
5
solve(1/f = 1/s + 1/s prime, s prime)$ float(%);
[s prime=-10.0]

£
i3
£
s
%$16)
6)
7) s _prime: rhs(%[1]);
pr
8)

o

)
1
o
i

0] o\D

ime) -10.0
M: -s prime/s;
2.0

i
)

&
(
(
(
(
(
(%
(
(
(%1
(M

Comments on the codes:

(%i4) Set floating point print precision to 5, internal rational number print
to false, assign values of f and s.
(%i16) Solve % = % + Sl for s’.

(%i7), (%18) Assign s’ and calculate M.

For reflection of light by a concave mirror, our results show that if the object is
placed beyond focal point, the image is real, minified, and inverted; if the object is
at the focal point, no image is formed (the image is at infinity); and if the object is
placed within focal point, the image is virtual, magnified, and upright.
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Problem 18.3 An object of 3.0 cm height is placed (a) 20 cm, (b) 8.0 cm, and (c)
6.0 cm in front of a convex mirror with a focal length of 8.0 cm. Determine location
and size of the image.

Solution

(a) The focal length of the convex mirror is f = —8.0 cm. The object distance is
s = 20 cm. The location of the image is calculated using the spherical mirror
equation (Eq. 18.2),

1 _ 1 n 1
f s s
1 _ 1 n 1

—80cm 20cm '’

s’ = —5.7 cm.

The magnification is
M= s _ —57cm 0.29

T 20cm

The image size is
h' = Mh =0.29(3.0 cm) = 0.86 cm.

The image is virtual behind the convex mirror (s’ is negative), minified (M
is less than 1.0), and upright (M is positive).

4 wxMaxima codes:

%$15) fpprintprec:5; ratprint:false; £f:-8; s:20; h:3;

fpprintprec) 5

ratprint) false

f) -8

s) 20

h) 3

%1 solve(1/f = 1/s + 1/s_prime, s prime)$ float(%);
%0 [s_prime=-5.7143]

%1

ime) -5.7143

i M: -s prime/s;
M) 0.28571

i10) h prime: M*h;
h prime) 0.85715

7)

7)

8) s prime: rhs(%[1]);
prime

9)

Comments on the codes:

(%15) Set floating point print precision to 5, internal rational number
print to false, assign values of f, s, and h.
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(%i7) Solve } =14 Lforyg.

s s’

(%18), (%19), (%110) Assign s’, calculate M and h’.

(b) Repeat the calculation for object distance, s = 8.0 cm,

L_11
f s s

I S

—80cm 8.0cm s’
s’ = —4.0cm.
The magnification is
! —4.0
mM=-_L - T 50,
K 8.0 cm

The image size is
h =Mh=0.50 (3.0cm) = 1.5 cm.

The image is virtual, behind the mirror (s’ is negative), minified (M is less
than 1.0), and upright (M is positive).

4 wxMaxima codes:

%$15) fpprintprec:5; ratprint:false; £:-8; s:8; h:3;
pprintprec) 5

atprint) false

) -8

7) solve(l/f = 1/s + 1/s prime, s prime)$ float(%);
7) [s_prime=-4.0]
%18) s _prime: rhs(%[1]);
prime) -4.0

i9) M: -s prime/s;
M) 0.5

i10) h prime: M*h;
h prime) 1.5

Comments on the codes:

(%15) Set floating point print precision to 5, internal rational number
print to false, assign values of f, s, and h.
(%iT) Solve + = { + § fors".

(%18), (%19), (%i10) Assign s’, calculate M and h’.

(c) Repeat the calculation for object distance, s = 6.0 cm,
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1 _ 1 n 1
f s s
1 _ 1 L 1
—80cm 6.0cm s’
s'=—-3.4cm.
The magnification is
M= s _ —34cm — 0.57
T s 60cm 7

The image size is
W =Mh=0.5730cm)=1.7cm.

The image is virtual, behind the mirror (s’ is negative), minified (M is less
than 1.0), and upright (M is positive).

4 wxMaxima codes:

7)
7)
8) s _prime: rhs(%[1]);
prime) -3.4286

i9) M: -s_prime/s;

)  0.57143

i10) h prime: M*h;

h prime) 1.7143

($15) fpprintprec:5; ratprint:false; f:-8; s:6; h:3;
(fpprintprec) 5

(ratprint) false

(f) -8

(s) 6

(h) 3

(%1 solve(1/f = 1/s + 1/s prime, s prime)$ float(%);
(%0 [s prime=-3.4286]

(%1

(

(

(

(

(

Comments on the codes:

(%15) Set floating point print precision to 5, internal rational number
print to false, assign values of f, s, and A.
(%i7) Solve & =1 + < fors’.

(%18), (%19), (%110) Assign s’, calculate M and h’.

For reflection of light by a convex mirror, the image is always upright, virtual,
and minified.

Problem 18.4 Figure 18.6 shows an end of a glass rod formed into a convex surface
of radius of curvature 6.0 cm. Index of refraction of glass is 1.5. An object is placed
along the rod axis at (a) 20 cm, (b) 10 cm, and (c) 3.0 cm from the rod. Determine
the location of the image.
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(a) 20 cm (b)10cm  (¢)3.0cm

front

Fig. 18.6 Refraction at a spherical surface, Problem 18.4

Solution
(a) Refraction equation for spherical surface is (Eq. 18.3),

ny ny ny —n

s s’ R

For this problem,

@ Nglass Nglass — Nair
s + s’ R
1.0 n 1.5 1.5-1.0
20cm s’  6.0cm
s’ =45 cm.

)

The image is real, at the back of the convex surface.

4 wxMaxima codes:

(%16) fpprintprec:5; ratprint:false; n_air:1; n_glass:1.5; R:6; s:20;
(fpprintprec) 5

(ratprint) false

(n_air) 1

(n_glass) 1.5

(R)

(s) 20

($18) solve(n_air/s+n_glass/s_prime=(n_glass-n_air) /R, s_prime)$ float(%);
(%08) [s_prime=45.0]

Comments on the codes:

(%16) Set floating point print precision to 5, internal rational number print to false,
assign values of 74, Ngjags, R, and s.
(%i8) Solve =t 4 "i’ﬂ = % fors’.

(b) Repeat the calculation for object distance, s = 10 cm,
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Nair + Nglass Nglass — Nair

’

s s’ R
1.0 1.5 . 1.5—-1.0

10 cm s 6.0cm
s’ = —90 cm.

The image is virtual, in front of the convex surface.

4 wxMaxima codes:

o°

i6) fpprintprec:5; ratprint:false; n_air:1; n_glass:1.5; R:6; s:10;
fpprintprec) 5
ratprint) false

10
) solve(niair/s+n7qlass/siprime:(niglass—niair)/R, s prlme)$ float (%) ;
) [s_prime=-90.0]

Comments on the codes:

(%16) Set floating point print precision to 5, internal rational number print to false,
assign values of 74, Nglags, R, and s.
(%i8) Solve "ar 4 Tus — ZawerRal for g7,

(c) Repeat the calculation for object distance, s = 3.0 cm,

Nair Nglass Nglass — Rair

s s/ R ’
1.0 1.5_ 1.5-1.0
30cm s  6.0cm
s’ = —6.0 cm.

The image is virtual, in front of the convex surface.
4 wxMaxima codes:
%16) fpprintprec:5; ratprint:false; n_air:1; n_glass:1.5; R:6; s:3;

fpprintprec) 5
ratprlnt) false

n_air) 1

R) 6

s) 3
%$18) solve(n air/s+n glass/s prime=(n glass-n air)/R, s prime)$ float (%);

%08) [s_prime=-6.0]
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Comments on the codes:

(%16) Set floating point print precision to 5, internal rational number print to false,
assign values of 74, Ngjass, R, and s.
(%i8) Solve "t 4 "i’# = % fors’.

Problem 18.5 Figure 18.7 shows a 2.0 cm diameter coin embedded in a glass ball
of 30 cm radius. The coin is 20 cm from the surface of the ball and the refractive
index of the glass is 1.5. Determine the location and size of the image.

Solution

Figure 18.8 shows rays of light from the coin in the glass, refracted at the spherical
surface as the rays go into the air to the observer.

Fig. 18.7 A coin embedded
in a glass ball, Problem 18.5

Fig. 18.8 Refraction at a
spherical surface, Problem
18.5

n2
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Using the refraction equation of spherical surface (Eq. 18.3), we have

ni n» np —ni

3

) s R
15 10 _10-15
20cm s/  —30cm’
s = —17 cm.

The image is virtual, in the ball. The size of the image is

/ 17
Wo=Mh=—"h=-""""020cm)=17cm.
s 20 cm

4 wxMaxima codes:

7) fpprintprec:5; ratprint:false; nl:1.5; n2:1; s:20; R:-30; h:2;

(%1

(fpprintprec) 5
(ratprint) false

(nl) 1.5

(n2) 1

(s) 20

(R) =30

(h) 2

(%19) solve(nl/s + n2/s prime = (n2 - nl)/R, s prime)$ float(%);
(%09) [s prime=-17.143]
(%¥110) s_prime: rhs(%[1]);
(s_prime) -17.143

($111) h_prime: -s_prime/s*h;
(

h prime) 1.7143

Comments on the codes:

(%iT) Set floating point print precision to 5, internal rational number print
to false, assign values of ny, ny, s, R, and A.
(%19) Solve =t 4 % = 222 for s”.

(%110), (%i11) A551gn K and calculate i’.

Problem 18.6 Figure 18.9 shows a fish at depth, s, in water. Refractive index of
water is 1.33. Determine the apparent depth of the fish.

Solution

Using the refraction equation of spherical surface (Eq. 18.3), with radius of curvature,
R = oo, for flat surface, we get,
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Fig. 18.9 Refraction of
light, Problem 18.6

ni np ny —n

) s’ R
ni np n, —n

K s’ o0
moom_ o
) s’
, n, 1.00
s =——5=———5=-—0.75s.
ni 1.33

This means that the apparent depth is 0.75 of the real depth.

4 wxMaxima codes:

($14) fpprintprec:5; ratprint:false; nl:1.33; n2:1;
(fpprintprec) 5

(ratprint) false

(nl) 1.33

(n2) 1

(%16) solve(nl/s + n2/s prime = 0, s prime)$ float(%);
(%06) [s_prime=-0.75188*s]

Comments on the codes:

(%i4) Set floating point print precision to 5, internal rational number print to false,
assign values of n; and n,.
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Fig. 18.10 Convex lens of
Problem 18.7

(%i16) Solve =L + = =0 for 5.
Problem 18.7 Figure 18.10 shows a convex lens made of glass of refractive index
1.5, with radii of curvature 20 cm and 30 cm. Calculate focal length of the lens.

Solution

We apply the lens maker equation for this problem. Lens maker equation is (Eq. 18.4),

1 ( 0 ( 1 1 )

—=(n-— — = .

f Ry R
Here, f is the focal length, » is index of refraction of the lens material, R and R, are
the radii of curvature of the first and second surfaces of the lens, respectively. The
object is assumed on the left of the lens. Radius of curvature is positive if the object
faces convex surface and negative if it faces concave surface. We have, R; = +20 cm

as the object faces convex first surface, R, = —30 cm as the object faces concave
second surface, and n = 1.5. The focal length of the lens is calculated as follows,

on (o)
o R R

1 1 1
—=(15-1 - ,
f ¢ ) (+20 cm  —30 cm)

f=+24cm.

The lens is a converging lens because the focal length is a positive number.

4 wxMaxima codes:
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i5) fpprintprec:5; ratprint:false; n:1.5; R1:20; R2:-30;

(51

(fpprintprec) 5

(ratprint) false

(n) 1.5

(R1) 20

(R2) =30

($17) solve(l/f = (n-1)*(1/R1 - 1/R2) £)$ float (%)
(%07) [f=24.0]

Comments on the codes:

(%15) Set floating point print precision to 5, internal rational number print to false,
assign values of n, Ry, and R;.

(%i7) Solve L = (n — 1)( L R%) for f.

Problem 18.8 The focal length of a biconvex lens made of glass with refractive
index 1.52 is 25 cm.

(a) Calculate the radius of curvature of the lens.
(b) What is the focal length of the lens if the lens is in water? Refractive index of
water is 1.33.

Solution

(a) Lens maker equation is (Eq. 18.4),

Here, f is the focal length, n is index of refraction of the lens material, R,
and R, are the radii of curvature of the first and second surfaces of the lens.
The object is on the left of the lens. Radius of curvature is positive if the object
faces convex surface and negative if it faces concave surface. Setting r as a
positive number, we have, R; = +r as positive because the object faces convex
first surface and R, = —r as negative because the object faces concave second
surface. Thus, the radius of curvature is calculated as

1 1 1 2
—={152-1)———)=052(-,
25 cm +r  —r r

r =26 cm.

The radii of curvature of the lens are R; = 26 cm and R, = —26 cm.

4 wxMaxima codes:
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%i4) fpprintprec:5; ratprint:false; n:1.52; £:25;

(

(fpprintprec) 5

(ratprint) false

(n) 1.52

(f) 25

(%$16) solve(l/f = (n-1)*(1/r - 1/( , r)$ float (%)
(%06) [r=26.0]

Comments on the codes:

(%i14) Set floating point print precision to 5, internal rational number print to false,
assign values of n and f.
(%i6) Solve ; =m—-1D(—2L)forr

(b) If the lens is in medium with index of refraction n,,.4;,m, 1.€. not in air, replace
n with n/ny,.qi,m- In water, the focal length is calculated as

() ()
S B Nwater Ry ©1.33 26cm /)’

f =91 cm.

The lens still converges the light rays in water ( f = 91 cm), although weaker
than in air (f = 25 cm).

4 wxMaxima codes:

5) fpprintprec:5; ratprint:false; n:1.52; n _water:1.33; R1:26;
pprlntprec) 5
atprint) false
) 1.52
water) 1.33
) 26
7) solve(l/f = (n/niwater—l)*(Z/Rl), £f)$ float (%)
7) [£=91.0]

(%
(
(
(
(
(
(
(

g o0 T 5 5 sk o

1
i
o

Comments on the codes:

(%15) Set floating point print precision to 5, internal rational number print to false,
assign values of n, 1,4, and R;.

(%i7) Solve + = (2 — 1)( )forf

Nuwater

Problem 18.9 A glass lens has convex and concave surfaces. Radii of curvature of
convex and concave surfaces are 30 and 25 cm, respectively. Index of refraction of
glass is 1.52. Calculate the focal length of the lens.

Solution

Figure 18.11 shows the lens.
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Fig. 18.11 Glass lens of — 7
Problem 18.9

3
\\\!?2
N
AN
____________ S sem
&7 R

Using the lens maker equation (Eq. 18.4) with Ry =30 cm, R, =25cm, and n =

1.52,
( 1 1 1
= (n — _— - — ),
R R

= (1.52 — 1)(

= —288 cm.

1 1
30cm  25cm)/’

I i R

It is a diverging lens, because f is negative.

4 wxMaxima codes:

(%15) fpprintprec:5; ratprint:false; n:1.52; R1:30; R2:25;
(fpprintprec) 5

(ratprint) false

(n) 1.52

(R1) 30

(R2) 25

(%17) solve(l/f = (n-1)*(1/R1-1/R2), £)$ float(%);

(%07) [£=-288.46]

Comments on the codes:

(%i5) Set floating point print precision to 5, internal rational number print to false,
assign values of n, R, and R;.

(%i7) Solve L = (n—1) (RL] — Rl) for f.
Problem 18.10

(a) The distance between a converging lens and a screen is 20 cm to get a focused
image of a distant object on the screen. What is the focal length of the lens?

(b) An object is located 100 cm from the converging lens. Determine the location
of the image.
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Solution

(a) Parallel rays from distant object reach the lens. The parallel rays are converged
to the focal point of the lens. Thus, the focal length of the lens is 20 cm.
(b) Using the thin lens equation (Eq. 18.5), the image distance, s’, is calculated as

follows:
1 1 1
? = ; + ;,
1 1 1
20cm  100em s
s’ =25 cm.

The image is 25 cm at the back of the lens, minified, inverted, and real.

4 wxMaxima codes:

($14) fpprintprec:5; ratprint:false; £f:20; s:100;
(fpprintprec) 5

(ratprint) false

(f) 20

(s) 100

(%16) solve(l/f = 1/s + 1/s prime, s prime)$ float(%);
(%06) [s_prime=25.0]

Comments on the codes:

(%i14) Set floating point print precision to 5, internal rational number print to false,
assign values of f and s.
(%i6) Solve = | + J fors’.

