


  

 

 

 

Physics of the Sun
 

With an emphasis on numerical modeling, Physics of the Sun: A First Course presents a quantitative 
examination of the physical structure of the Sun and the conditions of its extended atmosphere. It 
gives step-by-step instructions for calculating the numerical values of various physical quantities in 
different regions of the Sun. 

Fully updated throughout, with the latest results in solar physics, this second edition covers a 
wide range of topics on the Sun and stellar astrophysics, including the structure of the Sun, solar 
radiation, the solar atmosphere, and Sun–space interactions. It explores how the physical conditions 
in the visible surface of the Sun are determined by the opacity of the material in the atmosphere. It 
also presents the empirical properties of convection in the Sun, discusses the physical conditions that 
must be satisfied for nuclear reactions to occur in the core, and describes how radiation transports 
energy from the core outwards. 

This text enables a practical appreciation of the physical models of solar processes. Numerical 
modeling problems and step-by-step instructions are featured throughout, to empower students 
to calculate, using their own codes, the interior structure of different parts of the Sun and the 
frequencies of p-modes and g-modes. They encourage a firm grasp of the numerical values of actual 
physical parameters as a function of radial location in the Sun. 

It is an ideal introduction to solar physics for advanced undergraduate and graduate students in 
physics and astronomy, in addition to research professionals looking to incorporate modeling into 
their practices. Extensive bibliographies at the end of each chapter enable the reader to explore the 
latest research articles in the field. 

Features 

•	 Fully updated with the latest results from the spacecraft Hinode, STEREO, Solar Dynamics 
Observatory (SDO), Interface Region Imaging Spectrograph (IRIS), and Parker Solar 
Probe 

•	 Presents step-by-step explanations for calculating numerical models of the photosphere, 
convection zone, and radiative interior with exercises and simulation problems to test 
learning 

•	 Describes the structure of polytropic spheres and the acoustic power in the Sun and the 
process of thermal conduction in different physical conditions 
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Preface
 
The goal of this course is to undertake a quantitative examination of the physical structure of the 
Sun. The text is aimed at upper-level physics undergraduates and at graduate students in their early 
years of graduate study. To achieve our goal, we explore how various laws of physics can be used 
to help us derive realistic information about different regions in the Sun. Although the material that 
makes up the Sun is gaseous throughout its volume, the physical conditions change dramatically 
from one part of the Sun to another: e.g., the gas pressure changes by some 12 orders of magnitude 
between center and “surface”. As a result, different aspects of physics are found to be dominant in 
different regions. For someone who is interested in physics, the Sun provides a “real world” labora
tory in which to test a broad range of topics, including fluid flow, heat transport, thermodynamics, 
radiative transfer, quantum mechanics, nuclear physics, plasma physics, and turbulence. Of special 
interest is the fact that the Sun presents us with striking examples of magnetohydrodynamic (MHD) 
processes, i.e., the interactions that occur between fluid flows and electromagnetic fields. In the 
later chapters of this book, we shall discuss how the Sun displays evidence for an array of MHD 
processes: specifically, in certain regions, the fields control the motions of the gas, whereas in other 
regions, the gas controls the motions of the field. 

In the broadest context, the human race has one principal question that requires solar physicists 
to answer: how stable is the Sun’s output of energy? Specifically, is the Sun’s power output steady 
enough that we who live on Earth will not be subjected to chaotic fluctuations in the input heating 
rate that could lead to dangerous consequences for life? 

In order to arrive at reliable answers to this question, we must begin with what we know about the 
Sun. And the place where reliable physical knowledge starts is with observations. Growing numbers 
of instrument types are currently in operation for observing the Sun (e.g., see Figure P. 1). If we were 
limited to observations with the unaided eye, we could conclude that the Sun appears as a luminous 
yellowish-white circular object (a “disk”) with an apparently sharp edge (the “limb”). The color sug
gests that material at the surface of the Sun (in the region called the “photosphere”, i.e., the sphere 
from which light emerges) has a temperature of 5–6 thousand degrees K (or K for short). However, 
the eye is not especially useful in deriving further physical information about the Sun. Since the 
time of Galileo in the early 1600s, optical telescopes have been used to improve our knowledge of 
the Sun. These observations point to the presence of certain features in the photosphere. The best 
known among these features are dark regions called “sunspots”. 

Access to spectroscopy in the 1800s led to the discovery of a region of hotter gas above the pho
tosphere that can be seen to shine briefly as a colored rim of light during a total solar eclipse. This 
region is called the “chromosphere” (literally: the “color” sphere), where the temperature of the gas 
rises to values of 10–20 thousand K. We shall be interested in quantifying the physical process(es) 
that cause this rise in temperature. 

During a total solar eclipse, the human eye can see a faint outer extension of the Sun’s atmo
sphere known as the “corona”. The first indication that coronal material has temperatures as large 
as 106 K was provided in 1941 by Bengt Edlen (Ark. Mat. Astron. Fys. 28B) in his interpretation 
of the strongest emission lines in the corona. These lines had previously been assigned to an 
unknown element (“coronium”), until Edlen applied the relatively new tools of quantum mechan
ics to calculate energy levels in atoms from which many electrons had been stripped away. Further 
discoveries about coronal physics emerged when new techniques in radio astronomy and X-ray 
astronomy were applied to the Sun. When the Sun is “viewed” at microwave radio frequencies, 
the Sun appears patchy, with certain “active regions” much brighter than others. When the Sun 
is “viewed” in X-rays, different images emerge depending on the X-ray energy. At low energies, 
diffuse emission is seen to extend over most of the disk, but there are also some dark areas that 
seem to be empty (coronal “holes”). When viewed in higher energy X-rays, the Sun is dominated 
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by bright “active regions”, and within each active region, one can often identify discrete structures 
(“loops”). The brightest of all features in the corona, and also in the chromosphere, are short-lived 
brightenings known as “flares”. 

Observations of the photosphere, the chromosphere, and the corona show beyond any doubt that 
the surface of the Sun and its outer atmosphere are subject to variability of different kinds. For 
example, the number of sunspots on the surface is observed to wax and wane every 11 years or so. 
At times, a large quantity of gas erupts from the Sun into interplanetary space, and there may also 
be flares that erupt unpredictably from time to time in certain active regions. Before the modern era 
of solar observations, these occasional “eruptive” events would have had minimal effects on Earth, 
apart from occasional more or less brilliant shows of “northern lights”, when the sky would light 
up with “aurora borealis” (“northern dawn”). But in our day and age, eruptive solar events can have 
more serious effects, including damage to satellites and to the equipment that power companies rely 
on to distribute electricity across entire continents. These potential dangers have given rise to a field 
of study known as “space weather”, the goal of which is to identify warning signs of impending 
solar events so that precautions may be put in place on Earth. 

A good opportunity to examine graphical illustrations, examples, and videos of the broad variety 
of eruptive phenomena as they occur on the Sun can be found online at the site https://sdo.gsfc.nasa. 
gov (maintained by NASA, the National Aeronautics and Space Administration). This site presents 
images obtained by one particular spacecraft: the Solar Dynamics Observatory (SDO). This space
craft, launched in 2010 into an orbit around Earth that ensures that SDO has an uninterrupted view 
of the Sun, provides continuous observations of the Sun with no interruptions due to day-night cycle 
or clouds. The SDO website allows anyone with web access to see what the Sun is currently doing 
at any time of the day or night. 

Among the images that can be examined at NASA’s SDO website, one is particularly important 
in understanding the origin of the most dynamic solar phenomena: this is an instrument known 
as the Helioseismic and Magnetic Imager (HMI). HMI displays magnetic field properties on the 
surface of the Sun. The data show that magnetic fields with a wide range of strengths are present in 
many locations on the Sun, and not only in sunspots (although sunspots have the strongest fields). 
On the same 11-year cycle that the numbers of sunspots exhibit, the numbers and sizes of magnetic 
areas on the solar surface also wax and wane. When we compare the magnetic fields that HMI 
measures on the Sun’s surface, it becomes apparent that sunspots, active regions, the patchy radio 
corona, coronal loops, flares, and mass ejections are all related in different ways to regions where 
there are magnetic fields. 

The question that concerns us Earthlings most is the following. Do the solar eruptions and out
bursts that constitute such a spectacular component of the SDO images represent perturbations that 
should concern us in the context of life on Earth? Or do they constitute relatively minor disturbances 
against the backdrop of a much larger, and much steadier, output of energy that the Sun generates 
continuously as the days, years, and eons go by? In order to address these questions, we need to 
determine, on the one hand, the properties of the Sun as a whole, and on the other hand, the proper
ties of the magnetically driven phenomena in the atmosphere. Specifically we must determine how 
hot and how dense the material is in the deep interior, in order to determine if the inertia of that 
material can offset the dynamic phenomena that attract our attention so spectacularly from time to 
time in the surface layers. 

How are we to determine the physical conditions in the deep interior? We need to rely on the 
laws of physics. These laws indicate that the power output of the Sun depends on how the physical 
parameters temperature T, pressure p, and density ρ vary as a function of radial location r between 
the center of the Sun (r = 0) and a region that we will refer to as “the visible surface” (r = ). Here, 
and throughout this book, the subscript  denotes a parameter of the Sun as a whole. An important 
goal in our study of the Sun is to use various laws of physics so that students can determine for 
themselves the radial “profiles” of T(r), p(r), and ρ(r) in the range of radial locations between r = 0 
and r = R . 

https://sdo.gsfc.nasa.gov
https://sdo.gsfc.nasa.gov


  

   
 

    
  

 

   
 

 

 
 
 
 

 
   

 
 

  
 
 
 

 
 
 

 

Preface xv 

The starting point for these profiles is provided by observations of certain parameters at the 
“visible surface” of the Sun. Photons from those visible layers reach us on Earth and carry infor
mation on local conditions at r = R . Once the global parameters of the Sun are determined, they 
serve as boundary conditions to help us get started on our first set of calculations, namely how 
do T(r), p(r), and ρ(r) vary as a function of r? At first (in Chapter 5), we shall consider values 
of r close to the surface, i.e., at r ≈ R . Then we shall proceed in steps to move inward, going 
progressively farther below the visible surface (in Chapters 7 and 9). By applying a variety of 
physical laws, and also by a judicious choice of computational techniques, our goal is to calcu
late T(r), p(r), and ρ(r) at all locations from the surface down to the very center of the Sun, i.e., 
down as far as r = 0. These calculations will provide us with physical details about the internal 
structure of the Sun. 

How can we check that our calculations of the physical conditions deep inside the Sun are reli
able? After all, we cannot possibly “see” directly down there with any telescope. Despite this handi
cap, we note that, fortunately, the gas in the Sun supports a number of “waves” (or “oscillations”) of 
various types. The number of such waves that have already been identified is vast, in the millions. 
The area of solar research into the properties of waves inside the Sun is known as helioseismology: 
the analogy is with “seismology” on Earth that relies on the propagation of various types of waves 
generated by earthquakes to study the internal structure of Earth. Helioseismology has opened up 
remarkable vistas on the solar interior that were totally absent prior to the 1970s. Not only can the 
oscillations help us to check the structural calculations, but they can also help us determine how 
the Sun rotates at depths far below the surface. More recently, in 2018, a new class of oscillations 
(referred to as “r-modes”) has been identified that owe their existence to the fact that the Sun is 
rotating. 

In view of the fundamental advances in solar physics that helioseismology has enabled, it is 
important that, even in this “first course” in solar physics, attention should be paid to understanding 
how to calculate the basic properties of some of the solar oscillations. 

Once we are satisfied with our study of the interior of the Sun, we can return to the conditions 
at the visible surface and recognize that they also serve as boundary conditions for another inter
esting physics problem: how do the physical parameters vary as a function of radial location as 
we explore higher and higher altitudes above the surface? A rich variety of physical phenomena 
occurs in these locations, which may be referred to as the “outer atmosphere of the Sun”. Many of 
these phenomena, especially those that owe their existence to variable magnetic fields, are covered 
by the umbrella term “solar activity”. This term includes sunspots, flares, and coronal mass ejec
tions. How far up above the surface of the Sun can we carry out our study? Physical parameters of 
the gas that lies between r = R and the Earth’s orbit (at a distance r that is defined to be 1 astro
nomical unit (AU) ≈ 215 R ) can also be determined by applying the laws of physics to the increas
ingly rarefied environment that exists at greater and greater distances above the surface of the Sun. 
We shall see that, in the presence of a corona that is as hot as 106 K, this rarefied environment can 
simply not remain static: it must expand away from Sun. This expanding medium was called the 
solar wind by Eugene Parker, who first proposed its existence in 1958 on theoretical grounds. In 
1959, the Soviet mission Luna 1 proved Parker correct: such a wind does exist in “interplanetary 
space” surrounding Earth. (However, to reach the wind, one must be outside the region where the 
Earth’s magnetic field shields the Earth from direct exposure to the wind). Subsequently, space
craft in the vicinity of 1 AU, and also those that are traveling throughout the solar system (some 
out at distances of ≥150 AU from the Sun, while others are in at distances as close as ≤0.1 AU to 
the Sun), provide in situ values of the various physical parameters in the solar wind. These help to 
check our calculations. 

In summary, our approach to studying the physics of the Sun consists of starting at the visible 
surface (r = R ), where the local physical parameters can be reliably measured by means of visible 
light, and then proceeding in two distinct directions. First, we move inward, into the deep interior of 
the Sun. Second, we move outward into the tenuous gas that exists above the visible surface. 
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As regards the long-term stability of the Sun, two aspects of the physics are key. The first has 
to do with the pressure pc at the very center of the Sun: if pc can support the weight of the overly
ing material (i.e., the weight of the entire Sun), then a condition known as hydrostatic equilibrium 
is ensured. In this case, the Sun will be in a structural condition where, in a global sense, all the 
mechanical forces will be in balance. This is an important property that ensures that our Sun is able 
to remain for long periods of time in a state free of major disruptions. We shall have to check to see 
if this condition is indeed satisfied by our model calculations. 

The second aspect is that energy must be generated at such a rate that the power output remains 
more or less steady on long time-scales (several billion years). The only known source of energy 
that will satisfy this is nuclear fusion. This requires that the central temperature Tc be high enough 
that nuclear reactions can occur at a suitably rapid rate to warm the Earth (situated at a distance of 
1 AU away). As we shall see, nuclear reactions in the Sun rely on quantum mechanics if they are to 
occur at all. To be sure, quantum mechanics is typically associated with events on atomic scales. 
Nevertheless, every time you feel the warming energy of the Sun, it is worthwhile to remember that 
that level of warmth would not be available if quantum mechanics were not at work deep in the core 
of the Sun. 

Our goal in this book is to determine enough information about the physical conditions inside 
the Sun, and in its extended atmosphere, so that we may appreciate, from a global perspective, the 
amazing entity that enables life to survive on Earth for eons without serious disruptions. 

In this book, a particular emphasis will be placed on numerical modeling. In five of the chap
ters (Chapters 5, 7, 9, 10, and 14), the reader is given step-by-step instructions for calculating, in a 
simplified manner, the numerical values of various physical quantities as a function of radial dis
tance inside the Sun. In my over 30 years of teaching solar physics to students at the University of 
Delaware, I have found that there is a significant pedagogical advantage to this approach. A student 
can gain a lot of insight into the conditions in the Sun by watching, step by step, how the pressure, 
or the amplitude of an oscillation, varies as one moves from one radial position inside the Sun to 
another. The student, in a subsequent more advanced course, may eventually encounter the complete 
equations of stellar structure. These equations will include detailed expressions for the equation of 
state, the opacity, and the energy generation rate. However, the codes are so complicated that it is not 
easy to understand why the solutions behave the way they do: there are too many variables to keep 
track of. In the present book, my hope is that the student can obtain a firm grasp of the following 
questions. How does the pressure (in “physics” units, i.e., dynes cm−2 in this book) vary as a function 
of radial location (also in “physics” units, i.e., cm in this book) from the center of the Sun, to the 
photosphere, to the chromosphere, to the corona, and eventually into the distant wind? Likewise, 
I would like the student to obtain a good grasp of the radial profiles of density and temperature. 
A feel for the actual physical length-scales and pressures can help a student to appreciate the true 
immensity of the Sun. And as the student will learn in Chapter 11, it is precisely this immensity that 
enables the nuclear reactions that make life on Earth possible. 

Ultimately, theories need to be connected to the real world by means of observations. Thankfully, 
solar physicists are now living in a “golden age” of solar observatories, when instruments on the 
ground and in space are providing a flood of data that may be used to check the theories. In Figure 
P.  1, the acronyms for some of these observatories appear as labels on the various curves: we 
will discuss many of the acronyms in more detail in appropriate chapters in the book. (See also 
Appendix B for summaries.) The vertical axis in Figure P. 1 illustrates the volumes of data that have 
been (or will be) accumulated by the various observatories. But for now, I would like to highlight 
one particular example for a unique achievement: the project known as STEREO. This consists of 
two spacecraft (A and B) that were launched into orbits almost identical to Earth’s orbit. However, 
STEREO A was placed in an orbit that would ensure that, as time went by, it would drift slowly 
Ahead of Earth in its orbit. At the same time, the spacecraft STEREO B was placed in an orbit that 
would ensure that, as time went by, it would drift slowly Behind Earth. The angle between A and 
B (as seen by an imaginary observer at the Sun) was designed to increase slowly, until, early in the 
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FIGURE P. 1 Growth in the accumulated amount of data from solar observations (Lapenta et al. 2020, Solar 
Phys. 295, 103). The units on the vertical axis are petabytes: 1 Pbyte = 250 bytes of data, i.e., about one mil
lion gigabytes. Each curve refers to a spacecraft or a ground-based instrument that will be mentioned in later 
chapters of the book and in Appendix B. (Used with permission of Springer.) 

year 2011, about 5 years after launch, A was exactly 90 degrees ahead of Earth, while B was exactly 
90 degrees behind Earth. As a result of these stereoscopic vantage points, and in combination with 
observations from Earth, it became possible for the first time in human history for the entire sur
face of the Sun to be viewed simultaneously. The capability to make such observations lasted until 
2015, when unfortunately, STEREO B encountered difficulties in communicating with Earth: at the 
time of writing (2021), NASA has not been successful in resuscitating STEREO B. But for a span 
of 4 years, humans were in a position where there was no longer any need to speculate about what 
might be happening on the “hidden” side of the Sun. Instead, we are able to “see” these happenings 
with our very own “eyes”. Amazing! 

The time axis in Figure P. 1, stretching as it does across some 40 years, indicates that different 
instruments were available at different times. If one draws a vertical line upward from any particu
lar date, one sees that there are occasions when multiple observatories (as many as six or more) 
may have been in simultaneous operation. This has led to the possibility that observations of solar 
phenomena may be conducted in multiple wavelengths simultaneously. This is not a simple process: 
coordination of spacecraft in different orbits requires detailed planning. For example, during the 
years 2012–2017, there were 6953 solar flares larger than a certain limit: of those flares, only 40 
were observed by six or more instruments simultaneously, with each flare being observed by (on 
average) only 2.4 instruments (see Milligan, R. O., & Ireland, J., 2018, Solar Phys. 293, 18). 

The data from some of the observatories in Figure P. 1 keep pouring into Earth in such great 
quantities that more and more solar physicists will be needed in the years ahead to keep up with 
the analysis of the data that are already available, not to speak of the data that will eventually be 
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obtained by newer generations of instruments and detectors. And all of these data are being made 
available to researchers who wish to “mine” the data in order to test whether a particular theory 
corresponds to the “real world”. As a result, I consider this to be an ideal time for students to choose 
solar physics as a career path: for anyone who is interested in the physics of the Sun, there will be 
abundant high-quality data available for many decades to come. 

Dermott J. Mullan 
Emeritus Professor of Physics and Astronomy 

University of Delaware 
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1 The Global Parameters 
of the Sun 

In order to understand the physical processes that occur in the Sun, we need to know certain prop
erties of the Sun, including mass, radius, and other quantities. In this chapter, we summarize the 
relevant information, with emphasis on describing how the information is obtained and how precise 
the current measurements actually are. 

When it comes to astrophysical measurements, the quantity that can typically be measured with 
the greatest accuracy is time. As a result, we start our discussion of the determination of solar 
parameters by referring to measurements of certain intervals of time. 

1.1 ORBITAL MOTION OF THE EARTH 

The single most important property that determines the evolutionary behavior of any star is its 
mass; it is the mass that determines whether a star will eventually end its life quietly or explosively. 
The mass of the Sun can be determined by using a formula originally derived by Newton. This 
formula (see Equation 1.4 later) requires us to measure two quantities associated with the orbit of 
a planet: (i) the time it requires to complete one orbit and (ii) the (average) distance between the 
planet and the Sun. For present purposes, we will consider the Earth as the planet that will help us 
to estimate the Sun’s mass M . 

We begin by considering the Earth’s orbit around the Sun: how long does it take for the Earth to 
complete one orbit? Determination of this time-scale P (i.e., referred to as the period of the orbit) 
is achieved by observing the interval of time required for the Sun, starting at a given location rela
tive to the “fixed” stars as seen by an observer on Earth, to return to that same location. In modern 
times, the “fixed stars” used for this determination are not true stars at all, but are instead a class of 
galaxies known as quasi-stellar radio sources (“quasars”). Why radio sources? Because an observ
ing technique known as very long baseline interferometry (VLBI) uses radio emissions to provide 
what are currently the most precise positions of celestial objects. Moreover, quasars are so far away 
that no overall angular motion of a “defining group” of several hundred quasars has been detected 
even when the positions are measured with the highest available precision (better than 0.001 arcsec). 
Relative to this International Celestial Reference Frame (ICRF), the quasars are observed to be, as 
a group, stationary. When the Sun returns, after an elapsed time of P to the same point in the ICRF, 
this elapsed time defines the orbital period of the Earth. The interval of time P is defined to be one 
sidereal year. Measurements indicate the following value for P: 

P = 1 sidereal year = 365.25636 days = 31,558,150 seconds 

This value, and other precise estimates of various parameters of interest to solar system dynamics, 
can be found on an informative website at https://ssd.jpl.nasa.gov/astro_par.html maintained by 
NASA’s Jet Propulsion Laboratory. 

In order to derive the relationship between M  and measureable quantities (including P), we turn 
now to the equation of motion of the Earth in its orbit. This equation can be written in terms of posi
tion vectors of Sun and Earth. Relative to a zero point that can be arbitrarily chosen, the position 
vector of the Sun at some instant is ( )r S and the position vector of the Earth at the same instant is 
r E . The position vector of the Earth relative to the Sun is then  ( )E r ( ), where the magni( ) r r  S 
tude of r has the value r . The unit vector, r̂ , associated with the relative position vector r is directed 
from the center of the Sun towards the center of the Earth. Why do we refer, in this definition, to the 

https://ssd.jpl.nasa.gov
https://doi.org/10.1201/9781003153115-1


  

 
 

  

  

 

  

  

 

2 Physics of the Sun 

center of each body? Because Isaac Newton showed that the gravitational force between two objects 
behaves as if all of the mass of each object was located at the center of that object: this feature owes 
its existence to the fact that the gravitational force between two masses falls off as the inverse square 
of the distance between the masses. 

The mutual forces that act on the Sun (with mass M ) and on the Earth (with mass m  ) are given 
by Newton’s law of gravitation. The gravitational force causes the Earth to accelerate according to 
the equation 

2d r E ( )  GM m
m r  (1.1) 

dt2 r2

where G is Newton’s gravitational constant. The negative sign on the right-hand side of 
Equation 1.1 indicates that the force is directed towards the Sun, i.e., in the negative r̂  direction. If 
the masses are expressed in units of gm, distances in units of cm, and time in units of seconds, then 
G has the following numerical value: 6.67430(±0.00015) × 10−8 cm3 gm−1 sec−2. This value is listed 
(in March 2021) as a physical constant in a table maintained by the National Institute of Standards 
and Technology at the following website: http://physics.nist.gov/cuu/Constants/ 

At the same time as the Earth is accelerating according to Equation 1.1, the mutual gravitational 
force also acts on the Sun, causing the Sun to accelerate according to the equation 

2d r S ( ) GM m 
M  r (1.2)  2 2dt r 

In Equation 1.2, the positive sign on the right-hand side now indicates that this force is directed 
towards the Earth, i.e., in the positive ̂r direction. 

In terms of the relative position vector r, Equations 1.1 and 1.2 can be combined to yield 

2 (d r G M  m )
(1.3) 

dt2 r2 

Using several properties of vector algebra, it can be shown (e.g., Karttunen et al. 2017) that the 
solution of Equation 1.3 is an ellipse with the center of mass of the Sun and Earth at one focus. The 
Earth’s orbital ellipse has a semi-major axis D, which is referred to as 1 astronomical unit (AU). In 
terms of D (which is the mean distance between Earth and Sun, averaged over the orbit), the period 
P of orbital motion that emerges from Equation 1.3 can be shown to be given by 

2 3 
2 4  D

P  (1.4) 
G M   m( ) 

This allows us to write an expression for the mass of the Sun in terms of D and P: 

GM  4  2 

(1.5) 
D3 P2[1  m  / M  ] 

The ratio of m  to M  is very small (we will evaluate it shortly). If we were to neglect the ratio m  

/M  compared to unity, then we would get a fairly good first approximation to GM /D3. According 
to this approximation, for each planet in the solar system (all of which are orbiting the same object 
[i.e., the Sun], of mass M ), the square of the planet’s period P2 is proportional to the cube of the 
mean distance D between the planet and the Sun. This property of the orbits of the planets in the 
solar system was first identified empirically by Johannes Kepler in the year 1618: it referred to his
torically as Kepler’s third law of planetary motion. In order to arrive at this law, Kepler plotted, for 
the six planets that were known in his day, log(P) against log(D) using tables of logarithms that had 

http://physics.nist.gov


 

 

  

3 The Global Parameters of the Sun 

been published for the first time by John Napier in 1614. The advantage of using a log-log plot of P 
versus D was immediately apparent to Kepler: the data were found to fall along a straight line with 
slope 3/2. (This led Kepler to refer to what we now call Kepler’s third law as “the 3/2-power law”.) 
Moreover, in this approximation, Kepler’s third law can be written in an easily memorizable equality 
P2 = D3: this equality is true for all solar system objects (planets, dwarf planets, asteroids, comets) 
that are in orbit around the Sun provided that two important caveats are borne in mind: (i) P must be 
expressed in units of sidereal years and (ii) D must be expressed in units of AU. 

However, even if we make the approximation of neglecting the Earth’s mass in Equation 1.5, we 
still cannot determine the value of M  unless we first determine the numerical value of D (= 1 AU). 

1.2 THE ASTRONOMICAL UNIT (AU) 

Once the orbital periods of the various planets are known from careful observations over a span 
of many years (such as those recorded with the then-available highest precision by Tycho Brahe 
between the 1570s and the 1590s), the application of Kepler’s third law provides a scale model of the 
solar system. The scale model provides knowledge, at any given instant, of the distance between any 
two solar system objects in units of AU. As a result, at any given instant, we know how far away any 
solar system object is from Earth in terms of AU. To make the conversion from AU to linear units 
(e.g., cm), two methods have been used. 

First, by observing the asteroid Eros during a close approach to Earth in 1930–1931, the parallax 
was determined by observing from two observatories in different countries on Earth: combining the 
parallax with the known distance between the two observatories, the linear distance between Earth 
and Eros was calculated. The result for the length of 1 AU was quoted in terms of a quantity called 
the “horizontal parallax (HP) of the Sun”, i.e., the angle subtended by the Earth’s radius at the Sun. 
The results of this analysis were reported by Spencer Jones (1941): HP = 8.790 ±0.001 arc seconds. 
If there were no systematic error in the results, the formal uncertainty in HP would indicate that the 
AU was known with a precision of order one part in 10,000, i.e., with an error of order 15,000 km. 
As a result, if one wished to launch a spacecraft to Venus (for example), whose closest distance to 
Earth is some 40 million km, the uncertainty in the position of Venus would be  > 4000 km. But 
in fact, it was later discovered that there was a systematic error: the value of 1 AU reported from the 
Eros observations in 1931 was actually in error by four times the stated uncertainty (Atkinson 1982). 
The corresponding error at the distance of Venus turned out to be 16,000 km, well in excess of the 
diameter of Venus: a satellite could well have missed the planet altogether. 

Second, in favorable conditions, radar reflection can be used to determine the actual linear dis
tance to the object at that instant. This has the advantage that a distance measurement (between, 
say, Earth and Venus) is performed in terms of a measurement of an interval of time, namely, the 
time of flight for round-trip travel from the transmitter on Earth to the object (e.g., Venus) and back 
to the receiver on Earth. Reliable radar reflection measurements off a solar system object were first 
made in an observing run between March 10 and May 10, 1961, using the planet Venus (Victor 
and Stevens 1961). If Venus had been at its closest possible distance to Earth (i.e., with Venus at 
aphelion, and Earth at perihelion), the round-trip time would have been 255 seconds. However, in 
1961, Venus and Earth had their closest approach on April 10 (i.e., the midpoint of the observing 
run), and on that date, Earth was not at perihelion, nor was Venus at aphelion. Moreover, on other 
days in the observing interval from March 10 to May 10, Venus and Earth were by no means at 
their closest. As a result, the round-trip time for radar reflections during the observations was of 
order 300 seconds. The radar instruments that were available in 1961 allowed this round-trip time 
to be measured with a precision of about 0.001 second. Preliminary analysis of the data led Victor 
and Stevens (1961) to the conclusion that 1 AU = 149,599,000 km. They quoted an uncertainty of 
1500 km, i.e., a relative uncertainty of about one part in 100,000. The technical achievement of the 
experiment was noteworthy: the reflected signal received from Venus had a power level at least 20 
orders of magnitude weaker than the signal that was transmitted. The 10-fold improvement in the 



 

 

 

  

 

  

4 Physics of the Sun 

precision of our knowledge of the AU provided confidence for launching the first mission (Mariner 
II) to Venus in 1962. 

During the 60 years or more that have elapsed since the first Venus radar measurements, repeated 
measurements of signals passing back and forth between Earth and transmitters on artificial satel
lites that passed close to (or went into orbit around) various planets, as well as improvements in 
detector sensitivity, have resulted in steady improvements in the value of the AU in linear units. In 
2012, the General Assembly of the International Astronomical Union (IAU), in its Resolution B2, 
voted that, for the sake of uniformity, astronomers should adopt the following exact value for the 
AU in terms of centimeters: 

10131AU  D  1  49597870691 .  cm 

This is the average value of the distance from Earth to Sun: since the Earth actually follows an el
liptical orbit with eccentricity 0.0167, the Earth is closer to the Sun than 1 AU by about 1.67% at a 
certain date each year (in early January: when Earth is at perihelion), and farther from the Sun than 1 
AU by about 1.67% in early July of each year (aphelion). The effects of the Earth’s orbital eccentric
ity can be detected by (for example) observers who chart the behavior of sunspots (see Chapter 16) 
over the course of several years. In one study, Pevtsov et al. (2019) report that the diameter of the 
Sun (in units of pixels on their detector) varies from a minimum of roughly 1235 pixels in early 
July to a maximum of roughly 1275 pixels in early January. With a mean diameter of 1255 pixels, 
the amplitude of the diameter variations (as viewed from Earth) is roughly ±20 pixels, i.e., roughly 
±0.016 of the mean diameter, as expected from the orbital eccentricity. 

On a historical note, the aforementioned value of 1 AU corresponds to a horizontal parallax of 
8.794148 arcsec: this indicates that the value of 1 AU reported from the Eros observations in 1931 
was in error by four times the stated uncertainty (Atkinson 1982). Nevertheless, the fact remains 
that 8.790 arcsec was the best estimate for HP when the space age began in 1957. 

For future reference, we note that, given that the average distance between Earth and Sun is equal 
to D, we can say that if any feature on the Sun is observed to have an angular diameter of 1 arc 
second when viewed from Earth, then the linear diameter of that feature on the Sun is (on average) 
roughly 725.3 km. The largest solar telescope in the world, the Daniel K. Inouye Solar Telescope 
(DKIST), with its 4-meter primary mirror, is expected (with assistance of technology that cancels 
the “twinkling” caused by turbulence in the Earth’s atmosphere) to resolve objects with angular 
sizes of ~0.03 arcsec. Thus, DKIST can in principle resolve solar features that have linear sizes as 
small as ~21 km, if such structures exist in the surface layers of the Sun. DKIST reported its first 
image of a region of the Sun’s surface in January 2020: we will discuss this image later in Chapter 6. 

Now that we know the value of D (in units of cm) and also the value of the orbital period P(s) (in 
units of seconds), we could (if we wished) use Equation 1.5 to obtain a first approximation to an impor
tant physical quantity that is relevant for all objects in orbit around the Sun: GM  = 4π2 D(cm)3/P(s)2. 
This leads to M  ≈ 2 × 1033 gm. But there is little reason to compute this first approximation. 

Instead, we can go beyond the first approximation for GM and obtain a more precise estimate of 
M , provided that we can first evaluate the ratio of the mass of the Earth to the mass of the Sun m  

/M . To do this, we comparing the orbits of two objects, one in orbit around the Sun, the other in orbit 
around the Earth. For both objects, we need to determine two quantities: a period and a distance. 

For the object (our own planet Earth) that is in orbit around the Sun, we write for clarity the 
period as P(S) and the semi-major axis as D(S). Using Equation 1.4 and omitting the constant coef
ficient 4π2/G, we arrive at the proportionality 

2 D S 3( )
P S( )  (1.6) 

M   m  



  

  

 
 

 
 
 
 
 
 
 
 

   
 

 

 

   
 
 
 
 
 
 

5 The Global Parameters of the Sun 

Analogously, for an object (an artificial satellite) that is in orbit around the Earth, with period P(E) 
(in units of seconds) and semi-major axis D(E) (in units of cm), we also have that 

2 D E 3( )
P E( )  (1.7) 

m  

In Equation 1.7, we have made the reasonable assumption that the mass of the artificial satellite is 
entirely negligible (by 20 orders of magnitude or more) compared to the mass of the Earth. 

Combining the previous equations, we have that 

M  D S( )3 P E 2( )
3 2 

(1.8) 1 
m  D E( )  P S( )  

We already have precise values for D(S) and for P(S). Can we also find precise values for D(E) and 
P(E)? Indeed we can. There are a large number (almost 50,000 in March 2021) of choices that we 
can make for an artificial satellite in orbit around the Earth. Any one will suit our purpose. To ob
tain information about any particular artificial satellite, it is convenient to examine the Satellite Da
tabase at the website www.heavens-above.com/: there, orbital information is provided for all (tens 
of thousands) of the artificial satellites currently in orbit around the Earth. (Some of them were 
launched as long ago as 1958, and new launches continue to occur every year.) By way of example, 
I find that the database happens to list a satellite called IRIDIUM 175 (object #43928 in the online 
database, launched into orbit on January 11, 2019) with the following orbital details: the perigee 
(the point on the elliptical orbit where the satellite is closest to Earth) lies at an altitude of 652 km 
above the Earth’s surface, and the apogee (the point on the orbit where the satellite is farthest from 
Earth) lies at an altitude of 656 km above the Earth’s surface. This suggests that IRIDIUM 175 is in 
a nearly circular orbit with a mean altitude above the Earth’s surface of h = 654 km. Note that only 
three significant digits are provided for these distances in the database: this will limit the precision 
of our evaluation of m  /M . 

Since IRIDIUM 175 is in orbit around the Earth, Newton’s law of gravitation informs us that the 
relevant semi-major axis D(E) must be measured relative to the center of the Earth. With a mean 
altitude of h = 654 km, the semi-major axis of the orbit around the center of the Earth is D(E) =  R  

+ h, where R  is the radius of the Earth. The equatorial radius of the Earth has been accurately 
measured, by the International Union of Geodesy and Geophysics, to be R  = 6378.137 km. This 
leads to D(E) = 7032.137 km for IRIDIUM 175. With an orbit which is specified only to the nearest 
kilometer, we round off D(E) to the value 7032 km. Comparing this with the value of D(S) = 1 AU, 
we see that D(S)/D(E) = 21273.872 for IRIDIUM 175. Thus, the first factor on the right-hand side 
of Equation 1.8 is 9.628079 × 1012. 

Turning now to the orbital period, information on the aforementioned website indicates that the 
IRIDIUM 175 satellite completes a total of 14.72248940 orbits around Earth per day (i.e., every 
86,400 seconds) corresponding to a period P(E) = 5868.57 sec. Compared to the value of P(S) (= 1 
sidereal year, expressed in units of seconds), we find that the second factor on the right-hand side 
(r.h.s.) of Equation 1.8 has the value 3.45813 × 10−8. 

Combining the terms on the r.h.s. of Equation 1.8, we find that m  /M  = 1/332,950. This is 
the mass ratio that we obtain when we use the orbital data for a single satellite (IRIDIUM 175), 
for which we know the altitude to only three significant digits. When multiple satellites are used, 
the currently accepted value of m  /M  is found to be more precisely 1/332,946. Thus, our use 
of IRIDIUM 175 data alone leads to an error in the mass ratio of about one part in 80 thousand. 
Our calculations would have led to the currently accepted value of m  /M  if we were to use a 
value of h which was only slightly different from the listed value (654 km) for the mean altitude 
of IRIDIUM 175. 

http://www.heavens-above.com


 

 

  

 

 

  

 

6 Physics of the Sun 

1.3 GM  AND THE MASS OF THE SUN 

We now have enough information to use Equation 1.5 to evaluate the product of the gravitational 
constant G and the mass of the Sun to nine significant figures: 

1026 3 -2GM . (1.9) 1 3271244 cm sec

The precision with which the product GM  is known has increased over the course of the space age, 
as more and more spacecraft have traveled throughout the solar system, always subject to a sunward 
acceleration that is proportional to the aforementioned product. Currently, the numerical value of 
GM  is actually known even more precisely than Equation 1.9 indicates: the best measured value 
currently (in 2021) extends to 12 significant digits (e.g., see Astrodynamic Parameters at nasa.gov). 
However, we do not need all those digits here, because the value of G is not as precisely known. 

To extract a value for the mass of the Sun, we need to divide the previous product by G. The 
numerical value of G is among the most poorly measured of the fundamental constants of nature: G 
is known with a precision of only one part in 4 × 104. In fact, one can find that “the value of G”, as 
reported in the literature, changes from time to time in the sixth or fifth significant digit when new 
experiments become available (see Prsa et al. 2016). Using the value of G = 6.67430(±0.00015) × 10−8 

cm3 gm−1 sec−2 cited in Section 1.1, we obtain the following estimate for the mass of the Sun, reliable 
to one part in 4 × 104: 

1033M 1 98841 gm. (1.10) 

1.4 POWER OUTPUT OF THE SUN: THE SOLAR LUMINOSITY 

Spacecraft equipped with radiometers are designed to measure the total flux of radiant energy com
ing from the Sun at all wavelengths in the electromagnetic spectrum, from gamma rays to long-wave 
radio emissions. This total flux, known as the total solar irradiance (TSI), has been measured by 
a number of spacecraft in recent decades. In Figure 1.1, we show results from the Total Irradiance 
Monitor (TIM) on the Solar Radiation and Climate Experiment (SORCE) satellite, which reported 
TSI values starting on February 25, 2003, and ending when the satellite was decommissioned on 
February 25, 2020. 

The units customarily used to report TSI are watts per square meter (W m−2). As seen in 
Figure 1.1, the TSI when averaged over days and weeks has values ranging from about 1360.5 (in 
2009) to about 1362 W m−2 (in 2014–2015). Prominent narrow dips in the data in Figure 1.1 are 
associated with the presence of transient dark sunspots traversing the visible disk: the numbers of 
such spots on the Sun’s surface are observed to wax and wane in the course of a “sunspot cycle”, 
which lasts for roughly 11 years (although this can vary between 9 and 12 years from one cycle to 
another). We will discuss the properties of sunspots in Chapter 16. 

The deepest dip in the data in Figure 1.1 occurred on October 29, 2003, when the TSI dipped by 
almost 5 W m−2. (Dips were also recorded during transits of Venus across the Sun in 2004 and 2012, 
but those had nothing to with the sunspot cycle.) In 2015, the IAU, in its resolution B3, adopted a 
“nominal” value of 1361 W m−2 for the solar TSI: Prsa et al. (2016) estimate that the uncertainty in 
this value is ±0.5 W m−2, i.e., the fractional uncertainty is 3.7 × 10−4. As can be seen in Figure 1.1, 
this nominal value is intermediate between the extreme highs and lows of the measured TSI, and so 
can be regarded as a sort of “average” value for the radiant energy that reaches Earth from the Sun 
over the course of a sunspot cycle. When the first edition of this book was being prepared in 2008, 
the data that were available from the Solar and Heliospheric Observatory (SOHO) satellite (and 
several other satellites) suggested that the TSI value was definitely larger than the above “nominal” 
value: the excesses were as much as 10 W/m2. However, those data were subsequently found to 
require reductions because of scattered light inside the instruments. When corrections were made 

http://nasa.gov


 

  

 

 

7 The Global Parameters of the Sun 

FIGURE 1.1 The solar irradiance, normalized to a solar distance of 1 AU, measured over almost 20 years 
as measured by SORCE/TIM. Each data point represents an average over 6 hours. (The plot is taken from the 
website https://spot.colorado.edu/~koppg/TSI/#lower_TSI_value; used with permission of G. Kopp.) 

for the scattered light, the data from the other satellites were found to come into satisfactory agree
ment with the results from SORCE/TIM shown in Figure 1.1. 

As Figure 1.1 indicates, the magnitude of TSI is observed to vary in the course of a sunspot 
cycle by an amount of 1–1.5 W/m2, i.e., a fractional change by about one part in 1000. The phase 
of the variation is noteworthy because it is unexpected: the flux of radiant energy from the Sun (the 
TSI) is observed to be smallest when the sunspot number is smallest (e.g., in 2009), while the TSI 
is observed to be largest when the sunspot number is largest (e.g., in 2014–2015). On the face of it, 
this seems counterintuitive: shouldn’t the solar output of radiant energy be smaller when there are 
more sunspots to block the light from the Sun? We shall find an answer to this conundrum when we 
discuss (in Section 16.7.6) certain magnetic features on the Sun called faculae. 

Given the distance from Earth to Sun (D), the nominal TSI transforms to an output power from 
the Sun of L  D2 TSI. In terms of c.g.s. units, the nominal TSI can be written as 1.361 × 106 

ergs cm−2 sec−1. Inserting the value of D = 1 AU in units of cm, we find 

1033 -1L 3 828 (1.11) . ergs s

This power output from the Sun is also referred to by astronomers as the “solar luminosity”. With 
a fractional uncertainty of 3.7 × 10−4 in TSI, and a much smaller uncertainty in the value of D, the 
corresponding uncertainty in L  is ±0.0014 × 1033 ergs s−1. 

For future reference, comparing Equations 1.11 and 1.10, we note that the ratio of L  / M   has a 
numerical value that is easy to remember in centimeter-gram-second (c.g.s.) units: about 2 ergs gm−1 

sec−1. We will find it useful to use this value of the L  / M   ratio when we calculate the internal 
structure of the radiative interior of the Sun (Section 8.5). 

Also for future reference, we note that the power output from the Sun relies on the conversion of 
(nuclear) mass into energy in the deep inner core of the Sun. Using the conversion formula E = mc2, 
we note that the value of the Sun’s power output L  requires the conversion of mass to energy at a 
rate (dM/dt)nucl such that the product c2 × (dM/dt)nucl is equal to the value of L . Using Equation 1.11, 
and referring to https://ssd.jpl.nasa.gov/astro_par.html for the value of c = 2.99792458 × 1010 cm 
s−1, we find (dM/dt)nucl = 4.259 × 1012 gm sec−1, i.e., roughly 4 million tons of the Sun’s material is 
converted every second into energy. In the course of the Sun’s lifetime, which is estimated to be 
about 4.6 Gy, the mass of the Sun has been reduced by nuclear processing by only a small amount, 
a few parts in 104. 

https://ssd.jpl.nasa.gov


 
 
 
 

 

    

    
 

8 Physics of the Sun 

As well as losing mass due to nuclear reactions, we shall see (in Section 18.7) that the Sun also 
loses mass from its outer atmosphere due to a very different physical process: hydrodynamic expan
sion of the hot outer atmosphere of the Sun in a phenomenon known as the “solar wind”. Curiously, 
the rate of mass loss via the solar wind turns out to be also a few million tons every second. Is it 
merely a coincidence that two entirely different physical processes arrange for the Sun to lose mass 
at essentially the same rate? As far as the author is aware, no definitive answer has been given to this 
question. Perhaps a reader of this book will explore the topic and provide an answer. 

In this section, we have been discussing that the total radiative output from the Sun varies by only 
a small amount (roughly one part in 1000) during the solar 11-year cycle. However, certain regions of 
the solar spectrum (in the extreme ultraviolet [EUV] and in the radio ranges) can undergo changes by 
much larger amounts, by factors of as much as 100–1000, when the Sun is magnetically active (see 
Section 18.6). However, those regions of the spectrum contribute so little to the overall radiative out
put from the Sun that the total solar irradiance varies during a solar cycle by only one part in 1000. 

1.5 THE RADIUS OF THE SUN: R

Now that the mean distance to the Sun is known, it would seem to be a simple matter to obtain the 
linear radius (or diameter) of the Sun: “simply” measure the angular radius (or angular diameter) in 
radians and multiply by D. But it is not a simple matter to measure the angular diameter of the Sun 
precisely. Relying on the human eye alone, we know from solar eclipses that the angular diameter 
of the Sun sometimes appears definitely larger than the angular size of the Moon (in an annular 
eclipse), but at other times the Sun appears smaller than the Moon (in a total eclipse). This tells us 
that the Sun has an angular diameter close to that of the Moon. The latter can be measured unam
biguously because the Moon has a solid surface: on average, the Moon’s angular diameter is about 
31 arc minutes, i.e., the Moon’s angular radius is about 930 arc seconds ("). But because the Moon’s 
orbit has an eccentricity of 0.055, the Moon’s angular radius can be as large as 977" or as small 
as 879". Therefore, eclipses tell us that the Sun’s angular radius must lie in the range 879"–977". 
However, because the Sun does not have a solid surface, the definition of “the” radius of the Sun 
(or even the “limb” of the Sun) requires some care. Observers of the Sun’s “limb-darkening curve” 
measure how the brightness of the Sun falls off with increasing radial distance from the center of 
the disk: the brightness is most intense at disk center, the brightness falls off as the line of sight 
approaches the limb, and when the line of sight goes “off the limb”, the brightness falls steeply to 
essentially zero. Along the steeply falling part of the curve, there is an inflection point where the 
curvature changes from downward to upward. Observers of the “limb-darkening function” typically 
define the relevant angular radius of the Sun Ra by the location of the inflection point. For example, 
Meftah et al. (2014) used this approach to report that 20,000 ground-based measurements between 
2011 and 2013 yield Ra = 959.78" ±0.19" (adjusted to a standard distance of 1 AU) at a wavelength of 
5357 Å. Using the PICARD satellite, Meftah et al. (2018) reported values of Ra in visible light rang
ing from 959.83" to 959.91". Using the HMI instrument on the Solar Dynamics Observatory (SDO), 
Hauchecorne et al. (2014) used a comparison between arcs on the limb of the Sun and on the limb of 
Venus (during the 2012 transit of Venus) to determine Ra = 959.90" ±0.06" at a wavelength of 6173 
Å. Since 1" corresponds (on average) to 725.3 km at the Sun, the above range of Ra = 959.78"– 959.91" 
corresponds to linear “limb radii” RL in the range from 696,128 km to 696,223 km. Clearly, all of 
these results lie well within the range of estimated angular radii 879"–977" mentioned earlier in the 
context of annular/total solar eclipses. 

The problem with measuring the solar “limb” is that the line of sight used by an observer on 
Earth at the inflection point passes only tangentially through the Sun’s atmosphere. Now, when we 
turn to consider (in Chapter 2) how radiation makes its way through the solar atmosphere, it will 
be useful to define a scale of “optical depth”  which measures how difficult it is for light to escape 
from any particular layer in the solar atmosphere. The significance of  is that, when we observe 
the center of the solar disk, values of  close to the value =1 correspond to the layers in the Sun 
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where most of the light we see from the Sun in effect originates. And according to one model of 
radiative transfer (Section 2.10), the level where = 2/3 has the advantage that the local tempera
ture T(2/3) has a special value called the effective temperature Teff such that in combination with 

 Tthe radius R(2/3) at that level, the luminosity of the Sun can be written as L   4  R 2 3 B eff 
4 

. Here, B  =  5.67040  ×  10−5 ergs cm−2 sec−1 deg−4 is known as the Stefan–Boltzmann constant. 
The difficulty with measurements of the limb is that the tangential line of sight does not penetrate 
all the way down to the layer of gas where =2/3: instead, the line of sight passes no closer to the 
Sun than a finite distance h(limb) above that layer. The question now is: how large is h(limb)? To 
answer that, detailed calculations of the propagation of radiation through the solar atmosphere are 
necessary: thus, Haberreiter et al. (2008) have shown that, at wavelengths of 5000 Å, the value of 
h(limb) = 333 km above =2/3, and 347 km above =1. Given that 1 arcsec at the Sun corresponds 
to a linear distance of 725 km, we see that angular measurements of the solar radius using the limb 
of the Sun are too large by 0.46" than the “true” radius at =2/3. Applying these corrections to the 
“limb radii” listed in the previous paragraph (696,128 to 696,223 km), we find that the values of the 
“true” solar radius R(2/3) are expected to lie in the range 695,795 km to 695,890 km. 

An independent method of determining the (linear) radius of Sun can be obtained by using 
data on waves (oscillations) that exist in the Sun. In Chapters 13 and 14, we shall see that a class of 
oscillatory modes in the Sun known as f‑modes are horizontally propagating waves with maximum 
kinetic energy densities in the surface layers of the Sun (where each f‑mode has a peak in the plot 
of its eigenfunction versus radius). The f‑modes have frequencies  that are related to the wave 
number k in an especially simple way: 2 = gk. Here, g G M r  2is the acceleration due to gravity / 

in the radial location r =r( f) where the f‑modes have maximum kinetic energy density. Therefore, 
measurement of both  and k for any mode gives a value for g at radius r( f). And since we already 
know the value of GM  accurately (see Equation 1.9), we can use the value of g to obtain a reliable 
value of r( f). Ground-based observations of the frequencies of many solar modes of oscillation have 
been obtained by the GONG project: GONG, or Global Oscillations Network Group, is a group of 
observing stations with identical equipment distributed around the world so as to obtain continuous 
observing sequences of the Sun over time intervals that are as long as possible: the longer the inter
val, the more precisely can the frequencies be determined. Using 1 month of GONG data, Antia 
(1998) found that the observed values of  at a given k for the f‑modes were systematically larger (by 
a factor of 1.000437 ±0.000005) than predicted by a model in which the value of R(2/3) had been 
assumed to equal 695,990 km. Using the scaling ~r−1.5, Antia concluded that the solar radius in the 
model would need to be reduced by 203 km: thus a better choice for R(2/3) would be 695,787 km. 
Independently of Antia, Schou et al. (1997) used 144 days of spacecraft data (from the Michelson 
Doppler Imager [MDI] on board SOHO) to conclude also that r( f) was smaller than the “standard” 
radius of the Sun (695,990 km) by 310 km: this leads to 

R  ( .   . )x 6 9568 0 0003 1010 cm (1.12) 

This is about 100–200 km smaller than the values of R(2/3) reported earlier from angular diameter 
data. The IAU 2015 Resolution B3 suggested that the nominal value of the solar radius should be 
taken to be 695,700 km, a value that lies between the seismic result and the “limb” results. 

Given the striking change in the visual appearance of the Sun’s surface between sunspot mini
mum (when the disk can be almost entirely free of spots for days on end) and sunspot maximum 
(when many spots can be found on the disk), it is natural to wonder: does the radius of the Sun 
undergo any changes in the course of the sunspot cycle? Antia et al. (2000) used f‑mode frequencies 
to address this: using 3 years of GONG data, they found changes in the frequencies that suggest that 
the solar radius is smaller at solar maximum by 5 km. Lefebvre et al. (2009) used f‑modes to show 
that the solar radius is smaller at solar maximum by 7 ±1 km. Bush et al. (2010) used SOHO/MDI 
imaging data covering an entire solar cycle to derive an upper limit on the peak-to-peak change in 
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solar radius during the cycle: 0.023", i.e., ≤17 km. Larson and Schou (2015) used SOHO/MDI data 
for the years 1997–2011 and found that the fractional change in seismic radius ΔR/R between solar 
minimum and solar maximum was about 2 × 10−5, i.e., about 0.02", consistent with the amplitude 
obtained by Bush et al. Moreover, Larson and Schou were also able to show (see their Figure 3) 
that the seismic radius of the Sun is smaller at solar maximum than at solar minimum. Kosovichev 
and Rozelot (2018), using 21 years of SOHO and SDO data (i.e., extending over almost two solar 
cycles), reported that during solar maxima, the solar radius is reduced by 5–8 km at depths of 5±2 
megameters (Mm). These papers are consistent in the following conclusion: during the 11-year 
sunspot cycle, the Sun’s radius decreases (slightly) when sunspots are most abundant, and increases 
(slightly) when sunspots are least abundant. However, the changes in radius between solar mini
mum and maximum are small enough that they do not exceed the uncertainty (±30 km) listed in 
Equation 1.12. Therefore, the value of solar radius in Equation 1.12 is applicable throughout the 
solar cycle. Theoretical models of solar structure that incorporate variable magnetic fields with 
periods of order 11 years have also reported that the solar model becomes (slightly) smaller at solar 
maximum by amounts of 7–30 milliarcsec ≈ 7–30 km (Mullan et al. 2007) and by 30 km (Piau et al. 
2014). 

Interestingly, if the length of the solar cycle were not 11 years, but much longer, then the pre
dicted change in solar radius due to magnetic effects would undergo a change in sign. In stars where 
the magnetic field is steady or varies on long enough time-scales (>3500 years), there is enough time 
for the interior of a star to adjust its entropy in such a way (Piau et al. 2014) that the radius increases. 
Models of low-mass stars that include steady magnetic fields are indeed found to exhibit larger radii 
than in nonmagnetic models (Mullan and MacDonald 2001). 

For future reference, when we come to discuss the solar wind (Chapter 18), it will be helpful to 
know how far the Earth is from the Sun in units of the solar radius. Comparing D with R , we can 
see that 1 AU is equivalent to 215.04 R  . 

1.6 ACCELERATION DUE TO GRAVITY AT THE SURFACE OF THE SUN 

Now that we know the mass and radius of the Sun, we can calculate the acceleration due to gravity 
gs at the solar surface. 

GM  1 3271244 . 1026 
-2g   27420 cm sec (1.13)s 2 10 2R  6 957 10 )( .  

For future reference, we note that a convenient way to remember this value is to recall the logarith
mic value (in base 10): log gs = 4.44. 

1.7 THE MEAN MASS DENSITY OF THE SUN 

Knowing M  and R , we can calculate the mean mass density of the Sun: 

M
 

3 
(1.14) 

4 3  R( / )

Inserting the values of M  and R  from Equations 1.10 and 1.12, we find  = 1.410 gm cm−3, 
somewhat greater than the mean density of (liquid) water. Once we calculate a model for the interior 
of the Sun (Chapter 9), it will be a matter of interest to compare the density at the center of the Sun 
to the mean density. We shall find that the central density in the Sun is at least 100 times larger than 
the density of liquid water. Clearly, in order for the Sun to have a mean density of order 1 gm cm−3, 
while its central density is so much larger, there must be a compensating decrease of density as we 
approach the surface of the Sun. We shall see in Chapter 5 that indeed the density of the gas in the 



 

  

 

 

 
      

 

  

 

  

11 The Global Parameters of the Sun 

photosphere is of order 10−7 gm cm−3: this is about four orders of magnitude smaller than the density 
of air on the surface of the Earth. We shall be interested in Section 5.6 to find out why the Sun has 
such a density in its photosphere: we shall find that the answer to this question has to do with the 
process that controls the escape of light from the photosphere through the overlying atmosphere. 

Despite the large densities at the center of the Sun, it is important to note that the material of 
which the Sun is composed does not behave as a liquid or a solid: instead, we shall find that it obeys 
the laws that govern the behavior of a gas (Section 9.5). 

1.8 ESCAPE SPEED FROM THE SOLAR SURFACE 

The escape speed from the surface of the Sun is given by 

2GM
V   617.7 km sec-1 (1.15) esc R  

This escape speed is a measure of the depth of the gravitational potential well due to the mass of the 
material in the entire Sun. It is a measure of how strongly the Sun’s weight crushes the gas in the 
core of the Sun. It is a law of physics that, if the Sun is to remain in pressure equilibrium, the crush
ing effects of the weight of the overlying material on the core have to be balanced by the effects of 
outward-directed pressure. 

Now, the pressure that operates in a gas is determined by the momentum flux of the individual 
gas particles. As a result, the thermal pressure in the core is related to the mean square veloc
ity of the thermal particles there (e.g., Sears 1959). Thermal particles, each with mass m and in a 
medium with temperature T, have a root-mean-square (r.m.s.) velocity V(rms) = √(3kT/m) where 
k=1.3806504 × 10−16 ergs deg−1 is Boltzmann’s constant. We shall be especially interested in the 
value of V(rms, center) at the center of the Sun. The existence of the two velocities, V(rms, center) 
and Vesc, which are both characteristic of the Sun, suggests that if the Sun is to be in pressure equi
librium, then V(rms, center) and Vesc should have comparable magnitudes. We shall check on this 
expectation after we calculate a model of the Sun (Section 9.2). 

For future reference, we note that for a gas consisting of hydrogen atoms, 1/m = 1/mH (where mH 

is the mass of a hydrogen atom = 1.6605389 × 10−24 gm), and the value of 1/m equals Avogadro’s 
number Na, which is the number of particles in one mole. The combination kNa is referred to as the 
gas constant Rg = 8.314472 × 107 ergs deg−1 mole−1. For a gas consisting of particles with atomic 
mass μ (in units of mH), the r.m.s. velocity V(rms) = √(3Rg T/μ). 

1.9 EFFECTIVE TEMPERATURE OF THE SUN 

Now that we know the output power of the Sun as well as its radius, we are in a position to calculate 
the value of Teff, i.e., the temperature of the equivalent blackbody that would radiate a flux equal to 
that emitted by the Sun. In Section 1.5 earlier, we mentioned that the solar luminosity can be written 
in terms of an effective temperature (Teff ) and the solar radius. 

In Section 1.5, we labeled the radius of the layer where the local temperature T equals Teff as 
R(2/3). Now that we have a reliable value of R , we replace R(2/3) with R  and write: 

L  4 R 2
BT 4 (1.16) eff 

The surface flux of radiant energy at the Sun, F   L  4  R  
2 , can now be evaluated: 6.2939 × 1010 

ergs cm−2 sec−1. Using this, we find that the effective temperature of the Sun is 

Teff  5772K (1.17) 



 

 
 
 

 
 

   

  
  

  

  

       

 

12 Physics of the Sun 

In Chapter 2, we shall see that this value of Teff has the consequence that the light emitted by the Sun 
has a peak intensity per unit wavelength at a wavelength close to 5000 Å, i.e., in the green part of 
the visible spectrum where the sensitivity of the human eye is close to optimal. 

1.10 THE OBLATENESS OF THE SUN 

To the unaided eye, the disk of the Sun appears to be circular in shape. But careful measurements 
reveal a slight departure from circularity: the polar diameter is slightly smaller than the equatorial 
diameter. The fractional difference between the solar radius at the equator and the solar radius at 
the poles (i.e., the “ellipticity” or “oblateness”) is  = (Req−Rpole)/Req. Oblateness can arise from rota
tion. From the earliest telescopic observations of sunspots in the early 1600s, Galileo observed that 
the spots would move systematically across the disk of the Sun as time went on: he attributed these 
motions to solar rotation, and he concluded that the Sun rotated about once per month. 

Oblateness can be caused by rotational speed. If rotation were absent, the Sun’s figure would 
settle into an equi-potential surface, for which the potential would be spherically symmetric: 

= −GM  /r. With such a potential, the surface acceleration due to gravity g = −d /dr would also 
be spherically symmetric. This would cause  to have a zero value. However, in the presence of 
rotation, the (inward) force due to gravity is counteracted to some extent by the (outward) centrifu
gal acceleration rΩ2, especially near the equator. If the Sun were to rotate with a uniform angular 
velocity Ω throughout its volume, then the net gravitational acceleration g(rot) at colatitude  would 
be given by 

g r( ot) 2 sin 2 g r  (1.18) 

corresponding to a gravitational potential 

 2 2 
GM 

0 5. r2  sin  (1.19) 
r 

This leads to an equi-potential surface which, in the presence of an equatorial rotational velocity 
V(eq) = r Ω, has an oblateness of  = 0.5 V(eq)2/gr: in this case, the ellipticity is equal to one-half of 
the ratio of centrifugal acceleration at the equator to the acceleration due to gravitation. 

To proceed, we need to know: how fast does the Sun rotate? This question can be answered as 
regards the surface of the Sun by means of direct observations of the wavelengths of light associated 
with the gas at the surface. To estimate the rotational velocity of this gas, we use a spectrometer 
to measure the wavelength  of a spectral line at the east limb of the solar disk (where the gas first 
rotates into our view from the “far side” of the Sun). Due to rotation, the wavelength will undergo 
a shift Δ D away from the “true” wavelength that the line would have if the gas were at rest. 
According to the Doppler formula, a shift Δ D in the wavelength  of a particular line corresponds 
to a speed V such that Δ D/  = V/c where c = 2.99792458 × 1010 cm s−1 is the speed of light. (This 
value of c is listed on the JPL website cited earlier in Section 1.1.) 

Observations on the solar equator show that this gas is moving towards us with velocity V(eq) ≈ 
2 km s−1. And at the west limb (where the gas is rotating away from our view and moving onto the 
“far side”), the gas is rotating away from us, so the lines are Doppler shifted to redder wavelengths, 
by amounts that also correspond to gas speeds of about 2 km s−1. Since V(eq) can be written as 
rΩ(eq), we can insert the value of the solar radius (Equation 1.12), and determine that, at the equa
tor, the Sun’s angular velocity Ω(eq) is roughly ≈ 2.874 × 10−6 sec−1. The corresponding period of 
rotation of gas at the solar equator is P(eq) = 2π/Ω(eq) ≈ 2.186 × 106 sec ≈ 25.3 days. Galileo was not 
far off in his estimate of the Sun’s rotational period. 

Now, in order to convert to an initial estimate of the solar oblateness, let us suppose for sim
plicity that the Sun rotates as if it were a solid body with exactly the same value of Ω = Ω(eq) in 



 
 

  

 
 

 
 
 
 
 

  

 

 

13 The Global Parameters of the Sun 

all regions of the Sun: after all, solid body rotation is what happens on the astronomical object 
with which we are most familiar (the Earth). If this supposition were true, then the ellipticity of 
the solar surface 

( )2 ( )q 2V eq r e
 0 5   .. 0 5  (1.20) 

gr g 

could be evaluated by inserting the values of g and r from Equations 1.13 and 1.12: this would lead 
to a numerical value of S = 10.47 × 10−6 where the subscript S indicates that this applies to an object 
in solid body rotation. If the value of oblateness S were in fact applicable to the Sun, then the value 
of Req would differ from the value of Rpole by an amount SReq ≈ 7.3 km. Given that at the average 
distance of the Sun, features of linear size 725 km have an angular size of 1 arc second, the afore
mentioned difference in equatorial and polar radii would cause the angular radius of the equator to 
exceed the angular radius at the poles by about 0.01 arcsec. This is so small that observations from 
the ground (where turbulence in the Earth’s atmosphere typically caused the edge of the solar disk 
to fluctuate with an amplitude of 1 arcsec) are unreliable. Measurements from above the atmosphere 
are preferable. 

A balloon-borne instrument aimed at measuring the solar diameter, the Solar Disk Sextant 
(SDS), reached altitudes of order 30 km above the ground, where the residual air pressure has 
fallen off to 0.003–0.005 times the pressure at ground level. By 2011, the SDS had made 12 flights 
(Sofia et al. 2013). Residual atmospheric refraction caused the vertical diameter to be subject to 
corrections of 0.005–0.025 arcsec. Results from four flights between 1992 and 1996 reported 
oblateness values of  = (4–10.3)±2 × 10−6 (Egidi et al. 2006). The upper limit of these observa
tions is not far from S. 

Measurements of  from space were made by SOHO/MDI: the spacecraft was rolled through 
360 degrees in small angular increments, each 0.7 degrees in extent, corresponding to 360/0.7 = 514 
individual “pie slices” of data around the entire circumference. Each “pie slice” was fitted with a 
radial profile: taking a numerical radial derivative of each profile and squaring the derivative, the 
location of the peak of squared derivative was defined to be the location of the limb. With more than 
500 samples in each spacecraft roll, and by repeating the roll multiple times in the space of several 
months, Kuhn et al. (1998) claimed that they could achieve a precision of 0.5 km in the angular 
radius at pole and equator. Using observations obtained in 1996–1997, Kuhn et al. reported a solar 
oblateness of 

7 77 0 66 10 6 ( .   . )x (1.21) 

This value of oblateness overlaps with the range reported by SDS, but with smaller error bars. The 
range of ellipticities reported in Equation 1.21 are sufficiently small that they cannot be considered 
consistent with S: there is a discrepancy at the 4  level. This implies that something is wrong with 
our assumption of solid body rotation for the solar surface. The entire surface of the Sun cannot be 
rotating with a period that is as short as 25.3 days: some regions must be rotating at a rate that is 
slower than the equatorial value of 25.3 days in order to drive the value of  down to a level that is 
clearly smaller than S. We now turn to evidence supporting this conclusion. 

1.11 THE OBSERVED ROTATION OF THE SUN’S SURFACE 

An important observational finding is that, unlike what happens on a solid body such as the Earth, 
the rotational period of the Sun is not the same at all latitudes. Instead, the period is found to be 
shortest at the equator, and the period becomes longer as we observe at higher and higher latitudes, 
i.e., at points that lie closer to the poles. Thus, the gas on the solar surface rotates faster at the 
equator than at any other latitude. This behavior is called “latitudinal differential rotation” (LDR). 



  

 
 

      
 
 
 
 
 
 
 
 
 
 

14 Physics of the Sun 

A functional fit to the solar rotation often used is the following expression for the angular velocity 
Ω of the Sun’s surface as a function of latitude : 

( ) 0 1 bsin2 c sin4( ) (1.22) 

In a study involving Doppler shift data for spectral lines formed in the solar gas at many points 
on the surface, obtained over the course of 14  years, Howard et  al. (1983) reported average 
values for the parameters in this fit: Ω(0) = 2.867 × 10−6 rad sec−1, b = 0.121, and c = 0.166. 
(The value of Ω(0) is a measured quantity: previously, in Section 1.10, we calculated a value 
of Ω(eq) which was only approximate, based on an approximate value of V(eq).) Converting 
to units of degrees per day, the value of Ω(0) corresponds to a gas rotation rate at the equator 
of A(eq) = 14.19 deg day−1. This corresponds to an equatorial rotational period of P(rot, eq) = 
360/A(eq) = 25.37 days. The equatorial rotational velocity V(eq) = Ω(0)R  has a numerical value 
of 1.99 km sec−1. At latitudes of 60°, the rotational period P(rot, 60) = 31.3 days. At the N and S 
poles, Equation 1.22 indicates that Ω(90) = 0.713 Ω(0) = 2.044 × 10−6 rad sec−1, corresponding to 
a polar rotational period P(rot, poles) = 2π/Ω(90) = 35.6 days. Remarkably, the gas in the polar 
regions of the Sun rotates almost 30% more slowly than the gas near the equator. If we needed 
any reminder that the Sun is not a solid body (but is composed entirely of gas), the LDR would 
provide the “smoking gun” evidence. 

The existence of LDR on the solar surface helps us to understand why the observed oblateness 
of the solar disk (Equation 1.21) is smaller than the oblateness predicted by assuming solid body 
rotation with the same Ω(eq) at all latitudes. In fact, the observations tell us that the actual value of 
Ω is a maximum (Ω(eq)) at the equator, and at all other locations in the surface, Ω is smaller than 
Ω(eq). The observed value of solar oblateness (Equation 1.21) could be made consistent with the 
formula in Equation 1.19 if an “effective” average of the angular velocity over the solar surface were 
to have the value Ω(eff) = 2.474 × 10−6 rad sec−1. This value actually is intermediate between the 
values reported by Howard et al. (1983) for Ω(0) and Ω(90), i.e., it is an angular velocity that does 
in fact exist at some intermediate latitude on the solar surface. It appears therefore that most (or all) 
of the observed oblateness of the surface of the Sun can be ascribed without serious contradiction 
to rotational effects. 

Another approach to studying the LDR in the Sun, not involving any spectroscopic data, is to 
observe the spatial locations of “tracers” such as sunspots or other features at a particular instant, and 
then, as time passes, watch the tracers rotating from east limb to west limb. Wohl et al. (2010) have 
reported on a study of small bright coronal structures (SBCS) observed by the Extreme-ultraviolet 
Imaging Telescope (EIT) instrument on board the SOHO spacecraft during the years 1998–2006: 
their sample includes 55,000 SBCSs. They find an equatorial rotation rate A(eq) ranging from 14.37 
and 14.55 deg day−1. Using the same units, Wohl et al. also summarize the results of using other 
tracers including sunspots (A(eq) = 14.393 to 14.551), H  filaments (14.45–14.48), magnetic fields 
(14.0–14.5), coronal bright points (14.19–17.6), and radio regions with high and low brightness in 
microwaves (13.92–14.91). Wohl et al. also cite Doppler studies, for which the corresponding values 
are found to be 13.76–14.05 deg day−1. The ranges of values are bewildering, but when we compare 
magnetic features to Doppler measurements in (mainly) nonmagnetic gas, one particular aspect 
may be emerging: the Doppler data (such as those reported by Howard et al. [1983]) yield rotational 
rates A(eq) that are in general smaller than the A(eq) values for magnetic features. If this is a robust 
result, then magnetic structures on the solar surface are rotating systematically faster than the non
magnetic gas that dominates in the Doppler data. 

Why might that be so? One explanation is that magnetic fields in the Sun are thought to be gener
ated by a process known as “dynamo action” in the solar interior: gas motions of certain kinds may 
cause charged particles to create currents that give rise to magnetic fields. If this is true, then the 
fields that we can observe on the surface of the Sun must originate in deeper layers and then rise (by 
some process) to the surface. In so doing, the field lines may retain (at least some) connection with 



 

   

  

   

  

 

 

15 The Global Parameters of the Sun 

the gas where they originated, i.e., with their “roots” somewhere below the surface. In this scenario, 
the faster motion observed for magnetic features on the solar surface could be understood if the Sun 
were to be rotating faster at the deep levels where the field lines are rooted. Observational evidence 
in favor of faster rotation beneath the surface will be discussed in Section 14.9.3. 

We might ask the question: how “strong” is the differential rotation on the solar surface? That is, 
how much does the angular velocity of the Sun vary between different locations on the surface? In 
principle, the coefficients b and c in Equation 1.22 might be able to provide quantitative measures 
of the extent to which the solar surface departs from solid body rotation. In fact, many observers 
have sought to determine how (or if) the values of the coefficients change during the sunspot cycle 
by looking for changes in the values of b and c at different times. Some of these changes have been 
interpreted as evidence for systematic changes in LDR during the solar cycle, although the various 
results reported in the literature are somewhat contradictory. However, there may be a fundamental 
problem in the analyses: the choice of functional form in Equation 1.22 is mathematically incorrect 
(Bertello et al. 2020) because the basis functions used in the series expansion (1, sin2 , and sin4 ) 
are not in fact orthogonal to one another. As a result, there can be numerical “cross-talk” between 
the coefficients that can lead to spurious variations when data are analyzed, especially if the data 
extend over only relatively short intervals. Bertello et al. suggest a different choice of basis functions 
(Gegenbauer polynomials, denoted by Tj

i) which are truly orthogonal: they then fit the observed Ω( ) 

using “rectified” coefficients A, B, and C  as follows: 

1 1 2( )  T2 (sin ) CT4 (sin ) (1.23)  A B

Bertello et al. have used Equation 1.23 to fit the observed rotation rates in 70 years of images of 
chromospheric features (“plages”, or active regions) obtained at Mt. Wilson Observatory in the K 
line (  =3933 Å) of ionized calcium. With some 14,000 images to work with, they conclude that 
over the course of 70 years, the coefficients A, B, and C do not exhibit any significant alteration 
with time. Moreover, some earlier analyses of various tracers had hinted at an asymmetry between 
northern and southern hemispheric behavior; however, Bertello et al. report that they did not detect 
any significant asymmetry between N and S hemispheres “during most of the twentieth century”. 

For future reference, we note that when we convert angular velocities to (temporal) frequencies, 
 = Ω/2π, the equatorial rotation Ω(0) corresponds to (0) = Ω(0)/2π = 456 nHz, while at the poles, 

Ω(90) corresponds to (90) = 325 nHz. 
The question naturally arises: why is the Sun’s equatorial region rotating faster than at other lati

tudes? Theoretical analysis (Canuto et al. 1994) as well as three-dimensional computational models 
(Miesch et  al. 2006) have been used to examine the question; unfortunately, these explanations 
involve complicated fluid interactions that lie beyond the scope of a first course in solar physics. 

In order to keep track of individual solar rotations over time spans of many decades (and centu
ries), solar astronomers refer to the “Carrington rotation number”. This is assigned on the basis of 
the rotation period of the solar equator: although the “true” rotational period at the equator of the 
Sun is 25.37 days (see discussion after Equation 1.22), the equatorial region of the Sun as viewed 
from Earth requires an interval of 27.2753 days for the same physical location on the solar equator 
to return to the same position on the solar disk as viewed from Earth. The period of 27.2753 days 
was first suggested by the English astronomer R. C. Carrington (famous for his discovery of the 
first “white-light flare” in 1859) as the defined length of 1 Carrington rotation (CR): by convention, 
CR 1 started on November 9, 1853. For future reference, we note that CR 2092 spanned the time 
interval January 3–29 in the year 2010: that was the rotation during which, for the first time, a full 
set of measurements of the vector magnetic field over the entire surface of the Sun became available 
on a daily basis. 

So far, the observations we have been discussing (Doppler shifts, “tracer” locations) allow us to 
quantify differential rotation only at the surface of the Sun. As it turns out, when we discuss the 
helioseismological data in Chapter 14, we shall discuss evidence revealing that it is not merely the 



 
 

  

  

  

  

  

  

16 Physics of the Sun 

surface layers of the Sun that depart from solid body rotation: it turns out that the gas at different 
radial locations regions inside the Sun also rotate with different periods. As a result, differential 
rotation is not merely a function of latitude: the Sun also exhibits radial differential rotation (RDR). 

Furthermore, whereas the term “rotation of the Sun” typically has to do with gas motions occur
ring in the direction of increasing (or decreasing) longitude, there is also observational evidence that 
a different type of systematic motion occurs in the Sun in the direction of increasing (or decreasing) 
latitude. Motions of the latter kind are referred to as “meridional circulation” because they give 
rise to motions along the meridians that run between equator and pole (Komm et al. 2015): these 
motions occur within 10 Mm of the solar surface and have speeds of order 10 m sec−1, i.e., some 
100 times slower than the rotational speed. As regards the origin of meridional flows, Kitchatinov 
(2013) suggests that two competing forces (both caused by the Sun’s rotation), one driving the flow 
poleward, the second driving it equatorward, almost exactly cancel each other. The observed flow 
is driven by slight excesses in the poleward (centrifugal) force. Despite the relative slowness of the 
meridional flows, this circulation nevertheless plays a role to determining the 11-year time-scale of 
sunspots (see Section 16.9). 

1.12 A CHARACTERISTIC FREQUENCY FOR SOLAR  
OSCILLATIONS DUE TO GRAVITY 

Now that we know the radius and mass of the Sun, a characteristic frequency can be constructed: 
this will be relevant when we come to discuss (in Chapters 13 and 14) the various modes of oscilla
tion in the Sun. For a pendulum of length d in the presence of gravitational acceleration g, there is 
a natural period Pg = 2π√(d/g). By analogy, in the Sun (with radius R  and surface gravity gs), there 
exists a natural gravitational period Pg = 2π√(R /gs). This can be written as 

R  
3 

Pg  2  (1.24) 
GM  

Noting that the ratio of the Sun’s mass to its radius cubed is proportional to the mean density of the 
Sun, we see that the time period Pg can be written as 1/√(Gρ). Inserting solar values, we find Pg is 
close to 104 seconds, with an associated gravitational frequency g ≈ 100 microHz. 

Now that we have information on the relevant physical parameters on a global scale, we can turn 
to a study of the internal structure of the Sun. 

EXERCISES 

1.1 Consult a table of the orbital period P and mean distance (semi-major axis a) for each of 
the planets Mercury, Jupiter, and Neptune. Express P in seconds and a in cm in prepa
ration for using Equation 1.5. Ignoring the ratio of planet mass to Sun’s mass, use each 
planet to determine an independent value for the mass of the Sun in units of gm. How 
much fractional difference do you find between the three estimates of “the” solar mass? 

1.2 We shall see (Chapter 18) that the Sun’s influence over the surrounding space extends out 
as far as D ≈ 100 AU. Determine the period (in years) that a planet would have if it were in 
an orbit with that value of D. Assuming the orbit is circular, determine the speed of such 
planet in its orbit in units of km s−1. 

1.3 The Sun is currently estimated to be some 4.6 Gy old. When the Sun was younger than 1 
Gy, theory suggests that its luminosity was only 70% of what it is today. Assuming that 
the Sun’s radius has not changed, calculate the effective temperature of the young Sun. 

1.4 Using information provided in the text, determine the mean density of the Earth and the 
acceleration due to gravity at the Earth’s surface. 
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1.5 Given that the Earth rotates with a period of 1 day, calculate the Earth’s angular velocity 
Ω(E). Use that to calculate the expected oblateness of the Earth (assuming that the mate
rial of Earth is free to respond to centrifugal forces). How does your answer compare with 
the observed oblateness of Earth (1/297)? 

1.6 Stars belonging to a feature called “the main sequence” have radii R* and masses M* that 
scale roughly as R* = R (M*/ M  )

0.7. For stars with masses 0.1, 0.3, 1, 3, and 10 M  on 
the main sequence, calculate R* and evaluate the surface gravity (Equation 1.13) and the 
escape speed Vesc from the surface (Equation 1.15). 

1.7 It has been observed that the masses and luminosities of stars of a certain class (the so-
called main sequence stars) can be approximated by L* ~M* 

3.8. Using the formula for 
luminosity in Equation 1.16, and the R* – M* formula in Exercise 6, show that Teff for main 
sequence stars scales as M*

0.6. Using this scaling along with Equation 1.17, calculate Teff 

for main sequence stars with masses of 0.1, 0.3, 1, 3, and 10 M  . 
1.8 Assume that the Earth and Jupiter move in circular orbits, with radius = semi-major axis. 

Given the orbital period P for each planet, calculate the orbital speed v(orb) for each 
planet in units of cm s−1. 

1.9 Astronomers are actively searching for planets around other stars (hoping that one day 
they may find life out there). How can planets be detected around other stars? One way 
is to use Newton’s law of gravitation: this law states that each planet follows an elliptical 
orbit relative to the center of mass of the sun–planet pair. This has the effect that it is not 
merely the planet that moves along an orbit: the Sun also moves along a (smaller) orbit rel
ative to the same center of mass. (This small motion is called the Sun’s “reflex” motion.) 
If we assume that there are no other planets present, then Newton says that the semi-major 
axis a(Sun) of the Sun’s orbit will be smaller than that for the planet’s orbit a(planet) by 
the factor M(Sun)/M(planet). Now, the period required for the Sun to traverse its small 
orbit (also assumed to be circular) is exactly the same as the period required for the planet 
to orbit once around the Sun. Using the value of M(sun)/M(Earth) given in the text, and 
the value of v(orb) for Earth obtained earlier in Exercise 8, show that the Sun’s reflex 
motion due to Earth is about 10 cm s−1. (To confirm the presence of an Earth-like planet 
around a Sun-like star, astronomers will need to discover a reflex motion as small as 
10 cm s−1. This is very challenging for the technology that is available in the year 2021.) 

1.10 Repeat the calculation of Exercise 9 for Jupiter. (Find the mass of Jupiter online.) Show 
that the Sun’s reflex motion due to Jupiter is about 100 times larger than the reflex motion 
due to Earth. This helps to explain why the first detection of planets around other Sun-like 
stars (beginning with the Nobel Prize–winning work of Mayor and Queloz [1995]) were 
due to Jupiter-sized planets, not Earth-sized planets. 
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2 Radiation Flow through
 
the Solar Atmosphere
 

Now that we have knowledge of the global parameters of the Sun, we are in a position to turn to 
an interpretive study of the photons that are the principal means by which information comes to 
us from the Sun. If we can make certain measurements on the photons from the Sun, such as their 
distribution in wavelength, and the integrated flux of radiant energy, the goal is to extract quantita
tive information about the temperature and other physical quantities in the region from which the 
photons originated. The photons originate mainly in a region that can be considered roughly as “the 
(visible) surface of the Sun”: a more precise definition of this region will emerge subsequently from 
a discussion of radiative transfer. 

Our goal is to use the information carried by the solar photons to undertake a task of physical 
interpretation that will take us in two opposite directions away from the “surface”: (i) into the deep 
inner regions of the Sun and (ii) outward toward the rarefied material lying above the visible surface. 

We aim to use certain laws of physics to help us determine a “model of the Sun”, i.e., to deter
mine the radial profile of physical parameters such as temperature, density, and pressure. 

2.1 RADIATION FIELD IN THE SOLAR ATMOSPHERE 

The goal of radiative transfer in the solar atmosphere is to determine how radiation interacts with 
the medium as it passes through material with a particular set of physical properties. The interac
tion is mutual: on the one hand, the medium imprints certain properties on the radiation, and on 
the other hand, the material in the medium is affected (as far as its temperature and density are 
concerned) by the photons streaming outward from deep inside the star. 

An important way to characterize the radiant energy is the intensity I : this is the amount of radi
ant energy that flows through unit area per unit time per unit wavelength and per unit solid angle. 
The units of I  that we will use to describe the visible spectrum of the Sun are the c.g.s. units: ergs 
cm−2 sec−1 cm−1 steradian−1. 

An alternative approach to quantifying the radiant power is to specify the intensity  per unit 
frequency: this is given the symbol Iν in units of ergs cm−2 sec−1 Hz−1 steradian−1. Conservation of 
energy requires that I d  = Iνdν. Since ν = c (where c = 2.99792458 × 1010 cm sec−1 is the speed of 
light), this means that I  = Iν(c/ 2). 

The numerical value of I  (or Iν) at any point inside a medium (whether it is inside the Sun or in 
a star, or inside an oven on Earth) depends on the local temperature: other things being equal, the 
higher the temperature, the larger the value of I  (or Iν). The value of I  (or Iν) also depends on the 
wavelength  at which observations are made. 

The simplest example of I  (or Iν) useful for astrophysical studies refers to the radiant energy field 
that is in thermal equilibrium inside a closed cavity (or oven). This leads to the so-called blackbody 
radiation. In thermal equilibrium, the radiation is in equilibrium with the walls, and equal numbers 
of radiant modes are being absorbed and emitted by the walls per unit time. Inside a 1 cubic cm cav
ity, the only radiant modes that are present with significant amplitudes have wavelengths such that 
an integral number of half-wavelengths fit into the cavity. Thus, in one dimension of the cavity, with 
length 1 cm, the longest wavelength that can be accommodated is =2 cm. At shorter wavelengths, 
the number of modes n1 with wavelength  cm that can be fitted into 1 cm scales are 1/(0.5 ). In three 
dimensions, the number of modes of wavelength  cm that can be fitted in scales are [1/ ]3 ~ ν3/c3. 
The shorter the wavelength, the more modes can be fitted in. If we restrict our attention to a certain 
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20 Physics of the Sun 

range of wavelengths (or a certain range of frequencies), it is possible to use classical physics to 
enumerate the numbers of radiant modes permitted to exist per unit volume inside the oven. The 
number of such modes per unit frequency can be shown to be equal to 8πν2/c3 cm−3 Hz−1. 

The close coupling of radiation and walls inside a closed oven suggests that, since the thermal 
energy of a single particle with temperature  T is kT, where  k = 1.381  ×  10−16 ergs (deg K)−1 is 
Boltzmann’s constant, it might also be appropriate to assign an energy of kT to each radiant mode: 
after all, each mode is a standing wave in thermal contact with the walls of the oven. If we adopt 
such an assignment, the radiant energy density (i.e., energy per unit volume) per unit frequency 
would be Eν = 8πν2kT/c3 ergs cm−3 Hz−1. 

Evaluation of the energy density of the radiation field is the first step toward deriving an expres
sion for the radiant intensity: the latter is associated specifically with the flow of energy across an 
element of surface area and into unit solid angle in a particular direction. (Note: “steradian” is a 
unit of solid angle, such that an entire sphere contains 4π steradians by definition.) To transform 
from energy density to radiation intensity, the energy density must be multiplied by the speed of 
propagation (c) and also by the factor 1/4: the latter includes a factor of 1/2 to allow for inward and 
outward propagation and a factor of 1/2 for geometric averaging over spherical angles. This leads to 

2 2 2 1 1 1I kT c ergscm sec Hz steradian (2.1) 2 /

Equation 2.1 describes the radiant intensity according to the Rayleigh–Jeans law: it in fact provides 
a good fit to the radiant flux inside an oven at long wavelengths, i.e., at >>1.4/T cm. For radio
astronomical objects containing material hotter than (say) 100 K, Equation 2.1 is found to apply 
reliably at wavelengths in the centimeter or meter range (or longer). However, if we try to apply 
Equation 2.1 to progressively shorter (ultraviolet) wavelengths, i.e., as ν  ∞, the prior expression 
for Iν diverges. This divergence of the radiation energy is known historically as the “ultraviolet ca
tastrophe”. 

In order to avoid this catastrophe, Max Planck in 1900 suggested that, despite the arguments of 
classical physics, it is no longer correct to assign the same energy (namely, the mean thermal energy 
of a particle kT) to each and every mode of the radiation field. Instead, Planck offered the follow
ing radical postulate: for modes of a given frequency v, only certain discrete energies are allowed, 
namely the arithmetic sequence E(i) = 0, hν, 2hν, 3hν, . . . where h (now known as Planck’s constant) 
is a constant of nature. That is, photon energies are discrete, i.e., quantized. In the quantum world, 
modes of frequency  with energies intermediate between the numbers in the E(i) list simply do not 
exist, any more than there are places to “stand” in between the rungs of a ladder. In the scenario 
envisioned by Planck, the total energy available from the thermal energy of the cavity is distributed 
among a large number of modes. The question is: how many modes are expected to be present at any 
given frequency ? Planck suggested the following answer: in a medium where the temperature is T, 
the available thermal energy is kT. Therefore, modes with energies that are increasingly larger than 
kT are less and less likely to be populated. Quantitatively, Ludwig Boltzmann had earlier shown 
in a discussion of the thermodynamics of a multiparticle system that, in a thermal distribution, 
particles with energy E(i) would be present in numbers which are proportional to their Boltzmann 
factor BF(i) = exp(−E(i)/kT): this takes into account the fact that very few particles in the cavity 
can possibly have energies which are greatly in excess of kT. (Where would such particles ever get 
their energy from anyway?) Planck applied this line of reasoning to the radiation modes in a cavity 
with temperature T: the number of modes in the cavity with energy E(i)should be proportional to 
BF(i). The total energy of such modes in the cavity will be the sum of terms involving the prod
uct E(i)*BF(i). Because of the exponentiation in BF(i), the arithmetic sequence of E(i) values now 
becomes, in the sum over all modes, predominantly a geometric series in BF(i) as i increases. To be 
sure, in the sum over all modes, a multiplicative factor E(i) also increases with i: however, this factor 
increases only slowly with , whereas the Boltzmann factor falls off exponentially as  increases. 



 
 

 

  

   

   

   

 

  

  

 
 
 

 

   

21 Radiation Flow through Solar Atmosphere 

Thus, each successive term in the geometric series is smaller than its predecessor by a factor which 
is essentially f' = exp(−hν/kT). Since f' is always less than unity, the sum of this infinite geometric 
series is finite: a(1)/(1−f') where a(1) is the first nonzero term in the series, i.e., a(1)  exp(−hν/kT). 
Adding up the occupation numbers to determine the overall partition function, it is possible to cal
culate the mean energy per mode. This mean energy is found to be no longer E = kT (as had been 
assumed in the classical case): instead, Planck found the following 

h
E

h kT 
(2.2) 

 /e 1 

In the limiting case of low-energy photons, hv kT, Equation 2.2 has the desirable property that 
it reduces to the classical result: E = kT. However, in the opposite limit, for photons with energies 
that are greatly in excess of kT, the mean energy per photon falls well below the classical value: 
when we consider the limit hv kT, Equation 2.2 indicates that the mean photon energy E  falls 
exponentially rapidly toward zero. 

Using the revised estimate of mean energy in the quantum-limited radiation modes, Planck found 
that the classical energy density per unit frequency Ev = 8π(v2/c3)kT should be replaced by Ev = 
8π(v2/c3)hν/[exp(hν/kT) – 1]. Multiplying this energy density by the factor c/4 to convert to intensity 
(as in the classical treatment), the radiant intensity Iν which is emitted per unit frequency from a 
surface at temperature T is found to be: 

32 h 1 2 1 1 1I
 

ergscm sec Hz steradian (2.3) 
2 h k/ Tc e 1 

If we wish instead to express the radiation flow I  in terms of intensity per unit wavelength, the 
corresponding result is 

2 hc2 1 2 1 1 1I   hc / kT 
ergscm sec cm steradian (2.4) 

5 e 1 

These are the expressions (the “Planck functions”: see Figure 2.1) for the intensity of radia
tion inside an absorbing/emitting cavity. Deep in the solar atmosphere, where local thermody
namic equilibrium holds, we shall find that the mean free path for photons is so short (typically 
a few km) that the photons within a “small” volume can be considered to zeroth order to be 
essentially contained in a “cavity” where the temperature changes only slightly from one part 
of the cavity to another. In such conditions, a unique temperature is not a bad fit to local condi
tions, and the Planck function provides a reasonable approximation to the properties of the local 
radiation field. 

How well does a Planck curve actually fit the radiation that we receive on Earth from the Sun? 
After all, the Planck curve was derived for the case of a closed oven where photons are absorbed 
by the walls. But by definition, the radiation we see on Earth coming from the Sun has not been 
absorbed by any walls: it comes streaming to us at great intensity across more than 100 million km 
of space. Therefore, the radiation has not been confined by the Sun, but has emerged so that we can 
see it. This might lead us to expect that the radiation we receive from the Sun might have nothing to 
do with the predictions of the Planck function. But this expectation is, interestingly, not correct. In 
Figure 2.2, we show how the measured radiation from the Sun behaves as a function of wavelength: 
the units of wavelength in the figure are nanometers (nm) where 1 nm = 10 Å. It turns out that the 
Planck function (referred to in Figure 2.2 as “blackbody” spectrum) provides a fit to the observa
tions which is “not too bad”. 

Two important characteristic properties of the Planck functions (see Figure 2.1) are relevant in 
the context of the Sun. First, the curve I  peaks at a certain wavelength max defined by the condition 



 

 

 
   

 
 

               

 
 

22 Physics of the Sun 

FIGURE 2.1 Planck functions I : radiant energy flux per unit wavelength calculated as a function of wave
length for cavities of different temperature. The wavelengths are expressed in units of angstrom (1 Å = 10−8 cm). 
The human eye is sensitive mainly to the “visible” region of the spectrum from about 4000 Å to about 7000 Å. 
The units of the ordinate are arbitrary, but the relative locations of the curves are quantitatively correct. 

dIλ /dλ = 0. Performing the differentiation of Equation 2.4, we find that max decreases as the tem
perature (in units of degrees K) increases according to the formula max(cm) = 0.288/T. This formula 
was originally derived (using thermodynamics arguments) by Wilhelm Wien in 1893 long before 
the Planck function had been derived. In the case of the Sun, where the temperature in the vicinity 
of the “visible surface” is close to 6000 K, max occurs at a wavelength close to 5000 Å. Empirically, 
the solar spectrum, when plotted in the form of I , is indeed found to exhibit a peak at wavelengths 
near 5000 Å (see Figure 2.2). Therefore, a Planck function provides a “not-too-bad” first-order fit 
to the radiation emerging from the Sun. Second, if the Planck function is integrated over all wave
lengths and over all angles, the total energy density of the photons in a cavity with temperature T is 
found to be u(T) = aRT4 ergs cm−3. The radiation density constant aR has a numerical value of 7.5658 
× 10−15 ergs cm−3 deg−4. Converting from total energy density to a total flux of radiation in a certain 
direction, the integral over all frequencies and over all solid angles leads to a total flux of σBT4 ergs 
cm−2 sec−1. Here σB = (c/4)aR = 5.67040(±0.00004) × 10−5 ergs cm−2 sec−1 deg−4 is referred to as the 
Stefan–Boltzmann constant. 

For future reference, we note that the wavelength scale in Figure 2.2 is given in terms of nanome
ters, where 1 nm = 10 angstroms. Another unit also used for wavelength is microns, where 1 micron 

 1μm = 10−4 cm = 104 Å. 
Finally, although this is somewhat removed from a study of solar physics, it is worth wonder

ing: how did Planck in 1900 come up with the innovation mentioned earlier? In a book published 
shortly after his death, Planck (1948) admitted that he was guided by some of the reasoning that 
had been done earlier by Boltzmann. In the early developments of statistical thermodynamics, 
Boltzmann had considered a collection of n particles and assigned a set of discrete energies (0, , 2 , 
. . ., p ) to the particles. The goal was to facilitate the probabilistic calculations of the permissible 



 

     
 

 
 

 
 
 

   

23 Radiation Flow through Solar Atmosphere 

FIGURE 2.2 Downloaded from the website:  https://en.wikipedia.org/wiki/Planck%27s_law#/media/File: 
EffectiveTemperature_300dpi_e.png. Drawn by author Sch (identification unknown). The solar spectrum is 
the WRC spectrum provided by Iqbal (1983). The blackbody spectral irradiance has been computed from a 
blackbody spectrum for T = 5777 K and assuming a solid angle of 6.8e−5 steradian for the source (the solar 
disk). http://creativecommons.org/licenses/by-sa/3.0/ (uploaded May 5, 2006; last accessed February 17, 2022). 

“complexions” (i.e., states) of an ensemble of classical particles (Cercignani 1998). Boltzmann 
wanted to obtain results that could then be extended to the continuous limit by considering a group 
of atoms where the number n was so large that the ratio p/n becomes infinitesimally small. In this 
limit, Boltzmann’s approach had the effect that there would be in the final analysis no remaining 
discreteness of energy. Planck used Boltzmann’s concept to start the process of counting photons, 
but Planck stopped short of Boltzmann’s reasoning: Planck did not allow the discrete energies of the 
photons to merge together into a continuum. Instead, Planck’s photons would retain discreteness, 
i.e., they would be quantized. 

In this regard, the philosopher Karl Popper (1959) used strong language to reject what he called 
the “myth of the scientific method”. Instead of “distilling” science out of “uninterpreted sense-
experiences”, Popper stated, “Bold ideas, unjustified anticipations, and speculative thought are our 
only means for interpreting nature”. Planck’s step beyond Boltzmann was a bold idea that helped to 
distinguish the quantum worldview from the classical worldview. 

One final point should be made in connection with Planck’s formula E  =  hν. When Albert 
Einstein developed his special relativity theory in 1905, he showed that a particle with rest mass m 
and momentum p has an energy given by E2 = (mc2)2 + (pc)2. Since photons have zero rest mass, 
we can write E = pc for a photon. That is, we can associate a momentum with a photon as follows: 
p = E/c = hν/c = h/λ where  = h/p is the electromagnetic wavelength associated with the photon. 
Two decades after Einstein’s work, Louis de Broglie suggested that there exists in nature a wave-
particle duality such that not only for photons could one write  = h/p. De Broglie made the bold 
suggestion that a material particle with momentum p also had a wave-like property associated with 
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it: the wavelength of the associated wave λD was predicted (by analogy with photons) to be given 
by the expression λD = h/p. The “de Broglie wave” associated with a material article is not an elec
tromagnetic wave. Rather, it is interpreted to be a “probability wave” with amplitude  at spatial 
location x such that the probability that the particle is to be found at location x is proportional to | |2. 
The existence of de Broglie waves will turn out to be important for understanding several physical 
issues in this book: why do electrons occupy only discrete energy levels in atoms (see Section 3.3.1)? 
What are the linear sizes of nuclei in different elements (see Section 11.4.1)? Why are protons in the 
core of the Sun able to participate in nuclear reactions (see Section 11.4.3)? 

2.2 EMPIRICAL PROPERTIES OF THE RADIANT ENERGY FROM THE SUN 

The human eye is not adapted for direct observations of the Sun: under no conditions should one 
ever stare at the Sun or point binoculars or a telescope at the Sun. However, images of the Sun can 
be obtained with instruments designed for that purpose. An example of an image of the full disk of 
the Sun is presented in Figure 2.3. (Note: not all telescopes can take a picture of the entire disk of 
the Sun. Some telescopes obtain images of only a small part of the Sun’s surface, e.g., see Figure 6.1 
in Chapter 6). 

FIGURE 2.3 Downloaded from the website: File:Sun white.jpg – Wikimedia Commons. Author: Geoff 
Elston. The image was taken through an 80 mm Vixen refractor mounted on a Super Polaris equatorial mount
ing. Sonnenfilter SF100 full aperture solar filter was used to reduce the light intensity. The camera was a 
Canon 550D DSLR at prime focus. Exposure was 1/400 sec at ISO100. (This file is licensed under the Creative 
Commons Attribution 4.0 International license. Used with permission of Geoff Elston. Uploaded October 27, 
2013; last accessed February 18, 2022.) 



 

25 Radiation Flow through Solar Atmosphere 

In the image in Figure  2.3, one’s eyes are usually drawn at first to the localized dark spots 
(“sunspots”), but that is not the point in the present context. (We will deal with sunspots in detail in 
Chapter 16.) Here, we note that the solar disk is amenable to measurements of radiant intensity at all 
positions across the disk, from center to limb. Apart from sunspots, the intensity of the disk in vis
ible light is azimuthally symmetric. However, inspection of Figure 2.3 shows that if we start at the 
center of the disk, and then move from disk center toward the limb, the intensity does not remain the 
same. One can see that the limb of the Sun is observed to be fainter than the center of the disk when 
observations are made in visible light: this phenomenon is known as “limb darkening”. 

In order to quantify this statement, we need to use a coordinate system best suited to the condi
tions that prevail because our observing platform (P) is situated on the Earth’s surface. In this case, 
it is convenient (see Figure 2.4) to describe the location of a point S on the surface of the Sun in 
terms of the azimuthally symmetric angle ψ between our line of sight and the local normal to the 
Sun’s surface at point S. 

FIGURE 2.4 Downloaded from the website https://en.wikipedia.org/wiki/Limb_darkening; author: 
unknown, source: unknown. Limb-darkening geometry: the star is centered at O and has radius  R. The 
observer is at point P a distance r from the center of the star, and is looking at point S on the surface of the 
star. From the point of view of the observer, S is at an angle  from a line through the center of the star, and 
the edge or limb of the star is at angle Ω. This file is licensed under the Creative Commons Attribution-Share 
Alike 3.0 Unported license. (Uploaded May 1, 2010; last accessed February 18, 2022.) 



 
   

 

 

  

 
 

   

 

 

     

   
 

 
 

 

 
 

 

   

26 Physics of the Sun 

If it happens that the point S lies at the center of the disk (from the observer’s vantage point), the 
line of sight from P to S enters the solar atmosphere along a line parallel to the local normal to the 
solar surface. As a result, the angle ψ has a value of 0 at the center of the disk. On the other hand, 
if the point S lies close to the limb, the line of sight from P to S intersects the solar surface at S at 
a large angle to the local normal. As a result, as we attempt to make measurements of the intensity 
at positions lying progressively closer to the limb, our observing direction corresponds to the limit 
ψ  90 degrees. 

In terms of the variable μ = cos , observations at disk center correspond to μ = 1, while observa
tions close to the limb correspond to μ  0. 

Measurements of limb darkening have been made from many sites on Earth and at many differ
ent wavelengths. These measurements indicate that, for any particular wavelength, I  varies across 
the solar disk in a way that can be described to first approximation as a first‑order polynomial in μ: 

I ( )  a  b  (2.5) 

Some observers choose to fit higher order polynomials to the limb darkening, but the linear fit 
in Equation 2.5 often works well. For wavelengths in the vicinity of 5000 Å, if we normalize I  to 
its value at disk center, I (μ = 1), the empirical values of the coefficients in the linear fit are found 
to be roughly a  = +0.4 and b  = +0.6. That is to say, when we observe the Sun in visible light, the 
intensity at the limb is only 40% as large as at the center of the disk. That is, the limb is 60% fainter 
than the center of the disk when observed at 5000 Å. This is a quantitative restatement of the fact 
that in Figure 2.3, the human eye can see for itself that the solar limb is indeed fainter than the 
center of the disk. 

A priori, it is difficult to say whether the empirical values of the coefficients in Equation 2.5 
are “reasonable”. As regards a  (the intensity at the limb relative to the central intensity), we can 
confidently assert that it is limited to nonnegative values: the radiant intensity is a physical quantity 
that cannot fall below zero. The actual value of a  is related to the mechanism of energy transport 
in the atmosphere: in an atmosphere where adiabatic equilibrium existed, such as would be the 
case if efficient convection were transporting the energy, it can be shown that the numerical value 
of a  would approach zero. Thus, the fact that the empirical value of a  is definitely nonzero already 
conveys useful physical information: energy transport in the photosphere does not occur primarily 
by means of efficient convection (see Section 6.7.2). We shall see later (Section 2.8) that radiative 
transport yields a good fit to the empirical value of a . 

As regards b , there is no obvious a priori reason why b  should necessarily be restricted to 
having a particular algebraic sign. The empirical fact that b  is observed to be a positive number 
(for wavelengths around 5000 Å) indicates that the intensity at the limb, when observed at 5000 Å, 
is less than the intensity at disk center (hence the term: “limb darkening”). 

At near infrared wavelengths (  ≈ 1 μm), b  is observed to be less than 0.6: thus, limb darkening 
is less severe in the infrared than at visible wavelengths. At wavelengths as long as 5 μm, limb dark
ening is no more than about 10%: the intensity at the limb is roughly 90% of the center intensity. At 
wavelengths in the near ultraviolet (  ≈ 0.3 μm), b  is observed to be greater than 0.6, indicating that 
the limb darkening is more severe in the near ultraviolet than at visible wavelengths. 

The fact that the Sun is limb darkened when observed at visible wavelengths does not exclude the 
possibility that at other wavelengths, the limb may be observed to be brighter than the disk center. 
In fact, at long radio wavelengths, limb brightening is observed. In such a case, b  takes on a nega
tive value: there is no mathematical difficulty with this as long as the sum of the two coefficients 
a  + b  remains nonnegative. 

The numerical values of the empirical coefficients a  and b , and the algebraic sign of b , contain 
important information as to how the temperature T(z) in the Sun’s atmosphere varies as a function 



 
   

 
 

 

         

 

 

 
 

   
 

 

  

     
 

 

 

 
 

   

  

27 Radiation Flow through Solar Atmosphere 

of the linear depth z. (Note that the depth z increases as we go downward into the interior of the 
Sun. We will also have occasion to use a linear height variable h that increases as we go upward in 
the solar atmosphere.) Obtaining this depth dependence of T(z) is the first step toward determin
ing the radial profile of temperature inside the Sun. In order to extract T(z), it is first necessary to 
derive the radiative transfer equation (RTE), which describes how I  varies as a function of a related 
coordinate known as the “optical depth” τ. 

2.3 THE RADIATIVE TRANSFER EQUATION (RTE) 

In a radiant medium, such as the solar atmosphere, where the material has a finite temperature, 
each cubic centimeter of gas emits radiant energy at a certain rate ε  ergs cm−3 sec−1 Å−1 ster−1. This 
quantity describes how much radiant energy is emitted into a certain region of the spectrum, across 
a width of spectrum equal to 1 Å per unit solid angle. The origin of this radiant emission can be 
traced ultimately to the pool of thermal energy residing in the particles of the gas (at temperature T): 
as particles in this thermal pool move past one another, the mutual accelerations of electric charges 
(electron, ions) or electric dipoles (atoms) give rise to electromagnetic emissions (i.e., photons) with 
energies related to the local thermal energy, of order kT per particle. Because of this, the emissiv
ity ε  is a function of temperature. 

The gas in the solar atmosphere also absorbs radiant energy at a rate that is described by a (lin
ear) absorption coefficient k  cm−1. The subscript indicates that the absorption coefficient depends 
on the wavelength. The value of k  may also depend on temperature. The wavelength-dependence 
of k  is sometimes extremely rapid, e.g., in the vicinity of a strong spectral line, or near an “ioniza
tion edge”. However, in other cases, k  varies only slowly with wavelength: we refer to this as “con
tinuum absorption”. The optical spectrum that we receive from the Sun is dominated by continuum 
absorption, due mainly to a particular (and unusual) ion (see Section 3.4). 

In the presence of absorption, when a beam of radiation with intensity I  (0) enters a uniform slab 
of linear thickness x, the intensity that emerges is not as large as the intensity that entered. Instead, 
the emergent intensity is given by 

I x I ( )e( )  0 (2.6) 

The quantity τ = k x is a dimensionless number called the optical depth of the slab at wavelength 
. The quantity 1/k  is a linear distance such that a slab of thickness x= 1/kλ reduces the intensity 

of a beam by a factor of 1/e: such a slab has an optical depth =1. If light passes through material 
with optical depth τ = 10, the emergent intensity is attenuated below the initial value by a factor of 
order 2 × 104. This means that when we view a medium where radiation is coming from a variety of 
optical depths, it becomes progressively harder to detect a significant fraction of the radiation that 
originated in layers of gas with optical depths that are much larger than τ = 1. 

What numerical value is typical of the quantity k ? The answer depends on the medium. In the 
surface layers of the Sun, the value of k  at  ≈ 5000 Å is found to be of order 10−6 cm−1. This means 
that two points in those layers that are separated by a distance of 10 km (=106 cm) are separated by 
a medium with τ ≈ 1. In such a medium, radiation emitted by gas that is, say, 100 km deeper than 
at a reference point P  arrives at P  with an intensity of only 1/20,000 times its original value. If P
lies on the visible surface of the Sun, this means that radiation emitted from 100 km below the Sun’s 
surface is essentially all absorbed before we have a chance to see it. 

If k  is nonuniform in the slab, then the optical depth is given by τ = ∫k dx. In the limit of a thin 
slab, with thickness dx, we see that 

I x( ) I ( )  k  dxI 00 ( ) (2.7) 



     

     
   

   

 
 

 
     

       
 

 

  

 

  

 

   

 
 

28 Physics of the Sun 

FIGURE 2.5 Schematic of radiative transfer. The arrowed line represents the path of a ray of light propagat
ing along a slanted path from below to above, passing through a slab of material with vertical thickness dh. 
Inside the slab, the material has absorption coefficient k  and emissivity . Dashed line indicates the local 
vertical direction. The ray enters the slab at point O, and exits the slab at point A. The ray path makes 
an angle  relative to the local normal. The path length OA of the ray as it passes through the slab has a 
length dh sec  . 

Thus, the magnitude of the reduction in I  associated with passing through a path length dx is 
proportional to the path length and also to the intensity of the radiation. 

Combining the concepts of emission and absorption, we can now derive the RTE using Figure 2.5. 
Consider the slanted line OA along which radiation is propagating in a stellar atmosphere. The 

vertical dashed line denotes the local normal to the surface of the Sun. Let OA extend across a slab 
of gas located between heights h and h + dh: in our notation, we assume that the numerical value 
of h increases in the upward direction. Let the slanted line OA lie along a direction that makes an 
angle ψ relative to the local normal. The intensity at height h in the direction of the line is I (h, ψ): 
this is a measure of the energy flux that enters an element of unit area per unit time at height h. The 
element of area is perpendicular to the line OA. After traversing the atmosphere and arriving at the 
higher level, the intensity emerging from the element of unit area per unit time I (h + dh, ψ) differs 
from the value I (h, ψ) because of two processes: (i) reduction in intensity due to absorption in the 
gas that lies along the path OA, and (ii) enhancement in intensity due to emission from the gas along 
OA. Let us imagine that the elements of unit area at h and at h + dh are connected by a rectangu
lar prism of unit area: the length dl of such a prism is equal to the slant length dl = dhsecψ along 
the axis of the prism. The reduction in energy along this path is equal to −I (h, ψ)k dhsecψ. The 
volume of the prism is dhsecψ. In such a volume, the increase in energy flux due to local emission 
is ε (h)dhsecψ. 

Combining the two terms (enhancement and reduction), we find that 

I h  dh I h ( ) hse I h  k dh( , )  ( , )  h d c  ( , )  sec (2.8) 

In the limit dh  0, and defining μ = cos ψ, this leads to

dI
k I (2.9) 

dh 



 

 

   
     

 

  

 
 
 
 
 
 
 

     
 

 
 
 

 
 
 
 

 

  

     
 

 

 

  

29 Radiation Flow through Solar Atmosphere 

Note that the value of μ ranges from μ = +1 (i.e., =0, in the direction of the outward normal) to μ= −1 
(i.e., = 180 deg, in the direction of the inward normal). 

2.4 OPTICAL DEPTH AND THE CONCEPT OF “THE PHOTOSPHERE” 

At this point, we introduce the concept of the optical depth that characterizes a particular layer 
of the atmosphere τ . The increment of this optical depth dτ  is defined by dτ  = −k dh, where the 
negative sign indicates that the numerical value of τ  increases as the height coordinate h becomes 
more negative, i.e., as we move deeper into the star. At any height h  in the atmosphere, the local 
optical depth is computed by integrating from a height of infinity down to the height h :

( ’h ) k dh (2.10) 
h ’ 

The zero point of the optical depth scale lies at h ∞ far above the visible surface of the Sun. For 
an observer P at a remote point (such as on Earth) (Figure 2.4), the optical depth along the line of sight 
between P and a point S  (which is closer to the Sun than P) is determined by the location of S . If S
lies close to P, the point S  lies in gas of extremely low density. As a result, the optical depth of point 
S  (as viewed by observer P) remains very small. However, as point S  is moved progressively closer 
to the Sun, there is a monotonic increase in the optical depth of S  as viewed by P. Eventually, point 
S  becomes immersed in solar atmospheric gas where the density has a value that is large enough 
to make k  appreciable: now the increments dτλ = kλdh start to build up appreciably in the integral 
of τ (h ). Eventually, the gas surrounding S  is dense enough, and deep enough in the solar atmo
sphere, that the integral τ (h ) approaches a value of order unity. We call the location where τ (h ) = 1 
the “photosphere” (from the Greek: photo = having to do with light). The numerical value of h  at 
the photosphere depends on the wavelength: at certain wavelengths (e.g.,  ≈ 1.6 μm), the absorption 
coefficient is smaller than at other wavelengths, and we can see deeper into the atmosphere. 

Why is the photosphere significant as far as our study of solar radiation is concerned? Because as we 
go deeper into the Sun, below the photosphere, the optical depth of the deeper layers rapidly becomes 
so large that any radiation emitted from the deep layers is significantly reduced before it can reach our 
observational instruments. The photosphere can be regarded as more or less the deepest lying layer of 
gas from which we still have a good chance of seeing most of the radiation emitted by that layer. 

Converting Equation 2.9 from an equation in which h is the independent variable to an equation 
in which  is the independent variable, we arrive at the following equation: 

 
dI

 I S  (2.11) 
d  

where Sλ = ελ/kλ is referred to as the source function at wavelength λ. The units of Sλ are the same 
as those of Iλ, namely, ergs cm−2 sec−1 Å−1 ster−1. 

Equation 2.11 is referred to as the radiative transfer equation. 

2.5 SPECIAL SOLUTIONS OF THE RTE 

In the following illustrative solutions, we shall for simplicity omit the wavelength subscript on all 
variables, but it is implied. 

Equation 2.11 is an ordinary differential equation that can be solved by multiplying both sides by 
the integrating factor e−τ μ . Thus, we can rewrite the RTE as 

d / S  / 
 ( )e

I e (2.12) ( ( )  )
d  



   

 

 
 

   
 

  

 
   

 
 

    

  

  

 
   

  

    

 
      

        

30 Physics of the Sun 

The solution of this equation yields the intensity an observer would “detect” if an instrument 
were located in a layer with optical depth τ, and if the instrument were pointed in such a way as to 
be observing only the radiation propagating along a direction that makes an angle ψ = cos−1 μ rela
tive to the local normal. 

The formal solution I(τ, μ) of Equation 2.12 can be considered in the limit of two distinct regimes 
of the μ parameter, one for the radiant intensity that flows into the upper hemisphere (relative to the 
point where the optical depth is τ), and the other for the radiation that flows into the lower hemi
sphere (also relative to the point where the optical depth is ). 

First, for radiation flowing into the upper hemisphere, ψ takes on values that range from 0 to 
90 degrees (i.e., μ takes on positive values between 1 and 0). In this case, the local intensity I(τ,μ) 
is due to radiation emerging from deeper layers (inside the Sun) and flowing outward toward free 
space. As a result, the local value of intensity at depth τ in the upper hemisphere (denoted by μ+) 
involves an integration over all gas that lies below the level τ, i.e., from τ  ∞ up to the level where 
the optical depth equals τ: 

/ S t( )  t /I( ,  ) e e dt (2.13) 
  

Second, for radiation flowing into the lower hemisphere,  ψ takes on values from 90 to 180 
degrees, (i.e., μ takes on negative values between −1 and 0). In this case, the local intensity I(τ, μ) 
is due to radiation emerging from shallower layers (higher in the atmosphere) and flowing inward 
toward the interior of the Sun. As a result, the local value of intensity at depth τ in the lower hemi
sphere (denoted by μ−) involves an integration over all gas that lies above the level τ, from τ  0 
down to the level where the optical depth equals τ: 

/ S t( )  t /I( ,  ) e e dt (2.14) 
0 

Let us limit our considerations now to the outermost layers of the Sun. That is, let us move our 
radiation instrument to the upper atmosphere where τ  0. This could include moving the instru
ment all the way to the Earth’s orbit. In this way, we would be recording what is truly the “emergent 
intensity” from the Sun. In this case, since there is essentially zero source of radiation coming in 
from free space, the integral into the lower hemisphere I(τ, μ−) vanishes. Only the intensity I(τ, μ+) 
entering into the upper hemisphere retains a nonzero value. And this component, in the limit τ  
0, becomes 

S t( )
I( , ) e t / dt (2.15) 0 

0

Let us consider some simple cases. 

2.5.1 S = Constant at all optiCal Depths 

If S(τ) = S, independent of τ, the integral in Equation 2.15 is straightforward: we find I(0, μ+) = S. 
Thus, the emergent intensity of radiation is just equal to S itself. Moreover, I(0)= I(0, μ+) is indepen
dent of μ: in this case, there is neither limb darkening nor limb brightening. 

2.5.2 S = Constant in a slab of finite thiCkness 

In the case of a slab with finite optical depth τ , in which S is constant, the emergent intensity is 



  

  

     

  

 

    

 

   
 

   
   

   

  

 

 
   

   

 
   

 

31 Radiation Flow through Solar Atmosphere 

’ t / ’/I( , ) S e  dt  / S( e0 1 ) (2.16) 
0

Thus, the emergent intensity is not as large as S, but is reduced by an optical depth term. In the 
special case where we observe perpendicular to the slab, we can set μ = 1, and then find that 

’ I( ,0 1 ) S( e ) (2.17)  1

In the limit of infinite thickness, τ  ∞, we recover the solution in Section 2.5.1: I(0,1+)  S. 
In the opposite limit, when the slab is optically thin, we find 

I( ,  ) S (2.18) 0 1 ’ 

Thus, the emergent intensity from a very thin slab can take on values that are much smaller than 
the source function. The reduction factor is just the (small) optical depth of the slab. 

In general, in the case of constant S, the emergent intensity cannot be greater than S, but it may be 
much smaller than S if the optical depth is small. This is an important result in helping to interpret 
certain properties of the upper solar atmosphere. 

2.5.3 Depth-DepenDent S: polynomial form 

We now revert to the case of an infinite atmosphere and consider a case where the source 
function depends on the optical depth. Specifically, we consider the polynomial form S(τ) = a 
+ bτ + cτ2. (We shall see in Section 2.8 that there is some basis for such a choice in the solar 
atmosphere.) To obtain the emergent intensity from such an atmosphere, we insert this function 
into Equation 2.15. 

The first term in S(τ) corresponds to the case in Section 2.5.1 (i.e., constant S): this term results in 
a contribution of a to I(0, μ+). The term bτ, when inserted in Equation 2.15, leads to an integral that 
can be integrated by parts: it contributes a term bμ to I(0, μ+). Finally, the term cτ2, when inserted 
in Equation 2.15, requires two integrations by parts: this leads to a term 2cμ2 to I(0,μ+). Combining 
terms, we find that 

I( , ) a b 2c 20   (2.19) 

Clearly, this solution is of particular interest for the Sun’s atmosphere since the empirical limb 
darkening of the Sun (Equation 2.5) is of precisely this form (in the special case c = 0, although 
empirical fits have been extended in some publications to include a term in μ2). It therefore appears 
that the source function at optical depth τ in the Sun (at visible wavelengths) can be described by 
the function S(τ) = a + bτ. In view of the fact that the empirical value of the coefficient b is positive, 
this allows us to draw an important conclusion: the source function S(τ) in the solar atmosphere at 
visible wavelengths increases with increasing τ. That is, if we were able to place a radiation detector 
at any depth we liked in the Sun’s atmosphere, we would find that the source function increases as 
we move the detector inward to greater depths. 

We shall see later that in certain situations, the source function increases as the local temperature 
increases. In view of this, the empirical observation that the Sun’s disk undergoes limb darkening 
(i.e., b > 0) provides us with a nontrivial (in fact, significant) piece of information: in the visible lay
ers of the solar atmosphere, the temperature increases as we penetrate deeper into the atmosphere. 
This property of the temperature sets the stage for the following conclusion: although temperatures 
of order Teff (≈ 6000 K) occur near the photosphere, larger temperatures are expected to exist in 
regions that lie deeper in the Sun. 



    

 

  

  

     
 

     

 
 

 
 

 
     

   

32 Physics of the Sun 

If we switch to considering how the temperature varies as a function of radial distance from the 
center of the Sun, the temperature in the photosphere is decreasing as r increases. In other words, 
the radial gradient of temperature, dT/dr, is a negative quantity in the photosphere. When we come 
to consider the structure of the deep interior of the Sun (in Section 8.1), we will take advantage of 
the negative temperature gradient to express how much heat flux is passing out from the center of 
the Sun towards the surface. 

2.5.4 Depth-DepenDent S: exponential form 

Suppose the source function has the form S(τ) = e τ where α < 1/μ. Inserting this into Equation 2.15, 
we find that 

1
I( ,  ) (2.20) 0  

1  

2.6 THE “EDDINGTON–BARBIER” (OR “MILNE– 
BARBIER–UNSÖLD”) RELATIONSHIP 

The fact that a linear source function  S(τ) =  a + bτ yields a limb-darkening function  I(0, μ+) 
= a + bμ, which is exactly the same linear function of μ, leads to a result that is historically referred 
to as the “Eddington–Barbier” relationship (EBR): namely, the intensity that is observed at any 
value of μ equals the source function at the level where the local optical depth τ has the value τ = μ. 
In other words, at any particular location on the disk of the Sun, i.e., at a given value of μ, the radia
tion that is observed comes effectively from gas situated at a height where the local optical depth is 
equal to μ. 

This means, in effect, that when one observes the Sun at disk center (μ = 1), one’s line of sight 
penetrates down essentially to the gas in the solar atmosphere where τ ≈ 1. On the other hand, when 
observing near the limb, say at μ = 0.1, one’s line of sight penetrates into the atmosphere only as 
far as the layer of gas where τ = 0.1. In terms of a model of the solar atmosphere, we shall find (see 
Table 5.3 later) that the gas that lies in layers where τ = 0.1 is situated about 130 kilometers higher 
up than the gas at τ = 1. The deeper gas at  = 1 is hotter by about 1000 K than the gas at  = 0.1, and 
that fact contributes to making the Sun brighter at the center of the disk than near the limb. 

Moreover, we have already noted (Section 1.5) that “limb observers”, who try to measure the 
angular diameter of the Sun, do their work by using a line of sight that only “skims” the top of the 
solar atmosphere, penetrating into a rarefied layer of gas lying some 347 km above the level where 
τ = 1. Again referring to Table 5.3, we see that this height corresponds to a level where  ≈ 0.002. 
According to the EBR, the “limb observers” are in effect using a line of sight corresponding to 
μ = 0.002, i.e., the angle between the line of sight and the local normal is not quite 90 degrees, but 
about 0.115 degrees smaller. 

On a historical note, Paletou (2018) has recently pointed out, in an extensive study of the relevant 
literature, that the “EBR” should be more accurately referred to as the Milne–Barbier–Unsöld rela
tionship. Paletou, citing what he calls “A lost contribution of Milne?”, shows that in 1917, Milne 
derived the result that we have referred to in this subsection as the EBR, although Milne’s paper did 
not appear in print until 1921. Eddington’s first reference to what we have called the EBR appears in 
1926 in his book on stellar structure (Eddington 1926). And Barbier, in a 1943 paper, explicitly cites 
the result that appears in Eddington’s book. Later in 1948, Unsöld cited Barbier’s work when he 
referred to what he called the “ -μ method” as it applies in both radiant intensity and flux. Moreover, 
Milne (1921) also derived a result that is historically referred to as the “Eddington approximation” 
(see first line after equation 2.31). Unfortunately, the weight of historical precedent has had the 
effect that Eddington’s name is essentially universally used in textbooks on radiative transfer. It is 



 

 

  

       

       
 

 
   

 

 

 

       

  

 

 

33 Radiation Flow through Solar Atmosphere 

to be hoped that the detective work of Paletou (2018) will in the future lead to authors giving more 
credit to Milne in this context. In the meantime, however, to add to the confusion, we shall have 
occasion to refer to a different result bearing the title of “Milne–Eddington” (ME) when we con
sider certain models of the solar atmosphere (see Section 3.8.3). The difference between the discus
sion of the EBR (or MBUR) (in this section) and the discussion of the ME models (in Chapter 3) is 
the following: here, we are interested solely in continuum opacity, whereas in the ME models, we 
will be interested in absorption lines each with its own particular (narrow-band) line opacity as seen 
against the background of a (broad-band) continuum opacity. 

2.7 IS LIMB BRIGHTENING POSSIBLE? 

Although limb darkening is certainly the feature which is most relevant to observations of the Sun 
in the visible part of the solar spectrum (see Figure 2.3), this does not exclude the possibility there 
might be limb brightening when the Sun is observed at certain other wavelengths. 

The existence of limb brightening requires, by definition, that I(0, μ = 0) exceed I(0, μ = 1). 
In the case of a polynomial source function, this possibility is formally excluded if all coef

ficients (a, b, c) are nonnegative. Limb brightening is possible only in cases where either b or c (or 
both) are sufficiently negative to ensure that b + 2c is negative. 

In the case of an exponential source function, the ratio I(0, μ = 0)/I(0, μ = 1) is equal to 1 – α. 
To avoid nonphysical (negative) intensities, this requires that α have a value that is no greater than 
1. This is stricter than the limit (already noted earlier) α < 1/μ. Thus, limb brightening is possible 
if α < 0, i.e., if the source function decreases exponentially as the optical depth increases. Are we 
ever likely to encounter such a behavior in the Sun? Perhaps surprisingly, the answer to this question 
is a definite “Yes”. As we shall see in Chapter 15 below, we shall see that there does indeed exist a 
region (called the “chromosphere”) in the Sun’s atmosphere where, as one observes down deeper 
into larger and larger values of , the temperature is found to be decreasing. In this region, dT/dr has 
a positive value, and the physical conditions are quite different from those in the deep interior of the 
Sun. If we could arrange to observe the Sun with a detector which is sensitive to radiation with  ≈ 
1 in the chromosphere, then we might expect to see limb brightening. An example of such a detec
tor is the radio detector known as the Atacama Large Millimeter/Submillimeter Array (ALMA) 
located high up (16,000 feet altitude) in a desert in Chile: by observing at wavelengths between 
3.6 mm and 0.32 mm, ALMA probes the chromosphere of the Sun in regions where the tempera
ture is increasing with increasing height. Using observations at wavelengths of 3 mm and 1.2 mm, 
Sudar et al. (2019) have reported that indeed the limb is brighter than disk center by 10–15% at those 
wavelengths. 

2.8 IS S(Τ ) = A + BΤ REALISTIC? THE GRAY ATMOSPHERE 

We have seen that the observed limb darkening in the Sun, which can be described by I(μ) = a + bμ, 
agrees with the limb darkening that should be observed if the source function has a particular 
form: S(τ) = a + bτ. Now we ask, is there any physical reason why S(τ) = a + bτ might be an accept
able description of conditions in the Sun’s atmosphere? 

The answer is “Yes”, provided we consider a limiting case known as the gray atmosphere. In this 
case, the opacity is independent of wavelength, allowing immediate integration of Equation 2.11 
(RTE) over wavelength. 

dI ( )
 I( )  S( )  (2.21) 

d  

The unsubscripted τ-dependent variables I(τ) and S(τ) in this section refer to quantities which, at 
any given optical depth, have been integrated over all wavelengths. Starting with Equation 2.21, and 



 

  

 

  

  

    

  

  

 

  

 

 
 

 

34 Physics of the Sun 

with the goal of deriving S(τ) = a + bτ, we now consider three steps to derive three distinct quantities 
which are functions of : F, J, and K. 

First, at optical depth  in the atmosphere, the flux of radiation F(τ) (in units of ergs cm−2 sec−1) 
flowing along the outward normal can be obtained by considering the component of I(τ) along the 
normal: I(τ)cos = μI(τ). We obtain F(τ) by integrating μI(τ) over all solid angles dω: 

F( ) I ( )d (2.22) 

In conditions of radiative equilibrium, there are no new sources of energy within the atmosphere: 
the energy flux F(τ) is determined by processes which occur deep inside the star. As far as the at
mosphere is concerned, the value of F(τ) is effectively a boundary condition: a certain quantity of 
energy flux “arrives” from the deep interior at the base of the atmosphere, and must be transported 
(somehow) through the atmosphere and released into the darkness of space. As a result, F(τ) = Fo is 
a constant at all optical depths in the atmosphere. 

Second, also at optical depth τ, we define the mean intensity of radiation J(τ) as 

J
( ) 

1 

4 
I
( )d  (2.23)
 

Using these definitions of F(τ) and J(τ), we integrate both sides of Equation 2.11 over dω and find 
that at any given location in the atmosphere, in a layer where the optical depth is τ, 

dF( )
4 J( ) 4 S ( )  (2.24) 

d  

In performing the integrations over dω, we have assumed that the source function S(τ), which is 
determined by atomic processes in the immediate neighborhood of τ, is spherically symmetric. In 
such a case, an integral over solid angle simply recovers the factor 4π as the number of steradians in 
a sphere. Inserting F(τ) = Fo in Equation 2.24, we find that 

J( )  S( )  (2.25) 

Recall that in these expression, both J(τ) and S(τ) have been integrated over all wavelengths. 
We now proceed to the third step in the derivation. Notice that, by definition, the quantities J(τ) 

and F (τ) represent zeroth and first moments of the radiation intensity at optical depth τ. Now we intro
duce the second moment of the radiation intensity at depth τ (again integrated over all frequencies): 

2K( )
1

I( )d (2.26)  
4

With this definition, the quantity K( ) is proportional to the radiation pressure pr at optical depth  . 
When the Planck functions are integrated over all wavelengths, the radiation pressure pr is related to 
the energy density u(T) (see Section 2.1) by pr = u(T)/3 = aRT4/3. 

With these definitions of the three functions F( ), J( ), and K( ), let us now return to Equation 2.11, 
multiply both sides by (μ/4π), and then integrate over dω. This operation leads to dK( )/d on the 
left-hand side of RTE. On the right-hand side, the first term reduces to the constant Fo/4π. The 
second term, involving integration of μS over all solid angles, reduces to zero due to the spherical 
symmetry of S. Thus we find 

dK ( ) F 
  o  (2.

d  4 
27) 



 

  

 
   

 

  

  

  

 

 
 

       

  

  

 
 

     

35 Radiation Flow through Solar Atmosphere 

Since Fo is a constant, this equation can be integrated to obtain: 

F oK( )   const  . (2.28) 
4  

We need to find a way to evaluate the constant of integration in Equation  2.28. To do this, 
we introduce the “two-stream approximation”: the angular distribution of the radiant intensity is 
replaced by two streams, one with μ = +1 going into the outer (upper) hemisphere Io( ), the other 
with μ = – 1 going into the inner (lower) hemisphere Ii( ). In this approximation, and noting that 
the element of solid angle dω can be written as 2πdμ, we find the following expression for the three 
moments of the radiation field: 

1
J( )  Io  Ii ( )) ( ( )  (2.29) 

2 

F( )  F ( ( ) I I ( )) (2.30) o o i 

1
K( )  Io  Ii ( )) ( ( )  (2.31) 

6 

Comparing J( ) and K( ), we see that in this approximation, referred to as the Eddington approxi
mation, K( ) = J( )/3 at all optical depths in the atmosphere. 

In particular, let us consider a special location in the atmosphere, namely, the top, where  = 0. 
At that location, the incoming flux of radiant energy Ij( = 0) is certainly zero (there is no radia
tion coming in from the darkness of space). As a result, K(0) = Io(0)/6 and Fo = πIo(0). Reverting 
to Equation  2.28, we now have enough information to evaluate the constant of integration: it 
equals Fo/6π. Replacing K( ) by J( )/3, and multiplying both sides by three, we then find 

Fo 3FoJ( )   (2.32) 
2  4  

Since we know that J( ) = S( ) (see Equation 2.25), we finally have 

3Fo 2
S( )  (   )( ) (2.33) 

4  3 

This is referred to as the “Eddington solution” for the gray atmosphere. 
Now we can answer the question: is there any physical basis for considering the function S( ) 

= a + b  such as we suggested using in Section 2.5.3? 
Indeed there is: the Eddington solution yields just such a solution, with a specific value of 2/3 for 

the ratio of a/b. The function in Equation 2.33 therefore leads to a limb darkening of the form I(μ) 
~ (2/3) + μ. Thus, we see that the intensity at the limb (where μ = 0), i.e., I(0) ~ (2/3), is only 40% of 
the intensity at the center of the disk (where μ = 1), i.e., I(1) ~ (5/3). In this regard, we recall that the 
limb darkening of the Sun (Section 2.2) is in fact observed to be close to a linear function of μ, with 
a limb intensity of about 40% of center intensity in visible wavelengths, just as the Eddington solu
tion predicts. Apparently, the Eddington solution, with its assumption of a “gray atmosphere” (i.e., 
the opacity is essentially constant at all wavelengths), provide a valuable approach to replicating, 
in a quantitative manner, the observed limb darkening of the Sun at visible wavelengths. We shall 
return to why this assumption of constant opacity at all wavelengths might be “not too bad” when 
we discuss possible sources of opacity in the solar photosphere at visible wavelengths (Section 3.4). 

A detailed solution of the RTE in a gray atmosphere (Chandrasekhar 1944) shows that, rather 
than the solution in Equation 2.33, where S( ) ~  + (2/3), a more exact solution yields S( ) ~   + q( ). 



       

 

 
 

 
 

  

  

 

 

  

 

  

  

 

  

  

36 Physics of the Sun 

Here, q( ) is a slowly-varying function of  , taking on values of 0.58 as   0 and 0.71 as   ∞. 
The two-stream approximation, which replaces q( ) with the constant 2/3 (intermediate between the 
limits of 0.58 and 0.71) is not far off from Chandrasekhar’s more sophisticated solution. 

2.9 HOW DOES TEMPERATURE VARY AS A FUNCTION OF  ? 

Now that we derived how the source function behaves as a function of  , our aim here is to derive 
how the temperature behaves as a function of . To do this, we use the equality established above 
between S( ) and J( ). Recalling the frequency-dependent definition of Jν( ) =  (1/4π)∫Iν( )dω, we 
notice that Jν( ) at any particular frequency is related to the energy density of the radiation uν at that 
frequency. In order to evaluate uν (with units of ergs cm−3 Hz−1) we must integrate Iν( ) (with units of 
ergs cm−2 sec−1 ster−1 Hz−1) over solid angle, and divide by the speed of light: 

u  
1

 I ( ) d ( )   (2.34) 
c 

Comparing Equations 2.23 and 2.34, we see that 

c
J  u ( )  (2.35) ( )   4  

We have already noted (Section 2.1) that when the energy density uν of the Planck function is inte
grated over all frequencies for an object of temperature T, the resulting energy density of the radia
tion is u(T) = aRT4, where aR is the radiation density constant. Therefore, if we integrate Jν( ) over all 
frequencies, we find that the integral (without any subscript ) is given by  J( ) ( / 4  aR T  ]4. c ) [ ( )
Noting also that the combination of physical constants (c/4)aR is equal to another physical constant 
σB (the Stefan–Boltzmann constant), we find that 

B [ ( )] / (2.36) J( )  T  4  

Since S( ) = J( ) (see Equation 2.25), Equation 2.36 can be written as 

S( ) B T 4 (2.37) [ ( )] /

Inserting this into Equation 2.33 we find 

 [ ( )]T 4 3F 2 B o   (2.38) 
4  3 

The constant flux Fo which propagates through the atmosphere can be expressed in terms of an 
effective temperature Teff by means of the definition 

Fo BTeff
4 

(2.39) 

Combining Equations 2.38 and 2.39, we finally arrive at an expression for how the temperature 
varies as a function of optical depth in an Eddington atmosphere: 

4 
4 

Teff [ ( )]  (T 2 3 ) (2.40) 
4 



 

 

 

  

 
 

 

 

 

37 Radiation Flow through Solar Atmosphere 

Equation 2.40 is usually referred to as the “Eddington relation”, although Paletou (2018) has 
argued that it is more correctly referred to as the “Milne relation”. (In what follows, in order to avoid 
confusion with references to the Milne–Eddington model (which deals with spectral line forma
tion), we shall refer to Equation 2.40 as the Eddington (Milne) relation (which deals with continuum 
radiation). It is Equation 2.40 that will eventually (in Chapter 5) start us on the way to computing 
profiles of density and pressure at various heights in the photosphere of the Sun: in our computations 
in Chapter 5, we shall take  to be the independent variable. 

Note that when we come to describe other regions of the atmosphere of the Sun, including the 
convection zone (Chapter  6), radiative interior (Chapter  8), chromosphere (Chapter  15) and the 
corona (Chapter 17), optical depth will not be appropriate as an independent variable. We shall have 
to choose different parameters in those regions as independent variable. 

Note that although the source function in Equation  2.37 at first sight appears similar to the 
expression for the flux Fo (Equation 2.39), there are two important differences: (i) S( ) varies with  , 
whereas Fo is independent of  ; (ii) S( ) includes an extra factor of π in the denominator. 

2.10 PROPERTIES OF THE EDDINGTON (MILNE) RELATION 

In the upper layers of the atmosphere, as   0, the Eddington (Milne) relation predicts that the 
temperature does not by any means fall to zero. Instead, it approaches an asymptotic limit: this limit 
is referred to as the “boundary temperature”: 

T  T (  0)  
Teff (2.41) boundary /21 4  

In the case of the Sun, with Teff = 5772 K, we find a boundary temperature of 4854 K. As a 
result, the Planck function in the outermost levels of the Eddington (Milne) atmosphere does not go 
to zero. Instead, the Planck function tends towards a finite nonzero value. When we subsequently 
(in Chapter 15) consider the level in the solar atmosphere where the chromosphere exists, we shall 
find that, in the gas that lies at a certain altitude above the photosphere, the temperature begins to 
increase. We shall find that the temperature of gas in the chromosphere rises to values well above 
the “boundary temperature” of 4854 K predicted by the Eddington (Milne) atmosphere. However, 
there is no necessary contradiction here: the physical process(es) that cause the chromosphere to 
become hot are (as we shall see) quite different from the process of radiative transfer that leads to 
the Eddington (Milne) atmosphere model. 

According to Equation 2.40, there exists a particular optical depth at which the local tempera
ture in the Eddington (Milne) atmosphere has the value Teff: that optical depth is  = 2/3. This is 
consistent with the observation that the photons we see coming from the Sun, emerging (as they do) 
from layers where the optical depth cannot be much greater than  ≈ 1, appear to emerge from a gas 
with a temperature that is only slightly greater than 5772 K. In the model that we shall calculate in 
Chapter 5, we shall find that at the level where τ ≈ 1 in the Sun, the gas has a temperature close to 
6000 K. 

EXERCISES 

The search for possible life on planets orbiting other stars is an exciting topic for modern astrono
mers. One of the major effects that the Sun has on life (apart from keeping the temperature warm 
on Earth) is to cause photosynthesis (PS): photons from the Sun add energy to CO2 plus H2O and 
generate sugar as well as releasing free O2 gas into the atmosphere. The question we pose here is: 
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how good are other stars at driving PS? The answer is: it all depends on the mix of photons that the 
star can provide. PS requires “good” photons with wavelengths between 4000 Å (the blue end) and 
7000 Å (the red end). “Bad” photons are those with ultraviolet (UV) wavelengths that are so short 
(2000 Å) that they damage chemical bonds in the DNA molecule. In this exercise we compare the 
supply of photons from three different stars: the Sun, a hotter star, and a cooler star. 

In view of the plot in Figure 2.2, assume that stars radiate light that follows the Planck function. 
Omitting constants, each star emits light with this intensity: Iλ = 1/{ 5 [exp(hc/λkT) – 1]}. In this 
expression, when we use the c.g.s. system of units, the combination of constants of nature hc/k has 
a well-defined constant value. Using h = 6.626 × 10−27 gm cm2 sec−1, c = 2.998 × 1010 cm sec−1, and 
the value of k listed in the text, we find hc/k = 1.438 cm deg K. When using this value to evaluate 
Iλ, it must be remembered that  must be expressed in units of cm, and T must be expressed in units 
of deg K. 

2.1 Consider a star with T =5772 K. Calculate I  at three wavelengths (i) 1 = 7000 Å= 7 × 10−5 cm, 
(ii) 2 = 4000 Å, and (iii) 3 = 2000 Å. Label your answers R1(sun), R2(sun), R3(sun). 

2.2 Now consider a hot star with T = 1.5 × 104 K. Using the same three wavelengths as in 
Exercise 1, calculate the fluxes R1(hot), R2(hot), R3(hot). 

2.3 Calculate the ratio of R3 (hot)/R3 (sun): this ratio is a measure of how much more danger
ous it will be for life on a planet near the hot star. 

2.4 Now consider a cool star with T = 3000 K. (Most of the stars in our galaxy belong to this 
group: there is widespread interest in looking for planets around these stars.) Using the 
same wavelengths as in Exercise 1, calculate the fluxes R1(cool), R2(cool), R3(cool). 

2.5 Calculate the ratio of R3(cool)/R3(sun): this ratio is a measure of how much safer it will be 
(as regards UV light) for life on a planet near the cool star. 

2.6 Calculate the ratio of R2 (cool)/R2 (sun). This ratio is a measure of how ineffective PS (at 
its “blue end”) will be on a planet near the cool star compared with a planet near the Sun. 

2.7 Calculate the ratio of R1(cool)/R1(sun). This ratio is a measure of how ineffective PS (at its 
“red end”) will be on a planet near the cool star compared with a planet near the Sun. 

2.8 Conclusion: conditions for life (few UV photons, many PS photons) are probably most 
favorable around stars that have temperatures similar to those which occur on the Sun. 
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3 Toward a Model of the Sun 
Opacity 

Now that we have information as to how the temperature in the vicinity of the solar photosphere 
behaves as a function of optical depth, we have taken the first step in achieving one of the principal 
goals of solar physics: to calculate how the physical quantities in the Sun behave as a function of 
radial location. We refer to such a radial profile as a “solar model”. 

When the only information that we have access to is limb darkening, the range of radial locations 
in the Sun that can be modeled reliably is quite restricted: we can extract information only for a 
range of heights in the vicinity of the photosphere. For present purposes, the “vicinity of the pho
tosphere” refers to locations in the solar atmosphere that lie above the convection zone and below 
the chromosphere. For the sake of brevity, we refer to these limits as the “lower” photosphere and 
the “upper” photosphere, respectively. In what follows, given the physical conditions that exist in the 
solar atmosphere, we shall find that the “lower” and “upper” photosphere differ in height by ∆h = 
several hundred kilometers. 

In subsequent chapters, when we wish to extend our modeling efforts deeper into the interior of 
the Sun or upward into the chromosphere, we shall need access to data over and above what limb 
darkening can provide. But as long as we are dealing with situations in which photons are trying 
to make their way through a more or less opaque medium, it is important that we address the fol
lowing question quantitatively: how opaque is the medium to the photons that are of interest to us? 
The physical quantity that measures this opaqueness (i.e., lack of transparency) is referred to by 
astronomers as the opacity. The opacity is a physical property of the gas present in the Sun: the 
physics of opacity require us to understand in detail some of the properties of individual atoms and 
ions in the mixture of elements that make up the Sun. The study of these atomic properties is the 
subject of this chapter. 

It is salutary to remember that in order to gain an understanding of the properties of a very large 
macroscopic object (i.e., the Sun, containing some 1057 atoms/ions), it is necessary to focus our 
attention at times on the details of individual atoms. The goal is to understand how the detailed 
properties of certain atoms play a role in determining the parameters of the large macroscopic 
object on which we depend for life. This interplay between the very small and the very large is one 
of the features that makes life interesting (and fun!) for a solar physicist. 

3.1 RELATIONSHIP BETWEEN OPTICAL DEPTH AND 
LINEAR ABSORPTION COEFFICIENT 

Up to this point, the absorption of radiation as it passes through a gas has been discussed in terms 
of k  cm−1, which is a linear absorption coefficient. More customary in astrophysics is the opac
ity, κ  = k /ρ: this is a measure of how opaque a medium with mass density ρ gm cm−3 is for light of 
wavelength . Given the units of k  and of ρ, we see that the units of κ  are cm2 gm−1. These units 
suggest that the opacity is associated with a cross-sectional area that impedes the free passage of 
radiation as the radiation propagates through 1 gm of material. 

Since opacity includes a cross-sectional area responsible for absorbing and/or scattering light 
out of an incoming beam, we start the discussion by considering a fundamental cross-section 
that is associated with what happens when a beam of photons, on its way through the Sun’s 
atmosphere along what we will call the “forward direction”, encounters a free electron. The 
electric field E of a photon causes the electron (with electric charge e and mass me) to undergo an 
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acceleration a = eE/me. When an electric charge is accelerated, it emits electromagnetic radia
tion at a rate that is proportional to a2: this emitted radiation emerges in multiple directions. The 
electron recoils slightly when it is “hit” by a passing photon, and this causes a reduction in the 
energy of the photon: as a result, the wavelength of the photon increases slightly by an amount 
∆ C on the order of the Compton wavelength (=h/mec = 0.024 Å). For incoming photons with 
wavelengths in the physical range (4000–7000 Å), this shift is insignificant: the photon emerg
ing from the photon-electron interaction has a wavelength that is essentially identical to that of 
the original photon. 

As a result, an observer who is “looking for” the photons along their initial (forward) direction 
of travel will indeed see a reduction in the amount of photons traveling in that direction after the 
photons have propagated past the electron: but the energy of each photon in the system will not be 
significantly altered. The photons that have “gone missing” (in order to give rise to the reduction 
in flux in the forward direction) are to be found emerging in directions other than the initial direc
tion of the beam. Since the photon flux in the forward direction has indeed been reduced by passing 
over the electron, an observer might be tempted to say, “some photons must have been absorbed”, 
in order to explain why fewer photons are now being seen in the forward direction. However, the 
missing photons have not formally been “absorbed” by anything: rather, they have been “scattered” 
away from their original direction as a direct result of the interaction between a photon and an 
electron. Nevertheless, the scattering process does result in an effect (reduction in flux) that appears 
(to the observer in the forward direction) similar to what would be seen if the photons had passed 
through a medium with finite optical depth : the reduction  in intensity of the photon beam could 
be written as e− . 

Reverting now to the case of the photon passing by an electron, we wish to derive a measure of 
how effective the scattering process is: to do this, we imagine that the electron presents an obstacle 
to the incoming photons. The larger is the cross-sectional area of the obstacle, the greater is the 
amount of reduction in photon flux. When a photon encounters a free electron, the photon in effect 
“sees” an obstacle with a finite “scattering” cross-section, which is given by the Thomson formula 

 
8 3/ 
 2re . Here, re = e2/mec2 is the classical radius of the electron. In discussions about the 
 T
interactions between photons and matter, the numerical value of the Thomson cross-section is an 
important quantity: 

10 25 2
T  6 6245873  cm. (3.1) 

Note that σT is independent of wavelength (at least for photons with energies less than mec2 = 0.5 
MeV). 

In an ionized gas, there are always some free electrons that contribute to opacity with the afore
mentioned cross-section. In fact, in the limit of high temperatures, when almost no electrons are 
bound inside an atom/ion, essentially all electrons become free, and Equation 3.1 provides a good 
approximation to the absorption cross-section (see Section 3.6.1). 

However, in the gas that exists at various locations in the Sun, not all of the electrons are free. 
There are also atoms and/or ions in which some electrons are in bound orbits around the nucleus. 
Each bound orbit has a well-defined value of the total energy Ej (for a calculation of specific exam
ples of such energies Ei, see Section 3.2.1). When a photon passes by an atom or ion where electrons 
are held in bound orbits, the photon may interact with the atom and undergo “scattering” of the 
same sort as described earlier: that is, a change in direction of the photon may occur but without 
any change in wavelength. How might this occur? If the incoming photon with energy hν happens 
to encounter an atom/ion where the difference ∆E = Eu−El in energy between an upper bound level 
and a lower bound level is equal to hν, then the photon has a good chance of being absorbed by an 
electron in the lower bound level El. As a result, that electron undergoes a transition into Eu. Two 
outcomes are then possible. First, the electron may quickly return to El, thereby re-emitting a photon 
with exactly the same energy hν = ∆E as the incoming photon. In such a case, the emergent photon, 
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although it has the same energy as the incoming photon, would in general not emerge in the same 
direction as the incoming beam. The term “scattering” is used for this process just as we used it for 
the photon’s interaction with a free electron. 

However, in the case of an atom/ion with multiple energy levels, a second outcome is possible: 
the electron in Eu may, with finite probability, make a transition to an energy level that is not El. In 
that case, the emergent photon will differ in wavelength from the incoming photon, i.e., the incom
ing photon “disappears”, and a photon with different wavelength takes its place. Such a process is 
referred to as “absorption”. Which of the two processes (scattering, absorption) is likely to occur in 
any given situation? The answer depends on the probability for an electron to make a quick transi
tion from the upper to the lower energy level before “something else happens”. Formal solutions of 
the RTE for conditions in which spectral lines are included as well as continuum require that both 
scattering and absorption be included in the theory. In this “first course”, we will not deal with these 
complexities. 

Instead, we shall confine our attention to opacity as a measure of how strongly photons interact 
with the atoms/ions/electrons of the medium through which the photons are passing. We shall find 
that quantitative aspects of the opacity, and especially its sensitivity to temperature, play a key role 
in modeling three regions of the Sun: the photosphere, the deep interior, and the chromosphere. 
Because of this, the more we understand the properties of opacity, its numerical values and its varia
tions with temperature, the more physical insight we will have into the structure of the Sun. 

A note about “allowed” and “forbidden” transitions. An electron in a certain energy level is not 
allowed to make a (quick) transition to any and all other energy levels in the atom. Only certain tran
sitions are “allowed”, based on quantum mechanical (“electric dipole”) selection rules: “allowed” 
transitions can occur at rates of up to 108 times per second. When the rules indicate that a certain 
transition is not allowed, a rarer type of transition may be allowed due to a different type of transi
tion (“magnetic dipole”, “electric quadrupole”). The photons emerging from these rarer transitions 
are referred to as “forbidden lines”: such transitions occur at much slower rates, sometimes as slow 
as only 1–10 times per second. When we discuss the solar corona (Section 17.2.1), we shall see that 
“forbidden” lines played a major role in the earliest determinations of temperature and density in 
the corona. 

3.2 TWO APPROACHES TO OPACITY: ATOMIC AND ASTROPHYSICAL 

There are two different approaches to opacity, depending on one’s interest: atomic physics and 
astrophysics. On the one hand, from the atomic point of view, the main goal is to understand the 
following: given a photon with a specified wavelength (but of unspecified origin), what is the cross-
section for photon interaction (i.e., either absorption or scattering) by a particular atom? Quantum 
mechanics can be used to derive quantitatively the numerical value of the cross-section at any par
ticular wavelength. We shall take this viewpoint in Sections 3.3, 3.4, and 3.5. 

On the other hand, from the point of view of astrophysics, the main goal is to understand how 
photons distributed with a certain functional form over a broad range of wavelengths interact with 
the medium through which they are passing. In the solar atmosphere, opacity involves a broadband 
process of interaction between photons and atoms: it is not merely the atomic physics that is rel
evant, but also the “spectrum of radiation” in the atmosphere and how this spectrum overlaps with 
regions of large and small opacity. The key questions in astrophysics turn out to be: how many 
photons are present at wavelengths where the opacity is large, and how many photons are present 
at wavelengths where the opacity is small? It is all very well for the atomic physicist to report that 
hydrogen absorbs most strongly at wavelengths 912–1216 Å (see Figure 3.2), but if, on the one hand, 
researcher A is studying the flow of radiation through an atmosphere where there are essentially no 
photons at 912–1216 Å, then the peak in hydrogen absorption at 912–1216 Å (which undoubtedly 
exists) is of no great relevance to researcher A. In such a case, the radiation in the atmosphere, with 
most of its photons at (say) long wavelengths, may encounter very little effective opacity. On the 
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other hand, if researcher B is considering an atmosphere where the photon spectrum happens to 
peak in the wavelength range 912–1216 Å, then the strongly absorbing behavior of hydrogen atoms 
in this wavelength range is highly relevant. In such a case, researcher B will find that the effective 
opacity is very large. 

In astrophysics, the ease with which photons propagate through an atmosphere depends on an 
intricate process in which a wavelength-dependent photon spectrum (such as the Planck function 
with a peak at a wavelength that is determined solely by the temperature) interacts with a wavelength-
dependent opacity (which may also contain peaks, narrow valleys, and sharp “edges”). Thus, we 
need to have a way of calculating a “mean opacity” of some sort, such that the two important 
features (atomic physics as well as spectral information) can be intertwined in a meaningful way. 
This will lead us to define a mean opacity named in honor of Svein Rosseland: we will introduce 
this “Rosseland mean opacity” in Section 3.6 after we have considered certain details of atomic 
physics. It is the Rosseland mean opacity that we will use in Chapter 5 to calculate a model of the 
solar photosphere. 

3.2.1 ENERGY LEVELS IN ATOMIC HYDROGEN 

In order to set the stage for a realistic physics discussion of what a photon “sees” when it passes by 
a hydrogen atom, it is important to quantify the energies of the various levels occupied by electrons 
inside such an atom. Neils Bohr (1913) was the first to estimate these energy levels for a hydrogen 
atom by suggesting two “bold ideas” (in Karl Popper’s phrase): (i) the electron orbits a proton with 
speed V in a circular orbit of radius r; (ii) the angular momentum of the electron in its orbit is 
allowed to have only discrete values, namely nh/2π, where h is Planck’s constant, and n = 1, 2, 3 . . . 
Thus, Bohr suggests that a simple two-step argument will lead to predictions of the stable energy 
levels in a hydrogen atom. The argument proceeds as follows. Using (i), we expect to find a stable 
orbit if the electrostatic force of attraction e2/r2 between proton and electron is balanced by the cen
trifugal force mV2/r of the electron (with mass m) in its orbit. (Note we use electrostatic units here, 
with the charge on the electron being given by e = 4.8032 × 10−10 electrostatic units (e.s.u.). Then 
using cm as the unit of r, the electrostatic force will be in units of dynes.) This force balance yields 
a first equation involving r and V: r = e2/mV2 (where m is in grams and V is in cm sec−1). Using (ii), 
we set the electron’s orbital angular momentum (=mVr) equal to nh/2π and obtain a second equation 
involving r and V: r = nh/2πmV. With two equations to solve for two unknowns (V and r), we read
ily find V = 2πe2/nh and r = (nh/2πe)2(1/m). Note that V/c can be written as α/n where α=2πe2/hc is 
called the “fine structure constant”, with a numerical value of about 1/137: thus in the ground state 
of hydrogen (n=1), the electron moves in its orbit with a speed of c/137 ≈ 2 × 108 cm sec−1. 

In order to calculate the total energy E of the electron in its orbit, we need to consider two terms: 
kinetic energy KE = mV2/2 and potential energy PE = −e2/r. The KE is a positive quantity, while 
the PE is negative. Therefore the total energy E will have a sign determined by which of the two 
terms, KE or PE, has the larger magnitude. In order for an electron to be bound inside an orbit, the 
PE must be larger in magnitude than the KE: that is, the total energy E must be negative. Otherwise, 
the electron could not remain bound to the proton. Inserting the prior values of r and V, we find that 
the total energy of the orbit having angular momentum nh/2π is En = -(1/2)mV2 = −2π2me4/h2n2. 
In terms of α, it is sometimes convenient to write En = −0.5α2Er/n2 where Er = mc2 is the rest-mass 
energy of the electron. Using c.g.s. units (m = 9.109 × 10−28 gm and h = 6.626 × 10−27 gm cm2 sec−1), 
we obtain the energy En in units of ergs. A convenient unit for the energies of orbits in atoms turns 
out to be a quantity known as an “electron volt”: 1 eV = 1.602 × 10−12 ergs. 

The lowest-lying energy level of the H atom (this level is referred to as the “ground state”) has 
n = 1. Using the previous expression, we find that the energy E1 of this level is −13.61 eV. Excited 
states in hydrogen with n = 2, 3, 4 . . . have energies of En = −13.61/n2, i.e., −3.40, −1.51, −0.851 
eV. Thus, the energy difference between E1 and E2 is 10.21 eV. If an electron makes a transition 
from n = 2 to n = 1, a photon will be emitted with energy ΔE21 = 10.21 eV. According to Planck’s 
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assumption, this photon will have a frequency 21 such that h 21 = 10.21 eV = 1.636 × 10−11 ergs. 
Therefore 21 =2.4691 × 1015 Hz. Since photon frequency is related to wavelength by λ = c/  (where 
c is the speed of light), we find that the photon corresponding to ΔE21 has a well-defined wavelength 
λ21 = 1.2156 × 10−5 cm. Expressing this in units of Å, we find λ21 = 1215.6 Å. This corresponds to 
the wavelength of a very strong line in the Sun belonging to a series of lines called the Lyman series: 
the line in the Lyman series with the lowest frequency (i.e., with the longest wavelength, 1215.6 Å) 
is referred to as the Lyman-alpha line (or Ly- ) (see Figure 3.2). 

Bohr’s model can be applied in principle to elements other than hydrogen, provided that the 
following condition is met: we must consider an ion of the element from which all except one of 
the electrons have been stripped way. For example, if one considers the element neon (with atomic 
number 10, i.e., having Z = 10 protons in the nucleus), an atom of neon at low temperatures will 
contain 10 electrons that are bound to the nucleus: as a result, the neon atom appears to an outside 
observer as being electrically neutral, with a charge of 10+ in the nucleus, cancelled by a charge 
of 10− in the bound electrons. However, if by some means we increase the temperature of the gas 
where the neon atom is situated, the electrons are stripped away one by one. Eventually, at high 
enough temperatures, we reach the condition where nine of the electrons have been stripped away. If 
that happens, then the remaining ion (still with 10 protons in the nucleus) will have only one electron 
remaining in a bound orbit. An ion with only one bound electron is referred to as a “hydrogenic” 
ion with nuclear charge +Ze: in the presence of such a charge, a repeat of the prior derivation of 
energy levels indicates that En is larger in magnitude by a factor of Z2 than the value of En derived 
earlier for hydrogen itself. Bohr’s model can in principle be applied to such an ion, no matter where 
the element lies in the periodic table. Note that only one of the “hydrogenic ions” has an electrical 
charge of zero, i.e., it is a (neutral) atom: hydrogen itself. All of the other hydrogenic ions have a net 
electrical charge of +(Z−1)e. 

A word about notation. In this and in subsequent chapters, we will have occasion to deal with 
ionized and neutral species of various elements. For each element X in the periodic table, the nota
tion for the neutral atom is X I, where the “I” in the second position is the Roman numeral for the 
number “one”. If an atom of element X loses one electron, the resulting ion is labeled X II. If more 
than one electron is lost, the X is followed by a Roman numeral that equals the number of lost 
electrons plus one. Thus, X VII is an ion of element X that has lost six electrons. Of course, if the 
atomic number of the element Z(X) is smaller than six, then the neutral atom X I contains fewer 
than six electrons to start with: it would be impossible for such an element to lose as many as six 
electrons. Therefore, the “ion labeled X VII” would not exist. We shall be especially interested in 
“hydrogenic” ions that have lost all but one of the electrons present in the neutral atom. The hydro
genic ion of element He (where Z = 2) is He II. Other such ions in elements with (e.g.) Z = 6, 8, 20, 
and 26 are C VI, O VIII, Ca XX, and Fe XXVI respectively. 

Historically speaking, Bohr’s model of the hydrogen atom was subsequently supplanted by 
results from Erwin Schrödinger in 1926 using a wave equation and eventually by results from Paul 
Dirac in 1928 using relativistic quantum mechanics. These later developments showed that some of 
Bohr’s results were in need of revision. For example, his vision of circular orbits with definite radii 
had to be replaced by smeared-out distributions of the probability that an electron would actually 
be present at radial location r. Moreover, the distribution of the electron in 3-D space were found to 
be complicated geometrical shapes describing the distribution of electron probability in space. As a 
result of the revisions emerging from Schrödinger’s and Dirac’s work, it can be tempting to believe 
that Bohr’s model is of no use whatsoever as a predictor of physical quantities. However, despite 
getting the orbital size and shape wrong, it turns out (amazingly enough) that Bohr’s model for a 
hydrogenic ion does yield reliable results for one important physical quantity: the total energy of 
each electron energy level. For example, Schrödinger’s wave equation, when applied to the hydro
gen atom, yielded energy levels with En = −2π2me4/h2n2: this expression appears identical in form to 
Bohr’s result. However, the integer n (referred to by Schrödinger as the total quantum number) is no 
longer solely a measure of angular momentum as it was in Bohr’s discussion: instead, Schrödinger’s 



 

 

 

 

   
 

   
   

    
   

 
 

   
      

 
 

   
   

44 Physics of the Sun 

n is related to the sum of two integers, one (l) related to the orbital angular momentum lh/2π, and 
the other n' related to the order of a polynomial which describes the probability wave as a func
tion of radial distance from the nucleus. Specifically, in Schrödinger’s formula for En, the subscript 
n = n' + l + 1 (Schiff 1955). However, there is still a close connection between n and l: the integer 
l is permitted to take on only the discrete integer values between 0 and n−1. The ground state of 
Schrödinger’s hydrogen atom (with n' = 0 and l = 0) still is identified by the number n = 1, just as 
in Bohr’s model. As regards Dirac’s solution, the value of En was found to be expressible as a series 
of terms. The leading term in the expression for En (apart from the rest mass energy) was found to 
be −0.5α2Er/n2 = −13.61/n2 eV, identical to Bohr’s and Schrödinger’s result. In the Dirac model, n 
is once again a combination of several factors. One of the factors is the order of the polynomial 
describing the radial portion of the probability distribution. Another factor is associated with the 
orbital angular momentum l of the electron. However, because of relativistic effects, Dirac showed 
that an extra type of angular momentum now enters into the problem: this has to do with the spin 
sh/2π of the electron (where s = 1/2). Relativistic effects also show up in the total energy as slight 
corrections to the Bohr energies. Dirac found that the next term in the expression for E1 was smaller 
(in magnitude) than E1 by a factor of (3/4)α2 = 4 × 10−5. Thus, even with all the complexities of the 
Dirac solution of the H atom, the energy level of the H atom ground state was found to differ from 
the Bohr energy by no more than one part in 10,000. As a result, Bohr’s predicted wavelength for the 
photon that emerges from a transition between (say) E2 and (say) E1 in the H atom (i.e., the Lyman-
transition) turns out to be highly reliable. 