Problem 18.11 Two lenses with focal lengths of 10 cm and 20 cm separate by
18 cm, as illustrated in Fig. 18.12. An object is located at 15 cm from the lens
system. Determine the location of the image and the magnification.

Fig. 18.12 Two lenses of 15 cm 18 cm
Problem 18.11 D ————— = >

fi=10cm f2=20cm
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Solution

Using thin lens equation (Eq. 18.5), we calculate location of the image as the light
rays go through the first lens (the left lens),

1 1 1

- _+_’
fi s s
1 1 1

7

10 cm 15 cm + s

51 =30 cm.

The image is 30 cm on the right of the first lens, that is, 30 cm — 18 cm = 12 cm
on the right of the second lens. This image is the virtual object of the second lens. We
write, for the second lens, the object distance as s, = — 12 cm. Now, we calculate
the location of the final image through the second lens, again, using the thin lens
equation,

1 1 1

fa 52 37

Lo
20cm  —12cm = 55
sy =7.5 cm.

Thus, the final image is 7.5 cm on the right of the second lens. Magnifications of
first, second, and both lenses are

M, = -5 _ —30 cm 20
1 15 cm -
-’ 7.5

My= —2 1263
k) —12 cm

M\ Ms = (=2.00)(0.62) = —1.3.

The final image is real, inverted, and magnified, behind the second lens.

4 wxMaxima codes:
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i5) fpprintprec:5; ratprint:false; £1:10; £2:20; sl:15;
pprintprec) 5
atprint) false

) 15
%$i7) solve(1/fl = 1/sl + 1/sl_prime, sl_prime)$ float(%);
%07) [sl prime=30.0]
%$i8) sl prime: rhs(%[1]);
sl prime) 30.0
)

i
17
i9) s2: -(sl prime-18);
2) -12
ill) solve(l/f2 = 1/s2 + 1/s2_prime, s2_prime)$ float(%);
0ll) [s2_prime=7.5]
i12) s2 prime: rhs(%[1]);
s2_prime) 7.5
1
1) -2.0

il4) M2: -s2 prime/s2;

2 0.625

i
o

Comments on the codes:

(%15) Set floating point print precision to 5, internal rational
number print to false, assign values of f{, f», and s;.

(%i7) Solve % = i + i] for s;°.

(%i8), (%19) Assign s’ and s;.

(%il1) Solve % = i + i for s,”.

(%112) Assign s’

(%i113), (%i14), (%i15) Calculate M, M, and M M>.

Problem 18.12 State the sign convention for the lens maker formula.
Solution

The lens maker formula for this lens is (Eq. 18.4),

1 ( 0 < 1 1 )

—=(n— —— ),

f Ry R
where f is the focal length, n is index of refraction of the lens material, R; and R,
are radii of curvature of the first and second surfaces of the lens, respectively. The
object is on the left of the lens. Radius of curvature is positive if the object faces
convex surface and negative if it faces concave surface. If the lens is in medium with
index of refraction #,egiym, 1.€. not in air, n is replaced with n/n,eqim. Table 18.1

gives examples of application of the formula. Index of refraction of lens material is
n=1.52.

4 wxMaxima codes:
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Table 18.1 Focal lengths of lenses calculated by the lens maker formula

493

Lens dimensions Type Ry Ry f
(a) Biconvex +20cm | —30cm | +23 cm
Ri
e === I3 =
R
(b) Planoconvex +20 cm | oo +38 cm
() +20cm | +30cm | +115¢cm
R
e e T
3 Ry
(d) +30cm | +20cm | —115¢cm

(continued)
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Table 18.1 (continued)

18 Mirror and Lens

Lens dimensions

Type Ry

Ry S

(e)

Planoconcave | —20 cm

00 —38 cm

®

Biconcave —20 cm

+30cm | —23 cm

i3) fpprintprec:5;
pprintprec) 5
atprint) false
1.52
) R1:20;
20
=30
) solve(l/f =
) [£=23.077]
) R1:20; R2:inf;
20
inf
1) solve(l/f =
1) [f=38.462]
3) R1:20; R2:30;

R2:-30;

(n-1)*(1/R1

5) solve(l/f =
5) [£f=115.38]
7) R1:30; R2:20;
30
20
9) solve(l/f =
9) [£=-115.38]
1) R1:-20; R2:inf;
-20
inf
) solve(l/f =
[£=-38.462]
) R1:-20; R2:30;
-20

(n-1)*(1/R1

(n-1)*(1/R1

(n-1)*(1/R1

7) solve(l/f = (n-1)*(1/R1
7

) [£=-23.077]

(n-1)*(1/R1 - 1/R2),

ratprint:false; n:1.52;

f)$ float (%)

0),

f)$ float (%)

1/R2),

£f)$ float(%):;

1/R2),

£f)$ float (%);

0),

f)$ float (%)

1/R2), £f)$ float(%);
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Comments on the codes:

(%13) Set floating point print precision to 5, internal rational number print
to false, assign value of n.
(%i15), (%iT) Calculate f, case (a) Table 18.1.
(%19), (%i11)  Calculate f, case (b) Table 18.1.
(%i113), (%115) Calculate f, case (c) Table 18.1.
(%i117), (%119) Calculate f, case (d) Table 18.1.
(%i21), (%i23) Calculate f, case (e¢) Table 18.1.
(%i125), (%127) Calculate f, case (f) Table 18.1.

18.3 Summary

e The spherical mirror equation: For a spherical mirror of radius, R, the object
distance, s, and image distance, s’, obey

where f = R/2 is focal length of the mirror.

e Refraction at a spherical surface,

ni n» np —ni

s s’ R

’

where n; and n; are refractive indices of medium 1 and 2, respectively, and R
is the radius of the spherical surface.
e [ ens maker equation for thin lens,

1 ( 0 ( 1 1 )
—=(n- —— — .
f Ry R
e Thin lens equation: The object distance, s, image distance, s’, and focal length of
the lens, f, satisfy

1 I 1

s s

|

18.4 Exercises

Exercise 18.1 An object is placed 3.5 m in front of a concave mirror with radius of
curvature 30 cm. Determine location of the image and the magnification.
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(Answer: s° = 16 cm, M = — 0.045)

Exercise 18.2 An object is placed 60 cmfrom a convex mirror and a magnification
of 0.25 is obtained. Determine the location of the image and the focal length of the
mirror.

(Answer: s’= — 15cm, f = — 20 cm)

Exercise 18.3 Figure 18.13 shows a lens made of glass of refractive index 1.5, with
radii of curvature 30 and 55 cm.

(a) Determine focal length of the lens.
(b) An object is placed 80 cm in front of the lens. Calculate the location of the
image and the magnification.

(Answer: (a) f =39 cm; (b) s’=75cm, M = — 0.94)

Exercise 18.4 An object is located in a medium whose index of refraction is 1.5,
20 cm from the surface whose radius is 30 cm, as shown in Fig. 18.14. Determine
the location of the image and the magnification as seen by the observer.

(Answer: s = — 17 cm in the medium, M = 0.86)

Fig. 18.13 Glass lens of
Exercise 18.3

Fig. 18.14 Refraction at a
spherical surface, Exercise
18.4

observer
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Fig. 18.15 Two lenses of 14 cm 16 cm
Exercise 18.5 DS E—————— >

fi=1l0em f2=22cm

Exercise 18.5 Two lenses with focal lengths of 10 and 22 cm separate by a distance
of 16 cm, as shown in Fig. 18.15. An object is placed at 14 cm from the lens system.
Determine the location of the image and the magnification.

(Answer: A real image 10 cm to the right of the right lens, M = — 1.3)



Chapter 19 ®)
Interference of Light oo e

Abstract Problems on interference of light are solved in this chapter. Light interfer-
ence is a phenomenon due to superposition of coherent lights. These include inter-
ference in Young’s double slit experiment, thin film, lens coating, air wedge, and
Newton’s rings experiment. Both solutions by analysis and computer calculation via
wxMaxima are presented.

19.1 Basic Concepts and Formulae

ey

@

Interference of light is an effect of superposition of light waves at a point.
Persistent interference pattern exists if,

(a) wave sources are coherence (that is, the phase difference of sources is
constant),

(b) the sources are monochromatic (that is, the same wavelength), and.

(c) linear superposition principle is obeyed.

Young’s double-slit experiment: Two slits separated by a small distance d illumi-
nated by a monochromatic light, as illustrated in Fig. 19.1. Interference pattern
of bright and dark bands are formed on a screen. To get a constructive inter-
ference on the screen, path difference of light from the two slits must be zero
or integer multiple of wavelength, L. The path difference of light from the two
slits is d sin 6. This means that a condition for bright band to be formed on the
screen (a constructive interference) is,

dsinf =mA, m=0,=%1,£2,... (19.1)
where m is order number. The central bright fringe with 8 = 0, m = 0, is called

the zeroth order maximum. The first maxima on both sides of the zeroth order
maximum is called the first order maxima with m = +1.
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pes
=y >
light double D
source slit screen

Fig. 19.1 Young’s double-slit interference experiment. Light of wavelength A is incident on a
double slit separated by a distance d. Interference pattern is observed on a screen a distance D away.
0 is the angle between the fringe and the central bright fringe, y is the distance between the fringe
and the central bright fringe, and D is the distance between the double slit and the screen

To get a destructive interference on the screen, the lights path difference from
both slits must be odd multiple of a half wavelength A/2, such that the two waves
arriving at the screen differ in phase by 180°. This means that a condition for a
dark fringe to be formed on the screen (a destructive interference) is,

1
dsinf = <m+§)k, m=0,=x1,+2,... (19.2)

Figure 19.1 shows a setup of Young’s double slit experiment. A picture of bright
and dark fringes of the experiment is shown on the far right of the figure. From
the figure, sin 6 ~ tan 6 = y/D and the path difference is d sin 6 = dy/D. Here, 0
is the angle between the fringe and the central bright fringe, y is the distance on
the screen between the fringe and the central bright fringe, and D is the distance
between the double slit and the screen. Therefore, the bright and dark fringes

satisfy,
rD
Ybright = 71’)’[, m = 0, :tl, :|:2, (193)
rD 1
Ydark = 7(771 + 5), m = 0, :l:l, :l:2, (194)

Average intensity of the interference pattern is,

,f wdsinf of md
Liverage = 1o cos — =~ [y cos Ey. (19.5)
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Fig. 19.2 Phase changes of li ght 180° phase
light reflected from a thin no phase
Pt ray change p
change
1
. 2
air
P
. A
thin |
film »
|
I
n >1.00 v

(3) Light waves undergo 180° phase change as they are reflected from a medium
of higher refractive index than the medium they are traveling, for example, at
the air-glass interface. No phase change occurs for reflection of the light waves
from a medium of lower refractive index, for example, at the glass-air interface.

Figure 19.2 shows a light ray from air (refractive index = 1.00) incident on
a thin film with refractive index n > 1.00. A phase change of 180° occurs for
reflected ray 1 at P, but no phase change occurs for reflected ray 2 at Q. This
means that rays 1 and 2 differ in phase by 180°.

(4) The wavelength of light A, in a medium of refractive index n is,

A
An = —, (19.6)
n

where A is the wavelength of light in free space.
(5) The condition for constructive interference for a thin film of thickness ¢ and
refractive index n is

2nt = (m + %))\, m=0,1, 2, .. (19.7)
The condition for destructive interference is,
2nt =mi, m=0,1, 2, .. (19.8)
(6) Newton’s rings are concentric bright and dark rings formed when a convex lens

is placed on a glass plate illuminated by light, as shown in Fig. 19.3. The radius
of the bright ring is,
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no phase
change

180° phase
change

| )y/ |
(a) (b)

Fig. 19.3 Newton’s rings experiment, a the setup, b observed rings

1 AR
r=,/(m+-)—, m=0,1,2, .. (19.9)
2" n

where R is the radius of curvature of the lens, A is the wavelength of light, and n
is the refractive index of the medium between the lens and the glass plate. Here,
m = 0 corresponds to the first bright ring, m = 1 corresponds to the second
bright ring, and so on.

The radius of the dark ring is,

AR
r=ym—, m=0,1,2, .. (19.10)
n

where m = 0 corresponds to the central dark spot, m = 1 corresponds to the first
dark ring, m = 2 corresponds to the second dark ring, and so on.

Figure 19.3a shows the configuration of Newton’s rings experiment in air
where n = 1.00. Figure 19.3b is a picture of Newton’s rings. The center spot
where the lens touches the glass plate is dark. This is because the ray reflected
from the bottom of the lens has no phase change while the one reflected from
the plate has 180° phase change, and the interference of both rays is destructive
giving a dark spot.

19.2 Problems and Solutions

Problem 19.1 In a Young’s double slit experiment, the separation between slits is
0.09 mm and the screen is 1.0 m away from the slits. The third-order bright fringe
is 2.0 cm from the central bright fringe. Calculate the wavelength of light of the
experiment and the distance between the third dark fringe and the central bright
fringe.
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Fig. 19.4 Young’s double slit experiment, Problem 19.1

Solution

Figure 19.4 shows Young’s double slit experiment set up. Here, d is separation
distance of slits, D is the distance between slits and screen, y,, is the location of m-th
fringe, and 0 is the angle between the central bright fringe and the m-th fringe.

A bright fringe is obtained when (Eq. 19.1),

dsinf = ma, m=1, 2, 3, ..

or,
a2 —ma, m=1,2, 3, .
D
This gives (Eq. 19.3),
LD
Yn = MmM—, m = 1, 2, 3,
d

For the third bright fringe, we have,

AD
3 = 37-

Substituting the given numerical values, the wavelength of the light used in the
experiment is,

(1.0 m)
0.09 x 103 m’
A=6.0x10"" m.

20x102m=3x
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9 Interference of Light

e wxMaxima codes:

%12) fpprintprec:5; ratprint:false;
fpprintprec) 5)
ratprint) false

%$14) solve(2e-2 = 3*lambda/0.09e-3, lambda)$ float (%);
%04) [lambda=6.0*10"-7]

(
(
(
(
(
Comments on the codes:

(%i2) Set floating point print precision to 5 and internal rational number print to
false.
(%i4) Solve2 x 1072 =3 x

For dark fringes (Eq. 19.4),

A
50051077 1OF A

1. AD
= -)—, =0,1, 2, ..
y (m+2)d m

Here, m = 0 corresponds to first dark fringe, m = 1 to the second, and m = 2 to
the third. The distance between the third dark fringe and the central bright fringe is
obtained by m = 2,

l) (6.0 x 107" m)(1.0m)

1.7 x 1072 m.
2’7 009%x103m x m

=02+
e wxMaxima codes:

($12) fpprintprec:5; y2:(2+1/2)*6e-7/0.09e-3;
(fpprintprec) 5
(y2) 0.016667

Comments on the codes:

(%i2) Set floating point print precision to 5 and calculate y,.

Problem 19.2 Interference pattern of a double slit separated by 0.25 mm is observed
on a screen 1.0 m away. The double slit is illuminated by a monochromatic light of
wavelength 589.8 nm. Calculate the separation distance between two adjacent bright
fringes on the screen.
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Fig. 19.5 Young’s double slit experiment, Problem 19.2

Solution

505

Figure 19.5 shows the configuration of Young’s double slit experiment. Here, y is the
location of bright fringe from the central bright fringe, D is the slits-screen distance,
d is the slits separation distance, 6 is the angle between the bright fringe and the
central bright fringe, and d sin 0 is the optical path difference of the rays from the

two slits.
The optical path difference of the two rays from the slits is,

dsind =d l.
D
Constructive interference occurs if,
dX =mr, m=0, 1,2, ..
D

This means that bright fringe is obtained at,

AD
Ym = m—, m=0,1, 2, ...
d

Thus, the separation distance of two adjacent bright fringes is,

AD AD  AD

Vsl — Ym = (m~|—1)7 —m7 = a7
_(589.3 x 10~ m)(1.0 m)
- 0.25 x 103 m

=24x 10" m.
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e wxMaxima codes:

(%14) fpprintprec:5; lambda:589.3e-9; D:1; d:0.25e-3;
(fpprintprec) 5

(lambda) 5.893*10"-7

(D) 1

(d) 2.5%10"-4

(%¥15) separation_distance: lambda*D/d;
(separation_distance) 0.0023572

Comments on the codes:

Interference of Light

(%i4) Set floating point print precision to 5, assign values of A, D, and d.

(%i5) Calculate separation distance.

Problem 19.3 In Young’s double slit experiment, light from a sodium vapor lamp
(wavelength 589 nm) forms interference pattern with adjacent bright fringes separa-
tion of 0.35 cm. The distance of the double slit to the screen is 0.80 m. What is the

separation distance of the double slit?

Solution

Figure 19.6 shows the setup of Young’s double-slit experiment. In the figure y is the
location of the bright fringe, D is the distance between the double slit and the screen,
d is the separation distance of the double slit, 6 is the angle between the bright fringe
and the central bright fringe, and d sin 6 is the optical path difference of the rays of

the two slits.
Optical path difference is,

dsing = d=>-.
D

<——>

Fig. 19.6 Young’s double slit experiment, Problem 19.3
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Constructive interference occurs if optical path difference is zero or multiple of a
wavelength A of the light,

A2 =mr, m=0,1,2, ..
D

This means that a bright fringe is obtained at location,

AD
m = M—
% d

Therefore, the distance between adjacent bright fringes is,

(m+ 1)AD mAD
d d

Ay = Ymy1 — Y =
AD
=
Substituting the given numerical values into the equation enables the separation
distance of the double slit to be calculated,

(589 x 107° m)(0.80 m)
d 9
d=13%x10"*m.

035x 102 m=

e wxMaxima codes:

%15) fpprintprec:5; ratprint:false; lambda:589%e-9; delta y:0.35e-2; D:0.8;

fpprintprec) 5)
ratprint) false
delta y) 0.0035
D) 0.8

o\°

i7) solve(delta y = lambda*D/d, d)$ float(%);

(
(
(
(lambda) 5.89*10%-7
(
(
(
(%07 ) [d=1.3463*10"-4]

Comments on the codes:

(%15) Set floating point print precision to 5, internal rational number print to false,
assign values of A, Ay, and D.
(%i7) Solve Ay = AD/d ford.

Problem 19.4 The diameter of tenth bright ring changes from 1.40 cm to 1.27 cm
when a liquid is filled between the lens and the glass plate in Newton’s rings
experiment. What is the refractive index of the liquid?
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Solution

In Newton’s rings experiment, the radius of the (m + 1)-th bright ring is (Eq. 19.9),

1 A
Tmyl =4/ (M + z)=R,
2°n

where R is radius of curvature of the lens, X is the wavelength of the light of the
experiment, and n is the refractive index of the medium between the lens and the
glass plate. For the tenth bright ring, we write,

1.40cm_ (9+1) A R
2 N 2°1.00

because the index of refraction of air is n = 1.00. When the liquid is filled between
the lens and glass plate, the tenth bright ring satisfies,

1.27cm_ (9+1)AR
2 N 2°n

where 7 is the refractive index of the liquid. By squaring and dividing both equations,
X and R are cancelled out, and the refractive index of the liquid can be calculated,

(1.40 cm)? 9.5AR

(127 cm)?2 ~ 9.5AR/n’

1.40 cm\ 2
n= =1.22.
1.27 cm

e wxMaxima codes:

($12) fpprintprec:5; ratprint:false;

(fpprintprec) 5

(ratprint) false

(%$14) solve(1.4072/1.2772 = (9.5*lambda*R) / (9.5*lambda*R/n), n)$
float (%) ;

($04) [n=1.2152]

Comments of the codes:

(%i2) Set floating point print precision to 5 and internal rational number print to
false.
(%i4) Solve 1.40%/1.27% = (9.5AR)/(9.5LR/n) for n.
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Problem 19.5 Diameters of the m-th and (m + 10)-th dark rings formed in Newton’s
rings experiment are 0.14 cm and 0.86 cm, respectively. When the space between the
lens and the glass plate is filled with water, the diameters of the p-th and (p + 10)-th
dark rings are 0.23 cm and 0.77 cm, respectively. Calculate the index of refraction
of water.

Solution

For a Newton’s rings experiment, the radii of the m-th and (m + 10)-th dark rings
are (Eq. 19.10),

Fm = VmAR, (19.11)

w10 = v/ (m + 10)AR, (19.12)

where A is the wavelength of light and R is radius of curvature of the lens. We have
substituted index of refraction of air to be n = 1.00 in both equations.

When water fills the space between the lens and the glass plate, the p-th and (p +
10)-th radii of the dark rings are (Eq. 19.10),

»
rp=\PER (19.13)

A
rp+1o=‘/(P+10);R, (19.14)

where 7 is the index of refraction of water.
Squaring and subtracting Eqs. (19.12) and (19.11) give,

r2. 1 —r2 = 10AR. (19.15)

Squaring and subtracting Egs. (19.14) and (19.13) give,

10AR
Fpei0 = Tp = —— (19.16)

The index of refraction of water can be calculated from Egs. (19.15) and (19.16),

Toi10 = "o _ dy 1o — d, _ (0.86 cm)? — (0.14 cm)® 133
—d2 (077 cm)? —(0.23cm)>

n —= =
2 _ 2 2
Tot10 = 7p d;i10



510 19 Interference of Light

e wxMaxima codes:

%$il) fpprintprec: 5;

(

(fpprintprec) 5

(%$12) n: (0.8672-0.1472)/(0.7772-0.23"2);
(n) 1.3333

Comments on the codes:

(%il) Set floating point print precision to 5.
(%i12) Calculate n.

Problem 19.6 A thin air wedge of angle 6 shown in Fig. 19.7 is made from two
glass plates. The air wedge is illuminated by a light of wavelength A. Interference of
light is formed while bright and dark fringes are observed. Show that the separation
between adjacent bright fringes is A/(26).

Solution 19.6

Figure 19.8 shows the air wedge and the locations of the m-th and (m 4+ 1)-th bright
fringes. Here, x,, and x,,,; are the distances from the wedge edge, while d,,, and d,,,+
are the corresponding thicknesses of air.

Bright fringes are obtained if (Eq. 19.7),
2d,, = (m + l)k
m = (m 7%
1
20x, = (m + E)A,
(m + 1) -
Xm = (m )54
2720

where the fact that & = d,,/x,, was used as angle 6 is small. The path difference
between the rays reflected from the lower and upper glass plates is 2 dm.

Fig. 19.7 Air wedge of
Problem 19.6

Fig. 19.8 Air wedge,
Problem 19.6
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For the adjacent bright fringe, we have,

1
2dp41 = (m+1+ 5))\,

1
29x171+1 =m+1+ 5))\1
1A
_)__

m = 1 ’
Xm+1 = (m + +229

where the fact that 0 = d,,+1/x,,+1 Was used as angle 6 is small.
Therefore, the separation between adjacent bright fringes is,

S BT L A
Ll = m = 0 2720 T 2%
A

Additional question: What is the separation between bright fringes if the
wavelength of the light is 630 nm and the air wedge angle is 0.02°?

Answer: The separation is,

A . 630 x 107? m
20 2(0.027/180 rad)

=9.0x 107* m.

Xm+1 — Xm =

e wxMaxima codes:

(%$1i2) fpprintprec:5; float(630e-9/(2*0.02*%pi/180));
(fpprintprec) 5
(%02) 9.0241*10"-4

Comments on the codes:

(%i12) Set floating point print precision to 5 and calculate the separation distance.

Problem 19.7 An air wedge of angle 40 arc second is formed using two glass slides,
Fig. 19.9. Bright and dark fringes are formed when the air wedge is illuminated by
a monochromatic light and the separation distance between adjacent dark fringes is
found to be 0.12 cm. Calculate the wavelength of the monochromatic light.

Solution 19.7

Figure 19.10 shows the air wedge, the wedge angle, 0, the distance of the dark fringe
to the end of the wedge, x, and the thickness of air, d.
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Fig. 19.9 Air wedge of
Problem 19.7

@ = 40 arc second

Fig. 19.10 Air wedge,
Problem 19.7

6?' =40 arc second

‘We have,
1 degree = 60 arc minute = 60 x 60 arc second.
The angle is,

40 40 T
6 = 40 arc second = degree = X —— rad
60 x 60 60 x 60 180
=1.939 x 107 rad.
A dark fringe is obtained if (Eq. 19.8),
2d,, = mA. (19.17)
An adjacent dark fringe is obtained if,
2dyye1 = (m+ 1A (19.18)
Angle 6 is small, we have
d, dy
o= =
Xm Xm+1

Using this equation, Eqs. (19.17) and (19.18) are written as,

20x,, = mA,
20x,+1 = (m + DA.

From these two equations, the separation between adjacent dark fringes is,

A

Ax = Xm+1 — Xm = %
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The wavelength of the light is,

A =20 Ax = 2(1.939 x 107%)(0.12 x 1072 m)
=47x%x 107 m.

e wxMaxima codes:

($13) fpprintprec:5; theta:float (40/3600*%pi/180); delta x:0.12e-2;
(fpprintprec) 5

(theta) 1.9393*10"-4

(delta_x) 0.0012

(%¥14) lambda: 2*theta*delta_x;

(lambda) 4.6542*10"-7

Comments on the codes:

(%13) Set floating point print precision to 5, assign values of 6 and Ax.
(%i14) Calculate A.

Problem 19.8 In a Young’s double slit experiment, the double slit separation is d =
0.12 mm, the distance between the double slit and the screen is D = 110 cm and the
wavelength of light used is A = 546 nm.

(a) Plot the average intensity of the interference pattern.

(b) Calculate the distance between the central maximum and the point where the
intensity is 75% of the central maximum.

(c) Calculate the distance between adjacent bright fringes.

Solution

(a) Average intensity of interference pattern of Young’s double-slit experiment is
(Eq. 19.5),

nd
Iaverage =1 COS2 ()\.D y)
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where [ is the intensity of the bright central maximum, d is separation distance
of the slits, D is distance between the slits and the screen, y is distance from the

central maximum on the screen, and A is wavelength of light.

® Plot of I yeragello against y for —0.01 <y < 0.01 m by wxMaxima:

(%15) fpprintprec:5; d:0.12e-3; D:1.1; lambda:546e-9; I0:1;
(fpprintprec) 5

(d) 1.2*10"-4

(D) 1.1

(lambda) 5.46*10"-7

(I0 1

(%1 Iaverage: I0*cos ($pi*d*y/ (lambda*D))"2;

(Iaverage) cos (199.8*%pi*y) "2

(

%i7) wxplot2d(Iaverage, [y,-0.01,0.01], grid2d, [xlabel,"{/Helvetica-
Italic y} (m)"], [ylabel,"{/Helvetica-Italic I_{average}/I_0}"]);

1 O PR e
09} i
08} i
0rh 1

o 06} i

E‘ 0s .

= 04t I
03} .
02} .
01} |

; Nt ge o ol f W G W
001 -0.008 0.006 -0.004 0002 0 0002 0.004 0.006 0.008 001
y (m)

Comments on the codes:

(%15) Set floating point print precision to 5, assign values of d, D, A, and 1.
(%16) Define I y¢rqq¢ as a function of y.
(%i17) Plot I 4yerqge against y for —0.01 <y < 0.01 m.
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(b) The value of y such that the intensity is 75% of that of central maximum is
calculated as follows,

d
Iaweragezlocos2 T[_y s
AD
wd
0.75Iy = Iycos*| —y ),
0 o0 COS (Kl)y>
cos (}\ ) +0.75 = 0.866,

d
o= 2%y = cos'(0.866) = 0.524,

rD
OAD  0.524(546 x 10~° m)(1.10 m) D
wd 7(0.12 x 103 m)

e wxMaxima codes:

(%i4) fpprintprec:5; d:0.12e-3; D:1.1; lambda:546e-9;
(fpprintprec) 5

(d) 1.2*10"-4

(D) 1.1

(lambda) 5.46*107-7

($15) theta: acos(sqrt(0.75));

(theta) 0.5236

(%17) y: theta*lambda*D/ (%pi*d); float(%);

(y) 0.0026206/%pi

($07) 8.3417*10"-4

Comments on the codes:

(%i4) Set floating point print precision to 5, assign values of d, D, and A.
(%15), (%17) Calculate 6 and y.

e Alternative calculation:

%$15) fpprintprec:5; ratprint:false; d:0.12e-3; D:1.1; lambda:546e-9;
fpprintprec) 5

ratprint) false

d) 1.2*10%-4

D) 1.1

lambda) 5.46*10"-7

(%$17) solve (cos(%$pi*d*y/ (lambda*D))=sqrt(0.75), y)$ float(%);

solve: using arc-trig functions to get a solution

Some solutions will be lost.

(%07) [y=8.3417*10"-4]

(
(
(
(
(
(
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Comments on the codes:

(%i5) Set floating point print precision to 5, internal rational number print to false,
assign values of values of d, D, and A.
(%i7) Solve cos (Z2y) = +/0.75 for y.

® Plot of /4yerage/lo against y for —9 x 107 <y <9 x 107* m by wxMaxima:

%15) fpprintprec:5; d:0.12e-3; D:1.1; lambda:546e-9; I0: 1;

fpprintprec) 5
d) 1.2*10"-4

D) 1.1

lambda) 5.46*10"-7
I0) 1

%16) Iaverage: IO*cos (%pi*d*y/ (lambda*D))"2;

Taverage) cos(199.8*%pi*y)"2

%17) wxplot2d(Iaverage, [y,-9e-4,9e-4], grid2d, [xlabel,"{/Helvetica-
talic y} (m)"], [ylabel,"{/Helvetica-Italic I {average}/I 0}"]);

-'rareragn/-"ﬁ

u ? L Il ] ] Il ] 1 1 1
-0.0008 -0.0006 -0.0004 -0.0002 0 00002 0.0004 00006 00008

¥ (m)

Comments on the codes:

(%15) Set floating point print precision to 5, assign values of d, D, A, and I.
(%i16) Define I syerage-
(%i7) Plot I yyerage againsty for —9 x 107 <y <9 x 10™* m.
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(c) The distance between adjacent bright fringes is,

(m+1DAD mAD  AD
AY = Ymtl = Ym = - =—

d d d
(546 x 10 m)(1.10 m)
- 0.12x 103 m

=50x 107 m.

e wxMaxima codes:

%1

(%i4) fpprintprec:5; d:0.12e-3; D:1.1; lambda:546e-9;
(fpprintprec) 5

( 1.2*10"-4

(D) 1.1

(lambda) 5.46*10"-7

($i5) delta y: lambda*D/d;

(delta_y) 0.005005

Comments on the codes:

(%i14) Set floating point print precision to 5, assign values of d, D, and A.
(%i15) Calculate Ay.

Problem 19.9 Calculate the thickness of a soap film so that light of wavelength
600 nm incident on it is reflected constructively to get interference pattern. Index of
refraction of soap film is 1.33.

Solution

Figure 19.11 shows the soap film of thickness, #, incident ray, and reflected rays.
Condition of constructive interference is (Eq. 19.7),

1
2nt=(m+§))», m=0,1, 2, ...

The thicknesses of the soap films are,

t=( —i—l))L =0,1, 2
_m 22”7 m 9 b 9
a3 s

T 4n’ 4n’ 4n’

_ 600 nm  3(600 nm) 5(600 nm)
T 4(1.33)° 4(1.33) ° 4(1.33) T
= 113 nm, 338 nm, 564 nm, ...
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Fig. 19.11 Light 180° phase
interference by a soap film, no phase
1=600nm change
Problem 19.9 change
air
AN
|
soap | ¢
film :
Il n=133
\4

e wxMaxima codes:

%1i3) fpprintprec:5; lambda:600e-9; n:1.33;

(

(fpprintprec) 5
(lambda) 6.0*10"-7

(n) 1.33

($14) t: lambda/ (4*n);
(t) 1.1278*107-7
(%i5) t: 3*lambda/ (4*n)
(t) 3.3835*10"-7
(%16) t: 5*lambda/ (4*n)
(t) 5.6391*10"-7

Comments on the codes:

(%13) Set floating point print precision to 5, assign values of A and n.
(%i4), (%i5), (%16) Calculate ¢.

Problem 19.10 Calculate the thickness of magnesium fluoride to be coated on glass
so that a light of wavelength 500 nm incident on them is least reflected. Index of
refraction of magnesium fluoride is n,, = 1.38 and that of glass is n, = 1.52.