To be specific, in the exercises at the end of this chapter, the reader is invited to consider how 
well Bohr’s predictions of Lyman-  wavelengths have worked out as regards a sample of hydro
genic ions that have in recent decades been observed in various astrophysical objects. These tests 
of Bohr’s predictions were impossible to perform until there were X-ray instruments in orbit high 
above the Earth (where Earth’s atmosphere does not absorb the photons) that could measure X-ray 
wavelengths down to values as small as a few Å: such instruments were not available until 60 years 
(or more) after Bohr published his original paper. Bohr would be pleased to see that his predictions 
of the wavelengths of Lyman-α lines have been remarkably well validated. Doschek and Feldman 
(2010) provide a list of X-ray and UV lines with wavelengths ranging from 1.5 Å to 2000 Å that have 
been observed by an array of 16 different satellites between 1977 and 2007: included in their list are 
the Lyman-alpha lines of at least 10 hydrogenic ions from H I to Fe XXVI. 

3.3 ATOMIC PHYSICS: (I) OPACITY DUE TO HYDROGEN ATOMS 

To see how the linear absorption coefficient kλ is related to the properties of individual atoms, con
sider Figure 3.1. This shows what an observer sees when looking through the “endface” of a column 
of length l. The area of each “endface” of the column is 1 cm2, and the observer’s line of sight passes 
through a medium (inside the column) with density ρ = nama. Here, na cm−3 is the number density of 
absorbers, each of mean mass ma (gm). 

Each absorber in the column has a cross-sectional area σ for the absorption of light. The total 
number of absorbers in the column is the number column density: N = nal, with units of cm−2. (An 
equivalent quantity is the mass column density dc = Nma = ρl in units of gm cm−2.) In the specific 
case shown in Figure 3.1, the total number of absorbers in the column is N = 15. In the limit Nσ 
1, light, which enters the column at one “endface”, travels along the column of length l, and emerges 
through the other “endface”, encounters a total absorption area of Nσ cm2. Comparing this to the 
1 cm2 area of the “endface”, this means that the light emerging from the column is reduced by the 
fractional amount Nσ. Recalling that, in the limit of small optical depth, e – = 1 – , we see that 
the fractional reduction of light Nσ  =  nalσ can be set equal to  . We have already seen (in 
Section 2.3) that in the limit of small optical depth, a thin slab of gas of thickness x has an optical 
depth  = x kλ. In the present case, this means that in the limit of small , we can set  = lk . This 
indicates that k  can be set equal to the product naσ. The latter product, combining the number of 
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FIGURE 3.1 Indicating how to estimate the blockage of light passing through a column of material. Each 
endface of the column is a square with dimensions 1 × 1 cm. In the figure, we are looking in at one endface, 
and the column extends a length l behind the page. (Original figure was taken in 2009 from the website http:// 
mysite.du.edu/~jcalvert/phys/scat.htm with permission of Dr  J. Calvert. However, in the interim, some of 
Dr Calvert’s websites have been taken down. The original figure is pedagogically valuable, and I  retain it 
here. For an alternative figure which contains similar information, see Figure 16.2 in Karttunen et al. [2017].) 

absorbers per cc with a cross-section in cm2, has dimensions of cm−1, as does the linear absorp
tion coefficient kλ. In the case of Equation 3.1, it happens that we were dealing with an especially 
simple case: the scattering cross-section σT is independent of wavelength. But in other cases, we 
shall see (e.g., in Figure 3.2) that  may vary enormously (by 10 orders of magnitude or more) 
from one wavelength to another. If  σ depends on wavelength, we will make the wavelength-
dependence explicit by using the symbol . In such a case, the linear absorption coefficient has 
the form k  = naσ . 

Converting now from linear absorption coefficient to opacity, we find κ  = k /ρ = σ /ma. This 
expression helps us to see an important aspect of opacity. Since 1/ma is equal to the number of 
absorbers in 1 gm of the material, the opacity can be written as the product of two factors: (i) the 
cross‑section of an individual absorber and (ii) the number of absorbers per gram. Thus, the units 
of opacity are cm2 per gm. We shall find (see Table 5.3 later) that in the photosphere of the Sun, the 
mean opacity in these units has a numerical value of order 0.1–1. In Section 3.4, we shall identify the 
(unusual) atomic constituent that causes the opacity in the photosphere to have values of this order. 

An alternative formula for optical depth can be obtained by combining κ  = k /ρ with the defi
nition of mass column density dc = ρl. Given that the product lkλ is equal to  (for <<1), we now 
see that an alternative definition of  is the following: κλdc = lkλ = τ. 

For gas of a given composition, ma is a constant, independent of wavelength. So if we examine 
a plot of κ  versus , then we will be able to trace how the cross-section σ  of individual absorb
ers behaves at each wavelength. When the atoms (or ions) in the medium through which light is 
propagating contain electrons in bound energy levels,   may vary by many orders of magnitude as 
a function of wavelength. To see why this is so, let us consider the simplest case: hydrogen atoms. 
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3.3.1 absorption from the GrounD state: DepenDenCe on WavelenGth 

If hydrogen atoms are in a medium with low enough temperature, only the ground state (i.e., the 
energy level that has the lowest energy in the atom) has a significant population of electrons. Atomic 
physics demonstrates that the energy of the ground state lies at an energy of E1 = −13.6 eV below the 
continuum. (Note: one unit of energy eV corresponds to 1.6 × 10−12 ergs.) Now, the lowest excited 
state in hydrogen lies at an energy E2 = −3.4 eV, i.e., an energy which lies 10.2 eV above the ground 
state. Because of this gap in energy between levels 1 and 2 in H, any photons which have energies 
less than 10.2 eV (i.e., with wavelength  > 1216 Å) do not have sufficient energy to excite the elec
tron from the ground state into any other energy level. As a result, interactions between photons 
and the ground state of an H atom become progressively more ineffective when the photons have 

 > 1216 Å: therefore, if these were the only interactions that the photons could undergo, κλ at all 
wavelengths longer than 1216 Å would be zero. 

Other physical processes come into play for  > 1216 Å. For example, weak scattering occurs 
when the electric field in a photon passing by an atom induces a transient dipole moment in the 
atom: the time-variable dipole moment generates electromagnetic radiation that has nothing to do 
with the energy levels of the atom. This process (known as Rayleigh scattering) leads to an opacity 
where the leading term in a series expansion varies as −4 (see the dashed line in the lower right-
hand side of Figure 3.2). 

Notice the units of opacity in Figure 3.2. First, they are expressed per hydrogen atom. Also, to 
facilitate comparison with our prior discussion (see Equation 3.1) of free electron scattering, the 
results in Figure 3.2 are expressed in units of the Thomson cross-section  T. Along the vertical axis, 
we see plotted numbers that can be much larger than unity: the largest number in the plot is 1010. 
Thus, the plot gives a clear indication that an electron that is bound inside a hydrogen atom can be 
much more effective (by up to 9–10 orders of magnitude!) at interacting with a photon than a free 
electron can. This is a key concept for understanding the opacity arising in the solar interior, where 

FIGURE 3.2 Lyman scattering opacity per hydrogen atom, in units of the Thomson scattering cross-section 
per electron. At wavelengths longer than 912 Å, Lyman lines are plotted as solid “spiky” features. At wave
lengths shorter than 912 Å, opacity due to the Lyman continuum is plotted as a dot-dashed line (Stenflo 2005; 
used with permission from ESO). 
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many electrons are ejected from certain atoms and become free when the temperature is measured 
in millions of degrees K. Nevertheless, even in these conditions, a small fraction of certain ions 
(e.g., iron) retain a few bound electrons even at such temperatures: because of the absorbing effec
tiveness of bound electrons, these ions, though few in number, can contribute to the overall opacity 
(see Sections 3.7 and 8.3). 

By inspecting Figure 3.2, we see that, for a narrow range of wavelengths in the vicinity of the 
Lyman-  line (  = 1216 Å), σ  increases to very large values, some 1010 times larger than σT. This 
very strong interaction is associated with the bound-bound transition between the two lowest-lying 
energy levels (E1 [with total energy −13.6 eV] and E2 [at −3.4 eV]) in the H atom. At wavelengths that 
are immediately shortward of Lyman-α, over a range of about 200 Å in wavelength, there is another 
range of wavelengths in which σ  falls to small values. In the vicinity of  = 1026 Å (Lyman-β), 
excitation from energy level E1 to energy level E3 (at −1.51 eV) gives rise once again to a locally 
significant value of σ . A series of line absorptions (the Lyman series of lines), separated by regions 
of continuum where σ  is small continues until the wavelength becomes as short as 1 = 912 Å. At 
that point, σ  increases abruptly by several orders of magnitude: this is referred to as the “Lyman 
edge”. At wavelengths lying shortward of this edge, σ  remains large over a wavelength interval of 
hundreds of Å, although σ  decreases systematically (~ 3) toward shorter wavelengths. Why does 
the Lyman edge exist? Because all photons with wavelengths shorter than 1 = 912 Å have ener
gies larger than h 1 = hc/ 1 = 13.6 eV. Such photons have energies that are large enough to eject 
an electron from the ground state of the hydrogen atom. Such an ejection is called a “bound-free 
transition”. All of the photons in the Lyman continuum (i.e., those with  < 1) lead to ionization of 
the hydrogen atom into a free proton and a free electron. 

How large does the cross-section for photon absorption become at the Lyman edge? Detailed 
quantum mechanical calculations indicate that the peak value is σ912 = 6 × 10−18 cm2. Is this to be 
regarded as a “large” value or a “small” value for the cross-section? To answer that, we need to have 
some standard against which we can make a comparison. An important aspect of the value of σ912 

is the following: σ912 exceeds the Thomson T by some seven orders of magnitude. Therefore, by 
occupying the ground state of hydrogen, an electron enhances its ability to interact with a photon 
of wavelength 912 Å by a factor of order 10 million. The conclusion is that an electron in the bound 
orbit with energy E1 can be (if the wavelength is right) a powerful and effective absorber of photons, 
up to 10 million times more effective at absorbing a photon than a free electron. 

Another way to look at the “largeness” of 912 is to consider the area of the ground state orbit. 
According to the Bohr model, the orbital radius of the ground state r1 is 0.528 × 10−8 cm. The cor
responding orbital area is 0.88 × 10−16 cm2. The value of σ912 amounts to almost 10% of this area. 
As far as a passing 912 Å photon is concerned, it is as if the ground state electron in the H atom 
has “spread itself out” over a significant fraction of the orbital area. This phenomenon is consistent 
with the Heisenberg uncertainty principle: if a particle is confined to a certain region of linear size 
L, the permitted energy levels are those in which the de Broglie wavelength λD = h/p = h/mV (see 
Section 2.1) can be “fitted in” n times into length L, where n = 1, 2, 3 . . . In the ground state of H, 
the electron velocity is such that the length of λD “fits in” exactly once into the circumference 2πr1. 
Given that the electron is in effect “smeared out” over a length of order λD, it is as if the electron in 
the H ground state orbit has become an “obstacle” to a passing photon with a cross-section that is a 
fraction of the area of the orbit. 

The large absorbing efficiency of a bound electron is an important result for understanding why 
the numerical value of opacity varies strongly in different regions of the Sun. In any region where 
there is still an appreciable fraction of electrons bound to abundant nuclei, the opacity may be much 
larger than elsewhere in the star. This fact plays a key role in determining the internal structure of 
the Sun: in certain regions where hydrogen retains its electron, or where helium retains at least one 
of its electrons, the passage of photons may be rendered so difficult that radiation can no longer 
serve as an effective method of transporting energy. (We will explore the consequences of this in 
Chapter 6.) 
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Now that we know the cross-section at the Lyman edge, we can calculate (roughly) the opacity 
for all photons in the Lyman continuum. In a gas consisting only of hydrogen, the number of H 
atoms per gram is 1/mH ≈ 6 × 1023. Multiplying this by 912, we find that the opacity at the Lyman 
edge is of order κL ≈ 3.6 × 106 cm2 gm −1: if we were to include all the photons in the Lyman con
tinuum (where the intensity falls off as 3), we would increase the value of , but probably not by 
much. We shall return to the value of L in Section 3.6.4. 

Since we are dealing with the Lyman continuum, should we also include the opacity due to the 
Lyman-  line? After all, the peak of Lyman-  has an opacity that is about 1000 times larger than 
the opacity at the Lyman edge. However, recall that the overall opacity will involve the convolu
tion of a spectral range and an atomic opacity: photons in the Lyman continuum contribute to the 
overall opacity over a range of hundreds of Å, whereas photons with large opacity near the peak 
of Ly-  occupy no more than a fraction of an Å. It seems likely that the Lyman continuum opacity 
will dominate. 

We have referred to ways in which photons can lose/gain energy by interacting with atoms via 
bound-bound and bound-free transitions. There is a third class of interactions that also allow loss or 
gain of photon energy: these are “free-free” transitions. A free electron in a plasma can be thought 
of as being in an orbit (admittedly unbound) around a distant proton. If a passing photon can cause 
that electron to move farther away from, or nearer to, the distant proton, then the photon has caused 
the electron essentially to make a transition into a different (again unbound) orbit. If the total energy 
of the new orbit is greater than before, then the electron has gained energy from the photon: the 
photon experiences this interaction as “free-free” opacity. 

3.3.2 absorption from exCiteD states: DepenDenCe on WavelenGth anD T 

So far, we have considered hydrogen atoms at “low” temperatures. In such a case, there is essentially 
no interaction with photons at wavelengths longward of (roughly) 1500 Å. However, in a medium 
that is sufficiently hot, absorption at longer wavelengths becomes possible. Thermal excitation allows 
some electrons to populate excited levels at a more or less significant rate. As far as photon absorption 
is concerned, each excited level displays at a certain wavelength its own “edge” where a free-bound 
transition can occur. Each of these “edges” has similar characteristics to those of the Lyman “edge”. 
That is, photons on the longward side of the “edge” pass essentially freely through the gas, but photons 
lying shortward of the “edge” can be effectively absorbed. The “edges” corresponding to the energy 
levels with principal quantum numbers n lie at wavelengths n(Å) = 912n2. Two of these “edges” are of 
interest for the Sun because they lie in a part of the spectrum where the Sun emits much of its power: 

2 = 3648 Å and 3 = 8208 Å. These are the Balmer and Paschen edges, respectively. 
The peak opacity of hydrogen gas at the Lyman edge is essentially independent of temperature, 

at least as long as hydrogen is not significantly ionized. But this is not the case for the other “edges”: 
in those cases, the magnitude of the peak opacity (in cm2 per gram) depends on the fraction of the 
atoms that have an electron in the corresponding excited state. In a medium where the total num
ber density of hydrogen is nH, the number density ni of H atoms with electrons in the n = i level is 
related to the number density in the ground state (n1) by a Boltzmann factor (which we have already 
encountered in deriving Equation 2.2 earlier): 

g  E i i1n  n exp  (3.2) i 1  g kT1 

The term  gi is the statistical weight of energy level  i: in a hydrogen atom, the bound levels 
have gi = 2i2. The quantity ∆Ei1 is the energy difference between levels 1 and i. When the energy 
difference ∆E is expressed in units of eV, the exponential term is more conveniently written in the 
form 10−θΔE, where θ = 5040/T. 
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Consider, for example, the n = 2 level of hydrogen that can be ionized by photons below the 
Balmer edge (at  < 3648 Å). For this level, ∆E21 = 10.2 eV. If we consider by way of example a 
medium where the temperature T = 104 K, we find n2/n1 = 2.89 × 10−5. Thus, in a parcel of gas which 
contains 1 gm of hydrogen at T = 104 K, only one atom in roughly 35,000 is capable of absorbing 
photons at the Balmer edge. Now, in terms of quantum mechanics, the cross-section for a single H 
atom to undergo photoionization from n = 2 by means of a photon of wavelength 2 is not greatly 
different from that for photoionization from n = 1 by means of a photon of wavelength 1. As a 
result, when we convert to the absorption cross-section per gram of material (= opacity), the peak 
opacity B at the Balmer edge at T = 104 K is no more than BL = 2.89 × 10−5 times the peak opacity 

L at the Lyman edge. 
Because of the exponential factor in Equation  3.2, the magnitude of the reduction fac

tor BL becomes rapidly smaller at lower temperatures. For example, in the lower photosphere, 
where T = 6000 K, BL is of order 10−8, while in the upper photosphere, where T = 4900 K, BL falls 
to 10−10. Conversely, if something causes the local temperature to increase, the exponential factor 
ensures that BL becomes rapidly larger: thus, if the local temperature can be raised (for example, 
by local heating by means of magnetic fields) from 6000 K to 104 K, i.e., by less than a factor of two, 
then the factor BL will increase by a factor of more than 1000. This sensitivity of the population of 
the n = 2 level in hydrogen to temperature will be useful when we discuss the properties of small 
solar features called “spicules” in Section 15.4. 

Since the opacity   for a medium consisting of pure hydrogen has the value ≈ 3.6 × 106 cm2 gm−1 at 
the Lyman peak, the numerical value of opacity in the solar photosphere at the Balmer: edge κB does 
not exceed 0.036 cm2 gm−1. On the redward side of the edge, i.e., at wavelengths longer than 3648 
Å, κB is zero. 

Another bound level of hydrogen relevant in a discussion of photons at visible wavelengths is 
the n = 3 level, which can be ionized by photons at the Paschen edge. For this level, ∆E = 12.1 eV. 
As a result, in the lower photosphere, where T = 6000 K, n3/n1 = 6 × 10−10. As a result, the Paschen 
peak opacity is 10 to 20 times smaller than the Balmer peak opacity in the lower solar photosphere. 
Thus, κP does not exceed 0.0036 cm2 gm−1 at wavelengths near 8200 Å. Applying the 3 law for a 
free-bound continuum, we see that at wavelengths close to 4000 Å, the Paschen continuum opacity 
in the photosphere does not exceed 0.0004 cm2 gm−1. 

As a result, when we consider the “visible spectrum” of the Sun, which reaches its peak inten
sity between wavelengths of  ≈ 5000–6000 Å, the opacity due to atomic hydrogen κv ranges 
from about 0.0004 to at most 0.002 cm2 gm−1. (At these wavelengths, the Lyman absorption is 
essentially zero.) Later, we shall see (Chapter 5, Section 5.1) that the mass column density in the 
photosphere (i.e., the mass of a column with horizontal cross-section 1 cm2 extending upwards 
from the photosphere to “infinity”) is roughly dc ≈ 4 gm cm−2. Multiplying κv and dc, we find that 
absorption by atomic hydrogen contributes an optical depth τv = κvdc of no more than 0.008 in 
the photosphere. Since by definition the photosphere is the region where the optical depth is of 
order unity, it appears that atomic hydrogen is not a significant contributor to the optical depth 
at visible wavelengths in the solar photosphere. We could repeat the exercise for atomic helium 
and arrive at a similar conclusion. And this is true despite the fact that hydrogen and helium 
contribute by far the dominant percentage (~99%) of atoms in the Sun’s atmosphere. The photons 
emerging from the solar interior, with wavelengths predominantly in the range 5000–6000 Å, 
i.e., with energies predominantly in the range 2–2.5 eV, undergo only very slight interactions 
with H and He in the photosphere of the Sun. The reason for this behavior has to do with the 
details of atomic structure: the lowest energy levels of both H and He simply lie “in the wrong 
places” (as regards energy) to be able to interact effectively with solar photons that have domi
nant energies of 2–2.5 eV. 

So what is it that provides most of the absorption of visible light in the Sun’s photosphere? It turns 
out to be an unusual “atom/ion”. 



 

  
 

 
 
 
 
 
 
 
 
 

 

 
   

 
 
 

 
 
 

   

 

 

 

   

50 Physics of the Sun 

3.4 ATOMIC PHYSICS: (II) OPACITY DUE TO NEGATIVE HYDROGEN IONS 

The principal absorber in the solar photosphere at visible wavelengths is the negative hydrogen 
ion, i.e., a hydrogen atom with an extra electron attached. The standard hydrogen atom consists 
of one electron and one proton bound (by means of an attractive central force) in a stable arrange
ment with an infinity of bound energy levels. But there also exists the possibility that, if free 
electrons are available in the surrounding medium, an extra electron can be added without the 
system necessarily being unstable. In essence, the two electrons in an H− ion arrange themselves 
(because of Coulomb repulsion) to remain on opposite sides of the proton, as far away from each 
other as possible. In this situation, the force acting on one of the electrons is no longer central 
and is no longer purely attractive. As a result, when a detailed quantum mechanical treatment is 
applied, it turns out that there is no longer an infinite set of bound levels. But a bound state does 
exist. Just one. The bound level lies at an energy of E(H−) = −0.754 eV: this energy is more than 
an order of magnitude smaller (in absolute magnitude) than the energy (−13.61 eV) of the lowest 
bound level of the hydrogen atom. 

Photons with the capacity to excite a free-bound transition in H− (removing one of the elec
trons and leaving a neutral hydrogen atom) have a wavelength  < (H−) = 16,450 Å. In contrast 
to the sharp edge that occurs in the case of free-bound transitions in the H atom, photoioniza
tion of the H−ion shows a much more gradual wavelength dependence: the cross-section σ  rises 
from zero at 16,450 Å to a maximum at wavelengths around max ≈ 8500 Å, i.e., at energies 
of about 2E(H−). Experimental measurements of photons detaching the extra electron from 
H− show (Smith and Burch 1959) that the photo-detachment cross-section has a broad peak 
(extending over several thousand Å in wavelength) with a numerical value  σ (max)  =  4.5 × 
10−17 cm2. This value is almost an order of magnitude larger than the maximum Lyman con
tinuum cross-section for atomic hydrogen. As a result, the absorption due to H− turns out to be 
by no means a negligible process in the atmosphere of the Sun. On the redward side of max, the 
value of σ  falls to one-half of its maximum value at  ≈ 1.3 μm. On the blueward side, σ  falls 
to 0.5σ (max) at  ≈ 0.4 μm. 

Another source of continuous opacity due to H− arises when free electrons pass by a “free” 
hydrogen atom. This “free-free” process (see Section 3.3.1) contributes opacity that is relatively 
small at visible wavelengths, but which increases monotonically toward longer wavelengths as 2. 

The total opacity due to H− is the sum of the bound-free and free-free processes (Chandrasekhar 
and Breen 1946). The minimum opacity due to H− occurs at  ≈ 1.6 μm, where the free-bound 
process has its “edge”. This minimum in H− opacity is a useful tool for observers who wish to 
probe deeper than the nominal photosphere where (5000 Å) = 1. For example, in the photosphere, 
observations at 1.6 μm from the International Space Station (Meftah et al. 2020) reveal brightness 
temperatures close to 6400 K, clearly indicating penetration down to layers of gas lying deeper (and 
therefore hotter by some 400 K) than the gas at =0.9 (see Table 5.3). Moreover, in sunspot umbrae, 
observations at  ≈ 1.6 μm reveal the conditions at depths that lie some 50 km deeper than the nomi
nal photosphere (Andic et al. 2011). And in studies of simulated solar convective flows, speeds can 
be extracted reliably at 1.6 μm down to optical depths of (5000 Å) ≈ 3, but data from (5000 Å) ≈ 
10 is too noisy to be reliable (see Section 6.3). 

Across the visible portion of the solar spectrum, from about 4000 Å to about 7000 Å, where 
most of the solar energy flux emerges, it has been found that the free-bound opacity due to H− does 
not vary by more than a factor of two. There are no large discontinuities in opacity throughout the 
visible spectrum. As a result, for most of the photons passing through the solar photosphere (i.e., 
those in the visible spectrum, where the Sun emits most of its radiant energy), the opacity is “nearly” 
independent of wavelength. Because of this, the gray approximation (i.e., wavelength-independent 
opacity) turns out to be “not too bad” when we consider the solar photosphere. This could explain 
why the gray atmosphere solution (S(τ) = a + bτ) fits the solar limb darkening (I(μ) = a + bμ) quite 
well at visible wavelengths. 



 
 

 

       

 

 

 

 

 

51 Toward a Model of the Sun 

We shall find (Section 5.1) that the column density of atomic particles N above the photosphere is 
about 2 × 1024 cm−2. Most of this column is composed of hydrogen atoms. But a (small) fraction of 
the atomic particles are negative H ions. Let the ratio of the abundance of H− ions to the abundance 
of H atoms in the photosphere be φ. Then with a cross-section that does not depart significantly 
from σ (max) = 4.5 × 10−17 cm2, the optical depth above the photosphere due to H− is τ ≈ 9 × 107φ. 
This can attain values of order unity if the ratio φ is close to 10−8. 

Is it plausible that the fractional number of H atoms that will capture a second electron in the 
solar atmosphere is of order 10−8? To answer that question quantitatively, we need to know how 
ionization equilibrium depends on temperature and pressure. For this, we need to consider the Saha 
equation, which will be the topic of Chapter 4. For now, we note that in the solar photosphere, we 
shall find (Chapter 4, Section 4.6) that it is entirely consistent with local temperature and pressure 
that φ should be of order 10−8. As a result, there are indeed enough H− ions in the solar atmosphere 
to cause the optical depth at visible wavelengths to be of order unity in the photosphere. 

It is essentially the formation of H− ions that limits how deeply we can observe into the Sun at 
visible wavelengths. The favorable formation of H− in the solar photosphere requires the presence 
of both hydrogen atoms and free electrons. In the photosphere, free electrons are available mainly 
from the most abundant “metals” that have low ionization potentials (Mg, Si, S, and Fe). Together, 
these provide electrons with an abundance of a few times 10−4 relative to the abundance of H. 

3.5 ATOMIC PHYSICS: (III) OPACITY DUE TO HELIUM ATOMS AND IONS 

The spectrum of singly ionized helium (He II) is analogous to that of neutral atomic hydrogen (H 
I), except that all wavelengths are reduced by a factor of four. Thus, the He II-Lyman edge lies at 

 = 228 Å. 
For neutral helium (He I), with an ionization potential of 24.6 eV, the edge at which absorp

tion is maximum lies at  = 504 Å. The maximum absorption cross-section at the He I edge is 8 × 
10−18 cm2, comparable to the maximum cross-section at the Lyman edge of H. 

Is there any observational evidence for the existence of the various “edges” that we have men
tioned in this section? Although our main emphasis in this section has been on absorption of 
radiation, there are also physical conditions in which the enhanced optical depth at the shortward 
side of a bound-free edge results in enhanced emission there. (Reasons for this can be found in 
Equations 2.17 and 2.18.) In the Sun, transient sources of hot dense plasma occur during events 
known as “flares” (see Section 17.19): during a flare, the spectrum of the Sun can show emission 
continua with clearly visible “bound-free edges” at 912 Å (due to H I) and at 504 Å (due to He I): see 
Figure 3.3. And during a large solar flare, the He II edge at 228 Å, as well as free-free continuum 
emission at wavelengths as short as 60 Å have been observed by the Extreme-ultraviolet Variability 
Experiment (EVE) instrument on SDO (Milligan and McElroy 2013). As well as the “edges” that 
are apparent in Figure 3.3, it is also worth noting that the flare Lyman continuum (which can be 
traced shortward of 912 Å down to perhaps 700 Å) can be fitted well in many flares by a Planck 
function with a temperature ranging from 9000 to 17,000 K in different flares (Machado et al. 2018): 
this Lyman continuum is emitted by a relatively thin layer (<100 km thick) where electron densities 
are large (>1013 cm−3). 

3.6 ASTROPHYSICS: THE ROSSELAND MEAN OPACITY 

Once we know how opacity varies as a function of wavelength (κ ) or as a function of frequency 
(κ ), a mean opacity can in principle be obtained simply by taking an arithmetic average over all 
wavelengths or frequencies. But that would not be especially useful in our attempts to determine 
how photons make their way through an atmosphere. The derivation of a relevant “mean opacity” 
should also incorporate somehow the shape of the spectrum of radiation. 



  

        

 

 

 

   
 

 
 

52 Physics of the Sun 

FIGURE 3.3 Emission from a solar flare in the wavelength range 400–1000 Å. Data obtained by EVE on 
SDO. Note the Lyman edge at  = 912 Å (marked by a vertical dashed blue line) and the He I edge at 504 Å 
(marked by a vertical dashed orange line) (Milligan 2015; used with permission from Springer.) 

The most common method for calculating a mean opacity relevant to the passage of radiation in 
the deep interior of a star is called the Rosseland mean κR, defined by: 

1 dB 1 dB
 d   d  (3.3) 

R dT  dT 

In deriving Equation 3.3, it is assumed that the shape of the spectrum is related to the local 
Planck function Bν. The appearance in Equation 3.3 of (a) 1/κ  and (b) the first derivative of B  with 
respect to temperature can be traced ultimately to the fact that the RTE provides an expression for 
1/κ  times the first spatial derivative of the intensity (dI /dx): in a given atmosphere, the spatial gra
dient can be converted to a derivative with respect to temperature. 

The Rosseland mean as defined in Equation 3.3 is a “transparency mean”: as far as opacity 
is concerned, the right-hand side of Equation 3.3 gives maximal weight to regions in the spec
trum where the opacity is smallest. In the atmosphere of the Sun, photons will tend to “leak 
out” through such regions. Also, Equation  3.3 weighs more heavily those parts of the spec
trum where dB /dT is larger, i.e., at wavelengths that are shorter than the Wien maximum (see 
Section 2.1). 

The units of κR are the same as those of κ , i.e., cm2 gm−1. 
For a medium containing a certain mixture of elements, the Rosseland mean is calculated by first 

determining the frequency-dependence of the opacity due to each atomic species in the mixture. 
At each frequency, the total opacity is obtained by summing the contributions before performing 
the integral in Equation 3.3. For absorption from the respective ground states of the various types 
of atoms in the mixture, there is no dependence on temperature. But absorption due to excited 
states introduces significant temperature dependence at longer wavelengths. Further temperature 



 
   

 
   

 

  

 

        

 

 
       

 
 

   
 

   

53 Toward a Model of the Sun 

dependence enters as a result of the Planck function that enters in Equation 3.3. As a result, it is not 
surprising that κR varies significantly with temperature. 

To illustrate how κR depends on temperature, we show in Figure 3.4 the results for a gas con
sisting of H and He (with mass fractions X = 0.7 for H and Y = 0.28 for He) plus all heavier atoms 
(referred to by astronomers as “metals”: these have mass fraction Z = 0.02). Using logarithms to base 
10, we see that the range of temperatures along the abscissa extends from T = 1000 K (log T = 3) (a 
lower temperature than is observed anywhere in the Sun) to log T = 8 (a temperature that is higher 
than anywhere in the Sun). For the sake of compactness and to demonstrate that κR also depends 
on the density of the gas, each κR curve in Figure 3.4 is labeled with a value of log(R) where the 
parameter R  / T6

3 is a combination of density ρ (in units of gm cm−3) and T6, the temperature 
in units of 106 K. 

How can we understand the behavior of κR appearing in Figure 3.4? Let us examine certain lim
iting behaviors. Two aspects of the figure stand out: (i) at the highest temperatures, all curves con
verge to a single finite value (especially at low densities); (ii) at the lowest temperatures, all curves 
plunge steeply toward zero opacity. 

3.6.1 limit of loW Density anD/or hiGh T: eleCtron sCatterinG 

In the limit of very low density, e.g., when the value of log(R) has its smallest value (= −6 in 
Figure 3.4), and also in the limit of the highest temperatures, H and He are essentially com
pletely ionized. There are essentially no bound states available for electrons to occupy: all elec
trons are free particles, and electron scattering is the sole source of photon interaction. Using 
the Thomson cross-section σe = 6.6 × 10−25 cm2 per electron and a mean molecular weight of 

FIGURE 3.4 Rosseland mean opacity ( R, in units of cm2 gm−1) as a function of the logarithm (to base 10) of 

the temperature T (deg K) for a number of densities. The parameter on each curve is the quantity R  / T6
3 

, where  is density in units of gm cm−3, and T6 is temperature in millions of deg K. The data plotted here are 
taken from a table of OPAL opacities for near-solar composition (hydrogen mass fraction X = 0.7, helium mass 
fraction Y = 0.28, metals mass fraction Z = 0.02). (More extensive tables of OPAL opacities are publicly avail
able at the Lawrence Livermore website: https://opalopacity.llnl.gov/existing.html) 



   
     

 

    

   
 

 
 

 
 

  

 
 
 
 

     
 
 

 

54 Physics of the Sun 

1.3 (corresponding to neg ≈ 5 × 1023 electrons per gram), we expect that in conditions of complete 
ionization κR = neg σe ≈ 0.3 cm2 gm−1. Thus, log(κR) = −0.5 when ionization is complete. Indeed, 
the curve labeled −6 in Figure 3.4 lies close to this value at all temperatures except for the very 
coolest (less than 6000 K). 

3.6.2 loW T limit 

As T falls below 104 K, all curves in Figure 3.4 fall steeply to very small values. The reason for this 
behavior is readily understood: as T  0, the gas becomes electrically neutral (no free electrons), 
and all electrons are bound in atoms of H I or He I, where they fall down to the lowest energies 
(i.e., the ground states). The only photons that can be absorbed effectively require wavelengths 
shorter than 912 Å and 228 Å, respectively. But at temperatures below 104 K, the Wien maximum 
lies at max > 2880 Å, and the flux of photons at  ≤ 912 Å is exponentially small. The lower the 
temperature, the more drastic is the exponential reduction in photon flux at  ≤ 912 Å. For example, 
in conditions that apply to the upper photosphere, i.e., T = 4900 K, the Rosseland mean opacity falls 
to values of order 0.001 cm2 gm−1: such a low opacity lies below the lower boundary of the plot in 
Figure 3.4. 

3.6.3 hiGher Density: free-bounD absorptions 

At a fixed temperature, increasing density in Figure 3.4 corresponds to an increase in log(R). At 
the highest temperatures in Figure 3.4 (log(T) > 7.5), density effects are minimal: at such high 
temperatures ionization is almost complete at all densities relevant to the Sun. As a result, electron 
scattering dominates the opacity, as shown by the curves in Figure 3.4 converging towards κR = 
0.3 cm2 gm−1. However, at intermediate temperatures, increasing the density leads to increased 
recombination rates in the gas. In such conditions, the number of atoms with populated bound 
states grows, and this causes significant increases in opacity, especially at the various bound-free 
“edges”. 

For the lowest density curve in Figure  3.4 (labeled −6), the most significant departure from 
electron scattering (i.e., departure from log(κR) = −0.5) is the “bump” at temperatures log(T) in 
the range 5.0–5.5. In this range, Wien’s law (see Section 2.1) indicates that the peak of the Planck 
function lies at wavelengths of 100–300 Å. It is noteworthy that this range of wavelengths overlaps 
with the He II-Lyman edge at 228 Å. The overlap of the peak in the spectrum with the large peak 
in atomic opacity at the Lyman edge is conducive to creating enhanced opacity. Of course, the ion
ization of He II is almost complete due to the low densities, so there are relatively few He II ions 
available to contribute their Lyman-edge absorptions: this explains why the “bump” reaches maxi
mum opacities (log(κR) = 0) that are larger than electron scattering opacity, although not by much. 
However, when we examine higher densities, e.g., on the curves labeled −4 and −3 in Figure 3.4, 
larger numbers of He II ions survive at log(T) = 5.0–5.5, and the “bumps” in opacity grow to larger 
amplitudes. 

There is a second “bump” on the curve labeled −6 in the range log(T) = 4.5–4.75: at such tem
peratures, Wien’s law predicts a peak in the Planck function around  ≈ 500–900 Å. Such photons 
have energies approaching those required to cause bound-free absorptions from He I. This peak also 
becomes more prominent at higher densities, where the number of He I atoms per gram (at a given 
temperature) increases significantly. 

A third “bump” in log(κR), most prominent on the curves in Figure 3.4 labeled −4 and −3, occurs 
at log(T) ≈ 4.0. At such temperatures, excited states in H I are rapidly being populated: the popula
tions grow exponentially with increasing T. Each of these states contributes absorption due to its 
free-bound “edge”. In particular the Balmer “edge” overlaps with the peak of the blackbody func
tion at log(T) ≈ 4.0. The exponential growth in bound populations causes κR to increase rapidly with 



 

     

   

 

   

 
 

      
   

 

 

 

 
 
 

55 Toward a Model of the Sun 

increasing T. However, as log(T)  4.0, hydrogen is also ionizing rapidly. The competition between 
excitation and ionization leads to a rather narrow peak in the opacity curves in Figure 3.4. 

3.6.4 maGnituDe of the larGest opaCity 

As density increases, the ranges of temperatures at which significant ionizations of H I, He I, and 
He II occur begin to overlap more and more. The various relatively narrow individual “bumps” in 
Figure 3.4 that are apparent at relatively low densities tend to merge into a single broad “bump”, 
although “shoulders” are still apparent on both sides of the broad “bump”. The broad “bump” lies 
at temperatures of log(T) = 4.5–5. 

For the density range entering into the data shown in Figure 3.4, the largest values of opacity 
have numerical values in the range log(κR) = 3–4. 

What is the maximum density for the results in Figure 3.4? At a temperature of log(T) = 4.75 
(i.e., T6 = 0.06), the maximum density, corresponding to the curve log(R)  =  −1, is of order 2 × 
10−5 gm cm −3. 

Other investigations (e.g., Ezer and Cameron 1963) have extended the calculation of Rosseland 
mean opacity to higher densities. With ρ = 10−3 gm cm−3, the peak in opacity at log(Tmax) = 4.5–4.75 
has a value log(κR) ≈ 5. If we attempt a rough extrapolation of the results of Ezer and Cameron, 
it appears that the peak numerical value of κR might be as large as 106 cm2 gm−1. Recalling that 
the (wavelength-dependent) opacity at the Lyman edge has the numerical value κ (max) ≈ 3.6 × 
106 cm2 gm−1 (see Section 3.3.1), it is difficult to imagine how the maximum permissible value of κR 

in a mixture of elements where H and He are dominant could be much larger than κ  (max). If a 
blackbody curve were to be matched optimally in wavelength such that its peak overlapped with the 
Lyman edge, then we might expect to see κR values approaching κ  (max): the temperature required 
for such matching would be such that = 0.288(cm)/T = 912 Å. This leads to log(T ) = 4.5. max max max

This is indeed consistent with the peak in Figure 3.4. 
The results in Figure 3.4 refer to a gas where H and He are the principal constituents. There are 

a few “metals” included in the calculations, and these alter the H/He opacity curves slightly, giving 
rise to some “bumps” appearing at log(T) = 5–6. The reason that the changes are only slight has 
to do with the relatively small abundances of the “metals” compared to H and He: even the most 
abundant “metals” have fractional abundances of no more than 0.001 times H (by number). 

3.7 POWER-LAW APPROXIMATIONS TO THE ROSSELAND MEAN OPACITY 

For future reference, we note that it is at times convenient to fit the Rosseland mean opacity to power 
laws of temperature and density. This allows analytic solutions to be extracted for certain problems. 
Different power laws apply in different parameter regimes. 

In the earliest attempts to model the deep interior of the Sun, at temperatures in excess of roughly 
106 K, certain functional forms were examined in order to describe how the opacity depends on 
temperature and density. In this temperature range, the dominant constituents of the Sun are almost 
completely ionized. The fractional abundances of incompletely ionized atoms are becoming rap
idly smaller as the temperature increases. As a result, the strongest contributors to opacity (bound 
electrons) are becoming progressively scarcer in the gas. This leads to a rapid decrease in κR as the 
temperature increases. Valid for both bound-free and free-free transitions, certain approximations 
lead to the functional form κR = κoρ/T3.5. We shall find this form (referred to as the Kramers’ opacity 
law in honor of Hendrik Kramers who first derived the formula) useful later (in Section 8.3) when 
we model the radiative interior of the Sun. 

In a different limit, at temperatures below 104 K, the temperature sensitivity is very differ
ent. Starting at the lowest temperatures, at say a few thousand degrees, essentially all H and 
He atoms are in their ground states, while most photons in the local Planck function are at long 



 
 
 
 
 
 
 
 
 

     
     

 
 
 

 
 

          
 
 

 

 
 

 

 
 

 
 
 

 
 

  
 
 
 
 

       
 
 
 
 
 
 

56 Physics of the Sun 

wavelengths. If T = (say) 3000 K, the Wien peak lies at (max) ≈ 1μm, where photons have mean 
energies of about 1 eV. Photons with such energies are much too small to raise electrons out of 
the ground state of either H I or He I. As a result, most of the photons (i.e., those near the Wien 
peak) simply stream through the gas essentially unimpeded, and the opacity falls off to very low 
levels. However, increasing the temperature has two effects: (i) it populates excited states of H 
and He, creating opportunities for longer wavelength photons to be absorbed; (ii) the peak in the 
blackbody spectrum moves toward shorter wavelengths. Both effects combine to cause opacity to 
increase rapidly as the temperature increases. The opacity also increases as the density increases, 
although the sensitivity to density is much less pronounced than the temperature-sensitivity. 
A power law fit to opacities in this temperature regime suggests that κ = κ1ρaTb could provide a 
reasonable zeroth order fit. In order to determine what the power-law indices a and b are, we refer 
to a specific table of opacities calculated by Robert Kurucz (1992). Some of the opacities from 
that table will be used later (in Chapter 5) to calculate a model of the photosphere. For present 
purposes, we note that Kurucz lists log (κR) for a series of log(temp) and log(press). (A portion of 
this table appears in Chapter 5 in Table 5.1.). In Kurucz’s complete table, at each value of log(T) 
and log(p), the local density is also listed. Using the values of log(κ) tabulated by Kurucz at all 
values of log(T) ≤ 4.0, we have obtained least squares fits for the coefficients in the relationship 
log(κ) = c + a log(ρ) + b log(T). We find a = 0.343, b = 9.0583, and c = −31.97. The steeply ris
ing dependence on increasing temperature is noteworthy. We shall find this formulation of the 
opacity useful in Chapter 15 when we model the rise in temperature between photosphere and 
chromosphere. 

3.8 NARROW BAND OPACITY: ABSORPTION LINES IN THE SPECTRUM 

So far, the opacity we have discussed occurs mainly over broad (“continuum”) regions of the 
spectrum. For example, the negative hydrogen ion contributes significant opacity at wavelengths 
from as short as 4000 Å to as long as 1–2 μm. And bound-free absorption from the n = 2 level 
of hydrogen contributes opacity at all wavelengths shortward of 3648 Å. These are truly “broad
band” sources of opacity, and they help to determine, in conjunction with the atmospheric tem
perature profile, the overall “rainbow” of the solar spectrum, extending from peak intensity in 
the yellow-green region toward the red and toward the violet, where the intensity gradually fades 
from human eyesight. 

However, when one is presented with a spectrum of the Sun (see Figure 3.5), the first thing 
that attracts one’s attention is the presence of a multitude of more-or-less narrow dark “lines” 
distributed across the entire range of visible wavelengths. These are the features that Joseph 
von Fraunhofer first discovered in 1814 when he fed sunlight into the entrance slit of a spectro
scope. Fraunhofer drew up a list of the strongest lines that he could discern in the spectrum of 
the Sun and labeled them with a series of upper case letters from A to K (in order of increasing 
frequency). A list of weaker lines was subsequently labeled with lower case letters, starting with 
a in the red and using subsequent letters as the wavelength became shorter. Although Fraunhofer 
did not identify the origin of his lines, many of his labels persist in common use to this day: e.g., 
Fraunhofer’s D line near 5900 Å is now known to be a close doublet (prominently visible in the 
yellow-orange region [Figure 3.5], about 1/3 the way down from the top of the figure): the lines 
are referred to today as the D1 and D2 lines and are now known to be due to neutral sodium. 
And Fraunhofer’s K line at 3934 Å, the strongest line in the solar spectrum, is now known to 
arise from calcium atoms that have lost one of their electrons. It is now known that the features 
labeled A, B, and a by Fraunhofer (at wavelengths near 7590, 6870, and 6280 Å, respectively) 
have nothing to do with the Sun: instead, they are caused by diatomic molecules of oxygen in the 
Earth’s atmosphere. Fraunhofer’s C line is a strong line in the red in Figure 3.5, about 1/6 the way 
from the top, and about 1/3 the way from the right-hand side: this line is now known to be due 
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FIGURE 3.5 Fraunhofer lines: dark narrow absorption features in the solar spectrum. (Downloaded 
from https://calgary.rasc.ca/redshift.htm. Credit: National Optical Astronomy Observatory/Association of 
Universities for Research in Astronomy/National Science Foundation. With permission.) 

to hydrogen, and the line is called Hα (where  indicates that this is the first in a series of lines 
called the Balmer series). 

The occurrence of the solar “Fraunhofer lines”, so striking in their darkness against the back
drop of the rainbow, indicates the presence in the solar atmosphere of atoms and ions of particular 
elements in particular stages of excitation. Some astronomers (including, famously, Cecilia Payne, 
see Section 4.2) have put a lot of work into using the strength of the absorption lines to derive the 
relative abundances of the elements in the chemical mix that makes up the Sun. We choose to leave 
a description of those inquiries to other authors in more advanced texts (e.g., Aller 1953). In the 
present book, instead, we will look to the lines to tell us about other physical properties of the Sun: 
the properties of most interest to us here are the motions of the gas and the magnetic fields that 
permeate the gas in certain locations in the Sun. 

3.8.1 CharaCterizinG the properties of absorption lines 

It is helpful to consider quantitative measures of absorption lines. To do this, we examine the “line 
profile”, i.e., how does the radiant intensity (or flux) vary as a function of wavelength? 

In each line, when one plots the radiation flux F  as a function of wavelength (see Figure 3.6), 
one starts far from line center on (say) the blueward side, with an intensity essentially equal to the 
continuum Fc. For all lines, if one chooses a wavelength that is far enough from line center, the 



   
 

 
 
 
 

   
 

 

 

  

  
 

58 Physics of the Sun 

FIGURE 3.6 The shape of an absorption line in the spectrum of the Sun. The rectangle with width W has an 
area equal to the total area absorbed by the line. W is referred to as the equivalent width of the absorption line. 
(From http://web.njit.edu/~gary/321/equiv_width.gif. With permission.) 

ratio F /Fc approaches unity (apart from some “noise” associated with other spectral lines). As 
wavelength increases, and one enters into the line, the intensity decreases more or less rapidly: 
this decrease gives rise to what are called the “wings” of the line (Figure 3.6). At a certain wave
length, the radiation flux reaches a minimum value. This location, where the depth of the line is 
maximum, is defined to be line center. Each line arises when an electron makes a transition from 
one energy level to another. Quantum mechanics allows physicists to calculate what the energy 
levels are, and therefore, each line can be assigned a precise “rest wavelength” o. For example, a 
neutral carbon atom can emit a line at o = 5380.3308 Å, and a neutral iron atom can emit a line 
at o = 5250.2084 Å. If the carbon and iron atoms are emitting these lines in a stationary labora
tory experiment, the wavelengths of the line centers will be found to lie at the aforementioned 
wavelengths. 

The precision with which the wavelength o is known for many lines provides us with a valuable 
tool in studying the atmosphere of the Sun: it allows us to measure the velocity of the atoms produc
ing that line. To do this, we use an effect discovered by Christian Doppler in 1842: if the emitting 
atoms are moving systematically towards or away from the observer at a speed of V, then the center 
of the line will be shifted in wavelength by an amount ∆λo which is given by 

 o V
 (3.4) 

 c o 

If the atoms are moving away from the observer, V is assigned a positive value and ∆λo is positive: 
the line is shifted towards a longer wavelength, i.e., the line experiences a redshift. If the atoms are 
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moving towards the observer, the line is shifted towards the blue. In a gas with finite temperature T, 
thermal motions of atoms with mass ma = μa mH (where mH = 1.66 × 10−24 gm is the mass of a hy
drogen atom) have a mean speed Vt ≈ √(3kT/ma). These motions cause one-half of the atoms to move 
towards the observer at any time, while the other half are moving away: the accompanying “thermal 
Doppler” shifts, ∆ D = ± o Vt/c, have the effect that a spectral line is said to be “thermally broad
ened”. For example, in the photosphere of the Sun, where T ≈ 5800 K, atoms of carbon (μa = 12) 
have Vt ≈ 3 km s−1: therefore, a carbon line emitted with a wavelength of 5380 Å has a thermal width 
∆ D ≈ ± 0.05 Å. In similar conditions, an iron atom (μa = 56) has Vt ≈ 1.4 km s−1. If thermal motions 
were the only motions being experienced by the gas in the photosphere of the Sun, then each line 
would be broadened solely by its thermal width. In such cases, the heavier atoms would be observed 
to have definitely smaller widths than would light atoms. 

However, as we shall see (Chapter 6), the gas in the photosphere of the Sun does not undergo 
merely the random motions that are associated with heat: the gas is also subject to systematic orga
nized flows in three dimensions due to turbulent convection, involving upflows and downflows at 
speeds that can be as large as ±3 km s−1. Moreover, turbulent convective flows inevitably act as a 
source of sound waves in the atmosphere. Convective flows plus sound waves contributes to line 
broadening. A generic way to allow for these line broadenings when we approximate the transfer 
of radiation in a stellar atmosphere as a one-dimensional process is to introduce the concept of 
“microturbulence”: this is assigned a mean speed of  km s−1 such that the total velocity broadening 
of a line due to all motions is V = √(Vt

2 + ξ2). For the Sun, analysis of a large sample of lines due 
to Fe I and Fe II (Pavlenko et al. 2012) indicates that the best fit to Fe I lines requires = 0.75 km 
s−1, while the best fit to Fe II lines requires = 1.5 km s−1. There is not necessarily a contradiction 
between these values of : the Fe I lines may sample (on average) a higher region of the atmosphere 
where convection flows and/or sound waves are weaker, while the Fe II lines (which on average 
require higher temperatures) may be sampling deeper layers where convective flows and/or sound 
waves are better developed (see Section 3.8.3) The point is, absorption lines in the solar atmosphere 
are observed to be subject to finite broadening (with amplitudes of order 1 km s−1) over and above 
thermal broadening. 

Moreover, the concept of microturbulence is not useful merely in the photosphere: we shall also 
find that when we consider spectral lines formed in the corona (Section 17.6), those lines also exhibit 
broadening that is definitely larger than thermal motions alone can explain. In the coronal case, the 
excess broadening may be due to waves of a magnetic nature. 

The depth at the center of a spectral line varies from one line to another: some lines are so weak 
that they dip to no more than a percent or so below the continuum: such weak lines, with central 
intensities of 0.99 times the local continuum, can be difficult to identify against the brightness of 
the continuum. At the other extreme, the strongest lines have depths in excess of 90%. In the center 
of such deep lines, the radiant intensity may amount to only a few percent of the continuum: e.g., in 
the D1 and D2 lines, the centerline intensities in the Sun are only 5.0% and 4.4% of the continuum 
(Waddell 1962). What is it that determines the depth of a line? It depends on the ratio = kλo/kλ 
between the absorption coefficient kλo at the line center and the absorption coefficient kλ in the local 
continuum. (A complicating factor is that in some lines, scattering of photons is more important 
than absorption. However, inclusion of scattering effects would take us too far afield in this “first 
course”, so we ignore it here.) The value of kλo is determined by the number of atoms along the line 
of sight, as well as by an atomic quantity called the “oscillator strength”. The latter is a quantum 
mechanical parameter that depends on the probability that an electron will actually be able to 
make a transition between the lower and the upper energy levels of the line: the oscillator strength 
increases with the strength of the line. In the strongest lines in the visible part of the solar spectrum, 
the ratio = kλo/kλ becomes especially large close to line center: e.g., the Ca II K line has = 316 at 
a wavelength interval ∆  = 0.5Å away from line center (e.g., Aller 1953), and  ≈ 2000 at ∆  = 0.2Å. 
As we move even closer to line center, e.g., to values of ∆  ≤ 0.1 Å, the value of  increases by fur
ther factors of 10 or more (Aller 1953): at the center of the Ca II K line, the line opacity may exceed 
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FIGURE 3.7 Upper curve: heights of formation of spectral lines relative to the photosphere in the solar 
atmosphere. Lower curve: heights of formation in the continuum. (Thuillier et al. 2012; used with permission 
of Springer.) 

the continuum opacity by a factor of order 104. This result will be important when we discuss how 
best to observe the Sun in a region known as the chromosphere (see Chapter 15). 

At line center, the optical depth o in the line has its maximum value: as one moves way from line 
center, the line optical depth decreases, at first rapidly (out to a distance of ∆ D from line center), 
and then more slowly as one moves farther from line center (see Aller 1953, p. 256). At a certain 
distance from line center, the line no longer has any appreciable optical depth. At that point, the 
line profile merges smoothly back into the local continuum: this occurs at the outermost parts of the 
“wings” of the line in Figure 3.6. 

3.8.2 heiGhts of formation of Different speCtral lines 

Because of the variation in optical depth across the line profile, when we observe at line center, our 
line of sight into the solar atmosphere does not reach down all the way to the photosphere (where the 
continuum optical depth  ≈ 1). Instead, our line of sight at the center of a line reaches in only down 
to a level where the optical depth in the center of the line o is of order unity. Since o can be larger 
than the local continuum optical depth  by large factors, the gas we are “viewing” when we observe 
at line center does not lie at the same layer of the atmosphere where the continuum originates. When 
we observe at line center, we are seeing roughly a layer where the continuum optical depth  is ≈ 1/ . 
Depending on the value of , the line center material may be situated hundreds of kilometers higher 
up in the atmosphere than the continuum level  ≈ 1. 

An example of the heights of formation of almost one thousand lines in the solar spectrum has 
been obtained by Thuillier et al. (2012): see Figure 3.7. These results were obtained by using a one-
dimensional radiative transfer code (COSI) in spherical geometry to obtain non-LTE populations of 
the atomic levels that give rise to almost one thousand of the strongest lines in the solar spectrum. 
The formation heights of these lines range from <100 km in the red portion of the solar spectrum 
to about 2000 km in the resonance lines of Mg II at 2796 and 2805 Å and in the longest-wavelength 
line of the Balmer series, Hα, at 6563 Å. Among the lines that (in their core) probe gas at heights of 
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1500 km or more, two are labeled in Figure 3.7: the Ca II K line at 3933 Å, and the second line in 
the Balmer series, Hβ, at 4861 Å. The third line in the Balmer series, Hγ, at 4341 Å, probes the gas 
up to heights of about 1300 km in its core. As we shall see in Chapter 15, gas that lies at altitudes 
of 500 km or more above the solar photosphere has unusual properties, which sets it apart from 
the photosphere: gas at these altitudes belong to the “chromosphere”. Thus, many of the lines in 
Figure 3.7 are formed (at least in their cores) in the chromosphere. 

A more complicated study of the heights of formation at the center of several strong solar lines 
leads to the results shown in Figure 3.8 (Leenaarts et al. 2013). To obtain the results in the figure, 
the authors first computed a 3-D model of the solar atmosphere extending 24 Mm × 24 Mm in x 
and y, and 16.8 Mm in z (1 Mm = 1000 km). The 3-D chromosphere is highly dynamic: in some 
locations, the gas temperature reaches 20 kK at a height as low as 2 Mm, while in other locations, 
T does not reach a value as high as 20 kK until the height is ≥3 Mm. Once the 3-D model is avail
able, a 2-D slice from the computational results (in the y‑z plane) can be selected to solve the RTE 
and calculate the intensity in the core of several strong lines. This process provides a more careful 
RTE solution in a spectral line than the approach used by Thuillier et al. (2012) in Figure 3.7. The 
gray-black background in Figure 3.8 shows the temperature of the gas in the solar atmosphere up to 
a maximum value of 20 kK: the corrugations correspond to material elements that rise to different 
heights z at different horizontal locations y. The features that rise to the greatest heights are related 
to solar structures known as “spicules” (see Section 15.6). The heights where the cores of four of the 
strongest spectral lines in the Sun have o = 1 are plotted with different colors. We see that the core 
of the Mg II k line (at  = 2796 Å) is formed at heights that can be as large as 3–4 Mm above the 
continuum level (z=0): these heights are larger than the ~2 Mm suggested by a 1-D radiation code 

FIGURE 3.8 A 2-D illustration of the height of formation in the core of some of the strongest spectral lines 
in the Sun. To obtain these results, fully 3-D computations of gas motions in the solar atmosphere were first 
obtained, and then radiative transfer was performed in various lines. The vertical scale has its zero point z=0 
at the level where the average optical depth in the continuum is =1. The corrugations are due to the turbulent 
conditions existing in the solar photosphere, corresponding roughly to wave crests of different heights on the 
ocean surface during a storm (Leenaarts et al. 2013; used with permission of J. Leenaarts). 
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(Figure 3.7). The core of the Ca II K line (at  = 3934 Å) is formed at levels that are a few hundred 
km lower than the Mg II k line: as a result, the density of the gas where Ca II K is formed is larger 
by a factor of 10 (or so) than the density of the gas where Mg II k is formed. The core of the Hα line 
(at  = 6563 Å) is formed at heights of 1–2.5 Mm above z = 0: this is not too different from what the 
1-D RTE solution predicts (Figure 3.7). In contrast to these strong lines, we shall discuss a weak line 
in Section 3.8.3 where the core is formed at a height of only 0.04 Mm above z=0. 

It is an amazing aspect of solar physics that if an observer decides to “step” the observing instru
ment in wavelength from the center of any particular spectral line out to the far wings, the data 
obtained at each “step” in wavelength are in effect “probing” the conditions that exist at increas
ingly low altitudes in the solar atmosphere. For example, in a study of a particular “event” (a small 
flare) in the Sun, Kleint (2012) used the 8542 Å line of Ca II (one of the lines plotted in Figure 3.8) 
and obtained images of the event at 41 different steps across the line profile: the amplitude of each 
step in wavelength was ≥0.07Å. The core of the 8542Å line is formed in the “chromosphere” (see 
Chapter 15), while the wings are formed in gas that lies closer to the photosphere. Simultaneously, 
Kleint (2012) also observed the event in the 6302.5 Å line of Fe I, and used 26 steps to go from core 
to wing: each step in wavelength was ≥0.02 Å. The properties of the Fe I line are such that the line 
is formed mainly in the photosphere. Interestingly, Kleint’s clever choice of lines had the following 
beneficial effect: when the Fe I line was sampled close to its core (at 6302.49 Å: at the maximum 
altitude that can be probed in this line), the features in the image were found to be similar to the 
features observed in the wing of the Ca II line (at 8540.95 Å: at the minimum altitude that can be 
probed in this line). Remarkably, different parts of these two lines are actually formed in the same 
layers of the solar atmosphere. Using this ability to “step through” the Sun’s atmosphere at different 
altitudes, Kleint demonstrated that a certain feature in the flare had observable effects in the chro
mosphere but not in the photosphere. Apparently, conditions in this particular flare (that originated 
high in the solar atmosphere) gave rise to measurable changes in temperature and/or density only 
in those layers of gas located above a certain minimum altitude in the Sun’s chromosphere. But in 
layers of gas that lay deeper (e.g., in the photosphere), this flare gave rise to no detectable effects. 
Apparently, the effects of this event penetrated downward into the solar atmosphere only so far, and 
no farther. This conclusion potentially contains information as to the physical processes occurring 
in a flare (e.g., thermal conduction, beams of energetic particles) and how far down the effects of 
such processes make their way into the deeper layers of the solar atmosphere. 

The advantage of the ability to significantly probe different heights in the solar atmosphere by 
“tuning” the wavelength of a strong line from line center to line wings can be further illustrated 
by considering the Hα line. If one observes exactly at line center, then one is probing layers of 
the atmosphere at heights lying about 1600–2000 km above the photosphere (see Figures 3.7 and 
4.2). However, if one tunes to a wavelength in Hα that is offset from line center by an amount 
∆  = ±0.84Å from line center, one is then probing gas lying much lower down, certainly lower than 
the temperature minimum, and perhaps as low as only 200–300 km above the photosphere (see the 
horizontal line labeled Hα in Figure 4.2). In fact, at ∆  = ±0.84 Å, one is observing so close to the 
photosphere that granulation can actually be identified in the images (Kontogiannis et al. 2010). On 
the other hand, if one tunes to a wavelength lying close to the core of the line (e.g., ∆  = ±0.35 Å 
from line center), the image has a completely different appearance: granulation is no longer visible. 
Why is that? Because photons at a wavelength shifted from line center by only ∆  = ±0.35Å allow 
one to probe gas that lies at heights of about 1000 km above the photosphere: convective motions 
are not fast enough to penetrate to such great heights (see Exercise 6.1). 

It is very useful in our studies of the Sun’s photosphere to have access to the previously described 
approach, namely, probing different heights in the solar atmosphere by “tuning” the wavelength 
all the way from the core of a line out to its wings. This approach depends on the fact that, in an 
optically thick absorption line, the opacity at line center is much larger than in the wings. Later in 
this book (Chapter 17), in order to probe different layers of the Sun’s corona, we shall not be able 
to take advantage of changes in opacity across a line. Instead, we shall examine emission lines that 
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originate from various ions: these lines are formed in coronal gas where densities are nine (or more) 
orders of magnitude smaller than in the photosphere. In such conditions, the lines are optically 
thin and variations of opacity are not particularly useful as diagnostic tools. Instead, we will use 
the fact that lines emitted by different ions are formed preferentially at different temperatures (see 
Section 17.4): by a judicious choice of lines, we can probe various regions of coronal plasma that 
differ not in opacity but in temperature. 

3.8.3 shape of an absorption line profile: C-shapeD biseCtors 

Random thermal motions are not the only contributor to the widths of lines in the solar spectrum. 
We shall see (in Chapter  6) that organized flows of gas (i.e., convective flows) exist in certain 
regions of the Sun in order to transport heat. In such regions, gas that is hotter than average rises, 
while gas that is cooler than average sinks. The regions of rising and falling gas organize themselves 
into “cells” or “granules” with bright material rising at the center and dark material sinking around 
the periphery. Because the rising gas is brighter than the falling gas, a careful inspection of the 
shape of a spectral line will preferentially detect the upward motions of the brighter gas. 

To undertake such an inspection, we use the fact that by choosing different depths in a line, we 
are probing different layers of the atmosphere. Suppose we start near the continuum and pick the 
part of the line where the depth is only (say) 10% below the continuum. There will be two points 
on the line profile that have that depth, one on the blue side of line center, one on the red side of 

FIGURE 3.9 Doppler velocities obtained from bisectors of the neutral iron line at o = 5250.2084 Å at the 
center of the solar disk (Löhner-Böttcher et al. 2019, Astron. Astrophys. 624, A57; used with permission of 
ESO). 
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line center. We draw a line between those two points and bisect it: at the bisector, we measure the 
wavelength as precisely as our instrumentation allows. Typically, we find that the bisector does not 
have the same wavelength as line center ( o): instead, the bisector is found to have a wavelength B 

that is shifted from o by ∆ B = B − o. Interpreting this ∆ B as a Doppler shift will give us a veloc
ity associated with the 10% depth point. Then we move deeper into the line, say to the part of the 
line that lies 20% below the continuum. We measure the Doppler shift of the bisector at that level, 
and obtain another value of velocity. We then proceed downward until we reach line center. At each 
depth, we will have (in general) found different values of the velocity. What do we see when we plot 
the velocity versus line depth? Results are shown in Figure 3.9. 

The line used to obtain the data in Figure 3.9 is a deep iron line with a central depth as low as 
0.2–0.3. Thus, this line is not the strongest line in the spectrum, but it is strong enough to give rise 
to a deep absorption line. The characteristic that emerges in bisector plots of the Sun is that (i) all 
velocities are negative, i.e., gas is preferentially moving towards the observer, and (ii) the curves 
are shaped like the letter C, i.e., the curves are concave towards the right. Why are the shifts sys
tematically negative? Because hotter (brighter) gas is rising upward in the Sun, and these photons 
dominate over the fainter photons moving downward into the Sun. Near the continuum (i.e., high up 
in the profile), the Doppler shift is relatively small. Also, the Doppler shift is relatively small near 
the bottom of the line, at the lowest part of the profile. At intermediate depths (0.8–0.7), the magni
tude of the Doppler shift reaches a maximum. The maximum velocity observed in this iron line is 

FIGURE 3.10 Doppler velocities obtained from bisectors of the neutral carbon line at o = 5380.3308 Å at 
the center of the solar disk (Löhner-Böttcher et al. 2019, Astron. Astrophys. 624, A57; used with permission 
of ESO). 
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found to be almost 0.3 km s−1. On an observational point, we note that the amplitude of the velocity 
depends on how large the wavelength resolving power (R = λ/Δλ) of the instrument is: values of R 
up to 700,000 are shown in Figure 3.9. (The enormous resolving power R = 700,000 is achieved by 
using a “laser comb” technique to measure wavelengths with exceptional precision.) Velocities of 
0.3 km s−1 are some sort of average velocity of the convective motions that exist in relatively high 
layers of the Sun corresponding to the altitudes where the gas giving rise to depths of 0.8–0.7 in the 
5250 Å line profile is situated. 

Should we conclude from Figure 3.9 that 0.3 km s−1 is a reliable measure of the speeds of 
convective flows in the Sun? To answer that, we consider another line and examine the C-shaped 
bisectors in that line as well (Figure 3.10). The line in Figure 3.10 is due to neutral carbon at 

o = 5380.3308 Å. Results plotted in Figure 3.10 refer to measurements not only at the center of 
the solar disk (labeled μ  cos = 1, where the angle  is defined in Figure 2.3), but also at other 
positions on the disk approaching the limb: μ = 0.3 corresponds to an angle of = 73 heliographic 
degrees from disk center. Here, we confine attention to the disk center measurement (μ=1, shown 
as a dark purple curve): we see that the bisector velocity is blueshifted there by more than 1000 m 
s−1. We also note that this line is a weak line: the intensity at line center “goes down” only to levels 
of 0.83–0.84 times the continuum. Such a weak line has an  value that is relatively small, and 
therefore the line is formed quite close to the photosphere: quantitative modeling in fact indicates 
that the center of the 5380 Å carbon line is formed only about 40 km higher than the level =1 in 
the Sun. The results in Figure 3.10 indicate that convective flow speeds close to the photosphere 
have magnitudes that are no less than 1 km s−1. We need to recall that the C-shaped bisectors give 
Doppler shifts that are “averaged” in some way over a mixture of bright rising gas and dark fall
ing gas: therefore, we will not be surprised to find out below (Chapter 6) that other observations 
(with greater spatial resolution) indicate convective flows that are in certain locations in excess 
of 1 km s−1. 

3.8.4 shape of an absorption line: maGnetiC fielDs 

In the presence of magnetic fields, the energy levels within an atom or ion become split into sev
eral distinct sublevels. Only certain transitions between the sublevels are permitted. As a result, an 
absorption line, which in nonmagnetic gas is a single narrow feature in the spectrum, can break up 
into a group of distinct, but closely spaced, components when the gas is placed in a magnetic field. 
The amount of spacing increases as the field becomes stronger (see Section 16.4.1). The polarization 
of the various components contains information as to the direction of the field lines relative to the 
line of sight. In order to handle the radiative transfer of line radiation in a magnetic field, it is neces
sary to solve four separate equations of radiative transfer. There is one equation for each of the four 
Stokes parameters I, Q, U, V: respectively the intensity of light propagating along the z direction, 
the linear polarization along the x direction, the linear polarization along the y direction, and the 
circular polarization vector pointing along the z direction. Wasaburo Unno (1956) derived the four 
RTE equations and showed how to obtain solutions in one special case. The special case considered 
by Unno involves what is referred to as the Milne–Eddington (ME) approximation for solving the 
RTE for a spectral line in nonmagnetic gas: the central assumption of the ME approximation is 
that = kλo/kλ (i.e., the ratio of line to continuum opacities) retains a constant numerical value at 
all levels in the atmosphere. The advantage of this is that an analytic solution of the RTE can be 
obtained (e.g., Aller 1953). In modern observations of polarization in the Sun, the ME approxima
tion continues to be used in order to calculate the forward RTE problem: i.e., given a specific choice 
of numerical values for several key physical parameters at a number of specified altitudes (“nodes”) 
in a stellar atmosphere, use the Unno solution to calculate a large array of line profiles of I, Q, U, 
and V. The eight physical quantities that are to be chosen in order to proceed with this forward 
solution include the source function (= So + S1 ); three field components Bx, By, and Bz; ; ∆ D; and 
a velocity along the line of sight. Clearly, with so many parameters to specify, even if we select no 
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more than (say) three or four nodes, the array size will be as large as 104–5. Once the array of line 
profiles is complete, any observational data set can in principle be “inverted” by searching through 
the array for the best fit to the four Stokes profiles: various codes have been developed to do the 
inversion, including codes with acronyms SIR (since 1992), SPINOR (since 2000), and NICOLE 
(since 2015). A great improvement in testing the inversion codes has become available with access 
to large realistic 3-D MHD simulations of the solar atmosphere. These simulations yield spatially 
variable values of all eight physical quantities at each instant: therefore, with a snapshot of the 
simulation at hand, one has all the information needed to do the forward calculation of any spectral 
line profile. Subjecting that profile to an inversion code will then lead to “solutions” that can be 
compared directly with the actual values of all eight parameters in the snapshot (e.g., Danilovic 
et al. 2016). Only when such a “solution” is found to be satisfactory should one proceed to apply the 
inversion to solar data. 

In summary, absorption lines in the spectrum of the Sun can be used to extract information about 
velocities and magnetic fields at various altitudes in the solar atmosphere. 

EXERCISES 

3.1 Lines due to hydrogen, sodium, calcium, and iron occur in the solar spectrum at wave
lengths of 6563 Å, 5890 Å, 3933 Å, and 5250 Å, respectively. Assuming that each line 
arises in a gas with T = 6000 K, use the various atomic weights (find them online) to cal
culate the thermal width in Å for each line. What resolving power is required to resolve 
the thermally broadened line profile in each case? 

3.2 Consider a neutral hydrogen atom. Calculate the speed of the electron (in units of cm 
s−1) in each of the Bohr orbits with n = 1, 2, and 3. Using those speeds, calculate the de 
Broglie wavelength of an electron in each of the three orbits. Express your answers in 
units of Å. 

3.3 Consider a neutral hydrogen atom. Calculate the radius (in units of Å) of the lowest three 
Bohr orbits, i.e., those with n = 1, 2, and 3. Using those radii and the results of Exercise 
3.2, calculate how many de Broglie wavelengths of an electron can be “fitted in” along the 
circumference of each of the three orbits. 

3.4 Bohr’s hydrogenic ion is one in which a single electron is in orbit around a nucleus with 
charge +Ze. Repeat the two-step argument in Section  3.2.1. Derive a formula for the 
electron speed in orbit n. Derive the predicted wavelengths 21(Z) (in units of Å) of the 
Lyman-  line in the hydrogenic ion of elements with Z = 11, 12, 14, 16, 26, and 28. 
Compare your predicted results with the observed wavelengths 21(obs) reported by 
Torrejon et al. (2012)*. 

3.5 Starting with the 21(obs) values reported by Torrejon et al. (2012) for six ions with vari
ous Z values, multiply each 21(obs) by the value of Z2 for that element. If Bohr’s model 
is exact, then your values of Z2

21(obs) should all equal the value of 21(obs) = 1215.6 Å 
for the hydrogen atom. What trend do you see in your results? By what percentage does 
Z2

21(obs) for Z = 28 differ from the 21(obs) = 1215.6 Å for the hydrogen atom (with 
Z=1)? 

3.6 Relativistic effects (approximate correction): according to Einstein’s special theory of 
relativity, the mass of an electron moving at speed V should be larger than the rest mass 
of the electron by a factor = 1/√(1-V2/c2). (Here, c is the speed of light.) As a result, 
the magnitude of En should be increased by a roughly a factor of  above the results in 
Section 3.2.1. Using the results from Exercise 3.2 for levels n = 1 and 2 in the H atom, 
calculate the values of  for the n=1 orbit, and also for the n=2 orbit. Use these two values 
of  to calculate an “improved” value of 21(rel) for the H atom. 
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3.7 Relativistic effects in hydrogenic ions (approximate correction). Using the electron speeds 
from Exercise 3.4 for levels n = 1 and 2 in a hydrogenic ion with charge Z = 28, calculate 
the values of  for the n=1 orbit, and also for the n=2 orbit in this ion. Use these values of 
, calculate an “improved” value of 21(rel) for this ion. By what percentage does Z2

21(rel) 
for Z = 28 differ from the 21(obs) = 1215.6 Å for the hydrogen atom? 
*For further astrophysical measurements of Lyman-  line wavelengths in hydrogenic 
ions, see also Hanke et  al. (2009), Lopes de Oliveira et  al. (2010), and Phillips et  al. 
(2015). The reader may also find it an interesting exercise to search the astrophysical lit
erature for further examples, especially for the rarer elements that have odd values of Z. 
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4 Toward a Model of the Sun 
Properties of Ionization 

The properties of opacity at high temperature (and low pressure) are controlled by the physical pro
cess of ionization. Other physical properties of the gas, including thermodynamic quantities such 
as the specific heats (which are important for transport of energy), are also significantly affected by 
the ionization process. In order to have a clear understanding of the physics of certain regions in the 
Sun, it is important to have a quantitative model of ionization. This leads us to consider an equation 
originally derived by Meghnad Saha (1921) for ionization equilibrium. 

We have already mentioned (see Equation  3.2) how the numbers of bound electrons inside 
an atom are distributed among energy levels: the number density  ni of atoms with electrons in 
the ith energy level is related to the number density of atoms in the ground state n1 according to a 
Boltzmann distribution: 

where ∆Ei1 is the difference in energy between level i and the ground state. The coefficient gi refers 
to the “statistical weight” of the level i, i.e., the number of distinct sublevels that are available to an 
electron with principal quantum number i. The value of gi in the H atom is derived by noting that 
for principal quantum number i, the angular momentum sublevels take on integer quantum num
bers L from zero up to i − 1: each of these sublevels has orbital multiplicity 2L + 1, as well as multi
plicity 2 for electron spin. Summing the combined multiplicity 4L + 2 per sublevel over L sublevels 
from L = 0 to L = i − 1 yields a total of gi = 2i2. 

4.1 STATISTICAL WEIGHTS OF FREE ELECTRONS 

Now, when we wish to move on to the case of ionization, we need to write down an expression for 
the population of unbound ions and electrons. Analogously to the Boltzmann formula, which we 
used in Equation 3.2 for bound states, the Boltzmann distribution for ions and electrons can be writ
ten as: 

n g I p g g  I pi i e i eexp exp (4.2) 
n g kT g kT a a a 

Here, ni and na are number densities of ions and atoms respectively, and  Ip is the “ionization 
potential”, i.e., the energy required to ionize an atom from the ground state. The statistical weight 
of the ion+(free)electron “system” is labeled gi+e. The statistical weight of the atom ga is essentially 
that of the ground state, i.e., ga = 2 for a hydrogenic atom. 

When we consider ionization, in contrast to considering bound electrons, the principal difference 
is that the statistical weight of the ionized system, consisting of ion plus electron, must not only 
include the statistical weight of the ion gi (also mainly in its ground state), but must also include 
the statistical weight ge of the free electron. Because the electron is now free of all attachments to 


E
ni gi 
g1 

i1
 (4.1)
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70 Physics of the Sun 

the ion, i.e., the ion and electron now operate independently of each other, the overall statistical 
weight for ion and electron gi+e can be written as the product of two terms: gi+e = gige. In contrast 
to an electron that occupies a bound energy level, where the number of available sublevels is small 
(leading therefore to small statistical weights), a free electron has (as we shall see later) access to an 
enormous number of states. This has the striking effect that, in Equation 4.2, the right-hand side of 
Equation 4.2 may grow to values of order unity even when the exponential term is small, i.e., even 
when kT is much smaller than I. 

For example, consider the case of hydrogen, where Ip = 13.6 eV. What do we have to do in order to 
achieve significant ionization? By the term “significant”, we choose the following line of reasoning. 
We start at low temperatures with a number of atoms in a certain volume, and essentially no ions in 
that volume. As we increase the temperature, gradually, more and more of the original atoms will 
lose an electron and become an ion. Thus, the number of ions in the volume increases as time goes 
on, while the number of atoms decreases. At some point, we will find that ni ≈ na, i.e., about one-half 
of all the original atoms have ionized, and each one of the ionized atoms is included in the number 
ni. We describe the gas at that point as “significantly” ionized. (Clearly, we could have chosen a 
different criterion: as T continues to increase, more and more of the atoms become ionized and ni 

becomes much larger than na. But the “50% point” is satisfactory for us here.) 
So, returning to our question “What do we have to do in order to achieve significant ioniza

tion?” the answer can be seen by inspection of Equation 4.2: we need to make the right-hand side of 
Equation 4.2 approach unity. At first, let us suppose that the statistical weight factors are all of order 
unity, i.e., suppose that the only relevant term on the right-hand side of Equation 4.2 is the expo
nential factor alone. In such a case, if we are to have any chance of approaching the limit ni ≈ na, 
the temperature would have to satisfy kT ≥ 13.6 eV. (Actually, in this case, the r.h.s. could never 
formally be as large as unity: but it could “get close” to unity at high enough T.) The condition kT ≥ 
13.6 eV corresponds to T ≥ 158,000 K. On the other hand, when statistical weights are included (as 
of course they must be in order to be realistic), we shall find that it is possible to achieve ni ≈ na even 
when T is less than 10,000 K (at low pressure). How can it be possible for a gas with a temperature as 
low as 10,000 K (i.e., kT = 1.38 × 10−12 ergs = 0.86 eV) to be able to ionize an H atom that requires 
13.6 eV to become ionized? Shouldn’t the Boltzmann factor of exp(−13.6/0.86) = 1.35 × 10−7 render 
this outcome highly unlikely? The solution to this conundrum lies in the fact that ge, the statistical 
weight of a free electron, can take on (very) large values. 

In order to demonstrate this fact, we need to evaluate ge. That is, we need to know the number 
of states that are available to a free electron. Such an electron moves in a six-dimensional (6-D) p 
− r phase space, where p represents the momentum vector (in 3-D), and r represents the position 
vector in (3-D) coordinate space. The uncertainty principle, as originally stated by Heisenberg 
(1927), in one dimension (1-D) restricts the uncertainties in 1-D momentum and 1-D position 
such that the product of those uncertainties dpxdrx cannot be less than a quantity of order h, the 
Planck constant. When the 1-D result is extended to 3-D, this principle leads to the concept that 
the 6-D phase space cannot be regarded as infinitesimally finely “grained”: instead, there must 
exist minimally occupiable “cells” in 6-D phase space, each with volume d3pd3x ≈ h3. Allowing 
for electron spin, the Pauli (1925) exclusion principle indicates that each “cell” in phase space 
cannot be occupied by more than two electrons. As a result, in a gas occupying a volume V(r) of 
coordinate space and a volume V(p) in momentum space, the total number of states available to a 
free electron is ge = 2V(p)V(r)/h3. 

What are we to use for V(r) and V(p)? In a medium where the number density of electrons 
has a known value (ne), the mean volume of coordinate space V(r) occupied by a single electron 
is readily determined: V(r) = 1/ne. Turning our attention now to the 3-D momentum space, each 
electron has access to a large volume in this space. In momentum space, few electrons have 
momenta faster than the momentum pth = mVth corresponding to the mean thermal speed: Vth = 
√(8kT/πm). As a result, momentum space is (roughly) filled up inside a sphere with a radius of 
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order r(p) = pth = mVth. The associated volume V(p) filled up in momentum space is (roughly) 
(4/3)πr(p)3. Thus, V p   4 / ) 3 .( )  (   3 pth 

Now we combine V(r) and V(p) to find 

3 2/ 3 2/8 
e 3 


8





km 1
 T


 (4.3)
 g 

h3
 n e

The coefficient of T3/2/ne in Equation 4.3 can be evaluated by inserting appropriate values for 
the natural constants k, m, and h. The result is 5.22 × 1015. The largeness of this number is note
worthy in the context of the possible largeness of ge. Of course, we do not yet know the value of ge 

because we still need to evaluate the quantity T3/2/ne. How large might the latter quantity become 
in the solar atmosphere? In the upper part of the atmosphere, in the corona, T reaches values of 
order a few times 106 K, while ne is no larger than 109 cm−3 (see Chapter 17). In such conditions, ge 

is of order 1016 or more. Such large values make it easy to significantly overcome the effects of the 
Boltzmann factor in Equation 4.2. In the chromosphere, where T ≈ 104 K, ne may be of order 1011 

cm−3 (Vernazza et al. 1973). In such conditions, ge is of order 1011, still large enough to more than 
compensate for the Boltzmann factor in Equation 4.2. 

For practical purposes, it is usual to rewrite Equation 4.3 in terms of electron pressure pe rather 
than in terms of electron number density ne. Replacing ne with pe/kT in Equation 4.3, we find that 
Equation 4.2 becomes 

i e  i .n p  
 
g 
C T 2 5 exp  

I p (4.4) 
n g i kT a a 

where Ci is a combination of numerical and physical constants. The physical constants in Ci occur 
1 5  2 5.. 3in the combination m k  / h : in c.g.s. units, the numerical value of this combination is 0.021. e 

Including the remaining numerical constants in Equation 4.3, the value of Ci turns out to be (coin
cidentally, but as it turns out, conveniently) close to unity (0.72). 

4.2 SAHA EQUATION 

In logarithmic form, we can now write Equation 4.4 as 

n g 
log  i log p 2 5. log T I p log i . (4.5) e 0 14  

n ga a 

In Equation 4.5, Ip is the ionization potential expressed in units of eV, the quantity is related to 
the temperature according to θ = 5040/T, and the logarithms are to base 10. As an aid to memory, 
we note that we will be interested in this chapter in cases where ni ≈ na: in such cases, the left-hand 
side (l.h.s.) of Equation 4.5 is close to zero. The question is: which of the five terms on the r.h.s. of 
Equation 4.5 are likely to be dominant? We shall be interested in locations where T is within a factor 
of a few of T = 104 K: therefore, the term 2.5 log T is of order 10. Also, the quantity will be within 
a factor of a few of the value 0.5. Many elements have Ip ≈ 10–20. Therefore, the magnitude of the 
term Ip will be of order 10. For many atoms/ions, it is found that gi ≈ ga: therefore, the fourth term 
on the r.h.s. is in many cases close to zero. The fifth term on the r.h.s. is some two orders of magni
tude smaller than the second and third terms on the r.h.s. In view of these relative magnitudes of the 
various terms, no significant error is made if we make the approximation of retaining only the first 
three terms on the right-hand side of Equation 4.5. Thus, in simplified form, we refer to “the Saha 
equation” as the following expression: 



  

 

 

 
 

 

 
 
 
 

 
   

72 Physics of the Sun 

FIGURE 4.1 Solid, dotted, and dashed lines: ionization “strips” of neutral hydrogen H I, neutral helium He 
I, and singly ionized helium He II in the (log pe versus log T) plane. Units of T are K, and units of pe are dyn 
cm−2. The solid curves labeled 10% and 90% indicate the loci along which hydrogen is 10% ionized and 90% 
ionized, respectively. The dashed curves labeled 10% and 90% indicate the loci along which He II is 10% 
ionized and 90% ionized, respectively. The dotted lines refer to He I, but the 10% and 90% labels are omitted 
from the upper and lower lines (respectively) for the sake of clarity. 

ni  (4.5')
log  log p 2 5  T I . log  e pna  

where the label (4.5') denotes a simplified version. In what follows, we adopt this simplifying 
approximation. 

Equation 4.5 is the Saha equation: it allows us to evaluate the degree of ionization for each ele
ment separately in a medium of given T and pe. If a particular medium is considered (e.g., the photo
sphere in the Sun), then it will contain some elements that are mainly in the neutral atom state, while 
some other elements are ionized. In general, the elements that remain neutral in the solar photo
sphere are those with large values of Ip (e.g., He and Ne, with Ip = 24 eV and 21 eV respectively). And 
the elements that tend to be ionized in the solar atmosphere are those with small values of Ip (e.g., 
Na and K, both with Ip ≈ 5 eV). Of course when we move to a different location in the Sun, e.g., into 
the corona (or even more so, into a flare), the temperature is so much larger than in the photosphere 
that all of the elements are observed to be ionized, some to the extent that only a single electron may 
be left remaining attached to the nucleus. And in each case, if you know the values of T and pe, the 
Saha equation allows you to determine the degree of ionization of each element separately. 

It is worth reiterating why considerations of ionization are important as far as opacity is con
cerned. If the atoms in a gas are highly ionized, the lack of bound states for electrons leads to low 
values of opacity. Because a bound electron may be up to seven orders of magnitude more efficient 
than a free electron as regards interacting with photons, the presence of even a few bound electrons 
in the gas can cause the opacity to be enhanced significantly. It is the Saha equation that allows us to 
determine quantitatively if there are a lot of bound electrons in the gas of interest to us, or only a few. 
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On a historical note, it was precisely with the help of the Saha equation that Cecilia Payne 
(1925) first established that hydrogen and helium are by far the most abundant elements in most 
stellar atmospheres. Interpretation of the observed strength of an H or He spectral line in the visible 
spectrum of a star requires careful inclusion of the (large) Boltzmann factors that are relevant for 
the population of the lower levels of such transitions. Analyses of spectra performed before Payne’s 
work did not properly incorporate the Boltzmann factors: the conclusion of the earlier work had 
been that the stars had roughly the same composition as Earth! Payne’s painstaking application 
of the Saha equation to the analysis of the lines in the spectra of stars of many different types in 
the Harvard plate collection led her to a result that was eventually recognized as a stunning break
through in stellar astrophysics. Although Payne could not have known it in 1925, her results paved 
the way for future developments in cosmology, where it became clear that her results concerning the 
dominant abundances of hydrogen and helium can ultimately be traced back to the fact that H and 
He are essentially the only elements that emerged from the Big Bang: all of the other 90 elements 
found in nature were generated subsequently when various generations of stars returned the ashes 
of their nuclear “factories” to interstellar space. 

4.3 APPLICATION OF THE SAHA EQUATION TO HYDROGEN IN THE SUN 

There are two distinct locations in the Sun where hydrogen makes a transition from mostly neutral 
to significant ionization. Since the photosphere is the location in the Sun where the temperature is 
close to its minimum value, the abundance of neutral hydrogen is largest in the vicinity of the photo
sphere. In view of this, it is not surprising to find that the two distinct locations where H is ionizing 
lie on either side of the photosphere. One lies above the photosphere, in the low-density gas of the 
upper chromosphere. The second lies well below the surface, in the denser gas of the convection 
zone. Let us use the Saha equation to determine the temperatures of these locations. 

In order to discuss the Saha equation, it is convenient to plot the Saha equation in the (pe − T) plane, 
and to introduce the concept of an “ionization strip”, as shown in Figure 4.1. Along the curves labeled 
X% in Figure 4.1, H and He are X% ionized. To avoid crowding in the figure, we plot only two curves 
for each element: X = 10% (essentially the onset of ionization), and X = 90% (essentially the near 
completion of ionization). The area between the 10% and 90% ionization levels can be considered 
an “ionization strip”, where either H or He is in the process of transitioning from mostly neutral to 
mostly ionized. Within each ionization strip, where heat input tends to increase the degree of ioniza
tion rather than increase the temperature, the specific heat of the element in question becomes much 
larger (by an order of magnitude or more) than the standard value from kinetic theory (see Chapters 6 
and 7). 

To be specific, let us quantify the onset of “significant” ionization as the location where ni ≈ na, 
corresponding to 50% ionization. According to the simplified version of Equation 4.5', this occurs 
for hydrogen when the temperature satisfies the equation

I 2 5. log T log p (4.6) p 10 10 e

where we must set Ip = 13.6 for hydrogen. 
Let us consider the upper chromosphere, where the pressure is relatively low: log pe ≈ 0 (see 

Chapter 15). In this case, Equation 4.6 reduces to θ = (2.5/13.6) log T, i.e., T log T = 27,400. To 
solve this, we can use a handheld calculator that has a feature to solve transcendental equations. 
Otherwise, we can guess at the slowly varying logarithm term and then iterate. For example, if 
we initially guess log T = 4 (i.e., T = 104 K), then the first iteration at the solution would be T = 
27,400/4 = 6850, too low to be consistent with the initial guess log T = 4. If we make an initial guess 
log T = 3.7 (i.e., T = 5000 K), then the solution would be T = 7400 K, too high to be consistent with 
the initial guess. An iterative solution to this equation yields T = 7100–7200 K. Thus, when the 
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FIGURE 4.2 Illustrative example of the temperature T versus height h in a particular one-dimensional model 
of the solar photosphere/chromosphere due to Vernazza et al. (1973). The height scale is chosen to have the 
value h = 0 in the photosphere (near the right-hand side of the figure). The temperature minimum in this model 
(with T ≈ 4000 K) occurs at h ≈ 500 km. As we move towards the left-hand side of the figure, the chromosphere 
(a region where temperatures become hotter than the photosphere) extends up to h ≈ 2000–2200 km (see 
Chapter 15). At heights above h ≈ 2200 km, the temperature rises steeply into the corona (Chapter 17). Lines 
in the solar spectrum are formed over a finite range of heights in the solar atmosphere: horizontal lines with 
vertical arrows at their ends are used to illustrate the height ranges where various lines are formed. Some of 
these ranges are quite narrow: e.g., the Si I line at 1985 Å is formed between h = 350 and 500 km. But some of 
the ranges are broad: e.g., the H  line and also the Ca II K line are formed between h = 300 and h = 1600 km. 
(Used with permission of E. Avrett.) 

electron pressure is as low as it is in the upper chromosphere, hydrogen begins to ionize significantly 
when the temperature rises above 7100–7200 K. 

It is remarkable that such a simple approach to the Saha equation helps us to understand an 
important feature of the solar chromosphere (see Chapter 15): briefly, the chromosphere is found 
in the range of heights where the local gas temperature rises from a low of about 4000 K (in the 
upper photosphere) to temperatures hotter than that by several thousand degrees K. (We will dis
cuss in Chapter  15 what kind of energy/work input might be causing this rise in temperature.) 
Observational data pertaining to the chromospheric gas suggest, upon analyzing the data in terms 
of a one-dimensional model (where height h above the photosphere is the independent variable), that 
there exists a plateau in temperature close to 7000 K over an extended range of heights (more than 
1000 km) in the solar chromosphere (see Figure 4.2). Whatever is inputting energy into the chromo
sphere is able to raise the temperature from its coolest value (close to 4000 K) up to about 6500 K 
over a range of heights from about 500 km to about 1000 km above the photosphere. But then, over 
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the height range from about 1000 km to about 2000 km, there is essentially no further increase in 
the temperature of the chromospheric gas. Why would that be so? Has the input of energy stopped? 
No: energy is still being supplied, but instead of going into increasing the temperature of the gas, the 
inputted energy is diverted to perform a very different process, namely, the ionization of hydrogen. 
Because ionization of H consumes so much energy (13.6 eV for each H atom, much larger than the 
thermal energy kT ≈ 0.5 eV), there is little or no energy left over to do the work of raising the local 
temperature. This situation continues until H becomes essentially completely ionized, at tempera
tures just above 7000 K. Above that level, the gas once again is supplied with input energy that is 
no longer diverted to do the work of ionizing: instead, the work can go back to its original task of 
raising the temperature. 

Now let us apply the Saha equation to the gas lying below the photosphere. Photospheric mod
els (see Chapter 5) indicate that the gas pressure in the photosphere is log pg ≈ 5, and it rises as we 
move deeper below the photosphere. In the photosphere, electron number densities are less than 
atom number densities by about 2000. (Reasons for this number will be discussed later.) As a result, 
log pe ≈ 1.7 in the photosphere. But with increasing depth and increasing temperature, increasing 
ionization of hydrogen causes the value of pe to approach closer to the value of pg. At a depth where 
log pg ≈ 7, the electron pressure is within an order of magnitude of pg. In this case, the 50% ioniza
tion point occurs when 

 0 18 10 T  0.53. log (4.7) 

Iterative solution of this equation yields T = 20,000–21,000 K. 
The contrast between the ease of ionization in the chromosphere and in the subphotosphere is 

important to note. In the low‑pressure conditions of the chromosphere, it is relatively easy to ionize 
hydrogen: a temperature of just above 7000 K will suffice. But in the high‑pressure gas below the 
surface, the ionization of hydrogen is “postponed” to higher temperatures: 50% ionization of hydro
gen does not occur until the temperature has risen above 20,000 K. 

As a final application of the Saha equation to hydrogen in the Sun, let us check the fractional 
ionization of hydrogen in the photosphere. In the lower photosphere, inserting log pe = 1.7, T = 
6000 K (i.e., θ = 0.84), we find log(ni/na)= −3.7. In the upper photosphere, close to the chromo
sphere, inserting log pe = 0, T = 4900K (i.e., θ = 1.03), we find log(ni/na)= −4.8. Thus, the aver
age degree of hydrogen ionization in the solar photosphere is about 10−4.25: only one H in some 
20,000 is ionized. In contrast, all elements in the solar gas with ionization potentials of about 
9 eV and less exist more or less completely in the singly ionized state. This includes (in order 
of decreasing abundances) the elements Si, Mg, Fe, Al, Ca, and Na. Using the standard abun
dances by number of each of these elements from a table of cosmic abundances and summing 
over them, we find that their ionization provides about 10−4 electrons for every hydrogen atom. 
This somewhat exceeds the average degree of ionization of hydrogen in the upper photosphere: 
therefore, the “metals” are the primary source of free electrons in the upper photosphere. In 
the lower photosphere, the supply of free electrons comes from metals and hydrogen in roughly 
comparable amounts. 

4.4 APPLICATION OF THE SAHA EQUATION TO HELIUM IN THE SUN 

The second ionization of helium requires Ip = 54 eV. This means that the equation for 50% ioniza
tion is 

54  2 5. log T  log p (4.8) 10 10 e 

Solutions to this equation occur at higher temperatures than those for hydrogen. In the chromo
sphere (log pe ≈ 0), the solution satisfies T log T = 1.1 × 105: this corresponds to T ≈ 25,000 K. 



  

 

 
 
 
 
 
 

 
 

   

 

 
 

   
 

     
 

   
     

     

  

76 Physics of the Sun 

In the case of the subphotosphere, we must go to deeper layers than those where hydrogen ion
ization reaches the 50% level. In the deeper layers, log pe may be as high as 10–12. This leads to 

. 10 0 2  (4.9)  0 046 log T  . 

The solution of this is T ≈ 140,000 K. 
Again, the contrast between the ease of ionization of He II in the chromosphere and the dif

ficulty of ionization of He II in the subphotosphere is apparent. In the low-pressure conditions of 
the chromosphere, it is relatively easy to ionize helium: a temperature of just above 25,000 K will 
suffice. But in the high-pressure gas below the surface, the ionization of helium is “postponed” to 
higher temperatures: 50% ionization of helium does not occur until the temperature has risen above 
140,000 K. This behavior is reminiscent of the differences that we found in the ease of ionization 
of hydrogen (see prior discussion of Equations 4.5 and 4.6): H is easy to ionize in the chromosphere 
but more difficult to ionize in the high pressure of the subphotospheric gas. It is as if higher density 
forces electrons and ions closer together, thereby improving the chances of electrons becoming 
bound once again into a bound energy state: and the more bound states there are, the higher the 
opacity will be. 

These are quantitative illustrations of a point we made already in discussing the numerical 
values of opacity at various temperatures and densities plotted in Figure 3.4: at a given tempera
ture, increasing pressure leads to lower degrees of ionization, and therefore more bound states 
that cause higher opacity. The Kramers’ opacity law in the deep interior of a star attempts to 
find a functional form of the Rosseland mean opacity as a function of density and temperature 
that captures the different effects of density and temperature. On the one hand, the higher the 
temperature, the fewer the number of bound states, and therefore the lower the opacity should 
be. Therefore, the Kramers’ opacity requires that the opacity must decrease as the temperature 
increases, i.e., the Kramers’ opacity needs to have a negative exponent for the temperature varia
tion. On the other hand, the higher the pressure, the more bound states are present in the gas, 
and the larger the opacity should be. Therefore, the Kramers’ opacity needs to have a positive 
exponent for the density variation. The functional form κR = κoρ/T3.5 (see Section 3.7) satisfies 
both of these requirements. 

4.5 CONTOURS OF CONSTANT IONIZATION: THE TWO LIMITS 

Another way to look at Equation 4.5 is in terms of contours in the (pe − T) plane along which 
the degree of ionization is constant. Such contours are shown in Figure 4.1 for 10% and 90% 
degrees of ionization. There are two principal segments of each contour, with different depen
dences on temperature. At low T, where = 5040/T has a larger value, the term θI dominates on 
the left-hand side of Equation 4.6. As a result, each ionization contour is described essentially 
by θI = −log pe, i.e., pe ~ exp(−1/T). This is a curve that falls off steeply in the (pe − T) plane 
at low T. In the opposite limit, where temperatures are high,   has a smaller value, and in the 
limit of high temperature, the term θI  0. In this limit, each contour in Figure 4.1 is described 
essentially by pe ~ T2.5. This is a line that slopes gently up and to the right. The transition from 
one segment to the other occurs at the location where the terms θI and 2.5 log T are comparable 
in magnitude. 

4.6 APPLICATION OF THE SAHA EQUATION TO  
THE NEGATIVE HYDROGEN ION 

What about H−? Can we apply the Saha equation to this ion? Yes, except that in this case, we start 
with a charged particle and end up with one neutral particle plus one electron. But the principle 



   
 

 

  

 
 

  

   
 

   
   

 
 

   

 

 

 

 

77 Toward a Model of the Sun 

remains the same, as long as we replace na in Equation 4.2 by n(H−), and replace ni in Equation 4.2 
by n(H). (Here we use the symbol n(H) to emphasis that the resulting “ionized particle” is actually 
a neutral hydrogen atom.) Inserting the known ionization potential of the negative H ion (Ip = 0.754 
eV: see Section 3.4) into Equation 4.5', we find 

n H( )  
log log  p 2 5log T 0 754  (4.10) . .10 ( ) 10 e 10n H  

Rather than concentrating on the (large) ratio of numbers of H atoms to numbers of H− ions, 
it is more common to invert the ratio and focus on the (small) ratio φ = n(H−)/n(H). So we rewrite 
Equation 4.10 as 

log   log p 2 5  T  .. log 0 754  (4.11) 10 10 e 10 

In the solar photosphere, where T ≈ 6000 K (i.e., θ  5040/T ≈ 0.84), we have already seen 
(Section 4.3) that the electron pressure is estimated to be given by log pe ≈ 1.7. Inserting numerical 
values in Equation 4.11, we find log φ ≈ −7.1. In the upper photosphere, where T ≈ 4900 K (  ≈ 1.03), 
and log pe ≈ 0 (Section 4.3), log φ ≈ −8.45. In view of these estimates for upper and lower photo
sphere, we conclude that the average value of log φ in the solar photosphere is not far from −8. It was 
a value of precisely this order, φ ≈ 10−8, which we found in Chapter 3 (Section 3.4) to be necessary 
to have H− contribute the dominant opacity in the solar photosphere. This is a satisfying closure of 
the physics that suggest why the Sun’s atmosphere behaves the way it does as regards interactions 
between photons and the material atoms/ions that make up the gas. 

It is striking that the gross properties of the atmosphere of a macroscopic object such as the Sun 
are controlled by the detailed properties of an ion that is not only rarely alluded to (H−) but that 
is also present in only tiny amounts (one part per 100 million) relative to the number of hydrogen 
atoms in the solar photosphere. 

EXERCISES 

4.1 The ionization strips in Figure 4.1 are defined by the somewhat arbitrary percentages of 10% 
and 90% ionization. Determine where the ionization strips lie in the log pe − log T plane 
for the cases where the ionization percentages are 0.1% and 99.9%. Do this for H I, He I, 
and He II. 

4.2 In Section 4.5, there is a definition of a transition point between the two segments of the ion
ization contours. Use the appropriate ionization potentials to evaluate the temperature of 
the transition point for H I, He I, and He II. 

4.3 Using the simplified equation (4.5'), show that the fraction of neon (Ip= 21.56 eV) that is singly 
ionized in a gas with T = 5700 K and log pe = 1.5 is less than 10−11. 

4.4 The strongest absorption lines in the visible solar spectrum are two lines labeled H and K 
by Frauhofer. They are due to transitions from the ground state of singly ionized cal
cium (Ca II) (Ip= 6.113 eV). In the photosphere of the Sun (T = 5772 K, log pe = 1.7), use 
Equation 4.5' to show that the number density of Ca II ions exceeds the number density of 
neutral Ca I atoms by a factor of about 250. 

4.5 Comparing the results of Exercises 4.3 and 4.4, it can be seen that as we go from Ip = 6.113 
eV to 21.56 eV in conditions that are close to those that prevail in the photosphere of 
the Sun, the degree of ionization decreases by more than 13 orders of magnitude. In 
those conditions (say, T = 5750 K and log pe = −1.6), show that a value of Ip ≈ 9.0 eV 
would be required for an element to be 50% ionized, i.e., ni = na. Consult a table of ion
ization potentials to determine which two elements in the periodic table comes closest 
(within ±0.01 eV) to satisfying Ip = 9.0 eV. (Both of these elements are found to be 
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extremely rare in the Sun, with the numbers of atoms in any given volume being less than 
10−10 times the number of hydrogen atoms. Therefore, even though the atoms are 50% 
ionized, neither of the two elements contributes in any significant way to the supply of 
free electrons that exist in the solar photosphere.) 
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5 Computing a Model 

of the Sun
 
The Photosphere 

Now that we have information about opacity, we are almost ready to undertake the calculation of 
a model of the first segment of the Sun accessible to modeling: the photosphere. In calculating this 
model, we do not inquire into the origin of the energy that flows through the solar atmosphere. 
Instead, we simply take the luminosity (or flux of radiant energy passing through 1 square centi
meter of solar surface every second) as a given, and calculate how the physical parameters of the 
medium arrange themselves so as to “handle” the energy passing through. 

But first we require the answer to two questions pertaining to the physical properties of the gas in 
the photosphere: (i) how is the pressure related to the temperature? (ii) How does the pressure vary 
with height? As regards (i), the gas in the solar photosphere is of sufficiently low density ρ and of 
sufficiently high temperature T that the gas can be taken to behave as a perfect gas, with pressure 
given by the formula p = RgTρ/μ. Here μ is the mean molecular weight, and Rg = 8.31448 × 107 ergs 
deg−1 mole−1 is the gas constant. The chemical composition of the solar photosphere, consisting of 
some 90% hydrogen (by number), about 9% of helium, and about 1% of heavier elements (“metals”), 
leads to μ ≈ 1.3 in the photosphere. Moreover, between the upper and lower photosphere (as defined 
earlier), the temperature ranges from the boundary value To ≈ 4900 K (in the upper photosphere) to 
a temperature of order 6000 K (at the with photosphere): the latter will be considered to be the deep
est layer of gas that we are studying in this chapter. Over such a range of temperature, variations in 
the degree of ionization of hydrogen and helium are very small. This allows us to assume, without 
significant error, that μa remains essentially constant throughout the photosphere. 

5.1 HYDROSTATIC EQUILIBRIUM: THE SCALE HEIGHT 

As for question (ii), the variation of gas pressure with height in any medium may be determined read
ily if the medium satisfies the condition of hydrostatic equilibrium (HSE). The HSE condition is appli
cable if the pressure p(h) of the atmospheric material at any location (at height h) supports the weight 
of all of the atmospheric material located at heights above h. The equation that describes HSE is 

dp 
g  (5.1) 

dh 

where g is the local acceleration due to gravity, acting downward, in the direction of decreasing h. In 
the photosphere of the Sun, we have already mentioned (see Equation 1.13) that g = 27,420 cm sec−2. 
The value of g at any particular height h decreases as h increases in proportion to 1/(R  + h)2. When 
we consider a photospheric model in which the height h varies over a range of (say) ∆h = 500 km, 
the relative change in gravity Δg/g from lower to upper photosphere is given by 

g 2 h
 10 3 (5.2) 

g R  

The ratio ∆g/g is so small that, in a model where we are considering only the gas that is in the 
photosphere, g may safely be taken to be a constant without significant error. 

https://doi.org/10.1201/9781003153115-5


 

  

  

  

 

 

  

  
 

 
 
 
 
 
 
 

   
 
 

     
 

 
     
   

     
     

   
       

 
         

     
 

80 Physics of the Sun 

In a medium where g is constant, a particular solution of HSE provides a useful length-scale char
acteristic of the distance one must travel vertically in order to make the pressure change by a factor 
of e = 2.71828 . . . To see this, consider a medium that is an isothermal perfect gas, with p = RgTρ/μ. 
Then the solution of Equation 5.1 for the pressure p(h) at height h is as follows: 

p h  p( )
h

(5.3) ( )  0 exp
Hp 

And for the density at height h, the solution is analogous: 

h 
( )h 0 ex( ) p (5.4) 

Hp 

That is, the pressure and the density both decrease exponentially as the height h increases in the 
upward direction. At some arbitrary height, which is chosen as the zero point of h, the local pressure 
and density are p(0) and ρ(0), respectively. The characteristic length scale Hp is referred to as the 
“scale height”, “pressure scale height”, or “density scale height” of the isothermal atmosphere. The 
formula for Hp is RgT/gμ. Inserting numerical values of T = 4900–6000 K, g = 27420 cm sec−2, and 
μ= 1.3, we find that in the photosphere, Hp varies over the range 114–140 km, i.e., 

Hp  ( .  . )  07cm (5.5) 1 14 1 4 1

Therefore, if the gas in the solar photosphere is in fact in HSE, then we should expect to find, 
observationally, that the gas density/pressure fall off exponentially as a function of height with 
a scale height of 114–140 km. Is there any observational evidence that the gas in the solar pho
tosphere is actually obeying this behavior? To address this, Saint-Hilaire et al. (2010) analyzed 
X-rays from a sample of almost 1000 flares observed by the RHESSI spacecraft with X-ray 
energies of at least 25 keV. Assuming that a beam of electrons was involved in each flare, with 
the beam emitting X-rays by penetrating downward into denser and denser gas (in a so-called 
thick-target model), Saint-Hilaire et al. were able to derive how the local gas density varied as 
a function of height. They found that an exponential variation with height fits their data well. 
Averaging over all flares in their sample, they found that in the “average flaring atmosphere” in 
the Sun, the density scale height at low altitudes was found to have a value of 131 ± 16 km. This 
range overlaps well with the theoretical prediction for the photospheric gas in Equation 5.5. The 
RHESSI X-ray data suggest that HSE is indeed a good approximation for the gas in the Sun’s 
photosphere. 

The atmosphere lying above the level where h = 0 presses down on the gas at h = 0 due to the 
gravitational pull of all the matter in the Sun that lies between the level h=0 and the center of the 
Sun. The weight of the overlying material exerts a pressure on the gas at h = 0. In order to evalu
ate the pressure, let us consider a 1 cm2 horizontal element of area at h = 0, and let us imagine a 
column with cross-sectional area 1 cm2 extending upward to infinity from that element. The total 
amount of mass in that column can be obtained by integrating Equation 5.4 from h = 0 to h = ∞. 
The result is a mass column density dc equal to ρ(0)Hp gm cm−2. An alternative way to state this 
information is to note that the column density, i.e., the number Nc of atoms in a square centimeter 
column above h = 0 equals n(0)Hp cm−2, where n(0) is the number density of atoms (per cubic 
centimeter) at h = 0. 

We shall find that in the solar photosphere, ρ(0) ≈ (2–3) × 10−7 gm cm−3, i.e., n(0) ≈ (1–2) × 
1017 cm−3. Combining ρ(0) and n(0) with a mean Hp ≈ 130 km, we find dc ≈ (3–4) gm cm−2, and Nc ≈ 
(1–3) × 1024 cm−2. In HSE, the pressure that occurs due to the weight of this column is p(0) = dcg ≈ 
105 dyn cm−2. (We shall want to check, when we compute a model of the photosphere, that our 
model yields pressures of this order: see Section 5.6.) 



 

   

 

  

   
 

 
     

   
   

     
     

   
 

 
 

 
 

81 Computing a Model of the Sun 

For comparison, we note that the atmospheric pressure on the surface of the Earth is about 10 
times larger than the photospheric p(0). Of course, the processes that determine the atmospheric 
density and pressure at the surface of the Earth are very different from those that determine ρ(0) in 
the Sun: the latter is determined by the requirement that the optical depth τ(0) be of order unity (see 
Sections 2.4 and 3.4). There is no such requirement for the Earth: the fact that an observer standing 
on the surface of the Earth can see the Sun and stars clearly indicates that the optical depth τE of 
cloud-free atmosphere (in visible light) is actually considerably less than unity. 

5.2 SHARP EDGE OF THE SUN’S DISK 

Before moving on to the photospheric model, we make a short diversion here to address a problem 
that we now have enough information to solve. Combining the scale height in the photosphere with 
the results of Chapter 2 (Section 2.5.2) helps us to understand why the Sun, although a gaseous 
body, has nevertheless an edge that appears sharp when we observe the Sun from our Earth-based 
vantage point. 

It is a fact of life on Earth that the atmosphere we breathe is in turbulent motion: variations in 
temperature and pressure from one location on Earth to another have the effect that the atmospheric 
gas is forced into motion (i.e., winds are generated). Typical wind speeds in large-scale “weather 
patterns” (hurricane, jet stream) can reach values of more than 100 km hr−1. Even in “mild condi
tions”, on length-scales L of order hundreds of meters, wind speeds u of order meters sec−1 are not 
uncommon. The Reynolds number for such air flow, Re = uL/ , depends on the kinematic viscos
ity  of air. With typical values of  ≈ 0.001–0.01 m2 sec−1, even mild winds have Re values in 
excess of the critical value for the onset of turbulence (Re ≈ 103) (cf. “Laminar-turbulent transition” 
in Wikipedia). When we observe a distant object through the atmosphere, the turbulence causes 
smearing of the object. This is referred to as “the effects of seeing”. As a result of “seeing”, it is 
typically true that an observer on the Earth cannot distinguish two objects that are closer together 
than about 1 arcsec. 

Suppose an observer wishes to make two measurements of solar intensity,  I1 and I2, near the 
limb of the Sun. The first measurement I1 is along a line of sight that is as nearly as possible “on 
the limb”. This line of sight, at its closest approach to the Sun, passes through gas at a certain 
height h1 in the upper photosphere. This is the measurement which, in visible light, yields an inten
sity I1 = a  = 0.4 (relative to disk center) (see Equation 2.5). According to the results of Chapter 2 
(Section 2.5.2), the value of I1 is determined by the product of the local source function S  times the 
optical depth τ1 along the line of sight: I1 = τ1S . To make the second measurement of intensity, I2, the 
observer chooses a line of sight that is displaced off the limb by the smallest possible amount per
mitted by “seeing”. This second line of sight will be shifted by 1 arcsec relative to the first (because 
of “seeing”). Therefore, the second line of sight, at its closest approach to the Sun, will pass through 
gas lying at a height h2 = h1 + 730 km (see Chapter 1, Section 1.2). The gas lying at height h2 has a 
density that is reduced below that at height h1 by a factor exp[(h2 − h1)/Hp] ≈ e5.6 = 102.44 ≈ 270. The 
reduction in density has the effect that the optical depth through such gas τ2 is less than τ1 by a 
factor of 270. Therefore the intensity I2 = τ1S /270. We have seen (Chapter 2, Section 2.10) that the 
temperature in the upper photosphere approaches a constant value as height increases. Thus, T does 
not change significantly between h2 and h1. To the extent that the source function can be identified 
with the Planck function, this means that S  is essentially the same along both lines of sight. There 
fore, I2 = I1/270 = 0.0015. 

That is, by shifting my line of sight by a mere 1 arcsec away from the limb, I measure that the 
observed intensity falls off by a factor of almost 300. This is in contrast to what happens on the solar 
disk: as the line of sight is moved from disk center to the limb, i.e., as the line of sight traverses some 
960 arcsec, the intensity decreases gradually from 1.0 to 0.4. But with a further shift of only 1 arcsec 
in the line of sight, the intensity falls by a further factor of almost 300. It is this fact that gives the 
Sun its sharp edge when viewed from a distance of 1 AU. 
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5.3 PREPARING TO COMPUTE A MODEL OF THE SOLAR PHOTOSPHERE 

The aim of this exercise is to combine HSE and the temperature structure of the gray atmosphere to 
calculate a table of values of various physical parameters as a function of the vertical height coor
dinate (increasing upward). The model begins by tabulating temperature as a function of optical 
depth τ (increasing downward). Transformations between τ and h require knowledge of the opacity 
as a function of relevant physical parameters. 

The HSE equation (Equation 5.1) can be converted to an optical depth scale by noting the defini
tion dτ = −κρdh where κ is the (gray) opacity: we shall use the Rosseland mean opacity, and we shall 
set κ = κR in our calculations. This leads to the central equation for the present chapter: 

dp g
	 (5.6) 

d  

In order to solve this equation, we need to have access to values of Rosseland mean opacities, 
κR as a function of temperature and pressure. A table of such values (see Kurucz, R. L. 1992) was 
kindly made available by Dr. R. L. Kurucz of the Harvard-Smithsonian Center for Astrophysics. 
For the convenience of the reader, these are presented in Tables 5.1 and 5.2. (The reader may also 
be able to find results obtained by other researchers on the internet, or the reader could in principle 
extract Rosseland mean opacities at different densities and temperatures by examining Figure 3.4 in 
detail.) In the following tables, the (log) opacities are tabulated as functions of temperature and gas 
pressure for a mixture of elemental abundances that is a “standard” solar mixture. In order to calcu
late the opacity, bound-bound, bound-free, and free-free transitions are included for many stages of 
ionization of all elements in the mixture. Negative hydrogen ions and hydrogen molecules are also 
included. For bound-bound transitions, the lines are assumed to be broadened with a microturbu
lent velocity of 2 km sec−1. Each row of Tables 5.1 and 5.2 is labeled with LT, which is equal to the 
logarithm (to base 10) of the temperature (in degrees K): the temperatures range from close to 2000 
K to almost 100,000 K. Each column of Tables 5.1 and 5.2 is labeled with LP, which is equal to the 
logarithm (to base 10) of the gas pressure (in dyn cm−2): the pressures range over five orders of mag
nitude. In order to fit the results into a standard page width, the opacities are presented in the form of 
two tables (Tables 5.1 and 5.2), corresponding to a low subrange of pressure and a high subrange of 
pressure, respectively. The tabulated values of opacity exhibit the overall behavior described earlier 
in Chapter 3 (Figure 3.3) (where the results were presented in a different format): (i) in the limit of 
high temperature (and low pressure), log(κ)  −0.5; (ii) in the limit of low temperature, log(κ) tends 
to very small values; (iii) numerical values of opacity reach maximum values at log(T) = 4.0–4.5; 
(iv) maximum values of opacity in the tables are 104–105 cm2 gm−1. 

The goal of the present chapter is to calculate a tabulated model of the solar photosphere. This 
means that we wish to obtain a table of values where each row of the table refers to a particular 
optical depth in the atmosphere. On that row, our goal is to provide numerical values for the tem
perature, pressure, density, and height in the solar atmosphere. 

5.4 COMPUTING A MODEL OF THE PHOTOSPHERE: STEP BY STEP 

The calculation proceeds by way of the following steps. 

1.	 Choose a value of τ for the first row in the tabulated model: e.g., τ(1) = 10−4. 
2.	 For row 1, choose the vertical depth coordinate to be z(1) = 0. (This is an arbitrary choice 

and is done merely for convenience. Afterward, you may change the zero point of height 
if you choose.) We will use h (increasing upward) and −z (where z increases downward) 
interchangeably in the calculation. 

3.	 Calculate the temperature in row 1,  T(1), from the Eddington solution (Chapter  2, 
Equation 2.40), using Teff = 5772 K (see Chapter 1, Equation 1.17). 
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4.	 To obtain the pressure p(1) in row 1, one could guess any finite starting value and then iterate. 
To avoid complications, I suggest that you simply choose the following guess: log p(1) = 3.0. 
Note that in all cases, the log function refers to logarithms to base 10, and the physical quanti
ties are in c.g.s. units. 

5.	 Now that you know T(1) and p(1), calculate the density in row 1, ρ(1), from the perfect gas 
expression ρ(1) = p(1)μ/(RgT(1)). Here, Rg is the gas constant (see Chapter 1, Section 1.7), and μ, 
the mean molecular weight, can be set equal to a constant value 1.3 for the material of the 
solar photosphere. (The value 1.3 arises because solar material is roughly 90% H, 10% He by 
numbers, plus less than 1% heavier elements.) 

6.	 Now that you know log T(1) and log p(1), interpolate in Tables 5.1 and/or 5.2 to find a local 
value for the opacity (1). 

7.	 Step forward to the second row of the table, i.e., to the next value of τ. In order to reduce numer
ical errors, I suggest that you keep the step size small. For example, consider using τ(2) = 2 × 
10−4. This means that the interval in optical depth between rows 1 and 2 is ∆τ = 10−4. 

8.	 With the new value of  τ, calculate the new value of  T from the Eddington solution. Call 
this T(2). 

9.	 Calculate the increase in pressure between rows 1 and 2 using an approximation to Equation 5.6: 
∆p = gΔτ/κ(1), where g = 2.7 × 104 cm sec−2. This then gives p(2) = p(1) + ∆p. 

10.	 Knowing T(2) and p(2), interpolate in the opacity table for κ(2). 
11.	 Calculate the density ρ(2) from T(2) and p(2). 
12.	 Convert the step in optical depth to a step in linear depth: ∆z = +∆τ/(ρ(2)κ(2)). If you want 

to be more precise, replace the denominator by the mean value of ρκ between row 1 and row 
2: ρκ ≈ 0.5(ρ(1)κ(1)+ ρ(2)κ(2)). Once ∆z is calculated, you can calculate the depth z(2) = z(1) 
+ ∆z which is appropriate for row 2 of the tabulated model. 

13.	 Calculate the local temperature gradient dT/dz = (T(2) − T(1))/∆z. (This gradient will be used 
later when we wish to calculate a model for the convection zone.) 
At this point, there should be seven entries in row 2: τ, T, p, p, z, κ, and (dT/dz). 
Use those values to step forward to row 3. For generality, we refer to the quantities in the row 
we have just calculated as row i. 

14.	 Step forward to row i + 1. To start this step, choose a new value of τ(i + 1) = τ(i) + ∆τ. What 
step size should be used? Plausible choices might be ∆τ = 10−4 until the optical depth τ reaches 
a value of 10−3. Then use a step size of ∆τ = 10−3 until τ = 10−2. Then use a step size of ∆τ = 
10−2 until τ = 10−1. Then use a step size of ∆τ = 10−1 until τ = 1. Finally use a step size ∆τ = 1 
until τ = 10. 

15.	 Repeat steps 8–14 multiple times until  τ reaches a value of about 10. In each iteration, 
replace T(1) in the previous instructions by T(i) and T(2) by T(i + 1). Do the same replacements 
for the other variables. 

5.5 THE OUTCOME OF THE CALCULATION 

The outcome of the exercise is a table of physical quantities as a function of height: this is called 
a “model of the photosphere”. An example of such an exercise, using the previous tables of opac
ity, is given in Table 5.3. At each tabulated value of optical depth (column headed “τ”), we list the 
temperature (in units of K), pressure (units=dyn cm−2), density (in gm cm−3), depth (in cm, relative 
to an initial h = 0 at the top), the logarithm of the Rosseland mean opacity (in units of cm2 gm−1). 
In the seventh column, we give the temperature gradient, dT/dz (in units of deg K cm−1). The rea
son for including this quantity will be explained when we discuss the physical process known as 
Convection in Chapter 6. 
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TABLE 5.3 
A Model of the Solar Atmosphere 

 Temperature Pressure Density z log(κ) grad T 

2.00E-04 4.86E+03 1.77E+03 5.69E-09 1.91E+06 −2.04E  +  00 9.57E-08 
3.00E-04 4.86E+03 2.02E+03 6.52E-09 3.35E+06 −1.97E + 00 1.26E-07 
4.00E-04 4.86E+03 2.26E+03 7.26E-09 4.51E+06 −1.93E + 00 1.57E-07 
5.00E-04 4.86E+03 2.47E+03 7.94E-09 5.48E+06 −1.89E + 00 1.87E-07 
6.00E-04 4.86E+03 2.66E+03 8.57E-09 6.32E+06 −1.86E + 00 2.17E-07 
7.00E-04 4.86E+03 2.85E+03 9.17E-09 7.06E+06 −1.83E + 00 2.48E-07 
8.00E-04 4.86E+03 3.02E+03 9.73E-09 7.71E+06 −1.80E + 00 2.78E-07 
9.00E-04 4.86E+03 3.19E+03 1.03E-08 8.30E+06 −1.78E + 00 3.07E-07 
1.00E-03 4.86E+03 3.35E+03 1.08E-08 8.84E+06 −1.76E + 00 3.38E-07 
1.10E-03 4.86E+03 3.50E+03 1.13E-08 9.33E+06 −1.75E + 00 3.68E-07 
2.10E-03 4.86E+03 4.97E+03 1.60E-08 1.27E+07 −1.73E + 00 5.42E-07 
3.10E-03 4.86E+03 6.07E+03 1.95E-08 1.47E+07 −1.60E + 00 8.85E-07 
4.10E-03 4.87E+03 7.00E+03 2.25E-08 1.62E+07 −1.53E + 00 1.20E-06 
5.10E-03 4.87E+03 7.83E+03 2.51E-08 1.74E+07 −1.48E + 00 1.52E-06 
6.10E-03 4.87E+03 8.58E+03 2.75E-08 1.84E+07 −1.44E + 00 1.82E-06 
7.10E-03 4.87E+03 9.27E+03 2.98E-08 1.93E+07 −1.40E + 00 2.13E-06 
8.10E-03 4.87E+03 9.92E+03 3.18E-08 2.00E+07 −1.37E + 00 2.43E-06 
9.10E-03 4.87E+03 1.05E+04 3.38E-08 2.07E+07 −1.35E + 00 2.73E-06 
1.01E-02 4.88E+03 1.11E+04 3.56E-08 2.13E+07 −1.33E + 00 3.02E-06 
2.01E-02 4.89E+03 1.67E+04 5.32E-08 2.51E+07 −1.31E + 00 4.71E-06 
3.01E-02 4.91E+03 2.06E+04 6.55E-08 2.73E+07 −1.16E + 00 8.11E-06 
4.01E-02 4.93E+03 2.39E+04 7.57E-08 2.89E+07 −1.08E + 00 1.11E-05 
5.01E-02 4.95E+03 2.67E+04 8.45E-08 3.01E+07 −1.02E + 00 1.39E-05 
6.01E-02 4.96E+03 2.94E+04 9.25E-08 3.11E+07 −9.79E − 01 1.66E-05 
7.01E-02 4.98E+03 3.18E+04 9.97E-08 3.20E+07 −9.45E − 01 1.92E-05 
8.01E-02 5.00E+03 3.40E+04 1.06E-07 3.28E+07 −9.14E − 01 2.18E-05 
9.01E-02 5.01E+03 3.61E+04 1.13E-07 3.35E+07 −8.88E − 01 2.43E-05 
1.00E-01 5.03E+03 3.82E+04 1.19E-07 3.41E+07 −8.64E − 01 2.67E-05 
2.00E-01 5.19E+03 5.67E+04 1.71E-07 3.80E+07 −8.30E − 01 3.95E-05 
3.00E-01 5.33E+03 6.98E+04 2.05E-07 4.04E+07 −6.80E − 01 6.14E-05 
4.00E-01 5.46E+03 8.02E+04 2.30E-07 4.20E+07 −5.78E − 01 8.05E-05 
5.00E-01 5.59E+03 8.89E+04 2.49E-07 4.33E+07 −4.99E − 01 9.75E-05 
6.00E-01 5.70E+03 9.64E+04 2.64E-07 4.43E+07 −4.38E − 01 1.12E-04 
7.00E-01 5.81E+03 1.03E+05 2.77E-07 4.52E+07 −3.73E − 01 1.28E-04 
8.00E-01 5.92E+03 1.08E+05 2.87E-07 4.59E+07 −3.06E − 01 1.47E-04 
9.00E-01 6.01E+03 1.13E+05 2.94E-07 4.65E+07 −2.46E − 01 1.64E-04 

5.6 OVERVIEW OF THE MODEL OF THE SOLAR PHOTOSPHERE 

Now we have a table that lists certain physical properties of the gas over a range of heights in the 
solar photosphere. We refer to such a table as a simplified “model” of the solar photosphere. It is 
worthwhile to take a look at the properties of this “model” that we have obtained. 
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First, the gas temperature in the photosphere (τ = 0.667) is 5772 K. This is of course a natural 
consequence of the Eddington solution (Chapter 2, Equation 2.40). But it is useful to remember 
that the effective temperature of the radiation (i.e., the photons) that comes to us from the Sun 
(Chapter 1, Equation 1.17) has a direct connection with the local thermodynamic temperature of the 
atoms in the photosphere. The photons we see on Earth have energies that are roughly characteristic 
of the thermal energies of the atoms with which the photons last interacted back in the photosphere 
before they started off on their free-streaming journey from the Sun to the Earth through (almost) 
empty space. The reason for this is that the radiation and the gas in the photosphere have strong 
enough interactions that radiation and gas are close to local thermodynamic equilibrium. (This is 
very different from the condition on the surface of the Earth, where the dominant photons [sunlight] 
have energies of a few electron volts [eV], while the gases in Earth’s atmosphere have thermal ener
gies of only 0.03 eV: this is far from thermodynamic equilibrium.) 

Second, the density in the photosphere ρ(ph) is (2–3) × 10−7 gm cm−3. If the gas were purely 
hydrogen, the corresponding number density of atoms would be n(ph) = (1.2–1.8) × 1017 cm−3. (Given 
the presence of He and other heavier elements, the true value of n(ph) is somewhat smaller than 
this.) The number column density above the photosphere N(ph) is n(ph)Hp. Inserting Hp = (1.14–1.4) 
× 107 cm (Equation 5.5), we find N(ph) = (1.4–2.5) × 1024 cm−2. This is the number of atoms that 
lie above each square centimeter of the solar photosphere. Of these, roughly 1 in 108 is an H− ion. 
Thus, there are some N(H−) = (1.4–2.5) × 1016H− ions lying above each square centimeter of the 
photosphere. 

Third, the pressure in the photosphere p(ph) is of order 105 dyn cm−2. This is the pres
sure necessary to support the weight of the overlying gas. Recall that the mass column den
sity dc above a 1 sq cm patch of the solar photosphere is equal to ρ(0)Hp gm cm−2. Inserting 
ρ(0) = (2–3) × 10−7 gm cm−3 and Hp = (1.14–1.4) × 107, we see that the exponents of ρ(0) and 
Hp cancel each other: as a result, the mass of gas dc that lies above each square centimeter of 
the photosphere is about 4 gm. In the presence of gravity with g = 27,420 cm sec−2, the cor
responding force, dcg, pressing down on each square centimeter is therefore about 109,680 dyn 
cm−2: this is close to the value of 105 dyn cm−2 mentioned in the first sentence of this paragraph. 
The fact that the value of the pressure p(ph) is equal to dcg is not an accident; it indicates that 
the vertical forces (weight directed downward, pressure gradient directed upward) are actually 
in balance in the photosphere. This is another way of stating that in deriving the model atmo
sphere, we have assumed HSE. 

Fourth, the range of depths ∆z between the photosphere and the “top” of the model photosphere 
(which we have chosen to be at τ = 10−4) is 400–500 km. The actual height range depends on the 
choice of opacity. If we had used a different opacity table from Tables 5.1 and 5.2, then the height 
range could have been somewhat different. Other parameters would also have changed somewhat. 
But the values just cited give a reliable zeroth order overview of the physical parameters in the solar 
photosphere. 

Fifth, the opacity around σ = 1cm2 gm-1 . We recall that the principal contributor to opacity in the 
photosphere is the negative hydrogen ion. The numerical values of p(ph) and ρ(ph) cited earlier take 
on the numerical values they do mainly because of the particular cross-section (σ = 4.5 × 10−17 cm2) 
that is presented by an H− ion to the photons that are most abundant in the solar spectrum. Given 
that our model has N(H−) = (1.4–2.5) × 1016 H− ions lying above each square centimeter of the photo
sphere, the column density and the cross-section combine to yield an optical depth N(H−)σ of order 
unity in the solar photosphere. Thus, it is the presence of H− ions that dominate in determining how 
deeply we can see into the solar atmosphere. 

An important question arises concerning the last line of Table 5.3. What reason can we have 
for stopping the calculation in Table 5.3 at a depth where τ = 0.9? This seems like a rather random 
choice for the location where we stop the computation of a model photosphere. Shouldn’t we keep 
going deeper? The answer is No, and the reason for this answer has to do with the numerical value 
of the temperature gradient dT/dz. We shall see in Chapter 6 that when the magnitude of dT/dz 
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increases above a certain critical gradient gad, convection sets in. As a result, radiative transfer is no 
longer the dominant mode of energy transport in the atmosphere. Now, the computation that led to 
the results in Table 5.3 is based on a particular solution (Equation 2.40) of the equation of radiative 
transfer, i.e., radiation carries the entire energy flux through the atmosphere. There is little meaning 
in applying such a computation to gas where convection is occurring. In Chapter 6, we shall show 
that the critical value gad is about 1.7×10−4 deg cm−1. Inspection of Table 5.3 above shows that |dT/ 
dz| increases with increasing depth and is approaching this critical value as we approach the bottom 
of Table 5.3. In fact, if we were to continue the calculation of Table 5.3 to greater depths, we would 
find that at optical depth τ = 1.0, the local value of |dT/dz| would exceed gad. Thus, our results sug
gest that convection sets in at optical depths between 0.9 and 1.0. This corresponds to a depth of 
only a few tens of kilometers below the formal definition of the location of the photosphere (  = 2/3). 

EXERCISES 

5.1 Evaluate the pressure scale height in regions of the solar atmosphere where the gas has 
temperature of 104, 106, and 107 K. (Such temperatures exist in the chromosphere, in the 
corona, and in flares: see Chapters 15 and 17.) Use molecular weight μ ≈ 0.5. 

5.2 Perform the step-by-step calculation described in Section 5.4, using the opacities given in 
Tables 5.1 and 5.2. Compare your results with those in Table 5.3. 

5.3 Repeat the calculations for different choices of various parameters. For example, use a 
starting pressure log p(1) = 2 or 4. What differences do you find compared to the results in 
Table 5.3? Are some parameters more sensitive than others are to the alteration in starting 
pressure? As a further example, use ∆τ values that are twice as large as those suggested 
in Section 5.4. Then repeat the calculations using ∆  values that are one-half of the values 
suggested in Section 5.4. What differences do you find in the various cases? 

5.4 The opacity tables given in Tables 5.1 and 5.2 were computed (by Dr. R. Kurucz) using a 
number of choices of parameters (chemical mixture, microturbulence, etc.). Other tables 
of Rosseland mean opacities, using different choices of some parameters, exist in the 
literature (e.g., Iglesias and Rogers 1996 and references therein). Use one of those tables 
to repeat the calculations in Section 5.4. Which parameters are altered most compared to 
the results in Table 5.3? 

Note: in Tables 5.1 and 5.2, opacities are listed as functions of T and of gas pressure 
p. Opacity tables in the literature may list the opacity as functions of the R parameter 
(Chapter 3, Section 3.6), or as a function of T and electron pressure pe. In order to use such 
tables in the procedure described in Section 5.4, you will need to convert from density 
to pressure (assuming a perfect gas), or you will need to find auxiliary tables that first 
convert from pe to gas pressure p. 
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6 Convection in the Sun 
Empirical Properties 

So far, we have been restricting attention to the upper parts of the photosphere in the Sun, where 
energy is transported through the gas almost entirely by means of radiation. The gas in the photo
sphere (at least in all parts except the deepest regions at optical depths in excess of  ≈ 1) does not 
move: the reason for this lack of motion is the fact that the gas is in hydrostatic equilibrium. This 
static gas simply “processes” the photons, absorbing, emitting, and scattering them in such a way 
that the radiation (which includes both outward and inward streams of photons: see Section 2.8) 
produces a net transport of energy in the outward (radial) direction. Because of the existence of 
radiative equilibrium, the radiative transfer equation (RTE) allows us to extract reliable physical 
properties of the gas in the photosphere, where there are no systematic gas motions. 

Now we turn our attention to a certain region of the Sun where radiative equilibrium becomes 
progressively less important. In this new region, called the convection zone (which we shall see 
extends from the photosphere down to a depth of order 105 km below the photosphere), photons play 
only a minor role in transporting energy. In the deeper layers that now draw our attention, energy 
eventually is transported essentially completely by means of convection. Convection occurs when 
the material itself experiences bulk flows in the vertical direction, both upward and downward. 
However, just as we found in the photosphere that inward and outward streams of photons lead to 
a net outward flow of energy, in the convection zone the flows of gas upward and downward also 
results in a net outward flow of heat. 

In order to obtain a quantitative physical model of the Sun, we shall eventually have to develop 
a theory that will allow us to model convective heat transport in solar conditions. The details of 
one such theory will be the subject of Chapter 7. Before embarking on the task of developing such a 
theory, however, we will describe what can be learned about the empirical properties of convection 
as they present themselves to us in the visible layers of the solar atmosphere: these empirical proper
ties will guide us in developing a convective model. 

6.1 NONUNIFORM BRIGHTNESS 

Evidence for the presence of convection in the Sun can be seen in an image of the solar surface if 
the image has sufficiently high spatial resolution. The Daniel K. Inouye Solar Telescope (DKIST), 
a 4-meter-diameter telescope on the summit of Mt. Haleakala in Hawai’i is one such telescope. 
This telescope has the largest mirror that has ever been used to study the Sun directly. The influx of 
direct sunlight leads directly to serious difficulties in keeping the telescope and its optics from heat 
damage. We already know (see Section 1.4) that solar energy enters the top of Earth’s atmosphere 
at a rate of 1.361 kW m−2. Some of this amount is absorbed and scattered by Earth’s atmosphere 
before it reaches the summit of Haleakala. With a mirror having a radius of 2 meters, i.e., an area 
of about 12 m2, the DKIST telescope collects about 13 kilowatts of solar power and focuses some of 
it into various instruments. Keeping the telescope and optics cool in the presence of this powerful 
stream of heat requires more than 10 kilometers of piping that circulates coolant. In order to obtain 
the sharpest possible images, the telescope is equipped with an “adaptive optics” (AO) system that 
compensates in real time (using 1600 “actuators”, each of which causes a small localized distortion 
of the mirror) for the “seeing” (i.e., blurring) caused by the turbulence in the Earth’s atmosphere. 
As a result of AO, the telescope can reach the diffraction limit of the mirror: according to a formula 
known as the “Dawes criterion”, a mirror with a diameter of D inches can resolve two points of 
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equal brightness that are separated by an angle of θ = 4.56/D arcsec. For a 4-meter mirror (i.e., D = 
156 inches), this leads to θ = 0.029 arcsec. At the distance of the Sun (where 1 arcsec corresponds to 
a linear distance of 725.3 km [see Section 1.2]), this corresponds to a linear diameter of ~20 km. If 
features of such a size do in fact exist in the solar photosphere, DKIST expects to be able to identify 
them. 

Figure 6.1 shows immediately that a snapshot of the surface of the Sun is not uniformly bright. 
However, the departure from uniformity is not the same as we discussed in the context of Figure 2.3: 
in the latter, where we examined an image of the entire solar disk, a large-scale darkening could be 
seen as we approach the limb of the Sun. But in Figure 6.1, the image covers only a small section 
of the Sun’s surface measuring 36.5 × 36.5 Mm: i.e., the width (or the height) of the section of Sun 
in Figure 6.1 extends (in linear measure) over less than 3% of the diameter of the Sun. As a result, 

FIGURE 6.1 A close-up view of a portion of the solar surface obtained by DKIST. The field of view is 36.5 
× 36.5 Mm (where 1 Mm = 1000 km). The essential feature in the present context is the “granular” struc
ture, consisting of brighter patches surrounded by darker boundaries. (Credit: NSO/AURA/NSF; used with 
permission.) 
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what we see in Figure 6.1 occupies only about 0.1% of the Sun’s surface area. We are truly dealing 
with small‑scale departures from uniform brightness in Figure 6.1. 

Morphologically, we see in Figure 6.1 that the solar surface is covered with two distinct types of 
features. First, we see small bright patches (called granules). And second, we also see small darker 
areas (called intergranular lanes). The bright granules contain hotter gas than do the dark inter-
granular lanes. The difference in temperature between the bright and the dark gas will be discussed 
quantitatively later. The granules/intergranules are found with essentially the same properties at 
all regions on the solar surface, except in sunspots. Since spots never occupy more than ~1% of the 
solar area, we can draw an important conclusion: any physical phenomenon that relies on granules 
will be present in essentially equal amounts at all parts of the Sun’s surface. This will be relevant 
when we consider the corona (Chapter 17). 

How large in physical terms are the granules on the Sun? We will discuss this topic in Section 6.4. 
But for now, we note that bright granules have linear diameters Dg that are preferentially of order 
1 Mm. Since the Sun has a diameter D = 2R , which is of order 1400 Mm (see Equation 1.12), we see 
that the number of granules that can be “fitted into” the visible disk of the Sun at any one time is of 
order Ng ≈ (D/Dg)2, i.e., of order 106. In Figure 6.1, the image covers about 0.1% of the Sun’s surface: 
therefore, the number of granules that can “fit into” the image is of order 103. 

In principle, an image of the entire Sun (such as that in Figure 2.3) might be able to detect about 
a million granules. But this is unlikely: the telescope used for Figure 2.3 has an objective lens with a 
diameter of only 88 mm, i.e., 3.5 inches. For such a lens, the Dawes limit is 1.3 arcsec, which is just 
barely able to resolve a granule with linear diameter of 1 Mm (≈1.4 arcsec). Moreover, atmospheric 
“seeing” at sea level even on a “good night” is typically about 2 arcsec, and during daylight hours 
(which are necessary in order to observe the Sun!), typical seeing is often (due to solar heating!) 
even worse than 2 arcsec. This “seeing” therefore also contributes to blurring out granules with 
sizes of order 1 Mm. 

Visual inspection of Figure 6.1 allows us to note the differing topology between brighter and 
darker features. It is possible to start in one location in an intergranular lane and move to other 
dark lanes without traversing a bright granule. But bright granules are for the most part isolated 
from one another: one cannot go from one bright granule to another without traversing an inter-
granular lane. As one stares at the image, one might almost imagine that one were looking down 
on an area of “bocage” country on Earth where “fields” (akin to bright granules) are surrounded 
by “hedgerows” (akin to dark intergranular lanes). However, a big difference is that although 
fields and hedgerows on Earth retain their shapes as time passes, this is not true of the Sun: any 
particular granule or intergranule lane survives for only a time, and then is replaced with a dif
ferent feature. 

As regards DKIST, we have already noted (see Preface, Figure P.  1) that this instrument 
may be destined to occupy a place of distinction in the world of solar data acquisition. If all 
goes well in the course of a 10-year planned lifetime, DKIST is expected to accumulate some 
10 million gigabytes of solar data. The image in Figure 6.1 was among the first images released 
by DKIST in January 2020. How many pixels are included in Figure 6.1? If the AO system 
was operating at maximum effectiveness when the image was taken, the linear resolution was 
nominally 20 km. Since each side of the image spans 36,500 km, there are more than 3 million 
pixels in the image. 

6.2 GRANULE SHAPES 

Even a casual inspection of Figure  6.1 shows that individual granules in the snapshot image in 
Figure 6.1 have irregular shapes. But on closer inspection, one notices that the shapes of individual 
granules are not completely random. Instead, some of the boundaries of many granules consist of 
lines that are nearly straight. Rather than looking at a situation that is completely chaotic, one seems 
to be looking at a collection of shapes hinting at the geometrical structures known as polygons. This 
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is not to say that we are looking at regular polygons: no one would claim that all of the straight edges 
are of the same length, nor is there the same number of straight edges in all granules. Nevertheless, 
the impression that the eye gets is that the granules have shapes that are closer to polygonal shapes 
than to completely irregular shapes. Is there any physical reason why polygons might be of interest 
when we speak of convection? Indeed there is. 

From an empirical standpoint, polygons have been found to be the preferred spatial pattern 
of cells that occur in laboratory convection under certain controlled conditions. When a layer of 
liquid is heated from below and the temperature gradient between bottom and top is not too large, 
heat can be carried up through the liquid by a process called thermal conduction. In such condi
tions, each molecule is pursuing its own purposes, and each molecule carries heat upward as an 
individual. In this condition, the liquid itself is not in (bulk) motion, although each molecule in 
the liquid is certainly moving randomly at quite a high speed (hundreds of meters per second at 
room temperature). 

But at some point, the lower boundary of liquid becomes so hot that the temperature gradient 
|dT/dz| becomes larger than a critical value. When that happens, the laws of physics show that it 
becomes energetically more favorable for the liquid to alter its mode of heat transport away from 
conduction: instead, the liquid begins to move in a macroscopic way so as to transport heat upwards 
by convection. In conditions that were studied by Bénard (1900), the motions of the liquid were 
observed to organize themselves into a geometrical pattern of “cells” consisting of polygons. In a 
theoretical analysis of the onset of (laminar) thermal convection (driven by buoyancy), Rayleigh 
(1916) demonstrated that the preferred pattern would have a hexagonal pattern in any given horizon
tal plane. Inside each “cell”, trillions of atoms or molecules move in a highly organized pattern. No 
longer do the molecules behave as individuals in order to carry heat: instead, a lower energy condi
tion can be reached if molecules cooperate with many of their nearest neighbors in a macroscopic 
pattern of motion, with hot liquid rising in some locations, while cool liquid sinks in other locations. 
This method of transporting heat by means of organized fluid flow is called convection. In carefully 
controlled conditions, the individual Bénard cells are found to be long-lived polygonal structures. 
Thus, Bénard cells in a laboratory setting provide an example of upward heat transfer by means of 
steady-state convection. 

In the Sun, the hint of polygonal structures among some granules, although not a rigorous con
clusion, is nevertheless an intriguing reminder of the cells which Bénard found in his experiments. 
This leads to the conclusion that convection is occurring in the Sun to transport heat upwards. 
However, the principal difference between Bénard’s polygons and the features which we have called 
“polygons” in the Sun is the following: whereas Bénard’s polygons existed in steady state for long 
periods of time, the “polygons” in the Sun are by no means in steady state. Quite the contrary: indi
vidual granules are observed to live for only a finite time. When one performs correlation studies on 
images of granules over a large area of the Sun, one finds that on average, individual granules can 
no longer be clearly identified after a time-scale of 5–10 minutes (Title et al. 1989). This time-scale 
can be regarded as a sort of average “lifetime” of a granule. We shall return to the significance of 
this time-scale after we have discussed spatial scales and velocities. 

The contrast between Bénard cells and solar granules contains important information about fluid 
dynamics. In Bénard cells, the material moves in an organized steady pattern known as “laminar 
flow”: this is appropriate in conditions where a fluid of relatively high viscosity flows at relatively 
low speeds. In such conditions, the relevant quantity to determine whether the flow will be laminar 
or turbulent is a quantity known as the Reynolds number Re = uL/  (where u is the flow speed in 
m s−1,  is the kinematic viscosity in m2 s−1, and L is a typical length scale of the flow in meters). In 
laboratory conditions, where u ~ 0.01, L ~ 0.01, and  ~ 10−5, the value of Re (~10) remains smaller 
than a critical value Rec (≈ 103), with the result that flow remains laminar and cells survive for long 
times. However, in solar granules, flow speeds are of order 103 m s−1 (see Section 6.3), and L values 
are of order 106 m (see Section 6.1). With  values again of order 10−5 for the gas in the solar atmo
sphere, the solar value of Re is found to be ~1010. In such conditions, the flows cannot be laminar: 
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instead, they are highly turbulent. The nonsteady turbulent flows in solar convection are reminiscent 
of eddies in fast-flowing water: each eddy lives for only a finite time. 

6.3 UPFLOW AND DOWNFLOW VELOCITIES IN SOLAR CONVECTION 

We have already discussed (Section  3.8.2) how spectral lines contain information about flow 
speeds of systematic flows at different levels of the atmosphere. In view of what we have dis
cussed in the present chapter, we can now state with confidence that the flow speeds mentioned 
in Section 3.8.3 are associated with the systematic motions of convection. Already, we have seen 
that velocities of up to at least 1 km s−1 are detectable in the C-shaped bisectors of various spectral 
lines. However, these “speeds” involve some kind of averaging over a line profile and therefore 
cannot be regarded as indicating how large the convective speeds actually can become. Our goal 
in this section is to describe the observations that indicate how fast the convective flows actually 
are in the solar atmosphere. 

For now, we need to note an important correlation that exists in the bright and dark gas. When 
spectra of individual granules and intergranular lanes are obtained, it is found that the brighter 
regions are systematically associated with upflows, while the darker lanes are associated with 
downflows. As far as physics is concerned, we may ask: do the upflows and downflows cancel each 
other out in some way? The answer to this question depends on what physical quantity we are con
sidering. If we consider the mass of material in the flows, there is no observed buildup of more and 
more mass in the solar atmosphere as time goes on: therefore, the amount of mass flowing up in the 
bright granules must be equal to the amount of mass flowing down in the intergranular lanes. But if 
we consider the heat energy in the flows, the answer is quite different. The fact that upflows are cor
related with excess temperature is an obvious indication that heat is being transported upward in the 
solar atmosphere by the upwardly moving gas. Perhaps less obviously, the correlation of downflows 
with reduced temperature also has the effect of contributing to the net flow of heat in the upward 
direction. The mutually reinforcing combination of hot upflows and cool downflows is the essential 
aspect of convective heat transport. There is a significant difference between “up” and “down” in 
the solar atmosphere when it comes to heat flow: heat does indeed flow in the upward direction even 
though there is no net upflow of material. 

As far as the quantitative flux of energy is concerned, an important physical parameter is the 
algebraic difference in vertical velocity between upflows and downflows. Spectroscopic data 
are required to evaluate these velocities. In some case, individual estimates of the amplitude 
as large as 6 km sec−1 have been reported using lines which are maximally sensitive to gas 
near and above the photosphere (Beckers 1968). The average amplitude of the vertical veloc
ity difference was reported to be about 2 km sec−1 (Bray et al. 1976). Relevant data with both 
high spatial and spectral resolution (120 km and 85 mÅ, respectively) have been obtained in 
a balloon experiment called SUNRISE, which in a typical flight spends 5 days observing the 
Sun (using a 1-meter mirror) at stratospheric altitudes as the balloon drifts from Sweden to 
Canada. An example of a dopplergram (a map of vertical velocities) constructed from 20–30 
minutes of data is shown in Figure 6.2. One clearly sees the spatial pattern corresponding to the 
granule/intergranule network, although of course the spatial resolution is not nearly as good as 
in DKIST data (Figure 6.1). For present purposes, our main interest is to note that the velocity 
scale extends up to ≥ 3 km s−1 in the downward direction, while the upflows have magnitudes 
extending up to ≥ 2 km s−1. Thus, the difference between up and down speeds can be as large 
as 5–6 km s−1, consistent with the results of Beckers (1968). 

Can convective velocities be measured reliably in gas that lies below the photosphere? To do this, 
lines that are formed at infrared wavelengths near the opacity minimum of H− (at 16,000 Å) are 
best suited: Milic et al. (2019) used Fe lines at 15,700 Å to show that, in a 3-D simulation of solar 
convection, flow speeds can be extracted reliably down to depths of (5000 Å) ≈ 3. But attempts to 
extract speeds at depths as deep as (5000 Å) ≈ 10 are too noisy to be reliable. 
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  FIGURE 6.2 Dopplergram covering the center of the solar disk obtained with data from SUNRISE flight 
on June 9, 2009, when solar activity was at an extremely low level. The velocity scale of the convective flows 
is shown (in units of km s−1) by the vertical scale along the right-hand side: positive velocities (lighter shades) 
denote downflows, while negative velocities (darker shades) denote upflows. The granule/intergranule network 
is clearly visible with downflows in the intergranule lanes and upflows in the granules (Yelles Chaouche et al. 
2014; used with permission of ESO). 

In exceptional circumstances, the SUNRISE balloon experiment has seen Doppler “flashes” 
where the speed of gas motions in the photosphere departs from the mean by 4  (McClure et al. 
2019): these are attributed to regions where p‑mode oscillations (see Chapter 13) happen to achieve 
local coherence. In combination with local granules, vertical speeds can then increase briefly to as 
much as 6–8 km sec−1. In general, however, the observational evidence indicates that gas in the solar 
granulation moves upwards and downwards with speeds V of typically a few km sec−1. 

Knowing the magnitude of these convective speeds in the quiet Sun is important for two reasons. 
First, it provides a key piece of information that will allow us to estimate the amount of energy that 
is being transported upward by convection in the Sun. Second, it will serve as an important refer
ence point when we compare these speeds with convective speeds inside certain regions on the Sun 
where convection is greatly reduced in amplitude (especially in sunspots). 

Although not directly associated with upward energy transport, it is of interest to mention that 
horizontal velocities associated with granules can be measured by tracking algorithms which 
imagine that “corks” have been dumped in the flows, and the computer tracker follows each 
“cork” as it is pushed along. The root-mean-square (r.m.s.) horizontal velocities are found to be as 
large as 1.5 km sec−1 (Title et al. 1989). 

6.4 LINEAR SIZES OF GRANULES 

Until recent decades, it has not been a trivial matter to observe granules on the surface of the Sun: 
they are small features that were not at all apparent to the early telescopic observers of the Sun. 
The first clear images of granules were not reported for almost three centuries after Galileo turned 
his small telescope to the Sun. The granules do not become detectable until (a) the resolution of the 
telescope becomes large enough, and (b) the disturbing effects of Earth’s atmosphere are reduced to 
a minimum (or circumvented by observing from space). 
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How high does the angular resolution have to be in order to distinguish clearly the bright and 
dark areas? The empirical answer is: the observing instrument must be able to resolve angles of 
1 arcsec or better. Observations from favorable locations on the Earth’s surface may occasionally 
satisfy this criterion. But observations from space routinely satisfy the criterion. 

What are the horizontal spatial scales (i.e., linear diameters) Dg associated with granules? 
Extensive information in this regard has been obtained by instruments that have observed the Sun 
with high spatial resolution from space. One such instrument was flown on Spacelab 2 on board 
a Shuttle mission lasting 8–9 days in 1985 using the Solar Optical Universal Polarimeter (SOUP) 
instrument on a 30-cm telescope. Pointing at a solar feature was maintained stable with remark
ably high precision (0.003 arcsec). Properties of granules were found to depend on their surround
ings, e.g., in magnetic regions or in nonmagnetic regions. Also, the p-mode oscillations present 
in the solar atmosphere (see Chapter 13) have to be removed in order to determine the properties 
of the granules more reliably. The largest granules have angular diameters as large as 2–3 arcsec, 
while others have diameters as small as the limiting resolution of the telescope. Title et al. (1989) 
conclude, “it is fair to say that there is a characteristic granule (angular) size in the vicinity of dg = 
1.2–1.4 arcseconds”. The corresponding characteristic linear dimensions are Dg = 900–1000 km. 
Using the Hinode spacecraft, Yu et al. (2011) studied the properties of 71,538 granules in quiet 
regions of the Sun: they found two populations of granules, small (with angular diameters 0.31" 
≤ dg ≤ 1.44") and large (dg = 1.44"–3.75"). For the small granules, the size distribution was found to 
be flat. But in the large granules, the distribution of sizes falls off towards the large granules: there 
are 10 times fewer granules with angular sizes of 3" than those with angular sizes of 1.5". Using 
high-quality ground-based data, with a diffraction limit as small as 77 km on the Sun, Abramenko 
et al. (2012) also reported on the existence of two populations of granules (See Section 5 in their 
paper, second paragraph.). One of these (“regular granules”) has a Gaussian distribution of sizes 
with a mode of 1050 km and a standard deviation of 480 km: this Gaussian distribution has a char
acteristic linear size of Dg = 1080–1300 km, i.e., a characteristic angular size of dg = 1.49–1.79 
arc seconds. The second population consists of “mini-granules” with a power-law distribution 
at length-scales of 600 km and smaller. Abramenko et al. state, “The mini granules are mainly 
confined to broad intergranular lanes” and they may be “fragments of regular granules, which are 
subject to highly turbulent plasma flows in the intergranular lanes, where the intensity of turbu
lence is enhanced”. 

The fact that the size distribution of “normal granules” extends up to angular values as large as 
3"–4" indicates that the largest granules can be up to 2–3 Mm in linear diameter. It is noteworthy 
that granules are not observed on the Sun with diameters larger than 2–3 Mm. 

What determines that granules have horizontal sizes that are predominantly of order 1–2 Mm? 
Three factors are involved: convection, radiation, and density stratification (Hanasoge and 
Sreenivasan 2014). As regards radiation: when hotter gas rises due to convection in a granule, an 
effective way for the gas to lose its heat (so that it can become cooler gas and sink back down, 
thereby completing the convective cycle) is for the gas to radiate its excess heat when it rises up 
to a certain height. In order to do that, the photons need to have a good chance of escaping from 
the hotter gas, i.e., they have to be in a medium that does not have large optical depth. Thus, the 
loss of heat occurs most effectively in regions close to the layer in the photosphere where  is of 
order unity. Moreover, in order to complete the up-down cycle of convection, the down-flowing 
cooler gas must not have to “fight its way through” the hotter gas: instead, the cooler gas takes 
a different path as it moves downward. To arrange for this, it is important that rising gas finds 
itself entering into a medium where the local density is becoming progressively smaller than at 
the level where the hotter gas started its upflow. This stratification in density in the near-surface 
layers is associated with hydrostatic equilibrium, where density falls off by a factor of e when 
the height increases by a linear distance H (the scale height). As a hot granule rises upwards into 
stratified gas (i.e., where density and pressure are decreasing more and more), the granule (with 
its higher internal pressure due to the presence of hotter gas) will expand. Expansion involves 
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horizontal flows, and these carry gas “to the side”, where it can find a path for downflow that 
will not interfere too much with the upflow. Moreover, as downflows enter progressively denser 
gas in the course of their descent, the downflows contract in the horizontal direction, leading 
to “fingers” of dense gas (“downdrafts”) penetrating into the deeper layers of the convection 
zone. Mathematical models of 3-D convection that include the effects of radiation in a stratified 
medium have successfully generated images of the solar surface bearing a striking resemblance 
to the patterns of granules/intergranular lanes observed on the surface of the Sun (e.g., Stein and 
Nordlund 1998). 

As regards the lifetimes of granules, data from the SOUP images on Spacelab 2 were used 
to perform autocorrelation function (ACF) analysis on granules in order to estimate lifetimes. 
In quiet regions of the Sun, the ACF was found to decrease by a factor of 1/e in a time of about 
300 seconds. However, when the p-mode oscillations were removed, the 1/e lifetime increased 
to more than 400 sec. In the smallest granules, the ACF fell to essentially zero on time-scales of 
order 600 seconds. Among the largest granules (with angular diameters 1.3–1.8 arcsec), lifetimes 
were found to be as long as 1000 seconds. It seems that lifetimes of most granules lie in the range 
300–600 sec. 

In this section, we have described the sizes of granules that occur in quiet Sun regions 
(i.e., regions where there are only weak fields). However, in regions where magnetic fields are stron
ger (i.e., plages, active regions), granules are observed to be smaller in size. Narayan and Scharmer 
(2010) reported that in a plage where the mean field was 600 G, the granules were observed by the 
Swedish Solar Telescope to have horizontal diameters Dg, which were some four times smaller than 
in nonmagnetic regions. This reduction in horizontal scale is a clear indication of an important 
property of gas flow in the presence of a magnetic field: although an ionized gas can move freely 
along a field line, it is restricted in its ability to move transverse to the field line (see Section 16.6.1). 

6.5 CIRCULATION TIME AROUND A GRANULE 

Now that we know (1) the horizontal diameter Dg associated with the top of a granule, and (2) a 
velocity of the gas flow in the cell, it is of some interest to estimate how much time it takes the gas 
to circulate around a cell. 

To make the estimate, we need to know also the vertical depth H of the granule. Let us esti
mate the distance an element of gas travels as it starts at the bottom of the cell, rises to the top 
(distance H), spreads out horizontally to the edge (distance Dg/2), sinks to the bottom (distance 
H), and then returns to the center of the cell (distance Dg/2). The total distance traversed by 
the element of gas is C = Dg + 2H. The time required for the gas to complete one circulation 
is t(circ) = C/V. With Dg ≈ 1000 km (an empirical value in the Sun) and V ≈ 2 km sec−1 (also 
determined empirically in the Sun), we find t(circ) ≈ 500 + H sec, if H is expressed in km. 

What vertical depth should we consider for a convection cell in the Sun? We have already identi
fied a natural length-scale that exists in the stratified solar atmosphere: the scale height Hp. We have 
already seen (Chapter 5, Section 5.1) that Hp ≈ 114–140 km in photosphere. Because stratification 
of the ambient medium plays an essential role in convective flow (see Section 6.4), it would not be 
surprising if H were to be related to Hp. In astrophysics, it is often assumed that H = Hp where is 
a number of order unity:  is referred to as the “mixing length parameter” in the context of a model 
for convection, which we will describe in detail in Chapter 7. With such a choice, we find t(circ) ≈ 
500 + (114–140) sec. 

We have already seen that granules live for 300–600 sec. This range of lifetimes overlaps 
with t(circ) as long as  does not exceed unity by a significant amount. Detailed modeling of the Sun 
suggests   ≈ 1.5 might be appropriate (e.g., Mullan et al. 2007). This leads to t(circ) ≈ 670–710 sec. 

Thus, it appears that solar granules may manage to live only long enough to almost (but perhaps 
not quite) complete a single complete circulation of the cell. 
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This is in significant contrast with Bénard cells: under the carefully controlled (laminar flow) 
conditions of a laboratory experiment, convection cells can survive for many circulation times. On 
the other hand, in the highly turbulent solar granule flow, an individual cell lives only for a short 
time (5–10 minutes). 

6.6 TEMPERATURE DIFFERENCES BETWEEN BRIGHT AND DARK GAS 

The amount of heat transported by convection depends on the temperature difference between ris
ing and falling gas. This temperature difference gives rise to an intensity contrast ∆I between hot 
gas (where the intensity is Ih) and cold gas (where the intensity is Ic). The earliest measurements from 
space (Title et al. 1989) suggest that the r.m.s. values of ∆I/I are up to ±16% in quiet Sun. However, 
when the effects of acoustic oscillations are allowed for, the r.m.s. values of ΔI/I are found to be 
±10% at wavelengths around 6000 Å (Title et al. 1989). Using the highest quality ground-based 
observations prior to DKIST, namely, those obtained by the Swedish Solar Telescope (SST) with 
an angular resolution of 0.16 arcsec, Scharmer et al. (2019) reported on measurements of ∆I/I as 
follows: 14%, 13%, 12%, and 8% at (Å) = 5250, 5580, 6300, and 8535 respectively. The values of 
contrasts reported by the Solar Optical Telescope (SOT) on the Hinode spacecraft were found to 
be smaller than the above percentages: e.g., ∆I/I (SOT) = 8% at (Å) = 5550. Although space-based 
observations (Hinode) are in general expected to be more reliable than those from the ground (SST), 
the smaller contrasts in Hinode data are caused in part by the poorer angular resolution (0.32 arcsec) 
(Afram et al. 2011). 3-D simulations suggest that contrasts could be as much as +20% in the granules 
and −20% in the intergranular lanes, but when smoothed for finite resolution, the r.m.s. contrasts are 
about ±10% (Stein and Nordlund 1998). 

Taken as a whole, the data and simulations suggest that the bright granules are observed to have 
an r.m.s. intensity that is some 10% in excess of the average, while the dark intergranular lanes have 
an r.m.s. intensity that is some 10% smaller than the average. 

For purposes of calculating how much energy is transported by convection, we need to con
vert the intensity difference to a temperature difference between the temperatures in the hot 
and cold gases, Th and Tc. When we observe bright granules, we are seeing down into the solar 
atmosphere essentially to an optical depth of τh ≈ 1 in the hot rising gas. When we observe 
dark intergranular lanes, we are seeing into the solar atmosphere to an optical depth of τc ≈ 1 
in the cold sinking gas. Although the optical depths are the same in hot and cold gas, we are 
not observing gas at the same vertical height: we see more deeply into the cold gas (where the 
opacity is lower). 

Since we see to equal optical depths in both bright and dark gas, the emergent intensi
ties Ih and Ic are proportional to the respective source functions Sh and Sc at optical depth unity. 
Thus, ∆I/I = ∆S/S to a rough approximation. To the extent that the continuum source function at τ ≈ 
1 can be equated with the Planck function, we expect that 

I exp(c / T ) 1h 2 c (6.1) 
I exp(c / T ) 1 c 2 h 

where  c2 =  hc/k = 1.44  cm deg is referred to as the second radiation constant. We know from 
Figure 2.2 earlier that although the Planck function is a fairly good fit to solar radiation, it is not per
fect. Therefore, our assumption that the source function is identical to the Planck function is only an 
approximation. Whatever answer we extract will need to be compared to a more precise calculation. 

In view of ±10% fluctuations in r.m.s. intensity, we have that Ih ≈ 1.1 while Ic ≈ 0.9. For purposes 
of this calculation, we assume that the dark intergranular gas has a temperature at τ ≈ 1 equal to the 
effective temperature, i.e., Tc = 5772 K. Then we find that, according to Equation 6.1 (assuming an 
observing wavelength  = 5500 Å), the “r.m.s.” temperature for the hot gases is Th ~ 6050 K. Thus, 
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in the Planck approximation, the r.m.s. temperature difference ∆T between bright granules and dark 
intergranular material at τ ≈ 1 in both materials is roughly 300 K. 

More careful treatment of radiative transfer, using a fully 3-D radiative-hydrodynamic code 
(Stein and Nordlund 1998), indicates that the temperatures at τ ≈ 1 in the coldest and hottest elements 
of gas can reach extreme values that range from 5800 to 7000 K. Thus, the extreme temperature 
differences at τ ≈ 1 according to the Stein-Nordlund model is 1200 K. The r.m.s. temperature dif
ferences would certainly be smaller than this extreme value: from the results of Stein and Nordlund 
we estimate ∆Trms ≈ 500–600 K. Thus, our rough estimates of ∆T ≈ 300 K at τ ≈ 1 using the Planck 
approximation to interpret the observed intensity fluctuations are probably too small by a factor of 
about two. 

As we move upward and downward from the level τ ≈ 1, the results of 3-D modeling (Stein and 
Nordlund 1998) have suggested that the range of temperature differences ∆T increases. In the upper 
atmosphere, the extreme range may be as large as 1500 K at τ ≈ 0.001, while in the deeper layers, 
at τ ≈ 1000, the extreme ranges of ΔT may be as large as 2500 K. 

If we were to compare the rising and sinking gas at equal geometric depths (rather than at equal 
optical depths), the values of ΔT would be larger than the aforementioned estimates. In fact, the 
hydrodynamical modeling of Stein and Nordlund (1998) suggests that at equal depths close to the 
photosphere, the extremes of ΔT may rise to values as large as 4000 K. However, it has been sug
gested (Kalkofen 2012), based on a comparison with steady-state models of the chromosphere, that 
these extremes of ΔT in the hydro models may be unrealistically large because the treatment of 
radiation losses in certain heights in the model may have been incomplete. 

As a large-scale spatial average of temperature differences between rising and falling gas, we 
will assume that, for our approximate estimates, the values of ∆Trms are roughly 500–600 K. 

6.7 ENERGY FLUX CARRIED BY CONVECTION 

Now that we know how fast the gas is moving and how much temperature difference exists between 
the hot rising material and the cold sinking material, we can turn to a quantitative consideration of 
the key question relevant for solar physics: how much heat energy is being carried upward by the 
convective motions of the gas in the solar atmosphere? 

In a parcel of gas, a temperature difference of ΔT corresponds to a difference in the heat content 
of Cp times ΔT ergs gm−1. Here, Cp is the specific heat at constant pressure, in ergs gm−1 K−1. This 
is the excess amount of internal heat energy that the hot rising gas contains compared to the cool 
sinking gas. 

Now, to calculate the upward flux of energy, in units of ergs cm−2 sec−1, we need to multiply the 
heat content (in ergs gm−1) by the mass flux, Fm V (in gm cm−2 sec−1). This leads us to the fol
lowing estimate for the upward heat flux due to convection: 

F(conv) = ρ V Cp ΔT (6.2) 

This formula is applicable in any region of the Sun where bulk gas motions are present. 

6.7.1 ConveCtive enerGy flux in the photosphere 

To start off a discussion of convective energy transport in the Sun, we consider the particular case of a 
region in the Sun where we already know the magnitudes of all the parameters that enter into the prior 
formula: this particular region is the photosphere. Subsequently, we shall consider other layers as well. 

Let us see what the magnitude of the convective energy flux is in the photosphere. The model of the 
solar atmosphere that we derived in Chapter 5 indicates that in the photosphere, ρ ≈ (2–3) × 10−7 gm 
cm−3. The discussion given in the earlier sections of the present chapter suggests that velocity differences 
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between hot and cold gas are of order a few km sec−1, say V ≈ 3×105 cm sec−1, and that ∆T ≈ 500–600 K. 
The final quantity that we need to evaluate in order to estimate F(conv) is Cp. 

To evaluate the specific heat, we note that in a perfect gas, where the particles are mona
tomic and are not undergoing ionization, the internal energy of an atom consists of a single 
term, due to thermal motion, i.e., (3/2)kT per atom, where k is Boltzmann’s constant. In a gas 
composed of hydrogen atoms only, the internal energy per gram is U = (3/2)kT/mH = (3/2)RgT, 
where Rg = k/mH = 8.3145 × 107 ergs gm−1 K−1 is the gas constant. For a gas mixture with mean 
molecular weight μ, we find U = (3/2)RgT/μ per gram. This leads to a specific heat per gram at 
constant volume Cv as follows: 

dU 3RgCv  (6.3) 
dT 2  

The specific heat at constant pressure, Cp, contains two terms, one related to the internal energy, 
U, and the other related to the work done on compressing the gas: Cp = dU/dT + p(dV/dT)p (where 
subscript p denotes constant pressure). In a perfect gas that is nonionizing gas and monatomic, this 
leads to 

Rg 5RgCp  Cv  (6.4) 
 2  

For the gas in the solar photosphere, consisting of a nonionizing mixture of H (90%) and He 
(10%), we have μ ≈ 1.3. This leads to Cp ≈ 1.6 × 108 ergs gm−1 deg−1. In arriving at Equation 6.2, 
we note that the rising and falling gas can adjust their internal pressure to be equal to the external 
pressure by means of sound (pressure) waves: the convective speeds (~1 km sec−1) are smaller 
than the sound speed (~10 km sec−1 in photospheric gas), and as a result, the adjustment of pres
sures inside and outside the convective elements can be considered as essentially instantaneous. 
Therefore, Cp is the appropriate specific heat to use in calculating the convective heat flux in the 
photosphere. 

In a monatomic, nonionizing gas, the ratio of specific heats = Cp/Cv has the numerical value of 
5/3. In terms of , the value of Cp can be written as 

 RgC  (6.5) p 1  

Combining Equation  6.2 with the various parameters, we find that in the photosphere, the 
numerical value of the flux of energy being transported by convection is roughly given by the fol
lowing estimate: 

7 109 2 1F(conv,ph) ergs cm sec (6.6) 

Is this flux of convective energy a “large” quantity or a “small” one? Well, large and small are 
relative terms. We need to compare the convective energy flux to some other flux of energy passing 
through the solar atmosphere in order to decide whether the convective flux is “large” or “small”. 
The relevant flux that passes through the Sun’s atmosphere is the flux of energy F that eventually 
leaves the Sun and travels out into space. In radiative terms, we have already specified (Chapter 1, 

4  10 -2 -1Section 1.9) what this is: F   6 2939 10 ergs cm sec. . Teff 

Comparing F(conv, ph) with  F , we can see that in the photosphere, convection is carrying 
about 10% of the total energy flux that passes upward through the solar atmosphere. This shows 
us that although radiation dominates in the process of transporting the energy flux up through the 
photosphere (and therefore we are justified in using the radiative solution T4 ~τ+2/3 in calculating 
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the photospheric model in Chapter 5), radiation is not the only process that contributes to transport
ing energy though the photosphere. Gas motions associated with convection are also of material 
assistance in the photosphere. This explains why granules and intergranular lanes can be seen in the 
Sun when a picture is taken of the visible Sun (e.g., Figures 6.1 and 6.2). If it were true (as it is in hot 
stars) that convection is present but is transporting only a small fraction (say, <1%) of the heat flux, 
then the patterns of upflows and downflows would not stand out clearly if we were able to obtain an 
image of the photosphere. 

6.7.2 ConveCtive enerGy flux above the photosphere? 

Once we move away from the particular case of the photosphere and consider gas that lies either 
shallower or deeper in the Sun, we anticipate that F(conv) will not necessarily retain the value we 
have estimated in the photosphere. 

In what sense might we expect the numerical values of F(conv) = ρVCpΔT to change as we move 
upward into shallower layers of the atmosphere? Well, let us examine the four contributing fac
tors to F(conv) in order to answer this question. First, we have already seen (Chapter 5) that the 
density ρ of the gas falls off exponentially with increasing height, that is, ρ will be decreased in 
the upper photosphere. Second, as the gas density falls off, it becomes increasingly difficult for the 
temperature difference between rising and sinking gas to be maintained: leakage of photons 
in the increasingly rarefied gas has the effect that the rising and sinking gases more readily exchange 
photons so as to tend toward the same temperatures. As a result, ΔT is expected to decrease as we 
move up into the upper photosphere. On the other hand, Cp, which depends on the quantities Rg 

and μ, is expected to retain its photospheric value ≈ 1.6 × 108 ergs gm−1 deg−1. Finally, as regards 
the speed V, in the photospheric gas that lies above the convection region, the temperature gradient 
(see Table 5.3) is expected to be stable against convection (we will take this up in Section 7.4). As a 
result, gas motions above the convection region are no longer subject to the upward buoyancy forces 
that prevail inside the convection region. Instead, in the upper photosphere, convective speeds V 
are expected to decrease relative to conditions in the photosphere. Thus, in view of the four factors 
in F(conv)= ρVCpΔT, three of which decrease in the upper photosphere while the fourth remains 
constant, we see that F(conv) decreases as we examine gas that lies above the photosphere. At a 
height of order 100 km above the photosphere, detailed models of convection indicate that F(conv) 
has fallen to negligible values (e.g., Nordlund et al. 2009). 

6.7.3 ConveCtive enerGy flux in Gas that lies below the photosphere 

What about the deeper gas? How large is the convective flux down there? In these layers, densi
ties increase exponentially rapidly as the depth increases. This favors more effective convection. 
Moreover, there is a further factor, associated with ionization, that helps the gas to transport con
vective flux more easily. As the temperature rises in the deeper gas, the atoms begin to experience 
an increasing amount of ionization; the gas enters into one of the “ionization strips” in Figure 4.1. 
When ionization is in process, the internal energy of an atom of the gas U is no longer due solely to 
thermal motions: instead, there is an extra term associated with the ionization potential energy I. For 
hydrogen, I = 13.6 eV. This is larger by more than an order of magnitude than the thermal energy: 
at temperatures corresponding to gas just below the photosphere (where T = 6000–10,000 K), the 
thermal energy per atom is only of order 0.6–1 eV. The occurrence of ionization energy of 13.6 eV 
represents the addition of such a large temperature-sensitive contribution to internal energy U that 
the numerical value of specific heat Cv (= dU/dT) increases significantly compared to the values 
cited earlier for a monatomic (and nonionizing) gas. The specific heat reaches a maximum when 
the gas is roughly 50% ionized: as we noted in Chapter 4, this occurs for hydrogen at depths where 
the temperature is about 20,000 K. In the vicinity of 50% hydrogen ionization, the value of Cv is 
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found to be enhanced by ≈ 36 times its “normal” value [(3/2)Rg/μ], while the value of Cp is found to 
be enhanced to ≈ 27 times its “normal” value [(5/2)Rg/μ] cited earlier for a monatomic nonionizing 
gas (Clayton 1968). These enhancements are a quantitative indication of how important it is to allow 
for ionization effects in order to arrive at a realistic view of solar structure. Atomic effects have a 
measurable effect on the structure of the Sun itself. 

When the gas is undergoing ionization and  Cp and Cv both increase in value by significant 
amounts, the ratio of specific heats γ = Cp/Cv is no longer as large as 5/3 (the value for a nonionizing 
monatomic gas). Moreover, in adiabatic conditions, the pressure and density are no longer related 
by the simple relationship p ~ ρ . Instead, the pressure and density are related by p ~ ρ , where the 
numerical value of the generalized exponent  is no longer strictly equal to Cp/Cv. When the degree 
of ionization is 50%, for a gas composed of hydrogen alone falls to minimum values of ≈ 1.135 
(Clayton 1968). In the Sun, where hydrogen is not the sole constituent but helium contributes almost 
10% by number, the minimum value of  is not so small: when hydrogen is 50% ionized, helium 
is still essentially neutral, with (He) = 5/3. The combination of (roughly) 90% of the atoms with 

(H) = 1.135 and (roughly) 10% of the atoms with (He) = 5/3 lead to an overall minimum value of 
(H + He) of 1.19. We will return to this minimum value of  when we consider the calculation of 

a model of the convection zone in Chapter 7. 
In even deeper layers, where hydrogen ionization is approaching completion, the energy that is 

being diverted into ionization energy becomes less important as a contributing term in the internal 
energy. Thermal energy once again dominates. As a result, the specific heat reverts (almost) to the 
value cited earlier. But now there is a difference: for every hydrogen atom in the photosphere, there 
are now two particles at great depth (a proton and an electron), each with its own equal share (kT) of 
thermal energy. (In the real Sun, helium atoms are also present at about 10% abundance by number: 
it is as if there are 1.1 “atoms” by number at the solar surface. When hydrogen ionizes at a certain 
temperature, helium does not ionize until the temperature becomes significantly larger: therefore, at 
the base of the convection zone, each atom of hydrogen has converted to a proton and an electron, 
whereas the He remains as a single atom. Therefore, the number of particles has increased from 1.1 
[at the top of the convection zone] to 2.1 [at the base of the convection zone].) As a result, the internal 
energy per gram, and therefore the value of Cv, is about twice as large as in the photosphere. It is 
also roughly true that Cp is about twice as large at the base of the convection zone as at the surface. 
(In a detailed solar model [Baker and Temesvary 1966], Cp at the base if the convection zone turns 
out to have a numerical value larger than the surface value by 2.1. This is consistent with our state
ment of “about twice as large”.) 

Combining the greatly increased factors of ρ and Cp, we expect that F(conv) probably increases 
rapidly (compared to the photospheric value) as we go below the surface. The only possibilities 
for offsetting this rapid increase in convective flux would be either the temperature differential ΔT 
or the velocity V undergoes a dramatic reduction as depth increases. However, this does not seem 
likely: the models of Stein and Nordlund (1998) suggest that ΔT may increase below the surface. 
Also, one-dimensional convective models (e.g., Vitense 1953) suggest that V may remain as large as 
1 km sec−1 even at depths as great as 4–5 scale heights (i.e., up to ~1000 km) below the photosphere. 
In view of this, it is difficult to avoid the conclusion that F(conv) increases significantly above its 
photospheric value (Equation 6.6) as we examine the gas which lies deeper than the photosphere. 
In fact, the model of Vitense (1953) suggests that convection is already able to carry more than 90% 
of the total energy flux at a depth where the gas pressure has a value of 3 × 105 dyn cm−2, i.e., at a 
depth of only a couple of hundred kilometers below the photosphere. 

We conclude that convection provides a remarkably efficient method for the Sun to transport 
energy in the layers of gas that lie not far beneath the photosphere. 

Now that we have seen how effective convection is for energy transport below the photosphere, 
this raises the question: does convection dominate the transport of energy within the entire interior 
of the Sun? We shall arrive at the important conclusion that the answer to this question is a firm 
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“No”. But in order to arrive at this answer, we need to understand in more detail the causes driving 
convection. We now turn to a consideration of those causes. 

6.8 ONSET OF CONVECTION: THE SCHWARZSCHILD CRITERION 

Let us perform the following thought experiment. Consider an atmosphere in which T is increasing 
as the depth increases. In the context of optical depth, we have already found such a case when we 
discussed radiative equilibrium in a gray atmosphere: T4 ~ (τ + 2/3). Once we know the opacity, we 
can convert this into the functional form that indicates how T varies with the linear depth z. A spe
cific case of this procedure led us to the tabulated model of the solar photosphere that we obtained 
in Chapter 5. 

In order to set the stage for a discussion of convection, it is important to remember that knowing 
how physical quantities vary as a function of optical depth τ is relevant in the part of an atmo
sphere where radiation is the dominant mode of energy transport. But when we come to the case 
of convection, where radiative transfer plays only a minor role, optical depth is not a useful param
eter. Instead, it is more helpful to ask the question: how does T vary as a function of linear depth 
z? If we have that information, then at each depth, the slope of T versus z has a certain numerical 
value. We refer to that slope as the local temperature gradient gT = dT/dz in units of degrees per cm. 
Because we are considering an atmosphere in which T increases as z increases, the sign of gT is 
positive. (This is in contrast to the case we considered in Equation 5.1, where we used height h 
[increasing upward] rather than depth z [increasing downward].) The quantity gT plays an essential 
role in determining the conditions in which convection can occur. To see why this is so, we argue 
as follows. 

Consider a parcel of gas that lies initially at a depth z. The gas has a well-defined temperature T. 
Suppose this parcel is displaced vertically by some means (e.g., buoyancy forces). Now we ask: will 
the displaced parcel of gas be stable or unstable? That is, will the parcel return to its starting point, 
or will it keep on moving vertically? To address this, we consider the change in energy that occurs 
as a result of the displacement. This change in energy can be either positive or negative, and the 
algebraic sign of this energy change plays a key role in what follows. 

Suppose we displace the parcel upward along a vertical path of length dz. The local ambient 
temperature at the new depth z − dz is T − dT where dT = |gTdz|. Let the upward displacement of the 
parcel to the final depth z − dz be performed in a time that is so short that the parcel has no time to 
lose any of its internal energy by leakage to the ambient gas. When the parcel arrives at z − dz, it 
will still have its initial temperature T: therefore, the parcel finds itself hotter than its surroundings 
by dT. That is, the parcel will contain internal thermal energy that is in excess of that in the ambi
ent gas. Now let enough time elapse that the parcel releases all of its excess thermal energy into the 
local gas under conditions where pressure is maintained constant: the amount of thermal energy it 
will release per gram of material is given by Cp dT ergs. 

Is this energy release significant as far as the displacement of the parcel is concerned? To answer 
that, we must compare the amount of thermal energy that has been released with another energy 
term that arises as a result of the vertical displacement: gravitational potential energy. In order to 
displace the parcel upward by an amount dh (= −dz), something has to supply the energy needed to 
perform work against gravity. The amount of that work is gdh (= −gdz) per gram of material. 

Now we ask: what has happened to the total energy of the parcel in the course of its displace
ment to its final position? On the one hand, the gas has released CpdT ergs gm−1. On the other hand, 
energy had to be found (from somewhere) to increase the potential energy by −gdz ergs gm−1. 
The total amount of energy ∆W associated with the displacement of 1 gm of material is therefore 
given by 

∆W = Cp dT − gdz (6.7) 
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Note that ∆W is not constrained as to its algebraic sign: ∆W may have numerical values that can 
be either positive or negative. And whether ∆W turns out, in any given situation, to be positive or 
negative makes all the difference as far as convection is concerned. 

To see why, suppose that the magnitude of gdz exceeds the magnitude of CpdT. In this case, 
∆W is negative: in order to displace the parcel upward to its final position, we would have to sup
ply more work than is released by the thermal excess. That is, there is simply not enough thermal 
energy released to compensate for the work that would have to be done in order to lift the parcel 
through the interval −dz. As a result of a lack of available energy, the parcel of gas cannot in fact 
reach the new position at −dz. Instead, the parcel will sink back down to its initial position. There 
is no incentive for the parcel to move upward. The parcel stays in the place where it started. This 
situation is referred to as “convective stability”. 

On the other hand, suppose that conditions are such that the magnitude of CpdT exceeds the 
magnitude of gdz. In this case, release of thermal excess at the end of the displacement is more than 
enough to compensate for the work of lifting the parcel. All of that lifting work can be provided for 
by releasing the excess internal energy of the parcel. In fact, after the work of lifting has been per
formed, there is even some internal energy left over to make sure that the parcel still remains hotter 
than the ambient gas. In other words, the gas itself contains more than enough internal energy to do 
the work of lifting the parcel against gravity. Therefore, the parcel, once displaced up by −dz, keeps 
on moving upward. We refer to this as “convective instability”. 

The boundary between stability and instability as far as convection is concerned occurs 
when  ΔW has a value that is neither positive nor negative, i.e., when the total energy exchange 
between the parcel and its surroundings is zero. In such a situation, the parcel undergoes a change 
that is referred to as “adiabatic”. This particular case occurs when gdz = CpdT, i.e., when the tem
perature gradient gT = dT/dz takes on the particular value known as the “adiabatic gradient”: 

gT = gad  g/Cp (6.8) 

Therefore, gas in which the local temperature gradient happens to have a particular value gT is 
said to be convectively stable if gT < gad. In gas where the opposite holds, i.e., where gT > gad, the 
gas is said to be convectively unstable. 

This reminds us that the algebraic sign of gT is important: on the right-hand side of Equation 6.8, 
the quantities g and Cp are both positive definite. If gT is a negative quantity, i.e., if the temperature 
decreases as the linear depth increases, it is impossible to satisfy the condition for convective insta
bility: gT > gad. As a result, such gas is always convectively stable. We shall find that in a certain 
region of the solar atmosphere (the chromosphere: see Chapter 15), gT is in fact negative: there is no 
convection in that part of the Sun. 

The conclusion of the present section is the following. Will convection set in (or not), in a particular 
region of the Sun? It all depends on the answer to the question: is the local temperature gradient 
dT/dz larger (steeper) or smaller (shallower) than the value of the adiabatic temperature gradient gad? 

The criterion gT > gad that determines the onset of convection in a gas is referred to as the 
Schwarzschild criterion, named after a German scientist Karl Schwarzschild who published an 
article on the stability of the gas in the solar atmosphere in 1906. (Schwarzschild is best known for 
his work on general relativity that he did in 1915 while on active military service in World War I. 
Unfortunately, as a result of illness, he did not survive the war.) 

6.9 ONSET OF CONVECTION: BEYOND THE SCHWARZSCHILD CRITERION 

The Schwarzschild criterion suggests that if the temperature gradient exceeds the adiabatic gradient 
however slightly, then convection should set in. However, Schwarzschild was referring to convec
tion in a medium where there is no mechanism at work that would prevent (or interfere with) the 
material in the medium from leaving a stationary condition and starting to move. In the real world, 
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there is always some process that can slow down, or stop, the motion. In view of this, Rayleigh 
(1916) derived a more complicated criterion for the onset of convection in a liquid medium, where 
viscosity and thermal conduction can hinder the onset of movement of material. Rayleigh’s criterion 
for the onset of convection in these conditions involves a combination of parameters in a quantity 
that is now known as the “Rayleigh number” Ra. Rayleigh showed that convection will occur only 
if Ra (which is inversely proportional to viscosity and thermal conductivity) exceeds a critical value 
Rac. If a highly viscous fluid tries to move, the energy that must be expended to overcome viscosity 
may be so large that convection cannot occur unless the viscosity can somehow be reduced. (In the 
Earth’s mantle, for example, ocean water that seeps into cracks in the upper mantle may reduce the 
viscosity enough to permit mantle convection to occur [cf. Schaefer and Sasselov 2015]. See also 
Exercise 6.2(b) at the end of this chapter.) When Rayleigh’s result is applied to a medium in which 
convection can occur, it implies that convection should not automatically set in when gT exceeds gad 

by only an infinitesimal amount. Instead, the Schwarzschild criterion must be modified to a new 
criterion, the Rayleigh criterion, which can be written approximately as follows: convection will set 
in when gT > gad + . That is, the temperature gradient must exceed the adiabatic gradient by a finite 
amount  before convection sets in. The larger the viscosity, and the larger the thermal conductiv
ity, the larger  becomes, and the harder it is for convection to set in. This is a general result for any 
viscous and thermally conductive fluid. To be sure, this result is not of particular importance in the 
Sun in general: viscosity of the gas in the Sun does not present a significant obstacle to convective 
onset (see Exercise 6.2(a) at the end of this chapter). 

In view of that, one might well wonder: what is the point of raising the issue of the Rayleigh cri
terion in a book on solar physics? To be honest, the answer is: there would be no real need to raise 
the issue of viscosity at all if “normal” kinematic viscosity was the only “viscous” process at work in 
the Sun. However, a peculiar case of “effective viscosity” can occur in certain regions, specifically in 
regions where magnetic fields are present. To see the importance of this, we note that Chandrasekhar 
(1952) used an extension of Rayleigh’s treatment to show that a vertical magnetic field inhibits the 
onset of convection in a medium where the electrical conductivity is large. In such a medium, gas 
is not permitted to move easily in a direction that is perpendicular to the field lines (we will discuss 
the physical reason for this in Sections 16.6.1 and 16.6.2.2). As a result, if a vertical magnetic field 
threads through a convection cell such as that described earlier in Section 6.5, the gas can flow up 
and down along the vertical field lines without any difficulty. But the circulation of the convective 
flow in a “cell” may be more or less (depending on how strong the field is) seriously impeded at the 
top and bottom surfaces of the cell. Gough and Tayler (1966) have shown that in such conditions, the 
Schwarzschild criterion for onset of convection should be replaced as follows: gT > gad + ∆. (This is 
reminiscent of the case of the viscous fluid studied by Rayleigh: in essence, a magnetic field makes an 
ionized gas extremely “viscous” in directions perpendicular to the field lines.) Thus, in the presence 
of a vertical magnetic field, gT must exceed gad by a finite amount before convection can set in. The 
stronger the magnetic field, the larger the excess ∆ becomes, and the harder it is for convection to set 
in. The results of Gough and Tayler (1966) are highly pertinent in regions of the Sun where magnetic 
fields are strong. We will discuss (in Chapter 16) the observational evidence showing that convection 
is indeed seriously impeded by vertical magnetic fields in certain solar features. In particular, we 
shall find (in Section 16.1) that the results of Gough and Tayler (1966) may help us understand why 
there exists a well-defined boundary between the umbra and the penumbra in a sunspot. 

6.10 NUMERICAL VALUE OF gad 

In the solar photosphere, we have seen (Chapter 1, Section 1.13) that g = 27,420 cm sec−2. And in 
Section 6.7.1, we have seen that Cp ≈ 1.6 × 108 ergs gm−1 in the photosphere. Combining these values, 
we find an important result regarding the adiabatic temperature gradient in the photosphere: 

gad ≈ 1.7 × 10−4 deg cm−1 (6.9) 
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This is the numerical value of the critical temperature gradient that must be exceeded if convection 
is to occur in the solar photosphere. 

Now we can see why, when we were calculating a model solar atmosphere in Chapter 5, it was 
important for us to tabulate the numerical value of the local (vertical) temperature gradient: see the 
column labeled “grad T” in Table 5.3. Interestingly, as the model calculation proceeds from top to 
bottom, we eventually did reach a layer of gas (with optical depth τ = 0.9–1.0, i.e., near the photo
sphere) where the local temperature gradient dT/dz increased to a numerical value in excess of the 
above critical gradient gad. This means that, in the model presented in Table 5.3 in Chapter 5, the 
gas is indeed convectively stable for all levels of the photosphere listed in the table. Therefore, radia
tion does indeed dominate the energy transport in the regions of the atmosphere listed in Table 5.3. 
According to the model in Table 5.3, the Schwarzschild criterion indicates that convection in the 
Sun does not set in until optical depth τ reaches values of ≥ 0.9–1.0, i.e., just slightly deeper (by a 
vertical distance of ~20 km) than the formal definition of the photospheric level ( ph = 2/3). 

Why is this a noteworthy result? It means that we Earth-based observers are lucky enough to see 
down into the Sun deep enough to catch a glimpse of at least the uppermost layers of convection (see 
Figure 6.1). There is nothing to say a priori that this must happen: it is certainly possible that the 
onset of convection might have occurred so deep below the photosphere that Earth-based observers 
would be able to see nothing whatsoever of the convective motions. (For example, if we lived near 
a hot star of spectral class O or B, we would probably see little or no evidence for convection: there 
is a convection zone near the surface associated with helium ionization, but it carries such a small 
fraction of the stellar energy that the contrast between granules and intergranule lanes could be so 
weak that we might not detect any nonuniformity.) 

As it is, we Earthlings are able to see the Sun’s convection, with its up-and-down gas motions of 
hot and cold gas. Without this privilege, we might have to work a lot harder to learn about convec
tion in the Sun. 

The value of gad in Equation 6.9 applies to the gas that lies in the photosphere of the Sun. What 
happens to the numerical value of gad as we examine the gas that lies deeper inside the Sun? Below 
the photosphere, where hydrogen begins to undergo appreciable ionization, there is a rapid increase 
of Cp (by factors of up to roughly 30: [Clayton 1968]). In the layers where this is happening, we are 
still quite close to the surface of the Sun. As a result, the local value of gravity is essentially the 
same as at the surface. As a result, the numerical value of gad takes on values that are numerically 
as much as 30 times smaller than in the photosphere. Because of this, it is much easier for the local 
temperature gradient to exceed the local value of gad when the ambient gas is undergoing ionization. 
As a result, it is much easier to satisfy the convective instability condition gT > gad. Therefore, in a 
region of a star where the gas contains a majority constituent element that is undergoing ionization, 
we are likely to find convection. The convection we see in Figure 6.1 is associated with the ioniza
tion of hydrogen. Deeper down, there are in principle (see Figure 4.1) more convection zones due to 
the ionization of He I to He II, and ionization of He II to He III. In some hot stars, there may also be 
a convection zone associated with ionization of iron-group elements. However, in the Sun, detailed 
models of the internal structure of the Sun indicate that the convection zones overlap. In the Sun, 
there is in essence only a single convection zone. 

6.11 ALTERNATIVE EXPRESSION FOR gad 

As mentioned earlier, an alternative expression for  Cp is [γ/(γ – 1)]Rg/μ. Using this, we can 
rewrite gad as 

gad (dT/dz)ad = gμ(  − 1)/ Rg (6.10) 

In the uppermost parts of the convection zone, where the convective speeds are significant 
fractions of the sound speed, local conditions are obviously not in hydrostatic equilibrium (HSE). 
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However, in the deeper layers of the convection zone, where convective speeds have fallen to values 
that are much smaller than the sound speed, the assumption of HSE is not too bad. Now, in HSE, 
we know that the pressure gradient is given by Equation 5.1. In the present context, where we are 
using the independent variable z (i.e., the depth), rather than (as in Equation 5.1) the height h, the 
HSE equation is written as 

dp/dz = +gρ (6.11) 

Dividing Equation 6.10 by Equation 6.11, we find that 

dT 1 ( 1)
(6.12) 

dp  C  R
ad p g

Among the terms on the right-hand side, we note that for a perfect gas, μ/ρRg equals T/p. Carrying 
T/p over to the left-hand side of the equation, we find 

d log T 1 
(6.13) 

d log p 
ad 

We note that if the local conditions in a gas in any region of the Sun are in fact adiabatic, then the 
local temperature and pressure will vary in such a way that the local gradient of temperature rela
tive to pressure, d logT/d log p, will take on the value (d log T/d log p)ad as given by Equation 6.13. 
This has the effect that the pressure p in that region of the Sun will vary as a power law of T. In the 
presence of ionization, we need to replace  in Equation 6.13 with the more generalized exponent 

 (see Section 6.7.3): 

/(  1)p T (6.14)  

In a monatomic nonionizing gas, where = = 5/3, the right-hand side of Equation 6.13 has the 
numerical value 0.4. In such a gas, adiabatic processes lead to a pressure-temperature relationship 
of the form p ~ T 2.5. 

But if ionization is at work, the power-law relationship becomes steeper. For example, in a 
gas composed of pure hydrogen where the degree of ionization is 50%,  ≈ 1.135. In such a case, 
Equation 6.13 indicates that p ~ T 8.4. In such conditions, small increases in temperature would be 
associated with much larger increases in pressure than in the nonionizing limit p ~ T 2.5. These 
results will be applied to the solar convection zone in the next chapter when we try to calculate how 
pressure and temperature vary as a function of depth in the solar convection zone. 

6.12 SUPERGRANULES 

The most prominent sign of convection in the Sun is the presence of granules such as those in 
Figure 6.1. As we have seen, granules are convection cells where hotter gas rises in the center while 
cooler gas sinks at the periphery. Even a casual inspection of Figure 6.1 suggests that the multitude 
of granules (about one thousand or so can be identified in Figure 6.1) can reasonably be assigned a 
rather well-defined mean diameter of 900–1000 km (see Section 6.4). This is the preferred length-
scale of convective structures at the solar surface. 

The question we now raise is: does the solar convection exhibit any other features that have a dif
ferent preferred length scale? The answer is a definite “Yes”. When the Sun is viewed by an instru
ment that is sensitive to the Doppler shifts of organized flows on the surface, a characteristic feature 
emerges (see Figure 6.3): over most of the solar surface, there are multiple pairs of light and dark 
features indicating paired flows towards and away from the observer. But in the center of the solar 
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 FIGURE 6.3 Supergranulation pattern on the Sun: image of Doppler shifts made by SOHO/MDI. White and 
dark patches are associated with gas moving towards and away from the observer. (Courtesy of SOHO/MDI 
consortium. SOHO is a project of international cooperation between ESA and NASA.) 

disk, it is obvious that these light/dark pairs disappear: this indicates that the motions that are causing 
the Doppler shifts in Figure 6.3 are mainly horizontal on the Sun. Each light/dark pair of horizontal 
flows defines a “supergranule” in which gas rises up at the center, flows horizontally outwards to a 
certain distance over most of the surface of the supergranule, and then sinks back into the Sun. 

The Hinode and SDO/HMI instruments have permitted extensive studies of supergranules with 
access to uninterrupted series of observations spread out over many days. Thus, Svanda et al. (2014), 
in a study of the relationship between supergranules and sunspots, identified 222,796 individual 
supergranules in HMI images obtained at various times over a 38-month interval. The outflow 
region over an average supergranule was found to be very symmetric about the center of the cell. 
The average distance between the centers of neighboring supergranule cells was found to be 38 Mm. 
In a shorter data sample from HMI, spanning 7 days without interruption, Roudier et al. (2014) 
observed 14,321 supergranules and found an average lifetime of 1.5 days, with an average diameter 
of 25 Mm. In a review of supergranule properties, Rincon and Rieutord (2018) state that the mean 
horizontal flow speeds are 0.3–0.4 km s−1, while the vertical flow speeds (of order 0.03–0.04 km s−1) 
are 10 times smaller than the horizontal speeds. 
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Williams and Pesnell (2014) used SOHO/MDI to compare properties of supergranules dur
ing two different solar activity minima (1996, 2008). Observing more than 6000 supergranules 
in each minimum, the 1/e lifetime was found to be 17.8 ± 0.5 hours in 1996 and 17.7 ± 0.4 hours 
in 2008. Thus, there is no significant change in supergranule lifetime between these two solar 
minima. After the launch of SDO in 2010, Williams and Pesnell (2014) obtained simultaneous 
data over a 5-day interval with the two independent instruments SOHO/MDI and SDO/HMI. 
These data showed that the mean diameter of supergranules is 36.8 ± 0.3  Mm in MDI and 
33.2 ± 0.3 Mm in HMI: the difference in these diameters is related to the higher spatial resolu
tion of HMI. In another study using HMI over a 6-year period 2010–2016, Roudier et al. (2017) 
reported no significant changes in horizontal or vertical flows as the solar cycle rose from mini
mum to maximum. 

How many granules can “fit into” one supergranule? With linear diameters of granules of order 1 Mm, 
a supergranule with diameter 30 Mm has room for of order 1000 granules. With about 1 million granules 
on the solar surface, this means that the surface of the Sun has room for about 1000 supergranules. 

Knowing velocities V and diameters D, we can estimate the circulation time of a supergranule as 
of order D/V ≈ 30 Mm/300 m sec−1 ≈ 105 sec ≈ 1 day. Thus, with lifetimes reported to be in the range 
17 hours to 1.5 days, i.e., of order 1 day, we see that each supergranule lives long enough to undergo 
about one circulation time. This is reminiscent of the case of granules (Section 6.5). Could this be an 
indication that supergranules are convective features that are simply larger analogs of granules? If so, 
then the center of the supergranule should be hotter than the periphery. Measurements of intensity 
contrast in a sample of 104 supergranules (Langfellner et al. 2016) do indeed suggest that the inten
sity at the center exceeds that at the periphery by a fractional amount of (7.8 ±0.6) × 10−4. This cor
responds to a temperature difference of ∆T = 1.1±0.1 K. Compared to granules, where ∆T can be of 
order hundreds of degrees or more (Section 6.6), and where vertical velocities are only 30–40 m sec−1 

in supergranules, compared to 1 km sec−1 in granules, supergranules are much less effective than 
granules at transporting heat vertically through the solar atmosphere. In fact, the supergranule rate 
is at least three orders of magnitude smaller than the rate in granules. 

However, computational models of convection, which reproduce very well the observed length-
scales (≈ 1 Mm) of granules (Stein and Nordlund 1998), have found it more difficult to show con
vincingly that convection in the Sun should also exhibit a second preferred length-scale of order 
30 Mm (Rincon and Rieutord 2018). As a result, the existence of supergranules has been a challeng
ing puzzle for theorists in solar physics for many decades. 

Recently, an intriguing suggestion by Featherstone and Hindman (2016) is that supergranulation 
might arise as a natural consequence of rotationally constrained convection. As is well known on 
Earth, Coriolis forces interfere with the flows of fluids provided that the length-scale of the flows 
is large enough. (On smaller length-scales, other forces, e.g., pressure gradients or nonlinear terms, 
dominate.) By comparing convection properties in models of a nonrotating and a rotating Sun, 
Featherstone and Hindman (2016) show clearly that larger scale convection cells that exist in the 
nonrotating model are simply not present in the rotating model. Coriolis forces in effect “wipe out” 
the larger scales of convection, giving rise in effect to a peak in the convective power spectrum 
of the rotating Sun: in one particular rotational model, Featherstone and Hindman find that the 
peak occurs at a length-scale corresponding to spherical harmonic degree l = 71. According to 
Equation 13.1 (which we shall derive later in Chapter 13), this corresponds to a “wavelength” of 
about 60 Mm. This is somewhat larger than supergranule diameters observed in the Sun, but at least 
the rotating model contains a physical basis for the existence of a second “preferred” length-scale 
on the order of tens of Mm. 

In a recent observational development, we shall see later (Section 14.10) that rotational modes 
(r-modes) of oscillation in the Sun have been discovered to have vorticity that is in fact comparable 
in magnitude to the vorticity of large-scale convection cells. In such a situation, r‑modes may serve 
to “drain” some vorticity off the largest convective cells. As a result, r-modes may serve as an essen
tial component of solar dynamics. 
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In view of the suggestion of Featherstone and Hindman (2016) that rotational effects may contrib
ute to the existence of certain length-scales in the solar convection flows, we may ask: is there any 
evidence that rotational effects are at work in other convection flows? In this regard, we note that in 
the Earth’s atmosphere, convection contributes to the formation of certain cloud systems. The linear 
(horizontal) sizes of clouds have been determined over a range of nearly five orders of magnitude 
(from 0.1 km to 8000 km) using a variety of different observational platforms (Wood and Field 2011): 
the size distribution is found to be a single power law extending from scales of order 0.1 km up to a 
scale of about 1000 km. However, on scales that are larger than 1500 km (or so), the data indicate that 
there is a statistically significant decrease in the number of clouds relative to the number expected 
from an extrapolation of the power law. That is, there seems to be a “cut-off” in cloud sizes above 
a certain critical length scale. Wood and Field suggest some possible explanations for the existence 
of a “cut-off” in cloud numbers for length-scales larger than ~1500 km. They suggest that Rossby 
waves might play a role in setting an upper limit on the permissible sizes of clouds on Earth. Since 
Rossby waves are governed in part by Coriolis forces, it is tempting to speculate that the “cut-off” 
on cloud sizes on Earth might be related (mutatis mutandis) to the kind of physics that (according 
to Featherstone and Hindman) contributes to the existence of supergranule length-scales in the Sun. 
It will be interesting to see whether future studies help to determine the validity of this speculation. 

EXERCISES 

6.1 Consider gas which flows with vertical speeds v of 1, 3, 6, and 10 km sec−1 occurring at the 
surface of the Sun (h = 0). Given the gravity g at the surface of the Sun (Equation 1.13), 
calculate the maximum heights smax (= v2/2g) to which these flows can rise above the sur
face. Compare your answers to the plot in Figure 4.2 to see that the maximum heights do 
not reach as high as the temperature minimum, even for the fastest of the aforementioned 
vertical speeds (which is already considerably larger than the maximum observed con
vective velocity in the Sun). 

6.2 In order to define the Rayleigh number Ra, consider the problem that Rayleigh was ana
lyzing: a layer of fluid of thickness d is heated from below, with temperatures T1 at the top, 
and T2>T1 at the bottom, with ΔT = T2‑T1. In these conditions, Ra is defined as follows: 
Ra = g d3 (ΔT)/( κ). Here, g is the acceleration due to gravity;  is the thermal expansion 
coefficient, i.e., the fractional amount that a length of material expands when the tempera
ture is raised by 1 deg K;  is the kinematic viscosity, and  is the thermal diffusivity. 
Rayleigh showed that if there were free boundaries at top and bottom, then the onset of 
convection requires that Ra exceed the critical value Ra(crit) = (27/4)π4 = 658. 
(a) Consider the case of convection in the gas that is present near the photosphere in the 

Sun. There, g = 27420 cm s−2. The depth of a convection cell is estimated to be at most 
a few scale heights: i.e., d = (say) 3 × 107cm. In a perfect gas, ≈ 1/T: in the solar pho
tosphere,  is of order 10−4 per degree. In the Sun, the temperature difference between 
bottom and top of the layer is of order 1000 K. Using the value of  cited in Section 6.2 
in units of m2 s−1, we convert to cm2 s−1 for the present calculation:  ≈ 0.1 cm2 s−1. 
Finally, the thermal diffusivity  for a variety of gases is found online to be of order 
1 cm2 s−1. (This value applies to room temperature, but we use it here for purposes of 
estimation.) Using these numerical values, calculate the Rayleigh number Ra(sun) for 
solar convection. Show that Ra(sun) exceed Ra(crit) given earlier by at least 20 orders 
of magnitude. This shows that convection in the Sun certainly sets in. 

(b) Consider the case of the Earth’s mantle. Here, g ≈ 103 cm s−2. The depth of the part 
of the mantle where convection is most efficient is of order 108 cm. The expansion 
coefficient  is of order 10−5 per degree, and ΔT may be of order 1000 K (Schaefer 
and Sasselov 2015). The online values of  in various solid materials are listed as 
0.01–0.1 cm2 s−1. But now we come to the big difference between Earth and Sun: the 
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value of  in rocks in the Earth’s mantle can be as high as 1023–24 in units of Pascal 
seconds. Converting Pa to c.g.s. units (1 Pa sec = 10 ergs cm−3),  may be as large as 
1024–25 cm2 s−1. Using the aforementioned ranges of values, calculate Ra for the Earth’s 
mantle. Show that, depending on which combination of values you use, Ra may fall 
short of Ra(crit) (and convection will not occur), or Ra may exceed Ra(crit) = 658, 
although not by orders of magnitude (and very slow convection can occur). 
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7 Computing a Model 
of the Sun 
The Convection Zone
 

In this chapter, we wish to calculate the structure of the region in the Sun where convection domi
nates the transport of energy. As in Chapter 5, we will not yet discuss the origin of the energy that 
is flowing through the convection zone. (We postpone that discussion to Chapter 11.) In this chapter, 
we again accept the total luminosity (or flux) of the Sun as a boundary condition and seek to deter
mine how the material arranges itself so as to “handle” the energy that is passing through. We will 
examine the forces that act on the medium and determine how the medium responds. In this sense, 
the model we will derive is better referred to as a mechanical model rather than a complete model. 

Based on empirical evidence, the gas in the photosphere of the Sun is moving (up and down) with 
speeds of a few km sec−1. In order to determine the equations that will allow us to describe solar 
convection in plausible physical terms, we need first to understand why the convective motions in 
the surface layers of the Sun have speeds of this order of magnitude. Why are the motions not of 
order a few cm sec−1? Or hundreds of km sec−1? What is the determining factor that sets the scale 
of the speeds? 

7.1 QUANTIFYING THE PHYSICS OF CONVECTION: VERTICAL ACCELERATION 

We have seen that certain parcels of gas in the Sun are observed to be rising, while others are sink
ing. The rising parcels are hotter than the sinking ones, and the r.m.s. temperature differences are 
of order ∆T ≈ 500–600 K in the photosphere. 

From a physics perspective, it is important to note that the speeds of convective motion are 
less than the local (adiabatic) speed of sound, cs = √( RgT/μ), where  is the ratio of specific heats 
and μ is the mean molecular weight. (In the solar photosphere, cs ≈ 9 km sec−1.) This has the effect 
that sound waves can propagate quickly between hot and cold gas and equalize the pressures. Thus, 
the differences in pressure between hot and cold gas at any height are not significant. Now, for 
material that obeys the equation of state of a perfect gas, p=RgρT/μ, the pressure difference Δp is 
related to the temperature difference by Δp/p = ΔT/T + Δρ/ρ − Δμ/μ. In the photosphere, there is no 
significant difference in the degree of ionization between hot and cold gas: therefore we will make 
no significant error if we assume there is no difference in the molecular weights in hot and cold gas, 
i.e., Δμ/μ = 0. 

Using this, and setting Δp/p = 0, we see that the observed temperature difference ΔT between 
rising and sinking gas in the photosphere corresponds to a density difference Δρ/ρ = −ΔT/T. The 
negative sign indicates that the hotter (rising) gas has lower density than the cooler (sinking) gas. 
With an empirical fractional temperature difference in the photosphere observed to be ΔΤ/Τ ≈ (500– 
600)/5772 ≈ 0.1, we expect that hotter gas has a density which is about 10% smaller than the density 
of the cooler gas. For purposes of calculation in the present section, we shall use the value ΔΤ/Τ ≈ 
0.1 as representative. 

Now the photosphere of the Sun is for the most part in hydrostatic equilibrium: this means that 
there are no net forces acting on the gas in the photosphere. This is not to say that there are no forces 
whatsoever acting on the gas: it means only that whatever forces are at work, they are in general 
balanced in the photosphere. On the one hand, there is a vertically upward force (per unit volume) 
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due to the vertical gradient dp/dz of the ambient pressure. On the other hand, there is a vertically 
downward force (per unit volume) due to the weight of the gas, ρg. When these forces are in balance, 
there is no net acceleration in the vertical direction, and the gas remains at rest. This is the situation 
throughout the model of the photosphere that was presented in Chapter 5. That is, given a photo-
spheric model where, at depth z, the density is ρo and the pressure is po, then dpo/dz has a numerical 
value that is precisely equal to ρog at all heights in the photospheric model: i.e., dpo/dz = gρo. 

This is the equation of HSE (cf. Equation 5.1), rewritten in terms of the depth z (which increases 
in the downward direction) rather than the height parameter h (which increases upward). Note that 
the force of gravity is also directed in the downward direction, i.e., parallel to the depth z. 

But in a gas where convection is possible, the vertical forces are no longer balanced. And in the 
presence of such unbalanced forces, the material will begin to move in the vertical direction. Let us 
consider the unbalanced forces and the vertical accelerations that they cause. 

Suppose a certain parcel of gas is hotter than the ambient medium. The density ρ  in the parcel 
will be lower than the ambient density ρo. As a result, the vertically downward force on unit volume 
of gas in the parcel due to its weight ρ′g is now less than the local upward force due to ambient pres
sure dp/dz. That is, the upward vertical force exceeds the downward vertical force. The unbalanced 
upward force dp/dz – ρ′g acting on a parcel of gas with unit volume leads to a vertical acceleration of 
that parcel in the upward direction. Since unit volume of the gas has a mass of ρ′, Newton’s second 
law of motion (force = mass times acceleration) tells us that the unit volume will move with vertical 
speed V such that the upward acceleration dV/dt satisfies 

ρ dV/dt = dp/dz − gρ  (7.1) 

This equation expresses the law of conservation of momentum. Notice that in the absence of 
vertical flows (V = 0), the conservation of momentum in Equation 7.1 reduces to HSE. 

As we have seen, the motions observed in the solar photosphere are such that pressure remains 
equalized between hot and cold gas. That is, the pressure of the gas remains relatively unchanged 
in hot or cold gas compared to the ambient medium. This means that we can, without serious error, 
replace dp/dz with dpo/dz. But we already know that dpo/dz = ρog. Therefore, the vertically upward 
acceleration dV/dt experienced by the low-density gas parcel is given by (dV/dt)u = g(ρo − ρ )/ρ′. The 
fact that ρ  is less than ρo has the effect that the sign of the right-hand side is positive. Therefore, the 
vertical acceleration is in the upward direction. Buoyancy forces create this upward acceleration. 

If a parcel of gas is locally cooler (and denser) than ambient, then the local density ρ″ will be 
greater than ρo. Then the acceleration, with a magnitude (dV/dt)d = g(ρo − ρ″ )/ρ″ will be a negative 
quantity. Therefore, in this case the acceleration will be in the downward direction. Once again, this 
downward acceleration is due to buoyancy forces. 

Since the differences in density between the ambient medium and the hot (upgoing) and cold 
(downgoing) gas are not large, we can write the relative acceleration ahc between hot and cold gas as 

ahc  (dV/dt)u − (dV/dt)d = g(ρ  − ρ')/ρo ≈ gΔρ/ρ = −gΔT/T (7.2) 

Inserting the empirical result ∆T/T ≈ 0.1, we find that the magnitude of the relative accelera
tion ahc between hot and cold gas in the solar photosphere is expected to be given by ahc ≈ 0.1g ≈ 
2.7 × 103 cm sec−2. 

7.2 VERTICAL VELOCITIES AND LENGTH-SCALES 

Now that we have an estimate for the relative vertical acceleration between hot and cold gas, 
we can ask: over what vertical length-scale sv must the acceleration ahc be allowed to operate 
in order to build up a vertical velocity difference V that is comparable to the observed values, 
i.e., a few km sec−1? 
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The relevant formula is V2 = 2ahc  sv ≈ 5.4 × 103 sv. Setting V = (2–4) × 105 cm sec−1, we find 
sv = 74–296 km. Thus, if the buoyancy forces due to the density differences between hot and cold 
gas in the solar photosphere are allowed to operate over vertical distances of 74–296 km, the verti
cal velocities that can be produced will be comparable to the observed values. 

Is there any physical significance to length-scales that lie in the range 74–296 km? Well, we have 
seen (Chapter 5, Section 5.1) that the pressure (and density) scale height Hp in the photosphere is 
115–140 km. We note that this range of Hp values overlaps the range of values we have obtained for 
the vertical distance sv. This suggests that the dynamics of convection in the solar photosphere are 
constrained in such a way that the vertical acceleration due to buoyancy is allowed to operate over 
vertical length-scales that are comparable to Hp. Specifically, with the aforementioned numbers, it 
appears that sv should range from somewhat less than 1Hp to about 2Hp. 

This is an empirical conclusion. It is based on the observed temperature differences between hot 
and cold gas, and on the observed relative differences in velocity between rising and sinking gas. If 
we were not able to resolve the granulation in the Sun, thereby measuring differences in temperature 
and velocity between rising and sinking gas, we would have to rely on indirect arguments in order 
to decide what might be the best choice for sv. 

7.3 MIXING LENGTH THEORY (MLT) OF CONVECTION 

It was mentioned earlier (Chapter 6, Section 6.2) that granules in the Sun have properties that are 
similar to eddies in a fast-flowing river: such eddies survive for a finite time and then dissolve into 
the ambient water. During their lifetime, they travel a finite distance before they “mix” their con
tents back into the river. This finite distance is called the “mixing length”. 

In solar convection, by analogy, it is imagined that a hot parcel of upward convective flow can 
preserve its identity for a finite time only. During that time, the material (which is moving at a finite 
speed V) can travel a finite distance L (the “mixing length”) in the vertical direction (buoyancy 
forces determine that the motion is preferentially vertical), and then the parcel mixes its material 
and its excess heat energy in with the ambient gas. When the mixing occurs, the original parcel of 
convective flow loses its identity. Based on the discussion in the previous section, it seems plausible 
to equate L with the vertical distance sv, which is (as we have seen) of order Hp times a number that 
is close to unity. In solar convection, a “mixing length parameter”  is defined as the ratio between 
the mixing length and the local scale height:  = L/Hp. Based on the discussion in Section 7.2, an 
appropriate choice for  in the solar photosphere is expected to be in the range 1–2. Again, this 
is an empirical conclusion, based on measured velocities and temperature differences. Note that 
since MLT discussions are based on vertical motions, we can regard the MLT as essentially a one-
dimensional model of convection. 

Is there any theoretical reason why the mixing length might be expected to be of order Hp? Well, 
when a parcel of gas starts its upward “lifetime” at depth z, it has a density that is only slightly smaller 
than that of the ambient gas. Once the parcel has risen to a new depth z − L, it finds itself in an ambi
ent medium where the gas has a lower density than the ambient medium had at the starting depth 
z: specifically, if L = Hp, the ambient density is smaller by a factor of e = 2.718 . . . than the density 
was at depth z. In order to reduce buoyancy forces to zero, the parcel must adjust its density to the 
ambient value at depth z − L. This requires that the parcel must expand in volume. If the vertical dis
tance L were as large as, say, 2Hp, the parcel would find itself at the top of its path (at depth z − L) in a 
medium with an ambient density which is e2 ≈ 7–8 times smaller than the initial density. This would 
lead to a seven- or eight-fold increase in the parcel’s volume, along with a roughly four-fold increase 
in surface area. As a result, if at depth z at any instant, a snapshot of the gas at that depth showed the 
aggregate of all rising parcels occupying, say, 10%–25% of the available surface area, then at depth 
z − L, the parcels would have expanded to occupy 40%–100% of the available surface area. There 
would be no more room for further expansion. To be sure, the argument here is very approximate, but 
the existence of expansion of a parcel during upward motion is qualitatively reliable. 
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This leads us to suspect that the existence of the empirical limit  = 1–2 may be related to a self-
regulating process: there is simply not enough room for parcels that would expand, in the course of 
their lifetime, to 10 or more times their initial volume. 

However, since convection in the Sun is a highly turbulent and time-dependent process, it has to 
be admitted that a physically realistic description of convection in the Sun cannot be confined to 1-D 
models such as the MLT. Instead, a correct model of the solar convection zone requires in principle 
a method that permits numerical modeling of hydrodynamics in three dimensions. Moreover, since 
radiation is the mechanism by which an upward parcel loses its energy into the ambient medium, the 
3-D hydrodynamical model must include the effects of 3-D radiative transfer. Also to be included 
are the equation of state (EOS) of an ionizing medium, opacities with line blanketing, and a realistic 
specification of boundary conditions at the bottom and at the top of the computational zone. Finally, 
for numerical reasons, artificial dissipation terms (e.g., “hyperviscosity”) may need to be included 
so as to avoid the development of instabilities in the code. Inclusion of such a multitude of physical 
effects would take us far beyond the limits of a first course in solar physics. Interested readers can 
find more details about the work that has already been done in modeling 3-D solar convection in, 
e.g., Trampedach et al. (2014). 

For our present purposes, it is important to note that, as far as we are concerned here, a valuable 
result has emerged from the work of Trampedach et al. (2014). Comparing 1-D models with full 
3-D models, Trampedach et al. (2014) find that for stars with Teff values within (roughly) ±1000 K 
of the solar value and with log g values within (roughly) ±1.0 of the solar value, the properties of 
the 1-D model envelopes match best with those of the 3-D models if the MLT parameter is assigned 
the value  ≈ 1.76. Remarkably, this value lies in the range = 1–2 that we estimated (Section 7.2) 
based entirely on empirical arguments. Therefore, despite all its simplicity, it is important that the 
MLT can replicate important aspects of convection in the Sun. In the next few sections, we apply 
MLT to convection in the Sun. 

7.4 TEMPERATURE EXCESSES ASSOCIATED WITH MLT CONVECTION 

As a check on the plausibility of choosing  ≈ 1, let us estimate how large the temperature excess is 
expected to become between rising gas and the ambient medium. In other words, what is the tem
perature excess relative to ambient after a parcel of gas has traveled a length L? 

To answer this question, consider a parcel of gas that rises from an initial depth z to a new (upper) 
depth z − L, and rises so fast that it preserves its initial temperature along the way. At the upper 
depth, if the gas in the parcel were not called upon to perform any work, the parcel would have a 
temperature in excess of the ambient temperature by an amount ΔTo = Lgo. (Here, go = dT/dz is the 
local temperature gradient in the ambient medium.) 

Now, our discussion of the adiabatic gradient in Chapter 6 shows that, in a convective region, 
some of the internal energy of the parcel of gas is used to do the work of raising the parcel a dis
tance L against gravity. Specifically, the work against gravity, i.e., gL per gram, can be performed 
by extracting the amount CpΔTad = Lg from the internal energy per gram of the gas. (Note, gad = 
g/Cp is the adiabatic temperature gradient.) 

As a result, when the parcel reaches its upper position, z − L, it finds itself with a temperature that 
exceeds the ambient by an amount ΔT that is not as large as the ΔTo mentioned earlier. Instead, the 
temperature excess ΔT is given by the reduced quantity ∆T = ΔTo − ΔTad. Expressing ΔTo and ΔTad in 
terms of the temperature gradients, we can write 

ΔT = L(go − gad)  L(ΔgT) (7.3) 

Here we define the quantity ΔgT to be the “superadiabatic gradient”, i.e., the amount by which the 
ambient temperature gradient go exceeds the adiabatic gradient gad. 
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Let us estimate the numerical value of the temperature excess ∆T. We have already seen that in 
the solar photosphere, gad has a numerical value of about 1.7 × 10−4 deg cm−1 (see Equation 6.9). 
In regions of vigorous convection below the photosphere, the local temperature gradient go may 
exceed gad by an amount that is not necessarily small. In such conditions, there is no reason to 
exclude the possibility that that go might exceed gad by an amount that is comparable to gad itself. 
This suggests that ΔgT could have a value of order 10−4 deg cm−1. In such a case, and setting 
L ≈ Hp ≈ 107 cm, we find that the mixing length theory would predict ΔT ≈ 103 K in the photosphere. 

How does this compare with the temperature differences that exist in the solar granulation? We 
have seen, from rough analysis of the empirical brightness fluctuations in the granulation, that the 
r.m.s. temperature differences are estimated to be in the range 500–600 K. These are consistent, 
within factors of two, with the prior estimate of ΔT. 

It seems that estimates of temperature excesses based on MLT are not inconsistent with empiri
cal data by significant amounts. 

The fact that the velocities of solar granulation, as well as the temperature differences between 
hot and cold gas, can be replicated, at least roughly, in the context of MLT suggests that the theory 
can be of service when we attempt to model the complexities of turbulent solar convection. 

7.5 MLT CONVECTIVE FLUX IN THE PHOTOSPHERE 

The convective heat flux can be expressed as F(conv) ≈ ρVCpΔT (see Equation 6.2). In the context 
of MLT, let us see what this expression leads to. We replace  V = √(2ahcsv) with the expression 
√(2LgΔT/T), where we have used Equation 7.2 for ahc. Now, using Equation 7.3, we replace ∆T by 
the expression L∆gT. This leads to 

2g 3 2/2F conv ) C L gT  (7.4) ( p T 

Near the photosphere, substitution of appropriate quantities (ρ ≈ (2–3) × 10−7 gm cm−3, T ≈ 6000 K, 
L ≈ 107 cm, ΔgT ≈ 10−4 deg cm−1) leads to F(conv) ≈ (1–2) × 1010 ergs cm−2 sec−1. This result is con
sistent, within a factor of two, with the estimate given in Chapter 6 (Section 6.7.1). 

7.6 MLT CONVECTIVE FLUX BELOW THE PHOTOSPHERE 

An advantage of MLT is that it provides us with a key piece of information about how the tempera
ture varies as a function of depth in the convection zone. This key piece of information will allow 
us to obtain a model of the convection zone that, in this first course, will be good enough to lead us 
fairly reliably into the deep interior of the Sun. In order to demonstrate how we arrive at this key 
piece of information, we need to examine what happens to F(conv) as we examine material that lies 
deeper inside the Sun. 

Specifically, as we go deeper beneath the surface, temperatures increase greatly, and the mean 
molecular weight decreases (by a factor of about two). As a result, the mixing length L =  Hp ~ T/μ 
increases to values that are much greater than those near the surface. For example, we shall find that in 
the deepest layers where convection is at work, the gas has temperatures T ≈ 106 K. In this gas, where T 
exceeds the surface values by a factor of more than 100, the value of Hp exceeds the value of Hp in the 
photosphere (where Hp ≈ 100–200 km) by factors of several hundred. As a result, in the deep convec
tion zone, Hp approaches values as large as 1010 cm. In such gas, the density is also much larger than 
the photospheric value: detailed models of the Sun find that ρ approaches values of order 1 gm cm−3. 
Moreover, Cp increases above the surface value by a factor of at least two (due to the conversion of single 
particles (atoms) in the upper convection zone to two particles (ion plus electron) in the deep convection 
zone). Let us see how these values of the various parameters affect the expression for F(conv). 
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Some of the parameters cause the value of F(conv) to increase, while other parameters cause 
F(conv) to decrease. Now, there is a definite upper limit on how large F(conv) can become: it must 
not exceed the overall flux of energy that emerges from the deep interior of the Sun. At the surface, 
we can measure what this emergent flux actually is: using the symbol F = L /4πR 2 for the emer
gent flux at the surface, we know that F  = 6.2939 × 1010 ergs cm−2 sec−1 (Chapter 1, Section 1.9). As 
we go inward deeper into the convection zone to a location where the local radius has a value r<R , 
the local surface area A(r) = 4πr2 decreases, but the total power from the Sun (the “luminosity” L ) 
remains constant (as long as we do not approach too close to the center of the Sun). Therefore, the 
local energy flux that crosses unit area F(r) = L /A(r) increases as we go deeper into the convection 
zone. By the time we reach a radial location of about 0.7R  (where we shall find that the convection 
zone reaches its deepest extent), the value of F(r) increases to about 1011 ergs cm−2 sec−1, i.e., about 
twice as large as the flux at the solar surface. And as long as we are inside the convection zone, 
this flux is transported essentially entirely by convection, i.e., F(conv) rises to a value of order 
1011 ergs cm−2 sec−1 in the deepest part of the convection zone. 

Now that we know F(conv) deep in the convection zone, we can return to Equation 7.4 and find an 
answer to an important question: how large must the super-adiabaticity ΔgT be in order to transport 
a flux of 1011 ergs cm−2 sec−1 deep inside the Sun? Substituting the prior numerical values for the gas 
deep in the convection zone, we can evaluate the ΔgT needed: we find ΔgT ≈ 10−11deg cm−1. 

What is the significance of this result? The answer depends on what we compare ∆gT to. Since 
∆gT has the dimensions of a temperature gradient, it is natural to ask: is there another temperature 
gradient that is relevant to convection in the Sun? Indeed there is (see Chapter 6, Section 6.8): it is 
the adiabatic gradient gad. Deep in the Sun, gad = g/Cp still has a numerical value of order 10−4 deg 
cm−1: the subsurface increase in Cp is offset by the subsurface increase in g. Compared to gad, we see 
that the superadiabaticity ΔgT is seven orders of magnitude smaller than gad. 

This is the “key piece of information” that was mentioned in the opening paragraph of the 
present section. It means that, for all practical purposes, the numerical value of the superadia
baticity is zero. That is, the temperature gradient in the deeper layers of the convection zone is 
essentially equal to the adiabatic gradient gad. Since we already have a simple expression for gad, 
this provides an enormous simplification in our task of obtaining a model of the convection zone. 
We do not have to be too concerned with how the opacity, density, or pressure behaves as a func
tion of depth: instead, we simply accept that (to a high degree of precision) dT/dz is effectively 
identical to the ratio g/Cp. In regions where g and Cp are constant, this allows us to perform an 
immediate integral: 

g
T z( )  T z( ) (   o  z zo )   (7.5) 

C p  

The fact that the temperature gradient in the deep convection zone equals the adiabatic gradient 
means that the processes that occur in the solar convection zone are essentially adiabatic in nature. 
This valuable conclusion will help us determine how pressure and density vary with depth as we go 
down deeper and deeper into the convection zone. 

7.7 ADIABATIC AND NONADIABATIC PROCESSES 

Once it has been determined that the temperature profile in the Sun’s deep convection zone is essen
tially the adiabatic profile, we can in principle apply the laws of adiabatic processes to the variations 
of density and pressure. Thus, if the density varies as a function of depth according to ρ(z), then the 
pressure at depth z is related to ρ(z) according to p(z) ~ [ρ(z)] (see Chapter 6, Section 6.7.3.) The 
index d(log p)/d(log ρ)ad is the adiabatic exponent for pressure-density variations. For mona
tomic gases, under conditions where ionization is not occurring (or is essentially complete), the 
numerical value of  is well defined: = Cp/C  = 5/3. v
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For a perfect gas, p ~ Tρ, and so the density ρ(z) in an adiabatic region is related to T(z) by ρ(z) ~ 
[T(z)]1/( −1). Also, as we have seen already (Equation 6.14), the pressure p(z) in the adiabatic region 
is related to T(z) by p(z) ~ [T(z)] /( −1). 

Thus, if we happened to be considering an adiabatic medium where = 5/3 at all depths, then, 
given a temperature, density, and pressure at a reference depth zo, the quantities at depth z would be 
given by Equation 7.5 plus the following two equations: 

( )
1 5  

. T z  
. 

1 5( )z ( )   K T z z [ ( )] (7.6) o d( )T zo 

p z( ) 
p zo( )
T z( )  

T z( )o

.2 5  


K T z [ ( )] p 
.2 5  (7.7)
 

In Equations 7.6 and 7.7, we have introduced proportionality constants Kd = ρ(z )/T(z )1.5 and Kpo o

= p(zo)/T(zo)2.5 for density and pressure, respectively. The constants Kd and Kp are related to the 
specific entropy of the gas at the top of the solar convection zone. Since the top of the convection is 
also the base of the photosphere, we could use the values of density, temperature, and pressure that 
occur in the last line of Table 5.3 to calculate numerical values of Kd and Kp 

If Equations 7.5 through 7.7 were all that we needed to describe solar convection, then the com
putation of a model of the convection zone would be relatively simple. We would start with our 
model of the photosphere (Chapter 5), evaluate the constants Kd and Kp using the conditions at the 
base of the photosphere (where convection sets in), and then proceed to deeper layers by increasing 
the depth z. 

Unfortunately, things are not quite so simple in the Sun. 
Two effects are particularly important in seriously modifying the properties of the convection 

zone in a relatively narrow layer near its upper boundary. First, radiative losses near the solar sur
face from convective elements (granules and intergranular regions) are severe. As a result, processes 
in the granulation are highly nonadiabatic within the uppermost 1–2 megameters (Mm) of the con
vection zone. Nonadiabaticity has the effect that the local temperature gradient in the uppermost 
1–2 Mm rises to values that are well in excess of the adiabatic gradient. (We have already used this 
information in Section 7.4, when we estimated temperature differences between rising and falling 
material.) We simply cannot assume that, as soon as convection sets in, the processes instanta
neously become adiabatic. 

The second important effect is that, as a result of the onset of significant ionization in H and 
He, the value of the exponent  departs significantly from the monatomic value of 5/3. To be sure, 

is close to 5/3 in the photosphere, and  again reverts to values within a few percent of 5/3 at 
depths in excess of 20–30 Mm below the photosphere. In such regions, the exponents that appear in 
Equations 7.6 and 7.7 are entirely appropriate. However, at depths of a few megameters, where the 
degree of ionization of hydrogen is greater than (say) 10% and less than (say) 90% (i.e., the gas lies 
in the “ionization strip”, which was discussed in Chapter 4, Figure 4.1), the numerical values of 
fall well below 5/3. As was mentioned earlier (Chapter 6, Section 6.7.3),  may fall as low as ~1.19 in 
certain regions in the Sun. Now, in a medium where = 1.19, the exponents in Equations 7.6 and 7.7 
would take on values of 5.3 and 6.3, respectively. In such a medium, given an increase in tempera
ture from depth zo to depth z, the accompanying increases in density and pressure under adiabatic 
conditions would be significantly larger than Equations 7.6 and 7.7 would predict. The reason for 
this behavior has to do with the increase in entropy associated with ionization. Because the ioniza
tion energy is large compared to the thermal energy, a large input of energy dQ is required to cause 
ionization in unit mass of material, without any significant increase in temperature. This leads to a 
significant increase in the specific entropy dS = dQ/T. 
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Fully consistent modeling of solar convection requires inclusion of 3-D radiative transfer as well 
as a detailed treatment of the ionization of hydrogen (e.g., Stein and Nordlund 1998). The results of 
such calculations indicate that if we use the conditions at the top of the convection zone to calcu
late Kd p(z )/T(z )1.5 and K p(z )/T(z )2.5, we will make large numerical errors. The errors are in o o p o o

the following sense: if we were to use the prior numerical values of Kd and Kp in Equations 7.6 and 
7.7, the pressures and densities we would calculate in the deep convection zone would turn out to 
be too small by two to three orders of magnitude. 

In a complete model of the solar convection zone, we should include the full effects of radiative 
losses and include ionization effects at all depths. Such a model would demonstrate a behavior 

T2.5where  p ~  at the shallowest depths near the surface (z < 1  Mm), then a narrow region of 
intermediate depths (a few Mm) where the exponent would be significantly larger than 2.5, followed 
by a deeper region where the exponent would decrease to approach 2.5 once more. At depths 
z ≥ 20–30 Mm, conditions would revert to p ~ T2.5. We shall see that the convection zone has a depth 
of order 200 Mm. Thus, the functional form p ~ T2.5, as in Equation 7.7, applies throughout some 
90% of the depth of the convection zone, although Kp takes on different values in the upper and 
lower portions of the convection zone. 

7.8 COMPUTING A MODEL OF THE CONVECTION ZONE: STEP BY STEP 

How can we make allowance for the aforementioned properties of the solar material? In this first 
course in solar physics, rather than following in detail the complicated calculations of radiative 
transfer and of the ionization of hydrogen at each depth, we make the following simplification: we 
use a single “effective” value for the exponents in Equations 7.6 and 7.7 throughout the convec
tion zone. To select the effective values, we use an effective value of  which is given by the arith
metic mean of the minimum (1.19) and maximum (1.67) values cited earlier, i.e., (eff) = 0.5(1.19 + 
1.67) = 1.43. With this choice, the exponents in Equations 7.6 and 7.7 become 2.3 and 3.3. Therefore, 
rather than relying on Equations 7.6 and 7.7, we use instead the following depth dependences of 
density and pressure: 

.
T z( )

2 3  

( )z zo ( )  (7.8) 
( )T zo 

p z( ) 
p zo( )
T z( )  

T zo( )

.3 3  

(7.9)
 

These equations, together with Equation 7.5, are the equations that we use to compute 
a model of the solar convection zone. In this part of the Sun, the independent variable that 
we will use for computations of structure is the linear depth z below the photosphere. We 
proceed as follows. 

Start at the deepest layer in the photospheric model (Chapter 5), which also corresponds to the 
top of the convection zone. There, the temperature, depth, pressure, and density are already known: 
since these are the first (topmost) values in our model of the convection zone, we refer to these 
as T(1) = 6010 K, z(1) = 465 km, p(1) = 1.13 × 105 dyn cm−2, and ρ(1) = 2.94 × 10−7gm cm−3. 

Step (1): Step down below the photosphere by taking a step of say ∆z = 1000  km  =  1  Mm. 
Assuming adiabatic conditions, the increase in temperature across the step ∆z is

g 
T z (7.10) 

C p
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What g should we use in estimating ∆T? We shall find that the convection zone occupies a spheri
cal shell that extends inward to significant depths inside the Sun, as deep as 20%–30% of the solar 
radius. Within the convective shell, the total amount of mass is small compared to the total mass 
of the Sun. As a result, most of the mass of the Sun lies interior to the convection zone. Because 
of this, the value of g varies as 1/r2. Thus, at depth z, the local acceleration due to gravity can be 
calculated from 

 R 
2 

g z( )   ,   cm sec-227 420 (7.11)
R  z 

where we have inserted the acceleration due to gravity that occurs at the surface of the Sun (see 
Equation 1.13). Using Equation 7.11, we find that, at the base of the convection zone, where z ≈ 
0.3R , g(z) has a value that is about twice as large as the surface gravity. 

What value of Cp should be used? Equation 6.5 provides a starting point. In the photosphere of 
the Sun, where = 5/3 and the mean molecular weight μ ≈ 1.3, we find Cp ≈ 1.6 × 108 ergs gm−1 K−1. 
Both quantities and μ vary with depth. Let us consider μ first. Deep inside the Sun, where H and 
He are completely ionized, there are two particles for each H nucleus, and three particles for each 
He nucleus. As a result, the mean molecular weight per particle is 1/2 for H and 4/3 for He. In a 
mixture of 90% H and 10% He, μ ≈ (0.5*0.9) + (1.33*0.1) ≈ 0.58. This is the value of μ that we shall 
use in the deep interior of the Sun (Chapter 9). In the convection zone, where ionization is underway, 
causing μ to vary from 1.3 (at the top) to 0.58 (at the bottom), we shall approximate the value of μ by 
the average of these limits, i.e., μconv = 0.94. Let us now consider . As in Section 6.7.3, we replace 
in the convection zone with the generalized . Specifically, Equations 7.8 and 7.9 are based on the 
effective value (eff) = 1.43. In order to preserve consistency, in Equation 6.5 we replace /( – 1) 
with /( −1) = 3.3. For simplicity, we assign a constant value to Cp throughout the convection zone, 
namely Cp = 3.3 Rg/μconv. Of course, this does not take into account the largest values that Cp takes on 
at certain depths in the solar convection zone. We shall therefore not be surprised if our simplified 
model of the solar convection zone will be defective in certain ways: in particular, we shall find that 
our estimate of the depth of the convection zone will be too shallow. 

Step (2): Now that g and Cp can be evaluated at depth z(1), we can calculate ∆T using Equation 7.10. 
Therefore, at the new depth z(2) = z(1) + ∆z, the temperature T(2) has the value T(1) + ∆T. 

Step (3): Knowing the temperature  T(2) at  z(2), we calculate the local pressure and density 
using p(2) = p(1)[T(2)/T(1)]3.3 and ρ(2) = ρ(1)[T(2)/T(1)]2.3. 

Step (4): Repeating the calculation at a greater depth,  z(3) =  z(2) + ∆z, we step inwards into 
the Sun, evaluating temperature, pressure, and density at each step according to Equation 7.5 and 
Equations 7.8 and 7.9. 

We continue increasing the depth until the temperature rises to a certain value, Tb ≈ 2 × 106 K. 
At that point, we stop the calculation. Why? Because we shall find in Chapter 8 that the base of the 
convection zone lies at a well-defined temperature Tb that is close to 2 million K. 

This step-by-step procedure leads to a table of values of z, T, p, and ρ down to the base of the 
convection zone. Examples of values of parameters selected from such a table, which we have cal
culated according to the aforementioned steps, are shown in Table 7.1. 

7.9 OVERVIEW OF OUR MODEL OF THE CONVECTION ZONE 

Examining Table 7.1, we see that at the base of the convection zone, i.e., at the location where the 
temperature Tb equals 2 × 106 K, our simplified model yields a pressure pb of order 3 × 1013 dyn cm−2 

and a density pb of order 0.2 gm cm−3. These values compare favorably with results from a sample of 
10,000 models of the Sun in which all of the relevant parameters are allowed to take on values within 
the ranges of known error bars (Bahcall et al. 2006): Tb = 2.01 × 106K, pb = 4.3 × 1013 dyn cm−2, 
and pb = 0.16 gm cm−3. 



124 Physics of the Sun 

 

 
     

 
 
 

   
 

   
 
 
 
 
 

TABLE 7.1 
A Simplified Model of the Solar Convection Zone 
Depth z (cm) T (K) p(dyn cm−2) ρ(gm cm−3) 

9.6492E+07 1.0819E+04 7.8964E+05 1.1412E-06 
1.9649E+08 2.0260E+04 6.3889E+06 4.9305E-06 
3.9649E+08 3.9224E+04 5.7757E+07 2.3023E-05 
6.9649E+08 6.7877E+04 3.5920E+08 8.2740E-05 
9.9649E+08 9.6780E+04 1.1716E+09 1.8928E-04 
1.4965E+09 1.4552E+05 4.5614E+09 4.9010E-04 
2.0465E+09 1.9997E+05 1.3156E+10 1.0287E-03 
3.0465E+09 3.0127E+05 5.1560E+10 2.6759E-03 
4.0465E+09 4.0566E+05 1.3897E+11 5.3565E-03 
5.0465E+09 5.1329E+05 3.0446E+11 9.2742E-03 
6.0465E+09 6.2432E+05 5.8471E+11 1.4643E-02 
7.0465E+09 7.3889E+05 1.0252E+12 2.1694E-02 
8.4965E+09 9.1169E+05 2.0652E+12 3.5418E-02 
1.0046E+10 1.1057E+06 3.9286E+12 5.5552E-02 
1.1546E+10 1.3034E+06 6.7961E+12 8.1527E-02 
1.3046E+10 1.5115E+06 1.1135E+13 1.1518E-01 
1.4546E+10 1.7310E+06 1.7496E+13 1.5804E-01 
1.6046E+10 1.9628E+06 2.6598E+13 2.1187E-01 
1.6296E+10 2.0027E+06 2.8443E+13 2.2205E-01 

As far as the depth  zb of the convection zone is concerned, our model indicates a depth of 
163 Mm. In terms of the solar radius, this is a depth of 23%–24% of R . That is, the convection 
zone occupies about one-quarter of the distance from the solar surface to the center. This indicates 
clearly that convection in the Sun is by no means confined to a thin shell. Instead, we can properly 
refer to a thick “convective envelope” that penetrates inward by some 25% of the solar radius in the 
outermost layers of the Sun. 

Actually, according to inversions of helioseismic data (Chapter 13), the Sun’s convective enve
lope is somewhat thicker than 25% of the radius. The base of the convection zone is found to lie at 
a depth zb = 197–202 Mm, corresponding to 28.7±0.3% of R  (Christensen-Dalsgaard et al. 1991). 
The simplified approach that we have used in calculating Table 7.1 yields a shallower convection 
zone than the helioseismic result by some 5% of R , i.e., by ≈ 35 Mm. How can we understand such 
a discrepancy? It is due in large part to our neglect of the large increases in Cp that occur in regions 
where hydrogen is undergoing ionization. In such ionization regions, the true values of Cp may rise 
to become almost 10 larger than the value of 3.3 R /μ  that we have adopted here throughout the g conv

convection zone. As a result, for a given step in depth ∆z, our computed ∆T = (g/Cp)∆z in the ion
ization zone may be almost 10 times too large compared to the true value. Conversely, for a given 
temperature interval (and we are, after all, aiming for a region where we are specifying what value 
the temperature must have there, namely 2 million K), our estimated value of the corresponding ∆z is 
too small in the ionization zone by a factor of order 10. Thus, in an ionization region that spans a 
depth range of 1–3 Mm in the “real” Sun, our method has the effect that an interval of depth of order 
10–30 Mm is in effect “missing” by the time the integrated value of temperature reaches the limit Tb. 

When solar models are computed with state-of-the-art computing techniques (e.g., Bahcall et al. 
2006), the models yield estimates of the convection zone thickness that depend on the chemical 
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composition that one assumes for the model. With two different choices of the solar composition, 
Bahcall et al. compute that the convective envelope has a thickness of 28.7% and 27.2% of R . 

EXERCISES 

7.1 Perform the step-by-step calculation of the convection zone described in Section  7.8, 
using values of T(1), z(1), p(1), and ρ(1) that you obtained in one of your models of the 
photosphere (Chapter 5). What differences do you find from the results in Table 7.1? 

7.2 Use your computer code to repeat the calculation of Section 7.8 using a different value of 
the step size, ∆z, e.g., 500 km and 2000 km. How much do the various parameters differ 
from those in Table 7.1? 

7.3 Repeat the calculations of Section 7.8 using different values of Γ(eff). Instead of using 
Γ(eff) = 1.43, consider Γ(eff) = 1.3 and 1.6. Each of these will lead to changes in the 
exponents in Equations 7.8 and 7.9. Proceed in each case to the depth zb where T = Tb = 2 
MK. In each case, how do your values of zb compare with the value obtained from helio
seismology (200 Mm)? 

7.4 (More complicated) The model in Table 7.1 is based on an assumption that the specific heat 
Cp retains a constant value at all depths in the convection zone, and that  also retains a 
constant value (1.43) at all depths. But in the real Sun, Cp varies with depth, as does . 

Let us try to incorporate in a simple way the depth dependences of Cp, , and μ. At the top of 
the convection zone, we can set Cp = 1.6 × 108 ergs gm−1 K−1, = 1.67 and μ = 1.3. One example 
of how Cp varies with depth is provided by Spruit (1974), in his Table II. In that table, Cp rises 
to a maximum value of 1.486 × 109 ergs gm−1 K−1 at a depth of 1.3 Mm, where  has a value of 
1.19. At the base of the convection zone, Spruit finds Cp = 3.4 × 108 ergs gm−1 K−1. (Note that, 
as expected, Cp at the base of the convection zone is close to twice the value at the top.) 

Suggested approach: At each depth between z = 0 and z = 1.3 Mm, use Spruit’s values 
to linearly interpolate, at each value of z, a local value of Cp and a local value of . Then 
at depths between z = 1.3 Mm and (say) 163 Mm, use another linear interpolation to 
calculate a local value at each z for Cp and . Start at the base of the photosphere (where 
T = T(1)), and use Equations 7.10 and 7.11 to take the first step downwards in z to calculate 
∆T using the local values of Cp and g. Once you know ∆T, calculate the local T(2) = T(1)+ 
∆T. Now, knowing the updated temperature T(2), enter Equations 7.8 and 7.9 to calculate 
the local ρ(2) and p(2): but in order to calculate these, it is important to use the proper 
exponents, which will vary as the local  varies. In Equation 7.8, the exponent, rather 
than being fixed at 2.3, should be given the local value 1/( −1). In Equation 7.9, the expo
nent (rather than being fixed at 3.3), should be given the local value of /( −1). 

Proceed downward as described in the step-by-step process in Section 7.8 until you 
reach a temperature of 2 × 106 K. This process will in general lead to a deeper convection 
zone that the one we obtained in Table 7.1. 
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8 Radiative Transfer in the 

Deep Interior of the Sun
 

Continuing inward to the deep interior of the Sun, we note that, below the Sun’s convection zone, 
energy is transported once again by means of radiation. We refer to this region as the radiative inte
rior of the Sun. The aim of this chapter is to derive the equations that determine the radial profiles 
of temperature, pressure, and density in the radiative interior. 

In this region of the Sun, hydrogen and helium are essentially completely ionized. As a result, 
there are no longer many bound electrons available. At temperatures in excess of 2 million K, the 
only remaining bound electrons belong to some of the metals, and their relative abundances are 
small. Therefore, because of the lack of strong bound-bound and bound-free absorbers in the mate
rial, photons are not as strongly absorbed in the radiative interior as they are in the cooler gas in the 
convection zone. As a result, the opacity decreases rapidly in the radiative interior. 

With reduced opacity, radiation can more readily carry the energy flux outward through the Sun 
without requiring the temperature gradient to become large. That is, radiation once again takes over 
as the preferred means of energy transport. Thus, we can consider energy transport through the Sun 
in an overall sense in terms of a “sandwich”: there are two regions in which radiation is the principal 
agent for outward transport of energy (the photosphere and the radiative interior), separated by a 
region where convection is the principal agent for outward transport of energy. Another feature of 
the sandwich that involves the operation of different physical laws is this: hydrostatic equilibrium 
(HSE) applies in the innermost and outermost regions (radiative interior, photosphere) but HSE does 
not apply in the middle region (convection). In the latter region, we recall (from Equation 7.1) that 
bulk motions of gas arise there precisely because HSE is not applicable. 

In the present chapter, we shall once again make use of HSE as we go about the process of deter
mining how pressure, temperature, and density vary as a function of radius r below the base of the 
convection zone (where T(r) ≈ 2 × 106 K). Our goal in this chapter is to calculate p(r), T(r), and ρ(r) 
at radial locations r that extend from the base of the convection zone all the way down to the center 
of the Sun (i.e., down to r = 0). 

8.1 THERMAL CONDUCTIVITY FOR PHOTONS 

When we turn our attention to considering how radiation travels deep inside the Sun, we find that 
it is easier to describe the flow of radiative energy there than was the case in the surface layers. As 
was described in Chapter 2 (especially Equations 2.29 through 2.31), when we considered radiative 
transfer in the surface layers, we had to give careful consideration to the large relative difference 
between the intensity of the outgoing stream of radiant energy Io and the intensity of the incoming 
stream of radiant energy Ii. In fact, in the extreme case of τ  0, as we approach the uppermost 
layers of the photosphere, the Ii can be set equal to zero, while Io carries the full outward-directed 
radiant energy generated by the Sun. 

On the other hand, when we consider conditions in the gas that lies deep in the interior of the 
Sun, the situation is quantitatively different: Io and Ii at any given point have numerical values 
that are enormous compared to their numerical values in the photosphere. However, in the deep 
interior, the  difference between outgoing and incoming intensities is very small compared to 
the magnitude of either one of these intensities. In this situation, there is no real advantage to 
the Eddington “two-stream approximation” (see Section 2.8) in which Io and Ii have distinctly 
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different numerical values. Instead, in the deep interior, where |Io −Ii | << Io or I1, it makes more 
sense to adopt a different approach. Specifically, in the deep interior, local conditions are such 
that the photons flow down the temperature gradient in a manner that can be well described 
in diffusive terms. 

This means that the flux F of radiant energy can be described in the form of a generalized Fick’s 
law: the flux F flows down the temperature gradient from regions of hot gas (at small radial loca
tions) to regions of cooler gas (at larger radial locations). And the magnitude of the flux F is linearly 
proportional to (minus) the local radial gradient of temperature. That is 

dT
F r( ) k (8.1) th dr 

where kth is a physical parameter called thermal conductivity (with units of ergs cm−1 sec−1 deg−1). 
Referring to the kinetic theory of gases, we find (e.g., Roberts and Miller 1960) that in a medium 

where particles are responsible for the transport of heat, a general formula for thermal conductivity 
can be written in the form 

1
k V C (8.2) th t v3 

Here, Vt is the mean thermal speed of the particles that are transporting the heat,  is the mean 
free path of the particle (i.e., the mean distance a particle travels between collisions with another 
particle), ρ is the mass density of the medium, and Cv is the specific heat per gram at constant vol
ume of the medium transporting the heat. Inserting the appropriate units, it is readily seen that the 
units of kth are ergs cm−1 sec−1 deg−1, as required by Equation 8.1. 

Now we come to an interesting and unusual aspect of the material that exists in the deep radia
tive interior of the Sun. Up to this point in the book, in the photosphere and in the convection zone, 
when we discuss quantities such as the specific heat and the mean speed of the particles, we have 
been dealing with material dominated by the atoms (or ions) in the local gas. But in the deep interior 
layers of the Sun, we encounter a different regime. In these layers, we are dealing with a medium 
consisting of two very different components: photons and material particles. The two components 
are closely coupled by means of emission and absorption of radiation. As regards the local pressure, 
the photons do not contribute much: the ratio of radiation pressure to gas pressure is of order <0.001 
(see Section 9.2). 

But despite this small contribution to pressure, the photons outstrip the particles in their con
tribution to the thermal conductivity. Let us therefore apply Equation 8.2 to this regime, where 
photons are considered to be the “particles” that transport energy. We consider separately the four 
physical parameters that enter into the r.h.s. of Equation 8.2. 

For photons, the mean speed of the “particles” is the speed of light: therefore, we replace Vt in 
Equation 8.2 with c = 3 × 1010 cm sec−1. 

The mean free path for a photon is determined by the length-scale  corresponding, at any partic
ular radial location, to optical depth of order unity in the material situated at that location. Using the 
definitions in Chapter 3, Section 3.1, we see that this length-scale is given by the condition κρ = 1, 
where κ is the local opacity. Thus, in Equation 8.2, we replace  by the quantity 1/κρ. We shall see 
(Section 9.3) that near the center of the Sun, the magnitude of  is no more than 0.001 cm. This is 
a measure of how far the photons can travel before they interact with the local material. Compared 
with the size of the Sun (of order 1011 cm: see Equation 1.12), this is such a small distance that we 
can safely say the following: the photons and the material are closely coupled in the deep interior of 
the Sun, so closely coupled, in fact, that we can regard the photons+gas (in an approximate sense) 
as a single “fluid”. 

What shall we use for the density ρ? This cannot be contributed by photons, which have zero 
rest mass. Instead, the density is contributed by the material constituents (atoms/ions) of the local 
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“fluid”. Thus, for ρ, we use the local gas density, which can reach values in excess of 100 gm cm−3 

near the center of the Sun (see Table 9.1). 
How do we estimate the term Cv for the case of a photon-material fluid in which the photons are 

the carriers of energy? We start by recalling (Chapter 2, Section 2.1) that the energy contained in 
radiation per unit volume is u = aRT4 ergs cm−3 where aR = 7.5658 × 10−15 erg cm−3 deg−4 is the radia
tion density constant. In terms of units, we note that Cv = (dU/dT)v refers to an energy content U per 
gram of the medium. To convert from energy per unit volume to energy per gram, we divide u by 
the local mass density. This leads to U = aRT4/ρ ergs gm−1. Inserting this in Cv = (dU/dT)v, we find 
Cv = 4aRT3/ρ ergs gm−1 deg−1. 

Combining the four parameters on the r.h.s. of Equation 8.2, we find the following: 

4a cT 3 

kth  R (8.3) 
3  

This is the thermal conductivity that is appropriate for the fluid composed of photons and atoms/ions 
in the deep interior of the Sun. 

It is important to understand in detail why photons (rather than particles) are the dominant 
contributor to the value of kth. To see why this is so, consider the four parameters on the r.h.s. of 
Equation 8.2. The density ρ is the same for both particles and photons, so neither particles nor 
photons have any advantage in that regard. With the specific heat Cv = 3Rg/2μ for the particles 
and 4aRT3/ρ for the photons and setting μ ≈ 0.5, we find Cv(part) ≈ 2.4 × 108 ergs gm−1 deg−1. 
Setting T ≈ 5 × 106 K and ρ ≈ 10 gm cm−3 as typical values in the radiative interior of the Sun, 
we find Cv(phot) ≈ 4 × 105 ergs gm−1 deg−1. Therefore, the particles have an advantage of about 
1000 over photons as regards Cv. What about Vt? The mean thermal speed of the particles in the 
hottest part of the Sun is of order Vt (part) = 6 × 107 cm sec−1 (see Section 9.2), while photons 
have speed c = 3 × 1010 cm sec−1: therefore, the photons have an advantage by a factor of almost 
1000 over the particles as regards Vt. If kth depended only on Vt, ρ, and Cv, then the photons and 
particles would contribute comparably to the value of kth. However, when we consider the fourth 
parameter , the key to the dominance of photons in kth emerges. We find that near the center 
of the Sun, the opacity is such that photons can travel a mean free path of (phot) ≈ 10−3 cm 
(see Section 9.3). On the other hand, proton-proton collisions occur at a rate of order 1015 sec−1 

(see Section 11.3): that is, the mean free time ∆t between particle collisions is of order 10−15 sec. 
In this short time, the protons can travel a distance of (part) = ∆t × Vt (part) ≈ 6 × 10−8 cm. 
Therefore, the mean free path of photons in the deep interior of the Sun exceeds the mean free 
path of particles by more than four orders of magnitude: of the four parameters on the r.h.s. of 
Equation 8.2,  is the main reason why photons are the dominant contributor to kth in the deep 
interior of the Sun. 

As regards Equation 8.2, we shall subsequently (Section 17.15.1) use it in a very different envi
ronment (the solar corona), where electrons are the dominant contributor to kth. 

8.2 FLUX OF RADIANT ENERGY AT RADIUS R 

We have already noted (Section 2.1) that the Stefan–Boltzmann constant σB is related to the radia
tion constant aR by the formula σB = aRc/4. Using this in Equation 8.3, we find 

16  T 3 

kth  B (8.4) 
3  

This is the thermal conductivity of a medium of density ρ in which photons are transporting energy. 
As we can see, the smaller the opacity (i.e., the more transparent the medium is), the greater is the 
thermal conductivity. Photons are better at transporting heat if the medium allows the photons to 
pass through with minimum obstruction. 
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Now that we know the thermal conductivity, we can write down the local flux of radiant energy 
F(r) at radial location r in terms of the local temperature gradient and in terms of the local values 
of T, opacity, and density: 

16 BT r( )3 dT r ( )
F r( ) (8.5) 

3  r  r( )  ( )  dr 

We can use this equation in two ways, depending on what information is already available to us. 
On the one hand, if F(r) is specified (somehow), then we can determine the local value which dT/dr 
must have in order to transport that flux through the local medium. On the other hand, if dT/dr is 
specified (somehow), then we can determine the local value that F(r) must have. 

8.3 BASE OF THE CONVECTION ZONE 

At this point, we can determine a quantity to which we have already referred in Chapter 7: the 
temperature Tb at the base of the convection zone. The value of Tb is determined by the location 
where the temperature gradient due to radiation (given by Equation 8.5) becomes as large as the 
local adiabatic gradient g/Cp. (Recall that in the deepest parts of the convection zone, the local tem
perature gradient is essentially equal to the adiabatic gradient: see Section 7.6.) As was mentioned 
in Chapter 7 (see Equation 7.11), the numerical value of g at the base of the convection zone (at a 
radial location of about 0.7R ) is larger than the surface g by a factor of about two. However, at the 
base of the convection zone, the value of the specific heat is also larger by a factor of about two com
pared to its value at the solar surface (see Section 6.7.3). Thus, coincidentally, the surface value of 
g/Cp (≈ 1.7 × 10−4 deg cm−1: see Equation 6.9) can be inserted for dT/dr in Equation 8.5 at the base 
of the convection zone. 

Also at the base of the convection zone, where r ≈ 0.7R , F(r) is larger than the surface flux F
(= 6.2939 × 1010 ergs cm−2 sec−1: Chapter 1, Section 1.9) by a factor of (R /r)2 ≈ 2. Thus, we can 
set F(rb) ≈ 1.3 × 1011 ergs cm−2 sec−1. 

As regards the opacity, we have already noted (Chapter  3, Section  3.7) that at temperatures 
in excess of about 106 K, a reasonable fit to the opacities can be obtained by the Kramers’ 
“law”: κ = κoρ/T3.5 cm2 gm−1. By fitting to tabulated values of opacity in conditions that are rel
evant to the solar interior (e.g., Harwit 1973), we have determined that a plausible numerical value 
of κo is roughly 1024 when ρ is in units of gm cm−3 and T is in units of K. (This choice leads to a 
value of κ ≈ 103 cm2 gm−1 in gas where ρ ≈ 1 gm cm−3 and Τ ≈ 106 K. (Is this consistent with the 
graph of opacities which was shown in Figure 3.4? To answer that, given ρ ≈ 1 and Τ6 ≈ 1, note that 
the parameter R= ρ/T6

3 in Figure 3.4 has the value logR = 0. Therefore, we need to extrapolate the 
curves in Figure 3.4 upwards by one unit in logR: when we do that at logT = 6, we see that log  ≈ 3.) 

Inserting the values of F(rb) and dT/dr = 1.7 × 10−4 into Equation 8.5, we find that the temperature 
Tb and density ρb at the base of the convection zone are related by 

6 5.Tb 42 
2 

3 10 (8.6) 

The uncertainties in estimating the numerical values of the various parameters entering into 
Equation 8.5 are such that we retain only one significant digit in Equation 8.6. 

To proceed further, we need to know the relationship between Tb and ρb. Such a relationship 
is already available: in the deep convection zone, we have seen (Chapter 7) that the density and 
temperature are related by an adiabatic function. This function, Equation 7.8, when applied to 
the base of the convection zone, indicates that ρb = KdTb 

2.3, where Kd is related to the parameters 
at the top of the convection zone by Kd = ρ(zo)/T(zo)2.3. Inserting values of ρ(zo) = 2.9 × 10−7 gm cm−3 
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and T(zo) = 6010 K (from Chapter 5, Table 5.3), we find that Kd ≈ 6 × 10−16, where we again 
retain only one significant digit in view of the simplification that enters into the choice of the 
exponent 2.3 (see Chapter 7). 

1 9. 12Inserting these values into Equation 8.5, we find Tb 1 10 . This leads finally to Tb≈ 2.1 × 106 K.  
This is the origin of our approximate choice of temperature (Tb ≈ 2 × 106 K) at the base of the 
convection zone when we computed a model of the convection zone in Chapter 7. 

As shown by our retention of only one significant figure in Equation 8.6, we admit that the 
approximations we have made in order to calculate a model of the interior of the Sun are merely 
that: approximations. However, we can test how good our approximations are by comparing 
with results obtained by researchers who did not make those approximations. For example, 
Bahcall et  al. (2006) calculated 10,000 separate models of the Sun using the full details of 
energy generation, equation of state, metal abundances in the surface layers, opacities (includ
ing effects of individual abundances of each element), and the mixing length model of con
vection: 21 input parameters were randomly drawn for each model from separate probability 
distributions for every parameter. The paper by Bahcall et al. (2006) gives no information as 
to how much time was required to perform all of the requisite calculations, but it must have 
involved hundreds of hours of computing time. The preferred solutions of Bahcall et al. were 
found to have Tb = 2.006–2.184 × 106 K. Our choice of Tb ≈ 2 × 106 K is certainly consistent 
with this range. And as regards density at the base of the convection zone, Bahcall et al. found 
ρb = 0.1555–0.1862 gm cm−3: our calculation (Table 7.1) leads to ρb ≈ 0.22 gm cm−3. Although not 
quite as good as the fit to Tb, nevertheless, in the limit of one significant figure, our calculated 
value of density is consistent. 

8.4 TEMPERATURE GRADIENT IN TERMS OF LUMINOSITY 

It is useful to convert from units of flux to units of power (i.e., luminosity). At any radial location 
inside the Sun, the luminosity L(r) (in units of ergs sec−1) has a value that is determined by the 
summation of energy sources lying interior to radial location r. The value of L(r) is zero near the 
center of the Sun, and it increases rapidly in magnitude as one moves out through the energy-
generating core. 

Detailed models indicate that  L(r) rises to > 90% of its surface value at a radial location of 
about 0.2 R . The local flux of radiant energy F(r) (in units of ergs cm−2 sec−1) is related to L(r) by 
F(r) = L(r)/4πr2. 

Combining this with Equation 8.5, we see that we can write 

T r( )3 dT 3L r( ) r( )
2 

(8.7) 
( )r dr 64 B r 

8.5 TEMPERATURE GRADIENT IN TERMS OF PRESSURE 

The usefulness of Equation 8.7 can be seen by comparing it with the equation of HSE: 

dp r( )
g r  r ( )  

2 
(8.8) ( )  ( ) GM r  

dr r 

where M(r) is the mass interior to radial location r. Is it permissible to apply HSE to the radiative 
interior of the Sun? Yes: there are no bulk flows of gas in that part of the Sun (apart from rotation), 
indicating that forces are all in equilibrium. 
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Notice that on the right-hand sides, both Equations  8.7 and 8.8 contain the factor −ρ(r)/r2. 
Therefore, if we take the ratio of Equations 8.8 and 8.7, the terms ρ(r) and r2 disappear, as well as 
the minus sign on the r.h.s. This leads to an equation that relates the temperature T and the pressure 
p at any radial location in the star: 

T r( )3 dT 3 L r( )
 (8.9) 

r dp 64  BG M r( )  ( )  

As already mentioned, detailed solar models indicate that L(r) builds up rapidly to its asymptotic 
value as r increases from r = 0, reaching 90% of L at r ≈ 0.2R . For the mass function, M(r) also 
rises from zero at r = 0 and tends to the asymptotic value M  as r increases. The rate of rise in M(r) 
is not as rapid as for L(r): M(r) reaches 90% of its asymptotic value M around r ≈ 0.5R . In the 
outer parts of the radiative interior, where both M(r) and L(r) are within 10% of their asymptotic 
values, the ratio L(r)/M(r) can be well approximated with the asymptotic value (L/M)a = L /M ≈ 
2 ergs sec−1 gm−1 (see Chapter 1, Section 1.4). Closer to the center of the Sun, where L(r) remains 
large while M(r) decreases, the ratio L(r)/M(r) becomes larger than (L/M)a. Examination of detailed 
models suggests that L(r)/M(r) exceeds (L/M)a by factors of 2, 4, and 6 at r ≈ 0.25R , r ≈ 0.15R , 
and r < 0.1R . Thus, throughout >98% of the volume of the Sun, the right-hand side of Equation 8.9 
retains a constant value, within a factor of two. 

For purposes of the simplified solar model we are considering here, we shall set the right-hand 
side of Equation 8.9 equal to a constant, C1 = 8 × 109 c.g.s. This is the appropriate value (to one 
significant digit) for regions of the Sun where L(r)/M(r) = L /M . 

8.6 INTEGRATING THE TEMPERATURE EQUATION 

Once we have assigned a constant numerical value to the r.h.s. of Equation 8.9, we can now proceed 
with the integration of Equation 8.9. To do this analytically, we use the Kramers’ opacity law, as 
described earlier: κ = 1024 ρ/T3.5 cm2 gm−1. Substituting this in Equation 8.9, we find 

6 5  24.T dT  10 C1 dp (8.10) 

Using the perfect gas law, ρ = pμ/RgT, Equation 8.10 can be written as 

7 5  .T dT C  pdp (8.11) 2 

where C2 = 1024 C1 μ/Rg ≈ 1026μ. In the radiative interior of the Sun, μ ≈ 0.5. Integration yields an 
expression for pressure in terms of the temperature: 

.p2  C T  8 5   const . (8.12) 3 

where C3 = 1/(4.25 C2). In order to avoid the use of large numbers, it is convenient to express the 
temperature in units of millions of degrees K: T6 = T/106 K. In these units, we find 

2  24 .p 5 10 T6
8 5  const . (8.13) 

To evaluate the constant, we can make use of the conditions that have been computed for the base 
of the convection zone: according to Table 7.1 (Chapter 7), we see that at that location, T6 = 2.0027 and 
p = 2.84 × 1013 dyn cm−2. Inserting these in Equation 8.13, we find that the constant has the value 
−1.02 × 1027 c.g.s. We shall use this in the next chapter. 
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EXERCISE 

8.1 The Kramers’ “law” is not a perfect fit to the opacities in the solar interior. Other possible 
fits to the opacities include the cases  =  ρ/T 3 cm2 gm−1 and =  ρ/T 4 cm2gm−1. For 
both these cases, evaluate   and  by fitting (in both cases)  = 103 cm2gm−1 at ρ = 1 and 
T = 106 K. Starting at Equation  8.10, and keeping  C1 = 8 × 109 c.g.s., obtain revised 
versions of Equation 8.13, including revised values for the constant of integration. 
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Computing a Mechanical
 9 
Model of the Sun 
The Radiative Interior 

Following the spirit of Chapters 5 and 7, we now proceed deeper into the Sun and calculate a radial 
profile for the physical variables. As in the earlier chapters, we still refrain from considering the ori
gin of the energy that is passing through. Our aim is purely mechanical: given a total luminosity, 
how does the medium arrange itself so as to “handle” the energy passing through? A complete 
model of the Sun would of course include a description of the processes whereby the energy is 
generated: we will discuss that in Chapter 11. But in this chapter, we do not attempt to calculate a 
complete model. Our goal is as follows: given the solar luminosity as a boundary condition, what 
can we deduce about the structure of the Sun? 

In Chapter  8 (Section  8.6), we derived the following relationship between pressure and 
temperature: 

2  24 . 27 
6

8 5  1 02 10	 (9.1) p 5 10  T . 

This equation applies (within our simplification of constant L/M ratio) to the radiative interior. 
We use Equation 9.1 to continue our computation of a solar model. The model will consist of a table 
in which each line refers to a particular depth (i.e., radial location), at which we calculate the local 
temperature, pressure, and density. 

9.1 COMPUTATIONAL PROCEDURE: STEP BY STEP 

We start at the base of the convection zone, where we already (see Table 7.1) have numerical values 
for the quantities zb, Tb(≈ 2 × 106 K), pb, and ρb. In terms of the independent variable to be used in 
this region of the Sun, it is convenient to convert now from depth z to radial distance from the cen
ter of the Sun: r = R  − z. Thus, the starting values for the four parameters in the table we wish to 
compute for the radiative interior are r(1) = R − zb, T6(1) = 2.0027, p(1) = pb, and ρ(1) = ρb. These 
are the parameters we enter into the first line of our table of the solar radiative interior. We shall use 
the temperature as the independent variable in this chapter. 

The computation proceeds by means of the following steps: 

1.	 Choose an increase in temperature of (say) ∆T6 = 0.01. Thus, T6(2), the temperature (in 
units of 106 K) of the second row in the table, is given by T6(2) = T6(1) + ∆T6. 

2.	 Using T6(2) in Equation 9.1, the pressure p(2) on the second line of the table can be calculated. 
3.	 The pressure increment between lines 1 and 2 is ∆p = p(2) − p(1). 
4.	 The density on the second line of the table is calculated from the perfect gas law: ρ(2) 

= p(2)μ/(RgT(2)). Here, μ can be set equal to 0.58 (see Chapter 7, Section 7.8). The average 
density between lines 1 and 2 is ρ(a) = 0.5(ρ(1) + ρ(2)). 

5.	 The linear distance between lines 1 and 2 can be derived from the equation of hydrostatic 
equilibrium: 

p
r 	 (9.2) 

g r  a( ) ( )  
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Notice that there is a negative sign on the r.h.s. of Equation 9.2: this denotes that as the 
calculation proceeds, the radial coordinate will be found to decrease steadily as we move 
closer to the center of the Sun. However, before we can apply Equation 9.2, we need to 
discuss what value we should use for the acceleration g(r). 

6.	 In order to calculate  g(r), the physics of the solar interior tells us that there are two 
different zones in the radial coordinate that we need to distinguish. In the first zone, 
situated in the outermost parts of the Sun, at radial location r, the local gas density is 
small enough that the mass M(r) enclosed within radius r is essentially constant. As a 
result, g(r) = GM(r)/r2 in the outermost parts of the Sun can be written without serious error 
as g(r) = GM /r2. As a result, in this outer zone of the radial coordinate, g(r) increases as 
the radial location decreases, according to the inverse square law, 1/r2. (We have already 
encountered the effects of this behavior when we evaluated the value of g in increasingly 
deep layers of the convection zone (see Equation 7.11): at the base of the convection zone 
(where r ≈ 0.7R ), the value of g has already increased to about twice its surface value.) 
In the second zone, near the center of the Sun, the density does not change rapidly: within 
the inner 10% of the solar radius, detailed models indicate that the density changes by 
a factor of only about two. In the limit of constant density ρc near the center, the local 
acceleration due to gravity tends towards the following functional form: 

GM r ( )  4 G cg r( )  
2 

 r	 (9.3) 
r 3 

That is, near the center of the Sun, the acceleration g(r) due to gravity at radius  r 
increases linearly with increasing r. 

The existence of the two distinct zones of g(r) as a function of r means that the radial 
profile of g(r) inside the Sun is not monotonic. Instead, there exists, inside the Sun, a 
radial location rm where g(r) takes on a maximum value. 

In order to include this feature, and in the spirit of simplicity that informs our approach 
to modeling the interior of the Sun, we assume that the behavior of g(r) inside the Sun can 
be captured adequately by a composite of two functions, depending on the radial location. 

At radial locations that lie outside a certain critical radius rm, we use the inverse square 
law (just as we did in Chapter 7 when we dealt with the convection zone): 

g r( ) gs
R  

r 

2

(9.4)
 

where gs = 27,420 cm sec−2 is the acceleration at the surface of the Sun (see Equation 1.13). 
Note that Equation 9.4 is applicable only for radial locations r that satisfy the condition 
r ≥ rm. 

At radial locations that lie inside the critical radius rm, we replace Equation 9.4 with the 
following linear law: 

g r( ) 
g r( )m

r 

r m
(9.5)
 

where g(rm) = gs (R /rm)2 is chosen so that g(r) merges continuously (although the slope is 
discontinuous) onto Equation 9.4 at r = rm. Note that Equation 9.5 is applicable only for 
radial locations r that satisfy the condition r ≤ rm. 

Now the question is: what is an appropriate estimate for rm? Various values can be 
chosen in order to determine what effect the choice would have on the solar model. One 
possibility that we have used for the tabulated model to be reported later is to identify rm with 
the radial location where the mass interior to  r =  rm is 50% of the solar mass, i.e., 
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M(rm) ≈ 0.5M . Using information from detailed solar models, it turns out that this 
condition corresponds to rm  ≈ 0.25R . With this choice, as we move inward into the 
solar interior, Equation 9.4 indicates that the value of g at first increases from its surface 
value g = 27,420 cm sec−2 to a peak of g(r ) = 16g . Then in the inner zone, between r  and s m s	 m

the center of the Sun, g decreases along a linear ramp toward a value of zero at the center. 
This sharply peaked functional form of g(r) is of course only an approximation that we 
adopt in the interests of simplicity. In detailed solar models (see Exercise 9.5 at the end of 
this chapter), the radial profile of g(r) is not sharply peaked, but has a curved shape (with 
no discontinuities in slope) and has a less extreme peak value, namely, 8–9 gs. 

7.	 Now that g(r) can be evaluated at any radial location using Equations 9.4 and 9.5, we can 
evaluate g(r) at r = r(1) and then calculate ∆r using Equation 9.2. Once we know the value 
of the (negative) quantity ∆r, we can calculate r(2) = r(1) + ∆r. In this way, as we assign 
an ever increasing value to the independent variable T at step n, the radial location r(n) at 
step n will take on increasingly smaller numerical values. 

8. Repeat steps 1–7 multiple  times until the computed radial location r(n +1) = r(n) − ∆r 
reaches the value zero (or a negative value). At this point, the model will have reached the 
center of the Sun, and the tabulated parameters at the last line n where the radial coordi
nate r is nonnegative will refer essentially to conditions at the center of the Sun. 

An example of an abbreviated table computed according to the prior prescription is given in 
Table 9.1. The results in the table were obtained by assuming that the critical radius rm ≈ 0.25R . 

9.2 OVERVIEW OF OUR MODEL OF THE SUN’S RADIATIVE INTERIOR 

What do the results of the model in Table 9.1 tell us about conditions in the deep interior of 
the Sun? Note that the last entry in the table lies at a formal radial location of r = 0.003R , 
but this can be considered as being equivalent (within the accuracy of our calculation) to the 
center of the Sun. 

According to this model, the gas at the center of the Sun has a temperature of roughly  Tc = 
16.5 million K, a density of pc = 141 gm cm−3, and a pressure of pc = 3.34 × 1017 dyn cm−2. Protons 
at a temperature of T  have an r.m.s. speed V  = √(3R T ) ≈ 640 km sec−1.c	 rms g c

It is important to compare this proton speed at the center of the Sun with another characteristic 
speed associated with the Sun as a whole: the escape speed Vesc from the surface. In Chapter 1, 
Section 1.7, we saw that Vesc = 617.7 km sec−1. The latter is a measure of the strength of the inward 
pull of gravity, which holds the hot gas at the center of the Sun together by means of the crushing 
weight of the overlying gas. We see that in our simplified mechanical model of the Sun, we have 
found that the conditions at the center are such that V agrees with V within about 4%. This rms esc 

agreement indicates that in our model, the inward pull of the gravitational forces and the outward 
force of pressure are close to achieving a balance. The error of 4% could be improved if we were to 
use a more realistic radial profile for the acceleration due to gravity. This is an important confirma
tion that our model of the Sun as a whole is in hydrostatic equilibrium. 

How does our mechanical model in Table 9.1 compare with models that have been computed 
by including many more details of the physics (including energy generation by nuclear fusion)? To 
answer that, we may refer again to the series of 10,000 “standard solar models” reported by Bahcall 
et al. (2006): in these models, the best estimates of temperature, density and pressure at the center 
are found to be 15.48 million K, 150.4 gm cm−3, and 2.34 × 1017 dyn cm−2. Compared with these, our 
mechanical model yields a central temperature that is too high by about 7%, a density that is too low 
by about 6%, and a pressure that is too high by about 40%. The main reason for the error in pressure 
has to do with the mean molecular weight: we have assumed μ = 0.58 throughout the radiative interior, 
whereas in the “real Sun”, nuclear reactions build up more and more helium in the core as time goes 
on. As a result, in the Bahcall et al. model, the central value of μ equals 0.83, i.e., some 40% larger 
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TABLE 9.1 
A Mechanical Model for the Radiative Interior of the Sun: rm = 0.25R  

r(cm) T(K) p(dyn cm−2) ρ(gm cm−3) g(cm sec−2) 
5.3093E+10 2.0127E+06 2.9803E+13 1.0329E−01 4.6766E+04 

5.1046E+10 2.1027E+06 4.1817E+13 1.3873E−01 5.0548E+04 

4.9373E+10 2.2027E+06 5.5592E+13 1.7605E−01 5.4111E+04 

4.7997E+10 2.3027E+06 7.0541E+13 2.1369E−01 5.7301E+04 

4.5697E+10 2.5027E+06 1.0561E+14 2.9436E−01 6.3262E+04 

4.3737E+10 2.7027E+06 1.4960E+14 3.8613E−01 6.9084E+04 

4.1179E+10 3.0027E+06 2.3715E+14 5.5092E−01 7.7965E+04 

3.8249E+10 3.4027E+06 4.0589E+14 8.3209E−01 9.0393E+04 

3.5726E+10 3.8027E+06 6.5218E+14 1.1964E+00 1.0364E+05 

3.3520E+10 4.2027E+06 9.9832E+14 1.6570E+00 1.1775E+05 

3.1572E+10 4.6027E+06 1.4696E+15 2.2273E+00 1.3275E+05 

2.9839E+10 5.0027E+06 2.0944E+15 2.9204E+00 1.4865E+05 

2.7924E+10 5.5027E+06 3.1399E+15 3.9805E+00 1.6977E+05 

2.6240E+10 6.0027E+06 4.5442E+15 5.2808E+00 1.9229E+05 

2.4747E+10 6.5027E+06 6.3846E+15 6.8491E+00 2.1621E+05 

2.3416E+10 7.0027E+06 8.7472E+15 8.7135E+00 2.4153E+05 

2.2220E+10 7.5027E+06 1.1726E+16 1.0903E+01 2.6825E+05 

2.1141E+10 8.0027E+06 1.5426E+16 1.3446E+01 2.9636E+05 

2.0162E+10 8.5027E+06 1.9958E+16 1.6373E+01 3.2588E+05 

1.9269E+10 9.0027E+06 2.5443E+16 1.9715E+01 3.5680E+05 

1.8452E+10 9.5027E+06 3.2014E+16 2.3501E+01 3.8912E+05 

1.7702E+10 1.0003E+07 3.9810E+16 2.7763E+01 4.2284E+05 

1.6998E+10 1.0503E+07 4.8980E+16 3.2532E+01 4.2916E+05 

1.6272E+10 1.1003E+07 5.9684E+16 3.7840E+01 4.1087E+05 

1.5513E+10 1.1503E+07 7.2092E+16 4.3720E+01 3.9173E+05 

1.4714E+10 1.2003E+07 8.6382E+16 5.0204E+01 3.7161E+05 

1.3870E+10 1.2503E+07 1.0274E+17 5.7325E+01 3.5033E+05 

1.2970E+10 1.3003E+07 1.2138E+17 6.5116E+01 3.2768E+05 

1.2004E+10 1.3503E+07 1.4249E+17 7.3612E+01 3.0334E+05 

1.0953E+10 1.4003E+07 1.6630E+17 8.2845E+01 2.7687E+05 

9.7901E+09 1.4503E+07 1.9304E+17 9.2851E+01 2.4760E+05 

8.4694E+09 1.5003E+07 2.2295E+17 1.0366E+02 2.1438E+05 

6.9014E+09 1.5503E+07 2.5628E+17 1.1532E+02 1.7498E+05 

4.8543E+09 1.6003E+07 2.9330E+17 1.2785E+02 1.2370E+05 

2.0805E+08 1.6503E+07 3.3427E+17 1.4130E+02 1.5297E+04 

than our assumed value. In the best estimate models of Bahcall et al., protons at the center of the Sun 
have V = 621 km sec−1, agreeing with V to better than 1%. With a central density of 150 gm cm−3 

rms esc 

and a mean nuclear weight of about 2 (He is building up in abundance in the core because of the 
reactions), the corresponding number density of nuclei is of order 0.5 × 1026 cm−3. 

The central density in the Sun (150 gm cm−3) exceeds the mean density of the Sun (1.41 gm cm−3: 
see Equation 1.14) by a factor of slightly more than 100. This is a measure of the “central condensa
tion” of the Sun to which we shall return in Section 10.9. 

Another aspect of our model that deserves attention concerns the ratio of radiation pressure pr to 
gas pressure. The value of  pr at the center of the Sun can be determined from the result (see 
Section 2.8) pr = aRT4/3: our model yields pr ≈ 2 × 1014 dyn cm−2. The gas pressure at the center of 



139 Computing a Mechanical Model of the Sun 

 
 

 

 

   

 

 

 

 
 

  
     

     
   

 

   
       

   
 

 
 

 
   

 
   

the Sun exceeds pr by a factor of more than 1000. Elsewhere in the Sun, the gas pressure exceeds 
the radiation pressure by even greater factors. For example, in the photosphere, the gas pressure 
(≈ 105 dyn cm−2) exceeds the radiation pressure by a factor of more than 3 × 104. These numerical 
values indicate that we are justified in neglecting radiation pressure compared to the gas pressure 
when we calculate a first model of the Sun: when we wrote down the equation of hydrostatic equi
librium (Equation 5.1), the quantity p in Equation 5.1 includes only the gas pressure. In certain stars 
other than the Sun, especially in stars with hotter surface temperatures than those of the Sun, this 
neglect of radiation pressure may not be an acceptable approximation: but in the case of the Sun, 
radiation pressure does not contribute significantly to supporting the Sun against gravity. 

However, it should not be too surprising that our model (with its various approximations and 
simplifications) is not perfect. Because we use different modeling techniques and different μ values 
in different regions of the Sun, our model includes an artificial “step” in density between the bottom 
of the convection zone (see Table 7.1, bottom line) and the top of the radiative interior (see Table 9.1, 
top line). 

9.3 PHOTONS IN THE SUN: HOW LONG BEFORE THEY ESCAPE? 

Now that we have obtained a model of the interior of the Sun where photons transport the energy, 
it is worthwhile to ask: how long does it take for a photon to propagate from the center of the Sun 
to the surface? Subsequently we shall compare the photon time-scale with the time-scale for the 
escape of a very different type of elementary particle (the neutrino: Chapter 12) that is also gener
ated in the core of the Sun. 

To estimate the photon time-scale, we note that photons generated at the center of the Sun make 
their way outward by diffusing through the material of the solar interior. In this process, the pho
tons make their way outward in radius by means of a random walk: if the length of each step in the 
random walk is on average lp, then after N steps, the photon will have moved outward in the radial 
direction by a net distance of rN ≈ lp√N. 

As a first step toward estimating the diffusion time-scale, we consider the mean free path lp that 
a photon travels between interactions with the solar material. In view of the definition of opacity, 
it is clear that 1/κρ is an appropriate length-scale (see Chapter 8, Section 8.1). Therefore, we may 
take lp ≈ 1/κρ. 

What is a typical numerical value for this length scale? Near the center of the Sun, the model 
in Table 9.1 indicates ρ ≈ 140 gm cm−3. Moreover, with opacity in the solar interior given by the 
Kramers’ law, κ = κoρT−3.5, and using the value κo = 1024 (see Chapter 8), we find that near the center 
of the Sun, where Τ ≈ 1.6 × 107 K, the numerical value of the opacity κ is of order 10 cm2 gm−1. This 
leads to lp ≈ 0.7 × 10−3 cm. In the center of the Sun, photons are restricted to mean free paths with 
lengths of only a few microns. 

How is  lp expected to vary with increasing radial distance from the center of the Sun? In the 
radiative interior, we have seen (see Equation 9.1) that the pressure (at least near the center, where 
the constant of integration does not contribute significantly) satisfies p2 varies as T8.5, i.e., p~T4.25. 
In such conditions, the perfect gas law indicates that ρ ~ p/T ~ T3.25. Moreover, assuming Kramers’ 
opacity, κ ~ ρ/T3.5, we find that the mean free path lp ≈ 1/κρ ~ T3.5/ρ2 ~ 1/T3. As a result, the value 
of lp increases as we move away from the center of the Sun. However, even when we reach the 
base of the convection zone, at a radial location of rb ≈ 0.7R , where the temperature has fallen 
to 2 million K (i.e., T has decreased by a factor of about eight below its value at the center), lp has 
increased by a factor of about 512, i.e., lp ≈ 0.4 cm. Throughout the radiative interior the mean free 
time tp = lp/c between photon-atom collisions is no more than lp/c ≈ 10−11 sec. 

In terms of the random walk argument given earlier, the number of “steps” Nb that the photon must 
take in order to move outward from the center of the Sun to the base of the convection zone is given 
by Nb ≈ (rb/l )2. The time required for this number of steps is t  N t  r2 / l c. Most of the time p b  b p  b p 
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required by a photon to random walk to the base of the convection zone is spent in the core of the 
Sun, where lp is smallest. Inserting the values rb ≈ 5 × 1010 cm, lp ≈ 0.001 cm we find tb ≈ 8 × 1013 sec, 
i.e., 2–3 × 106 years. Thus, photons require on average a few million years to propagate from the core 
of the Sun out to the base of the convection zone. From there, their energies are transported to the sur
face by fluid flow on much shorter time-scales: near the top of the convection zone, flows of order 1 km 
sec−1 carry material up through one cell depth (of order the local pressure scale height, 140 km) in a 
time-scale of minutes. And deep in the convection zone, where convective flow speeds may become 
much smaller than the surface speeds, say 102 cm sec−1, the local cell heights may again be of order 
Hp ~ T/μg. Between the surface and the bottom of the convection zone, μ decreases by a factor of about 
two while g increases by a similar mount, i.e., μg remains constant. Therefore, with T increasing from 
roughly 5000 K at the surface to 2 × 106 K at the base of the convection zone, Hp is larger at the base 
if the convection zone than at the surface by a factor of about 400, i.e., Hp ≈ 5 × 109 cm. The time for 
flows to carry material from the bottom of such a cell to the top is of order 1–2 years. Compared to 
the time required for photons to diffuse through the radiative region in the solar interior, the time for 
energy to get from the base of the convection zone to the surface is negligible. 

This indicates that when we observe the Sun today, the energy entering our eyes was actually 
generated several million years ago. It will be a matter of interest in a subsequent chapter to com
pare this photon time-scale with the corresponding value for neutrinos. 

9.4 A PARTICULAR GLOBAL PROPERTY OF THE SOLAR MODEL 

We can obtain a complete model of the Sun, based on our simplified approach, by combining 
Tables 5.3, 7.1, and 9.1. 

In view of the large ranges of physical parameters between surface and center, is there some way 
that we can check our calculations in some global sense? There is one test that we can apply. 

In Chapters 13 and 14, we shall be interested in the topic of helioseismology, i.e., the study of 
eigenmodes of oscillation within the Sun. One class of eigenmodes, relying on pressure as the 
restoring force, is referred to as p-modes. Each eigenmode has an eigenfunction which, when plot
ted as a function of radius from the center of the Sun to the surface, exhibits a definite number of 
“nodes” (where the eigenfunction passes through 0). (See Figure 14.3 for the plot of a small section 
of certain eigenfunctions close to the solar surface.) The number of such nodes in the radial direc
tion, nr, helps to define each mode. 

We shall find that at high frequencies, the p-modes display a well-defined “asymptotic behavior”: 
for modes of a given angular degree (l, related to the number of nodes on the surface between north 
pole and south pole), the frequencies of modes that differ by unity in the value of nr differ from 
each other by a characteristic frequency spacing ∆ν. Theory indicates that the asymptotic frequency 
spacing ∆ν is related to the time ts required for sound to propagate from the center of the star to a 
reflection point at radial location R(r) near the photosphere: 

( )R r  dr 
ts  (9.6) 

c r( )0 s 

where cs(r)  is the sound speed at radial location r. Specifically, the frequency spacing Δν can be 
shown to be equal to 1/(2ts). 

Now that we have obtained a model of the Sun, albeit only a simplified model, it is of interest 
to inquire: what is the sound travel time from center to photosphere according to our model? The 
integration in Equation 9.6 can be performed using the combined information in Tables 5.3, 7.1, 
and 9.1. When we do this, we find that the sound crossing time from the center of the Sun to the 
photosphere of our combined model is ts = 3804 sec, i.e., a few minutes longer than one hour. This 
leads to ∆ν = 131.5 μHz. 
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Empirically, p-modes in the Sun with low values of l(= 0, 1, 2), are found to have asymptotic 
spacings of ∆ν = 134.8–135.1 μHz (Appourchaux et al. 1998). Thus, our mechanical model of the 
Sun replicates the solar asymptotic spacings within 2%–3%. It is a gratifying feature of our model 
that the run of temperature between center and surface replicates so well the empirical asymptotic 
frequency spacing between p-modes. 

9.5 DOES THE MATERIAL IN THE SUN OBEY THE PERFECT GAS LAW? 

In computing the model of the three regions of the Sun (Chapters 5, 7, and 9), we have used the equa
tion of state for a perfect gas. Now that we have calculated the conditions in the interior of the Sun, 
we need to perform a consistency check and ask: does the gas in the Sun really obey the perfect gas 
law? After all, we have found that the density at the center of the Sun exceeds 140 gm cm−3: this is 
denser than solid gold or solid lead, and the latter materials certainly do not obey the perfect gas law. 

What criterion can we use in order to test whether the perfect gas law, which follows from the 
classical kinetic theory of gases, is actually obeyed inside the Sun? The answer is: classical theories 
of matter are acceptable as long as quantum mechanical effects are negligible. 

According to quantum mechanics, particles in certain circumstances behave with wave-like 
properties. The wavelength p associated with a particle of mass m, moving with speed V, is given by 
de Broglie’s formula: p = h/(mV), where h = 6.62606896 × 10−27 gm cm2 sec−1 is Planck’s constant. 

Classical physics provides a reliable description of the behavior of matter as long as the de 
Broglie waves of individual particles do not overlap one another significantly. But the laws of 
classical physics break down if the de Broglie wave of one particle is so large that it overlaps sig
nificantly with the de Broglie waves of a number of the neighboring particles. Since the de Broglie 
wavelength is inversely proportional to mass, the particles with the smallest masses (electrons) 
will be the ones most likely to have a chance to have their wavelength overlap with their neigh
bors. How large should the number of overlaps be? It must be at least two, because the existence 
of electron spin allows two electrons to occupy the same element in phase space without contra
dicting Pauli’s exclusion principle. Once the wave of one electron overlaps the waves of (say) 10 or 
more neighboring electrons, then the electrons with overlapping de Broglie waves begin to “feel 
the pressure” of the Pauli exclusion principle. In a very real sense, the electrons are subject to a 
physical pressure that “drives them away” from their neighbors in phase space. This pressure is 
quite different from ordinary gas pressure that is governed by the perfect gas law p~ρT. In cases 
where the perfect gas law breaks down, quantum effects must be taken into account, and the elec
trons are said to be “degenerate”, and the pressure that they exert is called “electron degeneracy 
pressure”. 

In conditions where quantum effects are important, the pressure associated with electron degen
eracy can be strong enough to support the overlying weight of an object with a mass of order the 
Sun’s mass. In such an object, the pressure of the thermal gas is no longer the physical agent that 
supports the star against its own weight. As a result, even if HSE were to hold, there would no longer 
be any reason why the r.m.s. thermal speed of the particles at the center of the star should be equal 
to the escape speed from the surface. 

Let us see what happens to de Broglie waves at the center of the Sun. In order to make the quan
tum effects as large as possible, we consider electrons. For electrons at the center of the Sun, where 
the r.m.s. velocity is √(3kT/me), the de Broglie wavelength has a mean value of e = h/√(3kTme). 
Inserting the temperature at the center of the Sun, T = 1.6 × 107 K, we find e = 2.7 × 10−9 cm. 

Now that we know the value of the de Broglie wavelength of an electron at the center of the 
Sun, we can determine under what conditions electron degeneracy could become an important con
tributor to the pressure. In order that the de Broglie wave of one particular electron would extend 
throughout a volume in which there are 10 other electrons, the mean distance between the electrons 
at the center of the Sun must be less than e by a factor of about 101/3. Thus if electron degeneracy 
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is to be important in the center of the Sun, the mean distance between electrons in the center of the 
Sun must be no larger than de < 1.3 × 10−9 cm. 

In a medium where the electron density is n cm−3, the mean distance de between an electron 
and its neighbors is roughly 1/n1/3 cm. Thus, for electron degeneracy to be important at 
the center of the Sun, the number density of electrons would have to be at least as large as 
5 × 1026 cm−3. At the center of the Sun, where hydrogen burning has been going on for several 
billion years, helium has increased to such an extent that the helium abundance is comparable to 
that of hydrogen. Corresponding to each electron from He, there are two nucleons to contribute 
mass, each with a mass of 1.67 × 10−24 gm. Therefore, the mass density in a helium-dominated 
region with ne > 5 × 1026 cm−3 would exceed 1700 gm cm−3. This is more than 10 times larger 
than the best estimates for the density at the center of the Sun (150.4 gm cm−3 in the model of 
Bahcall et al. 2006). 

Thus, despite the high gas density at the center of the Sun, the central temperature is so large 
that the mean thermal speed Vt is of order 3 × 109 cm sec−1. It is this large speed that makes the de 
Broglie wavelength of each electron relatively short. As a result, there is no significant overlap of the 
electron de Broglie waves at the center of the Sun. 

This means that the laws of classical physics are adequate to describe the gas at the center of the 
Sun. In particular, we are justified in assuming that the material in the Sun, even at the very center 
where the material is denser than gold or lead, still obeys the equation of state of a perfect gas. The 
high temperature in the central material is what allows this to happen. 

9.6 SUMMARY OF OUR (SIMPLIFIED) SOLAR MODEL 

We have found that, even without considering the generation of energy in detail, it is neverthe
less possible, using appropriate laws of physics, to calculate the radial profiles of various physical 
parameters from the center of the Sun all the way to the visible surface. These are contained in our 
Tables 5.3, 7.1, and 9.1. 

Our results allow us to appreciate the great range that is spanned by the various physical param
eters in the Sun. Of the three principal parameters (T, p, and ρ), all are found to fall off monotoni
cally from the center of the Sun to the surface. We note that the smallest range in numerical value of 
a parameter in going from center to surface is exhibited by the temperature: the central temperature 
exceeds the photospheric temperature by only about 3.5 orders of magnitude. Pressure exhibits 
the widest range: the central pressure exceeds the photospheric pressure by at least 12 orders of 
magnitude. Density presents an intermediate case: the central density (~150 gm cm−3) exceeds the 
photospheric density (~3 × 10−7 gm cm−3) by eight to nine orders of magnitude. Thus, the Sun is far 
removed from being like a billiard ball where the density remains constant throughout the volume. 
The mean density of the Sun as a whole has already been noted: 1.410 gm cm−3 (see Section 1.7). 
This mean density is significantly closer to the central density than to the density of the gas that we 
can see in the visible photosphere of the Sun. 

It is encouraging to find that, despite these great ranges in the three main physical parameters, 
we have arrived at a model of the Sun that is consistent with a variety of observational data, despite 
the fact that the model is purely mechanical, i.e., our model has included the equation of momentum 
conservation, but we have not paid much attention to the energy equation (except to assume that the 
ratio L(r)/M(r) is independent of r). 

Of course, it is precisely the generation of energy that sets the Sun (and stars) apart from other 
celestial bodies. Now that we have derived estimates of certain physical parameters inside the Sun, 
we need to examine the processes by which energy (which we have treated so far as a boundary 
condition) is actually generated. 

However, before we enter into the details of nuclear reactions, we make a digression into a topic 
that at first sight seems to be rather idealized and far afield from a study of the Sun. The topic has to 
do with mathematical entities called polytropes. However idealized these may seem, we shall find 
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that we have already been working with models (in the convection zone and in the radiative interior) 
that are actually not far removed from polytropes. Moreover, the discussion of polytropes will stand 
us in good stead in a subsequent chapter when we consider oscillations in the Sun. 

EXERCISES 

9.1 Perform the computation described in Section 9.1, using whatever computational tech
nique you prefer for the numerical work. How do your numbers at the center of the Sun 
compare with those in Table 9.1? 

9.2 In step 6 of the procedure in Section 9.1, there is a recommendation for an approximation 
to the nonmonotonic radial profile of gravity inside the Sun. In this exercise, we ask the 
reader to experiment with different choices for the parameters of the approximation, for 
example, choose a smaller value of rm, e.g., 0.20R or 0.15R , and recalculate the model 
according to Section 9.1. How do the parameters at the center change? Then choose a 
larger value of rm, e.g., 0.30R  or 0.35R , and see how the central parameters change. 

9.3 The formula in Equation 9.1 is based on the Kramers’ opacity law. Use the two revised 
versions of Equation 9.1 that you obtained in Exercise 8.1 of Chapter 8. For each case 
of the revised opacity “law”, repeat the calculation of Section 9.1. How do your revised 
results for the parameters at the center of the Sun agree with the results of Bahcall et al. 
(2006)? 

9.4 For each of your models, calculate the sound crossing time (Equation 9.6) and the associ
ated frequency interval ∆ν (express the frequency in μHz). How well does your value of 
∆ν agree with the observed solar value of (about) 135 μHz? 

9.5 An alternative approach to modeling the radial profile of the gravity is to examine the 
profile of the mass parameter M (r) in a detailed solar model, such as that on the web
site of J. Christensen-Dalsgaard. The tabulated values of the model are contained in the 
file www.phys.au.dk/~jcd/solar_models/fgong.l5bi.d.15c. A  description of the different 
columns and rows can be found at www.phys.au.dk/~jcd/solar_models/file-format.pdf. 
Extract M(r) at a number of points in the tabulated model, and plot g(r) = GM(r)/r2 as a 
function of log(r). A peak (≈ 8.4 times the surface gravity) occurs at a certain value of 
log(r/R )(≈ −0.8). Is there a simple functional form (such as a parabola) that you can find 
to fit the peak? Use that functional form to obtain a better estimate of the local value 
of g in step 6 of the procedure in Section 9.1. How do the central parameters of the Sun 
change as a result? 
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10 Polytropes
 

Now that we have computed a model of the solar interior, albeit a simplified one, it is worthwhile 
to pay a certain amount of attention to a particular aspect of our solutions. This digression will be 
valuable in a later chapter when we come to consider how to compute the properties of oscillations 
in a solar model. 

10.1 POWER-LAW BEHAVIOR 

Inspection of Equation 9.1 indicates that, when we consider regions in the radiative interior of the 
Sun where the temperature is sufficiently large, the constant term in Equation 9.1 can be neglected. 
In this limit, we see that the pressure p varies as a power law of T: p ~ Tβ. In this particular case, 
the exponent β in the power law between p and T has the numerical value of 4.25. The origin of 
this particular numerical value for the exponent can be traced to two simplifications: (i) L(r)/M(r) 
remains constant as a function of radial location and (ii) the opacity depends on density and tem
perature according to “Kramers’ law”: κ ~ ρT−3.5. These are simplifications that deal with matters 
of (i) energy generation and (ii) energy transport. The fact that the radial profiles of pressure and 
temperature are related to each other by a power law therefore depends on certain assumptions we 
have made concerning the energy equation. 

In a very different context, a power-law relation p ~ T also emerged when we were modeling 
the deep convection zone: see Equations  6.14 and 7.9. Detailed models of the solar convection 
zone indicate that throughout some 90% of the depth of the convection zone, the power law in the 
p ~ T relationship is close to 2.5. In the case of the convection zone, the reason for the power-law 
behavior can be traced to the physics of adiabatic processes, i.e., on processes that have do to do 
with the gain or less of energy as the fluid moves. Once again, certain assumptions that we make 
concerning the energy equation lead to a power-law behavior between p and T. 

It is noteworthy that we have encountered a power-law relationship between pressure and temper
ature in two quite different regions of the Sun: one region lies in the deep interior (where radiation 
dominates energy transport), while the second region lies in the convection zone (where radiation 
contributes almost nothing to the energy transport). In both regions of the Sun, the emergence of the 
power law has to do with certain assumptions about the energy equation, although the assumptions 
are quite different in the two different regions. 

In this chapter, we discuss the properties of equilibrium gas spheres (“polytropes”) in which no 
explicit attention whatsoever is given to the energy equation. We will pay explicit attention to the 
law of conservation of mass and also to the law of conservation of momentum. But we will make no 
attempt to include explicitly the law of conservation of energy. Instead of attending to the details of 
the energy equation, a certain functional form will be assumed to exist for the relationship between 
pressure and density. Specifically, pressure and density are assumed to be related by means of 
a power law. For a perfect gas, this means that pressure and temperature are also related by a power 
law. A power-law relationship between pressure and density is referred to as a “polytropic” equation 
of state. 

In our search for deriving radial profiles of physical parameters inside the Sun (or for that mat
ter inside any star), the only reason that polytropes have any claim on our attention is that in “real 
stars”, the generation and transport of energy occur in fact in such a way that, in certain cases, the 
pressure and density do turn out to obey a polytropic functional form, at least over certain ranges 
of the radial coordinate. 

https://doi.org/10.1201/9781003153115-10
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10.2 POLYTROPIC GAS SPHERES 

A polytrope is defined to be a medium in which the pressure and density are related by the follow
ing relationship: 

1)/ np K (n (10.1) 

where K and n are constants. Equation 10.1 is referred to as the “polytropic equation of state”. The 
constant n is referred to as the “polytropic index”. (In previous chapters, lower case n has been used 
on occasion to denote number densities of atoms/electrons in a gas. In the present chapter, and also 
in Chapter 14, there are historical reasons for using n as the polytropic index; but in the case of a 
polytrope, the constant n is a dimensionless number and has nothing to do with density.) The proper
ties of polytropic spheres of gas have been discussed by a number of authors, including Lane, Ritter, 
Kelvin, Emden, and Fowler. A detailed study can be found in a book by Chandrasekhar (1958). 
Among the results found in that book, we mention two in particular: (i) for each value of n, there is 
a well-defined numerical value (called the “central condensation”) for the ratio of the central density 
to the mean density; (ii) in the particular polytrope with n = 3, the polytrope has a unique mass. 

Why are polytropes relevant to our study of the Sun? Because, in a nonionizing medium that 
obeys the perfect gas equation of state, p ~ ρT, the polytropic relationship can be written in the form 
of a power-law relationship between pressure and temperature: p ~ T , where β takes on a specific 
value: β(polytrope) = n +1. 

This leads us to consider an application of polytropic concepts to the two portions of the Sun in 
which we have already identified a power-law relationship between pressure and temperature. 

First, in the adiabatic portions of the convection zone, the fact that p varies as T2.5 suggests that 
the radial profile of the physical properties of those portions of the Sun is related to the radial profile 
of a polytrope with index n = 1.5. We may say that the structure of the Sun in the adiabatic portions 
of the convection zone corresponds to an “effective” polytropic index of 1.5. 

Second, in the Sun’s radiative interior, Equation 9.1 indicates that when p and T are large, p var
ies as T4.25, suggesting that a polytrope with index n = 3.25 can provide useful information on the 
radial profile of physical parameters. In this case, we may say that the structure of the Sun in the 
radiative interior corresponds to an “effective” polytropic index of 3.25. 

To make this more quantitative, it is instructive to calculate models of polytropes. As was men
tioned earlier, in this chapter we continue the practice of not referring to the energy equation explic
itly: all details of energy generation and transport are implicit in Equation 10.1. Then, a polytrope 
model is obtained by solving the equation for conservation of mass and the (static version of the) 
equation for conservation of momentum. In this way, we are using information about the mechani
cal properties of the star without considering the thermal properties explicitly. Despite this limita
tion, since the speed of sound at any radial location r depends on the ratio of p(r) to ρ(r) (both of 
which we shall calculate), our polytrope models (simple though they are) will still provide sufficient 
information to allow us to study quantitatively the propagation of acoustic waves through the (poly
tropic model of the) star. 

The equation of mass conservation is: 

dM r ( )  24 r r( )  (10.2) 
dr 

As we have already seen (Equation 7.1), the equation of momentum conservation (in the limit of 
zero velocity) is simply the equation of HSE: 

dp r ( )  GM r  r( )  ( )
 (10.3) 

dr r2 
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Equations 10.2 and 10.3 can be combined into a single second-order equation: 

1 d 
 
r2 dp r ( )

4 G r( )
2 

 (10.4) 
r dr ( )  dr r 

This is Poisson’s equation for a self-gravitating sphere. It is a second-order equation that includes 
two unknown functions of the radial coordinate:  p(r) and  ρ(r). At this point, the polytropic as
sumption, i.e., that p is related to ρ at each and every value of r by the relation p(r) = Kρ(r)(n+1)/n, is 
introduced, and this will allow Equation 10.4 to be reduced to an equation for a single function of r. 

Let the density and pressure at the center of the polytrope by ρc and pc. Once those two param
eters are specified, the constant K in the polytropic equation of state can be expressed in terms of 
the quantities at the center. Then at all values of radial location r, the local pressure p(r) and the local 
density ρ(r) satisfy the relation 

p r( )  pc (10.5) 
(n 1)/n (n 1)/n ( )r c 

10.3 LANE–EMDEN EQUATION: DIMENSIONAL FORM 

Equation 10.4 includes the physical parameters p and ρ. It is now convenient to introduce a dimen
sionless function y of the radial coordinate according to the following definition: 

n  r( )
y  (10.6) 

c 

The function y is referred to as the Lane–Emden function. The goal of the polytropic exercise is 
to derive analytically, or compute, the function y as a function of the radial location from the center 
of the polytrope (i.e., at r = 0) out to the surface (where ρ falls to a value of zero for the first time). In 
view of the definition of y, it is clear that the boundary condition on y at the center of the polytrope 
is y(r = 0) = 1. 

Inserting Equation 10.6 into Equation 10.5, we find that 

p r( ) n 1 y (10.7) 
pc 

From Equations 10.6 and 10.7, we see that at any radial location, y ~ p(r)/ρ(r). From the equa
tions of thermodynamics, we know that the ratio of pressure to density in a medium is related to the 
(square of the) sound speed. Thus, the numerical value of √y at any radial location is proportional 
to the local sound speed. Because of this, in our subsequent study of helioseismology (Chapter 14), 
we shall be able to use polytropes to determine realistic global properties of oscillation modes that 
involve the propagation of acoustic waves in a sphere. 

If the material of which the polytrope is composed happens to obey the perfect gas equation of 
state, then at any given radial location, y ~ p(r)/ρ(r) is also proportional to T(r), the local tempera
ture. In fact, y(r) = T(r)/Tc, where Tc is the central temperature. In this case, Equations 10.6 and 10.7 
indicate that ρ(r) scales as T(r)n, while p(r) scales as one higher power T(r)n+1. We have seen scalings 
of this kind earlier: see Equations 7.8 and 7.9. 

Using Equations 10.6 and 10.7 to replace p(r) and ρ(r) in Equation 10.4, and collecting all the 
constants on the left-hand side of the equation, we find 

(n 1)p 1 d dyc 2 nr y (10.8) 
2 2 4 G c r dr dr 
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For any given value of the polytropic index n, the radial profile of the function y can be obtained 
by solving Equation 10.8. 

10.4 LANE–EMDEN EQUATION: DIMENSIONLESS FORM 

In order to convert the Lane–Emden equation to dimensionless form, we introduce a new unit ro, the 
Emden unit of length, which is defined by the combination of constants that appear on the left-hand 
side of Equation 10.8: 

2 (n 1)pcro  
2 (10.9) 

4 G c 

How can we be sure that ro has the dimensions of length? To answer this, we note that on the right-
hand side of Equation 10.9, we can first isolate the ratio of pc to the first power of ρc: dimensionally, 
this is the ratio of ergs cm−3 to gm cm−3, i.e., ergs/gm, i.e., the square of a speed. Depending on a 
numerical coefficient, the speed in this case turns out to be the speed of sound. Thus, the ratio pc/ρc 

has dimensions of [length]2/[time]2. The remaining dimensional units are those belonging to 1/Gρc. In 
Equation 1.24, we mentioned a characteristic period Pg associated with the gravitational field of the 

Sun. The value of P is proportional to (R3 / GM ). The dimensions of M/R3 are those of density, g  

indicating that the combination 1/√(Gp) has the dimensions of [time]. Therefore, the factor 1/Gρc in 
Equation 10.9 has the dimensions of [time]2. Combining the dimensions, we see that the dimensions of 
the right-hand side of Equation 10.9 are indeed [length]2. Therefore, ro has the dimensions of length. 

Is the Emden unit of length related to a length-scale that might be relevant in the context of the 
structure of “real stars”? In particular, would it be useful to consider the dimensions of a star such 
as the Sun in terms of ro? Or does the radius of a “real star” differ from ro by many orders of mag
nitude? To answer these questions, we evaluate ro using the values of central density and pressure 
that we have already obtained in our simplified solar model. Substituting pc = 3.34×1017 dyn cm−2 

and ρc = 141 gm cm−3 from Table 9.1, we find that ro = 4.5 × 109√(n + 1) cm. We shall see later that the 
radius Rp of a polytropic star is larger than ro by a factor x1 where the numerical value of x1 depends 
on the n value. For example, with n = 3.25, the numerical value of x1 is about 8 (see Table 10.1). 
Moreover, for n = 3.25, we see that the Emden unit of length ro has a numerical value of about 
9.2 × 109 cm. Multiplying ro by x1, we find that Rp is about 7.4 × 1010 cm. Remarkably, this value of 
the polytropic star radius is within a few percent of the actual solar radius. So it appears that the 
linear dimensions of polytropes in which central pressures and densities overlap with those of the 
“real Sun” provide a realistic and useful unit of length for characterizing a star such as the Sun. 
Applicability of polytropes to other stars will be discussed later. 

In terms of the Emden unit of length ro, we convert the radial (dimensional) coordinate into 
a dimensionless variable x for the radial coordinate as follows: x = r/ro. This allows us to rewrite 
Equation 10.8 in dimensionless form as follows: 

1 d  2 dy  nx y (10.10) 
2 x dx dx 

This is the dimensionless form of the Lane–Emden equation. It is an ordinary differential equa
tion of second order containing one unknown, y(x). 

In certain cases, it is convenient to rewrite Equation  10.10 in terms of an auxiliary func
tion z defined by z xy. Inserting this into Equation 10.10, we find that the Lane–Emden equation 
can also be written in the form 

2 nd z  z
 (10.11) 

2 n 1dx x 
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10.5 BOUNDARY CONDITIONS FOR THE LANE–EMDEN EQUATION 

When we set out to calculate a polytropic model of a spherical “star”, the aim of the exercise is to 
determine how physical parameters vary between the center of the sphere (x = 0) and the surface 
(x = x1). To do this, we must solve Equation 10.10 for y as a function of the radial coordinate x. 
Once we have such a solution, a plot of y as a function of x will show, for a perfect gas, a curve 
that is proportional to the radial profile of temperature from center to surface. According to 
Equation 10.6, the radial profile of the density will be obtained by raising the local value of y at 
each value of x to the power n (the polytropic index). According to Equation 10.7, the radial 
profile of the pressure will be obtained if the local value of y at each value of x is raised to the 
power n + 1. 

Since Equation  10.10 is second order, we need two boundary conditions (BCs) in order to 
obtain a unique solution for any given value of n. One BC is readily available from the definition in 
Equation 10.6: y = 1 at x = 0. 

To obtain a second BC, it is helpful to consider how the acceleration due to gravity g(r) is 
related to the Lane–Emden function  y(r). To derive such a relation, we recall that the value 
of the acceleration due to gravity g(r) at any radial position r is related to the local gravitational 
potential by the formula g = −d /dr. This allows us to rewrite the equation of hydrostatic 
equilibrium (HSE) in the form dp/dr = ρd /dr, leading to dp = ρd . In view of the definition of 
a polytrope (Equation 10.1), we can also write dp = [(n + 1)/n]Kρ1/ndρ. This leads to the follow
ing differential equation relating p and  in HSE: d ~ ρ dρ where the exponent δ = −1 + (1/n). 
Integrating the equation, we find ~ ρ1/n + constant. Typically, the gravitational potential is set 
to zero at infinity, where ρ  0. This choice leads to ~ ρ1/n. Recalling the definition of y in 
Equation 10.6, we see that ~ y. 

Now at the center of the Sun, where density approaches a constant value, we have already seen 
(Section 9.1, step 6, Equation 9.5) that g  0 as r  0. In other words, d /dr  0 as r  0. Converting 
to the dimensionless length parameter x, this is equivalent to dy/dx  0 as x  0. This provides us 
with the second BC, which we need in order to obtain a unique solution for Equation 10.10 for any 
specified value of the polytropic index n. 

In order to satisfy the two BCs, a series expansion is helpful near the origin. To satisfy the BC 
y = 1 at x=0, the leading term in this series must be 1. And to satisfy the BC dy/dx = 0 at x = 0, the 
series must not contain a term which is first order in x. For a polytrope with index n, the result is 
found to be (e.g., Chandrasekhar 1958, p. 95) 

x2 n 4y x ... (10.12) 1 
6 120 

10.6 ANALYTIC SOLUTIONS OF THE LANE–EMDEN EQUATION 

Since the boundary conditions both apply at x = 0, we obtain a solution for y(x) (for any given value 
of n) by starting at the center of the polytrope and integrating outward. 

We note that since dy/dx ~ d /dr, and d /dr = −g (a negative number), the slope dy/dx is negative. 
Therefore, although y starts with the value y = 1 at x = 0, the value of y decreases as x increases, 
for all values of n. Since y decreases as we move outward from the center, there exists a certain 
radial location, x = x1 (which is different for different values of n), at which the value of y passes 
through zero for the first time. At that radial location, pressure and density are both equal to zero. 
The ratio of p/ρ (i.e., the temperature, if the medium obeys the perfect gas law) is also zero at x = x1. 
Compared to the values of unity at the center of the polytrope, it is natural to consider that the first 
zero point of y corresponds to the “surface” of the polytrope. 

Analytic solutions are known for the Lane–Emden equation for three particular values of n. 
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10.6.1 polytrope n = 0 

In this case, Equation 10.10 becomes 

d  2 dy  2x x (10.13) 
dx dx 

Integrating once, we find 

dy x3 

x2  const . (10.14) 
dx 3 

In order to satisfy the boundary condition dy/dx = 0 at x = 0, the constant must be zero. This 
leads to 

dy x
 (10.15) 

dx 3 

Integrating again and applying the condition y = 1 at x = 0, we find 

2x 
y n  0) (10.16) (  1  

6 

The first zero of y(n = 0) occurs at x1 = √6. Thus, the (dimensional) radial coordinate associated 
with the “surface” of the n=0 polytrope is ro √6, where ro in this case is obtained from Equation 10.9 
by setting n = 0. 

10.6.2 polytrope n = 1 

In this case, it is convenient to use Equation 10.11, which reduces, in the case n = 1, to the simple 
form 

2d z  
z (10.17) 

dx2 

The solution of this equation, consistent with both boundary conditions at x = 0 is z = sin(x). 
Reverting to the solution for y, we have 

sin( ) 
( 1  

x 
y n  ) (10.18) 

x 

The first zero of y(n = 1) occurs at x1 = π. 

10.6.3 polytrope n = 5 

Derivation of the solution in this case is more complicated than the two prior cases. (See 
Chandrasekhar’s 1958 book, pp. 93–94, for a derivation.) Here we simply state the result: 

1 
y n(  5)  (10.19) 

(  (  1 x2 / ) 3 

The first zero of y(n = 5) occurs at x1  ∞. Thus, for the case n = 5, the equilibrium configuration 
of the polytrope is infinitely extended. 
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The process of obtaining numerical solutions of the Lane–Emden equation for arbitrary values 
of n will be discussed in Section 10.8. 

10.7 ARE POLYTROPES IN ANY WAY RELEVANT FOR “REAL STARS”? 

Note that in all three polytropes for which analytic solutions exist, inspection of the solutions indi
cates that y is a monotonically decreasing function of x for all values of x between 0 and x1. This 
property also emerges from numerical solutions of the other polytropes, where only nonanalytic 
solutions exist. Recalling that y is proportional to temperature (in a perfect gas) (see Section 10.3), 
the fact that temperature decreases monotonically from center to surface indicates that if energy is 
generated at the center (by an unspecified mechanism), then that energy will find itself in a medium 
that has a negative temperature gradient: this facilitates the transport of energy outward toward the 
surface (i.e., in the direction of increasing r) in accordance with Fick’s law (Equation 8.1). Here 
again, we come across a feature that makes it attractive to consider polytropes as structures which, 
although highly idealized, nevertheless have properties that are physically relevant in the context of 
modeling “real stars”. 

The most successful application of polytropes to stellar structure is found when one is modeling 
a star in which the equation of state in fact obeys the polytropic relation (Equation 10.1). Do such 
stars exist? The answer is a definite “Yes”. We can summarize four examples. 

First, the polytrope n = 1.5 is relevant to low-mass stars. We recall (Chapter 7) that the Sun has 
a convection zone that occupies a spherical shell with a finite thickness: the shell extends inwards 
(below the surface) until it comes to an end at a well-defined radial location (r ≈ 0.7R ). As a result, 
only an outer envelope of the Sun is convective. It turns out that when models are computed for stars 
with masses that are progressively smaller than the Sun’s mass, the convective envelope becomes 
progressively deeper, reaching ever farther into the star as we consider stars with lower and lower 
masses. Eventually, a mass Mc is reached (in the range 0.33–0.24M : see e.g., Mullan et al. 2015) 
where the convective “envelope” extends all the way to the center of the star. For stars with masses 
less than Mc, the entire star is convective, and the adiabatic limit of convection applies throughout 
essentially the entire star. Such stars can be represented quite well by the n = 1.5 polytrope. Such 
stars have a much smaller value of central condensation that the Sun does: whereas the latter has 
a central density that exceeds the mean density by a factor of more than 100 (see Section 9.2), the 
central density in an n = 1.5 polytrope is only about six times larger than the mean density (see 
Table 10.2). 

Second, for quite different reasons, the polytrope n = 1.5 also turns out to be relevant to old 
stars called “white dwarfs”. These are objects where so much time has elapsed that the supply of 
nuclear fuel is exhausted: in these stars, electron degeneracy pressure (see Chapter 9, Section 9.5) 
supports the star against gravity. In such cases, if the electrons are nonrelativistic, Equation 10.1 
applies with n = 1.5 and a value of K that depends only on certain physical constants (Planck’s 
constant and the mass of the electron). In this case, it can be shown that white dwarfs should obey 
a mass-radius relationship R ~ M−1/3. This is a very different relationship from that which applies 
to solar-like stars: for the latter, the radius R increases as the mass increases, roughly as R ~ M. 
But white dwarfs are predicted to have radii that decrease as we consider objects with increas
ingly large masses. There is observational evidence to support this prediction (e.g., Provencal 
et al. 1998). 

Third, if the degenerate electrons supporting a white dwarf star are relativistic, it turns out that 
the equation of state is again given by Equation 10.1, but now with the value n = 3.0. Now, K has a 
different value, again determined by a (different) combination of physical constants. For the particu
lar value n = 3.0, an interesting outcome emerges: a polytrope with n=3 has a unique mass M3, deter
mined by physical constants (Chandrasekhar 1958). For typical stellar compositions, M3 is found to 
be close to 1.4M(sun): a star with mass M3 is the most massive object that can exist in hydrostatic 
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equilibrium with support from degenerate electrons. It is remarkable that a polytrope corresponding 
to an object being supported against gravity by the pressure of relativistic electrons has a unique 
mass of the same order as a “real star” such as the Sun. Nevertheless, this conclusion has emerged as 
of fundamental importance in observational attempts to probe the evolution of the stellar universe 
in its earliest stages. The stars that can be observed farthest away in space (and therefore farthest 
back in time) are exploding stars called supernovae. One class of supernova occurs when a white 
dwarf accumulates so much mass that it exceeds M3: when that happens, the star cannot exist in 
equilibrium but collapses and releases gravitational energy in an explosion so large that it can be 
seen all the way across the universe. The fact that each member of this class of supernova relies on 
the same physical principles allows cosmologists to assume that each member of the class is (more 
or less) a “standard candle”, with a unique output power. This allows a distance to be assigned to 
each such event. 

Fourth, we have already seen (Chapter 9) that the Sun consists of distinct regions in which a 
polytropic equation is “not too bad”: the convective envelope has n = 1.5 and the radiative core 
has n = 3.25. The Sun can therefore not be regarded as a “true polytrope” in the strict sense of 
the word. But how about considering the possibility of approximating the Sun as having a single 
“effective polytropic index” from surface to center? Might this help us to understand some of the 
global properties of the Sun? Let us see. From the results that have emerged from our model of the 
Sun (see Chapter 9, Section 9.6), we have seen that from surface to center, the temperatures, densi
ties, and pressures increase by (roughly) 3, 9, and 12 orders of magnitude respectively. Now, if a 
single “effective polytropic index” ne could be considered as applying to the Sun as a whole, let us 
recall that in a polytrope, ρ scales as T to the power of ne, while p scales as T to the power of ne + 1 
(see discussion between Equations  10.7 and 10.8). Therefore, an increase in  T by 103 would be 
accompanied by increases in ρ and in p by 109 and 1012 respectively if ne ≈ 3. This value of ne has a 
value that is intermediate between the values of 1.5 and 3.25, which are applicable to the Sun’s enve
lope and core, respectively. As a result, even in the case of a composite object such as the Sun, the 
concept of a polytrope helps us (roughly) to understand why some of the global physical properties 
of the Sun behave in the way that they do as we go from the surface of the star inwards to the center. 

In summary, the study of polytropes is not at all irrelevant as far as “real stars” are concerned. To 
be sure, the treatment is not complete: it tells us nothing about the sources of opacity or the sources 
of energy. Nevertheless, there is useful information to be gained in this “first course” by considering 
the mechanical properties that polytropes allow us to describe. 

10.8 CALCULATING A POLYTROPIC MODEL: STEP BY STEP 

For arbitrary values of the polytropic index n, numerical solutions can be obtained for the Lane– 
Emden equation. These numerical solutions (e.g., Chandrasekhar 1958) indicate that the first zeroes 
of polytropes with n = 1.5, 3.0, 3.25, and 4.0 occur at x1 ≈ 3.65, 6.90, 8.02, and 15.0, respectively. In 
dimensional units, the radius of the corresponding polytrope is R(n) = x1ro where ro is the Emden 
unit of length corresponding to the particular polytropic index. 

By way of illustration, and because we shall use this particular case in discussing certain oscil
lations in the Sun (Chapter 14, Section 14.5), let us consider the polytrope n = 3.25. In this case, we 
have already pointed out (Section 10.4) that the value of ro is 9.3 × 109 cm. Combining this with the 
appropriate value of x1, we have seen that the radius of a complete n = 3.25 polytrope with a central 
pressure and density equal to that of our simplified solar model would be R(3.25) = 7.4 × 1010 cm. 
Of course, the Sun is not a complete polytrope, with a constant n value all the way from center to 
surface. Nevertheless, the dimensional radius that we determine for such a polytrope is within 6% 
of the radius of the “real Sun”. It is amazing that a structure as simple as a polytrope (and in which 
the energy equation is replaced by a gross simplification) can have macroscopic properties that are 
not far removed from those of an actual star. 
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To calculate the structure of a polytrope for arbitrary n, the aim is to compute the value of y at 
each of a tabulated list of values of x. Also, at each value of x, we wish to calculate the slope of y 
as a function of x, i.e., the quantity y = dy/dx. For numerical purposes, it is convenient to start with 
the version of the Lane–Emden equation given in Equation 10.11, where the function z is defined 
by z = xy. Then we can rewrite Equation 10.11 in the form of two coupled first-order differential 
equations for the functions f1 = z and f2 = dz/dx. In terms of these functions, the Lane–Emden equa
tion can be replaced by two equations for two unknowns: 

df1f2 	 (10.20) 
dx 

df2 f1 
n 

n 1	
(10.21) 

dx x 

We start to integrate these equations at x = 0 using the BCs f1 = 0 and f2 = 1. In order to start off 
the numerical integration correctly, we use the series expansion for the Lane–Emden equation near 
the origin (Equation 10.12). Then we find 

x3 n 5f1 x x	 (10.22) 
6	 120 

and 

x2 n 4f2 1 x	 (10.23) 	2	 24 

The step-by-step procedure for calculating a polytrope, especially one that will be useful when 
we come to determining the oscillation properties (see Chapter 14), proceeds as follows. The goal is 
to obtain a table of reliable values of three quantities (x, y, and y ), extending from x = 0 (the center 
of the “star”) to x = x1 (the surface of the “star”). The process is as follows. 

1.	 Choose a value for the polytropic index n. 
2.	 The first entries in the table refer to the center of the star. They are x(1) = 0, y(1) = 1, 

and y (1) = 0. 
3.	 Choose a step size ∆x, which may be as small as you like. A value ∆x = 0.01 will eventu

ally lead to a table of values which, for n = 3.25, contains about 800 rows. 
4.	 Advance the x value to its value for the second row in the table: x(2) = ∆x. Use x(2) in 

Equations 10.22 and 10.23 to calculate the corresponding values of f1(2) and f2(2). Then 
the value of y(2) is given by  f1(2)/x(2). And the value of y (2) is given by y (2) = ( f2(2) 
− y(2))/x(2). 