Solution

Figure 19.12 shows the magnesium fluoride layer, glass, incident ray, and reflected
rays.

Reflection of light ray at air-magnesium fluoride interface results in 180° phase
change, so is reflection at magnesium fluoride-glass interface, because both reflec-
tions are from higher index of refraction materials. As a result both reflected rays are
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Fig. 19.12 Light 180° phase
interference by a magnesium — 180° phase
fluoride coating, Problem A=500nm Change h p
19.10 change
. a=1.00
air
A
|
|
magnesium ¢
fluoride | nm=1.38
\'2
glaSS ng= 1.52

in phase. Because we want both reflected rays to be out of phase, the path difference
2t is one-half of a wavelength. The wavelength of light in magnesium fluoride is A/
ny,. To get destructive interference,

1
2 = ——.
21,

The thickness of the magnesium fluoride layer is,

; A 500 nm 90.6
= — = —— = .0 nm.
4n,  4(1.38)

e wxMaxima codes:

(%13) fpprintprec:5; lambda:500; n m:1.38;
(fpprintprec) 5

(lambda) 500

(n_ ) 1.38

(%$14) t: lambda/ (4*n_m);

(t) 90.58
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Fig. 19.13 Newton’s rings /l
experiment, Problem 19.11 // |
/)
/o
/ 1 no phase
/ ' change
R / l AN
/ | AN
/ IR —d AN
/ : 180° phase
/ | ;/" change
|
/ |
4 1
|

Comments on the codes:

(%i13) Set floating point print precision to 5, assign values of A and n,,.
(%i4) Calculate t.

Problem 19.11 For a Newton’s rings experiment, show that the radius of bright ring

is,
/ 1 AR
r=,/(m+-=-)—, m=0,1, 2, ...
2" n

where R is the radius of curvature of the lens, A is wavelength of light, and # is index
of refraction of the medium between the lens and glass plate.
Solution

Figure 19.13 shows the setup of Newton’s rings experiment. Here, R is the radius of
curvature of the lens, r is radius of a bright ring, and d is thickness of the medium
with refractive index n.

Using the Pythagoras’ theorem,

RP=r’+R—-d)?=r*+R*>—2Rd +d°,
2Rd = r* +d°.

Because 72 >> d2, we write,

2Rd =2,
r2

2d = —.
R

From the figure, 2d is the path difference of upward reflected rays from the lens
and the glass plate. The ray reflected upward from the lens has no phase change,
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while the ray reflected upward from the glass plate has a 180° phase change. To get
constructive interference,

2 =" =t byl
= = (m o
1_AR
r= (m+§)_7 m_os ]’ 21

where A/n is the wavelength of light in the medium with refractive index n.

e wxMaxima codes:

1) solve(r”2/R = (m + 1/2)*lambda/n, r);
1) [r=-sqgrt((2*R*m*lambda)/n+ (R*lambda)/n)/sqrt(2),
r=sqrt ( (2*R*m*lambda) /n+ (R*lambda) /n) /sqrt (2) ]
) radcan (%) ;
) [r=-(sgrt(R)*sqrt (2*m+1) *sqrt (lambda) )/ (sqrt (2) *sqrt(n)),
r=(sqrt (R) *sqrt (2*m+1) *sqrt (lambda) ) / (sqrt (2) *sqrt (n)) ]

Comments on the codes:

(%il) Solve &= = (m + 1) for r.
(%i2) Simplify the output.

(%02) The solutions.

Problem 19.12 In a Newton’s rings experiment, the wavelength of light used is
6700 A and the 20-th dark ring is 11 mm in radius. Calculate,

(a) the thickness of air at the point
(b) the radius of curvature of the lens.

Solution

(a) Figure 19.14 shows the lens, glass plate, and geometry of the Newton’s rings
experiment.
The air thickness between lens surface and glass surface changes by A/2 when
we move from a dark ring to adjacent dark ring. Thus, thickness of 20-th dark
ring is,

A 6700 x 1071 m »
d=20x5=20x —————=67x10"°m.

(b) From Fig. 19.14 and the Pythagoras’ theorem,

RP=r"+((R—-d’=r>+R*—2Rd +d*,
2Rd =r* +d”.
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Fig. 19.14 Newton’s rings /
experiment, Problem 19.12 /

As r? >> d?, we write

2Rd = r?,
r2
R=—.
2d

The radius of curvature of the lens is,

P2 (11 x 1073 m)?

Re—=——— - 7
2d ~ 2(6.7 x 10~ m)

=9.0 m.
e wxMaxima codes:

%$13) fpprintprec:5; lambda:6700e-10; r:1le-3;
pprintprec) 5
ambda) 6.7*107-7

) 0.011

i4) d: 20* (lambda/2);
) 6.7*10%-6

i5) R: r”2/(2*d);

) 9.0299

Comments on the codes:
(%i3) Set floating point print precision to 5, assign values of A and r.

(%14), (%i5) Calculate d and R.
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19.3 Summary

e Interference effects show the wave nature of light.
¢ Interference of lightis an effect of superposition of light waves at a point. Persistent
interference pattern exists if,

(a) wave sources are coherence (that is, the phase difference of sources is
constant),

(b) the sources are monochromatic (that is, the same wavelength) and

(c) linear superposition principle is obeyed.

e Examples of interference effects of light are bright and dark rings in Newton’s
ring experiment, bright and dark fringes of Young’ double-slit experiment, and
bright and dark fringes in air wedge.

19.4 Exercises

Exercise 19.1 In Young’s double slit experiment, the separation between slits is 5.0
x 1073 m and the screen is 2.0 m away from the slits. The third-order bright fringe
is 6.2 cm from the central bright fringe. Determine the wavelength of the light.

(Answer: 5.2 x 1077 m)

Exercise 19.2 Light of wavelength 500 nm is incident on a layer of oil whose index
of refraction is 1.46. What is the minimum thickness of the layer so that the reflected
lights interfere constructively?

(Answer: 8.56 x 1078 m)

Exercise 19.3 In Young’s double-slit experiment, light of wavelength 500 nm illu-
minates two slits that are separated by 1.0 mm. The screen is 5.0 m away. Calculate
the separation between adjacent bright fringes on the screen.

(Answer: 2.5 x 1073 m)

Exercise 19.4 Laser light of wavelength 630 nm in Young’s double-slit experiment
produces an interference pattern in which the adjacent bright fringes are separated
by 8.4 mm. A second light produces an interference pattern in which the adjacent
bright fringes are separated by 7.5 mm. What is the wavelength of this second light?

(Answer: 560 nm)

Exercise 19.5 Calculate the thickness of magnesium fluoride to be coated on glass
so that a light of wavelength 400 nm incident on them is least reflected. Index of
refraction of magnesium fluoride is 1.38 and that of glass is 1.52.

(Answer: 72.5 nm)



Chapter 20 ®)
Diffraction of Light oo e

Abstract Problems on diffraction of light are solved in this last chapter. Diffraction
is bending or spreading of light at aperture or obstacle. Problems on diffraction by a
single slit and diffraction by a grating and its resolving power are discussed. Solutions
obtained by analysis and computer calculation of wxMaxima are presented.

20.1 Basic Concepts and Formulae

ey

@

3

“

When light waves encounter an aperture or an obstacle, the waves spread out
as they travel and undergo interference. This is called diffraction. Diffraction of
light is due to interference of continuous distribution of coherence sources of
light.

The Fraunhofer diffraction pattern of light by a single slit of width a on a screen
consists of a bright central region and an alternating dark and bright regions is
shown in Fig. 20.1.

The angle, 9, of the dark fringe is given by,

A
sin =m—, m==+1, £2, ... (20.1)
a

where A is the wavelength of light, a is width of the slit, and m is order number.
The intensity of light, 7, on the screen, varies with angle, 6, according to,

2masind

. , (20.2)

/- Io[sin(ﬁﬂ)
B/2

and /) is the intensity at @ = 0, as shown in Figure 20.2.

Rayleigh criterion states that two images formed by an aperture are just resolved
if the central maximum diffraction pattern of one image falls on the first
minimum of the other.

2
] , where g =
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Figure 20.3 shows intensity patterns of two slits that are just resolved
according to the Rayleigh criterion. The intensity patterns are drawn separately
in (a), while the intensity pattern of both is shown in (b).

The limiting resolving angle for a diffraction by a slit of width, g, is,

A
Omin = —. (20.3)
a

The limiting resolving angle for a circular aperture of diameter, D, is,

A
Omin = 1.225. (20.4)

<

slit lens screen

diffraction
pattern

Fig. 20.1 Single slit diffraction. Light of wavelength \ is incident on a narrow slit of width a.
Diffraction pattern is observed on a screen. The angle of the dark fringe is 0

Fig. 20.2 Intensity of light / I
against 8/2 of a single slit
diffraction
Io
D I h D

3z 27 -7 O T 2z 3zm P2



20.1

Basic Concepts and Formulae 527

e
(a) (b)

Fig. 20.3 Intensity patterns of two slits that are just resolved according to the Rayleigh criterion.
The intensity patterns are shown separately in (a), while the intensity pattern as observed on the
screen is shown in (b)

(&)

A diffraction grating consists of packed identical slits. Condition for maximum
intensity (bright fringe) is,

dsinf =mi, m=0,1,2,... (20.5)

where d is the distance between slits, 6 is diffraction angle, A is wavelength of
light, and m is order number of the diffraction pattern. Zeroth-order maximum
is at angle, 0 = 0; first-order maximum corresponding to m = 1, is at angle, 9,
satisfying sin 6 = A/d; second-order maximum corresponding to m = 2, is at
angle, 0, satisfying sin 8 = 2A/d; and so on.

Figure 20.4 shows the diffraction of a monochrome light by a diffraction

grating.
From Eq. (20.5) and Fig. 20.4, one writes,
A
6, = sin~! <m—> (20.6)
d
AD
Ym &~ _md . (20.7)

Resolving power, R, of a diffraction grating at m-th order diffraction is,

R=Nm=—, (20.8)
AA

where N is the number of lines of the diffraction grating, AX is wavelength
separation of two monochromatic light waves that are barely distinguishable
and A is their mean wavelength.
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intensity

pattern order,
m

'A:
|

.;

]
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W= O =N W

€ >
D
light diffraction
beam  grating screen

Fig. 20.4 Diffraction of a monochrome light by a diffraction grating. Light of wavelength A is
incident on a diffraction grating with slit separation d. Bright fringe is observed on a screen a
distance D away, at angle 6 or a distance y from the central maximum

20.2 Problems and Solutions

Problem 20.1 A plane wave of monochromatic light (A = 5900 A) is incident on a
slit of width, a = 0.04 mm. A converging lens (f = 470 cm) is placed behind the
slit to focus the light on a screen. What is the separation between the first and the
second minima?

Solution

Figure 20.5 shows the slit, lens, screen, and geometry of the single slit diffraction.
Also shown on the far right is the diffraction pattern. Here, a is the width of the slit
and 6 is the diffraction angle.

2y S P
A 0 e
a \l/ ==:I_|:—__:—__I: __________________
= 0
/I\ \ _;'I e
o
slit lens screen

Fig. 20.5 Single slit diffraction experiment, « is slit width and 6 is angle of dark fringe, Problem
20.1
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For this diffraction, the minimum (dark) is obtained if (Eq. 20.1),
a sinf = ml\, m==l1, 2, ...
As 0 is a small angle, sin 6 ~ 6, one writes,
ab, = mh,
A
Op =m—, m==l1, £2, ...
a
For the first minimum (first dark fringe), the diffraction angle is,

5900 x 1070 m

9 == = =1.5x 1072 rad.
1= T 004x103m A

For the second minimum, the diffraction angle is,

A 5900 x 10710 m .
h=2x —=2x ————— =29 x 107~ rad.
a 0.04 x 103 m

The angular difference of the two minima is,
AO =6, —0; = 1.5 x 1072 rad.
The separation of the two minima is

Ay=f-A0=0.70m x 1.5 x 1072 = 0.01 m.

e wxMaxima codes:

$i4) fpprintprec:5; lambda:5900e-10; a:0.04e-3; f:70e-2;

fpprintprec) 5
lambda) 5, 9=10*=7
a) 4.0%10"-5

f) 0.7

(

(

(

(

(

(%i5) thetal: lambda/a;

(thetal) 0.01475

($16) theta2: 2*lambda/a;
(theta2) 0.0295

(%¥17) delta_theta: theta2-thetal;
(delta theta) 0.01475

(%18) delta y: f*delta theta;
(delta_y) 0.010325
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—> a\J/ e 1y
—-> ———=——-—--_-1) _ _ _ _ _ _ ____________ OV
- 4\| D=20m

slit screen

Fig. 20.6 Single slit diffraction experiment, a is slit width, 6 is angle of dark fringe, y is on-screen
distance of dark fringe, and D is slit-screen distance, Problem 20.2

Comments on the codes:

(%i4) Set floating point print precision to 5, assign values of X, a, and f.
(%i5), (%i6) Calculate 6; and 6,.
(%i17), (%18) Calculate A and Ay.

Problem 20.2 A light of wavelength 580 nm is shined on a slit of width 0.30 mm.
A screen is positioned 2.0 m away from the slit. Determine,

(a) the location of the first dark fringe,
(b) the width of the central bright fringe,
(c) the width of the first bright fringe.

Solution

(a) Figure 20.6 shows the slit, lens, and geometry of the problem. Here, a is the
width of the slit, 6 is angle of diffraction, and D is distance between the slit and
the screen.

The first dark fringe satisfies a sin 8; = A (Eq. 20.1). This means that,

A
sinfy = 4= = 421,
a D
DL (2.0 m)(580 x 10~ m) .
yy=+—=4= =439 x 107" m.
a 0.30 x 103 m

(b) The width of the central bright fringe is two times y,
2y, =7.7 x 1073 m.

(c) The first-order bright fringe is located between the first and second dark fringes,
that is, between y; and y,. Calculate y,,
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2D%  2(2.0 m)(580 x 10~ m)

=77x10"3 m.
a 030 x 103 m o

Y2 =
The width of the first-order bright fringe is,

Y=y =77x10"m-39x10°m=39x 10" m.

e wxMaxima codes:

%14) fpprintprec:5; lambda:580e-9; a:0.3e-3; D:2;

(

(fpprintprec) 5

(lambda) 5.8*10"-7

(a) 3.0*107-4

(D) 2

($15) yl: D*lambda/a;

(yl) 0.0038667

(%¥16) width of central bright fringe: 2*yl;
(width of central bright fringe) 0.0077333
($17) y2: 2*D*lambda/a;

(y2) 0.0077333

(%18) y2-yl;

(%08) 0.0038667

Comments on the codes:

(%i4) Set floating point print precision to 5, assign values of A, a, and D.
(%15) Calculate y;.

(%i16) Calculate the width of the central bright fringe.

(%i7) Calculate y,.

(%i18) Calculate the width of first-order bright fringe.

Figure 20.7 shows the intensity of the diffraction pattern. Diffraction angle of the
first dark fringe is 6, and the location of the fringe is y;. Diffraction angle of the
second dark fringe is 6, and the location of the second dark fringe is y,. The width
of central bright fringe is 2y; and the width of the first bright fringe is y, — y;.

Problem 20.3 Figure 20.8 shows a curve of intensity, /, against /2 of a single slit

diffraction. The intensity is given by,

. 2 .
I = IO[SIHI;%Z):I , where ,3 — Znaflné’

and /) is the maximum intensity of the central bright fringe. Calculate the intensity
ratio of first- and second-order maxima (/; and I,) to that of central maximum, /,
that is, calculate 7,/ and I,/I.

Solution

The first-order intensity maximum, /, is located approximately in the middle of g/
2 =m and B/2 = 2m, that is, at 8/2 = 37/2. The intensity ratio of the first maximum
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Fig. 20.7 Intensity of the diffraction pattern
Fig. 20.8 Intensity / against I
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to that of the central maximum is,

Lo [sin(3n/2)

2
- — 0.045.
Io 372

The second-order intensity maximum, /5, is located approximately in the middle
of B/2 =2m and B/2 = 3m, that is, at 8/2 = 57/2. The intensity ratio of the second
maximum to that of the central maximum is,

2 . [sin(Sn/2)

2
= = 0.016.
Iy 57t/2 i|

This means that, /| and I, are approximately 4.5% and 1.6% of [, respectively.
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e wxMaxima codes:

($11) fpprintprec: 5;

(fpprintprec) 5

(%$13) Il _over I0: (sin(3*%pi/2)/(3*%pi/2))"2; float(%);
(I1 _over I0) 4/(9*%pi~2)

(%03) 0.045032

($15) I2 over IO: (sin(5*%pi/2)/(5*%pi/2))"2; float(%);
(I2 over I0) 4/(25*%pi~2)

(%05) 0.016211

Comments on the codes:

(%il) Set floating point print precision to 5.
(%i13), (%15) Calculate 11/1y and I,/1.

Further question: Plot the intensity, /, against /2 of a single slit diffraction to check
the results.

e Plot of I against /2 for — 4w < /2 < 4 rad by wxMaxima:

i2) I0:1; I:I0*(sin(betaovertwo)/betaovertwo)"2;
) 1

sin (betaovertwo) "2 /betaovertwo”2
%$i3) wxplot2d(I, [betaovertwo, -4*%pi, 4*%pil], [y,0, 0.1]1, grid2d,
[xlabel, "{/Symbol-Italic b/2} (rad)"]l, [ylabel,"{/Helvetica-Italic
I/I_0}"1);

01 T T T T T
0.08 - -
0.06 -

N 5 1

004 | 4
002 I I .
/\/\ AR RVAVAN

10 5 0 5 10

£/2(rad)
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Comments on the codes:

. 2
(%i2) Assign Ip = 1 and define [ = 10[%

(%i3) Plot I against 8/2 for — 4 rad < B/2 < 4x rad.

Problem 20.4 In a single slit diffraction experiment, a light of wavelength 580 nm
is incident on a slit of width 0.30 mm. A screen is located 2.0 m away from the slit.
By setting the intensity of central maximum as Iy = 1.00, plot the curve of

(a) intensity, I, versus angle of diffraction, 0, in radian,
(b) intensity, I, versus angle of diffraction, 6, in degree,
(c) intensity, , versus distance on the screen, y.

Solution

(a) Intensity, I, at angle of diffraction, 0, is given by,
I=1I, S1“(/3/2)

Where :3 — 27-ra;m0

To plot the curve by wxMaxima, first, assign the values of wavelength, 2,
slit width, a, slit-screen distance, D, and intensity of the central maximum, /.
Next, define 8 in terms of 6 (radian) and [ in terms of S. Lastly, plot I against
0 (radian) using the wxplot2d function.

e Plot by wxMaxima:

5) fpprintprec:5; lambda:580e-9; a:0.3e-3; D:2; I0:1;

(%1

(fpprintprec) 5)

(lambda) 5.8*%10"-7

(a) 3.0*10"-4

(D) 2

(I0) 1

(%16) beta: 2*$pi*a*sin(theta)/lambda;

(beta) 1034.5*%pi*sin(theta)

(%$17) I: IO*sin(beta/2)"2/(beta/2)"2;

(I) (3.7378*107-6*sin(517.24*%pi*sin(theta))"2)/ (%pi~2*sin(theta)"2)
(%18) wxplot2d (I, [theta,-0.006,0.006], grid2d, [xlabel,"{/Symbol-Italic Q}
(rad)"], [ylabel,"{/Helvetica-Italic I/I 0}"]);
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Comments on the codes:

(%15) Set floating point print precision to 5, assign values of A, a, D, and ;.
(%16), (%i7) Define 8 and I.
(%i18) Plot 7 against 6 for — 0.006 < 6 < 0.006 rad.

(b) Assign the values of wavelength, A, slit width, a, slit-screen distance, D, and
intensity of the central maximum, /. Define B in terms of 6 (degree) and I in
terms of B. Plot I against 6 (degree) using the wxplot2d function.

e Plot by wxMaxima:

(%15) fpprintprec:5; lambda:580e-9; a:0.3e-3; D:2; I0:1;
(fpprintprec) 5

(lambda) 5.8*10"-7

(a) 3.0*%10"-4

(D) 2

(I0) 1

(%16) beta: 2*%pi*a*sin(degree*%pi/180)/lambda;

(beta) 1034.5*%pi*sin((%pi*degree)/180)

(%17) I: IO*sin(beta/2)"2/ (beta/2)"2;

(I) (3.7378*10%-6*sin(517.24*%pi*sin(($pi*degree)/180))"2)
/(%p1A2*51n((%pi*degree)/lBO)AZ)

($18) wxplot2d(I, [degree,-0.5,0.5], grid2d, [xlabel,"{/Symbol-Italic Q}
(

degree) 1, lylabel,"{/Helvetica-Italic I/I 0}"]);
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Comments on the codes:

(%15) Set floating point print precision to 5, assign values of A, a, D, and ;.
(%16), (%i17) Define B and I.
(%i18) Plot 7 against 6 for —0.5° <6 < 0.5°.

(c) The intensity, /, at position, y, is

. 2 .
1= 1| SE2 ], where p = Zueint — 2z,

because sin 6 = y/D. To plot I against y, assign the values of wavelength, A,
slit width, a, slit-screen distance, D, and intensity of the central maximum, /.
Next, define § in terms of y and [ in terms of . Lastly, plot / against y using
the wxplot2d function.

e Plot by wxMaxima:

%15) fpprintprec:5; lambda:580e-9; a:0.3e-3; D:2; I0:1;

fpprintprec) 5

lambda) 5.8*10"-7

a) 3.0%10"-4

D) 2

I0) 1

%16) beta: 2*%pi*a*y/lambda;

beta) 1034.5*%pi*y
7) I: IO*sin(beta/2)"2/(beta/2)"2;
(3.7378*107-6*sin(517.24*%pi*y)"2)/ ($pit2*y”"2)
) wxplot2d(I, [y,-0.012,0.012], grid2d, [xlabel,"{/Helvetica-Italic y}
m)"], [ylabel,"{/Helvetica-Italic I/I _0}"]);
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Comments on the codes:

(%15) Set floating point print precision to 5, assign values of A, a, D, and ;.
(%16), (%i7) Define 8 and I.
(%i18) Plot  against y for —0.012 <y < 0.012 m.

Problem 20.5 A light of wavelength, A = 580 nm, is incident to a slit of width, a,
= 29 wm = 50A. The screen is located a distance, D = 0.8 m, away from the slit.
A diffraction pattern is observed on the screen. The experiment is repeated using
different slits of width, a; = 58 pm = 1004, and a3 = 87 wm = 150A. How do the
diffraction patterns change?

Solution

This problem is solved by plotting the intensities of the three diffraction patterns from
slits of different widths. We plot these three curves of intensity / against diffraction
angle 0 (degree),

. 2 .
I = Io[smﬂ(;;fzﬂ)il , where g = 2nal)\sm0,

. 2 .
I = Io[smﬂ(//ﬁzﬂ):l , where /3 — 27raz)tsm9’

) 2
sin(8/2 i
I = 10[%] , where 8 = M.
Assign the values of wavelength, A, slit widths, a;, a,, and a3, slit-screen distance,
D, and intensity of the central maximum, /y. Define g in terms of 6 (degree) and /

in terms of B. Plot I against 6 (degree) using the wxplot2d function.
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e Plot by wxMaxima:

(%17) fpprintprec:3; lambda:580e-9; al:50*lambda; a2:100*lambda;
a3:150*lambda; D:0.8; I0:1;

(fpprintprec) 3

lambda) 5.8*10"-7

al) 2.9*10"-5

az2) 5.8*10"-5

a3) 8.7*10"-5

0.8

1

i8) beta: float (2*%pi*al*sin(degree*3pi/180)/lambda) ;

eta) 3.14*1072*sin(0.0175*degree)

i9) Il: IO*sin(beta/2)"2/(beta/2)"2;

1) (4.05*107-5*sin (1.57*1072*sin(0.0175*degree))~2) /sin(0.0175*degree) "2
110) beta: float(2*%$pi*a2*sin(degree*%pi/180)/lambda) ;

eta) 6.28*1072*sin(0.0175*degree)

i11l) I2: IO*sin(beta/2)"2/ (beta/2)"2;

2) (1.01*10"-5*sin(3.14*10"2*sin(0.0175*degree))”2)/sin(0.0175*degree) "2
112) beta: float(2*%pi*a3*sin(degree*%pi/180)/lambda) ;

eta) 9.42*1072*sin(0.0175*degree)

i13) I3: IO*sin(beta/2)"2/ (beta/2)"2;

(4.5*10"-6*sin (4.71*10"2*sin (0.0175*degree) ) *2) /sin(0.0175*degree) "2
($114) wxplot2d([Il, I2, I3], [degree,-3,3], [y,0,1.2], grid2d,
[xlabel,"{/Symbol-Italic Q} (degree)"], [ylabel,"{/Helvetica-Italic
I/1_0}"1);

H g
o=

d0 O o0 H do O d° H de O o°

—
w

i:l.ﬂSavS!smH.STuZ'IsmiD 01?5'029@@;}2};5.“('0 o175'deg$aﬁ —
(1.01e-5"sin(3. 142+2"sin(0.0175degree))2)/sin(0. 0175 degree)2 ——
(4 Se-6"sin(4. 71e+2"sin(0.0175"degree))?)'sin(0.0175 degree)?

& (degres)
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Comments on the codes:

(%0i17) Set floating point print precision to 5, assign values of A, a, a», a3,
D, and I.

(%i8), (%19) Define § and ;.

(%i110), (%i11) Define 8 and I5.

(%112), (%i113) Define S and I5.

(%i114) Plot Iy, I, and I3 against 6 for —3° <6 < 3°.

The diffraction fringe widths decrease as the slit widths increase. This means that
narrow slit gives wide diffraction. Table 20.1 gives the angular and linear widths
of the central bright fringe (central maxima) of the three experiments. The angular
and linear widths of the central maxima are calculated as 21/a x 180/ and 2AD/a,
respectively.

Problem 20.6 Calculate separation distance of two points on the moon that are just
resolved by the Palomar Mountain telescope. Diameter of the telescope aperture is
5.0 m, earth-moon distance is 3.86 x 10° km, and A = 5500 A.

Solution

For circular aperture of the telescope, the Rayleigh resolving criterion is (Eq. 20.4),

A
Omin = 1.22—.
D
The resolving angle is,
5500 x 10710
Opin =122 x 222 2 1351077 rad.
50m

The separation distance so that two points on the moon can be resolved is,

Ax =d - Opin = 3.86 x 10° km x 1.3 x 10~/ rad = 0.052 km
=52 m.

Table 20.1 Angular and linear widths of the central maxima of a single slit diffraction

Slit width a (um) Angular width (degree) Linear width (mm)
29 2.3 32
58 1.1 16
87 0.76 11
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e wxMaxima codes:

4) fpprintprec:5; lambda:5500e-10; D:5; d:3.86e8;
fpprlntprec) 5)
lambda) 5.5*%10"-7
) 5
) 3.86*10"8

theta min: 1.22*lambda/D;

theta ~min) 1.342*10"-7
i6) delta x: d*theta min;

(%
(
(
(D
(d
(%
(
(%
(delta_x) 51.801

Comments on the codes:

(%i4) Set floating point print precision to 5, assign values of A, D, and d.
(%i5), (%i6) Calculate 6,,;, and Ax.

Problem 20.7

(a) Estimate the limiting resolving angle of human eyes. The diameter of the pupil
is 2.0 mm, index of refraction of the eye is 1.33, and the wavelength of light in
air is 550 nm.

(b) What is the spatial resolution of the eye at 25 cm away?

Solution

(a) The wavelength of light in human eye is (Eq. 4.3),

Ao 550 nm
}\‘ = — =

= 414 nm.
n 1.33

The limiting resolving angle of the eye is (Eq. 20.4),

A 414 x 10° m 4
Opin=122— =122 x ————— = 2.5 x 107" rad.
D 2.0x 103 m

(b) Atadistance of 25 cm from the eye, spatial resolution of the eye is,
Ax =d - Opin = (25 x 1072 m)(2.5 x 10~ rad) = 6.3 x 107> m.

This means that, at 25 cm away, two points that are less than 6.3 x 10—5 m
apart cannot be resolved by the eye.
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e wxMaxima codes:

%$15) fpprintprec:5; lambda0:550e-9; n:1.33; D:2e-3; d:25e-2;

t

heta min) 2.5226*10"-4
%18) delta_x: d*theta min;
delta x) 6.3064*10"-5

(

(fpprintprec) 5
(lambdaO) 5.5%10"-7
(n) 1.33

(D) 0.002

(d) 0.25

(%1 lambda: lambdaO/n;
(lambda) 4.1353*10"-7
(%17) theta min: 1.22*lambda/D;
(

(

(

Comments on the codes:

(%15) Set floating point print precision to 5, assign values of Ay, n, D, and d.
(%16), (%17) Calculate A and 6,,;,, part (a).
(%i18) Calculate Ax, part (b).

Problem 20.8 A microscope uses light of sodium lamp of wavelength 589 nm to
probe subjects. The aperture of the objective is 1.0 cm in diameter. Calculate the
limiting resolving angle.

Solution

The limiting resolving angle of the microscope is (Eq. 20.4),

A 589 x 10~
Opin = 1220 =122 222X 0 M 55 1075 rad.
D 1.0x 102 m

This means that two points subtending less than 7.2 x 107 rad at the objective
of the microscope cannot be resolved.

e wxMaxima codes:

%$13) fpprintprec:5; lambda:58%9e-9; D:1le-2;

fpprintprec) 5
lambda) 5.89*10"-7

4) theta min: 1.22*lambda/D;

(
(
(
(D ) 0.01
(%
(t eta ~min) 7.1858*10"-5



542 20 Diffraction of Light

Comments on the codes:

(%13) Set floating point print precision to 5 and assign value of A.
(%i4) Calculate 6,,,;,,.

Problem 20.9 A helium neon laser light of wavelength 632.8 nm is incident to a
diffraction grating that has 7000 lines per cm. At what angles do maximum intensities
be observed?

Solution
There are 7000 lines or slits in one cm, so the width of a slit is,

10 1.0x107

= cm = m=1.429 x 107° m.
7000 7000

For a diffraction grating, to get maximum intensities (bright fringes) (Eq. 20.5),
dsind=mx, m=0,1,2, ...
The first-order maximum, m = 1,

A 632.8 x 107
sinf = & = 220X 0 M 346,
d - 1429x106m
6, = 0.321 rad = 18.4°,

The second-order maximum, m = 2,

20 2x632.8 x 10~ m

sinf, = — = = 0.633,
d 1.429 x 107 m
6, = 0.685 rad = 39.3°.
The third-order maximum, m = 3,
- 3 3x6328x10°m 0.949
sinfy = — = = 0.949,
T 1.429 x 106 m
63 =1.25rad =71.7°.
For m = 4, calculation gives
45 4 2. 10~°
Singy = - - 4x0328x107m _, o

d 1429 %x 105m
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This cannot be because it is greater than 1. This means that the diffraction patterns
that can be observed by this laser light are first- , second- , and third-order maxima.

e wxMaxima codes:

($13) fpprintprec:5; lambda:632.8e-9; d:1/5000*1e-2;
(fpprintprec) 5]

(lambda) 6.328*10"-7

(d) 2.0*10"%-6

(%$16) sinthetal:lambda/d; thetal: asin(sinthetal);
thetal deg:float (thetal*180/%pi)

(sinthetal) 0.3164

(thetal) 0.32193

(thetal deg) 18.445

(%19) sintheta2:2*lambda/d; theta2:asin(sintheta2);
theta2 deg:float (theta2*180/%pi);

(sintheta2) 0.6328

(theta2) 0.68516

(theta2 deg) 39.257

(%112) sintheta3:3*lambda/d; theta3:asin(sintheta3);
theta3 deg:float (theta3*180/%pi);

(sintheta3) 0.9492

theta3) 1.2507

theta3 deg) 71.659

%i113) sinthetad4: 4*lambda/d;

(
(
(
(sinthetad4) 1.2656

Comments on the codes:

(%i3)  Set floating point print precision to 5, assign values of A and d.
(%16)  Calculate 8, and convert the angle to degree.
(%19) Calculate 6, and convert the angle to degree.
(%i112) Calculate 85 and convert the angle to degree.

Problem 20.10 The first-order spectrum lines are obtained at 30° when a light is
incident to a diffraction grating with 6000 lines per cm. What is the wavelength of
the light?