5.	 For the third row of the table, we advance to x(3) = x(2) + ∆x. Now we have enough infor
mation to start to use an integrator (such as a Runge-Kutta routine) to step forward the 
solution of Equations 10.20 and 10.21. This leads to values of f1(3) and f2(3), which we 
then convert to y(3) and y (3) using the expressions in step 4. 

6.	 For each new row of the table, increase the x value by ∆x, and compute the updated values 
of y and y . 

7.	 It is easy to see when the integration must be stopped: y (which depends on the density 
to a certain power) cannot take on negative values. (There is no such thing as negative 
density.) Therefore, the last row of the table should contain a y value that is close to zero, 
say, y < 0.001. The last row in the table will therefore contain an x value that is close 
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to x1 for the polytrope you have chosen, e.g., for n = 3.25, the value of x1 is known to be 

8.01894 (Chandrasekhar 1958). All values of y  in the table will be negative numbers.
 

An example of an abbreviated table for the polytrope n = 3.25 is given in Table 10.1. We will have 
occasion to use the results in (an expanded version of) Table 10.1 in Chapter 14, when we calculate 
the periods of a certain class of oscillations known as g-modes in a polytrope. It will be instructive 
to compare the periods to the values observed for certain oscillations in the Sun. We shall find that 
once again, the use of a polytrope, however idealized, to describe the structure of a star (e.g., the 
Sun) provides information that may be useful in interpreting data from the “real Sun”. 

10.9 CENTRAL CONDENSATION OF A POLYTROPE
 

A polytrope has the property that, when one evaluates the gradient y  at the surface of the “star”, 
one can then calculate (Chandrasekhar 1958) the ratio Cc of the central density ρc to the mean den
sity ρ = M/(4/3)πR3. The quantity C is referred to as the “central condensation”. Values of C for m c c 

some polytropes (taken from Chandrasekhar 1958, his Table 4) are given in Table 10.2. 

TABLE 10.1 
Solution of Lane–Emden Equation for the Polytrope n = 3.25 
(Notation: a.bDsyy = a.b times 10syy where s is the algebraic 
sign, and dot in a.b is the decimal point.) 
x y y  

0.00 1.0 0.0
 
0.02 0.99993D+00 −0.66662D-02
 
0.10 0.99833D+00 −0.31573D-01
 
0.20 0.99337D+00 −0.64203D-01
 
0.30 0.98521D+00 −0.95610D-01
 
0.40 0.97400D+00 −0.12524D+00
 
0.50 0.95995D+00 −0.15262D+00
 
0.70 0.92434D+00 −0.19925D+00
 
1.00 0.85655D+00 −0.24651D+00
 
1.50 0.72480D+00 −0.27000D+00
 
2.00 0.59385D+00 −0.24945D+00
 
2.50 0.47832D+00 −0.21231D+00
 
3.00 0.38202D+00 −0.17418D+00
 
3.50 0.30362D+00 −0.14111D+00
 
4.00 0.24015D+00 −0.11434D+00
 
4.50 0.18856D+00 −0.93307D-01
 
5.00 0.14626D+00 −0.76917D-01
 
5.50 0.11119D+00 −0.64141D-01
 
6.00 0.81774D-01 −0.54120D-01
 
6.50 0.56812D-01 −0.46189D-01
 
7.00 0.35392D-01 −0.39844D-01
 
7.50 0.16823D-01 −0.34709D-01
 
8.00 0.63652D-03 −0.30492D-01
 
8.02 0.28430D-04 −0.30332D-01
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TABLE 10.2 
Central condensation in various polytropes 
n = 1.0  1.5  2.0  3.0  3.25   3.5 
C  = 3.29 5.99 11.40 54.18 88.15 152.9 

We have already noted (Chapter 9, Section 9.2) that the “real Sun” has Cc ≈ 100. Therefore, in 
terms of central condensation, the Sun behaves as if it were a polytrope with an index n slightly 
larger than 3.25. Recall (Chapter 10, Section 10.2) that for the radiative interior of the Sun, there are 
physical reasons (related to Kramers’ opacity) that the polytrope n = 3.25 is relevant to the relation
ship between pressure and temperature. 

EXERCISES 

10.1 Use the step-by-step procedure in Section 10.8 to calculate a table of values xi (i = 1, 2, 
3, . . .) of yi = y(xi) and y  = dy/dx from center to surface for the polytropes n = 1.0, 1.5, 
and 3.25. 

10.2 For the case n = 1, also evaluate the analytic solution ya(x) = sin(x)/x for each xi. For each 
entry in the table, xi, calculate the fractional difference δy/y between your numerical y(xi) 
and the analytic solution ya(xi). Repeat the calculation with a smaller and a larger choice 
of step size ∆x. How do the fractional differences δy/y change? 

10.3 At the “surface” of each polytrope in Exercise 1, your table will give you the local values 
of x and y . For each polytrope, use those surface values to evaluate the quantity −x/3y  at 
the surface. Compare the results with the central condensations Cc listed in Table 10.2. 
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Energy Generation in the Sun 11 
Historically, the source of energy generation on the Sun has been attributed to a number of causes, 
including gravitational collapse and radioactive decay. The possibility that nuclear fusion might be 
the source of solar energy could not be evaluated quantitatively until certain key pieces of physical 
information were available. In particular, the masses of the relevant isotopes had to be measured to 
at least three or four significant digits before it became evident that atomic masses, although close 
to integer values, actually deviated from integers by small, but measurable, amounts. 

Measurements of atomic weights for multiple isotopes were obtained by Francis Aston using 
three increasingly precise mass spectrometers that he constructed in the years 1919–1937. The con
struction of the spectrometers, including the combined effects of strong magnetic and electric fields, 
was not an easy task. In an obituary for Aston, it was stated, “Aston was a superb experimenter: 
his first mass spectrograph was a triumph: few but he could have got it to work at all” (Thomson 
1946). In measuring isotopic masses, Aston achieved precisions of 1.5 parts in 104 in 1927 and 2.5 
parts in 105 in 1937 (see Squires 1998). The deviations in mass from integer values were found to 
be at most only a few parts per thousand. But, as it turns out, those small deviations are at the very 
heart of nuclear energy generation in the Sun: if those deviations were absent, Earth would not be 
a hospitable place for life as we know it. In recognition of his work, Aston was awarded the Nobel 
Prize in Chemistry in 1922. 

The characteristic that sets the Sun (and stars in general) apart from other structures in the 
universe is precisely the fact that the Sun is able to generate its own supply of energy by means of 
nuclear fusion reactions in the deep interior. On Earth, nuclear reactions can be made to happen 
by accelerating particles to energies of millions of electron volts (MeV), and then “slamming” the 
fast particles into a target nucleus. But there are no MeV accelerators in the Sun. Instead, the only 
available particles are those belonging to a thermal population in which the mean energies are much 
smaller than 1 MeV: in the Sun’s core (where, as we have seen earlier [see Chapter 9], T = 15–16 
MK), the mean thermal energy of the ions is of order kT ≈ 1 keV only. Despite mean energies of 
mere keV, i.e., of order 1000 times less than 1 MeV, the fact remains that the solar particles can (and 
do) participate in nuclear fusion reactions. The fact that the reacting particles are thermal gives rise 
to the term “thermonuclear reactions” to describe the process whereby light nuclei in the Sun find a 
way to undergo fusion so as to form heavier nuclei. The (slight) loss of mass that occurs in the fusion 
reactions that build up helium nuclei from hydrogen nuclei emerges in the form of kinetic energy 
of particles and radiant energy of energetic photons. It is this emergent energy that makes the Sun 
a power generator. 

It will not be sufficient to demonstrate that nuclear reactions can occur in the Sun. In addition, in 
order to determine the luminosity of the Sun (in units of ergs per second), it is important to ask: at 
what rate will the reactions occur? The answer to that question depends in part on how difficult it is 
for two nuclei to approach each other in the presence of Coulomb repulsion. But the rate also depends 
on how protons and neutrons interact once they are both inside the nucleus: the latter depends on the 
operation of two “forces”, the strong and the weak. The strong force holds the nucleus together, while 
the weak force causes the nucleus to decay into lighter particles. Decays that involve emission of elec
trons (“beta decay”) can be described by a theory that was first proposed by Enrico Fermi (1934) and 
subsequently developed by George Gamow and Edward Teller (1936). 

Once the precise masses of isotopes of H, He, C, N, and O became available in the 1920s–1930s, 
and once the theory of nuclear beta decay had reached a state where the beta decay rate could be 
calculated reliably (in the mid-1930s), two distinct cycles of reactions were identified as being ener
getically permitted processes of nuclear energy generation in the Sun. Both cycles were identified 

https://doi.org/10.1201/9781003153115-11


158 Physics of the Sun 

   
 

 
 

      

 

 

  

  

 

TABLE 11.1
 
Isotope Nuclear Masses in Atomic Mass Units (a.m.u.)
 

Proton (H1) 1.007276467 
Neutron (n) 1.008664916 
Deuteron (D = nucleus of H2) 2.013553213 
Helium-3 (He3) 3.0149321 
Helium-4 (He4 = “alpha particle”) 4.001506179 

by Hans Bethe. The cycles are referred to as the pp‑cycle (Bethe and Critchfield 1938, using the 
Gamow-Teller [G-T] theory of -decay) and the CNO cycle (Bethe 1939). Recent measurements of 
certain neutrinos (see Chapter 12) which originate in the CNO cycle (but not in the pp‑cycle) indi
cate that “the relative contribution of CNO fusion in the Sun [is] on the order of 1%” (The Borexino 
Collaboration 2020). Because it has now been established experimentally that the pp‑cycle is by far 
the dominant energy-producing process in the Sun, we focus, in this chapter, on the pp‑cycle. 

The important questions in the context of solar energy generation are: (i) which reactions occur? 
(ii) How much energy is liberated in each reaction? (iii) How many reactions occur per second? 
Now that we know certain physical parameters in the Sun, we can address these questions in turn. 

In the following discussion, masses of the relevant nuclei (see Table 11.1) will be cited in terms 
of atomic mass units (a.m.u.). Four of the entries in Table 11.1 were obtained from the 2018 NIST 
Reference list https://physics.nist.gov/cuu/Constants/index.html: these are the entries with 10 sig
nificant figures in Table 11.1. In the case of the nucleus helium-3, we started with atomic masses 
(Audi and Wapstra 1993) and then subtracted two electron masses (1me =  0.00054858 a.m.u.) 
to obtain the  nuclear mass. In c.g.s. units, the 2018 NIST Reference list states that one a.m.u. 
corresponds to a mass of 1.660539067 × 10−24 gm. The rest-mass energy equivalent of 1 a.m.u. 
is E(1) = 1.492418086 × 10−3 ergs. Expressed in units of electron volts (1 eV = 1.602176634 × 10−12 

ergs), we find E(1) = 931.494102 MeV. For the electron, the rest mass energy is 0.510999 MeV. 

11.1 THE PP-I CYCLE OF NUCLEAR REACTIONS 

In the Sun, the most common set of reactions that occur are referred to as the pp‑I cycle. There are 
also less common cycles referred to as pp‑II and pp‑III, but all have the same overall end result, 
namely, four protons are fused into one helium nucleus. We shall return to the pp‑II and pp‑III 
cycles in Chapter 12 when we discuss neutrinos. In the present Chapter, where energy generation is 
the principal focus of our discussion, we confine our attention to the pp‑I cycle. 

There are three nuclear reactions to be taken into account in the pp‑I cycle. We label these as (a), 
(b), and (c) in what follows. 

  1 442 Mp p  D e  (E . eV ) (a) 

Here, p + p denotes the reaction of two protons, both of which belong to the thermal distribution 
that exists at any given radial location with local temperature T(r). The reaction products include a 
deuteron (a nucleus D consisting of one proton and one neutron), a positron (e+), and a very low-mass 
particle known as a neutrino (v: see Chapter 12). 

In order to determine the amount of energy that is released in reaction (a), we use the masses of 
the various particles in Table 11.1. Using these, we find that the total mass on the left-hand side of 
reaction (a) is 2.014552934 a.m.u. This exceeds the deuteron mass (on the r.h.s. of reaction (a)) by 
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∆m = 0.000999721 a.m.u. The fractional excess in mass is small, less than 0.1% of an a.m.u., but 
the existence of an excess (however small) ensures that the reaction is exothermic. In energy units, 
the corresponding energy is c2∆m = 0.931234 MeV. The positron is an antiparticle that requires an 
equivalent rest-mass energy equal to that of the electron, i.e., 0.510999 MeV. The net energy available 
for the neutrino and D from reaction (a) is the remaining energy 0.931234 − 0.510999 = 0.420235 
MeV: this is the maximum (“endpoint”) energy that the neutrino can carry away. Actually, because 
the reaction energy is shared by three particles, the neutrino energy has a continuous spectrum 
between zero and 0.420235 MeV: the average energy carried off by the neutrino is about one-half 
of the endpoint energy, i.e., about 0.2 MeV. The positron quickly annihilates on an ambient electron 
(of which there are roughly 1026 in each cm3 in the Sun’s core, one electron for each proton: see 
Section 9.2), releasing an energy of 1.022 MeV. Adding this to the remaining energy estimated earlier 
(0.420 MeV), we see that the total amount of energy released into the core of the Sun by reaction 
(a) is 1.442 MeV. However, as we shall see in Chapter 12, the neutrino does not contribute signifi
cantly to energy deposition in the Sun: each neutrino escapes so easily from the Sun that its KE 
escapes from the Sun essentially instantaneously. Allowing for the average energy carried off by the 
neutrino, the amount of energy that is available (on average) to be deposited in the core of the Sun, 
thereby contributing to the thermal energy pool, is about 1.2 MeV. 

The second reaction in the pp‑I cycle is 

p D  He3 (E 5 494 MeV . ) (b) 

In this second step of the pp‑I cycle, a third proton from the thermal population reacts with the 
deuteron that was produced in reaction (a). Reaction (b) results in a nucleus of He3 plus an energetic 
photon: the photon is designated by the letter , because the photon’s energy is a few MeV, i.e., in 
the gamma-ray range. Referring to Table 11.1, we see that the combined masses of p and D on the 
left-hand side of reaction (b) (= 3.02082968 a.m.u.) exceeds the mass of the He3 nucleus on the right-
hand side by ∆m = 0.0058976 a.m.u. Once again, the fractional mass excess is relatively small, but 
it is finite. Therefore, the reaction is exothermic, with an energy release c2∆m of 5.494 MeV. This 
energy is carried away from the reaction site by the fast-moving He3 nucleus and the photon. 

The final reaction in the pp‑I cycle is 

3 3 4He  He  He  2 p E   12 859 MeV ) (c) ( . 

In this third step of the pp‑I cycle, after reactions (a) and (b) have each occurred twice (thereby 
involving an “intake” of six protons), the two He3 nuclei fuse to create one nucleus of He4, releas
ing two protons in the “exhaust”. The net effect of the pp‑I cycle is to have four protons fuse into a 
single nucleus of He4. The sum of the rest masses of two He3 on the left-hand side (6.0298642 a.m.u.) 
exceeds the sum of the rest masses of the three particles on the right-hand side (6.016059113 a.m.u.) 
by ∆m = 0.0138051 a.m.u. The corresponding energy release c2∆m is 12.859 MeV. 

For the Sun to produce energy by hydrogen fusion, it is essential that in each reaction of the 
aforementioned cycle, the combined mass of the products is  less than the combined mass of the 
reactants. In the early days of measuring atomic weights, when the masses of the isotopes were 
known with a precision of only two significant digits, the mass of the reactants would be found to 
be equal to the mass of the products: in such a case, no energy generation would be possible. It was 
only when the atomic weight measurements reached a precision of at least three (or preferably four) 
significant digits that the mass difference 2m(p) − m(D) was found to have a positive value. And in 
order to derive the energy release in the reaction with a precision of N significant digits, the por
tions of the various isotopic masses to the right of the decimal point (i.e., the deviations of isotopic 
masses from whole numbers) have to be measured with precisions of N + 2 significant digits. Since 
the mass of He3 is listed in Table 11.1 with seven digits to the right of the decimal point, we can trust 
the energies listed in (b) and (c) to no more than five significant digits. Even less confidence can be 
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assigned to the energy figure listed in (a): there, the main barrier to high precision in the estimate of 
energy is determining how much energy the neutrino carries off. 

11.2 REACTION RATES IN THE SUN 

Altogether, in a complete pp‑I cycle, consisting of two reactions each of (a) and (b) plus one reaction 
(c), the total energy released is ∆E(pp‑I) = 2(1.442 + 5.494) + 12.859 = 26.731 MeV. However, some 
of the energy released in (a) (perhaps 0.2 MeV) is carried off by neutrinos. The amount of energy 
which is deposited into the thermal pool of the Sun’s core, and which can therefore contribute to the 
radiant output power of the Sun, is roughly ∆E(pp‑I) = 2(1.2 + 5.494) + 12.859 = 26.25 MeV. 

This is (roughly) the amount of thermal energy that is released into the thermal pool in the Sun’s 
core when four protons fuse into one helium nucleus. Converting to c.g.s. units, each pp‑I cycle 
generates ∆E(pp‑I) = 4.206 × 10−5 ergs. The main source of uncertainty in this result comes from 
the estimate of the mean energy of the neutrinos that escape from the Sun: this estimate cannot be 
more uncertain than (roughly) ±0.2 MeV (correspond to neutrinos carrying away zero energy, or 
carrying away the maximum possible energy of the neutrinos). All other quantities entering into 
∆E(pp‑I) are known precisely. Therefore the value of ∆E(pp‑I) can be written as 26.25±0.4 MeV, 
i.e., an error of 1%–2%. 

Now, we already know the total output power of the Sun (Chapter  1, Section  1.4):  L = 
3.828±0.0014 × 1033 ergs sec−1. Therefore, since pp‑I cycles are by far the largest source of energy 
generation in the Sun, the number of these reactions that occur in the Sun every second (i.e., the 
frequency of the reactions) must equal 

Fr  
L   .  reactions sec 1 (11.1) 0 91 1038 

E p( p I ) 

The uncertainty in the value of Fr is dominated by the 1%–2% uncertainty in ∆E(pp‑I). As a result, 
we can write Fr = (0.91±0.02) × 1038 reactions sec−1. 

The Sun also relies, in a small percentage of cases, on pp‑II and pp‑III cycles (see Section 12.3). 
However, both of those cycles also begin with reactions (a) and (b) listed earlier, and their rates are 
controlled primarily by (the slowness of) reaction (a). Moreover, some (≤ 1%) of the solar energy 
output comes from the CNO (see Section 12.3.2): in this cycle, carbon acts as a catalyst to bring 
about the same overall effect as in the pp‑cycle, in effect fusing four protons into one He4 nucleus. 

In summary, we will not make a significant error if we take Fr ≈ 1038 per second as the number 
of pp‑I chains that must occur in the Sun every second to account for the observed luminosity. The 
value of Fr is based on the ratio of two quantities that are reliably known: the Sun’s luminosity and 
the energy that is released by a single pp‑I chain of reactions. Can the value of Fr be checked obser
vationally? Yes: each pp‑I cycle emits two neutrinos due to reaction (a), which occurs twice in each 
pp‑I cycle. Therefore, the Sun is predicted to emit (from the pp‑I cycle alone) some 2 × 1038 neutri
nos every second. Detectors have been set up at various locations on Earth since 1967 to try to detect 
these neutrinos: reliable detection is a significant challenge because neutrinos can pass through vast 
numbers of atoms without interacting. But the searches eventually were successful (see Chapter 12). 

11.3 PROTON COLLISION RATES IN THE SUN 

In order to set the reaction rate F in context, let us compare F to the overall rate F at which collir r c 

sions between protons occur in the nuclear-generating core of the Sun. By the word “collision”, we 
mean an event in which the momenta of the individual particles are altered significantly, in a man
ner analogous to the collision of two billiard balls. Two protons that at first happen to be approach
ing each other feel an increasingly strong Coulomb repulsion, which eventually causes the two to 
move apart, changing directions and speeds in such a way as to conserve energy and momentum. 
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With a mean velocity of V and a number density of np protons cm−3, the rate at which a single pro
ton in the Sun experiences momentum-altering collisions with other protons is fc = npVσ per second, 
where σ is the momentum collision cross-section. (Lower case f denotes the collision rate for a sin
gle proton. Upper case F denotes the total number of collisions experienced every second by all of 
the protons in the Sun.) Between two protons, the value of σ is determined by the Coulomb force. To 
calculate the Coulomb cross-section σc, we note that in a gas with temperature T, the mean kinetic 
energy of thermal motion, of order kT, allows two protons to approach one another within a mini
mum distance rm such that e2/rm ≈ kT. Such close collisions result in large deflections of the protons 
from their original motions. The cross-sectional area associated with rm (i.e.,  r2) would be a rea

m 

sonable estimate for σc if large deflections were the only contributors to deflecting protons in their 
motion. But because the Coulomb force is a long-range force, protons are also subject to a multitude 
of small deflections as a result of distant collisions. The net effect of these is to yield a cross-section 
that is larger than the estimate based on rm by a multiplying factor called the Coulomb logarithm. It 
is conventional to write rm 

2 , where  is a logarithmic term that includes the effects of distant 
collisions (e.g., Spitzer 1962). Thus, σc ≈ πe4 /(kT)2. (Note that, for thermal particles, with Vth ~ √T, 
the Coulomb cross-section σc scales as 1 4, i.e., fast particles have significantly fewer collisions / Vth

in any particular time interval than slow particles.) In the core of the Sun, where np ≈ 1026 cm−3 (see 
Section 9.2) and T = (1.5–1.6) × 107 K, Table  5.1 in Spitzer (1962) indicates that the value of 

 ≈ 3–4. This leads to σc ≈ (1–2) × 10−19 cm2. Since the mean thermal velocity of a proton in the core 
of the Sun is Vth ≈ 6 × 107 cm sec−1 (see Section 9.2), we see that each proton undergoes fc = npVσ ≈ 
1015 momentum-changing collisions per second. Our estimate of fc is subject to uncertainties in the 
various factors that occur in σ, V, and np: as a result, we would not be surprised if the true value of 
fc might differ by a factor of a few above or below the value 1015 sec−1. 

The overall rate Fc of Coulomb collisions in the core of the Sun is given by fc times the total num
ber of protons Np(c) in the core. The core of the Sun, in which nuclear reactions occur, is confined, 
according to detailed models, within the innermost 20% (or so) of R . Although the volume of this 
core is a small fraction of the total solar volume, the high densities in the core have the effect that the 
mass of the core may be as large as ≈0.1M , i.e., about 2 × 1032 gm. Dividing this by the mass of a 
proton, we find, Np(c) ≈ 1056. This leads to Fc = fcNp(c) ≈ 1071 momentum-changing collisions occur
ring every second in the nuclear-generating core of the Sun. Due to uncertainties in the various 
factors entering into the calculation, the numerical value of Fc, which we have derived using various 
simplifications, is subject to uncertainties. Although we have not conducted a full error analysis, we 
estimate that the uncertainties might be as large as ±1 in the exponent. 

The number Fc of collisions per second in the Sun’s core is by any reckoning a large number. 
But in order to judge the true significance of Fc, we need to compare it with another frequency. The 
natural frequency to compare it to is the frequency Fr that we estimated earlier in Section 11.2, 
i.e., the number of nuclear reactions that must occur every second in the Sun in order to provide 
the Sun with energy. Comparing the rate at which the pp‑I chain of reactions occur in the Sun, i.e., 
Fr ≈ 1038 sec−1, with the momentum-changing collision rate Fc in the core, we arrive at a noteworthy 
result: a proton undergoes (on average) a huge number of momentum-changing collisions Nc(react) 
before that proton ever participates in a pp‑I chain of reactions in the Sun’s core. Specifically, 

FcN react )  (11.2) (  1033collisions c Fr 
The main uncertainty in Nc(react) is due to uncertainties in Fc: as a result, Nc(react) might be as 
small as 1032 or as large as 1034. 

Since an individual proton experiences on average fc ≈ 1015 momentum-changing collisions per 
second (uncertain by a factor of ± a few), each proton in the Sun will participate in a pp‑chain only 
after an average time span t  of about N (react)/f . The smallest value of t  ≈ 1032/(a few times 1015)pp c c pp

is ≈ 3 × 1016 sec, i.e., about one gigayear (Gy). The mean value of tpp is ≈ 3 × 1017 sec, i.e., roughly 
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10 Gy. These values suggest that the lifetime of the Sun in its pp‑I phase will not be conveniently 
measured in units of millions of years or in trillions of years: instead, the H-burning phase will 
last for a time for which the appropriate unit is expected to be gigayears. Observational support for 
this conclusion is provided by the fact that the Sun has already existed for 4.567 Gy. How do we 
know the age of the Sun? From studies of p-mode oscillations (Bonanno and Frohlich 2015) and 
from studies of isotopic ratios in special inclusions extracted from certain meteorites dating back 
to the early solar system (Connelly et al. 2012): these entirely independent approaches yield ages 
of 4.569±0.006 and 4.56730±0.00016 Gy respectively. The consistency in these independent esti
mates of ages of the current Sun is excellent. Detailed models of the Sun (e.g., Bahcall et al. 2006) 
suggest that in the core of the Sun, nuclear fusion has already converted roughly 50% of the H into 
He: this suggests that a rough estimate of the lifetime of the Sun in its pp‑I nuclear phase can be 
obtained by doubling the current age of the Sun, i.e., 9–10 Gy. 

The numerical value of the ratio in Equation 11.2 is strikingly large. The occurrence of nuclear 
reactions in the pp‑cycle is a very rare event indeed in the conditions of the Sun’s core: only one col
lision in (roughly) 1033 p‑p collisions results in a nuclear reaction. It is worthwhile examining why, 
based on the laws of physics, the reaction rate is so small compared to the collision rate: part of the 
answer will lead us to understand why the rates of thermonuclear reactions in the Sun (as well as in 
stars, and in thermonuclear weapons) are very sensitive to temperature. 

11.4 CONDITIONS REQUIRED FOR NUCLEAR REACTIONS IN THE SUN 

Nuclear reactions provide the only physically realistic source for solar energy generation that has 
been occurring already for a time interval that is measured in gigayears. In this section we examine 
the following issue: what physical requirements must be satisfied before a (thermo)nuclear reaction 
can occur at all in the Sun? 

In order to have a nuclear reaction occur, whether in the Sun or in the laboratory, certain condi
tions have to occur. First, two nuclei must undergo a “collision” with each other. The collision must 
be of a particular kind. We are not interested merely in momentum-changing collisions where the 
particles stay far apart and experience only a “glancing” blow off each other. Such “distant” colli
sions are certainly important in a plasma when we wish to evaluate certain transport coefficients in 
the plasma: because the Coulomb force is long range, the overall effect of many distant collisions 
can dominate over the rare large-angle collisions. (This is in fact the origin of the factor (>1) in the 
Coulomb cross-section mentioned earlier in Section 11.3.) However, distant collisions of this kind 
contribute nothing to nuclear reactions. 

11.4.1 nuClear forCes: short-ranGe 

Instead, in order for a nuclear reaction to have any chance of occurring, it is essential that two nuclei 
must approach one another so closely that the strong force, which binds nucleons (protons, neutrons) 
together inside a nucleus, can come into play. How close do such collisions have to be? 

The answer depends on the range of distances over which the strong force can actually be “felt”. 
Since nuclei are held together by the strong force, we know that the strong force must have a range 
that is at least as large as the size of a nucleus. But the interesting quantitative question is this: what 
is the size of a nucleus? When Ernest Rutherford did his experiments of “shooting” fast alpha par
ticles (i.e., helium-4 nuclei, essentially “point-size bullets”) into a thin foil of gold atoms, he found 
that essentially the entire mass of a gold atom must be concentrated in a massive point at the center 
of the atom. He estimated that the nucleus had a size about 10,000 times smaller than the atom, 
i.e., with a size of order 10−12 cm. Rutherford predicted that most of the incoming alpha particles 
would pass straight through the gold atom, but some would be deflected by an angle : the prob
ability P(θ) of being deflected by  decreases with increasing . For a point size nucleus, P(θ) is 
predicted to vary as 1/sin4( /2). 
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How might one go about the task of measuring the size of an object as small as a nucleus? By 
relying on a concept that was first introduced in Section 2.1 According to de Broglie, the “bullet” 
particles in the Rutherford experiment are not exactly “point-size”. Instead, they are “smeared out” 
over the finite extent of λD = h/mV = h/p. Therefore, if one could perform a Rutherford experiment 
in such a way that λD for the “bullets” was comparable to the size of the nucleus, then the process 
of scattering would no longer involve one point-like (“bullet”) object interacting with another point-
like (“target”) object. Instead, at least one of the objects involved in scattering would deviate signifi
cantly from “point-like” characteristics. In such circumstances, one would expect to see deviations 
from the predicted law of 1/sin4( /2). 

One such experiment was performed by Robert Hofstadter et al. (1953) when he obtained access 
to “bullets” in the form of electrons with energies E of up to 100–200 MeV generated by the Stanford 
linear accelerator. At E = 200 MeV (>>mec2), an electron is highly relativistic, with the result that 
the momentum p is essentially given by p=E/c. Therefore λD = h/p = hc/E. Hofstadter et al. (1953) 
“shot” these “bullets” at nuclei of various elements ranging from beryllium to gold and lead. They 
observed that the experimental data for gold did indeed depart noticeably from the predicted law 
of 1/sin4( /2). For example, when  increased from 35 deg to 90 deg, the predicted law says that the 
number of counts should fall off by a factor of ≈30, but the experimental fall off turned out to be 
much larger, by a factor of >1000. Thus, the point-mass-on-point-mass concept did not work well 
in the Hofstadter et al. experiment: instead, the “bullets” are smeared out over finite sizes D that 
must have been comparable to the r.m.s. radius of a gold nucleus. Now, knowing the energy of the 
“bullets”, the value of D can be calculated: it is 7 × 10−13 cm. Therefore, the gold nucleus must have 
a radius of this order. Beryllium nuclei were found to have sizes of order 2 × 10−13 cm. The radius of 
a nucleus with atomic weight A could be fitted roughly as 1.45 × 10−13 A1/3 cm. 

As a result of these experiments and others, it is now known that nuclei have radii that range 
from about 1 to a few times 10−13 cm. This indicates that the strong force operates only within a 
finite length-scale, of order rN ≈ 1 to a few times 10−13 cm. (Hofstadter [1956] suggested that the unit 
of length 10−13 cm should be referred to as 1 “fermi” [fm] in honor of Fermi, a pioneer in nuclear 
physics who had died in 1954. The abbreviation fm is also used for the length 1 femtometer = 10−15 

meter = 10−13 cm.) When two nucleons approach each other at distances closer than (or of order) 
1 fm, the strong force has a chance to operate, giving rise to a force between the two nucleons which 
is strongly attractive. That is, at distances of order 1 fm and less, a proton is strongly attracted to 
a neutron, a neutron is strongly attracted to another neutron, and a proton is strongly attracted to 
another proton. 

The last part of the previous sentence is especially noteworthy: in the macroscopic world, classi
cal electrostatics teaches clearly that a proton situated at a distance d (>> 1 fm) from another proton 
experiences a repulsive (Coulomb) force Fes = e2/d2. Something fundamentally different from clas
sical electrostatics comes into play when two protons approach each other closer than a distance of 
order 1 fm: in such circumstances, the strong force comes into play, overwhelming the repulsive 
Coulomb force. The (attractive) strong force is what holds a nucleus together. The necessity of such 
a force can be seen by considering a nucleus of uranium, which contains 92 protons packed into 
a sphere with a radius of no more than several fm: the repulsive force between all those protons 
would, under classical conditions, tear the nucleus apart. 

What causes the strong force to be so strongly attractive as to overcome the Coulomb repulsion? 
The Japanese physicist Hideki Yukawa in 1934 introduced the novel idea that the strong force could 
be understood if two nucleons “exchange” a special (short-lived) particle called a “meson” back 
and forth between them at speeds approaching the speed of light. Yukawa estimated that in order 
to explain the shortness of the range of the strong force (i.e., of order 1 fm), this meson should have 
a mass that is intermediate between electron and proton masses: Yukawa’s mass estimate for the 
exchange particle was of order 200 me. Later experiments (in 1947) indicated that 270 me is a better 
estimate of the meson mass. In order to “explain” the concept of “exchange force”, according to one 
analogy, two tennis players can be considered to be “held together” on a court by the tennis ball that 
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they exchange back and forth from one side of the net to the other: the ball in essence creates a sort 
of “exchange force” between the players. 

Whether or not this tennis analogy is physically realistic, the fact remains that nuclear reactions 
cannot occur if two nucleons remain too far apart. Specifically, a nuclear reaction between two 
nuclei becomes possible only if the particles are brought (somehow) as close together as a distance 
of order rN ≈ 1 fm. This result is fundamental to understanding how thermonuclear reactions are 
even possible in the Sun. 

The strong force is not the only force that operates in the pp-chain in the Sun: there is also the 
weak force which enters into reaction (a) in Section 11.1. In order for reaction (a) to occur when 
two protons collide, the weak force must cause one of the protons to “decay” into a neutron. Under 
ordinary circumstances, if a proton is free in the laboratory, such a decay is impossible: the neutron 
mass exceeds the proton mass by a finite amount ∆mnp (see Table 11.1). If a proton is ever to “decay” 
into a neutron, the proton must have access to an energy that is at least as large as c2∆mnp ≈ 1.3 MeV. 
Where could a proton have access to such an energy? The answer is: only if the proton is inside the 
deep potential well created by the strong nuclear force, which can be as deep as 20–30 MeV (e.g., 
Schiff 1955). In effect, both the strong force and the weak force in the Sun can operate only when 
particles are within a distance of order rN. 

As a result, if two nuclei have a “collision” in which the nuclei approach each other no closer 
than, say, 10−11 cm = 100 fm (or more), neither the nuclear force nor the weak force has a chance 
to come into play in that particular collision. The two nuclei would simply have a momentum-
changing collision, bouncing off each other and continuing on their way, but completely unchanged 
as far as their nuclear properties are concerned. 

How strong is the attractive force that holds two nucleons together? Well, it certainly has to be 
strong enough to overcome the Coulomb repulsion. The Coulomb repulsion between two protons 
separated by only r = 1 fm has a potential energy which can readily be calculated: e2/r ≈ 1.5 MeV. 
So the strong force must be larger than that. Moreover, the nucleons inside a nucleus must not allow 
their de Broglie waves to “leak out of the nucleus”: this requires that each nucleon inside a nucleus 
must be moving with a speed Vn, which is so fast that the de Broglie wavelength of the nucleon 
h/mVn is no larger than a few fermi. To achieve this goal, a proton needs to have a kinetic energy 
(KE) of about 10 MeV. The effects of KE are such that they tend to disrupt the nucleus: therefore, 
in order to overcome this disruptive tendency, the strong force has to have an attractive energy of at 
least 10 MeV per nucleon. Detailed calculations suggest that the strong force in fact has an attractive 
energy of order 20–30 MeV (e.g., Schiff 1955). 

11.4.2 ClassiCal physiCs: the “Coulomb Gap” 

Consider two protons moving in such a way that their paths will cross (or at least “come close”) 
at some point in space. According to classical physics, when two positive point charges +Z1e and 
+Z2e are separated from each other by a distance r, they experience a Coulomb repulsive force. The 
potential energy (PE) of the repulsion is Z1Z2e2/r. The closer the two particles approach each other, 
the stronger the repulsion becomes. 

The question on which we concentrate here is the following: how closely can such particles be 
made to approach each other? In classical terms, the answer is straightforward: the two can come 
no closer than a distance rc, where their relative kinetic energy is equal to the repulsive PE. Let the 
masses be A1 mp and A2 mp where mp is the proton mass. In terms of the reduced mass Amp of the 
two nuclei (A = A1 A2/(A1 + A2)), the average KE is given by 0.5 AmpV2. 

This leads to the following expression for the distance of closest approach: 

2Z Z e 2 

rc  1 2  
2 

(11.3) 
Am V p 
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For the collision of two protons (i.e., Z1 = Z2 = 1), this reduces to 

4e2 

rc  
2 

(11.4) 
m V  p 

In order to appreciate how nuclear reactions can occur in the Sun, and in order to appreciate that 
something beyond classical physics is at work, we need to ask a specific quantitative question: what 
is the magnitude of rc for two protons near the center of the Sun? Setting V = 6.21 × 107 cm sec−1 

(see Section 9.2), and inserting the values of e = 4.8032 × 10−10 e.s.u. and mp = 1.673x × 10−24 gm, we 
readily find that rc ≈ 1.43 × 10−10 cm ≈ 1430 fm. 

The critical point of this result is that rc greatly exceeds the range of the nuclear force rN (≈ 1 fm). 
Specifically, with the values we use earlier, the classical distance of closest approach of two protons 
in the center of the Sun is more than 1000 times larger than the nuclear force range. 

To be sure, not all of the protons have velocities equal to the r.m.s. speed. There are some faster 
ones. For example, in a thermal distribution, one proton in e10 (i.e., one proton in 20,000) has a speed 
that exceeds the mean by a factor of 3.2. If two such protons collide, then their distance of closest 
approach, based on classical physics, would be reduced to ≈ 143 fm. Even so, this is still more than 
100 times larger than rN, much too far apart for the strong force to operate. 

Because of the Coulomb repulsive force, classical physics indicates that protons moving at the 
average thermal speed in the core of the Sun simply cannot approach each other closely enough to 
allow the nuclear force to come into play. In classical terms, two such protons will always remain 
separated by a distance that is at least as large as rc. In what follows, we refer to rc (see Equation 11.4), 
i.e., the classical distance of closest approach of two protons in the Sun, as the “Coulomb gap”. 

If the Sun were governed by classical physics alone, the Coulomb gap would be an insuperable 
barrier that would prevent two protons from ever getting close enough together for any nuclear 
reactions to occur in the Sun in its present condition. In order to understand why the Sun shines 
at all by nuclear processes, we are forced to the following important conclusion: we need to go 
beyond classical physics. We must admit that the Sun is an object in which quantum physics plays 
an essential role. 

11.4.3 Quantum physiCs: briDGinG the “Coulomb Gap” 

So, let us enter the world of quantum mechanics. In this world, particles in certain circumstances 
no longer behave as points (see Section 2.1): instead, according to de Broglie (1924), a particle of 
mass m moving with speed V has a finite probability of occupying an extended region of space. This 
nonpoint-like behavior is modeled by saying that the particle can be represented by an associated 
“probability wave”. The wavelength p is given by a formula first derived by de Broglie (1924): 

h
 (11.5) p m V  p 

where h is Planck’s constant. According to Equation 11.5, the proton can be considered as being 
“spread out” over a finite distance of order p. 

Now we come to the heart of the matter of nuclear fusion in the Sun: the fact that any individual 
particle is actually “spread out” over a finite length‑scale is precisely the property that gives rise to 
the possibility of “bridging the Coulomb gap”. When classical physics has reached its limit, and two 
particles can come no closer than the Coulomb gap, we appear to be faced with two “point particles” 
separated by rc. But now quantum mechanics steps in and replaces each particle by a structure that 
is no longer point-like: instead, each “particle” has a finite size, of order p. When the two protons 
approach each other to a critical separation of 2 p, the wave of one proton extends far enough to 
“touch” the wave of the other proton. Since the reduced mass of two protons is Amp = 0.5mp, the 



166 Physics of the Sun 

 
 

   

         

   

  

 

       

   
   

 
 

     
     

       

critical separation equals the de Broglie wavelength p(Amp) for a single particle with a mass equal 
to the reduced mass, Amp. 

We now have two key length-scales in the problem: p(Amp) and rc(Amp). The two scales depend 
on different physical constants, and (in particular) on different powers of the particle speed. As 
regards numerical values of these two lengths, there is no a priori reason why, in any particular 
environment, they might not differ from each other by orders of magnitude: the ratio rc/ p in general 
might be much greater than unity or much less than unity. 

But let us consider a particular location where physical parameters have the values necessary 
to make p comparable to rc. What happens then? Each particle “spreads out” and, in effect, the 
particles “reach across” the Coulomb gap, bridging the gap and “touching each other”, i.e., they in 
effect come so close together that the distance between them is essentially zero. In particular, the 
two particles effectively approach each other within a distance of rN, the range of the nuclear force. 
This is the essential physical process that, in the quantum world, sets the stage for nuclear reactions 
to occur. 

The conclusion is that quantum effects allow the “Coulomb gap” to be “bridged” if  p becomes 
large enough to be comparable to rc. Since p and rc both depend on the particle speed V (although 
to different powers), the “bridging” condition reduces to a condition on V. For collisions between 
two protons, the critical speed Vc is the speed for which the Coulomb gap 2e2/AmpV2 is equal to the 
de Broglie wavelength h/AmpV. This leads to the following expression for the critical thermal mean 
speed required for thermonuclear reactions to become possible: 

2e2 

Vc  (11.6) 
h 

It is noteworthy that the critical speed which allows for “bridging the Coulomb gap” between two 
nuclei is determined by two of the fundamental constants of nature. 

Even more interesting is the numerical value of the critical speed. Inserting constants into 
Equation 11.6, we find Vc ≈ 696 km sec−1. This is a significant speed in the context of the inner 
regions of the Sun. 

11.4.4 Center of the sun: thermal protons briDGe the Coulomb Gap 

We note that the critical speed Vc is not too different from Vth, the r.m.s. speed of protons at the 
center of the Sun (≈ 621 km sec−1). Specifically, the ratio rc/ p = Vc/Vth in the core of the Sun has a 
numerical value of about 1.1, i.e., within 10% of unity. 

In any gaseous object in hydrostatic equilibrium, gravitational effects ensure that the central 
temperature is such that the r.m.s. speed of the dominant constituent in the core is comparable to the 
escape speed from the surface of the object. In order for the object to further qualify for the special 
title of “star”, this r.m.s. speed in the core must be large enough to allow the Coulomb gap to be 
bridged by quantum effects (Mullan 2006). Once this condition is satisfied, at least within roughly 
10%, nuclear reactions between thermal protons can occur in the core. The Sun satisfies this condi
tion. Therefore, the Sun can have access to proton nuclear reactions and the energy that emerges 
from such reactions. It is this that makes the Sun a star. 

In a thermal population, the particle speeds are distributed over a finite range of values. Thus, 
not all protons in the core of the Sun have the same speed. However, the possibility that thermo
nuclear reactions will set in is quite sensitive to the proton speed. On the one hand, if the proton 
speed is a factor of (say) two less than Vc, then the Coulomb gap rc ~ 1/V2 opens up to a value that 
is four times wider than estimated earlier. At the same time, the wavelength p ~ 1/V increases by 
a factor of only two. Thus, the Coulomb gap is now too wide to be bridged by the de Broglie wave. 
On the other hand, if the proton speed is two times larger than Vc, then the wavelength p decreases 
by a factor of two, but the Coulomb gap is now four times smaller. Therefore, the gap can still be 
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bridged. This indicates that once the temperature reaches a value that is high enough to ensure that 
the r.m.s. speed is of order Vc (within 10% or so), nuclear reactions will occur. But if the temperature 
is too small to allow the r.m.s. speed to have a value that is large enough to equal Vc, then nuclear 
reactions will not occur. 

11.4.5 other stars: briDGinG the Coulomb Gap 

In a global sense, the Sun’s mass M and radius R have values which have the effect that the crushing 
effects of gravity [as measured by Vesc ~ √(2GM/R)] provide enough “thermo” at the center of the 
Sun to create a certain temperature. At that temperature, thermal protons have mean speeds Vth of 
order Vesc. When conditions are such that Vth is comparable to Vc, then quantum mechanics bridges 
the Coulomb gap between two protons, and pp‑nuclear reactions can set in. 

Since Vc is determined by physical constants only, any star which has the same M/R ratio as 
the Sun will satisfy Vth ≈ Vc, and will therefore also have pp‑reactions in its core. Now, astrono
mers discovered in the 1920s that if the stars we see in the night sky are plotted in a diagram of 
luminosity versus effective temperature, 90% of the stars lie close to a band known as the “main 
sequence”. After decades of study, astronomers also determined masses M and radii R for many 
of the stars. A striking result emerged from these data: although the masses and radii vary by 
factors of 100–1000 along the main sequence, the ratio M/R is almost constant from one end of 
the main sequence to the other. This means that the main sequence is occupied by objects (stars) 
in which the mean thermal velocity in the core Vth ≈ Vesc ~ √M/R remains almost unchanged and 
equal to Vth in the Sun. But the latter is, as we have seen, close to Vc: therefore, along the main 
sequence, all stars have rc ≈ p. In such objects, pp‑reactions can occur in the core. Therefore, the 
main sequence is the locus of stars that have just the right conditions to allow hydrogen nuclei to 
undergo fusion in their core. 

Strictly speaking, the value of M/R does not remain exactly constant all the way along the 
main sequence. On the one hand, at the high mass end, M/R exceeds the solar value by a factor 
of a few, and rc/ p falls to values that are smaller than unity, thereby enhancing the probability of 
nuclear reactions. Such stars emit radiation with a power that exceeds the solar value by factors 
of several orders of magnitude. On the other hand, in low-mass stars, M/R becomes smaller than 
the solar value. In fact, at a certain low mass (about 0.1M ), M/R becomes so small that Vth falls 
to a value that is significantly smaller than the value of Vc: in such a case, the pp‑I chain has an 
increasingly small probability of being able to occur. Without access to the energy-generating 
power of pp fusion reactions, such an object is no longer called a “star”: instead, it is referred to 
as a “brown dwarf”. 

11.4.6 insiDe the nuClear raDius 

Once two protons approach each other closer than rN, nuclear reactions become possible in principle. 
That is, the strong force between nucleons can now operate, and the weak force also can operate (if 
necessary). As a result of these forces, nuclear reactions occur on a certain time-scale. For example, 
in the Sun, once a deuterium nucleus is formed by reaction (a) in the pp‑cycle (see Section 11.1), an 
ambient proton will interact with the deuteron via reaction (b): the latter reaction involves the strong 
force, and it occurs within time-scales of a few seconds. But reaction (a) requires the weak force to 
operate: as a result, this reaction is slower (see Section 11.5.2.). 

11.5 RATES OF THERMONUCLEAR REACTIONS: 
TWO CONTRIBUTING FACTORS 

The overall rate of any particular thermonuclear reaction in thermal plasma depends on two fac
tors. One has to do with bridging the Coulomb gap: this factor is sensitive to the temperature. The 
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second has to do with the operation of forces within the nuclear radius: this factor is independent 
of temperature. 

11.5.1 briDGinG the Coulomb Gap: “Quantum tunnelinG” 

We have described the process of bridging the Coulomb gap in terms of the comparative equality 
of the two lengths rc and p. More formally, quantum mechanics treats the process in terms of “tun
neling” through a potential barrier. 

To quantify the tunneling, we first note that in quantum mechanics, the dynamics of parti
cles (based on the ideas of de Broglie) can be described by a wave equation obtained by Erwin 
Schrödinger (1926) (based on the wave-particle ideas of de Broglie). According to this equation, a 
particle that is traveling in free space has a propagating wave-like character  which is described, 
in 1-D motion, by a sinusoidal relation in space and time, i.e., an exponential with an imaginary 
argument: 

 ( ,  ) ~ exp[ 2 i ft ] (11.7) 
x 

x t  
p 

In Equation 11.7, the spatial (de Broglie) wavelength is p, and f = E/h is the frequency associated 
with a particle with energy E. When such a wave encounters a vertical wall (or “mountain”) that is 
too high for a particle of energy E to surmount, the sinusoidal solution of the Schrödinger equation 
is replaced by a damped (non-propagating) exponential: 

 ( )  ~ exp[ 2  x
x 

] (11.8) 
p 

In the Sun, the very heart of energy generation depends on applying Equation 11.8 to the “moun
tain” that is caused by the Coulomb gap, i.e., to the (huge) obstacle that prevents two thermal pro
tons from approaching each other any closer than rc. 

According to quantum mechanics, the probability P(V) that a particle with speed V (and associ
ated de Broglie wavelength p) can penetrate a 1-D barrier with spatial width x=rc is proportional to 

r 
P V   rc  exp[  ] (11.9) ( ) | ( ) |  2 4 c

p 

The fact that |ψ(rc)|2 is nonzero as long as rc/ p is finite, means that, in the quantum world, there is 
a finite chance that a particle can penetrate through a wall (or a Coulomb “mountain”) that would be 
completely insurmountable in the classical world. This process is known as “quantum tunneling”. 

When the tunneling calculation is done rigorously, in 3-D and in the presence of a “mountain” 
that has the particular shape of the Coulomb barrier, it is found that the numerical coefficient 4π (= 
12.6) in the exponent in Equation 11.9 must be replaced by the somewhat larger number 2π2 (= 19.7). 
That is, P(V) ≈ exp(−2π2r / ). Inserting the expressions given earlier for r and , we find that the c p c p

probability P(V) for Coulomb barrier penetration is given by 

24 2Z Z e 
P V   p 1 2( )  ex (11.10)G Vh

This expression for the probability is known as the Gamow factor, in honor of the physicist who 
first performed the tunneling integral (Gamow 1928). In recognition of Gamow’s role, we use sub
script G in Equation 11.10. 



 

 

 
 

   

 

 

 
 

 

   

   
 

  

169 Energy Generation in the Sun 

What is the numerical value of the tunneling probability in the core of the Sun? We have 
seen (Section 11.4.4) that in the core, rc/ p ≈ 1.1. In that case, Equation 11.10 tells us that PG(V) ≈ 
exp(−2.2π2) ≈ 4 × 10−10. 

It is important to note that PG(V) is quite sensitive to the particle speed V. For example, suppose 
that, instead of considering particles moving with speed  Vth, we were to consider the collisions 
of two particles, each of which moves with speed 2Vth. In such a case, the tunneling probabil
ity PG(2Vth, Sun) would be ≈ exp(−1.1π2) = 2 × 10−5. Thus, by doubling the speed, we have increased 
the pp‑tunneling probability by a large amount (5 × 104). At first sight, this sensitivity to speed sug
gests that we might have made an error of many orders of magnitude by evaluating the tunneling 
probability at the particular speed Vth. But upon further consideration, we can see that the error is 
much less serious. 

2 2 2To see why this is so, we note that in a thermal velocity distribution, where f V  ~V exp   V / Vth , 
there are fewer particles moving at faster speeds. For example, for every particle that moves with 
speed Vth, there are only 4e−4 ≈ 0.07 particles in a Maxwellian distribution moving with 2Vth. For this 
reason alone, the number of possible interactions that might occur every second between particles, 
each of which moves with speed 2Vth, is smaller by 0.072 ≈ 1/200 than the collision rate between two 
particles moving with speed Vth. Furthermore, the cross-section for Coulomb collisions is smaller 
for faster particles: σc ~ 1/V4 (see Section 11.3). This further reduces the collision rate by a factor of 
16 when we compare particles with speed 2Vth to particles with speed Vth. Combining the Coulomb 
and Maxwellian factors, we see that the increase in pp‑tunneling probability by 5 × 104 is offset 
by 200 × 16 ≈ 3 × 103. Therefore, as far as the actual rate of tunneling, particles with speed 2Vth 

are indeed more effective than particles with speed Vth, but not by many orders of magnitude. The 
increase in effectiveness is a factor of ~ 17. 

If we were to repeat this exercise for particles moving even faster, say 4Vth, we would find that 
the increase in tunneling probability (by a factor of ≈ 107) is more than offset by the combined 
Maxwellian and Coulomb factors. The relative number of Maxwellian particles is 16e−16 ≈ 2 × 10−6, 
and Coulomb collisions occur 256 times less frequently. Thus, despite the increased Gamow factor, 
particles with speed 4Vth are about 10 times  less effective than particles with speed Vth. Overall, 
the peak in pp‑tunneling probability in a thermal distribution of protons occurs for particles with 
speeds of 2–3Vth, and closer to 2Vth than to 3Vth. 

This suggests that our estimate of tunneling probability obtained earlier for particles moving 
with speed Vth(≈ 4 × 10−10) is a lower limit on the actual probability in the Sun. The lower limit 
should be increased by a factor of perhaps 20 in order to obtain a more realistic pp‑tunneling prob
ability for a Maxwellian distribution in the Sun: PG(Sun) ≈ 8 × 10−9. 

We can now see an important conclusion of this discussion. Even in the “favorable” conditions 
that exist in the core of the Sun, only one collision in (roughly) 125 million results in one proton 
tunneling close enough to another to “feel” the nuclear force. On the other hand, as we have seen 
(Section 11.3), each proton in the core undergoes some 2 × 1015 collisions every second. Therefore, 
each proton in the Sun’s core experiences roughly 107 tunneling events every second. When com
bined with the relevant post-tunneling processes (see Section 11.5.2), this rate of tunneling suffices 
to provide the Sun with its mighty output power. 

We shall return later to examine how the functional form of PG(V) has the effect that the rates of 
thermonuclear reactions increase rapidly with increasing temperature. But for now, we turn to what 
happens inside the nucleus once the tunneling has occurred. 

11.5.2 post-tunnelinG proCesses 

Once tunneling has occurred, the two particles are close enough together that they can be regarded 
as being together inside a nucleus. The processes that then occur in such conditions depend on 
which forces come into play. 
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We have already mentioned (Section 11.4.6) that the strong force is at work in reaction (b) of 
the pp‑cycle. The strong force is also at work in reaction (c) of the pp‑cycle. However, even though 
reaction (b) occurs on a time-scale of a few seconds in the Sun, reaction (c) requires on average 
several million years to occur. The principal reason that reaction (c) is so much slower than reac
tion (b) in the Sun has to do with the tunneling factor: referring to Equation 11.10, we see that the 
product Z1Z2 is four times larger for reaction (c) than for (b). (We will return to this in Section 11.7.) 

But reaction (a) in the pp‑cycle is different. The strong force is not the predominant factor con
trolling this reaction. When two protons interact via the strong force, they might be expected at first 
to attempt to form a nucleus consisting of two protons and nothing else. Such a nucleus could be 
referred to as a “di-proton”. However, calculations of nuclear structure indicate that such a nucleus is 
not stable: the combination of kinetic energy, Coulomb repulsion, and exchange forces overwhelms 
the attractive nuclear energy. As a result, the di-proton is unbound in the “real world”. The strong 
force is simply not strong enough to bind the two protons in reaction (a) together in a stable nucleus. 

So how does reaction (a) proceed? We note that the product of the reaction (i.e., the deuteron), is a 
stable (bound) nucleus consisting of one proton and one neutron. To form such a nucleus, one of 
the protons that enters into reaction (a) must become a neutron. During the course of a collision of 
two protons, during the (very) brief interval of “collision time” when the two protons are within a 
distance of rN of each other, one of the protons must become transformed into a neutron. 

How long does the “collision time” last? The duration of a collision is  tc ≈ rN/V where 
V ≈ 6 × 107 cm sec−1 is the mean thermal speed of protons (and therefore neutrons) in the core of the 
Sun. Setting rN ≈ 10−13 cm, we find tc ≈ 2 × 10−21 sec. 

What is the chance that a proton-to-neutron transformation will happen during an interval of 
duration tc? If we were considering a free proton in the Sun, the answer would be straightforward: 
the chance would be zero. It is impossible for a free proton in the Sun to decay into a neutron 
because the proton would have to gain a mass of 0.0014 a.m.u. (see Table 11.1). This is equivalent to 
an energy gain of 1.3 MeV, about 1000 times larger than the thermal energies in the Sun. However, 
inside a nucleus, in the presence of the strong force, with an attractive energy of 20–30 MeV, the 
transformation of a proton into a neutron becomes possible: in such an environment, in a potential 
well some 20–30 MeV deep, the possibility of “picking up” 1.3 MeV is no longer out of the question. 
As a result, the “decay” of a proton into a neutron inside the nucleus is no longer excluded: the weak 
force can do its work. 

This requires that the weak force must work its transforming effects precisely during the “colli
sion time”. Now, a first estimate of the strength of the weak force is provided by the empirical result 
that free neutrons decay with a half-life t1/2 of about 650 sec. 

What is the probability Pd(p) that a proton will decay into a neutron during the “collision time”? 
The correct answer to this question requires a theory of beta decay: the Gamow-Teller (G-T) version 
of Fermi’s theory was used by Bethe and Critchfield (1938) in their calculation of the rate of the pp‑
cycle in the Sun. In the G-T theory, the conversion of a proton into a neutron is more effective than 
in the Fermi theory because the G-T theory allows the spin vector of the proton to flip, whereas the 
Fermi theory does not allow such a flip to occur. 

Without going into the details of beta-decay theory, we can estimate an upper limit to the prob
ability by considering a hypothetical analog to proton-proton collisions. Suppose two free  neu
trons were available in the thermal population in the Sun’s core, and suppose they were to undergo 
a collision in which the distance of closest approach happened to be rN. A free neutron always has 
the option of decaying into a proton. So, what is the probability Pc(n) that one of the neutrons would 
decay into a proton during the collision time tc? The answer is: Pc(n) can be estimated roughly by 
the ratio of t to the neutron half-life, t1/2. This leads to t /t1/2 of order 3 × 10−24. Thus, the probability c c

that a (free) neutron in the Sun’s core would decay into a proton during the collision with another 
neutron is Pc(n) ≈ 3 × 10−24. Even with the advantage of free neutron decay, this is still a very small 
probability. 
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Returning now to the case of proton-proton collisions, we recall that the proton and the neutron 
are both nucleons with similar properties. (In the technical language of nuclear physics, protons and 
neutrons are members of the same “isospin doublet”.) As a result, they are expected to behave to a 
certain extent in similar ways when they are within a distance of rN of each other. However, there is 
a difference in the energy ΔE that is released in the reaction: whereas reaction (a) earlier releases an 
energy of 1.44 MeV, the excess mass energy of 1.3 MeV of the neutron relative to the proton would 
have the effect that the energy released in the reaction n + n  D would equal 1.44 + 1.3 = 2.74 
MeV. Now according to a general rule in particle decays (known as the “Sargent rule”), the rate of 
beta decay scales as (∆E) , where α = 5 in the limit that the decay products are relativistic. As a 
result, the reaction p + p  D is predicted to be less probable than n + n  D by a factor of order 
(2.74/1.44)5 ≈ 25 in the relativistic limit. Even in the nonrelativistic limit, the probability Pc(p) that a 
proton will decay into a neutron during the collision is expected to be smaller than Pc(n). Defining 
the ratio of Pc(n)/Pc(p) as ξ(>1), we write Pc(p) ≈ (3/ξ) × 10−24. 

11.5.3 probability of pp-i CyCle in the solar Core: reaCtions (a) anD (b) 

Combining the probability factors for quantum tunneling and for the post-tunneling process of pro
ton transformation, we see that in the center of the Sun, the overall probability P(pp) of a pp‑nuclear 
reaction (i.e., reaction (a) in the pp‑I cycle) in a collision in the solar core is given by the product 
of the Gamow factor PG(Sun) (= 8 × 10−9: see Section 11.5.1.) and Pc(p). Using the estimates given 
earlier, we find P(pp) ≈ (24/ξ) × 10−33. 

We recall that the observed properties of the Sun indicate that a pp‑cycle occurs on average only 
once in every Nc(react) ≈ 1033 collisions in the Sun’s nuclear-burning core (Equation 11.2). That is, 
the empirical probability of a nuclear reaction is of order 10−33 per collision. Compared with our 
estimates of P(pp), we see that we can replicate the empirical probability of nuclear reaction in the 
Sun as long as Pc(n) does not exceed Pc(p) by a factor of more than ≈25. This is almost exactly the 
factor that is available based on the Sargent rule. 

Thus, of the 33 orders of magnitude that occur in the empirical reaction probability 1/Nc (react), 
the process of tunneling through the Coulomb barrier provides about eight orders of magnitude, 
while the weak interaction that occurs in the post-tunneling process contributes the remaining 25 
orders of magnitude. The weak interaction truly dominates (by ≈17 orders of magnitude) in regulat
ing the slowness of the thermonuclear processes in the Sun. 

It is the low value of the probability associated with the weak interaction that causes reaction (a) of 
the pp‑cycle to be so much slower than reactions (b) or (c). We recall (Section 11.3) that, on average, a 
proton participates in reaction (a) once in (about) 10 Gy. In reaction (b), since the Coulomb barrier is 
similar to that in reaction (a), the tunneling probability is comparable to that for reaction (a). However, 
the post-tunneling process in reaction (b) involves the interaction between two nuclei so as to form a 
third stable nucleus. The interaction in reaction (b) therefore operates by way of the strong force, in 
sharp contrast to reaction (a), where the weak force is at work. In the nature of things, we expect that 
the strong force operates on much shorter time-scales than the weak force. In support of this expecta
tion, we note that measurements of the cross-section for reaction (b) indicate that the post-tunneling 
process in (b) operates almost 18 orders of magnitude more rapidly than in reaction (a). As a result, 
instead of a time-scale of order 1018 sec between occurrences of reaction (a), reaction (b) occurs on 
time-scales of order seconds. We shall return to discuss the time-scale for reaction (c) in Section 11.7, 
after we quantify how the tunneling probability depends on charge and mass. 

11.6 TEMPERATURE DEPENDENCE OF THERMONUCLEAR REACTION RATES 

A significant characteristic of the Gamow tunneling probability PG(v) (Equation 11.10) is the occur
rence of the particle speed in the denominator of the argument of the exponential term. This has the 
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effect that PG(V) falls off exponentially rapidly to zero as the speed decreases below a value that is 
related to Vc (see Equation 11.6). In the opposite limit, for speeds V > Vc, PG(V) increases at first, but 
in the limit V >> Vc, the value of PG(V) eventually saturates at a value of unity. 

In contrast to this behavior of the tunneling factor as a function of velocity V, there is a very 
different behavior for the velocity distribution f(V) as a function of V. A significant property of a 

2 2 2thermal velocity distribution f V  ~V exp V / V  is that as the speed increases from V = 0, 
the value of f(V) at first increases because of the V2 term in front of the exponential. However, as V 
increases, the exponential term eventually dominates over the V2 term. As a result, the number of 
available particles falls off exponentially rapidly at high speed. 

In order to quantify the overall rate of thermonuclear reactions, we must perform an integral of 
the product Π(V) = PG(V)f(V) over all velocities. Because of the contrasting behavior of each of the 
terms as a function of velocity, the integral receives essentially zero contribution from particles with 
low speeds or from particles with high speeds. The integrand peaks at an intermediate velocity Vo, 
corresponding to energy Eo. The particles that contribute most to the rate of thermonuclear reactions 
are those that lie within a range of velocities ∆V in the neighborhood of Vo. As a result, when we 
integrate over all velocities, the thermonuclear reaction rate rtn is proportional to f(Vo) (the number 
of particles in the thermal distribution at V = Vo) times ∆V. 

Converting from velocity to energy, we note that the exponential term in f(V) converts to f(E) 
~ exp(−E/kT), while PG(V) converts to PG(E) = exp(−β/√E). In the expression for PG(E), β = C′Z1 

Z2√A and C = 2π2e2 √(2mp)/h = 1.23 × 10−3 c.g.s. units. Since the mean thermal energy kT (≈ 1.9 × 
10−9 ergs) in the core of the Sun is of order 1 keV (= 1.6 × 10−9 ergs), it is convenient (Clayton 1968) 
to express energy in units of keV: Ek = E/(1 keV). In these units, C  is replaced by Ck  31keV0 5. . 

In terms of energy, the product Π(E) = PG(E)f(E) has a maximum value at an energy Eo where the 
sum of the two terms β/√E + E/kT in the exponent is a minimum. Taking the derivative with respect 
to energy, we find that this minimum occurs when 

  th  

1  
 

3 2  
 0 (11.11) 

kT 2E0
/ 

This leads to Eo = (βkT/2)2/3: this is the energy at which the particles in the thermal distribu
tion participate with maximum effectiveness in quantum tunneling and, therefore, also in thermo
nuclear reactions. For example, in the case of reaction (a) in the pp‑cycle in the core of the Sun, we 
have Z1 = Z2 = 1 and A = 0.5. These lead to β = 22 keV0.5. Since kT ≈ 1.2 keV in the core of the Sun, 
we find Eo ≈ 5.6 keV, i.e., ≈ 4.7 times larger than the mean thermal energy. The velocity of particles 
with energy Eo is therefore ≈ √4.7 times the mean thermal speed, i.e., ≈ 2.2Vth. This confirms our 
discussion in Section 11.5.1 (in the fourth paragraph from the end of the section). 

Using the estimate of Eo, i.e., and rearranging Equation 11.11 as follows /√Eo = 2Eo/kT, we find 
that the rate of thermonuclear reactions f is proportional to Π(E ), i.e., f ~ exp(−3E /kT). Because of r o r o

the exponential factor, the rate fr is quite sensitive to temperature. To quantify this, let us insert the 
expression derived earlier for Eo and take the natural logarithm. We find ln( fr) = −3(β/2)2/3/(kT)1/3. 
It is often convenient to write the reaction rate in terms of a power law of the temperature, fr ~ T . 
This leads to 

2d f   
1 3  

1r 
ln 

  

/ 

1 3/ 
(11.12) 

d T  4kln T

Inserting c.g.s. values for β (for the pp‑reaction) and k, and expressing the temperature in units 
of 106 K (i.e., T6 T/106 K) we find 

11 1 .
/ 

(11.13) 
T6

1 3  
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In the core of the Sun, where T6 ≈ 15–16, Equation 11.13 indicates that δ ≈ 4–5. Thus, the rate of 
pp‑reaction increases rather rapidly as temperature increases. 

11.7 RATE OF REACTION (C) IN THE PP-I CYCLE 

Reaction (c) (Section 11.1) involves a larger Coulomb barrier than do reactions (a) or (b). It is inter
esting to see quantitatively how sensitive the tunneling barrier is to the reacting nuclei. 

In calculating the quantity  β for reaction (c), using  Z1 =  Z2 = 2 and  A = 1.5, we find 
β = 152 keV0.5. Setting kT = 1.2 keV, this leads to Eo = 20.3 keV, which is much larger than the 5.6 
keV value for reaction (a). As a result, the reaction rate fr, which is proportional to exp(−3Eo/kT) 
(see paragraph leading up to Equation 11.12), is reduced in reaction (c) compared to reaction (a) by 
exp(−3[20.3–5.6]/1.2) ≈ 10−16 in the core of the Sun. (Note, kT ≈ 1.2 keV in the solar core.) However, 
the post-tunneling process in reaction (c) depends on the strong force: the rate of this process there
fore greatly exceeds that for (weak-force) reaction (a). Empirically, the excess in rates is found to be 
of order 1025 (Clayton 1968, p. 380). 

Combining the factors 10−16 and 1025, we see that reaction (c) has a rate that is 109 times more fre
quent than each proton-proton reaction (a). However, there is one more factor that must be included 
in the argument, namely, the abundance of He3 nuclei in the Sun. The equilibrium abundance of 
He3 nuclei is much smaller than the proton abundance: specifically, in equilibrium, for every proton, 
there are only 10−5 He3 nuclei in the Sun. This has the effect that the mean free time interval that 
a particular He3 nucleus must wait between collisions with another He3 nucleus is 105 times longer 
than the mean free time for collisions with a proton. 

The combination of the enhancement factor of 109 (due to tunneling and post-tunneling pro
cesses) and the decrease of 105 (due to abundances) has the net effect that an individual He3 nucleus 
has a collision leading to reaction (c) in a time-scale which is some 104 times shorter than the time
scale for a proton to undergo reaction (a). As a result, whereas a time-scale of order 1010 years is 
characteristic of reaction (a), the time-scale for reaction (c) is of order 106 years. 

For reactions other than reaction (a), the numerical coefficient 11.1 in the expression for δ must be 
replaced by 11.1(Z1Z2)2/3(A/0.5)1/3, where the 0.5 refers to the reduced mass that enters into reaction 
(a). Following the argument used in deriving Equation 11.13, we find that reaction (c) in the core of 
the Sun has a rate that increases as T16. The great sensitivity to temperature arises from the sensitiv
ity of tunneling to the strength of the Coulomb barrier. 

However, because reaction (a) is so much slower than either (b) or (c), the overall time-scale for 
the pp‑I chain is determined essentially entirely by reaction (a). Therefore, the temperature sensitiv
ity of nuclear reactions in the Sun is controlled by reaction (a), i.e., rate of the pp‑I chain is propor
tional to T4–5. If something were (somehow) to cause the core of the Sun to increase its temperature 
by a factor of (say) two (without changing any other physical parameters), then the pp‑I chain would 
occur at a rate that exceeds the rate in the present Sun by a factor of 16–32. 

EXERCISES 

11.1 From Exercise 1.5 in Chapter 1, you already know the values of Vesc for main sequence stars 
with masses of 0.1, 0.3, 1, 3, and 10 M . Assuming thermal speeds in the core Vth ≈ Vesc, eval
uate the ratio rc/ p = Vc/Vth in the core of each star (where Vc is given by Equation 11.6). Show 
that on the main sequence, the ratio rc/ p does not vary by more than a factor of roughly two. 

11.2 Using the tunneling probability formula  P(V) ≈ exp(−2π2rc/ p), calculate  P(V) for the 
five stars in Exercise 11.1. Show that P(V) for the 10M  star is two to three orders of 
magnitude larger than for the 1M star, while  P(V) for the 1M star is three to four 
orders of magnitude larger than for the 0.1M star. Show how these results help us to 
explain the empirical results that the luminosity of a 10M star exceeds L by about 1000, 
while L  exceeds the luminosity of a 0.1M  star by about 1000. 
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12 Neutrinos from the Sun 

As a result of the calculations in Chapters 5, 7, and 9, we have obtained a model for the interior 
of the Sun. The question now is: is there any way to check our model to see if the calculations are 
consistent with reality? 

In the 1960s, there was only one answer to this question: we need to detect a certain kind of 
energetic particle (neutrino) that emerges from nuclear reactions in the core of the Sun. The goal of 
such experiments would be to check that the numbers of neutrinos that reach the Earth, as well as 
their energies, are consistent with the properties we calculated for nuclear reactions in the solar core. 

The existence of neutrinos was first postulated by Wolfgang Pauli in 1930 in order to preserve 
the laws of conservation of momentum and energy in certain radioactive decays. Pauli’s approach 
was a bold one: he had to postulate that in these decays, a hitherto unseen particle with zero electric 
charge must emerge with a finite energy and momentum, but with a mass that must be so small as 
to be almost zero, certainly much smaller than the mass of an electron. The term “neutrino” was 
subsequently coined by Fermi for Pauli’s unseen particle. The absence of electric charge means that 
the neutrino does not interact with its surroundings by means of electromagnetic processes. The fact 
that the neutrino is associated with radioactive decay (a process that is driven by the weak interac
tion) means that the neutrino interacts with other particles via the weak force. 

We have already seen (Chapter 11, Section 11.5.3) how the weak force in the Sun makes for very 
long time-scales in certain reactions, whereas the strong force makes reactions occur much more 
rapidly. There is also a significant difference in strength between the weak force and the electro
magnetic force. Because of this difference, photons (signatures of the electromagnetic force) and 
neutrinos (signatures of the weak force) behave very differently as they propagate inside the Sun. 
In Chapter 9, Section 9.3, we determined that photons originating in the core of the Sun take mil
lions of years to escape from the Sun. In contrast to the photons, we shall see that neutrinos from 
nuclear reactions in the solar core can reach the surface of the Sun in a matter of no more than a few 
seconds. This is a striking illustration of how much less effective the weak force is in comparison 
with the force we are more familiar with in our macroscopic world, i.e., the electromagnetic force. 

12.1 GENERATION AND PROPAGATION OF SOLAR NEUTRINOS 

Every time the pp-I chain occurs, a neutrino emerges from the first step of the chain (Section 11.1, 
reaction (a)). A complete pp-I chain requires this step to occur twice. As a result, since the pp-chain 
occurs some 1038 times per second in the Sun (see Section 11.2), we expect that there are roughly 
2 × 1038 neutrinos generated per second in the Sun’s core. 

Are these neutrinos likely to be absorbed as they pass through the Sun? Or can they escape more 
or less freely? To answer this, we return to the same sort of calculation we did in Section 9.3 when 
we were considering how photons propagate inside the Sun. The relevant physical quantity that we 
now need to evaluate is the mean free path m that a neutrino can travel between collisions with the 
atoms/ions/nuclei/electrons it encounters as it propagates inside the Sun. 

In general, when a projectile moves through a medium containing n “target objects” per cc, each 
with a cross-section of σ, the mean free path is given by m = 1/nσ. In the case of photons, where the 
opacity κ is conventionally expressed in units of cm2 gm−1, the product nσ can be replaced by the 
product κρ (Section 3.3). As a result, as we have already seen (Section 9.3), the mean free path of a 
photon 1/κρ is found to be of order ≈ 0.001 cm in the Sun’s core. 

Turning now to neutrinos, we revert to the general formula m = 1/nσ. The “target objects” 
that a neutrino from the core of the Sun encounters on its way to the surface are mainly protons 
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and electrons. In the core of the Sun, where the mass density ρ is ≈ 140 gm cm−3 (see Chapter 9, 
Table  9.1), the number density of nuclei is roughly  ρ/mH (where  mH = 1.67 × 10−24 gm). Thus, 
n ≈ 1026 cm−3, mainly protons, but including He and a few “metal” ions. For each proton, there is also 
roughly one electron present in this (almost completely ionized) gas. 

At this point, we encounter the key difference between photons and neutrinos. On the one 
hand, photons that try to propagate through the ions in the core of the Sun “see” the ions as hav
ing, on average, effective areas of order (phot) ≈ 10−23 cm2. The reason that the cross-section has 
a value larger than the Thomson cross-section (see Equation 3.1) is that the photon interacts via 
electromagnetism with some bound electrons that still remain attached to certain heavy nuclei 
even at temperatures as large as 15–16 MK. On the other hand, for neutrinos, electromagnetism 
is not important: neutrinos interact with the nuclei in the Sun by means of the weak force. For 
this, the cross-section is much smaller than the Thomson value. In order to determine the neutrino 
cross-section, Cowan et al. (1956) searched for neutrinos emerging from a fission reactor: when 
a uranium or plutonium nucleus undergoes fission, some of the by-products (e.g., strontium-90, 
cesium-137, iodine-131) are unstable to beta decay, and these decays are accompanied by neu
trinos with energies of up to a few MeV. Although these beta decays involve elements that are 
not significant in the Sun, the energies of the neutrinos that emerge are comparable to those that 
occur in the Sun (see Figure 12.1). Using a specially designed detector, Cowan et al. found a mean 
neutrino reaction rate in the detector between 0.6 and 2.9 events per hour, depending on the power 
level of the reactor. Running for almost 1400 hours in order to build up a significant sample, 
Cowan et al. determined that for the neutrinos emerging from the fission reactor, the cross-section 
for interactions with the nuclei in their detector had a value σ ≈ 6 × 10−44 cm2. In subsequent more 
refined experiments, the cross-section was found to be larger by a factor of about two. To a good 
approximation, we may take σ(neut) ≈ 10−43 cm2 for the neutrino cross-section with energies of 
order 1 MeV. 

The contrast between the photon cross-section (phot) and the neutrino cross-section σ(neut) is 
noteworthy: the difference amounts to some 20 orders of magnitude. “Weak” (compared to electro
magnetism) is indeed an appropriate adjective to describe the interaction that MeV neutrinos have 
with matter. 

For neutrinos with energies of a few MeV, the cross-section is insensitive to energy, and so we 
can, without serious error, apply the cross-section determined from fission reactor neutrinos to the 
conditions in the core of the Sun. Combining the value of  (neut) with the value of n ≈ 1026 cm−3 in 
the core of the Sun, we see that even in the densest region of the Sun, the neutrino mean free path 

m = 1/nσ ≈ 1017 cm. In terms of a unit of length that is more familiar to astronomers, this equals 
one-tenth of a light‑year: a block of lead (with a density about 0.1 times the density at the center of 
the Sun) could be as much as one light-year thick and a neutrino would have a good chance of pass
ing right through the entire block! Up to this point in the discussion of solar neutrinos, we have been 
assuming that the density of the material through which the neutrino passes is equal to the density 
at the center of the Sun. But of course this will not be appropriate as the neutrinos move outward 
from the core of the Sun: as they do so, they will pass through gas of increasingly lower density. As 
a result, the value of m becomes even larger than the value of 1017 cm mentioned earlier. But even 
at the center of the Sun, the value of m exceeds the solar radius (≈7 × 1010 cm) by more than six 
orders of magnitude. 

As a result, the neutrinos from the pp-reaction in the core of the Sun barely “feel” the material 
of the solar interior at all. Less than one neutrino in a million will undergo a scattering between 
the core of the Sun and its surface. For the rest, the Sun is essentially “transparent”, and from this 
perspective, the neutrinos simply stream freely out of the Sun. With essentially zero rest mass, a 
neutrino travels at the speed of light: once a neutrino is generated in the core, it reaches the surface 
in a time of R /c = 2.3 sec. Some 500 sec later, the neutrino passes the Earth’s orbit and continues its 
journey into deep space: in the interstellar gas, electron/proton densities are at most 1 cm−3, and as a 
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result, the mean free path for a neutrino is at least 1043 cm. Such a neutrino can in principle traverse 
the entire visible universe without interacting. 

The lack of scattering in solar material does not mean that the neutrinos feel no effects whatso
ever from passing through the Sun. In fact a certain type of effect does occur, one that causes the 
neutrino to change into another type of neutrino. We will return to this later, after we describe the 
experiments that have been built to detect solar neutrinos. 

12.2 FLUXES OF PP-I SOLAR NEUTRINOS AT THE EARTH’S ORBIT 

As a result of the pp-I chain, we predict that the Sun generates roughly Nn ≈ 2 × 1038 neutrinos per 
second. When the neutrinos pass by the Earth, at a distance of D = 1 AU from the Sun, the flux of 
solar neutrinos should therefore be roughly Fn = Nn/4πD2 ≈ 6 × 1010 cm−2 sec−1. How well does this 
prediction match up with observations? Analysis of multiple experimental measurements of the 
actual flux at Earth orbit of neutrinos from the pp-chain (Bergstrom et al. 2016) have led to the fol
lowing value: 5.97−0.03 

+0.04 × 1010 cm−2 sec−1. This range overlaps with our rough estimate of the flux. 
The neutrinos emerging from the pp-I chain have a range of energies; all of the energies are less 

than 0.42 MeV. Other channels of the pp-chain, as well as contributions from the CNO cycle (see 
Section 12.3.2), ensure that the Sun generates other neutrinos with a range of energies. The spec
trum of all known types of solar neutrinos, calculated from a detailed model of the Sun and evalu
ated at the mean distance (1 AU) of the Earth’s orbit, is shown in Figure 12.1. Neutrinos that emerge 
from reactions involving only two outgoing particles are emitted at unique energies: these appear 
as vertical “lines” in the figure. Reactions in which more than two outgoing particles are present 
(including pp  De+ ) give rise to a “continuum” of energies for the neutrinos, up to a well-defined 
maximum “cut-off” energy, which is determined by the difference in energy between initial and 
final state. The “continuum” in which we are most interested in this subsection is the one with the 
largest amplitude, i.e., the one labeled pp in Figure 12.1. 

For the “lines” occurring in the solar neutrino spectrum, the ordinate in Figure 12.1 refers to the 
flux in units of particles cm−2 sec−1 at Earth. For the “continua”, the ordinate in Figure 12.1 refers to 
a differential energy flux, in units of particles cm−2 sec−1 MeV−1 at Earth. 

In terms of overall flux, the neutrinos from the Sun are predominantly those that emerge from 
reaction (a) of the pp-I chain. As Figure 12.1 illustrates, the differential flux of pp neutrinos has a 
maximum amplitude of F(max) = (2–3) × 1011cm−2 sec−1 MeV−1, while the cut-off energy is E(cut
off)  =  0.42 MeV. To calculate the total flux of these solar neutrinos at Earth orbit, we need to 
determine the area under the pp curve in Figure 12.1. This area is certainly no larger than the area 
we would obtain if we were to represent the pp curve as a rectangle with height F(max) and width 
E(cut‑off). That is, the total flux of pp neutrinos at Earth cannot be any larger than the product of 
this height and this width, i.e., no larger than (8–13) × 1010 neutrinos cm−2 sec−1. This upper limit is 
consistent with our rough estimate of 6 × 1010 neutrinos cm−2 sec−1 given earlier. 

12.3 NEUTRINOS FROM REACTIONS OTHER THAN PP-I 

In the Sun, most of the energy generation occurs via the pp-I chain of reactions that were discussed 
in Chapter 11. Now, in order to provide a more complete discussion of the neutrinos that come from 
the Sun, we need to look at certain less frequent reactions that also occur in the solar core, in par
ticular the so-called pp-II and pp-III chains. These reactions do not contribute much to the energy 
output of the Sun, but for historical reasons, they are important: they contribute significantly to 
the solar neutrino fluxes that were first actually detected on Earth in the late 1960s. In fact, for the 
first 25 years (or so) of solar neutrino experiments, the only neutrinos that could be detected were 
those from the pp-III chain. The reason has to do with the fact that, as far as a neutrino detector 
is concerned, the incoming neutrinos must have a certain minimum “threshold” energy before the 
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FIGURE 12.1 Fluxes of solar neutrinos as a function of energy at a distance of 1 AU from the Sun. Different 
ordinates are used depending on whether one is dealing with “lines” or with “continua”. (From Nakamura K. 
2000. Euro. Phys. J. C, 15, 366. With permission.) 

detector can respond. Each type of detector has its own particular threshold, depending on the spe
cific reaction that is involved in the process of detection. An important aspect of Figure 12.1 can 
be seen by inspecting the upper edge of the figure: there, one sees the threshold energies of three 
different types of detectors that have been used in attempts to detect solar neutrinos. Information 
pertaining to these different detectors will be discussed in Section 12.4. 

12.3.1 pp-ii anD pp-iii Chains 

Both of these chains start off with the reactions pp-I (a) and (b) (see Section 11.1) to produce He3. 
Then, instead of interacting with another He3 nucleus (as happens in reaction (c) in Section 11.1), 
both pp-II and pp-III at first rely on the following reaction: 

3 4 7He  He  Be  (d) 

The question that we need to ask is this: how fast does reaction (d) go compared with reaction (c) 
of the pp-I chain? To address this, we first consider the difference in Coulomb barrier tunneling 
by proceeding analogously to the discussion in Section 11.7. For reaction (d), we use Z1 = Z2 = 2 
and A = 1.71: this leads to β = 162 keV0.5. Using kT = 1.2 keV in the solar core, we find the energy 
at which the reaction is most effective Eo = (βkT/2)2/3 has a value of 21.1 keV. This is somewhat 
larger than the 20.3 keV value for reaction (c) of the pp-I chain. As a result, the tunneling rate, which 
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is proportional to exp(−3Eo/kT) (see discussion prior to Equation 11.12), is reduced in reaction (d) 
compared to reaction (c) by a factor of almost 10 in the core of the Sun. Thus, quantum tunneling 
reduces the reaction rate of (d) compared to (c) by about one order of magnitude. 

On the other hand, a significant factor that strongly favors the occurrence of reaction (d) over 
reaction (c) has to do with the fact that He4 is much more abundant in the Sun than He3 is: the excess 
is some four orders of magnitude. As a result, any nucleus of He3 finds itself likely to collide, in a 
given time interval, with 104 times more He4 nuclei than with He3 nuclei. 

The final determination of how rapidly reaction (d) occurs compared to reaction (c) has to do with 
what happens in the post-tunneling process, when the strong force comes into operation. There is 
no easy way to see what differences should be expected when the strong force comes into play: one 
must rely on detailed quantum mechanical calculations. These indicate (Clayton 1968) that for (d), 
the reaction rate has a numerical value that is 104 times smaller than for reaction (c). 

Combining the reduction in tunneling rate (10−1) with the increase in abundance (104) and the 
decrease (10−4) in the post-tunneling rate, we find that the net effect is that reaction (d) occurs 
about 10 times less frequently in the solar core than reaction (c). As a result, the pp-I chain 
occurs about 90% of the time in the solar core, while the pp-II and pp-III chains, in combination, 
occur about 10% of the time. 

Now we turn to separate considerations of the pp-II and pp-III chains. 
First, we consider the pp-II chain. Following reaction (d), the pp-II chain proceeds according to 

the reactions: 

7  7Be  e  Li  (e) 

Li7 p 2He4 (f) 

Reaction (e), which involves electron capture, leads to two (and only two) particles in the exit 
channel. As a result, the neutrinos have a unique energy. The energy difference between the 
ground states of the nuclei is 0.86 MeV. A neutrino “line” corresponding to reaction (e) appears in 
Figure 12.1 at an energy of 0.86 MeV. 

As it happens, the Li7 nucleus emerging from reaction (e) also has an excited state at an energy of 
0.48 MeV above ground: this lies low enough that it also lies below the energy of the ground state 
of Be7. The transition from the ground state of Be7 to this excited state is allowed energetically, and 
it produces a neutrino with an energy of 0.86–0.48 = 0.38 MeV. A neutrino “line” also is plotted in 
Figure 12.1 at this energy. Laboratory measurements indicate that the 0.86 MeV transition occurs 
about 90% of the time. This accounts for the fact that in Figure 12.1, the vertical line representing 
the 0.86 MeV neutrinos has an amplitude that is about 10 times larger than the amplitude of the line 
that represents the 0.38 MeV neutrinos. 

Now we consider the pp-III chain. Following reaction (d), the pp-III chain proceeds as follows: 

Be7  p B8  (g) 

Reaction (g) differs from reaction (e) in the qualitative sense that in (g), the repulsive force 
between two positively charged particles has to be penetrated, whereas in (e), there is an attractive 
force between the Be7 nucleus and the electron. For these reasons, the pp-II chain gets off to a faster 
start than the pp-III chain. Detailed calculations show that the pp-II chain occurs about 100 times 
more frequently in the Sun than the pp-III chain. 

The next step in the pp-III chain is historically the most important: 

B8  Be  8  e   (h) 
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Reaction (h) is the reaction that was the first to allow solar neutrinos to be detected on Earth. 
Three particles emerge from the decay, and as a result, the neutrino energies are spread across a 
continuum. Significantly, the cut-off energy of the continuum is quite large, some 14 MeV (see 
Figure 12.1). This large value arises mainly from the difference between the rest masses of the par
ent and the daughter nuclei (see Audi and Wapstra 1993), namely, 8.021864 a.m.u. (B8) and 8.003111 
a.m.u. (Be8). If the decay in reaction (h) were to occur between the ground states of parent and 
daughter, then the cut-off energy would be the energy corresponding to the total mass difference 
(0.0188 a.m.u.), i.e., 17.5 MeV. However, although the decay starts in the ground state of B8, quantum 
mechanical considerations indicate that a transition to the ground state of Be8 is forbidden: instead, 
the decay is constrained to go to an excited state of Be8 that lies 2.9 MeV above ground. The emer
gence of a positron on the r.h.s. of reaction (h) also requires the system to supply a “creation energy” 
of 0.511 MeV. As a result, the cut-off energy of the neutrino spectrum emerging from reaction (h) 
is 17.5 − 2.9 − 0.5 = 14.1 MeV. 

The final step in the pp-III chain is as follows: 

Be8  2He4 (i) 

The net effect of the pp-III chain is that four protons plus an alpha nucleus combined into two alpha 
particles. In other words, starting with four protons as intake, the outcome is one alpha nucleus. 

12.3.2 other reaCtions that oCCur in the sun 

The pep reaction involves an electron capture by a proton and a subsequent collision with another 
proton: 

p e  p  D  (j) 

The energetics are the same as reaction (a) of the pp-I chain, except that the electron appears 
on the left-hand side. But in the case of reaction (j), (in contrast to reaction (a)), only two 
particles emerge on the right-hand side. As a result, the emergent neutrino in the pep reaction 
has a unique energy: 1.442 MeV. In Figure 12.1, a vertical line labeled pep can be seen at this 
energy. Reaction (j) in the Sun occurs only once for every 400 pp interactions as described by 
reaction (a). 

The Hep reaction leads to a neutrino continuum with a cut-off at 18.8 MeV: 

He3 p e  (k) He  4 

The neutrinos emerging from reaction (k) are certainly the most energetic neutrinos gener
ated by solar nuclear reactions (see Figure  12.1). However, the number of neutrinos generated 
by reaction (k) in the Sun are so rare that, as of 2021, there are only reports in the literature of 
upper limits on the flux of neutrinos F(k) from reaction (k) compared to the flux of neutrinos F(a) 
which originate in reaction (a): F(k)/F(a) is found to be less than one part in 3 × 105 (The Borexino 
Collaboration 2018). 

In stars hotter than the Sun, energy is generated preferentially by a “bi-cycle” of reactions in 
which carbon nuclei act as catalysts for fusing four protons into one helium. In this “bi-cycle”, three 
beta decays occur (from N13, O15, and F17), each with the emission of a neutrino having a continuous 
energy spectrum extending up to 1–2 MeV. These continua are shown in Figure 12.1. In the Sun, 
observations indicate that the CNO cycle contributes on the order of 1% to the Sun’s energy output 
(The Borexino Collaboration 2020). In view of the smallness of this contribution, we will not con
sider CNO neutrinos any further in this “first course”. 
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12.4 DETECTING SOLAR NEUTRINOS ON EARTH 

The very smallness of the interaction cross-section that allows neutrinos to escape from the center 
of the Sun has the inevitable corollary that detection of neutrinos on Earth requires efforts that are 
nothing short of Herculean. 

There are two general classes of experiment for the detection of neutrinos. In one class, we rely 
on the properties of certain nuclei to absorb a neutrino, thereby transforming the initial nucleus into 
the nucleus of a new element: the goal is then to identify the amount of the new element produced 
in a given time interval. In the second class of experiments, we do not use nuclear physics at all: 
instead, we detect events in which a fast neutrino “smashes into” an electron in a certain medium 
(e.g., water), giving the electron a speed exceeding that of light in the medium. When that happens, 
a burst of Cherenkov radiation is emitted and is detected by light-sensitive phototubes. 

12.4.1 Chlorine DeteCtor 

The first neutrino detector, built by Raymond Davis Jr. in the 1960s, used a large tank of clean
ing fluid (C2Cl4) containing 520 tons of Cl37. The goal was to have solar neutrinos interact with 
Cl37 nuclei to produce nuclei of Ar37, and then count how many argons were in the tank after a 
certain length of running time. In order to avoid contamination from backgrounds, the detector was 
buried deep, almost one mile, underground in a mine in South Dakota (Davis et al. 1968). 

The (forward) decay reaction 

37 37Ar Cl  e   (l) 

is driven by the mass difference between the ground states of Ar37 and Cl37, corresponding to an 
energy of 0.814 MeV (Audi and Wapstra 1993). 

As a result, the Davis detector (which records events driving the prior reaction backward), 
responds only to neutrinos with energies in excess of 0.814 MeV. In principle, this means that if 
neutrino capture were to occur mainly via a transition from the Cl37 ground state to the Ar37 ground 
state, then Davis should be able to detect the line neutrinos from the pep reaction and from the 
higher energy Be7 decay, as well as continuum neutrinos from B8 decay, the Hep reaction, and three 
decays in the CNO bi-cycle. 

However, the nuclear physics is such that transitions from the Cl37 ground state to excited states 
of the Ar37 nucleus are preferred, especially to a level at an energy of about 5 MeV above the ground 
state. As a result, neutrinos in the B8 and Hep continua dominate the signal in the Davis detector. Of 
these, the B neutrinos are dominant by far. 

Now that we know which continua will be dominant, we turn to the experimental results. In 
principle, we are seeking a measurement of the neutrino flux. A convenient unit can be devised 
that incorporates the likelihood of a neutrino being detected. The common unit for discussing solar 
neutrino experiments is the solar neutrino unit (SNU): this is defined to be one neutrino capture per 
second in a detector that contains 1036 target nuclei. 

Why is this unit useful? Because the interaction cross-section between a neutrino and one of the 
target atoms is expected to be of order 10−43 cm2, while the input flux from the Sun in the B8 con
tinuum is expected to be a few times 107 neutrinos cm−2 sec−1. The product of these numbers yields 
an expected capture rate in a detector of a few times 10−36 per second. In view of this, a detector 
containing 1036 targets should yield a detection rate of a few per second. By definition, a detection 
of one per second per 1036 targets equals 1 SNU. 

The Davis detector contained roughly 1031 chlorine target nuclei. The standard solar model 
predicted that in one day of running (i.e., about 105 sec), the Davis detector should record about 
two neutrino captures. When the exact calibration was done, it was found that two captures per 
day would correspond to a solar neutrino rate of 8.1 SNUs (see Figure 12.2). Even allowing the 
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 FIGURE 12.2 Neutrino counting rates: comparison between theory and experiments. The rates are given 
in units of SNUs (see text). (Taken from de Gouvea 2006). Original permission to use this figure in 2009 was 
granted for a version which appeared on the website of the late John N. Bahcall. 

experiment to run for several months at a time, the total yield of argon atoms in the tank at the 
end of the run was expected to be no more than a few hundred, out of a tank containing some 
1031 chlorine atoms: the chemical expertise required to flush out those few argon atoms from an 
“ocean of chlorine” was truly impressive. For his work, Davis was awarded the Nobel Prize in 
Physics in 2002. 

The experimental results obtained by Davis were a surprise. The observed count rates, when 
averaged over 20 years and more, yielded a rate of only about 0.6–0.7 captures per day. The cor
responding average solar neutrino rate is 2.6 ± 0.2 SNUs. 

Davis’ experiment led to the startling conclusion that the experimental capture rates of solar 
neutrinos were smaller than predicted (8.1 SNUs) by a factor of about three. This shortfall became 
known as the “solar neutrino problem”. We shall return to this later. 

12.4.2 Cherenkov emission 

If a neutrino collides with an electron in a medium, the electron, called the “knock-on electron”, 
picks up some of the neutrino energy. Solar neutrinos, with energies of up to 14 MeV, can create 
knock-on electrons that also have energies measured in MeV. Such electrons travel with speeds that 
are close to the speed of light  in vacuo. If such an electron travels through a medium where the 
speed of light is reduced to (say) 0.7c (such as water), the knock-on electron will be moving faster 
than light in the medium. This causes emission of light in a Cherenkov cone, with an opening angle 
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determined by the electron’s energy. To make the electron fast enough for the Cherenkov process to 
be possible, the initial neutrino must have a minimum energy. 

The Kamiokande detector in Japan, containing some 2000 tons of water, was instrumented with 
a spherical shell of phototubes to track the Cherenkov cones from solar neutrinos: this detector came 
online in 1983. Subsequently, the super-Kamiokande detector, with 50,000 tons of water and with 
more than 10,000 phototubes, came online in 1996. In both cases, the minimum energy required 
to create knock-on electrons with significant Cherenkov emission is ≥ 5 MeV (e.g., Rothstein 1992; 
Takeuchi 2005). As a result, neither detector could record the main (pp) neutrinos from the Sun: the 
detectors could respond only to the upper end of the spectrum of B8 neutrinos. 

The standard solar model predicted that the neutrino detection rates should be 1 ± 0.2 SNUs. But 
the experimental results yielded no more than 0.4–0.5 SNU. 

A major advantage of the Kamiokande detectors compared to the chlorine experiment of Davis 
is that they provide information as to the direction of the incoming neutrino. The data confirmed 
that the neutrinos are indeed coming from the Sun. The leader of the Kamiokande experiments, M. 
Koshiba, shared with Davis the 2002 Nobel Prize award. 

12.4.3 Gallium DeteCtors 

In order to detect the most abundant neutrinos from the Sun (i.e., those from reaction (a) of the pp-I 
chain), it is necessary to devise a detector in which the threshold energy lies well below the cut-off 
energy (0.42 MeV) of the pp neutrinos. As it happens, an isotope of gallium satisfies this criterion. 

The relevant scheme on which this neutrino detector is based is the decay 

71 71Ge  Ga  e   (m) 

The mass difference between Ge71 and Ga71 corresponds to an energy difference of only 
0.23 MeV. Consequently, in the inverse reaction, neutrinos can be captured by Ga71 if the neutrino 
energy exceeds 0.23 MeV. Most of the pp neutrinos emerging from the Sun satisfy this criterion. 

With a detector sensitive to the most abundant solar neutrinos, the count rate is predicted to be 
much larger than in the chlorine detector or in the Cherenkov detectors: the gallium detectors were 
predicted to respond at the rate of 126 SNUs. 

Two experiments were built, one in Russia (SAGE, using 50 tons of liquid gallium, with opera
tions starting in 1990: see Abdurashitov et al. 1999) and one in Italy (GALLEX, using a solution 
containing 30 tons of gallium, with operations starting in 1991: see Kirsten 2008). 

The detection results from both experiments were in agreement with each other, some 67–69 
SNUs: both detection rates were definitely lower than the predictions. 

12.4.4 heavy Water DeteCtor 

A detector containing 1000 tonnes of heavy water (D2O), surrounded by an even larger volume of 
clean “ordinary water” (H2O), was buried 2 km below ground at the Sudbury Neutrino Observatory 
(SNO) in Ontario, Canada (see Figure 12.3). The container of heavy water plus “ordinary water” 
was viewed by almost 10,000 photomultiplier tubes, arranged on a geodesic dome framework, in 
order to detect the faint flashes of radiation emitted by particle interactions inside the heavy water. 
The size of the instrument can be estimated by comparison with the two workers who are visible 
near the bottom of the image. The entire container plus geodesic dome was immersed in a 30-meter 
barrel of ordinary water (H2O): the barrel is as tall as a 10-story building. 

The presence of deuterium allowed three distinct classes of reactions to occur involving neutri
nos (Ahmad et al. 2002). 
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 FIGURE 12.3 The inner part of the SNO detector. Notice the scale of this detector: the scale can be esti
mated from the size of the human beings near the bottom of the image. (Image courtesy of SNO.) 

a.	 Knock-on electrons are created as in Kamiokande; these gave results similar to those in 
Section 12.4.2. 

b.	 Neutrinos associated with neutron/proton decays (called electron neutrinos) interact with 
D to cause the neutron to decay into a proton. The nucleus then becomes a “di-proton”, 
which is unstable (see Section 11.5.2). There is a rapid decay into two free protons plus an 
electron. If the electron is fast enough, a Cherenkov pulse can be detected. The standard 
solar model predicted 30 of these events per day: the experiment actually recorded only 
about 10 per day. 

c.	 Neutrinos associated with decays other than neutron/proton decays belong to distinct fam
ilies: they are referred to as μ-neutrinos and τ-neutrinos, to indicate the decays with which 
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they are associated. All three neutrino families can interact with deuterium by a process 
known as the neutral current reaction. This splits the deuterium nucleus, and a free neutron 
emerges. In the presence of a suitable contaminant nucleus (such as Cl35, added to the water 
tank in the form of table salt), neutron capture can occur and gamma rays are emitted. 

The standard solar model predicted about 30 neutrinos per day: the experiment recorded essen
tially that rate. For the first time, a neutrino detector responded in the way that was predicted by the 
standard solar model. 

12.5 SOLUTION OF THE SOLAR NEUTRINO PROBLEM 

For a decade or more after Davis announced his first results, the commonest explanation for the 
solar neutrino problem was that there must be something wrong with the solar model. Attempts 
were made by solar modelers to add extra effects in the Sun (strong magnetic fields, fast rota
tion, atypical metal abundances), but these were mostly ad hoc. However, as helioseismology 
(see Chapters 13 and 14) came into its own in the 1980s and 1990s, it became clear that there 
was very little wrong with the profile of physical parameters inside the solar model. This led 
to the conclusion that the solution of the solar neutrino problem must lie in the physics of the 
elementary particles. 

According to the standard model of particle physics, the fundamental constituents of matter 
consist of six “flavors” of quarks (two of which exist in protons and neutrons) and six leptons. 
The latter consist of electrons, μ-mesons, and τ-mesons, plus the “flavors” of corresponding 
neutrinos (electron neutrinos, μ-neutrinos, and τ-neutrinos). Leptons interact only through 
the weak force, and also (if they are electrically charged) through the electromagnetic force. 
Although in the standard model all neutrinos have zero mass, experimental evidence from cos
mic rays indicates that this is not exactly true. It turns out that neutrinos have nonzero masses, 
although the masses are orders of magnitude less than the next lightest lepton (the electron). 
The existence of finite mass has the effect that neutrinos in different flavors can “mix” among 
themselves. 

The Sun generates in its nuclear reactions electron neutrinos only: the reason for this is that all 
of the decays that generate neutrinos in the Sun involve electrons only (see Section 11.1, reaction (a), 
and Chapter 12, Section 12.3.1, reactions (e) and (h), and Section 12.3.2, reactions (j) and (k)). As 
a result, the Sun does not generate either μ- or τ-neutrinos directly in any of the nuclear reactions 
that occur in the core. However, as the electron neutrinos propagate outward from the core of the 
Sun, passing through the radiative core plus the convective envelope, and then (after leaving the 
Sun) passing through the interplanetary plasma that lies between the Sun and Earth, the electron 
neutrinos undergo a mixing process, thereby producing neutrinos in the other two flavors. If enough 
mixing occurs so as to populate equally all three flavors, then roughly equal numbers of neutrinos 
are produced in all three flavors. 

As a result, only about one-third of the (electron) neutrinos generated at the Sun survive to reach 
the Earth as electron neutrinos. The remaining two-thirds reach the Earth as roughly equal mix
tures of μ-neutrinos and τ-neutrinos. 

The chlorine and gallium detectors are sensitive only to electron neutrinos. Their count rates 
are smaller than expected because the detectors do not “see” the μ- or τ-neutrinos. The Cherenkov 
pure-water experiments are in principle sensitive to all three neutrinos, but in practice the cross-
section for scattering off electrons in the water favors the electron neutrinos. Therefore, the pure-
water detectors respond best to the one-third electron neutrinos, with a weaker response to the 
other two-thirds. But when the SNO experiment (c) (see Section 12.4.4, paragraph (c)) was per
formed using salty water, all three flavors of neutrinos could participate in the reactions and were 
therefore detectable. 
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The history of the solar neutrino “problem” reads like an exciting detective story. It took some 
35 years of “big science” in multiple countries to identify the “culprit”. The case was solved in 
2002 by the SNO experiment (see Section 12.4.4c). The first director of the SNO Observatory, A. B. 
McDonald, was awarded the 2015 Nobel Prize in Physics. 

Two significant results emerged from the neutrino detective story. First, as regards the physics 
of the internal structure of the Sun, the solar models survived a stringent test. Second, in the field 
of particle physics, a new window “beyond the standard model” was opened up. Both areas of 
research, solar physics and particle physics, benefited from the long and hard process of attending 
to the details of solving the solar neutrino problem. 

EXERCISES 

12.1 Use the isotope masses in Table  11.1 to show that the cut-off energy in reaction (k) 
(Section 12.3) is 18.8 MeV. 

12.2 For reaction (k) (Section 12.3), show that the energy Eo at which quantum tunneling has 
maximum effectiveness (see Chapter 11, Section 11.6) is equal to 10.1 keV. Using this 
value of Eo, show that, due to Coulomb effects alone, reaction (k) occurs almost 105 times 
less frequently than reaction (a) (Chapter 11, Section 11.1). 

12.3 Using tabulated values of atomic weights for C and Cl, show that a detector that contains 
520 tons of C2Cl4 contains close to 1031 atoms of chlorine. 
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13 Oscillations in the Sun
 
The Observations 

We have already (in Chapter 12) raised the important question: how can we possibly check on our 
models of the internal structure of the Sun? After all, the interior of the Sun is surely one of the most 
inaccessible parts of the world we live in. So it is natural to raise the question: how do we know we 
are on the right track? Could it be that our calculations are far from reality, or maybe are just plain 
wrong? Is it possible to check on these calculations? 

One way to address this issue is by studying neutrinos, which come from the hottest parts of the 
solar interior, where nuclear reactions occur. The neutrinos allow us to check on our calculations in 
the very core of the Sun (see Chapter 12). 

But starting in the 1970s, and especially following a landmark experiment in 1980 at the South 
Pole (where the Sun was observed without interruption for more than 100 hours), a second method 
of testing the solar models became available. In terms of physics, the properties of the entire solar 
interior at (almost) all radial locations from center to surface can be checked by studying the proper
ties of certain classes of waves that propagate inside the Sun. There are three classes of waves that 
are useful in the present study: they are referred to as “p-modes”, “g-modes”, and “r-modes”, where 
the letters refer to the dominant restoring force of the waves (pressure, gravity, and rotation, respec
tively). A special subclass of modes that are confined to the surface layers of the Sun are referred to 
by the special title of “f-modes”, where the “f” stands for fundamental. (We have already encoun
tered the f‑modes in Section 1.5 in connection with the determination of a precise value of the solar 
radius.) These various classes of waves provide us (in principle) with a “wave window into the Sun” 
extending from the surface (where the radial coordinate r has values close to R ) deep into the inte
rior (down to values of r as small as 0.1–0.2R  or even smaller). In this chapter and in Chapter 14, 
we turn to a study of these waves and describe how they can help us to check our calculations of 
the internal structure of the Sun at radial locations that lie within the “wave window”. The fact that 
the “wave window” extends (almost) all the way into the core of the Sun, while neutrinos probe the 
core itself, means that, roughly speaking, neutrinos and waves provide complementary approaches 
to testing the models of the internal structure of the Sun. 

The Sun, although appearing to the unaided eye as being constant in its output, nevertheless is 
not absolutely unchanging. The most obvious forms of solar variability are sunspots: dark regions 
on the surface that appear and disappear on semiregular time-scales of days to years. In Chapter 16, 
we will describe in detail the physical properties of sunspots. But in the context of the present 
chapter, the most important facet of spots is that vertical magnetic fields are present in the dark
est center of the spot (the umbra), while in the surrounding less dark region (the penumbra), the 
field lines become progressively more inclined away from the vertical (forming a “ramp”) as we 
move outward. An observational physical consequence of “ramps” in the Sun will be discussed in 
Section 13.6. 

However, apart from sunspots, when one observes the Sun with sufficiently high resolution, one 
finds that there are some highly regular variations in velocity and intensity that occur on time-scales 
of minutes. In this case, the periodicities of the variations are not at all semiregular: on the contrary, 
they occur at highly precise frequencies, which are (in the best cases) reproducible within a few 
parts per 100,000 every time one observes the Sun. These extremely periodic variations provide a 
scientific means for us to study the solar interior in a way that is similar to the way in which seis
mologists obtain information about the Earth’s interior by studying earthquakes. “Helioseismology” 
is the term now used to describe this scientific study. 

https://doi.org/10.1201/9781003153115-13


188 Physics of the Sun 

 
 

  

 

   

 

 

 

The purpose of this chapter is to describe the observations that allow us to determine the proper
ties of the Sun’s periodic variations. (Theoretical discussions will be presented in Chapter 14.) 

The variations can be studied from the point of view of temporal variations alone (with no regard 
for spatial resolution). They can also be studied in data that have been spatially resolved across the 
disk of the Sun. We turn first to the purely temporal variations. 

13.1 VARIABILITY IN TIME ONLY 

When the Sun is observed “as a star”, data are gathered without regard to spatial location on the 
surface of the Sun. The detector integrates over the entire disk of the Sun. Using high spectral reso
lution, small variations in velocity can be detected in the radiation that reaches Earth from the Sun. 
When these variations are analyzed as a time series, a power spectrum is obtained, showing how 
much power occurs (in units of velocity-squared per unit frequency) as a function of frequency. An 
example is shown in Figure 13.1 (Fossat et al. 1981). The data were obtained by observing the Sun 
continuously for a time interval To lasting roughly 0.5 × 106 sec: this feat of observing continuously 
for about 5 days was made possible by making the observations of the Sun from a site at the geo
graphic South Pole (where the Sun does not suffer diurnal setting or rising for time intervals as long 
as 6 months). Along the abscissa in Figure 13.1 is plotted the frequency in units of millihertz (mHz), 
while the ordinate shows the power in velocity (~ V2 per unit frequency). The frequency resolution, 
of order 1/To, is ≈ 2 microhertz (μHz). 

The striking result in Figure 13.1 is that large amounts of power are observed at certain sharply 
defined frequencies, while at other frequencies, there is so little power that it can hardly be distin
guished from noise. The impression is that the Sun emits at a number of discrete frequencies that 
are so sharp that the spectrum seems to consist of a number of “spikes” (or, in more mathematical 
parlance, “delta-functions”). Each spike has a width in frequency of order 1 μHz. 

Inspection of Figure 13.1 illustrates that the “delta-functions” contain significant quantities of 
power at certain sharply defined frequencies v that extend between (roughly) 2.5 mHz and (roughly) 
4.5 mHz. The corresponding periods (= 1/v) range from as long as (about) 400 sec down to as 

FIGURE 13.1 Power spectrum of solar oscillations in velocity. (From Fossat et al. 1981; used with permis
sion from Springer.) 
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short as (about) 220 sec. Earlier observations of this type, obtained at lower resolution (because 
they were taken at mid-latitude ground-based sites where the Sun rose and set every 24 hours), had 
detected only a broad peak of power centered at frequencies of about 3.3 mHz, i.e., periods of about 
300 sec: for this reason, the early observers referred to the oscillations as “5-minute oscillations”. 
Subsequently, when theoretical work showed that the peaks arise from acoustic waves (i.e., pressure 
waves) in the Sun, the peaks were referred to as “p‑modes”. 

The plot in Figure  13.1 uses a  linear axis for the power scale. This allows us to quantify 
readily the largest peaks in the power spectrum. But a linear plot makes it difficult to identify 
the smallest‑amplitude oscillations in the spectrum. In order to enhance our ability to see the 
smaller oscillations, a logarithmic plot (taken from the website of the Solar and Heliospheric 
Observatory [SOHO]) is presented in Figure 13.2. Space-borne detectors are not subject to limi
tations of rising/setting of the Sun: the observing interval used for Figure 13.2 was 800 days. 
The range in frequency v extends from less than 0.5 mHz to 8 mHz. The oscillations with the 
largest power levels (having amplitudes of 4000–5000 m2 sec−2 Hz−1) exist at ν = 3–3.5 mHz, 
i.e., in the 5-minute range. 

In an independent study of p-mode amplitudes from that shown in Figure 13.2, Kiefer et  al. 
(2018) used 22 years of data from the GONG network (which can resolve modes with l = 0–150) in 
order to identify the frequency at which the p-mode velocity amplitude is maximum: it was found 
to lie at 3079.76±0.17 μHz. But when one considers the maximum in squared velocity amplitude 
(which depends on the product of amplitude and width of the mode), a slightly different maximum 
emerges: ≈3200 μHz. The corresponding periods of these two maxima in frequency are 325 and 312 
second, i.e., well within the limit of the so-called 5-minute oscillations. The maximum mean veloc
ity amplitude of an individual p-mode in the GONG data set was found to be 37 cm sec−1 (Kiefer 
et al. 2018). Although the amplitude of individual p-modes is small, there are (rare) events in the Sun 
when coherent patches of p-mode oscillations can arise in which the maximum velocity amplitude 

FIGURE 13.2 Logarithmic plot of p‑mode power in the Sun. Abscissa: frequency  in units of mHz. 
Ordinate: power spectral density (PSD) of velocity oscillations in the Sun derived from 800 days of measure
ments. The p-modes are the dominant signal at low frequencies (< 5 mHz). At high frequencies, a different 
phenomenon appears: high interference peaks (HIPs), arising from partial wave reflection in the solar atmo
sphere. (Courtesy of SOHO/GOLF consortium. SOHO is a project of international cooperation between ESA 
and NASA.) 
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in the coherent patch can rise to as large as ±1 km sec−1 (McClure et al. 2019): such events give rise 
to short-lived “flashes” of Doppler shift at localized regions of the solar surface. 

The plot in Figure  13.2 allows us to identify some (weak) oscillatory power (rising above 
the background noise) out to a frequency as large as ν ≈ 5 mHz (i.e., out to periods no less than 
200 sec). We shall see later (Section 13.5.5) that there is a physical reason why p‑modes do not 
exist in the Sun at periods less than ~200 sec. The identifiable modes with the smallest identifiable 
amplitudes at large ν in Figure 13.2 have amplitudes of less than 100 m2 sec−2 Hz−1 (after subtract
ing the background), i.e., almost 100 times weaker than the peak power that is emitted at periods of 
about 5 minutes. 

On the low-frequency side of the peak, oscillatory power can be identified (after subtracting 
the background) down to frequencies as low as (roughly) ν ≈ 1.5–1.6 mHz (i.e., periods as long as 
roughly 10 minutes). The last identifiable modes at low ν contain power which, after subtracting the 
background (which rises steeply between  = 1.5 mHz and  = 0.2 mHz), have numerical values of 
power of perhaps 10 m2 s−2 Hz−1, i.e., almost three orders of magnitude smaller than the peak power 
in the 5-minute range. 

The data in Figures 13.1 and 13.2 illustrate that the Sun produces power at a multitude of remark
ably “spiky” peaks in frequency, i.e., the Sun is oscillating (“ringing”) in many very specific tones. 
The tones are caused by acoustic modes (i.e., pressure waves) trapped inside the Sun (see Chapter 14). 
The narrowness of the “spiky” peaks in Figure 13.1 is striking. The ratio of line frequency (ν ≈ 3 
mHz) to line width (  ≈ 1 μHz) can be of order Q ≈ /  ≈ 3000. And if even better frequency 
resolution is available (e.g., from spacecraft observations), the line width may be found to be even 
narrower than 1 μHz. Therefore, when the Sun “rings” in a particular mode, the “quality factor” Q 
of the resonant cavity as regards that mode can be even larger than 3000, perhaps of order 10 thou
sand. Such a large Q value indicates that once a p-mode is generated, that mode may persist for as 
long as 10 thousand periods. Given that the periods of the strongest p-modes are about 5 minutes, 
any particular mode may persist for as long as 50,000 minutes, i.e., ≈ 1 month. 

It is also apparent from Figures 13.1 and 13.2 that the spikes are not distributed at random in 
frequency: even the unaided eye can see that there is a preferred frequency spacing (≈ 0.07 mHz, i.e., 
70 μHz) between adjacent peaks. Actually, careful analysis of the spectrum indicates that a more 
fundamental frequency spacing turns out to have about twice this value: many modes are found to 
be separated by a so-called large spacing ∆ν that is found to have a numerical value in the range 
135–138 μHz (Appourchaux et al. 1998). 

It is important to note that although the frequency of any given p-mode remains the same at all 
times, this is not true as regards the peak power in the mode: this power fluctuates significantly with 
time. An example of the variability in the power of a particular mode (l = 0, nr = 21: these labels 
will be defined later) over a time interval of several months is shown in Figure 13.3. The data were 
obtained by an instrument on board the USSR PHOBOS mission during its 160-day trajectory to 
Mars in 1988: the instrument was used to measure variations in intensity (rather than velocity). 
The mode amplitude is plotted in a perspective 3-D diagram with time (in units of days) along one 
horizontal axis, frequency of the mode (in units of μHz) along another horizontal axis, and power 
along the vertical axis (in units of parts per million squared per Hz). The particular mode to which 
Figure 13.3 refers is a mode with ν ≈ 3034 μHz: this mode lies very close to the frequency where the 
velocity amplitude of p-modes reaches its maximum value (Kiefer et al. 2018). In the course of an 
observing run that extends over an interval of at least 120 days, the power of the mode is observed 
to vary by a factor of ≈ 10. The variations in power appear as a sort of “ridge of mountains” in the 
plot. The width of the highest “mountains” can be seen to be as long as about 1 month, consistent 
with lifetimes estimated earlier based on the Q value. Although the peak of the ridge certainly 
changes in “height” as time goes on, the data indicate that the peak of the “ridge” does not shift 
significantly in frequency. The reason why peaks come and go in the “mountain range” has to do 
with how the mode is generated: we shall see (see Section 14.8) that individual p-modes are gener
ated by convective flows at various depths below the surface in the Sun, and these flows are highly 



 

 

 

     
   

 
 

     

 

191 Oscillations in the Sun 

FIGURE 13.3 A 3-D plot showing, as a function of time, the variations that occur in the amplitude and in 
the frequency of one particular mode of oscillation in the Sun. The mode in this figure has degree l = 0 and 
radial order nr = 21. (The label n = 21 in the upper left corner of the figure corresponds to nr = 21 in our nota
tion.) Of the two axes that lie in the “horizontal plane” in the plot, the one on the right-hand side of the figure 
indicates the passage of time (in units of days) since the beginning of the observing window. This particular 
observing run lasted more than 4 months. The second “horizontal axis” indicates the frequency of the oscil
lation (in units of μHz). The particular mode in the figure has a frequency lying between 3028 and 3038 μHz. 
Rising above the “horizontal plane” in the figure, the “vertical axis” shows the power in the oscillation mode 
at each instant and at each frequency: units of power are ppm2 μHz−1 (where ppm = parts per million). (From 
Gavryusev and Gavryuseva 1997; used with permission from Springer.) 

variable, forming and decaying on time-scales of order 10–20 minutes. But despite the obvious 
(large) changes in amplitude that occur in Figure 13.3, the frequency of the mode remains constant 
within a fraction of 1 μHz. 

13.2 VARIABILITY IN SPACE AND TIME 

The data in Figures 13.1 and 13.2 refer to variability in time only: such data are obtained when the 
Sun is observed as a star, with no attempt to resolve the Sun’s disk spatially. However, valuable 
information about the Sun can also be extracted from the spatial properties of the variations. To do 
that, the Sun must be observed with data that are not only well resolved in time, but also resolved 
spatially. The higher the angular resolution used to obtain the data, the smaller the patches on the 
Sun’s surface that can be examined for oscillation. 

From a mathematical perspective, when one analyzes the properties of spatial variations on 
m ima spherical surface, it is natural to use “spherical harmonic functions” Ylm  Pl cos e  to 

describe the surface structure. Here, θ is the colatitude and  is the longitude. The index l refers 
to structure in the latitudinal direction, between the north pole (θ = 0) and the south pole (θ = π). 
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The index m refers to structure in longitude. Initially, we neglect longitudinal variations, and con
sider m = 0. This allows us to reduce Ylm to the Legendre functions Pl(cos θ). For l = 0, 1, 2, and 3, 
the first four Legendre functions are as follows: Pl(x) = 1, x, (3x2 – 1)/2, and (5x3 – 3x)/2, respectively. 

The parameter l is referred to as the “angular degree” of the mode: the value of l is the number 
of nodes (i.e., regions of zero amplitude) that exist in the oscillatory structure between the north 
and south poles. For modes with l = 0 (no nodes in latitude), gas motions are synchronized over the 
entire surface: in such a mode, at a given instant, the gas is moving outward (at all points of the 
surface), and then one half-cycle later, the gas is moving inward (at all points of the surface). For 
modes with l = 1, there is one node in latitude, at cos(θ) = 0, i.e., the equator: this means that, at 
a given instant, when the gas in the northern hemisphere is moving outward, the gas in the south
ern hemisphere is moving inward. One half-cycle later, the northern gas moves inward, while the 
southern gas moves outward. For modes with l = 2, at a given instant, gas moves outward between 
the north pole and colatitude cos−1(1/√3) = 55° (corresponding to latitude 35° N), gas moves inward 
in the equatorial regions (at latitudes between 35° N and 35°S), and gas moves outward from 35°S 
to the south pole. One half-cycle later, the outward motion is confined to the equatorial regions, 
while the polar “caps” move inward. For modes with l = 3, nodes occur at colatitudes cos−1(√(3/5) = 39° 
(i.e., at latitude 51° N), at latitude 0 (the equator), and at latitude 51° S. 

The larger the l value, the more nodes can be “squeezed” into the range of latitudes from +90° to 
−90°, and the closer the nodes approach each other on the stellar surface. When l is large, the linear 
distance between adjacent nodes along a great semicircle from the north pole to the south pole is 
roughly equal to the length of that semicircle divided by l. The distance between adjacent nodes is 
equivalent to one-half of one wavelength. Formally, a linear distance that can be regarded as the 
“horizontal wavelength” h of a mode is given by 

2  R
h  (13.1) 

l l( 1) 

This tells us that a mode with a degree of (say) l = 250 has h ≈ 17,500 km. The angular scale 
of such a length on the Sun’s surface, as observed from Earth, is about 20–25 arcsec: therefore, in 
order to obtain meaningful information about modes with l > 250, we need to make observations 
of the Sun with angular resolutions that are at least as good as 5–10 arcsec: if we can manage to 
achieve such spatial resolution, then we will be able to “fit in” a few “pixels” across one wave
length of the l = 250 modes. But if an instrument were to have an angular resolution that is no 
better than (say) 30 arcsec, then we could not expect to resolve the modes with l = 250: in such a 
case, we cannot hope to obtain any reliable information about modes that have l values any larger 
than perhaps 50–100. In this context, it is relevant to mention data for two specific instruments 
that have played (or are playing) significant roles in helioseismic studies: (i) SOHO/MDI has an 
angular resolution of about 3 arcsec: this is good enough to resolve modes with l values up to 
about 300; (ii) SDO/HMI has angular resolution of about 1 arcsec: this allows resolution of modes 
with l values up to about 1000. 

So, given an observing scheme that allows us to measure velocities across the disk of the Sun 
with resolutions that are as good as a few arcseconds, we can analyze the data not only in terms of 
the temporal properties, but also in terms of its spatial properties (up to l ≈ 300). To extract a power 
spectrum corresponding to a given  l value, a data set (which has been averaged over longitude) 
has to be numerically convolved with the particular spherical harmonic Yl. For each l, the result
ing series is subjected to time-series analysis, and a power spectrum is obtained for that l value: 
the power spectrum will consist of “spikes” at a number of discrete frequencies (reminiscent of 
Figure 13.1). Repeating the analysis for many different l values, the resulting power spectrum can 
conveniently be plotted in 2-D, with spatial information (the degree of the mode, l) along one axis, 
and temporal information (the frequency of the mode, ν) along the other axis. 
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In Figure 13.4, the 2-D plot was extracted from 16 years of data from SOHO/MDI. The data are 
plotted (for modes with degree l up to 300) with error bars on the  values. With 16 years of data, 
i.e., with a data string extending over a period T ≈ 0.5 × 109 sec, we expect to be able to determine ν 
values with a precision no better than ~1/T ≈ 10−9 Hz. Note that in order to make the error bars in ν 
(± ) visible on the scale of the plot, the authors have plotted not the value of  itself, but  multiplied 
by a number that is at least one thousand, and in the case of the lowest-lying curve, has a value of 
100 thousand. Thus, the lowest ν for a mode plotted in Figure 13.4 is about 0.9 mHz (at l ≈ 80), and 
the plotted “error” is about ±0.1 mHz. Dividing this “error” by the enhancement factor of 100,000, 
which is associated with the lowest line in Figure 13.4, the corresponding  is 10−6 mHz, i.e., of 
order 10−9 Hz, as expected from the value of 1/T. 

What do the results in Figure 13.4 tell us about the Sun? First of all, they indicate how many 
modes can be detected with high precision in the Sun: e.g., in the case of “fundamental modes” (i.e., 
f-modes: the lowest-lying curve in the figure), one can see that there is a plotted value of frequency 
at every l value between 91 and 300, i.e., a frequency has been measured for at least 200 f‑modes. 
The authors of Figure 13.4 state that in each year of their 16-year observing run, they were able to 
obtain reliable fits to between 1900 and 2300 modes. (Many more modes may be present in the Sun, 
but the amplitudes are not large enough to be detected reliably by SOHO/MDI.) This means that on 
average, each ridge in Figure 13.4 contains about 100 individual modes. 

Moreover, Figure 13.4 tells us that oscillations in the Sun occur in locations that are not spread 
uniformly over the entire plane of ν vs. l. Instead, the observed dots occur preferentially in groups, 
with each group appearing as a more or less narrow well-defined “ridge” going from lower left to 

FIGURE 13.4 Spatial-temporal power spectrum of solar oscillations. Abscissa: angular degree l of the 
mode. Ordinate: frequency  of the mode in units of mHz. Each data point is plotted as a black dot. Errors in 
frequency ( ) have been amplified by factors of at least 1000 in order to render them visible on the scale of this 
plot. Observations were obtained during 16 years of observation with SOHO/MDI from 1996 to 2011. (From 
Larson and Schou 2015; used with permission from Springer.) 
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upper right. To determine which frequencies occur at a given l, (say l = 100), the procedure is to start 
at the location labeled l = 100 on the abscissa, and then draw an imaginary line vertically upwards. 
This line intersects the lowest “ridge” at ν ≈ 1 mHz. Thus, the longest period mode with l = 100 has 
a period of about 1000 sec. Extending the imaginary line further, the next mode occurs on the sec
ond lowest ridge, with a ν ≈ 1.5 mHz, i.e., P ≈ 670 sec. Although it might seem like a trivial point, it 
is worth noting that there are no solar p‑modes with l = 100 at periods between 670 and 1000 sec: 
the Sun really does select only certain well-defined periods for its p‑modes. Extending the vertical 
line further, we find that the highest frequency mode that can be reliably detected by SOHO/MDI 
with l = 100 occurs when the vertical line intersects the ninth-lowest ridge at ν ≈ 3.5 mHz, i.e., 
P ≈ 290 sec. 

At higher frequencies, modes with l = 100 are not plotted in Figure13.4: this indicates that the 
observers could not identify confidently any l = 100 modes in the 16-year data set. If we had chosen 
for our search a value l = 250, we would find that only one mode (the f-mode) is detectable in the 
data set, with ν ≈ 1.5 mHz. Thus, the upper right-hand corner of the plot is “empty” in the sense that 
if the Sun does indeed have modes there, the SOHO/MDI detectors could not detect such modes 
confidently even after observing continuously for 16  years: either the amplitude of such modes 
was too small or the background noise on length-scales of order 17,500 km (see Equation 13.1) for 
l = 250 was too large. 

We can also choose other values of l and run our eye vertically through Figure 13.4 to iden
tify mode frequencies ν where intersections with the ridges lie. In this way, frequencies can in 
principle be derived for modes with all values of l down to l = 0. For each value of l, the modes 
are found to form a series of “spikes” in frequency. Each such list corresponds to a vertical “cut” 
through Figure 13.4. By way of example, we note that, for l = 0, some 20 peaks were listed by 
Duvall et al. (1988), with ν ranging from 1824 to 4669 μHz. Of interest to us here, we note that the 
list happens to contain three entries at the following values of  : 2899, 3034, and 3169 μHz. (The 
mode at ν = 3034 μHz happens to be the one that appears in Figure 13.3.) Notice that the inter
vals between these three modes are 135 and 135 μHz. These differences are specific examples 
of a much broader trend in the data. If we examine modes with higher ν for a fixed value of l, a 
striking feature of solar oscillations emerges: the interval in frequency between adjacent modes 
approaches a constant asymptotic value ∆ν. The value of ∆ν varies only slowly with l: for l in the 
range 0–10, ∆ν is found to lie in the range 135–138 μHz (Appourchaux et al. 1998). The numeri
cal value of this so-called large spacing in frequency contains important information about the 
time interval required for sound to travel through the interior of the Sun from center to surface 
(see Section 14.6.1). 

13.3 RADIAL ORDER OF A MODE 

The question is: for a fixed value of l, what do the different “spikes” in frequency in Figure 13.4 
correspond to? Why are there only certain frequencies in the list of “spikes”? Empirically, the 
answer is not immediately obvious. We need to turn to theory (Chapter 14) for assistance in this 
regard. Theory tells us that each mode of the Sun follows a certain pattern on the surface of 
the Sun (with nodes at well-defined latitudes, determined by l). However, when we depart from 
the surface and probe into the interior of the Sun, theory indicates that each mode also has a 
certain functional form in the radial coordinate between the center of the Sun and the surface. 
The functional form in radius is called the “radial eigenfunction”, and it contains a series of 
“ups and downs” (see, e.g., Chapter 14, Figures 14.2 and 14.3). Between each “up” and the next 
“down”, the eigenfunction passes through zero at a specific radial location. Each such zero is a 
node of the radial eigenfunction. The number of nodes nr that exist in the eigenfunction as we 
follow a radial line between the center of the Sun and the surface is called the “radial order” of 
the mode. 
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Now we are in a position to interpret the “spikes” in frequency for a given l: each “spike” in ν cor
responds to a particular integer nr. For a fixed l, the value of nr increases as the ν increases towards 
the upper boundary of Figure 13.4. 

In contrast to the angular degree l, which can be determined empirically by examining how 
oscillations with a particular period are distributed across the surface of the Sun (which is clearly 
observable from Earth), there is no purely empirical way to determine the value of nr. To determine 
the value of nr, we need to have some way to “see” what is happening below the surface of the Sun. 
How is such a thing possible? The answer is: it has to be done using a theory of some kind. The 
radial order can be determined only by comparing the observed frequency with calculations of the 
interior structure of the Sun and seeing which frequency fits best. Such an exercise leads to the 
conclusion that the three l = 0 modes mentioned earlier with v = 2899, 3034, and 3169 μHz corre
spond to nr = 20, 21, and 22. In terms of this notation, the mode in Figure 13.3 corresponds to l = 0 
and nr = 21. (Note that the authors of Figure 13.3 use the slightly different notation l = 0, n = 21: the 
reason we prefer to use the label nr for the radial order rather than n is to avoid confusion with the 
parameter n, which we have already used as the polytropic index in Chapter 10.) 

Now that we have introduced the radial order nr, we are in a position to interpret an essential 
feature of Figure 13.4, specifically, the “ridges” that can be seen extending from lower left to upper 
right. Model fitting indicates that along each of these ridges, the radial order nr retains a unique 
value. The value of nr is smallest for the ridges that lie closest to the lower edge of Figure 13.4. 
Model fitting suggests that the lowest-lying visible ridge in Figure 13.4 has nr = 0: this mode is 
referred to as the “fundamental” or f‑mode where the amplitude of the eigenfunction rises mono
tonically from small values near the center to large values very close to the surface. The highest 
lying ridge plotted in Figure 13.4 (which contains only a few modes) has nr = 27. However, the upper 
boundary in Figure 13.4 is by no means an upper limit on the largest values of nr detected in the 
Sun: e.g., Duvall et al. (1988), in their spatial-temporal study, have listed one mode having nr as 
large as 35. In the opposite limit of small nr, the lowest value of nr reported by Duvall et al. (1988) 
is nr = 5. Modes with even lower values of nr (down to nr = 1) have been identified in GONG data at 
frequencies below 1 mHz by using special averaging techniques (Salabert et al. 2009). 

13.4 WHICH p-MODES HAVE THE LARGEST AMPLITUDES? 

Inspection of Figures 13.1 and 13.2 shows that the Sun appears to pump power preferentially into 
modes with periods of order 5 minutes, i.e.,  ≈ 3300 μHz. Such modes correspond to relatively 
low l and/or relatively large nr values. For example, in tables of modes that were reliably identified in 
the Sun in the earliest data sets (e.g., Duvall et al. 1988), modes with l = 0 and those with l = 1 have 
been identified with n values ranging from n = 12 to n = 33. Modes with l = 2 and l = 3 have been r r r 

reliably identified with n values ranging from n = 6 to n = 35. Outside these ranges, e.g., at n < 
6, it is difficult to detect modes reliably in most ground-based data sets. In terms of frequency, the 
highest and lowest v that are reliably detected are close to 5 and 1.0 mHz, respectively (Figure 13.2). 

It is natural to ask: why does the Sun preferentially pump power into acoustic modes with just 
this range of frequencies? Why do we not detect modes with v as high as (say) 10 or 20 mHz or as 
low as (say) 0.1–0.5 mHz? As regards the low v behavior, we postpone the discussion until we have 
a mathematical description of the eigenfunctions (Chapter 14, Section 14.8). But we do not need to 
understand eigenfunctions in order to determine why modes with >5 mHz are absent. So let us turn 
now to that piece of the puzzle. 

r r r r 

13.5 TRAPPED AND UNTRAPPED MODES 

The reason why p-modes are detectable in the Sun has to do with the fact that certain acoustic 
waves are able to build up to amplitudes that are so large that we can detect them in observations by 
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instruments located on (or near) Earth. And the reason for the large amplitude is that certain waves 
are not allowed to propagate freely out of the Sun from the place where they are generated. Instead, 
once those waves are generated, there is something about the Sun’s internal structure that causes the 
waves to be trapped: given favorable conditions, trapped waves that bounce back and forth inside 
the Sun can continue (over the course of a lifetime that may be as long as a month) to gather in 
energy from the surrounding granules with their significant kinetic energy associated with convec
tive motions. In this way, trapped modes have a chance to build up to large amplitudes. It is precisely 
such waves that give rise to the high levels of power in the discrete peaks in Figures 13.1 and 13.2. 

On the other hand, certain other acoustic waves can propagate freely from their place of origin, 
and these waves may ultimately reach into the upper atmosphere of the Sun. Those propagating 
waves, which are not subject to trapping (and therefore not of interest in a study of p-modes), are of 
great interest in the context of the heating of the solar chromosphere (see Section 15.9). 

In this section, we ask: can we identify a dividing line between trapped and untrapped acous
tic waves in the Sun? We shall find that, for waves that are propagating vertically, the dividing 
line occurs at a certain critical wave period Pc: vertically propagating waves with periods longer 
than Pc are trapped, while vertically propagating waves with periods shorter than Pc are not trapped. 
We shall refer to Pc as the acoustic “cut-off” period. 

In this regard, we recall the empirical result that the p-modes with significant amplitudes are 
observed to have ν = 2.5–4.5 millihertz (mHz): such frequencies correspond to wave periods of 
220–400 sec. This tells us that there is something about the solar atmosphere that causes waves with 
such periods to be trapped: the “something” has to do with the fact that the atmosphere is stratified, 
with a characteristic length-scale (the “scale height” H) and a characteristic speed (the sound speed 
cs). As a result, there is a characteristic time-scale, of order ts = H/cs, for sound waves traveling 
through the atmosphere: we shall find that the cut-off period is proportional to ts. 

13.5.1 vertiCally propaGatinG Waves in a stratifieD atmosphere 

Consider the propagation of a sound wave vertically in an atmosphere that is in HSE. As a result 
of HSE, the pressure in the unperturbed atmosphere has a vertical distribution po(h) that obeys the 
equation 

dpo g  o (13.2) 
dh 

In this equation, the vertical coordinate h increases in the upward direction. The right-hand side 
represents the weight of 1 cm3 of gas acting as a downward force on each square centimeter of the 
atmosphere at height h. This downward force is balanced by (the gradient of) the pressure acting 
upward on that square centimeter. 

We now imagine that we impose a small vertical displacement ξ on a parcel of gas caused by a 
local perturbation in pressure. We assume that the displacement raises or lowers the parcel in such a 
way that initially there is no change in density. Denoting the new pressure by p(h) = po(h) + Δp, we 
see that the vertical force acting on 1 cm3 of gas is 

dp
F  g  (13.3) 

dh o 

This force is no longer equal to zero: HSE is not satisfied. In view of the conservation of momentum 
(i.e., Newton’s second law of motion), the imbalance in vertical forces ΔF acting on 1 cm3 of gas 
(with mass ρo) leads to a vertical acceleration d2ξ/dt2 such that 

dp d
 g   ( ) (13.4) o 
  o p

dh dh 
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In Equation 13.4, double dots denote the second derivative with respect to time. This is the equa
tion of motion for the parcel of gas as it responds to the change in ambient pressure gradient. (In 
Section 7.1, we also applied Newton’s law of motion to gas in the convection zone, where the break
down of HSE also leads to an imbalance of forces, with consequent vertical acceleration.) 

As the parcel of gas moves, its density does not remain constant: the internal density changes by 
a finite amount Δρ if the magnitude of the displacement ξ varies with h. To quantify this, we con
sider the conservation of mass associated with the displacement. Suppose that the initial parcel of 
gas spanned an interval of height ∆h, but when it is displaced, that parcel spreads out over a differ
ent interval of height ∆ξ. There are two possibilities. On the one hand, if ∆ exceeds ∆h, the parcel 
has been “stretched”, and the internal density of the gas decreases as a result of the displacement. 
On the other hand, if Δξ is less than ∆h, the parcel has been compressed, and the internal density of 
the gas increases as a result of the displacement. In both cases, the fractional change in density is 
related to the ratio of Δξ to ∆h. In the limit, the fractional change in density occurring in the parcel 
of gas can be written as 

 
 



d 

dh 
(13.5)
 

Note that if ξ has the same value at all h, i.e., if the atmosphere is displaced as a whole by a 
constant amount, the derivative dξ/dh equals zero and there is no change in density at any location. 

Now that we have taken into account the conservation of momentum and the conservation 
of mass, it remains to address the conservation of energy. In the present case, we will incor
porate this by assuming that the sound waves propagate in an adiabatic manner, i.e., p  ρ . 
Thus, Δp/p = γΔρ/ρ = −γdξ/dh. To first order, we therefore replace Δp in Equation 13.4 by −γpodξ/dh. 

Using this in Equation 13.4, we find

d d dpop p " (13.6) o o odh dh dh 

On the right-hand side, primes denote spatial derivatives with respect to h. Dividing through 
by ρ and noting that the adiabatic sound speed  c is given by c2  p /  , we can rewrite o s s o o 

Equation 13.6 in the form 

cs 
2 " g  (13.7) 

Equation 13.7 is the equation that describes how a sound wave propagates vertically through a 
stratified atmosphere, i.e., in an atmosphere where finite gravity is present. 

In the special case where gravity is absent, we can set  g = 0. In this case, the background 
medium is unstratified, i.e., it is homogeneous (with equal density) in all directions. In such a 

2case, Equation 13.7 reduces to the standard wave equation   cs    describing waves propagating 
through a homogeneous medium with speed cs. In this case, there are no limitations on the direction 
of travel or on the frequency of the waves that may propagate: the wave properties are determined 
solely by the properties of sound in the ambient medium. 

However, in the presence of gravity, the second term on the right-hand side of Equation 13.7 
comes into play. This is the term that makes a significant difference to the properties of sound wave 
propagation if the ambient medium is no longer homogeneous but now stratified. 

13.5.2 simplest Case: the isothermal atmosphere 

Let us consider the case of an isothermal atmosphere with temperature T. In this case, we have already 
(Section 5.1) seen that the density is stratified as a function of height according to an exponential 
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law: ρ(h) =  ρ exp(−h/H) where the scale height  H is given by the expression  H  R T g/ o g a 

where μa is the mean atomic weight of the atmospheric gas. For a perfect gas, the sound speed cs can 
be written as c2  R T /  gH . s g a 

In order to proceed with the solution in this case, it is convenient to transform to dimensionless 
variables. We introduce a new dimensionless length coordinate: h  = h/2H. Note that in order to 
convert the dimensional length h to dimensionless form, we normalize to a length that is not equal 
to the scale height, but is equal to twice the scale height. 

We also introduce a new dimensionless time-scale by normalizing the time variable to a time
scale related to the characteristic time-scale ts = H/cs mentioned earlier in Section 13.5. But again, 
rather than using ts as the normalizing factor, we instead use twice the value of ts. That is, the dimen
sionless time-scale is defined by t  = t/(2H/cs). 

Converting now the temporal and spatial derivatives to the new dimensionless variables of time 
and height, and making use of the relation cs 

2 gH , we find that Equation 13.7 takes on the form 

(13.8)  " 2  

In Equation  13.8, dots now denote differentiation with respect to the dimensionless time  t , 
while primes now denote differentiation with respect to the dimensionless length h′. Equation 13.8 
describes, in terms of dimensionless length and time variables, how a stratified atmosphere responds 
to a sound wave propagating vertically. 

To solve Equation 13.8, one further change of variables is helpful: we replace ξ with the auxiliary 
variable u = ξ exp(−h ). This leads to the equation 

(13.9) u u  u" 

In order to describe wave motion, we seek a periodic solution to this equation: u u oe
i t  

where uo is a function of the spatial coordinate h  only, ω is the angular frequency associated with 
the dimensionless time t′, and i = √(−1). Substituting this in Equation 13.9, we find 

u " ( 2 1)u Au (13.10) o o o 

where A is defined as ω 2−1. 
Mathematically, Equation 13.10 has two well-known classes of solutions, depending on the alge

braic sign of A. 
Class (i) A > 0. The parcel of gas undergoes a displacement u that is simple harmonic motion 

(i.e., proportional to an exponential with an imaginary argument) in the (dimensionless) height 
coordinate h : 

uo  exp( ih A) (13.11)  

When combined with the sinusoidal time factor ei t , Equation 13.11 represents a sound wave 
freely propagating in a vertical direction through the atmosphere. 

The condition that  the value of the parameter A must exceed zero for the solution of 
Equation 13.11 to be valid means (see Equation 13.10) that ω2 must exceed unity. That is, the 
wave frequency must exceed a certain value in order that the wave may propagate freely in the 
vertical direction. 

Class (ii) A < 0. In this case, the frequency  is so small that ω2−1 takes on a negative value. 
In this case, Equation 13.10 contains a positive number on the right-hand-side. The solution is an 
exponential with a real argument: 

uo exp( h A) (13.12) 
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In order to avoid divergence at infinity, only the damped solution in Equation 13.12 is physically 
meaningful. The nature of the solution in Class (ii) is very different from the solution in Class (i). 
The damped solution indicates that vertical waves do not propagate through the stratified atmo
sphere at low frequencies. 

13.5.3 CritiCal freQuenCy anD the “Cut-off” perioD 

The transition between the oscillatory (propagating) solutions in Class (i) and the damped (non
propagating) solutions in Class (ii) occurs at A = 0, i.e., at ω2 = 1. Reverting to dimensional vari
ables, the corresponding transition occurs at the critical (angular) frequency 

c s ac  (13.13) 
2H 

This critical (angular) frequency, identified by subscript “ac”, is referred to as the acoustic cut‑off 
(angular) frequency for vertically propagating waves. 

The corresponding cut-off period Pac for vertically propagating waves is given by 

R T2  4  H 4  gP   (13.14) ac  c g  ac s a 

13.5.4 physiCal basis for a Cut-off perioD 

Why, in physical terms, does a cut-off period exist in the Sun’s atmosphere? Why is it that waves 
with periods longer than Pac cannot propagate vertically? To answer this, consider what happens 
if one tries to launch a wave vertically with a certain period into the atmosphere. If the wave 
period is longer than P , the spatial extent of one wavelength (  = c P ) of such a wave extends ac s ac

over many (4π, i.e., > 10) scale heights of the atmosphere: at one end of the wavelength, the local 
density differs from the density at the other end of the wavelength by a factor of e10, i.e., by a fac
tor more than 10,000. With such a large density contrast, during the time that the wave is propa
gating vertically across one of its own wavelengths, the atmosphere has time to “adjust itself” to 
the perturbation: the effects of the adjustment are to cancel out the wave, thereby preventing it 
from propagating upward. The wave is said to be “trapped”, i.e., confined to the lower layers of 
the atmosphere where the wave originated. The stratified atmosphere in effect can “short out” the 
long-period waves. 

On the other hand, a vertical wave with a short period (< Pac) can propagate vertically across 
one of its own wavelengths before the ambient atmosphere has time to adjust: in the absence 
of this adjustment, the wave is no longer “shorted out” by the atmosphere. Instead, the short-
period wave is free to continue its vertical propagation upward into the overlying atmosphere. 
Such waves have the ability to travel vertically upward into the overlying chromosphere and 
corona. 

13.5.5 numeriCal value of the Cut-off perioD 

Now we come to a key question: what is the numerical value of the critical period in the Sun? In the 
upper photosphere of the Sun, where T = 4860 K and μa ≈ 1.3, we find 

Pac  195  200 seconds (13.15) 

The corresponding cut-off (linear) frequencies (  =  /2π) are  ac ≈ 5.0–5.1 mHz. 
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Recall that the p-modes in the Sun have detectable amplitudes for frequencies that are no greater 
than (about) 5 mHz (see Figure 13.2). Now that we have derived the concept of the acoustic cut-off 
of a stratified atmosphere, we can understand why p-modes are not detectable with periods shorter 
than (roughly) 200 sec: such waves, with frequencies ν > 5 mHz, have ν > νac. Such waves are free 
to propagate vertically through the solar atmosphere in accordance with Equation 13.11. Such waves 
are therefore not trapped: they escape easily from the location where they are generated. They do not 
“stick around” long enough to build up their amplitude to the large values associated with p-modes. 

On the other hand, acoustic waves with periods longer than 200 sec cannot propagate vertically 
through the upper solar photosphere: mathematically, their “wave form” is described by the negative 
sign in Equation 13.12. When such waves encounter the upper photosphere, they are not permitted 
to propagate further in a vertical direction: instead, they are reflected back down into the Sun. This 
sets up the possibility of those waves becoming trapped. And if they are trapped, then they can 
“stick around” long enough to have energy pumped into them by the convective motions. The more 
energy is pumped in, the larger their amplitudes become, and the easier it is for us to detect them 
with our near-Earth instruments at a distance of 150 million km from the Sun. 

The principal conclusion of this section is the following: the effects of atmospheric stratification 
explain why p-modes are not detectable at   larger than (roughly) 5 mHz. 

In order for waves to be trapped, the Sun needs to provide a “cavity” of some kind to contain the 
waves. We have now identified wave reflection as a reason why there exists an upper boundary to 
such a cavity in the Sun. In Section 14.7, we shall discuss a mechanism that gives rise to the exis
tence of a lower boundary to the cavity. 

13.6 WAVES PROPAGATING IN A NON-VERTICAL DIRECTION 

The existence of a cut-off in wave frequencies as regards propagation of waves in the solar atmo
sphere has been discussed in Sections 13.5.1–13.5.5 in the context of vertically propagating waves. 
Since the gravitational acceleration g is directed exactly vertically in any given location on the Sun, 
vertical wave propagation is subject to the entire magnitude of solar gravity, g = 27,420 cm sec−2 (see 
Equation 1.13). As we have found (see Equation 13.14), the acoustic cut-off period Pac depends on 
1/g. For vertically propagating waves, we have found that Pac has a numerical value of 195–200 sec 
(see Equation 13.15). This means that the Sun should not contain waves propagating vertically in its 
atmosphere with periods any longer than 200 sec. 

However, in certain regions of the Sun, waves can be seen propagating upwards with periods P 
that are definitely longer than the critical value Pac ≈ 200 sec. In one case, Kobanov et al. (2013) 
show images of the location of high levels of acoustic power at P = 300 sec. In another case, the 
wave periods are observed to be as large as 500 sec (e.g., Rajaguru et al. 2019). 

How are we to understand the propagation of such long-period waves? Since Pac scales as 1/g, 
one way to increase the value of Pac would be (in principle) to decrease the effective value of g. 
How might we achieve that goal? It is helpful here to recall the work of Galileo from the early 
1600s when he was trying to measure how fast a falling object moves and/or accelerates under 
the influence of gravity. To measure speed/acceleration, it is essential to have a reliable clock. 
Unfortunately, Galileo’s clocks (either water clocks or his own heartbeats) were not good enough 
to measure the speed/acceleration of a falling object if that object were released vertically: in such 
a case, the object moved too quickly for Galileo’s clocks to measure the fall time reliably. What 
was he to do? He decided to use an inclined plane (i.e., a “ramp”): if the ramp were tilted at an 
angle  relative to the vertical, the effective gravity geff would be reduced from g to g cos . Thus, if 

= 60 degrees, then geff has a value of 0.5g. It is key to note that the regions where sunspot waves 
with P = 300 sec are observed (Kobanov et al. 2013) are in a very particular part of a sunspot 
known as the penumbra, where magnetic field lines are tilted relative to the vertical by angles that 
can be as large as 60 degrees or more. Magnetic fields have the effect that gas that is significantly 
ionized is forced to move along the direction of the field lines (see Sections 16.6.1 and 16.6.2.2). 
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Therefore, in the penumbra, gas is constrained to move along ramps where geff may be as small as 
0.5g (or even less). As a result, the local Pac(loc) is no longer confined to values of 195–200 sec (as 
in Equation 13.15). Instead, Pac(loc) in the penumbra may increase to as large as 400 sec (or larger). 
This easily allows the 5-minute oscillations (where p-mode power is observed to be maximum), 
with P = 300 sec, to satisfy the local propagation condition P < Pac(loc). The results of Kobanov 
et al. (2013) clearly show that 5-minute oscillations can and do propagate up into the chromosphere 
and even into the low corona in regions where a suitable ramp is available. Such a ramp provides 
a “magneto-acoustic portal” for long-period waves (which are normally cut-off from propagating 
up into the chromosphere) to reach the chromosphere (Kontogiannis et al. 2010). Galileo would 
be interested to know that after an interval of 400 years, solar physicists are also putting ramps to 
good use in their studies. 

In view of the fact that acoustic waves with periods longer than 200 seconds should, in principle, 
remain trapped beneath the surface of the Sun and should never reach the chromosphere, the fact 
that ramps in the magnetic field allow otherwise “trapped” waves to reach the chromosphere has led 
to a dramatic statement by Cally and Moradi (2013): “Active regions are open wounds in the Sun’s 
surface”. One of the meanings of this statement is that “internal material” such as acoustic waves 
with P> 200 sec, which should ordinarily remain hidden beneath the solar surface, may find a way 
to break up through the surface of an active region if that region contains an appropriate “ramp”. 
Another meaning of Cally and Moradi’s phrase is that a wave of one mode (which would ordinarily 
be trapped beneath the surface) can undergo a conversion into another mode (see Section 16.7.7) that 
is not subject to trapping, thereby gaining access to the upper atmosphere. 

13.7 LONG-PERIOD OSCILLATIONS IN THE SUN 

The presence of oscillations in the Sun at periods of a few minutes has been known for several 
decades. These are the well-studied p‑modes. 

But we can also ask: might there be oscillations in the Sun with much longer periods (e.g., 
hours)? We shall see in Chapter 14 that two distinct classes of oscillation can exist (under certain 
conditions) in a compressible sphere, one at high frequency (the p-modes, where gas pressure is the 
main restoring force), the other at low frequency (the g-modes, where gravity is the main restoring 
force). Since p-modes have certainly been detected in the Sun, it is natural to ask: have g-modes also 
been detected in the Sun? The answer to this question is controversial at the time of writing (2021): 
although claims of detection of hour-long periodicities have been reported by some observers, other 
observers have not yet confirmed the detections. 

One reason for the difficulty of detecting g-modes in the Sun has to do with the extensive convec
tive envelope occupying the outermost one-quarter to one-third of the solar radius (see Chapter 7). 
As it turns out, g-modes can propagate freely only in a medium that is stable against convection: 
a vertical displacement of an element of gas in such a medium is acted upon by gravity to restore 
the element to its starting position. Such a response allows a small-amplitude wave (i.e., a g-mode) 
to propagate in the medium. The gas in the deep radiative interior of the Sun (which was modeled 
in Chapters 8 and 9) is convectively stable and is therefore expected to support g-modes. But in a 
convectively unstable medium, the gravity force cannot restore the element to its original position: 
instead, the gravity force continues to drive an upward (or downward) element up (or down) farther 
and farther away from its starting point (see Section 6.8). Convective motions, with vertical veloci
ties of up to a few km sec−1, are the preferred manner for gas to move in response to the gravity force 
in unstable gas (such as the solar convection zone). Even though there might well be g-modes in the 
radiative interior of the Sun, the existence of a thick convective envelope could effectively hide such 
waves from our sight. 

Fortunately, there are certain stars where (unlike the situation in the Sun) the surface layers are 
convectively stable. In Chapter 14, once we have identified an important characteristic of the periods 
of g-modes, we shall cite unambiguous evidence for g-modes in a particular category of such stars. 
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Although the possible existence of p-modes and g-modes in a compressible (nonrotating) sphere 
has been known theoretically for many decades (since the work of Cowling [1941]), there can also 
be a third class of oscillation modes (referred to as r‑modes or Rossby waves) if the star is rotat
ing. The periods of r‑modes in a star are related to the rotation period of the star: in the case of 
the (slowly rotating) Sun, this means that r‑modes are expected to have periods of order months, 
i.e., orders of magnitude longer than the periods of p‑ or g-modes. The first reported detection of 
r‑modes in the Sun appeared in 2018, when Löptien et al. analyzed 6 years of data from the Solar 
Dynamics Observatory (SDO): the latter has enough spatial resolution to allow detection of pho
tospheric granules, and the vorticities of granule motions were used to identify r‑modes. Further 
details will be given in Chapter 14. Prior to the solar detections, r‑modes had also been detected in 
certain rapidly rotating hot stars (Van Reeth et al. 2016). 

13.8 p-MODE FREQUENCIES AND THE SUNSPOT CYCLE 

We shall see in Section 16.1.4 that the Sun undergoes a cycle of magnetic activity during which 
the number of sunspots on the surface waxes and wanes on a time-scale of 11 years (or so). 
It is of interest to ask: does the magnetic activity have an effect on the p‑modes as the Sun 
changes from solar minimum to solar maximum? The answer is yes: the frequency of any 
given p‑mode is observed to increase when the Sun has more sunspots. The amount of the 
frequency shift ∆ (mx−mn) between solar maximum and solar minimum is smaller for modes 
with lower frequencies. Using data from SOHO/GOLF over an interval of 18 years spanning 
cycle 23 and part of cycle 24, Salabert et al. (2015) reported the following shifts: for modes with 
frequencies between 1.8 and 2.75 mHz, ∆ (mx−mn) ≈ +0.1 μHz, for modes with frequencies 
between 2.4 and 3.1 mHz, ∆ (mx−mn) ≈ +0.3 μHz, and for modes with the highest frequencies 
(3.1–3.8 mHz), ∆ (mx−mn) ≈ +0.6 μHz. In an independent analysis of SOHO/MDI data, Jain 
et al. (2012) found that the frequency shifts of p‑modes tracked the sunspot number so well 
during cycle 23 that the double peak in sunspot numbers (known as the Gnevyshev gap: see 
Section 16.1.4) that occurred in the years 2000–2002 could also be identified in the values of 
∆ . This suggests that the Gnevyshev gap involves real physical changes inside the Sun and is 
not simply a quirk of statistics. 

So sensitive are the current measures of p‑mode frequencies that it has become possible to detect 
a small shift in frequency even between one solar minimum and the next solar minimum. Broomhall 
(2017), in an analysis of GONG data from two solar minima (1996–1997 and 2008–2009), found 
that the frequency shifts in 2008–2009 (a long and deep minimum) were definitely smaller than in 
the 1996–1997 minimum. The differences, averaged over all modes, amounted to ∆ (mn1−mn2) ≈ 
+0.01μHz, corresponding to a magnetic field in the 2008–2009 minimum being weaker than in the 
1996–1997 minimum by about 1 G. It is remarkable that the average frequencies of solar p‑modes 
can now be measured with a precision as good as 10 nanohertz. 

EXERCISES 

13.1 In Chapter 1, Exercise 1.5, you have already calculated surface gravities for five “main 
sequence” stars with masses of 0.1–10M . Calculate the cut-off period Pac for each star, 
assuming μa = 1.3, and setting T = Teff as calculated in Chapter 1, Exercise 1.6. 

13.2 Using the properties of the same five “main sequence” stars as in Exercise 13.1, calculate 
the critical gravity period Pg (Chapter 1, Equation 1.24) for each star. 

13.3 How large must the degree l of a mode in the Sun be in order to have a horizontal wave
length equal to (a) a supergranule diameter (≈ 30 thousand km; see Chapter 15), (b) a 
granule diameter? 
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14 Oscillations in the Sun 
Theory 

In order to understand in physical terms why the Sun exhibits oscillations at precisely defined 
frequencies, we consider in this chapter the oscillations in an idealized “star”. Specifically, we 
revert to the topic of polytropes (see Chapter 10), since these provide in certain cases an analytic 
form for the radial profile of pressure and density inside a star: in the presence of such radial 
profiles, oscillations of various kinds (p‑modes, g-modes) can occur. Of course, if we were 
undertaking a detailed examination of the Sun, we would have to make use of the full numerical 
radial profiles of pressure and density: but unfortunately, those numerical solutions make it more 
complicated to derive the properties of the oscillations. So in this first course in solar physics, 
we simplify the problem by considering the oscillation modes of a polytrope. Results from the 
polytropic case contain many of the important characteristics of oscillations in the “real Sun”: in 
particular, we will discover (see Section 14.6) that p-modes have the property (at high frequency) 
of being separated from adjacent modes by a constant interval of frequency, while g-modes have 
the property (at long periods) of being separated from adjacent modes by a constant interval in 
period. 

In this chapter, we derive a pair of first-order differential equations (Equations 14.17 and 14.18) 
that describe the properties of oscillations in a polytrope. The pair of equations we shall derive 
represent a simplification of the full oscillation problem (which actually requires four equations 
to specify completely). The simplification from four equations to two equations is known as the 
“Cowling approximation”. Moreover, in line with our choice of polytropes, Cowling (1941) also 
relied on polytropes to provide the “background” ambient medium in which the oscillations would 
occur. Students will have an easier time exploring the computational properties of the simpler 
system. 

The idealized “star” that we will use for our discussion of p-modes and g-modes is assumed 
to be nonrotating. Cowling (1941) also confined his attention to nonrotating stars because he 
writes that, in the rotating case, “the mathematical difficulties are much greater”. But the 
“real Sun” does actually rotate (see Section 1.11). In the presence of rotation, a third class of 
modes of oscillation, the r-modes, can be generated. Because the forces involved in driving 
r-modes are distinct from those in p-modes and g-modes, the description of r-modes requires 
a different approach from the Cowling approximation. In Section 14.10, we will address the 
physics of r-modes. 

14.1 SMALL OSCILLATIONS: DERIVING THE EQUATIONS 

In order to derive the equations that govern oscillations in a (nonrotating) polytrope, we follow the 
discussion first given (in the midst of World War II) by the British mathematician T. G. Cowling 
(1941). Let the material at any point in the polytrope undergo a vector displacement h (where bold
face type denotes a vector quantity). This vector displacement is in a general direction, but the com
ponent of h along the radial direction is of particular interest: we refer to this radial component as R. 
The displacement is accompanied by localized perturbations in density, pressure, and gravitational 
acceleration: we refer to these as δρ, δp, and δg. 

Our goal in this section is to derive three equations that will allow us to solve for the three physi
cal quantities that describe the oscillations: R, δρ, and δp. 

https://doi.org/10.1201/9781003153115-14
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The perturbations induced in the star by the displacement h have the effect that the equation of 
HSE is no longer satisfied. The imbalance of pressure and gravity forces leads to an acceleration that 
is given by the equation for conservation of momentum 

d2 h (14.1) 
 p g
dt2 

where the spatial gradient (vector) operator includes three components, including one that points 
along the radial (outward) direction. Equation 14.1 is a more general (3-D) form of the 1-D Equa
tion 7.1. (Note that in Equation 7.1, where we were considering convective motions, our goal was 
to estimate only vertical motions.) Instead of containing only the vertical velocity V, Equation 14.1 
includes the 3-D vector velocity v = dh/dt. Moreover, in Equation 7.1, the pressure gradient in
volved the derivative d/dz, where the depth coordinate z increases inward, whereas in Equation 14.1, 
the vector operator  involves a component d/dr, where the radial coordinate r increases outward: 
this accounts for the difference in sign in the first term on the right-hand side. Why do we need to 
consider more than 1-D (radial) motions in the present chapter? Because the oscillations in the Sun 
are not confined to the radial direction: most of the oscillations are actually non‑radial in nature. 
This point was made explicit in the title of Cowling’s (1941) article. 

The essential feature of any oscillation is that some physical quantity, responding to two types 
of forces (one that drives the system away from equilibrium, the second that attempts to restore 
equilibrium) undergoes periodic motion. Suppose that the displacement h is periodic, with a time 
dependence ei t, where i = √ (−1) and the angular frequency ω is related to the frequency ν (used in 
Chapter 13) by ω = 2πν. Then the left-hand side of Equation 14.1 can be written as −ρω2h. Retaining 
only terms that are of first order in the perturbation amplitude, the right-hand side of Equation 14.3 
becomes 

p g  g (14.2) 

In order to keep the discussion as simple as possible but retain the essential physics of oscillation, 
we now invoke what is called the “Cowling approximation”: we neglect changes in the gravity, i.e., 
we set δg = 0. Why is it plausible to neglect changes in the gravitational acceleration? Because the 
mass in a star is concentrated toward the center: the central density is much larger than the density 
in the outer regions: e.g., in the Sun the central density exceeds the density in the photosphere by a 
factor of more than 108. Now, the oscillations we consider here consist of motions that have maxi
mum amplitudes in the outer regions of the star, where the eigenfunctions reach their maximum 
amplitudes (see Figures 14.2 and 14.3). As a result, the mass interior to a certain point remains 
almost unchanged by the slight changes associated with oscillations. This allows us to assume 
δg = 0 as a reasonable simplifying approximation. 