Solution

For a diffraction grating, a condition to get maximum intensity (bright bands) is
(Eq. 20.5),

dsin0=mir, m=0,1,2, ...

For this problem,

dsinf = mA,

1.0x 102 m (30 ) ()
————— ] sin X — ) =
6000 180 ’

A=83x10"" m.
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The wavelength of the light is 8.3 x 1077 m.

e wxMaxima codes:

%$i4) fpprintprec:5; d:1/6000*1le-2; theta:float(30/180*%pi); m:1;
fpprintprec) 5)
d) 1.6667*10"-6
theta) 0.5236

m) 1

%15) lambda: d*sin(theta);

lambda) 8.3333*10%-7

Comments on the codes:

(%i14) Set floating point print precision to 5, assign values of d, 6, and m.
(%i15) Calculate A.

20.3 Summary

e In a single slit diffraction, the condition for destructive interference is
asin =mi, m==+1, £2, £3, ...

where a is the width of the slit and 6 is diffraction angle. The intensity at a point

sin(8/2) 2

on the screen is given by Iy = IO[ i ] , where 8 = w

e The condition for intensity maxima for a diffraction grating whose slits are
separated by a distance d is

dsinf =mi, m=0, £1, £2, £3, ..

where 6 is the diffraction angle and m is order number.

20.4 Exercises

Exercise 20.1 In a single slit diffraction experiment, a light of wavelength 600 nm
is incident on a slit of width 1.90 um. What are the diffraction angles of the first and
second dark fringes?

(Answer: 6, = 18.4°, 6, = 39.2°)

Exercise 20.2 In a single slit diffraction experiment, a light of wavelength 610 nm is
incident on a slit of width 3.1 x 10~ m, and diffraction pattern is formed on a screen
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located 2.5 m away from the slit. Calculate the distance from the central maximum
to the first and second minima on the screen.

(Answer: y; = 0.049 m, y, = 0.098 m)

Exercise 20.3 An astronomical telescope has a diameter of 5.60 m. Calculate the
maximum angle of resolution for this telescope at a wavelength of 600 nm.

(Answer: 1.31 x 1077 rad)

Exercise 20.4 A beam of light of wavelength 540 nm is incident normally on a
diffraction grating with a slit spacing of 1.70 x 10~® m. What are the angles for the
first- and second-order maxima?

(Answer: 6, = 18.5°, 6, = 39.4°)

Exercise 20.5 A diffraction grating justresolves the wavelengths 610.0 and 610.2 nm
in the first order. What is the number of slits in the grating?

(Answer: 3050)



Appendix A
Introduction to wxMaxima

wxMaxima is an open computer algebra system software that can be installed on
Microsoft Windows operating system, as well as on Linux and OS X operating
systems. On mobiles, an apps Maxima On Android is available and can easily be
installed. Other popular computer algebra systems are Maple and Mathematica.
wxMaxima is a document based interface for the computer algebra system called
Maxima. Maxima was developed from the Macsyma project since 1982 by the Depart-
ment of Energy of the USA. This means wxMaxima gives menu and dialogue for
various commands, plots, and animations of Maxima.

wxMaxima is distributed under GNU General Public License.

wxMaxima can be downloaded and installed on your pc from:

https://sourceforge.net/projects/maxima/files/Maxima-Windows/.

A manual of wxMaxima can be read from:

http://maxima.sourceforge.net/docs/manual/en/maxima.html.

A short and useful tutorial to start using wxMaxima can be obtained from:

http://Math-blog.com/2007/06/04/A-10-min-tutorial-for-solving-math-pro
blems-with-maxima/.

In this book wxMaxima version 5.43.0 on Microsoft Windows was used. The
installer file was maxima-clisp-sbcl-5.43.0-win64.exe. Older or newer versions
wxMaxima would give minor changes in output display, but the calculation output
should be almost the same.

Using wxMaxima

Figure A.1 shows wxMaxima window when it is started. On top of the window are
File, Edit, View, Cell, Maxima, Equations, Algebra, Calculus, Simplify, List, Plot,
Numeric, and Help menus. Under these menus, are other menus in icons. Discussion
on using these menus is not done in this appendix

To give a command, type the command, type; to end it, and simultaneously press
<shift> and <enter> keys to execute it. wxMaxima will display its response or output.
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to Springer Nature Switzerland AG 2023
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@ wraxima 19.05.7 | unsaved” | - o x
File Edit View Cell Maxima Equations Algebra Calculss Simplify List Plot Numeric Help

B3 Ew g g W~ — .
Maxima is ready for input. Ready for user input

Fig. A.1 WxMaxima window

To exit wxMaxima, press <ctrl-Q> , click File menu and choose Exit, or click the
cross icon on the top right of the wxMaxima window.

For example, you are to calculate (3 — 0.5) x 6.54% and plot the line y = 2x
+ 3 for — 5 < x < 5. Type (3-0.5)%6.54"3; and simultaneously press <shift> and
<enter> . wxMaxima will display its result of calculation. Next, type y: 2*x + 3;
and simultaneously press <shift> and <enter> keys to define the line. Lastly, type
wxplot2d (y, [x, — 5,5]); and simultaneously press <shift> and <enter> again to
instruct wxMaxima plot the line. Figure A.2 shows the wxMaxima window after
three commands were executed.

This appendix briefly discusses how to do the calculations as in this book. These
are small set of calculations that wxMaxima can perform. Readers must study various
sources about wxMaxima or Maxima from the internet for further applications.

Simple Calculations

To calculate 2 x 5, type 2*5; and simultaneously press <shift> and <enter> keys.
For division, addition, and subtraction, use /, 4+, — . The result of calculating 2 x 5,
2+5,2+45,and 2 — 5 is as follows,

($11) 2*5;
($0l) 10
(%$12) 2/5;
(%02) 2/5
($13) 2+5;
(%03) 7
($14) 2-5;
(%04) -3
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Fig. A.2 wxMaxima input and output in the window

wxMaxima tags the input typed by user as (%i—) and the output as (%0—). These
tags could be used for further calculation. The last output is tagged as %. Typing %;
will give —3, typing %o1; will give 10, and typing %o03; will give 7.

(%1i5) %7
(%05) -3
(%i6) %ol;
(%06) 10
(%17) %03;
(507) 7

To hide the output type $ instead of ; at the end of a command, followed by simul-
taneously pressing <shift> and <enter> keys. wxMaxima executes the command and
will not display the output. Other command to hide the output is ratprint:false;. This
command will suppress display of output related to internal rational number calcu-
lation of wxMaxima. Command to limit number of digits of numerical value that is
displayed is fpprintprec, floating point print precision. For example, the command

[fpprintprec:5; will display only 5 significant digits.
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To calculate /3, type sqrt(3); and simultaneously press <shift> and <enter> keys.
To get its decimal value type float(%); and simultaneously press <shift> and <enter>
keys again, the result is,

) sqrt(3);

) sqrt(3)

) float (%);

) 1.732050807568877
) fpprintprec:5;
rintprec) 5

) float (%02);

) 1.7321

To input 2'°, type 2710 to input 3 x 108, type 3e8; and to input 1.6 x 1071, type
1.6e-19. To calculate % x 1.6 x 10! for example, we only have to type 210/
3e8*1.6e-19; and the result is,

1) 2710/3e8*1.6e-19;
1) 5.461333333333334*107-25

Let us say you want to change 2'° to 2° in the calculation. Use the computer mouse
to go to 210, and do the editing to replace 10 with 9 using <del> or <backspace>
and 9, followed by simultaneous press of <shift> and <enter> keys. The results is,

) 279/3e8*1.6e-19;
) 2.7306666666666667*10"-25

(%1
(%0

This way of editing and recalculation is very useful to correct typos and to recal-
culate. We do not have to retype the whole input, just correct the typos and simulta-
neously press <shift> and <enter> keys. This is an advantage of using a software or
an apps as opposed to using a calculator to do calculations.

Restart

To start a new calculation, click Maxima menu at top of the window, and choose
Restart Maxima. This will clear the wxMaxima memory and we can start a new
session of the calculation. We will always Restart Maxima for a new calculation.

Assignment

To assign a value of 3tom, i.e. m = 3, type m: 3;. Toassigna = 11, type a: 11;. Donot
forget to simultaneously press <shift> and <enter> for each command. Thereafter
m and a are always in the memory of the computer and can be used for further
calculation. To calculate F' = ma for example, type F: m*a; simultaneously press
<shift> and <enter> .
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(%12) m: 3; a: 11;
(m) 3

(a) 11

($13) F: m*a;

(F) 33

We frequently use this method in solving, calculating, and checking physics
problems in this book.

Substitution

The values of m and a in the previous example, can also be substituted into the
formula F = ma by function subst as follows:

($11) F: m*a;

(F) a*m

(%12) subst([m=3, a=11], F);
($02) 33

(%11) F: subst([m=3, a=11], m*a);

Function Definition

To define a function use :=. For example, define g(x) = 2x? 4+ x — 3 and calculate
g(4). This is performed by wxMaxima as follows,

Define

Another way to define a function is by predefined function define. Arguments of
define are the function and its definition. The previous example can be realized as
follows:

(%11) definition: 2*x"2 + x - 3;
(definition) 2*x"2+x-3
($12) define(g(x), definition);
(%02) g(x):=2*x"2+x-3

(513) g (4);

(%03)
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Solving an Equation

To solve an equation, use wxMaxima built-in function called solve. For example,
solve 12x 4+ 3 = 5, i.e. find x that satisfies the equation. Type solve(12*x + 3 =
5,x);, simultaneously press <shift> and <enter> keys, and wxMaxima gives x = 1/6
as a solution,

(%$11) solve (12*x+3=5,x);
(%01) [x=1/6]

oo

To use solve two arguments are needed, the first is the equation “12*x + 3 =57
and the second is the unknown variable to be found “x”. The solve built-in function
is frequently used in this book.

The output of solve is a list as indicated by the square bracket [...]. In this example,
x is not yet assigned the value of 1/6. To pick the value 1/6 from a list, the right-hand
side rhs(...) built-in function is useful. Thus, to solve the equation and assign the
solution as x, the codes are,

il) solve(1l2*x + 3 = 5, x);
$0l) [x=1/6]

i2) x: rhs(%o0l[1]);

)

To solve a quadratic equation 5y> + y — 6 = 0, type solve(5*y"2 + y—6 = 0.y);
and simultaneously press <shift> and <enter> keys. The result is,

(%1

(

il) solve( 5*y*"2 + y - 6 =0, vy);
ol) [y=-6/5,y=1]

e

Therefore, the solutions of the quadratic equation are y = —6/5and y = 1.
To solve the quadratic equation and assign the solutions as y; and y;, the codes
are,

($11) solve( 5*y*"2 + y - 6 =0, y);
(%01) [y=-6/5,y=1]

($13) yl: rhs(%0l[1]); y2: rhs(%0l[2]);
(yl) -6/5

(y2) 1
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Solving Simultaneous Equations

To solve simultaneous equations,

2x +5y =11,
x—4y =17,

type solve([2*x + 5*y = 11, x-4*y = 7], [X,y]); and simultaneously press <shift>
and <enter> keys. The result is,

($11) fpprintprec:5;

(fpprintprec) 5

(%$13) solve( [2*x+5*y=11, x-4*y=7], [x,y]); float(%);
(%02) [[x=79/13,y=-3/131]

(%03) [[x=6.0769,y=-0.23077]]

Here, the first argument of solve is a list of two equations [2*x+5*y = 11, x-4*y
= 7], and the second argument is a /ist of two variables [x,y] that are to be calculated.
The solutions of the system of equations are x = 6.07... and y = — 0.230...

To assign x and y the values of the solutions, the codes can be as follows,

1) fpprintprec:5;
printprec) 5
3) solve( [2*x+5*y=11, x-4*y=71, [x,yl); float(%);
2) [[x=79/13,y=-3/13]1]
3) [[x=6.0769,y=-0.23077]]
15) x: rhs(%03[1][1]); y: rhs(%03[1]([2]);
x) 6.0769
) -0.23077

As another example, solve the following system of equations,

3x+y—2z=0,

2x-3y+z=1,

2x+y+2z=1.

Type solve([3*x + y-z = 0, 2*x-3*y + z = 1, 2¥*x + y 4 2%z = 7],[X,y,z]); and
simultaneously press <shift> and <enter> keys. The result is,

($11) fpprintprec:5;

(fpprintprec) 5

(%$13) solve ([3*x+y-2z=0,2*x-3*y+z=1,2*x+y+2*z=7], [x,y,2z]); float(%);
(%02) [[x=17/31,y=27/31,2z=78/31]

(%03) [[%x=0.54839,y=0.87097,2z=2.5161]

Solutions of the system of equations are x = 0.54...,y = 0.87...,and z = 2.51....
To assign x, y, and z the values of the solutions, the codes can be as follows,
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($1i1l) fpprintprec:5;

(fpprintprec) 5

(%$13) solve ([3*x+y-z=0,2*x-3*y+z=1,2*x+y+2*z=7], [x,y,2]); float(%);
(%02) [[x=17/31,y=27/31,2z=78/31]
(%$03) [[x=0.54839,y=0.87097,2=2.5161]
(%14) x: rhs(%03[1][1]):

(x) 0.54839

(%$15) y: rhs(%03[1][2]);

(y) 0.87097

(%16) z: rhs(%03[1][3]);

(z) 2.5161

Angle

Angles are in radian. This means that cos(60) is cosine of 60 rad, and is not cosine
of 60°. If cosine of 60° is needed, we type cos(60/180*%pi). We convert angle in
degree to angle in rad in the argument of the built in function cos. In wxMaxima 7
is typed as %pi.

cos (60) ;

cos (60)

float (%) ;
-0.9524129804151563
cos (60/180*%pi) ;
1/2

float (%) ;

0.5

The inverse cosine, inverse sine, and inverse tangent functions, i.e. cos™!, sin”!,

and tan™! called acos, asin, and atan in wxMaxima will give angles in radians. If
angles in degrees are needed, conversion must be made by multiplying the angle in
radian by 180 and division by %pi.

1) acos(1/2);

1) %pi/3

2) float (%)

%02) 1.047197551196598
i3) float (%*180/%pi);
3) 60.0

The codes show that cos~!(1/2) = 1.047 rad = 60°.
Logarithm

The built in function log(...) is the natural logarithm (logarithm of base e). Thus,

loge=1lne =1,
log(e x e) =1n e’ =2,
log 10 = In 10 = 2.3026,
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as in the following codes,

) fpprintprec:5;
rintprec) 5

) log(%e);

1

log (%e*%e) ;

2

log(10); float(%);
log(10)

2.3026

Here, the Euler’s number e = 2.718... is typed as %e in wxMaxima.
To get logarithm of base 10, you divide log(x) by log(10), because,

log,x  Inx
~log, 10 In10°

The codes below show thatlog((0.2) = —0.69...,1ogo(1) =0, log;o(2) =0.30...,
logio(4) = 0.60...,log;p(10) = 1, and log;o(151) = 2.1....

) fpprintprec:5;

rintprec) 5

) float (log(0.2)/log(10));
) -0.69897

) float (log(l)/log(10)):;

) 0.0

) float (log(2)/log(10));

) 0.30103

) float (log(4)/log(10));

) 0.60206

) float (log(10)/log(10));
) 1.0

) float (log(151)/log(10));
) 2.179

If one defines log10(x) as log(x)/1og(10) at the beginning, then the defined function
can be used repeatedly. The above codes become,
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) 1loglO(x):= float( log(x)/log(l0) );
) loglO (x):=float (log(x)/log(10))

) fpprintprec:5;

rintprec) 5)

) logl0(0.2);

) -0.69897

) loglO(1);

) 0.0

) loglO(2);

) 0.30103

) loglO(4);

) 0.60206

) loglO(10);
) 1.0

) loglO(151);
) 2.179

Differentiation

To differentiate a mathematical expression, use wxMaxima built-in function diff. For
example given y = 2 sin(5x + 7/4), differentiate y with respect to x, i.e. find dy/dx.
We type diff(2*sin(5*x + %pi/4), x); and simultaneously press <shift> and <enter>
keys. Alternatively, we can first define y followed by the differentiation with respect
to x, that is, we input y:2*sin(5*x + %pi/4); followed by diff(y,x);. The result is,

1) diff(2*sin(5*x + %$pi/4), x);
%0l) 10*cos (5*x+%pi/4)
i2) y: 2*sin(5*x + %pi/4);
) 2*sin (5*x+%pi/4)
13) diff(y, x):
) 10*cos (5*x+%pi/4)

%pi is a predefined constant . Other predefined constants are Euler’s number
%e, Euler—-Mascheroni constant %gamma, and golden ratio %phi. Their values can
be checked as follows,

($14) float (%pi); float(%e); float (%$gamma); float (%phi);
(%$01) 3.141592653589793
(%$02) 2.718281828459045
(%03) 0.5772156649015329
(%04) 1.618033988749895
Integration

4
To integrate, use built-in function integrate. For example, calculate [ 5x%dx. Key
1

in integrate(5*x”2, x, 1, 4); and simultaneously press <shift> and <enter> keys. The
result is,
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o

(%1
(%0

) integrate (5*x7°2, x, 1, 4);

1
1) 105

This means integrate needs four arguments: function, variable, lower limit, and
upper limit.