The small oscillations occur as perturbations in a medium (the polytrope) that is in HSE. This 
allows us to write g = −∇p/ρ, and so we can rewrite Equation 14.2 in the form 

2 h   p  (  )/ p (14.3) 

This equation has three components. Let us consider one of those components, namely the radial 
component. This leads to the following expression for the quantity R: 

 p2 R  (  p) (14.4) 
r r 

This gives us the first equation (of three) that relate our three unknowns R, δp, and δρ. 
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Turning now to the conservation of mass, the equation of continuity ∂ρ/∂t + · (ρv) = 0 can be 
written, to first order in the perturbations, as 

 .(  h) (14.5) 

We can now eliminate h from Equation 14.3 by taking the divergence of both sides: 

2   2 ( p) . p (14.6) 

In a spherical object, it is natural to separate the oscillations into two components: one depends 
only on the angular coordinates, and the second is a function of the radial coordinate  r. The 
Laplacian operator in Equation  14.6 contains a radial component and an angular component. 
The latter can be described by a spherical harmonic, Ylm. Here, we ignore the m (longitudinal) 
subscript and consider only the latitudinal variations, which are characterized by  l, the degree 
of the mode. In this case, the angular (latitudinal) part of the Laplacian in Equation 14.6 can be 
written as −l(l + 1)δp/r2. 

In spherical coordinates, the expressions for the radial components of Laplacian and divergence 
lead to the following form for Equation 14.6: 

2 l l( 1) 1 2 p 2 p
 

2 
p

2 
r r  (14.7) 

r r r r r

We note that on the right-hand side of Equation 14.7, there are terms inside the large parentheses 
that are reminiscent of terms on the right-hand side of Equation 14.4. Using the latter equation in 
Equation 14.7 leads to a second equation that relates our three unknowns:

2 l l( )  1 2 21
2 

p
2

( r R) (14.8) 
r r r 

Now that we have eliminated the angular dependences, there is only one remaining independent 
variable: the radial coordinate. As a result, we can safely replace the partial derivative (∂/∂r) in 
Equations 14.4 and 14.8 by the total derivative (d/dr). 

Equations 14.4 and 14.8 provide us with two equations that relate the displacement of the fluid 
element R in the radial direction to the perturbations in pressure p and density ρ. A third equa
tion is needed if we are to solve for the three unknowns. Having already used the equations that 
describe conservation of mass (Equation 14.5) and conservation of momentum (Equation 14.1), we 
now turn to the equation for conservation of energy in order to derive a third equation relating the 
three unknowns R, δp, and ρ. 

The simplified form of the energy equation that we use in this first course in solar physics is the 
following: the oscillations are assumed to be adiabatic. That is, when the oscillations occur, the 
total pressure variation Δp is related to the total density variation ∆ρ by an adiabatic relation: Δp/p = 
∆ρ/ρ. Here,  is referred to as the “adiabatic exponent”. In a notation analogous to the definition 

of the polytropic index (see Chapter 10, Equation 10.1), Cowling (1941) writes  in the form = 1 + 
(1/N). For a typical adiabatic index = 5/3 (such as that which occurs in a monatomic nonionizing 
gas), the value of N takes on the particular value 1.5. 

What are the total changes in pressure that occur as a result of the oscillation? First, there 
is δp itself. However, since the oscillating element of fluid has also moved a radial distance R, the 
fluid element finds itself at a radial location where the ambient pressure is different from the value it 
had in the unperturbed location. Thus, the total change in pressure Δp associated with the oscillation 
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is the sum of two terms: ∆p = δp + R(dp/dr). An equivalent sum of terms applies also to the total 
change in density. Then the adiabatic version of the energy equation can be written: 

 p R dp / dr) 1   ( / dr  ( R d  
 1  

 
(14.9) 

p N 

The Cowling approximation has therefore provided us with three equations, Equations 14.4, 14.8, 
and 14.9, for three unknowns. 

14.2 CONVERSION TO DIMENSIONLESS VARIABLES 

To help cast the equations into more convenient form, we introduce some dimensionless variables. 
In this process, we are guided by the choices that were made in Chapter 10 in connection with 
dimensionless variables in a polytrope of order n. 

First, we change from the dimensional frequency ω to a dimensionless quantity α according to 
the definition: 

2 (1 n)
 (14.10) 

4 c G 

The fact that α is dimensionless can be verified by recalling the definition of the Emden unit of 
length ro (see Equation 10.9): the combination 1/√(Gρ) (which occurs in Equation 1.24 and also 
in Equation 14.10) has the dimensions of time-squared, and therefore when multiplied by 2 (with 
dimensions 1/time-squared) as in Equation 14.10 leads to a dimensionless quantity. Note that the 
(dimensional) frequency ω scales as √α. 

Second, we reduce the radial displacement R to dimensionless form X by normalizing to the 
Emden unit of length: X = R/ro. Analogously, we express the radial coordinate r as a new dimension
less variable x = r/ro. We reduce the pressure and density perturbations to dimensionless forms by 
normalizing to their respective values at the center of the “star”: θ = δp/pc and η = δρ/ρc. 

In terms of these dimensionless variables, we could (if we wished) convert Equations 14.4, 14.7, 
and 14.9 into dimensionless form. So far, the derivation is quite general and could be applied to any 
particular star in order to solve for the three unknowns. 

But now, following Cowling (1941) and in the spirit of Chapter 10, we restrict our attention to the 
case of a “polytropic star”. Specifically, we now apply our three equations (in dimensionless form) 
to a spherical object where the density profile is given by the particular functional form appropriate 
for a polytrope. That is, referring to Equation 10.6, we are considering an object where the density 
ρ(x) at radial location x is related to the central density by the specific form ρ(x)/ρc = y(x)n where y(x) 
is the local value of the Emden solution for polytrope n at radial location x. 

Then we find that Equation 14.8 becomes

l l( 1) 1 d 2 n

2 2
( x y X) (14.11) 

x x dx 

Equation 14.11 describes how the density perturbation η is related to the pressure perturbation θ and 
to (the radial gradient of) the radial displacement X. 

In dimensionless form, Equation 14.4 becomes 

n d  
n y  (14.12)  y X (1  )

dx 

where y  denotes the spatial gradient dy/dx. Equation 14.12 describes how the radial displacement 
X is related to the (radial gradient of the) pressure perturbation θ and the density perturbation η. 
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Finally, in order to get our third equation in dimensionless form, Equation 14.9 can be written as 

n1  )y ( N) N (n  N Xy y ’ (14.13) 

Equation 14.13 is the third equation we have been seeking in order to describing how changes in 
(dimensionless) density are related to changes in (dimensionless) pressure and to changes in (di
mensionless) radial displacement. Since Equation 14.13 is an algebraic relationship between η, θ, 
and X, we can use Equation 14.13 to eliminate η from Equations 14.11 and 14.12. This leads to two 
differential equations for two unknowns, the radial displacement X and the pressure perturbation θ. 

Substituting the expression for η into Equation 14.12, and gathering terms in θ on the left-hand 
side, we find 

 ) y 1 )d (1  n N (  n n  N ( ) n n 1 2 X y y ( )y  (14.14) 
dx (1  N y  ) 1  N 

Substituting the expression for η into Equation 14.11, and gathering terms in X on the left-hand 
side, we find 

1 d 2 n (n N) n 1 l l 1( ) N 
(x y X ) y y X  (14.15) 

2 2 x dx 1  N  x (1 )  N y  

Equations 14.14 and 14.15 are coupled differential equations: the radial gradient of one variable (on 
the l.h.s.) is expressed in terms of the value of the other variable (on the r.h.s.). These are the two 
equations we need in order to calculate the oscillations occurring inside a polytrope. 

In order to put the equations into a more convenient form for numerical integration, we define 
auxiliary variables, one for the pressure fluctuation θ, the other for the radial displacement X. In order 
to see which auxiliary variable is most helpful, we note that the left-hand side of Equation 14.14 can 
be written in the form θ′ − (Ey′/y)θ where E = N(1 + n)/(1 + N) is a numerical constant. This form 
of a differential equation suggests an integrating factor y−E. This leads us to convert the pressure 
perturbation variable θ and the radial displacement variable X to new auxiliary variables: 

E Ew y , z Xy (14.16) 

The two new variables w = w(x) and z = z(x) describe how the pressure perturbation and radial dis
placement vary as a function of radial location in the polytrope. In terms of these two variables, and 
also introducing the constant Q = 2E − n, we finally arrive at two ordinary differential equations 
for w and z as functions of the radial coordinate x: 

dw 
 zy Q  

(  n n  N) y
(14.17) 

1 )( ( )2 

dx 1  N y

d 2 Q l l( 1) Nx2 

(x z) wy (14.18) 
dx ( N y1 )

14.3 OVERVIEW OF THE EQUATIONS 

Let us summarize what we have done up to this point. Equations 14.17 and 14.18 describe the pro
files of radial displacements (~z(x)) and fluctuations in pressure (~w(x)) that occur when a “star” 
oscillates with a particular frequency (~√α). The “star” extends in radial coordinates from x = 0 (the 
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center) to x = x1 (the surface, where x1 is different for each value of the polytropic index n). Because 
the entire star from center to surface is involved in determining the solutions of Equation 14.17 
and 14.18, the oscillations we are considering are truly global in nature. Inside the star, the func
tion y(~T) varies from y = 1 at the center to y = 0 at the surface. The radial gradient y  is zero at the 
center, and then takes on negative values throughout the rest of the star. The star obeys a polytrope 
equation of state: p ~ ρ1+ 1/n and the oscillations are adiabatic: Δp/p = (1 + 1/N)∆ρ/ρ. The oscillations 
vary in latitude such that l nodes exist between the north pole and the south pole of the star. 

For any chosen polytrope (specified by the index n), the Lane–Emden equation can be integrated 
(either analytically or numerically) to obtain a table of values of y and y  as a function of x between 
0 and x1. A value is assigned to the adiabatic index N (typically N = 1.5), and this then fixes the value 
of Q. Then the second term inside the large brackets on the right-hand side of Equations 14.17 and 
14.18, as well as the yQ terms, can be evaluated at all tabulated values of x between 0 and x1. This 
provides the “background information” required to undertake a numerical integration for the two 
unknowns w(x) and z(x). 

The final quantity that must be assigned in order to integrate Equations 14.17 and 14.18 is the fre
quency parameter . In our search for solutions to the equations, we shall start by assigning a small 
value to  and integrate the equations to determine what value the pressure parameter w(surf) will have 
at the surface of the polytrope. Then we shall step through a series of values of  to find out the special 
frequencies (the “eigenfrequencies”) for which w(surf) is found to have the particular value of zero. 

The properties of oscillations in a polytrope can be determined by integrating Equations 14.17 
and 14.18 numerically for w(x) and z(x) with appropriate boundary conditions at the center and at 
the surface. Numerical integration can be performed either by programming a Runge-Kutta subrou
tine or by using one of the widely available software packages such as MATLAB® or Mathematica. 

In order to begin the integration at the center of the star, asymptotic functional forms 
for w and z must be specified: see step 6 in Section 14.4.1. The boundary conditions at the surface 
of the “star” for an eigenmode are that w  0 and z  0 as x  x1. 

By experimenting with different choices of polytropic index n, one can learn a great deal about 
the properties of oscillations in stars. 

The properties of Equations 14.17 and 14.18 are such that, in asymptotic terms, there are two 
distinct classes of eigenmodes: one is relevant in the limit where the frequency parameter  ∞, 
the second is relevant in the limit where the frequency parameter  0 (see Section 14.6). In the 
limit of high frequency (  ∞), pressure dominates as the restoring force: such modes are referred 
to as p-modes. The p-modes exist in all polytropes. In the limit of long period (  0), gravity 
(or more specifically, buoyancy) dominates as the restoring force: these are g-modes. Unlike the 
p-modes, g-modes do not exist in all polytropes: because of the presence of the term (n − N) in 
Equation 14.17, g-modes with finite periods do not exist if the polytropic index n is less than the 
value that one has assigned to N (typically N = 1.5). 

14.4 THE SIMPLEST EXERCISE: p-MODE SOLUTIONS 
FOR THE POLYTROPE n = 1 

In order to get a feel for how the oscillation equations work and how they lead to eigenfrequencies, it 
is instructive to integrate Equations 14.17 and 14.18 numerically for the case of a particularly simple 
polytrope, namely, n = 1. Although that polytrope makes no claim to describe any actual star, it still 
retains the overall structure of high pressure and density at the center and much lower pressure and 
density at the surface. For present purposes, the outstanding advantage of the polytrope n = 1 is that 
the functions y(x) and y (x) are known analytically: y(x) = sin(x)/x, y (x) = cos(x)/x − sin(x)/x2. As a 
result, we do not need to prepare a table of values of y and y : the local values can be calculated 
analytically. The surface of the star occurs at x1 = 3.14159. We assume N = 1.5. This leads to E = 
1.2 and Q = 1.4. 
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To perform the calculation, one must first specify a certain value of α: this remains fixed through
out the “star” as one integrates Equations 14.17 and 14.18 for a particular value of the frequency of 
the mode. Once a value has been chosen for , we start at the center of the star (x = 0, y = 1, y  = 0), 
and increase the value of x by some chosen increment ∆x. Integrate the coupled Equations 14.17 and 
14.18 for the two unknowns w and z at each step. Because the two equations are coupled, one inte
grates outward first in (say) w using the current value of z: given the current value of z, the right-hand 
side of Equation 14.17 can be evaluated, and this therefore allows one to evaluate dw/dx. Knowing 
this, one can take a step ∆x and use one’s numerical scheme (e.g., Runge-Kutta) to calculate an 
updated value of w. This is then inserted in the right-hand side of Equation 14.18 in order to evalu
ate dz/dx. This then allows the numerical scheme to calculate an updated value of z across the step 
∆x. This process is repeated for all tabulated values of x between 0 and 3.14159. The result is a table 
of values of w and z as a function of x. 

Of special interest is the value of w(x1) at the star’s surface (where the parameter x has the par
ticular value x = x1 = 3.14159). In most cases, for arbitrary values of α, the value of w(x1) will be 
found to be nonzero. But as one repeats the exercise with increasing values of , one will find that, 
in certain special cases (with  taking on certain discrete values), when the calculation reaches the 
surface of the polytrope, the computed value of w(x1) turns out to be equal to zero. Those special 
cases are the eigenmodes (p‑modes) of the polytrope. 

14.4.1 proCeDure for Computation 

1.	 Pick a value of l among the set 0, 1, 2, and 3. 
2.	 Pick a starting guess for α, the (dimensionless) frequency. Because of the choice of nor

malizations, the starting guess for α should not be too far from unity. A recommended 
starting guess is α = 0.1. The reason for this choice is as follows: when extensive calcula
tions are performed for l = 0, 1, 2, and 3, the lowest eigenfrequency in the n = 1 polytrope 
is found to have the numerical value α ≈ 1, 0.3, 0.55, and 0.7, respectively. 

3.	 Start the integration near the center of the polytrope by setting x = 0.01 (or x = 0.1 if you 
are confident about your equation solver routine). 

4.	 At that value of x, evaluate the local values of y(x) = sin(x)/x and y (x) = cos(x)/x − sin(x)/x2. 
5.	 With choices now made for l, α, n(= 1), and N(= 1.5), you have all the information you 

need to compute the local numerical values of the expressions in large brackets on the 
right-hand side of Equations 14.17 and 14.18. 

6.	 You will have to choose initial values for w and z. What initial values should you use 
for w and z? When one examines the asymptotic properties of Equations 14.17 and 14.18, 
it turns out that in the limit x  0, the functional form of z is as follows: 

z x( )  xl 1	 (14.19) 

for all values of l. Also in the limit x  0, the functional form of w is 

 xl 
( )w x 	  (14.20) 

l 

for l > 0, and w = 1 for l = 0. Using Equations 14.19 and 14.20, evaluate w and z at what
ever (small) value of x you have chosen as the starting point. 

7.	 Increase x by ∆x = 0.01 (if that is your choice of step size). Using the values of w and z from 
step 6 and recalculating the local values of y and y  at the new value of x, evaluate the 
right-hand side of Equations 14.17 and 14.18. With the new numerical values for the deriv
atives, step forward to calculate the new values of w and z. 
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8.	 Repeat step 7 until x has a value that is slightly smaller than x1 = 3.14159. Where should you 
stop the integration in x? That is, how close should you approach the limiting value x1 = 
3.14159? You cannot go too close, because then the terms in 1/y on the right-hand side of 
both equations will become infinitely large. One possible approach is to stop the integra
tion in x when the value of y(x) has decreased to a “small” value, such as 0.001. (Recall 
that starting at the center, y has a value of 1.0.) For purposes of the oscillation calculation, 
this stopping point may be considered to be “the surface” of the polytrope. 

9.	 Once you reach this “surface”, your code will give you a certain value for the pressure 
fluctuation variable w. Call this w(surf), and enter this value into a table alongside the 
value you specified for α (in step 2). 

10.	 Now, pick a new, larger value for α. How large should the new value of α be? Recommended 
increases are 0.1 up to α = 5. That is α = 0.2, 0.3, 0.4, . . ., 4.9, 5.0. Then increase the 
increment to 0.5 for values of α between 5 and 20. Then use increments of three for α up 
to (about) 300. Alternatively, you could (if you like) choose constant steps in log( ). 

11.	 For each value of  α, repeat steps 3–9. For each  α, tabulate the value you compute 
for w(surf). Since α is proportional to the square of the frequency (see Equation 14.10), 
it is more convenient to convert from α to a dimensional frequency using the unit νg ≈ 
100 μHz (Chapter  1, Section  1.12). For a polytrope with index  n, the conversion fac
tor for a “star” with mass and radius equal to the solar values is (Mullan and Ulrich 
1988) ν =  νg√(3Ccα/(n + 1)) where  Cc is the central condensation of the polytrope 
(Chapter 10, Section 10.9). In the present case, n = 1, this leads to v = 222.0√α μHz. 

12.	 Once you have computed results for all values of α from 0.1 to about 300, plot w(surf) ver
sus α, or (more conveniently) w(surf) versus ν. Two such plots are shown in Figure 14.1, 
one for l = 2 (solid curve) and the other for l = 0 (dotted curve). One sees that, as the 

FIGURE 14.1 w(surf) is the surface value of the oscillation variable w (the pressure fluctuation) as a function 
of frequency for polytrope n = 1 and for two values of the degree l. Crossings of the horizontal line w(surf) = 0 
identify the eigenfrequencies of p‑modes in the n =1 polytrope. 
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frequency increases, w(surf) swings back and forth between positive and negative val
ues. For each value of l, there exists a discrete set of values of v (i.e., ν1, ν2, ν3 . . .) at 
which the computed curve crosses the horizontal axis, i.e., w(surf) passes through a 
value of zero. At such values of v, the pressure fluctuation in the oscillation takes on 
the particular value of zero at the surface of the polytrope. Such an oscillation is a 
p‑eigenmode of the polytrope for the particular value of l that was chosen for the calcu
lation. The sequence of values vi are eigenfrequencies of the degree-l p‑modes for that 
polytrope. 

For your chosen value of  l, you will now have a series of eigenfrequencies for the 
p‑modes that occur in the n = 1 polytrope. 

13. Pick a new value of l and repeat steps 2–12. For each value of l, you will find a different 
series of eigenfrequencies. 

14.4.2 Comments on the p-moDe results: patterns in the eiGenfreQuenCies 

Our results for the Cowling approximation in a polytrope, although greatly simplified, neverthe
less allow us to draw valuable conclusions that would remain valid if we had applied the (more 
complicated) full oscillation equations to a detailed solar model. Because of this, it is instructive to 
examine certain properties of the output of the polytrope oscillation program. 

To begin with, we note that at the highest frequencies plotted in Figure 14.1, the last four eigen
frequencies for l = 0 are found to be at v = 3490, 3653, 3816, and 3980 μHz. For l = 2, the highest 
four eigenfrequencies are found to be at v = 3474, 3637, 3801, and 3965 μHz. Two patterns are 
striking here. 

First, for p‑modes with a given degree l, the intervals between adjacent eigenfrequencies are ∆ν = 
163, 163, and 164 μHz for l = 0 and ∆ν = 163, 164, and 164 μHz for l = 2. That is, both sequences 
of p‑modes show a striking asymptotic behavior: there is a (roughly) constant frequency interval 
between adjacent eigenmodes. The asymptotic frequency separation we have found here is slightly 
larger than ∆ν (= 153 μHz) obtained for the n = 1 polytrope from a more precise calculation (Mullan 
and Ulrich 1988): this difference can be ascribed to inadequacies in treating the surface boundary 
conditions in the solutions of the equations presented in the prior figure. 

Although the present results pertain only to the n = 1 polytrope, it will be shown later (Section 14.6) 
that a constant frequency interval between adjacent p-modes is predicted to be a general property of 
the oscillation equations in the limit of high frequencies. For reasons that will soon become clear, 
we refer to ∆v as the “large separation” between adjacent modes. In the Sun, observations indicate 
that the “large separation” Δv has values of 135–136 μHz for modes with l = 0–3 (Appourchaux et al. 
1998). Clearly, this observed separation is smaller than the 153–163 μHz that we have found for 
the n = 1 polytrope. But this is not a matter for any great concern: we have never claimed that the n = 
1 polytrope is supposed to be an accurate representation of the Sun itself. The point is, there does 
exist a “large separation” for the p‑modes in the “real Sun”, just as we have discovered for p‑modes 
in our model of the n=1 polytrope. 

Second, we note that the sequences of eigenfrequencies for  l = 0 and  l = 2 pair up with each 
other such that the two curves in Figure 14.1 cross the horizontal axis at almost the same frequen
cies. This indicates that the eigenfrequencies for certain p‑modes with l = 0 and l = 2 differ from 
each other by an amount that is small compared to the “large separation” of either sequence. The 
frequency separations between corresponding l = 0 and l = 2 p‑modes are δν(0–2) = 16, 16, 15, and 
15 μHz, i.e., about one order of magnitude smaller than the numerical values of ∆v. The frequency 
differences δν(0–2) are referred to as “small separations”, to distinguish them from the “large sepa
rations” (∆ν) between adjacent p‑modes at constant l. 

Although we do not present the results graphically here, we note that when the analog of 
Figure 14.1 is plotted for l = 1 and l = 3, results similar to those in Figure 14.1 emerge. There is 
again an asymptotic “large separation” ∆ν of about 163 μHz in frequency between adjacent modes 
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with the same l value, and a “small separation” between corresponding l = 1 and l = 3 modes. In this 
case, the “small separations” turn out to be δν(1–3) = 10–12 μHz. 

In the Sun, empirically it is found that the “large separations” are 135–136 μHz, while the “small 
separations” for p‑modes with frequencies of 3500–4000 μHz are δν(0–2) ≈ 10 μHz and δν(1–3) ≈ 
12 μHz (Appourchaux et al. 1998). We notice that the numerical values of the “small separations” 
are about one order of magnitude smaller than the numerical values of the “large separations”. Of 
course there is no reason to expect the n = 1 polytrope to reproduce the structure of the Sun in detail. 
Nevertheless, it is encouraging that even with the simplification of using the n = 1 polytrope, and 
also using the simplification of the Cowling approximation, we recover some important empirical 
features of the Sun’s p‑mode eigenfrequencies. 

An important property of the small and large separations is that they can be used (in con
junction with computer codes that follow the structural changes in the Sun as it becomes older) 
to determine the age of the Sun. Bonanno and Frohlich (2015) have used the empirical ratio of 
small/large separations extracted from more than 25 years of helioseismic data obtained by the 
Birmingham Solar Oscillations Group to derive an age of the Sun of 4569 ± 6 Myr. This compares 
remarkably well with the age of the oldest inclusions in meteorites: 4567.3 ± 0.16 Myr (Connelly 
et al. 2012). 

Finally, there is one further piece of information that we need in order to interpret Figures 13.1 
and 13.2. It is this: given the frequencies of two adjacent p‑modes with l = 0 (say the modes observed 
at ν = 3034 and 3169 μHz: see Chapter 13, Section 13.2), it is observed that there exists a mode 
with l = 1 with a frequency which is almost exactly half‑way between the two adjacent l = 0 modes. 
Thus, the (l = 1, nr = 21) mode is observed at ν = 3099 μHz, only 0.1% away from the midpoint 
frequency of the two surrounding l = 0 modes. Now, modes with l = 0 are excited in the Sun with 
almost equal power to those with l = 1. Therefore, rather than seeing in Figures 13.1 and 13.2 separa
tions between peaks of 135 μHz (the “large separation”), one sees separations of only about one-half 
that value, i.e., about 70 μHz (i.e., 0.07 mHz). 

14.4.3 eiGenfunCtions 

Now that frequencies of the p‑modes have been identified, it is also important to consider the struc
ture of the radial eigenfunctions. Two examples are shown in Figure 14.2, where we plot the radial 
profile of the function w (corresponding to the pressure perturbation) in Equations 14.17 and 14.18. 
The abscissa in Figure 14.2 is the radial coordinate x in Equations 14.17 and 14.18: it runs from 0 (at 
the left-hand side) corresponding to the center of the “star” to the boundary value x = x1 = π (at the 
right-hand side) appropriate for the n = 1 polytrope. 

Two features are noticeable about the eigenfunctions in Figure 14.2. First, the numerical values 
have excursions on both sides of the w = 0 (horizontal) axis. As a result, there exist a finite number 
of “nodes” where the eigenfunction passes through the value of zero. The number nr of times that 
an eigenmode crosses the w = 0 axis between center and surface is used to label the mode as being 
of “radial order nr”. 

Second, as we approach the surface, the excursions of the eigenfunction increase to larger 
(absolute) values. The peaks in the eigenfunction can be considered as “antinodes” where the pres
sure fluctuation has a local maximum. The antinode that occurs nearest to the surface has a larger 
amplitude than those lying somewhat deeper. (This is not always true for some of the very lowest 
order l modes, such as l = 0, but for moderate and high l values, the antinode nearest the surface has 
the largest amplitude.) 

A question that is of particular interest in solar physics is the following: at what radial location 
is the largest antinode of any given p‑mode eigenfunction situated? The answer to this question 
has a bearing on the basic question: why are certain p-modes excited to large amplitude in the Sun 
while other p‑modes are not? For the two examples in Figure 14.2, the radial locations at which the 
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FIGURE 14.2 Eigenfunctions in w plotted as a function of radial position for two p‑modes with similar 
frequencies in the polytrope n = 1. The two p‑modes differ in degree l by +2, and they differ in radial order by 
−1. The radial coordinate in the abscissa extends from center to surface. 

largest antinode occurs are located at about 0.99 times the radius of the n = 1 polytrope. That is, 
the largest antinodes occur at depths zan that are close to the surface, no more than 1% of the stel
lar radius below the surface. The larger the numerical value of nr, the closer the last (and largest) 
antinode lies to the surface (for a given l value). In order to demonstrate this result in more detail, 
we show in Figure 14.3 some details of eigenfunctions that do not refer to a polytropic model but 
that instead were obtained from a realistic solar model. For the three modes shown, with nr = 10, 
15, and 25 (and ν = 1610, 2290, and 3650 μHz, respectively), we see that the largest antinodes lie 
at fractional depths of 0.5%, 0.2%, and < 0.1% of R , respectively. These depths will be important 
subsequently when we consider why certain p-modes are excited in the Sun more effectively than 
others are. 

The eigenfunctions in Figure 14.3 were computed theoretically using a more sophisticated oscil
lation code than the one we have used to generate Figures 14.1 and 14.2. What is not shown in 
Figure 14.3 is how much power the Sun actually pumps into the various modes. In fact, there are 
striking differences in the levels of power that are observed to occur in the modes whose eigenfunc
tions are plotted in Figure 14.3. The frequency of the nr = 25 mode in Figure 14.3 (ν = 3650 μHz) is 
such that the mode lies near the peak of power for solar p-modes (see Figure 13.2): the power level 
is observed to be almost 5000 m2 s−2 Hz−1. On the other hand, the frequency of the nr = 10 mode in 
Figure 14.3 (ν = 1610 μHz) is such that the mode lies in the barely detectable regime in Figure 13.2: 
the observed power level is perhaps 10 m2 s−2 Hz−1 above background. Thus, the observations indi
cate that the (l = 1, nr = 10) mode is present in the Sun at a power level which is almost three orders 
of magnitude smaller than the power in the (l = 1, nr = 25) mode. The intermediate mode (l = 1, nr = 
15), at ν = 2290 μHz, is present in Figure 13.2 at a power level which is about 10 times smaller than 
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FIGURE 14.3 Eigenfunctions of (scaled) radial displacement  r (analogous to z in Equation 14.18) for l = 
1 p‑modes in a realistic model of the Sun. The abscissa is radial location expressed in terms of the solar 
radius R. Notice that the horizontal scale is greatly expanded: only theoutermost 2% of the radial coordi
nate (near the surface) is plotted. Dotted, dashed, and solid curves refer to p‑modes with radial orders nr = 
10, 15, and 25, respectively. (From the website of Jorgen Christensen-Dalsgaard at https://phys.au.dk/~jcd/ 
oscilnotes/Lecture_Notes_on_Stellar_Oscillations.pdf. The above figure occurs on page 88 of the jcd notes, 
in Figure 5.9. Used with permission of J. C-D.) 

the peak power. We will return to these power levels later when we consider the excitation of the 
modes in Section 14.8. 

The eigenfunctions in Figure 14.2 belong to two modes separated by the “small separation” δν(1– 
3). As can be seen from Figure 14.2, each of the two eigenfunctions crosses the w = 0 axis sev
eral times between the center and the surface. Inspection shows that, of the two eigenfunctions in 
Figure 14.2, the l = 1 curve has one more node in the radial direction than the l = 3 curve has. It is a 
general relation that modes differing by two units in l are separated by the “small separation” δν if 
they also differ by one unit in nr. That is, ν(l + 2, nr) ≈ ν(l, nr + 1). 

Although not plotted in Figure 14.2, when we plot the radial profile of the radial displacement z 
of the oscillations, the maximum excursions of z are found to be smaller by an order of magnitude 
or more than the excursions of the pressure fluctuation variable w. The fact that pressure fluctuations 
are dominant confirms that we are dealing with p-modes. 

14.5 WHAT ABOUT g-MODES? 

Our choice of polytrope n = 1 (chosen for the simplicity of its analytic solution) prevents us from 
discussing g-modes: because of our choice N = 1.5, no g-modes with finite periods exist in any 
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polytrope with n < 1.5. If we wished to numerically calculate g-modes in a polytrope, we must 
use n > 1.5 (assuming N = 1.5). As we have seen (Chapter 10), for polytropes with n > 1.5, no ana
lytic formulas exist for the polytrope structure (apart from the uninteresting case of n = 5 for an 
infinitely distended star). Therefore, a study of g-modes in polytropes requires us first to determine 
numerically a table of values of y and y  as a function of x, and then interpolate in this table to obtain 
local values of y and y at each value of x in the right-hand side of Equations 14.17 and 14.18. Such a 
study has been reported for the polytropes n = 2, 2.5, 3, 3.5, and 4 by Mullan (1989). 

Since the case n = 3.25 is relevant for the radiative interior of the Sun (see Section 10.2), we 
focus on that case here. An abbreviated table of y and y  values as a function of x in the n = 3.25 
polytrope has already been given (see Table 10.1). A more extended version of that table, includ
ing more than 800 rows, was prepared so that it could be used for interpolation in the right-hand 
side of Equations 14.17 and 14.18. Those equations were then numerically integrated from center 
to surface, using a series of frequencies appropriate for g-modes, using the steps outlined earlier in 
Section 14.4.1. 

There are four alterations to the steps outlined in Section 14.4.1 when we discuss g-modes. First, 
the range of permissible l does not include l = 0: so step (1) should read: “Pick a value of l among 
the set 1, 2, 3”. Second, in step (4), the local values of y and y  for each value of x cannot be obtained 
analytically: instead, they must be obtained by interpolating into Table 10.1 (or an extended ver
sion thereof). Third, in step (10), one must choose a new, smaller value of α: the study of g-modes 
requires going to smaller and smaller frequencies, i.e., towards longer and longer periods. Fourth, 
in step (11), the conversion factor from α to (dimensional) frequency for n = 3.25 for an object with 
the mass and radius of the Sun is ν = 789.0√α μHz. 

FIGURE 14.4 Calculation of g-modes in the polytrope n = 3.25. Plotted is w(surf), the surface value of w, 
one of the two oscillation variables, as a function of the mode period times √l(l + 1) for l = 1 and 2. Eigenmodes 
occur where w(surf) = 0. Note that the separation between adjacent eigenmodes approaches a constant value 
in period. The asymptotic separation in the quantity P√l(l + 1) is about 2500 sec. Contrast this plot with 
Figure 14.1, where the abscissa was given in terms of frequency. 
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Apart from these alterations, the numerical integration proceeds step by step at each frequency 
as described in Section 14.4.1. The result is again that, at each frequency, the code provides a value 
for the oscillation variable, w(surf), at the surface of the polytrope. 

Analogous to the plot in Figure 14.1 for the p-modes, we present in Figure 14.4 the surface values 
of w in the polytrope n = 3.25 for g-modes with l = 1 and l = 2. In contrast to Figure 14.1, where 
we plotted w(surf) as a function of frequency, in Figure 14.4, it makes more sense to plot w(surf) 
for the g-modes as a function of the period. The modes we plot have periods between about 8 and 
16 hours. Once again, the zero points of w(surf) define the locations of eigenmodes. Inspection of 
Figure 14.4 shows that, for the g-modes, the separation between adjacent eigenmodes approaches 
an asymptotic limit that is constant in period. In the case of the particular examples that are plotted 
in Figure 14.4, the period separation between adjacent eigenmodes times √l(l + 1) is found to be 
about 2500 sec. For l = 1, this corresponds to a period separation of 1770 sec, i.e., about 30 minutes 
between adjacent modes. For l = 2, this corresponds to a period separation of 1020 sec, i.e., about 
17 minutes between adjacent modes. 

Thus, whereas p-modes exhibit constant asymptotic separation in frequency (with a “large sepa
ration” Δν between the  frequencies of adjacent modes at high frequency), g-modes exhibit con
stant asymptotic separation ΔP in period. This dramatic distinction in asymptotic behavior between 
p-modes and g‑modes is a striking feature of the oscillation equations derived by Cowling (1941) in 
Equations 14.17 and 14.18. 

As already noted (Section  13.7), g-modes have not yet been reliably detected in the Sun. 
Therefore, unfortunately the Sun cannot yet be used to test the asymptotic prediction of constant 
ΔP between adjacent modes. In principle, in this textbook about the Sun, we should say nothing 
more about g-modes. However, in a broader framework, we consider it worthwhile to note that in 
stars where no extensive convective envelope is present, g-modes demonstrating the asymptotic 
behavior of constant separation in period have been reliably detected. As an example, we show in 
Figure 14.5 results obtained by Zhang et al. (2020) for a particular star where the effective tempera
ture (6947 K) is sufficiently hot that the convective envelope is too shallow to suppress the g-modes 
in the outer regions of the star. Analyzing 4 years of Kepler satellite photometric data, Zhang et al. 
identified 17 low-frequency peaks with periods in the range from 0.7 days to 1.2 days: the mean 
interval between adjacent periods was found to be 2756.2 ±0.8 seconds. The constancy of the period 
interval betweeen adjacent modes is remarkable: it is precisely what is predicted asymptotically for 
g-modes in a nonrotating medium. Based on a lack of rotational splitting of the g-modes, Zhang 
et al. concluded that the rotation period of the core of the star must be longer than 550 days, i.e., the 
star is rotating so slowly that it can be well described by Cowling’s equations for a nonrotating star. 
Zhang et al. (2020) identified the modes with periods of 0.7–1.2 days as belonging to dipole (l=1) 
gravity modes. 

We turn now to a discussion as to why the p-modes and the g-modes display these distinctly dif
ferent asymptotic behaviors, one in frequency and the other in period. 

14.6 ASYMPTOTIC BEHAVIOR OF THE OSCILLATION EQUATIONS 

We can use the mathematical properties of Equations 14.17 and 14.18 to see why p-modes have 
asymptotically equal spacing in frequency between adjacent modes, whereas g-modes have asymp
totically equal spacing in period. 

14.6.1 p-moDes 

As regards p-modes, asymptotic behavior emerges in the limit of high frequencies, α  ∞. In this 
limit, Equation 14.17 reduces to dw/dx = αzy−Q while Equation 14.18 reduces to d(x2z)/dx = −wψ(x, 
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FIGURE 14.5 Top panel: amplitude of oscillations, plotted as a function of period, in a star hotter than the 
Sun. Each spike represents a g-mode with a different radial order. Lower panel: period of each spike is plot
ted against the radial order of the best-fitting model mode. The red line passing through the observed periods 
is (very close to) a straight line, indicating that a (nearly) constant interval in period exists between adjacent 
modes, as predicted for g‑modes in the asymptotic limit of long periods in a nonrotating star. (From Zhang 
et al. 2020; used with permission of X. Zhang.) 

y) where ψ = Nx2y Q−1/(N + 1). Let us concentrate on the values of the quantities w and z close to 
the “surface” of the star, i.e., at a fixed value of x (close to x1). In essence, this is a rough method 
of concentrating on the value of w which we referred to as w(surf) when we plotted Figure 14.1. 
Although this is not a mathematically rigorous procedure, it helps us to see (roughly) that we can 
write dz/dx ≈ −Aw where A = y Q−1/  is a constant at a fixed value of x. (We use the quantity  to 
replace (N + 1)/N). The numerical value of A depends on the (almost zero) value of y close to x1. 
Again treating y−Q as essentially constant (because we are treating a point at a fixed value of x close 
to the surface), we take the second derivative of w and find d2w/dx2 ≈ ay−Qdz/dx. Substituting the 
prior expression for dz/dx, we find 

2d w    
2 

w Ay Q w  (14.21) 
dx y
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Recall that in a polytrope composed of a perfect gas, the Lane–Emden function y is related to 
the local temperature by y = T/Tc (Chapter 10, Section 10.3). The combination y (which occurs on 
the right-hand side of Equation 14.21) is therefore proportional to the square of the local adiabatic 
sound speed: y = A′ (cs)2. 

Substituting this in Equation  14.21, and also substituting the expression  ν =  A √α (see 
Equation 14.10) relating α to the (dimensional) frequency, we can rewrite Equation 14.21 as 

2d w  B
2 

w  (14.22) 
dx2 c s  

where B2 = 1/A′A″ 2. 
The solution of Equation 14.22 is a sinusoidal function: w ~ sin(xBν/cs). Here, w is to be inter

preted as w(surf), (i.e., the ordinate in Figure 14.1), while ν is the frequency (i.e., the abscissa in 
Figure 14.1). The quantity x can be regarded as fixed at the value x = x1. As a result, w(surf) is 
expected to vary sinusoidally as ν increases. The essence of a sinusoid is that it passes through 
successive zeroes as the argument x1Bν/cs passes through the set of discrete values jπ where j is 
an integer. The interval between successive zeroes of the sinusoid corresponds to incre
ments of π between successive eigenfrequencies multiplied by x1B/cs. Thus, in this asymptotic 
limit of high frequencies, adjacent modes are predicted to differ in  frequency by a constant 
amount Δν = πcs/Bx1. 

Note that Δν ~ cs/x1. Now, the combination x1/cs is related to ts, the time for sound to propagate 
from the Sun’s center to the surface (Chapter  9, Equation  9.6). Thus,  Δν is proportional to 1/ts. 
Detailed mathematical work shows that, in fact, the asymptotic frequency separation ∆ν should 
equal 1/(2ts). 

14.6.2 g-moDes 

As regards g-modes, the treatment of asymptotic behavior follows the prior discussion for p-modes, 
except that now we consider the asymptotic limit of low frequencies, i.e., α  0. In this limit, the 
dominant term in dz/dx is l(l + 1)/α, while the dominant term in dw/dx is proportional to (n − N). 
Repeating the prior steps, we again find a sinusoidal solution, with zeroes separated by a constant 
interval π in the argument. In this case, however, adjacent modes differ by a constant value of the 
argument Ag = (n − N)√l(l + 1)/ν. 

There are two features to be noted about Ag. First, the presence of n − N has the effect that sinu
soidal solutions exist only for n > N: in a polytrope where n < N, the solutions are no longer propa
gating waves, but are instead damped exponentials. 

Second, Ag includes the frequency in the denominator. Thus, Ag is proportional to the period of the 
mode. As a result, the constant interval between neighboring g-modes is proportional to the period. 
Thus adjacent g-modes (with fixed l) are separated by a constant interval Po/√l(l + 1) in the period. 
The quantity Po is predicted to have a well-defined value for a given value of the polytropic index: 
e.g., for n = 3, Po = 3497 sec, while for n = 3.5, Po = 1927 sec (see Mullan 1989). Thus, for modes 
with degree l = 1, the asymptotic separation in period between adjacent modes is predicted to be 41 
minutes for n = 3, and 23 minutes for n = 3.5. As can be seen from Figure 14.4, for the intermediate 
case n = 3.25, the asymptotic separation for l = 1 modes is about 30 minutes. 

In contrast to the asymptotic behavior of p-modes (where the asymptotic interval in frequency is deter
mined by the radial profile of the sound speed), it is not surprising that for g-modes, the asymptotic inter
val in period between adjacent g-modes is not determined by the sound speed: instead, it is determined by 
the radial profile of a very different physical quantity known as the Brunt–Vaisala frequency (νBV ~ n − N). 

In the solar convection zone, where n = 1.5, and therefore n = N, g‑modes are exponentially 
damped. 
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14.7 DEPTH OF PENETRATION OF p-MODES BENEATH 
THE SURFACE OF THE SUN 

Now that we know that p-modes are associated with the propagation of sound waves, we can obtain 
a valuable piece of information in the context of the following question: how deeply into the Sun 
do p-modes penetrate? The answer depends on the value of the wavelength of the p-mode. 

We have already introduced (see Equation 13.1) the concept of “horizontal wavelength” h = 
2πR /√[l(l + 1)] in connection with modes of angular degree l: this wavelength is a measure of how 
many nodes exist along the meridian from north to south pole. Associated with λh, we introduce the 
“horizontal wave number” kh defined by kh = 2π/ h = √[l(l + 1)]/R . 

A second component of the wave number that enters into the solar p-modes is associated with the 
wavelength in the radial direction r. The “radial wave number” is defined by kr = 2π/λr, such that 

2 2 2the “total wave number” k is defined by k  kh  kr . 
The propagation of sound waves in a medium occurs in such a way that there is a well-defined 

relationship between the (angular) frequency ω of the wave, its wavelength (or wave number k), 
and the speed of sound cs in the medium. In the simplest case of a uniform medium, this so-called 
dispersion relation is especially simple: cs = ω/k. But the Sun is not a uniform medium: the speed of 
sound increases with depth as we move farther inward below the surface. As a result, the dispersion 
relation for sound waves propagating through the Sun at any depth has a more complicated form: 

2 

k2  k2  (14.23) h r 2c s 
Let us use Equation 14.23 to consider what happens to a sound wave as it penetrates deeper and 

deeper below the surface of the Sun. At the surface, the degree of the mode is identified in terms 
of the angular degree l: this fixes the value of kh, and the sound wave associated with the mode of 
degree l retains that value of kh at all depths. Also at all depths, ω retains a constant value. 

The essential aspect of the Sun is that, with increasing depth below the surface, the ambient 
temperature T increases (as we have computed in Chapters 5, 7, and 9). This increase in T leads to 
an increase in c2 R T /  as we move deeper into the Sun. As a result, the right-hand side of s g a 

Equation 14.23 decreases as depth increases. At a certain depth zr, the right-hand side falls to such a 
small value that is becomes equal to (the constant quantity) kh 

2. At that depth, the only way to satisfy 
Equation 14.23 is for kr to become zero. When that happens, propagation in the radial direction is 
no longer permitted. The wave number becomes entirely horizontal. When the wave was near the 
surface, it had a finite value for both kh and kr: such a wave would propagate at a well-defined angle 
relative to the radial direction. But at depth zr, the wave propagates horizontally and can therefore 
penetrate no deeper into the Sun. Thus, although the wave starts off its journey into the Sun by prop
agating into deeper layers at a finite angle to the radial direction, the wavefront gradually becomes 
more and more bent (refracted) away from the radial direction, until at depth zr, the wave becomes 
horizontal. After that happens, the wave then begins to refract back toward the surface. The layer 
with depth zr serves as the lower boundary of the acoustic cavity for that wave mode. 

The depth zr is indicative of the maximum depth to which a wave with a given degree l penetrates 
into the Sun. We cannot expect that such a wave will be able to provide much (or any) information 
about what is happening in the deeper interior of the Sun, at depths in excess of zr. If we wish to study 
conditions at radial locations of (say) r in the deep interior of the Sun, we must make sure to study the 
properties of waves that can propagate into depths zr which are at least as great as the depth R  − r. 

Setting k2  0 in Equation 14.23 and setting c2 R T /  , we find that the depth z occurs s g rr 

when the local temperature T has the value T 2  /  R k2 . At what depth does the temperature r g h 

have such a value? Well, as long as we are considering depths that are not too far beneath the 
surface of the Sun, specifically no more than about 200,000 km (roughly 0.3 R ), we know that 
the solar structure is determined by convective heat transport. In such conditions, the temperature 
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gradient is (roughly) equal to the adiabatic gradient, g/Cp. This means that the temperature as 
a function of depth is  T(z) =  T(z ) +  g(z − z )/C (see Chapter  7, Equation  7.5). We set  z = 0o o p o 

where T(zo) ≈ 6000 K. Throughout most of the convection zone, T(z)  6000 K. Therefore, the 
depth  z is essentially equal to  T C /g. Recalling that  C can be set equal to  γR /μ(γ − 1) (see r r p p g

Chapter 6, Equation 6.5), we find 

2 1 
zr  

2 
(14.24) 

kh g( 1) 

In the limit of large l, and for modes with (linear) frequency v (= ω/2π), the depth of penetration 
can be expressed as a fraction of the solar radius roughly as follows: 

2 2  zr 4  R  1
 (14.25) 

R  l2 g( 1) 

Thus, the larger the degree l, the shallower is the penetration of the mode beneath the surface 
of the Sun. 

We have already seen (Chapter  7) that there is one particular depth in the Sun that is of spe
cial interest, namely, the depth at which the base of the convection zone lies. As an illustration of 
Equation 14.25, it is therefore instructive to ask: how large must l be in order to have the depth of pene
tration no deeper than the convection zone? In such a case, zr/R  ≤ 0.3. Inserting this in Equation 14.25, 
and using g = 27,420 cm sec−2 and = 5/3, we find that the degree l must exceed a value equal to lc ≈ 
22,400ν. The modes most commonly excited in the Sun have ν ≈ 0.003 Hz. This leads to lc ≈ 60–70. 
This indicates that if we want to use p-modes to study the convection zone in the Sun, it will be best 
to concentrate on the properties of modes with degree l in excess of 60–70. Referring to Figure 13.4 in 
Chapter 13, we see that modes lying on the prominent ridges toward the right-hand side of the figure 
(with l > 70) consist of modes that are all confined within the solar convection zone. 

For modes with large  l, i.e., for modes that do not penetrate deeply beneath the surface, the 
eigenfunctions are effectively “squeezed” into a shell in the outer parts of the Sun between a depth 
of zr and the surface. For example, observed modes with the largest l in Figure 13.4, with l ≈ 200, 
and ν = 3 mHz, are confined to a shell that penetrates beneath the surface to a distance of only 
about 0.03R , i.e., to a depth of only about 21,000 km. And yet there still exist a series of modes, 
each with its own radial order nr, which must be “squeezed” into this thin shell. It is obvious that, 
in such a case, even relatively small values of nr will result in having the last antinode situated very 
close to the surface. 

What about modes with l < 60–70? Such modes have the ability to penetrate into the radiative 
interior of the Sun before they are refracted back towards the surface. In principle, modes with the 
lowest values of l (e.g., l = 1, 2, or 3) are capable of reaching in almost to the nuclear-generating core 
regions of the Sun. Therefore, if we are interested in processes occurring in the Sun below the base 
of the convection zone, our main focus should be on the low-l modes. 

Another aspect of p-mode propagation inside the Sun is that, given the speed of the acoustic 
waves, one can calculate how much time it will take for any given p-mode to propagate downward 
to its reflection depth zr and then propagate back up to the surface. This timing can be altered if, 
along the propagation path, the wave happens to encounter a localized active region: in such a 
region, acoustic waves may convert to a different wave mode with a different propagation speed 
(see Section 16.7.7). This conversion to another mode may alter the propagation time. If this altera
tion in timing can be quantified, this can give astronomers on Earth the ability to actually estimate 
the location of an active region on the “far side” of the Sun before it ever rotates onto the visible 
disk. Verification of this ability has been provided by observations with the STEREO spacecraft 
(Section 16.7.7). 
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14.8 WHY ARE CERTAIN p-MODES EXCITED MORE THAN OTHERS IN THE SUN? 

In order to understand why some p-modes are excited to large amplitude in the Sun, while other 
p-modes are hardly excited at all, let us recall an important feature of the observed power spectrum 
in Chapter 13, Figure 13.2. We have seen (Chapter 14, Section 14.4.3) that the solar mode with l = 1 
and nr = 10 is present at a power level that is 500 times smaller than the mode with l = 1 and nr = 25. 
And for the mode with l = 1 and nr = 15, the power level is some 10 times smaller than the mode 
with l = 1 and nr = 25. How can we understand this preference of the Sun to excite the mode with 
nr = 25 almost one thousand times more effectively than the mode with nr = 10? 

14.8.1 Depths Where p-moDes are exCiteD 

To address this, consider the eigenfunctions plotted in Figure 14.3. We note that the largest anti-
node of the mode with l = 1 and nr = 10 lies at a depth of 0.5% of the solar radius, i.e., at a depth of 
3500 km below the photosphere. On the other hand, the mode with l = 1 and nr = 25 has its largest 
antinode at depths of <700 km. The (l = 1, nr = 15) mode has its largest antinode at an intermediate 
depth, 1400 km. 

These results lead us to ask the question: is there some physical quantity in the Sun that can 
provide power to the p-modes and is favorable for excitation of p-modes at depths of <700 km but 
is less favorable (by a factor of 10) at depths of 1400 km, and is even less favorable (by factors of 
500) at depths of 3500 km? 

14.8.2 properties of ConveCtion at the exCitation Depth 

The most obvious characteristic of depths between z <700 km and z = 3500 km is that they lie 
within the solar convection zone. The principal characteristic of that zone is that the gas is driven 
effectively to finite velocities by means of convective instability. In the turbulent motions charac
teristic of solar convection, granules come into existence and subsequently go out of existence on 
time-scales of a few minutes. When a compressible medium is in motion, it is inevitably a source of 
pressure fluctuations, i.e., sound waves. As a result, the solar convection motions are effective gen
erators of sound waves. This raises the possibility that such waves may serve as a source of p-modes, 
provided that conditions are favorable to allow transfer of energy into the modes. 

At what spatial location inside the Sun is energy likely to be transferred most effectively into a 
p-mode? The answer is: at the location where the mode’s eigenfunction has its largest antinode. That 
is where the mode “likes” to have a large pressure fluctuation. This suggests that p-modes can be 
excited in the Sun most effectively if the largest antinode (i.e., in general, the antinode lying closest 
to the photosphere) lies at a depth where convection generates sound waves effectively. 

How much power do the convective flows in the Sun emit as sound waves? The maximum avail
able power can be computed by noting that an individual granule survives for only about one turn
over time, i.e., for a time interval tc ≈ D/V, where D is a length associated with circulation around the 
convection cell, and V is the convective velocity (see Section 6.5). When a granule reaches the end 
of its lifetime and loses its identity by dissolving back into the ambient medium, it is as if the energy 
density of the convective flow (Ed ~ ρV2 ergs cm−3), equivalent to a ram pressure, is made available 
(over a time-scale of order tc) as a pressure pulse in the ambient medium. The maximum available 
power Pp emerging from each cm3 in the pressure pulse is of order 

3Ed V -3 -1P  ergs cm sec (14.26)p t D c 

By integrating over the linear extent of the granule (~D), we find that the maximum avail
able flux of pressure Fp from the dissolving granule is ~ ρV3 ergs cm−2 sec−1. 
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Only a fraction of Fp is converted into a flux of sound waves, Fs, with periods in the 5-minute 
range. In the photosphere, where the sound speed is ≈ 10 km sec−1, a 5-minute sound wave has 
a wavelength  ≈ 3000 km, i.e., larger than the linear extent of the granule D. The dissolving 
granule acts in essence as a “short antenna” for radiating sound waves with wavelength . 
Antenna theory indicates that an antenna of length D is quite inefficient at emitting waves with 

 > D. Specifically, by considering the details of a multipole expansion, it can be shown that 
the efficiency of emission from a  short antenna is proportional to (D/ )2m+1, where m = 1 for 
dipole emission and  m = 2 for quadrupole emission. It turns out that the sound emitted by 
solar convection is generated mainly by quadrupole terms: as a result, the efficiency of sound 
emission by solar granules scales as (D/ )5. 

The periods Ps (= /cs) of the sound waves emerging from a cell with lifetime tc are comparable 
to tc. As a result, we can write D/  ≈ V/cs. This leads to the following estimate for the flux of sound Fs 

emitted by granular gas motions: 

5
 V


F
 
 F
 s p c s 

 3V M 5 

(14.27)
 

where M = V/cs is the Mach number associated with the convective flows. 
At this point in the argument, and in order to proceed with a quantitative discussion, it is 

essential that we (somehow) determine how the convective velocity V varies with depth beneath 
the solar surface. Unfortunately, the model of the convection that we computed in Chapter 7 
does not contain this information: we made no attempt to compute V at each depth because 
we did not attempt to apply “mixing-length theory” in detail. Instead, we “skipped over” the 
superadiabatic and ionizing layer and went right to the limit of setting the temperature gradient 
equal to the adiabatic temperature gradient. By referring to more detailed models, we pointed 
out (Section 7.7) that the layer that we “skipped over” has a linear extent of a few Mm. These 
are precisely the range of depths that we now need to know about if we are to be successful 
in discussing the excitation of p-modes. Therefore, with the approach we have adopted in this 
“first course in solar physics”, we have to admit that we are not really in a position to provide 
a self-contained reliable quantitative answer to the question “why are certain p-modes excited 
more than others?” 

Rather than leave this important question unanswered, however, it is worthwhile to refer briefly 
to one particular solar model in which the depth dependence of the convective velocity was explic
itly tabulated. Inspection of that model (Baker and Temesvary 1966) indicates that at depths of 
700, 1400, and 3500 km below the photosphere, the combination of parameters ρV3M5 (which is 
proportional to the flux of sound energy, see Equation 14.27) takes on numerical values of 3.4 × 104, 
2.3 × 103, and 24 ergs cm−2 sec−1, respectively. That is, at a depth of 1400 km, Fs is reduced by a fac
tor of ≈10 compared to Fs at 700 km: this could explain why the power observed in the (l = 1, nr = 15) 
p-mode is 10 times smaller than the power observed in the (l = 1, nr = 25) p-mode. Note also that at 
3500 km, Fs is reduced by a factor of ≈ 1000 compared to Fs at 700 km: this could explain why the 
power observed in the (l = 1, nr = 10) p-mode is almost 1000 times smaller than the power observed 
in the (l = 1, nr = 25) p-mode. These estimates of the depths at which various p‑modes are excited 
are admittedly simplistic: nevertheless, there is good overlap between our estimates and the depths 
of the acoustic sources that have been extracted by other methods: e.g., 140–550 km (Kumar 1994), 
and 2000 ±500 km (Shelyag et al. 2006). 

Finally, note that if we consider modes with large l, where the eigenfunctions are “squeezed” into 
a thin shell close to the solar surface (see Equation 14.25), even rather small values of nr may result 
in the last antinode lying quite close to the surface, i.e., right in the zone where acoustic generation 
by convection is highly efficient. This explains why, at large values of l, modes with small values 
of nr (e.g., nr = 4) can be excited to detectable amplitudes (see Figure 13.4). 
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14.9 USING p-MODES TO TEST A SOLAR MODEL 

Now that we have computed a solar model, we have obtained tables of values of various physical 
parameters as a function of the radial distance from center to surface inside the Sun. The question 
arises: how can we test the validity of the results we have obtained? After all, they are numbers in a 
table, and their values are only as good as the assumptions and approximations that went into their 
calculation. It would be good to have an independent means of checking. This is where helioseis
mology comes into its own: it allows us to “peer into” the interior of the Sun and check some of the 
physical variables we have calculated. In particular, the fact that p-modes with different values of l 
can probe into the Sun to different depths (see Equation 14.25) means that, by studying modes with 
judiciously chosen l values, we have in principle access to a tool to explore the conditions that exist 
at different radial locations inside the Sun. 

14.9.1 Global sounD propaGation 

We have already seen (Chapter 14, Section 14.6.1) that the asymptotic frequency separation Δν should 
equal 1/(2ts), where ts is the time required for sound to propagate from the center of the Sun to the 
surface. In view of this, we can now see the significance of a calculation we did in Chapter  9, 
Section 9.4. There, we computed the value of ts for our complete solar model, and found ts = 3804 
sec. Using that, we find ∆ν = 1/2ts = 131.5 μHz. This is within 2%–4% of the observational values 
of ∆ν: 135–136 μHz (Appourchaux et al. 1998). This tells us that our model for the Sun is doing a 
good job of reproducing a key global property of the “real Sun”. 

14.9.2 raDial profile of the sounD speeD 

A solar model provides a radial profile of (among other things) the sound speed from center to sur
face. Once this is available, it is in principle possible to calculate a table of the eigenfrequencies of 
p-modes with various values of l and nr. 

The modifier “in principle” in the previous sentence is meant to emphasize that Equations 14.17 
and 14.18 refer only to the case of a polytrope: in the case of a realistic solar model, no single value 
of the polytropic index exists throughout the entire model. Therefore, new (non-polytropic) ver
sions of Equations 14.17 and 14.18 must be derived in which the radial profile of sound speed is 
incorporated explicitly. Also, for maximum precision, the Cowling approximation would have to be 
replaced with a more complete set of (four) equations. 

Once those changes have been made, a table of mode frequencies can be calculated. These can be 
checked against the measured frequencies in order to determine how good the model is. In general, 
the calculated frequencies will not reproduce the observed values. The discrepancies can be used to 
determine what numerical changes need to be made to the model sound speeds in order to achieve 
better fits. An example is shown in Figure 14.6, where relative discrepancies cs

2/cs
2 between the 

model values of cs
2 and the values of cs

2 required by the p-mode frequencies are plotted as a function 
of radial location between the center of the Sun and the surface. 

The first thing to notice about Figure 14.6 is that although discrepancies between model and 
data are present, the discrepancies are relatively small: nowhere inside the Sun is cs

2/cs
2 ≈ δT/T 

larger than 0.4%. This is a striking endorsement of the reliability of current solar models: the run 
of temperature inside a solar model from center to surface, ranging from > 10 million K to a few 
thousand K, reproduces what happens at all radial locations inside the Sun to better than a few 
parts per thousand. It was this success in testing models of the solar interior that forced neutrino 
physicists (who were trying to solve the solar neutrino problem: see Section 12.5) to switch attention 
away from the solar models (now known to be reliable at the parts per thousand level) and begin to 
concentrate on the physics of neutrinos themselves: as it turned out, the “standard model” of particle 
physics needed to be updated to allow neutrinos to have a nonzero mass. 
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 FIGURE 14.6 Radial profile of discrepancies between sound speeds (squared) in a solar model and the 
sound speeds (squared) required to reproduce the observed eigenfrequencies. (Courtesy of SOHO/MDI con
sortium. SOHO is a project of international cooperation between ESA and NASA.) 

Because modes of different degree  l penetrate into the Sun by different amounts (see 
Equation 14.25), discrepancies between modes with the largest l values contain information about 
errors in the model in the outermost layers of the Sun. Modes with intermediate l values (≈ 60–70) 
may be used to probe conditions down to the base of the convection zone (at radial locations r ≈ 
0.7R ). As can be seen from Figure 14.6, the base of the convection zone is the site of the largest 
discrepancies in sound speed: this suggests that certain physical phenomena occurring at the inter
face between the convection zone and the radiative core may not yet be properly incorporated in the 
solar model. Among these phenomena might be rotational shear, or magnetic fields, or overshooting 
of convection: however, allowance for such complications would take us far beyond the limits of a 
first course in solar physics. 

In the deepest regions of the radiative interior, information about the model is contained in 
p-modes with the lowest l values. But even then, the innermost part of the Sun, at radial locations 
within (say) 0.2R of the center of the Sun, cannot be probed with great reliability by p-mode data. 
This explains why the error bars in Figure 14.5 become considerably larger in the innermost regions 
of the Sun. 

14.9.3 the sun’s rotation 

We do not need helioseismology to study the rotation on the surface of the Sun: that rotation can 
be observed directly. The observations (Section 1.11) show that the Sun rotates faster at the equator 
than at high latitudes, with a difference of almost 30% between the equator and the poles. 

When it comes to studying the Sun’s rotational properties beneath the surface, we must rely on 
helioseismology. In describing the modes that exist inside the Sun, we have concentrated on only 
two of the integers that specify a mode: l, and nr. These are related to properties of the modes in 
the latitudinal and radial directions respectively. 
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However, in order to study rotation, we would also need to include, in our spherical harmonic 
analysis, an index m to describe properties of modes in a third direction, namely, in  longitude. 
For a spherical harmonic mode with any given value of the degree l, there exist in principle 2l +1 
submodes with m values varying from m = −l to m = +l. The algebraic sign of m indicates the 
longitudinal direction in which the mode propagates. Now, the Sun is rotating in the longitudinal 
(azimuthal) direction (parallel to the equator) with a speed Vr that, at the equator and on the surface, 
has a magnitude of about 2 km sec−1. A p-mode (sound wave) that propagates in the same longi
tudinal direction as rotation propagates with speed cs + Vr relative to a nonrotating frame. On the 
other hand, a p-mode that propagates opposite to the direction of rotation propagates with speed 
cs − Vr relative to a nonrotating frame. These differences in propagation speed lead to differences 
in the frequencies of eigenmodes with positive and negative values of m. As a result, a mode with a 
particular value of l has a power spectrum that no longer contains only a single “spike” at frequency 
νo: instead, in the case m = ±1, there are now extra spikes shifted by  on either side of the central 
peak. The relative shift in frequency, /νo, is essentially equal to Vr/cs. Since cs is reliably known at 
any particular radial location (see Figure 14.6), a value for Vr can be obtained. And by making use of 
the depth dependence of mode penetration as a function of degree l, one can obtain the radial profile 
of rotation. The p-modes allow us to probe rotation in the regions of the Sun that extend from the 
surface in to radial locations of a few tenths of R . 

Figure 14.7 shows the profile of rotational angular velocity that has been determined by analysis 
of SOHO/MDI data between 1996 and 2011 by Larson and Schou (2015). (The same data set was 
used to construct Figure 13.4.) The results in Figure 14.7 are presented as a function of two vari
ables: (i) the fractional radial coordinate (r/R) inside the Sun and (ii) the latitude. 

Examining first the surface of the Sun, i.e., at r/R = 1, the curves in Figure 14.7 show that 
at low latitudes (0 deg), the surface rotates relatively rapidly: Ω/2π ≈ 450–460 nanohertz (nHz), 
i.e., a rotation period of 25.2–25.7 days. (This range overlaps the equatorial rotation period of 
25.37 days obtained by averaging surface Doppler data over 14 years: see Section 1.11.) At higher 

FIGURE 14.7 Angular velocity versus fractional radius inside the Sun at six different latitudes. (From 
Larson and Schou 2015; used with permission of Springer.) 
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latitudes, the surface rotates more slowly: at 75 deg latitudes, Ω/2π ≈ 340–350 nHz, i.e., a rota
tion period of 33.1–34.0 days. Although the surface Doppler data allow in principle the study of 
rotation all the way to the poles (see Chapter 1, Equations 1.22 and 1.23), the helioseismological 
data are not sensitive enough at latitudes above 75° to allow Figure 14.7 to be extended reliably 
to the poles. 

The fact that the Sun’s surface does not rotate as a solid body has been known for a long time 
(see Section 1.11). What Figure 14.7 demonstrates is that it is not merely the surface of the Sun that 
departs from solid-body rotation: this feature also exists in the interior of the Sun. 

The long-known departure from solid body rotation at the surface is called latitudinal dif
ferential rotation (LDR). As we examine the subsurface gas in Figure 14.7, we see that LDR 
persists (with values similar to the surface) down to depths of at least 0.2 solar radii, i.e., to radial 
locations as small as 0.8R . At greater depths, as we approach the base of the convection zone, 
at radial location r ≈ 0.7R , there is a remarkable convergence of the angular velocities to essen
tially a unique value. Below the convection zone, in the radiative interior, i.e., at r < 0.65R , and 
in as far as a radial coordinate of order 0.5R , the Sun rotates at essentially the same rate at all 
latitudes: Ω/2π ≈ 435 nHz. That is, the radiative interior of the Sun, at least in its outer regions, 
rotates as a solid body with a period of 26.6 days. The rotation of the Sun in the inner regions 
(r < 0.5R ) are not known as reliably as they are in the outer regions, because very few p‑modes 
penetrate into those deep regions of the interior. A narrow boundary layer exists between the 
base of the convection zone and the outer edge of the radiative interior: this layer is known as 
the “tachocline”. 

The fact that the radial profiles in the convection zone in Figure 14.7 have nonzero slopes means 
that the convection zone of the Sun, at fixed latitude, has a variation in angular velocity as a function 
of radius. Thus, the Sun exhibits radial differential rotation (RDR), in addition to the LDR evident 
at the surface. 

Why exactly the Sun shows the rotational properties shown in Figure  14.7 is not readily 
explainable in terms of the physics of a “first course”. For example, from the simplest perspective, 
one might expect that the convection zone, with its turbulent stresses (which produce a highly 
effective viscosity), should be able to enforce solid body rotation in the convection zone more eas
ily than in the radiative interior. And yet Figure 14.7 shows quite the opposite: it is the radiative 
interior that exhibits solid body rotation. (What keeps the radiative zone in solid body rotation? 
A large-scale magnetic field could do this, possibly even a primordial field left over from the time 
when the Sun first condensed out of a magnetic interstellar cloud: see Gough 2017; Wood and 
Brummell 2018.) With the interior in solid body rotation, one might then expect (since the radia
tive interior contains 98% of the Sun’s mass) that the gas in the convection zone (amounting to 
only 2% of the mass) could easily be “kept in line” and also forced into solid body rotation. But 
once again, this expectation is contrary to what occurs in the real Sun. Some powerful internal 
dynamics must be at work to drive the convection zone into differential rotation: apparently, the 
forces at work in the convection zone (rotation, gravity, thermal buoyancy, viscous stresses) have 
the overall effect that the rotation of the convection zone is slower than the core (by about 10%) 
at high latitudes, but is faster than the core (by about 10%) at low latitudes. Computational mod
els are required to incorporate multiple physical effects if they are to replicate successfully the 
observed LDR and RDR (e.g., Kitchatinov 2005). 

We shall return to the rotational properties of the Sun when we discuss how magnetic fields are 
generated in the Sun (Chapter 16). 

The results in Figure 14.7 rely on measuring small frequency splittings in mode frequencies due to 
rotational motions. We have already seen (Section 13.8) that solar p‑mode frequencies are observed to 
vary in a systematic way during the solar cycle. This raises the question: do the rotational splittings in 
solar p‑modes also show variations during the solar cycle? The answer appears to be “No” (Broomhall 
et al. 2012): the 11-year cycle does not significantly alter the rotation of the solar interior. 
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14.10 r-MODES IN THE SUN 

In a rotating star, the existence of Coriolis force gives rise to the possibility of a new class of wave 
modes that propagate in longitude, and in which the restoring force is not dominated by pressure (as 
in p-modes) or by gravity (as in g-modes) (Papaloizou and Pringle 1978: hereafter PP78). Waves in 
this class (called r-modes) are globally coherent horizontal oscillations dominated by the Coriolis 
force: the waves do not propagate in the radial direction. In PP78, the theory of r-modes was devel
oped in the context of a class of white dwarf stars known as dwarf novae, where rotation periods can 
be as short as 10 seconds (!). In the present book, we are interested in the Sun, where the rotation 
period is five to six orders of magnitude longer than in dwarf novae (see Section 1.11). With such 
slow rotations, it is expected that r-modes in the Sun might have amplitudes that are much more dif
ficult to detect than in dwarf novae. In fact, it was not until 2018 that the first unambiguous detection 
of r-modes in the Sun was published (Löptien et al. 2018). 

However, suggestions that r-modes might be present in the Sun had been made more than three 
decades earlier (e.g., Wolff and Hickey 1987: hereafter WH87) based on the observation (at certain 
times) of solar activity at preferred longitudes. An r-mode is defined by WH87 as a “toroidal oscil
lation of swirling horizontal motions” with periods no shorter than the star’s rotation period. The 
restoring Coriolis force conserves angular momentum. WH87 pointed out that r-modes could have 
detectable effects on observed solar properties for the following reason: in models of the deep con
vection zone, the convection cells have sizes and vorticities that are comparable to those of r-modes. 
Moreover, Wolff (1992) pointed out that the beating of various pairs of r-modes in the Sun could 
be relevant for understanding the presence of periodicities in various solar features in the range of 
100–1000 days. 

On small length-scales (Chowdhury et  al. 2010), the r-modes reduce to a type of wave that 
was first discussed by Rossby (1939) in the context of the Earth’s atmosphere, where they play a 
major role in determining the weather on large scales (in the so-called semi-permanent centers of 
action). As a result, in the term r-modes, the r‑ can be interpreted as standing for either rotation or 
Rossby. The modes are also referred to as “inertial oscillations”, depending on the historical con
text or on the geometric approximations that enter into the derivation (see WH87). In a spherical 
object, r-modes are characterized by parameters analogous to those we have already encountered 
for p-modes and g-modes, namely, l is the degree of the mode (= number of nodes between N and S 
pole), and m is a longitudinal mode number. 

Following on from PP78, the properties of r-modes in main sequence stars and in polytropic 
spheres (polytropes are useful in the real world!) have been analyzed by Saio (1982). To a first-order 
approximation, Saio confirmed a result from PP78 to the effect that the angular frequency  of the 
r-modes (as observed by someone who is co-rotating with the star) is as follows: 

2m
 (14.28) 
l l( 1) 

The effects of the Coriolis force are such that, if an r-mode is observed in a frame of reference that 
is rotating with the star, the flow pattern of each r-mode will be seen to drift retrograde (opposite to 
the direction of rotation), with each l value having its own rotation period that is slower by a well‑
defined amount than the star’s rotation period. Modes with the largest l and m values have periods 
that are close to the rotation period of the star: in the Sun, this is a period of almost 1 month. The 
solar r-modes with the smallest l and m values are predicted to have periods that are longer than 1 
month by factors of a few. 

The work of Saio (1982) showed strikingly that the calculation of eigenfunctions for r-modes is 
not as simple as we described earlier for p-modes and g-modes. In the latter cases, we have already 
mentioned that the modes can be described adequately by two first-order differential equations 
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 FIGURE 14.8 r-modes in the Sun. Power spectrum of surface radial vorticity determined from granulation 
tracking (Löptien et al. 2018). Abscissa: longitudinal order m, with only sectoral modes (with l = |m|) plotted. 
Ordinate: frequency (in nanohertz) of mode relative to the rotation frequency of the equatorial regions of the 
Sun. (Used with permission from Springer.) 

(Equations 14.17 and 14.18). But Saio showed that for r‑modes, the number of differential equations 
increases to six, thereby reinforcing the statement of Cowling (1941) to the effect that, when rota
tion is included, “the mathematical difficulties are much greater”. As a result, in the present “first 
course”, we will not further consider Saio’s six equations. 

Reliable observational detection of individual r-modes with particular values of longitudinal 
order (m) in the Sun was first reported by Löptien et  al. (2018). They determined the values of 
radial vorticity in near-surface layers by tracking the surface motions of granules: observations with 
enough angular resolution to identify individual granules were provided by images from the HMI 
instrument on SDO (with an angular resolution of 1"). Analyzing vorticity maps in terms of Yl

m, and 
isolating the sectoral modes (i.e., modes with l = m, with power concentrated in equatorial regions), 
a power spectrum was obtained as a function of the azimuthal order m. By averaging together 
6 years of SDO/HMI data, significant power was found to occur in modes with m ranging from 
3 to 15. These modes were predicted to lie at (angular) frequencies given by Equation 14.28 with 
l=m. The corresponding (linear) frequencies of these modes are (m) = /2π = 2Ω/2π(m+1). Since 
the solar rotational period in the equatorial regions is of order 25–35 days, i.e., 2π/Ω ≈ 2 × 106 sec, 
we expect to find (m) ≈ 1000 nHz/(m+1). Thus, modes with (e.g.) m = 3, 9, and 15 are predicted to 
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occur close to ν ≈ 250, 100, and 60 nHz. In fact, Löptien et al. (2018) reported a total of 13 modes, 
including the prior three modes at 259, 86 ±6, and 47 ±7 nHz. The functional form of (m) ~ 1/(m+1) 
was found to fit the peaks in the power spectrum well (see Figure 14.8). 

In a quantitative sense, a significant conclusion of Löptien et  al. (2018) is the following: the 
amplitudes of the vorticity of the sectoral r-modes are found to be nearly as large as the vorticity 
associated with convection cells on similar length-scales. This conclusion confirms the reasoning 
of WH87 that r-modes can serve as an essential component of solar dynamics. Moreover, Löptien 
et al. (2018) report that the r-modes have amplitudes that do not vary much with depth, at least down 
to depths of 21 Mm. 

Confirmation of the observational results of Löptien et al. (2018) has been reported by Liang 
et al. (2019) in spacecraft data sets spanning 21 years of observations: modes with azimuthal order 
m ranging from 3 to 15 were again reported as having measurable amplitudes, with m = 10 having 
the largest amplitude. Further confirmation of r-modes with m = 3–15 in the Sun has been provided 
by analysis of ground-based GONG data spanning 17 years (Hanson et al. 2020): the signals are 
most reliably detected for m values in the range 8–11. It is notable that r-modes with m = 10 have 
rotation periods of 150–158 days (Chowdhury et al. 2010): we shall encounter periodicities of this 
order when we consider certain aspects of solar magnetic activity (Section 16.9). 

In view of the slowness of solar rotation compared to the rotation in some early-type stars, it is 
perhaps not surprising that r-modes were detected with confidence in fast rotating stars prior to their 
discovery in the Sun (Van Reeth et al. 2016). Specifically, a group of stars with spectral type rang
ing from mid-A to late-B stars had been found to have the following characteristic in their power 
spectra: a sharp “spike” occurs at a certain frequency, accompanied by a broad “hump” of power at 
lower frequencies (Balona 2013). Saio et al. (2018) suggested that this “hump and spike” property 
could be interpreted in the context of r‑modes as follows: the “spike” corresponds to the stellar rota
tion frequency itself, while the “hump”, with multiple frequencies, all of which move more slowly 
than the stellar rotation, could be ascribed to r-modes moving in the retrograde direction. 

EXERCISES 

14.1 Perform the step-by-step procedure described in Section 14.4.1 for p-modes with l = 1 
and 3. Plot the equivalent of Figure 14.1 and obtain a table of the eigenfrequencies for l = 
1 and l = 3 p-modes in the n = 1 polytrope for an object with solar mass and radius. For 
each l value, determine the “large separations” ∆ν (in μHz) between adjacent modes. And 
for appropriate pairs of modes, determine the “small separations” δν(1–3) between modes 
with l = 1 and l = 3. 

14.2 You have already (Chapter 10, Exercise 1) calculated a table of values of y and y  for 
the polytrope n = 3.25. Use your tabulated values (including interpolation if necessary) 
and the step-by-step procedure in Section  14.5 to integrate Equations  14.17 and 14.18 
in the n = 3.25 polytrope for g-modes with l = 3. Plot the results in the form shown in 
Figure 14.4. Compare your eigenperiods for l = 3 with those for l = 1 in Figure 14.4: each 
l = 3 period should lie close to the period of an l = 1 mode. 
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15 The Chromosphere 

So far, when we have discussed the Sun, we have been interested in the material that extends from 
the visible surface downward into the interior of the Sun. The visible surface, the “photosphere” 
(the “light sphere”), provides the light that dominates human vision. Our model of the interior of the 
Sun, extending over the entire radial extent from center to photosphere, spanned a radial distance of 
some 700,000 km. When we computed the model, we did so in three segments, focusing on distinct 
laws of physics that play dominant roles in each segment. As it turned out, the three segments were 
found to be of unequal radial depth. The model of the deep interior (Chapter 9) extended over some 
500,000 km. The model of the convection zone (Chapter 7) had a depth of some 200,000 km. And 
the model of the photosphere (Chapter 5) spanned no more than a few hundred kilometers in linear 
extent. 

Now, we turn our attention in the opposite direction. Instead of starting at the photosphere and mov
ing inward towards the center of the Sun, we now start at the photosphere and move upward and out
ward. This brings us into the more rarefied gas that forms the outer atmosphere of the Sun. And 
just as we did for the interior, it will be convenient to recognize that different laws of physics are 
dominant in different segments of the outer atmosphere. We shall find it convenient to again discuss 
three segments of the outer atmosphere: the chromosphere (Chapter 15), the corona (Chapter 17), 
and the solar wind (Chapter 18). Of these, the linear extents are again very different: the solar wind 
is by far the largest, extending over vast distances of interplanetary space, with linear scales up to 
10 billion km; the corona can be detected with optical equipment out to distances of 1–2 million km; 
and the chromosphere has a thickness of no more than a few thousand km. 

Thus, as we move outward from the surface, the chromosphere is by far the thinnest of the three 
segments, by analogy with the thinness of the photosphere as regards the interior of the Sun. This 
raises the question: why should we spend time on such a narrow region? What is there for us to learn 
about solar physics by paying attention to such a thin shell of gas? The answer is: the chromosphere 
allows us to study the effects of certain waves with the important property that they can effectively 
transport energy from one region of the Sun to another. The simplest type of wave that propagates 
through a nonmagnetic gas is a sound wave, in which regions of high and low pressure contain mol
ecules that “push each other” through the gas at a well-defined speed (the “sound speed”, cs). The 
value of cs is determined by how fast the molecules are moving randomly due to the finite tempera
ture of the gas. We have already seen (Chapters 13 and 14) that sound waves provide a mechanism 
for us to probe the interior of the Sun: in those cases, the sound waves do not appreciably alter the 
physical conditions as the waves propagate. Now we turn to another location in the Sun where sound 
waves play quite a different role: in the chromosphere, the propagating waves can have a significant 
effect on the physical properties of the gas. We shall see that the waves can deposit energy, thereby 
leading to significant local heating of the gas. The goal of the present chapter is to study the follow
ing specific issues: How are the waves generated? How much energy do the waves carry? How is the 
wave energy actually deposited as heat in the surrounding gas? 

We shall also eventually see (Chapter 16) that in certain parts of the Sun, the gas is permeated by 
magnetic fields: in the presence of such fields, sound waves are not the only wave modes propagat
ing through the medium. In addition to sound waves, there can also be waves in the magnetic field 
itself (Alfven waves), and there can also be magnetosonic waves, where gas pressure and magnetic 
fields intertwine in ways that lead to “fast” waves and “slow” waves. These waves can also deposit 
heat in the gas in addition to what is deposited by the sound waves. Careful observations of different 
regions in the chromosphere may reveal the presence of waves of different kinds. 

https://doi.org/10.1201/9781003153115-15
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15.1 DEFINITION OF THE CHROMOSPHERE 

The word “chromosphere” is derived from a Greek word meaning “color sphere”. Why is the word 
“color” used to describe this structure? The reason has to do with the phenomena that are visible to 
the human eye during an eclipse of the Sun. 

Two distinct phenomena can be seen during an eclipse as the Moon blocks out the brilliant light 
of the photosphere. One of these phenomena lasts for a relatively long time (minutes), while the other 
is over “in a flash” (in seconds). But both tell us something valuable about the Sun’s atmosphere. 

i.	 The long-lasting phenomenon, which can be seen as long as the total phase of the eclipse 
lasts (up to a maximum duration of about 7 minutes), is an extended whitish region (see 
Figure 15.1) that extends above the surface to radial distances of a few solar radii: this is 
the corona (which will be discussed in Chapter 17). 

ii. The short-lived phenomenon is visible only for a few (4–8) seconds at the start and end 
of totality (see innermost rings of Figure 15.1). Brightly colored “patches” of a ring can 
be seen, confined to a narrow region very close to the solar limb. The predominant color 
of the patchy ring is “rose-colored”. The fact that the patches are obviously colored (in 

FIGURE 15.1 The chromosphere (and inner corona) of the Sun as seen during a total eclipse of the Sun. The 
chromosphere is confined to a narrow region close to the Moon’s edge, and it has a pronounced reddish (rose
colored) hue (Used with permission of M.Druckmuller). 
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contrast to the white corona) gives rise to the term “chromosphere”. We shall see that the 
fact that the dominant color is red tells us something significant about the physics of the 
chromosphere (see Section 15.10.3). 

When a spectrum is obtained, the chromosphere reveals a large number of emission lines in 
the spectrum, of which the strongest is the line known as Hα in the red portion of the spectrum. The 
dominance of Hα in the chromospheric emission gives rise to the reddish hue in Figure 15.1. The 
presence of emission lines in the flash spectrum provides a remarkable contrast to the photosphere, 
where most of the spectrum (emitted in light visible to the unaided eye) contains absorption lines 
(see Chapter 3, Figure 3.5). The fact that the chromosphere lasts for only a few seconds gives rise 
to the phrase “flash spectrum” for the chromospheric emission lines. The strongest lines originate 
in hydrogen (including the lines in the Balmer series known as Hα, Hβ, Hγ, and Hδ at wavelengths 
of 6563, 4861, 4340, and 4102 Å respectively). There are also prominent chromospheric lines due to 
helium (5876 Å), and ionized calcium (Ca II H and K at 3968 and 3934 Å). 

The fact that the chromosphere does not extend as a uniform ring around the Moon’s edge in 
Figure 15.1 indicates that the chromosphere is not homogeneous but “patchy”. Images obtained in 
the Ca II H line (see Figure 15.2) reveal the presence of short-lived (with lifetimes of at most a few 
minutes) “spiky” features (“spicules”) rising up from the photosphere to heights of a few thousand 
km. Similar images of spicules can also be obtained by observing in the core of the Hα line: Pereira 
et al. (2016) state, “spicule shapes, extent, and lifetimes are essentially identical whether observed 
in Hα or in the Ca II H line”. Inside each spicule, upward gas motions are confined within linear 
structures that are defined by local magnetic fields. Variations in magnetic field properties from one 

FIGURE 15.2 Snapshot from a time series of Ca II images of a part of the Sun, and its limb, obtained with 
the 3 Å wide filter of the broadband filter imager (BFI) attached to the Solar Optical Telescope (SOT) on the 
Hinode spacecraft. The solar disk occupies the lower half of the image. Spicules can be seen against the dark 
background sky in the upper half. The height scale has been carefully determined, relative to the vertical 
continuum (5000 Å) at optical depth unity. (From Judge and Carlsson 2010; used with permission of P. Judge.) 
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part of the solar surface to another causes the chromospheric emission to appear “patchy”. As can be 
seen in Figure 15.2, the strongest emission from spicules occurs at altitudes between the disk of the 
Sun (the photosphere) and heights of order 2–3 Mm, with fainter parts of some spicules extending 
up to as high as 5–10 Mm. What about the width of a spicule? The image in Figure 15.2 suggests 
that the width of a spicule is ≤ 0.1 times the length, i.e., at most several hundred km, i.e., smaller 
than granule widths. Upward speeds of gas in spicules are found to be tens of km s−1 for long-lived 
(referred to as “Type I”) spicules and up to 150 km s−1 for short-lived (“Type II”) spicules. 

The presence of emission lines in the flash spectrum indicates that in the chromospheric gas, 
bound electrons in atoms and ions are able to cascade down from upper energy levels to lower ones: 
this process must start by significant numbers of free electrons being present in the gas, from which 
they can be captured by the ions. The fact that free electrons are abundant indicates that the local 
temperature in the chromosphere is greater than the temperature in the photosphere. Something 
has heated up the gas in the chromosphere to temperatures in excess of those in the photosphere. It 
will be our primary goal in this chapter to quantify the heating process. 

Historically, the discovery of the emission line at 5876 Å in the flash spectrum is noteworthy. 
This line was observed for the first time during a solar eclipse in 1868 when a spectroscope was 
used to view the Sun during the few seconds of the flash spectrum. The line could not be identified 
with any known material on Earth at that time: the name “helium” was given to the material, after 
the Greek work “helios” for the Sun. It would take 30 years before helium was identified as a trace 
element that is also present in Earth’s atmosphere, with a percentage abundance of less than 0.001%. 
In the Sun, the abundance of helium is much larger than on Earth: next to hydrogen, helium is the 
most abundant element in the solar atmosphere, accounting for some 10% of the atoms in any given 
volume. In Earth’s atmosphere, helium contributes only about 5 parts per million. 

15.2 LINEAR THICKNESS OF THE CHROMOSPHERE 

The fact that the flash spectrum lasts only for a few seconds contains information on the linear 
extent of the chromosphere along the radial direction. To see this, we note that the timings of the 
various phenomena occurring during an eclipse are determined by how fast the Moon moves across 
our line of sight to the Sun. Now, the Moon is in orbit around the Earth such that one orbit (360 
deg) requires about 30 days. This corresponds to an angular velocity of 0.5 deg per hour, i.e., 1800 
arcsec per hour, or 0.5 arcsec per second of time. As a result, in a time interval of roughly 4–8 sec, 
the Moon traverses an arc having an angular extent of roughly 2–4 arcsec. At the distance of the 
Sun, where the conversion factor is 725.3 km per arcsec (Chapter 1, Section 1.2), such an angular 
extent corresponds to a linear extent of roughly 1500–3000 km. This (very rough) estimate of the 
chromospheric thickness is consistent with the brightest parts of the spicule bases in Figure 15.2: 
see the linear height scale along the left-hand border. 

The chromosphere is truly confined to a thin shell around the Sun, extending to no more than 
0.5% of the solar radius above the photosphere. But within that thin shell, the existence of many 
spicules (Figure 15.2) means that if we try to assign a value to a physical parameter at any particular 
height, we will be in essence averaging spatially and temporally over multiple spicules and multiple 
regions between spicules. 

In terms of independent variable in the chromosphere, we shall use the linear height above the 
photosphere. 

15.3 OBSERVING THE CHROMOSPHERE ON THE SOLAR DISK 

Observations during a total solar eclipse were the first to allow human beings to see the “rosy-hued” 
chromosphere at the limb of the Sun (see Figure 15.1). With specially constructed telescopes in good 
locations (e.g., in space), there is no need to wait for an eclipse: images of the limb allow us to detect 
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spicules (see Figure 15.2). However, it is also possible to observe the chromosphere by judicious 
choice of observing conditions on the disk of the Sun. 

To see why this is the case, let us recall the results plotted in Figure 3.7. By observing in a wave
length range that lies close to the center of strong lines (such as Ca II H and K, or Hα, or the Si I line 
at 1256 Å), we are essentially probing the solar atmosphere at vertical heights of 1500–2000 km. 
Recalling the linear thickness of the chromosphere (1500–3000 km), which has been revealed by 
the flash spectrum, we see that, if we observe at a wavelength that allows our line of sight to pen
etrate no deeper than 1000–2000 km above the photosphere, this will put us right in the midst of 
the chromosphere. 

When the disk of the Sun is observed in the center of the Ca II K line, the chromosphere is seen 
to be nonuniform in brightness, especially around sunspots (see Figure 15.3). In Figure 15.3, the 
things that first catch the eye are localized enhancements in brightness lying in certain regions of 
the surface. These bright features lie within a range of latitudes, roughly between 10 and 30 deg, in 
both the northern and southern hemispheres. Some of these bright features are spatially associated 
with localized dark features (“sunspots”). The bright features in the Ca K images of the chromo
sphere are larger in area than the sunspots: the bright features are referred to as “plages” (Latin for 
“wounds”: see also Cally and Moradi 2013) or “active regions”. 

In view of the eye-catching nature of plages and sunspots (which are definitely sites of stronger 
than average magnetic fields on the Sun), we may ask: does the chromosphere exist outside mag
netic regions? The answer is a definite “Yes”. Apart from the plages and spot regions, the rest of 
the solar chromosphere has a characteristic appearance, which is illustrated in the expanded view 
in Figure 15.4: this is an image taken in the Si I line at 1256 Å, which is formed at an altitude 
comparable to that of Ca II K. A characteristic topological aspect of Figure 15.4 can be identified 
by inspection: one can trace a thread of bright elements distributed over essentially all regions of 
the image, with the thread helping to serve as a border surrounding darker patches. The bright 
elements in the image are connected to one another across the surface of the Sun: this connectiv
ity gives rise to the descriptive term “network” for the bright rims. The darker centers are referred 
to as “cells”. 

This topology of cells surrounded by borders is reminiscent of what we observe in the photo-
spheric features called granules (see Chapter 6, Figure 6.1). However, whereas the photospheric 
granules consist of bright centers surrounded by dark rims, in the case of the chromosphere, we 

FIGURE 15.3 Image of the Sun in the light of the K line of ionized calcium. Taken in SHAMS Observatory, 
Karachi, Pakistan. (Used with permission of Sajjad Ahmed.) 
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FIGURE 15.4 A quiet region of the solar chromosphere viewed in the line Si I 1265 Å. Chains of brighter ele
ments can be identified as a “network” that “snakes” across much of the surface. The bright network surrounds 
darker regions (“cells”). The “cells” have horizontal dimensions similar to those of the “supergranules” that were 
first discovered on dopplergrams (cf. Section 6.12) (Judge and Peter 1998; used with permission of Springer). 

have the opposite topology: dark cell centers surrounded by bright rims. (The analogy to “[dark] 
fields” separated by “[bright] hedgerows” comes to mind here.) The topological similarities to the 
granules gives rise to the term “supergranules” for the features that appear in the Si I images. We 
have already mentioned supergranules in the context of velocity data (see Section 6.12). Now, in 
the context of chromospheric data, we have another definition: a supergranule can be defined as a 
darker cell surrounded by a rim of bright network. The sizes of the supergranules in Figure 15.4 are 
entirely consistent with those discussed in Section 6.12. 

The fact that chromospheric features (supergranules, network) can be identified at all regions 
of the solar surface implies that whatever source of energy is creating the chromosphere is pres
ent at all locations of the Sun’s surface. Although it is obviously true that strong magnetic fields 
contribute to enhancing the chromosphere in plages and near spots, it does not necessarily follow 
that magnetic fields are essential for the chromosphere to exist. Rather, it is important to note 
that even when magnetic fields are not present in strength, the Sun has access to a nonmagnetic 
source of energy that suffices to power the chromosphere with its characteristics of supergranules 
and network at all locations on the solar surface. One such source of energy is sound waves 
generated by the turbulent convective flows of compressible gas: anyone who has been close to a 
jet engine when it is operating knows that the fast (turbulent) airflow emerging from the jet is an 
effective generator of sound waves. And because turbulent convective flows exist at all locations 
on the Sun’s surface (granules are present all over the Sun), sound wave emissions also emerge 
into the solar atmosphere from all locations on the surface. We shall return to this topic when we 
discuss the corona. 

15.4 SUPERGRANULES OBSERVED IN THE H  LINE 

Another strong spectral line useful for observing the chromosphere is Hα. When the limb of the 
Sun is observed at the center of Hα, the chromosphere is observed to consist not only of an overall 
region of emission, but also of multiple discrete bright linear structures similar to the spicules that 
have already been described (Figure 15.2). 
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 FIGURE 15.5 Image of a portion of the solar disk in H . The dark features that look like “brushstrokes” are 
composed of individual “spikes”, referred to as “dark mottles”. Each dark mottle is probably a spicule. (Image 
taken at the National Solar Observatory, which is operated by the Association of Universities for Research in 
Astronomy, under a cooperative agreement with the National Science Foundation.) 

When the disk is observed at the center of Hα (see Figure 15.5), supergranules can also be iden
tified, but the bright/dark topology is inverted relative to the Ca K/Si I images. After one stares at 
the image for some time, one may discern a pattern reminiscent of “fields surrounded by hedge
rows”: but in Hα, the “fields” are brighter than average, while the “hedgerows” are darker than 
average. Within the hedgerow, individual short dark straight streaks (or “brushstrokes”) can be 
identified: these are referred to by solar observers as “dark mottles”. It seems likely that each dark 
mottle is actually a spicule seen in projection against the bright disk. The image indicates that the 
“dark mottles” seen in Hα (i.e., the spicules) are not distributed uniformly over the disk: instead, 
they are confined to the “hedgerows”. With practice, the eye can identify, in each Hα image of the 
Sun, brighter patches of surface surrounded by groups of dark spicules. The brighter patches corre
spond to (relatively dark) supergranule cells in Ca K/Si I images. The (dark) spicules in Hα lie along 
the (bright) network which is observed in Ca K/Si I images. Because each spicule is a well-defined 
linear feature where gas seems to be confined to a (more or less) cylindrical shape, it is believed 
that each spicule owes its existence to a locally stronger magnetic field that helps to hold the gas in 
the cylinder together during the lifetime of the spicule (see Section 16.6.1). Why should stronger 
magnetic fields be confined to the edges of supergranules? Because the mainly horizontal flow from 
the center of the supergranule outwards sweeps up magnetic fields and deposits them in the edges, 
i.e., in the network, where one supergranule “runs into” its neighbor. 

Why would a spicule appear bright when seen at the limb and dark when seen on the disk? The 
answer has to do with the background. At the limb, where the line of sight eventually passes out into 
empty space, there is no background light to absorb, and as a result, the spicule appears as an emit
ting structure. But on the disk, the spicule material has plenty of H atoms in the n = 2 energy level 
that are capable of absorbing photons with wavelengths near 6563 Å coming from the photosphere. 



240 Physics of the Sun 

 

 

 

 

  

 

     
   

 

 

 

     

Why are there large populations of H atoms in the n = 2 state in a spicule? An answer is provided 
by Chapter 3, Section 3.3.2: even a small local increase in temperature inside a spicule can cause a 
large increase in the n= 2 population. What might cause a local increase in temperature in a spicule? 
The fact that spicular material is confined to a restricted width transverse to an upward axis suggests 
that a magnetic field is present, and magnetic fields can give rise to localized energy deposition (see 
Section 16.10). 

15.5 THE TWO PRINCIPAL COMPONENTS OF THE CHROMOSPHERE 

Observations in both Ca K and in Hα indicate that the chromosphere consists of two principal 
components, cell and network, each with its distinct  properties. High-resolution observations of 
magnetic fields indicate that the fields are concentrated in the network. It appears that the horizontal 
motions outward from the center of the cell (as described in Section 6.12) “sweep up” magnetic field 
lines and deposit them in the network. Each spicule in the network represents a localized magnetic 
flux tube in which the local gas has become energized (probably by magnetic energy in some form) 
and has reached up to heights of several thousand km. 

15.6 TEMPERATURE INCREASE FROM PHOTOSPHERE TO 
CHROMOSPHERE: EMPIRICAL RESULTS 

Images of the Sun in Ca K or Hα exhibit one important and noticeable difference from an image 
in the white light continuum. The latter shows a pronounced limb darkening: the intensity at the 
limb in visible light is a very significant 60% fainter than the center of the disk (see Chapter 2, 
Equation 2.5 and discussion). The observed limb darkening  I(μ) = a + bμ (where b is a positive 
number) can be ascribed to the source function S(τ) = a + bτ (Section 2.5.3), indicating that the 
temperature is increasing as the optical depth in the continuum increases. However, when the Sun 
is observed in certain lines that emphasizes the chromosphere, the eye is struck by the fact that 
limb darkening is not immediately evident (e.g., Figure 15.4). On the contrary, there are more or 
less extended regions where the limb may actually be somewhat brighter than the center of the 
disk. This is a significant difference from what occurs in the visible continuum. This difference 
suggests that the temperature in the chromosphere is not increasing as the optical depth (in the 
chromospheric line) increases. In fact, the behavior is precisely the opposite: analysis of the chro
mospheric emission lines that are seen in the “flash spectrum” indicates that the temperature of the 
gas increases as the optical depth decreases. That is, the temperature in the chromosphere rises as 
the height above the photosphere increases. This is in striking contrast to the behavior of tempera
ture in the photosphere: there, as the height increases, the temperature in the photosphere decreases 
or approaches a constant value (see Table 5.3). 

How much does the temperature rise in the chromosphere? An empirical determination of an 
answer to this question requires detailed study of various lines, both absorption and emission, as 
well as continua, in the solar spectrum. This leads to a profile of temperature versus height. It is 
found that the profile of the chromospheric temperature rise in a cell differs somewhat, and in a 
systematic manner, from the profile of the chromospheric temperature rise in the network. In fact 
different pieces of the network, some of which are observed to be brighter than others, also have 
somewhat different profiles. And in the cell, some areas are darker than others, and these also yield 
somewhat different profiles. In Figure 15.6, we illustrate the profiles that have been obtained by 
analyzing the spectral data for the average cell center (B), a dark point within a cell (A), the average 
network (D), and a bright network element (E). (The notation is that of Vernazza et al. 1981.) Note 
that the data in Figure 15.6 refer to one-dimensional models: i.e., at each height above the photo
sphere, a single value of temperature is assigned. In view of the presence of spicules (Figure 15.2), 
the temperature at any given height in Figure 15.6 represents an average over many spicules. 
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FIGURE 15.6 Temperature profiles as a function of height in a one-dimensional model from the photosphere 
up into the chromosphere. The height scale is set to zero in the photosphere (  = 2/3), which is plotted near the 
left-hand side of this figure. (This is opposite to the convention that was used to plot an “average” 1-D model 
in Figure 4.2.) In Figure 15.6, negative heights refer to layers of the Sun that lie below the photosphere. Four 
distinct regions on the solar surface that differ from each other in observed brightness (labeled A, B, D, and 
E) are illustrated. Above the photosphere, notice (i) the temperature minimum at h ≈ 500 km, (ii) the rising 
temperatures between h = 500 and 1000 km, (iii) the temperature “plateau” between h ≈ 1000 and 2000 km, 
and (iv) the steep increase in temperature above ≈ 2100 km. (The four profiles were constructed by plotting 
data from Vernazza et al. 1981.) 

Let us consider some important features of the profiles in Figure 15.6. 
First of all, all four profiles merge into a single profile in and below the photosphere: whatever 

differences exist between the regions A, B, D, and E must originate above the photosphere. In fact, 
it is not until we examine the solar atmosphere at heights of a few hundred kilometers (or more) 
above the photosphere that the temperature profiles begin to display measurable differences. 

Second, in all four cases, the temperature passes through a minimum value at heights close to 
500 km above the photosphere. We refer to this feature in each curve as the “temperature mini
mum”. Temperatures at the minimum range from about 4400 K in the brightest element (E), to less 
than 4000 K in the darkest element (A): all of these temperatures lie significantly below the “bound
ary temperature” of 4858 K predicted by the Eddington model (Section 2.10). Thus, although the 
Eddington model works reasonably well in and below the photosphere (in particular in its quanti
tative explanation of limb darkening), it becomes less reliable in the optically thin regions of the 
atmosphere. In particular, there is nothing whatsoever in the Eddington model that can explain 
the increase in temperature that sets in above heights of about 500 km. We regard the temperature 
increases that become prominent at heights above 500 km as an indication that we have entered 
into “the lower chromosphere”. At these heights, some physical process has started to deposit heat 
into the gas, and the amount of heat deposited is larger in features observed to be brighter (compare 
feature E with feature A in Figure 15.6). 

It should be noted that 4000 K is not the lowest temperature that has been reported in a chromo
spheric model: when 2-D MHD calculations were performed in conjunction with radiative trans
fer, the temperature in a magnetically quiet region was predicted to decrease to as low as 1660 K 
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(Leenaarts et al. 2011) over a height range from 1 Mm up to 3.6 Mm. The best hope of obtaining 
observational confirmation of this very-low-temperature result was at one time expected to be pro
vided by the Atacama Large Millimeter Array (ALMA), operating in the Chilean Andes mountains 
at an altitude of 5 km, and with 10 bandpasses at wavelengths as long as 6–8.5 mm and as short as 
0.3–0.4 mm. ALMA was first used for solar observations in 2016, achieving angular resolutions of 
order 0.01 arcsec (corresponding to linear scales of 7 km, i.e., some three times smaller than even 
DKIST can resolve): the data revealed the presence of “chromospheric holes” where the local tem
perature fell to 3000 K (da Silva Santos et al. 2020). However, evidence for gas as cool as 1660 K in 
the chromosphere does not yet (as of November 2021) seem to be available in the literature. 

Third, above 500 km, the temperature at first begins to increase rather steeply, but at heights 
of about 1000 km, the temperature profile flattens out to some extent. This gives rise to a sort of 
“plateau” in the temperature at heights between (roughly) 1000 and 2000 km. The temperatures 
in the plateau are mainly in the range 6000–6500 K. This plateau can be regarded as defining the 
“middle chromosphere”. In the plateau, the local temperature exceeds the temperature minimum 
by roughly 2000 K. 

Fourth, at heights of about 2100 km, there is a steep increase in temperature in all four features: 
this is referred to as the “upper chromosphere” and is the lowest-lying portion start of a narrow 
“transition region” where temperatures rise up rapidly to coronal values (of order 1 MK). 

Fifth, within the plateau, the four distinct features differ from one another in temperature by 
several hundred degrees. For example, at h = 1500 km, the average cell center has T ≈ 6200 K, while 
the bright network element has T ≈ 6600 K. Although the difference in temperature of 400 K is only 
some 20% of the 2000 K increase in temperature above the temperature minimum, we shall find 
(Section 15.10.2) that this relatively small difference in temperature actually requires a much large 
difference in energy deposition rate in the network than in the cell. 

Sixth, the overall thickness of the chromosphere, from “lower” to “upper”, is some 1600– 
1700 km. This overlaps with the range of thicknesses reported in Section 15.2 from eclipse timings. 

Seventh, we have mentioned (Figure  15.2) that discrete structures (spicules) exist at certain 
locations in the network: these may extend upward in height to a few thousand kilometers. 
Some spicules therefore have heights that exceed the thickness of the chromospheric profiles in 
Figure 15.6. The “real chromosphere” includes spicules that are not well described by the results in 
Figure 15.6. The latter should be regarded as representing some sort of average over “spicular” and 
“non-spicular” regions of the solar atmosphere. 

15.7 TEMPERATURE INCREASE INTO THE CHROMOSPHERE:  
MECHANICAL WORK 

The most striking result in Figure 15.6 is that the local temperature increases as the height increases 
above the photosphere. This result indicates that it is no longer useful to think in terms of the 
Eddington atmosphere, where radiative equilibrium was operative. In the latter conditions, we have 
seen (Chapter 2, Equation 2.40) that the temperature should vary as T4 ~ τ + const, i.e., T should 
approach a constant value as we go higher up in the atmosphere, where τ  0. In the Eddington 
atmosphere, therefore, there should certainly be no tendency for the temperature to increase as we 
move toward smaller values of τ. 

Clearly, something quite different from radiative equilibrium is operating in the chromosphere. 
What could it be? 

Up to this point in our calculations of the solar model (Chapters 5, 7, and 9), we have always been 
dealing with material where the temperature falls off monotonically as radial distance from the 
center of the Sun increases. In the presence of such a negative radial gradient of temperature, it is 
natural to think in terms of the heat that flows down the temperature gradient. 

Now, as we enter into the chromosphere, T starts to increase as the radial distance increases. The 
radial gradient of temperature is now positive. Such a positive gradient cannot be a consequence of 
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classical heat flow from the inner portions of the Sun. There must be a different physical process 
in operation in order to raise the temperature in the chromosphere: this process is believed to be 
mechanical work. One possible source of such work can be identified with the thermodynamic term 
PdV, which occurs when a suitable pressure P compresses the volume V of 1 gm of gas. Where can 
we find suitable pressures to perform such work in the solar atmosphere? One such source is sound 
waves: we have already seen that the Sun supports multiple p-modes, each of which is a sound wave. 
Sound waves are longitudinal modes in which pressure compresses and rarefies the local gas as the 
wave propagates past any point. 

Thus, sound waves, by their very nature as a propagating series of compressions and rarefac
tions, can do mechanical work on the gas in the Sun. However, the fact that the chromosphere 
extends above the photosphere by linear distances of a few thousand kilometers indicates that the 
waves responsible for chromospheric heating are not identical to the trapped p-modes: the latter 
are trapped below the photosphere, whereas now we need to have waves that are capable of propa
gating above the photosphere. As we have seen (Equation 13.15), sound waves that are capable of 
freely propagating vertically above the photosphere must have periods shorter than 195–200 sec, 
i.e., they must have frequencies larger than 5 mHz. 

The increase in chromospheric temperature is found to occur in both the cell and the network. 
However, material in the network increases in temperature faster than material in the cell (see 
Figure 15.6: compare curve E to curve A). Over the same range of heights, the average network gas 
is hotter than the average cell gas by an extra few hundred degrees. This suggests that the supply of 
mechanical energy is greater in the network than in the cell. Although the excess temperature in the 
network seems relatively small (about 20%), we shall see that it actually requires a larger difference 
in mechanical energy deposition. 

15.8 MODELING THE CHROMOSPHERE: THE INPUT ENERGY FLUX 

The aim of any attempt to model the chromosphere is to calculate how the temperature varies as a 
function of height. Specifically, how fast does the temperature increase above the boundary value 
that is predicted by the photospheric model? Does it increase by (say) 1000 K over a height interval 
of 10 km? or 100 km? or 1000 km? 

In order to calculate the temperature rise, let us consider how sound waves could provide 
mechanical energy to the gas. Let us start in the photosphere with sound waves that are propagat
ing upwards, transporting a certain flux of acoustic energy. Let us calculate what happens as these 
waves propagate upward. A sound wave can be characterized by an amplitude in velocity δV. In a 
medium of density ρ, the mass contained in 1 cm3 is ρ grams: therefore, the wave energy in 1 cm3 

(i.e., the kinetic energy density of the wave) is 0.5 ρδV2 ergs cm−3. The waves propagate at the speed 
of sound cs. As a result, the acoustic energy flux carried upwards by the sound waves is given by 

F a( )c  0 5. V 2cs (15.1) 

in units of ergs cm−2 sec−1. 
In the photosphere of the sun, our solar model (see Table 5.3) informs us that ρ ≈ 3 × 10−7 gm cm−3. 

We also know that the local (adiabatic) speed of sound cs is given by the formula √(1.67RgT/μ), 
where μ is the mean molecular weight. In the photosphere, the numerical value of cs is ≈ 7–8 km sec−1. 
This leads to F(ac) ≈ 0.11 δV2. 

What are we to use for  δV, the amplitude of the sound waves in the photosphere? We have 
seen (Section  3.8.1) that line profiles in the solar spectrum have excess widths over and above 
what the lines would have in the presence of purely thermal motions. The excess widths, of order 
0.75–1.5 km sec−1 and ascribed to “microturbulence”, in all likelihood include contributions from 
convective flows and sound waves in the photosphere. The observed amplitude of the turbulence 
may therefore be regarded as an upper limit on the amplitude of sound waves in the photosphere. 
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Of the observed microturbulence of 0.75–1.5 km sec−1, let us suppose that sound waves contrib
ute no more than 50%: i.e., we assume that the amplitude of sound waves in the photosphere is no 
more than δV (photo) ≈ 1 km sec−1. If this is a reliable assumption, then it would set a limit on F(ac) 
of ≤1.1 × 109 ergs cm−2 sec−1. Compared to the energy flux passing through the photosphere in the 
form of radiation (F = 6.2939×1010 ergs cm−2 sec−1: see Section 1.9), we see that F(ac) in the pho
tosphere is less than 2% of the overall flux of energy propagating upwards through the solar atmo
sphere. In view of this, we are certainly not discussing a major channel for the transport of energy 
through the photosphere: radiation is still by far the dominant channel for energy transport in the 
visible layers of the Sun. 

Any acoustic energy that is present in the photosphere and that contributes to microturbulent line 
broadening certainly includes some p-modes with periods in excess of (about) 200 sec. However, 
such long-period waves cannot propagate up into the (nonmagnetic) chromosphere. (The “ramps” 
that allow such waves to reach the chromosphere occur only in certain magnetic areas, namely 
sunspot penumbrae.) The only segment of the acoustic flux that is of interest as far as the heating of 
the (nonmagnetic) chromosphere is concerned is the segment where the waves have periods that are 
short enough to allow vertical propagation. This segment contains only those waves with periods 
shorter than 200 sec. In order to estimate the flux of sound waves that can actually reach the chro
mosphere (thereby contributing to heating of the gas up there), we need to reduce the above upper 
limit on F(ac). 

What fraction of F(ac) reaches the chromosphere? The answer depends on the spectrum of the 
acoustic power that is generated by the convective motions. Most of F(ac) is expected to be gen
erated at periods corresponding to granule turnover times, or lifetimes (see Section 14.8.2), i.e., 
at periods of 300–600 sec (Section 6.2). Waves with periods of less than 200 sec are therefore 
expected to contribute only a fraction to the overall spectrum. According to one theoretical estimate 
(Musielak et al. 1994), the acoustic energy flux that reaches the chromosphere F(chr) is no more 
than 5 × 107 ergs cm−2 sec−1. That is, only a few percent of F(ac) is in the form of waves that are free 
to propagate vertically in the solar atmosphere: as expected, the great majority of F(ac) created by 
granules that survive for a time interval of 300–600 sec is in the form of waves with periods that 
are longer than 200 sec. Musielak et al. (1994) find that their theoretical estimate of F(chr) is quite 
sensitive to various assumptions about the properties of turbulence. It is entirely possible that the 
prior estimate of F(chr) could be in error by a factor of two or more. 

In view of the uncertainties, a conservative range of theoretical estimates of the flux of acoustic 
energy that is available as the input for chromospheric heating in the Sun may be 

-2 -1F chr)  107 8 ergs cm sec (15.2) ( 

Since the two basic components of the chromosphere (cells, network) are observed to differ in 
brightness, it seems plausible that the lower limit of the range of F(chr) in Equation 15.2 might be 
suitable to apply to the cell, while the upper limit in Equation 15.2 might apply to the network. We 
shall return to this when we discuss the heating in quantitative terms. 

Is there any observational evidence to support the hypothesis of acoustic waves as an important 
element in the heating of the chromosphere? Yes: in the comprehensive review by Carlsson et al. 
(2019), the following statement occurs with regard to the lower chromosphere: “The signatures of 
acoustic waves can be seen in all chromospheric diagnostics as ‘sawtooth’ behavior in the CaII lines 
(because of the temporal variation of velocity and thus Doppler shift associated with shocks)”. The 
presence of shock waves is especially detectable in time-resolved observations of “bright grains” 
in the H and K lines of Ca II: these observations indicate that the minimum size of structures in 
the solar chromosphere is in the tens of km range (Kalkofen 2012). However, by way of contrast, 
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Carlsson et al. (2019) point out that in the upper chromosphere, there are no clear shock signatures: 
this may occur because acoustic waves may be converted to other wave modes when they reach the 
higher levels (see Section 15.12.1). 

A consistency check on the theoretical acoustic fluxes in Equation 15.2 can be found in an 
early attempt to estimate the total radiant energy flux F(rad) emitted by the chromosphere. Based 
on the strongest emission lines that were then observable, Withbroe and Noyes (1977: WN) esti
mated F(rad) to have a value of 4 × 106 ergs cm−2 sec−1 in the quiet Sun and in coronal holes, 
and to have a value of 2 × 107 ergs cm−2 sec−1 in active regions. It is actually quite difficult to 
obtain the total radiant flux from the chromosphere because large numbers of weak absorption 
lines in the spectrum of a star with a chromosphere can actually contribute significantly to the 
chromospheric radiant flux (e.g., Houdebine 2010). As a result, the fluxes quoted by WN may be 
considered as lower limits to the true chromospheric radiant energy losses. Thus, the fact that 
the WN estimates of radiant losses in quiet (active) Sun are lower by a factor of 2.5 (5) than the 
lower (upper) limits in Equation 15.2 does not necessarily mean that there is inconsistency with 
the values in Equation 15.2. 

15.9 MODELING THE CHROMOSPHERE: THE ENERGY DEPOSITION RATE 

What happens to the flux of acoustic energy F(chr) as it propagates upward in the Sun’s atmosphere? 
At first, the amplitudes of the waves are small enough that the waves simply “ride” through the gas, 
dissipating no energy. In this regime, the energy flux of the waves remains constant. In the upper 
photosphere, where the temperature is almost constant with height (Section 2.10), cs is also almost 
constant with height. However, the density ρ is by no means constant with height: it is actually 
decreasing as height increases, following an exponential law (see Equation 5.4). As a result, in order 
to keep F(chr) ~ ρδV2cs constant with height, the wave amplitude δV must vary as 1/√ρ. This means 
that δV must increase exponentially with increasing height according to δV(h) ~ exp(+h/2Hp). As we 
have already seen (Section 5.1), in the solar photosphere Hp = 114–140 km. 

We have seen that the amplitude of sound waves in the photospheric layers δV (photo) may be of 
order 1 km s−1. Compared to the local sound speed, the sound wave amplitudes in the photosphere 
are ≈ 0.1cs. Applying the exponential growth formula, we see that when the waves reach a height hs 

where exp(hs/2Hp) ≈ 10, then the amplitude of the sound waves will have grown to a value δV(hs), 
which approaches cs. This occurs at a height hs ≈ 4.6Hp above the photosphere, i.e., at a linear alti
tude of hs ≈ 520–640 km above the photosphere. 

What happens to an acoustic wave when its amplitude becomes comparable to the local sound 
speed? To see what happens, we note that a sound wave consists of a crest and a trough: the wave is 
moving forward relative to the background medium at speed cs. However, the meaning of the term 
“amplitude of the wave” means that the matter in the crest is moving with a speed of δV relative to 
the wave. That is, the matter in the crest of the wave is moving relative to the background medium 
at a speed δV + cs, while the material in the trough of the wave is moving relative to a stationary 
observer at speed −δV + cs. When δV approaches cs, the material in the crest overtakes the mate
rial in the trough. Then the wave profile becomes so steep that a vertical step in pressure develops: 
in this condition, the sound wave has become a shock front. This behavior is reminiscent of water 
waves on the surface of the ocean as those waves approach a shelving beach (i.e., a region where 
the depth of the water is decreasing as the wave moves closer to the shore): when the wave becomes 
vertical, the wave can no longer continue to be a sinusoidal motion. At that point, the wave “breaks” 
and deposits its energy in the form of a churning whitecap. Analogously, when an acoustic wave 
evolves to the condition of a shock front, the pressure jump across the wave “breaks”, leading to 
local churning and compression of the gas. As a result, the PdV work leads to a conversion of the 
original wave energy into localized heat. 
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This leads us to an important conclusion about a certain region in the solar atmosphere, par
ticularly the region hs ≈ 520–640 km above the photosphere. At such heights, we expect that sound 
waves from the photosphere will begin to “break” and, as a result, acoustic energy will begin to be 
deposited effectively in the solar atmosphere. In this regard, it is important to note from Figure 15.6 
that this height range is precisely where all four of the empirical models of the chromosphere shown 
in the figure indicate that the temperature reaches a minimum, and starts to increase upward. In 
view of what we have said about acoustic waves undergoing steepening and forming shock waves, 
it is natural to attribute the empirical increase in temperature at heights of 500 km or so above the 
solar photosphere to the onset of shock heating. 

In contrast to the Eddington model, where T was predicted to  fall off slowly and approach a 
nonzero limiting value as optical depth τ 0 (and height increases), now the dissipation of acous
tic power, i.e., the addition of extra energy to the ambient gas, has the effect that the temperature 
should start to increase above a certain height, hs. In fact, the empirical models (Figure 15.7) do 
indeed show that the temperature in the solar atmosphere reaches a minimum value, T(min), in the 
vicinity of the height hs. 

The region of the “temperature minimum” may be thought of as a boundary between the upper 
photosphere (below) and the lower chromosphere (above). 

Although we expect that shock heating will set in at heights of order hs, we do not expect the 
acoustic energy to be deposited in its entirety at a single location. For one thing, any local heating 
causes the local scale height to increase, and this helps to postpone further steepening of the wave 
to greater heights. Instead of instantaneous local dissipation, the process is spread out in the verti
cal direction such that the acoustic flux falls off roughly as exp(−h/ d), where d is referred to as 
a “dissipation length-scale”. Since dissipation is associated with steepening of the waves, and the 
steepening is associated with the falling off in density (which occurs on an e-folding scale of Hp), 
we expect that d might be of order a few times Hp. For purposes of rough estimation, d ≈ 300 km 
might be plausible. With this choice, we expect that fully developed shock dissipation should occur 
at heights of order hs + d ≈ 820–940 km above the photosphere: this is consistent with detailed 
shock modeling (Carlsson and Stein 1992) where the shocks are observed to form at altitudes of 
about 1 Mm. 

Once the dissipation length-scale is known, we can estimate the average volumetric rate E(chr) 
at which acoustic energy is deposited into each cubic cm of the atmosphere: E(chr) ≈ F(chr)/ d. 
Inserting the value of E(chr) given earlier in Equation  15.2, we find that acoustic energy is 
deposited into the chromosphere at a volumetric rate that is, at least as to order of magnitude, 
given by 

-3 -1E chr)  . 3 ergs cm sec (15.3) ( 0 3   

This is a (rough) estimate of how rapidly acoustic energy is being deposited every second into each 
cubic cm of the Sun’s chromosphere. Note that we have arrived at a finite range of possible energy 
deposition rates: this is appropriate because it is well known empirically that different regions of 
the chromosphere emit radiant energy at different rates. As proof of this statement, note that in 
Figure 15.6, feature A is a dark point in the interior of a supergranule cell, where the intensity of 
chromospheric emission is at a minimum. On the other hand, feature E, a bright element in the 
network surrounding a supergranule cell, can be considered as a region where the intensity of chro
mospheric radiation is a maximum. From a physics perspective, it is plausible to consider feature 
A as containing gas in which energy is being deposited (by whatever means) at a lower rate than is 
the case for feature E. Our estimates of the volumetric energy deposition rate in Equation 15.3 span 
a range of one order of magnitude: it would not be inconsistent for us to consider that the lower 
limit in Equation 15.3 could be appropriate for feature A, while the upper limit in Equation 15.3 
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could be appropriate for feature E. When we discuss magnetic fields in the Sun (Chapter 16), we 
shall find that the network is a region where magnetic fields are stronger, whereas in the interior of 
a supergranule cell, the fields are weaker: in this context, it would not be surprising if the energy 
deposition rate is larger in regions of stronger field (where acoustic waves are not the only wave 
modes which exist: see Section 15.12.1). 

15.10 MODELING THE EQUILIBRIUM CHROMOSPHERE: 
RADIATING THE ENERGY AWAY 

When mechanical energy is deposited into a cubic cm of gas, the gas attempts to get rid of the 
energy by whatever means are available. One of the most efficient means available to gas at the tem
perature minimum is to increase the local temperature by a finite amount and then use the increased 
efficiency of radiative losses at the higher temperature to radiate the energy away. If the gas is suc
cessful in finding a way to radiate energy at a rate of 0.3–3 ergs cm−3 sec−1, then an equilibrium can 
be reached: the local temperature can achieve a more or less steady state. 

Let us turn now to a calculation of the excess temperature that could allow the solar atmosphere 
to reach such an equilibrium. 

15.10.1 raDiative CoolinG time-sCale 

We first need to estimate how long it takes for gas to cool by means of radiation. Suppose a parcel 
of gas is heated (for whatever reason) to a temperature T that is hotter than its surroundings: the 
latter are at temperature To. How long would it take for the heated parcel to radiate away its excess 
heat energy? The gas (with density ρ) in a volume element dV has excess internal energy E(exc) 
= ρCv(T − To)dV ergs, where Cv is the specific heat per gram. 

How quickly can this excess energy be radiated from this volume element? It depends on what 
form of radiation is available to the gas. Suppose the radiation is predominantly in the continuum. 
Let the surface area of the volume element be dA. If the volume element lies deep enough in the 
atmosphere, it will be optically thick, i.e.,  >> 1. In such a case, the energy will be radiated from the 
surface dA with maximum effectiveness, namely at a rate given by the Planck function: the emer
gent intensity is such that the rate at which energy is radiated out of each square centimeter into a 
background medium with temperature To (integrated over 4π solid angle) is given by the difference 

in source functions: S T   4 (T 4 4  (see Chapter 2, Equation 2.37). In this limit, the rate ( )   T )bb B o 

(dE/dt)rad at which the excess energy in the volume element can be radiated away in the continuum 

would simply by Sbb(T)dA, i.e., 4  B T 4  To 
4 dA  ergs sec−1. 

However, as we move upward in the solar atmosphere and encounter gas with smaller and smaller 
densities, the volume element will not always turn out to be optically thick. Eventually, the line of 
sight through the element will become optically thin, i.e.,  will become <1. In such a case, rather 
than emitting radiation at the rate given by the Planck function, the emergent intensity is reduced by 
the factor τ (Chapter 2, Equation 2.18): S = τSbb(T). This leads to a cooling rate of 

 dE  4 4 4  (T  T )dA (15.4)  B odt rad 

With this rate of energy loss, how long will it take for radiation to cause the parcel to cool down 
to T = To? This “cooling time” tcool is given roughly by E(exc)/(dE/dt)rad. This leads to 

E exc ) C T(  T ) 1 dV(  v ot  (15.5) cool 4 4(dE / dt) 4  (T  T )  dArad B o 
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This estimate of the cooling time depends on the local conditions and also on the optical depth of 
the parcel. In general, the ratio of the volume of the element dV to its surface area dA is associated 
with the linear scale ds of the element: dV/dA ≈ ds. Moreover, according to the definition of optical 
depth, we can also write the optical depth of the element in terms of the linear scale: τ = ρ ds. 
Substituting this in Equation 15.5, we obtain an expression that is independent of the size of the ele
ment (as long as it is optically thin): 

C T  T v ( o )t  (15.6) cool 4 44 (T T )B o 

This expression is valid for the regions in the solar atmosphere where continuum radiation is 
efficient. In higher layers, where emission lines become more efficient radiators, we do not expect 
to find Equation 15.6 as useful. 

15.10.2 maGnituDe of the temperature inCrease: the loW Chromosphere 

Now that we know how rapidly energy can be radiated away from a volume element near the tem
perature minimum, we can estimate the equilibrium value of the local increase in temperature 
∆T = T − To that occurs as a result of deposition of mechanical energy at a volumetric rate E(chr). 

An increase in the local temperature by an amount ΔT causes the local thermal energy density to 
increase by ∆E = CvρΔT ergs cm−3. This excess energy can be radiated away at a rate that is deter
mined by the cooling time-scale tcool: 

dE E
B 

4 
o 
4 4 (T T ) (15.7) 

dt trad cool 

The units of the right- and left-hand sides of Equation 15.7 are ergs cm−3 sec−1. Equilibrium is 
possible if the rate at which energy is being deposited into a unit volume E(chr) (see Equation 15.3) 
is equal to the rate at which energy is radiated out of that unit volume (dE/dt)rad. Equilibrium there
fore occurs when 

4 T 4 T 4 ) 0.3 3B ( o (15.8) 

Inserting the value of the Stefan–Boltzmann constant σB, we find that the gas in the solar atmo
sphere can reach equilibrium if the following relationship is satisfied:

4 4 3(T To )  (  1 10 1) 0 / (15.9) 

Can we find a solution to this equation? In order to answer this, we need to know how the opac
ity  κ depends on temperature and density in the upper  parts of the solar photosphere. We have 
already seen (Section 3.7) that κ can be fitted in certain regimes of temperature with power laws in 
density and temperature. In the present case, we are interested in gas such as that which exists in the 
low chromosphere: in such gas, we know that the temperature lies below 104 K. At such tempera
tures, we have already seen (Section 3.7) that the opacity can be approximated by the expression 
κ ≈ 10−32ρ0.3T9. The steep dependence on temperature is noteworthy: it arises mainly because an in
crease in temperature (in the temperature range T<104 K) leads to rapid increases in the populations 
of the upper levels of hydrogen atoms. Inserting this in Equation 15.9, we find 

9 4 4 35 1.3T T  T ( o 1 10 1) 0) (  / (15.10) 
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Solutions of this equation, for a given density ρ, indicate the equilibrium temperature to which gas 
in the solar atmosphere of density ρ would be heated if (i) energy were deposited in that gas at a 
rate given by Equation 15.3 and (ii) continuum opacity from an optically thin medium determines 
the radiative losses. 

What value of density should we use in Equation 15.10? The answer depends on where exactly 
in the solar atmosphere the mechanical energy is being deposited. Densities in the solar atmosphere 
vary over a wide range. In the photosphere, our solar model (Table 5.3) suggests ρ ≈ 3 × 10−7 gm cm−3. 
Densities at the temperature minimum, i.e., some 4.6 scale heights above the photosphere, are lower 
than the photospheric densities by factors of e−4.6 = 0.01. Thus, local densities in the low chromo
sphere have values that are no larger than roughly 3 × 10−9 gm cm−3. In the upper chromosphere, at 
heights of 2000 km, i.e., at least 14Hp above the photosphere, the densities are smaller than photo-
spheric values by e−14 ≈ 10−6. As a result, when we consider conditions in the solar chromosphere, we 
are interested in the solutions of Equation 15.10 over a range of densities from (roughly) 3 × 10−9 gm 
cm−3 to 3 × 10−13 gm cm−3. (For future reference, we note that the latter mass density corresponds 
to a number density in the upper chromosphere of order 2×1011 protons cm−3.) Using the condi
tion of hydrostatic equilibrium, i.e., ρ(h) = ρo exp(−h/Hp), we can associate (roughly) each value of 
density with a corresponding height above the photosphere. (We use  Hp = 140  km and  ρo = 
3 × 10−7 gm cm−3.) 

Let us assume that the background atmosphere (before acoustic waves are present) has To = T(min) 
≈ 4000 K (see Figure 15.6). Using this, we can obtain solutions to Equation 15.10 for any choice of 
density throughout the aforementioned range. For clarity, we consider two distinct components of 
the chromosphere: in one, the deposition of acoustic flux occurs at a low rate (we use the number 1 in 
brackets on the right-hand side of Equation 15.10), while in the other, the acoustic flux is deposited 
at a 10 times higher rate (as given by the number 10 in brackets on the right-hand in Equation 15.10). 
The corresponding solutions to Equation 15.10 are presented in Figure 15.7. We see that, over a 
range of heights from about 500 km to about 1000 km, the temperature is predicted to rise steeply 
to a value that is at least 2000 K above the temperature minimum. Thus, acoustic dissipation, in 
combination with continuum radiative losses, appears to account quite well for the initial rise in 
temperature in the low chromosphere. 

The high-flux solution agrees best with empirical curve E, the bright network element. The low-
flux solution lies closer to empirical curve A, the dark point in the supergranular cell. At heights 
in the low chromosphere, the high-flux solution gives rise to temperatures that, at any particular 
height, are hotter than on the low-flux solution by several hundred degrees. Thus, even though the 
empirical curves appear to be separated in temperature by a relatively small amount (a few hundred 
degrees), that temperature difference corresponds to input rates of mechanical energy that differ by 
a factor of 10. 

Why are the rates of mechanical energy deposition in the bright network elements 10 times larger 
than in the dark point in the cell? One obvious difference between such locations is the magnetic 
field strength: supergranule flows cause magnetic fields to be strong in the network but weak in the 
cell. The strong fields in the network provide channels for spicules to exist. As a result, it seems 
likely that the presence of 10 times enhanced mechanical energy deposition rates in the network 
may be related to magnetic fields. 

15.10.3 maGnituDe of the temperature inCrease: the miDDle Chromosphere 

The results in Figure 15.7 show clearly that although we have been fairly successful in fitting the 
temperatures in the low chromosphere (i.e., h ≈ 500–1000 km), using Equation 15.10, the fit defi
nitely breaks down in the middle chromosphere. The reason for the breakdown is related to the 
choice of source function that was used for the radiative losses in the low chromosphere: we chose 
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  FIGURE 15.7 Theoretical fits to chromospheric temperature increases using low and high fluxes of acoustic 
waves. Curves A and E: portions of two of the empirical curves in Figure 15.7. Lines labeled Flux: solutions 
of Equation 15.10 in the limits of low and high flux. 

the blackbody relation Sbb ~ T4, which is valid only as long as the continuum photons and the gas are 
tightly coupled in local thermodynamic equilibrium (LTE). 

However, as we rise to greater altitudes above the solar photosphere, and the density falls off 
exponentially, the coupling between continuum photons and gas diminishes. The gas becomes less 
and less efficient as a radiator of the Planck function. 

At the same time, bound levels in the dominant atoms and ions are being increasingly well 
populated by the rising temperatures. As a result, emission lines from certain bound levels 
become increasingly effective coolants of the gas in the middle chromosphere. Among these 
lines, the h and k lines of Mg II are the maximally effective contributors to radiative cooling 
at heights of about 1.1  Mm in the lower regions of the middle chromosphere (Carlsson and 
Leenaarts 2012). In the upper regions of the middle chromosphere, the temperature begins to 
reach values close to 7000 K: at such temperatures, we have already seen (Section 4.3), hydro
gen atoms in the chromosphere are approaching 50% ionization. And if ionization of hydrogen 
is occurring, an accompanying effect will be an increase in the populations of bound states of 
hydrogen atoms. These increased populations help to strengthen the bound-bound transitions, 
and hydrogen lines can become strong enough that they dominate the radiative cooling at heights 
around 2–2.3 Mm above the photosphere (Carlsson and Leenaarts 2012). The radiative cooling 
rates in these various lines have temperature and density dependences that depart significantly 
from those of Planck curves. 

In order to understand the plateau in temperature in the middle chromosphere, it is important 
to recall that the flux of acoustic power responsible for chromospheric heating originates in the 
convective turbulence below the photosphere. As a result, the acoustic flux F(ac) is maximum near 
the photosphere, and it diminishes with increasing height. Moreover, the mechanical energy depos
ited in the middle chromosphere does not go simply into increasing the local temperature. Instead, 
the energy is diverted in increasingly large amounts to internal degrees of freedom: population of 
bound levels and (ultimately) the ionization of hydrogen (and helium). 
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In the upper part of the middle chromosphere, hydrogen ionization rises above the 50% level. 
The combination of reduced rates of input of mechanical energy, the onset of strong radiative 

cooling that occurs predominantly in emission lines, and the siphoning off of energy into bound lev
els and ionization leads to a plateau in the temperature. The bound levels of hydrogen act, in effect, 
as a kind of thermostat for the middle chromosphere. 

From the plateau in the middle chromosphere, where hydrogen is roughly 50% ionized, strong 
emission of lines in the Balmer series occurs. The first member of the Balmer series, Hα (at a wave
length of 6563 Å), is the strongest emitter from the chromosphere in the visible spectrum. The red 
color of this strong line accounts for the “rose-colored hue” that is a common feature of the flash 
spectrum that can be seen by the unaided eye briefly during an eclipse of the Sun (see Figure 15.1). 

15.10.4 maGnituDe of the temperature inCrease: the upper Chromosphere 

In the upper chromosphere, where the temperature increases above 7000 K, rapidly approaching 
104 K and higher, hydrogen approaches complete ionization. No longer are there internal degrees 
of freedom (bound levels, ionization) available to absorb mechanical energy. No longer are there 
strong continua or lines available to radiate away the mechanical energy. Equilibrium is not pos
sible: there is a “runaway” of the temperature to high values. 

With only thermal energy available, and with the low density of the gas (approaching 10−13 gm 
cm−3), the deposition of energy even at a rate E(chr) that is much lower than in Equation 15.3 leads 
to rapid local heating. To see this, note that the thermal energy density e, which is comparable to 
the local pressure RgρT/μ, obeys the equation de/dt = E(chr) if there are no longer any effective 
(radiative) channels to carry away the energy. Thus, even if the deposition rate is as low as (say) 
0.1% of the lowest value in Equation 15.3, the rate of temperature increase in gas with a density 
of 10−13 gm cm−3 is dT/dt = 0.001μE(chr)/Rgρ. With μ = 0.5 in ionized hydrogen, and Rg = 8.31 × 
107 ergs gm−1 deg−1, we find dT/dt ≈ 20 K sec−1. This provides an upper limit on the heating: the 
gas will also tend to expand (thereby cooling) because of local pressure enhancement. Before the 
expansion cooling becomes effective, the local temperature can increase in 1–2 minutes by several 
thousand K. 

This can help us to understand why the temperature rises steeply in the upper chromosphere 
(see Figure 15.6). This region of steep temperature gradient is referred to as the transition region (or 
interface region) between chromosphere (at temperatures up to 104 K) and corona (at temperatures 
of order 106 K). 

For future reference, we note that at the top of the chromosphere, where T ≈ 104 K, and number 
densities are of order 2 × 1011 cm−3, the gas pressures (p = 2NekT) are of order 0.6 dyn cm−2. When 
we discuss the corona (Chapter 17), it will be valuable to compare this pressure near the top of the 
chromosphere with the pressure near the base of the corona. 

15.11 THE IRIS SATELLITE 

Now that we have introduced the terms transition region (TR) and interface region (IR), it is timely 
to describe a satellite that was launched in 2013 specifically to study how the physical properties 
of the gas in the chromosphere and in the IR vary as a function of height. The satellite is called 
IRIS: Interface Region Imaging Spectrograph. It contains a 19-cm UV telescope orbiting in a Sun-
synchronous orbit, and observing the Sun through three filters strategically located at UV wave
lengths. The filter labeled far ultraviolet (FUVshort) observes at wavelengths 1332–1358 Å, where 
certain spectral lines are sensitive to gas at temperatures of 25,000 K (25 kK). The second filter 
(FUVlong) observes at wavelengths 1389–1407 Å where some lines are sensitive to temperatures 
between 80 kK and 150 kK. The third filter (near UV: NUV) observes at wavelengths 2782–2835 Å, 
which contain the strongest lines of Mg II: these lines are formed at temperatures of order 10 kK. 
The angular resolution is 0.33 arcsec; the velocity resolution is 1 km s−1, and the temporal resolution 
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is 2 seconds. The field of view (FOV) is 175 × 175 arcsec2, i.e., a square with sides of length 
130,000 km on the Sun, large enough to include a dozen supergranules or more: the angular reso
lution is good enough to distinguish easily between network and internetwork features within an 
individual supergranule. Images of the area of the Sun that are under observation at any instant can 
be obtained by forming images of the slit-jaws in various lines. 

Carlsson et al. (2019) have described various telescopes on the ground and in space that have 
been useful over the years in studying the solar chromosphere and the IR. However, Carlsson 
et  al. (2019) specifically refer to IRIS as a “game changer” in this area of research in part 
“because of the public availability of large amounts of high-quality chromospheric data”. In 
conjunction with improvements in numerical modeling, the improvements in data provided by 
IRIS have “led to progress” in our understanding of chromospheric observational properties. 
An example of the vast data sets that have been accumulated by IRIS is provided by the Mg II 
h resonance line at 2803.52 Å: by observing the profile of this line in all regions of the solar 
disk, astronomers now have access to a data set containing 4 million profiles in internetwork 
gas, 0.2 million profiles in network, 0.1 million profiles in plage, and 0.038 million profiles in 
sunspots (Schmit et al. 2015). Many of the profiles contain a broad absorption line with double 
emission peaks near line center: in most cases, the violet-shifted emission peak is observed to be 
stronger than the redshifted emission peak. However, in certain locations (especially in plage), 
the emission peak is seen to be a single line. Realistic modeling of these profiles requires the use 
of 3D-radiative-MHD codes. These codes indicate that the strength of the emission core is not 
a reliable indicator of local temperatures: however, shifts in the line core are reliable indicators 
of line-of-sight velocities in the chromospheric gas where the local optical depth in the line core 
is of order unity. Quantitative interpretation of the IRIS Mg II h line data sets will in principle 
provide information on how the physical conditions in the chromosphere vary as we move from 
network to internetwork to plage to sunspots. To probe the velocity fields at levels in the chromo
sphere that lie above and below the regions where the Mg II h line is formed, IRIS data on the 
strongest lines of C II (at 1334–1336 Å) can be used, depending on the local structure in density 
and/or temperature. 

By following wave motions in IRIS lines formed at different heights in the solar atmosphere, it 
has been possible to identify the presence of slow-mode MHD shock waves (see Section 15.12.1) 
in regions of strong magnetic field (network, plage) but also in less magnetic regions such as the 
internetwork quiet Sun (Carlsson et  al. 2019). Moreover, magnetic waves of a transverse nature 
(e.g., Alfvenic modes) are observed to be “ubiquitous in the chromosphere”, and these waves carry 
“a large energy flux upward” into the Sun’s outer atmosphere. In this regard, it is noteworthy that 
by combining IRIS data with observations from the Solar Dynamics Observatory (SDO), Kayshap 
et al. (2020) have identified waves propagating upward in plage regions from the photosphere to the 
transition region (at the level where the Si IV 1400 Å line forms). Remarkably, the periods of these 
waves range from as short as 2 minutes to as long as 9 minutes. Now, the 2-minute waves certainly 
have shorter periods than the acoustic cut-off of the atmosphere (i.e., 200 seconds: Section 13.5.5), 
so there is no contradiction as regards their ability to propagate upwards through the atmosphere. 
But 9 minutes is definitely much longer than the nominal cut-off acoustic period: something other 
than the idealized treatment of Section 13.5.5 must be at work. The answer is that magnetic fields 
are present in the plage regions that Kayshap et  al. are studying: in the presence of such fields, 
two effects may come into play. First, the field lines, if properly inclined, can serve as “ramps” for 
long-period waves to access the chromosphere; second, the sound waves can undergo mode trans
formation into slow-mode MHD waves. The latter waves have very different vertical transmission 
properties from those of acoustic waves. 

In view of the presence of shock waves in the chromosphere, it is noteworthy that IRIS data have 
sufficiently high angular resolution that they can be used to determine separately the physical con
ditions on both sides of a shock, i.e., in the upstream and downstream flows. This is a truly impres
sive technical achievement. Ruan et al. (2018) have demonstrated quantitatively that the data on the 
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observed jumps in density and temperature across shocks in the solar chromosphere are consistent 
with the Rankine-Hugionot relations (which describe how physical quantities in post-shock gas are 
related theoretically to the same quantities in pre-shock gas). 

15.12 A VARIETY OF WAVE MODES IN THE CHROMOSPHERE? 

The goal of the discussions in Sections 15.9 and 15.10 was to determine if it might be possible to 
interpret quantitatively the heating of the solar chromosphere in terms of one particular wave mode, 
namely, acoustic waves emitted by the turbulent convection. The fact that we chose to concentrate 
on one particular wave mode (the acoustic mode, with its intrinsic aspect of compressibility) in our 
discussion was not random: rather, it was based on the wealth of observational evidence that pro
vides unambiguous support for the presence of a large array of acoustic waves (“p-modes”) propa
gating throughout the inner layers of the Sun (see Chapter 13). These acoustic modes are generated 
in source regions that in some cases lie within 0.1%R  of the photosphere (see Section  14.4.3): 
with sources so close to the surface, it would not be surprising if some fraction of the acoustic 
modes might find it possible to make their way upwards into chromospheric gas which lies some 
(0.1–0.2)%R  above the photosphere. This raises the question: is there any observational evidence 
for the presence of a flux of acoustic waves in the chromosphere that is sufficient to replenish the 
energy flux lost by the chromosphere? 

Data pertaining to this question have been reported by means of high-resolution observations 
of the Sun obtained by instruments carried by long-duration balloon flights. A  balloon experi
ment labeled “Sunrise” observed the Sun using a 1-meter telescope that was transported across the 
Atlantic Ocean from Sweden to Canada at stratospheric altitudes (36–37 km, above the ozone layer, 
to permit UV observations) in two flights during the years 2009 (when the Sun was magnetically 
inactive) and 2013 (when the Sun contained active regions) (Solanki et al. 2017). Each flight lasted 
about 5 days. During the first flight, Bello Gonzalez et al. (2010) observed a patch of Sun extending 
over 45" × 45" with a spatial resolution of order 70–100 km on the Sun: this resolution is better 
than that which was available in any previous search for acoustic power in the Sun. Doppler shifts 
of the center of the Fe I line at 5250.2 Å were measured in order to obtain line-of-sight velocities 
in granules and intergranular lanes at effective heights of 200–300  km above the photosphere. 
Bello Gonzalez et al. interpreted their data by applying transmission factors for pure acoustic waves 
propagating upwards in the solar atmosphere. The waves they detected were found to have peri
ods ranging from 100 seconds to 190 seconds: all of these periods are certainly short enough that 
they are able freely to propagate vertically through the solar atmosphere (see Section 13.5.5). Bello 
Gonzalez et al. concluded that the lower chromosphere in the patch of quiet Sun they observed con
tains vertically propagating acoustic waves with energy fluxes in the range (6.4–7.7) × 106 ergs cm−2 

sec−1, originating mainly in intergranular lanes. These fluxes are about 50% larger than the earlier 
estimates of Withbroe and Noyes (1977) for the quiet Sun, and they are not far from our lower limit 
estimate of F(chr) in Equation 15.2. 

It is noteworthy that the observations used by Bello Gonzalez et al. (2010) were obtained in the 
year 2009, when the Sun was experiencing one of its deepest and longest-lasting minima in mag
netic activity: as a result, observational conditions in 2009 were actually optimized for searching 
for chromospheric heating of an acoustic (i.e., nonmagnetic) nature. 

Independent data obtained from ground-based observations of a quiet area at the center of the 
solar disk reported (Abbasvand et  al. 2020) that acoustic waves do supply enough power to the 
middle chromosphere (at heights of 1000–1400  km above the photosphere) to compensate for 
the observed radiative losses. Thus, at least in the height range 1000–1400 km, Abbasvand et al. 
confirmed that the chromosphere in the quiet Sun is adequately heated by acoustic waves. However, 
in the upper chromosphere (heights of 1400–1800 km), acoustic waves were found to be insufficient 
to compensate for the observed radiative losses. A source of energy other than acoustic waves is 
required to account for the heating of the upper chromosphere. 
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When the Sunrise balloon flew for a second time in 2013, active regions were present in abun
dance on the Sun. As a result, an acoustic interpretation of the 2013 wave data could be inadequate. 
In fact, we note that the chromospheric heating flux that is required (according to Withbroe and 
Noyes 1977) in active regions exceeds by factors of two to three the acoustic wave flux reported by 
Bello Gonzalez during the 2009 flight. This suggests that in active regions, the acoustic energy flux 
may need to be supplemented by factors of two to three in active regions. What might the nature 
of the supplementary energy flux in active regions be? The fact that active regions are areas of the 
Sun where the local magnetic fields are stronger than average suggest that magnetic effects might 
play a role. 

What role(s) might the magnetic field play in heating the chromosphere? One possible role could 
be to supply extra wave modes that do not exist in nonmagnetic gas. We discuss this possibility in 
Section 15.12.1. 

15.12.1 the “plasma beta” parameter anD Conversions betWeen Wave moDes 

How might we quantify the magnetic effects present in active regions compared to quiet Sun? If the 
solar atmosphere were composed solely of a hydrodynamic fluid, the fluid could be characterized by 
a single characteristic speed (the speed of sound cs), with well-defined phase correlations between 
density and velocity. But the solar atmosphere, consisting as it does of partially ionized gas (capable 
of carrying electric currents), inevitably also contains magnetic fields that vary in strength B from 
one location to another. The presence of a field leads to significant changes in the properties of the 
waves that are able to propagate in the solar chromosphere: for a comprehensive discussion, see 
Jess et al. (2015). Associated with the field, a second characteristic wave speed enters the problem, 
namely, the Alfven speed vA = B/√(4πρ). The ratio β = cs

2/vA
2 (referred to by the term “plasma beta”) 

is a measure of the extent to which gas pressure or magnetic pressure dominates in any element of 
gas. The magnetohydrodynamic (MHD) interaction between gas and field in any location in the 
chromosphere now gives rise to two characteristic “magnetosonic” speeds, referred to as the fast 
mode, with speed vf, and the slow mode, with speed vs. If we happen to be observing a region of the 
chromosphere where the field is weak, i.e., β >>1, it turns out that vf ≈ cs (with magnetic and kinetic 
pressures in phase), while vs ≤ vA (with magnetic and kinetic pressures out of phase). In the opposite 
limit, i.e., in a region of strong field where β <<1, it turns out that vf ≈ vA, while vs ≤ cs. 

The variation of the parameter β with altitude in the Sun plays an important role on the proper
ties of wave propagation. Specifically, the gas in the deep photosphere (and below) exists in the 
regime β >>1, while in the corona, the ambient medium is in the regime β <<1. Therefore, at any 
given position on the Sun, as we move vertically upward into the chromosphere, we eventually pass 
through a critical layer where β = 1: this layer, known as the “magnetic canopy” (Kontogiannis 
et al. 2014), is a critical layer where local conditions actually enable waves to undergo transforma
tions (“conversions”) from one mode into another. In regions of strong field (e.g., in the bright net
work element E in Figure 15.6), the β = 1 layer lies at a relatively lower altitude (of order 1500 km: 
Kontogiannis et al. 2011). Therefore the upper chromosphere and part of the mid-chromosphere 
over network exists mainly in the regime β <<1, where the slow magnetosonic mode propagates at 
a speed ≤ cs. (This does not mean that the slow-mode wave becomes a sound wave: on the contrary, 
a sound wave can propagate in all directions from a given starting point, whereas the slow-mode 
wave cannot propagate at all in directions that are perpendicular to the field.) If, therefore, we were 
to discover that a fluctuation were propagating upwards in network element E at the local sound 
speed, we could not immediately conclude that we were observing an acoustic wave in the chro
mosphere: we might (if the local conditions were appropriate) actually be observing a slow-mode 
wave. In order to distinguish between the slow-mode wave and an acoustic mode, we would need 
to obtain further observational information regarding the relative phases between magnetic and 
kinetic pressure. Similarly, if we are observing a region of weak field (e.g., the dark internetwork 
element A in Figure 15.6), the β = 1 layer lies at a relatively higher altitude, as high as 2.4 Mm in one 
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case (Kontogiannis et al. 2011): therefore, the chromosphere in such a region exists mainly in the 
regime β >>1. In such a case, if we were to detect a fluctuation propagating upwards in element A at 
speed cs, we could not necessarily conclude that we were observing a bona fide acoustic wave: we 
might instead be observing a fast-mode wave. As a result, while the interpretation of Doppler data 
in terms of acoustic waves (as reported by Bello Gonzalez et al. 2010) may be acceptable in regions 
where the Sun is very quiet, the interpretation becomes less straightforward if magnetic fields are 
present in the observed patch of Sun. 

The fact that one wave mode can “convert” into another wave mode at certain locations in the 
Sun’s atmosphere can be put to good use when we wish to “locate” active regions on the “far 
side” of the Sun, up to 14 days before they can be seen from Earth. We will address this topic in 
Section 16.7.7. 

Is there a way to observe gas that lies above the canopy, as well as gas that lies below the canopy, 
using a single line in the spectrum? Yes, there is: the Hα line is helpful in this regard. Following the 
discussion in Section 3.8.2, if observer A uses a filter to observe close to the center of Hα (within, 
say, ¼ Å), then the image obtained by A will show gas above the canopy. But if observer B uses a 
filter that is tuned away from line center (by, say, 0.8 Å), then the image obtained by B will show gas 
that lies below the canopy. As a result, images A and B will look quite different from each other: one 
image (below the canopy) contains granulation, the other (above the canopy) does not. 

The fact that waves of various modes can exist in a magnetized gas has the effect that it is not a 
simple matter to calculate how the different modes will propagate in the solar chromosphere. Due 
to spatial variations in the ambient properties, each wave mode is subject to different laws of refrac
tion, reflection, and transmission. At the magnetic canopy, the Alfven speed and the sound speed 
are nearly equal. As a result, when one considers the two-dimensional problem of an originally 
purely acoustic wave propagating vertically from the photosphere and encountering the canopy, the 
effect is that the incoming wave undergoes “conversion” into slow and fast magnetosonic waves 
(Kontogiannis et al. 2014). The emerging slow wave can continue to propagate into the upper chro
mosphere along a magnetic “ramp” (with field lines inclined to the vertical by an angle ) above the 
canopy provided that the period of the wave is shorter than the local cut-off value of 200 (seconds)/ 
cos  (see Section 13.6). But the emerging fast wave suffers a different fate: it is refracted when it 
encounters a region where the vertical gradient of vf becomes large (such as in a region where the 
density falls off rapidly as height increases): as a result, the fast mode is unlikely to reach the upper 
chromosphere but is more likely to be directed downward into the photosphere. 

Jess et al. (2015) do not confine attention only to the contributions of compressible waves in the 
process of heating the outer solar atmosphere: they also discuss at length the presence of incom
pressible waves. Such waves can be generated by the horizontal components of convective motions, 
giving rise to torsional Alfven waves and kink modes. Because of the absence of compressibility, 
these modes are subject in general to less efficient damping than the compressible waves: however, 
in certain conditions, a code that includes 1.5 dimensions suggests that Alfven waves can “con
vert” into slow magnetosonic waves: these can form shocks that can heat the chromosphere (Arber 
et al. 2016). However, in order to analyze properly the combined effects of Alfven, acoustic, and 
magnetosonic waves, the “conversion” problem in the solar atmosphere must be analyzed with a 
fully three-dimensional approach (e.g., Cally and Khomenko 2019). The complications of such an 
approach are far beyond the limits of this “first course”. 

Ultimately, if we are to solve the physics problem of how exactly the energy present in a mag
netosonic wave is actually converted into heating of the chromosphere, we need in principle to 
observe how the waves are dissipated. Jess et al. (2015) state that this goal of discovering evidence 
for dissipation has not yet been achieved: the dissipation of magnetosonic waves probably occurs 
on length-scales that are so short in the Sun as to be well beyond the current limits of observational 
resolution. For example, if MHD shock formation is at work, then the dissipation is expected to occur 
over length-scales comparable to the thickness of the shock layer, i.e., 10–20 km (Goodman and 
Kazeminezhad 2010). Even smaller length-scales are suggested for dissipation if it is permissible to 
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consider an analogy with a particular solar environment in which in situ measurements have actually 
resolved the dissipation scale: we refer to the solar wind as it flows past Earth’s orbit (Smith et al. 
2001). These data indicate that magnetosonic wave dissipation (in a turbulent medium with electron 
density ne cm−3) occurs on a length-scale known as the ion-inertial scale Lii (in cm) ≈ 2 × 107/√ne. If 
the same dissipation process is at work in the solar chromosphere, where ne ranges from 1011 cm−3 to 
1010 cm−3 (Vernazza et al. 1981), the Lii dissipation scale in the chromosphere would be no larger than 
a few meters. Even with the resolution that DKIST provides, such a small length cannot be resolved. 

EXERCISE 

15.1 The estimates of chromospheric heating given in Equation 15.10 are obtained by picking 
a particular fitting formula for the opacity in Equation 15.9,  ≈ 10−32ρ0.3T9. Other choices 
of fits to the opacities are possible, using a different coefficient and different exponents. 
Choose values of 5, 7, and 11 for the temperature exponent, and values of 0 and 0.5 for the 
density exponent. For each pair of exponents, recalculate the fitting formula such that, in 
all cases, log  = 4 when log ρ = 0 and log T = 4, and then recalculate the curves labeled 
Flux=Hi and Flux=Lo in Figure 15.7. 

REFERENCES 

Abbasvand, V., Sobotka, M., Svanda, M., et  al., 2020. “Observational study of chromospheric heating by 
acoustic waves”, Astron. Astrophys. 642, A52. 

Arber, T. D., Brady, C. S., & Shelyag, S., 2016. “Alfven wave heating of the solar chromosphere: 1.5D models”, 
Astrophys. J. 817, 94. 

Bello Gonzalez, N., Franz, M., Martinez Pillet, V., et al., 2010. “Detection of large acoustic energy flux in the 
solar atmosphere”, Astrophys. J. Lett. 723, L134. 

Cally, P. S., & Khomenko, E., 2019. “Fast to Alfven mode conversion and ambipolar heating in structured 
media. I. Simplified cold plasma model”, Astrophys. J. 885, 58. 

Carlsson, M., De Pontieu, B., & Hansteen, V. H., 2019. “New view of the solar chromosphere”, Ann. Rev. 
Astron. Astrophys. 57, 189. 

Carlsson, M., & Leenaarts, J., 2012. “Approximations for radiative cooling and heating in the solar chromo
sphere”, Astron. Astrophys. 539, A39. 

Carlsson, M.,  & Stein, R. F., 1992. “Non-LTE radiating acoustic shocks and CaII K2V bright points”, 
Astrophys. J. Lett. 397, L59. 

Da Silva Santos, J. M., de la Cruz Rodriguez, J., Leenaarts, J., et al., 2020. “The multithermal chromosphere: 
inversions of ALMA and IRIS data”, Astron. Astrophys. 634, A56. 

Goodman, M. L., & Kazeminezhad, F., 2010. “Simulation of MHD shock generation, propagation, and heat
ing in the chromosphere”, Astrophys. J. 708, 268. 

Houdebine, E. R., 2010. “Observation and modelling of main-sequence star chromospheres”, Mon. Not. Roy. 
Astron. Soc. 403, 2157. 

Jess, D. B., Morton, R. J., Verth, G., et al., 2015. “Multiwavelength studies of MHD waves in the solar chro
mosphere”, Space Sci. Rev. 190, 103. 

Judge, P. G.,  & Carlsson, M., 2010. “On the solar chromosphere observed at the limb with HINODE”, 
Astrophys. J. 719, 469. 

Judge, P. G., & Peter, H., 1998. “The structure of the chromosphere”, Space Sci. Rev. 85, 187. 
Kalkofen, W., 2012. “The validity of dynamical models of the solar chromosphere”, Solar Phys. 276, 75. 
Kayshap, P., Srivastava, A. K., Tiwari, S. K., et al., 2020. “Propagation of waves above a plage as observed by 

IRIS and SDO”, Astron. Astrophys. 634, A63. 
Kontogiannis, I., Tsiropoula, G., & Tziotziou, K., 2011. “HINODE and SOHO/MDI quiet sun magnetic field. 

Implications for the height of the magnetic canopy”, Astron. Astrophys. 531, A66. 
Kontogiannis, I., Tsiropoula, G., & Tziotziou, K., 2014. “Transmission and conversion of magneto-acoustic 

waves on the magnetic canopy in a quiet Sun region”, Astron. Astrophys. 567, A62. 
Leenaarts, J., Carlsson, M., Hansteen, V., et al., 2011. “On the minimum temperature in the quiet solar chro

mosphere”, Astron. Astrophys 530, A124. 



 

  

257 The Chromosphere 

Musielak, Z., Rosner, R., Stein, R. F., et al., 1994. “On sound generation by turbulent convection: A new look 
at old results”, Astrophys. J. 423, 474. 

Pereira, T. M. D., Rouppe van der Voort, L., & Carlsson, M., 2016. “The appearance of spicules in high resolu
tion observations of CaII H and H ”, Astrophys. J. 824, 65. 

Ruan, W., Yan, L., He, J., et al., 2018. “A new method to comprehensively diagnose shock waves in the solar 
atmosphere based on simultaneous spectroscopic and imaging observations”, Astrophys. J. 860, 99. 

Schmit, D. F., Bryans, P., De Pontieu, B., et al., 2015. “Observed variability of the solar MgII h spectral line”, 
Astrophys. J. 811, 127. 

Smith, C. W., Mullan, D. J., Ness, N. F., et al., 2001. “The day the solar wind (almost) disappeared: Magnetic 
field fluctuations, wave refraction, and dissipation”, J. Geophys. Res. 106, 18625. 

Solanki, S., Riethmuller, T. L., Barthol, P., et al., 2017. “The second flight of the SUNRISE balloon-borne 
solar observatory: Overview of instrument updates, the flight, the data, and first results”, Astrophys. J. 
Suppl. 229, 2. 

Vernazza, J. E., Avrett, E. H., & Loeser, R., 1981. “Structure of the solar chromosphere. III. Models of the 
EUV brightness components of the quiet Sun”, Astrophys. J. Suppl. 45, 635. 

Withbroe, G. L., & Noyes, R. W., 1977. “Mass and energy flow in the solar chromosphere and corona”, Ann. 
Rev. Astron. Astrophys. 15, 363 (WN). 



http://taylorandfrancis.com


DOI: 10.1201/9781003153115-16 259  

 

16 Magnetic Fields in the Sun 

Up to this point, we have been considering the Sun in terms of material that can be described 
reliably by the laws of “ordinary” gas dynamics and radiative transfer. This has been sufficient to 
allow us to describe in some detail the overall structure of the Sun, including radial profiles of pres
sure, temperature, and density from the center all the way to the surface. But the very concept of 
a “radial” profile incorporates the assumption that the profile is the same in all directions, i.e., the 
material is spherically symmetric. This is certainly an adequate assumption deep in the interior of 
the Sun. 

However, as we approach the surface, certain features become apparent in the Sun where depar
tures from spherical symmetry are more or less severe. One such effect is introduced by rotation: 
the Sun departs from a spherical shape by having a slightly oblate figure. But the effect is so small 
that the unaided eye cannot see the effect. In fact, reliable measurements of the oblateness are quite 
difficult to make (Chapter 1, Section 1.10). In this chapter, we consider the departures from spherical 
symmetry that arise from the presence of magnetic fields. 

16.1 SUNSPOTS 

In the context of observations using photons in the visible part of the spectrum, the most dramatic 
departures from spherical symmetry on the Sun’s surface are sunspots (see Figure  16.1). These 
are darker areas of the surface that are sometimes large enough to be seen by the unaided eye. 
Occasional reports of naked-eye sunspots by Chinese observers are on record for the past two mil
lennia. To be sure, the advent of telescopes has greatly increased the observability of sunspots. But 
even during the time period 1600–1650, when telescopes first became available, there are records of 
as many as 33 naked-eye sunspots, including one by Galileo himself (Vaquero 2004). 

Sunspots spanning a wide range of sizes appear from time to time, in an unpredictable way, 
as dark spots somewhere on the surface of the Sun, usually as a pair of spots or in groups (see 
Figure 2.3). As solar rotation carries a pair of spots across the disk of the Sun, one spot is in the lead, 
and the other follows. This gives rise to the notation “leader” spot and “follower” spot. Thus, when a 
pair of spots first rotates onto the disk, appearing at the east limb, we see first the leader. And when 
the pair eventually (about two weeks later) reaches the west limb, it is the follower spot that disap
pears from view last. Although the spot pair lies mainly in the east-west direction, observers find 
that the follower spot lies in general slightly farther from the equator than the leader. That is, the 
line joining leader and follower does not lie exactly east-west, but is tilted slightly: the tilt angle is 
small for pairs of spots lying near the equator, and the tilt increases with increasing latitude, reach
ing a maximum of 10–12 degrees at latitudes of 30–35 degrees (Hale et al. 1919). This property of 
sunspot tilt angles is referred to as “Joy’s law”, named for the astronomer who analyzed almost 3000 
sunspots over three to four sunspot cycles. As we shall see later (Section 16.9), Joy’s law will play a 
role in explaining why the Sun undergoes a cycle of magnetic activity every 11 years or so. 

As can be seen in the expanded view of a spot in Figure 16.1, a large spot (either leader or fol
lower) consists of a darker central core (the “umbra”, the Latin word for “shadow”) surrounded by 
a “penumbra”. The penumbra has radial (more or less horizontal) striations that alternate between 
bright and dark, giving an overall impression that the penumbra is on average intermediate in 
brightness between the umbra and the photosphere (see Figures 2.3 and 16.1). 

Why are there two distinct regions in a spot, one being (more or less) uniformly dark and the 
other having horizontal striations? The answer, at least in part (see Section 16.5), has to do with 
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the fact that in the umbra, there exists a magnetic field that is observed to be nearly vertical, while 
in the penumbra, the magnetic fields are observed to be more nearly horizontal. Quantifying this 
statement, Jurcak et al. (2018) used Hinode spectropolarimetric data to determine the vector mag
netic field in 79 active regions that occurred during the years 2006–2015. They found that, at the 
umbral-penumbral (UP) boundary of all the sunspots they studied, there exists a preferred value for 
one component of the field, namely, the vertical component Bver(UP). With a likelihood of 99%, the 
value of B (UP) was found to lie in the range 1849–1885 G. The most probable value of B (UP)ver ver

was found to be 1867 G. It is remarkable that such a narrowly confined range of Bver(UP) persists 
in sunspots over a 10-year period: this period spans the end of cycle 23 and the rise to maximum of 
cycle 24. In a follow-up 3-D MHD numerical study, Schmassmann et al. (2021) have found that a 
criterion derived by Gough and Tayler (1966) for the onset of convection in the presence of a (spe
cifically) vertical field (see Section 6.9) may help to explain the observed existence of a preferred 
value for Bver(UP). 