Another built-in function to do definite integration is romberg. This is a numer-
ical integration built-in function. To calculate the same problem above, key in
romberg(5*x”2, x, 1, 4); and simultaneously press <shift> and <enter> keys. The
result is,

o©

(%11) romberg(5*x"2, x, 1, 4);
(%01) 105.0

Two-Dimensional Plot

To plot in 2D, use the built in function wxplot2d. For example, plot the curve y = x>

for —4 < x < 4. Key in wxplot2d(x"2, [x,-4,4]); and simultaneously press <shift>
and <enter> keys. The result is,

($11) wxplot2d( x"2, [x,-4,4] );

The command wxplot2d needs two arguments. First, the expression of the curve.
Second, alist consisting of the variable, the lower, and upper limits in square brackets.

Another example, plot two curves y = 0.01x? and z = sin(x)/x, for —10 < x <
10. We define the two functions and use the definitions in the wxplor2d command.
The result is,
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12) y: 0.01*x"2; z: sin(x)/x;

) 0.01*x"2

) sin(x)/x

i3) wxplot2d([y,z], [x,-10,10] );

N obre

08 - sin(x)ix — |

06 F 1
04 / _

02F \ _

-0.4 L : :

Vector

For vector calculation, vect package or module has to be loaded by the command
load(*vect”);. A vector is defined as a list in square bracket [...]. The operator for
dot (scalar) product is the dot - and for vector (cross) product is ~ followed by
express(%). For example, given vectors, A = 4i + 3j + 2k and B = 5i + 6j +
7K, calculate A-B, magnitude of A and B, the angle between A and B, A x B, and
magnitude of A x B. The wxMaxima calculation is as follows,
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%11) fpprintprec:5;

fpprintprec) 5

%$i2) load("vect");

%02) "C:/maxima-5.43.0/share/maxima/5.43.0/share/vector/vect.mac"
%14) A:[4,3,2]; B:[5,6,7];

A) [4,3,2]

B) [5,6,7]

%i5) A.B;

%05) 52

%17) magnitudeA: sqgrt(A.A); float(%):;

magnitudeA) sqgrt(29)

%07) 5.3852

%$19) magnitudeB: sqrt(B.B); float(%):;
agnitudeB) sqgrt(110)

9) 10.488

) acos (A.B/ (magnitudeA*magnitudeB)); float (%) ;
) acos (52/ (sqrt(29) *sqrt (110)))

) 0.40098

) float (%$*180/%pi);

) 22.975

) A~B; express(%);

) [4,3,2]1~[5,6,7]

) [9,-18,9]

16) magnitudeAxB: sqrt(%.%); float (%);
agnitudeAxB) 9*sqgrt (6)

ol6) 22.045

118) asin(magnitudeAxB/ (magnitudeA*magnitudeB)); float (%) ;
0l7) asin((9*sqrt(6))/ (sqrt(29)*sqrt(110)))

ol8) 0.40098

i19) float(%$*180/%pi);

019) 22.975

The calculation gives, A-B = 52, A = 5.385, B = 10.49, angle between A and B
is 23°,A x B=9i - 18j + 9k, | A x B | =22.05, angle between A and B is 23°.

Statistics

For statistics, the variable values are entered as a listz. The built-in functions mean,
var, and std can be called to calculate mean, variance, and standard deviation of the
variable. For example, calculate the mean, variance, and standard deviation of 20.4,
62.5,61.3,44.2, 11.1, and 23.7. The result is,

1) fpprintprec:5;
fpprintprec) 5
12) x: [20.4, 62.5, 61.3, 44.2, 11.1, 23.71;
X) [20.4,62.5,61.3,44.2,11.1,23.7]
i mean (x) ;
37.2
var (x) ;
402.6
std (x) ;
20.065

The wxMaxima calculation says that the mean of x is 37.2, the variance of x is
402.6, and the standard deviation of x is 20.06.
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Table. A.1 List of (x, y)
values

-0.8
-0.7
-0.2
0.2
0.1

|| DO =

12 0.7

Linear Least Square Fitting

Determine the best line y = mx + ¢ by the linear least square method of (x, y) data
in Table A.1.

To do least square line fit by wxMaxima, the (x, y) data are entered as matrix,
then load the Isquares routine by load(“Isquares’); command, lastly the predefined
command Isquares_estimates is called.

wxMaxima codes:

($11) fpprintprec:5;
(fpprintprec) 5
($12) data: matrix([0,-0.81,[2,-0.71,[4,-0.2]1,
[6,0.2],18,0.11,[10,0.6],([12,0.71);
(data) matrix(
[0, -0.8],
[2, -0.71,
[4, -0.27,
[6, 0.2],
[8, 0.1],
[10, 0.6]1,
[12, 0.7])
3) load("lsquares")

3) "C:/maxima-5.43.0/share/maxima/5.43.0/share/lsquares/lsquares.mac"”
%$i5) lsquares estimates (data, [x,y],y=m*x+c, [m,c])$ float (%);
5)
7)

7

[[m=0.13214,c=-0.80714]]

(

(

(

(

(%1 m: rhs(%05[1][1]); c: rhs(%o5([1][2]);

(m) 0.13214

(c) -0.80714

(%$18) xy: [[0,-0.81,[2,-0.7],[4,-0.2],([6,0.2],18,0.1],[10,0.6]1,1[12,0.711;
(xy) [([0,-0.8],[2,-0.7],[4,-0.2],[6,0.2],(8,0.1],([10,0.6],(12,0.7]]
($19) wxplot2d([discrete, xy], [style, points], grid2d,

[xlabel, "{/Helvetica-Italic x}"], [ylabel,"{/Helvetica-Italic y}"]);
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oo

(%$110) y: m*x + c;

(y) 0.13214*x%-0.80714

($111) wxplot2d(y, [x,0,12], grid2d, [xlabel,"{/Helvetica-Italic x}"],
[ylabel,"{/Helvetica-Italic y}"]);

(%$112) wxplot2d([[discrete,xy],v],[%x,0,12], [style, [points], [lines]],
grid2d, [xlabel, "{/Helvetica-Italic x}"], [ylabel,"{/Helvetica-Italic y}"1);
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Comments on the codes:
(%i1) Set floating point print precision to 5.
(%i2) Assign "data" as matrix of (X, y) values.
(%i13) Load "lssquares" routine.
(%15) Calculate m and c by the least square fit.
(%04), (%005) The results.
(%i17) Assign values of m and c.

(%18), (%19) Assign xy as data points and plot the points.
(%110), (%i11) Assign line y and plot the line.
(%112) Plot the data point and the line.

The calculation by wxMaxima says that the line fit has the slope m = 0.13 and the
y axis intercept ¢ = —0.81. The line fit is y = 0.13x — 0.81. We plot the data points,
the fitted line, and the data points with the fitted line in three separate plots.

Simplify

To simplify an expression use ratsimp(expression); or radcan(expression);. For
example, the following codes show that,

bx—i—b(%—x)—}—a:Za.

) b*x + b*(a/b - x) + a;
) b*x+b* (a/b-x)+a
i2) ratsimp (%) ;
) 2*a
) radcan (%0l);
) 2*a
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L
Example 1, calculate [ (1,+(¢11—Xfx)2'
0

(%$12) assume (L>0); assume (a>0);
(%01) [L>0]

(%02) [a>0]

(%i3) integrate(l/(L+a-x)"2,x,0,L);
(%03) 1/a-1/(a+L)

(%$14) ratsimp(%);

(%04) L/ (a”2+L*a)

This means that,

L

/ 11 L
(L+a—x?% a a+L a?>+al’

0

L
Example 2, calculate | (Hj—fx)m.
0

(%$12) assume (L>0); assume (a>0);

(%01) [L>0]

(%02) [a>0]

(%$13) integrate(l/(L+a-x)"(3/2), x,0,L);

(%03) 2/sqgrt(a)-2/sqrt (a+L)

(%14) radcan(%);

(%04) (2*sqgrt(a+l)-2*sqgrt(a))/ (sqrt(a)*sqrt(a+L))

This means that,

L
/ dx 2 2 2Jat+L-2Ja
J (L+a-x?" Ja JatL  Java+L

Animation

A simple animation of a harmonic wave y(x, f) = 2 sin(x — 10¢) travelling to the
right is as follows:

(%11) with slider draw(
t,[0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,17,
title=concat ("t = ",t," s"),
grid=true,
xlabel="{/Helvetica-Italic x} (m)",
ylabel="{/Helvetica-Italic y} (m)",
explicit(2*sin(x - 10*t),x,0,10));
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To run the animation, right click the graphic and choose Start Animation.
Solving Second-Order Ordinary Differential Equation

To solve a second-order ordinary differential equation (ODE), use predefined func-
tions ode2 and ic2. Function ode2 solves the ODE and gives a general solution of the
ODE. Its format is 0ode2(ODE, dependent variable, independent variable). Function
ic2 sets the initial conditions and gives a particular solution of the ODE. Its format
is ic2(output of ode2, independent variable value, dependent variable value, first
derivative of dependent variable value).

As an example, solve

;;_E 4—(0 X = 0

where w = 4m rad/s, x is displacement (dependent variable) in cm, and ¢ is time
(independent variable) in second. The initial conditions at t = 0 s, is x = 2 cm, and
dx/dt = — 24 cm/s.

The codes are:

%$12) fpprintprec:5; omega:4*%$pi;
fpprintprec) 5

omega) 4*%pi

%1i3) soln: ode2 ('
soln) x=%kl*sin (4
) ic2(soln, t=
) x=2*cos (4*%pi
) x=2.0*cos (12.
) x: rhs(%);

dlff(x t,2) + omega”2*x = 0, x, t);
*$pi*t) +%k2*cos (4*spi*t)

0, x=2, 'diff(x,t)=-24); float(%):;
i*t) - (6*51n(4*%p1*t))/%pi
566*t)-1.9099*sin (12.566*t)

1
) 2.0*%cos (12.566*t)-1.9099*sin(12.566*t)

$1i7) wxplot2d(x, [t,0,1], grid2d, [xlabel,"{/Helvetica-Italic t} (s)"],
label, "{/Helvetica-Italic x} (cm)"]);
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tis)

Comments on the codes:

(%i2)
(%i3)
(soln)

(%i5)
(%04), (%05)
(%i6)
(%i7)

Set floating point print precision to 5 and assign value of w.

Get a general solution of d?x /dt* + w’x = 0.

A general solution of the ODE is x = constant 1 x sin(4xwt) +
constant 2 x cos(4mt).

Set the initial conditions and get a particular solution.

The particular solution.

Assign x.

Plot x againstr for 0 <t < 1s.

The codes say that the solution of the ODE is, (%04) or (%05),

6
x =2cos(dmt) — — sindmt)
g

= 2c0s(12.566¢) — 1.9099 sin(12.566¢).

Another way to solve the second-order ordinary differential equation by
wxMaxima is to use predefined functions atvalue and desolve. The arguments of
desolve are the ODE and the function we want a solution. The arguments of atvalue
are the initial conditions: the dependent variable, the independent variable value, and
the dependent variable value. We solve again the above problem using predefined
functions atvalue and desolve.
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4 wsMaxima codes:

%12) fpprintprec:5; omega:4*%pi;
fpprintprec) 5
omega) 4*%pi
%$13) equation: 'diff (x(t),t,2)+omega”2*x(t)=0;
equation) 'diff(x(t),t,2)+16*%$pit2*x(t)=0
%15) atvalue(x(t), t=0, 2); atvalue(diff(x(t),t), t=0, -24);
%0 2
-24

)

)

) desolve (equation, x(t)); float(%);

) X(t)=2*cos (4*$pi*t)-(6*sin(4*%pi*t))/%pi

) x(t)=2.0*%*cos(12.566*t)-1.9099*sin(12.566*t)
) define(x(t), rhs(%));
)

)
b

%1

%0 x(t):=2.0*cos (12.566*t)-1.9099*sin(12.566*t)

%1 wxplot2d(x(t), [t,0,1], grid2d, [xlabel,"{/Helvetica-Italic t} (s)"],
ylabel,"{/Helvetica-Italic x} (cm)"]);

t(s)
Comments on the codes:
(%i2) Set floating point print precision to 5 and assign value of w.
(%i3) Define the differential equation.
(%i15) Set the initial conditions.
(%iT7) Solve the differential equation and get a particular solution.
(%06), (%07) The solution.
(%i18) Define x(1);
(%19) Plot x(¢) for0 <t < 1s.

Solving First-Order Ordinary Differential Equation

To solve a first-order ordinary differential equation (ODE), use predefined functions
ode2 and icl. Function ode2 solves the ODE and gives a general solution of the
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ODE. Its format is 0ode2(ODE, dependent variable, independent variable). Function
icl sets the initial condition and gives a particular solution of the ODE. Its format is
icl(output of ode2, independent variable value, dependent variable value).

As an example, solve a direct current RC circuit equation,

q
R—+—==E,
dt+C

where resistance R = 2000 €2, capacitance C = 1 x 10°°F, emfe =10V, charge
q (dependent variable) is in coulomb and time ¢ (independent variable) is in second.
The initial condition is, att =0s,¢g =0 C.

The codes are:

%i2) fpprintprec:5; ratprint:false;
fpprintprec) 5
ratprint) false

i3)soln: ode2 (R*'diff(g,t) + g/C =emf o @, €8
oln) g=%e” (-t/(C*R))* (C*emf*%e” (t/ (C*R))+%c)

o4
o

)]

(
(
(r
(
(
(
(
(%
(
(
(
(
(
(
(

%$i4) icl(soln, t=0, g=0);

%04) ag=%e” (-t/(C*R))* (C*emf*%e” (t/ (C*R))-C*emf)
i5) q: rhs(%);

q) %$e” (-t/ (C*R)) * (C*emf *%e” (t/(C*R))-C*emf)

%i8)R:2000; C:le-6; emf 8ill@g

R) 2000

C) 10.0*107-7

emf) 10

%$19) wxplot2d(q, [t,0,12e-3], grid2d, [xlabel,"{/Helvetica-Italic t}
)

"], [ylabel,"{/Helvetica-Italic g} (C)"1);

=10
9x108
Bx10%
T=108
6109
‘-’%5:10'5
4x10%
3x108
=108

1=10%

0 : : ' I :
0 0.002 0.004 0.006 0.008 0.01 0.012

t(s)
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Comments on the codes:

(%i12) Set floating point print precision to 5 and internal rational number print to
false.

(%13) Solve ODE R‘% + % = ¢ and get a general solution.

(soln) A general solution is ¢ = ¢~"/R) (Cee!/®C) + constant )

(%i4) Set the initial condition and get a particular solution.

(%04) The particular solution.

(%15) Assign the solution to q.

(%i18) Assign values of R, C, and «.

(%i9) Plot g against  for 0 <t <12 x 1073 s

The codes say that the solution of the ODE is, (%04),

g =e RO (Ce /RO — Cé)
= Ce (1 — e /ROy,

Another way to solve first-order ordinary differential equation by wxMaxima is
to use predefined functions atvalue and desolve. The arguments of desolve are the
ODE and the function we want a solution. The arguments of atvalue are the initial
conditions: the dependent variable, the independent variable value, and the dependent
variable value. We solve again the above problem using predefined functions atvalue
and desolve.