16.1.1 spot temperatures 

To determine the temperature of the gas in a spot, we start with the question: how dark is the umbra 
relative to the photosphere? The answer depends on the wavelength: the shorter the wavelength, the 
darker the intensity of the umbra I (*, μ) compared to the intensity of the undisturbed photosphere 
at the same distance from disk center I (μ). At wavelengths of 4000 Å, large spots may have I (*, μ) 
values that are 10–20 times smaller than I (μ) (Bray and Loughhead 1979; their Table 4.1). The 
contrast between umbra and photosphere becomes less pronounced as the spot is observed at longer 
and longer wavelengths: around 1 micron, the spot intensity is almost half as bright as the photo
sphere. Model atmospheric fits to umbral radiation allow one to obtain the profile of temperature 
versus optical depth in the umbra. Expressing temperatures in terms of the variable that appears 
in the Saha equation (Section 4.2), θ = 5040/T, the differences between the temperature variable 
θ(*, τ) inside the spot at optical depth τ and the temperature variable θ(τ) in the undisturbed pho
tosphere at the same value of τ (but not at the same physical depth), are observed to be as large as 
∆θ ≈ 0.3–0.4 at τ ≈ 1. Since the local temperature in the photosphere at τ ≈ 1 is close to 6000 K, 
i.e., θ(1) ≈ 0.84, this leads to θ(*, 1) ≈ 1.14–1.24. This corresponds to a temperature in the spot of 
4100–4400 K at τ ≈ 1. That is, the gas in the “photosphere” of the spot (i.e., around τ ≈ 1) is some 
1600–1900 K cooler than the gas at equal optical depth in the photosphere. Estimates of the effec
tive temperature of a spot are 4100–4200 K, i.e., almost 2000 K cooler than the photosphere. The 
fractional deficit in effective temperature in the umbra is about 30% compared to the undisturbed 

4photosphere. Thus, the bolometric flux ( ~ Teff  ) of radiation emerging from the umbra is only 0.74 

times the photospheric flux, i.e., the flux emerging from the umbra is only about 25% of the flux 
emerging from the photosphere. 

Apart from the darkness of umbrae relative to the photosphere, is there any observational evi
dence for cool temperatures in sunspots? Indeed there is: spectra of umbrae contain molecules that 
are essentially nonexistent (due to dissociation at higher temperatures) in the photosphere. The com
monest molecules in umbrae are hydrides, including those of the elements C, Mg, Fe, Al, B, and Be. 
Next in abundance are oxides, including those of the elements Ti, Zr, La, Sc, V, and Ba. The list also 
includes AlF and BF. Rotational temperatures have been derived for some of the umbral molecules 
and are in some cases found to be as low as 1100 K. There can be no doubt: the gas in sunspots is 
definitely colder than the gas in the photosphere. 

16.1.2 Why are sunspots Cooler than the rest of the photosphere? 

The fact that some 75% of the photospheric energy flux is blocked in a sunspot umbra indicates that 
some physical mechanism is at work to cause a severe perturbation of energy flow in the umbra. 



261 Magnetic Fields in the Sun 

 

 FIGURE 16.1 A sunspot, showing the dark umbra (center) plus striated penumbra, surrounded by undis
turbed photosphere (containing granules). The darkest part of the umbra is denoted by a 3"-wide red circle: 
spectra were obtained in the portion of the umbra that lies inside this circle. The arrow labeled DC points 
towards the center of the solar disk. (From Lohner-Bottcher et al. 2018; used with permission of ESO.) 

What might that mechanism be? To address that question, let us first consider the unperturbed 
photosphere of the Sun. Recall that in Section 6.3 and Figure 6.3, we discussed the use of “doppler
grams” to measure vertical velocities over a finite area of the Sun’s photosphere. The data indicate 
that in the solar granulation, the bright rising cores contain upward flows with speeds of ≥2 km s−1, 
while the dark intergranular lanes contain downward flows with speeds of ≥ 3 km s−1. These vertical 
flows (in conjunction with temperature differences ∆T between bright and dark gas) are responsible 
for the normal convective transport of energy in the upward direction through the Sun’s photosphere 
(see Equation 6.2). In a sunspot umbra, it is clear that the normal upward transport of energy is 
severely interrupted. Since convection carries a significant fraction of upward energy flux in the 
photosphere and an even larger fraction beneath the photosphere (see Section 6.7.3), we need to 
address the following question: could it be that something significant is impeding convection in 
the umbra? Since we have identified the key properties of convection in the photosphere in terms 
of vertical velocities and temperature differences ∆T between rising and falling gas, the following 
question is relevant: how do the vertical velocities and ∆T in the umbra of a sunspot compare with 
those in the photosphere? 

In principle, dopplergrams could be used to perform a differential analysis between umbra and 
photosphere. Hirzberger (2003) used this approach to examine the vertical velocities in small pores 
in the Sun. (Pores are the smallest regions of cool sunspot-like material on the Sun: they differ from 
spots in that pores consist only of “umbra”, without any evidence for “penumbra” surrounding the 
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cool spot (see Section 16.7.2)). Hirzberger found that the upward velocities were reduced so much in 
pores that the vertical velocity could not be distinguished from noise. Upper limits on velocities in 
pores were found to be of order 0.1 km s−1. 

In order to undertake a differential study of convection in an umbra relative to convection in the 
photosphere, more precise results can be obtained by using the method of “C-shaped line bisectors” 
described in Section 3.8.3. Löhner-Böttcher et al. (2018: hereafter LB18) have reported on a study 
of 13 spots in which they used a line of Ti I: in the photosphere near one particular spot, the line 
bisector was found to be C-shaped with a maximum mean convective speed of almost 0.4 km s−1 

(see Figure 16.2). Such a speed is about 30% higher than the maximum mean speed determined for 
the Fe I line used in Figure 3.8: the Ti I line, being weaker than the Fe I line, is formed deeper in 
the atmosphere than the Fe I line, thereby sampling more effectively the layers where the convective 
speed is larger. But in the umbra, the results are found to be remarkably different: there, the convec
tive speed was found to be no larger than 0.02 km s−1. That is, the average convective speed in the 
umbra was found to be smaller than in the nearby quiet Sun by a factor of 20. Something about the 
physical conditions in the umbra is leading to a dramatic reduction in the convective speed. 

But it is not only the speed of convection that is reduced in an umbra. Values of the tempera
ture difference ∆T between rising and falling gas (which can be many hundreds of degrees in the 
quiet Sun: see Section 6.6) are also affected. In fact, the ∆T values in sunspot umbrae are so small 
that they are not easily measurable. As a result, the prominent bright/dark pattern (with horizontal 
length-scales of order 1000 km) that is such a characteristic of convection in the quiet Sun (see 
Figure 6.1) is essentially absent in the umbra. This suggests that ∆T in the umbra is much smaller 
than in the photosphere. A  possible reason for this feature may be that granules in a magnetic 
region are observed to be smaller than granules in the photosphere (Title et al. 1992). Quantitatively, 
Narayan and Scharmer (2010) find that granules are observed to be four times smaller in a plage 
with mean field 800 G than in the photosphere. In 3-D MHD models, Tian and Petrovay (2013) 
show that, whereas in the presence of weak fields the pattern of surface cells looks very similar 
to observed solar granulation, in strong fields things look quite different: the surface now con
tains a configuration of structures that look nothing like solar granulation, with horizontal length-
scales much smaller than those of granules in the photosphere. In one particular sunspot model, the 
numerical value of the horizontal length-scale of convection cells was found to be of order 80 km, 
i.e., more than 10 times smaller than the diameters of granules in the quiet Sun (Mullan 1974). 
Tian and Petrovay use the descriptive biological term “brain-pattern” to describe the configuration 
of convection cells with small horizontal dimensions in the presence of strong magnetic fields. In 
the presence of cells that have small horizontal scales, photon energy exchange between rising and 
falling gas will be more effective than in normal granulation, thereby reducing the value of ∆T. 
A large number (>2000) of small transient bright features in a single umbra were studied by Hinode 
(Watanabe 2009): these “umbral dots” were found to have mean diameters of 150–200 km (i.e., 
some 10 times smaller than the mean diameter of photospheric granules) and lifetimes of <15 min
utes. Magnetic field strengths in umbral dots have been reported in the range 1000–2700 G (Falco 
et al. 2017). Yadav et al. (2018), also using Hinode data for multiple (42) umbrae, suggested that 
umbral dots are manifestations of magneto-convection. 

As a result, when we try to calculate the upward convective flux in an umbra using Equation 6.2, 
the combination of reduced velocities and reduced ∆T have the effect that the resulting upward flux 
in an umbra is small compared to the flux being carried up in the quiet Sun. This provides a physical 
explanation for why the umbra of a sunspot appears dark. 

But that still leaves unanswered the question: what is the physical cause for small convective 
velocities in an umbra? LB18 sought an answer to this by searching for a correlation between the 
(small) umbral speeds and various physical parameters: they found that the most significant (anti-) 
correlation is between the umbral speed and the strength of the magnetic field in the spot. In their 
sample of spots, they found that the (anti-)correlation coefficient between umbral speed and field 
strength was −0.79. This strong correlation indicated that the umbral speed would fall formally to 
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 FIGURE 16.2 Bisector analysis of the Ti I 5713.9 Å line in the quiet Sun photosphere (blue curve) and in an 
umbra (red curve). (From Lohner-Bottcher et al. 2018; used with permission of ESO.) 

zero if the field strength were to be as large as 2.78 kiloGauss (kG). This is a very interesting result: 
it shows that, if umbral magnetic fields can be as large as (roughly) 3 kG, then the primary cause 
of small convective speeds in an umbra has something directly to do with the magnetic field. In 
Section 16.4.2, we shall discuss what the observations actually tell us regarding the strength of the 
magnetic fields occurring in the umbrae of sunspots: we shall find that the fields present in sunspot 
umbrae are indeed large enough to reduce the convective speed, in some cases to essentially zero. 

In Section 16.7.1, we shall consider the physical process at work in “magneto-convection”, i.e., in 
situations where magnetic fields interfere effectively with convection. 

16.1.3 areas of spots anD plaGes 

How large are sunspots? Their areas can be readily measured in a white-light image of the solar 
disk. The smallest spots, consisting of umbra only (without any noticeable penumbra), are called 
“pores” and have angular diameters of 2–5 arcsec: that is, the smallest pores are comparable in size 
to the sizes of individual granules. (We shall see in Section 16.7.2 that this is not a coincidence.) The 
largest pores have diameters of no more than 10 arcsec: once a pore grows to a diameter of 10  or 
more, a penumbra appears, and the feature becomes a bona fide sunspot, consisting of a dark umbra 
in the center and a less dark penumbra around the outer edge of the umbra. Large spots have areas 
that are often cited in units of “millionths of the solar hemisphere [MSH]”. The largest spot ever 
recorded had an area of A ≈ 6300 MSH, i.e., it occupied about 0.6% of the visible hemisphere. More 
commonly, sunspots have areas of up to a few hundred MSH: 95% of spots have A < 500 MSH (Bray 
and Loughhead 1979, p. 229, their Table 6.1). Although spots are indeed striking visual phenomena 
when seen against the background of the solar surface, the numerical values of areal coverage that 
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we have just cited should convey an important message: although the presence of a spot immedi
ately attracts the eye when one examines an image of the Sun, it is important to note that even the 
largest spot is actually small in area in comparison with the Sun as a whole. 

Spots are not the only manifestations of magnetic fields on the solar surface. In fact, each spot 
is surrounded by a magnetized area where the field is weaker than in the umbra of the spot, but the 
area of weaker field strength may exceed the spot area by factors of up to 10 or more. The surround
ing magnetic area is referred to as an “active region” (AR) or “plage”. To observe the plages, it is 
preferable to observe in a chromospheric line, such as Hα or the Ca II K line (e.g., see Figure 15.5). 
How much area do the plages occupy on the Sun’s surface? The answer is: it depends on the phase 
of the solar cycle. In a study of more than 100,000 images of the Sun in Ca II K, taken at eight 
observatories around the world in the years 1893–2018, Chatzistergos et al. (2019) have found that 
the daily areal coverage by plages reached a peak of 12% of the solar disk area (i.e., 120,000 MSH) 
on certain days during the 1957 solar maximum. (The annual median value of areal coverage had 
a peak of about 8%, also in 1957.) The corresponding peak in total areal coverage for sunspots has 
been found (in a study of 32,223 spots by SOHO/MDI in cycle 23) to be no more than 1% of the 
solar surface on any one day (Valio et al. 2020). Thus, even when the Sun is at its most active, the 
area of the surface occupied by magnetic features is no more than 10% (or so) of the visible disk. 

A numbering convention for ARs was adopted in 1972 by the National Oceanic and Atmospheric 
Administration (NOAA): an AR is assigned a NOAA number if there are spots in the AR. But a 
spotless AR is not assigned a number. By the year 2002, i.e., after 30 years of using the conven
tion, the NOAA number for ARs passed the 10,000 mark: this indicates that the average rate of 
emergence of spotted ARs on the Sun’s surface is about 300 per year. We will refer to this number 
again in Section 16.11 when we discuss how the Sun removes the magnetic helicity of all of these 
newly emerging ARs. 

16.1.4 spot numbers: the “11-year” CyCle 

Observers of sunspots who collect data over long intervals of time (decades and centuries) have dis
covered that the number of spots on the surface of the Sun varies with time. The numbers increase 
and decrease in a nearly cyclical manner: sometimes there are many spots on the surface, while at 
other times there are few (or even no) spots visible (see Figure 16.3). 

In order to quantify this variability, observers have devised certain rules to count the number of 
spots visible on the Sun on any given day. Since the year 1848, the commonest system in use has 
been the Zurich sunspot number, RZ, which counts both single spots and groups of spots. Each day, 
observers use an image of the Sun to calculate a (daily) value of RZ. In order to make plots over 
extended periods of time, the daily values are typically averaged over monthly or annual intervals: 
whereas individual daily values may exceed 500, the monthly averages do not exceed 400 (Acero 
et al. 2017), and the annual averages (plotted in Figure 16.3) are even smaller, never exceeding 200. 

When there are a large number of spots visible on the surface of the Sun, and yearly averages 
of RZ rise to values of 100–200 or more, the Sun is said to be at “maximum activity”. When average 
values of RZ are small (e.g., <10–20), the Sun is said to be in a stage of “minimum activity”. These 
phases are also known as “solar maximum” and “solar minimum” respectively. On the scale of the 
plot in Figure 16.3, it looks as if each cycle has only one well-defined maximum: however, when a 
finer time-scale is used for the plot, some cycles are found to contain two maxima close together in 
time. Among recent solar cycles, the ones with maximum around 1980 and around 2001 were found 
to have a single maximum, but the cycles with maxima around 1990 and 2012 had double maxima, 
separated by an interval of 1–2 years. The double peaks are separated by the “Gnevyshev gap”, first 
discussed in the literature by Gnevyshev (1967). 

The interval of time between one “solar minimum” and the next minimum is not constant: the 
interval can be as short as nine years and as long as 12+ years. The average length of the sunspot 
cycle (based on RZ values) is about 11 years. In Figure 16.3, we see that in the second half of the 
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 FIGURE 16.3 Number of sunspots, averaged over one year, plotted as a function of time over a span of three 
centuries. (The data were obtained from the Solar Influences Data Center at www.sidc.be/sunspot-data/) 

20th century (when the “Space Age” began), “solar maxima” were observed in the years 1957, 1970, 
1980, 1990, and 2000–2001. As of the time of writing (September 2021), the most recent “solar 
maximum” was observed in 2014. For ease of reference, solar observers have devised a running 
number to label each solar cycle: by convention, the cycle that is assigned the number 1 began at the 
minimum of activity in 1755, when detailed spot records began to be kept on a regular basis. (Some 
earlier cycles are included in Figure 16.3, but the data for those cycles are less reliable, and no cycle 
number has been assigned to them.) When telescopes allowed the first modern records of sunspots 
in the early 1610s, observers such as Galileo (in Italy) and Thomas Herriott (in England) would 
make drawings of spots on some days, but then weeks or months or years would elapse without any 
records being made. From 1650 to 1720, the Sun was almost entirely devoid of spots, a period now 
known as the “Maunder minimum”. After 1720, interest in spots grew more widespread, but regular 
observations did not begin until the 1750s. Cycle 3 was the largest cycle (in terms of sunspot num
ber) in the 18th century. In the 19th century, cycles 4 and 5 were the smallest cycles, while cycles 8 
and 11 were the largest. In the 20th century, cycle 14, with a peak in 1907, was the smallest cycle, 
while cycle 19, with a peak in 1957 (at the dawn of the Space Age), was the largest cycle. The most 
recent solar maximum (cycle 24, in 2014) had a maximum sunspot number that was smaller than 
almost all of the 20th-century cycles. As of the time of writing (December 2021), the Sun is in cycle 
25: the first active region of this cycle emerged on the Sun on July 6, 2019 (Chelpanov and Kobanov 
2020). If it takes 5–8 years for the cycle to reach maximum (see Section 16.9), then the maximum 
of cycle 25 should occur somewhere between 2024 and 2027: during that interval, the Parker Solar 
Probe (see Section 18.7.2) is scheduled to achieve its closest approach to the Sun. 

When one inspects results such as those shown in Figure 16.3, the human eye is typically drawn 
to the peaks (solar maxima) in the curve. But it is also worthwhile to examine the “dips” (solar 
minima) in the curve. How small can the RZ value become in a solar minimum? The answer depends 
on the length of time over which one averages the individual (daily) values. A different way to 
quantify the spottedness of the Sun, or more precisely, the lack of spottedness, especially near solar 



266 Physics of the Sun 

  

 

 

 

 

minimum, is in terms of the number of days in a year when no spots were detected on the Sun, i.e., 
when the daily value of RZ was zero. These “spotless” days (reported in the website https://wwwbis. 
sidc.be/silso/spotless) vary in number from cycle to cycle. Since the year 1849, the year 1913 had the 
largest number (N(s-d)) of spotless days (310). In the years 2008 and 2009, N(s-d) = 270 and 260 
respectively. And for years that occurred during the most recent minimum of activity, there were 
275 spotless days in 2019. Thus, we may say that the Sun was “very quiet” (magnetically speaking) 
in the years 1913, 2008, 2009, and 2019. The value of N(s-d) can also be used to characterize the 
level of activity over an entire solar cycle: in cycles 21, 22, and 23, N(s-d) had values of 273, 309, and 
813 respectively. Clearly, the much larger value of N(s-d) in cycle 23 indicates that this was a cycle 
of unusually low magnetic activity. Another measure of low activity in cycle 23 can be found by 
examining the length of time that elapsed with no “medium-large” flares: the GOES data contained 
not a single flare of class C2 (or larger) for an interval of 466 days between the end of cycle 23 and 
the start of cycle 24. (For the definition of classes of flares, see Section 17.19.1.) And in the 3-year 
interval from January 2007 to December 2009, not a single X-class flare occurred. Moreover, the 
length of cycle 23 was found to be 12.83 years (based on sunspot numbers): this was the longest 
cycle in almost 200 years (Kossobokov et al. 2012). Furthermore, the end of cycle 23 was marked 
by several extreme solar properties (de Toma 2011): the annual mean sunspot number, which had 
been 12.6, 13.4, and 8.6 at the previous solar minima of 1976, 1986, and 1996, fell to as low as 2.9 
in 2008; the polar field strength fell from a value of 5–10 G (in 1996) to 3–4 G (in 2008); the inter
planetary magnetic field (IMF), which had been 5.48, 5.76, and 5.11 nanotesla (nT; 1 = 10−5G) in 
1976, 1986, and 1996, fell to 3.93 nT in 2009; the annual mean value of solar wind speed in 1976, 
1986, and 1996 had been 455, 453, and 423 km s−1, whereas it decreased to 364 km s−1 in 2009; the 
polar coronal holes had smaller areas (4%–5% of the solar surface) in 2008 than in 1996 (7%–8% 
of the solar surface). 

Not only do the numbers of sunspots increase and decrease with a period of ~11 years: there is 
also an 11-year cycle in the mean latitudinal positions of spots. At solar maximum, the spots are 
observed to lie at higher latitudes (up to 30–40 degrees), whereas at solar minimum, the spots are 
observed to lie at lower latitudes (10–20 degrees). When sunspot positions are plotted as a function 
of time, the systematic displacement towards lower latitudes as time goes on gives rise, in each 
11-year cycle, to an easily recognized pattern that is referred to as the “butterfly diagram” (see 
Figure 16.10). Also displaying a “butterfly diagram” as the solar cycle progresses is the toroidal 
component of the solar magnetic field (Mordvinov et al. 2012), indicating that sunspots are gener
ated by the toroidal component of the Sun’s field. This conclusion will be important when we con
sider why the Sun has an 11-year cycle (Section 16.9). 

During the years 2011–2014, several workshops were held by solar astronomers with the goal of 
developing a new approach to quantifying the sunspot number (Clette et al. 2016). The new sun
spot number is referred to as the group sunspot number (GSN). When earlier sunspot records are 
revisited, the yearly averages of the GSN are found to be in some cases different from the Zurich 
numbers, with maximum values between 250 and 300, i.e., somewhat larger than the values of RZ 

in Figure 16.4. Acero et al. (2017) conclude that using the newer GSN approach, the daily sunspot 
number may at times reach numerical values in excess of 550. 

Notice that the sunspot number (as plotted in Figure 16.3) indicates changes that occur during 
each cycle as measured by optical images of the photosphere. But even with the large changes in RZ 

that are apparent in Figure 16.3 between solar minimum and solar maximum, the overall changes 
in the total flux of optical radiation from the Sun does not change by more than about 0.1% (see 
Figure 1.1). That is, the solar cycle causes only miniscule changes in the radiation from the photo
sphere. Other photospheric properties that also showed no significant alterations (in the quiet Sun) 
over a 6-year interval spanning the maximum of solar cycle 24 include vertical flows, horizontal 
flows, continuum contrast, and network magnetic fields (Roudier et al. 2017). In stark contrast, when 
we discuss the Sun’s corona later (Chapter 17), we shall see that in the course of a solar cycle, the 
radiation emitted by coronal gas at temperatures >2.5 × 106 K is observed to vary by a factor of a few 

https://wwwbis.sidc.be
https://wwwbis.sidc.be
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orders of magnitude (Takeda et al. 2019). Apparently, the coronal material is much more sensitive 
than the photospheric material is to the magnetic changes occurring in the course of a solar cycle. 

The data in Figure 16.3 are based mainly on telescopic sightings of spots. Is there any way to 
extend the study of solar cycle to times before the invention of the telescope? One possibility is 
based on the fact that the solar wind (see Chapter 18) makes it difficult for energetic charged par
ticles (“galactic cosmic rays” or GCR) to reach the Earth. When sunspots are plentiful, the GCR 
flux at Earth is reduced (see Figure 18.6) by as much as 20%. When a GCR reaches Earth, it causes 
a “shower” of energetic particles in the atmosphere, and these can generate the radioactive nuclides 
Be10 and C14 (Beer et al. 2018). Ice cores can be drilled in Greenland to study the contents of ice that 
was “laid down” (in the form of snow and rain) centuries or millennia ago: the abundance of Be10 

in such cores shows variations that (in recent centuries) are found to be correlated significantly with 
the 11-year sunspot cycles. And the C14 abundances can be extracted from tree ring records extend
ing back some 10 millennia: the records indicate a periodicity of 208 years and one of 2300 years. 
The interference between the 11-year cycle and these longer cycles gives rise at certain times to 
“grand maxima” and “grand minima” of solar activity on time-scales of a century or more. The 
most famous “grand minimum” occurred in the years 1650–1720 when sunspots were observed to 
be very rare in the Sun: this period is called the “Maunder Minimum”, during which Europe expe
rienced a “little ice age”. Interestingly, the Be10 record demonstrates that although spots were rare 
in the years 1650–1720, nevertheless, the access of GCR to Earth continued to be blocked every 
11 years, indicating that the Sun’s magnetic fields were still undergoing an 11-year cycle. It is pos
sible that the large solar maximum in 1957 (see Figure 16.3) might correspond to one of the “grand 
maxima”. The reader might find it interesting to speculate whether, based on the observed weak
ness of solar cycle 24 (see Figure 18.4), the Sun might be heading into another grand minimum (and 
another “little ice age”) in the 21st or 22nd century. 

16.1.5 spot lifetimes 

How long do spots live? Small spots may appear and disappear in a matter of hours. Larger spots 
require days or weeks to reach maximum size, and days or weeks to decay. A formula that has been 
used to estimate spot lifetime in terms of area is the following: the lifetime T (in units of days) is 
(roughly) proportional to the maximum area of the spot A (in units of MSH), with a proportionality 
constant of 0.1, i.e., T(days) ≈ 0.1A(MSH) (Bray and Loughhead 1979, p. 229). 

In her study of sunspot groups recorded in Greenwich by photography during the years 1874– 
1906, Annie Maunder (1909) reported that among 624 spot groups that were seen in at least two 
solar rotations during those 32 years, the 12 longest lived groups that were reliably identified sur
vived for five solar rotations. 

Most spots decay by breaking up into smaller units, and these are then eroded over time by the 
turbulent erosion by convective cells around the periphery: this turbulence shreds the spot by tear
ing off pieces of magnetic field. 

16.1.6 enerGy DefiCits anD exCesses 

Something unexpected happens to the power output from the Sun in the course of the sunspot 
cycle (see Figure  1.1). You might expect that when sunspots are  most abundant, the Sun would 
emit less power. But this is not what is observed. Instead, exactly the opposite is observed: the solar 
power output is observed to have maximum values in or around the years 1980, 1990, and 2000, 
when there are most sunspots on the surface. This surprising discovery emerged from spacecraft 
data during the last decades of the 20th century: it was only in those decades that the precision 
of measurements of the total (bolometric) luminosity of the Sun, integrated over all wavelengths, 
became at least as good as 0.1%. (In previous years, observations from the ground were plagued 
by uncertainties arising from Earth’s atmosphere, which blocks some 2% of the luminosity.) When 
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such precision became available in instruments that also remained stable enough over an entire 
11-year cycle, the data indicated that the solar luminosity has a maximum value when the number of 
spots is largest. The excess power output at solar maximum compared to solar minimum is of order 
0.1% (see Figure 1.1). 

This is counterintuitive: when there are lots of spots, each dark umbra emits less power than the 
undisturbed photosphere, and therefore, one would expect the solar output to be a minimum. 

However, sunspots are not the only contributors to perturbations in the solar energy output. 
Careful photometry of the photosphere in the vicinity of sunspots reveals the presence of multiple 
small features that are slightly brighter (by at most a few percent) than the undisturbed photosphere 
when viewed in white light. These bright point-like features (called “faculae”) are much less obvi
ous to the human eye than sunspots. In fact, even with telescopes, faculae are almost impossible 
to pick out near the center of the solar disk: the easiest place to observe them is in the vicinity of 
sunspots as the latter approach the limb (see Figure 16.4). 

The excess of facular flux above the photospheric value helps to offset some of the flux deficit 
of a large sunspot in the vicinity. It has been reported (Hempelmann and Weber 2012) that facular 
emission actually overcompensates for the spot deficit when the sunspot number is not too large 
(RZ = 100 ±100), but that spot deficits “win out” at larger values of RZ. This might explain why solar 
power output is slightly larger (by 0.1%) at solar maxima, when “typical” values of RZ lie in the 
range 100±100. 

In this regard, it is relevant to note that in certain stars which have Sun-like spectra, Radick et al. 
(1998) and Shapiro et al. (2014) have reported that some stars exhibit variability that is dominated 
by faculae, while in other stars, the variability is dominated by starspots. The transition between 
facular-dominated and spot-dominated variability is found to occur at a certain level of magnetic 
activity: variability in stars with lower activity levels (such as the Sun) are facular dominated, while 
in stars with higher activity levels, the variability is spot dominated. 

FIGURE 16.4 Faculae in a white-light image of sunspots near the limb of the Sun. Faculae, located in the 
vicinity of sunspots, appear slightly brighter than the undisturbed photosphere. (Photo by Damian Peach; used 
with permission.) 
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16.2 CHROMOSPHERIC EMISSION 

Another departure from spherical symmetry in the solar atmosphere, which we came across in 
the preceding chapter, appears when we observe the chromosphere. When the Sun is viewed in 
the core of a chromospheric line (such as the Ca II K line, or Hα: see Figure 3.7), the Sun is not 
spherically symmetric. Quantitatively, as we have seen, the differences in brightness between 
network (along the edges of supergranules) and cell centers (in the central locations of super-
granules) suggest that mechanical energy is being deposited in the network at a rate that exceeds 
the rate in the cell centers by a significant factor, possibly by as much as an order of magnitude 
(see Equation 15.12). The excess brightness in the network is known to be correlated with locally 
stronger magnetic fields. Why should that be so? Because vertical fields that happened (at an 
earlier time) to be situated near the cell center are swept towards the edge of the supergranule 
as time goes on due to horizontal flows from the center of a supergranule towards its edge (see 
Section 6.12). We may infer that the enhanced brightness of network (relative to the cell center) 
is associated with the presence of locally stronger magnetic fields (see Section 16.7.6) that have 
been swept by horizontal flows into the network. Each mottle (spicule) seen in Hα along the edge 
of a supergranule (i.e., in the network) (see Section 15.4) owes its existence to a local patch of 
enhanced vertical magnetic field. 

FIGURE 16.5 The chromosphere: departures from spherical symmetry may include sunspots, plage, fila
ments, and prominences. (Copyright Peter Ward/Advanced Telescope Supplies; used with permission.) 
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Also, when we observe the chromosphere, we find that there are features that have a close connec
tion with sunspots in the photosphere (see Figure 16.5). In the chromosphere, the locations of sun
spots (as determined from photospheric images) are found to be surrounded by regions of enhanced 
emission (“plages”: see Chapter 15, Figure 15.4). Thus, sunspots are in fact only one component of 
a more extended physical structure, a “plage”, in which chromospheric emission is enhanced. The 
(white-light) faculae are co-located with plage. The overall feature, including sunspots, plages, and 
faculae, is called an “active region”. 

Active regions do not appear randomly at all locations of the solar surface: from centuries of 
observation, it has been found that there are more favored areas (near the equator, at latitudes of 
no more than ±35 degrees) and less favored (or even forbidden) areas (near the poles, at latitudes in 
excess of ±35 degrees). 

Also present in chromospheric lines are features called “prominences”. These are structures that 
were first observed in emission standing above the limb of the Sun: they consist of material that 
appears to be suspended “in midair”. We shall see (in Section 16.7.4) that magnetic fields play a key 
role in suspending the prominence material. 

Prominences can also be viewed on the disk of the Sun when the latter is observed in Hα: in 
such cases, they appear as dark more-or-less ribbon-shaped features (“filaments”: see Figure 16.6) 
located preferentially at positions where the surface magnetic fields change polarity. The filaments 
can be “quiescent”, i.e., stationary for hours or days, but they can also, at the end of their lifetime, 
reveal rapid evolution as the prominence material “erupts” rapidly, either because of heating or 
expulsion of the material into the upper atmosphere. 

16.3 MAGNETIC FIELDS: THE SOURCE OF SOLAR ACTIVITY 

Why does the Sun depart from spherical symmetry? The answer is: because of the presence of 
magnetic fields. These fields give rise to a variety of observational phenomena. The umbrella term 
“magnetic activity” is used to cover the magnetically driven phenomena that are such a striking 
characteristic of the Sun at times. Under the term “magnetic activity”, we include the presence of 
sunspots, faculae, the chromospheric network, and prominences, all of which are more-or-less long-
lived phenomena that can be regarded as quasi-stationary in nature. On the other hand, “magnetic 
activity” also includes phenomena that are by no means stationary, such as flares and coronal mass 
ejections (CMEs). Both of the latter involve highly time-dependent processes that disturb the solar 
atmosphere in striking ways, giving rise (at times) to “fireworks displays” involving the most ener
getic phenomena in the solar system. 

Our aim in this chapter is to describe, in terms of physical processes, how magnetic effects give 
rise to a rich variety of phenomena in the Sun. 

Before discussing the general properties of magnetic fields and their interactions with plasma, 
and in order to keep the discussion rooted in the Sun, we start with what the observations tell us 
about the magnetic fields themselves. We need first to understand how astronomers measure the 
strength of the fields in solar features of various kinds. Once we have a feel for the orders of mag
nitude of the field strengths in various features, we will turn to the physics to determine which 
processes are most relevant in the various phenomena. 

16.4 MEASUREMENTS OF SOLAR MAGNETIC FIELDS 

There are three observational approaches to measuring solar fields. One involves remote sensing 
using optical photons (Section 16.4.1): we observe certain photons coming from a certain feature on 
the surface of the Sun, examine the spectral and polarimetric properties of the photons, and infer 
the strength and direction of the field on the solar surface in the feature under observation. A second 
approach uses remote sensing using radio photons: polarization data again contains information on 
the strength and direction of local magnetic fields: these data give information about field strengths 
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in “magnetic loops” in the solar corona. A  third approach involves direct measurements of the 
field in situ in the plasma that streams out of the Sun (the “solar wind”: see Chapter 18) into inter
planetary space, and then extrapolate back (almost all the way to the surface of the Sun) to infer the 
magnetic field strengths near the surface of the Sun. 

Let us consider the three observational approaches to measuring fields in the Sun. 

16.4.1 measurement of maGnetiC fielDs on the sun: optiCal Data 

To measure solar magnetic fields, we use techniques that seek to identify changes in the shape 
of a spectral line when a field is present. Two different physical effects have been used by solar 
astronomers to measure the magnetic fields in the Sun. One is the Zeeman effect, which results in 
shifts to atomic energy levels in the presence of a field: these shifts are amenable to a simple physi
cal interpretation and will be described later. The second effect is the Hanle effect, which leads to 
changes in how polarized radiation is scattered in the presence of a field. The Hanle effect in the Sun 
is sensitive to very weak fields, in which the Zeeman splitting is comparable to the natural width 
of the spectral line: this occurs in fields with strengths ranging from a few G to some tens of G. If 
future polarimeters can achieve sensitivities that are good enough to detect degrees of polarization 
as small as a few parts in 106, it may be possible to measure the global field of the Sun (i.e., 6–12 
G: see Section 16.4.6) using the Hanle effect (Vieu et al. 2016). We are interested mainly in fields 
in active regions on the Sun: in such areas, the regions with the smallest fields (referred to as “dead 
calm” areas: see Section 16.4.1.5) have field strengths of 10–20 G. Even in these dead calm regions, 
the fields are already for the most part strong enough for the Zeeman effect to dominate the Hanle 
effect. As a result, we will not discuss the Hanle effect further in this “first course”. 

16.4.1.1 Zeeman Splitting 

How is a spectral line altered in the presence of a magnetic field? To answer this, let us recall what 
happens in the absence of the field. Each spectral line involves the transition of an electron from one 
atomic energy level E1 to another level E2. In the absence of external magnetic fields, the energy lev
els are determined by atomic structure. Radiation from an atom is spherically symmetric: there is no 
preferred direction in the problem. When the atom is observed from any direction, what is observed 
is a single line with frequency νo = (E2 − E1)/h, i.e., a single line with a wavelength o = c/νo. 

Now introduce an external magnetic field. Two aspects of the situation change. First, the energies 
of the atomic levels are altered: this will cause the lines to shift in wavelength. Second, the photons 
that emerge have properties that are no longer spherically symmetric: observers who are situated in 
different viewing positions see different spectra. 

To understand how magnetic processes affect atoms, we first refer to a basic result of magne
tostatics: what happens when one places an object with a magnetic moment in a field? Recall that 
when iron filings are sprinkled on paper near a bar magnet, a clear pattern is seen: each iron filing, 
which is a small magnet in itself with its own magnetic moment, aligns itself with the local magnetic 
field lines. Now, every electron has an intrinsic “spin” (with angular momentum  /2), and associ
ated with this spin is a magnetic moment that is referred to as the Bohr magneton: μB = e /2mec. 
In a magnetic field  B, an electron can settle into one of two states: one with  μB parallel to the 
external field and another with μB antiparallel to the external field. In one of these states, the elec
tron gains an energy + μBB, while in the other state, the electron energy is reduced by μBB. Thus, an 
electron which initially was in an atomic level with a particular energy E1 now finds that the level 
“splits” into two levels, with energies E1 + μBB and E1 − μBB. 

What will we observe if we detect the photons that emerge from the aforementioned atom? The 
answer depends on the direction from which we mark the observation. Suppose we choose to make 
the observations parallel or antiparallel to the external magnetic field: that is, we choose to “look 
straight along the field”. Let us also suppose for simplicity that the energy level E2 has the property 
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that the level does not undergo any splitting in a magnetic field (atomic levels with this property 
do exist). In that case, what we see is the following: the original single line at a frequency νo, i.e., 
at wavelength o = c/νo, is now seen to consist of two lines (a “doublet”), at frequencies νo ± Δν, 
where Δν = μBB/h. 

This conversion of a single line into a doublet (when you observe parallel or antiparallel to 
the field lines) as a result of a magnetic field is called Zeeman splitting, after the discoverer (see 
Figure 16.6). 

The wavelengths of the two components of the doublet are o + ∆  and o  −  ∆ , where 
2 v c  o / . Inserting the value for μB, we find that in the presence of a magnetic field, the wave

length shift is   const X  B o 
2  where the constant, equal to e/4πmec2, has the numerical value of 

4.9 × 10−5 cm Gauss−1 cm−2. For convenience, if we express wavelengths in units of Å (= 10−8 cm), 
we find 

  4 9 10 13 (  o 
2 (16.1). B G) 

Equation 16.1 is valid for the simplest case, when only the electron’s magnetic moment is respond
ing to the external magnetic field. This is referred to as the “normal” Zeeman effect. 

The actual Zeeman effect in “real atoms” differs slightly from the prior formula because there 
are other sources of magnetic moments in addition to the intrinsic magnetic moment of the electron 
itself. For example, when an electron orbit has a finite angular momentum, that orbit may also have 
an associated magnetic moment: the vector describing the magnetic moment points in a direction 
which is perpendicular to the plane of the orbit, and has a magnitude proportional to the angular 
momentum of the electron in its orbit. The process by which an external field interacts with an 
orbital magnetic moment is quantitatively different from the process by which the external field 

FIGURE 16.6 Zeeman splitting of spectral lines in a magnetic region on the Sun. The vertical slit of the 
instrument is located as shown in the left-hand image: the slit overlaps (about halfway down the image) with 
the umbra of a sunspot. On the right-hand side, a (vertical) spectral line, which is single in the undisturbed 
Sun (at top and bottom), becomes multiple when the slit overlaps the umbra, where magnetic fields are strong. 
(Image downloaded from the website of High Altitude Observatory, a division of the National Center for 
Atmospheric Research, funded by the National Science Foundation.) 
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interacts with the electron spin. As a result, the prior expression is only part of the story of the 
wavelength shift for any given transition. Each “real” transition has a factor gL associated with it 
(the so-called Landé g-factor), and the right-hand side of the prior expression must be multiplied 
by gL. For transitions of various kinds, the numerical value of gL may be as small as zero (if orbital 
and spin magnetic effects cancel) or as large as (roughly) three. Moreover, depending on the atomic 
structure, rather than splitting into two components, a line may split into multiple components. 
When multiple components are present, this is referred to as the “anomalous” Zeeman effect. 

To give a numerical example, consider an atom that has a line in the visible part of the spectrum, 
at (say) o = 5000 Å. In a field of 3000 G (typical for a sunspot umbra), and assuming gL ≈ 1, we find 
that ∆  ≈ 0.037 Å. Therefore, in order to detect a clean splitting of the lines in a sunspot, observ
ers are required to use instruments with a resolving power (defined by the ratio of o/∆ ) of more 
than 100,000. Achieving such a resolving power requires careful attention to instrumental design. 
However, in solar physics, such resolving powers are available: in fact, we have already cited (see 
Figure 16.2) results from the Sun that were obtained by a spectrometer with a resolving power of 
>700,000. 

Note that in Equation 16.1, the Zeeman splitting increases with the square of the wavelength: as 
a result, one can improve the chances of observing Zeeman splittings by observing in the infrared, 
where wavelengths are longer than those in visible light. As an extreme example, we may cite the 
use of a pair of Mg I emission lines at wavelengths near 12 μm (Hong et al. 2020). We shall refer to 
observations that take advantage of infrared lines in Section 16.4.2. 

16.4.1.2 Zeeman Polarization: The Longitudinal Case 

The splitting of a single line into two (and only two) components occurs when we make observa
tions along the magnetic field. This is referred to as “longitudinal Zeeman splitting”. 

Observations show that the two lines of a doublet are not merely different in their wavelength; 
they also differ in polarization: the two lines are circularly polarized in opposite senses. To see why 
this is so, consider a spectral line in which the upper level is not affected by the field (i.e., its Landé 
g-factor = 0), but the lower level undergoes normal Zeeman splitting. In the lower level, the angular 
momentum (spin) of the electron has a component along the field of ±h/2, depending on whether the 
electron spin is in the “up” or “down” position relative to the field. 

To understand how a passing photon interacts with an electron in the split level, we note that the 
angular momentum (spin) of a circularly polarized photon is ±h, depending on whether the photon 
has right- or left-hand polarization. Consider an electron that is sitting in the “down” position, with 
spin − /2. If a photon with left-hand polarization (i.e., spin − ) passes by that electron, the electron 
cannot interact with the photon, because if the interaction occurred, then the electron would have 
to absorb the photon’s spin, add it to its own, and enter a state with spin of −3 /2. Such a state is 
not available to the electron: the only available states have spins of ± /2. As a result, the electron 
simply ignores the left-hand polarized photon, and the photon passes through unperturbed. But now 
consider the case where the passing photon is right-hand polarized, i.e., the photon has spin + . 
Now, the electron can interact with the photon, adding the photon’s spin + to its own (− /2), and 
ending up with spin + /2. Such a spin is allowed: the electron simply transitions to the “up” position. 
Thus, an electron in the “down” position preferentially absorbs right-hand polarized photons out 
of the beam. The remaining photons, i.e., the left-hand circularly polarized photons, pass through 
and reach the observer: the observer therefore sees left-hand circular polarization as the dominant 
component of the absorption feature. 

How do we know that circularly polarized photons interact with electrons in this way? 
Because experimental confirmation is available in the laboratory. Specifically, in a thin sheet 
of iron, the magnetization can be chosen so that the elementary magnets in the iron all tend to 
be aligned in one particular direction. Then if a circularly polarized photon passes through the 
sheet, the photon will be scattered preferentially if its polarization has the correct sign to flip 
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an aligned magnet. Of course, such a test does not work with optical photons: the iron sheet 
prevents them from passing through. But if one uses high-energy photons (gamma rays), then 
these can pass through the iron sheet, and the aligned magnets can be flipped. In fact, this 
property of photon-electron interactions played a role in establishing the existence of a physical 
phenomenon known as parity violation in weak interactions: a key experiment was performed 
by Goldhaber et al. (1958). 

Returning now to our Zeeman doublet, we recall that a “down” electron has a specific energy shift, 
depending on the direction of the field. Let us consider a case in which the field points toward the 
observer. Recall that the magnetic moment of the electron is proportional to the electron spin, and 
the proportionality factor depends on the (negative) charge of the electron. As a result, when the 
electron spin is sitting in the “down” position, the magnetic moment is sitting “up” relative to the 
field. Therefore, the electron has an excess energy  +μBB relative to the unperturbed state. This 
means that the lower energy level is no longer the unperturbed value E1, but a larger value: E1 + μBB. 
The upper energy level is (by assumption) still at the unperturbed value E2. As a result, the fre
quency of the transition is no longer equal to (E2 −  E1)/h, but takes on a lower value. A  lower 
value for the frequency means a longer wavelength for the photon: therefore, we are discussing the 
redward-shifted component of the Zeeman doublet, at wavelength o + ∆ . 

FIGURE 16.7 When observations are made either parallel to, or antiparallel to, the direction of the magnetic 
field (vector B), Zeeman splitting leads to components which are circularly polarized. When observations are 
made perpendicular to the field, the split components are linearly polarized. (From PHYWE Systeme GmbH 
and Co, Gottingen, Germany; used with permission.) 
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We conclude that when the field in a certain location of the Sun is pointing  toward the 
observer and a Zeeman line in absorption in observed, the redward component will be observed 
to be circularly polarized in the left-handed sense. Analogous arguments can be applied to the 
“up” electron, showing that the blueward component, when seen in absorption, will be right-
hand polarized. 

Conversely, if we observe a region where the solar field is pointing away from the observer, the 
blueward component of the Zeeman doublet will be left-hand polarized. 

Thus, measurements of the polarization of a spectral line provides a powerful diagnostic of 
the direction of magnetic fields in the Sun. If I point my telescope at a particular umbra on the 
Sun, observe a Zeeman doublet in absorption, and find that the blueward component, at wavelength 

o − ∆ , is (say) right-hand polarized, then I know that the field lines are pointing toward me. In 
order to point towards me (on Earth), such field lines are directed outward from the Sun. And I also 
know how strong the field is along the line of sight, by measuring the shift Δ  and inserting this 
into Equation 16.1. 

16.4.1.3 Zeeman Polarization: The Transverse Case 

Magnetic fields in the solar atmosphere are complicated in spatial structure. As a result, although 
there are certainly possibilities for observing “straight down the field” in favorable situations, this 
is not always the case. In other locations, the line of sight will turn out to be perpendicular to the 
field lines. 

If I  observe the photons that propagate in directions perpendicular to the external magnetic 
field, the results are different from the longitudinal case (see Figure 16.7). In the perpendicular 
case, known as the “transverse Zeeman effect”, we observe not two, but three components. Two 
components are still found at wavelengths o + ∆  and o − ∆  (as before), but now there is also a 
third component at the undisplaced wavelength o. In the case of the transverse Zeeman effect, the 
polarizations of the components are observed to be  linear (rather than circular): the undisplaced 
line is linearly polarized parallel to the field (this line is referred as the π component), while the 
two shifted components are polarized perpendicular to the field (these lines are referred to as the 

 components, where Greek sigma is assigned because the word perpendicular in German “sen
krecht” starts with the letter s). 

Because of the polarization properties, by (i) measuring the splitting ∆ , (ii) counting compo
nents of the split line, and (iii) measuring polarizations, we can determine the strength of the field 
and also the angle of the magnetic field relative to our line of sight. This is a powerful diagnostic for 
the properties of magnetic fields, especially in the Sun where the fields in an active region can be 
very complicated, with many changes from one location to another. 

16.4.1.4 Babcock Magnetograph: Longitudinal Fields 

The polarization properties of the Zeeman effect provide a practical technique for measuring weak 
solar magnetic fields. No longer do we have to build an instrument that can cleanly separate the 
components of the Zeeman doublet. Instead, solar observers (starting with Babcock 1953) use the 
trick of observing in one polarization at a certain wavelength that is shifted by +∆  on one side of 
line center, and in the opposite polarization at a wavelength which is shifted by −∆  on the other 
side of line center. By carefully choosing Δ  so that the observations are made on the steepest part 
of the absorption line profile, even a slight amount of Zeeman splitting can then be detected. This 
allows detection of fields as weak as tens of Gauss on the Sun. 

An instrument that takes advantage of the circular polarization properties of the Zeeman doublet 
is referred to as a Babcock magnetograph. It is useful for measuring the  longitudinal field at all 
points of the solar disk. Such instruments have been in widespread use for decades for daily moni
toring of solar magnetic fields. 
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16.4.1.5 Vector Magnetograph 

Instruments that measure both linear and circular polarization are called “vector magnetographs”. 
These instruments measure the four “Stokes parameters” (I, Q, U, V) that determine the shape of a 
spectral line in the presence of a magnetic field (see Section 3.8.4). The parameter I measures the 
total strength of the line; V measures the circular polarization of the line, which is controlled by the 
component BLOS of the magnetic field strength lying along the line of sight (LOS); Q and U measure 
the linear polarization of the line, and these are controlled by the component BT of the magnetic 
field lying transverse to the line of sight. It can be shown (Asensio Ramos and Martinez Gonzalez 
2014) that, in observational terms, V depends on the first derivative of I as a function of wavelength 

: as a result, the value of V is linearly proportional to the value of BLOS. However, Q and U depend 
on the second derivative of I as a function of wavelength : as a result, the values of Q and U are 
proportional to the square of BT. As a result, in the presence of noisy data, the value of BLOS can be 
determined more reliably than the value of BT. Thus, in data obtained with the SDO/HMI vector 
magnetograph, the noise in the value determined for BLOS is about 10 G, but the noise in the BT value 
is about 100 G (Virtanen et al. 2019). 

Early in 2010, observers at the National Solar Observatory in Arizona started to make daily 
observations of the entire solar disk using a vector magnetograph named SOLIS (Synoptic Optical 
Long-term Investigations of the Sun). Results of vector fields extracted from the daily images can 
be “stitched” together into “synoptic maps” that allow the reader to view the results over the course 
of one complete Carrington rotation (CR: lasting 27.2753 days by definition: see Section 1.11). To 
be sure, individual active regions on the Sun had previously been observed from time to time with 
other vector magnetographs, but SOLIS was the first instrument to obtain daily measurements of 
the entire visible disk over an entire CR (#2092). Also in 2010, with the launch of SDO/HMI, vector 
magnetograph data became available from space as well. The vector data yield the three compo
nents of the magnetic field in the solar photosphere: radial, latitudinal, and longitudinal. Virtanen 
et al. (2019) have analyzed the results from SOLIS over the time interval 2010–2017, from CR 2092 
to CR 2190, i.e., for almost 100 Carrington rotations of the Sun. By “stitching” together the maps for 
each CR, Virtanen et al. obtained a “super-synoptic” map extending over the entire 7–8 year period. 

The Hinode spacecraft has provided vector magnetograph data to be obtained in large areas of 
quiet Sun, especially in the cell centers (also referred to as internetwork [IN]). The angular resolu
tion of the measurements is very high: 0.16 arcsec. The results (Bellot Rubio and Orozco Suarez 
2019) indicate that the IN magnetic field strength is dominated by fields with strengths of order 
100–200 G, and these fields are found to be predominantly horizontal, i.e., parallel to the Sun’s 
surface. As regards the azimuth of the horizontal fields, they are distributed randomly. On the other 
hand, observations of the quiet Sun indicate that stronger fields (> 600 G) are mainly vertical (Pastor 
Yabar et al. 2018). 

In the case of the very quiet Sun, the balloon-borne instrument called SUNRISE, flying in 
June 2009 during a deep solar minimum, examined a weak field region at the center of the Sun’s 
disk in search of emerging magnetic loops (Martinez Gonzalez et al. 2012: hereafter MG12). With 
angular resolutions comparable to that of Hinode (of order 100 km on the Sun), each newly emerg
ing loop was identified as a bipolar pair of regions with + and − values of V (representing the 
two footpoints of the loop, with one footpoint containing vertical field lines pointing towards the 
observer, while the second footpoint contains vertical field lines pointing away from the observer), 
separated by a region of horizontal field (with finite values of Q and U) between the pair. This com
bination of vertical fields at footpoints and horizontal fields between the footpoints is what would be 
expected if magnetic field were in the form of magnetic loops emerging into the atmosphere from 
beneath the surface. As time goes by, the bipolar pair separates from each other spatially as the 
magnetic loop rises higher in the solar atmosphere. Over the course of 40–60 minutes of observa
tions, some 500 loops were observed to emerge in the field of view: the advantage of the very low 
level of solar activity during the SUNRISE flight was that individual loops could be identified and 
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followed in their evolution as they emerged into the solar atmosphere from beneath the surface. The 
observations showed clearly that a loop of magnetic field, which is observed to be present in the 
solar atmosphere at any instant To, actually emerged from beneath the surface at an earlier time Ti 

< To. And prior to Ti, no sign of that loop was present. The emergence of magnetic loops through 
the surface suggests that some process (probably a dynamo) is at work beneath the surface, actively 
generating new magnetic loops. 

An amazingly detailed observational study of the way in which one particular loop emerged first 
in the photosphere, then moved up into the chromosphere, and finally reached the corona has been 
recorded using a very different observing program by Kontogiannis et al. (2020). Seven separate 
instruments in space and on the ground were combined to follow a quiet region of the Sun (close to 
solar minimum) for a 2-hour interval during which a small loop emerged. The progression of loop 
emergence in the data is such that one can see clearly (in their Figure 8) how the footpoints of the 
loop, with opposite magnetic polarity, separate monotonically from each other in the photosphere 
during the course of the 2-hour sequence of observations: initially, the footpoints were very close to 
each other (no more than 2–3 arcsec apart), but after 2 hours, they are separated by almost 10 arcsec. 
And when the loop reaches the corona, the authors derive the differential emission measure (DEM: 
see Section 17.5) during two intervals of time, one at early times in the event, and the second some 
90 minutes later: in the first interval, the DEM peaks at log T = 6.0, while in the second interval, the 
DEM peaks at log T = 6.1. These peak temperatures are entirely appropriate for the “cooler” com
ponent of the corona (log T ≤ 6.1), which is known to persist more or less unchanged at all phases of 
the solar cycle (see Figure 17.9 and Section 17.6). 

Significantly, in their study of SUNRISE data, MG12 found that loops do not emerge in all 
locations equally. There were certain locations where (during certain observing sessions) loops 
preferred to emerge, while in other areas, loops emerged only rarely. Specifically, MG12 identi
fied regions with areas of order 50 Mm2 (equal to the area of about 50 granules) in which no loops 
emerged during their 40–60 minutes of observations. MG12 referred to these areas as “dead calm”: 
such regions are good candidates for the weakest field regions on the surface of the Sun, with local 
fields of perhaps no more than 10–20 G. 

16.4.2 maGnetiC fielD strenGths in sunspot umbrae 

Because the behavior of gas in sunspots is controlled by magnetic fields, our understanding of the 
physics of sunspots will be more precise the better we can measure the strength of the magnetic 
fields that exist in the spot. The strongest fields are observed to occur in the umbra of a spot, and 
those umbral fields are observed to be more or less vertical, i.e., perpendicular to the surface of 
the Sun. 

Space-based magnetic field data from SOHO/MDI (Watson et al. 2011) were obtained for cycle 
23 (1996–2010). Using an automated search technique, more than 30,000 spots were identified in 
the data (including repeated observations of spots that lived for more than one day). The SOHO/ 
MDI measures the line-of-sight (“longitudinal”) magnetic field on the Sun (in contrast to SDO/HMI 
that measures vector fields). Magnetic field strengths in the umbrae of the spots in the Watson et al. 
sample are shown in Figure 16.8. Watson et al. state, “the majority of measurements fall between 
1500 and 3500 Gauss”. Measurements of sunspot magnetic fields extending partially into solar cycle 
24 have subsequently been reported by Watson et al. (2014) using data from SOHO/MDI (which 
operated up until 2011), from SDO/HMI (starting in 2010), and from ground-based data (using 
Zeeman splitting in an infrared line) from National Solar Observatory. In all three data sets, it was 
found that the darker the umbra, the stronger the field. The ranges of field strengths in the three data 
sets were found to overlap well with the range reported by Watson et al. (2011) for cycle 23. 

It might be wondered: is there a lower limit on the strength of a field in a sunspot umbra? 
The lower limit of 1500 G mentioned earlier coincides with the smallest value of field strengths 
in pores with diameters of 1.5–3.5 Mm (Verma and Denker 2014). Maybe such a lower limit 
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  FIGURE 16.8 Maximum magnetic field strength in the umbrae of sunspots during the years 1996–2010, i.e., 
during solar cycle 23. The measurements were made by the MDI instrument on board SOHO (Watson et al. 
2011; used with permission of ESO). 

does exist in sunspot umbrae, but if it does, it is not immediately obvious from the results in 
Figure 16.8, in part because SOHO/MDI measures only the component of the magnetic field 
along the line of sight. 

In the opposite limit, we may also ask: is there an upper limit on umbral field strength? 
In a survey of 32,000 sunspot groups observed at four different ground-based observatories 
between 1917 and 2004, Livingston (2006) found fields in excess of 4 kG in 55 groups, and 
fields in excess of 5 kG in five groups: one single example (out of 32,000) was found of a spot 
with a record field of 6.1 kG. Livingston concluded that for fields in excess of 3 kG, the fre
quency of spots with field strength B falls off roughly as B−9. The strongest fields reported so 
far in sunspots include data obtained with the vector magnetograph on the Hinode satellite: 
Okamoto and Sakurai (2018) detected a field of 6.25 kG, and Castellanos Duran et al. (2020) 
detected a field of 8.1 kG. 

Another feature of the umbral field strengths in Figure 16.8 is that the fields tend to be stronger 
at solar maximum (in the years 2001–2002) than at solar minima (1996, 2009). 

We note that, as reported by LB18, fields as large as 2.8 kG in umbrae have an important physical 
property: they are capable of reducing the convection speeds in umbrae to essentially zero. As can be 
seen by visual inspection of Figure 16.8, fields of 2.8 kG were among the most frequently occurring 
in cycle 23. Therefore, small (or zero) convection speeds are expected to be common in the umbrae of 
spots during cycle 23. For umbrae with fields >3 kG, this conclusion would be even stronger. 
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16.4.3 orDerly properties of sunspot fielDs 

Results from Babcock magnetographs reveal a high degree of order in the fields on the Sun. 
We have already mentioned that spots typically appear in pairs, a leader and a follower. When 
a magnetograph is applied to each spot, a highly ordered behavior emerges. At any given time, 
almost all leader spots in (say) the Sun’s northern hemisphere are observed to have the same 
magnetic polarity. That is, leader spots in the northern hemisphere are found mainly to have 
fields which (say) point toward the observer. At the same time, almost all follower spots in the 
northern hemisphere will exhibit fields that point away from the observer. And simultaneously, 
in the southern hemisphere, the situation will be precisely reversed: the fields in leader spots will 
point mainly away from the observer. When the same observations are repeated 11 years later, the 
fields are found to be reversed: leader spots in the northern hemisphere will now be found mainly 
to have fields pointing away from the observer. Thus, the true solar magnetic cycle is actually 
(roughly) 22 years long. 

These rules are referred to as Hale’s polarity law, from the observer who discovered the effect 
in the early 1900s. In the earlier sentences, we have been careful to include the modifiers “almost” 
and “mainly”, because Hale’s law is not absolute: in the 30-year span 1/1/1989–12/31/2018, Zhukova 
et al. (2020) examined a total of 8606 bipolar active regions observed by SOHO, SDO, and several 
ground-based stations and found that Hale’s law was violated in only ≈3.0% of cases. Nevertheless, 
in the highly turbulent medium that is the Sun’s convective envelope, it is amazing to find that any 
regularity in behavior can withstand the constant pummeling by the ever-present eddies: in fact, the 
Sun manages to have 97% of its spot groups obey Hale’s law. 

16.4.4 remote sensinG of solar maGnetiC fielDs: raDio observations 

The Sun’s corona (Chapter 17) emits radiation over a broad band of radio wavelengths. The source 
of the radio emission depends on the local conditions and on the frequency. At frequencies in the 
microwave band, between (roughly) 1 and 20 GHz, two principal emission mechanisms contrib
ute to the radio flux. One is a free-free process, where electrons are accelerated when they pass 
close to ions in the coronal plasma (see Section 3.3.1). The second has to do with electrons “gyrat
ing” in a magnetic field: circular motion involves acceleration of a centrifugal nature, and when a 
charged particle accelerates, this acceleration leads to the emission of electromagnetic radiation. 
This “gyro-emission” has a preference to be emitted at certain frequencies, namely, at the “gyrofre
quency” νB (see Section 16.6.1) and its harmonics. 

As we shall see (Section 16.6.1), the value of νB depends only on the field strength in the plasma 
emitting the radiation. Therefore, if νB can be derived from observations, we can determine the field 
strength in the coronal plasma. 

When radio data are obtained, polarization once again (just as in the case of optical photons; 
see Sections 16.4.1.2 and 16.4.1.3) plays an important role in determining magnetic properties of 
the emitting regions on the Sun. In some active regions, the free-free emission is observed to be 
circularly polarized. That is, when the radio flux is measured at a certain frequency v in right-hand 
polarization FR, this flux differs from the flux at the same frequency in left-hand polarization FL. 
The degree of polarization dp = (FR − FL)/(FR + FL) is observed to have values that may be as large 
as tens of percent. It can be shown theoretically (e.g., Lee 2007) that dp is simply proportional to the 
ratio of νB/ν. Therefore, a measurement of dp at frequency v can be converted to νB ≈ dpν, and thence 
to the field strength B in the coronal emitting region. 

Values of B in the corona span a wide range: in a survey of coronal loops in 10 different active 
regions, Schmelz et al. (1994) reported B ranging from as low as 30 G to almost 600 G. Over 
certain sunspots, the coronal field strength has been reported to be as large as 1800–2000 G 
(Lee 2007). 
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16.4.5 hoW are Coronal fielDs relateD to fielDs in the photosphere? 

The optical approach to measuring magnetic fields in the Sun typically provides information about 
the fields lying in (or near) the photosphere. The radio approach typically provides information 
about fields in the plasma above the solar surface, mainly in the corona (see Chapter 17). In order 
to understand the connection between magnetic results at different levels of the solar atmosphere, 
astronomers typically use computing approaches such that, given information on the field in the 
photosphere, one can use the physical properties of magnetic fields to calculate what the fields 
should be like at increasing altitudes upward into the corona. 

The simplest computing approach to this problem is to assume that the field that is computed up 
in the corona is a “potential field” Bpot, i.e., one that can be defined as the gradient of a scalar quan
tity. With the latter definition, Bpot is identically zero, and hence, in the potential field (PF), no 
currents flow in the corona. However, in order to make the coronal model more realistic and allow 
solar wind to escape, an extra refinement is to add a “source surface” (SS) at a certain radial distance 
rSS such that, at r > rSS, the field lines are assumed to be strictly radial. The combination of potential 
field and source surface is referred to as the PFSS model of coronal fields. Can the PFSS predic
tions of coronal fields be tested by observations? Yes: when stereoscopic views of coronal stream
ers became available by means of simultaneous observations by STEREO A and B (separated by 
~50 degrees in orbital position), the PFSS closed fields were found to overlap well with the observed 
locations of helmet streamers (Telloni et al. 2014). 

A more realistic approach is to assume that some currents are actually flowing in the corona, but, 
in order to allow tractable computations, a specific assumption is made as follows: the currents pres
ent in the corona are assumed to flow parallel/antiparallel to the field. In such a case, the Lorentz 
force is identically zero, and the fields Bff are referred to as “force-free fields”. An example of the 
computationally intensive calculation that is needed in order to calculate a force-free field in the 
corona is demonstrated by Tadesse et al. (2014). 

A great advantage of knowing the values of both Bpot and Bff is that the energy Ep of the potential 
field in many circumstances represents the lowest energy state of the coronal magnetic field, without 
any currents to be dissipated. The energy in the force-free field, Eff, is larger than Ep because Eff 

includes energy associated with the coronal currents. The difference in energy between Eff and Ep 

represents what is called the “magnetic free energy” Emfe associated with currents flowing in the 
corona. If the corona is to release magnetic energy (as it does in flares, by dissipating some of the 
coronal currents), there is a maximum amount of energy that the release can have: that maximum is 
Emfe. It is important to note that not all of Emfe is released in a flare: the reason is that the field is not 
permitted to release its energy freely. Instead, the process of field evolution is subject to a constraint 
due to the conservation of a physical quantity known as “magnetic helicity”, which is related to 
twisting of the field (see Section 16.11). In a magnetized plasma where dissipation occurs, it turns 
out (e.g., Priest et al. 2016) that although magnetic energy can be released quite rapidly, magnetic 
helicity is a more “rugged” quantity that is (almost) conserved even when magnetic energy is decay
ing. A flare provides vivid evidence that some magnetic energy has been dissipated on a short time-
sale, but the fact that some magnetic twist survives for a longer time than magnetic energy means 
that not all of the currents in the corona are dissipated in the time-scale of the flare. As a result, 
the endpoint of the magnetic field after a flare has occurred is not strictly potential: some currents 
remain. 

16.4.6 DireCt maGnetiC measurements in spaCe: the Global fielD of the sun 

Clearly, when we use the term “direct measurement” of magnetic fields, it is not a question of 
measuring the fields in the atmosphere of the Sun itself. Instead, we perform the measurements in 
interplanetary space where spacecraft instruments can be in contact with the interplanetary fields. 
The importance of such measurements is that magnetic fields that were at one time situated in the 
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Sun’s atmosphere are actually transported out into interplanetary space by the expanding solar 
wind. (This is a special case of a phenomenon we shall discuss later [Section 16.6.2.2], namely, 
that fields and plasma can in certain circumstances be effectively “frozen together”.) Measurements 
of the magnetic field strengths in situ in interplanetary space are the nearest we can get to “direct 
measurements” of solar fields. If we can measure the field strength in space, at a certain distance 
from the Sun (e.g., near Earth’s orbit at 1 AU), we may be able to calculate how strong the fields are 
back at the surface of the Sun. 

Measurements of the magnetic field strength in interplanetary space have been made since the 
1960s, when spacecraft first escaped beyond the confines of the Earth’s magnetic field and were free 
to sample the true interplanetary magnetic field itself. At first, when there was no clear knowledge 
as to how strong the IMF might be, some of the early magnetometers were so swamped by the 
background of magnetic fields caused by the spacecraft itself that they could not reliably identify 
the IMF. It was soon realized that the detectors had to be sensitive enough to measure IMF fields 
with strengths of order 10−5 Gauss, i.e., 1 nanotesla. (For convenience in discussing IMFs, the nan
otesla [i.e., 10−5 G] is referred to for brevity as 1 gamma [1 ]. For comparison, the magnetic field at 
the Earth’s magnetic north pole is roughly 60,000 .) Detection of fields by spacecraft which are as 
weak as 1  is possible only if the fabricators of the spacecraft make sure that electric currents in the 
spacecraft itself, or materials used in the construction of the various components of the spacecraft, 
do not generate fields that are as large as, or larger than, the IMF. 

Once the satellite makes a reliable measurement of the IMF, the goal is to extrapolate the IMF 
back to the Sun: to do this with confidence, one needs to make allowance for certain properties of 
the solar wind (Chapter 18). Allowing for these, it is found that much of the IMF emerges from the 
polar regions of the Sun. The fact that the north and south poles of the Sun contain magnetic fields 
is strongly suggested by certain images of the solar corona, especially those that are taken close to 
solar minimum. On August 1, 2008, an eclipse of the Sun occurred (see Figure 17.3), and on the 
day of the eclipse, it happened that there was not a single sunspot visible on the solar surface. (For 
evidence of the lack of sunspots on that day, see http://sidc.oma.be/news/105/welcome.html.) Thus, 
the Sun contained none of the strong fields associated with active regions and sunspots on the day of 
the eclipse. This gives the best opportunity to detect the weaker fields associated with the Sun as a 
whole. Inspection of Figure 17.3 reveals that the north and south polar caps of the Sun exhibit bright 
and dark streaks that are reminiscent of how iron filings line up when they are scattered on a piece 
of paper located near the north and south poles of a bar magnet. 

Extrapolation of IMF data indicate that the radial component of the magnetic field near the 
north and south poles of the Sun is in the range from 6 to 12 G (Hundhausen 1977). These numbers 
are subject to revision if the solar wind properties have not been incorporated correctly. But to the 
extent that Hundhausen’s estimates are valid, we see that the solar polar fields are stronger than the 
fields at the Earth’s magnetic poles by up to one order of magnitude. 

The magnetometers that have been flown on spacecraft are such that not only the magnitude of 
the IMF can be measured, but also its direction. Such measurements indicate that at any instant, 
there is a preferred direction for the field at the Sun’s north pole, and simultaneously the field at 
the south pole has the opposite direction. The preferred directions at the two poles remain constant 
for about a decade. And then, at intervals of time that range from as short as (about) nine years to 
as long as (about) 12 years, the field directions at the solar poles reverse sign. The polar reversals 
do not always occur in coincidence: they may be separated by periods of months or a year. During 
such periods, both poles of the Sun have the same magnetic polarity. However, for 90% of the 
cycle, there is a clearly defined polarity for the global field of the Sun. The fact that the global 
polarity switches in (about) 11 years indicates that the true magnetic cycle of the Sun has a period 
of (about) 22 years. 

The fields of 6–12 G that exist at the poles of the Sun and extend far out into interplanetary space 
represent the global magnetic field of the Sun. The fact that the field reverses sign every 9–12 years 
indicates that the global magnetic field of the Sun is subject to periodic behavior. This is quite 

http://sidc.oma.be
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different from the Earth’s magnetic field, which, although not strictly constant, nevertheless retains 
a more-or-less constant value over time-scales of many thousands of years. 

Can the polar fields of the Sun be recorded by Zeeman techniques? Fields with strengths of at 
most 12 G are so weak that they are close to the limit of observability for Babcock magnetographs. 
Moreover, fields in the polar regions of the Sun tend to be radially directed. As a result, observations 
from Earth see these fields as mainly transverse to the line of sight. Therefore, Babcock magneto-
graphs, which are sensitive to the field components along the line of sight, are not ideally suited to 
detecting the global polar fields of the Sun. Nevertheless, estimates of mean polar fields are reported 
as part of the output from certain solar magnetic observatories, e.g., the Wilcox Solar Observatory 
(see http://wso.stanford.edu/gifs/Polar.gif). The polar fields recorded in this way are found to have 
strengths of at most 2–3 G. These are certainly weaker than the 6–12 G estimates mentioned earlier: 
perhaps the solar wind corrections should be reexamined, or perhaps the Wilcox data are averag
ing over polar field strengths in different ways. Whatever the source of the discrepancy, the Wilcox 
data confirm the space-based discovery that the polarities of the Sun’s north and south poles reverse 
every 11 years (or so). 

16.5 EMPIRICAL PROPERTIES OF GLOBAL AND LOCAL SOLAR  
MAGNETIC FIELDS 

We now have information about two apparently distinct components of magnetic fields in the Sun. 
One is global and quite weak (6–12 G), while the others (especially in spots) are highly localized 
and very strong (several kG). The localized fields are stronger than the global field by factors of at 
least 100, and in some cases by almost 1000. In the umbra of a sunspot, the direction of the field is 
found to be essentially vertical, i.e., perpendicular to the solar surface. As we move from the umbra 
outward into the penumbra, the field lines are observed to tilt more and more toward a horizontal 
direction: the (nearly) horizontal penumbral fields give rise to dark and bright “striations” (or 
“zebra stripes”) that are the hallmark of the penumbra when it is observed at high angular resolu
tion (Figure 16.1). As a result of the high inclination of penumbral fields at an angle of  relative to 
the vertical, the effective gravity acting on gas in the penumbra is reduced below the “true” value 
of solar gravity g  = 27,420 cm s−2 to an effective value of only g  cos . As we have already seen 
(Section 13.6), this reduction in effective gravity in the penumbra increases the acoustic cut-off 
period (Pac ~ 1/g: see Equation 13.14) from a normal value of 200 seconds (see Equation 13.15) to 
periods as long as 300–500 seconds. This allows waves that would normally remain trapped below 
the photosphere to have access to the chromosphere. 

The active regions surrounding sunspots have field strengths ranging from 30 G to several hun
dred G (e.g., Schmelz et al. 1994). In the quiet Sun, average magnetic fields (averaged over a field of 
view of, say, 10 arcsec2) are weaker, and those fields are not uniformly distributed: the field is highly 
clumped into compact flux ropes. In the center of each flux rope, the field may reach values of 1–2 kG. 
This leads to the graphic term “pin-cushion” that is sometimes used to describe the nature of the 
magnetic field structure in the quiet Sun (Parker 1974). Given a field of view of any particular instru
ment, the average magnetic field strength that will be measured by that instrument for that field of 
view depends on how many “magnetic pins” happen to lie within the field of view. Active regions 
are locations where there are enhanced areal densities of the “magnetic pins”. Sunspot umbrae are 
locations where the areal density of “magnetic pins” reaches a maximum: a very efficient process 
sweeps in, and holds together, the vertical magnetic flux ropes that are the defining characteristic 
of an umbra. 

Both for the global field and for the localized strong fields, there is a 22-year cycle in the direction 
of the magnetic fields. For several years prior to solar maximum, there is found to be a close cor
relation between the direction of the global field in (say) the northern hemisphere and the preferred 
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polarity of leader spots in the northern hemisphere at the same time. These empirical results indi
cate that there is a close physical connection between the Sun’s weak global fields and the strong 
fields that appear from time to time on the surface in highly localized structures. 

In order to understand why such a connection exists, we need to understand how magnetic fields 
and the gas in the Sun act and react upon each other. To achieve this understanding, we need to take 
a long step back from the Sun and come down to the level of individual charged particles moving 
through a magnetic field. We need to spend considerable effort (in Section 16.6) on the physical 
processes governing the interactions of magnetic fields and charged particles before we apply those 
processes to specific phenomena on the Sun (Section 16.7). Investment of effort at this stage will 
pay off well when we return to the data pertaining to the rich variety of solar magnetic phenomena. 

16.6 INTERACTIONS BETWEEN MAGNETIC FIELDS AND IONIZED GAS 

To understand the physical process whereby magnetic fields and gas interact with each other, we 
need to understand the forces that magnetic fields exert on charged particles. 

In a gas that is electrically neutral, such as the air that we all breathe on Earth to stay alive, 
magnetic fields have no significant dynamical effects. The motions of the (neutral) gas in the near-
ground atmosphere on Earth (i.e., the winds) are not at all affected by the Earth’s magnetic field. But 
things are very different in the Sun’s atmosphere. It is the fact that the gas in the Sun’s atmosphere 
is electrically charged that opens up the possibility of interesting interactions between the field and 
the gas. As we shall see, the interactions go both ways: in certain circumstances, the field forces the 
gas to behave in a certain way, while in other circumstances, the gas forces the field to behave in a 
certain way. Interactions with such widely different properties lead to a great variety of interesting 
behaviors on the Sun. 

16.6.1 motion of a sinGle partiCle 

When we deal with electrically charged particles, we need to recognize a fundamental distinction 
between the ways in which such particles respond to electric and magnetic fields. For example, a 
particle with electric charge e, when placed in an electric field E is acted on by a force F = eE: this 
force is parallel to the electric field if the charge is positive, and this force is antiparallel to the elec
tric field if the charge is negative. In response to this force, Newton’s second law of motion F = ma 
(where m is the mass of the particle and a is the acceleration), a charged particle, when placed in an 
electric field, will experience an acceleration of eE/m in the direction of the field (if the charge is 
positive) or opposite to the direction of the field (if the charge is negative). As a result, the motion of 
an electric charge with a certain mass in the presence of an electric field is determined solely by the 
direction and magnitude of the field. 

But when a charged particle moves in a magnetic field, the motion is no longer along the field. 
Instead, the motion is more complicated. Suppose that a charged particle moves with (vector) 
velocity V in a (vector) magnetic field B: such a particle experiences a motional electric field Em = 
(1/c)V × B. As a result, the charged particle is subject to the Lorentz (vector) force (e/c)V × B. Here, 
we use boldface to denote that a quantity is a vector, with magnitude and direction. The magnitude 
of B or V (boldface) is written as B or V (without bolding). The symbol “×” between two vectors 
denotes the cross product of the two vectors: the magnitude of the cross product V × B is equal to 
|V||B| sin θ, where θ is the angle between the vectors. We see that the Lorentz force acts in a direc
tion that does not depend only on the direction and magnitude of the magnetic field: instead, the 
Lorentz force also depends on the direction and magnitude of the velocity vector. The Lorentz force 
acts in a direction perpendicular to the velocity and perpendicular also to the magnetic field. 

As regards the units, if we express the charge e in electrostatic units, and B in Gauss, then the 
Lorentz force is in units of dynes. 
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For a particle of mass m and charge e, Newton’s second law of motion says that in a magnetic 
field, the equation of motion is 

dV e 
m  V B (16.2) 
dt c 

The solutions of Equation  16.2 have certain distinct properties. First, if a charged particle 
moves in a direction that is parallel, or antiparallel, to the magnetic field, then the right-hand side 
of Equation 16.2 has a numerical value that is identically zero. This means that the magnetic field 
exerts no force on such a particle. As a result, there is no acceleration if a charged particle moves 
along the magnetic field: whatever speed the particle had to start with, it will retain that speed as 
long as it keeps moving parallel (or antiparallel) to the field. Thus, if a magnetic field line stretches 
from point A to point B (and if no other complicating factors are present), an electron or a proton 
can propagate freely at constant speed between A and B. 

Second, in all other cases, when there is a component of particle velocity that is perpendicular to 
the field, then the Lorentz force on the particle is finite in magnitude and acts in a specific direction. 
The specific direction of the Lorentz force is not along the magnetic vector nor is it along the veloc
ity vector: instead, the force is perpendicular to both the magnetic field vector and to the velocity 
vector. Suppose the field is in the +z-direction, and the particle starts to move exactly perpendicular 
to the magnetic field, in (say) the +y-direction. Then taking the vector product V × B, we find that 
the Lorentz force initially acts in the +x-direction. If the electric charge is positive, then the particle 
motion will not remain in the +y-direction but will instead be forced (by the Lorentz force) to be 
accelerated in the x-direction. Once an x-component of velocity occurs, the Lorentz force V × B will 
develop a new component in the −y-direction. This will eventually reduce the y-velocity to zero, 
at which point the x-velocity will have its maximum magnitude. However, the y-velocity will not 
stop there. Instead, the y-component of the velocity will increase in the −y-direction, causing the 
x-component of the force to become negative. This will cause the x-velocity to decrease, eventually 
falling to zero, at which point we are back to the initial condition. 

The net effect of the Lorentz force is that the particle (in the presence of a field pointing in the 
z‑direction) moves in a circular path in the x–y plane. Because the electric charge enters into the 
Lorentz force, a positively charged particle moves along the circular path in one direction, while a 
negatively charged particle moves along the circular path in the opposite direction. In both cases, 
the Lorentz force is directed towards the center of the circle. It is helpful at this point to refer to the 
circles in Figure 16.7: although the figure was originally designed to illustrate the circular polariza
tion of certain photons propagating parallel (or antiparallel) to the magnetic field, we can use it (in 
part) also as an illustration of the circular orbits in the x–y plane when a charged particle moves in 
the presence of a field line pointing in the +z‑direction. Note that there are arrows on the circles in 
Figure 16.7: positively charged particles rotate around the field lines in one direction while nega
tively charged particles rotate around the field lines in the opposite direction. 

Now that we know that charged particles describe circular paths in magnetic fields, we are ready 
to take an important step and obtain quantitative insight into the effects of magnetic fields in the 
solar atmosphere. To do this, the essential question to raise is the following: how large (in linear 
measure is the circular path of a charged particle (such as a proton or electron) in the magnetic 
fields that exist in the solar atmosphere? We can answer that question by balancing the forces that 
act on a particle moving in a circular orbit: in this case, the two forces to be balanced are the cen
trifugal force and the Lorentz force. 

These forces can be balanced in a circular orbit of radius rg provided that 

eVB mV 2 

 (16.3) 
c r g 
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Implicitly, we recall that opposite charges circulate in opposite directions: but the magnitudes of the 
forces are our main interest here. Solving the prior equation leads to an expression for rg: 

mcV 
r  (16.4) g eB 

This formula indicates that when a charged particle describes its circular motion in a magnetic 
field, the particle cannot depart from the field line in the direction perpendicular to B by a distance 
of more than rg. The subscript g denotes that we are dealing with a length-scale that is referred to as 
the “gyroradius”: this is the linear size of the orbit on which the particle “gyrates” around the field. 

Recalling that motion of the particle parallel or antiparallel to the field is unconstrained, the true 
“orbit” of a charged particle in a magnetic field is a helix: the particle is free to move longitudinally 
(i.e., up and down the field line) at will, but the particle cannot depart from the field line in the 
transverse direction by more than rg. 

A key aspect of Equation 16.4 is that rg is proportional to the particle’s speed V. As a result, the 
time required for a charged particle to traverse one gyration circle is determined by the ratio of 
orbital circumference to particle speed: tg = 2πrg/V. Notice that this time-scale is independent of the 
speed of the particle. The associated frequency νB = 1/tg = eB/2πmc, called the “gyro-frequency”, 
depends only on B. If a value can be estimated for vB in any locality on the Sun (such as an active 
region), that can provide information about the field strength in that active region (see Section 16.4.4). 

Now we come to the question at the heart of understanding why magnetic fields in the Sun inter
fere with convection: what is the numerical value of a typical rg in the solar atmosphere? 

Consider a thermal proton in the photosphere, where T = 6000 K. The mean thermal speed of the 
proton is V ≈ 106 cm sec−1. Inserting proton mass and charge, we find that in a field of B Gauss, rg (cm) 
≈ 100/B. Thus, in a very quiet region of the photosphere where the field has a strength of (say) 10 G 
(see Section 16.4.1.5), protons are constrained to gyrate no more than 10 cm away from the field line. 
In a region where the field is (say) 1000 G (e.g., in a sunspot), protons can move only 1 mm (!) away 
from the field line. Electrons are even more tightly constrained: if we consider thermal electrons, 
the gyroradii mentioned earlier for protons must be reduced by factors of 43 (to as small as 0.02 mm 
(!!) for electrons in a sunspot). 

In the corona, the temperatures are larger, of order 106 K (see Chapter 17). This leads to gyroradii 
that are about 10 times larger than in the photosphere. Proton gyroradii in the corona, in regions 
with B = 10 G, are therefore of order 100 cm. 

The most striking aspect of these gyroradii is how small they are compared to any of the rel
evant length-scales in the Sun, such as the solar radius (≈1011 cm), the scale height in the atmosphere 
(≈107 cm in the photosphere), or the size of a granule (≈108 cm). The gyroradii of thermal protons and 
electrons are miniscule compared to most of the relevant length-scales in the Sun. (However, when 
we discuss flares in Section 17.19, it is possible that in such events, some of the relevant processes of 
energy release may be occurring on scales comparable to the gyroradius.) 

The conclusion is clear: charged particles in the Sun cannot move very far in directions that lie 
perpendicular to the magnetic field. A popular way of saying this is to state that, in the solar atmo
sphere, the ionized gas is “tied” tightly (or “frozen”) to the field lines. 

At first glance, one might expect that neutral gas (where particles have electric charge e = 0) 
should not be affected by the Lorentz force: this might be taken to mean that in the photosphere 
(where hydrogen is at least 99.9% neutral), the fields might have little effect on the gas. But, as it 
turns out, this is not the case. The presence of even a few ions and electrons gives the magnetic field 
“something to hold on to”: and then the charged particles communicate the magnetic forces to neu
trals by means of collisions (e.g., see Mullan 1971). If, in a given volume element, there is only one 
ion for every 1000 neutrals, then that ion has to collide eventually with 1000 neutrals in order to pass 
on the magnetic forces which the ion is responding to. A slight local spatial separation may open 
up between neutrals and ions as these 1000 collisions do their work, but the separations (referred 
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to as “ambipolar diffusion”) occur over length-scales that are small compared to the length-scales 
of features in the solar photosphere, such as granules. In the low chromosphere, where the number 
densities of ions are of order 1011 cm−3, and neutrals have densities of order 1016 cm−3, ion-neutral 
separations are expected to be no more than a few cm. Essentially, even in the photosphere, where 
the gas is more neutral (in an electrical sense) than anywhere else in the Sun, the gas is still effec
tively “frozen” to the field. 

16.6.2 motion of a ConDuCtinG fluiD 

So far, we have considered the interaction between a magnetic field and a single charged particle. 
Now we move to the macroscopic case, where we consider a fluid (plasma) composed of many 
individual charged particles. In such a fluid, electrons and ions can move in different directions: the 
result is that, in the plasma, a finite current can flow. The current density j is given by e(NiVi − NeVe) 
where Vi and Ve are velocities of ions and electrons, and Ni and Ne are number densities of ions 
and electrons in the plasma. For example, when an electric field E is present pointing along the +x 
direction, ions move with velocity Vi in the +x direction, and electrons move with speed Ve in the -x 
direction: both of these motions contribute to the flow of current in the +x direction. 

Each cubic cm of the solar atmosphere contains Ni ions, each of which is acted on by a Lorentz 
force of +(e/c)Vi × B. Each cubic cm of the solar atmosphere also contains Ne electrons: on each elec
tron, the Lorentz force equals −(e/c)Ve × B. The equation of motion for 1 cm3 of solar material, with 
total mass ρ = Nimi + Neme ≈ Nimi and bulk velocity V, now includes not only the terms with which 
we are familiar from hydrodynamics (pressure gradient and gravity), but also a term that describes 
the Lorentz force acting on that cubic cm: 

dV 1
  p g  j B  (16.5) 
dt c 

This equation describes the dynamical effects that a magnetic field exerts on the fluid. Let us look 
in detail at the nature of the magnetic forces: they have interesting properties that will help us to 
understand why the solar atmosphere contains a variety of magnetic phenomena. 

16.6.2.1 Magnetic Pressure and Tension 

The gas pressure p enters into Equation 16.5 because the gradient of p exerts a well-known force 
on the gas. This is true even in the absence of magnetic effects, such as in the Earth’s atmosphere. 
(Localized winds start their motion by leaving a region where gas pressure is high and moving 
towards a region where the pressure is lower.) On small length-scales, such as those that occur in 
solar granules, the force due to ∇p can be considered isotropic without serious error. However, this 
is not true of the Lorentz force. The term in j × B in Equation 16.5 can be rewritten in a way that 
brings out the fact that a magnetic field in fact exerts a force that is certainly not the same in all 
directions. 

To see this, we use one of Maxwell’s equations, namely, curl B = (4π/c)j, to replace  j in the 
Lorentz force in Equation 16.5. Then the Lorentz force becomes (1/4π) curl B × B. This can be 
rewritten, using vector identities, as the sum of two components L1 + L2, where L1  = − (B2/8π), 
and L2 = (B · )B/4π. 

Comparing with Equation 16.5, L1 has the same form as the term −∇p. This suggests (at first 
sight) that the magnetic field gives rise to a pressure analogous to gas pressure. The magnitude of the 
“magnetic pressure” is p  = B2/8π. (If we express B in units of Gauss, p is in units of dyn cm−2.)mag mag 

If L1 were the only term we needed to consider in the Lorentz force, we could be tempted to think 
that the magnetic pressure at any position might behave just like the gas pressure. But such a conclu
sion would be incorrect. 
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Because the Lorentz force also includes L2. The expression for L2 can also be written as the sum 
of two components, L2a + L2b. Let us define a unit vector ê along the direction of the magnetic field. 
Then L2a can be written as ê(ê · )B2/8π: this is a force that acts along the vector ê, i.e., along the 
field lines. As regards the magnitude of this component, the magnitude is equal and opposite to 
− (pmag). As a result, L2a cancels the component of L1 that lies along the field direction. The net 
effect is that although pmag at first sight appears to be analogous to the gas pressure, with equal 
pressures in all directions, this is not the complete picture of the Lorentz force. In a more complete 
picture, we find that the gradient of magnetic pressure along the field direction is actually zero. With 
the removal of the effects of the gradient along the field, it turns out that the magnetic field gradient 
exerts a force only in the direction perpendicular to the field direction. This is a striking indication 
of anisotropy in the presence of a magnetic field. 

The component L2b can be written (B2/4π)(ê · )ê. By considering the unit vector and its gradi
ent, it can be shown that L2b is a vector lying in a direction perpendicular to the field lines. The 
magnitude of L2b is equal to B2/4πR , where R is the radius of curvature of the field lines. The curv curv 

vector L2b points toward the center of curvature of the field lines. The term B2/4π represents a mag
netic tension Tm along the field lines. 

The fact that magnetic fields give rise to both tension and pressure (although in different direc
tions) should alert us to the fact that magnetic fields will have effects that may have no analogs 
in the simpler world of gas dynamics (such as in the atmosphere we live in on Earth). The fact 
that the Lorentz force is highly anisotropic is important for understanding magnetic activity in 
the Sun. 

From a dimensional point of view, the units of pressure are equivalent to the units of energy 
density. Therefore, the energy density of the magnetic field is equal to Wmag = B2/8π. If B is in units 
of Gauss, Wmag is in units of ergs cm−3. For example, in the umbra if a sunspot, with a field strength 
of order 3 kG (see Figure 16.9), the magnetic energy density is of order 4 × 105 ergs cm−3. How does 
that compare with the thermal energy density (E(th) = NkT) in 1 cm3 of photosphere material? The 
number density of protons in the photosphere N is roughly 2 × 1017 cm−3 (Section 5.6). Therefore, 
with T ≈ 6000 K, we find E(th) ≈ 2 × 105 ergs cm−3. The fact that a 3 kG field (such as occurs in a 
sunspot umbra) has an energy density greater than the energy density contained by the photospheric 
gas in thermal motions suggests that the magnetic field in an umbra contains enough energy to have 
a significant effect on the thermal properties of the photospheric plasma. This physical conclusion 
contributes to having gas in the umbra cooler than gas in the photosphere. 

16.6.2.2 The Equations of Magnetohydrodynamics (MHD) 

The equations that describe the macroscopic interaction between a moving fluid and a magnetic 
field are those of magnetohydrodynamics (MHD) (also referred to as “hydromagnetics”). We shall 
find that there exists in MHD an analog to the result (Equation 16.4) that an individual charged 
particle in the solar atmosphere is confined close to the field lines. 

To obtain the MHD equations, we start with two of Maxwell’s electrodynamic equations:

B 0 (16.6) 

B 
 c E (16.7) 

t 

In a resistive medium, the current j that flows in response to an electric field E is proportional to 
E (according to Ohm’s law). The constant of proportionality is determined by a physical quantity 
known as the electrical conductivity e of the plasma: this quantity is a measure of how effective 
the plasma is at conducting current. When we express the charge on the electron in electrostatic 
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units (|e| = 4.8 × 10−10), the conductivity σe has units of sec−1. In a fully ionized plasma with tem
perature T, the value of e in electrostatic units can be shown to have a value of order 107 T3/2 sec−1 

(Spitzer 1962). 
In terms of j, Ohm’s law can be written as follows: 

 V B
j  (E E  )  E  (16.8) e m e c 

where Em is the motional electric field mentioned in Section 16.6.1. In Equation 16.8, the exter
nal electric field can be written as  E =  j/σe  −  (1/c)V ×  B. Inserting this in Equation  16.7, we 
find ∂B/∂t = −c × (j/σe)+ × (V × B). Replacing j with (c/4π) × B, and using Equation 16.6, we 
finally have the following equation describing how the magnetic field evolves with time: 

B
 (V B )  e 

2  B (16.9) 
t 

The quantity η in Equation 16.9, defined by η = c2/4πσ , is called the magnetic diffusivity. If the e e e

magnetic diffusivity in a plasma has a nonzero value, then the medium allows the magnetic field to 
diffuse away on a finite time-scale. The larger ηe, the faster the field diffuses away. 

Equation 16.9 describes how magnetic fields and fluid motions interact with each other. There 
are two distinct terms on the right-hand side of Equation 16.9 that lead to very different physical 
behaviors. It is important to consider the effects of these two terms separately. 

First, suppose the velocity V of the fluid is zero. Then the first term on the right-hand side of 
Equation 16.9 vanishes. We are left with an equation in which the time derivative of the field is 
related to the second spatial derivative of the field. This is a diffusion equation: it describes how 
the magnetic field diffuses (i.e., decays) as time goes on. If the spatial properties of the field are 
such that significant changes in field strength occur over length-scales of L, we can approximate 

2 in Equation 16.9 as to order of magnitude by 1/L2. Defining the time-scale τd = L2/ηe, we see 
that Equation 16.9 can be written ∂B(t)/∂t  = −B(t)/τd. The solution of this equation is straightfor
ward: B(t) = B(0) exp(−t/τd), i.e., the strength of the field diffuses away on an e-folding time-scale τd. 
That is, a magnetic field in a stationary medium (with V = 0) does not remain constant with time, 
but decays on a characteristic time-scale τd given by 

4  eL
2 

d  
2 

(16.10) 
c 

What does this decay time-scale signify? The energy in the electric current is dissipated by resis
tive effects at a rate j · j/σe such that in the time-scale τd, resistive dissipation within 1 cm3 leads to a 
reduction in the magnetic energy Wmag in that cubic cm by an amount of order B2/8π. Thus, resistive 
dissipation causes the field strength to decay on a time-scale of τd. That is, the second term on the 
right-hand side of Equation 16.9 has to do with the reduction in strength of the initial field: given 
the fact that σe in the Sun has a finite (nonzero) value, this process of magnetic dissipation is always 
occurring in the Sun to some extent. 

Second, suppose that the conductivity of the medium is so large that ηe  0. Then the second 
term on the right-hand side of Equation 16.9 becomes negligible compared to the first. That is, 
diffusion of the field is negligible. The surviving term, which includes the velocity of the medium, 
can be shown to have the following property: if you choose a particular parcel of fluid that con
tains a magnetic field B within its area A and follow that parcel as it moves around in response 
to local forces, the amount of magnetic flux (= ∫ BdA) enclosed by that parcel of fluid remains 
constant as time goes on. That is, magnetic flux neither enters nor leaves the parcel of fluid as 
it moves. The phrase commonly used to describe this behavior is that the field and the fluid are 
“frozen together”. 
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This is the equivalent, in the fluid limit, of the tightly bound nature of single particle motion: the 
limit of infinite conductivity is formally equivalent to the limit in which the radius of gyration (see 
Equation 16.4) is so small (compared to other lengths in the problem) that the gyroradius can be 
taken to be effectively zero. 

Whereas the second term on the right-hand side of Equation 16.9 always has to do with the decay 
of an initial field, the first term on the right-hand side of Equation 16.9 can, in the right circum
stances, lead to the opposite process, i.e., a strengthening of the field. In view of the universal process 
of field dissipation operating in the Sun, a competing strengthening process of some kind must be 
occurring continually inside the Sun in order to understand why new magnetic field loops are con
tinually observed to be rising up through the solar surface, even when solar activity is at its quietest 
(see Section 16.4.1.5). The generic name “dynamo operation” is used for the process that produces 
new magnetic fields inside the Sun, even if all the physical details of such an operation may not yet 
be fully understood. Different suggestions for the possibly relevant physical processes are referred to 
by titles such as Ω, 2, 2Ω, and flux transport, among others (Charbonneau 2014). Exploring the 
details of these processes would take us far beyond the scope of the present first course. 

16.6.2.3 Time-Scales for Magnetic Diffusion in the Sun 

The electrical conductivity of the gas in the solar atmosphere is determined by the rate at which 
electrons (and ions) undergo collisions with the ambient medium when the electrons (and ions) 
attempt to carry the current. In the limit of complete ionization (e.g., in the corona, or deep below 
the surface), the collisions are determined by Coulomb effects. In such a case, the conductivity is 
given by the Spitzer formula σe ≈ 107T3/2 sec−1 (Spitzer 1962: note that we have converted Spitzer’s 
formula from electromagnetic units [e.m.u.] to electrostatic units [e.s.u.] using the conversion fac
tor c2.) In the upper chromosphere (T = 104 K) and in the corona (T = 106 K), typical values of σe are 
1013 sec−1 and 1016 sec−1, respectively. 

In the photosphere and low chromosphere, where the degree of ionization may be much less than 
unity, σe is definitely not as large as the Spitzer value. In a partially ionized gas, σe is proportional to 
the ratio of the number densities of electrons to neutrals. According to Bray and Loughhead (1979, 
Table 4.7), at optical depth τ = 1 in the photosphere, and at τ = 1 in the umbra of a sunspot (where 
the degree of ionization is lower than in the nonmagnetic photosphere), σe has numerical values of 
order 1012 sec−1 and 1011 sec−1, respectively. 

Knowing these realistic numerical values of σe, we can evaluate the time-scale for a field to decay 
in the Sun. Suppose we consider one of the smallest identifiable magnetic units on the Sun: a pore. 
The characteristic length-scale is comparable to granule diameters, i.e.,  L = 108 cm. Using this in 
Equation 16.10, along with the photospheric value of σe (1012 sec−1), we find that the pore is expected 
to decay (by ohmic dissipation) on a time-scale of order τd ≈ 108 sec, i.e., about 3 years. How does this 
compare with the observed lifetimes of pores? Not at all well: the latter are observed to disappear after 
at most a few hours, i.e., some 104 times shorter than ohmic dissipation predicts. At the other extreme, 
consider the largest spot ever observed: with an area A = 6300 millionths of the visible hemisphere, the 
associated linear scale L is about 8 × 109 cm. According to Equation 16.10, the decay time in the pho
tosphere would be 1012 sec, i.e., some 30,000 years. However, the observed lifetime was less than one 
year. Once again, the observed lifetime is shorter by about 104 compared to the ohmic decay time-scale. 

The conclusion is that when we consider a pore (or a larger spot), resistive dissipation is not a sig
nificant contributor to the decay of the structure. As a result, the second term on the right-hand side 
of Equation 16.9 is very small compared to the first term: it is as if ηe  0, i.e., it is effectively as if 
there is no diffusion at all. Therefore, the magnetic field in the pore, and in other magnetic structures 
with length-scales as large as (or larger than) granules, can be considered as “frozen” into the gas. 
Physical processes of erosion due to gas motions around the outer limit of the pore (spot) are what 
alter the pore (spot) so that it survives for only a “short” time. 

One of the interesting features about MHD in the context of solar physics is that, although field 
and gas are “frozen” together, sometimes the field dominates the gas, and at other times the gas 
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dominates the field. Which of the two is dominant in any given situation depends on the relative 
energy densities. In both cases, however, the field and gas are effectively frozen together. 

16.7 UNDERSTANDING MAGNETIC STRUCTURES IN THE SUN 

Now let us see how the effects of MHD operate in a variety of solar features. The solar atmosphere 
provides a number of interesting situations where we may profitably study the effects of MHD in 
different limiting conditions. 

16.7.1 sunspot umbrae: inhibition of ConveCtion 

In an “ordinary” convection cell (i.e., granule), when no magnetic field is present, the circulation of 
the gas (which is responsible for upward transport of heat) occurs in several stages. (1) Hot matter 
starts its upward circulation at depth H and rises vertically to the photosphere in the bright center 
of the granule. (2) As the matter approaches the photosphere, it expands (due to reduced ambient 
density) and spreads out horizontally. In this phase, the material cools off, mainly by radiative losses 
into space. (3) The cooled material finds a location where it can sink vertically: this occurs in the 
dark intergranular lanes, and the gas returns eventually to depth H. (4) The material eventually, as a 
result of fluctuations, absorbs some excess heat, and this begins the circulation of a new cell. Each 
granule lives long enough to allow roughly one complete circulation to occur. 

In the photosphere, with densities of (2–3) × 10−7 gm cm−3 and granulation flow velocities V ≈ 
(1–3) km sec−1, the energy densities of the flows (≈ 0.5ρV2) are 103–4 ergs cm−3. These convective 
properties are ultimately determined by the requirement that the gas must transport outward the flux 
of energy that is provided by nuclear reactions deep inside the Sun. 

Now we ask the question that is relevant to understanding a sunspot: what happens to the circula
tion in a granule when a magnetic field is present? In an umbra, the magnetic field lines are mainly 
vertical and have strengths as large as 3000 G. Since ionized gas can move freely along field lines, 
stages (1) and (3) of the granule (vertical) motions are unaffected by the field. However, stage (2) 
is severely impeded: matter that contains even a small degree of ionization of photospheric gas is 
effectively frozen to the field lines. Since the latter are vertical, they impede the gas from flowing 
freely in a horizontal direction. The energy density of the field (Wmag = B2/8π) is ≈ 4 × 105 ergs cm−3, 
i.e., 40–400 times greater than the energy densities of the granular flows. Because of the excessive 
magnetic energy density, the “frozen fields” are capable of preventing the horizontal flows in stage 
(2) of granule flow. 

The overall effect is that granule circulation (at least in its regions of horizontal flows) is inhibited 
by the (vertical) umbral field. But it is precisely that circulation which allows convection to transport 
heat to the solar surface in the nonmagnetic Sun. If some mechanism has the effect that the circula
tion in a granule (i.e., in a convection cell) is shut down, then convection cannot function properly. 
In the case of an umbra, the shutting down of circulation by vertical magnetic fields is so severe 
that it would not be an exaggeration to state that convection can apparently not function at all in an 
umbra. To be sure, radiation is available to carry some heat upward, but this is not very effective. As 
a result, the upward heat flux decreases below the normal value by a significant factor. The umbra 
becomes darker (by many tens of percent) than the photosphere. 

Although gas motions in the umbra are still permitted in the vertical direction, the restriction 
on the horizontal dimensions of “cells” has the effect that the horizontal size of convection “cells” 
in an umbra become considerably smaller than the horizontal dimensions (~1 Mm) of granules in 
nonmagnetic Sun. (This leads to the descriptive term “brain-pattern” used by Tian and Petrovay 
2013: see Section 16.1.2.) Even if the up and down flow speeds may be individually relatively large, 
an observer who is limited in spatial resolution of 100–200 km will be averaging over several small 
cells: this will lead to a significantly reduced upward mean flow speed. This could account for the 
greatly reduced C-shaped bisector speeds reported by LB18 in the umbrae of spots (Section 16.1.2). 
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16.7.2 pores: the smallest sunspots 

Sunspots are dark because a vertical magnetic flux tube inhibits convection in one or more granules. 
But what happens if a magnetic flux tube emerges onto the solar surface with a diameter that is 
smaller than a typical granule diameter, i.e., smaller than about 1 Mm? In such a case, the flux tube 
is not wide enough to impose control over the complete circulation of the granule. The gas flows can 
“shift over” into a nonmagnetic area, and convection can proceed more or less uninhibited. Thus, 
the smallest sunspots (i.e., pores that consist of umbra only, without any penumbra) must have diam
eters at least as large as a single granule, i.e., ≥ 1–2 Mm. In fact, in a Hinode study of almost 10,000 
pores (Verma and Denker 2014), the pore areas were found to be of order 5 Mm2 or less. Pores tend 
to be formed in supergranule boundaries where increased concentrations of magnetic elements are 
located. In order for a pore to be formed, the observations indicate that the magnetic flux (= field 
strength times area) must exceed a critical value of (4–5) × 1019 Maxwells. (The unit of 1 Maxwell 
[or 1 Mx] is defined by a field of 1 G times 1 cm2.) In terms of this criterion, pores with diameters 
of 1.5–3.5 Mm (i.e., with areas of 1.8–10 × 1016 cm2) must contain fields with strengths in excess 
of 0.45–2.5 kG. In fact, the observed fields in such pores are always in excess of 1.5 kG (Verma 
and Denker 2014). If the magnetic flux exceeds 1–1.5 × 1020 Mx, the pore develops a penumbra and 
therefore makes a transition to a full-fledged sunspot (Leka and Skumanich 1998). 

16.7.3 sunspots: the Wilson Depression 

Magnetic fields exert a pressure perpendicular to the field lines (Section 16.6.2.1). In an umbra, 
where the magnetic field lines are vertical, the field therefore exerts a pressure of B2/8π in the hori
zontal direction. The gas inside the flux tube also exerts a pressure pin. In order for the flux tube to 
be a stable structure, the sum of these forces must be balanced by the gas pressure pext in the external 
(nonmagnetic) medium: 

B2 

p  p  (16.11) ext in 8  

Let us consider some typical numerical values for the photosphere. At τ ≈ 1 in the undisturbed 
photosphere, pext ≈ 105 dyn cm−2 (see Table 5.3). A sunspot in which the vertical field has B = (say) 1 
kG requires, for stability, that pin = pext − B2/8π have the numerical value 0.6 × 105 dyn cm−2. If the 
sunspot has B = 1.5 kG, then pin must be ≈ 0.1 × 105 dyn cm−2, i.e., an order of magnitude smaller than 
the pressure in the undisturbed photosphere. Truly, the umbral flux tube is a region that has been 
almost “evacuated” of gas. 

Recalling that in a sunspot umbra, the field can be as strong as 3 kilogauss, we see that in order 
to contain such a field, pext must be at least as large as 3.6 × 105 dyn cm−2. In fact, to allow for the 
presence of any finite gas pressure inside the spot, pext must be even larger, perhaps (4–5) × 105 

dyn cm−2. Such high pressures are simply not available in the vicinity of the level  ≈1 in the photo
sphere. Therefore, in order to contain the sunspot fields by horizontal pressure from the surround
ing (nonmagnetic) gas, we must rely upon gas pressures that lie deeper than the photosphere. The 
fact that material in an umbra lies deeper than in the photosphere gives rise to the term “Wilson 
depression” WD, named in honor of an 18th-century English observer who first observed the effect 
in sunspots near the limb. 

How large is WD? Observations of 12 sunspots with Hinode have been reported by Löptien et al. 
(2020). Since the field lines are not necessarily precisely vertical in all umbrae, but instead the field 
lines tend to “fan out” above the surface, the field lines are to some extent curved. The presence of 
curved field lines adds an extra term to Equation 16.11, the “curvature force”. Using this modified 
form of Equation 16.11, Löptien et al. (2020) reported that, in their sample of spots, WD ranged from 
500 to 700 km. It was also found that the stronger the umbral field, the deeper the Wilson depression. 
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If we imagine that we could (somehow) stand in the undisturbed photosphere at the level  = 1, 
and look horizontally into a sunspot, what would we see? We would see a medium where the gas 
pressure is greatly reduced compared to the gas in which we are “standing”. In other words, the gas 
in the spot would be “missing”. Where did the missing gas go? The answer is: the cooler conditions 
have caused the gas to have a smaller scale height, causing the density/pressure to fall off more 
rapidly as height increases. This fall-off can be interpreted as having caused the gas in the umbra 
to “slump” to greater depths. 

16.7.4 sunspots: What Determines their lifetimes? 

The answer to this question depends on a long-standing argument about sunspots, concerning their 
subsurface structure: is a spot a “monolithic” structure extending deep into the convection zone? Or 
is it a “cluster” of smaller flux tubes that have been swept together by subsurface flows? 

In the cluster model (Parker 1979), the cooling effects of magnetic fields are confined to a “shal
low” layer close to the solar surface. In principle, one might analyze the subsurface structure by 
measuring how p-modes are slowed down as they propagate across a sunspot (where the local cool
ing reduces the local sound speed). In a comprehensive review, Moradi et al. (2010) argue that the 
evidence from wave travel times favors a sunspot as being a shallow feature, with a depth of order 
2–2.5 Mm. An illustration of a model of this type is shown in Figure 16.9 (Solov’ev and Kirichek 
2014), where the spot depth is suggested to be of order 4 Mm, i.e., somewhat larger than Moradi 

FIGURE 16.9 Cross-section of a shallow sunspot.  is the Wilson depression, L is the lower sunspot bound
ary, dotted lines with arrows denote subsurface flows which hold the magnetic cluster together within a range 
of depths from zero (at the top) down to L (at the bottom). Note the two-layer structure: cooler (darker) material 
(above depth = L) where convection is suppressed and hotter (brighter) material at depths below L. The spot 
acts as an insulated “plug” that stops heat from penetrating upwards through the umbra, thereby “damming” 
up heat in the lower layers. (Solov’ev and Kirichek 2014). 
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et al. (2010) suggest, but still “shallow” compared to the solar radius. An essential aspect of the 
cluster model is that it assumes there is a circulation of material around the spot, with inflow near 
the surface and outflow at deeper layers. The near-surface inflow acts as a “collar” that sweeps near-
surface field lines together when the spot first appears on the Sun. The lifetime of a sunspot accord
ing to this model depends on how long the “collar” lasts: once the collar fades away (for whatever 
reason), the spot is pulled apart by convective turbulence, with individual flux tubes being shredded 
from the outer regions first. 

However, probing the properties of layers that lie several Mm below the surface by analyzing 
helioseismic data is not a simple process, and the quantitative details of the depth dependence are 
still not definitive. As regards the “monolithic” versus “cluster” models, based on model simulations 
of sunspots, it is possible that some spots (especially the longest lived ones) are actually monolithic, 
with roots that extend deeply into the convection zone (Rempel 2011). 

16.7.5 prominenCes 

Near the topmost portions of a prominence, the magnetic field lines are mainly horizontal. Material 
on such field lines can be supported against gravity. Ionized material on a horizontal field line is 
not permitted to move vertically because that would involve motions perpendicular to field lines. 
Motion along the field lines is permitted, but this can be impeded if there is a dip in the field lines. 

16.7.6 faCulae 

Faculae (a plural noun: singular = facula) are flux tubes with diameters that are too small to create 
pores. Without the ability to impede the circulation in a complete granule, there is no reason why 
convection should be inhibited. As a result, a facula does not appear as a dark feature in the pho
tosphere. However, the presence of vertical fields has the effect (see Equation 16.11) that the pres
sure inside faculae is lower than in the external gas. The reduced internal pressure allows us to see 
deeper inside faculae, i.e., faculae also exhibit Wilson depressions, although not as large as in the 
largest spots. Depressions in faculae may be of order 100–200 km. The deepest gas that we can see 
in a facula is surrounded by walls of hotter gas extending upward by 100–200 km. 

What effect does this have on what we see when we observe faculae? There is almost no observ
able effect when a facula is observed near the center of the solar disk. However, when a facula is 
near the limb of the Sun, conditions are different. Now, our line of sight enters the facula at an angle 
to the vertical. This allows us to observe granules lying beyond (i.e., outside) the walls of the tube. 
It is as if we were permitted to insert a slender glass tube into a furnace: if we were to look into the 
tube from a point of view that is not too far off-axis, we could get a glimpse (through the glass wall 
of the tube) of deep regions of the furnace that are hotter than the surface regions. This deeper, hot
ter material emits more brightly than the material at the surface. As a result, each facula is seen as 
a localized feature that is brighter than the surrounding photosphere. The excess in brightness can 
be up to a few percent relative to the nonmagnetic photosphere. 

Facular excesses play a significant role in explaining the surprising observation that the “solar irradi
ance” is observed to be larger at solar maximum (i.e., when sunspot numbers are at a maximum) than 
at solar minimum (see Section 1.4). For each sunspot, there are many faculae in the surrounding active 
region. Even though the power deficit of a sunspot (many tens of percent) is much larger than the power 
excess in any individual facula, the area occupied by the multiple faculae in the vicinity of the sunspot 
is large enough that the facular excesses in the Sun can more than compensate for the spot deficit. 

16.7.7 exCess ChromospheriC heatinG: netWork anD plaGes 

In Chapter 15, we saw that the chromosphere in cell centers is heated by acoustic waves emerging 
from turbulent convection. Excess heating of the chromosphere in the network, and in plages, can 
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be understood in terms of an extra source of wave energy in those regions. Since the network and 
plages can be identified with confidence as locations where the magnetic field strengths are larger 
than in quiet Sun, it is natural to look to the magnetic field as the source of extra wave energy. 

The fact that a magnetic field is associated with a tension Tm = B2/4π along the field lines suggests 
that we consider the analog to transverse waves on a stretched string. Classical mechanics tells us 
that if a string is under a tension Tm, and the string has a mass density ρ, the speed of transverse 
waves on the string is √(Tm/ρ). Now, even though a magnetic field line in and of itself has no mass, 
nevertheless in the solar atmosphere, where field and gas are “frozen together”, the gas is tightly 
tied to the field. Therefore, when the field lines move, the gas also moves along, thereby conferring 
(in effect) a mass density on the field equal to that of the ambient gas. Analogous to the stretched 
string, therefore, a magnetic field line can support a transverse wave mode that propagates at a speed 

VA  (Tm / )  B / 4  (16.12) 

This propagation speed is referred to as the Alfven speed, after the Swedish physicist who, in the 
midst of World War II, discovered this wave mode in a magnetized gas (Alfven 1942). 

Let us look at numerical values for the Alfven speed in the Sun. In the photosphere, where 
p ≈ 3 × 10−7 gm cm−3, the numerical value of VA is given by 515 B cm sec−1, if B is in Gauss. In the 
upper chromosphere, where p ≈ 3 × 10−13 gm cm−3, VA = 5.15 B km sec−1. In the low corona, where 
number densities are 108–9 cm−3, i.e., ρ ≈ 2 × 10−(15–16) gm cm−3, VA = 60–200 B km sec−1. Thus, in 
the photosphere, even in the umbra of a sunspot, Alfven speeds are no more than 10–20 km sec−1. 
These speeds are not greatly different from the local sound speed. But in the corona, in active 
regions where the fields can be as large as 1000 G or more (Lee 2007), Alfven speeds may be as 
large as tens of thousands of km sec−1 (e.g., Schmelz et al. 1994). 

The flux of Alfven waves FA in the presence of transverse velocity fluctuations of V is of order 
ρ( V)2 VA. In the photosphere, turbulent velocities of order 1 km sec−1 can distort local magnetic 
fields such that V may also be of order 1 km sec−1: this leads to ρ( V)2 ≈ 3 × 103 ergs cm−3. If B = 
10–100 G, we find FA in the photosphere can be of order 107–8 ergs cm−2 sec−1. This is comparable to 
the acoustic flux that might have access to the chromosphere (see Equation 15.2). But Alfven waves 
are not subject to the same dissipation as sound waves: therefore, it is possible that Alfven waves 
originating in the photosphere might supply a significant flux of energy to the chromosphere or even 
to the corona. 

The fields in the Sun exist in the presence of gas in which sound travels as a succession of 
expansions and contractions moving at speed cs. The combined effects of fields and gas lead to the 
existence of wave modes called fast-mode and slow-mode MHD waves: these are hybrid waves in 
which gas pressure and magnetic fields combine in different ways. In a medium where VA << cs (such 
as deep in the photosphere), the fast mode behaves as a sort of sound wave. On the other hand, in 
a medium where VA >> cs (such as in the corona), the slow mode behaves as a sort of sound wave 
guided by the field. 

A remarkable property of the existence of several different modes of waves has already been 
mentioned in Section 15.12.1 in the context of vertically propagating waves, namely, in favorable 
conditions, one wave mode can convert into another (e.g., Cally and Moradi 2013). However, the 
conversion process is not limited to vertical propagating waves: it can also happen to waves that, as 
they propagate around the Sun, go from quiet Sun into an active region, or vice versa. As a result, 
astronomers can determine the position of an active region on the hidden hemisphere of the Sun. 
The reasoning starts by noting that a wave that was originally propagating as a pure sound wave 
(e.g., a p-mode moving at speed cs) can, upon encountering an active region, suddenly be converted 
to an MHD wave. This leads to two important consequences as regards our study of the Sun. 

First, the wave propagation speed changes from cs to a value of order VA. This change in propaga
tion speed has the effect of altering the travel time of the wave between any two points in the Sun 
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(see Section 14.7): the alteration in travel time can be as much as 40 seconds in the presence of a 
1 kG field (Cally and Moradi 2013). This travel time alteration can be used to analyze helioseismic 
data in order to predict if there are active regions present on the “far side” of the Sun and where they 
are located (Lindsey and Braun 2000). At first, and specifically prior to 2011, the only way to check 
these predictions was to wait for solar rotation to carry the active regions eventually onto the visible 
disk. But during the halcyon years 2011–2015, the STEREO mission, with its two satellites observ
ing opposite hemispheres of the Sun from very different vantage points, made it possible for the first 
time to view the entire Sun (back and front) simultaneously. The analytical predictions of far-side 
features could now be checked in real time. Liewer et al. (2017) reported that during a nine-month 
interval in 2011 and 2012, analysis of the helioseismic data from the HMI instrument on SDO led to 
the prediction of 22 far-side active regions in all 22 cases, the STEREO EUV detectors (which could 
“see” the far side directly) did indeed find EUV emission at the predicted sites. (After 2015, one of 
the STEREO satellites no longer transmitted data, so the whole-Sun feature was no longer available. 
But STEREO A still provides valuable information.) Thus, helioseismic data can indeed be used to 
“see behind” the Sun reliably, even when we no longer have the advantage of making observations 
from two STEREO spacecraft. 

Second, MHD waves can supply mechanical energy to the solar gas at rates that are different 
from those of sound waves: the flux of energy can be larger (if VA is larger than cs), and furthermore, 
the physical process of dissipating the wave energy is different from that which occurs in sound 
waves. For example, MHD waves can be dissipated by resistance to current flow, but this mode of 
dissipation is not accessible to sound waves. The combination of increased flux and extra dissipa
tion has the effect that chromospheric heating in a magnetic region can be significantly larger than 
in a nonmagnetic region. This can explain why the chromosphere in a network region (where fields 
are stronger) is observed to be brighter than the chromosphere in the centers of supergranule cells 
(where fields are weaker) (see Section 16.2). 

16.7.8 maGnetiC fielD anD Gas motion: WhiCh is Dominant? 

In the photosphere, we have now seen two distinct and interesting behaviors of the magnetic field. 
In some cases (sunspots, pores), the field causes the solar surface to be darker than normal, while in 
other cases (network, faculae), the field causes enhanced brightening. 

Can we identify a transition between these behaviors? We have already identified one such transi
tion in the case of pores. There, the critical parameter was the diameter of the flux tube: in order for 
darkening to occur, the pore must be larger than the diameter of a typical granule. 

We can also consider the matter from the perspective of frozen flux. The essence of frozen flux 
is that gas and field are forced to move together. This raises the question: which one dominates? 
Does the gas dominate the field or does the field dominate the gas? The answer is: the Sun provides 
us with the luxury of a “yes and no” answer. Examples of both situations can be found in different 
features. 

The question of dominance can be discussed in terms of the energy densities available to gas 
and field in the photosphere. Moving gas has kinetic energy density Ed = 0.5ρV2 ergs cm−3. Inserting 
typical values of density (2–3×10−7 gm cm−3) and convective velocity (1–3 km sec−1) in the pho
tosphere, we find Ed ≈ (0.1–1.4) × 104 ergs cm−3. What strength of magnetic field is comparable to 
the value of Ed? Answer: a field with energy density Emag = B2/8π is comparable in energy density 
to Ed if B ≈ 150–600 G. 

Therefore, in any magnetic structures in the photosphere where the local field strengths are 
in excess of (roughly) 600 G, we expect to find that the gas flows are not sufficiently energetic to 
“push the field around”. In such situations, the field will “win out” and impose changes on the gas. 
Sunspots, where the field suppresses convection and darkness ensues, are a prominent example of 
this behavior. 
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On the other hand, in photospheric structures where the field strength is less than (roughly) 
150 G, the field is not sufficiently energetic to “push the gas around”. In such situations, the gas 
“wins out” and imposes changes on the field. For example, in the network, moving gas induces 
wave modes on the field, thereby heating the overlying chromosphere and causing local brightening. 

16.8 AMPLIFICATION OF STRONG SOLAR MAGNETIC FIELDS 

Where do the strongest fields in the Sun come from? Part of the answer is that the weak polar fields 
can be amplified by the differential rotation observed on the solar surface. The amplification occurs 
because the field is “frozen” into the solar material (see Section 16.6.2.2), and the latter rotates dif
ferentially in latitude. As we saw in Section 14.9.3, the rotation period at the Sun’s surface is 25.7 
days near the equator and 31.3 days at 60° latitude, i.e., a difference of about 20%. We have seen 
(Section 16.4.5) that the solar polar field has a strength of 6–12 G. Assuming that the polar field 
is a dipole (i.e., its field lines run in the north-south direction), the equatorial field strengths are 
expected to be of order 3–6 G. Because of field freezing, the equatorial field (which is originally in 
the north-south direction) will be sheared (i.e., stretched) by differential rotation. Both components 
of differential rotation (latitudinal and radial) can come into play. But for simplicity, let us consider 
only LDR. Then a particular field line, after one rotation (i.e., after 25.7 days) will return to the 
same longitude on the equator, but the high-latitude section of the same field line will lag behind by 
about 20% of a rotation. After five rotations, i.e., after 4.2 months, the high-latitude section of the 
field line will have fallen behind by about one full rotation, i.e., the equatorial will have “lapped” 
the polar section. In one year, the polar portion will have lost 2.8 full rotations on the equatorial 
portion of the field line. 

The excess stretching of the field leads to field lines that become more and more stretched out 
in longitude. That is, although the initial (polar) fields essentially were directed from north to south 
(i.e., they were poloidal fields), the stretching due to differential rotation leads to increasingly strong 
fields in the east-west direction (i.e., toroidal fields). It is this tendency for stretched fields to be 
mainly toroidal that causes most pairs of sunspots (which originate in the strong fields stretching 
mainly in the east-west direction) to lie almost east-west (see Section 16.1): each pair of spots origi
nates in a strong toroidal (almost) east-west magnetic flux tube. 

How strong do the toroidal fields become? The answer depends on how the area of a flux tube is 
distorted by the stretching motion. As the field lines are stretched, the area of a flux tube will likely 
be “squeezed”. How much will the squeezing be? This is a complicated problem and it is not easy to 
give a simple answer. But suppose, for the sake of numerics, that an increase in length by 20% (after 
one rotation) leads to a reduction in area by (say)  = 10%. To conserve magnetic flux, the reduction 
in area by 0.1 in 25.7 days would mean that the toroidal field would be larger than the initial value 
(3–6 G) by ≈1.1 after one rotation. After one year, i.e., after 14.2 equatorial rotations, the toroidal 
field strength near the equator would be increased by 1.114.2, i.e., by a factor of 3.9. After 2, 3, 4, and 
5 years, the initial equatorial field of 3–6 G would be amplified by factors of 15, 58, 220, and 870. 
Thus, the toroidal field strength at the equator would be 2600–5200 G after 5 years. These values 
are comparable to the field strengths observed in sunspot umbrae (see Figure 16.8). 

Suppose our estimate of  is too large: suppose a more realistic value is   ≈ 0.05. Then the toroi
dal field strength would require about 8 years to reach a strength of 1 kG. Thus, depending on the 
actual value of  , the continuous operation of LDR could result in fields as strong as sunspot fields 
in time-scales of 5–8 years. 

So far, we have considered only LDR as we see it at the surface. But the amount of LDR varies 
as we examine different depths beneath the surface. In Figure 14.6, we saw that the angular veloc
ity difference between gas at 0 deg latitude and 60 deg latitude is maximum at radial locations 
of 0.9–0.95 solar radii. As a result, the stretching of poloidal fields will build up faster at depths 
of 35–70 thousand km below the surface. Another region of strong shear occurs at the interface 
between convection zone and radiative interior: there, a strong shear occurs over a relatively short 
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interval in the radial coordinate. Magnetic fields that are frozen into such a highly sheared medium 
may also generate fields of strength ≥1 kG in relatively short time-scales. 

However, in the radiative interior, where the gas rotates almost as a solid body, there is little or 
no tendency for the poloidal field to undergo stretching. 

In view of these processes, toroidal fields of order 1 kG can be built up in the course of a few 
years not just in the surface layers, but at all depths throughout the convection zone. Now, the 
sunspot cycle is observed to last, in fact, some 11 years on average. So the stretching time-scales 
estimated earlier are in the right ballpark to allow surface fields to build up to kG strength in the 
course of (roughly) one-half of the sunspot cycle. 

Since stretching of field lines is an inherent process in a medium with frozen fields and dif
ferential rotation, the question arises: what eventually stops the process of stretching? Why do the 
surface fields reach strengths of a few kilogauss and not much more? One reason has to do with 
buoyancy forces. To see how this operates, consider the application of Equation 16.11 to a stretched 
flux tube. The internal pressure pin is lower than the ambient pressure pext by the amount B2/8π. How 
does the temperature inside the flux tube compare with the temperature outside? To answer this, 
we note that, deep in the interior of the Sun, where radiative transport dominates (see Chapters 8 
and 9), photons can carry heat efficiently back and forth between neighboring parcels of gas. These 
photons are not impeded in any way by the magnetic field. As a result, the temperatures inside and 
outside the flux tube can remain essentially equal even though the pressures inside and outside 
are not equal. Therefore, reduced pressure pin corresponds to reduced density ρin inside the flux 
tube: ρin/ρext = pin/pext = 1 − (B2/8πpext). Notice that, in order to avoid negative densities inside the 
flux tube, the maximum value which the field strength can have is Bmax = √(8πpext). Given the pres
sure at the base of the convection zone (4.3 × 1013 dyn cm−2: see Section 7.9), a firm upper limit on 
Bmax is of order 33 MG. 

Because the flux tube contains gas with lower density than in the ambient (nonmagnetic) medium, 
buoyancy forces come into play and push the flux tube upward. How strong are the buoyancy forces? 
In the presence of gravity g and a density difference ∆ρ = ρext − pin, buoyancy creates an upward 
acceleration ab which is given by (see Equation 7.2): 

 gB2 

ab g  (16.13) 
 8  pext 

In the presence of this acceleration, how long does it take for a parcel of gas to be buoyed up to 
the surface? To make the time as long as possible, let us consider a parcel of gas starting from as 
deep as we can reasonably assume, i.e., near the base of the convection zone. Such a parcel starts at 
a depth D ≈ 2 × 1010 cm (see Section 7.9). What field strength should we use? Well, in the interest of 
making the rise as fast as possible, let us consider B to have its largest permissible value, Bmax. In that 
case, and assuming that the flux tube is free to rise, Equation 16.13 indicates that the full accelera
tion of gravity (ab ≈ g ≈ 2 × 104 cm sec−2) would come into play. In such conditions, the parcel could 
rise to the surface in a time τr = √(2D/ab) ≈ 1400 sec if the parcel met no resistance along the way. 
This is less than one-half hour, a very short time indeed in the context of the solar 11-year cycle! Of 
course, the upper limit of 33 MG for Bmax is extreme: estimates of the maximum field strengths that 
may exist in the convection zone and still be consistent with the observed properties of sunspots 
suggests that Bmax may be no larger than 105 G (Choudhuri and Gilman 1987). At the base of the 
convection zone, this would lead to values of ab that are no larger than 0.2 cm sec−2. With this slower 
buoyant acceleration, the rise time to the surface is found to be a few days. Even allowing for the 
presence of resistance due to convective turbulence before reaching the surface, the buoyant time
scales are likely to be no longer than ≈ 1 year. 

The effects of buoyancy have a well-defined effect in the Sun: they cause flux tubes to move “up 
and out”. And the stronger the field, the faster the buoyancy forces bring it up to the surface. As 
a result, when we try to impose the condition that the Sun must make a strong (toroidal) field by 
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amplifying its (weak) poloidal field, there is a race against time. On the one hand, differential rota
tion takes a finite time (5–8 years) to stretch the field and amplify it. On the other hand, as the field 
becomes stronger, the stronger are the buoyancy forces that want to drive the flux tube “up and out”. 

16.9 WHY DOES THE SUN HAVE A MAGNETIC CYCLE WITH P ≈ 10 YEARS? 

The Sun’s magnetic cycle occurs over a time interval P whose value is observed to span a range from 
about 9 years to about 12 years, as the largest solar magnetic features (sunspots and their accom
panying active regions) increase and decrease in numbers. The sunspots are the regions where the 
field grows to its largest values (3 kG), and the poles are the locations where the weak global fields 
(6–12 G) are easiest to identify. 

In order to understand why the large magnetic features in the Sun have a cycle, Babcock (1961) 
argued as follows. Let us start by considering the global field of the Sun at time to. Let the global 
field at to be directed in such a way that the Sun’s north pole has field lines that point outward from 
the Sun. Also at to, suppose for simplicity that there are no sunspots or active regions on the surface, 
i.e., the Sun is at sunspot minimum and ready to start a new cycle. Let us see if we can understand 
the directions of the fields that occur in sunspots in this new cycle. 

Differential rotation operates on the poloidal field, and in the course of 5–8 years, the poloidal 
field lines are stretched out so as to form strong toroidal fields (≥1 kG) beneath the surface. This 
can be considered as the growth phase of the cycle. At certain locations and at certain (unpredict
able) times, when something causes the local toroidal field to become unstable, a section of toroidal 
field rises up and breaks through the solar surface: thus sunspots owe their existence to the toroidal 
field (Mordvinov et  al. 2012). The time-scale for buoyancy to bring up a field of strength 3 kG 
to the surface is short, perhaps as short as a few days. The breakthrough forms an active region 
containing (typically) a pair of sunspots (leader plus follower) with a definite polarity. The active 
region surrounding the sunspots also has a leading portion and a following portion. Given the out
ward direction of the Sun’s north pole field in the northern hemisphere at time to, the leader spot (and 
the nearby portion of the surrounding active region) during the growth phase will have a magnetic 
field B(lead) whose lines point outward from the Sun. But the follower will have a magnetic field 
B(follow) whose lines point inward. (Conversely, in the southern hemisphere, at the same time, pairs 
of spots will exhibit leaders with inward field lines and followers with outward field lines.) That is, 
during the growth phase of the cycle, the leader spots in a given hemisphere retain the same sense 
of the magnetic field as exists at the pole in that hemisphere at time to. This helps us to understand 
Hale’s polarity law. 

Since the sign of B(lead) is the same as the sign of B(pole) in its hemisphere, it follows that the 
sign of B(follow) must be opposite to the sign of B(pole) in its hemisphere. This is an important fea
ture in helping us understand the solar cycle. Each spot pair is surrounded by an active region, which 
retains the overall polarity of the leader and follower spots. Because of Joy’s law (see Section 16.1), 
the follower spot lies slightly farther from the equator than the leading spot. Therefore, if any 
mechanism is at work to cause spot pairs to migrate closer to the poles as time goes on, the following 
spot will reach the pole first. Since the sign of B(follow) is opposite to the sign of B(pole), as more 
and more follower spots reach the pole, they eventually overwhelm the local polarity and replace 
it with the opposite polarity. See Figure 16.10 where following (leading) and leading spots in the 
northern hemisphere are distinguished by red (blue) colors respectively in cycles 21 (~1980) and 23 
(~2001), but by the opposite colors in cycles 22 (~1990) and 24 (~2014), in accordance with Hale’s 
law. The build-up of following polarity at the poles leads to a reversal of the field (from red to blue, 
or blue to red) at the Sun’s poles every 11 years (or so). This process is the essence of the Babcock 
(1961) theory of the solar cycle. 

What mechanism might be at work to force spots to migrate systematically towards the poles? 
One possibility is the meridional circulation that exists in the near-surface layers of the Sun 
(Section 1.11). The speed of this near-surface flow has a maximum amplitude (on average) at solar 
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 FIGURE 16.10 (a) Changes in total sunspot area in the northern hemisphere in solar cycles 21–24. (b) Time-
latitude diagram of the averaged magnetic fields (blue: negative fields; red: positive fields). Sunspot areas are 
shown by black contours corresponding to 100 MSH. (c) Changes in total sunspot area in the southern hemi
sphere in solar cycles 21–24. (From Mordvinov and Yazev 2014.) 

minimum of 10–20 m sec−1 at latitudes of order 30–50 degrees (Komm et al. 2015). The meridi
onal flow speed is slower at solar maximum. Gas flowing at a mean speed of ≈10 m sec−1 can drag 
material from equator to pole (a distance of πR /2 ≈ 1011 cm) in a time of order 108 sec ≈ 3 years. 

This systematic flow to the poles occurs simultaneously with a diffusive (random walk) process 
due to the horizontal motions of gas in supergranules: with diameters of order d = 30,000 km and 
horizontal velocities of order 0.3 km sec−1, the associated diffusivity D ≈ dv is of order 1014 cm2 sec−1. 
In the presence of such a random walk, the time-scale required to cover a distance L is τd ≈ L2/D. 
Therefore, in order for a flux tube to be transported from equator to pole, i.e., across a distance 
of L ≈ 1011 cm, the time required is of order 108 sec, i.e., ≈ 3 years. Because of Joy’s law, this random 
walk favors the arrival of follower polarity at the pole, thereby leading again to reversal of the polar 
field. Combining meridional circulation and supergranule diffusion, we expect that the time-scale 
for reversal of the polar fields is probably no longer than 3 years. (For an instructive illustration of 
these processes, see Sanchez et al. [2014].) 

With this information, we can now address the question: why does the sunspot cycle occur on 
a P of order 10 years? The physical properties of the Sun itself set the various time-scales that go 
into determining P. First, there is a time-scale on which fields can be amplified by differential 
rotation (5–8 years); second, there is a time-scale for the fields to be buoyed up by gravity to the 
surface (<1 year); third, there is a time-scale for the fields to be transported up to the polar regions 
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(<3 years). Combining these time-scales, we see that a time interval of 9–12 years could encompass 
many or all of the elements that contribute to a solar cycle. 

This helps us to see why the Sun has a sunspot (and active region) cycle whose length is measured 
not in millennia or centuries, and not in minutes or hours, but in time-scales of order 10 years. The 
time-scale of the solar cycle is determined by the Sun’s own differential rotation, its gravity, the dif
fusivities of supergranule flows, meridional flows, and the linear extent of its surface. 

However, although the ≈10-year (or more accurately, the 11-year) cycle is the most prominent 
periodicity associated with the Sun over the past 3 centuries, it is worth noting that the Sun does 
not vary only on a period of order 10 years. We have already mentioned (see Section 16.1.4) that 
periodicities on time-scales of centuries or millennia can be identified in certain records. Analysis 
of various types of solar activity (spots, flares) show that other periods can also be identified in 
the data record. In one study of the sunspot record between 1700 and 1969 (Wolff 1976), various 
periodicities (and with various degrees of statistical significance) ranging from 3 years to 180 years 
were reported, possibly arising from beating between various inertial oscillation modes (i.e., 
r‑modes). And in an analysis of gamma-ray observations from flares, Rieger et al. (1984) reported 
on a periodicity of 154 days: recently, this period has been connected specifically with an r‑mode 
(Section 14.10) having m = 10 in the Sun (Chowdhury et al. 2010). 

Although the largest magnetic features on the Sun (spots, active regions) clearly undergo an 
11-year cycle, there seems to be some ambiguity regarding the question: do the smallest magnetic 
features (pores, ephemeral active regions) also follow the 11-year cycle? If the answer were to be a 
definitive no, then perhaps a different dynamo might be at work to generate the small-scale features. 
But at the present time, different investigators have arrived at contradictory answers: future work is 
required in order to settle the question. 

16.10 RELEASES OF MAGNETIC ENERGY 

We have seen that magnetic fields have energy densities equal to their pressures, i.e.,  Wmag = 
B2/8π ergs cm−3. In favorable circumstances, most of the “free” energy in the field (i.e., the energy 
of coronal magnetic field in excess of the energy of the potential field [see Section 16.4.5]) can be 
converted into other forms. The two most prominent classes of events in the Sun that owe their exis
tence to release of magnetic energy are flares and coronal mass ejections. We will discuss flares in 
Chapter 17, in the context of the solar corona, and CMEs in Chapter 18, in the context of the solar 
wind. However, in order to set the stage for a discussion of CMEs, we need to consider one more 
physical property of magnetic fields. We discuss this in the next subsection. 

16.11 MAGNETIC HELICITY 

We are already familiar with the fact that magnetic fields are vector quantities, which have mag
nitude and direction. The total energy E in a magnetized plasma (including kinetic and magnetic 
energy) is a positive definite scalar quantity that, in an ideal plasma (i.e., one with no dissipation), 
remains constant as time goes on. In such a case, E is said to be an “invariant” of the system. 
However, if some process of dissipation can operate in the plasma (e.g., due to viscosity or resistiv
ity), E will become progressively smaller as time goes on. The dissipation occurs at small length-
scales, and in order for the energy to get down to such scales, the energy must undergo a “cascade” 
from large to small scales. Such a cascade of energy is a natural feature of a medium where turbu
lence is well developed. 

However, there is a second scalar parameter that describes a different aspect of a magnetized 
plasma: magnetic helicity, H, which is a measure of how twisted the field lines are. Given that the 
field B in a region is defined as the curl of a “vector potential” A, the value of Hm per unit volume is 
defined as the dot product A.B of the two vectors. The units of Hm are Mx2. (For definition of Mx, 
see Section 16.7.2.) A coronal loop with two footpoints rooted in photospheric granules can have 
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its field lines twisted by the granular motions. The twisting leads to the flow of current along the 
loop. If the loop is twisted through an angle of 2π radians between one footpoint and the other, the 
loop is said to be subject to a twist T of 1 turn. If the loop becomes twisted too much, the entire loop 
starts to erupt and change its shape into coils and “super-coils”: this coiling is described by the term 
“writhe”. A magnetic field in a region of the Sun can be assigned a helicity value of Hm, which is 
formally a measure of twist plus writhe. Because current can flow along two opposite directions in 
a loop, the value of Hm is always accompanied by an algebraic sign: + or − refers to the handedness 
of a screw that follows the twist in any particular loop. In an ideal plasma (i.e., one without any 
dissipation), Hm is an invariant. However, if there is finite dissipation, the value of Hm will undergo 
changes at a slower rate than those occurring in E: in fact, Hm may retain an essentially constant 
value for a time that is almost as long as the global diffusion time-scale (Equation 16.10) (Priest 
et al. 2016). As a result, the decay of E cannot occur in an arbitrary manner but must satisfy the 
additional constraint Hm ≈ constant (see Section 16.4.5). (An analogy occurs in frictionless mechan
ics when an object slides down an inclined plane. If the object has the capacity to rotate as it slides, 
then total energy is not the only quantity to be conserved: one must also ensure that the angular 
momentum is conserved.) The reason for the very different temporal behavior of E and Hm is that in 
3-D MHD, whereas E cascades towards smaller length-scales (and is therefore readily dissipated at 
atomic scales), Hm undergoes an “inverse cascade” towards larger scales (where dissipation is less 
effective). As a result, helicity persists in a plasma for longer times than E persists. Hm is said to be 
a more “rugged” invariant than E. 

As regards the determination of Hm in the Sun, magnetic fields measured in active regions on the 
Sun’s surface are frequently extended up into the corona by assuming (see Section 16.4.5) that the 
fields in the corona are force-free, i.e., B B. In this equation the parameter  has a different 
sign depending on the handedness of the current: in loops where writhe is not important, the sign of 

 can be taken as a proxy for the sign of Hm. Pevtsov et al. (1995) extracted values of  for 60 ARs 
that were observed in the years 1988–1994 (solar cycle 22). They also used data in the literature to 
determine values of  during cycles 20 and 21. Remarkably, they discovered that, for ARs in the 
northern hemisphere (NH), the algebraic sign of  is negative in the majority (76%) of their sample, 
while in the SH,  is positive in the majority (69%) of their sample. Apparently, the Sun is capable of 
imposing systematically opposite helicities in ARs which lie N and S of the equator, with maximum 
numerical values for Hm at latitudes of 15–25 degrees. Also remarkably, this pattern of >0 (<0) in 
SH (NH) was observed to persist in cycles 20, 21, and 22, even though the global field of the Sun 
switched sign between each pair of cycles: apparently, a change in the sign of B (between one cycle 
and the next) does not necessarily lead to a change in the sign of B B./ 

In their work, Pevtsov et al. (1995) pointed out that earlier research had already indicated that a 
very different aspect of the Sun (its wind: see Chapter 18) also shows signs of opposite helicities in 
NH and SH. Specifically, Bieber et al. (1987) analyzed the spiral magnetic field predicted by Parker 
(1958) in the solar wind (see Section 18.5): it emerged that Hm is negative in the NH wind and posi
tive in the SH wind. Moreover, this feature was found to remain unchanged in different solar cycles 
(despite the change in polarity of the solar field). These features are clearly analogous to the proper
ties displayed by ARs on the solar surface. 

Pevtsov et al. (1995) suggested that differential rotation is probably not the primary cause of the 
hemispheric pattern behavior for : instead, convective turbulence may be responsible. Why would 
that be? Because it has been shown computationally, by Moreno-Insertis and Emonet (1996), that 
magnetic flux tubes rising up from the solar interior will not survive their upward passage through 
the convection zone turbulence unless the fields are twisted by some minimum amount. In other 
words, the presence of helicity acts as a powerful antidote against the shredding process that would 
otherwise occur as the flux tube traverses the convection zone. The inherent twist of flux ropes 
emerging at the surface of the Sun naturally supplies helicity into an emerging AR. This helicity 
associated with each AR is the dominant contributor to the global magnetic helicity of the Sun 
(Zhang 2012). 
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In order for the Sun to make a transition from one solar cycle to the next, the magnetic flux (espe
cially the strong toroidal flux) of the old cycle has to be removed to make room for the flux belong
ing to the new cycle. This requires removal of some 1024 Mx of toroidal flux per solar cycle: this 
can be achieved by a combination of solar wind outflow, eruption of filaments (see Section 16.2), 
and CMEs (Bieber and Rust 1995). However, the CMEs do not remove only magnetic flux from the 
Sun: Rust (1994) and Low (1996) have suggested that CMEs also remove magnetic helicity from the 
Sun. Since the hemispheric helicity has the same sign in all cycles, if the helicity of one cycle were 
not removed from the Sun (somehow), then the amount of helicity would simply keep accumulat
ing in the solar atmosphere, but this is not observed to happen. The amount of helicity that CMEs 
remove from the Sun in the course of a solar cycle is estimated to be 2.5 × 1046 Mx2 (Demoulin 
et al. 2016), enough to deal with the emergence of 200–300 ARs per year. We have already noted 
(Section 16.1.3) that in the Sun, some 300 ARs emerge on the surface on average each year: it seems 
that CMEs are capable of removing essentially all of the helicity that the ARs introduce into the 
solar atmosphere. 

Is there observational evidence indicating that CMEs are in fact associated with removal of 
helicity? Nindos and Andrews (2004) analyzed 133 large flares in cases where the value of Hm in 
the local AR could be measured before each flare: they found that some flares were accompanied 
by CMEs while others (with comparable flare energy) were not. A clear distinction between these 
two groups of flares as regards helicity was found: ARs with large Hm were more likely to generate 
a CME than ARs with small Hm. We shall return to this aspect of observational evidence, in one 
particular active region, in Section 18.9.7. 

EXERCISES 

16.1 Calculate the Zeeman splitting of a line at  = 6000 Å in fields of 1, 100, and 104 G. 
16.2 Consider an electron, a proton, and a lead nucleus gyrating in the Earth’s magnetic field 

(B = 1 G) with a variety of energies. Calculate the radius of gyration for each particle in 
cases where the kinetic energy is (a) 1 eV, (b) 1 MeV, and (c) 1 GeV. 

16.3 In the space between the stars (the interstellar medium: ISM), energetic particles (galactic 
cosmic rays) gyrate about a field with a strength of about 3 × 10−6 G. Determine the rela
tivistic  factor for an ultrarelativistic proton that has a radius of gyration of 10 AU in this 
field. 

16.4 Calculate the Alfven speed in the ISM, where the gas number density is 1 proton cm−3. 
(The mass of a proton is 1.67 × 10−24 gm.) 

16.5 Calculate the range of Alfven speeds in the interplanetary medium near Earth: the field 
strengths range from one to 10 × 10−5 G and the number densities range from one to 10 
protons cm−3. 
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17 The Corona 

Since ancient times, people fortunate enough to witness a total eclipse of the Sun have been able to see, 
for a few minutes, a remarkable phenomenon with the unaided eye: this feature becomes visible during 
the short interval of time (no more than 7–8 minutes) when the brilliant light from the photosphere of 
the Sun is blocked totally by the Moon. When the total eclipse begins, the disappearance of the solar 
photosphere does not mark the onset of the complete darkness of night. Instead, witnesses see a faint 
residual brightness in an extended region surrounding the dark side of the Moon. At its brightest, the 
faint light has an intensity that is no more than several millionths of the brightness at the center of 
the solar disk (van de Hulst 1950). The faint light is called the corona, the Latin word for “crown”, 
because it appears that the Sun is “wearing” a (faint) covering on top of its brilliant (but hidden-by
the-Moon) photosphere. 

Coronal radiation in the visible part of the spectrum has several components. The first, the 
K‑corona, is continuum radiation (due to electron scattering) that dominates close to the Sun. Inside 
radial locations of 1.1R , the K-corona has an intensity of a few times 10−6 in units of the intensity 
at the center of the solar disk (van de Hulst 1950). The F-corona is due to scattering of sunlight off 
interplanetary dust particles: the letter “F” indicates that the spectrum of this part of the corona 
contains many of the Fraunhofer lines that occur in the spectrum of the Sun itself. The F‑corona 
dominates the coronal emission at radial locations r > 2.0–2.2 R . Van de Hulst (1950) suggests that 
the K‑corona is the “real corona” (varying during the solar cycle), while the F‑corona is a “spuri
ous corona” (no variation with the solar cycle). A third component, the E‑corona (not mentioned by 
van de Hulst) gives rise to multiple emission lines in the visible and infrared portions of the solar 
spectrum. An example of a spectrum of the E‑corona, obtained during an eclipse of the Sun by 
Voulgaris et al. (2012), is shown in Figure 17.1. Observations obtained during eclipses that occur at 
various stages of the 11-year solar cycle indicate that the emission lines in the E‑corona vary in their 
relative strengths during the solar cycle. 

The corona is observed to have shapes that differ systematically from one eclipse to another. 
These different behaviors can be seen in Figures 17.2 and 17.3, which were obtained by means of 
sophisticated image processing (Druckmüller et al. 2014). On the one hand, in Figure 17.2, obtained 
on July 22, 2009 (when the Sun was in the deepest observed minimum of solar activity), the corona 
at high latitudes (close to the N and S poles) is characterized by striations radiating out from the 
Sun, looking like iron filings scattered on a piece of paper close to a bar magnet. These striations 
trace the global (poloidal) magnetic field of the Sun. At low latitudes in Figure 17.2, the global field 
is obscured by features called “streamers”: some of these are labeled “helmet streamers” because 
they resemble a certain type of World War I military helmet at lower heights, with a narrowing 
“spike” at greater altitudes. On the other hand, when the image in Figure 17.3 was obtained in 2001, 
the Sun was close to activity maximum: the “iron filings” around the poles are not readily apparent, 
and now there are “helmet” streamers at essentially all latitudes. The size of helmet streamers, as 
measured by the separation between their footpoints on the surface of the Sun, can be estimated 
roughly from Figures 17.2 and 17.3: the linear sizes are of order several tenths of a solar radius, 
i.e., of order a few times 1010 cm. 

It is not immediately obvious from Figures  17.2 or 17.3, but the motions of gas in the solar 
atmosphere may be distinctly different inside and outside the helmet: Dolei et al. (2015) report that, 
inside one particular helmet, the gas remains essentially stationary at radial distances r ≤ 3.5R , 
whereas outside the helmet, the gas is expanding radially outward at speeds of 40 km s−1 already at 
r = 2.5R  and at speeds of 140 km s−1 at r = 5R . Thus, the “solar wind” (see Chapter 18) escapes 
freely from the outside of a helmet streamer but not from the inside. Is there any physical reason 

https://doi.org/10.1201/9781003153115-17
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FIGURE 17.1 Spectrum of the solar corona obtained during an eclipse. The coronal lines (which consti
tute the E‑corona) due to highly ionized stages of Ar, Ca, Fe, and Ni are labeled by wavelength and ioniza
tion stage along the top of the upper spectrum. Along the bottom of the upper spectrum, chromospheric 
lines in the flash spectrum are labeled; four lines in the Balmer series are present. (Voulgaris et al. 2012; 
used with permission.) 

FIGURE 17.2 The corona as photographed during a total eclipse on July 22, 2009, when the Sun was in a 
very deep activity minimum. North pole is at the top. Notice that at both north and south poles, there are stria
tions reminiscent of iron filings near a magnet: the striations indicate the global (poloidal) magnetic field of 
the Sun. Boxes A and B were inserted by Druckmüller et al. (2014), but we do not discuss them here. (Used 
with permission of S. Habbal.) 
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 FIGURE 17.3 The corona as photographed during a total eclipse on June 21, 2001, when the Sun was close 
to maximum activity. North pole is at the top. The global poloidal field is for the most part obscured, due to 
multiple streamers that are present at essentially all latitudes. Certain features in the image have been marked 
by Druckmüller et al. (2014), but we do not discuss them here. (Used with permission of S. Habbal.) 

why the region of stationary gas in a streamer should extend out to r ≈ 3.5R ? We will return to this 
question in Section 18.3. 

To the unaided eye, the corona has a pearly white color. For this reason, the corona as seen in 
Figures  17.2 and 17.3 is referred to as the “white-light corona”. Subsequently, we will compare 
this corona with what is observable in other spectral regions, especially in X-rays. Instrumental 
measurements show that the spectrum of the F corona is more or less identical to sunlight, apart 
from the presence of several emission lines that have no counterpart in the photosphere. The corona 
appears brightest at locations close to the surface of the Sun, and the brightness decreases with 
increasing distance from the photosphere 

The origin of the corona, i.e., the identification of the physical process(es) that heat(s) the corona, 
is a long-standing problem in solar physics. Magnetic fields play a key role in structuring the corona 
and in heating it. In this chapter, we summarize the physical parameters that have been determined 
for the corona in various locations on the Sun. These provide boundary conditions that have to be 
explained by solar researchers. 

17.1 ELECTRON DENSITIES 

Quantitative measurements of the brightness of the corona during eclipses indicate that the bright
est regions of the corona, near the edge of the Moon’s disk, i.e., at the base of the corona, have 
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intensities of no more than a fraction f ≈ 5×10−6 times the brightness at the center of the (uneclipsed) 
solar disk. A remarkable feature of the white light corona (at least out to radial distances of a few 
solar radii) is that the light is observed to be polarized. Coronal light in which the electric vector 
is in the radial direction (pointing directly away from, or toward, the Sun) differs in intensity from 
coronal light in which the electric vector is in the tangential direction. The difference is by no means 
small: at radial locations between 1 and 3 solar radii (R ), the degree of polarization can be as large 
as 50% (van de Hulst 1950). The presence of significant polarization indicates that coronal light in 
these regions of the corona arises as a result of scattering of radiation off free electrons. 

We can use this information to obtain a first estimate of the density of free electrons ne at the 
base of the corona. When we view the corona from Earth, our line of sight passes through a column 
of electrons that has a number density of ne at its densest (where our line of sight reaches a radial 
distance closest to the Sun), combined with an effective transverse length L through the corona. This 
column of electrons is capable of scattering a fraction of 5 × 10−6 of the light from the photosphere 
into our line of sight. The column density of electrons along our line of sight is Ne = neL cm−2. 
Combining this column density of electrons with the Thomson cross-section σT (Equation  3.1), 
the fraction of light from the photosphere that is expected to be scattered into our line of sight is 
f = neL T. Inserting f = 5 × 10−6, we find that neL must have a numerical value of about 1019 cm−2. 
What is a reasonable estimate for the transverse length of our line of sight? It is difficult to see how 
it could be larger than one solar radius: therefore, an upper limit of 1011 cm is plausible for L. What 
about a lower limit? The inner corona is seen to fall off in intensity with a scale height of order 0.1R
(Newkirk 1967). What could give rise to such a scale height? A possible answer has already been 
mentioned in Section 5.1: if a gas is in hydrostatic equilibrium (HSE), the density/pressure should 
decline with increasing height according to a scale-height Hp = Rg T/gμ. Now, in the upper corona, 
the existence of outflow of solar wind (Chapter 18) indicates that HSE is definitely not valid, but in 
the low corona, where the wind is still moving slowly (relative to the sound speed), HSE is not a bad 
approximation. We shall see (Section 17.3) that the low corona has T ≈ 106 K: in such conditions, 
hydrogen is fully ionized, and so μ ≈ 0.5. This leads to H ≈ 7 × 109 cm ≈ 0.1R . Thus, a lower limit 
on L ≈ 1010 cm is plausible near the base of the corona. Using these limits, the prior estimate of neL 
≈ 1019 cm−2 leads to the conclusion that the coronal base density ne is of order 108–109 cm−3. 

Detailed analysis of the coronal brightness and how it falls off with increasing distance from 
the Sun have been analyzed by (e.g.) Newkirk (1967): he finds that, indeed, the densities at the 
base of the corona are in the range 108–9 cm−3. The radial profile of density is found to vary 
between polar regions of the Sun (where the corona has lower densities) and the equatorial regions 
(where higher densities are present). The density also varies between solar minimum and solar 
maximum. However, in all cases the density profile decreases monotonically as one observes 
farther from the Sun. 

How can we understand why the densities at the base of the corona have the values estimated 
earlier? Recall that the gas density in the photosphere of the Sun, i.e., about 3 × 10−7 gm cm−3 (see 
Table 5.3), corresponds to number densities (assuming pure hydrogen) of order 2 × 1017 cm−3. Thus, 
between photosphere and coronal base, the number density of particles decreases by a factor of ~108–9. 
We shall see that the temperature in the corona is higher than in the photosphere by a factor of ~200. 
Thus, the pressure at the coronal base is lower by ~2 × 10−(6–7) than the photospheric pressure. In the 
presence of hydrostatic equilibrium, this would correspond to traversing about 13–15 scale heights. 
The scale height Hp in the photosphere is known to be 114–140 km (see Equation 5.5). In the chro
mosphere, where temperatures rise to perhaps 1.5 times the photospheric value, along with a reduc
tion in the mean molecular weight by a factor of almost two, the value of Hp in the chromosphere is 
expected to be of order 300 km. Thus, the linear height corresponding to 13–15 scale heights should 
be between 1500 km and 4500 km. Even though this is a simple argument, it is noteworthy that the 
linear height up to the base of the corona overlaps well with the observed (very rough) thickness of 
the chromosphere (Section 15.2): that is, it is reasonable to assume that the base of the corona occurs 
at a height that is equal (essentially) to the height of the gas at the top of the chromosphere. 
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17.2 ELECTRON TEMPERATURES 

The physical parameters of the corona, specifically its density and temperature, cannot be derived 
by the techniques that were used to study the photosphere. In the latter, the theory of radiative trans
fer was the tool that provided information as to the variation of physical quantities as a function of 
optical depth . But in the corona, the gas is so rarefied that  is always <<1, i.e., optically thin con
ditions prevail. So we have to rely on different techniques if we wish to determine numerical values 
for the key physical parameters in the corona. We shall typically use the temperature as independent 
variable in the corona. 

17.2.1 optiCal photons 

The first reliable estimates of temperatures in the coronal gas were obtained by Edlen (1945), based 
on his study of fine structure atomic energy levels in isoelectronic sequences, i.e., a series of differ
ent elements in different stages of ionization such that all members of the series contain the same 
number of bound electrons. (An example of such a sequence can be found in Edlen (1936): this 
sequence, each with 12 bound electrons, contains the ions Mg I, Al II, Si III, . . . Ca IX, . . . Fe XV, 
the last of which will play a role in Figure 17.8.) By searching for patterns in the energy intervals 
that separate certain fine-structure levels in each of the ions in particular isoelectronic series, Edlen 
was able to identify the upper and lower energy levels that give rise to certain emission lines in 
the visible spectrum of the corona. 

Edlen showed that the strongest coronal emission line in the red part of the visible spectrum (at 
 = 6375 Å) originates as a (forbidden) transition between two fine-structure energy levels that exist 

in the Fe X ion (see Figure 17.1), i.e., iron with nine electrons removed. Edlen also showed that the 
strongest coronal emission line in the green part of the visible spectrum (at  = 5303 Å) originates 
in a (forbidden) transition between two fine-structure levels in the Fe XIV ion (see Figure 17.1), with 
13 electrons removed. The removal of 9 or 13 electrons from iron atoms requires a source of energy: 
assuming that the electron temperature in the plasma T supplies the necessary energy, it is found 
that T must be of order 1–2 MK, i.e., some 200 times hotter than the photosphere. (In what follows, 
we use the abbreviation MK for million degrees Kelvin.) More precisely, the red Fe X line is formed 
at about 1.2 MK, while the green Fe XIV line is formed at about 1.8 MK. A line at 5694 Å due to Ca 
XV (see Figure 17.1) is formed at about 2.3 MK: this line has never been observed at solar minimum 
(Voulgaris et al. 2012), indicating that at solar minimum the hotter coronal gas above 2 MK more 
or less disappears (see Figure 17.10). 

For an image of the corona during two eclipses in which regions of the corona that emit the 6374 Å 
line appear in red, while regions of the corona that emit the 5303 Å line appear in green, see 
Figure 17.4. In the top two panels, the image contains only the emissions in the lines themselves. In 
the lower two panels in Figure 17.4, as well as the red and green line emissions, the image is overlaid 
with a white-light continuum image. 

Since Edlen’s discovery of these large temperatures, the key question about the solar corona has 
been: how does the Sun manage to heat up electrons in its atmosphere to temperatures that are some 
200 times hotter than the photosphere? Already when we discussed the chromosphere (Chapter 15), 
we raised the question as to how chromospheric gas could become heated above the photospheric 
temperature. In the chromosphere, the problem was relatively mild: we “only” had to explain why 
the temperature should increase above the photospheric value by a factor of about two. In that case, 
mechanical heating due to acoustic waves was found to be adequate to provide much of the chromo
spheric heating, at least in the low-to-mid chromosphere. When we come to the corona, we are faced 
with an analogous problem, except that now we have to account for an increase in temperature by 
a factor of at least 200. To be sure, we are dealing with gas that has a 109 times lower density than 
the gas in the photosphere: as a result, even a relatively small flux of mechanical energy may be all 
that is needed to boost the temperature to the MK mark. Nevertheless, the questions remain: what 
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FIGURE 17.4 Images of two eclipses of the Sun: March 29, 2006 (left), and August 1, 2008 (right). Upper 
panels: the E-corona, showing emission in red and green lines only; lower panels: white light image of the 
K+F corona is superposed on the red/green image in the upper panel. (From Habbal et al. 2010; used with 
permission of S. Habbal.) 

is the source of the mechanical energy? and how much flux of that energy is needed to account for 
the observed temperature? 

While Edlen’s major achievement was to help to determine the temperature in the corona, his 
study also helped, interestingly enough, to set an upper limit on the electron density in the corona. 
To see why this is so, we note that the two coronal emission lines analyzed by Edlen were found to 
be “forbidden lines” (see Section 3.1): the transitions occurred in both cases between the P3/2 ground 
level and a fine-structure  P1/2 level that lies about 2 electron-volts (eV) above the ground level. 
Electric dipole transitions are not allowed between such levels according to the common selection 
criteria that apply to LS coupling in an atom. (The selection rules indicate that an electron start
ing in a P orbit should be allowed to make a transition only to either an S orbit or a D orbit, but 
not to another P orbit.) However, the much rarer magnetic dipole transitions can allow transitions 
from a P state to another P state. Edlen estimated that their radiative probabilities are in the range 
10–500 sec−1, i.e., the lifetimes of the upper level are in the range 2–100 millisec. (Laboratory mea
surements now indicate that the lifetime of the upper level of the red Fe X line at 6374 Å is 14.2±0.2 
millisec [Brenner et al. 2009], well within the range estimated by Edlen.) This requires that the Fe X 
and Fe XIV ions must be preserved free from collisions for time-scales that may have to be as long 
as 0.1 sec. This sets an upper limit on the local electron density. The mean free time between col
lisions τc is given by the formula 1/(neσV), where σ is the collision cross-section and V is the mean 
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electron speed. For Coulomb collisions, σ ≈ 2 × 10−4/T2 ≈ 2 × 10−16 cm2 in the corona (with T = 1 
MK). The thermal velocity of coronal electrons has a mean value of 7 × 105 √T cm sec−1, i.e., V ≈ 
7 × 108 cm sec−1. Therefore, in order to ensure that the mean free time between collisions is longer 
than (say) 0.1 sec, ne should not exceed the limiting value of order 109 cm−3. As we have already seen 
(Section 17.1), the intensity of scattered light at the base of the corona is observed to be such that ne 

is indeed in the range 108–9 cm−3, consistent with Edlen’s limit. 
In passing, we note that the fine-structure splitting of about 2 eV between the  P3/2 and 

the P1/2 levels in Edlen’s ions is very large compared to the fine-structure splitting that we nor
mally see in optical spectra. A famous pair of lines in the yellow part of the solar optical spec
trum, the lines that were labeled the D lines by Fraunhofer when he discovered absorption lines in 
the solar spectrum in 1814, lie at wavelengths of 5890 and 5896 Å. (These can be seen as a single 
[blended] yellow emission line in the flash spectrum in Figure 17.1.) The separation of the two 
D lines in wavelength occurs because of the fine-structure splitting between P3/2 and P1/2 levels 
in neutral sodium, analogous to the lines that Edlen studied in the corona. However, in the case 
of the yellow D lines, the fine-structure splitting is only 0.002 eV, i.e., three orders of magnitude 
smaller than in Fe X and Fe XIV. The large difference in splitting arises because of the highly 
stripped nature of the ions in Edlen’s study: on the one hand, the electron in sodium responsible 
for the D lines moves in a Coulomb field due to a net nuclear charge of Z = 1, but on the other 
hand, the electron that produces the Fe X or Fe XIV coronal lines moves in a Coulomb due to a 
net nuclear charge of 9 or 13. These large charges lead to significant increases in the energies of 
the bound levels (see Section 3.2.1), as well as in the fine-structure splittings in Fe X and Fe XIV, 
compared to those in sodium. 

17.2.2 x-ray photons 

At temperatures of order 1 MK, the mean thermal energies of the particles in the coronal plasma are 
of order 0.1 keV. In such a plasma, much of the radiation emerges in spectral lines with energies of 
order 0.1 keV, extending in energy up to a few times this value. 

Photons with energies of 0.1–1 keV have wavelengths of roughly 100–10 Å. Such photons are 
referred to by astronomers as “soft” X-rays. (“Hard” X-rays are those with energies of ≥10 keV.) 
Soft X-rays are strongly absorbed in the Earth’s atmosphere, and therefore cannot be observed 
from the ground. Direct detection of even the strongest lines in the coronal X-ray spectrum had to 
await the launching of rockets and spacecraft that would carry instruments into regions of space 
above the Earth’s atmosphere. Such instruments were first launched in the late 1940s. Solar X-ray 
astronomy came into its own in the 1960s with the launch of a series of satellites called Orbiting 
Solar Observatories (OSO), and also with the flight of the Skylab space station (in orbit during the 
years 1973–1974). The last in the OSO series, OSO-8, was launched in 1975. 

Examples of X-ray spectra of the Sun in two different wavelength ranges are shown in Figures 17.5 
and 17.6. The wavelength range in Figure 17.5 (13–20 Å) corresponds to photon energies between 
(roughly) 0.5 keV and 1 keV. The wavelength range in Figure 17.6 (3–7 Å) corresponds to energies 
extending to higher values, (roughly) 2–4 keV. 

It is striking how completely different the spectrum of the Sun is at X-ray wavelengths compared 
to what we see when we view the Sun in visible light. In the latter, there is a strong continuum 
(which we can see with our own eyes when a rainbow is visible), from which many absorption lines 
remove light (see Figure 3.4): this is characteristic of the radiation that emerges from the optically 
thick photosphere. But in the coronal spectrum in Figure 17.5, we see that the continuum is relatively 
weak, and the spectrum is dominated by a multitude of strong emission lines. 

By comparing the wavelengths of the lines in the spectrum with tables of lines observed in 
laboratory plasmas, many of the emission lines from the solar corona in Figures 17.5 and 17.6 have 
been identified (see labels of the various lines in both figures). Interestingly, and in corroboration of 
Edlen’s pioneering work on the interpretation of optical photons, many of the observed X-ray lines 
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FIGURE 17.5 X-ray spectrum of a quiescent active region on the Sun between wavelengths of 13 and 20 Å 
obtained by the flat crystal spectrometer on board Solar Maximum Mission (SMM) on December 13, 1987. 
(Del Zanna and Mason 2014; used with permission of ESO.) 

FIGURE 17.6 X-ray spectrum of the Sun during a flare obtained by the Polish-led RESIK instrument on 
board the Russian spacecraft CORONAS-F on February 22, 2003. Different colors indicate different channels 
of the instrument. (Del Zanna and Mason 2018; used with permission of Springer.) 
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can be assigned to highly stripped stages of ionization of some of the more abundant elements in 
the Sun, including oxygen, neon, and iron. For the lines present in Figure 17.5, the emitting element 
with the highest levels of ionization is Fe, including Fe XVII and Fe XVIII, i.e., iron which has lost 
three and four more of its electrons than the most highly ionized iron (Fe XIV) that was discussed 
by Edlen. 

Prominent in the solar X-ray spectrum are the Lyman-series lines of the hydrogenic ions of 
several elements. The Lyman lines occur when an electron makes a transition into the ground 
state (the n = 1 level) from levels with n = 2, 3, 4, 5. . . . A hydrogenic ion is one in which only 
one electron remains in bound orbit around the nucleus. In an element of atomic number Z, the 
Bohr model of the hydrogen atom indicates that Lyman lines are predicted to lie at wavelengths 
proportional to 1/Z2. (See Exercises 3.4–3.7.) Spectra of the Sun in X-rays in the quiet Sun or in 
flares have been obtained by 16 different X-ray satellite detectors during the years 1977–2007 
(Doschek and Feldman 2010). These spectra have revealed Lyman-α lines of the hydrogenic ions 
of O (Z = 8) at 19.0 Å (see Figure 17.5), Ne (Z = 10) at 12.16 Å, Mg (Z = 12) at 8.4 Å, Al (Z = 13) 
at 7.2 Å, Si (Z = 14) at 6.2 Å, S (Z = 16) at 4.75 Å (see Figure 17.5), Ca (Z = 20) at 3.0 Å, and Fe 
(Z= 26) at 1.8 Å. 

The presence of highly stripped ions is a clear indication that electron temperatures Te in the 
plasma are high. Can we determine how high Te actually is? To answer this, we can do the following 
thought experiment: suppose we were to strip the last remaining electron off O, Ne, and Mg, how 
much energy would that require? To answer this, we note that, according to the Bohr theory of the 
atom (see Section 3.2.1), the ionization potentials I(Z) required to strip all Z electrons off an element 
with atomic number Z are larger by factors of Z2 than the ionization potential of hydrogen (13.6 eV). 

Now when we applied the Saha equation to a medium with low electron pressure (such as 
occur in the chromosphere and corona), we found that hydrogen begins to undergo significant 
(50%) ionization at temperatures of 7100–7200 K (see Section  4.3). Analogously, in order to 
generate significant populations (50%) of the hydrogenic ions of O, Ne, and Mg, we need to solve 
the Saha equation θI − 2.5log T = −log pe (see Equation 4.6) for cases with I = I(Z). In the low 
corona, the electron pressure does not differ greatly from that in the upper chromosphere (see 
Section 17.10). Therefore, if we set log pe = 0 (as in Section 4.3, for the upper chromosphere), we 
shall not make a serious error. The logarithmic temperature term is slowly varying, and so the 
solution for the temperature of 50% ionization in each ion is roughly T ~ Z2. Since the appropri
ate T for 50% ionization is about 7000 K for hydrogen (Z = 1), when we set Z = 8, 10, and 12, we 
find that 50% of O, Ne, and Mg are in the hydrogenic state when the temperature has values of 
roughly at T = 0.5–1 MK. 

Thus, the observational detection of Lyman-  lines of hydrogenic O and S (and also other ele
ments) in the solar X-ray spectrum provided significant corroboration that Edlen (1945) was pre
scient in his identification of the red and green emission lines in the visible spectrum of the corona 
as arising in highly stripped iron in gas with temperatures of order 1 MK. 

17.3 “THE” TEMPERATURE OF LINE FORMATION 

Each emission line in the X-ray spectrum of the Sun, arising as it does from a specific element 
(say, Fe) and from a specific stage of ionization of that element (say, Fe XIV), is emitted from gas 
in which the temperature is not strictly uniform but spans a finite range. However, if we observe 
a strong line from Fe XIV emitted by the coronal gas, this tells us that the range of electron tem
peratures Te in that gas cannot be arbitrarily broad. If Te were too low, it would be impossible for 
the Fe atoms to be stripped of 13 electrons: therefore, all lines originating in the Fe XIV ion would 
necessarily be weak. If, on the other hand, Te were too high, even more than 13 electrons would be 
stripped from the ion, forming Fe XV or higher stages of ionization. Once again, in such a case, 
lines from Fe XIV would no longer be emitted in significant quantities. Detailed atomic structure 
calculations show that any given ion (say, Fe XIV) is present in maximum abundance when the 



316 Physics of the Sun 

 

   

 

 
 

 

 

 

 

     

FIGURE 17.7 Fractional abundances of different ionization stages of iron as a function of electron tem
perature. The ordinate is the ratio of the density of Fe in ionization stage m+ to the total density of Fe. Each 
curve in the figure is labeled with an integer m, where m = 0 corresponds to neutral iron (i.e., Fe I), while m = 
9 and 13 correspond to Fe X and Fe XIV respectively. (From Jordan 1969; used with permission of Blackwell 
Publishing.) 

temperature of the gas has a certain value: according to the calculations of Jordan (1969), the peak 
abundance of Fe XIV occurs at about 2 MK (see Figure 17.7). For Fe X, the peak abundance occurs 
at T = 1 MK. A full calculation of what fraction of Fe is in any one of the charge states from 4+ to 
22+ when the temperature ranges from 105 K to 2 × 107 K is shown in Figure 17.7 (Jordan 1969). As 
the figure shows, some ions (e.g., 7+, 16+) are dominant over a rather broad range of temperatures. 
On the other hand, other ions are present in large fractions (>0.3, say) only within rather narrow 
ranges of temperatures (e.g., 10, 11, 12, 13+). It is the latter charge states that are of most interest in 
studying the solar corona. 

Now it is true that at T ≈ 2 MK, gas containing iron will contain some iron ions that have lost 
“only” 8, 10, or 12 electrons, while other iron ions will be present that have lost 14 or 16 electrons. 
However, the dominant ion of iron in that gas is (according to Figure 17.7) Fe XIV. As a result, spec
tral lines originating in transitions between energy levels of the Fe XIV ion (such as Edlen’s “green 
line” in the visible spectrum) will be maximally strong in gas with T ≈ 2 MK. Given the existence 
of such a peak, it is reasonable to refer to “the temperature of formation” Ti( f) of each line (labeled 
by i) in the X-ray spectrum. 

Note that the temperatures we refer to in discussing ionization processes are electron tempera
tures: they are measures of the mean thermal speeds of electrons in the plasma. Why do the tem
peratures refer to electrons? Because it is the fast motion of passing (free) electrons that determines 
whether an iron ion in that gas, in the presence of those free electrons, can retain its own bound 
electrons, or whether it would be energetically favorable to move to a higher ionization stage, or 
to a lower one. And it is also the passing (free) electrons, with their characteristic thermal speeds 
of order kT, that are responsible for inducing transitions of bound electrons in (say) Fe XIV from a 
lower to an upper energy level, thereby emitting a particular spectral line. 

17.4 EMISSION LINES THAT ARE POPULAR FOR IMAGING THE CORONA 

17.4.1 soho/eit 

The SOHO spacecraft, launched in 1996, contained an instrument called EIT (Extreme Ultraviolet 
Imaging Telescope) that obtained images of the entire Sun in four narrow-band filters centered at 
certain wavelengths: (i) 171 Å, including lines of Fe IX/X, maximally sensitive to gas with tempera
ture Tp ≈ 1 MK; (ii) 195 Å, including a line of Fe XII, Tp ≈ 1.5 MK; (iii) 284 Å, including a line of 
Fe XV, Tp ≈ 2 MK; and (iv) He II 304 Å, Tp ≈ 80,000 K. An example of images of the Sun obtained 
in these four filters on a random day are shown in Figure 17.8, with each panel from left to right cor
responding to (i) blue, (ii) green, (iii) yellow, and (iv) red. The bright spots in all four images are due 
to active regions that happened to occupy certain positions on the visible disk on the day when the 
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FIGURE 17.8 Images of the Sun obtained on September 29, 2021, by SOHO/EIT in narrow bandpasses 
of wavelength corresponding to temperatures (from left to right) of Tp = 1 MK, 1.5 MK, 2 MK, and 0.08 
MK. (Courtesy of SOHO/EIT consortium. SOHO is a project of international cooperation between ESA and 
NASA.) 

images were obtained. Extended dark regions around the north pole (at the top of all four images) 
are coronal holes where densities of the coronal gas are locally low. 

It is natural for the human eye, when examining the images in Figure 17.8, to have its attention 
drawn to the brightest parts of the images, i.e., the active regions. In the 284 Å (yellow) image, it is 
obvious that most of the radiation in the image does in fact come from active regions: in the spaces 
between the active regions, there are extended dark patches over the surface, indicating that mate
rial with temperatures of 2 MK is essentially not detectable outside active regions. In other words, 
emission from 2 MK gas is essentially not detectable in areas of quiet Sun. 

However, the 195 Å (green) image (caused by 1.5 MK gas) has a different texture: the active 
regions are not the only locations that are the sites of detectable X-ray emission. In addition to the 
active regions, one also sees a “fuzzy” emission extending over almost the entire disk of the Sun. An 
enlarged 195 Å image, obtained on a day when the Sun was very quiet (with no sunspots at all on the 
visible hemisphere), is shown in Figure 17.9: this image indicates that the 1.5 MK gas is distributed 
over (more or less) the entire surface of the quiet Sun. In this regard, we note that in a study of the 
eclipse of August 17, 2017, even when the sunspot number was Ns = 45 (i.e., moderately active), Boe 
et al. (2020) concluded that “the vast majority of the plasma in the corona” has Te < 1.5 MK. A small 
minority of hotter plasma is confined to active regions. Although some of the hotter plasma may at 
times be ejected in the solar wind, Boe et al. stress that such hotter material will “only compose a 
small fraction of the total solar wind plasma”. Thus, the green images in Figures 17.8 and 17.9 are 
indeed representative of most of the gas in the corona that exists in the quiet Sun. This indicates that, 
whatever the physical process is that heats the coronal gas to 1.5 MK, the process is by no means 
confined to active regions but is operating essentially everywhere on the Sun. On the other hand, the 
data in Figure 17.8 indicate that, in order to heat the coronal gas to 2 MK or hotter, the Sun needs 
to have active regions. This conclusion will become even more convincing when we discuss results 
from the YOHKOH spacecraft (Figure 17.13). 

17.4.2 sDo/aia 

The SDO spacecraft, launched in 2010, contained an instrument called AIA (Atmospheric Imaging 
Assembly) that obtained images of the entire Sun in 10 bandpasses, each centered at a certain wave
length but also spanning a finite range of wavelengths: inside the finite range, each bandpass con
tains lines that, depending on the stage of ionization, are strongest in quiet Sun or coronal holes, in 
active regions, or in flares. The lines in the 10 AIA bandpasses originate in gas with a range of “peak 
temperatures” Tp from as low as a few thousand K to more than 10 million K. Bandpasses (i)–(iii) 
observe the photosphere in filters peaked at 1700 Å, 4500 Å, and 1600 Å, sensitive to gas with Tp ≈ 
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  FIGURE 17.9 SOHO/EIT image of the Sun on August 29, 2008, in the Fe XII 195 Å line, with Tp = 1.5 MK. 
On this day, the number of sunspots Ns on the surface was observed to be precisely zero: in fact, Ns had been 
observed to have the value zero on 27 days in the month of August 2008, i.e., the Sun was very quiet. But 195 Å 
emission can be seen at essentially all regions of the Sun’s surface, i.e., in the quiet Sun. (Courtesy of SOHO/ 
EIT consortium. SOHO is a project of international cooperation between ESA and NASA.) 

4500 K, 6000 K, and 104 K respectively; (iv) He II 304Å, Tp ≈ 80,000 K; (v) 171 Å, including an Fe 
IX line, Tp ≈ 0.6 MK; (vi) 193 Å, including an Fe XII line, Tp ≈ 1.2 MK (but if the Sun flares, this 
channel also detects a line from Fe XXIV, with Tp ≈ 20 MK); (vii) 211 Å, including an Fe XIV line, 
Tp ≈ 2 MK; (viii) 335 Å, including an Fe XVI line, Tp ≈ 2.5 MK; (ix) 94 Å, including an Fe XVIII 
line, Tp ≈ 6.3 MK; and (x) 131 Å, including an Fe VIII line, Tp ≈ 0.4 MK (but if the Sun flares, this 
channel also detects a line from Fe XXI, with Tp ≈ 10–16 MK). 

17.4.3 hinoDe/eis 

Raster scans of smaller portions of the Sun’s surface can be made in a large number of lines with 
the EIS instrument on Hinode: the wavelength range spanned by EIS is 170–290 Å, and this range 
includes more than 200 lines that are potentially detectable by EIS (Landi and Young 2009). An 
example of the advantages of using EIS lines is given by Hannah and Kontar (2012), who used 48 of 
these lines that are sensitive to temperatures ranging from a few tenths of 1 MK up to several MK in 
order to construct a quantity known as the “differential emission measure” (DEM: see Section 17.5) 
for various features in the Sun. The larger number of lines makes for a more reliable determination 
of the DEMs in quiet Sun (with a peak in DEM at log T ≈ 6.0), active regions (with a peak in DEM 
at log T ≈ 6.25, and flares (with a peak in DEM at log T ≈ 7.0). Using a smaller number of lines, 
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namely, the six SDO/AIA channels, Aschwanden et al. (2011) reported that DEM peak temperatures 
in different regions of the Sun were found to be lowest in the coronal hole around the south pole: 
log T ≈ 5.7. 

17.5 QUANTITATIVE ESTIMATES OF THE “EMISSION 
MEASURE” OF CORONAL GAS 

Because many lines in the X-ray spectrum are associated with fairly narrow ranges of Te, it seems 
reasonable to use Te as the independent variable when we wish to interpret (in physical terms) the 
amount of radiation emitted by coronal gas in a particular line. That is, although we have used opti
cal depth and linear distances as independent variables for the various regions of the Sun we have 
discussed so far, those variables are not helpful when discussing the corona. 

Once Te is chosen as independent variable, we need to ask: what are we to use as the physical 
parameter to specify the amount of the gas in the solar atmosphere that contributes to the intensity 
of a particular spectral line characterized by a particular value of Te? The answer is: in a region of 
the solar atmosphere with volume V(T) (containing gas with a temperature within a narrow range 
ΔT centered on T), we will use a quantity known as the differential emission measure, DEM = ne

2(T) 
V(T). Here, ne(T) is the electron density of the gas with temperature inside the range ΔT centered on T. 

Why is DEM an appropriate choice? Because the strength of photons in any coronal line is deter
mined by the number of collisions that occur each second per unit volume between free electrons 
(with density ne cm−3) and a particular ion of a particular element (with density ni cm−3). Each par
ticular ion is most abundant in a temperature range ΔT centered on T. To form a particular coronal 
line, a collision between a passing electron and an ion containing one or more bound electrons 
pumps one of the bound electrons to an upper level: a photon emerges when that electron returns to 
a lower level. Consider 1 cm3 of plasma in which there exists one ion and one electron. Knowing the 
quantum properties of the ion and how fast the electron moves (i.e., temperature T), it is possible to 
calculate quantum mechanically the rate at which a particular line would be emitted. Multiplying by 
the photon energy hνL of the spectral line, this yields an energy emission rate L(T) (ergs cm3 sec−1) 
for that line from that 1 cm3 volume at temperature T. As T  0, it is hard to excite any atomic 
levels, and so L(T)  0 as T◊ 0. And at the highest T, above (say) 10 MK, all the elements are 
ionized, and there are few (or no) bound levels to radiate lines: only the (weak) free-free continua 
remain, and L(T) is once again small. As a result, for each line, L(T) has a peak value at an 
intermediate temperature. In the solar atmosphere, where a broad mixture of elements exists, each 
element contributes somewhat differently to an overall (T) function. The result is a function that 
peaks at T = 1–3 × 105 K (see Figure 17.13). This function is referred to as the “radiative loss func
tion” for the optically thin gas in the corona. 

If the 1 cm3 volume contains ne(T) electrons at temperature T and one ion, the energy emis
sion rate in one line will be ne(T) L(T). If the 1 cm3 volume contains ne(T) electrons and ni(T) 
relevant ions of the appropriate element and charge state, and if all the photons can escape without 
being blocked by intervening material, then the energy emission rate will be ne(T) ni(T) L(T) ergs 
cm−3 sec−1. Electrons are supplied mainly by ionization of the dominant element (hydrogen, with nH 

nuclei cm−3), i.e., ne ≈ nH. The total number of ions of any element is determined by the abundance 
of the element relative to hydrogen: ni = nH. As a result, ne(T) ni(T) ~ ne(T)2. Finally, if the coronal 
source we are observing has a volume of Vc(T) for gas at temperature T, the source emits energy 
at a rate ~ ne(T)2 Vc(T) L(T) ergs sec−1. The combination of ne(T)2 Vc(T) is called the differential 
emission measure at temperature T. 

When we observe on Earth a coronal line emitted by an active region with an energy flux of FE 

(in units of ergs cm−2 sec−1), and we wish to interpret the amount of that emission in terms of local 
physical quantities in the solar atmosphere, we first need to address the following question. How 
large is the energy flux emitted in that line back at the solar surface? Because radiant energy falls 
off as the distance squared, and our (near-)Earth observations are made at radial distances of D = 1 
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AU, we know that the radiant energy of any emission line at the solar surface will be more intense 
than at 1 AU by the square of the ratio of D to the radius of the Sun R . We have already seen (see 
last sentence in Section 1.5) that D/R  ≈ 215. Therefore, the radiant energy FS of the emission line at 
the surface of the Sun will exceed the radiant energy FE of that line as measured at Earth by a factor 
of 2152. That is, FS = 2152 FE. Multiplying by the area of the coronal source in units of cm2, we find 
the rate at which energy emerges from the coronal source in that line ES (ergs sec−1). Equating this 
to ne(T)2Vc(T) L(T) and knowing (from quantum mechanics) the value of L(T), we can estimate 
the value of DEM for temperature T. Strategically choosing lines at various values of T and sum
ming over values of DEM at all available temperatures gives a total EM (also in units of cm−3) for 
the corona as a whole. 

Some coronal detectors measure the X-rays from the entire Sun (e.g., the EVE instrument on 
SDO). What value of EM would be appropriate in such conditions? The total volume V of the corona 
visible from Earth is essentially the visible hemisphere area Ass = 2πR 2 = 3 × 1022 cm2 times the 
scale height H ≈ 7 × 109 cm, i.e., V ≈ 2 × 1032 cm3. (In a stratified atmosphere, this is the volume 
of an equivalent uniform atmosphere with a density equal to that at the base of the corona.) Given 
ne = 108–9 cm−3 at the coronal base, the EM for the entire visible hemisphere of the Sun is expected 
to be in the range from 2 × 1048 cm−3 to 2 × 1050 cm−3. Is there any evidence that these estimates are 
realistic? To answer this, we show in Figure 17.10 results obtained by the EVE-MEGS-A instrument 
on SDO, which observed the Sun over a broad range of the XUV/EUV/UV continuum during an 
interval of over 4 years between the date of first light (April 30, 2010) and the time when the charge-
coupled device (CCD) instrument which was used to make the observations failed (May 26, 2014): 
this period included the maximum of solar cycle 24. 

In the top panel, EM is plotted as a function of time from just after solar minimum (of cycle 23) 
through solar maximum (of cycle 24). Separate curves refer to gas with three different temperature 
ranges (cooler, medium, and hotter). We see that the vertical scale covers a range from 1 × 1048 cm−3 

to 2 × 1049 cm−3. Adding up the contributions of the three ranges of temperature, the maximum 

FIGURE 17.10 Top panel: Values of EM from the SDO/EVE instrument over a 4-year interval. SDO/EVE 
records radiation from the entire solar disk. Different curves refer to the EM of gas that lies in different 
ranges of temperature: cooler (log T < 6.1), medium (6.1<log T < 6.3), and hotter (log T > 6.3). Bottom panel: 
emission-measure-weighted mean temperature for the complete EVE data set. (Schonfeld et al. 2017; used 
with permission of S. Schonfeld.) 
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values of EM are of order 3 × 1049 cm−3. This range overlaps well with our estimated range of EM 
values. It seems that our order of magnitude estimates of density and volume are not unrealistic. 

Independent X-ray data on the quiet Sun were obtained in February–November 2009 during the 
long and exceptionally low solar minimum by a Polish-led instrument (SphinX) on a Russian satel
lite (Sylwester et al. 2019). Analyzing a series of several hundred intervals of time when no activity 
was visible, Sylwester et al. found that a 1-temperature fit indicated a quiet Sun temperature of 1.69 
MK and EM = 1.17 × 1048 cm−3. Sylwester et al. note, “a cool component of DEM similar in temper
ature to the one found from SphinX data is always present” in the results of Schonfeld et al. (2017): 
the data in the latter paper were obtained starting in April 2010, i.e., some 5 months after the end 
of the SphinX data were gathered. Moreover, the EM of the cool component reported by Sylwester 
et al. agrees well with the results reported from EVE for the cooler component (Figure 17.10). 

It is of interest to inquire: when did the deepest part of the 2008–2009 solar minimum actually 
occur? Using three different indicators of activity, White et al. (2011) conclude that the minimum 
can best be identified with the time interval October 15–December 2 in the year 2008, although data 
from STEREO/EUVI suggest that the minimum may have extended into the first few months of the 
year 2009 (Nitta et al. 2014). In view of this, most of the SphinX data and all of the earliest SDO/ 
EVE data were both obtained after the minimum had occurred, i.e., when solar activity was starting 
to increase in the earliest phase of cycle 24. 

In a separate experiment on a different Russian satellite, Reva et al. (2018) set an upper limit on 
the presence of hot material in the quiet Sun by searching for emission in a particular spectral line 
(the Lyman-alpha line of hydrogenic Mg XII at  = 8.42 Å): this line requires a plasma temperature 
of at least 4 MK to excite it. Reva et al. (2018) reported that, in a search of data obtained during a 
10–11-day interval (February 18–28, 2002) with 105 sec cadence, not a single reliable detection of 
Mg XII emission was obtained in roughly 10,000 images of the quiet Sun. Even in non-flaring active 
regions, no Mg XII emission was detected. The only sites where Mg XII emission was reliably 
detected by Reva et al. were in active regions where flares had actually occurred. These observa
tions indicate that the quiet Sun does not contain detectable amounts of material with T≥4 MK. In 
support of this conclusion, Hannah et al. (2010) used data obtained during the years 2005–2009 by 
the RHESSI spacecraft to search for gas in the quiet Sun with temperatures of ≥5 MK: they reported 
that the DEM of such gas must be less than 10−6 of the peak DEM that occurs in the quiet corona. 

17.6 THE SOLAR CYCLE IN X-RAYS 

It is clear from Figure 17.10 that the EM varies significantly as the Sun goes from minimum (in 
early 2010) to maximum (in 2014). In particular, the EM of the “hot” material (with T > 2 MK) 
increases by at least one order of magnitude at solar maximum (2014) compared to its EM value in 
2010, shortly after solar minimum. This behavior is associated with the emergence of many active 
regions during solar maximum, each containing gas that is hotter than 2 MK. Is this behavior 
unique to solar cycle 24? Or do other cycles also show significant changes in X-rays during a cycle? 
To answer that question, we illustrate 25 years of data from SOHO/EIT images that were obtained 
in a spectral line of Fe XV at 284 Å, corresponding to a temperature of about 2 MK, in Figure 17.11. 
Visual inspection shows clearly that at times of solar minima (1996, 2009, 2019), the Sun in Fe XV 
is significantly fainter than at times of solar maximum (2001–2002, 2014). 

When the Sun is observed in images corresponding to even hotter temperatures, the magnitude 
of the change in solar emission is even greater than for observations at 2 MK. For example, the 
YOHKOH spacecraft had sensors that were sensitive to radiations from gas with temperatures up 
to 10 MK (Takeda et al. 2019): during the course of a solar cycle (1991–2001), the EM was found to 
vary by a factor of order 30. 

On the other hand, when we examine the cooler coronal gas (log T < 6.1, i.e., T<1.3 MK), we 
see in Figure 17.10 the following striking feature: this “cooler” component of the corona changes 
remarkably little (if at all) as the Sun goes from solar minimum to maximum. As Schonfeld et al. 
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 FIGURE 17.11 Montage of images of the Sun obtained by SOHO/EIT in the Fe XV line at 284 Å in the 
course of 25 years. The 284 Å line is formed at a temperature of 2 MK. (Courtesy of SOHO/EIT consortium. 
SOHO is a project of international cooperation between ESA and NASA.) 

(2017) have stated, “the quiet-Sun corona does not respond strongly to the solar cycle”. Since the 
solar cycle is fundamentally a magnetic phenomenon, we might rephrase Schonfeld et al. as fol
lows: the continuum emission at XUV/EUV/UV wavelengths from the quiet-Sun corona appar
ently does not respond strongly (if at all) to the large-scale magnetic fields that come and go on an 
11-year cycle. Data providing independent support for this conclusion had been reported previously 
by Brooks et al. (2009) based on observations of several spectral lines at two solar minima (1998, 
2006): although separated in time by 9  years and using different instruments (SOHO/CDS and 
Hinode/EIS), the DEMs for the quiet Sun in the range log T = 5.4–6.4 were found to be essentially 
identical in both cases, with a peak at log T = 6.1. The latter temperature is identical to the upper 
limit of temperature in the “cooler” component reported by Schonfeld in Figure 17.10. The con
stancy in time of the corona’s cooler component is a noteworthy conclusion to which we shall return 
when we discuss the source of coronal heating. 

Confirmation of the dichotomy in the temporal behavior of “hotter” and “cooler” coronal emis
sion lines during the solar cycle is provided by independent data obtained by a different instrument 
(SOHO/CDS) (Del Zanna 2015). These data show that emission in a hotter (2.5 MK) line disappears 
at solar minimum, whereas in a cooler (1 MK) line, the active regions disappear at minimum, but 
the quiet Sun does not: instead, the quiet Sun remains visible as a “fuzzy” glow that persists even 
during the weakest solar minimum (see Figure 17.9, when there were no sunspots detected on the 
visible hemisphere). 

17.7 THE SOLAR CYCLE IN MICROWAVE RADIO EMISSION 

The solar cycles recorded in X-rays in Figure 17.11 refer to a time interval that lasts for 25 years. 
A much longer data series (70+ years) of nonoptical emission from the Sun is provided by observations 
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of the radio flux F10.7 emitted by all sources present on the solar disk at a wavelength of 10.7 cm, i.e., 
a frequency of 2.8 GHz. (Why was 10.7 cm chosen? The choice of wavelength lies “in the history of 
radar development during the Second World War” [Tapping 2013].) The observing equipment mea
sures the radio flux from the Sun every day for an interval of one hour around noon in a bandpass with 
a width of 0.1 GHz. The measurements are cited in “solar flux units”: 1 s.f.u. = 10−22 W m−2 Hz−1. In 
the 2.8±0.1 GHz bandpass, the solar radio emission is sensitive to physical conditions in the upper 
chromosphere and at the base of the corona. In regions where magnetic fields are weak (quiet Sun, and 
even in many active regions), the 10.7 cm flux is largely emission which occurs due to the thermal free-
free process (bremsstrahlung). In sunspot regions, the dominant emission is thermal gyroresonance. 
These observations have been performed on a daily basis at a number of locations in Canada since 
1947 (Tapping 2013). At solar maximum, F10.7 is observed to reach (monthly averaged) values as large 
as 280 s.f.u., with individual daily values as large as 458 s.f.u. in 1947. At solar minimum, F10.7 cer
tainly has a smaller value than at solar maximum, but even in the lowest solar minima, F10.7 does not 
fall to zero: instead, there is a firm minimum below which the radio flux does not go. Inspection of the 
daily values of F10.7 indicates minimum values (in s.f.u.) in the low 60s: e.g., 61–62 in 1953, 64–65 in 
1964, 65–66 in 1985, 65–66 in 1996, 64–65 in 2008, and 63–64 in 2019. Notice that the solar minima 
are not all identical in the radio flux: for example, the minimum in 2008 emits a weaker radio flux 
than the minimum in 1996. We have already seen (Section 13.8) that the frequency shifts in p‑modes 
were observed to be smaller in 2008 than in 1996, consistent with the mean solar magnetic field being 
weaker in 2008: the fact that the 10.7 cm flux was also smaller in 2008 than in 1996 suggests that F10.7 

includes a detectable contribution from the magnetic field even when the latter is at its weakest. 
Independent corroboration of the results from 10.7 cm data is provided over a range of frequen

cies by Shimojo et al. (2017), who have observed the Sun since 1950 at four frequencies between 1 
and 9.4 GHz. Although the fluxes (at all four frequencies) can vary by a factor of two or so at the 
six solar maxima in the database, the behavior at solar minima is different: the observed fluxes are 
almost exactly the same at all five solar minima in the database. 

The (near) constancy of the radio fluxes at several distinct solar minima, when gyro effects are mini
mized, probably represent free-free emission from the upper chromosphere and the base of the corona. 

How are we to understand why free-free emission from the inactive Sun F10.7 never falls below a 
certain value (≈ 60 s.f.u.)? We can obtain a simplified answer to this question by proceeding in the fol
lowing manner. According to Figure 17.10, the inactive solar corona (i.e., material with log T < 6.1) has 
EM ≈ a few × 1048 cm−3. The radiative loss function (Figure 17.13) includes free-free emission that can 
be seen as the rising curves at log T > 7. Extrapolating back to a temperature appropriate for the quiet 
corona (log T ≈ 6.1), we estimate that free-free emission has (T) perhaps of order 10−23 erg cm3 sec−1. 
Combining this with the measured EM ≈ a few × 1048 cm−3 for the inactive corona, we expect that the 
inactive solar corona should radiate free-free emission at a rate of a few × 1025 erg sec−1. On a sphere 
of radius 1 AU, this emission will be spread out at Earth orbit over an area of order 1027 cm2 to gener
ate a flux of order 10−2 erg cm−2 sec−1. Converting to the units used for 1 s.f.u., this flux corresponds to 
a value of order 10−5 W m−2. The spectral shape of free-free emission is almost flat at all frequencies 
less than hνc ≈ kT (and the spectrum falls off exponentially at higher frequencies). With T ≈ 106 K, 
this means that the free-free emission is spread almost uniformly over a frequency range of c ≈ a few 
times1016 Hz, indicating that the flux per unit Hz is of order a few times 10−21 W m−2 Hz−1 = a few tens 
of s.f.u. It is worth noting that this very crude estimate is not too far from the observed firm lower limit 
on the observed flux: 60 s.f.u. The upper chromosphere gas (with its higher densities than the coronal 
density) also contributes to the lower flux limit, and there is also a small contribution (amounting to 
probably no more than a few s.f.u. at solar minimum) due to magnetic effects. 

17.8 ION TEMPERATURES 

How can we determine the temperature Ti of ions in the corona? Is Ti equal to Te? In principle, if 
there are sufficient collisions between ions and electrons, the thermal energy should be equilibrated, 
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and Ti should equal Te. This is more likely to happen in denser gas, such as occurs in the densest 
streamers. In the less dense gas of “coronal holes”, equilibration of ion and electron temperatures is 
more difficult to achieve. 

In the event that equilibration occurs, the thermal velocities of (say) iron ions in a coronal region 
where the electron temperature is 1–2 MK should have mean values Vth = √(2kTe/AmH) (where A = 
56 for iron), i.e., Vth = 17–24 km sec−1. Therefore, if we measure the line width of a coronal iron 
line, the half-width of the line ∆  should in principle have a value that is related to  by the relation
ship ∆  =  Vth/c. However, empirical data reveal that the observed line widths are larger than the 
thermal predictions. What causes the excess line widths? Could it be that the temperature of ions is 
enhanced relative to the temperature of electrons? Possibly: in fact, some extremely high tempera
tures (>100 MK) have been reported for certain ions in fast solar wind (e.g., Cranmer et al. 2008). 
But there is another possibility: there might be nonthermal motions (“turbulence”) in the corona, 
and the ion lines might be broadened by the Doppler effect caused by those motions. We have 
already come across the idea of “microturbulence” in a very different context: “microturbulence” 
plays a role in the photospheric spectrum of the Sun when that spectrum is analyzed in terms of a 
one-dimensional model (Section 3.8.1). Quantitatively, however, there is a large difference in the 
amplitude of microturbulence between photosphere and corona: whereas in the photosphere the 
amplitude of the microturbulence is 1–2 km sec−1, the amplitude in the corona is much larger, up 
to 60 km sec−1 at altitudes of order 0.3R above the surface (Wilhelm et al. 1998). Waves on the 
magnetic field might explain this coronal “microturbulence” (Section 17.18.1): indeed, some models 
of coronal wind acceleration by magnetic waves predict that the wave amplitudes could be as large 
as 60 km sec−1 (or more) in fast wind (Tu and Marsch 1997). The presence of such large turbulent 
motions makes it difficult to determine with confidence how much of the observed broadening of 
coronal lines can be attributed specifically to thermal motions. But if it could be shown that indeed 
the heavy ions are definitely much hotter than protons or electrons, that might contain important 
information about the physical process that heats the heavy ions (Cranmer et al. 2008). 

17.9 DENSITIES AND TEMPERATURES: QUIET SUN VERSUS ACTIVE REGIONS 

In the quiet Sun (QS), Brosius et al. (1996) used a rocket experiment to determine that DEM(T) has 
a maximum value at T = 1–2 MK. This confirms the early work of Edlen (1945). 

In contrast to the results obtained in the QS, Brosius et  al. found that, in active regions 
(ARs), DEM(T) remains significantly large at temperatures up to T = 4–5 MK. Thus, ARs contain 
material that is definitely hotter, by factors of up to two to three in temperature, than that which is 
present in the quiet Sun. (This has already been mentioned in our discussion of the EIT images in 
Figure 17.8 and also in Section 17.5.) Can we say anything about the relative spatial locations of 
hotter and cooler gas inside an AR? Yes, we can: stereoscopic triangulation of 70 loops in a single 
AR using simultaneous observations by the strategically located spacecraft STEREO A and B has 
shown (Aschwanden et al. 2009) that two classes of AR loops can be identified: “the hottest loops 
are found in the core of the AR, while the coolest are preferentially found in the peripheral plage 
region”. In more recent work, Ghosh et al. (2017) added further details about the AR corona: (1) 
hot core loops (T = 3–5 MK), (2) warm loops (T = 1–2 MK), and (3) fan loops (T = 0.6–1 MK) 
located on the AR periphery and with longer lifetimes than other loops. However, in addition to 
the extra class of loops, Ghosh also mentioned, “a significant amount of diffuse plasma spread 
over a large area [of the AR] at coronal temperatures without any well-defined visible structures”. 
We have already mentioned the presence of diffuse (“fuzzy”) plasma distributed widely in the QS 
(Section 17.4.1 and Figure 17.9): the work of Ghosh et al. (2017) indicates that such “fuzzy” plasma 
is also present in ARs. 

The reliability of DEM values from any region on the Sun can be improved by using as many 
lines as possible, distributed over as wide a range of temperatures as possible, such as those provided 
by Hinode/EIS (see Section 17.4.3). One particularly long loop observed by Hinode/EIS (Gupta 
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et  al. 2019) has allowed temperature to be determined by two independent methods: (i) density 
variations as a function of height in the loop were found to follow an exponential with a scale height 
of 59 ±3 Mm, corresponding to T = 1.37 MK; (ii) EMs constructed for various lines intersected at 
a unique temperature at heights ranging from 1.1 to 1.25 R  and the unique temperature was found 
to be 1.37 MK. The agreement between two independent methods of obtaining temperatures in this 
coronal loop is remarkable. 

As regards densities, in the quiet Sun, Brosius et al. (1996) (based on ratios of certain spectral 
line intensities) report densities of 109 cm−3: this is at the upper end of the range of densities that we 
reported in Sections 17.1 (based on the intensity of coronal light) and in Section 17.2.1 (based on 
properties of Edlen’s forbidden lines). Moreover, in active regions, Brosius et al. report densities that 
are larger by factors of four to five relative to the quiet Sun. 

In a more recent study of ratios of various pairs of lines in EIS/Hinode data, Gupta (2017) has 
also reported densities at the base of the corona in quiet Sun that lie in the range between 3 × 108 

cm−3 and 109 cm−3, while in active regions, the densities at the base of the corona are found to range 
from 109 to 1010 cm−3. 

Thus, coronal material in active regions is observed to be denser than coronal material in the 
quiet Sun by factors of at least three and possibly 10. 

17.10 GAS PRESSURES IN THE CORONA 

Let us notice an important point about the pressure at the base of the corona. Now that we have 
information about temperatures and densities, we can evaluate empirically the gas pressures at the 
base of the corona (pcb = 2NekT). Inserting T = 1–2 MK and Ne = 1–4 × 109 cm−3 (to include quiet 
Sun and active regions), we find coronal base pressures in the range 0.3–2 dyn cm−2. 

The physical significance of these pressures becomes apparent when we compare them with the 
pressure at the top of the chromosphere, ptc. In Section 15.10 (last paragraph), we noted that ptc is 
of order 0.6 dyn cm−2. It is important to notice that the range of pcb overlaps with ptc. It seems that 
the pressure at the base of the corona may be essentially identical to the pressure at the top of the 
chromosphere. 

This discussion of pressure reminds us that when hydrostatic equilibrium applies, it is useful to 
think in terms of pressure scale heights, Hp. The scale height is defined to be the vertical distance 
across which the density (or pressure) falls off by a factor of e. In terms of this definition, the num
ber np of scale heights that separates the top of the chromosphere from the base of the corona is 
given by np = ln(ptc/pcb). Inserting the prior ranges of values of ptc and pcb and noting that np cannot 
be negative, we find that np ranges from at most 0.7 to a value approaching zero. In chromospheric 
gas, Hp is a few hundred km. As a result, the transition from the chromosphere to the corona (we 
refer to this as “the transition region”) occurs across a height range that is no more than 100– 
300 km: it may in fact be close to zero. 

On a scale of one solar radius, even a transition over 300 km qualifies as relatively abrupt. If we 
perform the thought experiment of starting in the photosphere and moving up in altitude through 
the solar atmosphere, we will find that, after we pass through the chromosphere, the onset of the 
corona occurs over a height scale of no more than 300 km. Such a “transition region” is essentially 
discontinuous. 

We shall return in Section 17.16, once we discuss thermal conduction, to discuss a physical rea
son how such a discontinuity might arise in the solar atmosphere. 

17.11 SPATIAL STRUCTURE IN THE X-RAY CORONA 

Hot material at T = 4–5 MK in the corona is highly localized to active regions: it is not found in 
the quiet Sun (Reva et al. 2018). On the other hand, the cooler coronal material, at temperatures of 
1–2 MK, can be found essentially everywhere in the quiet Sun, which extends over large portions 
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of the Sun’s surface. As an illustration, we have already shown in Figure 17.9 an image of the Sun 
obtained in the 195 Å line of Fe XII, a line which is formed at T ≈ 1.5 MK. Visual inspection of 
Figure 17.9 indicates that the 1.5 MK coronal material is spread more or less everywhere throughout 
the corona: one can see a “fuzzy glow” permeating most of the field of view (apart from coronal 
holes). However, when the Sun is imaged with an instrument sensitive to hotter gas (T ≥ 3 MK), the 
result is a much “patchier” picture: see Figure 17.12. 

Apparently, as long as we exclude coronal holes, the Sun finds a way to heat material almost 
everywhere in the corona to temperatures of order 1.5 MK, but heating the gas to temperatures of 
> 3 MK is a less common phenomenon that occurs only in active regions. 

The contrast between the low-to-mid chromosphere and the hotter coronal regions is worth not
ing. No matter where one looks on the surface of the Sun, one finds chromospheric material at 
temperatures of 6–7 thousand K. But the hotter corona is far from spherically symmetric. This sug
gests that whatever is heating the hottest parts of the corona is distinct from whatever is heating the 
low-to-mid chromosphere. The spherical symmetry of the latter led us (in Chapter 15) naturally to 
the conclusion that acoustic waves from the ubiquitous convection may be heating the low-to-mid 
chromosphere. In Chapter 15, we provided quantitative evidence in favor of this hypothesis. 

But in the hotter coronal regions, there must be additional localized sources of mechanical 
energy. Since the hotter coronal regions coincide with active regions, with their locally strong mag
netic fields, it is natural to conclude that the heating of coronal material to > 3 MK is associated 
intrinsically with magnetic processes. Magnetic fields can provide mechanical energy over and 
above what is supplied by the acoustic waves from convection. One source of this extra energy is 
a variety of wave modes that exist in a magnetized plasma and that have no counterparts in a non
magnetic medium (Alfven waves: Chapter 16, Equation 16.12). But there are also physical processes 
in a magnetized medium that do not occur in a nonmagnetic medium. The most striking of these 
(“magnetic reconnection”) will be discussed in Section 17.19.11. 

17.12 MAGNETIC STRUCTURES: LOOPS IN ACTIVE REGIONS 

The fact that localized magnetic fields are associated with coronal heating receives strong confir
mation from images such as Figure 17.12. This image was obtained with the YOHKOH spacecraft, 
where the imager responds mainly to gas at “hotter” temperatures above 2.5 MK (Yoshida et al. 
1995). Even a casual inspection of the image shows that the strongest emission comes from features 
that appear to have shapes of a particular type, namely, the emission looks like it is coming from 
features that are best described by the terms “arcs”, “arches”, or “loops”. Each arch has well-defined 
“footpoints” rooted in the solar surface, while the central part of the arch reaches up to a greater or 
lesser height above the surface. 

One particularly clear example of a loop appears in Figure 17.12 about halfway between the 
center of the Sun and the right-hand limb. That loop has a length that can be estimated visually 
from Figure 17.12: the footpoints are separated by a distance Dp of about one-half a solar radius, i.e., 
≈ 3 × 1010 cm. Other loops in X-ray images of the corona can be identified as having smaller foot-
point separations. In some images, loops can be identified with footpoints that are separated by not 
much more than a couple of times 109 cm. How high does a loop with footpoint separation Dp extend 
above the surface of the Sun? At one extreme, magnetic field properties are such that it is unlikely 
that a stable loop would extent to heights exceeding Dp by a large factor: such elongated loops would 
tend to “pinch off” near their base. At the other extreme, it is also unlikely that the loop would reach 
up only a very low height, much less than Dp: such a squat loop would need to have a shape that was 
essentially flat on top. In general, a loop with footpoint separation Dp is expected to have a maxi
mum height above the surface that is also of order Dp. 

The largest loops in Figure 17.12 have lengths comparable to the spatial scales mentioned earlier 
in connection with streamers in the white-light corona (Figures 17.2 and 17.3). In fact, some helmet 
streamers in the white-light corona are spatially correlated with some of the loops seen in X-rays. 
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 FIGURE 17.12 Image of the Sun in X-rays emitted by gas at temperatures hotter than (roughly) 2.5 MK 
(YOHKOH/SXT). (Image is from the YOHKOH mission of ISAS, Japan. The X-ray telescope was prepared 
by the Lockheed-Martin Solar and Astrophysics Laboratory, the National Astronomical Observatory of Japan, 
and the University of Tokyo with the support of NASA and ISAS.) 

The difference is that X-ray observations allow the loops to be observed on the disk of the Sun, and 
also in regions where the loops extend beyond the limb. In contrast, the white-light data can record 
loops only when these are extended above the limb, where the brilliant photosphere does not over
whelm the (faint) coronal light. In X-rays, the photosphere is dark, and as a result, loops of coronal 
emission are easily detected even when viewed against the background of the solar disk. 

When the loop shapes in Figure 17.12 are compared with photospheric magnetic data, it is found 
that each arch (or loop) is associated with an active region. Each loop follows the location of a 
magnetic flux rope that emerges from the surface of the Sun at a location (“footpoint”) where the 
magnetic polarity has a particular sign, and reenters the Sun at another footpoint (some distance 
away), where the magnetic polarity has the opposite sign. 

Such a loop is said to be “closed”, because both footpoints are rooted in the denser material of the 
solar surface. In the presence of a closed loop, solar material is constrained to follow the loop field 
lines (Section 16.6.1): the material is forbidden from flowing across the field lines. In this sense, it 
can be said that coronal gas is “trapped”, and density builds up on the loop. As a result, if there are 
magnetic waves or other processes that supply energy to the loop, the energy supply has a “captive 
audience”, i.e., the trapped gas in the loop. This material can be subjected to prolonged heating, 
which will be greater or less, depending on how much mechanical energy the magnetic field can 
deposit in the gas. The trapping of plasma by magnetic fields is the ultimate source of the hotter and 
denser gas observed in active regions (see Section 17.4.1). 

17.13 MAGNETIC STRUCTURES: CORONAL HOLES 

Coronal holes (CHs) differ from the remainder of the Sun not merely in having lower than aver
age density and lower than average electron temperature. They also differ in the sense that they 
exhibit a different magnetic topology. In the holes, the magnetic data indicate that the magnetic 
field lines, rather than containing closed loops, are in fact open to  space. As a result, coronal 
material is not trapped but can stream out freely from the Sun. In this situation, there is no “cap
tive audience”, and the density and temperature do not build up as much as on the closed loops of 
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active regions. Whatever supply of magnetic energy is available in the CH goes into accelerat
ing the plasma away from the Sun. So efficient is this acceleration that the fastest solar wind is 
observed to emerge from CHs. 

As regards the lifetimes of CHs, those located at N and S poles are present at essentially all 
times: there is no sign that these CHs ever disappear. Using data from solar cycles 21–23, Hewins 
et al. (2020) have found that CHs that occur at low latitudes generally last for about one solar rota
tion, although in rare cases, some last for as long as 3 years. They also found that coronal holes do 
not rotate rigidly, in general. 

17.14 MAGNETIC STRUCTURES: THE QUIET SUN 

What can we say about the solar image of the cooler coronal gas that appears in Figure 17.9? This 
image of the Sun on a very quiet day (with no sunspots on the visible disk) shows that material with 
temperatures of 1.5 MK is found essentially at all locations in the quiet corona. 

Is it possible that this ubiquitous 1.5 MK material might be attributable to magnetic loops, maybe 
smaller in size than those that feature prominently in the active Sun (such as the loops that can be 
easily identified in Figure 17.12)? In some cases, the answer appears to be “Yes”. There are many 
small bright “points” that catch one’s eye in Figure 17.9: it is easy to imagine that these might be due 
to small magnetic loops, each with its own localized source of magnetic energy. 

But it is important to notice that there also exists in Figure 17.9 a much more extensive and 
diffuse, almost spherically symmetric, “fuzzy glow” that permeates essentially the entire image. 
What could account for this? Could acoustic waves from the convective turbulence explain this? 
The advantage of acoustic waves from convection is that they are emitted uniformly over the entire 
surface of the Sun, thereby possibly explaining the (near) spherical symmetry on the “fuzzy glow”. 
We shall visit this possibility in Section 17.18.1. Wave modes other than acoustic may also be at 
work. For example, waves that start their existence as purely acoustic modes emerging from con
vective turbulence might be able to find a way to reach the corona by means of mode conversion 
in the presence of magnetic fields (Section 16.7.7). If that happens, then a combination of acoustic 
waves and magnetic fields might be responsible for this “fuzzy glow”. In this regard, it is relevant 
to note that weak magnetic fields can be detected at essentially all locations of the quiet Sun (see 
Section 16.4.1.5): to be sure, the strength of the fields is not as large as in active regions, and the 
fields tend to be mainly horizontal (Bellot Rubio and Orozco Suarez 2019), presumably rooted 
in vertical fields that create small loops. However, from visual inspection of Figure 17.9, it is not 
obvious that any loop-like structures can be identified with certainty in the “fuzzy glow”. We shall 
revisit this in Section 17.18.2. 

17.15 WHY ARE QUIET CORONAL TEMPERATURES OF ORDER 1–2 MK? 

At the end of Chapter 15, we noted that the material in the upper chromosphere is less and less 
efficient at disposing of any mechanical energy deposited therein. The cooling mechanism that 
provided such an effective thermostatic effect in the low-to-mid chromosphere diminishes greatly 
in efficiency in the upper chromosphere. The reason for the decreased cooling efficiency is that 
hydrogen is becoming almost completely ionized, and free protons plus free electrons are much 
less effective radiators than the bound electrons in hydrogen atoms. (Recall that bound electrons 
are much better absorbers of photons than are free electrons: see Section 3.3.1.) As a result, if any 
mechanical energy is deposited at the top of the chromosphere, the temperature in the gas increases 
rapidly (“runs away”) to much higher values. 

What will stop the temperature runaway above the upper chromosphere? The answer is: the 
runaway will stop when an additional source of cooling (over and above radiation) comes into play 
in order to dispose of the deposited energy. If and when that happens, a new equilibrium condition 
becomes possible. 
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Two additional cooling options are available in the solar corona. One has already been men
tioned in the context of coronal holes (Section 17.13): the material begins to flow outward from the 
Sun, carrying away thermal energy. This option is available in coronal holes because the magnetic 
field lines there are mainly vertical and open to interplanetary space. The openness of the field lines 
is a characteristic signature of coronal holes. 

17.15.1 thermal ConDuCtion by eleCtrons 

But in the quiet Sun, the outflow option is not always available as a cooling mechanism: the magnetic 
fields in the quiet Sun’s corona are observed to be for the most part horizontal (Section 16.4.1.5), 
indicative of closed loops. Although these loops in effect shut down the possibility of easy outflow, 
that does not mean that another form of cooling is excluded. An option that becomes available to 
assist in cooling is the mechanism of thermal conduction. 

We have already come across this mechanism when we discussed (in Chapter 8) how heat is 
transported deep inside the Sun. According to Equation 8.1, in the presence of a temperature gra
dient dT/dr, the flux of heat down the temperature gradient is F = −kth(dT/dr), where kth = (1/3) 
VtρCv is the thermal conductivity (Equation 8.2). In Chapter 8, we calculated the value of kth in a 

manner appropriate for the deep interior of the Sun: there, we noted that the principal agent for the 
transport of heat was photons. Now we need to consider conduction in the corona, where photons 
are no longer the principal agents of heat transport. In the corona, it is thermal electrons that trans
port the heat most effectively. 

The prior formula for kth remains valid, but now we need to reexamine the four parameters 
relevant in the case of thermal electrons in the corona, where electron densities are ne cm−3. (i) The 
mean thermal speed of the electrons is given by Vt = √(2kT/me). (ii) The mass density of the corona 
is given by ρ = neμmH. (iii) The specific heat per gram at constant volume (Equation 6.3) is given 
by Cv = (3/2)k/μmH. (iv) The mean free path  is given by 1/neσ, where the electron-ion collision 
cross-section is σ. 

To calculate σ for electrons in the corona, we note that collisions occur because of the Coulomb 
forces. We have already seen (Section 11.3) that the Coulomb cross-section is given by σc ≈ πe4 / 
(kT)2 where the (slowly varying) Coulomb logarithm is   In coronal conditions, the numerical 
value of  is typically 10–20 (Spitzer 1962). 

Combining the factors in Equation 8.2, we find that the thermal conductivity in the solar corona 
is given by 

kT 2 2kT 3k1 ( )
kth  

4 
n m  (17.1) e  H n e   m 2 m3  e e H 

Collecting terms, we see that the electron density ne cancels out, and the conductivity depends 
only on a power law of the temperature, according to kth = koT2.5. In the corona, inserting appropri
ate values for the physical constants, we find that the numerical value of the coefficient ko is about 
10−6 in c.g.s. units. 

The high power of the temperature dependence in kth (index = 2.5) is noteworthy. It has the effect 
that although thermal conduction by electrons is negligible in the (cold) photosphere (where photons 
dominate the transport of energy), this is no longer the case in coronal conditions. In the corona, 
with temperatures that are 200–400 times larger than in the photosphere, the electron thermal con
ductivity is of order one million times more effective than in the photosphere. As a result, thermal 
conduction in the corona is a physical process that cannot be neglected. 

Now that we have an expression for the thermal conductivity, we revert to a discussion of energy 
balance, such as that which was given earlier (Section 15.12) in the context of the chromosphere. 
Given that energy is deposited at a certain rate every second into 1 cm3 of the corona, we need to 
know the rate Econd at which the energy is conducted out of that cubic cm per second by conduction. 
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This rate, i.e., the rate of energy loss per unit volume, is given by the spatial divergence of the heat 
flux F. 

To proceed, we note that in the presence of a closed loop of half-length L, the coronal part of 
the loop (near the apex of the loop) has a temperature T that is much larger than the footpoints. As 
a result, the temperature gradient dT/dr along the loop is given more or less reliably by the ratio 
T/L. This leads to a heat flux downward toward the surface F = kthdT/dr ≈ koT2.5T/L. The spatial 
divergence of this flux, div F can be written roughly as F/L. Therefore, if we express everything 
in c.g.s. units, we find that the conductive contribution to the rate of cooling is Econd ≈ koT3.5/L2 ergs 
cm−3 sec−1. Once again, we note that the rate of conductive cooling due to thermal electrons in the 
corona has an even steeper dependence on temperature, with an index of 3.5. 

17.15.2 raDiative losses 

Although radiative cooling operates with reduced effectiveness in the corona compared to the 
chromosphere, we may not conclude that radiative losses from the corona should be neglected 
altogether. On the contrary, they do contribute to removing energy that has been deposited in the 
coronal gas. 

In the chromosphere, our discussion of radiative losses was cast in terms of the local opac
ity (see Equation 15.4). Now that we are in the corona, it is more convenient (see Section 17.5) 
to express the radiative losses in terms of an optically thin total loss function (T) that includes 
lines (each with loss function L(T)) plus continua. (Unfortunately, this total (T) is sometimes 
written as (T), where  is the Greek form of the initial letter of the word “loss”: but because we 
have already used the symbol  for the Coulomb logarithm, we prefer on the whole to use (T) 
here for the total radiative loss function. However, as the sole exception to this choice, we note that 

FIGURE 17.13 Radiative loss function (labeled  in this figure, rather than (T)) as a function of tem
perature, for two different sets of elemental abundances. (Figure kindly provided by J. Raymond, Harvard-
Smithsonian Center for Astrophysics [2008].) 
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the vertical axis in Figure 17.13 uses the label  to denote (T).) The function (T) is defined in 
such a way that for an optically thin medium with electron density ne and temperature T, the rate 
of energy loss from 1 cm3 per second due to radiation is given by ne

2 (T). The numerical value 
of (T) at any given T depends on the particular mixture of chemical elements present in the gas: 
since certain “metals” in certain stages of ionization emit preferentially at certain temperatures, if 
those metals are more abundant in the mixture, then the value of (T) will be larger at those tem
peratures. Results obtained by Raymond (2008) for (T) for two different mixtures of elements 
are plotted in Figure 17.13. The curve labeled “coronal abundances” differs from the curve labeled 
“photospheric abundances” in the sense that hot gas (>2 MK) in active regions is observed to have 
relatively larger fractions of certain elements: the more abundant elements (enhanced in abundance 
by factors of two to four relative to photospheric values) are observed to be those that have lower 
values of the first ionization potential (FIP). In the quiet Sun and in coronal holes, the coronal gas 
has abundances equal to those of the photosphere: the presence of enhanced abundances of low-
FIP elements (referred to as “FIP bias”) is observed to be confined to active regions (Del Zanna 
2019). The cause of FIP bias must occur in the chromosphere, where mixtures of ionized and 
neutral versions of different elements exist co-spatially: if a local source of electromotive force 
(e.g., due to MHD waves) is available, the neutrals and ions will respond differently to the force 
(Rakowski and Laming 2012). 

For both mixtures of chemical elements in Figure 17.13, we see that (T) has a maximum value 
at temperatures of 0.1–0.2 MK: at the maximum, the numerical value of (T) reaches a value that 
is close to 10−21 erg cm3 sec−1. There is a sharp decrease in (T) at T < 104 K and a more gradual 
decline (almost monotonic) in (T) at temperatures between 1 and 10 MK. This behavior is remi
niscent of the shapes of the opacity curves (Figure 3.3). This is no coincidence: the opacity due to 
lines and continua arises from the same atomic levels as are responsible for effective radiative losses 
in an optically thin plasma. 

It is important to note that, in the conditions that are appropriate to the quiet solar corona, 
i.e., at temperatures of at most a few MK, the radiative loss function decreases as the tempera
ture increases. We can approximate the slope of the curve in Figure 17.13 at “coronal” temperatures 
(i.e., between 1 and 10 MK) by the function (T) ~ 1/T0.5. Visual inspection of Figure 17.13 suggests 
that, for a gas with photospheric abundances, the numerical value of (T) in the “coronal” tempera
ture range (i.e., 1–10 MK) can be approximated fairly well by the expression (T) ≈ 10−19/T0.5 ergs 
cm3 sec−1. 

Using this approximation, we see that the volumetric loss of energy by optically thin radiation in 
2 19 2  0 5.coronal conditions is roughly E  n ( )  10 nT /T  erg cm−3 sec−1.rad  e e 

17.15.3 Combination of raDiative anD ConDuCtive losses 

Now we can return to the energy balance in the corona. If mechanical energy is deposited in unit 
volume at a rate of Emech ergs cm−3 sec−1 (by a mechanism that we leave unspecified at this point), 
this deposited energy can be carried off from that unit volume by the combined effects of radiation 
and conduction according to 

19 2  . 6 3 50 5  . 2E  E  E  10 n T 10 T / L (17.2) mech rad  cond e 

In order to arrive at the lowest energy state, the corona tends towards a temperature Tc such that 
the rates of radiative and conductive energy loss are comparable: this makes the cooling time-scale 
as long as possible. At temperatures that are either higher or lower than Tc, the cooling time-scale 
would be shorter, and the Sun would have to provide larger fluxes of mechanical energy to compen
sate for the more rapid cooling. 

Equating the magnitudes of the two terms on the right-hand side of the prior equation at tem
perature Tc, we find that 
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4 13 2 2Tc  10 ne L (17.3) 

It is convenient at this point to convert from electron density ne to coronal pressure: p = 2nekTc 

(where the factor 2 indicates that electrons and ions both contribute equally to the gas pressure in 
the corona). This allows us to rearrange Equation 17.3 as follows: 

6 10 13 
2T  ( pL) (17.4) c 4k2 

Inserting the numerical value of Boltzmann’s constant k = 1.38 × 10−16 ergs K−1, we find 

6  18  2Tc  1 3. 10 (pL) (17.5) 

Taking the sixth root of each side, we find 

) /Tc  1050(pL 1 3  (17.6) 

In Equation 17.6, if p is in units of dyn cm−2 and L is in units of cm, the units of Tc are degrees K. 
What should we use for the pressure p? In the low corona, p is essentially equal to the pres

sure at the top of the chromosphere (see Section  17.10). At the top of the chromosphere (see 
Section 15.10.4), p ≈ 0.6 dyn cm−2. 

What values are appropriate for loop lengths in the corona? The earlier discussion (Section 17.12) 
about loops in the corona indicates that L values range from a few times 109 to a few times 1010 cm. 
Substituting these values, we find that at the lower limit of L, we can set pL ≈ 109: this leads to Tc ≈ 1 
MK. At the upper limit of L, we can set pL ≈ 1010, leading to Tc ≈ 2 MK. 

It is remarkable that simply by considering the lowest energy configuration, with equal loss rates 
in radiation and conduction, we have arrived at estimates of coronal temperatures that are consistent 
with the empirical results in the quiet Sun, where Tc spans the range 1–2 MK (Section 17.4.1). 

To be sure, we have not solved the problem of coronal heating completely: Equation 17.6 depends 
on knowing the values of the two parameters p and L: we have not described how we might go 
about estimating values for these parameters, which are determined by certain physical processes 
in the Sun. It may be presumed that the value of p is ultimately determined by the flux of mechani
cal energy that is generated by the convection zone. And the values of  L are controlled by the 
processes that generate magnetic fields in the Sun. So in calculating Tc by means of Equation 17.6, 
let us not read more than we should into the result: we can obtain a numerical result for Tc but only 
if we first turn to empirical results in order to identify the most appropriate values to insert for the 
quantities p and L. 

17.16 ABRUPT TRANSITION FROM CHROMOSPHERE TO CORONA 

We have already noted (Section 17.10) that the transition between chromosphere and corona in the 
Sun occupies a spatial width that is quite narrow. The thickness of the transition is no more than 
300 km, and may be much less. Now that we know about thermal conduction in the corona, we 
return to the question: why is the transition so abrupt? 

The answer has to do with the fact that with the hot corona lying above the chromosphere, heat 
is conducted from the corona down into the chromosphere. The corona adopts a thermal structure 
such that a certain heat flux F = −kthdT/dr flows downward, supplying energy  from above to the 
upper chromosphere. This is distinct from the supply of (acoustic) energy that emerges from the 
convection zone and enters the chromosphere from below. 
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At coronal temperatures, kth ~ T2.5 is so large that a given heat flux F can be transported by a 
small temperature gradient, dT/dr. But as the temperature decreases toward chromospheric values, 
the value of kth decreases rapidly. In the upper chromosphere, where temperatures are lower than 
coronal values by factors of 100, kth is a mere 10−5 times its coronal value. Therefore, in order to 
transport the same heat flux F downward, dT/dr must become 105 times larger in the chromosphere 
than in the corona. That is, the temperature gradient must become much steeper in the chromo
sphere than in the corona. 

For numerical purposes, we note that in a coronal loop with half-length L, dT/dr ≈ T/L. Inserting 
coronal values (T = 106 K, L = 109–10 cm), we see that in the coronal portion of a loop, dT/dr has a 
numerical value of typically 10−(3–4) K cm−1. In order to transport the same flux F in the much less 
conductive chromosphere, we need to increase dT/dr by 105. This leads to dT/dr ≈ 10–100 K cm−1. 
Of course, the heat flux may not remain strictly constant all the way down from the corona into the 
chromosphere: some of the energy may be dissipated along the way by radiative losses. But even 
if only 1%–10% of the coronal heat flux survives into the chromosphere, a temperature gradient of 
order 1 K cm−1 would be required to transport that flux in the upper chromosphere. In the presence 
of such a gradient, the transition from the upper chromosphere (at T = 104 K) to a region where the 
temperature is (say) 105 K, would occur across a spatial distance of no more than 105 cm, i.e., 1 km. 

Our previous estimate of the thickness of the transition (≤300 km), based on a comparison of 
pressures (see Section 17.10), can easily accommodate such a steep conductive structure. On the 
scale of the solar radius, the transition region between chromosphere and corona is essentially a 
discontinuity. 

The discussion in the present section is based on a highly idealized treatment of conditions in the 
corona and chromosphere, as if there are a unique temperature in the chromosphere at all locations 
and a unique temperature in the corona. Actually, as we have already seen, there are spatial inhomo
geneities in the chromosphere (spicules) and spatial structures in the corona (loops). In places where 
spicules exist, their lengths (up to several thousand km) allow them to extend well into the corona. 
As a result, the localized roughness of the solar surface is such that it is not accurate to think of a 
uniform spherically symmetric thin shell of thickness 1 km separating the chromosphere from the 
corona at all points on the solar surface. Instead, the transition region occurs at different heights 
above the photosphere in different locations, depending on local conditions. Nevertheless, wherever 
the transition from chromosphere to corona does occur, it is abrupt, occurring across spatial scales 
that may be as short as 1–300 km. 

17.17 RATE OF MECHANICAL ENERGY DEPOSITION IN THE CORONA 

We have seen that the corona in the quiet Sun is observed to be essentially always at temperatures 
of 1–2 MK (see Figure 17.10: especially the curve labeled “log T < 6.1”). In view of this, it seems 
reasonable to conclude that the quiet corona has reached an equilibrium: as fast as the mechanical 
energy is deposited in unit volume, the material in that volume disposes of the energy through radia
tion and conduction losses (Section 17.15), leading to a stable temperature between 1 and 2 MK. 

Now that we know the temperature and density of the solar corona, we can evaluate the 
2 0 519 2  .volumetric radiation loss rate E  n T  10 n /T( )  . In the quiet Sun, where  n  ≈rad  e e e

3 × 108 cm−3 (Section 17.9) and T = 1–2 MK, this formula leads to Erad(QS)≈ 10−5 ergs cm−3 sec−1. 
In active regions, where ne is enhanced over quiet Sun by as much as 4–5 and T is enhanced by 
2–5, Erad (AR) is enhanced over quiet Sun values by a factor of perhaps 5–10. Thus, Erad (AR) ≥ 
5 × 10−5 ergs cm−3 sec−1. Since conductive losses are essentially equal to the radiative losses, we see 
that the rate of volumetric input of mechanical energy into the corona Emech must be roughly as follows: 

-3 -1Emech QS ) ergs cm sec (17.7) ( 2 10 5 
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-3 -1Emech (AR )  10 4  ergs cm sec (17.8) 

It is worthwhile to compare these rates of volumetric energy deposition in the corona with the 
analogous rates in the  chromosphere (see Equation  15.3):  Emech(chr)  =  0.3–3 ergs cm−3 sec−1. In 
each cubic centimeter of the corona, mechanical energy is apparently being deposited at a rate that 
is three to five orders of magnitude smaller than in the chromosphere. That is, the demands of the 
chromosphere for mechanical energy are much greater than the demands of the corona. Despite the 
large reduction in mechanical energy deposition rate in the corona, the greatly reduced density of 
coronal material (compared to chromospheric densities) allows even a low rate of energy input to 
heat the coronal gas to temperatures of 1–2 MK. 

Now that we know the rate of emission Erad (QS) from unit volume of the quiet corona, we can 
ask: how much power does the entire quiet corona emit in the form of radiation? The quiet corona is 

2  22  2distributed over essentially the entire solar surface, i.e., it has an area A QS  4  R   6 10 cm . 
With an exponential scale height Hc ≈ 7 × 109 cm in the low corona (Section 17.5), the volume of the 
quiet corona over the entire Sun is Vc(QS) ≈ A(QS)Hc ≈ 4 × 1032 cm3. Multiplying this by Erad (QS), 
we find that the radiative power of the quiet corona is Lcor ≈ 4 × 1027 ergs sec−1. Comparing to the 
total power output from the Sun (see Equation 1.11), we see that the quiet corona radiates in X-rays 
at a rate that is only one millionth of the photospheric radiation rate. The corona is truly a faint 
accessory of the Sun. 

17.18 WHAT HEATS THE CORONA? 

The problem of coronal heating is an active topic of research interest. The heating hypotheses can 
conveniently be divided into two major groups: waves and non-waves. 

17.18.1 Wave heatinG 

One possibility for heating the corona is that a flux of waves (of some sort) is entering the corona 
and dissipating their energy there. According to this viewpoint, by analogy with our discussion 
of the chromosphere (Chapter 15), the local volumetric rate of energy deposition would be given 
by the divergence of the flux of energy F(w) in the waves. Also by analogy with our discussion of 
the chromospheric heating, the divergence can be approximated by the ratio F(w)/ d, where d is a 
dissipation length (see Section 15.11). In a stratified medium, if dissipation is driven by nonlinear 
processes (such as shocks), d might be a few times the local scale height Hp. If this line of reason
ing applies to the low corona (where Hp ≈ 7 × 109 cm: Section 17.5), this suggests that d may be 
(2–3) × 1010 cm. In the context of this “wave model of coronal heating”, the necessary wave flux 
F(w) = Emech d would be of order 

-2 -1F QS 5 105 ergs cm sec (17.9) ( ) 

in the quiet Sun, and 

-2 -1F AR 3 106 ergs cm sec (17.10)( ) 

in active regions. 
Recalling that in the chromosphere, the wave flux F(chr) has previously been estimated to be 

of order 107–8 ergs cm−2 sec−1 (Equation 15.2), we see that the coronal flux of waves (if waves are 
indeed the source of coronal heating) is smaller than the chromospheric wave flux by a factor of at 
least three, and maybe by as much as 200. 

In the chromosphere, the nature of the waves that perform the heating (at least in the low-to-mid 
chromosphere) can be identified with a fair degree of confidence: acoustic waves emitted by the 
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turbulent convection beneath the photosphere are a good candidate. As a quantitative confirmation 
of this hypothesis, the theory of sound emission from convective turbulence predicts enough wave 
flux to perform the required heating (Section 15.10.2). Moreover, the fact that convection is always 
present, and occurs at all locations of the solar surface, means that the low-to-mid chromosphere is 
present essentially spherically symmetric on the solar surface. 

But what might be the source of waves that could be responsible for coronal heating? Could some 
acoustic waves be responsible? Since coronal heating is stronger in active regions, it is natural to 
suspect that waves of a magnetic nature might serve the purpose. Let us consider two candidates. 

17.18.1.1 Acoustic Waves? 

What about acoustic waves? It is true that a large fraction of the acoustic flux coming up from the 
convection zone is dissipated in the chromosphere. But a “large fraction” does not necessarily mean 
“all”. Might there be some acoustic wave flux “left over” at the top of the chromosphere? After all, 
even if as much as 99.5% of a flux of 108 ergs cm−2 sec−1 were dissipated in the chromosphere, the 
surviving 0.5%, i.e., 5 × 105 ergs cm−2 sec−1, would suffice to supply the necessary flux of energy to 
heat the corona, at least in the quiet Sun. The spherical symmetry of the acoustic flux could help to 
explain why the “fuzzy glow” of 1.5 MK gas in the quiet Sun can be found almost everywhere on 
the surface (Figure 17.9). 

However, there are empirical reasons that make it difficult to accept the acoustic wave heating 
possibility: the last of the OSO missions (OSO-8, launched in 1975) was used to search for acous
tic waves coming up into the corona. The flux was found to amount to no more than 7 ×104 ergs 
cm−2 sec−1 (Bruner 1978). This is almost an order of magnitude smaller than what is required to heat 
even the quiet Sun corona (Equation 17.9). The data suggest that there are simply not enough acous
tic waves reaching the corona to supply the heating required even for the quiet Sun. 

17.18.1.2 Alfven Waves? 

We have seen (Section  16.7.7) that the flux of Alfven waves in the photosphere  FA could be of 
order 107–8 ergs cm−2 sec−1 in regions where  B = 10–100 G (assuming a velocity amplitude 
of 1  km sec−1: see Section  16.7.7). Now, we have also seen (Equation  17.9) that a wave flux of 
5 × 105 ergs cm−2 sec−1 would suffice to heat the quiet Sun’s corona. Comparison with FA indicates 
that a field strength of even 0.5 G in the photosphere (quite weak by solar standards) could be suf
ficient to provide enough Alfven wave flux to be considered as a candidate for heating the quiet 
Sun corona. An advantage of Alfven waves is that, other things being equal, they do not dissipate 
as quickly as acoustic waves: the main reason is that there are no compressions and rarefactions 
associated with Alfven waves. As we have already seen (Section 15.9), a wave with constant energy 
flux will have a velocity amplitude growing as 1/√ρ as the wave propagates upwards: as a result, 
the amplitude of the Alfven wave may grow much larger than the amplitude assumed in the photo
sphere. For example, when the wave reaches an altitude where the density has fallen off by a factor 
(say) 103–4 relative to the photosphere, the Alfven waves may have amplitudes of some tens of km. 
Such amplitudes could explain the observed line widths of as much as 60 km sec−1 that have been 
reported in the low corona (see Section 17.8). 

However, we must remember some important provisos. First, waves generated in the photo
sphere must survive into the corona, and second, the waves must be dissipated in the corona, 
i.e., on length-scales of a few times 1010 cm. The first of these may be difficult to satisfy because 
Alfven waves tend to be reflected from a jump in density. Now, between the photosphere (where, 
with mass densities of 2–3 × 10−7 [Chapter 5, Table 5.3], the number densities are of order 1017 cm−3) 
and the coronal base (where number densities are of order ≈ 109 cm−3 [Section 17.10]), there is a 
reduction in density by ϕd ≈ 10−8. This jump in density occurs mainly across a length-scale of 
1–2 thousand km (the chromosphere), but it also includes a nearly discontinuous (smaller) jump 
between chromosphere and corona (see Section 17.16). Waves with periods of a few minutes (such 
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as those emitted by gas circulating in granules), in regions where the Alfven speed VA is at least 
a few km sec−1, will have wavelengths w = PVA that exceed 1000 km. In such a case, the Alfven 
waves will “sense” the change in density from photosphere to corona as essentially a discontinu
ity. Across a discontinuity where the density jumps by a factor of  d, the flux of the transmitted 
wave is only 4√ d of the incident flux (Alfven and Falthammer 1963). Using the earlier estimate 
of d ≈ 10−8, the fraction of the incident waves that survives into the corona is only 4 × 10−4. Thus, 
even if we were to allow the field in the photosphere to be as large as 100 G, in which case the 
photospheric flux is as large as FA ≈ 108 ergs cm−2 sec−1, the flux transmitted into the corona might 
be no more than 4 × 104 ergs cm−2 sec−1. This is too small to supply the wave flux even for the quiet 
corona (Equation 17.9). 

It is possible that, rather than restricting attention to Alfven waves generated in the photosphere, 
we should consider the possibility that the Sun may generate Alfven waves elsewhere. Magnetic 
reconnection (see Section 17.19.11) events in the chromosphere or in the corona might provide local
ized sources of Alfven waves, but it is hard to obtain quantitative estimates of wave fluxes from such 
transient events. 

17.18.2 non-Wave heatinG: the maGnetiC Carpet 

A hypothesis that relies on magnetic fields, but which may also explain the near-spherical symmetry 
of the quiet Sun corona, is called the “magnetic carpet” (Figure 17.14). 

In Figure 17.14, the background (with local hot spots in white) represents a segment of an image 
of the Sun taken in the same Fe XII line as in Figure 17.8. The background reminds us that the 
“fuzzy glow” of material at 1–2 MK is present at most locations in the solar corona. Superposed 
on the image are magnetic field lines. Each field line is rooted in a pixelated feature on the Sun’s 
surface that is either white or dark. White and dark pixels represent opposite magnetic polarity: 
therefore, each field line begins and ends in opposite polarity spots, looping upward between one 

FIGURE 17.14 Illustration of the “magnetic carpet” in the solar atmosphere. (Image available for public 
use at the NASA/Goddard website http://stargazers.gsfc.nasa.gov/images/sun_images/sunspots_cmes_occur/ 
aerialcarpt.gif) 
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white footpoint and one dark footpoint. As regards linear scale, each pixelated feature is some 
104 km across. (On such a scale, the solar diameter spans 140 pixels.) 

Any given pixelated feature may have multiple field lines emerging from it, each connecting to a 
separate pixel of opposite polarity at another location. Thus, although field lines fill up most of the 
available space at high altitudes, when one approaches the surface, the field lines become clumped, or 
concentrated into specific “threads” that emerge from specific locations. The analogy to a domestic 
carpet, with its multiple clumps of thread emerging from a substrate, in which all clumps are “rooted”, 
leads to the nomenclature “magnetic carpet” for the structure that dominates in the low solar corona. 

However, the analogy with a domestic carpet should not be taken too literally. The Sun’s magnetic 
carpet is not a static structure: far from it. Temporal variability is of the essence because new magnetic 
fields are continually emerging from beneath the solar surface. The image in Figure 17.14 is only a 
single “still frame” taken from a movie showing dramatic variability. Any particular one of the many 
white and dark pixelated features that appear in the “still frame” in Figure 17.14 actually emerges at a 
certain point in time, splits apart or coalesces with neighbors, drifts around the surface because of gran
ule motions, and eventually disappears. The time-scale during which any given feature survives from 
emergence to disappearance has been found to be 1–2 days. As the features on the surface evolve, 
driven by continual emergence of new magnetic fields, the magnetic field loops in the solar atmosphere 
also evolve, expanding, contracting, distorting in a multitude of ways (Schrijver et al. 1997). 

One possible outcome of this complex process is that field lines in the corona can find themselves 
in situations where they undergo a process known as “magnetic reconnection” (see Section 17.19.11). 
Magnetic energy can be released in each reconnection event and converted into heat. It is possible 
that the energy released as a result of the multitude of small localized reconnection events that occur 
in the magnetic carpet every second may be an important source of energy that heats the upper solar 
chromosphere in quiet regions up to altitudes of order 2 Mm (Chitta et al. 2014). It is less obvious 
that the carpet will also definitely heat the corona, although Chitta et al. (2014) suggest that perhaps 
better observations will in the future alter this conclusion. An advantage of the magnetic carpet as a 
coronal heating mechanism is that, since there exists at least some field present in most parts of the 
Sun’s surface at any given time (see Section 16.4.1.5), coronal heating due to the magnetic carpet 
might account for the (almost spherically symmetric) “fuzzy glow” permeating most of the solar 
surface (see Figure 17.9). However, a puzzle still remains: if in fact magnetic loops are present in the 
carpet, why is it that in Figure 17.9, we can see no evidence for definitive loops (in contrast to the 
clear evidence for loops in Figure 17.12)? One possible answer may be that the loops in the magnetic 
carpet might be so small that they are not clearly identifiable in images such as Figure 17.9. Future 
higher resolution observations may help to resolve this puzzle. 

17.19 SOLAR FLARES 

The most spectacular and energetic phenomena on the Sun are associated with explosive events 
called “flares”. These are transient short-lived brightenings that can make their appearance in mul
tiple regions of the electromagnetic spectrum, ranging (in some flares) over 12–14 orders of magni
tude in energy, from -rays with energies up to hundreds of MeV to meter-wave radio photons with 
energies of 10−6 eV. Here, we first describe the general properties of flares, and then examine the 
physical processes at work. The flare-generating physical process in which we shall be most inter
ested is referred to as “magnetic reconnection” (Sections 17.19.10). 

In the broadest sense, two general classes of flares have been identified: confined and eruptive. 
The former are limited to a small region of the Sun, whereas the latter eject material in the form of 
a “coronal mass ejection” (see Section 18.9) that can propagate out into interplanetary space. 

17.19.1 General 

Flares are difficult to see in the optical continuum (“white light flares”) because the surface of 
the Sun is so bright: in a 2.5-year period around solar maximum in 1980 (when flares occur with 
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maximum frequency: see Section  17.19.2), only 12 white light flares were detected (Neidig and 
Cliver 1983). 

Instead of searching in “white light”, it has been found that flares are much easier to detect from 
the ground when the Sun is observed in chromospheric lines: e.g., in a two-year period 1978–1979, 
15,500 flares were recorded in Hα (Kurochka 1987), roughly 1000 times more frequent than white-
light flares. A striking feature of eruptive flares, when they are observed in chromospheric radiation, 
is that the regions of strongest emission in optical/UV are often confined to two (more or less) linear 
features called “ribbons”: an example of such ribbons is shown in Figure 17.15 (from Milligan et al. 
2014). The ribbons are interpreted to be areas where energy has been magnetically channeled (by 
thermal conduction or by electron beams) down to the chromosphere from the corona: in fact, the 
ribbons are found to coincide well with the regions in the solar photosphere where the vertical elec
tric current density is largest (Musset et al. 2015). The two ribbons are observed to lie closest to each 
other in the early stages of the flare, but as the flare develops, the ribbons systematically separate 
spatially from each other. By quantifying the changes in the magnetic flux  intercepted by the rib
bons as they separate spatially, the time derivative of d /dt can be evaluated. Then, using Faraday’s 
law of induction, one can infer the magnitude of the voltage drop that exists along a particular line 
(the “separator”, which connects two magnetic “null points”: see Section 17.19.11) in the flare region 
(Tschernitz et al. 2018). The potential drops in certain flares are found to be as large as a few mil
lion volts. In the presence of such voltages, electrons can be accelerated to energies of 100 keV in 

FIGURE 17.15 Image of a flare taken by Hinode in the Ca II H line on February 11, 2011. Orange areas with 
white inclusions are referred to as flare “ribbons”, where the Ca II H emission is most intense. The brightest 
patches of each ribbon are shown in white, surrounded by black contours marking the 80% level of peak inten
sity. One ribbon (almost forming a straight line) is situated mainly along the diagonal from lower left to upper 
right. The second ribbon, in the upper left quadrant, looks like a distorted letter “U”. Superposed on the Ca 
II H image are contours in a hard X-ray image from the RHESSI satellite taken around the same time as the 
Ca II H image: the yellow contours denote the 30%, 50%, and 80% levels of the RHESSI X-ray fluxes. Note 
that the highest peaks in X-ray flux (where electron beams are magnetically channeled downwards to strike the 
chromosphere) coincide spatially with the ribbons. (Milligan et al. 2014; used with permission of R. Milligan.) 



339 The Corona 

      

fractions of a second: these fast electrons are channeled downwards along local magnetic field lines 
to the photosphere, where they emit hard X-rays and dump their energy in the optical ribbons. The 
strength of the associated electric field is related to the rate of magnetic reconnection occurring in 
the overlying corona. 

Flares are also easy to detect in X-rays, where the brightness of the entire Sun can increase by 
an order of magnitude or more in a matter of minutes or even seconds, and then decay to the previ
ous level of brightness. A plot of intensity of radiation from a flare as a function of time is referred 
to as a “light curve”. Examples of flare light curves, as recorded by one particular series of X-ray 
satellites (GOES 10, 12) are shown in Figure 17.16. Along the abscissa is plotted the time, in this 
case covering an interval of three days in 2005, when the Sun was moderately active. The ordinate 
shows the soft X-ray flux measured by GOES in two different wavelength (energy) ranges: 1–8 Å 
(1.5–12 keV) (upper curves), and 0.5–4 Å (3–25) keV (lower curves). Flares emit more energy at 
lower energies (upper curves) than at higher energies (lower curves). The labels A, B, C, M, and X 
(each spanning one decade in flux) along the right-hand side are a lettering system that has become 
commonplace in classifying flares according to the magnitude of the peak flux that is measured 
during that flare in the GOES 1–8 Å channel: the smallest A-class flare is defined to have a class of 
A1, with a peak flux of 10−8 W m−2, while the smallest X-class flare (X1) has a peak flux of 10−4 W 
m−2. Within each class, the peak fluxes are further subclassified by a number from 1 to 10: thus, an 
M6 flare has a peak flux of 6 × 10−5 W m−2. The largest flares detected by GOES have peak fluxes 
(as measured by the GOES 1–8 Å channel at 1 AU) of order (2–4) × 10−3 W m−2, corresponding to 
class X20-X40. Compared to the total radiant flux received from the Sun at 1 AU (~1361 W m−2; see 
Figure 1.1), we see that the largest solar flare emits (at its peak) a flux in X-rays that is of order one 
millionth of the Sun’s total radiant output. Flares too faint to be detected by GOES (i.e., flares with 
fluxes lower than GOES A1-class) were detected by the SphinX detector (see Section 17.5), which 
was some 100 times more sensitive than GOES. The weakest SphinX flares were assigned to two 
new classes below A-class: S-class (for “small”), corresponding to a flux of 10−9 to 10−8 W m−2, and 
Q-class (for “quiet”), corresponding to 10−10 to 10−9 W m−2 (Sylwester et al. 2019). 

Inspection of the curves plotted in Figure 17.16 indicates that each flare is indeed a transient 
event, characterized (typically) by a fast rise in radiative flux, followed (typically) by a slower 
decline with a shape resembling that of a damped exponential. (The acronym FRED is sometimes 
used to describe the flare curve: Fast Rise, Exponential Decay.) When data are obtained simultane
ously in other wavelength ranges (radio, optical, and UV spectral lines), flares are also apparent as 
rapid increases in those spectral regions, followed by slower declines. The various time-scales may 
be different in different wavelength ranges. In the hardest X-rays (with energies of several hundred 
keV), the rise time-scale of a flare may be very abrupt, in some cases as short as 0.05 seconds 
(Altyntsev et al. 2019): this short time-scale places significant demands on any flare model. As can 
be seen in Figure 17.16, the largest flare events observed in the (softer) X-rays detected by GOES 
may take the better part of 1 day to return to the “quiet Sun level”, whereas the smaller events are 
complete in less than (sometimes much less than) 1 hour. 

Although flares are difficult to detect in “white light” but easy to detect in X-rays, this does not 
mean that flares emit more energy in X-rays than in optical light. On the contrary, careful analysis 
suggests (Kretzschmar 2011) that flares emit some 70% of their energy in optical photons. 

17.19.2 hoW many solar flares have been DeteCteD? 

The first solar flare to be reported was seen independently by two English astronomers Carrington 
(1859) and Hodgson (1859) in white light. Because white light flares are not reported very often 
(because of the brilliant background of the solar photosphere), a wide range of detectors, spanning 
radiation with wavelengths as short as 1 Å (or less) and as long as meters, have been used over the 
intervening years to facilitate the observation of flares. Because of different sensitivities in the vari
ous detectors, and depending also on how bright the Sun is at that particular wavelength, the number 
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 FIGURE 17.16 Time profiles of soft X-ray flux emitted by the entire Sun in two ranges of wavelengths 
(ranges of energies) during a three-day interval in 2005, when the Sun was moderately active. Data are in the 
public domain. (From Space Weather Prediction Center, Boulder, CO; National Oceanic and Atmospheric 
Administration; U.S. Department of Commerce. Used with permission.) 

of detectable flares varies from one wavelength range to another. We have already noted that in an 
analysis of 2 years of H  observations, Kurochka (1987) reported 15,500 flares. 

Using the GOES 1–8 Å X-ray data set over the course of a 37-year interval (1975–2011, i.e., 
three solar cycles), Aschwanden and Freeland (2012) used an automated analysis routine to iden
tify a (remarkable!) total of 338,661 X-ray flares. The average rate of flares per year is almost 10 
thousand. However, the annual rates vary greatly (by factors of ~100): the smallest number of flares 
in any single year was 186 in 2008 (when the Sun was passing through a very deep minimum in 
magnetic activity), while the greatest annual number was 18,797 in 1979 (when the Sun was close 
to the maximum of cycle 21). The existence of a pronounced correlation between numbers of flares 
and the Sun’s (magnetic) activity level leads to a significant conclusion: the energies released during 
flares owe their existence (somehow) to magnetic fields. 

As regards the numbers of flares with different peak fluxes, the (cumulative) numbers of flares 
with peak fluxes >X1, >M1, and >C1 were found to be 248, 3986, and 35,221 respectively. Thus, 
(small) C-class flares are more frequent than (large) X-class flares by a factor of >100. Quantitatively, 
the (differential) number of flares with maximum fluxes x in the range from x to x + dx can be fitted 
with the function N(x) = N1 (1+ x/x1) − : in large flares (x>>x1), this function behaves as a power law 
N(x)~x− , while in small flares (x<<x1), N(x) approaches a constant value N1. For each year in the 
37-year interval, Aschwanden and Freeland (2012) extracted a value for , the power-law index: the 
values were found to range from 1.7 to 2.3, with a mean value of < > = 1.98 and a standard deviation 
of ±0.11. Interestingly, the power-law index is (within ~5% error bars) essentially invariant across 
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three solar cycles. This is noticeably different behavior from the number of flares per year: that 
number varies by a factor of ~100 between years of minimum and maximum activity. 

The empirical fact that the maximum fluxes of flares obey a power-law distribution contains impor
tant information about flare physics. First, because there is no evidence for a peak in the distribution, 
this means that there is no “characteristic (or preferred) maximum flux” associated with solar flares: 
instead, there is simply a broad range of maximum fluxes available to the solar atmosphere when 
local conditions lead the Sun to “decide” to create a solar flare. Second, Aschwanden and Freeland 
(2012) point out that their empirical finding of < > = 1.98±0.11 is consistent with the prediction of a 
flare theory called “self-organized criticality” (SOC) (Lu and Hamilton 1991): in SOC theory, a flare 
occurs as a result of an “avalanche” of many small magnetic reconnection events (Section 17.19.10). An 
avalanche of this kind in the solar atmosphere is driven by the fact that convective turbulence causes 
the local magnetic fields to undergo continual stretching and stressing as time goes on. The eventual 
occurrence, in this scenario, of a “reconnection avalanche” is analogous to avalanches in a sandpile as 
extra grains of sand are added slowly to the pile. In the case of flares, the amplitude of any particular 
flare is determined by the number of small reconnection events that contribute to the flare. 

In a discussion of SOC theory, Aschwanden (2011) shows that if the distribution of peak fluxes 
in GOES flares follows a power law with an index , then the total energy of the flare (proportional 
to maximum flux times the duration of the flare) will be found to follow a distribution that is also a 
power law. Significantly, however, the power-law index E of the energy distribution in SOC theory is 
not the same as the index of the peak flux distribution. Instead, E = ( +1)/2. Inserting ≈ 1.98 (as 
found earlier), the flare energy distribution is predicted to have a slope E ≈ 1.5. The significance of 
the latter number is that, when one integrates over all flare energies, the largest flares dominate in the 
integral. On the other hand, in some theories of coronal heating, it is claimed that the smallest flares 
(“nanoflares”: Parker [1972]) dominate the heating: if SOC is a realistic flare theory, the “nanoflare” 
claim is not supported by the GOES data. (But note that GOES detects only relatively large flares 
with peak fluxes larger than A1-class). However, when flares are observed with hard X-ray instru
ments such as RHESSI, flares that are too small to be detected by GOES may become detectable. 
Among such smaller flares, the slope of the energy distribution is sometimes found to be steeper than 
2.0 (Aschwanden et al. 2016): in the presence of such steep slopes, nanoflares might dominate coro
nal heating. In the nanoflare model of Parker (1972), the major focus of the discussion was on active 
regions, where the gas in local “hot spots” might be heated to temperatures of 4–5 MK or larger: 
indeed, such hot spots have been detected in flaring active regions (Reva et al. 2018). On the other 
hand, in the quiet Sun, nanoflares are known to contribute very little to the DEM, no more than one 
part per million (Hannah et al. 2010). In order to draw reliable conclusions about the overall role of 
nanoflares in coronal heating, Aschwanden et al. (2016) stress that more homogeneous data sets are 
required: specifically, an instrument is required that will allow the same method and the same time 
intervals to be used for all flares from the largest (with energies of 1032 ergs or more) to the smallest 
(with energies of order 1023 ergs). Only in the case where such a homogeneous data set becomes avail
able can we expect to construct a flare energy distribution that is reliably self-consistent on all scales. 

Moreover, from a purely mathematical perspective, it is not a trivial matter to determine pre
cisely the slope of a power-law distribution of flare-related quantities. Fitting a power law is not 
always a stable process, because the value of the power law can depend on how one defines the 
onset of each flare (Ryan et al. 2016). As a result, depending on the definition of the flare onset, the 
slope of the energy distribution could change from steeper than −2.0 to shallower than −2.0: such a 
change would make all the difference between, on the one hand, a conclusion that nanoflares domi
nate coronal heating, and, on the other hand, a conclusion that large flares dominate coronal heating. 

17.19.3 flare temperatures anD Densities 

In Figure 17.16, the flare X-rays have been measured by GOES in two different energy bands: one 
band spans a lower range (1.5–12 keV), and the other band spans a higher range (3–25 keV). By 
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comparing the relative fluxes of flare X-rays in the two bands when the flare is at peak intensity, 
an estimate of a “color temperature” Tc can (in principle) be estimated if the flare is assumed to 
be isothermal. The numerical values of Tc in samples of many flares are found to range from 5 to 
25 MK (Feldman et al. 1996). Independently, a “color temperature” for flares can also be obtained 
using data in somewhat higher energy ranges from the RHESSI spacecraft: these Tc estimates are 
found to be systematically larger (by a few MK) than those obtained from GOES (Warmuth and 
Mann 2016). These systematic differences in Tc values derived from GOES and RHESSI data 
indicate that the assumption that flare plasma is isothermal is incorrect. A more reliable approach 
is to construct the differential emission measure in order to identify the temperature Tp at which 
DEM is a maximum (see Section 17.5). Ryan et al. (2014) have derived the DEM for a sample of 
149 M- and X-class flares observed by SDO/AIA: this analysis leads to Tp = 12.0 ± 2.9 MK. For 
the same flares, the Tc derived from GOES and from RHESSI data are found to be larger than Tp 

by factors of 1.4 ± 0.4 and 1.9 ± 1.0 respectively. Because of the (incorrect) assumption of isother
mality that enters into the determination of the “color temperature” Tc from GOES or RHESSI, 
the value of Tp derived from DEM is a more physically reliable indicator of “the” temperature in 
solar coronal gas. 

At the peak of a flare (in X-ray emission), the local gas in the flare volume typically reaches its 
highest temperature. At later times, the temperature of the plasma cools. Based on the strengths of 
various X-ray lines emitted by Fe ions in ionization stages ranging from XXIV to XIV, the average 
rate of cooling has been estimated (in a sample of 72 M-class and X-class flares) to be 3.5 × 104 

K sec−1 (Ryan et al. 2013): that is, flare plasma cools from (about) 20 MK to “coronal” temperatures 
(1–2 MK) in a time interval of 5–10 minutes, on average. If there is no source of prolonged heating 
after the flare reaches maximum intensity (due, e.g., to another flare occurring nearby), the cooling 
time-scale is determined by the effectiveness of radiative and conductive cooling. 

Although a flare temperature of order 12 MK (as mentioned earlier) already indicates a 10-fold 
increase in temperature compared to the quiet corona, even higher temperatures have been identi
fied in certain flares if the detector can respond to hotter gas. The very hottest gas in flares has 
been detected by observing in the lines of the most highly ionized elements. The Japanese satellite 
Hinotori, launched in 1981, observed 13 large flares (mainly X-class) in the 1.8Å Lyman-  line of 
the hydrogenic ion Fe XXVI. In about 50% of these flares, a “super-hot” component was observed, 
with maximum temperatures of 30–40 MK (Tanaka 1986). 

The coolest gas recorded in flares has been recorded by the SphinX instrument, with its 
X-ray sensitivity some 10–100 times better than GOES. During the 9 months from February to 
November 2009, when the Sun was in a deep activity minimum, SphinX nevertheless detected 1604 
flares, the largest being a C2.1 class flare (Gryciuk et al. 2017). The hottest flare temperature was 
found to be 7.94 MK, but for many of the flares, the temperature did not exceed 2 MK. In fact, one 
flare (#890 in the list of Gryciuk et al.) was listed as having a temperature of only 1.24 MK, i.e., log 
T = 6.1, equal to the temperature of the cooler component of the quiet corona (see Figure 17.9): in 
this flare, the energy release was apparently so small that, although X-rays were detected (probably 
due to an increase in the local gas density), the local gas apparently did not heat up measurably 
compared to the quiet Sun. 

In comparison with the quiet (i.e., non-flaring) corona, where T = 1–2 MK, we see that the gas 
in large flares at the peak of the DEM is hotter than the quiet Sun corona by a factor that may be as 
large as 10 or so. It is an empirical fact that whatever causes a large flare to occur can lead to a great 
deal of heating (with a temperature increase of ~10-fold or more) in the coronal gas. 

Electron densities nf in coronal flare plasma are also larger than the densities in the quiet Sun. For 
example, in a sample of flares analyzed by Moore and Datlowe (1975), the mean nf was found to be 
0.2–0.7 × 1011 cm−3, depending on certain assumptions about the flare volume. Even higher densi
ties (>1013 cm−3) have been derived in flare plasma by analyzing the Lyman continuum (Machado 
et al. 2018). Compared with the quiet Sun coronal densities of 1–4 × 109 cm−3 (see Section 17.9), the 
conclusion is that the densities in flaring gas are greater than in the quiet Sun by factors which may 
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be as large as 3–4 orders of magnitude. Something about the physical processes occurring in a flare 
leads to significant compression and significant heating of gas in the solar atmosphere. 

17.19.4 spatial loCation anD extent 

The X-ray detector on the GOES spacecraft (Figure 17.16) cannot make an image of the Sun: it 
can only measure the flux of X-rays from the entire solar disk. As a result, there is no way to tell 
from GOES data alone on which part of the Sun any given flare occurred. But other instruments 
(e.g., SDO/AIA), which can make images in optical or EUV photons, demonstrate unambiguously 
that flares occur in active regions, especially in active regions where sunspots have complex umbrae 
with opposite polarities in close spatial contact. Based on a study of almost 4000 flares and their asso
ciated spots, Greatrix (1963) showed that the intensity of a flare is related to changes in the magnetic 
flux of the associated spots (see a discussion of flare ribbons and magnetic flux in Section 17.19.1). 

When the largest flares are imaged in Hα, they are found to spread out spatially to cover an area 
that is a significant fraction of the area of the active region. The linear extent of the largest flares on 
the surface of the Sun can be several times 109 cm, with areal coverage of order 1019 cm2. In the ver
tical direction, flare plasma may extend up to altitudes that are not greatly different from the extent 
on the surface. As a result, the total volume Vf of a large solar flare can be 1028–29 cm3. 

Although most of the attention in solar flare research is paid to the rapid (and spectacular!) 
energy release process, there is actually another less dramatic process that also deserves attention: 
the build-up and storage of energy in the magnetic field prior to a flare. The latter process is much 
less dramatic than the flare itself. Build-up and storage occurs slowly over time intervals of hours 
and days. It occurs in active regions because magnetic field lines are rooted in the photosphere, 
where convective motions are ubiquitous. At the footpoint of a magnetic loop, gas that is frozen into 
the field and subjected to convective motions pushes the field lines around in complicated ways, 
with twistings and stretchings and braidings. These complex motions cause stresses to build up in 
the field lines, and the stressed fields serve as a reservoir in which free magnetic energy may be 
stored. At certain times and places, a trigger comes into operation, releasing the free energy on a 
short time-scale as a flare. The trigger causes a transition from a long-drawn-out storage process 
(on time-scales of 105 sec) to a rapid release process (on time-scales of seconds): the two processes 
occur on time-scales differing by as much as five orders of magnitude. 

17.19.5 enerGy in nonthermal eleCtrons 

In order to appreciate the physics of flares, it is important to estimate the amount of energy released 
in one such event. Solar flares come in a very broad range of energies. Some are so small that the 
only evidence for an event is a slight short-lived increase in brightness in the chromospheric line 
Hα. In such cases, the flare energy emerges purely in the form of photons. Measurements provide 
the excess luminosity in H  over and above the luminosity in the quiet Sun. Integrating the excess 
luminosity over the lifetime of the flare yields an energy Eα for the flare in H photons. However, if 
we wish to evaluate the total energy of a flare, we have to take account of the energy that emerges 
in other photons and in other forms. 

In large flares, hard X-rays emerge with photon energies of tens or hundreds of keV. Such X-rays 
indicate the presence of fast electrons, also with energies of tens or hundreds of keV, i.e., much higher 
than the typical thermal energies in the corona. (In 1 MK plasma, thermal energies kT are of order 
0.1 keV.) Large flares are quite efficient at accelerating “nonthermal electrons”. From the shape of the 
hard X-ray spectrum, information can be extracted about the number Ne of nonthermal electrons as a 
function of energy: typically, the electron spectrum is found to be a power law in energy: 

dN e  E  (17.11) 
dE 
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where the spectral index δ is found to range between 2 and 5, with most values between 3 and 4.5 
(Brown et al. 1981). To evaluate the total energy Ent contained in the nonthermal electrons in any 
particular flare, we need to multiply dNe/dE for that flare by E and integrate over the energy spec
trum from a minimum energy Emin to a maximum energy Emax. The result is 

1 1
E   (17.12) nt 2 2E Emin max 

Since δ typically exceeds 2, the value of Ent is determined mainly by the term that depends on 
Emin. The smaller Emin is, the larger Ent. It is not easy to extract the value of Emin reliably from obser
vational data, but it is probably no more than 20 keV. If we set Emin = 10–20 keV, then Ent can reach 
values approaching 1032 ergs. In a study of some of the largest solar flares ever observed, Lin and 
Hudson (1976) report that nonthermal electrons with energies in the range 10–100 keV “constitute 
the bulk of the flare energy”: these electrons are found to “contain 10–50% of the total energy 
output”. Apparently, a flare site is very effective (up to 50%) at accelerating many electrons to ener
gies of tens of keV: the number of fast electrons that are accelerated every second in a sample of 
18 flares observed in hard X-rays by the RHESSI spacecraft has been estimated to be 1032–36 sec−1 

(Mann and Warmuth 2011). These “primary” particles emerge from the flare site and propagate into 
other regions of the solar atmosphere, depositing various fractions of their energy into the ambient 
corona, chromosphere, and (in some cases) the photosphere. 

Nonthermal electrons generate not only hard X-rays, but they also, in regions of magnetic field, 
emit radio emission at microwave wavelengths by mean of gyrosynchrotron radiation. Do the same 
electrons give rise to both types of electromagnetic radiation? Krucker et al. (2020) have reported 
on a comparative study of hard X-ray data from the RHESSI spacecraft and radio data from the 
Nobeyama Radio Heliograph (NoRH). RHESSI operated from 2002 to 2018. The Nobeyama detec
tors measured solar radio data at two microwave frequencies, 17 and 34 GHz. In a sample of 82 indi
vidual burst components observed simultaneously by NoRH and RHESSI during 40 flares, Krucker 
et al. found a linear correlation between hard X-ray flux and microwave flux, with a correlation coeffi
cient of 92%. Krucker et al. concluded, “the same population of accelerated non-thermal electrons . . . 
produce both the . . . microwave emission and the . . . hard X-ray emission”. 

17.19.6 Where are flare eleCtrons aCCelerateD? 

To answer this, we note that hard X-rays are emitted when the fast electrons from a flare site propa
gate downwards (guided by the magnetic fields of a flaring loop) into denser gas in the chromo
sphere (or maybe even in the photosphere) and, colliding there with ambient ions, radiate free-free 
photons with energies no larger than (but comparable to) the electron energy. In order to find out 
where the electrons originated (up in the corona), one approach is to measure how long it takes for 
the electrons to travel from their source down to the denser gas: i.e., the goal is to measure the time 
of flight of electrons. Faster electrons should reach the denser gas before the slower electrons arrive. 
As a result, the onset times of more energetic X-rays (created by faster electrons) occur slightly 
earlier than the onset times of less energetic X-rays (created by slower electrons). Aschwanden et al. 
(1996) reported on a sample of flares in which the times of flight were measured for X-ray energies 
as low as 30 keV and as high as 250 keV: the onset times of the high energy photons were found 
to occur earlier than those at lower energy, with differences ranging from 0.059 sec to 0.140 sec. 
Clearly, to make reliable estimates of these time differences, the detectors must be able to measure 
onset times with a precision measured in milliseconds. Knowing how fast electrons with energies of 
250 and 30 keV travel, the differences in times of flight from the acceleration site to the dense gas 
where X-rays are emitted can be converted into altitudes of the site of acceleration. Aschwanden 
et al. (1996) found that the altitudes at which the fast electrons originate ranged from 14 to 31 Mm. 
Subsequent analysis (Aschwanden 2002) of some 100 flare events observed by both YOHKOH and 
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the Compton Gamma-Ray Observatory (CGRO) found that the altitudes of the flare acceleration 
site ranged from 5 to 60 Mm. These altitudes lie definitely higher than the top of the loops from 
which flare radiation was observed. These results suggest that the instability that triggers the flare 
(by accelerating nonthermal electrons) does not occur in the loop: whatever the process is that does 
the triggering occurs above the top of the loop. 

17.19.7 other Channels of flare enerGy 

As well as the energy contained in fast electrons, flares also manifest energy in other forms (see, 
e.g., Sturrock 1980). The amount of thermal energy in flare plasma (≈NfkTfVf ) over and above the 
thermal energy in an equal volume of “quiet” coronal plasma can be 1030 ergs and more. 

Some flares, especially those with the largest energies, may lead to the acceleration of “solar 
energetic particles” (SEP). These are protons, neutrons, and other nuclei with energies up to thou
sands of MeV. Where do these energetic particles originate? To address this, the charge states of 
the SEP can be used to indicate the temperature of the source material (Reames 2016): the results 
indicate that the SEP are typically accelerated from the quiet Sun and from active regions, but not 
directly from flare plasma itself. The acceleration probably occurs in shock fronts launched by the 
flare itself or by a CME (see Chapter 18). 

Whatever it is that accelerates the SEP, it is an observational fact that some of the SEP are 
directed downwards, and some are directed upwards. Consider first those that move downward 
towards the photosphere. These can generate gamma rays when they encounter the denser gas of the 
photosphere: in a 4-year time span, 18 flares were observed by the Fermi satellite to emit detectable 
gamma-ray continuum emissions at energies > 100 MeV (Ackermann et al. 2014). Less energetic 
SEP, when they strike the photosphere, can excite gamma-ray lines, including the 0.511 MeV line 
from positronium, the 2.223 MeV line from deuterium (when a flare neutron merges with a photo-
spheric proton), and de-excitation lines from nuclei of C12 and O16 at 4.4 and 6.3 MeV respectively 
(Chupp et al. 1973). 

Second, let us consider the SEP that are directed upwards. In suitable conditions, they may 
escape into the solar wind and can be detected by spacecraft lying outside the shielding of Earth’s 
magnetic field. The GOES spacecraft has a particle detector that records a “solar proton event” 
(SPE) if the flux of protons with energies >10 MeV exceeds 10 particle flux units (p.f.u.), where 
1 p.f.u. = 1 particle cm−2 sec−1 ster−1 at geostationary orbit. A catalog of 261 SPEs detected by GOES 
in a 41-year interval (1976–2017) can be found at the website www.ngdc.noaa.gov/stp/satellite/goes/ 
doc/SPE.txt. The number of recorded SPE events varies greatly from one year to another. In solar 
minimum years, an entire year can elapse without a single SPE event (e.g., in 1996, 2007, 2008, and 
2009), while in solar maximum years, as many as 23 SPE events have been recorded. As regards 
the magnitude of the events, the fluxes of >10 MeV protons was found to exceed 104 p.f.u. in nine 
(3%) of the 261 SPEs; in most events, the peak flux was in the range 10–100 p.f.u. For an earlier 
time interval (1955–1986), Shea and Smart (1990) compiled data for SPEs (using the same definition 
as earlier) from a variety of detectors: the compilation contains 218 events, with an average annual 
rate of about seven SPEs per year: this rate is close to the average annual rate reported by the GOES 
catalog. 

The most energetic protons in SPEs can have energies up to several GeV: such particles, although 
rare, have the ability to “break through” the Earth’s magnetic shielding and be detected by instru
ments on the ground called neutron monitors (NMs). These detections are called “ground-level 
events” (GLEs), of which 73 have been recorded. At the location of each NM, the Earth’s field and 
overlying atmosphere shields the NM from particles with energies that are lower than a certain 
threshold, i.e., only particles with energies in excess of that threshold can reach that particular 
NM. An NM that is near the geomagnetic equator may have an energy cut-off as high as 17 GeV 
(in Thailand), while in Antarctica, the energy cut-off is <1 GeV. Information on all of the 73 GLEs 
identified so far can be found at the official site in Oulo, Finland, at https://gle.oulu.fi/#/. There is a 

http://www.ngdc.noaa.gov
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striking difference between solar cycles as regards the numbers of GLEs: cycle 23 had 16, cycle 24 
had only one, and cycle 25 has already had one even though the cycle is only about 2 years old at 
the time of writing (December 2021). 

The fact that fast neutrons are associated with certain flares is clearly illustrated by the emis
sion of the 2.223 MeV line of deuterium due to SEP directed downwards to the photosphere. But 
what about the neutrons that are directed upwards? Can they be detected by near-Earth detectors? 
With a half-life of only 15 minutes for free neutrons, the traversal of the distance from Sun to Earth 
(requiring at least 8–9 minutes, even for the fastest particles) must be accompanied by some decay 
(even allowing for relativistic time dilation). Neutrons have the advantage that, since they have zero 
electric charge, the Earth’s magnetic field poses no obstacle to them: the neutrons can penetrate 
unimpeded through the field to reach even satellites in low-Earth orbit, such as the International 
Space Station (ISS). Koga et al. (2017) used a neutron detector attached to the ISS during the years 
2010–2015 (i.e., spanning the maximum of solar cycle 24) and reported that neutrons with energies 
in the range 30–120 MeV were reliably detected in association with 28 flares. 

Finally, some flares are observed to eject bulk material from the corona into the solar wind: these 
events, called “coronal mass ejections” (CMEs), will be discussed in Chapter 18. Their kinetic ener
gies can reach values of order 1032 ergs, comparable to the total energies in nonthermal electrons 
in large flares. The effects of CMEs can in exceptional cases lead to disturbances on the Earth. 
For example, following the large flares of August 1972, the Earth’s magnetic field was perturbed 
so much by one (or more) CMEs moving past the Earth at high speed that dozens of magnetically 
sensitive sea mines that had been dropped into a harbor in North Vietnam were unintentionally 
detonated within an interval of some 30 seconds (Knipp et al. 2018). 

Adding up the various channels among which flare energy is distributed, estimates indicate that 
the largest solar flares are found to have energies of a few times 1032 ergs. Thus, one of the largest 
flares reported by a space-borne total irradiance monitor (Kopp et al. 2005) was observed to have 
a total radiated energy of 6 ± 3 × 1032 ergs. From a theoretical point of view, Aulanier et al. (2013) 
have argued, based on a 3-D MHD simulation of a large sunspot with the strongest magnetic field 
ever recorded in a spot, that the maximum energy that might be released in a solar flare (under opti
mal conditions) could be ~6 × 1033 ergs. 

At the opposite extreme of energies, might one wish to specify “the smallest solar flare”? Probably 
not: depending on the sensitivity of the detector and on how quiet the Sun is in the wavelength being 
used to make the observations, one could in principle pick out smaller and smaller events that might 
qualify as “flares”. In hard X-rays (where the “quiet corona” emits at a very low level), events can 
be identified as flares with E(tot) as small as ≈1026 ergs (Lin et al. 1984). These small events are 
sometimes referred to as “microflares”: the prefix “micro” indicates they have energies that are of 
order 106 times smaller than the largest flares. If it could ever be demonstrated with confidence that 
there are events in the Sun with E(tot) as small as (roughly) 1023 or 1020 ergs, they might justifiably 
be referred to as “nanoflares” or “picoflares”. 

Is there anything on Earth to which we can compare solar flares in terms of energy release? The 
closest event may be a nuclear explosion whose energy release is quoted in terms of the equivalent 
tonnage (or megatonnage: MT) of TNT. In a 1 MT explosion, the energy released is 4 × 1022 ergs. 
Each “nanoflare” in the Sun (if such events occur) would generate the equivalent of a 2.5 MT explo
sion on Earth. 

17.19.8 Do flares perturb solar struCture siGnifiCantly? 

The largest flares, with energy releases of a few times 1032 ergs, certainly involve important disrup
tions of the active region in which they occur: field lines connecting different spots in the active 
region are rearranged, and some matter may be ejected into space. However, in the larger context of 
the Sun as a whole, flares represent only a small perturbation. 
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To see this, we note that even the largest flares have durations that are no more than a fraction 
of a day (see Figure 17.16). During such an interval (≈ 50,000 sec), the nuclear reactions in the core 
of the Sun continue to pour out energy at the standard rate, i.e., 4 × 1033 ergs sec−1. Therefore, over 
the duration of the largest flares, the Sun puts out 2 × 1038 ergs of nuclear energy. Compared to 
this, the energy released in even the largest flares is only a small perturbation (of order one-millionth) 
of the solar energy budget. 

17.19.9 enerGy Densities in flares 

Now that we know, for large flares, that Et(fl) ≈ 1032 ergs, while the flare volume is estimated to 
be Vf ≈ 1028–29 cm3 (see Section 17.19.4), we can estimate the mean energy density in large flares. 
The result is Et(fl)/Vf ≈ 103–4 ergs cm−3. 

What is the origin of this energy density? Since flares are observed to occur in active regions, it is 
reasonable to expect that the magnetic field is somehow responsible. In quantitative terms, we have 
already seen (Section 16.6.2.1) that magnetic fields have an energy density Wmag = B2/8π ergs cm−3 

if B is expressed in Gauss. 
Magnetic fields have energy densities of Wmag = 103–4 ergs cm−3 in regions where the field strengths 

are 160–500 G. Now, we have already seen that active regions in the Sun have fields of hundreds 
of Gauss (Section 16.5). Thus, the energetics suggest that the energies contained in magnetic fields 
in active regions are sufficiently strong that they could (at least in principle) supply the energy that 
is released in a flare. The problem is, first, to identify a mechanism that has the ability to convert 
magnetic energy into fast electrons and heat. But there is a more pressing problem: this conversion 
must occur rapidly enough to be consistent with the fastest time-scale observed in flares, namely, 
on a time-scale that may be as short as a few seconds or even less. Let us now turn to one such 
mechanism. 

17.19.10 physiCs of flares (simplifieD): maGnetiC reConneCtion in 2-D 

Magnetic reconnection is a process that leads to the conversion of magnetic energy into plasma 
kinetic energy, and (eventually) into thermal energy. According to Longcope and Forbes (2014), the 
process is not completely understood, but the process essentially involves an electric current flowing 
in a current sheet (see Figure 17.17a and b). An electric field E causes magnetic flux to transfer from 
domains that lie on top of, and below, the current sheet to domains that lie at the right- and left-hand 
tips of the current sheet. As a result of flux transfer, the field reaches a state of lower energy, with 
free magnetic energy being released. Information about the electric field involved in reconnection 
can be derived from observations of the motions of chromospheric features known as flare ribbons 
(Section 17.19.1) as these features move across the surface of the Sun and intersect more and more 
magnetic flux in the chromosphere (Tschernitz et al. 2018). 

Ten lines of observational evidence have been listed by Aschwanden (2020) in support of the 
hypothesis that magnetic reconnection is the basic physical process at work in solar flares. In this 
section and the next, we summarize certain aspects of reconnection. 

According to the Sweet–Parker mechanism (named after the two researchers who first proposed 
a model, see Parker 1957), the simplest model of reconnection occurs in a two-dimensional (2-D) 
environment when two regions of magnetic field, containing field lines with opposite polarities 
approach each other in the vicinity of an X-point, where B = 0 (see Figure 17.17a). In the limit of 
MHD, where fields and plasma are “frozen” together in the distant inflow, plasma plus field flow in 
towards the X-point from two directions, and plasma plus field flow outward away from the X-point 
in two different directions. The inflow and outflow are overall perpendicular to each other. In a 
further development of the process, Petschek (1964) proposed a model that includes the presence of 
MHD shock fronts as a part of the model (see Figure 17.17b). 
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 FIGURE 17.17 Idealized schematics of magnetic reconnection in 2-D. (a) Sweet–Parker model. (b) Petschek 
model. Field lines are shown in red, with arrowheads indicating direction of the field. The field strength |B| 
goes to zero at an X-point between the upper and lower red lines. Purple area: current sheet, i.e., a region of 
enhanced plasma density surrounding the X-point. Plasma flows slowly inwards with speed vin towards the 
current sheet from top and bottom. Plasma flows rapidly outwards with speed vout away from the current sheet 
towards left and right. In (b), dotted lines indicate MHD shock fronts. (Courtesy of P. Cassak.) 

The emergent fields are weaker than the incoming fields. Since magnetic energy is proportional 
to B2, the magnetic energy in the outflow is reduced compared to the inflow. To conserve energy, 
some of the original magnetic energy is converted into another form: kinetic. 

The essential physical process at work is that an ion that is initially “frozen to” (i.e., gyrating 
around) an incoming field line (in the regions above and below the current sheet in Figure 17.17a) 
eventually finds itself swept into a region near the center of the current sheet (the neutral line) 
where B  = 0. As the ion approaches the neutral line, the gyroradius, which is proportional to 
1/B (Equation 16.4), becomes so large that it exceeds the distance between the particle and the 
sheet. In such conditions, the ion is sometimes moving in regions where it is still associated with the 
incoming field, and at other times, it finds itself moving in regions where oppositely directed fields 
exist. As a result, the ion is able to sample two distinct regimes of magnetic flux in Figure 17.17a, and 
is therefore no longer “frozen” to one particular field. In this situation, the ion essentially “breaks 
loose” from the field to which it was at first attached: the ion is now free to flow in a different direc
tion, namely, in the outflow direction (towards the right and left sides of Figure 17.17a and b). 

However, the idealized scheme in Figure 17.17, with its smooth large-scale flows of material 
inwards and outwards, can become significantly distorted in the presence of plasma instabilities 
and turbulence. Specifically, as a result of a plasma process known as a “tearing instability”, as the 
current sheet becomes thinner, it is expected to break up into multiple small “magnetic islands” (or 
“plasmoids”). These multiple islands can generate large numbers of tiny reconnection sites where 
length-scales are so small that the time-scale for the plasma to diffuse across field lines (thereby 
converting magnetic energy into kinetic energy) is reduced greatly (e.g., Cassak et al. 2017). This 
aspect of greatly reduced time-scales is important if a flare model is to be successful in replicating 
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the shortest observed time-scales on which solar flares can release energy (~0.05 sec in some cases: 
Altyntsev et al. 2019). Evidence for the presence of multiple plasmoids in a particular solar flare 
(presumably emerging from the reconnection site of the flare) has been reported in YOHKOH data 
(Nishizuka et al. 2010). 

In the context of the SOC model of flares (Section 17.19.2), the magnetic analog of individual 
grains of sand that eventually lead to an avalanche in a sandpile is the occurrence of a lot of indi
vidual “grains” (i.e., small reconnection events) leading to a multitude of small energy releases by 
means of reconnections. Perhaps each small reconnection event is due to an encounter between 
neighboring magnetic islands. 

17.19.11 physiCs of flares (more realistiC): maGnetiC reConneCtion in 3-D 

In the solar corona, reconnection models that rely on strictly 2-D processes (such as Figure 17.17) 
are of limited applicability. In order to obtain a realistic physics appreciation of what happens 
in reconnection, it is necessary to extend the discussion to 3-D. Complexities arise in 3-D that 
have no analog in the 2-D models, and we will not attempt, in this first course, to describe fully 
the processes coming into play. But it is worthwhile to introduce two fundamental aspects of 3-D 
reconnection: the “spine” and the “fan”, and how these have been identified in recent observa
tional data. 

3-D reconnection occurs in the vicinity of a magnetic “null point” where the strength of all three 
components of the field go to zero. Such a null point can occur above an active region when mul
tiple loops are emerging with varying orientation through the surface as time goes on: most of the 
null points are created when two bipoles interact with each other. For example, Cook et al. (2009) 
identified the presence of almost 3000 magnetic nulls in the solar corona over the course of two 
solar cycles: near solar maximum, their search found an average of 15–17 nulls per day, mainly at 
low latitudes (where active regions are commonest) and mainly at low altitudes (<0.25 R  above the 
photosphere). 

Priest and Titov (1996) described what is perhaps the simplest possible representation of a 3-D 
null point (see Figure 17.18): in terms of Cartesian coordinates, the z‑axis defines a “spine” along 
which a particular magnetic field line approaches the null point from one side, and an oppositely 
directed field lines approaches the null point from the other side. Bundles of field lines close to the 
z‑axis also approach the null point but, before reaching z = 0, the bundles spread out parallel to the 
xy‑plane. In the xy‑plane, a continuum of field lines emerges from (or converges on) the null point: 
these lines are said to form a “fan” in the xy-plane. In special cases, the fan consists of straight field 
lines emerging or converging; in other cases, the fan consists of curved field lines, although still 
confined to the xy‑plane. 

In the “real” solar corona, the field lines are more complicated than those in the simple model 
of Figure 17.18. However, it may still be possible to identify the “spine” and the “fan” in a particu
lar flare. As an example, we show in Figure 17.19 a model of the force-free fields that occur in the 
corona in a region where two bipoles (P1/N1 and P2/N2, P for positive, N for negative) are located 
close to each other in the photosphere (Sun et al. 2013). A magnetic 3-D null can be seen situated 
at a certain altitude above the pole N1. From the null, two spines (red lines) emerge, one “inner” 
(heading down towards N1 on the nearby solar surface), the other “outer” (leading to a remote 
brightening at N2, where that spine encounters the solar surface, sometimes as far as 200  Mm 
away from the null point [Liu et al. 2011]). Also emerging from the null point is a fan: but in this 
case (unlike the simplest case shown in Figure 17.18), the fan does not lie in a single plane. Instead, 
the field lines in the fan form a 3-D “drape” or “dome” extending from the null point down to the 
chromosphere. Any nonthermal electrons that are accelerated at the null point (or at other locations 
on the dome) are guided downwards by the “dome”, and these electrons strike the chromosphere at 
the footpoints of the “dome”, forming a (more or less) circular “ribbon” of light in the chromosphere 
(see Figure 17.19(b)). 
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FIGURE 17.18 Idealized perspective view of magnetic reconnection at a 3-D magnetic null point located 
at the origin. At the origin of the xyz coordinate system, there exists a null point, where the field strength B 
= 0. Field lines lying exactly on the z‑axis are referred to as the “spine”. Field lines lying in the xy‑plane are 
described as the “fan” (from Priest and Titov 1996). 

FIGURE 17.19 Model of coronal fields in fan-spine topology associated with an M2-class solar flare on 
November 15, 2011. (a) Two bipolar pairs exist in the photosphere. The region contains a null point above N1. 
The spines (red, one “inner”, the other “outer”) and the fan (actually a “dome” in 3-D) (yellow) are marked. (b) 
Circle on the right contains the chromospheric “footpoints” of the dome. Red region on the left is the footpoint 
of the outer spine. (c) 2-D slice through the magnetic system illustrating possible physical processes pertinent 
to the observed event. (From Sun et al. 2013; used with permission of X. Sun.) 

Clearly, a large number of complicated variants of the scenario shown in Figure 17.19 are pos
sible depending on the number of bipoles (and their field strengths and their relative locations and 
orientations) that contribute to the coronal field in any particular active region. It requires a very 
knowledgeable eye to interpret observations correctly in terms of the topology of a fan (dome) 
plus spine. For further examples of such interpretations, see (e.g.) Masson et al. (2009) and Liu 
et al. (2011). 
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17.19.12 ConseQuenCes of maGnetiC reConneCtion 

What consequences does reconnection have in the solar corona? Using typical coronal values of field 
and density, we find that the coronal VA has values that are typically several hundreds of km sec−1 

and more. Thus, the gas emerging from a reconnection site forms a high-speed jet that flows out into 
the ambient corona. 

Collisional processes ensure that the jet energy will eventually be deposited in a finite volume 
around the reconnection site, leading to local heating. How hot will the heated plasma be? If all 
of the kinetic energy can be converted into heat, then the temperature Tf of the heated plasma will 
be such that the mean thermal speed √2RgT/μ is comparable to VA. For VA = 500–1000 km sec−1 

and μ = 0.5, this corresponds to Tf ≈ 10–30 MK, consistent with temperatures deduced from X-ray 
data (Section 17.19.3). Thus, reconnection is a mechanism whereby magnetic energy is converted 
(ultimately) into the thermal energy of hot flare plasma. 

Another process that occurs at a reconnection site is particle acceleration. The motional electric 
field Ef = (1/c)u × B at the reconnection site can accelerate electrons. In conditions where Ef exceeds 
a certain limit ED (known as the Dreicer field: see Dreicer 1960), the electrons experience “run
away” to high energies, up to 100 keV or more. In a large flare, as we have seen, the fast electrons 
may actually contain total energies of 1032 ergs, a large fraction of the overall flare energy. 

Finally, reconnection results in changes in field line connectivity: magnetic field lines that were 
previously closed, i.e., that previously looped back to the Sun’s surface, can become open to inter
planetary space. This can allow a volume of plasma that was previously trapped (on closed field 
lines) to escape from the Sun. This process may occur during events known as coronal mass ejec
tions (CMEs: see Section 18.8). 

As a specific example of how magnetic energy release can explain the observations of a single 
flare, consider an X2.1-class flare that was studied in detail by Feng et al. (2013). Vector magneto-
grams were obtained by SDO/HMI for the surface of the Sun in the active region before and after the 
flare. Using these data, two types of magnetic field were computed for the corona above the active 
region: one is the potential field Bp (containing no currents), and the other is a force-free field Bff 

(containing nonzero currents) (see Section 16.4.5). The total energy Ep in Bp above the active region 
was calculated to be in the range 5–5.5 × 1032 ergs, and this energy remained essentially constant 
throughout the flare. The total energy in the force-free field, Eff, above the active region was also 
calculated. The magnetic free energy that is the maximum energy available for this active region 
to release in a flare, Emfe, is equal to Eff−Ep. Feng et al. (2013) demonstrated that Emfe underwent a 
clear decrease ∆Emfe precisely at the time when the GOES satellite detected the maximum X-ray 
flux from the flare. That is, during the flare, Emfe was found to drop from 1.1 × 1032 ergs before to 
(0.55–0.6) × 1032 ergs afterwards. The reduction in Emfe was found to be nominally ∆Emfe ≈ 6.4 × 1031 

ergs: however, because of assumptions involved in the force-free calculation, the numerical value of 
∆Emfe is subject to uncertainties, possibly by as much as a factor of three. Thus, the magnetic free 
energy available to power the flare ∆Emfe (max) may be as large as 2 × 1032 ergs. 

The essential physics question now becomes: is the energy difference ∆Emfe (or ∆Emfe (max)) suf
ficient to provide the observed release of different forms of energy in the flare? To address that issue, 
Feng et al. (2013) analyzed the energies associated with three channels of flared output: photons, 
nonthermal electrons, and coronal mass ejection. First, as regards photons, Feng et al. found that 
results from SDO/EVE indicate that at wavelengths from 1 to 370 Å, the flare radiated photons with 
a total energy of 2.2 × 1031 ergs: if other wavelengths are included, this photon energy is expected 
to increase by “a few”. Even the nominal value of ∆Emfe suffices to explain this bolometric radiated 
energy. Second, as regards nonthermal electrons, Feng et al. (2013) used RHESSI data to determine 
that the energy contained in nonthermal electrons in this flare was Ue ≈ 7.9 × 1030 ergs, with an 
uncertainty of perhaps a few: once again, the nominal value of ∆Emfe easily suffices to explain the 
energy in nonthermal electrons. (Clearly, the energy in nonthermal electrons in this flare did not 
contribute anywhere near the fraction of 50% reported by Lin and Hudson [1976] for the large flares 
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that occurred in August 1972.) Third, the flare was accompanied by a CME (see Section 18.8): the 
sum of kinetic and potential energies for the CME were estimated to be 6.5 × 1031 ergs. Combining 
the radiated energy plus the nonthermal electron energy plus the CME energy, we arrive at a total 
flare energy of about 1.3 × 1032 ergs. Comparing this energy with ∆Emfe (max) ≈ 2 × 1032 ergs, Feng 
et al. (2013) concluded that, quantitatively, the magnetic “free energy is able to power the flare and 
the CME in AR 11283”. 

We note that if we use the nominal value of ∆Emfe, the change in Emfe during the flare amounted 
to about 10% of the energy in the potential field. These magnetic energy estimates are consistent 
with independent estimates for 173 flares by Aschwanden et al. (2014), who reported that Emfe/Ep 

was found to lie in the range 1%–25%. 
In summary, in a solar flare, the Sun apparently uses magnetic reconnection to convert the avail

able magnetic free energy into various channels, including photons, accelerated particles, and bulk 
motion of material that is ejected from the Sun. Different flares divide up the magnetic free energy 
in different proportions among these channels, depending on details of the physical conditions in 
the active region where the flare occurred. 

17.19.13 Can flares be preDiCteD? 

In view of the negative effects that certain flares can have on Earth, there is widespread interest 
in identifying methods that might allow the onset time of a flare to be forecast some hours or days 
before it actually occurs. One of the favored approaches relies on applying neural networks to a 
certain data set of flares (the “learning set”) that have already occurred and identifying the “true 
positives”, “true negatives”, “false positives”, and “false negatives”. The goal is to learn if the net
work can then identify a small number of variables that are found to be more helpful in making 
reliable predictions of which active regions will produce a flare within a certain number of hours: 
statistically, some of these methods claim success rates of 70%–80% (e.g., Al-Ghraibah et al. 2015; 
Bhattacharjee et al. 2020). 
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18 The Solar Wind 

We have already seen that the solar corona, with its temperature in excess of 1 MK, is the site of 
some events related to several distinct physical processes: high levels of ionization, effective ther
mal conduction, and emission of spectral lines over a broad range of the electromagnetic spectrum. 
Now we turn to a different physical property of the corona that also depends on the fact that the 
temperature is of order 1 MK. We shall find that, given the global properties of the Sun (specifi
cally, the numerical values of its mass and radius), the gas that comprises the corona cannot (in 
certain circumstances) “stand still” but must undergo expansion. The expanding material is called 
the “solar wind”, and in its earliest stages (close to the Sun), the wind is intertwined with the corona 
and therefore is subject to guidance by the coronal magnetic fields. Eventually, as we shall see 
(Section 18.10.1), the wind at some point “breaks free” from the coronal field, and from that point 
on, the wind becomes an independent entity, heading outward for an eventual encounter with the 
interstellar medium. 

In order to describe the properties of the corona/wind, we start by considering the equation of 
hydrostatic equilibrium. In previous chapters, we have found that the concept of HSE does apply to 
certain locations in the Sun, but it does not apply in other locations in the Sun. For example, HSE 
applies in the radiative interior and in the photosphere/chromosphere, but not in the convective zone. 
Now we raise the question: does HSE apply in the corona? 

In order to answer this question, we first note that the word “hydrostatic” includes the prefix 
“hydro”, which refers to a fluid, such as the water in the Earth’s oceans or the air existing near the 
Earth’s surface. Both of these fluids are free to respond in bulk to forces arising from gas pressure, 
gravity, wind forces, and viscosity, and the responses give rise to ocean currents, winds, and waves. 
However, we have seen (Figures 17.1 and 17.2) that the sun’s corona also contains magnetic fields 
that impose different kinds of forces on the coronal material: these forces have no analog in the 
Earth’s oceans or lower atmosphere. In addressing the concept of HSE, we at first choose to exclude 
magnetic effects: this simplification allows us to predict certain global properties (density, speed) 
of the outflow of gas from the Sun, and spacecraft measurements indicate that these predictions 
are “not too bad”. Results to be derived in Sections 18.1–18.5 are based on the assumption that 
only (nonmagnetic) fluid flow is at work. Once we have dealt with those results, we shall turn in 
Sections 18.6 and 18.9–18.10 to an examination of how magnetic fields affect the properties of the 
corona. Of special interest will be to determine (in Section 18.10.1) answers to the following ques
tions: (i) How far out from the Sun do the coronal magnetic fields remain in control of the flow? 
(ii) Where does the wind eventually break free of those fields and become an independent entity? 

18.1 GLOBAL BREAKDOWN OF HYDROSTATIC EQUILIBRIUM IN THE CORONA 

In order to apply the equation of HSE,  dp/dr = −ρg, to the corona and solar wind, we need to 
allow for the fact that the acceleration due to gravity in spherical geometry is given by the for
mula g = GM /r2: clearly, g is no longer a constant at all locations in the corona. (In the photosphere, 
where we consider a one-dimensional problem with the vertical height h as the independent vari
able, it is safe to assume that g remains constant as the height varies within the limited confines of 
the photosphere: see Equation 5.2). Now, when we deal with the corona, with its spherical aspects 
including three dimensions, the value of r can have values that are significantly larger than R : in 
such a situation, we must make allowance for the fact that g decreases as we move away from the 
Sun. This decrease in g with increasing r has a dramatic effect on the solution of the HSE. 
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To see this, let us assume at first that the coronal material is a perfect gas at a constant tempera
ture: i.e., p = RgρT/μ. This simplifying assumption allows us to write the HSE as 

1 dp A
2 

(18.1) 
p dr r

where A = GM /a2, and a = √(RgT/μ) is the isothermal sound speed. Notice that, when we examine 
the dimensions of both sides in Equation 18.1, we see that the quantity A must have the dimensions 
of a length. 

The integration of Equation 18.1 is straightforward: we find that the pressure at radial location r 
varies as follows: ln(p) = (A/r) + const. To evaluate the constant of integration, we consider the con
ditions at the base of the corona, where r = ro. From our discussion in Chapter 17, we know that ro is 
essentially the radial location of the top of the chromosphere, which lies only about 2 Mm above the 
photosphere. In fact, we can set ro = R with a percentage error no larger than 0.5%. At the location 
ro, the pressure po is known to be 0.3–2 dyn cm−2 (see Section 17.10). 

Using this information, the coronal pressure as a function of radial distance can be written as 

p r( )  po exp A
 (18.2)
 

Inspection of Equation 18.2 shows that, as we move farther away from the Sun, i.e., as r  ∞, 
the pressure p(r) does not tend to zero. Instead, the pressure p(∞) approaches a nonzero asymptotic 
value of po exp(−A/ro). 

The striking aspect of this solution is that it is a very different result from the one we would get 
if we were to extend the photospheric (1-D) solution to infinity (Section 5.1). Using the photospheric 
solution p(h) = po exp(−h/H) where H is the scale height (with g=const), we see that as h  ∞, p(h) 
should go exponentially rapidly to zero. The key difference between photosphere and corona is 
the fact that in the corona, g is not a constant. Instead, g decreases as r increases: this effectively 
makes the scale height H become larger and larger as r increases, thereby leading to a reduction in 
the magnitude of the exponential decline. This aspect of the corona makes the HSE 3-D solution 
in the corona qualitatively different from the 1-D solution in the photosphere. In the outer corona, 
the most interesting aspect of the solution of HSE is that there is no longer any exponentially rapid 
decrease of pressure toward zero. 

In order to evaluate the asymptotic pressure p(∞), we need to know the value of the constant A. 
To evaluate A, we need to choose a value for μ: what value should we use? In the corona, hydrogen 
and helium are completely ionized, just as they are in the deep interior; this suggests that we could 
use the value μ = 0.58 that we used in the hot interior of the Sun (Section 7.8). Inserting T = 1 MK 
and μ = 0.58, we find a2 = 1.43×1014 cm2 sec−2. Combining this with the value of GM  (Equation 1.9), 
we find A ≈ 9 × 1011 cm, i.e., A ≈ 13R . For a coronal temperature T = 2 MK, we find A ≈ 6.5R . 

As a result, if the entire corona were to be in HSE, the pressure of the coronal gas at infinity 
would be smaller than po by a factor e−13 ≈ 2 × 10−6. Inserting po = 0.3–2 dyn cm−2 this would lead 
to p(∞) = (1–4) × 10−6 dyn cm−2. 

The relevant physics question at this point is the following: what are we to compare this value 
of p(∞) to? The answer is: the Sun does not exist in a vacuum, but is surrounded by the “interstellar 
medium” (ISM), which exists in the space between the stars. The ISM contains gas, dust, mag
netic fields, and energetic particles (“cosmic rays”). The ISM near the Sun contains hydrogen with 
number densities na ≈ 0.14 cm−3, electrons with ne ≈ 0.07 cm−3, and temperatures T of order 104 K 
(e.g., Gayley et al. 1997). The gas pressure in the ISM, p(ISM) ≈ (na + ne)kT, is therefore roughly ≈ 
3 × 10−13 dyn cm−2. The mass of dust contributes only about 1% of the mass of gas and contributes 
negligibly to the pressure. The ISM magnetic fields were estimated in 1997 to have strengths in the 
range 1.6–3 × 10−6 G (Gayley et al. 1997): such fields would contribute pressures B2/8π of order 
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0.1–0.4 × 10−12 dyn cm−2. (More recent direct measurements of the ISM field indicate B = 4.8 × 10−6 

G [Burlaga and Ness 2016], with a pressure of ≈ 10−12 dyn cm−2.) And the cosmic rays contribute 
pressures of ≈ 10−12 dyn cm−2 (Ip and Axford 1985). The combined effects of all of the above ISM 
constituents suggest p(ISM) ≈ 1.4–1.7 × 10−12 dyn cm−2, or possibly as large as 2 × 10−12 dyn cm−2. 

Even if the numerical value of p(ISM) were to be uncertain by an order of magnitude or more, 
one conclusion can be drawn reliably: there exists a large excess of p(∞) over p(ISM): if the solar 
corona were to be in HSE, the value of p(∞) would exceed p(ISM) by several orders of magnitude. 
As a result, it is physically impossible for the ISM to contain the pressure of the solar corona if the 
latter is in HSE. The conclusion is inevitable: the solar corona cannot be in HSE. This important 
conclusion was announced by Eugene N. Parker (1958). 

If the corona does not have the property of being (hydro)static, what other option is available? 
The answer is: the corona must be dynamic. This means that the coronal material must undergo 
expansion of a fluid nature, i.e., the material of the corona as a whole must participate in the expan
sion by flowing outwards. This hydrodynamic process causes material to move from high pressure 
(at the base of the corona) to low pressure (in the ISM). It is important to note that this expansion of 
the solar corona has nothing to do with the physical process known as “evaporation”: in the latter 
process, the fastest moving particles emerging from a liquid or solid have the ability to escape, but 
these are typically present as only a small fraction of all available particles, and most of the mate
rial “stays behind” and does not escape. In contrast, coronal outflow (assuming no magnetic effects) 
involves the bulk flow of coronal material as a fluid outward from the Sun. This outflow of bulk 
coronal material from high pressure to low pressure is described by the term solar wind, by analogy 
with winds on Earth, which (in the absence of Coriolis forces) cause the air to move (“blow”) from 
a region of high pressure to another region where the pressure is lower. 

18.2 LOCALIZED APPLICABILITY OF HSE 

Are there any conditions in which the entire corona of the Sun (or of any star) could be in HSE? 
In principle, yes: this could happen if p(∞) were to have a value no larger than p(ISM). If the Sun 
(or a star) could achieve that goal, then the coronal pressure could in principle be contained by the 
ISM. One way to achieve that goal would be to reduce p(∞) by reducing the coronal temperature, 
thereby increasing the numerical value of A. According to Equation 18.2, the value of p(∞) could be 
made as small as p(ISM) ≈ 10−12 dyn cm−2 if A were to have a value as large as ≈ 26–28R . Under 
what conditions would such values of A be possible? The answer is: the corona would need to have 
a temperature of T(HSE) ≈ 0.46–0.5 MK. 

Now we see how important it was for us to determine in some detail (Chapter 17) how hot the 
coronal gas actually is. As Chapter 17 demonstrates, the solar corona is definitely not as cool as 
T(HSE): in fact, there are sound physical reasons (see Section 17.14.3) for the quiet solar corona to 
have T = 1–2 MK. (The active corona is even hotter.) Given the actual values of the physical con
stants that enter into the electron thermal conductivity and the radiative losses, we simply are not 
free to make the coronal temperature as low as 0.46–0.5 MK. Therefore, HSE is not applicable to 
the entire corona: given the observed properties of the Sun (M , R ) and the empirical coronal tem
peratures, we are led to the same conclusion as Parker (1958) announced: hydrodynamic expansion 
is an intrinsic global property of the solar corona. 

Although HSE is certainly not applicable in a global sense to the solar corona, this should not be 
construed to mean that HSE is absolutely excluded in each and every locality of the corona. On the 
contrary, in certain regions, circumstances may allow HSE to be applied locally. 

Two examples can be considered. First, in a closed magnetic loop (Section  17.12), magnetic 
forces prevent ionized gas from escaping across the field lines into the wind: hydrodynamic outflow 
is not allowed to occur. Within the confines of such a loop, HSE may be a good approximation to 
the profile of density as a function of height. 
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Second, it can be shown from fluid dynamics that, in the limit where outflow speeds are much 
less than a (the speed of sound), the hydrodynamic solution approaches the hydrostatic solution. We 
shall see (Section 18.3) that the flow speed of the solar wind does (eventually) indeed become as 
large as a (and larger), but this happens only at radial distances that are several R from the Sun. In 
view of this, there does exist a finite range of radial distances, within a few solar radii of the solar 
surface, where the wind speed is actually much less than a. Within this region, HSE can be used as 
a reasonable approximation for the density. We shall take advantage of this result in Section 18.7. 

18.3 SOLAR WIND EXPANSION: PARKER’S MODEL OF A “THERMAL WIND” 

The breakdown of HSE in the corona means that dp/dr cannot be equal to −ρg. The imbalance of forces 
between the pressure gradient and gravity causes the coronal gas to accelerate. E. N. Parker (1958) was 
the first to report on the quantitative consequences of this force imbalance: since the wind owes its exis
tence mainly to the high temperature in the solar corona (i.e., the actual coronal temperature exceeds 
T(HSE) = 0.46–0.5 MK: see Section 18.2), the Parker solution is referred to as a “thermal wind”. 

The conservation of momentum, when applied to unit volume of the corona (in which the mass 
equals ρ, the local density), leads (see Equation 7.1, replacing z with r) to the equation 

dV dp
  g (18.3) 
dt dr 

The total time-derivative d/dt in Equation 18.3 can be written as the sum of two terms: ∂/∂t + V∂/∂r. 
In a steady-state situation, where the flow does not depend explicitly on time, only the radial gradi
ent term is present. In a situation where only radial gradients are important, we can write ∂/∂r as the 
ordinary derivative d/dr. Then inserting g = GM /r2, Equation 18.3 becomes 

dV GM  1 dp
V  

2 
 (18.4) 

dr r  dr 

It is worthwhile to consider the simplest case, in which the corona is assumed to be isothermal, 
i.e., T = const at all radial locations. (We will examine in Section 18.4 whether there are physi
cal reasons why this assumption might be “not too bad”.) With this assumption, we are in effect 
greatly simplifying the equation for the conservation of energy. In an isothermal corona, the pres
sure and density are related at all locations by the formula p(r) = a2ρ(r). This allows us to rewrite 
Equation 18.4 as follows: 

GM 2dV  a d
V   (18.5) 
dr r2  dr 

Turning now to conservation of mass, we note that, at a radial distance r, the rate of mass outflow 
from the Sun in a spherically symmetric wind is given by dM/dt = 4πr2ρ(r)V(r). Once the solar wind 
leaves the corona and flows out into interplanetary space, no further significant mass can be added 
to the outflow. Therefore, dM/dt is independent of r, i.e., r2ρ(r)V(r) = const. Thus the radial derivative 
of r2ρ(r)V(r) is zero. Taking logarithms, this means that 

1 d  1 dV 2
  0 (18.6) 

 dr V dr r 

Using Equation 18.6, we can replace the final term in Equation 18.5. Then collecting terms in the 
radial gradient dV/dr, we obtain an equation for dV/dr: 

 a2  dV 2a2 GM
V   

2 
(18.7) 

V  dr r r 
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The structure of this equation indicates that dV/dr can be written as the ratio of two terms, N(r)/D(r). 
The numerator N(r) is the radial function on the right-hand side of Equation 18.7, while the denomi
nator D(r) is the radial function V(r) – a2/V(r). 

At a certain radial location, the function D(r) passes through the value zero. This occurs when 
the wind speed V(r) becomes equal to the sound speed, a ≈ 120√T6 km sec−1 (where T6 is the tem
perature in MK). In coronae with T6 = 1 and 2, the sound speeds are a ≈ 120 and a ≈ 170 km sec−1, 
respectively. The radial position where the outflow speed has the particular value V(r) = a is criti
cally important in the wind outflow: this position is referred to as the “sonic point”. In order to pre
vent dV/dr from becoming infinitely large at the sonic point, N(r) must also pass through the value 
zero at the sonic point. 

Setting N(r) = 0 at radial location r = rs, we find that the sonic point lies at the radial location 

rs  
GM 

2 
 (18.8) 

2a 

Inserting the numerical value GM = 1.327124×1026 cm3 sec−2 (Equation 1.9), we find that in a 
corona with T = 1 MK (i.e., a2 = 1.44 × 1014 cm2 sec−2), the value of rs is 4.6 × 1011 cm. In a corona 
with T = 2 MK, rs ≈ 2.3 × 1011 cm. Compared with the solar radius, we see that the sonic point lies 
at radial locations of rs ≈ 6.6R  and 3.3R  for coronas with T = 1 and 2 MK, respectively. 

Thus, in response to the breakdown of HSE, the material in an isothermal corona is acceler
ated outward, increasing from essentially zero velocity at the base of the corona to a velocity as 
large as the sound speed at radial locations of a few solar radii. If T = 1 MK, the wind reaches 
a velocity of ≈ 120 km sec−1 at r ≈ 6.6R . If T = 2 MK, the wind reaches a velocity of ≈ 170 km 
sec−1 at r ≈ 3.3R . The wind acceleration does not stop at the sonic point: at radial locations out
side the sonic point, the thermal wind continues to accelerate to even higher speeds. However, 
outside the sonic point, the acceleration is not as strong as close to the Sun: the wind speed at 
large radial distances increases only slowly as the radial distance increases (see Section 18.5 for 
further details). 

Now that we have an estimate of the location of the sonic point at r ≈ rs ≈ 6.6R , it is worthwhile 
to recall briefly the results of Dolei et al. (2015) (see Chapter 17) who found that, inside one particu
lar helmet streamer (where magnetic field lines remain closed), there was no evidence for outflow 
out to r ≈ 3.5R . In contrast, when they observed outside the streamer (where field lines are open), 
the solar wind was found to be expanding freely. Remarkably, in a helmet streamer model, Pneuman 
(1968) showed that the last closed field line inside the helmet should extend no farther out than r = 
0.5rs. Substituting 6.6R  for rs, Pneuman’s result indicates that at r ≤ 3.3R , the field lines inside the 
helmet are closed, thereby preventing the wind from expanding. 

The larger the coronal temperature, the faster is the acceleration of the thermal wind. To quantify 
this, we note that if an increase in velocity by ∆V = 120 (or 170) km sec−1 were to occur with constant 
acceleration over a spatial interval of Δx = 4.6 (or 2.3) ×1011 cm, the corresponding acceleration (≈ 
(∆V)2/(2∆x)) would be roughly 160 (or 630) cm sec−2. Thus, the inner solar wind experiences an 
outward acceleration that, as regards the magnitude, coincidentally is not far from the (downward) 
acceleration (981 cm sec−2) experienced by objects near the Earth’s surface. 

The concept of a sonic “point” in the Parker wind is highly idealized: it arises because several 
simplifications have been made along the way, not the least of which is the 1-D assumption of spher
ical symmetry. In the “real world” of the solar wind, with its highly turbulent 3-D motions, there 
will certainly be regions of the wind where the radial outflow is supersonic, and other regions where 
the radial outflow will be subsonic. But the transonic transition is likely to occur at different radial 
locations above different points on the solar surface. As a result, the sonic “point” of Parker’s model 
will be a sonic “surface” in the real solar wind, and the surface will have a more or less complicated 
3-D shape, depending on how hot the gas is at any location. Outside the sonic surface, sound waves 
cannot propagate towards the Sun: only outward waves are present. But inside the sonic surface, 
sound waves can propagate both inward and outward. 
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18.4 CONSERVATION OF ENERGY 

So far, we have obtained information about the solar wind by explicitly referring to only two 
conservation laws: one for momentum and one for mass. But there is also a law of conservation 
of energy. How does that contribute to the thermal wind solution? In fact, our assumption T = 
const involves a particular solution of the energy equation. The difficulty is that we have not 
specified, in physical terms, how a constant temperature of 1–2 MK might be maintained out 
to distances of (3.3–6.6)R and beyond. How can the coronal gas remain hot all the way out to 
these distances? 

In order to determine how, in physical terms, the temperature actually varies as a function of 
radial distance, we need to solve the equation of energy conservation. In order to do that, we would 
have to include processes that deposit energy in the gas, remove energy from the gas, or distribute 
energy through the gas. 

It is worthwhile to consider one particular physical process that is (as we have already seen, see 
Section 17.15.1) relevant in the corona: thermal conduction. In spherical geometry, the equation of 
heat conduction in steady state is described by 

d 2 dT
r k   0 (18.9)
 thdr dr 

We have already seen (Chapter 17, Section 17.14.1) that in coronal plasma, the thermal conductiv
ity kth = koT2.5. Inserting this in Equation 18.9, we find, after a first integration, that 

. dT const 
T 2 5   

2 
(18.10) 

dr r 

The solution of this equation is T(r) ~ r−2/7. This is a rather slow function of radial distance. For 
example, if T = 2 MK at r = R , then at the sonic point distance (3.3R ), a thermally conducting wind 
would have T ≈ 1.4 MK. Thus, contrary to our earlier assumption of constant T, the temperature 
would not in fact have remained strictly constant all the way out to the sonic point. On the other 
hand, it can be admitted that the value T = 1.4 MK is not “drastically” cooler than T = 2 MK: in 
fact, according to one perspective, a gas with T = 1.4 MK might be regarded as being “almost” as 
hot as a gas with T = 2 MK. Electrons are (as it turns out) very effective at distributing heat through 
the gas, thereby helping to keep the temperature from falling off too rapidly. From this perspective, 
a model of the corona that assumes constant temperature (at least out to a few solar radii) is not 
totally unrealistic. 

Another (theoretical) approach to including energy conservation is to assume that the solar 
wind material has the property that the pressure at any radial location is related to the density 
at that location by a simple relation, p(r) ~ ρ(ρ)(n+1)/n. This is nothing less than the “polytrope 
law” (see Equation  10.1) that we found helpful in describing certain properties of the solar 
interior. It turns out that a rich variety of solar wind solutions can be derived by considering 
various values of the polytropic index n. The isothermal case corresponds to n = ∞. The adia
batic case corresponds to n = 3/2. In the latter case, p ~ ρ5/3, which for a perfect gas (p ~ ρT) 
corresponds to T ~ ρ2/3. Once the solar wind speed approaches a nearly constant value (see next 
section), Equation 18.6 implies that ρ ~ r−2. In an adiabatic wind, this leads to rapidly declin
ing T as r increases: T ~ r−4/3. 

There are other possibilities for keeping the corona hot. These include the deposition of energy from 
wave modes of various kinds (Alfven waves, shocks). Moreover, we shall see (Section 18.9) that the 
solar wind flow is highly turbulent: dissipation of magnetic fluctuations in the turbulence can add ther
mal energy to the solar wind, thereby helping to keep the local gas hotter than the T ~ r−4/3prediction in 
an adiabatic wind (e.g., Smith et al. 2001). 
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18.5 ASYMPTOTIC SPEED OF THE SOLAR WIND: THE MAGNETIC SPIRAL 

We have seen that according to Equation 18.7, the wind is already expanding away from the Sun at 
speeds of 120 (or 170) km sec−1 at radial locations of 6.6 (or 3.3) R for a coronal temperature of 1 (or 
2) MK. Let us now consider how the speed behaves as we examine the flow at very large distances 
from the Sun. 

In N(r) (see Equation 18.7), the term in 1/r dominates over the term in 1/r2 as r ∞. That is, 
N(r)  2a2/r. Moreover, at large  r, the wind is supersonic, i.e.,  V exceeds a. As a result, the 
dominant term in D(r) as r  ∞ is V. Therefore, at large r, we can approximate Equation 18.7 by 
dV/dr = N(r)/D(r)   2a2/rV. In an isothermal wind, this approximate equation can be integrated to 
give the solution 

1 2 2V  2 r . (18.11) a ln( )   const 
2 

The constant of integration can be evaluated by noting that V = a at r = rs. This leads to 

2




V
 

a 



r 
4 ln




1 (18.12)
 

r s
This approximate solution indicates that, at large distances (i.e., r>>rs), the solar wind speed 

asymptotically approaches the functional form  V(r)  2a√(ln(r/rs)). A  logarithmic variation is 
already a slow function of distance, and so the square root of a logarithmic variation is a very slow 
function of radial distance. For example, if T = 1 MK, by the time the solar wind reaches Earth 
orbit, i.e., r = 215.04 R (Section 1.5), the ratio r/rs has the value ≈33. According to Equation 18.12, 
this approximation gives V(1 AU)≈ 3.9a ≈ 470 km sec−1. A more accurate solution of Equation 18.7, 
retaining all terms, indicates that, for a T = 1 MK corona, V(1 AU) = 427 km sec−1, while for a T = 
2 MK corona, V(1 AU) = 674 km sec−1 (Mann et al. 1999). 

An important property of the radial profile of the density of the solar wind can be identified in 
the asymptotic limit at great distances: the wind speed in those regions of the wind V(r) varies so 
slowly with increasing r that one can adopt (without significant error) the limit that V(r) = constant. 
In this limit, Equation 18.6 indicates that the density of the wind should decrease as 1/r2 at large r. 
As a result, with a wind density order 10 cm−3 at 1 AU (see Figure 18.1), the density is predicted to 
fall to a value of order 0.001 cm−3 at distances of order 100 AU: we shall return to a consideration of 
physical processes which occur near 100 AU in Section 18.10. 

Turning briefly to energy considerations, we note that if thermal conduction (mainly by elec
trons) dominates the energy equation in the solar wind, then compared to the coronal tempera
ture at r = R , T at 1 AU would be reduced by factors of 2152/7 = 4.6. Thus, with T = 1–2 MK 
at r = R , T at 1 AU should be 2–4 × 105 K. On the other hand, if the solar wind were described by 
an adiabatic polytrope (n = 3/2), with T(r) ~ r−4/3 (see Section 18.5), the ion temperatures at r = 1 AU 
would be very low, of order 103 K. 

Finally, we note that the material of the solar wind (originating as it does in the corona where 
the temperature is at least 106 K) is highly ionized and therefore has a large electrical conductiv
ity. As a result, magnetic field and solar wind are “frozen” together, and the expanding wind drags 
the magnetic field from the solar surface outward into interplanetary space. Parker (1958) showed 
that, in the presence of the rotation of the surface of the Sun (see Section 1.11), the radial outflow 
of the wind will drag the field out in the form of a spiral. By the time the wind reaches the Earth’s 
orbit, the field lines in the spiral are not radial but instead depart from radial by an angle of about 
45 degrees. As the distance from the Sun increases, Parker (1958) showed that the departure angle 
grows increasingly large, until in the outermost reaches of the solar system, the field lines depart 
from the radial direction by a maximum allowed value close to 90 degrees. 
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18.6 MAGNETIC FIELD EFFECTS: “HIGH-SPEED” WIND AND “SLOW” WIND 

Up to this point, we have been considering that the coronal material is a fluid that is not subject to 
any magnetic effects: in such a situation, there would be little reason for the wind to be anything 
other than spherically symmetric. However, as we have seen (Chapter 17), magnetic fields are defi
nitely observed in multiple regions of the solar surface. It is now time to turn to a discussion of some 
of the effects that these fields have on the solar wind. 

Despite the large amount of variability observed in the solar wind properties (speed, density, 
temperature, magnetic field) in the vicinity of Earth orbit, two major categories of solar wind have 
been identified (Zirker 1981): “slow wind”, with mean speeds (near Earth) of 330 km sec−1, and 
“high-speed streams (HSS)” (or “fast wind”), with mean speeds of 700 km sec−1. The two types of 
wind differ from each other in more than simply the speed: in fast wind, the proton number density 
flux is smaller, the electron temperature is smaller, the helium/hydrogen ratio is larger, and the drift 
speed between helium and hydrogen is larger (Stansby et al. 2020). These differences suggest that 
different physical mechanisms may be at work in driving the fast wind and the slow wind. 

Defining an HSS as one in which the wind speed at first increases by >100 km s−1 relative to the 
preceding wind, and subsequently (after 1–2 days) decreases by > 100 km s−1, the years 1996–2008 
(i.e., all of cycle 23) were found (Xystouris et al. 2014) to have a total of 710 HSS, with an average 
rate of 2.5 HSS per month in 1996 and 6.5 per month in 2003. The speeds of the HSS ranged from 
400 km s−1 to 1199 km s−1. The dominant (61%) source of HSS was a coronal hole, while flares also 
contributed significantly (36%), especially at solar maximum. During a part of cycle 24, i.e., in the 
years 2009–2016, a total of 303 HSS were reported (Gerontidou et al. 2018). The maximum rate 
(almost four per month) occurred in 2015, and the maximum speeds were found to be 800–899 km 
s−1. In this cycle, coronal mass ejections (CME’s) were the dominant (63%) source of HSS, while 
coronal holes contributed 37%. 

At 1 AU, in the plane of the Earth’s orbit, despite the presence of two major components at low 
and high speeds, it is possible to define an “average” set of plasma characteristics for solar wind 
flows (e.g., Zirker 1981). The mean values of velocity, density, and ion temperature in the “aver
age” solar wind at 1 AU are found to be 470± 120 km sec−1, 8.7±6.6 cm−3, and 1.2 ±0.9 ×105 K. In 
view of these “average” properties, Parker’s thermal wind model does a good job at predicting at 
least the average speed of the wind near the Earth. And the proton temperatures in the wind as it 
flows near Earth’s orbit are not all that far from the predicted values due to thermal conduction (see 
Section 18.4). 

Where does the fast wind originate? It has been found to emerge preferentially from large 
coronal holes with widths of >60 heliographic degrees (Krieger et al. 1973). Coronal holes can 
be most readily detected at the polar caps of the Sun during solar minimum. As we have seen 
(e.g., Figure 17.1), the magnetic fields that exist in the coronal holes near the north and south poles 
of the Sun appear to be similar to the patterns that are revealed by iron filings when they are scat
tered on a sheet of paper sitting above a bar magnet. Since flows of ionized gas are permitted to 
occur freely along magnetic field lines (see discussion following Equation 16.2), the field lines at 
N and S poles of the Sun provide open channels for ionized gas to flow freely away from the Sun. 
With no obstacles to slow down the flow, the wind emerging from coronal holes is free to respond 
to whatever forces are present: the result is a wind with higher speeds than the wind that emerges 
from most other regions of the Sun. What forces are acting on material in a coronal hole? Parker’s 
idea of the pressure gradient due to locally hot coronal gas is still operative, helping to drive a 
thermal wind. However, the fact that large-scale open magnetic fields are clearly present in coronal 
holes suggests that magnetic (Lorentz) forces may also contribute to the wind (Weber and Davis 
1967). In the presence of Lorentz forces, a new critical point appears in the outflow, namely, the 
radial location rA where the wind speed V grows large enough to be equal not to the local sound 
speed (which occurs at the radial location rs, see eq. 18.8) but instead, V is equal to the local Alfven 
speed VA. The location where V = VA is referred to in a spherically symmetric wind as the Alfvenic 
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point: with typical values of the parameters in the solar wind, rA has values that may range from as 
little as 10–20 R  to perhaps as large as 50 R . By analogy with the sonic point (see Section 18.3), 
in the “real solar wind” the idealized Alfvenic “point” will be replaced by an Alfvenic surface 
with a more or less complicated 3-D shape. (For example, VA may be as large as 1000 km s−1 out to 
r ≈ 10R  at low latitudes, but VA may be as small as 250 km s−1 out to r ≈ 3–4R  at high latitudes: 
see Susino et al. 2015.) Outside the Alfvenic surface, Alfven waves cannot propagate towards the 
Sun: only outward waves are present. But inside the Alfvenic surface, Alfven waves can propagate 
both inward and outward. 

Since coronal holes are always present to some extent at north and south solar poles, the wind 
flowing out from high latitudes on the Sun is always “high speed”. This was confirmed by the 
Ulysses spacecraft, which traversed the solar wind emerging from both solar poles (e.g., Phillips 
et al. 1995). But there are also times when high-speed streams are observed in the plane of the 
Earth’s orbit: these may arise from coronal holes that can sometimes (especially near solar mini
mum) form at low latitudes. No matter where a coronal hole is formed, the presence of open field 
lines permits unimpeded escape of the solar wind. This is a primary example of how the Sun’s 
magnetic field imposes its effects on the solar wind. 