4 wsMaxima codes:

($11l) fpprintprec:5;

(fpprintprec) 5

(%12)equatlon R*'diff (gq(t),t)+ g(t)/C = emf g
(equation)R* ('diff (gq(t),t,1))+q(t)/C= emf
(%$13) atvalue(g(t), t=0, 0);

(%03) 0

($15) desolve (equation, q(t)); float (%) ;

($04) g (t)=C*emf-C*emf *%e” (-t/ (C*R))

(%$05) g (t)=C* emf- (1. O*C*emf)/2 71837 (t/ (C*R))
($16) define(g(t), rhs(%));

(%06) g (t) :=C* emf-(1.0*C*emf) /2.7183" (t/ (C*R))
($19)R:2000; C:le-6; emf gil@g

(R) 2000

(C) 10.0*107-7

(emf) 10

(%110) wxplot2d(g(t), [t,0,12e-3], grid2d, [xlabel,"{/Helvetica-Italic t}
(s)

"], [ylabel,"{/Helvetica-Italic g} (C)"])
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1105

9x10°%
8x108
7108
6104
Zox10®
4x10%
3=108
2x10°8

1=108

0 L ' s I I
0 0.002 0.004 0.006 0.008 0.01 0.012

t(s)

Comments on the codes:

(%il) Set floating point print precision to 5.

(%i2) Define the differential equation.

(%i13) Set the initial condition.

(%15) Solve the differential equation and get a particular solution.
(%04), (%05) The solution.

(%i16) Assign values of R, C, and «.

(%19) Define g(¢).

(%i10) Plot g(f) for 0 <t < 12 x 1073 s.

We end this Introduction to wxMaxima here. For further use and application of
wxMaxima the readers are required to look for internet sources and the Help menu
at the top right of the wxMaxima window.



Appendix B

Physical Constants

Symbol Value Physical quantity
c 3.0 x 108 ms™! Speed of light
o 47 x 107" Hm™! Permeability of free space, Permeability constant
£0 8.85 x 10712 Fm™! Permittivity of free space, Permittivity constant
e —1.6022 x 1071 C Electron charge
h 6.63 x 10734 J s Planck constant
me 9.11 x 1073 kg Mass of electron
548 x 107 u
mp 1.673 x 10727 kg Mass of proton
1.007825 u
mg 3.34 x 10727 kg Mass of deuteron
2.014102 u
R 8.31 J K~ mol~! Molar gas constant, Universal gas constant
Ry 1.097 x 10" m~! Rydberg constant
Na 6.02 x 10%% mol~! Avogadro number
kp = N—RA 138 x 1078 JK! Boltzmann constant
G 6.67 x 10711 N'm? kg2 Universal gravitational constant
g 9.8 ms2 Acceleration of gravity, Gravitational acceleration
k= 4:1150 9 x 10° Nm? C2 Electrostatic constant
k=2 1077 Wb A~ m-! Magnetic constant
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Appendix C

Conversion Factors

Quantity

Conversion

Length

1 m = 39.37 inch = 3.28 feet = 100 cm

1 feet = 30.48 cm

1 inch = 2.54 cm

1 mile = 5280 feet = 1.609 km

1A=108cm=10""m

lpm=10"%cm=10"%m
Inm=10"7cm=10"m

Mass

1 slug = 14.59 kg = 32.2 b

1g=10"3kg=6.85 x 107 slug

lu=166 x 10727 kg = 931.5 meV/c?

Time

1 year = 365 day = 3.16 x 107 s

1 day =24 h = 1.44 x 10 min = 8.64 x 10* s
1 h = 60 min = 3600 s

Area

1 cm? = 0.155 inch?

1 inch? = 6.452 cm?

1 m? = 10.76 feet?

1 feet? = 144 inch? = 0.0929 m?
1 hectare = 10* m? = 2.471 acre
1 acre = 4047 m? = 0.4047 hectare = 4840 yard®> = 43,560 feet?

Volume

1m?=10%cm?® =10 dm® = 10° L
ldm®=1L
lem? =1mL

1 m3 =35.3 feet® = 6.1 x 10% inch?

1 feet? =2.83 x 1072 m? =28.32L

(continued)
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Appendix C: Conversion Factors

(continued)

Quantity Conversion

Speed 1 mile hour™! = 1.47 feet s~! = 0.447 m s~! = 1.609 km hour~!
Ims~ ! =100cms™" =3.281 feet s~' = 3.6 km hour™!' = 2.237 mile
hour™!
1 kmhour™! =0.278 ms~! = 0.621 mile hour~! = 0.911 feet s~!
1 mile minute~! = 60 mile hour~! = 88 feet s~!

Acceleration 1 ms~2 =328 feet s = 100 cm s~2
1 feet s~2 = 0.3048 m s—2 = 30.48 cm s~ 2

Force I N = 10° dyne = 0.2247 Ib

Pressure INm=2=1Pa=10dyne cm2 = 1.45 x 10~* Ib inch—?

1 atm = 1.013 x 10° Pa

Energy and power

1J=107 erg = 0.239 cal = 0.738 feet Ib

1eV=16x10"1°J=1.6 x 1072 erg

lcal=4.187J

1 horse power = 745 W = 550 feet Ib s~

Magnetic field

1 T =10* gauss
1T=1Wbm~




Appendix D
Mathematical Formulae

Roots of a quadratic equation

axl4bx+c=0=x= —b:(:\/bz —btb2—4ac _ Efi ( )2_5
Trigonometric identity
. ) 1
sinf = Zesch = o = §
1
cosh = Tsech = 5 == p
— 1 _
tan@-’cot@-—g—f, y
o

X
sin? 0 + cos? 0 = 1 x2y?=r? 1+ tan?9 = sec? 0
sin20 = 2sin 6 cos 0 sin(—0) = —sinf | sin? @ = =620
c0s20 = cos? 6 — sin% 6§ = cos(—f) = cos b cos® 0 = %
1—2sin%0
sin(@ £ ¢) = tan(—0) = —tan@ |tan?6 = };ggi%g
sin 6 cos ¢ & cos O sin ¢
cos(0 £ @) = sinf + sin¢ = 25in(#> cos (#)
cos 6 cos ¢ F sin 6 sin ¢
slin0 sin¢g = sinf — sin ¢ = 2 cos (#) sin(?)
7[cos(0 — ¢) —cos(0 + ¢)]
cos 6 cosp = cosf + cos¢ = 2cos <6+¢)cos (#)
%[cos(@ — @) +cos(@ + ¢)]
sinf cos ¢ = cosf —cos¢p = —251n(9+¢>sin(?)
3[sin(@ + ¢) + sin(6 — )]

(continued)

© The Editor(s) (if applicable) and The Author(s), under exclusive license 575
to Springer Nature Switzerland AG 2023

W. M. S. Wan Hassan et al., Physics—Problems, Solutions, and Computer Calculations,
https://doi.org/10.1007/978-3-031-43165-4


https://doi.org/10.1007/978-3-031-43165-4

576

(continued)

Appendix D: Mathematical Formulae

Roots of a quadratic equation

cos@sing = tan 260 = %
$[sin(0 + ¢) — sin(@ — )]

Cosine rule

2 =a?+b*—2abcosy

Sine rule

sing __ sinf __ siny

T T b T e

Series expansion

—1x2 — —9)3
(1+x)n =1+nx+n(n2!l)x +n(n 1)3(?1 2)x ¥

_1a2 D)3
siny =x — %5 + 5 — & 4. (1=x)"=1—nx+ "("z!l)x — e 1)3(!" x4
2 4 6 1 2 3
cosx=1—5+55 —% +. T = l—x+x” =+
3 5 7
tanx = x + % + 2 4 x4 B [ A SR
3 1 315 1—x
3 4 2 3
In(d+x)=x—-5+% - %+ Vidx=14+5 -+ +..
1 _ x 3x2 5x3 _ x x2 X3
=l t+t% — Tt l—x=1-5—-—% -1+
Differentiation Integration
£ sinx = cosx Jsinx dx = —cosx
d o o
Lcosx = —sinx Jcosx dx = sinx
Lor = ¢ Jetdx=¢
d n _ n—1 n _ Xt
X" =nx fx dx__n+1
d 1 /2 + 42) — 1 dx __ _ ) 2
= In(x X a*) = —£_ =In(x X a
dx (x+ +a%) /x2+a? f /x2+a (x+ +a%)
d 2 _2) — 1 dx __ _ 2 _ 2
S In(x +vx a)—m fm—ln(x—i—«/x a?)
d 1 _ x xdx _ 1
K(x2+a2)1/2 - (x2+a2)3/2 f (x2+a2)3/2 - (x2+a2)1/2
d X _ dx _ x
X 22+ = Prad)? f 2+a)E T 22+
%(az — X232 = 3x(a? — x2)112 [ x@® —x2)2dx = _%(az — X232
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Dot (scalar) product of two vectors

Given two vectors,

A=A+ A)j+AKk,

B =B;i+ Byj + Bk,

then,
A-B=A;B+A,B,+A;B,
also the magnitudes of A and B are,

A= [A2+ A2+ A2
B = /B?+ B3+ B2

Also,
A-B =ABcos 6,
where 6 is the small angle between A and B.

Cross (vector) product of two vectors

Given two vectors,
A=A+ Ayj + Ak,
B =B.i+ Byj + Bk,

then,
i j k
AxXB=| A, Ay A,
By By B;
=(AyB; — A;B))i— (AyB, — A;By)j+ (AyBy, — A, By)k.
Also,

|A x B| = ABsin6,
where 6 is the angle between A and B, and,

A= [A2+ A+ A2,
B = /B?+ B3+ B2

The right hand rule




578 Appendix D: Mathematical Formulae

Cramer’s rule

The solutions for
aix + by =cy,
arx + by = ca,
are
c1by — by
T aiby — asby’
ajcy —axcy

T aiby —asby’

Logarithm

_ logjgx _ log x _pa —
logbx_logwb_logeb x=b"=log,x =a

log, x =log;y 10 =log, e =log,2 =1 1000 = 10° = log,, 1000 = 3
2 =093 = log, 2 = 0.693 512 =28 = log, 512 =8
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Index

A

Air column, 45, 46, 54, 56-60, 69, 70

Air wedge, 499, 510-512, 523

Alternating current, 405, 406, 414, 416,
418, 423, 424

Alternating current circuit, 405

Alternating voltage, 405

Ammeter, 195, 196, 408, 409

Ampere, 191, 192, 206, 315, 426

Ampere’s law, 281, 283, 318, 321, 324

Ampere’s law for magnetic field intensity,
327,334

Amplitude of a wave, 24

Angle of incident, 445-447, 453, 459, 460,
462, 466, 467

Angle of reflection, 445-447, 466

Angle of refraction, 458, 460, 462, 467

Angular frequency, 1, 2,7, 13, 18, 19, 24,
250, 279, 406408, 422, 427, 429,
435, 439, 440

Angular frequency of a wave, 2, 18, 435

Antinodes, 45, 46, 51, 54, 58,79

Apparent depth, 451, 455, 484, 485

Average intensity of interference pattern,
513

B

Beats, 45-47, 61, 62, 66, 68, 75, 76

Biot-Savart law, 281, 282, 296, 305, 307,
317,319-321

Brewster’s law, 447, 448, 464—466

C

Capacitance, 169-180, 183, 187, 189, 190,
232,233, 240, 242, 247, 421, 567

Capacitive reactance, 405, 407, 412414,
418, 420-422

Capacitor, 126, 137, 169-181, 183-187,
189, 190, 210, 227, 228, 230,
232-234, 240-242, 244, 245, 247,
380, 381, 405407, 412415,
417-420, 423

Center of curvature, 113, 115, 116,471-473

Central bright fringe, 499, 500, 502-506,
523, 530, 531, 539

Charge carrier, 191, 193, 205

Charge density, 111-114, 116, 130, 131,
133-135, 144, 158, 176

Circuit, 195-197, 207-211, 213, 220,
223-227,229, 230, 232-234, 236,
240-247, 346, 379-381, 384, 385,
390, 393, 398, 400, 402, 403,
405-414, 416-424, 426, 567

Coherence, 499, 523, 525

Concave mirror, 469, 471, 474477, 495

Conductor, 81, 124, 132, 135, 143, 169,
170, 191-194, 245, 249, 251, 265,
269, 270, 278, 281-283, 321, 323,
324, 343-346, 375-377

Constructive interference, 45, 499, 501,
505, 507, 517, 521

Convex mirror, 469-471, 478, 480, 496

Coulomb’s law, 81, 86, 95,97, 112, 113,
115,129

Critical angle, 447, 452, 466
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Current, 191-193, 195-197, 199, 200,
203-207, 209-213, 215-218, 220,
223-227, 229, 230, 232, 234,
240-242, 244, 245, 247, 249-251,
265-272, 274, 276, 278-297,
299-325, 327, 330-334, 336-338,
340-342, 344, 346, 349, 350, 353,
354, 358, 359, 369, 370, 373, 374,
376, 379-382, 384-387, 389, 390,
392-394, 398, 399, 401-403,
405-407, 409-414, 416-418, 423,
426, 567

Current density, 191, 194, 204, 205, 208

Cyclotron frequency, 250, 261-263

D

Decibel, 25, 42

Destructive interference, 45, 500, 501, 519,
544

Diamagnetism, 325

Dielectric, 136, 169, 170, 172-174, 176,
177, 183, 189, 190, 447, 465

Diffraction grating, 527, 528, 542-545

Diffraction of light, 525

Displacement amplitude, 24, 32, 33, 44

Doppler effect, 25, 42

Drift velocity, 191, 193, 194, 205

E

Electrical conductivity, 192

Electric charge, 81, 84, 94, 109, 111, 113,
123, 428, 442

Electric current, 191, 193, 194, 197, 199,
204, 205, 207, 230, 240, 241, 245,
290, 300, 301, 322, 363, 379, 383,
385, 390, 393, 399, 401, 405, 426

Electric dipole, 109, 110

Electric field, 81, 82, 99-120, 123-125,
127-139, 141-143, 148-151, 156,
157, 159, 160, 163, 166, 172, 173,
176, 183, 190-192, 194, 208, 250,
344-346, 370-373, 425, 428-430,
435-437, 439-441, 443, 447

Electric field lines, 82, 123

Electric flux, 123, 124, 127, 128, 130, 138,
139, 426

Electric force, 82, 86-89, 91-94, 97, 98,
120, 165, 187

Electric potential, 141-144, 146150, 152,
153, 155-161, 165, 188, 197, 198,
344, 345, 351, 353, 377

Index

Electric potential energy, 141, 142,
145-154, 165, 170, 171, 189, 263

Electric strength of air, 136

Electromagnetic spectrum, 428

Electromagnetic wave, 1, 425-428,
430-432, 435, 436, 440, 442, 443,
445, 447, 466

Electromotive force (emf), 179, 195, 197,
198, 208-210, 220, 230, 232, 240,
247, 343, 344, 351, 361, 366, 369,
374, 375, 379, 380, 384, 390, 392,
393, 396, 401403, 426, 567

Energy density, 172, 173, 380, 425, 427,
430, 431

Equipotential surface, 142

Equivalent resistance, 209, 213-215, 218,
220, 222, 225,239, 245

F

Farad, 169, 189

Faraday’s induction law, 343

Faraday’s law, 343, 348, 349, 351, 361,
363, 369, 374, 382, 401

Ferromagnetism, 326

First harmonic, 55, 56, 58, 59

First overtone, 54-56, 58, 60, 62, 64, 79

Focal length, 469, 471, 472, 475, 478,
486-490, 492, 493, 495-497

Fraunhofer diffraction, 343, 525

Frequency of a wave, 2, 5, 18, 432, 435

G

Gauss, 112, 123-125, 129-132, 134, 135,
137-139, 251, 283, 574

Gaussian surface, 123, 129-137

Gauss’ law, 426

Geometrical optics, 445

Glass prism, 459, 460, 462

H

Harmonic wave, 1, 2, 5, 7-10, 19, 21, 45,
47, 49, 563

Henry, 379

Huygen’s principle, 446

1
Image distance, 469, 472, 474, 475, 477,
490, 495



Index

Image height, 469

Impedance, 405407, 414, 416, 418,
420-423

Index of refraction, 446, 455, 457459,
465-467, 472, 480, 486-488, 492,
496, 508, 509, 517, 518, 520, 523,
540

Induced emf, 343, 346-349, 351-353, 359,
361-364, 369-375, 382, 389, 401

Inductance, 379, 380, 382, 384, 389-391,
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