Where does the slow solar wind (SSW) originate? Following the launch of the Hinode space
craft, data have suggested that a significant portion (up to 25%) of the SSW emerges from the 
edges of active regions (Abbo et al. 2016). In such active regions (ARs), the upflowing plasma was 
observed to have speeds of up to 100 km sec−1, temperatures of order 1.3 MK, and densities of order 
7 × 108 cm−3, and there are rapid changes on time-scales of 5 minutes: apparently the upflow process 
is very dynamic. ARs are typically sites of closed loops of magnetic field: therefore, if wind is truly 
escaping from an AR, there must be some physical process that allows closed AR field lines to make 
(re)connections with open fields in the surrounding regions of the Sun. Abbo et al. (2016) describe 
several processes that could make such connections. 

Although the speed of the solar wind shows large (factors 2–3) variations between slow wind and 
fast wind, the total flux of energy in the wind is observed to remain surprisingly constant. The total 
flux, i.e., the sum of KE and PE, has been evaluated in three distinct data sets: Helios (inner solar 
wind at ~0.3 AU), Ulysses (out-of-ecliptic solar wind), and Wind (in-ecliptic wind at 1 AU) (Le 
Chat et al. 2012). Normalizing the fluxes to a common radial distance of 1 AU, the three spacecraft 
obtained fluxes (in units of mW m−2) of 1.4±0.2 (Helios), 1.5±0.4 (Ulysses), and 1.4 ±0.3 (Wind). 
These three measurements, obtained over a time span of 24 years, overlap with one another. Le 
Chat et al. (2012) conclude, “the fast and slow solar winds have the same mean energy flux, either 
in solar-activity maximum (in 2001) or minimum (in 1996 or 2008)”. Thus, the solar wind “energy 
flux appears as a global solar constant”. In years past, solar observers used to refer to a “solar con
stant” in the context of the radiative output of the Sun. Once radiometers became precise enough to 
determine that the total solar irradiance actually varied during the 11-year cycle (see Section 1.4), 
the term “solar constant” fell out of favor, at least in the context of the radiative power. But now, 
the term appears once more in a very different context: the solar wind. Compared to the radiative 
output power of the Sun (1.36 × kW m−2 at a radial distance of 1 AU), the solar wind output power 
is found to be smaller by a factor of about 106. This factor is presumably related to the effectiveness 
with which the Sun (with its huge radiative power) generates mechanical power to heat the corona, 
thereby driving off the solar wind. 

The amount of coronal heating can also be estimated from the amount of radiation emitted by 
coronal lines in the EUV: over a time interval of 4–5 decades, when measurements of these spec
tral regions have become available, the solar EUV power output is typically of order 0.1–1 mW 
m−2, with only very rare excursions to almost 10 mW m−2 (Woods et al. 2012). Although the solar 
radiative output in the EUV can change temporarily by extreme factors of up to 100–1000 during 
a solar cycle, the typical power output is no more than 1 mW m−2. This typical EUV power output, 
of order 10−6 times the total solar power output, agrees well with the energy fluxes measured in the 
solar wind. 
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It is a major goal of modern solar research to identify precisely the physical process(es) that 
lead to an effectiveness of no more than 10−6 for mechanical energy generation (presumably due 
to [magneto]hydrodynamic processes) compared to radiative energy generation (due to nuclear and 
electromagnetic interactions). 

18.7 OBSERVATIONS OF SOLAR WIND PROPERTIES 

The simplest model of an isothermal solar wind predicts that wind speeds of several hundred km 
sec−1 and temperatures of up to a few times 105 K should occur at radial locations that lie near 
Earth’s orbit. In Parker’s original paper (1958), there is a warning to the reader not to take “too liter
ally any of the smooth idealized models which we have constructed in this paper” because instabili
ties of various kinds are likely to occur in the wind. Nevertheless, it is worthwhile to examine if the 
observations reveal any overlap with the simplest thermal wind model predictions. 

18.7.1 In SITu measurements: ≈ 1 au anD beyonD 

Thermal wind predictions have been tested by many spacecraft since the 1960s and found to be 
not too bad on average. (For an informative overview of the early experiments to measure solar 
wind properties, and the scientists involved, see Hufbauer 1991.) However, the data also indicate 
that (as Parker mentioned) the solar wind has highly variable properties. Examples of solar wind 
velocity, density, and proton temperature close to the Earth’s orbit are shown for a 27-day interval in 
Figure 18.1. (The data were obtained by the ACE satellite, which is in an orbit that keeps it always 
at a distance of about 1.5 million km closer to the Sun than the Earth’s orbit.) During the interval of 
the measurements (in the year 2008), the Sun was at a low level of activity. As can be seen, the speed 
of the solar wind at 1 AU varies from roughly 300 to roughly 800 km sec−1: this range contains the 
predicted thermal wind speeds at 1 AU from a T = 1–2 MK corona. It is remarkable that such a 
simple “thermal wind” model does in fact predict wind speeds that actually are observed to occur 
in the vicinity of 1 AU. The proton temperature ranges from a few times 104 K to a few times 105 K. 
And the number density of protons in the solar wind near 1 AU is for most of time less than 10 cm−3, 
although there are occasional “spikes” where the number density can rise to values of order 50 cm−3. 

The properties of the solar wind can be measured in situ by spacecraft not merely in the vicinity 
of the Earth’s orbit, but also at radial distances that greatly exceed 1 AU. In terms of the maximum 
distance at which the wind properties have been transmitted back to Earth, at the time of writing 
(October 2021), the farthest distance from which any spacecraft has reported data is 154.4 AU away 
from the Sun (Voyager 1).This distance increases at a rate of 3.6 AU/year, so that Voyager 1 will be 
200 AU from the Sun by the year 2034. (However, by then, radio transmissions from Voyager 1 will 
probably be too weak to be detectable on Earth: the satellite’s power supply is a radioactive isotope 
that has been constantly decaying since Voyager was launched in 1977. Nominally, transmissions 
after the year 2025 may no longer be strong enough to be reliably detected at Earth.) Measurements 
that have been made with Voyager 2 (where instruments can still measure plasma speeds) indicate 
that, outside the Earth’s orbit, the solar wind does not change much as the radial distance increases 
from 1 to 50 AU (see Figure 18.2). Applying Equation 18.12, we note that at 1 AU, r/rs ≈ 33, while 
at 50 AU, r/rs ≈ 1650. Therefore, V(50 AU) is predicted to be larger than V(1 AU) by a factor of √(ln 
50) ≈ 2, if the temperature were to remain constant all the way from 1 AU to 50 AU. Measurements, 
however, show that the temperature is lower at 50 AU than at 1 AU: therefore a predicted increase 
in V by a factor of two between 1 and 50 AU is certainly an upper limit on the speed of a thermal 
wind. Inspection of Figure 18.2 shows that the average radial velocity of the wind at 1 AU is of order 
350 km sec−1, while at 50 AU, the average speed is of order 500 km sec−1, an increase by a factor of 
1.4: this is consistent with the upper limit of two mentioned earlier. Note also that during the course 
of the 19 years between the time Voyager 2 was launched until it reached 50 AU, the Sun itself had 
undergone almost two complete solar cycles: during those cycles, the boundary conditions of the 
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FIGURE 18.1 Solar wind properties (density, speed, temperature) for a 27-day interval early in the year 2008. 
DOY=day of year. These (and other) data are publicly available for any time interval between 1998 and 2008 
from the ACE spacecraft data archive at www.srl.caltech.edu/ACE/ASC/level2/lvl2DATA_SWEPAM.html. 

solar wind in the corona would have undergone significant alterations, and those could also have 
caused some of the variations in speed in Figure 18.2. But the overall conclusion from Figure 18.2 
is that the measured solar wind speed increases only slowly with increasing radial distance. This is 
consistent with the √(ln r) dependence predicted by Parker. 

Do the properties of the solar wind vary during the solar cycle? Annual averages of solar wind in 
the ecliptic plane have been plotted by Sokol et al. (2013): although there are minima in the speed 
during (or near) the solar minima of 1996 and 2008, the largest maxima (in 2004 and 1994) do not 
correspond to solar maxima. If there exists a solar cycle variation in wind speed, it does not appear 
to be very pronounced. Support for this statement can be obtained by inspection of the top panel in 
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FIGURE 18.2 Solar wind speed as a function of distance from the Sun, as measured by Voyager 2 in the 
course of the first 19 years of its operation. Although there are clearly large fluctuations in the speed locally, 
the ups and downs largely cancel each other out: there is only a slow overall trend towards higher speeds at 
greater distances from the Sun (Burlaga et al. 1996; used with permission of Springer). 

Figure 18.1: there, we see the wind speed during a month interval in early 2008, a year when the Sun 
was going through a deep and prolonged minimum. The wind speed during this very “quiet” period 
can be seen to vary from as large as 800 km s−1 to as little as 300 km s−1: this range spans essentially 
the entire range of wind speeds that have ever been detected. As regards temporal variations in the 
densities and magnetic field strengths of the solar wind, Farrugia et al. (2012) used STEREO-A 
data to determine that, during the deep minimum of 2007–2009, the proton density in the wind was 
found to be significantly smaller than in the previous solar minimum: ~3–4 cm−3 in 2007–2009, 
compared to ~8 cm−3 in 1995–1996. Moreover, the mean magnetic field strength in 2007–2009 was 
in the range 2.5–4.5 nanotesla (nT), i.e., smaller than the value 5.4 ±2.5 nT in 1995–1996. 

18.7.2 In SITu measurements in the inner WinD: r < 1 au 

Let us now consider the properties of the solar wind that have been measured as we move inwards 
towards the Sun. Spacecraft have made extensive in situ measurements of wind properties since 
the early 1960s. In 1962, the Mariner II became the first spacecraft to travel from Earth to Venus, 
and it sampled the solar wind at radial distances ranging from 1 AU to 0.7 AU. In the course of 
the flight, during an interval of ~60 days, it was found, “there was always a measurable flow of 
plasma from the direction of the Sun” (Neugebauer and Conway 1962). The speed of the flow was 
generally in the range 400–700 km sec−1, agreeing “fairly well” with Parker’s predictions. Plasma 
densities were estimated to be in the range of 2.5–4.5 cm−3, while temperatures were in the range 
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(2–7) × 105 K and magnetic field strengths were of order 5 × 10−5 G. Combining plasma densi
ties and temperatures, Mariner II obtained an important result: the plasma kinetic energy density 
exceeded the magnetic energy density by factors of 10 or more. In these conditions, the plasma 
“wins out”, and the magnetic field has to go where the plasma decides (see Section 16.7.7). The 
magnetic field originates in the Sun, but the solar wind drags the field lines away from the Sun 
and out into interplanetary space. As it turns out, this action of the wind provides an essential 
assist to the solar dynamo: in order for the magnetic fields of a new cycle to emerge on the Sun’s 
surface (with reversed polarity), the fields from the “old” cycle have to be removed in some way. 
The solar wind helps to do this by dragging the field lines far out into space where they eventually 
disconnect. 

For several decades, the closest any spacecraft had approached the Sun was 0.29 AU, i.e., in as 
close as radial locations of ≈70R : this was achieved by Helios in the 1970s. 

Starting in 2018, a new era of inner solar wind studies was initiated: the Parker Solar Probe 
(PSP) was launched in order to make unprecedented in situ explorations wind at radial locations 
that lie closer to the Sun than ever before. PSP is in a highly elliptical orbit with an initial aph
elion close to Earth’s orbit and a series of perihelia that lie well inside Mercury’s orbit (Fox et al. 
2016). The orbital changes are caused by a series of seven gravity assists from the planet Venus. 
At the first three perihelia, PSP approached to a perihelion distance of 35.66 R  from the Sun. 
When the last three planned perihelia will occur (#22–24 in the year 2025), PSP will approach 
to 9.86R  (about 22 times closer than Earth’s orbit). At closest approach to the Sun, the flux of 
solar radiant energy F(PSP) will be almost 500 times larger than at Earth, leading to a nominal 
equilibrium temperature Teq ~ 1/r0.5 ≈ 4–5 times larger than at Earth’s orbit, i.e., Teq ≈ 1400 C. To 
shield the instruments from the Sun’s heat, PSP carries a special carbon-foam shield, 2.4 meters 
wide and 115 mm thick: in the shadow of this shield, the instruments on PSP remain no warmer 
than 30° C. 

The first results from PSP, dealing with data obtained during the first and second perihelion 
passages, were publicly reported in November 2019. A surprising discovery was the presence of 
hundreds of “switchbacks” (intermittent reversals) in the magnetic field (Bale et al. 2019): these 
are kinks or folds in the magnetic field, associated with increases in the wind speed. These fea
tures last as short as <1 second and as long as >1 hour, and their origin is (at the time of writing, 
October 2021) a hotly debated topic. A coronal imaging instrument on PSP reported the presence 
of small plasma structures which are ejected frequently from the Sun (Howard et al. 2019): these 
might be evidence for “magnetic islands” created by tearing-mode instability in multiple reconnec
tion sites in the solar wind (see Section 17.19.10). Moreover, Howard et al. reported on hints that the 
F-corona may be decreasing in intensity close to the Sun, perhaps due to the expectation that dust 
(which causes the F‑corona) cannot survive solar heating at the innermost radial locations where the 
dust would be heated to the point of sublimation. The subsequent publication (in February 2020) of 
a large group (52!) of papers based on the first and second perihelion passages of PSP is an indica
tion of the widespread interest in the data. In one of those papers, Moncuquet et al. (2020) reported 
electron densities of ne = 100–300 cm−3 when PSP was at perihelion. As expected, these values are 
considerably larger than typical values at 1 AU. If the densities were to scale as 1/r2 (appropriate for 
a wind with constant speed), the density at r = 36R  would exceed those at Earth orbit (r = 215R ) 
by a factor of about 36: using the results of Zirker (1981) for the “average” solar wind at 1 AU, where 
n = 8.7±6.6 cm−3, we would expect n = 310±240 cm−3 at the first perihelion of PSP. The fact that 
this prediction overlaps with the data is an indication that the solar wind speed is indeed almost 
constant between r = 36R  and Earth’s orbit. Moncuquet et al. also reported on the radial profile of 
electron temperature: they found T ~ r−0.74: this is certainly much less steep than adiabatic behavior 
would predict (T~r−1.33; see Section 18.4), indicating that heat is being deposited (somehow) into the 
electrons as they flow out from the Sun. Several of the 52 papers published in 2020 were devoted to 
theoretical modeling of heating of protons and electrons in the solar wind, especially by turbulent 
processes. 
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When PSP eventually makes its closest approach to the Sun in 2025, the probe will still lie for
mally outside the sonic surface for a spherically symmetric T = 1 MK corona. However, PSP will 
eventually be close enough to the Sun to lie inside the Alfvenic surface, where the wind speed has 
accelerated up to the local Alfven speed. In this regard, it is noteworthy that NASA released a claim 
(in December 2021) that PSP actually passed inside the Alfvenic surface for the first time during 
its eighth perihelion passage, which occurred in April 2021. (See https://svs.gsfc.nasa.gov/cgi-bin/ 
details.cgi?aid=14045&button=recent) 

Therefore, at subsequent perihelion passages, PSP should be in a good location to measure the 
solar wind properties in a physically significant region, i.e., in sub-Alfvenic wind. 

18.7.3 remote sensinG of the solar WinD 

In situ measurements are not the only method of obtaining information about solar wind speeds in 
the inner wind. For several decades, radio astronomers have been providing relevant information 
using a very different technique. These astronomers performed remote sensing on distant radio 
sources as the radio waves from those distant sources propagate through the inner solar wind. As 
the Sun moves through the sky during the year, it passes close to certain natural radio sources at 
definite times. For example, the Crab Nebula (a bright supernova remnant that radiates strongly at 
radio wavelengths via synchrotron emission) passes behind the Sun in mid-June each year. Also, 
certain spacecraft are in orbit around the Sun, and from time to time, they pass behind the Sun (as 
viewed from Earth). 

When a distant source is observed with a radio telescope, the line of sight to that source approaches 
closest to the Sun at a certain point in space. The radial distance from the Sun’s center to that point 
of closest approach along the line of sight is called the impact parameter p. Because the solar wind 
density falls off with increasing radial distance, a radio observation of that source is most heavily 
influenced by the properties of the solar wind at the particular radial location r = p. 

What do the radio data reveal? The most prominent feature is that many radio sources exhibit 
rapid fluctuations in intensity as the source comes closer and closer to the Sun. This phenomenon 
is known as  interplanetary scintillation (IPS). The reason for IPS is that the solar wind is not a 
smooth flow but a turbulent medium, which does, on average, expand outward. In the wind, turbu
lence leads to the existence of clumps of matter akin to eddies that form in fast-flowing water or in 
the jet streams in the atmosphere and ionosphere of the Earth. In any turbulent medium, the clumps 
may have a range of linear diameters. IPS is caused when a clump of more or less dense material 
(or more specifically, a region of electron density ne that differs from the mean ambient value by 
an amount ne) in the solar wind moves across the line of sight between the observer and a distant 
source. The local change in electron density causes a change in the refractive index of the clump as 
radio waves propagate through the clump: this change causes the clump to act as a lens to focus the 
radio waves as seen by an observer downstream of the clump. For clumps located preferentially at 
r = p, the distance z between Earth and clump is about 1 AU: at such a distance, the clumps that are 
most effective in causing the intensity of the radio source to “twinkle” (scintillate) when observed at 
wavelength  are those with a diameter Lc of order √( z): this is referred to as the Fresnel scale. For 
observations at frequency 327 MHz (i.e.,  ≈ 102 cm) (Sasikumar Raja et al. 2019) and inserting z ≈ 
1 AU (= 1.5 × 1013 cm), the Fresnel scale formula indicates that the most effective clump sizes are 
Lc ≈ 400 km. At a distance of 1 AU, such clumps are observed to have angular diameters of order 
0.5 arc second. Clumps of this size can act as effective lenses, thereby significantly changing the 
intensity of the radio signal recorded at Earth, provided that the background source of radio waves 
has an angular diameter that is smaller than 0.5 arcsec: sources with such sizes can be effectively 
covered entirely by the clump “lens”, thereby leading to significant changes in intensity as measured 
on Earth. (For example, one of the sources observed by Sasikumar Raja et al. 2019 has an angular 
size of ≤0.01 arcsec and can certainly be effectively “lensed” by the Fresnel clumps.). As the image 
created by an individual clump moves across a radio telescope, the intensity recorded changes with 

https://svs.gsfc.nasa.gov
https://svs.gsfc.nasa.gov
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an amplitude that is determined by the shape of the clump and by how large is the fractional fluc
tuation ne/ne in the local electron density. If two telescopes, separated on the Earth’s surface by a 
distance d, record the same clump (identified by its shape) but are separated in time by an interval t, 
then the speed of the shadow across the Earth’s surface can be determined: d/t. This is essentially 
the speed of the clumps transverse to the line of sight, and therefore gives an estimate of the speed 
of the solar wind perpendicular to the line of sight at the radial location r = p. 

An example of how the measured clump speed varies as a function of the impact parameter out 
to roughly 30 R  (≈ 0.15 AU) is shown in Figure 18.3. The data were obtained using signals from the 
Venera 15 and Venera 16 spacecraft at wavelengths of 8 cm when those spacecraft (in orbit around 
Venus) were carried by Venus’ orbital motion behind the Sun (as viewed from Earth). There is obvi
ously a lot of scatter. Why? Because the data in Figure 18.3 were obtained over a time interval of 
several days: as the Sun rotates from one day to the next, the line of sight may shift from passing 
through a helmet streamer one day, then passing through a coronal hole on the next day, and then 
passing through a region of quiet corona. Therefore, we cannot expect that the line of sight to a given 
source will continue to pass through exactly the same coronal material throughout an observing 
run that lasts several days. It would be surprising if there were not considerable scatter in the data. 
But overall, one can see that the outflow speed is systematically smaller along lines of sight that 
approach closest to the Sun and that the outflow speed increases with increasing radial distance. 
The outflow speed first reaches roughly 120 km sec−1 (i.e., the sound speed) at radial distances of 
about 10R , somewhat larger than the 6.6R that Parker’s thermal wind predicts for a (uniform) 

FIGURE 18.3 Estimates derived from interplanetary scintillations of the outflow speed of solar wind clumps 
as a function of radial distance from the Sun. The abscissa contains the impact parameter p, which is the radial 
distance from the Sun to the point where the line of sight to the Venera 15 and 16 spacecraft (in orbit around 
Venus) passes closest to the Sun. (From Yakovlev and Mullan 1996.) 
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1 MK corona. And by the time p has increased to values of 20R or so, the speed is up to 300– 
400 km sec−1. Thus, at a radial distance of about 0.1 AU from the Sun, the wind is well on its way 
to reaching a typical speed of 400–500 km sec−1 at Earth’s orbit (i.e., at 215R ) (see Section 18.5). 

The data in Figure 18.3 were obtained in 1984 when the Sun was near solar minimum. In 2011, 
a Japanese satellite Akatsuki (also in orbit around Venus) passed behind the Sun and obtained data 
on the radial profile of solar wind speed. In this case (closer to solar maximum), the sonic point of 
the wind was found to lie at a radial distance between 4 and 5 R  (Wexler et al. 2020). In the Parker 
model, this sonic point location corresponds to a coronal temperature of 1.5 MK (see Section 18.3), 
which is consistent with our conclusion (Section 17.4.1) that gas with a temperature of 1.5 MK is 
widespread throughout most of the solar corona. 

It is not only the intensity of the radio signal from a spacecraft that fluctuates when the spacecraft 
passes behind the Sun: there is also observed to be a fluctuation f in the frequency of the signal. 
(This test does not typically work for natural radio sources, which typically emit only radiation 
that is spread out over a wide range of frequencies: an exception could occur if the natural source 
happens to be a maser source.) The values of f behave in a complicated way as a function of the 
impact parameter p (Pätzold et al. 2012). On the one hand, at large p, i.e., p ≥ 10R , f is observed 
to fall off spatially in a more or less smooth manner: as p increases from 10 to 40R , f decreases 
from about 0.2 to 0.02 Hz. Moreover, at large p, the value of f at any particular radial location also 
varies temporally: f is observed to be smallest at solar minimum. On the other hand, at small p, 
i.e., p < 10R , the values of f are observed to rise steeply, reaching almost 10 Hz in the case of the 
closest impacts (2–3 R ): moreover, these large values of f in the inner solar corona do not change 
significantly with the solar cycle. These results suggest that a permanent turbulent layer (indepen
dent of the phase of the solar cycle) exists in the inner solar corona. 

Radio studies of the wind using IPS were the first to provide useful information about the 
region where the solar wind undergoes its greatest acceleration. As well as information about 
the wind speed, IPS can also provide information as to the amplitude of the density fluctuations 
in the clumps: this amplitude is correlated with an empirical “index” related to the amplitude of 
scintillations of the IPS signal. Examples of the index obtained at a frequency of 327 MHz are 
shown in Figure 18.4 (Sasikumar Raja et  al. 2019) in addition to sunspots numbers for cycles 
21–24. The data show that, during cycle 24, the scintillation index was significantly weaker than 
in cycles 23 or 22: this suggests that the clumps in the solar wind were less dense (or less abun
dant, or both) during cycle 24. This reduction in density (or abundance) is probably related to 
the reduced amount of solar activity in cycle 24, as indicated by the reduced sunspot numbers 
reported in cycle 24. It is not merely the number of sunspots that was reduced in cycle 24; the 
areas also decreased: if the amplitude of sunspot areas is defined to be 1.0 in cycle 22, Chapman 
et al. (2014) used data from San Fernando observatory to report that the amplitudes in cycles 23 
and 24 were 0.74 and 0.37. Moreover, the mean sunspot areas of individual spots in cycles 22, 23, 
and 24 were found to be 1643, 1212, and 615 MSH respectively. Furthermore, in the same three 
cycles, the mean facular areas were 59,000, 45,000, and 27,000 MSH respectively. These results 
quantify the statement that magnetic activity was definitely at a lower level in cycle 24 than in the 
two preceding cycles. Further quantitative evidence for reduced solar activity in cycle 24 is that 
the numbers of M-class and X-class flares in cycle 24 were 32% lower than in cycle 23, although 
the number of C-class flares was 16% larger in cycle 24 than in cycle 23 (Kilcik et al. 2020). It is 
possible that the weakening of the solar fields between cycles 23 and 24 may continue into cycle 
25 (Bisoi et al. 2020). 

Although the IPS data represent a global integration along the line of sight between Earth and 
a distant radio source, IPS data can be roughly interpreted in terms of physical conditions in the 
general vicinity of one particular radial location in space, i.e., at r ≈ p. On the other hand, in situ 
measurements by spacecraft refer precisely to a very particular point in space, i.e., the point where 
the spacecraft happened to be when the measurement was made. Although IPS data and in situ data 
involve very different approaches to studying the solar wind, both types of measurements provide 
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FIGURE 18.4 Blue/red dots (and left-hand scale): normalized scintillation index (NSI) caused by the solar 
wind in background radio sources as the Sun passes close to each source at certain times of the year. Blue: 
annual averages of NSI in individual sources. Red: average NSI for all sources observed in a given year. 
Observations were made at a frequency of 327 MHz. The index is a measure of the relative amplitude of 
clumps of electron density in the solar wind. Gray curve (and right-hand scale): sunspot numbers. Green line: 
decline in peak sunspot number since cycle 21. (From Sasikumar Raja et al. 2019; used with permission of 
Springer.) 

valuable information about some of the conditions of the material in the solar wind. The informa
tion provided by IPS has been used for a global survey of multiple radio sources (with angular sizes 
<0.5 arcsec) distributed all over the sky (Gotwols et al. 1978; Tappin and Howard 2010): these data 
give a “big picture” snapshot of the multiple clumps of plasma (including CMEs: see Section 18.9) 
that happen to be emerging in all directions from the Sun at any one instant. A computer code called 
“CMEchaser” allows astronomers to determine which radio sources in the sky will be occulted by 
any particular CME (Shaifullah et al. 2020). 

Nevertheless, should we really take seriously the wind speed measurements by IPS when they 
involve integrations along very long lines of sight? Perhaps surprisingly, the answer turns out to be 
“Yes”: by taking annual averages over different data sets that extend across two complete sunspot 
cycles (1990–2012), Sokol et al. (2013) have demonstrated that, for solar wind in the ecliptic plane, 
there is “very good agreement” between wind speeds derived from IPS and wind speeds measured 
by in situ spacecraft. 

18.8 RATE OF MASS OUTFLOW FROM THE SUN 

In order to determine how much mass the Sun loses per unit time, we need to know not only 
the speed but also the density of the solar wind. We already know that the speed (in an isothermal 
corona) is equal to the sound speed at the radial location r = rs. Can we also estimate the density 



 
 

   

 

 

  

       
         

       
     

 
         

     
           

     
 

   
 

 

   
   

 
     

   
   

       
 
 
 
 

 
       

   
 
 
 


 
 

 


 


 


 

 


 

 


 

374 Physics of the Sun 

at r = rs? This is more difficult, but we can do it, roughly. To do this, we note that between the sur
face of the Sun and r = rs, the flow speed has not yet reached values as large as the sound speed. In 
fact, close to the surface, the speed is much smaller than the sound speed. As a result, the hydrody
namic terms in the equation of motion are small compared to the hydrostatic terms. In other words, 
close to the surface, the corona, although in principle expanding, is flowing so slowly that the mate
rial is not far from HSE. To be sure, the closer we get to r = rs, the farther the conditions depart from 
HSE. And by the time we arrive at r = rs and beyond, HSE has broken down altogether. 

But as a rough approximation, we can use Equation 18.2 (rewritten in terms of particle number 
density n, assuming constant T) to evaluate the density at the sonic point: 

n r( )s no exp A
 (18.13)

1
 1
 

r r s o 

Inserting the empirical values no = 108–9 cm−3 (see Chapter 17, Section 17.1), we find that 
in a corona with T = 1 MK, where A = 13 and rs ≈ 6.6 (both in units of r0 = R ), the density at 
the sonic point n(rs) ≈ 2 × 103–4 cm−3. Repeating the calculation for a corona with T = 2 MK, 
we find a much larger density at the (closer) sonic point n(rs) ≈ 1 × 106–7 cm−3. Outside the 
sonic point, in the limit where the velocity is varying only slowly with distance, we expect to 
have n(r) ~ r−2. Thus, between r = rs and the Earth’s orbit (r = 215.04 R ), the density should 
decrease by a factor of (215/6.6)2 ≈1100 (for T = 1 MK) and by a factor of (215/3.3)2 ≈4200 
(for T = 2 MK). Thus, near the Earth’s orbit, we expect to find n(1 AU) ≈2–20 cm−3 (if T = 1 
MK), and n(1AU) ≈ 240–2400 cm−3 (if T = 2 MK). The empirical densities in the vicinity of 1 
AU plotted in Figure 18.1 are consistent with the estimates for an isothermal corona with T = 
1 MK, but not for T = 2 MK. 

In the context of the approximate discussion given here (i.e., HSE remains roughly valid out to 
a radial distance of rs and constant speed outside rs), we conclude that the Sun may well be able 
to maintain a coronal temperature of 1 MK out to r ≈ 6.6R , but the Sun is probably not able to 
maintain a temperature as large as 2 MK out to r ≈ 3.3R . Ultimately, the inability of the Sun to 
maintain coronal gas at 2 MK out to several R is an indication that the Sun supplies only a finite 
flux of mechanical energy to the corona. We have already seen in Chapter 17, Section 17.15.3, that 
the coronal temperature is controlled by the chromospheric pressure, which is in turn controlled by 
the amount of mechanical energy flux emerging from the Sun. 

How large would the mechanical flux have to be in order to maintain a corona at T = 1 MK and 
at T = 2 MK? We can estimate a lower limit on the necessary energy flux by considering one com
ponent only, namely, the kinetic energy (KE). The flux of KE in the wind equals the KE density 
0.5ρV2 times the flow speed V. At r = rs, this KE flux FK(rs) equals 0.5ρ(rs)a3. Transforming back 
to the base of the corona, this would correspond to an energy flux crossing the surface r = 1 solar 

2radius of F 1 r . Inserting numerical values for the case T = 1, we find FK(1) = 130–1300 F rK s K s 

ergs cm−2 sec−1. For the case T = 2 MK, the surface flux is found to be much larger, FK(1) = 0.5 × 105–6 

ergs cm−2 sec−1. Thus, the energy flux required to heat the corona to 2 MK is at least 100 times the 
flux required to heat the corona to 1 MK. Now, active regions on the Sun occupy at most 10% of 
the Sun’s area and often much less than 10% (Section 16.2): thus, the quiet Sun typically occupies 
10–100 times more surface area than the active regions. In view of this excess of quiet Sun area, 
it seems plausible to look to the quiet Sun as the source of mechanical energy to power the “typi
cal” solar wind. According to Equation 17.9, the flux of mechanical energy entering the base of the 
quiet corona is limited to a value of order F(QS) ≈ 5 × 105 ergs cm−2 sec−1. Comparing with FK(1) 
for the case T = 1 MK, we see that the quiet Sun would have no problem in supplying the demands 
of the KE flux at the base of the corona, with plenty of energy to spare for the radiated flux, plus 
the internal energy flux (~nTa), plus the conductive flux (~ T3.5). On the other hand, for the case T = 
2 MK, even though the coronal temperature has increased by a factor of only two, nevertheless, 
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the flux of KE at the base of the corona, FK(1), is 1000 times larger than for the case T = 1 MK. If 
the corona were to try to heat its corona to 2 MK, the flux of KE alone would already “soak up” 
the entire available supply F(QS): there would be nothing available for the radiated flux, for the 
increased demands on internal energy flux (increased by > 103 compared to the T = 1 MK case), 
or for the increased demands on conductive flux (increased by 10). For the case T = 2 MK, the 
numerical values suggest that the Sun simply does not generate enough mechanical energy to “go 
around”. 

Let us use the empirical data at radial distances D = 1 AU to estimate the solar mass loss rate in 
the “average” solar wind (Zirker 1981), where V(1 AU) = 470 km sec−1 and n(1 AU) ≈ 9 protons cm−3. 
Allowing for the presence of a few percent helium nuclei as well, the mean gas density at 1 AU 
is ρ(1 AU) ≈ 2 × 10−23 gm cm−3. 

Expressing 1 AU in cm (Chapter 1, Section 1.2), we find that the rate of mass outflow of a spheri
cally symmetric wind, 4πD2ρ(1 AU)V(1AU), is some 3 × 1012 gm sec−1, i.e., a few million metric tons 
per second. To be sure, the wind is not altogether spherically symmetric: the polar wind is certainly 
faster on average than the equatorial wind, while the mean density in the polar wind is smaller. 
So we do not expect the assumption of spherical symmetry to be reliable to better than a factor of 
(maybe) two. More commonly, astronomers prefer to express rates of mass loss from stars in units of 
solar masses per year: in these units, the earlier estimate of a solar mass loss rate of 3 × 1012 gm sec−1 

corresponds to 5 × 10−14 M  yr−1. 
As well as mass loss in the solar wind, the Sun is also losing mass as a result of nuclear reac

tions in the core. The solar power output L of 3.828 × 1033 ergs sec−1 (Equation 1.11) corresponds 
to a nuclear mass loss rate (dM/dt)nuc = L/c2 ≈ 4 × 1012 gm sec−1. Curiously, this is close to the mass 
loss rate in the solar wind. Is this a coincidence? It is hard to say: the mass loss rate in the wind is 
determined by coronal heating processes that we cannot yet fully identify. Perhaps when all mecha
nisms are better understood, there may be a deep-rooted reason why the Sun has the property of 
comparable mass loss rates from core and corona. 

Given the lifetime of the Sun (≈ 4.5 × 109 years, from measurements of meteorite ages), and 
assuming that the mass loss rates have remained constant over time, we find that in the course of its 
lifetime, the Sun’s mass has decreased by only a few parts in 10,000. 

18.9 CORONAL MASS EJECTIONS (CMEs) 

No matter when spacecraft observations of the solar wind are made in the vicinity of Earth’s orbit, 
they essentially always report the presence of an outflow of matter at speeds of a few hundred km 
sec−1, and with densities which lie typically in the range 1–10 cm−3. In the sense that (as Neugebauer 
and Conway [1962] stated) “there is always something there”, the solar wind can be considered to 
be (in a first approximation) a steady-state phenomenon. 

However, from time to time, a major disruption is observed to propagate out through the 
wind. These events are called “coronal mass ejections”, or “CMEs” for short. They originate 
in the solar corona. An example is illustrated in Figure 18.5, where what appears (in 2-D pro
jection) as a “bulb” of material expands and breaks open, dumping its contents into the solar 
wind. The contents propagate outward through the solar wind, maintaining identity for a finite 
distance, and eventually mix in with the ambient wind. In certain cases, CMEs survive as far 
as Earth’s orbit, where they can disturb the Earth’s geomagnetic shield, reducing the horizon
tal component of Earth’s field at the equator by a maximum of 0.025 Gauss (Vasyliunas 2011): 
these disturbances in the Earth’s field may give rise to large induced voltages in terrestrial 
power lines or may trigger the explosion of magnetically sensitive naval mines in a war zone 
(Knipp et  al. 2018). The CME image in Figure  18.5 was obtained by an instrument called 
LASCO on the SOHO spacecraft: this instrument has been operating since 1996, i.e., for more 
than 20  years, and is the primary source of much of our information about the properties 
of CMEs. 
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FIGURE 18.5 A coronal mass ejection lifts off from the Sun. Image obtained by the LASCO instrument 
on board the SOHO spacecraft. LASCO obscures the brilliant photosphere of the Sun behind the dark mask 
in the center of the image: the white circle inside the mask represents the location of the Sun’s photosphere. 
(Courtesy of the SOHO/LASCO consortium. SOHO is an international collaboration between ESA and 
NASA.) 

18.9.1 rates of Cme oCCurrenCe 

Various research groups have analyzed the records of over 20 years (1996–2018) from LASCO in 
order to determine statistics of CME properties. The 20+-year interval covers solar cycles 23 and 
24. One statistic of interest, which at first sight would appear to be an easy one to measure, is the 
following: how many CMEs were detected in the years 1996–2018? It turns out that this question is 
not so easy to answer because CMEs are complex 3-D objects and we observe them commonly only 
on a 2-D image, i.e., a projection on the plane of the sky. Various algorithms have been developed 
to measure images automatically and identify a CME according to a variety of imaging criteria: 
although these algorithms are in principle “objective”, the resulting numbers of CMEs differ sur
prisingly. Lamy et al. (2019) report that four different types of image analyses, when applied to over 
20 years of LASCO images, result in the following total numbers of CMEs: 21,452, 27,357, 52,905, 
and 39,188. 

These analyses indicate that the average rate of CMEs may be as small as (roughly) 1000 per year 
or as large as (roughly) 2500 per year. However, it is more interesting to consider how the CME rate 
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varies in the course of the solar cycle. Lamy et al. (2019) report that the monthly average of CME 
occurrences reached maximum values of 350–400 in the years 2000–2001 (at the peak of cycle 
23) and maximum values of 300–350 in 2014 (at the peak of cycle 24). Thus, when solar activity is 
at a peak, the average rate of CMEs can be as large as 10–13 per day. On the other hand, at solar 
minimum (in 1996 and 2008), the monthly CME counts fell to 10–30 per month, corresponding to 
average rates of as low as 0.3 CME per day. Thus, the daily rate of CMEs varies by a factor of order 
30–40 between solar maximum and solar minimum. 

These data indicate clearly that CMEs owe their existence to the magnetic fields present in 
greatest abundance in the Sun at solar maximum. We have already seen that the rates of flares 
in the Sun also change by large factors (~100) between solar minimum and solar maximum (see 
Section 17.19.2). The fact that both flares and CMEs owe their existence to magnetic fields raises the 
question: what is the relationship between flares and CMEs? Observations indicate that not every 
flare is accompanied by a CME (except perhaps in the very largest flares), and not every CME is 
accompanied by a flare. We shall address the flare–CME relationship in Section 18.9.7. 

18.9.2 masses of Cmes 

Is there a typical mass associated with CMEs? The data show that small CMEs occur more fre
quently than large CMEs. According to data obtained for almost 1000 CMEs during the years 
1979–1981 at the peak of cycle 21, close to solar maximum (Jackson and Howard 1993), the number 
of CMEs with mass M (gm) in the sample was found to follow the expression: 

N M   370 exp(  .  M( )  9 43 10 17 ) (18.14) 

That is, the number of CMEs decreases exponentially as the mass increases. The existence of an 
exponential term in the distribution indicates that there is in effect an upper cut-off in the mass dis
tribution: for CMEs with masses in excess of roughly 1016 gm, the number of CMEs falls off expo
nentially rapidly compared to those with masses less than 1016 gm. It appears as if the Sun (at least in 
the years 1979–1981) was capable of producing CMEs with masses up to (essentially) 1016 gm, but 
not much more than that. However, the instrument that was available to Jackson and Howard (1993) 
was not sensitive enough to allow detection of small CMEs, i.e., those with masses some 10–100 
times less massive than 1016 gm. 

More recent data (Lamy et al. 2019), using samples including 20–50 times as many CMEs as 
those reported by Jackson and Howard (1993), were obtained by instruments (e.g., SOHO/LASCO) 
that allow researchers to detect CMEs with smaller masses: these show that the most frequent 
CME masses are 1.5 × 1015 gm at both solar maxima (in cycles 23 and 24), and 2.5 × 1014 gm at 
the solar minimum between cycle 23 and cycle 24). Very few CMEs have masses of less than 1013 

gm or greater than (2–3) × 1016 gm. Inspection of CME masses plotted by Lamy et al. (2019: their 
Figure 44) suggests that the maximum CME mass in their sample is (5–6) × 1016 gm, while the 
minimum CME mass which has been identified is 1012 gm. Although the maximum CME mass is 
not inconsistent with the exponential cut-off reported by Jackson and Howard (1993), Lamy et al. 
report that the mass distribution does not exhibit exponential behavior but instead follows a power 
law: this suggests that, when a larger CME sample is examined, there is no particular mass that is 
preferred by CMEs. 

18.9.3 speeDs of Cmes 

Using the four techniques mentioned in Section 18.9.1, Lamy et al. (2019) report on the distributions 
of speeds of CMEs. In all four techniques, they find that there exists a peak value of speed v(peak) in 
the distribution, accompanied by a decrease in the number of CMEs with slower and faster speeds. 
During cycle 24, the peak CME speed found by all four methods of identifying CMEs turned out to 
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be confined within a narrow range: v(peak) = 300–400 km sec−1. On the other hand, during cycle 
23, the four different methods led to significantly different values of v(peak), ranging from ≈250 km 
sec−1 to ≈600 km sec−1. In the combined CME sample of cycles 23 and 24, the distribution of CME 
speeds is found to have a long “tail” extending up to speeds as large as 2000 km sec−1. 

Does the CME speed vary during the solar cycle? Obridko et al. (2012) found that the maximum 
CME speed in cycle 23 occurred around the solar maximum in 2002, while the CME speed was at 
a minimum during the solar minimum years of 1986, 1996, and 2008. 

In a sample of 38 CMEs that could with confidence be associated with flares, the speed of the 
CME was found (Vasantharaju et  al. 2018) to be correlated with the energy flux F(X) from the 
flare as measured by the GOES X-ray spacecraft: over a range of F(X) values (in units of W m−2) 
extending from logF(X) = −5.5 to −3, and over a range of v(CME) extending from 200 km sec−1 

to 3000 km sec−1, the correlation coefficient was found to be 0.49. The existence of such a correla
tion may be related to the electric field that drives reconnection in the corona (see Section 17.19.1): 
Hinterreiter et al. (2018) have demonstrated that the stronger the electric field is in an eruptive flare, 
the faster is the CME that is ejected. 

18.9.4 kinetiC anD potential enerGies of Cmes 

What energies are associated with CMEs? The kinetic energy is relatively easy to evaluate. With 
speeds which are typically in the range 300–1000 km sec−1, the KE of a CME with mass M is typi
cally 0.5M × 1015–16 ergs. If (as Jackson and Howard [1993] suggested for a small sample of CMEs 
in the cycle 22 maximum) there exists an upper cut-off in M = 1016 gm, then the upper limit on the 
KE of CMEs is readily estimated: 0.5 × 1031–32 ergs. 

Taking into account the results reported by Lamy et al. (2019) for a much larger sample of CMEs, 
each of which has its own value of speed and M, the distribution of KEs is found to span a range of 
four orders of magnitude. At the maximum of cycle 23, the KE of CMEs was found to have an upper 
limit of 1033 ergs; the corresponding upper limit on KE at the maximum of cycle 24 was found to 
be 5 × 1032 ergs. 

By examining the magnetic field energy in active regions where CMEs originate, Pal et al. (2018) 
found that the KE of a CME is correlated with the magnetic energy density of the active region. This 
supports the idea (Section 18.9.1) that CMEs rely on magnetic fields for their existence. 

In terms of the KE measured in a sample of 778 CME-related flares, Youssef (2012) reported a 
correlation coefficient of 0.65 between KE(CME) and F(X). This is a significantly better correlation 
than that reported between v(CME) and F(X) by Vasantharaju et al. (2018), especially in view of the 
20-times larger sample analyzed by Youssef (2012). 

As regards the total energies of CMEs, it turns out that KE is not the only component that con
tributes. There is also the potential energy (PE = GM  M(CME)/R ) required to raise a CME with 
mass M(CME) to infinity from the solar surface. Aschwanden (2016) has reported on a sample of 
399 M-class and X-class flares observed by SDO during its first 3.5 years of operation: he lists val
ues of KE and PE for events in which a CME was present. Inspection of his table of events indicates 
that PE and KE do not differ greatly in magnitude, although the PE dominates the KE of the CME 
in 75% of the cases. The total energy (PE+KE) of a CME is on average about twice the KE: as a 
result, the upper limit on total CME energy is roughly of order 1031–32 ergs. 

18.9.5 Comparison anD Contrast betWeen flares anD Cmes 

We have already seen (Section 17.19.7) that solar flares have radiated energies that extend up to 
no more than a few times 1032 ergs. It is striking that the maximum energy that the Sun releases 
in a flare is close to the maximum kinetic energy that the Sun releases in a CME. That is, the two 
most prominent classes of transient energy release from the Sun apparently produce events that, in 
their largest manifestations, have comparable maximum energies. Possible statistical connections 
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between flares, CME’s, and other solar phenomena have been explored extensively (e.g. Munro et al. 
1979). 

The physical feature that provides a common physical connection between flares and CMEs is 
the magnetic field. In the presence of solar gravity, and given the amount of plasma in coronal gas, 
it appears that the magnetic fields that the Sun produces are limited in the maximum amount of 
energy they can store. If, in a given active region, that limit is exceeded, the field apparently “must” 
respond by releasing the stored energy. The form that the released energy takes can be either a flare 
or a CME or a combination of the two, depending on local conditions. 

Youssef (2012), in an analysis of 778 CME-related flares, showed that the probability of occur
rence of a CME in spatial and temporal relationship with a flare increases strongly as the flare 
becomes larger: 90% of X-class flares have associated CMEs, whereas only 24% of C-class flares 
have associated CMEs. Conversely, as regards CMEs with and without flares, Aarnio et al. (2011) 
used SOHO/LASCO data (for CMEs) and GOES data (for flares) to determine that only 11% of 
CMEs were associated both temporally and spatially with flares: however, Aarnio et al. pointed out 
that because of data gaps in LASCO images, this percentage is certainly an underestimate. Despite 
the apparently low percentage of CMEs with flares, Aarnio et al. found that there is a statistically 
significant positive correlation between CME mass and the X-ray flux from the flare: this sug
gests that some physically significant connection does exist between flares and CMEs, presumably 
related to the magnetic field. 

Returning to Aschwanden (2016), we note that magnetic data were obtained for each flare in 
order to allow an estimate of how much magnetic energy E(diss) was actually dissipated in the flare 
and how this dissipated energy was distributed among the various flare channels. The fraction of 
E(diss) associated with the CME was found to be in the range 0.01–0.4: this provides a consistency 
check that the flare has dissipated more than enough energy to account for the observed CME 
energy. Moreover, the CME energy was found to be comparable to the energy that the flare con
verted into thermal form. 

There is undoubtedly a general correlation between some flares and some CMEs (Harrison 
1991): they both result from the relaxation of complex magnetic topologies and, as such, they can 
occur together, but not necessarily. Nindos and Andrews (2004) studied a sample of 133 M-class 
and X-class flares and evaluated the magnetic helicity of the active region prior to each flare: they 
found that when the AR helicity was small (large), the flare was less (more) likely to be accompa
nied by a CME. That is, the presence of large helicity in an AR apparently favors CME occurrence. 
A special corollary of this conclusion was subsequently described by Liu et al. (2016), who reported 
on an AR (#12192) that had been observed on the Sun in October 2014, close to the maximum of 
solar cycle 24: this AR produced more than 100 flares during the 15-day interval required to cross 
the solar disk, including 32 M-class and 6 X-class flares. By any definition, this AR (with six to 
seven flares per day on average) deserves the classification of “flare-active”. Remarkably, during 
the same time interval, the AR produced only one (small) CME. In contrast to AR #12192, with its 
dearth of CMEs compared to flares, we may cite the counterexample of AR #11158, which appeared 
in 2011, in the early years of cycle 24 (Kay et al. 2017). In the course of 4 days, this AR had 21 flares 
(including the first X-class flare of cycle 24), but it also produced 11 CMEs. With a daily flare rate 
of five to six per day on average, AR #11158 is almost as “flare-active” as AR #12192, and yet the 
two ARs differed by an order of magnitude in the number of CMEs. 

The two ARs just discussed point to an intriguing result: although flares and CMEs both rely 
on magnetic fields for energy, the conditions for both types of phenomena to occur are not neces
sarily the same. In an attempt to explain this conclusion, Liu et al. pointed to two physical factors 
that might account for the striking difference in behavior between flares and CMEs in AR #12192: 
(i) the AR, although possessing large amounts of free magnetic energy, did not possess any highly 
twisted field lines (i.e., the magnetic helicity was small); (ii) the ambient magnetic fields overlying 
the AR were observed to be strong, thereby possibly inhibiting any upward-moving CME material 
that might have been launched from the AR. 
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Are flares with and without CMEs statistically different from one another? As regards statistical 
properties, Yashiro et al. (2006) reported that the distributions of X-ray flares as regards peak flux, 
fluence, and duration are systematically steeper for flares without CMEs than is the case for flares 
with CMEs. 

18.9.6 Cme Contributions to solar mass loss rates 

Do CMEs contribute significantly to the rate of mass loss from the Sun? The answer seems to be 
“No”. An early estimate of CME mass loss rates (Jackson and Howard 1993) found that, even at the 
maximum of solar cycle 21 (in 1979–1981), the Sun loses mass in the form of CMEs at a rate that is 
only about 16% of the total mass loss rate. At solar minimum, when the rate of CME occurrence is 
more than 10 times smaller than at solar maximum, it would be expected that CMEs would contrib
ute even less than 16% of the total mass loss rate. 

A sample of more than 6000 CME images from cycle 23 and part of cycle 24 (i.e., between 1996 
and 2013) have been analyzed by Cranmer (2017), who finds that, even at solar maximum, “CMEs 
contribute only about 3% of the background solar wind mass flux”. This result is already signifi
cantly smaller than the 16% reported by Jackson and Howard (1993) around the time of the solar 
maximum of cycle 21. Several possible causes for this reduction are listed by Cranmer. Moving on 
to CMEs at solar minimum, Cranmer (2017) finds that the CME mass flux is found to fall to values 
as low as 0.1% of the background solar wind mass flux. Based on a somewhat earlier analysis of 
CME images, Vourlidas et al. (2011) suggested that the CME mass flux from the Sun underwent a 
real decline in the years between cycle 21 and cycles 23–24. It is interesting that this decline occurs 
over the same time period when the empirical values of the interplanetary scintillation (IPS) index 
(see Figure 18.4) has also undergone a more or less steady decline. This might suggest that the 
small-scale “eddies” in the solar wind with lengths comparable to the Fresnel scale (a few hundred 
km, i.e., the eddies that give rise to IPS) might possibly be generated when large structures (CMEs) 
with masses of 1013–16 gm “plow” through the ambient solar wind, stirring up turbulence. 

18.9.7 Cmes anD maGnetiC heliCity 

Now that we know that CMEs do not contribute significantly to the solar mass loss rate, we may 
wonder: do CMEs provide any useful service to the Sun? To address this, we note that the Sun, in 
its cyclical magnetic behavior, is faced every 11 years (or so) with an important task: the Sun must 
get rid of the magnetic flux from the old cycle in order to make way for the magnetic flux (with 
opposite polarity) of the new cycle. And the old cycle fields do not merely have a polarity: they also 
contain helicity (twistedness, Hm) that is organized in such a way that in the northern (southern) 
hemisphere, the sign of Hm is negative (positive): this organization persists from one 11-year cycle to 
the next (e.g., Low 1996). Therefore, if the helicity is not removed before the old cycle can give way 
to the new cycle, then helicity would continue to accumulate to arbitrarily large values in the Sun. 
We have already seen that the Babcock (1961) model (see Section 16.9) describes how the polarity 
might be reversed by active regions from the old cycle diffusing towards the poles. But how can the 
old helicity be removed? 

Rust (1994) noted that filaments on the Sun that are observed to be twisted (i.e., contain helicity) 
can undergo eruption into the solar wind, i.e., they can become CMEs. Rust found that the sign of 
Hm of certain eruptive filaments back at the Sun was consistent with the sign of Hm of interplanetary 
structures that were eventually (after several days) detected at 1 AU. As regards active regions, Cho 
et al. (2013) showed that in a sample of 34 interplanetary CMEs, the sign of Hm agreed with that of 
the parent active regions in 30 cases (i.e., 88%): in the remaining four cases, there were extenuating 
circumstances to explain the apparent lack of consistency. The observations of Rust (1994) and of 
Cho et al. (2013) suggest that CMEs may be responsible for transporting helicity out of the Sun (see 
Section 16.11 for quantitative support for this suggestion). In a subsequent theoretical exposition, 
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Low (1996) also concluded, “CMEs are the means by which accumulated magnetic flux and twist 
are taken out of the corona”. In this regard, it is significant that Liu et al. (2016) found that in an 
active region that was highly ineffective in generating CMEs (but was nevertheless flare-prolific), 
magnetic helicity was essentially absent from the AR, i.e., a basic ingredient of CMEs (helicity) was 
missing from this particular AR. 

Low (1996) has also discussed the interesting question as to the physical relationship between 
flares and CMEs. Both phenomena are undoubtedly magnetic in nature, since both phenomena 
are observed to be 10–100 times more abundant at solar maximum than at solar minimum. If both 
processes relied on the same magnetic properties, then one might expect there to be a close (maybe 
even one-to-one) correlation between the two. And yet, it is observationally established that there 
is definitely not a one-to-one correspondence between every flare and every CME, even among the 
largest flares (Youssef 2012). Low (1996) made the suggestion that a key difference between flares 
and CMEs may have to do with the electrical resistivity of the plasma. Flares rely on finite resistivity 
(so as to quickly discharge magnetic free energy in explosive reconnection), whereas CMEs may be 
initiated (at least in some cases) in what is known as the “ideal MHD limit”, i.e., in a situation where 
resistivity does not play an essential role. In a numerical study of this possibility in a 3-D magnetic 
field, Rachmeler et al. (2009) show that if a magnetic flux rope (which is surrounded by an overly
ing magnetic arcade) is twisted enough, the rope may develop a kink that expands up through the 
arcade and out into space, thereby launching a CME. Rachmeler et al. use the graphic medical term 
“hernia” to describe how the twisted flux rope can make its way up through the overlying arcade 
and eventually experience “break-out”. Most significantly, Rachmeler et al. demonstrate that this 
process of “herniation launch” of a CME occurs in the complete absence of resistivity: that is, a 
CME may be initiated as a result of an ideal MHD instability. The difference between the physical 
conditions required for the occurrence of resistive instabilities and the conditions required for the 
occurrence of nonresistive instabilities may help explain the observational fact that, even though 
flares and CMEs are both driven by magnetic fields, nevertheless, not every flare (where resistive 
instability is at work) is accompanied by a CME, nor is every CME (where an ideal instability may 
be at work) accompanied by a flare. 

Rachmeler et al. stress that it is essential for a critical amount of twist, i.e., magnetic helicity Hm, 
to be present if their proposed “herniation” process is to occur. The magnitude of the critical twist 
depends on (among other factors) the strength and the topology of the magnetic fields in the overly
ing arcade. If the latter (sometimes referred to as “strapping fields”: e.g., Ha and Bellan 2016) are 
strong enough at great heights, they can prevent a CME from breaking out. A particular example of 
such a “failed eruption”, involving a rising filament that did not erupt into a CME, has been captured 
in detail by Chintzoglou et al. (2017): these authors relied on a carefully planned combination of 
several satellites, a rocket launch, and several ground-based observatories to demonstrate “for the 
first time, how magnetic topology can suppress (solar) ejections already in progress”. 

18.10 HOW FAR DOES THE SUN’S INFLUENCE EXTEND IN SPACE? 

The solar wind originates in the Sun’s corona and eventually flows out past the Earth’s orbit. The 
wind carries with it some of the magnetic field of the Sun: near the Sun, this field has effective con
trol over the wind outflow. But at greater distances from the Sun, the influence of the field becomes 
weaker and the wind “breaks free”: in Section 18.10.1, we discuss where this happens. However, just 
because the field no longer dominates the wind at a certain point, that does not mean that the Sun 
has no further influence beyond that point: there is still the ram pressure of the wind that must be 
dealt with. Far out in the wind, the decreasing density (~ 1/r2) leads to a reduction of the ram pres
sure, and eventually this pressure becomes so low that it can be halted by the interstellar medium 
gas pressure. When that happens, the realm of space that is controlled by the Sun comes effectively 
to an end. In Section 18.10.2, we discuss the observations that show the radial location where the 
transition into the ISM takes place. 
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Disturbances in the wind (e.g., CMEs) can have an effect on our lives on Earth (e.g., radio black
outs, voltage surges). In that sense, the solar wind allows the Sun to “reach out” far beyond the 
confines of one solar radius and cause certain events on Earth that have nothing to do with the Sun 
as a source of heat and light. 

The solar wind also influences the surroundings of other planets, especially those with magnetic 
fields. All four giant planets (Jupiter, Saturn, Uranus, and Neptune) were discovered to have strong 
magnetic fields when the Voyager 2 spacecraft visited them in the decade from 1979 to 1989. The 
planetary magnetic fields trap charged particles into confined orbits, giving rise to an environment 
of interesting interactions between fields and plasma. Neptune is on average 30 times farther from 
the Sun than the Earth is, but even so, the solar wind has an influence on the shape of the magneto
sphere even out there. 

18.10.1 Where Does the “true” Corona enD anD the “true” WinD beGin? 

Is it possible to determine where the corona “ends” and the wind “begins”? This question has been 
discussed by DeForest et al. (2016) on the basis of extensive processing of images of the solar corona 
that were obtained by a heliospheric imager on board the STEREO-A spacecraft in 2008, when the 
Sun was very quiet. Images extending over an elongation range from 4 to 24 degrees from the Sun 
were obtained of the corona during a 15-day interval: in terms of the effective line-of-sight impact 
parameter p, the aforementioned elongations correspond to p = 16–96R . Using various techniques 
(unsharp masking, time-shifted image co-addition, suppression of stars in the background sky), 
DeForest et al. discovered that radial “striae” (including streamers and plumes) are dominant fea
tures in the inner portions of their images (i.e., close to the Sun). These highly anisotropic striae 
have properties suggesting that they are controlled by the coronal magnetic fields. A striking feature 
of the data is that, beyond a certain elongation in the range between 10 and 20 degrees (p = 44–88 
R ), the striae are observed to “fade out”, as if the controlling effects of the solar magnetic fields are 
becoming less effective. 

Remarkably, in the same range of elongations where the striae “fade out”, DeForest et al. report 
that more compact brighter features are seen to “fade in” and then persist in the outer portions of 
their images (i.e., far from the Sun): these are locally dense (nearly isotropic) “puffs”, which DeForest 
et al. refer to as “flocculae”. The distinction in texture between radial striae and isotropic floccu
lae, which sets in at elongations of 10–20 degrees (≈44–88)R , had not been previously reported in 
the literature (despite the availability of over 10 years of images from STEREO), perhaps because 
previous analyses did not use such computer-intensive image processing. DeForest et al. make the 
intriguing suggestion that the flocculae might be density enhancements “associated with the onset of 
turbulence in the inner heliosphere”. They conclude that their results may “mark the profound shift 
between (on the one hand) the primarily magnetically structured corona and (on the other hand) the 
primarily hydrodynamic solar wind”. If this conclusion is correct, then one might be permitted to 
hypothesize that the “true” corona may extend out “only” as far as (44–88)R , and then beyond that 
limit, the “true” solar wind “breaks free” of the coronal fields and becomes an independent turbulent 
entity. Future observations from the Parker Solar Probe may help to confirm or deny this hypothesis. 

18.10.2 the outer eDGe of the heliosphere 

How far out does the influence of the solar wind extend? To answer that, we recall (Section 18.1) 
that in the ISM, the total pressure p(ISM) (including magnetic fields and cosmic rays) is 
≈1.4–1.7 × 10−12 dyn cm−2 (or possibly as large as 2 × 10−12 dyn cm−2). Now the solar wind outflow, 
with its energy density Ew(r) = 0.5ρ(r)V(r)2, exerts an outward ram pressure equal to Ew(r). This is 
the pressure that allows the Sun to “push back” the ISM. But this “pushing back” can work only as 
long as Ew(r) exceeds p(ISM). Therefore, we can estimate the maximum radial extent of the Sun’s 
influence roughly by seeking the radial distance rm at which Ew(rm) ≈ p(ISM). 
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To solve this, we recall that in an isothermal wind, the speed V in the outer wind varies only very 
slowly as the distance r from the Sun increases (see discussion following Equation 18.12). Since V is 
essentially constant, the density ρ must fall off as 1/r2. As a result, Ew(r) varies essentially as ~ 1/r2. 

At r = 1 AU, using a mean density of 9 protons cm−3 and a mean wind speed of 470 km sec−1, we 
find Ew(r = 1AU) ≈ 2×10−8 dyn cm−2. At a distance of r AU, this leads to Ew(r) ≈2 × 10−8r−2 dyn cm−2. 
This pressure becomes equal to p(ISM) at rm ≈100–120 AU. Therefore, at distances of roughly 100 
AU, the pressure of the ISM should bring the solar wind to a halt. Depending on the local condi
tions, the halt may be so abrupt that a shock wave is set up: this is referred to as the “termination 
shock” (TS) of the solar wind. The density of the solar wind material at 100 AU is expected to be 
smaller than the density at 1 AU by a factor of about 104: with densities at 1 AU of order 10 cm−3, we 
expect densities of solar wind material at the TS to be of order 0.001 cm−3. 

Thus, the influence of the Sun extends, via the solar wind, to a radial distance that lies well 
beyond Pluto’s orbit, to a distance of order 100 AU. The Sun’s “sphere of influence”, also known as 
the “heliosphere”, comes to an end at a distance of about 100 AU. 

So far, two spacecraft have traveled far enough to make the transition through the TS and com
municate their data back to Earth. The Voyager 1 transited the TS in December 2004 at a radial dis
tance r = 94 AU. The Voyager 2 transited the TS (in a different direction) in August 2007, at r = 84 
AU. The different radial distances of the two transitions suggests that the termination shock is not 
spherical: the Sun moves through the local interstellar medium (LISM) at a finite speed (26 km sec−1: 
Gayley et al. 1997), and models suggest that this leads to a heliosphere with a blunt “head” and a 
long-drawn out “tail”. The two Voyager transitions of the TS occurred at distances not far from the 
estimate given earlier (≈100 AU). 

Beyond the termination shock, there exists a region of space called the “heliosheath” where 
the lower-density (0.001–0.002 cm−3) hotter solar wind adjusts its properties so as to interface 
(eventually) with the properties of the denser (0.01–0.1 cm−3) cooler LISM. At the outer edge of 
the heliosheath, a second boundary called the “heliopause” (HP) separates “true” solar material 
(i.e., gas that originated in the solar corona) from “true” LISM material. At the time of writing 
(October 2021), two spacecraft with working instruments have successfully crossed the HP and 
entered the LISM: Voyager 1 on August 25, 2012, and Voyager 2 on November 5, 2018. Data subse
quently obtained by a plasma wave instrument on Voyager 1 (Gurnett and Kurth 2019) showed that 
the local density had increased from solar-wind values to an LISM value (0.055 cm−3). This increase 
in density was measured at a distance of 122.6 AU from the Sun. At a later time, after Voyager 2 had 
crossed the HP, the local density was observed to have increased to an LISM value (0.039 cm−3) at 
a distance of 119.7 AU from the Sun (Gurnett and Kurth 2019). These data suggest that the distance 
from TS to HP is of order 30 AU. A further indication that Voyager 1 indeed reached the LISM 
no later than 2013 was provided by magnetic field data (Burlaga and Ness 2016): over the interval 
2013–2016, the field strength B measured by Voyager 1 was found to remain essentially constant at 
a value of 4.8 × 10−6 Gauss (i.e., 4.8 μG). Such a value is consistent with long-standing radio data 
suggesting that the interstellar magnetic field has a random component with a magnitude of ≈5 μG 
(Rand and Kulkarni 1989). 

The heliosphere presents a barrier to the galactic cosmic rays (GCR) that are present in the 
ISM. A fraction of those GCR can reach the Earth’s orbit, but only at the expense of “swimming 
upstream” against the outflowing solar wind, which is carrying along magnetic fluctuations. In the 
course of penetrating in as far as the Earth’s orbit, the GCR are subject to several processes, includ
ing diffusion, scattering off magnetic fluctuations in the wind, and adiabatic energy loss. Moreover, 
because of large-scale spatial variations in the magnetic field intensity, the GCR particles are also 
subject to drifts that change sign from one 11-year cycle to the next. 

As the sunspot numbers go up and down (see the top panel of Figure 18.6), GCR have a harder 
time at solar maximum making their way from the interstellar medium all the way into the Earth’s 
orbit. As a result, the measured fluxes of GCR at Earth are reduced at solar maximum (see the lower 
panel in Figure 18.6). When sunspots are less abundant, the fluxes of GCR at Earth are larger. As 
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FIGURE 18.6 Count rates of GCRs over a 55-year interval. Neutron monitors are instruments that respond 
to GCR with energies of a few GeV. (Plot downloaded from public website http://neutronm.bartol.udel.edu; 
used with permission of J. Clem.) 

a result, the GCR flux is anti‑correlated with the sunspot number. The amplitude of the relative 
reduction in GCR flux at solar maximum can be as large as tens of percent (see Figure 18.6). Given 
that the “typical” solar wind travels at a speed of 470 km sec−1 at Earth orbit, and not much more 
than that at greater distances, we can estimate roughly the time tp required for solar wind to travel 
from the Sun to the edge of the heliosphere. With a heliospheric radius rm ≈100 AU ≈ 1.5 × 1015 cm 
and an assumed constant speed V = 4.7 × 107 cm sec−1, we find tp is about one year. As a result, 
when magnetic conditions change at the Sun, if drifts could be neglected, then it should take a full 
year (or so) before the heliosphere as a whole “knows” that the magnetic properties of the Sun/wind 
have changed. This would lead to a phase shift of about 1 year in the GCR count rates relative to the 
sunspot counts. However, when drifts (which drive particles in opposite directions in even and odd 
cycles) are taken into account, it turns out that the phase shifts are less than 1 year in even cycles 
(20, 22, and 24) but are longer than one year in odd cycles (19, 23) (Iskra et al. 2019). 

The size of the heliosphere rm depends on two independent quantities: the solar wind flux (deter
mined by the Sun), and the ISM pressure (determined by conditions in the ISM). The Sun travels at 
a speed of about 26 km sec−1 relative to the LISM (Gayley et al. 1997): with such a motion, the Sun 
will shift its position in the ISM by almost 100 light-years in a time interval of 1 million years. In 
the course of the Sun’s lifetime (i.e., several billion years), the Sun can travel relative to its starting 
point more than 100,000 light-years, i.e., essentially all the way across the galaxy. As a result, the 
properties of the LISM encountered by the Sun will surely have a variety of properties as the Sun 
ages. Thus, the edge of the heliosphere will certainly (from time to time) approach the Earth more 
closely than 100 AU. In extreme cases, it is even possible that Earth’s orbit might lie outside the edge 
of the heliosphere. (See Exercises 18.1–18.3.) 
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EXERCISES 

18.1 The Sun is in orbit around the center of the galaxy, taking some 250 My to orbit once. 
In the course of an orbit, the Sun encounters various types of ISM. In some of these, the 
local density may rise to values of n = 103 cm−3, 105 cm−3, or even 107 cm−3. Assuming that 
the gas temperature remains at the value T = 100 K in all clouds, and that all other com
ponents of ISM pressure are unchanged, calculate the extent of the heliosphere in each of 
the aforementioned clouds. 

18.2 Also in the various components of ISM, the field strength increases with increasing den
sity n roughly in proportion to n2/3. For the values of n given in Exercise 18.1, evaluate the 
local field strengths (assuming that with n = 0.1 cm−3, the local B = 5 × 10−6 G). Changes 
in the density n and in the field strength B combine to change the value of p(ISM), thereby 
altering the location of the TS. Using the new B values associated with increased n values, 
recalculate the extent of the heliosphere. 

18.3 Assuming that only n or B varies, what values of n and B are necessary in order that the 
extent of the heliosphere shrinks to become as small as the size of the Earth’s orbit? 
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Appendix A: Symbols Used in the Text
 

Symbols used in the text, their units, and where they are introduced 

a	 isothermal speed of sound (cm sec−1) (Section 18.1)
 
relative acceleration of hot and cold gas (Section 7.1)
 a

a radiation density constant (ergs cm−3 K−4) (Section 2.1)
 

a limb-darkening coefficient (Section 2.2)
 
area of the visible hemisphere of the Sun (Section 17.5)
A

Å angstrom (unit of length = 10−8 cm) (Section 2.1)
 
b limb-darkening coefficient (Section 2.2)
 
B magnetic field vector (Section 16.6.1)
 
B magnitude of B (Section 16.6.1)
 
c speed of light (= 3 × 1010 cm sec−1) (Section 2.1)
 
c adiabatic speed of sound (cm sec−1) (Section 7.1)
 

C specific heat at constant pressure (ergs gm−1 K−1) (Section 6.7.1)
 

C specific heat at constant volume (ergs gm−1 K−1) (Section 6.7.1)
 

d mass column density (gm cm−2) (Section 3.3, 5.1)
 

d angular diameter of convection cells (arc seconds) (Section 6.4)
 
D distance of Earth from Sun (= 1.5 × 1013 cm) (Section 1.2)
 
D horizontal linear diameter of convection cells (cm) (Section 6.4)
 
e unit of electric charge (= 4.8 × 10−10 e.s.u.) (Section 16.6.1)
 
E electric field vector (Section 16.6.1)
 
F(τ) flux of radiation at optical depth  (ergs cm−2 sec−1) (Equation 2.22)
 

F flux of sound waves emitted by convection (Equation 14.27)
 

F flux of radiation at the solar surface (= 6.29 × 1010 ergs cm−2 sec−1) (Section 1.9)
 
g acceleration due to gravity (cm sec−2) (Section 5.1)
 

adiabatic temperature gradient (K cm−1) (Section 6.8, Equation 6.8) g
g statistical weight of atomic level i (Section 3.3.2)
 

g acceleration due to gravity at the Sun’s surface (= 27,420 cm sec−2) (Section 1.6)
 

g temperature gradient (K cm−1) (Section 6.8)
 
G Newton’s gravitational constant (cm3 gm−1 sec−2) (Sections 1.1, 1.3)
 
h height in the atmosphere, increasing outward from the Sun (cm) (Section 5.1)
 
H vertical depth of a granule (Section 6.5)
 
H magnetic helicity (in units of Mx2) (Sections 16.11, 18.9.7)
 

H pressure scale height (cm) (Section 5.1)
 
i √(−1) (Section 13.5.2)
 
I ionization potential (electron volts) (Section 4.1)
 
I intensity of radiation per unit wavelength (Section 2.1, Equation 2.4)
 

Iν intensity of radiation per unit frequency (Section 2.1, Equation 2.3)
 
J mean intensity at arbitrary depth (Equation 2.23)
 
k Boltzmann’s constant (= 1.38 × 10−16 ergs K−1) (Section 1.8)
 
k horizontal wave number of oscillation mode in the Sun (Section 14.7)
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k radial wave number of oscillation mode in the Sun (Section 14.7) 

k (linear) absorption coefficient at wavelength  (cm−1) (Section 2.3) 
thermal conductivity (ergs cm−1 sec−1 K−1) (Section 8.1)k

K	 degrees Kelvin: unit of temperature (Section 2.1) 
K(τ)	 related to radiation pressure at optical depth τ (Equation 2.26) 
l	 angular degree of oscillation mode in the Sun (Section 13.2) 
L	 half-length of coronal loop (cm) (Section 17.15.1) 
L luminosity (=power output) of the Sun (= 3.83 × 1033 ergs sec−1) (Section 1.4) 

m mass of the hydrogen atom (= 1.66 × 10−24 gm) (Section 1.8) 
M	 Mach number of granule flows (Section 14.8.2) 
M mass of the Sun (1.99 × 1033 gm) (Section 1.3) 
n	 polytropic index (Equation 10.1) 
n number density of photon absorbers (cm−3) (Section 3.3) 

n number density of electrons (cm−3) (Section 4.1) 

n number density of ions (cm−3) (Chapter 17.5) 
N	 number column density (cm−2) (Section 3.3) 
N	 number related to adiabatic exponent (Section 14.1) The reader should be careful not 

to confuse the fundamentally different definitions of N which are used in Sections 3.3 
and 14.1 

N(s-d)	 number of days with no detectable sunspots (Section 16.1.4) 
p	 gas pressure (dyn cm−2) (Section 5.1) 
p pressure at the center of a polytrope (Section 10.2) 

p electron pressure (dyn cm−2) (Section 4.1) 
magnetic pressure (dyn cm−2) (Section 16.6.2.1) p
acoustic cut-off period (sec) for vertically propagating waves (Equation 13.14) P

P critical period of gravity modes in the Sun (Section 1.12) 

P power density in pressure pulse due to granules (Equation 14.26) 

q(τ)	 slowly varying function of optical depth (Section 2.8) 
r	 radial coordinate (cm) (Section 1.1) 
r gyroradius (cm) (Equation 16.4) 

r Emden unit of length (cm) (Equation 10.9) 

r radial distance to the sonic point in the solar wind (Equation 18.8) 

R the gas constant (= 8.3 × 107 ergs mole−1 K−1) (Section 1.8) 

R radius of the Sun (= 6.96 × 1010 cm) (Section 1.5) 

S the source function at wavelength  (Section 2.4) 

t sound propagation time between center of a star and its photosphere (Equation 9.6) 
T	 temperature (degrees K) (Section 2.1) 
T temperature at the base of the convection zone (Section 8.3) 

effective temperature (K) (Section 1.9) T
uν	 energy density of radiation per unit frequency (ergs cm−3 Hz−1) (Section 2.9) 
U	 internal energy (ergs gm−1) (Section 6.7.1) 
V	 velocity of vertical gas motion (cm sec−1) (Section 7.1) 

escape speed from the surface (Section 1.8) V
root-mean-square thermal speed of particles (Sections 1.8, 9.2) V

w	 auxiliary pressure variable in oscillation calculations (Equation 14.16) 
magnetic energy density (ergs cm−3) (Section 16.6.2.1) W
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x	 dimensionless unit of length in the Lane–Emden equation (Section 10.4) 
X	 dimensionless unit of radial displacement in oscillation calculations (Section 14.2) 
y	 Lane–Emden function, which describes polytrope structure (Equation 10.6) 
z	 depth in atmosphere, increasing inwards towards the solar center (Section 7.1) 
z	 auxiliary radial displacement variable in oscillation calculations (Equation 14.16) The 

reader should be careful not to confuse the fundamentally different definitions of z 
which are used in Section 7.1 and in Equation 14.16 

z depth of the base of the convection zone (Section 7.9) 

z depth below the surface where a p-mode is refracted upwards (Equation 14.24) 

α	 mixing length parameter = ratio of H to H (Section 6.5) 

α	 dimensionless frequency in oscillation calculation (Equation 14.10). The reader should 
be careful not to confuse the fundamentally different definitions of  Greek alpha which 
are used in Sections 6.5 and in Equation 14.10 

β	 power-law index in flare distribution (Equation 17.13) 

γ	 ratio of specific heats (Section 6.7.1) 
generalized exponent for adiabatic conditions in ionization zone (Section 6.7.3) 

δ	 power-law index for nonthermal electron energy distribution (Equation 17.11) 

ε	 oblateness of the Sun (Section 1.10) 

ε radiant emissivity at wavelength  (Section 2.3) 

η magnetic diffusivity (cm2 sec−1) (Equation 16.9) 

θ	 variable in Saha equation inversely related to temperature (Section 4.2) 

θ	 dimensionless unit of pressure in oscillation calculation (Section  14.2) The reader 
should be careful not to confuse the fundamentally different definitions of θ which are 
used in Sections 4.2 and 14.2 

ξ	 vertical displacement of a parcel of gas (Section 13.5.1) 

κ opacity (in units of cm2 gm−1) at wavelength  (Section 3.1) 

κ Rosseland mean opacity (in units of cm gm) (Equation 3.3) 
	 wavelength (units of cm, or Å, or μm) (Section 2.1) 

de Broglie wavelength of an electron (Section 9.5) 
de Broglie wavelength of a proton (Section 11.4.3, Equation 11.5) 

	 Coulomb logarithm (Section 11.3) 
	 radiative loss function (Section 17.15.2) The reader should be careful not to confuse the 

fundamentally different definitions of  which are used in Sections 11.3 and 17.15.2 
μ	 cos(ψ), where ψ = angle between line of sight and Sun’s normal (Section 2.2, Figure 2.4) 
μ	 mean molecular weight (Section 1.8) The reader should be careful not to confuse the 

fundamentally different definitions of μ which are used in Sections 1.8 and 2.2 
ν	 temporal frequency (sec−1) (Section 2.1) 

ν critical frequency in the Sun (Section 1.12) 
π	 3.14159 
ρ	 mass density (gm cm−3) (Section 3.1) 

ρ mass density at the base of the convection zone (Section 8.3) 

ρ mass density at the center of a polytrope (Section 10.2) 
mean mass density of the Sun (= 1.4 gm cm−3) (Equation 1.14)  

σ collision cross-section for a particle (cm2) (Section 11.3) 

σ Stefan–Boltzmann constant (5.67 × 10−5 ergs cm−2 sec−1 K−4) (Section 2.1) 

σ Coulomb collision cross-section (Section 11.3) 
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σ electrical conductivity (sec−1 [in e.s.u.]) (Section 16.6.2.2) 

σ atomic absorption cross-section (cm2) for a photon with wavelength  (Section 3.3) 

σ Thomson cross-section for photon scattering by a free electron (Equation 3.1) 

τ	 optical depth (Section 2.3) 
fractional abundance of negative hydrogen atoms (Section 3.4) 
total radiative loss function (ergs cm3 sec−1) including lines + continua (Section 17.15.2) 

ψ	 angle between line of sight and Sun’s normal (Section 2.2, Figure 2.4) 

ω	 solid angle (Equation 2.22) 

ω	 angular frequency of solar oscillations (radians sec−1) (Section 14.1) The reader should 
be careful not to confuse the fundamentally different definitions of ω which are used 
in Section 14.1 and in Equation 2.22 
acoustic cut-off angular frequency for vertically propagating waves (Equation 13.13) ω

Ω(λ) angular frequency of solar rotation (radians sec−1) at latitude λ (Section 1.11)
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Appendix B: Instruments Used to 
Observe the Sun 

In Figure P. 1in the Preface of this book, we used acronyms to refer to 15 spacecraft and/or ground-
based observatories. These are the sources of many of the measurements of the Sun and/or solar 
wind described in the text of this book. The following list of the 15 spacecraft and/or ground-based 
observatories is arranged in alphabetical order. 

DKIST: Daniel K. Inouye Solar Telescope 

Location: Haleakala Mountain, on the island of Maui, in the state of Hawaii, USA. Primary mirror 
diameter = 4.24 meters. Instruments: (1) broad band imager in certain wavelengths, ranging from 
3933 Å to 4861 Å in the blue filter, and from 6563 Å to 7892 Å in the red; (2) a slit-based spectro
polarimeter sensitive to visible wavelengths, to measure all four Stokes parameters I, Q, U, and V 
in various spectral lines at a location on the Sun’s surface that is determined by the location of the 
slit; (3) a tunable filter to create images of an area of the Sun in one particular spectral line; (4) a 
spectro-polarimeter sensitive to infrared wavelengths, using optical fibers to collect spectral and 
spatial information simultaneously at every point in a two-dimensional image. The first image of the 
Sun to be released publicly by DKIST, showing solar granules at high resolution (see front cover of 
this book), occurred in January 2020. 

GONG and GONG+: Global Oscillations Network Group 

A ground-based observing program to study the internal structure and dynamics of the Sun using 
helioseismology. GONG relies on a six-station network of extremely sensitive, and stable, velocity 
imagers located around the Earth to obtain nearly continuous observations of the Sun’s “5-minute” 
oscillations, or pulsations. The instruments are based on a polarizing Michelson interferometer that 
observes a Ni I line at 6768 Å, allowing precise measurement of Doppler shift in each 5-arcsec pixel 
of the entire solar disk. The six identical stations are located at Big Bear Solar Observatory (Califor
nia, USA), High Altitude Observatory (Mauna Loa, Hawaii, USA), Learmonth Solar Observatory 
(Western Australia), Udaipur Solar Observatory (Rajasthan, India), El Teide Observatory (Tenerife, 
Spain), and the Cerro Tololo Interamerican Observatory (Coquimbo region, Chile). The six stations 
began operations in the course of calendar year 1995, starting with El Teide on March 2 and ending 
with Udaipur on October 3. For the first 6 years of observations, the solar images were obtained 
with low-resolution CCDs with 256 × 256 pixels. During 2001, all six observatories were converted 
to higher resolution CCDs (1024 × 1024 pixels): this update is referred to as GONG+. The GONG 
archives currently contain 124 terabytes of data. 

Hinode 

A joint satellite mission of Japan, US, UK, and Europe, launched September 23, 2006, into a Sun-
synchronous orbit at a height of 650 km above Earth’s surface. The orbit allows Hinode to observe 
the Sun continuously for 9 months of the year. In the remaining months, the Sun undergoes eclipses 
as seen from Hinode, with each eclipse lasting about 10 minutes out of a 98-minute orbit. Instru
ments include Solar Optical Telescope (SOT), EUV Imaging Spectrometer (EIS), and X-ray/EUV 
Telescope (XRT). In the wavelength range from 170 to 280 Å, some 30 spectral lines are available to 
determine differential emission measure in an active region with corresponding temperatures rang
ing from log T = 5.6 to log T = 7.3. 
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IBIS 

Location: attached to the Dunn Solar Telescope at Sacramento Peak Observatory, New Mexico, 
USA. The Interferometric Bidimensional Spectropolarimeter was built in Florence, Italy. First 
observations were obtained in June  2003. Two Fabry-Perot etalons are used to observe a small 
region of the Sun with a spectral resolving power of 200,000 over the wavelength range 5500–8600 
Å. In spectroscopic mode, it has a circular field of view of 95  diameter, with a spatial sampling of 
0 .098. In dual-beam spectro-polarimetric mode, the field of view is split into two smaller rectangles 
through a mask, each covering about half of the unobstructed field. The instrument has an additional 
parallel and synchronized broadband channel with the same image scale as the narrow-band channel 
that serves as light-level and image distortion reference. Data can be obtained at up to 15 frames per 
second (fps) in spectroscopic mode at single wavelengths and 10 fps when tuned. In tuned spectro
polarimetric mode, the frame rate is 7 fps. 

IRIS: Interface Region Imaging Spectrograph 

IRIS makes use of high-resolution images, data, and advanced computer models to determine 
how matter, light, and energy move from the sun’s 6000 K surface to its million K outer atmo
sphere or corona. IRIS observes the Sun’s chromosphere and the transition (“interface”) region, 
where the chromosphere interfaces with the even hotter corona above. Gas motions, upward and 
downward, occur in the interface region, causing the interface to occupy a range of altitudes 
(spanning several thousand km) above the photosphere. IRIS was launched on June 27, 2013, 
and it travels in a polar, sun-synchronous orbit in such a way that it crosses the equator at the 
same local time each day. The spacecraft’s orbit places it at heights of 390–420 km above Earth’s 
surface. IRIS carries a single instrument: an ultraviolet telescope combined with a spectrograph 
that images a small portion (~1%) of the Sun’s disk in the light of certain selected spectral lines: 
the lines are formed at temperatures between 5000 and 65,000 K. A new image is obtained every 
5–10 seconds. IRIS can resolve features with linear sizes as small as 240 km on the Sun. 

Parker Solar Probe 

Launched on August 12, 2018: the goal is to study the Sun’s environment at distances that are closer 
than any spacecraft has ever gone, eventually reaching a distance of 9.86 solar radii (=6.85 million 
km) from the center of the Sun. To achieve this, the satellite is designed to use seven gravity assists 
with Venus over an interval of 7 years, gradually changing the orbit so as to reduce the perihelion 
distance to a minimum in 2025. Instruments on board include (1) FIELDS, designed to measure the 
scale and shape of electric and magnetic fields in the Sun’s atmosphere; FIELDS measures waves 
and turbulence in the inner heliosphere with high time resolution to understand the fields associ
ated with waves, shocks, and magnetic reconnection; (2) WISPR is the only imaging instrument 
on board, to detect CMEs, jets, and other ejecta from the Sun; (3) SWEAP is a particle detector to 
measure velocity, density, and temperature of electrons, protons, and alpha particles (helium nuclei) 
in the solar corona and wind; (4) IS IS (pronounced ee-sis) measures solar energetic particle prop
erties for several different elements from hydrogen to iron. 

ROSA: Rapid Oscillations in the Solar Atmosphere 

Location: This instrument is attached to the Dunn Solar Telescope at Sacramento Peak Observa
tory, New Mexico, USA. It allows investigators to image the Sun simultaneously in six wavebands 
using six cameras: three wavebands are in the blue (Ca K core, G_band, and 4170 Å continuum), 
and three are in the red (H  core, and two circular polarized readings at 6302 Å). Images are 
obtained by cooled CCD cameras built by Andor Technology Ltd in Belfast, Northern Ireland, with 
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low-noise read-out capabilities of up to 200 frames per second. The goal is to investigate oscillatory 
phenomena (due to e.g., propagating MHD waves) at different altitudes in the solar atmosphere 
simultaneously at an unprecedented level of detail. Note that Andor Technology also supplied the 
CCD cameras which are used to gather data by DKIST. 

SDO: Solar Dynamics Observatory 

Launched on February  11, 2010, into an inclined geosynchronous orbit allowing the Sun to be 
observed continuously and allowing a single dedicated ground station to receive data at an excep
tionally high rate (1.5 terabytes of data per day). The goal is to study solar activity and how space 
weather is affected by that activity. Three scientific experiments are on board, and all three observe 
the Sun simultaneously: (1) Atmospheric Imaging Assembly (AIA), imaging the Sun in 10 discrete 
bandpasses centered on wavelengths between 94 Å and 4500 Å, sensitive to a range of temperatures 
from 4,500 K to as much as 16 million K; images in each band are obtained every 10 seconds; (2) 
EUV Variability Experiment (EVE), measuring the extreme ultraviolet (from 65 Å to 1050 Å) irradi
ance of the entire Sun with unprecedented (1 Å) spectral resolution, temporal cadence, and precision 
(plus a special detector to record the emission in Lyman- ; (3) Helioseismic and Magnetic Imager 
(HMI) provides full-disk coverage at high spatial resolution so as to perform studies of the Sun’s 
seismic and magnetic fields using a line of Fe I at 6173 Å; the field measurements enable the extrac
tion of the full magnetic vector in each pixel at an altitude of about 100 km above the photosphere. 
Full-Sun images from SDO have angular resolutions of better than 0.5 arcsec, i.e., four times better 
than SOHO images; moreover, SDO obtains one image every second, whereas SOHO obtains an 
image once every 12 minutes. 

SOHO: Solar and Heliospheric Observatory 

A project of international collaboration between ESA and NASA to study the Sun from its deep 
core to the outer corona and solar wind. Launched on December  2, 1995, into an orbit that is 
centered around a point about 1 million km sunward of the Earth. Instruments on board SOHO 
were built by teams of researchers from Europe and USA: these include a coronagraph (LASCO), 
Extreme Ultraviolet Imaging Telescope (EIT: with separate images in four spectral lines), two 
spectrometers operating in the ultraviolet (SUMER and CDS), two instruments for low-frequency 
helioseismology (GOLF and VIRGO), SWAN for mapping the global solar wind, and CELIAS 
for in situ measurements of density, speed, and temperature of solar wind plasma. The “very lat
est SOHO images” obtained by EIT and LASCO can be seen online (as of the time of writing: 
November 13, 2021) at the website https://sohowww.nascom.nasa.gov/data/realtime-images.html. 
One of the instruments on board SOHO, the Michelson Doppler Imager, with its line-of-sight mag
netograph, has not been used since 2011 when its functions were taken over by the higher resolu
tion HMI instrument (with its vector magnetograph) on board SDO: when the SOHO/MDI was 
operational, it used a line of Ni I at 6768 Å to measure line-of-sight fields at an altitude of about 
125 km above the photosphere. 

Solar Orbiter 

A European satellite launched in February 2020 into an orbit that will bring the spacecraft to a clos
est distance of 42 million km (=0.28 AU) from the Sun. Goals include obtaining images of the Sun 
at closer distances than have ever previously been achieved; taking the first ever close-up images 
of the Sun’s polar regions; measuring the composition of the solar wind; and linking the solar wind 
to its area of origin on the Sun’s surface. Instruments include an energetic particle detector, a mag
netometer, a solar wind analyzer, radio and plasma wave detectors, a coronagraph, and imagers for 
EUV, polarimetry, helioseismic, and heliospheric data. 

https://sohowww.nascom.nasa.gov
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SOLIS: Synoptic Optical Long-term Investigations of the Sun 

Location: Built by the US National Solar Observatory in Tucson, Arizona, USA, to follow the evolu
tion of solar activity using three instruments: (1) a vector spectromagnetograph creating a full-disk 
image of vector magnetic fields on the Sun on a daily basis; (2) full-disk patrol that images the entire 
Sun using tunable filters with 1 arcsec pixels with high temporal cadence (about 10 seconds) in 
selected spectral lines including H-alpha, Ca II K, He I 10830 Å, continuum (white light), and pho
tospheric lines; (3) integrated sunlight spectrometer to obtain high resolution (R = 300,000) spectra 
of the Sun-as-a-star at selected wavelengths between 3500 Å and 11000 Å. SOLIS was situated at 
Kitt Peak National Observatory (Arizona, USA) from 2010 until 2014; eventually it is to be located 
at Big Bear Solar Observatory (California USA), where construction for SOLIS started in summer 
2021. 

STEREO: Solar TErrestrial RElations Observatory 

A pair of spacecraft launched on October 26, 2006, into a highly elliptical orbit with apogee near 
the Moon. A gravity assist from the Moon on December 15, 2006, caused STEREO-A(head) to 
enter an orbit with a period of 347 days, slightly inside Earth’s orbit, such that STEREO A gradu
ally moved ahead of Earth in its orbit. Another gravity assist from the Moon on January  21, 
2007, caused STEREO-B(ehind) to enter an orbit with a period of 387 days, slightly outside 
Earth’s orbit, such that STEREO-B gradually lagged behind Earth in its orbit. The two spacecraft 
moved slowly away from each other at a rate of about 44 degrees per year. On February 6, 2011, 
STEREO-A and -B were separated by 180 degrees, thereby allowing the full surface of the Sun 
to be detected simultaneously. The angular separation continues to increase, and the two space
craft will reach 360-degree separation, and once again come closest to Earth, in the year 2023. 
Unfortunately, STEREO-B lost contact with Earth on October 1, 2014. Instruments on board both 
STEREO-A and -B include SECCHI (imaging the inner corona in EUV, imaging the outer corona 
and the space between Sun and Earth in white light), IMPACT (a solar-wind instrument to make 
in situ measurements of energetic particles and determining the 3-D distribution of electrons and 
magnetic fields), PLASTIC (measuring plasma properties, including heavy ions), and SWAVES 
(studying radio bursts propagating from Sun to Earth orbit). Although the STEREO spacecraft 
were obviously designed to study the Sun, nevertheless, the heliospheric imagers (HI1, HI2) are 
sensitive enough to be capable of detecting background stars also. This allows for calibration of 
the sensitivity as the spacecraft ages. HI1, observing in a field of view that extends out to about 
0.3 AU, could measure the brightnesses of some 1400 stars, while HI2 (extending out to 1 AU) 
observed some 600 stars. Both cameras were found to be degrading in sensitivity at a rate of about 
0.1% per year, about 10 times better than for white-light instruments on other spacecraft (Tappan 
et al. 2017 Solar Phys. 292, 28). 

TRACE: Transition Region and Coronal Explorer 

This NASA Small Explorer Mission (SMEX) was launched in April 1998 in order to explore the 
3-D magnetic field in the solar atmosphere, to determine how the field evolves in response to pho
tospheric flows, and to quantify the time-dependent coronal fine structure. The Soft X-ray telescope 
(SXT) obtained more than 2 million high-resolution images of coronal loops in 12 years of opera
tions. TRACE was the first space-based mission to obtain imaging data spanning an entire cycle of 
solar activity, studying the Sun at both maximum and minimum. The satellite observed some fine-
scale structures for the first time, including coronal or solar moss, a sponge-like structure found at 
the base of some coronal loops. On June 21, 2010, TRACE took its last image. 
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YOHKOH (also known as Solar-A) 

A Japanese satellite mission launched on August 30, 1991, into a near-circular orbit some 675 km 
above Earth’s surface. Instruments included (1) a soft-X-ray telescope (SXT), mainly sensitive to 
temperatures in excess of 2.5 MK (Yoshida et al. 1995), creating images of the Sun with angular 
resolution of about 3 arcsec; (2) a hard X-ray telescope (HXT) to create images of the Sun in pho
tons with energies >30 keV; (3) Bragg crystal spectrometer to diagnose very hot plasma; and (4) a 
wide-band spectrometer to detect photons from soft X-rays to gamma rays. YOHKOH effectively 
stopped observations in December 2001. 



http://taylorandfrancis.com
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Index
 

A 

absorption coefficient, 27–29
 
defined, 27
 
numerical values, 27
 

absorption lines
 
C-shaped bisector, 63–65
 
solar spectrum, 56–66
 

acceleration due to gravity, 9, 10, 12, 79, 111, 117, 121, 136, 

149, 357
 

solar wind, 357–382
 
vertical, 115–117, 196–197
 

acoustic dissipation
 
balanced by radiation, 247
 
rate of, 243–247
 

acoustic energy flux, 243–244
 
acoustic waves, see also sound waves in sun
 

chromospheric heating, 242–251
 
in the corona, 335
 
cut-off frequency, 199
 
cut-off period, 199
 
empirical limit in corona, 335
 
flux of energy, 243–244
 
generated by convection, 223–224, 243, 244, 253
 
in polytrope, 140–141, 225
 
propagating, 195–199
 
propagation time from center to surface, 140, 225
 
trapped, 199
 

active regions, xiv
 
coronal density, 324
 
coronal magnetic fields, 279
 
coronal temperature, 311–316
 
defined, 264
 
diffusive decay, 267
 
latitudes, 266
 
localized heating, 293
 

activity cycle, see eleven-year cycle
 
adiabatic index
 

generalized, 103, 108, 123
 
ionization, effects of, 102–103
 

adiabatic oscillations, 207–208
 
adiabatic processes, 104, 106–108, 120–122
 
adiabatic temperature gradient, 104, 106–107, 120–122
 
AIA (Atmospheric Imaging Assembly) instrument on 


SDO, 317, 319, 342–343, 395
 
Alfven speed defined, 254, 294
 

in chromosphere, 294
 
in corona, 294, 307
 
in photosphere, 294
 
reconnection outflow, 348
 
in sunspot umbra, 294
 

Alfven waves
 
chromospheric heating, 293
 
into the corona, 294
 
coronal heating, 335
 
difficult to dissipate, 294
 
in the photosphere, 294
 
transverse, 294
 

ambipolar diffusion, 286
 
amplification of fields
 

solar cycle, 296
 
time-scale for, 298–299
 

amplitude
 
Alfven waves, 294
 
antinode, 214–216
 
g-modes, 220
 
largest p-modes, 189
 
p-modes, 200
 
radiant modes, 19
 
related to energy flux, 243, 293
 
“seeing”, 81
 
solar irradiance, 6
 
solar oscillations, 187–191
 
sound waves in photosphere, 243–245
 
trapped vs. untrapped, 195–199
 
turbulence in corona, 323
 
variation with height, 245
 
velocity differences in convection, 95
 

angstrom unit, 22
 
angular degree l
 

defined, 140, 192
 
empirical determination, 192
 
horizontal wavelength, 192
 

angular frequency of small oscillations, 206
 
angular momentum
 

of electron, 271
 
of orbit, 272
 
of polarized photon, 274
 
sublevels in atom, 69
 

angular radius, 8, 13
 
angular resolution
 

p-mode observations, 192
 
required for granules, 97
 
required for high I modes
 

angular velocity, 12, 14–16, 226–228
 
anisotropy of Lorentz force, 287
 
antenna, 224
 
antinodes of eigenfunctions, 214–216, 


223–224
 
arches, in X-rays, 327
 
arcs, see arches
 
artificial satellite, 5
 
astronomical unit, 4
 
asymptotic functional forms of oscillation equations, 


204–207, 218–220
 
asymptotic spacing
 

in frequency, 194, 213
 
in period, 218
 
of p-modes, 140–141
 

asymptotic values
 
boundary temperature, 37
 
coronal pressure, 358
 
L/M ratio, 132
 
luminosity, 132
 
mass, 132
 
solar wind speed, 363
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atomic energy levels
 
bound electrons, 42–44, 46–49, 51, 235, 248, 271–273, 


313–315, 330
 
in magnetic field, 271–273
 

atomic mass units, 158
 
Avogadro’s number, 11
 
azimuthal symmetry, 25
 

B 

Babcock magnetograph, 275, 279, 282
 
Balmer lines in Sun, 57, 60–61, 235, 251, 308
 
barrier penetration, see quantum tunneling
 
base of convection zone, 103, 123–124, 127, 130–132, 135, 


139–140, 222–223, 226, 228, 297
 
base of corona defined, 309–310
 

density at, 310
 
energy flux at, 374
 
pressure at, 310, 325, 332
 
velocity at, 307
 

base of sunspot, 292
 
Benard, Henri
 

convection cells, 94
 
study of laboratory convection, 94
 

beta-decay, 170–171
 
black-body radiation (= Planck function), 19–23
 
Bohr model of hydrogenic atom, 42–44, 47, 315
 
bolometric flux
 

umbra vs. photosphere, 260
 
bolometric luminosity, 267
 
Boltzmann’s constant, 11, 20, 101, 332
 
Boltzmann distribution, 20
 
Boltzmann factor, 17, 48, 69–71, 73
 
boundary conditions, xv, 34, 115, 135, 142
 

in corona, 282
 
Lane-Emden equation, 149
 
oscillation equations, 210, 211
 

boundary of polytrope, 150
 
boundary temperature, 37, 82
 
bound-bound transition, 47, 48, 82, 127, 250
 
bound electron, 43, 47, 72
 
bound-free transition, 47, 48, 50, 54–56, 82, 127
 
bound state
 

negative hydrogen ion, 50
 
breaking waves
 

defined, 245
 
local heating, 246
 

bridging the Coulomb gap, 165–166
 
Brunt-Vaisala frequency, 220
 
buoyancy
 

in granules, 116
 
in magnetic field, 297
 

calcium lines (H and K) ionized calcium, 56, 66, 77, 

235, 237
 

“captive audience” loops, 327
 
not in CH, 327
 

cavity
 
radiation, 19–22
 
sound waves, 190, 200
 

CDS (= Coronal Diagnostic Spectrometer), instrument on 

SOHO, 322, 395
 

cell, center of supergranule, 109, 224, 237–240, 242–244, 

246–247, 249, 269, 276, 293, 295
 

cell vs. network differences, 240–242
 
energy supplies, 245–247 

central condensation, 154–155 
central density 

in a polytrope, 146, 148, 151, 154–155, 208
 
in the Sun, 10, 138, 142, 151, 206
 

central pressure
 
in a polytrope, 152
 
in the Sun, 142
 

central temperature in a polytrope, 147
 
in hydrostatic equilibrium, xvi, 8, 117, 147, 166
 
in the Sun, xvi, 137, 166
 

channels for flare energy, 345
 
characteristic gravitational period in the Sun, 16, 148, 208
 
charged particle in a magnetic field, 283–286
 
checking solar theories, xvi, xvii, 11, 80, 118, 140–141, 


175, 187, 225, 245, 295, 379
 
chemical composition
 

in corona, 319, 331
 
in photosphere, 79, 87, 243, 331
 
solar interior, 119, 123–125, 137
 

Cherenkov radiation
 
chlorine (cleaning fluid), 181
 
neutrinos, 181–185
 

chromosphere, 233–255
 
acoustic flux, 243–245
 
CaK observations, 235, 237
 
calculating the temperature increase, 247–249
 
color, 234
 
definition, 234
 
deposition of energy, 245–247
 
dissipation length, 246, 334
 
eclipse image, 234
 
Hα observations, 238–240
 
heating by untrapped modes, 196
 
helium ionization, 75
 
hotter than photosphere, 236, 241
 
input energy flux, 243–245
 
low chromosphere, 248–249, 286, 289
 
mechanical work, 242–243
 
middle chromosphere, 249–251
 
network, 95–96, 237–244, 246–247, 249, 252, 254, 


266, 269–270, 293–296
 
not heated by p-modes, 243
 
observations on the disk, 236–240
 
opacity power-law, 56, 248
 
plage, 98, 252, 262, 264, 269–270, 324
 
radiative cooling, 247–249
 
supergranules, 108–111
 
temperature profiles (empirical), 241
 
thermostatic effect of hydrogen, 251
 
thickness, 236
 
two components, 240
 
upper chromosphere, 73–74, 242, 245, 249, 251, 


253–255, 289, 294, 315, 323, 328, 332–333
 
volumetric rate of energy deposition, 245–247
 

chromospheric heating
 
excess due to Alfven waves, 294
 
network, 293–295
 
plage, 293
 

CH, see coronal holes
 
circular path particle in magnetic field, 283
 

C 



 

 

 

 

Index 401 

circular polarization, 273–275
 
circulation time granules, 98–99
 
closed loops, 327, 329, 330, 365
 

densities in, 327
 
trapped gas in, 327
 

clumps in solar wind, 370–373
 
CME’s, see coronal mass ejections (CME’s)
 
CNO cycle, 158, 160, 177, 180–181
 
collisions between particles
 

defined, 160
 
distant, 161
 
frequency in solar core, 161
 

column density, 44, 45, 49, 51, 80, 89, 310
 
computational procedure (“step-by step”) 

convection zone, 122–123 
interior, 135–137 
oscillations, 211–213 
photosphere, 82–86 
polytrope, 152–154 

conducting fluid magnetic interactions, 286
 
conduction of heat
 

kinetic theory, 128
 
molecular process, 94
 

conductivity 
electrical, 106, 287, 318
 

in photosphere, 289
 
in solar atmosphere, 289, 363
 
in sunspot umbra, 289
 

Spitzer value, 288, 289
 
thermal, 106, 329
 

electrons, 329, 359
 
photons, 127–129
 

conservation
 
energy, 19, 145, 175, 197, 360, 362
 
magnetic helicity, 280
 
mass, 145, 146, 197, 207, 360, 362
 
momentum, 116, 142, 145, 146, 175, 196–197, 206, 


360, 362
 
continuous neutrino energy spectrum, 177–178
 
contrast heating of chromosphere vs. corona, 334
 
convection in laboratory, 94
 
convection in Sun
 

empirical properties (see granules)
 
inhibited in umbra, 106, 163, 290
 

convection modeling
 
3-D modeling, 98–99, 103, 110, 118, 122
 
critical temperature gradient, 104–105
 
energy flux, 83, 98
 

above the photosphere, 119
 
below the photosphere, 119
 
in the photosphere, 119
 

generalized exponent, 103, 108, 123
 
mixing length theory, 117–119
 
model computation, 122–123
 
onset, 107
 
power laws of temperature, 121, 122
 
speeds, 95
 
step-by-step, 122–123
 
vertical acceleration, 115–116
 
vertical length scales, 98, 116–117
 

convection speeds
 
depth dependence, 224
 
determining factors, 115
 

convection zone, 115–125 

acceleration due to gravity, 123
 
base location, 103, 123–124, 127, 130–132, 135–136, 


139–140, 222, 226, 228, 297
 
deep regions, 122
 
depth, 124–125
 
differential rotation, 227–228
 
p-mode excitation, 223–224
 
power law behavior, 121–122
 
spherical shell, 123–124, 151
 
superadiabatic region, 118, 224
 
uppermost layers, 107, 121
 

convective envelope, 124–125, 151–152, 185, 201, 218, 279
 
convective inhibition in umbra, 263, 290
 
convective instability/stability, 105
 

ionization effects, 103, 107, 122
 
convective turbulence and sunspot erosion, 267
 
convergence of rotation curves, 228
 
cooling rate in corona
 

conductive, 331
 
radiative, 331
 

cooling time-scale
 
continuum radiation, 247–248
 

coordinate space, 70
 
core of the Sun, xvi, 7, 11, 24, 139–140, 159–162, 165–166, 


169–170, 172–173, 175–176, 179, 185, 187, 347
 
corona, 307–352
 

abrupt transition from chromosphere, 325, 333
 
active region parameters, 324
 
Alfven speed, 294
 
asymptotic hydrostatic pressure, 358
 
densities, 309–310
 
eclipse images, Figs. 15.1, 17.1–17.4
 
electrical conductivity, 289
 
electron temperatures, 311–315, 324–325
 
emission measure, 319–321
 
energy fluxes, 333–334
 
expansion (see solar wind)
 
fields or gas dominate, 295–296
 
gas pressures, 325
 
ion temperatures, 323–324
 
magnetic loops, 271, 276–277, 326–328, 337
 
maximum brightness, 307
 
polar fields, Figs. 17.2, 17.4, 271, 281–282, 


296, 298
 
polarized light, 310
 
quiet Sun parameters, 324
 
radiative losses, 331–332
 
radio polarization, 270, 279
 
scale height, 310, 320, 325, 334, 358
 
spatial structure, 307, 325, 326
 
temperature of line formation, 315–316
 
thermal conduction, 329–330
 
trapped gas in loops, 328
 
volumetric energy deposition rate, 333–334
 
white-light corona, 283, 309–312, 326–327
 
X-ray image, 327
 
X-ray line strength, 319–320
 

coronal analysis to determine Ne, 324–325 
coronal density
 

Edlen’s limit, 312–313
 
radial profile, 310
 

coronal emission lines
 
Edlen, 311
 
green line, 311, 316
 



 

 

 

402 Index 

red line, 311
 
in X-rays, 313–315
 

coronal heating
 
magnetic carpet, 336–337
 
volumetric rate of energy deposition, 333–334
 
wave fluxes required, 334
 
waves, acoustic, 335
 
waves, Alfven, 335
 

coronal holes, xiii, 245, 266, 317, 319, 324, 326–329, 331, 

364–365, 371
 

high-speed wind, 364
 
low density, 327–328
 
open fields, 327–328
 

coronal mass ejections (CME’s), xv, 270, 300, 346, 351, 

364, 375–378
 

characteristic mass, 377
 
vs. flares, 378, 381
 
ideal MHD instability, 381
 
mass distribution, 377
 
mass loss rate, 380
 
maximum mass, 377
 
solar cycle variations, 376–377
 

coronal radiation, output power, 334
 
coronal shape and 11-year cycle, 307
 
coronal streamers, 280, 307, 309, 324, 326, 382
 
coronal temperatures
 

empirical, 311–315
 
theoretical estimate, 328–332
 

Coulomb cross-section, 161–162, 329
 
Coulomb effects in conductivity, 289
 
Coulomb gap
 

bridging the gap, 165–166
 
defined, 164
 

Coulomb logarithm, 161, 329–330
 
Coulomb repulsion in negative H ion, 50
 
Cowling approximation, 202, 205–208, 213–214, 218, 


225, 230
 
Crab Nebula, remote sensing of solar wind, 370
 
critical frequency
 

acoustic, 199
 
gravitational, 16
 

critical radius, location of peak gravity, 136
 
critical temperature gradient, onset of convection, 104–107
 
cross-product of vectors, 283
 
cross-section
 

Coulomb, 161, 329
 
HeI edge, 51
 
Lyman edge, 46–48
 
negative H ion, 50–51
 
neutrino, 176
 
Thomson, 46–48, 310
 

C-shaped bisector, 63–65
 
in umbrae, 263
 

current density, 286
 
curvature of field lines, 287, 291
 
cut-off
 

acoustic frequency, 199
 
acoustic period, 199
 
neutrino energy, 177–178
 

D 

damped solutions
 
g-modes, 220
 

nuclear wave function, 168
 
sound waves, 198–199
 

De Broglie wavelength, 23–24, 47, 141–142, 163–166, 168
 
decay of magnetic field, 288
 

in a pore, 289
 
in a spot, 289
 

deep interior of the sun, 120, 127
 
degenerate electrons, 141, 151–152
 
degree of oscillation mode l, 192
 
degree of polarization, 279, 310
 
DEM (= Differential Emission Measure), 318–320, 342, 393
 
density, exponential profile, 80
 
density differential, 116
 
departures from spherical symmetry
 

cell vs. network, 240
 
deposition of energy
 

in chromosphere, 245, 248
 
in corona, 333–334
 
heating caused by, 248
 
by sound waves, 245
 

depth scale
 
linear, 29
 
optical, 29
 

depths for p-modes excitation, 223–224
 
penetration, 222
 

detectors of solar neutrinos, 181–184
 
deuteron, 158–159, 167, 170
 
differential rotation
 

effects on fields, 298–299
 
latitudinal, 13, 228
 
magnitude, 15
 
radial, 16, 228
 

diffusion
 
of magnetic field, 288
 
of photons from core, 139
 
of radiant energy, 128
 

diffusive decay
 
active regions, 299
 
time-scale for, 299
 

di-proton, instability, 170
 
discrete frequencies, solar oscillations, 193
 
dispersion relation, 221
 
displacement of gas, vertical sound wave, 196
 
dissipation length (waves)
 

chromosphere, 246
 
corona, 334
 

DKIST (= Daniel K Inouye Solar Telescope), 91
 
D lines (sodium), 56, 313
 
dominance, field or gas, 289, 295
 
Doppler effect, 12, 14–15, 58–59, 63–65, 96, 108–109, 


190, 227–228, 244, 253, 255, 324, 393
 
downflows
 

convection, 95–96
 
in intergranular lanes, 95, 290
 

Dreicer field, 351
 
dynamics of convection, 115–117
 

E 

earth
 
atmosphere, 81, 91, 93, 286
 
earthquakes, xv, 187
 
magnetic field, 282, 375
 
mass, 5
 



 

 

Index 403 

orbit, 1–3
 
oxygen, 56
 
radius, 5
 

eclipse of Sun, 308–309 
E corona, 307 
eddies in turbulent flow, 95 
Eddington approximation, 32, 35 
Eddington-Barbier relationship, 32–33 
Eddington relation, 37 
Eddington solution 

applicability, 35, 82, 87, 89
 
non-applicability, 242, 246
 

“edge” (in spectrum) 
Balmer, 49 
bound-free transition, 47 
HeI, HeII, 51 
Lyman, 47–49, 51–52, 54–55 
negative H ion, 50 
Paschen, 49 

edge of Sun’s disk, sharp, 81 
effective polytropic index, 146, 152 
effective temperature 

photosphere, 11, 36, 89, 99, 167 
umbra, 260 

efficiency of sound emission, 224 
eigenfrequency, 140, 198, 211–214, 220, 225–226 
eigenfunction, 9, 140, 194–195, 206, 214–216, 222–224, 229 
eigenmodes 

g-modes, 216–217 
p-modes, 140, 211–212 

EIS (Extreme-ultraviolet Imaging Spectrograph), 
instrument on Hinode, 318, 322, 324–325, 393 

EIT (= Extreme-ultraviolet Imaging Telescope), instrument 
on SOHO, 14, 316–318, 321–322, 324, 395 

electrical conductivity, 106, 287, 289, 363 
electrical resistivity, 381 
electric field, motional, 283, 288, 351 
electron 

charge, 283
 
magnetic moment, 271
 
spin, 271
 

electron degeneracy, 141–142, 151 
electron density 

in corona, 309–310, 324 
radial profile, 310 

electron pressure, 44, 71, 74–75, 77, 90, 315 
electrons 

bound, 43, 47, 55, 69, 72, 127, 176, 236, 311, 316, 319, 328 
free, 40, 50–51, 54, 69, 75, 236, 310, 316, 319, 328 
nonrelativistic, 151, 171 
relativistic, 43–44, 66–67, 151–152, 163 

electron scattering coronal light, 307 
Thomson cross-section, 40, 46–47, 53, 176, 310 

electron volt, 42 
eleven-year cycle, xiv, 8, 228, 264, 266–268, 297, 300, 

322, 365, 380, 383 
Emden unit of length, 148, 152, 208 
emission lines 

in chromospheric spectrum, 235
 
in coronal spectrum, 307–308, 312
 
Edlen, 311
 

emission measure 
defined, 319–321 

emissivity, 27–28 

end-point (cut-off) energy (neutrino), 177 
energy build-up (pre-flare), 343 
energy change in displacement, 104–105 

algebraic sign, 105 
energy deficit (in spots), 260 
energy density 

black-body radiation, 20–22, 34, 36
 
flares, 347
 
kinetic energy, 9, 295, 369
 
magnetic field, 287, 290, 369, 378
 
radiation, 22, 34, 36, 129
 
solar wind, 369, 382
 
thermal, 248, 251, 287
 
wave, 243
 

energy deposition rates (volumetric) 
in chromosphere, 246 
in corona, 333–334 

energy distribution (flares), 343 
energy equation, 142, 145–146, 152, 207–208, 362–363 
energy-generating core, 131, 137–140, 152, 157, 159–162, 

165–167, 169–173, 175–179, 185, 187, 218, 222, 
226, 228 

energy input 
to chromosphere, 243–245 
to corona, 333–334 

entropy and ionization, 121 
equation of state 

perfect gas, 115, 118, 131, 141–142, 146–147 
polytrope, 145–147, 150, 210 

equilibrium 
gas spheres, 146 
hydrostatic, xvi, 79–80, 82, 89, 91, 97, 107–108, 115–116, 

127, 131, 135, 137, 139, 141, 146, 149, 151–152, 
166, 196–197, 206, 249, 310, 325, 357–361, 374 

radiative, 34, 91, 104, 242 
thermodynamic, 21, 89, 250 

equivalent width, 58 
escape speed, 11, 137, 141, 166 
escape time from Sun’s center 

neutrinos, 176 
photons, 139–140 

evacuation of gas (spots), 291 
EVE (= Extreme-ultraviolet Variability Experiment), 

instrument on SDO, 51–52, 320–321, 351, 395 
exact solution of RTE, 35 
excitation depth of p-modes, 223 
excited states 

atoms/ions, 42, 46, 48, 52, 54, 56 
nuclei, 166, 179–180 

exclusion principle, 70, 141 
exothermic reactions, 159 
extent of Sun’s influence, 381–384 

F 

faculae 
defined, 268, 293 
excess brightness, 7, 268, 295 
near the limb, 268, 271 
and pores, 293 
Wilson depression, 293 

fast particles from flares 
electrons, 343–345 
protons, 345 
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fast solar wind
 
from coronal holes, 364
 
high ion temperatures, 324
 

F corona, 307
 
Fermi (unit of length), 163
 
Fermi, Enrico, and neutrinos, 175
 
Fick’s law of diffusion, 128
 
“fields” and “hedgerows”
 

in Ca K, 238
 
in Hα, 239
 
on white light, 93
 

five-minute oscillations, 189
 
flares, xiv, xv, xvii, 337–352
 

amount of energy, 345–347
 
areas, 343
 
vs. CME’s, 378, 381
 
electron densities, 341
 
energy densities, 347
 
in Hα, 338, 340
 
light curves, 339–340
 
linear scales, 343
 
locations, 343
 
magnetic energy, 347
 
magnetic field strengths, 347
 
magnetic reconnection, 347–351
 
maximum energy release, 346–347
 
numbers detected, 339–341
 
resistive instability, 381
 
size distribution, 341
 
SOC (= self-organized criticality), 341, 349
 
spatial location, 343
 
temperatures, 341–342
 
white light, 337–339
 

flash spectrum, 235–237, 240, 251, 308, 313
 
flux of
 

mechanical energy, 243–244, 334
 
neutrinos, 177–178
 
radiant energy, 6–7, 11, 22, 34, 36
 

follower sunspot, 259
 
magnetic polarity, 279
 

foot-points of loops, 300
 
active regions, 276–277, 326
 
coronal fields, 300, 327
 
separation, 307
 

forbidden lines, 41, 180, 311–312, 325
 
forces of nature, strong and weak, 157
 
Fraunhofer lines, 57
 
free-free opacity, 48, 50, 55, 82
 
frequency of solar oscillations
 

asymptotic spacing, 217–218
 
determinant of p-mode spacing, 140–141
 
empirical results, 190, 194
 

“frozen” field, 281, 285–286, 288–290, 295–297, 343
 
gives mass to field line, 294
 
in reconnection, 347–348
 

functional forms, asymptotic, 211
 
fusion, nuclear, xvi, 137, 157–159, 162, 164, 167
 
“fuzzy glow” corona, 317, 322, 324, 326, 328, 335–337
 

G 

galactic cosmic rays (GCR), 267, 383–384
 
11-year cycle, 384
 
phase shift relative to sunspots, 384
 

solar wind protects Earth, 383
 
Galileo, xiii, 12, 96, 200–201, 259, 265
 
GALLEX (neutrino detector), 183
 
gallium neutrino reaction, 183
 
gamma-rays, polarized, 274
 
Gamow factor
 

defined, 168
 
value in the Sun, 169
 
velocity-sensitive, 169
 

gas constant, 11, 79, 101
 
GCR, see galactic cosmic rays
 
Gegenbauer polynomials, 15
 
generalized adiabatic exponent, 103, 108, 123
 
GLE (= Ground level event), 345
 
global magnetic field of Sun, 280–282, 301
 
global sound propagation, 119, 212
 
g-modes, 154, 187, 201–202, 205, 210, 216–220, 229
 

asymptotic spacing in period, 217–218, 220
 
non-existence if n< N, 210
 
in radiative interior, 201
 

GOES X-ray satellite, 266, 339–343, 345, 351, 

378–379
 

GONG (= Global Oscillations Network Group), 9, 189, 

195, 202, 231, 393
 

gradient
 
critical, 105–108
 
of temperature, 87, 89–90, 94, 102, 104–105, 106
 

granules, 63, 93–100
 
acoustic effects in, 99
 
circulation pattern, 98–99
 
circulation time, 98
 
empirical properties, 93–100
 
energy flux, 100–101
 
intensity differentials, 99–100
 
lifetime, 94, 223, 244
 
and magnetic carpet, 337
 
shape, 93–95
 
sizes, 96–98
 
temperature differentials, 99–100
 
velocities, 95–96
 
vertical depth, 98, 116–117
 

gravitational constant, Newton’s, 2, 6
 
gravitational potential, 11–12, 149
 
gray atmosphere, 33–36, 50, 82, 104
 
ground state-


atomic, 42, 44, 46–48, 56, 69, 77, 315
 
nuclear, 179–181
 

gyrofrequency, 279, 285
 
gyroradius, 285, 289, 348
 

fluid analog, 287
 
numerical values, 285
 

H 

Hale’s polarity law, 279, 298
 
half-width of line, 324
 
H-alpha (H )
 

filaments, 269
 
in flares, 338, 340
 
H and K lines (ionized calcium), 59, 61–62, 74, 77, 235, 


237, 244, 264, 269, 338
 
observing the chromosphere, 238–240, 269–270
 

hard X-rays, 313, 338–339, 341, 343–344, 346, 397
 
heavy water (neutrino detector), 183–185
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“hedgerows” and “fields”
 
in Ca K, 238
 
in Hα, 239
 
in white light, 93
 

helioseismology, xv, 15, 125, 147, 185, 187, 393, 395
 
age of the Sun, 214
 
global sound propagation, 140–141
 
probing the “far side” of the Sun, 295
 
radial profile of the sound speed, 226
 
solar rotation, 15–16, 226, 228
 
testing a solar model, 124, 225
 
testing spot models, 293
 

heliosphere, 382–384
 
helium
 

in chromosphere, 51, 75, 221
 
ionization temperature, 75–76
 

helix, motion of charged particle, 285
 
helmet streamers, 280, 307
 

extent, 307
 
motions inside, 361
 
motions outside, 361
 
X-ray loops, 326
 

high speed wind, 364–365
 
coronal holes, 364
 

HINODE satellite, 97, 99, 109, 235, 262, 276, 278, 291, 

318, 322, 324–325, 338, 365, 393
 

HMI (= Helioseismic Magnetic Imager, on SDO), xiv, 8, 

109–110, 192, 230, 276, 277, 295, 351, 395
 

horizontal wavelength, 192, 202, 221
 
HSE, see hydrostatic equilibrium
 
hydrodynamic expansion, 8
 

global coronal property, 359
 
hydrogen
 

atom, 11, 42–44
 
dominant emitter, 234–235, 239, 251
 
edges, 48–49, 54
 
ionization fraction in photosphere, 75
 
ionization strips, 72
 
negative ion, 50, 56, 76, 82, 89
 
spectral lines, 57, 60–61, 235, 251, 308
 
upper level populations, 49, 73, 250
 

hydrostatic equilibrium
 
center of Sun, xvi, 8, 137, 166
 
chromosphere/corona transition, 325
 
degenerate electrons, 151–152
 
global breakdown in corona, 357–359
 
inner solar wind, 357, 359
 
photosphere, 79–81, 115, 127, 139
 
in a polytrope, 146
 
polytrope, 149, 151–152
 
radiative interior, 127
 
spherical solution, 357–359
 
stratified atmosphere, 196
 
in the umbra, 292
 

ideal MHD instability in CME’s, 381
 
imbalanced forces in convection, 116
 
IMF (spiral magnetic field), 301, 363
 
impact parameter, 370–372, 382
 
inhibiting convection in umbra, 263, 290
 
in situ measurements of magnetic field, 366, 368–370, 


372–373, 396
 

instability, convective, 105, 107, 223
 
intensity of radiation, 12, 19–21
 

black-body (Planck) radiation, 11, 18–19, 21, 23, 

54–56, 250
 

incoming, 35, 127
 
outgoing, 35, 127
 
per unit frequency, 20, 21
 
per unit wavelength, 21
 

interface convection zone/radiative interior, 226
 
intergranular lanes, 93, 95, 97–100, 102, 121, 253,
 

261, 290
 
internal energy chromosphere, 247
 

convection zone, 101–105, 118
 
corona, 374–375
 
ionizing gas, 102–103, 124
 
neutral gas, 101
 

internal structure of the Sun, how to check on, xvi, xvii, 

11, 80, 118, 140–141, 175, 187, 225, 245, 

295, 379
 

International Astronomical Union (IAU), 4
 
International Union of Geodesy and Geophysics, 5
 
interplanetary magnetic field (= IMF), 301, 363
 
interstellar medium pressure, 382–383
 
ion inertial length, 256
 
ionization, 69–77
 

in chromosphere, 73–75
 
degree of, 72–73, 75–77, 79, 103, 108, 115, 121, 


289–290
 
effects of, 121–122
 
equilibrium, 51, 69
 
facilitates convection, 107
 
in photosphere, 75, 79, 289
 
Saha equation, 71–73
 
umbra, 289
 

ionization potential, 51, 69, 71, 77, 102, 315, 331
 
ionization strips, 72, 77, 102
 
ionized gas, “tied” to field lines, 281, 285–286, 288–290, 


294–297, 343, 347–348, 363
 
ion temperatures, 323–324, 363
 
IRIDIUM 175 (artificial satellite), 5
 
IRIS (= Interface Region Imaging Spectrograph), 


251–253, 394
 
iron, in corona, 311, 314–315
 
iron filings in magnetic field, 271, 281, 307–308, 364
 
ISM, see interstellar medium pressure
 
isospin doublet, 171
 
isothermal atmosphere, 80, 197
 
isothermal perfect gas, 80
 

J 

jet, from reconnection, 351
 

K 

Kamiokande neutrino detector, 183–184
 
K corona, 307
 
Kepler, Johannes, 2, 3
 
Kepler satellite, 218
 
kinetic theory, 73, 128, 141
 
K line (ionized calcium), 15, 56, 59, 61–62, 74, 237, 


264, 269
 
knock-on electrons, in Cherenkov detector, 182–184
 
Kramers “law” of opacity, 55, 76, 130, 132, 139, 145, 155
 

I 
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L 

laminar flow, 81, 94, 99 
lande g-factor, 273 
Lane-Emden equation, 147–151, 152–154, 210, 220 
Lane-Emden function, 147, 149, 220 
Laplacian operator, 207 
large separation, 213–214, 218 
latitudes of active regions, 237, 266, 270, 349 
latitudinal structure index l, 191, 207, 226, 276 
leader sunspot, 259, 279, 283, 298 

magnetic field, 279, 283 
Legendre functions, 192 
leptons, 185 
lifetime of Sun, 161, 162, 214, 375 
light curve, 339 
limb brightening, 26, 30, 33 
limb darkening, 8, 25–26, 30–33, 35, 39, 50, 240–241 
linear absorption coefficient, see absorption coefficient 
linear polarization, 65, 276 
line broadening, 59, 244 
line profile, 57–58, 60, 62, 63–66, 95, 275 
line width 

p-modes, 190 
spectral lines, 59, 66, 271, 324 

longitudinal (line-of-sight) field, 273, 275–277, 395 
longitudinal structure index m, 191–192, 207, 227 
loops, in X-rays, xiv, 327, 396 

active regions, 271, 276–277, 279, 289, 301, 324, 
326–327, 337, 345, 349, 365 

spatial scales, 326, 327, 333 
Lorentz force 

anisotropic, 283, 286–287 
direction, 283–284, 286 
magnitude, 261, 283, 287 

low chromosphere 
defined, 241 
onset of temperature increase, 246, 249 
and temperature minimum, 62, 74, 241–242, 246–249 

lower boundary, p-mode cavity, 190, 200, 221–222 
lower hemisphere, radiative transfer, 30, 35 
lower photosphere, 39, 49, 79 

hydrogen ionization, 75 
negative H ion, 77 

luminosity of the Sun, 6–9, 11, 79, 115, 120, 131, 135, 157, 
160, 167, 267–268, 343 

Lyman edge, 47–49, 51–52, 54–55 
Lyman lines, 46, 315 

M 

Mach number, 224 
magnetic activity, 292 

and coronal shape, 307 
defined, 270 

magnetic carpet and coronal heating, 336–337 
magnetic diffusivity, 288 
magnetic energy and reconnection, 347–349, 352 
magnetic field direction and polarization of Zeeman lines, 

273–275 
magnetic fields, 259–301 

active regions, 254, 271, 294, 301, 326, 343, 347, 378 
Alfven waves, 233, 255, 294, 326, 362, 365 
amplification, 296 

Babcock magnetograph, 275 
chromospheric network, 270 
coronal heating, 326, 334, 337, 341 
cycle, 298–300 
diffusion, 289 
dominant over gas, 295 
dominated by gas, 295 
effects in spectral line, 65, 271–276 
energy density, 287, 290, 347, 369, 378 
enhanced energy supply, 243, 254, 294–295, 

327–328, 347 
free energy, 280, 300, 343, 351–352, 381 
global field, 271, 280–282, 298, 301, 307 
maximum strength in Sun, xiv, 277–278 
measurements, 270–281 
MHD (see magnetohydrodynamics) 
polarization of light, 273–277 
pressure, 254, 286–287, 291–292 
quiet Sun, 282 
radio polarization, 279 
reconnection (see flares) 
release of magnetic energy (see flares) 
strength 

in active regions, 282, 294 
in compact flux ropes, 282 
in coronal plasma, 279, 294 
in flares, 347 
in IMF, 266, 281 
in ISM, 359 
maximum permitted in Sun, 297 
in photosphere, 285, 294 
at solar poles, 271, 280–282, 298, 301 
in sunspot umbrae, 277–278 
in toroidal structures, 296–297 

stronger in network/plage, 249, 293–294 
sunspot flux blocking, 260 
swept into network, 269 
tension, 286 
umbra, 187, 259–262 
vertical, 260 
wave energy, 294–295 
wave modes, 233, 245, 247, 253–256, 294, 296, 326, 

328, 362 
Zeeman effect, 271–276 

magnetic flux, 240, 282, 288, 291, 296, 301–302, 327, 338, 
343, 347–348, 380–381 

magnetic interactions 
with charged particles, 283 
with conducting fluid, 286 

magnetic islands, 348–349, 369 
magnetic moment, 271 

electron, 272 
orbital, 272 

magnetic reconnection 
coronal heating, 337 
flares, 347–352 
motional electric field, 351 

magnetohydrodynamics 
defined, xiii, 287 
interactions with charged particles, 283 
interactions with conducting fluids, 286–289 
reconnection, 347–351 

main sequence, 167 
mass ejections, see coronal mass ejections (CME’s) 



 

 

 

 

  

Index 407 

mass loss rate from the Sun
 
in nuclear reactions, 7, 375
 
in solar wind, 8, 375
 

mass of Sun’s core, 161
 
mass profile of Sun, 132
 
mass-radius relationship, 151
 
maximum acceleration due to gravity in Sun, 137
 
maximum effectiveness of tunneling, 172
 
Maxwellian velocity distribution, 169
 
Maxwell’s equations, 286–287
 
MDI (= Michelson Doppler Imager on SOHO), 9–10, 


13, 109–110, 192–194, 202, 226–227, 264, 

277–278, 395
 

mean free path, 21, 128–129, 139, 175–177, 329
 
mean free time, 129, 139, 173, 312–313
 
mean intensity (radiation), 34
 
mean thermal energy, 20, 157, 172
 
mean thermal speed, 70, 128–129, 142, 172, 285, 316, 


329, 351
 
protons in Sun’s core, 170
 

mechanical energy deposition rate (volumetric)
 
chromosphere, 246
 
corona, 333–334
 

mechanical energy fluxes
 
chromosphere, 244
 
corona, 334
 
finite supply, 374
 

mechanical properties of star, 146, 152
 
megameter, 10, 121
 
megatons of TNT, 346
 
metals, 51, 53, 55, 79, 127, 331
 

ionized in photosphere, 75
 
MHD (= magnetohydrodynamics), see magnetic fields
 
microflares, 346
 
microturbulence
 

in corona, 324
 
in photosphere, 59, 243–244, 324
 
sound wave amplitudes, 244
 

middle chromosphere defined, 242
 
hydrogen thermostat, 251
 
lack of fit by model, 249
 

millionths, units of sunspot area, 263
 
“missing depth” of convection model, 124
 
mixing length theory, 98, 117–119, 131, 224
 

convective energy flux, 100–103
 
mixing length parameter, 98, 117
 
temperature differential, 99–100
 

MLT, see mixing length theory 
model of the Sun, 19, 91, 135, 137, 140, 142, 152
 

chromosphere, 243–251
 
mechanical, 137, 141
 
photosphere, 88
 

molecular weight, mean, 53, 79, 87, 101, 115, 119, 123, 310
 
in convection zone, 123
 
in deep interior, 123, 137
 

moments of radiation intensity, 34–35
 
momentum-changing collisions, 161–162
 
momentum space, 70–71
 
monatomic gas, 101–103, 108, 120–121, 207
 
moon diameter, 8, 234
 

motion during eclipse, 236
 
motional electric field, 283, 288, 351
 
motion parallel to magnetic field, 284
 
multipole expansion, 224
 

N 

nanoflares, 341, 346
 
National Aeronautics and Space Administration (NASA), 


xiv, xvii, 1, 6–7, 109, 189, 226, 317, 318, 322, 

327, 336, 370, 376, 395, 396
 

National Institute of Standards and Technology (NIST), 

2, 158
 

negative hydrogen ion, 50–51, 56, 76–77, 82, 89
 
network, chromospheric, 237
 
bright in Ca K, 238
 
dark in Hα, 239
 
enhanced heating, 293–295
 
magnetic fields, 269
 

network vs cell, 240
 
energy supplies, 243–245
 
temperature, 110, 241
 

neutral gas in magnetic field, 285–286 
neutrinos, 139–140, 158–160, 175–185
 

coming from Sun, 183
 
continua, 177–178, 180–181
 
cross-section, 176
 
detection, 181–185
 
flavor mixing, 185
 
fluxes at Earth, 177–178
 
lines, 177–178
 
rest mass, 176, 185
 

neutron decay, 170
 
neutron monitor detectors, 345, 384
 
Newton’s second law, 116, 196–197, 283–289
 
nodes of eigenfunctions
 

in latitude, 140, 192, 210, 220, 221
 
in radius, 140, 194–195, 214–216
 

nonadiabatic processes, 120–121
 
nonanalytic solutions, 151
 
nonthermal electrons, 343–346, 349, 351
 
nonthermal motions, 324
 
nonuniform brightness, 91–93
 
northern lights, xiv
 
nuclear force, 164–166, 169
 

strength of, 164
 
nuclear reactions, xvi, 8, 24, 137, 142, 157–173, 175, 180, 


185, 187, 290, 347, 375
 
bridging the Coulomb gap, 165–168
 
CNO cycle, 158, 160, 177, 180–181
 
conditions required, 162–166
 
energy generation, 137, 145–146, 157–173
 
pp-I chain, 158–160
 
pp-II chain, 178–179
 
pp-III chain, 178–180
 
probability of occurrence, 167, 171
 
quantum tunneling, 168–173
 
rates in Sun, 160–172
 
temperature sensitivity, 171–173
 
weak interaction effects, 171, 175, 274
 

numerical modeling, see computational procedure 
(“step-by step”) 

O 

oblateness, 12–14, 259
 
Ohm’s law, 287–288
 
onset of convection, 104–107, 260
 
opacity, xvi, 33, 35, 39–66
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effectiveness of bound electrons, 47, 55, 72 
in gray atmosphere, 33, 35, 50 
Kramers “law”, 55, 76, 130, 132–133, 139, 143, 

145, 155 
limiting behavior, 53–55 
Lyman edge, 47–49, 51–52, 54–55 
maximum values, 55 
in photosphere, 35, 45, 49, 77, 82–86, 88, 89 
power-law fits, 55–56, 76, 130, 132, 139, 145, 248 
radiative interior, 127–132, 139 
related to radiative loss function, 319, 323, 

330–331 
Rosseland mean, 42, 51–56 
sources of, 44–51 

absorption lines, 56–60 
bound electrons, 46–47, 55, 72, 127, 176 
bound-free transitions, 47–48, 50–51, 54–56, 

82, 127 
electron scattering, 40, 46, 53–54, 307 
free-free transitions, 48, 51, 55, 82, 279, 319, 

323, 344 
helium, 47, 49, 51, 53, 72, 75 
hydrogen, excited states, 48–49 
hydrogen, ground state, 42, 44, 46–48 
negative hydrogen ion, 50–51 

in strong lines, 33, 43, 56, 59–60, 62, 251, 315 
units, 45–46, 52 

open magnetic fields, coronal holes, 364 
optical depth, 8, 27, 29–34, 36–37, 39–40, 44–45, 49, 51, 

60–61, 81–82, 87, 89–90, 97, 99, 104, 107, 128, 
235, 240, 246 

in chromosphere, 248 
and cooling time, 248 
in photosphere, 88 
zero point, 29 

Orbiting Solar Observatories (OSO), 313 
oscillations in the Sun, observations, 187–202 

frequency spacings, 140–141, 190, 194, 218 
long period, 201 
short period (“5-minute oscillations”), 189 
spatial structure, 191–194 
temporal variability, 188–191 
trapped and untrapped waves, 195–200 

oscillations in the Sun, theory, 205–229 
asymptotic behavior, 218–220 
derivation of equations, 205–209 
eigenfrequencies, 213–214 
eigenfunctions, 214–216 
g-mode period spacing, 220 
penetration of modes below surface, 221–222 
p-mode frequency spacing, 218–220 
preferred excitation of certain modes, 223–224 

overshooting, convective, 226 

P 

pairs of sunspots 
east-west alignment, 259, 279, 296, 298 
toroidal field origin, 296 

parcel of gas, 49, 100, 104–105, 116–118, 196–198, 247, 
288, 297 

Parker, E. N., xv, 282, 292, 301, 341, 347–348, 359–361, 
363, 366–367, 372 

Parker Solar Probe, 265, 369, 382, 394 

“patchy” chromosphere, 234–236 
“patchy” corona, in hottest gas, 317, 322, 327 
Pauli, Wolfgang, 70, 141, 175 
penumbra, 106, 187, 200–201, 259–261, 263, 282, 291 

absent from pores, 261, 263, 291 
inclined fields, 187, 200, 244, 259, 282 

perfect gas 
behavior, 90, 101, 111, 141–142, 145, 149, 151, 198, 220 
equation of state, 79–80, 108, 115, 121, 132, 135, 139, 

146–147, 149, 358, 362 
internal energy, 101, 103–105, 118, 247, 374–375 
material at center of Sun, 141–142 

period of g-mode oscillations 
asymptotic spacing, 218, 220 

phase space, 70, 141 
photons 

conductivity, 127–129 
escape time, 139–140 
heat transporters, 128 
ionization by, 49–50 

photosphere, xiii 
acoustic energy flux, 243–244, 254 
Alfven waves, 233, 255, 294, 326, 335 
antinodes near, 214–215, 222–224 
base, 121, 125 
calculating a model, 82–87 
column density, 49, 51, 80 
convective flux, 101–103, 119, 262 
convective turbulence, 250, 293, 297, 301, 328, 335 
definition, xiii, 29 
density in, 10–11, 89, 206, 310 
electrical conductivity, 289 
energy densities of flows, 290 
images (showing granules), 92, 261 
linear extent in depth (radius), 89, 233 
lower, 39, 49, 75, 77, 79 
magnetic decay time, 289 
magnetic fields, 271, 285 
mass column density in, 44–45, 49, 80, 89 
microturbulence in, 59, 243–244 
mixing length parameter, 98, 117–118 
model of, 82–90 
nearly gray opacity, 35, 50 
negative H ion, 50–51, 76–77 
opacity, 83–86, 88 
pressure in, 75, 89, 196, 291 
principal source of opacity, 50–51, 76–77 
scale height, 79–81, 97–98, 117, 140, 196, 198 
sound speed, 101, 224, 245, 294 
sound travel time from core, 140–141 
sound wave amplitudes, 245 
temperature in, 89 
upper, 39, 49, 54, 74–75, 77, 79, 81, 102, 199–200, 

245–246 
plages, 98, 252, 262, 264, 269–270, 324 

excess heating, 293–295 
Planck, Max, 20–23 

constant, 20, 70 
function, 21–22, 36–37, 42, 51–55, 81, 99, 247, 250 

plasma, 48, 51, 63, 162, 167, 185, 254, 270–271, 279–281, 
286–288, 300–301, 311, 313, 315–317, 319, 321, 
324, 326–328, 331, 342–343, 345, 347–348, 351, 
362, 364–366, 368–369, 373, 379, 381–383 

plasmoids, 348–349 
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plateau in chromosphere, 74, 241–242, 250–251
 
p-modes
 

asymptotic spacing in frequency, 194, 218
 
degree l, 110, 191–192, 207, 227
 
depth of penetration below surface, 221–222
 
excitation, 223
 
largest amplitudes, 189, 195
 
preferred spacing, 190
 
pressure dominates, 210, 216
 
radial order, 191, 194–195, 214–215, 219, 222
 
trapped, 190, 195–196, 199–201, 243, 282
 
wavenumber, horizontal, 221
 
wavenumber, radial, 221
 

Poisson’s equation, 147
 
polarized light
 

circular, 65, 273, 275–276, 279, 284
 
from corona, 310
 
in Hanle effect, 271
 
linear, 65, 274–276
 
in Zeeman lines, 273–275
 

polarized radio emission, 279
 
polar regions of the Sun, 14, 281–282, 299, 310, 395
 

reversals of field, 281, 298–299
 
poloidal magnetic field, 296–298, 307–309
 
polynomial fit, 26, 31, 33, 44
 
polytropes, 145–154
 

adiabatic, 145–146, 151, 328
 
analytical solutions, 149–151
 
central condensation, 138, 146, 151, 154–155, 212
 
defined, 146
 
Emden unit of length, 148, 152, 208
 
equation of state, 145
 
Lane-Emden equation, 147–151
 
numerical computation, 152–154
 
oscillations in, 205–206, 208–218, 220, 225
 
relevance to “real” stars, 151–152, 154, 155
 
series expansion, 149, 211
 
surface, 147, 149–155
 

polytropic index, 146, 148–149, 152–153, 195, 207, 210, 

220, 225, 362
 

polytropic “star” and oscillations, 208
 
pores, 261–263, 277, 291, 295
 

decay time, 289
 
and granules, 263, 289, 291
 

position vector, 1–2
 
post-tunneling processes, 169, 171, 173, 179
 
potential well
 

gravitational, 11
 
nuclear, 164, 170
 

power-law
 
conductivity, 329
 
electron distribution, 343
 
flare energy distribution, 341
 
opacity fits, 55–56, 248
 
polytrope, 145–146
 
pressure, 108
 

power output
 
radiation (“luminosity”), 6–8
 
sound, 223–224
 

power spectrum
 
of single l value, 193
 
temporal, 188–191
 
two-dimensional, 191–194
 
velocities in Sun, 188–189
 

pp-cycle, see nuclear reactions
 
pressure
 

comparison chromosphere/corona, 325
 
electron, 71, 74–75, 77, 90, 315
 
fluctuations, 209, 216, 223
 
gas, xiii, 11
 
waves, 101, 189–190
 

pressure pulse from granule, 223
 
pressure scale height, see scale height
 
pressure-temperature relation
 

adiabatic, 108
 
polytrope, 146
 

probability of nuclear reaction, 167, 171
 
probability of quantum tunneling, 171
 

peak value, 172
 
prominences, 269–270
 

support by horizontal field, 293
 
on the disk, 270
 

propagation of sound waves, 196
 

Q 

quadrupole emission from convection, 224
 
quality factor, 190
 
quantum effects, 141, 166
 
quantum mechanics, 41, 43, 49, 58, 141, 165, 167–168, 320
 
quantum tunneling, 168–169, 171–172, 179
 
quarks, 185
 
quiet Sun
 

coronal density, 309–311, 324–325
 
coronal temperature, 311–313, 324–325
 
ubiquitous 1–2MK gas, 317, 328
 

R 

race against time, solar cycle, 298
 
radar, 3–4, 323
 
radial component of oscillation displacement,  


205–207
 
radial eigenfunction, 9, 140, 194–195, 214, 223
 
radial order of eigenmode, 191, 194–195, 214–215, 


219, 222
 
radial profiles of parameters in corona, 310, 363, 369, 372
 

in polytropes, 146, 148–149, 205, 214, 216
 
in the Sun, 19, 27, 39, 135–137, 220, 225–227, 259
 

radiation
 
density constant, 22, 36, 129
 
flow through the solar atmosphere, 19, 21
 
intensity, 12, 19–21, 24, 26–28, 30–32, 34–35, 38, 40, 


49, 52, 56–59, 61, 65, 81, 99–100, 110, 127, 187, 

190, 240, 246–247, 260, 307, 310, 313, 319, 325, 

328, 339, 342–343, 369–370, 372
 

transfer equation, 27–32
 
radiation pressure
 
Eddington approximation, 34
 

ratio to energy density, 34
 
ratio to gas pressure, 138–139
 

radiative cooling
 
chromosphere, 247
 
corona, 330
 
hydrogen lines, 250
 

radiative equilibrium, 34, 91, 104, 242
 
inapplicable to chromosphere, 242
 

radiative-hydrodynamic code, 100
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radiative interior, 7, 37, 55, 127–132, 135–139, 143, 145–146,
 
155, 201, 217, 222, 226, 228, 296–297, 357
 

pressure gradient, 131–132
 
temperature gradient, 131
 

radiative leakage, 102, 104
 
radiative loss function (optically thin), 319, 323, 330–331
 
radiative probability of forbidden lines, 312
 
radiative transfer equation (= RTE), 27–35, 65, 91
 

special solutions, 30–32
 
radioactive decay, and the neutrino, 175
 
radio astronomy, xiii, 279, 322–323, 370
 
radio emission mechanisms, 279, 323
 
radiometer, 6, 365
 
radio observations, magnetic fields, 279
 
radius of polytropic “star”, 148
 
ramp (in penumbra), 187, 200–201, 255
 
ram pressure, 223, 381–382
 
random walk
 

field lines, 299
 
photons, 139–140
 

ranges of parameters, surface to center, 142
 
Rayleigh-Jeans law, 20
 
Rayleigh scattering, 46
 
realistic solar model, eigenfunctions, 215–216
 
“real” stars and polytropes, 145, 148, 151, 152
 
reconnection (magnetic), see flares
 
remote sensing
 

magnetic fields, 270, 279
 
solar wind, 370
 

resistive dissipation, 288–289
 
resistive instability in flares, 381
 
resolving power, 65, 273, 394
 
resonant cavity, 190, 200
 
rest-mass energy, 1 a.m.u., 140
 
reversal of polar fields, 279
 
RHESSI (= Ramaty High Energy Solar Spectroscopic 


Imager), 80, 321, 338, 341–342, 344, 351
 
ribbons in flare, 338, 343, 347
 
ridges in power spectrum, 194, 222
 

loci of constant nr, 195
 
ringing of the Sun, multiple tones, 190
 
rise-time for flux tube, 297
 
r.m.s. (= root mean square) thermal speed, 11, 137, 141, 


165–167
 
ROSA (= Rapid Oscillations in Solar Atmosphere) 


instrument, 394
 
rose color of chromosphere, 234
 

due to H  line emission, 251
 
Rosseland mean opacity definition, 42, 51–56
 

table of, 83–86
 
Rotation of the Sun
 

interactions with magnetic fields, 298–300
 
interior, 226–228
 
surface, 12–15, 214
 
velocity, 12
 

roughness of solar surface, 333
 
RTE, see radiative transfer equation (= RTE)
 
runaway temperature, 251, 328, 351
 
Runge-Kutta numerical scheme, 153, 210–211
 

S 

SAGE neutrino detector, 183
 
Saha equation, 69–77
 

helium in the chromosphere, 75
 
helium in the interior, 76
 
highly ionized elements, 315
 
hydrogen in the chromosphere, 73, 315
 
hydrogen in the interior, 75
 
ionization strips, 72
 
negative hydrogen ion, 76–77
 

Sargent rule in particle decay, 171
 
scale height, 79–81, 97–98, 117, 140, 196, 198, 246, 285
 

in corona, 310, 320, 325, 334, 358
 
Schrodinger equation, 43–44, 168
 
scintillation of radio sources, 370–373, 380
 

probe solar wind acceleration, 372
 
SDO (= Solar Dynamics Observatory), xiv, 8, 10, 51–52, 


109–110, 192, 202, 230, 252, 276–277, 279, 

295, 317, 319–321, 342–343, 351, 378, 395
 

“seeing”, 81, 91, 93
 
self-gravitating sphere, 147
 
shape of spectrum and the mean opacity, 41–42 
sharp edge of disk, xiii, 81
 
shock formation, 245–246 
shock heating, 246
 
simple harmonic motion, 198
 
sinusoid, 220
 
slab, finite, 30–31 
slow solar wind, 364–365
 

emerges from active region edges, 365
 
small separation of p-modes, 213–214, 216
 
SNO (= Sudbury Neutrino Observatory), 183–186 
SNU (= solar neutrino unit), 181–183 
sodium D lines, fine structure, 313
 
soft X-rays, 313, 339–340, 396–397 
SOHO (= Solar and Heliospheric Observatory), 6, 9–10, 


13–14, 109–110, 189, 192–194, 202, 226–227, 

264, 277–279, 316–318, 321–322, 375–377, 

379, 395
 

images, 317–318, 376
 
solar oscillations, 189, 193
 

solar activity, xv, 96, 110, 229, 267, 270, 276, 289, 300, 

307, 321, 365, 372, 377, 395–396
 

solar chromosphere, see chromosphere 
solar core, xvi, 7, 11, 24, 139–140, 157, 159–162, 165–166, 


169–173, 175–179, 185, 187, 347
 
solar cycle, see eleven-year cycle 
solar disk sextant, 13
 
Solar Dynamics Observatory, see SDO (= Solar Dynamics 

Observatory) 
solar flares, see flares 
solar interior, probe with sound waves, xv, 187–202, 

205–228 
solar irradiance, largest at solar maximum, 7, 293
 

and faculae, 293
 
solar maximum and minimum defined, 264
 
solar model, 10, 39, 88, 103, 123, 132, 135–137, 140, 142, 


145, 148, 152, 181, 183–185, 213, 215, 224–226, 

242–243, 249
 

solar neutrino problem, 182, 185–186 
Solar Orbiter, 395
 
solar oscillations, see oscillations in the Sun 
solar polar fields, 271, 281–282, 296, 298
 
solar spectrum
 

acoustic power, 244
 
photosphere, 12, 19, 23, 49–50, 57
 
X-rays, 313–316, 319
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solar wind 
acceleration, evidence for, 361, 371–372 
asymptotic speed, 363 
average wind at 1AU, 364 
defined, 359 
density at 1AU, 364 
density at sonic point, 374 
energy equation, 362 
fast (high-speed) wind, 324, 364 
hot ions in fast wind, 324 
hydrodynamic outflow, 359–360 
hydrostatic equilibrium, global, 357–359 
hydrostatic equilibrium, local, 359–360 
kinetic energy (KE) flux, 374 
magnetic fields, 281, 363 
rate of mass outflow, 373–375 
slow wind, 364, 365 
sonic point, 361–362, 365, 372, 374 
spatial extent of Sun’s influence, 381–384 
speed at 1AU, 363–364, 375, 383 
steady-state flow, 360 
temperature at 1AU, 363–364, 367 

solid body rotation, departures from, see differential 
rotation 

SOLIS (= Synoptic Optical Long-term Investigations of 
the Sun), 276, 396 

sound speed, 101, 107–108, 140, 147, 196–198, 220, 
224–226, 233, 245, 254–255, 292, 294, 310, 
358, 361, 364, 371, 373–374 

adiabatic, 197, 220 
isothermal, 358 
in photosphere, 101 
radial profile in Sun, 225 

sound travel time in Sun, 140 
sound waves in Sun, see also acoustic waves 

ability to do work, 243, 245 
amplitudes in chromosphere, 245 
amplitudes in photosphere, 245 
flux generated by convection, 223–224, 243–245 
flux reaching the chromosphere, 244–245 
important for chromospheric heating, 233 
propagation in stratified atmosphere, 195–199 
reflection (trapped), 200 
refraction, 221 

source function, 29, 31–34, 36–37, 65, 81, 99, 240, 249 
exponential form, 32–33 
Planck function, 81, 99 
polynomial form, 31, 33 

South Pole, observing solar oscillations, 187–188 
spatial structure in corona, 308–309, 312 
specific entropy, 121 

and ionization, 121 
specific heat 

constant pressure, 100–101 
constant volume, 101, 128, 329 
in convection zone, 123 
energy transport, 100 
ionizing medium, 102–103 
ratio, 103 

spectral lines 
absorption, 56–60 
emission, 62, 235, 307 

speed of light, 12 
speed of sound, see sound speed 

spherical harmonics, 191 
SphinX, 321, 339, 342 
spicule properties, 61, 235–240, 242, 249, 333 

and the network, 242, 249 
Spitzer formula for conductivity, 289 
spots, see sunspots 
“squeezed” eigenfunctions, high-l, 192, 222, 224 
standard solar model, 137, 181, 183–185 
statistical weight 

bound levels, 48, 69 
free electrons, 69–71 

steep temperature gradient, upper chromosphere, 251 
Stefan-Boltzmann constant, 9, 22, 36, 129, 248 
step-by-step modeling, see computational procedure 

(“step-by step”) 
STEREO spacecraft, xvi, 222, 280, 295, 321, 324, 368, 

382, 396 
storage of pre-flare energy, 343 
stratified atmosphere 

cut-off frequency, 199 
cut-off period, 199 
wave propagation, 196–199 

stretching field lines, 296–297, 341 
strong force, see nuclear force 
sub-modes with index m, 227 
Sun “as a star”, 188, 191, 396 
Sun, global parameters 

acceleration due to gravity, 10 
angular radius, 8, 13 
central density, 10, 138, 142, 146, 148, 151 
critical (gravity) frequency, 16 
distance from Earth, 3–4 
effective temperature, 9, 11–12, 36, 89, 99, 167 
effects on life, xiv 
energy flux at surface, 11, 101, 120, 130, 244 
escape speed, 11, 137, 141, 166 
irradiance (TSI = “solar constant”), 6–8, 23, 293, 

365, 395 
lifetime, 7, 214 
limb, xiii, 8–9, 12–14, 25–26, 30–33, 35, 39, 50, 65, 81, 

92, 234–236, 238–241, 293 
linear scale corresponding to 1 arc sec, 4 
luminosity, 6–8, 9, 11, 79, 115, 120, 135, 157, 160, 

267–268 
mass, 6–7, 10–11, 16 
mean density, 10–11, 16, 138, 142, 154 
power output (see luminosity) 
radius, 8–13 
shape, 12–13 
sharpness of the disk edge, 81 
solar constant (= total solar irradiance, TSI), 6–8 
sunspot cycle, xiv, 6–10, 15, 110, 202, 228, 259–260, 

264–267, 277–282, 297–302, 307, 320–322, 
340, 346, 364–365, 367, 369, 372–373, 
377–380, 383, 396 

variable power output, 7 
visible surface, xiv–xv, 19, 22, 27, 29, 142, 233 

sunspots, xiii, 6–7, 10, 12, 14, 16, 96, 109, 202, 237, 
259–270, 277–279, 281, 291–293, 295–298, 
317–318, 328, 343, 372, 383 

Alfven speed, 294 
angular diameters, 263 
areas, 263–264 
changes in luminosity, 6–7, 267 
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chromosphere, 237
 
cycle (see sunspot cycle)
 
direction of field, 275
 
effective temperature, 260
 
electrical conductivity in umbra, 289
 
energy deficits, 260, 268, 293
 
evidence for umbral magnetic field, 272
 
faculae associated with, 7, 268, 270, 293, 295
 
follower (spot), 259, 279, 298–299
 
Hale’s polarity law, 279, 298
 
horizontal (nearly) field in penumbra, 260, 282
 
images, 19, 224, 244, 245, 248, 249, 252
 
inclined fields in penumbra, 187, 200, 244, 259, 282
 
inhibition of convection, 106, 290–291, 293
 
internal gas pressure, 291–292
 
leader (spot), 259, 279, 283, 298
 
lifetimes, 267
 
magnetic activity, 202, 268, 270
 
magnetic field strengths, 262–263, 273, 277–278, 


282, 287
 
magnetic pressure, 254, 286–287, 291
 
numbers, 264–267
 
pairs, 259, 276, 296, 298
 
penumbra, 187, 200–201, 259–261, 263, 282, 291
 
pores, 263, 289, 291, 295
 
radiant intensity relative to photosphere, 260, 293
 
reduced density in umbra, 292
 
shallowness of, 292–293
 
surrounded by plage, 264
 
temperatures in, 260
 
umbra, 187, 259–263, 268, 272–273, 275, 277, 282, 


287, 289–292, 294
 
vertical field in umbra, 106, 187, 260, 277, 282, 290–291
 
wavelength dependence of intensity, 260
 
Wilson depression, 291–292
 

superadiabatic gradient, 118, 120
 
superadiabaticity, 120
 
supergranules
 

active region decay, 278
 
circulation time, 110
 
defined, 109, 238
 
flows in, 109
 
lifetime, 110
 
linear size, 109
 
number of granules contained, 110
 
observed in Ca K, 237, 239
 
observed in H , 238–240
 
rotational effects, 110
 
weak convective flux, 110
 

super-hot component in flares, 342
 
supernova, 152, 370
 

T 

tearing instability, 348, 369
 
temperature
 

boundary (Eddington model), 37, 241
 
chromospheric, 240–242
 
Edlen’s work, 311
 
effective, 9, 11, 36, 89, 99, 167, 218, 260
 
electron, in corona, 311–314
 
extremely high, in fast wind, 324
 
ions, 323–324
 
of line formation, 315
 

photospheric, 88–89
 
quiet corona, 328–331
 
solar wind, 367
 

temperature differences
 
empirical, in granules, 99
 
theory, in MLT convection, 118–119
 

temperature gradient
 
adiabatic, 104–105
 
critical value, 105
 
related to luminosity, 131
 
related to pressure, 131–132
 

temperature minimum, 62, 74, 241–242, 246–249
 
associated with shock heating, 245–246
 
density at, 249
 

temperature sensitivity 
of thermonuclear reactions, 171–173 

temperature vs height 
chromosphere, 240–242 
differences cell vs network, 240–242 

temporal variability, 188–191
 
termination shock, 383
 

location of, 383
 
thermal conduction
 

in corona, 329
 
by electrons, 329
 
in solar interior, 128–129
 
in solar wind, 362
 

thermal convection
 
in granules, 100–102
 
not in supergranules, 110
 

thermal energy 
in flare, 345
 

thermal energyrelease, 104
 
thermal motions, 59, 63, 102, 287, 324
 
thermal pool, 27, 160
 
thermal population, 157, 159, 166, 170
 
thermal properties
 

of stellar interior, 146, 287
 
thermal protons bridging the Coulomb gap, 166
 
thermal speed, 70, 128–129, 141–142, 165, 170, 172, 285, 


329, 351
 
thermal velocities iron in corona, 323–324
 
thermal velocity distribution, 169
 
thermodynamics, 147
 
thermonuclear reactions, 157, 162, 164, 166–167, 169, 


171–172
 
Coulomb barrier penetration, 165–167
 
Gamow factor, 168
 
maximum effectiveness, 172
 
rates of, 169
 
regulated by weak force, 171
 
sensitivity to temperature, 171–173
 

thermostat 
in middle chromosphere, 251
 

thin slab, 27, 31, 44
 
Thomson cross-section, 40, 46, 53, 176, 310
 
Thomson scattering in
 

corona, 310
 
three-D modeling of granules, 98–99
 

including 3-D radiative transfer, 100, 103
 
“tied” to the field, see “frozen” field
 
time-scale
 

for flare, 339, 347
 
time-scale of magnetic decay, 288
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time series solar velocity, 188
 
topology
 

of CaK chromosphere, 237–238
 
of granules, 93
 

toroidal field, 296–298
 
TRACE (= Transition Region and Coronal Explorer), 396
 
transfer of energy
 

into p-mode, 223–225 
transition region
 

chromosphere/corona, 332–333
 
conduction, 333
 
“discontinuity”, 325
 
thickness, 325
 

transmission of Alfven waves 
density jump, 335–336
 

trapped modes, 195–200
 
“true” corona ends, 382
 
“true” wind begins, 382
 
turbulence
 

in Earth’s atmosphere, 81
 
effects on acoustic power, 243–244
 

turbulent flow, 94–95
 
turbulent stresses, 228
 
turnover time of convection cell, 98–99
 
twenty-two year cycle
 

magnetic polarity, 282, 299
 
two-stream approximation, 35
 

U 

ultraviolet catastrophe, 20
 
Ulysses spacecraft, 365
 
umbra, 106, 187, 244, 259–263, 272–273
 

darkness of, 269
 
field strength, 277–278, 282, 287, 290
 
inhibiting convection, 106, 290–291
 
vertical field, 106, 260, 291
 

unit vector of magnetic field, 287
 
untrapped waves, 195–200
 
upflows
 

associated with bright granules, 95–96
 
convective, 59, 102
 

upper boundary convection zone, 107
 
p-mode cavity, 200
 

upper chromosphere
 
definition, 242
 
density in, 249
 
hydrogen ionized, 251
 
temperature runaway, 251
 

upper hemisphere, 30
 
upper photosphere, 39, 49, 54, 74–75, 77, 79, 81, 102, 


199, 245
 
cut-off period, 199
 
hydrogen ionization, 75
 
negative hydrogen ion, 77
 
and temperature minimum, 246
 

variability
 
luminosity, 7
 
polar fields, 281
 
of single p-mode, 191
 
sunspot numbers, 264–267
 

variability of Sun
 
timescale of days/years, 187
 
timescale of minutes, 187
 

vector displacement in oscillation, 205
 
vector magnetograph, 276–277
 
velocities in granules
 

difference downflows/upflows, 95
 
horizontal, 96
 
vertical, 95
 

velocity broadening, 59
 
venus, 3, 6, 8, 368, 369, 371, 372, 394
 
vertical acceleration, 115, 116, 117, 196
 
vertical displacement, 104, 196, 202
 
vertical field in umbra, 282, 290, 291
 
vertical length scale, 116
 
vertical sound waves, 196
 
viscosity, 94, 106, 228, 300
 
volumetric rates
 

conductive losses, 330
 
energy deposition, 246, 331
 
radiative losses, 247, 331
 

W 

wave equation in stratified atmosphere, 196
 
wave heating 

chromosphere, 245–247 
corona, 305–307 

wavelength of sound waves, 224
 
wavelength shift due to Zeeman effect, 271–272
 
wave modes, magnetic, 294
 
wavenumber, 221
 

horizontal, 221
 
radial, 221
 

waves
 
acoustic, 195
 
in a stratified atmosphere, 196
 
longitudinal (sound), 245
 
magnetic, in corona, 324
 
in solar atmosphere, 59
 
inside the sun, 187
 
transverse (Alfven), 252, 294
 

weak force (= weak interactions), 157
 
controls pp-rate, 161–162
 
and neutrinos, 159, 160
 
strength of, 170
 
in the pp reaction, 170
 

white dwarf stars, 151–152
 
white-light corona, 309
 
why 11 years for the solar cycle, 298–300
 
Wien maximum, 22, 52, 54, 56
 
Wien’s law, 54
 
Wilcox Solar Observatory, 282
 
Wilson depression
 

in faculae, 293
 
in spots, 291–292
 

wind, see solar wind
 
wings of absorption line, 58
 
work against gravity, 104
 

X
 

X-ray astronomy, xiii, 44, 80, 309
 
X-rays coronal, 313
 

V 
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hard, 313
 
soft, 313
 
spectrum, 314
 
temperature of line formation, 315–316
 

Y 

year, sidereal, 1
 
YOHKOH, 317, 321, 326, 327, 344, 


349, 397
 

Z 

Zeeman effect anomalous, 273
 
longitudinal, 273
 
normal, 271
 
transverse, 275
 

Zeeman splitting, 251
 
circular polarization, 273–275
 
linear polarization, 275
 

Zurich sunspot number, 264
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